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Albumin‑derived 
perfluorocarbon‑based artificial 
oxygen carriers can avoid hypoxic 
tissue damage in massive 
hemodilution
Anna Wrobeln1, Johannes Jägers1, Theresa Quinting1, Timm Schreiber1, Michael Kirsch2, 
Joachim Fandrey1 & Katja B. Ferenz1,3*

Artificial blood for clinical use is not yet available therefore, we previously developed artificial oxygen 
carriers (capsules) and showed their functionality in vitro and biocompatibility in vivo. Herein, we 
assessed the functionality of the capsules in vivo in a normovolemic hemodilution rat‑model. We 
stepwise exchanged the blood of male Wistar‑rats with medium either in the presence of capsules 
(treatment) or in their absence (control). We investigated tissue hypoxia thoroughly through online 
biomonitoring, determination of enzyme activity and pancreatic hormones in plasma, histochemical 
and immunohistochemical staining of small intestine, heart, liver and spleen as well as in situ 
hybridization of kidneys. After hemodilution, treated animals show higher arterial blood pressure and 
have a stable body temperature. Additionally, they show a more stable pH, a higher oxygen partial 
pressure  (pO2), and a lower carbon dioxide partial pressure  (pCO2). Interestingly, blood‑glucose‑levels 
drop severely in treated animals, presumably due to glucose consumption. Creatine kinase values 
in these animals are increased and isoenzyme analysis indicates the spleen as origin. Moreover, the 
small intestine of treated animals show reduced hypoxic injury compared to controls and the kidneys 
have reduced expression of the hypoxia‑inducible erythropoietin mRNA. In conclusion, our capsules 
can prevent hypoxic tissue damage. The results provide a proof of concept for capsules as adequate 
erythrocyte substitute.

The need to develop synthetic products for blood replacement has become more and more important during the 
last decades. On the one hand, the demographic change leads to increasing requirements for blood, and on the 
other hand, simultaneously the willingness for blood donation  declines1. Blood with its various characteristics 
fulfils many functions, recent developments of synthetic blood substitutes focus on its most important function: 
the transport of physiological gases, in particular of oxygen. Additional key requirements for artificial blood 
substitutes are optimal size, sterility, biocompatibility, and the ability to be stored without loss of functionality. 
Moreover, artificial oxygen carriers (AOCs) should have a long intravascular circulation time and universal 
usage independent of the blood group  characteristics2,3. There are two main approaches to realize the transport 
of essential gases. The first is the use of the physiological oxygen carrier hemoglobin (hemoglobin-based artificial 
oxygen carriers, HBOCs); a concept realized e.g. in the prominent product hemopure, that gained pharmaceutical 
approval in South Africa and Mexico. Further HBOCs (e.g. sanguinate) are currently tested in clinical  trials4. So 
far, most of the products showed severe side effects so that the manufacturing had to be  stopped5. The second 
is the work with synthetic materials like perfluorocarbons [perfluorocarbon-based artificial oxygen carriers 
(PFOCs)]. Depending on the actual partial pressure, PFOCs are able to solve gases  physically6. In contrast to 
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HBOCs, PFOCs are applicable for therapy of decompression sickness, smoke/carbon monoxide poisoning and 
recently in tumour  therapy7–10. Because of their general chemical inertness, they remain functional even in the 
presence of carbon monoxide and hydrogen  cyanide6. Their inertness also prevents enzymatic degradation and 
avoids toxic intermediates, which might harm organs. However, the physical properties cause a distinct hydro- 
and lipophobicity, which requires the development of a blood compatible form for intravenous  application11,12.

While HBOCs need a certain minimum size to prevent local nitric oxide scavenging from the endothelium 
in order to avoid hypertension, PFOCs tend to enlarge due to Oswald ripening and  flocculation3.

We successfully synthesized nanoscaled PFOCs with a perfluorodecalin (PFD) core surrounded by a bio-
compatible albumin shell (capsules)13. Previous studies successfully describe the in vivo biocompatibility in 
a rat-top-load model and the functionality in an ex vivo isolated rat heart  model11,14,15. Herein, we used a rat 
model of massive hemodilution, where we exchanged about 95% of the blood volume with either capsules in 
a plasma-like solution (treatment) or the plasma-like solution without capsules (control) and posthumously 
surveyed hypoxia sensitive organs such as the small intestine and kidney. In the context of AOC development, 
normovolemic hemodilution of the rat is a well-established model to test their  functionality16–19. Our study is 
aimed at serving as a “proof of concept” that capsules are a life-saving erythrocyte substitute, thereby avoiding 
the onset of tissue hypoxia even at critically low hematocrit.

Results
Bioparameters. Survival. After establishing the hematocrit of 5%, we closely monitored all animals until 
death. All animals survived the hemodilution period. Figure 1A shows that during the subsequent observa-
tion period the first animal of the control group died in minute 198 (at the end of the dilution phase/start of 
the observation period), which is 32 min earlier than the first two animals of the treatment group, that died in 
minute 230. At the same time (230 min), two additional animals of the control group died as well. Subsequently, 
one animal of each group died in minute 250, followed by two animals of each group in minute 260. Ultimately, 
the last animal of the control group died in minute 280 of the experiment. At this time, three animals of the 

Figure 1.  Effect of normovolemic hemodilution on survival (A), hematocrit (B) mean arterial pressure (C), 
heartrate (D), breathing (E) and temperature (F). During hemodilution (grey background), animals were 
diluted using 5% human serum albumin [HSA (control)] or 12 vol% capsules (treatment) to a hematocrit of 5%. 
The Kaplan–Meier plot shows an increased survival of the treatment group compared to the control animals 
(A). The plots show the mean ± SEM of n = 8 animals per group. Asterisk indicates significance with p < 0.05 
compared to the controls. 
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treatment group were still alive. Two of them died in minute 270 and 280, and the last one died in minute 290. 
Overall, the treated animals survived longer compared to the controls. Whilst 50% of the control animals had 
died after 230 min, 75% of the treatment animals were still alive. In the following sections all parameters are 
statistically compared until minute 230 of the experiment (200 min hemodilution + 30 min post-dilution obser-
vation period).

