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Abstract 

 

Augmented reality (AR) is a form of presenting information by combining virtual and physical elements. 

This combination can be leveraged for unique learning scenarios, providing learners with information 

through interactive and spatial representations contextualised in a physical environment. While the 

technology necessary for this is already commonly used and outcomes of research generally suggest 

positive effects on learning processes and outcomes, the specific mechanisms that play a role for learning 

in AR are not yet fully established and examined. The aim of this dissertation is to fill this gap and 

provide insights into specific characteristics of AR-based learning and how they can be leveraged to 

support learning processes and outcomes. Based on three subgoals, a theoretical framework on 

educational AR is introduced, the results of systematic empirical studies are analysed, and 

recommendations for practical implementations are made. The theoretical ARcis framework developed 

as part of the dissertation explores the unique features of AR and elaborates the three characteristics 

contextuality, interactivity, and spatiality. Contextuality describes the integrated perception of virtual 

and physical elements, interactivity describes the manipulation of these elements in different ways, and 

spatiality describes the perception of spatial elements in 3D space. These characteristics can have an 

influence on learning processes and outcomes and can be leveraged for the design of systematic research. 

Furthermore, they can be used to develop AR experiences in a goal-oriented way. First empirical insights 

on the three characteristics and their influence on learning were collected in seven studies that are part 

of the five papers included in this dissertation. The studies focus on specific aspects of the AR-based 

learning experience, and most were designed as value-added studies with one of the three characteristics 

in mind. The study outcomes suggest a positive influence of the implementation of combined virtual 

and physical elements, guided mental and physical interactivity, and spatial representations in 

educational AR on cognitive and motivational processes and outcomes. In addition to the theoretical 

framework and empirical studies, practical design implications are described and analysed. It is 

proposed that the design of learning material should be aligned with the learning goals of the situation, 

leveraging the three ARcis characteristics for the design of purposeful AR experiences. All in all, the 

definition of the unique characteristics of AR, the outcomes of the empirical studies, and 

recommendations for practical application can inform research and practice on learning with AR. 
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Zusammenfassung 

 

Augmented Reality (AR) ist eine Form der Informationsdarstellung, bei der virtuelle und physische 

Elemente kombiniert werden. Diese Kombination kann für einzigartige Lernszenarien genutzt werden, 

in denen Lernenden Informationen durch interaktive und räumliche Repräsentationen kontextualisiert 

in einer physischen Umgebung vermittelt werden. Während die dafür notwendige Technologie bereits 

weit verbreitet ist und Forschungsergebnisse im Allgemeinen auf positive Auswirkungen auf 

Lernprozesse und -ergebnisse hindeuten, sind die spezifischen Mechanismen, die beim Lernen mit AR 

eine Rolle spielen, noch nicht vollständig bekannt und erforscht. Das Ziel dieser Dissertation ist es, diese 

Lücke zu füllen und Einblicke in die spezifischen Merkmale des AR-basierten Lernens zu geben und zu 

zeigen, wie diese zur Unterstützung von Lernprozessen und -ergebnissen genutzt werden können. Auf 

Basis von drei Teilzielen wird ein theoretischer Rahmen für AR in der Bildung vorgestellt, die 

Ergebnisse systematischer empirischer Studien werden analysiert und Empfehlungen für die praktische 

Umsetzung gegeben. Das im Rahmen der Dissertation entwickelte theoretische ARcis Framework 

untersucht die besonderen Merkmale von AR und arbeitet die drei Eigenschaften Kontextualität, 

Interaktivität und Räumlichkeit heraus. Kontextualität beschreibt die integrierte Wahrnehmung 

virtueller und physischer Elemente, Interaktivität beschreibt die Manipulation dieser Elemente auf 

unterschiedliche Weise und Räumlichkeit beschreibt die Wahrnehmung räumlicher Elemente im 3D-

Raum. Diese Eigenschaften können einen Einfluss auf Lernprozesse und -ergebnisse haben und für die 

Gestaltung systematischer Forschung genutzt werden. Darüber hinaus können sie genutzt werden, um 

AR-Erfahrungen zielgerichtet zu entwickeln. Erste empirische Erkenntnisse zu den drei Eigenschaften 

und ihrem Einfluss auf das Lernen wurden in sieben Studien gesammelt, die Teil der fünf in dieser 

Dissertation enthaltenen Arbeiten sind. Die Studien konzentrieren sich auf spezifische Aspekte der AR-

basierten Lernerfahrung, und die meisten wurden als Mehrwertstudien mit einer der drei Eigenschaften 

im Hinterkopf konzipiert. Die Studienergebnisse deuten auf einen positiven Einfluss der 

Implementierung kombinierter virtueller und physischer Elemente, angeleiteter mentaler und physischer 

Interaktivität und räumlicher Repräsentationen in bildungsbezogener AR auf kognitive und 

motivationale Prozesse und Ergebnisse hin. Neben dem theoretischen Rahmen und den empirischen 

Studien werden auch praktische Implikationen für die Gestaltung beschrieben und analysiert. Es wird 

vorgeschlagen, dass die Gestaltung des Lernmaterials auf die Lernziele der Situation abgestimmt werden 

sollte, indem die drei ARcis Eigenschaften für die Gestaltung zielgerichteter AR-Erfahrungen genutzt 

werden. Alles in allem können die Definition der einzigartigen Eigenschaften von AR, die Ergebnisse 

der empirischen Studien und die Empfehlungen für die praktische Anwendung die Forschung und Praxis 

zum Lernen mit AR informieren.  
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1 Introduction 

Learning technologies used in various topic areas, in formal and informal learning settings, and on 

different educational levels become more and more sophisticated in their hard- and software and their 

potential to convey information. One development that is becoming increasingly popular in education 

is augmented reality (AR). AR describes the visualisation of virtual information in the form of an 

integrated overlay onto the real world, specifically through systems combining real1 and virtual 

elements, including real-time interactivity and registration in three-dimensional (3D) space (Azuma, 

1997). On the reality-virtuality continuum reaching from fully real to fully virtual environments, AR 

has been placed within the in-between area of mixed reality (MR) leaning towards real environments 

(Milgram et al., 1994). While research on AR in education is becoming more mainstream and is 

implemented increasingly often (see, for example, reviews by Buchner & Kerres, 2023; Fidan & Tuncel, 

2018; Garzón, 2021), there are still a lot of research gaps, especially when it comes to experimental 

research including value-added and learner-technology interaction studies instead of media comparisons 

(Buchner & Kerres, 2023). For systematic and experimental research, a more detailed definition of 

learning-related attributes of educational AR is helpful, so that a focus on mechanisms concerning theses 

specific attributes is possible. In this doctoral dissertation, I present the ARcis framework, which I 

describe as a basis for more systematic research examining specific components of AR-based learning 

experiences that can be leveraged to support the achievement of different learning goals: contextuality, 

interactivity and spatiality. I will describe this framework, results from first empirical studies 

implemented on its basis and its potentials for application in this dissertation. 

 

1.1 Technological Background of AR 

From a technological perspective, AR systems have been defined through three characteristics: 

1) combining real and virtual elements, 2) real-time interactivity and 3) registration in 3D space (Azuma, 

1997). In order to achieve this, devices require three hardware components: sensors, a processor, and a 

display (Craig, 2013a). Sensors are especially relevant for the registration in 3D space described by 

Azuma (1997), which requires the tracking of the device’s position and the physical environment so that 

the virtual elements can be placed in alignment with physical objects. This can be done by sensors like 

GPS, accelerometers, depth-sensors, or a camera implementing computer vision (see Craig, 2013b for a 

review of AR hardware). While not all devices have sensor-based forms of environmental tracking 

 
1 While AR is often described as having “real” (or “real-world”) and “virtual” components, in the current 

dissertation I will mainly label this distinction as “physical” and “virtual”. Because virtual elements can represent 

real(-world) elements, it would be wrong to say that they are generally “not real”. As to not confuse these levels 

of represented and representing components, I use the “physical” property to distinguish the elements. Physical 

elements can be perceived in a non-mediated way and are often (but not exclusively) natural objects in an already 

existing environment that is either not designed by humans, or at least not designed with the current learning 

objective in mind. Virtual elements are only perceivable by mediation or translation through some sort of 

technological device, e.g., a screen or a speaker, and are often designed by humans specifically for some purpose, 

e.g., a learning objective. In some of the papers included in this dissertation, we still make the distinction between 

“real”/”real-world” and “virtual” elements, because my use of the labels changed over time after gaining more 

insights into the field of research. 
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beyond the camera available, an easier implementation of the registration in 3D space can be achieved 

through specific physical anchor-objects, e.g., physical objects or images functioning as AR markers 

called “fiducial markers” (Craig, 2013a, p. 41). These are easily recognised and tracked through 

computer vision, and virtual objects can be attached to them without the necessity to track the whole 

physical context. Real-time interactivity of the virtual elements also requires sensors for tracking user 

input and can technologically be achieved in different ways depending on the form of interaction. It can 

include body tracking for whole-body interaction, hand-tracking for hand-based interaction, touch-based 

interaction through a screen, or interaction through a form of controller (Craig, 2013a). All of these 

forms of interaction distinguish AR from just watching a movie with CGI elements (Azuma, 1997). 

Concerning the display requirement, which is crucial in transferring the information from the system to 

the user, the perception of co-present virtual and physical elements can be achieved through video see-

through or optical see-through displays (Milgram et al., 1994). In video see-through, the virtual elements 

are overlayed onto a real-time stream of the camera view of a device, whereas in optical see-through 

displays, virtual elements are projected directly into the user’s field of view, for example through semi-

transparent mirrors. The devices used for this can in both cases take the form of immersive displays like 

head-mounted displays (HMDs) or can be achieved as monitor-based options, although the latter are 

most often video-based in the form of tablets or smartphones. 

While the required hardware for AR including sensors and displays shows that sophisticated 

technology is necessary for AR to be achieved, most smartphones and tablets are already equipped with 

sufficient features to implement video see-through AR: a camera to record the physical world and for 

optical tracking, a GPS sensor for location detection, accelerometer and gyroscope sensors for detection 

of device movement and a touchscreen for interaction and to display virtual elements integrated into the 

camera stream of the physical world (Craig, 2013b). This has also influenced the implementation of AR 

in educational settings. After the first generation of AR in education has been defined as being driven 

by access to specific hardware, the second generation from 2010 to 2020 was based on the use of AR 

applications on mobile devices (Garzón, 2021). In a systematic review on AR in K-12 education, it was 

shown that while from 2000 to 2013 only 17% of studies used video see-through in output devices, this 

increased to 62% in studies from 2014 to 2020 (Zhang et al., 2022). This can mainly be attributed to the 

increasing usage of tablets and smartphones from 2014, with over 80% of studies including these devices 

in 2018 to 2020. These data show that AR is already being widely used in education through smart 

mobile devices, which most people have access to in their daily life. 

 

1.2 Research on AR in Education 

Looking back at the last five years of horizon reports for technological developments that might become 

interesting for educational settings, AR was a highlighted technology under the umbrella term mixed 

reality (MR) with a time-to-adoption horizon of four to five years in 2018 (Becker et al., 2018) and two 

to three years in 2019 (Alexander et al., 2019). In 2020, the umbrella term extended reality (XR) was 
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used to cluster AR, virtual reality (VR), MR and haptic technologies as a highlight in the emerging 

technologies and practices category (O’Brien, 2020). In 2021 (Pelletier et al., 2021) and 2022 (Pelletier 

et al., 2022), however, AR was not mentioned as a key technology or practice in the horizon reports, 

which may show a shift in focus away from XR, but may also show that AR and VR are becoming more 

usual in the educational technologies landscape, instead of being highlights to adopt in the future. 

The growing usage of and research on AR in education is reflected in the growing number of 

systematic literature reviews and studies executed over the last years. When just looking at some reviews 

on AR in education in recent years, a steady increase of studies is apparent, for example shown in a 

systematic review by Garzón and colleagues (2019) with an increase from 33 studies in 2012 to 154 

studies in 2018, with nearly 50% of the evaluated studies in the educational field ‘natural sciences, 

mathematics and statistics’, and primary (31%) and bachelor’s level education (30%) as the most 

prevalent target groups. More recent systematic reviews still show a steady increase in research on AR 

in education over the last years, with studies in the Web of Science database nearly doubling from 2016 

(220 studies) to 2019 (436 studies; Garzón, 2021), and a similar pattern of increase from 2016 (7 studies) 

to 2020 (20 studies) also found when specifically looking at top educational technology journals 

(Buchner & Kerres, 2023). In a recent meta-analyses by Chang and colleagues (2022), 134 

(quasi-)experimental studies on AR in education from 2012 to 2021 were analysed. The subject area 

‘science’ was included in almost 50% of studies in this review and most studies took either place at the 

elementary (39%) or the postsecondary (36%) level of education. 

In addition to the general reviews of research on AR in education described above, there have 

also been an increasing number of systematic, scoping, mapping, or integrative reviews for specific 

areas of application and subject domains. Specific areas of application in which research on educational 

AR has been systematically reviewed include K-12 education (Law & Heintz, 2021; Zhang et al., 2022), 

higher education (López-Belmonte et al., 2019; Mystakidis et al., 2021), professional training (Han et 

al., 2022), vocational training (Chiang et al., 2022), patient education (Urlings et al., 2022), and informal 

learning sites (Goff et al., 2018). Even more systematic reviews on AR in education considering specific 

subject domains became available over the last years. Different subject domains in which research on 

educational AR has been systematically reviewed include science learning and education (Arici et al., 

2019; Jdaitawi et al., 2022; Xu et al., 2022), STEM education (Ibáñez & Delgado-Kloos, 2018; 

Mystakidis et al., 2021; Sırakaya & Alsancak Sırakaya, 2020), chemistry education (Mazzuco et al., 

2022), physics education (J. W. Lai & Cheong, 2022), programming education (Theodoropoulos & 

Lepouras, 2021), engineering education (Álvarez-Marín & Velázquez-Iturbide, 2021; Vásquez-

Carbonell, 2022), architecture, construction and civil engineering education (Diao & Shih, 2019; 

Hajirasouli & Banihashemi, 2022), language learning (Cai et al., 2022; Parmaxi & Demetriou, 2020), 

health sciences (Rodríguez-Abad et al., 2021), healthcare education (Gerup et al., 2020), medical 

education (Parsons & MacCallum, 2021; Tang et al., 2020), anatomy education (Bölek et al., 2021; 

Chytas et al., 2020; McBain et al., 2022), and history education and heritage visualisation (Challenor & 



4 

Ma, 2019). This shows how broad the field of research on AR concerning different application areas 

and subject domains has recently become. 

When looking at recent research on AR in education, most of the research is technology-driven 

with a focus on media comparisons, i.e. comparing AR-based implementations with other digital 

implementations or a traditional educational practice like a book or lecture. In a meta-analysis of 134 

papers including (quasi-)experimental studies on AR in education from 2012 to 2021, H.-Y. Chang and 

colleagues (2022) found that 84% of 201 comparisons compared AR with non-AR instruction. Even 

when only looking at studies on AR in education published in top journals on educational technology, 

the picture looks very similar, with 80% of 92 studies published from 2009 to 2020 using a media 

comparison approach, even increasing over the last years although this approach has been highly 

criticised (Buchner & Kerres, 2023). Surry and Ensminger (2001) describe three major criticisms of 

media comparisons: 1) One medium is not inherently better than another, as it only delivers the 

information, and the instructional method is more important than the medium. This is based on the 

delivery truck argument described by R. E. Clark (1983). 2) More understanding of the specific attributes 

of media is necessary, so that better study designs can be developed with a focus on these attributes and 

how they can be used to support learning in different types of learners. 3) Due to the many differences 

between different media, there are a lot of confounding variables that make it difficult to figure out 

which factors led to an effect in an empirical study. This is based on the pseudoscience argument 

described by Reeves (1995). 

Two alternatives to media comparison studies that still focus on the role of the technology 

proposed by Surry and Ensminger (2001) are intra-medium studies, comparing different designs of the 

same technology, and aptitude-treatment-interaction studies, looking at how the technology might be 

(dis)advantageous for different types of learners. Only 22% of the 92 studies on AR in education 

analysed by Buchner and Kerres (2023) were found to be value-added studies, and only 11% were 

studies focusing on learner characteristics. This shows a gap in the research when it comes to these types 

of studies. Buchner and Kerres (2023) also state the necessity for alternative studies concerning AR in 

education, proposing to execute more research concerning the “how” of using AR in the form of value-

added studies (i.e. intra-medium studies) and concerning the “when” of using AR in the form of learner-

treatment-interaction studies (i.e. aptitude-treatment-interaction studies) and value-added studies 

comparing different learning outcomes. To receive a more complete picture concerning the effective 

and efficient usage of AR for learning, these kinds of studies should be implemented instead of or in 

addition to media comparison studies (see also Section 1. Introduction in Paper 3, Krüger et al., 2022). 

Looking at the second point of criticism by Surry & Ensminger (2001), the authors state that 

more information is necessary about attributes of specific media and how these influence learning in 

order to design better studies on educational technology. Kozma (1994) makes a similar point, stating 

that the attributes or capabilities of a medium need to be defined by the symbol systems or forms of 

representations that it can leverage for information communication and its capabilities to process this 
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information. He further states that these attributes should in turn be defined based on how they interact 

with and influence learners’ construction of and operation on their internal representations so that it can 

be determined how the medium could be used effectively to support learning. The goal of the current 

doctoral dissertation is formulated based on those suggestions. 

 

1.3 Goals of the Current Dissertation 

The goal of the current dissertation can be summarised as: “Gaining insight into specific characteristics 

of AR-based learning and how they can be leveraged to support learning processes and outcomes“. I 

further define three subgoals for reaching this goal, a theoretical, an empirical, and a practical subgoal: 

1) theoretically defining characteristics of learning with AR and analysing how specific 

mechanisms may have an impact on learning 

2) empirically examining how the characteristics of learning with AR and their specific 

mechanisms influence learning 

3) practically applying the theoretical and empirical insights into the characteristics and 

mechanisms for the design of AR-based learning experiences 

To work towards Subgoal 1, I will present three AR-specific characteristics based on the literature on 

AR-based learning and their potential for the support of effective and efficient learning on both a process 

and an outcome level in Section 3. These characteristics can be used for systematic empirical research 

on AR-based learning(Subgoal 2) and the purposeful design of AR experiences (Subgoal 3). Concerning 

Subgoal 2, I will describe empirical studies based on the three characteristics that are part of my doctoral 

project in Section 4. Furthermore, for Subgoal 3 I will take the step towards the application of the 

framework in the design of AR-based learning experiences. Because this is based on both the definition 

of the characteristics and the outcomes of the studies, it will be interwoven with all parts of the 

dissertation and summarised in the practical implications in Section 5.3.  

The basis for reaching the overarching goal and subgoals are five papers that are included in this 

cumulative doctoral dissertation. The papers all include a theoretical part, constructing or expanding the 

theoretical ARcis framework guided by Subgoal 1 (see Section 3 for a description of the framework), 

and a total of seven empirical studies guided by Subgoal 2 (see Section 4 for an overview of all papers 

and studies). In Paper 1 (see Section 4.1), the construction and description of the underlying ARcis 

framework with the three characteristics contextuality, interactivity, and spatiality is provided, which is 

further extended in the other four papers. The empirical part in Paper 1 includes two studies firstly 

subsumed and integrated into the ARcis framework: Study 1 looks at a comparison of AR and non-AR 

simulations for inquiry-based learning, with differing interactivity and spatiality, and Study 2 compares 

close and far visualisations for group formation support, focusing on contextuality (Paper 1, Krüger et 

al., 2019). Paper 2 (see Section 4.2) focuses on the ARcis characteristic interactivity, theoretically 

expanding the ARcis framework concerning mental and physical interaction in AR. Empirically, Paper 

2 includes Study 3, looking at the impact of higher and lower mental and physical interaction in an 
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interactive AR-based learning setting (Paper 2, Krüger & Bodemer, 2020). Paper 3 (see Section 4.3) 

focuses on the ARcis characteristic spatiality, expanding the theoretical framework concerning the 

dimensionality of objects in AR. The empirical part includes Study 4, comparing a 3D and a 2D 

visualisation in AR (Paper 3, Krüger et al., 2022). In Paper 4 (see Section 4.4), contextuality is in focus 

with an expansion of the ARcis framework concerning the placement of virtual information in relation 

to contextually relevant physical objects. The included Study 5 compares placement of virtual 

information near to and far from corresponding physical objects (Paper 4, Krüger & Bodemer, subm.). 

In Paper 5 (see Section 4.5), the connection of spatiality and contextuality to the multimedia learning 

principles expands the focus of the ARcis framework to more specific design applications. Study 6 

included in Paper 5 describes the application of the spatial contiguity principle, and Study 7 describes 

the application of the coherence principle (Paper 5, Krüger & Bodemer, 2022a). Data collection for 

Studies 1, 2, 6 and 7 (Study 5 partly) were conducted as part of advised Bachelor’s and Master’s theses. 

In Table 1, an overview of the five papers and their components, including the theoretical developments 

and the seven studies, is shown. These will be described in more detail in Section 4. 

 

Table 1 

Overview of Papers and Studies 

Papers Components 

Paper 1 

Basic ARcis Framework 

(Krüger et al., 2019) 

▪ Framework: Basis of ARcis Framework 

▪ Study 1: Inquiry-Based Learning in AR 

▪ Study 2: Group Formation with AR Support 

Paper 2 

Interactivity in AR 

(Krüger & Bodemer, 2020) 

▪ Framework: Extension of ARcis Framework concerning Interactivity 

▪ Study 3: Physical and Mental Interaction in AR 

Paper 3 

Spatiality in AR 

(Krüger et al., 2022) 

▪ Framework: Extension of ARcis Framework concerning Spatiality 

▪ Study 4: Dimensionality and Spatial Abilities in AR 

Paper 4 

Contextuality in AR 

(Krüger & Bodemer, subm.) 

▪ Framework: Extension of ARcis Framework concerning 

Contextuality 

▪ Study 5: Position of Physical Context in AR 

Paper 5 

Multimedia Learning in AR 

(Krüger & Bodemer, 2022a) 

▪ Framework: Extension of ARcis Framework concerning application 

of Multimedia Principles 

▪ Study 6: Spatial Contiguity Principle in AR 

▪ Study 7: Coherence Principle in AR 

 

2 Learning with AR 

AR-based learning is a growing research area with a lot of reviews on the usage of AR in education over 

the last years as already described in Section 1.2. In the AR-based settings used in this research, many 

different pedagogical approaches and strategies have been applied. Sommerauer and Müller (2018), for 

example, identified the cognitive theory of multimedia learning (CTML), mobile learning, game-based 

learning and simulation, experiential learning and situated learning as learning theories implemented in 

educational AR. Garzón and colleagues (2020) similarly identified CTML and situated learning, but 
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also collaborative learning, inquiry-based learning, and project-based learning as relevant in this regard. 

Hanid and colleagues (2020) similarly found the learning strategies of game-based learning, 

collaborative learning, and experiential learning, and furthermore also interactive learning to be 

prevalent in AR-based education. In the more specific case of STEM learning in higher education, 

Mystakidis and colleagues (2021) also described the instructional strategies of collaborative learning, 

experiential and discovery learning, activity-based learning, but also a simple presentation of 

information in the reviewed literature. This shows that researchers try to incorporate pedagogical 

approaches into the AR applications that they examine, which include collaborative, 

experiential/discovery/inquiry-based learning, activity-based/interactive learning, game-based learning, 

mobile learning, project-based learning, situated learning, the application of the CTML, and the simple 

presentation of information. Goal of the implementation of these different pedagogical approaches is 

usually to improve learning processes and outcomes, although the focus can be very diverse for different 

application designs and empirical studies. 

Different variables have been applied in empirical studies to examine learning processes and 

outcomes when learning in AR. Radu (2012) summarises positive effects of using AR in education in 

the form of increased content understanding, long-term memory retention, increased student motivation, 

and improved collaboration. Further reviews suggest that AR can facilitate skill and knowledge 

acquisition more effectively, support understanding and knowledge transfer, increase motivation and 

interest, improve spatial abilities and psychomotor-cognitive skills (Wu et al., 2013) and improve 

content understanding, memory retention, task performance, collaboration, and motivation (Radu, 

2014). Enhancement of learner outcomes in the form of learning achievement, learning motivation or 

decrease of cognitive load, and pedagogical contributions in the form of increased enjoyment and level 

of engagement or interest have also been listed (Akçayır & Akçayır, 2017). Garzón and colleagues 

(2019) list learning gains, motivation, comprehension of abstract concepts, autonomy, sensory 

engagement, memory retention, collaboration, creativity, and accessibility as advantages of AR reported 

in the 61 studies they assessed. In total, there have thus been cognitive, motivational, and emotional 

variables in the form of learning processes and outcomes that have been part of research on AR. This 

shows a wide range of outcome variables, hinting at very different mechanisms that can play a role when 

learning with AR. In the following sections, I will describe in more detail how AR can have an influence 

on learning, starting with an analysis of which representations can be applied in AR. Afterwards, I will 

describe relevant constructs for AR-based learning and more specific insights into how AR has been 

found to influence learning processes and outcomes in the literature. 

 

2.1 Multiple External Representations 

As described above in Section 1.2, Kozma (1994) states that media should be defined by their attributes, 

including their capabilities of using specific symbol systems or forms of representations, and in turn 

define how these attributes can support learning processes. Representations can be defined as elements 



8 

that represent something else, involving a represented and a representing world (Ainsworth, 2006). In 

AR, various different forms of representations can be implemented due to its combined virtual and 

physical nature. On the physical side, placing AR-based learning experiences in real-world 

environments includes accessibility to natural objects (e.g., plants or landscapes) that can represent more 

general concepts and objects in a learning experience. These natural elements are limited to existing 

environments and objects that are available to and accessible by the learners. They include 3D objects, 

spatial environments, and sounds, but also the possibility to touch and feel things, smell, and taste. 

Natural physical environments and objects are very rich in multisensory information, with a high density 

of perceptions, realistic representations, and authentic contexts. Besides natural objects, the physical 

side of AR can also include artificial objects, for example buildings or physical models. Physical models 

representing natural objects are tangible but may not be as rich in multisensory information as their 

natural counterparts. On the virtual side in AR, virtual representations can be manifold and specifically 

designed by the instructors. Written text, 2D images, 3D models, spoken text, and sounds are some 

examples of representations that can be implemented. The elements can be dynamic or static and 

interaction with them can be designed exactly as desired. AR thus combines physical and virtual 

elements. Rau (2020) describes physical representations as tangible and thus manipulatable by hand, 

and virtual representations as presented on a screen manipulated through controllers or touchscreen 

input. Based on a review of the complementary advantages of physical and virtual representations, one 

suggested heuristic for instructional design describes that physical and virtual representations should be 

combined purposefully. Their respective potentials for the conveyance of different concepts should be 

taken into account as they offer complementary advantages through different learning mechanisms. The 

specific combination and design of physical and virtual representations in AR should thus be considered, 

which can be guided by theories on human information processing. 

One theory of human information processing is the Cognitive Theory of Multimedia Learning 

(CTML) by Mayer (2020a), including three assumptions. The first assumption states that information is 

processed in two separate channels, one for visual-spatial and one for auditory-verbal information. This 

dual-channels assumption is based on an integration of Paivio’s dual-coding theory (e.g., Paivio, 1986) 

and Baddeley’s working memory model (e.g., Baddeley, 1999). Because AR can include both visual-

spatial and auditory-verbal information in the form of images, written text, spoken text, and sounds, the 

two channels of information processing can be leveraged for the design of effective AR-based learning 

experiences, for example by taking into account different multimedia learning principles. The second 

assumption of CTML describes that the processing capacity of human working memory is limited 

(Mayer, 2020a). The three types of processing, extraneous processing (caused by bad instructional 

design, no goal-oriented learning), essential processing (caused by complexity of content, essential 

learning) and generative processing (motivated effort of learner, deeper understanding) should thus be 

distributed in working memory in a way as to support learning best, avoiding extraneous, managing 

essential, and facilitating generative processing. This can be connected to cognitive load theory, which 
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will be described in more detail in Section 2.3. The third assumption of CTML describes that processing 

is always active because information has to be actively attended, selected, organised, and integrated 

(Mayer, 2020a). The active processing can then lead to the construction of a coherent mental model or 

knowledge structure. CTML can be applied to AR due to its potential to include various forms of 

representation. Many authors have suggested CTML as a relevant learning theory for AR (e.g., Buchner, 

Buntins, et al., 2022; Garzón et al., 2020; Sommerauer & Müller, 2018). Due to its partly digital nature, 

AR can include pictorial and textual representations, and information for different sensory modalities, 

like vision and audio, making AR a perfect environment for multimedia learning and multiple 

representations. CTML as a theory of information processing can thus inform the design of the 

combination of representations in AR-based learning experiences. 

The integrated model of text and picture comprehension by Schnotz and Bannert (2003) 

describes a similar approach of information processing. The authors distinguish between descriptive 

representations that use symbols to describe objects with signs for relations, and depictive 

representations that use iconic signs and structural relations. In the model, these forms of representations 

are processed in different channels because they are based on complementing but different sign systems 

and principles of representations (Schnotz & Bannert, 2003). External descriptive representations are 

described to be processed into internal text surface representations, then a deeper level propositional 

representation which can then be constructed into a mental model, at which point a transition from a 

descriptive to a depictive representation takes place. External depictive representations are described to 

be processed into an internal visual perception or image and then a deeper level mental model, which 

can inspect propositional representations. A continuous construction-inspection interaction takes place 

between propositional representation and mental model. So, different than with CTML, no one-to-one 

relationship between external and internal representations is assumed. External descriptive 

representation leads to both internal descriptive and depictive representation, and the same is assumed 

for external depictive representation (Schnotz & Bannert, 2003). In AR, external depictive and 

descriptive representations can be displayed and combined, so that this model of human information 

processing can also be used to inform the design of AR-based learning experiences. 

It is thus apparent that the combination of different forms of external representations needs to 

be taken into account when designing in AR but additional aspects of multiple external representations 

(MERs) beyond their form should also be considered. The DeFT framework (Ainsworth, 2006) 

describes an approach that does not only focus on the form of the representation, but also the design 

parameters unique to MERs, their pedagogical functions, and cognitive tasks necessary for interaction. 

Concerning the design parameters, Ainsworth describes that both the represented and the representing 

world need to be considered in external representations. For MERs she lists unique design dimensions, 

including the number, the information distribution, the form of the representations and the translation 

between them. Concerning the functions of MERs, Ainsworth (2006) lists complementary, constraining, 

and constructing functions. Concerning the cognitive tasks necessary to learn with MERs, Ainsworth 
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(2006) describes that learners need to understand the form of the representation, the relation between 

domain and representation, and choose how to select or construct an appropriate representation. In AR, 

the design, functions, and tasks need to be applied to a unique combination of physical and virtual 

elements. These can complement each other, distributing information between the two worlds, enriching 

wisely chosen physical objects through well-designed virtual elements that can take many different 

forms. It is especially important to support translation between physical and virtual elements to indicate 

their connection because of their different nature. Also, the authentic and often familiar nature of 

physical objects might help constrain the interpretation of virtual elements. Deeper understanding can 

be constructed in this combination, for example by supporting abstraction through multiple examples 

from the authentic real world, extending knowledge over different contexts, and relating virtual and 

physical objects to each other. When it comes to cognitive tasks that learners need to achieve, some 

might be more easily supported through AR. For example, the relation between a virtual representation 

and its domain may be easier if the experience takes place within an authentic context, which AR can 

supply. This indicates the unique possibilities of MERs in AR. 

As described in the context of the DeFT framework, one design aspect that needs to be 

considered is the translation and thus relation of different representations. For AR this means the 

translation between physical and virtual elements, which can lead to a coherent mental model of the 

different worlds. Seufert and Brünken (2006) describe that coherence formation between different 

external representations can be difficult. They distinguish between local and global coherence formation. 

Local coherence formation describes the understanding and mental integration of information provided 

within a single representation, while global coherence formation describes integration of information 

provided in multiple representations (Seufert & Brünken, 2006). In AR, there can be multiple virtual 

and multiple physical representations, so that another distinction can be added, the coherence formation 

within one world, virtual or physical, and the coherence formation across the two worlds. Coherence 

formation across physical and virtual elements may hold new challenges.  

Common representations used in AR are 3D objects, text and digital media like sound and video 

(Mystakidis et al., 2021). Chang and colleagues (2022) take a closer look at the AR affordances that are 

leveraged in their meta-analysis of 134 studies, finding that 3D visualisation is exploited most often in 

78% of the studies, 70% of studies exploit immersion, 60% exploit contextualisation and 25% leverage 

collaboration. 3D visualisations are thus an important kind of visualisation in AR (see Section 1.1.1. 

Augmented reality visualizations in Paper 3, Krüger et al., 2022 for more details). An AR-based learning 

experience that incorporates many different kinds of representations has been presented by Shaghaghian 

and colleagues (2022). In their AR application, the learning objective is to understand the spatial 

transformation of 3D objects, including a translation into different kinds of representations based on a 

dynamic link. A physical 3D model is included on the physical side, and on the virtual side a virtual 

version of the 3D model that can be rotated based on virtual parameter input is shown as anchored to 

the underlying surface. In addition to overlays of transformation matrices and mathematical functions 
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based on transformations of the physical and virtual model, graphical information about the 

transformations is shown integrated into the physical space. Very different symbol systems and 

representations are thus included in this application, helping with translations between these. Another 

AR-based learning experiences that shows a lot of virtual and physical representations and leverages the 

combination of the two worlds in an elaborate way, is the application on electromagnetism by Radu and 

Schneider (2022). Here, the physical part is a model that replicates an audio speaker system. Through 

an HMD, virtual 3D visualisations of otherwise invisible activities within the speaker are shown, 

including magnetism, electricity, and sound waves. Also, 2D image-based representations of 

electromagnetism that are also shown on a physical poster are added virtually in a combined view, so 

that multiple very different representations are shown and can be mentally integrated. This shows the 

potential range of combining representations in AR. While this offers many opportunities, there may be 

even more challenges when it comes to the purposeful implementation of these and thus the design of 

AR. Design guidelines can help instructors and may be transferable from other areas. 

As stated above, CTML can be applied in the design of AR-based learning experiences. The 

theory includes various multimedia design principles directed at the reduction of processes that are not 

directly relevant to learning (i.e. extraneous processing), some directed at managing processes that deal 

with the content of the learning material (i.e. essential processing) and some directed at fostering 

processes that lead to deeper learning and schema construction (i.e. generative processing; 

Mayer, 2020f). Sommerauer and Müller (2014) argue and show that multiple design principles can be 

implemented through AR, applying the multimedia principle, the spatial and temporal contiguity 

principles, the signalling principle, and the modality principle in a mathematics exhibition. Similarly, 

another design of a mobile AR application for English language education applied the signalling 

principle, spatial and temporal contiguity principle, modality principle, and segmenting principle 

(H.-Y. Lin & Tsai, 2021). One of the principles for reducing extraneous processing is the spatial 

contiguity principle, which describes the advantage of visually-spatially integrated multimedia 

representations of related images and texts compared to separate representations (Mayer, 2020d). This 

principle is based on the reduction of visual search processes and on freeing capacities in working 

memory for in-depth processing. The split-attention effect in CLT describes the same phenomenon 

(Ayres & Sweller, 2014) and many empirical studies have found a positive effect on learning outcomes 

when the principle is followed (Schroeder & Cenkci, 2018). With AR, this principle is applicable to the 

combination of virtual and physical elements. These elements can be presented in the same visual view 

using AR technologies, being integrated at the actual location of the physical object in the three-

dimensional space of the physical world (Altmeyer et al., 2020). Thees and colleagues (2020), for 

example, found that ECL was lower with an integrated presentation of superimposed information using 

AR glasses than with a presentation shown separately on a screen, even though no effects on learning 

outcome were found. In another study with a similar setup, they however found no lower ECL for the 

AR glasses condition and higher learning gains for the separate display group (Thees et al., 2022). The 
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idea of applying multimedia learning design principles is further explored in Paper 5 including Study 6 

and Study 7 in the current dissertation (Krüger & Bodemer, 2022a). 

In summary, AR offers the possibility of combining various MERs, including physical and 

virtual representations (see Rau, 2020), verbal, pictorial, auditory, and visual representations 

(see CTML; Mayer, 2020a), and depictive and descriptive representations (see integrated model of text 

and picture comprehension; Schnotz & Bannert, 2003). Their combination, including their forms, tasks, 

and functions (see DeFT framework; Ainsworth, 2006), and local and global integration (see Seufert & 

Brünken, 2006), should be considered carefully in the design of educational applications. The current 

dissertation will further analyse and evaluate the specific characteristics of AR as a form of visualising 

information through a combination of different forms of physical and virtual representations. The 

resulting framework including the characteristics contextuality, interactivity, and spatiality will be 

described in Section 3. 

 

2.2 Learning Achievement 

Learning has been defined as a change in the learners’ knowledge caused by an experience in a learning 

environment (Mayer, 2020a). Mayer defines different kinds of knowledge that can be achieved from an 

educational experience, including facts, concepts, procedures, strategies, and beliefs. He further defines 

five kinds of knowledge structures that are built when learning, namely process, comparison, 

enumeration, classification, and generalisation. Knowledge is said to be stored in long-term memory, 

which can hold large amounts of information for a long time with the need to be activated to become 

available for further processing. Learning can be assessed in different ways, including learning 

outcomes, characteristics, and processes (Mayer, 2020b). Mayer describes retention tests and transfer 

tests as ways to assess learning outcomes. In a meta-review by Xu and colleagues (2022), different kinds 

of learning achievement that have been shown to be measured in studies on AR include achievement 

test scores, lab skills test scores, knowledge test scores, and spatial test scores. 

Concerning AR, it has overall been suggested that it can support learning achievement. In a 

meta-analysis, Garzón and Acevedo (2019) found a summarised medium to large effect of using AR on 

learning gains in 64 studies (Cohen’s d = 0.68) and in 2020, Garzón and colleagues found a similar 

summarised effect of AR on learning outcomes (Cohen’s d = 0.72). In another meta-analysis of 38 

studies, a large effect size (Hedge’s g = 0.92) of a summary of all kinds of learning outcomes 

(e.g., performance, cognitive load, and emotion) of AR in K-12 education was found (Zhang et al., 

2022). Through mixing the different kinds of variables, this cannot be attributed to learning 

achievement, but shows in general a difference between AR and non-AR when it comes to learning. In 

the field of science learning, Xu and colleagues (2022) found a total medium to large effect size of 

Hedge’s g = 0.74 from 35 studies that measured academic achievement, with 22 of the comparisons 

showing a positive effect, 16 comparisons without a significant effect, and one comparison with a 

significant negative effect. In their meta-analysis of (quasi-)experimental studies, H.-Y. Chang and 
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colleagues (2022) analysed the summarised effect found in 168 studies comparing AR to non-AR for 

different learning outcomes. They found a medium effect concerning subjective self-ratings of learners 

through questionnaires and surveys (Hedge’s g = 0.49), a medium to large effect concerning assessed 

knowledge and skills (Hedge’s g = 0.65), and a medium to large effect concerning assessed performance 

in authentic tasks (Hedge’s g = 0.74). While this shows in general a positive effect of AR, the effect 

sizes have a very high variability, including a high number of studies in which non-AR leads to better 

results than AR, especially in the knowledge and skills category. 

In summary, a generally positive effect of AR on learning outcomes is observed in empirical 

research. In the current dissertation, learning achievement is investigated in all seven studies (Krüger et 

al., 2019, 2022; Krüger & Bodemer, 2020, 2022a, subm.), including different learning topics and 

objectives (see Section 4 for an overview of the seven studies). While the generally positive outlook for 

implementing AR in education shows its potential for instructional settings, most research on AR does 

not examine more closely how and when exactly AR supports learning, due to the high number of media 

comparison studies (see Section 1.2). In the following, I will introduce multiple constructs that may be 

relevant to explain how learning is supported by AR, specifying constructs concerned with learning 

processes. Further looking into the effects of AR on these constructs through intra-medium (Surry & 

Ensminger, 2001) and value-added studies (Buchner & Kerres, 2023) can provide insights into the 

question of how AR supports learning, as described in Section 1.2. 

 

2.3 Cognitive Load and Workload 

One cluster of constructs that is relevant for learning with MERs and thus with AR is cognitive load and 

related constructs like workload, mental load, or mental demand. A central theory in the field of 

multimedia learning is the cognitive load theory (CLT), describing different effects of instructional 

design on learning explained by three different types of cognitive load. Although it is one of the most 

influential theories in instructional design, its tripartition of the types of cognitive load has only been 

applied in one of 64 studies in a systematic map of studies on cognitive load in AR-based learning 

environments until October 2019 (Buchner et al., 2021). Another central construct for AR-based 

learning experiences is subjective workload of tasks as defined in the NASA task load index (TLX) by 

Hart and Staveland (1988). This conceptualisation was used in 36 of 64 studies in the systematic map 

of AR studies (Buchner et al., 2021) and is thus the conceptualisation that is used most often in research 

on AR. In the following, CLT and NASA TLX will be introduced and research on AR in education 

including these concepts is explored. 

CLT is one of the most commonly adopted theories for the design of multimedia learning 

material. It is based on the assumption that working memory capacity is limited and that learning 

material should be designed in a way as to not cause cognitive overload, specifically by reducing load 

caused by irrelevant activities that are not in accordance with the learning goals (Chandler & Sweller, 

1991). This type of load is called extraneous cognitive load (ECL) and is assumed to fill up working 
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memory capacities together with intrinsic cognitive load (ICL) and germane cognitive load (GCL) 

(Sweller et al., 1998). While ECL is thus defined as unnecessary load elicited by processing of poorly 

designed instructional materials, ICL is defined as cognitive load that is elicited by processing the 

content of the learning material in accordance with the learning objective, and GCL as cognitive load 

that is elicited by elements of the instructional design that evoke deeper processing and schema 

construction (Sweller et al., 1998). ECL and GCL can be influenced by the design of the learning 

material, which can lead to increased ECL when not designed well and can support GCL when it 

activates deeper processing. ICL is influenced by the content in interaction with learners’ relevant prior 

knowledge. In Section 2.1, the counterparts of these three types of cognitive load in CTML were 

described: extraneous, essential, and generative processing, respectively. In an updated 

conceptualisation of CLT, GCL is not described as an individual part of cognitive load anymore, but as 

“the working memory resources that are devoted to dealing with ICL rather than ECL” (Sweller et al., 

2019, p. 264). Based on this, one questionnaire that had been developed by Leppink and colleagues 

(2013) to measure the three types of cognitive load separately has later been shortened to two scales 

measuring ECL and ICL (Leppink et al., 2015). However, ICL has been shown to correlate with a 

passive component of load that is influenced by the learning material, while GCL correlated with an 

active component describing the effort that learners themselves put into the learning task (Klepsch & 

Seufert, 2021). This shows that a differentiation between these types of load might still be relevant for 

the instructional design and measurement of cognitive load. In this dissertation, I thus keep using the 

conceptual tripartition of the types of cognitive load. Klepsch and colleagues (2017) developed and 

validated a questionnaire with three subscales, measuring the complexity in content (ICL) and design 

(ECL), and the additionally invested cognitive processes (GCL). 

The conception of the NASA Task Load Index (NASA TLX) by Hart and Staveland (1988) is 

another form of differentiating subconstructs of load. Six global constructs of workload are described in 

this model. Mental demand, physical demand, and temporal demand are three task-based constructs 

included here (Hart & Staveland, 1988). These types of demand are elicited by the difficulty of the task 

execution. Perceived performance and effort are behaviour-based constructs included in the NASA TLX 

conceptualisation, describing learners’ subjective experience of their performance and how much effort 

they had to invest to achieve this performance. Frustration as the sixth component is person-based, 

describing a psychological impact of task demands and behaviour. In order to assess people’s workload, 

the task load index is a scale that asks users to rate these concepts (Hart & Staveland, 1988) which has 

been applied in many contexts already (Hart, 2006). Using the NASA TLX conceptualisation to define 

task load in AR-based learning can deliver a more differentiated picture in addition to the CLT 

conceptualisation. When compared to CLT, the focus of the concepts includes more task-based 

constructs, which are considered in interaction with learner characteristics and behaviour. The CLT 

types are focused more on instructional design than on task execution, as the NASA TLX comes from 

a more general human-machine interaction background and not an educational background. Especially 
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physical demand, which can be important in interactive learning settings, brings a new component in 

comparison to CLT which focuses on cognitive processes. Contrary to CLT, no differentiation is made 

between learning irrelevant and relevant mental demand elicited by the task in the NASA TLX. When 

comparing the behaviour-based constructs of effort and performance in the NASA TLX to CLT, the 

differentiation between passive and active components of cognitive processing can be helpful (Klepsch 

& Seufert, 2021). The active component describes the effort learners actively invest into cognitive 

processing. When more effort is invested, GCL can be increased, showing a connection between the two 

conceptualisations. 

In a systematic review on studies measuring cognitive load in AR-based learning, more than 

half (56%) media comparison studies showed lower or equal cognitive load and higher performance for 

AR in comparison to non-AR (Buchner, Buntins, et al., 2022). Other studies also found lower cognitive 

load without measuring performance (6%) or found no differences in cognitive load and performance 

(17%). There were also a few studies with higher cognitive load or worse performance in AR. This 

shows that the results are mixed concerning empirical insights on cognitive load in AR. As already 

mentioned above, the tripartition of cognitive load based on CLT has not yet been researched 

comprehensively in AR-based learning environments (Buchner et al., 2021), so that these studies often 

do not differentiate between relevant and irrelevant cognitive load. Because AR is believed to and has 

been repeatedly shown to improve learning outcomes (see Section 2.2), it should be assumed that it does 

not only offer the possibility to decrease cognitive processing irrelevant for learning (i.e. ECL), but also 

to increase cognitive processing relevant for learning (i.e. GCL). One of the limitations of AR has been 

described as creating cognitive overload in learners as a result of the complexity of activities, challenges 

of integrating AR in educational settings, but also the technological limitations of AR at that point in 

time (Dunleavy & Dede, 2014). This shows potentially increased extraneous cognitive processing and 

load through AR. On the other hand, AR has been described to lead to better learning achievements, as 

described in Section 2.2, which suggests an increase in germane cognitive processing and load. 

As already described above, many studies on educational AR examine cognitive load or task 

load, using various conceptualisations. The results of the studies are mixed concerning a positive or 

negative impact of AR. In a study by Wang and colleagues (2022), for example, a traditional biology 

lesson was compared with an AR implementation of a 3D model of the human respiratory system. 

Cognitive load was decreased in the group using AR in comparison to the non-AR group. However, the 

type of cognitive load measured in this study was not further defined, which shows one of the issues 

with research on cognitive load in AR. As described above, in AR it can be important to distinguish 

between cognitive load that supports learning, and cognitive load that can be detrimental. A study 

implementing the NASA TLX conceptualisation of workload showed that although no general 

difference in task load was found between a group learning about manual material handling in 

engineering education through HMD-based AR and a group learning in an in-class environment, 

different subconstructs of task load differed significantly (Guo & Kim, 2020). The authors found 
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increased mental demand, effort, and frustration, and decreased perceived performance for the AR 

group. This shows the importance of examining different subconstructs of workload, and not just an 

overall score. Another distinction is often made between mental effort and mental load. When comparing 

a traditional physical, a virtual 3D, and a combined virtual-physical AR implementation of a lesson on 

magnetic fields, learners using the AR implementation had lower scores for mental effort and mental 

load than both of the other groups (Liu et al., 2021). The above-mentioned distinction between ECL, 

GCL, and ICL based on cognitive load theory is also increasingly used in research on AR. In a study 

comparing learning about the human brain with cross-sections or learning with an 3D AR 

implementation, both ECL and GCL were higher in the cross-section group (Henssen et al., 2020). In 

contrast to the above proposed positive effects of AR on cognitive load, Zumbach and colleagues (2022) 

expected ECL to be increased when learning with AR in comparison to paper-based instructions due to 

more potential distractions. They further expected the AR experience to be perceived as a game, 

decreasing deeper information processing and thus GCL. While they did not find significant difference 

for GCL, ECL was indeed significantly increased in the AR group. In another study comparing an AR-

supported lesson on stereochemistry including 3D models of molecules to a lesson including only 2D 

drawings, cognitive load measured as ECL and ICL did not differ significantly (Elford et al., 2022). This 

shows that an implementation of AR does not necessarily lead to better results for cognitive load, so that 

it is necessary to take a closer look at how particular AR designs may have an influence. 

When comparing different implementations or designs of AR in terms of cognitive load instead 

of applying media comparisons, more insights into effective design can be gained. In a study comparing 

a monoscopic and a stereoscopic presentation of a virtual anatomical 3D model of the lower extremities 

within an AR HMD, no influence on cognitive load measured through a summarised NASA TLX score 

was found (Bogomolova et al., 2023). This shows that not all design decisions necessarily have an 

influence on cognitive load. Concerning cognitive load influenced by the application of multimedia 

design principles in AR as mentioned in Section 2.1, an integrated design in accordance with the spatial 

contiguity principle has been found to significantly decrease ECL with a small effect but no effect on 

conceptual knowledge (Thees et al., 2020). In contrast, the same comparison in a similar setting was 

found to only descriptively but not significantly decrease ECL with a small effect size while, opposite 

to expectations, also significantly decreasing knowledge (Thees et al., 2022). Again, this shows the 

complexity and inconclusiveness of research on cognitive load in AR-based learning.  

In summary, cognitive load and workload are important concepts when it comes to learning 

with AR. The research is very diverse, including a lot of different concepts and sometimes not all 

information about how cognitive load is operationalised. The exact mechanisms of how cognitive and 

workload are increased or decreased in AR are not fully known, yet. In the current dissertation, cognitive 

load including a split into the three types ECL, ICL, and GCL, is investigated in all studies, further 

filling the research gap on this specific conceptualisation of cognitive load. Some of the included studies 

provide a focus in their specific research questions and hypotheses. Study 1 focuses on ECL and ICL, 
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Study 2 focuses on ECL (both Paper 1, Krüger et al., 2019). Study 3 (Paper 2, Krüger & Bodemer, 2020) 

and Study 6 and 7 (Paper 5, Krüger & Bodemer, 2022a) focus on ECL and GCL, Study 5 focuses on 

GCL (Paper 4, Krüger & Bodemer, subm.), and Study 4 (Paper 3, Krüger et al., 2022) includes all three 

types of cognitive load. In addition to this conceptualisation of cognitive load and for the possibility of 

comparing this research with other AR-based research, the NASA TLX conceptualisation of task load 

has also been applied in three studies in the current dissertation, namely Study 3 (Paper 2, Krüger & 

Bodemer, 2020), and Study 6 and 7 (Paper 5, Krüger & Bodemer, 2022a). See Section 4 for an overview 

of the seven studies. 

 

2.4 Immersion 

In addition to cognitive load, another important construct that needs to be considered in AR-based 

learning is immersion. Immersion has been described from a technological perspective and from a 

psychological perspective. From a technological perspective, Slater and Wilbur (1997) describe 

immersion as the degree of how well a technology can create an illusion of reality. For a high degree, 

the illusion should be inclusive, extensive, surrounding, and vivid. While Slater and Wilbur (1997) 

describe the psychological experience of this technological immersion as presence, Witmer & Singer 

(1998) use the term immersion to describe the psychological feeling of being enveloped by a certain 

environment. These are thus different definitions of the same word which currently coexist in the 

literature. A review of various definitions of immersion clusters these definitions into the three 

dimensions system immersion, narrative immersion, and challenge immersion (Nilsson et al., 2016). 

System immersion defines the term based on the system’s properties, narrative immersion defines the 

term based on a person’s response to a narrative, and challenge-based immersion defines it based on the 

response to a challenge. Due to the many different definitions, it is thus important to define how the 

term immersion is being used. In the current dissertation, immersion will be used in its psychological 

definition, as the subjective sense of being inside a certain environment. Still, immersive properties of 

technologies that can support the feeling of (system) immersion are also acknowledged. As to not 

exclude research in the literature review in this area just because different terms are used, research 

examining constructs described as (sense of) presence, engagement, and involvement, which have been 

described to be used interchangeably with the term immersion (Nilsson et al., 2016), will also be 

included. I will use the terms as they are in the cited research, under the assumption that these describe 

very similar or the same feelings as immersion. 

VR, MR, XR, and AR as immersive technologies can embed learners in a technology-enriched 

context. Immersive learning is concerned with learning through the usage of artificial experiences that 

learners perceive as non-mediated (Dengel, 2022). The instructional design perspective views these 

experiences as tools to enrich learning, while the perspective on learners’ internal processes describes 

the construction of internal models or knowledge. In models like the Cognitive Affective Model of 

Immersive Learning (CAMIL; Makransky & Petersen, 2021) and the Educational Framework for 



18 

Immersive Learning (EFiL; Dengel & Mägdefrau, 2018) psychological immersion or sense of presence 

are described as key aspects of the immersive learning experience. In the CAMIL, immersion is defined 

as a technological factor that has an influence on learners’ presence as the feeling of being there 

(Makransky & Petersen, 2021). Presence in turn is described to have an influence on many different 

affective and cognitive factors, including cognitive load and motivation, which then are assumed to 

influence learning outcomes. In the EfiL, immersion is also defined as a description of the technology, 

which is part of the instructional affordances, has an impact on perception through presence, and 

influences the immersive learning potential, including motivational, cognitive, and emotional factors 

(Dengel & Mägdefrau, 2018). Presence in turn influences learning activities, while also having a two-

sided relationship with the immersive learning potential. 

As also described in these models, research on immersive learning environments often shows 

positive effects of technological system immersion on presence and thus the feeling of immersion, 

enjoyment, and motivation (Makransky, 2021). Makransky describes two paths through which 

immersion can influence learning, the affective and the cognitive path. The affective path describes how 

immersive experiences can increase enjoyment, which can help learners focus on the task and may 

increase intrinsic motivation and generative processing. The cognitive path describes the potential of 

immersion to either decrease ECL through the removal of distractions from the environment, but also 

the potential to increase ECL due to the potential complexity of the environment distracting from the 

learning task (Makransky, 2021). Empirical results on learning outcomes are mixed showing both 

positive and negative relations between immersion and learning, especially when it comes to declarative 

knowledge instead of procedural knowledge, spatial knowledge, or behavioural transfer. Based on these 

insights, the immersion principle has been introduced recently as a multimedia design principle in the 

CTML. The principle describes that immersive environments do not necessarily promote learning but 

can lead to distractions and cognitive overload due to the many displayed elements that are not directly 

related to the content of the learning material (Mayer, 2020e). While the described models CAMIL and 

EfiL and the immersion principle focus on immersive VR, they might be at least partly transferable to 

AR as another immersive medium, although there are AR-specific aspects to consider. 

To define immersion more specifically for AR, Kim (2013) developed a framework concerning 

context immersion in mobile AR environments. The concept of context immersion is described as being 

immersed and thus enveloped through awareness of the surrounding context information. It includes 

several features, for example, an autonomous experience, location tracking, and an embodied space. The 

context can be a time and location-based context, object-based context, and user-based context. For the 

case of location-based AR, Georgiou and Kyza (2017b) describe three levels of immersion that build 

upon each other: 1) engagement, including the learners’ interest for the activity, time investment in the 

activity, and usability of the application; 2) engrossment, including learners’ emotional attachment to 

and focus of attention during the activity; and 3) total immersion, including presence, which is described 

as the feeling of being surrounded by the environment, and flow, the learners’ full absorption into the 
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activity. In this conceptualisation, (sense of) presence is thus a part of the experience of total immersion, 

together with flow. Based on these three levels of immersion, the augmented reality immersion (ARI) 

questionnaire has been developed and evaluated, including six sub-scales for the different sub-

components of immersion (Georgiou & Kyza, 2017c). Salar et al. (2020) tested a comprehensive model 

to show the relations between the six sub-constructs. They found an influence of usability on interest, 

an influence of emotional attachment on interest and focus of attention, an influence of focus of attention 

on flow, and an influence of presence on flow and focus of attention in a cohort of university students 

using AR in science learning. 

Research on immersion in AR-based education shows that learners’ immersion can have a 

positive effect on learning. For example, learners with higher immersive profiles including the six ARI 

subconstructs had better learning outcomes concerning basic chemistry concepts than learners with 

lower immersive profiles (Uriarte-Portillo et al., 2022). Furthermore, in location-based AR 

environments, learners with high levels of immersion displayed different learning behaviours (Georgiou 

& Kyza, 2017b) and had higher learning outcomes (Georgiou & Kyza, 2017a, 2018). Y.-H. Chen and 

Wang (2018) distinguish between the effect of sense of presence on learning achievement in low-

presence and high-presence learners. The results suggest that for low-presence learners, presence has an 

influence on learning achievement, but not for high-presence learners. 

Supporting an assembly task with a handbook, a screen-based AR visualisation, or a HMD-

based AR visualisation, different levels of immersion of learners were found (Generosi et al., 2022). 

Immersion was perceived lower with the handbook than the two types of AR visualisations. In some 

studies, the influence of AR on specific sub-constructs of immersion has been examined. In a study 

focusing on the engagement level of the ARI subconstructs (i.e. interest and usability), AR on handheld 

devices, MR on HMDs, VR on HMDs, and paper-printed learning material was compared (Zhao et al., 

2023). Descriptively, the AR and MR groups had the highest usability scores, and the MR group had 

the highest interest score by far. This shows that AR and MR, here distinguished based on the device 

used, may provide a solid basis through engagement as the lowest level of immersion. One of the 

subfactors of total immersion in the ARI conceptualisation is flow. In the study by Wang and colleagues 

(2022) comparing a traditional biology lesson to an AR implementation of a 3D model of the human 

respiratory system that was also mentioned in Section 2.3 on cognitive load, flow experience was 

increased in the AR group in comparison to the non-AR group. In their study also mentioned in regard 

to cognitive load, Zumbach and colleagues (2022) found higher experienced immersion of learners 

learning with AR in comparison to paper-based instructions, but no differences in experience of flow. 

In summary, immersion is an important concept when it comes to learning with AR. There is 

still a lot of research necessary when looking at the exact mechanisms of how the perception of 

immersion is influenced by different designs of AR. In the current dissertation, immersion is only 

investigated in one study, namely in Study 5 (Paper 4, Krüger & Bodemer, subm.) in its 
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conceptualisation including the subconstructs interest, usability, emotional attachment, focus of 

attention, presence, and flow. 

 

2.5 Motivation 

Motivation has been defined as the drive to execute specific actions, based on people’s beliefs, values, 

and goals (Eccles & Wigfield, 2002). There are a lot of different frameworks defining different forms 

of motivation and motivationally relevant variables for learning and in general in educational settings. 

Eccles and Wigfield (2002) have clustered and defined theories that focus on people’s expectancies 

concerning their competence and control, theories that focus on the specific reasons for executing tasks, 

theories that integrate people’s expectancy and value, and theories that integrate motivation and 

cognition. Wigfield and Eccles (2000) describe their own expectancy-value theory of achievement 

motivation, in which ability beliefs, task expectancies, and subjective values are related to each other. 

Ability beliefs describe people’s perceived competence to execute an activity, task expectancies describe 

their expected success at a task, and subjective values describe perceived usefulness, importance, and 

interest of the task execution. Based on these concepts, they also developed a questionnaire with three 

subscales (Wigfield, 1994; Wigfield & Eccles, 2000). 

A common distinction of motivation is made between intrinsic and extrinsic motivation. While 

intrinsic motivation is described as motivation that is innate to the person and depends on their interest 

in the activity itself, extrinsic motivation comes from external rewards and punishments (Deci & Ryan, 

1985). These are further differentiated through levels on a continuum of self-determination, reaching 

from intrinsic motivation, to identified regulation, to external regulation, to amotivation. These levels 

have also been picked up by Guay and colleagues (2001) to develop the situational motivation scale 

(SIMS). This scale has subscales to measure intrinsic motivation, identified regulation, external 

regulation, and amotivation separately. Another questionnaire to measure intrinsic motivation is the 

intrinsic motivation inventory (IMI) first used in studies by Ryan and colleagues (Plant & Ryan, 1985; 

Ryan, 1982; Ryan et al., 1983) which measures constructs that are relevant for motivation, including 

subscales on interest/enjoyment (which is defined as the subscale to measure intrinsic motivation) and 

the related constructs perceived competence, perceived choice, effort, and pressure/tension. 

Because AR-based educational settings are designed by instructors with a specific purpose in 

mind, another relevant framework that can be applied in AR-based research is the ARCS framework, 

which describes attention, relevance, confidence, and satisfaction as four levels of motivation that can 

and should be influenced by the design of the learning material (Keller, 2010). Attention needs to be 

evoked before learning can start. It includes the three sub-components perceptual arousal, inquiry 

arousal, and variability. Relevance is the next level that needs to be evoked to maintain motivation. 

Again, three sub-components are described: goal orientation, motive matching, and familiarity. 

Confidence is the next level in the ARCS model with the three sub-components learning requirements, 

success opportunities, and personal control. The final level in the model is learners’ satisfaction. It 
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includes the sub-components intrinsic reinforcement, extrinsic rewards, and equity (Keller, 2010). The 

goal of the ARCS model is to give instructional designers a quick overview of major dimensions of 

learning motivation and support them in stimulating and sustaining motivation through different 

strategies. Based on the model, a questionnaire with the four subscales attention, relevance, confidence, 

and satisfaction has been developed to examine learners’ motivational experiences (Loorbach et al., 

2015). The ARCS model can be and has been applied to AR-based learning experiences. For example, 

Chia-Chen and colleagues (2022) used it to design the AR-based application Cosmos Planet Go, and 

Wei and colleagues (2015) designed a complete ARCS-based teaching scheme for a course in which 

students learned to design an AR environment themselves. 

In the AR-related area of multimedia learning, a motivational component has been added to 

CTML as part of the cognitive-affective theory of learning with media (CATLM) by Moreno (2006). 

The assumption of affective mediation added to the model proposes that motivational factors regulate 

cognitive processing and affect, and thus mediate learning. This includes the assumption that motivation 

determines how much of learners’ cognitive resources are actually invested in a learning task (Moreno, 

2010). In her discussion of CLT from this cognitive-affective perspective, Moreno states that it is 

important to consider a relation between load, affect, and motivation because it is not the cognitive 

capacity but the actually invested cognitive resources that affect learning. Paas and colleagues (2005) 

also argue that motivation or learner involvement predicts mental effort, which in turn predicts 

performance, and Mayer (2014) similarly states that affective instructional design features can influence 

how much learners engage in cognitive processing. In a different conceptualisation, motivation has been 

described as an outcome of cognitive load instead of a parallel process (Feldon et al., 2019). Here, ECL 

is described as a cost that has an influence on motivational beliefs. R. E. Clark and colleagues (2006) 

further describe that there are specific motivational challenges in complex learning environments. These 

challenges include an automatic attention shift to irrelevant stimuli and increased negative emotions as 

a reaction to cognitive overload, and a decrease in mental effort when self-efficacy is inappropriately 

high or low. The connection between motivation, effort, and learning outcome describes the importance 

of considering motivation in learning environments, especially when the environments are complex and 

could discourage learners. AR has the potential to be leveraged for the design of complex environments, 

which shows how important motivational aspects might be for AR-based learning environments.  

Motivation plays a role in both the CAMIL (Makransky & Petersen, 2021) and the EFiL (Dengel 

& Mägdefrau, 2018) models on immersive learning also mentioned in regard to immersion in Section 

2.4. In the CAMIL, intrinsic motivation is being described as a factor that is influenced by the immersive 

affordances presence and agency and in turn influences different types of knowledge (Makransky & 

Petersen, 2021). In the EfiL, motivational factors are described as immersive learning potential, 

influenced by instruction affordances and influencing learning activities which in turn influence learning 

outcomes, amongst others (Dengel & Mägdefrau, 2018). When looking at literature on AR in education 

in particular, motivation appears often as a variable in research. In many systematic reviews, an increase 
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in motivation is described as one of the advantages of AR (e.g., Akçayır & Akçayır, 2017; Bacca et al., 

2014; P. Chen et al., 2017; Garzón et al., 2019; Herpich et al., 2019; Radu, 2012, 2014). In a review 

focusing specifically on motivation and performance in AR in secondary education, 83% of the 13 

included investigations showed a positive effect, specifically on the four levels of motivation described 

in the ARCS model (Amores-Valencia et al., 2022). 

Many studies on AR in education have focused on the design of motivational applications. As 

already described above, the ARCS model is often referenced in this regard. The application Cosmos 

Planet Go by Chia-Chen and colleagues (2022), for example, was designed on the basis of the ARCS 

model. The authors identified relevant teaching strategies that could be implemented for each of the 

factors attention, relevance, confidence, and satisfaction. They compared the strategies applied in a 

control group without AR, and an experimental group using an AR-based implementation of the lesson 

plan, and evaluated those with the IMMS questionnaire mentioned above. The authors found a higher 

score for all four factors of the ARCS model in the AR-based lesson in comparison to the traditional 

lesson and better learning outcomes on a post-test. This shows that the implementation of motivational 

design features in AR can improve motivational experience and learning outcomes. However, because 

design features for all four categories of motivational aspects are implemented in the AR version, it is 

not completely clear through which mechanisms motivation was increased. In another study the focus 

was not on implementing motivational features but on comparing an AR-based and a conventional 

multimedia science learning course (A.-F. Lai et al., 2019). Learners were found to be more motivated 

in AR, showing higher scores in attention, relevance, confidence, and satisfaction. This shows that even 

when no specific design features for motivation are implemented, AR can improve motivation compared 

to a traditional approach. 

Besides the ARCS model, other constructs of learning motivation have been examined in 

educational AR. In the study by Wang and colleagues (2022) on a traditional biology lesson in 

comparison to an AR implementation of a 3D model of the human respiratory system already mentioned 

in regards to cognitive load outcomes and flow experience in earlier sections, learning motivation was 

increased in the AR group in comparison to the non-AR group. Although a questionnaire was used that 

defines different subconstructs of motivation, the measurement is not further defined, so that the exact 

motivational effects cannot be distinguished. Self-efficacy, as a motivational construct, did not differ 

significantly between the two groups in the study. In a study comparing an AR application and a 

simulation for learning about insects in a natural science course, learning approaches, including 

strategies and motives, were assessed (Yang & Tsai, 2020). The authors found higher deep motivation 

in the AR group, which describes that learners had higher intention to make sense of and understand the 

materials when learning with AR than with a simulation. This shows that AR cannot only increase 

motivation in comparison to traditional lessons, but also in comparison to other multimedia material. 

