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Chapter 1 
Summary (English)  
Cancer is a leading cause of death globally, and the incidence is expected to increase 

to 28.4 million cases by 2040. Precision oncology seeks to address this challenge 

through the identification and application of biomarkers to personalize treatment in a 

genomics-based, biomarker-driven approach. In this thesis, I aimed to 

comprehensively analyze the genomic impact of cancer chemotherapy and 

radiotherapy, both of which are genotoxic and expected to leave a mutational footprint 

in the cancer genome. By integration with comprehensive clinical data, I assessed the 

prognostic and predictive value of the signatures identified. My thesis has a strong 

focus on diffuse gliomas, the most common and aggressive type of brain tumors in 

adults, which have a poor prognosis despite intensive multimodal treatment. Standard 

therapy for diffuse gliomas includes surgery, radiotherapy, and chemotherapy. I 

started by examining the genomic impact of the alkylating agent temozolomide in 

gliomas, and subsequently analyzed the genomic effects of radiotherapy in a pan-

cancer setting. Following the genomic analyses, I investigated the longitudinal non-

genetic changes in gliomas associated with TMZ-associated hypermutation and RT-

associated deletion signatures. To potentially overcome translational barriers in 

cancer, I propose the use of spontaneous canine gliomas as a potential model for 

preclinical and translational science to facilitate the knowledge transfer into clinical 

practice. I conclude by discussing these findings, focusing on the potential to integrate 

them into a precision oncology framework and identify novel therapeutic avenues. The 

use of next-generation sequencing technology and comprehensive molecular 

characterization have facilitated diagnostic advances in the field of gliomas, including 

the use of molecular markers and the updated WHO Classification of Tumors of the 

Central Nervous System. These advances have yet to be translated into successful 

treatment strategies. My analyses provide valuable insights into the mechanisms of 

treatment resistance and open future opportunities for biomarker-guided treatment 

strategies as part of a precision oncology approach. 
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Summary (Deutsch)  
Krebs ist weltweit eine der häufigsten Todesursachen. Es wird erwartet, dass bis 2040 

die Inzidenz auf 28,4 Millionen ansteigen wird. Die „Präzisionsonkologie“ versucht, die 

hiermit verbundenen Herausforderung durch die Identifizierung und Anwendung von 

Biomarkern zur Personalisierung der Behandlung in einem Genom-basierten, 

Biomarker-gesteuerten Ansatz zu bewältigen. In dieser Arbeit habe die genomischen 

Auswirkungen von Chemo- und Strahlentherapie umfassend analysiert. Bei diesen 

genotoxischen Therapien ist es zu erwarten, dass sie Mutationen im Krebsgenom 

hinterlassen. Durch die Integration mit klinischen Daten habe ich den prognostischen 

und prädiktiven Wert der identifizierten Signaturen erfasst. Der Schwerpunkt meiner 

Arbeit lag auf diffusen Gliomen, der häufigsten und aggressivsten Form von 

Hirntumoren bei Erwachsenen, die trotz intensiver multimodaler Behandlung eine 

schlechte Prognose haben. Die Standardtherapie für diffuse Gliome umfasst eine 

Operation, Strahlentherapie und Chemotherapie. Zunächst habe ich die genomischen 

Auswirkungen der alkylierenden Substanz Temozolomid bei Gliomen untersucht und 

anschließend analysierte ich die genomischen Auswirkungen der Strahlentherapie in 

einem Krebsentitäts-übergreifenden Datensatz. Im Anschluss an die genomischen 

Analysen untersuchte ich die longitudinalen nicht-genetischen Veränderungen in 

Gliomen, die mit zuvor identifizierten genomischen Biomarkern einhergehen. Um 

translationale Barrieren in der Krebsforschung zu überwinden, schlage ich die 

potentielle Verwendung von spontanen Hundegliomen als Modell für die präklinische 

und translationale Wissenschaft vor, um den Wissenstransfer in die klinische Praxis 

zu erleichtern. Abschließend erörtere ich diese Ergebnisse und setze dabei einen 

besonderen Fokus auf das Potenzial, sie in einen präzisionsonkologischen Ansatz zu 

integrieren und neue therapeutische Wege zu erörtern. Der Einsatz der NGS-

Technologie und eine umfassende molekulare Charakterisierung haben diagnostische 

Fortschritte auf dem Gebiet der Gliome ermöglicht, einschließlich der Verwendung 

molekularer Marker und der aktualisierten WHO-Klassifikation von ZNS-Tumoren. 

Diese Fortschritte sind bisher noch nicht in erfolgreiche Behandlungsstrategien 

umgesetzt worden. Meine Analysen liefern wertvolle Einblicke in die molekularen 

Mechanismen der Therapieresistenz und eröffnen künftige Möglichkeiten für 

Biomarker-gesteuerte Behandlungsstrategien als Teil eines präzisionsonkologischen 

Ansatzes. 
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Chapter 2 
Introduction  

Cancer is one of the leading causes of death worldwide, and its incidence is 

increasing due to the aging population2,3. In particular, cancer incidence is expected 

to increase to 28.4 million cases by 20402, posing a major medical, societal, and 

economic challenge. In recent decades, an increasing number of cancer treatment 

modalities have evolved, currently comprising surgical resection, chemo-, radio-, 

targeted-, immuno-, and cellular therapy. These treatment options require careful 

selection of the right treatment for the right patient at the right time. The dynamically 

evolving field of “precision oncology” seeks to address this challenge through the 

identification and application of biomarkers4. The overall goal is to apply personalized 

treatment in a genomics-based, biomarker-driven approach. However, a 

comprehensive picture of the mutational patterns associated with cancer therapy is 

needed to understand the precise genomic effects and outcomes of these treatments.  

In this thesis, I focused on mutational signatures of commonly used and 

established cancer therapies, i.e. chemotherapy and radiotherapy, which are known 

to be genotoxic and expected to leave a mutational footprint in the cancer genome5. 

To enable a potential translation of these findings into the clinic, I linked this knowledge 

to comprehensive clinical data and assessed the prognostic and predictive value of 

the identified signatures.  

Diffuse gliomas in adults  

Cancer can affect many different organs and tissues. Some cancer types are 

notoriously aggressive and difficult to treat, including particularly devastating tumors 

in the brain. Brain tumors constitute the leading cause of cancer-related mortality 

among males under the age of 40 in the United States6,7.  Diffuse glioma is the most 

common and most aggressive type of brain tumors in adults, placing an immense 

burden on patients, their families, and caregivers6. Particularly devastating is the fact 

that despite intensive multimodal treatment with surgery, radiotherapy, and 

chemotherapy, nearly every patient suffers a tumor relapse with dismal prognosis. The 
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most aggressive glioma subtype, known as glioblastoma (GBM) is characterized by a 

median overall survival of 15 months8 and a 5-year relative survival rate of only 7%7. 

Over the past two decades, many large-scale randomized and controlled clinical 

trials (RCT) have been conducted to improve survival outcomes8-14, but only a very 

limited number of breakthrough treatment modalities have been reported since the 

gold standard “Stupp regimen” from 20058,15. The standard therapy comprises 

maximal extent of resection16-18, followed by postsurgical, involved-field, fractionated 

radiotherapy (RT) and concomitant chemotherapy with the alkylating agent 

temozolomide (TMZ), which is followed by 6 cycles of adjuvant TMZ8. A cumulative 

radiation dose of 60 Gy (2Gy per fraction, 5 days per week over 6 weeks) is applied. 

During RT, 75mg/m2 of body surface area per day (7 days per week over 6 weeks) of 

TMZ is given concurrently. In the adjuvant phase, 150-200mg/m2 of body surface area 

per day (d1-5, 28-day cycle, 6 cycles) of TMZ is applied.  

The utility of next-generation sequencing technology and comprehensive 

molecular characterization have provided an excellent foundation for diagnostic 

advances in the field of gliomas19-25. Diagnostic criteria have shifted from traditional 

histological criteria to the use of molecular markers and have been updated with the 

fourth edition of the WHO Classification of Tumors of the Central Nervous System in 

201626. Clinically important biomarkers include mutations of the isocitrate 

dehydrogenase (IDH) 1/2 genes, loss of heterozygosity with specific deletions of the 

chromosome arms 1p and 19q (1p/19q-codeletion) and promoter methylation of the 

DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). The 

classification distinguishes three types of adult diffuse gliomas: Oligodendroglioma, 

IDH-mutant and 1p/19q-codeleted (IDHmut-codel, better prognosis); Astrocytoma, 

IDH-mutant (IDHmut-noncodel, intermediate prognosis); and Glioblastoma, IDH-

wildtype (IDHwt, worst prognosis)26. 

Despite progress, tumor relapse occurs inevitably, and recurrent tumors clinically 

display a more aggressive phenotype that is less responsive to further treatment. To 

improve survival outcomes of glioma patients, the Glioma Longitudinal Analysis 

(GLASS) Consortium set out to improve our understanding of mechanisms 

of resistance to RT and TMZ27. During the time of this thesis work, I joined the analysis 

working group of GLASS located at the Jackson Laboratory for Genomic Medicine. I 
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performed longitudinal studies comparing glioma samples before and after treatment, 

which provided a unique opportunity to thoroughly characterize the genomic, 

molecular, and cellular evolutionary trajectories following treatment26. 

Genotoxic cancer therapies 

Cancer treatment strategies have evolved rapidly in recent decades, contributing 

to improved cancer survival outcomes3. One of the best-known mechanisms of action 

of cancer therapies is their ability to cause DNA damage. Radiotherapy and alkylating 

agent-based chemotherapeutic agents can have a wide range of direct and indirect 

genotoxic properties that target cancer cells28,29. Exposure towards these genotoxic 

therapies may shape the cancer genome throughout their clonal evolution. However, 

cell-intrinsic repair mechanisms may limit therapeutic efficacy30, and when 

unintentionally targeting healthy cells, these treatments risk causing second 

malignancies31,32.  

RT is a mainstay of treatment for cancer patients. Ionizing radiation is genotoxic 

and interacts with DNA in a largely stochastic manner. It can cause DNA damage 

indirectly via reactive oxygen species and directly by inducing single strand single 

strand breaks (SSBs) and double strand breaks (DBSs)33. Other effects include the 

activation of intracellular cytotoxic signaling pathways34 and modulation of the tumor- 

and immune microenvironment35.  

Although DSBs are less abundant than SSBs, they are considered to be more 

lethal to cancer cells. If DSBs are not repaired or are repaired in a way that inhibits 

subsequent replication, cancer cells usually undergo cell death. Importantly, DNA 

repair mechanisms can be activated in response to DSBs, which can broadly be 

divided into error-free and error-prone pathways1. The homologous recombination 

(HR) pathway uses a sister chromatid as a template for error-free repair of DSBs36. 

However, due to this template requirement, HR can only be active during cell cycle 

phases when the sister chromatid is available. i.e., during the S and G2 phases of the 

mitotic cell cycle36. The three pathways, canonical/classical non-homologous end 

joining (c-NHEJ), alternative end joining (a-EJ) and single-strand annealing (SSA) 

typically result in mutations due to imperfect repair of the nuclear sequence, rendering 

them “error-prone”1. Each of these pathways has distinct genomic and molecular 
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requirements and conversely leads to different genomic outcomes. c-NHEJ does not 

require microhomologous sequences present at exposed DNA ends, is initiated by 

53BP1, and end-resection is limited due to the protected binding of Ku70-Ku8037. 

Recruitment of DNA-dependent protein kinase (DNA-PK) and Artemis to Ku binding 

sites is followed by further downstream ligation of the DNA ends by DNA ligase IV38. 

In contrast, a-EJ (also referred to as microhomology-mediated end joining) and SSA 

typically require end-resection involving the carboxy-terminal binding protein 

interacting protein (CtIP) and the MRE11-RAD50-NBS1 (MRN) complex39. In addition, 

a-EJ typically uses microhomology lengths of 2-20 base pairs (bp) and SSA uses 

(micro)homology lengths of >20bp1. The error-prone pathways can cause insertion-

deletion mutations after repair of RT-induced DSBs1. I reasoned that these mutations 

and their features could be detected by genomic sequencing of post-treatment cancer 

samples, which I performed in a large-scale analysis using cancer genomics 

techniques. 

 

TMZ is frequently used in the treatment of glioma patients. The mechanism of 

action of this alkylating agent prodrug is the addition of a methyl groups to DNA purine 

bases, particularly O6-guanine. Instead of the natural pairing of guanine (G) with 

Figure 1. DSB repair pathways. Separation by genomic requirement such as end resection and 
further key enzymes (color highlighted). NHEJ, non-homologous end joining, a-EJ, alternative end 
joining, SSA, single strand annealing, HR, homologous recombination. Adapted from Chang et al. 1 
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cytosine (C), the resulting O6-methylguanine (O6-MeG) forms a mismatch with 

thymine (T), resulting in a C > T transition mutation40. However, the methyl group can 

be removed by MGMT through direct repair, resulting in TMZ-resistance. Therefore, it 

is not surprising that gene silencing via promotor methylation of MGMT causes a 

treatment response10. MGMT promoter methylation has therefore been described as 

a strong predictive marker for TMZ response in IDHwt GBM41. 

Moreover, effective mismatch repair (MMR) is required for a successful TMZ 

response. The MMR machinery excises the mis-paired T, replaces is with the correct 

C, but in the following replication cycle, T is reinserted, resulting in a futile repair cycle 

associated with the generation of DSBs and cell death40. However, when the MMR 

machinery is defective due to underlying mutations in MMR genes (MSH6, MSH2, 

MLH1, PMS2), the C > T transition can be tolerated. In fact, the combination of TMZ 

treatment and acquired mutations in the MMR pathway can result in the hypermutator 

(HM) phenotype at recurrence42. The dominant mutations in HM samples occur in a 

very specific trinucleotide context, resulting in a dominant single base substitution 

mutation signature 11 (SBS11)43,44. In this thesis, I have analyzed the genomic 

properties associated with alkylating agent-induced hypermutation, quantified the 

distribution across the distinct glioma molecular subtypes and shed light on the 

potential clinical relevance of this signature.   

Cancer mutational signatures 

Somatic mutations are an important hallmark of cancer45. Distinct mutational 

processes can cause unique patterns of genetic changes in the cancer genome, 

referred to as mutational signatures. The concept of mutational signatures was first 

introduced by Nik-Zainal et al. in 2012 through an analysis of whole genome 

sequencing (WGS) data of 21 breast cancer samples46. In addition to focusing on the 

single base substitution (SBS) itself, the trinucleotide context including 5’- and 3’- 

neighboring bases was also considered46. A matrix of 96-possible trinucleotide 

contexts was mapped, and signatures were extracted using a non-negative matrix 

factorization (NMF) approach47.  

In a comprehensive, pan-cancer analysis, these mutational signatures were 

then linked to the mutational processes that may underly them44. Mutations can 
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originate from endogenous and exogeneous processes. Examples of endogenous 

mechanisms include DNA repair deficiencies, APOBEC mutagenesis, or aging-

associated deamination of 5-methyl-cytosine44,48. Well known exogenous mutational 

processes in certain cancer types include ultraviolet light in skin cancer, and tobacco 

smoking in lung cancer44. However, there is increasing evidence in the literature that 

some anticancer agents may leave a mutational footprint in the cancer genome. 

Mutational signatures associated with prior treatment with platinum-based 

chemotherapy (SBS 25, SBS 31, SBS 35)5,49-54, temozolomide (SBS 11)43,49, 

capecitabine and fluorouracil (SBS 17b)5,49, and thiopurine (SBS 87)49,55,56 have been 

described.  

