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Abstract

For years, the development and advancement of numerical methods for the calculation
of physical phenomena has been the objective of numerous research. With the available
computational capacity nowadays, the simulation of more complex problems such as
fluid-structure interaction (FSI) is becoming increasingly demanded. FSI applications
require not only the stable and accurate solution of the individual domains, but also the
consideration of the interaction at the interface. Here, the least-squares finite element
method (LSFEM) offers a possibility of monolithic coupling with inherent fulfillment
of the interface conditions. The present work aims to investigate different approaches
to solve FSI problems using the LSFEM. For this purpose, different formulations for
the calculation of fluid flows based on the incompressible Navier-Stokes equations and
for elastic solid deformations based on linear and hyperelastic material behavior are
considered. A main focus is on the time discretization of these approaches including
the application and analysis of high-order methods and adaptive time-stepping based
on embedded Runge-Kutta methods. Another important aspect of investigation is the
coupling of the presented least-squares formulations to solve FSI problems with large
deformations, taking into account the fluid in an Arbitrary-Lagrangian-Eulerian (ALE)
description, the hyperelastic solid formulation, and the deformation of the background
mesh. Furthermore, different formulations for the calculation of flows of non-Newtonian
fluids are investigated, which are, for example, suitable for the simulation of blood flows.

Zusammenfassung

Die Entwicklung und Optimierung numerischer Methoden für die Berechnung physikalis-
cher Phänomene ist seit Jahren Gegenstand zahlreicher Forschungsarbeiten. Mit der
heute zur Verfügung stehenden Rechenkapazität wird die Simulation von immer kom-
plexeren Problemen wie der Fluid-Struktur-Interaktion (FSI) zunehmend wichtiger. FSI
Anwendungen erfordern nicht nur die stabile und präzise Lösung der einzelnen Teil-
gebiete, sondern auch die Berücksichtigung der Wechselwirkung an der Schnittstelle.
Hier bietet die Least-Squares Finite-Elemente-Methode (LSFEM) eine Möglichkeit
der monolithischen Kopplung mit inhärenter Erfüllung der Übergangsbedingungen.
Die vorliegende Arbeit soll dazu beitragen, verschiedene Ansätze zur Lösung von
FSI-Problemen mithilfe der LSFEM zu untersuchen. Dazu werden verschiedene For-
mulierungen für die Berechnung von Fluidströmungen auf Basis der inkompressiblen
Navier-Stokes-Gleichungen und für elastische Festkörperverformungen auf Basis von lin-
earem und hyperelastischem Materialverhalten betrachtet. Ein Hauptaugenmerk liegt
dabei auf der zeitlichen Diskretisierung dieser Ansätze, einschlielich der Anwendung
und Analyse von Methoden höherer Ordnung und adaptiver Zeitschrittsteuerung mit-
tels eingebetteter Runge-Kutta-Verfahren. Ein weiterer wichtiger Untersuchungsaspekt
ist die Kopplung der vorgestellten Least-Squares Formulierungen zur Lösung von
FSI-Problemen mit großen Verformungen unter Berücksichtigung des Fluids in einer
Arbitrary-Lagrangian-Eulerian (ALE) Beschreibung, der Solidformulierung für Hyper-
elastizität und des Ansatzes für die Verformung des Hintergrundnetzes. Darüber hin-
aus werden verschiedene Formulierungen für die Berechnung von Strömungen nicht-
Newtonscher Flüssigkeiten untersucht, die sich z.B. für die Modellierung von Blut-
strömungen eignen.
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Introduction 1

1 Introduction

The aim of this work is the development and investigation of different approaches based on
the least-squares finite element method (LSFEM) for the solution of fluid and structural
problems with the objective of coupling these approaches to solve systems involving the
interaction between a fluid flow and a structural deformation. An essential point of study
therein is the discretization of space and time of the considered least-squares formulations,
including time adaptivity. Furthermore, different formulations suitable for the simulation
of non-Newtonian fluids are investigated in the context of this thesis. This chapter provides
a brief background motivation and an introduction regarding the subjects that will be
discussed. Then, a literature review of relevant topics in the context of this thesis follows.
The scope and outline of the thesis are presented at the end of this chapter.

1.1 Motivation

In the last decades the numerical treatment of multi-physics problems has attracted in-
creasing interest due to the large number of application fields and notable progress that
has been made regarding computing power, making reliable simulations feasible. Advanced
mathematical models provide an accurate representation of underlying physical phenom-
ena, enabling precise and efficient analysis of highly complex engineering problems, which
were, previously, strongly dependent on more expensive and effortful experimental eval-
uations. The mechanical coupling of different physical fields is present in a wide range
of mechanisms in reality. For instance, fluid-structure interaction (FSI) plays an im-
portant role not only in traditional engineering, such as mechanical and civil engineering,
but also in a wide variety of fields ranging from aeronautics and aerospace to biomechan-
ics. Improved computations of, e.g., vibrating lightweight constructions induced by wind
effects enhance the prediction of failures, which may actually prevent catastrophes like
the collapsing of bridges or light roof structures, for instance. Another interesting exam-
ple for the application of FSI can be found, for instance, in biomechanical engineering,
where blood flow in deformable vessels in the human arterial system can be simulated.
Such simulations can help to improve the quality of artificial blood vessels and predict
the rupture of aneurysms during certain medical treatments or surgeries.

The term FSI implies a two-way interaction of a fluid flow and a moving and/or deforming
solid. In this process, the fluid exerts surface forces on the solid body caused by its flow
motion, which leads to deformations or displacements. In turn, the structure movement
leads to a change in the fluid domain, which affects the flow. Thus, there is a mutual
interaction between a flowing medium and a solid structure, which are coupled at their
common interface. A crucial aspect in the numerical solution of FSI problems is the
treatment of the coupling conditions at the interface. In the context of this work, the
focus is on the application of the least-squares finite element method (LSFEM),
which provides, in combination with suitable approximation spaces, a direct possibility
to satisfy the coupling conditions without additional numerical treatment.

Despite the technological progress in recent years, the solution of such multi-physics prob-
lems remains a challenging task. To reduce the computational effort or to facilitate im-
plementations, it is common to use models based on simplifications, e.g. with respect to
the material behavior. A frequent simplification is, for example, the assumption of New-
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tonian flow behavior in the simulation of blood flows. However, this assumption can only
be used in a very limited range without loss of accuracy. In many applications, blood
cannot be simplified as a Newtonian fluid. In fact, for a correct description of the blood
rheology it is very important to consider the shear thinning behavior of blood by using
non-Newtonian fluid models. These enable a correct and accurate calculation of rel-
evant quantities such as viscosity and wall shear stresses, which is a crucial point, for
example, in evaluating the occurrence of thrombosis and the development of aneurysms.
The present thesis involves the study of various aspects in the solution of non-Newtonian
fluid flows using the LSFEM in two and three dimensions.

A possibility to increase the accuracy of the calculation of e.g. the mentioned wall shear
stresses is the assimilation of data into numerical simulations. More precisely, e.g.
patient-specific velocity measurements can be performed and used to reduce possible
model inaccuracies and to obtain results which are closer to reality. The least-squares
finite element method used in this work offers the advantage that the assimilation of data
is straightforward to implement and can be executed without any significant additional
computational effort.

A general disadvantage of the LSFEM is that the system of equations to be solved can
become very large due to many degrees of freedom and consequently the computational
effort is often high compared to other finite element methods based on different varia-
tional approaches. Therefore, especially when considering complex dynamic systems as in
the case of FSI calculations, it is important that the formulations are highly accurate and
efficient at the same time. One of the most important aspects in dynamic systems, involv-
ing long-term computations, is the time discretization. There are numerous different
approaches to numerical integration in time-dependent problems, often distinguished in
their key properties such as stability and order of accuracy. In the course of this work, dif-
ferent time integration methods in combination with the LSFEM are investigated for the
solution of fluid, structural and FSI problems. The focus is on accuracy and efficiency of
the chosen approaches. Apart from methods with constant time step sizes, also algorithms
with adaptive time step control are considered for improving efficiency.

1.2 State of the art

This section aims to give a general overview of existing methods related to the thematics
considered in this thesis. The focus is on the application of the least-squares finite element
method for the solution of time-dependent fluid, structure and FSI problems. In this
context, the current state of the LSFEM in the different areas is discussed. A more detailed
overview of the background and the general ideas of the LSFEM can be found in the
textbooks and literature reviews by, e.g., Jiang [219], Bochev and Gunzburger [53]
and Kayser-Herold and Matthies [229].

1.2.1 LSFEM for fluid and solid dynamics

The least-squares finite element method, which was subject to intense research start-
ing already in the mid-1970s, represents an alternative variational approach to the well-
known (mixed) Galerkin method in the field of finite element analysis. Initial publica-
tions on the use of the least-squares method in the field of FEM were, for example, by
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Lynn and Arya [264]. From a mathematical point of view, several investigations re-
garding least-squares approaches also took place during this period, see, for example,
Eason [136], Jespersen [216], and Fix and Gunzburger [150], Fix et al. [151].
A major drawback of this method was that it required high-order approxima-
tion functions for a good approximation quality, see e.g. Pontaza [309; 310],
Kayser-Herold and Matthies [229] and Proot and Gerritsma [315]. The asso-
ciated requirement in increased computational power led to infrequent application of the
LSFEM. The interest in the method intensified when the available computational capac-
ity increased significantly. Up to now, approaches based on the LSFEM exist in a wide
variety of fields. A large part of application fields deals with the solution of flow problems,
but also in the field of solid mechanics as well as FSI, there exist formulations based on
the LSFEM. A brief summary of these is given in the following.

Least-squares FEM for Newtonian fluids
As mentioned before, a major effort in the development of the least-squares FEM lies
in the field of fluid mechanics. In this context, there exists a large collection of works
dealing with the solution of the Navier-Stokes and the Stokes equations, often based on
the construction of first-order least-squares formulations. Several different least-squares
formulations for both equations exist based on varying choices of the field variables.

Fundamentals in the field of LSFEM for solving flows with small Reynolds numbers are
presented, for example, in the publications by Chang [96] and Jiang and Chang [220].
The latter introduces probably the best known and most widely used first-order
formulation based on velocities, pressure, and vorticity. Further studies with this
combination of unknown quantities include e.g. Jiang [217; 219], Bochev [46; 47],
Bochev and Gunzburger [50; 51], Cai et al. [81] and Bochev et al. [55]. The
main emphasis of these works is directed towards the study of these formulations from a
mathematical point of view. Other publications on this topic, whose focus is rather on the
application, are Tang and Tsang [381], Jiang et al. [221], Tang et al. [382; 383],
Jiang [219] and Pontaza [311].

Apart from the formulations in which the vorticity is introduced in addition to the
velocities and the pressure, other approaches exist based on adding a stress tensor as
further unknown quantity. The number of publications on this least-squares formu-
lation, of e.g. Bell and Surana [35; 36], Winterscheidt and Surana [421],
Bochev and Gunzburger [52; 53], Ding and Tsang [128], Lee [258] and
Nisters [294], indicates the popularity of this type as well. The addition of the
stresses can lead, depending on the approximation, to a quite high number of degrees of
freedom. The success of this formulation may be explained by the fact that the stress
is a relevant quantity in many applications and its direct approximation allows a high
computational accuracy. A slight reduction in the number of degrees of freedom can
be achieved by eliminating the pressure by using the stress-pressure relation resulting
from the constitutive law. Publications involving a velocity-stress formulation are, for
instance, Cai et al. [86], Nisters and Schwarz [295], Schwarz et al. [352; 353]
and Averweg et al. [9].

Another way to reformulate the Navier-Stokes equations is to include the velocity flux
definition as in Cai et al. [82] and Bochev et al. [56; 57] or the velocity gradient
as in Cai et al. [82]. Further variations consider for instance formulations in terms of
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stress and stream functions, cf. Bolton and Thatcher [62] and Bolton [60], or a the
pressure gradient cf. Heys et al. [194], to mention a few. This collection provides only
a brief overview of the least-squares FEM with respect to the construction based on dif-
ferent first-order formulations. Several other papers deal for example with the advantages
and disadvantages of the method, i.e. low accuracy and mass loss or the application of
adaptivity. An overview of these is given in the subchapter on this topic in Section 3.3.1.
In most of the early investigations, the focus is on the solution of steady-state problems.
But especially in the later years also transient problems are considered, using different
time discretization methods for the integration. An overview of available numerical re-
search studies on the solution of unsteady flow problems using LSFEM, e.g., by space-time
methods and also sequential spatial and temporal discretizations, is included in Chapter 7
on time integration methods.

Least-squares FEM for non-Newtonian fluids
The aforementioned studies deal with the solution of both the Stokes and Navier-Stokes
equations for Newtonian fluids, which are characterized by a constant viscosity assump-
tion. For many industrial and scientific applications this simplification is not necessarily
valid, since many fluids are characterized by a viscosity that is not constant at a fixed
pressure and temperature. As discussed in more detail in Section 2.5, non-Newtonian flu-
ids can be roughly divided into viscoelastic fluids, time-dependent fluids, and generalized
Newtonian fluids. In the last decades, many approaches based on different material mod-
els have been developed to numerically represent the various properties. At this point,
an overview of existing research on non-Newtonian fluids in the context of LSFEM is
presented.

A common fluid model which includes a partly elastic behavior, which is thus suit-
able for the modeling of viscoelastic fluids is, e.g., the Giesekus model, Giesekus [168].
Implementations of this model in the context of the LSFEM can be found in
Nayak and Carey [288], Surana et al. [378], and Chen et al. [98], for instance.
Other common models to simulate viscoelastic fluid behavior are the Phan-Thien-
Tanner model, cf. Phan-Thien and Tanner [307], and a simplification thereof, the Ol-
droyd model, cf. Oldroyd [299]. These were investigated in Cai and Westphal [80],
Lee [256] and Zhou and Hou [429], for example, focusing on convergence behavior,
adaptive meshing, and residual weighting. A further modification represents the Maxwell
model as studied e.g. in Bose and Carey [63] and Gerritsma [164].

Generalized Newtonian fluids, for which the shear stress is described as a func-
tion of the shear rate at the considered time and temperature, can be shear-
thinning, shear-thickening, or plastic. A typical model to simulate primarily shear-
thinning material behavior is the power-law equation, cf. Ostwald [301], as in-
vestigated in combination with the LSFEM by, e.g., Bell and Surana [36],
Edgar and Surana [137], Dalimunthe and Surana [115], Vallala et al. [402],
Surana et al. [377] and Waseem [411]. Some publications additionally examine the
Carreau model, Carreau et al. [90], which can also be found in Chen et al. [98],
Nickaeen [292] and Lee [257], for example. An extension thereof, the Carreau-Yasuda
model, Yasuda et al. [427], has been investigated in the context of the LSFEM in
Feng and Surana [147], Lee [259], Kim and Reddy [234; 235; 236; 237], Kim [233]
and Averweg et al. [12].
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Least-squares FEM for elastic solids
Due to several positive properties of the LSFEM, which are discussed in more detail in
Chapter 3.3.1, a variety of mixed least-squares approaches has also been developed in
the field of solid mechanics in the last decades, although less than for fluid dynamics.
Initial formulations for linear elasticity derived from the approaches for the Stokes equa-
tions can be found, for example, in Cai et al. [81; 82]. Subsequently, several studies on
first-order LS formulations based on displacements and displacement gradient were pub-
lished, cf. Cai et al. [83; 84; 85] and Kim et al. [238], for instance. In further work
dealing with the solution of linear elastic problems, the displacements and stresses were
used as unknown field quantities, as in e.g. Cai and Starke [78; 79], Cai et al. [87],
Schwarz [345], Schwarz et al. [349; 351] and Igelbüscher et al. [212]. Topics
in these papers include among others the introduction of vector-valued interpola-
tion functions of Raviart-Thomas type, see Raviart and Thomas [324], in H(div,Ω)
for the stress approximation, and the use of the LS functional as an error estima-
tor for adaptive mesh refinement. Additionally, in Bochev and Choi [48; 49] and
De Sterck et al. [117; 118] studies can be found on the solution of partial differen-
tial equations of hyperbolic style using the LSFEM.

In the field of nonlinear solid mechanics, first investigations considering the consti-
tutive law of St.Venant-Kirchhoff can be found in e.g. Manteuffel et al. [270].
Further publications using a Neo-Hookean type material law are Schwarz [345],
Schwarz et al. [350; 354], Schröder et al. [341], Steeger [371] and
Igelbüscher [211], for instance. Whereby in the work Schröder et al. [341]
small and finite strain deformations are considered for isotropic and anisotropic material
behavior. Aforementioned studies are conducted focussing on several application and
performance aspects of the presented LS formulations from an engineering point of
view. Research on the LSFEM for nonlinear material behavior with a mathematical
focus can be found in Starke et al. [370], Müller et al. [284], Müller [282] and
Müller and Starke [283], for instance.

1.2.2 Finite element methods for FSI problems

In FSI problems, different domains are connected, with the respective physical laws de-
scribing fluid flow and structural displacement valid in the individual domain. To compute
these combined problems, in addition to the boundary and initial conditions, new con-
ditions are imposed on the interface to ensure that equilibrium is satisfied. Hence, FSI
problems can be practically divided into three subproblems, i.e. one for describing the fluid
flow, one in which the solid deformations are calculated, and the third subproblem in which
the equilibrium at the common interface is ensured. Due to the extremely broad spectrum
of possible applications a wide range of research work on FSI problems has been carried
out in the last decades. For a general overview on FSI methods of early work from the
last century, one can refer to Cebral [94], Wall [408] and Dowell and Hall [133],
for example. The authors list several papers related to FSI approaches, classified for exam-
ple according to the complexity of the equations for the fluid and the structural domain.
Further publications from this time with a classification into different application areas
are given in, e.g., Steindorf [374] and Sieber [362]. For basic information on various
aspects related to numerical methods for FSI problems, cf. textbooks Richter [327],
Bazilevs et al. [27], Sigrist [364], and Souli and Benson [367], for instance.



6 Introduction

A further subdivision of the different approaches to the computation of FSI prob-
lems can be performed based on the treatment of the coupling. Considering cou-
pled problems a distinction can be made between partitioned and monolithic cou-
pling procedures, cf. Zienkiewicz and Chan [430], Felippa and Park [143] and
Park and Felippa [302]. In the former, the FSI problem is decoupled in two subprob-
lems and separate equation systems for the fluid and solid domain are solved in turn, see
e.g. Felippa et al. [144; 145], and Piperno et al. [308]. For example, the fluid solu-
tion is calculated first, then the resulting stresses are applied as boundary conditions for
solving the solid equations. If these steps are performed once per time step this is also re-
ferred to as loose or weak coupling, and can lead to the occurrence of instabilities, see e.g.
Leyland et al. [262], Le Tallec and Mouro [255], Rugonyi and Bathe [332].
The stability can be improved by iterating the process of solving the fluid and solid field
equations in each time step, cf. Steindorf [374]. This is often termed implicit or strongly
partitioned coupling. Main reasons for applying partitioned solution algorithms, are that
existing codes for the fluid and solid domain can be used and that both domains can easily
be discretized separately in space and/or time. With respect to spatial discretization,
this allows, among other things, the coupling of different methods such as finite volume
and finite element codes or the use of different mesh refinements. In the case of dynamic
problems, different time integration algorithms or time step sizes may be chosen for the
two domains. A substantial amount of research and development has been carried out
in this area. Publications on partitioned coupling from the beginning of the 20th cen-
tury are, for example, Matthies et al. [274], Matthies and Steindorf [275],
Wall et al. [409], Förster et al. [153], Dettmer and Perić [125], and
van Brummelen et al. [403]. Aspects of investigation in these articles are, for
instance, the stability of strongly and weakly coupled partitioned schemes, multigrid
methods, and the treatment of free surface flows. More recent studies are addressing, addi-
tionally to stability aspects, the solution of blood flows through arteries or the comparison
of different partitioned coupling methods and their validation against experimental data,
cf. Fernández et al. [148], Landajuela et al. [253], Serino et al. [355] and
Schussnig et al. [344]. Another aspect of recent investigations is the application
of NURBS-based coupling with a common spline interface of fluid and solid domain,
see Hosters [199], Hosters et al. [200], Make [267] and Make et al. [268], for
instance, which enables individual refinement of both domain, and a simplified transfer
of quantities at the interface.

Besides the mentioned advantages, partitioned coupling approaches for FSI have some
shortcomings, too. In case of large deformations in the solid domain, a large number
of iterations per time step may be needed to obtain a converged solution, which can
lead to high computational costs. Therefore, the staggered iterative solution procedure
is most effectively used in case of a weak interaction between the fluid and the struc-
ture, and for more complex problems a monolithic approach may be superior, see for
instance Rugonyi and Bathe [332], Michler et al. [280], Kayser-Herold [227]
and Sheldon et al. [360]. To solve problems with strong interaction, as for exam-
ple in the case of large structural displacements, the monolithic solution approach
can be recommendable, where one global coefficient matrix for both domains and the
coupling conditions is solved at once, cf. Heil et al. [181], Küttler et al. [247]
and Langer and Yang [254], for instance. Further comparison between different
partitioned and monolithic solution procedures can be found, among others, in
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Dettmer and Perić [125; 126], Tezduyar et al. [389], Degroote et al. [121],
Degroote [120].

In the area of solving FSI problems with monolithic approaches, there have
also been immense research efforts and advances in recent years, and in-
vestigations have been carried out with a variety of different key aspects.
One important point regarding complex numerical calculations is the perfor-
mance and efficiency. Various recent studies address issues such as paralleliza-
tion, multigrid methods and preconditioning, cf. Wu and Cai [425], Richter [328],
Hessenthaler [183], Hessenthaler et al. [187], and Gee et al. [163]. Due to
high demands on the accuracy of numerical solutions, high-order spatial discretiza-
tions are an ongoing research interest. In the context of fluid-structure interac-
tion, some work has been devoted to this topic in the past years. For example,
Persson et al. [306], Pena and Prud’homme [304], Froehle and Persson [156]
and Chabannes et al. [95] use discontinuous higher order Galerkin approaches to dis-
cretize one or both domains of the coupled problem in order to achieve high accuracy.
However, the discontinuity of the finite elements leads to an increased number of degrees of
freedom. A possibility to reduce these is investigated by e.g. Sheldon et al. [359; 361],
Neunteufel and Schöberl [289] and Fu and Kuang [157], which use hybrid dis-
continuous Galerkin approaches in their studies.

Due to the dynamic nature of fluid-structure interaction problems the choice of
the temporal discretization method is an important aspect to be considered. The
comparison of different time integration methods as well as the application of
adaptive time stepping in connection with FSI problems can be found, for ex-
ample, in Mayr et al. [278; 279]. Numerous contributions include space-time fi-
nite elements, among others Hübner et al. [205], Tezduyar and Sathe [387],
Tezduyar et al. [390; 391], Sathe and Tezduyar [337], as well as some of those
already mentioned. A recent review of existing space-time FE approaches to solv-
ing FSI problems can be found, e.g., in, Hughes et al. [209], Bazilevs et al. [32]
and Tezduyar et al. [392]. Similar to adaptive time stepping methods, adaptiv-
ity was also applied in space, such as in Bathe and Zhang [22], Wick [416] and
Jansson et al. [214].

A further relevant issue, which is inevitable as soon as significant deformations occur in the
structure, is the consideration of the deformation of the fluid domain. Due to the relevance
of this topic, there are again numerous different approaches. A common one is the use
of the Arbitrary-Lagrangian-Eulerian (ALE) description, cf. Hughes et al. [207] and
Donea et al. [131] in the fluid domain and the calculation of the background mesh as
a kind of pseudo-material. However, there has also been much research on algorithms for
re-meshing in the case of large deformations, which will not be discussed further at this
point. An overview of some present work on mesh deformation is included in Section 8.3.

Due to the wide range of application fields of numerical FSI calculations the con-
sidered problems become continuously more specific. Some recent works in the field
of mechanical engineering deal, for example, with the calculation of wind turbines
or air blasts, see Bazilevs et al. [26; 28; 30; 31; 33]. In the field of medical engi-
neering, there is a great deal of research in which, for example, the calculation of
blood flow through vessels is studied, cf. Bazilevs et al. [24], Janela et al. [213],
Balzani et al. [15; 17; 18], Hsu and Bazilevs [203], Terahara et al. [386] and
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Schussnig et al. [344], or Hirschhorn et al. [196], for an overview on recent works.
The focus of these works lies on the correct simulation of the blood behavior with
the help of non-Newtonian material models or the exact modeling of the deforma-
tion of surrounding tissue, cf. Marino et al. [271] and von Hoegen et al. [406]. In
addition to general models, patient-specific data are also taken into account, see e.g.
Bazilevs et al. [25], Balzani et al. [16] and Schussnig and Fries [343].

A constantly ongoing topic in the development of numerical methods is the valida-
tion and verification of implemented algorithms on the basis of benchmark problems.
The descriptions of some frequently used examples in the field of FSI can be found,
among others, in Blom [44], Hron and Turek [202], Bathe and Ledezma [21],
Hessenthaler et al. [184; 185; 186], Turek et al. [398]

Further publications that contain collections of research on advances in nu-
merical methods for fluid-structure interaction problems are, for example,
Bungartz and Schäfer [72], Schröder [342], Galdi and Rannacher [161],
Bungartz et al. [73], Bodnár et al. [58], Bazilevs and Takizawa [23], and
Frei et al. [155].

Least-squares FEM for FSI problems
A large part of the work mentioned so far is based on a finite element discretization
with the continuous or discontinuous Galerkin method. In the context of this thesis, the
focus is on the application of the least-squares finite element method. A major reason
for using the LSFEM to solve fluid-structure problems is that mixed formulations can
directly approximate the quantities that are shared at the interface between fluid and
solid with high accuracy. If suitable approximation spaces in H(div) and H1 are applied
for the stresses and velocities in both domains, this allows a direct fulfillment of the cou-
pling conditions. Initial approaches using LS formulations do not take this into account,
since only the fluid domain is discretized using the LSFEM, as in Lee et al. [261],
Kayser-Herold and Matthies [228; 230], for example. The mixed LS fluid formu-
lation therein is coupled with a Galerkin solid formulation. In the former publication,
a partitioned scheme is applied to solve steady-state FSI problems. Therein, the do-
mains are computed separately with an iterative update procedure until convergence is
reached. Unsteady FSI computations are conducted in the two other works, whereby
Kayser-Herold and Matthies [228] apply space-time methods including adaptiv-
ity, and in Kayser-Herold and Matthies [230] space and time discretization is per-
formed sequentially.

Further developments including least-squares formulations for the fluid
as well as solid domain are presented in Kayser-Herold [227] and
Kayser-Herold and Matthies [231], for instance. In these studies, the Stokes
and Navier-Stokes equations for the fluid domain, and the equations of linear elasticity
for the solid domain, are reformulated into a first-order system by introducing the ve-
locities and Cauchy stresses. In connection with stress approximations in H(div,Ω) and
standard interpolations for the velocities, a direct satisfaction of the coupling conditions
is achieved. Similar approaches based on stress-velocity formulations for both the fluid
and solid domain are investigated, for example, in Nisters et al. [297], Nisters [294],
Averweg et al. [9]. Moreover, the authors Heys et al. [188; 189; 190] investigate
different coupling procedures with a comparison in terms of accuracy and computa-
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tional cost, and the model scalability with application to blood flow simulations. In
Rasmussen et al. [322; 323] and Rasmussen [321], the LSFEM is applied to both
fluid and solid domain discretization, and the formulations presented are tested with
respect to monolithic coupling schemes and the sensitivity of the coupled system to
residual weighting. Another research approach includes the application of sensitiv-
ity methods in the field of FSI based on the LSFEM, cf. Wickert et al. [419],
Wickert and Canfield [418], Wickert [417], for instance.

1.3 Outline

In Chapter 2 the essential basics of the concept of continuum mechanics are introduced.
This includes the description of motion and deformation of bodies including Lagrangian
and Eulerian frameworks, the concept of stresses, the balance equations and the consti-
tutive relations required within this thesis.

A short introduction to the finite element method in general and to the specifics of the
least-squares FEM is provided in Chapter 3. Furthermore, details on interpolation spaces
and the construction of interpolation functions are given, including a brief explanation of
implementation aspects. Since parts of this thesis involve the assimilation of data using
the LSFEM, theoretical information regarding data preparation and implementation are
presented in this chapter as well.

Chapter 4 contains the derivation of least-squares finite element formulations for dy-
namic flow of incompressible Newtonian fluids based on the Navier-Stokes equations. The
stress-velocity-pressure (SVP) and stress-velocity (SV) formulations are presented and
information on the approximation is provided. The application of these formulations will
be presented later, once the temporal discretization procedures have been introduced.

Least-squares finite element formulations for the solution of steady-state flow problems
of non-Newtonian fluids are discussed in Chapter 5. The applied formulations and the
viscosity model are explained and verified with the help of examples in 2D and 3D.
Furthermore, the numerical examples contain several studies on the flow behavior as a
function of the different viscosity model parameters. Another point of investigation in this
chapter is the assimilation of numerical and experimental data into flow simulations of
non-Newtonian fluids in 2D and 3D.

The subsequent Chapter 6 deals with the derivation of LS formulations for solid mechan-
ics problems. More precisely, formulations in terms of stresses and velocities are considered
here, as the main objective of this work is the monolithic coupling of the LS fluid and
solid formulations. Both linear elastic and hyperelastic material behavior is introduced
for this purpose. Due to the inherent need of the stress-velocity (SV) formulation to be
discretized in time, the formulation will be tested for standard application cases in the
next chapter once time discretization methods have been presented.

As mentioned earlier, Chapter 7 contains the explanation of time discretization meth-
ods utilized to solve the dynamic flow and solid problems with the LS stress-velocity
formulations of the previous chapters. For this purpose, first basics of different time dis-
cretization methods are explained and a simple example in 1D is given to clarify their
application to the solution of first-order partial differential equations. Furthermore, all
necessary implementation aspects of the used discretization methods in connection with
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the SV formulations are explained and numerical examples are provided including the
investigation of convergence orders. Another point of investigation in this chapter is the
application of adaptive time stepping algorithms. For this purpose, the evaluation of er-
ror estimators based on embedded Runge-Kutta methods is explained and information
on automatic time stepping is given. Moreover, the application of adaptivity in time is
examined to solve flow and solid problems.

In Chapter 8 the presented stress-velocity formulations for fluid and solid dynamics are
monolithically coupled to solve fluid-structure interaction problems. First, the general
idea of monolithic coupling and inherently fulfilled interface conditions using suitable
function spaces is given and tested using numerical FSI examples with small deformations.
Next, the necessary components for the handling of large deformations in FSI problems
are specified. More precisely, the fluid formulation in an Arbitrary-Lagrangian-Eulerian
description is introduced to account for deforming fluid domains. Furthermore, details
are provided on how to calculate the movement of the fluid background mesh, including
numerical examples to compared different approaches for smooth deformation. Finally, the
separately tested components are coupled to solve FSI problems with large deformations.
In a final benchmark problem, the monolithic coupling of the fluid ALE formulation
with the solid formulation for hyperelastic material behavior is examined, along with the
application of various time discretization methods including adaptive time stepping.

Chapter 9 concludes the present work with a summary of the findings obtained. In
addition, an outlook is given on possible future work in the fields considered.

It should be stated that all finite element implementations and computations
have been done using the AceGen and AceFEM packages (version 7.203), see
Korelc [240; 241; 242] and Korelc and Wriggers [243] of Mathematica (version
13.0), see Wolfram Research Inc. [422].
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2 Basic aspects of continuum mechanics

To describe mechanical processes regarding fluids and structures, separately and
coupled, the continuum mechanical approach is used in this work. In the contin-
uum hypothesis, the description of physical phenomena is based on the assump-
tion that nature is not composed of atoms, but consists of continuous masses. The
present macroscopic approach to continuum mechanics is based, for example, on
the work of Rivlin [330], Truesdell and Noll [393], Truesdell and Toupin [394]
and Noll [298]. Herein, a continuum body is assumed to consist of a set of material points
and can be characterized by a certain number of field quantities. In order to explain me-
chanical processes mathematically, differential equations are used relating these physical
field quantities. These equations are theoretical hypotheses whose validity has been veri-
fied by years of research. Thus, reliable statements can be derived from these differential
equations within a certain range of validity. The application of continuum mechanics
requires that, in addition to assumptions for mechanical processes, there are also assump-
tions to be made about material behavior. Further models are developed continuously in
order to extend the overall range of validity.

Dealing with fluid-structure interaction problems involves the coupling of two domains
in which independent field problems have to be solved. The objective of this chapter is
to outline the mathematical derivation of basic equations for solving each field problem.
The algorithmic implementation of the numerical solution of the coupled problem using
the least-squares finite element method is explained in the subsequent chapters. In the
following sections, the basic fields of the continuum mechanical concept, namely kinemat-
ics, the concept of stresses, the balance equations and constitutive relations are described
in more detail. For more details regarding continuum mechanics, the interested reader is
referred to related textbooks, such as e.g. Eringen [139], Malvern [269], Gurtin [173],
Marsden and Hughes [272], Holzapfel [198], Shabana [356], Lai et al. [252] and
Reddy [326], and the references therein.

2.1 Kinematics

Kinematics or the theory of motion covers the analysis of motion and deformation of a
continuum medium. The cause of the change in position, i.e. the acting forces and mo-
ments, are not considered. An infinitesimal volume element on a deformable body has 12
degrees of freedom describing the motion. More precisely, a body can be translated in
three independent directions, rotated about three orthogonal axes, and can be subjected
to six independent deformation states, three of which are elongations or compressions
and three shear deformations. The objective of this section is to establish a correlation
between the motion of a body and various strain measures. As will be shown, the defor-
mation at a material point on a body in three dimensions can be described by six strain
components. There are different representations of the strains, depending on the refer-
ence system used for their definition. The following notations are based on explanations
in Holzapfel [198], Donea and Huerta [129] and Wriggers [424].
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2.1.1 Configuration and motion

In order to describe the motion of a body B, we consider the state of the material body
in the geometric space at different times t, see Figure 2.1. In other words, the position of
the body in three-dimensional Euclidean space IR3 can be expressed by a mapping which
assigns a unique position to each material point P ∈ B. The spatial configuration at time
t = 0, here described by the mapping χ0 : B → Ω0 ⊂ IR3, is also referred to as initial
configuration. Assuming the body moves as time advances, the new position at time t,
given as the mapping χt : B → Ωt ⊂ IR3, is called the actual or deformed configuration.

0

Ω0

U(X, t)

initial

Ωt

X x

actual

B

P
χtχ0

ϕ(X, t)
configuration

configuration

P0

Pt

e1

e2

e3

Figure 2.1: Configuration of a continuum body and displacement of a material point

For a better illustration of the motion description, one can focus on a material point P ∈ B
of the moving body with position vector X = χ0(P, 0) ∈ Ω0 in the initial configuration
and x = χt(P, t) ∈ Ωt in the actual configuration. X is also referred to as material
coordinate, since this vector allows to identify the different material particles of the body.
Based on the relation between both configurations the actual position can also be given
by

x = χt(χ0(X, t)) = ϕ(X, t), (2.1)

where ϕ(X, t) : Ω0 → Ωt ⊂ IR3 denotes the motion. It is assumed that the latter has con-
tinuous derivatives in space and time and is uniquely invertible. Considering a cartesian,
orthonormal base system denoted by ei with i = {1, 2, 3} in IR3, respectively, the position
vectors of all material and spatial points can be given in index notation as

X = Xi ei and x = xi ei with i = {1, 2, 3} . (2.2)

Remark: For the representation of tensor and vector products, a single dot (·) and a
colon (:) are used as notation for a simple or a double contraction, respectively. Thus, a
single multiplication between two second-order tensors, A and B, or a tensor A and a
vector b is written as

C = A ·B with components Cik = Aij Bjk

c = A · b with components ci = Aij bj .
(2.3)
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A double contraction between two second-order tensors or a fourth-order A and a second-
order tensor is denoted as

C = A : B with components C = Aij Bji

C = A : B with components Cik = AijklBlk .
(2.4)

2.1.2 Eulerian and Lagrangian description

When a continuum is in motion, its characteristic quantities, such as temperature, velocity,
stress, can change with time. There are two different ways to express these changes and
to describe the displacement and deformation of a medium in continuum mechanics,
depending on the point of view. In the material or Lagrangian description of motion a
particle is selected and one observes the change of quantities while following its movement
in time. Whereas in the spatial or Eulerian description, the change of a quantity at a fixed
position in space is considered, see e.g. Wriggers [424]. Taking weather forecasting as an
example, one can say that a radiosonde carried by a balloon along with the airstream has
a Lagrangian way of looking at, e.g., the flow velocity or temperature. An anemometer,
on the other hand, located at a fixed weather station, measures wind speed in an Eulerian
manner. A Lagrangian framework is typically used for modeling structural mechanics, and
the Eulerian framework is more commonly used in fluid dynamics. Since both domains
are relevant in the further course of this work, in the following the description of basic
and derived quantities, such as displacement, velocity, acceleration, and strain measures,
is considered from both points of view.

In the Lagrangian framework the displacement is described with respect to material co-
ordinates X and time t, whereas in the Eulerian description the material coordinates x
serve as a base system, leading to the representations

U(X, t) = x(X, t)−X and u(x, t) = x−X(x, t) . (2.5)

Furthermore, it can be noted that there is a correlation between the two perspectives
through the deformation map ϕ given by

U(X, t) = U(ϕ−1(x, t), t) = u(x, t). (2.6)

This relationship can also be used to transform the velocities and accelerations, which
are the first and second derivatives of displacement with respect to time, from one frame
to another. The specific formulation and further characteristics are summarized in Table
2.1. The effect of the Lagrangian or Eulerian view on the time derivatives is explained
in more detail below. Note that for better readability, the scalar and vector arguments
are not always stated in the subsequent sections, if it is clear by the context to which
configuration the quantities refer (e.g. u(x, t) = u).

2.1.3 Material time derivative

In order to specify the velocity and acceleration, first of all we consider the material time
derivative of a scalar field quantity θ(x, t) at any position x at time t, which is derived
using the chain rule

θ̇(x, t) =
D θ(x, t)

D t
=
∂θ(x, t)

∂t
+
∂θ(x, t)

∂x

∂x

∂t
. (2.7)
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This total derivative needs to be considered in the Eulerian representation. In the La-
grangian description, where the quantity depends on the fixed reference system with
∂X/∂t = 0 this reduces to the partial derivative

θ̇(X, t) =
D θ(X, t)

D t
=
∂θ(X, t)

∂t
. (2.8)

Using equation (2.8) the velocity and acceleration in the material description yield

V (X, t) =
∂U(X, t)

∂t
=
∂x(X, t)−X

∂t
=
∂x(X, t)

∂t
= ẋ(X, t) (2.9)

and

A(X, t) =
∂V (X, t)

∂t
=
∂2U(X, t)

∂t2
= ẍ(X, t) . (2.10)

The spatial description of the velocity can be derived in analogy to equation (2.6) and
using (2.9), which leads to

v(x, t) = V (ϕ−1(x, t), t) = ẋ(X, t). (2.11)

The material time derivative, see equation (2.7), applied to the velocity field in Eulerian
framework yields the spatial acceleration

a(x, t) = v̇(x, t) =
∂v(x, t)

∂t︸ ︷︷ ︸
local acceleration

+
∂v(x, t)

∂x
· ∂x
∂t︸ ︷︷ ︸

convective acceleration

=
∂v

∂t
+ gradv · v , (2.12)

with grad(•) = ∇x denoting the gradient with respect to the current configuration, i.e.

∂v

∂x
=
∂vi
∂xj

ei ⊗ ej . (2.13)

Some relevant characteristics of both considered configurations and the time derived quan-
tities in the Lagrangian and Eulerian framework are summarized in Table 2.1.

Table 2.1: Characteristics of Lagrangian and Eulerian description of motion

description Lagrangian (material) Eulerian (spatial)

mostly used in: structural mechanics fluid mechanics

focus on: moving material point fixed point in space

base system: material coordinates (X) spatial coordinates (x)

displacement U(X, t) = x(X, t)−X u(x, t) = x−X(x, t)

velocity V (X, t) = ẋ(X, t) v(x, t) = ẋ(X, t)

acceleration A(X, t) = ẍ(X, t) a(x, t) = ∂v
∂t

+ gradv · v

Remark: The material time derivative of the velocities (2.12), consisting of the local
acceleration part and the convective part, is especially relevant in fluid dynamics, since it
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allows the calculation of the acceleration based on the spatial velocity field solely, without
any knowledge on the motion. In many continuum mechanics problems, especially in fluid
mechanics, the change in shape of a body is not of interest, but rather the rate at which
the deformation occurs. For this purpose, the symmetric part of the strain rate tensor,
also called symmetric velocity gradient, is often considered, which is defined as follows

D =
1

2

(
∇v + (∇v)T

)
= ∇sv → Dij =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (2.14)

Herein, the components Dij are referred to the base vectors ei in the current configuration,
such that the gradient is∇(•) = ∇x(•). In the following, the subscript is omitted whenever
it is clear from the context whether the derivation refers to the current or the initial
configuration. The components of the velocity gradient for three dimensions can be written
in matrix representation as

∇v =



∂v1

∂x1

∂v1

∂x2

∂v1

∂x3

∂v2

∂x1

∂v2

∂x2

∂v2

∂x3

∂v3

∂x1

∂v3

∂x2

∂v3

∂x3

 . (2.15)

2.1.4 Deformation gradient and strain measures

A relevant measure in continuum mechanics is the deformation gradient, which defines a
relationship between the initial Ω0 and the current Ωt configuration

F (X, t) =
∂x(X, t)

∂X
= Gradx(X, t) = ∇Xx , (2.16)

where Grad(•) or the Nabla operator ∇X(•) denote the gradient of a tensor with respect
to the material coordinates X. A component-wise notation considering the orthonormal
bases as given in (2.2) yields

F =
∂xi
∂XJ

ei ⊗EJ = FiJ ei ⊗EJ , (2.17)

revealing that the deformation gradient is a two-field tensor with one base each in the
initial and current configuration. Is is assumed that the deformation gradient is invertible
and its determinant, defined as the Jacobian, is strictly positive J = detF > 0. Then the
mappings of infinitesimal line, area and volume elements from the initial to the actual
configuration using the deformation gradient are given as

dx = F · dX , (2.18)

da = (detF )F−T · dA , (2.19)

dv = (detF ) dV , (2.20)

with the area vectors da = n da and dA = N dA and unit outward normal vectors n
and N to the surface of body B. A combination of the deformation gradient and the
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displacement is provided by the displacement gradient tensor in the material or spatial
description given as

GradU = F (X, t)− I = ∇XU or gradu = I − F−1(x, t) = ∇xu . (2.21)

Here, grad(•) or ∇x(•) is used to specify the gradient with respect to the position vector
in the current configuration and I denoting the second-order identity tensor. Additionally
the inverse of the deformation gradient can be determined by means of the displacement
related to the actual state and is

F−1 =
∂X(x, t)

∂x
= I − gradu . (2.22)

Due to the fact that the applied equations of continuum mechanics in the course of
this work are related to the initial and to the current configuration, in the following
some common strain tensors related to both configurations are given. Important measures
regarding the Lagrangian description are the right Cauchy-Green deformation tensor C
and the Green-Lagrange strain tensor E defined as

C = F T · F → CIJ = FJkFkJ (2.23)

and E =
1

2
(C − I) → EIJ =

1

2
(FJkFkJ − δIJ) , (2.24)

with components CIJ and EIJ referred to an orthonormal base system in the material
configuration, and the Kronecker delta defined as

δij =

{
1 if i = j ,

0 else .
(2.25)

An important property of the right Cauchy-Green deformation tensor is, that it is directly
connected to the deformation and such to the strains within the body, and takes the value
of the identity I throughout a rigid-body motion. Further important strain measures
regarding the material and spatial description are summarized in Table 2.2.

Table 2.2: Definition and characteristics of common deformation and strain tensors

configuration characteristics definition

right Cauchy-Green tensor initial sym., pos. definite C = F T · F
Green-Lagrange strain tensor initial symmetric E = 1

2
(F T · F − I)

left Cauchy-Green tensor actual sym., pos. definite b = F · F T

Almansi strain tensor actual symmetric e = 1
2
(I − F−T · F−1)

Remark: In structural mechanics, some materials undergo only small deformations when
forces up to a certain magnitude are applied. In the calculation of such deformations, a
great simplification can be obtained by approximating the exact strain tensors by an
infinitesimal strain tensor, denoted as ε. This approximation is based on the assumption
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that the components of the displacement gradient in such a case are comparatively small,
i.e. ∂UI/∂XJ � 1, such that powers of those occurring for instance in the definition of
the strain tensors E or e can be neglected. Consequently, it is indifferent whether the
displacement gradients are obtained by differentiation according to material coordinates
X or according to spatial coordinates x, such that ∂UI/∂XJ ≈ ∂ui/∂xj. This leads to
the infinitesimal strain tensor

ε =
1

2

(
∇u+ (∇u)T

)
, (2.26)

where in the limiting field of linear elasticity ∇(•) = ∇X(•) = ∇x(•).

2.2 Concept of stresses

The motions and deformations considered so far result in stresses inside a material. In the
following, the stress quantities which are of interest in this work are briefly introduced.

2.2.1 Surface traction

In order to illustrate the stress quantities, consider an arbitrary cut through a body
under load in the initial configuration Ω0 and the actual deformed configuration Ωt, see
Figure 2.2. Due to an external load acting on a boundary ∂Ω0/t, an infinitesimal resultant
force vector

df = T dA = t da (2.27)

acts inside the body on each surface element, where T denotes the first Piola-Kirchhoff
traction vector and t the Cauchy traction vector defined in the initial and actual config-
uration, respectively.

0

Ω0

initial

Ωt
X x

actual

ϕ(X, t)

configuration
configuration

N

dA
da

t
n

T

∂Ωt∂Ω0 e1

e2

e3

Figure 2.2: Concept of stresses - traction vectors acting on cut surface

According to Cauchy’s stress theorem, there exist tensor fields, commonly called the
Cauchy stress tensor σ and the first Piola-Kirchhof stress tensor P , such that the traction
vectors are linear in the unit outward normals n or N and

T = P ·N and t = σ · n . (2.28)
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Note that the traction vectors generally do not coincide with the outward normals. The
force applied across a surface does not necessarily act in the direction perpendicular to
the surface. The Cauchy stress is a symmetric spatial tensor field and also referred to
as true stress, since it defines the stress in the actual configuration acting on the actual
boundary of Ω, depending only on position x and time t.

2.2.2 Stress tensors

Based on equation (2.27), which defines the relation between both stress tensors as

P ·N dA = σ · n da , (2.29)

and using the transport theorem of an area element, see (2.19), the Cauchy and the first
Piola-Kirchhoff (PK) stress tensors can also be written as

σ = J−1P · F T and P = Jσ · F−T . (2.30)

Further commonly used stress tensor are the second Piola-Kirchhoff stress tensor S and
the Kirchhoff stress tensor, here denoted by τK , i.e.

S = F−1 · P = JF−1 · σ · F−T and τK = F · S · F T = Jσ. (2.31)

The second Piola-Kirchhoff stress tensor is symmetric and formulated based on mate-
rial coordinates and the Kirchhoff stress tensor represents the counterpart in the actual
configuration. An overview of the stress quantities with some relevant characteristics and
their relations is given in Table 2.3.

Table 2.3: Summary of relevant characteristics and relations of common stress tensors

configuration symmetry important relations

Cauchy stress spatial σ = σT σ = J−1P · F T = J−1F · S · F T

Kirchhoff stress spatial τK = τ TK τK = Jσ = P · F T = F · S · F T

1st Piola-Kirchhoff two-field P 6= P T P = Jσ · F−T = F · S
2nd Piola-Kirchhoff material S = ST S = F−1 · P = JF−1 · σ · F−T

2.2.3 Stress deviator and hydrostatic pressure

It is often useful to decompose the Cauchy stress tensor σ in a deviatoric σD and spherical
σS part as

σ = σD + σS = σD +
1

3
tr(σ)I , (2.32)

Therein, the deviatoric part is related to the shear components of the stress tensor σij
with i 6= j, acting tangential to the surfaces, and the spherical part depends on the normal
stress components σii. If the shear stresses are zero, i.e. σD = 0, then one obtains

σ = −pI , (2.33)
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or in index notation σij = −p δij, with the Kronecker delta δij defined in (2.25). This can
be referred to as hydrostatic stress state with the scalar quantity p = −1

3
trσ being the hy-

drostatic pressure, see Holzapfel [198], Spencer [368] or Donea and Huerta [129],
for instance.

