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Introduction

This thesis consists of two chapters. The first one is about computing the
quadratic Euler characteristic of a smooth projective complete intersection of
hypersurfaces of the same degree and the second one is about computing motivic
Donaldson-Thomas invariants for P3.

The quadratic Euler characteristic of a smooth projective
complete intersection of hypersurfaces of the same degree

The quadratic Euler characteristic of a smooth projective scheme over a per-
fect field of characteristic not equal to 2 is a refined or motivic analogue of the
usual topological Euler characteristic, and of Euler characteristics defined using
étale or De Rham cohomology. It comes from a very general definition of a
categorical Euler characteristic associated to a dualizable object of a symmetric
monoidal category, living in the endomorphism ring of the unit. Motivic homo-
topy theory, introduced by Morel and Voevodsky, constructs the stable motivic
homotopy category SH(k) of a field k; a symmetric monoidal category in which
a smooth projective scheme over k£ has an image which is dualizable. A deep
theorem by Morel (see [42, Theorem 6.4.1]) states that if k is perfect and not of
characteristic 2, then the endomorphism ring of the unit in SH(k) is isomorphic
to the Grothendieck-Witt ring GW (k) of k. This is the group completion of the
ring of all isometry classes of nondegenerate quadratic forms over k. Therefore,
we obtain the quadratic Euler characteristic x(X/k) € GW(k) of any smooth
projective scheme X over k, which is a (virtual) quadratic form.

These quadratic Euler characteristics carry a lot of information within them: if
k C R then the rank of x(X/k) is equal to the topological Euler characteristic
of the C-points X (C), while the signature of x(X/k) is the topological Euler
characteristic of the real points X (R). Quadratic Euler characteristics are of-
ten used in the fast-growing field of refined enumerative geometry, which aims
to obtain “quadratic enrichments” of results in classical enumerative geometry.
However, they are in general hard to compute.

The motivic Gauss-Bonnet Theorem (see [35]) proven by Levine and Raksit gives
a rather explicit way to compute quadratic Euler characteristics. Namely, con-
sider a smooth projective scheme X over a perfect field & which is not of charac-
teristic 2 as before. For a € k*, let (a) be the quadratic form z +— az? € GW (k).
Then we can compute x(X/k) € GW(k) as follows:

o If dim(X) is odd, then x(X/k) = C - H for some C € Z, where H is the
hyperbolic form (1) + (—1).

e If dim(X) = 2n is even, then x(X/k) = C - H + Q for some C € Z, where
@ is the quadratic form given by the composition

H™"(X,0%) x H"(X,Q%) inn(X’Qggl) Trace k.

Here, Qx denotes the sheaf of differential forms on X, the first map is the
cup product on cohomology and we write Q% = A9Qx.



The constant C' can be computed in practice. Therefore, one can compute the
quadratic Euler characteristic of a smooth projective scheme if one understands
the form @ in the even dimensional case. This form has been computed suc-
cessfully in the case of hypersurfaces by Levine, Lehalleur and Srinivas in [33].
Given a smooth projective hypersurface X = V(F') C P", the authors use inspi-
ration from the paper [11] by Carlson and Griffiths to describe an isomorphism
from the primitive cohomology of Q% to certain graded pieces of the Jacobian
ring

oF oF

JX - k[X(]a"' 7X’n]/ (6)(0’ 7a)(n) .

This is then applied to compare the cup product on cohomology with the usual
ring multiplication of Jx. In doing this, the authors represent the result on
an open cover of X and compare this with a representation of ¢;(O(m))™ to
compute the trace, which then allows them to compute the form @) explicitly.
The purpose of this paper is to show a similar result for smooth projective
complete intersections of hypersurfaces which are of the same degree. For this,
some work in the style of [11] has already been done by Konno in the paper [27]
and Terasoma in the paper [50]. Using inspiration from those papers, given a
smooth projective complete intersection X = V(Fyp,--- , F.) C P™ where the F;
are of the same degree m > 1 and n > r + 2, we consider the hypersurface

X =V(F)CP xP"

where F' = Yy Fy+- - -+Y, F,. and show that one can compute x(X/k) from x (X /k).
After this, we study isomorphisms from the primitive cohomology groups of Q%
to graded parts of the Jacobian ring

oF OF
J=k[Yy, .Y Xo, -+, Xn Fy,o o Fry—, -, —— | .
Yo, 0 ]/< 0 0X, 8Xn>

Unlike the Jacobian ring for the hypersurface, this Jacobian ring is infinite
dimensional over k. One can link the cup product on cohomology to the usual
product in the Jacobian ring, namely, following [50], we show the following
result.

Proposition (See Corollary 1.4.10). Consider the bidegree
p=nm—-r—1,(n+r+1)m-2(n+1)).

There is a surjective homomorphism ¢ : J° — H"™ " (P" x P, QL) 2 k, such
that the diagram

Hq(X7 QPX)PTim (24 Hp(Xv QqX)Prim &) Hn+r(]P>r X PH»Q{F‘?LQP")

I d

Ja—r(at)m—(n+l) o gp=—r(p+l)m—(ntl) ____ « jgp

commutes.



A slight generalization of an argument from [27] shows that the map ¢ is
in fact an isomorphism unless if X is odd dimensional, »r = 1 and m = 2.
The one exception will not matter for our purposes, because we know from the
Motivic Gauss-Bonnet Theorem that the quadratic Euler characteristic of X
is hyperbolic in this case. Furthermore, we will study a slight variant of the
Jacobian ring, given by

J = k[YOa 7YT7X03"' 7Xn]/(YOF07"' ,YTFT,XOFOa"' 7XnFn)

and show that JPT("+1.n+1) is one dimensional.

If we make some extra assumptions, we can compute the trace map. Assume
that m+1 is invertible in k, that V' (F;) is smooth for all ¢ € {0, -- ,r} and that
V(Fo, -+, F;) is smooth and of codimension r 4 1. Assume moreover that these
assumptions remain true after setting any subset of the X; equal to zero. For
A€ Jamrlatm—(41) and B € Jr—r@HDm—(ot) rite oy € HI(X, Q2 )prim
and wp € HP(X,Q%)prim for their images. Write

GO:YOFOa"' 7GT‘:Y;"FT3GT’+1 :XOFO;"' aGn+r:XnFn

and ZO = YOv"' 7ZT’ = }/7“727"-&-1 = X07"' ;Zn+r+1 = Xn Let M be the

Jacobian matrix given by {g%}” Let M;); be its minor with the i’th row and
J

the j’th column missing.

Theorem (See Lemma 1.5.7 and Theorem 1.5.9). There is a unique element
Cek[Yo, Y., Xo, -+, X,] such that

(m+1)Y;X,;C = (—1) det(Mo|j4r41)Yi + (—1)"** det(Mo);) X,

forallie{l,--- ;r} andj € {r+1,--- ;n+r+1}. Assume that we are not in
the situation that dim(X) is odd, r =1 and m = 2. Then the map

i n
g2 J0 = U D DTV [ X0
i=0  j=0

is an isomorphism. Therefore, we have that C' = Y(C) for a unique C € JP.
Write AB = AC' in J* for some A € k*. Then

n+r
Tr(wa Uwp) = (—1)"Ttm" Tt < )/\.
r
Even though this does not give a completely explicit formula to compute
the quadratic Euler characteristic, it may provide a useful algorithm in concrete
cases.
Also, we will see from the proof of the above theorem that if (

in k, we have that Cm™" ("'T"T)71 has trace 1. We call this the Scheja-Storch
generator, and conjecture that there is a way to define this without the assump-
tion that ("jr) is invertible in k.

As an application, we compute the quadratic Euler characteristic of a complete
intersection of two generalized Fermat hypersurfaces.

"jr) is invertible



Theorem (See Corollary 1.6.3). Let Fy = >0 qa; X", Fi = > 1" b; X™ be
two generalized Fermat hypersurfaces in P". Assume that a;,b; € k™ and that
a;bj —ajb; #0 for alli # j. Let X =V (Fy, F1). Then

Bym - H if n is odd
X(X/k) = Bnm - H+ (1) if n is even, m odd
By - H + (1) + 300 ([ 1z (aiby —ajbi))  if n,m are even

where B,, y, € Z is given by

%deg(Cn—Q(TX)) if n odd
Bum = { 2 deg(cp—2(Tx)) — 1 if n even, m odd
1deg(cp—2(Tx))—n—1 ifn,m even

We note that in the paper [7] by Cox and Batyrev, there is a more general con-
struction of an isomorphism between primitive Hodge cohomology groups and
certain graded parts of a Jacobian ring in the setting of toric varieties. This
follows the methods of [11] as do we, but they do not consider the multiplicative
structure.

It would be interesting to extend these results to the case where the hyper-
surfaces do not necessarily have the same degrees. This might be possible by
extending the above arguments to the situation where P” is a replaced by a
weighted r-dimensional projective space, and will be explored in future work.

Motivic Donaldson-Thomas invariants: an analogue of the
results in [39] and [40] for cohomology of Witt sheaves

If one tries to count a certain type of objects for which there exists a reasonable
moduli space, one could do that by doing intersection theory on that moduli
space. However, these moduli spaces often have all sorts of bad singularities, or
may not have the expected dimension. Virtual fundamental classes, introduced
by Behrend and Fantechi in their paper [8], provide a way to make reasonable
computations in spite of these problems. For example, if we try to count ideal
sheaves on a smooth projective scheme which are of a given length, the corre-
sponding moduli space is the Hilbert scheme. The construction of those goes
back to Grothendieck, see [22], and see for instance [23] for more details. Hilbert
schemes often have all sorts of weird singularities, see for instance Vakil’s pa-
per [54]. The degrees of the corresponding virtual fundamental classes in this
situation are called Donaldson-Thomas invariants. They were first constructed
and defined by Donaldson and Thomas in [16] and [51].

A particular example of a computation of Donaldson-Thomas invariants is done
in the papers [39] and [40], by Maulik, Nekrasov, Pandharipande and Okounkov.
If we take a smooth projective threefold X over C with an action of the three
dimensional torus T on it, we can look at the Hilbert scheme Hilb" (X)) of ideal
sheaves on X of length n. To this, one associates a virtual fundamental class, of



which the degree I,, € Z is the Donaldson-Thomas invariant. In [39] and [40],
there is a proof of the fact that

3 1t (g o)
n>0

where M(q) = [],>;(1 — ¢™)~™ is the MacMahon function (see MacMahon’s
book [38, Article 43] and Stanley’s book [49, Corollary 7.20.3]), Tx is the tangent
bundle on X and Kx is the canonical line bundle.

The proof uses the virtual localization formula by Graber and Pandharipande,

see [19], from which one can deduce in this particular case that

e(Ext*(T,T
=" 2 eEExtIEI I;;
[Z]eHilb™ (X)T ’
Here, the sum is over all ideal sheaves Z on X of length n which are fixed under
the induced action of T on Hilb™(X). These are locally given by monomial
ideals. The authors then compute the trace of the virtual tangent space

Ext'(Z,7) — Ext*(Z,7)

of each fixed ideal sheaf Z. From this trace, one can read off the corresponding
equivariant virtual Euler class and express this in terms of the Euler classes of
the standard line bundles O(1,0,0), O(0,1,0) and O(0,0,1) on BT. Here, BT is
the classifying space of T, see Totaro’s paper [53]. To deduce the above formula,
the Bott residue formula, see [10] is used.

We study an analogue using the notion of motivic virtual fundamental classes
with values in cohomology of Witt sheaves defined by Levine in [31] and the
corresponding virtual localization formula which is proven by Levine in the same
paper. In this setting, we take the base field to be R (see Notation 2.3.1). Let
Ng be the normalizer of the torus in SLy over R, generated by

t 0 N (0 1
(0 t‘l) fort e R ando-(_l O)'

Let a,b € Z be odd such that a,b,3a — b,3b—a,3a+b,3b+ a,a —b,a+b € R*.
There is an action of Ng on P? given by

0 t*
O"[X()IXl1X22X3]=[—X11X02—X32X2].

(t 0 ) . [XO : X1 : X2 : X3] = [taXO : t_aXl : th2 : t_ng,]

This action does not have fixed points, but there are the two fixed couples
{1:0:0:0,[0:1:0:0]} and {[0:0:1:0],[0:0:0:1]}, so that we can
study fixed ideal sheaves of even length.

Levine has constructed an orientation for Hilb™(X) for X any smooth projective
threefold with a given isomorphism Kx =2 L®? for some invertible sheaf L



on X, i.e. an isomorphism from the determinant of this obstruction theory to
the square of a line bundle. This implies that there is a well defined quadratic
degree I, € W(Spec(R)) 2 Z of the virtual fundamental class of Hilb" (P?).
Using [31, Theorem 6.7], if the torus inside Ng acts with isolated fixed points,
we have that

[ 3 e(Extj(I, 1)
[Z]eHilb™ (P3)Ns e(Ext (Z,1))
We therefore compute the trace of the representation Ext?(Z,Z) — Ext'(Z,Z)
of Ng for ideal sheaves Z that are fixed by the Ng-action, using the strategy of
[39] and [40]. We can compute the Euler classes from that in terms of those of
canonical rank two bundles using the results [28, Proposition 5.5 and Theorem
7.1]. We apply this to compute that I, = 10,1, = 25 and Is = —50, with
some help of SAGE, see the attached code here. This leads us to the following
conjecture.

Conjecture. Let X =P3 and equip this with the natural action of the normal-
izer of the torus in SLy. For n > 0, let I, be the degree of the motivic virtual
fundamental class associated to Hilb"(X). Then we have that

Zjnqn — M(7q2)a%(e(V))_
n>0

where V' is a certain locally free sheaf on Hilbz(IP’?’) with quadratic Fuler class
e(V') and deg is the quadratic degree map.

For n = 8 and higher, the present method does not work to compute the cor-
responding motivic Donaldson-Thomas invariant. Namely, choose coordinates
z,y,2 on {Xo # 0} C P3 then the ideal sheaves which are locally given by
(x + Ayz,y?, 2%) for A € R* on this open are of length four. But the ideals are
not monomial, so these are not isolated fixed points.

The results for P3 also lead to the following conjecture.

Conjecture. Let X be a smooth projective scheme over R of dimension 3, with
an action of the normalizer of the torus in SLo, together with an isomorphism
Kx =~ L®2 for some invertible sheaf L on X, and let I,, be the degree of the
motivic virtual fundamental class associated to Hilb" (X). Then we have that

S dr = )
n>0

where Vx is a certain locally free sheaf on Hilb*(X).

We also show how to extend some of the localization methods that go into
the above formula for actions by the normalizer Ng in GLy. More precisely,
we prove an analogue of [28, Proposition 5.5], which is a computation of the
cohomology of Witt sheaves on BN, from which one can deduce what the
Euler classes of canonical rank two bundles on BNg are. Obtaining the full
result for this action was not possible so far, due to some technical obstructions,
but it would be interesting to see if one can find a way around these problems.



Structure

Chapter 1 is devoted to computing the quadratic Euler characteristic of a smooth
projective complete intersection of hypersurfaces of the same degree. Section
1.1 contains the definition of a quadratic Euler characteristic and some of its
basic properties, after which we give a more detailed summary of the results in
[33]. Section 1.2 is devoted to some results on cohomology of differential forms
and first Chern classes which will be needed later on. Then in Section 1.3 we
construct isomorphisms from bigraded parts of the Jacobian ring to primitive
cohomology. In Section 1.4 we compare the cup product and the product in the
Jacobian ring, and we show that J# and J#+("+1.7+1) are one dimensional, after
which we compute the trace in Section 1.5. Finally, we work out the example
of intersecting two generalized Fermat hypersurfaces of the same degree in Sec-
tion 1.6.

Chapter 2 contains the results on motivic Donaldson-Thomas invariants. In
Section 2.1, we give a summary of the construction of a classifying space follow-
ing [53] and of some results in [28] which are needed later. In Section 2.2, we
summarize the results of [39] and [40] and compute I; and I for P3. In Section
2.3 we study how to define the motivic virtual fundamental class of interest,
and a strategy to compute the degree. Then in Section 2.4, we compute I, for
n < 6. Finally, in Section 2.5 we compute the cohomology of Witt sheaves on
BNg, i.e. show an analogue of [28, Proposition 5.5] for BNg.
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Chapter 1

The quadratic Euler
characteristic of a smooth
projective complete
intersection

Throughout, let k be a perfect field which is not of characteristic 2.

1.1 Quadratic Euler characteristics

In this section we give the definition and some basic properties of quadratic
Euler characteristics and then discuss the computation of the quadratic Euler
characteristic of a smooth projective hypersurface from [33].

1.1.1 Quadratic Euler characteristics

We give the definition of a quadratic Euler characteristic following the one by
Levine in [29, Section 1]. The quadratic Euler characteristic will be a particular
case of a more general definition of Euler characteristic, introduced by Dold and
Puppe in [14].

Let C be a symmetric monoidal category, and denote ® : C x C — C for the
tensor product and 1 € C for the unit. Let 7 be the symmetry isomorphism from
the tensor product ® to ® ot, where t : C x C — C x C is the usual symmetry
given by t(a,b) = (b,a). The following definition is taken from [14, Definition
1.2 and Theorem 1.3].

Definition 1.1.1. An object X € C is strongly dualizable if there exists an
object XV € C and morphisms dy : 1 - X ® XV andevy : XV ® X — 1inC

12



such that the compositions

X21eX 29 yoxVex MO x o1 x

and

XV XVl M9, xVexgxy OXC o xV e xV

are the identity morphisms.

Remark 1.1.2. If X is strongly dualizable, the triple (XV,dx,evy) is unique
up to unique isomorphism. We usually call XV the dual of X, with the mor-
phisms dx and evyx being understood.

Now let X € C be a strongly dualizable object. The following definition is a
special case of [14, Definition 4.1].

Definition 1.1.3. The categorical Fuler characteristic of X is the composition

evx

125 XoxV D xVeXx %

To k, we can associate the motivic stable homotopy category SH(k), see
for instance Morel’s book [43] or Hoyois’ paper [25] for its construction and
properties. We have that SH(k) is a symmetric monoidal category, with the
“smash product” as its tensor product. For a smooth projective scheme X over
k, we have the suspension spectrum X5°X, € SH(k) and this is a strongly
dualizable object, see for instance [25, Theorem 5.22 and Corollary 6.13].

Definition 1.1.4. The Grothendieck-Witt ring GW(k) of k is the group com-
pletion of the monoid (under orthogonal direct sum) of isometry classes of non-
degenerate quadratic forms over k.

Remark 1.1.5. One can think of GW(k) as the group generated by the forms

(a) : &+ az?

for a € k* modulo the relations
e (ab?®) = (a) for a,b € k*.
e (a)+ (b) = (a+b) + (ab(a + b)) for a,b,a + b € k*.
o (a)+ (—a) = (1) + (—1) for a € k*.

Note that (a){b) = (ab) for a,b € k*, by definition.

This presentation originally goes back to Witt, see [55, Section 1]. In the form
above, it is [43, Lemma 2.9], where the result is deduced from the statement for
Witt rings, see [41, Lemma (1.1) in Chapter 4].

Definition 1.1.6. The form H = (1) 4+ (—1) is called the hyperbolic form.

13



By a deep result of Morel (see [42, Theorem 6.4.1]) we have that
End(lSH(k)) = GW(k‘)

Combining the above, the quadratic Euler characteristic of a smooth projective
scheme over k can now be defined as follows.

Definition 1.1.7. The quadratic Euler characteristic x(X/k) € GW(k) of a
smooth projective scheme X over k is the categorical Euler characteristic of X
in SH(k).

Quadratic Euler characteristics satisfy several nice relations, which one can
find in e.g. [29]. One property which we will need is the following,.

Proposition 1.1.8 (See [29], Proposition 1.4(3)). Let X be a smooth projective
scheme over k and let Z be a smooth closed subscheme of pure codimension c
with complement U. Then

X(X/E) = x(U/k) + (=1)*x(Z/F).

Remark 1.1.9. Even though U in the above statement is not projective, it
has a quadratic Euler characteristic in GW (k). Namely, it has been proven by
Riou in [36] that a quasi-projective scheme is dualizable in the stable motivic
homotopy category if we invert the characteristic of k. If char(k) = p > 0 we
have an injective morphism GW (k) — GW(k)[p~!] and one can show that the
categorical Euler characteristic always lands in GW (k). See [29, Remark 1.1.2]
for more details.

Example 1.1.10 (See [29], Proposition 1.4(4)). We have that

n

X(P*/k) = (~1)".

=0

One way to prove this is to use Proposition 1.1.8 together with induction on
n and the fact that A™ is equivalent to a point in SH(k). Note that this is a
multiple of H if n is odd. Also, the rank of this form is n 4+ 1 (which is the
topological Euler characteristic of complex projective space) and its signature
is either 0 or 1, depending on the parity of n (which is the topological Euler
characteristic of real projective space).

Remark 1.1.11. This is true in general: if £ C R C C then we have that the
rank of x(X/k) is equal to the topological Euler characteristic of X (C) while
the signature is equal to the topological Euler characteristic of X (R). See [29,
Remark 1.4.1].

Remark 1.1.12. For a smooth quasi-projective scheme U over k we have that
x(P* x U/k) = x(P"/k)x(U/k) by [29, Proposition 1.4(4)].
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1.1.2 The quadratic Euler characteristic of a smooth pro-
jective hypersurface

Notation 1.1.13. For a scheme X over k, we denote the sheaf of differential
forms on X over k by Qx. We write Q% = AN1Qx for ¢ € Z>o.

Note that by [23, Exercise 11.4.5], for a smooth projective scheme Y we have
that H*(Y, 0% ) = Pic(Y'), where Pic(Y) is the Picard group of Y, i.e. the group
of line bundles on Y. There is the canonical “dlog morphism”

Oxy = v, f— —

f

inducing the map
c1: HY(Y,0%) — HY(Y,Qy).

Definition 1.1.14. The first Chern class of a line bundle L on a scheme Y is
the image c;(L) € H*(Y,Qy) of the class of L under the above map.

Notation 1.1.15. We write ¢1(L)" € H (Y, Q%) for the i-fold cup product of
c1(L) with itself.

An important computational tool is the motivic Gauss-Bonnet Theorem for
SL-oriented cohomology theories proven by Levine and Raksit in their paper
[35]. A more general motivic Gauss-Bonnet theorem has been proven by Déglise,
Jin and Khan in [12], and the theorem of Levine-Raksit can be viewed as a
special case of their statement. A version where the scheme does not need to
be smooth has been proven by Azouri, see [5].

We do not state the theorem in all of its generality here, but rather one of its
applications which provides a way to compute a quadratic Euler characteristic
in practice.

Theorem 1.1.16 (See [35], Corollary 8.7). Let X be a smooth projective scheme
over k. Then:

o If dim(X) is odd, then x(X/k) = C - H for some C € Z, where H is the
hyperbolic form.

o Ifdim(X) = 2n is even, then x(X/k) = C-H+Q for some C € Z, where
Q is the quadratic form given by the composition

H™(X, Q%) x H™(X, Q%) = H*™(X,0%") =5 k.
Here the first map is the cup product on cohomology.

Remark 1.1.17. By [35, Theorem 5.3] the rank of x(X/k) is equal to the
degree of ¢, (Tx) where Tx is the tangent bundle of X. This gives a way to
determine the constant C' in the above theorem in practice. There is also a
formula for C' in terms of dimensions of cohomology groups of Q% given in [35,
Corollary 8.7].
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The form @ has been computed successfully in the case of hypersurfaces by
Levine, Lehalleur and Srinivas in [33], using inspiration from the paper [11] by
Carlson and Griffiths. We now summarize their strategy.

Consider a smooth hypersurface X = V(F) C P" where F € k[Xp,---,X,] is a
homogeneous polynomial of degree m € Z>. Assume that the characteristic of
k is coprime to m.

Definition 1.1.18. The Jacobian ring of X is

oF oF )

JX:k[Xoy"'aXn]/<aXoa"waX

Note that Jx has a natural grading induced by the grading of k[ Xy, - - , X,].
Furthermore, Jx is a finite dimensional k-algebra. The top nonzero graded part
is J )((mfz)(nﬂ), which is a one dimensional vector space over k; for a proof, see
[26, Lemma 4], where the result is deduced from the fact that Jx is Gorenstein

together with the proof of [46, (4.7) Korrolar].

Construction 1.1.19. There is a canonical choice of generator ep of Jg(m_Q)("H)

called the Scheja-Storch generator. Namely, as m > 2, for i € {0,--- ,n} we can
write
oF
O o
7 =0
for some (non-unique) a;; € k[Xo,- -+, X,]. One defines er = det((a;j); ;). One

can show that this is independent of the choice of a;;, see [46, (1.2)(a)].

Example 1.1.20. Let F' = Z?:o a; X" where ag, - ,an, € k*. Then X is a
generalized Fermat hypersurface. We have that 8‘3)? = maiXZ-mfl and so one

computes er as

ep =m"H Ha,;Xim_z.
i=0
Let i : X — P™ be the natural inclusion. This induces a pushforward map
i s HI(X, Q%) — H‘IH(IP”,Qﬁjl) for all p,q € Z>( as defined by Srinivas
in [47].

Definition 1.1.21. The primitive cohomology of X with respect to p,q € Z>q
such that p+q =mn — 1 is defined by HY(X, Q% )prim = ker(is).

Remark 1.1.22. Let ¢1(O(1)) € H(X,Qx) be the first Chern class of O(1).
The Hard Lefschetz Theorem tells us that for 0 < ¢ < n — 1, the map

() ua@O)': @ HIX%) -~ P HIUX,0%)
pg=n—i pg=n+i

is an isomorphism. Classically, for 0 < ¢ < n — 1, the primitive cohomology of
X is defined to be the kernel of the morphism

(uaO)*: @ HIX,Q%) - P HUX,%).
pt+qg=n—i pt+g=n-+i+2

16



For ¢ = 0 and p, ¢ such that p+ g = n — 1, this definition coincides with the
one above. To see this, note that multiplication with ¢; (O(1)) takes H1(X, Q%)
to HIT (X, QF"). The pullback 4% : HITL (P QB — HIT(X, Q) is an
isomorphism by the Weak Lefschetz Theorem, so we can view multiplication
with ¢;(O(1)) as a morphism to HIt(P™, Q2. Now as i*i, is multiplication
with ¢1(O(1)), we see that the kernel coincides with ker(i..).

One can show that HY(X, Q% )prim = HI(X, Q%) whenever p # ¢. In [33],
the authors prove the following result.

Proposition 1.1.23 ([33], Proposition 3.2). For each q > 0, there is a canonical
isomorphism 1, : J§g+1)m7n71 — HI(X, Q}flfq)pm»m.

This result originally goes back to Dolgachev, see [15], and the characteristic
zero case is due to Griffiths, see [21]. In [33], there is then a comparison of the
cup product on cohomology with the usual ring multiplication of Jx, leading
up to the following result.

