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Abstract: Regular and irregular waves were numerically generated in a wave canal to investigate
hydrodynamic loads acting on a wind turbine monopile and to predict its structural response.
The monopile was implemented in the canal and modeled as a flexible structure, with the turbine
blades and rotors considered as a point mass situated at the top of the monopile. Fluid–structure
interaction (FSI) simulations were performed by coupling a structure solver based on a finite element
method (FEM) with an unsteady Reynolds-averaged Navier–Stokes (URANS) equations solver of
the finite volume method (FVM). The FSI simulations considered the two-way interaction between
the deformable structure and the fluid flow. The URANS equations solver was coupled with the
volume of fluid (VoF) method to account for the two-phase flow. In regular waves, numerically
predicted total load coefficients occurring at the monopile’s first eigenfrequency compared favorably
to experimental measurements. A deviation between calculations and measurements was observed
for the total loads in irregular waves. This deviation occurred due to the smaller wave energy density
of the numerically predicted irregular wave. Hydroelasticity effects increased wave-induced forces
by about 6% and wave induced bending moments by about 16% in regular waves. A relatively strong
whipping event was observed, which characterized the hydroelasticity response bending moment of
the monopile in irregular long-crested waves. This whipping event also had a significant influence on
the loads on the monopile. These investigations demonstrated the favorable use of FSI simulations to
predict hydroelasticity effects on a monopile.

Keywords: hydrodynamics; CFD; FSI; numerical simulations; volume of fluid; URANS simulations;
two-phase flow; wake field; offshore wind turbine

1. Introduction

The demand for offshore wind turbines has increased in recent decades and will
continue to increase as many countries intend to reduce greenhouse gas emissions [1].
Offshore wind turbines (OWTs) are expected to generate more than 70 GW of electricity in
the period from 2021 to 2025 [2]. These wind turbines are subject to wave-induced loads,
which need to be investigated as these loads significantly influence the ultimate strength
and the fatigue life of OWTs.

Many authors have performed numerical and experimental investigations to address
impact loads. The spatial detection of a slamming event, the identification of the relevant
parameters for the slamming, and the selection of a reliable mathematical model to evaluate
slamming effects are necessary to properly assess the structural integrity of OWTs [3].
Computational fluid dynamics (CFD) has been used to investigate the influence and the
characteristics of breaking waves on OWTs installed on a slope [4], the impact on the
foundation due to spilling and plunging breaking waves [5], the breaking wave forces and
maximum impact pressures on the cylindrical structure [6], and the physical processes
prevailing during breaking wave impacts [7]. The intensity of the impact of a plunging
breaking wave on a cylindrical structure depends on the wave’s shape immediately before
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impact. Maximum impact occurs just before the wave tongue is below the wave crest;
minimum impact occurs when the wave breaks behind the cylindrical structure [8]. The
distance between the location of a breaking wave and the cylindrical structure is important
to predict the extreme loads [9].

Experimental investigations were performed to determine the hydroelasticity response
of cylindrical structures subject to breaking waves [10–12]. Different intensities of breaking
waves from plunging to spilling were considered to measure pressures and accelerations.
Maximum accelerations were obtained for moderately plunging waves and maximum
pressures for severe plunging waves [10]. A wind turbine undergoes its largest response in
steep breaking waves, and this response may be a combination of slamming-induced and a
first-order ringing responses [11]. To predict bending moments at the seabed of an OWT
under ultimate limit sea state conditions, it is necessary to accurately determine at least the
first and second eigenmodes for the wind turbine [12].

To numerically explore hydroelasticity effects, simulations of Fluid–structure inter-
action (FSI) were performed to account for the associated structural response [13]. The
authors used a method based on solving the Reynolds-averaged Navier–Stokes (RANS)
equations, two-way coupled with a three-dimensional structure solver based on the finite
element method (FEM). The first and second bending modes and the nodal deformations
in areas of highest displacement per bending mode were considered. In regular waves, the
first bending mode was predominantly excited, whereas the second bending mode was
of minor relevance. In a focused wave, however, the overturning moment of the second
bending mode turned out to be 40% of the overturning moment of the first bending mode.
Furthermore, the dynamic effects of hydrodynamic loads acting on the structure were sig-
nificant in focused waves and less significant in regular waves [13]. The bending moment of
a monopile was investigated at the mud line for different wave periods and wave steepness
in regular waves [14]. The authors developed a new tool for FSI simulations, which couples
a nonlinear potential flow solver with an FEM tool using a Euler-Bernoulli beam model.
The accuracy of this simulation tool decreased with increasing wave steepness. Results
compared favorably only to the first two load harmonics; the agreement with higher load
harmonics was poor [14]. Numerical FSI simulations were performed to investigate the
contribution of hydroelasticity effects on fatigue loads [15]. As expected, fatigue damage
increased in sea states that generated a ringing response. The influence of a damped and a
lightly damped structure on fatigue damage was also investigated. The fatigue damage
increased considerably in sea states with a significant wave height greater than one-half
of the monopile’s diameter [15]. Bending moments at the mud line were experimentally
measured and numerically calculated for a monopile in long-crested irregular waves [16].
The 90th percentile of the bending moments was then compared over a 30 min time period
in irregular waves. Band pass filtering of the bending moment in the vicinity of the first
and the second eigenfrequencies, as well as the remaining eigenfrequencies, obtained the
total unfiltered bending moment of the structure. The bending moment of the second eigen-
frequency did not agree with the experimental data. No significant structural response
resulted for the second eigenfrequency [16].