As shown in Fig. 1B, we equally reduced hematocrit levels stepwise in both groups until all animals stayed 
constantly at a haematocrit ~ 5%. Therefore, the actual hematocrit per se can unlikely serve as the explanation 
for the tendency of different survival times between the groups and the following parametric results.

Systemic parameters. During the whole experiment we registered, mean arterial pressure (MAP), heart rate, 
breathing and temperature continuously (Fig. 1C–F). At the beginning of the experiment, both groups started 
with a MAP of 90 mmHg, which decreased continuously in both groups (Fig. 1C). The animals of the control 
group showed a MAP of 76.2 ± 2 mmHg in minute 108, whereas the animals of the treatment group reached 
a significantly lower value of 65.7 ± 2 mmHg (p < 0.05). This significant difference remained until minute 142. 
However, following that, the animals of the treatment group could stabilize their MAP at about 50 mmHg while 
in the control group the MAP declined continuously. After the period of hemodilution, the MAP in animals of 
the treatment group fell to 53.7 ± 3 mmHg (in minute 230) compared to a MAP of 36.8 ± 5 mmHg in the animals 
of the control group.

The heart rate was virtually identical in the two groups (Fig. 1D). Animals of the control group started with 
a heart rate of 300 ± 9 min−1. A similar heart rate with 285 ± 10 min−1 was recorded for the treatment group. The 
heart rate of both groups increased during the experiment, to a final heart rate of 330 ± 4 min−1 (control) and 
352 ± 9 min−1 (treatment). Both groups showed a continuously similar heart rate during the experiment.

In both groups, breathing of animals was largely constant in the same range (Fig. 1E). In detail, the animals 
of both groups started with a frequency of 43.0 min−1 which remained stable until the end of the hemodilution 
(minute 198; control group: 44.0 ± 3 min−1; treatment group: 42.0 ± 2 min−1). After the period of hemodilution, 
breathing rate decreased in both groups, ending up in 36.0 ± 1 min−1 in minute 230.

Body temperature of the animals (Fig. 1F) was 37.2 ± 0.1 °C for the control group and 37.5 ± 0.1 °C for the 
treatment group at the beginning of the experiment. During the experiment, the temperature of both groups 
increased to 37.8 ± 0.1 °C in the control animals and 37.9 ± 0.0 °C in the capsule-treated animals in minute 180. 
18 min before the end of the hemodilution period (from minute 180), body temperature of the control animals 
started to drop, finally reaching 37.4 ± 0.1 °C in minute 230. Body temperature of the animals of the treatment 
group remained constant.

Acid base status and metabolic parameters. The data on acid base status and metabolic parameters 
revealed significant differences during the hemodilution period (Fig. 2).

The blood pH of the animals in both groups remained stable at a similar level from the beginning of the 
experiment until the end of the dilution period (Fig. 2A). Within this experimental period, the pH of the control 
animals varied between pH 7.23 and pH 7.28 and the pH of the capsule-treated animals between pH 7.21 to 
pH 7.30. Post-dilution pH in the animals of the control group, dropped to a final acidotic value of pH 7.14 ± 0.1 
(minute 230) while the pH value of the treatment group remained stable (pH 7.25 ± 0.1).

During the whole experiment, the arterial  pO2 of the animals in the control group was below the  pO2 level 
of the capsule-treated animals. At several time points the difference reached significant levels (Fig. 2B). Imme-
diately after the start of the dilution a clear difference of 81 mmHg between the two groups was noticed (minute 
18: control: 396.1 ± 31 mmHg, treatment: 477.6 ± 15 mmHg). This difference increased throughout the dilution 
period and reached significance in minute 126, 144 and 162. At minute 162, the maximum difference between 
the two groups, with 137 mmHg, was observed (control: 392.1 ± 15 mmHg, treatment: 529.1 ± 4 mmHg).

The arterial  pCO2 from animals of the control group was consistently higher than the  pCO2 of treatment group 
(Fig. 2C). In addition, a difference of 10 mmHg between both groups was noticed immediately after the start of 
the dilution (minute 18) (control: 61.8 ± 3 mmHg, treatment: 51.6 ± 3 mmHg). This difference remained until the 
end of the dilution period with significantly different values at minute 90. At the end of the post-dilution period 
(minute 230) the  pCO2 values of the two groups aligned (control: 47.2 ± 1 mmHg, treatment: 47.3 ± 5 mmHg).

Blood glucose concentration (Fig. 2D) were similar for both groups at the beginning of the experiment 
(control: 176.1 ± 10 mg/dl, treatment: 165.6 ± 10 mg/dl). In animals of both groups, blood glucose concentration 
moderately increased until minute 108 (control: 213.2 ± 12 mg/dl, treatment: 203.1 ± 11 mg/dl). Subsequently, 
blood glucose concentration of the control animals increased from minute 144 to 198 and was significantly 
higher than in the animals of the treatment group (p < 0.05). At minute 180 control animals reached the maxi-
mum glucose concentration of 271.4 ± 25 mg/dl, which decreased to 158.5 ± 52 mg/dl at minute 230 but always 
remained above the level of the capsule-treated animals (minute 230: 27.8 ± 7 mg/dl).

Blood lactate concentration of the animals (Fig. 2E) was around 2 mmol/l in both groups until minute 160, 
significant differences occurred between the two groups in minute 90, 108 and 126. From minute 180, the blood 
lactate values of the control animals strongly increased to 6.8 ± 1.5 mmol/l in minute 230. In comparison, blood 
lactate levels of capsule-treated animals only marginally increased to a final concentration of 3.3 ± 0.6 mmol/l.