Proposition 1.1.24 ([33], Proposition 3.7). Consider p,q € Z>¢ be such that
p+qg=n—1andlet A e J§g+1)m7n71 and B € J§f+1)m7n71. Let

wa = Pg(A) € HU X, Q% )prim and wp = Pp(B) € HP(X, Q% )prim

be their images. Write F; = %. Cover P™ by the open cover U = {Uy,--- ,Up}

where U; = {F; # 0}, and let C'(U,Qp.) denote the i’th group in the Cech
complex corresponding to U. Furthermore, let & = Y1 ((—1)'X;dX" be the
generator of Q. (n + 1), where we write dX" =dXo---dX;_1dX;41---dX,.
Then the element i,(wa Uwg) € H™(P", Q) is represented by

—mABo

—_— (U, Qpn).

They then compare this with a representation of ¢;(O(m))™ on the same
cover to compute the trace, which yields the following result.

Theorem 1.1.25 ([33], Theorem 3.9). In the situation of the above proposition,
suppose that AB = \ep for A € k*. Then

Tr(wa Uwp) = —mA.

Example 1.1.26. In the case of a generalized Fermat hypersurface X as be-
fore, if n = 2p 4+ 1 is odd, we need to calculate the form @. One can show
that HP(X, Q%) = HP(X, Q% )prim ® ¢1(O(1))? and compute that ¢;(O(1))?
contributes a form (m). For the primitive cohomology, we evaluate the form on
basis elements of HP (X, Q%)) im, i.e. on the corresponding parts of the Jaco-
bian ring. If AB = Aep for some A € k* and two distinct basis elements A and
B, we also have that BA = Aep and one can check that this yields a hyperbolic
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form. If m is odd, there are no basis elements that square to a nonzero multiple
of er. If m is even, we have that

,—2 —2 N 2
(X0m2 X3 ) L
n - P 1 n "
m*H [ ai

Using Theorem 1.1.25, this gives rise to the form (—m[[!_;a;). One can see
from [35, Theorem 5.3] that the rank of x(X/k) is equal to deg(c,(Tx)) where
Tx is the tangent bundle on X. Putting everything together, we find that

An,m -H if n even
Apm - H+ (m) + (—m[[;_ya;) if n odd,m even

for integers A, ., € Z given by

Ldeg(c,(Tx)) if n even
deg(en(Tx)) —1 if n,m odd
deg(c,(Tx)) —2 if n odd, m even

An,m =

This is also [29, Theorem 11.1], but there it is proven in a different way, namely
using Levine’s quadratic Riemann-Hurwitz formula from [29].

1.2 Setup, cohomology of differential forms and
primitive cohomology

In the next sections, we will be working with the following setup.

Notation 1.2.1. Let n,m,r € Z>; be such that n > r + 2 and m > 2.
Assume that m is coprime to the characteristic of k, if this is positive. Let
Fy, -, F. € k[Xo, -+, X,] be homogeneous polynomials of the same degree m.
Let X =V (Fy,---,F.) CP" be the intersection of the V(F;) and assume that
this is a smooth complete intersection. We define F' = YyFy + --- + Y. F,. and
consider the hypersurface

X =V(F)CP xP"

We write i : X — P x P™ for the inclusion. Note that X is of bidegree (1,m)
and that it has dimension n + r — 1. We note that %ﬁ. =F,forie{0,---,r}

and write Fj = % for j € {0,--- ,n}.
J

Notation 1.2.2. We denote the canonical projections by m, : P" x P* — P"
and m, : P" x P" — P".

Remark 1.2.3. Note that A’ is smooth: suppose (yo,--- ,¥r, %0, ,Tn) € X
is a point where all F; and F}; vanish, then (yo,-- -, yr, Zo, -+ ,@y) is in P" x X.
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As X is smooth, the vectors

CI.

for i € {0,--- ,r} are linearly independent for any « € X. Now as

r
Fj(y07"'7y7'7x07" , L Zyt an ) n)ZO

for all j € {0,--- ,n}, we have that

. OF;
Z?h (6X0 an" axn)a"' 787)(”(‘%07”' vmn)> =0

and so yg = - -- = y, = 0, but this is impossible.
Remark 1.2.4. Note that we have the two Euler equations
F = zr:Yze and mF = Xn:Xij.
i=0 j=0
We now observe that we can compute x(X/k) from x(X/k).
Lemma 1.2.5. We have that
X(X/k) = x(P"H k) x (P"/k) + (=1)"x(X/k).

Proof. Let U be the complement of X in P" and let m,|x : X — P™ be the
restriction of 7, to X. Then (m,|x) 1(X) =P" x X and (7,|x) " (U) = Uisa
Zariski locally trivial P*~!-bundle. Using [29, Proposition 1.4(4)], we have that

X((mal2) 71 (U) k) = (P~ /k) - x(U/k)

and
X(P" x X/k) = x(P"/k)x(X/k).

By Proposition 1.1.8, we also have that
X(B" /k) = x(U/k) + (1) x(X/k).
Recalling Example 1.1.10, this yields
X(X/k) = X" /R)x(U/k) + (=1)"X(P" /k)x(X/k)
= X(B"/k)x(P" /k) + ((=1)"x(P" /k) — (=1)""'x (]P”"_l/k)) (X/k)

T

= x(P"" /k)x(P" /k) + ((—1>TZ<— ) = T“Z ) (X/F)
=0

= X(P" /k)x(P" /k) + (=1)"x(X/k)

as desired. 0O
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In the coming sections, the strategy will be to adapt the arguments of [33]
to a hypersurface in P" x P", using inspiration from [50]. In this section, we
start by introducing two exact sequences which we will use in what follows, and
we study the cohomology groups of differential forms for a product of projective
spaces, which will be needed later on. We also study first Chern classes of line
bundles on P” x P™ and primitive cohomology.

Notation 1.2.6. The Picard group of P x P™ is isomorphic to Z & Z with
generators coming from the canonical sheaves Opr(a) and Opn(b) for a,b € Z.
For a sheaf F on P" x P", we denote

F(a,b) = F @ 7 Opr(a) @ 7, Opn (b).

There are thus canonical sheaves of the form O(a,b) on P" x P,

For a € Z>¢, we write O(aX) for the sheaf with sections having poles of order at
most a on X, which are regular everywhere else. We set F(aX') = F @ O(aX).
For a < 0, we write F(aX) = F ® ZT,,* where Zy is the ideal sheaf of X.

1.2.1 Two exact sequences
Recall from e.g. [23, Theorem I1.8.17] that there is an exact sequence

dF/FA(=)

O%OX(—X) i*QperPn — Qx — 0. (11)

Here, the second map is the natural surjection. There is another useful exact
sequence

0— Q8. — QB (log(X)) Z2% 4,08, — 0 (1.2)
for any p € Zx>( which is called the residue sequence. We will need the following

statement in the next sections.

Lemma 1.2.7. For p,q € Z>q, the boundary map
o HU(X,Q8) — HIPH (P x P, Q81 1L,)

induced from the long exact cohomology sequence of the exact sequence {12)
coincides with the pushforward map i, : H4(X, Q%) — HITY(PT x P* QBF1L.),
which is again the pushforward as defined in [}7].

The proof works exactly the same as that of [33, Lemma 2.2].

Remark 1.2.8. We will use in what follows that for an exact sequence of vector
spaces 0 - V — W — Z — 0 with V one dimensional, the induced sequence
0= VeA1Z 5 AFW — AFZ — 0 is again exact for any k € Z>;. For
an exact sequence 0 -V — W — Z — 0 with Z a line bundle, we similarly
have that the sequence 0 — APV — AW — AF=1V @ Z — 0 is again exact for
any k € Zx>1.
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1.2.2 Cohomology of differential forms
We will need Bott’s theorem in what follows.

Theorem 1.2.9 (Bott’s theorem for projective space, see [15], Theorem 2.3.2).
Let m € Z. The cohomology of Q. (m) satisfies HP(P™, Q.. (m)) =0 for:

e p>0andm >qg—n,m%#0.
e p>0,m=0 andp# q.
e p=0 and m < q, except form=p=q=0.

We will also make use of the following statement, which is useful to apply
Bott’s theorem to twisted sheaves of differentials on P™ x P™.

Proposition 1.2.10. Let p,q € Z>o and let a,b € Z. Then
HP(P" x P", QL. p.(a,b) = D € H* P, Q% (a) @ H' (P", Q. (b)).
1+j=q k+l=p
Proof of Proposition 1.2.10. We have that Qprypn = 75 Qpr & 7 Qpn, by e.g.
[23, Exercise I1.8.3]. This implies that

* J
Qb pn = @ Qe @ T,
i+j=q

and tensoring with Opr«pn(a,b) = 7:Opr(a) ® 7 Opn (b) yields that

Qe pn (@, b) @ T (a) ® 750 ().
i+j=q

Now using [48, Tag 0BED], we have that
HP(P" x P", O, po(a,b)) = @) HP(P" x P*, 7} Q. (a) @ 75 Q. (b))
i+j=q

B P HE, % () @ H'(E", 2 (1)

t+j=q k+l=p

which is the desired result. O

1.2.3 Primitive cohomology

The primitive cohomology of X is defined in the same way as in the case of a
smooth hypersurface in P™, see Definition 1.1.21.

Definition 1.2.11. Let p,q > 0 be such that p+ ¢ =n +r — 1. The primitive
cohomology of X with respect to p,q is HP (X, Q% )prim = ker(i,) C HP(X, Q%)
where i, is the pushforward i, : H?(X, Q%) — HPTL(P" xP", QL) as defined
in [47].
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Remark 1.2.12. The same arguments as in Remark 1.1.22 with O(1) replaced
by O(1,m) show that this definition coincides with the classical definition of
primitive cohomology.

The following result is probably standard, but we include a proof here for
the reader’s convenience.
Lemma 1.2.13. The map i, : HP(X, Q%) — HPTLU(P" x P*, QL) is surjec-
tive if either p # q or p = q and p > r. Furthermore, if p # q, we have that
HPHL(PT x P, Q4TLL) = 0, so that i is the zero map.

Proof. Using Proposition 1.2.10, we have that
HP (P <P Qi) = @ @ HI(PLOE) @ HI(P", Q).
i+ j=p+1 k+l=q+1

Suppose p # g. Using Theorem 1.2.9 we see that all terms in the above sum
are zero except for those with ¢ = k and j = [. However, for such terms we
have that ¢ + j = k + [ which cannot be true as p # ¢. This implies that
HPHLY(PT x P, Qg,fxlw) = 0. Therefore, i, is the zero map, so in particular, i,
is surjective.

If p = ¢, then we see that HP+1(P" x P, ngipn) > [Ne+1 for some N1 € Z>o.
A basis is given by

o = e1(Opr (1)) @ e1(Opn (1))

where i +j=p+ 1,7 <r and j < n. We now assume that p > r, then we have
that Npy1 < Np. As

11"l = c1(O(1,m)) = ¢1(O(1,0)) + mc1 (O(0, 1))
using the projection formula we see that
iwital =i, ("l ®1i'1)
=o' ® (c1(0(1,0)) + mer (0(0,1)))
p+1 p+1

= Q1 + Moy

and the latter term is nonzero as m is coprime to the characteristic of k. We see
from this that the matrix of ¢,¢* has an N1 X Npy1 minor with determinant
a power of m, hence invertible. We conclude from this that i, is surjective. [

Corollary 1.2.14. For p,q € Z>o such that p+q = n +r — 1, we have that
HP(X, Q%) prim = HP(X,Q%) as long as p # q.

1.3 Isomorphism from the Jacobian ring to prim-
itive cohomology

We keep the notation that was set up at the beginning of the previous section.
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Definition 1.3.1. The Jacobian ring of F is given by
J:k[}/(h aYFaXO,"' 7X1'L]/ (F07"' aFT‘7F07"' aFn)

This definition is taken from [50]. Note that J has a natural bigrading
where J%® has degree a in the variables Y; and b in the variables X;. In this
section, we will follow the argumentation of [33] with this Jacobian ring in order
to show that certain graded pieces are isomorphic to certain primitive Hodge
cohomology groups.

Notation 1.3.2. The line bundle ngxrpn (r+1,n+1) is isomorphic to Opr«pn
with global generator w A & where

T

w=> (~1)";dY"

1=0

where we write dY? =dYy A - AdY; A--- A dY, and

where we write dX7 = dXoA---AdX;A---AdX,. We will more generally write
dX: i to mean the wedge product of all dX; with dX;,, - ,dX;, removed,
and use the notation dY % similarly.

Notation 1.3.3. We fix integers p, q € Z> satisfyingp+qg=n+r —1.

Construction 1.3.4. Consider the exact sequence (1.1). For j € {0,---,q—1},
we take a wedge product and use Remark 1.2.8 to obtain the exact sequence

0— QI (- x) et s it o

Now twisting by the line bundle i*Oprxpn ((¢ — j)X'), we obtain the exact se-
quences

0= QI ((q—-1)&) = Qe T ((a=7)X) = Q7 ((g=)&) = 0

(1.3)
where the first map is induced by dF'/F A (—). Patching those together, we see
that there is an exact sequence

dF/FA(=) dF/FA(=)

dF/FA(=) .
wpn (X) ——— i Qﬁfxzw (2)

s QT () TS QT (gX) = 0

0— Qb QR
of sheaves on X.
Notation 1.3.5. Let C(p) be the complex

dF/FA(=)

0 = QB (1) LD eqpr2 oy AN,
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QR gX) TS QT (gX) — 0

where we put i*Qﬁ,lePn(X ) in degree zero. This gives rise to the map

0+ HO(X, Q1 (q)) = HY(X,C(p)) = HI(X, Q).

Notation 1.3.6. Note that a section & of Qpf/,. over P x P* \ X has a

pole on X of order at most a if and only if it is of the form & = 4222 where

A € kYo, Y., Xo, -+ ,X,] is of bidegree (a — (r + 1),am — (n + 1)). This
gives an isomorphism

wa : kD/()v U 7Y;"7X07 e ’Xn]a—(7"+1)7am—(7l+1) — HO(PT X Pnaﬂﬁ;:’;’]}»n (G,X))

AwAw
Fa

sending an element A to

Remark 1.3.7. As Q1. (log(X)) is isomorphic to Qp1 b, (X), we can view
the residue map in the exact sequence (1.2) in this degree as a morphism
QT (X) = 1,577

The purpose of this section is to prove the following statement, which is
a generalization of [33, Proposition 3.2] to products of projective spaces. The
argument is taken from [33], with some adaptations.

Proposition 1.3.8. Suppose that ¢ > r. The composition

kYo, -, Y, Xo, -+, X, )@=+ (g )m=(n+1) M)
HO(P™ % P, Q2. (0 + 1)X)) 5 HO(X, Q1 (gX) & HY(X, 0%
descends to an isomorphism
Vg J@rD)—=(r+1),(¢+1)m—(n+1) _y HI(X, %) prim.

Remark 1.3.9. Let X = V(Fy) C P™ be a smooth hypersurface defined by a
homogeneous polynomial Fy € k[Xy, -+, X,] of degree m. Then we can form
the hypersurface X = V(YyFy) C PY x P* which is isomorphic to X. The
corresponding Jacobian ring is given by

_ aFO 8F0
J—k[Y(),XO... ,Xn]/ <F0,Yoa)(o’... ’%8Xn> .

Consider the usual Jacobian ring

OF, OF;
Jx = k[Xo, -, Xn]/ (é)X?)’m ’8XO)

then for a,b € Z we have a natural map

J = J% Yo 1, X; = X
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For fixed a, there is the section
Ga: J% = J¥ f s Yo f

which is an isomorphism. Now let p,q € Z>¢ be such that p+¢=n — 1. If we
set r = 0 (which is not possible with the assumptions we made, but we still do
it for a moment) in Proposition 1.3.8, we find an isomorphism

Dm—n—1
Vg ©9q : J)((q+ et HYX, Q% ) prim.
We therefore find that the above statement is in accordance with [33, Proposition

3.2].

1.3.1 An exact sequence relating ¢ and 7,

In order to prove Proposition 1.3.8, we will need the following proposition, which
is a generalization of [33, Lemma 3.1(2)]. The proof is more or less the same,
but included here for the reader’s convenience.

Proposition 1.3.10. The map
§: HO(X, Q57" (X)) — HU(X,C(p)) = HI(X, Q%)
gives Tise to an exact sequence
HO(X, i Qb (qX) ™% HO(X, (X)) & HI(X, Q%) (14)
where § is surjective if p # q and has image HP (X, Q%) prim in case that p = q.

In order to prove Proposition 1.3.10, we will use the hypercohomology spec-
tral sequence

Bl = HY(X,C(p)") = H™(X,.C(p)) = H*(X,Q4).
We first prove two lemmas.
Lemma 1.3.11. Ef"b =0 for allb>0 and a < q, except for a =0 and b = p.

Proof. Let a,b € Z be such that b > 0 and 0 < a < g. Note that there is the
standard exact sequence

0— O]Prx]Pn(—X) — O]prx[pn — ’L*OX — 0.

Tensoring the above exact sequence with the sheaf Q§+§;§1 ((a+1)X) and noting
that this sheaf is locally free gives the exact sequence

0 — QBFetl(aX) — QBFeE (a4 1)X) = i Q2 ((a+1)X) - 0 (1.5)
where we used the projection formula to see that

i.Ox @ QT (a4 1)X) = in(Or @ Q8T ((a 4+ 1) X))

25



=i, " QBT (0 + 1) X).
Part of the long exact cohomology sequence of (1.5) is
= HY(PT x P QBT (aX)) — HY(P™ x PP QRH (0 + 1)X)) = (1.6)
HY(P" x P, i, i* QB (0 + 1) X)) — HY TP x P, O (0X)) — -
We have by Proposition 1.2.10 that
HY (P x P Q8 2 (e + 1) X)) =

B P HE % (a+ 1)@ H(E, QL (mla+1))).
i+j=p+a+1k+l=b

As a+1 >0, by Theorem 1.2.9 one has that H*(P", Q4. (a + 1)) = 0 provided
that k >0anda+1>i—ror k=0and a+ 1 <i. We note that:

o If k >0and a+1 < 1i—r we see in particular that i —r > 0 and so i > r
implying that Q&, = 0 and so H*(P", Q5. (a + 1)) = 0.

elfk=0anda+1>ithenl>0asb>0. Ifm(a+1)>j—n then
H' (P*, Q. (m(a +1))) = 0. Otherwise, m(a + 1) < j —n implies that
j >mn and so H'(P", Q. (m(a+1))) = 0 in this case as well.

This proves that HY(P" x P* Q2 %*!((a + 1)X)) = 0 for b > 0 and a > 0.
Furthermore, using Proposition 1.2.10 again we have that

HYTH(PT x P, QBFeE ] (aX)) =

P @B HYP, Q% (a) @ H' (P", Q. (ma)).

i+j=p+a+1 k+Il=b+1
We distinguish between two cases:
o If a > 0 then H**1(P" x P, Q5% 1 (aX)) = 0 in a similar way as above.

e If @ = 0 then using Theorem 1.2.9 we have that H*(P",Q%,) = 0 provided
that k # i and H' (P, Q.) = 0 provided that [ # j, so the only case
where this is nonzero is if k =7 and [ = j, i.e. if p =b.

So if we assume that p # b or a > 0, then H**'(P" x P", Q5L (ak)) = 0.
From the sequence (1.6), we see that

EPY = HO(X, QB4 (0 + 1) X)) = HY(P™ x P, i, Q5 (e + 1) X)) =0
which is precisely what we needed to show. O

Construction 1.3.12. Now suppose that a = 0,b =p and p > 0.
We have seen in the proof of Lemma 1.3.11 that

HP(P" x P", Q0T (X)) = HPYL(P™ x P" QBF L, (X)) = 0.
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From the exact sequence (1.6) it follows that

E)P = HP(X,i* QB L, (X)) = HPPH(PT x P QRLL). (1.7)

Note that E%P is nonzero. Indeed, Ef’b =0ifa+b=p+1andb >0, and one
can compute that Ef“’o = 0. Also, we have that

e <P gLy @ P B9 @ BP0, =
i+j=p+1 k+l=p+1

and so EY? is nonzero by (1.7).
There is a surjection H?(X,04.) — E%P. From this, we can define the map

B HP(X,08,) — EYP = HP(X,i* Q5T L. ().
Using (1.7) again, we can view § as a map

HP(P" x P™,3, Q%) — HPYL(P" x P™, QB )
after identifying H? (X, Q%) with HP(P" x P 4,0L,).

Lemma 1.3.13. The morphism 3 is precisely the coboundary map from the
exact sequence (1.2). As a consequence, B is surjective if p > 7.

Proof. Consider the diagram

0 — OBl lp, —— Q8L (log(X)) —=— 0,04 0

l J{dF/F/\(f)

+1 +1 .. +1
0 Qﬁ"x]}”" Qg’TXIP"(X) ’ Z*Z*Q%I?’TXJP‘T&(X) > 0

with the top row coming from the exact sequence (1.2) and the lower row coming
from the exact sequence (1.5).

This diagram commutes, because we know from the exact sequence (1.1) that
the map dF/F A (—) is precisely the inclusion of Ox(—X) into i*Qprypn. By
Lemma 1.2.7, the coboundary map of the long exact sequence associated to the
upper sequence is precisely i,. Therefore, we have a commutative diagram

HP(P™ x P",i,0%) SR IN HPHL(Pr x P QRFL

ldF/FA(—&} H

HP(P™ x P, i, " QBF L, (X)) —— HPTH(P™ x PP, QRS0

Here we note that we constructed the spectral sequence from the exact se-
quence (1.1), so that g is by construction the map induced from dF/F A (—),
composed with the isomorphism coming from the coboundary map in the se-
quence (1.5). Tt follows that 8 = i.. We note that i, is surjective if p > r by
Lemma 1.2.13, which gives the last part of the statement. O
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Lemma 1.3.14. All differentials going into or out of EOP are zero for p > r.

Proof. Note that all incoming differentials to the terms E%P are zero by reason
of degree, and we have that E9? = ker(d>®,) ¢ EYP, for all s > 2. Now the
fact that the edge map g is surjective for p > r by Lemma 1.3.13 shows that all
outgoing differentials are zero. O

Proof of Proposition 1.3.10. Note that if ¢ = 0, then we have the exact sequence
HO(x, i Qpteh) — HO(X, Q) — HO(x, Q)
where the last map is the identity and
HO(X,i*Qptipt) = HOP" x P, i, Q).
Note that
HO(P" x P, Qptroly = HO(P, Qp.) @ HO(P™, Qe t)
o HO(P", Qpr ') @ HO(P™, Qp)
=0
using Proposition 1.2.10 and Theorem 1.2.9 again. Similarly, we have that
HY (P x P, Qptrol (—X)) = HO(P™, Q5. (—1)) @ H (P, Q' (—m))
@ H' (P, Q5 (—1)) @ HO(P", Q. (—m))
@ HO(P", Q5 (—1)) @ H' (P, Q8. (—m))
@ H' (P, Q. (—1)) @ H(P", Q5. (—m))
=0

(-1
(-1

so using the long exact sequence (1.6) we find that H(X,i*Qp75!) = 0. There-

fore, we assume that ¢ > 0 from now on.

First assume that p # ¢q. We note that the contributions to H9(X, Q%) come
from all EY b satisfying a + b = q. These are all zero except possibly for E‘f’o,
by Lemma 1.3.11. By Lemma 1.3.11, we have that E‘f’b =0fora+b=q—-1
and 0 < a < g — 1, except possibly for (a,b) = (¢ — 1,0) and, if p = ¢ — 1, also
(a,b) = (0, — 1). Thus, the only possible non-zero incoming differentials to
E?% are d'f_l’ and, in case p = ¢ — 1, also dg’q_l. Also, there are no outgoing
differentials out of EZ° by reason of degree.

Ifp=q—1and q # 1, then as p+q = n+r—1, we have that 2p =n+r—2 > 2r
and so p > r. Therefore by Lemma 1.3.14, all outgoing differentials of Eg’q_l
are zero. If ¢ = 1, then E?’q_l = E?’O and so it coincides with Ef_l’o. Ei-
ther way, we therefore have that the only possibly nonzero incoming differential
comes from B0 and so EZ0 is equal to EX°, ie. E?Y modulo the image
of Effl’o. Since all the differentials leaving E?Y are zero, we have the edge
homomorphism

ET® = HO(X, Q5" (qX)) — HY(X, Q%)
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which is exactly the map §. Since Eg’o = B2 this gives an exact sequence
Sk Yyn+Tr— nTr— J
0— HO (X, Qo (gX)) — HO(X, Q51 (gX) = HY(X,0h).

Note that the map J is surjective in this case since only E?° can contribute.
This completes the proof in case p # q.

If p = ¢ then the possibly nonzero term E(l)’p also contributes to HP(X,Q%,).
There are no incoming differentials to EYP and since p=q=n+r—1—p, we
have p > r, so there no outgoing differentials by Lemma 1.3.14, and we have
E?’p = E%P. Thus, the edge homomorphism

B HP(X,08,) — EY = HP(X,i*O8 1L,

is surjective, and we find an exact sequence

0= HOX,i*Qpat (gX)) — HO(X, Q51 (gX)) S HP (X, 08,)
By HP (X, 08 ) = 0

This means that the image of § is equal to the kernel of 3, which by Lemma 1.3.13
is the kernel of i,, which is by definition the primitive cohomology. U

1.3.2 Proof of Proposition 1.3.8

Proof of Proposition 1.3.8. We first note that H'(P" x P”,Qgﬁ;w (¢X)) = 0.
Indeed, it follows from Proposition 1.2.10 that

HYP P05 (0X) = €D O, 0% (0) @ (B, 0 (ma))
i+j=n+r
@ H'(P", Q. (q)) © HO(P", Q.. (mq))
Using Theorem 1.2.9 we observe that:

e If ¢ > 0 then Hl(IP’",QI]F;m (mgq)) = 0 provided that mq > j — n. But if
mq < j —n we have that j > n and so H!(P", Q%n (mgq)) is always equal
to zero. For similar reasons, H'(P",Q%.(¢)) is always equal to zero and
so HY(P" x P*, Qpt7s. (¢X)) = 0 in this case.

e If ¢ = 0 then HI(P”,Q@L) = 0 provided that j # 1. However, in case
j=1wehavethati=n+7r—1> 0asn > 2. Now from Theorem 1.2.9 it
follows that H?(P",Q%,) = 0. Similarly the second factor always vanishes.