In fact, exposure to ionizing radiation may also have effects on the genome. 

However, there is no consensus on the impact of radiotherapy on the cancer genome, 

and several studies reported a variety of genomic effects. Prior studies analyzed 

radiation-induced tumors in humans31,57,58 or mouse models59,60 rather than 

therapeutic radiation.  

For example, Behjati et al. demonstrated that radiation-induced secondary 

malignancies were enriched for small deletions and found considerable 

microhomology at junction sites, suggesting that DNA damage repair in secondary 

malignancies may be mediated by microhomology-mediated end joining31. In studies 

with a limited number of tumors derived from mouse models of radiation-induced 

malignancies, enrichment of single base substitutions rather than small deletions was 

observed59,61. A recent study by Li et al. described a broad spectrum of genomic 

alterations in ionizing radiation-induced tumors in mice, including single base 

substitutions, indels, larger structural variants, copy number gains/losses as well as 

whole chromosome gains/losses60. Interestingly, two studies on RT-induced 

secondary gliomas did not show a high burden of single base substitutions or indels, 

but rather an enrichment of copy number alterations57 or driver alterations in 

PDGFRA58. 

In summary, previous studies have shown a wide range of genomic changes in 

response to ionizing radiation and have suggested the involvement of various DNA 

double strand break repair mechanisms. The studies mentioned had limited sample 

sizes and studied radiation-induced malignancies rather than therapeutic radiation. I 
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reasoned that there may be mechanistic differences between somatic variants in 

secondary malignancies and therapeutic radiation because the vast majority of 

irradiated individuals do not develop secondary malignancies. With the advantage of 

the addition of insertion-deletion (ID) signatures to a recent update of the mutational 

signature catalogue49, I was able to comprehensively characterize the mutational 

signatures associated with radiotherapy in pre- and post-treatment cancer samples.  

Outline of the thesis 

Genotoxic cancer treatment strategies are widely used and effective. However, 

knowledge of how they are affecting the cancer genome is limited. To address this 

issue, I have comprehensively analyzed the genomic effects of gold standard 

therapies in pre- and post-treatment cancer samples, focusing particularly on gliomas. 

In Chapter 3, I highlight the genomic impact of the alkylating agent temozolomide in 

gliomas, while in Chapter 4 I focus on the genomic effects of radiotherapy in a pan-

cancer setting. For both treatments, I dissected specific mutational signatures and 

integrated comprehensive clinical data to assess their translational relevance as 

potential biomarkers. In Chapter 5, I analyze the longitudinal non-genetic changes in 

glioma associated with TMZ-associated hypermutation and RT-associated deletion 

signatures and integrate these results with the corresponding genomic markers. 

One of the reasons for the lack of novel treatment opportunities in the field of 

gliomas is the lack of appropriate models for preclinical and translational science. This 

hinders the effective transfer of knowledge into the clinics. Chapter 6 proposes the 

use of spontaneous canine glioma as a potential model to address this problem. 

Lastly, in Chapter 7, I summarize and discuss the results, focusing particularly on 

novel questions arising from my analyses and how the results can potentially be 

integrated into a precision oncology framework.  

  



Mutational signatures of genotoxic cancer therapies 

  13 

Chapter 3 
Longitudinal molecular trajectories of 
diffuse gliomas 
 

This chapter is based on the following publication62: 

Barthel, F.P., Johnson, K.C., Varn, F.S., Moskalik, A.D., Tanner, G., Kocakavuk, 
E. et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576, 
112–120 (2019). https://doi.org/10.1038/s41586-019-1775-1  
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Article

Longitudinal molecular trajectories of 
diffuse glioma in adults

Floris P. Barthel1,2,72, Kevin C. Johnson1,72, Frederick S. Varn1, Anzhela D. Moskalik1,  
Georgette Tanner3, Emre Kocakavuk1,4,5, Kevin J. Anderson1, Olajide Abiola1,  
Kenneth Aldape6, Kristin D. Alfaro7, Donat Alpar8,9, Samirkumar B. Amin1, David M. Ashley10,  
Pratiti Bandopadhayay11,12, Jill S. Barnholtz-Sloan13, Rameen Beroukhim12,14, Christoph Bock8,15, 
Priscilla K. Brastianos16, Daniel J. Brat17, Andrew R. Brodbelt18, Alexander F. Bruns3,  
Ketan R. Bulsara19, Aruna Chakrabarty20, Arnab Chakravarti21, Jeffrey H. Chuang1,22,  
Elizabeth B. Claus23,24, Elizabeth J. Cochran25, Jennifer Connelly26, Joseph F. Costello27, 
Gaetano Finocchiaro28, Michael N. Fletcher29, Pim J. French30, Hui K. Gan31,32, Mark R. Gilbert33, 
Peter V. Gould34, Matthew R. Grimmer27, Antonio Iavarone35,36,37, Azzam Ismail20,  
Michael D. Jenkinson18, Mustafa Khasraw38, Hoon Kim1, Mathilde C. M. Kouwenhoven39,  
Peter S. LaViolette40, Meihong Li1, Peter Lichter29, Keith L. Ligon12,41, Allison K. Lowman40, 
Tathiane M. Malta42, Tali Mazor27, Kerrie L. McDonald43, Annette M. Molinaro27,  
Do-Hyun Nam44,45, Naema Nayyar16, Ho Keung Ng46, Chew Yee Ngan1, Simone P. Niclou47,  
Johanna M. Niers39, Houtan Noushmehr42, Javad Noorbakhsh1, D. Ryan Ormond48,  
Chul-Kee Park49, Laila M. Poisson50, Raul Rabadan51,52, Bernhard Radlwimmer29,  
Ganesh Rao53, Guido Reifenberger54, Jason K. Sa45, Michael Schuster8, Brian L. Shaw16,  
Susan C. Short3, Peter A. Sillevis Smitt30, Andrew E. Sloan55,56,57, Marion Smits58,  
Hiromichi Suzuki59, Ghazaleh Tabatabai60, Erwin G. Van Meir61, Colin Watts62,  
Michael Weller63, Pieter Wesseling2,64, Bart A. Westerman65, Georg Widhalm66,  
Adelheid Woehrer67, W. K. Alfred Yung7, Gelareh Zadeh68, Jason T. Huse69,70,  
John F. De Groot7, Lucy F. Stead3, Roel G. W. Verhaak1* & The GLASS Consortium71

The evolutionary processes that drive universal therapeutic resistance in adult 
patients with di!use glioma remain unclear1,2. Here we analysed temporally separated 
DNA-sequencing data and matched clinical annotation from 222 adult patients with 
glioma. By analysing mutations and copy numbers across the three major subtypes of 
di!use glioma, we found that driver genes detected at the initial stage of disease were 
retained at recurrence, whereas there was little evidence of recurrence-speci"c gene 
alterations. Treatment with alkylating agents resulted in a hypermutator phenotype 
at di!erent rates across the glioma subtypes, and hypermutation was not associated 
with di!erences in overall survival. Acquired aneuploidy was frequently detected in 
recurrent gliomas and was characterized by IDH mutation but without co-deletion of 
chromosome arms 1p/19q, and further converged with acquired alterations in the cell 
cycle and poor outcomes. The clonal architecture of each tumour remained similar 
over time, but the presence of subclonal selection was associated with decreased 
survival. Finally, there were no di!erences in the levels of immunoediting between 
initial and recurrent gliomas. Collectively, our results suggest that the strongest 
selective pressures occur during early glioma development and that current therapies 
shape this evolution in a largely stochastic manner.

Diffuse glioma is the most common malignant brain tumour in adults 
and invariably relapse despite treatment with surgery, radiotherapy 
and chemotherapy. The molecular landscape of glioma at diagnosis has 
been extensively characterized3–9. Although these efforts have led to 
the identification of driver genes and clinically relevant subtypes10,11, 
how the glioma genetic landscape evolves over time and in response 
to therapy is unknown.

Intratumoral heterogeneity is a well-recognized characteristic of glio-
mas and results from selective pressures such as a limited availability of 
nutrients, clonal competition and treatment12–15. Tumours are thought 
to circumvent these growth bottlenecks by dynamic competition of 
subclones that result in the most favourable environment for tumour 
sustenance1. Recent studies have suggested that stochastic changes in 
clone frequency (that is, neutral evolution) and immune surveillance 
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may further contribute to the observed intratumoral heterogeneity16,17. 
An understanding of evolutionary dynamics at several time points is 
needed to develop strategies aimed at delaying or preventing the onset 
of tumour progression.

To investigate clonal dynamics over time and in response to thera-
peutic pressures, we established the Glioma Longitudinal Analysis 
(GLASS) Consortium. GLASS is a community-driven effort that seeks 
to overcome the logistical challenges in constructing adequately 
powered longitudinal genomic glioma datasets by pooling datasets 
from patients treated at institutions worldwide18. We have analysed 
longitudinal profiles across the three molecular glioma subtypes to 
identify the molecular processes active at initial and recurrent time 
points. These analyses identified few common features of glioma evolu-
tion across subtypes, and instead pointed towards highly variable and 
patient-specific trajectories of genomic alterations.

GLASS cohort
We pooled existing and newly generated longitudinal DNA sequencing 
datasets from 288 patients treated at 35 hospitals (Supplementary 
Table 1, Extended Data Fig. 1). After applying quality filters, tumour 
samples from 222 patients with high-quality data in at least two time 
points were classified according to molecular markers into three major 
glioma subtypes: (1) IDH-mutant and chromosome 1p/19q co-deleted 
(hereafter referred to as IDH-mutant-codel; n = 25); (2) IDH-mutant 
without co-deletion of chromosome 1p/19q (hereafter IDH-mutant-
noncodel; n = 63); and (3) IDH-wild-type (n = 134), in alignment with 
the World Health Organization (WHO) classification of tumours of 
the central nervous system10,11. For each patient, we selected two time-
separated tumour samples, henceforth termed initial and recurrence, 
for further analysis.

Mutational burdens and processes over time
We first evaluated temporal changes in mutational burden and pro-
cesses to understand general patterns of glioma evolution. Mutation 
burdens in initial tumours were comparable with previously reported 
rates6,7,19. There were 2.20 mutations (single-nucleotide variants and 
small insertions or deletions) per megabase (Mb) for IDH-mutant-
codels; 2.52 mutations per Mb for IDH-mutant-noncodels; and 2.85 
mutations per Mb for IDH-wild-type glioma (Fig. 1a, Extended Data 
Fig. 2a). Excluding DNA hypermutation cases (more than 10 muta-
tions per Mb, n = 35), the mutation burden increased after recurrence 
in 70% of the cohort (Extended Data Fig. 2a). To study changes during 
tumour progression, we separated mutations into three fractions: 
initial only, recurrence only, or shared. Notably, the mutation burdens 
of the private fractions, but not the shared fraction, were comparable 
between subtypes (Extended Data Fig. 2b). Patient age at diagnosis 
was significantly associated with the shared mutational burden (P = 
1.7 × 10−7), and to a lesser extent with the burden of mutations private 
to the initial tumour (P = 0.0256) (Extended Data Fig. 2c). On average, 
a longer time to recurrence was associated with a larger increase in 
mutation burden (P = 0.0043, Extended Data Fig. 2d).

These fraction-specific differences in mutational burden sug-
gested that the activity of distinct mutational processes may also be 
time-dependent. We therefore classified mutations in each fraction 
according to the Catalogue of Somatic Mutations in Cancer (COSMIC) 
signature database20. As expected, signature activity was closely related 
to subtype and fraction (Fig. 1b, Extended Data Fig. 3a). Signature 1 
(ageing) was nearly always the dominant signature among shared 
mutations in IDH-wild-type tumours, whereas the shared fraction in 
IDH-mutant-noncodel and IDH-mutant-codel tumours—tumour sub-
types that are associated with a younger age of diagnosis—also showed 
a strong presence of signature 16 (unknown aetiology). Signatures 3 
(double-strand break repair), 15 (mismatch repair) and 8 (unknown 

aetiology) were mostly confined to the private fractions, which suggests 
that these processes were of lesser importance to tumour maintenance 
than those associated with ageing.

The treatment of glioma includes alkylating agents that can induce 
hypermutations after treatment21–23. We observed enrichment of the 
associated signature 11 in recurrent tumours treated with alkylating 
agents and with a mutational load exceeding 10 mutations per Mb 
(Fig. 1a, Extended Data Fig. 3b). Treatment-associated hypermuta-
tion occurred most frequently among IDH-mutant-noncodels (47%), 
followed by IDH-mutant-codels (25%), and IDH-wild-type gliomas 
(16%) (Fig. 1c). The proportion of hypermutation events was signifi-
cantly different between the three glioma subtypes (Fisher’s exact test 
P = 2.0 × 10−3), which suggests that IDH-mutant-noncodels are most 
sensitive to developing a hypermutator phenotype24.

Treatment-induced hypermutation has been associated with dis-
ease progression23. We did not find any differences in overall survival 
between hypermutators and non-hypermutators treated with alkylat-
ing agents independent of age, subtype and MGMT methylation status 
(Fig. 1d, Supplementary Table 2a, b). To assess the pathogenicity of 
acquired mutations further, we studied their clonality25. Newly acquired 
clonal mutations have penetrated most of the tumour (that is, a selec-
tive sweep) between initial and recurrence and mark clonal expan-
sion26. Conversely, acquired subclonal mutations are less prevalent, 
and therefore less likely to drive disease progression. Previous reports 
have suggested that mutations associated with alkylating agents are 
frequently clonal27. We found that in 48% of hypermutated tumours, 
most of the recurrence-only mutations were clonal, potentially reflect-
ing cases in which a selective sweep occurred (Extended Data Fig. 4a). 
However, IDH-mutant-noncodel hypermutators with predominantly 
clonal mutations did not show differences in survival compared with 
those containing predominantly subclonal mutations (log-rank test 
P = 0.38, Extended Data Fig. 4b). Alkylating agents such as temozolo-
mide prolong the survival of adult patients with glioma28,29. Our results 
show that treatment-induced hypermutation is common across sub-
types and does not associate with reduced overall survival, supporting 
the noted benefit of alkylating agent therapy.

Selective pressures during glioma evolution
Environmental and treatment-induced pressures may drive changes 
in clonal architecture at recurrence. To evaluate selection over time, 
we clustered copy number changes and mutations on the basis of their 
cancer cell fraction (CCF). CCF values represent the fraction of cancer 
cells that contain a given alteration and reflect the relative timing of 
events, because alterations that are present in a subset of cancer cells 
probably occurred later than events present in all cancer cells (Fig. 2a). 
Most tumours (84%) demonstrated a mutational cluster with a CCF 
greater than 50% that persisted from the initial tumour to recurrence, 
probably reflecting the tumour trunk and containing the tumour-initi-
ating driver mutations30 (Fig. 2b, Extended Data Fig. 5a). To determine 
changes in clonal dominance over time, we ranked clusters within each 
sample by their CCF value and found similarities in clonal architecture 
throughout the course of disease (Kendall rank correlation, tau = 0.20, 
P = 3.76 × 10−24; Fig. 2b, Extended Data Fig. 5b–d). These results sug-
gested that the clonal structure at initial disease mostly persisted into 
recurrence.