Remark: Related to the description of flow processes, equation (2.33) describes the state
of a fluid at rest in which it cannot sustain shear stresses. The stress state in the static
equilibrium is purely hydrostatic. The deviatoric stresses in fluid dynamics are often de-
noted as τ and according to (2.32) taking into account the definition for the hydrostatic
pressure, it follows that

σ = τ − p I . (2.34)

2.3 Balance principles

In the following, the relevant physical principles that form the basis of both fluid dynamics
and solid mechanics are considered. The balance of mass, the balance of momentum and
the balance of moment of momentum describe the equilibrium of physical quantities in
the body with consideration of an external load.

2.3.1 Conservation of mass

Assuming a closed system, the conservation of mass means, that the mass m of a body
remains constant and does not change with time and motion. It remains constant in time
regardless of the configuration. In integral form over the entire region in the initial and
actual configuration this reads

m =

∫
Ω0

ρ0(X, t) dV =

∫
Ωt

ρ(x, t) dv = constant > 0 , (2.35)

where ρ0 and ρ are the initial and actual density, which are related using the transport
theorem (2.20) as ρ0 = ρ J . A constant mass over time implies that the rate of mass
change equals zero. Taking into account that the initial configuration is time independent
and using the definition J̇ = J div v, the global statement can be written as

ṁ =
Dm

D t
=

∫
Ω0

D ρ0(X, t)

D t
dV =

∫
Ω0

D(ρ(x, t) J)

D t
dV

=

∫
Ω0

ρ̇(x, t)J + ρ(x, t)J̇ dV

=

∫
Ω0

J(ρ̇+ ρ div v) dV

=

∫
Ωt

(ρ̇+ ρ div v) dv = 0 .

(2.36)

The local form in Eulerian description follows as

ρ̇+ ρ div v = 0 , (2.37)

where the material time derivative of the density is defined as ρ̇ = ∂ρ
∂t

+ grad ρ · v. Since
only homogeneous materials are considered in the context of this work, the density is
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uniform over the entire region and thus the dependence on the coordinates X or x can be
dropped, such that (grad ρ = 0). Furthermore, when assuming incompressible materials
the density is constant over time (ρ̇ = 0) such that the mass continuity equation results
in

div v = 0 . (2.38)

Remark: This statement is a basic component of the Navier-Stokes equations for the flow
description of incompressible fluids. The practical and commonly used representation in
component notation reads as follows

∂vi
∂xi

= 0 with i = {1, 2, 3} . (2.39)

2.3.2 Balance of linear momentum

The balance of linear momentum states that the rate of change of momentum must be
in equilibrium with all external forces acting on a body, i.e. L̇ = Fext. Herein, the linear
momentum in the initial and actual configuration is defined as the volume integral

L =

∫
Ω0

ρ0V dV =

∫
Ωt

ρv dv . (2.40)

The resultant force can be split into a surface part, subjected to a traction vector, and
a volume part, subjected to a body force fb in the actual and Fb = Jfb in the initial
configuration, i.e.

Fext =

∫
∂Ωt

t da+

∫
Ωt

fb dv =

∫
∂Ω0

T dA+

∫
Ω0

Fb dV . (2.41)

The traction vectors are the Cauchy traction t or the first Piola-Kirchhoff traction vector
T , depending on the configuration. The body force can include e.g. gravitational force
per unit volume, i.e. fb = ρg with the gravity acceleration g.

With the material time derivative of the momentum, this gives the global form of the
balance of linear momentum in Eulerian description as

L̇ =
D

D t

∫
Ωt

ρv dv =

∫
∂Ωt

t da+

∫
Ωt

fb dv . (2.42)

By integrating Cauchy’s stress theorem given in (2.28) and using the divergence theorem,
which states for any tensor A that

∫
∂Ωt
A · n da =

∫
Ωt

divA dv, the surface integral of
the traction vector can be converted to a volume integral of the Cauchy stress tensor σ∫

∂Ωt

t da =

∫
∂Ωt

σ · n da =

∫
Ωt

divσ dv . (2.43)

Substituting this equation into (2.42) and considering the material time derivative of the
velocity v̇ = ∂v

∂t
+ gradv · v, see equation (2.12), one obtains the global form of Cauchy’s

first equation of motion in the Eulerian description∫
Ωt

(divσ + fb − ρv̇) dv = 0 , (2.44)
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and subsequently also the local form of this statement

divσ + fb − ρv̇ = 0 . (2.45)

For applications in the field of solid mechanics, it is often preferable to use a formulation
in Lagrangian description. The material description of the global balance equation yields

D

D t

∫
Ω0

ρ0V dV =

∫
∂Ω0

T dA+

∫
Ω0

Fb dV . (2.46)

With further transformations using the divergence theorem and the mass continuity (??),
the integral form of the balance of linear momentum in Lagrangian description is given
as ∫

Ω0

(
DivP + Fb − ρ0V̇

)
dV = 0 , (2.47)

with the first Piola-Kirchhoff stress tensor P and the initial density ρ0. Analogously to
the deliberations above, the local form of this expression can be formed and is

DivP + Fb − ρ0V̇ = 0 . (2.48)

Remark: The Eulerian description of the momentum balance is one of the governing
equations for solving dynamic flows which are studied later. To ease the interpretation of
these equations and for a straightforward implementation, it is often helpful to take a look
at the index notation. Using component-wise representation and expanding the material
time derivative of the velocities, see (2.12), the momentum balance in equation (2.45) can
be represented as follows

∂σij
∂xi

+ fj = ρ

(
∂vj
∂t

+ vk
∂vj
∂xk

)
. (2.49)

Regarding the physical meaning of these terms, one can see that the right side of the
equation corresponds to the rate of change of the moment, and consists of the acceleration
term and a convective part. The left side of the equation contains the forces which are in
equilibrium with the accelerations. These include the gradient of the surface stresses and
the volume forces, such as gravity acting on the mass of the volume under consideration.
The surface stresses can be further divided into shear and normal stresses, as explained
in more detail in Section 2.5.

2.3.3 Balance of angular momentum

The balance of angular momentum defines the equilibrium between the rate of change
of angular momentum and all external moments acting on a body, i.e. J̇ = M . Herein,
the angular momentum relative to a fixed point x0 is defined in the initial and actual
configuration as the volume integral

J =

∫
Ω0

r × ρ0V dV =

∫
Ωt

r × ρv dv , (2.50)

with the position vector r = x − x0. The resultant moment can again be generated by
volume and surface forces and reads

M =

∫
∂Ωt

r × t da+

∫
Ωt

r × fb dv =

∫
∂Ω0

r × T dA+

∫
Ω0

r × Fb dV . (2.51)
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With the material time derivative of the angular momentum, this gives the global form
of the balance of linear momentum in Eulerian description as

J̇ =
D

D t

∫
Ωt

r × ρv dv =

∫
∂Ωt

r × t da+

∫
Ωt

r × fb dv . (2.52)

With further transformation, which will be omitted at this point, the final local statement
of the balance of angular momentum in Eulerian description becomes

σ = σT , (2.53)

which states the symmetry of the Cauchy stress tensor. Reformulation leads to the corre-
sponding Lagrangian description

P · F T = F · P T , (2.54)

which implies that the first Piola-Kirchhoff stress tensor is not necessarily symmetric.

An overview of the balance equations, which are relevant in the scope of this thesis can
be found in Table 2.4, where the Eulerian and Lagrangian descriptions are given.

Table 2.4: Local statements of balance equations in Lagrangian and Eulerian description

Lagrangian description Eulerian description

mass continuity ρ̇0 = 0 ρ̇+ ρ div v = 0

balance of linear momentum DivP + Fb − ρ0V̇ = 0 divσ + fb − ρv̇ = 0

balance of angular momentum F · P T = P · F T σ = σT

2.4 Constitutive equations for elastic structures

So far in this work, the kinematics of deformations, the stress concept, the conservation
equations and balance principles have been studied. Thereby, the Eulerian and Lagrangian
approaches were derived for the different equations and descriptions, respectively. All these
relations are valid for any kind of continuum, more precisely for any material. In order to
distinguish between different materials, such as fluid and solid, or to be able to describe
different material properties, such as elasticity or plasticity, further equations are required.
In detail, terms are needed to relate the stresses inside the medium to the deformations
causing these internal forces, taking into account various parameters characterizing the
material properties, such as density and viscosity. The relationship is also known as the
constitutive law and, in addition to being dependent on the material under consideration,
it can also include dependence on, e.g., time, space, temperature.

In this section, the constitutive relations are established for elastic solids considering linear
elastic and hyperelastic material behavior. The next section will deal with the material
description and constitutive laws for Newtonian and generalized Newtonian fluids. In
general, there are many ways in which a solid can respond to an external or internal
load. Main properties are, e.g., elasticity, plasticity or viscosity, with the later describing
a time-dependent material behavior. In addition, there are of course also mixed forms
in which the material combines different properties in varying proportions, leading, for
example, to elastoplastic, viscoelastic or viscoplastic behavior.
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2.4.1 Description for hyperelastic material behavior

Within the scope of this work, only purely elastic deformation processes in the solid
domain are considered. Materials are referred to as elastic if their constitutive behavior
is a function of the current deformation state only and does not depend, for example,
on time or the deformation rate. Additionally, all deformations are reversible such that a
body returns to its initial state when the load is removed. Furthermore, only homogeneous
and isotropic materials are considered for which it is assumed that on the one hand the
constituents are uniformly distributed in the body, and on the other hand the material
response under load is the same in all directions. During the deformation of such materials,
referred to as hyperelastic, there is no energy generation or dissipation, the energy is
conserved. For the constitutive relations in the framework of hyperelasticity or Green
elasticity, the stresses can be derived from a stored energy function.

The behavior of hyperelastic materials depends on the choice of the free energy function.
This work is restricted to materials of St. Venant-Kirchhoff (STVK) type, which are
suitable for modeling large deformations at small strains. The energy function in this case
reads

ψ(E) :=
1

2
λs(trE)2 + µs tr(E2) =

1

2
C : E2 , (2.55)

where λs and µs are the first and second Lamé material constants, respectively, which can
be derived from the elasticity modulus Es and the Poisson ratio νs as

λs =
Esνs

(1 + νs)(1− 2νs)
and µs =

Es
2(1 + νs)

. (2.56)

Furthermore, C denotes the constant elastic moduli defined as

C = λsI ⊗ I + 2µsII , (2.57)

with the fourth order identity tensor II = (I ⊗ I)
23
T or in index notation IIijkl = δikδjl and

the Kronecker delta δij as in (2.25). The Green-Lagrange strain tensor E as defined in
Section (2.1.4) is given by

E =
1

2
(F T · F − I) =

1

2

(
∇Xu+∇Xu

T +∇Xu
T · ∇Xu

)
. (2.58)

The relation between the stresses and strains can be derived from the second law of
thermodynamics, considering that the internal dissipation is zero for perfectly elastic
materials. For instance, based on the gradient of the energy function ψ with respect to
the Green-Lagrange strain tensor E the second Piola-Kirchhoff (PK) stress tensor S reads

S =
∂ψ(E)

∂E
= λs(trE) I + 2µsE = C : E . (2.59)

Note, that the St. Venant-Kirchhoff material model fulfills the principle of frame indif-
ference, as it can easily be formulated in terms of the invariants of the right Cauchy-
Green tensor C. The relation (2.59) can be formulated in terms of the current config-
uration by transforming the second PK stress tensor into the Cauchy stress tensor via
σ = J−1F · S · F T .
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2.4.2 Description for linear elastic material behavior

In the case of linear elasticity, it is assumed that the gradient of the displacements is
small, such that the quadratic term in (2.58) can be neglected and the Green-Lagrange
strain reduces to the linear elastic strain measure as defined in (2.26). Then, the strain
energy function for linear elastic solids with the first and second Lamé constants λs and
µs can be written as

ψ(ε) :=
1

2
λs(tr ε)

2 + µs tr(ε2) , (2.60)

and the constitutive law considering small deformations, which defines a linear relation
between the Cauchy stresses and the strains, reads

σ =
∂ψ(ε)

∂ε
= λs(tr ε)I + 2µsε = C : ∇su . (2.61)

Herein the symmetric gradient of the displacements is defined as ∇su = 1
2
(∇u+∇uT ).

2.5 Constitutive equations for fluid dynamics

In the previous section, the characteristic equations describing the behavior of elastic solids
were discussed. Since the focus of this work is rather on solving computational fluid flow
and FSI problems, the properties of fluids and the basic equation necessary to describe
their behavior will be explained in more detail in the following. The main difference
between solid and fluid materials is the resistance to deformation when a traction is
applied. Fluids are characterized by a high sliding ability of the particles at very low
forces, while comparably high forces are often required to deform a solid. In general the
origin of the deformation resistance of fluids lies in their inertia and viscosity. Besides the
low resistance against deformation, many fluids exhibit a high resistance against volume
change and can thus be treated as incompressible.

In general, the behavior of fluids is determined by a variety of material properties, such
as viscosity and density, as well as flow properties, e.g. velocity and temperature. In turn,
the properties of the fluid itself can also depend on the characteristics of the flow. Fol-
lowing, a brief overview of the most important properties is provided in order to facilitate
the classification of the considered flow investigations and the imposed restrictions in
this thesis. For more details about the rheology of fluids, reference is made to the de-
tailed explanations in textbooks such as Currie [113], Bird et al. [42], White [414],
Deshpande et al. [124] and Sigloch [363]. Different relevant flow and fluid character-
istics as well as the required constitutive equations to model the flow of Newtonian and
non-Newtonian fluids are outlined in the following.

2.5.1 Flow characteristics

A main property of flows is the characteristic velocity, which can be decisive for the type
of flow that occurs. A distinction is made between steady and unsteady, and in the latter
case between laminar and turbulent. Note, however, that the velocity is not exclusively
responsible for the flow type which occurs, but that material properties also have an
impact.

A steady flow is defined by the fact that all fluid variables, such as e.g. velocity, pressure
and density, do not change over time at any fixed position in space. However, this does
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not mean that there is a uniform velocity field over the domain of consideration. That
is, for steady-state flows, the velocity gradient is most likely not zero, but the derivative
with respect to time must be. For the computation of steady-state flows, the balance
equations are greatly simplified, since all time-dependent terms are omitted and thus no
discretization with respect to time is necessary in the context of numerical computations.

A flow in which at least one quantity at a defined position in the domain changes with
time is called unsteady. Thus, for unsteady flows, the partial derivatives of this quantity
with respect to time must be considered. In the context of this work, unsteady flows are
examined, in which the velocity does not remain constant over time. A temporal change
of other quantities such as density or pressure is not taken into account.

A transient flow in which the fluid particles move on well-ordered paths is called laminar.
Thereby, the individual developing layers can have different velocities and move past each
other without crossing each other. A further increase in velocity can lead to a transition
from a laminar state to a turbulent one. This happens when the originally stable laminar
flow becomes unstable resulting in a disordered flow with many turbulences.

The point of this transition can be estimated quantitatively using the Reynolds number,
which is one of the most important quantities in fluid mechanics. It characterizes the type
of flow, taking into account the inertia and viscosity of a fluid. It can be calculated as

Re =
v0 · L0

ν0

=
ρ0 · v0 · L0

η0

, (2.62)

with characteristic values for length L0, density ρ0, kinematic viscosity ν0, dynamic vis-
cosity η0 and velocity v0. In general, it holds that

Re < Rekr → laminar flow (2.63)

Re > Rekr → turbulent flow , (2.64)

where the critical Reynolds number Rekr depends on several influences such as the type
of flow, initial turbulence or surface roughness and has to be determined experimentally.
In the case of Re ≤ 1, the special case of creeping flow is commonly assumed, which
occurs when the viscous forces are very high compared to the inertial forces. Based on the
Reynolds number, it becomes obvious that material properties are also very important
for the characterization of flows.

2.5.2 Fluid properties

A relevant fluid property is the material density. Generally stated, this property deter-
mines the compressibility, i.e. whether the material can be compressed or not. For many
types of flows, the change in density of the fluid can be ignored. This is especially the case
when considering liquids, whereas in the case of gas flows, the compressibility must often
be taken into account. If a fluid is called incompressible, this means that when consid-
ering a finite volume, not only the mass remains constant, but also the volume and thus
the density. Although compressibility in itself is a property of the material, the assump-
tion of incompressible behavior can also be made depending on the Mach number. This
defines the relation between flow velocity, denoted as v, and speed of sound c in the fluid
as Ma = v/c. If the Mach number is very small (Ma < 0.3), the flow can be assumed to
be incompressible. Note, that for the solution of incompressible flow problems, the energy
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equation is not required to solve the momentum and continuity equations. This can be
seen, when considering the mathematical expression for the incompressibility

∂ρ

∂t
= 0 , (2.65)

which has already been used in equation (2.38) to simplify the balance of mass statement.

In addition to the compressibility of a fluid, its viscosity is also decisive for the flow and
material behavior. The term viscosity refers to the resistance of a fluid to deformation
when shear stress is applied. The capacity to withstand movement originates from internal
friction that arises between layers of a liquid medium which move relative to one another.
The greater the viscosity, the more the fluid resists motion. Generally, one can distinguish
between viscous and inviscid materials, whereas the latter one is an idealization for fluids
where the internal friction is negligible. For the modeling of inviscid flows, the governing
equations simplify to the well-known Euler equation, which will not be discussed in more
detail at this points.

Newton stated that the relation between the shear stress τ and the shear rate γ̇ of a fluid
subjected to a mechanical force is linear and can be expressed by a viscosity coefficient.
This can be illustrated considering a fluid layer between to plates as shown in Figure 2.3,
where the lower plate is at rest and the upper plate moves with a velocity v in x-direction.
The distance between both plates in z-direction is given by h. If the velocity distribution
between both plates is assumed to be constant, the shear rate is defined as v/h. But
this holds only for thin fluid layers. Otherwise the shear rate must be expressed using
the differential quotient D = dv/dz = γ̇. Then the general form of Newton’s law of
viscosity reads

τxz =
F

A
= η

dv

dz
= η D , (2.66)

where τxz is the shear stress defined as the required force F to move the plate with area A
in x-direction. The factor η denotes the dynamic viscosity coefficient. Fluids that follow
Newton’s law of viscosity are called Newtonian fluids.

z

x

h

F

A

v

Figure 2.3: A viscous fluid sheared between two plates with apparent linear and non-linear
velocity profiles, compare Sigloch [363]

Most organic and inorganic liquids with a low mass exhibit these properties. This means
that at constant temperature and pressure, the shear stress is proportional to the shear
rate. Many other fluids appearing for example in the field of chemistry, bioengineering
and medical science exhibit a material behavior which can not be correctly modeled with
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the constitutive relation of Newtonian fluids. All fluids which do not follow Newton’s law
of viscosity are referred to as non-Newtonian. There is a practical way to further divide
the group of non-Newtonian fluids into three categories according to their properties:

• Fluids for which the relation between the shear stress and shear rate shows a depen-
dence on the duration of the shearing and the flow history. Such material behavior
with kind of a memory effect is assigned to time-dependent fluids.

• Fluids in which the shear stress is only a function of the actual state, i.e. the viscosity
at a fixed temperature and pressure depends purely on the shear rate η = f(γ̇). This
behavior does not differ much from Newtonian fluids, thus they are called generalized
Newtonian fluids.

• Fluids which, in addition to viscous behavior, have elastic properties and can exhibit
properties similar to those found in solids, such as recovery and creep, are called
viscoelastic fluids.

The investigations within the scope of this work are limited to time-independent, purely
viscous fluid behavior. For further information on the description of viscoelastic and time-
dependent fluids, reference is made to the literature given at the beginning of this sub-
section. Below, the constitutive laws for Newtonian and generalized Newtonian fluids are
outlined.

2.5.3 Description for Newtonian fluids

As mentioned above, in case of Newtonian fluids the viscosity η is constant at a fixed
temperature and pressure, such that the relation between the shear stress τ and shear
rate γ̇ is linear. This correlation is also illustrated in Figure 2.4 (blue line). Considering
three dimensions and with the restriction to incompressible fluids, the shear stress tensor
can be written directly as

τ = 2 η∇sv , (2.67)

with the symmetric velocity gradient defined in (2.14). Inserting this into the term for the
Cauchy stresses split into its deviatoric and spherical part in (2.34), yields the constitutive
equation for the Cauchy stresses given as

σ = 2 η∇sv − pI = 2 ρ ν∇sv − p I . (2.68)

Here, the dynamic viscosity is denoted by η (or µ) and the kinematic viscosity is denoted
by ν = η/ρ. For the description of unsteady flow of incompressible Newtonian fluids, the
constitutive relation can be substituted into the balance of momentum principle (2.45),
considering that

divσ = 2µ div(∇sv) +∇p . (2.69)

In connection with the continuity equation (2.38), this results in the subsequent system
of equations

ρ a+ ρ∇v · v − 2µ div(∇sv) +∇p− f = 0 , (2.70a)

div v = 0 , (2.70b)
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with the acceleration vector a = ∂v
∂t

, the velocity vector v, the pressure p and the fluid den-
sity ρ. Equations (2.70) are known as the Navier-Stokes equations for incompressible
fluids and can be written in more detail in index notation as

ρ
∂vi
∂t

+ ρ
∂vi
∂xk

vk − µ
∂2vi
∂xj∂xj

+
∂p

∂xi
− fi = 0 , (2.71a)

∂vi
∂xi

= 0 . (2.71b)

2.5.4 Description for non-Newtonian fluids

A wide range of fluids can be described by the before mentioned approach for Newtonian
fluids based on a linear relation between the shear stress and the shear rate. All fluids
that do not follow Newton’s viscosity law, but whose viscosity nevertheless depends only
on the current state, i.e. which are not time-dependent, and which in addition do not
exhibit elastic behavior, are referred to as generalized Newtonian fluids. For these fluids,
the viscosity is a function of the shear rate at the time considered, but does not depend
on the deformation history. Thus the shear stress tensor can be expressed as

τ = 2 η(γ̇)∇sv with γ̇ =
√

2(∇sv : ∇sv) . (2.72)

Utilizing this term, the expression for the Cauchy stresses in (2.34) becomes

σ = 2 η(γ̇)∇sv − pI . (2.73)

Analogous to the description of Newtonian fluids, these constitutive equations in combi-
nation with the balance principles yield the governing equations to model flows of incom-
pressible generalized Newtonian fluids.

ρ a+ ρ∇v · v − 2µ(γ̇) div(∇sv) +∇p− f = 0 , (2.74a)

div v = 0 . (2.74b)

However, one outstanding question is the determination of the exact dependence of η
on the shear rate γ̇. And for this it is fundamental to know the characteristics of the
fluid under consideration. The behavior of several non-Newtonian fluids is sketched as
an example in Figure 2.4, which illustrates the shear stress - shear rate correlation and
the viscosity - shear rate relation. A possible behavior for a generalized Newtonian fluid
is shear thinning (green line), where a rearrangement of particles leads to a decreasing
viscosity with increasing shear rate. Such fluids, which are also known as pseudoplastic,
are e.g. polymers, paint or blood. The opposite behavior is shown by shear thickening
fluids, see Figure 2.4 (orange line), such as corn starch in water, where the particles stick
together and the viscosity increases with rise in shear rate. These materials are usually
also called dilatant fluids. Another generalized Newtonian fluid characteristic is Bingham
plastic (purple line). In this case, a certain yield stress is required to initiate the flow.

A variety of different models have been developed in the past to simulate generalized
Newtonian fluids, such as the Power-Law model, the Carreau and Carreau-Yasuda model,
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Figure 2.4: Characteristic behavior of different generalized Newtonian fluids: relation be-
tween shear rate γ̇ and shear stress τ (left) or viscosity η (right)

the Prandl-Eyring, the Bingham-Plastic model, and the Cross model. In the framework of
this thesis, the Carreau-Yasuda model is implemented, in which the relation between
the viscosity η and the shear rate γ̇ takes the form

η(γ̇) = η∞ + (η0 − η∞) (1 + (λ γ̇)a)
n−1
a . (2.75)

Herein, η0 and η∞ are material constants to define the upper and lower viscosity bounds
and n, λ and a are further model parameters such as e.g. the power law index and
the Carreau time constant to describe the fluid rheology. Setting the parameter n < 1 or
n > 1 allows to model shear-thinning or shear-thickening behavior. The constitutive model
reduces to a Newtonian fluid for n = 1. A wide range of generalized Newtonian fluids can
be modeled using this Carreau-Yasuda model as presented in Yasuda et al. [427] and
Bird et al. [42], which is an extension of the the Carreau model, see Carreau [91].
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Figure 2.5: Viscosity function for different values of the parameters n (left) and λ (right)
with the Carreau-Yasuda model

The graphs in Figure 2.5 show exemplarily the curves of the viscosity as a function of the
shear rate for different values of the parameters n and λ. For these plots, the remaining
unvaried parameters of the Carreau-Yasuda model are chosen to be a = 2, η0 = 0, η∞ = 1,
n = 0.5 and λ = 1. It is visible that n defines the slope of the decline (left) within the
power law region and by the parameter λ the position of the decline is varied (right). The
power law region is defined as the range of shear rate in which the viscosity lies between
the upper viscosity limit η∞ and the lower bound η0.
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3 Spatial discretization using least-squares finite elements

There are several numerical methods for solving partial differential equations in the con-
text of mechanics, the best known being the finite difference method, the finite volume
method and the finite element method (FEM). The former, which is the oldest of the three
methods, is based on a regular mesh and the local application of a Taylor expansion, which
can cause problems when dealing with complex structures in multiple dimensions. The fi-
nite volume method is very popular, especially for solving flow problems. In this work, the
FEM is applied to the spatial discretization, an approach that offers a number of positive
properties, being very robust for a wide range of problems (see Vallala et al. [402])
and, moreover, allowing the analysis of complex geometries using arbitrary unstructured
meshes. First publications on the finite element method and its immediate preliminaries
were released in the 1960th by e.g. Turner et al. [400], Argyris and Kelsey [5] and
Zienkiewicz and Cheung [434], whereas the expression “finite element” was initiated
in 1960 by Clough [106]. A detailed historical overview of the background and evolution
of model-based simulation methods is given in Felippa [146].

3.1 The finite element discretization

This section focuses on a spatial discretization based on the least-squares finite element
method. Therefore, first the basic components of the finite element method in general
like the domain triangulation, the interpolation of the field quantities and the integra-
tion over the domain are briefly introduced in the following. This includes also some
rules for the construction of the used shape functions based on coordinates in the pa-
rameter or physical space. Detailed explanations of the procedure using finite element
discretization can be found in the standard works of Hughes [206], Boffi et al. [59],
Zienkiewicz and Taylor [431] and Wriggers [424], among others. Following the
general principles of the FEM, the procedure for the application of the least-squares
finite element method is explained. This is done by discussing some special features of the
method, followed by the procedure to generate the LS functionals and completed by the
definition of corresponding boundary conditions. Furthermore, the process of incorporat-
ing data into numerical calculations based on the LSFEM is described for use in the later
course of this work.

Triangulation
The main idea of FEM is to calculate an approximate solution of a continuous problem
by transforming it into a number of discrete problems. Thus, discretization describes the
conversion of the continuous model into a discrete model by means of two main steps.
On the one hand, the computational domain Ω is divided into a finite number nele of
non-overlapping elements Ωe such that

Ω ≈ Ωh =

nele⋃
e=1

Ωe , (3.1)

where Ωh denotes an admissible triangulation of the domain, see Figure 3.1. On the
other hand the fields of the primary variables, such as stresses, velocities and pressure,
are approximated by appropriate interpolation functions on each element and globally
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assembled to a system of algebraic equations. Depending on whether the problem is two-
dimensional or three-dimensional, the domain Ωh is an area or a volume. The elements
are joined by nodes lying on the corners or additionally on the edges, depending on
their approximation degree. In this work, triangular and tetrahedral elements are used,
with which a suitable discretization of an arbitrary domain is often simpler than with
rectangular elements, according to Zienkiewicz and Cheung [434]. For a quantitative
measure of the mesh resolution, the parameter h is introduced related to the element size,
such that for h→ 0 the solution of the continuous problem should be obtained.

Ω0

Ωe

∂Ω0

∂Ωe

X2

X1

Ωh
0

ξ

η

Ω̂e

parameter space

physical
space

(0, 1)

(0, 0) (1, 0)

initial configuration

J

Figure 3.1: Triangulation Ωh of an arbitrary domain Ω in 2D using triangular elements
with element domain Ωe and mapping from parameter space Ω̂e to physical space

Interpolation
Within finite element discretization, the main concept is to approximate the primary vari-
ables by means of interpolation or shape functions. Hence, considering any field quantity,
such as e.g. displacements or velocities, the quantity can be approximated within each
element as

v ≈ vh =

nv,e∑
I=1

N IvI , (3.2)

with N I denoting the shape functions, vI are the nodal values and nv,e the number of e.g.
velocity nodes. When using the classical isoparametric concept, the same interpolation
functions are used for the interpolation of the geometry and the fields. The interpolation
of the position vectors in the initial and actual configuration can be expressed by

X ≈Xh =
ne∑
I=1

N IXI and x ≈ xh =
ne∑
I=1

N IxI , (3.3)

with the material or spatial element nodal coordinates XI or xI and the number of
geometric nodes ne. The shape functions can be defined in terms of material coordinates
in the reference configuration or directly in terms of spatial coordinates in the actual
configuration. In the second case, it is important to note that the shape functions in a
Lagrange formulation change with the deformation of the body. A common way is to define
the interpolation functions in terms of natural coordinates ξ = {ξ, η, ζ} in the parameter
space. Then an element Ωe is typically generated in the two or three dimensional space
by an isoparametric mapping from the reference element Ω̂e parameterized in ξ. The
reference element has often an edge length of one, as e.g. a unit triangle with Ω̂e = (0, 1)2

as illustrated in Figure 3.1.
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Based on a reference element in the parameter space, the transformation to the physical
space, i.e. to the initial or actual configuration, can be performed using the transformation
matrices

J =
∂X

∂ξ
and j =

∂x

∂ξ
. (3.4)

As outlined in Chapter 2, a mapping between the actual and initial configuration can
be conducted by means of the deformation gradient F = ∂x

∂X
= jJ−1. An exemplary

transformation of an element Ω̂e from the parameter space to the initial configuration
with the discretized domain Ωh

0 is displayed in Figure 3.1.

In the considered least-squares formulation, also the gradient terms of velocities and dis-
placements are required. These can be approximated using the derivatives of the shape
functions with respect to the initial or actual configuration, such that

Gradv =

nv,e∑
I=1

vI ⊗∇XN
I (3.5)

gradv =

nv,e∑
I=1

vI ⊗∇xN
I (3.6)

with ∇x and ∇X as defined in Section 2. In case of interpolation functions constructed in
the parameter space and defined in terms of natural coordinates, i.e. N I(ξ), the derivatives
in the physical space with respect to the initial and actual configuration are defined using
the transformation matrices (3.4) as

∇XN
I = J−T ∇ξN

I and ∇xN
I = j−T ∇ξN

I (3.7)

In the context of this work, the displacements, velocities, and pressure are approximated
using Lagrange polynomials. Depending on the particular case, the interpolation functions
are constructed with the help of a reference element in the parameter space or directly in
the current deformed configuration.

For the approximation of the stresses vector-valued Raviart-Thomas interpolation func-
tions are applied. The degrees of freedom of the stresses are denoted by βJ with J being
the interpolation site. Then the approximation of the primary variable and its divergence
read

σ ≈ σh =
m∑
J=1

βJ ⊗ψJ and divσ ≈ divσh =
m∑
J=1

divψJβJ . (3.8)

If the Raviart-Thomas shape functions are defined in terms of natural coordinates, again
an additional mapping from parameter to physical space is required. Considering vector-
valued basis functions ψ̂J(ξ) given in parameter space, the transformations of the func-
tions and its divergence to the physical space are given by

ψJ =
1

detJ
Jψ̂J and divψJ =

1

detJ
div ψ̂J . (3.9)

Remark: In Section 3.2, some construction rules for the used shape functions
and further aspects for the implementation are given. These descriptions are limited
to the construction of functions directly based on the current configuration, avoid-
ing the transformation from parameter to physical space. Further information on the
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construction of basis functions using reference elements and the corresponding map-
pings can be found in, e.g., Raviart and Thomas [324], Brezzi and Fortin [69],
Zienkiewicz and Taylor [431], Wriggers [424] and Boffi et al. [59].

Integration
For the application of the finite element method a numerical integration scheme is required
to evaluate the integrals of functions f on each element domain Ωe. This is performed
by means of the Gauss quadrature, which involves evaluating the function at various
integration points on the domain, multiplying by corresponding Gauss weights wGP , and
then summing them up, as∫

Ωe

f(X) dV =

∫
Ω4

f(ξ) det(J(ξ)) dV4

≈
nGP∑
GP=1

f(ξGP ) det(J(ξGP )) wGP .

(3.10)

Herein, the function can be evaluated using the isoparametric concept on the unit reference
element at positions ξGP or directly on the element in the physical space (in the initial
configuration at X or the actual configuration at x). Depending on the choice of the
configuration an appropriate mapping must be considered. To ensure the accuracy of
the solution, a sufficiently high number of Gaussian points nGP and suitable integration
positions must be chosen. For more information on the appropriate selection, reference
is made, for example, to Zienkiewicz and Taylor [431] and Wriggers [424] and the
references therein.

3.2 Interpolation functions

As mentioned above, for the approximation of field quantities in the framework of the
finite element method, suitable interpolation functions are required. The choice of appro-
priate functions depends on the interpolation spaces, which are explained subsequently.
Thereafter, the interpolation functions used in this work for the approximation of stresses,
velocities and pressure in the different LS formulations are presented. This includes stan-
dard Lagrangian interpolation polynomials for conformal discretization in W 1,p(Ω), and
vector-valued Raviart-Thomas interpolation functions which ensure conformal discretiza-
tion in W q(div,Ω).

3.2.1 Function spaces and norms

In this contribution, the mixed least-squares formulations for fluid and solid dynamics
are based on the stresses and velocities and some also include the pressure. For a suitable
choice of interpolation functions for these unknowns the standard Sobolev Wk,p(Ω) and
Hilbert spaces are considered. The Sobolev spaces are defined based on the Lebesgue space
Lp(Ω) for 1 ≤ p <∞, which is the space of all measurable functions y : Ω→ R which are
p-integrable on a domain Ω, such that

Lp(Ω) :=

{
y :

∫
Ω

| y |p dV <∞
}
. (3.11)
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The corresponding norm is defined by

‖y‖Lp(Ω) :=

(∫
Ω

| y |p dV

)1/p

. (3.12)

The Sobolev spaces Wk,p(Ω) with 1 ≤ p < ∞ and k ∈ N0 consist of functions where
not only the functions, but also their weak derivatives Dαy are in Lp(Ω). With the weak
derivatives given by

Dα y =
∂|α|y

∂xα1
1 · · · ∂x

αd
d

, (3.13)

where the index α ∈ Nd
0 and |α| = α1 + · · ·+ αd, the Sobolev spaces are defined as

Wk,p(Ω) := {y ∈ Lp(Ω) : Dαy ∈ Lp(Ω) for all |α| ≤ k} . (3.14)

Therein, k denotes the differentiation index and p defines the norm. The Sobolev space is
equipped with the norm

‖y‖Wk,p(Ω) :=

(
‖y‖pLp(Ω) +

k∑
α=1

‖Dαy‖pLp(Ω)

)1/p

, (3.15)

containing also constraints for the derivatives of the functions. Therein, the norm for
vector functions u ∈ Lp(Ω) and second-order tensor functions B ∈ Lp(Ω) is defined based
on (3.11) as

||b||L2(Ω) :=

(∫
Ω

b · b dV

)1/2

and ||B||L2(Ω) :=

(∫
Ω

B : B dV

)1/2

. (3.16)

Considering the particular case p = 2 the Lebesgue and Sobolev spaces are Hilbert spaces,
which can be expressed as

Hk(Ω) =Wk,2(Ω) for k ∈ N0 . (3.17)

and per definition H0(Ω) = L2(Ω). Suitable function spaces in case of linear elasticity or
Stokes flow for unknown field variables, such as velocities, stresses and pressure, are e.g.
the spaces W1,2(Ω), W2(div,Ω) and L2(Ω), respectively, with

W1,2(Ω) = H1(Ω) =
{
y ∈ L2(Ω) : ∇y ∈ L2(Ω)

}
(3.18)

and
W2(div,Ω) = H(div,Ω) = {y ∈ L2(Ω) : div y ∈ L2(Ω)} . (3.19)

However, the mentioned function spaces are also used in the context of this work in the
case of nonlinear formulations, compare e.g. Müller et al. [284].

3.2.2 Lagrange interpolating polynomials for triangles

For conforming approximations inW1,2(Ω), where primary variables as well as their deriva-
tives have to satisfy the L2(Ω)-norm, see (3.18), standard Lagrange interpolation functions
are used. Functions of Lagrange type are constructed as products of polynomials in one
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to three coordinates depending on the considered dimension. These polynomials are build
in such a way that they have a value of unity at the considered node and zero at all other
coordinates. With a restriction to two dimensions and the spatial coordinates denoted as
x = {x, y} in this chapter, this can be expressed as

N I(xJ) =

{
1 if I = J

0 if I 6= J
. (3.20)

Therein, indices I and J denote the number of the considered node or shape function. A
Lagrange polynomial of order n− 1 in one dimension can be written as

N I(x) =
n∏
J=1
J 6=I

x− xJ
xI − xJ

. (3.21)

An extension to two or three dimensions is simply obtained by taking the product of these
polynomials given in two or three coordinates, such that e.g.

N I(x, y) = NJ(x)NK(y) or N I(x, y, z) = NJ(x)NK(y)NL(z) . (3.22)

In the following, the construction rules are exemplarily given for shape functions on tri-
angles in two dimensions as illustrated in Figure 3.2. These elements are referred to as Pk
in this work, with k ∈ R2 denoting the polynomial order. The resulting number of nodes
in each element is given by n = (k + 1)(k + 2)/2 and the order for linear, quadratic and
cubic elements is depicted in Figure 3.2.
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Figure 3.2: Order of corner, edge and inner nodes in triangular elements Pk with
k = {1, 2, 3} for linear, quadratic and cubic Lagrange polynomials (left to right)

According to Zienkiewicz and Taylor [431], several normalized coordinates for trian-
gles are introduced at this points. So-called area coordinates of an arbitrary point B in a
triangle, see Figure 3.3, are defined as the ratio of areas, such that

Li =
Ai
A4

for i = {1, 2, 3} , (3.23)

where Ai are subareas of the considered triangle and A4 is the total element area. In
terms of nodal coordinates using the element vertices xI = (xI , yI) with I = {1, 2, 3},
these area coordinates are given as

Li(x, y) =
1

2A4
(ai + bix+ ciy) for i = {1, 2, 3} (3.24)
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with

A4 =
1

2
det

1 x1 y1

1 x2 y2

1 x3 y3

 , (3.25)

and

a1 = x2y3 − x3y2

b1 = y2 − y3

c1 = x3 − x2 .

(3.26)

For a linear triangle, the Lagrange shape functions are identical to the area coordinates,
i.e. N I = Li for I = i = {1, 2, 3}. The resulting functions in the actual configuration with
spatial coordinates x = {x, y} are given by

N1(x, y) = L1(x, y) =
1

2A4
(x2y3 − x3y2 + (y2 − y3)x+ (x3 − x2)y)

N2(x, y) = L2(x, y) =
1

2A4
(x3y1 − x1y3 + (y3 − y1)x+ (x1 − x3)y)

N3(x, y) = L3(x, y) =
1

2A4
(x1y2 − x2y1 + (y1 − y2)x+ (x2 − x1)y) ,

(3.27)

where xI and yI with I = {1, 2, 3} are the coordinates of the corner nodes P j as specified
in Figure 3.3.

y

x

B

P 1(x1, y1)

P 2(x2, y2)

P 3(x3, y3)

A1

A2

A3

Figure 3.3: Area coordinates for construction of Lagrange shape functions on triangles,
according to Zienkiewicz and Taylor [431]

High-order approximation functions, e.g., for quadratic and cubic triangles, with restric-
tion to straight-edged elements, can be constructed using products of the defined area
coordinates. Depending on the regarded type or position of the node (corner, edge or
interior) the construction rules, following Zienkiewicz and Taylor [431], read for ele-
ments P2 with quadratic polynomials

N i(x, y) = (2Li − 1)Li for i = {1, 2, 3}

N4(x, y) = 4L1L2

N5(x, y) = 4L2L3

N6(x, y) = 4L3L1

(3.28)
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Further Lagrange type shape functions for cubic triangular elements in two dimensions are
listed in Appendix A.1. These formulations for the construction of high-order interpolation
functions are based on early publications by Argyris et al. [4]. Further details can be
found, for example, in Silvester [365] and Taylor [385].

3.2.3 Raviart-Thomas interpolation functions for triangles

For a conforming approximation in W2(div,Ω), where primary variables as well as their
divergence have to satisfy the L2(Ω)-norm, see (3.19), vector-valued Raviart-Thomas func-
tions are selected. In the context of this work, these properties apply to the Cauchy stresses
in the mixed LS formulations for solid and fluid. The application of Raviart-Thomas in-
terpolation functions for the stresses leads to a continuous approximation of the normal
components of these quantities, but without restrictions on the tangential components,
see e.g. Raviart and Thomas [324] or Ervin [140]. In the following, the construction
of Raviart-Thomas functions for triangular elements in two dimensions is discussed. These
elements are referred to as RTm with the number and position of interpolation sites as
depicted exemplarily for m = {0, 1, 2} in Figure 3.4.
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Figure 3.4: Order of interpolation sites and naming of Raviart-Thomas shape functions
for elements RT0, RT1 and RT2

The vector-valued functions are denoted Ψj,i
m , with j ≤ 3 indicating the number of the

associated edge Ej, i the respective node on this edge, and m the approximation order.
The edges are numbered such that the indices always match those of the opposite vertex,
e.g. E1 is the edge opposing P 1. All functions with j > 3 are related to internal inter-
polation points, with two nodes i = {1, 2} at the same position. Several procedures exist
to build vector-valued RTm functions. A common way is the solution of equation sys-
tems based on the evaluation of inner and outer moments, cf. Brezzi and Fortin [69],
Boffi et al. [59], Schwarz [345], Steeger [371] or Igelbüscher [211], for instance.

Here, the approach of Bahriawati and Carstensen [14] for so-called edge-basis func-
tions is applied. Therein, the local definition of the lowest-order Raviart-Thomas functions
Ψj,i

0 for a triangle T with one node per edge, i.e. i = 1, in terms of actual coordinates
x ∈ T is given as

Ψj,1
0 = aj

|Ej|
2A4

(x− P j) for j = {1, 2, 3} . (3.29)
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This definition contains the lengths of the element edges Ej, which are opposite to the
vertices P j and the area of the triangle A4 as defined in (3.25). Furthermore, a scalar
value aj is included, which contains information on the edge orientation and is defined as

aj = nj · nEj =

{
1 if nEj points outward

−1 otherwise ,
(3.30)

with outer unit normal vectors nj on the element edges and unit normal vectors nEj,
having a globally defined orientation pointing outward or inward of the element.

High-order shape functions of Raviart-Thomas type can be constructed based on the low-
order functions Ψj,1

0 and Lagrange functions as defined in (3.27) or (3.28). But therefore,
Lagrange polynomials are not formed with respect to the vertices of the element under
consideration. Instead, new triangles are generated within the base element. These inner
triangles are created based on additional interpolation sites which are located on the
edges and inside the element. For the element RT1, for example, two nodes per edge
denoted by P j,i and one internal node P I,1 on the centroid are added. The placement of
the supplementary interpolation points and the construction of the inner triangles for the
definition of the Lagrange basis functions is illustrated in Figure 3.5 for elements RT1 and
RT2.

P 1 P 2

P 3

T 1

P 1,2

P 1,1

P 1 P 2
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T 2

T 3

RT1 RT2

P 2,1
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P 2,3
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P 2,1
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T 3

T 1T 2

P I,3

Figure 3.5: Construction of Raviart-Thomas functions for RT1 and RT2 based on Ψj,1
0 and

Lagrange functions defined on subtriangles

In case of m > 0 the vector-valued shape functions on the edges in terms of physical
coordinates x ∈ T can be formed as

Ψj,i
m (x) = Ψj,1

0 (x) N j,P j,i

m (x) for j = {1, 2, 3} , (3.31)

again with index i identifying the respective nodes on each edge j and the interpolation
order m. The additional shape functions for internal nodes, i.e. j > 3, can be constructed
as

Ψj,i
m (x) = Ψi+1,1

0 (x) N i+1,P I,j−3

m (x) (3.32)

The Lagrange shape functions are build as specified in Section 3.2.2 for each individual
sub-triangle T i with i = {1, 2, 3} in the base element as depicted in Figure 3.5, under
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consideration of added edge nodes P j,i and inner nodes P I,k. For the evaluation of the
element RT1, for example, three sets of linear Lagrange polynomials are needed and the
calculation of element RT2 requires three sets of quadratic Lagrange polynomials.

3.3 The least-squares finite element method

In this part, some aspects of the FEM based on the mixed least-squares method are consid-
ered. Among other things, the positive characteristics as well as the disadvantages of the
least-squares finite element method are briefly described. Furthermore, the fundamentals
consisting in the construction of a least-squares functional and its variations to solve the
minimization problem are outlined. This is completed with some remarks on the boundary
conditions. In addition, the strategy for assembling data into numerical simulations based
on the LSFEM is described. The implementation of this technique is demonstrated in Sec-
tion 5 using various examples dealing with the calculation of non-Newtonian fluid flow.
For more detailed information concerning the LSFEM in general, reference is made to the
literature of e.g. Eason [136], Jiang [219], Kayser-Herold and Matthies [229] and
Bochev and Gunzburger [54].

3.3.1 Advantages and disadvantages

The purpose of this section is to briefly present the properties of the mixed least-squares
finite element method focussing on most relevant advantages and disadvantages. Over
the past decades, the LSFEM has gained popularity especially for the simulation of flow
problems. A justification for this lies in some numerical advantages over, e.g., the mixed
Galerkin method. The application of the LSFEM results in minimization problems with
positive (semi-)definite coefficient matrices even in the case of differential equations with
non self-adjoint operators, see for example Bochev and Gunzburger [54]. This is of
interest, e.g., for the applicability of different iterative solution strategies. Therefore, it
is promising in particular for the solution of the Navier-Stokes equations. Such second-
order systems can be transformed to first-order systems by introducing new variables,
which allows to apply C0−continuous approximation functions. Therein, further arises the
advantage of the possibility to choose physically meaningful solution variables of interest.
This is particularly relevant for the present work, since it enables the construction of
formulations for fluid and solid dynamics based on the same quantities. The formulations
proposed in the following are expressed, e.g., in terms of stresses and velocities, which are
directly related to the coupling conditions when dealing with fluid-structure interaction
problems. With conforming discretization of the velocities and stresses this leads to an
automatic fulfillment of the coupling constraints avoiding an explicit treatment along the
interface as explained in Section 8.

Moreover, since the LSFEM as a minimization approach circumvents the so-called
Ladyzhenskaya-Babuška-Brezzi (LBB) condition, based on Ladyzhenskaya [249],
Babuška [13] and Brezzi [67], there are no restrictions on the choice of polynomial order
to interpolate the field quantities considering the stability. This can be regarded as one of
the main advantages over the mixed Galerkin method, the application of which demands
the fulfillment of the LBB condition, whose proof is usually nontrivial, see e.g. Braess [66]
or Bochev and Gunzburger [54]. Several approaches are based on stabilization tech-
niques to circumvent this requirement and therefore enable the use of standard finite
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elements. Examples can be found in Brooks and Hughes [71], Hughes et al. [208]
and Brezzi and Douglas [68].

A further advantage of the mixed LSFEM is the availability of an a posteriori error
estimator without additional costs, because the LS functional itself can be used as
such an error measure. This may be very useful for the application of adaptive mesh
refinement algorithms as investigated for various fluid and solid formulations, for exam-
ple, by Starke [369], Münzenmaier and Starke [286], Müller et al. [284],
Münzenmaier [285], Müller [282], Bringmann and Carstensen [70] and
Nisters [294]. Another feature exploited in this thesis, is the straightforward pos-
sibility, with the help of the LSFEM, to include data without additional computational
effort into numerical simulations. Thus, experimental measurements and numerical
simulations can be combined very easily to achieve results as realistic as possible. Further
details on the implementation of data assimilation are given in Section 3.4 and the
application in two and three dimensional problems is presented in Section 5.