This verifies the claim.
This means that the exact sequence (1.5) gives rise to an exact sequence

0 — HO(P" x P, Qpl 7 (g X)) — HO(B" x P, Oz 05, (g + 1) X))
— HY(X, " Q5 e (g + 1)X)) — 0.
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We now consider res : HO(P" x P", QuF". (¢ + 1)) — HO(X, Q%1 (gX)).
Noting that the kernel of res is HO(P" x P", Qg17.. (¢X)), we see that res de-
scends to a map

16« HO (X, Qg pa (g + 1) X)) — H(X, Q577 (gX))

with the same image as res. Furthermore, we observe that the map 441 now
gives rise to an isomorphism

kYo, Yo, Xo, -+, X] /()0 Pt D=t Doy g0y r0mbr ((g+1)X)).
(1.8)

We now consider the following commutative diagram:

sk On+T Ya+1 e}
HO(X’Z QP:LX]P’n((q + 1)X)) é k[Y07 Y, Xo, e >Xn}/(F)
dF/F/\(—)T res lf (1.9)
HO(X, Q! (gX) ———— HO(X, Q37 (X))

where a = ((q+1)—(r+1), (¢g+1)m—(n+1)) is the bidegree from the statement
and f = res 01/_Jq+1. For the rest of the proof, we will show that the image of the
Jacobian ideal under f is the same as the image of 74, i.e. the kernel of §. This
shows that the Jacobian ideal is precisely the kernel of the composition 6 o f.
Note that the image of § o f is the image of J as res is surjective and 1,41 is an
isomorphism. The image of § however, is precisely the primitive cohomology.
Therefore, noting that F' is in the Jacobian ideal, we find an isomorphism

k[YOa"' a}/mXOv"' aXn]/(FOa ;FmFOa"' ;Fn)a — Hp(X;QZ/)Y)prim-
This will complete the proof. - -
We start by noting that the image of ideal (FO, I S TR ,Fn) /li under
the isomorphism (1.8) is generated by elements of the form FywAw and FwA®.
Following [50], we note that the sheaf Q. (r + 1) ® Qg *(n) has global sections

generated by the sections w A 7; for i € {0,--- ,n} where
7= > (LI X;AXT 4+ (—1) X dX
j<i 1<j

So a section of this sheaf with a pole along X of order at most ¢ is of the
form Y7 BT where B; has bidegree (¢ — (r + 1),gm — n). We note that
dF =37 _o FidYi 4377 FjdX; and we also note that for ,j € {0,--- ,n}, we
have that
X;dX* if i # 7
de/\Ti: J i . o ) 127&].
D)X GdXT 30 (1) XX otherwise
So

N FdX; | Am=) FpXdX 4 (1) R (1) X;dX7
=0 i i
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= (-1)"'Fo+mFdX".
It follows that modulo F, we have that

n

Z Baohms 5~y BRen

=0 =0

We can do a similar thing for a section of Qp. " (r) ® Q. (n + 1).

Using [23, Exercise 11.8.3] we see that Q75! = Divjmnir Qs @ T,
As the map dF/F A (—) increases the bidegrees of the corresponding elements of
J by (1,m—1), the only forms that will end up in the bidegree a when applying
dF/FA(-) are either coming from Qf, @z " or from Q' @QF, . Using the fact
that HO(P" x P*, Q0. (¢ + 1) X)) surjects onto HO(X Qe (g + 1) X))
the above computation shows that the image of the map dF/F A (=) in the
diagram (1.9) is the same as the image of 1/~Jq+1, and so the images remain the
same after applying res. This shows that f and 7, indeed have the same image,
which completes the proof. O

1.4 Comparing the two products

The next goal is to compare the cup product on cohomology to the ring mul-
tiplication on the Jacobian ring. We keep all notation from the previous two
sections.

Notation 1.4.1. Let U = {Uy, -+ ,U,,Up,--- , U, } be the open cover of P" x P
where U; = {F; # 0} for i € {0,---,r} and U; = {F; # 0} for j € {0,--- ,n}.
Note that this is an open cover of P x P™ because X is smooth. We have that I/
restricts to a cover of X', and we will use the same notation for both. Note that
the U; are not affine and that the F;’s and Fj’s do not have the same bidegrees.
We define an order on these open subsets as follows:

Uy<Ui < - <U,<Uy<---<U,.

Notation 1.4.2. Fori € {0,--- ,r}, we let K; be inner multiplication with aY ,
ie. for i € {0, - ,r} we have that

[(1((13/11 A NdY, /\d)(j1 A -"/\dek)

(=etdy A dY;, o AdY AdX G A ANdXG, iD=

~\o if i ¢ {ir,- i}
Similarly, for j € {0,--- ,n}, we let K be inner multiplication with 8X , i.e.
for j € {0,--- ,n}, we have that
Kij(dY;, A+ ANdY; ANdXj, A+ AdXj,)

DAY, A A dY AdXG A d X, NdXG, i G =
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We have that K;(a A ) = Ki(a) A B+ (—1)Fa A Ki(B), if a is a k-form, and a
similar formula holds for the K;’s.

Notation 1.4.3. For subsets I = iy, -+ ,4; C {0,---,r} and J C {0,--- ,n},
we set:

® Ury=NiesUiN ijJ Uj-
o Q= ([Tic; Ki)(w) = (K 0 Kj,_, 0+ -0 K )(w) and Q5 = ([T, 5 K;)(@).
[ F] = HiEIFi and FJ = HjeJFj'

Notation 1.4.4. For a sheaf F on X or on P x P", we have the group C*(U, F)
consisting of all families {s1,7 € F(Ur,y)}1,5 where #I + #J =i+ 1. These
form the Cech complex

0—C'WU,F)— - = C" T U,F) =0
with differentials § : C*(U, F) — C*tY(U, F) given by
i+1

6(sratrs) = { DD samniiranlvns }

1,J
k=0

Here, (I,.J); denotes the k’th element of the ordered set (I, J). The cohomology
groups of the above complex are denoted by H®(U, F). Note that there are
natural maps He(U,F) — H*(X,F) or H*(U,F) — H*(P" x P, F), by [23,
Lemma I1.4.4].

Notation 1.4.5. This notation is taken from [50, page 222] with a small adap-
tation, see the remark below. Fix p,q € Z>o such that p+¢ =n+r — 1.
Consider the bidegree

p=Mnm—-r—1Mn+r+1)m-—2(n+1)).

For subsets I C {0, -+ ,7} and J C {0,--- ,n} such that #1 + #J =n +r, we
define an element Q(I,.J) € HO(X NU; 5, i*Qpt 5t (—p)) as follows:

e If we are not in the situation where #I = r and #J = n, then Q(I,J) = 0.

o If I = {iOa"' 7i7“—1} C {05 aT} and J = {jOa"' 7jn—1} - {07 an}a
then:

— If g <r—1, we write

7 = {iOa"' aiq—l} 1fq>0
U ifg=0
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and

I — {iq+17"' 77;7”—1} ifq<7“—1
0 ifg=r—1

We define
(_1)anI’,iq ANw N\ f_ziq,p/ ANQy .
FIIFZ%FIHFJ

I, J) =

— If ¢ > r, then we write

J/:{{joa"'ajq—’r—l} 1fq>7"

1] ifg=r
and
J”: {jq77”+17"'ajn71} ifq<n+r—1
0 ifg=n+r—1
We define
(_1)r(n+q+r)QI A QJ,’jqﬁ Aw A quir",,,

Q1,J) =

F]FJ/Fjqur_F’JH

Remark 1.4.6. Note that Q(I,J) can also be defined without distinguishing
the case #I = r and #J = n, which is the definition used in [50]. We then still
have that (I, J) = 0 unless #I = r and #J = n. Namely, Q... ,; = 0 and
Qo,... n} = 0, which implies that Q(I,J) =0for #I >r+1or #J >n+1. As
#I + #J = n + r, this means that Q(I,J) = 0 unless #I = r and #J = n.

In subsection 1.4.1, we will prove the following statement, which is a gener-
alization of [50, Proposition 2.8] to other fields than C.

Proposition 1.4.7. For A ¢ Ji—n(athm=(tl) gnq B ¢ jp—rp+tl)m=(n+1)
write

wa = Yg(A) € HI(X,Q8) and wp = ¢,(B) € HP(X,0%).

Then the cup product waUwp € H" T ~1(X, Q’}(J””*l) is represented by the Cech
cochain
{m(ABQUI, J))}r,; € C"TT U, QL.

The argument is taken almost directly from [50], combined with some ele-
ments of the arguments in [33].

Remark 1.4.8 (Remark 1.3.9 continued). Let V(Fy) C P™ be a hypersurface
defined by a homogeneous polynomial Fy € k[Xo, -, X,] of degree m. If we
set 7 = 0 then for J = {jo, -+ ,jn-1} C {0, ,n} and I = ), we have

. J05" " »Jq Jgs - sJn—1
9(17 J) - yn OFy n 9F

0 ox, 1lj=02%;

One can check that Proposition 1.4.7 then becomes [33, Proposition 3.6(1)].
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We can compute the element i, (waUwp) as follows, generalizing [33, Propo-
sition 3.7(2)] to a product of projective spaces.

Proposition 1.4.9. We have that i.(wa Uwp) € H" " (P" x P* Qptr,,.) is

represented by the cochain in {so,- -+ , 8,80, 8} € C"T" (U, QT

wpn) given
by

(—=1)"*" M mABY, Fw A ©

S, = —
! H::O F; H?:o Fj
forv € {0,---,r} corresponding to the intersection of all opens except for U,
and _
. (-1)YHABX, Fyw A @
b [T B [T Fy
for w € {0,--- ,n} corresponding to the intersection of all opens except for U,,.

It will have the following consequence, which can be viewed as a generaliza-
tion of [50, Corollary 2.9] to other fields than C.

Corollary 1.4.10. Consider the morphism
G kYo, Y, Xo, -, Xn) — C (U, QBT 50 ), D {505+ 380,80, 1 50}
where

(=) 'mDY, Fyw A © (=) DXy Fyw A @
H::O E H?:O Ej H::O F; H?:o F;

forve{0,--- ,r} andw € {0,--- ,n}. This gives rise to a surjective morphism
¢ JP — HY (P x PP QOptre,) &k, such that the diagram

and S, =

Sy =

HI(X, Q8% ) prim © HP (X, Q%) prim SILEN H™ (P x P, Qptrs,)

¢p®wq]\ ng

Ja—r(at)m—(n+l) o gp—r(ptl)m—(ntl) ., jp
commutes.

Then in subsection 1.4.3, we use a slight variation on an argument from [27]
to find the following.

Corollary 1.4.11. The map ¢ is an isomorphism, except possibly when n is
odd, r =1 and m = 2.

Remark 1.4.12. Note that if n is odd and r = 1, we have that n+r —1=n
is odd, so that X has odd dimension. By the Motivic Gauss Bonnet Theorem,
see Theorem 1.1.16, we have that x(X'/k) is hyperbolic in this case. Therefore,
the one exception is not a problem for our purposes. Still, it is a good question
why a complete intersection of two quadrics in an odd dimensional projective
space is an exception. We do not have an explanation for this.
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We also introduce a variant of the Jacobian ring, namely, the ring

J:k[Yb, 7Y7’7X03"' 7Xn]/(Y0F07"’ 7YT’FT’7XOFO;"' aXnFn)
and show the following statement.

Proposition 1.4.13. Je+t+Lntl) 4o 4 one dimensional vector space over k.

1.4.1 Proof of Proposition 1.4.7

In order to prove Proposition 1.4.7, we first prove two lemmas and set up some
notation.

Construction 1.4.14. Over an open U; for i € {0,---,r}, one can define a
splitting of the inclusion dF'/F A (=) : Ox(—=X) — i*Qprypn by

H; (i a;dY; + zn: bkka> =a;F - F;l

=0 k=0

extending to a map H; : i* Q& pn (bX) — Q& L5, (b — 1)X). Similarly, over
U; for j €{0,--- ,n} one can define the splitting

H; <Z a;dY; + zn: bkka> =bF-F;!

=0 k=0

extending to a map H; : i*Q%, 5. (bX) — i* QL. (b — 1)X). We get a map
on Cech cochains

H : COUU, i o (b)) = CIUU, i (b — 1) X))

defined by
{Hirpo(sr.0) s i T#0
{H(LJ)O (sr,.g)}1,5 otherwise

H({sr,7}1,7) = {

where (I, .J)o denotes the first element in an ordered index (/,.J). We note that
Hz' :F/FZKZ for ¢ € {O, ,T‘} ande :F/FJ 'Kj fOI'je {O, ,n}.

The following statement is a generalization of [33, Lemma 3.4] to products
of projective spaces.

Lemma 1.4.15. Let A € k[Yy,---, Y, Xo, -+, Xy] be a polynomial of bidegree
(b—(r+1),bm — (n+1)) for some b. Then:

1. res(Aw A @/F*TY) € HO(X, Q%M1 (bX)) is represented by the element
{SO; Tt Spy 80, >§n} € Co(uy Q}+T71(bk’)) given by
A ND

$i= g © QLI (b A) (U)

35



forie{0,---,r} and

(=) Aw Ay b -
55 = TJ e QT bX)(T;)
fOTj € {Oa an}‘

2. For an element {ﬁﬁ; AQutrg € CHU, it (b — 1)X) we have
that '

A _ A _
H ({<dF/F) N E Y Wﬂ}u) ek s A

3. Applying the Cech differential & to
(_1)(r+#1)#JA
- { F

QA € C' U, Q% (bX))

g
HI+#T=i+1
we have that

, _1)(r+#1/)#J’A _
1) =< (dF/F) A —1”1( = Qp ANQy
(o) {( /F) (( e A |
D4 T =i42

in C7L(U, Q% (bX)).

4. Let m: Q8 Lo (b= 1)&) = Q% (b —1)X) be the canonical projection.
We have that mo H is a splitting to

dF/F A (=) : C' U, Q% 1 ((b— 1)X)) = CH U, i* Qv pn (DX)).

Proof. This follows the method of [11] directly. Note that to check an identity
on a sheaf of p-forms on some open subset U of X, it suffices to check on f~1(U)
for f: X’ — X any smooth morphism with f~1(U) nonempty. We will take f
to be the restriction of (A"T1\ {0}) x (A"*1\ {0}) — P" x P" to X. The point is
that one does not need to assume that all the terms involved in the computation
arise as forms on A’: the individual terms need not satisfy the Euler equations.
We start by proving (1). Write E,, = > , X;0/0X; and E, = >_._Y;0/9Y;,
and let dV,, = dXg A---ANdX,, and dV, = dYy A --- AdY,. Note that interior
multiplication ¢(E,) with E,, gives ¢«(E,)(dV;,) = & and similarly we have that
t(E.)(dV,) = w. We note that dF A dV,. AdV,, =0, so

0 = «(Ep)u(E,)(dF A dVy AdVy,)
= u(E,) (FdV, A dV,, — dF Aw A dVy,)
= (=1)""FdV, A@ —mFwAdV,, + (-1)"dF Aw A @

Restricting to the affine cone over X', we have that F' = 0 and so we find that

dF NwAw=0. (1.10)
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Note that for i € {0,--- ,r}, we have that

T n

K;dF = K; (Z FpdYy + > FlXm> —F,
k=0 1=0

Applying K; to (1.10) therefore yields that Fjw A& = dF A Q; Aw. Similarly,

applying K; gives that Fjw Aw = (—1)"dF Aw A Q; for j € {0,--- ,n}. We see

from this that

AQiA&NdF/F .
AvN© %“)7%;_/ for i € {0,--- ,r}
ol ) (L AWAQ AF/F .
b+l (=1 “I;ng £ for je {0, ,n}

Applying the residue map to the left hand side, recalling the diagram (1.9) from
the proof of Proposition 1.3.8, is the same as applying 7 to Agﬁ‘z o (71)1;1_‘3;7)/\9" .
We find the result as desired.

To prove (2), let I = {ig,--- ,ix} C {0,--- ,r}and J = {jo, - ,ji} C{0,--- ,n}
be such that #I + #J =i+ 1. If I is nonempty, we have that K;,Q; AQ; =0

as K;, Krw = 0 (one removes X;, from w twice), and so

A - F A _
Hi, |dF/FAN | =—==Q1ANQ —Kiy |dF/FN | =—=—=Q1 A Q)
( ! (FIFJFb ! ")) F, ( / (FIFJFI’ ! J))

A _
- __0,AD
Fi R pe L0

as desired. If I is empty, one replaces H;, by Hj,, F;, by Fj, and K;, by Kj,
and the proof works in the exact same way.

To prove statement (3), we consider two subsets I’ = {ig, - ,ix} C {0,--- ,7}
and J' = {jo, - ,Ji—x} C {0,--- ,n} such that #I' + #J' =i+ 2. We apply
K to the identity (1.10), so that we find that

0= (K;, 0 0K;)(dF NwA®)
= (K 00K, (FiwAw—dF ANQ;, A@)
(K 0---0K;,) (FigQy Ao — Fy, Qg Ao+ dF A Qi AD)

k
=D (D'F Qg Aw+ (D) EAQp Aw
=0

Applying K/ gives

K
0=(Kj_, o oKj) (Z(l)lFizQI’\{il} A@+ (=) dF A Qp A 51)
1=0

= (Rji—k ©---0 Kjl)(Z(fl)l+rikFizQI’\{iz} A Qjo
=0
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+ (=D)ME Qp A@ A+ (D)PTTRGR A QA Q)
k

= (Rji—k ©---0 sz)(Z(_l)l+2(r_k)FizQI’\{iz} A Qjojl
=0

(_1)k+1+r—k—1F\ Q]! A\ le + (—1)k+1+r_kﬁj191’ A Qjo
( 1)k+1+2(r k)dF/\QI/ /\Qjojl)

+ o+

k
S P Y
=0

i—k
DFFES (=) RO UE Qp A Qg

+ (_1)k+1+(i—k+1)(r—k)dF A QI’ A QJ’

SO

k i—k

Z(fl)thQI/\{il}AQJ’+(71)k+1+T7i Z(*l)leZQI//\QJ’\{jz} = (*

=0 =0

We see that

1)(r+#D#T 4 _
S Yo WY QJ}
F]FJFb 1,J .y

k _
i Z z+ (r4k) (i—k+1) FizQI’\{ii} Ay
Fb FyFy

L _ _
k+1£ Z 1)l (r+h+1)(i—k) .S /\QJ'\{jz}
F — FI’FJ’

( 1)(r+k:+1 —k— l)A

= (=1 i+1

dF/\QI//\QJ/

which proves the claim.

].)de/\Q[//\QJ/

Finally, for (4), we note that as the original maps H; are splittings, the compo-

sition 7 o H is one too, which completes the proof.

O

We can use this to prove the following result, which is a generalization of

[33, Proposition 3.6] to products of projective spaces.

Lemma 1.4.16. Let A € Ja—r(at)m=(n+1) thep Vq(A) € HI(X, Q%) is repre-
sented by the Cech cochain {m((—1)"+#D#I AQAQ ;) F1Fy)}1,5 in C1(U, Q5.

Proof. Recall that for j € {0,---,¢— 1}, there is the exact sequence (1.3) given

by

0= Q3 ((g—j 1)) = 7R (a=5)X) = Q57T (g=0) ) — 0.
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We find coboundary maps
65+ HI(X, Q7 (g = j)X) = BTN (X, QT 2 (g — j - 1)),

We will show by induction on j that ;1 o --- o do(res(Aw A w/Fat1)) is repre-
sented by the Cech cocycle

{r((—1)IO=D2HOHEDET AQNQ ; JFrFyFT9) 5 € CF U, QT (=) &).

Then taking j = ¢ will give the desired result: using [33, Remark 2.3], we have
that the element above represents ¢, (A) for j = ¢ up to a factor (—1)ala=1)/2,
First of all, note that the case where j = 0 is precisely Lemma 1.4.15, part
(1). Now assume that 6;_q o --- o dg(res(Aw A w/F9T1)) is represented by the
Cech cocycle {m((—1)70=D/2(_1)r+#D#I AQ NQ; /F; F;F977)} 1.5 for some j.
Then §; 0 --- o §p(res(Aw A @/F91)) is represented by the coboundary of

{ﬂ((,l)j(jfl)ﬂ(,1)(r+#l)#JAQI A QJ/FIFJFqij)}I,J
Using [33, Remark 2.2], this is defined by lifting to the cochain

(1)U 2T #DRT AQENQ [ FrFy FT0 Yy € CFU, Q550 (g — ) X)

and applying the negative of the Cech coboundary operator §, and then viewing
this as an element coming from C (U, Q5" 7%((q — j — 1)X)) of which the
inclusion is induced by the map dF/F A (—). Using Lemma 1.4.15, part (3) we
have that

s {(_1)j<j—1)/2(_1)(r+#1)#JAQ,AQJ}
F]FJquj 1,0
(=1)3GHD/2(_1)r+#D#T AQ A Q) }
FFyFa—i-1 1,J

- {(dF/F) A (

By part (4), m o H provides a splitting to dF/F A (—) implying by part (2) that
the desired element is

(r o H) <{dF N ((1)j(j+1)/2(1)(r+#1)#JAQI A QJ> }I ]>

F FyFyFa—i—1
T D#J S
- {W (,1)j(j+1)/2(*1)( THOFIAQ 1 Q, }
FrFyFa—i-1 1,J
completing the induction. N

Proof of Proposition 1.4.7. We know from Lemma 1.4.16 that wy and wp are
represented by the cochains

{r((~0)T+#D#TAQL AQy JFrFy) g € C9U, QT 179

and
{F((—l)(rJr#l)#JBQ[ A QJ/F]FJ)}I,J S C”(U, QZ—H”_l_p).
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Now let I = {ig,--+ ,ip—1} C {0,---,7} and J = {jo,- -+ ,jn—1} C {0,--- ,n}.
First assume that ¢ < r — 1. Then by definition of the cup product on Cech
cochains, we have that

AQlOv 0 /\(A) . BQan”'ainl AQjD;‘”»jnl)

F; F; F;

10, 52q ’qu"'yi'r‘fl Jo, s Jn—1

(waUwp)rg=m ((1)@’“@"
=7 (ABQ(I,J))
Similarly, if ¢ > 7, we have that

(waUwg)r,s

= ((_1)2T(Q—T+1)+T(n—q—r) AQT(M yir—1 /E Qj()v"' Ja—r A B(.(.) A Q]q s In—1 )
Fi07"'7ir—1Fj07"'1jqu qu,r, L Jn—1
=m (ABQ(I,J))
which proves the statement. O

1.4.2 Proof of Proposition 1.4.9 and Corollary 1.4.10

In order to prove Proposition 1.4.9, we first show the following lemma.
Lemma 1.4.17. Consider subsets

I={ig, -+ yir—1} C{0,--- ,r} and J = {jo, -+ ,jn-1} C {0,--- ,n}
such that I ={0,--- ,r}\ {v} and J={0,--- ,n} \ {w}. We have that

(1) TY, Fy X Fpw A @
[ico Fi ITj=0 F

Proof. If ¢ <r — 1, we have by [11, Lemma on page 14] that

AF NQ(L,J) =

(Z FZdY;> A\ Qio,--- Jig A Qiq,.“ 1 — (71)UYUF1‘Q A w.

=0

Now noting that Qj, ... ;. , = (=1)*X,, and dX; Aw =0 for all j € {0, ,n},
we see that

M FyQig iy NOA Qi Ay
dF ANQ(1,J0) ZFdY ki w g int Jost sdn—1
I, Hi:O FilTj—o Fn
. 2": X, A —1)™ME,F, ,iqT/\w/\Q%,...{r,l Ao e s
j=0 iq Hi:o F; Hj:O F,

- (_1)waFvoQio RN ) A Qi s i Nw
— Fld}/z /\ = ) 2 bq - 27 sbr
i 1, [Lizo Fi Hj:OF
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. NG Hrr=Dtw X B Fuo A Qo
+ .7

vig Ny o iy

F’iq H::O FZ H;‘L:o Fn

1 v+wYF X Fpw A @
[Tieo FiIT}— Fn

If ¢ > r, we have by [11, Lemma on page 14] that

ZF’jde A Qoo on A = (1) X Fj, .
Now as Q... 4., = (=1)"Y, and dY; Aw = 0 for any i € {0,--- ,7}, we see
that
dFE ANQ(I,J)
= i:FZdE A (_1)T(n+q+r)FvF‘ijo, ~~,ir7r1 /\Qjm.r.; o /\w/\qu R S
i=0 L [[i=o Fi szo Fj

qu—r Hi:O F; szo Fj

= FdY /\ (_1)U+TYUFUFU}M /\ Qj(h"' 7jq T /\ qu T vjn—l
- 2 K2 = T I
0 qu—r Hi:O E; szo F]

( - n dX A ( 1)7(n+q+7)l ’Ul_’wszio,'“ Jipr—1 A SZ]O, “Jg—r ADA S_qufry"' n—1
: : J
T

L — 1) TY E Fy Qo AN A
n ZFjde /\( ) K JOT, Jg—r Ja—rst i1 N W
=0 qu THi OFi HjZO J
()Y, Py Xy Fyw A @
[T Fi Hj:OF”
which completes the proof. O

Proof of Proposition 1.4.9. Using [33, Remark 2.2] together with Lemma 1.2.7,
we can represent i,(wa Uwpg)) by lifting to the section ABQ(I,J) A dF/F of
Qptrs. (log(X)) and then taking the negative of the Cech coboundary. Note
that we use the diagram from the proof of Proposition 1.3.8 again to see that
this is really the lift.

Now note that C" " (U, Qpt/p.) has indices (I, J') where either:

e I'={0,---,r}and J ={0,--- ,n}\ {w} for a certain w
e I'={0,---,7}\ {v} and J' ={0,--- ,n} for a certain v.
In the first case, we have using Lemma 1.4.17 that

S{ABAE/F AL, J)} i 0) 0
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_ABZ v+w YFX FwW/\W
FHZZOF HFOF
XowFupw A @
H;:O E; H?:o F;

If the index (I’,J’) is of the second form, we similarly find that

— (-1)“AB

SH{ABAF/F)NQUIL, ) b10)r 0

— AB Z v+w w+r YvF;vaFwC: A C_L_J
FHi:O F; Hj:o Fj

Yo Fow A Q@
= (~1)"mAB
Hi:O F; szo F}
This completes the proof. O
Proof of Corollary 1.4.10. Let D € k[Yy, ---,Y;, Xo, -+, X,]°. Note that ¢(D)

is a Cech cocycle, as we have that
5(3(D)) = D (m>, o (-D)* Y, Fwnw+ 30 o(—1)2 T H2X, Fuw A o)
[I—o Fi Hj:o F;
(=)™ D(mF — mF)w A&
H;:O F; H?:o F;

=0
This means that qNS induces a map
¢ kYo, Y, Xo, oo, X)) — H' T (P" x P™, QR 5).

Using Proposition 1.4.9, we find the following commutative diagram

Hq(Xa Q%)Prim & Hp(Xa QqX)pTim L Hn+7l(]P)T X an Q]?:r;]}’")

zzmﬁ aﬁ

E[Y, X]q—r,(q+1)m—(n+1) ® kY, X]p—h(p+1)m—(n+1) — kY, X]P

where we denote k[Y, X| = k[Yp, -+, Y, Xo,--- , X;,]. By Proposition 1.3.8, we
have that 1, descends to an isomorphism

Jq*""v(‘I‘i’l)m*nfl — Hq(X, Qg()prim
and similarly for 1/;p~

We note that ¢ maps the Jacobian ideal to zero. To see this, suppose that
D € k[Yy, -+ ,Y,, Xo,--+ , X,]? is a multiple of F; for some ¢ € {0,---,r}.
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Write ¢Z(D) = {803"' s Sry S0y - 7§n} Then {SI,J}I,J € Cn+T—1(u7Q$;|;Z‘P")
given by

—1)ts, ifI={0,---,r}\{v,i},J ={0,--- ,n} and v < i

(
e, = (—1)%s, it I=40,---,r}\{v,i},J ={0,--- ,n} and v > i
MU s T =0\ i) T = {0 n} {w)
0 otherwise
satisfies 6(¢1.7) = {s0,-** »$r, 80, -+ , 3n}. Indeed, for I’ = {0,--- ,r}\ {v} with

v <iand J ={0,---,n}, we have that 6(&;. 7).y = (=1)7"1(=1)""1s, = sy,
and similarly for v > 4. For I' ={0,--- ,r} and J' = {0,--- ,n} \ {w}, we have
that 5(5[7J)[/7J/ = (—l)i(—l)igw = §,. Finally, for I' = {0,--- ,7} \ {i} and
J' ={0,---,n}, we have that

6(r,0)r,0 = Z(*l)UJrFlSu + Z(*l)iﬂu”gw = — (=) (=1)"si = si.
vF#L w=0

Therefore, gi;(D) is a coboundary. Similarly, if D is a multiple of Fj for some
j €{0,---,n}, then the element {&7 5}, € C"T (U, ngx’"]pn) given by

(_l)j-Hsv if1={0,---,r}\{v},J ={0,--- ., n}\ {j}
(_1)j+r§w if I={0,---,r},J={0,--- ,n}\{w,j} and w < j

ST T (s, = {0} T = {0, n)\ {w. g} and w > j
0 otherwise
satisfies 0(&7.7) = {0, , 5,80, , 5n}

So ¢ descends to a map ¢ : JP — H"F"(P" x P, Qptr,,) which makes the
diagram commute. As the cup product is non-degenerate, we have that ¢ is
surjective. O

1.4.3 One dimensionality of J* and Jrt+(+1n+1)

In this section, we will prove the following statement.

