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Introduction

This thesis consists of two chapters. The first one is about computing the
quadratic Euler characteristic of a smooth projective complete intersection of
hypersurfaces of the same degree and the second one is about computing motivic
Donaldson-Thomas invariants for P3.

The quadratic Euler characteristic of a smooth projective
complete intersection of hypersurfaces of the same degree

The quadratic Euler characteristic of a smooth projective scheme over a per-
fect field of characteristic not equal to 2 is a refined or motivic analogue of the
usual topological Euler characteristic, and of Euler characteristics defined using
étale or De Rham cohomology. It comes from a very general definition of a
categorical Euler characteristic associated to a dualizable object of a symmetric
monoidal category, living in the endomorphism ring of the unit. Motivic homo-
topy theory, introduced by Morel and Voevodsky, constructs the stable motivic
homotopy category SH(k) of a field k; a symmetric monoidal category in which
a smooth projective scheme over k has an image which is dualizable. A deep
theorem by Morel (see [42, Theorem 6.4.1]) states that if k is perfect and not of
characteristic 2, then the endomorphism ring of the unit in SH(k) is isomorphic
to the Grothendieck-Witt ring GW(k) of k. This is the group completion of the
ring of all isometry classes of nondegenerate quadratic forms over k. Therefore,
we obtain the quadratic Euler characteristic χ(X/k) ∈ GW(k) of any smooth
projective scheme X over k, which is a (virtual) quadratic form.
These quadratic Euler characteristics carry a lot of information within them: if
k ⊂ R then the rank of χ(X/k) is equal to the topological Euler characteristic
of the C-points X(C), while the signature of χ(X/k) is the topological Euler
characteristic of the real points X(R). Quadratic Euler characteristics are of-
ten used in the fast-growing field of refined enumerative geometry, which aims
to obtain “quadratic enrichments” of results in classical enumerative geometry.
However, they are in general hard to compute.
The motivic Gauss-Bonnet Theorem (see [35]) proven by Levine and Raksit gives
a rather explicit way to compute quadratic Euler characteristics. Namely, con-
sider a smooth projective scheme X over a perfect field k which is not of charac-
teristic 2 as before. For a ∈ k∗, let ⟨a⟩ be the quadratic form x 7→ ax2 ∈ GW(k).
Then we can compute χ(X/k) ∈ GW(k) as follows:

� If dim(X) is odd, then χ(X/k) = C ·H for some C ∈ Z, where H is the
hyperbolic form ⟨1⟩+ ⟨−1⟩.

� If dim(X) = 2n is even, then χ(X/k) = C ·H +Q for some C ∈ Z, where
Q is the quadratic form given by the composition

Hn(X,ΩnX)×Hn(X,ΩnX)
∪−→ H2n(X,Ω2n

X )
Trace−−−→ k.

Here, ΩX denotes the sheaf of differential forms on X, the first map is the
cup product on cohomology and we write ΩqX = ∧qΩX .
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The constant C can be computed in practice. Therefore, one can compute the
quadratic Euler characteristic of a smooth projective scheme if one understands
the form Q in the even dimensional case. This form has been computed suc-
cessfully in the case of hypersurfaces by Levine, Lehalleur and Srinivas in [33].
Given a smooth projective hypersurface X = V (F ) ⊂ Pn, the authors use inspi-
ration from the paper [11] by Carlson and Griffiths to describe an isomorphism
from the primitive cohomology of ΩqX to certain graded pieces of the Jacobian
ring

JX = k[X0, · · · , Xn]/

(
∂F

∂X0
, · · · , ∂F

∂Xn

)
.

This is then applied to compare the cup product on cohomology with the usual
ring multiplication of JX . In doing this, the authors represent the result on
an open cover of X and compare this with a representation of c1(O(m))n to
compute the trace, which then allows them to compute the form Q explicitly.
The purpose of this paper is to show a similar result for smooth projective
complete intersections of hypersurfaces which are of the same degree. For this,
some work in the style of [11] has already been done by Konno in the paper [27]
and Terasoma in the paper [50]. Using inspiration from those papers, given a
smooth projective complete intersection X = V (F0, · · · , Fr) ⊂ Pn where the Fi
are of the same degree m > 1 and n ≥ r + 2, we consider the hypersurface

X = V (F ) ⊂ Pr × Pn

where F = Y0F0+· · ·+YrFr and show that one can compute χ(X/k) from χ(X/k).
After this, we study isomorphisms from the primitive cohomology groups of ΩqX
to graded parts of the Jacobian ring

J = k[Y0, · · · , Yr, X0, · · · , Xn]/

(
F0, · · · , Fr,

∂F

∂X0
, · · · , ∂F

∂Xn

)
.

Unlike the Jacobian ring for the hypersurface, this Jacobian ring is infinite
dimensional over k. One can link the cup product on cohomology to the usual
product in the Jacobian ring, namely, following [50], we show the following
result.

Proposition (See Corollary 1.4.10). Consider the bidegree

ρ = (n− r − 1, (n+ r + 1)m− 2(n+ 1)).

There is a surjective homomorphism ϕ : Jρ → Hn+r(Pr×Pn,Ωn+rPr×Pn) ∼= k, such
that the diagram

Hq(X ,ΩpX )prim ⊗Hp(X ,ΩqX )prim Hn+r(Pr × Pn,Ωn+rPr×Pn)

Jq−r,(q+1)m−(n+1) ⊗ Jp−r,(p+1)m−(n+1) Jρ

i∗◦∪

ϕ

commutes.
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A slight generalization of an argument from [27] shows that the map ϕ is
in fact an isomorphism unless if X is odd dimensional, r = 1 and m = 2.
The one exception will not matter for our purposes, because we know from the
Motivic Gauss-Bonnet Theorem that the quadratic Euler characteristic of X
is hyperbolic in this case. Furthermore, we will study a slight variant of the
Jacobian ring, given by

J̃ = k[Y0, · · · , Yr, X0, · · · , Xn]/(Y0F0, · · · , YrFr, X0F̄0, · · · , XnF̄n)

and show that J̃ρ+(r+1,n+1) is one dimensional.
If we make some extra assumptions, we can compute the trace map. Assume
that m+1 is invertible in k, that V (Fi) is smooth for all i ∈ {0, · · · , r} and that
V (F0, · · · , Fr) is smooth and of codimension r+1. Assume moreover that these
assumptions remain true after setting any subset of the Xi equal to zero. For
A ∈ Jq−r,(q+1)m−(n+1) and B ∈ Jp−r,(p+1)m−(n+1), write ωA ∈ Hq(X ,ΩpX )prim
and ωB ∈ Hp(X ,ΩqX )prim for their images. Write

G0 = Y0F0, · · · , Gr = YrFr, Gr+1 = X0F̄0, · · · , Gn+r = XnF̄n

and Z0 = Y0, · · · , Zr = Yr, Zr+1 = X0, · · · , Zn+r+1 = Xn. Let M be the
Jacobian matrix given by {∂Gi

∂Zj
}i,j . Let Mi|j be its minor with the i’th row and

the j’th column missing.

Theorem (See Lemma 1.5.7 and Theorem 1.5.9). There is a unique element
C̃ ∈ k[Y0, · · · , Yr, X0, · · · , Xn] such that

(m+ 1)YiXjC̃ = (−1)j det(M0|j+r+1)Yi + (−1)r+i det(M0|i)Xj

for all i ∈ {1, · · · , r} and j ∈ {r+1, · · · , n+ r+1}. Assume that we are not in
the situation that dim(X ) is odd, r = 1 and m = 2. Then the map

ψ : Jρ → J̃ρ+(r+1,n+1), D 7→ D

r∏

i=0

Yi

n∏

j=0

Xj

is an isomorphism. Therefore, we have that C̃ = ψ(C) for a unique C ∈ Jρ.
Write AB = λC in Jρ for some λ ∈ k∗. Then

Tr(ωA ∪ ωB) = (−1)r+1mn+1

(
n+ r

r

)
λ.

Even though this does not give a completely explicit formula to compute
the quadratic Euler characteristic, it may provide a useful algorithm in concrete
cases.
Also, we will see from the proof of the above theorem that if

(
n+r
r

)
is invertible

in k, we have that Cm−n(n+r
r

)−1
has trace 1. We call this the Scheja-Storch

generator, and conjecture that there is a way to define this without the assump-
tion that

(
n+r
r

)
is invertible in k.

As an application, we compute the quadratic Euler characteristic of a complete
intersection of two generalized Fermat hypersurfaces.
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Theorem (See Corollary 1.6.3). Let F0 =
∑n
i=0 aiX

m
i , F1 =

∑n
i=0 biX

m
i be

two generalized Fermat hypersurfaces in Pn. Assume that ai, bi ∈ k∗ and that
aibj − ajbi ̸= 0 for all i ̸= j. Let X = V (F0, F1). Then

χ(X/k) =





Bn,m ·H if n is odd

Bn,m ·H + ⟨1⟩ if n is even, m odd

Bn,m ·H + ⟨1⟩+∑n
i=0⟨

∏
j ̸=i(aibj − ajbi)⟩ if n,m are even

where Bn,m ∈ Z is given by

Bn,m =





1
2 deg(cn−2(TX)) if n odd
1
2 deg(cn−2(TX))− 1 if n even, m odd
1
2 deg(cn−2(TX))− n− 1 if n,m even

We note that in the paper [7] by Cox and Batyrev, there is a more general con-
struction of an isomorphism between primitive Hodge cohomology groups and
certain graded parts of a Jacobian ring in the setting of toric varieties. This
follows the methods of [11] as do we, but they do not consider the multiplicative
structure.
It would be interesting to extend these results to the case where the hyper-
surfaces do not necessarily have the same degrees. This might be possible by
extending the above arguments to the situation where Pr is a replaced by a
weighted r-dimensional projective space, and will be explored in future work.

Motivic Donaldson-Thomas invariants: an analogue of the
results in [39] and [40] for cohomology of Witt sheaves

If one tries to count a certain type of objects for which there exists a reasonable
moduli space, one could do that by doing intersection theory on that moduli
space. However, these moduli spaces often have all sorts of bad singularities, or
may not have the expected dimension. Virtual fundamental classes, introduced
by Behrend and Fantechi in their paper [8], provide a way to make reasonable
computations in spite of these problems. For example, if we try to count ideal
sheaves on a smooth projective scheme which are of a given length, the corre-
sponding moduli space is the Hilbert scheme. The construction of those goes
back to Grothendieck, see [22], and see for instance [23] for more details. Hilbert
schemes often have all sorts of weird singularities, see for instance Vakil’s pa-
per [54]. The degrees of the corresponding virtual fundamental classes in this
situation are called Donaldson-Thomas invariants. They were first constructed
and defined by Donaldson and Thomas in [16] and [51].
A particular example of a computation of Donaldson-Thomas invariants is done
in the papers [39] and [40], by Maulik, Nekrasov, Pandharipande and Okounkov.
If we take a smooth projective threefold X over C with an action of the three
dimensional torus T on it, we can look at the Hilbert scheme Hilbn(X) of ideal
sheaves on X of length n. To this, one associates a virtual fundamental class, of
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which the degree In ∈ Z is the Donaldson-Thomas invariant. In [39] and [40],
there is a proof of the fact that

∑

n≥0

Inq
n =M(−q)deg(c3(TX⊗KX))

where M(q) =
∏
n≥1(1 − qn)−n is the MacMahon function (see MacMahon’s

book [38, Article 43] and Stanley’s book [49, Corollary 7.20.3]), TX is the tangent
bundle on X and KX is the canonical line bundle.
The proof uses the virtual localization formula by Graber and Pandharipande,
see [19], from which one can deduce in this particular case that

In =
∑

[I]∈Hilbn(X)T

e(Ext2(I, I))
e(Ext1(I, I))

.

Here, the sum is over all ideal sheaves I on X of length n which are fixed under
the induced action of T on Hilbn(X). These are locally given by monomial
ideals. The authors then compute the trace of the virtual tangent space

Ext1(I, I)− Ext2(I, I)

of each fixed ideal sheaf I. From this trace, one can read off the corresponding
equivariant virtual Euler class and express this in terms of the Euler classes of
the standard line bundles O(1, 0, 0),O(0, 1, 0) and O(0, 0, 1) on BT. Here, BT is
the classifying space of T, see Totaro’s paper [53]. To deduce the above formula,
the Bott residue formula, see [10] is used.
We study an analogue using the notion of motivic virtual fundamental classes
with values in cohomology of Witt sheaves defined by Levine in [31] and the
corresponding virtual localization formula which is proven by Levine in the same
paper. In this setting, we take the base field to be R (see Notation 2.3.1). Let
NS be the normalizer of the torus in SL2 over R, generated by

(
t 0
0 t−1

)
for t ∈ R∗ and σ =

(
0 1
−1 0

)
.

Let a, b ∈ Z be odd such that a, b, 3a− b, 3b− a, 3a+ b, 3b+ a, a− b, a+ b ∈ R∗.
There is an action of NS on P3 given by

(
t 0
0 t−1

)
· [X0 : X1 : X2 : X3] = [taX0 : t−aX1 : tbX2 : t−bX3]

σ · [X0 : X1 : X2 : X3] = [−X1 : X0 : −X3 : X2].

This action does not have fixed points, but there are the two fixed couples
{[1 : 0 : 0 : 0], [0 : 1 : 0 : 0]} and {[0 : 0 : 1 : 0], [0 : 0 : 0 : 1]}, so that we can
study fixed ideal sheaves of even length.
Levine has constructed an orientation for Hilbn(X) for X any smooth projective
threefold with a given isomorphism KX

∼= L⊗2 for some invertible sheaf L
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on X, i.e. an isomorphism from the determinant of this obstruction theory to
the square of a line bundle. This implies that there is a well defined quadratic
degree Ĩn ∈ W(Spec(R)) ∼= Z of the virtual fundamental class of Hilbn(P3).
Using [31, Theorem 6.7], if the torus inside NS acts with isolated fixed points,
we have that

Ĩn =
∑

[I]∈Hilbn(P3)NS

e(Ext2(I, I))
e(Ext1(I, I))

.

We therefore compute the trace of the representation Ext2(I, I) − Ext1(I, I)
of NS for ideal sheaves I that are fixed by the NS-action, using the strategy of
[39] and [40]. We can compute the Euler classes from that in terms of those of
canonical rank two bundles using the results [28, Proposition 5.5 and Theorem
7.1]. We apply this to compute that Ĩ2 = 10, Ĩ4 = 25 and Ĩ6 = −50, with
some help of SAGE, see the attached code here. This leads us to the following
conjecture.

Conjecture. Let X = P3 and equip this with the natural action of the normal-
izer of the torus in SL2. For n ≥ 0, let Ĩn be the degree of the motivic virtual
fundamental class associated to Hilbn(X). Then we have that

∑

n≥0

Ĩnq
n =M(−q2)d̃eg(e(V )).

where V is a certain locally free sheaf on Hilb2(P3) with quadratic Euler class

e(V ) and d̃eg is the quadratic degree map.

For n = 8 and higher, the present method does not work to compute the cor-
responding motivic Donaldson-Thomas invariant. Namely, choose coordinates
x, y, z on {X0 ̸= 0} ⊂ P3 then the ideal sheaves which are locally given by
(x + λyz, y2, z2) for λ ∈ R∗ on this open are of length four. But the ideals are
not monomial, so these are not isolated fixed points.
The results for P3 also lead to the following conjecture.

Conjecture. Let X be a smooth projective scheme over R of dimension 3, with
an action of the normalizer of the torus in SL2, together with an isomorphism
KX

∼= L⊗2 for some invertible sheaf L on X, and let Ĩn be the degree of the
motivic virtual fundamental class associated to Hilbn(X). Then we have that

∑

n≥0

Ĩnt
n =M(−q2)d̃eg(e(VX))

where VX is a certain locally free sheaf on Hilb2(X).

We also show how to extend some of the localization methods that go into
the above formula for actions by the normalizer NG in GL2. More precisely,
we prove an analogue of [28, Proposition 5.5], which is a computation of the
cohomology of Witt sheaves on BNG, from which one can deduce what the
Euler classes of canonical rank two bundles on BNG are. Obtaining the full
result for this action was not possible so far, due to some technical obstructions,
but it would be interesting to see if one can find a way around these problems.
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Structure

Chapter 1 is devoted to computing the quadratic Euler characteristic of a smooth
projective complete intersection of hypersurfaces of the same degree. Section
1.1 contains the definition of a quadratic Euler characteristic and some of its
basic properties, after which we give a more detailed summary of the results in
[33]. Section 1.2 is devoted to some results on cohomology of differential forms
and first Chern classes which will be needed later on. Then in Section 1.3 we
construct isomorphisms from bigraded parts of the Jacobian ring to primitive
cohomology. In Section 1.4 we compare the cup product and the product in the
Jacobian ring, and we show that Jρ and J̃ρ+(r+1,n+1) are one dimensional, after
which we compute the trace in Section 1.5. Finally, we work out the example
of intersecting two generalized Fermat hypersurfaces of the same degree in Sec-
tion 1.6.
Chapter 2 contains the results on motivic Donaldson-Thomas invariants. In
Section 2.1, we give a summary of the construction of a classifying space follow-
ing [53] and of some results in [28] which are needed later. In Section 2.2, we
summarize the results of [39] and [40] and compute I1 and I2 for P3. In Section
2.3 we study how to define the motivic virtual fundamental class of interest,
and a strategy to compute the degree. Then in Section 2.4, we compute Ĩn for
n ≤ 6. Finally, in Section 2.5 we compute the cohomology of Witt sheaves on
BNG, i.e. show an analogue of [28, Proposition 5.5] for BNG.
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Chapter 1

The quadratic Euler
characteristic of a smooth
projective complete
intersection

Throughout, let k be a perfect field which is not of characteristic 2.

1.1 Quadratic Euler characteristics

In this section we give the definition and some basic properties of quadratic
Euler characteristics and then discuss the computation of the quadratic Euler
characteristic of a smooth projective hypersurface from [33].

1.1.1 Quadratic Euler characteristics

We give the definition of a quadratic Euler characteristic following the one by
Levine in [29, Section 1]. The quadratic Euler characteristic will be a particular
case of a more general definition of Euler characteristic, introduced by Dold and
Puppe in [14].
Let C be a symmetric monoidal category, and denote ⊗ : C × C → C for the
tensor product and 1 ∈ C for the unit. Let τ be the symmetry isomorphism from
the tensor product ⊗ to ⊗ ◦ t, where t : C × C → C × C is the usual symmetry
given by t(a, b) = (b, a). The following definition is taken from [14, Definition
1.2 and Theorem 1.3].

Definition 1.1.1. An object X ∈ C is strongly dualizable if there exists an
object X∨ ∈ C and morphisms δX : 1 → X ⊗X∨ and evX : X∨ ⊗X → 1 in C
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such that the compositions

X ∼= 1⊗X
δX⊗Id−−−−→ X ⊗X∨ ⊗X

Id⊗evX−−−−−→ X ⊗ 1 ∼= X

and
X∨ ∼= X∨ ⊗ 1

Id⊗δX−−−−→ X∨ ⊗X ⊗X∨ evX⊗Id−−−−−→ 1⊗X∨ ∼= X∨

are the identity morphisms.

Remark 1.1.2. If X is strongly dualizable, the triple (X∨, δX , evX) is unique
up to unique isomorphism. We usually call X∨ the dual of X, with the mor-
phisms δX and evX being understood.

Now let X ∈ C be a strongly dualizable object. The following definition is a
special case of [14, Definition 4.1].

Definition 1.1.3. The categorical Euler characteristic of X is the composition

1
δX−−→ X ⊗X∨ τ−→ X∨ ⊗X

evX−−→ 1.

To k, we can associate the motivic stable homotopy category SH(k), see
for instance Morel’s book [43] or Hoyois’ paper [25] for its construction and
properties. We have that SH(k) is a symmetric monoidal category, with the
“smash product” as its tensor product. For a smooth projective scheme X over
k, we have the suspension spectrum Σ∞

T X+ ∈ SH(k) and this is a strongly
dualizable object, see for instance [25, Theorem 5.22 and Corollary 6.13].

Definition 1.1.4. The Grothendieck-Witt ring GW(k) of k is the group com-
pletion of the monoid (under orthogonal direct sum) of isometry classes of non-
degenerate quadratic forms over k.

Remark 1.1.5. One can think of GW(k) as the group generated by the forms

⟨a⟩ : x 7→ ax2

for a ∈ k∗ modulo the relations

� ⟨ab2⟩ = ⟨a⟩ for a, b ∈ k∗.

� ⟨a⟩+ ⟨b⟩ = ⟨a+ b⟩+ ⟨ab(a+ b)⟩ for a, b, a+ b ∈ k∗.

� ⟨a⟩+ ⟨−a⟩ = ⟨1⟩+ ⟨−1⟩ for a ∈ k∗.

Note that ⟨a⟩⟨b⟩ = ⟨ab⟩ for a, b ∈ k∗, by definition.
This presentation originally goes back to Witt, see [55, Section 1]. In the form
above, it is [43, Lemma 2.9], where the result is deduced from the statement for
Witt rings, see [41, Lemma (1.1) in Chapter 4].

Definition 1.1.6. The form H = ⟨1⟩+ ⟨−1⟩ is called the hyperbolic form.

13



By a deep result of Morel (see [42, Theorem 6.4.1]) we have that

End(1SH(k)) ∼= GW(k).

Combining the above, the quadratic Euler characteristic of a smooth projective
scheme over k can now be defined as follows.

Definition 1.1.7. The quadratic Euler characteristic χ(X/k) ∈ GW(k) of a
smooth projective scheme X over k is the categorical Euler characteristic of X
in SH(k).

Quadratic Euler characteristics satisfy several nice relations, which one can
find in e.g. [29]. One property which we will need is the following.

Proposition 1.1.8 (See [29], Proposition 1.4(3)). Let X be a smooth projective
scheme over k and let Z be a smooth closed subscheme of pure codimension c
with complement U . Then

χ(X/k) = χ(U/k) + ⟨−1⟩cχ(Z/k).

Remark 1.1.9. Even though U in the above statement is not projective, it
has a quadratic Euler characteristic in GW(k). Namely, it has been proven by
Riou in [36] that a quasi-projective scheme is dualizable in the stable motivic
homotopy category if we invert the characteristic of k. If char(k) = p > 0 we
have an injective morphism GW(k) → GW(k)[p−1] and one can show that the
categorical Euler characteristic always lands in GW(k). See [29, Remark 1.1.2]
for more details.

Example 1.1.10 (See [29], Proposition 1.4(4)). We have that

χ(Pn/k) =
n∑

i=0

⟨−1⟩i.

One way to prove this is to use Proposition 1.1.8 together with induction on
n and the fact that An is equivalent to a point in SH(k). Note that this is a
multiple of H if n is odd. Also, the rank of this form is n + 1 (which is the
topological Euler characteristic of complex projective space) and its signature
is either 0 or 1, depending on the parity of n (which is the topological Euler
characteristic of real projective space).

Remark 1.1.11. This is true in general: if k ⊂ R ⊂ C then we have that the
rank of χ(X/k) is equal to the topological Euler characteristic of X(C) while
the signature is equal to the topological Euler characteristic of X(R). See [29,
Remark 1.4.1].

Remark 1.1.12. For a smooth quasi-projective scheme U over k we have that
χ(Pn × U/k) = χ(Pn/k)χ(U/k) by [29, Proposition 1.4(4)].
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1.1.2 The quadratic Euler characteristic of a smooth pro-
jective hypersurface

Notation 1.1.13. For a scheme X over k, we denote the sheaf of differential
forms on X over k by ΩX . We write ΩqX = ∧qΩX for q ∈ Z≥0.

Note that by [23, Exercise II.4.5], for a smooth projective scheme Y we have
that H1(Y,O∗

Y )
∼= Pic(Y ), where Pic(Y ) is the Picard group of Y , i.e. the group

of line bundles on Y . There is the canonical “dlog morphism”

O∗
XY → ΩY , f 7→ df

f

inducing the map
c1 : H1(Y,O∗

Y ) → H1(Y,ΩY ).

Definition 1.1.14. The first Chern class of a line bundle L on a scheme Y is
the image c1(L) ∈ H1(Y,ΩY ) of the class of L under the above map.

Notation 1.1.15. We write c1(L)
i ∈ Hi(Y,ΩiY ) for the i-fold cup product of

c1(L) with itself.

An important computational tool is the motivic Gauss-Bonnet Theorem for
SL-oriented cohomology theories proven by Levine and Raksit in their paper
[35]. A more general motivic Gauss-Bonnet theorem has been proven by Déglise,
Jin and Khan in [12], and the theorem of Levine-Raksit can be viewed as a
special case of their statement. A version where the scheme does not need to
be smooth has been proven by Azouri, see [5].
We do not state the theorem in all of its generality here, but rather one of its
applications which provides a way to compute a quadratic Euler characteristic
in practice.

Theorem 1.1.16 (See [35], Corollary 8.7). Let X be a smooth projective scheme
over k. Then:

� If dim(X) is odd, then χ(X/k) = C ·H for some C ∈ Z, where H is the
hyperbolic form.

� If dim(X) = 2n is even, then χ(X/k) = C ·H +Q for some C ∈ Z, where
Q is the quadratic form given by the composition

Hn(X,ΩnX)×Hn(X,ΩnX)
∪−→ H2n(X,Ω2n

X )
Trace−−−→ k.

Here the first map is the cup product on cohomology.

Remark 1.1.17. By [35, Theorem 5.3] the rank of χ(X/k) is equal to the
degree of cn(TX) where TX is the tangent bundle of X. This gives a way to
determine the constant C in the above theorem in practice. There is also a
formula for C in terms of dimensions of cohomology groups of ΩqX given in [35,
Corollary 8.7].
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The form Q has been computed successfully in the case of hypersurfaces by
Levine, Lehalleur and Srinivas in [33], using inspiration from the paper [11] by
Carlson and Griffiths. We now summarize their strategy.
Consider a smooth hypersurface X = V (F ) ⊂ Pn where F ∈ k[X0, · · · , Xn] is a
homogeneous polynomial of degree m ∈ Z≥2. Assume that the characteristic of
k is coprime to m.

Definition 1.1.18. The Jacobian ring of X is

JX = k[X0, · · · , Xn]/

(
∂F

∂X0
, · · · , ∂F

∂Xn

)
.

Note that JX has a natural grading induced by the grading of k[X0, · · · , Xn].
Furthermore, JX is a finite dimensional k-algebra. The top nonzero graded part

is J
(m−2)(n+1)
X , which is a one dimensional vector space over k; for a proof, see

[26, Lemma 4], where the result is deduced from the fact that JX is Gorenstein
together with the proof of [46, (4.7) Korrolar].

Construction 1.1.19. There is a canonical choice of generator eF of J
(m−2)(n+1)
X

called the Scheja-Storch generator. Namely, as m ≥ 2, for i ∈ {0, · · · , n} we can
write

∂F

∂Xi
=

n∑

j=0

aijXj

for some (non-unique) aij ∈ k[X0, · · · , Xn]. One defines eF = det((aij)i,j). One
can show that this is independent of the choice of aij , see [46, (1.2)(α)].

Example 1.1.20. Let F =
∑n
i=0 aiX

m
i where a0, · · · , an ∈ k∗. Then X is a

generalized Fermat hypersurface. We have that ∂F
∂Xi

= maiX
m−1
i and so one

computes eF as

eF = mn+1
n∏

i=0

aiX
m−2
i .

Let i : X → Pn be the natural inclusion. This induces a pushforward map
i∗ : Hq(X,ΩpX) → Hq+1(Pn,Ωp+1

Pn ) for all p, q ∈ Z≥0 as defined by Srinivas
in [47].

Definition 1.1.21. The primitive cohomology of X with respect to p, q ∈ Z≥0

such that p+ q = n− 1 is defined by Hq(X,ΩpX)prim = ker(i∗).

Remark 1.1.22. Let c1(O(1)) ∈ H1(X,ΩX) be the first Chern class of O(1).
The Hard Lefschetz Theorem tells us that for 0 < i ≤ n− 1, the map

(−) ∪ c1(O(1))i :
⊕

p+q=n−i
Hq(X,ΩpX) →

⊕

p+q=n+i

Hq(X,ΩpX)

is an isomorphism. Classically, for 0 ≤ i ≤ n − 1, the primitive cohomology of
X is defined to be the kernel of the morphism

(−) ∪ c1(O(1))i+1 :
⊕

p+q=n−i
Hq(X,ΩpX) →

⊕

p+q=n+i+2

Hq(X,ΩpX).
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For i = 0 and p, q such that p + q = n − 1, this definition coincides with the
one above. To see this, note that multiplication with c1(O(1)) takes Hq(X,ΩpX)

to Hq+1(X,Ωp+1
X ). The pullback i∗ : Hq+1(Pn,Ωp+1

Pn ) → Hq+1(X,Ωp+1
X ) is an

isomorphism by the Weak Lefschetz Theorem, so we can view multiplication
with c1(O(1)) as a morphism to Hq+1(Pn,Ωp+1

Pn ). Now as i∗i∗ is multiplication
with c1(O(1)), we see that the kernel coincides with ker(i∗).

One can show that Hq(X,ΩpX)prim = Hq(X,ΩpX) whenever p ̸= q. In [33],
the authors prove the following result.

Proposition 1.1.23 ([33], Proposition 3.2). For each q ≥ 0, there is a canonical

isomorphism ψq : J
(q+1)m−n−1
X → Hq(X,Ωn−1−q

X )prim.

This result originally goes back to Dolgachev, see [15], and the characteristic
zero case is due to Griffiths, see [21]. In [33], there is then a comparison of the
cup product on cohomology with the usual ring multiplication of JX , leading
up to the following result.

Proposition 1.1.24 ([33], Proposition 3.7). Consider p, q ∈ Z≥0 be such that

p+ q = n− 1 and let A ∈ J
(q+1)m−n−1
X and B ∈ J

(p+1)m−n−1
X . Let

ωA = ψq(A) ∈ Hq(X,ΩpX)prim and ωB = ψp(B) ∈ Hp(X,ΩqX)prim

be their images. Write Fi =
∂F
∂Xi

. Cover Pn by the open cover U = {U0, · · · , Un}
where Ui = {Fi ̸= 0}, and let Ci(U ,ΩnPn) denote the i’th group in the Čech
complex corresponding to U . Furthermore, let ω̄ =

∑n
i=0(−1)iXidX

i be the
generator of ΩnPn(n+ 1), where we write dXi = dX0 · · · dXi−1dXi+1 · · · dXn.
Then the element i∗(ωA ∪ ωB) ∈ Hn(Pn,ΩnPn) is represented by

−mABω̄
F0 · · ·Fn

∈ Cn(U ,ΩnPn).

They then compare this with a representation of c1(O(m))n on the same
cover to compute the trace, which yields the following result.

Theorem 1.1.25 ([33], Theorem 3.9). In the situation of the above proposition,
suppose that AB = λeF for λ ∈ k∗. Then

Tr(ωA ∪ ωB) = −mλ.

Example 1.1.26. In the case of a generalized Fermat hypersurface X as be-
fore, if n = 2p + 1 is odd, we need to calculate the form Q. One can show
that Hp(X,ΩpX) = Hp(X,ΩpX)prim ⊕ c1(O(1))p and compute that c1(O(1))p

contributes a form ⟨m⟩. For the primitive cohomology, we evaluate the form on
basis elements of Hp(X,ΩpX)prim, i.e. on the corresponding parts of the Jaco-
bian ring. If AB = λeF for some λ ∈ k∗ and two distinct basis elements A and
B, we also have that BA = λeF and one can check that this yields a hyperbolic
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form. If m is odd, there are no basis elements that square to a nonzero multiple
of eF . If m is even, we have that

(
X

m−2
2

0 · · ·X
m−2

2
n

)2
=

eF
mn+1

∏n
i=0 ai

.

Using Theorem 1.1.25, this gives rise to the form ⟨−m∏n
i=0 ai⟩. One can see

from [35, Theorem 5.3] that the rank of χ(X/k) is equal to deg(cn(TX)) where
TX is the tangent bundle on X. Putting everything together, we find that

χ(X/k) =





An,m ·H if n even

An,m ·H + ⟨m⟩ if n,m odd

An,m ·H + ⟨m⟩+ ⟨−m∏n
i=0 ai⟩ if n odd,m even

for integers An,m ∈ Z given by

An,m =





1
2 deg(cn(TX)) if n even
1
2 deg(cn(TX))− 1 if n,m odd
1
2 deg(cn(TX))− 2 if n odd, m even

This is also [29, Theorem 11.1], but there it is proven in a different way, namely
using Levine’s quadratic Riemann-Hurwitz formula from [29].

1.2 Setup, cohomology of differential forms and
primitive cohomology

In the next sections, we will be working with the following setup.

