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Abstract

We examine the problem of modeling and forecasting European day-ahead and

month-ahead natural gas prices. For this, we propose two distinct probabilistic

models that can be utilized in risk and portfolio management. We use daily pric-

ing data ranging from 2011 to 2020. Extensive descriptive data analysis shows

that both time series feature heavy tails and conditional heteroscedasticity and

show asymmetric behavior in their differences. We propose state-space time

series models under skewed, heavy-tailed distributions to capture all stylized

facts of the data. They include the impact of autocorrelation, seasonality, risk

premia, temperature, storage levels, the price of European Emission Allowances,

and related fuel prices of oil, coal, and electricity. We provide rigorous model

diagnostics and interpret all model components in detail. Additionally, we con-

duct a probabilistic forecasting study with significance tests and compare the

predictive performance against literature benchmarks. The proposed day-ahead

(month-ahead) model leads to a 13% (9%) reduction in out-of-sample continuous

ranked probability score (CRPS) compared with the best performing benchmark

model, mainly due to adequate modeling of the volatility and heavy tails.
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1 | INTRODUCTION

Natural gas is one of the most important energy sources
worldwide. In Europe, its relevance increased in recent
years because it is one of the cleanest fuels, and thus it can
be used as a transition fuel during the transition towards a
renewable-based energy system. Increasing prices for carbon
emissions accelerate this development (Safari et al., 2019).

Today's natural gas markets are liberalized to a great
extent. In consequence, natural gas became a financial

commodity and short-term planning became increasingly
important (Hong et al., 2020). That is, accurate price fore-
casts are attractive for various market participants like
natural gas field operators, energy companies, and stor-
age operators. These forecasts are utilized for commodity
trading, portfolio and risk management, energy
sustainability planning, and predictive maintenance
(Petropoulos et al., 2022).

The literature on natural gas price forecasting grew
rapidly in the last decade. A great range of different

Received: 6 August 2021 Revised: 16 December 2021 Accepted: 30 December 2021

DOI: 10.1002/for.2853

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Journal of Forecasting published by John Wiley & Sons Ltd.

Journal of Forecasting. 2022;41:1065–1086. wileyonlinelibrary.com/journal/for 1065

https://orcid.org/0000-0002-4944-9074
https://orcid.org/0000-0002-2974-2660
mailto:Jonathan.Berrisch@uni-due.de
https://doi.org/10.1002/for.2853
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/for
http://crossmark.crossref.org/dialog/?doi=10.1002%2Ffor.2853&domain=pdf&date_stamp=2022-01-25


methods is applied: fundamental models (esp. Hubbert-
Type), econometric models, statistical machine learning
models, and hybrids thereof (Elgharbawy & Sayed, 2020;
Tamba et al., 2018). Recent studies concerning price fore-
casting focused on comparing the performance of differ-
ent methods rather than exploring fundamental
relationships between input variables. We want to high-
light the major contributions chronologically.

Nguyen and Nabney (2010) and Saghi and
Rezaee (2021) combined wavelet transformations with
various models such as linear regression, support vector
regression, artificial neural networks (ANNs), and gener-
alized autoregressive conditional heteroscedasticity
(GARCH) to forecast natural gas prices. The considered
linear models outperformed the nonlinear counterparts
like the multilayer perceptron models. Salehnia
et al. (2013) focused on variable selection and proposed
using the gamma test for this. Afterward, they used sev-
eral forecasting models, including local linear regression
and NNs, to predict natural gas prices at different time
scales. Their results favor the ANN that did not use any
external inputs. The importance of prior variable selec-
tion was later revisited by Čeperi�c et al. (2017). They
showed that prior variable selection is crucial for
obtaining accurate forecasts using ANNs and support
vector regressions. Otherwise, classical time series models
outperform these machine learning methods. Geng
et al. (2017) explored the relationship between crude oil
and natural gas prices using linear and nonlinear
Granger causality. They find that the oil price linearly
causes the natural gas price. Su et al. (2019) used linear
regression, support vector machines, and boosting to pre-
dict daily natural gas spot prices. They followed Čeperi�c
et al. (2017) by using heating oil prices, storage capacities,
and natural gas imports as explanatory variables. The
LSboost algorithm, which minimizes the squared error,
outperformed the linear regression and the support vec-
tor machine. An ANN outperformed gradient boosting in
a previous study. However, that study focused on fore-
casting monthly natural gas prices, and an even broader
set of explanatory variables was used (Su et al., 2019).
Herrera et al. (2019) compared a random forest model, an
ANN and a hybrid model which uses five more tradi-
tional econometric methods for forecasting monthly nat-
ural gas prices. The authors did not use any external
regressors. The results were clearly in favor of the ran-
dom forest model. Siddiqui (2019) forecasted daily natu-
ral gas spot prices using an autoregressive integrated
moving average (ARIMA) model and an autoregressive
ANN. The ANN outperformed the ARIMA model, and
the model developed in Salehnia et al. (2013). Livieris
et al. (2020) used a combination of advanced deep learn-
ing methods. In particular, they combined convolutional

layers with long short-term memory (LSTM) layers to
predict the day-ahead natural gas prices. They also did
not use any external regressors. Jianliang et al. (2020)
reviewed three common models, that is, support vector
regression, LSTM, and the improved pattern sequence
similarity search. Afterward, they developed a weighted
model that combines the three methods mentioned
above. The results showed that the weighted model sur-
passed the other considered model. Wang et al. (2021)
also uses recurrent neural networks. However, here
GRU-based networks are used to forecast short-term nat-
ural gas prices.

The determinants of the natural gas price were stud-
ied by Wang et al. (2019) using dynamic model averaging.
Their results show an evident decline in the impact of oil
from 2001 to 2018 while fundamental factors like
demand, supply, and the weather became increasingly
important. The results also revealed an increasing impact
of financial markets. This effect was captured by the
impact of variables related to financial speculation.
Further, Tang et al. (2019) compared the predictive
power of google search data and news sentiment to pre-
dict the natural gas spot price. Their results showed that
using Google search data can improve forecasts that
otherwise solely rely on past prices. Recently, Wang
et al. (2020) and Ferrari et al. (2021) build probabilistic
forecasting models for several commodities, including
natural gas. Similarly, Drachal (2021) used several com-
modities in a point-forecasting setting. Gao et al. (2021)
applied time varying models with stochastic volatility,
Markov switching models, and hybrids thereof to predict
monthly natural gas prices. The results show that embed-
ding t-distributed errors leads to improved forecasting
performance, in particular EU markets.

There is also relevant literature on forecasting natural
gas demand. Chen et al. (2020) developed a hybrid model
to forecast hourly natural gas demand at 96 distribution
nodes across Germany. They combined autoregressive
(AR) models with convolutional ANNs to reduce over-
fitting on the one hand but allow nonlinear effects on the
other hand. Karabiber and Xydis (2020) also considered
ANNs alongside ARIMA models as well as the TBATS
model (De Livera et al., 2011). They considered many
exogenous regressors such as Fourier terms, temperature,
the day type (workdays, weekends, holidays), wind speed,
solar radiation, electricity prices, gas prices, and biogas
production. The Fourier terms, the temperature, and the
lagged consumption were included in all models. The
best-performing method combined an ARIMA model
with an ANN. This model surpassed the aforementioned
TBATS model.

Finally, there is research on forecasting the volatility
of natural gas prices. Lv and Shan (2013) used a variety
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of linear and nonlinear GARCH type models, including
models that capture asymmetric effects. Moreover, they
used two different distributional assumptions: normality
assumption and skewed-Student-t. The latter consistently
outperformed the normality assumption, regardless of
the chosen model. This confirms prior research stating
that asset returns often feature heavy tails. Hence using
the normal distribution is inappropriate in most cases
(Engle & Patton, 2007). However, the results did not indi-
cate asymmetric effects. Chkili et al. (2014) also consid-
ered asymmetries and long memory effects in the
volatility process of natural gas prices and other com-
modities. They found asymmetric effects in all examined
commodities, which contrasts the results of Lv and
Shan (2013). Hailemariam and Smyth (2019) investigated
how supply and demand shocks affect natural gas price
volatility. They found that the effects greatly depend on
the market regime and that several structural breaks
influenced the volatility response. The global gas market
liberalization altered the gas price volatility in particular.
Liang et al. (2021) used a GARCH-MIDAS model to esti-
mate the information content of uncertainty indices on
natural gas prices volatility.

This paper contributes to the literature by creating
probabilistic price forecasting models for natural gas day-
ahead and month-ahead products. We propose state-
space time series models assuming a heavy-tailed error
distribution. The model development builds on a rigorous
descriptive data analysis and results from previous
research. The proposed models consider many aforemen-
tioned and novel effects and significantly outperform
popular models presented in the literature. We provide
an extensive discussion and validation of each model
component and a detailed analysis of the probabilistic
predictive performance.

