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Abstract

In this thesis, we extend the Virtual Localization Formula to a wide class of motivic
ring spectra, obtaining in particular a localization formula for virtual fundamental
classes in Witt theory KW. We extend to general spectra the notions and operations
of equivariant bivariant theories. Then we specialise to SL[η−1]-oriented spectra A,
obtaining a presentations of A(BN) (where N is the normaliser of the torus in SL2),
and an Atiyah-Bott localization theorem for AN (X), for X a scheme equipped with
anN -action. Of independent interest, we also describe the ring structure of KW(BN)
and give a complete computation of KW-valued Euler classes for all rank two vector
bundles over BN .

Zusammenfassung

In dieser Arbeit erweitern wir die virtuelle Lokalisierungsformel auf eine breite
Klasse von motivischen Ringspektren, und erhalten insbesondere eine Lokalisierungs-
formel für virtuelle Fundamentalklassen in der Witt-Theorie KW. Wir erweitern
die Begriffe und Operationen der äquivarianten bivarianten Theorien auf allgemeine
Spektren. Dann spezialisieren wir uns auf SL[η−1]-orientierte Spektren A, und er-
halten eine Darstellung von A(BN) (wobei N der Normalisator des Torus in SL2

ist) und einen Atiyah-Bott-Lokalisationssatz für AN (X), für X ein Schema mit einer
N -Aktion. Von unabhängigem Interesse ist auch die Beschreibung der Ringstruktur
von KW(BN), und eine vollständige Berechnung der KW-wertigen Eulerklassen für
alle Rang-zwei-Bündel über BN .





Contents

Introduction iii

1 Equivariant Cohomological Intersection Theory 1
1.1 Borel-Moore Bivariant Theories and Operations . . . . . . . . . . . . 1
1.2 Geometric Approximations . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Equivariant Borel-Moore Homology and Cohomology . . . . . . . . . . 8

1.3.1 Six Operations for Algebraic Stacks . . . . . . . . . . . . . . . . 8
1.4 Equivariant Bivariant Theories and Totaro Approximations . . . . . . 17

1.4.1 Colimit Motives à la Edidin-Graham-Totaro . . . . . . . . . . . 24
1.4.2 Some Comparisons of Motives . . . . . . . . . . . . . . . . . . . 34

1.5 Properties of Equivariant Bivariant Theories . . . . . . . . . . . . . . . 40
1.6 Equivariant VFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.6.1 Graber-Pandharipande Construction . . . . . . . . . . . . . . . 47
1.6.2 Equivariant VFC after Edidin-Graham-Totaro . . . . . . . . . . 49

2 Some Computations on SL[η−1]-Theories of Classifying Spaces 59
2.1 Quick Recap on the Background . . . . . . . . . . . . . . . . . . . . . 59

2.1.1 SL-Orientations for NL-Stacks . . . . . . . . . . . . . . . . . . 71
2.2 The Additive Structure of SL[η−1]-Oriented Theories . . . . . . . . . . 73
2.3 The Multiplicative Structure of KW•(BN) . . . . . . . . . . . . . . . . 87

3 Euler Classes Computations 97
3.1 SL[η−1]-Theories on BGLn . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2 Künneth Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.3 Twisted Borel Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4 Euler classes for Õ
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Introduction

In the presence of a torus action, many intersection theoretic and enumerative prob-
lems get simplified, looking at the fixed point locus of the problem. But to do so, one
has to precisely relate the equivariant intersection theory to the intersection theory
of the fixed points. In algebraic geometry, using Chow groups and the Bott residue
theorem of [EG98b], one can get a complete description of equivariant characteristic
classes of a scheme X in terms of invariants of the fixed locus XT . For algebraic
K-theory analogous computations were made in [Tho86]. Often the spaces we are
interested in are not smooth and we need to take into account deformation theoretic
information to treat them. Schemes (or even algebraic stacks) equipped with a per-
fect obstruction theory, in the sense of [BF97], give rise to virtual fundamental classes
and can basically be studied as if they were (almost) smooth (or quasi-smooth, using
the terminology from derived geometry).

In [GP99], Graber-Pandharipande, using techniques from [EG98b], proved a "Vir-
tual Localization Formula" for virtual classes. This formula relates the virtual fiun-
damental class of a scheme X, equipped with a torus action and a perfect obstruction
theory, to a suitable virtual class associated to the fixed point locus. Extensions of
Atiyah-Bott and virtual localization theorems, in the context of motivic homotopy
theory, were recently made in [Lev22a], [Lev22b] and, with different techniques (ap-
plied to algebraic stacks), in [Ara+22]. One of the main reasons to extend intersection
theoretic techniques to motivic homotopy theory is that, one can get much richer in-
variants. Indeed, in the motivic homotopy category SH(k), by a celebrated theorem
of Morel, we have that the endomorphisms of the sphere spectrum corresponds to
quadratic forms in the Grothendieck-Witt ring: EndSH(k)(1k) ' GW(k). In the
recent years, this led to much progress in the field, now called A1-enumerative geom-
etry, with a lot of new interesting results by Kass, Levine, McKean, Pauli, Solomon,
Wendt, Wickelgren and many others (for example one can look in [BW21] and refer-
ences therein).

The purpose of this thesis is to extend the results in [Lev22b] to the case of SL[η−1]-
oriented ring spectra (see section 2.1)). These are just SL-oriented spectra where
the algebraic Hopf map η is invertible. One of the main examples of such spectra
is given by the Witt spectrum, representing Balmer’s derived Witt groups. One

iii
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can think of Witt sheaf cohomology, used in loc. cit., and the Witt spectrum as
quadratic analogues of Chow groups and K-theory. Indeed, Witt sheaf cohomology
and Witt theory capture the essentially quadratic information in Chow-Witt groups
and Hermitian K-theory, which are quadratic refinements of Chow groups and K-
theory respectively. We hope that with the result in this thesis, it will be possible to
derive a virtual localization formula in Hermitian K-theory too.
While Witt sheaf cohomology is an homotopy module, and hence it is easier to

work with, from an homotopic point of view: it is bounded (in the sense of [Lev22a,
Definition 4.13]). But the SL[η−1]-oriented spectra (like Witt theory KW) are not
bounded. One needs to be careful while working with general spectra on algebraic
stacks or ind-schemes, like the ones approximating quotient stacks following the works
of Totaro, Edidin-Graham and Morel-Voevodsky. We dedicated the whole first chap-
ter to take care of these issues. While writing the thesis, we were informed by Lorenzo
Mantovani ([Man22]) about his work in progress on equivariant (motivic) intersection
theory for unbounded spectra. The development of such tools was made completely
independently, but there could be some unforeseen overlaps.

Relying on the foundational works of Ananyevskiy (cf. [Ana15; Ana16b; Ana19]),
we are now able to extend most of the results in [Lev22a; Lev22b] to any SL[η−1]-
oriented ring spectrum. As already noted in [Lev22a], the localization theorem for
Gm-actions is not interesting in the case of spectra where η is invertible. In those
cases, the Euler classes we need to invert will already be zero (see corollary 2.2.6).
The closest natural candidate for a localization theorem is then N , the normaliser of
the torus in SL2. Indeed we obtained a nice presentation of the cohomology of BN :

Proposition 1 (proposition 2.2.16). For any SL[η−1]-oriented ring spectrum, we get
the following isomorphisms of graded A•(S)-modules:

A•(BN) ' A•(BSL2)⊕A•(S)

A•(BN ; γN ) ' A•−2(BSL2)e(T )⊕A•(S)

where T is the tangent bundle of
[
P(Sym2(F ))/SL2

]
over BSL2 and γN is the gen-

erator of Pic(BN).

With this description at our disposal, we will be able to extend the Atiyah-Bott
localization theorem to our context:

Theorem 2 (theorem 4.1.18). Let X ∈ SchN/k be a scheme with an N -action and
let A ∈ SH(k) be an SL[η−1]-oriented spectrum. Let ι : |X|N ↪→ X be the closed
immersion. Let L ∈ Pic(X) be an N -linearised line bundle. Suppose the N -action is
semi-strict. Then there is a non-zero integer M such that:

ι∗ : ABM
•,N
(
|X|N ; ι∗L

) [
(M · e)−1

]
−→ ABM

•,N (X;L)
[
(M · e)−1

]
is an isomorphism.
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Finally, for schemes X equipped with special N -actions, and an N -linearised ob-
struction theory, we have:

Theorem 3 (theorem 4.3.10). Let A ∈ SH(k) be an SL[η−1]-oriented ring spectrum.
Let ι : X ↪→ Y be a closed immersion in SchN/k, with Y a smooth N -scheme. Let
ϕ• : E• → LX/k be an N -linearised perfect obstruction theory. Then we have:

[X,ϕ]virN =
s∑
j=1

ιj∗

([
|X|Nj , ϕ(j)

]vir
N
∩ eN

(
Nvir
ιj

)−1
)
∈ ABM

N (X,E•)
[
(M · e)−1

]

where [−,−]virN denote the appropriate virtual fundamental class.

Outline of the Thesis

All along this work, we closely followed proofs and strategies from [Lev19; Lev22a;
Lev22b]: the importance of those papers in our work cannot be overstated. Our orig-
inal contribution was to provide with additional or different arguments where needed
for our generalisations. In particular, we made a crucial use of the machinery devel-
oped in [Cho21a] and in [KR21]. The proofs of proposition 2.2.16, lemma 4.1.10 are
new and rely on the fact, proved in [Ana16b], that the special linear algebraic cobor-
dism MSL is the universal SL-oriented theory. These two theorems, 2.2.16 and 4.1.10,
will allow us to generalise almost all we need for our final virtual localization theorem.

Of independent interest, in Chapter 3, we also developed a theory of twisted sym-
plectic orientations on motivic spectra. We used the theory of twisted symplectic
bundles and orientations, to extend results in [Ana17] and explicitly compute the
Euler classes in KW of all irreducible rank two representations of BN . At the time
of writing, we were not aware that the notion of twisted symplectic bundles was also
studied by Asok-Fasel-Hopkins in one of their upcoming works: what we do here is
rather pedestrian compared to their work, nonetheless we hope it might be useful for
future computations. We are grateful to J. Fasel, who informed us about their work.

To summarise:

• In Chapter 1: we prove and state all the preliminary notions and properties
of equivariant Borel-Moore homology, cohomology and virtual fundamental
classes. These will be extensively used in the rest of the thesis.

• In Chapter 2: we recall the notions of SL-orientations and Euler classes; we give
a complete additive description of A•(BN) for A an SL[η−1]-oriented spectrum
and we end with a complete multiplicative description of KW•(BN) (corol-
lary 2.3.6).
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• In Chapter 3: we develop the notion of twisted symplectic orientations and we
extend [Ana17, Lemma 8.2] to the twisted case; this will allow us to explicitly
compute the Euler classes in Witt theory for any rank two vector bundle over
BN in proposition 3.4.3.

• In Chapter 4: we finally deal with our main theorems. Using lemma 4.1.10, we
generalise, to all SL[η−1]-oriented spectra, the Atiyah-Bott localization theo-
rem (theorem 4.1.18) and the Virtual Localization Theorem (theorem 4.3.10),
obtaining as a special case the Virtual Localization Theorem for KW in corol-
lary 4.3.12.
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Notations and Conventions

1. The categories Sch/B,SchG/B will always denote quasi-projective schemes over
a base scheme B of finite Krull dimension, without or with a (left) G-action. If
we write Sm/B,Sm

G
/B then we only consider smooth quasi-projective schemes.

2. We will denote by ASt /S the ∞-category of algebraic stacks over some base S
(that could be either a scheme or a stack, but for us will always be a scheme).
Moreover given X ∈ SchG/B, we will denote the associated quotient stack as
[X/G].

3. If not specified otherwise, whenever we are working over a field k, we will assume
it is of characteristic different from 2. If we work over a general base scheme

B, we will always assume
1

2
∈ O×B .

4. Recall that a morphism of quasi-projective schemes f : X → S in Sch/B is
called lci (that stands for local complete intersection) if there exists a factor-

ization of f as X
i
↪→M

p→ S with i a regular closed immersion and p a smooth
map. In the conventions of [DJK21], these are called smoothable lci maps, but
we do not need such distinction.

5. If not specified otherwise, G will always denote a closed sub-group scheme inside
GLn for some n.

6. Given a group S-scheme G, we will always denote by g∨S the sheaf associated
to the co-Lie algebra of G. If the base scheme is clear from the context, we will
only write g∨.

7. In [MV99, §4], some ind-schemes were introduced to approximate quotient
stacks. For a given algebraic group G, those ind-schemes were denoted in
loc. cit. as geometric classifying spaces BgmG. To distinguish between actual
quotient classifying stacks [S/G] ∈ ASt /S , over some base S, and geometric
classifying spaces (that are just ind-schemes), we will use a dual notation:

BG := [S/G ] ∈ ASt /S

BG := BgmG ∈ Ind(Sch/S)

We will come back to these notations, with more details, in Chapter 1. In
general, we will try to use the calligraphic font X ,Y,BG, etc., for algebraic
stacks.
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8. Given a scheme (or an algebraic stack)X, we will denote its Thomason-Trobaugh
K-theory space as K(X) = K(Perf (X)), where Perf (X) is the infinity cate-
gory of perfect complexes on X. Given X ∈ SchG/B with associated quotient
stack X := [X/G], the genuine equivariant K-theory of X will be denoted as
KG(X) := K(Perf G (X)) = K(X ).

9. Given infinity category C , we will denote by MapC (−,−) the mapping space of
C . If moreover C is closed monoidal, the internal mapping space of C we will
denoted as MapC (−,−).

10. When dealing with bivariant theories, as known as Borel-Moore homology for
us, we will have to take into account twists by perfect complexes. For example
given a scheme (or an algebraic stack)X and a perfect complex v ∈ Perf (X), we
can define the v-twisted Borel-Moore homology E(X, [v]) as in definition 1.1.2
(following [DJK21]), where [v] ∈ K0(X) = K0(Perf (X)). When V is a lo-
cally free sheaf with associated class v := [V] ∈ K0(X), to the automor-
phism in SH(X) given by v-suspension Σv, it will then correspond the element
ThX (V ) := Σv

1X , where V := VX(V) := Spec(Sym•(V∨)) is the vector bun-
dle given by V. We will always use calligraphic letters V, E , etc., for perfect
complexes and Roman letters for vector bundles. We are also using calligraphic
letters for algebraic stacks, but this should not be source of any confusion since
it will be clear from the context to which kind of object we are referring to.

11. We will stick with the conventions and notation of [DJK21] for motivic bi-
variant theories as much as possible (see later on for some recap). Be aware
of the clash of conventions between [Lev19], [Lev22b], [Lev22a] and [DJK21]
regarding twists by line bundles: what in the former three papers is denoted
Ea,b (X;L) is actually Ea+2,b+1 (ThX (L)), that in the notation of the latter one
is Ea+2,b+1 (X;−[L]) where L is the invertible sheaf corresponding to the line
bundle L. More precisely we have:

Ea,bLevine (X;L) := Ea+2,b+1 (ThX (L)) =: Ea+2,b+1
DJK (X,−[L])

where the double index conventions on the right hand side are defined in def-
inition 1.1.2. Although slightly confusing, both notation have their pros and
cons. It should be clear what we are using from the context and from the fact
that we will always use the semi-colon for one and just a comma for the other
(and square brackets if we want to stress that we are considering K-theoretic
classes). The rule of the thumb should be: if we are working with cohomology
theories and if it is a twist by a line bundle (and not by an invertible sheaf),
we are using the ELevine(−;−)-convention, otherwise we are following [DJK21].



Chapter 1

Equivariant Cohomological
Intersection Theory

1.1 Borel-Moore Bivariant Theories and Operations

Let us briefly recall the notions of Borel-Moore motives, bivariant theories and their
operations for schemes (for details see [DJK21]). For this section we will drop the
square brackets on K-theory classes of vector bundles since there will not be confusion
with other notations.

Definition 1.1.1. We will denote by 1S ∈ SH(S) the sphere spectrum. Given any
X ∈ Sch/S , with structure map πX : X −→ S, and given v ∈ K0(X), then we define
its twisted Borel-Moore motive over S as:

(X/S )BM (v) := πX ! (Σvπ∗X1S)

where Σv is the v-suspension functor.(
Proper
Pullback

)
Given a proper map p : X → Y in Sch/S and v ∈ K0(Y ), then the unit

ε∗∗(p) : Id→ p∗p
∗ ' p!p

∗ induces a map:

p∗ : (Y/S )BM (v) −→ (X/S )BM (p∗v)

Indeed, the map p∗ is given by the following composition:

πY !Σ
vπ∗Y 1S

ε∗∗(p)→ πY !p∗p
∗Σvπ∗Y 1S ' πY !p!Σ

p∗vp∗πY 1S ' πX !Σ
p∗vπ∗X1S(

Smooth
Pushforward

)
Given a smooth map f : X → Y in Sch/S , v ∈ K0(Y ), the adjunction co-unit

η∗#(f) : f#f
∗ → Id together with the purity isomorphism pf : f ! ' f#Σ−Lf

induces a map:

f∗ : (X/S )BM (Lf + f∗v) −→ (Y/S )BM (v)

1



2 1. Equivariant Cohomological Intersection Theory

Indeed, the map f∗ is defined as the following composition:

πX !Σ
f∗v+Lfπ∗X1S ' πY !f !Σ

Lf f∗Σvπ∗Y 1S
pf' πY !f#f

∗Σvπ∗Y 1S
η∗#(f)
→ πY !Σ

vπ∗Y 1S(
Gysin

Pushforward

)
Given a lci map f : X → Y in Sch/S , v ∈ K0(Y ), via deformation to the

normal bundle we get a map:

f ! : (X/S )BM (Lf + f∗v) −→ (Y/S )BM (v)

Let pf : ΣLf f∗ → f ! be the purity transformation of [DJK21, §4.3] and let
η!

!(f) : f!f
! → Id be the co-unit of the adjunction. Then f ! is defined as the

composition:

πX !Σ
Lf+f∗vπ∗X1S ' πY !f !Σ

Lf f∗Σvπ∗Y 1Y
pf→ πY !f!f

!Σvπ∗Y 1S
η!

!(f)
→ πY !Σ

vπ∗Y 1S

Definition 1.1.2. Denote again by 1S ∈ SH(S) the sphere spectrum. Using the same
conventions as in [DJK21], for any (unital, commutative) ring spectrum E ∈ SH(S),
we can define the following bivariant theories:(

Cohomology
)
For any scheme π : X → S, v ∈ K0(X), we define its cohomology (over S) as:

E (X, v) := Map
SH(S)

(1S , π∗ (Σvπ∗E))

where Map
SH(S)

(−,−) is the internal mapping spectrum in SH(S). Its associ-
ated cohomology groups will be:

Ea,b (X, v) := π0

(
Σa,bE (X, v)

)
(

Borel-Moore
Homology

)
Given π : X ∈ Sch/S , v ∈ K0(X), we define its Borel-Moore homology (some-

times referred to also as Borel-Moore bivariant theory) over S as:

EBM (X/S , v) := Map
SH(S)

(
(X/S )BM (v),E

)
' Map

SH(S)

(
1S , π∗

(
Σ−vπ!E

))
Its associated Borel-Moore homology groups will be:

EBM
a,b (X/S , v) := π0

(
Σ−a,−bEBM (X/S , v)

)
= HomSH(S)

(
Σa,b (X/S )BM (v),E

)
Remark 1.1.3. The operations on Borel-Moore motives, namely proper pullbacks,
smooth and Gysin pushforwards, induce on the Borel-Moore theory analogous opera-
tions respectively called proper pushforwards, smooth pullbacks and Gysin morphisms
that will be denoted f∗, f∗, f ! for f : X → Y a proper, smooth, lci map respectively.
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Remark 1.1.4. Recall from [Lev17, Lemma 2.2] that the Gysin pushforward on
Borel-Moore motives, defined whenever we have a section s : X → V of a smooth
map f : V → X, is the inverse of the smooth pushforward map if f is a vector bundle.
Thus, in case f is a vector bundle, we get for free that the Gysin pushforward s! on
Borel-Moore motives commutes with proper pullbacks and smooth pushforwards since
f∗ = (s!)

−1 does (for example using [Lev17, Lemma 2.3] and functoriality of smooth
pushforwards).

Notation 1.1.5. When E = 1, we simply denote its associated (absolute) Borel-
Moore bivariant theory, cohomology, homology and compactly supported cohomology
simply as HBM(·),H,Hc,Hc respectively.

Recall that given any cartesian square in Sch/B:

XT X

T S

p
∆

g

q p

f

we get a base change map (cf. [DJK21, §2.2.7]) on bivariant theories associated to
some spectrum E:

∆∗ : EBM (X/S , v) −→ EBM (XT/T , g∗v)

Moreover for a lci map of schemes f : X → Y and for any motivic ring spectrum E
we can construct fundamental classes ηEf that will satisfy various compatibility and
functoriality properties (cf. [DJK21, p. 4.1.4]). The Gysin pushforward defined on
Borel-Moore motive induces a Gysin pullback map on Borel-Moore homology that
corresponds with the multiplication by the fundamental class:

Theorem 1.1.6 ([DJK21, p. 4.2.1]). Let E ∈ SH(S) a motivic ring spectrum. For
any lci map f : X → Y in Sch/S, and any v ∈ K0(X), there is a Gysin pullback map
given by:

f ! : EBM (Y /S, v) −→ EBM (X/S, [Lf ] + f∗v)
x 7→ ηEf · x

satisfying functoriality and transverse base change as in [DJK21, p. 2.4.2].

Again from loc. cit. let us recall how refined fundamental classes and refined Gysin
maps are defined:

Definition 1.1.7 ([DJK21, p. 4.2.5]). Suppose we have:

X ′ Y ′

X Y

p
∆

g

q p

f
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a cartesian square of in Sch/S where f is lci. Refined
Fundamental

Class

 The refined fundamental class with respect to the square ∆, with coefficients

in E, is given by:

ηE∆ := ∆∗(ηEf ) ∈ EBM (X ′/Y ′ , q∗[Lf ])

(
Refined

Gysin Map

)
Similarly to theorem 1.1.6, we get a refined Gysin map defined as:

g!
∆ : EBM (Y ′/S,w) −→ EBM (X ′/S, q∗[Lf ] + g∗w)

x 7→ ηE∆ · x

for w ∈ K0(Y ′).

Remark 1.1.8. If the cartesian square of definition 1.1.7 is Tor-independent, then
this means that both horizontal arrows are lci, and the refined Gysin map g!

∆ = g! is
just the usual Gysin map by transverse base change [DJK21, 4.2.6(iii)]. In particular
this holds when the vertical maps are identities and then the refined Gysin map will
just be the usual Gysin map.

Remark 1.1.9. If it is clear from the context, we will omit the pullbacks from the
twists in Borel-Moore homology and cohomology.

Refined Gysin maps satisfy some important compatibilities and functoriality prop-
erties that we will need later on, in particular we have:

Proposition 1.1.10 ([DJK21]). Consider R ∈ Sch/S and v ∈ K0(R) and consider
the following diagram of cartesian squares in Sch/S:

Z

W

X

Y

T

R

p p
∆2 ∆1h g f

q1

p1p2

q2

p

q

(?)

where we will denote as ∆ the big cartesian square given by composing ∆1,∆2. Then:

1.
(
Compatibility

)
Suppose f is lci:

1a.
(

Proper
Pushforward

)
Suppose p2 is proper, then the following diagram commutes (in the ∞-

category SH(S)):



1.1 Borel-Moore Bivariant Theories and Operations 5

EBM (W/S, v) EBM (Z/S, v + Lf )

EBM (Y /S, v) EBM (X/S, v + Lf )

h!
∆

p2∗ q2∗

g!
∆1

where we omitted the pullbacks from the classes in K-theory to lighten the
notation.

1b.
(

Smooth
Pullback

)
Suppose p2 is smooth, then the following diagram commutes (in the ∞-

category SH(S))::

EBM (Y /S, v) EBM (X/S, v + Lf )

EBM (W/S, v + Lp2) EBM (Z/S, v + Lf + Lp2)

g!
∆1

p!
2 q!

2

h!
∆

where we omitted the pullbacks from the classes in K-theory to lighten the
notation.

2.(Functoriality) Consider the same diagram given in eq. (?) and suppose now that p1, p2 are lci,
then: (

q!
2,∆2
◦ q!

1,∆1

)
' q!

∆ : EBM (Z/S , v) −→ EBM (T/S , v + Lp)

3.
(

Excess
Intersection

)
Consider the cartesian square ∆ in eq. (?), suppose p, q are lci and that factor

p as a regular closed immersion p2 and a smooth map p1. Then we have an
excess bundle ξ given by the quotient bundle obtained through the natural map
of normal bundles NZ/X → h∗NW/Y . Then given any diagram of cartesian
squares like:

Z ′

W ′

Z

W

T

R

p p
∆3 ∆h′ h f

where the outer square will be denoted as ∆4. Then we have, up to homotopy,
that:

h
′!
∆4
' eE (ξ) · h′!∆3

with eE(ξ) the E-Euler class of ξ.
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4.


Fundamental

Classes,
Poincaré
Duality

 For πX : X → S ∈ Sch/S a lci S-scheme, we can define the E-fundamental

class of X by:
[X]E := π!

X [S]E = ηEπX

where [S]E ∈ E0,0(S) ' EBM
0,0 (S/S) is the class induced by Id1S ∈ H0,0(S) under

the unit map 1S → E.

(i) For f : Y → X an lci map in Sch/S, we have f ![Y ]E = [X]E.

(ii) For X ∈ Sm/S, E ∈ SH(S) and v ∈ K0(X), the cap product:

[X]E ∩ · : Ea,b(X, v) −→ EBM
−a,−b

(
X/S ,LX/S − v

)
defines an isomorphism, the same one induced by the purity transforma-
tion.

Proof. The compatibilities and functoriality follow from [DJK21, 4.2.6(i), 4.1.4]. The
excess intersection formula is [DJK21, 4.2.6(ii)]. The last statement is [DJK21,
4.3.8(i), 4.3.9].

Recall from [DJK21, §3.1] that the Thom space construction on a scheme X ∈
Sch/S is functorial with respect to monomorphisms of vector bundles. In particular,
associated to the zero section s : X ↪→ E of a vector bundle E on X, we get a map
in pointed motivic spaces H+(X):

s∗ : X+ −→ ThX (E)

Definition 1.1.11 ([DJK21, Def.3.1.2]). We will call Euler class the map:

s∗ : X+ −→ ThX (E)

and we will denote it as e(E). Under the natural map:

MapH+(X) (X+,ThX (E)) −→ MapSH(X)(1X ,ThX (E))

We will often interpret the Euler class as an element in twisted cohomology e(V ) ∈
H(X, [E ]) where E is the locally free sheaf associated to E.

Remark 1.1.12. We will see later on a similar, but different notion of Euler classes
for SL-oriented theories. Under appropriate Thom isomorphism these different Euler
classes will coincide (when both are defined), so there is no need to use different names
to distinguish between them. The definition we just gave, taken from [DJK21], works
without assuming any kind of orientation.
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1.2 Geometric Approximations

We will now work over a base scheme S and we will denote by GLn the group
scheme GLn,S := GLn ×Z S defined over S, where GLn is the usual group scheme
of invertible (n × n)-matrices defined over Spec(Z). Whenever we will encounter a
group scheme G over S, we will always assume that G is smooth.
We describe a version of the construction of the classifying space of G, found in
[MV99, §4.2]. We can consider Vm = An(n+m)

S ' Hom(An+m
S ,AnS) equipped with the

natural (left) GLn-action (hence we also have an induced natural G-action). Once
we identify Vm with the scheme of (n, n + m)-matrices, we can restrict to the open
subset Um ⊆ Vm made of those matrix with rank n. On Um we have a free GLn-
action (hence a free G-action too) . We can define a map sm : Um ↪→ Um+1 sending
an element B ∈ Um to a matrix of the form: 0

B
...
0


The image of this map will be a closed subscheme factoring through the open U◦m+1 ⊆
Um+1 formed by matrices A ∈ Um+1 such that the submatrix A1 obtained forgetting
the (n+m+1)th-column has rank n. The map that forgets the last row pm : U◦m+1 −→
Um is a vector bundle with zero section the map sm just described above. In this way
we get that the inclusion Um ↪→ Um+1 factors as:

Um
sm
↪→ U◦m+1

u◦m+1
↪→ Um+1 (1.1)

where sm is the zero section of pm and u◦m+1 denote the open immersion of U◦m+1 ⊆
Um+1.

Notation 1.2.1. Since we will closely follow [Lev22a] and [Lev22b], we will denote
from now on EmG = EmSLn = EmGLn := Um the open subscheme of Mn,n+m '
An(n+m)
S we saw before, given by matrices of maximal rank n. We will choose as a base

point x0 = (In, 0n, . . . , 0n) where In is the (n× n) identity matrix and 0n is the zero
vector column of length n. We will denote by ESLn = EGLn the presheaf on SmS

given by colim
m

EmSLn. For any closed subgroup G of GLn or SLn, we will denote
the quotient scheme BmG := EmGLn /G whose limit gives us the approximation
BG := colim

m
BmG for the quotient stack BG := [S/G]. For G = GLn, the schemes

BmGLn ' GrS(n, n+ j) are represented by the Grassmannians; for a general smooth
closed subgroup G ⊆ GLn we still have that BjG exists as a quasi-projective scheme.

Remark 1.2.2. Considering F ' AnS the fundamental representation of GLn, we
again have that ιj : BmG ↪→ Bm+1G factors as in (1.1) through a zero section of a
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vector bundle B◦mG := (EmG× F ) /G, followed by an open immersion ι◦m : B◦mG ↪→
Bm+1G. We will denote E◦mG := EmG× F .

Remark 1.2.3. It is not difficult to see that if G is smooth over S, the schemes
BmG are smooth over S too (cf. [Lev22a, Lemma 4.1]). Moreover the construction
of the BG’s depends on some choices, like the choice of the admissible gadget used
to define them. But it was proved in [MV99, §4.3] that the resulting object of H(S)
is independent of all the choices made.

Definition 1.2.4. We will denote by SchGq/S the full subcategory of SchG/S made by
schemes X such that the fppf quotient (X × EmG)/G is representable by an element
of Sch/S . If S = Spec(k), then by [EG98a, Proposition 23] we have SchGq/k = SchG/S .
In general any quasi-projective scheme X with a G-linearised action will be in SchGq/S
by [MFK94, Proposition 7.1].

Remark 1.2.5. Given aG-schemeX ∈ SchGq/S , we can consider Ym := X×GEmG :=
(X × EmG) /G, with inclusions ym : Ym ↪→ Ym+1. Using the factorization in (1.2.2),
we get an induced factorization of ym as:

Ym
σm
↪→ Y ◦m+1 := X × E◦m+1G/G

y◦m+1
↪→ Xm+1 = X × Em+1G/G

where σm is a zero section of a vector bundle and y◦m+1 is an open immersion.

Notation 1.2.6. Given a X ∈ SchGq/S , with G a closed subgroup of GLn or SLn,
we will denote Xm := X ×G EmGLn and as an approximation for X := [X/G] we
can consider the presheaf on SmS given by the ind-scheme X̃ := colim

m
Xm. We

will abuse the notation and also denote X̃ the image of the presheaf under motivic
localization, i.e. as a motivic space or spectra in H(S) or SH(S). We will often refer
to the Xm’s as the finite-level approximations of X̃, or the Totaro approximations of
X̃.

1.3 Equivariant Borel-Moore Homology and Cohomology

1.3.1 Six Operations for Algebraic Stacks

To define and talk about equivariant Borel-Moore motives and homology for X ∈
SchGq/S , we will now use the limit extended motivic homotopy category SH/ ([X/G])
recently constructed in [KR21] and in [Cho21a]. The two different approaches in
[Cho21a] and [KR21] agree when both are defined (cf. [KR21, Corollary 12.28] or
[Cho21b, Corollary 2.5.4]), so we will use results from both sides without making any
explicit distinction. For our purposes we will only need the limit extended functor
SH/, and not the genuine theory developed in [Hoy17], thus we will drop the super-
script / from the notation.
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In [Cho21a] the author introduced the notion of maps, between algebraic stacks, ad-
mitting sections Nisnevich-locally and used these to extend the motivic category to
those algebraic stacks that admit a Nisnevich-local cover. We will briefly recall some
notions and some of the main features of SH for algebraic stacks following loc.cit..

Definition 1.3.1. 1. Let f : X → Y be a map between schemes, we say that f
admits Nisnevich local sections if there exists a Nisnevich cover g : Y ′ → Y and
a map s : Y ′ → X such that the following commutes:

X

Y ′ Y

f

g

s

2. Given an algebraic stack X ∈ ASt , we say that X is a NL-stack (for "Nisnevich
Local") if it admits a smooth atlas x : X → X , where X is a scheme, such that
for any scheme Y and any map Y → X , the map:

Y ×X X → Y

has Nisnevich local sections. We call this atlas a NL-atlas for X and we denote
the category of NL-stacks as ASt NL.

3. A map f : X −→ Y in ASt NL is said to admit Nisnevich local sections if there
exists a NL-atlas y : Y → Y such that we have the following commutative
diagram:

X

Y Y

f

g

s

The Grothendieck topology on AStNL generated by NL-maps will be called the
NL-topology τNL.

Remark 1.3.2. If we restrict to schemes (or even algebraic spaces), the NL-topology
is equivalent to the classical Nisnevich topology.

Denote by Pr L
stb the∞-category whose objects are presentable stable∞-categories,

and whose morphisms are colimit-preserving functors. Let CAlg (Pr L
stb) be the ∞-

category of presentable stable symmetric monoidal ∞-categories. In [Cho21a, Theo-
rem 5.5.1], via NL-descent, the following ∞-functor was constructed:

SH∗ :
(
ASt NL

)op −→ CAlg (Pr L
stb)

X 7→ SH(X )
f 7→ f∗
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that, informally speaking, sends an object X to its motivic homotopy category SH(X )
and sends a map f : X → Y to the monoidal pullback functor f∗ : SH(Y)→ SH(X ).
Together with the pullback map f∗, we have its right adjoint f∗ for any map in
AStNL, the tensor-hom adjunction − ⊗ − a Map(−,−) and for any representable
map f we get a pair of adjoint exceptional functors f! a f !.
For any representable smooth map f : X → Y, a left adjointf# to f∗ was also
constructed. We will now show that with little to no effort we can extend this
construction to any smooth map:

Lemma 1.3.3. Given f : X → Y in ASt NL, the pullback functor f∗ admits a left
adjoint f#.

Proof. This is widely known, we will write it here only for completeness, but no claim
on originality is made.
Since SH∗ lands in the∞-category of stable presentable∞-categories Pr stb, to check
that f∗ admits a left adjoint we just need to check that f∗ preserves limits, by the
Adjoint Functor Theorem [HTT, Corollary 5.5.2.9]. Let x : X → X be a NL-atlas.
Then since x∗ is conservative by [Cho21a, Lemma 5.1.1], to check that f∗ preserves
limits it is the same as checking that x∗f∗ preserves limits. But f ◦ x : X → Y is a
smooth map from a scheme to an algebraic stack, hence it is smooth representable
and by [Cho21a, Proposition 5.1.2] we know x∗f∗ has a left adjoint. Again by the
Adjoint Functor Theorem, this means that x∗f∗ preserves limits. Hence f∗ has a left
adjoint f#.

We can then summarise the properties of SH in the following:

Theorem 1.3.4 ([Cho21a, Theorem 5.5.1]). We have a functor:

SH∗ :
(
ASt NL

)op −→ Pr L
stb

extending the usual functor defined on schemes.

1. For every X NL-stack, we have the tensor- hom adjunction in SH(X ):

−⊗− a Map
SH(X )

(−,−)

2. For any map f : X −→ Y in ASt NL, we have a pair of adjoint functors:

f∗ a f∗

and if f is smooth we also have:

f# a f∗ a f∗

3. For f : X −→ Y a representable, separated, of finite type map in ASt NL, we
have another pair of adjoint functors:

f! a f !
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Moreover these functors, when defined, satisfy the usual compatibilities including pro-
jection formulas, (representable) smooth and proper base change, (representable) pu-
rity isomorphism and localization triangles.

Remark 1.3.5. In this thesis we will not make use of the exceptional functors f!, f
!

for non-representable morphisms. We will come back to the construction and the
properties of those functors in a forthcoming work joint with C. Chowdhury [CD23].
We are very thankful to C. Chowdhury for all the conversations the author had with
him about the motivic homotopy theory of stacks. Most of the results in this section
are restatements of results already in the literature, but any new results found in this
section should be considered as a joint work.

The natural transformations of base change Ex∗! , smooth base change Ex∗#, and
proper base change Ex∗∗ were constructed respectively in [Cho21a, Theorem 4.1.1,
Proposition 5.1.2, Proposition 5.1.4]. We are still missing the natural transformations
Ex#∗, Ex!∗, Ex∗! and Ex!

∗ that we have at our disposal for schemes (see for example
[Hoy17, Proposition 6.12 and §6.2]), but the hard work is already done for us: we
will deduce all the missing exchange transformation (for representable maps) from
the one in [Cho21a].

Proposition 1.3.6. Consider the following cartesian diagram of representable maps
in AStNL:

W Y

Z X

p
∆

g

q p

f

(i) Suppose f is smooth and p is proper. Then we have a natural exchange trans-
formation:

Ex#∗ : f#q∗ −→ p∗g#

and moreover this is an equivalence.

(ii) If p and q are separated of finite type, then we have an exchange equivalence:

Ex!
∗ : p!f∗ ' g∗q!

(iii) If p is separated of finite type, then we have a natural transformation:

Ex!∗ : p!g∗ −→ f∗q!

If f is proper the above transformation is an equivalence.
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(iv) If p is separated of finite type, then we have a natural transformation:

Ex∗! : g∗p! −→ q!f∗

If f is smooth the above transformation is an equivalence.

(v) If p, q are separated of finite type and f, g are smooth, we have a natural ex-
change transformation:

Ex!# : f#q! −→ p!g#

and moreover this is an equivalence.

Proof. The exchange transformation in (ii) is obtained via adjunctions from Ex∗! and
so we get the result from [Cho21a, Theorem 4.1.1].

The construction of the natural transformations is exactly like in [Hoy17, §6] and
in [CD19, §2.4]. For (i), Ex#∗ is given by the following composition:

Ex#∗ : f#q∗
η∗∗(p)−→ p∗p

∗f#q∗
Ex∗#' p∗g#q

∗q∗
ε∗∗(q)−→ p∗g#

For (iii) and (iv), the exchange transformations are given by:

Ex!∗ : p!g∗
η∗∗(f)−→ f∗f

∗p!g∗
Ex∗!' f∗q!g

∗g∗
ε∗∗(g)−→ f∗q!

Ex∗! : g∗p! η
∗
∗(f)−→ g∗p!f∗f

∗ Ex
!
∗' g∗g∗q

!f∗
ε∗∗(g)−→ q!f∗

For (v), the exchange transformation Ex!# is given by the composition:

Ex!# : f#q!