The focus of this paper was to investigate hydroelasticity effects on the loads acting on
a monopile in regular and irregular waves using an unsteady Reynolds-averaged Navier–
Stokes (URANS) equations solver coupled in an implicit way (two-way-coupling) with a
3D FEM solver for structural dynamics [17]. We validated our numerical model against
experiments [18]. Moreover, we performed a systematic spatial and temporal discretization
study. We did not consider vortex-induced vibration.

We generated regular and irregular waves to examine not only the total response
loads, but also the low-pass and high-pass filtered response loads at a cutoff frequency
of about 90% of the monopile’s first eigenfrequency. This allowed us to investigate the
response loads in greater detail and to extract the whipping event that characterized the
hydroelasticity response loads of the monopile in long-crested irregular waves, which was
not observed by the previous investigations cited above. We validated our numerical FV
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structure model and the associated free surface elevation in the fluid domain surrounding
the monopile against experiments [18]. A spatial and temporal study was performed for
the fluid domain without implementing the monopile to obtain a suitable mesh and time
step for generating regular and irregular waves. The computed free surface elevations
were used and validated against the measured free surface elevations for the regular waves.
Further on, the energy density spectrum of the measured seaways was used to validate the
numerical method in irregular waves. Finally, we compared experimentally measured total
force and bending moment coefficients with computed total force and bending moment
coefficients, and these coefficients compared favorably to measurements. All simulations
were performed with the numerical tool STAR-CCM+ [17].

The progress in this paper, compared to the current state of the art, consisted in the
quantification of hydroelasticity effects of hydrodynamic loads acting on a monopile in
irregular seas. The nonlinear hydrodynamic effects (breaking waves, slamming) were taken
into account by the URANS solver.

2. Test Case Description

The simulations were performed and described for the model scale. The fluid domain
had a width of 0.818 m and a length of 30 m, representing the wave canal. The monopile
was situated on the centerline of the fluid domain at a longitudinal distance of x = 13.5 m.
As in reality, the bottom of the fluid domain was considered to be the mud line. To permit
structural deformations at the mud line, the monopile was fixed below the bottom of the
fluid domain. Table 1 lists the main dimensions of the monopile.

Table 1. Main dimensions of the monopile.

Parameter Value

Height (m) 4.1700

Diameter at 0.1% of height (m) 0.2300

Diameter at 0.5% of height (m) 0.1800

Diameter at 0.9% of height (m) 0.1600

Wetted surface area Ayz (m2) 0.2026

Wetted length (m) 0.8842

Our study comprised four scenarios. The first scenario identified the (dry) eigenfre-
quencies and the eigenmodes of the monopile for comparison with experimental measure-
ments. The second scenario was configured to evaluate the influence of the hydrodynamic
added mass on the structure’s first two eigenfrequencies. The water level was set at a
relative height of 22.44% of the height of the monopile. Figure 1 depicts the numerical
wave canal with the implemented monopile. This figure also presents the boundary con-
ditions for the third and fourth scenario. Numerical hammering tests were performed
for the first two scenarios under dry and wet conditions. The structure was exposed to
one triangular impulsive force in the longitudinal direction of the canal. The triangular
impulsive force was applied for a simulation time of 0.1 s at the relative height of about
95% of the monopile’s height. Table 2 presents the test matrix of the parameters for the
hammering tests. The accelerations were calculated in the time domain at five different
heights of the monopile structure and converted, via the fast Fourier transform (FFT), to
the frequency domain for a simulation time of 29 s. This process yielded the structure’s
first two eigenfrequencies and eigenmodes.

In the third scenario, regular waves were generated with a wave height of H = 0.3272 m
and a wave period of T = 1.809 s. The waves advanced in the longitudinal direction of
the fluid domain. The fourth scenario dealt with hydroelasticity effects on loads acting
on the monopile in irregular waves. Ocean wave spectra from the Joint North Sea Wave
Observation Project (JONSWAP) were used to generate the irregular waves of significant
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wave height Hs = 0.2238 m, peak wave period TP = 2.344 s, and peak shape enhancement
factor γ = 3.3. The third and fourth scenarios compared the computed total forces and total
bending moments with experimental measurements for a water level at a relative height of
20.48% of the height of the monopile. Table 3 lists the associated wave parameters for the
regular and irregular waves specified in the third and fourth scenarios.
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Table 2. Test matrix of parameters for hammering tests in the first and second scenario.

Scenario Canal
Condition

Relative Water
Level (%)

Relative Height of
Applied Triangular

Force (%)

Duration and
Amplitude of

Triangular Force
Number of Investigated

Eigen-
Frequencies Eigenmodes

1 Dry 0 95 0.1 s; 200 N 2 2

2 Wet 22.44 95 0.1 s; 200 N 2 2

Table 3. Wave parameters and relative water level relative to the monopile’s height for the third and
fourth scenario.