The remainder of this paper is structured as follows.
Section 2 presents an overview of the European gas mar-
ket, the considered price data, and many stylized facts.
The proposed models are presented and discussed in
Section 3. Section 4 contains the forecasting study design
and benchmark models. Section 5 presents extensive
model diagnostics and discusses the predictive perfor-
mance. Section 6 concludes.

2 | MARKET DATA AND STYLIZED
FACTS

We use daily prices of future markets for natural gas in
Europe. We consider the two most liquid products: the
day-ahead and month-ahead product. The choice of the
trading hub does not matter much because European
natural gas markets are integrated to a great extent;

therefore, prices are highly correlated. Figure 1 presents
this correlation for the day-ahead time series. That is, we
chose pricing data from the Title Transfer Facility (TTF)
Hub because it provides sufficient historical data and is
rated the most important trading hub in Europe.1 A
detailed discussion about European natural gas market
integration can be found in Hamie et al. (2021). We use
volume-weighted average prices for the day-ahead prod-
uct and closing prices for the month-ahead product. The
day-ahead product represents the delivery of one MW
natural gas equally each hour from 06:00 (CET) on the
next calendar day until 06:00 (CET) of the following day.
The month-ahead contract represents the delivery of one
MW natural gas equally each hour from 06:00 (CET) on
the first day of the month until 06:00 (CET) on the first
day of the next month.

Figure 2 presents an overview of both analyzed time
series. The data ranges from January 2011 to March 2020.
The time series of the day-ahead product (green) features
some large upward spikes, which lead to a heavy-tailed
return distribution. Those spikes are likely caused by
unexpected high demand. This pattern is not present in
the month-ahead product because it is not suitable for
offsetting these unexpected short-term shocks. We also
observe volatility clusters in both processes, indicating
that the conditional volatility is not constant. There is
neither an apparent trend nor a cycle present in the data.

We fitted a generalized Student-t distribution to the
differenced time series to obtain a tail index estimate to
examine the heavy tails further. We denote the estimates
by τ. They are presented in Table 1 along with other
descriptive statistics and the p values of an augmented
Dickey–Fuller (ADF) and a Philipps–Perron (PP) unit
root test. The tail-index estimate of the day-ahead time
series is particularly low, with a value merely larger than
2. This indicates that the second moment hardly exists.
Therefore standard least-squares methods likely lead to
unreliable results due to the considerable influence of
particular observations. This underlines that the normal-
ity assumption does not hold.

Figure 3 shows the sample partial autocorrelation
function (PACF) of both differenced time series, as well
as the PACF of their absolute, positive, and negative
parts. The PACF of the differenced day-ahead time series
features some significance at lower lags, while the last
significant lag of the differenced month-ahead time series
is lag 21. The monthly rollover of the product likely cau-
ses the latter. This suggests, that the order of the process
is 21 if the underlying process would follow an AR pro-
cess. This pattern is also apparent in the sample PACF of

1Review of the Gas Hub Assessment, European Federation of Energy
Traders (EFET), 2019.
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FIGURE 1 Natural gas day-ahead prices at different European trading points and their sample correlation

FIGURE 2 Original and differenced day-ahead (green) and month-ahead (blue) time series of natural gas prices (left) with

corresponding histograms (right)

TABLE 1 Descriptive statistics of the day-ahead time series, τ denotes the degrees of freedom from a fitted generalized Student-t

distribution, PP and ADF denote the p value of the Philipps–Perron and augmented Dickey–Fuller unit root test, respectively

Statistic Mean St. dev. Min Pctl(25) Median Pctl(75) Max τ PP ADF

Level (DA) 20.15 5.25 7.57 16.25 20.99 24.00 54.52 - <0.01 0.18

First differences (DA) �0.01 0.86 �20.31 �0.23 �0.01 0.21 15.77 2.26 <0.01 <0.01

Level (MA) 20.25 4.92 8.53 16.25 21.00 24.25 29.35 - 0.48 0.52

First differences (MA) �0.01 0.42 �2.62 �0.21 �0.02 0.18 5.25 2.86 <0.01 <0.01
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the absolute differences. Thus, the rollover likely influ-
ences the mean and the conditional variance of the
month-ahead prices. The PACF of the absolute differ-
ences of the day-ahead and month-ahead products are
also significantly different from zero at lower lags, indi-
cating short-term ARCH or GARCH effects in the condi-
tional variance. Comparing the negative and positive
parts of the differences reveals some disparity for both
products. That disparity likely indicates leverage effects.

That is, modeling asymmetric effects in the volatility pro-
cess probably improves the forecasting performance.

Figure 4 depicts the mean absolute difference and
mean difference for both products on different weekdays
(day-ahead) and days of the month (month-ahead). The
day-ahead product features increased absolute differences
on Mondays, likely caused by the increased amount of
information that emerges over the weekend. The price
change from Friday to Monday reflects the uncertainty

FIGURE 3 Sample PACF of the differenced day-ahead (green) and month-ahead time series (blue) and transformations thereof up to

Lag 40 with 5% confidence intervals

FIGURE 4 Mean absolute differences (left) and mean differences of the day-ahead (green) and month-ahead (blue) time series, per

weekday (top) and trading day (bottom)
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concerning the whole weekend, which is generally higher
than the uncertainty only concerning one day
(Mu, 2007). A suitable volatility model should consider
this effect since it will likely improve the probabilistic
forecasting performance. The mean absolute difference of
the month-ahead product is increased on the first trading
day of the month. The latter indicates increased condi-
tional volatility. This is intuitive since the product roll-
over causes the underlying delivery period to shift by
1 month. This effect will also be addressed by the pro-
posed month-ahead model presented in Section 3.2.

However, the positive mean difference on the first
trading day of the month is noteworthy. One possible
explanation for this pattern is the uncertainty concerning
the delivery month. While the uncertainty is lowest on
the last day of the month (because it is close to delivery),
it is highest on the first of every month. Market partici-
pants require risk premia as compensation for such risks.
The risk-premia demanded by buyers and sellers usually
cancel out. However, if the risk-aversion is distributed
asymmetrically, the risk premia would differ between
both sides of the market. Thus, the risk premia do not
cancel out, and the prices will be affected. In particular, if
the supply side is more risk-averse, it requires higher risk
premia than the seller side, which leads to a price
increase. Therefore, the sudden price increase that we
observe on the first day of the month is possibly caused
by asymmetric risk aversion. This also implies that the
sudden price increase will gradually decay as the uncer-
tainty concerning the delivery month diminishes. Both
effects will be considered and discussed in Sections 3
and 5. Roncoroni and Brik (2017) discuss risk hedging
strategies in natural gas markets.

Figure 5 shows the deviation of the monthly aver-
ages from the annual rolling average per year (trans-
parent) and the average monthly deviation from the
annual average (bold nontransparent). Both time series
feature a seasonal pattern with increased prices in the
colder winter months. This pattern is likely caused by
the increased natural gas demand in winter, caused by
heating. The pattern persists because of storage costs
which prevent it from being fully diminished by arbi-
trage transactions (Chaton et al., 2008; Mirantes et al.,
2012).

The natural gas price is likely also influenced by vari-
ous external factors, as discussed in Section 1. A natural
starting point is considering the prices of related energy
products like oil, coal, and power. The literature review
indicates that oil (Geng et al., 2017) and coal (Li et al.,
2017) prices influence the natural gas price (Papież &
Śmiech, 2011). This is intuitive since coal, oil, and natural
gas can be used for power generation. Therefore, they are
substitutable to some degree. Asche et al. (2006) found an
influence of power prices on the natural gas prices. How-
ever, the direction of those dependencies may change if
the underlying relations change, for example, caused by
political actions.

Figure 6 presents the external regressors that we con-
sider. In particular, we take into account the month-
ahead Rotterdam coal price, the three-, six-, and nine-
month-ahead brent crude oil price, and the German day-
ahead and month-ahead power base and power peak
prices. Additionally, we consider the daily average
Germany temperature, European natural gas storage
levels (in percent), and daily spot prices of European
Emission Allowances (EUA).

FIGURE 5 Monthly deviation from the annual moving average per year (transparent) and averaged over all years (bold, solid) for the

day-ahead (left) and month-ahead (right) time series
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For EUA the direction in which it influences natural
gas prices is unclear. Since using natural gas produces
carbon emissions, high EUA prices will render the usage
of natural gas unattractive. This effect likely leads to a
price reduction. On the other hand, high EUA prices ren-
der the power generation using natural gas more attrac-
tive compared to the power generation using coal since
natural gas produces fewer carbon footprint than coal.
This substitution effect leads to increased demand for
natural gas due to the fuel switch (Lu et al., 2012; Pratson
et al., 2013). Hence, natural gas prices should rise. Which

of both effects mentioned above dominates has to be esti-
mated. The results are discussed in Section 5.