ε∗#(g)
−→ f#q!g

∗g#

Ex∗!' f#f
∗p!g#

η∗#(f)
−→ p!g#

Now we only need to prove that the exchange transformations are equivalences
(under the appropriate hypothesis).
Consider the following diagram:

W Y

Z X

W Y

Z X

g̃

q̃

w
y

p̃
f̃

g

q

f

p

z
x

(1.2)

where every square is cartesian and the vertical maps x, y, w, z are NL-atlases of
X ,Y,W,Z respectively. The induced maps between the atlases will be denoted by
f̃ , g̃, p̃, q̃ and notice that every single map in the diagram is representable.
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(i) Let us start proving that Ex#∗ is an equivalence. Assume that f is smooth
and p is proper. By the conservativity of x∗, proving that:

Ex#∗ : f#q∗
η∗∗(p)−→ p∗p

∗f#q∗
Ex∗#' p∗g#q

∗q∗
ε∗∗(q)−→ p∗g# (1.3)

is an equivalence, is the same as proving that:

x∗Ex#∗ : x∗f#q∗
x∗η∗∗(p)−→ x∗p∗p

∗f#q∗
x∗Ex∗#' x∗p∗g#q

∗q∗
x∗ε∗∗(q)−→ x∗p∗g# (1.4)

is an equivalence. But we can rewrite x∗Ex#∗ as:

x∗f#q∗

'

Ex∗#

f̃#z
∗q∗

'

Ex∗∗

f̃#q̃∗w
∗

x∗p∗p
∗f#q∗

'

Ex∗∗

p̃∗y
∗p∗f#q∗

'

p̃∗p̃
∗x∗f#q∗

'

Ex∗#

p̃∗p̃
∗f̃#z

∗q∗

'

Ex∗∗

p̃∗p̃
∗f̃#q̃∗w

∗

x∗p∗g#q
∗q∗

'

Ex∗∗

p̃∗y
∗g#q

∗q∗

'

Ex∗#

p̃∗g̃#w
∗q∗q∗

'

p̃∗g̃#q̃
∗z∗q∗

'

Ex∗∗

p̃∗g̃#q̃
∗q̃∗w

∗

x∗p∗g#

'

Ex∗∗

p̃∗y
∗g#

'

Ex∗#

p̃∗g̃#w
∗

p̃∗g̃#w
∗

Ex∗#'

Ex∗#'

Ex∗#'

Ex∗#'

ε∗∗(p)

ε∗∗(p̃)

ε∗∗(p̃)

ε∗∗(p̃)

η∗∗(q)

η∗∗(q)

η∗∗(q)

η∗∗(q̃)

We can fill each cell of the diagram by the naturality of the adjunctions and
the exchange transformations we already have. Hence looking at the bottom
row of the big diagram above, x∗Ex#∗ in (1.4) becomes:

x∗Ex#∗ : f̃#q̃∗w
∗ ε
∗
∗(p̃)−→ p̃∗p̃

∗f̃#q̃∗w
∗
Ex∗#' p̃∗g̃#q̃

∗q̃∗w
∗ η
∗
∗(q̃)−→ p̃∗g̃#w

∗ (1.5)

But we already know, from [Hoy17, Proposition 6.12], that the smooth-proper
exchange transformation (induced by the top square made by the atlases in
(1.2)):

Ex#∗ : f̃#q̃∗
ε∗∗(p̃)−→ p̃∗p̃

∗f̃#q̃∗
Ex∗#' p̃∗g̃#q̃

∗q̃∗
η∗∗(q̃)−→ p̃∗g̃#
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is an equivalence. Thus (1.5) is an equivalence too and, by conservativity of x∗,
we get that the exchange transformation:

Ex#∗ : f#q∗
η∗∗(p)−→ p∗p

∗f#q∗
Ex∗#' p∗g#q

∗q∗
ε∗∗(q)−→ p∗g#

is an equivalence as well.

(ii) As we already said, that Ex!
∗ is an equivalence follows by adjunction from the

fact that Ex∗! is an equivalence as proved in [Cho21a, Theorem 4.1.1] .

(iii) Use the same notation of (1.2). Suppose p is separated of finite type and f
is proper. To show that Ex!∗ is an equivalence, by conservativity of x∗, it is
enough to show that:

x∗Ex!∗ : x∗p!g∗ −→ x∗f∗q!

is an equivalence. Similarly to what we did for (ii), it is possible to rewrite
x∗Ex!∗ as:

p̃!g̃∗w
∗ Ex!∗w

∗
−→ f̃∗q̃!w

∗

and this is an equivalence since Ex!∗ : p̃!g̃∗
∼→ f̃∗q̃! by [Hoy17, §6.2].

(iv) Use the same notation as in the diagram (1.2). Suppose p is separated of finite
type and f is smooth. To show that Ex∗! is an equivalence, by conservativity
of x∗, it is enough to show that:

x∗Ex∗! : x∗g∗p! −→ x∗q!f∗

is an equivalence. Once again, it is possible to rewrite x∗Ex!∗ as:

g̃!p̃∗w
∗ Ex!∗w

∗
−→ q̃∗f̃ !w

∗

and this is an equivalence since Ex!∗ : g̃!p̃∗
∼→ q̃∗f̃ ! by [Hoy17, §6.2].

(v) Use the same notation of (1.2). Suppose p, q are separated of finite type and
f, g are smooth. Similarly to all the other cases, we only need to show that:

x∗Ex!# : x∗f#q! −→ x∗p!g#

is an equivalence. We can rewrite x∗Ex!# as:

f̃#q̃!w
∗ Ex!#w

∗

−→ p̃!g̃#w
∗

But Ex!# : f̃#q̃! −→ p̃!g̃# is already an equivalence by [CD19, Theorem 2.4.26].
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Borel J-Homomorphism

Let X be an NL-stack and let E be a locally free sheaf on X . Denote by p : E → X
be a vector bundle associated to E , with zero section given by s : X → E. Notice
that both p and s are representable maps. Following [Hoy17, §5.2], we have adjoint
functors:

p#s∗ : SH(X )� SH(X ) : s!p∗

Lemma 1.3.7. The adjoint functors:

p#s∗ : SH(X )� SH(X ) : s!p∗

are equivalence of ∞-categories, inverse to one another.

Proof. Choose a NL-atlas x : X → X and consider:

EX X

E X

p
∆

pX

y x

p

sX

s

Pulling back via x∗ the unit and co-unit of the adjunction (p#s∗ a s!p∗), we get:

x∗ε : x∗ −→ x∗(s!p∗)(p#s∗) ' (s!
Xp
∗
X)(pX#sX∗)x

∗

x∗η : x∗(p#s∗)(s
!p∗) ' (pX#sX∗)(s

!
Xp
∗
X)x∗ −→ x∗

and both are equivalences since the natural transformations IdSH(X)
∼→ (p#s∗) '

(s!
Xp
∗
X)(pX#sX∗) and (pX#sX∗)(s

!
Xp
∗
X)

∼→ IdSH(X) are equivalences themselves. By
conservativity of x∗, we get that:

ε : IdSH(X ) −→ (s!p∗)(p#s∗)

η : (p#s∗)(s
!p∗) −→ IdSH(X )

are equivalences and hence p#s∗ and s!p∗ are inverse to one another.

Definition 1.3.8. In the same situation as above, the adjoint functors:

ΣE := p#s∗ : SH(X )� SH(X ) : s!p∗ =: Σ−E

are equivalences of ∞-categories and are called Thom transformations. In particular
we have ΣE ' ΣE1X ⊗ (−). Denote by Pic(SH(X )) the ∞-category of invertible
objects in SH(X ), and denote by:

ThX (E) := ΣE1X ∈ Pic(SH(X ))

the Thom space of E, with inverse Σ−E1X .
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We can make a further upgrade of the Thom space construction. Thanks to [BH21b,
§16.2], we have a J-homomorphism functor:

J : K −→ Pic(SH)

where K : Schqcqs → S ⊆ Cat∞ it the cdh-sheaf assigning to each qcqs scheme X the
Thomason-Trobaugh K-theory space and sending each map f to f∗ (in K-theory),
while Pic(SH) is the cdh-sheaf that assigns to each scheme the space of invertible
objects Pic(SH(X)) and sends a map f to f∗. Since both are cdh-sheaves, and in
particular Nisnevich sheaves, we can Kan extend J via NL-sheafification to a natural
transformation:

J/ : K/(−) −→ Pic(SH/(−))

where K/ and Pic(SH/) are the functors defined on
(
AStNL

)op via [Cho21a, Theo-
rem 3.4.1].

On the other hand, the genuine K-theory for an algebraic stack X ∈ ASt is defined
as:

K (X ) := Ω∞K
(
Perf (X )

)
where the right hand side is the Thomason-Trobaugh K-theory space of the ∞-
category of perfect complexes (cf. [Kha22]). For any map of algebraic stacks f :
X → Y, we have a pullback map f∗ : K(Y) → K(X ) induced by the pullback at
the level of perfect complexes. If x : X → X is a NL-atlas, then for any map
fn : Xn

X := X×X . . .×X X → X in the Čech nerve of the atlas, we will get a pullback
map f∗n : K(X ) → K(Xn

X ). For any NL-stack X , the space K/(X ) is a limit over
the Čech nerve of one of his NL-atlases (by construction) and this is functorial in X .
Hence by the universal property of the limit we get a canonical map:

j : K(−) −→ K/(−)

between functors K,K/ : ASt op → S .

Definition 1.3.9. We define the Borel J-homomorphism as:

JBor := J/ ◦ j : K −→ Pic(SH/)

For a given NL-stack X and a given v ∈ K0(X ), we will denote the associated auto-
morphism of SH(X ) as Σv, with inverse Σ−v.

Remark 1.3.10. 1. If V is a locally free sheaf on a NL-stack X , with associated
vector bundle V and with v := [V] ∈ K0(X ), then the JBor will send v to
ThX (V ) = Σv

1X defined before: this is true at the level of schemes and the
same claim follows for NL-stacks by uniqueness of Kan extensions.
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2. Notice that a fiber sequence in Perf (X ) of the form:

E → F → G

gives us a canonical path [F ] ' [E ] + [G] in the space K(X ). Then, by con-
struction of the JBor natural transformation, we get that:

ΣF ' ΣEΣG

1.4 Equivariant Bivariant Theories and Totaro Approxi-
mations

From now on we can restrict ourselves to very specific NL-stacks: quotient stacks.
Fix a base scheme S, a smooth linear algebraic group G ⊆ GLn,S and equip S with
the trivial G-action. LetX be any G-scheme such that the fppf quotientX×GGLn :=
(X × GLn)/G is represented by a scheme. Then [X/G] = [X ×G GLn/GLn] is a
NL-stack with NL-atlas given by X ×G GLn,S , since GLn,S is special.

Remark 1.4.1. Any quasi-projective scheme X with a G-linearised action gives rise
to a NL-stack [X/G] = [X ×G GLn/GLn].

Disclaimer 1.4.2. From now on, even if we will not specify it, we will only consider
schemes X ∈ SchG/S such that [X/G] is a NL-stack. In practice we will just restrict
ourselves to quasi-projective schemes with linearised G-action, but this assumption
is not strictly necessary in general. Since E0G = E0GLn = GLn, any scheme SchGq/S
will give rise to a NL-stack.

Notation 1.4.3. To distinguish between the classifying quotient stack and the geo-
metric model in H(S), we will use BG := [S/G] and BG := colim

m
EmG/G. We will

see later on that this distinction will not be really necessary when working in SH(S)
and from the second chapter on we will drop the double notation and use the simpler
BG for both.

Notation 1.4.4. Let X ∈ SchG/S and let g∨ be the sheaf associated to the co-Lie
algebra of G. Then we denote by g∨X ∈ QCohG(X) the G-linearised sheaf associated
to g∨⊗SOX . With a little abuse of notation, for X = S we will just write g∨ instead
of g∨S , but it should be clear from the context to which sheaf we are referring to.

Definition 1.4.5. Let g : X → B be a representable, separated, of finite type map
of NL-stacks and w ∈ K0(X ) and let E ∈ SH(B).(

Borel-Moore
Motive

)
The twisted Borel-Moore motive over B is defined as:

(X/B )BM (w) := g!Σ
w
1X
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(
Borel-Moore
Homology

)
The twisted Borel-Moore homology over B is defined as:

EBM (X/B , w) := Map
SH(B)

(
(X/B )BM (w),E

)
The BM-homology groups will be then defined as:

EBM
a,b (X/B , w) := π0

(
Σ−a,−bEBM (X/B , w)

)
(

Generalised
Cohomology

)
The twisted cohomology of X is defined as:

E (X , w) := Map
SH(B)

(1B, g∗Σ
wg∗E)

and its twisted cohomology groups as:

Ea,b (X , w) := π0

(
Σa,bE (X , w)

)
Now let us consider a more specific setting:

Definition 1.4.6. Let B ∈ SchG/S and X ∈ SchG/B. Denote the respective quotient
stacks as B := [B/G] and X := [X/G], and consider v ∈ KG

0 (X) = K0(X ). Denote
by πX : X → B the structure map of X, by f : X → B the induced map of quotient
stacks, by πB : B → B the structure map (over B) of B and by πX = πB ◦ f : X → B
the structure map (over B) of X . Then we can define for any motivic ring spectrum
E ∈ SH(B): Equivariant

Borel-Moore
Motive

 The equivariant Borel-Moore motive of X twisted by v is defined as:

(X/B )BM
G (v) := (πB)# Σg∨f!Σ

v
1X

 Equivariant
Borel-Moore
Homology

 The equivariant Borel-Moore homology ( or bivariant theory) of X twisted by

v is then:
EBM
G (X/B , v) := Map

SH(B)

(
(X/B )BM

G (v),E
)

The equivariant BM-homology groups will be then defined as:

EBM
a,b,G (X/B , v) := π0

(
Σ−a,−bEBM

G (X/B , v)
)
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(
Equivariant
Cohomology

)
As a special case of twisted cohomology, we can define the equivariant cohomol-

ogy of X as:

EG (X, v) := E (X , v) = Map
SH(B)

(1B, πX ∗Σ
vπ∗XE)

and its equivariant cohomology groups as:

Ea,bG (X, v) := π0

(
Σa,bEG (X, v)

)
Remark 1.4.7. We will mainly apply the above definition to the special case of
B = S and B = BG = [S/G], but it will be useful sometimes to work over a more
general SchG/S with a non-trivial G-action. For example, this will be useful every
time we need to mimic proofs or constructions from [DJK21] and apply them to the
case of representable maps of NL-stacks.

Remark 1.4.8. If we had at our disposal the exceptional functors for non-representable
maps, then the definitions of equivariant motives and theories would have been
much cleaner, if not redundant. But nonetheless, these ad hoc definitions will be-
have as expected. For example, let us consider a smooth scheme M ∈ SchG/S .

The cotangent complex of M := [M /G] will be LM/S '
[
L
G
M/S → g∨M

]
, where

L
G
M/S ∈ Perf G(M), sitting in (homological) degree zero, is the equivariant sheaf ob-

tained from LM/S = ΩM/S and its natural G-linearization. Let f :M→ BG. Then
we have:

(M/S )BM
G

(
LM/S

)
= (πBG)#Σg∨f!Σ

LM/S1M '

' (πBG)#Σg∨f#Σ
−LG

M/SΣLM/Sf∗1S '

' (πBG)#f#Σg∨MΣ
−LG

M/SΣLM/Sf∗1S '
' (πM)#π

∗
M1S

where we used relative purity for the representable map f (cf [Cho21a, Theorem
5.4.1]) and the functoriality of the Thom automorphism. This tells us that the Borel-
Moore motive of a smooth quotient is indeed its classical motive. We will soon give
a more explicit description of πM#1M, justifying the name classical motive.

Remark 1.4.9. Up to a twist by g∨, we can identify the Borel-Moore homology of the
quotient stacks with the equivariant Borel-Moore homology. Indeed, let B ∈ SchG/S ,
then we have:

EBM
G (−/B , v) = Map

SH(B)

(
πB#Σg∨ ([−/G]/B )BM (v),E

)
'

' Map
SH(B)

(
([−/G]/B )BM (v + g∨), π∗BE

)
=

= π∗BEBM
(
[−/G]/B , v + g∨

)
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where πB : B = [B/G]→ B is the structure map.
Similarly for equivariant cohomology we have:

EG(−, v) = Map
SH(B)

(1B, π[−/G]∗Σ
vπ[−/G]

∗ (π∗BE)) = π∗BE([−/G ] , v)

In the special case B = S, the above computations tells us that:

EBM
G (−/S , v) ' π∗BGEBM

(
[−/G]/BG, v + g∨

)
and:

EG(−, v) ' π∗BGE([−/G ], v)

Bivariant Operations

As for the case of schemes, we can talk about smooth pushforwards, proper pull-
backs and Gysin maps for representable maps of NL-Stacks, and associated operations
in BM-homology and in cohomology. We will omit the pullback maps on the twists
to make the notation lighter, but it should be clear from the context what twists we
are really using.

Definition 1.4.10. Suppose πX : X → B and πY : Y → B are representable,
separated of finite type maps in AStNL/B and let f : X → Y be a representable map
between them.(

Smooth
Pushforward

)
If f is smooth and v ∈ K0(Y), then we have a smooth pushforward map between

BM-motives:
f! : (X/B )BM (v + Lf ) −→ (Y/B )BM (v)

induced by f!Σ
Lf f∗

pf' f#f
∗ η∗#(f)
−→ Id. Indeed, the map f∗ is defined as the

following composition:

πX !Σ
f∗v+Lfπ∗X1B ' πY !f !Σ

Lf f∗Σvπ∗Y1B
pf' πY !f#f

∗Σvπ∗Y1B
η∗#(f)
→ πY !Σ

vπ∗Y1S(
Proper
Pullback

)
If f is proper, then we have a proper pullback map between BM-motives:

f∗ : (Y/B )BM (v) −→ (X/B )BM (v)

induced by the identification αf : f!
∼→ f∗ by [Cho21a, Proposition 5.3.3] and

the natural transformation given by the unit ε∗∗(f) : Id → f∗f
∗. Indeed, the

map f∗ is given by the following composition:

πY !Σ
vπ∗Y1B

ε∗∗(f)→ πY !f∗f
∗Σvπ∗Y1B ' πY !f !Σ

f∗vf∗πY1B ' πX !Σ
f∗vπ∗X1B
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(
Gysin

Pushforward

)
If f is smooth and it admits a closed section s : Y → X , then we have a natural

transformation:

Id ' (f ◦ s)!(f ◦ s)! = f!s!s
!f ! η

!
!(s)−→ f!f

! ' f!Σ
Lf f∗

This natural transformation induces then a Gysin pushforward on BM-motives:

s! : (Y/B )BM (v) −→ (X/B )BM (v + Lf )

Indeed, the map s! is given by the following composition:

πY !Σ
vπ∗Y1B

η!
!(s)→ πY !f!f

!Σvπ∗Y1B ' πYf!Σ
f∗v+Lf f∗π∗Y1B ' πX !Σ

f∗v+Lfπ∗X1B

When f is a vector bundle, then by homotopy invariance the smooth push-
forward f∗ is an isomorphism on BM-motives with inverse given by the Gysin
pushforward s! (the same argument in [Lev17, Lemma 2.2] works verbatim).

The operations we just defined on BM-motives will respectively induce smooth
pullbacks, proper pushforwards and Gysin pullbacks on BM-homology as in the case
of schemes. Moreover everything works in the same way also for equivariant BM-
motives and equivariant BM-homology using the identifications in remark 1.4.9.

Given a regular embedding of NL-stacks, we can define a Gysin pushforward map
closely following the construction in the schematic case. This is also known to the
experts and already appeared in [Kha19]. We will use a very special and easier
case of the construction in loc. cit., so for the reader convenience we will repeat
the construction here. The construction of a deformation space for algebraic stacks
already appeared in different places (with slightly different flavours), namely [Kre99],
[KR19], [AP19]. Working with the deformation space over A1 or P1 does not really
matter for us, but since in [Lev17] and [DJK21] the former is preferred, we will stick
with this choice. For this reason, we will slightly modify the construction of [AP19,
§7]. Consider a closed embedding of schemes X ↪→ Y and consider the classical
deformation space of Fulton:

DefX/Y := BlX×{0}
(
Y × A1

)
\ BlX×{0}(Y × {0})

The deformation space DefX/Y is flat over A1 and the same proofs as in [AP19,
Lemma 7.1, Theorem 7.2] tell us that for any locally finite type map Z → Y of
algebraic stacks we have a commutative diagram:

CZ/Y

{0}

DefZ/Y

A1

Y ×Gm

Gm

p p
(1.6)
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where CZ/Y is the intrinsic normal cone of [AP19, Theorem 6.2]. If Z ↪→ Y is
a closed immersion of NL-stacks, with associated ideal sheaf IZ , then CZ/Y '
Spec

(⊕
k≥0 IkZ /I

k+1
Z

)
. With the deformation space at hand, we are now ready

to state the following:

Proposition 1.4.11 (Gysin for Regular Embeddings). Let ι : X ↪→M be a regular
closed embedding in AStNL/B , with πX : X → B and πM : M → B representable,
separated of finite type maps. Then for any v ∈ Perf (M) we have a natural trans-
formation:

ι! : (X/B )BM (ι∗v −NX /M) −→ (M/B )BM (v)

where NX /M ' IX /I2
X is the normal sheaf of the regular embedding.

Proof. Once we get a natural transformation:

ι! : (X/B )BM (−NX /M) −→ (M/B )BM

it is easy to get the twisted version just following the same steps, so we will only deal
with the untwisted case.

Given a closed regular embedding ι : X ↪→ M, we have that the normal cone
CX /M is isomorphic to the normal bundle NX /M ' VX

(
LX /M[−1]

)
= VX

(
I/I2

)
.

By [Cho21a, Corollary 3.3.10], the deformation space DefX /M and the normal bundle
NX /M are both NL-stacks. Hence the deformation to the normal cone construction
gives us a closed and open embedding of NL-stacks:

NX /M DefX /M M×Gm
ιN

j

We hence have a localization sequence by [Cho21a, Proposition 5.2.1]:

j#j
∗ → IdSH(DefX /M) → ιN ∗ι

∗
N (1.7)

By the localization sequence associated to Gm,M A1
M {0} we get a nat-

ural map:
∂ : ThM

(
A1
M
)

[−1]→ p1#1Gm,M

where p1 : Gm,M = M× Gm → M is the projection map. Pulling back ∂ along a
NL-atlas µ : M →M, and denoting by p̃1 : Gm,M →M the projection, we get:

ThM
(
A1
M

)
[−1] −→ p̃1#1Gm,M

But this map is an equivalence in SH(M) since:

ThM
(
A1
M

)
[−1] ' ΣP11M [−1] ' ΣGm1M ' p̃1#1Gm,M
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and by conservativity of µ∗ ([Cho21a, Proposition 5.1.1]) this means that ∂ was an
equivalence too. Desuspending ∂, we get:

1M
∼→ Σ−OMp1#1Gm,M [1] ' p1#Σ

−ΩGm,M/M
1Gm,M [1] ' p1!1Gm,M [1] (1.8)

where we used purity for p1 (cf. [Cho21a, Theorem 5.4.1]) and the fact that ΩGm,M/M '
OGm,M . In particular the map above will induce an equivalence:

(Gm,M/B )BM [1] = πGm,M !1Gm,M [1] ' πM!1M = (M/B )BM (1.9)

where πGm,M : Gm,M → B is the structure map of Gm,M.

From the localization sequence associated to the deformation to the normal cone,
we get a boundary map:

∂N : πNX /M !1N −→ πGm,M !1Gm,M [1] (1.10)

where πNX /M : NX /M → B is the structure map. Using the Gysin map associated
to the zero section s0 : X ↪→ NX /M, we get:

s0! : πX !Σ
LX /M1X −→ πNX /M !1NX /M (1.11)

Composing together the maps from (1.9), (1.10) and (1.11), we get:

ι! : (X/B )BM (−NX /M) = πX !Σ
LX /M1X −→ (M/B )BM

Remark 1.4.12. In the proposition above, if we set B =M, we get as a special case
a natural map:

ι! : (X/M)BM (Lι) = (X/M)BM (−NX /M)→ 1M

For any ring spectrum F ∈ SH(M), we get a natural map:

FBM (M/M, v) −→ FBM (X /M, v + Lι)

and we denote the image of 1M under the above map as ηι. Then for any ring
spectrum E ∈ SH(B), we have a map:

ι! : EBM (M/B, v) −→ EBM (X /B, v + Lι)
x 7→ ηι · x

where the product ηι · x is defined exactly as in [DJK21, §2.2.7(4)]. This map is the
same map induced by the Gysin pushforward on Borel-Moore motives of proposi-
tion 1.4.11.

Definition 1.4.13. The element ηFι ∈ FBM (X /M, v + Lι) is said to be an F-
orientation of ι (following the conventions in [DJK21, Definition 2.3.2]). We will
often omit the superscript from the orientations.
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1.4.1 Colimit Motives à la Edidin-Graham-Totaro

We want now to relate the equivariant Borel-Moore motives with the colimit motive
one can obtain from the ind-scheme given by the Totaro approximations X ×G EmG
as introduced in 1.2.6.

Notation 1.4.14. GivenX ∈ SchGq/S , anyG-linearised perfect complex v ∈ Perf G(X)

gives us for each m the pullback complex p∗1vm ∈ Perf G (X × EmG) via the map
p1 : X × EmG→ X. By descent this gives us an element vm ∈ Perf (Xm) such that
ι∗mvm+1 ' vm for ιm : Xm ↪→ Xm+1. Thus we have compatible maps:

(·)m : Perf G(X) −→ Perf (Xm)

v 7→ vm

The pullback maps ι∗m on perfect complexes give rise to a pro-object in stable ∞-
categories that we can name Perf (X̃) := limm Perf (Xm) (this is a very much simpler
and special case of [Hen17, Def. 1.2.2, Rmk. 1.2.3]). Sometimes we will abuse the
notation and denote by v the perfect complex in Perf (X̃) induced by the objects
vm. The same notations and remarks hold true for when we talk about locally free
sheaves or vector bundles.

Remark 1.4.15. Let X ∈ SchGq/S , then by remark 1.2.5 the transition maps of X̃,
denoted as ιm : Xm ↪→ Xm+1, are lci maps that can be factored through a zero
section of a vector bundle and an open immersion. In this special case we get nice
functorialities between bivariant theories. Indeed let us suppose we have Z s→ E

j→ Y
ion Sch/S where s is the zero section of a vector bundle p : E → X, j is an open
immersion and let f : Z → Y be the composition. We will denote by π− : − → S
the structure map for − = Z,E, Y and by E the locally free sheaf associated to E.
Let us consider any v ∈ K0(Y ), then the open immersion will in particular induce a
smooth pushforward map:

j! : (E/S )BM (v)→ (Y/S )BM (v)

via the unit map j#j
∗ → Id. Since p : E → Z is a vector bundle (with relative

cotangent complex Lp = p∗E), the smooth pushforward map:

p! : (E/S )BM (v) −→ (Z/S )BM (v − E)

has an inverse given by:

s! : (Z/S )BM (v − E) −→ (E/S )BM (v)

by [Lev17, Lemma 2.2]. So we can define a Gysin map (for smooth maps with a
section) as:

f! := s! ◦ j! : EBM (Y/S , v) −→ EBM (Z/S , v − E)
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Consider now our Totaro approximations for quotient stacks. We have a fiber
sequence of cotangent complexes:

π∗G,mLBmG/S −→ LEmG/S −→ g∨ ⊗OEmG

where πGm : EmG → BmG, g∨ is the co-Lie algebra of G over B. Taking the
respective G-linearised sheaves, the former fiber sequence gives us a fiber sequence
on BmG:

LBmG/S −→ LGEmG/S −→ g∨m

where gm := g∨EmG. Using the factorization 1.2.5 and the functoriality of Borel-
Moore motives as described above, for X ∈ SchGq/S , v ∈ KG

0 (X) and v = {vm} as in
notation 1.4.14, we get maps Gysin pushforward maps:

ιm! : (Xm/S )BM (vm + LGEmG/S) −→ Xm+1/S
BM
(
vm+1 + LGEm+1G/S

)
;

here we have abused notation and omitted the pullbacks on the twists by LGEmG/S .
But replacing vm with vm − g∨m we also get:

ιm! : (Xm/S )BM (vm + LBmG/S) −→ (Xm+1/S )BM (vm+1 + LBm+1G/S

)
This will give us a map:

ι!m : EBM
(
Xm+1/S , vm+1 + LBmG/S

)
−→ EBM

(
Xm+1/S , vm + LBm+1G/S

)
For the cohomology theory, we can consider the map Id → ιm∗ι

∗
m and this will

induce:
ι∗m : E (Xm+1, vm+1)→ E (Xm, vm)

Definition 1.4.16. Let B ∈ AStNL/S and let X ,Y ∈ AStNL/B be smooth NL-stacks
over B, with maps:

X Y

B

g

f1 f2

Then we have a natural transformation:

g∗ : f1#g
∗ −→ f2# (1.12)

given by the composition:

f1#g∗
ε∗#(f2)
−→ f1#g

∗f∗2 f2# ' f1#f
∗
1 f2#

η∗#(f1)
−→ f2#

We will refer to g∗ as relative pushforward along g.
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Lemma 1.4.17. Relative pushforwards are functorial with respect to compositions,
that is, given composable maps in AStNL/B :

X Y

B

Z
g

f1

h

f3

f2

then we have that (hg)∗ ' h∗g∗.

Proof. The natural homotopy (hg)∗ ' h∗g∗ is given by the following diagram:

f1#(hg)∗ = f1#g
∗h∗

f1#g
∗f∗2 f2#h

∗

f1#f
∗
1 f2#h

∗

f2#h
∗

f1#(hg)∗f∗3 f3# f1#f
∗
1 f3#

f1#g
∗h∗f∗3 f3#

f1#g
∗f∗2 f2#h

∗f∗3 f3#

f1#f
∗
1 f2#h

∗f∗3 f3#

f2#h
∗f∗3 f3# = f2#f

∗
2 f3#

f3#

f3#

ε∗#(f2)

η∗#(f1)

ε∗#(f3)

ε∗#(f3)

ε∗#(f3)

ε∗#(f3)

ε∗#(f2)

η∗#(f1)

η∗#(f1)

η∗#(f2)

where the squares on the left clearly commutes, and the square on the right commutes
using the fact that η∗#(f2) ◦ ε∗#(f2) ' Id by the usual property of unit and co-unit
relative to the adjunction f2# a f∗2 . Indeed, we can fill the right square (forgetting
about the f3# everywhere) as:
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f1#g
∗h∗f∗3

f1#g
∗f∗2 f2#h

∗f∗3

f1#g
∗f∗2 f2#f

∗
2

f1#f
∗
1 f2#f

∗
2

f2#f
∗
2

f1#g
∗f∗2 f1#f

∗
1 Id

Id

ε∗#(f2)

η∗#(f1)

η∗#(f1)

η∗#(f2)

ε∗#(f2)

ε∗#(f2)

η∗#(f2)

Remark 1.4.18. Consider again:

X Y

B

g

f1 f2

in AStNL/B . If f2 = Id, then the relative pushforward is just the map induced by the
co-unit f1#f

∗
1 → Id.

Definition 1.4.19. Let p : W → Z be a representable, separated finite type map
of NL-stacks and let g : Z → B be a smooth map of NL-stacks. Then we define the
Borel-Moore motive of W over Z, relative to B, as:

(W/Z )BM
B := g#p!1Z

If w ∈ Perf (W), the twisted version of the relative Borel-Moore motive will be:

(W/Z )BM
B (w) := g#p!Σ

w
1Z

Remark 1.4.20. Consider the following diagram in AstNL:

W X

Z B

p

f

p q

g
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where all the maps are representable, finite type, separated and where f, g are smooth.
In the definition above, if all the maps are representable, we can use the exchange

transformation Ex!# (cf. proposition 1.3.6) and see that:

(W/Z )BM
B := g#p!1Z

Ex!#' q!f#1W

A similar statement of course holds also for the twisted relative Borel-Moore motive.

Proposition 1.4.21. Given a diagram of NL-stacks:

X Y

B

g

f1 f2

where g is smooth, then the relative pushforward g∗ is the same as:

f1#g
∗ ' f2#g#g

∗ −→ f2#

induced by η∗#(g) : g#g
∗ → Id.

Proof. To get the claim it is enough to check the commutativity of the following
diagram:

f#g
∗

f2#g#g
∗

f2#

f1#g
∗f∗2 f2#

f2#g#g
∗f∗2 f2#

f2#f
∗
2 f2#

f1#f
∗
1 f2#

f2#

η∗#(g)

ε∗#(f2)

ε∗#(f2)

ε∗#(f2)

η∗#(g)

η∗#(f2)

η∗#(f1)
η∗#(f1)

The rectangles on the left are clearly commutative, and the rectangle on the right
commutes by the naturality of the co-unit transformations η∗#(f2) ◦ η∗#(g) ' η∗#(f1).

Remark 1.4.22. By lemma 1.4.17, the relative pushforward induces amotive functor
that can be informally be described as:

M(−) : Sm/B −→ SH(B)
πX : X → B 7→ πX#1X

g : X → Y 7→ g∗

We also have the infinity suspension functor Σ∞ : Sm/B → SH(B) that sends a
smooth B-scheme X to Σ∞ and a map g : X → Y in Sm/B to Σ∞g.
Consider the category Smsm

/B of smooth B-schemes with smooth maps between
them. Let g : X → Y be a map in Smsm

/B, then Σ∞g is just the smooth pushforward
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of motives, that, by proposition 1.4.21, is equivalent to g∗(1Y ) : M(X)→M(Y ). In
particular this implies that:

Σ∞
∣∣
Smsm

/B
'M(−)

∣∣
Smsm

/B
(1.13)

The functors Σ∞ and M(−) are left Kan extended from their restrictions on Smsm
/B,

therefore it follows from (1.13) (and from the uniqueness of Kan extensions) that we
have a natural equivalence Σ∞ ' M(−) as functors over Sm/B. In particular, for
any map g in Sm/B we get a natural equivalence:

Σ∞g ' g∗

Remark 1.4.23. Proposition 1.4.21 implies that if g : X → Y is a vector bundle, then
the relative pushforward g∗ will be an equivalence by homotopy invariance (i.e. since
g#g

∗ ∼→ Id). Given any vector bundle section s : Y → X , the relative pushforward:

s∗ : f2# = f2#(g ◦ s)∗ = f2#s
∗g∗ −→ f1#g

∗

will be the inverse of g∗.

Consider now the following diagram of representable maps in AStNL:

Z Y

BZ BY

X

B

f

pZ

fZ

pY

fY

g

gZ

gY
p

where all the squares are cartesian, p, pZ , pY are separated of finite type, and fZ , fY , gZ , gY
are smooth.

Proposition 1.4.24. With the same notation as above, suppose f : Z → Y and
g : BZ → BY factorise as zero section of a vector bundle together with an open
immersion. Then the relative pushforward f∗ induces a map:

f∗ : (Z/BZ )BM
B −→ (Y/BY )BM

B

that we can identify with gZ# applied to the Gysin pushforward f! := j! ◦ s! as defined
in remark 1.4.15.
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Proof. By definition we have:

(Z/BZ )BM
B := gZ# (Z/BZ )BM = gZ#pZ !1Z

Ex!#' p!fZ#1Z

(Y/BY )BM
B := gY # (Y/BY )BM = gY #pY !1Y

Ex!#' p!fY #1Y

Therefore the relative pushforward f∗ gives us a map on the relative Borel-Moore
motives defined as the following composition:

(Z/BZ )BM
B ' p!fZ#1Z ' p!fZ#f

∗
1Y

f∗→ p!fY #1Y ' (Y/BY )BM
B

Suppose we can factorise f and g as f = ω ◦ sf and g = j ◦ sg where sf , sg are zero
sections of vector bundles νf : W → Z and vg : BW → BZ . Thus we have:

Z W

BZ BW

X

B

Y

BY

sf

pZ

fZ

pW

fW

sg

gZ
gW

ω

j

pY

fY

gY

νf

vg
p

where again all the squares of the diagram are cartesian. Then the relative pushfor-
wards (νf )∗, (vg)∗, for what we said in proposition 1.4.21, can be identified with the
natural transformation associated to the adjunctions νf#νf → Id and vg#v

∗
g → Id

respectively. But using purity for νg, we get:

gW#pW ! ' gZ#vg#pW ! '
' gZ#vg !Σ

Ωvg pW ! '

' gZ#vg !pW !Σ
Ωνf '

' gZ#(vg ◦ pW )!Σ
Ωνf

that evaluated at 1W gives us:

(W/BW )BM
B = gW#pW !1W ' gZ# (W/BZ )BM (Ωνf )

This means that the relative pushforward (νf )∗ is just gZ# applied to the smooth
pushforward of Borel-Moore motives:

(νf )! : (W/BZ )BM (Ωνf ) −→ (Z/BZ )BM

induced by:
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(vg ◦ pW )!Σ
Ωνf 1W ' (vg ◦ pW )!Σ

Ωνf ν∗f1Z ' pZ !νf !ν
!
f1Z

η!
!(νf )
−→ pZ !

This implies that the relative pushforward (sf )∗ = ((νf )∗)
−1 (cf. remark 1.4.23) is

just gZ# applied to the Gysin map:

(sf )! : (Z/BZ )BM (−s∗fΩνf

)
−→ (W/BZ )BM

In other words:

(sf )∗ = gZ#(sf )! (1.14)

Since the relative pushforward f∗ is given by the composition ω∗◦sf ∗ (by lemma 1.4.17),
from proposition 1.4.21 and from (1.14) we get that f∗ is just gZ# applied to the Gysin
pushforward:

f! : (Z/BZ )BM (−s∗fΩνf

)
−→ (Y/BY )BM

and we are done.

We want now to apply the functoriality of relative pushforwards to the relative
Borel-Moore motives attached to the Totaro approximations of quotient stacks. In
this way we will get a colimit motive approximating the motives of quotient stacks.
Namely, consider X ∈ SchGq/S and v ∈ Perf G(X) and write X := [X/G]. Set
Xm := X ×G EmG, vm ∈ Perf (Xm) as in notation 1.4.14, BmG := EmG/G with
maps:

. . . Xm Xm+1 . . . X

. . . BmG Bm+1G . . . BG

p

ιm

pm pm+1 p

fm

gm

fm+1

gm+1

im

The relative pushforwards associated to triangles:

Xm Xm+1

X

ιm

fm fm+1
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will give us maps:
(ιm)∗ : fm#ι

∗
m −→ fm+1#

This natural transformations will induce the following ones:

p!fm#Σvm1Xm ' p!fm#ι
∗
mΣvm+11Xm+1 −→ p!fm+1#Σvm+11Xm+1 (1.15)

But since:

(Xk/BkG)BM
BG (vk) := gk#pk!Σ

vk1Xk

Ex!#' p!fk#Σvk1Xk ∀ k

from (1.15) we get a map:

(ιm)∗ : (Xm/BmG)BM
BG (vm) −→ (Xm+1/Bm+1G)BM

BG (vm+1)

On the other hand, if we consider:

Xm X

X

fm

fm

the relative pushforward, that in this case is simply the co-unit fm#f
∗
m → Id (cf.

remark 1.4.23), will induce a natural transformation:

gm#p
∗
mΣvm1Xm

Ex!#' p!fm#f
∗
mΣv

1X −→ p!Σ
v
1X

and hence a map:

(fm)∗ : (Xm/BmG)BM
BG (vm) −→ (X/BG)BM (v)

By lemma 1.4.17, looking at:

Xm Xm+1

X

X
ιm

fm

fm+1

fm+1

we have that (fm)∗ = (fm+1)∗(ιm)∗ and hence we get a well defined map:

(f∞)∗ := colim
m

(fm)∗ : colim
m

(Xm/BmG)BM
BG (vm) −→ (X/BG)BM (v) (1.16)

Proposition 1.4.25. In the notation above, the following hold:

(i) We have a natural equivalence:

colim
m

fm#f
∗
m
∼−→ Id
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(ii) We have a natural isomorphism:

(f∞)∗ : colim
m

(Xm/BmG)BM
BG (vm) −→ (X/BG)BM (v)

Proof. First of all, we can already assume G is special replacing X with X ×G GLn
and rewriting X as

[
X ×G GLn/GLn

]
. If G is special, we can take x : X → X as

our NL-atlas.

(i) Let:
η∞ : colim

m
fm#f

∗
m −→ Id

the natural map induced by the co-units ηm : fm#f
∗
m → Id. Consider the

following diagram, where cm is the projection:

X × EmG X

Xm X

p

cm

qXm x

fm

By our assumption, x is a NL-atlas. To show that η∞ is an equivalence, by
[Cho21a, Lemma 5.1.1], it is enough to show that:

x∗η∞ : x∗
(

colim
m

fm#f
∗
m

)
−→ x∗IdSH(X ) ' IdSH(X)

is an equivalence. Since x∗ is a left adjoint, it commutes with colimits; moreover
we have that:

x∗fm#f
∗
m

Ex∗#' cm#q
X
m
∗f∗m ' cm#c

∗
mx
∗ (1.17)

where Ex∗# is the exchange transformation of [Cho21a, Proposition 5.1.2].
Hence our map becomes:

x∗η∞ : colim
m

cm#c
∗
mx
∗ −→ IdSH(X) (1.18)

But in SH(X), the map colim
m

cm#c
∗
m1X ' colim

m
Σ∞(X × EmG) −→ 1X is

an A1-equivalence by [MV99, §4 Proposition 2.3]. By the projection formula
[Cho21a, Theorem 5.5.1], for any E ∈ SH(X) we have that:

colim
m

cm#c
∗
mE = colim

m
cm# (1X×EmG ⊗ c∗mE) '

(
colim
m

cm#1X×EmG

)
⊗ E '

'
(

colim
m

cm#c
∗
m1X

)
⊗ E ∼−→ E
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where the last equivalence follows from x∗η∞ evaluated at 1X . Thus we have
an equivalence:

x∗
(

colim
m

fm#f
∗
m

)
' colim

m
cm#c

∗
mx
∗ ∼−→ IdSH(X) ' x∗IdSH(X ) (1.19)

By conservativity of x∗, as we already said, this is enough to conclude that η∞
is an equivalence too.