Scenario Relative Water Level (%) H (m) Hs (m) T (s) TP (s) γ

3 20.48 0.32720 - 1.8089 - -

4 20.48 - 0.22382 - 2.3444 3.3

3. Numerical Method
3.1. Fluid Domain

To solve the URANS equations, the fluid domain was assumed to consist of a liq-
uid water phase and a gaseous air phase. The free surface is computed using the VOF
method [17,19]. Appropriate exchange terms for mass and momentum account for the
interaction between the two phases [20]. The high-resolution interface capturing (HRIC)
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scheme [21] discretizes the transport equation for the volume fraction of the phases. The
shear stress transport (SST) k–ω model of Menter [22] approximates turbulence in the
URANS solver. A segregated flow solver resolves the conservation equation of mass and
momentum consecutively, using the semi-implicit method for pressure linked equations
(SIMPLE) algorithm. This SIMPLE algorithm couples the velocity and pressure fields via
the predictor-corrector approach. For more details, see our previous paper [23] and the
user manual of STAR-CCM+ [17].

A fifth-order Stokes wave theory modeled the regular waves [24]. However, as this
wave theory is only valid for Ursell numbers UR below a value of 30, its applicability had
to be verified [25]. The Ursell number is expressed as follows:

UR =
Hλ2

h3 , (1)

where λ is wavelength, h is water depth, and H is wave height. As this value turned out to
be about 10.1, it was appropriate to implement this wave theory.

The JONSWAP wave spectrum SJ(ω) [25] is used to generate the irregular waves:

SJ(ω) = AγSPM(ω)γ
exp (−0.5( ω−ωP

σωP
)

2
), (2)

where ω is the wave angular frequency, Aγ is a normalizing factor, SPM(ω) is the Pierson–
Moskowitz spectral density, ωP is the angular spectral peak frequency, and σ is the spectral
band width parameter.

The normal and tangential velocity vector components were defined as 0 for the
boundary conditions at the tank walls with the no-slip wall condition:

v·n = 0, (3)

v− (v·n)·n = 0, (4)

where v is the velocity vector and n is the unit normal to the boundary.

3.2. Solid Domain

A three-dimensional solid stress FEM idealized the structure of the monopile. Regard-
ing the conservation of mass and momentum, the fundamentals of the governing equations
for a solid model are the same as those for a fluid model. We used a Lagrangian approach
instead of a Eulerian approach for the solid model. The mass m is conserved at any time, so
that the deformed volume of the structure had the same mass as the undeformed volume.
This mass is written as follows:

m =
∫

V
ρ(t)dV =

∫
V0

ρ0dV = const, (5)

where V is the deformed volume of the structure, ρ(t) is the density of the deformed mate-
rial, and V0 and ρ0 are the volume and density of the undeformed structure, respectively.
The deformation of the volume slightly changes the density ρ(V) of the material as mass
remains constant. This density is expressed as follows:

ρ(V) =
m0

V
=

∫
V0

ρ0dV∫
V dV

, (6)

where m0 is the mass of the undeformed structure.
The material properties were assumed as isotropic linearly elastic. Therefore, the

volume change is defined as follows:

V −V0

V
=

σm

K
= ε, (7)
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where σm is the mean stress, K is the bulk modulus, and ε is the infinitesimal strain.
The variation of the density is derived from the mean stress for the isotropic linear

elastic model:
ρ(σm) = ρ0

(
1− σm

K

)
. (8)

The convective term in the momentum equation is omitted due to the Lagrangian
approach for the solid structure, and the Cauchy equilibrium is implemented into the
momentum equation:

ρ
..
u−∇σ− b = 0, (9)

where
..
u is the acceleration derived from the displacement of the solid structure, σ is the

Cauchy stress tensor, and b is the body force per unit volume. Boundary conditions defined
as constraints and loads follow the Neumann and the Dirichlet conditions:

u =
−
u, (10)

σ =

−
τ

n
, (11)

where Equation (14) describes the Dirichlet boundary condition for a constrained motion,

Equation (15) expresses the Neumann boundary condition for a defined load,
−
u is a spec-

ified displacement of a surface,
−
τ is a specified traction vector on a surface, and n is the

surface normal.
The fluid forces deform the solid structure. The resulting deformation of the mesh of

the solid and in the fluid domains has to be considered in the momentum equation of the
solid domain and in the mass and momentum equations of the fluid domain. More details
may be found in [17].

4. Numerical Setup

For the first two scenarios, the monopile was placed in the center of the domain and
its bottom at z = −0.3345 m below the canal’s bottom. The first scenario considered the
canal to be empty; the second scenario considered the canal to be filled with water. The
water was assumed to be calm in the second scenario and only slightly moving on account
of the deformations of the monopile structure during the numerical hammering tests.

A numerical hammering test was performed by applying, at the top of the monopile,
a triangularly varying impulsive force described as follows:

Fx(t) = 200N ∗
(

1− t
0.1

)
f or t ≤ 0.1, (12)

where Fx is the force in the x-direction, and t is the simulated time. As the monopile was
symmetrical, it was sufficient to apply this triangular impulsive force only in the x-direction.
The monopile’s top was excited until the simulated time of 0.1 s, see Equation (12). The
accelerations of the monopile’s structure were monitored with probe points installed at
five different height positions over a simulation time of 29 s. The eigenfrequencies and
eigenmodes were obtained by transforming the accelerations of the monopile at these five
probe points from the time domain into the frequency domain.