Despite these advantages, the least-squares FEM plays only a minor role compared to, e.g.,
the mixed Galerkin method. Although the research of both methods started at about the
same time, see Lynn and Arya [263], Zienkiewicz et al. [433] and for an overview
Eason [136], LSFEMs could not prevail. One major cause for this is presumably that
least-squares elements with shape functions based on low-order polynomials have only
a moderate approximation quality, cf. e.g. Pontaza [309], Pontaza and Reddy [312]
and Schwarz et al. [348]. Consequently, in the last decades preference was given to
other methods that achieve accurate results even with low interpolation orders, and little
attention was paid to the LSFEM. Besides the possibility of improvement by increasing the
approximations order using e.g. spectral high-order finite elements, different approaches
were investigated, such as modifying the LS functional or choosing different weighting
terms. The modification are often based on extending the functional by additional terms
that are mathematically redundant but lead to an improvement in finite element perfor-
mance.

In the context of poor approximation quality, a well-known problem of LSFEM
applied to fluid dynamics is that mass conservation is not always automati-
cally fulfilled, see e.g. Chang and Nelson [97], Deang and Gunzburger [119] and
Bolton and Thatcher [61]. This issue has been investigated extensively, with the
result that mass loss can be significantly limited by the use of weighting terms,
as for example in Deang and Gunzburger [119], Bolton and Thatcher [61] and
Lee and Chen [260]. Another possibility to improve the conservation of mass is
to apply high-order interpolation functions, see e.g. Pontaza and Reddy [313],
Proot and Gerritsma [315] and Kayser-Herold and Matthies [230]. Further in-
vestigations on this subject have been carried out by, e.g. Chang and Nelson [97],
Heys et al. [191; 192] and Nickaeen et al. [293], to name but a few. The listed works
include not only the approaches already mentioned, but also the application of Lagrange
multipliers to enforce continuity. Thus, of course, it is possible to obtain accurate results,
but generally more degrees of freedom are needed than with other methods. This limits
competitiveness of the LSFEM due to the additional computing costs.

Due to the general construction of the LSFEM based on the minimization of the sums of
several residuals related to the partial differential equations (PDEs), arises the possibility,
but in some cases also necessity, to introduce weightings. The influence of the individual
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residual terms on the solution can be determined by different weighting factors. These
weightings can be chosen independently and freely for each of the considered differential
equations. The choice may have a significant impact on the quality of the solution, and
this can be considered both an advantage and disadvantage of the method. A problem can
occur due to the fact that appropriate weights depend on many factors, such as the LS
formulation, the problem considered and parameters used, and a precise determination
of the best terms is difficult when the exact solution is often unknown. A number of dif-
ferent approaches to determine weighting factors have been presented in the literature in
the past years. Salonen and Freund [334] and Kayser-Herold [227] apply matrix
weights computed from the analytical solution of the diffusion problem under considera-
tion. As a result, a significant increase in solution accuracy can be observed. But for com-
plex problems such matrices are complicated or impossible to find. Other approaches by
Bochev and Gunzburger [54], Deang and Gunzburger [119] and Bochev [46],
for example, are based on mesh-dependent weights or equivalent norms. Furthermore,
Jiang [218; 219], Rasmussen [321], Rasmussen et al. [323], Lee and Chen [260]
and Jeong and Lee [215] analyze different weights taking into account, among oth-
ers, nonlinear factors, weighted norm LSFEM and local error estimates based on the
LS residuals. The choice of weights depending on the respective differential equations
and their units leads to an approach with physically motivated weightings. This is
considered, e.g., by Bell and Surana [35; 36], Winterscheidt and Surana [421]
and Heys et al. [189], when solving fluid flow problems based on the Navier-
Stokes equations. In Kayser-Herold [227], Kayser-Herold and Matthies [231],
Nisters [294] and Averweg et al. [9], for instance, physical weights are used in LS
formulations for coupled FSI problems.

3.3.2 Construction aspects of the LSFEM for nonlinear systems

The general idea of the LSFEM is the construction of a functional F(b) by applying, for
example, the quadratic L2-norm to a first-order system of differential equations consisting
of at least one residual term R(b) defined on a domain Ω. Then, a function b in a suitable
space V (Ω) must be found, that minimizes the constructed functional F(b) defined by

F(b) :=
1

2

∑
i

||ωi Ri(b)||2L2(Ω) . (3.33)

Herein, ωi denote residual weighting functions of each residual term Ri(b), which must
be appropriately selected due to their essential contribution to the efficiency of the least-
squares approach. Furthermore,

||•||2L2(Ω) = (•, •)Ω =

∫
Ω

| • |2dV (3.34)

is the quadratic L2-norm on the domain Ω ⊂ IR3 with its boundary ∂Ω and the L2(Ω)
scalar product (•, •)Ω.

This minimization problem can be solved under the condition that the first variation of
the least-squares functional F with respect to the unknowns b vanishes, i.e.

δbF(b; δb) = lim
ε→0

F(b+ ε δb)−F(b)

ε
= 0 ∀ δb ∈ V . (3.35)
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Note that in the case of, e.g. the Navier-Stokes equations or a hyperelastic material law,
the underlying governing equations are nonlinear. Such a system, consisting of nonlinear
PDEs, can be solved by first constructing the least-squares functional based on (3.33)
leading to

F(b) =
1

2
(R(b),R(b))Ω , (3.36)

where the weighting factor has been omitted at this point for clarity. Then Newton’s
scheme is employed to find the root of the first variation of that functional, see (3.35).
The first variations of the nonlinear functional in (3.36) read

δbF(b; δb) = (R(b),DR(b) · δb)Ω , (3.37)

with the Gâteaux derivative D. The required linearization to apply Newton’s method,
results in the second variations

∆bδbF(b; δb,∆b) = (DR(b) ·∆b,DR(b) · δb)Ω + (R(b),D2R(b) ·∆δb)Ω . (3.38)

The resulting system can then be solved using the iterative algorithm of Newton’s method,
which reads

δbF(b; δb) + ∆bδbF(b; δb,∆b) = 0 ∀ δb ∈ V , (3.39)

where (3.37) and (3.38) are applied. Note, that another approach to the one presented
above is also possible by first linearizing the residuals and then constructing the functional
from these linearized equations. In this case the term (R(b),D2R(b) ·∆δb)Ω in the second
variation (3.38) is not present.

3.3.3 Boundary and initial conditions

To solve an initial boundary value problem, besides the governing equations, the definition
of boundary conditions is required. Typically, Dirichlet and Neumann type boundaries are
applied, such that the boundary ∂Ω of an area Ω can be divided into

∂Ω = ∂ΩN ∪ ∂ΩD and ∂ΩN ∩ ∂ΩD = ∅ . (3.40)

Dirichlet boundary conditions are also referred to as essential boundary conditions and
related to the primary variables, whereas Neumann also denoted as natural boundary
conditions are related to the derivatives of primary variables. Considering the mixed LS
formulations in terms of velocities v, stresses σ, and possibly pressure p, all boundary
conditions can be considered essential, and whenever the definition of boundary condi-
tions is provided throughout this thesis, they will be imposed in a strong sense. The
corresponding boundary conditions, depending on the formulation used and the primary
variables included, read as follows

v = vD on ∂ΩDv × (0, T ] with ∂ΩDv ⊆ ∂Ω , (3.41a)

σ · n = tD on ∂ΩDs × (0, T ] with ∂ΩDs ⊆ ∂Ω , (3.41b)

p = pD on ∂ΩDp × (0, T ] with ∂ΩDp ⊆ ∂Ω . (3.41c)

For time-dependent problems, additional initial conditions at time t = t0 are required
which, in the case of the formulations used here, specify the velocities and, depending
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on the time discretization applied, possibly also the accelerations a or displacements u.
According initial conditions, depending on the applied formulation and time integration
scheme, are denoted as

v(t0) = v0 on Ω at t = t0 , (3.42a)

a(t0) = a0 on Ω at t = t0 , (3.42b)

u(t0) = u0 on Ω at t = t0 . (3.42c)

3.3.4 Interpolation spaces for mixed least-squares formulations

The choice of the approximation spaces for the LS stress-velocity formulations for solid
and fluid dynamics presented in the following chapters is based on a conforming spatial
discretization of the stresses in H(div) and the velocities in H1. Thus, in the dimension
d the following finite element spaces are selected

V h
k = {v ∈ H1(Ω)d : v|Ωe ∈ Pk(Ωe)

d ∀ Ωe} ⊆ V , (3.43)

W h
m = {σ ∈ H(div,Ω)d : σ|Ωe ∈ RTm(Ωe)

d ∀ Ωe} ⊆W , (3.44)

where Pk(Ωe) are Lagrange interpolation polynomials of order k, and RTm(Ωe) rep-
resent vector-valued Raviart-Thomas interpolation functions of order m, see e.g.
Raviart and Thomas [324] or Brezzi and Fortin [69].

Additionally to the mixed LS stress-velocity formulations, a stress-velocity-pressure for-
mulation for non-Newtonian fluid flow in 3D is applied in this thesis. Therefore, standard
finite element interpolations for the velocities, stresses and pressure are chosen in the
element spaces

W h
k = {σ ∈ H1(Ω)3 : σ|Ωe ∈ Pk(Ωe)

3 ∀ Ωe} ⊆W , (3.45)

V h
m = {v ∈ H1(Ω)3 : v|Ωe ∈ Pm(Ωe)

3 ∀ Ωe} ⊆ V , (3.46)

Qh
n = {p ∈ L2(Ω)3 : p|Ωe ∈ Pn(Ωe)

3 ∀ Ωe} ⊆ Q , (3.47)

with Pi(Ωe)
3 denoting Lagrangian interpolation polynomials of order i.

3.4 Assimilation of data to numerical simulations

Assimilating data from experiments into numerical simulations offers a way to reduce in-
accuracies and uncertainties in numerical models. This can be particularly helpful in the
field of fluid dynamics when considering very complex problems and can lead to improved
and more realistic results. A variety of reasons exist for data assimilation into numerical
modeling, from both experimental and numerical perspectives. For example, numerics can
be used to complete results from experiments. It enables to fill gaps caused by the fact
that certain quantities are difficult or impossible to measure, or because the measurement
intervals cannot be reduced in time or space. Experiments, in turn, can also be a tool
to advance numerical calculations. By adding experimental data, discretization or model
errors can be decreased and the solution can be adjusted to get closer to reality. Of course,
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reducing discretization errors requires very accurate experimental data or large discretiza-
tion errors. In the last decades there have been several efforts in the field of fluid dynamics
regarding the subject of data assimilation. To give just a small selection of existing works,
consider Talagrand and Courtier [380], Blum et al. [45], van Leeuwen [404],
D’Elia and Veneziani [122], Bertagna et al. [38], Burman and Oksanen [74]
and Boulakia et al. [65] or for some basic information on data assimilation see
Rayner et al. [325].

In the course of this work, the assimilation of numerical and experimental data is tested in
combination with the LSFEM. For this purpose, firstly, the preparation of experimental
data prior to the implementation by means of the Kriging interpolation method and,
secondly, the direct integration of these data by means of the LSFEM are briefly discussed
below.

3.4.1 Data preparation using the Kriging interpolation method

When implementing data assimilation into numerical calculations, the first challenge is
to find a suitable set of experimental data. Experimental data can be measured, for ex-
ample, using particle image velocimetry (PIV) on several cross-sections of a flow, see e.g.
Kim et al. [232], Westerdale et al. [413] and Agati et al. [2]. For a straightfor-
ward data implementation in the FEM code, it is required that values are available at
the locations of the grid nodes. Since this is usually not the case, the collected data must
be pre-processed. A convenient option to determine the data at the required positions is
the Kriging interpolation method. This tool, whose first approaches were developed by
Matheron [273] based on the work of Krige [244], is very popular especially in the
field of geophysics. The term Kriging covers various interpolation approaches. One of the
most widely used is ordinary Kriging, which will be applied in the following. With this
method a value is estimated based on a linear combination of weighted given data in
the neighborhood of the interpolation site. Assuming a given set of values zi = z(xi) at
locations xi, the estimation at an unmeasured position x0 is given by

ẑ(x0) =
n∑
i=1

λi zi , (3.48)

where λi denotes the Kriging weights and n is the number of sample values. In order to
ensure unbiasedness, the weights have to sum up to one, i.e.

∑n
i=1 λi = 1. The determina-

tion of the weights is based on the condition that the best estimate has to minimize the
variance of the prediction error. With the estimation error given by

e(x0) = ẑ(x0)− z(x0) , (3.49)

the estimation variance is defined as the expected quadratic difference and reads

var[ẑ(x0)− z(x0)] = E
[

(ẑ(x0)− z(x0))2 ] = E

( n∑
i=1

λi z(xi)− z(x0)

)2


= 2
n∑
i=1

λi γ(xi − x0)−
n∑
i=1

n∑
j=1

λiλj γ(xi − xj) ,

(3.50)
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where γ(h) is the semivariance between the specified points. The semivariance is deter-
mined using the theoretical semivariogram model. The choice of the model depends on
the experimental semivariogram γ̂, which can be determined by grouping the sample data
regarding their distances and plotting the semivariance as a function of the distance h
using

γ̂(h) =
1

2n

n∑
i=1

[z(xi)− z(xi + h)]2 . (3.51)

Typical theoretical variogram models are e.g. the spherical, exponential and gaussian
variogram model. The last one, which is used in the context of this work, reads

γ(h) = s

(
1− exp

(
−h2

r2

))
, (3.52)

where parameters s and r can be used to fit the function to the experimental variogram.
By minimizing the estimation variance in (3.50) and considering that the weights λi sum
up to one, the resulting system of equations takes the form

γ(x1 − x1) · · · γ(x1 − xn) 1
...

. . .
...

...

γ(xn − x1) · · · γ(xn − xn) 1

1 · · · 1 0



γ1

...

γn

µ

 =


γ(x1 − x0)

...

γ(xn − x0)

1

 , (3.53)

where µ is the Lagrange multiplier for ordinary Kriging. By solving the sys-
tem of equations, one obtains the corresponding weights, which yield the in-
tegration at point x0 by substitution in (3.48). For more details on the im-
plementation and the historical background of the Kriging method see for ex-
ample Chilès and Delfiner [102], Cressie [110], Stein [373], Wackernagel [407],
Oliver and Webster [300] and Chilès and Desassis [103]. Once the data is format-
ted, it can directly be implemented using the LSFEM.

3.4.2 Data assimilation using the LSFEM

The mixed least-squares FEM provides a straightforward possibility to include data with-
out additional computational effort. Studies on data integration to the solution of the
steady and unsteady Navier-Stokes equations using weighted LSFEM are presented e.g.
in Heys et al. [193], Wei et al. [412], Rajaraman et al. [316]. The focus of these
papers is, among others, on the weighting of the assimilated data which is determined
depending on the accuracy of the data itself. The authors investigate the influence of noise
in assimilated data and evaluate the impact of strongly or weakly constrained internal and
external boundary conditions. Another approach presented by Rajaraman et al. [317]
enables combining an arbitrary numerical method for solving the underlying problem with
the weighted LSFEM for data assimilation.

In this thesis, the same approach as presented by Dwight [135],
Schwarz and Dwight [346] and Averweg et al. [12] is applied. Therein, the
assimilation of data to the solution of the Navier-Stokes equations to simulate Newtonian
flow with the LSFEM was investigated. Since the discrete observations d ∈ IRM are not
in the same space as the numerical quantities v, an operator H : V → IRM is introduced
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for the mapping with a suitable Sobolev space V . Assuming that d ≈H · v, a functional
of the form

Fdata(v) =
1

2

M∑
i=1

ζ i(di −H i · v)2 (3.54)

is constructed. Herein, ζi are the weights associated to the measured values di. The total
mixed least-squares functional with data assimilation is then compost as

F∗(U) = F(U) + Fdata(v) , (3.55)

with the unknowns U depending on the chosen formulation. Within the scope of this
work, data assimilation is applied to solve flow of non-Newtonian fluids with mixed LS
formulations based on the stresses and velocities in 2D and using a stress-velocity-pressure
formulation in 3D, i.e. U = (σ,v) in 2D and U = (σ,v, p) in 3D, respectively.
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4 LSFEM for Newtonian fluids

The flow of incompressible Newtonian fluids is governed by the incompressible Navier-
Stokes equations (2.70) derived in Section 2.5. For a straightforward application of the
least-squares FEM this equation system is transformed into a first-order system in order to
use C0-continuous functions. A common procedure for reformulating a second-order partial
differential equation system is to introduce a new variable. Among the most studied ver-
sions in fluid mechanics are velocity-vorticity-pressure LS formulations or stress-velocity-
pressure formulations. The definition of new variables based on the velocity flux, stream
functions or a pressure gradient is a further established way of reformulating the Navier-
Stokes equations. For a detailed overview of the various least-squares formulations and
the associated literature references, see Section 1.2.1. Since both, a stress-velocity-pressure
(SVP) formulation and a reduced stress-velocity (SV) formulation are investigated in this
work, the derivation of the former formulation is assumed first, and then this is further
reformulated to obtain the SV formulation.

4.1 Stress-velocity-pressure formulation for fluid dynamics

In order to transform the Navier-Stokes equations (2.70) into a first-order system, the
constitutive law for the Cauchy stresses σ = 2ρfνf∇sv − pI, relating the stresses to the
velocities and the pressure is considered. The corresponding residuals in terms of stresses,
velocities and pressure can be written in the following form

RF
1 := ρfa− divσ + ρf∇v · v − f , RF

2 := σ − 2ρfνf∇sv + pI, RF
3 := div v, (4.1)

compare Schwarz et al. [353] and Nisters and Schwarz [295], for instance. The
least-squares functional is then constructed by applying the quadratic L2-norm to the
residual terms and approximating the accelerations depending on the velocities by means
of a time discretization scheme. Then the functional for the SVP formulation reads

FF (σ,v, p) =
1

2

(
||ωf1(ρfa(v)− divσ + ρf∇v · v − f)||2L2(Ωf )

+ ||ωf2(σ − 2ρfνf∇sv + pI)||2L2(Ωf ) + ||ωf3(div v)||2L2(Ωf )

)
,

(4.2)

with appropriate positive weightings factors ωf1, ωf2 and ωf3. For solving the minimization
problem with Newton’s method, the first and second variations of the functional with
respect to all unknowns are needed. For the presented SVP formulation the required
variations, omitting the body force term, are given by

δσFF (U ; δσ) =

∫
Ωf

[
− ω2

f1 (ρfa− divσ + ρf∇v · v) · div δσ

+ ω2
f2 (σ − 2ρfνf∇sv + pI) : δσ

]
dV ,

(4.3)

δvFF (U ; δv) =

∫
Ωf

[
ω2
f1(ρfa(v)− divσ + ρf∇v · v) · ρf (δa+∇δv · v +∇v · δv)

− ω2
f2 (σ − 2ρfνf∇sv + pI) : (ρfνf∇sδv)

+ ω2
f3 (div v div δv)

]
dV ,

(4.4)
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δpFF (U ; δp) =

∫
Ωf

[
ω2
f2 (σ − 2ρfνf∇sv + pI) : δp I

]
dV , (4.5)

with U = (σ,v, p). Note, that the variation of the accelerations δa := ∂a(v)
∂v

δv depends
on the chosen time discretization method. For the application of Newton’s method the
linearizations of (4.3)-(4.5) are required. The linearizations with respect to the stresses
are given with

∆σδσFF =

∫
Ωf

[
− ω2

f1 (div ∆σ · div δσ) + ω2
f2 (∆σ : δσ)

]
dV , (4.6)

∆σδvFF =

∫
Ωf

[
− ω2

f1 div ∆σ · ρf (δa+∇δv · v +∇v · δv)

− ω2
f2 (∆σ : ρfνf∇sδv)

]
dV ,

(4.7)

∆σδpFF =

∫
Ωf

[
ω2
f2 ∆σ : δp I

]
dV , (4.8)

and the linearizations with respect to the velocities read

∆vδσFF =

∫
Ωf

[
− ω2

f1 (ρf∆a+ ρf∇∆v · v + ρf∇v ·∆v) · div δσ

− ω2
f2 (2ρfνf∇s∆v : δσ)

]
dV ,

(4.9)

∆vδvFF =

∫
Ωf

[
ω2
f1ρf

2(∆a+∇∆v · v +∇v ·∆v) · (δa+∇δv · v +∇v · δv)

+ ω2
f1(ρfa(v)− divσ + ρf∇v · v) · ρf (∇δv ·∆v + ∆∇v · δv)

+ ω2
f2 (2ρf

2νf
2∇s∆v : ∇sδv) + ω2

f3 (div ∆v div δv)
]

dV ,

(4.10)

∆vδpFF =

∫
Ωf

[
− ω2

f2 (2ρfνf∇s∆v : δp I)
]

dV . (4.11)

Furthermore, the terms for the linearizations with respect to the pressure are given with

∆pδσFF =

∫
Ωf

[
ω2
f2 (∆pI : δσ)

]
dV , (4.12)

∆pδvFF =

∫
Ωf

[
− ω2

f2 (∆pI : ρfνf∇sδv)
]

dV , (4.13)

∆pδpFF =

∫
Ωf

[
ω2
f2 ∆pI : δσ

]
dV . (4.14)

In the context of this work, the presented mixed SVP formulation is applied in an extended
form for the solution of flows of non-Newtonian fluids in Section 5. Further information
regarding the discretization and the resulting system of equations are thus provided in
later sections.
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4.2 Stress-velocity formulation for fluid dynamics

In addition to the SVP formulation, a least-squares approach in terms of stresses and ve-
locities is considered in this study, with the main motivation of the inherent fulfillment of
the coupling conditions in FSI calculations. Furthermore, the elimination of the pressure
field leads to a reduction of the size of the equation system. For this purpose, the formu-
lation presented in Nisters and Schwarz [295] and Averweg et al. [9] is adopted,
in which a term for the pressure is derived, by evaluating the trace of the constitutive
equation and considering the continuity equation, i.e. div v = 0, which reads

p = −1

3
tr(σ) +

2

3
νfρf div v = −1

3
tr(σ) . (4.15)

By additionally using the definition of the deviatoric part of the Cauchy stresses written
as devσ = σ− 1

3
tr(σ), and adding the mass balance again as an additional residual, one

obtains the stress-velocity formulation for incompressible fluid flow, which consists of the
following three residuals

RF
1 := ρfa− divσ+ ρf∇v · v− f , RF

2 := devσ− 2ρfνf∇sv , RF
3 := div v . (4.16)

The application of the squared L2-norm and the introduction of a time discretization
scheme, relating the accelerations a to the velocity field v (see Section 7.3), leads to the
resulting least-squares functional as

FF (σ,v) =
1

2

(
||ωf1 (ρfa(v)− divσ + ρf∇v · v − f)||2L2(Ωf )

+ ||ωf2 (devσ − 2ρfνf∇sv)||2L2(Ωf ) + ||ωf3 (div v)||2L2(Ωf )

)
,

(4.17)

with appropriate positive weighting factors ωf1, ωf2 and ωf3. The required first varia-
tions of the functional with respect to the unknowns U = (σ,v) for the solution of the
minimization problem, omitting the body force term, are given by

δσFF (U ; δσ) =

∫
Ωf

[
− ω2

f1 (ρfa(v)− divσ + ρf∇v · v) · div δσ

+ ω2
f2 (devσ − 2ρfνf∇sv) : dev δσ

]
dV ,

(4.18)

δvFF (U ; δv) =

∫
Ωf

[
ω2
f1 (ρfa(v)− divσ + ρf∇v · v) · ρf (δa+∇δv · v +∇v · δv)

− ω2
f2 (devσ − 2ρfνf∇sv) : 2ρfνf∇sδv

+ ω2
f3 (div v · div δv)

]
dV .

(4.19)

Again, the variation of the acceleration δa := ∂a(v)
∂v

δv depends on the applied time dis-
cretization method. Here as well, the construction of the variations is carried out on the
assumption that the body force is zero. Moreover, the linearization required to solve the
system using Newton’s method leads to the following linearizations ∆δF of the functional
in the case of the SV Fluid formulation
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∆σδσFF =

∫
Ωf

[
ω2
f1 (div δσ · div ∆σ) + ω2

f2 (dev δσ : dev ∆σ)
]

dV , (4.20)

∆σδvFF =−
∫
Ωf

[
ω2
f1 div δσ · (ρf∆a+ ρf∇∆v · v + ρf∇v ·∆v)

− ω2
f2 (2ρfνf dev δσ : ∇s∆v)

]
dV ,

(4.21)

∆vδσFF =−
∫
Ωf

[
ω2
f1 (ρfδa+ ρf∇δv · v + ρf∇v · δv) · div ∆σ

− ω2
f2 (2ρfνf∇sδv : dev ∆σ)

]
dV ,

(4.22)

∆vδvFF =

∫
Ωf

[
ω2
f1 ρf

2 (δa+∇δv · v +∇v · δv) · (∆a+∇∆v · v +∇v ·∆v)

− ω2
f1 (ρfa(v)− divσ + ρf∇v · v) · ρf (∇δv ·∆v +∇∆v · δv)

− ω2
f2 (4ρf

2νf
2 ∇sδv : ∇s∆v) + ω2

f3 (div δv · div ∆v)
]

dV .

(4.23)

4.2.1 Discretization and assembly aspects

For a conforming spatial discretization of the stresses in H(div) and the velocities in H1,
vector-valued Raviart-Thomas functions of order m and Lagrange interpolation functions
of order k are selected as specified in Section 3.3.4. The resulting element is referred to
as RTmPk. For a typical element e, the discretized linear system of equations in matrix
notation reads

Ke ·∆De = −P e ⇒

[
kevv kevσ
keσv keσσ

][
∆w

∆β

]
= −

[
rev
reσ

]
, (4.24)

where wI and βJ are the degrees of freedom of the velocities and stresses at nodes I and
J , which are defined in the 2D case as

wI =

[
wI1

wI2

]
and βJ =

[
βJ1

βJ2

]
. (4.25)

These are approximated in terms of Lagrangian interpolation functions denoted with N I

and Raviart-Thomas shape functions denoted with ψJ . This yields in index notation for
the components of the unknowns and corresponding derivatives

vhi =
∑
I

N IwIi , vhi,j =
∑
I

N I
,j w

I
i and vhi,i =

∑
I

N I
,i w

I
i (4.26)

and
σhij =

∑
J

ψJj β
J
i and σhij,j =

∑
J

ψJj,j β
J
i . (4.27)
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5 LSFEM for non-Newtonian fluids

Modeling of fluids with non-Newtonian behavior is an important issue for many indus-
trial and scientific applications, for example in the field of chemistry, bioengineering
and medical science. These fluids are characterized by a viscosity that is not constant
at a fixed pressure and temperature, in contrast to Newtonian fluids which exhibit a
linear relation between the shear stress and the shear rate. As discussed in more de-
tail in Section 2.5, non-Newtonian fluids can be divided into viscoelastic fluids, time-
dependent fluids, and generalized Newtonian fluids. For each category, various material
models exist to approximate the material behavior. Common models which include a
partly elastic behavior and thus are suitable for the modeling of viscoelastic fluids are, e.g.,
the Maxwell (Maxwell [276]), Giesekus (Giesekus [168]), Oldroyd-B (Oldroyd [299])
and the Phan-Thien-Tanner model (Phan-Thien and Tanner [307]). The property of
viscoelasticity often appears in polymers, which in fact can be either a liquid or a solid,
depending on the time scale or the rate at which deformation occurs. Generalized New-
tonian fluids, for which the shear stress is a function of the shear rate at the consid-
ered time, can be shear-thinning, shear-thickening, and plastic. Some typical models to
simulate primarily shear-thinning material behavior are e.g. the power-law equation of
Ostwald and de Waele (Ostwald [301]), the Cross model (Cross [112]), the Carreau
model (Carreau et al. [90]), and the Carreau-Yasuda model (Yasuda et al. [427]).
Viscoplastic fluids, characterized by the presence of an apparent yield stress which
must be exceeded for the fluid to flow, are commonly modeled using the Herschel-
Bulkley (Herschel and Bulkley [182]), for instance. For a deeper understanding of
the origin, use, and study of rheological material models for complex fluids, reference
is made to textbooks such as Bird et al. [42], Chhabra and Richardson [101],
Krishnan et al. [245], Crochet et al. [111] and Saramito [336], for example.

In the following, least-squares formulations for solving flows of generalized Newtonian
fluids in 2D and 3D are presented, using the Carreau-Yasuda model to describe the relation
between dynamic viscosity η and shear rate γ̇. The model has already been introduced in
Section 2.5 and reads

η(γ̇) = η∞ + (η0 − η∞) (1 + (λ γ̇)a)
n−1
a with γ̇ =

√
2(∇sv : ∇sv) (5.1)

with ∇sv denoting the symmetric velocity gradient (2.14). The parameters η0 and η∞
define the upper and lower viscosity bounds, λ the relaxation time, and n and a are further
model parameters to adapt the model to the specific material behavior. The mixed LS
formulations are implemented and investigated by computing different numerical examples
in two and three dimensions.

Another aspect of this chapter is the assimilation of numerical and experimental data into
the simulation of flow problems based on the mixed LSFEM. For this purpose, given data
are directly assimilated by adding an additional term to the LS functional, as explained
in Section 3.4. The implementation of this approach is presented in the next sections, first
for the computation of non-Newtonian flows through a narrowing channel in two dimen-
sions. Subsequently, experimental as well as numerical data are included in the simulation
of a blood flow through a carotid bifurcation in three dimensions. The numerical calcu-
lations and studies presented in this chapter appear to some extent in the publications
Averweg et al. [10; 11; 12].
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5.1 SV formulation for incompressible non-Newtonian fluids in 2D

For the computation of flow problems involving generalized Newtonian fluids in two di-
mensions, the SV formulation derived in (4.16) is extended to consider the nonlinear
dependence of the dynamic viscosity η on the shear rate γ̇. Furthermore, only steady-
state flows are considered in the context of the mixed LSFEM analysis for generalized
Newtonian fluids, hence the time-dependent term, i. e. the accelerations, can be omitted.
Consequently, the LS functional for the simulation of generalized Newtonian fluids based
on stresses and velocities reads as follows

FF (σ,v) =
1

2

(
||ωf1 (divσ − ρf∇v · v + f)||2L2(Ωf )

+ ||ωf2 (devσ − 2η(γ̇)∇sv)||2L2(Ωf ) + ||ωf3 (div v)||2L2(Ωf )

)
,

(5.2)

with the Cauchy stresses σ, the velocities v, the symmetric velocity gradient defined as
∇sv = 1/2(∇v + (∇v)T ), the fluid density ρf , and the positive weighting factors ωf1,
ωf2 and ωf3. The dynamic viscosity is determined based on the Carreau-Yasuda viscosity
model given in (5.1). The required first and second variations of the functional with respect
to all unknowns to solve the minimization problem with Newton’s method, are obtained
in a similar way as explained in 4.2. It should be noted that the viscosity is a function of
the velocity and, in addition, the time-dependent terms can be dropped. For the spatial
discretization of the mixed LS stress-velocity formulation, conformal approximation func-
tions for the stresses and velocities in the solution spaces H(div,Ω)×H1(Ω) are selected
based on Lagrange interpolation functions of order k and vector-valued Raviart-Thomas
functions of order m leading to finite elements denoted by RTmPk, see Section 3.3.4.
The resulting discretized system of equations is then equivalent the one for the SV for-
mulation for Newtonian fluids, which is given in equation (5.11) with the corresponding
discretization.

5.2 Numerical examples: Steady flow of non-Newtonian fluids in 2D

Several studies are performed to validate, verify and investigate the presented LS SV for-
mulation including the Carreau-Yasuda model. First, a benchmark problem with an exact
solution is analyzed to validate and verify the implementation of the formulation and to
perform a convergence study. For this purpose, interpolation functions with different or-
ders are applied and the order of convergence in space is determined. Next, two numerical
benchmark examples, namely the flow in a driven cavity and the flow over a backward
facing step, are evaluated. Thereby, the parameters of the Carreau-Yasuda model are var-
ied and the influence of these model parameters is investigated. In the last part of this
section, the assimilation of data into a numerical simulation of a flow through a smooth
contraction based on the LSFEM is implemented. Therefore, data points generated by a
numerical solution produced on a fine mesh are embedded in this numerical example. In
all numerical examples in this section, the physical weighting factors in (5.2) are selected
as

ωf1 =

√
1

ρf
, ωf2 =

√
1

ρfνf
and ωf3 = 1 . (5.3)



LSFEM for non-Newtonian fluids 53

5.2.1 Flow in a square domain with analytical solution

As a first numerical example, in this section a two-dimensional flow through a square do-
main (SD) with an analytical solution from Fortin et al. [154] is considered to validate
the presented LS stress-velocity formulation for non-Newtonian fluids. The geometry of
the domain Ωf = [0, 1] × [0, 1] and the according boundary conditions on ∂Ωf for the
velocities and stresses are illustrated in Figure 5.1 (left). Additionally, the exact solution
for the velocities over the domain is plotted, see Figure 5.1 (right).

1

σ1n = 1

v1 = 0

v1 = (1− x4
2)

v2 = 0

x2

x1

v2 = 0

1

v1 = 1
v2 = 0

v2 = 0

m
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0.4

0.6

0.8

1.0

Figure 5.1: SD - geometry and boundary conditions for flow in a square domain (left) and
exact solution for total velocity field (right, in m/s)

The terms for the exact solution of the velocity and pressure are given by

vexact =

[
1− x4

2

0

]
and pexact = −x2

1 , (5.4)

provided that a forcing function for the body force is added to the momentum equation,
which is chosen as

f =

[
12x2

2 (1 + 16n λ2 (x2)6) (1 + 16λ2 (x2)6)
n−3
2 − 2x1

0

]
, (5.5)

see Chen et al. [98]. Based on (5.4), the resulting exact solution for the stresses can
be computed using the constitutive equation (2.73) for non-Newtonian fluids and the
Carreau-Yasuda viscosity model (5.1), yielding

σexact =

 x2
1 −4x3

2 (η0(1− 16x6
2λ

2))
n−1
a

−4x3
2 (η0(1− 16x6

2λ
2))

n−1
a x2

1

 . (5.6)

Therein, the lower viscosity bound is directly set to zero, i.e. η∞ = 0, according to the
chosen model parameters in this example. For the calculations the remaining parameters
for the Carreau-Yasuda viscosity function are selected as η0 = 1 kg/(ms), n = 0.2, λ = 1 s
and a = 2, resulting in a shear-thinning fluid behavior. For the material properties the
fluid density is set to ρf = 1 kg/m3. By choosing the model parameter a = 2 this is also
referred to as the Carreau model in the literature, see Carreau [91].
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Figure 5.2: SD - solution for total velocity field (left, in m/s), pressure (center, in N/m2)
and stresses σ12 (right, in N/m2) for a mesh size of 128 triangles using element RT2P3

The solution for the resulting total velocity |v|, pressure p, and stress field σ12 are exem-
plified in Figure 5.2. These results are obtained with the element RT2P3 and an element
length of h = 1/8 m, and agree with the exact solutions.

The convergence properties using different element orders for the stresses and velocities
are evaluated based on the discretization error compared to the exact solution. Therefore,
the error in the velocities and stresses is computed using the L2-norm as

ev = ||vexact − vh||L2(Ωf ) and eσ = ||σexact − σh||L2(Ωf ) , (5.7)

where vexact and σexact refer to the analytical solutions of the problem and vh and σh

denote the approximated quantities. An error analysis for elements RT1P2 and RT2P3

has been performed for a regular mesh refinement. Table 5.1 contains mesh information
such as number of elements and degrees of freedom of the meshes used in the numerical
simulations.

Table 5.1: SD - mesh level, number of elements (nele) and degrees of freedom (ndof) for
different element types

ndof

level nele RT1P2 RT2P3

1 8 113 241
2 32 449 961
3 128 1,793 3,841
4 512 7,169 15,361
5 2,048 28,673 61,441
6 8,192 114,689 245,761
7 32,768 458,753 983,041

To evaluate the spatial convergence order, Figure 5.3 displays the discretization errors
over the element length h in a logarithmic scale. The slopes of the fitted linear regression
lines for the velocities with quadratic and cubic interpolation orders take the form O(h3)
and O(h4), while the error convergence of the stresses discretized with RT1 and RT2 takes
the form O(h2) and O(h3), respectively. Thus, the graphs show that the error decrease in
the L2-norm is consistent with the expected values of order O(hn+1) for polynomials Pn
and of order O(hm+1) for Raviart-Thomas functions RTm.
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Figure 5.3: SD - L2-norm of the discretization error in approximation of velocities v and
stresses σ for different element orders and mesh sizes

5.2.2 Lid driven cavity flow of non-Newtonian fluid

Next, a parameter study of the constitutive Carreau-Yasuda model is performed for the
lid-driven cavity (LDC) flow to investigate the effects of the model parameters on the
flow kinematics. This benchmark problem is among the most studied problems in com-
putational fluid dynamics, since it consists of a simple geometry, but it shows complex
flow phenomena such as recirculation. The geometry of the computational square do-
main Ωf = [0, 1]2 and the boundary conditions for the problem are equivalent to those in
Surana et al. [377] and Kim and Reddy [234], and illustrated in Figure 5.4. The cal-
culations for this numerical example are performed using the element denoted as RT2P3.
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Figure 5.4: LDC - geometry and boundary conditions (left, in m) and solution for the
total velocity field (right, in m/s)

The simulation area is bounded at the sides and bottom by fixed walls with no-slip
boundary conditions. At the top, a horizontal velocity is applied which is described by
the function

v̄1(x1) =

{
tanh(50x1) , if 0 ≤ x1 ≤ 0.5 ,

− tanh(50x1 − 50) , if 0.5 ≤ x1 ≤ 1 .
(5.8)
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The use of a tangent function allows a smooth increase of the velocity at the cor-
ners. Therefore, corner singularities caused by impulsively assigned horizontal velocities
at the corners can be avoided. The occurrence of these discontinuities and the result-
ing difficulties in accuracy analysis have been the subject of several studies, see e.g.
Botella and Peyret [64] and Auteri et al. [7]. Additionally, for the degrees of free-
dom assigned to the stresses, the boundary conditions are specified at one point in the
center on the bottom edge as σ2 · n = 0.

In a first step, the results for the velocity field are validated by comparison with the
reference solution of Kim and Reddy [234]. For this purpose, the values in Table 5.2
are adopted for the material and model parameters. These coefficients correspond to a
Reynolds number of Re = 100, identical to that in the reference literature.

Table 5.2: LDC - material and viscosity model parameters

ρf η0 η∞ n a λ

kg/m3 kg/(ms) kg/(ms) - - s

45 0.45 0 0.756 2.0 1.85

The horizontal and vertical velocity components at the centerlines (x1 = 0.5 m and
x2 = 0.5 m) are evaluated and compared with the reference values. Figure 5.5 shows the
results for different uniform meshes with h denoting the element length. It can be ob-
served that the calculated velocity profiles show mesh convergence and correspond well
with those of Kim and Reddy [234], as soon as a number of 512 elements is exceeded.
The result for the total velocity on the domain Ωf is shown in Figure 5.4 (right) for a
mesh with 8192 elements, where the formation of the inner vortex is visible.
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Figure 5.5: LDC - velocity profiles at centerlines in x1- and x2-direction obtained
with element RT2P3 and different mesh sizes compared to reference solution from
Kim and Reddy [234] (units [h]=[x]=m and [v]=m/s)

Furthermore, the influence of the various parameters of the Carreau-Yasuda viscosity
model (5.1) is investigated. More precisely, a parameter study for the parameters λ and n is
performed at this point. For this purpose, the change of the horizontal and vertical velocity
profiles at the vertical and horizontal centerline of the cavity, respectively, are observed
depending on the change of individual parameters. These calculations are performed using
a mesh with element length h = 1/64 m and the remaining model parameters, except for
λ and n, are set as indicated in Table 5.2.
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Figure 5.6 shows how the cavity flows are affected by changing n, while the relaxation
time is set to λ = 1 s. As can be seen, v1 and v2 deviate increasingly from the Newtonian
fluid obtained with n = 1 as the value for the parameter decreases. This can be explained
with reference to Figure 2.5 (left), where the viscosity curve is plotted as a function of
shear rate for various values of n. For smaller parameter values, the slope of the viscosity
curve in the power-law region becomes continuously steeper.
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Figure 5.6: LDC - influence of parameter n on velocity profiles (units [x]=m and [v]=m/s))

Varying the relaxation parameter λ leads to a shift in the power-law region in Figure 2.5
(right) such that the change from the upper to the lower viscosity limit occurs at higher
shear rates γ̇ for decreasing values λ. The effect of this can be seen in the change in
velocity profiles in Figures 5.7. For these calculations, the values for λ were varied while
n = 0.5 was fixed.
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Figure 5.7: LDC - influence of parameter λ on velocity profiles (units [x]=m and [v]=m/s))

5.2.3 Flow over a backward facing step with parameter study

Another commonly used benchmark problem in computational fluid dynamics is the flow
over a backward-facing step (BFS), characterized by the presence of a recirculation zone
downstream of the step. The length of this recirculation zone depends on the flow and fluid
properties. These can also be described by the typical Reynolds number, which depends
on the flow velocity, viscosity and geometry. In the following, this typical problem is solved
for the flow of a generalized Newtonian fluid approximating the material behavior with
the Carreau-Yasuda model given in (5.1).
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The effect on the recirculation zone when varying the model parameters is exam-
ined. The geometry was chosen equivalent to the specifications in Gartling [162] and
Kim and Reddy [234] and is depicted in Figure 5.8. On the left side of the channel an
inflow is applied at H ≤ x2 ≤ 2H with H = 0.5 m the vertical velocity component is
v2 = 0 and the horizontal component is defined as

v̄1(x2) =

{
−24(x2 − 1)(x2 − 0.5), if H ≤ x2 ≤ 2H ,

0 , if 0 ≤ x2 ≤ H .
(5.9)

On the upper and lower walls, the velocities are set to zero according to the no-slip
conditions. At the outflow the velocity in x2-direction is set to v2 = 0 and the stress
related degrees of freedom are prescribed as σ1 · n = 0.

H
σ1 · n = 0

L = 60H

v = 0

v1 = v̄1(x2)
v2 = 0

x2
x1

H

v2 = 0
v = 0

Figure 5.8: BFS - geometry and boundary conditions with length h = 0.5 m

The domain is discretized using element RT2P3 with a structured mesh, see Figure 5.9,
where the element length h is smaller in the front region and larger towards the outflow.
This ensures that the recirculation zone behind the step is resolved well enough to correctly
represent the flow behavior.

30H 30H

h

x2

x1

Figure 5.9: BFS - structured mesh exemplary for element length h = 1/4 m

Validation
First, the formulation is validated by comparing the solution of the velocity profiles at
the locations x1 = 7 m and x1 = 15 m with the reference values in Gartling [162],
see Figure 5.11. For this purpose, the material parameters for the first calculations are
selected according to the specifications in the referenced literature as follows:

ρf = 1.0 kg/m3, η0 = 1.25× 10−3 kg/(ms), η∞ = 0, n = 1.0, a = 2.0, λ = 1.0 s .

This choice corresponds to modeling a Newtonian fluid at a Reynolds number of Re = 800.
The characteristic values for this boundary value problem, which are used to calculate the
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Reynold number (2.62), are the bulk velocity, which is two-thirds of the maximum inflow
velocity, i.e. vB = 2/3 v̄max

1 = 1 m/s, and the characteristic length, which is twice the
inflow height Lch = 2H = 1 m. The resulting total velocity field |v| for this parameter set
is shown in Figure 5.10. The entire domain is displayed unscaled divided into two plots,
where on the upper image the flow separation as a consequence of the backward facing
step can be identified. Further downstream it is visible that a parallel flow develops.

AceFEM
0
Min.
0.1500e1
Max.

v

0.146
0.336
0.527
0.717
0.908
0.109e1

Figure 5.10: BFS - distribution of total velocity field |v| obtained with mesh level 3

The velocity profiles versus the height of the channel for the horizontal and vertical
components of the velocity at the two selected cuts are shown in Figure 5.11. Different
mesh levels are considered for the calculations where h denotes the edge length of the
elements in the fine grid region on the left side of the domain. Information such as the
number of elements used and the number of resulting degrees of freedom at each mesh
level are given in Table 5.3.
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Figure 5.11: BFS - velocity profiles for different mesh levels at x1 = 7 m (top) and x2 =
15 m (bottom) compared to reference solution from Gartling [162] for Re = 800
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Table 5.3: BFS - mesh level, minimum element length h, number of elements (nele) and
degrees of freedom (ndof) for discretizations with element RT2P3

level length h nele ndof

1 1/4 720 21,601
2 1/8 2,880 86,401
3 1/16 11,520 345,601
4 1/32 46,080 1,382,401

The graphs show that from the third mesh level onwards with h = 1/16 m a convergent
solution is obtained, which is in agreement with the results obtained in the work of
Gartling [162]. Furthermore, it is visible that especially in the cut at x1 = 7 m the
deviations using coarse meshes are very large. The reason therefore is, that in this region
the velocity gradients are very high and these flow kinematics cannot be modeled correctly
with a low resolution.

Effect of Reynolds number
In a next step, the influence of the viscosity on the flow kinematic is studied. More
precisely, the reattachment length xR is evaluated for different Reynolds numbers, which
is in fact varied by changing the viscosity. The reattachment point is the length of the
recirculation zone and can be evaluated considering the position on the lower wall, at
which the shear stress is zero downstream of the large recirculation eddy, i.e. σ1 · n = 0.
The material and model parameters for the second study of the BFS benchmark problem
are specified just as in the previous calculations, except that the dynamic viscosity η0 is
varied. The different values for the viscosity, the corresponding Reynolds numbers and
the resulting reattachment points are listed in Table 5.4.

Table 5.4: BFS - reattachment length xR for different Reynolds numbers by changing the
dynamic viscosity

Re - 100 150 400 800

η0 kg/(ms) 10−2 6.6×10−3 2.5 ×10−3 1.25 ×10−3

xR m 1.64 2.17 4.33 6.12

The curve of the shear stress at the lower wall in x1-direction is depicted in Figure 5.12
for different flow properties. Only the first part of the region in which the zero shear stress
occurs is shown.

Effect of model parameters
The final investigation on the flow over the backward-facing step is a parameter study,
in which the effect of the different coefficients of the Carreau-Yasuda viscosity model is
examined. For this purpose, the reattachment length is again evaluated while the power-
law index n and the relaxation parameter λ are varied. In this case, the material and
model parameters are defined as

ρf = 1.0 kg/m3, η0 = 10−2 kg/(ms), η∞ = 0, a = 2.0 ,
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Figure 5.12: BFS - shear stress σ1 ·n at bottom wall and points of reattachment compared
to reference solution from Kim and Reddy [234] for different Reynolds numbers

leading to a Reynolds number of Re = 100. The values for n and λ are changed as specified
in the tabular in Figure 5.13 (right). This table also contains the resulting values of the
reattachment points xR when varying the parameters. Furthermore, the relation between
the reattachment length and the model parameters is illustrated in Figure 5.13 (left). An
increase of the parameter n leads to an extension of the recirculation zone, whereas an
increase in λ results in a shorter recirculation zone.

0.1 0.3 0.5 0.7 0.9

1.5

2.

2.5

3.

3.5

n 0.25 0.5 0.75 1.0

xR 3.766 2.766 2.078 1.641

λ 0.01 0.2 0.5 1.0

xR 1.641 1.781 2.203 2.766

Figure 5.13: BFS - reattachment point xR depending on different values for λ and n

It can be seen that the reattachment length reduces with increasing power index n ranging
from 0.25 to 1.0 while the other parameters remain constant. This is due to the fact that
the viscosity decreases relative to the parameter n, since the viscosity approaches the
lower limit η∞ with lower values for the power index already at smaller shear rates, see
Figure 2.5 (left). Thus, the reattachment length for simulations with a low power index
increases. An increase in relaxation time parameter λ leads to a decrease in viscosity as
the transition zone from the upper to the lower viscosity bound is shifted, see Figure 2.5
(right). As a result, a fluid with higher value λ exhibits a more extended recirculation
zone. Additionally, the effect on the wall shear stress can be seen in Figures 5.14 and 5.15,
which are consistent with the properties described.
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Figure 5.14: BFS - shear stress σ1 · n at bottom wall for different values n
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Figure 5.15: BFS - shear stress σ1 · n at bottom wall for different values λ

5.2.4 Channel flow with smooth contraction 4:1 and data assimilation

In the last example regarded for the numerical calculation of non-Newtonian fluids in
2D, the assimilation of data into the analysis with the LSFEM is described. Therefore,
the mixed least-squares formulation in terms of stresses and velocities for flow of non-
Newtonian fluids defined in (5.2) is extended with (3.54). The total LS functional with
data assimilation reads then

F∗(σ,v) = FF (σ,v) + Fdata(v) . (5.10)

For a typical element e, the discretized linear system of equations in matrix notation reads

Ke ·∆De = −P e ⇒

[
kevv kevσ
keσv keσσ

][
∆w

∆β

]
= −

[
rev
reσ

]
, (5.11)

where wI and βJ are the degrees of freedom of the velocities and stresses at nodes I
and J . Both the element matrix Ke and the right-hand-side vector P e contain entries
related to the standard functional F(σ,v) and, at the corresponding degrees of freedom,
of the functional Fdata(v). The algorithmic implementation of the SV formulation in 2D
including data assimilation is described in Appendix B.1. In order to test the assimilation
of data, flow through a smoothly narrowing channel (NC), see Figure 5.16, is simulated.
The tightening with a ratio of 4:1 leads to a strong necking and to an increase of the
flow velocity, which can easily lead to the well-known problem of mass loss using the
least-squares FEM.