Proposition 1.4.18. J? is a one dimensional vector space over k, except pos-
sibly if n is odd, r =1 and m = 2.

Over C, this is a special case of [27, Lemma 6.3] and the argument is partially
the same. The idea to use the bundle X, (see below) to give a description of
the Jacobian ring and study its duality properties goes back to [20, Section 2].
It will follow that the map from Corollary 1.4.10 is an isomorphism whenever
we are not in the situation where n is odd, » =1 and m = 2.

Notation 1.4.19. Write £ = O(1,m) and let ¥ be the bundle as defined in
[27, Section 2.1]. There is a global presentation of X, given by

0—=e1-Opr Beg-Opn —

43



1d£ . O]P"‘XP" [a) @ 87 . O]P’"XP"(17O) D @ 87 . O]P”'X]Pm(ou 1) — ZE —0
i=0 0 j=0 "

where the first map is given by

U - B)
e — —idp +Zm—,62 — —mid, + ij—.
= oY par Y

We can map the above sequence into the Euler sequence
T n
0= Opr @ Opn — P O(1,0) & @ 0(0,1) = Torspn — 0
i=0 j=0
by sending id, to zero. This yields the exact sequence
0 = Oprxpr — Xz — Tprypn — 0. (1.11)

Consider the morphism >, — £ which sends a local section

. - 0 " 0
aid, + szaiyl +ch87)(j
i=0 =0

to
=0 7=0

This gives rise to a surjective morphism X, ® £=! — Oprypn. Form the asso-
ciated Koszul complex

0= A" S, 0L 5 5 APY, R L7 58,0 L 7 = Oprypn — 0.
(1.12)
Now applying the functor Hom(—, Qg wpr) we find the exact sequence,

0= Qpile = SERLROET S — = AT @ Lt g Qptr — 0
(1.13)
defining a left resolution of ng‘; pn- Note that

An+r+1zz ® £n+r+1 ® ng;]ll’r _ O(,O)
as det(Xz) = det(Tpryxpn) = O(r + 1,n + 1) using the exact sequence (1.11),
L = O+ r+1,m(n+r+1)) and Qi L, = O(—r —1,—n — 1).
Consider the hypercohomology spectral sequence
EPT = HIP" x P", APT'S) @ L @ Qptl, ) = HPPI(P™ x P* Q).

Lemma 1.4.20. We have that EY'? =0 for ¢ > 0 and eitherp+q=n+r or
p+q=n+r—1, except in the case when n is odd, r =1 and m = 2.
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Proof of Lemma 1.4.20. This proof is partially taken from [27]. Note that the
sequence (1.11) gives rise to exact sequences

j j j—1
0= W pr > AMSL - QL 5 — 0
so that it is enough to prove that for 1 < s <n+r — 1, we have that
H7l+7"—s(]P)'l" x ]Pn’ Qﬁrxpn ® £S ® Q]gj;:ﬂ»w) _ 0

and
H (P x P" Qs ts, @ £°@ Q) =0
and for 1 < s < n 4+ r, we have that
Hn+7-+1—s(]P>r % Pn7 QE”X]P’" ® LS ® Q]’gjr;[pn) -0
and
Hn+r+1—s(IF;r % ]Pm’Q[?;iPn ® LS ® Qﬁ)}j;f]pn) =0.

We show that the first condition holds except in the case when n is odd, 7 =1
and m = 2; the others are similar. That is, we will show that

Hn+r_s(]P)r X Pn79]§‘r><ﬂ”n(5 —-r—= 17m8 —n-= 1)) =0 (114>

for 1 < s <n+r—1 except in the case when n is odd, r = 1 and m = 2. Using
Proposition 1.2.10, we have that

H™ =5 (P" x P, Q5 ypn(s —7 — 1,ms —n — 1))

=P P HE Q% (s—r—1)@H P, Q. (ms—n—1))
1+j=s k+l=n+r—s

Note that by Theorem 1.2.9 we have that H*(P", Q% (s —r — 1)) = 0 except
possibly if we are in one of the following situations:

1. k>0, =0and s # r+1. Note that H'(P", O(ms—n—1)) is zero except
possibly for:

¢ [=0. Then k=n+r—s. Ifk>r, then H*(P", Q. (s—r—1)) = 0.
Otherwise, n + r—s < r and so s > n which implies that i > n > r
and so H*(P",Q%,. (s — 7 — 1)) = 0 in this case as well.

e [ =n. Then as ms —n —1 > —n — 1, we have that

1 - _
Hn(Pn,O<mS_n_1)) == (MK[XO 1, e ,Xn 1]>msn1 - 0.

2. s=r+1and i = k. We note that:
e If [ =0then k=n—1>rand so H*(P", QL. (s —r — 1)) = 0.

45



e Ifil>0and ms#n+1thenms—r—1>j—nas
ms=m(i+j)>2j>j+1. (1.15)

It follows that H'(P™, Q%n (ms—n—1))=0.

e If [ > 0 and ms = n + 1, then HI(P",an) = 0 provided that j # .
Therefore, H" "5 (P" x P*, Q5, pn (s —7—1,ms—n—1)) is possibly
nonzero if [ = j, thatis, r=i4+j—1=k+1—1=mn— 2. In this
case, it follows from m(r +1) =ms =n+1=r+ 3 that r =1 and
m=2,son=3.

3. k=0and j>r+1. Thenl=n+r—s>0 and:

e If ms # n + 1, we have that ms —n —1 > j —n by (1.15). This
implies that H'(P", Q. (ms —n — 1)) = 0.

e If ms = n+ 1, then Hl(IPm,an) =0 unless | = j. Butifl = j
then s =i+ j > j =n+r — s implies that 2s > n4+r > n+1
while on the other hand 2s < ms = n + 1. We see from this that
H 7 =5(P" x P™, Q5. pn(s — 7 — 1,ms —n — 1)) is possibly nonzero
if m=2,r=1and n is odd.

We conclude that the statement holds. O

Proof of Proposition 1.4.18. We have that H"*"(P" x P*, Qpi7,,) = k is the
final cohomology group of the sequence (1.13), by Lemma 1.4.20. Note that

HOP" x P",0(p)) = k[Yy, -+, Yy, Xo,- -, Xp]°.
The image of the map
A"TTEY @ LT @ QT — AMTTHISY @ L0 @ QR

is the ideal (Fo,- -+, Fy., Fo, -+, F,) so H"F(P" x P, Q7o) &2 JP. In partic-

ular, J? is one dimensional. O

Remark 1.4.21. As a consequence of this statement, the map ¢ from Corol-
lary 1.4.10 is an isomorphism. This proves Corollary 1.4.11.

Remark 1.4.22. An interesting question is whether ¢ coincides with the map
JP — H™ (P x P, Qptr,,. which we get from the above argument. We have
not been able to give a full answer, but suspect it might be true. A possible way
to make the map from the above argument explicit might be as follows. Take a
Cech resolution of all terms in the resolution (1.13). If we start with an element
£ € C”+T-1(U,Q§;"XTPW,), then using that H"T"~1(P" x P”,ng';w) = 0, the
element comes from some ¢ € C""=2(U, Qp7,. ). Computing ¢ and applying
the horizontal map, we find an element of C"*" " 2(U, X} @ L7 "1 @ QptlL.).
Repeating the above procedure and keeping track of everything, we end up
with an element in C®(U, O(p)). After that, we can check whether the resulting
morphism is the same as ¢.
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We now prove Proposition 1.4.13.
Notation 1.4.23. We write & = @ O(-1,—m).

There is a surjective morphism & — Oprypr sending local generators g; for
S {1a e 7T} to le;Fz and 9i € {T+]—7 e ,TL+T+1} to giXifrlei—r—L This
gives rise to an exact Koszul complex

0— AT He sl 5 A28 5 € — Oprypn — 0. (1.16)
and applying Hom(—, Qg wpr) we find
0= Qe = V@O, = 5 AMTTHEY gt 0. (1.17)
Note that A"t H1gY @ Qpfr, = O(p— (r+1,n+1)).
Lemma 1.4.24. The complex (1.17) defines an acyclic resolution of QSTXTPT.

Proof. We have that A'€Y is a direct sum of terms O(i —r —1,mi —n —1). For
q > 0 we have that

HIP" xP*",O(i—r—1,mi—n—1)) (1.18)
= P HP,06—r—1)) @ H(P",0(mi —n — 1)).
a+b=q

Note that H*(P",O(i — r — 1)) = 0 unless possibly if a € {0,7}. If a = 0, we
have that H®(P", O(mi —n — 1)) = 0 unless possibly if b = n. But in that case

mi—n—1
H' (P, O(mi—n — 1)) = | L 0
’ Xo--- X, XO’ ’Xn

because mi —n —1> —n (as mi —n — 1 < —n would imply mi < 1). If a =r
then we similarly see that H"(P",O(i —r — 1)) =0asi—r—1> —r. O

Proof of Proposition 1.4.13. By Lemma 1.4.24 we have that H"*" (P" xP", ng;w)
is the final cohomology group of the sequence (1.17). The image of the map

A"TTEY @ QL — AMTTHLEY @ QT
is the ideal (Y1 Fy,---, Y, F,., XoFp, - - - ,XnF,L). Because of the Euler relations,
this is equal to the ideal (Yo Fy,- -, Y, F, XoFo, -+, X, ) so that we find that
ke HHr (BT x P Qpflp,) & Jer(rttntl), m

1.5 Computing the trace map

Again, we keep the notation which was set up in the previous sections. For
A g grrptm=n=1 and B ¢ Jo-matm=n=1"consider their images

wa = Pp(A) € HP(X, Q%) and wp = ¢,(B) € HY(X, Q%)
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under the isomorphism from Proposition 1.3.8. We note that as the trace map
is compatible with pushforwards, we have that

Try(wa Uwp) = Trprypn (ix(wa Uwp)).

Therefore, we can compute Tr(wa U wp) by representing i.(wa Uwp) on the
open cover U using Proposition 1.4.9 and comparing it with a representation
of ¢1(O(1,m))"*". We will do so on a refinement of &, which we now first
construct.

Notation 1.5.1. In this section we will make the following three extra assump-
tions:

e m + 1 is invertible in k.

e V(Fy), -+, V(F,) are smooth hypersurfaces in P" and they intersect transver-
sally: V(Fj,,---,F;,) is a smooth closed subscheme of P™ which is of
codimension s + 1 for all {ig,--- ,i,} € {0,---,r}.

e The first assumption remains true after setting any proper subset of the
X,’s equal to zero and replacing P™ with the linear subspace defined by
the vanishing of the chosen X;’s.

Now let
G():YOFOa"' aGT‘:}/?“FT‘aGT+1:X0FO7"' 7Gn+7’+1:XnFn'

The following is true because of the extra assumptions made in Notation 1.5.1.

Lemma 1.5.2. The set of opens V = {V,- -, Voyr1} where V; = {G; # 0}
is an open cover of P" x P".

Proof. Suppose that x € P" x P™ is not in Vy U --- U V... Then we have that
YoFy = --- =Y, F, = 0 at z. As not all Y; can be zero at z, there is some
F; which is zero. As V(F;) is smooth, we have that 0F;/0X; is nonzero at x
for some j. So F; = Y.i_,Y;0F;/0X; is nonzero at x. If X; is nonzero at z,
then « € Vji,41. Otherwise, as V(F;) remains smooth after intersecting with
X, =0, we have that OF; /90X is nonzero at x for some j' # j. We now repeat
the above argument until we find some open in V containing x. O

Proposition 1.5.3. If we remove V; for any j € {0,--- ,n+r+ 1}, this still
results in an open cover.

Proof. We have the two Euler equations >_;_(Y;F; = F and Y., X;F; = mF
and somY1_G; — ST G = 0. O

Notation 1.5.4. We write W for the cover V with V; removed, i.e.

W= {Vh T 7Vn+r+1}-
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Remark 1.5.5. Note that V is a refinement of U via the identity map on the
index sets. The inclusion {1,--- ,n+r+1} — {0,--- ,n+r+ 1} makes W into
a refinement of V. This yields a composition of refinement maps

C U, Q) = O™V, Qprpn) = CVTT (W, Q5 pn)

sending a cocycle {so, - , 8,80, , 8} € O™ (U, QT 75,) - where s; lives on
the intersection of all opens except for U; and 5; on the intersection of all opens

except for U; - to {so} € C"*" (W, Q51 5.).

Notation 1.5.6. Consider the matrix M given by

e 9Fy OFqy . 9Fy
P R Y 3 w3
P 1 1 e 1
0 B 0 Y X0 Yy 0X1 Y X,
OF OF, OF
0 0 Fr Y'Tan . Y;C')le Y"(’?XJTL
OF, OF OF, & O, oF, OF
Xogxe Xogxs - Xogxs Fot+Xogxs  Xogxs 0 Xogxo
OFy oF, OF oF, = oF, oF,
Xigxr Xigxs Xigxr  Xigxe Bt Xigx Xi5%
oF, oF, OF, oF, oF A oF
Xnoxr Xngxs Xnoxs  Xngxs Xn 5%t Fn + X0 55"

Let M;j; be the minor with the i’th row and j’th column left out. Note that ¥;
divides det(Mg);) for i > 0 and X; divides det(Mj);).

We will prove the following statement in Section 1.5.1.

Lemma 1.5.7. There exists a unique C € k[Yy, -+, Yy, Xo, -+, X,,]PHrt1n+D)
such that

fori € {0,---,r} and j € {0,--- ,n}. We have that c;(O(1,m))"*" is repre-
sented by R
CwAw
H;:l YiF; H?:o Xij

Remark 1.5.8. One way to view the situation: we can embed P” x P" into
P*+7+1 using coordinates Yo Fy, - -+ , Y, Fy, XoFy, -+ , XnF,. This then lands in
a hyperplane H. Computing the first Chern class boils down to pulling back
the generator wy of Q’I?LT to P" x P™.

€ CMTTW, QETLL).

We will then prove the following statement in Section 1.5.2.

Theorem 1.5.9. Assume that we are not in the situation that dim(X) is odd,
r=1 and m = 2. Then the map

T n
g J0 = JUT ) D DTV [ X0
i=0  j=0
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is an_isomorphism. Therefore, for the element C from Lemma 1.5.7, we have
that C = ¢(C) for a unique C € J?. Write AB = AC in J* for some X\ € k*.
Then

Tr(wa Uwp) = (—1)"Ttmn*! <n + r) A

r

We can then find an analogue of the Scheja-Storch generator from the clas-
sical case.

Definition 1.5.10. Suppose that ("':T) is invertible in k. Then the trace one
element ep = % € J? is called the Scheja-Storch generator of X.

Remark 1.5.11. We conjecture that the assumption that (”jr) is invertible
in k is not necessary, i.e. that one can find a similar construction of the Scheja-
Storch generator as in Construction 1.1.19.

Remark 1.5.12 (Continuation of Remark 1.3.9 and Remark 1.4.8). If we take
r = 0, the formula from Theorem 1.5.9 becomes

Tr(wa Uwp) = —mA

for A, B € J such that AB = Aep € J” for some A € k*. This is in accordance
with [33, Theorem 3.8].

In characteristic zero, one has an explicit formula for the Scheja-Storch gen-
erator in the case where r = 0, used in [33]. In Section 1.5.3, we show that under
the map Yy +— 1 from J to the classical Jacobian ring, the Scheja-Storch element

from Definition 1.5.10 maps to this Scheja-Storch element up to a factor ’Z::ll .

1.5.1 Proof of Lemma 1.5.7

Before proving Lemma 1.5.7, we first prove a lemma in a slightly more gen-
eral setting. Write Zy = Yy, -+ ,Z, =Y, Z, 41 = Xo, -+, Zntr+1 = X, and
let Go,---,Gpnyr+1 be homogeneous polynomials in the Z; of the same total
degree m + 1. Consider the matrix M = (m;;);; with m;; = g—%.

Lemma 1.5.13. Leti,j € {0, ,n+r+1} be two distinct elements. We have
that N
dG™ =y " det(M;jy)dZ*!
k<l

where My is the minor of M with the i’th and j’th row and the k’th and l’th
column removed.

Proof. We have that

n+r+1
09\ (5 %)

k#i,j \ 1=0
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= > I mwidzjy n---ndz;,,,
(j17"'j7b+7 ) k#%]

_Z Z sign(o H mpg(p)dZ o

k<l 0€Sp4r PFi.J
= § det(M;jx)dZ"
k<l

where S, 1, is the symmetric group on n + r elements and we used the Leibniz
definition of a determinant. O

Now for k € {0,--- ,n+ 7+ 1} we write
Th =Y (—1)'Z;dZ"F + Y (1) Z;dzM
i<k i>k

Note that this definition is similar to the definition of generators 7; of Q]lp?l used
in [50], which was also used in the argument of Proposition 1.3.8.

Lemma 1.5.14. Let i € {0,--- ,n+r + 1}. Then on the intersection of the
opens {G; # 0} for j # i, we have that

G1 G2+1 Gn+7‘+1
dlog<G0> -Adlo g(Gi_1>/\ /\dlog< S

G n+r+1

:(m+1)l_[n+r+1 : Z det{ M)

7=0 J

Proof. We can compute that
Gl > (GiJrl ) (GnJrrJrl )
dlog| = | A---Adlog| =—— | A---Adlog | ———
& (GO *\Gi *\ Gurr
B (dGiJrl 7 dGil) H (de+1 B ng)
Giq1 Gi—1 idiiel Gj1 G;

Gi (Zj<i(*1)jdoGj’i + Zj>i(*1)j+1doGi’j>

Frel
[I,20" Gp
. Gi Zj<i( 1)’ G Zk<l det( zg|kl)de’l
- n+r+1
Hp 0 GP
N Gidljsil— DIHG; Y0, o det (M )dZM
n+r+1
Hp:() GP
Now recall the Euler equation (m + 1)G; = ZZISH pggz = ZZISH ZpyMijp.
We see that
(m+1) Z JG Zdet ijlkt) Zkl—i—z ]'HG Zdet ij|ki)d Zk’l
Jj<i k<l J>i k<l
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n+r+1

=> (-1 Z Zymp Y det(Mij ) dZ"!

j<i k<l
n+r+1
+ 3 (-1t Z Zymyp Y det(Mij ) dZ"!
7>1 k<l
- Z Z —1)7 Py, + 3 (=17 ng) Y det (M) dZ!
1<t >t k<l
= Z —1)*Z (Z (D (=17 Pmyy + Y (=1)7 74 gy, ) det (M, )dZ*
k<p j<i >t
Jrz Z JJrpm]erZ 1740 ) det(M; ) dZP
p<l g<i J>i
+ 3 (0P, + S (=1 ) det(Mmkl)dZ’”)
k<l j<a J>1
klp
=3 (=1)PZ, (D det(My;,)dz"? — > det(M;)dZ"")
P k<p p>l1
n+r+1
= > det(Myy) (Y (-1)PZ,dzP* + Y " (—1)PH1 Z,dz"MP)
k=0 p<k p>k

= 7 det(M;,)

k

as desired. Note that the seventh line is zero, as this is the determinant of M;,
with the k’th row removed and replaced by the p’th one. Also, note that the
sixth line picks up an extra minus as we have to jump over an extra column
when computing the determinant. O

Now let
GO :YOFOa"' 7Gr :YrFraGr+1 :XOFO;"' aGn+r+1 :XnFn

as in the introduction of this section. Then those are all of bidegree (1,m) and
the total degree is m + 1. The matrix M is exactly given by (1.19).

Proof of Lemma 1.5.7. We can represent ¢1(O(1,m)) € HY(P" x P", QL. pn)
on the cover W by

{dlog (?)} € CT W, Qpr )
i) i

Taking the cup product n + r times following the rules for a cup product on
Cech cohomology, we see that ¢1(O(1,m))" " is represented by

dlog Gy A -+ Adlog Grntrs € CMTTW, QptL).
Gl Gn—i—r
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By Lemma 1.5.14 this is equal to

o det(Moy) _
(m+1) H2:1 YiF; H;:O X F}

The numerator Y po+! det(Mo)7) is a global section of the twisted sheaf
QS,TXTP,L (n+r+1,mn+r+1)). Because ngx”w (r+1,n+1) is a trivial line
bundle which has w A @ as a global generator, there exists a unique rational
function C' € k[Yy, -+, Yy, Xo, -+ , X HrFDm=n=1 gych that

Pt det (Mo ) B CwA©
(m+1) H::l YiF; H?:o X F} H::l YiF; H?:o Xij.

In order to find C, consider the affine patch {V; # 0}, {X; # 0} with coordinates
Y = %,xk = );;—’; We see that

. 0 it kA
= (-1)"dY* A = .
me=(=1) “ {(1)"“wmv if k=

for k € {0,--- ,r} and

0 ifk+#j 1
e =wAdXFTTTL = , B 1 #J.+T+

(—)YwAw fk=jj+r+1
for k € {r+1,---,n+ 7+ 1}. Therefore, 720" det(Moy)7 reduces to
(—1)7 det(Mo|j4r11) + (—1)" T det(Mo); )w A w. We have that C is of bidegree
p+ (r+1,n+1). Homogenizing again and comparing coefficients of 7, in w A @,
we get

(m+1)Y;X,;C = (—1) det(Mo|j4r41)Yi + (—1)"** det(Mo);) X,

as desired. 0

1.5.2 Proof of Theorem 1.5.9
Proof of Theorem 1.5.9. Note that v is well defined, because an element of the

Jacobian ideal (Fy, -+, F,, Fy,--- , F,,) will be mapped to zero.
Let ¢ : JP — H" (P x ]P)”,QI’P?;"X"PH) be the map from Corollary 1.4.10. Com-
posing the map J* — H" 7 (U, Qi) that gives rise to p with the refinement

map from Remark 1.5.5, we find the morphism
(—1)”+1mDYoF0w A w
[Tz Fi Il Fy

Because W is affine, the Cech cohomology of this cover computes the usual
cohomology. This implies that ; is surjective. Using Proposition 1.4.18, we

Yy JP— HTNOW,Q5), D e
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conclude that v ; is an isomorphism.
Now consider the morphism

k[Y()v e 7}/;‘; XOv e ,Xn]p-i-(r-‘rl,n-ﬁ-l) — Cn+T(W7 QST):‘]P’"L)a
(=) 'mDw A ©

Dw— — = — .
Hi:l YiF; szo X;Fj

Note that coboundaries on W are precisely coming from the ideal generated by
the GG;. We therefore find an induced morphism

Wy JOTUTLED L (O QR

By Lemma 1.5.7, we have that C' maps to the nonzero element ¢; (O(1, m))"*",
meaning that 1 ; is surjective. Using Proposition 1.4.13, we see that v ; is an
isomorphism.

We now have the commutative diagram

JP P jp+(r+1,n+1)

4 (W, 057,

From this, we see that 1) has to be an isomorphism, which proves the first part
of the statement.

Now using Proposition 1.4.9 and applying the refinement morphisms, we have
that i.(wa Uwp) is represented by

(=)™t ABmYow A @
Hz:1 F; H;L:O F}

By Lemma 1.5.7, we have that ¢;(O(1,m))""" is represented by

€ O W, OB ).

CwA@ . e
M ViF T X5, W, 0 en).
1= (2 Jj=

As 1 is an isomorphism, there exists a C' € J* such that C = ¥(C), from which
we see that C' maps to c1(O(1,m))"+t" € H" " (P" x P, Qp75,). Now using
Proposition 1.4.18, we have that AB = AC for some A € k. Using that the trace
of ¢1(O(1,m))"*" is equal to ("7")m™ we obtain the desired result. O

r

1.5.3 The Scheja-Storch generator in characteristic zero
for r=0

Notation 1.5.15. Assume in this section that char(k) = 0.

o4



Notation 1.5.16. Asin Remark 1.3.9, let X = V(F') C P" be a smooth hyper-

surface, defined by a homogeneous polynomial F' € k[Xg,--- , X,,] of degree m.
Form the hypersurface X = V(YyF) C P x P and let F; = g—)i and F; = 3§3
for i,j € {0,--- ,n}. Note that we have Euler equations
(m—1)F =Y X;F;. (1.20)
j=0

The Jacobian ring of X is the bigraded ring
J = k[Y07X07' o aX'rL]/(FvifOFOa aYOFn)

Furthermore, we set

J = k[Yy, Xo,- -, Xy /(Yo F, Yo Xo Fo, - -, Y0 X, F).

Let
JX:k[XOa"' 7Xn]/(FOa 7Fn)

be the Jacobian ring of X as defined in [33], which is a usual graded ring. We
have the map f: J%* — J% Yy 1,X; — X, for all a,b € Z. Let
det(Hess(F)) _  (n+1)(m+2)
ep = (m—1yn ! cJy

be the classical Scheja-Storch element of X, used in the proof of [33, Lemma
3.7]. In this section we will prove the following result.

(m+1)C
nFL

F mn J)((T]'+1)(m+2) .