To deepen our assessment of selective pressures, we evaluated selec-
tion in initial and recurrent tumours by determining the normalized 
ratio between non-synonymous and synonymous mutations (dN/dS)31. 
Higher ratios (above one) suggest positive selection, and ratios less 
than one suggest negative selection. We found evidence for positive 
selection at both time points despite differences between subtypes 
(Fig. 2c). Separating mutations into mutational fractions demon-
strated that shared but not private mutations showed positive dN/dS 
ratios in all three glioma subtypes, which indicates that only shared 
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mutations (including truncal mutations) are likely to be subject to 
positive selection (Fig. 2c). The dN/dS ratio of initial-only mutations 
showed that these are neither positively nor negatively selected for, 
whereas recurrence-only mutations were subject to negative selection 
in IDH-wild-type gliomas.

To verify the reduced selective pressure in the private mutations, 
we used an orthogonal method to test for evidence of selection32. The 
method uses distributions of variant allele frequencies and estimated 
mutation rates to detect whether profiles significantly deviate from 
a model of neutral evolution (that is, as depicted by a linear relation-
ship in Fig. 2d). In accordance with results of the dN/dS ratios, private 
mutations demonstrated dynamics that were consistent with neutral 
evolution (Fig. 2d). Shared subclonal mutations deviated from lin-
earity and were consistent with selection both in non-hypermutators 
and hypermutators (Fig. 2d, Extended Data Fig. 6a, b), which provides 
further evidence that the strongest selective forces occur early in glio-
magenesis.

Cohort-level analysis of selection masks the heterogeneity that 
exists in individual evolutionary trajectories. To determine the selec-
tive effects at each tumour time point, we used a Bayesian frame-
work (SubClonalSelection algorithm) that simultaneously provides 

sample-specific probabilities for both selection and neutrality while 
modelling sources of noise in sequencing data. The classification of a 
sample as ‘selection’ or ‘neutral’ is determined by whichever model has 
the greater probability. Classification as neutral reflects the accumula-
tion of random mutations that are not subject to selection. Given the 
stringent algorithm requirements, 183 patients were included in this 
analysis with at least one time point, and 104 patients with both time 
points (16 IDH-mutant-codels, 29 IDH-mutant-noncodels, 59 IDH-wild-
type; Supplementary Table 3). Neutral-to-neutral was the most common 
evolutionary trajectory across all three subtypes (52%), and IDH-wild-
type tumours displayed the highest observed selection at any time 
point, with selection detected in 64% of tumours (Fisher’s exact test 
P = 0.01; Fig. 2e, Supplementary Table 3). IDH-wild-type gliomas with 
evidence for selection at recurrence had a shorter overall survival than 
IDH-wild-type gliomas classified as neutral at recurrence (P = 0.027; 
log-rank statistic, Fig. 2f), which suggests that subclonal competition 
associates with more aggressive tumour behaviour. To address the 
limitations of smaller sample sizes in the IDH-mutant subtypes, we 
performed a Cox proportional hazards model including age at first diag-
nosis, all three glioma subtypes, and mode of selection at recurrence. 
This analysis revealed that selection at recurrence was significantly 
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associated with shorter survival across subtypes (Hazard ratio = 1.53, 
95% confidence interval 1.00–2.41, P = 0.048; Supplementary Table 4). 
We next investigated whether radiation and chemotherapy imposed 
a selective effect, by comparing the evolutionary status at recurrence 
with treatment and other clinical variables. We did not observe signifi-
cant associations between subclonal selection and radiation therapy 
or chemotherapy (Fisher’s exact test P > 0.05; Supplementary Table 5), 
which suggests that standard therapeutic approaches for glioma have 
limited effect on the subclonal tumour architecture. Although high-
depth sequencing datasets may be required to detect subtle selective 
effects26, our analyses raise the possibility that the survival benefit 
derived from standard chemoradiation results from the elimination 
of tumour cells in which treatment sensitivity of individual cells is not 
determined by genetic factors.

Driver alteration frequencies across time
We evaluated how stability, acquisition and the loss of mutation and 
copy number drivers6 over time affect glioma evolution. We used the 
dN/dS ratio to nominate 12 candidate mutation driver genes at both 
time points (Q < 0.05, Fig. 3a, Extended Data Fig. 7a) and determined 
significant alterations in copy number that recapitulated previously 
identified drivers (Extended Data Fig. 7b). Mutations in IDH1 and 

co-occurring loss of the 1p/19q chromosome arms have been suggested 
as glioma-initiating events1, which was corroborated by the observation 
that these events were not lost or acquired during the surgical interval 
(Fig. 3a, Extended Data Fig. 8a). Similarly, we observed that mutations in 
the TERT promoter were almost always shared in the IDH-mutant-codel 
and IDH-wild-type samples, although many samples lacked sufficient 
coverage in this GC-rich region. Chromosome 7 gains and chromo-
some 10 losses were present in a large majority of IDH-wild-type initial 
tumours and persisted into recurrence.

Shifts in the fraction of cancer cells containing an event may also 
indicate a time dependency of drivers. We determined changes in cel-
lular prevalence of shared driver events by ordering events in each 
sample by their CCF value (Extended Data Fig. 9). ATRX mutations in 
IDH-mutant-noncodel initial tumours demonstrated lower CCFs than 
TP53 (P = 0.03) and IDH1 (P = 0.10) mutations, suggesting that IDH1 and 
TP53 mutations precede ATRX inactivation1. There was no difference 
in CCF values between IDH1 and TP53 among initial gliomas (P = 0.98); 
however, IDH1 mutations demonstrated significantly lower CCF val-
ues than TP53 mutations (P = 0.0018) in recurrent gliomas. We did 
not observe any CCF differences among driver mutations detected in 
IDH-wild-type tumours at either time point. Chromosome 10 deletion 
CCFs were higher than chromosome 7 amplifications (P = 0.0036), 
which indicates that chromosome 10 deletions arise earlier33. Similarly, 
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there was no difference in CCF values between CDKN2A deletion and 
EGFR amplification (P = 0.70). EGFR and chromosomal arm events sig-
nificantly differed (that is, 10p del versus EGFR amp, P = 0.0019) but 
not CDKN2A deletion and chromosomal events (that is, 10p del ver-
sus CDKN2A del, P = 0.33). The consistently high CCF values for EGFR 
amplifications could indicate that these events precede even some 
larger chromosomal aberrations, while not excluding the possibility 
that high levels of extrachromosomal EGFR34 artificially inflate CCF.

Longitudinal changes in CCF values provide additional insights into 
evolutionary dynamics. For instance, the CCF value may increase when a 
driver event is linked to clonal expansion, or conversely, decrease when 
a clone is outcompeted. Most individual drivers did not demonstrate 
significant consistent CCF changes between the initial tumour and 

recurrence (Extended Data Fig. 10a). A notable exception was the TP53 
mutation CCF that increased over time (P = 0.037) in IDH-mutant-non-
codels, but not IDH-wild-type gliomas (P = 0.13, Extended Data Fig. 10b). 
We did not observe any differences in IDH1 CCF over time among IDH-
mutant-noncodel tumours, possibly because the general trend of these 
tumours to increase in CCF is counteracted by the biological loss of 
relevance of mutant IDH1 over time (Extended Data Fig. 10c). Indeed, 
a gross comparison of all shared mutation CCFs revealed an increase 
in recurrent IDH-mutant-noncodel tumours (P < 0.0001), which may 
reflect increased clonality and a reduction in intratumoral heteroge-
neity (Extended Data Fig. 10d). By contrast, shared CCFs decreased in 
IDH-wild-type tumours, potentially indicating a general increase in 
intratumoral heterogeneity at recurrence (P < 0.0001, Extended Data 
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Fig. 10d). We confirmed that IDH-mutant-noncodel CCF increases and 
IDH-wild-type decreases were not biased by patients with high muta-
tional burden through the classification of patient-specific shared 
mutation CCF change (Extended Data Fig. 10e).

We next investigated whether specific somatic alterations were 
acquired or lost over time. Gene-specific enrichment of many recur-
rence-only mutations was found in hypermutated tumours, but there 
was no enrichment for somatic gene alterations in non-hypermutators, 
which suggests that glioma recurrence is not directed by particular sets 
of mutations (Extended Data Fig. 8b). Within subtypes, we detected 
an enrichment in CDKN2A homozygous deletions (Fig. 3a, Extended 
Data Fig. 8a) in recurrent IDH-mutant-noncodels, which was corrobo-
rated by additional alterations to cell cycle genes (focal gain of CCND2, 
CDK4 and CDK6, and mutation or homozygous loss of RB1). Mutations 
in cell cycle checkpoint control genes are associated with genomic 
instability35. Therefore, we analysed aneuploidy levels by determining 
the proportion of the genome that had undergone aneuploidy events 
(Extended Data Fig. 11a, b). We observed that IDH-mutant-noncodel 
tumours had a higher level of aneuploidy at recurrence (Wilcoxon rank 
sum test P = 1.4 × 10−6 total aneuploidy, P = 8.6 × 10−3 arm-level ane-
uploidy; Extended Data Fig. 11c, d) with tumours carrying acquired cell 
cycle gene alterations displaying the largest increases in aneuploidy 
(P = 7.6 × 10−6; Wilcoxon rank sum test, Fig. 3b). We reasoned that 
CDKN2A deletions may precede aneuploidy. Homozygous CDKN2A 
deletions had significantly higher CCFs than the average somatic copy 
number variation CCF across the genome (as a surrogate for aneu-
ploidy-related copy number changes), suggesting that CDKN2A loss 
occurred before aneuploidy (Fig. 3c). These alterations may hasten 

disease progression as patients with either alterations in cell cycle genes 
or the largest increases in aneuploidy at recurrence demonstrated 
significantly shorter survival than patients without these alterations 
(log-rank test P < 0.0001, Fig. 3d). Together, the persistence of drivers 
over time and the paucity of consistent change indicate that therapy 
does not result in selection of specific sets of molecular changes.

Immunoediting activity in glioma
We next investigated how the immune microenvironment affects 
evolutionary trajectories. The immune system may prune tumour 
cells carrying immunogenic (neo-)antigens, resulting in the selection 
of subclones capable of evading the immune response. Evidence of 
this immunoediting process has been shown in several cancer types, 
including glioma36–39, and suggests active immunosurveillance that 
may be therapeutically exploited40. We computationally predicted 
neoantigen-causing mutations41. As expected, the neoantigen load 
across the GLASS cohort was strongly correlated with exonic mutation 
burden (Spearman’s rho = 0.89), with 42% of nonsynonymous exonic 
mutations giving rise to neoantigens on average. This fraction did not 
significantly differ by glioma subtype or between initial and recurrent 
tumours (P > 0.05, Wilcoxon rank-sum test; Fig. 4a). The most common 
neoantigen arose from the clonal R132H mutation in IDH1 and was 
present in of 22 out of 88 IDH-mutant initial and recurrent tumours. 
Beyond mutations in IDH1, no mutations gave rise to a neoantigen 
found in more than three tumours at a given time point (Supplemen-
tary Table 6). Across the dataset, neoantigens and non-immunogenic 
mutations exhibited similar changes in CCF values between initial and 
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Fig. 4 | Neoantigen selection during tumour progression. a, Mean proportion 
of coding mutations giving rise to neoantigens (neoantigens/nonsynonymous 
mutations) stratified by glioma subtype and time point (n = 222). Data are 
mean ± s.d. b, Box plot depicting the distribution of observed-to-expected 
neoantigen ratios in the GLASS cohort stratified by glioma subtype. P value 
determined by t-test. Each box spans quartiles, with the lines representing the 
median ratio for each group. Whiskers represent absolute range, excluding 
outliers. c, Scatterplot depicting the association between the observed-to-
expected neoantigen ratio in a patient’s initial versus recurrent tumours. Each 
point represents a single patient tumour pair. R denotes Pearson correlation 
coefficient. Panels b and c only include samples from pairs with at least three 

neoantigens in the initial and recurrent tumours (n = 131, 63 and 24 pairs for 
IDH-wild-type, IDH-mutant-noncodel, and IDH-mutant-codel, respectively).  
d, Ladder plot depicting the difference in observed-to-expected neoantigen 
ratio between a tumour’s clonal and subclonal neoantigens. Each set of points 
connected by a line represents one tumour. Tumours are stratified by whether 
they were a patient’s initial or recurrent tumour. Lines are coloured by each 
patient’s glioma subtype. Panel d only includes samples from pairs with at least 
three clonal neoantigens and at least three subclonal neoantigens in both the 
initial and recurrent tumours (n = 35, 20 and 9 for IDH-WT, IDH-mutant-
noncodel and IDH-mutant-codel, respectively). P value determined by paired 
two-sided t-test. Colours in each panel represent the glioma subtype.
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recurrent tumours indicating a lack of neoantigen-specific selection 
processes over time (Extended Data Fig. 12a).

We then examined the extent to which immunoediting occurred by 
comparing the observed neoantigen rate of each sample to an expected 
rate that was empirically derived from our dataset. The output of this 
approach is a normally distributed set of ratios centred at 1. Samples 
with an observed-to-expected neoantigen ratio less than 1 exhibit evi-
dence of neoantigen depletion relative to the rest of the dataset, and 
thus are more likely to have been immunoedited. We found that none 
of the three glioma subtypes contained observed-to-expected ratios 
that significantly differed from 1 (P > 0.05, one sample t-test), although 
IDH-wild-type tumours exhibited significantly lower scores than IDH-
mutant-noncodels (t-test, P = 0.04; Fig. 4b). We also did not observe an 
association between the observed-to-expected ratio and survival when 
adjusting for subtype and age (Wald test, P > 0.05), nor was there a dif-
ference between samples with neutral evolution dynamics compared 
to those exhibiting evidence of subclonal selection. When compar-
ing samples longitudinally, we found that the observed-to-expected 
neoantigen ratio was strongly correlated between initial and recurrent 
tumours of each patient (Pearson’s R = 0.73, P = 5 × 10−38), which suggests 
that the neoantigen depletion level in the recurrence reflects that of 
the initial tumour (Fig. 4c).

Immunoediting is most likely to take place in the tumours with high 
cytolytic activity and low levels of immunosuppressive activity39. Hyper-
mutators, which have high loads of neoantigens, have previously been 
associated with highly cytolytic microenvironments38. However, we did 
not observe any differences in the observed-to-expected neoantigen 
ratio between hypermutated recurrent tumours and their initial coun-
terparts, nor did we observe differences between hypermutated and 
non-hypermutated recurrent tumours, indicating that immunoedit-
ing activity is not related to the total number of mutations in a sample 
(Wilcoxon rank-sum test P > 0.05; Extended Data Fig. 12b). To more 
directly determine whether there were immunological factors asso-
ciated with neoantigen depletion, we analysed CIBERSORT immune 
cell fractions from a subset of samples that had undergone expression 
profiling in a previous study (n = 84 from 42 tumour pairs)38,42. Initial 
tumours with an observed-to-expected neoantigen ratio greater than 
1 exhibited significantly higher levels of CD4+ T cells than those with a 
ratio less than 1, whereas recurrent tumours with a ratio greater than 1 
exhibited significantly higher levels of macrophages and neutrophils, 
and significantly lower levels of plasma cells relative to those with ratio 
less than 1 (P < 0.05, Wilcoxon rank-sum test; Extended Data Fig. 12c).

Although we did not detect many factors associated with the 
observed-to-expected neoantigen ratio, we did observe that the ratio 
was significantly associated with the total number of unique HLA loci 
in a patient (Spearman’s rho = 0.28, P = 2 × 10−9), reflecting similar find-
ings in lung cancer43. This may bias analyses comparing the ratio across 
patients. To determine whether immunoediting varies over time in a 
patient-agnostic manner, we compared the observed-to-expected neo-
antigen ratio derived from the clonal mutations of a sample, which likely 
arose earlier in tumour evolution, to that derived from their subclonal 
mutations, which arose later. We did not observe a significant difference 
in the observed-to-expected neoantigen ratio of each patient’s clonal 
and subclonal neoantigens, regardless of glioma subtype or whether 
the sample was an initial tumour or recurrence (P > 0.05, paired t-test; 
Fig. 4d). Together, these analyses suggest that neoantigens in glioma 
are not exposed to differing levels of selective pressure throughout 
their development.