For the straightforward implementation of data assimilation and the investigation of the
effect on the LSFEM solution, a numerical reference solution is applied. This is obtained



LSFEM for non-Newtonian fluids 63

8.0

σ1 · n = 0v = (v̄1(x2), 0)

x2

x1

6.0mm 2.75 1.83 1.3 2.12

2.0C1 C2 C3 C4

v = 0

Figure 5.16: NC - geometry for channel with smooth 4:1 narrowing

in this example by using a mixed Taylor-Hood Galerkin triangle element on a fine grid.
The inflow is assumed to be parallel with v2 = 0 and the horizontal velocity component
is prescribed with

v̄1(x2) = 0.15− 0.6

0.0082
(x2)2 m/s . (5.12)

Furthermore, the channel has no-slip boundary conditions and at the outflow the degrees
of freedom related to the stresses are defined as σ1 · n = 0. The material and model
parameters are selected as

η0 = 22 · 10−3 Pa s, η∞ = 2.2 · 10−3 Pa s, ρf = 1410 kg/m3

n = 0.392, λ = 0.11 s, a = 0.644 .

This choice results in a shear-thinning fluid and, according to Gijsen et al. [169], is
suitable for modeling blood flow. The resulting velocity distribution is shown in Figure
5.17 (right). The strong increase in velocities in the area of the necking is visible. First, a
grid convergence without data assimilation is performed for the element RT2P3. Different
structured meshes are applied with a regular refinement. The arrangement of the elements
for a mesh with 896 triangles is shown as an example in Figure 5.17 (left). The information
on the different meshes, the corresponding number of elements and degrees of freedom
are listed in Table 5.5.
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Figure 5.17: NC - mesh structure (left) and total velocity field for mesh level M3 with
element RT2P3 (right, in m/s)
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To quantify the quality of the numerical solution, the mass loss and the absolute velocity
error ev are evaluated. The mass loss is calculated by simply analyzing the difference
between the inflow and outflow. The error in the velocities is assessed by comparing the
solution for the horizontal and vertical velocity components at different positions in x1-
direction to a fine-grid solution obtained with a mixed Taylor-Hood Galerkin element.
Thus the error is defined as

ev =
1

N

N∑
i=1

∣∣∣∣vi − v̂i∣∣∣∣ =
1

N

N∑
i=1

√
(vi1 − v̂i1)2 + (vi2 − v̂i2)2 , (5.13)

where the reference values are denoted with the hat symbol and N is the number of data
points. For the calculation of the error the cuts C1, C2 and C4, see Figure 5.16, are
considered. The results for the mass loss and the velocity error are additionally included
in Table 5.5. From this it is visible that a very fine mesh with a high number of degrees
of freedom is needed to reduce the mass loss by using the presented mixed least-squares
stress-velocity formulation.

Table 5.5: NC - mesh level, number of elements (nele), number of degrees of freedom (ndof)
and results for mass loss (difference of inflow and outflow in %) and absolute velocity error
(in cuts C1, C2, C4) compared to numerical reference solution

mesh level M1 M2 M3 M4 M2 + data assimilation

nele 224 896 3,584 14,336 896

ndof 6,732 26,904 107,568 430,176 26,904

mass loss 68.8 45.4 15.4 1.4 1.04

error ev 3.80 ·10−1 2.62 ·10−1 9.07 ·10−2 8.60 ·10−3 1.21 ·10−2

In a next step, the effect of data assimilation is evaluated by including the fine-grid
reference data at cut C3 into the numerical least-squares FEM computation. For this
purpose, the second mesh level M2 is selected, which yields a very high mass loss of
almost 50% in the previous simulation without data assimilation. The new result for the
mass loss and velocity error considering data assimilation at cut C3 is given in the last
column of Table 5.5. The comparison of the results shows the significant improvement of
the numerical least-squares solution.

The improvement can also be observed in Figure 5.18, which shows the velocity profiles of
component v1 over the height of the channel at cuts C1, C2 and C4. The figure presents
the profiles of the velocity for three different grids without assimilation of data and addi-
tionally the velocity distribution when data is assimilated into the solution with a coarse
grid (dashed line). A comparison of these graphs reveals a significant enhancement, be-
cause in all considered cuts, no matter if upstream or downstream, the numerical solution
with data assimilation is basically equal to the reference solution. Thus, the numerical
accuracy can be greatly improved by data integration, such that even coarse meshes with
low computational cost lead to accurate solutions.
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Figure 5.18: NC - velocity profiles (in m/s) without data assimilation (mesh levels M2,
M3, M4) and with data assimilation at cut C3 (for mesh M2)

5.3 SVP formulation for incompressible non-Newtonian fluids in 3D

For the computation of flow problems involving generalized Newtonian fluids in three
dimensions, a mixed LS stress-velocity-pressure formulation is applied in the following.
Therefore, the SVP formulation given in (4.2) is modified to take into account the non-
linear dependence of the dynamic viscosity η on the shear rate γ̇. Steady-state flows of
generalized Newtonian fluids are considered at this point, so the time-dependent term, i.e.
the accelerations, are dropped in the following notation. This leads to the LS functional
in terms of stresses, velocities and pressure written as

FF (σ,v, p) =
1

2

(
||ωf1(divσ − ρf∇v · v + f)||2L2(Ωf )

+ ||ωf2(σ − 2η(γ̇)∇sv + pI)||2L2(Ωf ) + ||ωf3(div v)||2L2(Ωf )

)
,

(5.14)

with appropriate positive weighting factors ωf1, ωf2 and ωf3. For solving the minimization
problem with Newton’s method, the first and second variations of the functional with
respect to all unknowns are required again. The derivation of these variations for the
general mixed least-squares SVP formulation for unsteady flow of Newtonian fluids is
explained in (4.3)-(4.5). Further explanations are omitted here, since the procedure is
similar. It should only be noted that the viscosity is a function of the velocity and, in
addition, the time-dependent terms can be dropped.

For the discretization of the presented variational formula with F(σ,v, p) : W ×
V × Q → IR3, standard finite element interpolations for the velocities, stresses
and pressure are chosen as specified in Section 3.3.4. Therein, the interpolation or-
ders are set to k = n = m − 1, leading to mixed finite element descriptions
PkPk+1Pk. Similar approaches based on p-version LS formulations for non-Newtonian
fluids were studied e.g. by Bell and Surana [36], Edgar and Surana [137],
Surana et al. [377] and Kim and Reddy [234; 235] for two-dimensional problems and
by Kim and Reddy [236] also for three-dimensional problems.

Based on the first variations and linearization of the SVP formulation, the resulting dis-
cretized linear system of equations for a typical element e in matrix notation reads

Ke ·∆De = −P e ⇒

 kevv kevσ kevp
keσv keσσ keσp
kepv kepσ kepp


 ∆w

∆β

∆q

 = −

 revreσ
rep

 , (5.15)
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where wI , βJ and qL are the degrees of freedom of the velocities, stresses and pressure at
nodes I, J and L, respectively. These can be approximated as defined in Appendix B.2.

In this section, the assimilation of numerical as well as experimental data into the simu-
lation of three dimensional non-Newtonian fluid flow is investigated. Therefore, the total
mixed least-squares functional is constructed based on the SVP formulation given in (5.14)
and the LS data functional (3.54), and reads

F∗(σ,v, p) = FF (σ,v, p) + Fdata(v) . (5.16)

In case of data assimilation, both the element matrix Ke and the right-hand-side vector
P e in (5.15) contain entries related to the standard functional F(σ,v, p) and, at the
corresponding degrees of freedom, of the functional Fdata(v). Further details regarding
the implementation are provided in Appendix B.2.

5.4 Numerical examples: Steady flow of non-Newtonian fluids in 3D

The following section contains several numerical examples to model generalized New-
tonian fluids in three dimensions. These serve on one hand to validate and verify the
presented mixed LS SVP formulation and on the other hand to investigate the effect of
data assimilation in the simulation of three dimensional flow problems with the LSFEM.
For validation, a steady-state flow in a cubic domain containing an analytical solution is
calculated. Then, the assimilation of data is investigated by simulating the flow of blood
through a carotid bifurcation. The physically motivated least-squares weights are chosen
for the following numerical examples as

ω1 =
1
√
ρf
, ω2 =

1
√
ηch

and ω3 = 1 . (5.17)

The parameter ηch denotes the characteristic viscosity, which is obtained by substituting
γ̇ = vB/L into Eq. (5.1), where vB is the bulk velocity and L the characteristic length of
the considered boundary value problem.

5.4.1 Flow in a cubical domain with analytical solution

To validate the presented least-squares stress-velocity-pressure formulation for flow
of non-Newtonian fluids in three dimensions, the numerical example presented by
Kwack and Masud [248] is solved. This consists of a flow in a cubical domain defined
by Ωf = [−0.5, 0.5]3 with an analytical solution for the velocities and the pressure as

v =

−2x3 cos(πx1) cos(πx2) eπ(−(x3)2+0.25)

−2x3 cos(πx1) cos(πx2) eπ(−(x3)2+0.25)

sin(π(x1 + x2)) (eπ(−x23+0.25) − 1)

 , (5.18)

and p = sin(2πx1) sin(2πx2) sin(2πx3) . (5.19)

The associated body force f is generated by substituting the terms for the velocities (5.18)
and the pressure (5.19) into the balance of momentum. The resulting term for the body
force considering a non-Newtonian fluid is given in Appendix B.3. The selected material
and model parameters for the Carreau-Yasuda viscosity model are given in Table 5.6.
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Table 5.6: Cube - material and model parameters

ρf η0 η∞ n a λ
kg m−3 Pa s Pa s - - s

1 5.0 · 10−2 3.0 · 10−3 0.5 2 2

The boundary conditions for the velocities and the pressure are defined on the outer faces
by equations (5.18) and (5.19). To investigate the convergence properties when using
interpolation functions of different orders for the field quantities, the deviation between
the calculated LS solution and the exact solution is calculated. The error is evaluated
for the velocities and the pressure based on the L2 norm and denoted as εv and εp,
respectively.

The deviation in the quantities is assessed over the entire domain and plotted on a loga-
rithmic scale over the inverse of the element length h, see Figure 5.19. Furthermore, for
a quantitative comparison, the slope in the last mesh refinement step is given. This also
reflects qualitatively the development of the individual convergence curves. The values
reveal the increase of the convergence order with increasing element order. However, a
statement about the expected order of convergence is hardly possible due to the high
nonlinearity of the problem.

Figure 5.19: Cube - error of total velocity εv and pressure εp compared to exact solution
over element length in logarithmic scale for different element orders

The solution for the velocity field is illustrated exemplarily in the symmetry planes at
x1 = 0, x2 = 0 and x3 = 0 in Figure 5.20. The results are obtained with the element
P2P3P2 and a mesh level corresponding to 180,962 degrees of freedom. The velocity plots
are consistent with the exact solution. Furthermore, Figure 5.21 shows the pressure field
and the viscosity in the cube.

5.4.2 Steady blood flow in a carotid artery bifurcation

The following sections demonstrates the assimilation of data into the simulation of blood
flow through a carotid bifurcation model using the least-squares FEM. The applied ge-
ometry is a model of a typical Y-shaped carotid bifurcation of a human adult, con-
sisting of the common carotid artery (CCA) that divides into the internal (ICA) and
external carotid artery (ECA). The development of the initial model is attributed to
Bharadvaj et al. [39; 40] and Ku et al. [246], who studied the shape of the carotid
artery of 57 patients and constructed a geometric template based on mean values. For
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Figure 5.20: Cube - velocity field |v| in planes x1 = 0, x2 = 0 and x3 = 0 (in m/s)

Figure 5.21: Carotid - pressure field (left, in N/m2) and viscosity (right, in kg/(m s)) on
a mesh with element length h = 1/12m

the experimental flow investigation these authors used an aqueous solution of glycerine
to model Newtonian flow behavior.

The geometric dimensions used in this example are shown in Figure 5.22. The common
carotid artery with an inflow radius of 4 mm splits with an angle α = 25◦ into the ECA
and ICA with different diameters as illustrated. The used flow conditions and material
parameters are the same as in Gijsen et al. [169], see Table 5.7, resulting at the inlet
in a Reynolds number of Re = (ρ d vB)/ηN = 270, where d is the inflow diameter and ηN
is the dynamic viscosity of the Newtonian control fluid ηN . Given the corresponding bulk
velocity of vB = 0.069415 m/s, the parabolic velocity profile at the inlet reads

v(x2, x3) =

[
0.1388− 8676.86(x2

2 + x2
3)

0.0

]
(5.20)

with the coordinate origin at the center of the circular cross-sectional area. The coefficients
for the Carreau-Yasuda model as presented in Table 5.7, correspond to those of a mixture
of a solution of potassium thiocyanate in water as Newtonian control fluid with 250
ppm Xanthan gum. This aqueous Xanthan gum solution, which has shear-thinning and
viscoelastic properties, is a typical material used in experiments for imitating the behavior
of blood. By applying the Carreau-Yasuda model, as in Gijsen et al. [169], only the
shear-thinning properties are considered. Here, the authors found that the viscoelasticity
does not have a significant effect on the velocity in this steady-state example.
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Figure 5.22: Carotid - geometry and boundary conditions artery bifurcation (in mm)

Table 5.7: Carotid - material and model parameters

ρf ηN η0 η∞ n a λ
kg m−3 Pa s Pa s Pa s - - s

1410 2.9 · 10−3 22 · 10−3 2.2 · 10−3 0.392 0.644 0.11

The artery walls have no-slip boundary conditions, i.e. v = 0, and at the outlet of the
external and internal carotid artery, the pressure p and the stress components σ11, σ22, σ33

are set to zero. To reduce calculation costs, only half of the geometry is simulated. Thus
additional constraints are set on the symmetry plane for the velocities v3 = 0 and the
stresses σ1 · n = (σ11, σ12, σ13) · (0, 0, 1)T = 0 and σ2 · n = (σ21, σ22, σ23) · (0, 0, 1)T = 0,
i.e. σ13 = 0 and σ23 = 0.

Model verification
In a first step, the problem is solved with different element orders and mesh sizes as
specified in Table 5.8. The table contains the mesh information of the successively refined
finite element meshes used in the numerical simulations. The grids are constructed using
Gmsh, cf. Geuzaine and Remacle [165].

In Figure 5.23, the total velocity distribution and the pressure field on the symmetry plane
x3 = 0 are visualized, which are calculated with mesh level M4, corresponding to 64,444
tetrahedral elements of type P2P3P2. At the beginning of the bifurcation, high velocities
can be observed especially near the inner/divider wall of the ICA. This high velocity
region results from the flow splitting with a simultaneous bending of the ICA and leads
to a recirculation region at the outer wall with very low velocities. Another factor besides
the bifurcation and bending, which strongly influences the flow behavior, is the changing



70 LSFEM for non-Newtonian fluids

Table 5.8: Carotid - mesh level, number of elements (nele) and number of degrees of
freedom (ndof) for different element types

ndof

level nele P1P2P1 P2P3P2 P3P4P3

M1 2,063 10,825 49,322 136,882
M2 7,432 38,403 176,731 491,880
M3 22,204 116,577 523,749 1,448,518
M4 64,444 333,820 1,497,322 4,196,380
M5 119,255 618,973 2,782,227
M6 531,893 2,748,538

cross-sectional area of the internal vessel. The widening and later narrowing leads first to
a deceleration of the fluid and then to a strong acceleration.

Figure 5.23: Carotid - velocity field |v| (left, in m/s) and pressure field p (right, in N/m2)

Next, Figure 5.24 presents the velocity and pressure distribution directly after the bifur-
cation point in the ICA (at cut plane C1 see Figure 5.22). The left contour plot shows
the total velocity field |v| with a high velocity located in the upper middle region of the
cut surface and a regular velocity gradient towards the boundary walls. The second con-
tour plot illustrates the pressure field depicting a radial pressure gradient from the outer
(bottom) to the divider (top) wall. This distribution matches the observation in the last
image, which shows a secondary flow in the cross-sectional area. The fluid moves vertically
along the symmetry plane towards the upper wall and back along the outer wall, which
results in a vortex as shown in Figure 5.24 (right).

In order to study the convergence behavior and the scale of the discretization error the
error compared to a fine-grid solution obtained with a mixed Taylor-Hood Galerkin tetra-
hedral element (quadratic velocity and linear pressure approximation) is evaluated. More
precisely, the error based on the mean of the normed differences between the LS solution
v and the Galerkin reference solution v̂ at a number of N compared nodes in all spatial
directions is computed as

εv =
1

N

N∑
i=1

∣∣∣∣vi − v̂i∣∣∣∣ =
1

N

N∑
i=1

√
(vi1 − v̂i1)2 + (vi2 − v̂i2)2 + (vi3 − v̂i3)2 . (5.21)
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Figure 5.24: Carotid - velocity field (left, in m/s), pressure field p (center, in N/m2) and
vector plot showing secondary flow (right) in cut plane C1

The error is evaluated using the nodal data on the centerlines A and B (see Figure
5.22) in the cut planes (C1-C5) and plotted in a logarithmic scale over the degrees of
freedom (ndof), see Figure 5.25 (left). As expected, the error decreases with increasing
polynomial degree. Whereby the convergence order for the low-order element is lowest
and the elements P2P3P2 and P3P4P3 show similar convergence rates.

Figure 5.25: Carotid - absolute error in velocity compared to Galerkin reference solution
(left) and mass loss (right) with different mesh levels and element orders

Since a common problem with least-squares FEM approaches is the poor conservation of
mass, this is evaluated as well and presented in Figure 5.25 (right). The graphs confirm
the poor performance of the low-order element, but concurrently clearly show that better
convergence behavior can be achieved with higher polynomial degrees. Nevertheless, a
high number of degrees of freedom is required to compensate for the mass loss and obtain
satisfying results.

When comparing the velocity evolution (exemplarily in the sections C1, C3, C5) with
the numerical fine-grid Galerkin FEM reference solution and the experimental results,
see Figure 5.26, it can be seen that there are deviations between the measured data
and the numerical reference solution. This difference, which was similarly reported by
Gijsen et al. [169], can have various causes. In numerical solutions, not only discretiza-
tion errors are involved, but also possible inaccuracies in the assumption of the material
model and the model parameters, e.g., for the non-Newtonian fluid, or uncertainties in
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defining the boundary conditions. In the next section, the assimilation of experimental
data into the numerical calculation of flow through a carotid bifurcation is implemented
to evaluate the effect on the performance.
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Figure 5.26: Carotid - velocity profiles (in m/s) along centerlines A (top) and B (bottom)
in planes C1, C3, C5, obtained with element P2P3P2 and different mesh levels (axis in m)

5.4.3 Carotid bifurcation model - assimilation of experimental data

As a first step the integration of experimental data using measured velocities given in
Gijsen et al. [169] is investigated. The authors present axial velocity profiles at different
planes in the internal carotid artery along the symmetry plane and perpendicular thereto
(centerlines A and B in Figure 5.22). The given axial velocity data is transformed to the
x1- and x2-component as follows

v1 = vAxial · cos(α), v2 = −vAxial · sin(α). (5.22)

The implementation of the data assimilation is carried out exemplarily with element
P2P3P2 and mesh level M2 at the centerlines of the planes C2 and C4. The axial velocity
profiles in the remaining planes, where no data is integrated, are illustrated in Figure 5.27.
The graphs display the velocity profiles obtained without and with assimilation of data,
as well as the experimental data taken from Gijsen et al. [169]. Comparing the profiles
of the calculation without data assimilation (blue line) to those with data assimilation on
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the centerlines (green line), we see that the solution in the neighboring cross sections to
those with data assimilation is closer to the real data. But the correction is still rather
poor. A similar statement can be made by evaluating the mass loss, as the difference
between the applied inflow function and the outflow at the ICA and ECA, see Table 5.9.
The mass loss can be reduced, but the effect is quite small. The numerical solution of a
three dimensional problem is hardly influenced, when data is integrated only along certain
lines, which seems to be rather obvious.
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Figure 5.27: Carotid - velocity profiles (in m/s) along centerlines A (top) and B (bot-
tom) in planes C1, C3, C5, results without data assimilation and with experimental data
assimilation on line and on whole plane (axis in m)

Table 5.9: Carotid - effect of experimental data assimilation on mass loss (in %), obtained
with element P2P3P2 and mesh level M2

no data assimilation data on line data on area

18.46 15.44 6.30

Based on this finding, the assimilation of data on a plane is examined in the following.
Due to the lack of measurement data on an entire cut surface, the existing data is interpo-
lated using the Kriging method to generate two-dimensional data based on the available
values on the lines in two directions. It should be noted that this approach is used only
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to demonstrate the general implementation and impact of experimental data assimila-
tion into non-Newtonian fluid flow simulations. For a reasonable final application of data
assimilation, it is of course advisable to use measurement data directly obtained on a
surface. The result of the Kriging interpolation for the cut planes C2 and C4 is illustrated
in Figure 5.28. It is visible, that the interpolated data match the input velocities and
become zero at the boundaries of the artery.
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Figure 5.28: Carotid - interpolation of experimental velocity data (in m/s) on planes C2
(top) and C4 (bottom) in internal carotid artery (axis in m)

The generated velocity data in axial direction is again split into the x1- and x2-components
and then implemented into the numerical calculation. The outcome of the data assimila-
tion on all nodes in planes C2 and C4, is additionally plotted in Figure 5.27 (orange lines),
besides the results of data inclusion on the lines (green lines). The presented velocity pro-
files in the cross sections C1, C3, C5 indicate that the accuracy in solving the velocity is
increased considerably as compared to the previous approach, when data is assimilated
only along lines. The data integration on all nodes on the cross-sectional areas also leads
to an improved mass conservation as present in Table 5.9.

Because of the present geometry, which consists of one artery splitting into two branches,
the proposed data integration loses some effectiveness, since the flow field in the external
carotid artery is rarely affected by data integrated in the internal carotid artery. Therefore,
the mass loss in the ECA remains rather high. Due to a lack of experimental data in the
ECA of this considered problem, to numerical data is used in the following to assimilate
data in the internal and external carotid artery.
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5.4.4 Carotid bifurcation model - assimilation of numerical data

The integration of data into the internal and external carotid artery is studied by ap-
plying a generated fine-grid solution obtained with a Taylor-Hood Galerkin tetrahedral
element. It should be noted that by including numerical data, only the influence on the
discretization error can be investigated, but not possible model errors, e.g., due to the
material model or the boundary conditions, since these also exist in the numerical ref-
erence solution. The fine-grid Galerkin solution from Section 5.4.2 is assimilated once at
planes C1 and C5 in the ICA and then additionally at plane C6 in the ECA. Therefore,
the velocity components in all three spatial directions at all nodal coordinates in the cut
planes are extracted. For the LSFEM solution with data assimilation, the element P2P3P2

and mesh level M2 are used. The axial velocity profiles along the centerlines of the planes
C2-C4, where no data is integrated, are shown in Figure 5.29 with the numerical reference
solution.
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Figure 5.29: Carotid - velocity profiles (in m/s) along centerlines A (top) and B (bottom)
in planes C2-C4, results without data assimilation and with numerical data assimilation
on planes only in ICA (C1, C5) and on planes in ICA & ECA (C1, C5, C6) (axis in m)

It is visible that it does not matter for the velocity in the presented cuts in the ICA whether
data is only included in the ICA or also in the ECA. Moreover, the plots show that it is
sufficient to include the data in one cut downstream and upstream to almost completely
eliminate the discretization error in between. In addition, for a quantitative evaluation of
the effect on the performance of the numerical analysis the mass loss based on the in-and
outflow and the error in the planes C2-C4 are calculated once more according to (5.21),
see Table 5.10. The significant reduction of mass loss, i.e. from > 18% to <6% and <2%,
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as well as the decrease in the velocity error show the efficiency of the data assimilation.
It becomes even more apparent if one considers how many unknowns would be required
to achieve values that are comparably low. Even the use of mesh level M5 with 119,255
tetrahedral elements of order P2P3P2 leads, despite considerably more degrees of freedom,
to a slightly lower accuracy than numerical calculations including data assimilation with
mesh level M2. As Figure 5.29 has already demonstrated, the velocity error εv in the
ICA (cuts C2-C4) can hardly be improved further by additional data inclusion in the
ECA, since it already agrees very well with the reference solution when assimilating data
exclusively into the ICA. However, the numerical solution in the ECA can be further
improved leading to a reduction of total mass loss from more than 18% to less than 2%.

Table 5.10: Carotid - effect of data assimilation in ICA (C1, C5) or ICA & ECA
(C1, C5, C6) with element P2P3P2 and mesh level M2 or M5, mass loss (difference of
in- and outflow in %) and velocity error (C2-C4)

no data assim. C1, C5 C1, C5, C6
... no data assim.

mass loss 18.46 5.78 1.70
... 3.69

error εv 2.56× 10−2 4.98× 10−3 4.26× 10−3 ... 4.95× 10−3

ndof (mesh) 176,731 (M2) 176,731 (M2) 176,731 (M2)
... 2,782,227 (M5)
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6 LSFEM for elastic solid dynamics

In this section least-squares formulations for linear as well as hyperelastic solid mate-
rial behavior are presented. For both approaches the final terms are given depending on
stresses and velocities to enable a straightforward monolithic coupling to the least-squares
formulation for the fluid domain likewise written in terms of stresses and velocities. The
presented LS solid formulation for linear elasticity is used to investigate the implementa-
tion and performance of different time discretization schemes for solving dynamic struc-
tural behavior, with the overall goal of simulating time-dependent FSI problems. The
formulation for hyperelastic material behavior is required to correctly solve coupled prob-
lems in which the solid undergoes large deformations, when the assumption of linear
elasticity loses its validity. Both presented formulations for linear and hyperelastic mate-
rials are based on conforming approximations for the velocities with v ∈ H1(Ω) and the
stresses with σ ∈ H(div,Ω). For the implementation, different polynomial Lagrangian
and vector-valued Raviart-Thomas approximation functions are chosen for this purpose,
as defined in (3.43) and (3.44).

6.1 Stress-velocity formulation for linear elastic materials

The least-squares functional for the description of linear elastic materials undergoing small
strains can be constructed based on the balance of momentum (2.45) and the constitutive
relation (2.61) for linear elasticity. The corresponding residuals in terms of stresses and
displacements can take the following form

RLE
1 := divσ + f − ρs a(u) and RLE

2 := C−1 : σ −∇su , (6.1)

with the Cauchy stresses σ, the vectors f , a and u denoting the body force, acceleration
and displacement, respectively, the solid density ρs, and the inverse of the forth-order
material tensor C. The tensor C−1 assuming plane strain conditions is given in matrix
notation with Lamé constants µs and λs, and setting α = 4(λsµs + µ2

s), as

C−1
ijkl =


C−1

1111 C−1
1112 C−1

1121 C−1
1122

C−1
1211 C−1

1212 C−1
1221 C−1

1222

C−1
2111 C−1

2112 C−1
2121 C−1

2122

C−1
2211 C−1

2212 C−1
2221 C−1

2222

 =



−λs
α

+
1

2µs
0 0

−λs
α

0
1

2µs
0 0

0 0
1

2µs
0

−λs
α

0 0
−λs
α

+
1

2µs


. (6.2)

There are several least-squares approaches in the literature regarding the solution of lin-
ear elastic materials. An important aspect of investigation in these studies is, among
other things, the fulfillment of the symmetry of the Cauchy stress tensor resulting
from the balance of angular momentum (2.53). Compliance with this condition can
be considered in several manners that result in a strong or weak enforcement. For in-
stance, a possibility to control the stress symmetry directly but still in a weak sense
is to add a further residual containing the condition σ = σT , as studied e.g. in
Cai and Starke [78], Schwarz et al. [351] and Igelbüscher et al. [212]. Further
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publications investigating a LS stress-displacement formulation for linear elasticity are,
for instance, Cai and Starke [79], Cai et al. [84; 87], Schwarz et al. [347]. In the
context of this work, the focus is not on studying the performance of the LS solid for-
mulation in detail and it is assumed sufficient at this point that the stress symmetry is
satisfied by the constitutive equation in a weak sense.

The main objective is rather the direct coupling of the fluid and solid formulation, for
which the given equations for both domains are written in the same unknowns. For the
restatement of (6.1), the displacements u and accelerations a have to be described as a
function of the velocities v. This is accomplished in the course of this thesis with the help
of various time discretization methods, yielding the final residuals as follows

RLE
1 := divσ + f − ρs a(v) and RLE

2 := C−1 : σ −∇su(v) . (6.3)

Refer to, e.g., Nisters et al. [296] and Nisters [294] for the implementation and study
on this formulation considering the Newmark and Houbolt methods for time discretization.
The application of the quadratic L2-norm leads to the LS functional for linear elasticity
in terms of stresses and velocities

FLE(σ,v) =
1

2

(
||ωs1 (divσ + f − ρs a(v))||2L2(Ωs) + ||ωs2 (C−1 : σ −∇su(v))||2L2(Ωs)

)
,

(6.4)
with positive weighting factors ωs1 and ωs2. The first variations of the presented first-
order system, which are required for minimizing the least-squares functional, are given
with respect to the unknowns by

δvFLE = −
∫
Ωs

[
ω2
s1 (divσ − ρsa) · ρsδa+ ω2

s2 (C−1 : σ −∇su) : ∇sδu
]
dV , (6.5)

δσFLE =

∫
Ωs

[
ω2
s1 (divσ − ρsa) · div δσ + ω2

s2(C−1 : σ −∇su) : C−1 : δσ
]
dV , (6.6)

where δa := ∂a(v)
∂v

δv and ∇sδu := ∂u(v)
∂v
∇sδv are defined based on the chosen time

discretization scheme. Furthermore, the body force is omitted in the derivation of the
variations. The linearizations ∆δF of the least-squares functional for linear elastic material
are given as

∆vδvFLE =

∫
Ωs

[
ω2
s1 ρ

2
s δa ·∆a+ ω2

s2 ∇sδu : ∇s∆u
]
dV , (6.7)

∆vδσFLE = −
∫
Ωs

[
ω2
s1 ρs div δσ ·∆a+ ω2

s2 (C−1 : δσ) : ∇s∆u
]
dV , (6.8)

∆σδvFLE = −
∫
Ωs

[
ω2
s1 ρsδa · div ∆σ + ω2

s2 ∇sδu : (C−1 : ∆σ)
]
dV , (6.9)

∆σδσFLE =

∫
Ωs

[
ω2
s1 div δσ · div ∆σ + ω2

s2 (C−1 : δσ) : (C−1 : ∆σ)
]
dV . (6.10)
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6.2 Stress-velocity formulation for hyperelastic materials

The least-squares functional for the description of hyperelastic materials can be con-
structed based on the balance of momentum (2.45) and the constitutive relation (2.59)
for hyperelasticity, in which the relation of the stresses and strains is defined based on
a free energy function. Furthermore, the symmetry of the Cauchy stress tensor resulting
from the balance of angular momentum (2.53) is considered. Using additonally the rela-
tion between the second Piola-Kirchhoff stress tensor S and the Cauchy stress tensor σ,
see (2.31), the corresponding residuals in terms of Cauchy stresses and displacements can
be defined as

RHE
1 := divσ+ f − ρs a , RHE

2 := σ−F ·S ·F TJ−1 and RHE
3 := σ−σT . (6.11)

Therein, the second Piola-Kirchhoff stress tensor S is defined depending on a free energy
function. The free energy function used in this work is based on the St. Venant-Kirchhoff
material model defined in (2.55), which is valid for boundary value problems with large
displacements and rather small strains. Thus, the second PK stress tensor is given by

S = ∂Eψ(E) = λs(trE) I + 2µsE = C : E , (6.12)

with the Green-Lagrange strain tensor E and the right Cauchy-Green deformation tensor
C defined as

E =
1

2
(C − I) =

1

2
(F T · F − I) and C = F T · F , (6.13)

while the deformation gradient can be calculated with (2.21) in terms of the actual con-
figuration as

F (x) = (I − gradu)−1 . (6.14)

Furthermore, the fourth-order material tensor C in terms of the Lamé constants is given
by

C =



 λs + 2µ 0 0
0 λs 0
0 0 λs

  0 0 0
2µ 0 0
0 0 0

  0 0 0
0 0 0

2µ 0 0

 0 2µs 0
0 0 0
0 0 0

  λs 0 0
0 λs + 2µs 0
0 0 λs

  0 0 0
0 0 0
0 2µs 0

 0 0 2µs
0 0 0
0 0 0

  0 0 0
0 0 2µs
0 0 0

  λs 0 0
0 λs 0
0 0 λs + 2µs




.

(6.15)

To provide a straightforward monolithic coupling of the solid and fluid domains, the
formulation in (6.11) is converted into a stress-velocity formulation by means of a time
discretization scheme. Following the construction rules in (3.33) and by applying a time
discretization scheme to define the accelerations a(v) and displacements u(v), the mixed
LS functional is obtained in terms of stresses and velocities as

FHE(σ,v) =
1

2

(
||ωs1(divσ + f − ρs a(v))||2L2(Ωs)

+ ||ωs2
(
σ − F · (C : E) · F TJ−1

)
||2L2(Ωs)

+ ||ωs3
(
σ − σT

)
||2L2(Ωs)

)
,

(6.16)
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with the weighting factors ωs1, ωs2 and ωs3, the determinant of the deformation gradient
J = det(F ) and the deformation gradient as well as the Green-Lagrange strain tensor as
an indirect function of the velocities with F (u(v)) and E(u(v)), respectively.

Remark: In this thesis, the formulation for hyperelasticity in terms of stresses and veloc-
ities is discretized with shape functions directly constructed in the actual configuration.
Thus, also the stress interpolation depends on the displacements and hence on the veloci-
ties. For the construction of the first and second variations, which are needed to solve the
minimization problem, this dependency is not presented for more clarity. Hence, the first
variations of the given LS functional, omitting the body force, are given by

δσFHE =

∫
Ωs

[
ω2
s1(divσ − ρsa) · div δσ + ω2

s2

(
σ − F · C : E · F TJ−1

)
: δσ

+ ω2
s3(σ − σT ) : (δσ − δσT )

]
dV ,

(6.17)

δvFHE =

∫
Ωs

[
ω2
s1(divσ − ρsa) · ρsδa+ ω2

s2

(
σ − F · C : E · F TJ−1

)
: T
]

dV , (6.18)

where T = −J−1(δF ·C : E ·F T +F ·C : δE ·F T +F ·C : E · δF T ) +F ·C : E ·F T δJ−1

is introduced for abbreviation. The second variations with respect to the stresses are then
obtained as

∆σδσFHE =

∫
Ωs

[
ω2
s1(div ∆σ · div δσ) + ω2

s2 (∆σ : δσ)

+ ω2
s3(∆σ −∆σT ) : (δσ − δσT )

]
dV ,

(6.19)

∆σδvFHE =

∫
Ωs

[
ω2
s1(div ∆σ · ρsδa+ ω2

s2 ∆σ : T
]

dV , (6.20)

and with respect to the velocities as

∆vδσFHE =

∫
Ωs

[
ω2
s1(−ρs∆a · div δσ)

+ ω2
s2

(
∆F · C : E · F TJ−1 + F · C : ∆E · F TJ−1

+F · C : E ·∆F TJ−1 + F · C : E · F T∆J−1
)

: δσ
]

dV ,

(6.21)

∆vδvFHE =

∫
Ωs

[
ω2
s1(−ρs∆a · ρsδa) + ω2

s2

(
σ − F · C : E · F TJ−1

)
:

(
(−δF · (C : ∆E · F TJ−1 + C : E ·∆F TJ−1 + C : E · F T∆J−1)

−∆F · C : δE · F TJ−1 − F · C : ∆δE · F TJ−1

− F · C : δE ·∆F TJ−1 − F · C : δE · F T∆J−1

− (∆F · C : EJ−1 + F · C : ∆EJ−1 + F · C : E∆J−1) · δF T

− (∆F · C : E · F T + F · C : ∆E · F T + F · C : E ·∆F T )δJ−1
)

− ω2
s2

(
∆F · C : E · F TJ−1 + F · C : ∆E · F TJ−1

+ F · C : E ·∆F TJ−1 + F · C : E · F T∆J−1
)

: T
]

dV .

(6.22)
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The derived variations contain several varied variables, which are given by

δE =
1

2

(
δF T · F + F T · δF

)
, δJ = JF−T · δF ,

∆E =
1

2

(
∆F T · F + F T ·∆F

)
, ∆J = JF−T ·∆F ,

∆δE =
1

2

(
δF T ·∆F + ∆F T · δF

) (6.23)

with δF = ∇(δu) and ∆F = ∇(∆u). Furthermore, the terms

δa :=
∂a(v)

∂v
δv and ∆a :=

∂a(v)

∂v
∆v ,

∇δu :=
∂u(v)

∂v
∇δv and ∇∆u :=

∂u(v)

∂v
∇∆v ,

(6.24)

are defined based on the chosen time discretization scheme.

Remark: Note that the mixed LS formulations for solids in terms of stresses and veloci-
ties always require discretization in time, even when stationary problems are considered
where the acceleration term can be omitted. Therefore, numerical examples to validate
the formulations presented will be given once the schemes for the discretization in time
are discussed.
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7 Time discretization schemes for fluid and solid dynamics

In order to simulate unsteady flow problems or dynamic deformations as prescribed by
the formulations in Sections 4 and 6, not only the spatial directions, but also the time
component has to be discretized. The difference between the spatial and temporal domain
is that quantities, such as a force or velocity, acting at one spatial point have influence on
the solution in the entire spatial domain. In contrast, a force that acts at a certain point
in time, for example, only affects the solution in the subsequent time interval. There are
different solution methods for unsteady and dynamic problems depending on the order
of discretization in space and time. One can roughly divide the procedures into two cate-
gories. Either space and time are discretized simultaneously (space-time discretization) or
separately. Then one can conduct first the space then the time discretization (method of
lines) or vice versa (Rothe’s method). When uniform discretizations are used, the method
of lines and the Rothe’s method are considered equivalent.

Several works are available in which the application of space-time methods in combi-
nation with the least-squares FEM for solving unsteady problems is described. Among
others the authors Nguyen and Reynen [291], Donea and Quartapelle [130]
as well as Perrochet and Azérad [305] consider space-time LSFEM approaches
for the solution of the transient advection or advection-diffusion equations. In
Bell and Surana [35; 37], Kayser-Herold and Matthies [228], Pontaza [310]
and Pontaza and Reddy [313; 314] the coupled space-time discretization is dealt
with to solve the Navier-Stokes equations. Moreover, the application of space-time LS-
FEM to parabolic equations is investigated in, e.g., Majidi and Starke [265; 266] and
Führer and Karkulik [158]. In this thesis, a separate discretization of space and
time domain is considered. In the context of LSFEM, as used for the spatial discretiza-
tion in this work, it is necessary to first discretize in time. Then the least-squares
variation can be applied to the semi-discrete system, see Donea and Huerta [129]
and Kayser-Herold [227], for instance. Further applications of time discretization
schemes in combination with least-squares FEM can be found in Chen [99; 100],
Tang and Tsang [381] and Tang et al. [382]. For more general information on time
discretization in the context of numerical methods, cf. Donea and Huerta [129],
Bathe [19], Ferziger and Perić [149] and Richter [329], for instance.

The objective of this chapter is to explain and investigate the application of different time
integration methods to discretize the mixed LS stress-velocity formulations for solid and
fluid dynamics. For this purpose, first some general aspects regarding time integration
methods are provided. For getting started, the implicit Euler method and the family of
Runge-Kutta methods are presented for the integration of first-order ordinary differential
equations. In this context, basic properties of the methods used in this thesis as well as
some implementation aspects are explained. The computation of a simple 1D advection
example serves for a better understanding of the implementation. This is followed by
the description of the various methods used in connection with the least-squares SV
fluid and solid formulations. All relevant terms for the application of the Euler, Houbolt,
Newmark, Crank-Nicolson and different Runge-Kutta methods are defined. Furthermore,
various numerical fluid and solid examples are calculated to investigate the accuracy and
convergence behavior of the implemented methods in combination with the stress-velocity
formulations.
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7.1 Brief introduction to the basic concept

According to the nature of time, all solution methods are based on stepping methods
where the regarded time interval I = [t0, T ] is divided into N discrete subintervals with
the time step size ∆t as

[t0, T ] =
N−1⋃
n=0

[tn, tn+1] with ∆t = tn+1 − tn . (7.1)

Herein, the subscripts n+1 and n denote the actual and previous time steps, respectively,
and the time steps are given by tn = t0 +n∆t with n = 0, ..., N . Many time discretization
methods can be easily explained by solving an initial value problem of ordinary differential
equations (ODE). Therefore, a simplified notation is first used in the following, where an
approximate solution for the variable φ(t) of an initial value problem of the form

φ̇(t) =
dφ(t)

dt
= f(t, φ(t)), φ(t0) = φ0 , (7.2)

is searched. The discrete solution at every time step tn is then denoted by φ(tn) = φn.
See Figure 7.1 for a graphical representation of the time discretization of an initial value
problem.

φ

t0 t1 tn tn+1

t

φ(t)

φ0

φn
φn+1

∆t

φ̇

tn tn+1

t

φ̇ = f(φ, t)

∆t

Figure 7.1: Schematic visualization of the solution of initial value problems, division in
subintervals (left) and explicit function integration (right)

The solutions at the individual time steps are now calculated step by step, starting e.g. in
the first step with the solution for φ1 = φ(t1) at t1 = t0 + ∆t. The obtained solution can
then be considered as initial condition for the next time step. Assuming that the value φn

is known, e.g. as initial condition φ0, the next value φn+1 can be obtained by integrating
(7.2). Integration of both sides over the interval ∆t leads to∫ tn+1

tn

dφ(t)

dt
dt =

∫ tn+1

tn

f(t, φ(t)) dt

↔ φn+1 = φn +

∫ tn+1

tn

f(t, φ(t)) dt .

(7.3)

The primitive function of the left side can be easily formed, but since the function on the
right side is unknown, the integral has to be approximated. The various time integration
methods differ basically in the manner in which this integral is approximated. A main
difference is the position at which the function f(t, φ(t)) is evaluated. If only positions ti
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with i ≤ n are considered for the evaluation, this yields an explicit time integration
scheme. For example, the simplest approximation is the explicit Euler method, where the
function value is assumed to be constant over an interval, with the value equal to the
solution at the lower limit of the interval, i.e., the solution of the last time step. Fully
explicit algorithms, where the time derivatives depend only on the values of previous time
steps, can be numerically unstable, especially for stiff systems. This limits the time step
size, see e.g. John et al. [223], Wriggers [424], or Ghaboussi and Wu [167]. Even
though the computation of a single time step using an explicit scheme is comparatively
fast, the need for very small time increments can lead to high overall computational costs.

In the following, only implicit time integration methods are considered, where the
evaluation of the function always involves the current time step, although not nec-
essarily exclusively. Especially for complex simulations with a large number of un-
knowns, as in the case of many FSI problems, or stiff formulations, the demand on
stable and efficient time integration schemes is tremendous. An implicit treatment
of the time-dependent terms offers the possibility of unconditional stability, see, e.g.,
Wriggers [424] and the references therein. In this work, time integration methods
with different approximation orders will be investigated and compared. Many recent
approaches consider time integration schemes, which are up to second-order accurate
for fluid, solid and interaction problems. These include, for example, the backward-
difference scheme, see e.g. Curtiss and Hirschfelder [114] and Hu et al. [204],
the Newmark method as in Newmark [290], Subbaraj and Dokainish [375]
and Wood et al. [423], for instance, the generalized-α method, see for exam-
ple Chung and Hulbert [105] and Dettmer and Perić [126], and the Crank-
Nicolson method as in Crank and Nicolson [109], Namkoong et al. [287] and
John et al. [223]. However, also the investigation of algorithms with higher order than
two could be reasonable. This is motivated by the successful application of integra-
tion schemes such as continuous Galerkin, discontinuous Galerkin or implicit Runge-
Kutta (IRK) for fluid dynamical problems, e.g. see Butcher [76], Bijl et al. [41],
Carstens and Kuhl [92] and Hussain et al. [210]. Additionally, different IRK meth-
ods have already been implemented and investigated for coupled problems by, e.g.,
van Zuijlen and Bijl [405] and Yang and Mavriplis [426].

Several methods which are implemented in this thesis to solve fluid, solid and FSI problems
are explained in more detail in the following. It should be noted that the least-squares
formulations used are formulated in terms of stresses and velocities for both the fluid
domain and the solid domain. This means for the time discretization methods that in
the end a formulation for the time-dependent quantities in dependence of the velocities
is required. In the fluid formulation, the equations are first-order differential equations in
time, such that only the approximation for one time-dependent quantity, in this case the
accelerations, is needed. However, in the formulation for the solid, the time discretization
must provide besides an expression for the accelerations also an approximation for the
displacements.

In the following notation, a distinction is made between one-step and multi-step methods,
depending on whether the solution of one or more preceding time steps is taken into
account for the calculation of the next time step. However, one-step methods can also
include methods with several stages, in which one or more intermediate stages are solved
within one time step.
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7.2 Overview on some time integration methods for first-order ODEs

As mentioned above, many time integration methods can be explained relatively straight-
forward by solving a simple ordinary differential equation. Therefore, this subsection is
restricted to the application of integration methods for solving first-order ODEs. In this
way, general implementation aspects for Runge-Kutta methods used in this thesis will
be explained first. For better understanding, a simple introductory example in 1D is pre-
sented. For this purpose, an advection equation is discretized in space with the finite
difference method and solved with the implicit Euler method and a two-stage RK algo-
rithm. The explanation regarding the application of different time integration methods
within the context of the LSFEM follows in the next section.

7.2.1 Implicit Euler

The implicit Euler (or backward Euler) method is probably one of the simplest and best
known integration methods. It has a convergence order of one and is A-stable, thus there
are no restrictions on the time step size due to stability, see Hairer et al. [179]. For a
comprehensible description we consider again equation (7.3) with the aim to approximate
the integral in the right side. When applying the implicit Euler, the function value is
assumed to be constant over each interval, with the value equal to the solution at the
upper limit of the interval, i.e., the solution of the actual time step. This results in the
term

φn+1 = φn + f(tn+1, φ
n+1)∆t . (7.4)

Considering equation (7.2), the function evaluated at the time step tn+1 is equal to the
slope at this position. More precisely, it is the discrete time derivative such that f(tn+1) =
φ̇n+1. Thus, the implicit Euler can also be written as

φ̇n+1 =
φn+1 − φn

∆t
, (7.5)

which describes the time derivative at the actual time step in terms of the actual unknown
variable and its value of the last time step.

7.2.2 Crank-Nicolson method

The second-order Crank-Nicolson time integration scheme as presented by
Crank and Nicolson [109] is a one-step method, which can be considered as a
combination of the explicit and implicit Euler method. In contrast to the implicit Euler
scheme, the Crank-Nicolson method assumes a linear function in each interval, such that

φn+1 = φn +
1

2
(f(tn+1, φ

n+1) + f(tn, φ
n))∆t . (7.6)

The Crank-Nicolson method is often also known as trapezoidal rule or a simple case of
the Runge-Kutta methods which are presented in the following.

7.2.3 The family of Runge-Kutta methods

The above mentioned methods are all one-stage methods, where one equation system
has to be solved per time step, with a maximum convergence order of two. The family of
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Runge-Kutta (RK) methods are very popular high-order time integration methods. These
combine good stability properties with the possibility of applying adaptive time-stepping
algorithms, see e.g. Ellsiepen and Hartmann [138] and Montlaur et al. [281].

In general, when implementing RK methods, the integral in (7.3) is approximated by
means of quadrature points γj and weights βj. This leads to the approximate solution

φn+1 = φn + ∆t
s∑
j=1

βjkj (7.7a)

with kj = f

(
tn + γj∆t, φ

n + ∆t
s∑
l=1

αjlkl

)
, for j = 1, ..., s , (7.7b)

where ∆t is the time step-size and s is the number of stages. Furthermore, the coefficients
are constructed in such a way that γj =

∑s
l=1 αjl for all stages j = 1, ..., s with αjl

denoting the weights within the stages. The coefficients can be presented in form of a
general Butcher tableau, see Table 7.1.

Table 7.1: General Butcher tableau for fully implicit RK with s stages (left) and for
SDIRK with s = 4 stages (right)

γ1 α11 · · · · · · α1s
...