Other factors that might influence natural gas prices
through the influence on consumption are temperature
(Karabiber & Xydis, 2020) and storage levels (Chaton
et al., 2008). Both are directly related to the seasonal
demand pattern.

Figure 7 gives more insights into the relation of the
considered regressors to the natural gas day-ahead and
month-ahead prices. It shows the correlation between the
considered external regressors xt and the natural gas

FIGURE 6 Time series plot of: month-ahead Rotterdam coal price (Coal), EUA price, X-month-ahead brent crude oil prices, day-ahead

power base and power peak prices of Germany (PWR Base/Peak (DA/MA)), European natural gas storage levels (in percent) and daily

averages of the German temperature

FIGURE 7 Correlation between day-ahead and month-ahead natural gas prices and various related variables, unconditioned (top row)

and conditioned on the past observed natural gas price (bottom row)
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prices yt unconditioned and conditioned on the level of
the natural gas price at t � 1 denoted by yt � 1. With the
temperature being the only exception, the correlations
very are similar for the day-ahead and month-ahead prod-
ucts. Most of the regressors are significantly correlated to
the natural gas price. However, most of this correlation
diminishes when conditioning on the past level of y. We
also observe that the correlation of oil and power prices
merely varies across the considered products. Overall, the
results suggest a positive relationship between the energy
prices (coal, oil, and power) and a slightly negative influ-
ence of EUA prices. Further, the results suggest a minor
role of storage levels for day-ahead and month-ahead
prices and a small positive impact of temperature on
month-ahead natural gas prices.

3 | EMPIRICAL MODELS

In this section, we discuss the proposed state-space time
series models for the day-ahead and month-ahead prod-
uct (Hyndman et al., 2008). Both models are developed in
a stepwise procedure to incorporate all effects discussed
previously. Only effects that improved the probabilistic
forecasting accuracy measured by the out-of-sample Con-
tinuous Ranked Probability Score (CRPS) were kept. We
want to emphasize here that we chose the CRPS as the
target to conduct the model selection based on forecast-
ing performance. As day-ahead and month-ahead prod-
ucts feature distinct properties to some extent, we discuss
them separately.

3.1 | The day-ahead product model

The proposed day-ahead model is given in Equations (1a)
to (1f):

yt ¼ ℓt�1þψ1

5

Xt�Aþ2

s¼t�A�2

ys|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Seasonal

þ ζ1Coalt�1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Coal

þ ζ2EUAt�1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
EUA

þ ζ3PWRt�1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Power

þdt,

ℓt ¼ ℓt�1þ λdt|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Exp: Smoothing

,

dt ¼ φdt�1þθεt�1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ARMAErrors

þ εt,

εt � SSTð0,σt,ν,τÞ,

σt ¼
δ~σt Monday

~σt Else

(
,

~σt ¼ ωþαjεt�1jþβσt�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Absolute Value GARCH

þ γjεt�1j1ðεt�1 < 0Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Leverage|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TGARCH

:

ð1aÞ
The model exploits the autoregressive structure with

an exponential smoothing process (1a and 1b) with auto-
regressive moving average (ARMA) errors denoted by dt

(De Livera et al., 2011). The price at time t is denoted by
yt and ℓt denotes the level component of the state space
model. The seasonal structure is implemented using a
1-week moving average, which is lagged by 1 year. One
week usually contains five observations since the day-
ahead product is only traded on working days. We also
considered using seasonal lags or trigonometric Fourier
terms to incorporate seasonality. However, the averaged
lag proved superior. Moreover, we extend the level
equation (1a) of the model by the coal price (coal), the
price of EUA, and the day-ahead peak power price
(PWR). Furthermore, we considered using a higher order
ARMA process to model the error term. However, this
did not lead to an improvement in CRPS.

The volatility process was modeled using a threshold
GARCH (TGARCH) process (Bollerslev et al., 2010). Com-
pared with the traditional GARCH model, it reduces the
influence of large errors by modeling the conditional stan-
dard deviation instead of the conditional variance. Thereby,
the conditional standard deviation depends on a constant,
its own lagged values, the lagged absolute errors, and a
leverage effect for negative errors. Refraining from squaring
the errors is particularly relevant for natural gas prices due
to the heavy-tails, which we discussed in Section 2.

We address the increased volatility on Mondays by
leveraging the estimated standard deviation on Mondays.
This approach is necessary to avoid increasing the vari-
ance on other weekdays as well. The latter would be the
case when using a Monday dummy (due to the recursive
structure of the TGARCH process). We also considered
using a higher order TGARCH process. However, this did
not improve the model performance.

We assume the errors to be skewed-student-t distributed,
that is, εt � SST. The skewed version of the generalized
Student-t distribution was developed by Fern�andez and
Steel (1998), who proposed a general approach for intro-
ducing skewness in symmetric distributions and applied
that approach to the generalized Student-t distribution.
This distribution was later reparameterized by Wurtz
et al. (2006) such that μ denotes the mean and σ denotes
the standard deviation. The density is defined as follows:

f μ,σ,ν,τðyÞ ¼

c
σ0

1þν2y2

τ

� ��ðτþ1Þ=2
ify< μ0,

c
σ0

1þ y2

ν2τ

� ��ðτþ1Þ=2
ify≥ μ0,

8>>>><>>>>:
with : μ0 ¼ μ�σm=s,

σ0 ¼ σ=s,

c ¼ 2ν½ð1þν2ÞBð1=2,τ=2Þτ1=2��1
,

m ¼ 2τ1=2ðν�ν�1Þ
ðτ�1ÞBð1=2,τ=2Þ ,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ

τ�2
ðν2þν�2�1Þ�m2

r
,

ð2Þ
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where y,μ�ℝ, σ,ν>0, and τ>2. Here, ν denote the
skewness parameter and τ denotes the degrees of free-
dom. The distribution is symmetric if ν¼ 1.

This distribution features heavier tails than the
Gaussian distribution and is, therefore, better suited for
this data. Moreover, it allows for skewness, which was
also discussed in related literature and Section 2. Finally,
we discuss the importance of each model component in
detail in Section 5.

3.2 | The month-ahead product model

The month-ahead model considers all characteristics that
were discovered in Section 2. Preliminary analysis
showed that complex autoregressive models do not out-
perform simple random walk models. Hence, we
extended a random walk model to incorporate all the
characteristics of the product. The proposed month-
ahead model is given in Equations (3a) to (3e).

yt ¼ φ0þ Φt|{z}
Risk
Rollover

þψ1y
M
t�1Y|fflfflfflffl{zfflfflfflffl}

Seasonal

þ ζ1EUAt�1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
EUA

þ ζ2Oilt�1|fflfflfflffl{zfflfflfflffl}
Oil

þ ζ3 ~Tt�1|fflfflffl{zfflfflffl}
Temperature

þ εt,

Φt ¼

φ1yt�1,2MA First Trading Day per Month

φ1yt�1|fflffl{zfflffl}
Rollover

þη
DLTD
t

DM
t|fflfflffl{zfflfflffl}

Risk
Deduction

Else

8>>>>><>>>>>:
,

εt � SSTð0,σt,ν,τÞ,

σt ¼
δ~σt First Trading Day per Month

~σt Else

(
,

~σt ¼ ωþαjεt�1jþβσt�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Absolute Value GARCH

þ γjεt�1j1ðεt�1 < 0Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Leverage|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TGARCH

:

ð3aÞ

We modeled the product rollover by using the most
recent price of the two-month-ahead product yt�1,2MA as
a predictor for the month-ahead product on the first trad-
ing day of each month. The model considers the most
recent price of the month-ahead product yt� 1 on all other
days. Additionally, we added a risk component. The
buildup of the risk premia does not need to be modeled
because the approach mentioned above to address the
model rollover accounts for it already. However, the risk
premia gradually decay over the month. We assume this
decay to be linear. That is, we weight the decay by the
number of days since the last trading day DLTD

t to account
for a more significant risk reduction, for example, on
Mondays. We also normalize this component using the
total number of days in a given month DM

t . Moreover, we
included a seasonal component. We used the monthly

average lagged by one year yMt�1Y . This approach has a
clear advantage compared with, for example, Fourier
terms: It accounts for the monthly structure of the prod-
uct, that is, the rollover.

The mean process was further extended by the lagged
price of European Emission Allowances, the lagged price
of Oil, and the lagged and smoothed temperature denoted
by EUAt�1, Oilt�1, and ~Tt�1, respectively. The smoothed
temperature is defined as eTt ¼ 0:95~Tt�1þð0:05ÞTt . That
is, we follow Gaillard et al. (2016) by smoothing the tem-
perature exponentially with a persistence parameter of
0.95. Lastly, the model was supplemented by a TGARCH
process similar to the process of the day-ahead model.
However, the conditional standard deviation is elevated
on the first trading day of every month instead of every
Monday. We assume that the errors are SST distributed
as in the day-ahead model.