Discussion
We reconstructed the evolutionary trajectories of 222 patients with gli-
oma to help to understand treatment failures and tumour progression. 
The longitudinal molecular profiles revealed common features such 
as acquired hypermutation and aneuploidy, and also highlighted the 

individualistic paths of glioma evolution after treatment. Our results 
provide evidence that the current standard of care therapies do not fre-
quently coerce glioma down predictable paths. Instead, an unexpected 
number of gliomas appeared to evolve stochastically after early driver 
events. We expect that continuing to profile patient tumours over time 
using comprehensive sequencing approaches will identify other com-
mon evolutionary paths. Our results highlight the prospects of several 
ongoing efforts that may inform new glioma therapies.

The observation that treatment-induced hypermutation occurred 
across subtypes, but did not confer a detrimental effect on patient sur-
vival, leaves the clinical importance of glioma hypermutation uncer-
tain21–24,27. Future analyses that consider the number of therapy cycles 
and MGMT DNA methylation status will help to determine factors that 
predispose tumours to hypermutation and identify therapies that effec-
tively exploit the vulnerabilities of this phenotype (for example, high 
mutational burden). Acquired cell cycle alterations and aneuploidy in 
recurrent IDH-mutant-noncodel gliomas also provide a rationale to 
target these more aggressive phenotypes with CDK inhibitors44 or with 
compounds that disrupt microtubule dynamics45. Finally, our analyses 
revealed that immunoediting activity does not vary in glioma over time, 
although we did observe variation between individual patients. Further 
molecular and immunological data are needed to fully understand the 
effect that this variability has on glioma evolution and to devise thera-
pies directed at the glioma immune response17. To this end, we found 
that clonal neoantigens arising from the IDH1(R132H) mutation per-
sisted from the initial tumour into the recurrence, justifying neoantigen 
vaccine approaches as treatments for initial and recurrent glioma46,47.

Collectively, these findings help shape our perspective on what 
constitutes an optimal treatment, and what approaches would result 
in the greatest removal or killing of glioma cells possible. Genomic 
characterization efforts such as The Cancer Genome Atlas (TCGA) 
have greatly increased our understanding of glioma biology but were 
limited to a single snapshot in evolutionary time. The GLASS resource 
provides a framework to study the patterns of glioma evolution and 
treatment response.
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maries, source data, extended data, supplementary information, 
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized, and investigators were not blinded 
to allocation during experiments and outcome assessment.

DNA sequencing and data collection
The GLASS dataset consists of both unpublished and published 
sequencing data as outlined in Supplementary Table 1. Among the 
cohort were exomes from 436 glioma samples (200 patients), whole-
genome data from 165 glioma samples (78 patients), with overlap-
ping exome/whole-genome data on 78 glioma samples (38 patients). A 
matching germline sequence was available for all patients. The dataset 
includes 257 sets of at least two time-separated tumour samples, 17 
standalone recurrences, and 19 patients with at least two geographi-
cally distinct tumour portions. More specifically, the dataset includes 
exome or whole-genome sequencing data on 211 primary gliomas, 234 
first recurrences, 32 second recurrences, 11 third recurrences and 1 
fourth recurrence (Supplementary Table 7).

Newly generated whole-genome sequencing data for the Chinese 
University of Hong Kong (HK), Northern Sydney Cancer Centre (NS) 
and MD Anderson Cancer Center (MD) cohorts were subjected to 
150 base paired-end sequencing. The HK samples were sequenced 
using HiSeqX, whereas the NS and MD cohorts were sequenced using 
NovaSeq, according to Illumina’s protocols. Whole-exome capture 
was performed using the following platforms as reported in previous 
publications7,21–23,48–52.

The Agilent SureSelect Human All Exon 50 Mb capture kit was used for 
patients SF-0001–SF-0021, and the Agilent SureSelect Human All Exon 
V4 capture kit was used for patients SF-0024–SF-0029 in the University 
of California San Francisco cohort. The Agilent SureSelect Human All 
Exon v4 or v5 kit was used to capture samples in the Kyoto University 
cohort. The Samsung Medical Center cohort reported using the Agilent 
SureSelect kit for patients SM-R056–SM-R071, SM-R075, SM-R076 and 
SM-R095–SM-R114, whereas the Illumina TruSeq Exome-capture kit 
was used for patient SM-R072. Exome capture was performed using the 
Agilent SureSelect Human All Exon 50 Mb kit in the TCGA glioblastoma 
(GBM) cohort and the Agilent SureSelect Human All Exon v.2.0 44 Mb 
kit in the TCGA low grade glioma (LGG) cohort. Columbia University 
cases were captured using the Agilent V3 50 Mb kit, sequencing 90 bp 
paired-end reads for samples R009-TP, R009-R1, R011-TP, R011-R1, 
R014-TP, R014-R1, R017-R1, R018-R1 and R019-R1. Mapping files of ini-
tial tumour and normal samples of patients R017–R019 were obtained 
from the TCGA through the CG-hub. All other samples were captured 
using the Agilent SureSelect XT Human All Exon v.4 Kit, 80 million 
paired-end reads, 150× on-target coverage. Samples in the Henry Ford 
Hospital cohort were multiplexed and sequenced using Illumina HiSeq 
2000 by the Sequencing and Microarray Facility at an average target 
exome coverage of 100× using 76-bp paired-end reads. Samples in 
the HK cohort were subjected to 75 base paired-end sequencing for 
HK-0001–HK-0004, as performed using NextSeq in high output mode. 
In the Leeds Cohort (LU), the SureSelectXT V5 kit (PE100) was used to 
construct exome libraries. The Illumina TruSeq Exome capture kit was 
used for samples at the Medical University of Vienna – Research Center 
for Molecular Medicine (CeMM).

GLASS identifiers
A GLASS barcode system was created, based on TCGA barcode design, 
in an effort to de-identify patient information and provide an organized 
framework for the different pieces of the dataset.

GLASS barcodes are composed of 24 characters. The first four 
characters specify the project (either GLSS or TCGA). All datasets 
submitted to The GLASS Consortium, published and unpublished, 
were given the GLSS project ID. Samples that were part of the TCGA 

cohorts (TCGA-GBM and TCGA-LGG) were given a TCGA designation. 
The next two characters designate the centre where the samples were 
either acquired or sequenced (Supplementary Table 7). This is followed 
by the four-character centre-specific patient identification that was 
kept as close as possible to the patient identification provided by the 
collaborators to allow a simplified trace-back process. Patient data are 
divided by a relative sample type, such as initial tumour (TP), recurrent 
tumour (R1), normal tissue (NB or NM, for example), or metastatic 
tumour sample (M1). If there was more than one recurrence the rela-
tive number was specified following ‘R’. Some patients had surgeries 
for which a biospecimen was unavailable. Thus, a surgical number was 
also provided to indicate temporal ordering (Supplementary Table 8). 
To include spatially separated samples the portion designation was 
added, which is followed by one character specifying the type of ana-
lyte, either DNA (D) or RNA (R). As there is variation in the sequencing 
analysis, a three-character designation represents either whole-genome 
sequencing (WGS) or whole-exome sequencing (WXS). The last part 
of the GLASS barcode is a six-character designation unique to each 
barcode that was randomly generated.

Computational pipelines
All pipelines were developed using snakemake 5.2.253. Unless otherwise 
stated, all tools mentioned are part of the GATK 4 suite54. All data were 
collected at a central location (The Jackson Laboratory) and analysed 
using homogenous pipelines capable of processing raw fastq files as 
well as re-processing previously analysed bam files.

Alignment and pre-processing
Data pre-processing was conducted in accordance to the GATK Best 
Practices using GATK 4.0.10.1. In brief, aligned BAM files were separated 
by read group, sanitized and stripped of alignments and attributes using 
‘RevertSam’, giving one unaligned BAM (uBAM) file per readgroup. 
Uniform readgroups were assigned to uBAM files using ‘AddOrReplac-
eReadgroups’. Similarly, unaligned fastq files were assigned uniformly 
designated readgroup attributes and converted to uBAM format using 
‘FastqToSam’. uBAM files underwent quality control using ‘FastQC 
0.11.7’. Sequencing adapters were marked using ‘MarkIlluminaAdapt-
ers’. uBAM files were finally reverted to interleaved fastq format using 
‘SamToFastq’, aligned to the b37 genome (human_g1k_v37_decoy) using 
‘BWA MEM 0.7.17’, attributes were restored using ‘MergeBamAlignment’. 
‘MarkDuplicates’ was then used to merge aligned BAM files from multi-
ple readgroups and to mark PCR and optical duplicates across identical 
sequencing libraries. Lastly, base recalibration was performed using 
‘BaseRecalibrator’ followed by ‘ApplyBQSR’. Coverage statistics were 
gathered using ‘CollectWgsMetrics’. Alignment quality control was 
performed running ‘ValidateSamFile’ on the final BAM file and quality 
control results were inspected using ‘MultiQC 1.6a0’55. A haplotype 
database for fingerprinting was generated using a modified version of 
the code on https://github.com/naumanjaved/fingerprint_maps. The 
tool ‘CrosscheckFingerprints’ was used to confirm that all readgroups 
within a sample belong to the same individual, and that all samples 
from one individual match. Any mismatches were marked and excluded 
from further analysis.

Variant detection
Variant detection was performed in accordance to the GATK Best prac-
tices using GATK 4.1.0.0. Germline variants were called from control 
samples using Mutect2 in artefact detection mode and pooled into a 
cohort-wide panel of normals. Somatic variants were subsequently 
called in individual tumour samples (single-sample mode) and in entire 
patients using GATK 4.1 Mutect2 in multi-sample mode. Mutect2 was 
given matched control samples, the aforementioned panel of nor-
mals and the gnomAD germline resource as additional controls. Cross-
sample contamination was evaluated using ‘GetPileupSummaries’ and 
‘CalculateContamination’ run for both tumour and matching control 
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samples. Read orientation artefacts were evaluated using ‘Collect-
F1R2Counts’ and ‘LearnReadOrientationModel’. Somatic likelihood, 
read orientation, sequence context, germline and contamination filters 
were applied using ‘FilterMutectCalls’.

Variant post-processing
BCFTools 1.9 was used to normalize, sort and index variants56. A con-
sensus VCF was generated from all variants in the cohort, remov-
ing any duplicate variants. The consensus VCF file was annotated 
using GATK 4.1 Funcotator and the v1.6.20190124s annotation data 
source. Allele frequencies from multi-sample Mutect2 were used 
to compare allele frequencies between related samples. Multi-
sample Mutect2 calls and filters mutations across a patient as a 
whole and does not determine mutation calls in a single sample. 
Single-sample mutation calls were overlaid on the multi-sample 
calls to infer whether variants were called in individual samples. 
Single-sample called variants that were not present in the multi-
sample callset were discarded.

Mutational burden
Mutational burden was calculated as the number of mutations per Mb 
sequenced. A minimum coverage threshold of 15× was required for 
each base. DNA hypermutation was defined for recurrent tumours 
with greater than 10 mutations per Mb sequenced as these values were 
considered outliers (1.5 times the interquartile range above the upper 
quartile). Notably, there were a few initial gliomas that demonstrated a 
mutational frequency above 10 mutations per Mb. However, the ‘hyper-
mutation’ classification was restricted to only patients with this level 
at recurrence since these likely reflect different evolutionary paths.

Mutational signatures
The relative contributions of the COSMIC mutational signatures 
were determined from a patient’s initial-only, recurrence-only, and 
shared mutations by solving the non-negative-least squares prob-
lem for each set of mutations using the 30 signatures from version 
2 (March 2015). Six signatures were dominantly enriched in at least 
3% of the fractions and we resolved the non-negative-least squares 
problems using the reduced six-signature model to increase accuracy 
and reduce noise.

Copy number segmentation
Copy number identification was performed according to the GATK Best 
Practices and is outlined briefly here. The pipeline differs slightly for 
whole genomes and whole exomes. For whole genomes, the genome 
was segmented into 10kb bins using ‘PreprocessIntervals’. For exomes, 
overlapping regions between several commonly used capture kits 
(Broad Human Exome b37, Nextera Rapid Capture, TruSeq Exome, 
SeqCap EZ Exome V3, Agilent SureSelect V4, Agilent SureSelect V7) 
were identified using ‘bedtools multiIntersectBed’. The tool ‘Preproc-
essIntervals’ was used to apply 1-kb padding and to merge overlapping 
intervals. In parallel, ‘SelectVariants’ was used to subset the gnomAD 
resource of germline variants to variants with a population allele fre-
quency greater than 5%. Next, ‘CollectReadcounts’ was used to count 
reads in the bins generated by ‘PreprocessIntervals’ separately for 
autosomes and allosomes. In parallel, ‘CollectAllelicCounts’ was used 
to count reference and alternate reads at gnomAD variant sites with 
a population allele frequency greater than 5%. The cohort was sub-
sequently split into batches determined by sequencing centre and 
‘CreateReadCountPanelOfNormals’ was used to create a panel of 
normal for each batch. Panel of normals were created separately for 
allosomes and autosomes, and allosomes were separated further by 
sex. To improve the panel of normals further, GC content annotation 
of each interval as determined by ‘AnnotateIntervals’ were given. Next, 
‘DenoiseReadCounts’ was used to denoise the binned readcounts out-
put by ‘CollectReadCounts’, given a panel of normal determined by 

batch, chromosomes (allosomes or autosomes) and sex. Denoised copy 
ratios were plotted and inspected for quality concerns using ‘PlotDe-
noisedCopyRatios’. The tool ‘ModelSegments’ is an implementation 
of a gaussian-kernel binary-segmentation algorithm and was used to 
merge contiguous segments and assign copy and allelic ratios. The 
results of this segmentation were plotted using ‘PlotModelledSeg-
ments’ and inspected for quality concerns.

Copy number calling
A copy number caller loosely based on GATK ‘CallCopyRatioSegments’ 
(which in turn is based off of ReCapSeg) and GISTIC was implemented 
to call both arm-level and high-level copy number changes, respec-
tively57,58.

Segments (from ‘ModelSegments’) with a non-log2 copy ratio 
between 0.9 and 1.1 were determined to be neutral. These segments 
were then weighted by length and a weighted mean and standard devia-
tion non-log2 copy ratio (once-filtered) were determined again. Outlier 
segments are removed and once again a weighted mean and standard 
deviation non-log2 copy ratio (twice-filtered) were determined. Seg-
ments with a non-log2 copy ratio between 0.9 and 1.1 and segments 
within two standard deviations of the twice-filtered mean were deter-
mined to be neutral, and segments outside of these boundaries were 
determined to have a low-level amplification or deletion, depending 
on the direction.

The weighted mean and standard deviation of the non-log2 copy 
ratio (once-filtered) was then determined individually for each chro-
mosome arm. Outlier segments were removed and the weighted mean 
and standard deviation of the non-log2 copy ratio (twice-filtered) was 
determined again. To determine a high-level amplification and deletion 
threshold, the most highly amplified and deleted chromosome arms 
were selected, respectively. The twice-filtered mean plus (high level 
amplification) or minus (high level deletion) two times the standard 
deviation of the selected arms were used as high-level thresholds.