Organ damage. The evaluation of intracellular enzymes in the plasma (Fig. 3) as indicator for organ dam-
ages showed significant differences between the two groups. Alanine aminotransferase (ALAT), aspartate ami-
notransferase (ASAT), creatine kinase (CK) and lactate dehydrogenase (LDH) remained within the normal 
range in animals of the control group over the whole experiment. In contrast, in animals of the treatment group 
ALAT increased during the post-intervention period from 58.4 ± 3 U/l at the beginning of the experiment to 
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86.9 ± 14 U/l at minute 230, but was not significantly elevated compared to the animals of the control group 
(Fig. 3A). The aminotransferase ASAT (Fig. 3B) showed a significant increase in activity from 60.3 ± 4 U/l at the 
beginning of the experiment to 118.1 ± 9 U/l (at minute 126) and further increased to 350.5 ± 23 U/l (at minute 
230).

Similarly, LDH continuously increased in capsule-treated animals from minute 90 onwards and was signifi-
cantly different from the control group (control: 112 ± 23 U/l, treatment: 210 ± 28 U/l; (Fig. 3C), finally (minute 
230) reaching a maximum of 1,060 ± 150 U/l in the blood plasma.

CK levels (Fig. 3D) started to rise immediately after the start of hemodilution in the treatment group. This 
increase reached a significantly enhanced level in minute 54, compared to the control group. At minute 230, the 
CK activity of capsule-treated animals was 724.8 ± 24 U/l compared to the control group with 128.8 ± 28 U/l.

Figure 2.  Effect of normovolemic hemodilution on blood pH-value (A),  pO2 (B),  pCO2 (C), glucose (D) and 
lactate (E). During hemodilution (grey background), animals were diluted using 5% HSA (control) or 12 vol% 
capsules (treatment) to a hematocrit of 5%. The plots show the mean ± SEM of n = 8 animals per group. Asterisk 
indicates significance with p < 0.05 compared to the controls.
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CK-isoenzyme determination (Fig. 3E) of plasma CK showed an increase of CK-BB and CK-MM bands in 
the treatment group compared to controls. Comparison of the CK-isoenzyme pattern of the treatment group 
with the organ specific patterns of organ homogenates of cerebrum, cerebellum, heart, muscle, spleen, liver, lung, 
intestine and kidney matched closest with the spleen-specific pattern of CK-isoenzymes.

Determination of plasma  K+ levels (Fig. 3F) showed an increase in both experimental groups, without 
significant differences. In the control animals, plasma  K+ increased from 5.04 ± 0.09 mmol/l at the begin-
ning of the experiment to 6.03 ± 0.34 mmol/l at minute 230. The treatment animals showed an increase from 
4.84 ± 0.12 mmol/l at the start of the experiment to 5.87 ± 0.21 mmol/l at minute 230.

Urine  K+-concentration was 160.1 ± 11.3 mmol/l in the control animals and significantly lower with 
106.4 ± 11.7 mmol/l in the treatment group (Fig. 3G).

Histology. Spleen. Histological evaluation of the spleen demonstrated lost tissue structure within the red 
pulpa in the treatment group, whereas the white pulpa was not affected. In comparison, the spleens of the control 
animals were unaffected. Further immunohistological staining for CD 68 clone ED1 revealed foamy, swollen 
macrophages in the red pulpa of treatment animals (Fig. 4).

Figure 3.  Effect of normovolemic hemodilution on ALAT (A), ASAT (B), LDH (C), CK (D), CK isoenzymes 
(E) and K+ (F) in plasma in addition to K+ in urine (G). During hemodilution (grey background), animals 
were diluted using 5% HSA (control) or 12 vol% capsules (treatment) to a hematocrit of 5%. The plots (A-D, 
F, G) show the mean ± SEM of n = 8 animals per group. Asterisk indicates significance with p < 0.05 compared 
to the controls. CK-isoenzyme determination (E) in respectively three plasma samples per group of minute 
162 (examined animals). Control animals showed slight bands of CK-BB and CK-MM, whereas the treatment 
group showed increased bands of CK-BB and CK-MM. Comparison of CK-isoenzyme pattern of the treatment 
group with the organ-specific pattern of organ homogenates of cerebrum, cerebellum, heart, muscle, spleen, 
liver, lung, intestinal and kidney of healthy untreated animals matched best with the spleen-specific pattern of 
CK-isoenzymes treatment bands with organ homogenates.
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Liver. Qualitative analysis of periodic acid-Schiff reaction staining (PAS) for glycogen revealed a complete 
depletion of the glycogen reserve in animals of the treatment group. Spots of stained glycogen were completely 
missing in the livers of these animals. Only livers of the control group heterogeneously stained for glycogen as 
shown in Fig. 5A and in the exemplary pictures in Fig. 5B.

Intestine. The scoring of the ischemic damage of the small intestine was significantly elevated in the control 
group, where the villi showed Gruenhagen spaces and even denudation. In contrast, the small intestines from 
rats of the treatment group showed mostly intact villi, sometimes with small Gruenhagen spaces. Intestine of the 
control group reached more Chiu score points for tissue damage up to a score of 4, whereas small intestine of the 
treatment group rarely had more than 2 score points (Fig. 6A). Figure 6B shows representative examples of the 
observed tissue damage in both groups.

Figure 4.  Macrophage staining of the spleen. Immunohistochemical staining with CD68 clone ED1 antibody 
of spleen tissue of animals diluted using 5% HSA (control) or 12 vol% capsules (treatment). Hematoxylin (blue) 
co-staining was used for orientation. The brown colour represents the macrophages. Control animals showed 
unaffected macrophages in contrast to foamy vacuolized macrophages in the treatment group. Staining was 
performed with n = 8 spleens in each group. Treatment spleens demonstrated lost tissue structure within the red 
pulpa with foamy, swollen macrophages. The white pulpa was not affected. The control spleens were intact.