...
. . .

...
...

...
. . .

...
γs αs1 · · · · · · αss

β1 · · · · · · βs

γ1 α11 0 0 0
γ2 α21 α11 0 0
γ3 α31 α32 α11 0
1 α41 α42 α43 α11

β1 β2 β3 β4

Depending on the entries of the tableau, the Runge-Kutta methods can have different
properties, such as being explicit or implicit. In the case of αjl = 0 for j ≤ l, the solution
in the current time step for φn+1 can be computed explicitly from the values of the last
time step and the previous stages. As mentioned before, explicit solution methods are
often unstable due to the stiffness of many realistic problems and therefore not practical,
see e.g. Montlaur et al. [281] or John et al. [223]. By using a coefficient matrix
in which the upper triangular matrix contains non-zero values, stable methods can be
achieved. A completely filled tableau, for example, leads to a fully implicit Runge-Kutta
method, in which, the size of the system of equations to be solved at each time step,
increases to s times the number of degrees of freedom ndof. This can lead to huge systems
of equations, especially for mixed FEM.

This drawback can be avoided by taking a reduced coefficient matrix where αjl = 0
for j < l, leading to a diagonally implicit method. In this case, the large system of
equations (s× ndof) is divided into a number of s systems of equations of size ndof, which
are solved sequentially at each time step. A further classification called singly diagonally
implicit Runge-Kutta (SDIRK) is obtained when all diagonal entries in the coefficient
matrix αii are equal, see Alexander [3]. Another subgroup of implicit RK methods
with βj = αsj for j = 1, ..., s and γs = 1 has the property of being stiffly accurate.
This condition implies that the projection step given by (7.7a) can be omitted, because
the result of the last stage corresponds already to the solution of the considered actual
time step. In the following, we also consider schemes with an explicit first stage, denoted
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ESDIRK. In this case, no system of equations has to be solved for the first stage, since the
solutions correspond to the values of the last time step. The different types of RK methods
according to the coefficients in the Butcher tables are summarized in Table 7.2. For a more
detailed overview of the properties of the various classes of Runge-Kutta methods and a
deeper insight into the mathematical investigations thereof, the reader is referred to, e.g.,
Hairer et al. [178; 179] and Hairer and Wanner [177].

Table 7.2: Characteristics of Runge-Kutta methods

αjl = 0 for l ≥ j explicit Runge-Kutta
αjl 6= 0 for l ≥ j fully implicit Runge-Kutta
αjl = 0 for l > j diagonally implicit Runge-Kutta (DIRK)
αjj equal singly diagonally implicit Runge-Kutta (SDIRK)
α11 = 0 explicit, singly diagonally implicit RK (ESDIRK)
βj = αsj, γs = 1 stiffly accurate, result of last stage yields solution at tn+1

7.2.4 Simple example: Advection equation in 1D

The application of the different presented time discretization methods in the field of nu-
merics is explained in the following by a short example in 1D. Therefore, the instationary
linear advection equation in one dimension is used, given by

∂z(x, t)

∂t
= −c∂z(x, t)

∂x

⇔ ż(x, t) = f(z(x, t)) .

(7.8)

It is a simple example of an hyperbolic PDE, which describes the advection of a property
of a fluid particle, here denoted by z(x, t), through a medium with a constant velocity c
in x-direction. If the speed of the advection is c > 0, then the solution moves along the
positive direction of x. The initial value problem is completed by the definition of initial
values

z(x, 0) = z0 = g(x). (7.9)

The equation can be solved analytically and it holds in general that

z(x, t) = g(x− c t) , (7.10)

with g(x) being an arbitrary function, see Donea and Huerta [129](Chapter 3) for
more details. For the numerical solution of this initial boundary value problem a double
discretization process is required, namely the discretization in space and in time. For this
simple example the advection equation is discretized in space using a finite difference (FD)
scheme. The main idea of using FD is to approximate derivatives using difference quo-
tients. Although there are better methods than finite differences for spatial discretizations,
in this section FD are used because they are very straightforward to understand and im-
plement. Therefore, the domain with a length L is divided into grid points i = {1, ...,M}
with a distance h = L/(M − 1) as depicted in Figure 7.3.

In the following, the upwind difference scheme is applied, such that the right side of
(7.8) with the partial derivative of z(x, t) with respect to x results for a positive constant
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for c > 0

xi−1 xi xi+1

tn+1

tn

for c < 0

xi−1 xi xi+1

tn+1

tn

Figure 7.2: Schematic visualization of the upwind finite difference scheme

velocity c > 0 in

− c∂z(x, t)

∂x
≈ −c zi − zi−1

xi − xi−1

= −czi − zi−1

h
= f(zi) , (7.11)

omitting at this point the time dependence of zi(t) for more clarity. Herein, the solution
is always determined based on data at the considered position and at upstream positions
and the information travels downstream. First approaches to the upwind scheme are given
in the work of Courant et al. [108].

Lx

x1 x2 x3 x4 x5

h

0. 0.2 0.4 0.6 0.8
0.

0.2

0.4

0.6

0.8

Figure 7.3: Spatial discretization using FD scheme for advection equation in 1D (left) and
analytical solution at different times (right)

In the following, the one-dimensional Gauß-pulse with the initial state

z(x, 0) = z0 = exp(−100(x− 0.4)2) (7.12)

is considered on a spatial domain x ∈ [0, 1] over a time period t ∈ [0, 1] with the constant
velocity c = 1 m/s. According to equation (7.10) the analytical solution of the initial value
problem reads

ẑ(x, t) = exp(−100(x− c t− 0.4)2) . (7.13)

The boundary conditions are set at x = 0 and x = 1 to

z(0, t) = ẑ(0, t) and z(1, t) = ẑ(1, t). (7.14)

With the spatial discretization in hand, the next step is to trace the evolution of
the solution in time. Therefore, the time interval is divided into discrete time steps
tn = t0 + n∆t with n = 0, ..., N with a step size ∆t.
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Implicit Euler
For a better understanding of the individual steps of the multi-stage Runge-Kutta meth-
ods, the solution of the problem is first shown with a simple discretization, namely the
implicit Euler. Considering the approximation in time as presented in (7.4) and the ap-
proximation in space defined in equation (7.11), the fully discretized form of (7.8) reads

zn+1
i − zni

∆t
= f

(
tn+1, z

n+1
i

)
⇔ zn+1

i − zni
∆t

= −
zn+1
i − zn+1

i−1

h
,

(7.15)

with n+ 1 and n denoting the actual and previous time steps. The initial conditions are
defined at all grid points based on equation (7.12). The resulting values are given in the
first row of Table 7.3.

Table 7.3: Solution z(xi, tn) with implicit Euler and FD upwind scheme at discrete grid
points xi at different time steps tn

t z1 z2 z3 z4 z5

0.0 0. 1.054×10−1 3.679×10−1 4.790×10−6 0.
0.1 0. 7.529×10−2 2.843×10−1 8.123×10−2 0.
0.2 0. 5.378×10−2 2.184×10−1 1.204×10−1 0.
0.3 0. 3.841×10−2 1.670×10−1 1.337×10−1 1.234×10−4

0.4 0. 2.744×10−2 1.271×10−1 1.318×10−1 1.832×10−2

For a discretization with M = 5 grid points and a time step size of ∆t = 0.1 the temporal
evaluation of the solution at locations xi with i = {2, 3, 4} can be calculated with

zn+1
2 = −∆t

h
(zn+1

2 − zn+1
1 ) + zn2

zn+1
3 = −∆t

h
(zn+1

3 − zn+1
2 ) + zn3

zn+1
4 = −∆t

h
(zn+1

4 − zn+1
3 ) + zn4 .

The first time step is solved by first inserting the known values for the initial conditions
z0
i with i = {2, 3, 4} and for the boundary conditions zn+1

1 and zn+1
5 , and then solving

the resulting system of equations for zn+1
i with i = {2, 3, 4}. This procedure is repeated

for each time step. The final values are listed in Table 7.3.

Version 1: Runge-Kutta method with two stages in standard form
For the purpose of clarifying the application of the RK methods, a 2-stage Runge-Kutta
procedure with an explicit first stage is implemented at this point. The corresponding
parameters which are shown in Table 7.4 fulfill all characteristics of an ESDIRK. The use
of these parameters leads to the Crank-Nicolson method.

Applying equation (7.7) to the advection formula in (7.8), under consideration of the
integration parameters given in Table 7.4 with s = 2 stages, results in the semi-discretized



90 Time discretization schemes for fluid and solid dynamics

Table 7.4: General Butcher tableau for 2-stage ESDIRK-2 (Crank-Nicolson)

0 0 0

1 1
2

1
2

1
2

1
2

formulation

zn+1 = zn + ∆t
2∑
j=1

βjkj = zn + ∆t(β1k1 + β2k2) = zn +
∆t

2
(k1 + k2) , (7.16)

with k1 = f

(
tn + γ1∆t, zn + ∆t

2∑
l=1

α1lkl

)
= f (zn) , (7.17a)

k2 = f

(
tn + γ2∆t, zn + ∆t

2∑
l=1

α2lkl

)
= f

(
zn +

∆t

2
(k1 + k2)

)
, (7.17b)

where at this point the space dependence of z and k is omitted for better readability. In
addition, it has been taken into account that f is not a function of time t in this case.
It is visible that the solution in the first stage for k1 depends only on the solution of the
previous time step, as is always the case in RK methods with a first explicit stage.

Considering the spatial discretization by the upwind difference scheme given in (7.11),
the RK formulations in (7.16) and (7.17) read in the fully discretized form

zn+1
i = zni +

∆t

2
(k1,i + k2,i) , (7.18)

with k1,i = f(zni ) = −
zni − zni−1

h
, (7.19a)

k2,i = f

(
zni +

∆t

2
(k1,i + k2,i)

)
= f (zni ) +

∆t

2
f(k1,i) +

∆t

2
f(k2,i)

= −
zni − zni−1

h
− ∆t(k1,i − k1,i−1)

2h
− ∆t(k2,i − k2,i−1)

2h
. (7.19b)

With a spatial division of the domain into M = 5 segments as shown in Figure 7.3, the
discrete terms at positions xi with i = {2, 3, 4} yield

zn+1
2 = zn2 +

∆t

2
(k1,2 + k2,2) ,

zn+1
3 = zn3 +

∆t

2
(k1,3 + k2,3) ,

zn+1
4 = zn4 +

∆t

2
(k1,4 + k2,4) ,

(7.20)
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with

at x2 : k1,2 = −z
n
2 − zn1
h

,

k2,2 = −z
n
2 − zn1
h

− ∆t(k1,2 − k1,1)

2h
− ∆t(k2,2 − k2,1)

2h
,

at x3 : k1,3 = −z
n
3 − zn2
h

,

k2,3 = −z
n
3 − zn2
h

− ∆t(k1,3 − k1,2)

2h
− ∆t(k2,3 − k2,2)

2h
,

at x4 : k1,4 = −z
n
4 − zn3
h

,

k2,4 = −z
n
4 − zn3
h

− ∆t(k1,4 − k1,3)

2h
− ∆t(k2,4 − k2,3)

2h
,

(7.21)

and k1,1 = k2,1 = 0. The final result in each time step is obtained by solving the system
of equations (7.21) for k2,i with i = {2, 3, 4} and substituting the values into (7.20). The
results for the first four time steps are given in Table 7.5.

Table 7.5: Solution z(xi, tn) with implicit Runge-Kutta (s=2) and FD upwind scheme at
discrete grid points xi at different time steps tn

t z1 z2 z3 z4 z5

0.0 0. 1.054×10−1 3.679×10−1 4.790×10−6 0.
0.1 0. 7.027×10−2 2.745×10−1 1.071×10−1 0.
0.2 0. 4.684×10−2 2.025×10−1 1.509×10−1 0.
0.3 0. 3.123×10−2 1.480×10−1 1.590×10−1 1.234×10−4

0.4 0. 2.082×10−2 1.074×10−1 1.486×10−1 1.832×10−2

It should be noted that the spatial discretization with the upwind finite difference method
of first-order with five grid points leads to a very large deviation from the exact result.
The graphical representation of the approximations in Figure 7.4 is based on a discretiza-
tion with 100 grid points. The graphs illustrate the solutions obtained with the implicit
Euler method and the RK methods with a time step size of ∆t = 0.1. It is visible that
the outcome obtained with the second-order Runge-Kutta method is closer to the exact
solution than the approximation with the implicit Euler, which has only a first-order ac-
curacy. More detailed studies on the convergence and further comparisons are discussed
in later chapters, for the direct application of the methods in the context of the LSFEM.

Remark: The approach on the Runge-Kutta method described above leads to a system
of equations formulated as a function of the stage quantity k2, which corresponds to
the time derivative of the solution variable z(x, t). For the later application of the RK
methods to solve the Navier-Stokes equations using the least-squares stress-velocity
formulation, an approach for the time-derived quantity depending on the solution
variable is needed. More precisely, the accelerations have to be described dependent on
the velocities, in order to solve the whole system of equations for stresses and velocities.
To provide a simpler understanding of the use of this approach in the context of the
least-squares FEM, the transformed formulation is explained below for solving the
advection equation.
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Figure 7.4: Approximation at different times steps (dashed line) compared to exact so-
lution (solid line) obtained with implicit Euler (left) and RK method with parameters
corresponding to Crank-Nicolson method (right) with 100 grid points

Version 2: Runge-Kutta method reformulated
When considering the semi-discretized Eqs.(7.16) and (7.17) one can see a correlation
between z and k2, that is

k1 = f (zn) (7.22a)

k2 = f
(
zn +

∆t

2
(k1 + k2)︸ ︷︷ ︸

zn+1

)
= żn+1 , (7.22b)

such that

k2 = 2
zn+1 − zn

∆t
− f (zn) = f(zn+1). (7.23)

In this case, for an ESDIRK with two stages with stiff accuracy, i.e. βj = αsj and γs = 1,
this relation can also be seen by considering equation (7.16). The derivation for methods
with more than one implicit stage is slightly different, since the solution of the current
time step zn+1 can not be calculated directly, but the intermediate solutions for z in
the individual stages must be determined beforehand. However, the procedure is similar
and will be explained in more detail, when applying RK methods for least-squares SV
formulations in Section 7.3.5.

Considering equation (7.23) and the spatial discretization by the upwind difference scheme
stated in (7.11), the fully discretized form of the advection equation reads

2
zn+1
i − zni

∆t
− f (zni ) = f(zn+1

i )

⇔ zn+1
i − zni

∆t
=

1

2

(
f(zn+1

i ) + f (zni )
)

⇔ zn+1
i − zni

∆t
=

1

2

(
−
zn+1
i − zn+1

i−1

h
−
zni − zni−1

h

)
,

(7.24)

whereby in the second step the equality to the Crank-Nicolson method, see (7.6), is visible.
As in the previous sections, the solution for a discretization with M = 5 grid points at



Time discretization schemes for fluid and solid dynamics 93

locations xi with i = {2, 3, 4} can be calculated as follows

zn+1
2 − zn2

∆t
=

1

2

(
−z

n+1
2 − zn+1

1

h
− zn2 − zn1

h

)
zn+1

3 − zn3
∆t

=
1

2

(
−z

n+1
3 − zn+1

2

h
− zn3 − zn2

h

)
zn+1

4 − zn4
∆t

=
1

2

(
−z

n+1
4 − zn+1

3

h
− zn4 − zn3

h

)
.

(7.25)

The final result in each time step is again obtained by solving this system of equations
for zn+1

i with i = {2, 3, 4} taking into account the known values for the initial conditions
z0
i with i = {2, 3, 4} and for the boundary conditions zn+1

1 and zn+1
5 . The resulting values

are identical with those given in Table 7.5.

7.3 Time integration methods for least-squares SV formulations

After this general introduction of the time discretization methods for the solution of
ordinary differential equations, the specific application in the framework of the FEM shall
now be discussed. As mentioned earlier, least-squares formulations in terms of stresses
and velocities are used in this work for both the fluid and the solid domain. Hence in this
section, the necessary terms are given for all time discretization methods as a function
of the velocities. As in the previous chapters, a, v and u are used as notation for the
accelerations, velocities and displacements. Furthermore, the index n + 1 denotes the
current time step and n, n− 1 and n− 2 indicate previous time steps. These indices can
appear as either superscripts or subscripts, depending on how the notation is clearest. To
be precise, the objective is to approximate the time dependent quantities a(v) and u(v)
with any time discretization scheme. First the general steps of the time discretization are
explained and then the approximation specifications of the individual methods follow.

The general procedure for all integration schemes considered can be summarized in the
following steps:

1. Division of the regarded time interval from t0 to T into N subintervals with the
time step size ∆t: [t0, T ] =

⋃N−1
n=0 [tn, tn+1] with ∆t = tn+1 − tn,

where the subscripts n+ 1 and n denote the actual and previous time steps.

2. Approximation of the time dependent quantities an+1(v) and un+1(v) based on
the known field quantities of one or more previous time steps (tn, tn−1, ...) and the
unknowns of the actual time step (tn+1), see next sections.

3. Iterative solution of the nonlinear equation system including all residual terms with
the Newton-Raphson method.

Fluid domain:
Evaluation of the functional FF (σn+1,vn+1,an+1) with an+1 as defined by the cho-
sen time discretization method.

Solid domain:
Evaluation of the functional FS(σn+1,an+1,un+1) with an+1 and un+1 as defined
by the chosen time discretization method.
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4. Updating of all actual quantities: e.g. vn+1 → vn

5. Repetition of steps two to four up to final time T .

Note, that the procedure is modified if adaptive time step control is applied. A more
detailed description of the third step including the required formulas for the approximation
of the time dependent quantities and information on the implementation of all schemes
is given in the following.

7.3.1 Implicit Euler method for least-squares SV formulations

The implicit Euler method is implemented only for comparison, because at the same
computational cost the accuracy is lower compared to other methods like, e.g., Crank-
Nicolson. Considering equation (7.5), it can be used directly to describe the accelerations,
defined as a = v̇, as a function of the velocities, which yields

an+1 =
vn+1 − vn

∆t
. (7.26)

A transformation of (7.5) to obtain a dependence on the time-derived quantity leads to a
description for the displacements depending on the velocities, which reads

un+1 = un + vn+1 ∆t . (7.27)

7.3.2 Newmark method for least-squares SV formulations

The Newmark method is a well-known one-step method, which is commonly used espe-
cially to solve dynamical structure problems as it is suitable to discretize second-order
systems in time. The method was developed by Newmark [290] and in its original form it
leads to a term for the actual velocities and displacements depending on the accelerations
of the actual and last time step given as

un+1 = un + vn∆t+ ∆t2
[(

1

2
− β

)
an + β an+1

]
, (7.28)

vn+1 = vn + ∆t [(1− γ)an + γ an+1] . (7.29)

The Newmark parameters γ and β specify the behavior of the discretization method and
for linear structural dynamics these parameters are mathematically limited to 0 ≤ β ≤ 1

2

and 0 ≤ γ ≤ 1. Furthermore, the choice of γ = 1
2

results in an optimal and second-order
accurate method when applied to linear dynamics. Different parameter combinations have
been investigated in the past. Most commonly used selections are β = 1

4
and γ = 1

2

which leads to the constant acceleration method and β = 1
6

and γ = 1
2

which yields the
linear acceleration method. Besides, the Newmark method is equal to the explicit central
difference scheme for a parameter choice of β = 0 and γ = 1

2
. For further information on

the Newmark method and its characteristics see, for instance, Hughes [206], Bathe [19],
Zienkiewicz and Taylor [431], Bathe [20] and Wriggers [424].

For the application to the previously presented least-squares formulations for the solid
and fluid domain in terms of stresses and velocities, the Newmark method is reformulated
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such that

an+1 =
1

γ∆t
vn+1 −

1

γ∆t
(vn + (1− γ)an∆t) , (7.30)

un+1 = un + vn∆t+ ∆t2
(

1

2
− β

)
an +

β∆t

γ
(vn+1 − vn − (1− γ)an∆t) . (7.31)

These expressions define the actual displacements un+1 and accelerations an+1 depending
on the actual velocities vn+1 and on values of the last time step an,vn,un.

Remark: With a choice of the parameters β = 1
4

and γ = 1
2

the Newmark method in the
formulation depending on the velocities, results in equivalent terms as the Runge-Kutta
method denoted as ESDIRK-2 and explained in Section 7.3.5.

7.3.3 Houbolt method for least-squares SV formulations

The Houbolt method, first presented in Houbolt [201], is based on a standard fi-
nite difference approach for the accelerations and velocities and assumes a cubic dis-
placement function. The velocities and accelerations are approximated in terms of the
displacements applying backward differences which are second-order accurate, see e.g.
Subbaraj and Dokainish [375]. This leads to the initial formulation as follows

an+1 =
1

∆t2
(2un+1 − 5un + 4un−1 − un−2) , (7.32)

vn+1 =
1

6∆t
(11un+1 − 18un + 9un−1 − 2un−2) , (7.33)

where the values at tn+1 = tn + ∆t are calculated based on the data at the time steps tn,
tn−1 = tn −∆t and tn−2 = tn − 2∆t. This procedure in general requires a special starting
procedure to approximate the values at t = t0−∆t and t = t0−2∆t as e.g. the explicit cen-
tral difference scheme. The method has unconditional stability, such that the time step size
is not limited by stability constraints, but it implies also an inherent algorithmic damping,
especially when large time steps are used, see Subbaraj and Dokainish [375].

A reformulation to approximate the actual displacements un+1 and accelerations an+1

depending on the actual velocities vn+1 and known field quantities from previous time
steps leads to

un+1 =
6

11
vn+1 ∆t+

18

11
un −

9

11
un−1 +

2

11
un−2 , (7.34)

an+1 =
1

∆t2

[
12

11
vn+1 ∆t− 19

11
un +

26

11
un−1 −

7

11
un−2

]
. (7.35)

7.3.4 Crank-Nicolson method for least-squares SV formulations

As already mentioned in Section 7.2.2, the Crank-Nicolson method is a one step method
with second-order accuracy. The approach can be derived from the basic θ-scheme as pre-
sented for the first time within the LSFEM by, e.g., Carey and Jiang [88] with θ = 1

2
. A

number of applications of the Crank-Nicolson method exists in the context of FEM for the
solution of the unsteady Navier-Stokes equations, see Turek [395], Rannacher [320],
Cho and Kim [104], for instance.
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The accelerations are approximated based on the backward difference scheme and given
as

an+1 =
vn+1 − vn

∆t
, (7.36)

and the remaining part of the equation is evaluated based on the unknowns of the current
and possibly last time step. Such that in general, using the notation of the θ-scheme, the
equation system yields

an+1 = θG(Un+1) + (1− θ)G(Un) , (7.37)

where U denotes the unknowns in the actual time step tn+1 or tn. In the scope of this thesis,
the method will be applied to semi-discretize the mixed least-squares fluid formulation in
terms of stresses and velocities (4.17), such that U = (σ,v). According to Turek [395],
there are different ways to handle the time-independent quantities, such as the pressure or
the stresses. The authors mention, that the procedure has the same accuracy, regardless
of the fact if for the pressure in the Navier-Stokes equations only the current value or
also the value from the last time step is considered. When applied in the context of the
LSFEM for fluid dynamics, for example, there is also the question of whether the averaged
calculation based on the evaluation at the current and previous time is applied only to
the residual with the time-derived quantity, i.e. the accelerations, or to all residual terms.

In the context of this work, different variants are examined and compared for the solu-
tion of unsteady flow based on the incompressible Navier-Stokes equations. For a conve-
nient presentation, the notation of the θ-method is used in the following to specify the
semi-discrete form of the stress-velocity fluid formulation. Therefore, the least-squares
functional discretized in time reads

FFn+1 =
1

2

(
||Rn+1

1 ||2L2(Ωf ) + ||Rn+1
2 ||2L2(Ωf ) + ||Rn+1

3 ||2L2(Ωf )

)
, (7.38)

with the residuals, omitting the weighting terms and body force, given by

Rn+1
1 = ρfa

n+1 − θσ1 divσn+1 − (1− θσ1) divσn

+ ρf θv1∇vn+1 · vn+1 + ρf (1− θv1)∇vn · vn ,
(7.39a)

Rn+1
2 = θσ2 devσn+1 + (1− θσ2) devσn

− 2ρfνf
(
θv2 ∇svn+1 + (1− θv2) ∇svn

)
,

(7.39b)

Rn+1
3 = θv3 div vn+1 + (1− θv3) div vn . (7.39c)

Depending on the choice of the parameters θσ1 , θσ2 , θv1, θv2, θv3, this description provides
a different approach with regard to time discretization. For the case that all parameters
are set to one or zero, one obtains e.g. either the implicit or explicit Euler method. In
Section 7.4, various combinations of the parameters are examined in terms of temporal
accuracy.

Remark: Another notation often used for the Crank-Nicolson method is to represent
it as a Runge-Kutta procedure, with the corresponding Butcher parameters as given in
Table 7.4. The procedure for implementing singly-diagonally Runge-Kutta methods for
discretizing the mixed stress-velocity formulations is explained next.
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7.3.5 SDIRK methods for least-squares SV formulations

As stated in Section 7.2.3, the family of Runge-Kutta methods belongs to the group
of multi-stage integration schemes, in which a certain number of stages is evaluated in
each time step. In the context of this work, only singular diagonal implicit Runge-Kutta
methods (SDIRK) are investigated, where the stages can be evaluated sequentially one
after the other. Each stage is based on the results of previously solved stages and time
steps. Under this condition, and adding the relation φ̇ = f(φ) as given in the initial value
problem in (7.2), the equations (7.7) can be transformed into

φn+1 = φn + ∆t
s∑
j=1

βjkj (7.40)

with kj = f
(
tn + γj∆t, φn + ∆t

j∑
l=1

αjlkl

)
= φ̇j

= f
(
tn + γj∆t, φn + ∆t

j∑
l=1

αjl φ̇l︸ ︷︷ ︸
φj

)
, for j = 1, ..., s .

(7.41)

Remark: The upper limit of the summation in (7.41) changed from s to j and the
solutions at stages j = 1...s are denoted by φj.

Then, the correlation in (7.41) can be used to construct the approximation of the time-
derived quantity for each stage as a function of the unknown stage quantity φj, as follows

φj = φn + ∆t

j∑
l=1

αjl φ̇l (7.42)

= φn + ∆t
(
αj1 φ̇1 + αj2 φ̇2 + ...+ αjj φ̇j

)
⇔ φ̇j =

1

∆t αjj

(
φj − φn −

j−1∑
l=1

αjl φ̇l

)
, for j = 1, ..., s . (7.43)

Transferring this to the least-squares formulations, the following expression is obtained
for the velocities at the actual time step vn+1 from equations (7.40)

vn+1 = vn + ∆t
s∑
j=1

βj aj . (7.44)

And with (7.43) a term for the accelerations at all stage levels is given as

aj =
1

∆t αjj

(
vj − vn −

j−1∑
l=1

αjl al

)
, for j = 1, ..., s . (7.45)

However, using SDIRK methods with an explicit first stage, referred to as ESDIRK, the
first parameter is α11 = 0, and therefore the accelerations are approximated as follows

aj =


an for j = 1

1

∆t αjj

(
vj − vn −∆t

j−1∑
l=1

αjl al

)
for j = 2, ..., s .

(7.46)
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Furthermore, for the solution of the least-squares SV solid formulation, an approximation
for the displacements depending on the velocities is needed. Considering the relation
u̇ = v and inserting this into equation (7.42), the displacements in the individual stages
can be calculated with

uj = un + ∆t

j∑
l=1

αjl vl , for j = 1, ..., s . (7.47)

Remark: Due to the stiff accuracy of the applied Runge-Kutta schemes in this work,
i.e. βj = αsj and γs = 1, the result of the last stage corresponds to the solution of the
associated time step. Therefore, the projection step which is given by (7.40) can be omit-
ted. For more general and detailed information on the family of Runge-Kutta methods,
the reader is referred to Alexander [3], Cash [93], Hairer and Wanner [177] and
Hairer et al. [179], for instance.

In this thesis, several singly diagonally implicit Runge-Kutta methods with and without an
explicit first stage are implemented and investigated to solve unsteady flow and dynamic
structure problems. Several information on the applied schemes are summarized in Table
7.6. This includes the order of the methods, the number of stages, the used acronyms and
the source literature for the parameter sets.

Table 7.6: List of used RK methods with number of all stages s, number of implicitly
evaluated stages, order p, order of embedded method q, and source literature

name
stages implicit order order

reference
s stages p q

ESDIRK-2 2 1 2 - Williams et al. [420]

ESDIRK-2(1) 2 1 2 1 Rang [318]

SDIRK-2(1) 2 2 2 1 Ellsiepen and Hartmann [138]

ESDIRK-3 4 3 3 - Montlaur et al. [281]

ESDIRK-3(2) 4 3 3 2 Bijl et al. [41]

SDIRK-4(3) 5 5 4 3 Hairer and Wanner [177]

ESDIRK-4(3) 6 5 4 3 Bijl et al. [41]

When naming the individual Runge-Kutta methods, in this thesis the order of the method
is appended to the abbreviation. Furthermore, in the names of some methods, a number
in parentheses is added. This is the case for embedded RK methods, where two methods
of different orders exist with the same coefficients αjl. The number in parentheses stands
for the order q of the embedded procedure. These embedded methods are very useful
for adaptive control of time step sizes. Further details are given in Chapter 7.6. The
coefficients of all implemented methods are given in Appendix C.1.
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7.4 Numerical examples: Unsteady flow of Newtonian fluids

In this section, the application of the different time discretization schemes to solve un-
steady flow based on the incompressible Navier-Stokes equations is investigated. This is
done using two different benchmark problems in two dimensions, namely a Taylor-Green
vortex flow and a flow around a cylinder at a Reynolds number of Re = 100. The problems
are solved based on the mixed LS stress velocity formulation as presented in (4.17) with
according physical weighting factors chosen as

ωf1 =

√
∆t

ρf
, ωf2 =

√
1

ρfνf
and ωf3 = 1 . (7.48)

7.4.1 Unsteady Taylor-Green vortex

As a first numerical example in this section, two-dimensional Taylor-Green vortex (TGV)
flow is considered to study the convergence of several presented time discretization meth-
ods. This flow problem was originally developed in the context of studying turbulent
flows with the purpose of analyzing the formation of small vortices from larger vortices,
see Taylor and Green [384]. In this work, the same definition of the problem is used as
in Sanderse and Koren [335]. The flow is initialized with a smooth two-dimensional
velocity field

v0(x1, x2) =

[− sin(πx1) cos(πx2)

cos(πx1) sin(πx2)

]
. (7.49)

The Taylor-Green vortex flow is an exact solution of the Navier-Stokes equations without
any forcing term (f = 0), where the flow decreases exponentially with time and satisfies
equations

v(x1, x2, t) =

[− sin(πx1) cos(πx2)

cos(πx1) sin(πx2)

]
exp(−2νfπ

2t) , (7.50a)

p(x1, x2, t) =
1

4
(cos(2πx1) + cos(2πx2)) exp(−4νfπ

2t) . (7.50b)

The computations are restricted to the spatial square domain Ωf =
[

1
4
, 1

2

]2
and the evolu-

tion of the flow is simulated from t0 = 0 s to t = 1 s. In all simulations the fluid viscosity
and density are set to νf = 0.01 m2/s and ρf = 1 kg/m3, resulting in a Reynolds num-
ber of Re = 100. Time dependent boundary conditions for the velocities are prescribed
according to (7.50a) on the entire boundary. For the degrees of freedom assigned to the
stresses, the boundary conditions are specified at one point in the center on the top edge
as β = σ · n = [σ12, σ22]T . The exact solution for the stresses is therefore calculated
by inserting definitions (7.50) into σ = 2ρfνf∇sv − pI. This yields the following stress
components

σ11(x1, x2, t) = −2πνfρf cos(πx1) cos(πx2) exp (−2π2νf t)

− 1

4
(cos(2πx1) + cos(2πx2)) exp (−4π2νf t) , (7.51a)

σ12(x1, x2, t) = σ21(x1, x2, t) = 0 , (7.51b)
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σ22(x1, x2, t) = 2πνfρf cos(πx1) cos(πx2) exp(−2π2νf t)

− 1

4
(cos(2πx1) + cos(2πx2)) exp(−4π2νf t) . (7.51c)

As for the initial conditions, the velocities on the entire domain are set as given in (7.65).
For the methods under consideration, the solution does not depend on the pressure, or
in case of the SV formulation on the stresses, at the start of a time step. Therefore,
the initial conditions for the stresses are not required. However, according to the time
discretization scheme, initial conditions for the accelerations (i.e. for all ESDIRK methods)
or displacements (for the Houbolt method) must be specified. The corresponding history
fields can be prescribed as a function of the initial velocity as follows

a(x1, x2, t) = v(x1, x2, t) · (−2π2νf ) ⇒ a0(x1, x2) = v0(x1, x2) · (−2π2νf ) , (7.52)

and

u(x1, x2, t) = v(x1, x2, t) · (−2π2νf )
−1

⇒


u0(x1, x2) = v0(x1, x2) · (−2π2νf )

−1 ,

u−1(x1, x2) = v0(x1, x2) · exp(2π2νf∆t) · (−2π2νf )
−1 ,

u−2(x1, x2) = v0(x1, x2) · exp(4π2νf∆t) · (−2π2νf )
−1 .

(7.53)

Figures 7.5 and 7.6 present the solution at the final time t = 1 s, which is obtained with
the time discretization method ESDIRK-2 using a time step size of ∆t = 10−3 s and with
a spatial discretization of 32 × 32 elements of order RT3P4. It can be seen that the area
under consideration represents a quarter of a vortex. In addition, the shear stresses are
basically equal to zero, which is consistent with the exact solution (7.51b).
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Figure 7.5: TGV - distribution of the velocity components v1 (left), v2 (center) and the
total velocity |v| (right) at time t = 1 s, obtained with ESDIRK-2 and RT3P4 (in m/s)

In order to evaluate the convergence of the constructed LS SV formulation regarding
the discretization in space and time, the approximated solution is compared to the exact
solution for the velocities (7.50) and the stresses (7.51). For the spatial convergence, the
global error for the velocity and the stress is evaluated at the final time t = 1 s on the
entire domain using the L2-norm as

ev = ||vh − vexact||L2(Ω) (7.54)

and
eσ = ||σh − σexact||L2(Ω) . (7.55)
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Figure 7.6: TGV - distribution of the stress components σ11 (left), σ12 (center) and σ22

(right) at time t = 1 s, obtained with ESDIRK-2 and RT3P4 (in N/m2)

For the temporal convergence the norm of the global error in the velocities is evaluated
at every time step on the time interval T = [0, 1] s. Assembling all error measures leads to
eallv = [e1

v, e
2
v, ..., e

n+1
v ] and for the numerical estimation of the convergence order the mean

value is calculated, such that

ev = mean(eall) = mean([e1
v, e

2
v, ..., e

n+1
v ]) . (7.56)

Analysis of spatial accuracy
In order to evaluate the spatial accuracy, the simulations are advanced with a very small
time step ∆t = 10−3 s using the time discretization ESDIRK-2, in such a way that the time
discretization errors can be considered as negligible with respect to the spatial ones. The
calculations were performed with three different element orders, namely RT1P2, RT2P3

and RT3P4, and four mesh levels. Table 7.7 contains mesh information such as number of
elements and degrees of freedom of the meshes used in the numerical simulations.

Table 7.7: TGV - mesh level, number of elements (nele) and degrees of freedom (ndof) for
different element types

ndof

level nele RT1P2 RT2P3 RT3P4

1 32 514 1058 1794
2 128 1922 4034 6914
3 512 7426 15746 27138
4 2048 29186 62210 107522

To study the spatial convergence order, the error in the velocities and stresses is plotted
using a logarithmic scale over the inverse of the element length h, see Figure 7.7. The
graphs show that the error decrease in the L2-norm is approximately of order O(hn+1)
for polynomials Pn for the velocity and of order O(hm+1) for Raviart-Thomas functions
RTm for the stresses.

Analysis of temporal accuracy
To further test the application of the different time integration methods to solve the mixed
LS SV fluid formulation, the TGV flow is solved with a fine mesh (nele = 8192) and the
element RT3P4. In this manner, the spatial discretization error can be assumed to be
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Figure 7.7: TGV - L2-norm of the error in velocities and stresses obtained with ESDIRK-2
for different element orders and mesh levels

much smaller than the temporal discretization error and thus the convergence behavior
in time is not affected. The time step size is varied for all schemes from ∆t = 0.1 s to
∆t = 0.0125 s by division by two. In this examination, the evolution of the error in the
time-dependent quantity, i.e. velocity, is plotted in a logarithmic scale over the time step
size, see Figure 7.8.

Figure 7.8: TGV - L2-norm of the error in velocities obtained with nele = 8192 elements
of order RT3P4 for different time discretization methods and time step sizes ∆t

The methods studied include the implicit Euler, Houbolt, and Crank-Nicolson methods,
the former having a theoretical accuracy of first-order and the others being theoretically
second-order accurate. In addition, some Runge-Kutta methods with theoretical orders
of convergence from two to four are considered. It can be clearly seen that for each case,
the error follows a linear decrease in the logarithmic scale. The slopes of the lines are
specified in the diagrams and in most cases correspond approximately to the expected
order of convergence.

Remark 1: For the high-order ESDIRK methods, an order reduction of roughly 10-
20% can be observed. There can be several possible reasons for these problems. Or-
der reduction phenomena that occur in connection with higher-order RK methods
have been studied frequently in the literature. Established reasons for this loss of ac-
curacy that have been investigated are, for example, stiff systems or the application
of time-dependent boundary conditions in the intermediate stages of the RK proce-
dures. In the context of this work, the occurrence of order reduction will not be in-
vestigated further, but detailed studies on this can be found in Hairer et al. [178],
Burrage and Petzold [75], Carpenter et al. [89], Hairer and Wanner [177],
Abarbanel et al. [1], Pathria [303], among others.

Remark 2: In a first approach, the parameters for the Crank-Nicolson method described
in (7.39) are chosen so that θv1 = 1

2
and all others θσ1 = θσ2 = θv2 = θv3 = 1. This leads

to a time discretization where the first residual is evaluated based on the velocities of
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the current and the previous time step and where, moreover, only the current quantities
are considered for the stresses in all three residuals. As can be seen in Figure 7.8, this is
not an optimal choice, since this variant only leads to a first-order temporal accuracy in
contrast to the expected theoretical order O(∆t2).

Based on this finding, further parameter combinations are analyzed and compared. The
naming of the variations and the associated parameters are briefly given in Table 7.8.
The outcome of the convergence study is shown in Figure 7.9. The comparison shows that
even the version in which the current stresses are taken into account in addition to the
velocities when evaluating the first residual, referred to as CN2, does not show improved
convergence behavior. On the contrary, the error in the velocities is even slightly larger.
To achieve the expected convergence order of O(∆t2), it is essential that in the second
residual the velocities of the previous time step are also taken into account. However, it
is irrelevant how the third residual is evaluated.

Table 7.8: TGV - Parameters for Crank-
Nicolson method presented in (7.39)

parameters

name θv1 θv2 θv3 θσ1 θσ2

CN1 1
2

1 1 1 1

CN2 1
2

1 1 1
2

1

CN3 1
2

1
2

1 1 1

CN4 1
2

1
2

1
2

1
2

1
2

Figure 7.9: TGV - L2-norm of error in veloci-
ties for different ∆t (nele = 512, RT3P4)

7.4.2 Unsteady flow around a cylinder

In a next example, the fluid benchmark problem flow around a cylinder (FAC) from
Schäfer et al. [338], see Figure 7.10, is used to further investigate the application of
several presented time discretization schemes to solve the incompressible Navier-Stokes
equations. In order to solve the time-dependent flow problem in this section, the least-
squares SV fluid formulation (4.17) is discretized in time using the Houbolt, Crank-
Nicolson and ESDIRK-3 and ESDIRK-4(3) methods. The Runge-Kutta parameters for
the latter two are given in Appendix C.1.
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σ1 · n = 0

1.95

x2

x1

0.15 0.10

v = 0

v = 0

v = 0

v = (4vin(t)x2(0.41− x2)/0.412, 0)

Figure 7.10: FAC - geometry and boundary conditions (unit m)
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For the spatial discretization vector-valued Raviart-Thomas functions are implemented for
the stresses and Lagrange polynomials are used for the velocities with different polynomial
orders. The geometry and the boundary conditions of the problem are illustrated in Figure
7.10. An inflow on the left side, pressure-related stress boundary conditions for an outflow
on the right side and no-slip boundary conditions on the top and bottom sides and on
the cylinder are defined. In case of the stress-velocity formulation, the suitable stress
boundary conditions imposed to the outflow are σ1 · n = 0, with σ1 = [σ11 σ12].

The fluid material parameters are chosen such that the fluid density ρf = 1.0 kg/m3

and the kinematic viscosity ν = 0.001 m2/s. During the simulation the inflow velocity
is increased piecewise linearly from vin(t = 0) = 0 up to vin(t = 4) = 1.5 m/s. With a
mean inflow velocity v̄ = 2

3
· vin = 1.0 m/s and a characteristic length of d = 0.1 m the

characteristic Reynolds number yields Re = 100. A typical snapshot of the velocity field
for a fully developed flow is illustrated in Figure 7.11

AceFEM
0
Min.
0.2197e1
Max.

v

0.361
0.630
0.900
0.116e1
0.143e1

Figure 7.11: FAC - distribution of velocity field with the Houbolt method with ∆t = 0.005 s
and nele = 9, 728 elements at t = 14 s

For a quantitative comparison of the different methods the forces acting on the cylinder
over a defined time interval are measured. In precise the drag and lift coefficients are
evaluated given as

cD =
2FD
ρf v̄2d

, and cL =
2FL
ρf v̄2d

, (7.57)

where FD and FL are the drag and lift forces acting on the cylinder S given with

(FD, FL)T =

∫
S

σ · n ds . (7.58)

For the presentation of the results one period of the fully developed instationary flow
is extracted. The time interval starts where the lift coefficient is the lowest and has a
length of approximately ∆t = 0.33 s. In a first step the numerical investigations have
been carried out with different mesh levels and three different element orders. Table 7.9
presents the mesh information of the successively refined finite element meshes employed
in the numerical simulations including the number of elements and resulting degrees of
freedom.

For comparison of the different calculations, the results for the drag coefficient are pre-
sented as an example. It should be noted that the calculated lift coefficients vary between
cL,min = −1.025 and cL,max = 0.99 and are thus in good agreement with the reference
results of Turek et al. [397], where the results are obtained based on a finite element
Q2/P

disc
1 and the Crank-Nicolson method with a time step size ∆t = 1/1600 s.
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Table 7.9: FAC - mesh level, number of elements (nele) and degrees of freedom (ndof) for
different element types

ndof

level nele RT1P2 RT2P3 RT3P4

1 2,432 34,078 73,006 126,526
2 5,472 76,654 164,230 284,638
3 9,728 136,254 291,934 505,982
4 15,200 212,878 456,118 790,558
5 29,792 417,198 893,926

First, the accuracy of the different element orders is compared and the results for the drag
coefficient obtained using the Houbolt and Crank-Nicolson method and a time step size
of ∆t = 0.005 s are shown. Figure 7.12 shows that the low-order element RT1P2 leads to
a relatively poor approximation even at the finest mesh level compared to the reference
solution from Turek et al. [397]. Both higher order elements perform similarly well in
terms of approximation quality.
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3.22

Crank Nicolson Reference

Figure 7.12: FAC - evolution of drag coefficient cD over time t (in s) for different element
orders and mesh levels, with Crank Nicolson method (bottom) and Houbolt method (top)
with ∆t = 0.005 s, with reference solution from Turek et al. [397]

As a consequence of these observations, the element order RT2P3 is used for the following
comparisons of the different time discretization schemes. Figure 7.13 shows the spatial
convergence of the results for the four methods with a fixed time step size of ∆t = 0.005 s
and illustrates that all methods, except the Houbolt method, have the same accuracy.
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Figure 7.13: FAC - drag coefficient cD over time t (in s) for different time integration
methods (RT2P3, ∆t = 0.005 s), with reference solution from Turek et al. [397]

To simplify the comparison, the mean error of the drag coefficient with respect to the
reference values is evaluated as

e =

√√√√√ N∑
i=1

[cD(ti)− cref (ti)]
2

N
, (7.59)

where N is the number of time steps in the considered interval. The results for a fixed time
increment of ∆t = 0.005 s and different meshes, as well as for mesh level 3 and different
time step sizes are shown in Figure 7.14. These graphs confirm the earlier observations that
only the Houbolt method requires a smaller time step to achieve similar accuracy to the
other three methods. Another finding and also one of the main results is that all schemes
for solving the incompressible Navier-Stokes equations with the least-squares FEM can
be used without any apparent stability problems in the studied case. From accuracy
aspects, the schemes of higher order from the family of Runge-Kutta methods achieve
the same results as the Crank-Nicolson method which is second-order accurate. Further
increasing the time step size to investigate possible advantages in terms of efficiency of
ESDIRK-3 and ESDIRK-4(3) is not reasonable for this benchmark problem, since the
oscillations of the physical quantities cannot be reproduced correctly for larger time step
sizes ∆t > 0.02 s.
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Figure 7.14: FAC - error of drag coefficient with RT2P3 on different mesh levels, for
different time integration methods and different increments ∆t

Conservation of energy and mass
Another important aspect of solving unsteady flow problems is the conservation of energy
and mass. In the context of this work, this issue does not take a central role and will only
be briefly examined at this point for the boundary value problem presented.

First, the mass flow difference at the inlet and outlet ∆Q and the satisfaction of the
continuity equation are considered by evaluating the third residual of the fluid RF

3 over a
longer period of time. Figure 7.15 (left) presents, for all the time discretization schemes
studied, the evolution of the percentage difference between inflow and outflow over a
period of T = 40 s, computed as

∆Q =
Qin −Qout

Qin

· 100%, with Qin/out =

∫
∂Ωin/out

v · n dh . (7.60)
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Figure 7.15: FAC - mass flow difference ∆Q (left) and residual RF
3 := div v (right) over

time t (in s) for different time integration methods with ∆t = 0.005 s (Level 3, RT2P3)

The inflow is increased up to the time T = 4 s and it can be seen that the flow difference
remains constant at almost zero after the final inflow velocity is reached. The conservation
of mass is also visible in Figure 7.15 (right), which shows that the integral value of the
squared L2-norm of the residual RF

3 := div v remains constant well below 10−4. Thus, the
condition of constant density of the incompressible fluid is fulfilled numerically as well.
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In addition, to evaluate the conservation of energy, the kinetic energy over the entire fluid
domain Ωf defined as

E =
1

2

∫
Ωf

ρf |v|2dΩf (7.61)

is considered. This is again computed for all time discretization schemes studied over a
period of T = 40 s. The results presented in Figure 7.16 show a stable behavior over the
considered period for a time increment ∆t = 0.005 s.
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Figure 7.16: FAC - kinetic energy E over time t (in s) for different time integration
methods with ∆t = 0.005 s (Level 3, RT2P3)

7.5 Numerical example: Dynamic structure problem

In this section, the application of the different time discretization schemes to solve dynam-
ical structure problems with linear elastic material behavior is studied. For this purpose,
a benchmark problem in two dimensions is used, which is a vibrating plate (VP) with an
artificial body force and an exact solution, cf. Lai et al. [251]. The problem is solved
with the mixed LS stress-velocity formulation given in (6.4) and the related physical
weights are chosen as ωs1 =

√
∆t/ρs and ωs2 = 1/

√
∆t. For the spatial discretization,

the velocities are approximated with standard Lagrange polynomials and the stresses
with vector-valued Raviart-Thomas functions. The discretization in time in this section
is performed using the following algorithms: Houbolt, implicit Euler, Newmark, SDIRK-
2(1), ESDIRK-2, ESDIRK-3(2), ESDIRK-3, ESDIRK-4(3). The Butcher tableaus for the
different Runge-Kutta schemes can be found in Appendix C.1.