(ii) Now we want to show that:

(f∞)∗ : colim
m

(Xm/BmG)BM
BG (vm) −→ (X/BG)BM (v)

is an equivalence. Each element in the colimit can be rewritten as:

(Xm/BmG)BM
BG (vm) := gm#pm!Σvm1Xm

Ex!#' p!fm#f
∗
mΣv

1X

where we are using the cartesian diagram:

Xm X

BmG BG

p

fm

pm p

gm

So the colimit can be rewritten as:

colim
m

(Xm/BmG)BM
BG (vm) ' p!

(
colim
m

fm#f
∗
m

)
Σv
1X

since p! is a left adjoint and hence commutes with colimits. Then if we prove
that:

η∞ : colim
m

fm#f
∗
m −→ Id

is an equivalence, we will get that (f∞)∗ is an equivalence too. Therefore the
claim follows from part (i).

1.4.2 Some Comparisons of Motives

Lemma 1.4.26. LetM ∈ SmG
/S such that the (fppf) quotient [M/G] ' QM ∈ Sm/S

is represented by a scheme. Let πQM and πBG be the structure maps of QM and BG,
with fM the map between them fitting in the following diagram:
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QM BG

S

fM
πBG

πQM

Then we have:

(i) πQM ! ' πBG#Σg∨fM !

(ii) (QM /S)BM ' (M/S)BM
G

Proof. (i) The quotient QM ' [M/G] is smooth and its cotangent complex is:

ΩQM '
[
LGM/S → g∨M

]
where LGM/S sitting in (homological) degree zero is the locally free sheaf ob-
tained from ΩM/S (and its G-linearisation) and where g∨M is the locally free
sheaf obtained from g∨⊗OM , with g∨ the sheaf of the co-Lie algebra of G. We
have equivalences:

g∨ ' LBG[+1]

g∨M ' f∗Mg∨

LfM ' LGM/S

where the last equivalence follows from descent and the fact that QM ' BG×S
M . By functoriality of the motivic J-homomorphism, we have:

ΣΩQM ' Σ
LG
M/SΣ−g

∨
M (1.20)

By functoriality of (−)# we have:

πQM# ' πBG#fM# (1.21)

Piecing everything together, we then get:

πQM ! ' πQM#Σ−ΩQM '
(1.20)
' πQX#Σ

−LG
M/SΣg∨M '

(1.21)
' πBG#fM#Σ

−LG
M/SΣg∨M '

' πBG#Σg∨fM#Σ
−LG

M/S '

' πBG#Σg∨fM !

where the first and last equivalences follow from (representable) relative pu-
rity ([Cho21a, Proposition 5.4.1]), and the second to last follows from the
commutativity of suspension transformations with the appropriate six functors
fM#Σg∨M = fM#Σf∗Mg∨ ' Σg∨fM#.
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(ii) We can deduce the equality on Borel-Moore motives from the previous point.
Indeed, evaluating at 1QM the equivalence proved before we get:

(QM/S )BM = πQM !1QM ' πBG#Σg∨fM !1QM = (M/S )BM
G

Remark 1.4.27. The previous lemma works in greater generality. Indeed, we only
need to require QM to be represented by a quasi-separated algebraic space and the
proof works verbatim. This requirement was taken only to assure that the exceptional
functors and purity statements hold, and this is the case for quasi-separated algebraic
spaces by [Cho21a, Theorem 5.5.1] applied to this very special case.

If we have a closed immersion X ↪→ M in SchG/S , such that [M/G] ' QM is
represented by a scheme, then [X/G] ' QX is represented by a scheme too. This
holds in general if we relax the representability requirement: whenever we have a
representable map of algebraic stacks, such that the target of the map is an algebraic
space, then the source is represented by an algebraic space too (cf. [Alp23, Lemma
3.3.1]).

Proposition 1.4.28. Let ι : X ↪→M a closed immersion in SchG/S, such that M is
smooth and the quotient [M/G] ' QM is representable by a scheme QM ∈ Sch/S.
Denote by QX := [X/G] the scheme representing the G−quotient of X. Then there
is a natural isomorphism:

(QX/S )BM ' (X/S )BM
G

Proof. Let us fix some notations. Let U := M \X be the open complement of X. The
map [U/G] ↪→ [M/G] ' QM is a representable map. Since [M/G] ' QM ∈ Sch/S ,
then QU := [U/G] is an algebraic space by [Alp23, Lemma 3.3.1] and hence a scheme
since QU is open inside QM (that was a scheme by assumption). We will denote the
various maps in the following diagram as:

• S

Q• BG

p

S

π•

q•m a

f•
πBG

πQ•

for • = M,X,U . Let jG : QU ' [U/G] ↪→ QM ' [M/G] and ιG : QX ' [X/G] ↪→
QM ' [M/G] be the induced open and closed immersions on the respective quotients.
The map jG : QU ↪→ QM gives us the co-unit map η∗#(jG) : j#j

∗
G ' jG!h

∗
G → Id and

hence we get an induced natural transformation:
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πQU !π
∗
QU

' πQM !jG!j
∗
Gπ
∗
QM

jG!−→ πQM !π
∗
QM

' '

πBG#Σg∨fU !π
∗
QU

' πBG#Σg∨fM !jG!j
∗
Gπ
∗
QM

jG!−→ πBG#Σg∨fM !π
∗
QM

(1.22)

where the vertical equivalences follow from the first statement in lemma 1.4.26. But
using the localization sequence relative to the pair (jG, ιG), we know that we have a
fiber sequence:

jG#j
∗
G −→ Id −→ ιG∗ι

∗
G

and thus we have fiber sequences:

πQU !π
∗
QU

jG!−→ πQM !π
∗
QM

ι∗G−→ πQX !π
∗
QX

πBG#Σg∨fU !π
∗
QU

jG!−→ πBG#Σg∨fM !π
∗
QM

ι∗G−→ πBG#Σg∨fX !π
∗
QX

Using (1.22), we then get:

πQX !π
∗
QX
' Cofib

(
πQU !π

∗
QU

jG!−→ πQM !π
∗
QM

)
'

(1.22)
' Cofib

(
πBG#Σg∨fU !π

∗
QU

jG!−→ πBG#Σg∨fM !π
∗
QM

)
'

' πBG#Σg∨fX !π
∗
QX

and this concludes our proof.

Corollary 1.4.29. Let X ∈ SchGq/S and Xm := X ×G EmG. Then we have for each
m we have a natural isomorphism:

(Xm/S )BM ' (X × EmG/S )BM
G

Proof. Just apply proposition 1.4.28 to X×EmG with quotient QX×EmG = Xm.

The following is a well known fact (cf. for example [KR21, Theorem 12.16]):

Proposition 1.4.30. Let M ∈ SmG
q/S. Let πMm : Mm := M×GEmG→ S and πM :

M → S be the structure maps. Let v ∈ Perf G(M) and let vm be the corresponding
object in Perf (Mm), as in notation 1.4.14. Then there exists a natural equivalence:

colim
m

πMm#Σvm1Mm −→ πM#Σv
1M

Proof. We can assume that G is special, otherwise replace M with M ×G GLn.
Consider the following diagram:



38 1. Equivariant Cohomological Intersection Theory

M × EmG M

Mm M

p
∆

bm

qm a

βm

Notice that every map in the square above is representable and a is a NL-atlas. Since
βm is smooth, by smooth pushforward for each m we have a map:

πMm#Σvm1Mm ' πM#βm#β
∗
mΣvπM1M −→ πM#Σv

1M

induced by η∗#(βm) : βm#β
∗
m → Id. By naturality of the co-unit transformations, we

get a map a map:
colim
m

πMm#Σvm1Mm −→ πM#Σv
1M

Since πMm = πM◦βm and since πM# is a left adjoint (hence commutes with colimits),
we have:

colim
m

πMm#Σvm1Mm ' πM#colim
m

βm#β
∗
mΣv

1M

To prove our claim is enough to show that the natural map:

colim
m

βm#β
∗
m −→ Id (1.23)

induced by smooth pushforward along the βm’s is an equivalence. This follows by the
first part of proposition 1.4.25.

Corollary 1.4.31. Let M ∈ SmG
q/S. Let πMm : Mm := M ×G EmG → S and

πM :M→ S be the structure maps.Then there exists a natural equivalence:

colim
m

πMm#1Mm −→ πM#1M

Corollary 1.4.32. Let E ∈ SH(S) a motivic ring spectrum and let M ∈ SmG
q/S.

Denote by M := [M/G] and by Mm := M ×G EmG, with respective structure maps
over S denoted as πM and πMm . Let v ∈ Perf G(M) and let {vm} the induced
compatible system of perfect complexes on each Mm. Then we have:

E(M, v) = EG(M, v) ' lim
m

E(Mm, vm)
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Proof. It is just a consequence of proposition 1.4.30, indeed:

EG(M,v) := MapSH(S) (1S , πM∗Σ
vπ∗ME) '

' MapSH(S)

(
πM#Σ−vπ∗M1S ,E

)
'

' MapSH(S)

(
colim
m

πMm#Σ−vmπ∗Mm
1S ,E

)
'

' lim
m

MapSH(S)

(
πMm#Σ−vmπ∗Mm

1S ,E
)
'

' lim
m

MapSH(S)

(
1S , πMm∗Σ

vmπ∗Mm
E
)

=: lim
m

E(Mm, vm)

Remark 1.4.33. Notice that, by remark 1.4.22, the transition maps of E(BG) '
limm E(BmG) are given by Σ∞im where im : BmG ↪→ Bm+1G is the natural inclusion
map. In particular this means that we can compute E(BG) using the classical limit
of mapping spectra given by E(BmG).

Remark 1.4.34. Given E ∈ SH(S), we know by [Hoy17, Corollary 6.25] that the
functor: (

Sch/S
)op −→ SH(S)

f : X → S 7→ f∗f
∗E

is a cdh-sheaf (hence a Nisnevich sheaf). By the construction of SH/, obtained as
NL-sheafification (cf. [Cho21a, Theorem 3.4.1]), this implies that for any NL-stack
Y and any F ∈ SH(Y), the functor:(

AStNL/Y
)op

−→ SH(Y)

g : X → Y 7→ g∗g
∗F

is a NL-sheaf. Then, if X → X is a NL-atlas and gn : Xn
X := X ×X . . . ×X X → Y

are the structure maps, we have:

g∗g
∗ ' lim

n∈∆
(gn)∗(gn)∗

by NL-descent.

Remark 1.4.35. The corollary 1.4.31 was already proved in a different form in
[Kri12, Proposition 3.2]. Indeed, consider M as in corollary 1.4.31. Let πMn

M
:

Mn
M := M ×M . . . ×M M → S and πM : M −→ S be the structure maps. By

remark 1.4.34, we have:
πM∗π

∗
M ' lim

n∈∆
πMn
M∗π

∗
Mn
M
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For any E ∈ SH(S), we have:

MapSH(S) (πM#1M,E) ' MapSH(S) (1S , πM#π
∗
ME) '

' MapSH(S)

(
1S , lim

n∈∆
πMn
M∗π

∗
Mn
M
E
)
'

' lim
n∈∆

MapSH(S)

(
1S , πMn

M∗π
∗
Mn
M

)
'

' lim
n∈∆

MapSH(S)

(
πMn
M#1MnM ,E

)
'

' MapSH(S)

(
colim
n∈∆

πMn
M#1MnM ,E

)
This means that:

πM#π
∗
M ' colim

n∈∆
πMn
M#π

∗
Mn
M

by the (co-)Yoneda Lemma. But in SH(S) we have that πMn
M#π

∗
Mn
M
1S ' Σ∞Mn

M
and hence:

colim
n∈∆

πMn
M#π

∗
Mn
M
1S ' |Č• (M/M)|

where the right hand side is the geometric realization of the Čech nerve given by
the atlas M →M. Then the content of [Kri12, Proposition 3.2] is equivalent to the
content of our corollary 1.4.31.

1.5 Properties of Equivariant Bivariant Theories

Proposition 1.5.1. Let f : X −→ Y in SchGq/S, v ∈ KG
0 (Y ) and E ∈ SH(S) a

motivic ring spectrum. Let fG : X := [X/G]→ Y := [Y /G] be the representable map
induced on the quotient stacks.

1. If f is a regular embedding, then fG is a regular embedding and induces a map:

f !
G : EBM

G (Y/S , v) −→ EBM
G (X/S , v + Lf )

2. If f is a proper morphism, then fG is a representable proper morphism and
induces a map:

(fG)∗ : EBM
G (X/S , v) −→ EBM

G (Y/S , v)

3. For f smooth, the morphism fG is smooth and induces a map:

f !
G : EBM

G (Y/S , v) −→ EBM
G (X/S , v + Lf )

4. For any f , the morphism fG induces a map:

f∗G : EG (Y, v) −→ EG (X, v)
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5. For v ∈ KG
0 (X), w ∈ KG

0 (Y ) we have cup product and cap product maps:

Ea,bG (X, v)× Ec,dG (X,w)
∪−→ Ea+c,b+d

G (X, v + w)

EBM
a,b,G (X/S , v)× Ec,dG (X,w)

∩−→ EBM
a−c,b−d,G (X/S , v − w)

6. Let [S]G ∈ E0,0
G (S) be the element arising from the natural map ηBG : πBG#π

∗
BG1S →

1S composed with the unit map 1S → E. Let πX : X → S the structure map
of a scheme in SmG

q/S. Then we define the equivariant fundamental class of X
as:

[X]G := (πX)!
G ([S]G)

Moreover, given v ∈ KG
0 (X), we have a Poincaré duality isomorphism given by

the cap product with the fundamental class:

[X]G ∩ · : Ea,bG (X, v)
∼−→ EBM

−a,−b,G
(
X/S ,L[X/G]/S − v

)
Proof. The claims in (1),(2) and (3) follow directly from the respective operations of
Borel-Moore motives in 1.4.11, 1.4.10. Indeed it is enough to notice that:

(X/S )BM
G = πBG#Σg∨π!

X1X = πBG#Σg∨ (X/BG)BM

where πBG : BG→ S is the structure map of BG and where πGX : X := [X/G]→ BG.
A similar description holds also for (Y /S)BM

G (and for the twisted versions as well).
Applying the operations on Borel-Moore motives over BG, we get the smooth and
Gysin pullback and the proper pushforward on equivariant Borel-Moore homology as
we wanted.
The pullback map in (4) is easily defined using the adjunction fG∗f∗G → Id. Denote
by πX : X → S and πY : Y → S the structure maps. The map:

πX ∗π
∗
X ' πY∗fG∗f∗Gπ∗Y

η∗∗(fG)−→ πY∗π
∗
Y

will induce the map:

MapSH(S)(1S , πY∗Σ
vπ∗YE) −→ MapSH(S)

(
1S , πX ∗Σ

f∗Gvπ∗XE
)

that we define to be our map:

f∗G : EG (Y, v) −→ EG (X, v)

For (5) we can consider maps πGX : X → BG and πGY : Y → BG. Recall from
remark 1.4.9, the equivariant cohomology and Borel-Moore homology can be rewritten
as:

EG(X, v) = MapSH(BG)(1BG, π
G
X ∗Σ

vπGX
∗ (π∗BGE)) = π∗BGE(X , v)
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EBM
G (X/S , v) = MapSH(S)

(
πBG#Σg∨ (X/BG)BM (v),E

)
'

' MapSH(BG)

(
(X/BG)BM (v + g∨), π∗BGE

)
=

= π∗BGEBM
(
X/BG, v + g∨

)
Similar descriptions hold for Y too. Hence we can construct cup products and cap
products for representable maps of stacks over BG and use those as definition for the
equivariant theories under the above identification. But for representable maps of
NL-stacks the constructions in [DJK21, §2.2.7(4), 2.2.9] work formally also for our
case, using the six functors of [Cho21a, Theorem 5.5.1] and the exchange transforma-
tions in proposition 1.3.6.

The Poincaré duality statement in (6) follows from the purity isomorphism for
πGX : X → BG ([Cho21a, Theorem 5.5.1]). Indeed, using the purity isomorphism
(πGX )∗ ' Σ−LX /BG(πGX )! we get:

EG (X , v) ' MapSH(BG)

(
1BG, (π

G
X )∗Σ

v(πGX )∗π∗BGE
)
'

' MapSH(BG)

(
1BG, (π

G
X )∗Σ

vΣ−LX /BG(πGX )!π∗BGE
)

=

= π∗BGEBM
(
X/BG,LX /BG − v

) (1.24)

But LX /S '
[
LX /BG → (πGX )∗g∨

]
, hence ΣLX /SΣg∨ ' ΣLX /BG . This implies that:

π∗BGEBM
(
X/BG,LX /BG − v

)
' π∗BGEBM

(
X/BG,LX /S + g∨ − v

)
From the identifications remark 1.4.9, we can write:

EBM
G

(
X/S ,LX /S − v

)
' π∗BGEBM

(
X/BG,LX /S + g∨ − v

)
Therefore using (1.24), we get our Poincaré duality isomorphism:

EG (X , v) ' EBM
G

(
X/S ,LX /S − v

)

Proposition 1.5.2 (Equivariant Localization Sequence). Let ι : Z ↪→ X be a closed
immersion with open complement j : U ↪→ X in SchGq/S. For v ∈ KG

0 (X), we have
the following fiber sequence:

(U/S )BM
G (v)

jG!−→ (X/S )BM
G (v)

ι∗G−→ (Z/S )BM
G (v)

For E ∈ SH(S), we also have a twisted fiber sequence on bivariant homology:

EBM
G (Z/S , v)

ιG∗−→ EBM
G (X/S , v)

j∗G−→ EBM
G (U/S , v) (1.25)
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Proof. As we did in remark 1.4.9, we can rewrite all the equivariant Borel-Moore
motives as motives over BG (up to a twist). Then we just apply the localization
sequence of [Cho21a, Proposition 5.2.1]. Evaluating at E we get the localization
sequence for Borel-Moore homology.

Corollary 1.5.3. Let ι : Z ↪→ X be a closed immersion with open complement
j : U ↪→ X with Z,X ,U ∈ SmG

q/S. For E ∈ SH(S) and v ∈ KG
0 (X), we have the

following localization sequence in equivariant cohomology:

EG
(
Z, v +NZ/X

) ιG∗−→ EG (X, v)
j∗G−→ EG (U, v) (1.26)

where NZ/X is conormal sheaf associated to the closed immersion ι : Z := [Z/G] ↪→
X := [X/G].

Proof. This is a consequence of proposition 1.5.2 and purity. By remark 1.4.9, we
can rephrase everything in terms of quotient stacks ι̃ : Z := [Z/G] ↪→ X := [X/G]
and j̃ : U := [U/G] ↪→ X . Since Z,X are smooth, the map ι̃ : Z ↪→ X is lci and
the normal sheaf NZ/X ' NG

Z/X can be obtained by from NZ/X (with its natural G-
linearisation). Moreover we have that LZ/BG '

[
NZ/X [1]→ LX /BG

]
. Using purity

we get:
EBM

(
Z/BG,LX /BG − v

)
' E

(
Z, v +NZ/X

)
EBM

(
X/BG,LX /BG − v

)
' E (X , v)

EBM
(
U/BG,LX /BG − v

)
' E (U , v)

Thus, from the localization sequence in Borel-Moore homology we get:

E
(
Z, v +NZ/X

) ιG∗−→ E (X , v)
j∗G−→ E (U , v)

Proposition 1.5.4 (Equivariant refined Gysin Pullbacks). Let:

W Z

X Y

p
∆

g

q p

f

be a cartesian square in SchGq/S with f a regular embedding. Consider v ∈ KG
0 (Z)

and E ∈ SH(S) a motivic ring spectrum. We have a well defined map:

(g)!
∆,G : EBM

G (Z/S , v) −→ EBM
G (W/S , v + Lf )

induced by the equivariant operations on the quotient stacks W := [W/G] and Z :=
[Z/G].
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Proof. We will just apply the construction in [DJK21, Definition 4.2.5] to our case.
Consider the cartesian square of NL-Stacks:

W Z

X Y

p
∆̃

g̃

q̃ p̃

f̃

where W = [W/G], Z = [Z/G], X = [X/G] and Y = [Y /G]. For any w ∈ KG
0 (X)

and any F ∈ SH(Y ), we have a base change canonical transformation:

∆̃∗ : FBM (X/Y , w) −→ FBM (W/Z , q̃∗w) (1.27)

induced by:

f̃∗Σ
−wf̃ ! ε

∗
∗(p̃)−→ f̃∗Σ

−wf̃ !p̃∗p̃
∗ Ex

!
∗' f̃∗Σ

−wq̃∗g̃
!p̃∗ ' f̃∗q̃∗Σ−q̃

∗wg̃!p̃∗ ' p̃∗g̃∗Σ−q̃
∗wg̃!p̃∗

Indeed, evaluating the above natural transformation on F and taking the mapping
spaces everywhere we get:

∆̃∗ : MapSH(Y)

(
1Y , f̃∗Σ

−wf̃ !F
)
−→ MapSH(Y)

(
1Y , p̃∗g̃∗Σ

−q̃∗wg̃!p̃∗F
)

where the left hand side is:

MapSH(Y)

(
1Y , f̃∗Σ

wf̃ !F
)
' MapSH(Y)

(
f̃!Σ

w
1X ,F

)
= FBM (X/Y , w)

and where the right hand side is:

MapSH(Y)

(
1Y , p̃∗g̃∗Σ

−q∗wg̃!p̃∗F
)
' MapSH(Y)

(
g̃!Σ

q̃∗w
1W , p̃

∗F
)

= p̃∗FBM (W/Z , q̃∗w)

Since f is a regular embedding, we have an orientation ηf ∈ EBM (X /Y,Lf ) by
remark 1.4.12 and hence an element ∆̃∗(ηf ) ∈ EBM (W/Z,Lf ). For any v ∈ KG

0 (Z),
we then get a map:

(g̃∆̃)! : EBM (Z/BG, v) −→ EBM (W/BG, v + Lf )

x 7→ ∆̃∗(ηf ) · x

But (W/S)BM
G = πBG#Σg∨ (W/BG)BM and similarly (Z/S)BM

G = πBG#Σg∨ (Z/BG)BM.
Thus we can rewrite:

EBM
G (−/S , v) = MapSH(S)

(
πBG#Σg∨ ([−/G]/BG)BM (v),E

)
'

' MapSH(BG)

(
([−/G]/BG)BM (v + g∨), π∗BGE

)
=

= π∗BGEBM
(
[−/G]/BG, v + g∨

)
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Hence, from (g̃∆̃)! we get a map:

(g)!
∆,G : EBM

G (Z/S , v) −→ EBM
G (W/S , v + Lf )

Remark 1.5.5. If we formally apply the argument of [DJK21, Proposition 4.2.6(iii)]
to the equivariant setting (under the usual identification remark 1.4.9), we see that
if the square ∆ is also Tor-independent then the refined Gysin map corresponds to
the Gysin map obtained in equivariant Borel-Moore homology via proposition 1.4.11
(cf. remark 1.4.12).

Remark 1.5.6. Now that we have in our equivariant setting all the usual operations
of Borel-Moore homology such as smooth pullbacks, proper pushforwards, localization
sequences and also refined Gysin pullbacks, we get for free all the properties they
satisfy in the non-equivariant case. Indeed, the proofs in [DJK21] and [Lev17] can
be formally adapted to our case using the machinery of six functors developed in
[Cho21a].

Remark 1.5.7. Suppose we have Z,W,X, Y, T,R ∈ SchG/S , together with their as-
sociated quotient stacks Z,W,X ,Y, T ,R respectively. Moreover suppose we have
maps q1 : X → T , q2 : Z → X (with composite q := q1 ◦ q2), and adjacent Cartesian
squares:

Z

W

X

Y

T

R

p p

∆̃2 ∆̃1h̃ g̃ f̃

q̃1

p̃1p̃2

q̃2

p̃

q̃

Denote by ∆̃ the big outer Cartesian square. Then the pullback transformation we
defined in (1.27):

∆̃∗ : FBM (T/R ,−) −→ FBM (Z/W ,−)

is actually given by the composite ∆̃2
∗
◦∆̃1

∗
. This fact together with the functoriality

of Gysin maps for regular embeddings (cf. [DJK21, Theorem 3.2.21]), tells us that
we have an homotopy:

(q)!
p,∆ ' (q2)!

p2,∆2
◦ (q1)!

p1,∆1
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External and Refined Intersection Products

Let Z,X ∈ SchGq/S , and let E ∈ SH(S). Consider the cartesian diagram:

X ×S Z Z

X S

p ∆

f

and consider the associated cartesian diagram of quotient stacks:

X ×BG Z Z

X BG
p ∆̃

f̃

Then following [DJK21, §2.2.7(4)] (as we did in the proof of proposition 1.5.4), we
get a base change natural transformation:

∆̃∗ : EBM
a,b (Z/BG, v) −→ f̃∗EBM

a,b (X ×BG Z/X , v)

Up to a twist by g∨, we can identify the Borel-Moore homology of the quotient stacks
with the equivariant Borel-Moore homology (cf. proof of proposition 1.5.4):

EBM
G (−/B , v) = MapSH(B)

(
qB#Σg∨ ([−/G]/B )BM (v),E

)
'

' MapSH(B)

(
([−/G]/B )BM (v + g∨), π∗BE

)
=

= π∗BEBM
(
[−/G]/B , v + g∨

)
where qB : B → [B/G] = B is the quotient map for some scheme B ∈ SchGq/S and
where πB : B → S is the structure map. Hence the map ∆̃∗ gives rise to a base
change transformation:

∆∗ : EBM
G,a,b (Z/S , v) −→ f∗EBM

G,a,b (X ×S Z/X , v)

We also have a composition product (induced by [DJK21, 2.2.7(4)]):

−�G− : f∗EBM
G,a,b (X ×S Z/X , v)×EBM

G,c,d (X/S ,w) −→ EBM
G,a+c,b+d (X ×S Z/S , v + w)

Definition 1.5.8. We define the external product as the composition − �GZ,X − :=

(−�G −) ◦ (∆∗ × Id):

−�Z,X − : EBM
G,a,b (Z/S , v)× EBM

G,c,d (X/S ,w) −→ EBM
G,a+c,b+d (X ×S Z/S , v + w)

Let Y ∈ SmG
q/S and let δY : Y → Y ×S Y be the diagonal. Consider:
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X ×S Z X ×Y Z

Y Y ×S Y

p

∆δ

g

p× q

δY

Definition 1.5.9. With the notation above, we define the refined intersection prod-
uct, with respect to p : X → Y and q : Z → Y , as the composition − ∗Gp,q − :=

g!
∆δ,G

◦ (−�GZ,X −):

−∗Gp,q− : EBM
G,a,b (Z/S , v)×EBM

G,c,d (X/S ,w) −→ EBM
G,a+c,b+d

(
X ×Y Z/S , v + w − ΩY /S

)
Proposition 1.5.10. In the same situation as above. Then:

1. Let ι1 : Z ′ → Z and ι2 : X ′ → X be closed immersions in SchGq/S. Let
q′ = q ◦ ι1, p′ = p ◦ ι2. For any α ∈ EBM

G,a,b (Z ′/S, v) and β ∈ EBM
G,c,d (X ′/S,w),

we have:
(ι1)G∗ (α)�GZ,X (ι2)G∗ (β) ' (ι1 × ι2)G∗ (α�GZ′,X′ β)

(ι1)G∗ (α) ∗Gp,q (ι2)G∗ (β) ' (ι1 × ι2)G∗ (α ∗Gp′,q′ β)

2. Suppose that we have lci maps f : Z ′ → Z, g : X ′ → X in SchGq,/S, and suppose
we have Tor-independent squares:

Z ×S X ′ X ′

Z X

p

∆1

Z ′ ×S X ′ Z ′

Z ×S X ′ Z

p

∆2

Then for any α ∈ EBM
G,a,b (Z/S, v) and β ∈ EBM

G,c,d (X/S,w), we have:

f !
G(α)�GZ′,X′ g

!
G(β) ' (f × g)!

G(α�Z,X β)

Proof. The proof in [Lev22b, Lemma 1.6] formally applies to our case as well.

1.6 Equivariant VFC

1.6.1 Graber-Pandharipande Construction

Let us quickly recall how the virtual fundamental class in [GP99] was constructed
in the non-equivariant case for schemes. Let us first recall the notion of abelian cone:
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Definition 1.6.1. Let X be a scheme and F ∈ QCoh(X) an element of the (derived)
(∞, 1)-category of quasi-coherent sheaves (cf. for example [AP19, Definition 2.11]).
The abelian cone associated to F is the prestack over X defined by the mapping
space:

VX
(

Spec(A)
f→ X

)
:= MapD(A) (f∗F , A)

where D(A) ' QCoh(Spec(A)) is the derived category of A. For F ∈ QCoh(X)♥ '
QCoh(X) a quasi-coherent sheaf in the classical sense, we recover the classical defi-
nition VX(F) = SpecX (Sym•(F)) (cf. [AP19, Ex. 3.2]).

Definition 1.6.2. A perfect obstruction theory on a scheme Z is given by a map
ϕ• : E → LZ/S in QCoh(Z), such that E is a perfect complex of Tor-amplitude [0, 1],
h0(ϕ) is an isomorphism and h1(ϕ) is surjective.

Let ϕ• : E → LZ/S a perfect obstruction theory on a scheme Z. Let us assume Z
is quasi-projective over S, in particular it will admit a closed immersion ιZ : Z ↪→M
where M is quasi-projective and smooth over S. We can then take a representative
of ϕ• of the form:

ϕ• : (F1 → F0) −→
(
I
/
I2 → ι∗ZΩM/S

)
' τ≤1LZ/S

where the Fi’s are locally free and I is the ideal sheaf associated to the closed im-
mersion Z ↪→ M . The assumption that ϕ• is a perfect obstruction theory, implies
that we have an exact sequence:

F1 → I
/
I2 ⊕F0

γ→ ι∗ZΩM/S → 0 (1.28)

Hence, if Q := Ker(γ), we also have a surjection F1 → Q. Let NZ/M := VZ
(
I/I2

)
,

F0 := VZ(F0) and F1 := VZ(F1) be the abelian cones associated to I/I2, F0 and F1

respectively.
The exact sequence (1.28) tells us that we have ι∗ZTM/S as a subcone inside

NZ/M ×Z F0 and hence we can consider:

VZ(Q) '
(
NZ/M ×Z F0

)/
ι∗ZTM/S

Moreover, again using (1.28), we have a closed immersion:

VZ(Q) ↪→ F1

Inside the abelian cone NZ/M we have the normal cone CZ/M , which contains the
image of ι∗ZTM/S . So denoting by:

D := CZ/M ×Z F0

the induced closed subscheme of NZ/M ×Z F0, we can define a closed subcone of
VZ(Q) by:

Dvir := D
/
ι∗ZTM/S
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Composing with the closed immersion VZ(Q) ↪→ F1, we get the closed immersion:

ιDvir/F1
: Dvir ↪→ F1

We also have the projection maps:

π1 : D −→ CZ/M

π2 : D −→ Dvir

exhibiting D as an affine space bundle over CZ/M and Dvir respectively. Hence, for
any ring spectrum E ∈ SH(S), the smooth pullback maps:

π!
1 :EBM

(
CZ/M/S , v

)
−→ EBM (D/S , v + F0) (1.29)

π!
2 :EBM

(
Dvir/S , v

)
−→ EBM

(
D/S , v + ΩM/S

)
(1.30)

are isomorphisms. Thus the fundamental class of the normal cone (as defined in
[Lev17]) : [

CstZ/M

]
∈ EBM

(
CZ/M/S ,ΩM/S

)
defines the class:[

Dvir
]

:= π!
2

(
(π!

1)−1
[
CstZ/M

])
∈ EBM

(
Dvir/S ,F0

)
Definition 1.6.3. Let E ∈ SH(S) be a motivic ring spectrum, Z a quasi-projective
scheme over S with a closed embedding into M ∈ Sm/S . Let ϕ• : E → LZ/S be a
perfect obstruction theory on Z, with F• → τ≤1LZ/S a representative of τ≤1ϕ. Let
sF1 : Z → F1 be the zero section of F1 := V(F1). Then the virtual fundamental class
is defined as:

[Z,ϕ•]
vir
E := s!

F1

(
ιDvir/F1∗

[
Dvir

])
∈ EBM (Z/S , E)

Remark 1.6.4. As shown in [Lev22b, Proposition 4.2], this construction coincides
with the virtual fundamental class defined in [Lev17], hence it is independent of all
the choices made along the way and is thus a well-defined element of EBM(Z/S, E),
depending only on Z, ϕ• : E → LZ/S and E .

1.6.2 Equivariant VFC after Edidin-Graham-Totaro

Now we would like to extend the Graber-Pandharipande construction to our equiv-
ariant setting. To do so, we first need a class of the normal cone. Along this section
we will work with a motivic ring spectrum E ∈ SH(S).

Let us recall in the non-equivariant case how the class of the cone for for a closed
immersion Z ↪→ M was constructed. Given a scheme Z ∈ Sch/S and a closed
embedding Z ↪→ M with M ∈ Sm/S , we can construct a specialization to the
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normal cone map as follows. We will denote with π? : ? → S the structure maps of
our schemes living over S. First consider the map:

(M/S )BM (ΩM/S) := πM ! (ThM (TM )) ' πM#π
∗
M1S −→ 1S

where TM is the tangent bundle of M . This map induces a map:

π!
M : E (S) −→ EBM

(
M/S ,ΩM/S

)
that is simply the Gysin map associated to the smooth map πM . Then we can
consider:

Gm,M := M ×S Gm M

S

p1

π := πGm,M
πM

and by a simple computation we have:

(Gm,M/S )BM (ΩM/S)[1] ' π!

(
Σp∗1ΩM/S1Gm,M

)
[1]

' π#

(
Σ−p

∗
2ΩGm/S1Gm,M

)
[1] '

' Σ−1
T ΣS1(M ×Gm) '

' Σ−1
Gm(M ×Gm) '

'M = π#π
∗
1S

' (M/S )BM (ΩM/S)

that will induce an isomorphism:

σGm : EBM (M/S ,w)
∼−→ EBM (Gm,M/S ,w) [−1]

for any w ∈ K0(M). Then back to our original closed embedding ιZ : Z ↪→ M , we
can consider the deformation space DefZ/M associated to ιZ with closed and open
immersions:

CZ/M DefZ/M Gm,M
ιC j

Taking the boundary of the localization sequence associated to ιC, we get a map:

∂C : EBM (Gm,M/S ,w) [−1] −→ EBM
(
CZ/M/S ,w

)
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Definition 1.6.5. Given a scheme Z ∈ Sch/S and a closed embedding ιZ : Z ↪→M
with M ∈ Sm/S , the specialization to the normal cone map with respect to ιZ is
given by:

spιZ := ∂C ◦ σGm ◦ π!
M : EBM (S/S ) −→ EBM

(
CZ/M/S ,ΩM/S

)
The class of the cone will then be:[

CZ/M
]

:= spιZ ([S]) ∈ EBM
(
CZ/M/S ,ΩM/S

)
where [S] ∈ EBM (S/S) is just the class of of the unit of E.

Now we would like to get an equivariant equivalent of this specialization to the
normal cone map. First, we start pointing out that the motivic space BG ∈ SH(S)
has a natural structure map to the unit in SH(S) Indeed, by corollary 1.4.31 we have
BG = colim

m
πBmG#1BmG ' πBG#1BG = πBG#π

∗
BG1S and hence:

ηBG : BG ' πBG#π
∗
BG1S

η∗#(πBG)
−→ 1S

Moreover:
BG ' πBG#1BG ' (S/S )BM

G (−g∨) = (S/S )BM
G (LBG)

This induces a map:

η∗BG : EBM (S/S ) −→ EBM
G

(
S/S ,−g∨

)
(1.31)

Proposition 1.6.6. Let B ∈ SchGq,/S, let ιX : X ↪→ M be in SchG/B and let v ∈
KG

0 (M). For E ∈ SH(B), then there exists a well defined (equivariant) specialization
to the normal cone map:

spGιX : EBM
G (M/B , v) −→ EBM

G

(
CX/M/B , v

)
Proof. Using remark 1.4.9, we can identify the equivariant Borel-Moore homology
and with the Borel-Moore homology of the respective quotient stacks. To lighten
the notation, we will prove the statement of the proposition for v = 0, the general
case can be obtained by minor modifications of our arguments and it is left to the
reader. Denote by πM : M → B the structure map, with induced quotient map
(πM )G :M = [M/G]→ B.
As we did in proposition 1.4.11, we have a canonical equivalence:

1M ' (Gm,M/M) [+1]

This will induce an isomorphism:

σ̃M : EBM (M/B )
∼→ EBM (Gm,M/B ) [−1]
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and hence, under the identification in remark 1.4.9, an equivalence:

σGGm : EBM
G (M/B )

∼→ EBM
G (Gm,M/B ) [−1]

Set X := [X/G]. Using the deformation to the normal cone as we did in proposi-
tion 1.4.11:

CX /M

{0}

DefX /M

A1

Gm,M

Gm

p p

we get a localization sequence:

EBM (Gm,M/B )→ EBM
(
DefX /M/B

)
→ EBM

(
CX /M/B

)
Since CX /M '

[
CX/M /G

]
and DefX /M =

[
DefX/M /G

]
, by remark 1.4.9, we get an

equivariant localization sequence of the form:

EBM
G (Gm,M/B )→ EBM

G

(
DefX/M/B

)
→ EBM

G

(
CX/M/B

)
Therefore, we get a boundary map:

∂GC : EBM
G (Gm,M/B ) [−1] −→ EBM

G

(
CX/M/B

)
The composition of σGGm and ∂GC gives us the map:

spιX := ∂GC ◦ σGGm : EBM
G (M/B ) −→ EBM

G

(
CX/M/B

)

Corollary 1.6.7. In the same situation as in proposition 1.6.6, suppose M ∈ SmG
/B

is smooth. Then we have a well defined (equivariant) specialization to the normal
cone map relative to B:

spGιX /B : EBM
G (B/B , v) −→ EBM

G

(
CX/M/B ,ΩG

M/B + v
)

Proof. Suppose for simplicity that v = 0 and let us identify the equivariant Borel-
Moore homology with the Borel-Moore homology associated to the quotient stacks
using remark 1.4.9. Denote by πM : M → B the structure map, with induced quotient
map (πM )G :M = [M/G]→ B.
By smooth pushforward of Borel-Moore motives we get:

(πM )!
G : EBM (B/B ) −→ EBM

(
M/B ,LM/B

)
inducing the map:

(πM )!
G : EBM

G (B/B ) −→ EBM
G

(
M/B ,ΩG

M/B

)
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under the identification LM/B ' ΩG
M/B.

Composing (πM )!
G with spιX of proposition 1.6.6 we get our desired map:

spGιX /B := ∂GC ◦ σGGm ◦ (πM )!
G : EBM

G (B/B ) −→ EBM
G

(
CX/M/B ,ΩG

M/B

)
The general case for v 6= 0 is left to the reader.

Remark 1.6.8. As a special case of the prvious corollary and of proposition 1.6.6
B = S with a trivial action we recover the specialization map over BG as a special
case.

Definition 1.6.9. Let ιX : X ↪→M in SchGq/S with M ∈ SmG
q,/S . LetM := [M/G]

and let [S] ∈ EBM
0,0 (S/S) be the element given by the identity map on the sphere

spectrum 1S composed with the unit map of E. Let η∗BG be the map in (1.31). We
define the equivariant class of the normal cone by:[

CX/M
]
G

:= spGιX /S([S]) ∈ EBM
G,0,0

(
CX/M/S ,LM/S

)
where:

spGιX /S := spGιX /BG ◦ η
∗
BG : EBM (S/S ) −→ EBM

G

(
CX/M/S ,LM/S

)
is the equivariant specialization to the normal cone map.

Let X ∈ SchG/S , then LX/S has a natural G-linearization.

Definition 1.6.10. Let QCohG(X) be the derived (∞, 1)-category of G-linearised
complexes on X. We say that ϕ• : E → LX/S in QCohG(X) is a G-linearised perfect
obstruction theory if ϕ• is an obstruction theory after forgetting the G-action, i.e. if
E is of Tor-amplitude [0, 1] and if h0(ϕ) is an isomorphism and h1(ϕ) is surjective.

Remark 1.6.11. Since the virtual fundamental class associated to a perfect obstruc-
tion theory only depends on its 1-truncation (cf. [AP19, Proposition 8.2]), we will
often refer to the induced map ϕ : E → τ≤1LX/S as the obstruction theory.

Assumption 1.6.12. We will always assume from now on when dealing with perfect
obstruction theories, that the schemes we are working with satisfy the G-resolution
property. In other words for any ϕ : E → LX/S , we will always assume that there
exists a representative of τ≤1ϕ of the form (F1 → F0) −→ τ≤1LX/S with F0,F1 two
G-linearised locally free sheaves on X.