Figure 5.  Qualitative determination of glycogen appearance in liver. PAS/hematoxylin staining in liver tissue 
of animals diluted using 5% HSA (control) or 12 vol% capsules (treatment). In the control group, 6 of 8 livers 
were glycogen positive, whereas no liver of treatment animals showed presence of glycogen (A). Representative 
examples of liver staining are shown in (B).
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Assessment of pancreatic hormones in plasma. Baseline value for insulin (0.05 ± 0.01  ng/ml) and 
glucagon (0.02 ± 0.0 ng/ml) blood concentration were obtained directly after placement of the catheter. Accord-
ing to the measured glucose concentrations, plasma samples from minute 144, 162, 180 and 198 were analysed 
for insulin and glucagon. Figure 7A demonstrates the decrease of the insulin concentration from 0.50 ± 0.09 ng/
ml (min 144) to 0.21 ± 0.08 ng/ml (min 198) in the treatment group, while plasma glucose concentration con-
stantly fell as shown in Fig. 2D. In contrast, plasma insulin concentration rose at the same time to 0.68 ± 0.11 ng/
ml in the control group. Glucagon levels (Fig. 7B) in both groups increased from minute 144 from 0.06 ng/ml 
to 0.20 ± 0.04 ng/ml (min 198) in the treatment group and to 0.26 ± 0.06 ng/ml (min 198) in the control group.

Quantification of renal EPO‑mRNA. Figure  8A demonstrates the number of erythropoietin (EPO)-
mRNA positive cells in the observed fields of view (FOV). Cells in the renal medulla of both groups showed only 
very few EPO-mRNA positive cells. However, comparison of the renal cortex of both groups indicated that the 
amount of EPO-mRNA positive cells was significantly increased in the animals of the control group (76.4 ± 31 
cells/FOV) compared to the kidneys of animals from the treatment group (4.1 ± 3 cells/FOV). Figure 8B shows 
representative examples of kidneys after EPO-mRNA in  situ hybridization. Control animals showed specific 
EPO-mRNA expression (Fig. 8B, left pictures) whereas kidneys of treatment animals were essentially free from 
staining for EPO-mRNA (Fig. 8B, right pictures).

Discussion
In vitro experiments, perfusion of isolated Langendorff hearts as well as in vivo toxicities studies showed prom-
ising results for the applicability of albumin-derived perfluorocarbon-based capsules as blood substitutes and 
dispelled concerns on capsule aggregation in vivo13,15. Still, physiological in vivo “proof of concept” was miss-
ing. In the context of AOC development, normovolemic hemodilution of the rat is a well-established model to 
test functionality of a novel  AOC16–19. Consequently, we used the model of massive hemodilution in the rat to 
determine the physiological functionality of our capsules. In detail, rats were diluted from their physiological 
hematocrit of about 45% below the critical hematocrit. The critical organ hematocrit is organ specific, but about 
10% for the whole rat and indicates the hematocrit that is necessary for oxygenation of the most relevant organs 
and thus for survival of the  animal20. With a target hematocrit of 5% we have purposely gone below this criti-
cal hematocrit to make the effects of a deficient oxygen supply obviously visible in the control animals. Similar 
approaches were performed in other studies evaluating novel  AOCs21–23.

In the present study any differences in the dilution protocol between the two groups were meticulously 
eliminated, as all animals (regardless of group affiliation) showed the same hematocrit levels at each dilution step 
(Fig. 1B). In general, the experiment showed no significant differences in survival of rats after massive hemodilu-
tion (Fig. 1A). However, the MAP of the treatment animals temporally decreased significantly compared to the 
control animals, but was terminally stabilized in the treatment animals (Fig. 1C) resulting in a longer survival 
(Fig. 1A). Neither for heart rate (Fig. 1D) nor for breathing rate (Fig. 1E) was a significant difference detected. 
A possible reason for that could be the loss of heart rate- and breathing rate-response due to the adjustment 
of anaesthesia with  isoflurane24,25. Interestingly, the animals of the treatment group stabilized their body core 
temperature after the period of hemodilution, whereas the animals of the control group showed a decrease 

Figure 6.  Quantification of ischemic injury in the small intestine. PAS/hematoxylin staining in small intestine 
tissue of animals diluted using 5% HSA (control) or 12 vol% capsules (treatment). (A) The occurring ischemic 
injury in the small intestine of rats in the small intestine of rats in the treatment group was significantly reduced 
compared to the control group. (B) Representative examples of the intestine staining.
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in temperature (Fig. 1F). Gellhorn et al. demonstrated that body core temperature decreases due to a lack of 
 oxygen26. In this work a deficiency of  O2 correlated with an increase of  CO2. The increased enrichment of the 
vasodilatory molecule  CO2 results in a dilatation of the peripheral blood vessels, which was observed similarly 
by Sakai et al.27. Moreover, this dilatation ultimately leads to a loss of body temperature through body surface. 
In line with Gellhorn’s results the animals of the control group showed a lower  pO2 (Fig. 2B) and a higher  pCO2 
(Fig. 2C), compared to the animals of the treatment group. Presumable, the loss of body core temperature, as 
characterized by Gellhorn et al., is attributable to the deficient oxygen supply and the simultaneous increase of 
 pCO2 in the control animals. In contrast, the treatment animals showed a higher  pO2 and lower  pCO2 and could 
thereby maintain their body core temperature.