The square plate with the dimensions Ωs = [0, 1]2 is subjected to a uniform body force in
both spatial directions, i.e. f(x1, x2, t) = [f, f ]T with

f(x1, x2, t) = 0.2 sin(πx1) sin(πx2) exp(−t)

+ (−0.4 cos(π(x1 + x2)) + 0.1 cos(π(x1 − x2)))π2 exp(−t) .
(7.62)

The choice of this body force, and considering for the material parameters a first Lamé
constant of λs = 1 N/m2 and a shear modulus of µs = 0.5 N/m2, yields an exact solution
for the displacements specified by

u1(x1, x2, t) = u2(x1, x2, t) = 0.2 sin(πx1) sin(πx2) exp(−t) . (7.63)
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Based on this, the exact solution for the velocities can be derived as

v1(x1, x2, t) = v2(x1, x2, t) = −0.2 sin(πx1) sin(πx2) exp(−t) . (7.64)

The boundary conditions for the velocities are prescribed on the entire boundary. To
ensure correct initialization of the start values, the velocities are set to

v0(x1, x2) =

[
−0.2 sin(πx1) sin(πx2)

−0.2 sin(πx1) sin(πx2)

]
. (7.65)

Depending on the time discretization method used, the accelerations and displacements
at the initial time t = 0, and for the Houbolt method also at earlier time steps t = −∆t
and t = −2∆t, are specified depending on the initial velocities as

a(x1, x2, t) = v(x1, x2, t) · (−1) ⇒ a0(x1, x2) = −v0(x1, x2) , (7.66)

and

u(x1, x2, t) = −v(x1, x2, t)

⇒


u0(x1, x2) = −v0(x1, x2) ,

u−1(x1, x2) = −v0(x1, x2) · exp(∆t) ,

u−2(x1, x2) = −v0(x1, x2) · exp(2∆t) .

(7.67)

The notation of the initial values for accelerations and displacements as a function of
the initial velocities was selected at this point simply because it is convenient for the
implementation in the applied software package AceFEM. Further information on the
definition of the problem can be found in Lai et al. [251].

Figure 7.17 shows the solution at time t = 1 s, which is obtained with the time dis-
cretization method ESDIRK-2 using a time step size of ∆t = 10−3 s and with a spatial
discretization of 32× 32 elements of order RT3P4.
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Figure 7.17: VP - distribution of velocity component v1 (left in m/s), displacement u1

(center in m) and stress component σ11 (right in N/m2) at time t = 1 s

In order to evaluate the temporal convergence of the constructed LS SV formulation
for linear elasticity, the approximated solution is compared to the exact solution for the
velocities (7.64). Therefore, the problem is solved on the time interval T = [0, 1] s and the
norm of the global error in the velocities is evaluated at every time step as

en+1
v = ||vh,n+1 − vn+1

exact||L2(Ω) (7.68)
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Assembling all error measures given in (7.68) leads to eallv = [e1
v, e

2
v, ..., e

n+1
v ] and for the

numerical estimation of the convergence order the mean value is calculated, such that

ev = mean(eall) = mean([e1
v, e

2
v, ..., e

n+1
v ]) . (7.69)

In order to evaluate the temporal error, the spatial discretization is based on a fine mesh
(nele = 8192) and the element RT3P4, such that the space discretization errors can be
considered as negligible with respect to the temporal ones. The vibrating plate problem is
solved with different time discretization schemes and the simulations are advanced with
varying time step sizes ranging from ∆t = 0.2 s to ∆t = 0.025 s. The evolution of the error
in the velocity is plotted in a logarithmic scale over the time step size, see Figure 7.18.

Figure 7.18: VP - L2-norm of the error in velocities obtained with nele = 8192 elements
of order RT3P4 for different time discretization methods and time step sizes ∆t

All methods have in common that the error of the field variable decreases when the time
step size is reduced. In addition, the magnitude of the total error is reduced as the order
of accuracy of the methods increases. For all implemented time discretization methods
the expected orders are achieved.

7.6 Adaptive time stepping methods

Robust and efficient time integration methods are of high interest in many fields of nu-
merics and are especially important for complex problems like fluid-structure interactions.
The accuracy and efficiency of time integration schemes can be additionally improved by
the application of adaptive time stepping. Time step adaptability is particularly effective
when flow conditions change within a time interval, as it allows the time step to be selected
to correctly capture the underlying flow physics. Furthermore, the automatic adjustment
of a suitable time step size enables to save computing time also for problems where the
required step size is unknown in advance, since it is not necessary to perform several test
simulations.

There are different approaches to control the adaptive step sizes, which are mostly based
on the evaluation of a local error to determine the next time step size. A rather flexible
variant is e.g. the fully implicit Richardson’s extrapolation, which is applicable for quasi
every one-step time discretization method. Thereby the numerical error is calculated by
executing the calculation once in each time step with the step size ∆t and e.g. ∆t/2. This
is relatively straightforward to implement, but leads to a large increase in computational
effort. Another option with less added computational cost is to use an explicit step to
evaluate the local error in each implicitly computed time step. For instance, the application
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of Runge-Kutta schemes comes with the advantage of a simple implementation of such
explicit-implicit time adaptivity. Using so-called embedded Runge-Kutta methods enables
a straightforward local error estimation for step-size control.

Adaptive time stepping methods have been applied and studied in various fields for
years. A small number of contributions in the field of dynamic structural mechanics
include, for example, Underwood and Park [401], Zienkiewicz and Xie [432],
Diebels et al. [127], Schleupen and Ramm [339], or for more recent works,
Rothe et al. [331], Rang [319], Lai and Huang [250], Grafenhorst et al. [171],
Gilbert et al. [170]. Similarly, for problems in fluid dynamics, there are numer-
ous researches on adaptive time stepping, for instance, in Johnson et al. [225],
Turek [395], Gresho et al. [172], Kay et al. [226], John and Rang [222],
Colomés and Badia [107] and Deparis et al. [123]. Also in the field of coupled
FSI problems, there have been studies in the last decades on the application of adap-
tive time stepping techniques, such as of Wall [408], de Sampaio et al. [116],
Birken et al. [43], Hay et al. [180], Mayr [277], Mayr et al. [279] and
Failer and Wick [142], to name a few.

The basic components of time adaptivity methods are on the one hand the estimation
of a local error estimate and on the other hand the choice of the step size controller.
For error evaluation, a classification can be made into a priori and a posteriori error
estimators, depending on whether the problem needs to be solved first for evaluation or
not. Within this thesis, only a posteriori error estimation is applied. For the selection of
the time step sizes several approaches exist, which are generally based either on standard
step-size control algorithms or on proportional integral (PI) controller. The latter are
presented e.g. by Gustafsson et al. [175], Gustafsson [174] and Söderlind [366].
The authors state that standard step-size control, which is based on the assumption that
a local error r always depends asymptotically on the step size ∆t as r ∼ ∆tp+1 with the
order p of the method, may lead to step size oscillations. Therefore, the PI controller is
proposed, in which not only the actual error but additionally its development is considered,
to obtain a smoother step size development.

In the following section, the local error estimation based on embedded Runge-Kutta
schemes, and the applied procedure to adapt the time step size using this error
measure, is presented. For detailed information on estimation of numerical errors
and implementation of automatic step size control, reference is made to textbooks
Hairer and Wanner [177], Hairer et al. [179], Butcher [77].

7.6.1 Error estimation based on embedded Runge-Kutta schemes

For the error estimation in this thesis embedded Runge-Kutta schemes are employed.
Therein, the solution is first approximated based on a SDIRK of order p, and then, a
second SDIRK method of order q = p − 1 with the same coefficients αjl and γj is used
to assess the local error. This is done by exploiting the difference between the high- and
low-order solutions, i. e. according to (7.40) with

δn+1 ≈ φn+1 − φ̂n+1 = ∆t
s∑
j=1

(βj − β̂j)kj . (7.70)
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Here, φn+1 is the approximated solution with the method of order p, and φ̂n+1 is the lower
order solution evaluated based on existing stage results kj, as

φn+1 = φn + ∆t
s∑
j=1

βjkj and φ̂n+1 = φn + ∆t
s∑
j=1

β̂jkj , (7.71)

with coefficients βj and β̂j as given in the Butcher tableaus. In case of the presented mixed
LS stress-velocity formulations for solid and fluid dynamics, the local error estimator can
be evaluated in both domains based on the velocities or in the solid domain also based
on the displacements, following

δn+1
v ≈ vn+1 − v̂n+1 = ∆t

s∑
j=1

(βj − β̂j)aj (7.72a)

or δn+1
u ≈ un+1 − ûn+1 = ∆t

s∑
j=1

(βj − β̂j)vj . (7.72b)

According to Hairer and Wanner [177], Hairer et al. [179], the aim of the proce-
dure is, that the differences in all components of the quantity of interest, denoted by vi,
remain below a prescribed tolerance, such that, e.g. for the velocities

|vin+1 − v̂in+1| ≤ toli with toli = εa + max(|vin|, |vin+1|) · εr . (7.73)

Herein, the total tolerance is composed of an absolute tolerance εa and a relative part with
εr. Therefore, the total error estimates for velocities and displacements can be defined as

ev =

√√√√ 1

nv

nv∑
i=1

(
vin+1 − v̂in+1

toli

)2

or ed =

√√√√ 1

nd

nd∑
i=1

(
uin+1 − ûin+1

toli

)2

, (7.74)

with nv and nd denoting the degrees of freedom of the considered quantity. Note, that
in case of error estimates based on different quantities, the tolerances can be chosen
differently for each individual quantity and the resulting error estimate is determined in
each time step as er = max[ev, ed].

7.6.2 Automatic step-size control

The evaluated local error estimate can be used in a next step to adapt the time step
size such that the error does not exceed a user-given tolerance. Based on a stan-
dard control algorithm the size of the next time step can be computed, following e.g
Hairer et al. [179], as

∆tnew = ∆tn ·

{
max

[
fmin, fsave · er−1/(q+1)

]
if er > 1

min
[
fmax, fsave · er−1/(q+1)

]
if er ≤ 1

. (7.75)

Several factors are used to limit the variation of the time step size. For example, fmin and
fmax define the lower and upper limits up to which the new time step may deviate from
the previous one. Typical ranges for these parameters are fmin ∈ [0.4, 0.5] and fmax ∈
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[1.5, 5]. Following Shampine and Watts [358], the maximum limiting factor can be set
to fmax = 1 after each step rejection, thus reducing the risk that the next step will also
have to be repeated, when the step size is increased. Furthermore, an additional factor
fsave is used to ensure that always a value tending to be smaller than allowed by the
error estimator is chosen. This can reduce the probability of a step rejection, which is
performed whenever er > 1. The factor fsave can be set as a fixed value, commonly within
a range of [0.8, 1), or it can depend on the number of Newton iterations, as suggested in
Hairer and Wanner [177], so that

fsave = 0.9
2kmax + 1

2kmax + kn
(7.76)

with the required Newton iterations in the actual time step kn and the maximum number
of iterations kmax. An upcoming problem in complex nonlinear simulations is, that the
Newton scheme does not converge at some point of the computation. In this case, the
last time step must be repeated, but the step size can not be determined based on an
error estimate using the actual solution. In the context of this thesis, the time step size is
decreased heuristically by ∆tnew = κ∆t with the choice of κ ∈ [0.7, 0.95]. Another way to
reduce fluctuations in the step size and especially to avoid rejections of computed solutions
is to include the size of previous time steps when increasing the step size, see Mayr [277]
for instance. Thereby, the next time step can be averaged from the determined time step
size based on the error estimate and a given number of previous time steps, which then
reads

∆t̄new = min

[
∆tnew, θ∆tnew + (1− θ) 1

N

N∑
i=0

∆tn−i

]
. (7.77)

The number of considered past time steps can be modified by selecting N and the weight-
ing θ controls the influence.

If the automatic time step size control is based on a PI controller, the new time increment
can be calculated according to Hairer and Wanner [177] as

∆tnew = fsave

(
1

en+1
r

)1/p(
enr
en+1
r

)1/p
∆t2n

∆tn−1

, (7.78)

with er and fsave being again any error estimate and a safety factor and the indices n and
n+ 1 denoting quantities of the actual and last time step.

The algorithmic procedure described above can be represented by the diagram in Figure
7.19. At the beginning of each time step all stages of the applied Runge-Kutta scheme are
calculated. If in one of the stages the Newton method does not converge with the selected
∆t, the time step is immediately repeated with a step size reduced by a heuristically
determined factor. If all stages have been successfully solved, the local error estimate is
computed, which in this case is performed using the embedded RK methods. If the value
is greater than one, the result is rejected and the step is repeated. For this purpose, the
new step size is determined based on the error estimator. If the value is less than one,
the new step size is calculated based on the error estimator. However, there is the special
case that ∆t is not increased if the last time step had to be repeated because of a step
rejection or divergence in the Newton method. If the maximum time of the interval has
not yet been reached, all quantities are updated next and the procedure repeats with a
new time step.
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Figure 7.19: Algorithm for adaptive time stepping

7.7 Numerical examples: Time adaptivity for fluid and solid dynamics

The main objective of this section is to implement adaptive time-stepping control for
solving unsteady flow problems and dynamic structure problems. Here, the two basic
components are considered, the determination of the local error estimator and the time-
stepping control. Furthermore, the impact of an adaptive time step control on the accuracy
of the results and the efficiency of the simulations is investigated. For the application of
time adaptivity in combination with the fluid formulation, a channel flow around a cylinder
with time-dependent inflow is studied, and an oscillating cantilever beam is simulated
using the solid formulation.
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7.7.1 Flow around a cylinder with time dependent inflow

To test the application of adaptive time stepping when solving transient flow of Newtonian
fluids, the benchmark problem flow around a cylinder (FAC3) in 2D with time-dependent
inflow boundary conditions from Schäfer et al. [338] is used. The mixed LS stress-
velocity formulation given in (4.17), with physical weighting factors ωf1 =

√
∆t/ρf , ωf2 =

1/
√
ρfνf and ωf3 = 1 is applied. The geometry is identical to the one in Section 7.4.2.

But in this case the parabolic inflow profile is applied time-dependent using a sinusoidal
function as

v(x2, t) =

(
4x2(0.41− x2)

0.412
vin(t), 0

)T
with vin(t) = 1.5 sin(πt/8) . (7.79)

This leads to a Reynolds number varying in time between 0 ≤ Re ≤ 100. The remaining
boundary conditions are prescribed as in Section 7.4.2, with no-slip boundaries at the top
and bottom wall, and stress boundary conditions at the outflow with σ1 · n = 0.

The computations are performed for a time range t = [0, 8] s, which corresponds to half a
period of the given sinusoidal function. The distribution of the velocity field at different
instants is illustrated in Figure 7.20. At the beginning, the streamlines are straight and,
after some time, vortices develop behind the circular cutout, since this is positioned slightly
asymmetrically in the channel. At the end of the considered time interval, the inflow is
again at zero which leads to a very irregular distribution of the velocity field.

The domain is discretized in space using 2432 triangular elements of order RT3P4 leading
to 127, 744 degrees of freedom. For a quantitative comparison of different time integrations
and adaptive time step controls, the drag and lift coefficients as defined in Eq.(7.57) are
evaluated. In order to evaluate the accuracy, a solution with the fourth-order SDIRK-4(3)
and a fixed time step size ∆t = 0.002 s was generated, and the computed drag and lift
coefficients are compared to these reference values. More precisely, the maximum values
and their positions in time are compared, and then the errors are calculated using the
relative Euclidean norm, which exemplarily for the lift coefficient is given by

eL =

√√√√(trefL,max − tL,max

trefL,max

)2

+

(
crefL,max − cL,max

crefL,max

)2

. (7.80)

Therein, the reference values for the coefficients and the corresponding times obtained
with the high-order RK read

(trefD,max, c
ref
D,max) = (3.936, 2.927) and (trefL,max, c

ref
L,max) = (5.690, 0.477) . (7.81)

These values lie well within the bounds of the reference values given in
Schäfer et al. [338]. A similar approach to evaluate the accuracy of adaptive time
stepping schemes was also applied in, e.g., John and Rang [222]. For the discretiza-
tion in time, three embedded RK schemes of second, third and fourth order, denoted
as SDIRK-2(1), ESDIRK-3(2) and SDIRK-4(3), are applied. The order of the embedded
schemes used to evaluate the error estimate is one order lower in all of them, i.e. q = p−1.
The Butcher tableaus are given in Appendix C.1. For the adaptive time stepping, the local
error estimate for the velocities based on (7.74) is evaluated for different choices of the
absolute and relative error tolerances εa and εr. The bounding factors to stabilize the time
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step control are selected as fmin = 0.5, fmax = 1.5 and kmax = 10, with the maximum
factor set to fmax = 1 after each step rejection or in case of a failed Newton iteration.
Furthermore, the absolute size of each time step is limited to 10−4 ≤ ∆t ≤ 0.1 s.
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Figure 7.20: FAC3 - distribution of velocity field at different time steps t = {2, 4, 6, 8} s
with SDIRK-4(3) and adaptive time stepping with εa = 10−4

First study: varying εa and εr = 0
In a first investigation, the relative error tolerance is set to zero, i.e. εr = 0, to limit the
variation possibilities, and analyze the general time step control mechanism. In Figure 7.21
the evolution of the drag and lift coefficient over time is plotted for different tolerances
and compared to reference values. At this point only results obtained with SDIRK-2(1)
are presented, because all methods show basically the same behavior depending on the
size of the selected absolute tolerance. When considering the drag coefficient, Figure 7.21
(left), the results for all considered adaptive algorithms agree with the reference solution
obtained with a fixed time step. This holds when regarding the entire time interval (top) as
well as when closely zooming in. However, regarding the lift coefficient, one can already see
differences for the various absolute tolerances when looking at the entire time interval.
The larger the error tolerance is, the lower is the overall value of cL and furthermore
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the oscillations start delayed. In the close-up, one can still see differences in the result
even between the two smallest tolerances taken into account. The reason for the poor
performance is presumably that the typical vortices in the flow field do not develop in
the first place if the time steps are too large. If the absolute tolerances are too large and
the automatic time step control does not react sensitively enough to small changes in the
velocity field, the vortices that actually arise are also reduced.
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Figure 7.21: FAC3 - evolution of drag (left) and lift (right) coefficient for different toler-
ances εa and SDIRK-2(1)

The change of the time increment over time with the adaptive stepping control can be
seen in Figure 7.22. It is visible that from the initial value ∆t = 0.1 s the step size
initially increases for all variants and then starts to decrease again after a certain time.
During the interval with the largest fluctuations, the minimum step size drops to a value
of ∆t = 8.96 × 10−4 s for the method SDIRK-2(1). The poor approximation of the lift
coefficient occurs when the time step size is lowered too late. Thereby it is not absolutely
necessary that the step size is so extremely small during the period of the largest vortices.
A further reduction of the absolute tolerance εa would lead to an overall reduction of the
step size, so that in the range t = [4.5, 7] s such small increments are chosen that the
overall computational effort becomes very large.
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Figure 7.22: FAC3 - evolution of time step size for different tolerances εa and SDIRK-2(1)
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In order to evaluate the efficiency, the computation time is measured. Therefore, all
computations were preformed with the software package AceFEM (version 7.203), see
Korelc [240; 241], Korelc and Wriggers [243] of Mathematica (version 12.1.1.0),
see Wolfram Research Inc. [422]. The equation system is solved using the PAR-
DISO solver (from INTEL MKL), and the simulations are executed using six cores on
an Intel(R) Xeon(R) (CPU E5-2683 v4 @ 2.10GHz). It should be noted that the mea-
sured calculation time is only a rough guide, since the measurement is only based on one
evaluation in each case.

For the comparison of the different methods and parameter choices, the error in the lift
coefficient is evaluated as defined in (7.80) and plotted over the computation time. The
error in the drag coefficient was not considered here, because the change in time step size
had no noticeable effect on it. Additionally to the results with automatic time stepping for
the three considered discretization methods, the problem is solved using the SDIRK-2(1)
time discretization with fixed time increments ∆t = 0.02, 0.01, 0.005 s. Note that the
simulations with fixed time step sizes from ∆t ≥ 0.04 s aborted for all time discretizations
as soon as the flow becomes unsteady (at around t ≈ 4.2 s), since the Newton scheme did
not converge any more. Figure 7.23 illustrates the error eL over the CPU time. Despite
the adaptive time stepping, the efficiency of the considered computations is quite low
compared to simulations with fixed time step sizes. This can be due to the fact that, as
already mentioned, on the one hand the step size between 4.5 ≤ t ≤ 7 was probably
adapted smaller than necessary, which leads to an increase of the computing time. And
on the other hand the error is rather large, since the time step sizes decrease late and thus
too small vortices arise. Nevertheless, the highest order time integration SDIRK-4(3) is
the most efficient, also for this choice of parameters for the adaptive time stepping. But
at a certain point the error does not decrease further, which is probably due to the fact,
that from this point on, the spatial discretization error dominates the temporal one.

Figure 7.23: FAC3 - error eL in lift coefficient over CPU time for adaptive time stepping
with different tolerances εa and constant step sizes using SDIRK-2(1)

Second study: different values for εa and εr
Due to the finding that the efficiency of the integration methods cannot be fully exploited
if only the absolute tolerance is allowed to change, the influence of varying both tolerances
is also investigated in the following. Figures 7.24, 7.25 and 7.26 illustrate the evolution of
the time step size and lift coefficient compared to the reference solution for the consid-
ered embedded Runge-Kutta schemes SDIRK-2(1), ESDIRK-3(2) and SDIRK-4(3). The
presented results are all based on different choices for the absolute and relativ tolerance,
which are required to calculate the error estimate for the automatic step control. It can



Time discretization schemes for fluid and solid dynamics 119

be seen, that the second- and third-order scheme require lower absolute tolerances to even
roughly obtain the correct evolution of the lift coefficient. For SDIRK-2(1) the presented
choice of parameters leads to smaller time step sizes, than for the time discretization
ESDIRK-3(2). Thus, smaller tolerances must be set for the third-order method to ob-
tain the same accuracy. The fourth-order SDIRK-4(3) delivers accurate results even with
larger tolerances and time steps.
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Figure 7.24: FAC3 - evolution of time step size (left) and lift coefficient (right) over time
using SDIRK-2(1) with different tolerance parameters εr and εa
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Figure 7.25: FAC3 - evolution of time step size (left) and lift coefficient (right) over time
using ESDIRK-3(2) with different tolerance parameters εr and εa
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Figure 7.26: FAC3 - evolution of time step size (left) and lift coefficient (right) over time
using SDIRK-4(3) with different tolerance parameters εr and εa

For a rough evaluation of the efficiency, the error in the lift coefficient as given in (7.80)
is again plotted over the computation time, see Figure 7.27. Compared to the results
obtained with εr = 0 in Figure 7.23, it can be seen that adaptive time stepping when both
tolerance parameters are used can lead to a slight improvement in efficiency compared
to the fixed step size calculations. In addition, the error in the lift coefficient seems to
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decrease only up to a certain value until a plateau is reached. This is probably due to the
fact that from there on the spatial error dominates.

Figure 7.27: FAC3 - error eL in lift coefficient over CPU time for adaptive time stepping
with different absolute and relativ tolerances and constant step sizes using SDIRK-2(1)

Overall, it can be concluded that the mechanism of automatic adjustment of the time
step size works as long as some constraints are imposed. Especially in the field of fluid
dynamics, it is often necessary to define an upper limit for the time step size to ensure
that certain flow patterns develop at all and are not ”skipped” by too coarse time steps. A
possibility to take more account of the generation of vortices in the adaptive control would
be e.g. to calculate the error estimator separately for the individual velocity components
and to select a smaller tolerance for the vertical velocity. Furthermore, it is crucial for
the efficiency of the algorithms to make the right choices. This concerns on the one hand
the evaluation of the error estimator and the tolerances required therefore. And on the
other hand the automatic time step control and the included safety factors. This gives
the impression that the entire procedure is perhaps not quite so ”automatic” after all.

7.7.2 Vibration of a linear elastic cantilever beam

In order to investigate the application of adaptive time stepping in combination with
mixed LSFEM for solid dynamics, the stress-velocity formulation for linear-elasticity,
see (6.4), is applied to solve the vibration of a dynamic cantilever beam (DCB) as also
studied in Schwarz et al. [351]. The physical weights are chosen as ωs1 =

√
∆t/ρs and

ωs2 = 1/
√

∆t. The geometric dimensions of the considered domain Ωs = (0, 10)× (0, 1) m
and the boundary conditions are outlined in Figure 7.28.

σ · n = (0, σ̂)

10

x2

x1

v = 0
1

σ · n = 0

σ · n = 0 A

Figure 7.28: DCB - geometry and boundary conditions (unit m)

The structure is clamped at the left end, i.e. v = 0, and the upper and lower edge
are stress-free boundaries, i.e. σ · n = 0. On the right edge a time-dependent shear
stress is applied, which is increased linearly up to σ̂ = 0.4 kN/m2 at t = 0.5 s and then
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removed within 0.1 s. The chosen material parameters are E = 104 kN/m2, ν = 0.499
and ρs = 1.2 × 103 kg/m3. For the spatial discretization vector-valued Raviart-Thomas
functions are implemented for the stresses and Lagrange polynomials are used for the
velocities. In order to minimize the error based on the space discretization, the element
RT3P4 based on relatively high order interpolation functions is implemented and the
domain is subdivided into 1280 elements. For the discretization in time the embedded
second- and fourth-order RK schemes namely SDIRK-2(1) and SDIRK-4(3) are applied.
The required Butcher tableaus are given in Appendix C.1. In this section, when applying
automatic time step control, in all calculations the method of averaging, see (7.77), is
applied. This slightly reduces the increase of step sizes in case of strong fluctuations. Here
the new ∆t is calculated based on the mean value of N = 5 previous time step sizes
and the newly determined size, choosing θ = 0.5 for the proportions. Furthermore, two
different approaches are examined in which the calculation of the error estimator is based
on either the velocities or the displacements, see (7.74). A combination of both error
estimators with different tolerances for the considered quantities is also possible, but is
not investigated here.

Study 1) Convergence study with constant time step size
In a first step, the temporal convergence of both methods with constant time step sizes is
investigated. In order to compare the different solutions, the displacement in x2-direction
at the right top corner at point A(10, 0) m is measured over time. The results of the
displacements u2 at point A are shown in Figures 7.29 and 7.30 for the considered time
interval of T = [0, 10] s on the left side and a closer detail on the right side. Zooming in,
it can be seen that for the second-order SDIRK-2(1) method, no differences in the course
of the displacement are visible from a time increment of ∆t ≤ 0.01 s. When using the
fourth-order method SDIRK-4(3) the calculation is convergent already at ∆t ≤ 0.02 s.
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Figure 7.29: DCB - vertical displacement u2 at A(10, 1) m over time for SDIRK-2(1) with
different constant time step sizes ∆t

In order to assess and compare the accuracy of the various time integration and adap-
tive time stepping methods in the remainder of this section, the displacement in the
x2-direction at point A(10, 0) m is measured over time in all simulations and compared
to a reference solution. For this purpose, the solution with the SDIRK-4(3) scheme and
constant step size ∆t = 0.002 s is applied as reference.

Study 2) Influence of limiting factors fmin and fmax

In the following the effect of the control factors for adaptive time stepping on efficiency
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Figure 7.30: DCB - vertical displacement u2 at A(10, 1) m over time for SDIRK-4(3) with
different constant time step sizes ∆t

and accuracy is examined. Therefore, the SDIRK-2(1) method is used for time discretiza-
tion and the error estimate for the automatic time stepping is evaluated based on the
displacements, as defined in (7.74)2. The absolute and relative tolerances for the error
estimator are chosen once as 10−5 and once as 10−6.

The total number of time steps and iterations in the defined time interval and the number
of step rejections are taken into account as comparison values for the efficiency. The
accuracy is compared by evaluating the error of the vertical displacement relative to the
reference solution as

erru =

√√√√√ N∑
i=1

[
u2(ti)− uref2 (ti)

]2

N
. (7.82)

Therein, uref2 denotes the reference values obtained with SDIRK-4(3) and ∆t = 0.002 s,
and N is the number of required time steps within the regarded interval T = [0, 10] s.
Table 7.10 summarizes simulation data, such as number of time steps, rejections and
iterations, the average time step size and the error erru compared to the reference solution.
The less restrictive the limiting factors are, the more often steps are rejected and have
to be repeated. This can lead to an increase in the computational cost, which in turn
may be compensated by the fact that the average accepted step size may be larger with
more flexibel step size changes. The influence of the factors fmin and fmax diminishes
automatically when the step size is limited by smaller error tolerances.

Table 7.10: DCB - number of accepted time steps, rejections and iterations, average time
step size ∆t, and error in u2 for different factors fmin and fmax and tolerances with SDIRK-
2(1)

εdr = εda fmax fmin time steps rejection iteration ∆t erru

10−5

1.2 0.8 177 12 1120 5.67e-2 6.266e-4
1.5 0.5 167 22 1127 6.02e-2 6.984e-4
2.0 0.3 163 25 1124 6.16e-2 6.781e-4

10−6

1.2 0.8 542 2 3059 1.85e-2 1.537e-4
1.5 0.5 538 5 3061 1.86e-2 1.537e-4
2.0 0.3 537 6 3063 1.86e-2 1.534e-4
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Study 3) Step size control based on velocity error estimator ev
In a next step, automatic time stepping is investigated with the error estimator evaluated
based on the velocities, as defined in (7.74)1. The bounding factors are selected in a way
that the incremental changes are as smooth as possible, with fmax = 1.2 and fmin = 0.8.
The safety factor for this linear elasticity based problem is set to fsave = 0.9, since the
number of Newton iterations is irrelevant.

The problem is solved in the first case using the second-order SDIRK-2(1) scheme with
different absolute and relative tolerances for the error estimator and an initial step size
∆t = 0.01 s. The adaption of the time increment based on the velocity error estimator with
varying tolerances can be seen in Figure 7.31(left), where results within the time interval
t = [0, 5]s are plotted. For all tolerances the step size increases at the beginning. If the
values for the absolute error acceptance are chosen large, i.e. εva ≥ 10−4, the time step size
remains quite large, as expected, leading to a poor accuracy. This can be seen in Figure
7.32, where the evolution of the vertical displacement is shown for the entire interval
(left) and for a smaller more detailed section (right). The solution obtained with high
tolerances do not match the reference solution. For smaller tolerances, the time increment
decreases at around t ≈ 0.5 s, where the load application of the stress boundary condition
is changed, and maintains a similar level between 0.012 ≤ ∆t ≤ 0.018 s throughout the
remaining interval. The corresponding displacements agree quite well with the reference
solution.
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Figure 7.31: DCB - evolution of time step size ∆t (left) and error estimator ev (right) over
time using SDIRK-2(1) with different tolerance parameters εvr and εva
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Figure 7.32: DCB - vertical displacement u2 at A(10, 1) m over time for SDIRK-2(1) with
different tolerance parameters εvr and εva

For a quantitative assessment of accuracy and efficiency, all relevant data are listed in
Table 7.11. As already apparent in the figures, reducing the error tolerance results in
a reduction of the time step and thus also of the error. However, the variation of the
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relative error tolerance had little effect on the adaptive time step size adjustment. The
reason is probably that the absolute error is dominant for all chosen combinations. Only
the increase of the relative tolerance up to εvr ≥ 10−2 in combination with a small absolute
tolerance εva = 10−5 affected the results by leading to larger allowable time steps. However,
the absolute tolerance could not be decreased further. It is found that all calculations with
an absolute tolerance εva ≤ 10−6 abort at around t ≈ 0.5 s, due to step rejections until the
minimum prescribed step size 10−4 s is reached.

Table 7.11: DCB - number of accepted time steps, rejections and iterations, average time
step size ∆t, and error in u2 for different tolerances εvr and εva with SDIRK-2(1)

εvr εva time steps rejection iteration ∆t erru

10−4 10−4 180 25 1216 5.57e-2 5.839e-4
10−6 10−4 180 17 1168 5.57e-2 5.813e-4
10−2 10−5 135 22 935 4.11e-2 2.561e-4
10−4 10−5 668 31 3581 1.50e-2 1.270e-4

0 10−5 710 28 3705 1.41e-2 1.230e-4

Although the results with adaptive control are basically consistent with the reference
solution and the accuracy can also be improved with reduction of the tolerances, see
Figure 7.32, the step size changes are quite oscillatory and seem to be independent of the
deformation. The same can be observed when looking at the error estimator shown in
Figure 7.31 (right). Regardless of the chosen tolerances and the deformation state of the
beam, the value for ev varies extremely throughout the time interval. The computations
with the high-order time discretization SDIRK-4(3) yielded similar results. The automatic
step size control based on the velocity error estimator is also subject to strong fluctuations
there. In this case, the choice of an absolute tolerance εva < 10−4 caused the abortion of
the calculation by multiple rejections of the step up to the lower limit for ∆t.

Study 4) Step size control based on displacement error estimate ed
In addition to evaluating the error estimator based on velocities, an error estimator based
on displacements was also investigated for the mixed SV formulation for solid dynamics.
The general procedure is the same as in the third study, in the sense that the limiting
factors are chosen fixed with fmin = 0.5 and fmax = 1.5, the initial step size is set to
∆t = 0.01 s, and the absolute and relative tolerances are varied.

The step size adjustment for different tolerance values when applying the second-order
SDIRK-2(1) is illustrated in Figure 7.33(left). It can be observed, that depending on
the magnitude of the tolerance, the step size first increases or directly decreases, e.g.
for εda ≤ 10−8. After about t = 1 s the average step size stays relatively constant in
the remaining interval and the fluctuations keep one level. Depending on the selected
tolerances, the average size of the time increment varies considerably. This can also be
seen in Table 7.12, which contains exemplary information on the simulations for the
comparison. Reducing the tolerance leads to a smaller average step size and thus also to
an increase in the number of calculation steps and iterations. At the same time, however,
this naturally also increases the accuracy as can be seen by the smaller error.

As in the previous study, Figure 7.33 (right) shows the resulting error estimator for several
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adaptive calculations. The displacement based error estimator seems to vary in a slightly
smaller range when using SDIRK-2(1) compared to the error estimator based on the
velocities in Figure 7.31 (right). In addition, smaller step sizes, and hence errors, could
be achieved in the simulations with step size control based on ed, without causing the
calculations with SDIRK-2(1) to abort as easily due to step rejections.
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Figure 7.33: DCB - evolution of time step size ∆t (left) and error estimator ed (right) over
time using SDIRK-2(1) with different tolerance parameters εdr and εda

Table 7.12: DCB - number of accepted time steps, rejections and iterations, average time
step size ∆t, and error in u2 for different tolerances εdr and εda with SDIRK-2(1)

εdr εda time steps rejection iteration ∆t erru

10−5 10−5 167 22 1127 6.02e-2 6.984e-4
10−4 10−6 426 21 2644 2.35e-2 1.941e-4
10−8 10−8 5396 2 21952 1.85e-3 1.041e-5

The results using the fourth-order SDIRK-4(3) scheme for the time discretization can
be found in Figure 7.34 and Table 7.13. Modification of the tolerances again shows in
general the expected effect, namely that the average step size is increased or decreased
depending on the accepted tolerance. Also the resulting error value becomes smaller as a
consequence of tolerance reduction, but only up to a certain limit. At a choice of absolute
tolerance of εda ≤ 10−8 the calculation terminates due to repeated step rejection. These
abortions occur depending on the choice of the relative tolerance already at t ≈ 0.5 s or
later in the time interval. The behavior is analogous to what has already been observed
for SDIRK-2(1) with adaptive step control based on the local velocity error ev. When
considering the error estimator ed in Figure 7.34 (right), one sees a very similar oscillating
profile.

Table 7.13: DCB - number of accepted time steps, rejections and iterations, average time
step size ∆t, and error in u2 for different tolerances εdr and εda with SDIRK-4(2)

εdr εda time steps rejection iteration ∆t erru

10−5 10−5 109 0 1619 9.20e-2 1.961e-4
10−2 10−7 153 30 2728 6.58e-2 2.427e-4
10−4 10−7 409 29 6549 2.45e-2 1.128e-4
10−9 10−7 512 5 7747 1.92e-2 1.229e-4
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Remark: Both error estimators, whether based on displacements or velocities, are subject
to strong fluctuations, the amount of which seems to depend on the choice or order of
the time discretization. In the following, this effect will be investigated in more detail by
considering the variation of the error estimator when changing the step size.
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Figure 7.34: DCB - Evolution of time step size ∆t (left) and error estimator ed (right)
over time using SDIRK-4(3) with different tolerance parameters εdr and εda

Study 5) Influence of step size change on error estimator
In order to investigate the origin of this behavior and the fluctuations, the evaluation of the
error estimator is examined in more detail. For this purpose, the temporal development
of the values for ev and ed are considered, firstly when the time step is kept constant
and secondly when it is changed in a controlled manner. But the simulations are solved
without adaptive time stepping in this study.

In a first step, the same spatial discretization as in the previous studies with 1280 ele-
ments is used. The absolute and relative tolerances to compute the error estimator are
set depending on the time discretization to

SDIRK-2(1)→ εvr = εva = 10−5 and εdr = εda = 10−6 ,

SDIRK-4(3)→ εvr = εva = 10−5 and εdr = εda = 10−7.

Figure 7.35 presents the evolution of the time step size for four different cases. First, the
step size is kept constant over the entire period either with ∆t = 0.01 s or ∆t = 0.002 s,
and then it is decreased or increased stepwise. Arbitrary times for the change of the step
size are selected here.
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Figure 7.35: DCB - controlled change of step size ∆t at predefined times

The corresponding evolutions of the error estimators based on the velocity or displacement
are illustrated for the time discretization scheme SDIRK-2(1) in Figure 7.36 and for
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SDIRK-4(3) in Figure 7.37. One can recognize that the error estimators at constant step
sizes (blue and green line) fluctuate slightly and take a jump at t = 0.5 s. But as expected,
when comparing the results for ∆t = 0.01 and ∆t = 0.002, the overall error estimator
is also lower at a smaller step size. Furthermore, apart from the jump at t = 0.5 s there
are no extreme peaks in the further course as long as the step size remains constant. In
addition, the error magnitude with the selected tolerances for both constant step sizes is
clearly less than one.

In those cases of controlled step size change, depending on whether the increment is
increased or decreased, the calculation is also started with ∆t = 0.01 or ∆t = 0.002. Thus
the error estimators at the beginning agree with one of the curves for the constant step
size. When changing the step size, a clear amplitude can be recognized in the velocity error
estimator ev for both time discretizations and also for the displacement error estimator ed
for the fourth-order method. The peak in the curves appears regardless of whether the step
size is raised or lowered. If the step size remains constant for a certain time afterwards,
the values decrease again up to a level which is reasonable for the present step size. This
means that with a larger step size, the error estimator is above the starting curve and vice
versa. In case of such strong fluctuations adaptive step size control is difficult. It requires
very large constraints on the step size control. The changes in ∆t may be only very small
and possibly after each step size modification several steps need to be solved with the
same increment size.
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Figure 7.36: DCB - evolution of error estimator ev (left) and ed (right) using SDIRK-2(1)
with constant step size and controlled step size change at predefined times
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Figure 7.37: DCB - evolution of error estimator ev (left) and ed (right) using SDIRK-4(3)
with constant step size and controlled step size change at predefined times

Remark: This behavior was observed only for adaptive time stepping in combination with
the mixed LS stress-velocity formulation for solid dynamics. Furthermore, the amplitudes
could be reduced by improving the spatial accuracy, e.g. by increasing the number of
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elements or the polynomial degree. Figure 7.38 shows an example of the evolution of the
error estimators when meshes with different number of elements are applied. In all cases
the method SDIRK-4(3) is used and the step size is varied from ∆t = 0.01 to 0.005 to
0.002 at t = 1.0 and t = 1.5. It is observed that the peaks in the error estimator when
changing the time step size are smaller the finer the mesh and thus the smaller the spatial
discretization error. Additionally, the maximum values of the error estimator after the
first and second step size change are listed in Table 7.14. Therein a clear tendency can
be noticed which shows that the values are getting smaller when the number of elements
is increased. But even with 11520 elements of order RT3P4, fluctuations could not be
completely avoided using this formulation, and thus the application of automatic step
size control must be applied with care.
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Figure 7.38: DCB - evolution of error estimator ev (left) and ed (right) using SDIRK-4(3)
with controlled step size change and different meshes

Table 7.14: DCB - maximum values of error estimators after step size changes at t1 = 1 s
and t2 = 1.5 s for meshes with different number of elements nele with SDIRK-4(2)

nele

320 1280 5120 11520

ev
t1 60.7332 32.2213 14.3108 8.87911
t2 41.7642 14.111 13.2021 8.3489

ed
t1 1.58485 0.889731 0.395096 0.245435
t2 0.679116 0.152151 0.117975 0.075685
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8 LSFEM for dynamic fluid-structure interaction problems

The simulation of fluid-structure interaction problems is of high interest in a wide range of
fields, such as biomechanics and aerodynamics. One of the main challenging tasks herein is
the fulfillment of the coupling conditions at the interface of the fluid and the solid domain.
In this work, the governing equations in the fluid and solid domain are given based on
LS formulations in terms of stresses and velocities. This can lead to inherently fulfilled
coupling conditions when choosing appropriate interpolation functions for the unknowns.
The main components for the numerical solution of dynamic fluid-structure interaction
problems can be summarized, following Kayser-Herold and Matthies [230], as

• Numerical method for fluid domain

◦ Time discretization scheme for unsteady flows

◦ Consideration of moving domain, e.g. with ALE framework

• Numerical method for structure domain

◦ Time discretization scheme for dynamic structures

◦ Appropriate material formulation to account for large deformations

• Treatment of coupling conditions

• Algorithm for moving background mesh

◦ Mesh motion method

◦ Re-meshing algorithm if necessary

In this chapter, the different applied approaches for all components are explained and
tested, partly separately and later on, coupled. The construction of the mixed LS for-
mulation for dynamic FSI problems is performed step by step. Therefore, the first step
is the simple coupling of the fluid and solid formulations, without ALE description and
valid only for linear elastic material behavior. Thus, this first approach is only suitable for
computations which are limited to small structure deformations. It serves primarily for
the basic verification of the combination of both domains. It should be noted that time
discretizations are straightforwardly implemented in both formulations, as these have al-
ready been tested separately for the fluid and solid formulations in previous chapters.

Subsequently, on the one hand, the least-squares SV fluid formulation in arbitrary-
Lagrangian-Eulerian description is explained and, on the other hand, techniques for the
computation of the background mesh motion are investigated. The different approaches
to mesh deformation are first examined using an example constructed based on the FSI
benchmark of Turek et al. [399] and Turek and Hron [396]. However, this is solved
in a simplified way without calculating the fluid domain. Only the deformation of a solid
flag is considered, which generates large deformations in the surrounding mesh domain.
In addition, the fluid formulation with ALE framework is verified by calculating a channel
flow in which the background mesh is manually displaced.

Next, the derived formulations are combined to solve dynamic FSI problems with large
deformations. First, the coupling of the ALE fluid formulation with the SV solid for lin-
ear elasticity is tested by means of the numerical example of a flow through a channel
with contracting walls. Finally, the SV fluid formulation based on the incompressible
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Navier-Stokes equations in an ALE framework and the SV solid formulation for hypere-
lastic material behavior based on a description in the current configuration, are coupled.
The final coupled LS formulation for FSI with large structure deformations is tested by
means of a standard FSI benchmark, considering also the application of high-order time
discretization and adaptive time stepping.

8.1 The coupled LS stress-velocity formulations for dynamic FSI problems

As a first step towards the solution of fluid-structure interaction problems, the equations
for the fluid and the solid domain, are combined to one equation system. Assuming, that
the mixed LS functional for the fluid domain is given by FF and defined on Ωf and the
mixed LS solid functional is denoted by FS and defined on Ωs, the associated LS FSI
functional is constructed as

FFSI(σ,v) = FF (σ,v) + FS(σ,v) . (8.1)

Therein, all residuals of the two individual functionals are given as a function of velocities
and stresses. In the context of this work, the FSI formulations always include dynamic
terms, hence a discretization in time must be used to define the relation between acceler-
ation and velocity. Note, that the implementation of the stress-velocity solid formulations
always requires a discretization in time to at least relate the displacements to the velocities
even if the accelerations are dropped.

The solution of the minimization problem can be obtained by linearization and application
of Newton’s method δF + ∆δF = 0. The resulting discretized linear system of equations
for a typical element in matrix notation can be written as[

kevv kevσ
keσv keσσ

][
∆w

∆β

]
= −

[
rev
reσ

]
, (8.2)

where wI = [wI1 w
I
2]T and βJ = [βJ1 βJ2 ]T are the degrees of freedom of the velocities and

stresses, which can be approximated with the interpolation matrices N and ψ as

v =
∑
I

N IwI , and σ =
∑
J

ψJ βJ . (8.3)

The components of the matrix as well as the right-hand-side-vector contain entries from
the fluid and solid formulation, e.g. kevv is composed of entries in ∆δvvFF and ∆δvvFS.
For more details on the implementation see the Appendix D.

The partial differential equation system defined on Ω = Ωf ∪ Ωs × [0, T ] is completed by
the specification of initial conditions and constraints on the external boundary ∂Ω. As
already stated in Section 3.3.3, in the case of mixed stress-velocity formulations, the entire
boundary can be considered as Dirichlet type boundary since constraints are directly im-
posed to the primary variables. Therefore, a partition into two subsets can be performed,
such that the boundary conditions for the velocities and stresses in the LS FSI functional
read

v = vD on ∂ΩDv × (0, T ] with ∂ΩDv ⊆ ∂Ω , (8.4a)

σ · n = tD on ∂ΩDs × (0, T ] with ∂ΩDs ⊆ ∂Ω . (8.4b)
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Here, n denotes the outward unit normal vector, vD and tD the prescribed values of the
velocity and traction vector on the boundary. It is to be noted that both boundary subsets
can belong to the solid as well as to the fluid domain. Additionally, initial conditions are
set for the velocities

v(t0) = v0 on Ω at t = t0 , (8.5)

and according to the time discretization method also for the accelerations and displace-
ments, as prescribed in Section 3.3.3. Further boundary conditions, which are required
in case of additional equations to describe the mesh deformation, are outlined in Section
8.3.4 when presenting the mesh formulation itself.

8.1.1 Monolithic coupling conditions for SV formulations

Fluid-structure interaction problems require materials with fundamentally different prop-
erties to interact in a common boundary value problem. During this process, there is a
reciprocal influence of both materials with regard to their kinematics. More precisely, it
must be taken into account that a fluid flowing over the surface of a solid exerts nor-
mal and tangential tensile forces that cause deformations in the structure. These in turn
influence the forces acting on the fluid, which affect the flow kinematics. For a correct
reproduction of the interaction and mutual influence, the handling of the interface is of
great importance.

An important aspect of this work is the use of LS formulations expressed in terms of
stresses and velocities in both domains in order to achieve, in combination with appropri-
ate approximation functions, an inherent fulfillment of the interface conditions. Denoting
the interface between the two materials as Γi, the coupling conditions which are illustrated
in Figure 8.1 can be specified as

vf = vs on Γi , (8.6a)

σf · n = σs · n on Γi . (8.6b)

Herein, n = (n1, ..., nd)
T is the normal unit vector and vi and σi with i = {f, s} denote

the velocities and Cauchy stresses in the fluid and solid domain, respectively. The first
term involves the no-slip interface conditions of a fluid at a solid surface, and the second
term states that the normal stresses of both regions at the interface must be equal.

Ωf

Ωs

vf = vs

vf = vs
Ωf

σf · n = σs · n
Ωs

Figure 8.1: Coupling conditions on Γi for a solid and fluid element

Interpolations spaces
As stated earlier, the coupling conditions can be automatically satisfied without addi-
tional constraints by applying conformal interpolation functions. More precisely, the ap-
proximation of the fluid and solid velocity field using standard finite element spaces in



132 LSFEM for dynamic fluid-structure interaction problems

H1 guarantees consistency at the interface and satisfies (8.6a), and the application of
Raviart-Thomas elements satisfies a priori the stress-coupling conditions (8.6b). For the
presented mixed LS formulations with F(σ,v) : V ×W → IR2 this leads to the finite
element spaces

V h
k = {v ∈ H1(Ω)2 : v|Ωe ∈ Pk(Ωe)

2 ∀ Ωe} ⊆ V , (8.7)

W h
m = {σ ∈ H(div,Ω)2 : σ|Ωe ∈ RTm(Ωe)

2 ∀ Ωe} ⊆W , (8.8)

where Pk(Ωe) are Lagrange interpolation polynomials of order k and RTm(Ωe) rep-
resent vector-valued Raviart-Thomas interpolation functions of order m, see e.g.
Raviart and Thomas [324] or Brezzi and Fortin [69]. The resulting finite elements
in two dimensions will be denoted as RTmPk.