In summary, motivation is an important concept when it comes to learning with AR. The 

research points into the direction that learning motivation can in general be increased through AR, 
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although the exact mechanisms are not completely clear. In the current dissertation, the motivational 

impact of AR has been inspected in different study designs. Motivational aspects of participants before 

the learning phase of the study, following an expectancy-value conceptualisation, are investigated and 

used for sample descriptions in Studies 3 (Paper 2, Krüger & Bodemer, 2020), Study 4 (Paper 3, Krüger 

et al., 2022), Study 5 (Paper 4, Krüger & Bodemer, subm.), and Study 6 and 7 (Paper 5, Krüger & 

Bodemer, 2022a). Motivational aspects in association with using the respective AR application are 

investigated in Study 1 (Paper 1, Krüger et al., 2019) and Study 5 (Paper 4, Krüger & Bodemer, subm.), 

although with different conceptualisations. In Study 1, the situational intrinsic motivation 

conceptualisation is used, including subfactors intrinsic motivation, identified regulation, external 

regulation, and amotivation. In Study 5, the ARCS conceptualisation is used, including the subfactors 

attention, relevance, confidence, and satisfaction. See Section 4 for an overview of the seven studies. 

 

2.6 Spatial Abilities 

Another concept that is relevant in the context of AR-based learning experience is the learners’ spatial 

abilities, especially in the context of 3D visualisations. The alternative forms of studies suggested by 

Surry & Ensminger (2001) and Buchner and Kerres (2023) described in Section 1.2 include aptitude-

treatment-interaction or respectively learner-treatment interaction studies. Spatial abilities are one 

category of learner characteristics that can play a role when learning with AR and examining these in 

relation to learning processes and outcomes may help answer the question of when using AR can be 

effective. Cheng and Tsai (2013) also describe the necessity to investigate learner characteristics like 

spatial abilities for research on AR in education, as it might interfere with learners’ experiences, learning 

processes or outcomes. 

Spatial abilities have been classified in the category of abilities of visual perception, including 

abilities that focus on how individuals deal with spatial presentation and orientation (Carroll, 1993). 

Further, dimensionality has been identified as an inherently relevant aspect in this, but the spatial 

distribution of elements in the physical or imaginal space has been identified as a main concern. Carroll 

(1993) finally defines spatial abilities as abilities that have to do with searching the visual field and 

mentally representing the perceived objects including their spatial characteristics (e.g., forms, shapes, 

and positions), and with mentally manipulating these mental representations. Two factors have been 

identified as defining clusters of spatial abilities, the spatial relations and the spatial visualisation factor 

(Pellegrino et al., 1984). While the spatial relations factor describes abilities for rapid mental rotation 

and transformation processes, the spatial visualisation factor describes abilities for more complex mental 

visualisation and manipulation within the parts of an object without the goal of a quick solution. Tests 

for spatial relations abilities thus often have a time limit but are less complex, while tests for spatial 

visualisation abilities are more complex but have no time limit. 

3D mental rotation abilities are one category of spatial abilities within the spatial relations 

factor. Individuals with high mental rotation abilities are quick in determining if a 3D object is a rotated 
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version of another 3D object or a completely different object (Pellegrino et al., 1984). Shepard and 

Metzler (1971) found that the time to determine this increased when the angular difference in the 

orientation of the 3D objects is higher, which suggests that individuals mentally rotate the object until 

it has the same orientation. This was also supported by what the participants of the study told in 

interviews about how they proceeded. One form of measuring mental rotation abilities is the Mental 

Rotation Test (MRT) by Vandenberg & Kuse (1978). In this test, the 2D drawings of four 3D figures 

must be compared to a drawing of a reference figure. Two of the four options are rotated versions of the 

reference figure, which must be identified as quickly as possible because there is a time limit for 

answering all items. A redrawn version of this MRT has been published by Peters and colleagues (1995). 

When learning with 3D representations, learners’ 3D spatial abilities including mental rotation 

abilities play an important role. In the literature, two types of hypotheses have been proposed, an ability-

as-compensator and an ability-as-enhancer hypothesis. The ability-as-compensator hypothesis, as 

suggested by Höffler (2010), describes that learners with lower spatial abilities profit from 3D 

representations while learners with higher spatial abilities do not need those representations, because 

they can handle the mental transformation from 2D representations to 3D. The ability-as-enhancer 

hypothesis, as suggested by Huk (2006), describes that learners with higher spatial abilities profit from 

3D representations while learners with lower spatial abilities do not have the skills to handle those to 

their advantage. As described in Section 2.1, AR has the potential to display 3D representations of virtual 

objects, so that spatial abilities need to be considered in this case. However, it is not fully clear if the 

ability-as-compensator or the ability-as-enhancer hypothesis is appropriate in this case. 

In a study by Ho and colleagues (2022), an AR HMD application displaying a 3D model of the 

inner regions of the human brain was compared to a physical model of the same. Mental rotation abilities 

were found to be positively associated with test performance, but only when using the AR HMD 

application and not when using the physical model. Mental rotation abilities thus may play a role when 

learning with AR models but not with physical models. In the study comparing a monoscopic and a 

stereoscopic presentation within an AR HMD displaying a virtual anatomical 3D model of the lower 

extremities which was already mentioned in regards to cognitive load, no influence of mental rotation 

abilities was found on the relation between the form of presentation and cognitive load or knowledge, 

although the abilities were in general positively correlated with knowledge about structure names and 

functions tested at plastinated specimen (Bogomolova et al., 2023). The additional depth cues provided 

by the stereoscopic presentation did not interact with learners’ mental rotation abilities, but in general 

the mental rotation abilities seem to have predicted if learners could transfer their knowledge onto 

authentic physical 3D representations. 

In summary, spatial abilities, including mental rotation abilities, can be influential when it 

comes to learning with AR, especially with spatial learning as an objective. However, the literature is 

not yet fully clear on the exact role and mechanisms of how learners’ spatial abilities influence learning 

in AR, so that more research is necessary. In the current dissertation, mental rotation abilities of 
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participants before the learning phase of the study are investigated and included as a moderator variable 

in Study 4 (Paper 3, Krüger et al., 2022). 

An addition to spatial abilities as learner characteristics with a potential influence on learning 

with AR-based representations, AR has also been used for training of spatial abilities. In a review of 32 

studies from 2010 to 2019, most studies show an enhancement of spatial abilities through AR-based 

training (Papakostas et al., 2021). The authors further described that the Purdue Spatial Visualisation 

Test for Rotation (PSVT:R), the Differential Aptitude Test for space relations (DAT:SR) and the Mental 

Rotation Test (MRT) were most often used to test spatial skills. Due to the nature of the studies presented 

in the current dissertation, in which skills training is not the focus, spatial abilities training is not 

discussed further. In Study 1 (Paper 1, Krüger et al., 2019), mental rotation abilities have been 

investigated as an outcome variable after the learning phase, but treated as a by-product of learning with 

3D models and without a specific focus on skills training. 

 

2.7 Summary 

In total, there are many constructs that play a role when learning with AR. Here, I presented learning 

with MERs, learning achievement as an outcome variable, cognitive load, workload, immersion, and 

motivation as process-related variables, and spatial abilities as learner characteristics. 

The described constructs often cannot be considered separate from each other. When looking at 

the CTML by Mayer (2020a) as a theory on MERs, for example, cognitive load considerations are a 

central part of the theory. The CATLM by Moreno (2006) as an extension of the theory further includes 

motivational aspects and individual differences (e.g., spatial abilities) as moderator variables. 

Motivation is here described as a factor that mainly has an influence on the actually invested mental 

effort, and thus the active component of cognitive load (see Klepsch & Seufert, 2021). Looking at the 

models described concerning immersion and motivation in immersive learning, CAMIL (Makransky & 

Petersen, 2021) and EFiL (Dengel & Mägdefrau, 2018), it can further be seen, that the different outcome 

and process variables are related to each other. The CAMIL proposes that the feeling of presence or 

immersion has an influence on affective and cognitive factors, including motivation and cognitive load, 

which in turn are described to influence learning outcomes like different types of knowledge. In the 

EFiL, motivational, cognitive, and emotional factors as part of the immersive learning potential are 

influence by instruction affordances and in turn have an influence on learning behaviours and outcomes. 

The affective path of immersion described by Makransky (2021) is described to work through an 

increase in enjoyment, which may increase intrinsic motivation, focus learners’ attention, and lead to 

more generative processing, which can in turn lead to better learning outcomes. This shows that the 

constructs might need to be considered in their interplay as well as their individual mechanisms. 

Although there has been research concerning the mentioned learning processes, learning 

outcomes, and learner characteristics, the particular mechanisms through which they are influenced by 

or related to specific design decisions in AR-based educational environments are often not yet fully 
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known. For this, more systematic research is necessary, which leads to the necessity of first defining 

attributes that play a specific role in AR, as suggested by Surry and Ensminger (2001; see Section 1.2). 

 

3 The ARcis Characteristics 

It is obvious that AR has some characteristics that other technologies do not have, which is mainly due 

to the combination of virtual and physical elements. While the virtual elements in AR can be 

purposefully designed and placed by instructors based on their specific learning goals, physical elements 

in the real world are by definition authentic, realistic, detailed, and rich in information but not as 

manipulatable. When learning takes place inside the physical world and includes physical elements in 

the learning material, more senses than just learners’ visual sense are automatically involved because 

there are surrounding sounds, the possibility to touch and feel, and even smells and tastes. In many 

different (meta-)reviews of literature on AR in education, various affordances of AR have been defined 

and examples from six papers over the last ten years summarising multiple aspects can be seen in Table 

2. Affordances that are mentioned multiple times are, for example, visualisation of the invisible (Cheng 

& Tsai, 2013; MacCallum & Jamieson, 2017; Parsons & MacCallum, 2021; Wu et al., 2013), learning 

with and about spatial representations and concepts (Bower et al., 2014; MacCallum & Jamieson, 2017; 

Wu et al., 2013), situated or contextualised learning (Bower et al., 2014; Cheng & Tsai, 2013; Dunleavy 

& Dede, 2014; MacCallum & Jamieson, 2017; Parsons & MacCallum, 2021) and practical skill 

development (Cheng & Tsai, 2013; Parsons & MacCallum, 2021). Although this list of affordances 

provides a good overview of what AR can be used for, they are formulated on different levels, including 

(technological) features of AR software (e.g., visualising the invisible) and hardware (e.g., portability 

of devices), pedagogical or didactical concepts (e.g., situated learning, collaborative learning), and 

proposed learning outcomes (e.g., conceptual understanding, practical skills). Furthermore, not all of 

these affordances can be solely attributed to AR-based learning environments, although the specific way 

in which AR affords most of them is probably unique. 

To work towards the achievement of the theoretical Subgoal 1 of the current dissertation, which 

aims at theoretically defining characteristics of learning with AR and analysing how specific 

mechanisms may have an impact on learning, I will present three characteristics of AR. These 

characteristics are supposed to summarise the currently proposed affordances of AR on a more abstract 

level and from a psychological, learner-focused perspective based on the system characteristics 

proposed by Azuma (1997). For this purpose, we developed the ARcis framework including the three 

characteristics contextuality (c), interactivity (i), and spatiality (s) in Paper 1 (Krüger et al., 2019). The 

goal of the definition of these AR-specific characteristics is to provide a basis for systematic research 

on and design of purposeful AR-based learning settings. In the following sections, the characteristics 

and proposed relations with learning processes and outcomes will be described in more detail. 
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Table 2 

Examples of Different AR Affordances Described in the Literature 

Paper AR affordances / characteristics 

Cheng and Tsai 

(2013) 

▪ enhance spatial abilities 

▪ enrich practical skills 

▪ support conceptual understanding and change 

▪ enable collaborative inquiry-based activities within physical environments 

Wu and colleagues 

(2013) 

▪ provide 3D-object based, interactive learning 

▪ enable ubiquitous, collaborative and situated learning with virtual elements in real 

environments 

▪ offer sense of presence, immediacy, and immersion 

▪ visualise invisible concepts or events 

▪ bridge gap between informal and formal learning 

Bower and 

colleagues (2014) 

▪ rescale virtual objects with clear representation of spatial concepts and 

contextualisation in real-world environment 

▪ overlay contextually relevant information as “perfectly situated scaffolding” 

Dunleavy and Dede 

(2014) 

▪ present multiple perspectives 

▪ leverage physical space 

▪ access external resources 

▪ support student motivation 

▪ allow situated learning and transfer 

▪ leverage context sensitivity 

MacCallum and 

Jamieson (2017) 

▪ visualise 3D and the invisible 

▪ contextualise information 

▪ provide portability of devices to interact with location 

▪ enable social and shared engagement 

Parsons and 

MacCallum (2021) 

▪ reduce negative impact like risks and costs 

▪ visualise the invisible 

▪ support development of practical skills in a spatial context 

▪ provide portability of devices across locations 

▪ enable situated learning in context 

 

In addition to Subgoal 1, the following sections will also provide first insights towards the 

achievement of Subgoal 3 of the current dissertation. The practical Subgoal 3 is focused on practically 

applying the theoretical and empirical insights into the characteristics and mechanisms for the design of 

AR-based learning experiences. For the purpose of applying the theoretical insights of the ARcis 

framework, the three educational AR applications created for and used in the main Studies 3, 4, and 5 

will be analysed concerning the implementation of these characteristics, showing a range of possible 

applications. The application “powAR” used in Study 3 (see Section IV.C. Materials and Apparatus in 

Paper 2, Krüger & Bodemer, 2020 for a detailed description of the application) includes pattern-based 

AR markers on paper cards that can be scanned to display virtual, animated 3D models of components 

of combined-cycle power plants (see Figure 1). Concerning the physical interaction with the learning 

material, learners can either receive already constructed marker clusters of different complete power 

plants or must construct them themselves. Furthermore, concerning the mental interaction with the 

learning material learners either must figure out for themselves which power plant compositions to 

compare to answer hypotheses about power output and efficiency or this information is provided as part 
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of the instructions. The application “heARt” used in Study 4 (see Section 2.3. Material and apparatus 

in Paper 3, Krüger et al., 2022 for a detailed description of the application), includes an image-based 

marker as part of a worksheet with textual and pictorial information about the human heart. This marker 

can be scanned with the application, either showing a virtual version of the 2D graphic with labels for 

the names of the components of the human heart or showing a labelled virtual 3D model of a human 

heart (see Figure 2). In the application “ARbor” used in Study 5 (see Section 2.2. Materials in Paper 4, 

Krüger & Bodemer, subm. for a detailed description of the application), image-based markers can be 

scanned to show additional information about plants. Learners can either receive these markers and thus 

the information directly at the respective plants or further away but still in the general vicinity of the 

plants (see Figure 3). In the following sections, the description of the three characteristics will form a 

basis for the analysis of these three applications. 

 

Figure 1 

Usage of powAR Application in Study 3: Scanning Markers To View Power Plant 

 
 

Figure 2 

Usage of heARt Application in Study 4: 3D and 2D Visualisation of Human Heart 
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Figure 3 

Usage of ARbor Application in Study 5: Accessing Information About Near or Far Plants 

 

 

3.1 Contextuality 

Contextuality describes the possibility of a combined presentation of virtual and physical elements in 

AR, which enables learners to perceive representations from both worlds in an integrated form (see 

Section 2.1 Contextuality in Paper 1, Krüger et al., 2019). This characteristic is based on the first 

characteristic of AR systems described by Azuma (1997): combination of real and virtual elements. 

Since the virtual elements do not cover the context (as in VR, for example), the context can be perceived 

in parallel. The realities are also not separated from each other (as is the case, for example, with normal 

tablet use), but can be displayed in an integrated manner. For educational settings, this includes the 

possibility to place virtual, instructor-designed elements within a physical world setting, so that relevant 

instructional information can be placed exactly where it is needed, and learning can be situated within a 

relevant environment. In the above-mentioned affordances, this aspect is best reflected in the 

contextualisation of information (Bower et al., 2014; MacCallum & Jamieson, 2017), provision of 

situated learning opportunities (Dunleavy & Dede, 2014; Parsons & MacCallum, 2021; Wu et al., 2013) 

and the “perfectly situated scaffolding” (Bower et al., 2014, p. 6). Thus, the focus here is on features of 

the physical world in which AR-based learning takes place and its thematic connection with virtual 

elements. 

  

3.1.1 Contextuality in AR-based Learning 

Contextuality can be leveraged in the design of AR-based educational experiences that support learning 

(see Section 2.1 Contextuality in Paper 1, Krüger et al., 2019, for basic and Paper 4, Krüger & Bodemer, 

subm., for more detailed information on this). Through the parallel perception of virtual elements and 

the physical context, the placement of instructional information and the connection of virtual and 

physical elements play an important role in AR. Through this and the use of mobile technologies, 

learning can be embedded within relevant environments in the physical world, which is in accordance 

with one condition to improve learning based on constructivist learning theory (Dunleavy & Dede, 
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2014). Through this mobility and the possibility of location-based learning, the feeling of authenticity 

can be supported within learners, learners can be contextualised in a location and grounded in reality 

(Wu et al., 2013). AR applications have been characterised as context-aware or context-independent 

(Wen & Looi, 2019) and place-dependent or place-independent (Dunleavy & Dede, 2014), describing 

different levels of relevance of the physical context for the learning experience. Reid and colleagues 

(2005) describe three levels of meaningfulness of the surrounding place in environments where virtual 

media files are placed at physical locations: (1) arbitrary linkage, where any place with enough space 

can be used; (2) physicality, where the atmosphere and general characteristics of the environment are 

part of the experience, and (3) particular location, where the exact location with its elements is important. 

Wetzel and colleagues (2011) similarly classify mobile AR games based on their semantical location 

context on a spectrum from (1) independent, to (2) loosely coupled, to (3) dependent. The differentiation 

of these levels allows for a specific description and implementation of AR-based learning experiences. 

 Bower and colleagues (2014) describe that AR can bring the real world into an instructional 

setting like a classroom and that instructional elements can be embedded in physical environments, 

leading to contextualised and authentic learning characterised within the theory of situated learning. 

Situated learning has been highlighted as a theoretical framework relevant to AR in many papers (e.g., 

Bower et al., 2014; Cheng & Tsai, 2013; Dunleavy & Dede, 2014; Garzón et al., 2020; Sommerauer & 

Müller, 2018; Wu et al., 2013). Situated learning describes that learning is inherently linked to the 

context in which it takes place, making learning in an authentic context desirable (Brown et al., 1989). 

Young (1993) further describes that learning should be contextualised within real environments. By 

embedding learning in a relevant physical context, AR-based contextuality can support the mental 

connection and integration of virtual elements, physical objects, and the physical environment, thus 

promoting learning that is characterised by its combination of physical and virtual elements. 

Using AR can immerse learners within a physical real-world context, which has been described 

as context immersion (Kim, 2013). Georgiou and Kyza (2017) define immersion in location-based AR 

on different levels, with the highest levels including flow and presence (see Section 2.4). Immersion has 

furthermore been connected to learners’ motivation to learn. Makransky and Petersen (2021), for 

example, predict in their Cognitive Affective Model of Immersive Learning (CAMIL) that sense of 

presence, which describes the feeling of immersion, has an influence on motivational factors and in turn 

on learning outcomes. Additionally, the placement of virtual information within a corresponding 

physical environment can show the relevance of this information, which Keller (2010) describes as an 

important aspect for increasing motivation in the ARCS model (see Section 2.5). For a more detailed 

discussion of the connection of contextuality to immersion and motivation, see Section 1.1 Immersion 

and motivation in contextualized AR learning environments in Paper 4, Krüger and Bodemer (subm.). 

Placing virtual information within a corresponding physical environment might thus have positive 

effects on feelings of immersion and motivation. 
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3.1.2 Recent Research on Contextuality 

In recent research in the field of AR-based learning experiences, it has been shown that situating the 

experience in a relevant context can have positive effects on learning processes and outcomes. In a 

recent study, AR was used to situate cultural heritage education at a specific cultural location, the 

Basilica of Saint Catherine of Alexandria in Galatina (De Paolis et al., 2022). The authors describe the 

capability of AR to provide contextually relevant information at specific locations, which they 

implemented in an application including a storytelling-based audio guide and visual AR elements. 

However, they only examined learners’ perceived usability, user experience, and task load without a 

control group, so advantages of the contextualisation and effects on learning outcomes are not clear. 

In a study that focused on the feelings of immersion and learning outcomes, Georgiou and Kyza 

(2021) examined the use of strong semantic coupling between a narrative about a mysterious disease 

outbreak and the surrounding physical environment in AR in a problem-based learning setting. This was 

achieved by placing QR codes for retrieving information and additional physical cues at places of 

interest instead of at random places. Students in the strongly coupled experience reported higher 

presence and total immersion and had better learning results concerning their reasoning about relevant 

topics, but not their factual knowledge. Furthermore, students’ learning scores were positively related 

to their immersive experiences when they learned with the strongly coupled set-up, showing a relation 

between these constructs. Contextual coupling thus seems to have an influence on feelings of immersion 

and reasoning as a specific type of learning, which furthermore seem to be related. 

In another recent study, contextualised vocabulary learning was implemented in AR, displaying 

keywords for physical objects embedded into the physical space (Weerasinghe et al., 2022). A head-

mounted display was used for an integrated real-time visualisation and compared to a tablet-based 

implementation with a photo instead of a real-time view of the environment as the physical context. 

Immediate but not delayed recall was improved by the contextualised AR visualisation, task load was 

decreased, and motivation increased. This shows the potential positive influences on motivational and 

cognitive processes when leveraging the characteristic of contextuality in AR. 

Comparing the use of physical objects and AR marker cards, another study was executed in the 

context of education on behaviour during a fire outbreak (Huang et al., 2022). Learners either looked 

for and scanned relevant physical objects (e.g., fire extinguisher) or marker cards to receive information 

and instructions about a fireground situation. Learning with the physical objects led to a bigger increase 

in knowledge and lower mental load than learning with the marker cards. This shows the positive 

influence of using authentic physical objects on cognitive processes. A study that has been specifically 

designed with the contextuality characteristic in mind, focusing on the closeness of positioning virtual 

information in relation to corresponding physical objects, is Study 5 in this dissertation (Paper 4, Krüger 

& Bodemer, subm.). It will be described in more detail in Section 4.4.1. 
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3.1.3 Application of Contextuality 

When looking at contextuality in AR more closely, two levels of physical elements can be distinguished 

(see Section 1 Spatial integration in AR learning environments in Paper 4, Krüger & Bodemer, subm.). 

On one hand, AR-based learning is contextualised in the physical environment in general. On the other 

hand, the virtual elements are anchored to specific physical objects (e.g., surfaces, AR markers, or 

natural objects). Contextuality in AR can differ in the thematic relevance of the physical environment 

or physical anchors for the virtual elements. It can also differ in the perceivability of the context, where 

virtual elements might overlay and thus cover physical elements in a way that they are not visible 

anymore. To clarify the potential differences, I will in the following analyse the three introduced AR 

applications used in studies included in this dissertation concerning these differences in thematic 

relevance and context visibility. 

In the powAR application used in Study 3 (Paper 2, Krüger & Bodemer, 2020) and shown in 

Figure 1, different factors influence its contextuality. The physical anchor elements are pattern-based 

AR markers that show black and white patterns and the names of the power plant components. They 

only have a small thematic relevance through the displayed names, but otherwise only a technological 

purpose for anchoring the virtual models. The physical environment in the study was a table inside a lab 

room, which also has no thematic relevance for the virtual elements and is not part of the learning content 

but just a surface to place the paper markers on. In general, the application can be used in any 

environment with enough space. The environment could be changed by moving the learners and the 

material to another location. This shows the potential of AR to move material to locations with higher 

thematical relevance, for example when showing this material inside a real combined-cycle power plant. 

Concerning the context visibility, the physical markers are fully covered by the virtual floor plates below 

the virtual models, so that information transferred through the markers would not be perceivable. 

However, the only relevant information from the markers, i.e. the name of the component, is also shown 

as part of the virtual element, so that no information that is relevant for the learning content is lost. The 

environment is not covered further than the area that is already covered through the paper markers, so 

that if it was thematically relevant, it could be viewed through the integrated on-screen visualisation. 

In the heARt application used in Study 4 (Paper 3, Krüger et al., 2022) and shown in Figure 2, 

contextuality is shown in different ways. The physical anchor in the form of a paper-based marker is 

image-based, encompassing an unlabelled version of the graphic of the human heart as part of a 

worksheet on the topic. This way, the thematic connection between the physical anchor and the virtual 

object is clear through the image and the contextualising text. The general environment was again a non-

relevant table in a lab room, although movement to a more relevant location like a cardiologist office 

would also be possible here due to device portability. Concerning the visibility of physical anchor and 

environment, the virtual view fully covers the physical marker with a plane, although in the 2D version, 

this includes a full recreation of the marker image with textual labels, so that no information is lost by 
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covering the image. In the 3D version, the 2D image is fully covered by the white plane, so that the 

labelled 3D model that is inserted above is not perceivable in the same view as the 2D image. 

In the ARbor application used in Study 5 (Paper 4, Krüger & Bodemer, subm.) and shown in 

Figure 3, contextuality manifests itself in different ways. Both the physical anchor in the form of an 

image-based marker and the surrounding environment are relevant for the learning material. Scanning 

the image of one of the plants shows information about that plant, providing additional information 

about the plant’s appearance. The general environment is relevant in both versions of the application, as 

the learners are standing in an outside area with the respective plants surrounding them. The version 

where the markers are placed directly at the plants adds another level of relevance, where the application 

itself does not change, but the specific location of the marker achieved through the portability plays a 

role in linking the virtual elements to physical objects. The information from the application could also 

be accessed at different locations just like with the other two applications described above. In the study, 

the application is used outside, which has an influence on the contextual relevance. To keep this 

contextual relevance, the application must be used at least in the vicinity of these specific plants, or 

directly in front of the specific plant. Using the application in an outside environment in which no plants 

grow would not offer the same contextual relevance. Concerning the visibility, the AR application 

displays the virtual information in such a way that the image marker is not fully covered but that both 

kinds of elements can be perceived simultaneously. The general environment including the plants is not 

covered at all and thus fully visible. 

In summary, the three applications show three different ways in which the relevance and 

visibility of the physical context may be designed. An overview can be seen in Table 3. The physical 

anchor elements and general environment may have no thematical relevance at all (powAR), the 

physical anchor elements may have a small thematical relevance although without offering that much 

additional integrated information (heARt), or the physical context may have full thematical relevance 

on both the anchor and the general environment level (ARbor). Also, the physical anchor elements may 

be fully covered by the virtual elements it retrieves (powAR, heARt) or it may be designed to not be 

completely covered because the physical anchor has thematic relevance for the learning material 

(ARbor). Fully covering the general environment is a less usual implementation in AR, because by 

definition physical and virtual elements are perceivable simultaneously, with the physical environment 

serving as the basis for the experience. 

Looking more closely at potential implementations of contextuality in AR, there are established 

design principles that should be considered. Through the combined display of virtual and physical 

elements in AR, it is in general necessary to consider potential distractions of the physical elements and 

environment. While the virtual components can be designed as needed for a specific learning objective, 

the physical environment that is part of the experience often cannot and should not be changed, as it 

should display the physical world authentically. This means that also information that is not relevant for 

the learning objective is apparent in the physical world, which may distract from the actual learning 
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objective. This is also described in the immersion principle which states that immersive 3D VR 

environments include so many perceptual details that extraneous processing and load may be evoked, 

distracting from the actual learning goal (Mayer, 2020e). The principle focuses on VR environments but 

can also be applied to AR environments, which also include details of the surrounding environment. 

This describes a more specific version of the coherence principle, which states that extraneous 

information, which have nothing to do with the learning objective, should be excluded in order to not 

disrupt learning processes (Mayer, 2020c). In order to decrease cognitive load (see Section 2.3 for more 

information on cognitive load), representations used in learning experiences should thus be coherent for 

the learning objective and external information should be avoided. More information on this and a 

potential application of the coherence principle with a combination of auditory and visual 

representations in AR can be found in Study 7 (Paper 5, Krüger & Bodemer, 2022a), which will be 

described in more detail in Section 4.5.2. 

 

Table 3 

Different Implementations of Contextuality in Three AR Applications 

Study Contextuality 

Study 3: 

powAR 

General environment: lab room with table 

▪ no thematical relevance 

▪ not covered, full visibility 

Specific physical anchor: pattern-based AR markers with component names 

▪ close to no thematical relevance 

▪ fully covered by virtual 3D models, no visibility 

Study 4: 

heARt 

General environment: lab room with table 

▪ no thematical relevance 

▪ not covered, full visibility 

Specific physical anchor: image-based AR marker with graphic of heart on work sheet 

▪ thematical relevance of picture and text context, although no authentic/applied context 

▪ fully covered by virtual plane, no visibility 

Study 5: 

ARbor 

General environment: outside lawn with surrounding plants 

▪ full thematical relevance of surrounding plants within the authentic real world, in version 

with markers attached to plants also relevance of more specific plants 

▪ not covered, full visibility 

Specific physical anchor: image-based AR markers with photos of plants 

▪ full thematical relevance of photo for learning application 

▪ only very small part covered by virtual elements, nearly full visibility 

 

 

3.2 Interactivity 

Interactivity describes the various possibilities of material manipulation in AR, which enable learners 

to interact with virtual and physical elements, including the manipulation of virtual elements through 

the manipulation of physical elements (see Section 2.2 Interactivity in Paper 1, Krüger et al., 2019). This 

characteristic is based on the second characteristic of AR systems by Azuma (1997): interactivity in real 

time. While interaction with virtual elements in AR is possible through controllers or touch-based 
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interaction as in fully virtual environments, additionally hand-based or full body interaction with 

physical objects and motion sensors is possible in AR. For educational settings, this includes the 

possibility to embed meaningful interaction into an AR-based learning scenario, leveraging mediated 

physical-virtual interaction to support cognitive processes, also enabling self-directed perspective 

changing. In the above-mentioned affordances, this aspect is mentioned as part of the provision of 3D-

based interactive learning (Wu et al., 2013) and by MacCallum and Jamieson (2017) as part of the 

portability of devices to interact with a location. Also, the development of practical skills mentioned by 

Cheng and Tsai (2013) and Parsons and MacCallum (2021) may indirectly be connected to the 

possibilities for interaction.  

 

3.2.1 Interactivity in AR-based Learning 

Interactivity can be leveraged in the design of AR-based educational experiences that support learning 

(see Section 2.2 Interactivity in Paper 1, Krüger et al., 2019, for basic and Paper 2, Krüger & Bodemer, 

2020, for more detailed information on this). Interaction with learning materials has been defined and 

considered from many different perspectives. One definition of interactivity in technology-enhanced 

learning in multimedia settings describes it as a reciprocal activity in which learners react to a system 

and the system reacts to learners (Domagk et al., 2010). When looking at virtual and physical 

manipulation, it could be shown that a well-designed combination of the two enhanced learners’ 

conceptual understanding (Olympiou & Zacharia, 2012), which is relevant for AR because of its 

capability to combine virtual and physical interaction. Physical interaction comes with demands for the 

learners, but virtual representations offer the possibility to constrain interactivity to interactions that are 

relevant for the task and learning objects, which can lead to less overload and better learning outcomes 

(Barrett et al., 2015). In AR, the possibilities of viewing and manipulating virtual objects with 

constraints to their interactivity can be leveraged while staying in an authentic, physical environment. 

The ICAP (interactive - constructive - active - passive) framework focuses on the positive sides 

of interaction with learning material and describes that overt, active learning behaviour can indicate and 

support cognitive processing of the learning material if the behaviour is relevant to the learning task 

(Chi & Wylie, 2014). Similarly, the theory of embodied cognition describes that physical interaction 

with learning material and the environment are an important part of a learning situation and support 

cognitive activity (Wilson, 2002). Embodied interaction with a combined physical and virtual 

environment has also been described by Kim (2013) as an important aspect of context immersion in AR 

(see Section 2.4 on immersion). Furthermore, Holmes and colleagues (2018) describe that perspective 

taking by movement around objects leads to more successful learning than rotating the object, and that 

for both versions of interaction it is better when the movement is self-directed rather than passive. In a 

systematic approach towards interactive learning environments, Domagk and colleagues (2010) 

developed the INTERACT model, which shows the relations between different learning processes and 

outcomes in interactive learning environments. According to this model, the learning environment, e.g., 
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an AR-based learning experience, has an impact on learners’ behavioural activity, cognitive activity, 

and motivation. Two features of interaction mentioned in the model are guidance and learner control 

(Domagk et al., 2010). For guidance, the learning environment is designed in such a way that it guides 

learners’ (meta-)cognitive activity which in turn can influence their behaviour. For learner control, the 

learning environment needs to offer the potential for behavioural control, which in turn can influence 

learners’ (meta-)cognitive activity. Learner control as a form of interaction has been described to 

influence learners’ motivation (Scheiter, 2021), so that this can be considered a relevant variable when 

it comes to interactivity in AR (see also Section 2.5 on motivation). 

In a critical consideration of physical engagement with learning material, research in the field 

of multimedia learning describes that mental interaction is more important for learning than physical 

interaction (R. C. Clark & Mayer, 2016). The authors describe that behavioural engagement may cause 

ECL that can impede learning, especially when learners lack the ability to execute the behavioural task 

(see Section 2.3 on cognitive load). If physical interaction only leads to further load but not to germane 

processing, it can be detrimental to learning instead of promoting learning. This shows that not every 

physical interaction leads to better learning outcomes, so that it is important to stimulate relevant mental 

engagement with physical interaction. R. C. Clark and Mayer (2016) mention six design decisions that 

may support generative learning, including following the multimedia principle and thus adding graphics 

to text, and adding questions for learners. The paradigm of active integration has been introduced as a 

way to purposefully use interaction to support mental integration processes that do not take place 

automatically when learning with MERs (e.g., Bodemer & Faust, 2006; Bodemer et al., 2004, 2005). 

External, physical integration is leveraged in a way that learners themselves integrate separated 

representations with the goal to support cognitive coherence formation (see Section 2.1 for the literature 

review on MERs). It is assumed that this leads to more elaborate processes of mental integration, 

fostering generative processing instead of just decreasing external processing. In relation to the many 

possibilities of designing interactive AR, including interactions that can lead to generative processing 

or to overload, physical demands and cognitive processing of the content need to be considered, 

especially in the distinction between ECL and GCL based on cognitive load theory (see Section 2.3). 

 

3.2.2 Recent Research on Interactivity 

Recent research in the field of AR-based learning experiences describes positive effects of different 

kinds of interaction on learning processes and outcomes. In a study on interaction in the form of learner 

control in a museum, four different types of AR learner control tools were implemented in an exhibit on 

herbarium specimen (W. Lin et al., 2022). Three groups learned with low control, medium control, and 

high control, depending on how many of the interactive tools were implemented. While learning 

outcomes and flow experiences did not differ across the groups, the high control group engaged with 

the exhibit for a longer time and especially used the low control tools more often than the other groups. 
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They also reported more motivation in interviews. This shows that motivation and effort to engage with 

material can be increased through the interaction with AR-based learning materials. 

In a study in the educational field of electric engineering, different forms of interaction with 

AR-based learning materials were compared (Dutta et al., 2022). In a marker-based version of the 

application learners could move multiple markers and in a keypad-based version learners pressed 

physical buttons to solve tasks based on a problem statement. Usability measured through manipulability 

and comprehensibility was perceived as higher in the keypad-based than the marker-based group, 

although it needs to be mentioned that the applications differed in more than just the interaction method, 

so that the effects cannot be fully attributed to that difference. The results however suggest that different 

forms of interaction in AR may have different impact on learning. 

In another study, a physical user interface in the form of an interactive timeline was 

implemented for embodied learning about history (Gogou & Kasvikis, 2022). Learners were asked to 

walk up and down the timeline going through the different centuries while completing a mission given 

to them by narrations. Their understanding of the timeline was improved after using this application, 

although it is not clear whether the embodied interaction or other aspects of the application induced 

learning. This shows that whole-body interaction may be appropriate for certain learning objectives, 

especially when the movements are connected to the learning objective. 

In another study that describes the application of the above-mentioned active integration 

paradigm in AR, we examined the effects of externally integrating physical and virtual elements (Krüger 

et al., 2023). The learners either externally integrated physical text cards with virtual 3D models shown 

in an AR-based tablet application or received a pre-integrated version of the material. While the data 

did not support the hypothesis that the external integration would lead to increased GCL and a better 

learning outcome, we found differences in learners’ behaviour of scanning the AR markers, which show 

a potentially increased effort when handling the tablet during physical integration, which may have 

negated the potentially positive effects of the external integration process. This shows that in the 

implementation of meaningful physical interaction for the elicitation of mental interaction specific 

factors need to be considered in AR. A study that has been specifically designed with the interactivity 

characteristic in mind, focusing on the elaborateness of physical and mental interaction with AR-based 

material, is Study 3 in the current dissertation (Paper 2, Krüger & Bodemer, 2020). It will be described 

in more detail in Section 4.2.1. 

 

3.2.3 Application of Interactivity 

In a closer look at interactivity in AR, three levels of interaction can be defined (see Section III.B. 

Interaction in AR in Paper 2, Krüger & Bodemer, 2020): Learners can 1) interact purely with virtual 

elements, 2) interact purely with physical elements, or 3) use mediated interaction to manipulate virtual 

elements by manipulating physical elements which are connected to the virtual elements (see also 

tangible interface metaphor, Billinghurst & Dünser, 2012). The interaction on all three levels can be 
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more or less elaborate, enabling actions from a simple circling or moving of a virtual object up to the 

full creation of a new object. Furthermore, the necessary movement may be bigger or smaller, including 

finger-based up to whole-body interaction. Also, based on the assumption that mental interaction but 

not physical interaction on its own leads to relevant learning processes, the embedded physical 

interaction may be more or less relevant for the mental interaction with the learning content. To clarify 

the potential differences, I will in the following analyse the three introduced AR applications used in 

studies included in this dissertation concerning these differences in elaborateness of interaction, size of 

movement, and relevance for mental engagement on the three levels of purely physical, purely virtual, 

and mediated physical-virtual interaction. 

In the powAR application used in Study 3 (Paper 2, Krüger & Bodemer, 2020) and shown in 

Figure 1, different types of interaction are possible. On the purely virtual level, learners can interact with 

the virtual app interface through buttons in order to access additional information that depends on the 

current set-up of the built power plant. This interaction is only necessary for information retrieval, so it 

is not very elaborate, and it is a small, finger-based movement. The button-based interaction does not 

play a role for the mental interaction with the learning content, although revealing the additional 

information on the application interface is necessary to achieve the learning goal. Concerning the purely 

physical interaction, there are no manipulations worth mentioning as the AR markers themselves 

transport no information, so that manipulating them without the virtual level is meaningless. The 

movement of the pattern-based markers is relevant for the mediated interaction, where movement of the 

physical paper markers leads to movement of the virtual 3D models of the power plant components. 

While in one version of the application the AR markers are already clustered, in the other version the 

learners need to assemble them to functioning power plants. The components that are meant to be linked 

and are placed close enough to each other connect and react to each other, displaying animations. This 

interaction is quite elaborate as it leads to the creation of new artefacts, both through the connection of 

pairs of components and the stepwise building of the complete power plant. The hand-based movement 

is bigger than a finger-based touch interaction, and relevant mental engagement may be elicited by 

moving the components to their respective places, supporting the construction of a mental model of the 

whole power plant. Another mediated interaction in this application includes the whole-body interaction 

of walking around and changing perspectives around the virtual models by moving the tablet. 

In the heARt application used in Study 4 (Paper 3, Krüger et al., 2022) and shown in Figure 2, 

interactivity is only basic. There is no purely virtual interaction in the application, as there is no interface 

integrated. Purely physical interaction only includes the possibility to move around and turn the 

worksheets, which may be relevant for reading the text from a better perspective. The mediated physical-

virtual interaction in the application includes the possibility to move and turn the physical sheet of paper 

including the AR marker in order to view the model from different perspectives. These are very simple 

hand-based movements that may be relevant in supporting the building of a mental model of the 3D 

object from different perspectives. Furthermore, whole-body movement is also possible to execute the 
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same form of mediated interaction, namely moving around with the tablet to look at the model from 

different perspectives and from closer or further away. 

In the ARbor application used in Study 5 (Paper 4, Krüger & Bodemer, subm.) and shown in 

Figure 3, different kinds of interaction are possible. Concerning purely virtual interaction, touch-based 

interaction with the interface can be executed, which includes clicking on different virtual elements in 

the application, such as the picture panels, the checkmark to change the view to the 3D model, and the 

words in the texts or the glossary list. These are small interactions leading to interface changes for 

information retrieval. The information retrieval is necessary to achieve the learning goal, even though 

the interaction itself does not necessarily support mental processing. Clicking on words in the text to 

receive more information may support the mental connection between the text panel in which the word 

was clicked, the word, and the explanation. Concerning purely physical interaction, it is possible to 

move the marker images, for example to get a closer look at the pictures of the plants. However, in the 

set-up of the experiment the images were deliberately fixed to specific spots so that interaction with 

them should not have been the learners’ focus. A purely physical whole-body interaction is walking 

from one marker to the other, which was necessary here due to the markers being spread across the 

space. This borders in mediated physical-virtual interaction because this is the only way to access the 

virtual information about the different plants. In the version in which the markers are placed at the 

respective plants, walking around offers not only a form of transport but also spatial information, 

offering support to process the placement and distinction of the different plants. Due to the AR markers 

being fixed to specific positions, moving the markers to move the virtual information is not the focus in 

the mediated interaction, but learners moved in relation to the markers. For example, the tablet could be 

moved closer and further away to zoom in and out of virtual information, and in the view of the 3D 

model of the plant perspective changing was possible through tablet movement. This simple interaction 

can support information retrieval like looking at more details in the pictures when moving closer. 

In summary, the three applications show different manifestations of interactivity with AR-based 

elements, considering the elaborateness of the interaction, the size of the movement, and how relevant 

it is for cognitive processes. An overview can be seen in Table 4. The purely virtual interaction in the 

three applications reaches from touch-based interaction with buttons or other virtual elements (powAR, 

ARbor) to no virtual interaction. Most of this interaction only has the goal to retrieve additional 

information from the application. The purely physical interaction in the three applications also differs 

from no meaningful interaction (powAR) to interaction with the working sheet that is part of the learning 

material (heARt) and walking between different locations in which the markers are placed (ARbor). The 

mediated virtual-physical interaction also differs, although in all three applications movement around 

and of the AR markers enables changes in perspective and zooming in and out of the virtual elements. 

This interaction can, however, also be more elaborate, including the construction of new virtual artefacts 

when assembling physical paper cards in a correct way (powAR). Furthermore, when it comes to virtual 

3D objects, perspective changing around the object can support mental model construction (heARt). 
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Table 4 

Different Implementations of Interactivity in Three AR Applications 

Study Interactivity 

Study 3: 

powAR 

Purely virtual interaction: touch-based interaction in virtual interface 

▪ not very elaborate, only retrieving additional information 

▪ small, finger-based interaction with virtual buttons 

▪ information relevant, but interaction itself not relevant for mental processes 

Purely physical interaction: movement of paper cards 

▪ not elaborate 

▪ bigger, hand-based interaction 

▪ no meaningful interaction 

Mediated physical-virtual interaction: movement of paper cards to move/rotate virtual models 

and moving/walking around virtual models 

▪ not so elaborate when only viewing models from different perspectives, but quite 

elaborate when creating new virtual artefacts when assembling paper cards 

▪ bigger, hand-based interaction when moving paper cards; big, whole-body interaction 

when walking around to view models from different perspectives 

▪ relevant mental engagement may be elicited supporting the construction of a mental model 

of the power plant when externally constructing it 

Study 4: 

heARt 

Purely virtual interaction: n.a. 

Purely physical interaction: movement of worksheet 

▪ not very elaborate, maybe necessary to retrieve information due to easier reading 

▪ bigger, hand-based interaction 

▪ relevant to retrieve information through easier reading, but interaction itself not relevant 

for mental processes 

Mediated physical-virtual interaction: movement of worksheet to move/rotate virtual element 

and moving/walking around virtual element 

▪ not so elaborate, only viewing models from different perspectives 

▪ bigger, hand-based interaction when moving sheet, big whole-body interaction when 

walking around the marker to view model from different perspectives 

▪ relevant mental engagement may be elicited supporting the construction of a mental model 

of 3D model from different perspectives 

Study 5: 

ARbor 

Purely virtual interaction: touch-based interaction in virtual interface 

▪ not very elaborate, only retrieving additional information 

▪ small, finger-based interaction with virtual elements 

▪ information relevant for learning objective, interaction with words in texts may support 

mental connection of respective text panels, words, and explanations 

Purely physical interaction: walking to the different images 

▪ not elaborate, only walking 

▪ big, whole-body interaction 

▪ mental processing of different placement of information possible 

Mediated physical-virtual interaction: moving closer to AR markers and thus virtual elements, 

walking to the different AR markers with virtual information 

▪ not so elaborate, only walking towards different information and viewing information 

from closer or further away 

▪ big, whole-body interaction when moving the tablet or walking around 

▪ information accessed is relevant for learning objective, but interaction itself not relevant 

for mental processes 

 

Potential implementations of interactivity in AR should consider established design principles, 

including multimedia design principles. Through the different levels of interaction, it is important to 

discuss which interactions evoke relevant mental processes. One potential implementation of interaction 
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in a multimedia-based learning setting, is learner control (Scheiter, 2021). Potential learner control can 

include sequencing, selection, content control, pacing, and representation control. Different types of 

learner control can lead to different cognitive processes, and the learner control principle states that 

learning is increased when instructional support and levels of prior knowledge are high enough to cope 

with the control options. If learners do not have much prior knowledge, a guided activity may be more 

appropriate, providing them with a pedagogical agent to guide their learning processes (Moreno & 

Mayer, 2007). For AR this also means that learner control should not only support relevant mental 

processes but should also be appropriate and not overloading for the learners who execute it. 

 

3.3 Spatiality 

Spatiality describes the potential of AR to add unique spatial properties to virtual elements when placing 

them within the physical world, which enables learners to perceive the spatial expansion of virtual 

elements and to observe virtual elements at fixed points within the physical space (see Section 2.2 

Spatiality in Paper 1, Krüger et al., 2019). This characteristic is partly based on the third characteristics 

of AR systems described by Azuma (1997): registering 3D elements in the real world, mainly due to the 

possibility to scan and track surfaces. Compared to screen-based applications without AR capabilities, 

the virtual object can have more depth and compared to physical objects it can be displayed in the most 

convenient size. Furthermore, it can be attached to specific physical locations and objects. For 

educational settings, this includes the possibility to spatially integrate physical and virtual objects so 

that mental integration may be simplified. Moreover, the use of 3D representations may better support 

learners in the construction of complete mental models of 3D objects. In the above-mentioned 

affordances, this aspect is best reflected in the aspects of providing 3D-based visualisation and learning 

(MacCallum & Jamieson, 2017; Wu et al., 2013) and supporting representation of spatial concepts 

(Bower et al., 2014).  

 

3.3.1 Spatiality in AR-based Learning 

Spatiality can be leveraged in the design of AR-based educational experiences that support learning (see 

Section 2.3 Spatiality in Paper 1, Krüger et al., 2019, for basic and Paper 3, Krüger et al., 2022, for more 

detailed information on this). Through adding virtual elements into three-dimensional physical space, 

they obtain spatial properties that virtual elements bound to screens do not have. Image-based AR 

technology has been used in multiple studies to help learners in comprehending the 3D structure of 

objects (Cheng & Tsai, 2013). The learning of spatial structures in spatial domains has been described 

as one of the main learning benefits of AR (Radu, 2014). In AR, 3D objects can be presented more 

realistically and with more depth cues (e.g., motion-based, see Craig, 2013a), which enables more 

authentic learning with virtual elements. 3D representations of spatial objects can play an important role 

in supporting learning (see Section 1.1. Dimensionality of representations in education in Paper 3, 

Krüger et al., 2022 for more details). Wu and Shah (2004) describe that learners have difficulties with 
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translating external 2D representations into internal 3D representations or mental models because they 

have difficulties identifying depth cues in 2D visualisations and form 3D mental images from 2D 

structures. The use of 3D models has been suggested to lead to the construction of more advanced mental 

models than the use of 2D illustrations (S.-C. Chen et al., 2015), as they do not first need to be mentally 

converted from a 2D to a 3D representation. This shows that using 3D representations in AR may be 

especially relevant when the content of the learning material is spatial, potentially decreasing ECL 

elicited when converting 2D to 3D representations and increasing GCL when supporting the 

construction of 3D mental models (see Section 2.3 on cognitive load). When it comes to 3D 

visualisations, learners’ spatial abilities play an important role (see also Section 1.1.3. Spatial abilities 

in Paper 3, Krüger et al., 2022). Here, an ability-as-compensator and an ability-as-enhancer hypothesis 

can be applied, suggesting that either learners with lower spatial abilities or learners with higher spatial 

abilities could profit from 3D representations (see Section 2.6 on spatial abilities). 

Concerning the spatial anchoring of virtual elements inside the physical world, one important 

component includes their placement in relation to physical objects. Virtual elements can be used for 

textual annotations and labelling (Sugiura et al., 2019) and pictorial overlay over physical objects 

(Ferdous et al., 2019) due to their spatial anchoring and placement in the physical world. Spatially 

integrated annotation of the physical world can support task execution (Volmer et al., 2018). This spatial 

closeness of corresponding information can support its mental integration and decrease ECL (Ayres & 

Sweller, 2014). In relation to the different ways of using spatiality in AR, cognitive processing and load 

are thus relevant from the learner’s perspective (see Section 2.3 on cognitive load).  

 

3.3.2 Recent Research on Spatiality 

Recent research in the field of AR-based learning experiences describes positive effects of spatial 

representations for learning processes and outcomes. In one study, for example, Shaghaghian and 

colleagues (2022) describe AR applications for learning about spatial transformations in math education. 

One application includes a physical 3D model, mathematical information about transformations of the 

model in a virtual overlay, spatially anchored virtual graphics on transformation, and a virtual version 

of the model that can be rotated based on parameter input. When looking at the pictures in the article it 

becomes clear that a 2D graphic of this would be very hard to understand, and in a user study an 

improvement of the knowledge about the topic could be found. This shows the advantages that the 

implementation of 3D visualisations in AR could bring for spatial understanding and learning. 

In another study, 3D AR visualisations of weather phenomena for the education of pilots were 

designed (Meister et al., 2022). The application showed the development of thunderstorms in 3D. In a 

small evaluation an increase in knowledge from pre- to post-test and relatively low workload were found 

for learners. Although these results cannot be fully attributed to the 3D presentation because there was 

no control group for comparison, it can be assumed that it may have played a role here. 
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In a study specifically focusing on the comparison of 2D and AR-based 3D learner output, 

learners worked on a construction sequence for wood-framed elements (McCord et al., 2022). Both 

groups received the same 2D drawing of the wood frames but used either a 2D presentation of the 

construction on a worksheet or a 3D presentation of the pieces of wood in an AR HMD to define a 

construction sequence based on the drawings. While the 2D worksheet was less mentally demanding 

than the 3D AR implementation, it also led to more uncorrected mistakes. In AR, the placement in 

physical space, the size of the wood frames, and the dimensionality of presentation potentially all played 

a role in supporting learners in noticing their mistakes, leveraging multiple potentials of spatiality in 

AR. However, due to these many features it cannot be further concluded through which mechanisms the 

learning process was impacted. 

In another study that we executed, a moderating influence of different types of spatial abilities 

on the impact of an AR version of a visualisation of the International Space Station on a spatial learning 

task execution and outcomes was found (Krüger & Bodemer, 2021). On one hand, learners with low 3D 

spatial visualisation abilities profited from an AR in comparison to a non-AR visualisation in the 

execution of the learning task. On the other hand, learners with high 2D spatial memory abilities profited 

from an AR in comparison to a non-AR visualisation in the spatial knowledge test. This shows that it is 

important to take learners’ spatial abilities into account when 3D objects are used in an AR-based 

learning experience. A study that has been specifically designed with the spatiality characteristic in 

mind, focusing on the dimensionality of representation of a virtual object in AR and learners’ spatial 

abilities, is Study 4 in the current dissertation (Paper 3, Krüger et al., 2022). It will be described in more 

detail in Section 4.3.1. 

 

3.3.3 Application of Spatiality 

When looking more closely at spatiality in AR, two types of factors can be distinguished (see Section 1. 

Introduction in Paper 3, Krüger et al., 2022): the anchoring of virtual elements at specific points in the 

physical space, and the spatial properties of the virtual elements, including spatial expansion and thus 

size and dimensionality of the virtual elements themselves. In the spatial placement of virtual elements 

in the physical world, two levels of technological placement can be distinguished: image-based and 

location-based AR described by Cheng and Tsai (2013) or accordingly vision-based and location-aware 

AR described by Dunleavy and Dede (2014). To describe the different experiences without the 

technologically informed terms, I choose and introduce the terms “element level” and “world level”. On 

the smaller scale element level, there is a direct link between the physical anchor element (e.g., AR 

marker or physical object) and the virtual element, which enables mediated interaction and spatial 

integration of virtual and physical elements. The bigger scale world level is the spatial placement of 

virtual information at specific locations and within specific environments in the physical world. 

Furthermore, in AR, virtual elements can copy the spatial expansion of physical elements in a three-

dimensional physical space. Dimensionality of the virtual object plays an important role here and both 
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2D images and 3D objects can be recreated. Moreover, the usage of 3D objects can be more or less 

relevant for the learning objective. To clarify the potential differences, I will in the following analyse 

the three introduced AR applications used in studies included in this dissertation concerning these 

differences in spatial anchoring to the physical world on the small-scale element level and the large-

scale world level, and the spatial properties of the virtual elements, including size, dimensionality, 

interconnectedness of components, and relevance for the learning material. 

In the powAR application used in Study 3 (Paper 2, Krüger & Bodemer, 2020) and shown in 

Figure 1, spatiality plays different roles. Concerning the spatial connection, on the big scale world level 

the virtual elements are not spatially linked to a specific location but placed inside a lab for the study. 

On a small, element level, the virtual models are spatially connected to the respective pattern-based 

markers with each virtual object being linked to its own physical paper marker. Concerning the spatial 

properties of the virtual objects it can be said that all objects are 3D models that are approximately hand-

sized and thus miniature versions of the different components of power plants, but otherwise authentic 

representations. Spatial linking of the virtual objects that can be connected to each other takes place 

when they are close to each other, so that the spatial structure and interconnection between components 

is apparent. This interlinking between virtual objects can thus support an understanding of the spatial 

structure of the power plant, which is relevant for the learning objective as it helps with the 

understanding of the processes taking place. 

In the heARt application used in Study 4 (Paper 3, Krüger et al., 2022) and shown in Figure 2, 

dimensionality as part of the characteristic spatiality is in focus. Concerning the spatial connection on a 

world level scale, there is again no fixed link but a placement inside a lab for the study. On a small, 

element level, the virtual graphic or model is spatially linked to the image-based marker, in the 2D 

condition overlaying the image on the physical paper exactly with a virtual version with added labels. 

In the 3D version, the model appears to be floating over the worksheet. Concerning the dimensionality 

of the virtual object, the 2D version includes only 2D and no 3D elements, but the 3D version includes 

the 3D model of the human heart, which has approximately the size of a real human heart and appears 

to take up space in the physical room. The structure of the components of the heart is apparent within 

the model, but no connection to other virtual elements takes place. Although the visualisation is based 

on a cross-section, which can also be displayed as a 2D image, the depth of the 3D model can help with 

the understanding of the spatial structure of the human heart and is thus relevant for the learning goal. 

In the ARbor application used in Study 5 (Paper 4, Krüger & Bodemer, subm.) and shown in 

Figure 3, spatiality appears in different ways. On the world level scale, the AR experience is placed at a 

specific lawn surrounded by plants that are part of the learning material. This placement is due to the 

placement of the AR markers, which are placed either directly at the respective plants that they offer 

information about, or at stones in front of the lawn. On an element scale level, the virtual information 

shown in the application is spatially linked to the specific marker image that they show additional 

information about, with the lines to the pictures connecting the specific parts of the plant like a line from 
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the leaves to the picture of the leaves. Concerning the dimensionality, it can be said that nearly all 

information in the application is in 2D, although the pictures shown when scanning the marker are 

protruding a little. The virtual pictures and texts that belong to each other are spatially linked by being 

placed close to each other. However, for each plant there is one 3D model included, showing a 

minimised virtual representation of the respective plant, with size relations of the different plants 

approximately fixed for size comparisons. 

In summary, the three applications show different manifestations of spatial linking and 

dimensionality that are possible in AR applications. An overview can be found in Table 5. On a world 

scale level, the location in which information is placed can be inside (powAR, heARt) or outside 

(ARbor). On an element scale level, all three applications include a spatial connection between a 

physical anchor (i.e. AR markers) and respective virtual elements. Concerning the dimensionality, the 

applications all included some form of 3D models, except for the 2D version of the heARt application, 

although the ARbor application mainly relies on 2D information in the form of texts and picture to 

transport information. Concerning size, the 3D models were miniature versions of objects that cannot 

be shown in their real size (powAR, ARbor) or shown approximately in their real size (heARt). 

 

Table 5 

Different Implementations of Spatiality in Three AR Applications 

Study Spatiality 

Study 3: 

powAR 

Anchoring in physical world: marker-based placement of virtual elements 

▪ markers placed on a table in a lab room at world level, portable 

▪ virtual elements standing upon their respective markers at element level 

Spatial properties of virtual object: multiple virtual models, one per marker 

▪ 3D models of power plant components 

▪ hand-sized model, size very decreased in comparison to real objects 

▪ objects linked to each other when spatially close to each other, building full model 

Study 4: 

heARt 

Anchoring in physical world: marker-based placement of one virtual element 

▪ marker placed on a table in a lab room at world level, portable 

▪ virtual element on top of (2D version) or floating above (3D version) marker at element 

level 

Spatial properties of virtual object: one virtual model 

▪ 3D models of human heart in 3D version; 2D image in 2D version 

▪ palm-sized model, size similar to real object size 

▪ no spatial linking of different virtual objects 

Study 5: 

ARbor 

Anchoring in physical world: marker-based placement of individual virtual elements 

▪ markers placed at different locations in the physical world with walking distances between 

them, (partly) fixed 

▪ virtual elements on top of their respective markers at element level 

Spatial properties of virtual object: multiple virtual models, one per marker 

▪ 2D images and texts; 3D models of plants 

▪ models of plants hand-sized, size decreased in comparison to real objects, size relations of 

different objects approximated 

▪ spatial linking of pictorial and corresponding textual information within one marker, placed 

next to each other 
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Looking more closely at potential implementations of spatiality in AR, there are established 

design principles that should be considered. Through the possibility of AR to include multiple 

representations, multimedia design principles concerned with the integration of different forms of 

representation might need to be considered (see also Section 2.1). The spatial contiguity principle 

describes that corresponding textual and pictorial representations should be presented close to each other 

(Mayer, 2020d). In AR, this spatial integration of representations is not only possible with words and 

images, but also with virtual and physical elements. This can be used to support the mental integration 

of elements that belong together. More information on this and a potential application of the spatial 

contiguity principle with a combination of virtual and physical elements in AR can be found in Study 6 

(Paper 5, Krüger & Bodemer, 2022a), which will be described in more detail in Section 4.5.1. 

 

3.4 Interplay of the Three Characteristics 

In the previous sections, I defined the three ARcis characteristics individually. A unique thing about AR 

is, however, the combination of these characteristics and thus the potentials of their interplay (see also 

Section 2.4 Interplay of the three characteristics in Paper 1, Krüger et al., 2019). When comparing AR 

and non-AR, multiple characteristics may offer meaningful differences for learning. In Study 1 (Paper 

1, Krüger et al., 2019), two tablet-based applications are compared, one AR and one not. Here, both 

spatiality and interactivity were defined to have meaningful differences (see Section 4.1.1 for more detail 

on this differentiation). This shows that AR and non-AR can differ in more than one aspect, which 

entails that media comparisons do not necessarily provide an insight into specific mechanisms due to 

the potential of confounding variables. When both spatiality and interactivity differ, it cannot be 

determined by which of the two a potentially positive effect is elicited. 

When it comes to the placement of virtual information, spatiality and contextuality of AR are 

closely connected and thus sometimes hard to separate. The thematic proximity and relevance as part of 

contextuality is directly linked to the spatial anchoring of virtual elements within the physical world as 

part of spatiality including the spatial proximity of corresponding physical and virtual elements. In the 

ARbor application (used in Study 5, Paper 4, Krüger & Bodemer, subm.; see Figure 3), for example, the 

spatial placement of the AR markers and thus the virtual elements attached to them is based on the 

thematical relevance of the physical objects to which the markers are attached. Contextuality can thus 

profit from the potential of spatial placement within the physical world. The meaningful difference for 

the learning objective is the closeness to relevant physical objects, which is achieved through the spatial 

placement. Just displaying virtual elements close to physical elements may not influence learning 

processes when the virtual and physical elements are not also thematically connected. 

Another close connection exists between the interactivity and spatiality in the case of mediated 

interaction using a tangible interface metaphor in AR. When learners move physical objects (e.g., AR 

markers) in order to move virtual elements, this is only possible through the spatial linkage of the virtual 

to the physical elements. In the powAR application (used in Study 3, Paper 2, Krüger & Bodemer, 2020; 
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see Figure 1), for example, animated virtual 3D models of power plant components are spatially linked 

to AR markers in the form of paper cards. Through moving the paper cards, the virtual 3D models can 

be moved and can then interact in the virtual space when placed next to each other. Interactivity thus 

also profits from the potential of spatial linkage with physical objects. 

In another connection between interactivity and spatiality, the spatial perception of virtual 3D 

objects is supported by interactivity. When viewing a virtual 3D object in AR, learners can change their 

perspective by walking around or by rotating a physical anchor object, if applicable. This way, they can 

view the object from different perspectives, which supports motion-based depth cues and 3D perception. 

In the heARt application (used in Study 4, Paper 3, Krüger et al., 2022; see Figure 2), the spatial 

perception of the virtual model of the human heart is possible because learners can walk around the AR 

marker while holding the tablet and looking at the virtual visualisation. Spatiality thus profits from the 

potential of walking and moving objects in the physical space. 

Although for the design of experimental studies aiming at comparing very specific mechanisms 

and thus requiring very small manipulations of purposeful design elements the separation of the three 

characteristics can be very helpful, in designing AR applications for the field it can be hard and even 

disadvantageous to separate the three characteristics. For the design of most effective and efficient AR-

based learning applications, it is further important to look at the specific learning objective and evaluate 

how the three characteristics and their interplay can be leveraged to support the achievement of the 

specified goals. 

Besides looking at the interplay from a design-perspective, it is also important to examine the 

learners’ perspective and how they perceive and work with different kinds of applications. Even when 

a design is intended to only change one of the three characteristics, it may also have an impact on 

learners’ behaviour and perception concerning the other characteristics. In Study 4 (Paper 3, Krüger et 

al., 2022), we implemented a first version of the ARcis questionnaire, which was designed in an attempt 

to quantify learners’ experience when learning in AR based on the three characteristics contextuality, 

interactivity, and spatiality (see Krüger & Bodemer, 2022b for a first evaluation of the questionnaire). 

In the results it could be seen that not only spatiality, which we wanted to manipulate in the study through 

the dimensionality of the virtual object, but also both contextuality and interactivity were perceived as 

higher when a 3D instead of a 2D virtual visualisation was used. This shows how hard a distinction 

between the three characteristics can be not only in the design but also in learners’ perception. A 3D 

object may increase the affordance of walking around to view it from different perspectives, increasing 

at least its perceived interactivity (see Section 4.5. Limitations and future studies in Paper 3, Krüger et 

al., 2022 for a more detailed discussion of these results). 

In addition to research that looks at specific aspects of the individual ARcis characteristics, there 

should thus also be research looking at their interplay, for example through study designs looking at 

interactions of different factors. 
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3.5 Summary 

In order to achieve insights for the first subgoal of this dissertation, I defined specific characteristics of 

AR-based learning and analysed which mechanisms might be relevant to support learning based on the 

literature on AR. The three characteristics contextuality, interactivity, and spatiality have been defined 

as respectively the combination and integration of matching contexts and virtual elements, the 

possibilities of manipulation of physical and virtual objects, and the placement and dimensionality of 

virtual elements in physical space. All of these have been proposed to have a potential influence on 

learning when applied in an AR-supported instructional setting, including learning that is situated in a 

relevant context, learning in which virtual elements are manipulated through the manipulation of 

physical elements, and learning about spatial structures. I propose that a separate consideration of these 

characteristics can help with structured research and design of AR-based learning experiences. 

A summary of factors within the ARcis characteristics contextuality, interactivity, and spatiality 

that may be relevant for educational experiences and were described above can be found in Table 6. One 

important observation is that for each characteristic one factor has to do with its meaningfulness for the 

learning process: how meaningful is it for the targeted mental processes and learning objectives to place 

the information in this context, to include this form of interaction, and to display 3D objects? Instructors 

should keep the learning objectives and mental processes that should be achieved in mind when 

designing or implementing an AR-based learning experience. Based on this, the characteristics of AR 

can then be leveraged purposefully. 

Looking more specifically at the mechanisms that may be involved in learning with AR based 

on the three characteristics and their influence on learning processes and outcomes, different points can 

be summarised from the previous paragraphs. Due to the combination of virtual and physical 

information, a main asset of AR-based learning lies in the support of building an integrated mental model 

of these two sources of information. Through the combination of corresponding but complementary 

information (contextuality), learners’ attention can be moved to this integration. Furthermore, through 

the spatially close placement (spatiality), this focus may be further increased, with the possibility to use 

an external, physical integration (interactivity) to support the mental integration process. This shows 

that mechanisms included in all three characteristics can have an influence on cognitive processes and 

thus cognitive load. Another mechanism has to do with increasing the perceived relevance and thus 

motivation of learners when situating tasks and information in their corresponding context 

(contextuality). Enjoyment and motivation can also be increased through the possibility of whole-body 

interaction with learning material (interactivity). Feelings of immersion can be increased by situating 

learners in authentic contexts (contextuality) and evoking embodied interaction with the environment 

(interactivity) can increase context immersion. Further mechanisms include mental model construction 

of an object based on a true 3D representation (spatiality) that can be intuitively observed from different 

perspectives (interactivity), thus removing the necessity to transform a 2D representation into 3D and 

decreasing unnecessary cognitive load that may be especially damaging for learners with lower spatial 
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abilities, while increasing load concerned with building the mental model in 3D. In conclusion, these 

mechanisms describe that contextuality and interactivity can have an impact on immersion, motivation, 

and cognitive load, while spatiality can mainly have an impact on cognitive load with learners’ spatial 

abilities as a potentially moderating variable. The learning process-related constructs immersion, 

motivation, and cognitive load are in turn expected to have an influence on learning outcomes. A 

summary of these constructs that may be relevant when learning with AR and their relations to the ARcis 

characteristics can be found in Figure 4. 