Let ιX : X ↪→ M be in SchGq/S with M ∈ SmG
q,/S , equipped with a G-linearised

perfect obstruction theory ϕ : E −→ LX/S . Take a representative of ϕ of the form
(F1 → F0) −→ τ≤1LX/S . As done in the non-equivariant case section 1.6.1, us-
ing the same notation, we can define the following objects and maps in SchGq/S :
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D := CZ/M × F0 Dvir := D
/
ι∗XTM/S

ιDvir/F1
: Dvir ↪→ F1

D

CX/M Dvir

π1 π2

where ιDvir/F1
is a closed immersion and π1, π2 are affine space bundles. Denote also

by sF1 : X −→ F1 the G-equivariant zero-section of F1.

Definition 1.6.13. With X,M,ϕ : E → LX/S as above, let E ∈ SH(S) be a motivic
ring spectrum. Let:[

Dvir
]
G

:=
(

(π2)!
G

)−1
(π1)!

G

[
CX/M

]
G
∈ EBM

G

(
Dvir/S ,F0

)
Then we define the equivariant virtual fundamental class of X as:

[X,ϕ]virG := (sF1)!
G(ιDvir/F1

)G∗
[
Dvir

]
G
∈ EBM

G (X/S , E•)

Remark 1.6.14. The above definition depends a priori on the choices we made, like
for example the choice of the closed embedding X ↪→ M . But formally applying
the proofs in [Lev17], plus [Lev22a, Proposition 4.2], we get that the construction is
actually independent of all the choices and that the virtual fundamental class only
depends on the G-scheme, the perfect obstruction theory, and the choice of a motivic
ring spectrum E.

Equivariant Vistoli’s Lemma

For later use, we record here an equivariant version of the Vistoli’s lemma proved
in [Lev22b, Proposition 2.1]; we will closely follow the construction in loc. cit. and no
claim of originality is made here. We could consider representable maps of NL-stacks,
but for the sake of simplicity we will only present the Vistoli’s lemma for quotient
stacks. Consider the following cartesian diagram in ASt /S :

Z := [Z/G] X1 := [X1/G]

X2 := [X2/G] Y := [Y /G]

∆

p

f2

f1 ι1

ι2

with Z,X1, X2, Y ∈ SchG/S and ι1, ι2 closed immersions. For any closed immersion
g : W ↪→ T of locally finite type algebraic stacks, we denote by Defg or by DefW/T
the associated deformation space, as the one in (1.6), and by Cg or by CW/T the
associated normal cone contained in Defg (cf. [AP19, §6]). The cartesian square ∆,
gives rise to the following diagram:
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Z X1

X2 Y

p p

pp

Cι2

f∗1Cι2

f∗1Cι2 ×Y f∗2Cι1 f∗2Cι2 Cι2Cα2

Cα1

f2

f1 ι1

ι2

α2

α1β2

β1

(1.32)

Notice that β1 and β2 are closed immersions (cf. [Lev22b, §2]).

Construction 1.6.15. Define:

Def1 := DefX1/Y × A1

Def2 := DefX2×A1/Y×A1

Both of them have structure maps πi : Defi −→ Y × A1 × A1. Let:

Def12 := Def1 ×Y×A1×A1 Def2

be the double deformation space. The stack Def12 comes equipped with a structure
map:

π12 : Def12 −→ Y × A1 × A1

and projection maps:
pj : Def12 −→ Defj

Notice that we have π−1
1 (X1×{0}×A1) ' Cι1×A1 and π−1

2 (X2×A1×{0}) ' Cι2×A1,
therefore we have complementary closed an open immersions:

Y ×Gm × A1Def1Cι1 × A1
η1σ1

Y × A1 ×GmDef2Cι2 × A1
η2σ2

We also have a closed immersion:

σ̂1 : Defα1 = Deff∗2 Cι1 /Cι1 ↪→ Def12

Morover σ̂1 fits in the following commutative diagram:
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Cι1 × A1 Def1

Y × {0} × A1 Y × A1 × A1Y × {0} ×Gm

Cι1 ×Gm

Defα1 \ Cα1
Defα1 Def12

π1

p1

π12

∼

Similarly we have a closed immersion σ̂2 : Defα2 = Deff∗1 Cι2 /Cι2 ↪→ Def12, fitting in
the following commutative diagram:

Cι2 × A1 Def2

Y × A1 × {0} Y × A1 × A1Y ×Gm × {0}

Cι2 ×Gm

Defα2 \ Cα1
Defα2 Def12

π2

p2

π12

∼

Therefore the closed immersions:

π−1
12 (Y × {0} × A1)Defα1

π−1
12 (Y × A1 × {0})Defα2

are both isomorphism when restricted over (Y×A1×A1)\ (Y×{0}×{0}). Moreover
since:

π−1
12 (Y × {0} × {0}) ' π−1

1 (Y × {0} × A1)×Y π−1
2 (Y × A1 × {0}) = f∗2Cι1 ×Y f∗1Cι2

we get that:

π−1
12 (Y × {0} × A1) = Defα1 ∪ (f∗2Cι1 ×Y f∗1Cι2)

and:

π−1
12 (Y × A1 × {0}) = Defα2 ∪ (f∗2Cι1 ×Y f∗1Cι2)

Putting everything together, we obtain the following commutative diagram:
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Defα1 Def12

Y × {0} × A1 Y × A1 × A1

f∗2Cι1 ×Y f∗1Cι2

Y × {0} × {0}

Defα2

Y × A1 × {0}

Cα1

Cα2

σ̂1
σα1

π12

σ̂2

σα2

β2

β1

(1.33)

The restriction of π12 to the complement of π−1
12 ((Y × {0} ×A1)∪ (Y ×A1 × {0}))

gives us an isomorphism:

Def12\π−1
12 ((Y×{0}×A1)∪(Y×A1×{0})) ∼−→ Y×A1×A1\((Y×{0}×A1)∪(Y×A1×{0}))

Moreover we have the following equalities:

π−1
12 ((Y × {0} × A1) ∪ (Y × A1 × {0})) = σ̂1 (Defα1) ∪ f∗2Cι1 ×Y f∗1Cι2 ∪ σ̂2(Defα2)

(f∗2Cι1 ×Y f∗1Cι2) ∩ σ̂1(Defα1) = β1(Cα1)

(f∗2Cι1 ×Y f∗1Cι2) ∩ σ̂2(Defα2) = β2(Cα2)

Proposition 1.6.16 (Vistoli’s Lemma). Consider the following diagram in SchG/S:
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Z X1

X2 Y

p p

pp

Ci2

g∗1Ci2

g∗1Ci2 ×Y g∗2Ci1 g∗2Ci2 Ci1Ca2

Ca1

g2

g1 ι1

ι2

a2

a1b2

b1

Let v ∈ KG
0 (Y ) and let E ∈ SH(S). Using the same notation as in proposition 1.6.6

for the equivariant specialization maps, we have:

(b1)G∗ ◦ spGa1
◦ spGi1 = (b2)G∗ ◦ spGa2

◦ spGi2

as maps EBM
G (Y /S, v)→ EBM

G (g∗1Ci2 ×Y g∗2Ci1/S)

Proof. The proof is formal and follows using the same arguments as in [Lev22b,
Proposition 2.1]. Indeed, once we identify the equivariant Borel-Moore homology
with the Borel-Moore homology of the quotient stacks, we can use construction 1.6.15
and the formalism of the six-functors to just repeat the proof in loc. cit. in our
context.



Chapter 2

Some Computations on
SL[η−1]-Theories of Classifying
Spaces

Assumption 2.0.1. Let k be a field with char(k) 6= 2. We work over a base-scheme
S that is a k-scheme of finite Krull dimension.

2.1 Quick Recap on the Background

Recall that we are distinguishing between the classifying stacks BG and the ind-
scheme approximating them BG. But in light of corollary 1.4.32, we will not distin-
guish between E(BG,−) and E(BG, v).
Let N be the normaliser of the standard diagonal torus T ⊆ SL2. Note that

T ' Gm, where for R a ring, we map t ∈ Gm(R) = R× to the diagonal matrix:(
t 0
0 t−1

)
We often simply write this matrix as t, when there is no cause of confusion. Notice
that N is generated by T plus the element:

σ :=

(
0 1
−1 0

)
As showed by the computation in [Lev19, §2], we have:

SL2/N ' GL2/N ′ ' P2 \ C

59



60 2. Some Computations on SL[η−1]-Theories of Classifying Spaces

where N ′ is the normaliser of the diagonal torus in GL2 and C is the conic defined
by the equation Q := T 2

1 − 4T0T2.

Closely following [Lev19, §5], the aim of this section is to compute A(BN) for A an
SL[η−1]-oriented theory (cf. notation 2.1.7 for the convention) and get as a special
case the computation of the Witt theory of BN .
For the reader convenience, let us recall how to view the left SL2 action on SL2/N

under the above identification. Consider F = A2 with the standard left SL2 action.
We get a map:

sq : P(F ) −→ P
(
Sym2(F )

)
induced by the squaring map:

sq : F −→ Sym2(F )
v 7→ v2

This map is constructed in the following standard way. The map ϕ : F → F ⊗ F
sending v 7→ v⊗v is SL2-equivariant (where the SL2-action on F ⊗F is the diagonal
one given by g · (v ⊗ w) := g · v ⊗ g · w). Post-composing ϕ with the quotient map
F ⊗ F → Sym2(F ) that sends a ⊗ b to ab, we get the SL2-equivariant map sq we
wanted.
Using sq we can identify C ⊆ P2 with sq(P(F )) ⊆ P

(
Sym2(F )

)
. Since sq is SL2-

invariant, this means that C is SL2-invariant. In particular Q is SL2-invariant up
to a scalar, so considering the multiplication morphism SL2 3 g· : C → C with
associated map on the global section denoted by (g·)∗, we get:

SL2 −→ Gm

g 7→ (g·)∗Q
Q

But we know SL2 is a simple algebraic group, so it only admits a trivial character
and hence we get that Q is actually SL2-invariant. As an ind-scheme approximation
for BN we choose as in [Lev19, §2, §5]:

BN := SL2/N ×SL2 EGL2 ' EGL2/N ' ESL2/N

We have that SL2 is special, so ESL2 −→ BSL2 is a Zariski locally trivial
bundle and so it is BN −→ BSL2 (cf. [Lev19, §2]). From the description of
SL2/N we recalled above, we can realise BN as an open subscheme of the P2-bundle
P
(
Sym2(F )

)
×SL2 ESL2 → BSL2, with closed complement P(F )×SL2 ESL2:

BN P(Sym2(F ))×SL2 ESL2 P(F )×SL2 ESL2

BSL2
(2.1)
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Remember that we have a short exact sequence:

1→ T −→ N −→ {±1} → 1

where T is our torus in SL2. The normaliser as we already said is generated by T and
the element σ, so sending T to 1 and σ to −1 give us a representation ρ− : N −→ Gm.

The description we just gave for the approximating ind-scheme BN is also useful
to give a different presentation of the quotient stack BN . Indeed, since SL2/N '
P(Sym2(F )) \ P(F ) we have:

BN = [(SL2/N) /SL2]
[
P(Sym2(F ))/SL2

]
[P(F )/SL2]

BSL2

j ι

p2
p p̄

(2.2)
Since SL2/N ' P2\C, a line bundle over BN can be described as a line bundle over

P2 \ C together with a SL2-linearisation. The line bundle OP2(1) is equipped with
a natural SL2-linearisation (induced by the natural action of SL2 on P2), hence its
restriction to P2 \C gives us a well defined element γN ∈ PicSL2(P2 \C) ' Pic(BN).

Lemma 2.1.1. Let k be a field. The Picard group Pic(BN) of BN ∈ ASt /k is
generated by the line bundle γN ∈ PicSL2(P2 \ C) ' Pic(BN) coming from OP2(1),
wioth its natural SL2-linearisation. Moreover Pic(BN) ' Z/2Z.

Proof. Since we work over a field, by [Bri15, Proposition 2.10], we can identify
Pic(BN) = PicN (k) ' X (N) = Hom(N,Gm), where X (N) denotes the character
group. Let χ ∈ X (N) and let t be the parameter of the diagonal torus T ⊆ N and

σ :=

(
0 1
−1 0

)
∈ N . Then we must have that χ(t) = tn for some integer n while

χ(σ) ∈ {±1}. But we also have:

χ

(
σ

(
t 0
0 t−1

))
= χ

((
t 0
0 t−1

)
σ

)
This implies:

χ(σ) · tn = t−n · χ(σ)

and hence n = 0. Therefore there can be only two characters for the group N : the
trivial one sending σ to the identity and the non trivial one sending σ to −1. This
proves that Pic(BN) ' Z/2Z. To see that γN is the generator, it is enough to notice
that the pullback of OP2(1) on P2 \ C, with its SL2-trivialization, cannot be trivial
since there are no non-vanishing global sections of O(1) on P2 \C. Thus γN must be
the generator. Moreover we do have a non-vanishing global section for O(2), given
by Q = T 2

1 − 4T0T2, and hence γN is indeed a 2-torsion element as expected.
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Remark 2.1.2. The representation ρ− : N → Gm sending σ to −1 corresponds
exactly to the line bundle γN generating Pic(BN).

SL- and SL[η−1]-Orientations

From now on in this chapter, we will assume our base field k to be perfect. We will
denote by S our general base scheme. We have a very special element in H−1,−1(S),
the algebraic Hopf map:

η : A2
S \ {0} −→ P1

S

sending (x, y) 7→ [x : y], giving us an element η : ΣGm1S → 1S ∈ H−1,−1(S). For
any motivic ring spectrum E, via the unit map µ : 1S → E, we get a corresponding
element ηE ∈ E−1,−1(S).

Definition 2.1.3. A motivic ring spectrum E ∈ SH(S) is said to be η-invertible if
multiplication by ηE, −× ηE : E0,0(S)→ E−1,−1(S), is an isomorphism.

Definition 2.1.4 ([Ana15, Def.1]). An SLn-vector bundle (E, θ) on someX ∈ Sch/S
is the data given by a vector bundle E of rank n, together with a trivialization of the
determinant, θ : det(E)

∼→ OX . We will often denote the SLn-vector bundle by just
the underlying vector bundle E. If there is no need to specify the rank of the bundle,
we will say that E is a SL-vector bundle.

After Panin-Walter, we will use the following definition:

Definition 2.1.5 (cf. [Ana19]). Let C be a full subcategory of Sch/S . Given a ring
spectrum E ∈ SH(S), an SL-orientation with respect to C for E is a rule which assigns
to each SLn-vector bundle V , over X ∈ C, an element:

th(V ) ∈ A2n,n(ThX (V ))

with the following properties:

1. For any isomorphism ϕ : V1 → V2 of SL-vector bundles over X ∈ C, we have:

ϕ∗th(V2) = th(V1)

where ϕ∗ is the pullback map induced by ϕ.

2. For any morphism f : X → Y in C, and V an SL-vector bundle over Y , we
have:

f∗th(V ) = th(f∗V )

3. For V1, V2 SL-vector bundles on some X ∈ C, we have:

th(V1 ⊕ V2) = p∗1th(V1) ∪ p∗2th(V2)

where pi : V1 ⊕ V2 → Vi are the projection maps.
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4. We have:
th(A1

S) = ΣT 1 ' [ΣT1S
ΣTuE−→ ΣTE] ∈ E2,1(P1

S)

where uE : 1S → E is the unit map of the ring spectrum.

We refer to the elements th(V ) as Thom classes. If a ring spectrum E has a nor-
malised SL-orientation with respect to C := Sm/S , we simply say that E has an
SL-orientation, and we will say that E is SL-oriented. If C := Sch/S , then a nor-
malised SL-orientation with respect to C will be called an absolute SL-orientation,
and E will be said to be absolutely SL-oriented (following the conventions in [DF21]).

Remark 2.1.6. We will consider basically just absolute SL-orientations. What will
follow is already well known to the experts and it will be very similar to the material
already presented in [BW21, §4.3]. We only need to concentrate on SL-oriented
spectra and, by [Ana16b, Theorem 4.7], we know that those are strongly SL-oriented
in the sense of [BW21], so the reader can safely refer to the latter if they prefer.

Notation 2.1.7. Given an SL-oriented spectrum A ∈ SH(S) that is also η-invertible,
we will say for short that A is SL[η−1]-oriented. We will use the letter A whenever
we want to stress the fact that we are working with SL[η−1]-oriented spectra.

Remark 2.1.8. Following the conventions of [Ana15, Def.19], any η-invertible spec-
trum A will be regarded just as a graded theory through the isomorphisms A• :=
Aa−b,0 ' Aa,b induced by η.

Definition 2.1.9. Let C be a full subcategory of Sch/S and let E ∈ SH(S) be a
motivic ring spectrum. A system of SL-Thom isomorphism for E (over C) is the data
given by a collection of isomorphism τV : E•,•(X)

∼→ E•+2n,•+n(ThX (V )), for X ∈ C
and V SLn-vector bundle on X, such that:

1. Given a map f : X → Y in C and V an SLn-vector bundle on X, we have the
following commutative diagram:

E•,•(Y ) E•+2n,•+n (ThY (f∗V ))

E•,•(X) E•+2n,•+n (ThX (V ))

∼

∼

τf∗V

τV

where the vertical arrows are induced by the pullback on cohomology.

2. Given an isomorphism ϕ : V
∼→ W of SLn-vector bundles on X ∈ C, we get a

commutative diagram:

E•,•(X)
E•+2n,•+n (ThX (V ))

E•+2n,•+n (ThX (W ))

ϕ∗

τV

τW

∼
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3. Given V1, V2 SL-vector bundles of rank j, k over X ∈ C, the Thom isomorphism
are multiplicative, that is, we have the following commutative diagram:

E•,•(X)× E•,•(X) E•+2j,•+j (ThX (V1))× E•+2k,•+k (ThX (V2))

E•,•(X) E•+2(j+k),•+j+k (ThX (V1 ⊕ V2))

∼

∼

τV1
× τV2

τV1⊕V2

where the vertical arrows are induced by multiplication map of E, together with
the identification ThX (V1)⊗ ThX (V2) ' ThX (V1 ⊕ V2).

4. If V is an SLn-vector bundle on X ∈ C isomorphic to the trivial SLn-vector
bundle AnX , then we have that τV ' Σ2n,n.

Remark 2.1.10. If we had a collection of maps:{
τV : E•,•(X)→ E•+2n,•+n(ThX (V ))

}
X∈C

satisfying (1),(2), and (4) in the previous proposition, then we automatically get that
τV are isomorphism by a Mayer-Vietoris argument (cf. [Ana21, Lemma 3.7]).

Remark 2.1.11. Notice that working with a special group like SL, giving Thom
classes th(V ), for SL-vector bundles V over X ∈ C, amounts to the same data as
giving a system of Thom isomorphisms:

E•,•(X)
∼→ E•+2n,•+n(ThX (V ))

From a system of Thom isomorphism, we can get a family of Thom classes just
taking th(V ) := τV (1). Vice versa, giving a family of Thom classes {th(V )}, we
can define τV (−) := th(V ) ∪ p∗− with p : V → X the projection map and − ∪ − :
E•,•(ThX (X))× E•,•(V )→ E•,•(ThX (V )) the cup usual product map.
So an SL-orientation will correspond to giving (a system of) Thom isomorphism for
all X ∈ Sm/S , while an absolute SL-orientation will correspond to giving Thom
isomorphisms for all X ∈ Sch/S .

By [BH21b, Example 16.30] (applied to G = (SLn)n), for any scheme X ∈ Sch/S
and any V vector SL-bundle of rank n, we have an isomorphism τV : ΣV MSLX

∼→
Σ2n,nMSLX , where MSLX := f∗MSLS is the pullback of the special linear algebraic
cobordism spectrum of [PW22] along the structure map f : X → S. If we denote
uMSLX : 1X → MSLX the unit map of MSLX , then we have:

ΣV uMSLX : ΣV
1X −→ ΣV MSLX

τV' Σ2n,nMSLX
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Notice that ΣV uMSLX lives in MSL2n,n
X (ThX (V )) ' MSL2n,n

S (X,−[V ]) and it is not
hard to check that these elements satisfy all the properties in definition 2.1.5.

Definition 2.1.12. For any X,V as above, we will denote the elements thMSL(V ) :=
ΣV uMSLX ∈ MSL2n,n

X (ThX (V )) ' MSL2n,n
S (X,−[V ]) and we will call thMSL(V ) the

canonical MSL-Thom class of V .

Canonical MSL-Thom classes give us an absolute orientation for MSLS that re-
stricts on smooth schemes to the usual SL-orientation of MSLS . For any SL-oriented
ring spectrum E ∈ SH(S), by [Ana16b, Theorem 4.7, Lemma 4.9], there exists a ring
spectrum map ϕ : MSLS → E such that ϕ(thMSL(V )) = thE(V ) for each smooth
X ∈ Sm/S and any vector SL-bundle V on X.

Remark 2.1.13. Once we have Thom classes and Thom isomorphism in cohomology
for some E ∈ SH, we will get Thom isomorphisms also in Borel-Moore homology
using the cohomology product action on Borel-Moore homology (cf. [Lev22a, §3.3]).
In particular if E is SL-oriented with respect to C, for any V vector SL-bundle over
X ∈ C ⊆ Sch/S , of rank r, we will have:

EBM
a+2r,b+r (X/S )

∼−→ EBM
a,b (X/S , [V ])

Definition 2.1.14. Given E ∈ SH(S) an SL-oriented ring spectrum and a map
ϕ : MSL→ E of ring spectra, we call ϕ an SL-orientation map.

Since ϕ is a map of ring spectra, if we define for any X ∈ Sch/S and any vector
SL-bundle V on X:

thϕE(V ) := ϕ(thMSL(V )) ∈ E2n,n(ThX (V ))

we get an absolute SL-orientation on E extending the given SL-orientation we already
had.

Definition 2.1.15. Consider E ∈ SH(S) an SL-oriented ring spectrum, and suppose
we are given an SL-orientation map ϕ : MSL → E. Then we call the ϕ-induced
absolute SL-orientation the orientation data given by Thom classes:

thϕE(V ) := ϕ(thMSL(V )) ∈ E2n,n(ThX (V ))

for any X ∈ Sch/S and any vector SL-bundle V on X. For short we will just say
ϕ-induced SL-orientation.

We do not know a priori if the ϕ : MSL → E that can be associated with an
SL-orientation is unique. While a similar unicity statement holds true for GL- and
Sp-orientations by [DF21, Remark 2.1.5], for SL-orientations is still open: there could
be an obstruction preventing the uniqueness of ϕ living in lim1 E2n−1,n(MSLfinn ) by
[PW22, Theorem 5.8], where MSLfinn are the Thom spaces associated to the tangent
bundle of the special linear Grassmannian SGr(n, n2) (cf. [PW22, §5],[Ana16b, Def.
4.5]).
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Proposition 2.1.16. Let A ∈ SH(k) be an η-invertible motivic ring spectrum. Then
SL-orientations are in one to one correspondence with SL-orientation maps ϕ :
MSLk −→ A.

Proof. Let SGrk(n,m) the special linear Grassmannian, defined as the complement
of the zero section of the determinant bundle associated to the universal bundle
E(n,m) over the Grassmannian Grk(n,m) (see [Ana15] for more details). Let us
denote Th(n,m) := ThSGr(n,m)

(
T (n,m)

)
the Thom space associated to the tauto-

logical bundle T (n,m) of the special linear Grassmannian SGr(n,m). Since A is
η-invertible, we can adopt the single graded convention A•. By [PW22, Theorem
5.8], we know that ϕ : MSLk → A as in our claim exists and the obstruction to the
uniqueness of ϕ lies in lim1 An−1(MSLfinn ), where MSLfinn = Th(n, n2) are the finite
approximation spaces for MSLk. By a cofinality argument, we have that the same
proof as in loc. cit. works also if we use, as finite level approximation for MSLk ,the
spaces MSLfin2n . So it turns out that ϕ is unique if:

lim1 A2n−1(MSLfin2n ) = 0

Notice that it is enough to show the surjectivity of the maps:

. . .→ Ap(MSLfin2(n+1))
i∗n−→ Ap(MSL2n)→ . . .

induced by the maps of the direct system:

. . .→ T (2n, 4n2)
in−→ T (2(n+ 1), 4(n+ 1)2)→ . . .

But since A is SL-oriented, for every k, we have isomorphisms:

A•−2n(SGr(2n, k))
∪th(2n,k)−→ A•(ThSGr(2n,k)

(
T (2n, k)

)
)

where th(2n, k) denotes the Thom class of T (2n, k). Using the last Thom isomor-
phism together with the computations in [Ana15, Theorem 9], we get that i∗n are
surjective and hence lim1 A2n−1(MSLfin2n ) = 0, giving us the uniqueness of ϕ.

Given an SL-oriented ring spectrum E, with an SL-orientation map ϕ : MSL→ E,
the ϕ-induced SL-orientation is uniquely determined. On the other hand, given
an absolute SL-orientation, its restriction to smooth schemes X ∈ Sm/S uniquely
determines an associated SL-orientation, thus we get the following:

Corollary 2.1.17. Let A ∈ SH(k) be an η-invertible motivic ring spectrum. Then
we have a one to one correspondence between the following data:

1. SL-orientations on A;

2. maps of ring spectra ϕ : MSL −→ A such that ϕ(thMSL(V )) = thA(V ) for any
V vector SL-bundle over X ∈ Sm/k;
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3. absolute SL-orientations.

Remark 2.1.18. We will only deal with SL[η−1]-oriented theories over smooth k-
schemes or just over some field k. So from now on, with a slight abuse of notation,
we will just say SL-orientation instead of absolute SL-orientation. According to the
corollary above, this will make no harm in the case we are working over a field. Using
a Leray spectral sequence argument we can also extend proposition 2.1.16 to smooth
k-scheme S (cf. proposition 3.2.1), but for most of our applications we will just
work over a field, hence we will not need this result in such generality. Thanks to
[DF21, Remark 2.1.5], we also need no distinction between Sp-oriented and absolutely
Sp-oriented theories.

Recall from [PW18] that there exists a spectrum BOS ∈ SH(S), whenever
1

2
∈ O×S ,

that represents Hermitian K-theory1.

Definition 2.1.19. Let KWS := BOS,η be the Witt theory (absolute) spectrum
defined by inverting the element η ∈ BO−1,−1

S (S) as done in detail in [Ana16b, §6
and Theorem 6.5].

Remark 2.1.20. The spectrum BOS is Sp-oriented (cf. [PW18]) and hence SL-
oriented. This induces an SL-orientation on KW, and indeed KW will be our main
example and focus point as an SL[η−1]-oriented theory.

Thom Isomorphism and Euler Classes

For any SL-oriented theory, we can then talk about Euler classes e(E, θ) for SL-
bundles E.

Notation 2.1.21. As already mentioned in the introduction, we will adopt the con-
vention of [Lev19] for twisted cohomology theories. That means that given E an
SL-oriented theory and L → X a line bundle over some X ∈ Sch/S , we denote the
L-twisted E- cohomology by:

Ea,b (X;L) := Ea+2,b+1 (ThX (L))

Similarly, given a vector bundle V → X, we will denote the L-twisted E-cohomology
on ThX (V ) as:

Ea,b (ThX (V ) ;L) := Ea+2,b+1 (ThX (V )⊗ ThX (L)) ' Ea+2,b+1 (ThX (V ⊕ L))

Remark 2.1.22. Notice that if L ' A1
X is the trivial line bundle, then Ea,b(X;L) :=

Ea+2,b+1(P1
X) ' Ea,b(X).

1There are recent works towards possible extension to more general schemes where 2 is not
invertible in the ring of regular functions. It is worth mentioning for example [Kum20].
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Given any vector bundle V of rank r on X ∈ Sch/S , if L := det(V ), we can
construct the associated SL-vector bundle given by V ⊕ L−1 with its canonical triv-
ialization of the determinant ωcan : V ⊕ L−1 → OX .

Definition 2.1.23. Let C be a full subcategory of Sch/S and let E ∈ SH(S) be a
ring spectrum with an SL-orientation with respect to C. Let p : V → X be a rank r
vector bundle on X ∈ C with determinant L := det(V ).

1. We define the Thom class in L−1-twisted cohomology by:

th(V ) := thV⊕L−1 ∈ E2r,r(ThX (V ) ;L−1) := E2r+2,r+1(ThX
(
V ⊕ L−1

)
)

2. Let s0,L : X ⊕L−1 s0⊕Id−→ V ⊕L−1 be the map induced by the zero section s0 of
V , then we define the (twisted) Euler class as:

e(E) := s∗0,Lthϕ(V ) ∈ E2n+2,n+1(ThX
(
L−1

)
) = E2n,n(X;L−1)

Proposition 2.1.24 (Twisted Thom Isomorphism). Let p : V → X be a rank r
vector bundle over a scheme X, and let E ∈ SH(S) be a SL-oriented ring spectrum
together with an SL-orientation map ϕ. Then we have an isomorphism:

ϑϕV := p∗(−) ∪ thϕ(V ) : E∗,∗(X; det(V )) −→ E∗+2r,∗+r(Th(V ))

Proof. Denote by L := det(V ) the determinant bundle of V and let V, L be the locally
free sheaves associated to V and L. Using the absolute SL-orientation induced by ϕ,
the construction in [LR20, §3.10] works verbatim in our case. Let us briefly sketch
how one should proceed (more details can be found in loc. cit). The Thom class
thϕ
V⊕L−1 gives us a Thom isomorphism:

q∗(−) ∪ thϕ
V⊕L−1 : E•,•(X) −→ E•+2(r+1),•+r+1(ThX (V ) ;L−1)

This means that we have an equivalence of spectra:

Σ[Or+1]−[V]−[L]E ' E

Similarly we have Σ[O2]−[L]−[L−1]E ' E, and hence:

Σ[Or]−[V]E ' Σ[O]−[L]E (2.3)

The equivalence of eq. (2.3) (together with homotopy invariance for p : V → X) gives
us our isomorphism ϑϕV .

Remark 2.1.25. If E ∈ SH(k) is an SL[η−1]-oriented motivic spectrum, we will drop
the ϕ from the notation in virtue of corollary 2.1.17. Notice also that the Euler classes
defined by the SL-orientations will coincide, under the relevant Thom isomorphism,
with the Euler classes defined in Chapter 1 using the formalism of [DJK21].
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References with more details for Euler classes in SL-oriented theories can be found
in [Ana19, §3] and [LR20, §3] (even if they work with SL-orientations, everything
can be adapted to our ϕ-induced, absolute SL-oriented case). A treatment of Euler
classes closer to the one given here can also be found in [BW21, §5].

Remark 2.1.26. Consider an SL-oriented spectrum E ∈ SH(S), with an SL-orientation
map ϕ, and V a vector bundle over X ∈ Sch/S with determinant L := det(V ) (and
associated locally free sheaves denoted by V and L). Similarly to remark 2.1.13, using
L-twisted Borel-Moore homology:

EBM
a,b (X/S ;L) := EBM

a−2,b−1 (X/S ,−[L])

we get L−1-twisted Thom isomorphism:

EBM
a−2r,b−r

(
X/S ;L−1

) ∼−→ EBM
a,b (X/S , [V ])

using the ϕ-induced Thom classes thϕ(V ) ∈ E2r,r(X;L−1). To remember how twisted
Thom isomorphism works (both for cohomology and Borel-Moore homology), it is
enough to remember that:

Σ[V]⊕[L−1]E ' Σ2r+2,r+1E

or equivalently:
Σ−2(r+1),−(r+1)Σ[V]E ' Σ2,1Σ−[L−1]E

Construction 2.1.27. We will now construct a symbol element associated to a
section of a line bundle, using the construction of a symbol associated to an invertible
function on a scheme X as done in [Ana19, Definition 6.1]. For simplicity we will
restrict to the case of a scheme, but the same procedure will work for any NL-
stack without changing a word. Recall from loc. cit. that given u ∈ Γ(X,O×X), for
X ∈ Sm/S and E ∈ SH(X), we have a well defined element 〈u〉 ∈ E0,0(X) induced
by the multiplication by u on T = A1

X /Gm,X . This element 〈u〉 is called the symbol
associated to u. Consider now a line bundle p : L → X, and consider λ : X → L a
section. Denote by Z(λ) the vanishing locus of λ:

Z(λ) X

X L

p

ιλ

s0

λ

Let jλ : U(λ) ↪→ X be the open complement in X of Z(λ). Then λ induces a non
vanishing section j∗λ : U → j∗λL

× of j∗λL. But this means we can trivialise j∗λL, i.e.
we have:

τj∗λ : A1
U(λ)

∼−→ j∗λL
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with associated inverse: (
τj∗λ

)−1
: j∗λL

∼−→ A1
U(λ)

Taking the associated Thom spaces, we get:

Th(τ−1
j∗λ

) : ThU(λ) (j∗λL) ' Σj∗λL1U(λ) −→ ThU(λ)

(
A1
)
' ΣO1U(λ)

Twisting by Σ−O , we have:

Σ−OTh(τ−1
j∗λ

) : Σ−OΣj∗λL1U(λ) −→ 1U(λ)

Definition 2.1.28. With the same notation above, let E ∈ SH(S) be a ring spectrum
with unit u : 1→ E, then we define the E-symbol associated to λ : X → L to be:

〈λ〉E := u ◦ Σ−OTh(τ−1
j∗λ

) : Σ−OThU(λ) (j∗λL)→ E ∈ E0,0(U(λ); j∗λL)

Example 2.1.29. Consider the section of OP2(2) given by Q = T 2
1 − 4T0T2, then

U(Q) = P2 \ C with C the zero-locus of Q. Then for any E ∈ SH(S) we have:

〈Q〉 ∈ E0,0(P2 \ C;O(2))

Suppose that E is either an element of SH(S)[η−1] or it is SL-oriented. Then for any
scheme X and any line bundle L over X, by [Hau23, Proposition 3.3.1] or [Ana19,
Theorem 4.3] respectively, there exists an isomorphism:

ϕ : E(X;L⊗2)
∼−→ E(X)

Hence we get a well defined element:

q0 := ϕ(〈Q〉) ∈ E0,0(P2 \ C)

Example 2.1.30. Consider p : L→ X a line bundle over X. Let:

tcan : L→ p∗L

be the tautological section. Then U(tcan) = L× = L \ 0 and for any E ∈ SH(S) we
get:

〈tcan〉 ∈ E0,0(L×;L)

Consider X = BGLn and L = O(1). Then L× ' BSLn and we get:

〈tcan〉 ∈ E0,0(BSLn;O(1))

Sometimes we will refer to 〈tcan〉 as the tautological symbol associated to L.
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2.1.1 SL-Orientations for NL-Stacks

We will now present an easy way to get Thom classes and Euler classes on NL-
stacks. The methods used here can be adapted to most of the common G-orientations
used in the literature, but since we will need to specialise to SL-oriented spectra any-
way, we will only talk about those.

Consider Un → BSLn the universal bundle over BSLn (the one corresponding,
under Yoneda, to the identity map of BSLn.

Proposition 2.1.31. Let E ∈ SH(S) be an SL-oriented ring spectrum. Then we
have a natural equivalence of mapping spectra:

τ : E(BSLn) −→ Σ2n,nE(ThBSLn (Un ))

Proof. First of all we need to construct the map τ and then we will prove it is indeed
an isomorphism. Let SGrS(j, k) be the special linear Grassmannian, with tautological
bundle T (j, k). For each double index (j, k), we have natural maps σj,k;SGrS(j, k)→
BSLn classifying the tautological bundles, that is, we have cartesian squares:

T (j, k) Un

SGrS(j, k) BSLn

p

σj,k

By proposition 1.4.30, we have a natural equivalence:

β∞ : colim
m

πSGrS(n,m)#ThSGrS(n,m)

(
T (n,m)

) ∼→ πBSLn#ThBSLn (Un )

But the left hand side is by definition MSLn := colim
m

πSGrS(n,m)#ThSGrS(n,m)

(
T (n,m)

)
as defined in [PW22, §4]. By construction of MSL as a spectrum (cf. [PW22, §4]),
we have a natural maps:

un : Σ−2n,−nMSLn → MSL

By [PW22, Theorem 5.9] we have a map of motivic spectra ϕ : MSL→ E. Consider
the following composition of maps:

thUn
:= Σ2n,n(ϕ ◦ un) ◦ β−1

∞ : πBSLn#ThBSLn (Un ) −→ Σ2n,nE

This means that we have an element thUn
∈ E2n,n(ThBSLn (Un)). Let pn : Un →

BSLn be the projection map and let us finally define the map we are looking for:

τ : E•,•(BSLn) −→ E•+2n,•+n(ThBSLn (Un))
x 7→ thUn

∪ p∗x
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Rewriting E(BSLn) and Σ2n,nE(ThBSLn (Un )) in terms of mapping spectra, we
want to show that the map:

τ : Map
SH(BSLn)

(1BSLn , π
∗
BSLnE) −→ Map

SH(BSLn)
(ThBSLn (Un) ,Σ2n,nπ∗BSLnE)

is indeed an equivalence. Since SLn is special, we can take a : S → BSLn as our NL-
atlas. By [Cho21a, Lemma 5.1.1], the map a∗ : SH(BSLn)→ SH(S) is conservative,
hence τ is an equivalence if and only if a∗τ is an equivalence. Notice that a∗Un ' AnS
and denote by qn := a∗pn : AnS → S the projection map. Then we have:

a∗τ(−) = a∗thUn
∪ q∗n− = thAnS ∪ q

∗
n−

But this means that a∗τ is the Thom isomorphism map associated to AnS , so it is
indeed an equivalence as we wanted to show.

Definition 2.1.32. We define the canonical Thom class of Un → BSLn as the
element:

th(Un ) := τ(1BSLn) ∈ E2n,n(ThBSLn (Un))

where 1BSLn ∈ E0,0(BSLn) is the identity element in the E-cohomology of BSLn.

Now, let X ∈ AStNL/S be a NL-stack. Let v : V → X be a vector bundle of rank
n with trivialised determinant. The vector bundle V is classified by a map fV such
that:

V Un

X BSLn

p

fV

Definition 2.1.33. We define the Thom class of the special linear vector bundle
V → X with values in a SL-oriented ring spectrum E ∈ SH(S) as:

th(V ) := f∗V th(Un ) ∈ E2n,n (ThX (V ))

where fV : X → BSLn is the map classifying the special linear bundle V .

As we did for schemes, once we have Thom classes for vector bundles with trivialised
determinants, we can define Thom classes for general vector bundles living in twisted
cohomology. Indeed if V → X is a vector bundle of rank n with determinant L :=
det(V ), then V ⊕ L−1 is a vector bundle of rank n+ 1 with trivial determinant. We
can define:

Definition 2.1.34. The Thom class for V in L−1-twisted E-cohomology is the ele-
ment:

thV := thV⊕L−1 ∈ E2n,n(ThX (V ) ;L−1) := E2n+2,n+1
(
ThX

(
V ⊕ L−1

))
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Definition 2.1.35. In the same notation as above, we defined the E-valued Euler
class of a vector bundle V → X of rank n as:

e(V ) := s∗thV ∈ E2n,n(X;L−1) := E2n+2,n+1(ThX
(
L−1

)
)

where s∗ is the pullback map induced by the zero section s0 : X → V .

Remark 2.1.36. Using remark 1.4.9, we can translate everything we did in this
section to the equivariant setting.

2.2 The Additive Structure of SL[η−1]-Oriented Theories

Notation 2.2.1. To make the notation more compact, we will write:

−̃ := [−/G ]

to denote the quotient stack of G-equivariant objects, whenever the group G is clear
from the context.