8.2 Numerical examples: Dynamic FSI problems with small deformations

In the previous chapters, the mixed LS formulations in terms of stresses and velocities
were studied separately for unsteady fluid flow and structural dynamics problems. In the
following, the proposed approaches are combined to solve FSI problems. For this purpose,
the first step is to test the general coupling procedure by solving interaction problems
with small deformations in the solid regime. The small deformations at the interface
prevent the need to consider the motion of the background mesh in the fluid domain,
which allows the use of the standard SV fluid formulation (4.17) (without ALE) for the
initial numerical tests. In addition, the restriction to small strains allows the utilization
of the SV solid formulation based on linear elasticity given in (6.4). Thus the resulting
least-squares functional for fluid-structure interaction problems the with restriction to
small strains reads

FFSI(σ,v) = FF (σ,v) + FLE(σ,v) . (8.9)

For the numerical evaluations that follow, the weighting factors for the residual terms
are chosen based on findings in Kayser-Herold and Matthies [231], except that the
third residual of the fluid functional is left unweighted with the result that

ωf1 =

√
∆t

ρf
, ωf2 =

√
1

ρfνf
, ωf3 = 1 , ωs1 =

√
∆t

ρs
, ωs2 =

√
µs
∆t

. (8.10)

The boundary value problems considered in the subsequent sections are the flow around a
cylinder to which a flag is attached and a flow through a channel with a solid barrier. The
flow velocity and material properties are chosen in such a way that the resulting Reynolds
numbers are low and the deformations in the solid remain small. In both considered
problems, this leads to a final steady-state flow after a transient phase.

8.2.1 Steady flow around a cylinder with flag

As a first numerical example to test the presented time-dependent SV formulations to
solve fluid-structure interaction problems the flow around a cylinder with a flag attached
to the cutout, denoted as FAC-flag (1), is calculated. The setup is based on the bench-
mark problem presented in Turek et al. [399] and Turek and Hron [396], which is
denoted as FSI 1. The geometry and boundary conditions of this FSI problem as depicted
in Figure 8.2 are similar to the setup of the fluid example in Section 7.4.2 except of an
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additional elastic flag attached to the cylinder. The center of the cylinder with a diameter
of d = 0.1 m is situated at (0.2, 0.2) m.

2.50

0.41

σ1 · n = 0

v = (v̂1, 0)T

x2

x1
v = 0

v = 0
v = 0

0.35

0.02
A

Figure 8.2: FAC-flag (1) - geometry and boundary conditions (unit m)

An inflow on the left side, pressure-related stress boundary conditions for an outflow on the
right side, and no-slip boundary conditions are applied to the top and bottom walls and
to the cylindrical cutout. The flag is fixed on its left boundary. Suitable outflow boundary
conditions for the presented stress-velocity formulation are defined as σ1 · n = 0 with
σ1 = (σ11, σ12)T . For the inflow velocity in x1-direction a quadratic function is defined as

v̂1(x2, t) = 1.5 vin(t)
x2(0.41− x2)

0.2052
. (8.11)

For a uniform increase of the inflow velocity, a cosine function is used, such that

vin(t) =

v̄
(

1− cos
(π

2
t
))
· 1

2
if t < 2.0

v̄ if t ≥ 2.0
, (8.12)

where v̄ is the mean inflow velocity as given in Table 8.1. The material parameters are
set equivalent to specification in Turek et al. [399] and also listed in Table 8.1. With
a characteristic length of Lch = 0.1 m corresponding to the diameter of the cylinder and
the given material and flow parameters, the Reynolds number is Re = 20.

Table 8.1: FAC-flag (1) - material parameters for steady FSI1 from Turek et al. [399]

Description Value Unit

Mean inflow velocity v̄ 0.2 m/s
Fluid density ρf 1.0 ×103 kg/m3

Viscosity νf 0.001 m2/s

Solid density ρs 1.0 ×103 kg/m3

Young’s modulus E 1.4 ×106 kg/(m s2)
Poisson ratio νs 0.4 -

For the validation and verification of the presented approaches drag and lift forces are
computed, which act in case of the FSI problem on the cylindrical cutout as well as on
the flag. With S = S1 ∪ S2, where S1 denotes the length of the cylinder in contact with
the fluid and S2 denotes the interface between the fluid and the solid, the drag and lift
forces are defined as

(FD, FL) =

∫
S

σ · n dS . (8.13)
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An additional measured quantity for comparison are the displacements at the right end
of the flag at point A(0.6, 0.2) m. The calculations are performed with different mesh
refinements and the elements RT1P2 and RT3P4. Table 8.2 summarizes the information
about the different meshes, including the number of elements of the solid as well as the
fluid domain and the number of degrees of freedom.

Table 8.2: FAC-flag (1) - mesh level, number of elements nele in fluid and solid domain
and number of degrees of freedom (ndof)

nele ndof

level solid fluid RT1P2 RT3P4

1 72 889 13,906 50,876
2 128 1,612 24,968 91,696
3 512 6,018 92,636 341,992
4 2,048 24,150 369,212 1,367,176

In a first step, the Houbolt time discretization is used for the fluid as well as the solid
domain. Next, a combination of two different time integration schemes is investigated.
Therefore, the Houbolt method is applied for the solid domain and the Crank-Nicolson
method for the fluid domain.

Table 8.3: FAC-flag (1) - displacements u1 and u2 (in m) at point A(0.6, 0.2) m, and drag
FD and lift force FL (in N), obtained with the Houbolt method for both domains, reference
solution from Turek et al. [399]

level u1 u2 FD FL

RT1P2 1 2.8883E-5 4.2390E-3 11.4405 1.2411
∆t = 0.005 s 2 2.7998E-5 3.6978E-3 12.9918 1.1089

3 2.4793E-5 7.2647E-4 14.0466 1.0885
4 2.4097E-5 1.6963E-3 14.2390 1.1113

RT1P2 1 2.4916E-5 2.2459E-3 11.1112 1.2014
∆t = 0.001 s 2 2.4482E-5 2.1655E-3 12.5154 1.0280

3 2.3639E-5 1.3415E-3 13.8934 1.0646
4 2.3551E-5 1.5963E-3 14.2112 1.0979

RT3P4 1 2.4396E-5 1.3018E-3 13.9161 1.0892
∆t = 0.005 s 2 2.4022E-5 1.6584E-3 14.0686 1.1017

3 2.3864E-5 1.6996E-3 14.1808 1.1114
4 2.3798E-5 1.6355E-3 14.2338 1.1132

RT3P4 1 2.3740E-5 1.4949E-3 13.9165 1.0729
∆t = 0.001 s 2 2.3569E-5 1.5846E-3 14.0701 1.0847

3 2.3658E-5 1.6050E-3 14.1785 1.1049
4 2.3682E-5 1.5876E-3 14.2323 1.1108

reference 2.2705E-5 8.2088E-4 14.2943 7.638E-1



LSFEM for dynamic fluid-structure interaction problems 135

The results for two spatial interpolation orders (RT1P2 and RT3P4) and two different
time increments (∆t = 0.005 s and ∆t = 0.001 s) are listed in Table 8.3 and Table 8.4.
Regarding the combinations of the time discretization schemes, both approaches lead
to similar results. When comparing the spatial convergence orders, both elements show
acceptable convergence behavior.

Table 8.4: FAC-flag (1) - displacements u1 and u2 (in m) at point A(0.6, 0.2)m, and drag
FD and lift force FL (in N), obtained with the Houbolt and Crank-Nicolson method for
solid and fluid domain, reference solution from Turek et al. [399]

level u1 u2 FD FL

RT1P2 1 2.8530E-5 4.2591E-3 11.4095 1.2376
∆t = 0.005 s 2 2.7714E-5 3.6490E-3 12.9635 1.1063

3 2.4721E-5 7.2445E-4 14.0400 1.0875
4 2.4071E-5 1.7040E-3 14.2374 1.1113

RT1P2 1 2.4682E-5 2.2556E-3 11.0576 1.1936
∆t = 0.001 s 2 2.4294E-5 2.1482E-3 12.4632 1.0232

3 2.3584E-5 1.3396E-3 13.8774 1.0627
4 2.3529E-5 1.6005E-3 14.2072 1.0973

RT3P4 1 2.4353E-5 1.3082E-3 13.9126 1.0882
∆t = 0.005 s 2 2.4000E-5 1.6588E-3 14.0672 1.1014

3 2.3854E-5 1.7000E-3 14.1803 1.1114
4 2.3793E-5 1.6364E-3 14.2336 1.1132

RT3P4 1 2.3706E-5 1.4970E-3 13.9085 1.0708
∆t = 0.001 s 2 2.3552E-5 1.5837E-3 14.0668 1.0835

3 2.3649E-5 1.6041E-3 14.1774 1.1045
4 2.3689E-5 1.5928E-3 14.2320 1.1098

reference 2.2705E-5 8.2088E-4 14.2943 7.6375E-1

Note that the numerical procedure at this point is not completely consistent with the one
in the FSI 1 benchmark in Turek et al. [399]. In this example, as mentioned initially,
a small strain approach is used for the solid domain, while the reference solution is based
on a hyperelastic material model. Furthermore, no mesh movement in the fluid using the
Arbitrary-Lagrangian-Eulerian framework has been considered here. This can be consid-
ered as the reason for the small deviations between the displacement in x2 direction as
well as the lift force from the reference solution.

This example demonstrats that the Houbolt method for the time discretization of the solid
formulation can be combined without difficulty with the Houbolt and Crank-Nicolson
schemes for the fluid domain. The presented approaches apparently showed no stability
problems for the considered fluid-structure interaction problem.
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8.2.2 Channel with flow over a wall

The second numerical example to investigate the mixed SV formulations for the simulation
of incompressible flows and elastic solid materials, is a channel flow over an elastic wall
(FOW). The geometric measures and boundary conditions are illustrated in Figure 8.3.
Herein, no-slip boundary conditions are prescribed on the upper and lower walls, i.e.
v = 0, and a parallel inflow at x1 = 0 m is defined as

v(x2, t) =

[
vin(t) 0.15

x2(5.0− x2)

6.25
0

]
. (8.14)

The inflow velocity is linearly increased from vin(t = 0) = 0 m/s up to vin(t = 4) = 1 m/s.
Additionally, pressure associated stress boundary conditions are defined at the outflow
by σ1 · n = 0 with σ1 = [σ11 σ12]T . The material parameters leading to laminar flow
conditions after a transient initial phase are chosen as listed in Table 8.5.

σ1 · n = 0

v = (v̂1, 0)T

x2

x1
v = 0

v = 0

3 1 5

v = 0v = 0

2

3

A

Figure 8.3: FOW - geometry, boundary conditions

Table 8.5: FOW - mat. parameters

Description Value & Unit

Fluid density ρf 1 kg/m3

Viscosity νf 0.01 m2/s

Solid density ρs 1 kg/m3

Young’s modulus E 200 kg/(m s2)
Poisson ratio νs 0.499

The example is evaluated considering different spatial discretization orders, i.e. RT1P2 and
RT3P4, and different time step sizes ∆t = {0.1, 0.01, 0.005} s. A mesh with 294 triangular
elements in the solid domain and 2,281 elements in the fluid domain is selected, resulting
in a number of degrees of freedom of nDOF = 36, 114 and nDOF = 134, 028 for the low-
and high-order element, respectively. For the temporal discretization the Houbolt method
is applied in the solid formulation, whereas the fluid equations are discretized in time
using the Houbolt and Crank-Nicolson scheme, as specified in Section 7.3.

Figure 8.4 presents an example of the evolution of the velocity field, including streamlines,
at different points in time. The solution is obtained with the Houbolt time discretization
method for the solid domain and the Crank-Nicolson scheme for the fluid domain, a
time increment of ∆t = 0.005 s and the element order RT3P4. Note that the steady-state
solution is reached only after a time of about t = 70 s, with a main flow forming above
the wall and a vortex behind the wall. The flow at the outlet is not symmetrical for the
geometry considered and the velocity of the fluid at steady state is greatest in the upper
two-thirds of the domain.

As a comparison value, the displacement at the point A(4, 2) m is measured over a period
up to time t = 100 s. The results for the displacement in x1-direction at t = 100 s are
presented in Table 8.6 and the development over time for the time step sizes ∆t = 0.1 s
and ∆t = 0.005,s is depicted in Figure 8.5.
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T = 100 s

Figure 8.4: FOW - Velocity field |v| at t = [20, 60, 80, 100] s

Table 8.6: FOW - displacement u1 (in m) at point A = (4, 2) m for different element orders
and time increments using two combinations of time discretizations for solid and fluid

Houbolt - Houbolt Houbolt - Crank-Nicolson

∆t RT1P2 RT3P4 RT1P2 RT3P4

0.1 1.06991E-2 6.83221E-3 1.01341E-2 6.57799E-3
0.01 5.43573E-3 5.26811E-3 5.39330E-3 5.25144E-3
0.005 5.30739E-3 5.18737E-3 5.27137E-3 5.17466E-3
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Figure 8.5: FOW - displacement u1(A) (in m) over time t (in s) for different element
orders, time discretization methods and time increments

Both combinations of time discretization methods are stable for all time steps considered
and yield similar results. The two element orders converge with decreasing time step size
up to a displacement of about u1(A) = 0.0052 m, with the high-order element yielding
better results than the low-order spatial discretization also at larger time steps.
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8.3 The fluid formulation with a moving domain

So far, the FSI calculations are based on small deformations in the solid domain Ωs, thus
also the fluid domain Ωf does not undergo large changes. In order to perform simulations
with large displacements in both regions and to be able to simulate real interactions, the
fluid domain needs to be capable of moving. For this purpose, the background mesh in
the fluid domain, which is introduced as a third domain Ωm, also needs to be calculated.
Additionally, the displacements or velocities of this mesh must be taken into account
in the governing equations of the fluid. This is achieved by introducing the Arbitrary-
Lagrangian-Eulerian framework.

8.3.1 The Arbitrary-Lagrangian-Eulerian framework

This approach is based on a combination of the two classical descriptions of motion in con-
tinuum mechanics, which are the Lagrangian and the Eulerian description as explained in
Section 2.1.2. To illustrate the correlation between the different configurations Figure 2.1
can be extended. For the application of the ALE framework, an arbitrary reference domain
Ω̂ is introduced, as shown in Figure 8.6. This domain consists of a set of reference points
Q̂ and in general it depends on time. Furthermore, additional mappings Φt : Ω̂ → Ω0

and φt : Ω̂ → Ωt are defined, which are assumed to be invertible and differentiable. The
mixed ALE form was developed with the objective to use the advantages of both classical
methods while minimizing the disadvantages, see Donea et al. [132]. The basic ideas of
the ALE framework are presented by, e.g., Hirt et al. [197] and Hughes et al. [207].

Ω0

Ωt

B
P

χtχ0

ϕt

Φt
φt

Ω̂ ALE

Q0

Qt

Q̂

initial actual

configuration configuration

Figure 8.6: Different configurations and related mappings

Basic advantages of a Lagrangian description of motion, where the nodes of the mesh
follow the moving material particles, see Figure 8.7(top), are the simple handling of free
surfaces and interfaces and a straightforward treatment of materials with time-dependent
constitutive relations. However, the method has the disadvantage that large distortions of
the considered continuum require additional relocation of the mesh. In case of an Eulerian
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description in which the mesh remains fixed, see Figure 8.7(center), and the material
deforms independently, large deformations of the material can be handled without the
requirement of constructing new meshes. However, a precise definition of interfaces is
difficult. With the introduction of an arbitrary reference domain in ALE description, the
mesh can take an arbitrary deformation. The relation between the Eulerian, Lagrangian
and mixed ALE framework is illustrated in Figure 8.7. Therein, the boundary of the
domain is defined as Lagrangian, as it usually applies e.g. to the fluid-structure interface
in FSI problems.

ALE description

material point

mesh node

particle motion

mesh motion

t

t

t

Lagrange description

Eulerian description

Figure 8.7: Mesh and material motion in Lagrangian, Eulerian and ALE description in
1D with Lagrangian boundary in ALE description, according to Donea et al. [132]

The ALE description was initially developed for the application in the scope of fluid-
structure interaction problems, see e.g. Hughes et al. [207] and Donea et al. [131].
However, the advantages of this method have long been exploited in a wide range of
areas whenever partial differential equations are to be solved on deforming domains.
For example, the ALE framework is commonly applied in solid dynamics when large
deformations occur as in the context of metal forming processes, see Haber [176],
Schreurs et al. [340], Gadala and Wang [160], Askes et al. [6], for instance.
There are various investigations in the field of fluid dynamics with different focuses,
such as the preservation of the accuracy of higher order time integrations or the han-
dling of free boundaries, to be found e.g. in Fullsack [159], Duarte et al. [134] and
Étienne et al. [141].
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Considerable research on the application of the ALE description within FSI problems
addresses issues such as different techniques for computing the mesh motion and han-
dling large deformations without leading to self-penetrating elements or irreversible
distortions in the mesh. A small selection of interesting works on these topics from
the beginning of the 21th century is provided, e.g., by the following publications of
Kjellgren and Hyvärinen [239], Behr and Arora [34], Geuzaine et al. [166],
and Wall et al. [410]. More recent studies with a focus on approaches considering an
additional phantom domain, extended hyperelasticity formulations, or mesh-Jacobian-
based stiffening (MJBS) include, for instance, Wick [415], Bazilevs et al. [29],
Hilger et al. [195], Takizawa et al. [379], and Shamanskiy and Simeon [357].
Further detailed descriptions of mesh moving methods can be found in, among
others, Donea et al. [132], Bazilevs et al. [27], Souli and Benson [367] and
Richter [329].

In the following, all necessary components for the calculation of FSI problems with large
deformations will be explained. For this purpose, the fluid formulation in the ALE kine-
matics description is introduced first. Then the employed technique for the calculation of
the mesh motion is presented.

8.3.2 Stress-velocity fluid formulation in ALE description

The incompressible Navier-Stokes equations in the ALE description can be constructed
based on (2.70) by adding a convective term considering the difference between the velocity
of the fluid and the reference frame, i.e. the velocity of the background mesh. The resulting
system of equations reads

ρf a+ ρf∇v · (v − v̂)− 2ρfνf div(∇sv) +∇p− f = 0 , (8.15a)

div v = 0 . (8.15b)

Therein, a = ∂v
∂t

denotes again the acceleration vector, v the velocity vector, p the pres-
sure, ρf and νf the fluid density and viscosity, and v̂ the mesh velocity. The given equation
system is transformed into a first-order system, similarly as in Section 4, by introducing
the Cauchy stresses as additional variables and eliminating the pressure. The resulting
functional in terms of stresses and velocities reads

FFALE(σ,v) =
1

2

(
||ωf1 (ρfa(v)− divσ + ρf∇v · (v − v̂)− f)||2L2(Ωf )

+ ||ωf2 (devσ − 2ρfνf∇sv)||2L2(Ωf ) + ||ωf3 (div v)||2L2(Ωf )

)
,

(8.16)

with appropriate positive weighting factors ωf1, ωf2 and ωf3. This formulation is also
presented in Averweg et al. [8], with its application in combination with a linear elastic
solid formulation to solve a quasi-stationary FSI problem. For the solution of dynamic
FSI problems, the accelerations can be approximated using various time discretization
schemes as explained in Section 7.3, for instance. The construction of the first and second
variations of the functional with respect to the unknowns, which are required to solve the
minimization problem, are built in the same way as given in Section 4.2. The mesh velocity
and displacement, which is relevant to determine the new fluid reference configuration,
can be computed using a number of different techniques as outlined in the following.
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8.3.3 Mesh motion techniques

For FSI calculations which are based on the ALE framework it is important to choose an
appropriate mesh motion approach to compute the background mesh in the fluid domain.
A suitable mesh motion technique has to satisfy certain characteristics, i.e.

• The mesh has to comply with the structure displacement at the FSI interface, such
that û = us and v̂ = vf = vs on Γi, with û and v̂ denoting the mesh displacements
and velocities, respectively.

• Inside the domain it can have an arbitrary shape as long as no element is inverted,
i.e. Jm = detFm = det(I +∇û) > 0.

• For long-term studies accumulation of mesh distortion occurring in path-dependent
approaches should be avoided.

There are several approaches to mesh updating in the literature based on different tech-
niques. In general, a distinction can be made between mesh moving and re-meshing. Both
operations are often applied in combination with the main goal to shift the mesh nodes
as long as possible and then to re-mesh them when the distortion is too large. In case
of re-meshing of a region, there is a rearrangement of the elements and possibly even of
the nodes. The process can lead to some disadvantages that are important to consider.
First, a projection error can occur when transferring the solution from the old to the new
mesh. Furthermore, frequent re-meshing can lead to high computational costs if the entire
domain is always regenerated. In the context of this work, re-meshing is avoided and the
focus is on a mesh movement that is as smooth as possible.

Various techniques can be chosen to calculate the displacement of the mesh nodes.
For example, a rather simple way is to solve an auxiliary Laplace problem such
that the displacements within the domain are defined as a harmonic extension of the
known boundary values to the fluid domain, see for instance Wu and Cai [425] and
Formaggia et al. [152]. However, this approach usually does not provide good results
for large deformations at the fluid-structure interface and is thus limited to simulations
with small mesh deformations. The solution of the biharmonic equation allows to model
also large deformations since it is more regular, refer to e.g. Richter [327], Wick [415]
and Shamanskiy and Simeon [357]. However, this method usually comes with higher
computational cost.

Another common approach is to solve an additional linear elasticity equation, see
Sackinger et al. [333], sometimes in combination with a Jacobian-based stiffen-
ing, to assign higher stiffness to the smaller elements, which are generally lo-
cated close to the interface. This method is used among others for example in
Johnson and Tezduyar [224] and Stein et al. [372]. A similar method is utilized
by Suito et al. [376] and Takizawa et al. [379], for instance, except that instead of
the equations for linear elasticity, hyperelastic material behavior is assumed for the mesh.
Authors Hilger et al. [195] also investigate an elastic approach for mesh deformation
and introduce additionally a new method based on a mesh phantom domain. Thus, the
mesh deformation is not limited to the domain of the fluid but can move beyond it,
allowing large deformations to be simulated without re-meshing.
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In the scope of this thesis, the mesh motion in the interior of the fluid domain is governed
by the equations of linear elasticity with an additional local stiffening, as described in the
next sections.

8.3.4 Mesh motion based on linear elasticity with local stiffening

Considering the mesh domain Ωm ∈ Rd bounded by ∂Ωm, the governing equations to
model the behavior of the mesh based on the balance principles read

divσm + f = 0 on Ωm , (8.17)

with the Cauchy stresses σm and an external force f . The stresses are defined by the con-
stitutive equations for linear elasticity as given in 2.4.2. For a straightforward application
of the mesh boundary conditions at the interface between the solid and the fluid domain,
the velocities are chosen as unknowns for the mesh equations, in accordance with the LS
formulations. Thus, the Cauchy stresses are defined using Hooke’s law as

σm = λm tr(∇sum(vm)) I + 2µm∇sum(vm) (8.18)

with pseudo-material parameters as the first and second Lamé constants λm and µm,
and the mesh displacement and velocity in the fluid domain denoted by um and vm,
respectively. Considering that there are no tractions applied to the mesh and therefore
omitting Neumann-type boundaries, the domain Ωm is bounded by

∂Ωm = ∂ΩDm ∪ Γi and ∂ΩDm ∩ Γi = ∅ . (8.19)

Meaning that the boundary is composed of the subset Γi representing the fluid-structure
interface and the remaining part defined as ∂ΩDm, where both subsets are Dirichlet-type
boundaries. Therefore, the corresponding boundary conditions are specified as

vm = vf = vs on Γi (8.20a)

vm = vD on ∂ΩDm . (8.20b)

Remark: Due to a convenient implementation, the mesh boundary conditions at the
interface are always based on the solution of the last time step. Considering a time dis-
cretization method, the boundary conditions thus correspond in semi-discrete form to
vn+1
m = vnf = vns on Γi.

For the mesh domain a standard Galerkin variational approach is applied. Assuming, that
no external forces exist and that no traction boundary conditions are applied, the weak
form of the linear elasticity problem consists of finding vm ∈ H1(Ωm)d such that∫

Ωm

σm(vm) : ∇sδum dV = 0 ∀ δum ∈ H1(Ωm)d , (8.21)

where δvm is a test function fulfilling δvm = 0 on ∂Ωm ∀ δvm ∈ H1(Ωm)d. For the
discretization in space Lagrange interpolation functions with equivalent order as those
for the velocities in the solid and fluid domains are selected. The approximation space
V := H1(Ωm) is defined as

Vk := {vm ∈ H1(Ω)d : vm|Ωe ∈ Pk(Ωe)
d ∀ Ωe ∈ Ωm} ⊆ V , (8.22)
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where Pk denote Lagrange interpolation functions of order k on triangles in d = 2 or
tetrahedrals in d = 3. The discretization in time is performed with the same time in-
tegration procedure as used in the solid domain, such that the correlation between the
displacements and the actual velocities is defined by one of the terms given in Section 7.3.

Local stiffening
For the approach based on linear elasticity, the mesh motion can be controlled with the
help of the pseudo-material parameters, which enables to vary the stiffness of each mesh
element individually. In the following example, changes in the modulus of elasticity Em
and Poisson’s ratio νm are considered, from which the Lamé constants are determined as

λm =
Em νm

(1 + νm)(1− 2νm)
and µm =

Em
2(1 + νm)

(8.23)

The Young’s modulus of each element can be modified by multiplication with different
factors, depending, for example, on the deformation, the quality of the elements, the
compression and the element size. With an initial modulus defined as Ee

m,0, which may
be the same or varying throughout the domain Ωm, the elastic modulus for each element
at time tn+1 is then given as

Ee
m(tn+1) = Ee

m,0

b∏
i=1

f ei (tn+1) , (8.24)

where a number of b affecting quantities are taken into account. Another commonly
used approach especially in combination with linear elastic mesh equations is the mesh-
Jacobian-based stiffening (MJBS), first introduced in Tezduyar et al. [388]. In this
case, the Jacobi determinant in the integral of the mesh equations is either dropped or
the degree with which it enters the integrals is adjusted. Different schemes exist in which
either the Jacobi matrix of the transformation from the parameter space to the physical
space is used for scaling, or the determinant of the deformation gradient. When omit-
ting the Jacobi determinant of the transformation matrix J e = (∂X/∂ξ)e, this can be
interpreted as a local change of the elasticity modulus defined as

Ee
m =

Ee
m,0

detJ e
. (8.25)

This version of the MJBS leads to a stiffening of smaller elements compared to larger
ones, which is usually very appropriate, since elements near the interface where large
deformations occur are typically smaller. To account for the deformation of mesh elements,
the determinant of the deformation matrix F e = (∂x/∂X)e can be used for scaling the
Young’s modulus, as presented e.g. in Richter [329], which reads

Ee
m =

Ee
m,0

detF e
or Ee

m = Ee
m,0

(
detF e +

1

detF e

)
. (8.26)

This leads to an increase in element stiffness when Je = detF e approaches zero, and
in the second term also when Je becomes large. If instead one uses the transformation
matrix from the parameter space to the deformed configuration, such that

Ee
m =

Ee
m,0

det je
with je = (∂X/∂ξ)e , (8.27)



144 LSFEM for dynamic fluid-structure interaction problems

then both the different initial size of the individual elements is taken into account and
the change in element size due to the deformation. For more details on the MJBS
reference is made to, e.g., Johnson and Tezduyar [224], Stein et al. [372] and
Takizawa et al. [379].

Mesh quality
In the subsequent section, different approaches for local mesh stiffening are compared.
To evaluate the effectiveness of the various mesh moving techniques, a measure of mesh
quality is introduced as in Zavattieri et al. [428], which is defined for triangles in 2D
as

Qe = C
Ae
P 2
e

. (8.28)

Here, Ae is the element area, Pe the perimeter of the element, and C is a constant to render
the quality of equilateral elements equal to one, which is C = 20.784619 for triangles.

8.4 Numerical examples: Mesh motion and fluid in ALE description

With an appropriate mesh motion technique and the reformulation of the fluid equations
in an Arbitrary-Lagrangian-Eulerian framework, to handle a changing shape of the fluid
domain, the presented LS approach is applicable to model large deformations, which is an
indispensable requirement to address real world fluid-structure interaction problems. In
this section, numerical investigations are presented that address the search for appropriate
local stiffening methods to enable smooth mesh deformation and a verification of the ALE
formulation for fluids.

8.4.1 Dynamic flag with large deformations in moving mesh domain

The next example is designed to find approaches that allow the largest possible defor-
mations without re-meshing. For this purpose, the factors for the local stiffening of the
mesh given in (8.24) are investigated as well as mesh-Jacobian-based stiffening and also
combinations of both. The underlying geometry is the same as presented in Figure 8.2,
except that in this case only the solid flag is modeled surrounded by a linear elastic mesh,
i.e. without the calculation of the fluid domain, such that Ω = Ωs ∪ Ωm, see Figure 8.8.
The material behavior in the solid domain is defined by the LS stress-velocity formulation
for hyperelasticity given in (6.16) and the mesh domain is solved with the variational
approach for linear elasticity stated in (8.21). In this example, the physical weights in
(6.16) are chosen such that

ωs1 =

√
∆t

ρs
, ωs2 =

√
1

µs∆t
, ωs3 = 1 , (8.29)

with the solid density ρs, the shear modulus µs and the time step size ∆t. The boundary
conditions for the solid and mesh domain are illustrated in Figure 8.8. The mesh velocities,
here denoted with vm, are set to zero at all outer edges and at the cylinder. The flag is
fixed at the left end and the remaining edges have stress-free boundary conditions, i.e.
σ·n = 0. Additionally, the mesh velocity is prescribed according to (8.20a) at the interface
of the mesh and solid domain defined by Γi = ∂Ωs ∩ ∂Ωm.
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Figure 8.8: Flag in mesh domain - geometry and boundary conditions (unit m)

The choice of this numerical study is mainly motivated by the fact that the same geometry
will be used later to compute a fully coupled dynamic FSI benchmark problem. This
study is performed before the fully coupled analysis, which is computationally much more
expensive, to ensure that the mesh motion is regular and that no excessive distortions
appear. In order to create a large deformation in the mesh, the solid material parameters
are chosen from the solid benchmark example in Turek and Hron [396], named as
CSM3, and stated in Table 8.7. In this case, the elastic flag undergoes vibrations due
to an applied body force and reaches a maximum and minimum vertical displacement
of about umax

2 = 1.55 · 10−3 m and umin
2 = −1.29 · 10−1 m at the tip (point A in Figure

8.8). The overall deformations that occur in the solid body in this example are larger
than those arising later in the dynamic FSI example. Therefore it is assumed that a mesh
configuration that leads to a mesh with good quality in this example is also suitable for
the FSI problem.

Table 8.7: Flag in mesh domain - material parameters according to the dynamic bench-
mark problem CSM3 from Turek and Hron [396]

Description Value Unit

Solid density ρs 1.0 ·103 kg/m3

Young’s modulus Es 1.4 ·106 kg/(m s2)
Poisson ratio νs 0.4 −
Body force f (0, -2.0)T kg/(ms)2

Poisson ratio mesh νm 0.3 −

For the discretization in space, vector valued Raviart-Thomas interpolation functions
with order m = 1 and for the velocities Lagrange polynomials with k = 2 are chosen,
leading to the solid element denoted as RT1P2. The mesh velocities are approximated
with Lagrange interpolation functions of the same order as for the solid velocity field. In
this study, the mesh displacement is investigated for three different mesh levels with the
number of elements being 72, 128 or 512 in Ωs and 889, 1612 or 6018 in Ωm. The first
mesh is presented exemplarily in Figure 8.9. The discretization in time is performed with
a second-order Runge-Kutta scheme denoted as ESDIRK-2 and given in Section 7.3, using
a time step size ∆t = 0.01 s. A stopping criterion is implemented, such that calculations
are automatically aborted as soon as the quality of an element, defined in (8.28), becomes
less than zero.
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Figure 8.9: Flag in mesh domain - mesh level 1 with 72 solid elements in Ωs and 889 mesh
elements in Ωm in undeformed configuration (unit m)

Approach 1: uniform Em on Ωm

In a first attempt, the element stiffness is not modified locally, and a global elasticity
modulus of Ee

m = 1 kg/(m s2) is set on the entire domain Ωm. With this choice, the
computation aborts at t = 0.31 s at which point the mesh deformation takes the form as
illustrated in Figure 8.10 (left), where a detail of the domain is presented with 0.15 <
x1 < 0.8 and x2 < 0.25. It is visible that the elements close to the tip of the flag where
the largest solid displacement occurs are extremely compressed. This is also reflected in
the quality of the individual elements which is shown in Figure 8.10 on the right. The
quality of most elements in the domain exceeds Qe > 0.75. However, in areas where large
deformations are present, especially directly at the interface, the quality decreases. This
reveals, that if the mesh parameters are constant over the entire mesh domain only FSI
problems with moderate solid motions can be solved without re-meshing. Mesh elements
close to the fluid-structure interface should have a higher stiffness, than elements further
from the interface in regions with less movement of the background mesh.
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Figure 8.10: Flag in mesh domain - plot of deformed mesh with global elasticity modulus
Ee
m = 1 kg/(m s2) (left) and quality of elements (right) at t = 0.31 s

Approach 2: locally defined Emi on Ωmi with i = {1, 2, 3}
For a first attempt to vary the stiffness locally, the mesh domain is divided into three
regions with different elastic moduli. The following divisions are selected depending on
the total number of elements nele:

Ωm1 := all mesh elements in contact with the solid → Em1

Ωm2 :=


{0.235 < x1 < 0.67 & 0.09 < x2 < 0.3} \ Ωm1 if nele = 961

{0.235 < x1 < 0.65 & 0.125 < x2 < 0.28} \ Ωm1 if nele = 1740

{0.245 < x1 < 0.62 & 0.158 < x2 < 0.242} \ Ωm1 if nele = 6530

→ Em2

Ωm3 := Ωm \ {Ωm1 ∪ Ωm2} → Em3
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The partitioning of the domain Ωm is depicted in Figure 8.11 (left) as an example for
mesh level 1. Different combinations of Young’s moduli are investigated and compared.
Presented here are example results for Emi = {10, 5, 1} kg/(m s)2. The simulation with
this set of parameters is not aborted caused by a quality measure of Qe < 0. Nevertheless,
at the time of the largest displacement of u2(A) at about t = 0.5 s it is clearly visible that
the elements in the region Ωm3, in which the specified stiffness is the lowest, are strongly
compressed and also the quality decreases significantly, see Figure 8.11 (right).
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Figure 8.11: Flag in mesh domain - plot of deformed mesh (left) and quality of elements
(right) with different E-moduli Emi = {10, 5, 1} kg/(m s)2 at t = 0.5 s

The distortion of the mesh can be influenced and thus the quality slightly improved,
by different choices of elasticity moduli. To compare several parameter sets, the quality
over time for different combinations is sketched in Figure 8.12 (left). In each time step
the quality of the worst element is considered. It is shown that depending on the stiffness
distribution, the minimum quality at the time of the largest displacement around t ≈ 0.5 s
and t ≈ 1.4 s is modified little or, in case of a poor choice, the calculation stops due to
elements with a negativ quality measure, i.e. Qe < 0. This method has a limited practical
usability, especially since the values have to be readjusted depending on the mesh and
the magnitude of the maximum deformation.
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Figure 8.12: Flag in mesh domain - quality measure Qe over time for different combinations
of E-moduli (left) and additional scaling with f eQ (right)

Approach 3: local stiffening based on element quality
In a next test, a factor is simply defined based on the quality of the elements. This
increases the Young’s modulus in each element as the quality decreases, see (8.24), in
the way that Ee

m = Ee
m,0 f

e
Q. The underlying function for the factor f eQ depending on the

quality Qe is given by

f eQ = min

[
1

Qe

, fmax
Q

]
(8.30)

and the course is shown in Figure 8.13 (left). Thereby an upper limit is defined with fmax
Q .

The initial Young’s modulus is prescribed on the entire domain as Ee
m,0 = 1 kg/(m s2).
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With the maximum factor chosen between fmax
Q = [2, 10] the computations are aborted

between 0.35 < t < 0.43 s, because a minimum quality below zero occurs. With this
approach, using only the factor f eQ to control the stiffness, no variant is found in which
the calculation with mesh level 1 succeeded without being aborted.
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Figure 8.13: Flag in mesh domain - factor to increase stiffness depending on quality (left)
and resulting distribution of E-modulus on deformed domain at t = 0.39 s with fmax

Q = 5

The underlying reason is well visible in Figure 8.13 (right). Increasing the stiffness only
based on the quality of the individual elements leads to a too unbalanced distribution of
the E-modulus. With this method, neighboring elements can have an extremely different
stiffness, leading to frequent overlapping of the elements. However, the scaling based on
the element quality can provide an improvement of element deformation if additionally the
stiffness is specified separately in individual regions as described in the second approach.
This is visible by evaluating Qe over time in Figure 8.12 (right) In this diagram, results
for different factors fmax

Q are plotted where the elastic moduli in the subdomains are
set to Emi = {5, 2, 1}. In addition, the figure includes the curve of Qe when the initial
modulus is uniform and only a stiffening with the factor fQ is applied. One can see that
the first calculation are terminated because the minimum element quality is below zero.
By increasing the influence of f eQ, the measure of the quality in the worst element can be
improved, up to a certain level.

Approach 4: local stiffening based on element displacement
A more uniform distribution of stiffness than in the last examples can be achieved if a
local factor is determined based on the displacement of each element. For this purpose,
the following functions are used in a further analysis

f eu,lin = min

[
(1 + fmax

u ) ·
(
uemax

unmax

)
, fmax

u

]
, (8.31a)

f eu,exp = min

[
(fmax
u )̂

(
uemax

unmax

)
, fmax

u

]
, (8.31b)

with a linear and an exponential course as depicted in Figure 8.14 (left). Within this
function uemax = max(uI1, u

I
2) denotes the maximum displacement of the nodes within the

considered element, which is scaled by the maximum displacement unmax of the last time
step on the entire domain Ωm, and the factor fmax

u defines again the upper bound of the
local factor.

A linear influence of the displacement on the stiffness is insufficient to avoid highly dis-
torted elements. All calculations in which the E-modulus is scaled by f eu,lin, with a choice



LSFEM for dynamic fluid-structure interaction problems 149

0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 AceFEM
-0.201e-2
Min.
0.9999
Max.

Qe

0.463
0.557
0.651
0.746
0.840
0.934

Figure 8.14: Flag in mesh domain - factor to increase stiffness depending on displacement
(left) and quality of elements with linear scaling and fmax

u = 20 at t = 0.38 (right)

of fmax
u ∈ [2, 50], are terminated before the maximum flag deformation is reached due to

the stopping criterion Qe < 0. Figure 8.14 (right) illustrates the quality of the distorted
mesh with fmax

u = 20 at the time of termination t = 0.38 s. The triangles surrounding the
tip of the flag are strongly skewed.

Increasing the stiffness based on an exponential function of the displacement yielded the
curves of the quality measure over time shown in Figure 8.15 (left). The graph shows
that only for a limited range of the maximum factor fmax

u ∈ [20, 30] acceptable results
are obtained without damage in the mesh. This study reveals on the one hand that a
linear influence of the displacement on the stiffness is too small, on the other hand that
the effect can be improved by an exponential function, although this too is very limited.
Thus, the application of this scaling alone is not suitable to solve problems with large
mesh deformations. Even though the distribution of stiffness over the domain appears
reasonable, see Figure 8.15 (right), with higher values where large deformations occur and
a modulus of elasticity close to one where no deformations occur. This plot presents the
deformed configuration at t = 0.5 s obtained with an exponential scaling and fmax

u = 20.
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Figure 8.15: Flag in mesh domain - quality measure Qe over time for exponential scaling
with f eu,exp (left) and E-modulus on deformed domain at t = 0.5 s with fmax

u = 20

Approach 5: mesh-Jacobian-based stiffening (MJBS)
A further study examines stiffening based on the transformation matrices of the mesh,
where the modulus of elasticity is scaled either by the determinant of J e = (∂X/∂ξ)e or
je = (∂x/∂ξ)e, see (8.25) and (8.27), respectively. In the first variant, the stiffness of the
individual elements is thus simply determined depending on their initial size, and in the
second, the change in volume of the individual elements is also taken into account. Thus,
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the local elasticity modulus in each element is defined as

Ee
mJ = Ee

m,0 · f eJ with f eJ =
1

detJ e
(8.32a)

or Ee
mj = Ee

m,0 · f ej with f ej =
1

det je
. (8.32b)

This approach has been tested for all three mesh levels. The evolution of the quality
measure over time is presented in Figure 8.16 (left). Notice that in both variants for the
first and second mesh the minimum element quality remains greater than 0.2. For the
first mesh a significant improvement is visible at the times of maximum solid deformation
when the volume change of the elements is taken into account, i.e. with Eq.(8.32b). In case
of the finest mesh the calculation even aborts if in the scaling of the Young’s modulus the
deformation is neglected, i.e. when using (8.32a). The explanation for this is apparent in
Figure 8.16 (right), which shows the element quality on the deformed domain at the time
of collapse at t = 0.47 s. In the lower region where the elements are relatively large, and
therefore the stiffness scaled by f eJ comparably low, the elements are strongly compressed.
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Figure 8.16: Flag in mesh domain - quality measure Qe over time for both MJBS ap-
proaches (left), and element quality on deformed mesh 3 at t = 0.47 s with Ee

mJ (right)

Conclusion:
In general, local stiffening of elements is required to account for large deformations in
the mesh domain without the need for re-meshing due to overly distorted elements. The
modulus of elasticity can be determined individually based on various functions in each
element. For example, the influencing variable can be a defined quality measure, the
deformation or change in volume or area. In the considered example, stiffening based
on the determinant of the transformation matrix to the current configuration (8.32b)
proved to be the most effective approach. However, a combination of a mesh partitioning
with different predefined E-moduli, and additional application of factors for local stiffening
based on element quality and displacement yielded satisfactory results for the finest mesh.
The resulting mesh deformations at time t = 0.5 s, where the maximum flag deflection
occurs, are presented in Figure 8.17. In both versions, the total deformation of the mesh
is distributed very regularly among the individual elements. This is also reflected in the
quality measure Qe. The distribution of this quantity over the entire mesh domain in
Figure 8.18 shows that even at the time of the largest deformation for the finest mesh,
the quality of the individual elements remains acceptable.
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Figure 8.17: Flag in mesh domain - deformed configuration of mesh level 3 and solid
displacement at t = 0.5 s, left: combination of different factors with fmax

u = 5, fmax
Q = 2,

Emi = {5, 2, 1} , right: stiffening with MJBS (8.32b)
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Figure 8.18: Flag in mesh domain - quality measure with mesh level 3 at t = 0.5 s, left:
combination of different factors with fmax

u = 5, fmax
Q = 2, Emi = {5, 2, 1}, right: stiffening

with MJBS (8.32b)

8.4.2 Channel flow with moving background mesh

Before the presented LS stress-velocity fluid formulation in ALE description (4.17) is
applied to coupled FSI problems, a simple channel flow with a moving background mesh
is calculated for verification. The mesh is solved based on the equations for linear elasticity
given in 8.3.4. The problem with the domain Ωf = Ωm = [0, L]×[0, H], as shown in Figure
8.19, consists of a straight channel with a parabolic inflow in x1-direction given by

v̂f (x2, t) = 1.2
(H − x2)x2

H2
λv(t) , (8.33)

which is applied depending on time with the following function

λv(t) =

{
sin [0.5π t] if t ≤ 1 s

1 if t > 1 s
. (8.34)

The height and length of the geometry are chosen as H = 0.5 m and L = 1 m. The top and
bottom walls have no-slip boundary conditions and at the outflow the stress component
is defined as σ1 ·n = 0. The mesh is fixed at all outer edges, i. e. vm = 0. A displacement
in x2-direction is imposed on the horizontal centerline to generate a deformation of the
background mesh. The function, which is applied to all nodes between 1

8
L ≤ x1 ≤ 7

8
L is

ûm(x1, t) =

(
0.09074− 1.659x1

L
+

9.244x2
1

L2
− 15.17x3

1

L3
+

7.585x4
1

L4

)
λu(t) , (8.35)

and is constructed in such a way that the slope at the edge is very small and gradually
increases toward the center of the channel. Additionally, the change over time is defined
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by a sinus function given by λu(t) = sin [0.5π t]. The obtained function as a function of
time and spatial x1-coordinate can be seen in Figure 8.20 for the range L/8 < x1 < 7/8L
and the time interval 0 < t < 10 s. The material parameters for the fluid and the mesh
are defined as listed in Table 8.8.

H
σ1 · n = 0

vf = (v̂f , 0)T

x2

x1

vf = vm = 0

u2 = ûm

L/8 L/8

vm = 0

vm = 0

vf = vm = 0

(3/4)L

Figure 8.19: Channel ALE - geometry and boundary conditions

The domain is discretized in space by a structured grid with a partition 16× 32, leading
to 1024 triangular elements of order RT1P2 in Ωf and of order P2 in Ωm. For the time
discretization the second-order Runge-Kutta scheme denoted as ESDIRK-2 and presented
in Section 7.3 is used.

Figure 8.20: Channel ALE - function
ûm(x1, t) for mesh deformation over time

Table 8.8: Channel ALE - parameters

Description Value & Unit

Fluid density ρf 1 kg/m3

Viscosity νf 0.001 m2/s

Mesh elasticity Em 1 kg/(m s2)
Mesh Poisson ratio νm 0.3

To validate the SV fluid formulation in ALE description, several quantities are evaluated
over time while the mesh is moving. On the one hand, the flow velocity of the fluid in
x1-direction in the center of the domain at x = (0.5, 0.25) m is measured. On the other
hand, the enstrophy Z and kinetic energy E in the domain at each instant are calculated.
These are defined as

Z =
1

2

∫
Ωf

ω2 dV =
1

2

∫
Ωf

(∇× v)2 dV (8.36)
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and

E =
1

2

∫
Ωf

ρf |v|2 dV , (8.37)

where ω denotes the vorticity, computed as the curl of the velocity vector. The evolution
of all quantities over time is shown in Figure 8.21, where the kinetic energy has been
increased by a factor of 50 for better visualization. Furthermore, the mesh displacement
in x2-direction in the center of the domain is depicted, reflecting the applied sinusoidal
function. In the graph it is clearly visible that the course of the fluid quantities remains
unaffected by the deformation of the background mesh. This can also be observed in the
illustration of the velocity field distribution in Figure 8.22, in which the contour lines
remain unchanged regardless the mesh deformation.
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Figure 8.21: Channel ALE - evolution over time of fluid velocity v1 and mesh displacement
u2 at (L/2, H/2), enstrophy Z and kinetic energy E over domain Ωf
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Figure 8.22: Channel ALE - distribution of fluid velocity v at t = 5 s (left) and t = 7 s
(right) with deformed background mesh (unit m/s)

8.5 Numerical examples: Dynamic FSI problems with large deformations

In the previous sections, the necessary elements for the computation of monolithically cou-
pled dynamic FSI problems using the mixed least-squares FEM have been derived and
verified independently. Moreover, the basic coupling of the stress-velocity formulations
for the fluid without consideration of a moving domain and the solid for linear elastic-
ity has already been tested. Without the possibility of deformation in the fluid domain,
only examples with small deformations could be solved. For the numerical solution of
FSI problems with large deformations, the motion of the fluid domain must be consid-
ered. Therefore, the LS stress-velocity fluid formulation in Arbitrary-Lagrangian-Eulerian
description and suitable approaches for the computation of the background grid were
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presented and tested in previous sections. This section aims to combine the approaches
tested separately and to study the coupling by means of examples.

In a first step, the coupling of the fluid ALE functional and the SV solid functional for
linear elasticity is tested by evaluating a channel flow with elastic contracting wall. This
combination enables the solution of FSI problems with large deformations in the fluid
domain, but is valid only for small strains in the solid domain. In order to compute in-
teraction problems considering also large strains, the fluid ALE formulation is coupled in
a next step with the stress-velocity formulation for hyperelasticity. As a final example,
the flow around a cylinder with an attached flag undergoing large deformations is ana-
lyzed. Various time integration methods are applied to solve this complex problem, with
attention to higher order methods and the use of adaptive time stepping.

8.5.1 Channel flow with contracting linear elastic walls

The first numerical example in this section serves as a first test to couple the SV fluid
formulation in an ALE framework (4.17) with moving background mesh to the SV solid
formulation for linear elasticity (6.3). The mesh deformation is considered by solving the
equations of linear elasticity given in 8.3.4. Thus the resulting least-squares functional for
fluid-structure interaction problems considering a moving fluid domain, but with restric-
tion to small strains in the solid regime is given by

FFSI(σ,v) = FFALE(σ,v) + FLE(σ,v) . (8.38)

The weighting factors for the residual terms in the fluid and solid formulation in this
example are chosen as

ωf1 =

√
∆t

ρf
, ωf2 =

√
1

ρfνf
, ωf3 = 1 , ωs1 =

√
∆t

ρs
, ωs2 =

√
µs
∆t

. (8.39)

The considered domain consists of a rectangular mesh-fluid region Ωf = Ωm bounded
at the top and bottom by a solid region Ωs, as illustrated in Figure 8.23. The fluid has
no prescribed inflow, but zero normal stress at the right and left boundary. A flow is
created by compressing the fluid area through movement of the upper and lower solid
walls. Therefore, a time dependent velocity in vertical direction is applied to the solid
boundary according to

v̂s(x1, t) = (0.32x2
1 − 0.32x3

1 + 0.08x4
1) λv(t) , (8.40)

with the sinusoidal function
λv(t) = sin[0.5 π t] . (8.41)

On the left and right boundary, the solid as well as the mesh are fixed. In addition to the
inherent fulfillment of the fluid-solid coupling conditions at the interface Γi for velocities
vs = vf and tension vector σs ·n = σf ·n, the mesh velocities are prescribed based on the
velocities of the solid, i.e. vm = vs. For implementation reasons, the known solid values
of the previous time steps are used here. The material parameters for all three domains
are given in Table 8.9.