4 | FORECASTING STUDY

4.1 | Forecasting study design and
benchmarks

The validity and forecasting performance of the models
was evaluated using one-step-ahead out-of-sample fore-
casts obtained by an expanding window forecasting
study.

That is, the estimation window expands as the fore-
casting study progresses. We chose this approach to uti-
lize an increasing number of observations for estimation.
This approach is more suitable than a rolling window
forecasting study due to the heavy-tailed data. We initial-
ized the calibration window with 4 years of observations
(exactly 1012/1012 days day-ahead/month-ahead), leav-
ing more than 4 years for validation (exactly
1056/1079 days day-ahead/month-ahead). We estimated
the models by minimizing their negative log-likelihood
functions. We implemented them in Python along with
the SST distribution, which we made available on PyPI
(Berrisch, 2021). For minimization, we used sequential-
least squares programming, which is provided by Scipy
(Virtanen et al., 2020).

Moreover, we set up three different benchmark
models from recent literature. Because all three models
were only used to do point-forecasting, we had to set a
distributional assumption ourselves. We chose to esti-
mate each model with the common normality assump-
tion and the T assumption, which better fits these data,
as discussed above.

First, we replicated the time series benchmark model
of Siddiqui (2019). They used an ARIMA(2,1,2) model.
Because they did not specify how this model was
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calibrated, we just chose the same order. Second, we rep-
licated the random forest model of Herrera et al. (2019),
which outperformed all other considered models by a
great margin. However, we had to adapt the hyper-
parameters here because Herrera et al. (2019) applied this
model to monthly data. That is, we fitted 500 trees like
Herrera et al. (2019) and created 270 lag variables that
correspond to roughly 1 year of observations, and consid-
ered 23 (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
270�2

p
≈ 23) variables at each split in contrast

to 7. Lastly, we fit a vector autoregressive model like
Geng et al. (2017) to the differenced time series of natural
gas and month-ahead oil prices. We determined the vec-
tor autoregressive (VAR) order by using the Akaike infor-
mation criterion.

We evaluated the benchmarks using the same fore-
casting study design as described above. We estimated the
missing distributional parameters by fitting a Normal and
Student-t-distribution to the error terms. These parame-
ters were also estimated using maximum likelihood.
Thus, we receive 2�3¼ 6 benchmark models in total.

4.2 | Evaluation measures

We use four scoring functions to evaluate the forecasting
performance on the aforementioned out-of-sample fore-
casts. Namely, the mean absolute error (MAE), root
mean squared error (RMSE), CRPS, and pinball loss.
Table 2 presents these scoring functions formally. While
MAE and RMSE are very popular, they do not evaluate
the whole probabilistic forecast. The (R)MSE should be
used only to evaluate mean forecasts. Similarly, the MAE
is appropriate only for evaluating median forecasts
(Gneiting, 2011).

Forecasting the whole probabilistic distribution yields
a significant advantage: The possibility to obtain several
predictors like the mean, the median, or other quantiles
of interest without the need to specify the desired

quantity of interest beforehand. This also allows us to use
multiple scoring functions appropriately by evaluating
the respective quantities of the distribution. However, as
discussed above, and RMSE are only suitable for evaluat-
ing the mean and median. In contrast, CRPS and pinball
loss can be used for evaluating the full predictive distri-
bution. Both are also strictly proper. This means that they
reach a unique minimum when the probabilistic forecast
equals the actual probability distribution. Hence they will
identify the true model if it is considered (Gneiting &
Raftery, 2007). The Pinball loss evaluates the perfor-
mance of individual quantile forecasts. One can calculate
the Pinball loss of a probabilistic forecast for arbitrary
probabilities of choice using the quantile function. In this
paper, the pinball loss is calculated on a probability grid
containing all percentiles. The results are then plotted as
a line graph, usually creating a bell shape. As with the
other loss functions, the model performance is better the
smaller the pinball loss is.

The pinball loss is directly related to the MAE and
the CRPS. Calculating the pinball loss at the 50% proba-
bility yields the MAE/2. Further, we can use the pinball
loss to approximate the CRPS:

CRPSðF̂tðzÞ,ytÞ¼ 2
Z 1

0
PLðQ̂tðpÞ,yt,pÞdp:

That is, evaluating the pinball loss on a dense grid
approximates the CRPS (Berrisch & Ziel, 2021). Both
measures have their advantages. The CRPS, on the one
hand, summarizes the probabilistic forecasting perfor-
mance in one single scalar but does not offer insights into
the forecasting performance of particular quantile fore-
casts (Nowotarski & Weron, 2018). The pinball loss, on
the other hand, resolves the forecasting performance in
more detail. However, presenting pinball losses over a
grid with high-resolution requires graphical methods
almost surely.

TABLE 2 Scoring functions used for evaluating the forecasting performance of mean (μ̂t), median (~μt), p-quantile (Q̂tðpÞ) or distribution
(F̂t) predictions and corresponding observations yt

Name Scoring function

Root mean squared error
RMSEðyt , μ̂tÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

ðyt � μ̂tÞ2
s

Mean absolute error
MAEðyt , ~μtÞ¼ 1

T

XT
t¼1

jyt � ~μt j

Pinball loss for probability p
PLðQ̂tðpÞ,yt ,pÞ¼

pðyt� Q̂tðpÞÞ yt ≥ Q̂tðpÞ
ð1�pÞðQ̂tðpÞ� ytÞ yt < Q̂tðpÞ

(
Continuous ranked probability score CRPSðF̂tðzÞ,ytÞ¼

R
ℝ
ðF̂tðxÞ�1ðz> ytÞÞ

2
dx
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Additionally, we use the Diebold–Mariano (DM) for
model comparison (Diebold & Mariano, 2002). The test
statistic is defined as follows:

tDM ¼ ΔA,B

σ ΔA,B
� � withΔA,B ¼ 1

N

XN
i¼1

LðεA,iÞ�LðεB,iÞð Þ, ð4Þ

where ΔA,B denotes the loss differential of the two com-
peting models A and B. L denotes the loss function,
which depends on the forecasting errors εA, i and εB, i,
respectively. The null hypothesis of this test states that
the loss differential ΔA,B is not different from zero. The
DM is applied using the loss functions presented Table 2.

5 | RESULTS AND DISCUSSION

5.1 | Model diagnostics

We used several measures to assess the model validity
before evaluating the predictive performance. First, we
visually inspected the standardized mean residuals of
both models. These are presented in Figure 8. A compari-
son to Figure 3 shows that both models exploit the

majority of the autocorrelation in the data. The line
graph and the histogram do not reveal any striking pat-
terns either.

We conducted the energy test of independence to test
for independence of the standardized mean residuals and
several selected quantities (Székely et al., 2007; Székely &
Rizzo, 2013). We denote the standardized residuals by
zt ¼ εt=σt. This test is based on the distance correlation
R, which only requires finite first moments to exist. Dis-
tance correlation measures any correlation between two
random variables in arbitrary dimensions. That is, R¼ 0
only holds if X and Y are independent. This is used to cre-
ate the energy test of independence. The null hypothesis of
this test is independence: H0 : yt ⊥ ⊥ zt. Table 3 presents
the test results for the standardized residuals of the day-
ahead and month-ahead models. In the day-ahead case,
independence is rejected for the dependent variable yt.
This indicates that there are still unexploited dependen-
cies. However, these may be nonlinear and potentially
weak, which makes exploiting them difficult. The latter
also holds for the coal price, the price of EUA and the
seasonal component, although the p values are much
higher for these quantities. For the month-ahead model,
independence is not rejected for all variables. However,

FIGURE 8 Standardized residuals of the proposed day-ahead (top-left, green) and month-ahead (top-left, blue) model and

corresponding densities (top-right) as well as sample autocorrelations (ACF) up to lag 40 of the day-ahead (green) and month-ahead (blue)

standardized residuals and transformations thereof, 5% confidence intervals are indicated by grey dotted lines
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the p value of the dependent variable is close to rejection,
which may indicate some residual dependencies.