 

Table 6 

Relevant Factors within the Three ARcis Characteristics when Learning with AR 

Contextuality Interactivity Spatiality 

Combination of virtual and physical 

elements in AR 

 

 Two levels of connection: 

▪ Contextualised in physical 

environment in general 

▪ Anchored to specific physical 

elements 

 

 Factors on both levels: 

▪ Relevance of context for 

learning material 

▪ Visibility of context when 

scanning 

Potentials of material manipulation 

and interaction in AR 

 

 Three levels: 

▪ Purely physical interaction 

▪ Purely virtual interaction 

▪ Mediated physical-virtual 

interaction 

 

 Factors on all three levels: 

▪ Elaborateness of interaction 

▪ Size / amount of movement 

▪ Relevance of interaction for 

cognitive processes 

Spatial properties gained by virtual 

objects in AR 

 

 Two levels of anchoring virtual 

elements in physical world 

▪ Small-scale element level 

▪ Large-scale world level 

 

 Spatial properties of virtual 

object: 

▪ Size of / place taken up by 

object 

▪ Dimensionality of models 

▪ Interconnectedness of 

components within 

▪ Relevance of dimensionality 

 

Figure 4 

Relevant Variables when Learning with AR 
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4 Empirical Research on the ARcis Characteristics 

In the five papers included in the current dissertation, seven studies have been executed. The current 

section describes the work towards the achievement of empirical Subgoal 2, which aims at empirically 

examining how the characteristics of learning with AR and their specific mechanisms influence learning. 

The empirical studies were based on the three ARcis characteristics and potential mechanisms defined 

in Section 3: contextuality, interactivity, and spatiality. Based on these, three general, broad research 

questions were formulated to guide the study design to examine AR-based learning (RQ1 - RQ3). 

Furthermore, bridging empirical Subgoal 2 and practical Subgoal 3 of the current dissertation, empirical 

studies with a focus on specific design implementations were executed. As AR is predestined for the 

implementation of multimedia material, which is also described in connection to the three ARcis 

characteristics in Section 3, RQ4 was formulated accordingly. The four general research questions are: 

RQ1: How does contextuality influence learning in AR?  

RQ2: How does interactivity influence learning in AR?  

RQ3: How does spatiality influence learning in AR? 

RQ4: How does the implementation of multimedia design principles in AR influence learning? 

These general research questions were further specified to focus on specific aspects and 

mechanisms of the characteristics. For RQ1, the influence of the placement of virtual information in 

relation to corresponding physical objects in AR on learning processes and outcomes was focused. The 

question was investigated in Study 2 (Paper 1, Krüger et al., 2019) and Study 5 (Paper 4, Krüger & 

Bodemer, subm.). While Study 2 focuses on the closeness of representations of group awareness 

information and pictures of people in an AR mock-up, Study 5 examines the closeness of virtual 

information about plants to corresponding physical plants in an AR-based learning setting in nature. For 

RQ2, the role of mental and physical interaction in AR for learning processes and outcomes was focused. 

This question was investigated partly in Study 1 (Paper 1, Krüger et al., 2019) and fully in Study 3 

(Paper 2, Krüger & Bodemer, 2020). While Study 1 compares touch-based interaction to mediated 

physical-virtual manipulation of animated 3D models of power plant components through paper-based 

AR markers, Study 3 examines the interaction of mental and physical interaction with those virtual 3D 

models through paper-based markers. For RQ3, the influence of the dimensionality of the virtual 

representation in AR on learning processes and outcomes was focused. This question was investigated 

partly in Study 1 (Paper 1, Krüger et al., 2019) and fully in Study 4 (Paper 3, Krüger et al., 2022). While 

Study 1 compares non-AR pseudo-spatial representations to AR-based spatial representations of virtual 

animated 3D models of power plant components, Study 4 examines the role of the dimensionality of a 

virtual representation of a human heart, also considering spatial abilities. For RQ4, two design principles 

defined as relevant for AR (see Sections 3.1.3 and 3.3.3) were chosen, focusing this research question 

on AR-based applications of the coherence and the spatial contiguity principle and their influence on 

learning processes and outcomes. This question was investigated in Study 6 and Study 7 (Paper 5, 

Krüger & Bodemer, 2022a). While Study 6 examines the application of the spatial contiguity principle 
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(related to spatiality and RQ3) concerning the spatial integration of virtual texts and physical plants in 

a botanical garden, Study 7 examines the application of the coherence principle (related to contextuality 

and RQ1) concerning the inclusion of virtual bird or other sounds in material about birds. 

First insights for answering these four general research questions were gained through the seven 

studies. In Figure 5, an overview of the papers and studies grouped in accordance with the ARcis 

characteristic and research question is provided. In the following, all papers will be summarised, with a 

description of the theoretical development of the ARcis framework and the respective study or studies. 

In Table 7, the specific theoretical and empirical goals per paper and study are summarised. 

 

Figure 5 

Overview Over the Five Papers and Seven Studies Included in This Dissertation 
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4.1 Paper 1: Basic ARcis Framework  

Title: “Augmented Reality in Education: Three Unique Characteristics from a User’s Perspective” 

(Paper 1, Krüger et al., 2019) 

In Paper 1, we introduce the three AR-specific characteristics contextuality, interactivity, and spatiality. 

These are defined based on their system-focused counterparts in the definition by Azuma (1997) and 

related to their potentials for educational settings in a review of current literature. We formulate potential 

research questions for each characteristic, two questions for individual learning and two for group-based 

learning settings. Examples of potential research questions described in this publication are “Do people 

indeed learn better when they are in a relevant context than when they are not and which (cognitive, 

motivational, and emotional) factors play a role in this?” (see Section 2.1 Contextuality in Paper 1, 

Krüger et al., 2019, pp. 414–415) for contextuality, “How must interaction with the material be designed 

to evoke higher order thinking processes?” (see Section 2.2 Interactivity in Paper 1, Krüger et al., 2019, 

p. 415) for interactivity, and “Is using a three-dimensional AR object as beneficial for learning spatial 

structures as real objects are, in comparison to screen-based objects?” (see Section 2.3 Spatiality in 

Paper 1, Krüger et al., 2019, p. 416). Further, the characteristics’ potential interplay is described (see 

Section 2.4 Interplay of the three characteristics in Paper 1, Krüger et al., 2019). For a full description 

of the characteristics see Section 3. We then describe two exemplary studies of how to define and 

research those characteristics in AR-based educational applications, which I will describe in the 

following two sections. 

 

4.1.1 Study 1: Interactive and Spatial Learning in AR 

In the first study, the goal was to compare a tablet-based AR application to a tablet-based non-AR 

application concerning their influence on learning processes and outcomes. The general research 

question can be formulated as “How does an AR in comparison to a non-AR version of a simulation 

influence knowledge, cognitive load, spatial abilities, and motivation?”. Both applications included the 

exact same information with 3D models of components of a combined cycle power plant and the 

potential to generate hypotheses about the efficiency and energy output based on different power plant 

configurations. The learners had the task to build the power plants to test the self-generated hypotheses. 

The hypothesis generation is based on simulations and the inquiry cycle as described by de Jong and 

van Joolingen (1998) with the aim that learners explore the possibilities and thus construct their 

knowledge of causal relations in the configuration and workings of the power plant. In the AR 

application, the power plant components can be accessed by scanning paper cards that function as AR 

markers, so that learners move the virtual objects when moving the paper cards with their hands. In the 

non-AR application, the components can be dragged and dropped into focus and moved with touch-

based interaction on the screen. This shows a difference between the interactive potentials and 

experience the two kinds of applications provide, clearly showing the potentials of AR-based 

applications described in the characteristic interactivity (see Section 3.2). Another difference can be 
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seen in the spatial presentation of the virtual objects. The AR application displays virtual objects inside 

the physical 3D space, providing learners with a more spatial representation in the context of the physical 

world than the non-AR version in which the elements are placed in a virtual space. This shows a 

difference between the spatial presentations the two kinds of applications provide, clearly showing the 

potentials of AR-based applications described in the characteristic spatiality (see Section 3.3). Due to 

the similarities between the applications, equivalence was expected concerning conceptual knowledge 

and cognitive load, but a difference was expected for motivational factors and spatial abilities. The study 

with N = 56 participants shows equivalence concerning conceptual knowledge and ICL, but not 

concerning ECL. The two groups did not differ concerning motivational factors or spatial abilities after 

the learning phase. AR is thus not necessarily better than a traditional tablet-based simulation, so that it 

is important to look more closely at specific factors that could influence learning in AR. 

 

4.1.2 Study 2: Contextualised AR Support 

In the second study, the focus was on contextuality as an individual factor. The goal of the study was to 

examine the influence of closeness of representation of textual information to real-world elements on 

effectiveness and efficiency in learning. The general research question can be formulated as “How does 

the closeness of virtual text to corresponding real-world images influence learning outcomes, task 

execution and cognitive load and how does the number of displayed elements influence this?”. To 

answer this question, an AR setting was simulated through photos and textual information in order to 

control the study situation. Participants in the study were shown textual cognitive group awareness 

information (see Bodemer et al., 2018) about different people on photos and had the task to decide which 

people they wanted as learning partners for specific learning objectives. The information were presented 

close to the photo or further away from it, considering the characteristic of contextuality (see Section 

3.1) in the way that relevant textual information were either displayed as clearly belonging to their real-

world context, or as clearly separate. Furthermore, there were different levels of difficulty in determining 

the learning partners, with differing numbers of people shown in the tasks. We hypothesised that closer 

information placement would lead to less ECL, lower time on task, and better retention of the 

information, especially when the task complexity was higher with more people being displayed. The 

study with N = 38 participants showed no effect of proximity of the information on self-reported ECL 

and information recall. There was, however, a difference in reaction time to a secondary task, measuring 

cognitive load during the task, and in time on task, with faster times for closer presentation. Number of 

people displayed did have a significant main effect on secondary task reaction time and time on task, 

but the pattern did not show a straight-forward increase with an increasing number. No interaction 

effects were found, thus not fully supporting the hypothesis. Task execution could thus be supported 

with closer information placement, but learning, which was not a goal in this task design, was probably 

not elicited. In order to learn more about specific learning processes and outcomes in AR, settings with 

a focus on learning need to be established based on the ARcis characteristics. 
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4.2 Paper 2: Interactivity in AR 

Title: “Different Types of Interaction with Augmented Reality Learning Material” (Paper 2, Krüger & 

Bodemer, 2020) 

The second paper extends the definition of interactivity as a characteristic of the ARcis framework. 

Specifically, potentials of interactivity in AR are described, including the elaborateness of the interaction 

with learning material (see Section II. Three AR Characteristics in Paper 2, Krüger & Bodemer, 2020). 

Further, differing perspectives on physical interaction in interactive learning environments are explored, 

describing the potential for a positive influence on learning or overload if not implemented in a 

purposeful way. We state that based on the literature interactive learning material should not only be 

physically interactive, but that this physical interaction should induce germane cognitive processes and 

thus mental interaction with the learning material (see Section III.A. Interactive Learning in Paper 2, 

Krüger & Bodemer, 2020). It is stated that with AR very elaborate interaction can be achieved, so that 

it might be especially important to examine how interaction should be designed purposefully. We define 

this elaborateness of interaction based on the three different levels of interaction in AR: purely physical 

interaction, purely virtual interaction, and interacting with virtual through physical elements. Also, it is 

described how this third form of interaction is made possible through the connection to physical AR 

markers (see Section III.B. Interaction in AR in Paper 2, Krüger & Bodemer, 2020). Based on this 

literature review, the research question and hypotheses on which Study 3 is based are formulated. 

 

4.2.1 Study 3: Physical and Mental Interaction in AR 

The third study is concerned with interactivity in AR-based learning experiences. Its goal was to 

examine the influence of physical and mental interaction on cognitive load and learning outcomes when 

learning in an AR-based experience. The research question for the study is “How do mental and physical 

interaction in AR learning material influence cognitive load, task load and learning outcomes?”. The 

learners were asked to answer hypotheses about different power plants’ energy output and efficiency. 

Mental interaction was manipulated through the instructions, which stated which power plants had to be 

compared to test the respective hypothesis (low mental interaction) or no information about that (high 

mental interaction). Physical interaction was manipulated through the set-up of the paper-based AR 

markers, which either had to be assembled into working power plants by the learners (high physical 

interaction) or were already assembled (low physical interaction). Based on the literature, we 

hypothesised that mental interaction supports learning as reflected by increased GCL and improved 

learning outcomes, but that physical interaction can have both a positive influence on GCL and learning 

outcomes, but also a negative influence on learning processes through ECL. The study with N = 128 

participants shows no main effects of mental and physical interaction on knowledge but a significant 

interaction effect, showing higher knowledge in the groups where only either mental or physical 

interaction was high than in the groups where both were high, or both were low. Concerning both GCL 

no main or interaction effect was found and ECL did also not differ between groups. Moreover, 
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concerning the exploratorily examined NASA TLX constructs no effects were found. However, the 

descriptive results suggest higher mental, physical, and temporal demand in the conditions with high 

mental and high physical interaction. From these results it can be concluded that both too little own 

activity due to much support and too much own activity due to little support may lead to less learning 

in an interactive AR environment. The results in terms of cognitive load were inconclusive in this study, 

but in observations of some of the learners it was seen that less support sometimes led to more errors 

and thus possibly misconceptions. In total, the results suggest that learners needed some support when 

learning with the interactive AR environments, as the combination of high mental and high physical 

interaction led to worse learning outcomes than when one of the interaction types was low. Thus, as is 

the case with simulations, it should be considered that learners need support, so that not all possibilities 

of interaction should necessarily be offered, but restrictions and guidance may be necessary. 

 

4.3 Paper 3: Spatiality in AR 

Title: “Learning with augmented reality: Impact of dimensionality and spatial abilities” (Paper 3, 

Krüger et al., 2022)  

In the third paper, spatiality as a characteristic of the ARcis framework is extended. Specifically, factors 

of spatiality with a focus on the dimensionality of representations are described. In this context, the 

potential role of spatial abilities is also defined. The potentials of the dimensionality of representations 

in educational settings in general are examined in this paper, proposing that this has an influence on the 

construction of 3D mental representations in learners (see Section 1.1 Dimensionality of representations 

in education in Paper 3, Krüger et al., 2022). We describe the specific case of 3D visualisations in AR, 

which are special due to increased depth cues in comparison to usual screen-based visualisations, even 

without stereoscopic AR headsets. The potentials of AR to support learning about spatial content are 

discussed (see Section 1.1.1 Augmented reality visualizations in Paper 3, Krüger et al., 2022). Due to 

the potential influence of the dimensionality of the representation on cognitive load, findings about 

cognitive load when learning with 3D representations are presented, proposing that ECL can be 

decreased and GCL can be increased when learning with 3D representations in AR (see Section 1.1.2. 

Cognitive load in Paper 3, Krüger et al., 2022). We further propose that spatial abilities need to be taken 

into account when learning with 3D representations, describing the ability-as-compensator and the 

ability-as-enhancer hypothesis as two potential, opposed approaches (see Section 1.1.3. Spatial abilities 

in Paper 3, Krüger et al., 2022). Based on this literature review, the research questions and hypotheses 

on which Study 4 is based are formulated. 

 

4.3.1 Study 4: Dimensionality and Spatial Abilities in AR 

The fourth study is concerned with spatiality in AR-based learning experiences. Its goal was to examine 

the influence of the dimensionality of a virtual model and the influence of spatial abilities in learning 

with 3D objects. The research questions for this study are “How does the dimensionality of the 
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visualisation of a 3D object in AR influence cognitive load and learning outcomes, and which role do 

spatial abilities play in this relationship?”. The learners were asked to read a text about the human heart 

and look for mentioned components that were labelled in an AR-based graphical representation. 

Dimensionality was manipulated through this graphical representation, which was either a 3D model of 

a cross-section of the heart or a 2D image of that same cross-section. Learners’ mental rotation abilities 

were measured before the learning phase. Based on the literature, we proposed that a 3D representation 

can support the learning of spatial aspects of a 3D object better than a 2D representation, particularly in 

individuals with low spatial abilities. We hypothesised that in general the 3D representation would lead 

to higher GCL and spatial knowledge and lower ECL than the 2D representation. We furthermore 

assumed that learners with lower spatial abilities would benefit more from the 3D representation than 

learners with higher spatial abilities. The study with N = 150 participants firstly shows a big effect of 

dimensionality on learners’ perceived spatiality, but also medium effects on perceived contextuality and 

interactivity as part of a manipulation check aiming at the three ARcis characteristics. Concerning the 

hypotheses, scores for knowledge of the spatial relationships of the components of the heart and GCL 

were higher when learning with the 3D representation. Knowledge concerning spatial positions of the 

components and ECL did not differ significantly, but descriptively pointed in the expected direction. 

Knowledge concerning general aspects did not differ but was also not equivalent. ICL was equivalent 

in the two groups, as expected. Neither ECL nor GCL were found to be mediators for the relationship 

between dimensionality and knowledge. Concerning the role of mental rotation abilities, we found that, 

opposite to our expectations, learners with high abilities benefited from the 3D representation for their 

knowledge gain, while learners with low abilities did not. Two moderated mediation models showed no 

moderation effects of the relationship of dimensionality on ECL or GCL as part of their mediation of 

the relationship between dimensionality and knowledge. However, the mediation of this relationship 

through GCL was significant for learners with high but not average or low mental rotation abilities. In 

general, the study supports the assumption that spatial learning is better supported by 3D representations, 

but with the restriction that this is only the case for people with high spatial abilities. When using 3D 

representations in AR-based learning experiences, the spatial abilities of the learners should thus be 

taken into account, as not all learners may be able to learn with or handle 3D representations easily. A 

certain degree of spatial abilities might be necessary to process 3D representations in AR in an effective 

way to lead to learning, while 2D representations might not automatically lead to mental transformations 

into 3D representations. 

 

4.4 Paper 4: Contextuality in AR 

Original title: “Positioning augmented reality information for learning in nature: An exploratory pilot 

study” (Paper 4, Krüger & Bodemer, subm.) 

In the fourth paper, contextuality as a characteristic of the ARcis framework is extended. Specifically, 

the linking of corresponding virtual and physical information is explored (see Section 1 Spatial 
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integration in AR learning environments in Paper 4, Krüger & Bodemer, subm.). We describe that on 

the small scale level, the physical anchor can be relevant for the learning material, and on the big scale 

level, the physical general environment can be relevant for the learning material (see Section 3.1.3). We 

make the connection of AR and situated learning as a relevant learning theory, describing how virtual 

elements can be situated within a relevant physical context through AR. The placement of the virtual 

information in AR is further connected to the construct of immersion, describing how people may be 

more immersed when the context is relevant to the learning material. Also, we describe how the 

placement of virtual information in a relevant context may increase learners’ motivation, based on 

different motivational learning theories (see Section 1.1 Immersion and motivation in contextualized AR 

learning environments in Paper 4, Krüger & Bodemer, subm.). Based on this literature review, the 

research questions on which Study 5 is based are formulated. 

 

4.4.1 Study 5: Position of Physical Context in AR 

The fifth study is concerned with contextuality in AR-based learning experiences. The goal is to examine 

effects of the position of virtual information to corresponding physical objects on cognitive and 

motivational learning processes and outcomes. The research question for the study is “How does the 

closeness of placement of thematically relevant learning material in a physical context in AR-based 

learning environments influence learning behaviour, processes and outcomes?”. The participants 

received a tablet-based application with which they were asked to walk around a lawn outside. Here, 

images of different plants were placed and could be scanned with the tablet to receive information about 

the respective plant. They were asked to focus especially on differences and similarities between the 

plants to prepare for the knowledge test. Closeness of the relevant virtual elements to the physical 

surroundings was manipulated through the placement of the marker images. Those were placed either 

directly at the respective plants that were growing around the lawn (near condition), or they were placed 

in some distance on top of stones that lay in front of the lawn (far condition). Based on the literature, we 

hypothesised that the presentation of virtual information directly anchored to the corresponding physical 

object has a positive influence on learning processes and outcomes, especially with regard to motivation, 

immersion, and engagement, and that learning behaviour would differ. In the study with N = 19 

participants various patterns of interaction with the application are shown. Their interview responses 

suggest that they (would have) focused more on the physical plants, (would have) felt more surrounded 

by the environment and were or would have been more motivated when receiving the material close to 

the physical plants instead of further away. Participants in the near condition stated that they compared 

and connected virtual and physical elements, while participants in the far condition paid mostly no 

attention to the physical plants. These results suggest that the closeness to the physical plants implicitly 

guided learners’ attention to the plants and their connection to the virtual material, without actually 

instructing them to shift their focus. Experienced motivation and immersion also seem to be higher. 

When learning in a natural environment with a learning objective focusing on a connection between 
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physical objects and virtual elements it may thus be important to place the virtual information close to 

the corresponding physical elements. 

 

4.5 Paper 5: Multimedia Learning in AR 

Original title: “Application and Investigation of Multimedia Design Principles in Augmented Reality 

Learning Environments” (Paper 5, Krüger & Bodemer, 2022a) 

The fifth paper deals with an initial consideration of the transfer of the multimedia principles in Mayer’s 

CTML (Mayer, 2020f) to AR environments. Specifically, it describes the potential integration of 

multimedia design principles into AR-based learning settings, connecting the spatial contiguity principle 

to the ARcis characteristic spatiality and the coherence principle to the ARcis characteristic 

contextuality. In the paper, CTML is defined as a relevant theory for AR-based learning experience due 

to its often multimedia-based nature (see Section 1.1. Multimedia Learning in Paper 5, Krüger & 

Bodemer, 2022a). Furthermore, multiple sensory modalities can be used in AR-based learning 

experiences (see Section 1.2. Sensory Modalities in Paper 5, Krüger & Bodemer, 2022a). Two prominent 

multimedia design principles are chosen that may be specifically relevant to AR due to its unique nature: 

spatial contiguity principle and coherence principle (see Section 1.3. Multimedia Design Principles in 

Paper 5, Krüger & Bodemer, 2022a). The relevance of CTML for AR is further explained and a 

connection of the ARcis characteristics to the two multimedia principles is made (see Section 1.4. AR 

Characteristics in Paper 5, Krüger & Bodemer, 2022a). Based on the two chosen multimedia principles, 

two learning experiences are designed and the effect of the adherence to these principles is examined in 

two studies, which are described in the following two sections. 

 

4.5.1 Study 6: Spatial Contiguity Principle in AR 

The sixth study approached the spatial contiguity principle as a multimedia design principle to 

incorporate into AR-based learning experiences based on the ARcis characteristic spatiality. Its goal 

was to examine the influence of adherence to the principle in AR on cognitive load, task load, and 

learning outcomes. The general research question can be formulated as “How does the spatial integration 

of virtual information into the view of the physical world (simulated AR) influence cognitive load, task 

load, and learning outcomes?”. Because the study was applied in a controlled lab-based setting instead 

of on location, a simulated AR setting with a video of a walk through a botanical garden as the physical 

world and overlayed virtual information was shown to the participants. They were asked to imagine that 

they were really walking through that environment to look at the virtual information about the different 

plants focused on in the video. Spatial contiguity was manipulated in the video by placing virtual 

information about the plants either as an integrated overlay in front of the plants or in a separated view 

on a tablet screen next to the plants. Based on the literature, we hypothesised that the integrated 

representation would lead to decreased ECL and task load, and increased GCL and knowledge than the 

separated representation. The study with N = 80 participants shows no significant differences in ECL, 
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GCL, knowledge, and most subconstructs of task load. Temporal demand, however, was lower, and 

perceived performance was higher for the integrated than the separated presentation. The patterns on all 

variables were descriptively as expected, but some differences were very small. From these results it 

can be concluded that, although most differences were not significant, the data suggest the expected 

pattern in which the integrated presentation is superior to the separated presentation. The differences in 

the designs seem to not have been substantial enough to have a meaningful influence on learning. The 

spatial contiguity principle seems to be partly transferable to a combined physical-virtual learning 

experience, although this should be examined again in a design with more complex learning material, 

more relevance of integrating virtual and physical elements mentally, and a real AR application. 

 

4.5.2 Study 7: Coherence Principle in AR 

The seventh study approached the coherence principle as a multimedia design principle to incorporate 

into AR-based learning experiences based on the ARcis characteristic contextuality. Its goal was to 

examine the influence of adherence to the principle in AR on cognitive load, task load, and learning 

outcomes. The general research question can be formulated as “How does the inclusion of matching or 

non-matching virtual audio information in a learning experience with virtual and physical visual 

elements influence cognitive load, task load, and learning?”. Because the study was also applied in a 

controlled lab-based setting instead of the real world, a simulated AR setting with a video of a walk 

through a forest as the physical world and overlayed virtual pictures of and text about birds was shown 

to the participants. They were asked to imagine that they were really walking through that environment 

to look at the different birds and information in the video. Coherence was manipulated in the video by 

excluding or including virtual audio when the birds were shown, where included sounds were either the 

birds’ tweeting sounds (matching the topic) or other sounds (not matching the topic). Based on the 

literature, we hypothesised that when no virtual sounds were added, ECL and task load would be 

decreased while GCL and knowledge would be increased in comparison to when sounds were added. 

Concerning the comparison between matching and non-matching sounds, we hypothesised that 

matching sounds would lead to increased GCL and knowledge, and decreased frustration as part of task 

load. The study with N = 130 participants shows no significant effects. The descriptive patterns of ECL, 

mental demand, temporal demand, and effort support the proposed hypotheses, with the lowest scores 

for the version without sound. The other variables had different descriptive pattern against the 

hypotheses. These results are in total inconclusive, with some of the descriptive patterns suggesting 

support for the assumed effects, some with opposite patterns, but none with significant differences. 

Again, the differences in the designs through the addition of small virtual sounds seem to not have been 

substantial enough to have a meaningful influence on learning. It needs to be further examined if the 

coherence principle is transferable onto combined physical-virtual learning experiences, for example 

when the sounds are more disruptive, the learning material is more complex, and a real AR application 

is used in the physical world. In Table 7, a summary of the content of all papers and studies is shown. 
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Table 7 

Summary of Papers, Components, and Goals in This Dissertation 

Papers Component and Subgoal Goal / Specific Research Question 

Paper 1 

Basic Arcis 

Framework 

(Krüger et al., 

2019) 

Framework: Basis of Arcis 

Framework 

[Dissertation Subgoal 1] 

Literature review on research on AR in education to 

formulate and describe the three ARcis 

characteristics (contextuality, interactivity and 

spatiality), their role in educational settings and 

potential influence on learning, and questions to 

address in future research. 

Study 1: Interactive and Spatial 

Learning in AR  

[Dissertation Subgoal 2, RQs 2 

and 3] 

Examination of a tablet-based AR simulation 

following an inquiry-based learning cycle in 

comparison to a tablet-based non-AR version of the 

same simulation. 

Specific RQ: How does an AR in comparison to a 

non-AR version of a simulation influence 

knowledge, cognitive load, spatial abilities, and 

motivation? 

Study 2: Contextualised AR 

Support 

[Dissertation Subgoal 2, RQ 1] 

Examination of the effectiveness and efficiency of 

the representation of virtual information close to 

real-world representations (AR mock-up) and with 

differing amounts of information for task execution. 

Specific RQ: How does the closeness of virtual text 

to corresponding real-world images influence 

learning outcomes, task execution and cognitive 

load and how does the number of displayed elements 

influence this? 

Paper 2 

Interactivity in AR 

(Krüger & 

Bodemer, 2020) 

Framework: Extension of ARcis 

Framework concerning 

Interactivity  

[Dissertation Subgoal 1] 

Further definition of interactivity as a characteristic 

of AR-based learning experiences with a focus on 

differing perspectives on physical interaction in 

learning environments, which is suggested to either 

have a generally positive influence on learning, or to 

generally lead to overload if not implemented in a 

purposeful way. 

Study 3: Physical and Mental 

Interaction in AR  

[Dissertation Subgoal 2, RQ 2] 

Examination of the role that physical and mental 

interaction plays when learning with an AR-based 

experience. 

Specific RQ: How do mental and physical 

interaction in AR learning material influence 

cognitive load, task load and learning outcomes? 

Paper 3 

Spatiality in AR 

(Krüger et al., 

2022) 

Framework: Extension of ARcis 

Framework concerning 

Spatiality  

[Dissertation Subgoal 1] 

Further definition of spatiality as a characteristic of 

AR-based learning experiences with a focus on the 

dimensionality of representations, which is 

suggested to have an influence on the construction 

of 3D mental representations. In this context, the 

potential role of spatial abilities is also defined. 

Study 4: Dimensionality and 

Spatial Abilities in AR 

[Dissertation Subgoal 2, RQ 3] 

Examination of the influence of the dimensionality 

of a representation of a 3D object in AR on learning 

processes and outcomes while considering the 

effects of spatial abilities. 

Specific RQ: How does the dimensionality of the 

visualisation of a 3D object in AR influence 

cognitive load and learning outcomes, and which 

role do spatial abilities play in this relationship? 

Paper 4 

Contextuality in AR 

(Krüger & 

Bodemer, subm.) 

Framework: Extension of ARcis 

Framework concerning 

Contextuality 

[Dissertation Subgoal 1] 

Further definition of contextuality as a 

characteristic of AR-based learning experiences 

with a focus on placing relevant virtual elements into 

physical environments in AR-based learning 

settings, which is suggested to have an influence on 

immersion, motivation, effort, and load. 
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Papers Component and Subgoal Goal / Specific Research Question 

Study 5: Position of Physical 

Context in AR 

[Dissertation Subgoal 2, RQ 1] 

Examination of the influence of the closeness of 

virtual information to relevant physical objects in an 

AR-based real-world experience. 

Specific RQ: How does the closeness of placement 

of thematically relevant learning material in a 

physical context in AR-based learning environments 

influence learning behaviour, processes and 

outcomes? 

Paper 5 

Multimedia 

Learning in AR 

(Krüger & 

Bodemer, 2022a) 

Framework: Extension of ARcis 

Framework concerning 

application of Multimedia 

Principles 

[Dissertation Subgoals 1 and 3] 

Description of potential integration of multimedia 

design principles from the CTML into AR-based 

learning settings, connecting the spatial contiguity 

principle to spatiality and the coherence principle to 

contextuality.  

Study 6: Spatial Contiguity 

Principle in AR 

[Dissertation Subgoals 2 and 3, 

RQ 4] 

Examination of the influence of the spatial 

integration of virtual and physical elements in 

combined physical-virtual environments following 

the spatial contiguity principle. 

Specific RQ: How does the spatial integration of 

virtual information into the view of the physical 

world (simulated AR) influence cognitive load, task 

load, and learning outcomes? 

Study 7: Coherence Principle in 

AR 

[Dissertation Subgoals 2 and 3, 

RQ 4] 

Examination of the influence of excluding 

potentially incoherent elements in combined 

physical-virtual environments following the 

coherence principle. 

Specific RQ: How does the inclusion of matching or 

non-matching virtual audio information in a learning 

experience with virtual and physical visual elements 

influence cognitive load, task load, and learning? 

 

4.6 Overview of Methods in the Empirical Studies 

In the following, I will provide an overview of the methods used in the seven studies. After an overview 

of the different samples, I will give an overview of the design, including the manipulated variables and 

measured variables in the studies, the general procedure, material, and data analyses used. For further 

details on the methods, the specific papers can be consulted. 

 

4.6.1 Samples 

In the seven studies, different samples were used. An overview over the sample characteristics can be 

found in Table 8 and Table 9. For more details on differences between the conditions, the respective 

papers can be consulted. In all studies, a convenience sampling method was chosen, mainly advertising 

the study to students who were enrolled in the study programmes “Applied Cognitive and Media 

Science” and “Psychology” at the University of Duisburg-Essen. They received participant hours when 

taking part in the studies, which was the compensation in all studies. Only in Study 3, a money-based 

compensation was a possible alternative. Not all sample characteristics were reported or collected in all 

studies, but if they were collected without being reported, they were added here for completeness. 

  The number of participants in the studies differed greatly, reaching from N = 19 (Study 5) to 

N = 150 (Study 4) with a total of 601 participants over all seven studies. For Study 5, the sample 

characteristics data of only 8 of the 19 participants are available, due to data lost in a cyberattack. Age 
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and gender of the participants can be seen in Table 8. The age of the participants was 22.5 years on 

average, with a range between 17 and 61 as some convenience sampling took place in private circles of 

the investigators. In all studies, more female than male identifying people took part. This is mainly due 

to the nature of the study programmes in which the sampling took place, in which more female than 

male students are enrolled. The table shows that on average 95% of participants were students, with at 

least 86% in all studies. Most of them came from the study programmes mentioned above. 

 

Table 8 

Sample Characteristics: Age, Gender, Job 

Study N 
age gender students 

min - max M (SD) m f % 

1 56 18 - 34 22.13 (3.27) 16 40 100% 

2 38 18 - 32 21.95 (3.38) 5 33 100% 

3 128 18 - 40 22.55 (3.90) 39 89 96% 

4 150 17 - 31 21.81 (2.98) 41 109 96% 

5 19a 18 - 33 22.62 (4.52) 3 16 100% 

6 80 17 - 33 22.21 (3.14) 20 60 95% 

7 130 18 - 61 23.72 (7.95) 34 96 86% 

Total 601 17 - 61 22.50 (4.81) 158 443 95% 

Note. In some studies, single variables were not reported but have been added here for completeness. 
a data for age available only for 13 of 19 participants 

 

In addition to the general demographics described in the previous paragraph, in nearly all studies 

additional sample characteristics were collected (see Table 9). On one hand, the amount of experience 

with the technology was assessed. This included questions about how often participants had used general 

mobile applications (“Mobile”), mobile learning applications (“M learn.”), general mobile AR 

applications (“AR”), and mobile AR learning applications (“AR learn.”) on tablets or smartphones in 

the past. These were answered in a five-point response format: “never” (1), “rarely” (2), “now and then” 

(3), “often” (4), “regularly” (5). In total, mobile devices in general were used regularly by the 

participants in the different samples, while mobile learning application were used between now and then 

and often. Experience with AR applications was low, with usage from never to rarely. AR learning 

applications had been used even less often. This shows that the samples were generally less used to 

handling AR. Besides these technology-focused experiences, the self-reported knowledge beliefs, task 

expectancy, and value were collected prior to the learning tasks. These were also answered in a 

five-point response format from 1 (low) to 5 (high). Knowledge belief was below the middle of the scale 

for all studies, while expectancy and value were around the middle of the scale for most studies. This 

shows that in general the participants in the samples did not believe that they were very knowledgeable 

in the topics and on average did not bring full motivation for the learning task. 
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Table 9 

Sample Characteristics: Technology Experience and Expectancy-Value Questionnaire 

Study 

Experience with technology Expectancy-value questionnaire 

Mobile 

M (SD) 

M learn. 

M (SD) 

AR 

M (SD) 

AR learn. 

M (SD) 

Belief 

M (SD) 

Expectancy 

M (SD) 

Value 

M (SD) 

1 4.66 (0.55) 2.75 (1.07) 1.80 (0.90) 1.21 (0.56) - - - 

2 - - - - - - - 

3 4.70 (0.61) 2.48 (1.07) 1.58 (0.84) 1.09 (0.31) 1.21 (0.33) 2.37 (0.60) 2.03 (0.60) 

4 4.65 (0.86) 2.37 (1.11) 1.77 (0.75) 1.21 (0.53) 1.95 (0.63) 2.87 (0.70) 3.22 (0.72) 

5 a 5.00 (0.00) 3.50 (1.20) 1.75 (0.71) 1.63 (0.74) 1.46 (0.43) 2.44 (0.62) 2.65 (0.51) 

6 4.79 (0.50) 3.08 (1.35) 2.23 (0.98) 1.69 (0.96) 1.91 (0.73) 2.78 (0.70) 2.69 (0.86) 

7 4.87 (0.42) 2.96 (1.15) 1.81 (0.81) 1.31 (0.68) 1.59 (0.50) 2.69 (0.71) 2.40 (0.65) 

Total 4.74 (0.63) 2.69 (1.18) 1.80 (0.85) 1.28 (0.64) 1.65 (0.70) 2.67 (0.70) 2.60 (0.83) 

Note. In some studies, single variables were not reported but have been added here for completeness. The dashes show 

when data have not been collected in that study. 
a data available only for 8 of 19 participants 

 

4.6.2 Design and Variables 

The designs of the studies in general included a 2x9 mixed design in Study 2, a 2x2 between-subjects 

design in Study 3, a three-groups between-subjects design in Study 7, and a between-subjects designs 

with two groups in all other studies. An overview of the manipulated variables in the different studies 

can be found in Table 10. In Study 1, factors on interactivity and spatiality were manipulated in a 

comparison of an AR and a non-AR tablet-based application. In Study 2, Study 5, and Study 7, factors 

concerning contextuality were manipulated, with foci on the closeness of virtual and physical or real-

world elements and the inclusion or exclusion of virtual sounds. In Study 3, factors concerning 

interactivity were manipulated, with a focus on mental interaction and physical interaction. In Study 4 

and Study 6, factors concerning spatiality were manipulated, with foci on the dimensionality of 

representation and the spatial integration of physical and virtual elements. 

 Different variables were measured in the seven studies (see Table 11 for an overview). Variables 

measured before the learning phase and reported as sample characteristics were knowledge belief, task 

expectancy, and value (Studies 3, 4, 5, 6, and 7), and pre-knowledge (Studies 3 and 5). Mental rotation 

abilities were also measured before the learning phase and examined as a moderating learner 

characteristic in Study 4. Variables on cognitive load were measured and used as dependent variables 

in all studies, although with different types in focus: Study 1 focused on ECL and ICL, Study 2 on ECL, 

Study 5 on GCL, Study 3 on ECL and GCL, and Studies 4, 6, and 7 analysed all three types of cognitive 

load. Task load was also analysed in Studies 3, 6, and 7. In all four studies, all six subconstructs were 

assessed (mental demand, physical demand, temporal demand, performance, effort, and frustration). 

Motivation was assessed in Study 1 and 5, with a focus on intrinsic motivation in Study 1 and design-

based motivation in Study 5. Immersion with the subconstructs interest, usability, emotional attachment, 
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focus of attention, presence, and flow was measured in Study 5. The ARcis experience with perceived 

contextuality, interactivity, and spatiality as subconstructs was measured and used as a manipulation 

check in Study 4. Mental rotation abilities, which were analysed as a moderator in Study 4, were 

measured and examined as a dependent variable in Study 1. A task behaviour variable of time on task 

was collected in Study 2, and behaviour during a learning task was analysed in Study 5. All studies 

included learning outcome measures in the form of knowledge tests with different types of knowledge 

in focus. In Figure 6, all independent variables clustered by ARcis characteristic, the dependent learning 

process variables which were hypothesised to be influenced in the different studies, and the learning 

outcomes are shown. For all of the learning process variables, it is expected that they ultimately have an 

influence on the resulting learning outcomes in the forms of, for example, conceptual or spatial 

knowledge, although this mediating relation is not always formulated into hypotheses and tested. 

 

Table 10 

Independent Variables Manipulated in the Studies in This Dissertation 

Study 
ARcis 

characteristic 
Independent variable and manipulation 

Study 1 Interactivity & 

Spatiality 

Form of representation of virtual animated models, 2 groups design: 

a) hand-interaction-based 3D AR representation 

b) touch-interaction-based pseudo-3D non-AR representation 

Study 2 Contextuality Representation of textual information about real-world elements, 2x9 design: 

1. closeness of representation: 

 a) close representation 

 b) separate representation 

2. number of elements (within): 2 – 10 elements 

Study 3 Interactivity Elaborateness of interaction with AR-based materials, 2x2 design: 

1. mental interaction: 

 a) high interaction 

 b) low interaction 

2. physical interaction: 

 a) high interaction 

 b) low interaction 

Study 4 Spatiality Dimensionality of representation of a virtual object in AR and relation to 

spatial abilities, 2 groups design: 

a) three-dimensional representation 

b) two-dimensional representation 

Study 5 Contextuality Closeness of placement of virtual information to relevant physical objects, 2 

groups design: 

a) near placement 

b) far placement 

Study 6 Spatiality Spatial integration of representations of virtual and physical elements, 2 groups 

design: 

a) spatially integrated representation 

b) spatially isolated representation 

Study 7 Contextuality Inclusion of virtual sounds in an AR-based setting, 3 groups design: 

a) exclusion of sounds 

b) inclusion of matching sounds 

c) inclusion of non-matching virtual sounds 
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Table 11 

Measured Variables Reported in the Studies in This Dissertation 

Variable 
Study 

1 2 3 4 5 6 7 

Pre 

Belief, Expectancy, Value        

Pre-Knowledge        

Mental Rotation Abilities        

Dependent Variables 

Learning Task Behaviour        

Cognitive Load        

→ ECL        

→ ICL        

→ GCL        

Task Load        

Motivation        

→ Intrinsic        

→ Design-based        

Immersion        

ARcis Experience        

Mental Rotation Abilities        

Learning Outcomes        

 

Figure 6 

ARcis Characteristics, Factors, and Variables per Study 
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4.6.3 Procedure 

In general, the procedures of the seven studies were very similar, with a summary shown in Figure 7. 

The studies all started with a welcoming and briefing by the researcher in the beginning, and informed 

consent was given in each of the studies. Then, pre-learning phase variables were measured for sample 

description (knowledge beliefs, task expectancy, value, and pre-knowledge test) or as learner 

characteristics (mental rotation test). Then, the learning phase with different AR-based applications took 

place, in which the different manipulations described in Table 10 were applied. In some studies, data 

were collected during this learning phase. Afterwards, data collection for the dependent variables took 

place. First, the cognitive and task load questionnaires were administered, then immersion, motivation, 

and AR experience questionnaires if applicable. After that, knowledge tests were applied. In the end, 

demographic data were collected, the participants were debriefed and dismissed. The specific procedures 

can be found in the respective papers. 

 

Figure 7 

Summarised Study Procedure 

 

 

4.6.4 Measurement 

In the seven studies, different questionnaires and tests were used to measure the sample characteristics 

and independent variables. Sample characteristics in the form of knowledge belief, task expectancy and 

value were measured with the expectancy-value questionnaire (Wigfield & Eccles, 2000), adapted to 

the respective learning subject and translated to German. The former “ability belief” scale was 

reformulated to instead ask for knowledge belief because of the nature of the learning objectives not 

being about abilities but about knowledge. Learners’ pre-knowledge was measured in both Study 3 and 

Study 5 with self-developed tests for basic concepts of the respective topic. Spatial abilities in the form 

of mental rotation abilities were measured with a mental rotation test (Peters et al., 1995) in both cases. 

In order to measure cognitive load with its subconstructs ECL, ICL, and GCL, three different 

cognitive load questionnaires were administered. In Study 1, the questionnaire by Leppink et al. (2015) 

with its ECL and ICL subscales, and in Study 2 the ECL subscale of the questionnaire by Leppink et al. 
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(2013) were used, both translated to German. In the other studies, the German cognitive load 

questionnaire by Klepsch et al., (2017) was used, either only the GCL and ECL subscales (Studies 3, 6, 

and 7), or all three subscales (Studies 4 and 5). Task load with its subconstructs mental demand, physical 

demand, temporal demand, performance, effort, and frustration was measured with the NASA TLX 

(Hart, 2006; Hart & Staveland, 1988) translated to German. Motivation was measured with the 

situational intrinsic motivation scale (SIMS; Guay et al., 2001) with the subscales intrinsic motivation, 

identified regulation, external regulation, and amotivation in Study 1. In Study 5, design-based 

motivation with the subconstructs attention, relevance, confidence, and satisfaction based on the ARCS-

model (Keller, 2010) was measured with the reduced instructional materials motivation survey 

(RIMMS; Loorbach et al., 2015). Immersion with the subconstructs interest, usability, emotional 

attachment, focus of attention, presence, and flow was measured with the AR immersion questionnaire 

(ARI; Georgiou & Kyza, 2017c) in Study 5. The ARcis experience with perceived contextuality, 

interactivity, and spatiality as subconstructs was measured with a first version of the self-developed 

ARcis questionnaire (Krüger & Bodemer, 2022b). As task behaviours, time on task was measured in 

Study 2. Tracking of interaction with the AR application through event logging during the learning phase 

was used for behavioural measures in Study 5. 

All studies included learning outcome measures in the form of knowledge tests with different 

types of knowledge in focus. They were all measured through knowledge tests that were self-developed 

systematically on the basis of the learning material. In Study 1, conceptual knowledge about the 

combined cycle power plants presented in the learning phase was tested with 20 multiple choice items. 

In Study 2, the previously presented cognitive information about people was asked in seven items spread 

between 16 tasks, asking questions about the people shown in pictures, six with multiple choice 

questions and one with an open text field. Study 3 included a total of 17 multiple choice questions, with 

five questions about the power plant components, five questions about power plant efficiency and energy 

output, and seven questions for knowledge transfer. In Study 4, a difference was made between spatial 

knowledge and general knowledge. Three different knowledge scores were measured through questions 

about the spatial placement of components of the human heart (spatial: components), the spatial relations 

of these components (spatial: relations), and general aspects without relation to spatial concepts 

(general). Study 5 included 30 questions in different formats to measure conceptual knowledge, 

including recall, recognition, and transfer questions, multiple choice, multiple response, and open 

questions, and questions including texts and pictures as questions and answer options. In Study 6, ten 

multiple choice questions were used to measure conceptual knowledge, with the questions further 

differentiated into five items including pictures of plants and text-based answer options (picture-text 

items), and five items including names of plants and text-based answer options (text-text items). The 

same was the case for Study 7, with a total of eight multiple choice questions, four picture-text and four 

text-text items. This shows the variability of measures of knowledge used in the different studies, 

including very different knowledge concepts based on the respective learning objectives. 
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4.6.5 Data Analyses 

In the seven studies, mainly quantitative data analysis was applied. The most used inference statistical 

approaches were difference tests, including independent samples t-tests for testing of difference 

hypotheses in Studies 1, 2, 3, and 6, and Mann-Whitney U tests due to non-normal data distribution in 

Study 4. Further, analyses of variances (ANOVAs) were executed in Study 2 (factorial 2x9 mixed 

ANOVAs), Study 3 (factorial 2x2 between-subjects ANOVAs), and Study 7 (1x3 between-subjects 

ANOVAs with a-priori-defined Helmert contrasts). In addition to difference hypotheses, there were also 

some equivalence hypotheses, which were tested through two one-sided t-tests (TOSTs) with 

equivalence bounds set based on the smallest detectable effect for the respective sample size. In some 

studies, we further looked at correlations between variables, mostly exploratorily, using Pearson’s r 

correlations in Study 2, and Kendall’s τ correlations due to non-normal data distribution in Study 3. In 

order to explain potential interplays between variables, mediation analyses, moderation analyses, and 

moderated mediation analyses were executed in Study 4. In addition to quantitative analyses, we 

furthermore used qualitative data in Study 5. On one hand, statements from interviews were clustered 

and analysed. On the other hand, tracking data from the usage of the application were analysed 

qualitatively (e.g., order of events) and quantitatively (e.g., count of events).  

 

4.7 Integration of Empirical Results 

The seven studies described in Sections 4.1 to 4.5 provide interesting insights into learning with AR. In 

the following, I will integrate these results in accordance with the general research questions formulated 

in the introduction to Section 4, forming them into a complete picture within the ARcis framework based 

on the structure in Figure 6. This will provide a basis for the general discussion in Section 5. 

Studies 2, 5, and 7 examined the ARcis characteristic contextuality, thus providing insights for 

RQ1 “How does contextuality influence learning in AR?”. While Study 2 and 5 examine the closeness 

of representation of virtual and physical elements, Study 7 examines the implementation of the 

coherence principle in AR. The contextual closeness of group awareness information to people for a 

group formation task in Study 2 was shown to not have an influence on self-reported ECL and 

information recall, but to have a positive effect on reaction time on a secondary task and time on task. 

These results suggest that task execution may be supported by the closeness of the contextually 

corresponding information, although learning may not be directly supported. While Study 2 focused 

more on task execution and less on learning, Study 5 was executed with a learning-specific focus. In its 

exploratory approach, no definite conclusions can be drawn yet. However, the results show first 

indications that when information is embedded into the physical environment by placing virtual 

information directly at corresponding objects and thus leveraging AR-specific contextuality, the 

physical objects and their connection with the virtual elements are attended to more closely. 

Furthermore, immersion, motivation, and engagement with the physical part of the learning material are 

indicated to be increased by closer placement. This shows potential positive effects on cognitive and 
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affective aspects of the learning situation when considering contextuality. In Study 7, the focus was on 

the potential pitfalls of learning in a contextually rich environment, which may violate the coherence 

principle. When adding virtual sounds that matched or did not match the material, however, no definite 

pattern of an increased cognitive load and task load was shown, so that the addition of small sounds may 

not have had that much of a negative influence on learning processes. Still, also not a positive influence 

of adding matching sounds was found concerning GCL, which was expected due to potential 

motivational effects. Concerning knowledge there were also no significant differences. In conclusion, 

the results concerning RQ1 on the influence of contextuality on learning in AR indicate that contextually 

relevant placement of information might impact task execution, cognitive, and affective learning factors 

positively, and that not all addition of corresponding virtual information leads to cognitive overload. 

Studies 1 and 3 examined the ARcis characteristic interactivity, thus providing insights for RQ2 

“How does interactivity influence learning in AR?”. While Study 1 included the form of physical 

interaction as a variable, Study 3 specifically focused on the interaction of mental and physical 

interaction. In Study 1, an AR-based implementation of hand-interaction with 3D representations led to 

equivalent factual knowledge and ICL, and not equivalent but also not different ECL, than a non-AR 

implementation of touch-interaction with pseudo-3D representations. Spatial abilities and motivation 

did not differ after the learning phase. AR is thus not necessarily better than non-AR, and a closer look 

at specific mechanisms of interactivity is necessary. In Study 3, we took a closer look, focusing 

specifically on the distinction between and interaction of physical and mental interactivity of AR-based 

learning material. We found an unexpected interaction effect, showing higher knowledge when either 

mental or physical interaction was high, but not when neither or both were high. While this effect was 

not apparent for ECL, GCL, or the NASA TLX subconstructs, their descriptive results show a similar 

pattern. The results suggest that in AR it may be necessary to provide some interactivity to induce 

learning processes, but to limit the interactivity to prevent potential overload. In total, indications could 

be found that learner-controlled interactivity may thus play a role in supporting learning, while also 

having the potential to disrupt learning. 

Studies 1, 4, and 6 examined the ARcis characteristic spatiality, thus providing insights for RQ3 

“How does spatiality influence learning in AR?”. While Study 1 included the form of virtual 3D 

presentation as a variable, Study 4 specifically examined the dimensionality of the virtual object also 

considering spatial abilities, and Study 6 examined an AR-based implementation of the spatial contiguity 

principle. In Study 1, not only the interactivity was different for the two implementations, but also the 

3D representation, which was more spatial in the AR implementation and more pseudo-spatial in non-

AR. The results showing equivalence for some variables and no difference for others, as described 

above, thus also necessitate a closer look at spatiality in AR. In Study 4, we took a closer look, comparing 

the impact of a virtual 3D in comparison to a virtual 2D representation of a spatial object in AR. Different 

types of knowledge were influenced differently, with only knowledge about spatial relationships of 

object components being impacted positively through the 3D representation but not knowledge about 



70 

spatial positions and general knowledge. GCL was also higher with the 3D representation, but the 

relationship between dimensionality of representation and knowledge was not mediated by GCL. Also, 

ECL did not differ and did not mediate the relationship between dimensionality and knowledge. 

However, a moderation of this relationship through spatial abilities was found, showing that learners 

with higher spatial abilities profited from the 3D visualisation for their knowledge gain, while learners 

with lower spatial abilities did not. A moderated mediation analysis showed no significant moderation 

of the relationship of dimensionality and cognitive load, suggesting that the moderation of the 

relationship between dimensionality and knowledge was not attributable to differences in cognitive load 

for learners with different spatial abilities. In Study 6, the focus was on spatial integration of physical 

and virtual learning material. While there were no significant differences in ECL, GCL, most NASA 

TLX subconstructs, or knowledge, the descriptive pattern suggests a positive effect of the integrated in 

comparison to the separated representation. In total, indications could be found that spatiality in the form 

of 3D representations may help support learning about spatial relationships but not necessarily about 

other types of knowledge, although a certain level of spatial abilities seems to be necessary to profit 

from the representation. Furthermore, spatiality in the form of spatial integration suggests potentials for 

improving learning processes and outcomes. 

Study 6 and 7 additionally provided insights for RQ4 “How does the implementation of 

multimedia design principles in AR influence learning?”. While Study 6 examined the spatial contiguity 

principle, Study 7 examined an AR-based implementation of the coherence principle. The results of the 

implementations as described above were different for the two studies, showing a general tendency 

towards supporting the positive influence of following the spatial contiguity principle, while showing a 

less clear picture concerning the influence of following the coherence principle. 

Additional outcomes that did not inform the research questions but provide interesting insights 

into different aspects concerning the dependent variables were gained. In Study 3 on mental and physical 

interaction we looked at the correlations between NASA TLX subfactors and cognitive load types. We 

found moderate positive correlations between GCL and mental demand, GCL and effort, and ECL and 

frustration. Furthermore, a moderate negative correlation was found for mental demand and knowledge 

test score. This shows potential connections between cognitive load, task load, and knowledge. 

In general, the studies show that a systematic examination of specific characteristics and 

mechanisms of AR can supply insights about its effective and efficient use within learning 

environments. From insights in this area of research, recommendations for design and implementation 

can be derived, which can have a direct influence on educational practice. In the following section, the 

results of the studies will be discussed within the theoretical background and the ARcis framework. 

 

5 Discussion 

As stated in Section 1.3, the goal of this dissertation is to gain insight into specific characteristics of AR-

based learning and how they can be leveraged to support learning processes and outcomes. Three 
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subgoals to reach this overarching goal were formulated, a theoretical, an empirical, and a practical 

subgoal. In the following, I will summarise how these subgoals were reached in the current dissertation 

as a basis for further discussion of the results concerning these goals within the theoretical background. 

For Subgoal 1, “theoretically defining characteristics of learning with AR and analysing how 

specific mechanisms may have an impact on learning”, I described the ARcis framework in Section 3, 

including the three characteristics contextuality, interactivity, and spatiality. Those characteristics 

describe the combination of virtual and physical elements, the potentials of material manipulation and 

interaction, and the spatial properties of objects as unique assets of AR-based educational environments 

that can be used to support specific learning objectives. Different mechanisms that might play a role for 

this support have been identified and described, summarised in Section 3.5. 

For Subgoal 2, “empirically examining how the characteristics of learning with AR and their 

specific mechanisms influence learning”, I formulated four research questions in Section 4, including 

three questions based on the ARcis characteristics and one question on the evaluation of multimedia 

design principles in AR. The seven studies executed in the five papers included in the current dissertation 

provide first answers to these research questions, which have been summarised in Section 4.7. 

For Subgoal 3, “practically applying the theoretical and empirical insights into the 

characteristics and mechanisms for the design of AR-based learning experiences”, I described the 

application of the three ARcis characteristics in different settings in Section 3 and the implementation 

and evaluation of the multimedia design principles in AR in Study 6 and 7 in Section 4. A more 

integrated discussion of this will in the following be presented in Section 5.3. 

In the following sections, theoretical insights and empirical findings from the current 

dissertation will be integrated and their theoretical and practical implications will be discussed. 

Afterwards, limitations and an outlook on future research will be given. 

 

5.1 Integrated Discussion of Theory and Empirical Results 

In Section 2, I described different theories and constructs that are important to consider when examining 

learning with AR. In the following, I will integrate the insights from the current dissertation concerning 

the influence of AR focused on these areas: MERs, learning achievement, cognitive load and workload, 

immersion, motivation, and spatial abilities. 

 

5.1.1 Multiple External Representations 

Concerning MERs in AR as described in Section 2.1, the current dissertation in general supports the 

idea that one of the unique potentials of AR is the combination and integration of virtual and physical 

elements. The ARcis characteristic contextuality builds on this aspect of AR, describing how learning 

can be situated in an authentic environment and the relation of physical and virtual elements can be 

supported through an integrated representation. Virtual and physical elements may provide 

complementary information (see also Section 4. Discussion in Paper 4, Krüger & Bodemer, subm.), 
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which is one of the functions described in the DeFT framework (Ainsworth, 2006). This was also 

supported by the results in Study 5 (Paper 4, Krüger & Bodemer, subm.), showing that learners 

specifically describe that they attended more to the physical objects when the corresponding virtual 

elements were accessed directly at them. An integration of these could help learners construct a more 

complete mental model of the content, especially when the learning material is focused on the relevance 

of the information in the context of a real-world environment or activity. 

The second ARcis characteristic, interactivity, highlights that representations in AR can be 

interactive in various ways, including manipulation of physical objects, manipulation of virtual 

elements, and mediated manipulation of virtual elements through the manipulation of physical objects. 

As described by Moreno and Mayer (2007), interactive learning environments can be relevant for 

knowledge construction, although this does not happen automatically and a distinction between 

behavioural and cognitive activity is necessary (see also Section III. Interactivity in Learning Contexts 

in Paper 2, Krüger & Bodemer, 2020). The authors further describe that guidance is necessary to support 

knowledge construction, which is also supported by the results in Study 3 (Paper 2, Krüger & Bodemer, 

2020) which show that combining high mental and high physical interaction in AR-based learning 

material may not lead to the best learning outcomes. Interactive representations in AR-based learning 

environments thus need to be well-designed and might then support the construction of knowledge. 

The third ARcis characteristic, spatiality, brings the attention to the possibility to incorporate 

true 3D visualisations in AR and anchor them in physical space. 3D representations can be classified as 

depictive (see integrated model of text and picture comprehension; Schnotz & Bannert, 2003) and 

pictorial (see CTML; Mayer, 2020a), and can specifically support learning about spatial objects or topics 

(see also Section 1.1. Dimensionality of representations in education in Paper 3, Krüger et al., 2022). 

This is also supported by the results in Study 4 (Paper 3, Krüger et al., 2022), which show a positive 

effect of a 3D visualisation on learning of spatial relations of object components. Depicting 3D 

representations in AR can thus support learning, especially when the learning material focuses on spatial 

knowledge. In total, when extending the models and theories on MERs onto the specific case of MERs 

in AR, it is thus necessary to consider the specific potentials of combined virtual and physical 

representations that can be interactive and spatial. 

 

5.1.2 Learning Achievement 

Concerning learning achievement in AR as described in Section 2.2, a basic result found in Study 1 

(Paper 1, Krüger et al., 2019) shows that AR is not necessarily better for learning outcomes than non-

AR, supporting the current mixed results in the research area. This also supports the general criticism 

concerning media comparison studies and the necessity to identify specific characteristics and 

mechanisms that affect learning with AR. Furthermore, the insights in the current dissertation support 

the notion that learning objectives need to be considered for AR-based learning. Looking at the three 

characteristics, it is clear that they can be leveraged for different learning objectives. 
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Contextuality mainly includes the possibility to situate learning in an authentic environment, 

offering learners the opportunity to be physically and mentally involved in a real-world context. A 

learning objective that is particularly suited for this characteristic involves the mental integration of 

physical and virtual information, which can complement and enrich each other. Looking at the results 

from Study 5 (Paper 4, Krüger & Bodemer, subm.), participants reported paying more attention to 

physical objects and their connection to the virtual elements when they received the virtual information 

directly at the corresponding physical elements. Furthermore, they described complementary 

information and functions of the two types of elements, highlighting the authenticity and inherently 

multisensory nature of the physical objects and environments and on the other hand mentioning the 

potential to show unchanging texts and pictures virtually. This potential of integrating complementary 

physical and virtual information in AR can be promising for various areas of education that include the 

necessity to connect a theoretical input with a practical application or real-world situation. 

Interactivity includes the possibility for active learning, including simulation-based or discovery 

learning, giving learners the opportunity to explore causalities or situations themselves. A learning 

objective that is particularly suited for this characteristic is learning of processes and complex causal 

relationships that can be supported by active learning opportunities. Looking at the results of Study 3 

(Paper 2, Krüger & Bodemer, 2020), learners’ knowledge was lower when there was only low mental 

and low physical interaction and also when high mental and high physical interaction were combined. 

In comparison, when only either mental or physical interaction was high, knowledge was increased. 

This shows the necessity to guide learners’ interaction with AR-based learning materials, but also the 

potential to increase learning when some interaction is included. The interaction with learning material 

in AR can be promising for various areas of education in which processes and causal relationships are 

best discovered and experienced by learners themselves. 

Spatiality includes the possibility for spatial learning of complex 3D structures, with suitable 

learning objectives covering the understanding of spatial structures, positions of components within an 

object, and spatial relations between those components. The results from Study 4 (Paper 3, Krüger et 

al., 2022), specifically showed that the dimensionality of a visualisation in AR had no influence on 

general knowledge and spatial component positions knowledge, but for spatial component relations 

knowledge learning with the 3D model led to better outcomes than learning with the 2D graphic. This 

shows that the type of knowledge needs to be considered and that especially spatial knowledge that is 

more complex and involves more elements, like knowledge about relations, may be supported when 

using 3D representations. This potential of displaying 3D objects in AR can be promising for various 

areas of education in which spatial objects and their structure are the focus of the learning content. In 

Study 6 (Paper 5, Krüger & Bodemer, 2022a), the spatial integration of physical and virtual objects as 

another part of spatiality showed no differences in learning if material was integrated or separated. In 

this context, we raised the issue of a consideration of local and global coherence construction based on 

Seufert and Brünken (2006), which in AR includes not only coherence within one form of or across 



74 

forms of representation, but also coherence within one world (virtual or physical) or across worlds. 

Different types of coherence formation as a part of knowledge construction may be supported by 

different combinations of virtual and physical elements in AR. In total, it is important to consider the 

learning objective before considering how it can be best supported by AR. The separation into the three 

characteristics can help in structuring the potentials of AR-based learning experiences. 

 

5.1.3 Cognitive Load and Workload 

Concerning cognitive load and task load, as described in Section 2.3, different implications need to be 

considered based on the results from the current dissertation, including all three ARcis characteristics. 

Looking at contextuality, an important aspect that was mentioned in Section 3 includes the potentially 

distracting effects of placing instructional elements within a broader physical context that can include 

sounds, smells, and physical objects that are not part of or relevant for the learning material. In Study 5 

(Paper 4, Krüger & Bodemer, subm.) learners indeed reported that the closeness to physical objects 

pulled their attention to those. In this case, the objects were interesting for the learning material, although 

they were not relevant for the knowledge test, so that they could have pulled attention away from more 

relevant aspects, which is in accordance with the immersion principle (Mayer, 2020e). This way, ECL 

might be induced, and attention may be pulled from more relevant processes. As described in the 

literature on seductive details, learning may be hindered when interesting but irrelevant information is 

added towards learning material (Sundararajan & Adesope, 2020), although affective components also 

need to be considered (Park et al., 2015). In Study 7 (Paper 5, Krüger & Bodemer, 2022a), which 

specifically tested the influence of auditive seductive details on cognitive and task load, we found no 

effects of adhering to or violating the coherence principle on those variables. The results were 

inconclusive, so that no definite conclusions can be drawn. This shows that the coherence principle may 

need to be reconsidered at least partly for AR-based learning settings. More studies are necessary, 

including a consideration of not only cognitive but also motivational effects of seductive details in AR. 

Looking at interactivity as a factor, in Section 3 an important aspect that was mentioned 

concerning cognitive load focuses on the distinction between mental and physical interaction. While 

physical interaction can in general increase learning in AR, it is important to consider how these physical 

actions can elicit and support mental processes. Looking at the results of Study 3 (Paper 2, Krüger & 

Bodemer, 2020), although the learning outcomes suggest an underload when low mental and low 

physical interaction were combined, and an overload when high mental and high physical interaction 

were combined, this pattern was not fully found for the self-reported cognitive load and task load. 

Descriptively, the pattern was partly supported, but more research is necessary on how AR-specific 

learner control and guidance can be combined to support learning as effectively as possible. 

Concerning the factor of spatiality, Section 3 introduces the potential of displaying 3D objects 

in three dimensions, relieving learners of the task to mentally transform 2D graphics into 3D mental 

models. It is suggested that unnecessary cognitive load from this transformation can be reduced and that 
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cognitive load from deeper processes of 3D mental model construction can be increased. The results in 

Study 4 (Paper 3, Krüger et al., 2022) show that a 3D representation can indeed increase GCL, but no 

decrease in ECL was found. Together with the outcome that spatial relations knowledge was increased 

through the 3D presentation, one interpretation of these results suggests that the 3D presentation focused 

learners’ attention on the spatial structure, while no transformation processes and thus no ECL 

necessarily took place when showing the 2D presentation. Another aspect of spatiality in AR, the 

spatially integrated presentation of virtual and physical elements, was examined in Study 6 (Paper 5, 

Krüger & Bodemer, 2022a). Descriptively, the expected positive effects of integration on cognitive load 

and task load were supported, and temporal demand was significantly lower for the integrated than the 

separated presentation, while perceived performance was significantly higher. This indicates a potential 

to decrease unnecessary cognitive load and increase relevant cognitive load when integrating virtual and 

physical representations, although more research is necessary to confirm this. 

Additionally, we found correlations between cognitive load and task load subconstructs in 

Study 3 (Paper 2, Krüger & Bodemer, 2020). These showed positive relations of GCL and mental 

demand, GCL and effort, and ECL and frustration. They can be used to inform the connection between 

these two conceptualisations of workload. 

 

5.1.4 Immersion 

Concerning the construct of immersion as described in Section 2.4, from a theoretical point of view both 

contextuality and interactivity seem to be relevant in AR, as described in Section 3. Contextuality 

supports the potential of context immersion as described by Kim (2013). Learners can thus be immersed 

within a combined virtual-physical experience, including the possibility of contextual coupling. When 

looking at the results from Study 5 (Paper 4, Krüger & Bodemer, subm.), participants described that 

they felt more surrounded by the learning material when they were close to the corresponding physical 

objects. Concerning interactivity, the context immersion conceptualisation by Kim (2013) further 

included that embodied interaction has a positive impact on context immersion, thus describing the 

impact of interactivity on immersion. None of the studies included in the current dissertation empirically 

examined the effects of interactivity on immersion. 