The time discretization for this example is performed using the second-order Houbolt
method, cf. (7.35), with a constant time step size ∆t = 0.02 s. And for the space, Lagrange
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interpolation functions of order two for the velocities in all domains are used, and vector-
valued Raviart-Thomas interpolations for the stresses in fluid and solid domain, leading
to the elements denoted as RT1P2 (solid, fluid) and P2 (mesh). The calculations are
performed with a mesh consisting of 384 triangular elements in each domain, i.e. 192 in
each solid wall.

vm = 0 H2σ1 · n = 0

vs = 0

x2

x1

vs = (0, v̂s)
T

vm = 0

L

H1

H1

σ1 · n = 0

vs = 0

vs = (0,−v̂s)T

B(L/2, H1 +H2)

A(L/2, H1)

Figure 8.23: Channel contracting - geometry and bound-
ary conditions with L = 2 m, H1 = 0.1 m, H2 = 0.5 m

Table 8.9: Channel contracting
- material parameters

Parameter Value & Unit

Density ρf 1 kg/m3

Viscosity νf 0.002 m2/s

Density ρs 1 kg/m3

Elasticity Es 100 kg/m3

Poisson ratio νs 0.4

Elasticity Em 1 kg/(m s2)
Poisson ratio νm 0.3

To verify the correct transfer of the solid velocities as boundary conditions to the back-
ground mesh of the fluid domain, the velocities as well as displacements in x2-direction
at the midpoint of the upper and lower interfaces are measured over time. The resulting
mesh and solid/fluid quantities measured at points A = (1, 0.1) m and B = (1, 0.6) m are
plotted for a time interval t = [0, 11] s in Figure 8.24. The graphs demonstrate that the
values for the velocities, which are directly applied as boundary conditions to the mesh,
as well as for the displacements, which are calculated by means of the time discretization
method, are in agreement.

0 2 4 6 8 10

-0.1

-0.05

0.

0.05

0 2 4 6 8 10

-0.05

0.

0.05

Figure 8.24: Channel contracting - evolution of displacement (left) and velocity (right)
of solid/fluid (u2, v2) and mesh (um2, vm2) at center points A(1, 0.1) m and B(1, 0.6) m of
lower and upper interface (units m, m/s)

The satisfaction of the interface conditions between fluid and solid domain can be observed
in figures 8.25 and 8.26. In the former, the velocity components at time t = 11 s are
depicted. At that moment, the walls move back towards their initial position, causing
fluid to flow back into the channel. This is reflected in the v1 velocity, with positiv values
on the left half of the channel and negativ ones on the right side. The component in x1-
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direction is much larger in the fluid domain than in the solid, which hardly moves in this
direction. However, the velocity component v2 has a similar magnitude in both domains
with maximum values in the center of the channel consistent with the applied boundary
conditions.
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Figure 8.25: Channel contracting - distribution of velocity components in solid and fluid
domains at t = 11 s (units m/s)

For the stresses, the components σ11 and σ22 are shown as examples in Figure 8.26. Here,
the normal stresses in x1-direction are much higher in the walls than in the fluid. In a
separate representation of the stresses in both domains with individual plot ranges, the
stress component in the fluid domain becomes visible as well. The stress component σ22

at the considered time at maximum compression is highest in the center, as well as at the
edges in the solid area due to the clamping of the walls on the right and left end.
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Figure 8.26: Channel contracting - distribution of stress components in solid and fluid
domains together (top) and normal stress σ11 in both domains separately (bottom) at
t = 10 s (units N/m2)

Remark: This numerical example has demonstrated the basic implementation of the
monolithic coupling of the mixed LS SV formulations including the consideration of a
deformable fluid domain. However, it should be noted that the SV formulation used here
for the solid based on the linear elasticity approach is valid only for small strains. In order
to determine the true stresses in the case of large deformations, e.g. hyperelastic material
behavior must be taken into account.
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8.5.2 Unsteady flow around a cylinder with flag

In the examples considered so far, the assumption of linear-elastic material behavior in
the solid has been made. For the calculation of FSI problems with large strains, this
simplified assumption is not valid. Therefore, the stress-velocity formulation based on
the hyperelastic material behavior according to St. Venant-Kirchhoff type is used in the
following, which is defined in (6.16). The SV fluid ALE formulation given in (8.16) is used
to be able to account for mesh deformations. Thus the resulting least-squares functional
for dynamic fluid-structure interaction problems reads

FFSI(σ,v) = FFALE(σ,v) + FHE(σ,v) . (8.42)

For the solid formulation the Lagrangian description is used with the actual configuration
as reference frame. This is implemented by generating the shape functions, using the
construction rules specified in 3.2, directly in the current configuration with x = X + u.
Thus, the stress degrees of freedom in the solid formulation correspond to the Cauchy
stresses. Consequently, these match the stress degrees of freedom in the fluid formulation,
allowing the coupling conditions (8.6b) to be automatically satisfied by the appropriate
choice of shape functions, as defined in (8.8) and (8.22).

The setup is based on the benchmark problem described in Turek et al. [399] and
Turek and Hron [396] denoted as FSI 2. The geometry and boundary conditions of
this FSI problem are similar to the steady-case problem as depicted in Figure 8.2 in
Section 8.2.1 except for the magnitude of the mean inflow velocity in x1-direction defined
in (8.11). Furthermore, the mesh velocity is set to zero at all outer edges and on the
cylinder, such that all relevant boundary conditions are displayed together in Figure 8.27.
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v = (v̂1, 0)T
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Figure 8.27: FAC-flag (2) - geometry and boundary conditions (unit m)

The material parameters are set equivalent to specification in Turek et al. [399] and
listed in Table 8.10. With the characteristic length of Lch = 0.1 m, corresponding to
the diameter of the cylinder, and the given material and flow parameters, the Reynolds
number is Re = 100. The mesh deformation is considered by solving the equations of
linear elasticity given in Section 8.3.4. For a smooth deformation of the fluid background
mesh local stiffening based on mesh-Jacobian-based stiffening is included. Through this,
the mesh stiffness is determined individually for each element, depending on the current
size of the respective element, with decreasing stiffness as the size increases. As a result,
elements near the fluid-structure interface with an initially smaller area, see Figure 8.28,
and those that are strongly compressed, generally have a higher resistance to deformation,
avoiding strong mesh distortions.
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Table 8.10: FAC-flag (2) - material parameters for FSI2 from Turek et al. [399] and
chosen pseudo-material parameter for linear elastic mesh deformation

Description Value Unit

Mean inflow velocity v̄ 1.0 m/s
Fluid density ρf 1.0 ×103 kg/m3

Viscosity νf 0.001 m2/s

Solid density ρs 10 ×103 kg/m3

Young’s modulus E 1.4 ×106 kg/(m s2)
Poisson ratio νs 0.4 -

Young’s modulus Em 1 kg/(m s2)
Poisson ratio νm 0.3 -

For the following numerical example, the weighting factors are chosen such that the in-
dividual residual terms have the same unit. The units of the individual residuals for the
fluid and solid formulation are[

RF
1

]
=

kg

m2 s2
,

[
RF

2

]
=

kg

m s2
,

[
RF

3

]
=

1

s
,

[
RHE

1

]
=

kg

m2 s2
,

[
RHE

2

]
=

kg

m s2
,

[
RHE

3

]
=

kg

m s2
.

The residuals can all be transformed into the same unit with the resulting unit of the
functional being

[
FFSI

]
=kg/(sm)2, by choosing the following weights

ωf1 =

√
fdtLch
ρfv2

0

, ωf2 =

√
1

ρfνfv0

, ωf3 =
√
LchρfRe ,

ωs1 =

√
fdtLch
ρsv2

0

, ωs2 =

√
1

ρsv0Lch
, ωs3 =

√
1

ρsv0Lch
.

The parameters therein are characteristic quantities, such as characteristic length Lch,
bulk velocity v0, i.e. mean inflow velocity, and Reynolds number Re. In addition, the
choice of time step size is taken into account by the factor fdt = ∆t/∆t0, where the
characteristic step size ∆t0 is chosen as the initial increment for adaptive time stepping.

Remark: Various combinations of weighting factors have been investigated, and the se-
lection presented here provided the best results in terms of stability and accuracy for the
studied problem. Overall, the coupled formulation shows a high sensitivity to the magni-
tude of the chosen weights. As stated also in Rasmussen [321], Rasmussen et al. [323]
and Kayser-Herold [227], especially for complex problems such as monolithic coupled
FSI calculations, the choice of residual weightings is extremely important for the quality
of the solution or even for the solvability of the numerical problem.

The calculations are performed with different mesh refinements generated using Gmsh,
cf. Geuzaine and Remacle [165], and the element of order RT2P3. The grids are con-
structed in a way such that elements close to the interface and the cylinder are smallest
and get larger towards the outer walls. An example mesh is shown in Figure 8.28, where
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the domains are discretized with 257 solid and 2329 fluid triangular elements, respectively.
Table 8.11 summarizes the information on the different meshes, including the number of
elements in the solid as well as the fluid domain, and the number of degrees of freedom.

0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

Figure 8.28: FAC-flag (2) - example meshing generated with Gmsh, mesh level 3 (unit m)

Different integration methods are used for the temporal discretization, always taking
the same method in all domains, i.e. fluid, solid and mesh. The presented approaches
are validated, verified and compared by evaluating the drag and lift forces acting on
the cylindrical cutout as well as on the flag, and the displacements at the right end of
the flag at point A(0.6, 0.2) m to reference values from Turek et al. [397; 399]. With
S = S1 ∪ S2, where S1 denotes the length of the cylinder in contact with the fluid and S2

denotes the interface between the fluid and the solid, the drag and lift forces are defined
as

(FD, FL) =

∫
S

σ · n dS . (8.43)

Table 8.11: FAC-flag (2) - mesh level, number of elements in fluid and solid domain and
number of degrees of freedom (ndof)

level solid fluid ndof

1 100 1018 43,800
2 157 1600 68,418
3 257 2329 100,194
4 484 2811 125,916
5 726 3534 161,622

Verification using the Houbolt method:
In a first step, a mesh convergence study is performed using the Houbolt method, which
is second-order accurate in time. A constant time step size with ∆t = 1.25× 10−3 s and a
maximum time t = 20 s are chosen for all considered mesh levels. The resulting course of
the drag force FD and lift force FL as well as the flag displacement u1 and u2 for the mesh
level 5 is shown in Figures 8.29. For comparison, the minimum and maximum reference
values from Turek et al. [399] are included, showing the agreement of the obtained
results. Furthermore, it can be seen that the flow is fully developed and becomes periodic
approximately from time t > 10 s.

For an evaluation of the convergence behavior, the minimum and maximum values at fully
developed flow are listed in Tables 8.12 and 8.13 for different mesh levels. In addition, for
a better comparison, an average relative error of the forces and displacements, denoted by
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Figure 8.29: FAC-flag (2) - evolution of drag force, lift force and displacements, obtained
with Houbolt method, ∆t = 1.25× 10−3 and mesh level 5 (units [F ]=N, [u]=m, [t]=s)

errF and erru respectively, is given. For this purpose, the norm of the relative differences
between the obtained results and the reference values is calculated. As an example, for
drag and lift forces the formula is

errF =

(FD,min − F ref
D,min

F ref
D,min

)2

+

(
FD,max − F ref

D,max

F ref
D,max

)2

+

(
FL,min − F ref

L,min

F ref
L,min

)2

+

(
FL,max − F ref

L,max

F ref
L,max

)2
 1

2

.

(8.44)

The relative error of the displacements is calculated in the same way. According to the
presented data, convergent behavior can be observed with an error below 2% and 4%
for the forces and displacements, respectively, at mesh level 5 with 161.622 degrees of
freedom.

In a next step, the flow around a cylinder is solved with the Houbolt time discretization and
different constant time step sizes to evaluate the temporal convergence. For calculations
with ∆t ≥ 5.0 × 10−3 the simulations are aborted due to divergence in the Newton
scheme as soon as the oscillations of the flag started to increase. The results obtained
with smaller step sizes correspond to the reference values. As an example for comparison,
a section of the drag and lift force curves are shown in Figure 8.30. These results are
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Table 8.12: FAC-flag (2) - mesh convergence, drag and lift forces (in N) and mean relative
error compared to reference values from Turek et al. [399]

level FD,min FD,max FL,min FL,max errF

1 134.340 264.674 -215.505 215.723 0.164580
2 131.749 279.039 -225.855 227.660 0.090529
3 136.675 283.517 -225.621 231.584 0.064915
4 136.778 286.998 -230.299 232.941 0.042098
5 136.791 290.467 -234.999 235.273 0.018370

ref. 137.41 292.71 -237.19 238.41

Table 8.13: FAC-flag (2) - mesh convergence, flag displacement at A(0.6, 0.2) m (in m)
and mean relative error compared to reference values from Turek et al. [399]

level u1,min u1,max u2,min u2,max erru

1 -0.023972 -0.0015997 -0.074529 0.076616 0.305452
2 -0.026644 -0.0019131 -0.078326 0.081192 0.119395
3 -0.026670 -0.0019255 -0.078598 0.081240 0.113016
4 -0.026880 -0.0019674 -0.079264 0.081693 0.090451
5 -0.027688 -0.0020745 -0.080321 0.082845 0.035467

ref. -0.02755 -0.00215 0.0803 0.0829

obtained with different constant time step sizes and mesh level 5. In this case, the data
of Turek et al. [397] are shown as a reference, which are available as curves for the
entire time interval. In the detail view it can be seen that the characteristic curves of the
reference are reproduced well with the applied least-squares approach. Furthermore, when
comparing the different time step sizes, only very small deviations can be seen overall,
with the two smallest time steps agreeing fairly well.
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Figure 8.30: FAC-flag (2) - evolution of drag and lift force, obtained with Houbolt method,
different time step sizes and mesh level 5, reference taken from Turek et al. [397] (units
[F ]=N, [t]=s)
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High-order time discretization and adaptive time step control:
Next, the application of high-order time integration methods in combination with the
LSFEM to solve FSI problems with large deformations is investigated. For this purpose,
various Runge-Kutta methods with different number of stages are implemented. Moreover,
adaptive time stepping is applied, in which the error estimator is determined without
significant additional computational cost using embedded RK methods. All simulations
are performed with mesh level 5 and element RT2P3.

The applied schemes are singly-diagonally implicit RK methods with temporal order of
two to three denoted as SDIRK-2(1), ESDIRK-2(1) and ESDIRK-3(2). Therein, the first
number indicates the order p of the applied method for solving the respective time steps
and the second number indicates the order q = p−1 of the embedded method for evaluat-
ing the error estimator for adaptive time step control. The butcher tableaus with required
parameters for the individual stages are given in Appendix C.1. Detailed information on
the implementation of RK schemes for the temporal discretization of LS stress-velocity
formulations is provided in Section 7.3. The most relevant equations are (7.46) and (7.47),
describing the accelerations or displacements in terms of the actual velocities in the re-
spective stage and further known values from previous stages.

As outlined in Section 7.6.1, the error estimator can be determined based on different
quantities with embedded Runge-Kutta methods. Relying on the results in Section 7.7.2,
which revealed that the mixed LS SV formulation for the solid is relatively sensitive to
the change in time step sizes, the error estimator is evaluated based on the velocities in
the fluid domain in the following. More precisely, the error at each time step is evaluated
with all velocity node values vi in the fluid domain as

ev =

√√√√ 1

nv

nv∑
i=1

(
vin+1 − v̂in+1

εa + max(|vin|, |vin+1|) · εr

)2

. (8.45)

The absolute and relative error tolerances εa and εr are chosen differently to control the
magnitude of the time step size and thus the error. The automatic step size control is
performed as specified in Section 7.6.2 using (7.75). The bounding factors to stabilize
the time step control are selected as fmin = 0.9, fmax = 1.1 and kmax = 10. In case of a
failed Newton iteration, the new step size in the following step is set to ∆tnew = 0.95∆t.
Additionally, if a step rejection or a failure in the Newton iteration occurred in the second
last time step, the step size in the subsequent five time steps is not allowed to increase,
i.e. the maximum factor is set to fmax = 1, and a further rejection is not allowed. This
limitation aims to stabilize the calculation in case of fluctuations caused by time step size
changes. To further slightly reduces the increase of step sizes in case of strong varying
magnitudes, the method of averaging, see (7.77), is applied. Here, the new ∆t is calculated
based on the mean value of N = 5 previous time step sizes and the newly determined size,
choosing θ = 0.5 for the proportions in (7.77). Furthermore, the absolute size of each time
step is limited to 10−4 ≤ ∆t ≤ 0.05 s and the initial time step is chosen as ∆t0 = 0.01 s.

To compare the different RK methods several results are summarized in Table 8.14. The
table includes the chosen relative and absolute tolerances for the calculation of the error
estimator and the resulting average time step sizes and number of Newton iterations for
the entire simulation interval t ∈ [0, 20] s. The average step size is calculated based on all
accepted time steps, i.e. without the ones that are rejected or in which Newton’s method
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diverged. The number of Newton iterations, however, contains all iterations that were
performed during the calculation process, i.e. also those within the time steps that had to
be repeated. Furthermore, for a rough comparison of the methods regarding their accuracy,
the error of the drag and lift force as well as the flag displacement is again evaluated. It
can be seen that, as expected, the average time step size decreases with smaller tolerances,
and thus the magnitudes of the errors reduce as well. Here, the absolute error tolerance
is mainly decisive.

Table 8.14: FAC-flag (2) - Number of total Newton iterations, average time step size ∆t
(in s), and mean relative errors for different methods and tolerances

method εr εa iterations ∆t ×10−3 errF erru

SDIRK-2(1)
10−5 10−3 56073 5.768 0.024002 0.025223
10−5 10−4 128059 2.051 0.006053 0.014778
10−2 10−5 66515 4.263 0.011748 0.016400

ESDIRK-2(1)
10−4 10−4 78697 3.572 0.007634 0.016868
10−4 10−5 148978 1.726 0.011191 0.015138
10−2 10−6 56303 5.495 0.013422 0.025868

ESDIRK-3(2)
10−6 10−4 121037 7.125 0.014610 0.020768
10−4 10−5 85207 5.648 0.008731 0.015539
10−6 10−5 119123 3.621 0.004844 0.012960

Houbolt
- - 52329 2.500 0.033562 0.069385
- - 95347 1.250 0.018370 0.035467
- - 178311 0.625 0.013328 0.024979

The calculations reveal that the range for the selection of reasonable tolerances is relatively
small. One reason for this is that if too large tolerances are chosen, the calculations not
only become inaccurate, but also frequent divergences occur in the Newton method due
to relatively large chosen time step sizes. If the tolerances are chosen far too high, the
computations may not be controlled by the actual step size control based on the error
estimator, but mainly by the step size reductions after a failed Newton procedures. This
effect is visible when looking at the results of the calculation with ESDIRK-3(2) choosing
εr = 10−6 and εa = 10−4. Despite the large average time step size ∆t ≈ 7 × 10−3 s, the
number of total iterations is very high even compared to simulations with smaller time
increments. This is not only due to the fact that larger step sizes require more iterations
per time step, but in this case mainly because the Newton method has failed many times
due to the large step size. Another reason is that too small tolerances obviously reduce
the time steps extremely at some points of the calculation, which in turn leads to the
occurrence of numerical instabilities.

In order to provide a rough estimate of the efficiency of the adaptive step size control, the
data of the Houbolt method with different constant time increments is also included in
Table 8.14 for comparison. Using the embedded RK methods with adaptive step size, fewer
iterations are needed and the errors still tend to be smaller. But it can also be noticed
that with raising the order of the integration procedure, i.e. with increasing the number
of stages, the number of iterations rises and thus, consequently, also the computational
costs.
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The adjustment of the time step size is depicted for some examples in Figure 8.31. As can
be seen, the RK methods with automatic step size control are especially efficient because
the initial phase of the FSI problem, in which no large velocities and deformations are
present, can be solved with relatively large step sizes. At the beginning of the simulation,
the step size increases in all cases starting from the selected initial value ∆t0 = 0.1 s. In the
example of the third-order ESDIRK there is an increase until the selected maximum step
size of ∆tmax = 0.05 s is reached. When the normal stresses at the interface become higher
and the flag starts to vibrate, the step size is automatically decreased with all embedded
Runge-Kutta methods. The close-up shows that the step size with the ESDIRK-3(2) is
always above that of the second-order methods, although the tolerances for the accuracy
are chosen smaller. Despite the fact that more stages have to be evaluated per time step,
the average larger increment leads to a lower number of total iterations being required,
cf. Table 8.14. And considering these results, it could be concluded that the high-order
method is more efficient.
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Figure 8.31: FAC-flag (2) - evolution of time step size t ∈ [0, 20] s (left) and zoom (right),
obtained with RK methods with adaptive time stepping and mesh 5 (units [F ]=N, [t]=s)

Figures 8.32 and 8.33 illustrate the courses of the drag and lift forces obtained with the
RK methods and time adaptivity. These calculations with mesh level 5 show that the
results are consistent with the reference values and only small differences between the
different methods can be seen in the zoom. The magnitude of the amplitudes is similar
with only a small shift of the phase.

0 5 10 15
0

50

100

150

200

250

13.75 13.8 13.85

220

240

260

280

051015

0

50

100

150

200

250

Figure 8.32: FAC-flag (2) - evolution of drag force on t ∈ [0, 20] s (left) and zoom (right),
obtained with RK methods with adaptive time stepping and mesh 5 (units [F ]=N, [t]=s)

As already mentioned, the comparison of the efficiency based on the number of iterations
of course only serves as a rough guide. For a more definite statement, the computing time
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Figure 8.33: FAC-flag (2) - evolution of lift force on t ∈ [0, 20] s (left) and zoom (right),
obtained with RK methods with adaptive time stepping and mesh 5 (units [F ]=N, [t]=s)

would have to be evaluated, for example, but this is not as straightforward to implement
in practice. In addition, the error measure calculated here based on the drag and lift forces
as well as displacements only provides a rough statement about the accuracy, since only
the amplitudes are taken into account. For a more precise evaluation, the frequency would
have to be included, for example, or the total deviation in a defined interval.

Finally, the solution to this benchmark problem for different flag configurations is visu-
alized in Figures 8.35 and 8.34. Four different time points within one period of the flag
oscillation are selected to display the velocity in the fluid region and the displacement in
the solid region.
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Figure 8.34: FAC-flag (2) - distribution of displacement field |u| (in m) at different times
within one period of flag oscillation
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Figure 8.35: FAC-flag (2) - distribution of total velocity field |v| (in m/s) at different
times within one period of flag oscillation
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9 Conclusion and Outlook

The present thesis dealt with the construction and analysis of least-squares finite element
formulations to solve dynamic fluid, structure and fluid-structure interaction problems.
In detail various time discretization schemes were introduced and their application in the
different fields was investigated, considering also adaptive time stepping. Further, all com-
ponents for solving monolithically coupled FSI problems undergoing large deformations
were derived and studied. Additionally, least-squares finite elements for the solution of
non-Newtonian fluid flow were constructed and studies in 2D and 3D were performed,
including also the assimilation of numerical and experimental data.

Conclusion
After the introduction to give a brief review on the state of the art in the considered
field of research, the basic mechanical background for the work was provided. Therefore,
kinematic relationships, stress quantities and the essential balance equations of continuum
mechanics were first defined. Furthermore, the laws of material modeling for fluid and
solid mechanics were stated. In this context, the Lagrangian and Eulerian descriptions
were provided. Subsequent, an overview on the finite element method in general and on
the specifics of the least-squares FEM was given. Details on interpolation spaces and the
construction of interpolation functions were outlined. This included a brief description
of implementation aspects that allow the creation of shape functions in different given
configurations. Furthermore, theoretical basics on assimilation of data using the LSFEM,
including data preparation using the Kriging interpolation were presented.

The derivation of least-squares finite element formulations for dynamic flow of incom-
pressible Newtonian and non-Newtonian fluids based on the Navier-Stokes equations were
outlined. First, the LS stress-velocity formulation for steady flow of non-Newtonian fluids
was applied to solve two-dimensional problems. The spatial convergence behavior was
investigated using an example with an analytical solution and the results yielded the ex-
pected orders of convergence for the element formulations considered. In addition, some
studies have been carried out on the flow behavior of non-Newtonian fluids as a function
of various factors. For this purpose, e.g. the influence of the Reynolds number or of the
different parameters of the Carreau-Yasuda viscosity model were analyzed. Two typical
benchmark problems, named driven cavity and flow over a backward facing step, were
chosen for this study. A further numerical example consisting of a flow through a channel
with smooth contraction was applied to show the assimilation of data to the numerical
computation. It was demonstrated that the additional data has a positive effect on the
quality of the least-squares solution especially with low-order spatial interpolation and
thus, for example, the problem of mass loss could be greatly reduced.

In a next step, three-dimensional flow problems were solved using the LS stress-velocity-
pressure formulation including the Carreau-Yasuda viscosity model. A benchmark prob-
lem in 3D with analytical solution was chosen to evaluate the convergence behavior of the
proposed approach. Then, the flow of blood through a simplified geometry of a carotid
bifurcation was simulated. Initially, the approach was verified and the convergence was
evaluated. Next, the incorporation of experimental data measured in the internal artery
was investigated. A distinction was made between the inclusion of data only at individual
positions of cross-sectional surfaces or at all nodes of the surfaces. Especially the incorpo-
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ration of experimental data on the whole cross-sectional area exhibited a great influence
and produced results that were closer to the measured data in the remaining region.
In order to investigate the positive effect of data assimilation in both arterial branches,
finally also numerical data were used for this example. An improvement was observed,
particularly with regard to mass loss.

A major aspect of this thesis was the investigation of different time discretization methods
for the LS SV formulations. For this purpose, first the basic concept of these methods for
solving first order partial differential equations was explained and illustrated by applying
them to a simple 1D example. Then, aspects of the implementation of different methods
specifically for the fluid and solid SV formulations were outlined. The application of these
methods to the solution of unsteady flow and dynamic solid problems was subsequently
studied in detail. The focus was on the evaluation of the temporal order of convergence
in combination with the SV formulations and on a comparison of the efficiency of the
different methods. Concluding, the expected theoretical order of convergence in time was
achieved in most cases. Slight reductions in order occurred only for the high-order time
discretization methods when solving the Navier-Stokes equations.

To further increase efficiency in time-dependent problems, adaptive time-stepping meth-
ods can be applied. In this work, embedded Runge-Kutta methods were implemented
for this purpose. These offer the possibility of computing local error estimators without
significant additional computational cost. The procedure for the computation of these er-
ror estimators was explained in detail and furthermore general information on automatic
control of the time steps was provided. The performance of automatic time-stepping with
error estimators based on embedded Runge-Kutta methods was then tested for a flow
and a solid problem. The simulations showed the efficiency of the adaptivity in time,
but also revealed that some caution is needed for the applicability in combination with
the LSFEM. It appeared that in some cases the SV formulations respond sensitively to
changes in time step sizes, thus requiring some attention when applying automatic time
step control.

Finally, the presented stress-velocity formulations for fluid and solid dynamics were cou-
pled to solve fluid-structure interaction problems. In a first step, the general idea of this
thesis for coupling and inherently fulfilled interface conditions using suitable function
spaces was presented. Next, the coupling was tested using numerical FSI examples with
small deformations. Then, all required components for the handling of large deformations
in FSI problems were specified. More precisely, the fluid formulation in an Arbitrary-
Lagrangian-Eulerian description was introduced to account for a moving domain. Addi-
tional, details on the computation of the fluid background mesh were given. The fluid ALE
formulation was verified by a channel flow with moving background mesh. The different
approaches to mesh motion were compared by means of a numerical example consisting of
a vibrating beam causing large deformations in the surrounding mesh domain. The focus
was on the determination of local mesh stiffness in order to generate the most uniform
and smooth deformation possible.

In the end, the separately tested components are coupled to solve FSI problems with large
deformations. The coupling of the LS SV fluid ALE formulation with mesh deformation
based on a linear elastic approach with the LS SV solid formulation is tested with a flow
through a channel with linear elastic material behavior. For this purpose, the channel
walls are compressed and pulled apart through boundary conditions on the outer walls.
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The calculated values confirm the correct coupling at the interface. In a final benchmark
problem, the monolithic coupling of the fluid ALE formulation with the solid formulation
for hyperelastic material behavior is examined, along with the application of various
time discretization methods including adaptive time stepping. Comparison of the time
discretizations applied in terms of efficiency and accuracy revealed that the use of adaptive
time stepping for solving monolithically coupled FSI problems with LSFEM can be quite
advantageous, provided that the parameter choice for the step size control is appropriate.

Outlook
It was shown that the least-squares finite element method is suitable to be applied in a va-
riety of different fields. The straightforward way to construct first-order systems in terms
of quantities of interest is of great advantage especially for solving FSI problems. The
stress-velocity formulations have proven to be promising for monolithic coupling due to
the possible inherent fulfillment of the interface conditions. For more specific applications,
such as simulating blood flows with fluid-structure interaction, the formulations for non-
Newtonian fluids could be coupled with the least-squares stress-velocity solid formulation.
Furthermore, the investigated time integration methods could also be implemented to the
formulation for non-Newtonian fluids to enable transient behavior. In the field of solid me-
chanics the SV formulations could be reformulated for further material laws to cover, e.g.
transversal isotropy or plasticity. The former could be of interest, for example, in the con-
text of correct modeling of blood vessels. Another interesting point of investigation in the
modeling of realistic blood flows in medical engineering is the inclusion of patient-specific
data. In this context, the straightforward assimilation of data into numerical simulations,
as presented in this work for pure fluid flows, may be promising. In all fields, a further
improvement of the results shown for adaptive mesh refinement algorithms can be inves-
tigated. Therein, the advantage of an error indicator without additional computational
cost provided by the least-squares functional can be used.
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A Appendix: Spatial discretization

A.1 Lagrange shape functions

The approximation functions for cubic triangles in the actual configuration can be con-
structed according to Zienkiewicz and Taylor [431] as

N i(x, y) =
1

2
(3Li − 1)(3Li − 2)Li for i = 1, 2, 3

N4(x, y) =
9

2
L1L2 (3L1 − 1), N5(x, y) =

9

2
L1L2 (3L2 − 1)

N6(x, y) =
9

2
L2L3 (3L2 − 1), N7(x, y) =

9

2
L2L3 (3L3 − 1)

N8(x, y) =
9

2
L3L1 (3L3 − 1), N9(x, y) =

9

2
L3L1 (3L1 − 1)

N10(x, y) = 27L1L2L3

(A.1)

with area coordinates L1, L2 and L3 defined in (3.27). The first three nodes are corner
nodes, the nodes four to nine are located on the edges and node ten is an internal node,
see Figure 3.2.
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B Appendix: LSFEM for non-Newtonian fluids

B.1 Algorithmic procedure for implementation of LS SV formulation to solve
steady flow of non-Newtonian fluids in 2D including data assimilation

• Initialization of basic variables

wI =
[
wI1, w

I
2

]T
, βJ =

[
βJ1 , β

J
2

]T
wI DOF for velocities at node I
βJ DOF for stresses at node J

• Discretization in space

1. velocities: vhi =
∑
I

N IwIi , vhi,j =
∑
I

N I
,j w

I
i and vhi,i =

∑
I

N I
,i w

I
i

2. stresses: σhij =
∑
J

ψJj β
J
i and σhij,j =

∑
J

ψJj,j β
J
i

• Discretized LS functional for non-Newtonian fluid flow with data assimilation

F∗(σh,vh) = FF (σh,vh) +
1

2

M∑
i=1

ζi(di −Hi · vh)2

with FF (σh,vh) =
1

2

(
||ω1R1||2L2(Ωe) + ||ω2R2||2L2(Ωe) + ||ω3R3||2L2(Ωe)

)
,

and R1 := divσh − ρf∇vh · vh + f , R2 := devσh − 2η(γ̇h)∇svh,

R3 := div vh,

η(γ̇) = η∞ + (η0 − η∞) [1 + (λ γ̇)a]
n−1
a and γ̇ =

√
2(∇svh : ∇svh)

• Element RHS-vector P e and system-matrix Ke

DOF vector of element e: De = [w1, ...,wK ,β1, ...,βN ]T

with K and N denoting the number of nodes

For each element e do

P e =
∂F∗

∂De
and Ke =

∂P e

∂De

end do
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B.2 Algorithmic procedure for implementation of LS SVP formulation to
solve steady flow of non-Newtonian fluids in 3D including data assimi-
lation

• Initialization of basic variables

wI =
[
wI1, w

I
2, w

I
3

]T
, βJ =

[
βJ11, β

J
12, β

J
13, β

J
22, β

J
23, β

J
33

]T
, qL

wI DOF for velocities at node I
βJ DOF for stresses at node J (with σ = σT )
qL DOF for pressure at node L

• Discretization in space

1. velocities: vhi =
∑
I

N IwIi , vhi,j =
∑
I

N I
,j w

I
i and vhi,i =

∑
I

N I
,i w

I
i

2. stresses: σhij =
∑
J

NJβJij and σhij,j =
∑
J

NJ
,j β

J
ij

3. pressure: ph =
∑
L

NLqL

• Discretized LS functional for non-Newtonian fluid flow with data assimilation

F∗(σh,vh, ph) = F(σh,vh, ph) +
1

2

M∑
i=1

ζi(di −Hi · vh)2

with F(σh,vh, ph) =
1

2

(
||ω1R1||2L2(Ωe) + ||ω2R2||2L2(Ωe) + ||ω3R3||2L2(Ωe)

)
,

and R1 := divσh − ρ∇vh · vh + f , R2 := σh − 2η(γ̇)∇svh + ph1,

R3 := div vh,

η(γ̇) = η∞ + (η0 − η∞) [1 + (λ γ̇)a]
n−1
a and γ̇ =

√
2(∇svh : ∇svh)

• Element RHS-vector P e and system-matrix Ke

DOF vector of element e: De = [w1, ...,wK ,β1, ...,βN , q1, ..., qN ]T

with K and N denoting the number of nodes

For each element e do

P e =
∂F∗

∂De
and Ke =

∂P e

∂De

end do
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B.3 Body force for flow of non-Newtonian fluid in cubical domain

The body force expression for the three dimensional numerical example of non-Newtonian
fluid flow in a cubical domain is given by

f =



ρf (−vav3,3 + v3va,3)− µ′e(2va,1γe,1 − v3,3γe,2 + (v3,a + va,3)γe,3)

−µe(2va,aa + va,33) + (2π cos[2πx1] sin[2πx2] sin[2πx3])

ρf (−vav3,3 + v3va,3)− µ′e(−v3,3γe,1 + 2va,2γe,2 + (v3,a + va,3)γe,3)

−µe(2va,aa + va,33) + (2π sin[2πx1] cos[2πx2] sin[2πx3])

ρf (2vav3,a + v3v3,3)− µ′e((v3,a + va,3)(γe,1 + γe,2) + 2v3,3γe,3)

−µe(2v3,aa + v3,33) + (2π sin[2πx1] sin[2πx2] cos[2πx3])


(B.1)

with

va = −2x3 cos[πx1] cos[πx2] exp[π(−x2
3 + 0.25)]

v3 = sin[π(x1 + x2)] exp[π(−x2
3 + 0.25)]− sin[π(x1 + x2)]

va,1 = 2πx3 sin[πx1] cos[πx2] exp[π(−x2
3 + 0.25)]

va,2 = 2πx3 cos[πx1] sin[πx2] exp[π(−x2
3 + 0.25)]

va,3 = (4πx2
3 − 2) cos[πx1] cos[πx2] exp[π(−x2

3 + 0.25)]

v3,a = π cos[π(x1 + x2)] exp[π(−x2
3 + 0.25)]− π cos[π(x1 + x2)]

v3,3 = −va,1 − va,2
va,aa = 2π2x3 cos[πx1] cos[πx2] exp[π(−x2

3 + 0.25)]

va,12 = −2π2x3 sin[πx1] sin[πx2] exp[π(−x2
3 + 0.25)]

va,13 = (−4(πx3)2 + 2π) sin[πx1] cos[πx2] exp[π(−x2
3 + 0.25)]

va,23 = (−4(πx3)2 + 2π) cos[πx1] sin[πx2] exp[π(−x2
3 + 0.25)]

va,33 = 4πx3(−2πx2
3 + 3) cos[πx1] cos[πx2] exp[π(−x2

3 + 0.25)]

v3,aa = −π2 sin[π(x1 + x2)](exp[π(−x2
3 + 0.25)]− 1)

v3,a3 = −2π2x3 cos[π(x1 + x2)] exp[π(−x2
3 + 0.25)]

v3,33 = −va,13 − va,23

γe =
√

5v2
a,1 + 5v2

a,2 + 6va,1va,2 + 2(v3,a + va,3)2

µe = µ∞ + (µ0 − µ∞)(1 + (λaγae ))
(n−1)

a

µ′e =
dµe
dγe

γe,1 = ((5va,1 + 3va,2)va,aa + (3va,1 + 5va,2)va,12 + 2(v3,a + va,3)(v3,aa + va,13))/γe

γe,2 = ((3va,1 + 5va,2)va,aa + (5va,1 + 3va,2)va,12 + 2(v3,a + va,3)(v3,aa + va,23))/γe

γe,3 = ((5va,1 + 3va,2)va,13 + (3va,1 + 5va,2)va,23 + 2(v3,a + va,3)(v3,a3 + va,33))/γe
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C Appendix: Time discretization

C.1 Butcher tableaus for applied ESDIRK schemes

The parameters for various explicit-singly-diagonal-implicit Runge-Kutta methods with
stage number s and order p with the corresponding reference literatures are given in the
following Butcher tableaus.

Table C.1: ESDIRK-3 with s=4, p=3,
from Montlaur et al. [281]

0 0

1
1

2

1

2

3

2

5

8

3

8

1

2

1
7

18

1

3
−2

9

1

2

7

18

1

3
−2

9

1

2

Table C.2: ESDIRK-2 with s=2, p=2,
(Crank-Nicolson)

0 0
1 1/2 1/2

1/2 1/2

C.2 Butcher tableaus for applied embedded ESDIRK and SDIRK schemes

The parameters for different embedded ESDIRK and SDIRK methods with number of
stages s, order p and order of the embedded scheme q with the corresponding reference
literatures are given in the following Butcher tableaus.

Table C.3: ESDIRK-2(1), s=3, p=2 q=1,
from Rang [318]

0 0

2− 2√
2

1−
√

2

2
1−
√

2

2

1
1

2
√

2

1

2
√

2
1−
√

2

2

βi
1

2
√

2

1

2
√

2
1−
√

2

2

β̂i
1

2
−
√

2

8

1

2
−
√

2

8

√
2

4

Table C.4: SDIRK-2(1) with s=2, p=2, q=1,
from Ellsiepen and Hartmann [138]

α α
1 1− α α

βi 1− α α

β̂i 1− α̂ α̂

with

α = 1− 1

2

√
2, α̂ = 2− 5

4

√
2
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Table C.5: SDIRK-4(3), s=5, p=4 q=3,
from Hairer and Wanner [177]

1

4

1

4

3

4

1

2

1

4

11

20

17

50
− 1

25

1

4

1

2

371

1360
− 137

2720

15

544

1

4

1
25

24
−49

48

125

16
−85

12

1

4

βi
25

24
−49

48

125

16
−85

12

1

4

β̂i
59

48
−17

96

225

32
−85

12
0

Table C.6: ESDIRK-3(2) with s=4, p=3, q=2, from Bijl et al. [41]

0 0

1767732205903

2027836641118

1767732205903

4055673282236

1767732205903

4055673282236

3

5

2746238789719

10658868560708

−640167445237

6845629431997

1767732205903

4055673282236

1
1471266399579

7840856788654

−4482444167858

7529755066697

11266239266428

11593286722821

1767732205903

4055673282236

βi
1471266399579

7840856788654

−4482444167858

7529755066697

11266239266428

11593286722821

1767732205903

4055673282236

β̂i
2756255671327

12835298489170

−10771552573575

22201958757719

9247589265047

10645013368117

2193209047091

5459859503100
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Table C.7: ESDIRK-4(3) with s=6, p=4, q=3, from Bijl et al. [41]

0 0

1

2

1

4

1

4

83

250

8611

62500

−1743

31250

1

4

31

50

5012029

34652500

−654441

2922500

174375

388108

1

4

17

20

15267082809

155376265600

−71443401

120774400

730878875

902184768

2285395

8070912

1

4

1
82889

524892
0

15625

83664

69875

102672

−2260

8211

1

4

βi
82889

524892
0

15625

83664

69875

102672

−2260

8211

1

4

β̂i
4586570599

29645900160
0

178811875

945068544

814220225

1159782912

−3700637

11593932

61727

225920
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D Appendix: LSFEM for FSI

D.1 Algorithmic procedure for implementation of LS SV formulations to
solve dynamic FSI problems

• Initialization of basic variables

wI =

[
wI1
wI2

]
, βJ =

[
βJ1
βJ2

]
,

wI DOF for velocities of node I

βJ DOF for stresses at interpolation site J

• Time discretization

1. Read history values (e.g. vIn,u
I
n,u

I
n−1,u

I
n−2)

2. Approximate time dependent quantities at actual time step n + 1 for each
node I (uIn+1, aIn+1)

3. Write vIn+1,u
I
n+1 to history

• Space discretization

1. Velocities: vhi =
∑
I

N Iwi
I , vhi,j =

∑
I

N I
,j w

I
i and vhi,i =

∑
I

N I
,iwi

I

Displacements: uhi =
∑
I

N Iui
I and uhi,j =

∑
I

N I
,j u

I
i

Accelerations: ai
h =

∑
I

N IaIi

(uIi and aIi from the time discretization)

2. Stresses σhij =
∑
J

ψJj β
J
i , σhij,j =

∑
J

ψJj,j β
J
i

and dev σhij = σhij − 1
3
σhmmδij with the Kronecker delta δij

• Discretized LS functional for FSI

fluid: FF (σh,vh) = 1
2

(∣∣∣∣ωf1RF
1

∣∣∣∣2
L2(Ωe)

+
∣∣∣∣ωf2RF

2

∣∣∣∣2
L2(Ωe)

+
∣∣∣∣ωf3RF

3

∣∣∣∣2
L2(Ωe)

)
,

with RF
1 , RF

2 and RF
3 depending on chosen formulation with or without ALE

solid: FS(σh,vh) = 1
2

(∣∣∣∣ωs1RS
1

∣∣∣∣2
L2(Ωe)

+
∣∣∣∣ωs2RS

2

∣∣∣∣2
L2(Ωe)

+
∣∣∣∣ωs3RS

3

∣∣∣∣2
L2(Ωe)

)
,

with RS
1 , RS

2 and RS
3 depending on chosen material law for the structure

FSI: FFSI(σh,vh) = FF (σh,vh) + FS(σh,vh)

• Element RHS-Vector P e and System-Matrix Se

De = [d1, ...,dK ,β1, ...,βM ]T DOF vector of element e with K and M

denoting the number of interpolation sites

For each element e do

P e =
∂FFSI

∂De
and Se =

∂P e

∂De

end do
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[126] W. G. Dettmer and D. Perić. A Fully Implicit Computational Strategy for Strongly
Coupled Fluid-Solid Interaction. Archives of Computational Methods in Engineer-
ing, 14(3):205–247, 2007.

[127] S. Diebels, P. Ellsiepen, and W. Ehlers. Error-controlled Runge-Kutta time inte-
gration of a viscoplastic hybrid two-phase model. Technische Mechanik, 19(19-27):
125, 1999.

[128] X. Ding and T. Tsang. On First-Order Formulations of the Least-Squares Finite
Element Method for Incompressible Flows. International Journal of Computational
Fluid Dynamics, 17:183–197, 2003.



198 References

[129] J. Donea and A. Huerta. Finite element methods for flow problems. John Wiley
and Sons, 2003.

[130] J. Donea and L. Quartapelle. An introduction to finite element methods for transient
advection problems. Computer Methods in Applied Mechanics and Engineering, 95
(2):169–203, 1992.

[131] J. Donea, S. Giuliani, and J. Halleux. An arbitrary lagrangian-eulerian finite element
method for transient dynamic fluid-structure interactions. Computer Methods in
Applied Mechanics and Engineering, 33(1):689 – 723, 1982.

[132] J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodŕıguez-Ferran. Arbitrary Lagrangian–
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[163] M. W. Gee, U. Küttler, and W. A. Wall. Truly monolithic algebraic multigrid for
fluid-structure interaction. International Journal for Numerical Methods in Engi-
neering, 85:987–1016, 2011.

[164] M. Gerritsma. Direct minimization of the discontinuous least-squares spectral ele-
ment method for viscoelastic fluids. Journal of Scientific Computing, 27(1):245–256,
2006.

[165] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator with
built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering, 79(11):1309–1331, 2009.

[166] P. Geuzaine, C. Grandmont, and C. Farhat. Design and analysis of ale schemes
with provable second-order time-accuracy for inviscid and viscous flow simulations.
Journal of Computational Physics, 191(1):206–227, 2003.

[167] J. Ghaboussi and X. Wu. Numerical Methods in Computational Mechanics. Boca
Raton: CRC Press, 2016.

[168] H. Giesekus. A simple constitutive equation for polymer fluids based on the con-
cept of deformation-dependent tensorial mobility. Journal of Non-Newtonian Fluid
Mechanics, 11(1-2):69–109, 1982.

[169] F. Gijsen, F. van de Vosse, and J. Janssen. The influence of the non-Newtonian
properties of blood on the flow in large arteries: steady flow in a carotid bifurcation
model. Journal of Biomechanics, 32(6):601 – 608, 1999.

[170] R. Gilbert, M. Grafenhorst, S. Hartmann, and Z. Yosibash. Simulating the temporal
change of the active response of arteries by finite elements with high-order time-
integrators. Computational Mechanics, 64(6):1669–1684, 2019.

[171] M. Grafenhorst, J. Rang, and S. Hartmann. Time-adaptive finite element sim-
ulations of dynamical problems for temperature-dependent materials. Journal of
Mechanics of Materials and Structures, 12(1):57–91, 2016.

[172] P. Gresho, D. Griffiths, and D. Silvester. Adaptive time-stepping for incompressible
flow part i: Scalar advection-diffusion. SIAM Journal on Scientific Computing, 30
(4):2018–2054, 2008.



References 201

[173] M. Gurtin. An introduction to continuum mechanics. Academic press, 1982.

[174] K. Gustafsson. Control-theoretic techniques for stepsize selection in implicit runge-
kutta methods. ACM Transactions on Mathematical Software (TOMS), 20(4):496–
517, 1994.
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[205] B. Hübner, E. Walhorn, and D. Dinkler. A monolithic approach to fluid–structure
interaction using space–time finite elements. Computer Methods in Applied Mechan-
ics and Engineering, 193(23):2087 – 2104, 2004.

[206] T. Hughes. The finite element method: linear static and dynamic finite element
analysis. Courier Corporation, 1987.

[207] T. Hughes, W. Liu, and T. Zimmermann. Lagrangian-Eulerian finite element for-
mulation for incompressible viscous flows. Computer Methods in Applied Mechanics
and Engineering, 29(3):329–349, 1981.

[208] T. Hughes, L. Franca, and M. Balestra. A new finite element formulation for com-
putational fluid dynamics: V. Circumventing the babuska-brezzi condition: a stable
Petrov-Galerkin formulation for the Stokes problem accommodating equal-order in-
terpolations. Computational Methods in Applied Mathematics, 59:85–99, 1986.

[209] T. Hughes, K. Takizawa, Y. Bazilevs, T. Tezduyar, and M.-C. Hsu. Computational
cardiovascular analysis with the variational multiscale methods and isogeometric
discretization. In Parallel Algorithms in Computational Science and Engineering,
pages 151–193. Springer, 2020.

[210] S. Hussain, F. Schieweck, and S. Turek. An efficient and stable finite element solver
of higher order in space and time for nonstationary incompressible flow. Interna-
tional Journal for Numerical Methods in Fluids, 73(11):927–952, 2013.
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poröser Medien, W.M. Bloßfeld, Dissertation, 2020

Nr. 25 (2021) Electromechanical modelling and simulation of hiPSC-derived
cardiac cell cultures, A. Jung, Dissertation, 2021

Nr. 26 (2021) Mixed and Hybrid Least-Squares FEM in Nonlinear Solid Me-
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