Notation 1.2.1. Let n,m, r ∈ Z≥1 be such that n ≥ r + 2 and m ≥ 2.
Assume that m is coprime to the characteristic of k, if this is positive. Let
F0, · · · , Fr ∈ k[X0, · · · , Xn] be homogeneous polynomials of the same degree m.
Let X = V (F0, · · · , Fr) ⊂ Pn be the intersection of the V (Fi) and assume that
this is a smooth complete intersection. We define F = Y0F0 + · · · + YrFr and
consider the hypersurface

X = V (F ) ⊂ Pr × Pn.

We write i : X → Pr × Pn for the inclusion. Note that X is of bidegree (1,m)
and that it has dimension n + r − 1. We note that ∂F

∂Yi
= Fi for i ∈ {0, · · · , r}

and write F̄j =
∂F
∂Xj

for j ∈ {0, · · · , n}.

Notation 1.2.2. We denote the canonical projections by πn : Pr × Pn → Pn
and πr : Pr × Pn → Pr.

Remark 1.2.3. Note that X is smooth: suppose (y0, · · · , yr, x0, · · · , xn) ∈ X
is a point where all Fi and F̄j vanish, then (y0, · · · , yr, x0, · · · , xn) is in Pr ×X.
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As X is smooth, the vectors
(
∂Fi
∂X0

(x), · · · , ∂Fi
∂Xn

(x)

)

for i ∈ {0, · · · , r} are linearly independent for any x ∈ X. Now as

F̄j(y0, · · · , yr, x0, · · · , xn) =
r∑

i=0

yi
∂Fi
∂Xj

(x0, · · · , xn) = 0

for all j ∈ {0, · · · , n}, we have that

r∑

i=0

yi

(
∂Fi
∂X0

(x0, · · · , xn), · · · ,
∂Fi
∂Xn

(x0, · · · , xn)
)

= 0

and so y0 = · · · = yr = 0, but this is impossible.

Remark 1.2.4. Note that we have the two Euler equations

F =

r∑

i=0

YiFi and mF =

n∑

j=0

XjF̄j .

We now observe that we can compute χ(X/k) from χ(X/k).
Lemma 1.2.5. We have that

χ(X/k) = χ(Pr−1/k)χ(Pn/k) + ⟨−1⟩rχ(X/k).

Proof. Let U be the complement of X in Pn and let πn|X : X → Pn be the
restriction of πn to X . Then (πn|X )−1(X) = Pr×X and (πn|X )−1(U) → U is a
Zariski locally trivial Pr−1-bundle. Using [29, Proposition 1.4(4)], we have that

χ((πn|X )−1(U)/k) = χ(Pr−1/k) · χ(U/k)

and
χ(Pr ×X/k) = χ(Pr/k)χ(X/k).

By Proposition 1.1.8, we also have that

χ(Pn/k) = χ(U/k) + ⟨−1⟩r+1χ(X/k).

Recalling Example 1.1.10, this yields

χ(X/k) = χ(Pr−1/k)χ(U/k) + ⟨−1⟩rχ(Pr/k)χ(X/k)
= χ(Pr−1/k)χ(Pn/k) + (⟨−1⟩rχ(Pr/k)− ⟨−1⟩r+1χ(Pr−1/k))χ(X/k)

= χ(Pr−1/k)χ(Pn/k) +

(
⟨−1⟩r

r∑

i=0

⟨−1⟩i − ⟨−1⟩r+1
r−1∑

i=0

⟨−1⟩i
)
χ(X/k)

= χ(Pr−1/k)χ(Pn/k) + ⟨−1⟩rχ(X/k)

as desired.
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In the coming sections, the strategy will be to adapt the arguments of [33]
to a hypersurface in Pr × Pn, using inspiration from [50]. In this section, we
start by introducing two exact sequences which we will use in what follows, and
we study the cohomology groups of differential forms for a product of projective
spaces, which will be needed later on. We also study first Chern classes of line
bundles on Pr × Pn and primitive cohomology.

Notation 1.2.6. The Picard group of Pr × Pn is isomorphic to Z ⊕ Z with
generators coming from the canonical sheaves OPr (a) and OPn(b) for a, b ∈ Z.
For a sheaf F on Pr × Pn, we denote

F(a, b) = F ⊗ π∗
rOPr (a)⊗ π∗

nOPn(b).

There are thus canonical sheaves of the form O(a, b) on Pr × Pn.
For a ∈ Z≥0, we write O(aX ) for the sheaf with sections having poles of order at
most a on X , which are regular everywhere else. We set F(aX ) = F ⊗O(aX ).
For a < 0, we write F(aX ) = F ⊗ I−a

X where IX is the ideal sheaf of X .

1.2.1 Two exact sequences

Recall from e.g. [23, Theorem II.8.17] that there is an exact sequence

0 → OX (−X )
dF/F∧(−)−−−−−−−→ i∗ΩPr×Pn → ΩX → 0. (1.1)

Here, the second map is the natural surjection. There is another useful exact
sequence

0 → Ωp+1
Pr×Pn → Ωp+1

Pr×Pn(log(X ))
resX−−−→ i∗Ω

p
X → 0 (1.2)

for any p ∈ Z≥0 which is called the residue sequence. We will need the following
statement in the next sections.

Lemma 1.2.7. For p, q ∈ Z≥0, the boundary map

δp,q : Hq(X ,ΩpX ) → Hq+1(Pr × Pn,Ωp+1
Pr×Pn)

induced from the long exact cohomology sequence of the exact sequence (1.2)
coincides with the pushforward map i∗ : Hq(X ,ΩpX ) → Hq+1(Pr × Pn,Ωp+1

Pr×Pn),
which is again the pushforward as defined in [47].

The proof works exactly the same as that of [33, Lemma 2.2].

Remark 1.2.8. We will use in what follows that for an exact sequence of vector
spaces 0 → V → W → Z → 0 with V one dimensional, the induced sequence
0 → V ⊗ ∧k−1Z → ∧kW → ∧kZ → 0 is again exact for any k ∈ Z≥1. For
an exact sequence 0 → V → W → Z → 0 with Z a line bundle, we similarly
have that the sequence 0 → ∧kV → ∧kW → ∧k−1V ⊗ Z → 0 is again exact for
any k ∈ Z≥1.
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1.2.2 Cohomology of differential forms

We will need Bott’s theorem in what follows.

Theorem 1.2.9 (Bott’s theorem for projective space, see [15], Theorem 2.3.2).
Let m ∈ Z. The cohomology of ΩqPn(m) satisfies Hp(Pn,ΩqPn(m)) = 0 for:

� p > 0 and m ≥ q − n,m ̸= 0.

� p > 0,m = 0 and p ̸= q.

� p = 0 and m ≤ q, except for m = p = q = 0.

We will also make use of the following statement, which is useful to apply
Bott’s theorem to twisted sheaves of differentials on Pr × Pn.

Proposition 1.2.10. Let p, q ∈ Z≥0 and let a, b ∈ Z. Then

Hp(Pr × Pn,ΩqPr×Pn(a, b)) =
⊕

i+j=q

⊕

k+l=p

Hk(Pr,ΩiPr (a))⊗H l(Pn,ΩjPn(b)).

Proof of Proposition 1.2.10. We have that ΩPr×Pn ∼= π∗
rΩPr ⊕ π∗

nΩPn , by e.g.
[23, Exercise II.8.3]. This implies that

ΩqPr×Pn
∼=
⊕

i+j=q

π∗
rΩ

i
Pr ⊗ π∗

nΩ
j
Pn

and tensoring with OPr×Pn(a, b) = π∗
rOPr (a)⊗ π∗

nOPn(b) yields that

ΩqPr×Pn(a, b) ∼=
⊕

i+j=q

π∗
rΩ

i
Pr (a)⊗ π∗

nΩ
j
Pn(b).

Now using [48, Tag 0BED], we have that

Hp(Pr × Pn,ΩqPr×Pn(a, b)) =
⊕

i+j=q

Hp(Pr × Pn, π∗
rΩ

i
Pr (a)⊗ π∗

nΩ
j
Pn(b))

=
⊕

i+j=q

⊕

k+l=p

Hk(Pr,ΩiPr (a))⊗H l(Pn,ΩjPn(b))

which is the desired result.

1.2.3 Primitive cohomology

The primitive cohomology of X is defined in the same way as in the case of a
smooth hypersurface in Pn, see Definition 1.1.21.

Definition 1.2.11. Let p, q ≥ 0 be such that p+ q = n+ r − 1. The primitive
cohomology of X with respect to p, q is Hp(X ,ΩqX )prim = ker(i∗) ⊂ Hp(X ,ΩqX )

where i∗ is the pushforward i∗ : Hp(X ,ΩqX ) → Hp+1(Pr×Pn,Ωq+1
Pr×Pn) as defined

in [47].
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Remark 1.2.12. The same arguments as in Remark 1.1.22 with O(1) replaced
by O(1,m) show that this definition coincides with the classical definition of
primitive cohomology.

The following result is probably standard, but we include a proof here for
the reader’s convenience.

Lemma 1.2.13. The map i∗ : Hp(X ,ΩqX ) → Hp+1(Pr ×Pn,Ωq+1
Pr×Pn) is surjec-

tive if either p ̸= q or p = q and p ≥ r. Furthermore, if p ̸= q, we have that
Hp+1(Pr × Pn,Ωq+1

Pr×Pn) = 0, so that i∗ is the zero map.

Proof. Using Proposition 1.2.10, we have that

Hp+1(Pr × Pn,Ωq+1
Pr×Pn) ∼=

⊕

i+j=p+1

⊕

k+l=q+1

Hi(Pr,ΩkPr )⊗Hj(Pn,ΩlPn).

Suppose p ̸= q. Using Theorem 1.2.9 we see that all terms in the above sum
are zero except for those with i = k and j = l. However, for such terms we
have that i + j = k + l which cannot be true as p ̸= q. This implies that
Hp+1(Pr × Pn,Ωq+1

Pr×Pn) = 0. Therefore, i∗ is the zero map, so in particular, i∗
is surjective.
If p = q, then we see that Hp+1(Pr×Pn,Ωp+1

Pr×Pn) ∼= kNp+1 for some Np+1 ∈ Z≥0.
A basis is given by

αp+1
i = c1(OPr (1))i ⊗ c1(OPn(1))j

where i+ j = p+ 1, i ≤ r and j ≤ n. We now assume that p ≥ r, then we have
that Np+1 ≤ Np. As

i∗i
∗1 = c1(O(1,m)) = c1(O(1, 0)) +mc1(O(0, 1))

using the projection formula we see that

i∗i
∗αpi = i∗(i

∗αpi ⊗ i∗1)

= αpi ⊗ (c1(O(1, 0)) +mc1(O(0, 1)))

= αp+1
i+1 +mαp+1

i

and the latter term is nonzero as m is coprime to the characteristic of k. We see
from this that the matrix of i∗i

∗ has an Np+1 ×Np+1 minor with determinant
a power of m, hence invertible. We conclude from this that i∗ is surjective.

Corollary 1.2.14. For p, q ∈ Z≥0 such that p + q = n + r − 1, we have that
Hp(X ,ΩqX )prim = Hp(X ,ΩqX ) as long as p ̸= q.

1.3 Isomorphism from the Jacobian ring to prim-
itive cohomology

We keep the notation that was set up at the beginning of the previous section.
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Definition 1.3.1. The Jacobian ring of F is given by

J = k[Y0, · · · , Yr, X0, · · · , Xn]/
(
F0, · · · , Fr, F̄0, · · · , F̄n

)

This definition is taken from [50]. Note that J has a natural bigrading
where Ja,b has degree a in the variables Yi and b in the variables Xi. In this
section, we will follow the argumentation of [33] with this Jacobian ring in order
to show that certain graded pieces are isomorphic to certain primitive Hodge
cohomology groups.

Notation 1.3.2. The line bundle Ωn+rPr×Pn(r+1, n+1) is isomorphic to OPr×Pn

with global generator ω ∧ ω̄ where

ω =

r∑

i=0

(−1)iYidY
i

where we write dY i = dY0 ∧ · · · ∧ ˆdYi ∧ · · · ∧ dYr and

ω̄ =

n∑

j=0

(−1)jXjdX
j

where we write dXj = dX0∧· · ·∧ ˆdXj ∧· · ·∧dXn. We will more generally write
dXi0,··· ,ik to mean the wedge product of all dXi with dXi0 , · · · , dXik removed,
and use the notation dY i0,··· ,ik similarly.

Notation 1.3.3. We fix integers p, q ∈ Z≥0 satisfying p+ q = n+ r − 1.

Construction 1.3.4. Consider the exact sequence (1.1). For j ∈ {0, · · · , q−1},
we take a wedge product and use Remark 1.2.8 to obtain the exact sequence

0 → Ωn+r−j−2
X (−X ) → i∗Ωn+r−1−j

Pr×Pn → Ωn+r−1−j
X → 0.

Now twisting by the line bundle i∗OPr×Pn((q − j)X ), we obtain the exact se-
quences

0 → Ωn+r−j−2
X ((q−j−1)X ) → i∗Ωn+r−1−j

Pr×Pn ((q−j)X ) → Ωn+r−1−j
X ((q−j)X ) → 0

(1.3)
where the first map is induced by dF/F ∧ (−). Patching those together, we see
that there is an exact sequence

0 → ΩpX
dF/F∧(−)−−−−−−−→ i∗Ωp+1

Pr×Pn(X )
dF/F∧(−)−−−−−−−→ i∗Ωp+2

Pr×Pn(2X )
dF/F∧(−)−−−−−−−→ · · ·

· · · →i∗Ωn+r−1
Pr×Pn (qX )

πq−→ Ωn+r−1
X (qX ) → 0

of sheaves on X .

Notation 1.3.5. Let C(p) be the complex

0 → i∗Ωp+1
Pr×Pn(X )

dF/F∧(−)−−−−−−−→i∗Ωp+2
Pr×Pn(2X )

dF/F∧(−)−−−−−−−→ · · ·
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· · · →i∗Ωn+r−1
Pr×Pn (qX )

πq−→ Ωn+r−1
X (qX ) → 0

where we put i∗Ωp+1
Pr×Pn(X ) in degree zero. This gives rise to the map

δ : H0(X ,Ωn+r−1
X (qX )) → Hq(X , C(p)) ∼= Hq(X ,ΩpX ).

Notation 1.3.6. Note that a section ξ of Ωn+rPr×Pn over Pr × Pn \ X has a

pole on X of order at most a if and only if it is of the form ξ = Aω∧ω̄
Fa where

A ∈ k[Y0, · · · , Yr, X0, · · · , Xn] is of bidegree (a − (r + 1), am − (n + 1)). This
gives an isomorphism

ψ̃a : k[Y0, · · · , Yr, X0, · · · , Xn]
a−(r+1),am−(n+1) → H0(Pr × Pn,Ωn+rPr×Pn(aX ))

sending an element A to Aω∧ω̄
Fa .

Remark 1.3.7. As Ωn+rPr×Pn(log(X )) is isomorphic to Ωn+rPr×Pn(X ), we can view
the residue map in the exact sequence (1.2) in this degree as a morphism
Ωn+rPr×Pn(X ) → i∗Ω

n+r−1
X .

The purpose of this section is to prove the following statement, which is
a generalization of [33, Proposition 3.2] to products of projective spaces. The
argument is taken from [33], with some adaptations.

Proposition 1.3.8. Suppose that q ≥ r. The composition

k[Y0, · · · , Yr, X0, · · · , Xn]
(q+1)−(r+1),(q+1)m−(n+1) ψ̃q+1−−−→

H0(Pr × Pn,Ωn+rPr×Pn((q + 1)X ))
res−−→ H0(X ,Ωn+r−1

X (qX ))
δ−→ Hq(X ,ΩpX )

descends to an isomorphism

ψq : J
(q+1)−(r+1),(q+1)m−(n+1) → Hq(X ,ΩpX )prim.

Remark 1.3.9. Let X = V (F0) ⊂ Pn be a smooth hypersurface defined by a
homogeneous polynomial F0 ∈ k[X0, · · · , Xn] of degree m. Then we can form
the hypersurface X = V (Y0F0) ⊂ P0 × Pn which is isomorphic to X. The
corresponding Jacobian ring is given by

J = k[Y0, X0 · · · , Xn]/

(
F0, Y0

∂F0

∂X0
, · · · , Y0

∂F0

∂Xn

)
.

Consider the usual Jacobian ring

JX = k[X0, · · · , Xn]/

(
∂F0

∂X0
, · · · , ∂F0

∂Xn

)

then for a, b ∈ Z we have a natural map

Ja,b → JbX , Y0 7→ 1, Xj 7→ Xj .
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For fixed a, there is the section

ga : JbX → Ja,b, f 7→ Y a0 f

which is an isomorphism. Now let p, q ∈ Z≥0 be such that p+ q = n− 1. If we
set r = 0 (which is not possible with the assumptions we made, but we still do
it for a moment) in Proposition 1.3.8, we find an isomorphism

ψq ◦ gq : J (q+1)m−n−1
X → Hq(X,ΩpX)prim.

We therefore find that the above statement is in accordance with [33, Proposition
3.2].

1.3.1 An exact sequence relating δ and πq

In order to prove Proposition 1.3.8, we will need the following proposition, which
is a generalization of [33, Lemma 3.1(2)]. The proof is more or less the same,
but included here for the reader’s convenience.

Proposition 1.3.10. The map

δ : H0(X ,Ωn+r−1
X (qX )) → Hq(X , C(p)) ∼= Hq(X ,ΩpX )

gives rise to an exact sequence

H0(X , i∗Ωn+r−1
Pr×Pn (qX ))

πq−→ H0(X ,Ωn+r−1
X (qX ))

δ−→ Hq(X ,ΩpX ) (1.4)

where δ is surjective if p ̸= q and has image Hp(X ,ΩpX )prim in case that p = q.

In order to prove Proposition 1.3.10, we will use the hypercohomology spec-
tral sequence

Ea,b1 = Hb(X , C(p)a) =⇒ Ha+b(X , C(p)) ∼= Ha+b(X ,ΩpX ).

We first prove two lemmas.

Lemma 1.3.11. Ea,b1 = 0 for all b > 0 and a < q, except for a = 0 and b = p.

Proof. Let a, b ∈ Z be such that b > 0 and 0 ≤ a < q. Note that there is the
standard exact sequence

0 → OPr×Pn(−X ) → OPr×Pn → i∗OX → 0.

Tensoring the above exact sequence with the sheaf Ωp+a+1
Pr×Pn ((a+1)X ) and noting

that this sheaf is locally free gives the exact sequence

0 → Ωp+a+1
Pr×Pn (aX ) → Ωp+a+1

Pr×Pn ((a+ 1)X ) → i∗i
∗Ωp+a+1

Pr×Pn ((a+ 1)X ) → 0 (1.5)

where we used the projection formula to see that

i∗OX ⊗ Ωp+a+1
Pr×Pn ((a+ 1)X ) = i∗(OX ⊗ i∗Ωp+a+1

Pr×Pn ((a+ 1)X ))
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= i∗i
∗Ωp+a+1

Pr×Pn ((a+ 1)X ).

Part of the long exact cohomology sequence of (1.5) is

· · · → Hb(Pr × Pn,Ωp+a+1
Pr×Pn (aX )) → Hb(Pr × Pn,Ωp+a+1

Pr×Pn ((a+ 1)X )) → (1.6)

Hb(Pr × Pn, i∗i∗Ωp+a+1
Pr×Pn ((a+ 1)X )) → Hb+1(Pr × Pn,Ωp+a+1

Pr×Pn (aX )) → · · ·

We have by Proposition 1.2.10 that

Hb(Pr × Pn,Ωp+a+1
Pr×Pn ((a+ 1)X )) =
⊕

i+j=p+a+1

⊕

k+l=b

Hk(Pr,ΩiPr (a+ 1))⊗H l(Pn,ΩjPn(m(a+ 1))).

As a+ 1 > 0, by Theorem 1.2.9 one has that Hk(Pr,ΩiPr (a+ 1)) = 0 provided
that k > 0 and a+ 1 ≥ i− r or k = 0 and a+ 1 ≤ i. We note that:

� If k > 0 and a+ 1 < i− r we see in particular that i− r > 0 and so i > r
implying that ΩiPr = 0 and so Hk(Pr,ΩiPr (a+ 1)) = 0.

� If k = 0 and a + 1 > i then l > 0 as b > 0. If m(a + 1) ≥ j − n then
H l(Pn,ΩjPn(m(a + 1))) = 0. Otherwise, m(a + 1) < j − n implies that

j > n and so H l(Pn,ΩjPn(m(a+ 1))) = 0 in this case as well.

This proves that Hb(Pr × Pn,Ωp+a+1
Pr×Pn ((a + 1)X )) = 0 for b > 0 and a ≥ 0.

Furthermore, using Proposition 1.2.10 again we have that

Hb+1(Pr × Pn,Ωp+a+1
Pr×Pn (aX )) =

⊕

i+j=p+a+1

⊕

k+l=b+1

Hk(Pr,ΩiPr (a))⊗H l(Pn,ΩjPn(ma)).

We distinguish between two cases:

� If a > 0 then Hb+1(Pr × Pn,Ωp+a+1
Pr×Pn (aX )) = 0 in a similar way as above.

� If a = 0 then using Theorem 1.2.9 we have that Hk(Pr,ΩiPr ) = 0 provided

that k ̸= i and H l(Pn,ΩjPn) = 0 provided that l ̸= j, so the only case
where this is nonzero is if k = i and l = j, i.e. if p = b.

So if we assume that p ̸= b or a > 0, then Hb+1(Pr × Pn,Ωp+a+1
Pr×Pn (aX )) = 0.

From the sequence (1.6), we see that

Ea,b1 = Hb(X , i∗Ωp+a+1
Pr×Pn ((a+ 1)X )) = Hb(Pr × Pn, i∗i∗Ωp+a+1

Pr×Pn ((a+ 1)X )) = 0

which is precisely what we needed to show.

Construction 1.3.12. Now suppose that a = 0, b = p and p > 0.
We have seen in the proof of Lemma 1.3.11 that

Hp(Pr × Pn,Ωp+1
Pr×Pn(X )) = Hp+1(Pr × Pn,Ωp+1

Pr×Pn(X )) = 0.
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From the exact sequence (1.6) it follows that

E0,p
1 = Hp(X , i∗Ωp+1

Pr×Pn(X )) ∼= Hp+1(Pr × Pn,Ωp+1
Pr×Pn). (1.7)

Note that E0,p
∞ is nonzero. Indeed, Ea,b1 = 0 if a+ b = p+ 1 and b > 0, and one

can compute that Ep+1,0
1 = 0. Also, we have that

Hp+1(Pr × Pn,Ωp+1
Pr×Pn) ∼=

⊕

i+j=p+1

⊕

k+l=p+1

Hk(Pr,ΩiPr )⊗H l(Pn,ΩjPn) ∼= kp+1

and so E0,p
1 is nonzero by (1.7).

There is a surjection Hp(X ,ΩpX ) → E0,p
∞ . From this, we can define the map

β : Hp(X ,ΩpX ) → E0,p
1 = Hp(X , i∗Ωp+1

Pr×Pn(X )).

Using (1.7) again, we can view β as a map

Hp(Pr × Pn, i∗ΩpX ) → Hp+1(Pr × Pn,Ωp+1
Pr×Pn)

after identifying Hp(X ,ΩpX ) with Hp(Pr × Pn, i∗ΩpX ).

Lemma 1.3.13. The morphism β is precisely the coboundary map from the
exact sequence (1.2). As a consequence, β is surjective if p ≥ r.

Proof. Consider the diagram

0 Ωp+1
Pr×Pn Ωp+1

Pr×Pn(log(X )) i∗Ω
p
X 0

0 Ωp+1
Pr×Pn Ωp+1

Pr×Pn(X ) i∗i
∗Ωp+1

Pr×Pn(X ) 0

res

dF/F∧(−)

with the top row coming from the exact sequence (1.2) and the lower row coming
from the exact sequence (1.5).
This diagram commutes, because we know from the exact sequence (1.1) that
the map dF/F ∧ (−) is precisely the inclusion of OX (−X ) into i∗ΩPr×Pn . By
Lemma 1.2.7, the coboundary map of the long exact sequence associated to the
upper sequence is precisely i∗. Therefore, we have a commutative diagram

Hp(Pr × Pn, i∗ΩpX ) Hp+1(Pr × Pn,Ωp+1
Pr×Pn)

Hp(Pr × Pn, i∗i∗Ωp+1
Pr×Pn(X )) Hp+1(Pr × Pn,Ωp+1

Pr×Pn)

i∗

dF/F∧(−)
β

∼=

Here we note that we constructed the spectral sequence from the exact se-
quence (1.1), so that β is by construction the map induced from dF/F ∧ (−),
composed with the isomorphism coming from the coboundary map in the se-
quence (1.5). It follows that β = i∗. We note that i∗ is surjective if p ≥ r by
Lemma 1.2.13, which gives the last part of the statement.
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Lemma 1.3.14. All differentials going into or out of E0,p
s are zero for p ≥ r.

Proof. Note that all incoming differentials to the terms E0,p
s are zero by reason

of degree, and we have that E0,p
s = ker(d0,ps−1) ⊂ E0,p

s−1 for all s ≥ 2. Now the
fact that the edge map β is surjective for p ≥ r by Lemma 1.3.13 shows that all
outgoing differentials are zero.

Proof of Proposition 1.3.10. Note that if q = 0, then we have the exact sequence

H0(X , i∗Ωn+r−1
Pr×Pn ) → H0(X ,Ωn+r−1

X ) → H0(X ,Ωn+r−1
X )

where the last map is the identity and

H0(X , i∗Ωn+r−1
Pr×Pn ) = H0(Pr × Pn, i∗i∗Ωn+r−1

Pr×Pn ).

Note that

H0(Pr × Pn,Ωn+r−1
Pr×Pn ) ∼= H0(Pr,ΩrPr )⊗H0(Pn,Ωn−1

Pn )

⊕H0(Pr,Ωr−1
Pr )⊗H0(Pn,ΩnPn)

= 0

using Proposition 1.2.10 and Theorem 1.2.9 again. Similarly, we have that

H1(Pr × Pn,Ωn+r−1
Pr×Pn (−X )) ∼= H0(Pr,ΩrPr (−1))⊗H1(Pn,Ωn−1

Pn (−m))

⊕H1(Pr,Ωr−1
Pr (−1))⊗H0(Pn,ΩnPn(−m))

⊕H0(Pr,Ωr−1
Pr (−1))⊗H1(Pn,ΩnPn(−m))

⊕H1(Pr,ΩrPr (−1))⊗H0(Pn,Ωn−1
Pn (−m))

= 0

so using the long exact sequence (1.6) we find thatH0(X , i∗Ωn+r−1
Pr×Pn ) = 0. There-

fore, we assume that q > 0 from now on.
First assume that p ̸= q. We note that the contributions to Hq(X ,ΩpX ) come

from all Ea,b1 satisfying a + b = q. These are all zero except possibly for Eq,01 ,

by Lemma 1.3.11. By Lemma 1.3.11, we have that Ea,b1 = 0 for a + b = q − 1
and 0 < a ≤ q − 1, except possibly for (a, b) = (q − 1, 0) and, if p = q − 1, also
(a, b) = (0, q − 1). Thus, the only possible non-zero incoming differentials to
Eq,0∗ are dq−1,0

1 and, in case p = q − 1, also d0,q−1
q . Also, there are no outgoing

differentials out of Eq,0∗ by reason of degree.
If p = q−1 and q ̸= 1, then as p+q = n+r−1, we have that 2p = n+r−2 ≥ 2r
and so p ≥ r. Therefore by Lemma 1.3.14, all outgoing differentials of E0,q−1

q

are zero. If q = 1, then E0,q−1
1 = E0,0

1 and so it coincides with Eq−1,0
1 . Ei-

ther way, we therefore have that the only possibly nonzero incoming differential
comes from Eq−1,0

1 , and so Eq,0∞ is equal to Eq,02 , i.e. Eq,01 modulo the image
of Eq−1,0

1 . Since all the differentials leaving Eq,0∗ are zero, we have the edge
homomorphism

Eq,01 = H0(X ,Ωn+r−1
X (qX )) → Hq(X ,ΩpX )
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which is exactly the map δ. Since Eq,02 = Eq,0∞ , this gives an exact sequence

0 → H0(X , i∗Ωn+r−1
Pr×Pn (qX )) → H0(X ,Ωn+r−1

X (qX ))
δ−→ Hq(X ,ΩpX ).

Note that the map δ is surjective in this case since only Eq,0∗ can contribute.
This completes the proof in case p ̸= q.
If p = q then the possibly nonzero term E0,p

1 also contributes to Hp(X ,ΩpX ).

There are no incoming differentials to E0,p
∗ and since p = q = n+ r − 1− p, we

have p ≥ r, so there no outgoing differentials by Lemma 1.3.14, and we have
E0,p

1 = E0,p
∞ . Thus, the edge homomorphism

β : Hp(X ,ΩpX ) → E0,p
1 = Hp(X , i∗Ωp+1

Pr×Pn)

is surjective, and we find an exact sequence

0 → H0(X , i∗Ωn+r−1
Pr×Pn (qX )) → H0(X ,Ωn+r−1

X (qX ))
δ−→ Hp(X ,ΩpX )

β−→ Hp(X , i∗Ωp+1
Pr×Pn) → 0

This means that the image of δ is equal to the kernel of β, which by Lemma 1.3.13
is the kernel of i∗, which is by definition the primitive cohomology.

1.3.2 Proof of Proposition 1.3.8

Proof of Proposition 1.3.8. We first note that H1(Pr × Pn,Ωn+rPr×Pn(qX )) = 0.
Indeed, it follows from Proposition 1.2.10 that

H1(Pr × Pn,Ωn+rPr×Pn(qX )) =
⊕

i+j=n+r

H0(Pr,ΩiPr (q))⊗H1(Pn,ΩjPn(mq))

⊕H1(Pr,ΩiPr (q))⊗H0(Pn,ΩjPn(mq))

Using Theorem 1.2.9 we observe that:

� If q > 0 then H1(Pn,ΩjPn(mq)) = 0 provided that mq ≥ j − n. But if

mq < j − n we have that j > n and so H1(Pn,ΩjPn(mq)) is always equal
to zero. For similar reasons, H1(Pr,ΩiPr (q)) is always equal to zero and
so H1(Pr × Pn,Ωn+rPr×Pn(qX )) = 0 in this case.

� If q = 0 then H1(Pn,ΩjPn) = 0 provided that j ̸= 1. However, in case
j = 1 we have that i = n+ r−1 > 0 as n ≥ 2. Now from Theorem 1.2.9 it
follows that H0(Pr,ΩiPr ) = 0. Similarly the second factor always vanishes.

This verifies the claim.
This means that the exact sequence (1.5) gives rise to an exact sequence

0 → H0(Pr × Pn,Ωn+rPr×Pn(qX )) → H0(Pr × Pn,Ωn+rPr×Pn((q + 1)X ))

→ H0(X , i∗Ωn+rPr×Pn((q + 1)X )) → 0.
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We now consider res : H0(Pr × Pn,Ωn+rPr×Pn((q + 1)X )) → H0(X ,Ωn+r−1
X (qX )).

Noting that the kernel of res is H0(Pr × Pn,Ωn+rPr×Pn(qX )), we see that res de-
scends to a map

r̃es : H0(X , i∗Ωn+rPr×Pn((q + 1)X )) → H0(X ,Ωn+r−1
X (qX ))

with the same image as res. Furthermore, we observe that the map ψ̃q+1 now
gives rise to an isomorphism

k[Y0, · · · , Yr, X0, · · · , Xn]/(F )
q−r,(q+1)m−(n+1) ψ̄q+1−−−→ H0(X , i∗Ωn+rPr×Pn((q+1)X )).

(1.8)
We now consider the following commutative diagram:

H0(X , i∗Ωn+rPr×Pn((q + 1)X )) k[Y0, · · · , Yr, X0, · · · , Xn]/(F )
α

H0(X , i∗Ωn+r−1
Pr×Pn (qX )) H0(X ,Ωn+r−1

X (qX ))

r̃es

ψ̄q+1

f

πq

dF/F∧(−) (1.9)

where α = ((q+1)−(r+1), (q+1)m−(n+1)) is the bidegree from the statement
and f = r̃es◦ ψ̄q+1. For the rest of the proof, we will show that the image of the
Jacobian ideal under f is the same as the image of πq, i.e. the kernel of δ. This
shows that the Jacobian ideal is precisely the kernel of the composition δ ◦ f .
Note that the image of δ ◦ f is the image of δ as res is surjective and ψ̄q+1 is an
isomorphism. The image of δ however, is precisely the primitive cohomology.
Therefore, noting that F is in the Jacobian ideal, we find an isomorphism

k[Y0, · · · , Yr, X0, · · · , Xn]/(F0, · · · , Fr, F̄0, · · · , F̄n)α → Hp(X ,ΩpX )prim.