Lemma 2.2.2 ([Lev19, Lemma 5.1]). Let F be the tautological rank two representa-
tion of SL2 and let A ∈ SH(S) be an η-invertible spectrum. Then the structure map
πP̃(F )

: P̃(F )→ S induces an isomorphism:

π∗
P̃(F )

: A•(S)
∼−→ A•SL2

(P(F ))

Proof. We will denote by π− : − → S the structure maps of our schemes and stacks.
Give to F = A2 the standard left SL2-action, and equip A2 \ {0} with the induced
(left) action. Equip SL2 with the left SL2-action coming from matrix multiplication,
then we have a SL2-equivariant map:

r : SL2 −→ A2 \ {0}(
a b
c d

)
7→ (a, b)

that realises SL2 as a (SL2-equivariant) A1-bundle over A2 \ {0}, with zero section
map s0 : A2 \ {0} → SL2. This means that once we pass to the quotient stacks we
get an A1-bundle map:

r̃ :
[
SL2

/
SL2

]
' S −→

[
A2 \ {0}/SL2

]
=: ˜A2 \ {0}

with zero section s̃0 : ˜A2 \ {0} → S. By homotopy invariance, we get an equivalence
of mapping spectra:

s̃0
∗ : A(S) = Map

SH(S)
(1S ,A)

∼−→ A
(

˜A2 \ {0}
)

= Map
SH(S)

(
1S , πÃ2\{0}∗

π∗
Ã2\{0}

A

)
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On the other hand, the algebraic Hopf map:

η : A2 \ {0} → P(F )

induces a map on the quotients stacks:

η̃ : ˜A2 \ {0} → P̃(F ) :=
[
P(F )

/
SL2

]
Hence we get a well defined map:

η̃∗ : A
(
P̃(F )

)
−→ A

(
˜A2 \ {0}

)
By remark 1.4.34, for any NL-stack X ∈ AStNL/S and any NL-atlas X → X , we can
compute the cohomology of X using its Čech nerve Xn

X := Čn (X/X ):

A(X ) = MapSH(S)(1S , πX ∗π
∗
XA) '

' MapSH(S)(1S , lim
n∈∆

πXn
X ∗π

∗
Xn
X

A) '

' lim
n∈∆

MapSH(S)(1S , πXn
X ∗π

∗
Xn
X

A) '

' lim
n∈∆

A(Xn
X )

For P̃(F ) = [P(F )/SL2] a NL-atlas is given by P(F )→ P̃(F ) with Čech nerve given
levelwise by Čn

(
P(F )/P̃(F )

)
= P(F )× SLnn, hence:

A
(
P̃(F )

)
' lim

n∈∆
A (P(F )× SLn2 )

Similarly, for ˜A2 \ {0} we get:

A
(

˜A2 \ {0}
)
' lim

n∈∆
A
(
(A2 \ {0})× SLn2

)
Therefore the map η̃∗ restricted levelwise on the Čech nerves gives us a map:

η̃∗n : A (P(F )× SLn2 ) −→ A
(
(A2 \ {0})× SLn2

)
that is just the pullback map along ηn = η × Id : (A2 \ {0}) × SLn2 → P(F ) × SLn2 .
But since η is invertible in A, all the maps η̃∗n are invertible and hence:

η̃∗ : A
(
P̃(F )

)
−→ A

(
˜A2 \ {0}

)
is an equivalence.

Now consider the following commutative diagram of quotient stacks:
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˜A2 \ {0}

S

P̃(F )

s̃0

η̃

πP̃(F )

This means that we have:
(s̃0)∗ ' η̃∗π∗

P̃(F )

And hence, since both (s̃0)∗ and η̃∗ are equivalences, the pullback map:

(πP̃(F )
)∗ ' (η̃∗)−1(s̃0)∗ : A(S) −→ A

(
P̃(F )

)
is an equivalence too.

To prove the full statement of the additive presentation of A•(BN), for an SL[η−1]-
oriented A, we will need various intermediate steps.

Lemma 2.2.3 ([Lev23]). Given A ∈ SH(S) and η-invertible spectrum, then the pull-
back of the structure map πP2

S
: P2

S → S induces an isomorphism:

A•(S) −→ A•(P2
S)

Proof. We can cover P2
S by two opens U, V where U = P2

S \ {p} with p = [1 : 0 : 0],
and V = P2

S \ {x0 = 0} ' A2
S . Then we have a Mayer-Vietoris diagram:

U ∩ V ' A2 \ {0} U

V ' A2
S P2

S

jU

jV

We can identify U with the bundle OP1(1)→ P1
S that sends [x0 : x1 : x2] 7→ [0 : x1 :

x2], hence U is A1-equivalent to P1
S . Then up to A1-invariance, the Mayer-Vietoris

diagram becomes:

A2 \ {0} P1
S

A2
S P2

S

η

jV
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Hence P2
S is A1-equivalent to P1

S qA2\{0} A2
S . But if we invert the (unstable) Hopf

map, we can replace A2
S \ {0} with P1

S and hence P2
S becomes equivalent to the A2

S

in SH(S)[η−1]. Consider the following commutative diagram:

A2 P2
S

S

jV

πA2

πP2

Then we have that π∗A2 ' j∗V π∗P2
S
, but π∗A2 is an equivalence by homotopy invariance

and j∗V becomes an equivalence once we invert η, therefore π∗P2
S
is an equivalence too

in SH(S)[η−1]. This means that we have an isomorphism:

π∗P2
S

: A•(S)
∼−→ A•(P2

S)

as claimed.

Lemma 2.2.4 ([Lev23]). Let A ∈ SH(S) be an SL[η−1]-oriented spectrum. Let
T → P2

S be the tangent bundle of P2
S and let e(T ) ∈ A2(P2

S ;OP2(3)) ' A2(P2
S ;OP2(1))

be its Euler class. The cup product with e(T ) induces an isomorphism:

An−2(S) ' An(P2
S ;OP2(1)) ' An(P2

S ;OP2(3))

Proof. Consider the localization sequence associated to a point {p} ↪→ P2:

A•−2(p)
ι∗−→ A•(P2

S ;O(1))
j∗−→ A•(P2

S \ {p} ;O(1))

where we identified the twist by O(3) with the one by O(1) since A is SL-oriented.
As in lemma 2.2.3,homotopy invariance gives us an isomorphism:

A•(P2
S \ {p} ;O(1)) ' A•(P1

S ;O(1))

By definition we have A•(P1
S ;O(1)) = A•+1(ThP1

S
(O(1))). But by homotopy in-

variance, O(1) can be identified with P1
S and after inverting η, we can also identify

A2
S \ {0} ' O(1) \ {0} ⊆ O(1) with P1

S . Hence ThP1 (O(1)) becomes just a (pointed)
point, so A•(ThP1 (O(1))) = 0. Then from the localization sequence we get an iso-
morphism:

ι∗ : A•−2(S)
∼−→ A•(P2

S ;O(1))

The pushforward map πP2∗ : A•(P2
S ;O(1)) −→ A•(S), with πP2

S
: P2

S → S the
structure map, is an isomorphism too since πP2

S
∗ι∗ = Id.

Now we make the following claim: if T is the tangent bundle of P2
S , then πP2

S
e(T )

is a unit in A0(S). To see this, we use the Leray spectral sequences for A•(S)
and A•(P2

S ;O(1)) (cf. [ADN18, §4]) to reduce to computations along the fibers
A•(κ(x)) and A•(P2

κ(x)). By the motivic Gauß-Bonnet theorem (cf. [LR20] or
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[DJK21, p. 4.6.1]), we have that χ
(
P2
κ(x)/κ(x)

)
= πκ(x)∗(e

S(TP2
κ(x)

)), where eS(·)
denotes the Euler characteristic relative to the sphere spectrum. We know that the
Euler-characteristic of P2

κ(x) is equal to 〈2〉+〈−1〉 ∈ GW(κ(x)) by the computation in
[Hoy14, Ex.1.8], but this means that πκ(x)∗(e(TP2

κ(x)
)) is the image of 〈1〉 ∈W(κ(x))

under the unit map W(κ(x)) → A0(κ(x)). So we have that πP2
κ(x)
∗(ικ(x)∗1P2) =

πP2∗(e(TP2)) defines an isomorphism and is indeed a unit. Therefore:(
· ∪ e(TP2

κ(x)
)
)
◦ π∗P2

κ(x)
: A•−2(κ(x)) −→ A•(P2

κ(x);O(1))

defines an isomorphism too, as we wanted.

We will now go on a brief excursus computing SL[η−1]-oriented theories of PnS , just
for the sake of completeness. The following lemma (as well as the last two lemmas
before) is already known (cf. [Ana16a, Theorem 2] for a more general statement):

Lemma 2.2.5. Given A ∈ SH(S) with A an SL[η−1]-oriented spectrum. Then we
have:

A•(P2k+1) ' A•(S)⊕A•−2k−1(S)

A•(P2k+1;O(1)) ' 0

A•(P2n) ' A•(S)

A•(P2n;O(1)) ' A•−2n(S)

Proof. We will proceed by induction. Let us start considering n = 1, then take the
localization sequence associated to p ↪→ P1 with open complement given by A1:

. . .→ A•−1(S)
(ι1)∗→ A•(P1

S)
j∗1→ A•(S)

∂→ A•(S)→ . . .

Then the projection map πP1 : P1
S → S induces the pullback map π∗ that exhibits j∗1

as a split surjection, telling us that ∂ = 0 and that:

A•(P1) ' A•(S)⊕A•−1(S)

For the twisted theory of P1, we already saw in the proof of lemma 2.2.4 that:

A•(P1;O(1)) ' 0

Moreover lemma 2.2.3 and lemma 2.2.4 already took care of the case n = 2. Let us
assume we know the result for any m < 2n + 1, then we just need to show it also
holds for 2n+ 1 and 2n+ 2. Let us start with P2n+1

S , and again consider p ↪→ P2n+1.
Similarly to what we did in lemma 2.2.3, we can identify P2n+1 \ {p} with OP2n(1)
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and hence, up to A1-equivalence, with P2n. Now the localization sequence associated
to p ↪→ P2n+1 reads as:

. . .→ A•−2n−1(S)
(ι2n+1)∗→ A•(P2n+1

S )
j∗2n+1→ A•(P2n)

∂2n+1→ A•−2n(S)→ . . .

By induction hypothesis, we have A•(P2n) = A•(S), and once again the projection
map πP2n+1 : P2n+1

S → S induces a map π∗P2n+1 that makes j∗2n+1 into a split surjection,
giving us:

A•(P2n+1) ' A•(S)⊕A•−2n−1(S)

Considering again the localization sequence associated to p ↪→ P2n+1, but this time
with the twist by O(1), we get:

. . .A•−2n−1(S)
(ι(1)2n+1)∗→ A•(P2n+1

S ;O(1))
j(1)∗2n+1→ A•(P2n;O(1))

∂2n+1(1)→ A•−2n(S)→ . . .

By induction hypothesis ∂2n+1(1) must be an isomorphism and thus A•(P2n+1
S ;O(1)) '

0. The case 2n+ 2 is completely similar, and we will leave it to the reader.

Corollary 2.2.6. For any η-inverted spectrum A ∈ SH(S), we have:

A• (BGm,S) ' A•(S)

A• (BGm,S ;O(1)) ' 0

Proof. Recall from [MV99], that the model for BGm is given by P∞. We have that:

BGm ' P∞ = colim
m

Pm

For the untwisted case, we can take the colimit over the even dimensional projective
spaces (since this is a cofinal system). Then the structure map πBGm : BGm → S,
under the identification of corollary 1.4.31, induces a map:

π∗BGm : A•(S)→ A•(BGm) ' A•(BGm) ' lim
k

A•(P2k)

If we consider A•(S) as a limit spectrum over a constant pro-system, then the map
π∗BGm levelwise becomes π∗P2k : A(S) → A(P2k). By lemma 2.2.5, π∗P2k is an equiva-
lence for every k and therefore π∗BGm is an equivalence too, proving the first claim of
our corollary. For the second claim, we just write BGm as a colimit of odd dimensional
projective spaces and again by lemma 2.2.5 we get:

A•(BGm;O(1)) ' lim
k

A•(P2k+1;O(1)) = 0

The previous corollary can also be deduced from the following stronger result proved
in [Hau23, Theorem 6.1.3]:
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Theorem 2.2.7 (Haution). The map BGm → S is induces an isomorphism in
SH(S)[η−1].

Let θ : T −→ P(Sym2(F )) be the tangent bundle of P(Sym2(F )). We have an
induced map:

T := [T/SL2 ]→ ˜P(Sym2(F )) :=
[
P(Sym2(F ))/SL2

]
where T is the relative tangent bundle of ˜P(Sym2(F )) over BSL2.

Lemma 2.2.8 ([Lev19, Lemma 5.2]). Let A ∈ SH(S) be an SL[η−1]-oriented motivic
spectrum. Then:

(a) The map p̃ : ˜P(Sym2(F )) −→ BSL2 induces an isomorphism:

p̃∗ : A• (BSL2)
∼−→ A•SL2

(
P(Sym2(F ))

)
(b) A•SL2

(
P(Sym2(F ));O(1)

)
is a free A•(BSL2)-module generated by e(T ).

Proof. (a) Let us consider the cohomological motivic Leray spectral sequence as in
[ADN18, §4], applied to p : P(Sym2(F )) × Z → Z for any scheme Z ∈ Sch/S .
Then we have:

Ep,q1 =
⊕
x∈Z(p)

Ap+q
(
p−1(x);Nx

)
⇒ Ap+q

(
P(Sym2(F ))× Z

)
where p∗Nx is the normal bundle of the inclusion ιx : p−1(x) ↪→ Pm(Sym2(F )),
that is, the pullback of the normal bundle Nx of x : Spec(κ(x)) ↪→ Z. Since A
is SL-oriented, we actually have a spectral sequence of the form:

Ep,q1 =
⊕
x∈Z(p)

Aq
(
p−1(x); det(p∗Nx)

)
⇒ Ap+q

(
P(Sym2(F ))× Z

)
The bundle p : P(Sym2(F ))× Z → Z has fibers p−1(x) ' P2

κ(x) for all x ∈ Z.
By lemma 2.2.4, we have:

p∗x : Aq(x; det(Nx))
∼−→ Aq

(
P2
κ(x); det(p∗Nm,x)

)
But we also have the Gersten spectral sequence for Z:

Ep,q1 =
⊕
x∈Z(p)

Aq(κ(x); det(Nx))⇒ Ap+q(Z)

and by the functoriality of the Leray spectral sequences2 [ADN18, Proposition
4.2.10] we get that the pullback map:

p∗ : A•(Z)
∼−→ A•(P(Sym2(F ))× Z)

2For Z, the Leray spectral sequence is just the Gersten one.
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is an isomorphism, since the induced map p∗x on the E1-terms is so. This implies
that:

A(P(Sym2(F ))× Z) = MapSH(S)(1S , (πP(Sym2(F ))×Z)∗(π P(Sym2(F ))×Z)∗A) '
' MapSH(S)(1Z , π

∗
ZA) =

= A(Z)
(2.4)

The pullback map:

p̃∗ : A(BSL2) −→ A( ˜P(Sym2(F )))

by remark 1.4.34 gives us a map of limits of mapping spectra over the Čech
nerves:

p̃∗ : lim
n∈∆

A (SLn2 ) −→ lim
n∈∆

A
(
P(Sym2(F ))× SLn2

)
But by the computation (2.4) we made above, this is a levelwise equivalence
and thus we get an isomorphism:

p̃∗ : A• (BSL2)
∼−→ A•SL2

(
P(Sym2(F ))

)
where we identified A( ˜P(Sym2(F ))) with the SL2-equivariant cohomology by
remark 1.4.9.

(b) By a similar argument, for any scheme Z ∈ Sch/S , we can use again the
Leray spectral sequence converging to Ap+q

(
P(Sym2(F ))× Z;O(1)

)
and the

isomorphisms:
A•
(
P2
κ(x);O(1)

)
' A•−2(κ(x)) · e(TP2

κ(x)
)

from lemma 2.2.4. So this time the spectral sequence is telling us that e(T Z) ∈
A2
(
P(Sym2(F ))× Z

)
, where T Z is the tangent bundle of P(Sym2(F )) × Z

over Z, is a generator for A•
(
P(Sym2(F ))× Z;O(1)

)
as a free A• (Z)-module.

Therefore we get an equivalence of mapping spectra:

A(Z)
∼−→ Σ3A(ThP(Sym2(F )) (O(1))× Z) (2.5)

where Σ3A(ThP(Sym2(F )) (O(1))×Z) = Σ2A(P(Sym2(F ))×Z;O(1)) by defini-
tion.
By remark 1.4.34, using the Čech nerve of ˜P(Sym2(F )), we can rewrite:

A( ˜P(Sym2(F ))) ' lim
n∈∆

A(P(Sym2(F ))× SLn2 )

The isomorphism of (2.5) tells us that:

A( ˜P(Sym2(F ))) ' lim
n∈∆

Σ−2A(SLn2 ) · e(T SLn2
)
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But for each n, the bundles T SLn2
is the pullback of the relative tangent bundle

T of ˜P(Sym2(F ))) over BSL2, hence e(T ) gets pulled back to e(T SLn2
) along the

maps of the Čech nerve. Since we also have that A(BSL2) ' limn∈∆ A(SLn2 ),
we get:

A( ˜P(Sym2(F ))) ' Σ−2

(
lim
n∈∆

A(SLn2 )

)
· e(T ) ' Σ−2A(BSL2) · e(T )

After identifying A( ˜P(Sym2(F ))) with the equivariant cohomology by remark 1.4.9,
we get our claim.

Now we want to use the localization sequence relative to:

BN ˜P(Sym2(F )) P̃(F )

BSL2

j ι

p2p p̄
(2.6)

to compute A•(BN). But first we will need the following:

Definition 2.2.9. Let E ∈ SH(S), we say that E is even if Ea,b(k) = 0 for all fields
k and for all integers a, b such that a− b is odd.

Remark 2.2.10. If A ∈ SH(S) is η-invertible, since we follow the same convention
An(·) := An,0(·) ' An+i,i(·) as in [Ana15], then A is even if and only if An(k) = 0
for all fields k and all odd n. In particular by [BH21a, p. 8.11], MSLη is even.

Example 2.2.11. Witt theory KW and Witt cohomology HW are also examples of
even spectra.

Remark 2.2.12. Let us assume that our base scheme S = k is a field. It fol-
lows from [Ana15, Theorem 10] that, for A an SL[η−1]-oriented even spectrum,
we have An(BSLk) = 0 for any integer k and any odd integer n. Hence using
lemma 2.2.2,lemma 2.2.8, for those kind of spectra we have that:

An
SL2

(P(F )) ' 0

An
SL2

(
P(Sym2(F ))

)
' 0

An
SL2

(
P(Sym2(F ));O(1)

)
' 0

whenever n is odd (and always working over a field k).

Remark 2.2.13. In the following proposition we are considering quotient stacks over
a base field k. We should write BGk to stress this and to avoid confusion with the
classifying stack BGS over some more general base S, but since it will be clear from
the context we will just denote them as BG (and the same applies to the ind-schemes
BG).
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Proposition 2.2.14 ([Lev19, Proposition 5.3]). Let k be a field and consider BN ,
˜P(Sym2(F )), P̃(F ) ∈ AStNL/k . Let T be the tangent bundle of ˜P(Sym2(F )) over BSL2

and let γN be the generator of Pic(BN). For any SL[η−1]-oriented ring spectrum
A ∈ SH(k) and any integers n, k, we get split exact sequences:

0→ A2n
SL2

(P(Sym2(F ));O(k))
j∗−→ A2n(BN ;O(k))

∂−→ A2n(k)→ 0

yielding the following isomorphisms of graded A•(k)-modules:

A•(BN) ' A•(BSL2)⊕A•(k)

A•(BN ; γN ) ' A•−2(BSL2)e(T )⊕A•(k)

Proof. Let us begin noticing via the inclusion ι, the line bundle OP(Sym2(F ))(k) ∈
PicSL2(P(Sym2(F ))) pulls back to ι∗OP(Sym2(F ))(k) ' OP(F )(2k) over P(F ) and that
the normal bundle of P(F ) ↪→ P(Sym2(F )) is isomorphic to OP(F )(2), so that all the
twists will get trivialised over P(F ).
Using the localization sequence associated to eq. (2.6), we get:

. . .→ A2n−1
SL2

(P(F ))
ιk∗→ A2n

SL2
(P(Sym2(F ));O(k))

j∗k−→ A2n(BN ;O(k))
∂A
k−→ A2n

SL2
(P(F ))→ . . .
(2.7)

Now let us for a moment work with the universal SL[η−1]-oriented ring spectrum
(cf. [Ana16b, Theorem 4.7]), that is, MSLη; we will drop the super-script on the
boundary maps for the moment and we will use it again at the end for the general
case. By remark 2.2.10, we know MSLη is even and hence, by remark 2.2.12, our long
exact sequence above gives rise to short exact sequences involving only even terms:

0→ MSL2n
η,SL2

(P(Sym2(F ));O(k))
j∗k−→ MSL2n

η (BN ;O(k))
∂k−→ MSL2n

η,SL2
(P(F ))→ 0

We have that PicSL2(P(Sym2(F ))) = Z is generated by O(1), while j∗O(1) ' γN is
the generator of Pic(BN), so, by lemma lemma 2.2.8 we can further reduce to the
following two kinds of exact sequences:

0→ MSL2n
η (BSL2)

j∗−→ MSL2n
η (BN)

∂0−→ MSL2n
η (k)→ 0 (2.8)

0→ MSL2n−2
η (BSL2) · e(T )

j∗−→ MSL2n
η (BN ; γN )

∂1−→ MSL2n
η (k)→ 0 (2.9)

Recall we wrote BN as
[
(P2 \ C)/SL2

]
, where C was the conic given by the zero

locus of the section Q = T 2
1 − 4T0T2 of OP2(2). Applying our construction 2.1.27

to the section λQ :
[
P2/SL2

]
→ O[P2/SL2](2) induced by Q, we get a well defined

element 〈λQ〉 ∈ MSL0
η(BN). To get an A•(k)-module splitting for eq. (2.8) and

eq. (2.9), it is enough to send 1 ∈ MSL0
η(k) to some elements qMSLη

0 , q
MSLη
1 such that

their boundary will be 1 again. For eq. (2.9), we are just content to choose any qMSLη
1
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such that ∂1(q
MSLη
0 ) = 1 (this will exists by surjectivity of ∂1). For eq. (2.8), we can

make a clever choice: set qMSLη
0 := 〈λQ〉 constructed before. First let us show that

∂0(q
MSLη
0 ) is invertible. By a Mayer-Vietoris argument we can reduce to the case of

a trivial vector bundle, hence to the case where λQ is just the standard coordinate
section t of A1. But in this case ∂(〈t〉) = η by [Ana19, Lemma 6.4] applied levelwise
to the Čech nerves. Via the isomorphism MSL−1,−1

η (k) ' MSL0
η(k) given by mul-

tiplication with η−1, the boundary ∂(〈t〉) is really sent to 1 and hence ∂0(q
MSLη
0 ) is

invertible. Let us prove that this boundary is not only invertible, but it is indeed
1. Let U be some dense open of P2 where O(2) gets trivialised, let V be the open
dense subset of P(F ) corresponding to U ∩ C under the identification C ' P(F ).
Let jV : V ↪→ P(F ) → P̃(F ) be the map defined by the composition of the open
immersion V ↪→ P(F ) together with the standard quotient map given by the atlas
of P̃(F ). Since MSL•η(k) ' MSL•η(P̃(F )) via the pullback along the structure map
πP̃(F )

, we can identify j∗V with π∗V , where πV : V → Spec(k) is the structure map of

V . Since on V we can trivialise O(2), we get that j∗V (∂0(q
MSLη
0 ) − 1) = 0. But π∗V

(and hence j∗V ) is injective, so this implies that ∂0(q
MSLη
0 ) = 1 as claimed.

For a general SL[η−1]-oriented ring spectrum A, by [Ana16b, Theorem 4.7, Lemma
4.9], we have a map ϕSLη : MSLη → A of SL-oriented ring spectra. Consider again
the long exact sequence eq. (2.7) and consider elements qA

0 := ϕSLη (q
MSLη
0 ), qA

1 :=

ϕSLη (q
MSLη
1 ). Set i ∈ {0, 1}. Since ∂A

i (qA
i ) = ∂A

i (ϕSLη (q
MSLη
i )) = ϕSlη (∂

MSLη
i (q

MSLη
i ))

and since ϕSLη is a map of ring spectra, sending 1MSLη ∈ MSL0
η(k) to 1A ∈ A0(k),

we have that the boundaries of qA
i are both 1. Hence ∂A

i are split surjective maps of
A•(k)-modules as in the MSLη case and we are done.

Let us generalise the previous proposition to the case of a general smooth k-scheme
S. But before doing that we will need to prove the following lemma:

Lemma 2.2.15. Let X ∈ AStNL/B be a smooth NL-stack and let v ∈ K0(X ). Then
there exists a spectrum EX ,v ∈ SH(B) such that there is a natural equivalence of
functors:

θ : EX ,v(−) ' E(X ×B −, v) : Sm/B −→ SH(B)

Proof. Let Y ∈ Sm/B. Denote by πX : X → B and by πY : Y → B the structure
maps of X and Y . We claim that:

EX ,v := Map
SH(B)

(1B, πX ∗Σ
vπ∗XE) ∈ SH(B)

is the spectrum we are looking for, where Map denotes the internal mapping space
in SH(S). Consider the following Tor-independent cartesian square:
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X × Y Y

X S

p

p2

p1 πY

πX

Notice that since the square is Tor-independent we have p∗2ΩX ' LX×Y /X , moreover
p1 is clearly a smooth representable map. By [Cho21a, Theorem 4.1.1(1)] we have
Ex∗! : π∗XπX ! ' p1!p

∗
2 and hence we get:

πX#Σ−vπ∗XπY #1Y ' πX#Σ−vπ∗XπY !Σ
ΩY 1Y '

Ex∗!' πX#p1Σ−p
∗
1v !p

∗
2ΣΩY 1Y '

' πX#p1!Σ
−p∗1vΣp∗2ΩY p∗21Y '

' πX#p1!Σ
−p∗1vΣLX×Y /X p∗21Y '

' πX#p1#Σ−p
∗
1vp∗21Y '

' πX×Y #Σ−p
∗
1v1X×Y

(2.10)

where we used purity (for representable maps) twice, once for πY and once for p1.
But this means that:

EX ,v(Y ) = MapSH(B) (1B, πY ∗π
∗
Y EX ,v) '

' MapSH(B) (πY #1Y ,EX ,v) =

' MapSH(B)

(
πY #1Y ,Map

SH(B)
(1B, πX ∗Σ

vπ∗XE)
)
'

' MapSH(B) (πY #1Y , πX ∗Σ
vπ∗XE) '

' MapSH(B)

(
πX#Σ−vπ∗XπY #1Y ,E

)
'

(2.10)
' MapSH(B)

(
πX×Y #Σ−p

∗
1v1X×Y ,E

)
'

' E(X × Y, v)

This identification EX ,v(Y ) ' E(X ×B Y, v) is moreover functorial in the Y , where
f : Y1 → Y2 is sent to the pullback map:

f∗ : EX ,v(Y2) ' E(X ×B Y2, v) −→ EX ,v(Y1) ' E(X ×B Y1, v)

Hence we have a natural equivalence of functors:

θ : EX ,v(−) ' E(X ×B −, v) : Sm/B −→ SH(B)
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Proposition 2.2.16. Let S ∈ Sm/k. For any SL[η−1]-oriented ring spectrum A ∈
SH(S) and any integers n, k, we get split exact sequences:

0→ A2n
SL2

(P(Sym2(F ));O(k))
j∗−→ A2n(BN ;O(k))

∂−→ A2n(S)→ 0

yielding the following isomorphisms of graded A•(S)-modules:

A•(BNS) ' A•(BSL2,S)⊕A•(S)

A•(BNS ; γN ) ' A•−2(BSL2,S)e(T )⊕A•(S)

where T is the tangent bundle of ˜P(Sym2(F )) over BSL2,S and γN is the generator
of Pic(BN).

Proof. Since S is smooth, using corollary 1.5.3, from (2.6) we get a localization se-

quence for BNS ,
˜PS(Sym2(F )) := ˜P(Sym2(F ))× S and P̃S(F ) := P̃(F )× S. For any

integer k we get:

. . .→ A2n
SL2

(PS(Sym2(F ));O(k))
j∗k−→ A2n(BNS ;O(k))

∂A
k−→ A2n

SL2
(PS(F ))→ . . .

Using the SL-orientation, we can just consider k = 0, 1. Recall that BN =
[
P2 \ C/SL2

]
,

where C is the conic given by the zero locus of the section Q = T 2
1 −4T0T2 of OP2(2).

Applying our construction 2.1.27 to the section λQ :
[
P2/SL2

]
→ O[P2/SL2](2)

induced by Q, we get a well defined element q0 ∈ A0(BNS) (cf. proof proposi-
tion 2.2.14). The structure map πS : S → k induces a map g : BNS → BNk and
hence a pullback map:

g∗ : A•(BNk; γN ) −→ A•(BNS ; γN )

Consider q1,k ∈ A0(BNk; γN ) constructed in the proof of proposition 2.2.14, and set:

q1 := g∗q1,kA0(BNS ; γN )

We then have two maps:

(j∗, σ0) : A•(BSL2,S)⊕A•(S) −→ A•(BNS) (2.11)

(j∗(−)e(T ), σ1) : A•−2(BSL2,S)⊕A•(S) −→ A•(BNS ; γN ) (2.12)

where σ0 : A(S)→ A(BN) sends 1 7→ q0 and σ1 : A(S)→ A(BN ; γN ) sends 1 7→ q1.

We want now to apply the homotopy Leray (or Gersten) spectral sequence of
[ADN18] to both sides of (2.11) and (2.12), but the cautious reader might object that
we are dealing with algebraic stacks and not schemes any more. But by lemma 2.2.15,
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we can then apply the results in [ADN18] to the motivic spectra ABN and ABSL2 rep-
resenting A(BNS) and A(BSL2,S) for S ∈ Sm/k. Namely, we have that:

ABSL2(S) = A(BSL2,S)

ABN (S) = A(BNS)

ABN,γN (S) = A(BNS ; γN )

and we can apply the results in [ADN18] to these spectra. By [ADN18, Theorem
4.2.9] (with f = Id in loc. cit.), we have spectral sequences:

Ep,q1 :=
⊕
s∈S(p)

Aq
BN (κ(s))⇒ Ap+q

BN (S) = A(BNS)

′Ep,q1 :=
⊕
s∈S(p)

(
Aq
BSL2

(κ(s))⊕Aq(κ(s))
)
⇒ Ap+q(BSL2,S)⊕Ap+q(S)

The map (j∗, σ0) : A•(BSL2,S) ⊕ A•(S) −→ A•(BNS) induces a map between
spectral sequences E1 and ′E1, but the latter is an isomorphism by proposition 2.2.14
and hence (j∗, σ0) is an isomorphism too. By a similar argument, applying again
proposition 2.2.14 at the level of spectral sequences, we get that:

(j∗(−)e(T ), σ1) : A•−2(BSL2,S)⊕A•(S) −→ A•(BNS ; γN )

is an isomorphism too and we are done.

Remark 2.2.17. 1. From [Ana15, Theorem 10] (plus corollary 1.4.32 and re-
mark 1.4.33), we have that A•(BSL2) ' A•(S)JeK, where e = e(E2) is the
Euler class of the bundle associated to the tautological rank two bundle on
BSL2. Denoting by p : BN → BSL2, from the computations we just made, we
then have that A•(BN) ' A•(S)Jp∗eK⊕ qA

0 ·A•(S). Then if ξ : S → BN is the
base-point of BN , the projection of A•(BN ; ·) onto the second factor A•(S) in
our previous theorem, is just ξ∗. Hence computing:

∂1((1 + qA
0 ) · e(T )) = ∂0(qA

0 ) · ξ∗e(T ) = 1 · e(ξ∗T ) = 0

since T gets trivialised once pulled back to the base-point. Since ∂1((1 +
qA

0 ) · e(T )) = 0, (1 + qA
0 ) · e(T ) must live in the factor A−2(BSL2) · e(T )

of A2(BN ; γN ). Thus we have that (1 + qA
0 ) · e(T ) = λA

1 · e(T ) for some
λA1 ∈ A0(BSL2). This is particular true for MSLη, and hence, by universality
of MSL as SL-oriented theory, we have λA1 = ϕSLη (λ

MSLη
1 ).

2. For A = HW, our qHW0 is exactly 〈q̄〉 constructed in [Lev19, §5] (under the
identification of corollary 1.4.32).
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2.3 The Multiplicative Structure of KW•(BN)

The results in the previous subsection gave us the additive description of A•(BNS)
for an SL[η−1]-oriented ring spectrum A and S a smooth k-scheme. From now on,
up to the end of this chapter, if not otherwise specified, we will always work over a
smooth k-scheme S, so we will omit the subscript from the notation.

Let us now proceed with the computation of the multiplicative structure of KW• (BN)
and the KW• (BSL2)-module structure of KW• (BN ; γN ). Let q0 := qKW

0 , q1 := qKW
1

be the elements constructed in the proof of proposition 2.2.16. We have that q2
0 = 1

(cf. [Ana19, p. 6.2]).
Recall from remark 2.2.17 (for A = KW), we have that KW•(BN) ' KW•(S)Jp∗eK⊕

q0 ·KW•(S).

The only relations left to compute are:

q0·p∗e ∈ KW2 (BN) q0·j∗e(T ) ∈ KW2 (BN ; γN ) q0 ·q1 ∈ q1 ·KW0(S)

To do this we can consider the inclusion Gm ↪→ N and the corresponding map
BGm −→ BN , where BGm ' [(SL2/Gm) /SL2]. The description of BN as the quo-
tient

[(
P
(
Sym2(F )

)
\ P(F )

)
/SL2

]
, gives us a section j∗Q of j∗O(2) coming from

the section Q := T 2
1 − 4T0T2 of OP(Sym2 F )(2), via the restriction along j : BN ↪→

˜P(Sym2)(F ).

Given an algebraic stack X, a line bundle V(L) on X and a section s of L⊗2, we
can construct another algebraic stack X(

√
s) as the fiber product:

X(
√
s) L

X L⊗2

p
sq

σ

where sq : L −→ L⊗2 is the squaring map and σ : X −→ L⊗2 is the map induced by
the section s.
In particular, on BN we have a section j∗Q of j∗O(2) = j∗O(1)⊗2 and we can

consider the stack BN(
√
j∗Q). Similarly to what was showed in [Lev19, End of Sect.

§2 and §5], we can identify BGm ' BN(
√
Q)→ BN as a double cover.

Lemma 2.3.1. Consider S = Spec(k). Then we have (1+q0)·p∗e = 0 in KW2 (BN).

Proof. We will freely use the notation employed in the proof of proposition 2.2.16
and we will closely follow the proof in [Lev19, Lemma 5.4]. Let us recall here the
underlying geometry of our objects. We have a rank two tautological bundle E2 =
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[F /SL2] −→ BSL2 and its pullback Ê2 := p∗E2 −→ BN . The class e ∈ KW2 (BSL2)
was the Euler class of E2, under the appropriate identification (cf. corollary 1.4.32),
and so we have p∗e = e(Ê2). We have the double cover ϕ : BGm −→ BN . The
pullback ϕ∗Ê2 splits as ϕ∗Ê2 ' O(1)⊕O(−1) corresponding to the decomposition of
F into the eigenspaces relative to t and t−1 under the Gm-action. The Z/2Z ' N/Gm-
action sends t 7→ t−1 and thus swaps the two factors O(1) and O(−1). Considering
the cone (O(1)× 0)∪ (0×O(−1)) ⊆ ϕ∗Ê2, we get by descent under the Z/2Z-action
the corresponding cone C ⊆ Ê2. We have a map ν : CN := O(1) −→ C, induced by
the normalization of the atlas of C3. So we have the following commutative diagram:

CN := O(1) ϕ∗Ê2

C Ê2

BGm

BN

ιCN

ν ϕ̂

ιC

ρ

r

ϕ

Considering the localization sequences associated to:

0C = BN C C \ 0 =: C◦

0CN = BGm CN CN \ 0 =: (CN )◦ ' C◦

0Ê2
= BN Ê2 Ê2 \ 0 =: Ê◦2

s0

0ϕ∗Ê2
= BGm ϕ∗Ê2 ϕ∗Ê◦2

σ0

we get the following diagram:

KW0,0 (C◦;O(−1)) KW−1,−1 (BGm)

KW2,1
(
ϕ∗Ê◦2

)
KW−1,−1 (BGm)

KW0,0 (C◦;O(−1)) KW−1,−1 (BN)

KW2,1
(
Ê◦2

)
KW−1,−1 (BN)

∂CN

ιCN /ϕ∗E∗

ϕ̂∗
ϕ∗

Id
∂ϕ∗Ê2

∂C

ιC/Ê2

∂Ê2

Id

(2.13)

3All the geometry we have done so far is the geometry of SL2-quotient stacks, we can just work
with their standard atlas and then by descent pass to the SL2-quotients.
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where we used the fact that the normal bundle of CN inside ϕ∗Ê2 is NCN /ϕ∗Ê2
'

ρ∗OBGm(−1)
∣∣
CN

.
Let π : CN ' OBGm(1) → BGm be the line bundle map, then we can consider on
OCN (1) ' π∗O(1) the tautological section can : CN ' OBGm(1) −→ OCN (1)4. By
definition 2.1.28, we get a well defined element 〈tcan〉 ∈ KW0,0(C◦;O(1)).
By a Mayer-Vietoris argument, to compute ∂CN (〈tcan〉) we can restrict to trivialis-
ing open subsets, and we have that ∂CN (〈tcan〉) = η ∈ KW−1,−1(OBGm(1)). But
by homotopy invariance we get KW−1,−1(OBGm(1)) ' KW−1,−1(BGm). Using the
isomorphism induced by η, we can identify KW−1,−1(BGm) ' KW0(BGm): under
this isomorphism η is sent to 1, so we have ∂CN (〈tcan〉) = 1 ∈ KW0(BGm).

If we push forward through ϕ∗ the boundary of 〈tcan〉, we get ϕ∗〈1〉 = 〈2〉(1 + q0)
by lemma 2.3.3 (see below).
Using the commutativity of the diagram eq. (2.13), we see that 〈2〉(1 + q0) =

ϕ∗ (∂CN (〈tcan〉)) ' ∂Ê2
(ϕ̂∗(ιCN )∗〈tcan〉) is a boundary in KW0 (BN), so it is sent

to zero via (s0)∗, where s0 : BN → Ê2 is the zero section of the bundle. But if we
post-compose with the pullback map s∗0, we also get (s0)∗(s0)∗ϕ∗〈1〉 = 0, and spelling
out the element on the left we have 〈2〉(1 + q0) · e(Ê2) = 0 as we wanted.

We need to complete the previous proof, but before doing that we need another
technical lemma. Recall that by [Ana15, Corollary 4], for m = 2k + 1 and for any
SL[η−1]-oriented ring spectrum A ∈ SH(k), we have:

A•(BmSL2) = A•(k)[e]
/
(em−1)

where e is the Euler class of the tautological bundle.

Lemma 2.3.2. Let A ∈ SH(k) be a SL[η−1]-oriented ring spectrum. Denote by
νm : BmN → BN the natural map to the quotient stack and by p : BN → BSL2 the
structure map over BSL2. Let e be the Euler class of the tautological bundle over
BSL2. Then, for each odd integer m,the pullback map:

ν∗m : A•(BN) ' A•(k)Jp∗eK⊕ q0 ·A•(k) −→ A•(BmN)

is surjective with kernel Ker(ν∗m) = (p∗em−1) ·A•(k)Jp∗eK.

Proof. Denote for short:

Pk(F ) := P(F )×SL2 EmSL2

Pm(Sym2(F )) := P(Sym2(F ))×SL2 EmSL2

4For a line bundle p : L → X, we get a tautological section on p∗L → L from the fact that for
every y = p(l) we have (p∗L)l ' Ly 3 l, so the section in this case is just l 7→ (l, l).
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and let jm : BmN ↪→ Pm(Sym2(F )) and ιm : Pm(F ) ↪→ Pm(Sym2(F )) be the associ-
ated open and closed immersions. Let:

πm : Pm(Sym2(F )) −→ BmSL2

be the structure map over BmSL2.
We will start proving the following:

Claim 1. The map induced by proper pushforward along ιm:

(ιm)∗ : A•(Pm(F )) −→ A•+1(Pm(Sym2(F )))

is the zero-map.

Proof of the Claim. Consider Tπm the relative tangent bundle of πm : Pm(Sym2(F ))→
BmSL2. The fibers of πm are π−1

m (x) ' P2
κ(x), hence comparing the Leray spectral

sequences it is easy to see that:

π∗m : A•(BmSL2)
∼−→ A•

(
P(Sym2(F ))×SL2 EmSL2

)
is an equivalence. Indeed, the map between spectral sequences, induced by π∗m above,
is an isomorphism by lemma 2.2.3. We also have an isomorphism given by:

(− ∪ e(Tπm)) ◦ π∗m : KW•−2(BmSL2)
∼−→ A•

(
P(Sym2(F ))×SL2 EmSL2

)
This follows again from the comparison of Leray spectral sequences, using the fact
that on the fibers the map induced by (−∪ e(Tπm)) ◦ π∗m is an isomorphism (cf. end
of proof of lemma 2.2.4). In particular we get that the map:

(− ∪ e(Tπm)) : A•(Pm(Sym2(F ))) −→ A•+2(Pm(Sym2(F ));O(1))

is an isomorphism. But i∗mTπm fits in a short exact sequence:

0→ Tπm◦im → i∗mTπm → Nim → 0

whereNim is the normal bundle of the closed immersion. This implies that i∗me(Tπm) =
0, indeed Tπm◦im and Nim are line bundles and Euler classes of line bundles are triv-
ial for SL[η−1]-oriented spectra (see [Lev19, Lemma 4.3]). Then by the projection
formula, for any x ∈ KW•−1 we have:

(im)∗(x) ∪ e(Tπm) = (im)∗(x ∪ i∗me(Tπm)) = 0

But (−∪ e(Tπm)) is an isomorphism, in particular it is injective and this implies that
we must have i∗m(x) = 0 as claimed.