The surface of the monopile and all walls, except the top and the side walls in the fluid
domain, were defined as walls with the no-slip condition. The side walls were defined as
walls with the slip condition, and the top wall was defined as a pressure outlet. A floating
condition was specified for the top wall and the contact area between the fluid domain and
the solid domain to account for the interaction between both domains and thus to allow
these surfaces to deform. All the other boundaries were specified as fixed because they
did not deform. A constraint motion condition was specified for the bottom surface of the
monopole. Velocities and pressures were defined as zero for the initial conditions in the
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first scenario. The hydrostatic pressure of the water level and the velocity of zero were
defined as initial conditions in the second scenario.

For the third and the fourth scenarios, the domain length was extended to 30 m to
facilitate generating regular and irregular waves. The wave heights and velocities needed
space and time to develop before hitting the structure. The water level was about 20.48%
of the monopile’s height. The side walls in these scenarios were specified as walls with
the slip condition. Velocities were specified at the inlet wall, i.e., at x = 0 m. Regular
and irregular waves were generated at this boundary. The top wall and the end wall (at
x = 30 m) represented pressure outlets. The bottom was specified as a wall with the no-slip
condition. Boundary conditions regarding the FSI simulations were the same as those for
the first and the second scenarios. The pressure of the fifth-order Stokes wave and zero
velocity were defined as initial conditions for the third scenario, and the pressure of the
irregular wave and zero velocity were defined as initial conditions for the fourth scenario.

A second-order scheme discretized space. Time was discretized implicitly to the
second order. The ambient air was assumed to be compressible and the water to be
incompressible. The HRIC scheme was employed for the multi-phase VoF model. The
Courant–Friedrichs–Lewy (CFL) number was on average lower than 0.2. Accurate results
were obtained in previous investigations using a sharpening factor of 0.1 for the HRIC
scheme [26]. The thickness of the first prism layer was small enough to retain an averaged
wall y+ value of less than 1.0 at the monopile’s surface in the FSI simulations. The turbulent
kinetic energy k was set to 0.001 J/kg; the specific dissipation rate, ω, to 1.0 × 10−4 1/s [23].
Rayleigh damping was used. To model the structure of the monopile as accurately as
possible, we used an isotropic linear elasticity model for the monopile structure with the
corresponding material properties.

A total of about 20,000 hexahedral control volumes (CVs) modeled the structure of
the monopile. The FEM was made up of 10 cylindrical segments. A mapped contact
interface connected these cylinders with each other, and they were meshed individually.
This ensured that we established a high-quality mesh for the entire monopile structure.
As shown in Figure 2, the diameter of the monopile was subdivided into 56 elements; its
thickness, into 3 elements.

To investigate hydroelasticity effects of the monopile in regular and irregular waves,
two separate validation studies were performed. One study compared computed and
measured time histories of free surface elevation of regular waves; the other study com-
pared computed and measured time histories of the free surface elevation and the energy
density spectrum of irregular waves. The discretization studies were performed without
the monopile.

Each discretization study was performed on three successively finer grids refined by
the factor

√
2. The same CFL number was obtained for each grid. The number of cells in the

width of the tank was reduced to two cells. From [13,27,28], we extracted the recommended
number of CVs per wave height and the associated time steps. For each grid, Table 4 lists
the number of CVs, the time step, the number of time steps per wave period, T, and the
number of CVs per wave height.

Hexahedral cells were used to generate the mesh in the fluid domain, which are widely
employed in various hydrodynamic modeling [29,30]. A mesh alignment location was
defined at the intersection between the liquid and gaseous phases. The CVs in the vicinity
of the free surface had a height equal to one-half of a CV’s length. The specified free surface
mesh ranged from z = −0.25 m below the free surface to z = 0.28 m above the free surface.

For the validation study in regular waves, the CVs’ height and length in the region
of the free surface were, respectively, ∆z = 0.02892 m and ∆x = 0.05784 m for the coarse
grid, ∆z = 0.02045 m and ∆x = 0.0409 m for the medium grid, and ∆z = 0.01446 m and
∆x = 0.02892 m for the fine grid. For the validation study of irregular waves, the CVs’
height and length in the region of the free surface were, respectively, ∆z = 0.02487 m and
∆x = 0.04974 m for the coarse grid, ∆z = 0.01759 m and ∆x = 0.03517 m for the medium
grid, and ∆z = 0.012435 m and ∆x = 0.02487 m for the fine grid.
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Table 4. Number of CVs, time step size, number of time steps per wave period, and number of CVs
per wave height for hydroelastic computations on the coarse, medium, and fine grids.

Regular Wave Irregular Wave

Grid Control
Volumes Time Step (s) T

Time step
Cells per

Wave Height
Control

Volumes Time Step (s) TP
Time step

Cells per
Wave Height

Coarse 35,972 5.17 × 10−3 350 11.3 49,120 5.86 × 10−3 400 9

Medium 69,936 3.65 × 10−3 495 16 93,204 4.14 × 10−3 566 12.7

Fine 136,240 2.58 × 10−3 700 22.6 184,984 2.93 × 10−3 800 18

An additional volume meshing was performed with a hyperbolic tangent extrusion
type mesh. At the end wall of the numerical domain, ranging from x = 30 m to x = 60 m, the
existing mesh was extended by ten layers to generate the additional volume. A stretching
factor of 1.4 was used for these ten layers. This extruder meshing model increased the length
of the CV and, therefore, increased the iteration errors and the numerical discretization.
However, it dampened the waves and prevented their reflection [31]. Figure 2 presents
the side view of the fine mesh used for the irregular wave simulations in the vicinity of
x = 30 m, where the extruded mesh began. The area of the free surface was additionally
locally refined.