During hemodilution the animals of the treatment group sustained a stable pH (Fig. 2A), which allows to 
conclude a positive influence on the acid base status by the capsules. Nevertheless, animals of the treatment group 
showed a decrease in plasma glucose concentration although the solution used for hemodilution contained physi-
ological plasma glucose concentrations (10 mM) of the rat (Fig. 2D). To exclude a hormonal influence on blood 
glucose-level due to dysregulated pancreatic function, we analysed pancreatic hormones (Fig. 7). The animals 
of the control group showed an increase in both hormones, which indicates a dysregulation of the pancreas in 
the control group and not as expected in the capsule group. This loss of physiological function may be due to 
hypoxic conditions. In contrast, animals of the treatment group showed a decrease of insulin and an increase 
of glucagon, which represents the physiological reaction of the pancreas to a decreasing plasma glucose level. 
Unexpectedly, treatment animals showed an increase of insulin although the plasma glucose already started to 
decline. We therefore shifted our attention towards the liver as glucose storage and supplier. In general, the liver 
is able to compensate a decline of plasma glucose levels due to gluconeogenesis and glycogenolysis. In case of 
loss of function, the liver is not able to activate the glycogen reserves or synthesize glucose to stabilize the blood 
glucose level anymore. Because a parallel increase of the plasma-enzyme activities of ALAT and ASAT (liver 
damage parameters, Fig. 3A, B) takes place just prior to death of the animals (minute 230), a general dysfunction 

Figure 7.  Effect of normovolemic hemodilution on plasma insulin (A) and plasma glucagon (B). During 
hemodilution (grey background), animals were diluted using 5% HSA (control) or 12 vol% capsules (treatment) 
to a hematocrit of 5%. The plots show the mean ± SEM of n = 8 animals per group. Asterisk indicates significance 
with p < 0.05 compared to the controls.
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of the liver was excluded as a cause for the glucose decline. However, alterations of the liver through PFCs were 
already described in the literature. Obviously, the reason is storage of PFCs in the hepatic Kupffer-cells28–32. Like 
in the actual investigation, Lutz et al. showed an increase in plasma levels of ALAT and ASAT in their studies. 
In comparison to the present study, they determined the plasma enzyme activities over eight days. Importantly, 
this increase was only transient and normalized to physiological levels within 24 h. Thus, they concluded that 
no ultimate damage of the liver occurred but a rather transient functional  impairment32. Because of a different 
study design, we do not have any information on plasma levels of ASAT and ALAT after 24 h. Nevertheless, our 
data support the hypothesis that the liver was not damaged but rather impaired in the present study, as depleted 
glycogen-stores in every liver of the treatment animals were likely the reason for plasma glucose decrease (Fig. 5). 
This is a hint for an intact liver as glycogenolysis obviously took place in these animals. The treatment animals 
were able to use all their metabolic reserves to survive, because of the ability of oxygen for metabolic processes. 
The reason for dying of these animals seems to be a kind of starvation. At the end of the experiment, the rats 
had consumed all their reserves to a point where they failed to stabilize their metabolism via both glycogenolysis 
and gluconeogenesis.

In contrast, control animals seemed to be insufficient to mobilize their metabolic reserves for surviving, 
which might be due to a hypoxic status and could be the reason for dying. In any case, in the control animals 
the progression of plasma glucose level is more clear (Fig. 2D). During the hemodilution period, when more 
and more organs reach their critical hematocrit, animals showed a typical stress reaction (increase in plasma 
glucose). With progressive oxygen shortage (during the post-hemodilution phase), remaining glucose was used 
for anaerobic glycolysis, reflected in increasing lactate levels (Fig. 2E). The fact that plasma lactate did not increase 
in capsule-diluted animals supports the hypothesis of sufficient oxygenation of those animals.

The treatment animals showed an increase of CK and LDH plasma levels (Fig. 3C,D). As mentioned before, 
several studies indicate that Kupffer-cells of the liver or macrophages of the spleen preliminary absorb per-
fluorocarbon- containing  particles28,30–32. Comparison of organ-specific isoenzyme pattern of healthy rats with 
plasma patterns from animals of this study (Fig. 3E) indicates that increased plasma CK might be caused by 
structural changes in the spleen. A histological and immunohistological evaluation of the spleen demonstrated 
loosened structure in the red pulpa in all animals of the treatment group (Fig. 4). The macrophages were enlarged 
and vacuolized, confirming the literature. CK is part of the stress fibers, which are located in the splenic sinus 
 endothelium33. The enlarged macrophages require more space, which could be the reason for injured stress fibers 
that probably released CK in the surrounding area and lead to the increased plasma CK. Previous studies showed 
similar alterations of the spleen after administration of identical  capsules13.

To further support the hypothesis, that capsules are capable of avoiding hypoxic tissue damage in severely 
anaemic animals, the organs most sensitive to hypoxic damage were analysed; namely the kidney with its oxygen-
dependent proximal tubules and the intestine with its juxta-positioned mucosa and submucosa physiologi-
cally approaching critical oxygen  levels34–36. To evaluate the oxygenation status of the kidney, renal peritubular 
fibroblasts that express the mRNA of hypoxia inducible factor (HIF)-target gene EPO were used as a sensitive 
detection  system37–39. HIF, in its role as oxygen sensing protein of the cell, upregulates endogenous adaption 

Figure 8.  Quantification of renal EPO-mRNA. Animals were diluted using 5% HSA (control) or 12 vol% 
capsules (treatment) to a hematocrit of 5%. Kidneys were used for EPO-mRNA in situ hybridization. (A) 
Number of EPO-positive cells per field of view (FOV) in the in the renal cortex or the renal medulla of the 
kidney after hemodilution. (B) Representative pictures of the EPO-mRNA in situ hybridization used for 
quantitative analysis. The brown staining demonstrates the EPO-mRNA. In situ hybridization was performed 
with n = 8 kidneys in each group. For determination of EPO-positive cells 10 randomly chosen FOV per renal 
cortex or 5 randomly chosen FOV per medulla were counted.
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mechanisms such as the EPO pathway that principally leads to erythropoiesis, in order to prevent hypoxic 
 injury40,41. An early activity sign of this pathway is EPO-mRNA  upregulation42. The treatment animals showed a 
significant lower number of renal EPO-mRNA expressing cells (Fig. 8). Furthermore, as expected EPO-expressing 
cells appeared in the renal cortex but not in the renal medulla (Fig. 8A)39. These data further support the notion 
that on the cellular level capsule-diluted animals were less hypoxic during the experiment compared to the control 
group that showed an increased number of EPO expressing cells.