(Claim 1)
�
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From claim 1, it follows that for each integer k the localization sequence:

. . .
(ιm)∗→ Ak(Pm(Sym2(F )))

j∗m−→ Ak(BmN)
∂m−→ Ak(Pm(F ))

(ιm)∗→ . . . (2.14)

splits into short exact sequences:

0→ Ak(Pm(Sym2(F )))
j∗m−→ Ak(BmN)

∂m−→ Ak(Pm(F ))→ 0

Let x0 be the base point of BmSL2 and consider y0 ∈ π−1
m (x0) the k-point y0 :

Spec(k)→ Pm(Sym2(F )) given by [1 : 0] in the fiber of x0. Then the map:

π∗Pm(Sym2(F ))
: A•(k) −→ A•(Pm(Sym2(F ))) (2.15)

is injective, and splits via y∗0. Let q0 := qA
0 ∈ A0(BN) be the element we used to get

the splitting of proposition 2.2.14 and denote by q0,m its pullback to BmN . Recall
that the map pm : BmN → BmSL2 is given by the composition of jm and πm (and
similarly for p : BN → BSL2). Then by (2.14) and (2.15), we deduce that the map:

ψm := (p∗m, q0,m · π∗BmN ) : A•(BmSL2)⊕A•(k) −→ A•(BmN)

is injective. Therefore, denoting by σm : BmSL2 → BSL2 the natural map to the
quotient stack, we get a commutative diagram:

A•(BSL2)⊕A•(k) A•(BN)

A•(BmSL2)⊕A•(k) A•(BmN)

∼

(σ∗m, Id) ν∗m

ψm

(2.16)

But this implies that Ker(ν∗m) ' Ker(σ∗m). For m odd, by [Ana15, Corollary 4,
Theorem 10], we have:

Ker(σ∗m) ' (em−1) ·A•(k)JeK

and we are done.

As promised, let us now complete the proof of lemma 2.3.1 where we used the
following computation:

Lemma 2.3.3. Let S = Spec(k) and let ϕ : BGm −→ BN be the double cover we
already introduced. Then we have:

ϕ∗〈1〉 = 〈2〉(1 + q0) ∈ KW0(BN)
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Proof. As already mentioned, we have BGm ' BN(
√
Q) and we can use Grothendieck-

Serre Duality to compute ϕ∗1 for KW (cf. [LR20, §8D]). We will reduce the com-
putation on BN to a computation on the finite level approximations given by BmN .
From proposition 2.2.14, we know that:

KW0(BN) ' (KW•(k)Jp∗eK)0 ⊕KW0(k) · q0

Hence:

ϕ∗〈1〉 =

∞∑
i=0

aie
2i + b · q0

where ai ∈ KW−4i(k) and b ∈ KW0(k). Once we determine the coefficients ai’s and
b we are done. We have a natural map:

α : KW0(BN) −→ HW0(BN)

from the 0th Witt theory to the 0th Witt sheaf cohomology, induced by sheafification.
Under this map, we have:

α(ϕ∗〈1〉) = a0 + b · qHW0

But we also have:
α(ϕ∗〈1〉) = ϕHW∗ 〈1〉

where ϕHW∗ is the pushforward map on Witt sheaf cohomology. By [Lev19, Proof of
Proposition 5.3], we know that ϕHW∗ 〈1〉 = 〈2〉(1 + qHW0 ) and hence:

α(ϕ∗〈1〉) = a0 + b · qHW0 = 〈2〉(1 + qHW0 )

implying that:
a0 = b = 〈2〉 (2.17)

It remains to determine all the remaining ai’s for i > 0. By lemma 2.3.2, these
coefficients are determined via the pullback map to BmN for m going to infinity. By
construction BmGm = BmN(

√
Qm), where Qm is the section obtained via pullback

from the OP2\C(2)-section Q = T 2
1 − 4T0T2. Indeed, if t denotes the tautological

section of π∗O(1), associated to π : O(1) → BmN , then BmGm ' V(t2 − π∗Qm) ⊆
π∗O(1) is the zero locus of the section (t2− π∗Qm). The map on locally free sheaves
O(−1) → OBmGm sends a local section y of O(−1) to yt restricted to BmGm. Let
ϕm : BmGm → BmN be the map between the finite approximations, then we get that
(ϕm)∗OBmGm = OBmN ⊕ O(−1). A local section of ϕm∗OBmGm will then be of the
for x+ yt, with x, y local sections of OBmN and O(−1) respectively. Due to the fact
that ϕm is étale, we have a well defined trace map Trϕm : (ϕm)∗OBmGm → OBmN .
Then for x+ yt local section of ϕm∗OBmGm we get that:

Trϕm((x+ yt)2) = Trϕm(x2 +Qmy
2 + 2xyt) = 2x2 + 2Qmy

2
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In other words:
Trϕm(〈1〉) = 〈2〉(1 + q0,m)

with q0,m the pullback of q0.

Thanks to [LR20, §8D], we can identify (ϕm)∗〈1〉 with the quadratic form given by
Trϕm(〈1〉), that is:

(ϕm)∗〈1〉 = 〈2〉(1 + q0,m) (2.18)

Now let m be an odd integer. Notice that the difference ϕ∗〈1〉 − 〈2〉(1 + q0) is sent
to (ϕm)∗〈1〉 − 〈2〉(1 + q0,m) in KW0(BmN), thus by (2.18) we get:

ν∗m (ϕ∗〈1〉 − 〈2〉(1 + q0)) = (ϕm)∗〈1〉 − 〈2〉(1 + q0,m) = 0 (2.19)

By lemma 2.3.2 (for A = KW), this implies that:

ν∗m (ϕ∗〈1〉 − 〈2〉(1 + q0)) =

m−1∑
i>0

aie
2i = 0

and therefore ai = 0 for all 0 < i < m. For bigger and bigger m, this gives us that
ai = 0 for all i > 0. Hence, together with (2.17), we have that:

ϕ∗〈1〉 =
∑
i

aie
2i + b · q0 = 〈2〉(1 + q0)

as claimed.

Proposition 2.3.4 ([Lev19, Lemma 5.4]). Consider S = Spec(k). We have (1+q0) ·
p∗e = 0 in KW2 (BN), (1 + q0) · j∗e(T ) = 0 in KW2 (BN ; γN ) and (1 + q0) · q1 =
q1 ∈ q1 ·A0(k).

Proof. We will freely use the notation employed in the proof of proposition 2.2.16.
We already proved that (1 + q0) · p∗e = 0 in lemma 2.3.1. Let us prove the sec-
ond statement, that is, (1 + q0) · j∗e(T ) = 0. By remark 2.2.17, there exists a
unique λ := λKW

1 ∈ KW0 (BSL2) such that (1 + q0) · j∗e(T ) = λ · e(T ). But
then multiplying both sides by p∗e, since we already know (1 + q0) · p∗e = 0, we
get 0 = (1 + q̄) · p∗e · j∗e(T ) = λ · p∗e · j∗e(T ). An element in KW0(BSL2) is a
power series

∑
i aip

∗ei with ai ∈ KW−2i(S), so λ · p∗e · j∗e(T ) = 0 implies that∑
i aip

∗ei+1 = 0 ∈ KW2(BSL2), that is, ai = 0 ∀ i and hence λ = 0.

Let us now show that (1 + q0) · q1 = q1. Recall that q1 in proposition 2.2.14 was
chosen to be any element that was sent to 1 under ∂1. Let q̃1 ∈ KW0(BN ; γN ) be
another element such that ∂1(q̃1) = 1. Then q1 − q̃1 ∈ Ker(∂1), that is:

q1 − q̃1 = α · j∗e(T )
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for α ∈ KW−2(BSL2). Then we have:

(1 + q0)q1 = (1 + q0)(α · j∗e(T ) + q̃1) = (1 + q0)q̃1 (2.20)

since (1 + q0)j∗e(T ) = 0. Without loss of generality we can therefore replace q1

with any other q̃1 ∈ KW0(BN ; γN ) such that ∂1(q̃1) = 1. On P2 with coordinates
[T0 : T1 : T2], consider the quadratic form:

−(T0x
2 + T1xy + T2y

2)

and set q̃1 ∈ KW0(BN) to be the corresponding element. Let us check that the
boundary of q̃1 is indeed 1. Let πP̃(F )

: P̃(F ) → Spec(k) be the structure map of

P̃(F ), then we know that KW•(k) is isomorphic to KW•(P̃(F )) via π∗
P̃(F )

. Let U be

any dense open subset of P2 where O(2) gets trivialised, denote by V := U ∩ C the
corresponding dense open in C and denote by πV : V → Spec(k) the structure map
of V . Since there always exists a rational k-point in V , the map:

π∗V : KW•(k)→ KW•(V )

must be injective and this implies that the map π∗V (π∗
P̃(F )

)−1 is injective too. Now

take U = {T0 6= 0}, then we have q̃1

∣∣
U

= −(x∗+t1xy, t2y
”), with t1 = T1

T0
and t2 = T2

T0
.

Diagonalising q̃1

∣∣
U
, we get:

q̃1

∣∣
U

= −
[
(x+

t1
2
y)2 + (t2 −

t21
4

)y2

]
=

= −
[
(x+

t1
2
y)2 + q0

∣∣
U
y2

]
So q̃1

∣∣
U

= −1 + q0

∣∣
U

and hence ∂(q̃1

∣∣
U

) = 1 since ∂(q0) = 1 on U . But this implies
that π∗V (π∗

P̃(F )
)−1(∂1(q̃1) − 1) = ∂(q̃1

∣∣
U

) − 1 = 0, and, being π∗V (π∗
P̃(F )

)−1 injective,

we deduce that ∂1(q̃1) = 1 as we wanted to show.
Now that we know that ∂1(q̃1) = 1, by (2.20), we can replace q1 in (1 + q0)q1 with
q̃1. Since on U we have q̃1

∣∣
U

= −1 + q0

∣∣
U
, we have that (1 + q0

∣∣
U

)q̃1

∣∣
U

= 0. But this
implies:

π∗V (π∗
P̃(F )

)−1((1 + q0)q̃1) = (1 + q0

∣∣
U

)q̃1

∣∣
U

= 0

and since π∗V (π∗
P̃(F )

)−1 is an injective map, we get that (1 + q0)q̃1 = 0 and we are
done.

Putting together all the result we got so far, we get:
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Corollary 2.3.5. Let KW•(k)Jx0, x2K be the graded algebra over KW•(k), freely
generated by x0, x2 in degrees deg(xi) = i. Sending x0 to q0 := qKW

0 and x2 to p∗e
defines a KW(k)-algebra isomorphism:

ψk : KW•(k)Jx0, x2K
/(
x2

0 − 1, (1 + x0)x2

) −→ KW• (BN)

Moreover KW• (BN ; γN ) is the quotient of the free KW• (BN)-module KW•−2(BSL2)·
e(T )⊕ q1 ·KW•(k) modulo the relations (1 + q0)j∗e(T ) = 0, (1 + q0)q1 = 0.

Proof. It is just a consequence of proposition 2.2.16 and proposition 2.3.4. The rela-
tion x2

0 = 1 comes from q2
0 = 1 that holds for any quadratic form 〈u〉 where u is a

unit.

Corollary 2.3.6. Let S be a smooth k-scheme. Let KW•(S)Jx0, x2K be the graded
algebra over KW•(S), freely generated by x0, x2 in degrees deg(xi) = i. Sending x0

to q0 := qKW
0 and x2 to p∗e defines a KW(S)-algebra isomorphism:

ψS : KW•(S)Jx0, x2K
/(
x2

0 − 1, (1 + x0)x2

) −→ KW• (BN)

Moreover KW• (BN ; γN ) is the quotient of the free KW• (BN)-module KW•−2(BSL2)·
e(T )⊕ q1 ·KW•(S) modulo the relations (1 + q0)j∗e(T ) = 0, (1 + q0)q1 = 0.

Proof. We will prove the corollary reducing to the case over a field, hence we will use
subscripts to indicate over which base are we working with. By proposition 2.2.16
for A = KW (and by [Ana15, Theorem 10]), additively we have the following isomor-
phism:

KW•(BNS) ' KW•(BSL2,S)⊕KW•(S) · q0,S

Therefore we have a natural map:

ϕS : KW•(S)Jx0,S , x2,SK −→ KW• (BNS)

sending x2 to p∗eS ∈ KW(BSL2,S), i.e. the Euler class of the tautological bundle of
BSL2,S , and sending x0 to q0,S . By corollary 2.3.5, the natural map:

ϕk : KW•(k)Jx0,k, x2,kK −→ KW• (BNk)

passes to the quotient giving us the isomorphism:

ψk : KW•(k)Jx0,k, x2,kK
/(

x2
0,k − 1, (1 + x0,k)x2,k

) ∼−→ KW• (BNk)

The structure map π : S → Spec(k) induces, via the pullback π∗S , a map:

θS : KW•(S)Jx0,S , x2,SK −→ KW•(k)Jx0,k, x2,kK
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sending x0,S to x0,k and x2,S to x2,k. We also get a map:

θBN : KW•(BNS) −→ KW•(BNk)

induced again by π∗S and sending p∗eS to p∗ek and q0,S to q0,k. This implies that ϕS
passes to the quotient, giving us a map:

ψS : KW•(S)Jx0,S , x2,SK
/(

x2
0,S − 1, (1 + x0,S)x2,S

)
−→ KW• (BN)

Since ψS is an isomorphism on the underlying modules, we get that ψS is also an
isomorphism of KW•(S)-algebras.

The twisted case KW•(BNS ; γN ) is completely analogous and left to the reader.



Chapter 3

Euler Classes Computations

3.1 SL[η−1]-Theories on BGLn

In this chapter, we are going to compute the KW-Euler classes for some special rank
2 vector bundles of the ind-scheme BN . By the identifications proposition 1.4.30 and
corollary 1.4.32, this Euler classes can be used to better understand the Witt theory
of BN and give some computational insight for a possible Grothendieck-Riemann-
Roch formula for KW. We will follow the notations as in [Lev19, §6]. Before diving
into these enumerative formulas, we will see how we can reduce computations of
characteristic classes from general vector bundles to special linear ones. Then we will
need to introduce twisted symplectic bundles to handle formal ternary laws (in the
sense of [DF21]) that will be crucial for our last computation, eq. (3.11). Throughout
we will be identifying the motives and the cohomology theories of the ind-schemes BG
with those of the quotient stacks BG, using proposition 1.4.30 and corollary 1.4.32.
Recall from [Lev19, §4] that for any SL-oriented ring spectrum E we have a map:

π∗ : A• (BGLn)⊕A• (BGLn; det(En)) −→ A• (BSLn) (3.1)

Indeed we have the pullback map:

π∗0 : A• (BGLn) −→ A• (BSLn)

induced by π0 : BSLn −→ BGLn. Now consider the tautological rank n vector
bundle En → BGLn with det(En) = O(1), then its pullback π∗0En will be the
tautological special linear bundle over BSLn, so we have a canonical trivialization
θ : det (π∗0En) ' π∗0O(1)

∼→ OBSLn . Composing the pullback map on the twisted
theories with θ∗ := (τπ∗0O(1))

−1, given by the inverse Thom isomorphism (cf. 2.1.9),
we get:

A• (BGLn;O(1))
π∗0−→ A• (BSLn;π∗0O(1))

θ∗−→ A• (BSLn)

and we denote this map as π∗1 := θ∗ ◦ π∗0. Then putting together π∗0 and π∗1 we get
our desired π∗.

97
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We would like to reduce the computations of characteristic classes from general
vector bundles to special linear ones. With a minor adaptation of the arguments in
[Lev19, Proposition 4.1] we can prove the following:

Proposition 3.1.1. Let S ∈ Sm/k. Let En be the universal tautological bundle of
BGLn, and let A ∈ SH(S) be an SL[η−1]-oriented ring spectrum. Then the map
(3.1):

π∗ : A• (BGLn)⊕A• (BGLn; det(En)) −→ A• (BSLn)

is an isomorphism. In particular we have:

(n = 2m)
π∗ (A• (BGLn)) ' A•(S)Jp1, . . . , pm−1, e

2K

π∗ (A• (BGLn; det(En))) ' e ·A•(S)Jp1, . . . , pm, e
2K

where pi = pi(T (n,∞)) are the Pontryagin classes (cf. [Ana15, Theorem 10])
of to the tautological bundle T (n,∞) over BSLn and e = e(T (n,∞)) is the
Euler class of the tautological bundle.

(n = 2m+ 1) Then A• (BGLn; det(En)) ' 0 and:

π∗ (A• (BGLn)) −→ A• (BSLn)

is an isomorphism.

Proof. Let us consider the line bundle q : O(1) := det(En) −→ BGLn. We can
identify the map π0 : BSLn −→ BGLn with the Gm-principal bundle q ◦ j : O(1) \
{0} −→ BGLn where j : O(1) \ {0} ↪→ O(1). By homotopy invariance we can also
identify A(BGLn) ' A(O(1)), thus we have the localization sequences:

. . .→ Aa,b (BGLn)→Aa,b (BSLn)−−− . . .

. . .
∂a,b→ Aa−1,b−1 (BGLn; det(En))

e(det(En))∪·→ Aa+1,b (BGLn)→ . . .

(3.2)

. . .→ Aa,b (BGLn;O(−1))→ Aa,b (BSLn;π∗0O(−1))
∂̄a,b→ Aa−1,b−1 (BGLn)→ . . .

(3.3)
By [Lev19, lemma 4.3] the cup product with e(L) for any line bundle L is zero in any
η-inverted SL-oriented ring spectrum, so the long exact sequence (3.2) splits in short
exact sequences:

0→ Aa,b (BGLn)→ Aa,b (BSLn)
∂a,b→ Aa−1,b−1 (BGLn; det(En))→ 0

We want now to find a splitting for ∂ and we already have a natural candidate π∗1,
in the notation used above the proposition. Let us consider the tautological section
can : O(1) → q∗O(1). Using definition 2.1.28, the tautological section defines an
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element 〈tcan〉 ∈ A0,0(BSLn, π
∗
0O(1)) ' A0,0(BSLn, π

∗
0O(−1)). The map π∗1 we

constructed before was:

A• (BGLn;O(1))
π∗0−→ A• (BSLn;π∗0O(1))

θ∗−→ A• (BSLn)

but θ∗ is just multiplication by 〈tcan〉. To show that the short exact sequence actually
splits we need to prove that ∂ ◦ π∗1 is an isomorphism. As a first step we claim that
for any x ∈ A•(BGLn;O(1)) we have:

∂(π∗1(x)) = ∂̄(〈tcan〉) ∪ x

Indeed:

∂(π∗1(x)) = ∂(〈tcan〉 ∪ π∗0(x)) = ∂(〈tcan〉 ∪ q∗j∗(x))

and ∂ is A•(BGLn;O(1))-linear, with A•(BGLn;O(1)) acting on E•(BSLn) via
multiplication through q∗j∗ and on E•(BGLn;O(1)) just via multiplication, and this
proves the claim.
We want now to prove that multiplication by ∂̄(〈tcan〉) ∈ A−1,−1(BGLn) is an iso-
morphism:

∂̄(〈tcan〉) ∪ · : Aa,b(BGLn;O(1)) −→ Aa−1,b−1(BGLn;O(1))

Using a Mayer-Vietoris argument on the finite approximation pieces BmGLn we can
reduce ourselves to a local computation, where we already know the result by [Ana19,
Lemma 6.4]. Indeed given two open sets U, V of BmGLn, we get a Nisnevich excision
square related to {U, V, U ∪ V } and a Mayer-Vietoris exact sequence for any Nisnevich
sheaf. In particular multiplication by an element u ∈ A−1,−1(BmGLn) gives us a map
of Mayer-Vietoris sequences:



100 3. Euler Classes Computations

. . . . . .

Aa,b(U ∪ V ;O(1)) Aa−1,b−1(U ∪ V ;O(1))

Aa,b(U ;O(1))⊕Aa,b(V ;O(1)) Aa−1,b−1(U ;O(1))⊕Aa−1,b−1(V ;O(1))

Aa,b(U ∩ V ;O(1)) Aa−1,b−1(U ∩ V ;O(1))

Aa+1,b(U ∪ V ;O(1)) Aa,b−1(U ∪ V ;O(1))

. . . . . .

u ∪ ·

(u ∪ ·, u ∪ ·)

u ∪ ·

u ∪ ·

So to show that multiplication by ∂̄(〈tcan〉) is an isomorphism, it is enough to show
that ∂̄(〈tcan〉) restricts to an invertible element when passing to open sets Ui covering
BmGLn. But in local coordinates ∂̄(〈tcan〉) restricts to η by [Ana19, Lemma 6.4] and
thus we get our desired splitting for BmGLn. This implies that for any k we have:

π∗m : Ak(BmGLn)⊕Ak(BmGLn;O(1))
∼−→ Ak(BmSLn)

where π∗m is the map induced by π∗ at the finite level approximations. Since the
isomorphism holds for any k, we have an equivalence of mapping spectra:

π∗m : A(BmGLn)⊕A(BmGLn;O(1))
∼−→ A(BmSLn)

where A(BmG) = Map(Σ∞BmG,A) (and similarly for the twisted version). But
since A(BG) = Map(BG,A) = limm Map(BmG,A), from the equivalence of mapping
spectra π∗m, we get:

π∗ : A(BGLn)⊕A(BGLn;O(1))
∼−→ A(BSLn)

again at the level of mapping spectra, and this gives us our claim.
For the explicit presentation of the image of π∗ the same argument as in the proof

of [Lev19, Proposition 4.1] will give us the result, using the statement of [Ana15, The-
orem 10] generalised over any smooth k-scheme S in theorem 3.2.3 (we will actually
generalised it to smooth NL-stacks).
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Remark 3.1.2. The previous proposition was already proved independently in [Hau23,
Remark 6.3.7] using stronger results. Indeed in loc. cit. it is proved that BGL2r '
BGL2r+1 and BGL2r+1 ' BSL2r+1 in SH(S)[η−1] (this are respectively [Hau23,
Theorem 6.3.3, Theorem 6.3.6]).

The proof of proposition 3.1.1, used as a key input that BSLn can be seen as
the complement of the zero section of the determinant tautological bundle of BGLn.
And that is all we actually need: the same proof goes through verbatim if we consider
BN → BNG where NG is the normaliser of the torus inside GL2. The model for
BNG is given by (GL2/NG)×GL2 EGL2, where again GL2/NG ' SL2/N ' P2 \C.
We then have:

Proposition 3.1.3. Let S ∈ Sm/k. For any SL[η−1]-oriented ring spectrum A ∈
SH(S) we have an induced isomorphism:

π∗ : A• (BNG)⊕A• (BNG;O(1)) −→ A• (BN)

Proof. Use the same exact proof as in proposition 3.1.1, replacing BSLn with BN and
BGLn with BNG and pulling back the appropriate maps along the morphisms BN →
BSL2 and BNG → BGL2 induced by N ↪→ SL2 and NG ↪→ GL2 respectively.

Remark 3.1.4. The previous proposition was also proved in [Vie23, Proposition
2.5.10] under the assumption that the unit map of A makes the A•(−)-cohomology
into a module for the sheaf of Witt groups HW.

Remark 3.1.5. As a corollary of proposition 3.1.3, it is not hard to get an additive
description for A•(BNG), using proposition 2.2.16, and a multiplicative description
of KW•(BNG) using corollary 2.3.6. We are very grateful to Annaloes Viergever that
made us realise we could improve and apply our results to the case of BNG.

3.2 Künneth Formulas

We want now to prove some Künneth formulas for BSLn,BGLn and BN . Let
us start with an extension of [Ana15, Theorem 9]. Notice that using our model for
the approximations BmSLn we have that BmSLn ' SGr(n, n + m). Since we will
work over different base schemes we will denote the special Grassmannian over some
scheme S as SGrS(n, k).

Proposition 3.2.1. Let S ∈ Sm/k and let A ∈ SH(S) be an SL[η−1]-oriented
ring spectrum. Let T1 := T (2n, 2k + 1) be the tautological bundle of rank 2n on
SGrk(2n, 2k + 1), with Pontryagin classes pi(T1). Then there is an isomorphism of
A•(S)-algebras:

ϕ : A•(S)[p1, p2, . . . , pk, e]
/
J2n,2k+1

−→ A•(SGrS(2n, 2k + 1))
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where:

J2n,2k+1 :=
(
e2 − pn, gk−n+1(p1, . . . , pn), gk−n+2(p1, . . . , pn), . . . , gk(p1, . . . , pm)

)
is defined with the same polynomials as in [Ana15, Theorem 9] and ϕ is defined by
sending ϕ(pi) := pi(T1) and ϕ(e) := e(T1).

Proof. If S = Spec(k), then this is just [Ana15, Theorem 9]. For a general smooth
k-scheme S, we have a map:

ϕ : A•(S)[p1, . . . , e] −→ A•(SGrS(2n, 2k + 1))

sending pi to pi(T1) and e to e(T1). The structure map πS : S → Spec(k) induces a
pullback map:

π∗S : A•(SGrk(2n, 2k + 1))→ A•(SGrS(2n, 2k + 1))

The tautological bundle T1 on SGrS(2n, 2k + 1) is the pullback of the tautological
bundle T1,k on SGrk(2n, 2k+1), hence the Pontryagin and Euler classes of T1 satisfy
all the relations in J2m,2k+1 since they hold for the classes of T1,k (by [Ana15, Theorem
9]). This implies that ϕ passes to the quotient, that is, we get a map:

ϕ : A•(S)[p1, p2, . . . , pn, e]
/
J2n,2k+1 −→ A•(SGrS(2n, 2k + 1))

By [ADN18, Theorem 4.2.9], we have Leray spectral sequences both for source and
target of ϕ:

Ep,q1 =
⊕
s∈S(p)

Aq(κ(s))[p1, p2, . . . , pn, e]
/
J2n,2k+1 ⇒ Ap+q(S)[p1, p2, . . . , pn, e]

/
J2n,2k+1

′Ep,q1 =
⊕
s∈S(p)

Aq(SGrκ(s)(2n, 2k + 1))⇒ Ap+q(SGrS(2n, 2k + 1))

The map between spectral sequences by ϕ is an isomorphism by [Ana15, Theorem 9],
hence ϕ is an isomorphism too as claimed.

Theorem 3.2.2. Let S ∈ Sm/k and let X ∈ AStNL/S be a smooth NL-algebraic stack.
Let A ∈ SH(S) be an SL[η−1]-oriented ring spectrum. Then we have a map:

ϕX : A•(X )[p1, p2, . . . , pn, e]
/
J2n,2k+1

−→ A•(X ×S SGrS(2n, 2k + 1))

that is an isomorphism, where:

J2n,2k+1 :=
(
e2 − pn, gk−n+1(p1, . . . , pn), gk−n+2(p1, . . . , pn), . . . , gk(p1, . . . , pn)

)
and ϕ is defined by sending ϕ(pi) := pi(T1) and ϕ(e) := e(T1) with T1 the tautological
bundle of SGrS(2n, 2k + 1).
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Proof. Via the pullback map induced by the first projection p1 : X ×S SGrS(2n, 2k+
1), we get an A•(X )-algebra structure on A•(X ×S SGrS(2n, 2k + 1)). Since the
Pontryagin and Euler classes in A•(X ×S SGrS(2n, 2k + 1)) are the pullback of the
respective classes in A•(SGrS(2n, 2k+ 1)), then there exists a unique map of A•(X )-
algebras:

ϕX : A•(X )[p1, p2, . . . , pn, e]
/
J2n,2k+1 −→ A•(X ×S SGrS(2n, 2k + 1))

defined by sending pi to pi(T1) and e to e(T1). Let x : X → X be a NL-atlas and let
Xr
X := Čr(X/X ) be the scheme at the rth-level of the Čech nerve. By proposition 3.2.1

we have isomorphisms:

ϕXr
X

: Ap,q(Xr
X )[p1, . . . , pn, e]

/
J2n,2k+1

∼−→ Ap+q(Xr
X ×S SGrS(2n, 2k + 1))

for each r and for each bi-degree (p, q). This implies that we have an equivalence of
mapping spectra:

Map(Xr
X , AJ2n,2k+1

)
∼−→ Map(SGrXr

X
(2n, 2k + 1),A) (3.4)

where AJ2n,2k+1
is the ring spectrum representing A•(−)[p1, . . . , pn, e]/J2n,2k+1. The

equivalence (3.4), by remark 1.4.34, implies that we have:

AJ2n,2k+1
(X ) ' lim

r∈∆
AJ2n,2k+1

(Xr
X ) '

' lim
r∈∆

Map(Xr
X , AJ2n,2k+1

) '

' lim
r∈∆

Map(SGrXr
X

(2n, 2k + 1),A) '

' lim
r∈∆

A(SGrXr
X

(2n, 2k + 1)) '

' A(X ×S SGrS(2n, 2k + 1))

In other words:

ϕX : A•(X )[p1, p2, . . . , pn, e]
/
J2n,2k+1 −→ A•(X ×S SGrS(2n, 2k + 1))

is an equivalence as claimed.

Theorem 3.2.3 (Künneth for BSL). Let S ∈ Sm/k and let X ∈ AStNL/S be a
smooth NL-algebraic stack. Denote by Ur the universal tautological rank r bundle
over BSLr,S. Let A ∈ SH(S) be an SL[η−1]-oriented ring spectrum. Then there are
unique A•(X )-algebra maps:

ϕX : A•(X )Jp1, p2, . . . , pn−1, eK −→ A•(X ×S BSL2n,S)
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ϕX : A•(X )Jp1, p2, . . . , pnK −→ A•(X ×S BSL2n+1,S)

that are continuous with respect to the topology given by the restriction to the finite
level approximations X ×S SGrS(2n, 2k + 1), resp. X ×S SGrS(2n+ 1, 2k + 1), and
with ϕX (pi) = pi(U2n), resp. ϕX (pi) = pi(U2n+1) and ϕX (e) = e(U2n).
Moreover the maps ϕX are isomorphisms. In particular we get an isomorphism:

A•(
s∏
j=0

BSLkj ,S) ' A•(BSLk0,S)⊗̂A•(S) . . . ⊗̂A•(S)A
•(BSLks,S) =

⊗̂
j

A•(BSLkj ,S)

Proof. Let us start with the even case (the only case we are actually interested in for
future applications). We know that the ind-scheme BSLn,S = colim

k
SGrS(n, 2k +

1), since the system made of SGrS(n, 2k + 1) is cofinal inside the system made
by all special linear Grassmannians. Then theorem 3.2.2 tells us that the sys-
tem {A•(X ×S SGrS(n, 2k + 1))} satisfies the Mittag-Leffler condition. Hence by
corollary 1.4.32, applied to the spectrum AX as constructed in the proof of proposi-
tion 2.2.16, we have:

A•(X ×S BSLn,S) ' lim
k

A•(X × SGrS(n, 2k + 1))

By theorem 3.2.2 this gives us the isomorphism:

ϕX : A•(X )Jp1, p2, . . . , pn−1, eK −→ A•(X ×S BSL2n,S)

For the odd case, it is enough to use the identification A•(SGrS(2n + 1, 2k + 1)) '
A•(SGrS(2k − 2n, 2k + 1)) as pointed out in [Ana15, Remark 14] and hence reduce
to the same argument used in the even case.
Now for the last statement of the theorem, it is enough to show that:

A•(BSLk1,S × BSLk2,S) ' A•(BSLk1,S)⊗̂A•(S)A
•(BSLk2,S)

and then iterate. Without loss of generality, we can suppose k1 = 2n and k2 =
2m + 1. Let us denote the Pontryagin and Euler classes of BSLk1,S by pi,1, e1 and
denote by pi,2 the Pontryagin classes of BSLk2,S . Then by what we just proved, for
X = BSLk1,S , we have:

A•(BSLk1,S × BSLk2,S) ' A•(BSLk1,S)Jp1,2, . . . , pm,2K '
' (A•(S)Jp1,1, . . . , pn−1,1, e1K) Jp1,2, . . . , pm,2K '
' A•(S)Jp1,1, . . . , pn−1,1, e1K⊗̂A•(S)(A

•(S)Jp1,2, . . . , pm,2K '
' A•(BSLk1,S)⊗̂A•(S)A

•(BSLk2,S)

as we wanted. All the other cases are totally analogous and then we can iterate the
computations for the general case

∏s
j=0 BSLkj .



3.3 Twisted Borel Classes 105

Corollary 3.2.4 (Künneth for BGL). Let S ∈ Sm/k and let X ∈ AStNL/S be a
smooth NL-algebraic stack. Let Ur be the universal tautological bundle over BGLr,S.
Let A ∈ SH(S) be an SL[η−1]-oriented ring spectrum. Then there is a unique A•(X )-
algebra map:

ϕX : A•(X )Jp1, p2, . . . , pnK −→ A•(X ×S BGL2n,S) ' A•(X ×S BGL2n+1,S)

that is continuous with respect to the topology given by the finite level approximations
GrS(2n, k), resp. GrS(2n+ 1, k), and such that the elements pi are sent to the Pon-
tryagin classes pi(U2n), resp. pi(U2n+1).

Moreover ϕX is an isomorphism. In particular, we get an equivalence:

A•(
s∏
j=0

BGLkj ,S) ' A•(BGLk0,S)⊗̂A•(S) . . . ⊗̂A•(S)A
•(BGLks,S) =

⊗̂
j

A•(BGLkj ,S)

Proof. Under the identifications BGL2n,S ' BGL2n+1,S ' BSL2r+1 of [Hau23, The-
orem 6.3.3, Theorem 6.3.7] in SH(S)[η−1], the corollary follows from theorem 3.2.3
(implicitly using corollary 1.4.32).

Proposition 3.2.5. Let S ∈ Sm/k. Let A be an SL[η−1]-oriented ring spectrum.
Let X =

∏s
i=1 BGLni,S ×

∏s+r
j=s+1 BSLnj ,S. Then we have:

A•(X;L) '
s⊗̂
i=1

A• (BGLni ;Li) ⊗̂W (k)

s+r⊗̂
j=s+1

A•
(
BSLnj ;Lj

)
with L := L1� . . .�Ls+r and Li ∈ Pic(BGLni) for i = 1, . . . , s and Lj ∈ Pic(BSLnj )
for j = s+ 1, . . . , s+ r and where ⊗̂ denotes the completed tensor product.

Proof. The proposition follows by a Mayer-Vietoris argument from the untwisted
cases in theorem 3.2.3 and corollary 3.2.4.

3.3 Twisted Borel Classes

To aid in computing Euler classes of certain interesting rank 2 bundles on BN , we
introduce the notion of twisted Borel classes. We will always work over some base
scheme S ∈ Sm/k.

In analogy with the fact that any rank two SL-bundle has a canonical symplectic
structure, we would like to consider a general rank two vector bundle with non-trivial
determinant as a twisted symplectic bundle:
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Definition 3.3.1. Given a vector bundle V over a scheme X and a line bundle
L ∈ Pic(X), an L-twisted symplectic form on V is a non-degenerate alternating form
ωL : Λ2V −→ L. A vector bundle V equipped with an L-twisted symplectic form
will be an L-twisted symplectic bundle (V, ωL).

Remark 3.3.2. 1. Any rank 2 vector bundle V over any schemeX has a canonical
det(V )-twisted symplectic form ωcan : Λ2V

∼−→ det(V ) given by the identifica-
tion of its second exterior power with its determinant.

2. For trivial twists L ' OX , we recover the notion of symplectic bundles.

Definition 3.3.3. A twisted symplectic Thom structure on an SL-oriented ring coho-
mology theory E is a rule that assigns to each rank two L-twisted symplectic bundle
(E,ωL) over X, a class:

th(E,ωL) ∈ E4,2 (ThX(E);L) := E6,3
DJK (X,−[L⊕ E])

such that:

1. For an isomorphism of twisted symplectic bundles u : (E1, ωL1)
∼→ (E2, ωL2),

we have u∗th(E1, ω
L1) = th(E2, ω

L2).

2. For a map f : X −→ Y and a twisted symplectic bundle (E,ωL) over Y , we
have f∗th(E,ωL) = th(f∗E, f∗ωL).

3. For can : Λ2O2
X
∼→ OX the canonical isomorphism, the class th(O2

X , can) is the
image of 1 ∈ E0,0(X) under the suspension isomorphism:

E0,0(X) ' E4,2(Σ4,2
1X) = E4,2(ThX

(
O2
X

)
)

Notation 3.3.4. To distinguish between Thom classes coming from (twisted) sym-
plectic bundles and the ones coming from SL-vector bundle, we will denote the latter
as thSL(·).

The following is basically due to Ananyevskiy [Ana16a, Corollary 1]:

Proposition 3.3.5. Any SL-oriented ring spectrum E admits a twisted symplectic
Thom structure.

Proof. For a rank 2 vector bundle V over some X ∈ Sch/S , we get the canonical
identification ωcan : Λ2V −→ det(V ). Then we define:

th(V, can) := thSL(V ) ∈ E4,2(ThX (V ) ; det−1(V ))

where thSL(V ) is the SL-Thom class living in the twisted cohomology as defined in
definition 2.1.23.
It is not difficult to check that this class satisfies the desired relations, see for

example [LR20, §3] for a detailed account of these classes (in the caseX ∈ Sm/S).
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Definition 3.3.6. Given a scheme X, L ∈ Pic(X) and an L-twisted symplectic
bundle (V, ωL) of rank 2n + 2, we define the L-twisted quaternionic Grassmannian
as:

HGrLX(k, V ) :=

{
W ∈ Gr(k, V ) | ωL∣∣W : Λ2W → L is non-degenerate

}
We will often denote the corresponding tautological rank k bundle as ULV if not spec-
ified otherwise. When k = 2, we will call this the twisted quaternionic projective
space and we will denote it with HPLX(V ).
Let (V, ωL) be a twisted symplectic bundle of dimension 2n + 2 over a scheme X,
then if the base scheme X is clear from the context we will just write:

HPnL := HPLX(V )

Consider now any rank 2 vector bundle V over X with its zero section s0 : X → V ,
E an SL-oriented ring spectrum. By the twisted Thom isomorphism (cf. proposi-
tion 2.1.24), we get an induced map s∗ : E0,0(X) → E4,2(ThX(V ); det−1(V )) such
that s∗(1) = th(V, ωcan). Post-composing with the map forgetting supports, we also
get s̄∗ : E0,0(X) → E4,2(V ; det−1(V )). In particular the element s̄∗(1) will be the
image of the class (th(V ), ωcan) through the map forgetting supports.

Definition 3.3.7. Let E be an SL-oriented ring spectrum with a twisted symplectic
Thom structure, and let (V, ωL) be an L-twisted symplectic, rank 2, bundle over X
with zero section s : X → V . Let α∗ : E•,•(ThX (V ) ;L) → E•,•(V ;L) be the map
forgetting supports. We define the twisted Borel class of V as:

bEL(V, ωL) := −s∗α∗th(V, ωL) ∈ E4,2(X;L)

If the ring spectrum E is clear from the context we will drop it from the notation.

Remark 3.3.8. If V is an SL-bundle of rank 2 over X, then its twisted Borel class
bOX (V, ωcan) ∈ E4,2(ThX(V );OX) = E6,3(ThX(V ) ⊗ ThX(A1

X)) ' E4,2(ThX(V ))
corresponds to the classical untwisted Borel class coming from the SL-orientation of
E, so no harm is done if we just refer to Borel class of V .

Theorem 3.3.9 (Twisted Quaternionic Projective Bundle Theorem). Let E be an
SL-oriented ring spectrum with a twisted Thom structure. Let (V, ωL) be a twisted
symplectic bundle of rank 2n over a scheme X ∈ Sm/S, let (U , ωL

∣∣
U ) be the tau-

tological rank 2 bundle over HPnL and let ζ := b(U , ωL
∣∣
U ) be its Borel class. Write

π : HPnL → X for the projection map. Then for any closed subset Z ⊆ X we have the
isomorphism of E(X)-modules:

(1, ζ, ζ2, . . . , ζn−1) :

n−1⊕
j=0

EZ(X;L⊗−j) −→ Eπ−1(Z)(HPnL)
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Moreover there are unique classes bLj (E , ωL) ∈ E4j,2j(X;L⊗j) such that:

ζn − b1(E,ωL) ∪ ζn−1 + . . . b2(E,ωL) ∪ ζn−2 − . . .+ (−1)nbn(E,ωL) = 0

and if (E,ωL) is the trivial symplectic bundle then bj(E,ωL) = 0 for j = 1, . . ..