Proposition 1.5.17. We have that f( )=¢e

Applying Theorem 1.5.9, we find the (n + 2) x (n + 2) matrix

F YoF, YoF, - Y,F,
u XoFy Yo(Fo+ XoFy) YoXoFo1 --- Yo XoFon

and we note that this matrix has rank n + 1, as the sum of the last n 4+ 1 rows
is m times the first row.

mntl

Lemma 1.5.18. We have that det(Mojo) = Yy — 2y det(Hess(F)) [Ti X

(m—T)n+1

Proof. Let det(Hess(F))jq.... . be the minor where the rows and columns (jo, - - - , jr)
have been removed. We claim that

n o det(Hess(F)) 15
YO +1 det(HeSS(F))j07...7jT H XL H Fi - }/0 +1WHXZ

i¢(Jo, + »dr) i€(Jo, ) i=
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Without loss of generality, we can assume that (jo, - ,j-) = (k+1,--- ,n) for
some k. The proof of the claim proceeds by induction on k. For & = n, the
result is clear. Now suppose that

n n
, naq det(Hess(F))
n+1 4 n+1 4
Y det(Hess(F) )1 | IX | |k+|1F,L =V e i|:|OXl

for some k. Denote H = Hess(F)g41,...,n and write H; ; for the minor of H
with the i'th row and j’th column removed. Note that

0=(m-1YoX;F; =Yy Y X;X|F;
=0

in J and so
, k—1
(=" X det(Hj x) — X; det(Hi ) Yo [ [ Xi
=0
k

Z 1) ( Xy Fi + X Fj;) det(Hpj xi) ) Yo HX
=0

=0 I#35,k

k

D (DY XiFy det(Hygi) | Yo H X;

=0 l#j,k

k
— ( Z H_] XkF]m Xk;sz Z Xlﬂz det Hk] ’“ YO HX
0

as the second sum on the fourth line is the determinant of Hj, ; with the j’th
row replaced by the i’th row, which is zero.
We now have that

det Hess
=0 =0 i=k+1

k

=yt Z( D*4I Ey det(Hy, ;) HX H F,
j=0 =0 i=k+1
k

=Yg | DX, Py det(Hy i) HX H F;

Il
=)

J 1=0 i=k+1

= (m — )Yy det(Hess(F))k,.. m H X[ F
= i=k
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This completes the proof of the claim.
Let M; be the matrix given by

XoFopo e XoFoi-1 XoFoit1 e XoFo,
XiaFi_1i-1 -+ XiaFi_1,;-1 Xi 1 Fi_1i41 e Xy B,
XipiFigio 0 XopaFip1i1 P+ XoaFi 0 XaFins

XnFnO e XnFn,i—l XnFn,i+1 o Fn + Xnan
We find that
XoFoo -+ XoFon
det(M0|0) = YVOTH_l det : T
+ Y7 F det (M)
i=0
= Y7 det(Hess(F)) H X;
j=0
-+ Y0n+l Z det(Hess(F))joy... Jr H X1 H Fz
(Jose+ 5dr) i¢ (o, Jr) 1€(Jo,+ »dr)
1 n+1 n+ 1 n
o (Al P ( . ) (m — 1173 | det(Hess(F)) [ X
(m—1) =0 N 7 i=0
1 mn+1 n
. n
as desired. O

Proof of Proposition 1.5.17. We find by expanding to the first column that
det(Mp|p42) = 0, as YpX;F; = 0 in J. Therefore, using Lemma 1.5.18 and
Lemma 1.5.7 we have that

mn 1

+ n
=T H X; det(Hess(F))

(m+ 1)C~v = YO”H(
i=0

and so using Theorem 1.5.9, we find that

mn+1

=Yy det(Hess(F ,
C=% (m+1)(m —1)nt! et(Hess(F)) € J
This implies that f(C) = %eF in J)(;l+1)(m+2). -
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1.6 Example: intersecting two generalized Fer-
mat hypersurfaces of the same degree

To see an application of Theorem 1.5.9, we compute the quadratic Euler char-
acteristic of a complete intersection of two generalized Fermat hypersurfaces of
the same degree.

Notation 1.6.1. Let m > 2 be coprime to char(k), assume m + 1 is invertible
in kand let Fy = Y1 ja; X" and Fy = > 1" b;X™. Let X = V(Fy, Fy) be
their complete intersection. Furthermore, assume that a;b; — a;b; # 0 for all
J #i. Write L; = (a;Yo + b;Y1). Then V(Fy) and V(Fy) are both smooth, and
so is X, and these conditions still hold when we set any subset of the X; equal
to zero. We have that

n

n
F=YoFy+YiF =) (a;Yo +biY)X[" = ) LiX[".
=0 =0

Again, we write X = V(F).
We will prove the following result.

Proposition 1.6.2. Define

Anm:

)

1 deg(cn(Tw)) if n or m odd
Ldeg(cn(Tx)) —n—1 ifn,m even

The quadratic Fuler characteristic of X is equal to

Ay mH if n or m odd

X/k) =
x(X/k) {An,mH+ZZ_O<H?_O,i;ék(akbi —a;bg))  if n,m even

This will imply the following.
Corollary 1.6.3. Define

3 deg(cn—2(Tx)) if n odd
Bym = %deg(cn_g(TX)) -1 if n even, m odd
1deg(cp—2(Tx))—n—1 ifn,m even

The quadratic Euler characteristic of X is equal to

Bn,mH an odd
X(X/k) = { BymH + (1) if n even, m odd
B H + (1) + 2o izo i (arbi — aiby))  if n,m even
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1.6.1 The case where n =2

The case where n = 2 is special, so we treat that argument here first. In this
case, X = V(Fy, F1) is the intersection of two Fermat curves V(Fp) and V(F})
in P? with

Fy = aoX{)" + alX{” + G,QX;H
and

Fy = bo X" + 01 X" + b X"

where the a;,b; € k* satisfy a;b; — a;b; # 0 for all ¢ # j. In order to calculate
the corresponding quadratic Euler characteristic, we will need that for a sepa-
rable field extension k C L, the natural map = : Spec(L) — Spec(k) induces a
morphism 7, : GW(L) — GW (k) where for a form (u) € GW(L), we have that
7, (u) is given by the composition
Lxrp g By

By [24, Theorem 1.9] we have that x(Spec(L)/k) = m.((1)). The following is
a standard fact about quadratic forms, but we include a proof for the sake of
completeness.

Lemma 1.6.4. Let K be a perfect field of characteristic coprime to 2m and
let @ € K*. Consider the field extension K(a) = K[X]|/(X™ 4+ a) of K and
let w e K(a)* be a unit. Then

DL H + (um) if m is odd

D2 + (um) + (—aum)  if m is even

Tric (o) x (1) = {

Proof. Note that K(a) has the basis 1, a,a?,--- ;™! over K. We have that

um ifi=353=0
TrK(a)/K(uoch) =q—aum ifi+j=m
0 otherwise
Namely, if ¢ + j = m, the multiplication by ua™ = —au corresponds to the

diagonal matrix with —au as its entries, and this has trace —aum. If i = j = 0,
multiplication by u is the diagonal matrix with u on the diagonal, which has
trace um. If i or j is not zero and i + j # m, we are taking the trace of the
matrix

00 -+ 0 —au O 0
o0 -~ 0 0 —au -- 0
0 0 0 0 0 —au
u 0 0 0 0 0
0 u 0 0 0 0
0 0 u 0 0 0
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which has trace zero.
Therefore, the quadratic form Trg(q)/x ({u)) corresponds to the symmetric bi-
linear form with matrix

um 0 0o --- 0 —uma
0 0 0 -+ —uma 0
0 —uma 0 --- 0 0
—uma 0 0o --- 0 0
which gives the form from the statement. O

Proposition 1.6.5. The quadratic Fuler characteristic of X equals

(m+1)(m=1) P
X(X/k) = (m+2)2(m—2)H T 2 z.fm Z.S odd
T H A (1) 4+ 30 o[ i (@iby — agbi))  if mis even

Proof. Without loss of generality, we can assume that X = V(Fp, F}) lies inside
the affine patch where Xo # 0; otherwise, we change coordinates. Choosing
coordinates x = ig—;’ and y = % on A?, we have that X is the zero set of the
ideal

(aox™ 4+ a1y™ + ag, box™ + bry™ + ba).
Let K be the residue field of X, that is:
K = k[z,y]/(aox™ 4+ a1y™ + az,box™ 4 biy™ + by).

Define
- (Lobg — G,Qbo o a1b2 — CLle

and f

Then we can view the extension k¥ C K as one which takes place in two steps:

arby — apby aopby — arby’

kC k(o) =K[t]/(t" +e) C K = k(a)[s]/(s™ + ).
Indeed, the system of equations

agr™ 4+ a1y™ + ag = 0 and bgx™ + b1y + by =0
implies that

(a1bg — agb1)y™ + azby — agba = 0 and (agby — a1bp)z™ + asby — a1by = 0.
We see from Lemma 1.6.4 that for odd m, we have that
Tric/e({1) = Triay /i (Trr/r(a) (1))
= Tr(a)/k <m2_1H + <m>>

m(m — 1) m—1
= H
2 * 2

H + (m?)
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_ (m+1)(m—1)H+<1>

and for even m we compute
Tric/i((1)) = Trya)/u(Tri /r(a) (1))

= Trg(a)/k (m;ZH + (m) + <—fm>>

= Wﬂ +(m?) + (—m%e) + (—m>f) + (m2ef) + (m — 2)H
_ WH + (1) + (=€) + (—f) + (ef)
_ Wﬂ + (1) + ((aobr — axbo)(agbs — asbo))

+ <((11b0 - aobl)(albg — a2b1)> + <(a2bo - aobg)(a2b1 — albg)>

which is the desired result. O

1.6.2 The Jacobian ring

In this situation, we can give a very explicit proof of the one dimensionality of
the bidegree p part of the Jacobian ring

J = k[YOaY17X07"' 7Xn]/(F0aFl7mLOX$71a"' aanerTy,n_l)

and also give generators and understand their relations. This is following [50,
Section 4 and Section 5.1].

Proposition 1.6.6. Let i,j,k € {0,---,n} be distinct. We can write L; as a
linear combination of L; and Ly, more precisely, we have that

akbi — aibk ) aibj — biaj

L= N

akbj — ajb;g J akbj — ajbk
Proof. The expression L; = aL; 4 bLj leads to the system of equations

aa; + bap = a;

ab; 4 bb, = b;

aibj—bia;
akbj—ajbk

These imply that baib; —bbra; = a;b; —b;a; and so b = implying that

1 aiakbj — ajaibk — akaibj + akbiaj arb; — a;by,
a=a; (a; —axb) = = .
aj(akbj — ajbk) akbj — ajbk

This proves the statement. O

Notation 1.6.7. Let k,l € {0,--- ,n} be distinct.

61



Proposition 1.6.8. The graded piece JP is generated by the elements

A] = X;n . X6n72 ... X?T’_2 H (aiYO + b2Y1)
i#j,k,l

for 5 €{0,--- ,n}\ {k,1}.
The statement will follow from two lemmas.
Lemma 1.6.9. Consider a term
A=XPX{ o X (ag, Yo + b, Y1) (a5, Yo + bj,_, Y1)

where ig+ -+ +in = (n+1)(m —2) +m. Ifir, iy >m—1 for k,1 €{0,--- ,n}
distinct, then A = 0.

Proof. Assume without loss of generality that ig,i; > m — 1. By Proposi-
tion 1.6.6, we can write any L; for ¢ > 2 as a linear combination of Ly and L.
This implies that A can be written as a linear combination of terms of the form
XXt  Xin[PLY where p4q =n — 2 and ¢ € k is some constant. But

(aoYp + b0Y1)X6”*1 =0 and (a1Yp + blyl)XInfl —0
in J and so A =0. -
Lemma 1.6.10. Let A be as in Lemma 1.6.9. Then maxyp—q,..., ix < 2m — 2.

Proof. Suppose, without loss of generality, that ig > 2m — 2. We have that
X = —%(alX{” + -+ a, X" and so

1

A= _ai(alXéomefﬁm e X (ag, Yo + b, Y1) -+ (a5, Yo + by, Y1)+
0
ce e an XX X (0, Yo + b, Y1) - (g, Yo + by, Y1)
Note that igp—m > 2m—1—-m =m—1and ix+m >m—1forallk € {1,--- ,n}.
By Lemma 1.6.9 this implies that A = 0. 0

Proof of Proposition 1.6.8. First, note that J? is generated by all the terms A
as in Lemma 1.6.9. Now take such a term A and assume that it is nonzero. Then
by Lemma 1.6.9, there can only be one j € {0,---,n} such that i; > m — 1,
and by Lemma 1.6.10, all 4; are smaller than 2m — 2. But as ig + --- + i, =
(n+1)(m—2)+m, the only possible way in which this can happen is if i; = 2m—2
and all other i; are equal to m — 2. Therefore, we can generate J* by all terms
of the form

X;ﬂ.x{)ﬂ—l..X’T—Qle oL

Jn—2"

By Proposition 1.6.6, we can choose the generators so that j; ¢ {j,k,[} for

i €{1,---,n—2}. Furthermore, we can choose all j; to be distinct as the total
degree has to be n — 2. Finally, we can exclude the terms Ay and A; using the
relations Fy = 0 and F; = 0. O
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Lemma 1.6.11 (See [50], Lemma 4.9). Let p,q,r € {0,---,n} be distinct.

Then
a
X77L L _ P PXm L
11 e 11
i#p,q,T i#D,q,r
mn J.
Proof. We first note that

Z(apbl- — albp)le = CLpFl - prO =0
=0

and so multiplying by [] L; we see that

1#p,q,r

(apbg — agbp) X7 [[ Li+ (apbr —arbp)X7* J] Li=0
i#p,q,r i#p,q,r

as desired. 0
Corollary 1.6.12. Let j,j' € {1,--- ,n — 1} be distinct. We have that

(aj/bk — akbj/)(albj/ — aj/bl)

A= Mg~ anb)aby —agh)
m JP. In particular, JP is one dimensional.
Proof. Using Proposition 1.6.6 we see that
I, — ajb; — a;bj arbj — aj by
J ajby — arb; ajby — apb;
so using Lemma 1.6.11 we have that
Aj =X Xy X I L
i34k,
ajrbj — aibjr < om— —
e ey

(a;:br — axbjr)(ab; — ajb) —2 —2
= X Xm2oxm L;
(ajbk — ak.bj)(albj - ajbl) J 0 H

as desired. O
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1.6.3 Computing the trace of multiples of the generators

Moving to the setting of Theorem 1.5.9, we note that in this case, we have that

Fy 0 magYo X5 ma YoX7N o ma, Yo X!
0 2 mbY1 X" mbViXN o mb, Y X!

map Xyt mboX mZLoX ! 0 e 0

M=1 maxm mbhxr 0 m2L XM 0
ma, X, mb, X" 0 0 o m2L, Xt

As in Section 1.6.2, let k,1 € {0,--- ,n} be distinct.

Lemma 1.6.13. Let A; = X" - X2 X2 [Lizj 1 (@iYo +b:Y1) be a gen-
erator as in Proposition 1.6.8 and assume that n is even. Let A,B € J. If
AB = MA; in J? for some A € k¥, we have that

Tr(wa Uwp) = m3"+2(n + I)Q(ajbk —arbj)(ajby — arb;) A

Proof. One can show that

S

b XM
L;

det(Mo‘l) = —mQ("'H)Yl (H LZXZT”1>

n
i=0 =0

and check that

n n
DX
d t M —(—1 n+1 2n+1Xn L,»X.m_l a;0; 7 .
e( O|n+2) ( ) m H ) : L
It follows that

~ n n ; iXm
(m+1)C = —(m+ 1)m*"+! (H LiXZnJ) > - bL- -

=0

We note that for all ¢ we have

aibi XX X [ L
pFi
= A, . aibiLkLl
= A; - aibilapa)Y§ + (apby + aiby) oYy + b YY)
= A; - (aapab; Y + (—(aiby — apb;)(aiby — ab;)
+ a?bkbl + b?akal)YOYl + aibkblbin)
= A, . (7(aibk — akbi)(aibl — alb,;)YOYl —+ aiakalbiYg
+ (a?brby + brara))YoY: + aibrpbib;Y7)
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and we have that

(aiaparb;YE + (albyby + b2 aga)) Yo + a;bpbib; Y72 X"
= (aiakalbiYOQ — aibibkblYf — aiakalbiYOQ + aibkblbin)Xim
=0

in JPH(+1.n+D) From this, we see that

é = m2n+1}/()YiX0 e Xn( Z (aibk — akbi)(aibl — albi)Ai
i#k,l

+ (arbyr — ajiby)(axby — atby) Ag + (arbyr — agby)(arby, — akbl)fil)
for some j’' ¢ {4, k,1}, where
Ap =xp X2 X2 [ Liand A =Xpxg =2 X072 [ L.
i#k,l,j" i#k,lj"
We note that

(albi — aibl)(akbi — albk)Az
(albj — ajbl)(akbj — (ljbk)
= (arb; — azby)(axb; — a;b A;
(arbi = abr) axbi = aibe) (arb; — a;iby)(arbi — asby) 7

= (ajbl — albj)(ajbk — akbj)Aj

for i # j and that

(arbjr — ajebe)(axby — aiby) Ay,

(ajbjr — ajb;)(a;br — aibj)

(akbjr — aj/bk)(akbl — albk)

_ (ajbx — arbj)(ajby — ayb;)(a;b — aib))
ajbj/ — aj/bj J

= (a;by — axb;)(a;br — aib;) A,

= (akbj/ — aj/bk)(akbl — albk) fij

and similarly, we have that
(arbjr — apbjr)(arby — axby) A; = (ajby — agb;)(ajby — aib;)A;.
Putting this together, we see that
C =m*" " (n+ 1)(a;by — arb;)(ajby — abj)A;.
By Theorem 1.5.9, we have that
Tr(wa Uwp) = m*™*2(n + 1)%(a b, — ard;)(ajb — arbj)\

as desired.
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1.6.4 The quadratic Euler characteristic
Notation 1.6.14. Assume that n = 2p is even.

In order to prove Proposition 1.6.2, we will need to compute the form @
from Theorem 1.1.16, i.e. [35, Corollary 8.7], given by

HP(X,Q8) x HP(X, Q%) 2 H"(X, Q%) 5 k.

The result from the previous section will allow us to do so on primitive coho-
mology, but we will also need to understand the form @ on the complement.

Construction 1.6.15. Using Proposition 1.2.10, we have that H? (P xP", Q1 pn)
has rank two over k. Generators are given by

a=c1(0(1,0) Uer(0(0,1))P~ and S = e1(O(0,1))P.

Also, one can show that HPH(]P’1 x P, Q’H'fipn) has rank two. Generators are
given by

o =¢1(0(1,0)) Uei(0(0,1))? and 8" = ¢, (0(0,1))P T,

Lemma 1.6.16. The complement to k - i*a @ k - i* 3 inside HP(X,Q5,) under
the trace pairing is precisely HP (X, Q%) prim.

Proof. Let v € HP(X,Q%) be an arbitrary element. Using the projection for-
mula, we note that

Tr(i*aUy) = Trpiypn (1. (1 U7y))
= Trp1 ypn (0 U i,7).

If v € ker(ix), this implies that Tr(i*aU~) = 0, and a similar argument shows
that Tr(i*8 U~v) = 0, and so ker(i,) = HP(X, Q% )prim is contained in the
complement of k- i*a @ k - i*5.

We now show that the other inclusion holds. As o’ and 8’ are generators of
HP (P x P",Qﬁfxlpn), we have that i,y = aa’ + bS8’ for certain a,b € k.
Note that a Ua’ =0 = U S, while a U 8’ and 8 U o' give the generator of
H"H (P x P, Qpi75,). Tt follows that

Tl“]pl xPn (CY @] Z*’y) = bT‘I‘pl xPn (Oé U ,8/) =b

and similarly
TI'[FDI xPn (ﬁ U Z*’Y) - aTrPIX]P’" (5 U O/) = a.

If these are both zero then a = b = 0, i.e. we have y € ker(iy) = HP (X, Q%) prim.-
O

Proposition 1.6.17. We have that Tr(i*aUi*a) =0 and Tr(i*f Ui*B) = 1.
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Proof. We have that

Tr(i*aUi*a) = Trpipn (@ U 643" @)
= Trp1wpr (a® U cr (O(1,m)))
=0

as a® = 0 and i,i*a = a U c;(O(1,m)). Similarly

TI“(Z*B U Z*B) = TrIP’l x P (62 U CI(O(L m)))
= Trp1ypn (€1(O(0,1))" U ¢ (O(1,m)))
=1

as desired. O

Proof of Proposition 1.6.2. Using Theorem 1.1.16, we know that x (X /k) is hy-
perbolic for n odd. For n even, the quadratic Euler characteristic is equal to a
hyperbolic form plus the trace form. Therefore, assume from now on that n is
even.
In order to compute the trace form, we evaluate it on basis elements of J. Choose
a generator A; = X]’-”X(;"*2 co Xme2 [izjr Li of JP as in Proposition 1.6.8.
Note that if AB = AA; for some A € k* and two distinct basis elements A, B,
then BA = AA; and one can check that this yields a hyperbolic form. If m is
odd, there are no basis elements that square to a nonzero multiple of A;. If
m = 2q is even, then p = (n—2,2¢(n+2) —2(n+ 1)) is divisible by 2. For each
subset {ig, - - - ,inT_z} c{0,--- ,n}\ {4, k,1}, we find the element

A = Xixgt xg! H L;

i€{io;in_2}

10, 5in—2
P

of J% such that, using Lemma 1.6.6 again, we have that

A2

10, yin—2
pl

m ym—2 m—2 2
= XXX H LA

K2

i€{i0, in—2}
3

[Licqio, in_s(@ibj — a;bi)
[Ligimtion oy (@ibs — a;bi)
2

We note that all such A; ... ;,_, are multiples of each other in .J 5 because X j
2

has degree 2g — 1 = m — 1, so we can use the same argument as for Proposi-
tion 1.6.8. Also, if ,5' € {0,--- ,n} are distinct and A, A’ € J% are such that
A% = )\A; and (A')% = NAj, for some A\, N € k*, then A and A’ are distinct
elements of JZ. Therefore, for each j there is exactly one basis element that
squares to a nonzero multiple of A;, and we choose this basis element to be such
that j, k and [ lie in the complement of the ;.

Using Lemma 1.6.13, this gives rise to the term Y27 ([T;;(a;b; — aib;)). Also,
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we note that by Proposition 1.6.17, the contribution coming from primitive
cohomology is the form with matrix

()

which is hyperbolic. Finally, as the rank of x(X/k) is equal to deg(c,(Tx)) by
[35, Theorem 5.3], we see that the coefficient of H is equal to A,, ,,, as desired
(also in the case where n is odd). O

We can now also deduce Corollary 1.6.3.
Proof of Corollary 1.6.3. Using Proposition 1.1.8, we have that

(=Dx(X/k) = x(X/k) — x(P"/k)

and x(P"/k) = Y. ,(—1)" as we saw in Example 1.1.10, i.e. [29, Proposition
1.4(4)]. So for odd n, we have that x(P"/k) is hyperbolic, and for even n we
get an extra (1)-term. This gives the desired statement. O

1.6.5 Checking the answer using the quadratic Riemann-
Hurwitz formula

There is another way to compute x (X /k): using the quadratic Riemann-Hurwitz
formula from [29]. We will now do this and see that we recover Proposition 1.6.2.

Notation 1.6.18. Because we know that x(X'/k) is hyperbolic if n is odd by
Theorem 1.1.16, we assume throughout that n is even.

Note that the natural projection map P' x P* — P! yields a projective
morphism f : X — P!. The fiber of f over a point y € P! is isomorphic to the
zero locus of Y1 L;(y)X /™. This is smooth if L;(y) # 0 for all i € {0, ,n}.
If there is a j € {0,--- ,n} such that L;(y) = 0, we note that by Lemma 1.6.6,
we must have that L;(y) # 0 for all i # j. The fiber of f over y is now the cone
over the zero locus of 3, L;(y)X;" with vertex [e;] given by the unit vector
that has a one on the j’th spot and zero’s everywhere else. The vertex [e;] is the
only singular point. In particular, this fiber is smooth inside the P"~! defined
by setting X; = 0.

To apply the quadratic Riemann-Hurwitz formula, the first thing which we need
to do is to identify the set ¢(f) of critical points of f, i.e. the locus of points of
X where df = 0.

Proposition 1.6.19. The critical locus ¢(f) of f has n + 1 elements, and
consists of those points satisfying L; = 0 for some j € {0,--- ,n} and X; =0
for all i #j.

Proof. Let j € {0,---n} and consider the affine patch of P* x P" given by X; # 0

and Yy # 0, with coordinates y = % and z; = ))g for i # j. Here, X is given
J

by the equation

Zail‘? —l—yszxZ” +U,j +ybj =0.
i#] i#]
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This implies in particular that

mZ(ai + ybi)x;”_ldxi + Z bz + bj | dy =0.
it it

We have that f is given by f(y,zo, - ,%j—1,%j+1, - ZTn) =y and so

m
S S T Z(ai + ybi)x?ﬁ”fldxi.
Z#j bix™ 4+ b; pary

df =dy = —
This implies that >, Li(y)x m=ldz; = 0 for those points. This gives us two
possibilities for a critical point.
First, we can have that L;(y) # 0 for 7 # j, so that we must have that x; = 0
for all i # j. We need in addition that a; + yb; = L;(y) = 0, as the critical
point also has to lie on X.
Secondly, we can have that there is some k # j such that Ly(y) = 0. In this
case, we have that x; = 0 for all ¢« # k. But for such a point to lie on X, we
need the condition that L;(y) = 0 again as well, which yields a contradiction,
as apb; — a;by # 0.
Repeating this construction for other choices of j, we deduce the desired state-
ment. O

Remark 1.6.20. All critical points may not lie in the same affine patch, but
all critical values (so all y € P! such that y = f(p) for p a critical point) do lie
in the same affine patch of P'. Namely, if there would be a critical value with
Yy = 0 then L; = 0 would imply that Y3 =0 (as all a;, b; € k*).

Notation 1.6.21. Let y C X be the subscheme of critical points of f. Consider
the closed point y’ of y given by L; = 0. Consider the affine patch of P! x P"
given by Yy # 0 and X; # 0 as before. We have that Oy, is a regular local
ring and we choose parameters xg,- - ,Z;j_1,%jt1," - ,Tn Which generate the
maximal ideal m, (we will not need L; as an additional generator because we
already work on X). Furthermore, let z be the subscheme of P! defined by
Lj =a;+bjy =0. By [29, Remark 10.9] we have that

_ a4 +yb;
is a normalized parameter. Define s; = —%(ai + ybi)x;”_l for i £ j
k#j k 7

and let
[By’] = [Bs*,z*] € GW(k(y/))

be the corresponding Scheja-Storch form (see [29, Theorem 4.1 (3)]).

By the quadratic Riemann-Hurwitz formula, see [29, Corollary 10.6], we have
that

X(X/k) = > Tryyu([Byl) = D(f) - H
y'ec(f)
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where D(f) € Z (see [29, Theorem 10.2]). Also, note that for all ¢ € c(f),
we have that k(y’) = k and so the trace doesn’t have any effect. It therefore
remains to compute [B,/] for all ¢’ € ¢(f).