The maximum likelihood estimates themselves are
asymptotically normal under some regularity conditions,

which often hold in practice. That is, we assume asymp-
totic normality and conduct z-tests to assess the parame-
ter significance. We approximate the variance-covariance
matrix by inverting the Hessian, which is calculated by

TABLE 3 Test statistics and p

values of the energy test of

independence conducted to test

whether zt and the denoted listed are

independent

Description Variable Statistic p value

Day-ahead

Day-ahead Price yt 20.147 0.010

Seasonal
Xt�Aþ2

s¼t�A�2
ys

9.686 0.050

Coal price lagged Coalt�1 41.122 0.030

EUA price lagged EUAt�1 30.279 0.010

Power Price lagged PWRt�1 17.147 0.515

Monday Dummy Monday 0.379 0.337

Standardized residuals lagged zt � 1 1.240 0.485

Month-ahead

Month-ahead price yt 10.027 0.056

Lagged month-ahead price yt � 1 7.190 0.194

Lagged two-month-ahead price yt�1,MP2 6.940 0.178

First day of month dummy First day of month 0.115 0.247

Days in month DM
t 0.999 0.280

Day since last close DLTD
t 1.281 0.146

Seasonal yMt�1Y
4.812 0.384

Lagged EUA price EUAt�1 14.787 0.182

Lagged oil price Oilt�1 12.370 0.311

Lagged temperature Tt � 1 8.322 0.509

Lagged standardized residual zt � 1 1.008 0.663

TABLE 4 Parameter estimates and

test statistics of corresponding z-tests of

the proposed day-ahead model along

with significance levels indicated by

colors

Process Parameter Description Estimate H0 z-statistic

μ λ ETS smoothing 1.152 λ¼ 1 6.65

μ ψ0 Seasonal �0.015 ψ0 ¼ 0 �1.29

μ φ1 AR1 �0.685 φ1 ¼ 0 �36.17

μ θ1 MA1 0.413 θ1 ¼ 0 16.84

μ ζ0 Coal 0.019 ζ0 ¼ 0 3.70

μ ζ1 EUA 0.078 ζ1 ¼ 0 3.92

μ ζ2 Power 0.001 ζ2 ¼ 0 1.72

σ ω Constant 0.025 ω¼ 0 15.52

σ α AR1 0.291 α¼ 0 38.98

σ β MA1 0.726 β¼ 0 128.60

σ α + β Persistence 1.027 αþβ¼ 1 0.85

σ γ Leverage �0.101 γ¼ 0 �9.38

σ δ Monday 1.342 δ¼ 1 5.05

ν ν Nu 1.039 ν¼ 1 1.05

τ τ Tau 6.425 τ > 4 2.91

Note: p≤0.10, p≤0.01, p≤0.001.

1076 BERRISCH AND ZIEL



numerical differentiation using the symmetric difference
quotient. The obtained Hessian will be equivalent to the
Fisher information matrix, as all models were estimated
by minimizing the negative log-likelihood function.
Therefore, inverting it yields an estimate for the
variance–covariance matrix. We approximated the
variance–covariance matrix in every iteration step of the
forecasting study and averaged afterward. This makes the
estimated Hessian more robust, and the standard errors
are not as low as they would be when only evaluating the
last step of the expanding window study.

Table 4 summarizes the parameter estimates of the
proposed day-ahead model along with their significance
estimates. The smoothing parameter λ is significantly dif-
ferent from one, which indicates that the conditional
mean process is not purely a random walk. The seasonal-
ity parameter is insignificant, although it reduces the out-
of-sample CRPS (see Appendix A1). The coal and EUA
parameters are significant, whereas the power parameter
only reaches weak significance. The ARMA(1,1) process
of the error-trend-seasonal (ETS) model is highly signifi-
cant, indicating that an exponential smoothing model
alone does not suffice in describing the process. All
parameters of the TGARCH process are significant. The
high test statistics of the AR and moving average
(MA) terms suggest that a higher order TGARCH model
might be even better. The skewness parameter ν is not
significantly different from one. A value of one corre-
sponds to asymmetric distribution. The estimated degrees
of freedom τ are significantly higher than four. We can
conclude that the fourth moment exists with high

certainty since the degrees of freedom function as a tail-
index estimate for the T-distribution. This property is
important because it renders inference on the TGARCH
parameters, for which the fourth moment is needed,
plausible.

The positive signs of coal and oil prices confirm pre-
vious findings in related research, as discussed in
Section 1. The effect of the EUA was estimated to be
significantly positive as well, which indicates that the
day-ahead product is used to substitute coal for power
production.

The α and β (the persistence parameters in the
TGARCH process) sum up to 1.027. Conducting a z-test
with H0 : αþβ¼ 1 yields test statistic of 0.85. That is,
α+ β is not significantly different from 1. The latter is a
characteristic property of Integrated GARCH (IGARCH)
processes. Shocks have an infinite persistence in the
(IGARCH) process. In consequence, long term forecasts
of the conditional variance will not converge towards the
unconditional variance, which is undefined in the
(IGARCH) model. Therefore, forecasts will get less reli-
able as the forecasting horizon increases (Tsay, 2010).
(IGARCH) behavior can be caused by unaccounted struc-
tural change in the conditional variance (Morana, 2002).
However, whether those findings also apply to the pro-
posed TGARCH model is questionable since it deviates
from the plain GARCH model in various aspects. How-
ever, we did estimate the proposed model with α+ β
fixed to 1. This did not improve the forecasting perfor-
mance (see Appendix A1). Therefore, further examining
this issue remains a task for future scientific work.

TABLE 5 Parameter estimates and

test statistics of corresponding z-tests of

the proposed month-ahead model,

along with significance levels indicated

by colors

Process Parameter Description Estimate H0 z-statistic

μ η Risk premia �0.353 η¼ 0 �3.36

μ ψ0 Seasonal �0.005 ψ0 ¼ 0 �19.29

μ φ0 Constant 0.112 φ0 ¼ 0 24.78

μ φ1 AR1 0.997 φ1 ¼ 1 �11.38

μ ζ0 EUA �0.005 ζ0 ¼ 0 �6.45

μ ζ1 Oil 0.001 ζ1 ¼ 0 16.19

μ ζ2 Temperature 0.001 ζ2 ¼ 0 3.18

σ ω Constant 0.012 ω¼ 0 13.23

σ α AR1 0.208 α¼ 0 43.27

σ β MA1 0.834 β¼ 0 241.51

σ α + β Persistence 1.043 αþβ¼ 1 2.59

σ γ Leverage �0.085 γ¼ 0 �10.47

σ δ First day 1.403 δ¼ 1 2.73

ν ν Nu 1.132 ν¼ 1 3.38

τ τ Tau 6.858 τ > 4 3.03

Note: p≤0.10, p≤0.01, p≤0.001.
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Table 5 presents the parameter estimates and test sta-
tistics of the proposed month-ahead model. The risk
parameter is negative as expected, and it is highly signifi-
cant. The EUA parameter is significantly negative, which
contrasts the positive estimate that was observed in the
day-ahead model. This potentially indicates that the
month-ahead product is not used for substitution but is
rather influenced on its own. While this is a plausible
explanation, one has to keep in mind that day-ahead
EUA prices were used because other time series of EUA
prices were not available. Analyzing these effects in more
detail remains a topic for further research. However,
while the sign of oil is plausible and matches the one
from the day-ahead model, the sign of the temperature is
not plausible. Lower temperatures should lead to a
higher natural gas demand, and higher demand usually
translated to higher prices if it is not fully anticipated
upfront. The sign of the seasonal parameter is also unex-
pectedly negative. All parameters in the TGARCH pro-
cess are significant. The δ estimates are significant
around 1.4, indicating that the conditional variance is sig-
nificantly increased on the first trading day of every
month. The estimated degrees of freedom τ are larger
than four as for the day-ahead model.

5.2 | Predictive performance

Table 6 shows the forecasting performance of the day-
ahead and month-ahead models. The proposed models

outperform their closest benchmarks by ≈13% and ≈ 9%
in terms of CRPS, respectively. The assumption of T-
distributed errors is beneficial for all day-ahead models
except the random forest. Interestingly, the normality
assumption yields better performance for the benchmark
models. The results further support the hypothesis that
Oil Prices contain predictive power as the VAR model
consistently outperforms the ARIMA counterpart. How-
ever, the results of the Random Forest are not in line
with the results of Herrera et al. (2019) where the ran-
dom forest substantially outperformed all other consid-
ered models.

However, the results in Table 6 do not reveal how
these improvements are distributed over the predictive
distribution. Figure 9 closes this gap. It shows the pinball
loss of both proposed models and their benchmarks. The
figure presents the level of the pinball loss (top), as well
as the improvement in % relative to the best performing
benchmark (bottom). Both proposed models outperform
their benchmarks over the whole probability grid. More-
over, substantial improvements are realized in the distri-
bution's tails, which are particularly relevant for risk
management.

