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Introduction

In neuroendocrine tumors, somatostatin receptor imaging 
which is crucial for the diagnosis of distant metastases, 
is traditionally performed using Indium-111 [111In] 

diethylene-triamine-pentaacetate (DTPA) scintigraphy 
or Gallium-68 [68Ga] dodecane tetraacetic acid DOTA-
peptide somatostatin receptor imaging (SSRI) with positron 
emission tomography (PET) (1). The introduction of 
hybrid imaging modalities into clinical practice, such as 
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Figure 1 Preoperative PET/CT imaging. (A) Gallium-68-Edotreotide [68Ga]-DOTATOC PET/CT. (B) [18F]-FDG-PET/CT. To improve 
visualization of the FDG uptake of the carcinoid located dorsally of the heart, maximum intensity projections (MIP) are shown in anterior 
and left anterior oblique views. PET/CT, positron emission tomography-computed tomography; [68Ga]-DOTATOC, Gallium-68-
Edotreotide; [18F]-FDG, fluorine-18-fluorodeoxyglucose.

combined PET/computed tomography scan (PET/CT) 
(2,3) and combined PET/magnetic resonance imaging 
(PET/MRI) (4,5), has promoted the use of [68Ga]-DOTA-
peptide imaging by combining morphological imaging with 
the sensitivity of PET. [68Ga]-DOTA-peptide PET/CT 
and PET/MRI have become irreplaceable for initial tumor 
staging, patient selection for peptide receptor radionuclide 
therapy (PRRT), assessment of tumor response following 
chemotherapy, and liver-directed therapy (1,6). Recent 
approaches, such as the characterization of tumors through 
textural features in morphological imaging and PET, 
hold great potential regarding tumor response prediction 
and non-invasive grading of neuroendocrine tumors and 
neuroendocrine carcinomas, respectively (7-10). However, 
imaging features’ relationship with histopathology requires 
further study before widespread clinical use. Isolated 
lung perfusion (ILP) (11,12) could be used to correlate 
histopathology with imaging in a viable organ without 
compromising patient safety and comfort. This brief 
report discusses our initial experience with ex-vivo ILP as a 
research tool in nuclear medicine imaging.

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Approval 
of this study was given by the ethics committee of the 
University of Duisburg-Essen (No. 17-7802_1-BO), and 
informed consent was obtained from the patient.

A 49-year-old male presented to our clinic with recurrent 
hemoptysis. The CT showed a suspicious 3.4 cm nodule 
in the left lower lobe with post-obstructive atelectasis. 
Subsequent fluorine-18 [18F]-fluorodeoxyglucose (FDG) 
PET/CT showed [18F]-FDG activity in the primary 
tumor (SUVmax 5.7) without evidence of distant metastasis  
(Figure 1A). Histopathology and immunohistochemistry 
identified a typical carcinoid (Ki67<1%) without nodal 
involvement. A [68Ga]-DOTATOC PET/CT showed 
intense and homogeneous somatostatin receptor 2 (SSTR2) 
expression in the primary tumor (SUVmax 32.1) (Figure 1B). 
The clinical tumor stage was cT2a cN0 cM0, stage IIA. 
Given the patients’ good pulmonary function, a left lower 
lobectomy with lymph node dissection was performed. 
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Pathologic examination of the surgical specimen confirmed 
a pT2a pN0 (0/9) L0 V0 G1 R0 (stage IIA) typical 
carcinoid. The patient’s recovery was uneventful, and no 
recurrence was seen on follow-up.

Isolated lung perfusion

Cold static preservation and ILP were performed 
according to our institutional protocol (11,12). After 
surgical retrieval of the lobe, the vasculature was flushed 
with cold preservation solution (1,000 mL Perfadex Plus®, 
5,000 IU Heparin). The delay from intraoperative arterial 
clamping to cold static preservation was 15 min. The lobe 
was inflated via the bronchus, and vascular cannulas were 
sutured in. Cold ischemia was maintained for 343 min 
(5.7 hours) before perfusion. After gradual rewarming  
(37 ℃), the lobe was ventilated with 140 mL tidal volume 
(8 breaths/minute, FiO2: 0.4, PEEP: 7 cmH2O). Maximum 
perfusion flow was 610 mL/min, and the perfusate was 

continuously deoxygenated. The circuit is depicted in 
Figure 2.