This will complete the proof.
We start by noting that the image of ideal

(
F0, · · · , Fr, F̄0, · · · , F̄n

)
/F under

the isomorphism (1.8) is generated by elements of the form Fiω∧ ω̄ and F̄jω∧ ω̄.
Following [50], we note that the sheaf ΩrPr (r+ 1)⊗Ωn−1

Pn (n) has global sections
generated by the sections ω ∧ τi for i ∈ {0, · · · , n} where

τi =
∑

j<i

(−1)jXjdX
j,i +

∑

i<j

(−1)j+1XjdX
i,j .

So a section of this sheaf with a pole along X of order at most q is of the
form

∑n
i=0

Biω∧τi
F q where Bi has bidegree (q − (r + 1), qm − n). We note that

dF =
∑r
i=0 FidYi+

∑n
j=0 F̄jdXj and we also note that for i, j ∈ {0, · · · , n}, we

have that

dXj ∧ τi =
{
XjdX

i if i ̸= j∑
j<i(−1)j+i−1XjdX

j +
∑
j>i(−1)j+i+1XjdX

j otherwise

So



n∑

j=0

F̄jdXj


 ∧ τi =

∑

j ̸=i

F̄jXjdX
i + (−1)i−1F̄i

∑

j ̸=i

(−1)jXjdX
j
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= (−1)i−1F̄iω̄ +mFdXi.

It follows that modulo F , we have that

dF

F
∧

n∑

i=0

Biω ∧ τi
F q

=

n∑

i=0

(−1)i−1BiF̄iω ∧ ω̄
F q+1

We can do a similar thing for a section of Ωr−1
Pr (r)⊗ ΩnPn(n+ 1).

Using [23, Exercise II.8.3] we see that Ωn+r−1
Pr×Pn =

⊕
i+j=n+r−1 π

∗
rΩ

i
Pr ⊗ π∗

nΩ
j
Pn .

As the map dF/F ∧(−) increases the bidegrees of the corresponding elements of
J by (1,m−1), the only forms that will end up in the bidegree α when applying
dF/F∧(−) are either coming from ΩrPr⊗Ωn−1

Pn or from Ωr−1
Pr ⊗ΩnPn . Using the fact

that H0(Pr × Pn,Ωn+rPr×Pn((q + 1)X )) surjects onto H0(X , i∗Ωn+rPr×Pn((q + 1)X ))
the above computation shows that the image of the map dF/F ∧ (−) in the
diagram (1.9) is the same as the image of ψ̃q+1, and so the images remain the
same after applying r̃es. This shows that f and πq indeed have the same image,
which completes the proof.

1.4 Comparing the two products

The next goal is to compare the cup product on cohomology to the ring mul-
tiplication on the Jacobian ring. We keep all notation from the previous two
sections.

Notation 1.4.1. Let U = {U0, · · · , Ur, Ū0, · · · , Ūn} be the open cover of Pr×Pn
where Ui = {Fi ̸= 0} for i ∈ {0, · · · , r} and Ūj = {F̄j ̸= 0} for j ∈ {0, · · · , n}.
Note that this is an open cover of Pr×Pn because X is smooth. We have that U
restricts to a cover of X , and we will use the same notation for both. Note that
the Ui are not affine and that the Fi’s and F̄j ’s do not have the same bidegrees.
We define an order on these open subsets as follows:

U0 < U1 < · · · < Ur < Ū0 < · · · < Ūn.

Notation 1.4.2. For i ∈ {0, · · · , r}, we let Ki be inner multiplication with ∂
∂Yi

,
i.e. for i ∈ {0, · · · , r} we have that

Ki(dYi1 ∧ · · · ∧ dYil ∧ dXj1 ∧ · · · ∧ dXjk)

=

{
(−1)a−1dYi1 ∧ · · · dŶia · · · ∧ dYil ∧ dXj1 ∧ · · · ∧ dXjk if i = ia

0 if i /∈ {i1, · · · , il}

Similarly, for j ∈ {0, · · · , n}, we let K̃j be inner multiplication with ∂
∂Xj

, i.e.

for j ∈ {0, · · · , n}, we have that

K̄j(dYi1 ∧ · · · ∧ dYil ∧ dXj1 ∧ · · · ∧ dXjk)

=

{
(−1)l+b−1dYi1 ∧ · · · ∧ dYil ∧ dXj1 ∧ · · · dX̂jb · · · ∧ dXjk if j = jb

0 if j /∈ {j1, · · · , jk}
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We have that Ki(α ∧ β) = Ki(α) ∧ β + (−1)kα ∧Ki(β), if α is a k-form, and a
similar formula holds for the K̄j ’s.

Notation 1.4.3. For subsets I = i1, · · · , il ⊂ {0, · · · , r} and J ⊂ {0, · · · , n},
we set:

� UI,J =
⋂
i∈I Ui ∩

⋂
j∈J Ūj .

� ΩI = (
∏
i∈I Ki)(ω) = (Kil ◦Kil−1

◦ · · · ◦Ki1)(ω) and Ω̄J = (
∏
j∈J K̄j)(ω̄).

� FI =
∏
i∈I Fi and F̄J =

∏
j∈J F̄j .

Notation 1.4.4. For a sheaf F on X or on Pr×Pn, we have the group Ci(U ,F)
consisting of all families {sI,J ∈ F(UI,J)}I,J where #I + #J = i + 1. These
form the Čech complex

0 → C0(U ,F) → · · · → Cn+r+1(U ,F) → 0

with differentials δ : Ci(U ,F) → Ci+1(U ,F) given by

δ({sI,J}I,J) =
{ i+1∑

k=0

(−1)ks(I,J)\{(I,J)k}|UI,J

}
I,J
.

Here, (I, J)k denotes the k’th element of the ordered set (I, J). The cohomology
groups of the above complex are denoted by Ȟa(U ,F). Note that there are
natural maps Ȟa(U ,F) → Ha(X ,F) or Ȟa(U ,F) → Ha(Pr × Pn,F), by [23,
Lemma II.4.4].

Notation 1.4.5. This notation is taken from [50, page 222] with a small adap-
tation, see the remark below. Fix p, q ∈ Z≥0 such that p + q = n + r − 1.
Consider the bidegree

ρ = (n− r − 1, (n+ r + 1)m− 2(n+ 1)).

For subsets I ⊂ {0, · · · , r} and J ⊂ {0, · · · , n} such that #I +#J = n+ r, we
define an element Ω(I, J) ∈ H0(X ∩ UI,J , i∗Ωn+r−1

Pr×Pn (−ρ)) as follows:

� If we are not in the situation where #I = r and #J = n, then Ω(I, J) = 0.

� If I = {i0, · · · , ir−1} ⊂ {0, · · · , r} and J = {j0, · · · , jn−1} ⊂ {0, · · · , n},
then:

– If q ≤ r − 1, we write

I ′ =

{
{i0, · · · , iq−1} if q > 0

∅ if q = 0
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and

I ′′ =

{
{iq+1, · · · , ir−1} if q < r − 1

∅ if q = r − 1

We define

Ω(I, J) =
(−1)nqΩI′,iq ∧ ω̄ ∧ Ωiq,I′′ ∧ Ω̄J

FI′F 2
iq
FI′′ F̄J

.

– If q ≥ r, then we write

J ′ =

{
{j0, · · · , jq−r−1} if q > r

∅ if q = r

and

J ′′ =

{
{jq−r+1, · · · , jn−1} if q < n+ r − 1

∅ if q = n+ r − 1

We define

Ω(I, J) =
(−1)r(n+q+r)ΩI ∧ Ω̄J′,jq−r

∧ ω ∧ Ω̄jq−r,J′′

FI F̄J′ F̄ 2
jq−r

F̄J′′
.

Remark 1.4.6. Note that Ω(I, J) can also be defined without distinguishing
the case #I = r and #J = n, which is the definition used in [50]. We then still
have that Ω(I, J) = 0 unless #I = r and #J = n. Namely, Ω{0,··· ,r} = 0 and
Ω̄{0,··· ,n} = 0, which implies that Ω(I, J) = 0 for #I ≥ r+1 or #J ≥ n+1. As
#I +#J = n+ r, this means that Ω(I, J) = 0 unless #I = r and #J = n.

In subsection 1.4.1, we will prove the following statement, which is a gener-
alization of [50, Proposition 2.8] to other fields than C.

Proposition 1.4.7. For A ∈ Jq−r,(q+1)m−(n+1) and B ∈ Jp−r,(p+1)m−(n+1),
write

ωA = ψq(A) ∈ Hq(X ,ΩpX ) and ωB = ψp(B) ∈ Hp(X ,ΩqX ).

Then the cup product ωA∪ωB ∈ Hn+r−1(X ,Ωn+r−1
X ) is represented by the Čech

cochain
{π(ABΩ(I, J))}I,J ∈ Cn+r−1(U ,Ωn+r−1

X ).

The argument is taken almost directly from [50], combined with some ele-
ments of the arguments in [33].

Remark 1.4.8 (Remark 1.3.9 continued). Let V (F0) ⊂ Pn be a hypersurface
defined by a homogeneous polynomial F0 ∈ k[X0, · · · , Xn] of degree m. If we
set r = 0 then for J = {j0, · · · , jn−1} ⊂ {0, · · · , n} and I = ∅, we have

Ω(I, J) =
Ω̄j0,··· ,jq ∧ Ω̄jq,··· ,jn−1

Y n0
∂F0

∂Xq

∏n
j=0

∂F0

∂Xj

.

One can check that Proposition 1.4.7 then becomes [33, Proposition 3.6(1)].

33



We can compute the element i∗(ωA∪ωB) as follows, generalizing [33, Propo-
sition 3.7(2)] to a product of projective spaces.

Proposition 1.4.9. We have that i∗(ωA ∪ ωB) ∈ Hn+r(Pr × Pn,Ωn+rPr×Pn) is

represented by the cochain in {s0, · · · , sr, s̄0, · · · , s̄n} ∈ Cn+r(U ,Ωn+rPr×Pn) given
by

sv =
(−1)v+r+1mABYvFvω ∧ ω̄∏r

i=0 Fi
∏n
j=0 F̄j

for v ∈ {0, · · · , r} corresponding to the intersection of all opens except for Uv
and

s̄w =
(−1)w+1ABXwF̄wω ∧ ω̄∏r

i=0 Fi
∏n
j=0 F̄j

for w ∈ {0, · · · , n} corresponding to the intersection of all opens except for Ūw.

It will have the following consequence, which can be viewed as a generaliza-
tion of [50, Corollary 2.9] to other fields than C.

Corollary 1.4.10. Consider the morphism

ϕ̃ : k[Y0, · · · , Yr, X0, · · · , Xn]
ρ → Cn+r(U ,Ωn+rPr×Pn), D 7→ {s0, · · · , sr, s̄0, · · · , s̄n}

where

sv =
(−1)v+r+1mDYvFvω ∧ ω̄∏r

i=0 Fi
∏n
j=0 F̄j

and s̄w =
(−1)w+1DXwF̄wω ∧ ω̄∏r

i=0 Fi
∏n
j=0 F̄j

for v ∈ {0, · · · , r} and w ∈ {0, · · · , n}. This gives rise to a surjective morphism
ϕ : Jρ → Hn+r(Pr × Pn,Ωn+rPr×Pn) ∼= k, such that the diagram

Hq(X ,ΩpX )prim ⊗Hp(X ,ΩqX )prim Hn+r(Pr × Pn,Ωn+rPr×Pn)

Jq−r,(q+1)m−(n+1) ⊗ Jp−r,(p+1)m−(n+1) Jρ

i∗◦∪

ψp⊗ψq ϕ

commutes.

Then in subsection 1.4.3, we use a slight variation on an argument from [27]
to find the following.

Corollary 1.4.11. The map ϕ is an isomorphism, except possibly when n is
odd, r = 1 and m = 2.

Remark 1.4.12. Note that if n is odd and r = 1, we have that n+ r − 1 = n
is odd, so that X has odd dimension. By the Motivic Gauss Bonnet Theorem,
see Theorem 1.1.16, we have that χ(X/k) is hyperbolic in this case. Therefore,
the one exception is not a problem for our purposes. Still, it is a good question
why a complete intersection of two quadrics in an odd dimensional projective
space is an exception. We do not have an explanation for this.
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We also introduce a variant of the Jacobian ring, namely, the ring

J̃ = k[Y0, · · · , Yr, X0, · · · , Xn]/(Y0F0, · · · , YrFr, X0F̄0, · · · , XnF̄n)

and show the following statement.

Proposition 1.4.13. J̃ρ+(r+1,n+1) is a one dimensional vector space over k.

1.4.1 Proof of Proposition 1.4.7

In order to prove Proposition 1.4.7, we first prove two lemmas and set up some
notation.

Construction 1.4.14. Over an open Ui for i ∈ {0, · · · , r}, one can define a
splitting of the inclusion dF/F ∧ (−) : OX (−X ) → i∗ΩPr×Pn by

Hi

(
r∑

i=0

aidYi +

n∑

k=0

bkdXk

)
= aiF · F−1

i

extending to a map Hi : i
∗ΩaPr×Pn(bX ) → i∗Ωa−1

Pr×Pn((b − 1)X ). Similarly, over

Ūj for j ∈ {0, · · · , n} one can define the splitting

H̄j

(
r∑

i=0

aidYi +

n∑

k=0

bkdXk

)
= bjF · F̄−1

j

extending to a map H̄j : i∗ΩaPr×Pn(bX ) → i∗Ωa−1
Pr×Pn((b − 1)X ). We get a map

on Čech cochains

H : Cq(U , i∗ΩaPr×Pn(bX )) → Cq(U , i∗Ωa−1
Pr×Pn((b− 1)X ))

defined by

H({sI,J}I,J) =
{
{H(I,J)0(sI,J)}I,J if I ̸= ∅
{H̄(I,J)0(sI,J)}I,J otherwise

where (I, J)0 denotes the first element in an ordered index (I, J). We note that
Hi = F/Fi ·Ki for i ∈ {0, · · · , r} and H̄j = F/F̄j · K̄j for j ∈ {0, · · · , n}.

The following statement is a generalization of [33, Lemma 3.4] to products
of projective spaces.

Lemma 1.4.15. Let A ∈ k[Y0, · · · , Yr, X0, · · · , Xn] be a polynomial of bidegree
(b− (r + 1), bm− (n+ 1)) for some b. Then:

1. res(Aω ∧ ω̄/F b+1) ∈ H0(X ,Ωn+r−1
X (bX )) is represented by the element

{s0, · · · , sr, s̄0, · · · , s̄n} ∈ C0(U ,Ωn+r−1
X (bX )) given by

si =
AΩi ∧ ω̄
FiF b

∈ Ωn+r−1
X (bX )(Ui)
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for i ∈ {0, · · · , r} and

s̄j =
(−1)rAω ∧ Ω̄j

F̄jF b
∈ Ωn+r−1

X (bX )(Ūj)

for j ∈ {0, · · · , n}.

2. For an element { A
FI F̄JF bΩI ∧ Ω̄J}I,J ∈ Ci(U , i∗Ωa−1

Pr×Pn(b − 1)X ) we have
that

H

({
(dF/F ) ∧ (

A

FI F̄JF b
ΩI ∧ Ω̄J)

}
I,J

)
=
{ A

FI F̄JF b
ΩI ∧ Ω̄J

}
I,J
.

3. Applying the Čech differential δ to

α =
{ (−1)(r+#I)#JA

FI F̄JF b
ΩI ∧ Ω̄J

}
#I+#J=i+1

∈ Ci(U ,ΩaX (bX ))

we have that

δ(α) =

{
(dF/F ) ∧

(
(−1)i+1 (−1)(r+#I′)#J′

A

FI F̄JF b−1
ΩI′ ∧ Ω̄J′

)}

#I′+#J′=i+2

in Ci+1(U ,ΩaX (bX )).

4. Let π : i∗Ωa−1
Pr×Pn((b− 1)X ) → Ωa−1

X ((b− 1)X ) be the canonical projection.
We have that π ◦H is a splitting to

dF/F ∧ (−) : Ci(U ,Ωa−1
X ((b− 1)X )) → Ci(U , i∗ΩaPr×Pn(bX )).

Proof. This follows the method of [11] directly. Note that to check an identity
on a sheaf of p-forms on some open subset U of X , it suffices to check on f−1(U)
for f : X ′ → X any smooth morphism with f−1(U) nonempty. We will take f
to be the restriction of (Ar+1 \{0})× (An+1 \{0}) → Pr×Pn to X . The point is
that one does not need to assume that all the terms involved in the computation
arise as forms on X : the individual terms need not satisfy the Euler equations.
We start by proving (1). Write En =

∑n
i=0Xi∂/∂Xi and Er =

∑r
i=0 Yi∂/∂Yi,

and let dVn = dX0 ∧ · · · ∧ dXn and dVr = dY0 ∧ · · · ∧ dYr. Note that interior
multiplication ι(En) with En gives ι(En)(dVn) = ω̄ and similarly we have that
ι(Er)(dVr) = ω. We note that dF ∧ dVr ∧ dVn = 0, so

0 = ι(En)ι(Er)(dF ∧ dVr ∧ dVn)
= ι(En) (FdVr ∧ dVn − dF ∧ ω ∧ dVn)
= (−1)r+1FdVr ∧ ω̄ −mFω ∧ dVn + (−1)rdF ∧ ω ∧ ω̄

Restricting to the affine cone over X , we have that F = 0 and so we find that

dF ∧ ω ∧ ω̄ = 0. (1.10)

36



Note that for i ∈ {0, · · · , r}, we have that

KidF = Ki

(
r∑

k=0

FkdYk +

n∑

l=0

F̄ldXl

)
= Fi.

Applying Ki to (1.10) therefore yields that Fiω ∧ ω̄ = dF ∧ Ωi ∧ ω̄. Similarly,
applying K̄j gives that F̄jω ∧ ω̄ = (−1)rdF ∧ ω ∧ Ω̄j for j ∈ {0, · · · , n}. We see
from this that

Aω ∧ ω̄
F b+1

=

{
AΩi∧ω̄∧dF/F

FiF b for i ∈ {0, · · · , r}
(−1)rAω∧Ω̄j∧dF/F

F̄jF b for j ∈ {0, · · · , n}

Applying the residue map to the left hand side, recalling the diagram (1.9) from

the proof of Proposition 1.3.8, is the same as applying π to AΩi∧ω̄
FiF b or

(−1)rAω∧Ω̄j

F̄jF b .

We find the result as desired.
To prove (2), let I = {i0, · · · , ik} ⊂ {0, · · · , r} and J = {j0, · · · , jl} ⊂ {0, · · · , n}
be such that #I +#J = i+ 1. If I is nonempty, we have that Ki0ΩI ∧ Ω̄J = 0
as Ki0KIω = 0 (one removes Xi0 from ω twice), and so

Hi0

(
dF/F ∧

(
A

FI F̄JF b
ΩI ∧ Ω̄J

))
=

F

Fi0
Ki0

(
dF/F ∧

(
A

FI F̄JF b
ΩI ∧ Ω̄J

))

=
A

FI F̄JF b
ΩI ∧ Ω̄J

as desired. If I is empty, one replaces Hi0 by H̄j0 , Fi0 by F̄j0 and Ki0 by K̄j0

and the proof works in the exact same way.
To prove statement (3), we consider two subsets I ′ = {i0, · · · , ik} ⊂ {0, · · · , r}
and J ′ = {j0, · · · , ji−k} ⊂ {0, · · · , n} such that #I ′ + #J ′ = i + 2. We apply
KI′ to the identity (1.10), so that we find that

0 = (Kik ◦ · · · ◦Ki0)(dF ∧ ω ∧ ω̄)
= (Kik ◦ · · · ◦Ki1) (Fi0ω ∧ ω̄ − dF ∧ Ωi0 ∧ ω̄)
= (Kik ◦ · · · ◦Ki2) (Fi0Ωi1 ∧ ω̄ − Fi1Ωi0 ∧ ω̄ + dF ∧ Ωi0i1 ∧ ω̄)
= · · ·

=

k∑

l=0

(−1)lFilΩI′\{il} ∧ ω̄ + (−1)k+1dF ∧ ΩI′ ∧ ω̄

Applying K̄J′ gives

0 = (K̄ji−k
◦ · · · ◦ K̄j0)

(
k∑

l=0

(−1)lFilΩI′\{il} ∧ ω̄ + (−1)k+1dF ∧ ΩI′ ∧ ω̄
)

= (K̄ji−k
◦ · · · ◦ K̄j1)(

k∑

l=0

(−1)l+r−kFilΩI′\{il} ∧ Ω̄j0
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+ (−1)k+1F̄j0ΩI′ ∧ ω̄ + (−1)k+1+r−kdF ∧ ΩI′ ∧ Ω̄j0)

= (K̄ji−k
◦ · · · ◦ K̄j2)(

k∑

l=0

(−1)l+2(r−k)FilΩI′\{il} ∧ Ω̄j0j1

+ (−1)k+1+r−k−1F̄j0ΩI′ ∧ Ω̄j1 + (−1)k+1+r−kF̄j1ΩI′ ∧ Ω̄j0

+ (−1)k+1+2(r−k)dF ∧ ΩI′ ∧ Ω̄j0j1)

= · · ·

=

k∑

l=0

(−1)l+(i−k+1)(r−k)FilΩI′\{il} ∧ Ω̄J′

+ (−1)k+1
i−k∑

l=0

(−1)l+(i−k)(r−k−1)F̄jlΩI′ ∧ Ω̄J′\{jl}

+ (−1)k+1+(i−k+1)(r−k)dF ∧ ΩI′ ∧ Ω̄J′

so

k∑

l=0

(−1)lFilΩI′\{il}∧Ω̄J′+(−1)k+1+r−i
i−k∑

l=0

(−1)lF̄jlΩI′∧Ω̄J′\{jl} = (−1)kdF∧ΩI′∧Ω̄J′

We see that
(
δ

({ (−1)(r+#I)#JA

FI F̄JF b
ΩI ∧ Ω̄J

}
I,J

))

I′,J′

=
A

F b

k∑

l=0

(−1)l+(r+k)(i−k+1)FilΩI′\{il} ∧ Ω̄J′

FI′ F̄J′

+ (−1)k+1 A

F b

i−k∑

l=0

(−1)l+(r+k+1)(i−k) F̄jlΩI′ ∧ Ω̄J′\{jl}

FI′ F̄J′

= (−1)i+1 (−1)(r+k+1)(i−k−1)A

FI′ F̄J′F b
dF ∧ ΩI′ ∧ Ω̄J′

which proves the claim.
Finally, for (4), we note that as the original maps Hj are splittings, the compo-
sition π ◦H is one too, which completes the proof.

We can use this to prove the following result, which is a generalization of
[33, Proposition 3.6] to products of projective spaces.

Lemma 1.4.16. Let A ∈ Jq−r,(q+1)m−(n+1), then ψq(A) ∈ Hq(X ,ΩpX ) is repre-
sented by the Čech cochain {π((−1)(r+#I)#JAΩI∧Ω̄J/FI F̄J)}I,J in Cq(U ,ΩpX ).

Proof. Recall that for j ∈ {0, · · · , q− 1}, there is the exact sequence (1.3) given
by

0 → Ωn+r−j−2
X ((q−j−1)X ) → i∗Ωn+r−j−1

Pr×Pn ((q−j)X ) → Ωn+r−j−1
X ((q−j)X ) → 0.
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We find coboundary maps

δj : H
j(X ,Ωn+r−j−1

X ((q − j)X ) → Hj+1(X ,Ωn+r−j−2
X ((q − j − 1)X ).

We will show by induction on j that δj−1 ◦ · · · ◦ δ0(res(Aω ∧ ω̄/F q+1)) is repre-
sented by the Čech cocycle

{π((−1)j(j−1)/2+(r+#I)#JAΩI∧Ω̄J/FI F̄JF q−j)}I,J ∈ Cj(U ,Ωn+r−j−1
X (q−j)X ).

Then taking j = q will give the desired result: using [33, Remark 2.3], we have
that the element above represents ψq(A) for j = q up to a factor (−1)q(q−1)/2.
First of all, note that the case where j = 0 is precisely Lemma 1.4.15, part
(1). Now assume that δj−1 ◦ · · · ◦ δ0(res(Aω ∧ ω̄/F q+1)) is represented by the
Čech cocycle {π((−1)j(j−1)/2(−1)(r+#I)#JAΩI∧Ω̄J/FI F̄JF q−j)}I,J for some j.
Then δj ◦ · · · ◦ δ0(res(Aω ∧ ω̄/F q+1)) is represented by the coboundary of

{π((−1)j(j−1)/2(−1)(r+#I)#JAΩI ∧ Ω̄J/FI F̄JF
q−j)}I,J .

Using [33, Remark 2.2], this is defined by lifting to the cochain

{(−1)j(j−1)/2+(r+#I)#JAΩI∧Ω̄J/FI F̄JF
q−j}I,J ∈ Cj(U , i∗Ωn+r−j−1

Pr×Pn ((q−j)X )

and applying the negative of the Čech coboundary operator δ, and then viewing
this as an element coming from Cj+1(U ,Ωn+r−j−2

X ((q − j − 1)X )) of which the
inclusion is induced by the map dF/F ∧ (−). Using Lemma 1.4.15, part (3) we
have that

−δ
({ (−1)j(j−1)/2(−1)(r+#I)#JAΩI ∧ Ω̄J

FI F̄JF q−j

}
I,J

)

=
{
(dF/F ) ∧

(
(−1)j(j+1)/2(−1)(r+#I)#JAΩI ∧ Ω̄J

FI F̄JF q−j−1

)}
I,J

By part (4), π ◦H provides a splitting to dF/F ∧ (−) implying by part (2) that
the desired element is

(π ◦H)

({dF
F

∧
(
(−1)j(j+1)/2(−1)(r+#I)#JAΩI ∧ Ω̄J

FI F̄JF q−j−1

)}
I,J

)

=
{
π

(
(−1)j(j+1)/2 (−1)(r+#I)#JAΩI ∧ Ω̄J

FI F̄JF q−j−1

)}
I,J

completing the induction.

Proof of Proposition 1.4.7. We know from Lemma 1.4.16 that ωA and ωB are
represented by the cochains

{π((−1)(r+#I)#JAΩI ∧ Ω̄J/FI F̄J)}I,J ∈ Cq(U ,Ωn+r−1−q
X )

and
{π((−1)(r+#I)#JBΩI ∧ Ω̄J/FI F̄J)}I,J ∈ Cp(U ,Ωn+r−1−p

X ).
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Now let I = {i0, · · · , ir−1} ⊂ {0, · · · , r} and J = {j0, · · · , jn−1} ⊂ {0, · · · , n}.
First assume that q ≤ r − 1. Then by definition of the cup product on Čech
cochains, we have that

(ωA ∪ ωB)I,J = π

(
(−1)(2r−q)n

AΩi0,··· ,iq ∧ ω̄
Fi0,··· ,iq

· BΩiq,··· ,ir−1
∧ Ω̄j0,··· ,jn−1

Fiq,··· ,ir−1
F̄j0,··· ,jn−1

)

= π (ABΩ(I, J))

Similarly, if q ≥ r, we have that

(ωA ∪ ωB)I,J

= π

(
(−1)2r(q−r+1)+r(n−q−r)AΩi0,··· ,ir−1 ∧ Ω̄j0,··· ,jq−r

Fi0,··· ,ir−1
F̄j0,··· ,jq−r

· Bω ∧ Ω̄jq−r,··· ,jn−1

F̄jq−r,··· ,jn−1

)

= π (ABΩ(I, J))

which proves the statement.

1.4.2 Proof of Proposition 1.4.9 and Corollary 1.4.10

In order to prove Proposition 1.4.9, we first show the following lemma.

Lemma 1.4.17. Consider subsets

I = {i0, · · · , ir−1} ⊂ {0, · · · , r} and J = {j0, · · · , jn−1} ⊂ {0, · · · , n}

such that I = {0, · · · , r} \ {v} and J = {0, · · · , n} \ {w}. We have that

dF ∧ Ω(I, J) =
(−1)v+wYvFvXwF̄wω ∧ ω̄∏r

i=0 Fi
∏n
j=0 F̄j

.

Proof. If q ≤ r − 1, we have by [11, Lemma on page 14] that

(
r∑

i=0

FidYi

)
∧ Ωi0,··· ,iq ∧ Ωiq,··· ,ir−1

= (−1)vYvFiq ∧ ω.

Now noting that Ω̄j0,··· ,jn−1
= (−1)wXw and dXj ∧ ω̄ = 0 for all j ∈ {0, · · · , n},

we see that

dF ∧ Ω(I, J) =

(
r∑

i=0

FidYi

)
∧ (−1)nqFvF̄wΩi0,··· ,iq ∧ ω̄ ∧ Ωiq,··· ,ir−1 ∧ Ω̄j0,··· ,jn−1

Fiq
∏r
i=0 Fi

∏n
j=0 F̄n

+




n∑

j=0

F̄jdXj


 ∧ (−1)nqFvF̄wΩi0,··· ,iq ∧ ω̄ ∧ Ωiq,··· ,ir−1

∧ Ω̄j0,··· ,jn−1

Fiq
∏r
i=0 Fi

∏n
j=0 F̄n

=

(
r∑

i=0

FidYi

)
∧ (−1)wXwFvF̄wΩi0,··· ,iq ∧ Ωiq,··· ,ir−1

∧ ω̄
Fiq
∏r
i=0 Fi

∏n
j=0 F̄n
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+




n∑

j=0

F̄jdXj


 ∧ (−1)n(r−1)+wXwFvF̄wω̄ ∧ Ωi0,··· ,iq ∧ Ωiq,··· ,ir−1

Fiq
∏r
i=0 Fi

∏n
j=0 F̄n

=
(−1)v+wYvFvXwF̄wω ∧ ω̄∏r

i=0 Fi
∏n
j=0 F̄n

If q ≥ r, we have by [11, Lemma on page 14] that




n∑

j=0

F̄jdXj


 ∧ Ω̄j0,··· ,jq−r

∧ Ω̄jq−r,··· ,jn−1
= (−1)wXwF̄jq−r

ω̄.

Now as Ωi0,··· ,ir−1
= (−1)vYv and dYi ∧ ω = 0 for any i ∈ {0, · · · , r}, we see

that

dF ∧ Ω(I, J)

=

(
r∑

i=0

FidYi

)
∧ (−1)r(n+q+r)FvF̄wΩi0,··· ,ir−1

∧ Ω̄j0,··· ,jq−r
∧ ω ∧ Ω̄jq−r,··· ,jn−1

F̄jq−r

∏r
i=0 Fi

∏n
j=0 F̄j

+




n∑

j=0

F̄jdXj


 ∧ (−1)r(n+q+r)FvF̄wΩi0,··· ,ir−1 ∧ Ω̄j0,··· ,jq−r ∧ ω ∧ Ω̄jq−r,··· ,jn−1

F̄jq−r

∏r
i=0 Fi

∏n
j=0 F̄j

=

(
r∑

i=0

FidYi

)
∧ (−1)v+rYvFvF̄wω ∧ Ω̄j0,··· ,jq−r

∧ Ω̄jq−r,··· ,jn−1

F̄jq−r

∏r
i=0 Fi

∏n
j=0 F̄j

+




n∑

j=0

F̄jdXj


 ∧ (−1)v+rnYvFvF̄wΩ̄j0,··· ,jq−r

∧ Ω̄jq−r,··· ,jn−1
∧ ω

F̄jq−r

∏r
i=0 Fi

∏n
j=0 F̄j

=
(−1)v+wYvFvXwF̄wω ∧ ω̄∏r

i=0 Fi
∏n
j=0 F̄n

which completes the proof.

Proof of Proposition 1.4.9. Using [33, Remark 2.2] together with Lemma 1.2.7,
we can represent i∗(ωA ∪ ωB)) by lifting to the section ABΩ(I, J) ∧ dF/F of
Ωn+rPr×Pn(log(X )) and then taking the negative of the Čech coboundary. Note
that we use the diagram from the proof of Proposition 1.3.8 again to see that
this is really the lift.
Now note that Cn+r(U ,Ωn+rPr×Pn) has indices (I ′, J ′) where either:

� I ′ = {0, · · · , r} and J ′ = {0, · · · , n} \ {w} for a certain w

� I ′ = {0, · · · , r} \ {v} and J ′ = {0, · · · , n} for a certain v.