We conducted the DM-test to check whether the
observed improvements in CRPS are significant.
Figure 10 contains the results. The colors indicate the
value of the test statistic, whereas the symbols note sig-
nificance. Lower values (dark green) indicate that the
model on the y-axis outperforms the model on the x-axis.
All models outperform the Random Forest, while the

TABLE 6 Predictive performance

of the proposed models and

benchmarks

Reference MAE RMSE CRPS

Day-ahead

Proposed model 0.3863 1.0843 0.2834

VAR (T) 0.4144 1.1598 0.3252

ARIMA(2,1,2) (T) 0.4215 1.2127 0.3324

VAR (normal) (Geng et al., 2017) 0.4144 1.1598 0.3386

ARIMA(2,1,2) (normal) (Siddiqui, 2019) 0.4215 1.2127 0.3466

Random forest (normal) (Herrera et al., 2019) 0.5725 1.2548 0.4361

Random forest (T) 0.5725 1.2548 0.4523

Month-ahead

Proposed model 0.3010 0.3995 0.2126

VAR (normal) (Geng et al., 2017) 0.3184 0.4619 0.2336

ARIMA(2,1,2) (normal) (Siddiqui, 2019) 0.3201 0.4635 0.2349

VAR (T) 0.3184 0.4619 0.2356

ARIMA(2,1,2) (T) 0.3201 0.4635 0.2371

Random forest (normal) (Herrera et al., 2019) 0.4681 0.6167 0.3502

Random forest (T) 0.4681 0.6167 0.3603

Note: Lower values indicate better performance.
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VAR outperforms most other models for both products.
The proposed models significantly outperform all bench-
marks, which makes them preferable.

We also tested if the observed differences in pinball
loss (see Figure 9) are significant. Therefore, we used the
DM-test with respect to the pinball loss of each percen-
tile. That is, we can present the results concisely in
Figure 11. It shows the p values (top) and test-statistics

(bottom). Lower values indicate that the proposed model
outperforms the benchmark. Furthermore, all p values
are below 5% for all benchmarks. This means that the
proposed models significantly outperform the bench-
marks at all percentiles.

Lastly, we constructed a probability integral trans-
form (PIT) histogram for both proposed models to evalu-
ate the calibration accuracy; see Figure 12. Each bin

FIGURE 9 Pinball loss levels at all percentiles for the day-ahead (top-left) and month-ahead (top-right) models as well as the relative

improvement compared to the best performing benchmark model - the VAR (T) model for day-ahead (bottom-left) and VAR (Normal) for

month-ahead (bottom-right)

FIGURE 10 Results of DM-tests testing whether the y-axis model performs better than the x-axis model. The colors correspond to levels

of the test statistics. Symbols denote selected significance levels
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represents a probability segment of the predictive distri-
bution with a predicted probability of 5%. A perfectly cali-
brated model would produce a uniformly shaped
histogram. That is, the figure indicates that both models
are calibrated reasonably well while the month-ahead
model has a slight tendency of underdispersion (Raftery
et al., 2005).

To keep this paper concise, we decided to present the
proposed model only instead of presenting each model
considered during the model building process. We only
discussed the proposed models in detail to keep this
paper concise. However, we considered several variations
of the two proposed models, either leaving out (�) or
adding (+) model components. This is helpful to assess
the relative importance of each component. We used the
DM-test with respect to the CRPS to compare the predic-
tive performance of these models. Figure 13 shows the
results. The figure can be interpreted as follows. The
main body shows the test-statistics of DM-tests testing

whether the y-axis model outperforms the x-axis model.
Therefore, inspecting the last column of the day-ahead
facet answers whether any model (denoted on the y-axis)
outperforms the proposed model (the last entry on the x-
axis). The latter is not the case, which means that neither
adding nor removing model components yields a signifi-
cantly better predictive performance. This also holds true
for the proposed month-ahead model.

Some findings are worth highlighting here. First, the
models assuming homoscedasticity are among the worst
for both products. The day-ahead model profits in partic-
ular from including ARMA errors, coal, and the leverage
effect in the sigma process. The month-ahead model
profits from considering the rollover (First Day Mu) as
well as including EUA and the leverage effect. Removing
components not always produces a significant difference.
For example, removing EUA prices from the proposed
day-ahead model does not yield a significantly worse per-
formance with respect to the DM-test. However, the EUA

FIGURE 11 P-values (top) and test statistics (bottom) of DM tests testing whether the predictions of the proposed models are better

than those from the ARIMA and VAR models. Lower values indicate better performance of the proposed models

FIGURE 12 PIT histogram of the probabilistic out-of-sample predictions of both proposed models
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coefficient itself is significant, as shown in Table 4 and
including EUA prices reduces the out-of-sample CRPS.
Therefore, we keep EUA prices included in the proposed
model.

CRPS, RMSE, and MAE values of all models are sum-
marized in Tables A1 and A2 in Appendix A. Results of
DM-tests testing with respect to the absolute and
squarred error are also included in Appendix A (see
Figures A1 and A2).

6 | CONCLUSION

In this paper, we examined the problem of forecasting
European natural gas prices. We developed state-space
time series models for probabilistic price forecasting
of the day-ahead and month-ahead products. Both
time series are heavy-tailed and feature conditional
heteroscedasticity with leverage effects. In addition, the
month-ahead time series contains risk premia effects.
The model development process was guided by an exten-
sive exploratory data analysis (see Section 2) and results
from related research. The econometric models were
estimated using maximum likelihood under skewed
T-distribution. Out-of-sample forecasts obtained from
an expanding window forecasting study were used to
evaluate the forecasting performance using various

probabilistic performance measures, including the CRPS
and the pinball loss.

Particularly, the day-ahead time series features pro-
nounced heavy tails and benefits substantially from
assuming a t-distribution. We modeled the conditional
mean using a state-space model with ARMA errors, a sea-
sonal component, and external regressors. We used a
stepwise forward selection approach to determine the
influence of external regressors. The results show a sig-
nificant positive impact on the coal price. The latter con-
firms previous findings (Papież & Śmiech, 2011).
Additionally, we find a positive influence of EUA and
power peak prices on natural gas prices. This indicates a
strong link between natural gas and electricity markets
in Europe. Finally, the conditional standard deviation
was modeled using a TGARCH process, extended by a
level elevation on Mondays. As a result, the estimated
volatility is increased by around 34% on Mondays. The
proposed day-ahead model improves the CRPS by 12.9%
compared with a VAR model with t-distributed errors,
which is the best benchmark.

A major consideration for the month-ahead time
series was the presence of risk premia and the rollover
problem. The latter implies a sudden change in the deliv-
ery period on the first trading day of each month. This
leads to pronounced price effects and, as a consequence,
increased conditional volatility. The proposed model

FIGURE 13 Results of DM-tests with respect to CRPS, testing whether the y-axis model performs better than the x-axis model. Colors

denote the level of the test statistics. Symbols indicate selected significance levels
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covers these effects by using the last observed price of the
Two-month-ahead product as a predictor for the first
trading day and by elevating the conditional standard
deviation on the first trading day. The latter increase is
estimated to be 40% in the proposed month-ahead model.
The observed positive changes at the beginning of the
month are possibly due to risk premia. These risk premia
should decrease over time because the uncertainty
decreases as time gets closer to delivery. We find this
highly significant pattern in the data estimating a total
price reduction of 0.35£ per month. Including a seasonal
component as well as EUA prices, oil prices, and the tem-
perature reduced the CRPS. However, only the effect of
EUA prices is significant. The impact is negative, which
might indicate that the month-ahead product is not used
for substituting coal, in contrast to the day-ahead model,
which is positively influenced by EUA prices. The lever-
age component in the GARCH process is significant and
negative in the proposed month-ahead model. Using the
proposed month-ahead model compared to the VAR
alternative with Gaussian errors leads to a 9% reduction
in out of sample CRPS.

Some additional questions arise in light of the results.
Further, analyzing the influence of EUA prices seems
interesting for energy companies and governments. The
main question to be answered here is why the impact of
EUA prices on natural gas prices is positive for the day-
ahead product while it is negative for the month-ahead
product. Further investigation of the role of risk premia
in natural gas markets is another attractive topic since
the literature on natural gas price forecasting has not cov-
ered it yet.

DATA AVAILABILITY STATEMENT
Research data are not shared. The data that support the
findings of this study are available from the
corresponding author upon reasonable request.

ORCID
Jonathan Berrisch https://orcid.org/0000-0002-4944-
9074
Florian Ziel https://orcid.org/0000-0002-2974-2660

REFERENCES
Asche, F., Osmundsen, P., & Sandsmark, M. (2006). The UK market

for natural gas, oil and electricity: Are the prices decoupled?
The Energy Journal, 27(2), 27–40. https://doi.org/10.5547/
issn0195-6574-ej-vol27-no2-2

Berrisch, J. (2021). sstudentt 0.1.1: A python implementation of
the skewed student-t distribution. https://pypi.org/project/
sstudentt/, https://github.com/BerriJ/sstudentt

Berrisch, J., & Ziel, F. (2021). CRPS Learning. Journal of Economet-
rics. forthcoming. https://doi.org/10.1016/j.jeconom.2021.11.008

Bollerslev, T., Russell, J. R., & Watson, M. W. (2010). Volatility and
time series econometrics: essays in honor of Robert Engle: Oxford
University Press.