Proof. The map we are looking for is given by:

(1, ζ, ζ2, . . . , ζn−1) :
⊕n−1

j=0 EZ(X;L⊗−j) −→ Eπ−1(Z)(HPnL)

(a0, . . . , an−1) 7→
∑n−1

0 ajζ
j

Find opens that trivialise L over X and use them with a Mayer-Vietoris argument to
reduce to the untwisted case proved in [PW18, Theorem 8.2].

Definition 3.3.10. The classes bLi (E , ωL) of the theorem above are the Borel classes
associated to (V, ωL) with respect to the twisted Thom structure defined over E. For
i > n and i < 0 set bLi (E , ωL) = 0 and set bL0 (E , ωL) = 1. We define the total twisted
Borel class as:

bLt (V, ωL) := 1 + bL1 (V, ωL)t+ . . .+ bLn(V, ωL)tn

Construction 3.3.11. Let (E,ωL) be L-twisted symplectic bundle of rank 2r: we
want now to construct a twisted version of the quaternionic flag bundle. First con-
sider:

π1 : HFlagLX(1, r − 1;E) := HGrLX(2;E) −→ X

Then over HFlagLX(1, r−1;E) we have the tautological rank 2 twisted bundle U1,1 (the
one classified by the identity map of HGrLX(2;E)). The bundle U1,1 is a sub-bundle
of π∗1E, therefore we can consider:

U⊥1,1 :=
{
w ∈ E | ωL(w, u) = 0 ∀ u ∈ U1,1

}
that is the tautological sub-bundle of rank 2r − 2 over HFlagLX(1, r − 1;E). Let us
rename U⊥1,1 as:

W1 := U⊥1,1

This gives us a decomposition:

(π∗1E, π
∗
1ω

L) ' (U1,1, ω1,1) ⊥ (W1, ωW1)

where ω1,1 := π∗1ω
L
∣∣
U1,1

and ωW1 := π∗1ω
L
∣∣
W1

.

Now we iterate; to ease the notation we will drop the upper and lower scripts from
the twisted hyperbolic Grassmannians HGr. Consider the natural map:

p2 : HFlagLX(12, r − 2;E) := HGr(2;W1) −→ HFlagLX(1, r − 1;E)
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and denote by U2,2 the universal tautological rank 2 bundle over HFlagLX(12, r−2;E).
This bundle is a natural sub-bundle of p∗2W1 and again, naming W2 := U⊥2,2, we get:

(p∗2W1, p
∗
2ωW1) ' (U2,2, ω2,2) ⊥ (W2, ωW2)

where ω2,2 and ωW2 are the restrictions of p∗2ωW1 to U2,2 and W2 respectively. In
particular, if π2 : HFlagLX(12, r− 2;E)→ X is the map given by π1 ◦ p2, we have the
following decomposition:

(π∗2E, π
∗
2ω

L) ' p∗2 (U1,1, ω1,1) ⊥ (U1,2, ω1,1) ⊥ (U2,2, ω2,1)

Notice that on HFlagLX(12, r − 2;E) we have three tautological bundles, namely
U1,2 := p∗2U1,1, U2,2 and W2.
Proceeding again in the same way, we can inductively construct:

pk : HFlagLX(1k, r − k;E) := HGr(2;Wk−1) −→ HFlagLX(1k−1, r − k + 1;E)

together with a natural map:

πk : HFlagLX(1k, r − k;E) −→ X

Over HFlagLX(1k, r − k;E) we have the following (inductively defined) tautological
bundles:

(Ui,k, ωi,k) := p∗k(Ui,k−1, ωi,k−1) i = 1, . . . , k − 1

(Uk,k, ωk,k)

(Wk, ωWk
) := (U⊥k,k, ωU⊥k,k

)

where Uk,k is the tautological rank 2 bundle of HGr(2;Wk−1). By construction, we
have:

π∗k(E,ω
L) '

k

⊥
i=1

(Ui,k, ωi,k) ⊥ (Wk, ωWk
)

Definition 3.3.12. Let (E,ωL) be an L-twisted symplectic bundle of rank 2r, then
we define the complete twisted quaternionic flag bundle as:

HFlagLX(E,ωL) := HFlagLX(1r, 0;E)

and we denote its tautological rank 2 bundles as (Ui, ωLi ) := (U1,r, ωi,r) for i = 1, . . . , r.

Let q : HFlagLX(E,ωL)→ X be the projection map, then by construction we have:

q∗(E,ωL) '
r⊕
i=1

(
Ui, ωLi

)
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Definition 3.3.13. Let (E,ωL) be an L-twisted symplectic bundle of rank 2r and
let HFlagLX(E,ωL) be its associated complete flag variety. Given Ui tautological rank
2 bundle over HFlagLX(E,ωL), we define the ith twisted Borel root of (E,ωL) to be:

ui := b
(
Ui, ωLi

)
Definition 3.3.14. Let GL×r2,det be the following sub-group of GL×r2 :

GL×r2,det :=
{

(g1, . . . , gr) ∈ GL×r2 | det(g1) = . . . = det(gr)
}
⊆ GL×r2

We have an inclusion SL×r2 ⊆ GL
×r
2,det fitting into the following exact sequence:

1→ SL×r2 −→ GL×r2,det

det(−)−→ Gm → 1

Remark 3.3.15. Let Dr be the universal bundle over BGL×r2,det. The quotient stack
BGL×r2,det is the stack classifying r-tuples of rank 2 vector bundles Vi, over some
scheme X, together with isomorphisms ρi : det(Vi)

∼→ L for L ∈ Pic(X). In other
words, if V := ({Vi}i , L, {ρi}i) denotes a collection of such objects over X, then
there exists a classifying map fV fitting in the following cartesian diagram:

V Dr

X BGL×r2,det

p

fV

The map:

GL×r2,det

det(−)−→ Gm

induces a map:
d̃et : BGL×r2,det −→ BGm

Denote by UBGm the universal bundle of BGm. The universal bundle Dr is given by
an r-tuple of rank 2 bundles Vi, together with isomorphisms det(Vi) ' d̃et

∗
UBGm .

The inclusion SL×r2 ⊆ GL
×r
2,det gives rise to a natural map:

i0 : BSL×r2 −→ BGL×r2,det

Let O(1) be the tautological bundle of BGm; with a little abuse of notation we will
denote with O(1) also the pullback to BGL×r2,det of the tautological bundle of BGm

along the natural map BGL×r2,det −→ BGm. The pullback i∗0O(1) is isomorphic to



3.3 Twisted Borel Classes 111

the determinant of the rank 2 tautological bundles of BSL×r2 and therefore it gets
trivialised. Let ϑ : det(i∗0O(1))

∼→ OBSL×r2
be such trivialization. For any SL-oriented

spectrum A, via the (inverse of the) Thom isomorphism associated to ϑ, we have an
identification map:

ϑ∗ : A•,•(BSL×r2 ; i∗0O(1))
∼−→ A•,•(BSL×r2 )

Then the pullback i∗0 induces the two following maps:

i∗0 : A•,•(BGL×r2,det) −→ A•,•(BSL×r2 )

i∗1 := ϑ∗ ◦ i∗0 : A•,•(BGL×r2,det;O(1)) −→ A•,•(BSL×r2 )

Considering i∗0 and i∗1 together we get the map:

i∗ : A•,•(BGL×r2,det)⊕A•,•(BGL×r2,det;O(1)) −→ A•,•(BSL×r2 ) (3.5)

Proposition 3.3.16. Let A be an SL[η−1]-oriented ring spectrum. Then the map
(3.5):

i∗ : A•(BGL×r2,det)⊕A•(BGL×r2,det;O(1)) −→ A•(BSL×r2 )

is an isomorphism.

Proof. Recall that we have:

1→ SL×r2 −→ GL×r2,det

det(−)−→ Gm → 1

The bundle O(1) is the tautological bundle of BGm pulled back to BGL×r2,det, and we
have that BSL×r2 ' O(1)\{0}. Then, we can identify BSL×r2 −→ BGL×r2,det with the
natural map O(1) \ {0} → BGL×r2,det given by the composition of the open immersion
j : O(1) \ {0} ↪→ O(1) with the projection map from O(1). From here, the same
argument used to prove the first part of proposition 3.1.1 applies verbatim replacing
BSLn with BSL×r2 and BGLn with BGL×r2,det. We will sketch the proof again for
more clarity, but we will leave the details to the reader.
By homotopy invariance we can identify A(BGL×r2,det) ' A(O(1)), and we get a
localization sequence:

. . .→ Aa,b
(
BGL×r2,det

)
→ Aa,b

(
BSL×r2

)
−−− . . .

. . .
∂a,b→ Aa−1,b−1

(
BGL×r2,det;O(1)

)
e(O(1))∪·→ Aa+1,b

(
BGL×r2,det

)
→ . . .

(3.6)

By [Lev19, Lemma 4.3] this sequence splits into short exact sequences:

0→ Aa,b
(
BGL×r2,det

)
→ Aa,b

(
BSL×r2

) ∂a,b→ Aa−1,b−1
(
BGL×r2,det;O(1)

)
→ 0
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To conclude, we need to find a splitting for ∂a,b and the candidate map is given by:

i∗1 := ϑ∗ ◦ i∗0 : A•(BGL×r2,det;O(1)) −→ A•(BSL×r2 )

We now want to prove that ∂ ◦ i∗1 is an isomorphism. Let ∂̄ be the boundary map in
the twisted localization sequence:

. . .→ Aa,b (BGLn;O(−1))→ Aa,b (BSLn; i∗0O(−1))
∂̄a,b→ Aa−1,b−1 (BGLn)→ . . .

Let 〈tcan〉 ∈ A0(BSL×r2 ; i∗0O(1)) ' A0(BSL×r2 ; i∗0O(−1)) given by the tautological
section of O(1). Then we have:

∂ ◦ i∗1(−) = ∂̄(〈tcan〉) ∪ −

To check that multiplication by ∂̄(〈tcan〉) is an isomorphism, by the Milnor’s lim1-
exact sequence, we can reduce to prove the claim on the finite level approximations
BmSL

×r
2 and BmGL×r2,det. By a Mayer-Vietoris argument, we can further restrict to

opens of BmGL×r2,det where O(1) gets trivialised. But then the restriction of ∂̄(〈tcan〉)
becomes just η by [Ana19, Lemma 6.4], and hence the map ∂̄(〈tcan〉)∪− is invertible
as claimed.

Theorem 3.3.17 (Twisted Symplectic Splitting Principle). Let E be an SL[η−1]-
oriented ring spectrum with its canonical twisted Thom structure and let X ∈ Sm/S

be a smooth S-scheme. Take L ∈ Pic(X), let (E,ωL) be a twisted symplectic bundle
and let q : HFlagLX(E,ωL) → X be the associated complete twisted quaternionic flag
bundle. Then the map:

q∗ : E•(X) −→ E•
(
HFlagLX(E,ωL)

)
is injective. Moreover we have that:

q∗bLt (E,ωL) =

r∏
j=1

bt(Ui, ωLi )

with (Ui, ωLi ) the universal rank 2 bundles of HFlagLX(E,ωL).

Proof. The first claim is just an iterated application of the Twisted Projective Bundle
theorem 3.3.9. For the remaining claim, we already noticed that q∗E '

⊕r
i=1

(
Ui, ωLi

)
.

Now these (Ui, ωLi ) are twisted symplectic bundles of rank 2, but that means they
are just rank 2 vector bundles together with isomorphisms ωLi : det (Ui)

∼→ L
∣∣
Ui
.

Therefore, we get a natural map:

p : HFlagLX(E,ωL) −→ BGL×r2,det

classifying ({Ui} , L, {ωi}) (cf. remark 3.3.15). The universal bundle Dr of BGL×r2,det is
given by an r-tuple of rank 2 bundles Vi, together with isomorphisms ρi : det(Vi)

∼→
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O(1), where O(1) is the pullback of the tautological bundle over BGm. We can
regard the Vi as twisted symplectic bundles, with twisted symplectic forms given by
ωi,can : Λ2Vi ' det(Vi)

ρi→ O(1). Then by construction of p, we get that:

p∗(Vi, ωi,can) ' (Ui, ωLi )

If we prove the claim of our theorem for the bundle
⊕

(Vi, ωi,can), then, via the
pullback map p∗, we get the relation we want for q∗(E,ωL). This means that it is
enough to prove the following:

b
O(1)
t

(⊕
(Vi, ωi,can)

)
=
∏

b
O(1)
t ((Vi, ωi,can))

By proposition 3.3.16, we have an injective map:

i∗1 : A•
(
BGL×r2,det;O(1)

)
↪→ A•

(
BSL×r2

)
(3.7)

induced by i0 : BSL×r2 → BGL×r2,det. For each i, the pullback i∗0Vi is isomorphic to
the universal rank 2 SL-vector bundle Wi of BSL×r2 . Recall that the map i∗1 was
given by the pullback map i∗0, together with the inverse of the Thom isomorphism
associated to the determinant of the SL-vector bundles j∗Vi. By injectivity of (3.7),
we can therefore reduce ourselves to prove:

bt

(⊕
(Wi, ψi,can)

)
=
∏

(Wi, ψi,can)

with ψi,can the canonical symplectic form given by their SL-structure. But this
amounts to the usual Cartan Sum formula for (untwisted) symplectic bundles, and
therefore we can conclude by [PW18, Theorem 10.5].

Corollary 3.3.18 (Twisted Cartan Sum Formula). If we have
(
F,ψL

)
'
(
E1, ω

L
1

)
⊕

(E2, ω
L
2 ) a direct sum of L-twisted symplectic bundles, then:

bLt (F,ψL) = bLt (E1, ω
L
1 )bLt (E2, ω

L
2 )

bLi (F,ψL) =
i∑

j=0

bLi−j(E1, ω
L
1 )bLj (E2, ω

L
2 )

Proof. Using the twisted symplectic splitting principle, we can just follow the same
steps as in [PW18, Theorem 10.5].

Remember that the spectrum BO•,• defined in [PW18] is (8, 4)-periodic, with pe-
riodicity isomorphism:

BO•+8,•+4 ·∪Σ8,4γ−→ BO•,•

with γ ∈ BO−8,−4(pt) the element corresponding to 1 ∈ BO0,0(pt) under the period-
icity isomorphism:

BO0,0(pt) ' GW
[0]
0 (pt) ' GW

[−4]
0 (pt) ' BO−8,−4(pt)
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and GW
[n]
i are the higher Grothendieck-Witt groups of [Sch10]. We will call γ the

Bott element of Hermitian K-Theory. This element will induce the 4 periodicity on
KW once we invert the η-map.

Now to explicitly compute the Euler classes of Õ±(m), we need a twisted version
of [Ana17, Lemma 8.2]:

Lemma 3.3.19 (Ananyevskiy). Let E1, E2, E3 be rank 2 bundles over some scheme
X ∈ Sm/S, with the determinants L1, L2, L3 respectively, together with their canon-
ical twisted symplectic structures; let E := E1 ⊗ E2 ⊗ E3 be the L1 ⊗ L2 ⊗ L3-
twisted symplectic bundle of rank 8, with the induced twisted symplectic structure. Let
L := L1 ⊗ L2 ⊗ L3, ξi := bL1 (Ei) ∈ KW4,2(X;Li) and denote with σ(n1, n2, n3) the
sum of all the monomials lying in the orbit of ξn1

1 ξn2
2 ξn3

3 under the action of S3. Then:

bL1 (E) = γσ(1, 1, 1)

bL2 (E) = γσ(2, 2, 0)− 2σ(2, 0, 0)

bL3 (E) = γσ(3, 1, 1)− 8σ(1, 1, 1)

bL4 (E) = γσ(2, 2, 2) + σ(4, 0, 0)− 2σ(2, 2, 0)

Remark 3.3.20. Notice that (mod 2), the sequences (n1, n2, n3) (and their permu-
tations) appearing in the formulas above for bLi (E) are the same. This means that
the terms land in the same twists, under the canonical identifications:

KW•(X;La1
1 ⊗ L

a2
2 ⊗ L

a3
3 ) ' KW•(X;Lb11 ⊗ L

b2
2 ⊗ L

b3
3 )

for:
(a1, a2, a3) ≡ (b1, b2, b3) (mod 2)

Proof of 3.3.19. It is enough to prove the theorem for X = BGL×3
2 , but again by the

Künneth formula 3.2.5 and proposition 3.1.1 we can reduce to BSL×3
2 case. Taking the

finite level approximation BmSL2 we can use Ananyevskiy’s result [Ana17, Lemma
8.2] and since Witt theory for BSL2 satisfies the Mittag-Leffler condition by [Ana15,
Theorem 9] (or by proposition 3.2.1), taking the limit of the theories on the finite
level approximation we get the desired result for BSL2.

3.4 Euler classes for Õ
±
(m)

Before actually computing the Euler classes we are interested in, let us recall some
facts on about the rank 2 vector bundles of BN . Let us identify:

ι : Gm ↪→ TSL2

t 7→
(
t 0
0 t−1

)
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where TSL2 is the torus in SL2. We will denote as done before:

σ :=

(
0 1
−1 0

)
∈ N

Definition 3.4.1. For m ≥ 1 an integer, let F±(m) := k
2, then we define represen-

tations (F±(m), ρ±m) by:

ρ±m (ι(t)) :=

(
tm 0
0 t−m

)
ρ±m (σ) := ±

(
0 1

(−1)m 0

)
We call (F0, ρ0) the trivial one-dimensional representation, and (F0, ρ

−
0 ) the one de-

fined by ρ−0 (t) = 1 and ρ−0 (σ) = −1.
We denote with p(±m) : Õ

±
(m) −→ BN the rank 2 vector bundle:

p(±m) : F±m ×N ESL2 −→ ESL2/N = BN

corresponding to ρ±m, with zero section s
(±m)
0 : BN −→ Õ

±
(m) and th(±m) ∈

KW
(
Õ
±

(m),det(Õ
±

(m))
)
the Thom class defined as (s

(±m)
0 )∗(1).

Remark 3.4.2. We recall that Pic (BN) ' Z/2Z can be generated by γ := Õ
−

(0).
For the one dimensional representation det(ρ±m) we choose the generator given by
e1 ∧ e2, with e1 = (1, 0) and e2 = (0, 1) the standard basis of k2. Then we have
canonical isomorphisms det

(
Õ
±

(m)
)
' OBN for m odd and det

(
Õ
±

(m)
)
' γ for

m > 0 even.

Given a triple tensor product of rank two bundles U1 ⊗ U2 ⊗ U3, we denote their
bases as {e1, e2} , {f1, f2} , {g1, g2}. We have the isomorphism:

Õ
+

(1)⊗ Õ
+

(1)⊗ Õ
+

(1) ' Õ
+

(3)⊕ Õ
+

(1)⊕3

where the base chosen for this identification is given by dual pairs {vi, wi} that are
perpendicular to all other vectors:

v1 := e1 ⊗ f1 ⊗ g1 w1 = e2 ⊗ f2 ⊗ g2

v2 := −e1 ⊗ f1 ⊗ g2 w2 = e2 ⊗ f2 ⊗ g1

v3 := −e1 ⊗ f2 ⊗ g1 w3 = e2 ⊗ f1 ⊗ g2

v4 := −e2 ⊗ f1 ⊗ g1 w4 = e1 ⊗ f2 ⊗ g2

In a similar way, for any m > 1 we have:

Õ
+

(m)⊗ Õ
+

(1)⊗ Õ
+

(1) ' Õ
+

(m+ 2)⊕ Õ
+

(m)⊕2 ⊕ Õ
+

(m− 2) (3.8)
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where the base is given by:

v1 := e1 ⊗ f1 ⊗ g1 w1 = e2 ⊗ f2 ⊗ g2

v2 := −e1 ⊗ f1 ⊗ g2 w2 = e2 ⊗ f2 ⊗ g1

v3 := −e1 ⊗ f2 ⊗ g1 w3 = e2 ⊗ f1 ⊗ g2

v4 := e1 ⊗ f2 ⊗ g2 w4 = e2 ⊗ f1 ⊗ g1

We also have:

Õ
+

(2)⊗ Õ
+

(2)⊗ Õ
+

(1) ' Õ
+

(5)⊕ Õ
+

(3)⊕2 ⊕ Õ
−

(1) (3.9)

with with bases:

v1 := e1 ⊗ f1 ⊗ g1 w1 = e2 ⊗ f2 ⊗ g2

v2 := −e1 ⊗ f1 ⊗ g2 w2 = e2 ⊗ f2 ⊗ g1

v3 := e1 ⊗ f2 ⊗ g1 w3 = e2 ⊗ f1 ⊗ g2

v4 := e2 ⊗ f1 ⊗ g1 w4 = e1 ⊗ f2 ⊗ g2

Proposition 3.4.3. We have the following:

1. For any m:
e(Õ

−
(m)) = −e(Õ

+
(m))

2. For m > 1 the recurrence relation:

b1(Õ
+

(m+ 2)) = (γe2 − 2)b1(Õ
+

(m))− b1(Õ
+

(m− 2))

In particular b1(Õ
+

(m)) is always a multiple of e := e(Õ
+

(1)) for m odd and
ẽ := e(Õ

+
(2)) for m even respectively.

3. For m = 2n+ 1:

b1

(
Õ

+
(m)

)
=

n∑
k=0

(−1)n−kαk,nγ
ke2k+1 (3.10)

with e = e(Õ
+

(1)) and αk,n defined by the recurrence relation:
α0,n = 2n+ 1 ∀ n ≥ 0

αk,n =
∑n

j=1 j · αk−1,n−j ∀ n ≥ k > 0

αk,n = 0 else
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4. For m = 2n:

b1

(
Õ

+
(m)

)
= ẽ

(
n−1∑
k=0

(−1)n−k+1βk,nγ
ke2k

)
(3.11)

with e = e(Õ
+

(1)), ẽ = e(Õ
+

(2)) and βk,n defined by the recurrence relation:
β0,n = n ∀ n ≥ 0

βk,n =
∑n

j=1 j · βk−1,n−j ∀ n ≥ k > 0

βk,n = 0 else

5. We also have:
ẽ2 = −4e+ γe4 (3.12)

Proof. First let us notice that from our computations in Chapter 2, it follows that
we can compute the Witt theory of BN by its finite level approximations BmN . In
particular, we get that the Cartan Sum Formula and Ananyevskiy’s Lemma hold true
for BN too.
The first assertion of the proposition follows from the fact that ρ+

m and ρ−m are iso-
morphic as representation through (x, y) 7→ (−x, y), but this map induces a (−1) on
the determinant, so we get e(Õ

−
(m)) = −e(Õ

+
(m)).

The decomposition eq. (3.8) and the Cartan Sum Formula 3.3.18, for m > 1, gives
us:

b1

(
Õ

+
(m)⊗ Õ

+
(1)⊗2

)
= b1(Õ

+
(m+ 2)) + 2b1(Õ

+
(m)) + b1(Õ

+
(m))

while for m = 1 we have:

b1

(
Õ

+
(1)⊗ Õ

+
(1)⊗2

)
= b1(Õ

+
(3)) + 3b1(Õ

+
(1))

At the same time, using Ananyevskiy’s lemma 3.3.19 we have:

b1(Õ
+

(m)⊗ Õ
+

(1)⊗2) = γb1(Õ
+

(m))b2

Putting this all together we get:

b1(Õ
+

(3)) = −3e+ γe3

and for m > 1:

b1(Õ
+

(m+ 2)) = (γe2 − 2)b1(Õ
+

(m))− b1(Õ
+

(m− 2)) (3.13)

From this by induction is not difficult to see that e and ẽ divides b1(Õ
+

(m+ 2)) for
odd or even m > 1 respectively, but it will be even more clear from the recursive
formulas we are going to show.
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Now let us consider m = 2n+ 1. We want to prove the recursive formula eq. (3.10).
We just saw the formula for m = 3. Now we proceed by induction on n, let us
suppose we know the formula for m = 2n + 1 and we want to prove it for m + 2 =
2(n+ 1) + 1 = 2n+ 3. Using the induction hypothesis on eq. (3.13), we have:

b1(Õ
+

(m+ 2)) = (γb2 − 2)b1(Õ
+

(m))− b1(Õ
+

(m− 2)) =

=
n∑
k=0

(−1)n−kαk,nγ
k+1b2k+3 − 2

n∑
k=0

(−1)n−kαk,nγ
kb2k+1 −

n−1∑
k=0

(−1)n−1−kαk,n−1γ
kb2k+1 =

= (−1)n+1(−α0,n−1 + 2α0,n)b+
n∑
k=1

(−1)n+1−k(−αk,n−1 + 2αk,n)γkb2k+1+

+

n+1∑
h=1

(−1)n+1−hαh−1,nγ
hb2h+1 + αn,nγ

n+1b2n+3 =

= (−1)n+1(2n+ 3)b+

n∑
k=1

(−1)n+1−k (−αk,n−1 + 2αk,n + αk−1,n) γkb2k+1 + αn,nγ
n+1b2n+3

and it is easy to see that the coefficients α0,n+1 and αn+1,n+1 are already of the
desired form. The only thing left to check is that:

−αk,n−1 + 2αk,n + αk−1,n

is actually:
n+1∑
j=1

j · αk−1,n+1−j

for k = 1, . . . , n. using the induction hypothesis:

− αk,n−1 + 2αk,n + αk−1,n =

= −
n−1∑
j=1

j · αk−1,n−1−j + 2
n∑
j=1

j · αk−1,n−j + αk−1,n =

= −
n−1∑
j=1

j · αk−1,n−1−j + 2

n−1∑
h=1

(h+ 1) · αk−1,n−1−h + 2αk−1,n−1 + αk−1,n =

=
n−1∑
j=1

(−j + 2j + 2) · αk−1,n−1−j + 2 · αk−1,n−1 + αk−1,n =

=

n−1∑
j=0

(j + 2) · αk−1,n−1−j + 2 · αk−1,n+1−2 + αk−1,n+1−1 =

n+1∑
r=1

r · αk−1,n+1−r

And this completes the proof of the claim for the odd case m = 2n+ 3.
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For the even case m = 2n the proof is basically the same and we will leave it as an
exercise.

Lastly, again using Ananyevskiy’s lemma 3.3.19 and the Cartan sum formula on
the decomposition from eq. (3.9), we have:

γẽ2e = b1

(
Õ

+
(2)⊗2 ⊗ Õ

+
(1)
)

= b1(Õ
+

(5)) + b1

(
Õ

+
(3)
)

+ b1

(
Õ
−

(1)
)

And from what we proved before, this means:

γẽ2e = (5e− 5γe3 + γe5) + (−3e+ γe3)− 2e = −4γe3 + γe5

but since γ is an isomorphism, multiplication by γe is injective on the first summand
of KW•(BN) ' KW•(S)JeK⊕ q0 ·KW•(S) and hence:

ẽ2 = −4e2 + γe4

Remark 3.4.4. Here is a table of easy examples of coefficients αk,n of the odd Euler
classes:

n
k

0 1 2 3 4 5 6

0 1
1 3 1
2 5 5 1
3 7 14 7 1
4 9 30 27 9 1
5 11 55 77 44 11 1
6 13 91 182 156 65 13 1

It is not hard to show that α1,n =
∑n

j=1 j
2 = n(n+1)(2n+1)

6 , αn−2,n = n + 1(2n +
1), αn−1,n = 2n+ 1, αn,n = 1. Recall that the coefficient of the lowest degree term in
the recursive formula will be (−1)n(2n+ 1) = (−1)n ·m for m = 2n+ 1, so the lowest
degree term of eKW

(
Õ

+
(m)

)
will have the same form of the Witt cohomology Euler

class computed in [Lev19, Theorem 7.1].
For even Euler classes, the table of the first coefficients looks like:

n
k

0 1 2 3 4 5 6

1 1
2 2 1
3 3 4 1
4 4 10 6 1
5 5 20 21 8 1
6 6 35 56 36 10 1
7 7 56 126 120 55 12 1
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Again the coefficient of the lowest degree term in the recursive formula will be
(−1)n−1n = (−1)n−1m

2 for m = 2n, so the lowest degree term of eKW
(
Õ

+
(m)

)
will have the same form as the formula obtained for the Witt cohomology Euler class
in [Lev19, Theorem 7.1]. But this is not just a coincidence:

Corollary 3.4.5 ([Lev19, Theorem 7.1]). Let HW be the spectrum representing Witt-
sheaf cohomology. Denote by eHW := eHW

(
Õ

+
(1)
)

and ẽHW := eHW
(
Õ

+
(2)
)
.

Then:

eHW
(
Õ

+
(m)

)
=

{
(−1)

m−1
2 ·m · eHW for m odd

(−1)
m+2

2 · m2 · ẽ
HW for m even

Proof. By [FH23, Remark 6.7], we know that the formal ternary law of Hermitian K-
theory recovers the computations of [Ana17, Lemma 8.2]. Setting γ = 0, we recover
the formal ternary law for Witt sheaf cohomology by [DF21, Theorem 3.3.2]. Using
the formulas for Witt sheaf cohomology obtained from lemma 3.3.19 for γ = 0, we
can proceed by induction as we did for KW in proposition 3.4.3. In this way we
recover the (closed form) formulas of [Lev19, Theorem 7.1] as claimed.

Remark 3.4.6. Clearly Õ
+

(1) ' p∗E2 where p : BN → BSL2 and E2 is the bundle
arising from the universal bundle of BSL2, so the class e := e

(
Õ

+
(1)
)

is the free

generator of KW• (BN) by corollary 2.3.6. Similarly the class ẽ := e
(
Õ

+
(2)
)
is the

free generator of KW• (BN ; γN ) again by corollary 2.3.6 and [Lev19, Lemma 6.1].
The reason we are so interested in these rank 2 vector bundles Õ

±
(m) is that the

ρ±m’s classify irreducible representations of BN with a choice of the determinant. This
together with [Ana15, Splitting Principle, §9 ], proposition 3.1.1, and the structure
theorem corollary 2.3.6, tells us that the characteristic classes of these bundles, and
their symmetric powers, will recover all the characteristic classes of any vector bundle
on BN .

Remark 3.4.7. Let us notice that given any rank two vector bundle E → X over
someX, we have e(Symk E) = 0 ∈ KWk+1(X; det−1 Symk E) for k even since Symk E
will have rank k+ 1 and thus we can apply [Lev19, Lemma 4.3]. For k = 2r+ 1 odd,
e(Symk E), seen as a polynomial in e := e(Õ

+
(1)), will have as lowest degree term

k!! · er+1, where k!! := k · (k−2) · . . . ·3 ·1. The proof of this fact is basically the same
proof used in [Lev19, Theorem 8.1] using the concrete description we have for the
lowest degree term of e(Õ

+
(m)) given by proposition 3.4.3 and the fact we remarked

above that they recover the same computations done in [Lev19, Theorem 7.1]).
Moreover it is worth noticing that this correlation between Euler classes in Witt
theory and Witt cohomology is reminiscent of a Grothendieck-Riemann-Roch formula
for the negative Borel character of [DF21]. By [Bac18, Corollary 38], a good heuristic
principle is to look in classical stable homotopy for GRR formulas. For example we
expect formulas similar to the ones in [LM89, Prop. 11.14, 11.22, 11.24] (and also
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[Hu22, Thm. 2.23]) to hold true in the motivic context. We hope to come back to
these questions in the future.





Chapter 4

Virtual Localization

4.1 Atiyah-Bott Localization

We are now ready to extend the Atiyah-Bott localization theorem to any SL[η−1]-
oriented ring spectrum A, closely following [Lev22a]. Once again, we remind the
reader that we will freely interchange the quotient stack BN with its (A1-equivalent)
ind-scheme approximation BN , implicitly using proposition 1.4.30.

Disclaimer 4.1.1. To avoid burdening the notation too much, in the following chap-
ter we will drop the G from the upper- and lower-superscripts of the equivariant
operations on Borel-Moore homology and cohomology.

Definition 4.1.2. Let K ⊃ k be a field, χ : Gm → Gm a Gm-character such that
χ(−Id) = 1, and take λ ∈ K×. Define the subgroup scheme Λ(χ, λ) ⊆ NK as:

Λ(χ, λ) := χ−1(1)q χ−1(λ−1) · σ

Definition 4.1.3. As done in [Lev22a], consider again K ⊃ k a field, a character
χ : Gm → Gm and the following types of N -homogenous spaces X over K (where
KX will denote the N -invariants of OX(X)):

(a) X =
(
N/χ−1(1)

)
K
;

(b) Suppose χ(−Id) = 1 and let X = NK /Λ(χ, λ) for some λ ∈ K×;

(c±) Let K ′ ⊃ K a degree two extension:

(c+) Suppose χ(−Id) = 1 and take some λ ∈ K×. Let τ be the conjugation
of K ′ over K. We can choose an isomorphism of Gm-homogeneous spaces
Gm/χ

−1(1)K′ ' Gm,K′ inducing the isomorphism:(
N
/
χ−1(1)

)
K′
' Gm,K′ q σ ·Gm,K′

123
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Let ρ(σi · x) := σ · σi · λx , for i = 0, 1, be the K ′-automorphism of(
N/χ−1(1)

)
K′

. Composing with τ , we get the F -automorphism, τ ◦ ρ
which gives us a Z/2Z-action on

(
N/χ−1(1)

)
K′

. The leftN -action onN de-
scends to a left action on the quotient and hence we get an N -homogeneous
space:

X :=
(
N/χ−1(1)

)
K′

/〈τ ◦ ρ〉

(c-) If χ(−Id) = −1, we can take some λ0 ∈ K×, then choose a generator√
a for K ′ over K (with a ∈ K×) and take λ := λ0

√
a. With this λ we

can define as before ρ(σi · x) := σ · σi · λx , for i = 0, 1, and consider the
N -homogeneous space:

X :=
(
N/χ−1(1)

)
K′

/〈τ ◦ ρ〉

These will be all the N -homogeneous spaces we have to consider, using a special
case of [Lev22a, Lemma 7.4]:

Lemma 4.1.4 ([Lev22a, Lemma 7.4]). Let X be an N -homogeneous space. Suppose
Gm acts non-trivially on X and that X is smooth over kX := H0(X,OX)N . Let
Y := X/Gm with its induced structure as a Z/2Z-homogeneous space over kX . Then:

1. As a Y -scheme X ' Gm,Y ;

2. Fix a closed point y0 ∈ Y , let A ⊆ Z/2Z be the isotropy group of y0, let B be
the kernel of the action map A→ AutkX (kX(y0)). Then there are three cases:

(Case a) B = A = {0};
(Case b) A = B = Z/2Z;
(Case c) A = Z/2Z and B = {0}.

3. In (Case a) X is a homogeneous space of type (a); in case (b) then X is of type
(b); in case (c) then X is of type (c±), depending on whether χ(−Id) = ±1,
and κ(y0) is the degree two extension of kX′ referred to in definition 4.1.3.

Via the N -action, the map πX : X → Spec(kX)→ Spec(k) induces a map:

πNX : X =
[
X/N

]
→ BN

For any A ∈ SH(k), this induces the pullback maps:

(πNX )∗ : A•(BN) −→ A•N (X)

(πNX )∗ : A•(BN ; γN ) −→ A•N (X;π∗XγN )

where γN is the generator of Pic(BN).
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Notation 4.1.5. Similarly to remark 3.4.6, we will denote by e the Euler class
of (πNX )∗Õ

+
(1) living in A2

N (X) ' A
(
X ×N EN

)
. We will omit the appropriate

pullbacks from the twists in our equivariant theories, if it is clear from the context
what twist should actually be used; the same will happen for pullbacks on bundles
and associated Euler classes.

Lemma 4.1.6 ([Lev22a, Lemma 7.6]). Let X,χ be as in lemma 4.1.4. Suppose
χ(t) = tm for some integer m ≥ 1. Let A ∈ SH(k) be an SL[η−1]-oriented ring
spectrum. Then we have:

(a) In case (a), e goes to zero in A•N (X).

(b) In case (b), m is even and e(Õ(m)) goes to zero in A•N (X;π∗XγN ).

(c+) In case (c+), i.e. m even, e(Õ(m)) goes to zero in A•N (X;π∗XγN ).

(c-) In case (c−), i.e. m odd, e(Õ(2m)) goes to zero in A•N (X;π∗XγN ).

Remark 4.1.7. In the cases (b) and (c+), the pullback of γN gets trivialised. Hence
the Euler classes, considered in the previous lemma, live in A•N (X).

Proof. The same proof used in [Lev22a, Lemma 7.6] works verbatim for a generic
A, since only the vanishing of Euler classes for odd rank vector bundles and multi-
plicativity of Euler classes was used there, and these properties still hold true for any
SL[η−1]-oriented spectrum.

Notation 4.1.8. From now on, we will denote the Euler classes of the Õ
±

(m) as
ẽ±(m) := e

(
Õ
±

(m)
)
.

Remark 4.1.9. Consider X ∈ SchN/k, L ∈ Pic(X) an N -linearised line bundle,
and let A ∈ SH(k) be an SL[η−1]-oriented ring spectrum.. Then products in A-
cohomology induce a structure of graded commutative ring on A•N (X) and a struc-
ture of A•N (X)-module on A•N (X;L). Identifying A•N (X;L⊗2) ' A•N (X), we get a
commutative graded product:

A•N (X;L)⊗A•N (X;L) −→ A•N (X)

For s ∈ A2•
N (X), we say that an element x ∈ A2•

N (X;L)[s−1] is invertible if there
exists y ∈ A2•

N (X;L)[s−1] such that xy = 1 ∈ A2•
N (X)[s−1]. A homogeneous element

x ∈ A2•
N (X;L) is invertible if and only if x2 ∈ A2•

N (X) is invertible in the usual sense
as an element of the commutative graded ring.

Lemma 4.1.10 (Key Lemma). Let A ∈ SH(k) be an SL[η−1]-oriented ring spectrum.
For any odd integer m, the Euler class ẽ+(m) is invertible in:

A•(BN)
[
(m · e)−1

]
For any even integer m = 2n, the Euler class ẽ+(m) is invertible in:

A•(BN ; γN )
[
(m · e)−1

]
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Proof. For this proof we will make use of the ind-scheme BN approximating BN , by
proposition 1.4.30 we already know that all the computations will carry over to BN .
To prove our claim, it is enough to consider the universal case MSLη: the general
case will follow considering the SL-orientation map ϕAη : MSLη → A associated to
the SL[η−1]-oriented ring spectrum.
Since we are working in SH(k), by [BH21a, Theorem 8.8], we have:

MSLη(k) 'W (k)[y2, y4, y6, . . .]

where y2i has degree −4i. But then by [Ana15, Theorem 10] and our proposi-
tion 2.2.16, we get:

MSL•η(BN) ' (W (k)[y2, y4, . . .]) JeK⊕ qMSL
0 ·W (k)[y2, y4, . . .]

Let us suppose m is odd. Since ẽ+(m) has degree two, we have:

ẽ+(m) =

∞∑
i=0

ai · e2i+1

where ai = ai(y2, y4, . . .) ∈ (W (k)[y2, y4, . . .])
−4i. Notice that a0 ∈ W (k), since it

has degree zero. The map ϕHWη : MSLη → HW, induced by the SL-orientation, is a
map of ring spectra given by sending each yi 7→ 0. Thus we have:

ϕHWη (a0 · e) = a0 · ϕHWη (eMSLη)

where a0 := ϕHWη (a0) = a0(0, 0, . . .). But comparing the Euler classes in MSLη and
HW, we get:

ϕHWη (ẽ+(m)) = a0 · eHW = ±m · eHW

thus a0(0, 0, . . .) = a0 = ±m by the computations made in [Lev19, Theorem 7.1].
But a0, as we said before, as degree zero, hence a0 = ±m. But this implies that, in
MSL•η(BN)

[
m−1

]
, we can write:

ẽ+(m) = ±m · e(1 +
∑
j=1

bj · ej)

and (1 +
∑

j=1 bj · ej) is already invertible in MSL•η(BN)
[
m−1

]
. Hence ẽ+(m) is

invertible in MSL•η(BN)
[
(m · e)−1

]
. The even case m = 2n is completely analogous.

We still have that:

MSL•η(BN ; γN ) ' e(T ) · (W (k)[y2, y4, . . .]) JeK⊕ qMSL
1 ·W (k)[y2, y4, . . .]

by proposition 2.2.16 (and [Ana15, Theorem 10]), where T is the pullback of the
tangent bundle of P(Sym2(F )) ×SL2 ESL2 relative to BSL2. From [Lev19, Lemma
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6.1], we know ẽ := ẽ+(2) = e(T ).

As before we have:

ẽ+(2n) = ẽ ·

( ∞∑
i=0

ci · e2i

)
where ci = ci(y2, y4, . . .) ∈ (W (k)[y2, y4, . . .])