In the first case, we have using Lemma 1.4.17 that

δ({ABdF/F ∧ Ω(I, J)}I,J)I′,J′
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= AB

r∑

v=0

(−1)v(−1)v+w
YvFvXwF̄wω ∧ ω̄
F
∏r
i=0 Fi

∏n
j=0 F̄j

= (−1)wAB
XwF̄wω ∧ ω̄∏r
i=0 Fi

∏n
j=0 F̄j

If the index (I ′, J ′) is of the second form, we similarly find that

δ({AB(dF/F ) ∧ Ω(I, J)}I,J)I′,J′

= AB

n∑

w=0

(−1)v+w(−1)w+r YvFvXwF̄wω ∧ ω̄
F
∏r
i=0 Fi

∏n
j=0 F̄j

= (−1)v+rmAB
YvFvω ∧ ω̄∏r
i=0 Fi

∏n
j=0 F̄j

This completes the proof.

Proof of Corollary 1.4.10. Let D ∈ k[Y0, · · · , Yr, X0, · · · , Xn]
ρ. Note that ϕ̃(D)

is a Čech cocycle, as we have that

δ(ϕ̃(D)) =
D
(
m
∑r
v=0(−1)2v+r+1YvFvω ∧ ω̄ +

∑n
w=0(−1)2w+r+2XwF̄wω ∧ ω̄

)
∏r
i=0 Fi

∏n
j=0 F̄j

=
(−1)r+1D(mF −mF )ω ∧ ω̄∏r

i=0 Fi
∏n
j=0 F̄j

= 0

This means that ϕ̃ induces a map

ϕ̄ : k[Y0, · · · , Yr, X0, · · · , Xn]
ρ → Hn+r(Pr × Pn,Ωn+rPr×Pn).

Using Proposition 1.4.9, we find the following commutative diagram

Hq(X ,ΩpX )prim ⊗Hp(X ,ΩqX )prim Hn+r(Pr × Pn,Ωn+rPr×Pn)

k[Y,X]q−r,(q+1)m−(n+1) ⊗ k[Y,X]p−r,(p+1)m−(n+1) k[Y,X]ρ

i∗◦∪

ψ̃p⊗ψ̃q ϕ̄

where we denote k[Y,X] = k[Y0, · · · , Yr, X0, · · · , Xn]. By Proposition 1.3.8, we
have that ψ̃q descends to an isomorphism

Jq−r,(q+1)m−n−1 → Hq(X ,ΩpX )prim

and similarly for ψ̃p.
We note that ϕ̄ maps the Jacobian ideal to zero. To see this, suppose that
D ∈ k[Y0, · · · , Yr, X0, · · · , Xn]

ρ is a multiple of Fi for some i ∈ {0, · · · , r}.
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Write ϕ̃(D) = {s0, · · · , sr, s̄0, · · · , s̄n}. Then {ξI,J}I,J ∈ Cn+r−1(U ,Ωn+rPr×Pn)
given by

ξI,J =





(−1)i−1sv if I = {0, · · · , r} \ {v, i}, J = {0, · · · , n} and v < i

(−1)isv if I = {0, · · · , r} \ {v, i}, J = {0, · · · , n} and v > i

(−1)is̄w if I = {0, · · · , r} \ {i}, J = {0, · · · , n} \ {w}
0 otherwise

satisfies δ(ξI,J) = {s0, · · · , sr, s̄0, · · · , s̄n}. Indeed, for I ′ = {0, · · · , r}\{v} with
v < i and J ′ = {0, · · · , n}, we have that δ(ξI,J)I′,J′ = (−1)i−1(−1)i−1sv = sv,
and similarly for v > i. For I ′ = {0, · · · , r} and J ′ = {0, · · · , n} \ {w}, we have
that δ(ξI,J)I′,J′ = (−1)i(−1)is̄w = s̄w. Finally, for I ′ = {0, · · · , r} \ {i} and
J ′ = {0, · · · , n}, we have that

δ(ξI,J)I′,J′ =
∑

v ̸=i

(−1)v+i−1sv +

r∑

w=0

(−1)i+w+r s̄w = −(−1)i−1(−1)isi = si.

Therefore, ϕ̃(D) is a coboundary. Similarly, if D is a multiple of F̄j for some
j ∈ {0, · · · , n}, then the element {ξI,J}I,J ∈ Cn+r−1(U ,Ωn+rPr×Pn) given by

ξI,J =





(−1)j+rsv if I = {0, · · · , r} \ {v}, J = {0, · · · , n} \ {j}
(−1)j+r s̄w if I = {0, · · · , r}, J = {0, · · · , n} \ {w, j} and w < j

(−1)j+r+1s̄w if I = {0, · · · , r}, J = {0, · · · , n} \ {w, j} and w > j

0 otherwise

satisfies δ(ξI,J) = {s0, · · · , sr, s̄0, · · · , s̄n}.
So ϕ̄ descends to a map ϕ : Jρ → Hn+r(Pr × Pn,Ωn+rPr×Pn) which makes the
diagram commute. As the cup product is non-degenerate, we have that ϕ is
surjective.

1.4.3 One dimensionality of Jρ and J̃ρ+(r+1,n+1)

In this section, we will prove the following statement.

Proposition 1.4.18. Jρ is a one dimensional vector space over k, except pos-
sibly if n is odd, r = 1 and m = 2.

Over C, this is a special case of [27, Lemma 6.3] and the argument is partially
the same. The idea to use the bundle ΣL (see below) to give a description of
the Jacobian ring and study its duality properties goes back to [20, Section 2].
It will follow that the map from Corollary 1.4.10 is an isomorphism whenever
we are not in the situation where n is odd, r = 1 and m = 2.

Notation 1.4.19. Write L = O(1,m) and let ΣL be the bundle as defined in
[27, Section 2.1]. There is a global presentation of ΣL given by

0 → e1 · OPr ⊕ e2 · OPn →
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idL · OPr×Pn ⊕
r⊕

i=0

∂

∂Yi
· OPr×Pn(1, 0)⊕

n⊕

j=0

∂

∂Xj
· OPr×Pn(0, 1) → ΣL → 0

where the first map is given by

e1 7→ −idL +

r∑

i=0

Yi
∂

∂Yi
, e2 7→ −midL +

n∑

j=0

Xj
∂

∂Xj
.

We can map the above sequence into the Euler sequence

0 → OPr ⊕OPn →
r⊕

i=0

O(1, 0)⊕
n⊕

j=0

O(0, 1) → TPr×Pn → 0

by sending idL to zero. This yields the exact sequence

0 → OPr×Pn → ΣL → TPr×Pn → 0. (1.11)

Consider the morphism ΣL → L which sends a local section

aidL +

r∑

i=0

bi
∂

∂Yi
+

n∑

j=0

cj
∂

∂Xj

to

aF +

r∑

i=0

biFi +

n∑

j=0

cjF̄j .

This gives rise to a surjective morphism ΣL ⊗ L−1 → OPr×Pn . Form the asso-
ciated Koszul complex

0 → Λn+r+1ΣL ⊗ L−n−r−1 → · · · → Λ2ΣL ⊗ L−2 → ΣL ⊗ L−1 → OPr×Pn → 0.
(1.12)

Now applying the functor Hom(−,Ωn+rPn×Pr ) we find the exact sequence,

0 → Ωn+rPn×Pr → Σ∨
L ⊗ L⊗ Ωn+rPn×Pr → · · · → Λn+r+1Σ∨

L ⊗ Ln+r+1 ⊗ Ωn+rPn×Pr → 0
(1.13)

defining a left resolution of Ωn+rPr×Pn . Note that

Λn+r+1Σ∨
L ⊗ Ln+r+1 ⊗ Ωn+rPn×Pr = O(ρ)

as det(ΣL) = det(TPr×Pn) = O(r + 1, n + 1) using the exact sequence (1.11),
Ln+r+1 = O(n+ r + 1,m(n+ r + 1)) and Ωn+rPn×Pr = O(−r − 1,−n− 1).
Consider the hypercohomology spectral sequence

Ep,q1 = Hq(Pr × Pn,Λp+1Σ∨
L ⊗ Lp+1 ⊗ Ωn+rPn×Pr ) =⇒ Hp+q(Pr × Pn,Ωn+rPn×Pr ).

Lemma 1.4.20. We have that Ep,q1 = 0 for q > 0 and either p+ q = n+ r or
p+ q = n+ r − 1, except in the case when n is odd, r = 1 and m = 2.
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Proof of Lemma 1.4.20. This proof is partially taken from [27]. Note that the
sequence (1.11) gives rise to exact sequences

0 → ΩjPn×Pr → ΛjΣ∨
L → Ωj−1

Pn×Pr → 0

so that it is enough to prove that for 1 ≤ s ≤ n+ r − 1, we have that

Hn+r−s(Pr × Pn,ΩsPr×Pn ⊗ Ls ⊗ Ωn+rPr×Pn) = 0

and
Hn+r−s(Pr × Pn,Ωs−1

Pr×Pn ⊗ Ls ⊗ Ωn+rPr×Pn) = 0

and for 1 ≤ s ≤ n+ r, we have that

Hn+r+1−s(Pr × Pn,ΩsPr×Pn ⊗ Ls ⊗ Ωn+rPr×Pn) = 0

and
Hn+r+1−s(Pr × Pn,Ωs−1

Pr×Pn ⊗ Ls ⊗ Ωn+rPr×Pn) = 0.

We show that the first condition holds except in the case when n is odd, r = 1
and m = 2; the others are similar. That is, we will show that

Hn+r−s(Pr × Pn,ΩsPr×Pn(s− r − 1,ms− n− 1)) = 0 (1.14)

for 1 ≤ s ≤ n+ r− 1 except in the case when n is odd, r = 1 and m = 2. Using
Proposition 1.2.10, we have that

Hn+r−s(Pr × Pn,ΩsPr×Pn(s− r − 1,ms− n− 1))

=
⊕

i+j=s

⊕

k+l=n+r−s

Hk(Pr,ΩiPr (s− r − 1))⊗H l(Pn,ΩjPn(ms− n− 1))

Note that by Theorem 1.2.9 we have that Hk(Pr,ΩiPr (s − r − 1)) = 0 except
possibly if we are in one of the following situations:

1. k > 0, j = 0 and s ̸= r+1. Note that H l(Pn,O(ms−n−1)) is zero except
possibly for:

� l = 0. Then k = n+ r− s. If k > r, then Hk(Pr,ΩiPr (s− r− 1)) = 0.
Otherwise, n+ r − s ≤ r and so s ≥ n which implies that i ≥ n > r
and so Hk(Pr,ΩiPr (s− r − 1)) = 0 in this case as well.

� l = n. Then as ms− n− 1 > −n− 1, we have that

Hn(Pn,O(ms−n−1)) =

(
1

X0, · · · , Xn
k[X−1

0 , · · · , X−1
n ]

)

ms−n−1

= 0.

2. s = r + 1 and i = k. We note that:

� If l = 0 then k = n− 1 > r and so Hk(Pr,ΩiPr (s− r − 1)) = 0.
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� If l > 0 and ms ̸= n+ 1 then ms− r − 1 ≥ j − n as

ms = m(i+ j) ≥ 2j ≥ j + 1. (1.15)

It follows that H l(Pn,ΩjPn(ms− n− 1)) = 0.

� If l > 0 and ms = n+ 1, then H l(Pn,ΩjPn) = 0 provided that j ̸= l.
Therefore, Hn+r−s(Pr×Pn,ΩsPr×Pn(s−r−1,ms−n−1)) is possibly
nonzero if l = j, that is, r = i + j − 1 = k + l − 1 = n − 2. In this
case, it follows from m(r + 1) = ms = n+ 1 = r + 3 that r = 1 and
m = 2, so n = 3.

3. k = 0 and j > r + 1. Then l = n+ r − s > 0 and:

� If ms ̸= n + 1, we have that ms − n − 1 ≥ j − n by (1.15). This
implies that H l(Pn,ΩjPn(ms− n− 1)) = 0.

� If ms = n + 1, then H l(Pn,ΩjPn) = 0 unless l = j. But if l = j
then s = i + j ≥ j = n + r − s implies that 2s ≥ n + r ≥ n + 1
while on the other hand 2s ≤ ms = n + 1. We see from this that
Hn+r−s(Pr × Pn,ΩsPr×Pn(s− r − 1,ms− n− 1)) is possibly nonzero
if m = 2, r = 1 and n is odd.

We conclude that the statement holds.

Proof of Proposition 1.4.18. We have that Hn+r(Pr × Pn,Ωn+rPn×Pr ) ∼= k is the
final cohomology group of the sequence (1.13), by Lemma 1.4.20. Note that

H0(Pr × Pn,O(ρ)) = k[Y0, · · · , Yr, X0, · · · , Xn]
ρ.

The image of the map

Λn+rΣ∨
L ⊗ Ln+r ⊗ Ωn+rPn×Pr → Λn+r+1Σ∨

L ⊗ Ln+r+1 ⊗ Ωn+rPn×Pr

is the ideal (F0, · · · , Fr, F̄0, · · · , F̄n) so Hn+r(Pr ×Pn,Ωn+rPn×Pr ) ∼= Jρ. In partic-
ular, Jρ is one dimensional.

Remark 1.4.21. As a consequence of this statement, the map ϕ from Corol-
lary 1.4.10 is an isomorphism. This proves Corollary 1.4.11.

Remark 1.4.22. An interesting question is whether ϕ coincides with the map
Jρ → Hn+r(Pr × Pn,Ωn+rPr×Pn which we get from the above argument. We have
not been able to give a full answer, but suspect it might be true. A possible way
to make the map from the above argument explicit might be as follows. Take a
Čech resolution of all terms in the resolution (1.13). If we start with an element
ξ ∈ Cn+r−1(U ,Ωn+rPr×Pn), then using that Hn+r−1(Pr × Pn,Ωn+rPr×Pn) = 0, the

element comes from some ξ′ ∈ Cn+r−2(U ,Ωn+rPr×Pn). Computing ξ′ and applying

the horizontal map, we find an element of Cn+r−2(U ,Σ∨
L ⊗L−n−r−1 ⊗Ωn+rPr×Pn).

Repeating the above procedure and keeping track of everything, we end up
with an element in C0(U ,O(ρ)). After that, we can check whether the resulting
morphism is the same as ϕ.
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We now prove Proposition 1.4.13.

Notation 1.4.23. We write E =
⊕n+r+1

i=1 O(−1,−m).

There is a surjective morphism E → OPr×Pn sending local generators gi for
i ∈ {1, · · · , r} to giYiFi and gi ∈ {r+1, · · · , n+r+1} to giXi−r−1F̄i−r−1. This
gives rise to an exact Koszul complex

0 → Λn+r+1E → · · · → Λ2E → E → OPr×Pn → 0. (1.16)

and applying Hom(−,Ωn+rPn×Pr ) we find

0 → Ωn+rPn×Pr → E∨ ⊗ Ωn+rPn×Pr → · · · → Λn+r+1E∨ ⊗ Ωn+rPn×Pr → 0. (1.17)

Note that Λn+r+1E∨ ⊗ Ωn+rPn×Pr = O(ρ− (r + 1, n+ 1)).

Lemma 1.4.24. The complex (1.17) defines an acyclic resolution of Ωn+rPn×Pr .

Proof. We have that ΛiE∨ is a direct sum of terms O(i− r− 1,mi−n− 1). For
q > 0 we have that

Hq(Pr × Pn,O(i− r − 1,mi− n− 1)) (1.18)

=
⊕

a+b=q

Ha(Pr,O(i− r − 1))⊗Hb(Pn,O(mi− n− 1)).

Note that Ha(Pr,O(i − r − 1)) = 0 unless possibly if a ∈ {0, r}. If a = 0, we
have that Hb(Pn,O(mi− n− 1)) = 0 unless possibly if b = n. But in that case

Hn(Pn,O(mi− n− 1)) =

(
1

X0 · · ·Xn
k

[
1

X0
, · · · , 1

Xn

])mi−n−1

= 0

because mi− n− 1 ≥ −n (as mi− n− 1 < −n would imply mi < 1). If a = r
then we similarly see that Hr(Pr,O(i− r − 1)) = 0 as i− r − 1 ≥ −r.

Proof of Proposition 1.4.13. By Lemma 1.4.24 we have thatHn+r(Pr×Pn,Ωn+rPn×Pr )
is the final cohomology group of the sequence (1.17). The image of the map

Λn+rE∨ ⊗ Ωn+rPn×Pr → Λn+r+1E∨ ⊗ Ωn+rPn×Pr

is the ideal (Y1F1, · · · , YrFr, X0F̄0, · · · , XnF̄n). Because of the Euler relations,
this is equal to the ideal (Y0F0, · · · , YrFr, X0F̄0, · · · , XnF̄n) so that we find that
k ∼= Hn+r(Pr × Pn,Ωn+rPn×Pr ) ∼= J̃ρ+(r+1,n+1).

1.5 Computing the trace map

Again, we keep the notation which was set up in the previous sections. For
A ∈ Jp−r,(p+1)m−n−1 and B ∈ Jq−r,(q+1)m−n−1, consider their images

ωA = ψp(A) ∈ Hp(X ,ΩqX ) and ωB = ψq(B) ∈ Hq(X ,ΩpX )
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under the isomorphism from Proposition 1.3.8. We note that as the trace map
is compatible with pushforwards, we have that

TrX (ωA ∪ ωB) = TrPr×Pn(i∗(ωA ∪ ωB)).

Therefore, we can compute Tr(ωA ∪ ωB) by representing i∗(ωA ∪ ωB) on the
open cover U using Proposition 1.4.9 and comparing it with a representation
of c1(O(1,m))n+r. We will do so on a refinement of U , which we now first
construct.

Notation 1.5.1. In this section we will make the following three extra assump-
tions:

� m+ 1 is invertible in k.

� V (F0), · · · , V (Fr) are smooth hypersurfaces in Pn and they intersect transver-
sally: V (Fi0 , · · · , Fis) is a smooth closed subscheme of Pn which is of
codimension s+ 1 for all {i0, · · · , is} ⊂ {0, · · · , r}.

� The first assumption remains true after setting any proper subset of the
Xi’s equal to zero and replacing Pn with the linear subspace defined by
the vanishing of the chosen Xi’s.

Now let

G0 = Y0F0, · · · , Gr = YrFr, Gr+1 = X0F̄0, · · · , Gn+r+1 = XnF̄n.

The following is true because of the extra assumptions made in Notation 1.5.1.

Lemma 1.5.2. The set of opens V = {V0, · · · , Vn+r+1} where Vi = {Gi ̸= 0}
is an open cover of Pr × Pn.

Proof. Suppose that x ∈ Pr × Pn is not in V0 ∪ · · · ∪ Vr. Then we have that
Y0F0 = · · · = YrFr = 0 at x. As not all Yi can be zero at x, there is some
Fi which is zero. As V (Fi) is smooth, we have that ∂Fi/∂Xj is nonzero at x
for some j. So F̄j =

∑r
i=0 Yi∂Fi/∂Xj is nonzero at x. If Xj is nonzero at x,

then x ∈ Vj+r+1. Otherwise, as V (Fi) remains smooth after intersecting with
Xj = 0, we have that ∂Fi/∂Xj′ is nonzero at x for some j′ ̸= j. We now repeat
the above argument until we find some open in V containing x.

Proposition 1.5.3. If we remove Vj for any j ∈ {0, · · · , n + r + 1}, this still
results in an open cover.

Proof. We have the two Euler equations
∑r
i=0 YiFi = F and

∑n
i=0XiF̄i = mF

and so m
∑r
i=0Gi −

∑n+r+1
i=r+1 Gi = 0.

Notation 1.5.4. We write W for the cover V with V0 removed, i.e.

W = {V1, · · · , Vn+r+1}.
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Remark 1.5.5. Note that V is a refinement of U via the identity map on the
index sets. The inclusion {1, · · · , n+ r+1} → {0, · · · , n+ r+1} makes W into
a refinement of V. This yields a composition of refinement maps

Cn+r(U ,Ωn+rPr×Pn) → Cn+r(V,Ωn+rPr×Pn) → Cn+r(W,Ωn+rPr×Pn)

sending a cocycle {s0, · · · , sr, s̄0, · · · , s̄n} ∈ Cn+r(U ,Ωn+rPr×Pn) - where si lives on
the intersection of all opens except for Ui and s̄j on the intersection of all opens
except for Ūj - to {s0} ∈ Cn+r(W,Ωn+rPr×Pn).

Notation 1.5.6. Consider the matrix M given by



F0 0 · · · 0 Y0
∂F0

∂X0
Y0

∂F0

∂X1
· · · Y0

∂F0

∂Xn

0 F1 · · · 0 Y1
∂F1

∂X0
Y1

∂F1

∂X1
· · · Y1

∂F1

∂Xn

...
...

. . .
...

...
... · · ·

...

0 0 · · · Fr Yr
∂Fr

∂X0
Yr

∂Fr

∂X1
· · · Yr

∂Fr

∂Xn

X0
∂F0

∂X0
X0

∂F1

∂X0
· · · X0

∂Fr

∂X0
F̄0 +X0

∂F̄0

∂X0
X0

∂F̄0

∂X1
· · · X0

∂F̄0

∂Xn

X1
∂F0

∂X1
X1

∂F1

∂X1
· · · X1

∂Fr

∂X1
X1

∂F̄1

∂X0
F̄1 +X1

∂F̄1

∂X1
· · · X1

∂F̄1

∂Xn

...
... · · ·

...
...

...
. . .

...

Xn
∂F0

∂Xn
Xn

∂F1

∂Xn
· · · Xn

∂Fr

∂Xn
Xn

∂F̄n

∂X0
Xn

∂F̄n

∂X1
· · · F̄n +Xn

∂F̄n

∂Xn




(1.19)
Let Mi|j be the minor with the i’th row and j’th column left out. Note that Yi
divides det(M0|i) for i > 0 and Xj divides det(M0|j).

We will prove the following statement in Section 1.5.1.

Lemma 1.5.7. There exists a unique C̃ ∈ k[Y0, · · · , Yr, X0, · · · , Xn]
ρ+(r+1,n+1)

such that

(m+ 1)YiXjC̃ = (−1)j det(M0|j+r+1)Yi + (−1)r+i det(M0|i)Xj

for i ∈ {0, · · · , r} and j ∈ {0, · · · , n}. We have that c1(O(1,m))n+r is repre-
sented by

C̃ω ∧ ω̄∏r
i=1 YiFi

∏n
j=0XjF̄j

∈ Cn+r(W,Ωn+rPr×Pn).

Remark 1.5.8. One way to view the situation: we can embed Pr × Pn into
Pn+r+1 using coordinates Y0F0, · · · , YrFr, X0F̄0, · · · , XnF̄n. This then lands in
a hyperplane H. Computing the first Chern class boils down to pulling back
the generator ωH of Ωn+rH to Pr × Pn.

We will then prove the following statement in Section 1.5.2.

Theorem 1.5.9. Assume that we are not in the situation that dim(X ) is odd,
r = 1 and m = 2. Then the map

ψ : Jρ → J̃ρ+(r+1,n+1), D 7→ D

r∏

i=0

Yi

n∏

j=0

Xj
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is an isomorphism. Therefore, for the element C̃ from Lemma 1.5.7, we have
that C̃ = ψ(C) for a unique C ∈ Jρ. Write AB = λC in Jρ for some λ ∈ k∗.
Then

Tr(ωA ∪ ωB) = (−1)r+1mn+1

(
n+ r

r

)
λ.

We can then find an analogue of the Scheja-Storch generator from the clas-
sical case.

Definition 1.5.10. Suppose that
(
n+r
r

)
is invertible in k. Then the trace one

element eF = C

mn(n+r
r )

∈ Jρ is called the Scheja-Storch generator of X.

Remark 1.5.11. We conjecture that the assumption that
(
n+r
r

)
is invertible

in k is not necessary, i.e. that one can find a similar construction of the Scheja-
Storch generator as in Construction 1.1.19.

Remark 1.5.12 (Continuation of Remark 1.3.9 and Remark 1.4.8). If we take
r = 0, the formula from Theorem 1.5.9 becomes

Tr(ωA ∪ ωB) = −mλ

for A,B ∈ J such that AB = λeF ∈ Jρ for some λ ∈ k∗. This is in accordance
with [33, Theorem 3.8].

In characteristic zero, one has an explicit formula for the Scheja-Storch gen-
erator in the case where r = 0, used in [33]. In Section 1.5.3, we show that under
the map Y0 7→ 1 from J to the classical Jacobian ring, the Scheja-Storch element

from Definition 1.5.10 maps to this Scheja-Storch element up to a factor mn+1

m+1 .

1.5.1 Proof of Lemma 1.5.7

Before proving Lemma 1.5.7, we first prove a lemma in a slightly more gen-
eral setting. Write Z0 = Y0, · · · , Zr = Yr, Zr+1 = X0, · · · , Zn+r+1 = Xn and
let G0, · · · , Gn+r+1 be homogeneous polynomials in the Zi of the same total
degree m+ 1. Consider the matrix M = (mij)ij with mij =

∂Gi

∂Zj
.

Lemma 1.5.13. Let i, j ∈ {0, · · · , n+r+1} be two distinct elements. We have
that

dGi,j =
∑

k<l

det(Mij|kl)dZ
k,l

where Mij|kl is the minor of M with the i’th and j’th row and the k’th and l’th
column removed.

Proof. We have that

dGi,j =
∧

k ̸=i,j

(
n+r+1∑

l=0

∂Gk
∂Zl

dZl

)
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=
∑

(j1,···jn+r)

∏

k ̸=i,j

mkjkdZj1 ∧ · · · ∧ dZjn+r

=
∑

k<l

∑

σ∈Sn+r

sign(σ)
∏

p ̸=i,j

mpσ(p)dZ
k,l

=
∑

k<l

det(Mij|kl)dZ
k,l

where Sn+r is the symmetric group on n+ r elements and we used the Leibniz
definition of a determinant.

Now for k ∈ {0, · · · , n+ r + 1} we write

τk =
∑

i<k

(−1)iZidZ
i,k +

∑

i>k

(−1)i+1ZidZ
k,i.

Note that this definition is similar to the definition of generators τi of Ω
l−1
Pl used

in [50], which was also used in the argument of Proposition 1.3.8.

Lemma 1.5.14. Let i ∈ {0, · · · , n + r + 1}. Then on the intersection of the
opens {Gj ̸= 0} for j ̸= i, we have that

d log

(
G1

G0

)
∧ · · · ∧ d log

(
Gi+1

Gi−1

)
∧ · · · ∧ d log

(
Gn+r+1

Gn+r

)

=
Gi

(m+ 1)
∏n+r+1
j=0 Gj

n+r+1∑

k=0

det(Mi|k)τk

Proof. We can compute that

d log

(
G1

G0

)
∧ · · · ∧ d log

(
Gi+1

Gi−1

)
∧ · · · ∧ d log

(
Gn+r+1

Gn+r

)

=

(
dGi+1

Gi+1
− dGi−1

Gi−1

) ∏

j ̸=i,i−1

(
dGj+1

Gj+1
− dGj

Gj

)

=
Gi

(∑
j<i(−1)jGjdG

j,i +
∑
j>i(−1)j+1GjdG

i,j
)

∏n+r+1
p=0 Gp

=
Gi
∑
j<i(−1)jGj

∑
k<l det(Mij|kl)dZ

k,l

∏n+r+1
p=0 Gp

+
Gi
∑
j>i(−1)j+1Gj

∑
k<l det(Mij|kl)dZ

k,l

∏n+r+1
p=0 Gp

Now recall the Euler equation (m + 1)Gj =
∑n+r+1
p=0 Zp

∂Gj

∂Zp
=
∑n+r+1
p=0 Zpmjp.

We see that

(m+ 1)


∑

j<i

(−1)jGj
∑

k<l

det(Mij|kl)dZ
k,l +

∑

j>i

(−1)j+1Gj
∑

k<l

det(Mij|kl)dZ
k,l



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=
∑

j<i

(−1)j
n+r+1∑

p=0

Zpmjp

∑

k<l

det(Mij|kl)dZ
k,l

+
∑

j>i

(−1)j+1
n+r+1∑

p=0

Zpmjp

∑

k<l

det(Mij|kl)dZ
k,l

=
∑

p

(−1)pZp
(∑

j<i

(−1)j+pmjp +
∑

j>i

(−1)j+p+1mjp

)∑

k<l

det(Mij|kl)dZ
k,l

=
∑

p

(−1)pZp

(∑

k<p

(∑

j<i

(−1)j+pmjp +
∑

j>i

(−1)j+p+1mjp

)
det(Mij|kp)dZ

k,p

+
∑

p<l

(∑

j<i

(−1)j+pmjp +
∑

j>i

(−1)j+p+1mjp

)
det(Mij|pl)dZ

p,l

+
∑

k<l
k,l ̸=p

(∑

j<i

(−1)j+pmjp +
∑

j>i

(−1)j+p+1mjp

)
det(Mij|kl)dZ

k,l
)

=
∑

p

(−1)pZp
(∑

k<p

det(Mi|k)dZ
k,p −

∑

p>l

det(Mi|l)dZ
p,l
)

=

n+r+1∑

k=0

det(Mi|k)
(∑

p<k

(−1)pZpdZ
p,k +

∑

p>k

(−1)p+1ZpdZ
k,p
)

=
∑

k

τk det(Mi|k)

as desired. Note that the seventh line is zero, as this is the determinant of Mi|l
with the k’th row removed and replaced by the p’th one. Also, note that the
sixth line picks up an extra minus as we have to jump over an extra column
when computing the determinant.

Now let

G0 = Y0F0, · · · , Gr = YrFr, Gr+1 = X0F̄0, · · · , Gn+r+1 = XnF̄n

as in the introduction of this section. Then those are all of bidegree (1,m) and
the total degree is m+ 1. The matrix M is exactly given by (1.19).

Proof of Lemma 1.5.7. We can represent c1(O(1,m)) ∈ H1(Pr × Pn,Ω1
Pr×Pn)

on the cover W by

{
d log

(
Gj
Gi

)}
i,j

∈ C1(W,Ω1
Pr×Pn).

Taking the cup product n + r times following the rules for a cup product on
Čech cohomology, we see that c1(O(1,m))n+r is represented by

d log

(
G2

G1

)
∧ · · · ∧ d log

(
Gn+r+1

Gn+r

)
∈ Cn+r(W,Ωn+rPr×Pn).
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By Lemma 1.5.14 this is equal to

∑n+r+1
k=0 det(M0|k)τk

(m+ 1)
∏r
i=1 YiFi

∏n
j=0XjF̄j

.

The numerator
∑n+r+1
k=0 det(M0|k)τk is a global section of the twisted sheaf

Ωn+rPr×Pn(n + r + 1,m(n + r + 1)). Because Ωn+rPr×Pn(r + 1, n + 1) is a trivial line
bundle which has ω ∧ ω̄ as a global generator, there exists a unique rational
function C̃ ∈ k[Y0, · · · , Yr, X0, · · · , Xn]

n,(n+r+1)m−n−1 such that

∑n+r+1
k=0 det(M0|k)τk

(m+ 1)
∏r
i=1 YiFi

∏n
j=0XjF̄j

=
C̃ω ∧ ω̄∏r

i=1 YiFi
∏n
j=0XjF̄j

.

In order to find C̃, consider the affine patch {Yi ̸= 0}, {Xj ̸= 0} with coordinates
yk = Yk

Yi
, xk = Xk

Xj
. We see that

τk = (−1)rdY k ∧ ω̄ =

{
0 if k ̸= i

(−1)r+iω ∧ ω̄ if k = i

for k ∈ {0, · · · , r} and

τk = ω ∧ dXk−r−1 =

{
0 if k ̸= j + r + 1

(−1)jω ∧ ω̄ if k = j + r + 1

for k ∈ {r + 1, · · · , n + r + 1}. Therefore,
∑n+r+1
k=0 det(M0|k)τk reduces to

(−1)j det(M0|j+r+1) + (−1)r+i det(M0|i)ω ∧ ω̄. We have that C̃ is of bidegree
ρ+(r+1, n+1). Homogenizing again and comparing coefficients of τk in ω∧ ω̄,
we get

(m+ 1)YiXjC̃ = (−1)j det(M0|j+r+1)Yi + (−1)r+i det(M0|i)Xj

as desired.

1.5.2 Proof of Theorem 1.5.9

Proof of Theorem 1.5.9. Note that ψ is well defined, because an element of the
Jacobian ideal (F0, · · · , Fr, F̄0, · · · , F̄n) will be mapped to zero.
Let ϕ : Jρ → Hn+r(Pr × Pn,Ωn+rPr×Pn) be the map from Corollary 1.4.10. Com-

posing the map Jρ → Ȟn+r(U ,Ωn+rPr×Pn) that gives rise to ρ with the refinement
map from Remark 1.5.5, we find the morphism

ψJ : Jρ → Ȟn+r(W,Ωn+rPr×Pn), D 7→ (−1)r+1mDY0F0ω ∧ ω̄∏r
i=0 Fi

∏n
j=0 F̄j

.