Čeperi�c, E., Žikovi�c, S., & Čeperi�c, V. (2017). Short-term forecasting
of natural gas prices using machine learning and feature selec-
tion algorithms. Energy, 140, 893–900. https://doi.org/10.1016/j.
energy.2017.09.026

Chaton, C., Creti, A., & Villeneuve, B. (2008). Some economics of
seasonal gas storage. Energy Policy, 36(11), 4235–4246.

Chen, Y., Xu, X., & Koch, T. (2020). Day-ahead high-resolution
forecasting of natural gas demand and supply in Germany with
a hybrid model. Applied Energy, 262, 114486.

Chkili, W., Hammoudeh, S., & Nguyen, D. K. (2014). Volatility fore-
casting and risk management for commodity markets in the
presence of asymmetry and long memory. Energy Economics,
41, 1–18.

De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecast-
ing time series with complex seasonal patterns using exponen-
tial smoothing. Journal of the American statistical association,
106(496), 1513–1527.

Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive
accuracy. Journal of Business & economic statistics, 20(1),
134–144.

Drachal, K. (2021). Forecasting selected energy commodities prices
with Bayesian dynamic finite mixtures. Energy Economics, 99,
105283.

Elgharbawy, A., & Sayed, A. (2020). A review on natural gas previ-
ous, current and forecasting prices and demand. Journal of
Petroleum and Mining Engineering, 22(1), 61–64.

Engle, R. F., & Patton, A. J. (2007). What good is a volatility model?
Forecasting volatility in the financial markets: Elsevier,
pp. 47–63.

Fern�andez, C., & Steel, M. F. J. (1998). On Bayesian modeling of fat
tails and skewness. Journal of the American Statistical Associa-
tion, 93(441), 359–371.

Ferrari, D., Ravazzolo, F., & Vespignani, J. (2021). Forecasting
energy commodity prices: A large global dataset sparse
approach. Energy Economics, 98, 105268.

Gaillard, P., Goude, Y., & Nedellec, R. (2016). Additive models and
robust aggregation for GEFCom2014 probabilistic electric load
and electricity price forecasting. International Journal of fore-
casting, 32(3), 1038–1050.

Gao, S., Hou, C., & Nguyen, B. H. (2021). Forecasting natural gas
prices using highly flexible time-varying parameter models.
Economic Modelling, 105, 105652.

Geng, J.-B., Ji, Q., & Fan, Y. (2017). The relationship between
regional natural gas markets and crude oil markets from a
multi-scale nonlinear Granger causality perspective. Energy
Economics, 67, 98–110. https://doi.org/10.1016/j.eneco.2017.
08.006

Gneiting, T. (2011). Making and evaluating point forecasts. Journal
of the American Statistical Association, 106(494), 746–762.

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules,
prediction, and estimation. Journal of the American statistical
Association, 102(477), 359–378.

Hailemariam, A., & Smyth, R. (2019). What drives volatility in nat-
ural gas prices?. Energy Economics, 80, 731–742.

Hamie, H., Hoayek, A., & Auer, H. (2021). Modeling post-
liberalized European gas market concentration—A game

1082 BERRISCH AND ZIEL

https://orcid.org/0000-0002-4944-9074
https://orcid.org/0000-0002-4944-9074
https://orcid.org/0000-0002-4944-9074
https://orcid.org/0000-0002-2974-2660
https://orcid.org/0000-0002-2974-2660
https://doi.org/10.5547/issn0195-6574-ej-vol27-no2-2
https://doi.org/10.5547/issn0195-6574-ej-vol27-no2-2
https://pypi.org/project/sstudentt/
https://pypi.org/project/sstudentt/
https://github.com/BerriJ/sstudentt
https://doi.org/10.1016/j.jeconom.2021.11.008
https://doi.org/10.1016/j.energy.2017.09.026
https://doi.org/10.1016/j.energy.2017.09.026
https://doi.org/10.1016/j.eneco.2017.08.006
https://doi.org/10.1016/j.eneco.2017.08.006


theory perspective. Forecasting, 3(1), 1–16. https://doi.org/10.
3390/forecast3010001

Herrera, G. P., Constantino, M., Tabak, B. M., Pistori, H.,
Su, J.-J., & Naranpanawa, A. (2019). Long-term forecast of
energy commodities price using machine learning. Energy, 179,
214–221. https://doi.org/10.1016/j.energy.2019.04.077

Hong, T., Pinson, P., Wang, Y., Weron, R., Yang, D., &
Zareipour, H. (2020). Energy forecasting: A review and outlook.
IEEE Open Access Journal of Power and Energy, 7, 376–388.

Hyndman, P. R., Koehler, P. A., Ord, P. K., & Snyder, A. P. R.
(2008). Forecasting with exponential smoothing, Springer Series
in Statistics: Springer Berlin Heidelberg.

Jianliang, W., Changran, L., & Meiyu, G. (2020). Daily natural gas
price forecasting by a weighted hybrid data-driven model. Jour-
nal of Petroleum Science and Engineering, 192, 107240. https://
doi.org/10.1016/j.petrol.2020.107240

Karabiber, O. A., & Xydis, G. (2020). Forecasting day-ahead natural
gas demand in Denmark. Journal of Natural Gas Science and
Engineering, 76, 103193.

Li, H., Chen, L., Wang, D., & Zhang, H. (2017). Analysis of the price
correlation between the international natural gas and coal.
Energy Procedia, 142, 3141–3146.

Liang, C., Ma, F., Wang, L., & Zeng, Q. (2021). The information
content of uncertainty indices for natural gas futures volatility
forecasting. Journal of Forecasting, 40(7), 1310–1324.

Livieris, I. E., Pintelas, E., Kiriakidou, N., & Stavroyiannis, S.
(2020). An advanced deep learning model for short-term fore-
casting US natural gas price and movement, IFIP International
Conference on Artificial Intelligence Applications and Innova-
tions: Springer, pp. 165–176.

Lu, X., Salovaara, J., & McElroy, M. B. (2012). Implications of the
recent reductions in natural gas prices for emissions of CO2

from the US power sector. Environmental science & technology,
46(5), 3014–3021.

Lv, X., & Shan, X. (2013). Modeling natural gas market volatility
using GARCH with different distributions. Physica A: Statistical
Mechanics and its Applications, 392(22), 5685–5699.

Mirantes, A. G., Poblaci�on, J., & Serna, G. (2012). The stochastic
seasonal behaviour of natural gas prices. European Financial
Management, 18(3), 410–443.

Morana, C. (2002). IGARCH effects: an interpretation. Applied Eco-
nomics Letters, 9(11), 745–748.

Mu, X. (2007). Weather, storage, and natural gas price dynamics:
Fundamentals and volatility. Energy Economics, 29(1), 46–63.

Nguyen, H. T., & Nabney, I. T. (2010). Short-term electricity
demand and gas price forecasts using wavelet transforms and
adaptive models. Energy, 35(9), 3674–3685.

Nowotarski, J., & Weron, R. (2018). Recent advances in electricity
price forecasting: A review of probabilistic forecasting. Renew-
able and Sustainable Energy Reviews, 81, 1548–1568.

Papież, M., & Śmiech, S. (2011). The analysis of relations between
primary fuel prices on the European market in the period
2001-2011. Rynek Energii, 5(96), 139–144.

Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z.,
Barrow, D. K., Taieb, S. B., Bergmeir, C., Bessa, R. J., Bijak, J.,
Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P.,
Clements, M. P., Cordeiro, C., Oliveira, F. L. C., De Baets, S.,
Dokumentov, A., …, & Ziel, F. (2022). Forecasting: theory and

practice. International Journal of Forecasting. forthcoming.
https://doi.org/10.1016/j.ijforecast.2021.11.001

Pratson, L. F., Haerer, D., & Patiño-Echeverri, D. (2013). Fuel
prices, emission standards, and generation costs for coal vs nat-
ural gas power plants. Environmental science & technology,
47(9), 4926–4933.

Raftery, A. E., Gneiting, T., Balabdaoui, F., & Polakowski, M.
(2005). Using Bayesian model averaging to calibrate forecast
ensembles. Monthly weather review, 133(5), 1155–1174.

Roncoroni, A., & Brik, R. I. (2017). Hedging size risk: Theory and
application to the US gas market. Energy Economics, 64, 415–
437. https://doi.org/10.1016/j.eneco.2016.10.020

Safari, A., Das, N., Langhelle, O., Roy, J., & Assadi, M. (2019). Natu-
ral gas: A transition fuel for sustainable energy system transfor-
mation?. Energy Science & Engineering, 7(4), 1075–1094.

Saghi, F., & Rezaee, M. J. (2021). An ensemble approach based on
transformation functions for natural gas price forecasting con-
sidering optimal time delays. PeerJ Computer Science, 7, e409.