In the current dissertation, only one study examines immersion as an outcome variable. 

However, in another study that is currently in press we found that in an augmented 360° photo 

environment, all subconstructs of immersion (i.e. interest, usability, emotional attachment, focus of 

attention, presence, and flow) were increased when interactive learner control was implemented in 

comparison to when it was not (Krüger et al., in press), thus showing the impact of interactivity on 

immersion. Furthermore, interest and presence were increased in this study when the context of the 

learning material was visible in comparison to invisible, thus showing the impact of contextuality on 

some aspects of immersion. While the learning material in this study included no real AR environment, 

but 360° photos that were enriched with virtual information, the results might still be partly transferable 
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to AR-based environments. In Section 4.1. Methodological Approach in Paper 5 (Krüger & Bodemer, 

2022a) we argue that the methodological approach of simulating an AR-based learning environment can 

help gather insights in a controlled experimental setting that can then be transferred to a more complex, 

real AR environment to be examined there. 

 

5.1.5 Motivation 

Concerning the construct of motivation as described in Section 2.5, both contextuality and interactivity 

seem to be relevant in AR, as described in Section 3. In Study 1 (Paper 1, Krüger et al., 2019), although 

expected, no significant difference was found in motivation for AR in comparison to non-AR, although 

descriptively a small advantage for AR was found. In this study, however, conclusions cannot be drawn 

for one specific factor, as described above. 

Looking at contextuality as a characteristic, motivation might be influenced by aspects like 

feelings of relevance when learning in a matching physical environment, and sense of presence within 

an environment may have an influence on motivation. In Study 5 (Paper 4, Krüger & Bodemer, subm.) 

the participants described that they felt more motivated when receiving virtual information directly at 

the corresponding physical objects. This shows the potential of contextuality for learners’ motivation, 

although more systematic research is necessary. Concerning interactivity, learner control has been 

described as a feature that can lead to increased motivation, although in the current dissertation no 

empirical examination of this took place so that more research on this is necessary. 

In the current dissertation, motivation was only examined as an outcome variable in two studies. 

A study on augmented 360° photos that is currently in press and was already mentioned concerning the 

variable of immersion also examined learners’ motivation based on the subconstructs of the ARCS 

model by Keller (2010). Visibility of context had a positive effect on attention, relevance, and 

satisfaction, while interactive learner control had a positive effect on attention, confidence, and 

satisfaction. We also found an interaction effect of the two factors, showing a smaller satisfaction when 

neither context was visible, nor learner control was possible in comparison to when either or both were 

applied. It thus seems that when implementing these aspects of contextuality and interactivity, 

motivation in the form of satisfaction profits from each, although it does not additionally profit from 

their combination. Again, while the learning material in this study included augmented 360° photos and 

no real AR environment, the results might still be partly transferable to AR-based environments, as also 

argued in Section 4.1. Methodological Approach in Paper 5 (Krüger & Bodemer, 2022a). 

 

5.1.6 Spatial Abilities 

Concerning the construct of spatial abilities as described in Section 2.6, a connection has mainly been 

made to the factor of spatiality. In Section 3, the potential of learners’ spatial abilities having an influence 

on learning processes especially when it comes to learning with spatial representations and about spatial 

constructs was described. In Study 4 (Paper 3, Krüger et al., 2022), we took an ability-as-compensator 
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hypothesis perspective, expecting that especially learners with lower spatial abilities would profit from 

3D visualisations. However, the results show support for an ability-as-enhancer hypothesis instead, 

showing that learners with high spatial abilities profited from 3D, while learners with low spatial abilities 

did not. For learners with high spatial abilities, the influence of the form of presentation on their spatial 

relations knowledge outcome was mediated by GCL, which was not the case for low and average spatial 

abilities learners. High spatial abilities may thus have supported germane cognitive processing of 3D 

visualisations, which in turn led to increased knowledge. In another perspective we looked at the 

possibilities of improving spatial abilities through AR in Study 1 (Paper 1, Krüger et al., 2019). No 

effect was found on spatial abilities when learning with AR in comparison to non-AR. However, we 

embedded no specific spatial abilities training and AR was only used for a short time, which may explain 

the results. In general, considering learners’ spatial abilities when looking at the spatiality of AR-based 

learning settings thus seems important to gain a more complete picture. This was also supported by 

another study that we executed, showing a moderating influence of different types of spatial abilities on 

different types of learning task scores and learning outcomes (Krüger & Bodemer, 2021). 

 

5.2 Theoretical Implications 

Theoretical implications can be highlighted from the proposal of the ARcis framework, and the 

empirical results of the studies summarised in the previous section and described in more detail in the 

five included papers. In general, the current dissertation highlights the necessity to apply not only a 

media comparison approach when examining learning with AR. As stated in Section 1.2, alternative 

types of studies are intra-medium studies and aptitude-treatment-interaction studies. In the current 

dissertation, the application of intra-medium designs worked well for Study 3 (Paper 2, Krüger & 

Bodemer, 2020) on different types of interaction within AR, Study 4 (Paper 3, Krüger et al., 2022) on 

the dimensionality of representation within AR, and Study 5 (Paper 4, Krüger & Bodemer, subm.) on 

the positioning of corresponding information within AR. Study 4 in addition included an aptitude-

treatment-interaction design for the learner characteristic spatial abilities. The studies offer unique 

insights that can be applied to extend the theory on learning with AR. 

When it comes to MERs, the current dissertation mainly provides a focus on the three ARcis 

characteristics as definitions of functions of MERs in AR. Contextuality describes the combination of 

virtual and physical representations, interactivity describes the implementation of different interactive 

representations, and spatiality describes the possibility to implement 3D representations in physical 

space. The specific combination of these kinds of representations and its impact on learning processes 

and outcomes concerning different learning objectives still needs to be examined in further experimental 

studies. When looking at learning achievement in AR-based learning experiences, the current 

dissertation highlights that it is important to not only focus on general learning outcomes but to consider 

different types of learning objectives. These can be matched by the design of AR experiences based on 

the three ARcis characteristics. Contextuality may especially support a mental connection between 
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physical and virtual elements, while for interactivity a level of guidance might be necessary to consider, 

and spatiality supports learning about spatial constructs. Concerning cognitive load and task load it was 

shown that it is important to consider different features of AR, which can all have an influence on 

cognitive processes and thus cognitive load. Furthermore, necessary and unnecessary cognitive load 

should be distinguished for a more complete picture. For both immersion and motivation, theoretical 

assumptions were made based on the ARcis characteristics. However, these assumptions were only 

partly examined empirically, so that more research is necessary. However, it can be assumed that 

subfactors of contextuality have an impact on both constructs. Concerning spatial abilities, the current 

dissertation shows support for an ability-as-enhancer hypothesis as a potential factor when providing 

3D representations for learning about spatial objects. 

 

5.3 Practical Implications 

Based on the proposed ARcis framework and the empirical results in the different studies, various 

practical implications of the results of the current dissertation can be concluded tentatively. Concerning 

the ARcis framework described in Section 3, the main implication is that the three characteristics can 

be used to inform the systematic design of AR-based learning applications. The analyses of the three 

applications concerning their implementation of the characteristics show a range of possible 

implementations, which should be considered in light of the learning objective or goal of the application. 

When the learning objective describes the mental integration of information provided through virtual 

elements, physical objects, and the physical environment, contextuality should be considered. More 

specifically, the main insights on contextuality from Study 5 (Paper 4, Krüger & Bodemer, subm.) 

indicate that positioning virtual information close to corresponding physical objects in AR can guide 

learners’ attention towards the physical objects and their relation to the virtually provided information. 

Designers of AR-based learning environments that have the goal to evoke the creation of combined 

mental models might thus consider placing virtual elements close to corresponding physical objects as 

to guide learners’ attention towards the physical components and their connection to the virtual 

elements. When the learning objective describes a discovery process that should be actively controlled 

by the learners themselves, interactivity should be considered. With regard to interactivity, the main 

insights from Study 3 (Paper 2, Krüger & Bodemer, 2020) indicate that a certain degree of interaction 

can be advantageous to learning in AR, but that not everything should be left to the learners, and that 

guidance can be necessary, especially during initial use. Designers of AR-based learning environments 

that want to apply an interactive learning process might thus consider the amount of learner control and 

the amount of guidance in the experience as to not overload learners. When the learning objective 

focuses on spatial learning, such as knowledge and understanding of the spatial positions and relations 

of components of 3D objects, spatiality should be considered. The results in Study 4 (Paper 3, Krüger 

et al., 2022) show that 3D presentation of virtual objects in AR can support learning of spatial structures, 

but that it is possible that learners' spatial abilities are not always sufficient to process 3D 



79 

representations. Designers of AR-based learning environments that want to support spatial learning 

might thus consider an integration of virtual 3D models as to support the building of spatial mental 

models. Furthermore, they might consider learners’ spatial abilities that they already bring to the 

learning situation and think about the possibility of training necessary abilities before the learning 

experience. 

 When considering the different potential implementations of AR-based learning experiences 

described in Sections 3.1.3, 3.2.3, and 3.3.3, a range of levels of implementing the three characteristics 

is illustrated. In the design of contextuality, the general environment of the AR-based learning setting 

can have no thematical relevance, full thematical relevance, or something in between these extremes. 

The same is true for the specific physical anchor. Furthermore, the general environment and the physical 

anchor can be designed as being fully visible, or they can be partly or fully covered by virtual elements. 

Looking at interactivity, purely virtual interaction, purely physical interaction, and mediated physical-

virtual interaction need to be considered in the design of AR applications. All these types of interaction 

can be more or less elaborate, can require more or less physically big movement, and can be more or 

less meaningful for the learning objective. When considering spatiality in the design of AR applications, 

both the anchoring within the physical world and the spatial properties of the virtual objects can be taken 

into account. For the anchoring, world level and element level linking need to be considered. For the 

spatial properties of the virtual elements, dimensionality, size, and spatial relations within and between 

the virtual elements can be applied in the design. When looking at the design of AR, not only the 

individual ARcis characteristics but also their interplay should be considered, as described in Section 

3.4. Spatial anchoring on a bigger level can be implemented to support contextuality, spatial anchoring 

on a smaller level can be implemented to support mediated interactivity, and contextuality and mediated 

interactivity can be implemented to support spatial perception. These and other synergies could be 

considered in the design of AR-based learning experiences. 

 Concerning the application of multimedia principles in AR described in Sections 3.1.3, 3.2.3, 

and 3.3.3, contextuality was connected to the coherence principle, interactivity to the learner control and 

guided activity principle, and spatiality to the spatial contiguity principle. In Study 7 (Paper 5, Krüger 

& Bodemer, 2022a), the application of the coherence principle was not supported, showing no advantage 

of not including matching or non-matching sounds in a simulated AR application. Still, the coherence 

principle should in general be considered when designing learning applications in AR, although the 

addition of small sounds may not be so harmful as to lead to cognitive overload. More research with 

different added seductive details should be executed, also taking into account possible motivational 

effects. In Study 6 (Paper 5, Krüger & Bodemer, 2022a), the application of the spatial contiguity 

principle was not fully supported. However, the descriptive results suggest that the principle can also be 

applied to simulated AR applications. The principle should be considered in the design of AR-based 

learning experiences, although more research is necessary concerning the specific impact when spatially 

combining virtual and physical elements. The learner control principle and guided activity principle 
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were not specifically tested for AR in the current dissertation, although the results in Study 3 (Paper 2, 

Krüger & Bodemer, 2020) suggest that some form of guidance is necessary when learner control is 

implemented. In total it can be said that general design principles such as multimedia design principles, 

but also AR-specific design decisions based on the ARcis characteristics with the learning objective in 

mind, should be considered when designing AR-based learning experiences. 

 

5.4 Limitations 

There are some limitations that need to be taken into account when interpreting the results of the current 

dissertation including the seven studies. In general, it needs to be considered that the three ARcis 

characteristics cannot always be clearly separated from each other in the design of studies. While this 

describes the interplay mentioned in Section 3.4, it also poses difficulties for systematically 

manipulating factors of AR in intra-medium studies. However, the ARcis conceptualisation does not 

strive for a clear-cut distinction between the characteristics. It also does not strive to cover all potential 

characteristics of AR but gives an indication for relevant characteristics. It can be the basis for a first 

step in further systemising research on and design of learning in AR that can be extended and improved 

in future conceptualisations and research. People applying the framework should keep this in mind. 

The research on contextuality is still in an early stage due to the mock-up AR design in Study 2 

(Paper 1, Krüger et al., 2019) and the exploratory nature of and small sample size in Study 5 (Paper 4, 

Krüger & Bodemer, subm.). Results concerning this characteristic should be interpreted with caution. 

More research needs to confirm the insights considering the positioning of virtual elements in AR. 

Furthermore, as already mentioned above, the current dissertation considers the constructs immersion 

and motivation for both contextuality and interactivity. The empirical studies, however, only examine 

immersion and motivation in relation to contextuality. The relation of interactivity and the two processes 

thus stays quite theoretical in the current dissertation, and more research is necessary. 

While in all of the studies presented in the current dissertation cognitive load was conceptualised 

and operationalised in a nuanced way, the measurements were mostly retrospective and subjective. Only 

in Study 2 (Paper 1, Krüger et al., 2019), cognitive load was also measured through secondary task 

execution and continuously during the learning task, and there were some limitations connected to this 

measurement due to other systematic differences between the two conditions (see Section 4.3 Discussion 

in Paper 1, Krüger et al., 2019). The potential to enrich the measurement of cognitive load by adding 

objective, continuous measures for example through physical measurements like eye tracking is further 

discussed in Section 4.5. Limitations and future studies in Paper 3 (Krüger et al., 2022). 

When looking at the learner characteristics that were considered theoretically and empirically 

in the current dissertation, only mental rotation abilities as a specific form of spatial abilities is examined. 

There are, however, more types of spatial abilities that may play a role here, as shortly introduced in 

Section 2.6. In another study, we examined both 3D spatial visualisation abilities and 2D spatial memory 

abilities and their relation to learning with AR and non-AR (Krüger & Bodemer, 2021). The results 
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showed diverging moderating effects of the two types of abilities, suggesting that different spatial 

abilities may have differing impact on learning processes and outcomes. This needs to be examined 

further in future research. Furthermore, spatial abilities are not the only learner characteristics that can 

play a role when learning with AR. In future research, characteristics like prior knowledge, interest in 

the topic, and learning motivation should be considered, as also suggested by Cheng and Tsai (2013). 

 When looking at Study 2 (Paper 1, Krüger et al., 2019), Study 6 (Paper 5, Krüger & Bodemer, 

2022a) and Study 7 (Paper 5, Krüger & Bodemer, 2022a), all three studies did not apply real AR 

applications but mock-ups or simulations of these. While this offers the opportunity for more controlled 

lab-based research, as also described in Section 4.1. Methodological Approach in Paper 5 (Krüger & 

Bodemer, 2022a), this shows the necessity to transfer the results from these studies onto real AR-based 

experiences. In general, all studies took place in a more or less pre-structured laboratory setting. The 

application of the results in the field still needs to be confirmed in future research. 

 In general, the complexity of the learning tasks differed a lot between the different studies. 

While the interactive discovery learning task applied similarly in Study 1 (Paper 1, Krüger et al., 2019) 

and Study 3 (Paper 2, Krüger & Bodemer, 2020) was quite complex due to many interacting 

components, all other studies mainly included the task to remember the content displayed during the 

learning phase. Here, Study 4 (Paper 3, Krüger et al., 2022) and Study 6 (Paper 5, Krüger & Bodemer, 

2022a) included less information than Study 5 (Paper 4, Krüger & Bodemer, subm.). This shows that no 

truly systematic approach was taken when designing the learning tasks in the different studies. This is 

also apparent in the duration of the learning phases, which were sometimes limited to a specific time, 

but at other times unrestricted. In Study 5 (Paper 4, Krüger & Bodemer, subm.), for example, the 

duration of the learning phase was restricted to 40 minutes. In Study 4 (Paper 3, Krüger et al., 2022), no 

restriction was given for the duration of the learning phase, but learners on average took only a short 

time. In Study 6 (Paper 5, Krüger & Bodemer, 2022a), the videos presented were only around 3 minutes 

long. All learning experiences were one-time implementations usually with relatively short durations. 

When it comes to an implementation of these in formal or informal learning settings, the learning 

experiences will probably be longer, which may impact attentional processes and cognitive load. 

 

5.5 Future Research and Outlook 

The systematic manipulation and experimental analysis of individual, small-scale, AR-specific factors 

and attributes enables the separate, unconfounded investigation of individual mechanisms, which is 

crucial for gaining knowledge in the study of AR-based learning experiences. More research on all 

ARcis characteristics is necessary. Concerning contextuality, the literature shows that AR applications 

used in a specific, relevant location can lead to learning outcomes and positive learner experiences (e.g., 

Georgiou & Kyza, 2021; Kamarainen et al., 2013), so that pursuing this research strand may lead to 

further insights into the precise implementation of location-based AR applications in different settings 

and with different learning objectives. Looking at interactivity, the literature in general shows positive 
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results of interaction in AR on learning (Johnson-Glenberg & Megowan-Romanowicz, 2017; Lindgren 

et al., 2016), but more research is needed on the exact factors and types of interaction that play a role in 

interactive AR applications. Regarding spatiality, studies have also shown the influence of spatial 

abilities in learning with 3D visualisations (Krüger & Bodemer, 2021; Stull & Hegarty, 2016), but this 

is not always clear-cut and should be further examined in order to draw conclusions for the effective use 

of AR applications. 

In addition to laboratory studies as mainly applied in the current dissertation and as already 

described in the limitations, in the further course, the results from this research should be tested in more 

complex, authentic learning settings to ensure transferability. Future studies should also look at the 

combination and interaction of different features to provide a basis for the meaningful composition of 

learning-relevant design variables and criteria for complex AR applications, as AR applications are 

usually based on all three features. As described in Section 5.1.4 and Section 5.1.5, we have executed a 

study that examines the interaction of contextuality and interactivity subfactors concerning immersion 

and motivation in an augmented 360° photo environment (Krüger et al., in press). While this is not a 

real AR environment, the results may be used as a basis for further research in this area.  

Furthermore, the research into the influence of different learning goals, outcomes, and tasks 

needs to be broadened. In the current dissertation, the theoretical assumptions concerning the ARcis 

characteristics led the design of the learning material and AR applications used in the studies. More 

insights into these relations are relevant for practical applications, especially to be able to leverage the 

characteristics based on their specific mechanisms to support learning. As also already described in the 

description of the limitations above, focus on different learner characteristics such as motivation or 

certain abilities is also relevant for future research, as these can have an influence on the processing of 

content and the learning experience in AR. 

In addition to individual learning settings, collaborative learning settings, which are becoming 

more and more common in education, and their implementation based on the ARcis characteristics are 

also interesting, as there is a great potential here as well (e.g., learning partners as part of the AR context; 

collaborative interaction with AR elements; spatial positioning of learning partners around an AR object; 

see also Paper 1, Krüger et al., 2019). Further down the line, other technologies should also be 

considered that can bring a better implementation of AR features (e.g., AR glasses to have hands free 

for interaction). All in all, AR offers many new learning opportunities that need further empirical 

exploration to provide a basis for the implementation and use of effective and efficient AR applications. 

In addition to the theoretical conceptualisation of the ARcis framework to classify and examine 

specific features of educational AR, first attempts at developing a questionnaire to learn more about 

learners’ experience of these three characteristics have been made. This questionnaire has already been 

applied as a manipulation check in Study 4 (Paper 3, Krüger et al., 2022) in the current dissertation. In 

a first evaluation, we tested a first version of this questionnaire in four studies and found an acceptable 

first fit (Krüger & Bodemer, 2022b). Further studies with a broadened set of items for evaluation of the 
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specific wordings are currently ongoing so that this questionnaire can be used in future studies on 

learners’ experience of the AR environment.  

While the research perspective on AR is clearly in need of more systematic experimental studies 

and results, practitioners like teachers have also shown that they need more support to implement AR in 

the classroom as indicated by 16 teachers in a survey study (Buchner, Krüger, et al., 2022). Besides the 

general technological infrastructure that is necessary to implement AR in education, teachers describe 

that they need general support to create content in a pedagogically informed way, or that they need 

content that already matches their learning objectives. For this, it is important that research and practice 

work hand in hand in the research, design, and implementation of AR-based learning environments. The 

ARcis framework can provide a basis for communication of different stakeholders in this aspect. 

 

6 Conclusion 

In the current dissertation the overarching goal of gaining insight into specific characteristics of AR-

based learning and how they can be leveraged to support learning processes and outcomes was reached 

by working on achieving theoretical, empirical, and practical subgoals. A theoretical definition of three 

characteristics of AR-based learning was achieved, describing contextuality, interactivity, and spatiality 

as three unique characteristics. These three characteristics can be leveraged to support learning in AR, 

working through different mechanisms and relating to different learning objectives. Empirical research 

and practical implementations of AR-based learning can consider this framework for a systematic 

approach. The studies presented in the current dissertation show that it can be of interest to conduct 

experimental studies with systematically manipulated variables based on the three characteristics. 

Concerning contextuality, it can be concluded that the positioning of virtual information in relation to 

corresponding physical objects should be considered in learning with AR. With regard to interactivity, 

it can be concluded that the amount and combination of types of interaction and the necessity of guidance 

during initial use should be considered in learning with AR. Concerning spatiality, it can be concluded 

that the dimensionality of a virtual representation in AR and its interaction with spatial abilities should 

be considered in learning with AR. Overall, the results of the empirical studies suggest that variables 

such as learning behaviour, cognitive load, immersion, motivation, and different types of knowledge 

can be influenced by the different design of AR-based learning applications, and person variables such 

as spatial abilities should also be considered in this context. These results can further be used to make 

certain design decisions for AR-based learning while considering the goal and the pursued learning 

objective. In conclusion, the theoretical framework and research presented in the current dissertation has 

provided insights into a meaningful use of AR for learning and forms a solid basis for further research 

and development in the field of AR-supported learning.  
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Abstract: In this paper, three technological characteristics of augmented reality (AR) are 

reframed from a perceptual, user’s perspective and discussed concerning their potential for 

education and in the context of research on technology-supported learning. The first 

characteristic, contextuality, describes that users of AR can experience the real world and virtual 

elements simultaneously. The second characteristic, interactivity, includes the possibilities to 

interact with AR through the manipulation of both real objects and virtual properties, which 

offers novel possibilities for interaction. The third characteristic, spatiality, focusses on the 

linking of virtual objects to specific points in space and the more realistic three-dimensionality 

that AR visualizations offer. It is proposed that these three characteristics can provide a way to 

structure the broad research landscape of AR in education and form a basis for future research 

projects. Two studies are presented and linked to the three characteristics. In the first study, the 

comparison of a desktop simulation and an AR simulation in an individual learning setting is 

linked to the characteristics of interactivity and spatiality. In the second study, the contextuality 

of AR is systematically varied and exploited to present group awareness information about 

other learners next to these learners instead of separated from them. The results of the studies 

are discussed in the context of the three characteristics and the paper concludes that there are a 

lot of different educational settings in which AR could be beneficial. The classification of and 

systematic variation in research based on the three characteristics may form a basis to 

systematize educational AR research. Furthermore, the results of this research and the three 

characteristics themselves can inform the design of AR applications to support learning. 

 
Keywords: Augmented reality, Contextuality, Interactivity, Spatiality, Technology-supported 

education, Multimedia learning 

 

 

1. Introduction and background 
 

During the past centuries, augmented reality (AR) has turned from a technological vision of the future, 

which could often be found in science fiction movies, to a technological achievement of the present, 

which can now be created by the smart technological devices we have in our pockets. This development 

concerning the access to the necessary technology creates novel opportunities for applying AR in 

different fields. One area that many recent studies concerning AR focus on is education (Cipresso, 

Giglioli, Raya, & Riva, 2018). Education may also be one of the most promising areas for applying AR 

and there is an increasing number of studies that focus on the opportunities that AR as a way of 

visualizing information has to offer for both individual and collaborative learning settings (Akçayır & 

Akçayır, 2017; Phon, Ali, & Halim, 2014; Radu, 2014; Wu, Lee, Chang, & Liang, 2013). In most of 

these studies, advantages of AR in comparison to more traditional learning settings are examined. 

Positive effects that have been found when using AR in education are enhanced learning performance 

and motivation, higher enjoyment and engagement, more positive attitudes towards the learning 

material, and a better collaboration between learners (Akçayır & Akçayır, 2017; Bower, Howe, 

McCredie, Robinson, & Grover, 2014; Chen, Liu, Cheng, & Huang, 2017; Dunleavy & Dede, 2014; 

Phon et al., 2014; Radu, 2014; Saidin, Halim, & Yahaya, 2015; Wu et al., 2013). Challenges that were 

discovered are for example technical limitations, the use of the application being too complicated and 

mentally overloading, the amount of time that has to be invested to develop the applications, and 

pedagogical issues when trying to integrate AR into the classroom (Akçayır & Akçayır, 2017; Bower et 

al., 2014; Dunleavy & Dede, 2014; Radu, 2014). 
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 Over the years, various definitions of AR have been used in different areas of research. A rather 

general definition describes AR as “technology which overlays virtual objects (augmented components) 

into the real world” (Akçayır & Akçayır, 2017, p. 1) and in earlier definitions, AR is often linked to 

head-mounted displays, which were the preferred display devices before smartphones and tablets were 

available (Azuma, 1997). One of the most commonly used definitions by Azuma (1997) defines AR as 

systems with three characteristics: (1) combination of the real world and virtual elements, (2) real-time 

interactivity, and (3) registration in 3D. The definition is used in papers by Azuma (1997) and Azuma et 

al. (2001), which are the two most cited papers in AR as of 2016 (Cipresso et al., 2018). This underlines 

the importance of this definition and those three characteristics in AR research. In the current paper, 

Azuma’s definition is employed because of its use in the educational field (e.g., Bower et al., 2014; 

Radu, 2014), its scope (not too broad or too narrow), and its independence of a technological device. 

In addition to different definitions, there have also been various attempts to classify AR 

applications and technologies (see Normand, Servières, & Moreau, 2012 for an overview). In the most 

known taxonomy, the Reality-Virtuality Continuum, AR is placed between the two extremes of real and 

virtual environment, leaning towards the side of the real environment (Milgram & Kishino, 1994). A 

newer taxonomy by Normand et al. (2012) classifies AR applications based on four axes, namely 

tracking (degrees of freedom and accuracy), augmentation type (optical see-through, video see-through, 

spatial augmentation), temporal base (past, present, future, time independent) and rendering modalities 

(beyond visual augmentation). With this taxonomy, AR applications can be classified depending on 

their goal and independent of the technology or the device used (Normand et al., 2012). 

 While the different definitions and taxonomies are often used independently of the research 

area, in the educational AR literature there have been attempts to connect AR to different learning 

theories and pedagogical approaches. Bower et al. (2014) and Dunleavy and Dede (2014) connect AR 

to situated and constructivist learning by assessing that learning with AR can take place at a relevant 

location and a deeper learning can occur with the support of AR. Game-based learning, in which 

immersion in the learning material is important, and inquiry-based learning, in which a scientific data 

gathering process is enacted, are also mentioned in connection to AR (Bower et al., 2014). In a review 

of the usage of learning theories to support the design of educational AR applications, Sommerauer and 

Müller (2018) mainly found that Mayer’s multimedia principles from his Cognitive Theory of 

Multimedia Learning (Mayer, 2009), situated learning, game-based learning and simulations, and 

experiential learning were used in studies. Based on their findings, they furthermore developed a design 

framework that can be used for designing educational AR applications (Sommerauer & Müller, 2018). 

While research on AR in education has been conducted for some time now, it is still not 

completely obvious how exactly AR is better for supporting learning than other learning technologies 

like tablet-based simulations or desktop learning environments. One key affordance of AR that Bower 

et al. (2014) mention is that with AR, students can rescale virtual objects of all sizes in order to better 

understand them. It is, however, not evident, how this is better than executing the same action on a 

tablet or desktop screen. Affordances of AR that are mentioned by Wu et al. (2013) and might also be 

true for technologies other than AR (for example a normal smartphone app), are ubiquity and 

situatedness, the visualization of the invisible and the bridging of formal and informal learning. 

Although it is evident that these affordances all have the potential to support learning, it is not 

completely clear how exactly AR as a form of visualizing information plays a unique role in them. That 

is why, in the remainder of this paper, we aim to present and discuss three characteristics of AR that 

have been identified to be important factors in supporting learning. We describe how they are in this 

specific way only found in AR and not in other learning technologies, and thus reveal unique values that 

AR has for education, as proposed by Wu et al. (2013). Furthermore, we suggest that these three 

characteristics might provide a structure and a focus for educational AR research, to examine when and 

how the implementation of AR is most beneficial for education. This may help to develop a systematic 

research agenda for the use of AR in education scenarios and thus also support instructors and designers 

in developing effective AR-based learning experiences for various target groups and learning objectives 

in formal and informal learning settings. After the introduction and discussion of the three 

characteristics from a user’s perspective in the next section, two studies that have been conducted on 

AR-supported learning are presented and discussed in the context of the characteristics. These studies 

exemplify how the three characteristics can be used for classifying and planning empirical research. A 

conclusion for the three characteristics and future research is drawn at the end of the paper. 
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2. Three Characteristics of AR from a User’s Perspective 
 

As stated by Hugues, Fuchs, and Nannipieri (2011), augmenting reality in itself is not possible, so that 

in AR a person’s perception of reality is augmented. Therefore, we chose to look at the characteristics 

that AR possesses from a perceptual, user’s perspective. In order to do this, we considered the three 

characteristics in the aforementioned definition of AR by Azuma (1997): (1) combination of the real 

world and virtual elements, (2) real-time interactivity, and (3) registration in 3D. The technology that 

delivers the AR experience to the user must possess these properties. In order to reframe the 

characteristics from a user’s perspective, we looked at how they affect the user’s experience of AR and 

propose three characteristics of the experience of using AR that cannot be found in this specific form in 

other technologies: contextuality, interactivity, and spatiality. In the following paragraphs, these three 

characteristics are described and their value for technology-enhanced learning is discussed. Also, four 

interesting research areas are given for each of the characteristics: two concerning individual learning, 

and two concerning collaborative learning. Table 1 shows an overview of the three characteristics. 

 

2.1 Contextuality 
 

In Azuma’s (1997) definition, the first characteristic is that real world and virtual elements are 

combined in AR. From a technological perspective this means that virtual and real elements are 

displayed simultaneously. The displaying device must be context sensitive and aware of its location to 

show the user the digital content that is relevant at that place in that moment (Dunleavy & Dede, 2014). 

When looking at this characteristic from a perceptual, user’s perspective, this means that the 

user perceives the displayed virtual elements (e.g., objects, pictures, text) in the context of the real 

world around them (e.g., physical objects, other learners). In contrast to virtual reality, the context is not 

completely covered by the virtual elements, and in contrast to information on a screen, the virtual 

element and the context are not separated from each other (Rekimoto & Nagao, 1995). With this, novel 

opportunities and challenges to link the context and the virtual elements appear. Therefore, the first 

AR-specific characteristics reframed from a user’s perspective is “contextuality”. 

Concerning the benefits that contextuality has for learning, it can be said that with AR it is 

possible to situate learning in a relevant context, which may increase the authenticity and ground 

students in reality (Wu et al., 2013). Even though it may also be possible to look up information that is 

relevant to the place where the user is at that moment with mobile devices, in AR the possibility to 

overlay visual virtual information over the environment gives additional potential for “perfectly 

situated scaffolding” (Bower et al., 2014, p. 6). Here, the relationship between the real world and the 

virtual information is closer than when just looking at relevant information on a mobile device. Bower 

et al. (2014) call the ability to contextually overlay information onto the real world one of the key 

pedagogical affordances of AR and Dunleavy and Dede (2014) state that embedding learning within 

relevant environments is very likely to enhance learning. In scientific literature, there is furthermore a 

connection made between the contextuality of AR and Mayer’s (2009) multimedia principles of spatial 

and temporal contiguity (Akçayır & Akçayır, 2017; Radu, 2014). Through contextuality, instructional 

information can be made available at the right place and time and can this way be situated inside the real 

world. This implements the contiguity principles, which state that information that belongs together 

should be presented in an integrated way and at the same time (Mayer, 2009) in order to avoid split 

attention and thus increased cognitive load (Ayres & Sweller, 2014). When working in a collaborative 

learning setting, the contextuality of AR can also be beneficial. In co-located collaboration, 

contextuality means that because the virtual elements do not occlude other learners and the context, 

virtual information can be added to face-to-face collaborative learning settings. Learners can then 

perceive virtual information, the other learners, and the context around them at the same time. Here, it 

must be considered that a complex interplay between the three elements takes place, which might have 

an influence on the collaboration between the learners and their references to learning material or other 

external artifacts (see Bodemer, Janssen, & Schnaubert, 2018; Stahl, 2006). In general, through the 

characteristic of contextuality, AR has the potential to apply some of the multimedia principles onto the 

real world and support especially the situating of learning in a relevant environment. This provides 

interesting opportunities for applying AR to support learning both inside and outside the classroom. 

Different questions concerning the contextuality of AR that still need to be answered through 

empirical research are, for example: (a) Do people indeed learn better when they are in a relevant 
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context than when they are not and which (cognitive, motivational, and emotional) factors play a role in 

this?, (b) How closely must the context and the virtual information be thematically related for the 

overlaying of information to be beneficial?, (c) How does the interplay between learners, contexts, and 

virtual material have an influence on the interactions between two or more learners learning 

collaboratively?, (d) What are the advantages and challenges of placing group awareness information 

(see Bodemer et al., 2018) about other learners directly next to the respective learner? Concerning this 

last question, a study is presented later in this paper (study 2). 

 

2.2 Interactivity 
 

The second characteristic that Azuma (1997) mentions in his definition of AR is that AR elements are 

interactive in real time. From a technological perspective this means that the elements must be 

programmed to react to input that the user or – in a collaborative setting – the users give. 

 From a perceptual, user’s perspective this entails that users experience the virtual elements 

reacting to their and other learners’ actions. In turn, all users can react to the element’s actions. In AR, 

virtual elements have two interactive sides. Because virtual objects in AR are placed inside the real 

world, they lend themselves to natural and intuitive interaction that is not possible with screen-bound 

virtual objects (e.g., “real” touching, gesture-based interaction). On the other hand, users can 

manipulate the virtual AR objects in other ways than purely physical objects (e.g., input of new data to 

change simulations, control through input devices) and can receive realistic and immediate feedback 

upon their input. This way, the interactive capabilities of real and virtual elements are combined in AR. 

Billinghurst and Dünser (2012), for example, state that in AR books, different forms of interaction are 

possible, like turning real pages to change the virtual scenery or tilting and rotating the pages to view the 

virtual elements from different angles. Hence, users can interact with the digital content by 

manipulating real objects, using a tangible interface metaphor. Therefore, a second AR-specific 

characteristic reframed from a user’s perspective is its “interactivity”. 

 Concerning the benefits that interactivity has for learning, it was found that even the most 

intuitive form of interaction with an object (i.e., perspective changing by walking around it) can be 

advantageous for learning (Holmes, Newcombe, & Shipley, 2018). Following embodied cognition 

theory, whole-body interaction with AR learning material can also lead to better learning outcomes 

(Johnson-Glenberg & Megowan-Romanowicz, 2017). Concerning collaborative learning settings, it 

can be said that in AR all learners can interact with the virtual elements in the same way and can watch 

how other learners interact with them. With other learning technologies, one person controls the mouse 

and keyboard and others watch, or everybody uses their own device to collaborate online. In AR, 

learners and their actions can directly be linked to each other, which may support the forming of a 

mental model of the other learners and thus group awareness. In general, AR’s interactivity provides 

interesting new ways to interact with learning material, supporting learning in different settings. 

 Questions that still need to be answered with empirical research concerning the interactivity of 

AR are for example: (a) How does AR-based interaction (using a tangible interface metaphor in which 

interaction with an AR marker in the real world leads to manipulation of virtual objects) have a different 

effect on learning especially the connections between objects in comparison to a more familiar 

touch-based interaction with virtual objects?, (b) How must interaction with the material be designed to 

evoke higher order thinking processes?, (c) What influence does the collaborative interaction with the 

AR material have on the interaction between learners?, (d) How does watching other group members 

interact with the material support understanding and for example grounding processes in the group? 

 

2.3 Spatiality 
 

The third characteristic mentioned in the definition is that virtual elements must be registered (i.e., 

placed) inside the 3D real world (Azuma, 1997). From a technological perspective this means that the 

real world must be tracked continuously, so that the virtual element can be pinned to a specific point in 

space. Also, the spatial specifics like the dimensionality of the element itself need to be defined. 

From a perceptual, user’s perspective this means that the virtual elements should seem to exist 

in the same space as the real world. When virtual objects are placed inside the 3D real world, they can 

appear to have more spatial depth than virtual objects shown purely on flat screens. Pseudo-spatial 

visualizations are possible when using monocular depth cues on AR flat screens, while even true spatial 
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visualizations can be created with the aid of binocular disparity when using AR glasses (Jeřábek, 

Rambousek, & Wildová, 2015). The third AR-specific characteristic reframed from a user’s perspective, 

is thus its “spatiality”. 

Concerning the benefits of spatiality in educational settings it can be said that physical 3D 

objects were found to be better for learning than 3D computer models (Preece, Williams, Lam, & 

Weller, 2013). When looking at the spatial properties of 3D AR models, they lie between physical and 

computer models, so that they may also be more beneficial for learning than normal computer models. 

Advantages concerning the mental load of participants using a 3D visualization to learn a visual motor 

task over using a 2D visualization could also be found (Dan & Reiner, 2017). AR might be especially 

useful for learning the spatial structure of 3D material (Radu, 2014) and subjects with a spatial 

component are learned more effectively with AR (Billinghurst & Dünser, 2012). In collaborative 

learning settings, an example of how the fixation of an AR object to a point in space can be used is 

through knowledge sharing by tagging and annotating objects (Specht, Ternier, & Greller, 2011). The 

objects over which the learners collaborate or which they create collaboratively can also be 

three-dimensional and fixed to one point in space. This may offer various advantages over working 

together on two-dimensional screen-based material. In general, it can be said that learners may 

especially benefit from AR’s spatiality when learning about spatial structures and relationships. 

 Questions that arise and should be answered through empirical research are for example: (a) Is 

using a three-dimensional AR object as beneficial for learning spatial structures as real objects are, in 

comparison to screen-based objects?, (b) How much does the use of stereoscopic AR glasses in 

comparison to screen-based monoscopic AR influence the spatial perception of an object and what are 

the advantages concerning the spatial understanding the user acquires about it?, (c) Does the 

collaborative creation of a three-dimensional artefact lead to better learning than the creation of a 

two-dimensional artefact?, (d) How exactly does using a whole room as a space to learn in together 

instead of a shared screen influence the interaction with the material and between the learners? 

 

Table 1 

Three Characteristics of AR from a User’s Perspective 

Azuma’s 

characteristic 

User perspective 

characteristic 

Description 

Combination of 

the real world 

and virtual 

elements 

Contextuality ▪ users perceive virtual elements simultaneously with real 

world (including other users) around it 

▪ users do not perceive virtual elements and context (including 

other users) separately 

Real-time 

interactivity 

Interactivity ▪ users experience virtual elements reacting to them and other 

users, and experience themselves and other users reacting to 

actions of the elements 

▪ interactive properties of physical AND virtual elements 

Registration in 

3D 

Spatiality ▪ virtual elements placed inside the 3D real world appear as if 

they were really there 

▪ virtual elements appear more spatial than if shown on screen 

 

2.4 Interplay of the three characteristics 
 

The three characteristics of AR and their advantages for educational settings are not only interesting on 

their own, but also in their combination into one experience. Moving around a virtual AR object and 

looking at it from all perspectives, for example, concerns both interactivity and spatiality of AR. When 

the object stays in one place, it reacts to the user’s movement (interactivity), which is possible because 

the object is fixed to a point in 3D space (spatiality). The authenticity of an experience can also be 

influenced by all three characteristics. Authenticity can imply the placement of a virtual object in a 

relevant, authentic environment (contextuality). It can also refer to the authenticity of the object itself, 

including its 3D presentation (spatiality). Furthermore, authenticity may imply authentic interaction 

with the virtual object (interactivity). An authentic virtual object placed in a relevant, authentic 

real-world environment and with authentic interactive properties, may provide the most authentic 

experience for learners. 
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 This shows that the three characteristics cannot always be considered separately but can interact 

with each other. It is important to examine them through experimental research both separately and in 

interaction, to get an overarching picture of how AR can be used best in educational settings. In the 

following sections, we present two experimental studies that we executed concerning the use of AR in 

different educational settings: study 1 as an example of considering different characteristics 

(interactivity and spatiality) in an individual setting, study 2 as an approach of systematically varying 

one of the proposed characteristics (contextuality) in a collaborative setting. This way, two quite 

different ways of using the characteristics to structure and design empirical research are presented. 

 

 

3. Study 1: Interactivity and spatiality in an individual setting 
 

The first experimental study is based on research about learning with computer simulations. Using 

computer simulations paired with inquiry-based learning instructions like scientific discovery learning 

proved to be valuable in many ways for the learner to comprehend complex concepts in research 

contexts and practical applications (de Jong, 1991; de Jong & van Joolingen, 1998). AR applications for 

learning purposes can also be understood as (interactive) computer simulations or visualizations, but 

research about learning with AR applications rarely explored the fact that traditional and AR 

simulations share common concepts but differ in various aspects. It is unclear whether the learning 

benefits in working with AR applications found in these studies were due to the AR aspect of the 

application or because the learning material was a simulation or interactive visualization instead of 

traditional paper and text. The aim of this study was to compare a traditional (tablet-based) computer 

simulation with an AR version of the application with regards to their effects on conceptual knowledge, 

cognitive load, motivation, and spatial abilities of the learners. Although the study was not planned 

based on the three proposed characteristics, when comparing the AR and non-AR applications used, it 

shows that interactivity and spatiality differ between them. Concerning interactivity, it can be said that 

while in AR the users moved around the simulation and interacted with a real object (AR marker) to 

manipulate it, in the traditional simulation they used touch-based drag-and-drop on a tablet. Spatiality 

differed in the two applications in that virtual AR objects appear to be more spatial because the user has 

the reference of the real world, while this is not the case in a normal screen-based simulation. 

 

3.1 Method 
 

For this study, two almost identical computer simulations were developed and compared in an 

experimental laboratory setting: a normal computer simulation of a power plant on a tablet, and an AR 

simulation with AR markers and the tablet as a video-see-through display for AR elements. The two 

simulations differed regarding their interactivity and spatiality as described in the previous paragraph. 

During the experiment the participants (N = 56) followed a scientific discovery-based learning script 

with the goal of comprehending the underlying concept of power plants by building their own, changing 

the composition of the plant components, and first hypothesizing and then observing the outcome. The 

participants were randomly assigned to use either the traditional (nt = 28) or the AR simulation (nAR = 

28). It was hypothesized that after the interaction with the material, participants have equivalent 

conceptual knowledge and cognitive load during the learning process as well as improved spatial 

abilities and motivation when learning with the AR simulation compared to the traditional simulation. 

Based on this, three TOST equivalence tests and five t-tests were executed to analyze the data. 

 

3.2 Results 
 

The equivalence tests were all executed for the equivalence bounds Cohen’s d = +/-0.67, based on the 

smallest detectable effect with this sample size. The hypothesis that conceptual knowledge was 

equivalent in the two simulations could be supported (Mt = 12.79, SDt = 3.06; MAR = 12.64, SDAR = 2.84), 

90% CI for d [-0.40;0.49], lower bound, t(54) = 2.69, p = .005, upper bound, t(54) = -2.33, p = .012. An 

equivalence of intrinsic cognitive load in the simulations was also found (Mt = 4.88, SDt = 1.95; 

MAR = 5.02, SDAR = 1.98), 90% CI for d [-0.52;0.38], lower bound, t(54) = 2.25, p = .014, upper bound, 

t(54) = -2.76, p = .004. For extraneous cognitive load, equivalence in the simulations could not be 

concluded (Mt = 1.21, SDt = 1.35; MAR = 1.58, SDAR = 1.42), 90% CI for d [-0.72;0.18], lower bound, 
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t(54) = 1.50, p = .070, upper bound, t(54) = -3.52, p < .001. Based on three t-tests, no significant 

differences were found between the groups for these three variables. 

The hypothesis concerning the difference in the resulting spatial abilities was not supported, as 

no significant difference between the traditional (Mt = 7.96, SDt = 4.15) and the AR simulation 

(MAR = 9.07, SDAR = 5.00) was found, t(54) = -0.90, p = .371, d = -0.25. Contrary to expectations, 

motivation did also not differ between the two forms of simulation: intrinsic motivation (Mt = 5.51, 

SDt = 1.18; MAR = 5.78, SDAR = 0.94), t(54) = 0.94, p = .352, d = 0.26, identified regulation (Mt = 4.61, 

SDt = 1.30; MAR = 5.14, SDAR = 0.99), t(54) = -1.73, p = .089, d = -0.47, external regulation (Mt = 4.69, 

SDt = 0.98; MAR = 4.46, SDAR = 1.00), t(54) = 0.88, p = .382, d = 0.24, and amotivation (Mt = 2.58, 

SDt = 1.18; MAR = 2.19, SDAR = 1.18), t(54) = 1.25, p = .217, d = 0.34. 

 

3.3 Discussion 
 

The results of this study indicate that just transferring a desktop simulation into an AR simulation and 

thus manipulating interactivity and spatiality together might not be enough to be more beneficial for the 

learner regarding conceptual knowledge, motivation, cognitive load and spatial abilities. After using the 

application, the participants learning with the AR simulation had equal conceptual knowledge and 

intrinsic cognitive load and nearly equal extraneous cognitive load as the participants using the 

traditional simulation. The groups did not differ in motivational aspects and spatial abilities. Still, this 

experiment can serve as an initial study to find out more about how the three characteristics influence 

learning. In this study, both interactivity and spatiality were manipulated in the applications. To find out 

more about the specific benefits the two characteristics and their interaction have on learning processes 

and outcomes, more systematic studies are necessary in which interactivity and spatiality are varied 

separately. Furthermore, AR offers other possibilities than the ones varied in this study. A procedural 

simulation or visualization where the learner can use the application directly in the environment where 

the knowledge domain is registered (based on the characteristic of contextuality) might be more 

beneficial to the learner regarding learning outcomes and learning related variables. This also requires 

more research in the form of an experiment with systematically manipulated predictor variables. 

 

 

4. Study 2: Contextuality in a collaborative setting 
 

A further experimental study that was systematically planned and executed based on one of the three 

characteristics has focused on how to use the potential of AR’s contextuality in a collaborative setting. 

Due to contextuality, the user can perceive virtual information, other learners, and the environment 

simultaneously. This way, virtual information can be shown exactly at the right time and place. As 

suggested by Radu (2014), this characteristic can be connected to Mayer’s (2009) multimedia principles 

of spatial and temporal contiguity which state that information that belongs to each other should be 

presented at the same time and close to each other, preventing the splitting of attention and decreasing 

extraneous cognitive load. In computer-supported collaborative learning (CSCL), group awareness 

tools (GATs) can be used to support collaborative learning processes (Bodemer et al., 2018). As GATs 

provide contextual information about the social learning environment, it is crucial that they do not 

divert attention from germane learning activities. When group awareness (GA) information about other 

learners is visualized in face-to-face collaborative settings, this information is often printed out or 

shown on a screen, which means that the given information is separated from the context in which it is 

relevant (i.e., the collaboration with the other person) due to the medium that delivers it. This could 

especially be a problem in bigger groups of learners, because the correct GA information must still be 

connected to the right person. AR’s unique characteristic of contextuality provides the opportunity to 

show GA information directly next to the corresponding person. Similar to the work of Holstein, Hong, 

Tegene, McLaren, & Aleven (2018), where teachers were provided with real-time information about 

their students’ learning process through augmented reality glasses, this GA information could be 

presented directly over or next to the corresponding student. In this study, the systematic variation in the 

two conditions was thus based on contextuality so that in the AR condition the information and the 

context were integrated, while in the non-AR condition they were separated from each other. The aim of 

the study was to find out whether placing information about people directly next to them in comparison 

to placing it further away has an influence on cognitive load and retention of the information. 
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4.1 Method 
 

To compare the visualization of GA information next to people and further away from them, we used 

pictures instead of a real implementation in AR to investigate the characteristic of contextuality in a 

controlled laboratory setting. In the study, the participants (N = 38) worked on tasks in which they had 

to form study groups of the people shown to them in pictures based on the GA information given about 

them. The participants were randomly assigned to one of two conditions: GA information visualized 

directly next to the corresponding person in the picture (AR mockup; nAR = 18) or GA information 

shown separately below the pictures (nnonAR = 20). In the different tasks given to the participants, the 

number of people shown to them was varied between two and ten people to see if an effect of the 

proximity of the information differs with a differing number of people. The two independent variables 

were thus the proximity of the information to the people (between-subject) and the number of people 

displayed (within-subject). It was hypothesized that these two factors and their interaction influence the 

cognitive load of the participants as measured continuously through a secondary reaction task and the 

efficiency in executing the task as measured by their time spent on the task. Furthermore, it was 

expected that the proximity of the information influences the participants’ self-reported extraneous 

cognitive load and their recall of the GA information. Two mixed-design ANOVAs and two 

independent samples t-tests were used to analyze the data based on these hypotheses. 

 

4.2 Results 
 

The hypothesis that the proximity of the information has an influence on the continuously measured 

cognitive load could be supported with a significantly slower reaction time (ms) in the group where 

picture and information were shown further apart (MnonAR = 2197.83, SDnonAR = 1863.29; MAR = 1153.49, 

SDAR = 744.64), F(1,36) = 4.93, p = .033, ηp
2 = 0.12. The same pattern was found for the time spent on 

the task, where the group with the separate information presentation needed more time (s) to solve the 

tasks than the group with the integrated visualization (MnonAR = 62.86, SDnonAR = 19.76; MAR = 50.93, 

SDAR = 11.11) , F(1,36) = 5.11, p = .030, ηp
2 = 0.12. Concerning the within-subject factor (number of 

people), it can be said that even though more people shown generally meant both a longer time spent on 

the task, F(1.24, 44.44) = 21.11, p < .001, ηp
2 = 0.37, and a longer reaction time in the secondary task, 

F(2.531, 91.13) = 4.933, p = .005, ηp
2 = 0.12, this pattern was not found for all pairwise comparisons. 

No significant interaction effect was found for reaction time, F(2.53, 91.13) = 1,47, p = .233, ηp
2 = 0.04, 

or time spent on the task, F(1.24, 44.44) = 1.25, p = .279, ηp
2 = 0.03. 

Concerning the variables that were not measured for every single task, no significant difference 

was found in either self-reported extraneous cognitive load (MAR = 4.07, SDAR = 1.68; MnonAR = 4.25, 

SDnonAR = 1.67), t(36) = -0.32, p = .748, d = -0.11, or recall of the GA information between the two 

groups (MAR = 2.39, SDAR = 1.29; MnonAR = 2.20, SDnonAR = 1.11), t(36) = 0.49, p = .630, d = 0.16. 

 

4.3 Discussion 
 

In this study, in which contextuality was varied systematically, significant differences between the two 

groups concerning the reaction time in a secondary task and the time on task were found. The 

participants in the AR mockup group needed less time for solving the tasks and reacted faster on the 

secondary task, which shows that they were more efficient and less cognitively occupied in their task of 

forming study groups based on the information about the people. However, these results could not be 

supported by the results in the self-reported cognitive load and recall of the information, which did not 

differ between the groups. A confounding variable that might have led to the differences in the timings 

between the groups was that the participants from the non-AR group had to scroll down on the pages 

with the tasks, while the others did not. In a future study, this factor must be held stable between the 

groups. Also, other objective measures for cognitive load, which should not be influenced by scrolling 

(e.g., eye-tracking metrics), might be used to compare the two forms of visualization in a future study. A 

factor that may have led to less differences between the groups is that the tasks could be solved without 

even looking at the pictures of the people. This way, the participants might not even have made the 

connection between the people and the information. Split attention only happens when one part of the 
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material is not understandable without the other (Ayres & Sweller, 2014). This was not the case here 

and an adapted study design should be considered for future studies. 

 

 

5. Conclusion 
 

In this paper, three characteristics of AR are reframed from a user’s perspective and discussed in 

relation to their potential for supporting individual and collaborative learning. It is proposed that these 

three characteristics can be used as a basis for researching AR in educational settings and two studies 

which have been executed with the three characteristics in mind are presented. 

The two studies differed considerably in their usage of the characteristics. In study 1, the 

experimental manipulation can be classified into two of the characteristics, namely interactivity and 

spatiality. Concerning this study, we conclude that to get a more complete picture, follow-up studies are 

necessary in which the two characteristics are varied separately and systematically. This way, their 

influence on learning processes and outcomes can be determined. In study 2, a systematic experimental 

variation based on the characteristic of contextuality took place and positive effects on efficiency and 

cognitive load could be found. Due to confounding variables, the results of the study should be 

interpreted with caution. Follow-up studies that control for these factors are needed to confirm the 

results concerning the increased efficiency and decreased cognitive load in the setting. 

 While contextuality, interactivity, and spatiality all seem to be important for using AR in 

educational settings, more systematic empirical research concerning their potentials, their impact and 

their interplay is necessary. Based on the two presented studies, which initialized the research on AR in 

education at our lab, more empirical studies with systematic variations based on the three characteristics 

are currently conducted and planned, such as two experimental studies that intend to systematically 

disentangle the characteristics of interactivity and spatiality. 

AR-supported learning experiences have the potential to be applied in different settings and 

with various goals, which can also be seen in the differences between the two presented studies. Thus, 

systematic AR-related research findings can enrich the design of formal and informal educational 

environments for individual and social learning of diverse students. In order to provide a structuring 

basis for this heterogeneous research field, the three characteristics contextuality, interactivity, and 

spatiality are proposed to serve as common denominators for the users’ experience of AR in a wide 

range of learning settings. 
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Abstract—In this paper, a study with the focus on interactivity 
in augmented reality (AR) applications concerning the influence of 
different forms of interaction with AR learning material is 
presented. While research on multimedia learning often 
distinguishes between mental and physical interaction with 
learning material, other research fields state that physical 
interaction is necessary to interact mentally. To look at how this 
distinction may play a role in AR-based learning material, an 
experimental study with a 2x2 design manipulating mental and 
physical interaction was conducted, including learning material on 
the topic of power plants. The data (N = 128) were collected and 
analyzed, showing that, although not expected, learning was better 
in groups in which either more physical or more mental interaction 
was applied, but not in groups in which both were high. The results 
are discussed under the potential idea of cognitive overload. 

Index Terms—augmented reality, multimedia learning, 
interactivity, interactive learning, technology-enhanced learning 

I. INTRODUCTION 

Augmented reality (AR) is a form of visualizing information 
in which real and virtual elements are combined. Through this 
combination, a lot of new possibilities arise for the design of 
educational material, so that there are many variables to consider 
when using AR to support education. Most research on AR 
applications includes the comparison of an AR setting with a 
traditional learning setting. This way, it is difficult to deduce 
why exactly an AR setting may lead to increased knowledge, 
because it is not clear whether observed differences are elicited, 
for example, by differences in dynamicity, interactivity or 
dimensionality  of the media of presentation or even differences 
in the information which is made available through the different 
media [1]. To structure AR from a human-centered perspective, 
and to initiate more systematic research and design activities 
regarding educational AR applications, the consideration of 
three characteristics has been suggested: contextuality (c), 
interactivity (i) and spatiality (s; ARcis characteristics) [2]. 
While the focus of contextuality is on the real environment in 
which the learners are located and its (thematic) relationship to 
the perceived virtual elements, interactivity focusses mainly on 
the interaction of the learners with both real elements (including 
the ones anchoring virtual elements to the real world) and virtual 
elements. Spatiality especially considers the spatial properties of 
the virtual elements and their spatial connections to the real 
environment. In the following sections, a short overview over 
the three characteristics and examples of their role in typical AR 
learning applications are given, with a focus on interactivity. 
Afterwards, an experimental study concerning interaction with 

AR learning material is described and its results are presented 
and discussed. 

II. THREE AR CHARACTERISTICS 

Of the three characteristics discussed in [2], contextuality 
focusses on the real-world environment that is the basis for the 
AR experience and its relation to the virtual elements. While the 
real-world context can be relevant for the virtual elements or the 
learning material in general, it may also have no thematic 
relevance and only be there as a space in which the virtual 
elements are viewed [2]. For example, context plays an 
important role when cultural heritage sites are augmented with 
educational information. Learners can be immersed in the real 
environment at a historical site and still receive additional 
information that helps them understand historic events. In this 
sense, [3] present an application in which the Bergen-Belsen 
memorial site is augmented with virtual content. Learners can be 
at the real-world place and view a virtual reconstruction of the 
buildings of 1945. The meaning of the virtual information in the 
AR application would not be the same if used somewhere else, 
showing the thematic relevance of the real-world context for the 
virtual elements. 

Spatiality focusses on the virtual elements that are placed 
inside the real world through AR. The virtual elements have 
spatial properties and can be two- or three-dimensional (e.g., a 
picture or a model of an object). Also, the virtual elements are 
linked to a point in the 3D real world, for example through an 
AR marker or object surface recognition [2]. When spatial object 
knowledge should be acquired the spatial properties of the 
virtual elements in AR are important. This is, for example, the 
case during learning about human anatomy. [4] present an 
application in which learners can view a 3D model of a human 
skeleton. This way, spatial relations between bones can be seen, 
so that viewing the same object in only two dimensions would 
not offer the same amount of information. 

Interactivity, the characteristic in focus in the present paper, 
focusses on the learners and their connection to the information. 
AR can provide learners with the opportunity to interact with 
virtual elements, the real world, and real-world anchors of 
virtual elements (e.g., AR markers) [2]. This interaction can be 
more or less elaborate. Less elaborate interaction can mean that 
learners are just able to walk around an object, which is the case 
in most AR applications in which the virtual element is linked to 
a specific point in the 3D real world. Already this basic form of 
interaction may lead to enhanced learning by enabling the 
learner to view an object from different perspectives [5]. But AR 
also has the potential for more elaborate interaction with 
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learning material, which motivates the present paper and study. 
In the following section, information on interactivity in learning 
contexts and specifically in AR-based settings is provided. 

III. INTERACTIVITY IN LEARNING CONTEXTS 

A. Interactive Learning 

In multimedia learning, interactivity is an important topic, 
although it is defined in many different ways [6]. Moreno and 
Mayer [7] define interactive multimodal learning environments 
as environments in which actions of learners induce events. They 
state that it is important to design the interaction in a way that it 
does not overload the learners’ cognitive capacities in order to 
induce learning. In research on multimedia-based learning, it is 
often stated that mental engagement or interaction with learning 
material leads to better and deeper information processing and 
learning than physical interaction [8]. Physical interaction with 
learning material may even obstruct learning processes through 
the induction of cognitive processes not relevant for learning. In 
[9], for example, learning with a learner-generated graphic 
organizer and learning with a graphic organizer that was given 
to the learners were compared. The results showed that the 
learners who were provided with graphic organizers they had not 
made themselves, scored higher on a transfer test. The authors 
explain this result on the grounds of cognitive load theory, 
stating that the extraneous processing required when generating 
the graphic organizers comes at the cost of generative processing 
and thus deeper learning. In cognitive load theory, three types of 
cognitive load are differentiated: intrinsic, extraneous and 
germane cognitive load [10]. While intrinsic cognitive load 
(ICL) focusses on the intrinsic difficulty of the learning task, 
extraneous cognitive load (ECL) depends on the design of the 
instructional material and has nothing to do with the actual 
learning task. Germane cognitive load (GCL) is defined as the 
load that has to do with activities leading to learning. While ECL 
should be decreased, germane cognitive load should be 
increased within the limits of working memory. 

In a different approach towards interaction with learning 
material, embodied cognition theory states that cognitive 
processes are rooted within the interaction of the body with the 
physical world, so that learning is supported by physical 
interaction with learning material [11]. The theory thus implies 
that the “body plays a central role in shaping the mind” [12, p. 
970], although more theory and empirical research is still needed 
in this area. In the ICAP-Framework by Chi and Wiley [13] it is 
also postulated that overt physical behavior is an indicator for 
engagement with learning material. The authors say that the 
most learning takes place when learners are more engaged with 
learning material (e.g., constructing, interacting). 

Based on the described theories and frameworks, physical 
interaction with learning material might either hinder or 
explicitly support learning processes. The different views can be 
brought together in their agreement that physical interaction with 
learning material must induce germane cognitive processes and 
not just extraneous load to support learning processes. As AR 
offers new ways of interacting with physical objects to 
manipulate virtual objects, it is important to find out when the 
exploitation of this possibility leads to the desired learning. 

B. Interaction in AR 

In AR, the visualized information can be based in multiple 
media, representing a specific case of multimedia-based 
learning. Systematic research concerning physical and mental 
interaction has been executed with traditional multimedia 
learning material (e.g., [9], [14], see also [6], [7]), but not as 
systematically with AR multimedia learning material. 
Interacting with AR can differ from interacting with other 
multimedia learning material through the unique combination of 
virtual elements and the real world, as it enables interaction with 
the learning material on different levels. With AR-based 
learning material, quite elaborate interaction is possible through 
the combination of interactive properties of reality and virtuality 
[2]. On the real level, learners can interact with the real-world 
environment by moving around freely or moving real-world 
elements just as they would in non-augmented reality. On the 
virtual level, learners can interact with virtual elements through 
the devices they use for the visualization of the elements (e.g., 
through a controller or touch-based interaction with a tablet). A 
third level of interaction that needs to be considered in AR is the 
link between the real and the virtual level. Through this 
connection, manipulation of elements on the real level can lead 
to interaction with elements on the virtual level. In practice, this 
connection can be maintained through the use of AR markers. 

AR markers are real-world anchors for virtual elements in 
AR. Those markers can, for example, be 2D photos or drawings, 
but also 3D objects. Markers can be made specifically for the 
purpose of linking the real to the virtual (e.g., marker cubes as 
the ones used in [15]), but they can also be already existing 
pictures or objects that have been repurposed for this goal (e.g., 
the wooden statue in [16]). In a quite elaborate way of interacting 
with AR learning material in [1], a physical model of an audio 
speaker is connected to 3D visualizations of invisible 
phenomena like electric current, magnetic fields and 
soundwaves. The virtual visualizations react to manipulations of 
the physical model in real time, so that learners should be able 
to easily link their actions to normally invisible physical 
phenomena. Because so many different forms of interaction with 
AR learning material are possible, it is important to investigate 
them more closely in systematic research. 

In the present experimental study, physical interaction with 
the AR learning material mainly takes place as a manipulation 
of virtual elements through an interaction with real-world 
objects, thus using a tangible interface metaphor [17]. Here, 
learners can move around AR paper markers that show different 
components of a power plant when scanned with a tablet 
application. This way, moving the physical, real object (paper 
marker) leads to movement of the virtual object (power plant 
component) connected to it. Furthermore, when combining the 
paper markers and thus power plant components in the right 
pattern, a working power plant with animations and connections 
between the components is shown. The learners can then retrieve 
information on how much electricity the built power plant is 
generating and how efficient it is, so that real-time feedback 
based on the position of the physical markers is given via the 
virtual channel both by animations and information display. 
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C. Research Question and Hypotheses 

The goal of the experimental study is to take a closer look at 
how learners learn with AR-based learning material that differs 
in its interactive possibilities and demand. This was 
accomplished by providing learners with different material 
(physical interaction: high vs. low) and different task 
information (mental interaction: high vs. low) during a learning 
task. As not a lot of research including systematically varied 
interaction within AR learning material has been executed, the 
research question that should be answered in the present paper 
asks how mental and physical interaction with AR learning 
material have an influence on learning processes and outcomes. 

Based on the literature, a first set of hypotheses on the 
influence of the type of interaction on learning outcomes was 
formulated. It was hypothesized that, by eliciting germane 
cognitive processes, both high mental interaction (Hyp. 1a) and 
high physical interaction (Hyp. 1b) would lead to more 
knowledge compared to respectively low mental and low 
physical interaction. Based on the idea that physical interaction 
could also hinder learning by inducing extraneous cognitive 
processes, it was further hypothesized that the positive effect of 
higher mental interaction on knowledge would be bigger than 
the positive effect of higher physical interaction (Hyp. 1c). 

In a second set of hypotheses, the influence of the type of 
interaction on the above-mentioned two types of cognitive load 
was focused. Analogous to the first set of hypotheses, it was 
hypothesized that both high mental interaction (Hyp. 2a) and 
high physical interaction (Hyp. 2b) would lead to higher GCL 
compared to respectively low mental and low physical 
interaction. It was furthermore suggested that the positive effect 
of higher mental interaction on GCL would be bigger than the 
positive effect of higher physical interaction (Hyp. 2c), due to 
potentially more elaborate elicitation of germane cognitive 
processes. Also analogous to the first set of hypotheses, it was 
hypothesized that high physical interaction would lead to higher 
ECL than low physical interaction (Hyp. 2d), due to a potential 
elicitation of extraneous cognitive processes. 

In addition to these hypotheses, the influence of mental and 
physical interaction on different types of task load will be 
examined in an explorative way. Furthermore, correlations 
between the mentioned variables knowledge, cognitive load 
types and task load will be explored. Although data on more 
outcome variables were collected during the study, this paper 
will only focus on the ones mentioned here. 

IV. METHOD 

A. Participants 

In total, 136 people took part in the study. Four participants 
were filtered out due to technical errors in the first trials, after 
which the AR application was changed a little. Two participants 
were filtered out because their proficiency of the German 
language was not elaborate enough for the learning material. 
Two other participants were filtered out because their study 
courses were too closely related to the learning topic. The final 
sample consists of 128 people (39 males, 89 females) who were 
between 18 and 40 years old (M = 22.55, SD = 3.90). Most of 
them (96.09 %) were enrolled in study programs not related to 
the learning topic. The other participants were either employed, 

pre-university students or unemployed. As the participants used 
an AR application to learn in the study, they were asked about 
their experience with using general mobile applications, learning 
applications, general AR applications and AR learning 
applications on tablets or smartphones. On a scale from “never” 
(1) to “regularly” (5), the participants answered how often they 
had used those kinds of applications in the past. While they had 
on average used general mobile applications quite regularly 
(M = 4.70, SD = 0.61), they had not used learning applications 
that often (M = 2.48, SD = 1.07). Their experience with AR 
applications was even lower, with very rare use of general AR 
applications (M = 1.58, SD = 0.84) and nearly any experience in 
using AR learning applications (M = 1.09, SD = 0.31). This 
shows that although the participants had a lot of experience in 
general with using a technological device like the one used in the 
study and some experience with using learning applications, 
they hardly had any experience in using AR applications. For 
most of the participants, the use of an AR application (58.59 %) 
and specifically the use of an AR learning application (92.19 %) 
in the study was their first use ever. No significant differences 
on the different forms of experience with mobile technologies 
between the groups were found in the data. The participants 
received either course credit or money for their participation in 
the study. The study was assessed and approved by the ethics 
committee of the University of Duisburg-Essen. 