Because W is affine, the Čech cohomology of this cover computes the usual
cohomology. This implies that ψJ is surjective. Using Proposition 1.4.18, we
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conclude that ψJ is an isomorphism.
Now consider the morphism

k[Y0, · · · , Yr, X0, · · · , Xn]
ρ+(r+1,n+1) → Cn+r(W,Ωn+rPr×Pn),

D 7→ (−1)r+1mDω ∧ ω̄∏r
i=1 YiFi

∏n
j=0XjF̄j

.

Note that coboundaries on W are precisely coming from the ideal generated by
the Gi. We therefore find an induced morphism

ψJ̃ : J̃ρ+(r+1,n+1) → Ȟn+r(W,Ωn+rPr×Pn).

By Lemma 1.5.7, we have that C̃ maps to the nonzero element c1(O(1,m))n+r,
meaning that ψJ̃ is surjective. Using Proposition 1.4.13, we see that ψJ̃ is an
isomorphism.
We now have the commutative diagram

Jρ J̃ρ+(r+1,n+1)

Ȟn+r(W,Ωn+rPr×Pn)

ψ

ψJ ψJ̃

From this, we see that ψ has to be an isomorphism, which proves the first part
of the statement.
Now using Proposition 1.4.9 and applying the refinement morphisms, we have
that i∗(ωA ∪ ωB) is represented by

(−1)r+1ABmY0ω ∧ ω̄∏r
i=1 Fi

∏n
j=0 F̄j

∈ Cn+1(W,Ωn+rPr×Pn).

By Lemma 1.5.7, we have that c1(O(1,m))n+r is represented by

C̃ω ∧ ω̄∏r
i=1 YiFi

∏n
j=0XjF̄j

∈ Cn+r(W,Ωn+rPr×Pn).

As ψ is an isomorphism, there exists a C ∈ Jρ such that C̃ = ψ(C), from which
we see that C maps to c1(O(1,m))n+r ∈ Hn+r(Pr × Pn,Ωn+rPr×Pn). Now using
Proposition 1.4.18, we have that AB = λC for some λ ∈ k. Using that the trace
of c1(O(1,m))n+r is equal to

(
n+r
r

)
mn we obtain the desired result.

1.5.3 The Scheja-Storch generator in characteristic zero
for r = 0

Notation 1.5.15. Assume in this section that char(k) = 0.
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Notation 1.5.16. As in Remark 1.3.9, let X = V (F ) ⊂ Pn be a smooth hyper-
surface, defined by a homogeneous polynomial F ∈ k[X0, · · · , Xn] of degree m.
Form the hypersurface X = V (Y0F ) ⊂ P0×Pn and let Fi =

∂F
∂Xi

and Fij =
∂Fi

∂Xj

for i, j ∈ {0, · · · , n}. Note that we have Euler equations

(m− 1)Fi =

n∑

j=0

XjFij . (1.20)

The Jacobian ring of X is the bigraded ring

J = k[Y0, X0, · · · , Xn]/(F, Y0F0, · · · , Y0Fn).

Furthermore, we set

J̃ = k[Y0, X0, · · · , Xn]/(Y0F, Y0X0F0, · · · , Y0XnFn).

Let
JX = k[X0, · · · , Xn]/(F0, · · · , Fn)

be the Jacobian ring of X as defined in [33], which is a usual graded ring. We
have the map f : Ja,b → JbX , Y0 7→ 1, Xj 7→ Xj for all a, b ∈ Z. Let

eF =
det(Hess(F ))

(m− 1)n+1
∈ J

(n+1)(m+2)
X

be the classical Scheja-Storch element of X, used in the proof of [33, Lemma
3.7]. In this section we will prove the following result.

Proposition 1.5.17. We have that f( (m+1)C
mn+1 ) = eF in J

(n+1)(m+2)
X .

Applying Theorem 1.5.9, we find the (n+ 2)× (n+ 2) matrix

M =




F Y0F0 Y0F1 · · · Y0Fn
X0F0 Y0(F0 +X0F00) Y0X0F01 · · · Y0X0F0n

...
...

...
. . .

...
XnFn Y0XnFn0 Y0XnFn1 · · · Y0(Fn +XnFnn)




and we note that this matrix has rank n+ 1, as the sum of the last n+ 1 rows
is m times the first row.

Lemma 1.5.18. We have that det(M0|0) = Y n+1
0

mn+1

(m−1)n+1 det(Hess(F ))
∏n
i=0Xi.

Proof. Let det(Hess(F ))j0,··· ,jr be the minor where the rows and columns (j0, · · · , jr)
have been removed. We claim that

Y n+1
0 det(Hess(F ))j0,··· ,jr

∏

i/∈(j0,··· ,jr)

Xi

∏

i∈(j0,··· ,jr)

Fi = Y n+1
0

det(Hess(F ))

(m− 1)j+1

n∏

i=0

Xi.
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Without loss of generality, we can assume that (j0, · · · , jr) = (k + 1, · · · , n) for
some k. The proof of the claim proceeds by induction on k. For k = n, the
result is clear. Now suppose that

Y n+1
0 det(Hess(F ))k+1,··· ,n ·

k∏

i=0

Xi ·
n∏

i=k+1

Fi = Y n+1
0

det(Hess(F ))

(m− 1)n−k

n∏

i=0

Xi

for some k. Denote H = Hess(F )k+1,··· ,n and write Hi,j for the minor of H
with the i’th row and j’th column removed. Note that

0 = (m− 1)Y0XjFj = Y0

n∑

l=0

XjXlFlj

in J̃ and so

((−1)k+jXk det(Hj,k)−Xj det(Hk,k))Y0

k−1∏

i=0

Xi

=

(
−

k∑

i=0

(−1)i+j(XkFki +XjFji) det(Hkj,ki)

)
Y0

k−1∏

i=0

Xi

=


−

k∑

i=0

(−1)i+j(XkFki −XkFki −
∑

l ̸=j,k

XlFli) det(Hkj,ki)


Y0

k−1∏

i=0

Xi

=




k∑

i=0

(−1)i+j
∑

l ̸=j,k

XlFli det(Hkj,ki)


Y0

k−1∏

i=0

Xi

= 0

as the second sum on the fourth line is the determinant of Hk,k with the j’th
row replaced by the i’th row, which is zero.
We now have that

Y n+1
0

det(Hess(F ))

(m− 1)n−k

n∏

i=0

Xi = det(Hess(F ))k+1,··· ,n

k∏

i=0

Xi

n∏

i=k+1

Fi

= Y n+1
0




k∑

j=0

(−1)k+jFkj det(Hk,j)




k∏

i=0

Xi

n∏

i=k+1

Fi

= Y n+1
0




k∑

j=0

XjFkj det(Hk,k)



k−1∏

i=0

Xi

n∏

i=k+1

Fi

= (m− 1)Y n+1
0 det(Hess(F ))k,··· ,n

k−1∏

i=0

Xi

n∏

i=k

Fi
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This completes the proof of the claim.
Let M̃i be the matrix given by




X0F00 · · · X0F0,i−1 X0F0,i+1 · · · X0F0n

...
. . .

...
...

. . .
...

Xi−1Fi−1,i−1 · · · Xi−1Fi−1,i−1 Xi−1Fi−1,i+1 · · · Xi−1Fi−1,n

Xi+1Fi+1,0 · · · Xi+1Fi+1,i−1 Fi+1 +Xi+1Fi+1,i+1 · · · XnFi+1,n

...
. . .

...
...

. . .
...

XnFn0 · · · XnFn,i−1 XnFn,i+1 · · · Fn +XnFnn




We find that

det(M0|0) = Y n+1
0 det



X0F00 · · · X0F0n

...
. . .

...
XnFn0 · · · XnFnn




+ Y n+1
0

n∑

i=0

Fi det(M̃i)

= Y n+1
0 det(Hess(F ))

n∏

j=0

Xj

+ Y n+1
0

∑

(j0,··· ,jr)

det(Hess(F ))j0,··· ,jr
∏

i/∈(j0,··· ,jr)

Xi

∏

i∈(j0,··· ,jr)

Fi

= Y n+1
0


 1

(m− 1)n+1

n+1∑

j=0

(
n+ 1

j

)
(m− 1)n+1−j


det(Hess(F ))

n∏

i=0

Xi

= Y n+1
0

mn+1

(m− 1)n+1
det(Hess(F ))

n∏

i=0

Xi

as desired.

Proof of Proposition 1.5.17. We find by expanding to the first column that
det(M0|n+2) = 0, as Y0XiFi = 0 in J̃ . Therefore, using Lemma 1.5.18 and
Lemma 1.5.7 we have that

(m+ 1)C̃ = Y n+1
0

mn+1

(m− 1)n+1

n∏

i=0

Xi det(Hess(F ))

and so using Theorem 1.5.9, we find that

C = Y n0
mn+1

(m+ 1)(m− 1)n+1
det(Hess(F )) ∈ Jρ.

This implies that f(C) = mn+1

m+1 eF in J
(n+1)(m+2)
X .
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1.6 Example: intersecting two generalized Fer-
mat hypersurfaces of the same degree

To see an application of Theorem 1.5.9, we compute the quadratic Euler char-
acteristic of a complete intersection of two generalized Fermat hypersurfaces of
the same degree.

Notation 1.6.1. Let m ≥ 2 be coprime to char(k), assume m+ 1 is invertible
in k and let F0 =

∑n
i=0 aiX

m
i and F1 =

∑n
i=0 biX

m
i . Let X = V (F0, F1) be

their complete intersection. Furthermore, assume that aibj − ajbi ̸= 0 for all
j ̸= i. Write Li = (aiY0 + biY1). Then V (F0) and V (F1) are both smooth, and
so is X, and these conditions still hold when we set any subset of the Xi equal
to zero. We have that

F = Y0F0 + Y1F1 =

n∑

i=0

(aiY0 + biY1)X
m
i =

n∑

i=0

LiX
m
i .

Again, we write X = V (F ).

We will prove the following result.

Proposition 1.6.2. Define

An,m =

{
1
2 deg(cn(TX )) if n or m odd
1
2 deg(cn(TX ))− n− 1 if n,m even

The quadratic Euler characteristic of X is equal to

χ(X/k) =
{
An,mH if n or m odd

An,mH +
∑n
k=0⟨

∏n
i=0,i̸=k(akbi − aibk)⟩ if n,m even

This will imply the following.

Corollary 1.6.3. Define

Bn,m =





1
2 deg(cn−2(TX)) if n odd
1
2 deg(cn−2(TX))− 1 if n even, m odd
1
2 deg(cn−2(TX))− n− 1 if n,m even

The quadratic Euler characteristic of X is equal to

χ(X/k) =





Bn,mH if n odd

Bn,mH + ⟨1⟩ if n even, m odd

Bn,mH + ⟨1⟩+∑n
k=0⟨

∏n
i=0,i̸=k(akbi − aibk)⟩ if n,m even
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1.6.1 The case where n = 2

The case where n = 2 is special, so we treat that argument here first. In this
case, X = V (F0, F1) is the intersection of two Fermat curves V (F0) and V (F1)
in P2 with

F0 = a0X
m
0 + a1X

m
1 + a2X

m
2

and
F1 = b0X

m
0 + b1X

m
1 + b2X

m
2

where the ai, bi ∈ k∗ satisfy aibj − ajbi ̸= 0 for all i ̸= j. In order to calculate
the corresponding quadratic Euler characteristic, we will need that for a sepa-
rable field extension k ⊂ L, the natural map π : Spec(L) → Spec(k) induces a
morphism π∗ : GW(L) → GW(k) where for a form ⟨u⟩ ∈ GW(L), we have that
π∗⟨u⟩ is given by the composition

L× L
⟨u⟩−−→ L

TrL/k−−−−→ k.

By [24, Theorem 1.9] we have that χ(Spec(L)/k) = π∗(⟨1⟩). The following is
a standard fact about quadratic forms, but we include a proof for the sake of
completeness.

Lemma 1.6.4. Let K be a perfect field of characteristic coprime to 2m and
let a ∈ K∗. Consider the field extension K(α) = K[X]/(Xm + a) of K and
let u ∈ K(α)∗ be a unit. Then

TrK(α)/K(⟨u⟩) =
{
m−1
2 H + ⟨um⟩ if m is odd

m−2
2 H + ⟨um⟩+ ⟨−aum⟩ if m is even

Proof. Note that K(α) has the basis 1, α, α2, · · · , αm−1 over K. We have that

TrK(α)/K(uαi+j) =





um if i = j = 0

−aum if i+ j = m

0 otherwise

Namely, if i + j = m, the multiplication by uαm = −au corresponds to the
diagonal matrix with −au as its entries, and this has trace −aum. If i = j = 0,
multiplication by u is the diagonal matrix with u on the diagonal, which has
trace um. If i or j is not zero and i + j ̸= m, we are taking the trace of the
matrix 



0 0 · · · 0 −au 0 · · · 0
0 0 · · · 0 0 −au · · · 0
...

... · · ·
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · −au
u 0 · · · 0 0 0 · · · 0
0 u · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
...

...
0 0 · · · u 0 0 · · · 0



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which has trace zero.
Therefore, the quadratic form TrK(α)/K(⟨u⟩) corresponds to the symmetric bi-
linear form with matrix




um 0 0 · · · 0 −uma
0 0 0 · · · −uma 0
...

...
...

. . .
...

...
0 −uma 0 · · · 0 0

−uma 0 0 · · · 0 0




which gives the form from the statement.

Proposition 1.6.5. The quadratic Euler characteristic of X equals

χ(X/k) =

{
(m+1)(m−1)

2 H + ⟨1⟩ if m is odd
(m+2)(m−2)

2 H + ⟨1⟩+∑2
i=0⟨

∏
j ̸=i(aibj − ajbi)⟩ if m is even

Proof. Without loss of generality, we can assume that X = V (F0, F1) lies inside
the affine patch where X2 ̸= 0; otherwise, we change coordinates. Choosing
coordinates x = X0

X2
and y = X1

X2
on A2, we have that X is the zero set of the

ideal
(a0x

m + a1y
m + a2, b0x

m + b1y
m + b2).

Let K be the residue field of X, that is:

K = k[x, y]/(a0x
m + a1y

m + a2, b0x
m + b1y

m + b2).

Define

e =
a0b2 − a2b0
a1b0 − a0b1

and f =
a1b2 − a2b1
a0b1 − a1b0

.

Then we can view the extension k ⊂ K as one which takes place in two steps:

k ⊂ k(α) = k[t]/(tm + e) ⊂ K = k(α)[s]/(sm + f).

Indeed, the system of equations

a0x
m + a1y

m + a2 = 0 and b0x
m + b1y

m + b2 = 0

implies that

(a1b0 − a0b1)y
m + a2b0 − a0b2 = 0 and (a0b1 − a1b0)x

m + a2b1 − a1b2 = 0.

We see from Lemma 1.6.4 that for odd m, we have that

TrK/k(⟨1⟩) = Trk(α)/k(TrK/k(α)⟨1⟩)

= Trk(α)/k

(
m− 1

2
H + ⟨m⟩

)

=
m(m− 1)

2
H +

m− 1

2
H + ⟨m2⟩
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=
(m+ 1)(m− 1)

2
H + ⟨1⟩

and for even m we compute

TrK/k(⟨1⟩) = Trk(α)/k(TrK/k(α)⟨1⟩)

= Trk(α)/k

(
m− 2

2
H + ⟨m⟩+ ⟨−fm⟩

)

=
m(m− 2)

2
H + ⟨m2⟩+ ⟨−m2e⟩+ ⟨−m2f⟩+ ⟨m2ef⟩+ (m− 2)H

=
(m+ 2)(m− 2)

2
H + ⟨1⟩+ ⟨−e⟩+ ⟨−f⟩+ ⟨ef⟩

=
(m+ 2)(m− 2)

2
H + ⟨1⟩+ ⟨(a0b1 − a1b0)(a0b2 − a2b0)⟩

+ ⟨(a1b0 − a0b1)(a1b2 − a2b1)⟩+ ⟨(a2b0 − a0b2)(a2b1 − a1b2)⟩

which is the desired result.

1.6.2 The Jacobian ring

In this situation, we can give a very explicit proof of the one dimensionality of
the bidegree ρ part of the Jacobian ring

J = k[Y0, Y1, X0, · · · , Xn]/(F0, F1,mL0X
m−1
0 , · · · ,mLnXm−1

n )

and also give generators and understand their relations. This is following [50,
Section 4 and Section 5.1].

Proposition 1.6.6. Let i, j, k ∈ {0, · · · , n} be distinct. We can write Li as a
linear combination of Lj and Lk, more precisely, we have that

Li =
akbi − aibk
akbj − ajbk

Lj +
aibj − biaj
akbj − ajbk

Lk.

Proof. The expression Li = aLj + bLk leads to the system of equations

aaj + bak = ai

abj + bbk = bi

These imply that bakbj−bbkaj = aibj−biaj and so b =
aibj−biaj
akbj−ajbk implying that

a = a−1
j (ai − akb) =

aiakbj − ajaibk − akaibj + akbiaj
aj(akbj − ajbk)

=
akbi − aibk
akbj − ajbk

.

This proves the statement.

Notation 1.6.7. Let k, l ∈ {0, · · · , n} be distinct.
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Proposition 1.6.8. The graded piece Jρ is generated by the elements

Aj = Xm
j ·Xm−2

0 · · ·Xm−2
n

∏

i ̸=j,k,l

(aiY0 + biY1)

for j ∈ {0, · · · , n} \ {k, l}.

The statement will follow from two lemmas.

Lemma 1.6.9. Consider a term

A = Xi0
0 X

i1
1 · · ·Xin

n (aj1Y0 + bj1Y1) · · · (ajn−2Y0 + bjn−2Y1)

where i0 + · · ·+ in = (n+ 1)(m− 2) +m. If ik, il ≥ m− 1 for k, l ∈ {0, · · · , n}
distinct, then A = 0.

Proof. Assume without loss of generality that i0, i1 ≥ m − 1. By Proposi-
tion 1.6.6, we can write any Li for i ≥ 2 as a linear combination of L0 and L1.
This implies that A can be written as a linear combination of terms of the form
cXi0

0 X
i1
1 · · ·Xin

n L
p
0L

q
1 where p+ q = n− 2 and c ∈ k is some constant. But

(a0Y0 + b0Y1)X
m−1
0 = 0 and (a1Y0 + b1Y1)X

m−1
1 = 0

in J and so A = 0.

Lemma 1.6.10. Let A be as in Lemma 1.6.9. Then maxk=0,···n ik ≤ 2m− 2.

Proof. Suppose, without loss of generality, that i0 > 2m − 2. We have that
Xm

0 = − 1
a0
(a1X

m
1 + · · ·+ anX

m
n ) and so

A = − 1

a0
(a1X

i0−m
0 Xi1+m

1 · · ·Xin
n (aj1Y0 + bj1Y1) · · · (ajn−2

Y0 + bjn−2
Y1)+

· · ·+ anX
i0−m
0 Xi1

1 · · ·Xin+m
n (aj1Y0 + bj1Y1) · · · (ajn−2

Y0 + bjn−2
Y1))

Note that i0−m ≥ 2m−1−m = m−1 and ik+m ≥ m−1 for all k ∈ {1, · · · , n}.
By Lemma 1.6.9 this implies that A = 0.

Proof of Proposition 1.6.8. First, note that Jρ is generated by all the terms A
as in Lemma 1.6.9. Now take such a term A and assume that it is nonzero. Then
by Lemma 1.6.9, there can only be one j ∈ {0, · · · , n} such that ij ≥ m − 1,
and by Lemma 1.6.10, all il are smaller than 2m − 2. But as i0 + · · · + in =
(n+1)(m−2)+m, the only possible way in which this can happen is if ij = 2m−2
and all other il are equal to m− 2. Therefore, we can generate Jρ by all terms
of the form

Xm
j ·Xm−2

0 · · ·Xm−2
n Lj1 · · ·Ljn−2

.

By Proposition 1.6.6, we can choose the generators so that ji /∈ {j, k, l} for
i ∈ {1, · · · , n− 2}. Furthermore, we can choose all ji to be distinct as the total
degree has to be n− 2. Finally, we can exclude the terms Ak and Al using the
relations F0 = 0 and F1 = 0.
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Lemma 1.6.11 (See [50], Lemma 4.9). Let p, q, r ∈ {0, · · · , n} be distinct.
Then

Xm
q

∏

i ̸=p,q,r

Li = −apbr − arbp
apbq − bpaq

Xm
r

∏

i ̸=p,q,r

Li

in J .

Proof. We first note that

n∑

i=0

(apbi − aibp)X
m
i = apF1 − bpF0 = 0

and so multiplying by
∏
i̸=p,q,r Li we see that

(apbq − aqbp)X
m
q

∏

i ̸=p,q,r

Li + (apbr − arbp)X
m
r

∏

i ̸=p,q,r

Li = 0

as desired.

Corollary 1.6.12. Let j, j′ ∈ {1, · · · , n− 1} be distinct. We have that

Aj =
(aj′bk − akbj′)(albj′ − aj′bl)

(ajbk − akbj)(albj − ajbl)
Aj′

in Jρ. In particular, Jρ is one dimensional.

Proof. Using Proposition 1.6.6 we see that

Lj′ =
aj′bj − ajbj′

ajbk − akbj
Lk +

akbj′ − aj′bk
ajbk − akbj

Lj

so using Lemma 1.6.11 we have that

Aj = Xm
j ·Xm−2

0 · · ·Xm−2
n

∏

i̸=j,k,l

Li

=
aj′bj − ajbj′

ajbk − akbj
Xm
j ·Xm−2

0 · · ·Xm−2
n

∏

i̸=j′,j,l

Li

= − (aj′bj − ajbj′)(albj′ − aj′bl)

(ajbk − akbj)(albj − ajbl)
Xm
j′ ·Xm−2

0 · · ·Xm−2
n

∏

i ̸=j′,j,l

Li

=
(aj′bk − akbj′)(albj′ − aj′bl)

(ajbk − akbj)(albj − ajbl)
Xm
j′ ·Xm−2

0 · · ·Xm−2
n

∏

i ̸=j′,k,l

Li

as desired.
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1.6.3 Computing the trace of multiples of the generators

Moving to the setting of Theorem 1.5.9, we note that in this case, we have that

M =




F0 0 ma0Y0X
m−1
0 ma1Y0X

m−1
1 · · · manY0X

m−1
n

0 F1 mb0Y1X
m−1
0 mb1Y1X

m−1
1 · · · mbnY1X

m−1
n

ma0X
m
0 mb0X

m
0 m2L0X

m−1
0 0 · · · 0

ma1X
m
1 mb1X

m
1 0 m2L1X

m−1
1 · · · 0

...
...

...
...

. . .
...

manX
m
n mbnX

m
n 0 0 · · · m2LnX

m−1
n




As in Section 1.6.2, let k, l ∈ {0, · · · , n} be distinct.

Lemma 1.6.13. Let Aj = Xm
j ·Xm−2

0 · · ·Xm−2
n

∏
i ̸=j,k,l(aiY0 + biY1) be a gen-

erator as in Proposition 1.6.8 and assume that n is even. Let A,B ∈ J . If
AB = λAj in Jρ for some λ ∈ k∗, we have that

Tr(ωA ∪ ωB) = m3n+2(n+ 1)2(ajbk − akbj)(ajbl − albj)λ.

Proof. One can show that

det(M0|1) = −m2(n+1)Y1

(
n∏

i=0

LiX
m−1
i

)
n∑

i=0

aibiX
m
i

Li

and check that

det(M0|n+2) = (−1)n+1m2n+1Xn

(
n∏

i=0

LiX
m−1
i

)
n∑

i=0

aibiX
m
i

Li
.

It follows that

(m+ 1)C̃ = −(m+ 1)m2n+1

(
n∏

i=0

LiX
m−1
i

)
n∑

i=0

aibiX
m
i

Li
.

We note that for all i we have

aibiX
m
i X

m−2
0 · · ·Xm−2

n

∏

p ̸=i

Lp

= Ai · aibiLkLl
= Ai · aibi(akalY 2

0 + (akbl + albk)Y0Y1 + bkblY
2
1 )

= Ai · (aiakalbiY 2
0 + (−(aibk − akbi)(aibl − albi)

+ a2i bkbl + b2i akal)Y0Y1 + aibkblbiY
2
1 )

= Ai · (−(aibk − akbi)(aibl − albi)Y0Y1 + aiakalbiY
2
0

+ (a2i bkbl + b2i akal)Y0Y1 + aibkblbiY
2
1 )
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and we have that

(aiakalbiY
2
0 + (a2i bkbl + b2i akal)Y0Y1 + aibkblbiY

2
1 )X

m
i

= (aiakalbiY
2
0 − aibibkblY

2
1 − aiakalbiY

2
0 + aibkblbiY

2
1 )X

m
i

= 0

in J̃ρ+(r+1,n+1). From this, we see that

C̃ = m2n+1Y0Y1X0 · · ·Xn

( ∑

i̸=k,l

(aibk − akbi)(aibl − albi)Ai

+ (akbj′ − aj′bk)(akbl − albk)Ãk + (albj′ − akbj′)(albk − akbl)Ãl

)

for some j′ /∈ {j, k, l}, where

Ãk = Xm
k X

m−2
0 · · ·Xm−2

n

∏

i̸=k,l,j′

Li and Ãl = Xm
l X

m−2
0 · · ·Xm−2

n

∏

i ̸=k,l,j′
Li.

We note that

(albi − aibl)(akbi − aibk)Ai

= (albi − aibl)(akbi − aibk)
(albj − ajbl)(akbj − ajbk)

(albi − aibl)(akbi − aibk)
Aj

= (ajbl − albj)(ajbk − akbj)Aj

for i ̸= j and that

(akbj′ − aj′bk)(akbl − albk)Ãk

= (akbj′ − aj′bk)(akbl − albk)
(ajbj′ − aj′bj)(ajbl − albj)

(akbj′ − aj′bk)(akbl − albk)
Ãj

=
(ajbk − akbj)(ajbj′ − aj′bj)(ajbl − albj)

ajbj′ − aj′bj
Aj

= (ajbk − akbj)(ajbl − albj)Aj

and similarly, we have that

(albj′ − akbj′)(albk − akbl)Ãl = (ajbk − akbj)(ajbl − albj)Aj .

Putting this together, we see that

C = m2n+1(n+ 1)(ajbk − akbj)(ajbl − albj)Aj .

By Theorem 1.5.9, we have that

Tr(ωA ∪ ωB) = m3n+2(n+ 1)2(ajbk − akbj)(ajbl − albj)λ

as desired.
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1.6.4 The quadratic Euler characteristic

Notation 1.6.14. Assume that n = 2p is even.

In order to prove Proposition 1.6.2, we will need to compute the form Q
from Theorem 1.1.16, i.e. [35, Corollary 8.7], given by

Hp(X ,ΩpX )×Hp(X ,ΩpX )
∪−→ Hn(X ,ΩnX )

Tr−→ k.

The result from the previous section will allow us to do so on primitive coho-
mology, but we will also need to understand the form Q on the complement.

Construction 1.6.15. Using Proposition 1.2.10, we have thatHp(P1×Pn,ΩpP1×Pn)
has rank two over k. Generators are given by

α = c1(O(1, 0)) ∪ c1(O(0, 1))p−1 and β = c1(O(0, 1))p.

Also, one can show that Hp+1(P1 × Pn,Ωp+1
P1×Pn) has rank two. Generators are

given by

α′ = c1(O(1, 0)) ∪ c1(O(0, 1))p and β′ = c1(O(0, 1))p+1.

Lemma 1.6.16. The complement to k · i∗α ⊕ k · i∗β inside Hp(X ,ΩpX ) under
the trace pairing is precisely Hp(X ,ΩpX )prim.

Proof. Let γ ∈ Hp(X ,ΩpX ) be an arbitrary element. Using the projection for-
mula, we note that

Tr(i∗α ∪ γ) = TrP1×Pn(i∗(i
∗α ∪ γ))

= TrP1×Pn(α ∪ i∗γ).

If γ ∈ ker(i∗), this implies that Tr(i∗α ∪ γ) = 0, and a similar argument shows
that Tr(i∗β ∪ γ) = 0, and so ker(i∗) = Hp(X ,ΩpX )prim is contained in the
complement of k · i∗α⊕ k · i∗β.
We now show that the other inclusion holds. As α′ and β′ are generators of
Hp+1(P1 × Pn,Ωp+1

P1×Pn), we have that i∗γ = aα′ + bβ′ for certain a, b ∈ k.
Note that α ∪ α′ = 0 = β ∪ β′, while α ∪ β′ and β ∪ α′ give the generator of
Hn+1(P1 × Pn,Ωn+rP1×Pn). It follows that

TrP1×Pn(α ∪ i∗γ) = bTrP1×Pn(α ∪ β′) = b

and similarly
TrP1×Pn(β ∪ i∗γ) = aTrP1×Pn(β ∪ α′) = a.

If these are both zero then a = b = 0, i.e. we have γ ∈ ker(i∗) = Hp(X ,ΩpX )prim.

Proposition 1.6.17. We have that Tr(i∗α ∪ i∗α) = 0 and Tr(i∗β ∪ i∗β) = 1.
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Proof. We have that

Tr(i∗α ∪ i∗α) = TrP1×Pn(α ∪ i∗i∗α)
= TrP1×Pn(α2 ∪ c1(O(1,m)))

= 0

as α2 = 0 and i∗i
∗α = α ∪ c1(O(1,m)). Similarly

Tr(i∗β ∪ i∗β) = TrP1×Pn(β2 ∪ c1(O(1,m)))

= TrP1×Pn(c1(O(0, 1))n ∪ c1(O(1,m)))

= 1

as desired.

Proof of Proposition 1.6.2. Using Theorem 1.1.16, we know that χ(X/k) is hy-
perbolic for n odd. For n even, the quadratic Euler characteristic is equal to a
hyperbolic form plus the trace form. Therefore, assume from now on that n is
even.
In order to compute the trace form, we evaluate it on basis elements of J . Choose
a generator Aj = Xm

j X
m−2
0 · · ·Xm−2

n

∏
i̸=j,k,l Li of J

ρ as in Proposition 1.6.8.
Note that if AB = λAj for some λ ∈ k∗ and two distinct basis elements A,B,
then BA = λAj and one can check that this yields a hyperbolic form. If m is
odd, there are no basis elements that square to a nonzero multiple of Aj . If
m = 2q is even, then ρ = (n− 2, 2q(n+2)− 2(n+1)) is divisible by 2. For each
subset {i0, · · · , in−2

2
} ⊂ {0, · · · , n} \ {j, k, l}, we find the element

Ai0,··· ,in−2
2

= Xq
jX

q−1
0 · · ·Xq−1

n

∏

i∈{i0,··· ,in−2
2

}

Li

of J
ρ
2 such that, using Lemma 1.6.6 again, we have that

A2
i0,··· ,in−2

2

= Xm
j X

m−2
0 · · ·Xm−2

n

∏

i∈{i0,··· ,in−2
2

}

L2
i

=




∏
i∈{i0,··· ,in−2

2
}(aibj − ajbi)

∏
i/∈{j,k,l,i0,··· ,in−2

2
}(aibj − ajbi)


Aj

We note that all such Ai0,··· ,in−2
2

are multiples of each other in J
ρ
2 , because Xj

has degree 2q − 1 = m − 1, so we can use the same argument as for Proposi-
tion 1.6.8. Also, if j, j′ ∈ {0, · · · , n} are distinct and A,A′ ∈ J

ρ
2 are such that

A2 = λAj and (A′)2 = λ′Aj′ for some λ, λ′ ∈ k∗, then A and A′ are distinct
elements of J

ρ
2 . Therefore, for each j there is exactly one basis element that

squares to a nonzero multiple of Aj , and we choose this basis element to be such
that j, k and l lie in the complement of the ij .
Using Lemma 1.6.13, this gives rise to the term

∑n
j=0⟨

∏
i̸=j(ajbi−aibj)⟩. Also,
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we note that by Proposition 1.6.17, the contribution coming from primitive
cohomology is the form with matrix

(
0 m
m 1

)

which is hyperbolic. Finally, as the rank of χ(X/k) is equal to deg(cn(TX )) by
[35, Theorem 5.3], we see that the coefficient of H is equal to An,m as desired
(also in the case where n is odd).

We can now also deduce Corollary 1.6.3.

Proof of Corollary 1.6.3. Using Proposition 1.1.8, we have that

⟨−1⟩χ(X/k) = χ(X/k)− χ(Pn/k)

and χ(Pn/k) =
∑n
i=0⟨−1⟩i as we saw in Example 1.1.10, i.e. [29, Proposition

1.4(4)]. So for odd n, we have that χ(Pn/k) is hyperbolic, and for even n we
get an extra ⟨1⟩-term. This gives the desired statement.

1.6.5 Checking the answer using the quadratic Riemann-
Hurwitz formula

There is another way to compute χ(X/k): using the quadratic Riemann-Hurwitz
formula from [29]. We will now do this and see that we recover Proposition 1.6.2.