Salehnia, N., Falahi, M. A., Seifi, A., & Adeli, M. H. M. (2013). Fore-
casting natural gas spot prices with nonlinear modeling using
Gamma test analysis. Journal of Natural Gas Science and Engi-
neering, 14, 238–249. https://doi.org/10.1016/j.jngse.2013.07.002

Siddiqui, A. W. (2019). Predicting natural gas spot prices using arti-
ficial neural network. In 2019 2nd International Conference on
Computer Applications & Information Security (ICCAIS),
Riyadh, Saudi Arabia, pp. 1–6.

Su, M., Zhang, Z., Zhu, Y., & Zha, D. (2019). Data-driven natural
gas spot price forecasting with least squares regression boosting
algorithm. Energies, 12(6), 1094.

Su, M., Zhang, Z., Zhu, Y., Zha, D., & Wen, W. (2019). Data driven
natural gas spot price prediction models using machine learn-
ing methods. Energies, 12(9), 1680.

Székely, G. J., & Rizzo, M. L. (2013). Energy statistics: A class of sta-
tistics based on distances. Journal of statistical planning and
inference, 143(8), 1249–1272.

Székely, G. J., Rizzo, M. L., Bakirov, N. K., et al. (2007). Measuring
and testing dependence by correlation of distances. The Annals
of Statistics, 35(6), 2769–2794. https://doi.org/10.1214/
009053607000000505

Tamba, J. G., Essiane, N., Sapnken, E. F., Koffi, F. D.,
Nsouand, J. L., Soldo, B., & Njomo, D. (2018). Forecasting natu-
ral gas: A literature survey. International Journal of Energy Eco-
nomics and Policy, 8(3), 216.

Tang, Y., Wang, Q., Xu, W., Wang, M., & Wang, Z. (2019). Natural
gas price prediction with big data, 2019 IEEE International Con-
ference on Big Data (Big Data). Los Angeles, CA, USA: IEEE,
pp. 5326–5330.

Tsay, R. S. (2010). Analysis of financial time series: John Wiley &
Sons.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., …, van Mulbregt, P., & SciPy 1.0
Contributors (2020). SciPy 1.0: Fundamental algorithms for sci-
entific computing in Python. Nature Methods, 17, 261–272.

Wang, J., Cao, J., Yuan, S., & Cheng, M. (2021). Short-term forecast-
ing of natural gas prices by using a novel hybrid method based

BERRISCH AND ZIEL 1083

https://doi.org/10.3390/forecast3010001
https://doi.org/10.3390/forecast3010001
https://doi.org/10.1016/j.energy.2019.04.077
https://doi.org/10.1016/j.petrol.2020.107240
https://doi.org/10.1016/j.petrol.2020.107240
https://doi.org/10.1016/j.ijforecast.2021.11.001
https://doi.org/10.1016/j.eneco.2016.10.020
https://doi.org/10.1016/j.jngse.2013.07.002
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/009053607000000505


on a combination of the CEEMDAN-SE-and the PSO-ALS-
optimized GRU network. Energy, 233, 121082.

Wang, T., Zhang, D., & Broadstock, D. C. (2019). Financialization,
fundamentals, and the time-varying determinants of US natural
gas prices. Energy Economics, 80, 707–719. https://doi.org/10.
1016/j.eneco.2019.01.026

Wang, Y., Liu, L., & Wu, C. (2020). Forecasting commodity prices
out-of-sample: Can technical indicators help? International
Journal of Forecasting, 36(2), 666–683.

Wurtz, D., Chalabi, Y., & Luksan, L. (2006). Parameter Estimation
of ARMA Models with GARCH/APARCH Errors an R and S
Plus Software Implementation. Journal of Statistical Software,
55(2), 28–33.

AUTHOR BIOGRAPHIES

Jonathan Berrisch is a PhD candidate at the Univer-
sity of Duisburg-Essen. His research focuses on fore-
cast combination, probabilistic forecasting, and
forecasting in energy markets. In addition, he is pas-
sionate about open-source software, to which he con-
tributes regularly.

Florian Ziel is Assistant Professor of Environmental
Economics at the House of Energy Markets and

Finance at the University of Duisburg-Essen,
Germany. He received his MSc in Statistics from Uni-
versity College Dublin (Ireland, 2012), his Diplom in
mathematics from Dresden University of Technology
(Germany, 2013), and his PhD on forecasting in
energy markets from the European-University
Viadrina in Frankfurt Oder (Germany, 2016). His
research interests include data analytics with applica-
tion to energy markets and systems. He is the first
author of various peer-reviewed journal articles, most
notably in top-tier IEEE Transactions on Power Sys-
tems, Applied Energy, Energy Economics, Renewable
and Sustainable Energy Reviews, and International
Journal of Forecasting.

How to cite this article: Berrisch, J., & Ziel, F.
(2022). Distributional modeling and forecasting of
natural gas prices. Journal of Forecasting, 41(6),
1065–1086. https://doi.org/10.1002/for.2853

1084 BERRISCH AND ZIEL

https://doi.org/10.1016/j.eneco.2019.01.026
https://doi.org/10.1016/j.eneco.2019.01.026
https://doi.org/10.1002/for.2853


APPENDIX A: RESULTS OF REDUCED MODELS

FIGURE A1 Results of the DM-test for the proposed day-ahead model and variations thereof with respect to absolute and squarred

error. The symbols indicate the 0.1, 0.05, 0.01, and 0.001 significance levels

A.1 Day-ahead

TABLE A1 Predictive performance

of the proposed day-ahead model and

variations thereof sorted by the relative

difference in CRPS (last column)

Num. Changed component MAE RMSE CRPS CRPS Δ (%)

19 Proposed model 0.3863 1.0843 0.2834 0.0000

18 + Temp (smoothed) 0.3866 1.0844 0.2834 0.0015

17 � Seasonal 0.3866 1.0846 0.2836 0.0495

16 + Storage 0.3862 1.0840 0.2836 0.0520

15 + Power base 0.3861 1.0837 0.2836 0.0528

14 IGARCH 0.3864 1.0843 0.2837 0.0871

13 + Oil ahead 3 0.3869 1.0843 0.2837 0.0951

12 + Oil ahead 1 0.3869 1.0847 0.2837 0.1077

11 + Oil ahead 6 0.3870 1.0847 0.2838 0.1262

10 � Power 0.3866 1.0835 0.2838 0.1277

09 + Oil ahead 9 0.3870 1.0842 0.2839 0.1549

08 + Temperature 0.3872 1.0842 0.2841 0.2332

07 � Eua 0.3865 1.0853 0.2842 0.2857

06 � Monday elevation 0.3862 1.0843 0.2844 0.3417

05 � Arma errors 0.3868 1.0868 0.2845 0.3756

04 � Coal 0.3889 1.0849 0.2850 0.5677

03 � Exp. smoothing 0.3878 1.1010 0.2860 0.9132

02 � Leverage 0.3865 1.0843 0.2863 1.0169

01 Const. sigma 0.3885 1.0826 0.3053 7.7054
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A.2 Month-ahead

TABLE A2 Predictive performance

of the proposed month-ahead model

and variations thereof sorted by the

relative difference in CRPS (last

column)

Num. Changed component MAE RMSE CRPS CRPS Δ (%)

19 � Risk 0.3011 0.3997 0.2126 0.0238

18 Proposed model 0.3010 0.3995 0.2126 0.0000

17 � Sigma elevation 0.3011 0.3996 0.2126 �0.0032

16 � Temp. smooth 0.3009 0.3997 0.2127 �0.0287

15 � Temperature 0.3009 0.3999 0.2127 �0.0461

14 � Oil ahead 3 0.3009 0.4000 0.2128 �0.0836

13 � Seasonal 0.3010 0.3996 0.2129 �0.1213

12 IGARCH 0.3010 0.3993 0.2129 �0.1452

11 � Leverage 0.3011 0.3995 0.2132 �0.2744

10 + Storage 0.3018 0.4006 0.2133 �0.3412

09 � Eua 0.3021 0.4010 0.2137 �0.4991

08 + Power peak 0.3029 0.4011 0.2140 �0.6541

07 + Power base 0.3036 0.4018 0.2146 �0.9087

06 + Coal 0.3073 0.4029 0.2167 �1.9002

05 Const. sigma 0.3017 0.4009 0.2205 �3.7067

04 � First day Mu 0.3170 0.4617 0.2276 �7.0538

03 + Oil ahead 9 0.3861 0.5133 0.2839 �33.5322

02 + Oil ahead 6 0.5194 0.6788 0.3984 �87.3583

01 + Oil ahead 1 0.6173 0.7443 0.4699 �120.9902

FIGURE A2 Results of the DM-test for the proposed model and variations thereof with respect to absolute and squarred error. The

symbols indicate the 0.1, 0.05, 0.01, and 0.001 significance levels
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