A first prism layer thickness of 8.0 × 10−5 m was defined for the monopile structure
in the fluid domain. The total thickness of the prism layer was limited to 0.00405 m for the
FSI simulations with the regular wave train and to 0.00348 m for the FSI simulations with
the irregular wave train. We used a total of seven prism layers. Figure 2 shows a side view
of the monopile structure situated in the canal and the associated mesh of the solid and
fluid domains. As vortex-induced vibrations were not considered, the loads were induced
by the waves.

5. Validation

We started by validating the dry and wet eigenfrequencies of the monopile structure.
Then we compared the structure’s first two computed eigenmodes with experimental
measurements. The accelerations from the associated hammering tests were obtained at five
selected probe points located at different heights along the monopile. These accelerations
were recorded in the time domain and transformed into the frequency domain via an FFT.
This procedure yielded the eigenfrequencies of the structure. At the first eigenfrequency,
the first eigenmode was derived from the maximum amplitude of the accelerations of the
respective probe points; at the second eigenfrequency, the second eigenmode was in this
way derived. The displacements of the recorded probe points of the first two eigenmodes
were estimated using the following equation:

uxij =

..
uxij

(2π fi)
2 , (13)

where ux is the displacement in the x-direction,
..
ux is the acceleration in the x-direction, and

f is the eigenfrequency. Index i refers to the first and second eigenfrequencies; index j, to
the probe points.

Figure 3a plots the spectrum of axial accelerations
..
ux at the five positions (probe

points 1 to 5). The x-shaped markings in Figure 3b depicted the percentage deviation
from the highest displacements uxmaxi of the corresponding eigenmode and the percentage
deviation from the maximum height zmax of the monopile for the respective probe point.
The graphs in Figure 3b were extrapolated from the x-shaped markings. Probes 1, 2, 3, 4
and 5 are located at the heights of 0.19%, 0.30%, 0.47%, 0.71%, and 0.96% of the monopile’s
height. Figure 3b depicts the computed and measured displacements of the first and the
second eigenmodes, showing a favorable agreement for the first eigenmode between the
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physical and the numerical model. Although the second eigenmode was not captured as
favorably as the first eigenmode, it was within an acceptable range. The higher eigenmodes
and eigenfrequencies were considered to be of minor importance. The computed first two
(dry) eigenfrequencies of 1.632 Hz and 7.479 Hz compared favorably to the corresponding
measured eigenfrequencies of 1.634 Hz and 7.458 Hz.
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hammering tests.

To investigate the effect of the hydrodynamic added mass on the first two eigenfre-
quencies, hammering tests were performed. The computed eigenfrequencies of the wetted
monopile were 1.629 Hz and 7.192 Hz; the corresponding measured eigenfrequencies,
1.633 Hz and 6.594 Hz.

Figure 4 presents the experimental and numerical results of the decay test for the
monopile in water. The computed and measured displacements of the center of the
monopile were low-pass and band-pass filtered. The displacements were normalized
against the maximum displacement of the corresponding mode. The computed and mea-
sured damping ratios (Rayleigh) were 0.0128 and 0.0134 for the first mode and 0.0186
and 0.0160 for the second mode, respectively. The computed damping ratios of the first
and second modes deviated by about 4.5% and 16.3%, respectively, from the measured
damping ratios.

The added mass hardly affected the first eigenfrequency, but it did noticeably influence
the second eigenfrequency. The computed and measured deviations between the wet and
dry second frequencies were 3.56% and 11.58%, respectively. The deviation between the
computed and the measured second wet frequencies was 9.07%. Similar deviations were
observed in [13]. This deviation may have been due to the difference in stiffness [16].
The first eigenfrequency was influenced by the mass distribution at the top and the sec-
ond eigenfrequency by the mass distribution at the center of the monopile. This latter
mass distribution was closer to the area surrounded by water. Therefore, there was a
noticeable influence of hydrodynamic added mass on the second eigenfrequency. Table 5
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lists the measured and computed first and second eigenfrequencies and the associated
damping ratios.

J. Mar. Sci. Eng. 2023, 11, 350 11 of 24 
 

 

monopile were 1.629 Hz and 7.192 Hz; the corresponding measured eigenfrequencies, 
1.633 Hz and 6.594 Hz. 

Figure 4 presents the experimental and numerical results of the decay test for the 
monopile in water. The computed and measured displacements of the center of the mono-
pile were low-pass and band-pass filtered. The displacements were normalized against 
the maximum displacement of the corresponding mode. The computed and measured 
damping ratios (Rayleigh) were 0.0128 and 0.0134 for the first mode and 0.0186 and 0.0160 
for the second mode, respectively. The computed damping ratios of the first and second 
modes deviated by about 4.5% and 16.3%, respectively, from the measured damping ra-
tios. 

 
Figure 4. Time histories of normalized axial displacement of the center of the monopile and associ-
ated damping ratios for the first (a) and the second (b) modes from hammering tests. 