Notation 1.6.18. Because we know that χ(X/k) is hyperbolic if n is odd by
Theorem 1.1.16, we assume throughout that n is even.

Note that the natural projection map P1 × Pn → P1 yields a projective
morphism f : X → P1. The fiber of f over a point y ∈ P1 is isomorphic to the
zero locus of

∑n
i=0 Li(y)X

m
i . This is smooth if Li(y) ̸= 0 for all i ∈ {0, · · · , n}.

If there is a j ∈ {0, · · · , n} such that Lj(y) = 0, we note that by Lemma 1.6.6,
we must have that Li(y) ̸= 0 for all i ̸= j. The fiber of f over y is now the cone
over the zero locus of

∑
i ̸=j Li(y)X

m
i with vertex [ej ] given by the unit vector

that has a one on the j’th spot and zero’s everywhere else. The vertex [ej ] is the
only singular point. In particular, this fiber is smooth inside the Pn−1 defined
by setting Xj = 0.
To apply the quadratic Riemann-Hurwitz formula, the first thing which we need
to do is to identify the set c(f) of critical points of f , i.e. the locus of points of
X where df = 0.

Proposition 1.6.19. The critical locus c(f) of f has n + 1 elements, and
consists of those points satisfying Lj = 0 for some j ∈ {0, · · · , n} and Xi = 0
for all i ̸= j.

Proof. Let j ∈ {0, · · ·n} and consider the affine patch of P1×Pn given byXj ̸= 0
and Y0 ̸= 0, with coordinates y = Y1

Y0
and xi =

Xi

Xj
for i ̸= j. Here, X is given

by the equation ∑

i ̸=j

aix
m
i + y

∑

i ̸=j

bix
m
i + aj + ybj = 0.
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This implies in particular that

m
∑

i ̸=j

(ai + ybi)x
m−1
i dxi +


∑

i ̸=j

bix
m
i + bj


 dy = 0.

We have that f is given by f(y, x0, · · · , xj−1, xj+1, · · ·xn) = y and so

df = dy = − m∑
i ̸=j bix

m
i + bj

∑

i ̸=j

(ai + ybi)x
m−1
i dxi.

This implies that
∑
i̸=j Li(y)x

m−1
i dxi = 0 for those points. This gives us two

possibilities for a critical point.
First, we can have that Li(y) ̸= 0 for i ̸= j, so that we must have that xi = 0
for all i ̸= j. We need in addition that aj + ybj = Lj(y) = 0, as the critical
point also has to lie on X .
Secondly, we can have that there is some k ̸= j such that Lk(y) = 0. In this
case, we have that xi = 0 for all i ̸= k. But for such a point to lie on X , we
need the condition that Lj(y) = 0 again as well, which yields a contradiction,
as akbj − ajbk ̸= 0.
Repeating this construction for other choices of j, we deduce the desired state-
ment.

Remark 1.6.20. All critical points may not lie in the same affine patch, but
all critical values (so all y ∈ P1 such that y = f(p) for p a critical point) do lie
in the same affine patch of P1. Namely, if there would be a critical value with
Y0 = 0 then Lj = 0 would imply that Y1 = 0 (as all ai, bi ∈ k∗).

Notation 1.6.21. Let y ⊂ X be the subscheme of critical points of f . Consider
the closed point y′ of y given by Lj = 0. Consider the affine patch of P1 × Pn
given by Y0 ̸= 0 and Xj ̸= 0 as before. We have that OX ,y′ is a regular local
ring and we choose parameters x0, · · · , xj−1, xj+1, · · · , xn which generate the
maximal ideal my′ (we will not need Lj as an additional generator because we
already work on X ). Furthermore, let x be the subscheme of P1 defined by
Lj = aj + bjy = 0. By [29, Remark 10.9] we have that

tx =
aj + ybj

bj

is a normalized parameter. Define si = − m∑
k ̸=j bkx

m
k +bj

(ai + ybi)x
m−1
i for i ̸= j

and let
[By′ ] := [Bs∗,x∗ ] ∈ GW(k(y′))

be the corresponding Scheja-Storch form (see [29, Theorem 4.1 (3)]).

By the quadratic Riemann-Hurwitz formula, see [29, Corollary 10.6], we have
that

χ(X/k) =
∑

y′∈c(f)

Trk(y′)/k([By′ ])−D(f) ·H
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where D(f) ∈ Z (see [29, Theorem 10.2]). Also, note that for all y′ ∈ c(f),
we have that k(y′) = k and so the trace doesn’t have any effect. It therefore
remains to compute [By′ ] for all y

′ ∈ c(f).

Proposition 1.6.22. We have that

[By′ ] =

{
1
2 (m− 1)n ·H if m is odd

( 12 ((m− 1)n − 1) ·H + ⟨∏i ̸=j(aibj − ajbi)⟩) if m is even

Proof. Let y′ be a critical point again. We note that x0, · · · , xn is a local framing
for (det(my′/m

2
y′)

∨)⊗2. The section we have is not diagonalizable, but we note
that if we set

λ = − m∑
k ̸=j bkx

m
k + bj

and do a change of coordinates where we switch dxi with λdxi for all i, it is,
and it will only change the determinant by λn which will be a square as n is
assumed to be even. We can therefore apply [29, Example 4.5] combined with
[29, Corollary 4.3] to see that

[By′ ] = ⟨(− m∑
i ̸=j bix

m
i + bj

)n
∏

i̸=j

(ai + ybi)⟩
(m−1)n−1∑

i=0

⟨−1⟩i.

We note that for m odd, (m− 1)n is even and so

(m−1)n−1∑

i=0

⟨−1⟩i = 1

2
(m− 1)n ·H.

For even m, we have that

(m−1)n−1∑

i=0

⟨−1⟩i = 1

2
((m− 1)n − 1) ·H + ⟨1⟩.

Furthermore, the term (− m∑
i̸=j bix

m
i +bj

)n is a square as we assumed that n is
even.
Finally, as Lj = 0 we have that y = −aj

bj
and so

⟨
∏

i ̸=j

(ai + ybi)⟩ = ⟨ 1
bnj

∏

i ̸=j

(aibj − ajbi)⟩ = ⟨
∏

i̸=j

(aibj − ajbi)⟩.

So

[By′ ] =

{
1
2 (m− 1)n ·H⟨∏i ̸=j(aibj − ajbi)⟩ if m is odd

( 12 (((m− 1)n − 1) ·H + ⟨1⟩)⟨∏i ̸=j(aibj − ajbi)⟩ if m is even

which proves the statement.
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Applying the quadratic Riemann-Hurwitz formula, we see from this that

χ(X/k) =
{
An,m ·H if m is odd

An,m ·H +
∑n
j=0⟨

∏
i̸=j(aibj − ajbi)⟩ if m is even

which coincides with the result of Proposition 1.6.2. This therefore gives the
same quadratic Euler characteristic of X as we had before.
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Chapter 2

Motivic Donaldson-Thomas
invariants of P3

2.1 Classifying spaces and the Witt cohomology
of BNS

Notation 2.1.1. Inside SL2 over a field k, there is the torus

T =
{(

t 0
0 t−1

)
: t ∈ k∗

}

Its normalizer NS is generated by T and the “switching” element

σ =

(
0 1
−1 0

)

We have that GL2 contains the torus

TG =
{(

t1 0
0 t2

)
: t1, t2 ∈ k∗

}

and its normalizer NG is generated by TG and σ. Note that NS ⊂ NG and that
NS is precisely the kernel of the restriction of the determinant character on NG.

In this section, we recall the definition of a classifying space, together with
some basic properties. We then give a summary of some results from the paper
[28] by Levine, in which the Witt cohomology of the classifying space BNS of
NS is computed, together with the Euler classes of some canonical rank two
vector bundles on BNS .

2.1.1 Classifying spaces

For algebraic groups G which are subgroups of GLn, the corresponding clas-
sifying spaces BG have been constructed by Totaro in [53, Remark 1.4] and
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developed further by Edidin and Graham in [17]. We use the same model as
[28], which comes from the model used in the paper [44, Section 4.2.2] of Morel
and Voevodsky. We give a brief sketch of the construction.

Construction 2.1.2. Let Un,n+j denote the open subscheme of An(n+j) of
n× n+ j matrices which are of maximal rank n. We can form the sequence of
inclusions

· · · → Un,n+j → Un,n+j+1 → · · ·
where the maps insert a zero row in the last column. One defines the Indscheme
EGLn as the colimit of the above sequence. Note that Un,n+j has a free GLn-
action on it. Viewing Un,n+j as a subset of Hom(An+j ,An), this action is
induced by the one on An.

Now let G ⊂ GLn be an algebraic subgroup. We can restrict the action of
GLn on Un,n+j to obtain an action of G on Un,n+j .

Notation 2.1.3. Denote EG for the colimit of the resulting sequence of inclu-
sions. Write BjG = G \ Un,n+j for the quotient scheme.

Definition 2.1.4. If G ⊂ GLn is a smooth algebraic subgroup, we define its
classifying space to be BG = colimjBjG.

Remark 2.1.5. We have that BjG is generally not equal to the presheaf quo-
tient of Un,n+j by G, but it is the quotient as étale sheaves. The same holds for
BG being the quotient of EG by G. Also, BG as defined above is independent
up to A1-equivalence of the choice of embedding into GLn. See [44, Proposition
4.2.6 and Remark 4.2.7] and the surrounding results for more on this. For spe-
cial groups, BG is the quotient of EG by G as Zariski sheaves because of [17,
Proposition 23]. In particular, this holds for SL2 and GL2.

Construction 2.1.6. For n,m ∈ Z≥1 with m ≥ n, consider the map

Un,m → AN+1,M 7→ (det(MI))I

for N =
(
m
n

)
−1, where theMI are the n×n-submatrices which one can form out

of the columns ofM (without changing their order). This induces an embedding

GLn \ Un,m → PN

because applying the GLn-action multiplies the corresponding result by the de-
terminant. One can prove that this map identifies the quotient GLn \Un,m with
the Grassmanian Gr(n,m), embedded in PN via the classical Plücker embed-
ding. In this way, one can realize BGLn as Gr(n,∞) ⊂ P∞. See [44, Proposition
3.7] for more details.

Remark 2.1.7. In particular, we have that BGm ∼= P∞ up to A1-equivalence.

Remark 2.1.8. In topology, classifying spaces classify principal G-bundles.
For the construction above, it is however, not true in general that for any G-
torsor V → X on a scheme, there is a classifying map f : X → BG such that
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V = f∗EG. It does work for GLn, however, whenever we have a bundle with
a set of generating sections, for instance, for X affine. This is because those
sections give an element of the Grassmanian, defining the desired map. See the
papers [3] and [4] by Asok, Wendt and Hoyois for more on this topic.

Another fact about algebraic groups which we will need is the following one.
This statement is well known, see for example [1, Example 6.1.11] for a reference.

Proposition 2.1.9. Let G ⊂ GLn be an affine algebraic group. Then the Picard
group of BG is in bijection with the character group of G.

The idea of the proof is that a character G→ Gm gives rise to a morphism
BG→ BGm = P∞, and the pull-back of O(1) defines an element of the Picard
group of BG. One can then construct an inverse operation to this, relying on
the fact that Pic(Un,m) = 0.

2.1.2 Witt cohomology of BNS and Euler classes of canon-
ical rank two bundles

We now study [28, Proposition 5.5], which is a computation of the cohomology
H∗(BNS ,W) of BNS where W is the sheaf of Witt rings, and [28, Theorem
7.1], which is a computation of the Euler classes of canonical rank two bundles
on BNS . Both of those results have been proven by Levine. For details on how
to define the sheaf W, see Morel’s paper [42, Chapter 2]. For more details on
how to take cohomology of W and how to define Euler classes in this theory,
see [29, Section 2] or [35].

Construction 2.1.10. Consider the isomorphism G2
m \ GL2 → (P1 × P1) \∆

given by (
a b
c d

)
7→ ([a : b], [c : d]).

Here, the G2
m action on GL2 is given by

(λ, µ) ·
(
a b
c d

)
=

(
λa λb
νc νd

)
=

(
λ 0
0 µ

)(
a b
c d

)

and if we add the element σ, this gives the action of NG on GL2. We find that

NG \GL2
∼= S2 \ ((P1 × P1) \∆)

where S2 is the cyclic group of order 2. Note that S2 \ (P1 × P1) ∼= Sym2(P1).
Moreover, the morphism

π : P1 × P1 → P2, ([X0 : X1], [Y0 : Y1]) 7→ [X0Y0 : X0Y1 +X1Y0 : X1Y1]

induces an isomorphism Sym2(P1) ∼= P2. The image of ∆ is the set of all points
of the shape [X2

0 : 2X0X1 : X2
1 ] which form the curve C = V (X2

1 − 4X0X2).
Therefore, we find that

NS \ SL2
∼= NG \GL2

∼= P2 \ C.
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Notation 2.1.11. We let (NS \ SL2) ×SL2 ESL2 denote all pairs (a, b) inside
(NS \SL2)×ESL2 up to the equivalence relation (a ·g, b) ∼ (a, g ·b) for g ∈ SL2.
With this notation, we have that

BNS = NS \ ESL2
∼= (NS \ SL2)×SL2 ESL2

∼= (P2 \ C)×SL2 ESL2.

Proposition 2.1.12. The polynomial Q = X2
1 −4X0X2 gives rise to a nowhere

vanishing section of OP2\C(2) which is SL2-invariant.

Proof. First, note that [x : y : z] 7→ Q([x : y : z]) is a well defined nowhere
vanishing section of OP2\C(2), because Q is homogeneous and nonzero on P2\C.
We now study the GL2-action on P2 induced by the above chain of isomorphisms.
Let

X =

(
a b
c d

)
, A =

(
α β
γ δ

)
∈ GL2.

The GL2-action on GL2 that we start out with is given by right multiplication,
so if we let A act on X we find

XA =

(
aα+ bγ aβ + bδ
cα+ dγ cβ + dδ

)
.

Under the map G2
m \ GL2 → (P1 × P1) \∆, the class of XA is mapped to the

point ([aα+ bγ : aβ + bδ], [cα+ dγ : cβ + dδ]). Now if we apply the map to P2,
this point is sent to

[xα2 + yαγ + zγ2 : 2(xαβ + zγδ) + y(αδ + βγ) : xβ2 + yβδ + zδ2]

where x = ac, y = (ad + bc) and z = bd. Recall that X itself gets mapped to
[ac : ad+bc : bd] from which we see that A acts on a general point [x : y : z] ∈ P2

by sending it to the point above.
Having figured out the action, we now compute that

Q([x : y : z] ·A) = (2xαβ + y(αδ + βγ) + 2zγδ)2

− 4(xα2 + yαγ + zγ2)(xβ2 + yβδ + zδ2)

= x2(4α2β2 − 4α2β2)

+ xy(4αβ(αδ + βγ)− 4(α2βδ + αβ2γ))

+ y2((αδ + βγ)2 − 4αβγδ)

+ yz(4γδ(αδ + βγ)− 4(βγ2δ + αγδ2))

+ z2(4γ2δ2 − 4γ2δ2)

+ xz(8αβγδ − 4(α2δ2 + β2γ2))

= y2(αδ − βγ)2 − 4xz(αδ − βγ)2

= det(A)2Q([x : y : z])

and so in O∗
P2\C we have that Q is SL2-invariant under the induced action as

desired.
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Construction 2.1.13. We consider the representation ρ− : NS → Gm which
sends σ to −1 and the diagonal matrices to 1. Pulling back the canonical
bundle O(1) on BGm via the induced map BNS → BGm defines a line bundle
γS on BNS .

Remark 2.1.14. Note that OP2(1) has a canonical GL2-linearization. There-
fore, we find an invertible sheaf γn on NS \SL2×SL2 U2,n for every n. The sheaf
defined by those is exactly γS .

Notation 2.1.15. Similar to the above remark, OP2(2) induces γ2S on BNS .
Now by Proposition 2.1.12, we see that Q gives rise to a nowhere vanishing
section of γ2S . Therefore, Q defines a quadratic form ⟨q̄⟩ : γ−1

S → OBNS
. We

consider ⟨q̄⟩ as a global section of the Witt sheaf on BNS .

Remark 2.1.16. Using Proposition 2.1.9, we see that the Picard group of BNS
is isomorphic to Z/2Z, and it is generated by γS . Namely, a character of the
torus is of the form (

t 0
0 t−1

)
7→ ta−b

for some a, b ∈ Z and from the relation

(
t 0
0 t−1

)
σ = σ

(
t−1 0
0 t

)
(2.1)

we see that for a character ρ : NS → Gm we have that ta−bρ(σ) = ρ(σ)tb−a so
that a = b. As σ2 = −Id we have that ρ(σ2) = (−1)0 = 1 and so a character is
either the map that sends everything to 1 or ρ−.

Notation 2.1.17. Note that the structure morphism P2 \C → Spec(k) induces
a map

p : BNS = (P2 \ C)×SL2 ESL2 → Spec(k)×SL2 ESL2 = BSL2.

Let T denote the tangent bundle of BNS over BSL2. Let e be the Euler class
of the canonical rank two bundle A2×SL2BSL2 on BSL2, where SL2 acts on A2

by right matrix multiplication.

The following result was proven by Levine in [28].

Proposition 2.1.18 ([28], Proposition 5.5). Let k be a perfect field and let
W (k)[x0, x2] be the graded polynomial algebra over W (k) on the generators x0
of degree zero and x2 of degree 2. Then x0 7→ ⟨q̄⟩, x2 7→ p∗e defines a W (k)-
algebra isomorphism

ψ :W (k)[x0, x2]/(x
2
0 − 1, (1 + x0)x2) → H∗(BNS ,W).

Moreover, H∗≥2(BNS ,W(γS)) is the quotient of the free H∗(BNS ,W)-module
on the generator e(T ) modulo the relation (1 + ⟨q⟩)e(T ) = 0.
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In [28], there is also a computation of the Euler classes of rank two vector
bundles on BNS in terms of the above description. Following [28, Section 6],
for m ≥ 1, consider the representation ρm : NS → GL2(A2) given by

(
t 0
0 t−1

)
7→
(
tm 0
0 t−m

)

σ 7→
(

0 1
(−1)m 0

)

and let ρ−m be given by ρ−m(σ) = −ρm(σ). Finally, let ρ0 be the trivial repre-
sentation and let ρ−0 = ρ−. The representations ρm give rise to the rank two
vector bundles

Õ(m) = A2 ×NS ESL2 → BNS

and the representations ρ−m similarly give rise to rank two vector bundles Õ−(m).
By [28, Lemma 6.1], Õ(2) is isomorphic to T . Levine has proven the following
result.

Theorem 2.1.19 ([28], Theorem 7.1). Suppose that k is a field of characteristic
zero or of characteristic p > 2 such that p and m are coprime. Then

e(Õ(m)) =





m · p∗e ∈ H2(BNS ,W) if m ≡ 1 mod 4

−m · p∗e ∈ H2(BNS ,W) if m ≡ 3 mod 4
m
2 · e(T ) ∈ H2(BNS ,W(γS)) if m ≡ 2 mod 4

−m
2 · e(T ) ∈ H2(BNS ,W(γS)) if m ≡ 0 mod 4

Furthermore, e(Õ−(m)) = −e(Õ(m)).

Remark 2.1.20. Note that the above theorem gives a complete computation
of Euler classes of bundles on BNS . We have considered all possible twists as
we saw in Remark 2.1.16. Also, let ρ : NS → GL(V ) be a representation of
NS . Then we can restrict this to a representation of the torus inside of SL2,
and as representations of the torus T are semisimple, this will be diagonalizable.
Adding the element σ and using the relation (2.1), we see that ρ is a direct sum
of representations ρm for m ≥ 0 or ρ− (noting that any trivial subrepresentation
is a ρ0 and that ρm and ρ−m are isomorphic as representations). Note that this
also proves that NS-representations are semi-simple.

Remark 2.1.21. The Euler class e(Õ±(m)) depends on a choice of isomorphism
det(e(Õ±(m))) → OBNS

if m is odd, or det(e(Õ±(m))) → γS if m is even. As
the isomorphism of representations Õ−(m) → Õ(m) has determinant −1, one
finds the minus sign in the formula for e(Õ−(m)).

2.2 Summary of some results in [39] and [40]
and an example

In this section, we give a summary of some results in the papers [39] and [40] by
Maulik, Nekrasov, Okounkov and Pandharipande. We compute the Donaldson-

77



Thomas invariants for ideal sheaves of length 1 and 2 on P3 as an example.

2.2.1 Summary of some results in [39] and [40]

Notation 2.2.1. LetX be a smooth projective threefold over a field k. Suppose
thatHi(X,OX) = 0 for i ≥ 1. Let Hilbn(X) be the moduli space of ideal sheaves
of length n on X.

Remark 2.2.2. Hilbert schemes go back to Grothendieck, see [22], and see for
instance Hartshorne’s book [23] for more details.

Construction 2.2.3. There is a perfect obstruction theory on Hilbn(X). This
means that one can define a perfect complex E• supported in cohomological
degrees 0 and −1, together with a morphism E• → LHilbn(X). Here LHilbn(X)

is the cotangent complex of Hilbn(X) over k. This morphism defines an iso-
morphism on cohomology groups in degree 0, and a surjection on cohomology
groups in degree −1. Moreover, because of the condition that Hi(X,OX) = 0
for i ≥ 1, for all classes of ideal sheaves [I] ∈ Hilbn(X), there are isomorphisms

H0(E∨
• ⊗OHilbn(X)

k([I])) → Ext1(I, I)

and
H−1(E∨

• ⊗OHilbn(X)
k([I])) → Ext2(I, I).

Here k([I]) denotes the residue field at [I].

Notation 2.2.4. From now on, assume that k = C.

Remark 2.2.5. The above perfect obstruction theory on Hilbn(X) for X a
Calabi-Yau or Fano variety was constructed by Thomas in [51, Section 3], as-
suming a certain “tracelessness condition”. It is shown in [39, Section 2.2]
that one can extend this construction to smooth projective threefolds satisfying
the condition that Hi(X,OX) = 0 for i ≥ 1. In [9, Section 1.5], there is a gen-
eral construction for integral proper 3-dimensional Gorenstein Deligne-Mumford
stacks.

One can use the perfect obstruction theory to define the virtual fundamental
class [Hilbn(X)]vir ∈ CH0(Hilbn(X)).

Definition 2.2.6. The degree In ∈ CH0(Spec(C)) ∼= Z of [Hilbn(X)]vir is called
the Donaldson-Thomas invariant.

Remark 2.2.7. See Fulton’s book [18] for more details about the classical
theory of Chow rings. For more details about virtual fundamental classes, see
for instance [8] by Behrend and Fantechi, or [6], by Battistella, Carocci and
Manolache. The theory of Donaldson-Thomas invariants was constructed and
defined by Donaldson and Thomas, in [16] and [51].
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Notation 2.2.8. Assume from now on that X is toric, i.e. there exists an
embedding T → X of the torus T = G3

m into X such that the image of T is a
dense open in the Zariski topology and the action of T on itself extends to an
action on X. We assume in addition that the very ample invertible sheaf OX(1)
on X defining the projective embedding of X has a T-linearization.

In this situation, the action of T on X extends to an action of T on Hilbn(X),
and gives a T-linearization on E•. Also, the perfect obstruction theory E• gives
rise to an equivariant perfect obstruction theory; see Levine’s paper [32, Theo-
rem 6.4] or [9, Proposition 2.4] for details. One can then define the equivariant
virtual fundamental class [Hilbn(X)]virT ∈ CHT

0 (Hilbn(X)).

Notation 2.2.9. Let ITn ∈ CH0(BT) be the degree of [Hilbn(X)]virT .

See Totaro’s paper [53, Section 1] for the definition of the Chow ring of a
classifying space.

Remark 2.2.10. If we let p : BT → Spec(C) be the structure morphism, we
have that ITn = p∗In.

Definition 2.2.11. The MacMahon function is the function given by

M(q) =
∏

n≥1

1

(1− qn)n
.

Remark 2.2.12. This function was first defined and conjectured to be the
generating series for 3-dimensional partitions by Percy A. MacMahon in [38,
Article 43]. A full statement and proof were later given by Stanley, see [49,
Corollary 7.20.3].

In the papers [39] and [40], there is a proof of the following statement.

Theorem 2.2.13 ([40], Theorem 2). Let X be a smooth projective toric 3-fold.
Then ∑

n≥0

Inq
n =M(−q)degX c3(TX⊗KX).

Remark 2.2.14. This formula was later extended to all Calabi-Yau threefolds
by Li, see [37], and then by Levine-Pandharipande, see [34].

The ingredients of the proof of this statement are the virtual localization for-
mula from the paper [19] by Graber and Pandharipande, and the Bott residue
formula, see Bott’s paper [10], together with a computation of the virtual equiv-
ariant Euler class of the virtual tangent space of each fixed ideal. We now sum-
marize how this computation works.
It is shown in [39, Sections 4.4-4.5] that the virtual localization formula now
takes the following shape:

In =
∑

[I]∈Hilbn(X)T

eT(Ext2(I, I))
eT(Ext1(I, I))

.
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Remark 2.2.15. In fact, the virtual localization formula computes ITn rather
than In. Using Remark 2.2.10, one can then compute In from ITn . But in our
situation, we note that CH0(BT) ∼= Z, so that all ITn are integers.

This means that for a fixed point [I], one needs the equivariant virtual Euler
class of the virtual tangent space

T[I] = Ext1(I, I)− Ext2(I, I).

Remark 2.2.16. Note that the virtual Euler class is not well defined in the
category K0(T − Reps) of virtual T-representations. One would like to define

eT(V0−V1) = eT(V0)
eT(V1)

and then use that eT(V0⊕V1) = eT(V0)e
T(V1) to show that

this is well defined. However, as the equivariant Euler class of a trivial repre-
sentation is zero, this does not work. Instead, one uses that T-representations
are semi-simple and restricts to the subgroup of K0(T−Reps) generated by all
irreducible nontrivial representations.

Note that every representation of T has an associated trace character, which
sends an element of T to the corresponding matrix and then to its trace in C.
We will find the Euler class of T[I] by computing its trace.

Notation 2.2.17. As explained in [39, Section 4.1], for each fixed ideal sheaf
[J ] ∈ Hilbn(X), we can choose a canonical T-stable affine open

UJ ∼= A3 = Spec(C[x1, x2, x3])

centered at the support of J , and the UJ cover X. On such a chart UJ , we
may choose coordinates x1, x2, x3 such that the T-action is given by

(t1, t2, t3)(x1, x2, x3) = (t1x1, t2x2, t3x3).

As explained in [39, Section 4.2], the fixed ideal sheaves correspond to sub-
schemes Y ⊂ X supported on the fixed points. This implies that, for the fixed
point [I], on an open UJ we have that I|UJ ⊂ C[x, y, z] is a monomial ideal.
Therefore, we find corresponding partitions

πJ = {(k1, k2, k3) ∈ Z3
≥0 : xk1yk2zk3 /∈ I|UJ }.

One can prove (see [39, Equation (9)]) that

Ext1(I, I)− Ext2(I, I)

=
∑

[J ]∈Hilbn(X)T


H0(UJ ,OX)−

3∑

j=0

(−1)jH0(UJ ,Ext
j(I, I))


 .

Notation 2.2.18. Let I ⊂ C[x, y, z] be the restriction of I to UJ . We consider
the trace

QJ (t1, t2, t3) = trC[x,y,z]/I(t1, t2, t3) =
∑

(k1,k2,k3)∈πJ

tk11 t
k2
2 t

k3
3 .
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One now defines

VJ = QJ (t1, t2, t3)−
QJ (t−1

1 , t−1
2 , t−1

3 )

t1t2t3

+QJ (t1, t2, t3)QJ (t−1
1 , t−1

2 , t−1
3 )

(1− t1)(1− t2)(1− t3)

t1t2t3
.

Theorem 2.2.19 ([39], Theorem 1). The T-character of T[I] is given by

trT[I]
(t1, t2, t3) =

∑

[J ]∈Hilbn(X)T

VJ .

Construction 2.2.20. As T ∼= G3
m, we have that BT ∼= (P∞)3. We have that

CH∗(BT) ∼= Z[e1, e2, e3] where

e1 = c1(O(1, 0, 0)), e2 = c1(O(0, 1, 0)) and e3 = c1(O(0, 0, 1)).

See [53, Section 15] for more details.

Assuming the representation is diagonalized, each summand in trT[I]
(t1, t2, t3)

corresponds to one of the characters building up the representation, i.e. to line
bundles on BT (see Proposition 2.1.9). Therefore, we have that each of these is
a tensor product of the ei’s, e.g.

eT(ta1t
b
2t
c
3) = c1(O(a, b, c))

= c1(O(a, 0, 0)) + c1(O(0, b, 0)) + c1(O(0, 0, c))

= ae1 + be2 + ce3

Noting that the Euler class of a sum is the product of the Euler classes, if

trT[I]
(t1, t2, t3) =

∑

(k1,k2,k3)∈Z3

vk1,k2,k3 · tk11 tk22 tk33

we find the Euler class

eT(T[I])−1 =
∏

k∈Z3

(s1k1 + s2k2 + s3k3)
−vk1,k2,k3 .

Here, s1, s2 and s3 are the “tangent weights” of the action on UJ , i.e. we have
that (t1, t2, t3) · (x, y, z) = (ts11 x, t

s2
2 y, t

s3
3 z) on UJ . Adding these contributions

yields the Donaldson-Thomas invariant In.

2.2.2 An example

We apply the above strategy to the situation where X = P3, and we will show
that I1 = 20 and I2 = 150.
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Notation 2.2.21. Choose coordinates X0, X1, X2, X3 on P3, and consider the
standard action of the three dimensional torus T ∼= G3

m on P3 given by

(t1, t2, t3) · [X0 : X1 : X2 : X3] = [X0 : t1X1 : t2X2 : t3X3].

Write Ui = {Xi ̸= 0} ⊂ P3.

The fixed points of this action are supported on the points

[1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0] and [0 : 0 : 0 : 1].

Remark 2.2.22. Note that

[X0 : t1X1 : t2X2 : t3X3] = [t−1
1 X0 : X1 : t−1

1 t2X2 : t−1
1 t3X3]

= [t−1
2 X0 : t1t

−1
2 X1 : X2 : t−1

2 t3X3]

= [t−1
3 X0 : t1t

−1
3 X1 : t2t

−1
3 X2 : X3]

We see from this that the tangent weights on U0 are ((1, 0, 0), (0, 1, 0), (0, 0, 1)),
the tangent weights on U1 are ((−1, 0, 0), (−1, 1, 0), (−1, 0, 1)), the tangent weights
on U2 are ((0,−1, 0), (1,−1, 0), (0,−1, 1)) and the tangent weights on U3 are
((0, 0,−1), (1, 0,−1), (0, 1,−1)).

To compute the invariant I1, we need to consider the fixed points of which
the ideal has length one. These are precisely the ideal sheaves supported on one
of the above points, which are locally given by the ideal (x, y, z) ⊂ C[x, y, z].
On U0, we find Q0(t1, t2, t3) = 1 and so

V0(t1, t2, t3) = t−1
1 + t−1

2 + t−1
3 − t−1

1 t−1
2 − t−1

1 t−1
3 − t−1

2 t−1
3 .

We see from this that the Euler class of the virtual tangent space corresponding
to the ideal sheaf of length 1 which is given by (x, y, z) ⊂ C[x, y, z] on U0 is

(e1 + e2)(e1 + e3)(e2 + e3)

e1e2e3
.

From

V (t−1
1 , t−1

1 t2, t
−1
1 t3) = t1 + t1t

−1
2 + t1t

−1
3 − t21t

−1
2 − t21t

−1
3 − t21t

−1
2 t−1

3

we find that the Euler class at [0 : 1 : 0 : 0] is

(2e1 − e2 − e3)(2e1 − e2)(2e1 − e3)

e1(e1 − e2)(e1 − e3)
.

Similarly, the class at [0 : 0 : 1 : 0] is

(2e2 − e1 − e3)(2e2 − e1)(2e2 − e3)

e2(e2 − e1)(e2 − e3)
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and at [0 : 0 : 0 : 1] we find

(2e3 − e1 − e2)(2e3 − e1)(2e3 − e2)

e3(e3 − e1)(e3 − e2)
.

Adding these yields I1 = 20.
There are two categories of fixed points of length 2:

� Two points with both multiplicity one, corresponding to all possible prod-
ucts of the classes for n = 1.

� One point with multiplicity two in one tangent direction, corresponding
to the ideals (x2, y, z), (x, y2, z), (x, y, z2) locally.

For the computation, we use some SAGE code, see here. We find that I2 = 150.