Gene level copy numbers were called by intersecting the gene bound-
aries with the segment intervals and by calculating the weighted non-
log2 copy ratio for that gene. The copy number call for that gene was 
then determined by comparing the gene-level non-log2 copy ratio to 
the previously determined thresholds.

dNdScv
The dN/dS ratios were estimated using the R package dNdScv31 (https://
github.com/im3sanger/dndscv) was run using the default and rec-
ommended parameters for all mutations in initial tumour samples, 
recurrent tumour samples, and for each mutational fraction (unique 
to initial, unique to recurrent and shared). All analyses were conducted 
separately within the three main tumour subtypes.

Aneuploidy calculation
The most reductive metric of aneuploidy was computed by taking the 
size of all non-neutral segments divided by the size of all segments. The 
resulting aneuploidy value indicates the proportion of the segmented 
genome that is non-diploid.

In parallel, an arm-level aneuploidy score modelled after a previously 
described method was computed59. In brief, adjacent segments with 
identical arm-level calls (−1, 0 or 1) were merged into a single segment 
with a single call. For each merged/reduced segment, the proportion 
of the chromosome arm it spans was calculated. Segments spanning 
greater than 80% of the arm length resulted in a call of −1 (loss), 0 (neu-
tral) or +1 (gain) to the entire arm, or ‘NA’ if no contiguous segment 
spanned at least 80% of the arm’s length. For each sample the number 
of arms with a non-neutral event was finally counted. The resulting 
aneuploidy score is a positive integer with a minimum value of 0 (no 
chromosomal arm-level events detected) and a maximum value of 39 
(total number of autosomal chromosome arms excluding the short 
arms for chromosomes 13, 14, 15, 21 and 22).
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Estimates of evolutionary pressures
Evolutionary pressures were evaluated both by variant status and 
glioma subtype using the neutralitytestr algorithm as previously 
described (R package: neutralitytestr v.0.0.2, https://github.com/
marcjwilliams1/neutralitytestr)32. Individual variant allele frequency 
vectors were merged at the level of glioma subtype by variant sta-
tus. Only mutations found in copy-neutral regions were included in 
these analyses. For all else, default parameters were used. Merged 
variant allele frequency distributions were deemed to be selected 
when the neutral null hypothesis was rejected using several met-
rics. Tests for neutrality required that both R2 < 0.98 and the area 
between the two curves of (1) merged variant allele frequency data 
and (2) a normalized distribution expected under neutrality to be 
significantly different.

The SubclonalSelection algorithm was applied to GLASS mutation 
data to measure the selection strength in individual tumour samples 
( Julia package: SubclonalSelection, https://github.com/marcjwilliams1/
SubClonalSelection.jl)16. Patients that had samples at both time points 
with a TITAN-defined purity estimate ≥ 0.5 and ≥ 25 subclonal mutations 
in diploid regions were included. Mean coverage across all mutations 
was used as the ‘read_depth’ input parameter and the model was run 
with the recommended 106 iterations and 1,000 particles. Samples 
were classified as neutral or selected based on the model that had the 
highest probability, in line with the prior applications to TCGA data16. 
Classification based on the highest model probability yielded stable 
results as there was not a significant change in proportions when set-
ting a higher classification probability threshold (P > 0.05, Pearson’s 
chi-square test, for both probability thresholds of 0.6 and 0.7). At all 
three probability thresholds (0.5, 0.6 and 0.7), Kaplan–Meier survival 
analyses between selection at recurrence and overall survival contin-
ued to indicate that patients with IDH-wild-type tumours that were 
selected had a worse overall survival (P = 0.03 (n = 81), P = 0.01 (n = 66) 
and P = 0.01 (n = 56), respectively).

Mutation clonality
Each patient’s clonal architecture was inferred using PyClone (v.0.13.1) 
by grouping SNVs into clonal clusters (https://github.com/aroth85/
pyclone)60. The patient-level input mutation matrix was reduced by 
limiting to sites with at least 30× coverage across all samples. PyClone 
was subsequently run using a binomial density model, connected ini-
tiation, and 10,000 iterations. Sample purities were provided for each 
patient and parental copy number (minor and major allele counts) from 
TITAN were given. PyClone results were post-processed using a burn-in 
of 1,000, thin of 1, minimum cluster size of 2 and a maximum number 
of clusters per patient of 12. Individual mutations were determined to 
be clonal if the PyClone CCF values were ≥ 0.5, subclonal for mutations 
with CCF ≥ 0.1 and CCF < 0.5, mutations were considered non-clonal 
when CCF < 0.1, as previously described61.

CNV clonality
Allele-specific copy number, tumour purity and ploidy estimates 
were derived using a probabilistic model (TITAN, v.1.19.1) for both 
whole-genome and whole-exome sequencing samples62. TITAN was 
supplied with the tumour denoised read counts output by GATK 
DenoiseReadCounts and the tumour allelic counts at loci found to 
be heterozygous in control samples output by ModelSegments. An 
‘alphaK’ (and ‘alphaKHigh’) parameter of 2,500 and 10,000 was used 
for exomes and genomes, respectively. The patient sex was provided 
to improve fitting allosomes. For each tumour–control pair, TITAN 
was run assuming an initial ploidy of two or three, and assuming one to 
three clusters, resulting in a total of six possible solutions per tumour/
control pair. To select the optimal solution, TITAN’s internal select-
Solution function was used with a threshold of 0.15 giving additional 
weight to diploid solutions.

Timing analysis
The CCF values output by TITAN or PyClone were used for separately 
timing copy number changes or mutations. To time specific copy num-
ber changes in genes, the average CCF for that gene was calculated. 
When timing mutations in genes, the highest CCF amongst the non-
synonymous mutations was taken.

Neoantigen analyses
Neoantigens in this analysis were defined as all 8–11-mer peptides that 
arose from an exonic nonsynonymous SNV or indel and bound their 
respective patient’s HLA class I molecules at a binding affinity score 
(half-maximal inhibitory concentration, IC50) that was ≤ 500 nM and 
better than or equal to the wild-type form of the peptide. Each patient’s 
four-digit HLA class I types were inferred using OptiType (v.1.3.1, https://
github.com/FRED-2/OptiType) run on each patient’s matched normal 
sample63. VCF files for each tumour sample were annotated using Vari-
ant Effect Predictor (ensembl) with the ‘downstream’ and ‘wildtype’ 
plugins. Neoantigens from these VCFs were then called using pVACseq 
(v.4.0.10, https://github.com/griffithlab/pVAC-Seq)41 run using netM-
HCpan (v.2.8, http://www.cbs.dtu.dk/services/NetMHCpan-2.8/)64. For 
each pVACseq run, epitope length was set to 8, 9, 10 or 11, minimum 
binding affinity fold change was set to 1, and downstream sequence 
length was set to full, with default parameters used for all other settings.

Downstream neoantigen analyses were performed using the pVACseq 
output linked to its respective mutation information. Neoantigen-causing 
mutations were defined as all mutations that gave rise to at least one neo-
antigen. The observed-to-expected neoantigen ratio was calculated using 
a previously developed approach that compares each tumour’s observed 
neoantigen rate to an empirically derived expected rate that assumes no 
selection against neoantigen-causing mutations39: From the gold set sam-
ples in the GLASS cohort (n = 222), define Ns to be the expected number of 
nonsynonymous missense SNVs per synonymous SNV with trinucleotide 
context s. Bs is then defined as the expected number of neoantigen-gen-
erating missense SNVs per nonsynonymous missense SNV with trinucleo-
tide context s. For a given sample i, define Yi as the sample’s set of 
synonymous SNVs and s(m) to be a synonymous SNV with trinucleotide 
context m. The expected number of nonsynonymous missense SNVs, Npred, 
and neoantigen-causing mutations, Bpred, can then be calculated as follows:

∑N N=i
m Y

s mpred,
∈

( )
i

∑B N B=i
m Y

s m s mpred,
∈

( ) ( )
i

To obtain the final neoantigen depletion ratio, Ri, of sample i, the 
observed number of neoantigen-causing mutations in the sample, 
Bobs,i is divided by the sample’s observed number of nonsynonymous 
missense SNVs, Nobs,i, and then this ratio is divided by the ratio of Bpred,i 
and Npred,i. Thus:

R
B N

B N
=

/
/i

i i

i i

obs, obs,

pred, pred,

For analyses examining clonal/subclonal neoantigen ratios, the 
observed and expected numbers were calculated by subsetting the 
SNVs of a sample by the respective criteria and then recalculating the 
ratio as described above. To mitigate overfitting, all analyses presented 
here used samples from patients with at least three neoantigen-causing 
mutations in their primary and recurrent tumours.

Immune cell analyses
CIBERSORT relative immune cell fraction data used in downstream 
neoantigen analyses were downloaded from a previous publication38.
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Statistical methods
All data analyses were conducted in R 3.4.2, Python 2.7.15, PostgreSQL 
10.5, and Julia 0.7. All survival analyses including Kaplan–Meier plots 
and Cox proportional hazards models were conducted using the R 
packages survival and survminer.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All de-identified, non-protected access somatic variant profiles and 
clinical data are accessible via Synapse (http://synapse.org/glass). Raw 
data of the various sequencing datasets can be obtained in the Sup-
plementary Information.

Code availability
All custom scripts and pipelines are available on the project’s github 
page (https://github.com/TheJacksonLaboratory/GLASS).
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Extended Data Fig. 1 | Sample selection. a, Quality control workflow steps identifying all GLASS samples available as a resource and the identification of the 
highest quality set of patient pairs (n = 222) used for the presented mutational and copy number analyses. b, Additional available datasets.
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Extended Data Fig. 2 | Mutation burden by time point and subtype. a, Box 
plots and paired lines depicting coverage-adjusted mutation frequencies in 
initial and matched recurrent samples across three subtypes. Wilcoxon signed-
rank test P values and sample sizes are indicated. b, Bee swarm plot depicting 
coverage-adjusted mutation frequencies in fractions by subtype. Dashed line 
indicates the mean. P values comparing three subtypes were determined by 

one-way analysis of variance (ANOVA). c, Scatter plot showing the relationship 
between age at diagnosis and coverage adjusted mutation burdens by subtype 
and fraction. P values were determined by the linear model and adjusted by 
subtype. d. Similar to the analysis in c but showing the relationship between 
time to recurrence and coverage-adjusted mutation burdens.
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Extended Data Fig. 3 | Mutational signatures by fraction and subtype.  
a, Correlation plot showing the Pearson’s chi-squared (χ2) residuals for each 
signature by fraction and subtype. A χ2 test was performed for each subtype 
and P values are indicated. Positive residuals (blue) indicate a positive 
correlation, whereas negative residuals (red) indicate an anti-correlation. The 

point size reflects the contribution to the χ2 estimate. b, Patients were ordered 
as in Fig. 1a, and relevant clinical information is provided alongside the 
fraction-specific mutational signatures. PyClone mutational clusters are also 
presented.
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Extended Data Fig. 4 | Hypermutator clonality. a, Bar plots represent counts 
of recurrence-only mutations per hypermutator tumour that were known to 
receive treatment alkylating agent and were successfully run through the 
PyClone algorithm. Colours indicate mutation clonality and colour intensity 
indicates whether the mutations resulted in coding changes. b, Kaplan–Meier 

curve comparing the survival of alkylating agent-treated IDH-mutant-noncodel 
hypermutator tumours that were predominantly clonal (n = 8), predominantly 
subclonal (n = 7) or non-hypermutator (n = 17). Limited to tumours with 
available PyClone data. P value determined by log-rank test.
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Extended Data Fig. 5 | Clonal structure evolution over time. a, The minimum 
CCF of the most persistent (shared between initial and recurrence) PyClone 
cluster. b, Comparison of PyClone clusters ranked by CCF in matched initial and 
recurrent tumours, as in Fig. 2b, but separated by subtype. c, d, Examples of 

cluster CCF dynamics over time in three separate samples, including two multi-
time point samples (c) and one multi-sector sample (d). These additional data 
are available in the GLASS resource, but only two time-separated samples were 
used throughout to ensure clarity.
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Extended Data Fig. 6 | Distribution of variant allele fraction. a, Distributions 
of non-hypermutator variant allele fraction for copy-neutral variants in coding 
regions (n = 181 patients). Variants are separated by subtype, fraction and also 
the variant was non-synonymous or synonymous mutation in a coding region. 
R2 goodness-of-fit measure and associated P values are shown. Note that these 

data consider only the coding portion of genome, whereas Fig. 2d presents 
both coding and non-coding data. b, The cumulative distribution of the 
subclonal mutations in copy-neutral regions for hypermutators (n = 31 
patients). For each variant fraction and subtype, the R2 goodness-of-fit 
measure and P values are shown.
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Extended Data Fig. 7 | Driver gene nomination. a, Local (gene-wise) dN/dS 
estimates by subtype (rows) and fraction (columns). Genes are sorted by Q 
value and P value. The Q value is shown in colour, whereas the P value is 
indicated in light grey. The Q value threshold of 0.05 is indicated by a horizontal 

red line. b, GISTIC significant amplification (red) and deletion (blue) plots in 
initial (left) and recurrent tumours (right). Chromosomal locations are ordered 
on the y axis, Q values are shown on the x axis, and selected drivers are indicated 
by their chromosomal location on the right.
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Extended Data Fig. 8 | Driver acquisition over time. a, Tabulated numbers of 
SNV (top) and CNV (bottom) driver events that were shared, initial-only or 
recurrence-only. P values were determined by a two-sided Fisher test 
comparing the initial-only fraction to the recurrence-only fraction testing for 
acquisition. b, One-sided Fisher test comparing the initial-only fraction to the 

recurrence-only fraction among previously implicated glioma drivers testing 
for driver acquisition. P values were adjusted for multiple testing using the false 
discovery rate (x axis). Hypermutators (red) and non-hypermutators (black) 
were separately analysed.
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Extended Data Fig. 9 | Intra-tumour CCF comparison. Ladder plots 
comparing the CCF of co-occurring drivers in single tumour samples. The 
colour of the lines and points indicates whether the sample shown is an initial 

(brown) or recurrent (green) tumour. P values determined by two-sided 
Wilcoxon rank-sum test for all initial samples, recurrent samples, as well as all 
samples (black).
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Extended Data Fig. 10 | Between time point intra-patient CCF comparison.  
a, Driver gene CCF comparison between initial and matched recurrences. Lines 
are coloured by variant classification. P values determined by two-sided 
Wilcoxon rank-sum test. b, TP53 CCF by subtype, otherwise as in a. c, IDH1 CCF 
by subtype, otherwise as in a. d, Ladder plot visualizing change in CCF across all 
SNVs between initial and recurrent tumours, separated by subtype. P values 

determined by Wilcoxon rank-sum test. e, Initial and recurrent mutations in 
each patient were compared using a Wilcoxon rank-sum test. Bar plot with 
counts of patients in each subtype are shown. Patients lacking significant 
change are shown in yellow, and those with a significant increase or decrease 
are shown in dark and light blue, respectively.
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Extended Data Fig. 11 | Aneuploidy calculation. a, Heat map displaying the 
chromosomal arm-level events (x axis) with patients represented in each row. 
Patients are placed in the same order for both the initial (left) and recurrence 
(right). White space was inserted as a break between the three subtypes.  