B. Design 

In the study, a 2x2 between-subject design was administered. 
One factor was the physical interaction, which could be either 
low (p–) or high (p+). The other factor was the mental 
interaction, which could also be either low (m–) or high (m+). 
The participants were distributed randomly into one of the four 
groups (p–/m–, p–/m+, p+/m–, p+/m+). 

C. Materials and Apparatus 

During the study, the participants used an application on an 
android tablet (HUAWEI MediaPad M5; 10.8-inch display, 
2560 x 1600 pixels). The application was programmed in the 
Vuforia plugin in Unity 3D and installed on the tablet through 
an APK-file. With the application, printed paper markers can be 
scanned to view different components of a combined cycle 
power plant. Those components can be adjoined, whereupon 
animations are added in accordance with their functions. When 
a correctly built, working power plant is scanned completely, its 
electricity output and efficiency are shown in the right top corner 
on the tablet screen (see Fig. 1 for a screenshot). 

To control for potential differences between the four groups 
concerning pre-study knowledge about and interest in the topic, 
a questionnaire about ability beliefs, expectancy concerning task 
execution and perceived usefulness, and importance and interest 
concerning the topic of power plants was administered. For this, 
a translated version of the questionnaire used to measure ability 
beliefs (3 items), expectancies for success (2 items) and values 
(6 items) in [18], adapted to the topic of power plants, was used. 
The items could be rated on a scale from 1 (low) to 5 (high). 

The learning material consisted of two preparatory texts, one 
about energy and energy transformation in general and one about 
the different components of a power plant and their functions. 
These texts were presented to the participants before the learning 
task in order to align their pre-knowledge and provide them with 
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some basic information that was necessary for the task 
execution. After the participants read the texts and before 
starting with the task, a pre-knowledge test with 8 questions was 
administered in order to see if the knowledge alignment had 
worked. In the learning task itself, the participants were provided 
with seven hypotheses about the electricity output and efficiency 
of differently composed power plants, which they could test with 
help of the paper markers and the AR tablet application. In order 
to test the hypotheses, the participants needed to compare 
different power plant compositions concerning their energy 
output and efficiency. Possible variations were different types of 
power plants (gas, steam or combined) and changes in both the 
size of the generator and the amount of natural gas input on three 
levels (small, middle, big). The participants answered a 
knowledge test with 24 questions at the end of the study. Both 
the pre-knowledge test and the knowledge test were composed 
for the present study based on the learning material. The 
knowledge test consisted of four parts. In part one, there were 
7 questions that were not directly connected to the learning task 
and could be answered completely based on the preparatory texts 
the participants read before. In part two, 5 questions about the 
different components of the power plants were asked. The 
components were all described in the second preparatory text, 
but knowledge about them may have also been supported 
through the learning task. In part three, there were 5 questions 
about efficiency and energy output of the power plants, which 
could only be answered based on the learning task. Finally, in 
part four, 7 questions were asked that went further than the texts 
and the task, so that knowledge transfer was necessary. These 
can be split into 3 near transfer questions, which still had 
something to do with the hypotheses tested in the learning task 
but were not directly answerable based on it, and 4 far transfer 
questions, which went even further beyond that. As the 
manipulation between the conditions happened during the 
learning task, part one of the knowledge test, which did not focus 
on information provided in the task, was excluded from the 
analysis concerning knowledge differences between the groups. 

To measure the participants’ load during task execution, two 
different questionnaires were used. A cognitive load 
questionnaire [19] with scales concerning ECL (3 items) and 
GCL (2 items) based on cognitive load theory was answered on 
a scale from 1 (low) to 7 (high). Furthermore, the participants 
answered the NASA TLX [20] in a version translated to German, 
to measure their task load on six one-item scales (mental 
demand, physical demand, temporal demand, performance, 
effort, frustration) between 1 (low) and 21 (high), with an 
opposite scale for performance (1: high, 21: low). 

D. Procedure 

At the start of the study, the participants were welcomed and 
received an explanation of procedure and content of the study. 
They signed an informed consent form after all their questions 
were answered. In a questionnaire that was started on a computer 
screen, the participants subjectively rated their ability beliefs, 
expectancies for success and subjective task values concerning 
the topic and task on combined gas-steam power plants. 

Following this, the learning phase of the study started. First, 
the participants read two texts with information about power 
plants, the first about energy transformation in general and the 
second about components of power plants and their functions. 
After that, they answered 8 questions in a pre-knowledge test. 
Then the learning task started. On the computer screen, the 
participants were provided with hypotheses about gas-, steam- 
and combined cycle power plants, which they tested on their 
correctness. This was done with the help of AR learning material 
on a table next to the computer. When the participants scanned 
paper markers representing different components of power 
plants with a tablet, virtual models of those components 
appeared upon the markers on the tablet screen. From the 
individual markers, marker clusters with all necessary 
components representing the whole power plants could be build 
and scanned to find out about their electricity output and 
efficiency (pictures in Fig. 1). The difference between the four 
conditions lay in both the physical interaction (low vs. high) and 
the mental interaction (low vs. high) with the learning material. 
The physical interaction the participants had with the AR 
learning material was manipulated through the markers. In the 
conditions with low physical interaction (p–), the participants 
received AR markers of power plant components already built 
into complete power plants. In the high physical interaction 
conditions (p+), those component markers were not built 
together, so that the participants needed to be more physically 
active in order to answer the hypotheses in the learning task. In 
Fig. 2, a visualization of the physical interaction conditions in 
comparison is shown. The mental interaction the participants 
had with the learning material was manipulated through the 
instructions given in the learning task. In the conditions with low 
mental interaction (m–), the participants received instructions in 
which they were given information on which kinds of power 
plants to compare in order to answer the hypotheses. In the high 
mental interaction conditions (m+), they did not receive that kind 
of information so that they needed to be more mentally active in 
order to answer the hypotheses. In Fig. 3, a visualization of the 
mental interaction conditions in comparison is shown. In 
Table I, more detailed descriptions of the four conditions can be 
found. 

 

 
Fig. 1. Photo of a marker cluster and a screenshot from the application 

scanning that same marker cluster. 
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In the last part of the study, the participants answered the 
remaining questionnaires concerning their cognitive load and 
task load and answered a knowledge test about the learned 
topics. They also filled in a questionnaire about their 
demographic data at the end of the study. After that, they were 
asked if they had any questions concerning the design of the 
study and received their compensation. 

V. RESULTS 

A. Belief, Expectancy and Value 

To make sure that the groups did not differ concerning their 
pre-study knowledge about and interest in the topic, the groups’ 
subjective rating of their knowledge on the topic, their 
expectancy on how well they would solve the tasks and their 
perceived usefulness, importance and interest concerning 
knowledge on power plants were compared. A scale of 1 (low) 
to 5 (high) was administered. Means and standard deviations 
split by group can be found in Table II. In pairwise comparisons, 
no significant differences between the groups on their subjective 
pre-knowledge and their task performance expectancy were 
found. However, two groups (p–/m– and p+/m–) differed quite 
substantially in their perceived value of the topic, 
t(61.93) = 2.51, p = 0.015, d = 0.63. 

B. Pre-Knowledge 

To test if the groups’ pre-knowledge basis after reading the 
preparatory texts was the same, pairwise comparisons of the 
groups concerning their pre-knowledge test score were 
executed. The participants could receive a maximum of eight 
points in the test. Means and standard deviations split by group 
can be found in Table III. No significant differences were found 
between the groups, so that it can be assumed that they did not 
differ in their pre-knowledge after reading the preparatory texts. 

C. Knowledge 

In order to test hypotheses 1a-1c on the influence of the types 
of interaction on knowledge, a factorial 2x2 ANOVA was 
administered with physical and mental interaction as factors and 
knowledge test score as outcome variable. The 17 questions of 
part two, three and four of the knowledge test were used, because 
those were the questions for which the task execution was 
relevant while part one could be answered on the basis of the 
preparatory texts. The means and standard deviations of the 

TABLE II.      MEANS AND SDS OF BELIEF, EXPECTANCY AND VALUE 

Mean and 
SD per 
Group 

Group 

p–/m– p+/m– p–/m+ p+/m+ 

Belief 1.17 (0.29) 1.26 (0.40) 1.19 (0.32) 1.22 (0.29) 

Expectancy 2.27 (0.58) 2.44 (0.55) 2.44 (0.59) 2.33 (0.69) 

Value 1.84 (0.59) 2.21 (0.61) 1.94 (0.50) 2.12 (0.65) 
 

TABLE III.      MEANS AND SDS OF PRE-KNOWLEDGE TEST SCORE 

Mean (SD) Knowledge 
Test Score per Group 

Physical Interaction 

Low (p–) High (p+) 

Mental 
interaction 

Low (m–) 5.16 (1.63) 5.28 (1.46) 

High (m+) 5.28 (1.51) 4.88 (1.64) 

 

 
Fig. 2. Comparison of the low and high physical interaction conditions. 

 
Fig. 3. Comparison of the low and high mental interaction conditions. 

TABLE I.      DESCRIPTIONS OF THE FOUR CONDITIONS IN THE STUDY 

 Physical Interaction 

p+ p– 

M
en

ta
l I

nt
er

ac
ti

on
 

m+ 

The learners are provided 
with individual markers for 
the different components of 
the power plants (e.g., 
generator, gas turbine). They 
are only provided with the 
hypotheses about the power 
plants they should answer 
and choose the markers and 
build the power plants that 
they need to test it 
themselves. 

The learners are provided 
with clusters of markers that 
are already combined into 
power plants (e.g., gas-fired 
power plant with a small 
generator and a small natural 
gas input). They are only 
provided with the hypotheses 
about the power plants they 
should answer and choose 
the power plants that they 
need to test it themselves. 

m– 

The learners are provided 
with individual markers for 
the different components of 
the power plants (e.g., 
generator, gas turbine). They 
are provided with the 
hypotheses about the power 
plants they should answer 
and descriptions of the power 
plants (+ pictures of their 
marker clusters) that they 
need to test them, so that they 
only need to build the 
necessary marker clusters. 

The learners are provided 
with clusters of markers that 
are already combined into 
power plants (e.g., gas-fired 
power plant with a small 
generator and a small natural 
gas input). They are provided 
with the hypotheses about the 
power plants they should 
answer and descriptions of 
the power plants (+ pictures 
of their marker clusters) that 
they need to test them, so that 
they only need to find the 
necessary marker clusters. 
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knowledge test scores can be found in TABLE IV. Group p+/m– 
has the highest average knowledge test score, followed in this 
order by group p–/m+, group p–/m– and group p+/m+. As tested 
by Levene’s test, the groups’ variances in knowledge test score 
were found to be homogeneous [F(3,124) = 0.67, p = 0.575] so 
that the ANOVA could be used to test the hypothesis. No 
significant main effect for mental interaction was found 
[F(1,124) = 0.67, p = 0.416, ωp

2 = 0.003], showing that the data 
did not support hypothesis 1a that mental interaction has an 
influence on knowledge. Also, no significant main effect for 
physical interaction was found, [F(1,124) = 0.01, p = 0.933, 
ωp

2 = 0.008], showing that the data did also not support 
hypothesis 1b that physical interaction has an influence on 
knowledge. Table IV shows an interaction effect between the 
two types of interaction, which was found to be statistically 
significant with a medium effect size, F(1,124) = 8.72, 
p = 0.004, ωp

2 = 0.057. The found interaction does not support 
hypothesis 1c that the influence of mental interaction on 
knowledge is bigger than the influence of physical interaction. It 
shows that knowledge is higher in the groups in which either 
physical or mental interaction is high than in the groups in which 
both mental and physical interaction are either high or low. 

D. Cognitive Load 

To test the second set of hypotheses on the influence of the 
types of interaction on the two types of cognitive load, different 
analyses were administered. To test hypothesis 2a-2c that GCL 
is influenced by both physical and mental interaction, although 
with a higher influence through mental interaction, a factorial 
2x2 ANOVA was administered with physical and mental 
interaction as factors and GCL as outcome variable. In the data 
it was found that group p+/m+ has the highest GCL (M = 4.48, 
SD = 1.64), followed by group p–/m– (M = 4.38, SD = 1.58) and 
group p+/m– (M = 4.38, SD = 1.52) with the same mean score, 
and group p–/m+ (M = 4.16, SD = 1.59) with the lowest score. 
As tested by Levene’s test, the groups’ variances in GCL were 
found to be homogeneous [F(3,124) = 0.34, p = 0.795], so that 

the ANOVA could be used to test the hypothesis. No significant 
main effect for either physical [F(1,124) = 0.04, p = 0.846, 
ωp

2 = 0.008 ] or mental interaction [F(1,124) = 0.34, p = 0.559, 
ωp

2 = 0.003] was found. Also, no interaction effect was found, 
F(1,124) = 0.34, p = 0.559, ωp

2 = 0.008. Hypotheses 2a-2c could 
thus not be supported by the data. 

To test hypothesis 2d concerning the influence of physical 
interaction on ECL, an independent samples t-test with physical 
interaction as grouping variable and ECL as outcome variable 
was administered. As expected, the p+ groups stated a slightly 
higher ECL (M = 3.42, SD = 1.32) than the p– groups (M = 3.29, 
SD = 1.28). As tested by Levene’s test, the groups’ variances in 
ECL were found to be homogeneous [F(1,126) = 0.13, 
p = 0.722] so that the t-test could be used to test the hypothesis. 
No significant difference between the groups was found, 
t(126) = -0.57, p = 0.572, d = -0.10. Hypothesis 2d could thus 
not be supported by the data. 

E. Task Load 

To explore effects of mental and physical interaction with 
AR learning material on different kinds of task load, factorial 
2x2 ANOVAs with physical and mental interaction as factors 
and the different kinds of task load measured with the NASA 
TLX were calculated. The means and standard deviations of the 
different subscales per group can be found in Table V. For all of 
the subscales and the total score, the groups p–/m– and p+/m+ 
have the two highest mean scores, while the p+/m– and p–/m+ 
groups have the two lowest scores. As tested by Levene’s test, 
the groups’ variances were found to be homogeneous for all 
variables, so that the ANOVAs could be used to test the 
hypotheses. No significant main or interaction effects were 
found. Table VI shows the results of the ANOVAs. 

TABLE IV.      MEANS AND SDS OF KNOWLEDGE TEST SCORE 

Mean (SD) Knowledge 
Test Score per Group 

Physical Interaction 

Low (p-) High (p+) 

Mental 
Interaction 

Low (m–) 7.66 (2.87) 9.34 (3.32) 

High (m+) 8.84 (2.83) 7.24 2.87) 

 

 
Fig. 4. Interaction effect of mental and physical interaction on knowledge 

TABLE V.      MEANS AND SDS OF NASA TLX SCALES 

Mean and 
SD per 
Groupa 

Group 

p-/m– p+/m– p-/m+ p+/m+ 

Men. Dem. 11.22 (4.76) 10.75 (5.65) 11.06 (5.00) 12.75 (4.47) 

Phys. Dem. 11.78 (5.79) 11.44 (6.49) 11.38 (5.66) 13.34 (5.45) 

Temp. Dem. 8.28 (4.93) 8.03 (4.68) 7.94 (5.79) 9.53 (4.89) 

Performance 12.38 (5.72) 9.69 (5.87) 11.38 (6.62) 12.16 (5.94) 

Effort 12.13 (4.48) 11.13 (5.42) 11.38 (4.90) 12.09 (4.60) 

Frustration 12.09 (5.43) 11.19 (5.76) 11.84 (5.84) 12.13 (5.60) 

Total 11.31 (3.06) 10.37 (3.73) 10.83 (3.69) 12.00 (2.89) 
a. Highest mean per subscale in bold, lowest mean per subscale in italic.

 
TABLE VI.      RESULTS OF ANOVAS CONCERNING NASA TLX 

Mean and SD 
per Group 

Ment. Int. Phys. Int. Ment. * Phys. 

F p F p F p 

Men. Dem. 1.09 0.298 0.48 0.491 1.49 0.224 

Phys. Dem. 0.52 0.470 0.62 0.434 1.25 0.266 

Temp. Dem. 0.41 0.524 0.55 0.459 1.04 0.310 

Performance 0.47 0.494 0.79 0.374 2.63 0.107 

Effort 0.02 0.899 0.03 0.870 1.00 0.320 

Frustration 0.12 0.732 0.10 0.755 0.35 0.554 

Total 0.93 0.337 0.04 0.847 3.17 0.078 
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F. Exploratory Correlations 

To find out more about the relationships between the 
different variables that were the focus of this study, correlations 
between all the variables were calculated and the p-values were 
corrected with help of the Holm method. A moderate, positive 
correlation was found between GCL and mental demand 
[r(126) = 0.34, p < 0.01] and GCL and effort [r(126) = 0.36, 
p < 0.01], which shows that a higher experienced GCL during 
learning task execution came with a higher experienced mental 
demand and effort. Furthermore, ECL was correlated 
moderately and positively with frustration [r(126) = 0.37, 
p < 0.01], showing that the higher the experienced ECL during 
the learning task execution, the higher the experienced 
frustration. Also, a negative, moderate correlation was found 
between mental demand and knowledge test score 
[r(126) = -0.37, p < 0.01], which shows that when the mental 
demand during task execution was experienced as higher, the 
participants scored lower on the knowledge test. These 
correlations show at least some interesting associations that will 
be discussed in the light of the other results. 

VI. DISCUSSION 

The goal of the study presented in this paper was to find out 
more about the potential influence of different forms of 
interaction with AR learning material on learning processes and 
outcomes. For this, participants received AR learning material 
which required either low or high physical interaction and 
instructions which required either low or high mental 
interaction. Unfortunately, none of the hypotheses could be 
supported. In the first set of hypotheses, the focus was on 
learning outcomes. It was hypothesized that both high mental 
and high physical interaction lead to increased knowledge, 
although with a higher increase through mental interaction. This 
pattern could not be found in the data. Instead, it was found that 
knowledge was high when either mental or physical interaction 
was high (p+/m– and p–/m+), but not when both were high 
(p+/m+), or both were low (p–/m–). The expectations were met 
partly, because it was hypothesized that both forms of interaction 
would increase learning, and it was found that when both types 
of interaction were low, the resulting knowledge was also lower. 
However, the second part of our findings, that the resulting 
knowledge was lower when both types of interaction were high, 
was not expected. A possible explanation for this pattern is that 
the combination of mental and physical interaction with AR 
learning material led to cognitive overload so that learning was 
hindered. In the exploratory analyses concerning the 
participants’ task load, it was found that participants in the 
groups p+/m+ and p–/m– had the two highest loads of the four 
groups on all scales. Those effects were not found to be 
significant, so that they should be interpreted with care, but they 
point in the direction that some kind of overload may have 
hindered learning in these groups. Although it is expected that 
group p+/m+ scores high in task load, it is not expected that 
group p–/m– does. This result may be explained by the fact that 
the group had to handle big marker clusters in their first-time use 
of an AR learning application while looking back and forth at 
the desktop screen to see which clusters they needed. This may 
have led to a feeling of more task load. In general, it may be 
concluded from the results that some interaction with the AR 
learning material can support learning while still some support 

is given to solve the task, so that the focus can be on the content 
and not just the interaction. 

In the second set of hypotheses with the focus on subjective 
rated cognitive load it was hypothesized that both high mental 
and high physical interaction with AR learning material would 
lead to an increased GCL, although with a higher influence by 
mental interaction. Furthermore, it was hypothesized that high 
physical interaction would lead to an increase in ECL. These 
hypotheses could also not be supported by the data. It seems that, 
although differences in knowledge were found between the 
conditions, no subjective differences between GCL and ECL 
were perceived by the participants. This can be due to different 
reasons. Although the questionnaire used to assess GCL and 
ECL was validated in the original study [19], the tripartition of 
cognitive load as it is used here is discussed quite controversial. 
Leppink, for example, has developed a questionnaire in which 
there are only two scales (one for ECL and one for ICL), based 
on the idea that GCL is the load that is induced when dealing 
with intrinsic cognitive load [21], [22]. The scores on the 
different subscales of NASA TLX, of which some correlated 
with ECL and GCL, also showed no significant main or 
interaction effects. It might thus also be the case that the mental 
demand of the different conditions may have led to different 
learning outcomes (which is supported by the data showing a 
moderate, negative correlation between mental demand and 
knowledge), although this difference was not detectable on a 
subjective level. In a future study, cognitive load of the learners 
could be measured in a more objective way, for example through 
a secondary task or a physiological measure like eye-tracking 
related values [22]. Unfortunately, those measures may disrupt 
the learning task itself and should thus be used with care. 
Furthermore, the manipulation of the different forms of 
interaction could aim at providing not just two, but more levels 
of interaction, to test if it has a systematic influence on cognitive 
and task load which are then in turn connected to learning 
outcome. 

Some interesting results were found in the exploratory 
analyses of correlations between the measured variables. Mental 
demand could be shown to be negatively associated with 
knowledge, so that higher experienced task load may have led to 
less knowledge. Also, a positive association between GCL and 
mental demand and effort could be found, while ECL was 
associated with frustration. 

In the present study, not all potential confounding factors that 
may have an influence on the learning are controlled for, but the 
experimental manipulation is fairly systematic, so that 
differences in the groups can be attributed quite certainly to 
those differences. A limitation of the study is that it tried to 
separate mental and physical interaction, although that may not 
be that easily possible. Although physical interaction can be 
limited and monitored when watching learners, this is not 
possible for mental interaction. It was tried to give participants 
the necessary additional information in the task instructions, so 
that they would only have to be physically active in copying 
what they saw on the screen, but especially in the condition with 
high physical and low mental interaction, mental processes 
might have been induced. It was also not made sure that the 
participants really interacted with the learning material. They 
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were not monitored or controlled, so that some participants may 
have not interacted with the material at all.  

In future studies, it is important to transfer the manipulations 
that were done in this study onto different AR learning material 
because the types of interaction manipulated in this study were 
very specific for the learning material (i.e. physical interaction: 
building power plants vs. not building them; mental interaction: 
figuring out how to answer the hypotheses vs. receiving this 
information). Also, different forms of mental and/or physical 
interaction should be investigated in studies with systematic 
experimental manipulation of AR learning material. 
Furthermore, it should be considered to increase the interaction 
even more, because the interaction in this study was rather low, 
so that in a future study a condition with higher interaction could 
be added. To transfer the study’s design to a more applied and 
realistic setting, it should be examined if using different forms 
of interaction with AR learning material throughout a longer 
time period shows the same results, as the present study took 
place only in a short time with one application in a laboratory. 

In conclusion it can be said that although the outcomes were 
not as expected and not all questions could be answered, this 
study revealed interesting results on how different forms of 
interaction with AR can lead to different knowledge, cognitive 
load and task load. The experimental study presented here 
pursues a systematic approach to vary and examine learning with 
AR on the basis of an ARcis characteristic in order to learn more 
about the specific factors that influence how and when AR can 
be used in an effective way in educational settings. This way, it 
tries to overcome limitations of other studies in which research 
on AR applications is executed by comparing an AR setting with 
a traditional learning setting, making it difficult to deduce why 
exactly the AR setting may lead to an increased knowledge. This 
systematic approach is important to identify specific variables 
for the design of successful applications, although a lot of 
research is still necessary. This study focused on one of the three 
ARcis characteristics (interactivity). Combined with systematic 
research on the other two characteristics (contextuality and 
spatiality) and the interaction of all three characteristics, insights 
into AR functions can be gained that help to understand the 
integrated mechanisms when learners deal with these 
technologies and thus to develop learner- and context-specific 
AR tools that can support elaborated learning processes. 
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A B S T R A C T   

Three-dimensional (3D) representations are often more effective for learning about spatial objects than two- 
dimensional (2D) representations. In augmented reality (AR), which can include 2D and 3D visualizations, 
learners’ perceptions might differ from other visual media. To examine the specific influence of the dimen-
sionality of AR visualizations on learning the spatial structure of components, 3D and 2D AR representations of 
the human heart were compared in an experimental laboratory study, otherwise keeping the conditions as 
comparable as possible. The participants (N = 150) received the respective AR representation and were 
instructed to look for the hearts’ components mentioned in an informational text. As expected, learning with the 
3D compared to the 2D representation resulted in higher germane cognitive load and knowledge about spatial 
relations of components. Proposed effects on extraneous cognitive load, knowledge about spatial positions of 
components and mediation effects were not found. Higher mental rotation abilities were found to be more 
beneficial for learning with the 3D visualization, suggesting that these learners were better equipped for this task 
and supporting an ability-as-enhancer hypothesis. Overall, the study revealed that even in AR scenarios, 3D 
visualizations may be better to convey knowledge about spatial structures than 2D visualizations. Moreover, the 
results emphasize the specific moderating role of spatial abilities when learning with 3D AR material. In future 
research with various spatial learning material and spatial abilities, the generalizability of these results needs to 
be examined, so that ultimately more insights can be gained for the design of optimal AR learning experiences.   

1. Introduction 

Augmented reality (AR) is a form of visualizing virtual in combina-
tion with physical, real-world information, which has been shown to be 
beneficial, for example, for learning performance, motivational factors 
and attitudes in different educational settings (see reviews of AR in 
education, e.g., [1,6,9,11,18,30,40,39,85,90,105,107]). In the studies 
described in these reviews, diverse AR applications were used to support 
teaching different topics with various learning objectives. Although this 
shows that AR may be useful in diverse learning settings, the research 
often focused on field studies in which an AR application was compared 
to a traditional learning setting without observing the specific factors 
that may lead to its superiority. Critique on this kind of media com-
parison studies includes that (1) the medium is only a way to deliver the 
information and instructional method, which are primarily important 
for learning achievement, (2) the specific personal and media attributes 
leading to increased learning are unknown, and (3) confounding vari-
ables cannot be controlled for [94]. Surry and Ensminger further 

propose that alternative research should focus on intra-medium studies 
concerning specific individual attributes of the medium itself and on 
aptitude-treatment-interaction studies concerning learners’ character-
istics in interaction with specific medium-related variables. These sys-
tematic research approaches can also help examine and disentangle how 
specific characteristics and variables of AR presentations and experi-
ences influence learning processes and outcomes in interaction with 
learner characteristics and skills. The insights gained can support 
teachers and designers in deciding when it is useful to implement AR and 
how applications should be designed and applied for their specific 
(learning) goals. In the present paper, we follow the above-mentioned 
suggestions for alternative research by Surry and Ensminger and 
execute an intra-medium comparison study including an 
aptitude-treatment-interaction, which we specify further in the 
following paragraph. 

In AR, virtual elements are combined with real elements by pre-
senting them like they are placed in the real world. The line between 
virtual and real is blurred so that real-world physical elements and 
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environments can be enriched with virtual elements, and vice versa 
virtual elements can be linked to real-world elements and environments. 
This can be achieved through three characteristics of AR systems: they 
combine real and virtual elements, they allow for interaction in real- 
time and they place the virtual elements inside the three-dimensional 
(3D) real world [5]. While these characteristics define the technolog-
ical features of AR systems, it is also important to view AR as an expe-
rience of humans using those systems. For educational settings, Krüger, 
Buchholz and Bodemer [2] defined three characteristics of how humans 
experience AR, analogous to Azuma’s system-focused characteristics: 
contextuality, interactivity, and spatiality. (1) Contextuality means that 
in AR, virtual elements are experienced in the context of a real-world 
environment, (2) interactivity includes experiences of interacting with 
both real and virtual elements in AR, and (3) spatiality describes that 
virtual elements are experienced spatially inside the 3D real world, even 
when the device used has a two-dimensional (2D) screen. One factor that 
is a part of spatiality is the dimensionality of the presentation of 
graphical learning material, which can be in both 2D and 3D in AR. 
Because AR representations enable the visualization of virtual 2D pic-
tures and 3D models in the context of real-world objects and an intuitive 
interaction with virtual elements, users’ experience of the dimension-
ality differs from other virtual media (e.g., virtual reality, desktop-based 
virtual objects), so that general research concerning 3D representations 
in education may not be completely transferable to AR. Furthermore, 
systematic empirical research on 3D AR visualizations that explores the 
influence of cognitive load and spatial abilities is scarce. The present 
paper provides novel answers to the research questions “How does the 
dimensionality of the visualization of a 3D object in AR influence 
cognitive load and learning outcomes, and which role do spatial abilities 
play in this relationship?”. It reports an experimental study concerning 
learning processes and outcomes when learning about the spatial 
structure of a 3D object, focusing on an intra-medium comparison 
isolating dimensionality as a variable that can be varied in AR repre-
sentations through using either 2D or 3D virtual visualizations, while 
otherwise keeping the compared AR applications as similar and thus 
comparable as possible. Additionally, the study examines an 
aptitude-treatment-interaction effect focusing on the role that mental 
rotation abilities as a specific form of spatial abilities play in this context. 
Answering these research questions can provide a foundation for de-
cisions in the design of effective and efficient AR applications with re-
gard to the dimensionality of the visualization for the learning of spatial 
structures, and decisions concerning the groups of learners that should 
receive those applications with regard to their spatial abilities. 

1.1. Dimensionality of representations in education 

It seems obvious that when it comes to the dimensionality of a visual 
representation, a 3D representation of a 3D object delivers a more cor-
rect and complete picture of the object than a 2D representation. Wu and 
Shah [106] identified that learners may have difficulties with the 
identification of depth cues in 2D visualizations and the formation of 3D 
mental images on the basis of 2D structures. Further, it has been pro-
posed that learning with 3D representations supports the development 
of more accurate mental models than learning with 2D representations 
[19]. Empirical studies in various domains in which spatial elements are 
crucial show that using a 3D representation positively influences 
learning outcomes. 

One of the educational domains in which the dimensionality of a 
representation can play an important role is chemistry, especially when 
the focus is on learning about molecules (e.g., [24,28,106]). Dori and 
Barak [29] suggest that both virtual and physical models should be used 
to support a spatial understanding of molecular structures. Stull and 
Hegarty [92] found that training translation between different formats 
of 2D diagrams in organic chemistry using physical or virtual 3D models 
in comparison to only using 2D diagrams led to higher translation ac-
curacy in subsequent tests with the 3D model available, but also in a 

delayed test without a model. They explained these positive effects on 
both immediate and long-term learning with a decreased cognitive load 
when a 3D model is available to support translation, leading to an 
internalization of a mental model of the transformation that can be used 
in future tasks. 

Further educational domains in which 3D representations have been 
compared to 2D representations are astronomy (e.g., [12,17,51]) and 
geometry (e.g., [35,42,58]). In astronomy, for example, teaching about 
moon phases and relative positions of the sun and the moon using a 
desktop-based 3D virtual environment led to better learning results than 
using only 2D photographs [93]. In a study on education about geo-
metric figures, students who learned with desktop-based 3D virtual 
models also scored better in subsequent questions in which the visual-
ization was critical, but not in questions in which it was noncritical, in 
comparison to students in a conventional learning setting [91]. 

Studies in which virtual or physical 3D models are used to support 
learning are often executed in the domain of (bio-)medical education, 
especially with material concerning anatomy where the structures that 
are taught are inherently spatial. Spatial visualization and thus 3D 
learning have been identified as very important in the anatomy domain 
[4], which is fundamental for medical education because it forms a 
structural basis for diagnosis and therapeutic procedures [73]. In a re-
view by Triepels et al. [98], it was shown that many but not all studies 
concerning learning of anatomy found advantages for students learning 
with virtual 3D visualizations compared to more traditional methods. In 
another meta-review on the usage of different 3D visualization tech-
nologies in the domain of anatomy, benefits for learners’ performance 
and cognitive load were found [44]. Some specific measures of perfor-
mance that benefitted from the 3D visualizations in the studies were the 
identification and localization of and knowledge about spatial re-
lationships between anatomical structures. This is important informa-
tion that needs to be stored when learning about a spatial object. As part 
of a cognitive task analysis, Berney et al. [8], for example, describe the 
identification and reconstruction of position and location of 3D struc-
tures in relation to their surroundings as steps in learning functional 
anatomy. In order to recall the spatial structure of the object, a 
comprehensive internal representation including this knowledge about 
the spatial position of and spatial relations between components must be 
established, which may be supported by the usage of 3D representations. 
In order to memorize the general spatial structure, a pictorial mental 
representation may be enough. Once it comes to communication about 
the structures and components, the correct terms are also part of the 
knowledge that learners should have memorized and be able to recall. In 
one study, Zinchenko et al. [108] found that immersive 3D VR visuali-
zations of a human heart led to more knowledge than paper-based 2D 
and screen-based 3D visualizations. This study thus highlights that there 
are not only differences between 2D and 3D but also between different 
3D visualizations concerning beneficial effects on learning outcomes. In 
the present study, we examine if the positive influence of 3D visuali-
zations on learning outcomes when learning about a spatial object can 
also be found when learning with AR visualizations, which differ from 
other media in their approach to display virtual 3D models. Specifically, 
we examine if the knowledge about spatial positions of components 
within a 3D object and the knowledge about spatial relations between 
those components are supported through the 3D visualization. Insights 
from this are important to identify whether a more comprehensive in-
ternal representation can be established and whether 3D visualizations 
should be used for instructional AR material about spatial characteristics 
of objects. 

1.1.1. Augmented reality visualizations 
3D representations can be displayed through different forms of 

visualization and with different technologies. Examples for display 
variants are monoscopic 3D displays, such as desktop-based 3D, ste-
reoscopic 3D displays, such as 3D glasses, autostereoscopic displays, 
such as parallax barrier displays, and AR or mixed reality displays [44]. 
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Craig [25] describes that the virtual elements that are shown on AR 
displays and thus placed in the real-world environment can be presented 
in one, two, three or more dimensions, although the display showing the 
visualizations is often two dimensional. AR displays can be further 
differentiated into stereoscopic and monoscopic displays. Stereoscopic 
displays, which show two different pictures to the eyes using binocular 
disparity, include optical see-through head-mounted displays (HMDs). 
Monoscopic displays, which show only one picture and do not rely on 
stereoscopic but only monoscopic depth cues, include video see-through 
handheld devices, such as tablets. Stereoscopic depth cues can lead to a 
better perception of spatial depth than monoscopic cues alone, espe-
cially for nearby objects [25]. 

Although the 3D models themselves may be the same, viewing them 
in monoscopic AR still differs from viewing them in usual monoscopic 
non-AR desktop- or tablet-visualizations. While non-interactive tradi-
tional visualizations only include static monoscopic depth cues, AR vi-
sualizations can rely on additional motion-based depth cues, which are 
derived from position changes in relation to the object [25]. Due to the 
fixation of the virtual AR object to a point in the real world, it is possible 
for learners to move in relation to the object so that active motion 
parallax, sometimes also called motion perspective, can arise [68,83]. 
This way, 3D objects viewed in handheld AR can appear more spatial 
than in non-AR even without adding stereopsis, although they are still 
classified as pseudo spatial and not true spatial visualizations [83]. 
Through the additional motion depth cues in monoscopic AR visuali-
zations shown on handheld devices which are available to more people 
and not as expensive as HMDs, we believe that handheld AR may be a 
very effective and valuable alternative to usual 3D visualization for 
learning about 3D objects. In addition to motion-based depth cues for 
depth perception, AR enables learners to intuitively move around ob-
jects, which differs from a mouse- or touch-based interaction with 
non-AR displays and enables realistic perspective changing, which is in 
accordance with the AR-characteristic interactivity [2]. Compared to 3D 
objects shown in virtual reality (VR), which may also benefit from 
motion-based depth cues and are often viewed stereoscopically, the 
main difference in AR is that the virtual objects are perceived in spatial 
relation to real-world objects, which is in accordance with the 
AR-characteristic contextuality [2]. Through the placement of virtual 
AR objects in the real world, learners can thus intuitively change per-
spectives around 3D objects and spatially relate virtual to physical ele-
ments, so that the perception of a virtual 3D object in the best case is 
very similar to the perception of a real, physical 3D object. Added ad-
vantages in comparison to physical objects are that virtual models can be 
widely shared and have no material costs. 

With regard to learning, dimensionality as a characteristic of an (AR) 
representation may be especially influential when a 3D object is the 
topic of learning material and its spatial structure including the 
arrangement of individual components should be learned. Cheng and 
Tsai [20] described different applications used in studies on AR in ed-
ucation, in which image-based AR is used to support spatial abilities, 
practical skills, and conceptual understanding. The AR application used 
by Martín-Gutiérrez et al. [75], for example, displays 3D virtual objects 
to support the visualization of engineering graphics and improve spatial 
abilities. In an AR application on the topic of inorganic chemistry, the 
goal was to help students understand the 3D arrangements of presented 
structures [80]. Furthermore, two AR applications were concerned with 
astronomical concepts which focus on spatial relationships between 
planets and stars [55,88]. Compared to traditional learning media, such 
as textbooks, videos or even desktop applications, it seems that learning 
with AR leads to an increased understanding of spatial structures. Radu 
[85], for example, included a special category of studies on learning 
about spatial structures and function in his meta-review of papers on AR 
in education. Studies described in this review were executed with 
learning applications in different spatial domains, such as geometry, 
chemistry, mechanics, astronomy, and anatomy. Positive effects on 
learning outcomes of an AR application in comparison to other displays 

of learning material were shown, for example, in astronomy education 
(e.g., [36,66,67]), mechanical education (e.g., [71,100,102]), and 
anatomy education (e.g., [7,59]). Many studies on AR in education seem 
to focus on applications that are concerned with spatial learning topics 
and use 3D representations. Furthermore, many of those applications 
showed positive effects on learning, which additionally emphasizes the 
importance of the dimensionality of AR representations and their use for 
spatial learning topics for educational applications. 

Although the value of AR for education especially in spatial domains 
is apparent, most of the studies compare AR with a traditional and often 
very different form of visualization. In addition to differences in the 
spatiality of the visualization, there are also often differences in, for 
example, the device used, where using a tablet in comparison to a book 
may also have an influence on learning due to novelty and motivational 
effects, and the interactive possibilities, where a potentially interactive 
AR visualization may convey more information than a non-interactive 
textbook; these differences may also have an influence on learning. 
Surry and Ensminger [94] describe the potential for confounding vari-
ables as one of the critical points of media comparison studies and, as 
mentioned above, describe intra-medium comparisons as valuable 
alternative studies, which is the approach we use in the present study. 
Because dimensionality of representation plays an important role in 
learning about spatial structures with AR learning material, it needs to 
be examined more systematically and in empirical research settings. 
While systematic empirical research on the dimensionality of the visual 
representation of learning material has already been executed with 
physical and non-AR virtual 3D models (see Section 1.1), systematic 
research comparing 2D and 3D representations in handheld video 
see-through AR is still missing. To see if 3D presentation as an individ-
ual, controlled variable supports learning about spatial objects in AR, 
the present study specifically focuses on this comparison of different 
representations in AR-based learning experiences. 

3D AR differs from other forms of virtual 3D representation through 
the direct spatial relation to the real world and the possibility to move 
around the virtual object to view it from different perspectives. This can 
also have a specific influence on learning processes, which may differ in 
AR from learning with other visual media. Viewing 3D objects in AR 
seems to be similar to viewing physical 3D objects and it has been found 
that learning with physical 3D objects can lead to better spatial under-
standing especially of more complex spatial structures [82]. Specifically, 
the possibility to move around an object, which is given for both phys-
ical and AR 3D models, may have an influence on learning about 3D 
objects. Learner control of perspective changes around a 3D object was 
found to be an important factor for spatial learning [38] and walking 
around an object actively instead of passive movement of the object was 
found to support the flexibility of spatial memory [48]. Despite these 
similarities, there are clear differences between AR-based and physical 
3D objects. The most prevalent difference is that an AR object can only 
be moved with an anchor like an AR marker and cannot be touched 
directly, so that learning with a 3D AR object may also differ from 
learning with physical 3D objects. To get a more complete picture on the 
specific case of learning with 3D AR representations and see if the results 
of other 3D representations can be transferred, systematic empirical 
research with a focus on both learning outcomes, such as spatial object 
knowledge, and learning processes, such as the processing of informa-
tion in working memory, is necessary. In the present study, we thus do 
not only focus on knowledge as learning outcomes, but also take a closer 
look at cognitive load that the specific variable of dimensionality in AR 
may elicit. This way, potential overload that different representations 
might evoke can be detected and avoided when designing an AR 
application. 

1.1.2. Cognitive load 
In addition to findings concerning increased knowledge, the 

dimensionality of visualizations was also found to have an influence on 
the usage of learners’ working memory resources. As mentioned in 
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Section 1.1, Stull and Hegarty [92] attributed the improved learning 
results they found to a decrease in cognitive load, but there are also 
studies that explicitly measured mental or cognitive load when 
comparing 3D and 2D visualizations. In a study by Dan and Reiner [26], 
for example, participants learning the visual motor task of origami 
paper-folding using a 3D visualization compared to a 2D visualization 
had a lower mental load measured through electroencephalography 
(EEG) recordings, lower self-reported mental load and also better 
learning outcomes. It was also found that using a stereoscopic 3D display 
option in a training with a surgical robot led to lower mental workload 
scores than using a 2D display version [56]. In their above-mentioned 
literature review, Hackett and Proctor [44] also reported studies on 
3D visualizations that showed a decrease in cognitive load for the spe-
cific case of anatomy learning. Foo et al. [37], for example, found a 
significantly lower mental demand measured by the NASA Task Load 
Index (see [45]) for learners locating anatomical structures in 3D rep-
resentations than for learners using 2D representations. 

Concerning learning with AR, results are not conclusive with regard 
to cognitive load, as studies showing a decrease in cognitive load and 
studies showing cognitive overload have been found [1]. In a study by 
Lai et al. [60], for example, the authors found that self-rated mental 
effort was lower in a group of students learning geography with an AR 
book compared to students learning with traditional multimedia 
learning material. Cognitive overload was suggested to arise due to a lot 
of material and task complexity in AR [20]. Here, very different ele-
ments can be combined (e.g., real, virtual, static, dynamic, interactive), 
so that it is particularly important to consider cognitive load when 
developing AR-based learning environments. In the design, the charac-
teristics of virtual elements, real elements, and their combination must 
be taken into account. In a systematic mapping review, 64 studies that 
measured cognitive load in AR experiences were identified in studies 
from 2007 to 2019 [13]. Most of the studies were media comparison 
studies (73%) and most used the NASA Task Load Index by Hart and 
Staveland [45] to measure cognitive load. Only one study distinguished 
between intrinsic, extraneous, and germane cognitive load, which may 
be useful to separate cognitive load that is either detrimental or crucial 
for learning. 

Concerning the influence of instructional design on cognitive pro-
cessing, it is important to acknowledge that measured cognitive load 
may not only be a sign of detrimental cognitive processing, but also 
processing that is crucial for learning. A framework to further specify 
types of cognitive load based on this notion is cognitive load theory 
(CLT), which describes cognitive processing of learning material based 
on multiple assumptions about the human cognitive architecture [95, 
97]. CLT assumes that to store knowledge in long-term memory and thus 
to learn, learners process the information that they receive in working 
memory. This cognitive processing and subsequent storing of informa-
tion is essential for learning, makes use of the limited working memory 
resources of the learners and thus has an influence on their cognitive 
load. Specifically, the parts of cognitive load that are characterized as 
essential for learning are referred to as intrinsic cognitive load (ICL) and 
germane cognitive load (GCL) in CLT. ICL is determined by cognitive 
processing that depends on the complexity of the content of the learning 
material and the prior knowledge of the learner, where more complex 
content without the appropriate level of knowledge leads to higher ICL. 
GCL is determined by cognitive processing dependent on the design of 
the learning material that is directly relevant for learning. The third type 
of cognitive load in CLT which is specified as not essential for learning is 
extraneous cognitive load (ECL). ECL is determined by cognitive pro-
cessing dependent on the design of the learning material that is not 
directly relevant for learning. ECL may even hinder learning when all 
cognitive resources are exhausted by a high amount of cognitive pro-
cessing before even reaching the point when the content of the learning 
material can be processed [95,97]. 

While in the 1998 conception by Sweller and colleagues the three 
types of cognitive load are described as independently adding up to total 

cognitive load, this view has changed over time. Today, GCL is not 
described as an independent cognitive load component, but as a 
component that “redistributes working memory resources from extra-
neous activities to activities relevant to learning by dealing with infor-
mation intrinsic to the learning task” ([96], p. 264) and is thus closely 
related to ICL. Independent of this reframing of GCL, it is still assumed 
that the processes associated with GCL are crucial for learning and from 
a measuring perspective it is important that all three aspects of cognitive 
load are understood in a learning situation [57]. From a design 
perspective it is also important to understand how learning material can 
be designed to decrease cognitive processing that is not relevant or even 
detrimental to learning as much as possible, while still supporting and 
increasing germane cognitive processing that is essential for learning 
within the capacity limits, which are goals proposed in CLT [101]. This 
is also supported by other researchers, who additionally state that the 
reduction of ECL in learning tasks is not sufficient but the focus should 
also be on fostering GCL when designing learning material [87]. In their 
attempt to connect CLT and human-computer interaction, Hollender 
et al. [47] transferred this demand onto learning technologies by 
concluding that a primary goal of educational software should be to 
foster GCL. 

Based on the presented studies showing that (extraneous) cognitive 
load can be reduced and germane processing of information into mental 
models and thus learning can be supported when using 3D visualiza-
tions, it can be assumed that the dimensionality of a visualization has an 
influence on the distribution of cognitive load. Further, when looking at 
the specific case of 3D representations in AR, it is important to examine 
cognitive load due to the number of interacting elements and thus po-
tential overload. In the present study, we want to examine if the pre-
sumptions that 3D visualizations are beneficial to cognitive load can also 
be confirmed for learning with AR visualizations. We focus on the 
distinction between ICL, ECL, and GCL to gain insights into the specific 
allocation of cognitive resources to relevant and non-relevant tasks 
when learning with 3D or 2D AR. This way, potential differences in 
learning outcomes might be explained and designers of AR applications 
can take this into account. Through the intra-medium comparison, dif-
ferences in cognitive load can be attributed to the dimensionality of the 
visualization and confounding variables are limited. Although the 
literature review suggests that presenting 3D learning material in three 
dimensions in AR is beneficial, it may be necessary to take a more 
nuanced look at this, especially in respect to learners’ spatial abilities. 
Cheng and Tsai [20] described spatial abilities as relevant learner 
characteristics that should be examined in image-based AR learning 
environments because they might have an influence on learning pro-
cesses and outcomes. 

1.1.3. Spatial abilities 
Perceptual abilities, including spatial abilities, in general “have to do 

with individuals’ abilities in searching the visual field, apprehending the 
forms, shapes, and positions of objects as visually perceived, forming 
mental representations of those forms, shapes, and positions, and 
manipulating such representations ‘mentally’” ([15], p. 304). One 
important type of spatial abilities is the ability to mentally rotate figures 
and know what they look like from different perspectives. This is rele-
vant when learning about 3D objects because 3D mental models of those 
objects must be kept in memory and mentally rotated if they need to be 
recalled from different viewpoints. 

A meta-review by Höffler [46] emphasizes that spatial abilities play a 
role in learning with pictorial visualizations. A significant difference in 
effect size when comparing learners with higher and lower spatial 
abilities was found between studies that used 2D learning materials and 
those that used 3D learning materials. In studies in which 2D learning 
materials were used, the effect size was larger than in studies in which 
3D learning materials were used, showing that spatial abilities are more 
influential when the materials are in 2D than when they are in 3D. This 
suggests that the effectivity of the dimensionality of learning materials is 
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moderated by spatial abilities in accordance with an 
ability-as-compensator hypothesis [49] showing that for learners with 
low spatial abilities the support through 3D visualizations is important, 
while this may not necessarily be the case for learners with high spatial 
abilities. This can be explained by the additional depth cues in 3D vi-
sualizations, which support learners with low spatial abilities in building 
a correct 3D mental model. Stull and Hegarty [92] found that using a 3D 
model in a task for translating molecules between different 2D repre-
sentations predicted learning results better than spatial abilities did. 
They reason that the direct representation of 3D space eliminated 
learners’ need to imagine it, which might be especially difficult for 
learners with low spatial abilities. In a study in which both interactivity 
and stereopsis were manipulated, students with low visuospatial abili-
ties profited more from a freely rotatable virtual, stereoscopic 3D model 
of the lower abdominal anatomy instead of three 2D pictures of 
cross-sections than students with high visuospatial abilities [70]. 

Some evidence has also been found for an ability-as-enhancer hy-
pothesis which implies that especially learners with high spatial abilities 
benefit from using 3D visualizations because they can mentally handle 
and process those visualizations more easily than learners with low 
spatial abilities [49]. An empirical study by Huk that compared how 
learning outcomes were influenced by the dimensionality of the visu-
alization compared to spatial abilities found a significant interaction 
effect, showing that learners with high spatial abilities benefitted from 
3D models, while learners with low spatial abilities did not. These results 
are thus in contrast with the findings of the meta-review and the other 
studies described in the previous paragraph. In a pilot study concerning 
the relevance of spatial abilities when learning with 3D AR visualiza-
tions, Krüger and Bodemer [3] found inconclusive results, showing 
support for an ability-as-compensator hypothesis with regard to 3D 
spatial visualization abilities and a learning task and support for an 
ability-as-enhancer hypothesis with regard to 2D spatial memory abili-
ties and a spatial knowledge test. As research with a focus on spatial 
abilities and AR 3D visualizations, which, as described above, may differ 
from other forms of visualization, is still scarce, more research is 
necessary to come to more conclusive results. In the present study, we 
shed more light on the interaction between the dimensionality of the 
visualization and mental rotation abilities as a specific form of spatial 
abilities when using AR learning materials, thus including an 
aptitude-treatment-interaction analysis into the intra-medium study. We 
focus on 3D mental rotation abilities because it is related to building a 
correct mental model of an object from different perspectives, that is, in 
3D. The results can provide a basis concerning which population bene-
fits from a 3D visualization and which may not, so that decisions con-
cerning target populations for applications can be made. Furthermore, 
insight into this specific aptitude-treatment-interaction can be gained. 

1.2. The present study: goal and hypotheses 

The goal of the present study is to examine the influence of the 
dimensionality of a visual representation in AR on learning processes 
and outcomes, answering the research questions “How does the 
dimensionality of the visualization of a 3D object in AR influence 
cognitive load and learning outcomes, and which role do spatial abilities 
play in this relationship?”. We take an intra-medium comparison 
approach, including an aptitude-treatment-interaction, to gain more 
specific insight into an effective use of AR in education and its under-
lying mechanisms. As described in Section 1.1, the literature on 
dimensionality of representations in education shows that learning 
outcomes in spatial domains and of spatial content can be supported 
when using 3D visualizations. The literature on learning about spatial 
objects in AR further supports the idea that 3D AR visualizations are 
beneficial here (see Section 1.1.1). This seems to be especially the case 
for learning about the spatial position of and the spatial relations be-
tween components in a spatial object. Knowledge about the spatial po-
sition of the components concerns the attributes of individual objects 

independent of other objects – if the position of one component is un-
known, the position of another can still be known. For knowledge about 
spatial relations, on the other hand, information about the position of 
the component, the position of the other component, and the relation 
between those two positions must be stored and recalled. In the present 
study, we want to differentiate between those two kinds of knowledge, 
to reveal potential differences. Because both kinds of knowledge are 
dependent on the spatial representation of the object, we expect that 
learning with a 3D AR visualization leads to increased learning of both 
kinds of spatial aspects of the object that is visualized (spatial position of 
components of the object in H1a and spatial relations between compo-
nents of the object in H1b). We do not expect this difference for aspects 
that are not related to the spatial aspects of the visualization but concern 
the general knowledge about the topic, because the visualization should 
not have an influence here (H1c). The specific hypotheses concerning 
these different types of knowledge as learning outcomes are: 

H1a. Learning with a 3D AR visualization leads to higher resulting 
knowledge concerning the spatial position of components of the mate-
rial than learning with a 2D AR visualization. 

H1b. Learning with a 3D AR visualization leads to higher resulting 
knowledge concerning spatial relations between components of the 
material than learning with a 2D AR visualization. 

H1c. Learning with a 3D AR visualization leads to an equal amount 
of resulting knowledge concerning general (not specifically spatial) as-
pects of the material as learning with a 2D AR visualization. 

A second set of hypotheses focuses on the influence of the dimen-
sionality of visualization on learners’ cognitive processing of the con-
tent. The three types of cognitive load as defined in CLT are considered 
in the present study: 1) ICL - load that is elicited by cognitive processing 
of the content, 2) ECL - load that is elicited by cognitive processing that 
depends on the design of the material, but is not necessarily relevant for 
or can even be detrimental to learning, and 3) GCL - load that is elicited 
by cognitive processing that depends on the design of the material and is 
relevant for learning, like the forming of mental models. The literature 
on cognitive load (see Section 1.1.2) shows that extraneous cognitive 
processing can be decreased when 3D visualizations are used for 
learning. We hypothesize that learners using a 3D AR visualization in 
comparison to a 2D AR visualization need to engage in less extraneous 
cognitive processing and thus have less ECL because they do not need to 
first mentally transform the 2D visualization before being able to build a 
3D mental model of the object (H2a). Because it was also found in the 
literature that cognitive processing which is relevant for learning can be 
supported by 3D visualizations, we also hypothesize that using a 3D AR 
visualization leads to more germane cognitive processing and thus GCL 
than using a 2D AR visualization (H2b) because a 3D AR visualization 
should enable and even encourage learners to create a more complete 
and correct spatial mental model of the object than a 2D visualization. 
Because ICL is not influenced by the design but by the content of the 
material, and we would expect the complexity of the content itself to be 
the same when only the dimensionality of the visualization changes, we 
expect ICL to not differ on this basis (H2c). The specific hypotheses 
concerning the different types of cognitive load are: 

H2a. Learning with a 3D AR visualization leads to lower ECL during 
learning than learning with a 2D AR visualization. 

H2b. Learning with a 3D AR visualization leads to higher GCL during 
learning than learning with a 2D AR visualization. 

H2c. Learning with a 3D AR visualization leads to equal ICL during 
learning as learning with a 2D AR visualization. 

Many of the studies in the literature (especially those in Section 1.1) 
also state that the increased learning outcomes from using 3D instead of 
2D visualizations resulted from the decrease of extraneous cognitive 
processing that we hypothesize in H2a and the increase of germane 
cognitive processing that we hypothesize in H2b. Based on this, we also 
formulated two mediation hypotheses: 

H2d. The effect of the dimensionality of the visualization on 
knowledge concerning spatial aspects of the material is mediated by the 
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elicited ECL. ECL is lower when learning with a 3D AR instead of a 2D 
AR visualization, and knowledge is in turn higher. 

H2e. The effect of the dimensionality of the visualization on 
knowledge concerning spatial aspects of the material is mediated by the 
elicited GCL. GCL is higher when learning with a 3D AR instead of a 2D 
AR visualization, and knowledge is in turn also higher. 

In a third set of hypotheses, we focus on a moderation effect that 
mental rotation abilities may have on learning with 3D AR learning 
material. As the empirical support is higher for the ability-as- 
compensator hypothesis than the ability-as-enhancer hypothesis con-
cerning spatial abilities (see Section 1.1.3), our hypotheses are formu-
lated in agreement with the former. We would thus expect that learners 
with lower 3D mental rotation abilities especially benefit from receiving 
a 3D AR visualization in comparison to a 2D AR visualization, because 
they are relieved of the task of forming a 3D mental model by themselves 
due to the already three-dimensional presentation of the object. This 
way, they need to execute less extraneous cognitive processing and can 
process the object more easily. It is expected that learners with higher 
3D mental rotation abilities have less trouble mentally visualizing a 3D 
object from a 2D visualization, so that they do not need a 3D AR visu-
alization because their ECL is already kept low. This assumption trans-
lates to the mediated moderation hypothesis H3a. To examine if a 3D AR 
visualization in comparison to a 2D AR visualization also increases 
germane cognitive processing and thus GCL for especially learners with 
lower 3D mental rotation abilities, an exploratory research question 
concerning a second moderated mediation is proposed (RQ3b). The two 
following hypotheses describe moderations of the path from the 
dimensionality of the visualization to the cognitive load in the media-
tions proposed in H2d and H2e (see Fig. 1): 

H3a. In the mediation by ECL of the effect of dimensionality on 
knowledge concerning spatial aspects (H2d), the influence of the 
dimensionality of visualization on ECL is moderated by mental rotation 
abilities – learners with lower mental rotation abilities benefit more 
from the 3D AR visualization in comparison with the 2D AR visualiza-
tion than learners with higher mental rotation abilities. 

RQ3b. In the mediation by GCL of the effect of dimensionality on 
knowledge concerning spatial aspects (H2e), is the influence of the 
dimensionality of visualization on GCL moderated by mental rotation 
abilities? Do learners with lower mental rotation abilities benefit more 
from the 3D AR visualization in comparison with the 2D AR visualiza-
tion than learners with higher mental rotation abilities? 

2. Method 

2.1. Design 

In this study, a randomized between-subjects design with two con-
ditions was implemented in an experimental laboratory study. The 
manipulated, independent variable was the dimensionality of a visual 
representation of a human heart in AR, which the participants received 
as part of a learning task. In the 3D condition, the participants received a 
3D AR model and in the 2D condition, they received a 2D AR graphic, 
which are described in more detail below. We kept all other factors, such 
as device used, interaction, and context, as similar and comparable be-
tween the conditions as possible, so that an influence of variables other 
than the dimensionality of the representation could be ruled out. The 
main variables that were measured to answer the hypotheses in this 
study are spatial positions knowledge (H1a, H2d-H2e H3a-RQ3b), 
spatial relations knowledge (H1b, H2d-H2e H3a-RQ3b), general 
knowledge (H1c), extraneous cognitive load (H2a, H2d, H3a), germane 
cognitive load (H2b, H2e, RQ3b), and intrinsic cognitive load (H2c). 
Also, we measured learners’ mental rotation abilities as a potential 
moderator variable (H3a-RQ3b). 

2.2. Participants 

In total, the study had N = 150 participants (109 female and 41 
male). The age ranged from 17 to 31 years with a mean of M = 21.81 
(SD = 2.98). The allocation to the conditions was quasi-randomized with 
the goal of evenly distributing male and female participants between the 
groups, due to potential differences in spatial abilities between men and 
women, especially mental rotation abilities [16,79,81]. n = 75 (54 fe-
male, 21 male) participants were placed in the 3D and n = 75 (55 female, 
20 male) participants in the 2D condition. All participants indicated 
their language level to be at least competent (C1-C2), with most (97.3%) 
indicating “native language”. The sample mainly consisted of students 
(96.0%), the majority of whom were enrolled in the bachelor’s degree 
program Applied Cognitive and Media Science (84.7%). The other par-
ticipants were either pre-university students or employed. The partici-
pants could receive course credit for taking part in the study. 

The participants were asked about how often they had used general 
mobile applications, mobile learning applications, general mobile AR 
applications, and mobile AR learning applications on tablets or smart-
phones in the past, and answered in a five-point response format: 
“never” (1), “rarely” (2), “now and then” (3), “often” (4), “regularly” (5). 
The participants indicated to have used general mobile applications 
quite regularly (M = 4.65, SD = 0.86), but learning applications had not 
been used that often (M = 2.37, SD = 1.11). The participants also did not 
have a lot of experience with using AR applications (M = 1.77, SD =
0.75) or specifically AR learning applications (M = 1.21, SD = 0.53). The 
participants were thus in general familiar with using mobile devices, but 
not with using AR applications on smartphones or tablets. Many par-
ticipants (37%) reported never having used a general AR application on 
a mobile device, while 83% indicated never having used an AR learning 
application on such a device before. The participants in the 3D condition 
indicated a significantly higher amount of usage of general learning 
applications on mobile devices (M3D = 2.57, SD3D = 1.16) than partic-
ipants in the 2D condition (M2D = 2.17, SD2D = 1.03), U = 2274.50, p =
.037, d = 0.36. In the other three categories, including usage of AR 
learning applications which is most relevant for the present study, no 
differences between the groups were found. This study with the ID 
psychmeth_2019_AR4_56 was conducted in accordance with ethical 
guidelines and was approved by the ethics committee of the  Computer 
Science and Applied Cognitive Science department under ethics vote ID 
1905PFPK3747. 

2.3. Material and apparatus 

2.3.1. AR applications 
For this study, two AR applications were developed with the Unity1 

software (version 2018.2.11f1, [99]) and the Vuforia Augmented Re-
ality Development Kit version 7.5 from PTC Inc. [84], one including a 2D 
AR and one a 3D AR representation of a model of the human heart. A 
virtual 3D object of the human heart was obtained from Remix 3D [77], 
a free online library for 3D objects. This model was used for the 3D 
version and for a 2D image of the heart model’s cross section. For the 
purpose of the study, the names of components of the human heart and 
connecting lines were added as labels to both graphics. The AR marker 
that was used in both applications showed the 2D image of the cross 
section, but without these labels. In the tablet applications, scanning the 
AR marker with the camera brought up the 2D image or 3D model with 
labels on top of the marker, and a white background was added covering 
the marker to decrease visual clutter. The virtual representations were 
fixed to the point of the visual marker on the paper, so that when the 
participants moved around, the representation stayed in the same spot. 

1 This research is not sponsored by or affiliated with Unity Technologies or its 
affiliates. “Unity” is a trademark or registered trademark of Unity Technologies 
or its affiliates in the U.S. and elsewhere. 

J.M. Krüger et al.                                                                                                                                                                                                                               



Computers and Education Open 3 (2022) 100065

7

This way, participants could either rotate the piece of paper or move 
around the virtual representation to view it from different perspectives. 
No additional interaction with the virtual representation was possible 
and the actual interaction that the participants executed was neither 
tracked nor observed. The applications were exported as Android 
packages (APKs), installed and used on a tablet with a 10.8-inch IPS 
display with a resolution of 2560 × 1600 pixels and about 500g weight. 
It had 4 GB RAM and a HiSilicon Kirin 960 eight-core processor. The 
camera had 13 megapixels and a resolution of 1080p at 30 frames per 
second. Examples of how the application looked during use can be seen 
in Fig. 2. 

2.3.2. Learning material 
In the present study, an approach is used in which textual and 

pictorial information is enriched with either a 3D AR model or a 2D AR 
graphic, following an approach called AR books or sometimes Magic-
Book [10]. As the literature review shows, anatomy is a domain in which 
knowledge about spatial arrangement of components of an object, 
including knowledge about the names of the objects for a common 
communication ground, is important. This is why we used textual and 
pictorial material and a model of the human heart as learning material in 
the present study. The human heart is a spatial structure, so that its 
components and their spatial relationship are suitable to be displayed in 
a 3D representation and participants can be tested on their knowledge 
about the positions and relations of components afterwards. In the study 
design, there were two experimental conditions that differed with 
respect to the dimensionality of the presented virtual object in AR. In 
both conditions, the participants received an informational text, which 
extended over two paper-based pages and described the human heart 
and its components. The names of the components were highlighted 
through italicization. The information was taken from two schoolbooks 
[41,78] and a reference book [14], which were integrated into one 
informational text for this study. The text contained two images, the 

second being the AR marker. To ensure systematic comparability be-
tween the two conditions, every part of the learning material was the 
same except for the additional virtual representation of the human 
heart. Fig. 2 shows how the labelled 3D model and 2D image are overlaid 
in the two applications. Although it would not have been necessary to 
add an AR application for the 2D condition because the picture with the 
labels could just have been on the printout, we wanted to keep the two 
conditions very similar, including the use of a tablet to reveal further 
information. In the 2D condition this additional information was only 
the textual labels of the components, while in the 3D condition the 3D 
model and the labels were the additional information. This way, we 
made sure that the students in the 2D condition also needed to look 
through the tablet to receive all the necessary information. The partic-
ipants were instructed to thoroughly read the informational text and at 
the same time use the tablet for scanning the graphic of the human heart. 
Further instructions were to look for the structures mentioned in the text 
in the tablet-application and try to understand their relations. This way, 
the learning of the spatial arrangement of the components should be 
encouraged, while also laying a focus on the connection of the textual 
description and thus the terms for the different components and the 
spatial arrangement. 

2.3.3. Manipulation check 
To see if the manipulation of the AR learning material worked as 

intended, a manipulation check was administered. For this, we con-
structed a questionnaire called the ARcis Questionnaire with the goal of 
measuring learners’ perception of the representation in AR. This ques-
tionnaire was developed with three subscales on the basis of the three 
human-centered characteristics of AR experiences contextuality, inter-
activity, and spatiality (ARcis characteristics; [2]). The participants 
rated six statements per subscale in a seven-point response format 
ranging from 1 (not at all true) to 7 (very true) and a mean score was 
calculated for each subscale. Examples of statements are “I perceived the 

Fig. 1. Moderated mediation in H3a (a) and RQ3b (b). In H3a, the influence of dimensionality on ECL in the mediation model proposed in H2d is hypothesized to be 
moderated by mental rotation abilities. In RQ3b, the influence of dimensionality on GCL in the mediation model proposed in H2e is hypothesized to be moderated by 
mental rotation abilities. 

Fig. 2. Screenshot from the application in the 3D condition (left) and the 2D condition (right).  
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virtual element in the context of the real world” (contextuality), “The 
virtual element was very interactive” (interactivity) and “The virtual 
element has a spatial depth similar to the depth of a real object” 
(spatiality). The virtual element was specified as the model of the human 
heart in the instructions to the questionnaire. Internal consistency 
measured through Cronbach’s alpha was acceptable for the contextuality 
subscale (.74) and good for the interactivity (.81) and spatiality (.84) 
subscales. Because the dimensionality of the representation is defined as 
part of the AR characteristic spatiality, it was constructed into the 
questionnaire as part of the spatiality subscale. The assumption implicit 
in the manipulation was thus that the spatiality of the 3D AR repre-
sentation would be perceived as higher than the spatiality of the 2D AR 
representation, while interactivity and contextuality would not neces-
sarily be perceived as different. 