Remark 2.2.23. This agrees with what one gets if one uses Theorem 2.2.13.
Namely, we have that degP3

c3(TP3 ⊗KP3) = −20, because tensoring the Euler
exact sequence with KP3 ∼= O(−4) gives an exact sequence

0 → O(−4) → O(−3)4 → TP3 ⊗KP3 → 0

so we can compute the total Chern class of TP3 ⊗KP3 in CH∗(P3) ∼= Z[t]/t4 as

c(TP3 ⊗KP3) = c(O(−3))4/c(O(−4))

=
(1− 3t)4

1− 4t

= (1− 12t+ 54t2 − 108t3)(1 + 4t+ 16t2 + 64t3)

The coefficient of t3 is 64− 192 + 216− 108 = −20. Now we note that

M(−q)−20 = 1 + 20q + 150q2 + · · ·

2.3 Motivic Donaldson-Thomas invariants of P3

Let E be an SL-oriented motivic ring spectrum, see for instance Ananyevskiy’s
paper [2] for a definition and more details. In Levine’s paper [30], it is discussed
how one can define a motivic analogue of a virtual fundamental class for a
perfect obstruction theory E• on a quasi-projective scheme Z over a perfect
field k. This class is an element of the Borel-Moore homology EB.M.(Z,V(E•))
where V(E•) = Spec(Sym∗E0) − Spec(Sym∗E1) is the virtual vector bundle
associated to E•. If E• has virtual rank zero and there is an isomorphism from
the determinant of the obstruction theory to the square of a line bundle, a choice
of such an isomorphism (called an orientation of E•) defines a degree of this
class as an element of E0,0(k) (see [30, Section 8.1]). In Levine’s paper [31], this
definition is extended to an equivariant setting if the scheme has an action on
it of a smooth closed subgroup of GLn, and [31] provides a proof of a virtual
localization formula for this situation.
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Notation 2.3.1. In this section and in the next, we work over the base field R
unless specified otherwise. The reason for this is that in order to use the virtual
localization formula for equivariant Witt cohomology as proven by Levine, see
[31, Theorem 6.7], one needs to invert a certain integer. Also, the degrees of
motivic Donaldson-Thomas invariants will land in the Witt ring of the ground
field. As W(C) ∼= Z/2Z, we will not get much information out of the computa-
tions in this situation, especially if we need to invert 2. For F a finite field of odd
characteristic, one has 4W(F) = 0 (see [45, Corollary 3.11]), so in this situation,
inverting 2 will also mean we do not get much out of the computation. On the
other hand, W(R) ∼= Z, which is much more convenient. The arguments in this
chapter do, however, mostly work over more general fields, in particular for any
field which has an embedding into R. For example, the map W(Q) → W(R) is
surjective with 2-primary kernel.

In this section and the next, we will study the motivic virtual fundamental
classes corresponding to the following situation.

Notation 2.3.2. Let a, b ∈ Z be odd and such that

a, b, 3a− b, 3b− a, 3a+ b, 3b+ a, a− b and a+ b

are nonzero (the denominators in the computations in the next section are the
reason for this assumption). Furthermore, assume that a > 5b (so that we can
decide for all the terms we will see in the next section whether they are positive
or negative). Consider the action of NS on P3 given by

(
t 0
0 t−1

)
· [X0 : X1 : X2 : X3] = [taX0 : t−aX1 : tbX2 : t−bX3]

σ · [X0 : X1 : X2 : X3] = [−X1 : X0 : −X3 : X2].

This action does not have fixed points, but there are the two fixed couples
{[1 : 0 : 0 : 0], [0 : 1 : 0 : 0]} and {[0 : 0 : 1 : 0], [0 : 0 : 0 : 1]}.

Notation 2.3.3. We denote Ui = {Xi ̸= 0} ⊂ P3 for i ∈ {0, · · · , 3}.

Remark 2.3.4. We note that for even a or b, the above action would not be
well defined, as the map f : NS → SL2 given by

(
t 0
0 t−1

)
7→
(
ta 0
0 t−a

)

and σ → σ is not a morphism. Indeed, if f were a morphism, we would have
f(σ2) = f(σ)2 = σ2 = −Id. But σ2 = −Id, so that f(σ2) = f(−Id) = Id, which
is a contradiction. We would therefore have to send σ to

(
0 1
1 0

)

but this has determinant −1 and is therefore not in SL2.
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As remarked before, we need that the determinant of the perfect obstruction
theory (which is the same as in the previous section) is a square. One can
construct an orientation on Hilbn(X) for X a smooth projective threefold with
an isomorphism KX

∼= L⊗2. In the case of a Calabi-Yau threefold, this is
due to Y. Toda [52, Proposition 3.1]. Following email correspondence with
Toda describing his result and method of proof, M. Levine handled the case of
arbitrary X in the paper [32]. We will discuss this orientation and its influence
on signs in Section 2.3.1.
With a given orientation, one can make the following definition.

Definition 2.3.5. For n ≥ 0, we let Ĩn ∈ W(R) ∼= Z be the degree of the
motivic virtual fundamental class of Hilbn(P3).

One can show that the perfect obstruction theory E• is NS-equivariant,
giving rise to an equivariant motivic virtual fundamental class of Hilbn(P3).

Notation 2.3.6. Let ĨNS
n ∈ H∗(BNS ,W) be the degree of the above equivari-

ant virtual fundamental class.

Using [31, Theorem 6.7], if the torus T in NS acts with isolated fixed points,
we have that

ĨNS
n =

∑

[I]∈Hilbn(P3)NS

e(Ext2(I, I))
e(Ext1(I, I))

. (2.2)

Again, one can find Ĩn from this. We therefore need to compute the trace of
the virtual representation

Ext2(I, I)− Ext1(I, I)

of NS for all ideal sheaves I that are isolated fixed points of the NS-action;
if the NS-fixed locus on Hilbn(X) has non-isolated fixed points, the method
requires more work, and will not be discussed further here. We can compute
the equivariant Euler classes from the trace using Proposition 2.1.19, because
any NS-representation can be decomposed as a sum of the representations ρ±m,
see Remark 2.1.20. In order to find the trace, we use the strategy of [39] and
[40]. The proofs are almost the same as in [39, Section 4], but included here for
the reader’s convenience. We first show the following.

Lemma 2.3.7. For a fixed ideal sheaf [I] ∈ Hilbn(P3) under the NS-action, we
have that

Ext1(I, I)− Ext2(I, I) =
3∑

i=0


H0(Ui,OP3)−

3∑

j=0

(−1)jH0(Ui,Ext
j(I, I))




as virtual representations of NS.
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Remark 2.3.8. Note that one can view the above as an NS-representation by
considering it as the sum of


H0(U0,OP3)−

3∑

j=0

(−1)jH0(U0,Ext
j(I, I))




⊕


H0(U1,OP3)−

3∑

j=0

(−1)jH0(U1,Ext
j(I, I))




and the corresponding term for U2 and U3.

We will then show the following.

Proposition 2.3.9. Let I be an NS-fixed ideal sheaf. For i ∈ {0, · · · , 3}, write
R = R[x, y, z] ∼= H0(Ui,OP3) and let I be the image of the ideal sheaf I. Let
πI = {(i, j, k) : xiyjzk /∈ I} and suppose that s1, s2, s3 are the tangent weights
on Ui, i.e. t · (x, y, z) = (s1x, s2y, s3z). Set

Qi(t) = trR/I(t) =
∑

(i,j,k)∈πI

si1s
j
2s
k
3 .

We have that

trExt1(I,I)−Ext2(I,I)(t) =
s1s2s3Q(t)−Q(t−1) +Q(t)Q(t−1)(1− s1)(1− s2)(1− s3)

s1s2s3
.

Adding the traces on different Ui and filling in the correct tangent weights
gives the trace of the virtual tangent space of I, from which one can compute
the Euler classes as before. In the next section, we will apply this to compute
Ĩn for n ≤ 6.

2.3.1 The orientation and its influence on signs

Notation 2.3.10. LetX be a smooth projective threefold over a field k together
with an NS-action. Let n ≥ 1 and let Hilbn(X) be the Hilbert scheme of ideal
sheaves of length n on X.

The following statement was proven for more general groups by Levine in
the paper [32].

Proposition 2.3.11 ([32], Theorem 6.3). Suppose that there is an NS-linearized
very ample line bundle L on X and that we are given an NS-linearized isomor-
phism ωX/k → L⊗2. Let I be the ideal sheaf corresponding to the universal
subscheme i : Z → Hilbn(X) × X of Hilbn(X) × X. Let pZ : Z → Hilbn(X)
be the natural projection of Z and let p2 : Hilbn(X)×X → X be the projection
to X. Then E• has virtual rank zero and there exists a canonical NS-equivariant
isomorphism

ρ : det(E•) →(det(pZ,∗OZ)⊗NZ/Hilbn(X)(i
∗p∗2L))

⊗−2.
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In particular, the determinant of the perfect obstruction theory is a square if
ωX/k is a square.

Here, NZ/Hilbn(X) is the norm of Z over Hilbn(X), see [13, Section 7]. In
the case where X = P3, we have that ωP3/k = O(−4) and so the above state-
ment tells us that there is an orientation, so that the corresponding motivic
Donaldson-Thomas invariants are well defined.
We now prove the following statement.

Proposition 2.3.12. The orientation on Hilbn(P3)×P3 from Proposition 2.3.11
gives rise to an oriented basis of Ext2(I, I)−Ext1(I, I) for each NS-fixed ideal
sheaf I. Every even negative weight in the trace induces a minus sign to the
corresponding Euler class.

Proof. Let I ⊂ OP3 be an ideal sheaf corresponding to an NS-fixed point. Let
I be the image of I on U0. Let r be the rank of Ext1(I, I). Because the
perfect obstruction theory has virtual rank zero, we have that Ext1(I, I) and
Ext2(I, I) have the same rank. Choose an oriented basis e1, · · · , er, f1, · · · , fr
for Ext2(I, I)− Ext1(I, I), i.e. a basis such that

ρ(det(Ext2(I, I)− Ext1(I, I))) = ρ((e1 ∧ · · · ∧ er) · (f1 ∧ · · · ∧ fr)−1) = 1.

By [32, Theorem 6.4], ρ is NS-equivariant and so we have that

(−σ)(e1), · · · , (−σ)(er), (−σ)(f1), · · · , (−σ)(fr)

is an oriented basis at σ(I). This gives a basis

e1, (−σ)(e1), · · · , er, (−σ)(er), f1, (−σ)(f1), · · · , fr, (−σ)(fr)

for Ext2(I, I)− Ext1(I, I) on U0 and U1. This is compatible with the relative
orientation as given by Proposition 2.3.11. In order to use Proposition 2.1.19 to
compute Euler classes, we need to follow Remark 2.1.21 and use a basis which
is compatible with the choice described there. This means: for each ei with
negative weight, one has to switch ei and (−σ)(ei) in the above basis, because
the positive weight always has to be the first. The same holds for the fi. If
the weight of a negative ei or fi is odd, these switches do not contribute a sign
change to the Euler class, as (−σ) = −σ in this case. If the weight of a negative
ei or fi is even, this contributes a sign to the Euler class.
One can repeat this construction on U2 and U3. This proves the desired state-
ment.

2.3.2 Proof of Proposition 2.3.9

In this section, we prove Lemma 2.3.7 and Proposition 2.3.9. The proofs are
almost exactly the same as in [39, Section 4], but included here for the reader’s
convenience. We start by finding a helpful expression for Ext2(I, I)−Ext1(I, I)
in terms of equivariant Euler characteristics.
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Construction 2.3.13. For two coherent sheaves F and G on P3 × Hilbn(P3),
we have the derived Hom-set RHom(F ,G) in the bounded derived category. Its
Euler characteristic is given by

χ̃(F ,G) =
3∑

i=0

(−1)i dim(Exti(F ,G)) ∈ Z.

For two coherent sheaves F and G on P3 × Hilbn(P3), the action of NS
extends to one on Exti(F ,G), which is therefore an NS-representation. This
yields a refined Euler characteristic.

Definition 2.3.14. Let F and G be coherent sheaves on P3. The Euler char-
acteristic χ(F ,G) is given by the alternating sum of virtual NS-representations

χ(F ,G) =
3∑

i=0

(−1)iExti(F ,G) ∈ K0(NS − Reps).

We now make the following observation.

Lemma 2.3.15. Let I be an ideal sheaf on P3 which is fixed by the NS-action.
We have that

χ(I, I)− χ(OP3 ,OP3) = Ext2(I, I)− Ext1(I, I).

Proof. Writing out gives

χ(I, I)− χ(OP3 ,OP3) =

3∑

i=0

(−1)iExti(I, I)−Hom(OP3 ,OP3)

= −Ext3(I, I) + Ext2(I, I)− Ext1(I, I)
+ Hom(I, I)−Hom(OP3 ,OP3)

= Ext2(I, I)− Ext1(I, I)

because Ext3(I, I) = 0 by [39, Lemma 2] and Hom(I, I) = OP3 .

Proof of Lemma 2.3.7. Consider the local-to-global spectral sequence

Ep,q2 = Hp(P3, Extq(I, I)) =⇒ Extp+q(I, I).

Note that Ep,q2 = 0 if p > 3 or q > 3. Note that

∑

p,q

(−1)p+qEp,qs =
∑

p,q

(−1)p+q(ker(dp,qs ) + im(dp,qs ))

=
∑

p,q

(−1)p+qEp,qs+1
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for all s ≥ 2. In particular, this sums the infinity pages with the right signs, so
that we find

χ(I, I) =
3∑

i,j=0

(−1)i+jHi(P3, Extj(I, I)).

Using the Ui as a cover of P3, we can compute the above cohomology groups by
computing Čech cohomology. Note that as I is only supported on points, we
have that I = OP3 on the intersection of two or more Ui. Therefore, the Čech
complex is

0 →
3∏

i=0

H0(Ui, χ(I, I)− χ(OP3 ,OP3)) → 0.

By Lemma 2.3.15, this gives the desired statement.

In the remainder of this section, we will prove Proposition 2.3.9.

Proof of Proposition 2.3.9. We have that

trR(t) =
∑

i,j,k

si1s
j
2s
k
3

=

(∑

i

si1

)
∑

j

sj2



(∑

k

sk3

)

=
1

(1− s1)(1− s2)(1− s3)

Consider a resolution of the ideal I given by

0 → Fr → · · · → F1 → I → 0 (2.3)

such that each term is of the form Fi =
⊕

j R(dij) for dij = (d1ij , d
2
ij , d

3
ij) ∈ Z3.

One can always form a resolution like this if the ideal I is homogeneous: if
I = (f0, · · · , fm) where fi has degree di then we can take F1 =

⊕m
i=0R(di),

define F2 based on the relations between the fi and continue like that until we
have a resolution. Consider the corresponding Poincaré polynomial

P (t) =
∑

i,j

(−1)is
d1ij
1 s

d2ij
2 s

d3ij
3 .

Note that for any d = (d1, d2, d3) ∈ Z3, we have that

trR(d)(t) =
∑

i,j,k

t · xi+d1yj+d2zk+d3 = sd11 s
d2
2 s

d3
3 trR(t).

This implies that

trF∗(t) =
∑

i,j

(−1)itrR(dij)(t)
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= trR(t)
∑

i,j

(−1)is
d1ij
1 s

d2ij
2 s

d3ij
3

=
P (t)

(1− s1)(1− s2)(1− s3)

We have the exact sequence

0 → F∗ → R→ R/I → 0

and so trR(t) = trF∗(t) + trR/I(t). This implies that

Q(t) =
1− P (t)

(1− s1)(1− s2)(1− s3)
.

We use the resolution F∗ to compute that

χ(I, I) =
∑

i,j,k,l

(−1)i+kHom(R(dij), R(dkl))

=
∑

i,j,k,l

(−1)i+kR(dkl − dij)

This tells us that the trace is

trχ(I,I)(t) =
∑

i,j,k,l

(−1)i+ks
d1kl−d

1
ij

1 s
d2kl−d

2
ij

2 s
d3kl−d

3
ij

3 trR(t)

=
P (t−1)P (t)

(1− s1)(1− s2)(1− s3)

and so

trR−χ(I,I)(t) =
1− P (t−1)P (t)

(1− s1)(1− s2)(1− s3)
.

We have that P (t) = −(1− s1)(1− s2)(1− s3)Q(t) + 1 and

P (t−1) = −(1− s−1
1 )(1− s−1

2 )(1− s−1
3 )Q(t−1) + 1

= s1s2s3(1− s1)(1− s2)(1− s3)Q(t−1) + 1

and so we can rewrite this as

trR−χ(I,I)(t) =
s1s2s3Q(t)−Q(t−1) +Q(t)Q(t−1)(1− s1)(1− s2)(1− s3)

s1s2s3
.

as desired.

2.4 Computations of Ĩn for n ≤ 6

Notation 2.4.1. In this section, the base field is again assumed to be R. See
Notation 2.3.1.
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Consider the action defined in Notation 2.3.2 again. In this section, we use
the virtual localization formula (2.2) together with Proposition 2.1.19, Lemma
2.3.7 and Proposition 2.3.9 to compute the motivic Donaldson-Thomas invari-
ants Ĩn ∈ H∗(Spec(R),W) ∼= Z for n ≤ 6. Note that Ĩn = 0 whenever n is odd,
because any fixed ideal sheaf needs to be invariant under the σ-action. We will
see that Ĩ2 = 10, Ĩ4 = 25 and Ĩ6 = −50. We have that

M(−q2)−10 = 1 + 10q2 + 25q4 − 50q6 − 240q8 + · · ·

which might mean that this function predicts the next numbers. We therefore
make the following conjecture.

Conjecture 2.4.2. For n ≥ 0, let Ĩn be the degree of the motivic virtual fun-
damental class associated to Hilbn(P3). Then we have that

∑

n≥0

Ĩnq
n =M(−q2)d̃eg(e(V )).

where V is a certain locally free sheaf on Hilb2(P3) with quadratic Euler class

e(V ) and d̃eg is the quadratic degree map.

We will make use of the following coordinates and tangent weights through-
out.

Construction 2.4.3. Throughout, we use coordinates

� x = X1

X0
, y = X2

X0
, z = X3

X0
on U0.

� u = X0

X1
, v = X2

X1
, w = X3

X1
on U1.

� x′ = X0

X2
, y′ = X1

X2
, z′ = X3

X2
on U2.

� u′ = X0

X3
, v′ = X1

X3
, w′ = X2

X3
on U3.

Construction 2.4.4. Choose coordinates x = X1

X0
, y = X2

X0
and z = X3

X0
on U0.

As [taX0 : t−aX1 : tbX2 : t−bX3] = [X0 : t−2aX1 : tb−aX2 : t−a−bX3], we have
that on U0 (

t 0
0 t−1

)
· (x, y, z) = (s1x, s2y, s3z)

where s1 = t−2a, s2 = tb−a, s3 = t−a−b. Repeating this for U1, U2 and U3, we
see that the “tangent weights” of the action are

U0 : s1 = t−2a, s2 = tb−a, s3 = t−a−b

U1 : s1 = t2a, s2 = tb+a, s3 = ta−b

U2 : s1 = ta−b, s2 = t−b−a, s3 = t−2b

U3 : s1 = ta+b, s2 = tb−a, s3 = t2b
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Note the symmetries between those tangent weights, which imply that for a fixed
ideal sheaf I of even degree n supported on {[1 : 0 : 0 : 0], [0 : 1 : 0 : 0]}, we can
compute the trace on U1 as V (t−1), where V (t) is the trace on U0. From the
sum of those traces, we can find the Euler class e(a, b). Furthermore, the Euler
class of the corresponding fixed point supported on {[0 : 0 : 1 : 0], [0 : 0 : 0 : 1]}
is given by e(b, a).

Remark 2.4.5. We note that for any λ ∈ R∗, the ideal sheaf which is locally
given by (x + λyz, y2, z2) is of length 4. These are nonisolated fixed points,
defined by nonmonomial ideals. The method used for the other ideal sheaves
does therefore not work for those ideal sheaves. Therefore, we have not been
able to compute the invariant Ĩn for n ≥ 8.

Remark 2.4.6. Throughout, we make use of the SAGE code which one can
find here. Note that for checking the signs coming from the use of Proposition
2.1.19, it is assumed in this code that a and b are both congruent to 1 modulo 4.
One can check that the signs of the Euler classes do not change for other possible
congruences of a, b modulo 4.

Remark 2.4.7. By Proposition 2.3.12, each even negative weight in the trace
induces a minus sign to the corresponding Euler class. For all Euler classes
computed in this section, the signs introduced by these even negative weights
have been taken into account in the computation, and will not be mentioned
further.

2.4.1 The computation for n = 2

Note that there are two ideal sheaves of length two. First, we have the subscheme
supported on {[1 : 0 : 0 : 0], [0 : 1 : 0 : 0]} of which the ideal sheaf I is given
by (x, y, z) ⊂ R[x, y, z] on U0 and by (u, v, w) ⊂ R[u, v, w] on U1. The other
one corresponds to the subscheme supported on {[0 : 0 : 1 : 0], [0 : 0 : 0 : 1]},
again with the ideal given by (x′, y′, z′) ⊂ R[x′, y′, z′] locally on U2 and by
(u′, v′, w′) ⊂ R[u′, v′, w′] on U3.

Proposition 2.4.8. The Euler class corresponding to the first point is

e11 =
(3a− b)(3a+ b)

(a− b)(a+ b)

and the class corresponding to the second point is

e12 =
(3b− a)(3b+ a)

(b− a)(a+ b)
.

We have that Ĩ2 = e11 + e12 = 10.

Proof. We start with the first point. Plugging Q = 1 into the formula from
Proposition 2.3.9 yields that the trace of Ext1(I, I)− Ext2(I, I) is given by

V2 = s−1
1 + s−1

2 + s−1
3 − s−1

1 s−1
2 − s−1

1 s−1
3 − s−1

2 s−1
3 .
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Filling in the tangent weights for U0 and U1 and adding up gives

(ta−b + tb−a) + (ta+b + t−a−b)− ((t3a−b + t−3a+b) + (t3a+b + t−3a−b).

Now using Proposition 2.1.19, we see that this leads to an Euler class

e11 =
(3a− b)(3a+ b)

(a− b)(a+ b)
.

We note that for a, b both congruent to 1 modulo four, we have mod 4 that
3b− a = 2, 3b+ a = 0, b− a = 0, a+ b = 2 so that the use of Proposition 2.1.19
gives a plus. One can check that the sign does not change with all other possible
congruences of a, b modulo 4.
Repeating the process for the second fixed point boils down to switching a and
b, and gives us the Euler class

e12 =
(3b− a)(3b+ a)

(b− a)(a+ b)

and adding those we get e11 + e12 = 10.

2.4.2 The computation for n = 4

Note that between U0 and U1, the NS-action will send x 7→ −u, y 7→ w, z 7→ −v.
From this we see that to be fixed under the NS-action, an ideal sheaf supported
on {[1 : 0 : 0 : 0], [0 : 1 : 0 : 0]} of length four must correspond to one of the
following:

1. (x2, y, z) on U0 and (u2, v, w) on U1.

2. (x, y2, z) on U0 and (u, v, w2) on U1.

3. (x, y, z2) on U0 and (u, v2, w) on U1.

One can find similar classes for fixed ideal sheaves of length four supported on
{[0 : 0 : 1 : 0], [0 : 0 : 0 : 1]}. For n = 4 there are thus seven fixed points if we
add the point supported on all four points. We will prove the following result.

Proposition 2.4.9. The fixed point supported on all four points has Euler class

e21 = − (3a− b)(3a+ b)(3b− a)(3b+ a)

(a− b)2(a+ b)2
.

The points of type (1) have Euler class zero, and the points in type (2) give rise
to Euler classes

e22 =
(3a− b)2(3a+ b)(2a− b)

b(a− b)2(a+ b)
and e23 =

(3b− a)2(3b+ a)(2b− a)

a(b− a)2(a+ b)
.

The points of type (3) have Euler classes

e24 = − (3a− b)(3a+ b)2(2a+ b)

b(a− b)(a+ b)2
and e25 = − (3b− a)(3b+ a)2(2b+ a)

a(b− a)(a+ b)2
.

We have that Ĩ4 = e21 + e22 + e23 + e24 + e25 = 25.
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Proof. First, there is the subscheme which consists of all four points. The Euler
class is

e21 = e11e12 = − (3a− b)(3a+ b)(3b− a)(3b+ a)

(a− b)2(a+ b)2
.

For the fixed point of type (1) supported on {[1 : 0 : 0 : 0], [0 : 1 : 0 : 0]},
plugging Q = 1 + s1 into the formula from Proposition 2.3.9 gives

V4 = s−1
1 + s−1

2 + s−1
3 − s−1

1 s−1
2 − s−1

1 s−1
3 − s−1

2 s−1
3 (2.4)

+ s−2
1 + s1s

−1
3 + s1s

−1
2 − s1s

−1
2 s−1

3 − s−2
1 s−1

2 − s−2
1 s−1

3 .

Filling in the tangent weights on U0 gives

t2a + ta−b + ta+b − t3a−b − t2a − t3a+b+

t4a + tb−a + t−b−a − 1− t5a−b − t5a+b.

and filling in the weights of U1 gives the same but with t and t−1 swapped. This
yields an Euler class which is zero, because of the term 1 which represents a
trivial subrepresentation of Ext2(I, I), which contributes a zero to the numer-
ator. Similarly, the fixed point supported on {[0 : 0 : 1 : 0], [0 : 0 : 0 : 1]} of
type (1) has Euler class equal to zero.
Now consider the fixed point supported on {[1 : 0 : 0 : 0], [0 : 1 : 0 : 0]} of
type (2). Filling in V4 with the tangent weights of U0 where we switch s1 with
s2 gives

ta−b + t2a + ta+b − t3a−b − t2a − t3a+b+

t2a−2b + t2b + tb+a − t2a+2b − t3a−b − t4a−2b.

If we fill in V4 with the tangents weights of U1 where we switch s1 with s3, this
gives the same result with t and t−1 switched. This yields the Euler class e22.
Similarly, the fixed point supported on {[0 : 0 : 1 : 0], [0 : 0 : 0 : 1]} of type (2)
has Euler class e23.
Finally, for the fixed point supported on {[1 : 0 : 0 : 0], [0 : 1 : 0 : 0]} of type (3),
filling in V4 with the tangent weights of U0 where we switch s1 with s3 gives

ta+b + ta−b + t2a − t3a+b − t2a − t3a−b+

t2a+2b + ta−b + t−2b − t2a−2b − t4a+2b − t3a+b.

Again, filling in V4 with the weights of U1 and s1 and s2 switched boils down
to switching t and t−1. This yields the Euler class e24, so that the fixed point
supported on {[0 : 0 : 1 : 0], [0 : 0 : 0 : 1]} of type (3) has Euler class e25 as
desired.
One can check that for all possible congruence classes of a, b modulo 4, no signs
are introduced because of the use of Proposition 2.1.19.

2.4.3 The computation for n = 6

We will now prove the following.
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Proposition 2.4.10. We have that Ĩ6 = −50.

There are three types of fixed ideal sheaves of length six. First, from the
lower degrees, we have the Euler classes

e31 = e11 · e23
e32 = e11 · e25
e33 = e12 · e22
e34 = e12 · e24

Another class of ideal sheaves are the complete intersections, i.e. those sup-
ported on [1 : 0 : 0 : 0] and [0 : 1 : 0 : 0] which correspond to either:

1. (x3, y, z) on U0 and (u3, v, w) on U1.

2. (x, y3, z) on U0 and (u, v, w3) on U1.

3. (x, y, z3) on U0 and (u, v3, w) on U1.

Again, each of those have a corresponding fixed point supported on [0 : 0 : 1 : 0]
and [0 : 0 : 0 : 1].

Lemma 2.4.11. The fixed points of type (1) have Euler class equal to zero.
The points of type (2) yield the Euler classes

e35 =
(3a− b)2(3a+ b)(a+ 3b)(5a− 3b)(2a− b)2

3b2(a− b)3(a+ b)(3b− a)

and

e36 =
(3b− a)2(3b+ a)(b+ 3a)(5b− 3a)(2b− a)2

3a2(b− a)3(a+ b)(3a− b)
.

The points of type (3) have Euler classes

e37 = − (3a− b)(3a+ b)2(a− 3b)(5a+ 3b)(2a+ b)2

3b2(a− b)(a+ b)3(a+ 3b)

and

e38 = − (3b− a)(3b+ a)2(b− 3a)(5b+ 3a)(2b+ a)2

3a2(b− a)(a+ b)3(b+ 3a)
.

Proof. Consider the ideal of type (1). Plugging Q = 1+s1+s
2
1 into the formula

from Proposition 2.3.9 gives the trace

V61 = s−1
1 + s−1

2 + s−1
3 − s−1

1 s−1
2 − s−1

1 s−1
3 − s−1

2 s−1
3

+ s−2
1 + s1s

−1
2 + s1s

−1
3 − s1s

−1
2 s−1

3 − s−2
1 s−1

2 − s−2
1 s−1

3

+ s−3
1 + s21s

−1
2 + s21s

−1
3 − s21s

−1
2 s−1

3 − s−3
1 s−1

2 − s−3
1 s−1

3 .
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Note that the first two lines are precisely the trace (2.4) we had in the n = 4
case. Filling in the tangent weights of U0 in the last line of V61 gives

t6a + t−3a+b + t−3a−b − t−2a − t7a+b − t7a−b.

There is nothing here which cancels the trivial subrepresentation coming from
the second line, implying that the corresponding Euler class is zero. Similarly,
the Euler class of the corresponding fixed point supported on [0 : 0 : 1 : 0] and
[0 : 0 : 0 : 1] is zero.
For the fixed point supported on [1 : 0 : 0 : 0] and [0 : 1 : 0 : 0] of type (2),
filling in the tangent weights of U0 in the last line of V61 and switching s1 and
s2 gives

t3a−3b + t−a+3b + t2b − t3b+a − t5a−3b − t4a−2b

so that we find the Euler classes e35 and e36 in the statement.
For the fixed point supported on [1 : 0 : 0 : 0] and [0 : 1 : 0 : 0] of type (3),
filling in the tangent weights of U0 in the last line of V61 and switching s1 and
s3 gives

t3a+3b + t−a−3b + t2b − t−3b+a − t4a+2b − t5a+3b.

This gives the Euler classes e37 and e38 from the statement.
Again, one can check that for all possible congruence classes of a, b modulo 4,
no signs are introduced because of the use of Proposition 2.1.19.

The final class of ideal sheaves are those of which the ideal locally looks like
a maximal ideal together with a variable, i.e. they are supported on [1 : 0 : 0 : 0]
and [0 : 1 : 0 : 0], and of one of the following types:

1. ((x, y)2, z) on U0 and ((u,w)2, v) on U1.

2. ((y, z)2, x) on U0 and ((v, w)2, u) on U1.

3. ((x, z)2, y) on U0 and ((u, v)2, w) on U1.

Again, each of those have a corresponding fixed point supported on [0 : 0 : 1 : 0]
and [0 : 0 : 0 : 1].

Lemma 2.4.12. The ideals of type (1) yield Euler classes

e39 =
(3a+ b)(3a− b)(5a− b)(2a− b)(2a+ b)

b2(a− b)2(a+ b)

and

e310 =
(3b+ a)(3b− a)(5b− a)(2b− a)(2b+ a)

a2(a− b)2(a+ b)
.

The ideals of type (2) correspond to the Euler classes

e311 =
9(3a+ b)3(3a− b)3

(a+ b)2(a− b)2(a+ 3b)(a− 3b)
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and

e312 =
9(3b+ a)3(3b− a)3

(a+ b)2(a− b)2(b+ 3a)(b− 3a)
.

The ideals of type (3) give rise to the Euler classes

e313 =
(3a− b)(3a+ b)(5a+ b)(2a+ b)(2a− b)

b2(a− b)(a+ b)2

and

e314 =
(3b− a)(3b+ a)(5b+ a)(2b+ a)(2b− a)

a2(b− a)(a+ b)2
.

Proof. For ((x, y)2, z) on U0, plugging Q = 1 + s1 + s2 into the formula from
Proposition 2.3.9 yields

V62 = 2s−1
1 + 2s−1

2 + s−1
3 − s−1

1 s−1
2 − 2s−1

1 s−1
3 − 2s−1

2 s−1
3

+ s1s
−1
3 + s2s

−1
3 − s−2

1 s−1
2 − s−1

1 s−2
2

+ s−2
1 s2 + s1s

−2
2 − s−2

1 s2s
−1
3 − s1s

−2
2 s−1

3 .