DOTATOC PET-CT imaging

The lung lobe was placed in a digital PET/CT (Vereos, 
Philips, The Netherlands) equipped with a 64-slice CT, 
time-of-flight technology, and an axial field-of-view of 
17 cm. One gantry position covered the entire specimen. 
Forty minutes after the onset of ILP, data acquisition 
was started. After a high-resolution CT scan (100 kV,  
250 mA, spatial resolution 0.67 mm × 0.67 mm), 100 MBq 
[68Ga]-DOTATOC was injected as a slow bolus via a long 
extension line into the pulmonary artery. The bolus reached 
the specimen 55 minutes after initiation of ILP. PET data 
were acquired in list mode for 80 min. The emission data 
was attenuation corrected, sorted into 60s-timeframes, 
and reconstructed with an iterative OSEM algorithm  
(3 iterations, 9 subsets) with a spatial resolution of 1 mm 
× 1 mm× 1 mm. Thereafter, spherical volumes-of-interest 
(VOI) (6 mm × 6 mm × 6 mm) were placed over the cannula 
(VOI1), a large intrapulmonary artery (VOI2), the center 
of the carcinoid (VOI3a), the periphery of the carcinoid 
(VOI3b), and the lung parenchyma (VOI4) (Figure 3). The 
mean count rates per ml in these VOIs were corrected for 
half-life, and finally used to derive VOI-based time activity 
curves (TAC), presented in Figure 4.

During ILP, strict safety precautions were taken.

Results

ILP was carried out for 120 minutes. Perfusate gas analysis 
of the venous outflow showed a final pO2 of 94.2 mmHg 
and a pCO2 of 42.4 mmHg (at t120 min). Regarding 
metabolic activity of the isolated lobe, glucose consumption 
was calculated to be 9.66 mg/min (linear regression 
analyses, R2=0.8359) and lactate production 93.2 µmol/min  
(R2=0.9717). There were no changes in electrolytic 
composition (cNa+ 162 mmol/L; cK+ 3.2 mmol/L;  
cCa2+ 0.61 mmol/L).

VOI1-TAC revealed a fast peak in the synthetic silicone 
cannula with a subsequent linear decrease. The count rates 
of the intrapulmonary artery (VOI2) increased less and 
plateaued after 20 min. Since the carcinoid tumor presented 
as a centrally hypometabolic lesion with an increased 
receptor expression in its periphery, two VOIs were 
defined. While the center VOI3a showed a low uptake, 
even less than the normal lung parenchyma, VOI3b placed 
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Figure 2 Schematic drawing of the experimental setting. The lung 
lobe [1] is placed on the PET/CT [9] gantry. Pulmonary venous 
perfusate flow is directed through a reservoir [2], a centrifugal 
pump [3], and a gas exchange membrane [4] before being pumped 
into the pulmonary artery. A ventilator [5] and a deoxygenation 
gas mixture [6] allow for physiological gas exchange. Green lines 
mark ventilation/gas tubes. An additional roller pump [7] collects 
leaked perfusate. [68Ga]-DOTATOC [8] was administered via 
the pulmonary artery. PET/CT, positron emission tomography-
computed tomography; [68Ga]-DOTATOC, Gallium-68-
Edotreotide.
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Figure 4 Count rates over time (from the start of data acquisition) in different VOI. The [68Ga]-DOTATOC slow bolus reached the surgical 
specimen 15 min after data acquisition was started. [68Ga]-DOTATOC, Gallium-68-Edotreotide; VOI, volumes of interest.
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Figure 3 Defined volumes of interest in a transversal plane. (A) Lung window in computed tomography. (B) Mediastinal window. (C) PET 
image. (D) Fused PET/CT; right panel: multiplanar projection of PET images in coronal view. VOI, volume of interest; PET, positron 
emission tomography.
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at the periphery of the typical carcinoid demonstrated an 
asymptotic rise with an activity concentration higher than 
in surrounding parenchyma (VOI4). Additionally, 15 min 
post-injection, tracer concentration in VOI3b exceeded 
that of the blood pool (VOI2). After that, the signal-to-
background ratio of the tumor’s periphery (VOI3b) to 
the blood pool (VOI2) increased to reach a plateau of 1.5 
about 60 min post-injection. The TAC of the normal lung 
parenchyma (VOI4) constantly rose with an initial sigmoid 
course and linearly after that. The signal-to-background 
ratio of the carcinoid’s periphery (VOI3b) to normal lung 
parenchyma (VOI4) peaked at 3.7 and linearly decreased to 
2.8 at the end of the measurement.