2.3.4. Tests and questionnaires 

Expectancy-value questionnaire. To learn more about the sample and 
determine potential pre-task differences between the groups concerning 
knowledge beliefs; competence expectancy; and perceived usefulness, 
importance and interest regarding the learning material, the 
Expectancy-Value Questionnaire by Wigfield and Eccles [104] was 
translated and adapted to the learning topic in the study. It is divided 
into three subscales and a five-point response format with different 
wording was used to answer each question (1 was low, 5 was high). The 
Knowledge Beliefs scale was reformulated from the original ability beliefs 
scale to ask about perceived knowledge and not abilities. It includes 
three items and was used to assess the participants’ self-rated prior 
knowledge. The Expectancy subscale comprises two items that measure 
expected personal performance during the learning task. The third 
subscale, Usefulness, Importance, and Interest, comprises six items and 
measures the motivation to acquire knowledge on the topic. For each 
subscale, a mean score was calculated. Internal consistency of the three 
scales measured through Cronbach’s alpha was acceptable for the scales 
Knowledge Beliefs (.73) and Expectancy (.68), with a high value for the 
Usefulness, Importance and Interest scale (.86). 

Knowledge test. The resulting knowledge after the execution of the 
learning task was measured through a knowledge test with three 
different parts (1 – spatial: components, 2 – spatial: relations, and 3 - 
general) which was developed based on the learning material. We clas-
sified both the spatial: components part and the spatial: relations part as 
knowledge concerning spatial aspects of the human heart, but we 
examined them separately with different forms of tests to test hypoth-
eses H1a and H1b. The general part is the focus of the analysis con-
cerning H1c. First, in the spatial: components part of the test, the 
participants identified the positions of components of the human heart. 
They located components in 2D pictures which were captured from 

different perspectives of the 3D model used in the application (see Fig. 3) 
and presented on separate pages of an online questionnaire. In each of 
the four pictures, four small numbers were pinned to parts of the picture 
and participants filled in blank fields naming the components. For each 
correctly named component, the participants received one point, so that 
a score of 0 to 16 was possible for this part of the test. Points were given 
for all instances when it was clear that the correct component was 
meant, even though it was not written completely correctly (e.g., “arota” 
also gave a point for “aorta”). This way the focus lies more on the 
placement of the components and less on correctly remembering the 
spelling of the terms. None of the four pictures was the exact same 
visualization as the 2D graphic from the learning task, so that some 
mental transformation of the 3D object and not just recognition of the 
picture was necessary especially for the two pictures which showed the 
heart from the back (picture 2 and 4 in Fig. 3). This way, just memo-
rizing the names of the components was not enough and was not the 
focus, but the spatial positions had to be remembered. Second, in the 
spatial: relations part of the test, the participants received five multiple- 
choice questions concerning spatial relationships between different 
components of the heart, such as “Which component separates atrium 
and heart ventricle?” with the answer possibilities “atrioventricular 
valve”, “cardiac septum”, “aorta”, and “semilunar valve”. The multiple- 
choice questions had one correct and three incorrect answer options and 
a point was given for each correct answer, so that a score of 0 to 5 was 
possible. For this part of the test, the terms needed to be recognized 
correctly to know which components the question and the answers 
referred to, and the learners needed to know the spatial relations of the 
components to correctly answer the questions. Third, in the general part 
of the test, five multiple-choice questions concerning general informa-
tion on the human heart that was provided through the informational 
text and did not have a specific link to the provided visualization were 
answered. An example is “What is the diameter of a capillary?” with the 
answer possibilities “0.008mm”, “0.5mm”, “0.07mm”, and “1.0mm”. 
Again, the multiple-choice questions had one correct and three incorrect 
answer options so that a score of 0 to 5 was possible. The learners did not 
need to have remembered the (spatial) information from the visualiza-
tion and only questions without relation to the visualization were asked. 
The kind of visualization should thus not play a role for answering these 
questions. 

Cognitive load questionnaire. Cognitive load was measured with the 
second version of the naïve rating scale by Klepsch and colleagues [57]. 
The subscale on extraneous cognitive load (ECL; 3 items; used in H2a, H2d 
and H3a) is aimed at measuring cognitive load that is caused by the 
design of the learning material and is unproductive for the learning task 
itself. The subscale germane cognitive load (GCL; 3 items; used in H2b, 
H2e and RQ3b) is aimed at measuring cognitive load that is caused by 
the learning related cognitive processes of the learners. The subscale 

Fig. 3. Pictures used for the component part of the knowledge test.  
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intrinsic cognitive load (ICL; 2 items; used in H2c) is aimed at measuring 
cognitive load that is caused by the inherent complexity of the learning 
material in interaction with the learner’s prior knowledge. The ques-
tionnaire was used in its original form and participants were told the 
task they should rate were the activities that were executed with the 
tablet application. The statements were rated in a seven-point response 
format, in which 1 was the lowest and 7 the highest agreement with the 
statement, and mean scores were calculated for each subscale. Internal 
consistency measured through Cronbach’s alpha for the ECL (.73) and 
GCL (.72) subscales and Spearman-Brown coefficient for the ICL sub-
scale (.69) were acceptable for the scales. 

Mental rotation test. The Mental Rotation Test (MRT) by Peters et al. 
[81] was used to assess the participants’ mental rotation abilities. It 
contained 12 items (half of the original number of items) and was 
limited to three minutes. The MRT is a test that requires the ability to 
mentally rotate 3D figures and to assign them to a reference figure. Each 
item presents a static reference image of a 3D figure and four different 
static images of the same figure. Two of those images show the figure 
rotated, the other two show the figure in a rotated and mirrored state. 
The participants were asked to indicate the two figures that were only 
rotated but not mirrored, for as many items as possible during the three 
minutes. Active rotation was not possible with the static pictures, so that 
rotation had to take place mentally. Since two of the images are rotated 
for each item, two correct answers can be counted for each item, which 
are then summed for a score between 0 and 24. 

2.4. Procedure 

First, the participants were informed about the content, purpose, and 
procedure of the experiment. They were made aware that all data would 
be collected and processed anonymously and that they had the possi-
bility to stop the experiment at any time without giving reasons. After 
the participants had signed the informed consent form, they started the 
study in the experimental condition that was assigned to them. The 
experiment started with the mental rotation test, which was limited to 
three minutes. The participants then answered the Expectancy Value 
Questionnaire. They were then asked to contact the researcher to receive 
the learning material consisting of the informational texts on the human 
heart as well as the tablet with the respective AR application for either 
the 2D or the 3D condition. The participants read the informational text 
and looked at the tablet-based 2D or 3D visualization, in which they 
could find the components of the human heart mentioned in the text. 
There was no time limit for this. After the participants had studied the 
learning material, they returned the learning material to the examiner 
and began to answer the questionnaires on cognitive load and the three 
characteristics of AR. This was followed by the knowledge tests, where 
first the spatial: components part, then the general and then the spatial: 
relations part were administered. At the end of the survey, the partici-
pants provided their demographic data, as well as their previous expe-
rience with AR and mobile learning applications. Finally, the 
participants received a debriefing, in which they were informed about 
the manipulation of spatial representation in the AR application. 

3. Results 

For all tests described in this section, a significance level of α = .05 
was applied. When the respective variables were not distributed nor-
mally, nonparametric Mann-Whitney U tests [72] were used for testing 
hypotheses concerning group differences (H1a, H1b, H2a, H2b). When 
the distribution was normal, t-tests were administered as Welch’s t-test 
[103] by default as suggested by Delacre et al. [27] based on simulations 
showing that Welch’s t-test has a more stable Type I error rate and thus 
provides better results when the assumption of homogeneity of variance 
is not met, and most of the time has at least the same power as Student’s 

t-test when the assumption is met. This way, homogeneity of variance 
does not have to be assumed and thus does not have to be tested, 
although Levene’s tests did support a homogeneity of variance for all 
variables. Interpretations of the effect size Cohen’s d are based on the 
classifications by Cohen [23]. For correlations between variables, Ken-
dall’s τ [54] was used, due to non-normal distributions in most vari-
ables. In the mediation (H2d and H2e) and moderation (H3) analyses, a 
percentile bootstrapping method [32] was used for the calculation of the 
significance of the effects and standard errors to account for non-normal 
distribution of the variables: unstandardized effects were computed for 
each of 10,000 bootstrapped samples, and the 95% confidence interval 
was computed by determining the effects at the 2.5th and 97.5th 
percentiles. 

For the equivalence hypotheses (H1c, H2c), two one-sided t-test 
(TOST) equivalence tests were used [64]. The smallest effect size of 
interest (SESOI; [61]) for the equivalence tests was set at a small effect 
size of Cohen’s d = +/− 0.3 beforehand, but needs to be corrected to 
Cohen’s d = +/− 0.32 because this is the smallest detectable effect size 
with n = 75 in each group. We used the tool described by Lakens [63] to 
calculate this smallest detectable effect size. The equivalence bounds for 
all equivalence analyses are set based on this. For Cohen’s d, 95% con-
fidence intervals are provided in all analyses. For the moderation ana-
lyses the MRT test scores are centered for an easier interpretation of the 
effect estimates. When the 3D condition is compared to the 2D condi-
tion, positive effect size values mean that the 3D condition has a higher 
average score than the 2D condition for the respective variable, and 
negative effect size values mean that the 2D condition has a higher 
average score. In the mediation analyses, a dummy coding of the pre-
dictor variable dimensionality of visualization was administered with 
the 2D condition as 0 and the 3D condition as 1. Here again a positive 
estimated value of the relation means that the score is higher for the 3D 
than the 2D condition and vice versa for a negative value. 

3.1. Sample characteristics 

3.1.1. Belief, expectancy and value 
To describe the sample and the groups in more detail, self-reported 

knowledge beliefs, task expectancy, and value were collected before 
the start of the learning task in a response format from 1 (low) to 5 
(high). Equivalence tests for the three variables with equivalence 
bounds at Cohen’s d = +/− 0.32 detected no equivalence for the groups 
concerning task expectancy (M3D = 2.85, SD3D = 0.72; M2D = 2.89, 
SD2D = 0.67), lower bound, t(147.36) = 161, p = .055, upper bound, t 
(147.36) = − 2.31, p = .011, but also no significant difference, U =
2722.00, p = .729, d = − 0.06, 95% CI [− 0.38, 0.26]. The perceived 
value (M3D = 3.12, SD3D = 0.79; M2D = 3.32, SD2D = 0.65) was also not 
equivalent in the groups, lower bound, t(142.64) = 0.20, p = .422, upper 
bound, t(142.64) = − 3.72, p < .001, and it was also not significantly 
different, t(142.64) = − 1.76, p = .080, d = − 0.29, 95% CI [− 0.61, 0.04]. 
The groups did, however, differ significantly in their knowledge beliefs 
and thus their self-reported pre-knowledge on the topic. The group 
which would receive the 2D visualization reported a higher pre- 
knowledge (M2D = 2.07, SD2D = 0.62) than the group which would 
receive the 3D visualization (M3D = 1.84, SD3D = 0.63), U = − 2142.50, 
p = .023, d = − 0.38, 95% CI [− 0.70, − 0.05]. This difference is opposite 
to the expected difference after interaction with the learning material. 
To see how these variables correlate with and may have had an influence 
on the results in the knowledge test parts, a correlation analysis was 
executed per group. In Table 1, Kendall’s τ correlation coefficients of the 
scores on the three subscales and the scores on the three types of 
knowledge are shown. Only the scores of the belief and expectancy 
subscales correlated significantly with spatial components knowledge in 
the 3D condition. These results should be considered in the interpreta-
tion of the overall results. 
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3.1.2. Mental rotation abilities 
To ensure that the participants did not differ between conditions in 

their mental rotation abilities, pre-learning task mental rotation test 
(MRT) scores were compared. These MRT scores were also used to test 
H3a and RQ3b. Although an equivalence test with equivalence bounds 
at Cohen’s d = +/− 0.32 detected no equivalence for the groups con-
cerning the MRT score (M3D = 12.11, SD3D = 5.89; M2D = 12.61, SD2D =

5.09), lower bound, t(144.98) = 1.40, p = .082, upper bound, t(144.98) 
= − 2.52, p = .006, also no significant difference was detected, U =
2600.00, p = .425, d = − 0.09, 95% CI [− 0.41, 0.23]. The groups did 
thus not differ in their mental rotation abilities, although they were also 
not equivalent in the determined bounds. 

3.2. Manipulation check 

To check if the manipulation of the dimensionality of the visualiza-
tion did indeed influence the participants’ perception of the application, 
the ARcis Questionnaire was administered. With dimensionality as part 
of the AR characteristic spatiality, we expected that spatiality would be 
perceived as higher for the 3D AR representation than the 2D AR rep-
resentation, while this would not be the case for contextuality and 
interactivity. In a one-sided Mann-Whitney U test, we found that spati-
ality was indeed perceived as higher in the 3D condition (M3D = 5.02, 
SD3D = 1.17) than the 2D condition (M2D = 3.38, SD2D = 1.15), U =
871.50, p < .001, d = 1.41, 95% CI [1.01, 1.80]. The effect size for this 
difference is very large, meaning that the manipulation of the dimen-
sionality had the expected influence on the perceived spatiality. Sig-
nificant differences were also found between the groups in two-sided 
Welch’s t-tests concerning the perceived contextuality (M3D = 4.44, 
SD3D = 1.14; M2D = 3.95, SD2D = 1.15), t(148) = 2.59, p = .010, d =
0.42, 95% CI [0.10, 0.75], and the perceived interactivity (M3D = 3.89, 
SD3D = 1.21; M2D = 3.32, SD2D = 1.21), t(148) = 2.90, p = .004, d =
0.47, 95% CI [0.14, 0.80]. The participants in the 3D condition 
perceived both variables as higher than the participants in the 2D con-
dition. These results were not expected, although the effect sizes were 
much lower than for the perceived spatiality. The manipulation of the 
dimensionality did thus not only have an influence on the perceived 
spatiality, but also the perceived interactivity and contextuality, 
although the influence on perceived spatiality was highest. This needs to 
be taken into account when interpreting the results. 

3.3. Knowledge 

Spatial Components Knowledge. H1a, in which it was proposed that 
learners using the 3D AR model of the human heart would have more 
resulting knowledge on the position of the components of the human 
heart than learners using the 2D AR graphic, was tested using the results 
from the spatial: components part of the knowledge test. Participants 
could receive between 0 and 16 points on that part of the test, and 

participants in the 3D condition (M3D = 4.56, SD3D = 2.17) had an 
average score that was descriptively more than 0.5 points higher than 
for participants in the 2D condition (M2D = 4.00, SD2D = 2.45). These 
results can also be seen in Fig. 4(a). In a Shapiro-Wilk test we did not find 
a normal distribution of the spatial components knowledge variable in 
either group, 3D (W = 0.97, p = .044) or 2D (W = 0.95, p = .007). We 
thus subsequently used a one-sided Mann-Whitney U test with the 
dimensionality of the visualization as a grouping and the spatial com-
ponents knowledge test score as an outcome variable, which showed no 
significant difference between the groups, U = 2427.50, p = .073, d =
0.24, 95% CI [− 0.08, 0.56]. Although descriptively the results were as 
expected, H1a was not supported: viewing the 3D visualization of the 
human heart did not lead to a significantly higher knowledge of posi-
tions of the heart’s components than viewing the 2D visualization. 

Spatial Relations Knowledge. To test H1b, in which it was proposed 
that learners using the 3D AR model of the human heart have more 
resulting knowledge concerning the spatial relations between compo-
nents of the human heart than learners using the 2D AR graphic, the 
results from the spatial: relations part of the knowledge test were con-
sulted. Participants could receive between 0 and 5 points on that part of 
the test, and participants in the 3D condition (M3D = 2.69, SD3D = 1.10) 
had an average score that was descriptively about 0.45 points higher 
than for participants in the 2D condition (M2D = 2.25, SD2D = 1.21). 
These results can also be seen in Fig. 4(b). In a Shapiro-Wilk test we did 
not find a normal distribution of the spatial relations knowledge variable 
in either group, 3D (W = 0.91, p < .001) or 2D (W = 0.93, p < .001). We 
thus subsequently used a one-sided Mann-Whitney U test with the 
dimensionality of the visualization as a grouping and the spatial re-
lations knowledge test score as an outcome variable. The difference 
between the groups was significant with a small effect size, U = 2233.00, 
p = .012, d = 0.38, 95% CI [0.05, 0.70]. H1b was thus supported: 
viewing the 3D visualization of the human heart led to a higher 
knowledge of the spatial relations between the heart’s components than 
viewing the 2D visualization. Because the difference in H1a was not 
significant, the subsequent analyses concerning spatial knowledge (H2e 
and H2d, H3a and RQ3b) will only be executed for the spatial relations 
knowledge, for which a significant difference was found in H1b. 

General Knowledge. To test H1c, in which it was proposed that the two 
groups with different visualizations would be equal concerning the 
resulting knowledge on the general part of the test, we executed an 
equivalence test. Participants could receive between 0 and 5 points on 
the general part of the test, and participants in the 3D condition (M3D =

3.00, SD3D = 0.99) descriptively had a slightly higher average score than 
participants in the 2D condition (M2D = 2.77, SD2D = 1.10). These re-
sults can also be seen in Fig. 4(c). In a Shapiro-Wilk test we did not find a 
normal distribution of the general knowledge variable in either group, 
3D (W = 0.90, p < .001) or 2D (W = 0.90, p < .001). Due to the large 
sample size (n = 75 per condition), our sample is likely quite robust to 
violations of the assumption of normality [69], so we used the two 
one-sided t-test (TOST) to test for equivalence of the groups. Equivalence 
bounds at Cohen’s d = +/− 0.32 translated to raw bounds at +/− 0.33 
and thus approximately a difference of one third of a point in the raw 
scores of the general knowledge test in the two groups. The hypothesis 
that general knowledge was equivalent in the two conditions was not 
supported, 90% CI for d [− 0.06, 0.49], lower bound, t(146.34) = 3.29, p 
< .001, upper bound, t(146.34) = − 0.63, p = .265 (see also Fig. 5). 
Descriptively, and as seen in Fig. 4(c), the 3D group had a slightly higher 
knowledge than the 2D group. However, an additional Mann-Whitney U 
test did not show a significant difference between the groups, U =
2410.00, p = .116, d = 0.22, 95% CI [− 0.11, 0.54]. Overall, H1c was 
thus not supported: viewing the 2D graphic of the human heart did not 
lead to the same general knowledge as viewing the 3D model within the 
assumed bounds, although the scores also did not differ significantly. 
This shows that we do not have enough data to conclude that no effect is 
present, but also not enough data to conclude that an effect is present 
[62]. 

Table 1 
Kendall’s τ correlations of belief, expectancy and value subscales with knowl-
edge test results split by group.    

Belief Expectancy Value 

Spatial components 
knowledge 

3D (n = 75) .28* .28* .22 
2D (n = 75) .10 .13 .08 
All (N =
150) 

.17* .20* .14 

Spatial relations knowledge 3D (n = 75) .07 .01 .10 
2D (n = 75) .02 .10 − .05 
All (N =
150) 

.01 .05 − .01 

General knowledge 3D (n = 75) .07 .04 − .01 
2D (n = 75) .05 .21 .08 
All (N =
150) 

.04 .11 .02 

Note. * p < .05. 
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3.4. Cognitive load 

Extraneous cognitive load. To test H2a, in which it was proposed that 
learners using the 3D AR model of the human heart have a lower ECL 
during the task than learners using the 2D AR graphic, the results from 
the ECL subscale of the cognitive load questionnaire by Klepsch et al. 
[57] were consulted. The scores could range from 1 to 7, and partici-
pants in the 3D condition (M3D = 2.64, SD3D = 1.08) had an average 
score that descriptively was indeed lower than for participants in the 2D 
condition (M2D = 2.90, SD2D = 1.27). These results can also be seen in 
Fig. 7(a). In a Shapiro-Wilk test we did not find a normal distribution of 
the ECL variable in either group, 3D (W = 0.95, p = .005) or 2D (W =
0.95, p = .003). We thus subsequently used a one-sided Mann-Whitney U 
test with the dimensionality of the visualization as a grouping and the 
ECL subscale test score as an outcome variable, which showed no sig-
nificant difference between the groups, U = 2517.00, p = .133, d =
− 0.21, 95% CI [− 0.54, 0.11]. H2a was thus not supported: viewing the 

3D visualization of the human heart did not lead to a significantly lower 
ECL than viewing the 2D visualization. 

Germane cognitive load. H2b, in which it was proposed that learners 
using the 3D AR model of the human heart have a higher GCL during the 
task than learners using the 2D AR graphic, was tested using results from 
the GCL subscale of the cognitive load questionnaire. The scores could 
range from 1 to 7, and participants in the 3D condition (M3D = 5.40, 
SD3D = 1.10) indeed descriptively had a higher average score than 
participants in the 2D condition (M2D = 5.10, SD2D = 1.10). These re-
sults can also be seen in Fig. 7(b). In a Shapiro-Wilk test we did not find a 
normal distribution of the GCL variable in either group, 3D (W = 0.95, p 
= .003) or 2D (W = 0.94, p = .001). We thus subsequently used a one- 
sided Mann-Whitney U test with the dimensionality of the visualization 
as a grouping and the GCL subscale score as an outcome variable. The 
difference between the groups was significant with a small effect size, U 
= 2363.00, p = .045, d = 0.28, 95% CI [− 0.05, 0.60]. H2b was thus 
supported: viewing the 3D visualization of the human heart led to a 
significantly higher GCL than viewing the 2D visualization. 

Intrinsic cognitive load. In H2c it was proposed that learners using the 
3D AR model of the human heart would be equal in ICL during the task 
as learners using the 2D AR graphic. This was tested using results from 
the ICL subscale of the cognitive load questionnaire. The scores could 
range from 1 to 7, and participants in the 3D condition (M3D = 3.63, 
SD3D = 1.31) indeed descriptively had nearly the same average score as 
participants in the 2D condition (M2D = 3.68, SD2D = 1.22) with a mean 
difference of only 0.05 points. These results can also be seen in Fig. 7(c). 
In a Shapiro-Wilk test we found a normal distribution of the ICL variable 
in both groups, 3D (W = 0.97, p = .073) and 2D (W = 0.97, p = .071). To 
test for equivalence of the groups, again a two one-sided t-tests (TOST) 
equivalence test was executed. Equivalence bounds at Cohen’s d =
+/− 0.32 translated to raw bounds at +/− 0.41 and thus a difference of a 
bit more than one third of a point in the raw scores of the ICL subscale in 
the two groups. The hypothesis that ICL was equivalent in the two 
conditions was supported, 90% CI for d [− 0.40, 0.29], lower bound, t 
(147.31) = 1.70, p = .045, upper bound, t(147.31) = − 2.22, p = .014 
(see also Fig. 6). A one-sided t-test also showed no significant difference 
between the groups, t(147.31) = − 0.26, p = .797, d = − 0.04, 95% CI 
[− 0.36, 0.28]. H2c was thus supported: viewing the 3D model of the 
human heart led to a similar ICL as viewing the 2D graphic within the 
assumed bounds. 

Fig. 4. Distribution of (a) spatial components knowledge, (b) spatial relations knowledge and (c) general knowledge test scores split by group [boxplot with IQR 
(filled), mean with bootstrapped 95% CI (white), violin plot for distribution (outline)]. 

Fig. 5. Result TOST equivalence test for general knowledge showing the 90% 
CI for raw mean difference [-0.06, 0.51] and raw bounds at +/-0.33. The 90% 
CI ends above the upper bound, showing no equivalence inside these bounds. 
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3.4.1. Mediation of the relationship between dimensionality and spatial 
relations knowledge 

Mediation analyses were used to test H2d and H2e, in which medi-
ation of the influence of the dimensionality on the spatial knowledge 
was proposed. Specifically, H2d suggested that the 3D visualization 

would lead to lower ECL, which would in turn lead to a higher spatial 
knowledge. For the analysis, the dimensionality of the visualization was 
used as a predictor, while the score on the ECL subscale was used as a 
mediator and the score on the spatial relations knowledge test part was 
used as an outcome variable in the model. A summary of the results for 
the model including completely standardized effect sizes (β) are shown 
in Fig. 8(a). While path b (ECL on spatial relations knowledge) showed a 
significant regression coefficient, b = − 0.24, 95% CI [− 0.40, − 0.08], SE 
= 0.08, β = − .24, z = − 2.89, p = .004, for path a (dimensionality on 
ECL) no significant regression was found, b = − 0.25, 95% CI [− 0.64, 
0.11], SE = 0.19, β = − .11, z = − 1.31, p = .189. The indirect effect of the 
dimensionality of the visualization over ECL on spatial relations 
knowledge was also not significant, b = 0.06, 95% CI [− 0.03, 0.18], SE 
= 0.05, β = .03, z = 1.15, p = .250. Although descriptively the data point 
into the right direction with a negative effect of the 3D visualization on 
ECL and in turn a negative effect on spatial relations knowledge, the 
mediation of the relationship by ECL and thus H2d is not supported. 

Additionally, the other mediation hypothesis H2e suggested that the 
3D visualization would lead to higher GCL, which would in turn lead to 
higher spatial knowledge. For the analysis, the dimensionality of the 
visualization was again used as a predictor, while the score on the GCL 
subscale was used as a mediator and the score on the spatial relations 
knowledge test part was used as an outcome variable in the model. A 
summary of the results for the model including completely standardized 
effect sizes (β) are shown in Fig. 8(b). While path b (GCL on spatial re-
lations knowledge) showed a significant regression coefficient, b = 0.40, 
95% CI [0.25, 0.55], SE = 0.08, β = .38, z = 5.26, p < .001, for path a 
(dimensionality on GCL) no significant regression was found, b = 0.31, 
95% CI [− 0.05, 0.66], SE = 0.18, β = .14, z = 1.71, p = .087. This differs 
from the results concerning the difference between the groups in GCL 
(H2b), because that hypothesis was tested with a one-sided test, while 

Fig. 6. Result TOST equivalence test for ICL showing the 90% CI for raw mean 
difference [-0.40, 0.29] and raw bounds at +/-0.41. The 90% CI ends below the 
upper bound and above the lower bound, showing equivalence inside 
these bounds. 

Fig. 7. Distribution of (a) ECL, (b) GCL and (c) ICL subscale scores split by group [boxplot with IQR (filled), mean with bootstrapped 95% CI (white), violin plot for 
distribution (outline)]. 

Fig. 8. Meditation model for (a) H2d and (b) H2e including completely standardized effect sizes (β) and significance levels for all effects, including the indirect effect. 
Significance levels: * p < .05, ** p < .01, *** p < .001. 
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this is not the case for the regression in this mediation model. The in-
direct effect of the dimensionality of the visualization over GCL on 
spatial relations knowledge was also not significant, b = 0.12, 95% CI 
[− 0.02, 0.29], SE = 0.08, β = .05, z = 1.58, p = .114. Although 
descriptively the data point into the right direction with a positive effect 
of the 3D visualization on GCL and in turn a positive effect on spatial 
relations knowledge, the mediation of the relationship by GCL and thus 
H2e is not supported. 

3.5. Mental rotation abilities as moderator 

To measure mental rotation abilities, the score on the mental rota-
tion test (MRT) by Peters et al. [81] was used. Scores could range from 
0 to 24 and the mean score for the whole sample in the study was 12.36 
with a standard deviation of 5.49. In H3a and RQ3b it was proposed that 
the path from the predictor (the dimensionality of the visualization) to 
the mediator (the two different cognitive load types) specified in the 
mediation models in H2d and H2e would be moderated by mental 
rotation abilities. Specifically, it was suggested that learners with lower 
mental rotation abilities would profit more from the 3D visualization, 
leading to a bigger decrease in ECL and a bigger increase in GCL and in 
turn to higher spatial knowledge. 

To first explore how mental rotation abilities may generally mod-
erate the influence of the dimensionality of the visualization on the 
spatial relations knowledge found in H1b without including the medi-
ation, a moderation model was applied to the data with dimensionality 
of the visualization as the predictor, spatial relations knowledge score as 
the outcome, and MRT score as the moderator variable. The MRT score 
was centered around the grand mean so that the results can be inter-
preted more easily. In Fig. 9(a), the interaction effect of the dimen-
sionality and the MRT score on spatial relations knowledge can be seen, 
which is significant, F(1, 146) = 4.64, p = .033, ω2 = 0.02. In a subse-
quent simple slope analysis, this interaction was further specified. In 
Fig. 9(b) it can be seen that participants with a higher MRT score (mean 
+ 1SD) profit most from 3D in comparison to 2D (b = 0.85, 95% CI 
[0.32, 1.37], SE = 0.27, t(146) = 3.19, p = .002) with a mean increase of 
0.85 points in the knowledge test, while participants with a lower MRT 
score (mean – 1SD) do not profit from it at all (b = 0.03, 95% CI [− 0.50, 
0.56], SE = 0.27, t(146) = 0.11, p = .912). Participants with an average 

MRT score also profit from 3D in comparison to 2D (b = 0.44, 95% CI 
[0.07, 0.81], SE = 0.19, t(146) = 2.34, p = .020), although not as much 
as the more skilled participants with a mean increase of 0.44 points in 
the knowledge test. This shows that learners with higher mental rotation 
abilities benefitted more from the 3D visualization in comparison to the 
2D visualization. When looking at H3a and RQ3b, this relationship 
displays the opposite of the effect that was expected, which was that 
learners with lower mental rotation abilities would benefit more from 
the 3D visualization. 

As seen in the mediation analyses (H2d and H2e), the estimated ef-
fects of the a-paths in the models (influence of dimensionality on ECL 
and GCL) did not differ significantly from zero. Adding mental rotation 
abilities as a moderator to that path, as suggested in H3a and RQ3b, may 
further clarify the relationship. To test H3a, a moderated mediation 
model was specified based on the mediation model in H2d with a con-
ditional indirect effect as a function of mental rotation abilities which 
was added as a moderator to the effect of dimensionality on ECL. The 
interaction of dimensionality and MRT on ECL (moderation of path a) 
can be seen in Fig. 10(a). Here it can be seen that in the 3D condition ECL 
decreases when mental rotation abilities increase, while in the 2D con-
dition it stays around the same level. This interaction is not significant, F 
(1, 146) = 1.31, p = .254, ω2 < 0.01. Although the effect is not signif-
icant, we further descriptively explore the mediation models on the 
different levels. Due to the nature of the moderated mediation model, 
the mediation models for each level of MRT (Mean - 1SD, Mean, Mean +
1SD) only differ on the moderated path a and thus the indirect effect 
from the already established model in H2d. In Table 2 (a), the stan-
dardized effects for the three levels on path a and the indirect effect and 
their p-values are shown. Although the moderation is not significant, a 
direction of change from lower to higher MRT score can be seen in the 
descriptive values. The regression coefficient of path a is negative for all 
three MRT score levels, showing that participants in the 3D condition 
scores lower than those in the 2D condition on the ECL subscale on all 
levels. This difference grows with a higher MRT score, showing that the 
score on the ECL subscale when using the 3D visualization in comparison 
to the 2D visualization decreases even more when the MRT score is 
higher. The indirect effect and thus the mediation over ECL, in contrast, 
is positive for all levels and increases with higher mental rotation abil-
ities. Descriptively, students with higher mental rotation abilities thus 

Fig. 9. (a) Interaction effect between dimensionality of visualization and MRT score on spatial relations knowledge, and (b) simple slopes of the MRT score levels 
concerning the effect of the visualization on spatial relations knowledge. 
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benefit from the 3D visualization in a way that it decreases their ECL and 
in turn increases their spatial relations knowledge. This moderation is 
not significant, and it is also contrary to the moderation that was pro-
posed in H3a, were it was suggested that especially learners with low 
mental rotation abilities would profit from using the 3D visualization. 
H3a was thus not supported by the data. 

To explore through RQ3b whether the proposed moderated media-
tion is present in the same model but with GCL instead of ECL as a 
mediator variable, another moderated mediation model was tested. The 
interaction of dimensionality and MRT on GCL (moderation of path a) 
can be seen in Fig. 10(b). There, in the 3D condition GCL increases when 
mental rotation abilities increase, while in the 2D condition it decreases. 
This interaction is not significant, F(1, 146) = 3.74, p = .055, ω2 = 0.02. 
Although the effect is not significant, we further descriptively explore 
the mediation models on the different levels. In Table 2 (b) the stan-
dardized effects for the three levels on path a and the indirect effect and 
their p-values are shown again. Although the moderation is not signifi-
cant, again a direction of change from lower to higher MRT score can be 
seen in the descriptive values. The regression coefficients of path a and 
the indirect effect are negative for the low MRT level and positive for the 
average and high level, showing that the 3D condition scores higher than 
the 2D condition on the GCL subscale when MRT is average or higher. 
This difference grows with a higher MRT score. Descriptively, students 
with higher mental rotation abilities thus benefit from the 3D visuali-
zation in a way that it increases their GCL and in turn increases their 
spatial relations knowledge. Although the moderation is not significant 
overall, the indirect effect of the mediation is significant when the MRT 

score is high, showing that GCL partially mediates the effect of dimen-
sionality on spatial relations knowledge for this level of ability. Because 
this moderation is not significant and the descriptive values are again 
contrary to the moderation that was proposed in RQ3b, were it was 
suggested that especially learners with low mental rotation abilities 
would benefit from using the 3D visualization, RQ3b was thus also not 
supported by the data. 

4. Discussion 

The goal of the study presented in this paper is to shed light on how 
and under which conditions a 3D presentation in AR may be better 
suited for learning about spatial aspects of an object than a 2D presen-
tation in AR, by answering the research questions “How does the 
dimensionality of the visualization of a 3D object in AR influence 
cognitive load and learning outcomes, and which role do spatial abilities 
play in this relationship?”. Concerning the first research question, it was 
shown that, as expected, learners who received the 3D AR presentation 
had higher resulting spatial relations knowledge about the object, but 
not higher resulting general knowledge about the topic. While we did 
find that at least GCL during the learning task was influenced by the 
form of presentation and both ECL and GCL during the task had an in-
fluence on spatial relations knowledge, we did not find that self-reported 
ECL or GCL generally mediated the influence of the presentation on 
spatial relations knowledge. For the second research question concern-
ing mental rotation abilities as a specific form of spatial abilities, we 
found that learners with average and high mental rotation abilities 
showed higher resulting knowledge when receiving the 3D but not the 
2D presentation, while for learners with low mental rotation abilities 
this was not the case. This moderation was furthermore, at least partly, 
found in the influence of the form of presentation on cognitive load 
arising from GCL, where for learners with high mental rotation abilities 
the effect of the presentation on spatial relations knowledge was medi-
ated by GCL cognitive load, while this was not the case for learners with 
average and low mental rotation abilities. 3D AR visualizations may thus 
be especially valuable for learning spatial structures of objects, although 
higher mental rotation abilities may be necessary to process the infor-
mation so that it leads to better learning outcomes. In the following 
sections, those results and their implications are discussed in more 
detail. 

Fig. 10. Scatterplot including interaction of MRT and visualization on (a) ECL and (b) GCL.  

Table 2 
Completely standardized effect sizes (β) and p-values for the relevant effects 
(computed with bootstrap percentiles method with 10,000 samples) in the (a) 
ECL and (b) GCL mediation model for different levels of MRT score.   

Mean - 1 SD Mean Mean þ 1 SD  
β p-value β p-value β p-value 

(a) ECL model:       
Path a − .02 .862 − .11 .154 − .21 .067 
Indirect Effect − .00 .863 .03 .196 .05 .114 
(b) GCL model:       
Path a − .02 .878 .14 .079 .30 .012* 
Indirect Effect − .01 .880 .05 .108 .11 .036*  
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4.1. Knowledge 

Concerning the resulting knowledge of the learners using the 3D or 
2D presentation of the human heart in the study, it was hypothesized 
that spatial components knowledge (H1a) and spatial relations knowl-
edge (H1b) would be higher for the learners working with the 3D pre-
sentation, while general knowledge (H1c) would be the same for both 
groups. The hypothesis concerning spatial components knowledge was 
not supported, as this type of knowledge was only descriptively but not 
significantly higher in the 3D group. We found support for the hypoth-
esis concerning spatial relations knowledge, showing that this type of 
knowledge was indeed higher for learners in the 3D group, although 
only with a small effect size. General knowledge was not equivalent in 
the two conditions with a score descriptively higher in the 3D group, so 
that this hypothesis is not supported, but also no significant difference 
was found between the groups. These outcomes show that only the result 
in the spatial relations part of the knowledge test was influenced by the 
dimensionality of the representation of the human heart. Neither spatial 
components knowledge nor general knowledge was significantly influ-
enced, although it seems that the 3D group may have had at least a small 
advantage as seen in the descriptive results. 

An explanation for why the spatial components knowledge did not 
differ significantly between the groups could be that its relation to the 
dimensionality of the presentation was not as extensive as we expected. 
The score on this test may have been more dependent on the recall of the 
exact terms than the spatial structure, although we did try to avoid that 
by coding all written terms that somehow resembled the correct term as 
correct. Furthermore, in comparison to spatial relations knowledge, less 
interacting information needs to be kept in memory, so that the support 
that the 3D visualization offers for building a correct 3D mental model of 
the human heart may not be as necessary. General knowledge probably 
was not the same in the two groups because although the questions 
aimed at topics explained in the text, some of them might have also had 
a connection to the dimensionality of the visual representation. In 
general, these results show that using a 3D presentation of an object in 
AR can lead to higher knowledge especially about more complex spatial 
aspects of the object but not necessarily to higher general knowledge 
about the topic. This supports the general notion that viewing 3D con-
tent is a main feature of AR, that AR can support spatial learning and 
that AR should be used in especially spatial areas (see, e.g., [20,85, 
105]), but further connects these ideas, showing that the virtual com-
ponents in the AR material should be 3D rather than 2D to leverage the 
advantages concerning spatial learning. Furthermore, the distinction 
between different kinds of knowledge provides more detailed insights, 
showing that specifically learning of spatial structure of objects can be 
supported with 3D visualizations in AR, while learning about more 
general aspects is not necessarily improved. 

4.2. Cognitive load 

The hypotheses we proposed concerning differences between the 
groups in cognitive load stated that ECL would be lower (H2a) and GCL 
higher (H2b) with the 3D than with the 2D visualization, while ICL 
would be the same in the two groups (H2c). The results of the study did 
not support the hypothesis concerning ECL, showing that this type of 
load was not influenced significantly by the dimensionality of the 
visualization. The hypothesis concerning GCL was supported with this 
type of load being significantly higher for learners receiving the 3D AR 
visualization than for learners receiving the 2D AR visualization. These 
results suggest that although extraneous cognitive processing caused by 
the dimensionality of the representation is not significantly reduced, 
germane processing is indeed increased. In combination with the results 
concerning the increased spatial relations knowledge in the 3D group, 
this suggests that through the 3D AR visualization, learners could pro-
cess the object more completely and more correctly into a mental model. 

A potential explanation for why ECL was not lower when using the 

3D in comparison to the 2D AR representation although the findings in 
the literature suggested it would have been, is that the learning task was 
different from learning material in other studies using 3D visualization. 
When looking at the material in the study by Stull and Hegarty [92], for 
example, which found a significant effect of the visualization on learning 
and attributed this to reduced cognitive load, it is clear that the trans-
formation from 2D to 3D representations of molecules is the focus of the 
study. For the present study, no transformation of the 2D picture of the 
human heart into a 3D mental model was necessary as part of the 
learning task, so that the learners in the 2D condition may not have built 
a 3D mental model of the object at all. This would explain why ECL, 
which we hypothesized would come from a mental transformation of the 
dimensionality of the visualization, did not differ. It would also explain 
why GCL, which we hypothesized would come from the building of a 3D 
mental model of the object, did differ. It is also in accordance with the 
results showing that spatial relations knowledge was higher for the 
group with the 3D visualization, because the building of the 3D mental 
model prompted by the 3D AR visualization may have provided the 
learners with more correct and complete spatial relations knowledge. 

Another possible explanation why ECL did not differ was that in 
general the load elicited by the task may not have been high enough to 
show a difference between the two conditions. In another study that 
showed a lower cognitive load measured both subjectively and objec-
tively, the representations were used to execute a paper-folding task 
[26]. The learners thus had to physically interact with material while 
watching the representations, so that cognitive load may have in general 
been higher and the usage of the 3D representations more relevant than 
in the present study. 

The assumption of equivalent ICL in the two groups was supported. 
This suggests that the amount of cognitive processing depending on the 
content of the material was very similar with the 3D and the 2D visu-
alization and that differences in cognitive load may indeed be attributed 
to the presentation of the material and not a difference in complexity. 
We thus found different results concerning the three kinds of cognitive 
load, namely equivalence for ICL, descriptively higher ECL in 2D, and 
significantly higher GCL in 3D, which shows that differentiating be-
tween them was important for the present study, because the differences 
in ECL may have canceled out the differences in GCL when only 
measuring cognitive load in general. 

Concerning the relationship of dimensionality of visualizations, 
cognitive load, and knowledge, two mediation hypotheses were 
formulated and tested. We proposed that extraneous (H2d) and germane 
cognitive processing (H2e) would mediate the effect of the dimension-
ality on spatial relations knowledge. For both hypotheses, no significant 
mediation effect was found. Still, as expected, the direction of the effect 
of dimensionality on extraneous cognitive processing was descriptively 
negative, while the effect of extraneous cognitive processing on spatial 
relations knowledge had a significant negative relation. In the second 
mediation, as expected, the direction of the effect of the dimensionality 
on germane cognitive processing was descriptively positive, while the 
relation of germane cognitive processing to spatial relations knowledge 
also showed a significant positive effect. The significant relations show 
that the different types of cognitive processing had the expected influ-
ence on the learning outcomes concerning spatial relations knowledge. 

While cognitive load has been assumed an important aspect in 
learning about 3D objects and learning in AR, its specific examination in 
the context of AR-based education is still scarce. In a mapping review, 
Buchner and colleagues [13] found 64 studies that looked at cognitive 
load in AR, but only one study used the tripartite differentiation of 
intrinsic, extraneous, and germane cognitive load proposed by cognitive 
load theory [97], which was found to be important in the present study. 
Furthermore, a high proportion (73%) of the studies in the review were 
media comparison studies. Lee [65], for example, found a decrease in 
both mental effort and mental load after learners had trained with 3D AR 
models instead of only 2D drawings, but these results may have been 
confounded by different factors, for example the different interactive 
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possibilities in the AR condition, the novelty of AR in comparison to just 
drawings. In the present study, we tried to limit all potential con-
founding factors, so that the increase in germane cognitive load and the 
descriptive decrease in extraneous cognitive load can be attributed to 
the dimensionality of the visualization. 

4.3. Mental rotation abilities 

The moderation analyses that were executed concerning the 
learners’ mental rotation abilities can be used at least partially to explain 
why no general mediation effect of cognitive load was found. In a pre-
liminary general moderation analysis, we found that the influence of the 
dimensionality of visualization on spatial relations knowledge was 
moderated by mental rotation abilities: the higher the abilities, the more 
the learners profited from using the 3D representation, in comparison to 
the 2D representation. Instead of supporting the ability-as-compensator 
hypothesis, as was hypothesized, the results rather supported the ability- 
as-enhancer hypothesis. It is thus in accordance with the results from the 
study by Huk [49] and not with the results from the meta-review by 
Höffler [46]. Learning with 3D AR may be a special case of spatial 
learning, due to the additional spatial information through perspective 
changing and reference to the real world, so that the results from studies 
with non-AR 3D material may not be completely transferable to AR. The 
present study thus adds insights on the role of spatial abilities and spe-
cifically mental rotation abilities in the specific case of 3D AR 
visualizations. 

Specifically, we proposed that the effect of the visualization on 
extraneous cognitive processing would be moderated by the mental 
rotation abilities of the learners (H3a). This was not supported by the 
data, which showed no significant interaction effect and descriptive 
values opposite of what we expected. We also wanted to explore if the 
effect of the visualization on germane cognitive processing was 
moderated by learners’ mental rotation abilities (RQ3b). This was not 
the case, with again no significant moderation effect and descriptive 
values opposite of what we expected. Descriptively, we found that for 
learners with higher mental rotation abilities, the 3D AR visualization 
decreased the extraneous cognitive processing, while it also descrip-
tively increased the germane processing, which both led to increased 
knowledge concerning spatial aspects of the human heart. As part of the 
moderated mediation in RQ3b, a significant mediation of the influence 
of the dimensionality on the spatial relations knowledge through 
germane cognitive processing was found for learners with higher mental 
rotation abilities. 

The results can be explained by the fact that 3D AR visualizations 
convey more information than 2D AR visualizations, namely additional 
spatial information. We expected that this additional information would 
support learners with low mental rotation abilities to more easily build 
an accurate mental model. Instead, the results suggest that learners with 
high mental rotation abilities had the tools to build more correct and 
comprehensive mental models from the 3D visualizations, but low 
abilities learners did not. For learners with high mental rotation abilities 
learning with the 3D visualization we found that germane processing 
was increased, and it mediated the effect of visualization on spatial re-
lations knowledge. These results suggest that learners with high mental 
rotation abilities could use their resources to build a mental model of the 
human heart and thus learn more from 3D AR, while learners with low 
mental rotation abilities could not. It is possible that the lack of a sig-
nificant mediation through ECL was due to not needing to transform the 
2D AR visualization into a 3D mental model, and this could also explain 
why in the 2D group no advantage arose from higher mental rotation 
abilities – they just did not play a role in the processing of the 2D AR 
visualization. 

Although we found in the general moderation model that mental 
rotation abilities moderated the influence of the dimensionality of the 
visualization on spatial relations knowledge, cognitive load could not 
completely be established as a variable to mediate the effect, so it is 

important to also look for other potential mediating factors. A study that 
looked at the usage of 3D AR visualizations of molecules to solve tasks 
concerning chemistry, for example, found sex difference showing that 
while men profited from the 3D visualizations, women profited from 2D 
visualizations [43]. Further analyses excluded the possibility that this 
was due to differences in spatial abilities, so that this was an additional 
factor that could play a role when learning with 3D AR visualizations, 
for example due to increased familiarity and experience with 3D objects 
(e.g., because of more experience with 3D video games on average) in 
men. This factor of familiarity is important to be inspected in future 
studies on learning with and about 3D objects. 

4.4. Implications 

In general, the present study used a research approach that differs 
from most other studies on AR-based learning, which often use a media 
comparison approach, comparing an AR application to, for example, a 
traditional medium like a book or a less traditional medium like a non- 
AR simulation. Media comparison studies have been widely criticized 
due to some challenges, for example, the uncontrollability of con-
founding variables and the missing knowledge about the media and 
learner attributes that make a medium effective [94]. Alternative studies 
that have been proposed by Surry and Ensminger are intra-medium 
comparison studies and aptitude-treatment-interaction studies. In the 
present study, we used both approaches, manipulating a specific attri-
bute of an AR-based learning experience, namely dimensionality, and 
taking a closer look at how this attribute has an effect on learners with 
different characteristics, namely mental rotation abilities. By focusing 
on this specific attribute, other confounding variables were limited and 
the effect of dimensionality on knowledge and cognitive load was 
established, dependent on the learners’ mental rotation abilities. 
Investigating mental rotation abilities as a potentially moderating var-
iable provided a more nuanced picture, showing that the effects we 
found for knowledge and cognitive load were not present for learners 
with lower mental rotation abilities. 

The results concerning the knowledge test show that learning about 
spatial aspects like the spatial relations between components of an ob-
ject may be supported by using 3D instead of 2D AR visualizations. This 
should be taken into account when designing AR applications with the 
goal of supporting the forming of mental models of spatial objects or 
structures, but also in general when choosing whether to transport in-
formation through 2D or 3D visualizations. 

The results concerning the differences in cognitive load between the 
conditions suggest that germane cognitive processing seems to be 
encouraged but extraneous cognitive processing may not necessarily be 
decreased when a 3D AR visualization in comparison to a 2D AR visu-
alization is used. Perhaps 3D representations encourage the building of a 
3D mental model even when the task is not directly related to the 
transformation of a 2D visualization into a (mental) 3D visualization, so 
that resulting knowledge about the object is more complete and correct. 
For practical applications this implies that when spatial aspects of an 
object are important for a subsequent task (like the knowledge test in the 
case of this study), using a 3D (AR) visualization can lead to a first 
building of a 3D mental model, but this might not occur when using a 2D 
(AR) visualization. 

Concerning mental rotation abilities, the results support the idea that 
it is important to take into account the cognitive abilities of learners 
when implementing 3D (AR) visualizations, because not everybody may 
learn from them in the same way. A parallel can be seen in research on 
the usage of static and dynamic visualizations, where it has also been 
found that people with lower spatial abilities benefit from dynamic vi-
sualizations, while people with higher spatial abilities do not [8,46]. 
Also, the benefit of a combination of spoken words and animations has 
been found to depend on spatial abilities, showing more benefits for 
students with higher spatial abilities [76]. Second, the present study 
specifically supports an ability-as-enhancer hypothesis. Although this is 
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contrary to what we expected based on the meta-review by Höffler [46], 
the present study provides new insights for the specific case of 3D AR 
material, which may be perceived differently from non-AR material due 
to the reference to the real world and the potential to move around it. 
The results expand the findings of another study on the role of spatial 
abilities in learning with 3D AR visualizations, which showed support 
for the ability-as-compensator hypothesis in the context of 3D spatial 
visualization abilities and learning task results, while showing support 
for the ability-as-enhancer hypothesis in the context of 2D spatial 
memory abilities and spatial knowledge test outcomes [3]. While 2D 
spatial memory abilities were not included in the present study, 3D 
spatial visualization abilities were measured with a different mental 
rotation test than in the referenced study. Both hypotheses seem to have 
a place in AR, but the specific abilities and the role they play for which 
learning processes and outcomes need to be further disentangled in 
future research. It is important to know which learners benefit from 
which sort of visualization. For this case, the potential gap between the 
learners can be closed, because it is possible to train learners’ spatial 
abilities [79]. New technologies that can visualize virtual 3D models like 
AR, VR, and desktop applications have the potential to help with this 
training (e.g., [22,31,74]). 

4.5. Limitations and future studies 

There were some limitations in the design and execution of the study. 
First, although the goal was to only manipulate dimensionality as a part 
of the spatiality of an AR visualization, the manipulation check showed 
that both interactivity and contextuality were also perceived as more 
pronounced in the 3D condition than in the 2D condition. This may on 
one hand imply that the manipulation of the dimensionality did not 
work as intended. On the other hand, this may show that dimensionality 
is related to not only spatiality, but that it is also interwoven with the 
other characteristics, so that it is difficult to measure them separately. 
Moving around a virtual 3D object might, for example, be perceived as 
different from moving around a virtual 2D graphic, and the context 
might receive a different meaning when an object floats above a scene 
than when it lies on a surface. We did not track or observe how the 
participants interacted with the applications, so we do not know if the 
interaction was indeed different for the two conditions. In future studies 
it would be interesting to see how exactly participants use the interactive 
potential of the applications and if different kinds of visualizations lead 
to different interaction. Furthermore, tracked or observed data con-
cerning interactive activities could be reviewed with a qualitative 
approach, providing deeper insights into the specific learning processes 
that take place and going beyond the systematic comparison of the 
experimental approach. This furthermore shows that it is important to 
differentiate between the technological implementation of an AR visu-
alization and how learners use and experience it. We tried to change the 
users’ experience of the spatiality by manipulating one spatial factor, 
namely the dimensionality of the visualization. This led to not only a 
difference in the perceived spatiality, but also the perceived interactivity 
and contextuality, which shows that the manipulation of one techno-
logical factor in AR can influence the whole psychological experience of 
the users. We plan to further develop and validate the ARcis question-
naire on the three characteristics of AR, so that in the future it may, for 
example, be used as a manipulation check in studies when the goal is to 
manipulate one of the characteristics, or to compare learners’ experi-
ence of two different AR applications concerning the three 
characteristics. 

While we focused on a spatial anatomy-related topic in the present 
study, the virtual object we used had some limitations. Because it was 
ultimately a three-dimensional cross-section of the human heart, the 3D 
representation was not as necessary as it would have been with an object 
that would be viewed from the outside. In biology education, 2D images 
of cross-sections of anatomical structures are often used, because they 
include most of the necessary information, as did the 2D AR 

representation that was used here. In the present study, an added value 
by the 3D visualization was still found, which may have only had to do 
with the encouragement of the building of a 3D mental model but not 
with the ease of understanding or processing of the representation. For 
an object for which the outer structure without a cross-section is the 
focus of a learning task (e.g., the structure of the modules of the inter-
national space station; the structure of buildings in a city), it may be 
even more important to visualize it in 3D. Furthermore, the complexity 
of the object may play a role here. The heart as an organ and its different 
components are of course very complex, but the content we used in the 
present study came from grade 5/6 schoolbooks, so that it was probably 
not that difficult for our participants to learn. As the complexity of a 
spatial structure increases, either because it is viewed on a deeper level 
or because the structure is so big that many different components are 
included, it may be even more useful to use a 3D AR visualization. A 
variation in the complexity of the spatiality of the structure and a 
replication of the results from this study with similarly complex material 
will be considered for future studies. 

Cognitive load was measured through a questionnaire based on 
subjective retrospective self-reports. This may be a problem, because 
learners may not always be able to monitor and have insights into their 
cognitive state. Especially learners with lower prior knowledge may not 
necessarily rate cognitive load as expected and may, for example, 
confuse ICL and ECL [110]. Furthermore, the state of cognitive load may 
change over time during the learning task, which cannot be tracked with 
just one post-task measurement. The questionnaire by Klepsch et al. [57] 
was chosen for the present study, because it differentiates between 
extraneous, germane, and intrinsic cognitive load, which was important 
for the hypotheses. Objective measures may be able to give a less biased 
picture of the cognitive load because no introspection is necessary, but 
the mapping of different objective measures and the three types of 
cognitive load is not straightforward. There have already been attempts 
to map physiological, objective measures like pupillary and 
eye-movement data captured with eye-tracking technologies to the in-
dividual types of cognitive load, but a lot more research is necessary in 
this area [53,109]. Still, collecting those data to confirm the general 
tendency of the self-reports may be interesting for future studies and 
especially the possibility to view the development of load over time may 
be an informative addition here. In general, the present study has shown 
that splitting cognitive load into the different types can be beneficial for 
gaining more detailed insights, which we believe will also be the case in 
other studies, so that self-report questionnaires may be a necessary tool 
but should be enriched through additional objective measurements. 

Although the participants in the study sample were randomly 
distributed to the two conditions except for a matching of gender be-
tween the two groups, the self-reported pre-knowledge concerning the 
learning topic differed between the groups. The other pre-measured 
variables (task value, task expectancy, mental rotation abilities) were 
also not equivalent in the two groups, although they did not differ 
significantly. The group who afterwards received the 2D AR visualiza-
tion rated their prior knowledge as higher than the group who after-
wards received the 3D version. This could have had an impact on both 
knowledge and cognitive load measures, especially content-related load. 
However, the knowledge test showed a higher resulting knowledge in 
the 3D than the 2D condition, so that the direction of the difference was 
even reversed from subjective prior to measured posterior knowledge. In 
future studies, this problem should be approached beforehand, so that 
the samples in the conditions are matched concerning their prior 
knowledge and potentially other important variables. An objective 
knowledge test could also be administered instead of a self-rating. Here 
we decided against a test so that we do not prime participants to focus on 
the spatial aspects because that was one potential effect of the 3D rep-
resentation which we did not want to diminish. 

In the present study, we focused on mental rotation abilities as one 
form of spatial abilities. There are, of course, also other spatial abilities 
that may play a role when processing a 3D visualization. It is quite 
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certain that those other abilities that we did not measure also played a 
role for the learners in the learning task in our study. In another study on 
learning of spatial structures, Krüger and Bodemer (2021) found that 
different kinds of spatial abilities had different moderating influence on 
learning tasks and outcomes. Future studies should also examine 
different spatial abilities including the roles they may play in the pro-
cessing of 3D AR visualizations and if the results of the present study can 
be generalized to other spatial abilities. 

The focus of the present study was on the manipulation of one spe-
cific factor of the visualization of an object in AR, namely the dimen-
sionality, which we propose to be part of the spatiality of AR 
visualizations. AR, of course, has much more potential than just adding a 
third dimension to a virtual element. Virtual 3D elements could also be 
dynamic (e.g., [19,52,89]), interactive (e.g., [21,33,34]), and embedded 
into a relevant context [7,50,86]. The interaction of these different 
factors that can play a role when visualizing virtual elements in AR, 
should be examined more closely, as they are often not used indepen-
dently but concurrently in AR applications. The chosen approach of 
intra-medium comparison and aptitude-treatment-interaction analysis 
provided some important advantages for the interpretation of the data. 
For example, confounding variables can be ruled out and the difference 
between effects in higher and lower mental rotation abilities learners 
could be detected. We suggest executing more studies including these 
approaches in the future. 

5. Conclusion 

All in all, the study provides some interesting findings concerning 
learning with 2D and 3D AR visualizations, its relation to cognitive load 
and the potential influence of mental rotation abilities. The 3D visuali-
zation of objects in AR can thus have a positive influence, increasing 
germane cognitive load and learning of spatial structures, although an 
adequate level of mental rotation abilities may be necessary for effective 
processing of the information. The study focuses on the dimensionality 
of the visualization as an isolated factor, while trying to keep all other 
potentially influential factors as similar as possible between the condi-
tions. Additionally, learners’ mental rotation abilities are taken into 
account. The results show that AR can be used to visualize a 3D repre-
sentation in a way that it is quite easy to receive by learners and can also 
lead to improved learning outcomes, especially for learners with higher 
mental rotation abilities. To establish a further empirical basis for the 
design and implementation of AR learning environments with a focus on 
spatial objects, more systematic and empirical research focusing on the 
dimensionality of representation as an important part of the AR char-
acteristic spatiality and its interaction with the other characteristics 
contextuality and interactivity is still necessary. Other learner charac-
teristics and skills should also be considered for research, to inform the 
design for specific target groups of AR-based learning applications. AR 
seems to have a bright future for education – if it is implemented 
adequately for specific learning goals. 
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[42] Guedes KB, de Sá Guimarães M, de S, Méxas JG. Virtual reality using stereoscopic 
vision for teaching/learning of descriptive geometry. In: Proceedings of the fourth 
international conference on mobile, hybrid, and on-line learning, ELmL. IARIA; 
2012. p. 24–30. 

[43] Habig S. Who can benefit from augmented reality in chemistry? Sex differences in 
solving stereochemistry problems using augmented reality. Br J Educ Technol 
2020;51(3):629–44. https://doi.org/10.1111/bjet.12891. 

[44] Hackett M, Proctor M. Three-dimensional display technologies for anatomical 
education: a literature review. J Sci Educ Technol 2016;25(4):641–54. https:// 
doi.org/10.1007/s10956-016-9619-3. 

[45] Hart SG, Staveland LE. Development of NASA-TLX (Task Load Index): results of 
empirical and theoretical research. Advances in psychology, 52. Elsevier; 1988. 
p. 139–83. https://doi.org/10.1016/S0166-4115(08)62386-9. 
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[58] Kösa T, Karakuş F. Using dynamic geometry software Cabri 3D for teaching 
analytic geometry. Proced Soc Behav Sci 2010;2(2):1385–9. https://doi.org/ 
10.1016/j.sbspro.2010.03.204. 
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Krüger, J. M., & Bodemer, D. (subm.). Positioning augmented reality information for learning in 

nature: An exploratory pilot study [Manuscript submitted for publication]. 
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Positioning augmented reality information for learning in nature: An exploratory pilot study 

Jule M. Krüger and Daniel Bodemer 

Abstract 
Background: Augmented reality (AR) is an innovative way of visualizing instructional information combining 

virtual and physical elements. One promising function concerns the placement of virtual information at 

contextually relevant points in physical natural environments. 

Method: We describe an exploratory pilot study examining the influence of this positioning on learning behavior, 

processes, and outcomes, using a tablet-based learning experience on local plants in nature. In a between-subjects 

design, information about local plants is either anchored to the corresponding plant or positioned in its vicinity but 

separated. We expect that the connection of virtual information and plants has a positive influence on learning 

behavior, immersion, motivation, germane cognitive load and learning outcomes. 

Findings: In interviews with 18 participants, we found that when learners received the learning material closer to 

the plants, they described to be more focused on them, feel more surrounded by the material, more motivated and 

showed different engagement with the learning material. The close availability of the plants was used to compare 

them to the virtual material. 

Contributions: The study provides first insights into potentially positive effects of positioning virtual information 

in AR close to corresponding physical objects. Future studies can build on this exploratory pilot study. 

 

1 Spatial integration in AR learning environments 

In multimedia learning, the placement of content including the spatial integration of multiple external 

representations is of general interest. This is, for example, described in the spatial contiguity principle 

(Mayer, 2020) and the split-attention effect (Ayres & Sweller, 2014), which both describe the necessity 

to place corresponding information close to each other. While in conventional multimedia design and 

research this usually focuses on a combination of text and pictures, in augmented reality (AR) a layer 

of information is added through the combination of physical and virtual elements. The integration of 

information may thus be especially relevant due to a potentially rich natural context provided by the 

physical environment. In AR, virtual content can be positioned at a specific place inside the natural 

physical world, which can be leveraged for location-based instructional opportunities. Information can 

be placed in thematically relevant or related physical environments, for example placing information 

about a tree within a forest, and it can be placed in relation to corresponding physical objects, for 

example anchoring virtual information about a tree to that specific tree in nature. This way, a thematic 

connection of the surrounding physical environment to virtual elements can be leveraged to support 

coherent knowledge construction. This unique aspect of AR has been described as part of the AR-

specific characteristic contextuality (Krüger et al., 2019). For an educational AR experience this means 

that instructional information can be displayed in a usually non-educational physical real-world context 

at a thematically relevant place and time. Contextual representations have been identified as a feature 

of AR that can be beneficial for conceptual learning, and the placement of information in real-world 

settings has been identified as beneficial for learners’ affective reactions (Schneider & Radu, 2022). 

AR applications have been characterized as rather place-dependent or place-independent 

(Dunleavy & Dede, 2014), with possible instances in between. Wetzel et al. (2011) use three categories 

when classifying mobile AR games concerning their dependence on the semantical location context 
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from low to high (1. independent, 2. loosely coupled, 3. dependent) and Reid et al. (2005) similarly 

describe three levels of meaningfulness of the surrounding place in mediascapes (1. arbitrary linkage, 

2. physicality, 3. particular location). This differentiation between an application that can be used 

anywhere and an application that is coupled to a certain kind of context (e.g., any tree or forest), but not 

an exact place (e.g., that specific tree or forest), may be helpful for the design and evaluation of 

educational AR experiences. Karapanos and colleagues (2012), for example, placed an access point to 

a narrative about a city either at a location independent of the narrative, at a location with a matching 

atmosphere, or at the original location with specific physical cues matching the narrative. Placing virtual 

information close to corresponding physical elements may especially play a role when learning material 

is connected to physical objects and places that cannot be found or moved somewhere else. This includes 

objects and places in nature which cannot themselves be designed or changed to display additional 

information, but which can be enriched through instructional information in an AR application. This 

way, educational information can be provided without intervening in the natural setting itself. 

Concerning the contextual link of real world and virtual elements in location-aware applications, 

the importance of contextually close coupling has been emphasized in the literature on narration-based 

experiences (Georgiou & Kyza, 2021; Karapanos et al., 2012). Here, mainly the potential for immersion 

within the environment and the narrative have been highlighted. While Georgiou and Kyza (2021) also 

found positive effects of close coupling on learning gains in the form of reasoning, their study also 

focused on a narrative experience supported by physical locations. The spatial integration of virtual and 

physical elements can, however, also be leveraged in non-narrative educational settings. As described 

above, through AR, educational information can be situated in a relevant context (Dunleavy & Dede, 

2014), facilitating authentic and contextualized learning experience and outcomes (Bower et al., 2014). 

Immersive interfaces can enhance learning through situated settings, which is in accordance with the 

idea that meaningful learning should take place in the context in which it will be used (Dede, 2009), as 

suggested on the basis of situated learning theory (see Brown et al., 1989). Placing virtual information 

in an authentic, relevant context may improve  learning and understanding, increase enjoyment, and lead 

to more positive attitudes towards a topic (Harley et al., 2016; Kamarainen et al., 2013). It may also 

provide learners with more information in decisions concerning socio-scientific issues and increase their 

senses of immediacy, presence and immersion (Chang et al., 2013). Accordingly, situated learning has 

been identified as an important theoretical framework for AR (Bower et al., 2014; Dunleavy & Dede, 

2014; Sommerauer & Müller, 2018). 

1.1 Immersion and motivation in contextualized AR learning environments 

While many constructs can play a role in immersive learning environments, the feelings of immersion 

and motivation have been identified as two central variables for learning with immersive media (see, for 

example, models by Dengel & Mägdefrau, 2018; Makransky & Petersen, 2021). These two variables 

can be influenced by the closeness of information positioning in an AR-based learning environment, 
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and can in turn influence learning outcomes, as will be described in the following. 

Immersion has been described as a system’s characteristic (Slater & Wilbur, 1997) or a person’s 

experience (Witmer & Singer, 1998) in virtual environments. To examine learning processes, the human 

experience is important, defining immersion as the subjective sense of being inside an environment, 

including virtual or AR-based environments (Georgiou & Kyza, 2017b). Kim (2013) describes AR-

specific context immersion as an experience of awareness of the real context in its interplay with the 

AR-based elements. Three dimensions of context immersion described here include the time and 

location-based context, the object-based context, and the user-based context. When looking at how 

virtual, contextually relevant information can be added in AR as described above, the time and location-

based context describes the influence of the general surrounding environment (e.g., the forest) and the 

object-based context describes the influence of the physical anchor object (e.g., a specific tree). 

Georgiou and Kyza (2017a) define immersion in location-based AR as a multi-level construct and 

propose three levels of immersion: 1) engagement, including interest, time investment and usability; 2) 

engrossment, including emotional attachment and focus of attention; 3) total immersion, including 

presence and flow. In location-based AR environments, learners with high levels of immersion displayed 

different learning behaviors (Georgiou & Kyza, 2017a) and had higher learning outcomes (Georgiou & 

Kyza, 2018). In narrative-based learning experiences, sense of presence and reasoning were increased 

with more closely coupled virtual and real-world elements (Georgiou & Kyza, 2021), and closer 

coupling increased immersion in the story and mental imagery (Karapanos et al., 2012). In general, this 

thus shows a potential influence of placement of AR-based information in relation to physical objects 

on learners’ immersion and related experience. 