For the fixed point of type (1), filling in the tangent weights of U0 in V62 gives

2t2a + 2ta−b + ta+b − 2t2a − 2t3a+b − t3a−b

+tb−a + t2b − t5a−b − t4a−2b

+t3a+b + t−2b − t4a+2b − ta−b

which yields the Euler classes e39 and e310 as in the statement. For the fixed
point of type (2), plugging the tangent weights of U0 into V62 and switching s2
and s3 gives

ta−b + 2t2a + 2ta+b − 2t3a−b − 2t2a − t3a+b

+t−a−b + t−2b − t5a+b − t4a+2b

−t4a−2b − ta+b + t3a−b + t2b

which gives us the Euler classes e311 and e312 from the statement. Finally, for
the fixed point of type (3), plugging the tangent weights of U0 into V62 and
switching s1 and s3 gives

t2a + 2ta+b + 2ta−b − 2t3a+b − 2t3a−b − t2a

+ta−b + ta+b − t3a+b − t3a−b

−t3a+3b − t3a−3b + ta+3b + ta−3b

which yields the Euler classes e313 and e314 as in the statement.
One can check that for all possible congruence classes of a, b modulo 4, no signs
are introduced because of the use of Proposition 2.1.19.

Adding the Euler classes together proves Proposition 2.4.10.

97



2.5 Cohomology of Witt sheaves on BNG

It would be interesting to study the results of the previous sections for other
actions than the one by NS . For example, one could take the action by the
normalizer NG of the torus inside GL2 on P3 given by

(
t1 0
0 t2

)
· [X0 : X1 : X2 : X3] = [ta1X0 : ta2X1 : tb1X2 : tb2X3]

σ · [X0 : X1 : X2 : X3] = [−X1 : X0 : −X3 : X2]

for a, b ∈ Z odd and nonzero.
For this situation, the construction of an orientation as described in Section
2.3.1 does not seem to work. Therefore, we have not been able to show that
one can define motivic Donaldson-Thomas invariants in this setting. However,
there are some things which we can do.
In this section, we will formulate and prove an analogue of Proposition 2.1.18,
i.e. [28, Proposition 5.5], for BNG. In order to do so, we first prove an analogue
of [28, Theorem 4.1] to compare the cohomology on BNS with that of BNG,
which we will then use to deduce the desired result from Proposition 2.1.18.

Notation 2.5.1. Throughout, we work over a perfect field k which is not of
characteristic 2. We let π : BSLn → BGLn be the canonical map induced
by the inclusion SLn → GLn. Let En = An ×GLn BGLn be the canonical
rank n bundle, where GLn acts on An by matrix multiplication. Similarly, let
ENG

2 = A2 ×GL2 BNG be the canonical rank 2 bundle on BNG.

Remark 2.5.2. Let a, b ∈ Z. Consider the NG-representation ρa,b : NG → GL2

given by (
t1 0
0 t2

)
7→
(
ta1t

b
2 0

0 tb1t
a
2

)
, σ 7→

(
0 1

(−1)a−b 0

)

This gives rise to the rank two bundle Õ(a, b) on BNG. In combination with
Proposition 2.1.19 and using that π∗(Õ(a, b)) = Õ±(|a − b|), one can compute
the corresponding Euler classes.

2.5.1 Comparing cohomology for BNS and BNG

We start by considering the possible twists of cohomology on BNG.

Construction 2.5.3. Similar to the case of NS , one can define a representation
ρ−G : NG → Gm which sends σ to −1 and the diagonal matrices to 1. We find a
map BNG → BGm, and the pull-back of the canonical bundle on BGm defines a
line bundle γG on BNG. Using Proposition 2.1.9 again, the Picard group of BNG
is isomorphic to Z⊕ Z/2Z, generated by γG and the determinant character det
(sending σ to −1 and diagonal matrices to their determinant). This means that
this time, we will have to consider the twists by γG, the determinant character
det and det+γG, because twists by the square of a line bundle do not change
the cohomology.
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Remark 2.5.4. Note that

γG = ρ−,∗G O(1) = π∗ρ−,∗O(1) = π∗γS .

Let E ∈ SH(k) be an SL-oriented motivic spectrum. Following [42, Section
6] and [2], the algebraic Hopf map

A2 \ {0} → P1, (x, y) 7→ [x : y]

induces a map ΣGm
Sk → Sk, i.e. an element ηE ∈ E−1,−1(k).

Definition 2.5.5. If ηE is invertible on E∗,∗(k), we say that E is an η-invertible
theory.

If E is η-invertible, for arbitrary vector bundles E → X there are Pontryagin
classes pm(E) ∈ E4m,2m(X), see [2, Definition 19]. The following was proven by
Ananyevskiy.

Theorem 2.5.6 (See Theorem 10 in [2]). For E an η-invertible SL-oriented
theory, one has

E∗,∗(BSLn) =

{
E∗,∗(k)[p1, · · · , pm−1, e] for n=2m

E∗,∗(k)[p1, · · · , pm] for n=2m + 1

where pi = pi(En), e = e(En). If n = 2m, we have that pm(E2m) = e(E2m)2.

In [28], there is the following induced result for GLn. For E a SL-oriented
motivic ring spectrum, there is the pull-back map

π∗ : E∗,∗(BGLn) → E∗,∗(BSLn)

and using the canonical trivialization θ : π∗ det−1(En) → OBSLn
we also get a

map
π∗ : E∗,∗(BGLn,det(En)

−1) → E∗,∗(BSLn).

The following has been proven by Levine.

Theorem 2.5.7 ([28], Theorem 4.1). Let E ∈ SH(k) be an SL-oriented and
η-invertible motivic ring spectrum. Suppose that either E0,0 is a Zariski sheaf
or that the unit map makes it a W-module. Then:

� For n = 2m, the map π∗ induces an isomorphism

E∗,∗(BGLn)⊕ E∗,∗(BGLn; det(En)) → E∗,∗(BSLn)

where
E∗,∗(BGLn) = E∗,∗(k)[p1, · · · , pm−1, e

2]

and
E∗,∗(BGLn; det(En)) = e · E∗,∗(k)[p1, · · · , pm−1, e

2]
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� For n = 2m+ 1, we have that E∗,∗(BGLn; det(En)) = 0 and the pull-back
π∗ : E∗,∗(BGLn) → E∗,∗(BSLn) is an isomorphism.

We will prove a similar statement for the cohomology of BNG and BNS
under an η-invertible motivic ring spectrum which is a W-module by the unit
map. The proof is almost exactly the same as the proof of [28, Theorem 4.1],
but included here for the reader’s convenience.

Notation 2.5.8. Let L = det(ENG
2 ). Let

Th(L) = L/(L \ 0L)

be the Thom space of L.

Remark 2.5.9. Note that L does not have a canonical trivialization so that it
does not have a Thom class. However, because of the canonical trivialization
L⊕ L−1 → OBNG

, one has the Thom class th(L⊕ L−1) ∈ E4,2(Th(L⊕ L−1)).
By definition, we have that E4,2(Th(L⊕L−1)) = E2,1(Th(L);L−1). One defines
the canonical Thom class

th(L) ∈ E2,1(Th(L);L−1)

to be the image of th(L ⊕ L−1) under this identification. Let sTh(L) be the
map Th(L) → BNG induced by the zero section of L. One defines the Euler
class e(L) ∈ E2,1(BNG;L

−1) of L as the pull-back (sTh(L))
∗th(L). See e.g. [35,

Definition 3.11, Remark 5.2], where the treatment is inspired by that of [2], for
more details.

Proposition 2.5.10. Let E ∈ SH(k) be an SL-oriented and η-invertible motivic
ring spectrum. Suppose that the unit map makes it a W-module. Then the map
π∗ induces an isomorphism

E∗,∗(BNG)⊕ E∗,∗(BNG; det) → E∗,∗(BNS).

Similarly, π∗ induces an isomorphism

E∗,∗(BNG; γG)⊕ E∗,∗(BNG; γG + det) → E∗,∗(BNS ; γS).

Proof. As BNS → BNG is a Gm-torsor, we have that BNS is a pull-back
of EGm under a classifying map BNG → BGm. Note that EGm is equal to
O(1)\0O(1) under the identification of BGm with P∞. As the Plücker embedding
is given by the determinant, we have that O(1) pulls back to L, so that we realize
BNS as L \ 0L. Note that the determinant character is also exactly given by
the pull-back of O(1) under this classifying map, so that L = det.
This gives us the open subspace L\0L and its closed complement 0L giving rise
to the localization sequence (see [35, Definition 6.2, A3 and Example 6.5])

· · · → Ea,b(BNG) → Ea,b(BNS) → Ea−1,b−1(BNG;L) → · · · (2.5)
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where we used that Ea,b(L) = Ea,b(BNG) because of homotopy invariance and
that Ea−1,b−1(BNG;L) = Ea+1,b(Th(L)) by definition.
We note that the maps Ea−1,b−1(BNG;L) → Ea+1,b(BNG) are by definition the
composition

Ea−1,b−1(BNG;L) = Ea+1,b(Th(L))
q∗−→ Ea+1,b(L)

s∗−→ Ea+1,b(BNG)

where s : BNG → L is the zero section and q : L→ Th(L) is the quotient map.
Note that under the Thom isomorphism

(−) ∪ th(L⊕ L−1) : Ea+1,b(BNG) → Ea+5,b+2(Th(L⊕ L−1))

these are precisely the cup product by the Euler class e(L) of L. We can apply
[28, Lemma 4.3] to see that e(L) = 0. Therefore, the localization sequence (2.5)
breaks up into short exact sequences

0 → Ea,b(BNG) → Ea,b(BNS) δ−→ Ea−1,b−1(BNG;L) → 0.

We now define a splitting to the boundary map δ. Consider the pull-back

π̄∗L L

L BNG

π̄

π̄

Note that L is locally A1 \ {0} ∼= Spec(k[t]). Let t ∈ H0(L, π̄∗L) be the tauto-
logical section. Note that this is nowhere zero, so we find a section over L \ 0L.
Let t∨ ∈ H0(L \ 0L, π

∗L−1) be the dual section. We find the quadratic form
⟨t∨⟩ ∈ W(π∗L−1).
Now set ⟨t∨⟩E = ⟨t∨⟩ · 1E ∈ E0,0(L \ 0L, π

∗L−1). Then one can do a local
computation which shows that

δ(⟨t∨⟩E) = η · 1E ∈ E−1,−1(BNG).

This is by definition of the boundary locally, as it is defined and described in
[43, Section 2.2]. Multiplication by t∨ defines a trivialization π∗L → OBNS

which gives a map ⟨t∨⟩E · (−) : Ea−2,b−1(BNS ;π
∗L) → Ea,b(BNS). Now we can

consider the composition

Ea−2,b−1(BNG;L) → Ea−2,b−1(BNS ;π
∗L)

⟨t∨⟩E ·(−)−−−−−−→ Ea,b(BNS)
which is invertible by η-invertibility. This provides an inverse for δ, which gives
the desired result.
The second part of the statement can be proven in exactly the same way.

2.5.2 Cohomology of Witt sheaves on BNG

Notation 2.5.11. As in Section 2.1.2, let e be the Euler class of the canonical
rank 2 bundle A2 ×SL2 BSL2 on BSL2. Let ⟨q̄⟩ be the quadratic form corre-
sponding to the curve C which was constructed in Section 2.1.2. Let T be the
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tangent bundle of BNS over BSL2 and let p : BNS → BSL2 be the canonical
map.

Notation 2.5.12. Note that BNG = (NG \GL2) ×GL2 EGL2 and recall from
Construction 2.1.10 that NG \GL2

∼= P2 \ C. Let TG be the tangent bundle of
BNG over BGL2.

We can now prove an analogue of Proposition 2.1.18. Recall that from
Proposition 2.1.18, we have that

H∗(BNS ,W) →W (k)[x0, x2]/(x
2
0 − 1, (1 + x0)x2), x0 7→ ⟨q̄⟩, x2 7→ p∗e

defines a W(k)-algebra isomorphism. Furthermore, H∗≥2(BNS ,W(γS)) is the
quotient of the free H∗(BNS ,W)-module on the generator e(T ) modulo the
relation (1 + ⟨q⟩)e(T ) = 0.

Proposition 2.5.13. Under the isomorphism

H∗(BNG,W)⊕H∗(BNG;W(det)) → H∗(BNS ,W).

from Proposition 2.5.10, we have that H∗(BNG,W) corresponds to the subring
generated by x0 and x22 of H∗(BNS ,W) ∼= W (k)[x0, x2]/(x

2
0 − 1, (1 + x0)x2).

Furthermore, H∗(BNG;W(det)) corresponds to the ideal x2H
∗(BNS ,W).

Also, under the isomorphism

H∗(BNG,W(γG))⊕H∗(BNG,W(γG + det)) → H∗(BNS ,W(γS))

we have that H∗≥2(BNG,W(γG)) is the submodule generated by e(TG) and
H∗≥2(BNG,W(γG + det)) is the submodule generated by x2 · e(TG).
Proof. We have that the Pontryagin class p1(E

NG
2 ) ∈ H∗(BNG,W) pulls back

to
π∗(p1(E

NG
2 )) = p1(p

∗E2) = p∗(e2) ∈ H∗(BNS ,W).

Furthermore, the Euler class e(ENG
2 ) ∈ H∗(BNG;W(det(ENG

2 ))) pulls back to
the Euler class p∗e. As H∗(BNG;W(det(ENG

2 ))) is a H∗(BNG;W)-module,
this shows that H∗(BNG;W(det)) contains

x2 ·W (k)[x0, x2]/(x
2
0 − 1, (1 + x0)x

2
2)

which concludes the proof of the first statement.
For the second statement, note that

π∗e(TG) = e(π∗TG) = e(T ).

Now consider the diagram

H∗≥2(BNS ,W) H∗≥2(BNG,W)⊕H∗≥2(BNG;W(det))

H∗≥2(BNS ,W(γS)) H∗≥2(BNG,W(γG))⊕H∗≥2(BNG;W(det+γG))

ϕ

π∗

ψ

π∗

102



where the horizontal arrows are the isomorphisms from Proposition 2.5.10 and
ψ is defined by sending 1 to e(TG). We know that ϕ makes H∗(BNS ,W(γS))
into a free H∗(BNS ,W)-module of rank 1 with generator e(T ). Moreover, ψ
has to be injective as its composition with π∗ is. Now as ψ(x2) = x2 · e(TG),
the desired result follows.

103



Computation over C
Anna M. Viergever

  

R.<t1 , t2 , t3> = LaurentPolynomialRing (QQ)
C.<x , y , z> = PolynomialRing (QQ) ; D = C. f r a c t i o n_ f i e l d ( )

#A func t i on which computes the Euler c l a s s o f the i d e a l I with \
tangent weights s1 , s2 , s3

de f compute_euler_class ( I , s1 , s2 , s3 ) :
b a s i s = I . normal_basis ( )
p a r t i t i o n = [ i . degree s ( ) f o r i in ba s i s ]
p a r t i t i o n l i s t = [ l i s t ( i ) f o r i in p a r t i t i o n ]
Q = sum( t1 ^(a [ 0 ] ) * t2 ^(a [ 1 ] ) * t3 ^(a [ 2 ] ) f o r a in p a r t i t i o n l i s t )
Qbar = sum( t1 ^( - a [ 0 ] ) * t2 ^( - a [ 1 ] ) * t3 ^( - a [ 2 ] ) f o r a in \
p a r t i t i o n l i s t )
V = Q - Qbar/( t1 * t2 * t3 ) + (Q*Qbar*(1 - t1 ) *(1 - t2 ) *(1 - t3 ) ) /(\
t1 * t2 * t3 )
c o e f f i c i e n t s = V. c o e f f i c i e n t s ( )
exponents = V. exponents ( )
e xpon en t s l i s t = [ l i s t ( i ) f o r i in exponents ] ; l ength = len (\

exponents )
innerproduct s = [ b [ 0 ] * ( s1 [ 0 ] * x + s1 [ 1 ] * y + s1 [ 2 ] * z ) + b [ 1 ] * ( s2\

[ 0 ] * x + s2 [ 1 ] * y + s2 [ 2 ] * z ) + b [ 2 ] * ( s3 [ 0 ] * x + s3 [ 1 ] * y + s3 [ 2 ] * z ) \
f o r b in e xpon en t s l i s t ]
e u l e r = prod ( innerproduct s [ i ] ^ ( - c o e f f i c i e n t s [ i ] ) f o r i in range\

(0 , l ength ) )
re turn eu l e r

#Tangent weights on d i f f e r e n t opens
w1 = [ 1 , 0 , 0 ] ; w2 = [ 0 , 1 , 0 ] ; w3 = [ 0 , 0 , 1 ]
v1 = [ - 1 , 0 , 0 ] ; v2 = [ - 1 , 1 , 0 ] ; v3 = [ - 1 , 0 , 1 ]
n1 = [ 1 , -1 , 0 ] ; n2 = [ 0 , -1 , 0 ] ; n3 = [ 0 , -1 , 1 ]
m1 = [ 1 , 0 , - 1 ] ; m2 = [ 0 , 1 , - 1 ] ; m3 = [ 0 , 0 , - 1 ]

#A func t i on which computes the Euler c l a s s e s o f an i d e a l shea f with \
r e sp e c t to the d i f f e r e n t weights and adds them toge the r in a l i s t \
named ” degree s ”

de f e u l e r c l a s s e s o f i d e a l ( I , degree s ) :
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degree s . append ( compute_euler_class ( I , w1 , w2 , w3) )
degree s . append ( compute_euler_class ( I , v1 , v2 , v3 ) )
degree s . append ( compute_euler_class ( I , n1 , n2 , n3 ) )
degree s . append ( compute_euler_class ( I , m1, m2, m3) )
re turn

#Computing I_1
DegreeOne = [ ]
e u l e r c l a s s e s o f i d e a l ( i d e a l (x , y , z ) , DegreeOne )
sum( a f o r a in DegreeOne )
20

#Computing I_2
DegreeTwo=[ ]
e u l e r c l a s s e s o f i d e a l ( i d e a l ( x^2 ,y , z ) ,DegreeTwo )
e u l e r c l a s s e s o f i d e a l ( i d e a l (x , y^2 , z ) ,DegreeTwo )
e u l e r c l a s s e s o f i d e a l ( i d e a l (x , y , z ^2) ,DegreeTwo )
products = [ ]
f o r i in range (0 , l en (DegreeOne ) ) :

f o r j in range (0 , l en (DegreeOne ) ) :
i f i < j :

products . append (DegreeOne [ i ] * DegreeOne [ j ] )
sum( a f o r a in DegreeTwo ) + sum(a f o r a in products )
150
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Motivic computation
Anna M. Viergever

 

R.<s1 , s2 , s3> = LaurentPolynomialRing (ZZ)
R = PolynomialRing (QQ, 2 , 'ab' ) ; R
a , b = R. gens ( )
F = R. f r a c t i o n_ f i e l d ( ) ; F
C.<x , y , z> = PolynomialRing (QQ) ;
Multivariate Polynomial Ring in a, b over Rational Field
Fraction Field of Multivariate Polynomial Ring in a, b over Rational Field

#Function to compute the Euler c l a s s o f the i d e a l I and add i t to \
the l i s t degrees , t oge the r with the ve r s i on with a and b swapped

de f compute_euler_class ( I , degree s ) :
b a s i s = I . normal_basis ( )
p a r t i t i o n = [ i . degree s ( ) f o r i in ba s i s ]
p a r t i t i o n l i s t = [ l i s t ( i ) f o r i in p a r t i t i o n ]
Q = sum( s1 ^(a [ 0 ] ) * s2 ^(a [ 1 ] ) * s3 ^(a [ 2 ] ) f o r a in p a r t i t i o n l i s t )
Qbar = sum( s1 ^( - a [ 0 ] ) * s2 ^( - a [ 1 ] ) * s3 ^( - a [ 2 ] ) f o r a in \
p a r t i t i o n l i s t )
V = Q - Qbar/( s1 * s2 * s3 ) + (Q*Qbar *(1 - s1 ) *(1 - s2 ) *(1 - s3 ) ) /( s1 * s2 *\
s3 ) ; p r i n t ( ”For the i d e a l ” ) ; pret ty_pr int ( I ) ; p r i n t ( ” the t r a c e i s \
” ) ; pret ty_pr int (V)
exponents = V. exponents ( )
l ength = len ( exponents )
eu l e r = 1
pr in t ( 'We f ind f a c t o r s ' )
f o r i in range (0 , l ength ) :

monomialexponent = exponents [ i ]
c1 = monomialexponent [ 0 ]
c2 = monomialexponent [ 1 ]
c3 = monomialexponent [ 2 ]
c o e f f i c i e n t p o l y n om i a l = V. c o e f f i c i e n t ( ( s1^c1 ) *( s2^c2 ) *( s3^c3\

) )
c o e f f i c i e n t = c o e f f i c i e n t p o l y n om i a l . c on s t an t_co e f f i c i e n t ( )
f a c t o rw i t h ou t c o e f f = c1 *( -2* a ) + c2 *( - a+b) + c3 *( - a - b)
i f f a c t o rw i t h ou t c o e f f ( 1 , 1 ) % 4 == 0 or f a c t o rw i t h ou t c o e f f \

( 1 , 1 ) % 4 == 3 :
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f a c t o rw i t h ou t c o e f f = - f a c t o rw i t h ou t c o e f f
p r i n t ( ' s i gn change ' )

newfactor = ( f a c t o rw i t h ou t c o e f f ) ^( - c o e f f i c i e n t )
p r i n t ( newfactor )
eu l e r = eu l e r * newfactor

degree s . append ( eu l e r ) ; degree s . append ( eu l e r (b , a ) )
p r i n t ( ”We f i nd Euler c l a s s e s ” ) ; pret ty_pr int ( eu l e r . f a c t o r ( ) ) ; \

pr in t ( ”and” ) ; pret ty_pr int ( eu l e r (b , a ) . f a c t o r ( ) )
re turn

#Function to compute the products o f Euler c l a s s e s which correspond \
to i d e a l s o f the same length

de f compute_products_samelength ( degree s ) :
products = [ ]
f o r i in range (0 , l en ( degree s ) ) :

f o r j in range ( i , l en ( degree s ) ) :
i f Mod( i , 2 ) != Mod( j , 2 ) :

products . append ( degree s [ i ] * degree s [ j ] )
r e turn products

#Function to compute the products o f Euler c l a s s e s which correspond \
to i d e a l s o f d i f f e r e n t l ength

de f compute_products ( degrees1 , degree s2 ) :
products = [ ]
f o r i in range (0 , l en ( degrees1 ) ) :

f o r j in range (0 , l en ( degrees2 ) ) :
i f Mod( i , 2 ) != Mod( j , 2 ) :

products . append ( degrees1 [ i ] * degrees2 [ j ] )
r e turn products

#Computing \ t i l d e { I }_2
DegreeOne=[ ]
compute_euler_class ( i d e a l (x , y , z ) , DegreeOne )
p r i n t ( ”Their sum i s ” ) ; sum( a f o r a in DegreeOne )
For the ideal
(x , y , z)Q[x , y , z ]

the trace is
s−1
3 + s−1

2 + s−1
1 − s−1

2 s−1
3 − s−1

1 s−1
3 − s−1

1 s−1
2

We find factors
1/(a + b)
sign change
1/(-a + b)
1/(2*a)
2*a
sign change
-3*a - b
3*a - b

2



We find Euler classes
(a − b)−1 · (a + b)−1 · (3a − b) · (3a + b)

and
(a − b)−1 · (a + b)−1 · (a − 3b) · (a + 3b)

Their sum is
10

#Computing \ t i l d e { I }_4
DegreeTwo = [ ]
compute_euler_class ( i d e a l (x , y^2 , z ) ,DegreeTwo )
compute_euler_class ( i d e a l (x , y , z ^2) ,DegreeTwo )
p r in t ( ”Their sum i s ” ) ; sum( a f o r a in DegreeTwo ) + sum(a f o r a in \

compute_products_samelength (DegreeOne ) )
For the ideal(

x , y2, z
)
Q[x , y , z ]

the trace is
s2s−1

3 + s−1
1 s2+ s−1

3 − s−1
1 s2s−1

3 + s−1
2 + s−1

1 − s−1
2 s−1

3 − s−1
1 s−1

3 + s−2
2 − s−1

1 s−1
2 − s−2

2 s−1
3 − s−1

1 s−2
2

We find factors
1/(2*b)
1/(a + b)
1/(a + b)
sign change
-2*a - 2*b
sign change
1/(-a + b)
1/(2*a)
2*a
sign change
-3*a - b
sign change
1/(-2*a + 2*b)
3*a - b
3*a - b
4*a - 2*b
We find Euler classes
(a − b)−2 · b−1 · (a + b)−1 · (2a − b) · (3a + b) · (3a − b)2

and
(−1) · (−a + b)−2 · a−1 · (a + b)−1 · (a − 2b) · (a + 3b) · (a − 3b)2

For the ideal(
x , y , z2

)
Q[x , y , z ]

the trace is
s−1
2 s3+ s−1

1 s3+ s−1
3 + s−1

2 + s−1
1 − s−1

1 s−1
2 s3+ s−2

3 − s−1
2 s−1

3 − s−1
1 s−1

3 − s−1
1 s−1

2 − s−1
2 s−2

3 − s−1
1 s−2

3

We find factors
1/(-2*b)
sign change
1/(-a + b)
1/(a + b)

3



sign change
1/(-a + b)
1/(2*a)
sign change
-2*a + 2*b
sign change
1/(-2*a - 2*b)
2*a
sign change
-3*a - b
3*a - b
sign change
-3*a - b
4*a + 2*b
We find Euler classes
(−1) · (a + b)−2 · b−1 · (a − b)−1 · (2a + b) · (3a − b) · (3a + b)2

and
(a + b)−2 · (−a + b)−1 · a−1 · (a − 3b) · (a + 2b) · (a + 3b)2

Their sum is
25

#Computing \ t i l d e { I }_6
DegreeThree = [ ]
compute_euler_class ( i d e a l (x , y^3 , z ) , DegreeThree )
compute_euler_class ( i d e a l (x , y , z ^3) , DegreeThree )
compute_euler_class ( i d e a l ( x^2 ,x*y , y^2 , z ) , DegreeThree )
compute_euler_class ( i d e a l ( y^2 ,y*z , z ^2 ,x ) , DegreeThree )
compute_euler_class ( i d e a l ( x^2 ,x*z , z ^2 ,y ) , DegreeThree )
p r i n t ( ”Their sum i s ” ) ; sum( a f o r a in DegreeThree ) + sum(a f o r a in \

compute_products (DegreeTwo , DegreeOne ) )
For the ideal(

x , y3, z
)
Q[x , y , z ]

the trace is
s22 s−1

3 + s−1
1 s22 + s2s−1

3 − s−1
1 s22 s−1

3 + s−1
1 s2 + s−1

3 − s−1
1 s2s−1

3 + s−1
2 + s−1

1 − s−1
2 s−1

3 − s−1
1 s−1

3 +
s−2
2 − s−1

1 s−1
2 − s−2

2 s−1
3 + s−3

2 − s−1
1 s−2

2 − s−3
2 s−1

3 − s−1
1 s−3

2

We find factors
1/(-a + 3*b)
1/(2*b)
1/(2*b)
sign change
-a - 3*b
1/(a + b)
1/(a + b)
sign change
-2*a - 2*b
sign change
1/(-a + b)

4



1/(2*a)
2*a
sign change
-3*a - b
sign change
1/(-2*a + 2*b)
3*a - b
3*a - b
sign change
1/(-3*a + 3*b)
4*a - 2*b
4*a - 2*b
5*a - 3*b
We find Euler classes(

−1

3

)
· (a−b)−3 ·b−2 · (a−3b)−1 · (a+b)−1 · (a+3b) · (3a+b) · (5a−3b) · (2a−b)2 · (3a−b)2

and(
1

3

)
· (−a+b)−3 ·a−2 · (−3a+b)−1 · (a+b)−1 · (a+3b) · (3a−5b) · (3a+b) · (a−3b)2 · (a−2b)2

For the ideal(
x , y , z3

)
Q[x , y , z ]

the trace is
s−1
2 s23 + s−1

1 s23 + s−1
2 s3 + s−1

1 s3 − s−1
1 s−1

2 s23 + s−1
3 + s−1

2 + s−1
1 − s−1

1 s−1
2 s3 + s−2

3 − s−1
2 s−1

3 −
s−1
1 s−1

3 − s−1
1 s−1

2 + s−3
3 − s−1

2 s−2
3 − s−1

1 s−2
3 − s−1

2 s−3
3 − s−1

1 s−3
3

We find factors
sign change
1/(a + 3*b)
1/(-2*b)
1/(-2*b)
sign change
1/(-a + b)
a - 3*b
1/(a + b)
sign change
1/(-a + b)
1/(2*a)
sign change
-2*a + 2*b
sign change
1/(-2*a - 2*b)
2*a
sign change
-3*a - b
3*a - b
1/(3*a + 3*b)
sign change
-3*a - b
4*a + 2*b

5



4*a + 2*b
sign change
-5*a - 3*b
We find Euler classes(

−1

3

)
· (a+b)−3 ·b−2 · (a−b)−1 · (a+3b)−1 · (a−3b) · (3a−b) · (5a+3b) · (2a+b)2 · (3a+b)2

and(
−1

3

)
· (a+b)−3 ·a−2 · (−a+b)−1 · (3a+b)−1 · (a−3b) · (3a−b) · (3a+5b) · (a+2b)2 · (a+3b)2

For the ideal(
x2, xy , y2, z

)
Q[x , y , z ]

the trace is
s1s−1

3 + s2s−1
3 + s−1

3 + s1s−2
2 +2s−1

2 +2s−1
1 + s−2

1 s2− s1s−2
2 s−1

3 −2s−1
2 s−1

3 −2s−1
1 s−1

3 − s−2
1 s2s−1

3 −
s−1
1 s−1

2 − s−1
1 s−2

2 − s−2
1 s−1

2

We find factors
sign change
1/(a - b)
1/(2*b)
1/(a + b)
1/(-2*b)
sign change
1/(a^2 - 2*a*b + b^2)
1/(4*a^2)
sign change
1/(-3*a - b)
sign change
-a + b
4*a^2
sign change
9*a^2 + 6*a*b + b^2
4*a + 2*b
3*a - b
4*a - 2*b
sign change
-5*a + b
We find Euler classes

b−2 · (a − b)−2 · (a + b)−1 · (2a − b) · (2a + b) · (3a − b) · (3a + b) · (5a − b)
and
(−1) · (−a + b)−2 · a−2 · (a + b)−1 · (a − 5b) · (a − 3b) · (a − 2b) · (a + 2b) · (a + 3b)

For the ideal(
y2, yz , z2, x

)
Q[x , y , z ]

the trace is
s−1
1 s2+ s−1

1 s3+ s2s−2
3 +2s−1

3 +2s−1
2 + s−1

1 + s−2
2 s3− s−1

1 s2s−2
3 − s−1

2 s−1
3 − 2s−1

1 s−1
3 − 2s−1

1 s−1
2 −

s−1
1 s−2

2 s3 − s−1
2 s−2

3 − s−2
2 s−1

3

We find factors
1/(a + b)
sign change
1/(-a + b)

6



sign change
1/(-a - 3*b)
1/(a^2 + 2*a*b + b^2)
sign change
1/(a^2 - 2*a*b + b^2)
1/(2*a)
1/(a - 3*b)
3*a + 3*b
2*a
sign change
9*a^2 + 6*a*b + b^2
9*a^2 - 6*a*b + b^2
sign change
-3*a + 3*b
sign change
-3*a - b
3*a - b
We find Euler classes
(9) · (a − b)−2 · (a + b)−2 · (a − 3b)−1 · (a + 3b)−1 · (3a − b)3 · (3a + b)3

and
(9) · (a − b)−2 · (a + b)−2 · (3a − b)−1 · (3a + b)−1 · (a − 3b)3 · (a + 3b)3

For the ideal(
x2, xz , z2, y

)
Q[x , y , z ]

the trace is
s1s−1

2 + s−1
2 s3+ s1s−2

3 +2s−1
3 + s−1

2 +2s−1
1 + s−2

1 s3− s1s−1
2 s−2

3 − 2s−1
2 s−1

3 − s−1
1 s−1

3 − 2s−1
1 s−1

2 −
s−2
1 s−1

2 s3 − s−1
1 s−2

3 − s−2
1 s−1

3

We find factors
1/(-a - b)
1/(-2*b)
1/(2*b)
1/(a^2 + 2*a*b + b^2)
sign change
1/(-a + b)
1/(4*a^2)
1/(3*a - b)
a + b
4*a^2
sign change
-3*a - b
9*a^2 - 6*a*b + b^2
4*a - 2*b
4*a + 2*b
5*a + b
We find Euler classes

b−2 · (a + b)−2 · (a − b)−1 · (2a − b) · (2a + b) · (3a − b) · (3a + b) · (5a + b)
and

a−2 · (a + b)−2 · (−a + b)−1 · (a − 3b) · (a − 2b) · (a + 2b) · (a + 3b) · (a + 5b)

7



Their sum is
-50

8
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