−4i. Again we can make a compar-
ison between the Euler classes of MSLη and HW, and we get that ϕHWη (c0) =
c0(0, 0, . . .) = ±n by [Lev19, Theorem 7.1]. But then c0 = ±n, since it is a de-
gree zero element. Thus, in MSL•η(BN)

[
n−1

]
,we can write:

ẽ+(2n) = ẽ · (±n · e)

(
1 +

∞∑
i=1

di · e2i−1

)

where the element
(
1 +

∑∞
i=1 di · e2i−1

)
is already invertible in MSL•η(BN)

[
n−1

]
. If

we consider (ẽ+(2n))
2 ∈ MSL4

η(BN), we have:

(
ẽ+(2n)

)2
= ẽ2 · (±n · e)2

(
1 +

∞∑
i=1

di · e2i−1

)2

Using the fact that (ẽHW)2 = −4e ∈ HW4(BN) (cf. [Lev19, Theorem 7.1]), again
by looking at the formal power series of ẽ2 compared to (ẽHW)2, we get that:(

ẽ+(m)
)2

= e2 · (±m · e)2 (1 + . . .) ∈ MSL4
η(BN)

So in the end it is enough to invert m · e and we also get that ẽ+(m) is invertible in
MSL•η(BN ; γN )

[
(m · e)−1

]
.

Proposition 4.1.11. Let X be an N -homogeneous space, and let A be an SL[η−1]-
oriented ring spectrum. Then there exists an integer M > 0 such that:

A•N (X)[(Me)−1] ' 0

Proof. Using lemma 4.1.6, if X is of type (a), then we just invert e and M = 1.
For case (b) and (c±), again by lemma 4.1.6 we have that ẽ+(m) will go to zero for
an appropriate m depending on the type of X. Then we conclude by lemma 4.1.10,
noticing that if the Euler class going to zero is some ẽ+(2k) living in the twisted
theory, then its square ẽ+(2k)2 ∈ A•N (X) will also go to zero.

Remark 4.1.12. Let T be the standard torus inside N . Since N/T ' Z/2Z, given
X an N -equivariant scheme over k, we have that its T -fixed points XT ⊆ X are the
union of the 0-dimensional N -orbits.
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Theorem 4.1.13 (Torus Localization, cf. [Lev19, Theorem 7.10]). Let X ∈ SchN/k
and let ι : XT ↪→ X the the associated closed immersion. Then for any SL[η−1]-
oriented ring spectrum A, and for any L ∈ Pic(X) with an N -linearization, there
exists an integer M > 0 such that:

ι∗ : ABM
•,N
(
XT/k ; ι∗L

) [
(M · e)−1

]
−→ ABM

•,N (X/k ;L)
[
(M · e)−1

]
is an isomorphism.

Proof. Remember that char(k) > 2. If we invert the exponential characteristic p of k,
then taking the perfect closure of kperf of k induces an isomorphism ABM

•,N (·/k; ·) ∼→
ABM
•,N
(
·/kperf ; ·

)
by [EK19, p. 2.1.5], so we can assume p | M and k to be perfect.

Using the localization sequence for equivariant Borel-Moore homology, we reduce
ourselves to show that if X has no zero-dimensional orbits, that is, XT = ∅, then
ABM
•,N (X/k;L) ' 0. By [Lev22a, Proposition 1.1], there exists a finite stratification

X = qαXα such that for each α we have that Xα /N exists as a quasi-projective
k-scheme and we can take πα : Xα → Xα /N to be smooth. So applying again a
localization sequence argument, we can reduce to the case of Z := X/N is a quasi-
projective k-scheme and π : X −→ Z is smooth. Again by localization sequence
argument, we can assume Z is integral and π is equi-dimensional. We have to show
that if π has strictly positive relative dimension, then ABM

•,N (X/k;L) ' 0, so we can
assume π has strictly positive dimension.
Let us consider the finite level approximation for N -equivariant Borel-Moore homol-
ogy:

ABM
•,N(m) (X/k ;L) := ABM

•
(
X ×N EmN/k ;L

)
For each of these we have a Leray homological spectral sequence (cf. [ADN18,
p. 4.1.2]):

E1
p,q =

⊕
z∈Z(q)

ABM
p+q,N(m) (Xz/k ;Lz)⇒ ABM

p+q,N(m) (X/k ;L)

But by purity for k→ κ(z), since z ∈ Z(q), we have:

ABM
p,N(m) (Xz/κ(z) ;Lz) ' ABM

p+q,N(m) (Xz/k ;L)

and hence the spectral sequence becomes:

E1
p,q =

⊕
z∈Z(q)

ABM
p,N(m) (Xz/κ(z) ;Lz)⇒ ABM

p+q,N(m) (X/k ;L)

If ξ is a generic point of Z, then there exists an open neighbourhood Uξ of ξ such
that each fiber Xz of π : X → Z has the same same type, as homogeneous space
for N over κ(z), as does Xξ. So after taking a further stratification, we can assume
that all the fibers Xz, for z ∈ Z, have the same type. So by proposition 4.1.11 there



4.1 Atiyah-Bott Localization 129

exists an M such that ABM
p,N(m) (Xz/κ(z))

[
(Me)−1

]
' 0, since ABM

p,N(m) (Xz/κ(z)) is

a module over cohomology A•N (Xz) ' ABM
•,N (Xz/κ(z)). The module map is obtained

through the pullback induced by the natural map EmN → Spec(k), after identifying
Borel-Moore Witt homology and Witt theory (up to some re-indexing) via purity,
relative to Xz → z (which is a smooth map, since it is a fiber of X → Z). Notice that
the integerM only depends on the type of Xz, so it is the same integer for any z ∈ Z.
But again, since ABM

p,N(m) (Xz/κ(z);Lz) is a also module over cohomology A•N (Xz),
we have ∀ z ∈ Z:

A•N (Xz)
[
(Me)−1

]
' 0⇒ ABM

p,N(m) (Xz/κ(z) ;Lz)
[
(Me)−1

]
' 0

and hence the spectral sequence E1
p,q tells us that:

ABM
p+q,N(m) (X/k ;L))

[
(Me)−1

]
' 0 ∀ p, q ∀ m

In particular, this means that:{
ABM
p+q,N(m) (X/k ;L))

[
(Me)−1

]}
m∈N

satisfies the Mittag-Leffler condition. Therefore the limit of those groups actually
computes ABM

p+q,N (X/k;L))
[
(Me)−1

]
. Hence we get:

ABM
p+q,N (X/k ;L))

[
(Me)−1

]
' 0

as we wanted to prove.

Before we finally get the Atiyah-Bott localization for an N -action, we need to recall
some more theorems and definitions from [Lev22a]:

Definition 4.1.14 ([Lev22a, Def. 8.2]). Let σ̄ be the image of σ ∈ N in N /T '
Z/2Z = 〈σ̄〉.

1. Let us denote |X|N the union of the irreducible components Z ⊆ XT such that
the generic point ξZ is fixed by σ̄, and let us denoteXT

ind the union of irreducible
components W ⊆ XT such that σ̄ ·W ∩W = ∅.

2. We say that the N -action is semi-strict if XT
red = |X|N ∪XT

ind.

3. A semi-strict N -action is said to be strict if |X|N ∩ XT
ind = ∅ and we can

decompose |X|N as disjoint union of two N -stable closed subschemes:

|X|N = XN qXT
fr

where the N/T -action on XN
fr is free.
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Notation 4.1.15. For any group G, a character χ will correspond to a line bundle
over BG that we will denote as Lχ.

Proposition 4.1.16. Let X ∈ SchN/k with a trivial N -action, and let L be a line
bundle on X also with trivial N -action. Let χ : N → Gm be a character with
associated line bundle Lχ. Let A be an SL[η−1]-oriented ring spectrum. Then, up to
inverting the exponential characteristic of k, we have an isomorphism:

A−•(BN ;Lχ)⊗ABM
• (X/k ;L)

∼−→ ABM
N,•(X/k ;Lχ ⊗ L)

Proof. We can assume that k is perfect, if it is not we will invert its exponential
characteristic and use [EK19, Corollary 2.1.7]. Notice that since A is SL-oriented, if
we twist or untwist ABM

N,•(X/k;Lχ ⊗ L) by the determinant of the co-Lie algebra n∨

of N , nothing changes (up to isomorphism). To simplify the notation, we give the
proof in the untwisted case (i.e. for trivial L and Lχ); the proof in the twisted case
is the same and is left to the reader. Notice that [X/N ] ' X × BN . Consider:

X × BN BN

X Spec(k)

p

∆

Using the composition product, under the identification A−•(BN) ' ABM
• (BN/BN),

together with the base change ∆∗ : ABM
• (X/k, v) → ABM

• (X × BN/BN), we get a
map:

ψ := (−�−) ◦ (∆∗ × Id) : ABM
• (X/k)⊗A−•(BN) −→ ABM

• (X × BN/BN )

Under the identification remark 1.4.9, the target of ψ is just ABM
N,•(X/k,−n∨).

Using the Leray spectral sequence ([ADN18, Theorem 4.1.2]), we can show that ψ
is an equivalence. Indeed, we have:

Ep,q1 =
⊕

x∈X(p)

ABM
p+q(κ(x)/k)⇒ ABM

p+q(X/k)

′Ep,q1 =
⊕

x∈X(p)

ABM
p+q(BNκ(x)/BN )⇒ ABM

p+q(X × BN/BN )

But A•(BNk) is a free A•(k)-module by corollary 2.3.5 and hence from E1 we get:

′′Ep,q1 =
⊕

x∈X(p)

ABM
p+q(κ(x)/k)⊗A•(BN)⇒ ABM

p+q(X/k)⊗A•(BN)

But the map ψ at the level of spectral sequences induces a map ′′E∗,∗1 →′ E∗,∗1 that
becomes an isomorphism. Let us go into more details on why that is true. Since we
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assumed that k is perfect, for any x ∈ X(p) the extension κ(x)/k is separable, that
is, Spec(κ(x)) is smooth over k. Then we can use purity to see that ABM(κ(x)/k) '
A(κ(x)) and ABM(BNκ(x) /BN) ' A(BNκ(x)). But by proposition 2.2.16 for S =

Spec(κ(x)) with x ∈ X(p), we have that:

A•(κ(x))⊗A•(k) A•(BN) ' A•(BNκ(x)) (4.1)

To see why this equivalence it is true, proposition 2.2.16 tells us that A•(BN) '
A•(BSL2)⊕A•(k). Then to check that (4.1) holds, it is equivalent to check that the
same equality holds for BSL2 instead of BN . By [Ana15, Theorem 9] (or proposi-
tion 3.2.1), we know that we can compute A•(BSL2,k) using the finite approximations
BmSL2,k for any field k. Since filtered limits commute with finite colimits, we have:

A•(κ(x))⊗A•(k)

(
lim
m

A•(BmSL2)
)
' lim

m
A•(κ(x))⊗A•(k) A•(BmSL2)

Clearly the right hand side is just A•(BSL2,κ(x)) and we have our claim.

Therefore ψ induces an isomorphism on spectral sequences and thus it is an iso-
morphism itself and we are done.

Proposition 4.1.17. Let X ∈ Sch/k with an N -action, let L ∈ Pic(X) an N -
linearised line bundle, and let A ∈ SH(k) be an SL[η−1]-oriented ring spectrum.

1. Let ι0 : XN ↪→ X the closed immersion. For each connected component XN
i of

XN there is a line bundle Li on XN
i with trivial N -action and a character χi

such that ι∗0L
∣∣
XN
i
' Li ⊗ Lχi as N -linearised line bundle. Moreover:

ABM
N,k

(
XN ;L

)
'
⊕
p+q=k

ABM
p (XN

i ;Li)⊗W (k) A−q (BN ;Lχi)

2. Let ιind : XT
ind ↪→ X be the inclusion, then:

ABM
N

(
XT
ind/k ; ι∗indL

) [
e−1
]

= 0

where e is the Euler class associated to (the pullback of) Õ
+

(1).

Proof. For the first assertion we may assume XN is connected. The line bundle
ι∗0L lives over a space with trivial N -action, so N will act with a character χ on
ι∗0L (corresponding to a line bundle Lχ) so that we will have an isomorphism of N -
linearised line bundles ι∗0L ' L0 ⊗ Lχ for some line bundle L0 having the trivial
N -action. Then the isomorphism of the first assertion in the proposition will follow
from proposition 4.1.16.
For the second assertion, consider C1, . . . , C2r the irreducible components of XT

ind
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with σ̄C2i−1 = C2i. We will proceed by induction on r. Let us start with r = 1, as
an N -scheme XT

ind = C1 q C2 ' (N/T )× C1 with the trivial action on C1. Hence:[
XT
ind /N

]
' C1 × BT

and we get:

ABM
•,N
(
XT
ind/k ; ι∗indL

)
' ABM

• (C1/k ;L1)⊗W (k)A
−•
(
BT ;LχC1

)
where L1 is a line bundle over C1 and LχC1

is the bundle associated to a character

χC1 of T . Let q : BGm → BN , we have q∗Õ
+

(1) ' O(1) ⊕ O(−1), and so e =

q∗e(Õ
+

(1)) ' e
(
q∗Õ

+
(1)
)

= e (O(1)⊕O(−1)) = 0. But A−•
(
BT ;LχC1

)
is a

A−• (BT )-module and A−• (BT )
[
e−1
]

= 0, hence A−•
(
BT ;LχC1

)
[e−1] = 0 and we

are done for the initial inductive step.
For r > 1, consider XT

ind = C ∪ C ′ where C := C1 q C2 and C ′ := C3 ∪ . . . ∪ C2r.
By induction:

ABM
N (C/k ; ι∗indL)

[
e−1
]

= ABM
N (C ′/k ; ι∗indL)

[
e−1
]

= 0

Moreover C∩C ′ = (C1 ∩ C ′)q(C2 ∩ C ′) ' (C1 ∩ C ′)qσ̄·(C1 ∩ C ′), hence (C ∩ C ′)×N
EN ' (C1 ∩ C ′) × BT similar to the computation made for r = 1. But using the
same argument as before, we get in this way that ABM

N (C ∩ C ′/k; ι∗indL)
[
e−1
]

= 0.
Then using the localization sequence, it easy to see that:

ABM
N

(
XT
ind/k ; ι∗indL

) [
e−1
]

= 0

Theorem 4.1.18 (Atiyah-Bott Localization for N-action). Let X ∈ SchN/k be a
scheme with an N -action and let A ∈ SH(k) be an SL[η−1]-oriented spectrum. Let
ι : |X|N ↪→ X be the closed immersion. Let L ∈ Pic(X) be an N -linearised line
bundle. Suppose the N -action is semi-strict. Then there is a non-zero integer M
such that:

ι∗ : ABM
•,N
(
|X|N ; ι∗L

) [
(M · e)−1

]
−→ ABM

•,N (X;L)
[
(M · e)−1

]
is an isomorphism.

Proof. Since the action is semi-strict, we can consider the closed immersion XT '
XT
ind ∪ |X|N ↪→ X, that has X \XT as open complement. By proposition 4.1.17, we

have ABM
N

(
XT
ind/k; ι∗indL

) [
e−1
]

= 0. Applying again proposition 4.1.17, this time to
the scheme |X|N , we get:

ABM
N

(
XT
ind ∩ |X|N/k ; ι∗indL

) [
e−1
]

= 0
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since
(
|X|N

)T
ind
' XT

ind ∩ |X|N . But using a localization sequence, this implies that:

ABM
N

(
XT
ind \ |X|N/k ; ι∗indL

) [
e−1
]

= 0

as well. So we have that the inclusion |X|N ↪→ XT induces an isomorphism on
N -equivariant Borel-Moore homologies, and so we get the final claim using theo-
rem 4.1.13.

4.2 Bott Residue Formula

Consider now ι : Y ↪→ X a regular embedding in SchN/k. Let NY /X be the
normal bundle associated to ι, it has a natural N -linearisation, so we can consider
eN (NY /X) ∈ ABM

r,N

(
Y /k; det−1

(
NY /X

))
, where r is the rank of NY /X .

Lemma 4.2.1. Let L ∈ Pic(X) and let A ∈ SH(k) be an SL[η−1]-oriented ring
spectrum. Then:

ι!ι∗ : ABM
•,N (Y/k ; ι∗L) −→ ABM

•−r,N
(
Y/k ; ι∗L⊗ det−1

(
NY /X

))
is the cup product with eN

(
NY /X

)
.

Proof. Rewriting the equivariant Borel-Moore homology as Borel-Moore homology
over BN (cf. remark 1.4.9), the claim follows using the same arguments as in [DJK21,
Corollary 4.2.3].

Following [Lev22a, Lemma 9.3, Construction 2.7], we have that the Euler class of
an N -linearised vector bundle V on some connected Y ∈ SchN/k gets inverted once
we invert some Euler classes coming from representations of N over k. Let us briefly
recall such construction (for details refer to loc. cit.). Let V be an N -linearised locally
free sheaf on some connected scheme Y ∈ SchN/k.

(Case 1 ) Suppose N acts trivially on Y . Then for each point y ∈ Y , we can find N -
stable open neighbourhoods jUy : Uy ↪→ Y of y such that our locally free sheaf
trivialises as ψy : j∗UyV

∼→ OUy⊗kV (f) for some k-representation f ofN . Taking
the decomposition of V (f) into isotypical components, we get the corresponding
decomposition of j∗UyV. We can actually find a global decomposition of V into
isotypical components, indexed by k-irreducible representations of N :

V =
⊕
φ

Vφ

in such a way that on each trivialising open subset jU : U ↪→ Y we have:

j∗UVφ = OU ⊗ V (φ)nφ

where V (φ) is a k-irreducible representation of N . The
⊕

φ V (φ)nφ turns out to
be completely determined by V, up to isomorphism. We denote its isomorphism
class as [Vgen].
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(Case 2) Suppose T = Gm ⊆ N acts trivially on Y . We can decompose V into weight
spaces V =

⊕
m Vm, and let Vm :=

⊕
m 6=0 Vm. Then for any N -trivialised open

jU : U ↪→ Y , we have:

j∗UV ' V0 ⊕
⊕
m>0

OU ⊗σ,τ V (ρm)nm

where ρi’s are the rank two N -representations introduced in Chapter 3, and
· ⊗σ,τ V (ρi) denotes the OU -semi-linear extension of the representations in
the sense of [Lev22a, Def.2.5]. Then isomorphism class of the representation⊕

m>0 V (ρm)nm is uniquely determined by V and hence we denote this class by
[Vgen].

(Case 3) Suppose Gm = T ⊆ N acts trivially on Y and that q : Y → Y /N ' Y /〈σ̄〉 is a
degree 2 étale cover, where σ̄ is the image of σ in N/T ' Z/2Z ' 〈σ̄〉. Then
for any N -trivialised open jU : U ↪→ Y , we have:

j∗UV ' OU ⊗σ,τ V (ρ0)n0 ⊕
⊕
m>0

OU ⊗σ,τ V (ρm)nm

where the notation is the same as in Case 2. This time the isomorphism class
of V (ρ0)n0 ⊕

⊕
m>0 V (ρm)nm is uniquely determined by V, and we denote this

class by [Vgen].

Definition 4.2.2 ([Lev22a, Def. 4.7]). Let V an N -linearised vector bundle on a
connected Y ∈ SchN/k. Suppose we are in one of the three cases when [Vgen] is
defined. Choose a representative V gen ∈ [Vgen] and suppose it has even rank 2r (this
is always true in Case 2 ). Let A ∈ SH(k) be an SL[η−1]-oriented ring spectrum.
Then we have:

eN (V gen) ∈ A2r
(
BN ; det−1(V gen)

)
eN (V gen)2 ∈ A4r (BN)

We then define the generic Euler class as the subset:

[eN (V gen)] :=
{
u · eN (V gen)2 | u ∈ (A0(k)

)×} ⊆ A4r(BN)

and this depends by construction only on the isomorphism class of V as an N -
linearised bundle. The localization:

A•N (Y )
[
[eN (V gen)]−1

]
will denote the localization with respect to any element y ∈ [eN (V gen)] seen as an
element in AN (Y ) through the A(BN)-module map. If the representative V gen has
a trivialization of its determinant, then it will give us an actual class eN (V gen) ∈
A2r(BN) and then it becomes a localization by eN (V gen) in the usual sense.
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Lemma 4.2.3 ([Lev22a, Lemma 9.3]). Let V an N -linearised vector bundle on a
connected scheme Y ∈ SchN/k of rank 2r. Let A ∈ SH(k) be an SL[η−1]-oriented
ring spectrum. Let us suppose that assumptions of [Lev22a, Construction 2.7] are
satisfied, so we are in Case 1,2,3 in loc.cit. and hence we get a generic Euler class
[egenN (V )] ⊆ A4r(BN). Choose an element eN (V gen) ∈ [eN (V gen)]. Then eN (V ) ∈
A2r
N (Y ; det−1(V )) is invertible in A2•

N (Y ; det−1(V ))
[(
egenN (V )

)−1
]
.

Proof. We need to show that eN (V ) is invertible in A2•
N (Y ; det−1(V ))

[(
egenN (V )

)−1
]
,

but this is equivalent to show that multiplication by eN (V ):

·eV (N) : A2•
N (Y ; det−1(V ))

[(
egenN (V )

)−1
]
−→ A2•+2r

N (Y ; det−1(V ))
[(
egenN (V )

)−1
]

is an isomorphism. By assumptions, we can find an open cover made by N -stable
opens Ui ⊆ Y such that V trivialises over each Ui. Then by a Mayer-Vietoris ar-
gument, we can reduce ourselves to prove our claim on all the intersections of our
Ui’s. But there the claim is obvious, since on each Ui we have an isomorphism of
vector bundles (with an N -action) V

∣∣
Ui
' π∗Y V

gen, where πY : Y → Spec(k) is the
structure map.

Theorem 4.2.4 (Bott Residue Formula). Let X ∈ SchN/k, L ∈ Pic(X) an N -
linearised line bundle, and A ∈ SH(k) an SL[η−1]-oriented ring spectrum. Let us
suppose that each connected component ιj : |X|Nj ↪→ X of |X|N is a regular embed-
ding. Moreover for each normal bundle Nj associated to ιj, assume that the hypoth-
esis of Case 1,2,3 in [Lev22a, Construction 2.7] are satisfied for V = Nj. Denote
by egenN (Nfix) the products of egenN (Nj)’s. Finally assume that the N -action on X is
semi-strict.
Denote P := p ·M · e, where p is the exponential characteristic of the ground field k
and M is the same integer as in theorem 4.1.13.
Under the identification induced by the decomposition |X|N =

⋃
j |X|Nj in its con-

nected components:

ABM
N

(
|X|N/k ; ι∗L

)
'
∏
j

ABM
N

(
|X|Nj /k ; ι∗jL

)
the inverse of the isomorphism:

ι∗ : ABM,•
N

(
|X|N/k ; ι∗L

) [(
P · egenN (Nfix)

)−1
]
−→ ABM,•

N (X/k ;L)
[(
P · egenN (Nfix)

)−1
]

is given by:
x 7→

∏
j

ι!j(x) ∩ eN (Nj)
−1
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Proof. After inverting P , we can use theorem 4.1.18 and hence see egenN (Nfix) and
egenN (Nj) as elements in ABM

N (X/k;L). Inverting said elements will invert also eN (Nj)
by lemma 4.2.3. By theorem 4.1.18 we can find elements:

yj ∈ ABM
N

(
|X|Nj /k ; ι∗jL

) [(
P · egenN (Nj)

)−1
]

such that:
x =

∑
j

ιj∗yj

for any x ∈ ABM
N (X/k;L)

[(
P · egenN (Nfix)

)−1
]
. Since by lemma 4.2.1 we have:

ι!j(x) = ι!jιj∗yj = yj ∩ eN (Nj)

the map we defined sending x to
∏
j ι

!
j(x) ∩ eN (Nj)

−1 will be indeed the inverse to
ι∗.

Remark 4.2.5. If X ∈ SchN/k is smooth, then XT is smooth too, the action will
be semi-strict, and each ιj : |X|Nj ↪→ X will be a regular embedding. Moreover
the respective normal bundles will be of the form Nj = Nm

j , so we are in Case 2 of
[Lev22a, Construction 2.7] and we can indeed apply the previous theorem.

4.3 Virtual Localization Formula

We now have all the formal properties we need to prove the virtual localization
formula of virtual fundamental classes of N -equivariant schemes following [Lev22b]
and hence [GP99].
For this section, let us fix X ∈ Sch/kN with a closed immersion ι : X ↪→ Y in
SchN/k, where Y is a smooth k-scheme. Let us also suppose X is equipped with an
N -equivariant perfect obstruction theory represented by a two term complex E• :=
(E1 → E0), of N -linearised locally free sheaves, together with an N -equivariant map
ϕ• : E• −→ LX/k.
Now consider the maximal subtorus T := Gm ⊆ N . We have the fixed T -schemes
XT ⊆ Y T , where we give XT the scheme structure XT := X ∩ Y T . Notice that Y T

is smooth (this is true in much greater generality, for example see [Rom22, Theorem
4.3.6]); consider its connected components Y1, . . . , Ys and inclusion maps ιYi : Yi ↪→ Y .
Let us denote ιj : Xj := Yj ∩X ↪→ X so that XT =

∐
j Xj .

Let F be a T -linearised coherent sheaf on Xj . The T -action on the Xj is trivial, so
we can decompose F into its weight spaces for the T -action:

F '
⊕
m∈Z
Fm

If F is locally free, then so are the Fm’s.
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Notation 4.3.1. Let F be a T -linearised coherent sheaf on some scheme Z with a
trivial T -action. Let F '

⊕
m∈ZFm be its decomposition in weight spaces, then we

will denote:
Fm :=

⊕
m∈Z\{0}

Fm

the moving part, and by:
F f := F0

the fixed part of F .

In the situation described above where we have ιj : Xj ↪→ X and a perfect obstruc-
tion theory ϕ• : E → LX/k on X, then ϕ• induces maps:

ϕ
(j)
• : ι∗jE f• −→ LXj /k

that by [GP99, Proposition 1] are perfect obstruction theories for the Xj ’s.

Definition 4.3.2. The virtual conormal sheaf of each Xj is defined to be the perfect
complex N vir

j := ι∗jEm• .

By [Lev22b, Lemma 6.2] we have:

Lemma 4.3.3 ([Lev22b, Lemma 6.2]). For each j, the perfect obstruction theory
ϕ

(j)
• : ι∗jE

f
• → LXj /k and N vir

j have a natural N -linearisation.

Remark 4.3.4. If Y is smooth then the N -action is semi-strict [Lev22a, Remark
9.6]. By [Lev22b, Remark 6.4], if the N -action on Y is strict, then the N action on
X will also be strict.

We will assume the N -action on X is strict.

Definition 4.3.5. By conventions set before Xj := X ∩ Yj with Yj connected com-
ponents of Y T . Let us denote:

|X|Nj := |X|N ∩Xj

and thus we have:
|X|N '

∐
j

|X|Nj

where each |X|Nj has its own perfect obstruction theory ϕ(j)
• with associated virtual

normal cone given by N vir
j . Each |X|Nj will decompose in connected component that

we will denote as |X|Nj,k
Remark 4.3.6. In the case of a strict N -action, consider an N -linearised locally
free sheaf V on some connected components of XT . Suppose that V = Vm. Then
V admits a generic representation type [Vgen] in the sense of [Lev22a, Construction
2.7], which is an isomorphism class of N -representations over k.
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Lemma 4.3.7. Let A ∈ SH(k) be an SL[η−1]-oriented ring spectrum. Consider
X ∈ SchN/k. Let V an N -linearised sheaf on X and suppose the N -action on X is
strict and we have V = Vm on |X|N . The restriction of V on the connected components
|X|Nj,k will be denoted by Vj,k. For fixed j, k we have:

1. there exists integersM,n such that eN (Vgenj,k ) is invertible in A• (BN)
[
(M · en)−1

]
.

2. the class eN (Vj,k) is invertible in A•N

(
|X|Nj,k; det−1(Vj,k)

) [
(M · en)−1

]
Proof. The second claim is a consequence of lemma 4.2.3. For the first claim it
is enough to notice that Vgenj,k is given by irreducible k-representations of N , and we
know that we can recover any irreducible representation ofN by tensor products of the
representations ρ+

m, ρ
−
0 . Then we conclude by applying multiple times lemma 4.1.10.

Let us recall again our setting: we are working with ι : X ↪→ Y an N -equivariant
closed immersion with Y smooth over k; we are given an N -linearised perfect ob-
struction theory ϕ• : E• −→ LX/k. We suppose that the N -action on X is strict.

Definition 4.3.8. Let A ∈ SH(k) be an SL[η−1]-oriented ring spectrum. Then we
have:

(i) For each connected component ιYj : Yj ↪→ Y of Y T , by lemma 4.3.7, there exists
an integer MY

j such that eN (ιYj
∗Tm

Y ) will be invertible in:

AN

(
Yj ; det−1

(
ιYj
∗Tm

Y

)) [(
MY
j · e

)−1
]

(ii) For each component ιj,k : |X|Nj,k ↪→ X of |X|N , by lemma 4.3.7, there exists an

integer MX
j,k such that eN

((
ι∗j,kE

m
1

)gen)
is invertible in:

AN

(
|X|Nj,k; det−1

(
ι∗j,kE

m
1

)) [(
MX
j,k · e

)−1
]

Hence we can define:

eN

(
Nvir
ιj,k

)
:= eN (

(
ι∗j,kE

m
0

)
) · eN (

(
ι∗j,kE

m
1

)
)−1

living in AN

(
|X|Nj,k; det−1

(
Nvir
ιj,k

))[(
MX
j,k · e

)−1
]
.

Denoting MX
j :=

∏
kM

X
j,k we can also define:

eN

(
Nvir
ιj

)
:=
{
eN

(
Nvir
ιj,k

)}
k
∈ AN

(
|X|Nj ; det−1

(
Nvir
ιj

)) [(
MX
j · e

)−1
]
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where we use the identification:

AN

(
|X|Nj ; det−1

(
Nvir
ιj

)) [(
MX
j · e

)−1
]
'

'
∏
k

AN

(
|X|Nj,k; det−1

(
Nvir
ιj,k

)) [(
MX
j,k · e

)−1
]

Remark 4.3.9. From theorem 4.1.18, we also have an integer used in the Atiyah-Bott
localization theorem for X that we will denote as M0.

Theorem 4.3.10 (Virtual Localization Formula). Let A ∈ SH(k) be an SL[η−1]-
oriented ring spectrum. Let ι : X ↪→ Y be a closed immersion in SchN/k, with Y a
smooth N -scheme. Let ϕ• : E• → LX/k be an N -linearised perfect obstruction theory.
Suppose the N -action on X is strict. With the notation introduced in definition 4.3.8,
we set:

M := M0 ·
∏
i,j

MX
i ·MY

j

Let
[
|X|Nj , ϕ

(j)
•

]vir
N
∈ ABM

•,N

(
|X|Nj /k, ι∗jE

f
•

)
the N -equivariant virtual fundamental

class for the N -linearised perfect obstruction theory ϕ(j)
• on |X|Nj . Then we have:

[X,ϕ]virN =
s∑
j=1

ιj∗

([
|X|Nj , ϕ(j)

]vir
N
∩ eN

(
Nvir
ιj

)−1
)
∈ ABM

N (X, E•)
[
(M · e)−1

]
Proof. We have developed along the way all the necessary tools used in the proof
[Lev22b, Theorem 6.7], upgrading them to the case of an SL[η−1]-oriented ring spec-
trum. Then the very same strategy used in loc. cit. works also in our case. For
completeness, we will sketch now the proof for a general SL[η−1]-oriented ring spec-
trum, but no claim of originality is made here.

Now consider Xj = Yj ∩ XT . By proposition 4.1.17, the localised Borel-Moore
homology of XT

ind vanishes. By assumption, our action is strict and thus we have
Xj = |X|Nj qXj ∩XT

ind. By a localization sequence argument, we can replace X with
X \XT

ind and Y with Y \XT
ind, so without loss of generality we can assume XT

ind = ∅
and Xj = |X|Nj . Let us denote the following inclusions:

ι : X ↪→ Y
ιj : Xj ↪→ Yj

ij : Xj ↪→ X
iYj : Yj ↪→ Y

The N -equivariant fundamental class [Y ]N of Y lives in ABM
N

(
Y /S,ΩY /k

)
. The

fixed locus Y T is smooth over k, with connected components Y1, . . . , Ys. Let [Yj ]N ∈
ABM
N (Yj /k,ΩYj /k) be the fundamental classes of the connected components. Since

the normal bundle associated to ιYj : Yj ↪→ Y is given by (ιYj )∗Tm
Y /k, by theorem 4.2.4

and remark 4.2.5 we have that:

[Y ]N =

s∑
j=1

(ιYj )∗

(
[Yj ]N ∩ eN

(
(ιYj )∗Tm

Y /k

)−1
)
∈ ABM

N

(
Y/k ,ΩY /k

) [
(MY e)

−1
]
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where we used the functoriality of lci fundamental classes (cf. [DJK21, Theorem
4.2.1]) to identify (ιYj )![Y ]N = [Yj ]N . Consider the following cartesian square:

X Y

Yj Y

p
∆

ι

IdY

ιYj

If we take the refined intersection product with respect to ι : X ↪→ Y and IdY :
Y → Y , by compatibility with proper pushforwards (proposition 1.5.10), from the
equation above we get:

[X,ϕ]virN = [X,ϕ]virN ∗ι,IdY [Y ]N =
s∑
j=1

(ιYj )∗

(
[X,ϕ]virN ∗ι,ιYj [Yj ]N ∩ eN

(
(ιYj )∗Tm

Y /k

)−1
)

We will then only need to show that:

Claim 2.

[X,ϕ]virN ∗ι,ιYj [Yj ]N ∩ eN
(

(ιYj )∗Tm
Y /k

)−1
= [Xj , ϕ

(j)]vitN ∩ eN
(
Nvir
ιj

)−1

Notation 4.3.11. To make the rest of the proof easier to read, we will change our
notation a bit. Given a cartesian square:

X Y

Z W

p
∆

g

f

where f is lci, we will denote the refined Gysin map as f ! := g!
∆. And for any given

vector bundle E →W , we will denote its zero section as sE : W ↪→ E.

Let us briefly recall our construction of the equivariant virtual fundamental class
from section 1.6.2. We have the cone D := CX/Y ×V(E0) = CX/Y ×E0, with quotient
Dvir := D/ι∗TY /k. The virtual cone Dvir has a closed immersion ιϕ : Dvir ↪→ E1 :=

V(E1) in SchN/k. Then the virtual class was defined as:

[X,ϕ]virN := s!
E1

(
(ιϕ)∗[D

vir]N
)
∈ ABM

N (X/k , E•)

For each Xj the N -linearised obstruction theory is given by ϕ(j) : i∗jE
f
• → τ≤1LXj /k.

Denoting by Dj := CXj /Yj × ι∗jE
f
0 and Dvir

j := Dvir
j /ι∗jTYj the corresponding cones,

we have:
[Xj , ϕ

(j)]virN := s!
i∗jE

f
1

(
(ιϕ(j))∗[D

vir
j ]N

)
∈ ABM

N

(
Xj/k , E

f
•

)
Let us start with the proof of the following:
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Claim 3. Consider the cartesian squares:

ι∗TY D

X E1

p

∆1

tY

sι∗TY

ι∗jTYj Dj

Xj i∗jE
f
1

p

∆2

tYj i∗j ι
∗TY Dj × i∗jEm

0

Xj i∗jE1

p
∆Yj

The refined Gysin pullbacks associated to the squares above will give us:

[X,ϕ]virN = s!
ι∗TY s

!
E1

[D]N

[Xj , ϕ
(j)]virN = s!

ι∗jTYj
s!
i∗jE

f
1

[Dj ]N

[X,ϕ]virN ∗ι,iYj [Yj ]N = s!
i∗j ι
∗TY

s!
i∗jE1

[
Dj × i∗jEm

0

]
The first two equations in claim 3 follow from the squares ∆1,∆2 and the func-

toriality of (refined) Gysin pullbacks (remark 1.5.7). Let βDj : Dj × i∗jEm
0 ↪→ D be

the closed immersion of cones, then an application of the equivariant Vistoli’s lemma
proposition 1.6.16 tells us that:

(βDj )∗
[
Dj × i∗jEm

0

]
N

= π!
Yj [D]N (4.2)

where π!
Yj

denotes the refined Gysin pullback with respect to πYj : Yj → S. Then
using eq. (4.2) and the commutativity of refined Gysin pullbacks, we get the third
equation in claim 3 (see [Lev22b, Theorem 6.7, Proof: Step 4] for more details).

(Claim 2)
�

Notice that (iYj )∗T f
Y ' TYj , hence (iYj )∗TY ' TYj ⊕ (iYj )∗Tm

Y . Then we have:

s!
i∗j ι
∗TY

s!
i∗jE1

[
Dj × i∗jEm

0

]
= s!

i∗j ι
∗Tm
Y
s!
i∗jE1

[
Dvir
j × i∗jEm

0

]
Claim 4. We have that:

[X,ϕ]virN ∗ι,iYj [Yj ]N ∩ eN
(
i∗jE

m
0

)
= s!

i∗jE
m
0

(
s!
i∗jE1

[Dvir
j × i∗jEm

0 ]N

)
∩ eN

(
i∗j ι
∗Tm

Y

)
We have a closed immersion Dvir

j ×Xj i∗jEm
0 ↪→ i∗jD/ι

∗
jTYj and composing this map

with the natural map i∗jD/ι
∗
jTYj → i∗jE1, we get a map σ : Dvir

j ×Xj i∗jEm
0 → i∗jE1.

Denote by Zσ
(
Dvir
j ×Xj i∗jEm

0

)
the scheme-theoretic pullback of Dvir

j ×Xj i∗jEm
0 along

the zero section of i∗jE1. There exists a commutative diagram in SchN/k:
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Zσ
(
Dvir
j ×Xj i∗jEm

0

)
i∗jE

m
0

i∗j ι
∗Tm

Y Xj

f

g

Let α := s!
i∗jE1

[
Dvir
j ×Xj i∗jEm

0

]
. By the (equivariant) excess intersection formula (cf.

[DJK21, Prop. 3.3.4]), we have:

si∗j ι∗Tm
Y

(
f∗(α) ∩ eN

(
i∗jE

m
0

))
= si∗jEm

0

(
g∗(α) ∩ eN

(
i∗j ι
∗Tm

Y

))
and this gives us the formula of claim 4.

(Claim 3)
�

Now we can finally prove claim 2. We have a natural map (ιϕ(j) , dm) : Dvir
j × i∗jEm

0 →
i∗jE

m
1 , induced by the inclusion ιϕ(j) and by the "moving" differential dm on Em• . By A1-

homotopy invariance, we can suppose that (ιϕ(j) , dm) factors via the first coordinate
projection Dvir

j × i∗jEm
0

p1→ Dvir
j , and the natural inclusion map Dvir

j ↪→ i∗jE
m
1 ⊆ i∗jE1.

By the equivariant excess intersection formula, we have:

s!
i∗jE

m
0
s!
i∗jE

m
1

[
Dvir
j × i∗jEm

0

]
N

=
(
s!
i∗jE

m
1

[
Dvir
j × i∗jEm

0

])
∩ eN

(
i∗jE

m
0

)
=

=
[
Xj , ϕ

(j)
]vir
N
∩ eN

(
i∗jE

m
1

)
Putting together all the statements we proved, we got:

[X,ϕ]virN ∗ι,ιYj [Yj ]N ∩ eN
(

(ιYj )∗Tm
Y /k

)−1
=

= s!
i∗j ι
∗TY

s!
i∗jE1

[
Dj × i∗jEm

0

]
∩ eN

(
(ιYj )∗Tm

Y /k

)−1
=

= s!
i∗j ι
∗Tm
Y
s!
i∗jE1

[
Dvir
j × i∗jEm

0

]
∩ eN

(
(ιYj )∗Tm

Y /k

)−1
=

= s!
i∗jE

m
0

(
s!
i∗jE1

[Dvir
j × i∗jEm

0 ]N

)
∩
(
eN
(
i∗jE

m
0

))−1
=

=
[
Xj , ϕ

(j)
]vir
N
∩ eN

(
i∗jE

m
1

)
∩
(
eN
(
i∗jE

m
0

))−1

that is exactly our claim 2. Thus we have just proved our virtual localization theorem.

Corollary 4.3.12 (Virtual Localization For Witt Theory). In the same situation as
in theorem 4.3.10, for A = KW we get:

[X,ϕ]virN =

s∑
j=1

ιj∗

([
|X|Nj , ϕ(j)

]vir
N
∩ eN

(
Nvir
ιj

)−1
)
∈ KWBM

N (X,E•)
[
(M · e)−1

]
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