Beside the findings in the kidney, the observation of the small intestine further confirmed these results. Due 
to the microbial environment of the lumen, this tissue already physiologically exhibits low concentrations of 
oxygen entailing that hypoxic injury of the intestine is well  characterized35,36. That limits the tolerance towards 
oxygen depletion caused by any reason, such as arterial occlusion, heart failure or hemodilution. The intestine 
of the control group showed massive degradation of the villi in terms of loss of epithelium, degradation of the 
submucosa and hemorrhages (Fig. 6). In contrast, the intestine of the animals of the treatment group only showed 
marginal, if any, occurrence of Gruenhagen spaces, which are the first sign of a beginning damage (Fig. 6). This 
data strongly supports the hypothesis that capsules are able to avoid hypoxia in treatment animals, as oxygen 
supply was sufficient to prevent hypoxic conditions in the two most sensitive organs, the kidney and the small 
intestine. This might allow the assumption, that all other organs in the body were supplied with enough oxygen, 
too. Probably the animals of the treatment group died due to the lack of nutrition and carbohydrates, whereas the 
animals of the control group died because of severe global hypoxia that lead to multi modal organ dysfunction 
and ultimately to the death of the animals.

Conclusion
The model of normovolemic hemodilution was chosen as the adequate way in order to test the ability to run a 
whole organism on albumin-derived perfluorocarbon-based artificial oxygen carriers instead of pure blood. The 
capsules successfully supplied the organisms with sufficient amounts of oxygen despite severe loss of erythrocytes. 
All systemic parameters were stabilized using capsules, whereas blood gases, namely the measured  pO2 and  pCO2 
were ameliorated by the capsules gas-transporting capacity. The further analyses of pancreatic hormone status, 
renal oxygen-sensitive cells, liver function, status of intestine and spleen tissue illustrate that the beneficial aspects 
of the capsules widely out do the presumable transient damage of the spleen that leads to a rise of CK in plasma. 
Importantly, oxygen supplied by capsules reached the cells and thus prevented hypoxia even on the cellular level.

The next step will be the investigation of albumin-derived perfluorocarbon-based artificial oxygen carriers, 
referring to clinical reality, against red blood cell concentrates in hemodilution and hemorrhagic shock models. 
The performance in long-term studies will proof the transient effects of the capsule toward the spleen.

Limitations of the study

• This study was designed as a proof of concept study without any clinical interventions during hemodilution 
and observation period. This of course impaired total survival time of the animals of both groups. Common 
transfusion triggers followed by many clinicians are hematocrit levels of 24% or lower, so that hematocrit 
levels of 5% are rarely met in the clinic. In addition patients would not be left untreated but stabilized with 
assisted ventilation and pharmaceuticals. We resigned from such interventions and chose this artificial sce-
nario which has been commonly used in the HBOC/PFOC field to prove, that our capsules supply a whole 
organism with oxygen in the absence of most of the endogenous erythrocytes.

• Plasma contains many important ingredients besides oxygen carriers, free albumin molecules, hormones, 
electrolytes  (Na+,  K+,  Mg2+,  Ca2+,  Cl−) and amino acids. However, our carrier solution (again according to 
cited similar studies by other groups investigating their AOCs) consisted of only water, albumin, sodium 
chloride and 10 mM glucose (the physiological glucose plasma concentration in rats) which is similar to other 
AOC carrier solutions and exclusively investigated the functionality of the capsules. For clinical applications 
further ingredients are necessary, such as buffer components, amino acids and hormones.

• Following the principles of 3 R (reduction, refinement, replacement) which is generally acknowledged by 
all animal researchers, we reduced the animals within our study and did not include a second control group 
(hemodilution with washed erythrocytes).

• In contrast to the hematocrit the fluorocrit at different time points (and thus the actual concentration of 
our capsules) was not determined in this study which prevents calculating the actual total concentration of 
capsules in the blood. A hypothetical estimation is difficult and imprecise as continuous capturing of cap-
sules within the spleen and removal of some capsules with every dilution step until the end of hemodilution 
need to be taken into consideration. Without touching the system (without continuous hemodilution) the 
circulatory half-life of the product was measured to be 158 min13.

Methods
Capsule synthesis. As previously described 5  ml of 5% human serum albumin (HSA) (Baxter (Unter-
schleissheim, Germany, 5% HSA, 0.75% NaCl, 0.11% sodium-N-acetyltryptophanoate, 0.07% sodiumcaprylate) 
and 1 ml Perfluorodecalin (PFD; Fluorochem Chemicals, Derbyshire, UK) were combined in a reaction tube 
with a total capacity of 15  ml13. The temperature of the reaction tube was controlled using an ice bath and 
the mixture was sonicated for 90 s using a sonotrode with a tip diameter of 3 mm associated with a UP 400S 
ultrasonic processor (Hielscher, Teltow, Germany). For sonication, the tip of the sonotrode was placed at the 
PFD–water interface. At a power of 400 W, ultrasound with amplitudes of 210 mm and a frequency of 24 kHz 
was generated.
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After synthesis, the capsule volume fraction (vol%) was determined using microhematocrit glass capillary 
tubes (d = 1.15 mm, Brand, Wertheim, Germany) and a centrifuge (Universal 320R, Hettich, Tuttlingen, Ger-
many) with a hematocrit rotor. Analog to the hematocrit determination of blood we used 16,060 g for 15 min at 
4 °C for determination of volume fraction. Based on the determined volume fraction capsules were diluted to 
12 vol%. We used the capsules straight after synthesis and adaption of volume fraction for animal experiments. 
The capsules’ main properties are displayed in Table 1.