Proposition 1.6.22. We have that

B /]{é(m—l)"-H if m is odd
! (3((m—-1)"=1)-H + (ILi;(aibj —azbi)))  if m is even

Proof. Let y be a critical point again. We note that xg, - - , z, is a local framing
for (det(m, /m?,)¥)®>. The section we have is not diagonalizable, but we note

that if we set
m

Zk;ﬁj bt +b;

and do a change of coordinates where we switch dx; with Adx; for all ¢, it is,
and it will only change the determinant by A\™ which will be a square as n is
assumed to be even. We can therefore apply [29, Example 4.5] combined with
[29, Corollary 4.3] to see that

A=

(m—-1)"—1
m 4
Byl = (-~ 5 )" 11 (0 + b)) (=1".
2izg biti" b itj i=0
We note that for m odd, (m — 1)™ is even and so
(m—1)"—1 1
doo(-1i= m=1)" - H.
i=0

For even m, we have that

(m—-1)"-1

S (1) = plm -1t 1) H (),

1=0

Furthermore, the term (—%)" is a square as we assumed that n is
even. )
Finally, as L; = 0 we have that y = —Z—j and so

(e + 950 = {5 [T tasts — b)) = TTCaiby — a0

7 T i#j i
So
[By] = {él(m = 1" H(I1iz;(aibj — asbi)) it m s odd
(z(((m—=1)" =1)- H + (1))([];1;(aib; — a;b;)) if m is even
which proves the statement. 0
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Applying the quadratic Riemann-Hurwitz formula, we see from this that

Apom - H if m is odd

X/k) =
X(X/k) {An)m H 4370 ([igy(@ibj —ajby))  if m is even

which coincides with the result of Proposition 1.6.2. This therefore gives the
same quadratic Euler characteristic of X as we had before.
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Chapter 2

Motivic Donaldson-Thomas
invariants of P’

2.1 Classifying spaces and the Witt cohomology
of BNS

Notation 2.1.1. Inside SLs over a field k, there is the torus

T_{<é t91> :tek*}

Its normalizer Ng is generated by T and the “switching” element

= (50)

We have that GLs contains the torus

t1 0 *
TG_{(Ol t2>2t1,t2€k}

and its normalizer N¢ is generated by T and o. Note that Ng C Ng and that
Ng is precisely the kernel of the restriction of the determinant character on Ng.

In this section, we recall the definition of a classifying space, together with
some basic properties. We then give a summary of some results from the paper
[28] by Levine, in which the Witt cohomology of the classifying space BNg of
Ng is computed, together with the Euler classes of some canonical rank two
vector bundles on BNg.

2.1.1 Classifying spaces

For algebraic groups G which are subgroups of GL,, the corresponding clas-
sifying spaces BG have been constructed by Totaro in [53, Remark 1.4] and
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developed further by Edidin and Graham in [17]. We use the same model as
[28], which comes from the model used in the paper [44, Section 4.2.2] of Morel
and Voevodsky. We give a brief sketch of the construction.

Construction 2.1.2. Let U, ,4; denote the open subscheme of An(Hi) of
n X n + j matrices which are of maximal rank n. We can form the sequence of
inclusions

_>Un,n+j _>Un,n+j+1 — e

where the maps insert a zero row in the last column. One defines the Indscheme
EGL,, as the colimit of the above sequence. Note that U, ,,+; has a free GL,,-
action on it. Viewing U, ,1; as a subset of Hom(A™™/ A™), this action is
induced by the one on A™.

Now let G C GL,, be an algebraic subgroup. We can restrict the action of
GL,, on Uy, »4; to obtain an action of G on Uy, 4.

Notation 2.1.3. Denote EG for the colimit of the resulting sequence of inclu-
sions. Write B;G = G \ U, »+; for the quotient scheme.

Definition 2.1.4. If G C GL, is a smooth algebraic subgroup, we define its
classifying space to be BG = colim; B;G.

Remark 2.1.5. We have that B;G is generally not equal to the presheaf quo-
tient of Uy, n4j; by G, but it is the quotient as étale sheaves. The same holds for
BG being the quotient of EG by G. Also, BG as defined above is independent
up to Al-equivalence of the choice of embedding into GL,,. See [44, Proposition
4.2.6 and Remark 4.2.7] and the surrounding results for more on this. For spe-
cial groups, BG is the quotient of EG by G as Zariski sheaves because of [17,
Proposition 23]. In particular, this holds for SLs and GLs.

Construction 2.1.6. For n,m € Z>; with m > n, consider the map
Up,m — AN M 5 (det(M;))r

for N = (’:LL) —1, where the M; are the n x n-submatrices which one can form out
of the columns of M (without changing their order). This induces an embedding

GL, \ Uy — PV

because applying the GL,-action multiplies the corresponding result by the de-
terminant. One can prove that this map identifies the quotient GL,, \ Uy, ,,, with
the Grassmanian Gr(n,m), embedded in PV via the classical Pliicker embed-
ding. In this way, one can realize BGL,, as Gr(n, 00) C P*°. See [44, Proposition
3.7] for more details.

Remark 2.1.7. In particular, we have that BG,, = P> up to A'-equivalence.

Remark 2.1.8. In topology, classifying spaces classify principal G-bundles.
For the construction above, it is however, not true in general that for any G-
torsor V. — X on a scheme, there is a classifying map f : X — BG such that
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V = f*EG. Tt does work for GL,,, however, whenever we have a bundle with
a set of generating sections, for instance, for X affine. This is because those
sections give an element of the Grassmanian, defining the desired map. See the
papers [3] and [4] by Asok, Wendt and Hoyois for more on this topic.

Another fact about algebraic groups which we will need is the following one.
This statement is well known, see for example [1, Example 6.1.11] for a reference.

Proposition 2.1.9. Let G C GL, be an affine algebraic group. Then the Picard
group of BG is in bijection with the character group of G.

The idea of the proof is that a character G — G, gives rise to a morphism
BG — BG,,, = P>, and the pull-back of O(1) defines an element of the Picard
group of BG. One can then construct an inverse operation to this, relying on
the fact that Pic(U,, ) = 0.

2.1.2 Witt cohomology of BNg and Euler classes of canon-
ical rank two bundles

We now study [28, Proposition 5.5], which is a computation of the cohomology
H*(BNg,W) of BNg where W is the sheaf of Witt rings, and [28, Theorem
7.1], which is a computation of the Euler classes of canonical rank two bundles
on BNg. Both of those results have been proven by Levine. For details on how
to define the sheaf W, see Morel’s paper [42, Chapter 2]. For more details on
how to take cohomology of W and how to define Euler classes in this theory,
see [29, Section 2] or [35].

Construction 2.1.10. Consider the isomorphism G2, \ GLy — (P! x P1)\ A
given by

(¢ 0) = Gastifesa.
Here, the G2, action on GL is given by
. (a b> _ (Aa Ab) _ </\ o) (a b)
c d ve vd 0 pu/\c d
and if we add the element o, this gives the action of Ng on GLy. We find that

Ng \ GLy = S5\ (P' x PY)\ A)

where Ss is the cyclic group of order 2. Note that Sy \ (P! x P') = Sym?(P).
Moreover, the morphism

7Pt x P — P2 ([Xo: X1, [Yo : Y1) = [XoY0 : XoY1 + X1V : X1Y7]

induces an isomorphism Sym?(P') 22 P2, The image of A is the set of all points
of the shape [X§ : 2X0X; : X?] which form the curve C = V(X? — 4X(X>).
Therefore, we find that

Ng\ SLy = Ng \ GL, = P2\ C.
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Notation 2.1.11. We let (Ng \ SLy) x5%2 ESL, denote all pairs (a,b) inside
(Ng\SLy) x ESLy up to the equivalence relation (a-g,b) ~ (a,g-b) for g € SLs.
With this notation, we have that

BNg = Ng \ ESLy 2 (Ng \ SLy) x5 ESL, = (P?\ C) x5 ESLs.

Proposition 2.1.12. The polynomial Q = X? —4Xy X, gives rise to a nowhere
vanishing section of Op2\¢(2) which is SLy-invariant.

Proof. First, note that [z : y : 2] = Q([z : y : 2]) is a well defined nowhere
vanishing section of Op2\ (2), because @ is homogeneous and nonzero on P2\ C.
We now study the GLa-action on P? induced by the above chain of isomorphisms.

Let ) 8
a «
= (0 o= (0 ) ca

The GLs-action on GLg that we start out with is given by right multiplication,
so if we let A act on X we find

_ faa+by af+b6
XA_(caer’y cf+do)

Under the map G2, \ GLy — (P! x P1) \ A, the class of XA is mapped to the
point ([ac + by : aB + bd], [ca + dv : ¢f + dd]). Now if we apply the map to P2,
this point is sent to

[za® + yay + 297 : 2(af + 290) + y(ab + By) : 2B + yBo + 267

where x = ac,y = (ad 4 bc) and z = bd. Recall that X itself gets mapped to
[ac : ad+be : bd] from which we see that A acts on a general point [z : y : 2] € P?
by sending it to the point above.
Having figured out the action, we now compute that
Q(x:y:2]-A) = (2zaf + y(ad + By) + 2276)?
— 4(za® 4 yay + 272) (zB2 + yBS + 262)
— 2(4028° — 4a25?)
+ zy(daB(ad + By) — 4(a?B6 + af®y))
+ 1% ((ad + By)? — 4aBy0)
+y2(498(ad + By) — 4(B1%8 + ayd?))
+ 22(47%6% — 4+%67%)
+ 22(8a By — 4(a?6% + B%~?)
=y*(ad — B7)? — dz(ad — Bv)?
— det(A)2Q(x + y : 2)

and so in O];;Q\C we have that ) is SLo-invariant under the induced action as
desired. 0
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Construction 2.1.13. We consider the representation p~ : Ng — G,,, which
sends o to —1 and the diagonal matrices to 1. Pulling back the canonical
bundle O(1) on BG,, via the induced map BNg — BG,, defines a line bundle
s on BNs.

Remark 2.1.14. Note that Opz(1) has a canonical GLy-linearization. There-
fore, we find an invertible sheaf v,, on Ng \ SLo x SLz U,y for every n. The sheaf
defined by those is exactly ~s.

Notation 2.1.15. Similar to the above remark, Op2(2) induces 72 on BNg.
Now by Proposition 2.1.12, we see that @ gives rise to a nowhere vanishing
section of y%. Therefore, Q defines a quadratic form (g) : 'ygl — Opng- We
consider (g) as a global section of the Witt sheaf on BNg.

Remark 2.1.16. Using Proposition 2.1.9, we see that the Picard group of BNg
is isomorphic to Z/2Z, and it is generated by ~s. Namely, a character of the

torus is of the form
t 0 a—b
0o 1)t

for some a,b € Z and from the relation

(f) t01> e (tol ?) (2.1)

we see that for a character p : Ng — G,, we have that t*~°p(c) = p(c)t*= so
that a = b. As 02 = —Id we have that p(c?) = (—1)° = 1 and so a character is
either the map that sends everything to 1 or p~.

Notation 2.1.17. Note that the structure morphism P?\ C' — Spec(k) induces
a map

p: BNg = (P?\ C) x5 ESLy — Spec(k) x52 ESLy = BSLs.

Let T denote the tangent bundle of BNg over BSLs. Let e be the Euler class
of the canonical rank two bundle A% x52 BSL, on BSL,y, where SLs acts on A2
by right matrix multiplication.

The following result was proven by Levine in [28].

Proposition 2.1.18 ([28], Proposition 5.5). Let k be a perfect field and let
W (k)[zo,x2] be the graded polynomial algebra over W (k) on the generators xg
of degree zero and xo of degree 2. Then xg — (q),x2 — p*e defines a W (k)-
algebra isomorphism

b W(k)[wo, 22] /(25 — 1, (1 + zo)x2) — H*(BNgs, W).

Moreover, H*>2(BNg, W(vs)) is the quotient of the free H*(BNg, W)-module
on the generator e(T) modulo the relation (1 + (g))e(T) = 0.
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In [28], there is also a computation of the Euler classes of rank two vector
bundles on BNg in terms of the above description. Following [28, Section 6],
for m > 1, consider the representation p,, : Ns — GL2(A2) given by

tOHtm 0
0 ¢! 0o t™

7 (i o)

and let p;,, be given by p. (0) = —pp (o). Finally, let pg be the trivial repre-
sentation and let p; = p~. The representations p,, give rise to the rank two
vector bundles

O(m) = A? x"s ESLy — BNy

and the representations p,,, similarly give rise to rank two vector bundles O~ (m).
By [28, Lemma 6.1], O(2) is isomorphic to 7. Levine has proven the following
result.

Theorem 2.1.19 ([28], Theorem 7.1). Suppose that k is a field of characteristic
zero or of characteristic p > 2 such that p and m are coprime. Then

m-p*e € H*(BNg, W) ifm=1 mod 4
e(O(m)) = —m - p*e € H>(BNg, W) if m =3 mod 4
B % .¢(T) € H*(BNg,W(vs)) if m =2 mod 4

5e(T) € H?(BNg,W(vs)) ifm=0 mod 4
Furthermore, e(O‘(m)) = —e(é(m)),

Remark 2.1.20. Note that the above theorem gives a complete computation
of Euler classes of bundles on BNg. We have considered all possible twists as
we saw in Remark 2.1.16. Also, let p : Ng¢ — GL(V) be a representation of
Ng. Then we can restrict this to a representation of the torus inside of SLs,
and as representations of the torus 7" are semisimple, this will be diagonalizable.
Adding the element o and using the relation (2.1), we see that p is a direct sum
of representations p,, for m > 0 or p~ (noting that any trivial subrepresentation
is a pp and that p,, and p;, are isomorphic as representations). Note that this
also proves that Ng-representations are semi-simple.

Remark 2.1.21. The Euler class e(@i (m)) depends on a choice of isomorphism
det(e(O*(m))) — Opn, if m is odd, or det(e(OF(m))) — s if m is even. As
the isomorphism of representations O~ (m) — O(m) has determinant —1, one

finds the minus sign in the formula for e(O~(m)).

2.2 Summary of some results in [39] and [40]
and an example

In this section, we give a summary of some results in the papers [39] and [40] by
Maulik, Nekrasov, Okounkov and Pandharipande. We compute the Donaldson-
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Thomas invariants for ideal sheaves of length 1 and 2 on P3 as an example.

2.2.1 Summary of some results in [39] and [40]

Notation 2.2.1. Let X be a smooth projective threefold over a field k. Suppose
that H(X,0x) = 0fori > 1. Let Hilb" (X) be the moduli space of ideal sheaves
of length n on X.

Remark 2.2.2. Hilbert schemes go back to Grothendieck, see [22], and see for
instance Hartshorne’s book [23] for more details.

Construction 2.2.3. There is a perfect obstruction theory on Hilb"(X). This
means that one can define a perfect complex F, supported in cohomological
degrees 0 and —1, together with a morphism Ee — Lyjp»(x). Here Lpjpn(x)
is the cotangent complex of Hilb"(X) over k. This morphism defines an iso-
morphism on cohomology groups in degree 0, and a surjection on cohomology
groups in degree —1. Moreover, because of the condition that H(X,Ox) = 0
for ¢ > 1, for all classes of ideal sheaves [Z] € Hilb" (X)), there are isomorphisms

HO(E{ @040 x, k(1)) — Ext'(Z,T)

and
H_I(E:/ ®0Hilb"(x) k([ID) - EXtQ(I7 I)

Here k([Z]) denotes the residue field at [Z].
Notation 2.2.4. From now on, assume that k = C.

Remark 2.2.5. The above perfect obstruction theory on Hilb"(X) for X a
Calabi-Yau or Fano variety was constructed by Thomas in [51, Section 3|, as-
suming a certain “tracelessness condition”. It is shown in [39, Section 2.2
that one can extend this construction to smooth projective threefolds satisfying
the condition that H*(X,Ox) = 0 for i > 1. In [9, Section 1.5], there is a gen-
eral construction for integral proper 3-dimensional Gorenstein Deligne-Mumford
stacks.

One can use the perfect obstruction theory to define the virtual fundamental
class [Hilb" (X)]""" € CHo(Hilb"(X)).

Definition 2.2.6. The degree I,, € CH’(Spec(C)) 2 Z of [Hilb™ (X)]"*" is called
the Donaldson-Thomas invariant.

Remark 2.2.7. See Fulton’s book [18] for more details about the classical
theory of Chow rings. For more details about virtual fundamental classes, see
for instance [8] by Behrend and Fantechi, or [6], by Battistella, Carocci and
Manolache. The theory of Donaldson-Thomas invariants was constructed and
defined by Donaldson and Thomas, in [16] and [51].

78



Notation 2.2.8. Assume from now on that X is toric, i.e. there exists an
embedding T — X of the torus T = G2, into X such that the image of T is a
dense open in the Zariski topology and the action of T on itself extends to an
action on X. We assume in addition that the very ample invertible sheaf Ox (1)
on X defining the projective embedding of X has a T-linearization.

In this situation, the action of T on X extends to an action of T on Hilb" (X),
and gives a T-linearization on F,. Also, the perfect obstruction theory E, gives
rise to an equivariant perfect obstruction theory; see Levine’s paper [32, Theo-
rem 6.4] or [9, Proposition 2.4] for details. One can then define the equivariant
virtual fundamental class [Hilb"™(X)]%" € CHy (Hilb™(X)).

Notation 2.2.9. Let IT € CH(BT) be the degree of [Hilb™(X)]%.

See Totaro’s paper [53, Section 1] for the definition of the Chow ring of a
classifying space.

Remark 2.2.10. If we let p : BT — Spec(C) be the structure morphism, we
have that I = p*I,,.

Definition 2.2.11. The MacMahon function is the function given by

1
M) = [ 755
woy (1—d")
Remark 2.2.12. This function was first defined and conjectured to be the
generating series for 3-dimensional partitions by Percy A. MacMahon in [38,
Article 43]. A full statement and proof were later given by Stanley, see [49,
Corollary 7.20.3].

In the papers [39] and [40], there is a proof of the following statement.

Theorem 2.2.13 ([40], Theorem 2). Let X be a smooth projective toric 3-fold.
Then

5 bt = (-t

n>0

Remark 2.2.14. This formula was later extended to all Calabi-Yau threefolds
by Li, see [37], and then by Levine-Pandharipande, see [34].

The ingredients of the proof of this statement are the virtual localization for-
mula from the paper [19] by Graber and Pandharipande, and the Bott residue
formula, see Bott’s paper [10], together with a computation of the virtual equiv-
ariant Euler class of the virtual tangent space of each fixed ideal. We now sum-
marize how this computation works.

It is shown in [39, Sections 4.4-4.5] that the virtual localization formula now
takes the following shape:

I = oA )
' [z]eH%D:n(X)T eT(Ext!(Z,7))
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Remark 2.2.15. In fact, the virtual localization formula computes I rather
than I,,. Using Remark 2.2.10, one can then compute I, from IE. But in our
situation, we note that CH’(BT) 2 Z, so that all I are integers.

This means that for a fixed point [Z], one needs the equivariant virtual Euler
class of the virtual tangent space

Ty = Ext'(Z,T) — Ext*(Z, ).

Remark 2.2.16. Note that the virtual Euler class is not well defined in the
category Ko(T — Reps) of virtual T-representations. One would like to define

eT(Vo—Vp) = Zzg“fﬁg and then use that €T (Vo @ V1) = €T (V))eT (V) to show that
this is well defined. However, as the equivariant Euler class of a trivial repre-
sentation is zero, this does not work. Instead, one uses that T-representations
are semi-simple and restricts to the subgroup of Ko(T — Reps) generated by all

irreducible nontrivial representations.

Note that every representation of T has an associated trace character, which
sends an element of T to the corresponding matrix and then to its trace in C.
We will find the Euler class of 7z; by computing its trace.

Notation 2.2.17. As explained in [39, Section 4.1], for each fixed ideal sheaf
[J] € Hilb"(X), we can choose a canonical T-stable affine open

UJ = Ag = SpeC(C[Z’laman?)])

centered at the support of J, and the Uy cover X. On such a chart Uy, we
may choose coordinates 1, T2, x3 such that the T-action is given by

(t1,ta,t3)(x1, T2, 3) = (t121, taa, t33).

As explained in [39, Section 4.2], the fixed ideal sheaves correspond to sub-
schemes Y C X supported on the fixed points. This implies that, for the fixed
point [Z], on an open Uy we have that Z|y, C C[z,y, 2] is a monomial ideal.
Therefore, we find corresponding partitions

77 ={(k1, ko, ks) € Z% : a*ryF22ke ¢ T)y )
One can prove (see [39, Equation (9)]) that
Ext'(Z,Z) — Ext*(Z,7)
3

= Y H(Uz,0x) =Y (-1 H(Ugz,Ext/(Z,T))
[T)€Hilb™ (X)T Jj=0

Notation 2.2.18. Let I C Clz,y, #] be the restriction of Z to Uy. We consider
the trace

Ky pko sk
Qg (t1,ta,t3) = tre(e,y,21/1(t1, L2, t3) = Z FRZu
(k1,k2,k3)Em 7

80



One now defines

Q7' 11 t5h)
titots

VJ = Qj(t13t23t3) -

1 -1 o1 (=) (1 —t2)(1 =t
+Qu(tr,t2, t3)Qu (811,15 13 1)( 1)(15 : t2)( 3).
16283

Theorem 2.2.19 ([39], Theorem 1). The T-character of Tz is given by
trrg (ttasts) = Y Vg
[T)€ Hilb™(X)T

Construction 2.2.20. As T = G2, we have that BT = (P>°)3. We have that
CH"(BT) = Z[ey, 2, e3] where

e1 = ¢1(0(1,0,0)),e2 = ¢1(0(0,1,0)) and ez = ¢1(0(0,0,1)).
See [53, Section 15] for more details.

Assuming the representation is diagonalized, each summand in try, (t1,ta,t3)
corresponds to one of the characters building up the representation, i.e. to line
bundles on BT (see Proposition 2.1.9). Therefore, we have that each of these is
a tensor product of the e;’s, e.g.

eT(tflltgtg) = Cl(o(a’ b, C))
— 1(0(a,0,0)) + e1(O(0, b, 0)) + ¢1(O(0, 0, ¢))

= aeq + bey + ces

Noting that the Euler class of a sum is the product of the Euler classes, if

k1 ko 4k
tr7ig (t1,t2,t3) = Z Vky ko ks~ 11 17137
(kl,kQ,k3)€Z3

we find the Euler class

€T(7TI])_1 = H (81]61 + s9ko + 83k3)_vk1’k2’k3.
kez3

Here, s1, s2 and s are the “tangent weights” of the action on Uz, i.e. we have
that (t1,t2,1t3) - (z,y, 2) = (t1*x, t52y, t5°2) on Uy. Adding these contributions
yields the Donaldson-Thomas invariant I,,.

2.2.2 An example

We apply the above strategy to the situation where X = P23, and we will show
that I; = 20 and I, = 150.
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Notation 2.2.21. Choose coordinates X, X1, X5, X3 on P3, and consider the
standard action of the three dimensional torus T = G2, on P? given by

(t1,ta,t3) - [Xo: X1 : Xo: X3] = [Xo: 61X : t2 X : t3X3].
Write U; = {X; # 0} C P3.
The fixed points of this action are supported on the points
[1:0:0:0],/0:1:0:0[,[0:0:1:0]and [0:0:0:1].
Remark 2.2.22. Note that

[Xo : thl : tQXQ . thg] = [tl_lXO . X1 : tl_thXQ : tl_lthg]
[ty ' X0t tity 1 X1 2 X oty 3 X3)
[t3_1X0 . tltngl . tgtngQ : Xg]

We see from this that the tangent weights on Uy are ((1,0,0), (0,1,0), (0,0, 1)),
the tangent weights on Uy are ((—1,0,0), (—1,1,0),(—1,0,1)), the tangent weights
on Uy are ((0,—-1,0),(1,-1,0),(0,—1,1)) and the tangent weights on Us are
((0,0,-1), (1,0, 1), (0,1, —1)).

To compute the invariant I;, we need to consider the fixed points of which
the ideal has length one. These are precisely the ideal sheaves supported on one
of the above points, which are locally given by the ideal (x,y,2) C Clz,y, z].
On Uy, we find Qo(t1,t2,t3) =1 and so

Volti ta, ts) =t + eyt gt —ty Myt — Mg — et

We see from this that the Euler class of the virtual tangent space corresponding
to the ideal sheaf of length 1 which is given by (z,y, z) C Clz,y, z] on Uy is

(e1 +e2)(er +e3)(ez +e3)

€1e2€3

From
V(T by ) =ttty ity — ity — ity -ty ey
we find that the Euler class at [0:1:0:0] is

(2e1 —ex —e3)(2e1 — e2)(2e1 — e3)
e1(er —ea)(er —e3) .

Similarly, the class at [0:0:1:0] is

(262 — €1 — 63)(262 — 61)(262 — 63)
62(62 — 61)(62 — 63)
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and at [0:0:0: 1] we find

(263 — €1 — 62)(263 — 61)(263 — 62)
63(63 —61)(63 —62) .

Adding these yields I = 20.
There are two categories of fixed points of length 2:

e Two points with both multiplicity one, corresponding to all possible prod-
ucts of the classes for n = 1.

e One point with multiplicity two in one tangent direction, corresponding
to the ideals (22, y, 2), (z, 2, 2), (z, y, 2?) locally.

For the computation, we use some SAGE code, see here. We find that I, = 150.

Remark 2.2.23. This agrees with what one gets if one uses Theorem 2.2.13.
Namely, we have that degp, c3(Tps ® Kps) = —20, because tensoring the Euler
exact sequence with Kps = O(—4) gives an exact sequence

0— O(=4) = O(=3)* = Tps ® Kps — 0
so we can compute the total Chern class of Tps ®@ Kps in CH*(P3) = Z[t]/t* as
(T © Kps) = (O(~3))*/e(O(~1))
(1-3t)4

1—4t
= (1 — 12t + 54t% — 108¢3)(1 + 4t + 16t + 64t3)

The coefficient of 3 is 64 — 192 + 216 — 108 = —20. Now we note that

M(—q)™%° =1+ 20qg + 150¢% + - - -

2.3 Motivic Donaldson-Thomas invariants of P?

Let £ be an SL-oriented motivic ring spectrum, see for instance Ananyevskiy’s
paper [2] for a definition and more details. In Levine’s paper [30], it is discussed
how one can define a motivic analogue of a virtual fundamental class for a
perfect obstruction theory F, on a quasi-projective scheme Z over a perfect
field k. This class is an element of the Borel-Moore homology £5-M-(Z,V(E,))
where V(F,) = Spec(Sym*Ey) — Spec(Sym*FE;) is the virtual vector bundle
associated to F,. If F, has virtual rank zero and there is an isomorphism from
the determinant of the obstruction theory to the square of a line bundle, a choice
of such an isomorphism (called an orientation of E,) defines a degree of this
class as an element of £%9(k) (see [30, Section 8.1]). In Levine’s paper [31], this
definition is extended to an equivariant setting if the scheme has an action on
it of a smooth closed subgroup of GL,, and [31] provides a proof of a virtual
localization formula for this situation.
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Notation 2.3.1. In this section and in the next, we work over the base field R
unless specified otherwise. The reason for this is that in order to use the virtual
localization formula for equivariant Witt cohomology as proven by Levine, see
[31, Theorem 6.7], one needs to invert a certain integer. Also, the degrees of
motivic Donaldson-Thomas invariants will land in the Witt ring of the ground
field. As W(C) = Z/2Z, we will not get much information out of the computa-
tions in this situation, especially if we need to invert 2. For F a finite field of odd
characteristic, one has 4W(FF) = 0 (see [45, Corollary 3.11]), so in this situation,
inverting 2 will also mean we do not get much out of the computation. On the
other hand, W(R) 2 Z, which is much more convenient. The arguments in this
chapter do, however, mostly work over more general fields, in particular for any
field which has an embedding into R. For example, the map W(Q) — W(R) is
surjective with 2-primary kernel.

In this section and the next, we will study the motivic virtual fundamental
classes corresponding to the following situation.