The added mass hardly affected the first eigenfrequency, but it did noticeably influ-
ence the second eigenfrequency. The computed and measured deviations between the wet 
and dry second frequencies were 3.56% and 11.58%, respectively. The deviation between 
the computed and the measured second wet frequencies was 9.07%. Similar deviations 
were observed in [13]. This deviation may have been due to the difference in stiffness [16]. 
The first eigenfrequency was influenced by the mass distribution at the top and the second 
eigenfrequency by the mass distribution at the center of the monopile. This latter mass 
distribution was closer to the area surrounded by water. Therefore, there was a noticeable 
influence of hydrodynamic added mass on the second eigenfrequency. Table 5 lists the 
measured and computed first and second eigenfrequencies and the associated damping 
ratios. 

To estimate discretization errors, we first performed simulations on three succes-
sively finer spatial and temporal grids for the regular and the irregular waves without the 
monopile. 

  

Figure 4. Time histories of normalized axial displacement of the center of the monopile and associated
damping ratios for the first (a) and the second (b) modes from hammering tests.

Table 5. First and second computed eigenfrequencies and their deviation from experimentally
measured eigenfrequencies for the monopole situated in an empty (dry) and in a filled (wet) canal
computed damping ratios for the first two modes and their deviation from experimentally measured
eigenfrequencies in the wet condition.

Dry Wet

1st 2nd 1st Damping Ratio 2nd Damping Ratio

Exp. (Hz) 1.634 7.458 1.633 0.0134 6.594 0.0160

Num. (Hz) 1.632 7.479 1.629 0.0128 7.192 0.0186

Devi. (%) 0.12 0.28 0.24 4.48 9.07 16.25

To estimate discretization errors, we first performed simulations on three succes-
sively finer spatial and temporal grids for the regular and the irregular waves without
the monopile.

Figure 5a plots the normalized free surface elevation, i.e., the free surface elevation
divided by the maximum measured wave height at the position of the monopile versus the
normalized time, i.e., the time divided by the wave period. A dashed blue line identifies
computed free surface elevations obtained on the coarse grid consisting of 35,972 control
volumes (CVs) with a corresponding time step of 5.17× 10−3 s; a dashed red line, computed
free surface elevations obtained on the medium grid consisting of 69,936 CVs with a
corresponding time step of 3.65 × 10−3 s; a dashed yellow line, computed free surface
elevations obtained on the fine grid consisting of 136,240 CVs with a corresponding time
step of 2.58 × 10−3 s. A solid black line identifies the free surface elevations obtained from
experimental measurements [18]. Figure 5b depicts box plots [32] of free surface elevations
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peaks obtained over about 50 wave periods. The median peak value of the normalized
free surface elevation from numerical simulations was 0.565 for the coarse grid, 0.576 for
the medium grid, and 0.581 for the fine grid. The median peak of the normalized free
surface elevation from the experiments was 0.585. Note that the computed free surface
elevation obtained on the finest grid agreed closest to the measured free surface elevation.
The computed normalized median peak of the free surface elevation deviated by 0.68%
from the experimentally measured normalized median peak.
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To quantify the discretization errors, we applied the procedure by Oberhagemann [33].
Figure 6a plots the refinement ratio of the time step versus the refinement ratio of the grid
spacing. The refinement ratio of the time step tk is defined as follows:

tk =
tgridk

tgrid1

, (14)

where k = 1, 2, and 3 are the indices for the coarse, medium, and fine grids, respectively.
The refinement ratio of the grid spacing xk is defined as follows:

xk =
Grid_spacinggridk

Grid_spacinggrid1

, (15)

where Grid_spacing is the length of the control volume in the x-direction. The refinement
factor of the grid spacing and the time step was

√
2.
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Figure 6. Refinement ratio of time step vs. refinement ratio of grid spacing (a) and discretization-
independent normalized free surface elevation of the regular wave cases vs. refinement ratio (b).

Figure 6b plots the discretization-independent normalized free surface elevation of
the median of the peak values versus the refinement ratio. The value of the green line at
the refinement ratio of 0.0 yielded a discretization independent normalized wave elevation
of 0.598, which was a deviation of 2.39% from the experimental median value.

Figure 7a plots the normalized free surface elevation, i.e., the free surface elevation
divided by the significant wave height (Hs = 0.22382 m) versus the normalized simulation
time, i.e., the time divided by the seaway’s peak period (Tp = 2.3444 s). A blue line identifies
computed free surface elevations obtained on the coarse grid consisting of 49,120 CVs;
a red line, computed free surface elevations obtained on the medium grid consisting of
93,204 CVs; a yellow line, computed free surface elevations obtained on the fine grid
consisting of 184,984 CVs. A solid black line identifies the experimental data. Figure 7b
depicts the energy density spectra. The calculated and measured normalized free surface
elevations obtained over 9.8 min (model scale) were used to calculate the wave energy
density spectra [34]. The area below the energy density spectra based on simulations and
experiments was calculated and compared. The area from numerical simulations on the
coarse grid was 0.000523 m2; the area from numerical simulations on the medium grid,
0.000548 m2; and the area from numerical simulations on the fine grid, 0.000551 m2. The
area from the experiments was 0.000590 m2. The area obtained on the fine grid deviated by
a mere 6.6% from the area obtained from experiments.

Figure 8a plots the numerically simulated refinement ratio of the time step versus the
refinement ratio of the grid spacing for the irregular wave cases. Figure 8b plots the area of
the discretization-independent energy density of the associated grids and their time steps
for the irregular waves, which turned out to be about 0.000583 m2. This discretization-
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independent value would have been obtained with an infinitesimally small grid spacing
and time step. The deviation of the discretization independent value from the experimental
value was about 1.2%.