b, Distribution of total aneuploidy difference. Acquired aneuploidy 
determination (upper-quartile) indicated with a red line. c, Comparison of 
aneuploidy score between initial and recurrent tumours separated by subtype 
d. As in c, comparing aneuploidy value.
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Extended Data Fig. 12 | Neoantigen evolution and cellular analysis. a, Bar 
plots representing the number of shared mutations that give rise to 
neoantigens (top row, ‘immunogenic’) and those that do not give rise to 
neoantigens (bottom row, ‘non-immunogenic’) stratified by longitudinal 
clonality (‘(clonality in initial) − (clonality in recurrence)’) and further 
separated by subtype. The percentage of longitudinal clonality per subtype 
and mutation is shown. b, Left, ladder plot depicting the difference in 
observed-to-expected neoantigen ratio between the initial and recurrent 
tumours of patients with hypermutated tumours at recurrence. Each set of 
points connected by a line represents one tumour (n = 70). Right, box plot 
depicting the distribution of observed-to-expected neoantigen ratios in 

recurrent tumours stratified by hypermutator status (n = 35 and 183 for 
hypermutators and non-hypermutators, respectively). Each box spans 
quartiles, with the lines representing the median ratio for each group. Whiskers 
represent absolute range, excluding outliers. P values were determined by a 
paired and an unpaired two-sided t-test, for left and right graphs, respectively. 
c, Stacked bar plots depicting the average relative fraction of 11 CIBERSORT cell 
types in the neoantigen depleted (<1) and non-depleted (>1) initial and 
recurrent tumour subgroups. P values to the right of each plot indicate a 
significant difference between the depleted and non-depleted groups for the 
noted cell type at that time.
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“allow”. To ensure suitable coverage for mutation calling, samples with near 0 mutation frequency as well as those 2 standard deviations 
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data were excluded via manual review of all selected copy number solutions. Manual review consisted of identifying whether data had an 
atypical or noisy segmentation profile. While we recognize that this strategy is not objective it proved to be an effective strategy for 
identifying poor performing samples. Insufficient signal, noisy signal, TITAN run fail and unexpected genome stability (little to no copy number 
changes observed suggesting low purity) were the main reasons for sample exclusion or review. Clinical data was another source of sample 
filtering. Exclusion of samples was mostly related to sample pairs where surgical interval was very short (1-2 months) and thus did not appear 
to be a true recurrence. Caution should be used when considering whether a sample represents a true recurrence as no standard set time 
limits exist. Categories for clinical data include “allow”, “interval 1 or less months”, “interval 2 or less months”, “different location” and 
“surgical indication” (including “further debulking”). Those interested in using the dataset for further analysis are encouraged to make their 
own judgments on the criteria they select. The Silver set is filtered to include those pairs with no fingerprinting mismatches and sufficient 
coverage and is made up of 257 pairs. The Gold set contains 222 pairs, which in addition to the previously mentioned criteria also contain 
acceptable CNV calls in both samples. 

Replication Replication was limited to select patient samples where both whole genome sequencing and whole exome sequencing was available. All attempts
at replication were successful. 

Randomization There was no randomization in this study.

Blinding All patient samples were deidentified and were assigned a study-specific barcode. Blinding was not relevant to our study since there was no 
randomization of groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Sample size was a  function of availability.
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Human research participants
Policy information about studies involving human research participants

Population characteristics The dataset includes 271 sets of at least two time-separated tumor samples and 17 standalone recurrences. The majority of sets 
contain two tumor samples (n=246, 85%), with 19 (6.6%) three-tumor sample sets, three (1%) four-tumor sample sets, one 
(0.3%) with a total of five tumor samples and 17 (5.9%) standalone post-treatment tumor samples. Basic clinical information 
including age (years), gender, overall survival (months), tumor grade, and tumor histology was available for 90% (260/288) of 
patients and for 92% (536/584) of tumor samples of the dataset.  

Temozolomide and radiation treatment information was available for 68% of the cohort (399/584), data on other treatment 
modalities was available for 119 patients. Median age at diagnosis of GLASS patients in the IDHmut-noncodel and IDHmut-codel 
subtypes were both 34 years old and in the IDHwt group age at diagnosis was 53 years old. This is compared with 46 years for 
IDHmut-codels, 38 years for the IDHmut-noncodels and 59 years in the TCGA cohort respectively. Patients in our dataset were 
biased toward longer survival as 261 patients were deemed fit for surgical resection or biopsy at recurrence. Median survival for 
primary glioblastoma patients was 21 months (95% CI 19–23) in the GLASS cohort versus 15 months in historical cohorts. 
Patients in this cohort were predominantly treated at teaching/academic centers, which have been shown to be an independent 
predictive factor of longer survival compared with non-teaching/community hospital settings 

All other relevant patient demographics for the GLASS cohort are presented in the Supplement. 

Recruitment Informed consent was obtained from all study subjects as part of each institution's individual IRB.

Ethics oversight All tissue source centers listed in Supplementary Table 1 obtained study approval by the corresponding institutional review board (IRB) and 
informed consent from all patients in the cohort. Data pooling at the Jackson Laboratory was performed under the oversight of the IRB at the 
Jackson Laboratory.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration NA.

Study protocol NA.

Data collection NA.

Outcomes NA.
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Radiation therapy or radiotherapy (RT) is used in the clini-
cal management of more than half of all patients with can-
cer1,2. Ionizing radiation kills cells by inducing DNA damage  

such as double-strand breaks (DSBs), leading to cell death if left 
unrepaired or repaired in a manner that inhibits subsequent 
replication. DNA repair pathways are activated in response to 
DSBs, and these pathways include the error-free homologous 
recombination (HR) pathway and three error-prone pathways: 
classical non-homologous end joining (c-NHEJ), alternative 
end joining (a-EJ) and single-strand annealing (SSA)3. In con-
trast to HR, c-NHEJ, a-EJ and SSA require different lengths of 
microhomologous sequences present on exposed DNA ends. 
Whereas c-NHEJ requires no microhomologies, a-EJ (also 
called microhomology-mediated end joining) uses a length of 
2–20 base pairs (bp) of microhomology and SSA uses >20 bp of 
(micro-)homology. These repair processes may cause changes in 
the post-treatment cancer genome that can be detected through 
sequencing. The identification of therapy-associated mutations 
may imply an effect of therapy on the tumor and can aid in char-
acterization of therapy-resistance mechanisms. A well-known 
example of such a process is hypermutation following treatment 
with DNA-alkylating agents, observed across cancers4 and in par-
ticular following temozolomide (TMZ) chemotherapy of gliomas5,6. 
Similarly, an increased burden of small deletions has been observed 
in radiation-induced malignancies7. Despite these advancements, 
the mutational footprints of palliative and curative radiation in 
sporadic tumors are not well understood.

To address this gap in knowledge, we analyzed pre- and 
post-treatment datasets from the Glioma Longitudinal Analysis 
(GLASS) cohort as well as post-treatment metastatic tumor datas-
ets from the Hartwig Medical Foundation (HMF)5,8,9. We identified 
a significant increase of small (5–15-bp) deletions, large (>20 bp) 
deletions and inversions in response to ionizing radiation, which we 
genomically characterized. Finally, we observed that the identified 
signatures were associated with worse clinical outcomes.

Results
RT drives small-deletion burden. RT and TMZ are the post-surgical 
standard of care for patients with glioma10. We assessed the impact 
of RT and/or TMZ on the somatic mutation burden, includ-
ing somatic single-nucleotide variants (sSNVs) and small inser-
tions/deletions (indels, length of 1–20 bp), in matched pre- and 
post-treatment glioma samples (n = 190 patients). Of the patients 
from which these samples were obtained, 119 (63%) received RT 
and TMZ, 19 (10%) received RT alone, 13 (7%) received only TMZ, 
and 16 (8%) received neither RT nor TMZ. For 23/190 (12%) cases, 
TMZ annotation was lacking with 18 of these having received RT. 
For each patient, we separated mutations into pre- (present in the 
primary tumor) and post-treatment (acquired, present only in the 
recurrent tumor). We then calculated the mutation burden (average 
mutation frequency per megabase) of post-treatment mutations. A 
median of 0.68 new small deletions per megabase was acquired in 
recurrent RT-treated (RT+) glioma, which was significantly higher 
than the median of 0.19 new small deletions per megabase acquired 
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Ionizing radiation causes DNA damage and is a mainstay for cancer treatment, but understanding of its genomic impact is 
limited. We analyzed mutational spectra following radiotherapy in 190 paired primary and recurrent gliomas from the Glioma 
Longitudinal Analysis Consortium and 3,693 post-treatment metastatic tumors from the Hartwig Medical Foundation. We 
identified radiotherapy-associated significant increases in the burden of small deletions (5–15 bp) and large deletions (20+!bp 
to chromosome-arm length). Small deletions were characterized by a larger span size, lacking breakpoint microhomology and 
were genomically more dispersed when compared to pre-existing deletions and deletions in non-irradiated tumors. Mutational 
signature analysis implicated classical non-homologous end-joining-mediated DNA damage repair and APOBEC mutagenesis 
following radiotherapy. A high radiation-associated deletion burden was associated with worse clinical outcomes, suggesting 
that effective repair of radiation-induced DNA damage is detrimental to patient survival. These results may be leveraged to 
predict sensitivity to radiation therapy in recurrent cancer.
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in recurrent RT-naive (RT–) gliomas (Fig. 1a, P = 5.1 × 10−3, Mann–
Whitney U test), and significantly higher than the small-deletion 
burden detected at diagnosis (Fig. 1b). RT was not associated with 
a significant increase in sSNV burden (Extended Data Fig. 1a, 
P = 4.7 × 10−1, Mann–Whitney U test) or small-insertion burden 
(Extended Data Fig. 1a, P = 6.7 × 10−1, Mann–Whitney U test). 
The small-deletion increase was particularly pronounced in glio-
mas marked by the presence of mutations in IDH1, a clinically rel-
evant subtype11 predominantly consisting of grade 2 and 3 gliomas 
(Extended Data Fig. 1b, P = 1.4 × 10−2, Mann–Whitney U test). The 
number of RT– recurrent cases among IDH-wild-type glioma was 
too small to test for differences (n = 2, versus n = 107 RT-treated 
cases). To ensure that these changes were not due to TMZ-associated 
hypermutation (>10 mutations per megabase at recurrence)5, we 
stratified the cohort by hypermutation status. Hypermutation asso-
ciated with small-deletion increase independent of RT treatment, 
whereas among non-hypermutators only RT+ patients showed 
a significant increase in small deletions (Fig. 1b, P = 5.0 × 10−11, 
paired Wilcoxon signed-rank test). To evaluate the independence 
of this finding from potential confounders, we fitted a multivari-
able log-linear regression model that included TMZ treatment, 
glioma molecular subtype, time interval between surgeries and 
hypermutation. RT was independently associated with an increase 
in small deletions (Fig. 1c, P = 3 × 10−3, t-test), directly attributing 
the observed small-deletion increase to RT treatment. Acquired 
small deletions were not more clonal/subclonal (Extended Data Fig. 
1c, hypermutant: P = 9.3 × 10−1, non-hypermutant: P = 8.7 × 10−1, 
Mann–Whitney U test). Comparing the pre-treatment mutation 
burden and aneuploidy scores between tumors with a high and low 
post-treatment deletion burden revealed no significant differences, 
suggesting that these pre-RT tumor genomic characteristics are not 
predictive of RT-induced small-deletion acquisition.

Importantly, 30% (41/136) of non-hypermutant samples gained 
>1 deletion per megabase following RT, compared to 7% (2/27) 
of RT-naive non-hypermutators (P = 1.6 × 10−2, Fisher’s exact 
test). The association between RT treatment and mutational bur-
den was significant for small deletions but not for insertions and 
sSNVs. Conversely, TMZ-associated hypermutation was correlated 
with a significant increase in the burden of all types of mutations 
(Extended Data Fig. 1d).

Following these observations, we hypothesized that RT may have 
similar effects in other tumor types. We evaluated whole-genome 
sequencing-derived mutational profiles from 3,693 metastatic 
tumors with complete treatment annotation (Extended Data Fig. 
1e), available via the HMF8. We separated tumors by site of origin 
and compared the small-deletion burden between RT+ and RT– 
tumors (Fig. 1d). RT+ tumors were further stratified depending on 
whether the treatment intent was curative (RT+cur, n = 739) or pallia-
tive (RT+pal, n = 689), which differ in cumulative radiation dosage12. 
While this analysis was restricted to single-time-point mutational 
profiles, we observed a significantly higher small-deletion burden 
in RT+ patients across multiple tumor types, including bone/soft 
tissue (RT+cur: median 0.15 deletions per megabase, RT−: median 
0.08 deletions per megabase, P = 6.2 × 10−4, Kruskal–Wallis test), 

lung (RT+cur: median 0.56 deletions per megabase, RT−: median 
0.43 deletions per megabase, P = 3.4 × 10−3, Kruskal–Wallis test) 
and breast (RT+cur: median 0.18 deletions per megabase, RT−: 
median 0.12 deletions per megabase, P = 1.2 × 10−4, Kruskal–Wallis 
test) cancers (Fig. 1d). The observed patterns were present in both 
non-small-cell and small-cell lung cancer but were restricted to 
estrogen-receptor-positive breast cancer subtypes (Extended Data 
Fig. 1f). Tumors receiving palliative RT frequently presented an 
intermediate state in between the RT− and RT+cur cohorts, suggest-
ing an association between acquired small-deletion burden and RT 
dose.

DNA repair deficiency associates with increased mutational load4. 
We compared the small-deletion burden between HMF tumors 
with and without microsatellite instability (MSI) or HR deficiency 
(HRD)13. Notably, HRD+ and particularly MSI+ tumors harbored 
significantly more small deletions compared to HRD−/MSI− sam-
ples (Extended Data Fig. 1g, P < 2.2 × 10−16, Kruskal–Wallis test). 
RT treatment was associated with an increase in small-deletion bur-
den in HRD−/MSI− (Extended Data Fig. 1g, P = 6.0 × 10−8, Mann–
Whitney U test) and HRD+ (P = 3.5 × 10−2) tumors, but not in MSI+ 
tumors (P = 7.1 × 10−1). To account for the possibility that HRD and 
MSI confounded the association between RT treatment and the 
small-deletion burden, we have included HRD and MSI status in a 
multivariable log-linear regression analysis and found that the asso-
ciation between RT treatment and small-deletion burden is inde-
pendent of HRD/MSI status (Extended Data Fig. 1h).

Next, we assessed whether the small-deletion burden was associ-
ated with mutations in selected genes (ATM, ATR, CHEK1, CHEK2, 
PARP1, PRKDC, TP53 and WEE1) involved in the DNA damage 
response (DDR). This analysis indicated that DDR mutations in 
these genes were universally associated with a significantly higher 
small-deletion burden. We used log-linear regression to adjust for 
potential confounding variables, including age, tumor type, DNA 
damage repair background, DRR gene mutations and various cyto-
toxic treatment regimens (for example, taxane, platinum, anthracy-
clines and alkylating agents) that have previously been associated 
with increased mutation burdens14. Results from this analysis con-
firmed a robust association with an increased small-deletion burden 
for both palliative and curative RT (Extended Data Fig. 1h, RT+cur 
versus RT-naive: odds ratio = 1.25, P < 1 × 10−3, t-test).

To verify the causal association between RT and acquired small 
deletions, we reanalyzed whole-genome sequencing data from 324 
human induced pluripotent stem cells (iPSCs) exposed to various 
carcinogens, including two iPSCs treated with ionizing radiation15. 
Small-deletion burden was significantly higher in the RT+ iPSCs 
compared to controls (Extended Data Fig. 1i, P = 2.0 × 10−2, Mann–
Whitney U test). In contrast, there was no significant difference in 
small-insertion burden (P = 1.8 × 10−1). Strikingly, the ionizing radi-
ation group showed the highest median burden of small deletions 
across all treatment modalities, further substantiating our results 
(Extended Data Fig. 1k).