Notation 2.3.2. Let a,b € Z be odd and such that
a,b,3a —b,3b —a,3a+b,3b+a,a—band a+b

are nonzero (the denominators in the computations in the next section are the
reason for this assumption). Furthermore, assume that a > 5b (so that we can
decide for all the terms we will see in the next section whether they are positive
or negative). Consider the action of Ng on P? given by

(é t91> Xo: X1 Xo: X3] = [t"X0 1 70X tP Xy 1 70Xy
o[ Xo: X1:Xo: X3]=[-X1: Xo: —X3: Xo).

This action does not have fixed points, but there are the two fixed couples

{[1:0:0:0],]0:1:0:0]}and {[0:0:1:0],[0:0:0:1]}.

Notation 2.3.3. We denote U; = {X; # 0} C P3 for i € {0,--- ,3}.

Remark 2.3.4. We note that for even a or b, the above action would not be
well defined, as the map f : Ng — SLs given by

t 0 . t* 0
0 t! 0 t°
and ¢ — ¢ is not a morphism. Indeed, if f were a morphism, we would have

f(0?) = f(0)? = 02 = —1d. But 0? = —Id, so that f(0?) = f(—Id) = Id, which
is a contradiction. We would therefore have to send o to

0 1
10
but this has determinant —1 and is therefore not in SLs.
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As remarked before, we need that the determinant of the perfect obstruction
theory (which is the same as in the previous section) is a square. One can
construct an orientation on Hilb™(X) for X a smooth projective threefold with
an isomorphism Kx = L®2. In the case of a Calabi-Yau threefold, this is
due to Y. Toda [52, Proposition 3.1]. Following email correspondence with
Toda describing his result and method of proof, M. Levine handled the case of
arbitrary X in the paper [32]. We will discuss this orientation and its influence
on signs in Section 2.3.1.

With a given orientation, one can make the following definition.

Definition 2.3.5. For n > 0, we let I, € W(R) = Z be the degree of the
motivic virtual fundamental class of Hilb™(P?3).

One can show that the perfect obstruction theory FE, is Ng-equivariant,
giving rise to an equivariant motivic virtual fundamental class of Hilb" (P?).

Notation 2.3.6. Let INs € H*(BNg, W) be the degree of the above equivari-
ant virtual fundamental class.

Using [31, Theorem 6.7], if the torus T' in Ng acts with isolated fixed points,
we have that

. Ext}(Z,Z
[Ns — Z w (2_2)
[Z)eHilb™ (P3)Ns )

Again, one can find I,, from this. We therefore need to compute the trace of
the virtual representation

Ext*(Z,7) — Ext'(Z,7)

of Ng for all ideal sheaves Z that are isolated fixed points of the Ng-action;
if the Ng-fixed locus on Hilb"(X) has non-isolated fixed points, the method
requires more work, and will not be discussed further here. We can compute
the equivariant Euler classes from the trace using Proposition 2.1.19, because
any Ng-representation can be decomposed as a sum of the representations piﬁ,
see Remark 2.1.20. In order to find the trace, we use the strategy of [39] and
[40]. The proofs are almost the same as in [39, Section 4], but included here for
the reader’s convenience. We first show the following.

Lemma 2.3.7. For a fized ideal sheaf [Z] € Hilb"(P3) under the Ng-action, we
have that

3
Ext (Z,T) — Ext(Z,T) =Y | H'(Us, Ops) —
=0 JZO

1Y H(U;, Ext/ (T,7))

Mw

as virtual representations of Ng.

85



Remark 2.3.8. Note that one can view the above as an Ng-representation by
considering it as the sum of

3
H°(Up, Ops) = > (—1) HO(Uy, Ext? (Z,1))
7=0
3
@ | H(Uy, Ops) Z (U, Ext?(Z,T))

j=
and the corresponding term for Us and Us.
We will then show the following.

Proposition 2.3.9. Let T be an Ng-fized ideal sheaf. Fori € {0,---,3}, write
R = Rlz,y,2] = H°(U;, Ops) and let I be the image of the ideal sheaf T. Let
nr = {(i,4,k) : 2’y 2" ¢ I} and suppose that s1,ss,s3 are the tangent weights
on Ui, i.e. t-(x,y,2) = (s12, $2y, 832). Set

Qi(t) = trg(t) = Z sﬁs%s’g
(i,4,k)Em
We have that
515253Q(t) = Q1) + Q(OQ(E1)(1 — s1)(1 — 52)(1 — s3)

T Bert (1,1)— B2 (1,1) () = 51505,

Adding the traces on different U; and filling in the correct tangent weights
gives the trace of the virtual tangent space of Z, from which one can compute
the Euler classes as before. In the next section, we will apply this to compute
I, for n <6.

2.3.1 The orientation and its influence on signs

Notation 2.3.10. Let X be a smooth projective threefold over a field & together
with an Ng-action. Let n > 1 and let Hilb"(X) be the Hilbert scheme of ideal
sheaves of length n on X.

The following statement was proven for more general groups by Levine in
the paper [32].

Proposition 2.3.11 ([32], Theorem 6.3). Suppose that there is an Ng-linearized
very ample line bundle L on X and that we are given an Ng-linearized isomor-
phism wx . — L®%, Let T be the ideal sheaf corresponding to the universal
subscheme i : Z — Hilb"(X) x X of Hilb"(X) x X. Let pz : Z — Hilb"(X)
be the natural projection of Z and let ps : Hilb"(X) x X — X be the projection
to X. Then E,o has virtual rank zero and there exists a canonical Ng-equivariant
1somorphism

p i det(Ey) —(det(pz,.0z) ® Nz minr (x) (i*p3 L)) 2.
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In particular, the determinant of the perfect obstruction theory is a square if
wx/k S a square.

Here, Nz min(x) is the norm of Z over Hilb™(X), see [13, Section 7]. In
the case where X = P3, we have that wps /i = O(—4) and so the above state-
ment tells us that there is an orientation, so that the corresponding motivic
Donaldson-Thomas invariants are well defined.

We now prove the following statement.

Proposition 2.3.12. The orientation on Hilb" (P3)xP3 from Proposition 2.3.11
gives rise to an oriented basis of Ext*(I,T) — Ext' (I,T) for each Ng-fized ideal
sheaf . FEvery even negative weight in the trace induces a minus sign to the
corresponding Fuler class.

Proof. Let Z C Ops be an ideal sheaf corresponding to an Ng-fixed point. Let
I be the image of Z on Up. Let r be the rank of Ext'(I,I). Because the
perfect obstruction theory has virtual rank zero, we have that Extl(I ,I) and
Ext2(I, I) have the same rank. Choose an oriented basis eq, - ,ep, f1,-+, fr
for Ext®(I,I) — Ext'(I, 1), i.e. a basis such that

p(det(Ext?(I,I) — Ext'(I,1))) = p((es A+~ Aep) - (fi Ao A fi)7h) = 1.
By [32, Theorem 6.4], p is Ng-equivariant and so we have that

(=o)(e1), -, (=o)(er), (=0)(f1), -+ (=0)(fr)

is an oriented basis at o(I). This gives a basis

€1, (70)(61)7 Tt 6y (70')(67”)7]017 (70)(.]01)7 e afTa (70')(.]07”)

for Ext*(Z,Z) — Ext'(Z,Z) on Uy and U;. This is compatible with the relative
orientation as given by Proposition 2.3.11. In order to use Proposition 2.1.19 to
compute Euler classes, we need to follow Remark 2.1.21 and use a basis which
is compatible with the choice described there. This means: for each e; with
negative weight, one has to switch e; and (—o)(e;) in the above basis, because
the positive weight always has to be the first. The same holds for the f;. If
the weight of a negative e; or f; is odd, these switches do not contribute a sign
change to the Euler class, as (—o) = —o in this case. If the weight of a negative
e; or f; is even, this contributes a sign to the Euler class.

One can repeat this construction on Us and Us. This proves the desired state-
ment. O

2.3.2 Proof of Proposition 2.3.9

In this section, we prove Lemma 2.3.7 and Proposition 2.3.9. The proofs are
almost exactly the same as in [39, Section 4], but included here for the reader’s
convenience. We start by finding a helpful expression for Ext*(Z, ) —Ext'(Z,Z)
in terms of equivariant Euler characteristics.
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Construction 2.3.13. For two coherent sheaves F and G on P? x Hilb" (P?),
we have the derived Hom-set RHom(F, G) in the bounded derived category. Its
Euler characteristic is given by

3
X(F,6) =) (-1)' dim(Ext'(F,G)) € Z.

=0

For two coherent sheaves F and G on P3 x Hilb"(P?), the action of Ng
extends to one on Ext'(F,G), which is therefore an Ng-representation. This
yields a refined Euler characteristic.

Definition 2.3.14. Let F and G be coherent sheaves on P3. The Euler char-
acteristic x(F,G) is given by the alternating sum of virtual Ng-representations

3
X(F.G) =Y (~1)’Ext'(F,G) € Ko(Ns — Reps).
=0

We now make the following observation.

Lemma 2.3.15. Let Z be an ideal sheaf on P3 which is fized by the Ns-action.
We have that

X(Z,T) — x(Ops, Ops) = Ext*(T,T) — Ext* (T, T).

Proof. Writing out gives
3 . .
X(Z,Z) = x(Ops, Ops) = Y (—1)'Ext’(Z,T) — Hom(Ops, Ops)
i=0
= —Ext*(Z,7) + Ext*(Z,7) — Ext'(Z,7)
+ HOIIl(I, I) - HOIH(OPS, O]pz)
= Ext*(Z,T) — Ext’(Z,7)
because Ext*(Z,Z) = 0 by [39, Lemma 2] and Hom(Z,Z) = Ops. O
Proof of Lemma 2.3.7. Consider the local-to-global spectral sequence
EY? = HP(P?, Ext1(Z,T)) = Ext?™(Z,I).
Note that EY? =0 if p > 3 or ¢ > 3. Note that

SO(DPHER = 3 (1) ker(d2) + im( )

p,q p,q

= Sy,
p.q
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for all s > 2. In particular, this sums the infinity pages with the right signs, so
that we find

3
X(Z.T) = Y ()™ H'(P* Eat! (T,1)).
i,7=0

Using the U; as a cover of P2, we can compute the above cohomology groups by
computing Cech cohomology. Note that as Z is only supported on points, we
have that Z = Ops on the intersection of two or more U;. Therefore, the Cech
complex is

3
0= JJE (Ui, X(Z,Z) — x(Ops, Ops)) — 0.
i=0
By Lemma 2.3.15, this gives the desired statement. O

In the remainder of this section, we will prove Proposition 2.3.9.

Proof of Proposition 2.3.9. We have that
trr(t) = Z sish sk
i,k
(24 (2) ()
i j k
1
(1 — 81)(1 — 82)(1 — 83)

Consider a resolution of the ideal I given by

O—=F— - —=>F—=>1-0 (2.3)
such that each term is of the form F; = @; R(dy;) for dij = (d};, d3;, d;) € Z°.

130 130 g
One can always form a resolution like this if the ideal I is homogeneous: if

I = (fo, -, fm) where f; has degree d; then we can take F; = @go R(d;),
define F5 based on the relations between the f; and continue like that until we
have a resolution. Consider the corresponding Poincaré polynomial

dr a2 as.
P(t) =3 (~1)is)" 557 5.

i,J
Note that for any d = (dy, ds,d3) € Z3, we have that

trp)(t) = > t-a Tyl Tl bt = gligle lotrp(t).

.5,k
This implies that

trp, (1) = Z(_l)itrR(dU)(t)

0]
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= tra(t) 3 (1)) s
" P
(1—51)(1 —s2)(1 —s3)

We have the exact sequence
0—-F.-R—>R/I—0
and so trgr(t) = trp, (t) + trg/r(t). This implies that
1—P(t)
(1 —51)(1—s2)(1—s3)"
We use the resolution Fj to compute that
X(L1) = ) (~1)"***Hom(R(dij), R(dw))
i3kl

= Z ()" *R(d — dij)

i,5,k,1

Qt) =

This tells us that the trace is
itk dn—di; dy—di; di—di;
tryrn(t) = Y (1) s TR T G T e (1)
1,5kl
P(t~1)P(t)
(1 —51)(1 = s2)(1 — s3)

and so

- 1— P(t~Y)P(t)
trr_y,n)(t) = (1 —51)(1—s2)(1—s3)

We have that P(t) = —(1 — s1)(1 — s2)(1 — s3)Q(t) + 1 and

Pt =—(1—-s;)(1-s3")(1-s3)Q( ") +1
= 818283(1 — 81)(1 — 82)(1 — Sg)Q(t_l) +1

and so we can rewrite this as

~os15083Q(H) — Q) + QMHQEET) (1 — s1)(1 — s2)(1 — s53)
trr_y(1,n)(t) = 515253 :

as desired. ]

2.4 Computations of fn for n <6

Notation 2.4.1. In this section, the base field is again assumed to be R. See
Notation 2.3.1.
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Consider the action defined in Notation 2.3.2 again. In this section, we use
the virtual localization formula (2.2) together with Proposition 2.1.19, Lemma
2.3.7 and Proposition 2.3.9 to compute the motivic Donaldson-Thomas invari-
ants I,, € H*(Spec(R), W) = Z for n < 6. Note that I,, = 0 whenever 7 is odd,
because any fixed ideal sheaf needs to be invariant under the o-action. We will
see that fz = 10,1:4 = 25 and 1:6 = —50. We have that

M(—¢*) 710 =1+ 10¢% + 25¢* — 50¢° — 240¢° + - - -

which might mean that this function predicts the next numbers. We therefore
make the following conjecture.

Conjecture 2.4.2. Forn > 0, let I,, be the degree of the motivic virtual fun-
damental class associated to Hilb" (P*). Then we have that

5 bt = (-
n>0

where V' is a certain locally free sheaf on Hile(]P’?’) with quadratic Fuler class
e(V) and deg is the quadratic degree map.

We will make use of the following coordinates and tangent weights through-
out.

Construction 2.4.3. Throughout, we use coordinates

. x:%,y:%,z:%on&).
. u:%’,v:%,w:%onUl.
. x':%,y’:%,z’:%onUz.
. u’:%,v’:%,w’:%on Us.

Construction 2.4.4. Choose coordinates z = &1,y = 22 and z = &2 on U.
Xo? Xo Xo

As [taXO 172X thQ : ting] = [XO : t72aX1 : tbian : tiaing], we have
that on U

t 0
(6 %)) = rmsan a2

where s; = t72% 55 = tV7% s3 = t~27b Repeating this for Uy, U and Us, we
see that the “tangent weights” of the action are

UQ S tiza, So = tbia, S§3 = tiaib

Ul . S1 :t2a782 :tb+a753 :taib

U2 .81 = taib, S9 = tibia, S3 = t72b

Ug .81 = ta+b, S9 = tbia, S3 = t2b
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Note the symmetries between those tangent weights, which imply that for a fixed
ideal sheaf 7 of even degree n supported on {[1:0:0:0],[0:1:0: 0]}, we can
compute the trace on Uy as V(t~1), where V(t) is the trace on Uy. From the
sum of those traces, we can find the Euler class e(a,b). Furthermore, the Euler
class of the corresponding fixed point supported on {[0:0:1:0],[0:0:0:1]}
is given by e(b, a).

Remark 2.4.5. We note that for any A € R*, the ideal sheaf which is locally
given by (x + Ayz,9?%,2%) is of length 4. These are nonisolated fixed points,
defined by nonmonomial ideals. The method used for the other ideal sheaves
does therefore not work for those ideal sheaves. Therefore, we have not been
able to compute the invariant I,, for n > 8.

Remark 2.4.6. Throughout, we make use of the SAGE code which one can
find here. Note that for checking the signs coming from the use of Proposition
2.1.19, it is assumed in this code that a and b are both congruent to 1 modulo 4.
One can check that the signs of the Euler classes do not change for other possible
congruences of a, b modulo 4.

Remark 2.4.7. By Proposition 2.3.12, each even negative weight in the trace
induces a minus sign to the corresponding Euler class. For all Euler classes
computed in this section, the signs introduced by these even negative weights
have been taken into account in the computation, and will not be mentioned
further.

2.4.1 The computation for n = 2

Note that there are two ideal sheaves of length two. First, we have the subscheme
supported on {[1:0:0:0],[0:1:0:0]} of which the ideal sheaf Z is given
by (x,y,2) C Rlz,y,z] on Uy and by (u,v,w) C Rlu,v,w] on U;. The other
one corresponds to the subscheme supported on {[0: 0:1:0],[0:0:0: 1]},
again with the ideal given by (z/,y’,2") C R[z/,y’,2'] locally on Uy and by
(v, v, w") C Rlu/,v',w'] on Us.

Proposition 2.4.8. The FEuler class corresponding to the first point is
(3a —b)(3a+ 1)
(a—b)(a+D)
and the class corresponding to the second point is
(3b—a)(3b+a)
(b—a)(a+b)

€11 =

€12 =

We have that fg =e11 +e2 = 10.

Proof. We start with the first point. Plugging @ = 1 into the formula from
Proposition 2.3.9 yields that the trace of Ext'(Z,7) — Ext?(Z,Z) is given by

1, =1, -1 _ —1.-1_ —1.-1_ —1_-1
Vo=s8]" +5s5 +53 —5] 855 —8 S5 — Sy S3 .
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Filling in the tangent weights for Uy and U; and adding up gives
(tafb + tbfa) + (ta+b + tfafb) _ ((tSafb + t73a+b) + (t3a+b + t73a7b).

Now using Proposition 2.1.19, we see that this leads to an Euler class
(3a—0)(3a+1)

(a—0b)(a+b)
We note that for a,b both congruent to 1 modulo four, we have mod 4 that
3b—a=2,3b+a=0,b—a=0,a+ b= 2 so that the use of Proposition 2.1.19
gives a plus. One can check that the sign does not change with all other possible
congruences of a,b modulo 4.

Repeating the process for the second fixed point boils down to switching a and
b, and gives us the Euler class

€11 =

(3b—a)(3b+ a)
(b—a)(a+Db)
and adding those we get e11 + e12 = 10. O

€12 =

2.4.2 The computation for n =4

Note that between Uy and Uy, the Ng-action will send x — —u,y — w, z — —wv.
From this we see that to be fixed under the Ng-action, an ideal sheaf supported
on {[1:0:0:0],[0:1:0:0]} of length four must correspond to one of the
following:

2

1. (22,y,2) on Uy and (u?,v,w) on Uj.

2. (z,92%,2) on Uy and (u,v,w?) on Uj.

2

3. (z,y,2%) on Uy and (u,v?,w) on Uj.

One can find similar classes for fixed ideal sheaves of length four supported on
{[0:0:1:0],[0:0:0:1]}. For n = 4 there are thus seven fixed points if we
add the point supported on all four points. We will prove the following result.

Proposition 2.4.9. The fized point supported on all four points has Euler class
(3a —b)(3a + b)(3b — a)(3b+ a)
(a—b)*(a+0b)? '
The points of type (1) have Euler class zero, and the points in type (2) give rise
to FEuler classes
(3a—b)*(3a+b)(2a —b)
= d =
bla—0b)2(a+b) e
The points of type (3) have Euler classes

_ (3a—b)(Ba+b)*(2a+b) oo —
T Y a—b)a+bnz T

We have that I, = ea1 + €9 + €23 + €24 + €95 = 25.

€21 = —

(3b—a)?(3b+ a)(2b — a)
a(b—a)?(a+Db)

€22

(3b —a)(3b+ a)?(2b + a)
a(b—a)(a + b)? '
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Proof. First, there is the subscheme which consists of all four points. The Euler

class is (3a —b)(3a + b)(3b — a)(3b + a)

€21 = €11€12 = — (@ —b)2(a+b)?
For the fixed point of type (1) supported on {[1: 0:0:0],[0:1:0: 0]},
plugging @ = 1 + s;1 into the formula from Proposition 2.3.9 gives

oe=l =l =1 =l -1 _ —1_—1_ —1_—1
Vi=s] 485 483 —s8] S5 —S8] S3 — S5 S3 (2.4)

-2 -1 -1 —1.-1 -2 -1 -2 -1
+ 817+ 81837 + 8189 — 8189 Sz — 81 Sy — Sy S3°.

Filling in the tangent weights on Uy gives
t2a + tafb + taer _ t3a7b _ t2a . t3a+b+
t4a + tb—a + t—b—a —1- t5a—b _ t5a+b

and filling in the weights of U; gives the same but with ¢ and ¢! swapped. This
yields an Euler class which is zero, because of the term 1 which represents a
trivial subrepresentation of Ext*(Z,Z), which contributes a zero to the numer-
ator. Similarly, the fixed point supported on {[0 : 0:1:0],[0:0:0: 1]} of
type (1) has Euler class equal to zero.

Now consider the fixed point supported on {[1 : 0: 0 :0],[0 : 1:0: 0]} of
type (2). Filling in V with the tangent weights of Uy where we switch s; with
S9 gives

tafb 4 t2a 4 ta+b _ t3a7b _ t2a _ t3a+b_|_
t2a72b + 2t?b + thra o t2a+2b o t3a7b o t4a72b'

If we fill in V; with the tangents weights of U; where we switch s; with s3, this
gives the same result with ¢ and ¢t~' switched. This yields the Euler class ess.
Similarly, the fixed point supported on {[0:0:1:0],[0:0:0: 1]} of type (2)
has Euler class ess3.

Finally, for the fixed point supported on {[1:0:0:0],[0:1:0: 0]} of type (3),
filling in Vy with the tangent weights of Uy where we switch s; with s3 gives

ta+b + tafb + t2a _ t3a+b _ t2a _ t3a7b+
(20420 | qa—b | 4=2b _ 42a-2b _ 4da+2b _ 43atb,
Again, filling in V; with the weights of U; and s; and sy switched boils down
to switching ¢ and ¢~!. This yields the Euler class eg4, so that the fixed point
supported on {[0 : 0:1:0],[0:0:0: 1]} of type (3) has Euler class ea5 as
desired.

One can check that for all possible congruence classes of a,b modulo 4, no signs
are introduced because of the use of Proposition 2.1.19. O

2.4.3 The computation for n =6

We will now prove the following.
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Proposition 2.4.10. We have that Is = —50.

There are three types of fixed ideal sheaves of length six. First, from the
lower degrees, we have the Euler classes

€31 = €11 - €23
€32 = €11 * €25
€33 = €12 * €22
€34 = €12 * €24

Another class of ideal sheaves are the complete intersections, i.e. those sup-
ported on [1:0:0:0] and [0:1:0: 0] which correspond to either:

1. (z3,y,2) on Uy and (u®,v,w) on Uj.
2. (x,y3,2) on Uy and (u,v,w?) on Uj.

3

3. (z,y,2%) on Uy and (u,v3,w) on Uj.

Again, each of those have a corresponding fixed point supported on [0:0: 1 : 0]
and [0:0:0:1].

Lemma 2.4.11. The fized points of type (1) have Euler class equal to zero.
The points of type (2) yield the Euler classes

(3a —b)*(3a + b)(a + 3b)(5a — 3b)(2a — b)?
3b%(a —b)3(a+b)(3b — a)

€35 =

and (3b — a)?(3b+ a)(b + 3a)(5b — 3a)(2b — a)?

3a?(b—a)3(a+b)(3a —b)
The points of type (3) have Euler classes

€36 =

(3a —b)(3a + b)*(a — 3b)(5a + 3b)(2a + b)?
3b2(a — b)(a + b)3(a + 3b)

€37 = —

and

(3b — a)(3b+ a)?(b — 3a)(5b + 3a)(2b + a)?
3a2(b—a)(a+ b)3(b+ 3a) '

€38 = —

Proof. Consider the ideal of type (1). Plugging Q = 1+ s; +s? into the formula
from Proposition 2.3.9 gives the trace
Vo = s71 + 551 —l—sgl ~sTlsyl o 81_183_1 _82—1851
+ 81_2 + 3152_1 + slsgl - 5152_153_1 - 51_252_1 - 51_253_1

3, 2.1, 2.1 1 1
+8; 7 + 818y + 5183

-1 -1 -3 -1 -3 —
—s¥sy eyt — s syt — s 0sy
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Note that the first two lines are precisely the trace (2.4) we had in the n = 4
case. Filling in the tangent weights of Uy in the last line of Vg, gives

tGa + t—3a+b + t—3a—b _ t—2a _ t7a+b _ t?a—b.

There is nothing here which cancels the trivial subrepresentation coming from
the second line, implying that the corresponding Euler class is zero. Similarly,
the Euler class of the corresponding fixed point supported on [0: 0 : 1 : 0] and
[0:0:0:1] is zero.

For the fixed point supported on [1:0:0:0] and [0: 1 : 0 : 0] of type (2),
filling in the tangent weights of Uy in the last line of V5, and switching s; and
So gives

¢3a=3b 4 y—a+3b 4 42b  3bta _ 45a—3b _ yda—2b

so that we find the Euler classes e35 and esg in the statement.

For the fixed point supported on [1 : 0:0:0] and [0: 1 : 0 : 0] of type (3),
filling in the tangent weights of Uy in the last line of V5 and switching s; and
S3 gives

t3a+3b + t7a73b + t2b _ t73b+a _ t4a+2b _ t5a+3b
This gives the Euler classes e37 and egg from the statement.

Again, one can check that for all possible congruence classes of a,b modulo 4,
no signs are introduced because of the use of Proposition 2.1.19. 0

The final class of ideal sheaves are those of which the ideal locally looks like
a maximal ideal together with a variable, i.e. they are supported on [1:0: 0 : 0]
and [0:1:0:0], and of one of the following types:

1. ((z,y)% 2) on Uy and ((u,w)?,v) on Uy.
2. ((y,2)?%,2) on Uy and ((v,w)?,u) on U;.
3. ((z,2)?,y) on Uy and ((u,v)?,w) on Uy.

Again, each of those have a corresponding fixed point supported on [0:0: 1 : 0]
and 0:0:0:1].

Lemma 2.4.12. The ideals of type (1) yield Euler classes

(3a+b)(3a — b)(5a — b)(2a — b)(2a + b)
b2(a —b)2(a+b)

€39 =

and (3b + a)(3b — a)(5b — a)(2b — a)(2b + a)

€310 = a2(a — b)2(a + b)
The ideals of type (2) correspond to the Euler classes

9(3a + b)3(3a — b)?
a+b)%(a — b)%(a + 3b)(a — 3b)

€311 = (
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and
9(3b+ a)?(3b — a)?

12 1 0)2(a—0)2(b+ 3a)(b—3a)°
The ideals of type (3) give rise to the Euler classes

~ (3a—b)(3a +b)(5a + b)(2a + b)(2a — b)
313 = 22(a — b)(a + )2

and (3b — a)(3b + a)(5b + a)(2b + a)(2b — a)

a1 = a2(b— a)(a + b)2

Proof. For ((x,y)?,z) on Uy, plugging Q = 1+ s; + s into the formula from
Proposition 2.3.9 yields
Voo = 2571+ 2551 + 551 —s7tsyt — 257 st — 255 tsg !

—1 —1 -2 -1 —1,.-2
+ 81837 + 8283 — 81 "8y — 81 So

—2 —2 -2, 1 -2 -1
+ 81782 + 85185, 7 — 81 “82853 7 — 8185 "S5 .