Motivation has also been defined as a relevant variable in AR, with empirical findings usually 

supporting the idea that AR in education increases learner motivation (Akçayır & Akçayır, 2017; Garzón 

et al., 2019; Radu, 2014). Due to the often design-based nature of studies on AR in education, a model 

that is often employed in this context is the ARCS model by Keller (2010). The model describes the 

four aspects attention, relevance, confidence, and satisfaction as levels building upon each other and 

influenced by the design of the material. Looking at the influence of the context in AR on motivation, a 

recent study contextualized vocabulary learning with physical objects through an AR-based 

implementation (Weerasinghe et al., 2022). A real-time visualization of vocabularies embedded in the 

physical environment through a head-mounted display increased motivation and recall in comparison to 

a tablet-based implementation with a photo instead of a view of the physical context.  

Furthermore, in multiple studies, a connection between immersion and motivation was found. 

In game-based learning, immersion had an influence on enjoyment (Liu et al., 2014), and enjoyment 

was positively correlated with sense of presence of AR objects and in VR environments (Sylaiou et al., 

2010). Enjoyment is an important aspect of intrinsic motivation and can support persistence in task 

execution (Reeve, 1989). The potential influence of contextual coupling on immersion as described in 

section 1.1.2 might thus in turn positively influence motivation and enjoyment. In total, these insights 
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on the influence of context and immersion on motivation suggest that placing virtual information in a 

relevant physical context can have a positive influence on motivation. 

Increased motivation is an important factor especially in increasing engagement and effort of 

learners in multimedia-based learning (Mayer, 2014; Paas et al., 2005). The effort that learners invest 

into engaging with learning material has been connected to an active component of cognitive load, which 

stands in contrast to a passive component that the instructional material elicits (Klepsch & Seufert, 

2021). This active component was shown to be correlated with germane cognitive load, the component 

of cognitive load describing processes relevant for deeper learning and schema construction (see Sweller 

et al., 1998 for the description of the three types of cognitive load in the cognitive load theory). Due to 

the suggested influence of motivation on effort that learners put into their engagement with the learning 

material, the increased motivation through the contextually relevant close placement of virtual 

information should also increase effort and thus germane cognitive load, which in turn should improve 

learning outcomes. 

1.2 Goal and research questions 

The current pilot study has an exploratory and qualitative focus, describing the implementation and 

reception of an AR-based application in nature which places virtual information either directly at 

corresponding physical objects or with a little distance to them. The study’s goal is to examine the 

influence of positioning of contextually relevant virtual information in an AR-based experience on 

learners’ experience and behavior, including exploratory analyses of cognitive and motivational 

variables. The study is aimed at providing insights into learning processes and the question of how 

learning with AR works though a value-added study design as suggested by Buchner and Kerres (2022), 

while taking place in an authentic, natural context. The research question is: “How does the closeness 

of placement of thematically relevant learning material in a physical context in AR-based learning 

environments influence learning behavior, processes and outcomes?”. Based on the literature review, 

we propose that learners who learn with material that is placed closer to corresponding objects in the 

surrounding physical world are more involved with and motivated to learn about the material, which 

may lead to more effort and a better learning outcome. Due to the exploratory nature, no specific 

hypotheses but expectations are formulated and explained for different facets of the learning behavior 

and experience in the following. 

We expect that the combination of physical and virtual elements in the AR-based learning 

experience has an impact on learners’ behavior. When virtual information is placed more closely to 

corresponding physical objects, we would expect that learners more specifically connect these elements 

to each other and take a closer look at the physical objects due to the apparent relevance. We will explore 

if there are any other differences in learning behavior due to the closeness of the information. 

Furthermore, looking at the interaction with the application, there are textual virtual elements that 

provide additional descriptive information, and graphical virtual elements that either show more detailed 
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depictive representations or show a virtual version of the physical object. We will explore if learners 

access the virtual information differently when the context is positioned either close to or far from them. 

One expectation we have is that learners who receive the virtual information directly in front of the 

physical object look at the virtual version of that object less often than learners who are further away 

from the physical objects. 

The literature review showed that close coupling of virtual and physical information in AR may 

have a positive influence on immersion. In the current study, we thus expect that the closeness of the 

placement of virtual information to relevant physical objects has a positive influence on immersion. 

Looking at the different subfactors of AR immersion described above, we would expect that the 

placement especially has a positive influence on interest as part of the level of engagement, with the 

more specific connection to physical objects in the environment offering an increase in interest for the 

learning material. Further, we expect that on the level of engrossment, emotional attachment to the 

material is easier when the learner is closer to the physical objects, and that attention can be focused 

more easily on the material. We also expect that on a total immersion level, sense of presence is 

increased due to being more physically embedded within the material when closer to the physical 

objects. 

Based on the literature review, we would further expect that the closeness of the placement of 

virtual information to relevant physical objects has a positive influence on motivation. Concerning the 

subfactors of motivation based on the ARCS framework described above, we would expect the 

placement of virtual material directly at the relevant physical objects to increase the attention due to an 

easier focus on the relevant material when close to the physical objects. The perceived relevance is 

expected to be increased due to the material being embedded directly into a relevant context, so that the 

field of application is apparent. Confidence is expected to be increased when virtual information is closer 

to the physical objects due to the possibility to compare information with reality. Satisfaction is expected 

to be higher for closer placement due to expected feelings of enjoyment as described above. 

As described above, motivation is expected to have an influence on learners’ effort and thus 

deeper learning processes. Due to the suggested positive effect on motivation, we also expect that the 

closeness of the placement has a positive influence on cognitive processes and learning outcomes. 

2 Materials and Methods 

2.1 Design and participants 

In a between-subjects design with two groups, N = 19 participants took part. The study took place outside 

in a natural setting and the participants were recruited through the study course’s recruitment channels. 

The manipulated variable was the spatial closeness to the context, with one group receiving virtual 

information directly at the relevant physical objects (near contextual placement, Figure 1 left) and the 

other group receiving virtual information in the general environment including the relevant physical 
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objects, but not directly at the objects (far contextual placement, Figure 1 right). Dependent variables 

are behavior during the learning task, immersion, motivation, and learning outcomes. The participants 

were not distributed randomly into the two conditions, but study slots were matched between the two 

groups as equally as possible based on weekdays, start times, weather, and temperature. The N = 19 

participants were aged between 18 and 33 (data from n = 13, M = 22.62, SD = 4.52), with 3 male and 

16 female. All of them were students in the study courses Applied Cognitive and Media Science or 

Psychology at the University of Duisburg-Essen, which are unrelated to the topic of the learning 

material. For all 19 participants, tracking data for the usage of the application are available, and 

interview data are available for n = 18 of the participants. Due to data loss as a result of a cyberattack at 

the university, questionnaire and test data are only available for n = 8 of the participants (4 data sets for 

each condition) and will be considered completely exploratorily, only complementary to the other data, 

and will not be interpreted further in the discussion section. Sample description based on these n = 8 

participants shows low prior knowledge in a test for naming the ten plants that are part of the learning 

material (M = 1.21, SD = 0.19; out of 10 points). Knowledge beliefs on a scale from 1 (low) to 5 (high) 

were also quite low (M = 1.46, SD = 0.43), with medium task expectancies (M = 2.44, SD = 0.62), and 

medium perceived value (M = 2.65, SD = 0.51). Answering in a five-point response format “never” (1), 

“rarely” (2), “now and then” (3), “often” (4), “regularly” (5), all participants indicated to have used 

general mobile applications regularly (M = 5.00, SD = 0.00, never: 0%), and mobile learning 

applications had been used quite often (M = 3.50, SD = 1.20, never: 13%). The participants had not used 

AR applications (M = 1.75, SD = 0.71, never: 38%) or specifically AR learning applications (M = 1.63, 

SD = 0.74, never: 50%) very often. This study with the ID psychmeth_2022_AR24_18 was conducted 

in accordance with ethical guidelines and the protocol was approved by the ethics committee of the 

Department of Computer Science and Applied Cognitive Science at the University of Duisburg-Essen 

(ethics vote ID: 2208PFKJ7141). All participants provided their informed consent by signing a consent 

form before starting their participation. 

Figure 1. Scanning markers in the study in the near condition at the trees (left) and in the far condition 

on the stones (right). 
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2.2 Materials 

2.2.1 AR Application and interaction tracking 

The tablet-based AR application used was created for this study. With this application on a 10.5-inch 

tablet, learners could scan ten different AR markers which were pictures of plants like trees or bushes. 

When scanning the pictures, additional virtual information was added as an overlay, including four 

smaller pictures of the bark/trunk, fruit, blossom, and leaves of that plant, and two additional pictures 

relevant for the plant (see Figure 2 top left). When clicking on the pictures, textual information 

sometimes with additional pictures for more detail was shown next to the respective overlay picture (see 

Figure 2 top right and bottom left). Only one text panel was visible at a time. Learners could switch 

between this picture-and-text view and a 3D model of the respective plant through a checkmark in the 

top left corner (see Figure 2 bottom left). In the texts about the plants, different botanical terms or 

expectedly unfamiliar terms were used. All underlined/italic words could be clicked on in the text panels, 

showing a glossary entry about that specific word or area of information (see Figure 3 left). The glossary 

panels could also be accessed through a word list that could be opened in the top right corner (see Figure 

3 right) and were the same for all plants, offering some more general information about plants. 

Figure 2. Interface of AR application when scanning a marker picture with images view activated (top 

left), with one image clicked showing additional text (top right; bottom left), and with 3D model view 

activated (bottom right). 
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Figure 3. Glossary entries in AR application with exemplary entry on the structure of the blossom (left) 

and the list of all glossary entries to choose from (right). 

 

In both conditions, the tablet-based application was exactly the same, but the set-up of the 

markers around the lawn differed. The markers were either pinned to the respective plants growing 

around the lawn (see Figure 4; near condition) or they were pinned to rocks laying in front of the lawn 

in the same order as the respective plants grew around the lawn (see Figure 5; far condition). Learners 

in the near condition were told that the AR markers were pinned to the corresponding plants, while 

learners in the far condition were told that the corresponding plants also grew around the lawn, without 

information about their exact placement. In both conditions, the learners started at the right side of the 

area with European holly, which was used by the investigator to explain the application. To the left, the 

AR markers were in this order attached to the plants common hazel, silver lime, European ivy, common 

oak, snowberry, sycamore maple, common hornbeam, field maple, and European yew, and this order 

was also followed for the placement of the AR markers on the stones. 

Figure 4. Examples of placement of markers directly at trees in the near condition with markers circled 

in blue in the bottom two pictures. 
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Figure 5. Examples of placement of markers away from trees on stones in the far condition with markers 

circled in blue in the bottom two pictures. 

 

All interaction with the application was automatically tracked during the learning phase, 

including the scanning of the AR markers showing the pictures, the activation and deactivation of the 

text panels, the activation and deactivation of the 3D model, and the activation and deactivation of 

glossary panels. The tracking data was used to analyze learners’ behavior during the learning phase. 

2.2.2 Interview questions 

At the end of the study, participants answered open questions in a short interview. The answers were 

written down in a summarized form by the researcher. To gain insights into the participants’ experience 

of their learning behavior, they were asked what influence they thought the setup (i.e. standing in front 

of the plants in the near condition and standing in general proximity to the plants in the far condition) 

had on their learning behavior. Further, they were asked what they think they would have done 

differently if they had been in the other setup (i.e. not standing in front of the plants and standing in 

front of the plants respectively). They were asked if they would then have felt more or less surrounded 

by the material (immersion), if they would have dealt with the material more or less intensively 

(engagement, effort), and if they would have been more or less motivated to engage with the material 

(motivation). They were also asked for further comments after that. If the researcher thought that an 

answer could be more specific, they asked for further elaboration. 

2.2.3 Questionnaires 

For the exploratory quantitative evaluations, different questionnaires were applied after the learning 

phase. As mentioned before, only eight datasets of the questionnaire data are available due to data loss 
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through a cyberattack at the university. Concerning immersion, interest (four items), usability (four 

items), emotional attachment (three items), focus of attention (three items), presence (four items) and 

flow (three items) were measured with self-translated subscales of the ARI questionnaire by Georgiou 

and Kyza (2017a). The seven-point response format ranged from “totally disagree” (1) to “totally agree” 

(7) and means were calculated per subscale. McDonald’s omega was excellent for interest (ω = 0.92), 

good for flow (ω = 0.83), acceptable for presence (ω = 0.72) but questionable for usability (ω = 0.69), 

emotional attachment (ω = 0.64), and focus of attention (ω = 0.68). Data from these three subscales 

should be interpreted with care. 

Motivation was measured through a self-translated version of the reduced instructional materials 

motivation survey (RIMMS; Loorbach et al., 2015), including the subscales attention, relevance, 

confidence, and satisfaction based on the ARCS model (Keller, 2010) with three items each. The five-

point response format included the answer options “not true” (1), “slightly true” (2), “moderately true” 

(3), “mostly true” (4) and “very true” (5). Means were calculated per subscale. McDonald’s omega was 

excellent for attention (ω = 0.94), confidence (ω = 0.95), and satisfaction (ω = 0.95), and good for 

relevance (ω = 0.85). 

To measure cognitive elaboration processes quantitatively, the germane cognitive load subscale 

(three items) of the cognitive load questionnaire by Klepsch et al. (2017) was used. The seven-point 

response format ranged from “not at all true” (1) to “completely true” (7) and means were calculated for 

the subscale. McDonald’s omega was good for the germane cognitive load subscale (ω = 0.88). 

A self-developed questionnaire was administered to ask participants about where they had 

looked during the learning phase. Firstly, they were asked about the proportion of time they had looked 

at the tablet in comparison to the environment. Secondly, focusing on the time they had looked at the 

tablet, they were asked about the proportion of time they had looked at the virtual elements in 

comparison to the camera view of the physical world. Thirdly, focusing on the time they had looked at 

the camera view of the tablet, they were asked about the proportion of time they had looked at the marker 

picture in comparison to the surrounding environment. All proportions were determined on slider scales 

from 0 to 100 and participants were asked to elaborate on each of their answers in open text fields. 

2.2.4 Prior knowledge and knowledge tests 

Prior knowledge was tested concerning the specific plants included in the learning material. The pictures 

of the plants used as AR markers in the learning phase and the picture of the leaves used in the AR 

application were shown for each of the ten plants included in the learning material. The participants 

were asked to choose the plants’ names from a drop-down list of 27 names of middle-European trees 

and bushes. This way recognition of the trees without knowing their specific spelling was possible. A 

total of 10 points could be achieved. 

Learning outcomes were measured through a knowledge test (30 questions) which included 

textual and pictorial elements in the questions. Questions were formulated systematically on the 
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different information provided in the AR application, with questions on the individual plants, questions 

on more overarching concepts and questions on the information from glossary entries. To reach a 

comprehensive picture of the learners’ knowledge, different types of questions were used. Nine 

true/false statement questions, three multiple choice questions, nine multiple response questions, eight 

open questions with between two and ten open text fields (in total 60 open text fields) and one ordering 

question were included in the knowledge test. All open text fields needed only a one-word answer, 

naming for example a plant or plant component for the possibility of an unambiguous scoring of the 

responses. The questions included simple recognition questions in most multiple choice and response 

questions, recall questions in most open questions, and even transfer of the general information about 

the structure of plant parts on pictures of real plants. 20 items included a textual question and textual 

answer options, three items included a textual question and pictorial answer options, and seven items 

included a picture-based question and textual answer options. Scoring differed for the question types, 

with a total of 57 achievable points. In the part of the sample for which data on the knowledge test were 

available (n = 8), the knowledge test scores show that the test was in general difficult, with maximum 

of 25.68 and a minimum of 15.90 of 57 possible points scored in the sample (M = 20.92; SD = 2.88). 

See Figure 6 for the distribution of knowledge test scores of these participants. 

Figure 6. Distribution of knowledge test scores for n = 8 participants. 

 

2.3 Procedure 

The study took place outside on a lawn on the university campus grounds where the ten trees that were 

part of the learning material were growing. First, the researcher welcomed the participants to the study, 

briefed them on the study content and asked for their consent to participate and save their data. Then, 

the participants answered the prior knowledge test and determined their knowledge belief, task 

expectancy and subjective value concerning knowledge about Middle-European trees and bushes. 

Afterwards, the learning phase with the AR application on the tablet took place. The researcher gave the 

participants an introduction to the functions of the application and instructed them to look at the different 

plants, comparing them and looking for similarities and differences as a preparation for the knowledge 

test. The markers were set up for either the near or the far condition and participants had 40 minutes to 

walk from marker to marker and learn about all ten plants. All interaction with the application was 
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tracked. Afterwards, the participants answered the questionnaires on cognitive load, motivation, and 

immersion. Due to the temperature below 10 °C and to have a short break before the knowledge test, 

afterwards the researcher and the participants moved to a room inside where the questions on the use of 

the application (which required open text answers), the knowledge test and the concluding interview 

were administered. In the end, demographic data were requested, and the participants were debriefed. 

3 Results 

The results focus on a first exploratory, qualitative pilot evaluation of how the positioning of 

contextually relevant, corresponding information has an influence on learning behavior, immersion, 

motivation, and learning outcomes. The qualitative and quantified data of the application usage tracked 

by the application (N = 19) was used to analyze learning behavior. Responses from the interviews (n = 

18; one interview could not be administered due to technical issues) were used for a qualitative analysis 

of learning behavior, immersion, motivation and learning, and responses from the different 

questionnaires and tests (n = 8) were used for further descriptive evaluations. The results section is split 

by variable, integrating quantitative and qualitative descriptive results per concept. In Figure 7, an 

overview of the behavior of all 19 participants can be seen, which will be referenced in the following 

sections. In the figure, participants are sorted by the number of marker scanning events, from few to 

many, and participant IDs are assigned based on that order. Participant IDs in the near condition start 

with an N, participant IDs in the far condition start with an F. 

Figure 7. Order and duration of scanning AR markers per participant, color per plant. Grey overlays 

show when the 3D model view is activated, and black lines show when glossary panels are activated. 

Split by group and sorted by number of target scan events (few to many) to determine participant IDs 

(IDs start with N in the near condition and with F in the far condition). 
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3.1 Learning behavior 

The learning behavior is analyzed based on three types of data: interview responses, application 

interaction tracking, and questionnaire data. Table 1 lists all topics mentioned in the interviews 

concerning learning behavior. In the near condition, four participants mentioned that they compared the 

virtual information from the tablet and the physical plants, while in the far condition the environment 

was described to have no influence on more than half of the participants’ behavior. Only three 

participants described that they looked for the plants in the environment but were not able to find (all 

of) them. Three participants in the far condition would have looked at the physical plants closer if 

positioned more closely, and another three would have compared or related the physical and virtual 

elements. This is thus in accordance with our expectations that closer physical objects lead learners to 

connect virtual and corresponding physical elements. Two participants in the near condition described 

that they touched the plants, while three participants in the far condition would have touched the plants 

if closer to them. While one person in the near condition described that less walking would have been 

necessary when the information would not have been placed at the plants, one person in the far condition 

would have walked around the plant if closer to it. In general, this shows the influence that the spatial 

closeness of virtual information to corresponding physical objects has on learning behavior, describing 

how learners pay more attention to the physical objects, even experience them with more senses like 

touch, and compare them to the virtual elements. As part of the questionnaire, learners were asked how 

much they looked at which aspects of the learning experience and material. The available data of the n 

= 8 participants show a big descriptive difference between the conditions in how much they state to have 

looked at the tablet in comparison to their surroundings. Participants in the near condition on average 

looked at the tablet 83% of the time (Mn = 83.00, SDn = 10.92), with a minimum of 67% and a maximum 

of 90%. Participants in the far condition, however, looked at the tablet more often, with an average of 

98% (Mf = 98.00, SDf = 3.37), with a minimum of 93% and a maximum of 100%. In the open questions 

asking to elaborate their responses, the participants in the near condition describe that they mainly 

looked at the tablet (which can be seen in the high mean value), but all four participants also describe 

that they sometimes looked at the plants in the environment, for example to compare the information 

from the tablet to the real plant. One participant even described touching the plants, which is in 

accordance with the responses in the interview. The participants in the far condition, on the other hand, 

describe that they (nearly) only looked at the tablet (which can be seen in the very high mean value), 

although one participant stated that this may have been different if the plants would have been easier to 

recognize in the environment, and if more time was available. This supports the statements from the 

interview, describing that close information reception brought attentional focus to the environment, 

which was not observed very often when information was received further away from the plants. 
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Table 1. Learning behavior described in interview responses with participant IDs split by condition. 

Topics mentioned in interview concerning learning behavior 

near far 

▪ Compared virtual information from tablet and 

physical plants (N1, N3, N5, N10) 

▪ Touched plants (N6, N9) 

▪ Also focused on looking at plants because they 

are there (N5) 

▪ Focused on reading information, not so much 

looking at physical plants, but looked around to 

see where the plants are (N8) 

▪ Read all glossary entries at first plant (N8) 

 

If material further away from plants: 

▪ Would have looked at virtual pictures longer 

(N6), read virtual texts in more detail (N5)  

▪ Less walking necessary (N8) 

▪ Would have searched for plants (N4) 

▪ No influence of environment on behavior, only 

looking at tablet (F2, F3, F5, F6, F7, F8) 

▪ Looking for plants in environment but did not 

find them (F1, F4), tried to match plants to 

information (F9) 

 

If material closer to plants: 

▪ Would have looked at physical plant closer (F1, 

F2, F4), more than looking at marker pictures 

(F3) 

▪ Would have compared/related physical and 

virtual elements (F1, F2, F8) 

▪ Would have touched (F1, F4, F6) 

▪ Would have walked around the plant (F6) 

▪ No influence on behavior (F7) 

 

In the AR application, all data of learners interacting with the AR markers and the virtual 

interface were tracked. To see if there were systematic differences in behavior between the near and the 

far condition, the order and duration of interacting with the different AR markers is analyzed, which is 

visualized in Figure 7. Furthermore, patterns of individual participants are described and connected to 

their interview responses in Table 1. In general, all participants looked at all plants at least once, except 

for one participant in the far condition (F2) who did not look at the European yew and one participant 

in the near condition (N2) who did not look at the common hazel. In the interview, F2 stated that they 

only looked at the tablet, which may have caused them to miss the last plant. N2 took part in 2 °C 

temperature, which may have had an influence on their behavior, although this cannot be confirmed 

because their interview could not take place due to technical issues. Most participants follow the same 

order in the beginning, starting from European holly, which was also used by the investigator to explain 

the application, continuing on to common hazel, silver lime, European ivy, common oak, snowberry, 

sycamore maple, common hornbeam, field maple, and European yew, which is the order in which the 

plants were growing and thus the AR markers in both conditions were setup from right to left. F8 and 

F9 are the two participants with the most marker-scan events and are in the far condition. As can be seen 

in Figure 7, F8 with 70 marker scans follows a more systematic pattern from right to left and back, while 

F9 with 127 marker scans seems to start in that order, but then jumps from one plan to another in no 

apparent order. In the interviews, F8 stated that they only looked at the tablet, with no influence of the 

environment on their behavior, which may explain why they were guided by the spatial setup. F9, on 

the other hand, described that they tried to match the surrounding plants to the information, so that their 

behavior may have been influenced by the material and their perception of the plants instead of the 

spatial setup alone. The only participant that clearly follows a different, individual order than proposed 

by the setup from the beginning is N9 with 51 and thus the most marker scans in the near condition. N9 
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also stated in the interview that they touched the plants, which suggests that they were more guided by 

the potentials of what they could do than the setup of the experiment. After the first block of looking at 

all the plants once, different interaction patterns can be seen. Participants N1, N2, N3, N4 (mostly) 

finished after looking at everything once. All these participants were in the near condition and 

participants N1 and N3 also stated in the interview that they compared virtual information from tablet 

and physical plants, so that they may have stayed at the individual plants as long as possible. Participants 

N6, N8, F1, F5, and F8 (first half) repeated the same or a similar order after looking at all plants once. 

While N6 stated in the interview that they touched plants, N8 stated that they focused on reading the 

information without looking at the plants so much. F5 and F8 described that the environment had no 

influence and they only looked at the tablet. Participants N5, F2, F3, F4, F6, and F7, went to all plants 

in the opposite order after the first round. N5 in the near condition described to compare tablet and 

physical plants, and F4 in the far condition stated that they looked for the surrounding plants. In contrast, 

F3, F6, F7 and F8 (second half), which were all in the far condition, stated that the environment had no 

influence on their behavior, with all of them going back and forth along the plants multiple times and 

thus fully following the spatial setup. Finally, N7, N10, and F9 jumped between different trees without 

an apparent order after viewing all plants in order once. N10 stated in the interview that they compared 

virtual and physical information. There thus seem to be different processes for looking at the plants, 

with the clearest differences between groups when it comes to looking at every plant only once, 

happening only in the near condition, and going back and forth instead of starting from the beginning 

again mainly in the far condition. We also examined the quantified tracking data, including the number, 

the total duration and the average duration of events tracked in the application (see Table 2 for an 

overview of data concerning some variables). Looking at the activation of targets, descriptively targets 

were scanned on average about 22 times less often in the near than the far condition (Mn = 29.70, 

SDn = 14.98; Mf = 52.00, SDf = 32.68), although the total duration of target activation was quite similar 

in the two conditions with only a 7 second difference (Mn = 2074.23, SDn = 202.38; Mf = 2081.11, 

SDf = 206.59), making the average duration of target activation descriptively about 35 seconds longer 

for the near than the far condition (Mn = 89.25, SDn = 48.52; Mf = 54.68, SDf = 30.51). When looking 

more specifically at the activation of the text panels attached to the targets, which delivers most of the 

information about the plants, it can be seen that although descriptively about 45 less activations of text 

panels took place in the near than the far condition (Mn = 391.20, SDn = 187.47; Mf = 436.33, SDf = 

202.34), participants in the near condition had text panels activated for about 88 seconds longer than 

participants in the far condition (Mn = 2074.23, SDn = 202.38; Mf = 2081.11, SDf = 206.59). This 

describes a higher number of switches and rescans of the AR markers in the far condition, with more 

clicks to view text panels, but less time spent with open text panels that could be read. 

When examining the interaction with the virtual elements, there have also been different courses 

of action for the participants. Concerning the 3D models, there are six participants who did not look at 

any models, three in the near condition (N1, N2, N8) and three in the far condition (F2, F3, F6). 
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Participant F6 from this group stated in the interview that they would have walked around the physical 

plant if closer to it, but they seemingly did not use the opportunity to view the 3D model. Eight 

participants only looked at some 3D models. Only three participants which are all in the far condition, 

looked at all 3D models (F1, F5, F8). These three participants had very different patterns of looking at 

the 3D models, as can be seen in Figure 7. F1 activated the 3D model at the beginning of looking at each 

plant, and also stated in the interview that they looked for the plants in the environment. They may have 

tried to support the search process with viewing the 3D models. F8, on the other hand, activated the 3D 

model view at the end of looking at each plant and stated in the interview that they only looked at the 

tablet but would have compared physical and virtual elements. F5 very differently looked at all plants 

for some time following the order from right to left, and afterwards again looked at all plants in the same 

order with the 3D models view activated. Concerning the 3D model, we again examined the quantified 

tracking data shown in Table 2. We expected that the 3D model would be viewed less often in the near 

condition, because the plants are easily viewable in the physical environment. In comparison, 

descriptively the 3D model is viewed only about one time less often in the near than the far condition 

(Mn = 6.90, SDn = 7.69; Mf = 8.22, SDf = 8.76), but the duration of viewing is on average about 16 

seconds shorter for the near than the far condition (Mn = 35.84, SDn = 51.51; Mf = 51.78, SDf = 73.08), 

thus supporting the expectations. 

We also examined the interaction with the purely virtual elements that are not attached to the 

AR marker at all, namely the glossary entries. In Figure 7, it can be seen that most participants had the 

glossary entries activated while scanning the AR markers, but a few participants used breaks between 

scanning AR markers to look at the glossary entries, for example N8 and F9. N8 stated in the interview 

that they read all glossary entries at the first plant, which is clearly visible in Figure 7. It is also visible 

that most participants only opened the entries sporadically, but a few participants had the glossary entries 

open for a long time, for example N6 and N4. From a quantitative perspective (see also Table 2), 

descriptively glossary panels were activated about 3 times more often in the near condition than the far 

condition (Mn = 29.00, SDn = 18.25; Mf = 26.22, SDf = 13.23), were activated for a total of 321 seconds 

(> 5 minutes) longer on average (Mn = 934.65, SDn = 644.69; Mf = 613.67, SDf = 395.79), and the 

average activation duration was also about 8 seconds longer (Mn = 34.78, SDn = 29.53; Mf = 26.52, SDf 

= 16.27). Again, the interaction with the virtual material was very different for participants, with the 3D 

model activated more consistently and for a longer time in the far condition, as expected, and the 

glossary panels activated for a longer time in the near condition. 
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Table 2. Descriptives of count, total duration, and average duration of events as part of the tracked 

interaction with the AR application split by condition. 

Tracked events 
observed 

range 

near 

n = 10 

far 

n = 9 

Mean 

diff. 

Cohen’s 

d 

  M (SD) a M (SD) a   

Target scanned      

Count 13 - 127 29.70 (14.97) 52.00 (32.68) −22.30 −0.89 

Total duration (sec) 1597 - 2331 2074.23 (202.38) 2081.11 (206.59) −6.88 −0.03 

Average dur. (sec) 13 - 179 89.25 (48.52) 54.68 (30.51) 34.57 0.84 

Text panel activated      

Count 201 - 789 391.20 (187.47) 436.33 (202.34) −45.13 −0.23 

Total duration (sec) 4609 - 6932 5962.04 (636.17) 5873.79 (557.98) 88.25 0.15 

Average dur. (sec) 6 - 32 18.58 (8.58) 16.50 (7.76) 2.08 0.25 

3D model activated      

Count 0 - 24 6.90 (7.69) 8.22 (8.76) −1.32 −0.16 

Total duration (sec) 0 - 220 35.84 (51.51) 51.78 (73.08) −15.94 −0.25 

Average dur. (sec) 3 - 13 4.27 (1.56) 5.57 (3.70) −1.30 −0.47 

Glossary panels activated      

Count 6 - 61 29.00 (18.25) 26.22 (13.23) 2.78 0.17 

Total duration (sec) 37 - 2097 934.65 (644.69) 613.67 (395.79) 320.98 0.58 

Average dur. (sec) 6 - 109 34.78 (29.53) 26.52 (16.27) 8.26 0.34 
a. Higher mean per subscale in bold   

3.2 Immersion 

Immersion is analyzed based on two types of data, interview responses and questionnaire items. Table 

3 lists all topics mentioned in the interviews concerning immersion. In the interview, participants in the 

near condition described that they felt surrounded by the material through direct contact with a plant 

and felt real in the context, which can be attributed to feelings of presence. Furthermore, one person 

who said that they are usually distracted very easily by their surroundings found themselves not being 

distracted and very concentrated during the learning phase, which shows a potential support of a focus 

of attention towards the material. One participant stated that they would have felt less surrounded if not 

that close to the plants. However, two participants also said that it would not have made that much of a 

difference, with one participant saying that they mainly looked at the tablet anyways. In the far 

condition, one participant stated that they felt more within the situation in which the knowledge would 

have to be applied due to receiving the information in the general vicinity of the plants, although they 

also would have felt more surrounded by the environment if closer to the plants, as did seven other 

participants. They mentioned a closer connection to the physical plants in real life as a potential reason 

for this. One participant said that there would not have been that much of a difference. Concerning the 

subconstruct of usability, the participants described issues with the application in both conditions, like 

difficulties with reading the material due to its attachment to the AR markers and the inability to zoom 

into the virtual material. Some usability issues mentioned also had to do with the outside placement of 

the study, including the movement of the AR marker in the wind and the placement of markers close to 

the ground (e.g., lying in a field of ivy) mentioned in the near condition, and the cold temperature 

mentioned by a participant in the far condition. 
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Table 3. Immersion described in interview responses with participant IDs split by condition. 

Topics mentioned in interview concerning immersion 

near far 

▪ Feeling more surrounded (N3) through direct 

contact with plant (N8) 

▪ Feeling real (N5) 

▪ Other people did not distract (N8), very 

concentrated during learning phase (N4) 

▪ Usability: material hard to look at for reading 

(N9), no zooming possible (N6, N9), movement 

marker due to wind (N8, N9), squatting for 

marker scanning (N8) 

 

If material further away from plants: 

▪ Would have felt less surrounded (N5) 

▪ Would not have been different (N6), mainly 

looked at tablet anyways (N3) 

▪ Felt more within the application situation (F4) 

▪ Pictures small (F9) 

▪ Usability: material hard to look at for reading 

(F4, F1, F9), no zooming possible (F6), cold 

temperature (F3) 

 

If material closer to plants: 

▪ Would have felt more surrounded by the 

material (F2, F3, F6, F5, F1, F8, F9), if 

embedded in nature (F4) 

▪ Closer connection to physical plant in real life 

(F8, F9) 

▪ Not so big of a difference (F7) 

 

For further exploration of quantitative data, we examined the questionnaire data for the variable 

immersion for n = 8 participants. It can be seen in Table 6 that the ARI constructs with possible ranges 

from 1 to 7 show a descriptively higher score for the near condition for interest (Mn = 4.88, SDn = 1.01; 

Mf = 3.69, SDf = 1.59), emotional attachment (Mn = 3.58, SDn = 1.17; Mf = 2.33, SDf = 0.67), and 

presence (Mn = 3.25, SDn = 1.40; Mf = 2.19, SDf = 1.09). Usability (Mn = 5.94, SDn = 0.55; Mf = 5.88, 

SDf = 1.09) was very similar in the two conditions, and focus of attention (Mn = 4.25, SDn = 1.29; Mf = 

4.25, SDf = 0.88) was the same. Flow was descriptively even lower in the near than the far condition 

(Mn = 3.50, SDn = 1.73; Mf = 4.42, SDf = 2.04). The results on presence are in accordance with the 

interview responses, showing that participants felt or would have expected to feel more surrounded by 

and present in the natural environment when closer to the plants. The scores on focus of attention are 

not in accordance with the interview responses, but the participants were not asked for a statement on 

this and only two participants in the near condition freely stated that they were not distracted by the 

environment, including people walking by. Usability issues have been reported in both conditions, 

which is supported by the similar quantitative results. In total, the results of the interview responses 

suggest a higher immersion when learning with material closer to the corresponding plants, although 

subconstructs may show different patterns. 

3.3 Motivation 

Motivation is also analyzed based on two types of data, interview responses and questionnaire items. 

Table 4 lists all topics mentioned in the interviews concerning motivation. One participant in the near 

condition described that they were motivated by directly identifying plants and thus confirming learning 

success, which can be connected to the factor of confidence, and another stated that they were motivated 

through seeing the plants in reality, which may have to do with perceived relevance. Participants in the 
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far condition said that they would have been more motivated if closer to the plants and that the situation 

would have been more interesting and exciting. This was supported by participants in the near condition, 

describing that they would have been less motivated if further away from the plant, with one specifically 

mentioning that they would have been less motivated to look for the corresponding plant. Still, 

individual participants said that their motivation would not have change. In both conditions, participants 

described that the learning experience was fun, thus showing satisfaction in both conditions. 

 

Table 4. Motivation described in interview responses with participant IDs split by condition. 

Topics mentioned in interview concerning motivation 

near far 

▪ Was fun, interesting (N4) 

▪ Motivating by directly identifying plants, seeing 

success (N8) 

▪ Motivation when seen in reality (N3) 

 

If material further away from plants: 

▪ Would have been less motivated (N1, N6, N8, 

N7, N9, N10) to look for the plant (N10) 

▪ No difference (N5) 

▪ It was fun (F2, F4) 

▪ Quite motivated through the tablet application 

and walking around (F9) 

 

If material closer to plants: 

▪ Would have been more motivated (F3, F6, F5, 

F1) 

▪ Would have been more interesting (F2) and 

exciting (F8) 

▪ No (big) difference (F4, F7) 

 

 

For further exploration of quantitative data, we looked at the questionnaire data for the different 

levels of motivation based on the ARCS model for n = 8 participants. It can be seen in Table 6 that the 

ARCS constructs with possible ranges from 1 to 5 show a descriptively higher score for the near 

condition for attention (Mn = 3.42, SDn = 1.42; Mf = 2.83, SDf = 1.17), and relevance (Mn = 3.17, SDn = 

0.79; Mf = 2.42, SDf = 1.10). Confidence was very similar between the two conditions (Mn = 2.75, SDn 

= 1.00; Mf = 2.83, SDf = 1.00) and satisfaction (Mn = 2.58, SDn = 1.10; Mf = 2.75, SDf = 1.37), on the 

other hand, was descriptively lower in the near than the far condition. While the result on relevance is 

in accordance with what was mentioned in the interview responses concerning the higher motivation of 

looking at the plants in reality, the results on confidence and satisfaction do not necessarily support 

these. Attention was not specifically mentioned here, but the responses mentioned in the section on 

immersion describing that the environment did not distract from the learning material in the near 

condition are supported by the descriptive scores here. In total, the results of the interview responses 

suggest a higher motivation when learning with material that is received directly at the corresponding 

plants, although the different sublevels may not show a completely clear picture. 

3.4 Cognitive processes and knowledge 

Cognitive learning processes and outcomes, including elaboration processes and knowledge, are 

analyzed based on interview responses, questionnaires, and the knowledge test. Table 5 lists all topics 
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mentioned in the interviews concerning cognitive processes and outcomes. Concerning intensity of 

engaging with the learning material, participants in the near condition would have engaged more 

intensively with the virtual material and less intensively with the physical plants if further away from 

the plants. One participant mentioned that less senses would have been involved because they would 

not have touched the plants. Many participants from the far condition supported this, saying that they 

would have engaged more intensively with the physical material, but less intensively with the virtual 

material, although one participant also stated that they would have engaged more intensively with the 

virtual material if closer to the corresponding plants. In contrast, three participants in the near and one 

participant in the far condition said that they would not have engaged more or less intensely with the 

learning material. Concerning knowledge construction processes, some participants described the 

information that they received through the learning experience. In the near condition, participants 

described that the physical plants were important to see as they provided additional information about 

the plants’ looks and made comparison to the virtual elements easier. They mentioned that it was easier 

to connect virtual and physical elements this way and one participant even expected that they would be 

able to transfer the information more easily onto other real-world situations. On the other hand, the 

spaced-out placement of the materials stuck to the plants was described to make comparisons between 

the individual plants harder. Even when the virtual information was only placed in the general vicinity 

of the plants in the far condition, one participant described that the material was more tangible through 

being placed in the real world. Looking that the virtual material, it was also highlighted that it can offer 

additional pictorial information independent of the current state of the corresponding physical object. In 

the current setting, not all plants had leaves, and none was currently blossoming, so that the virtual 

material could be used complementarily. Participants in the near condition suggested that it would 

probably have been harder to learn if the information was not placed directly at the plants, while 

participants in the far condition supported this claim, suggesting that it would probably have been easier 

to learn when directly at the plants. Participants in the far condition mentioned the potentials of a closer 

placement in terms of easier remembering of virtual aspects, easier visual perception, and physical 

pictorial representations that could have replaced the virtual ones if the season permits. However, two 

participants in the near condition stated that learning for the knowledge test itself would probably have 

been easier without being at the specific place, although one qualified their statement saying that long-

term learning may be increased by the placement in the environment. 
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Table 5. Cognitive processes and knowledge described in interview responses with participant IDs split 

by condition. 

Topics mentioned in interview concerning information processing and knowledge 

near far 

▪ Real plants important to see, as they provide 

additional information about looks (N6), 

movement in the wind (N3), make comparison 

easier (N1, N4, N7, N10) 

▪ Easier to connect virtual and physical elements 

(N1, N3) and to transfer onto other situations in 

reality (N3) 

▪ Focus also on physical plants, because they 

were there (N5) 

▪ Virtual information can show different states of 

plants, not just what is available at that time 

(N6, N9), e.g., due to seasonal changes (N4) 

▪ Overwhelmed by learning material, a lot of 

information (N6) 

 

If material further away from plants: 

▪ No direct comparison of physical plants and 

virtual elements (N1, N7, N10) 

▪ Easier comparison between different plants 

when information is not placed at plants but can 

be moved and viewed directly next to each other 

(N9)  

▪ Would have remembered detailed information 

less (N4) 

▪ Would have looked at details more to remember 

them (N10) 

▪ More information through virtual material (N7) 

▪ Better / more efficient learning for test when not 

in location (N8, N9), but maybe less long-term 

learning (N9) 

▪ Would have engaged more intensively with 

virtual material, because physical plants not 

available to look at (N6, N5, N3, N7, N10) 

▪ Would have engaged less intensively with 

physical plants (N3), e.g., less senses due to not 

touching (N9) 

▪ Would have put in less effort (N7) 

▪ No difference in intensity of engaging (N1, N8, 

N4) 

▪ Material more tangible when plants in 

surrounding environment (F9) 

▪ Was very engaged and put a lot of effort into 

learning (F9) 

▪ Surprised how little remembered for knowledge 

test (F2) 

 

If material closer to plants: 

▪ Would have helped more with learning with 

information directly at relevant location (F9), 

easier to remember visual aspects (F3) 

▪ Relation to physical world would have been 

easier (F8), would have known which plant and 

which picture were related (F7) 

▪ Perception would have been easier due to better 

visual quality (F8) 

▪ More pictorial representation (F2), would have 

looked at physical leaves, blossoms, etc., 

instead, if season permits (F3) 

▪ Would have engaged more intensively with 

physical material (F4, F6, F5, F7, F8), e.g., 

touching (F4), direct comparison instead of 3D 

model (F8) 

▪ Would have engaged less intensively with 

virtual material, because physical plants 

available to look at (F3, F6, F1) 

▪ Would have engaged more intensively with 

virtual material (F5) 

▪ No difference in intensity of engaging (F9) 

 

For further exploration of quantitative data on cognitive learning processes, we examined the 

questionnaire data for the variable germane cognitive load for n = 8 participants. It can be seen in Table 

6 that germane cognitive load, with a possible range of 1 to 7, is descriptively higher for the near than 

the far condition (Mn = 5.08, SDn = 1.87; Mf = 4.25, SDf = 1.10). While the results of the interview seem 

to suggest that learners would have balanced out how intensively they would have engaged with the 

different parts of the learning material based on its placement, the results concerning the germane 
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cognitive load questionnaire suggest that engagement was more intense when receiving the material 

closer to the plants. This is also in accordance with the results from immersion and motivation, which 

seem to have been increased by closeness to the corresponding physical objects. For further exploration 

of quantitative data on cognitive learning outcomes, we looked at the knowledge test data for n = 8 

participants. It can be seen in Table 6 that knowledge with a possible range of 0 to 57, is quite similar 

in both conditions (Mn = 20.95, SDn = 1.76; Mf = 20.88, SDf = 4.03). It is apparent, that the spread of 

data is wider for the far than the near condition. When looking at different question types more closely, 

we see open questions being more often answered correctly by learners in the near condition (Mn = 6.12, 

SDn = 1.01; Mf = 5.52, SDf = 2.66), while questions with answer options provided were more often 

answered correctly by learners in the far condition (Mn = 14.84, SDn = 1.56; Mf = 15.36, SDf = 1.73). 

Another distinction can be made between questions that can be answered based on the material from the 

individual plants or based on the material from the glossary panels. While questions about individual 

plants were answered more correctly by learners in the near condition (Mn = 17.28, SDn = 2.22; 

Mf = 16.46, SDf = 3.98), questions about the glossary entries were answered more correctly by learners 

in the far condition (Mn = 3.68, SDn = 1.44; Mf = 4.42, SDf = 0.82). These results are only descriptive 

and from a small subset of participants but suggest that learners receiving material directly at the plants 

may profit especially when it comes to open questions and questions about the individual plants 

themselves. This supports the interview responses stating that the focus was guided more towards the 

plants through the closer placement. 

 

Table 6. Descriptives of variables measured as part of the post-learning phase questionnaire and test. 

Measured variables 
possible 

range 

near 

n = 4 

far 

n = 4 

Mean 

difference 

Cohen’s d 

  M (SD) a M (SD) a   

Immersion      

Interest 1 - 7 4.88 (1.01) 3.69 (1.59) 1.19 0.89 

Usability 1 - 7 5.94 (0.55) 5.88 (1.09) 0.06 0.07 

Emotional attachment 1 - 7 3.58 (1.17) 2.33 (0.67) 1.25 1.32 

Focus of attention 1 - 7 4.25 (1.29) 4.25 (0.88) 0.00 0.00 

Presence 1 - 7 3.25 (1.40) 2.19 (1.09) 1.06 0.85 

Flow 1 - 7 3.50 (1.73) 4.42 (2.04) −0.92 −0.48 

Motivation      

Attention 1 - 5 3.42 (1.42) 2.83 (1.17) 0.58 0.45 

Relevance 1 - 5 3.17 (0.79) 2.42 (1.10) 0.75 0.78 

Confidence 1 - 5 2.75 (1.00) 2.83 (1.00) −0.08 −0.08 

Satisfaction 1 - 5 2.58 (1.10) 2.75 (1.37) −0.17 −0.13 

Germane cognitive load 1 - 7 5.08 (1.87) 4.25 (1.10) 0.83 0.54 

Knowledge  0 - 57 20.95 (1.76) 20.88 (4.03) 0.08 0.02 

Open questions 0 - 31 6.12 (1.01) 5.52 (2.66) 0.59 0.30 

Closed questions 0 - 26 14.84 (1.56) 15.36 (1.73) −0.52 −0.31 

Plant questions 0 - 41 17.28 (2.22) 16.46 (3.98) 0.81 0.25 

Glossary questions 0 - 16 3.68 (1.44) 4.42 (0.82) −0.74 −0.63 
a. Higher mean per subscale in bold   
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4 Discussion 

The goal of the current exploratory pilot study is to examine the influence of placement of contextually 

relevant virtual information in an AR-based experience on learners’ experience and behavior, including 

exploratory analyses of cognitive and motivational variables. In order to answer the research question 

“How does the closeness of placement of thematically relevant learning material in a physical context 

in AR-based learning environments influence learning behavior, processes and outcomes?”, we 

implemented an AR-based application in nature, placing virtual information either directly at the 

relevant physical objects or with a little distance to them. To examine if learners who learn with material 

that is placed closer to corresponding objects in the surrounding physical world are more involved with 

and motivated to learn about the material, leading to more effort and a better learning outcome, we 

analyzed tracking data from N = 19, interview responses from n = 18 and questionnaire and test data 

from n = 8 participants. 

The first type of variable we explored is learning behavior. We formulated the expectation that 

learners would more specifically connect virtual and physical elements to each other and take a closer 

look at the physical objects when they are placed closer together. Indeed, the interview data show that 

learners who received the material close to the physical plants also placed more attention on these plants 

and their connection to the virtual materials. Learners who received the material further away were also 

given the information that the plants could be found in their surroundings, but most did not describe to 

have made the effort to look for them. The ones who said that they tried to look for the plants stated that 

it was hard to recognize them because not all of them had leaves, so that they stopped trying. In the 

questionnaire data, this is also apparent in the learners’ statements on how much they looked at the tablet 

in comparison to the environment, showing that learners further away from the plants did not look at 

their environment very much or at all. Both groups received the information that the plants in the 

material were available in their environment, but this information only impacted the learning behavior 

of the group in which the AR markers were placed directly at the corresponding plants. Placing the 

information directly at the plants made it easier for learners to recognize the corresponding plants. 

Furthermore, their focus was moved to those physical plants and their connection with virtual elements. 

While participants were instructed to look for similarities and differences between the different plants, 

they were not instructed to compare the virtual and physical information, which they were thus only 

implicitly guided to when standing in front of the plants. This suggests that the closeness to the plants 

provided the possibility of a bottom-up or stimulus-driven guidance of attention (see Egeth & Yantis, 

1997) and thus a direct perception of an external representation with a potential to automatically use it 

in further processes of mental integration (see Zhang, 1997). 

The interview data suggest that participants in the far condition paid less attention to the physical 

plants, which may have had different reasons. They may have not seen the physical plants as important 

parts of the learning material, so they did not take the effort to identify them. To examine if the learners 
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in the far condition only did not look for the surrounding plants because they had struggle to identify 

them, it may be good to repeat the study with a setup in which it is clear which AR marker belongs to 

which plant, although they are placed far from each other. Just showing spatially integrated information 

does not automatically lead to mental integration, and a task to externally integrate elements can improve 

this (e.g., Bodemer et al., 2004, 2005). In the current study, it is not clear if learners indeed integrated 

mental representations of the physical plants and the virtual textual and pictures, although the interview 

responses suggest that they combined the materials. However, there was no knowledge test asking for 

this integration. It might be the case that the contextualized learning experience had a positive influence 

on learners’ perception of integration without actually having a positive effect on their integrated 

learning of physical and virtual elements. As the instructions focused on the comparison between the 

different plants, this should be examined in a future study focusing on the integration of virtual and 

physical information as a learning objective. 

 In general, it seems that in their learning path participants were (first) led by the spatial 

setup of the plants and thus the AR markers and not by a drive to compare specific plants with each 

other. Only one participant had a fully individual path. After the first or more rounds of looking at all of 

the plants in the given order, a few participants also changed their path, although from the current data 

it is not clear how they determined this order. This might be interesting to explore in future studies 

looking at which learning paths learners choose. 

The tracking data showed that targets were activated less often in the near than the far condition, 

with more switches between and rescans of the AR markers when walking from stone to stone instead 

of from plant to plant. This may have had to do with the physical setup in the available area, which 

involved a bigger distance between the markers at the plants than on the stones. When looking at the 

learning behavior in handling the virtual part of the application, we expected that learners who received 

the virtual information directly in front of the physical object would look at the virtual 3D model 

included in the application less often than learners who received the information further away. 

Descriptively, we indeed found this result in the quantified tracking data, which showed that participants 

in the near condition looked at the 3D model for a shorter time period. As already described above, the 

participants placed more attention on the physical plants in the near condition, some leveraging the 

specific physical characteristics by touching the plants. One participant in the far condition described 

that they would walk around plants if they received the material directly in front of the plants, which 

shows that a 3D model may be less necessary for that group. Concerning the interaction with the other 

fully virtual aspects in the AR application, it was found that participants in the near condition 

descriptively had the glossary entries activated more often than participants in the far condition. Maybe 

the closeness to the plants made the relevance to look at the more general botanical concepts clearer, 

although it needs to be further examined which specific mechanism may have been at work here.  

Learners’ feeling of being surrounded by the environment, as an approximation of immersion, 

seems to have been higher for learners receiving the material directly at the corresponding plants than 



25 

 

for learners receiving the material further away. This is in accordance with empirical results showing 

that sense of presence is increased in learning experiences with more closely coupled virtual and 

physical elements (Georgiou & Kyza, 2021), and increased immersion when context was coupled with 

the material more closely (Karapanos et al., 2012). As AR-specific immersion has been identified as a 

relevant variable in AR-based learning environments (e.g., context immersion, Kim, 2013), it is 

important to take a closer look at how exactly AR has an influence on immersion. Through the definition 

by Georgiou and Kyza (2017a) including the three levels of immersion with the six subconstructs 

interest, usability, emotional attachment, focus of attention, presence, and flow, a more differentiated 

examination of immersion in AR-based learning environments is possible. In future studies, the analysis 

of these subconstructs should be extended beyond the small subset of participants in this study, so that 

a more detailed picture of the specific mechanisms that play a role in increasing immersion in closely 

contextualized AR-based learning settings can be gained. 

Looking at learners’ motivation, the interview responses suggest increased motivation when 

learners received instructional material directly at the corresponding plants. This is in accordance with 

the results by Weerasinghe et al. (2022) who found increased motivation in learners who learned 

vocabularies embedded in instead of separated from a physical context. In total, motivation was found 

to be increased in AR-based educational experiences (Akçayır & Akçayır, 2017; Garzón et al., 2019; 

Radu, 2014), although it is not completely clear which mechanisms are at work here. The connection to 

a real-world context that may especially increase perceived relevance may play an important role. 

However, from the results of the current study, no specific mechanisms of how motivation is influenced 

could be identified. In following studies, this needs to be assessed more closely, for example through a 

more detailed distinction between different subconstructs of motivation based on the ARCS framework 

(Keller, 2010). In the current study, this distinction was only made in a small subset of participants for 

which questionnaire data were available, with very limited insights. Further studies might want to 

confirm a potential pattern for different subfactors of motivation in closely contextualized AR-based 

learning experiences. 

Concerning learners’ cognitive processes, mental engagement with the learning material was 

described in the interview responses. Participants stated that they engaged or would have engaged more 

intensely with the information from the physical plants when they received the information directly at 

the plants, but engaged or would have engaged less intensely with the virtual material. When they 

received the information further away from the plants, they engaged or would have engaged more 

intensely with the virtual material. This supports the patterns shown for the learning behavior, focusing 

more on the physical plants when available. The question is, if virtual material can replace physical 

material, or if the information they offer are too different, which we discuss in the next section. 

Concerning participants’ knowledge, the results are not that conclusive because the knowledge test 

could not be analyzed for all participants. From the interview responses, there is less a focus on how 

much knowledge the participants gained, but how much information was received through the AR-based 
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learning experience. Participants with virtual information close to the plants described that the virtual 

and physical objects complemented each other. In the DeFT framework by Ainsworth (2006), it is 

described that multiple external representations can have different functions. The physical plants have 

the potential to offer complementary information, for example through different sensory input like touch 

and smell. In the current study, learners indeed touched the plants, testing the information given in the 

text that a leaf is soft. Furthermore, the information of how those plants grow in a real-world 

environment cannot necessarily be transported well through virtual representations but through looking 

at them in a physical natural environment. On the other hand, the virtual graphics are timeless and 

unchanging, so that they can be used as complementary information to the physical plants. Other 

functions described in the DeFT framework focus on the construction of deeper understanding through 

the processes of abstraction, extension, and relation. In the current setting, learners may be supported in 

abstracting the information they receive in the application onto the physical plant, in extending what 

they know from the physical plants they may have already seen before to the virtual instructional 

information, and in relating the virtual and the physical plants. Abstraction may be supported because 

the physical plants offer a perspective on the plants that is additional to the virtual text and pictures in 

the application. Indeed, one participant stated that they had remembered to have seen the blossoms of 

one of the plants in another season (extension) and one participant described that they compared and 

connected the virtual and physical elements (relation). It has been suggested that physical and virtual 

representations should be purposefully combined in instructional design (Rau, 2020), and the 

characteristics of AR, including contextualizing virtual learning material within physical, authentic real-

world environments through specific spatial placement, can enable this. 

4.1 Limitations and future studies 

The study has some limitations that may limit the generalizability of the results to other situations. In 

general, the participants stated that the usability of the material attached to the AR markers was bad 

because of the placement in hard-to-reach positions (e.g., on the ground due to the European ivy growing 

there) and the impossibility to zoom into the pictures and text (although movement towards the AR 

marker was possible to view things more closely). This may have led to frustration in some participants. 

One participant even stated in the interview that they thought that the placement of the markers on the 

ground was part of the study to observe how motivated people are to look at the information. A limitation 

of executing a study outside is that real-world conditions may be disrupting potential study results. 

Because the study took place in fall, it was windy during some but not all learning phases, which means 

that the AR markers were moved by the wind differently for different participants. As the wind mostly 

influenced movement of the AR markers placed directly at the plants, the near condition may have been 

systematically more influenced by this. Another source of discomfort may have been the cold 

temperatures below 10 °C. In addition to this, executing the study in fall meant that not all the trees still 

had leaves and that none were blossoming. Some participants highlighted that the virtual material could 
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add information that is independent of the season, which can help with this, but it was mainly mentioned 

as a negative point of participants who were not able to identify the plants or would have liked to see 

them with leaves. 

In addition, the fact that this was a study with specific conditions may have had an influence on 

participants’ behavior. Multiple participants mentioned that time pressure led them to not focus too 

much on their environment in order to get through all the information in the AR application. Especially 

in the far condition, this may have had an influence on their focus on the plants because they may have 

thought that the environment was only meant to contextualize the learning task without playing a role 

for the learning content. In the near condition, on the other hand, the plants may have been perceived to 

be part of the material that needs to be learned for the knowledge test and thus attended more. In future 

studies it would also be interesting to examine the learning behavior of learners without a time pressure. 

In the interaction with fully virtual aspects in the AR application, it was found that most 

participants had the glossary entries open while scanning AR markers. This seems to show that the 

glossary panels did not necessarily disturb the view through the tablet camera and may have been used 

for explaining terms, which was their intended application. Still, some participants seem to have not 

realized the importance of accessing the glossary entries for more general information and did not look 

at them that often. In the instructions it was explained that the learners should look at similarities and 

differences between the different plants to learn for the knowledge test. They may have found it less 

relevant to look at the glossary entries, although those would have helped with comparing the different 

plants based on more general botanical topics like the blossom components and leaf structure. 

This study was a pilot study focusing on a first exploratory evaluation of the placement of virtual 

information in relation to corresponding physical objects in a natural setting. The results from this study 

allow for the formulation of more specific hypotheses concerning immersion, motivation, cognitive 

processes, and knowledge. In following steps, it is important to fix some usability issues with the AR 

application mentioned by participants in the interviews, so that results can be fully attributed to 

differences in the closeness of placement in the two conditions. Furthermore, in a following study the 

sample size needs to be increased so that a meaningful amount of quantitative data can be collected and 

analyzed to answer the hypotheses. 

4.2 Implications and conclusion 

In general, the most important insight of this study is that a placement of virtual information close to 

corresponding physical objects guides learners’ attention towards these objects. This may be an obvious 

advantage, but it is good to see it confirmed by people’s descriptions of their learning behavior and 

perception of the relevant information in an interview after learning in an AR experience. When a 

learning objective of an experience includes the integration of physical and virtual elements, the virtual 

elements should thus be presented close to the corresponding physical elements, if possible. 

Furthermore, both immersion and motivation may be impacted positively by moving closer to the 
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corresponding physical material, so that this is another potentially effect for learning experiences that 

include physical elements. It needs to be examined in future studies how exactly these mechanisms 

operate, but the current study provides interesting exploratory results upon which further research can 

be built. 
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Abstract: Digital media have changed the way educational instructions are designed. Learning
environments addressing different presentation modes, sensory modalities and realities have evolved,
with augmented reality (AR) as one of the latest developments in which multiple aspects of all three
dimensions can be united. Multimedia learning principles can generally be applied to AR scenarios
that combine physical environments and virtual elements, but their AR-specific effectiveness is
unclear so far. In the current paper, we describe two studies examining AR-specific occurrences of
two basic multimedia learning principles: (1) the spatial contiguity principle with visual learning
material, leveraging AR-specific spatiality potentials, and (2) the coherence principle with audiovisual
learning material, leveraging AR-specific contextuality potentials. Both studies use video-based
implementations of AR experiences combining textual and pictorial representation modes as well as
virtual and physical visuals. We examine the effects of integrated and separated visual presentations
of virtual and physical elements (study one, N = 80) in addition to the effects of the omission of or the
addition of matching or non-matching sounds (study two, N = 130) on cognitive load, task load and
knowledge. We find only few significant effects and interesting descriptive results. We discuss the
results and the implementations based on theory and make suggestions for future research.

Keywords: augmented reality; education; instructional design; multimedia design principles;
multimodality; technology-enhanced learning

1. Introduction

The possibilities for instructional materials have changed a lot over the past decades
due to technological developments in the field of digital media. While pictorial presenta-
tions can provide additional information, complementing textual elements in traditional
media such as books, the addition of auditory narrations and sounds can provide further
sensory input. Richard E. Mayer’s cognitive theory of multimedia learning (CTML) is
based on the suggestion that humans can use two processing channels when learning, the
auditory–verbal and the visual–pictorial channels, which both have capacity limitations
and are used in the active processing of information [1]. In more recent years, another
dimension was added to the mix: combining virtual elements with physical, real-world
elements through the possibilities of augmented reality (AR) technologies (e.g., [2–4]).
Instructional materials can thus include different representation modes, such as text and
graphics, different sensory modalities, such as visual and auditive, and different realities,
such as physical and virtual. Due to these vast possibilities it is important to examine how
combinations of representations can be used most effectively and efficiently to support
learning. The multimedia design principles that were described by Mayer [5], based on
CTML, are one framework that has often been used in this regard. The different principles
describe how textual and pictorial representations should be combined in order to best
facilitate learning. In the current paper, we take a closer look at how the different features
of instructional design can be combined based on multimedia principles in the specific case
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of AR-based learning environments and how this might play a role in supporting learning
processes and outcomes. We report two studies that implement and investigate two basic
multimedia principles in AR scenarios: (1) the spatial contiguity principle, concerning
spatially integrated physical and virtual elements, and (2) the coherence principle, with
combined visual and auditory representations of contextually integrated physical and
virtual elements.

1.1. Multimedia Learning

One of the most influential theories of multimedia-based learning and instruction is
the cognitive theory of multimedia learning (CTML) by Mayer [1]. The theory describes
cognitive information processing when learning with multi-modal, multi-representational
learning material and is based on three assumptions: dual channels, limited capacity
and active processing. The dual-channel assumption describes that the learning process
includes two paths for processing information through sensory, working and long-term
memory [1]. One path describes the auditory–verbal channel and the other the visual–
pictorial channel. These channels are based on an integration of two dual-channel memory
theories, namely Baddeley’s model of working memory, with the distinction between
visual sketchpad and phonological loop (e.g., [6]), and Paivio’s dual-coding theory, with the
distinction between the verbal system and the non-verbal, imagery system (e.g., [7]). The
limited-capacity assumption describes that there is a limit to how much information can be
processed simultaneously within one channel, such that instructional material should be
designed in a way as to not overload the channels [1]. This is closely related to assumptions
in cognitive load theory (CLT), which also postulates duration and capacity limitations of
working memory [8,9]. The active-processing assumption describes that learning is not a
passive process of information absorption but that learners need to actively process and
make sense of perceived information [1]. This includes the selection, organization and
integration of information, and should be supported by the instructional design. Three
kinds of cognitive processing in learning postulated by CTML are extraneous, essential
and generative processing. Extraneous processing describes cognitive processing that is
not inherent to the learning goal and not directly induced by the content of the learning
material but by its design. Essential processing describes the cognitive processing and
representation of the learning content in working memory, including the active process
of the selection of relevant information. Generative processing describes deeper learning
processes, including the organization and integration of the learning content and prior
knowledge into a coherent mental representation, which is proposed to be dependent on
learners’ motivation [1]. These types of processing can be mapped to the three types of
cognitive load in CLT: extraneous, intrinsic and germane cognitive load. In the following
sections, based on the assumptions of CTML, we will describe potential instructional
differences concerning sensory modalities, the application of multimedia principles and
the connection to AR characteristics and implementations.

1.2. Sensory Modalities

The sensory modality perspective in CTML distinguishes between material presented
visually and material presented auditorily [1]. Based on Baddeley’s model of working
memory (e.g., [6]) it is described that visual and auditory materials are received through
different sensory input channels and processed differently in the visuo-spatial sketchpad
and the phonological loop. CTML proposes that the two channels should be leveraged in
multimedia instruction, such that the independent limited resources in each channel can be
used to process more information in total. The modality principle, for example, describes
that learning is increased when spoken words and pictures are combined than when the
same words in written form are combined with pictures [10]. Due to the digital nature of
most AR-capable systems it is possible to visualize pictorial and textual information, but it
is also possible to add auditory sounds and narrations. In the field of AR soundscapes, for
example, spatial audio is recorded and reproduced with the goal of designing a naturalistic
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and authentic sound experience for AR environments, with virtual sounds adapting to
listeners’ movements and real-world sounds [11]. Concerning AR experiences, adding this
factor of different realities to the factor of modalities leads to four potential information
origins: real visual elements, virtual visual elements, real auditory elements and virtual
auditory elements. This may provide more complex information, such that a systematic
analysis of the learning processes and outcomes under consideration of these different forms
of informational elements may be necessary. In the current paper we describe two studies
concerning two potential implementations of AR experiences. Concerning modalities,
the first application focuses on the combination of real and virtual visual representations
without auditory elements and the study’s manipulation involves visuo-spatial integration.
In the second application, all four kinds of elements are implemented, with the addition of
virtual auditory elements being the focus of the study’s manipulation.

1.3. Multimedia Design Principles

The representation mode perspective in CTML distinguishes between material pre-
sented verbally and material presented non-verbally [1]. Based on Paivio’s dual-coding
theory (e.g., [7]) it is described that information is processed differently in the verbal system
and the non-verbal, imagery system. The general idea behind multimedia learning is that
learning from a combination of words and pictures leads to better results than learning from
words alone. In order to not overload one or both information-processing channels within
their limited capacity, different multimedia principles, which should be considered when
designing instructions, were formulated based on many years of empirical research [1]. Two
principles for decreasing extraneous cognitive processing and thus increasing resources
available for essential and generative processing are the spatial contiguity principle and the
coherence principle. The spatial contiguity principle describes that corresponding pictures
and words in multimedia presentations should be presented in a visuo-spatially integrated
way instead of a separated presentation [12]. It is assumed that when material is presented
in a separated way, more visual searching is necessary and cognitive resources need to be
used to keep the individual elements in working memory before being able to integrate
them mentally. This increases extraneous processing, using up resources that are then
not available for essential and generative processing. The same idea is described in the
split-attention effect in CLT [13]. Many empirical studies have reported a positive effect on
learning outcomes when following the principle in instructional design [14]. Specifically
in AR, this principle can be followed for combinations of virtual and physical pictorial as
well as textual representations, which can be displayed in an integrated way, e.g., through
video or optical see-through technology in AR systems. The coherence principle describes
that extraneous elements that might disturb learning, such as interesting but irrelevant or
unnecessarily detailed visual or auditory elements, should be excluded from multimedia
presentations [15]. The addition of irrelevant but interesting elements, also called seductive
details, can divert learners’ attention away from, lead to difficulties in organization within
and mislead the integration of the relevant learning content. Adding extraneous material
can thus lead to an increase in extraneous processing, depleting cognitive working memory
resources that cannot be used for essential and generative processing. Specifically in AR,
this extraneous material can include real and virtual elements, which can contain both
visual and auditory elements that can be more or less coherent considering the learning
goal. In the two potential implementations of AR learning experiences described in the
current paper, we examine the spatial contiguity principle with purely visual physical and
virtual material in the first study and take a look at the coherence principle with audiovisual
real and virtual material in the second study.