Table 6 lists median values of normalized free surface elevations for different grid
sizes and their time steps, the area below the energy density spectra, the discretization
independent normalized free surface elevation, and the discretization independent area of
the energy density spectra for the numerically simulated regular and irregular wave cases.
Values in brackets identify the deviation from the experimentally measured values.

Figure 9 plots the exceedance probability of computed and measured normalized free
surface elevations (scaled by Hs = 0.22382 m) for the irregular wave case. As expected,
the finer the discretization, the closer was the agreement with experiments. Simulated
free-surface elevations performed on the coarsest grid deviated most from measurements
because the relatively rougher discretization was unable to adequately resolve the high
waves. Consequently, all subsequent computations were performed on the finest grid.
Table 7 lists associated number of control volumes and time step sizes.
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Table 6. Median values of normalized free surface elevations obtained on the coarse, the medium, and
the fine grid areas below the energy density spectra, and discretization independent normalized free
surface elevations, discretization independent area of the energy density spectra, and their deviation
from experimental measurements (in brackets) for the regular and irregular wave cases.

Regular Waves Irregular Waves

Grid

Norm. Free Surface
Elevation (-) and
Deviation from
Experiments (%)

Discretization Independent
Norm. Free Surface

Elevation (-) and Deviation
from Experiments (%)

Energy Density
(

m2

Hz

)
and

Deviation from
Experiments (%)

Discretization Independent
Norm. Energy Density

(
m2

Hz

)
and Deviation

from Experiments (%)

Coarse 0.565 (3.42)

0.598 (2.22)

0.523 × 10−3 (11.37)

0.583 × 10−3 (1.20)Medium 0.576 (1.54) 0.548 × 10−3 (7.13)

Fine 0.581 (0.68) 0.551 × 10−3 (6.63)

Table 7. Control volumes and time steps for the FSI simulations in regular and irregular waves.

Regular Waves Irregular Waves

Grid Control Volumes Time Step (s) Control Volumes Time Step (s)

Fine 1,763,733 2.58 × 10−3 2,759,498 2.93 × 10−3
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6. The Monopile’s Response Loads

The normalized force coefficient cx [26] expressed the monopile’s total longitudinal
force in the (longitudinal) x-direction as follows:

cx =
Fx

ρ·
(

2π2· 1
TP

2 ·Hs
2
)
·Ayz

, (16)

where TP and Hs are, respectively, period and wave height for the regular wave case and
peak period and significant wave height for the irregular wave cases, and Ayz = 0.2026 m2

is the projected wetted surface area of the monopile. The bending moment coefficient cmy
expressed the monopile’s normalized bending moment about the y-axis as follows:

cmy =
My

ρ·
(

2π2· 1
TP

2 ·Hs
2
)
·Ayz·l

, (17)

where My is the bending moment about the y-axis, and l = 0.8842 m is the monopile’s
wetted length.

Figure 10a–d presents calculated and measured longitudinal force and bending mo-
ment coefficients in regular waves. Figure 10a plots computed (blue line) and measured
(black line) amplitude spectra of longitudinal force coefficients. As seen, our numerical
simulations captured the measured response loads favorably. Note that the first peak of
force coefficients in the spectrum occurred at a frequency of 0.557 Hz, which corresponded
to the wave frequency. The second peak of the force coefficients corresponds at a frequency
of 1.107 Hz to the second-order force. The peaks at frequencies of 1.629 Hz and 7.192 Hz
represented the first and second eigenfrequencies of the monopile. Figure 10b plots the
amplitude spectrum of the bending moment coefficient. In contrast to the force coefficient,
a higher third peak occurred at 1.629 Hz.

Figure 10c presents time histories of calculated and measured longitudinal force
coefficients for twelve wave periods. Generally, our numerical simulations favorably
captured the force response of the monopile although maxima and minima of the force
coefficient peaks were slightly underestimated. Figure 10d plots the corresponding time
histories of computed and measured bending moment coefficients. Here, too, our numerical
simulations slightly underestimated the maxima and minima of the bending moment
coefficient peaks; however, the agreement with measurements was fair.
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Figure 10. Amplitude spectra of the longitudinal force (a) and bending moment coefficients (b), and
time histories of the longitudinal force (c) and bending moment coefficients (d) in regular waves.

Figure 11a–d depicts the filtered calculated and measured force and bending moment
coefficients in regular waves for the simulations that were presented in Figure 10a–d. To
demonstrate the hydroelasticity effects on total load response, these values were low-pass
and high-pass filtered about the first eigenfrequency of the monopile. A red line identifies
coefficients that were low-pass filtered at the cutoff frequency of about 90% of the first
eigenfrequency of the monopile; a cyan line, coefficients that were high-pass filtered at the
same cutoff frequency. Figure 11a plots the amplitude spectrum of force coefficients. The
first amplitude peak (red curve) at 0.557 Hz corresponded to the first order force; the second
amplitude peak, to the second-order force. The amplitude peak (cyan curve) at 1.629 Hz
corresponded to the first order vibration mode. The remaining peaks corresponded to
higher order vibration modes. The response of the bending moment coefficient was similar
(see Figure 11b). Figure 11c presents time histories of the lower frequency (red curve, wave
load on rigid body) and the higher frequency (cyan curve, hydroelasticity-induced load)
force coefficients. As seen, wave-induced forces were dominant. The amplitudes of wave-
induced force coefficients considering hydroelasticity (see Figure 10c blue line) were about
5.9% higher than the amplitudes of wave-induced force coefficients without considering
hydroelasticity (see Figure 11c red line). Figure 11d presents time histories of the associated
filtered response bending moment coefficients. The amplitudes of wave-induced bending
moment coefficients considering hydroelasticity (see Figure 10d blue line) were now about
16.14% higher than the amplitude of the bending moment coefficient that did not consider
hydroelasticity (see Figure 11d red line). These plots demonstrated the significant influence
of hydroelasticity effects on total loads acting on the monopile. The first and second-order
wave loads, without accounting for hydroelasticity, were lower than the loads that did
consider hydroelasticity effects and, as expected, these hydroelasticity effects were stronger
for bending moments than for forces.