RT-associated deletions harbor a specific genomic signature. 
Characteristics of RT-associated small deletions, such as length  

Fig. 1 | RT is associated with an increased small-deletion burden. a, A boxplot (in this and all following figures: boxes span quartiles, center lines represent 
medians, and whiskers represent absolute range, excluding outliers) depicting the burden of newly acquired/post-treatment small deletions (deletions 
per megabase (del Mb−1)) in RT– (n!=!34) and RT+ (n!=!156) patients from the GLASS cohort. A two-sided Mann–Whitney U test was applied for statistical 
testing. b, Longitudinal comparison of small-deletion burden between primary and recurrent glioma samples, separated by hypermutation (HM) and RT. 
A two-sided paired Wilcoxon signed-rank test was applied for statistical testing. c, A forest plot showing a multivariable log-linear regression model of 
newly acquired small-deletion burden (deletions per megabase) including TMZ treatment, hypermutation, RT treatment, molecular subtype and surgical 
interval (in months) as variables. A two-sided t-test was applied. OR, odds ratio. d, Top: for the metastatic cohort, boxplots depicting small-deletion 
burden (deletions per megabase) in RT– tumor samples (left), tumor samples treated with RT with palliative intent (RT+pal, middle) and tumor samples 
treated with RT with curative intent (RT+cur, right), separated by primary tumor location. A two-sided Kruskal–Wallis test was applied for statistical testing. 
Bottom: sample sizes of the metastatic cohort separated by primary tumor location.
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results (Extended Data Fig. 2f). These data suggest that c-NHEJ 
is the preferred pathway for repairing radiation-induced DNA 
damage.

Distinct mutational signatures associated with RT. Cancer cells 
accumulate somatic mutations through mechanisms that may 
leave distinct genomic scars, termed mutational signatures18. To 
determine the mutational processes of RT, we compared pre- and 
post-treatment mutations in the GLASS dataset to previously 
defined mutational signatures18. The comparison of signature 
contributions between post-recurrence mutations in RT+ and RT– 
IDH-mutant glioma samples revealed a strong enrichment of indel 
signature 8 (ID8; Fig. 3 and Extended Data Fig. 3d; RT+ mean con-
tribution = 0.22 versus RT− mean contribution = 0.07, P = 7.4 × 10−5, 
Q = 3.8 × 10−3, Mann–Whitney U test and false discovery rate (FDR), 
respectively). In RT+ but not RT– patients, comparing ID8 values 
before and after treatment revealed significant increases in absolute 
(Extended Data Fig. 3e, P = 4.5 × 10−7, paired Wilcoxon rank-signed 
test) and relative (Extended Data Fig. 3e, P = 2.3 × 10−3) ID8 contri-
butions, post-treatment. ID8 is composed of ≥5-bp deletions with-
out microhomology and has previously been linked to DSB repair 
by c-NHEJ, suggesting radiation-induced DSB repair via c-NHEJ18. 
As expected, hypermutation due to TMZ treatment in IDH-mutant 
gliomas was associated with ID2, which is reported to be elevated in 
mismatch-repair-deficient tumors (Fig. 3 and Extended Data Fig. 
3a,b)18.

A previous mutational signature analysis in the HMF data-
set observed the strongest association between RT and ID614. 
Confirming our findings in the GLASS cohort, we observed the 
strongest association with ID8 in the HMF dataset, and significant 
but less pronounced association for ID6 (Fig. 3). Both absolute and 
relative ID8 values were significantly higher in RT+ samples when 
compared to RT– samples, and a significant association was observed 
in nine of twelve tumor types (Extended Data Fig. 3f). The com-
parison of HRD+ and HRD− samples associated HRD with ID6. ID6 
comprises >5-bp deletions with microhomology at breakpoints and 

is elevated in HRD+ breast cancers19. Analogous to TMZ-associated 
hypermutators in GLASS, MSI samples in HMF were enriched for 
ID2 (Fig. 3).

To summarize, while MSI leads to an increased small-deletion 
burden due to hypermutability from impaired DNA mismatch 
repair at microsatellites/homopolymers, DSBs due to HRD and RT 
are repaired via error-prone DSB repair mechanisms. Our results 
implicate the a-EJ pathway that utilizes microhomologies at break-
points in HRD+ samples (signature ID6) and the c-NHEJ pathway 
which does not require breakpoint microhomology in RT+ samples 
(signature ID8).

We sought to identify single-base-substitution (SBS) signature 
associations in both datasets. We confirmed an enrichment of 
SBS11 in hypermutant IDH-mutant glioma samples5,20, an enrich-
ment of signatures SBS44, SBS26, SBS21, SBS20 and SBS15 in MSI+ 
samples18 and enrichment of SBS3 and SBS8 in HRD+ cases18,19,21 
along with a previously undescribed enrichment of SBS39 (Fig. 3). 
In addition, in the GLASS cohort, RT treatment was significantly 
associated with SBS13, and in the HMF cohort, it was significantly 
associated with SBS2 and SBS13. SBS2 and SBS13 are APOBEC 
signatures18,22. APOBEC cytosine deaminases are involved in ret-
rovirus and retrotransposon restriction, and the enrichment of 
APOBEC signatures in RT+ samples in both datasets implicated 
APOBEC-mediated mutagenesis in RT-associated DSB repair23–25. 
Our results support the hypothesis that mutational signatures are 
shaped by cycles of DNA damage and DNA repair26. While RT 
causes DSBs that are repaired via c-NHEJ resulting in specific small 
deletions (ID8), APOBEC cytidine deaminases may be activated 
during the repair process leading to SBS2 and/or SBS13.

RT associates with aneuploidy and larger deletions. We evalu-
ated whether RT could be associated with other types of genomic 
variants. We detected large structural variants, including large 
deletions, duplications, inversions and translocations, in the longi-
tudinal GLASS cohort. We observed an increase in large deletions 
(length > 20 bp to chromosome-arm length) post-therapy in RT+ 
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Fig. 3 | ID8 and APOBEC SBS signatures associated with RT. Indel (ID) and SBS mutational signatures in the GLASS and HMF cohorts associated with RT, 
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loss at initial diagnosis is rare, acquired CDKN2A homozygous 
deletions occurred exclusively in RT+ recurrences (Fig. 4b, 29% ver-
sus 0%, P = 5.3 × 10−4, Fisher’s exact test)27. This result nominated 
acquired CDKN2A homozygous loss as a potential biomarker for 
RT resistance among recurrent IDH-mutant gliomas, but not in 
IDH-wild-type gliomas where CDKN2A homozygous deletion at 
diagnosis is common.

Ionizing radiation can promote mitotic chromosome segregation 
errors through non-disjunction events causing aneuploidy28–31. We 
investigated the association between RT and aneuploidy, separating 
aneuploidy events into gains or losses of entire chromosomes, likely 
the result of segregation errors; and partial gains or losses, requir-
ing additional DSBs (see Methods, Extended Data Fig. 4c). In the 
IDH-mutant GLASS cohort, we observed a significant association 
between RT and chromosome losses, but not for simple gains or 
complex events (Fig. 4c and Extended Data Fig. 4d), which was no 
longer significant after adjusting for covariates in a multivariable 
Poisson regression. Instead, this analysis highlighted a significant 
association between chromosome losses and CDKN2A deletions 

(Extended Data Fig. 4e), implying that the increase in chromosome 
loss frequency following RT is specific to RT-associated acquired 
CDKN2A deletions. Using the HMF metastatic tumor cohort, we 
confirmed the association between CDKN2A homozygous deletions 
and chromosome losses (Fig. 4d and Extended Data Fig. 4f). In fact, 
both curative RT treatment and CDKN2A homozygous deletions 
were independently associated with increased number of chromo-
somal losses in the HMF datasets (Fig. 4d and Extended Data Fig. 
4f). However, testing for interactions between CDKN2A deletions 
and RT treatment indicated a trend towards interaction between 
palliative/curative RT and CDKN2A deletions (Supplementary 
Table 1, P = 9.75 × 10−2 and P = 4.92 × 10−2, respectively, t-test). In 
summary, aneuploidy may not be directly associated with RT but 
through interactions with CDKN2A deletions, requiring further 
investigation.

RT-associated genomic changes are linked to poor survival. 
Finally, we wanted to ascertain whether the genomic effects  
of RT were relevant to patient outcomes. As expected, CDKN2A 
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Fig. 5 | RT-associated genomic changes are linked to poor survival. a, Association of RT-related deletions with survival in GLASS. Left: Kaplan–Meier 
survival plots comparing overall survival dependent on deletion burden at recurrence using a log-rank test in RT+ IDH-mutant glioma samples (n!=!49 with 
available survival information). Samples were separated into 3 tertiles based on deletion burden at recurrence: high (top tertile), intermediate (middle 
tertile) and low (bottom tertile). Dotted lines indicate median overall survival times. Note the stepwise association of tertiles with survival. Middle: 
Kaplan–Meier survival plots comparing surgical interval/time to second surgery dependent on deletion burden at recurrence using a two-sided log-rank 
test. Right: Kaplan–Meier survival plots comparing post-recurrence survival dependent on deletion burden at recurrence using a two-sided log-rank test. 
b, Association of RT-related deletions with survival in HMF. Shown are Kaplan–Meier survival plots comparing survival time dependent on deletion burden 
at metastasis using a two-sided log-rank test in RT+ metastases (n!=!958 with available survival information). Samples were separated into 3 tertiles 
based on deletion burden: high (top tertile), intermediate (middle tertile) and low (bottom tertile). Dotted lines indicate median survival times. Note the 
stepwise association of tertiles with survival.
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homozygous deletion at recurrence was significantly associ-
ated with worse overall survival in IDH-mutant glioma samples 
(Extended Data Fig. 5a, P < 1 × 10−4, log-rank test)5. To test for a 
survival association of CDKN2A deletions among RT+ patients 
in the HMF dataset, we selected 958 samples that received RT 
and had sufficient survival information available from 11 tumor 
types (Extended Data Fig. 1e). Patients whose tumors harbored a 
CDKN2A homozygous deletion showed worse outcomes compared 
to patients with CDKN2A-wild-type tumors (Extended Data Fig. 5b, 
left). Stratification of the cohort into tertiles based on genome-wide 
aneuploidy frequency demonstrated that low aneuploidy was linked 
to favorable outcomes and high aneuploidy was linked to poor out-
comes (Extended Data Fig. 5b, middle). These results nominate 
acquired CDKN2A homozygous deletion as a biomarker of RT 
resistance after recurrence and support the clinical reassessment of 
CDKN2A status at recurrence for optimizing treatment strategies.

Independent of the poor prognostic implications of acquired 
CDKN2A deletions, GLASS patients with tumors carrying a high 
small-deletion burden at recurrence (top tertile) had significantly 
shorter overall survival (Fig. 5a, P = 3.4 × 10−2, log-rank test). 
The association remained significant when accounting for the 
small-deletion burden as a continuous variable and possible con-
founding variables, indicating a robust correlation (Extended 
Data Fig. 5c, HR = 1.19 (95% confidence interval (CI): 1.01–1.14); 
P = 4.3 × 10−2, Wald test). Multivariable modeling using a limited 
subset of patients with detailed dosage information in the GLASS 
cohort (n = 21) showed that the association between small-deletion 
burden and survival is dose independent (P = 2 × 10−2). Separating 
the overall survival time into surgical interval and post-recurrence 
survival indicated that the association of high newly acquired 
small-deletion burden with worse survival was limited to 
post-recurrence survival (Fig. 5a, P = 3.4 × 10−3, log-rank test). 
Surgical interval times did not differ significantly between the three 
tertiles (Fig. 5a, P = 5.6 × 10−1), suggesting that patients with glioma 
may initially benefit equally from RT, but after exposure to RT and 
acquisition of the deletion signature, tumors may lose sensitivity to 
further RT. This pattern is reminiscent of the association between 
hypermutant glioma and TMZ therapy20.

In 958 RT+ samples from the HMF cohort (Extended Data Fig. 
1g), we also found that patients harboring a high small-deletion 
burden (top tertile) had significantly shorter survival than other 
RT-treated patients (Fig. 5b, P < 4 × 10−4, log-rank test). Similarly, 
stratifying HMF patients into tertiles by ID8 burden associated an 
intermediate or high ID8 burden with poor survival and a low ID8 
burden with more favorable outcomes (Extended Data Fig. 5b). 
Therefore, the presence of a high number of RT-associated small 
deletions identifies a tumor that has initially responded to therapy, 
but which may have lost some or all of the treatment sensitivity. 
Combined, these results suggest that a higher deletion burden may 
reflect a scenario that is favorable to the tumor characterized by pro-
ficient DNA repair resulting in less tumor cell killing and decreased 
treatment efficacy.

Discussion
Prior studies on radiation-induced tumors have shown a range 
of genomic effects and have suggested the involvement of vari-
ous DNA DSB repair mechanisms30,32–35. We identified a unique 
signature of RT-associated deletions carrying characteristics of 
DSB repair by c-NHEJ. This work extends our knowledge on the 
genomic response to RT and provides direction for the development 
of effective radiosensitizers.

The notable expansion of clones harboring RT-associated 
genomic events depends on clonal selection or drift36. Therefore, 
the increased small-deletion burden in combination with poor out-
comes may reflect the emergence of more competitive clones under 
RT-induced stress, innately active repair processes ensuring tumor 

maintenance or a combination of these two. We found that a higher 
load of RT-associated deletions was linked to worse patient out-
comes. Thus, additional rounds of RT in patients with recurrent or 
metastatic tumors containing a significant increase in small-deletion 
burden are unlikely to further extend progression-free survival. The 
ability to effectively repair RT-induced damage implies that sen-
sitivity to RT is intrinsically diminished or has progressively been 
lost due to, for example, clonal selection. Inhibiting these repair 
processes could potentially sensitize tumors to the tumor-killing 
effect of ionizing radiation. CDKN2A homozygous deletions were 
acquired in RT+ IDH-mutant gliomas but not in RT– recurrent 
IDH-mutant gliomas, suggesting that RT-induced DNA dam-
age promotes the acquisition of this poor prognostic marker, and 
implicating a convergence between RT-induced DSB repair and cell 
cycle checkpoints. A biomarker able to readily detect an increased 
small-deletion burden may help reduce treatment costs and avoid 
RT-associated patient comorbidities and side effects.

We note several limitations to our study. The HMF metastatic 
dataset comprises samples from a single time point, preventing 
the attribution of alterations as post-treatment. Furthermore, the 
treatment annotation in HMF does not precisely describe whether 
only the initial tumor or additionally the metastatic site was also 
irradiated. Considering these caveats, the effects of RT described in 
this study might be more pronounced than what we have observed. 
Additionally, evolutionary pressures for local and distant metasta-
ses, which were analyzed homogeneously in this study, might be 
fundamentally different37. RT may have no or a different impact on 
metastases that are not immediately within the field of the radiation, 
requiring further investigations in dedicated datasets.