For the fixed point of type (1), filling in the tangent weights of Uy in Vg2 gives

2t2a + 2ta7b + taer o 2t2a o 2t3a+b - t3a7b

+tb7a + t2b o t5a7b o t4a72b
+t3a+b + t72b _ t4a+26 . tafb

which yields the Euler classes esg and e3ig as in the statement. For the fixed
point of type (2), plugging the tangent weights of Uy into Vso and switching so
and s3 gives
ta—b + 2t2a + 2ta+b _ 2t3a—b _ 2t2a _ t3a+b

+t—a—b =+ t_2b _ t5a+b _ t4a+2b

_t4a—2b _ ta+b + tSa—b + t2b
which gives us the Euler classes e31; and es1s from the statement. Finally, for

hich gi the Euler cl d f the stat t. Finally, fi

the fixed point of type (3), plugging the tangent weights of Uy into Vs and
switching s; and sz gives

t2a 4 2ta+b + Qta_b _ 2t3a+b _ 2t3a—b _ t2a
_‘_tafb + ta+b _ t3a+b _ t3a7b
7t3a+3b o t3a73b + taJer + ta73b
which yields the Euler classes e313 and e314 as in the statement.

One can check that for all possible congruence classes of a,b modulo 4, no signs
are introduced because of the use of Proposition 2.1.19. O

Adding the Euler classes together proves Proposition 2.4.10.
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2.5 Cohomology of Witt sheaves on BNg

It would be interesting to study the results of the previous sections for other
actions than the one by Ng. For example, one could take the action by the
normalizer Ng of the torus inside GLy on P3 given by

t 0 . .
(01 tg) X0 Xyt Xo: Xa] = [t9 X0 : t5X7 : 19X 15X3]

O’-[X()ZXlZXQZXg]:[—XliX()Z—XgiXQ]

for a,b € Z odd and nonzero.

For this situation, the construction of an orientation as described in Section
2.3.1 does not seem to work. Therefore, we have not been able to show that
one can define motivic Donaldson-Thomas invariants in this setting. However,
there are some things which we can do.

In this section, we will formulate and prove an analogue of Proposition 2.1.18,
i.e. [28, Proposition 5.5], for BNg. In order to do so, we first prove an analogue
of [28, Theorem 4.1] to compare the cohomology on BNg with that of BNg,
which we will then use to deduce the desired result from Proposition 2.1.18.

Notation 2.5.1. Throughout, we work over a perfect field £ which is not of
characteristic 2. We let m : BSL,, — BGL,, be the canonical map induced
by the inclusion SL, — GL,. Let E, = A" xS BGL, be the canonical
rank n bundle, where GL,, acts on A" by matrix multiplication. Similarly, let
EéVG = A? xCG2 BN be the canonical rank 2 bundle on BN¢.

Remark 2.5.2. Let a,b € Z. Consider the Ng-representation p,p : No = GL2

given by
ti 0, tity 0 N 0 1
0ty 0 the )7 (=12t 0

This gives rise to the rank two bundle O(a, b) on BNg. In combination with
Proposition 2.1.19 and using that 7*(O(a,b)) = OF(|a — b|), one can compute
the corresponding Fuler classes.

2.5.1 Comparing cohomology for BNg and BNg
We start by considering the possible twists of cohomology on BN¢.

Construction 2.5.3. Similar to the case of Ng, one can define a representation
pe : Ng — Gy, which sends o to —1 and the diagonal matrices to 1. We find a
map BNg — BG,,, and the pull-back of the canonical bundle on BG,,, defines a
line bundle v¢ on BN¢. Using Proposition 2.1.9 again, the Picard group of BNg
is isomorphic to Z & Z /27, generated by v and the determinant character det
(sending o to —1 and diagonal matrices to their determinant). This means that
this time, we will have to consider the twists by v, the determinant character
det and det +7q, because twists by the square of a line bundle do not change
the cohomology.
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Remark 2.5.4. Note that
Y6 =pg O(1) =7"p7 O(1) = m*ys.

Let £ € SH(k) be an SL-oriented motivic spectrum. Following [42, Section
6] and [2], the algebraic Hopf map

A\ {0} = P!, (z,y) = [z : 9]
induces a map Xg, Sp — Sk, i.e. an element ng € E-51(k).

Definition 2.5.5. If 7¢ is invertible on £**(k), we say that & is an n-invertible
theory.

If £ is n-invertible, for arbitrary vector bundles E — X there are Pontryagin
classes p,,(E) € £4™2m(X), see [2, Definition 19]. The following was proven by
Ananyevskiy.

Theorem 2.5.6 (See Theorem 10 in [2]). For & an n-invertible SL-oriented
theory, one has

E*(k)p1,- - s Pm—1,€]  for n=2m

£**(BSL,) =
( ) {5*’*(16)[171, 7pm] fOT’ n=2m + 1

where p; = p;(Ey,), e = e(Ey,). If n = 2m, we have that py,(Eam) = e(Eam)?.

In [28], there is the following induced result for GL,,. For £ a SL-oriented
motivic ring spectrum, there is the pull-back map

7™ £°*(BGL,) — £*(BSLy,)

and using the canonical trivialization 6 : 7* detfl(En) — Opsr,, we also get a
map

7 9% (BGL,, det(E,) ') — £%*(BSL,).
The following has been proven by Levine.

Theorem 2.5.7 ([28], Theorem 4.1). Let & € SH(k) be an SL-oriented and
n-invertible motivic ring spectrum. Suppose that either £%0 is a Zariski sheaf
or that the unit map makes it a W-module. Then:

e Forn = 2m, the map ©* induces an isomorphism
E*(BGLy) ® 7" (BGLy; det(E,)) — £ (BSLy,)

where

E(BGL,) = EY*(k)[p1, -+ ,pm—1, €]

and
5*7*(BGL77,5 det(En)) =e€- 8*7*(]{;)[1717 5y Pm—1, 62]
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e Forn=2m+ 1, we have that E*(BGL,;det(FE,)) = 0 and the pull-back
7 E9*(BGL,) — £9*(BSL,) is an isomorphism.

We will prove a similar statement for the cohomology of BNg and BNg
under an n-invertible motivic ring spectrum which is a W-module by the unit
map. The proof is almost exactly the same as the proof of [28, Theorem 4.1],
but included here for the reader’s convenience.

Notation 2.5.8. Let L = det(EYS). Let
Th(L) = L/(L\ 01)
be the Thom space of L.

Remark 2.5.9. Note that L does not have a canonical trivialization so that it
does not have a Thom class. However, because of the canonical trivialization
L® L' — Opng, one has the Thom class th(L & L™!) € E42(Th(L & L™1)).
By definition, we have that £42(Th(L® L™1)) = £%(Th(L); L~!). One defines
the canonical Thom class

th(L) € £#Y(Th(L); L)

to be the image of th(L @ L~!) under this identification. Let sTn(r) be the
map Th(L) — BNg induced by the zero section of L. One defines the Euler
class e(L) € £21(BNg; L™') of L as the pull-back (srz))*th(L). See e.g. [35,
Definition 3.11, Remark 5.2], where the treatment is inspired by that of [2], for
more details.

Proposition 2.5.10. Let £ € SH(k) be an SL-oriented and n-invertible motivic
ring spectrum. Suppose that the unit map makes it a W-module. Then the map
7 induces an isomorphism

E**(BNg) ® £°*(BNg; det) — £9*(BNg).

*

Sitmilarly, © induces an isomorphism

£ (BNa;v6) ® € (BNg; va + det) — € (BNs; vs).

Proof. As BNs — BNg is a G,,-torsor, we have that BNg is a pull-back
of EG,, under a classifying map BNg — BG,,. Note that EG,, is equal to
O(1)\0p (1) under the identification of BG,, with P>. As the Pliicker embedding
is given by the determinant, we have that O(1) pulls back to L, so that we realize
BNg as L\ 0. Note that the determinant character is also exactly given by
the pull-back of O(1) under this classifying map, so that L = det.

This gives us the open subspace L\ 0r, and its closed complement 0y, giving rise
to the localization sequence (see [35, Definition 6.2, A3 and Example 6.5])

o = EY(BNg) — E%*(BNg) — £* Y"1 (BNg; L) — - -- (2.5)
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where we used that £*(L) = £%*(BN¢) because of homotopy invariance and
that £~ 10~1(BNg; L) = £971%(Th(L)) by definition.

We note that the maps £2~ =1 (BNg; L) — £%F1*(BNg) are by definition the
composition

5a_1’b_1(BNg;L> _ 5a+1’b(Th(L)) L ga+1,b(L) i 5a+1’b(BNg)

where s : BNg — L is the zero section and ¢ : L — Th(L) is the quotient map.
Note that under the Thom isomorphism

(-)Uth(L @ L71) : E27Y(BNg) — £475F2(Th(L @ L™1))

these are precisely the cup product by the Euler class e(L) of L. We can apply
[28, Lemma 4.3] to see that e(L) = 0. Therefore, the localization sequence (2.5)
breaks up into short exact sequences

0 — E**(BNg) — E“*(BNg) & €21 (BNg; L) — 0.
We now define a splitting to the boundary map §. Consider the pull-back
7L L

| [

L —" 5 BNg

Note that L is locally A \ {0} = Spec(k[t]). Let t € H(L,7*L) be the tauto-
logical section. Note that this is nowhere zero, so we find a section over L\ 0p,.
Let t¥ € H°(L\ Oz, 7*L~1) be the dual section. We find the quadratic form
(tV)y e W(r*L™1).

Now set (tV)e = (tV) - 1g € E%(L\ Op,7*L~1). Then one can do a local
computation which shows that

5((tV)e) =n-1g € ETLTHBNG).

This is by definition of the boundary locally, as it is defined and described in
[43, Section 2.2]. Multiplication by ¢V defines a trivialization 7L — Opnyg
which gives a map (tV)g - (=) : £97 2" (BNg;7*L) — £%*(BNg). Now we can
consider the composition

ga72’b71(BNg;L) _>ga727b71(BNS;ﬂ_*L) (t")e-(—) 5a’b(BNs)

which is invertible by n-invertibility. This provides an inverse for 4, which gives
the desired result.
The second part of the statement can be proven in exactly the same way. [

2.5.2 Cohomology of Witt sheaves on BNy

Notation 2.5.11. As in Section 2.1.2, let e be the Euler class of the canonical
rank 2 bundle A2 x52 BSL, on BSL,. Let (¢) be the quadratic form corre-
sponding to the curve C' which was constructed in Section 2.1.2. Let 7 be the
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tangent bundle of BNg over BSLs and let p : BNg — BSLy be the canonical
map.

Notation 2.5.12. Note that BNg = (Ng \ GLy) x%t2 EGL; and recall from
Construction 2.1.10 that Ng \ GLy = P2\ C. Let Tg be the tangent bundle of
BN¢g over BGLs.

We can now prove an analogue of Proposition 2.1.18. Recall that from
Proposition 2.1.18, we have that

H*(BNg, W) — W(k)[xg,xg]/(xg —1,(1+ zo)xa),xo = (@), z2 — p'e

defines a W(k)-algebra isomorphism. Furthermore, H*>2(BNg, W(vs)) is the
quotient of the free H*(BNg,W)-module on the generator e(7) modulo the
relation (1 + (¢))e(T) = 0.

Proposition 2.5.13. Under the isomorphism
H*(BNg, W) ® H*(BNg; W(det)) - H*(BNg, W).

from Proposition 2.5.10, we have that H*(BNg, W) corresponds to the subring
generated by xo and x3 of H*(BNg, W) = W (k)[zo,xa]/(x3 — 1, (1 + z0)z2).
Furthermore, H*(BNg; W(det)) corresponds to the ideal xo H*(BNg, W).
Also, under the isomorphism

H*(BNg,W(vac)) ® H*(BNg, W(yg +det)) = H*(BNs, W(vs))

we have that H*>%(BNg,W(yg)) is the submodule generated by e(Tg) and
H*22(BNg,W(yg + det)) is the submodule generated by x4 - e(Tg).

Proof. We have that the Pontryagin class p; (E2¢) € H*(BNg, W) pulls back
to
T (p1(Ey'9)) = p1(p*Bs) = p*(¢®) € H*(BNg, W).

Furthermore, the Euler class e(E2¢) € H*(BNg; W(det(EY¢))) pulls back to
the Euler class p*e. As H*(BNg; W(det(EY¢))) is a H*(BNg; W)-module,
this shows that H*(BNg; W(det)) contains

zg - W(k)[zo, 2]/ (x5 — 1, (1 + z0)23)

which concludes the proof of the first statement.
For the second statement, note that

me(Ta) = e(n™Ta) = e(T).

Now consider the diagram

H*Zz(BNs,W) <W7* H*22(BNg,W) @H*ZQ(BNG§W(det))

[ J»

H*=*(BNs,W(3s)) +—— H*>*(BNg, W(yc)) ® H*Z*(BNg; W(det +1¢))
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where the horizontal arrows are the isomorphisms from Proposition 2.5.10 and
1 is defined by sending 1 to e(7g). We know that ¢ makes H*(BNg, W(vs))
into a free H*(BNg,W)-module of rank 1 with generator e(7). Moreover, v
has to be injective as its composition with 7* is. Now as ¥(x2) = zs - e(7g),
the desired result follows. O
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Computation over C

Anna M. Viergever

R.<tl ,t2, t3> = LaurentPolynomialRing (QQ)
C.<x, y, z> = PolynomialRing (QQ); D = C. fraction_ field ()

#A function which computes the Euler class of the ideal I with \
tangent weights sl, s2, s3

def compute_euler_class(I, sl, s2, s3):
basis = I.normal_basis ()
partition = [i.degrees() for i in basis]
partltlonllst = [llst( ) for i in partition|
Q=sum(t17(a[0])*t27(a[l])*t37(a[2]) for a in partitionlist)
Qbar = sum(t17(-a[0])*t27(-a[1])*t37(-a[2]) for a in \
partitionlist)
V=Q - Qbar/(t1*t2*t3) + (Q*Qbar*(1 - t1)*(1 - t2)*(1 - t3 ))/(\
£1%£2%3)
coefficients = V.coefficients ()
exponents = V.exponents ()
exponentslist = [list (i) for i in exponents]; length = len (\
exponents)
innerproducts = [b[0]*(s1[0]*x + s
[0]%x + s2[1]*y + s2[2]%2) + b[2]*(
for b in exponentslist]

euler = prod(innerproducts[i]”(-coefficients[i]) for i in range)\
(0,length))

return euler
#Tangent weights on different opens

wl = [1, 0, 0]; W2 [0, 1, 0]; w3 = [0, O, 1]

vl [-1, 0, O]; v2=([-1, 1, 0]; v3 =1[-1, 0, 1]
nl —[ , —1, 0], = [0, -1, 0]; n3 = [O, -1, 1]
ml = [1, 0, -1]; m2: [0, 1, -1] ; m3 = [0, 0, -1]

#A function which computes the Euler classes of an ideal sheaf with \
respect to the different weights and adds them together in a list)
named ”degrees”

def eulerclassesofideal (I, degrees):



degrees .append (compute__euler_class(I, wl, w2, w3))
degrees .append (compute__euler_class(I, vl, v2, v3))
degrees .append (compute_euler_class(I, nl, n2, n3))

( (I ))

degrees .append (compute__euler_ class
return

, ml, m2, m3

#Computing 1 1

DegreeOne = []

eulerclassesofideal (ideal(x,y,z) ,DegreeOne)
sum(a for a in DegreeOne)

20

#Computing 1_2
DegreeTwo =[]
eulerclassesofideal (ideal (x72,y,z) ,DegreeTwo)
eulerclassesofideal (ideal (x,y"2,z),DegreeTwo)
eulerclassesofideal (ideal (x,y,z"2),DegreeTwo)
products = []
for i in range (0, len(DegreeOne)):
for j in range(0, len(DegreeOne)):
if i< j:
products.append (DegreeOne [i]*DegreeOne[j])
sum(a for a in DegreeTwo) 4+ sum(a for a in products)
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Motivic computation

Anna M. Viergever

R.<sl,s2,83> = LaurentPolynomialRing (ZZ)

R = PolynomialRing (QQ, 2, 'ab'); R

a,b = R.gens ()

F = R.fraction field(); F

C.<x,y,z> = PolynomialRing (QQ) ;

Multivariate Polynomial Ring in a, b over Rational Field

Fraction Field of Multivariate Polynomial Ring in a, b over Rational Field

#Function to compute the Euler class of the ideal T and add it to \

the

list degrees, together with the version with a and b swapped

def compute_euler_class(I, degrees):

basis = I.normal_basis ()
partition = [i.degrees() for i in basis]
partitionlist = [list (i) for i in partition]

Q= sum(slA(aL(Z})*s2A(a[1])*s3A(a[2]) for a in partitionlist)

Qbar = sum(sl

a[0])*s2”(-a[1])*s37(-a[2]) for a in \

partitionlist)

V =Q - Qbar/(s1*s2%s3) + (Q*Qbar*(1-s1)
s3)

(1-52)*(1-53)) /(s1*s2%\
1

*
print ("For the ideal”); pretty print(I); print(”the trace is)\

”); pretty__print (V)
exponents = V.exponents ()
length = len (exponents)
euler =1

print ('We find factors"')
for i in range(0,length):

monomialexponent = exponents|[i]
cl = monomialexponent [0]
c2 = monomialexponent [1]
c¢3 = monomialexponent [2]

coefficientpolynomial = V. coefficient ((s17cl)*(s27¢2)*(s37c3)\

coefficient = coefficientpolynomial.constant__coefficient ()
factorwithoutcoeff = cl1*(-2*%a) + c2*(-a+b) + c3*(-a-b)
if factorwithoutcoeff(1,1) % 4 = 0 or factorwithoutcoeff)\

(1,1) % 4 = 3:



factorwithoutcoeff = -factorwithoutcoeff
print ('sign change')
newfactor = (factorwithoutcoeff) (-coefficient)
print (newfactor)
euler = euler*newfactor
degrees.append(euler); degrees.append(euler(b,a))
print ("We find Euler classes”); pretty_print(euler.factor()); \
print ("and”); pretty_print(euler(b,a).factor())
return

#Function to compute the products of Euler classes which correspond \
to ideals of the same length
def compute_products_samelength(degrees):
products = []
for i in range(0, len(degrees)):
for j in range(i, len(degrees)):
if Mod(i,2) != Mod(j,2):
products.append (degrees [i]|*degrees[j])
return products

#Function to compute the products of Euler classes which correspond \
to ideals of different length
def compute_products(degreesl ,degrees2):
products = []
for i in range(0, len(degreesl)):
for j in range(0, len(degrees2)):
if Mod(i,2) != Mod(j,2):
products.append (degreesl [i]*degrees2[j])
return products

#Computing \tilde{I} 2
DegreeOne =[]
compute_euler_class(ideal (x,y,z),DegreeOne)
print (" Their sum is”); sum(a for a in DegreeOne)
For the ideal
(x.y,2)Qlx,y. 7
the trace is
s; byl bs sy sy —sy sy s sy
We find factors
1/(a + b)
sign change
1/(-a + D)
1/(2%)
2%a,
sign change
-3*a - b
3*a-b
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We find Euler classes
(a—b)"'-(a+b)"'-(3a—b)-(3a+ b)

and
(a—b)"'-(a+b)"'-(a—3b)-(a+3b)

Their sum is

10

#Computing \tilde{I} 4
DegreeTwo = []
compute_euler_class(ideal(x,y"2,z) ,DegreeTwo)
compute_euler_class(ideal(x,y,z"2) ,DegreeTwo)
print (" Their sum is”); sum(a for a in DegreeTwo) + sum(a for a in \
compute_products_samelength (DegreeOne) )
For the ideal
(x,y2, z) Q[x,y, 2]
the trace is
5253_14—51_152—0—53_1—51_15253_14—52_14—51_1—52_153_1
We find factors
1/(2#D)
1/(a + b)
1/(a + b)
sign change
-2%a - 2*b
sign change
1/(-a + b)
1/(2%)
2*a,
sign change
-3*a - b
sign change
1/(-2*a + 2*b)

-1_-1 -2 -1_-1 -2 _—1 -1_-2
—S 'S3 +S, =S Sy =SS5 —5 'Sy

3*a-b
3*a-b
4*a - 2*b

We find Euler classes
(a—b)™2-b'-(a+b)"'-(2a—b)-(3a+b)-(3a—b)?
and
(=1)-(—a+b)"2-at-(a+ b))t (a—2b)-(a+3b)-(a—3b)?
For the ideal
(x.y.2%) Qlx, .2
the trace is
sy tsytsytss sy tbsy s s sy sy syt sy Ty sy tsy = sy syt — sy Tyt — sy sy
We find factors
1/(-2"b)
sign change
1/(-a + D)
1/(a + b)



sign change
1/(-a + D)
1/(2%a)
sign change
-2%a + 2*b
sign change
1/(-2*a - 2*b)
2*a
sign change
-3*a-b
3*a-b
sign change
-3*a-b
4*a + 2*b
We find Euler classes
(=1)-(a4+b)"2-b7 - (a—b)"'-(2a+b)-(3a—b)-(3a+ b)?
and
(a+b)2-(—a+b)t-at-(a—3b) (a+2b)(a+3b)?
Their sum is
25

#Computing \tilde{I} 6
DegreeThree = []
compute_euler_class(ideal(
compute__euler_class(ideal (x,
(
(

( X

(
compute__euler_class(ideal

(

(

,DegreeThree)
DegreeThree)

z),DegreeThree)

Y 3,2
v,z 3),

T2,x*y,y"2
compute_euler_class(ideal (y™2 y*z z"2,x),DegreeThree)
compute_euler_class(ideal (x72,x*z,272 y) ,DegreeThree)
print (" Their sum is”); sum(a for a in DegreeThree) + sum(a for a in \

compute_products (DegreeTwo ,DegreeOne) )

For the ideal

(x,y*.2) Qlx.y, 2
the trace is

52253_1—0—51_15224—52531 s1 152253 —i—sl_lsz—i—s?)_l—51_152551+52_1+51_1—52_ls§1 —51_153_14—
52_2—51_152_1—52_253_1—i-52 -5 1522—52_353_1—51_152_3
We find factors
1/(-a + 3*b)
1/(2#D)
1/(2#D)
sign change
-a - 3%b
1/(a + b)
1/(a + b)
sign change
-2%a - 2*b
sign change
1/(-a + D)

)

X
y )
X

)



1/(2*a)

2*a
sign change
-3*a-b

sign change
1/(-2*a + 2*Db)
3*a-b

3*a-b

sign change
1/(-3*a + 3*b)

4*a - 2*%b
4% - 2*b
5*a - 3*b

We find Euler classes
(—é) (a—b)3-b72-(a—3b)" - (a+b)" - (a+3b)-(3a+b)-(5a—3b)-(2a—b)*-(3a— b)?
and
% (—atb)a? (—3a+ b)) (atb) "' (at3b)-(3a—5b)-(3a-+b)-(a—3b)%- (a—2b)’

For the ideal
(x.y.2%) Qlx.y.2

the trace is
sy 'ss 4+ s, st 4+ sy tsy + s sy — s

silsy = s tsy b syt sty s syt — sy sy

We find factors

sign change

1/(a + 3*b)

1/(-2%b)

1/(-2°b)

sign change

1/(-a + b)

a- 3*b

1/(a +b)

sign change

1/(-a + b)

1/(2%)

sign change

-2*a + 2*b

sign change

1/(-2*a - 2*b)

2*a

sign change

-3*a-b

3*a-b

1/(3*a + 3*b)

sign change

-3*a - b

4*a + 2*%b

—1.-1

1 -1 —2
Sy S3+S3° —5S, S3 —

—1.2 -1 -1 -1 -1
So S3+53 +5 +5 —5

3 21—
-5 53



4*a + 2%b
sign change
-5%*a - 3*b
We find Euler classes
(—é) (a+b)2-b2-(a—b)" - (a+3b)" - (a—3b)-(3a—b)-(5a+3b)-(2a+b)*- (3a+b)?
and
—% (a+b)3-a 2 (—a+b)'-(Ba+b) ' (a—3b)-(3a—b)-(3a+5b)-(a+2b)*-(a+3b)?
For the ideal
(x> xy.y*. 2) Qlx, y, 2]
the trace is
s15; 4 sasy by b sisy 225, 425 s 2s —sisy 2sy 25y tsy 25, tsy t — s Psasy !t —
51_152_1—51_152_2—51_252_1
We find factors
sign change
1/(a- D)
1/(2b)
1/(a + b)
1/(-2"b)
sign change
1/(a”2 - 2%a*b + b72)
1/(4*a™2)
sign change
1/(-3*a - b)
sign change
-a+b
4*a™2
sign change
9*a"2 4 6%a*b + b2
4*a + 2*b
3*a-b
4*a - 2*b
sign change
-5*a + b
We find Euler classes
b2 . (a—b)?-(a+b)"'-(2a—b)-(2a+b)-(3a—b)-(3a+b)-(5a—b)
and
(=1)-(—a+b)"2-a2-(a+b)"'-(a—5b)-(a—3b)-(a—2b)-(a+2b)-(a+ 3b)
For the ideal
(yg,yz, z% x) Q[x, y, Z]
the trace is
si'sats; tsy sy 2+ 255 +25 57 5,753 — 5 Lsysy
51_152_253 - 52_153_2 — 52_253_
We find factors
1/(a+Db)
sign change
1/(-a + b)

2 —1.-1

—1 -1 —1 -1
— 5y Sy —2s 'Sy —25 5y —



sign change
1/(-a - 3*b)
1/(a”2 + 2*a*b + b2)
sign change
1/(a”2 - 2*a*b + b72)
1/(2%a)
1/(a - 3*Db)
3*a + 3*b
2*a
sign change
9%a™2 + 6*a*b + b"2
9*%a™2 - 6*a*b + b2
sign change
-3*a + 3*b
sign change
-3*a-b
3*a-b
We find Euler classes
9)-(a—b)"2-(a+b)"2-(a—3b)"'-(a+3b)"'-(3a—b)* (3a+ b)?
and
(9)-(a—b)"2-(a+b)"2-(3a—b)"t-(3a+b)"'-(a—3b)3 (a+3b)°
For the ideal
(x2, xz, 22, y) Q[x, vy, 2]
the trace is
s1Sy L+ sy sy bsisy 425yt sy 25 sy 25y —sisy sy 2 — 25, 'y
51_252_153 -5 53_2 — 51_253_1
We find factors
1/(-a - b)
1/(-2°D)
1/(2%D)
1/(a”2 + 2*a*b + b"2)
sign change
1/(-a + b)
1/(4*a™2)
1/(3*a - b)
a+b
4*a"2
sign change
-3*a-b
9*a"2 - 6*a*b + b2
4*a - 2*b
4*a + 2*b
5%a + b
We find Euler classes
b2 . (a+b)?-(a—b)"'-(2a—b)-(2a+b)-(3a—b)-(3a+b)-(5a+b)
and
a?-(a+b) 2 - (—a+b)"'-(a—3b) - (a—2b)-(a+2b)-(a+3b)-(a+5b)

1 1

—1 -1 —1 .-
—S5 'Sy —2s sy —



Their sum is
-50
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