Animals. Male Wistar rats (Rattus norvegicus, 430–460 g) were obtained from the central animal unit of the 
Essen university hospital. Animals were kept under standardized temperature conditions (22 ± 1 °C), humidity 
(55 ± 5%) and 12/12-h light/dark cycles with free access to food (ssniff-Spezialdiaeten, Soest, Germany) and 
water. All animals received humane care according to the standards of Annex III of the directive 2010/63/EU of 
the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scien-
tific  purposes43. The experimental protocol was approved by the North Rhine-Westphalia state office for Nature, 
Environment and Consumer Protection (Landesamt fuer Natur, Umwelt und Verbraucherschutz Nordrhein-
Westfalen), Germany under the reference number 84-02.04.2016.A118, based on the local animal protection act.

Anaesthesia, analgesia, and surgical procedure. As previously described, rats were anesthetized with 
isoflurane (2.0% in 100% medical  O2 at 4.0  l/min for induction, 1.5–2.0% isoflurane in 100% medical  O2 at 
1.0 l/min throughout the experiment) through face masks connected to a vaporizer (Isofluran Vet. Med. Vapor; 
Draeger, Luebeck, Germany)13. For analgesia, they received ketamine subcutaneously (50 mg/kg body weight) 
into the right chest wall. After local lidocaine administration (5 mg/kg body weight subcutaneously), a median 
skin-deep inguinal incision of about 2 cm was made along the right groin and a Portex catheter (0.58 mm ID, 
0.96 mm OD; Smith medical, Grasbrunn, Germany) was placed within the right femoral artery and the right 
femoral vein. Each catheter was fixed with a surgical suture.

Hemodilution. Hemodilution was performed as described previously, with some  modifications44. After an 
initial stabilization period, 3 ml blood was taken from the femoral arterial catheter at a rate of 1 ml/min by hand 
until reaching a final hematocrit of 5 ± 1%. The removed blood was replaced simultaneously (to withdrawal) 
over the venous catheter via a syringe pump (KDS Legato 100, Cole Parmer, Illinois, USA) and used for further 
analysis (see “Blood parameters”). After every withdrawal, a period of 15 min followed to stabilize the circula-
tion of the animal. A 5% HSA solution with 10 mM glucose (control) or a 5% HSA solution with 10 mM glucose 
containing 12 vol% capsules (treatment) were applied as exchanging solutions. After finishing dilution, animals 
were monitored until death. Each group consisted of n = 8 animals.

Biomonitoring. Systemic and vital parameters were monitored every 10 min through the whole experi-
ment. The femoral arterial catheter was connected to a pressure transducer for continuous measurement of sys-
tolic and diastolic blood pressure, the mean arterial pressure (MAP) was calculated out of these datasets. To keep 
the catheter functional, Ringer Saline (Fresenius Kabi AG, Germany) was infused at a rate of 3 ml/h. The pres-
sure peaks of the continuous blood pressure measurement were used to determine the heart rate. The breathing 
rate was calculated based on the number of ventilation movements in 15 s. A rectal sensor was used to measure 
the body core temperature (temperature), which was conserved with the help of a thermostat-controlled operat-
ing table and covering the animal with aluminium foil.

Blood parameters. Blood samples were analysed for blood gas analyses and enzyme activities at different 
time points. Therefore, 0.5 ml blood were either diverted from the 3 ml obtained during a hemodilution step 
anyway (during the hemodilution period for time points minute 0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, see 
“Hemodilution”) or additionally removed from the femoral artery catheter (during the post-intervention period 
for time points minute 198, 230, 260 and final, depending on the animal survival time) using a 2 ml syringe 
containing 80 international units (IU) electrolyte-balanced heparin (Pico50, Radiometer Medical, Brønshøj, 
Denmark). Blood was centrifuged at 4500g for 10 min at room temperature to obtain plasma. During the experi-
ment blood gas analysis of the arterial blood pH, oxygen and carbon dioxide partial pressures  (pO2,  pCO2), con-
centration of glucose and lactate was performed with a blood gas analyser (ABL 715, Radiometer, Copenhagen, 
Denmark). The collected plasma was used to measure plasma enzyme activities of aspartate aminotransferase 

Table 1.  Main properties of capsules. Previously determined mean diameter ± SD, polydispersity index ± SD, 
circulatory in vivo half-life as well as calculated  O2-capacity and -release of capsules and whole  blood13.

Capsules

Mean diameter 479 ± 36 nm

Polydispersity index 0.56 ± 0.05

Circulatory in vivo half-life 158 min

Capsules Whole blood (Hct 45%)

O2 capacity  (pO2 = 713 mmHg) 3.11 ml  O2/dl ~ 20 ml  O2/dl

O2 release  (pO2 100% O2 aspiration → pO2 venous) 3.10 ml  O2/dl ~ 4 ml  O2/dl
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(ASAT) and alanine aminotransferase (ALAT) as markers for hepatocyte injury, lactate dehydrogenase (LDH) 
as a general marker of cell injury as well as the creatine kinase (CK) as a marker for muscle cell injury. Enzyme 
activities were determined using a fully automated clinical chemistry analyzer (Respons 920, DiaSys, Holzheim, 
Germany). Plasma concentrations of insulin and glucagon were determined in blood samples obtained in min-
ute 0, 144, 162, 180 and 198 using a commercially available rat-specific immune assay (Ultra sensitive Rat Insulin 
ELISA Kit and Rat Glucagon ELISA Kit, Chrystal Chem, Downers Grove, USA). The assays were performed 
according to the manufactures instructions.