1.4. AR Characteristics

AR as a form of combining virtual and physical information has already been imple-
mented in diverse topical areas, suggesting a general significance for formal and infor-
mal educationally relevant fields. For example, wearable AR has been used to provide
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additional textual information about artists and paintings in art galleries [16], mobile AR
has been used to train working memory in elderly people through an interactive serious
game [17] and AR as well as virtual reality (VR) materials combined in a mixed reality (MR)
application have been used to teach mathematical foundations to architecture students [18].
In various reviews of research on AR in formal and informal educational settings, its posi-
tive effects on learning outcomes, motivation, engagement, attitudes and cognitive load
in comparison to non-AR implementations has been established (e.g., [2,4,19–22]). Still,
more research on the effectivity and efficiency of specific design decisions in educational
AR is necessary.

AR-based learning experiences have different attributes or affordances that are enabled
through the features of AR technologies. Bower and colleagues (2014), for example, identi-
fied the rescaling of virtual objects and overlaying contextually relevant information as key
affordances of AR [23]. Wu and colleagues (2013) described 3D-based, situated, ubiquitous
and collaborative learning, the senses of immersion and presence, visualization of the invis-
ible and the bridging of informal and formal learning in that respect [20]. Contextuality,
interactivity and spatiality are three characteristics of AR experiences identified by Krüger,
Buchholz and Bodemer (2019) [3]. The identification of AR-specific characteristics provides
researchers and designers with another structure to conceptualize relevant research on
and implementations of AR. Two of the characteristics that we will focus on in the current
paper are spatiality, which includes the potential to place virtual objects in spatial proximity
to corresponding physical objects, and contextuality, which includes the potential of AR to
enable learning supported by virtual elements inside a relevant real-world environment [3].
While this starting point focusing on the technology’s and experience’s capabilities is a more
technology-centered approach to multimedia design, the multimedia principles described
in Section 1.2 come from a learner-centered approach that focuses on how multimedia
technology can be designed to facilitate cognitive processing [24].

With a technologically enabled experience such as AR, it is important to step out of a
technological perspective and connect capabilities with how they can be adapted based on
what we know about human cognition. Mystakidis and colleagues executed a systematic
mapping review of AR applications in the specific context of STEM learning in higher
education and identified five instructional strategies and five instructional techniques
often used in AR [25]. They clustered these into a taxonomy including five categories
ranging from passive, teacher-centered information presentation to autonomous, student-
controlled project work. In other reviews, CTML has been described as a relevant approach
in AR-based learning, which should be and already is used as a basis for AR design.
Sommerauer and Müller, for example, explicitly suggest on the content layer of their
conceptual design framework that CTML should be used in the instructional design of
AR applications and that any combination of Mayer’s multimedia principles should be
implemented [26]. In a review by da Silva et al. CTML is described as one of the most used
theories in studies evaluating AR-based educational technology [27], which is supported by
the results of a review on pedagogical approaches in AR-based education in which Garzón
and colleagues found that CTML is a very popular approach that has been used in various
content areas and levels of education [28]. In another systematic review with a focus on
cognitive load and performance in AR-based learning research, Buchner and colleagues also
describe CTML as an important theory, specifically mentioning the necessity for research
examining the effect of either following or violating multimedia principles in AR [29].
Concerning the above-mentioned multimedia principles, the spatially close placement of
real and virtual information enabled through spatiality is important for following the spatial
contiguity principle. Spatial and temporal contiguity have specifically been mentioned as
relevant principles that can be applied through AR [29]. In a study on a tablet-based AR
implementation in STEM laboratory courses, the integration of real and virtual information
following the spatial contiguity principle led to better acquisition of conceptual knowledge,
although cognitive load was not rated differently [30]. When placing information in a
relevant context or enriching a situation with contextually relevant information, which
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is enabled through contextuality, the above-mentioned coherence principle needs to be
considered. Mayer’s immersion principle states that highly immersing features, which are
also apparent in AR, can be seen as similar to seductive details [31], such that the coherence
principle may be very significant for AR environments.

As described above in Section 1.3, implementing multimedia principles in instructional
design has an influence on learners’ cognitive processing of information. In research
on AR in education, cognitive load has been included in various studies, most often
using subjective measures such as the NASA TLX questionnaire for data collection but
very rarely using measures of the three types of cognitive load described in CTML and
CLT [32]. The specification of different types of cognitive load may be valuable in research
on the implementation of multimedia principles in AR in particular. In general, the
results concerning cognitive load in educational AR environments are inconclusive and
both the potential decrease and potential increase in load are postulated by different
researchers [29]. It is apparent that the elicitation of cognitive load through the specific
design of applications combining virtual and physical elements for learning purposes needs
to be further examined.

The following two studies will describe potential implementations of AR experi-
ences using the different above-mentioned variables concerning modalities, multimedia
principles and AR characteristics. Study one focusses on an application based on purely
visual representations implementing the spatial contiguity principle concerning spatially
integrated physical and virtual elements. Study two focusses on an application based
on combined visual and auditory representations implementing the coherence principle
concerning contextually coherent physical and virtual elements. Because active cogni-
tive processing is at the center of CTML, both studies examine how cognitive processing
resources are used, with a focus on cognitive load, task load and the resulting knowledge.

2. Study One: Spatial Contiguity Principle

In the first study, the goal is to examine the spatial integration of virtual and physical
elements. The learning material is purely visual, and it is focused on the implementation of
the spatial contiguity principle in AR. In AR-specific implementations, the principle can be
applied to the spatially integrated visualization of virtual elements and physical elements
in the real-world environment. In the study, virtual textual information is integrated into a
real pictorial environment. Based on the spatial contiguity principle, we want to examine
if this implementation of the principle in particular has a positive influence on cognitive
factors, including cognitive load, task load and knowledge.

We hypothesize that complying with the spatial contiguity principle through AR leads
to a decrease in extraneous processing and thus in extraneous cognitive load (H1.1a) by
reducing visual search processes and decreasing the time that the individual elements
need to be held in working memory for mental integration. In turn, the working memory
capacities that are made available can be used for generative processing, thus increasing
germane cognitive load when material is integrated instead of separated (H1.1b).

Furthermore, we hypothesize that the spatial integration of the learning material has
an influence on task load. We expect that through decreasing the necessity of holding indi-
vidual elements in working memory for a longer time when the visualization is integrated,
mental demand is decreased (H1.2a). The decreased necessity for visual search processes
leads to fewer necessary eye movements and thus a decrease in physical demand (H1.2b).
We furthermore expect that temporal demand is decreased when the presentation is inte-
grated (H1.2c), because fewer search and processing steps need to be taken within the same
time. We propose that easier processing of the content with the integrated presentation
leads to feelings of higher performance (H1.2d) in addition to lower effort (H1.2e) and
frustration (H1.2f).

Through the decrease in extraneous cognitive load and the task-load-related factors as
well as the resulting increase in germane cognitive load, we would also expect increased
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resulting knowledge when information is spatially integrated (H1.3). All hypotheses of
study one are summarized in Table 1.

Table 1. Hypotheses in study one.

Hypotheses in Study One

H1.1a: learning with an integrated presentation of real and virtual information leads to lower
extraneous cognitive load than learning with a separated presentation.

H1.1b: learning with an integrated presentation of real and virtual information leads to higher
germane cognitive load than learning with a separated presentation.

H1.2a: learning with an integrated presentation of real and virtual information leads to lower
mental demand than learning with a separated presentation.

H1.2b: learning with an integrated presentation of real and virtual information leads to lower
physical demand than learning with a separated presentation.

H1.2c: learning with an integrated presentation of real and virtual information leads to lower
temporal demand than learning with a separated presentation.

H1.2d: learning with an integrated presentation of real and virtual information leads to higher
perceived performance than learning with a separated presentation.

H1.2e: learning with an integrated presentation of real and virtual information leads to lower
effort than learning with a separated presentation.

H1.2f: learning with an integrated presentation of real and virtual information leads to lower
frustration than learning with a separated presentation.

H1.3: learning with an integrated presentation of real and virtual information leads to higher
resulting knowledge than learning with a separated presentation.

2.1. Methods

In a between-subjects design with two conditions, the integration of the visual infor-
mation was manipulated in a video-based simulation of a location-based informational AR
application. One group received an integrated design, which resembled a see-through AR
application because the virtual, textual information was placed as an overlay of the relevant
pictorial information in a recorded video. The other group received a separated design, in
which the information was displayed on a tablet in the video, such that the information was
separated from the respective pictorial real information. Dependent variables are cognitive
load, task load and the resulting knowledge.

2.1.1. Participants

The participants were reached through online platforms for participant sampling of
the department and convenience sampling. Students could receive participant hours for
taking part. The final dataset included N = 80 people after one outlier was filtered out
based on high age. Primarily (95%) undergraduate students took part, of which most were
in the study programs of applied cognitive and media science (84%) and psychology (14%),
in which there are no classes related to the learning topic of the study. They were aged
17 to 33 (M = 22.21, SD = 3.14) and 20 indicated being male, 60 being female. On average,
the participants did not indicate high prior knowledge beliefs concerning the focal learning
topic of plants in a subjective rating (M = 1.91, SD = 0.73; 5-point response format from
1, low to 5, high). The participants on average indicated having rarely used general AR
applications (M = 2.23, SD = 0.98) and AR learning applications (M = 1.69, SD = 0.96; both
measured in 5-point response format, with 1—“never”, 2—“rarely”, 3—“now and then”,
4—“often” and 5—“regularly”). They were randomly distributed into the two groups. In
Table 2, the number of participants, gender, age, prior knowledge beliefs and prior usage
of AR applications per condition are shown. The distribution is quite balanced for all
variables. All subjects gave their informed consent for inclusion before they participated in
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the study. The study with the ID psychmeth_2020_AR13_29 was conducted in accordance
with the Declaration of Helsinki, and the protocol was approved by the department’s Ethics
Committee (vote ID: 2011PFBS7216).

Table 2. Distribution of number of participants, gender, age, prior knowledge beliefs and prior usage
of AR applications split by condition in study one.

Condition n
Gender Age Prior

Knowledge
Usage AR Applications

General Learning

Male Female M (SD) M (SD) M (SD) M (SD)

Integrated 39 8 31 21.72 (2.76) 1.93 (0.60) 2.31 (0.92) 1.82 (1.00)
Separated 41 12 29 22.68 (3.43) 1.89 (0.85) 2.15 (1.04) 1.56 (0.92)

2.1.2. Materials

The independent variable was manipulated by showing simulated AR experiences to
the participants through two different videos during the learning phase. In both videos,
plants in a botanical garden were filmed. Additionally, in both videos, textual information
about different plants were added: their common and scientific name, their height, the
color of their blossoms and where they usually grow. The simulated AR experience in this
study thus included the video of the botanical garden in the background as the real-world
environment in which the participants should imagine themselves to be in. The additional
textual information about the different plants were included as the virtual elements in the
AR experience which the participants should imagine viewing while walking through the
garden. In the video in the integrated visualization condition, information was placed as an
overlay directly in front of the plants, resembling a visualization that may be possible with
an AR glasses or other see-through version of an application (left picture in Figure 1). In the
video in the separated visualization condition a tablet was held by the person filming the
video and the textual information was displayed on that tablet, such that it was spatially
separated from the real plants (right picture in Figure 1). In both conditions, the participants
were asked to imagine that they were walking around in the botanical garden and using
the application in the real world themselves. The videos were around three minutes long.

Figure 1. Screenshots from the videos used in study one: integrated (AR) visualization on the left;
separated (non-AR) visualization on the right.

To measure subjective prior knowledge of the participants for the sample description,
three questions from the ability belief subscale of the expectancy–value questionnaire by
Wigfield and Eccles [33] were used in a reframed version, inquiring knowledge beliefs with
translated items adapted to the content area. The 5-point response format from 1 (low) to 5
(high) had different anchor phrases. Cronbach’s alpha was good for this scale (α = 0.82).

To measure cognitive load the questionnaire by Klepsch et al. [34] was used, measuring
both extraneous and germane cognitive load with three items each. The 7-point response
format ranged from “not at all true” (1, low) to “completely true” (7, high), and means were
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calculated for each subscale. Cronbach’s alpha was acceptable for the germane cognitive
load subscale (α = 0.78) but questionable for the extraneous cognitive load (α = 0.61)
subscale, which we nonetheless kept as it was because of the already low number of
three items.

Task load was measured through a translated, German version of the NASA TLX
by Hart and Staveland [35,36] including six one-item scales for the six variables mental
demand, physical demand, temporal demand, performance, effort and frustration. Most
items were answered in a 21-point response format from “low” (1) to “high” (21). The
performance item was measured from “good” (1) to “bad” (21), but we inverted the scores
for the analysis. This provides an easier interpretability of the scores so that in the reported
results high scores mean high perceived performance and low scores mean low perceived
performance. Only the scores on the individual subscales were used for the analyses, no
summarized version for general task load.

Learning outcomes were measured through a knowledge test that included different
kinds of questions. In total, ten questions were administered in the form of multiple-choice
questions with five possible answers (one correct answer). In five of these questions the
participants had to match textual information about a plant to the picture of the plant
(e.g., “Which family does this plant belong to?”) and in five other questions they had to
match textual information to the name of the plant (e.g., “Where does the ox-eye grow?”).
One point was given for a correct answer. In addition to the multiple-choice questions, at
the end a picture of each of the five plants had to be matched to its respective name, which
could earn one point per correct answer. In total, 15 points could be achieved.

2.1.3. Procedure

The study took place during social distancing measures due to the COVID-19 pan-
demic in December 2020; therefore, it was fully online with a researcher supervising each
participant through synchronous (voice/video) chat. After the researcher welcomed the
participants, they read the conditions and were asked for their consent. They answered
the questions concerning their prior knowledge on plants. After that, the participants
viewed the video showing either the integrated AR or the separated tablet-view of real
plants in the botanical garden and virtual textual information. The participants were asked
to imagine that they were in a real-world situation using the respective application that
was displayed in the video. Afterwards, the cognitive load questionnaire and NASA TLX
were administered, followed by the knowledge test. In the end, demographic data were
requested, the participants were debriefed and the session was completed by the researcher.
This procedure can also be seen in Figure 2.

Figure 2. Procedure of study one.

2.2. Results

All hypotheses were statistically tested through independent one-sided t-tests, with
the integration of material (integrated vs. separated) as the grouping variable and the
appropriate score as the outcome variable. As suggested by Delacre and colleagues [37]
we used Welch’s t-test for all analyses, although Levene’s test indicated the homogeneity
of variances for all variables except physical demand (see Appendix A). The means and
standard deviations of all variables can be seen in Table 3.
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Table 3. Means and standard deviations of different variables in study one.

Mean and SD per
Condition a Possible Range Integrated

M (SD)
Separated

M (SD)

H1.1a: extraneous CL 1–7 2.57 (1.19) 2.90 (1.13)
H1.1b: germane CL 1–7 4.91 (1.29) 4.46 (1.44)

H1.2a: mental demand 1–21 9.62 (4.42) 10.51 (4.88)
H1.2b: physical demand 1–21 1.82 (1.50) 2.68 (3.38)
H1.2c: temporal demand 1–21 6.90 (4.85) 8.85 (5.44)

H1.2d: performance 1–21 13.31 (4.75) 10.68 (4.99)
H1.2e: effort 1–21 8.77 (4.49) 10.24 (5.05)

H1.2f: frustration 1–21 5.97 (4.81) 6.95 (5.79)

H1.3: knowledge 0–15 10.51 (2.81) 10.49 (3.53)
a. Highest mean per subscale in bold.

2.2.1. H1.1: Cognitive Load

To test hypotheses H1.1a and H1.1b, concerning the influence of the integration of
the material on extraneous cognitive load, the t-tests included the extraneous cognitive
load and germane cognitive load subscale scores as outcome variables. H1.1a, concerning
extraneous cognitive load, was tested with a one-sided t-test proposing lower scores for
the integrated than the separated condition, while H1.1b, concerning germane cognitive
load, was conversely tested proposing higher scores for the integrated than the separated
condition. Boxplots showing the data for both types of cognitive load can be seen in Figure 3.

Figure 3. Distribution of extraneous cognitive load and germane cognitive load scores split by group
in study one (boxplot with IQR (black), mean with bootstrapped 95% confidence interval (white)).

For H1.1a, concerning the lowering influence of the integration of the material on
extraneous cognitive load, the score was indeed descriptively lower for the integrated
(M = 2.57, SD = 1.19) than the separated (M = 2.90, SD = 1.13) condition. However, this
effect with a small effect size was not significant, t(77.14) = −1.27, p = 0.104 and d = −0.28.

For H1.1b, concerning the positive influence of the integration of the material on
germane cognitive load, a descriptively higher score was indeed found in the integrated
(M = 4.91, SD = 1.29) than the separated (M = 4.46, SD = 1.44) condition. Again, this effect
with a small effect size was not significant, t(77.72) = 1.50, p = 0.069 and d = 0.34.

Although descriptively the data match our expectations with small effects, H1.1a
and H1.1b were not completely supported due to the non-significance of the effects: no
significant advantages of the integration of the material concerning extraneous and germane
cognitive load were found.
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2.2.2. H1.2: Task Load

In order to test hypotheses H1.2a, H1.2b, H1.2c, H1.2d, H1.2e and H1.2f, concerning
the influence of the integration of the material on task load, the t-tests included mental
demand, physical demand, temporal demand, performance, effort and frustration subscale
scores as outcome variables. Most hypotheses were tested with one-sided t-tests proposing
lower scores for the integrated than the separated condition, except for H1.2d, concerning
performance, which was tested proposing higher scores for the integrated than the sepa-
rated condition. Boxplots showing the data for all six subconstructs of task load can be
seen in Figure 4.

Figure 4. Distribution of task load subscale scores split by group in study one (boxplot with IQR
(black), mean with bootstrapped 95% confidence interval (white)).

For H1.2a, concerning the lowering influence of the integration of the material on
mental demand, the score was indeed descriptively lower for the integrated (M = 9.62,
SD = 4.42) than the separated (M = 10.51, SD = 4.88) group, although this difference was not
significant, t(77.81) = −0.86, p = 0.195 and d = −0.19. For H1.2b, concerning the lowering
influence of the integration of the material on physical demand, the score was indeed
descriptively lower for the integrated (M = 1.82, SD = 1.50) than the separated (M = 2.68,
SD = 3.38) group. Although Cohen’s d shows a small effect size, no significant difference
was found between the two groups, t(55.81) = −1.49, p = 0.071 and d = −0.33. For H1.2c,
concerning the lowering influence of the integration of the material on temporal demand,
the score was indeed descriptively lower for the integrated (M = 6.90, SD = 4.85) than the
separated (M = 8.85, SD = 5.44) group. This difference was significant with a small effect
size, t(77.68) = −1.70, p = 0.047 and d = −0.38.

For H1.2d, concerning the positive influence of the integration of the material on per-
ceived performance, the score was indeed descriptively higher for the integrated (M = 13.31,
SD = 4.75) than the separated (M = 10.68, SD = 4.99) group. This difference was significant
with a medium effect size, t(78) = 2.41, p = 0.009 and d = 0.54. For H1.2e, concerning
the lowering influence of the integration of the material on effort, the score was indeed
descriptively lower for the integrated (M = 8.77, SD = 4.49) than the separated (M = 10.24,
SD = 5.05) group. No significant difference was found between the two groups, although
a small effect size is apparent, t(77.64) = −1.38, p = 0.086 and d = −0.31. For H1.2f, con-
cerning the lowering influence of the integration of the material on frustration, the score
was indeed descriptively lower for the integrated (M = 5.97, SD = 4.81) than the separated
(M = 6.95, SD = 5.79) group. No significant difference was found between the two groups,
t(76.66) = −0.82, p = 0.207 and d = −0.18.

We thus only found a significant difference concerning temporal demand and per-
formance in the expected directions, supporting H1.2c and H1.2d: temporal demand was
perceived as lower while performance was perceived as higher when the material was
integrated instead of separated. For the other variables no significant effects were found,
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although the directions of the mean differences were as expected, with at least small effects
for physical demand (H1.2b) and effort (H1.2e). Not even small effects were found for
mental demand (H1.2a) and frustration (H1.2f).

2.2.3. H1.3: Knowledge

To test H1.3 on the positive influence of the integration of the material on knowledge,
a one-sided t-test proposing higher scores for the integrated condition included knowledge
test score as the outcome variable. Descriptively, the knowledge test scores in the integrated
(M = 10.51, SD = 2.81) and separated (M = 10.49, SD = 3.53) groups barely differed and
no significant difference was found, t(75.68) = 0.04, p = 0.486 and d = 0.01. Hypothesis
H1.3 was thus not supported: no significant advantages of the integration of the material
concerning knowledge were found.

As different kinds of items were used in the knowledge test, we also took a closer
exploratory look at these. Concerning the six items with ten possible points, in which
the picture of a plant had to be matched with a textual characteristic or name, the pattern
was the same as in the complete knowledge test results: higher score for the integrated
(M = 6.90, SD = 1.90) compared to the separated (M = 6.80, SD = 2.51) visualization. This
difference was descriptively only minimally bigger than the general knowledge difference
and not significant, t(74.34) = 0.19, p = 0.426 and d = 0.04. Concerning the five items in which
only text where included, thus matching the name of a plant with a characteristic, this
pattern was the opposite. The separated condition had a higher score (M = 3.68, SD = 1.40)
than the integrated (M = 3.62, SD = 1.23) condition. This difference was also very small
and not significant, t(77.46) = −0.23, p = 0.819 and d = −0.05 (two-sided t-test due to the
descriptive direction of difference being opposite than expected for knowledge in general).
Although these differences between the groups are very small, the items in which pictures
and text needed to be matched thus descriptively showed an advantage for the integrated
presentation, while the items in which different textual elements needed to be matched
descriptively showed an advantage for the separated conditions. Boxplots showing the
data split by item type and for the complete knowledge test can also be see in Figure 5.

Figure 5. Distribution of knowledge test scores by item types split by group in study one (boxplot
with IQR (black), mean with bootstrapped 95% confidence interval (white)).

2.3. Discussion

The goal of study one was to implement and examine the spatial contiguity principle
with a combination of visual real and virtual elements, leveraging the AR characteristic
spatiality. We examined the influence of the integration of the material on cognitive load,
task load and knowledge. Only two of the hypotheses were supported by the data, namely
H1.2c, concerning the decrease in temporal demand, and H1.2d, concerning the increase in
perceived performance through the integrated presentation of the real and virtual elements.
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All other hypotheses were not fully supported, although the tendencies in the data
showed expected differences. Descriptively, the cognitive load scores were as expected,
with small effects describing decreased extraneous cognitive load (H1.1a) and increased
germane cognitive load (H1.1b) in the integrated presentation. Further non-significant
effects with small effect sizes were found for the task load subconstructs physical demand
(H1.2b) and effort (H1.2e), and even smaller, non-significant differences for mental demand
(H1.2a) and frustration (H1.2f), all showing a decrease in the integrated presentation.
Additionally, concerning H1.3, no effects on resulting knowledge were found, although
interestingly different patterns were revealed for knowledge items in which pictures and
text had to be combined and in which only text was included, with descriptively better
results for the integrated presentation in the former and better results for the separated
presentation in the latter. These results suggest that the spatial integration of pictorial real-
world elements and textual virtual elements may have slightly strengthened the building
of connections between the pictures and texts, while it may have even more slightly
weakened the building of connections within the added texts. This differentiation between
representational connections is in accordance with Seufert [38], who described connections
within a representation as intra-representational and connections between representations
as inter-representational coherence formation, and with Seufert and Brünken [39], who
described these concepts as local and global coherence formation. They argue that for
deeper understanding both forms of relating need to be achieved [38], and that learners
can be supported in their coherence formation on a surface feature level or a deep structure
level [39]. Following the spatial contiguity principle may be a form of support on the
surface feature level, as the goal is to directly show learners which information belongs
together. In future studies it may be interesting to also look at guidance that supports
coherence formation in AR-based multimedia representations on a deep structure level,
potentially extending the results of the current study.

Different factors may have led to these results showing mainly small, non-significant
effects, although all with tendencies in the expected direction. The elements in the presen-
tation could be understood independent from each other and did not have to be mentally
integrated to learn the content, such that this pre-requisite for the spatial contiguity princi-
ple [12] and the split-attention effect [13] was not given. However, considering the learning
goal of integrating the real-world elements and virtual elements, their combination was
at least necessary for the knowledge test items in which pictures and textual information
needed to be matched. Descriptively, the difference between the pattern in these items and
the purely textual items supports this idea, but the simple connection between one picture
and few textual characteristics for each plant may not be enough to lead to a strong effect.

Another factor leading to only small effects may have been that the learning situation
was not demanding enough for the spatial contiguity principle to show effects on subjective
cognitive load and task load. A boundary condition for the spatial contiguity principle is
that the material needs to be complex for a strong effect to occur [12], and the split-attention
effect is said to mainly appear in materials with higher element interactivity [13]. The
learning materials concerning the different plants in a botanical garden were not very
complex, including only real-world pictures and a few characteristics of said plants. More
complex materials with higher element interactivity may lead to larger effects concerning
the two types of cognitive load and the subconstructs of task load. This should be tested
in future studies with a focus on material in which virtual textual elements need to be
mentally combined into a coherent representation with the physical objects in order to
understand their structure and function.

The simplicity of the materials due to the video-based implementation of the AR
environment may also have been the reason for the missing effects. The video-based
implementation provided different opportunities, including the decrease in individual
differences that may usually be caused by non-standardized interaction with AR-based
learning applications. This can, for example, include the duration that learners spend
engaging with specific components or the exact view of the spatially integrated or separated
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materials, which could be standardized through the videos. This way, the focus was on
the implementation of the spatial contiguity principle decreasing potentially confounding
variables and increasing comparability between participants. A limitation is that the usage
of the video-based implementation also removed some factors of complexity that real,
location-based AR experiences have. In a real-world AR experience, more cognitive load
and potentially overload might have been evoked through a combination of all impressions
and necessary skills [40], requiring a decrease in cognitive load through the instructional
design. The goal of the study was to examine the specific case of the spatial integration
of real and virtual elements, which may have been negatively influenced by the video
implementation. Participants may not have perceived the real-world plants in the video
as real because they saw them on a screen compared to seeing them physically in front
of them. Although it was a video recording of the real plants and the participants were
asked to imagine seeing the plants in the real world, it is not sure if they achieved this
or if the real elements were perceived as virtual. It is thus not clear how well the results
from this study can be transferred onto the usage of real AR applications. A future step
would be to implement the spatial contiguity principle in a field study in a location-based
AR environment, including a more authentic, naturalistic setting. The advantages and
limitations of the video-based implementations in both studies will be discussed more
broadly in the general discussion.

Other limitations of the study were that, although a complete standardization of the
experiences would have been possible through the video-based implementation, there were
some differences between the two videos that were not controlled. Because the videos were
filmed on different days, it was sunny in the AR-view video and cloudy in the tablet-view
video. Furthermore, the individual plants and information were shown for around 25 s in
the tablet-view video and around 30 s in the AR-view video. While there was only little
textual information that all participants should have been able to read in 25 s, the time
difference and the weather may have had a systematic influence on the results, which
should be taken into account.

In conclusion, study one showed (descriptive) results suggesting a potential decrease
in extraneous cognitive load as well as task load and a simultaneous increase in germane
cognitive load and knowledge concerning the linking of real and virtual elements when
learning with an integrated instead of a separated presentation. This suggests that the
spatial contiguity principle could be transferable onto AR environments, although the
results need to be supported in additional research with more complex material and real
AR applications.

3. Study Two: Coherence Principle

In the second study the goal is to examine the contextual coherence of virtual informa-
tion. The learning material is audiovisual, and it is focused on the implementation of the
coherence principle in AR. In AR-specific implementations the principle can be applied to
real and virtual, visual and auditory elements. In the study, virtual sounds that either match
or do not match the topic of the learning material are added into an application that also
includes virtual texts and pictures in addition to real environmental sounds. These sounds
are no direct part of the learning task and are compared to the omission of virtual auditory
elements. Based on the coherence principle, we want to examine if the implementation of
the principle in particular has a positive influence on cognitive factors, including cognitive
load, task load and knowledge.

We hypothesize that complying with the coherence principle in AR and thus not
adding any sounds leads to a decrease in extraneous processing and thus in extraneous
cognitive load (H2.1a) by reducing the number of elements that have to be processed. In
turn, the working memory capacities that are made available can be used for generative
processing, thus increasing germane cognitive load when no sounds are added, although
we expect matching sounds to also increase germane cognitive load within the limits due
to motivational effects, which non-matching sounds do not elicit (H2.1b).
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Furthermore, we hypothesize that following the coherence principle has an influence
on task load. We expect that through the necessity to attend to less sensory input and
the explicit usage of fewer sensory organs, both mental (H2.2a) and physical demand
(H2.2b) are decreased when no sounds are added. We also expect temporal demand to
be decreased with the omission of additional sounds (H2.2c), because less sensory input
can be processed within the same time. We propose that the decreased potential for
distraction through additional sensory input when no additional sounds are presented
leads to feelings of higher performance (H2.2d) and lower effort (H2.2e). Frustration is
on one hand expected to be smaller when no distracting sounds are added at all, but on
the other hand is expected to be smaller for the addition of matching sounds compared to
non-matching sounds because the reason for adding these is not apparent and might lead
to even higher frustration (H2.2f).

Through the decrease in extraneous cognitive load as well as the task-load related
factors, and the resulting increase in germane cognitive load, we would also expect in-
creased resulting knowledge when no sounds are added, although through motivating
effects and decreased frustration we would further expect that matching sounds lead to
higher resulting knowledge than non-matching sounds (H2.3). All hypotheses of study
two are summarized in Table 4.

Table 4. Hypotheses in study two.

Hypotheses in Study Two

H2.1a: learning with material including real and virtual information without additional virtual
sounds leads to lower extraneous cognitive load than when virtual sounds are added.

H2.1b: learning with material including real and virtual information without additional virtual
sounds leads to higher germane cognitive load than when virtual sounds are added, where
adding matching sounds leads to higher germane cognitive load than adding non-matching
sounds.

H2.2a: learning with material including real and virtual information without additional virtual
sounds leads to lower mental demand than when virtual sounds are added.

H2.2b: learning with material including real and virtual information without additional virtual
sounds leads to lower physical demand than when virtual sounds are added.

H2.2c: learning with material including real and virtual information without additional virtual
sounds leads to lower temporal demand than when virtual sounds are added.

H2.2d: learning with material including real and virtual information without additional virtual
sounds leads to higher perceived performance than when virtual sounds are added.

H2.2e: learning with material including real and virtual information without additional virtual
sounds leads to lower effort than when virtual sounds are added.

H2.2f: learning with material including real and virtual information without additional virtual
sounds leads to lower frustration than when virtual sounds are added, where adding
matching sounds leads to lower frustration than adding non-matching sounds.

H2.3: learning with material including real and virtual information without additional virtual
sounds leads to higher knowledge than when virtual sounds are added, where adding
matching sounds leads to higher knowledge than adding non-matching sounds.

3.1. Methods

In a between-subjects design with three conditions, the addition or omission of match-
ing or non-matching virtual sounds was manipulated in a video-based simulation of a
location-based informational AR application. One group heard no additional sounds, one
heard sounds matching the learning topic and one heard sounds that did not match the
topic. Dependent variables are cognitive load, task load and knowledge.
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3.1.1. Participants

The participants were reached through the same online platforms for participant sam-
pling of the department as in study one and convenience sampling. Students could receive
participant hours for taking part. The final dataset included N = 130 people after two
outliers were filtered out based on very long study duration. Primarily (86%) students took
part, of which most were in the study programs of applied cognitive and media science
(76%) and psychology (17%), in which there are no classes related to the learning topic
of the study. They were aged 18 to 61 (M = 23.72, SD = 7.95) and 34 indicated being male,
96 being female. On average, the participants did not indicate high prior knowledge be-
liefs concerning the focal learning topic of regional birds in a subjective rating (M = 1.59,
SD = 0.50; 5-point response format from 1—low to 5—high). The participants on average
indicated having very rarely used general AR applications (M = 1.81, SD = 0.81) and AR
learning applications (M = 1.31, SD = 0.68; both measured in a 5-point response format,
with 1—“never”, 2—“rarely”, 3—“now and then”, 4—“often” and 5—“regularly”). The
participants were randomly distributed into the three groups. In Table 5 the number of
participants, gender, age, prior knowledge beliefs and prior usage of AR applications per
condition are shown. The distribution is quite balanced for all variables except for age,
with a descriptively higher age in the matching group. All subjects gave their informed
consent for inclusion before they participated in the study. The study with the ID psych-
meth_2020_AR14_30 was conducted in accordance with the Declaration of Helsinki, and
the protocol was approved by the department’s Ethics Committee (vote ID: 2012PFKL8474).

Table 5. Distribution of the number of participants, gender, age, prior knowledge beliefs and prior
usage of AR applications split by condition in study two.

Condition n
Gender Age Prior

Knowledge
Usage AR Applications

General Learning

Male Female M (SD) M (SD) M (SD) M (SD)

No sounds 43 11 32 22.30 (6.13) 1.54 (0.42) 1.84 (0.72) 1.35 (0.81)
Matching 44 13 31 26.52 (11.10) 1.61 (0.45) 1.73 (0.79) 1.36 (0.72)

Non-matching 43 10 33 22.28 (4.23) 1.61 (0.62) 1.86 (0.91) 1.21 (0.47)

3.1.2. Materials

The independent variable was manipulated by showing simulated AR experiences
to the participants through three different videos during the learning phase. The visual
material and real environmental sounds were the same for all videos. The scene was
filmed in a forest, in which six different locations were walked towards and focused on
with the camera, where a picture of and additional textual information (common name,
scientific name, size and food) about a different bird then appeared in each location. The
simulated AR experience in this study thus included the video of the forest including
sounds in the background as the real-world environment which the participants should
imagine themselves to be in. The additional pictorial (i.e., the bird) and textual (i.e., bird
characteristics) information was included as virtual elements in the AR experience which
the participants should imagine as being viewed through AR glasses. The videos differed in
the additional virtual sounds that were played when focusing on a bird: either no additional
sound (no sounds), the chirping of that bird (matching sounds) or another unrelated sound,
such as a bell (non-matching sounds). In Figure 6, screenshots of two frames including
birds from the videos are shown. In all conditions, the participants were asked to imagine
that they were walking through the forest and using the AR application in the real world
themselves. The videos took 6 min.
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Figure 6. Two screenshots from the video used in study two.

Subjective prior knowledge was measured with the same scale by Wigfield and
Eccles [33] used in study one, although the content area was adapted. Cronbach’s
alpha was questionable (α = 0.58), but the scale was kept the same because it only has
three items.

Extraneous and germane cognitive load were measured as in study one with the
cognitive load scale by Klepsch and colleagues [34]. Cronbach’s alpha was questionable for
extraneous cognitive load at α = 0.59 and germane cognitive load at α = 0.62, but we kept
the scales as they were because of the already low number of three items per scale.

Task load including mental demand, physical demand, temporal demand, perfor-
mance, effort and frustration was also measured with the six one-item scales from the
NASA TLX used in study one [35,36]. Again, the score for the performance item was
inverted for easier interpretation of the scores, with high scores meaning high perceived
performance and low scores meaning low perceived performance.

Learning outcomes were measured through a knowledge test (8 items) that included
different kinds of questions, all multiple-choice questions with four possible answers (one
correct answer). In four questions the participants had to match textual information about a
bird to the picture of the bird (e.g., “What is the name of this bird?”), in four other questions
they had to match textual information to the name of the bird (e.g., “What does the bullfinch
eat?”). One point was given for a correct answer, so that in total 8 points could be reached.

For exploratory analyses, a sound–picture matching test was also administered in
the two groups that received additional sounds in the learning test. In two items the
participants were asked to match a sound to the bird’s name and in two other items to the
bird’s picture.

3.1.3. Procedure

As in study one, the study took place during social distancing measures due to the
COVID-19 pandemic in December 2020, such that it was fully online with a researcher
supervising each participant through synchronous (voice/video) chat. The procedure is
very similar to that of study one. After the researcher welcomed the participants, they read
the conditions and were asked for their consent. They answered the questions concerning
their prior knowledge on regional birds. After that, the participants viewed the video
showing the virtual birds and textual information in the real forest and adding either no,
matching or non-matching sounds. The participants were asked to imagine that they were
in the real-world situation using the respective application that was displayed in the video.
Afterwards, the cognitive load questionnaire and NASA TLX were administered, followed
by the knowledge test. In the end, demographic data were requested, the participants were
debriefed, and the session was completed by the researcher. This procedure can also be
seen in Figure 7.
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Figure 7. Procedure in study two.

3.2. Results

All hypotheses were statistically tested through one-way ANOVAs with type of sounds
(no vs. matching vs. non-matching) as the predictor and the appropriate score as the
outcome variable. Levene’s test indicated the homogeneity of variances for all variables
(see Appendix A). A-priori-determined contrasts based on the individual hypotheses are
used for the analyses. The first comparison in the contrast analysis always focuses on
no added sounds compared to added sounds, while the second comparison focuses on
matching sounds compared to non-matching sounds. When the focus of the hypothesis
is on the first comparison in the contrast, the second comparison is explored for a more
complete picture. Means and standard deviations of all variables can be seen in Table 6.

Table 6. Means and standard deviations of different variables in study two.

Mean and SD per
Condition a

Possible
Range

No Sound
M (SD)

Matching
M (SD)

Non-Matching
M (SD)

H2.1a: extraneous CL 1–7 2.24 (1.08) 2.55 (1.00) 2.53 (1.16)
H2.1b: germane CL 1–7 4.81 (1.41) 4.76 (1.26) 5.12 (1.22)

H2.2a: mental demand 1–21 8.60 (4.47) 9.98 (4.71) 9.74 (4.33)
H2.2b: physical demand 1–21 4.12 (4.23) 3.93 (3.39) 3.40 (3.58)
H2.2c: temporal demand 1–21 6.84 (4.57) 7.64 (4.92) 7.47 (4.67)

H2.2d: performance 1–21 11.95 (4.89) 10.95 (5.25) 13.00 (4.72)
H2.2e: effort 1–21 7.95 (4.54) 9.70 (4.52) 8.21 (4.38)

H2.2f: frustration 1–21 5.65 (4.83) 6.11 (4.94) 5.00 (4.89)

H2.3: knowledge 0–8 3.70 (1.74) 3.86 (1.77) 4.02 (1.57)
a. Highest mean per subscale in bold, lowest mean per subscale in italics.

3.2.1. H2.1: Cognitive Load

To test hypotheses H2.1a and H2.1b on the influence of added sounds on cognitive
load, the one-way ANOVAs included extraneous cognitive load and germane cognitive
load subscale scores as outcome variables. Boxplots showing the data for both types of
cognitive load can be seen in Figure 8.

In H2.1a, extraneous cognitive load was hypothesized to be lower when no sounds
were added than when either matching or non-matching sounds were added. This pattern
was indicated descriptively in the group means, showing a lower extraneous cognitive load
in the no sounds (M = 2.24, SD = 1.08) than the very similar matching sounds (M = 2.55,
SD = 1.00) and non-matching sounds (M = 2.53, SD = 1.16) conditions. The overall model
of the one-way ANOVA was not significant, F(2, 127) = 1.14, p = 0.324 and ω2 < 0.01.
Additionally, no significant differences were found in the first comparison of the Helmert
contrast analysis, comparing no sounds and added sounds, t = −1.51, p = 0.135, or in the
second comparison, comparing matching and non-matching sounds, t = 0.08, p = 0.938.
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Figure 8. Distribution of extraneous cognitive load and germane cognitive load scores split by group
in study two (boxplot with IQR (black), mean with bootstrapped 95% confidence interval (white)).

In H2.1b, germane cognitive load was hypothesized to be higher when no sounds
were added than when either matching or non-matching sounds were added, and higher
when matching than when non-matching sounds were added. Descriptively, a different
pattern was shown with the highest germane cognitive load in the non-matching (M = 5.12,
SD = 1.22) condition, then the no sounds (M = 4.81, SD = 1.41) and then the matching
sounds (M = 4.76, SD = 1.26) conditions. The overall model of the one-way ANOVA was not
significant, F(2, 127) = 0.94, p = 0.393 andω2 < 0.00. Additionally, no significant differences
were found in the first comparison of the Helmert contrast analysis, t = −0.52, p = 0.607, or
in the second comparison, t = −1.27, p = 0.205.

We thus found no support for H2.1a and H2.1b: no significant advantages of leaving
out additional sounds were found concerning extraneous or germane cognitive load.

3.2.2. H2.2: Task Load

For testing H2.2a, H2.2b, H2.2c, H2.2d, H2.2e and H2.2f on the influence of added
sounds on cognitive load, the one-way ANOVAs included mental demand, physical de-
mand, temporal demand, performance, effort and frustration subscale scores as outcome
variables. Boxplots showing the data for all six subconstructs of task load can be seen
in Figure 9.

Figure 9. Distribution of task load subscale scores split by group in study two (boxplot with IQR
(black), mean with bootstrapped 95% confidence interval (white)).
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In H2.2a, mental demand was hypothesized to be lower when no sounds were added
than when either matching or non-matching sounds were added, which was indicated
descriptively in the group means, showing a lower mental demand in the no sounds
(M = 8.60, SD = 4.47) than the matching sounds (M = 9.98, SD = 4.71) and the non-matching
sounds (M = 9.74, SD = 4.33) conditions. The overall model of the one-way ANOVA was not
significant, F(2, 127) = 1.15, p = 0.320 andω2 < 0.01. Additionally, no significant differences
were found in the first comparison of the Helmert contrast analysis, t = −1.50, p = 0.137, or
in the second comparison, t = 0.24, p = 0.810.

In H2.2b, physical demand was hypothesized to be lower when no sounds were added
than when either matching or non-matching sounds were added. An opposite pattern
was indicated descriptively in the group means, showing the lowest physical demand in
the non-matching sounds (M = 3.40, SD = 3.58), higher physical demand in the matching
sounds (M = 3.93, SD = 3.39), and the highest physical demand in the no sounds (M = 4.12,
SD = 4.23) condition. The overall model of the one-way ANOVA was not significant,
F(2, 127) = 0.45, p = 0.638,ω2 = −0.01. Additionally, no significant differences were found
in the first comparison of the Helmert contrast analysis, t = 0.66, p = 0.512, or in the second
comparison, t = 0.69, p = 0.494.

In H2.2c, temporal demand was hypothesized to be lower when no sounds were added
than when either matching or non-matching sounds were added, which was indicated
descriptively in the group means, showing a lower temporal demand in the no sounds
(M = 6.84, SD = 4.57) than the matching sounds (M = 7.64, SD = 4.92) and the non-matching
sounds (M = 7.47, SD = 4.67) condition. The overall model of the one-way ANOVA was not
significant, F(2, 127) = 0.34, p = 0.710,ω2 = −0.01. Additionally, no significant differences
were found in the first comparison of the Helmert contrast analysis, t = −0.81, p = 0.419, or
in the second comparison, t = 0.17, p = 0.866.

In H2.2d, performance was hypothesized to be perceived as higher when no sounds
were added than when either matching or non-matching sounds were added. A different
pattern was indicated descriptively in the group means, showing the highest perceived per-
formance in the non-matching sounds (M = 13.00, SD = 4.72), lower perceived performance
in the no sounds (M = 11.95, SD = 4.89) and lowest in the matching sounds (M = 10.95,
SD = 5.25) conditions. The overall model of the one-way ANOVA was not significant,
F(2, 127) = 1.85, p = 0.162 andω2 = 0.01. Additionally, no significant differences were found
in the first comparison of the Helmert contrast analysis, t = −0.03, p = 0.980, or in the second
comparison, t = −1.92, p = 0.057.

In H2.2e, effort was hypothesized to be lower when no sounds were added than when
either matching or non-matching sounds were added, which was indicated descriptively
in the group means, showing a lower effort in the no sounds (M = 7.95, SD = 4.54) than
the matching sounds (M = 9.70, SD = 4.52) and the non-matching sounds (M = 8.21,
SD = 4.38) conditions. The overall model of the one-way ANOVA was not significant,
F(2, 127) = 1.95, p = 0.147 andω2 = 0.01. Additionally, no significant differences were found
in the first comparison of the Helmert contrast analysis, t = −1.20, p = 0.232, or in the second
comparison, t = 1.56, p = 0.122.

In H2.2f, frustration was hypothesized to be lower when no sounds were added than
when either matching or non-matching sounds were added, and lower when matching than
when non-matching sounds were added. A different pattern was indicated descriptively in
the group means, showing the lowest frustration in the non-matching sounds (M = 5.00,
SD = 4.89), higher frustration in the no sounds (M = 5.65, SD = 4.83) and the highest
frustration in the matching sounds (M = 6.11, SD = 4.94) conditions. The overall model
of the one-way ANOVA was not significant, F(2, 127) = 0.57, p = 0.568 and ω2 = −0.01.
Additionally, no significant differences were found in the first comparison of the Helmert
contrast analysis, t = 0.10, p = 0.918, or in the second comparison, t = 1.06, p = 0.290.

We thus did not find support for hypotheses H2.2a, H2.2b, H2.2c, H2.2d, H2.2e and
H2.2f, showing no significant advantage for not adding sounds concerning mental demand,
physical demand, temporal demand, perceived performance, effort and frustration.
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3.2.3. H2.3: Knowledge

To test H2.3 on the influence of added sounds on knowledge, the one-way ANOVA
included the knowledge test score as the outcome variable. Knowledge was hypothesized
to be higher when no sounds were added than when either matching or non-matching
sounds were added, and higher when matching than when non-matching sounds were
added. Descriptively, an opposite pattern was shown with the highest knowledge in the
non-matching sounds (M = 4.02, SD = 1.57) condition, then the matching sounds (M = 3.86,
SD = 1.77) and the no sounds (M = 3.70, SD = 1.74) conditions. The overall model of the one-
way ANOVA was not significant, F(2, 127) = 0.40, p = 0.674 andω2 = −0.01. Additionally, no
significant differences were found in the first comparison of the Helmert contrast analysis,
t = −0.78, p = 0.438, or in the second comparison, t = −0.44, p = 0.661. Hypothesis H2.3
was thus not supported: no significant advantages of following the coherence principle by
leaving out additional sounds were found concerning knowledge outcomes.

As different kinds of items were used in the knowledge test, we also took a closer
exploratory look at these. Concerning the four items in which the picture of a bird had to be
matched with a textual characteristic or name, the pattern was the same as in the complete
knowledge test results: highest score for the non-matching (M = 2.30, SD = 1.15) compared
to the matching (M = 2.09, SD = 1.22) and no sounds (M = 2.09, SD = 1.19) conditions. The
full model was not significant, F(2, 127) = 0.45, p = 0.636 and ω2 = −0.01. Additionally,
in the contrast analysis neither the first comparison, t = −0.47, p = 0.640, nor the second
comparison, t = −0.83, p = 0.407, were significant. Concerning the four items in which only
text was included, thus matching the name of a bird with a characteristic, this pattern was
a little different. Here, the matching condition had the highest score (M = 1.77, SD = 1.10),
then the non-matching (M = 1.72, SD = 1.08) and then the no sounds (M = 1.60, SD = 1.03)
conditions. Again, the full model was not significant, F(2, 127) = 0.28, p = 0.755 and
ω2 = −0.01, and in the contrast analysis neither the first comparison, t = −0.71, p = 0.476,
nor the second comparison, t = 0.23, p = 0.821, were significant. Although these differences
between the groups are very small, the items in which pictures and text needed to be
matched thus descriptively showed an advantage for the non-matching sounds condition,
while the items in which different textual elements needed to be matched descriptively
showed an advantage for the matching sounds condition. Boxplots showing the data split
by item type and for the complete knowledge test can also be seen in Figure 10.

Figure 10. Distribution of knowledge test scores by item types split by group in study two (boxplot
with IQR (black), mean with bootstrapped 95% confidence interval (white)).
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In additional exploratory analyses, we compared how much the sounds were con-
nected to the pictures and names of the birds in the participants’ memory. In this analysis,
we thus only compared the groups that received sounds, thus the matching and non-
matching group, in a Welch’s t-test with the score in the audio-matching knowledge test as
the outcome variable. From eight possible points, the mean was higher in the non-matching
(M = 1.79, SD = 1.10) than the matching (M = 1.39, SD = 0.84) condition. Descriptively, the
data thus show that the condition with non-matching sounds remembered the connection
between sound and bird more correctly than the matching group. The effect has a small
effect size and is not significant, t(78.53) = −1.92, p = 0.059 and d = −0.41.

3.3. Discussion

The goal of study two was to implement and examine the coherence principle in a
learning environment including a combination of (contextually matched) real and virtual,
visual and auditory elements, leveraging the AR characteristic contextuality. We examined
the influence of omitting or adding either matching or non-matching sounds on cognitive
load, task load and the resulting knowledge. None of the hypotheses were supported,
although the tendencies in the data partly showed expected effects. Descriptively, the
extraneous cognitive load (H2.1a), mental demand (H2.2a), temporal demand (H2.2c) and
effort (H2.2e) scores were as expected, with lower scores when no sounds were added in
comparison to matching and non-matching added sounds. For all these scores, matching
sounds led to the highest scores, which may suggest that learners tried to remember the
sounds, which may have been more demanding and effortful. By adding sounds that
were relevant for the learning material, learners may have been more distracted because
they may have thought that the sounds were important to listen to and remember, which
was probably not the case for the non-matching sounds. This is in accordance with the
boundary conditions for the coherence principle specified by Mayer, which describe that
the principle is more important when the added extraneous material is more interesting
for learners [15]. While participants may also have tried to remember the sounds in the
non-matching condition, the difference may have been that those were easier to distinguish
and remember. We descriptively found that participants who received the non-matching
sounds could better connect them to the birds that appeared simultaneously with the sound.
This may have mainly been due to the recognizability of those sounds and that they were
easily distinguishable in comparison to the different bird sounds. In the future, research
could look at different kinds of sound, especially more and less distinguishable in addition
to more and less familiar sounds.

Further non-significant effects that also had different descriptive patterns than those
expected show that germane cognitive load (H2.1b) and perceived performance (H2.2d)
were highest while physical demand (H2.2b) and frustration (H2.2f) were lowest when
non-matching sounds were added. Maybe the non-matching sounds provided the learners
with a way to stay alert when the visual information was shown. Additionally, they could
have been able to tune these non-relevant sounds out after some time. Concerning the
knowledge outcomes, hypothesis H2.3, describing a positive effect of sound omission in
comparison to sound addition and a positive effect of matching in comparison to non-
matching sounds, was also not supported. Still, interesting descriptive results were found
when comparing the different forms of test items. While for the picture–text items (matching
the pictures of birds to their characteristics) the highest mean score was in the non-matching
sounds condition, for the completely textual items (matching the names of birds to their
characteristics) the highest mean score was in the matching sounds condition. Although
none of the differences between the groups are significant, this may indicate a difference
for different kinds of test items. In general, the lack of significant differences concerning
all variables may indicate that the difference between the conditions through the addition
of only small sounds such as the ones used in the study is not big enough to completely
disrupt learning and confirm an effect based on the coherence principle.
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In the current study, we only examined cognitive factors, not affective or motivational
aspects. In his description of the theoretical basis for the coherence principle, Mayer
contrasts the idea that interesting elements can lead to higher motivation in learners with
the active processing assumption of CTML, describing that humans need to actively select
and process information for learning, such that no extraneous information should be added
to disturb these processes [15]. Still, he further writes that based on the cognitive affective
model of learning with media (see [41]) and the integrated cognitive affective model of
learning with multimedia (see [42]), cognitive and affective processing can influence each
other, describing that the first interest may be attracted through seductive details but
that further interest must come from personal value that learners individually find in the
material [15]. The cognitive in comparison to the affective factors of seductive details
have been discussed in the literature, and it has been found that in high-load situations
specifically information that cannot be completely ignored, such as auditory narrations, may
interfere with learning [43]. While the information in the current study was not a narration,
it was auditory. As expected, the bird sounds may have had a distracting effect, which
added load onto the mental tasks of immersing oneself in the AR experience, watching the
video and integrating pictorial and textual information, which is more mentally demanding
than the combination of pictures and auditory narration (modality principle, [10]).

The descriptive results in the current study seem to at least partly and descriptively
support the cognitive detriments of adding contextually relevant and interesting auditory
elements to AR-based learning experiences. Still, research on AR often focuses on affective
and motivational aspects, which have been identified as important factors in AR-based
instructional environments (e.g., [4,19,21]). It may thus be interesting for future research to
take a closer look at how the addition of atmospheric, relevant sounds in AR experiences
have an influence on the enjoyment of the experience, and for example on learners’ wishes to
use the application more often, while still keeping the cognitive aspects in mind. The usage
of environmental sound in the form of spatial AR soundscapes for realistic experiences
through specific recording and reproduction techniques, taking into account movement
and an interaction of virtual with real sounds [11], might be considered for this. A learning-
specific focus might be on the relevance of atmospheric and specific sounds for motivational
and cognitive learning goals within a specific context.

Again, the study was executed with a video-based implementation simulating an
AR-based learning experience. In addition to the real and virtual visual elements presented
in study one, in study two there were also additional real environmental sounds, and in
two of the three conditions virtual sounds were added. This video-based implementation
might thus have provided a more sensorily immersive experience than in study one. An
advantage of using videos again was being able to keep the conditions the same except for
the manipulated variable. The participants all received exactly the same visual material with
the same real sounds in the background; only the added virtual sounds were different. In a
study in a real forest, factors such as the weather, background sounds and present animals
may differ between participants and lead to different coherence-related circumstances and
distractions. Additionally, the interaction and duration might differ when people have
control over the usage, where they may focus on different aspects of the material and
environment. Through the video-based implementation, confounding factors are thus
decreased and (descriptive) differences can be attributed to the omission or addition of
sounds. The limitations due to this implementation are again mainly based on the question
of the transferability of the results onto real AR-based learning experiences. Especially
concerning coherence, the interaction with, movement in and presence within an immersive
environment may play a big role and can be both motivating and distracting, as stated
in Mayer’s immersion principle [31]. These factors could not be considered in the same
way in the present study, because the immersion in a video-based presentation is different
than physically being in the environment. The transferability should be tested in future
studies. The advantages and challenges of the video-based implementation will be further
discussed in the general discussion.
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Other limitations of the study were that the real-world background sound of the forest
included bird sounds from the environment that may have been distracting, especially in
the matching sounds condition. As this is realistic, it increases comparability to a setting
in the real world but cannot be excluded as a confounding factor and should be taken
into account when interpreting the results. Furthermore, some participants had technical
difficulties with the video playback, although this was not systematic in one condition but
randomly distributed.

In conclusion, it can be said that the descriptive results are not conclusive in supporting
the coherence principle in the case of omitting or adding virtual matching or non-matching
sounds in an environment with real and virtual elements. The addition of small sounds
might not have that big of an influence, and future research should test for the transferability
of the results onto more complex materials and real AR-based learning environments.

4. General Discussion

The goal of the paper is to apply multimedia design principles to the specific case of
AR and evaluate them in experimental studies concerning their effects on cognitive load,
task load and the resulting knowledge. Only a few of the hypotheses that we tested in
the two studies were supported, although interesting and mostly expected descriptive
tendencies emerged. In study one, the data did not fully support the expected positive
effect of following the spatial contiguity principle through the integration of visual real
and virtual elements on cognitive load, task load, and knowledge. Only the hypotheses
describing decreased temporal demand and increased perceived performance through
the integration of the material were supported. Descriptively, we also found the expected
results of integration of the material concerning decreased extraneous cognitive load,
mental demand, physical demand, effort, and frustration, in addition to increased germane
cognitive load and positive results for the picture–text knowledge test items. In study
two, the data did also not fully support the expected positive effects of following the
coherence principle by omitting virtual sounds that are matching or non-matching to the
learning material on cognitive load, task load, and knowledge. We did find descriptively
lowest extraneous cognitive load, mental demand, temporal demand, and effort when no
sounds were added, but opposed to what we expected found lowest physical demand and
highest germane cognitive load and perceived performance when non-matching sounds
were added. Again, different kinds of knowledge test items showed different patterns,
with textual items revealing the highest score when matching sounds were added, and
picture–text items revealing the highest score when non-matching sounds were added.

4.1. Methodological Approach

As already described in the study-specific discussions, there are several advantages
but also some limitations due to the video-based, simulated implementation of the AR
environment. While the implementation of the video format in a fully online study was a
great opportunity for us to conduct AR-related research during social distancing measures
in the COVID-19 pandemic, beyond this there are additional advantages for experimen-
tal research. Due to the possibility of standardizing the experience for all participants,
individual differences in the usage of real, interactive AR applications (e.g., duration of
engagement with specific components, focus on other aspects of the environment) and sub-
sequently evoked random or systematic error can be decreased. Furthermore, the novelty
effect that is often reported as a confounding variable in research on new technologies,
such as AR [44], can probably be decreased when participants just imagine using real AR.
Chang and colleagues, for example, found that an AR application increased learners’ moti-
vation in comparison to a learning video [45]. With a focus on cognitive aspects, removing
potential motivational effects may increase the interpretability of the data. Additionally,
disruptions or distractions that the operation of unknown technologies might bring are
decreased. Through these advantages, effects can more securely be attributed to the studies’
manipulations.
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There are also apparent limitations of the approach. While the above-mentioned
advantages all help with increased internal validity and the possibility of attributing effects
to the experimental manipulations, those advantages also bring limitations when it comes
to the question of the transferability of the results to the real usage of AR. The immersion
principle by Mayer [31] states that immersive virtual environments may not always lead to
better learning results because distractions of the environment may evoke an increase in
necessary cognitive processing and eliminate motivational effects. This may also be the
case for immersion in real-world environments that might provide motivational and atmo-
spheric advantages but also increased cognitive demands due to many distractions. While
removing these distracting and motivational aspects for research may help in decreasing
confounding variables, those factors are not removed when using real AR applications.
Furthermore, it is not clear if participants could really imagine being in the situations and
if the perception of the real elements in the videos is comparable with the perception of
those elements in physical reality. We did not ask the participants about their experience of
imagining the situation taking place in the real world. Interaction and self-direction are key
features in AR and every learner can have a different, individual experience when learning
with AR, such that, for example, coherence-related factors may differ for each learner. In the
video-based implementations the pace of the influx of information could not be regulated
by the learners, although we did try to give them a lot of time to process information. This
may have been more time than necessary for many participants, which may have led to
boredom. While we do not know of cases in which this approach has already been used
to evaluate AR, there has been research on general instructional videos in which virtual
elements are added for extra information or guidance. In a study by Tsiatsos and colleagues,
for example, virtual footprint symbols were added onto recorded videos of dancers for the
teaching of Greek traditional dances [46]. These kinds of video overlays were classified
as design patterns for video annotation and described as video augmentation through
synchronized information overlays emphasizing the contents, linking to related content
or containing additional relevant information themselves [47]. This may, in general, be an
interesting alternative to fully location-based AR environments when their development
or implementation is not possible, but the combination of real and virtual elements is an
important focus of a learning area.

Both studies took place online with a supervising researcher over a (video/voice)
call. The researcher was in direct contact at the beginning as well as the end and was
available for questions during the study. Furthermore, participants were asked to minimize
all distractions to account for the online situation. Still, especially concerning the learning
phase, it is not completely clear how seriously the participants watched the videos, and
external distractions could not be controlled for. In study two it might even be the case that
participants did not listen to the sounds. They were asked to use headphones and adjust
their volume based on a sound before the video, but they might still have turned sounds
off or removed their headphones afterwards. In a laboratory those factors could have been
better controlled.

Another limitation is based on the usage of questionnaires for measuring cognitive
load and task load. While this method provided us with differentiated outcomes based
on the different subconcepts, such as the different types of cognitive load, for future
research the addition of objective, continuous measures of cognitive load may be considered.
Retrospective measures cannot capture changes in load during the learning task, which
may be particularly interesting for learning environments in which the focus on learning
materials shifts over time due to navigational periods when looking for the next material
(e.g., walking from one to the next plant or bird) or when environmental distracting
variables change. Physical, continuous measures, such as heart rate or eye movement,
may be able to catch those changes without disrupting learning processes and should be
considered as complementary methods in the future. Objective measures can be valuable
for verifying subjective results, which are sometimes biased because not all learners may
rate cognitive load in an expected way [48].
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4.2. Future Research

Implementing different multimedia design principles in AR adds new features to the
mix, including the dimension of reality. As seen in the presented studies, following the
principles of spatial contiguity and coherence was possible with combined presentations of
virtual and real elements, and at least descriptively led to partly expected results. Based
on the limitations described above, evaluating the implementations in more complex,
naturalistic environments with real AR-based learning material and with more complex
learning topics is necessary for their confirmation. In general, as already suggested in
meta-reviews by [26–29], Mayer’s CTML and following its multimedia design principles
are important approaches used in multiple studies on AR in education. Although we
focused on those in the current study, spatial contiguity and coherence are not the only
principles that may play an important role in AR-based learning and instruction.

The multimedia principle, which states that text and pictures should be combined in
instructional material for better learning [49], is in general important due to the multiple
representations that can be used in AR. Elements of the real world are often pictorial,
but both textual and pictorial virtual elements can be added, as seen in the presented
studies. The combination of virtual texts and pictures with different real-world locations
and elements might be interesting for research concerning specific multimedia mechanisms.
In study two, the focus was on the coherence principle with additional more or less relevant
sounds. While sounds are part of the third version of the coherence principle, the first
version focuses more on visual aspects that distract learners’ attention away from relevant
visual elements [15]. In AR, additional information that may not be necessary for learning
but can lead to a different context or atmosphere is often part of learning experiences due
to the environment in which the learning takes place. Relevant visual backgrounds give
a context and should thus increase immersion and motivation, but may distract from the
learning material and use additional resources for unnecessary processing. A potentially
detrimental seductive details effect concerning visual aspects in AR experiences should be
examined in future studies.

When pictorial and textual information are combined, it is always good to take a look
at the modality principle [50], and thus the combination of pictures and spoken words. AR
can be used with a lot of different media, such that the addition of narration to pictures may
bring a great potential to follow the modality principle without a lot of effort here. While
AR is often described as a visual experience, the inclusion of auditory elements is possible
and should be examined more closely. When narrations are added to AR-based experiences,
following the temporal contiguity principle [51] also seems quite straightforward for the
combination of virtual elements with real-world environments. The spatial integration of
information could be easily achieved in the representations in study one. The temporal
contiguity principle expands this idea towards narrations, suggesting that spoken text
is provided exactly when corresponding pictorial virtual elements are shown and, in an
AR-specific case, exactly when looking at corresponding physical elements in the real world.
Here, it should be distinguished between information where one part of the elements is only
understandable when the other part is also available (e.g., verbally describing processes
in the real world that are not apparent or visible) and information where each part is
understandable on its own, but where adding the other part may give more information
(e.g., naming and characterizing objects in the real world through spoken text).

The focus of the current studies is on very specific features of instructional design of
AR applications. In reality, AR applications are often more complex and incorporate more
features than just a short presentation of spatially and contextually embedded information.
In the taxonomy that Mystakidis and colleagues developed based on a systematic review,
five clusters of instructional methods in AR-based learning interventions are described and
the approaches in the current studies best fit into the most passive, teacher-centered category
where presentation and observation are in focus [25]. The other four clusters describe
methods that focus on activities that are more or completely learner-controlled, including
project-based and experiential learning. In order to establish an empirical basis for the
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integration of multimedia principles into those more complex and interactive instructional
methods, research in more authentic, naturalistic settings in which learners can interact
with the representations is necessary. An important aspect that distinguishes AR settings
from non-AR multimedia learning is the focus on being immersed and feeling present
within a specific environment as an important affordance of the experience [20]. While
Mayer’s immersion principle states that immersion does not necessarily lead to improved
learning, the motivational aspects of immersion are recognized [31]. Its interaction with
the application of the other multimedia principles may provide an interesting research
area. The feeling of presence is also relevant in VR settings, and maybe even more so in
remote collaboration through VR, where it was suggested to be included into a taxonomy
of computer-supported cooperative work (CSCW) [52]. In further steps, collaborative or
cooperative learning settings, which often come naturally with more interactive and project-
based settings, may be the focus of future research on the implementation of multimedia
principles in AR-based learning.

Concerning the methods used, for future examinations of implementations of multime-
dia design principles in AR, it seems to be important to further take into account different
types of cognitive load (e.g., extraneous and germane cognitive load), which compared
to each other descriptively showed different patterns in both studies. Additionally, the
different subconstructs of task load either supported each other, as in study one, or also
showed different, more differentiated patterns, as in study two. Adding this measure of
the NASA TLX, which is often used in research on AR [32], can provide researchers with
more detailed information on potential effects. Furthermore, both studies showed that
different kinds of knowledge and thus different test items (i.e., combining pictures and
text; text only) should be considered for learning outcome examination. When learning
with AR in the outside world, the real-world environment is often a pictorial and not a
textual representation. Additional visual virtual materials can be both pictures and text,
and multimedia effects should be further examined including the factor of virtual and
physical realities in AR.

In general, we can conclude that AR brings many new opportunities concerning the
application of multimedia design principles in the context of physical and virtual elements.
The characteristics of AR, including spatiality, interactivity and contextuality, can help in
considering AR-specific potentials when implementing those principles. Spatial contiguity
and coherence, as two well-studied and -supported principles, were the focus of the current
paper, although more should be implemented and investigated in future studies.
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Appendix A

Table A1. Result of Levene’s test for all variables.

Study One—Levene’s Test F-Value df1 df2 p

H1.1a: extraneous cognitive load 0.09 1 78 0.764
H1.1b: germane cognitive load 1.00 1 78 0.320

H1.2a: mental demand 0.64 1 78 0.427
H1.2b: physical demand 4.07 1 78 0.047 *
H1.2c: temporal demand 0.53 1 78 0.469
H1.2d: performance 0.18 1 78 0.671
H1.2e: effort 0.15 1 78 0.696
H1.2f: frustration 1.25 1 78 0.266

H1.3: knowledge 0.78 1 78 0.379

Study two—Levene’s Test F-Value df1 df2 p

H2.1a: extraneous cognitive load 0.53 2 127 0.592
H2.1b: germane cognitive load 0.54 2 127 0.585

H2.2a: mental demand 0.20 2 127 0.819
H2.2b: physical demand 0.93 2 127 0.397
H2.2c: temporal demand 0.46 2 127 0.633
H2.2d: performance 0.06 2 127 0.944
H2.2e: effort 0.46 2 127 0.633
H2.2f: frustration 0.05 2 127 0.952

H2.3: knowledge 1.48 2 127 0.232
Note. * p < 0.05.
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