Figure 12a–d depicts the calculated and measured response force and bending mo-
ment coefficients in irregular waves. Figure 12a represents the FFT of the calculated and
measured force coefficients. Blue lines identify numerically calculated values; black lines,
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experimental measurements. As expected, the first computed and measured amplitude
peaks occurred at the peak frequency of the seaway

(
1

TP
= 0.427 Hz

)
. The second calcu-

lated and measured amplitude peaks occurred at about 1.633 Hz, which corresponded
to the first eigenfrequency of the monopile. The bending moment response was similar
(see Figure 12b). As with regular waves, hydroelasticity effects on the bending moment
were more pronounced than on the force. Figure 12c,d presents time histories of force and
bending moment coefficients for a representative time interval.

To quantitatively compare the computed and measured loads in irregular seas, we
determined short-term statistics. Figures 13 and 14 show a comparison of computed and
measured exceedance probabilities of the force and moment coefficients, respectively. Gen-
erally, the simulations agreed favorably with measurements. Higher deviations occurred in
the vicinity of rarely occurring events. This applied in particular to the bending moment.
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Overall, the agreement between calculations and measurements was satisfactory,
particularly for the bending moment.

Figure 15a–d presents the low-pass and high-pass filtered force and bending mo-
ment coefficients at the cutoff frequency of 90% of the monopile’s first eigenfrequency for
simulations in irregular waves. Figure 15a,b plots the amplitude spectra of the filtered
force and bending moment coefficients, respectively, versus frequency. Red lines identify
low-pass filtered load response coefficients; cyan lines, high-pass filtered load response
coefficients. The time histories plotted in Figure 15c,d shows that wave-induced force and
moment coefficients (low-pass filtered) were significantly higher than the hydroelasticity-
induced force and moment coefficients (high-pass filtered). Hydroelasticity-induced force
coefficients were hardly affected. The influence of hydroelasticity on the bending mo-
ment was more pronounced. This demonstrated that vibratory stresses characterizing
the hydroelasticity-induced bending moment response may significantly influence fatigue
loads. Figures 16 and 17 depict, respectively, the exceedance probabilities of wave-induced
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force and bending moment coefficients obtained without accounting for hydroelasticity
(rigid structure) and wave-induced force and bending moment coefficients that did consider
hydroelasticity (elastic structure). Figures 16 and 17 demonstrate the influence of hydroe-
lasticity on total loads acting on the monopile. The wave-induced loads that considered
hydroelasticity were higher than the wave-induced loads without considering hydroelastic-
ity. The bending moment coefficients, in particular, were notably higher when considering
hydroelasticity. Figure 18 depicts velocities of the flow around the monopile in a horizontal
plane closely below the free surface and the associated pressure distribution acting on the
monopile right before the first wave impact. This figure shows the deformation of the
monopile which was captured with the FSI simulations.
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7. Conclusions and Outlook

Hydrodynamic loads caused by regular and irregular waves acting on a flexible
monopile were numerically predicted using a URANS equations solver implemented with
a VoF method to account for the two-phase flow. The URANS solver is coupled with a
FEM of the structure. First, we performed validation studies of the monopile’s FEM to
estimate dry eigenfrequencies and eigenmodes. Then, we calculated eigenfrequencies,
eigenmodes, and damping of the monopile in water. Our numerically predicted first
and second eigenfrequencies, as well as damping, compared favorably to experimental
measurements. Our predicted second eigenfrequencies deviated only by 9.07%, which was
likely caused by the deviation in the stiffness.

We first performed validation studies for the free surface elevation of regular and
irregular waves generated without the presence of the monopile. We obtained predictions
on three successively refined grids and time steps and validated our numerical results
against experimental measurements. We then used the finest grid and its associated time
step to carry out the FSI simulations, now with the monopile.

We computed longitudinal forces and bending moment coefficients. These load
coefficients were low-pass and high-pass filtered at the monopile’s first eigenfrequency to
assess the effects of hydroelasticity on load responses.

In regular waves, our numerically predicted total force and bending moment coeffi-
cients compared favorably to experimental measurements. Overall, hydroelasticity effects
on bending moments were significantly greater than on forces. Wave-induced forces con-
sidering hydroelasticity were about 5.9% higher and wave induced bending moments
considering hydroelasticity were about 16.14% higher than their respective wave-induced
values in regular waves that did not consider hydroelasticity. The same trend was observed
also in irregular waves.

Our investigations demonstrated the favorable use of FSI simulations to predict hy-
droelasticity effects on a monopile subject to wave-induced loads.
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