Urine parameter. At the end of the experiment, after death of the animal, urine was collected by puncturing 
the bladder. After dilution (1:10) with urine diluent (Easy Lite, Medica, Bedford, Netherlands), urinary K+-con-
centration was determined by the help of a blood gas analyser (ABL 715, Radiometer, Copenhagen, Denmark).

CK‑isoenzymes. Plasma samples with the highest CK-activity (minute 162) were chosen to assess CK-
isoenzymes using a Hydragel ISO-CK Test Kit (Sebia Labordiagnostische Systeme GmbH, Fulda, Germany). 
The plasma-CK-isoenzyme-cluster was compared with pooled organ homogenates from different organs (heart, 
spleen, liver, muscle, lung, kidney, intestine, cerebrum and cerebellum) taken from healthy rats to determine the 
origin of CK. Organs were obtained from five Wistar rats after euthanazation and kidney removal for another 
project, in line with the guidelines of the North Rhine-Westphalia state office for Nature, Environment and 
Consumer Protection (Landesamt fuer Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen), Germany. 
In detail, isoenzymes were separated using agarose gel electrophoresis; and afterwards stained due to the manu-
factures instructions.

Quantification of EPO‑mRNA. RNA in situ hybridization was performed on 3 µm thick formalin-fixed 
paraffin-embedded sections of rat kidneys using the RNAscope 2.5 HD assay-brown (Advanced Cell Diagnos-
tics) according to the user manuals 322452-USM and 322310-USM using standard conditions. EPO-mRNA was 
detected by the RNAScope probe Rn-Epo (Cat No. 455901) followed by semi-quantitative scoring, calculating 
the average count of EPO producing cells per field of view in the kidney cortex and medulla. In situ hybridiza-
tion was performed with n = 8 kidneys in each group. For determination of EPO-positive cells 10 randomly cho-
sen FOV per renal cortex or 5 randomly chosen FOV per medulla were microscopically analysed and counted 
[Aperio CS2 (Leica Biosystems), objective: UPlanSApo 20x/0.75 (Olympus)].

Histology. Tissue sections were fixed in 4% paraformaldehyde (Carl Roth, Karlsruhe, Germany) and embed-
ded in paraffin. 1–4 µm sections were stained according to the following protocols.

PAS‑staining. Glycogen staining of the liver was performed using the periodic acid-Schiff reaction (PAS). The 
tissue slices were deparaffinised and rehydrated using xylol followed by a descending alcohol series [2 × 100%, 
1 × 96%, 1 × 70%, 1 × aqua destillata (aqua dest.)]. The slices were oxidized in periodic acid (Carl Roth, Karlsruhe, 
Germany) for 15 min at room temperature, washed in aqua dest. for 5 min and stained for 15 min with Schiff 
reagent (Merck, Darmstadt, Germany) at room temperature. Counterstaining was performed with 25% hema-
toxylin for 10 s.

Immunostaining. Spleen macrophages were stained as described previously using an antibody against the anti-
gen ED:1 (BIOLOGO, Kronshagen Germany, diluted 1:10,000 in phosphate-buffered saline), the rat homologue 
of human CD68 which is expressed by the majority of tissue macrophages and weakly by peripheral blood 
 granulocytes13.

Chiu score for quantification of ischemic injury of the small intestine. The small intestine was 
divided into ten equally sized segments and the fourth segment (numbered from proximal to distal) was chosen 
to be fixed in 10% formalin (Carl Roth, Karlsruhe, Germany), dehydrated and stored in paraffin. The segment 
was sliced into 1–2 µm thin slices and PAS-stained with hematoxylin counterstaining. For the analysis, the sam-
ples of eight rats per group were randomized and five rings of each segment were evaluated using the Chiu-score 
for quantification of ischemic injury of the small intestine.

The Chiu-score is an easy and reproducible histological score to evaluate ischemic injury in the small 
 intestine45. The scoring points are set from zero to five (0 = no injury, 1 = formation of subepithelial Gruenhagen-
spaces at the tip of the villus, 2 = wide subepithelial Gruenhagen-spaces with lifting of the epithelium, 3 = severe 
lifting of the epithelium and appearance of denuded villus, 4 = denuded villi show exposed lamina propia and 
capillaries, 5 = severe degradation of the lamina propria, ulceration and hemorrhage).

Qualitative analysis of the glycogen reserve of the liver. The glycogen reserve of the liver was PAS-
stained as described above. The organs of eight rats per group were randomized and the general presence of 
glycogen was investigated. Doing this, there was no emphasis put on the amount of the glycogen (no quantita-
tive analysis). If spots of glycogen were found, the whole liver counted as “glycogen positive”, if no glycogen 
was detected, the whole liver counted as “glycogen negative”. The light microscopic analysis was performed at a 
20-fold magnification. The whole organ was examined in order to not miss any glycogen spots.

Statistics. The statistic was analysed using GraphPad prism 8. Data are expressed as mean values ± SD for 
in vitro experiments and ± SEM for in vivo experiments. Comparisons between groups were analysed by mul-
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tiple t-test and statistical significance was determined by using the Holm-Sidak post-hoc method considering a 
p-value < 0.05 to indicate statistical significance. Survival of the animals is shown and compared from the begin-
ning of the hemodilution (minute 0) until the end of the experiment (minute 300). Biomonitoring parameters 
are shown and compared from the beginning of the experiment (− 20 min) until minute 230 of the experiment. 
Blood parameters are shown and compared from the beginning of the hemodilution (minute 0) until minute 230 
(200 min hemodilution + 30 min post-dilution observation period). This period of 250 min in total was chosen 
to allow for statistical analysis. At time point minute 198, 100% of the animals were still alive, which reduced 
down to 50% (control group) and 75% (treatment group) at minute 230. For survival analysis (Kaplan–Meier 
plot Fig. 1A) all animals were included in the analysis (log-rank test, minute 0–300).

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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