Discussion

Typical carcinoids are low-grade pulmonary neuroendocrine 
tumors (NET) with low mitotic rates (13). Compared to 
other neuroendocrine tumors, they usually express SSTR2, 
making them suitable for imaging with [68Ga]-DOTA-
peptides (14-16). Here, we present [68Ga]-DOTATOC 
PET/CT imaging of a typical human carcinoid in an  
ex vivo isolated lung lobe. This experiment demonstrates 
the feasibility of imaging perfusion and metabolism of 
extracorporeal organs over two hours with the possibility 
of acquiring TACs from afferent vessels for modeling input 
functions and from various regions within the respective 
organ. In our setting, five VOIs were defined to describe 
the tracer influx and circulating tracer in a pulmonary 
lobe artery, the unspecific SSTR2 uptake into normal lung 
parenchyma, and tumoral uptake in central and peripheral 
areas of the carcinoid.

Interestingly, after the arrival of the slow tracer bolus 
at the input cannula, a rapid increase of the TAC suggests 
an adherence of the tracer to the tubing, which might be 
attributable to the lipophilic properties of the silicone. This 
activity slowly decreased, suggesting that the tubing acts as a 
tracer reservoir with a continuous release. This effect might 
be considered a limitation of the experimental setup in its 
current form, especially when aiming for data modeling 
with a single bolus input and recirculation of the perfusate. 
In the lung parenchyma, count rates demonstrated a 
sigmoidal increase followed by a linear [68Ga]-DOTATOC 
uptake, probably due to the constant tracer supply.

In the carcinoid itself, we found two metabolically 
different areas. Contrary to the in-vivo observations, 
the center of the tumor appeared to be largely inactive, 
indicating a deficient expression of active receptor sites. 

This difference might suggest early metabolic changes like 
internalization of the binding sites or degradation of the 
receptor, initiating central necrosis of the carcinoid due to 
changes in the peritumoral environment after resection. 
Another mechanism might be a switch in the binding of 
the intracellular SSTR2 part from GTP to GDP, making 
it inaccessible for SST receptor agonists like [68Ga]-
DOTATOC (17). These hypothesized changes seem to 
precede alterations detectable by histopathology since there 
was no visible tumor necrosis on the final pathological 
report. In contrast, the tumor’s periphery intensely 
accumulated [68Ga]-DOTATOC over time, suggesting 
viable tissue.

While kinetic measurements for dosimetry of the whole 
body and organ radiation exposure in patients undergoing 
[68Ga]-DOTATOC PET/CT are well established, data 
on [68Ga]-DOTATOC tumoral uptake and kinetics are 
sparse (18). Velikyan et al. performed dynamic PET/CT 
scans in three NET patients over 32 min. They added 
a static image at 50 min, which equals nearly equivalent 
observation time compared to the data presented here (19). 
However, only one of these patients was not treated with 
somatostatin analogues. In that patient, the NET uptake 
curve was very similar to our findings in the periphery TAC 
of the carcinoid, with an initial exponential rise followed 
by a slowly linear increase. Later, this intratumoral uptake 
pattern was replicated in another series (20). Our ex vivo 
[68Ga]-DOTATOC TAC in a viable NET lesion matches 
those in vivo data reports, emphasizing the isolated lung 
perfusion model’s validity in molecular imaging.

Conclusions

Given our results of a centrally located SSTR2-reduction, 
which appeared to precede histological tumor alterations 
towards necrosis while in the carcinoid’s periphery, the 
receptors remained preserved, this ex vivo ILP model 
might be beneficial for studying early metabolic effects on 
tumor-related micro-environmental changes. In addition, 
future applications of this model in PET/CT might 
include additional dynamic and interventional studies, e.g., 
pharmacological challenges. This brief report provides the 
basis for further research endeavors in this field.
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