Compounds that inhibit DNA repair may improve the response 
of cancer cells to RT. Numerous clinical and preclinical studies 
have shown efficacy in targeting DNA repair. Inhibitors directed at 
poly(ADP-ribose) polymerase (PARP) in HRD+ tumors (synthetic 
lethality) were shown to be effective in the treatment of various 
cancer types38–40. Effective inhibitors of NHEJ have not yet been 
reported but may sensitize tumors to RT. Inhibitors of ATM serine/
threonine kinase (ATM), a protein kinase that activates DSB repair; 
and DNA-dependent protein kinase catalytic subunit (DNA-PKc), a 
kinase that catalyzes repair at the DSB locus, were shown to be effec-
tive in preclinical studies and phase 1 trials of diffuse glioma41–44. 
The identification of enrichment of APOBEC-associated muta-
tional signatures may warrant further evaluation of targeting cyto-
sine deaminases for cancer therapy45. The present study highlights 
the importance of effective DNA repair in therapy resistance.
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Methods
Patient cohort. We curated a cohort of 190 patients with high-quality longitudinal 
DNA sequencing data, including treatment-naive primary and matched 
post-treatment !rst-recurrence tumor samples from the GLASS dataset5. We 
classi!ed paired samples according to the 2016 World Health Organization 
(WHO) classi!cation into three subtypes: IDH mutant with 1p/19q co-deletion 
(IDHmut-codel), IDH mutant without 1p/19q co-deletion (IDHmut-noncodel) 
and IDH wild type (IDHwt)11. "e GLASS cohort used in this manuscript consists 
of n = 106 whole-genome sequencing samples (n = 53 primary samples, n = 53 
matched !rst-recurrence samples) and n = 274 whole-exome sequencing samples 
(n = 106 primary samples, n = 106 matched !rst-recurrence samples). Detailed 
information on sequence platforms, capture kits and read length is outlined in the 
GLASS marker paper5.

For validation analyses, we curated a metastatic cohort from the HMF 
comprising a total of 4,549 samples8. The HMF cohort consists of metastatic 
tumor samples that were collected following local or systemic treatment as part of 
the CPCT-02 (NCT01855477) and DRUP (NCT02925234) clinical trials. Biopsy 
samples from a wide range of tumor types collected at various hospitals across 
the Netherlands were sequenced at the core facilities of the HMF. Whole-genome 
sequencing was performed for each sample according to standardized protocols46. 
Detailed information on sequence platforms, capture kits and read length is 
outlined in the HMF marker paper8. VCF files with mutations and associated 
metadata were downloaded from The Hartwig Medical Database (https://database.
hartwigmedicalfoundation.nl). After application of filtering criteria using BCFTools 
1.9 (as described in detail in Extended Data Fig. 1e), a set of n = 3,693 were defined 
and used for the majority of analyses throughout the manuscript. For survival 
analyses, we selected RT+ samples with sufficient survival information (n = 958). All 
prior RT data were extracted using clinical data as present in the CPCT-02 eCRF on 
8 December 2020. These data were not cleaned and represent the data entered by 
the clinical sites. The prior RT was categorized as curative intent, palliative intent 
or other. All other instances were manually curated by the principal investigator. 
All adjuvant/neo-adjuvant or post-operative RT was considered curative intent 
RT. All local RT for pain relief or other symptom-directed goals was considered as 
palliative. Some items were not specified, and those events were not included in 
our analysis. We also excluded all RT for non-malignant disease states, specifically 
for gynecomastia treatment after castration. We cannot exclude overrepresentation 
or underrepresentation of the radiation signatures as we are unaware whether the 
metastases that were biopsied were not already present at the time of RT.

Variant calling. Variant calling in the GLASS dataset was performed according 
to the GATK best practices using GATK 4.1.0.0 and publicly released as part of 
a previous publication5. Briefly, GATK 4.1. was used for variant calling in tumor 
samples against a matched normal control. Additionally, panels of normals 
were constructed across multiple control samples from the same tissue source 
and sequencing center. Variants were broadly filtered for germline variants, 
cross-sample contamination, read orientation and sequence context. Variants were 
called across all samples for a given patient. Variants with a minimum coverage of 
10 reads in both primary and recurrence and a minimum variant allele frequency 
of 10% for either the primary or the recurrence were included for further analysis. 
Variants were considered to be present if at least one mutant read was detected in 
a sample. Mutations directly overlapping with known repeat regions according to 
the repeatmasker database were removed. Specifically, we filtered out all variants 
in known repeat regions, including DNA satellites, microsatellites, long terminal 
repeats, transposable elements (LINE/SINE elements) and low-complexity regions. 
Variant clonality was inferred for each patient individually using PyClone (v.0.13.1) 
and as described in more detail in the GLASS marker paper.

Mutation burden comparison. The mutation burden was calculated as the 
number of mutations per megabase with at least 10× coverage and stratified 
by variant type. The overall tumor mutation burden was calculated as the sum 
of the burden of small deletions, small insertions and SNVs. Recurrent tumors 
with greater than 10 mutations per megabase were considered hypermutated 
as previously described5. For the comparison of mutation burden between RT 
treatment groups in the GLASS dataset, we calculated the burden of mutations 
unique to the recurrent tumors and therefore acquired after treatment. To adjust 
for confounding covariables, we fitted a multivariable log-linear regression 
model using the glm function in R. In addition to RT treatment, we included 
TMZ treatment, hypermutation, surgical interval in months and molecular 
subtype as variables. The small-deletion burden in the GLASS dataset was not 
confounded by batch effects. Accordingly, we included the full therapy and tumor 
type information for mutation burden analyses in the Hartwig metastatic cohort. 
To adjust for negative infinite values resulting from the log transformation in 
the GLASS cohort, we added a constant value of 1 to the log function. For the 
metastatic cohort, the log transformation did not result in (negative) infinite values 
and therefore did not necessitate the addition of a constant value.

Association of deletions with non-B-DNA structures. The genomic locations of 
non-canonical DNA structures were derived from the Non-B DNA database47. We 
calculated for every variant position and, for comparison, for 250,000 randomly 

sampled positions from the reference genome, the distance to non-B features as 
a continuous (absolute distance to genomic feature in base pairs) or categorical 
(position in or up to 100 bp to genomic feature—yes/no) value. We used a 
two-sided Mann–Whitney U test for differences in the genomic properties of 
variants in radiation-induced and non-radiation-induced tumors after adjusting 
for random background distribution.

dNdScv. For quantification of selection processes at the level of individual genes 
dependent on RT, we calculated dN/dS ratios as previously described5. Briefly, 
the R package dNdScv17 was run using the default and recommended parameters 
for each mutational fraction (private to primary, shared between primary and 
recurrence and private to recurrence). All analyses were conducted separately 
within RT-naive and RT-treated groups.

Sequence microhomology. Sequence microhomology was determined by 
iteratively comparing the 3′ end of the deleted sequence to the 5′ flanking 
sequence. Any deletion demonstrating at least 2 nucleotides of homology 
was considered microhomology mediated. The homologous sequence was 
characterized and further analyzed for the presence of 1-, 2- and 3-nucleotide 
repeats. The repeat unit and number of repeats were quantified.

Mutational signatures. SigProfiler was used to extract and plot mutational 
signatures of SBSs, double-base substitutions and indels18. Absolute and relative 
contributions of signatures were determined using modified functions from the 
MutationalPatterns R package48. Briefly, we fitted the mutational profile matrix 
generated with SigProfiler to the catalog of previously identified COSMIC 
mutational signatures (v3, May 2019) by solving the non-negative least-squares 
problem. The SBS signatures SBS31 and SBS35 have previously been linked to 
platinum therapy14,18. Analysis of the HMF cohort using the signatures we extracted 
confirmed these previously established associations, providing further credence to 
the identified signatures. SigProfilerPlotting49 was used to visualize the distribution 
of indel characteristics (Extended Data Fig. 3a–d).

Structural variants. For the GLASS dataset, split reads and discordant read pairs 
were extracted from all tumor and normal BAM files using samtools 1.750. We used 
the lumpyexpress tool (from LUMPY 0.2.13) to call structural variants providing the 
data associated with the set of normal and tumor samples belonging to one patient51. 
Copy number variation predictions inferred from read depth using CNVnator 0.3.3 
were additionally provided to garner further support for identified variants52. The 
resulting call set was post-processed using SVtyper 0.6.0 to genotype structural 
variants for each individual sample belonging to a patient53. Finally, we used GATK 
VariantFiltration to filter all variants with fewer than four reads of support and those 
with quality scores less than ten54. Variants that showed any support in non-tumor 
samples were additionally removed. Variants were quantified per sample and further 
stratified according to type (translocation, duplication, deletion and inversion). We 
computed the change in frequencies for each patient by dividing the rate at recurrence 
by the rate at primary. Only variants spanning at least 20 bp were considered.

MSI and HRD. MSI and HRD status were assigned according to previously 
defined criteria13. In short, MSI was determined in samples with >14,000 indel 
repeats; HRD was classified on the basis of a probability score of ≥0.5 according to 
the CHORD algorithm.

Aneuploidy calculation. Arm-level aneuploidy data from the GLASS dataset were 
obtained from a previous publication and copy number segmentation files from 
HMF were processed into arm-level copy number calls using the same methods5. 
Chromosomes demonstrating euploidy in both arms were considered euploid. 
Chromosomes with equidirectional aneuploidy in both arms or aneuploidy in 
a single arm and indeterminate ploidy in the other arm were considered simple 
aneuploid. Chromosomes with aneuploidy in one arm and incongruent ploidy 
in the other arm were considered complex aneuploid. Aneuploidy events were 
quantified for each tumor sample.

Statistical methods. All data analyses were conducted in R 3.6.1 (broadly using 
tidyverse 1.3.0), Python 3.7.3 and PostgreSQL 10.5. R was interfaced with the 
PostgreSQL database used for data storage using the unixODBC 2.3.6 driver plus 
the DBI 1.0.0 and odbc 1.1.6 R packages. All survival analyses including Kaplan–
Meier plots and Cox proportional hazards models were conducted using the R 
packages survival and survminer. For unpaired group comparisons, the two-sided 
Mann–Whitney U test and two-sided Kruskal–Wallis test were used and for paired 
longitudinal comparisons the two-sided Wilcoxon signed-rank test was applied. 
Forest plots were generated using the R package forestmodel. Survival times for the 
GLASS dataset were calculated as described previously5. In the HMF metastatic 
cohort, we calculated survival starting from the date of biopsy to date of death. For 
patients that were alive, we used the last date of follow-up (date of treatment end) 
as censoring.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
Processed sequencing data from the GLASS project used in this study are available 
on Synapse, at https://www.synapse.org/glass. The whole-genome sequencing, 
RNA sequencing and corresponding clinical data used in this study were made 
available by the HMF and were accessed under a license agreement (HMF 
DR-057 version 3.0). Data access can be obtained by filling out a data request 
form. The form and detailed application procedures can be found at https://www.
hartwigmedicalfoundation.nl/applying-for-data/. The repeatmasker database used 
in this manuscript is available at https://www.repeatmasker.org/.

Code availability
Pipeline scripts can be found at https://github.com/fpbarthel/GLASS. Custom 
scripts for analyses performed in this manuscript can be found at https://github.
com/EmreKocakavuk/RTscars.
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Extended Data Fig. 1 | Radiotherapy specifically drives small deletion burden independent of multiple variables. a, Boxplot (in this and all following 
figures: boxes span quartiles, center lines as medians, whiskers represent absolute range, excluding outliers): burden of post-treatment mutations 
(mutations/mb) in RT-naïve (n!=!34) and RT-received (n!=!156) patients from GLASS cohort. Mutations separated by DEL (deletions), INS (insertions) 
and SNV (single nucleotide variants). Two-sided Mann-Whitney U test. b, Acquired small deletion burden comparison between RT-naïve and RT-received 
cases separated by molecular subtype. Two-sided Mann Whitney U test. c, Comparison of mean cancer cell fraction of small deletions per patient in 
GLASS separated by P, primary-only fraction, S, shared fraction and R, recurrence-only fraction and by HM, hypermutation. Two-sided Mann- Whitney 
U test. d, Forest plots: multivariable log-linear regression model of acquired mutation burden (mutations/mb) in GLASS. Point, mean estimate; lines, 
95%-confidence-interval. Two-sided t-test (**=p!<!0.01, ***=p!<!0.001). e, Sample selection and filtering criteria for HMF including a detailed description 
of the usage for specific figures. f, Separation of lung, breast and bone/soft tissue cancers into respective subtypes. Comparison of small deletion burden 
between RT-, RT!+!pal and RT!+!cur samples. Two-sided Kruskal-Wallis test. g, Boxplots depicting burden of small deletions in HRD-/MSI- (n!=!3,413), 
HRD+ (n!=!218) and MSI+ (n!=!62) samples from the HMF cohort separated by RT-status. Two-sided Mann-Whitney U test. h, Forest plots depicting 
multivariable log-linear regression model for mutation burdens in HMF. Two-sided t-test. Mutations separated into small deletions/insertions and SNVs. 
Independent variables: age, primary tumor location, DNA repair deficiency background and treatment including radiotherapy, taxane, alkylating agents, 
platin and others. i, Comparison of small deletion counts between control vs ionizing radiation groups (PMID:30982602). Two-sided Mann-Whitney U 
test. k, Distribution of small deletion counts per treatment group (PMID:30982602). Data presented as mean values +/− standard error of the mean, and 
red dots indicate median count of small deletions.
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Extended Data Fig. 2 | Genomic characteristics of RT-associated small deletions. a, Comparison of mean deletion lengths of acquired deletions in 
RT- vs RT!+!IDHmut gliomas. Two-sided Mann-Whitney U test. b, Metastatic cohort: Boxplots depicting mean deletion lengths in RT-naïve (left) and 
palliative RT-treated (middle) and curative RT-treated (right) tumor samples separated by primary tumor location. Two-sided Kruskal-Wallis test. c, 
Longitudinal comparison (X-Axis) of mean distances of deletions to non-B DNA features in kb (Y-Axis) in IDHmut glioma cases. Cases separated by 
radiation treatment and hypermutation. Note that neither in hypermutated, nor in RT-naïve non-hypermutated glioma samples significant longitudinal 
differences were observed. Two-sided paired Wilcoxon signed-rank test. d, Gene-wise dN/dS estimates by RT (rows) and fraction (columns) in GLASS. 
Two-sided likelihood ratio tests. Genes sorted by Q-value (Bonferroni-adjusted P-value) and P-value. Q-values indicated in color, whereas P-values shown 
in light grey. Q-value threshold of 0.05 indicated by a horizontal red line. e, Comparison of proportion of deletions for IDHmut glioma samples separated 
by RT and hypermutation. Two-sided paired Wilcoxon signed-rank test. For each sample, the proportion of deletions with 1!bp length, > 1!bp length with 
microhomology and > 1!bp length without microhomology add up to 1. Bottom right panels (RT-received non-hypermutators) presented in Fig. 2d and 
shown here for comparison with other groups. f, Comparison of proportion of deletions in metastatic cohort between RT-treated and RT-naïve cases using 
two-sided Kruskal-Wallis test. In bone/soft tissue, breast and head & neck and nervous system cancers, significantly lower proportions of deletions >1!bp 
with microhomology were observed in RT-treated samples compared to RT-naïve samples. In contrast, RT-received breast, colon/rectum, esophagus, 
nervous system and prostate tumor samples showed significantly higher proportions in deletions > 1!bp without microhomology. Boxes span quartiles, 
center lines as medians, whiskers represent absolute range, excluding outliers.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Mutational signatures associated with RT. a-d, Distribution of indel types for post-treatment mutations in the GLASS cohort, 
separated by RT (a, c, RT- negative; b, d, RT-treated) and HM (a-b, Hypermutator; c-d, Non-Hypermutator). Note that patterns of indels in hypermutated 
samples resemble the previously identified MSI signature ID2, whereas RT-treated Non- Hypermutant gliomas harbor large similarities with ID8. Sample 
sizes for each subgroup are annotated. e, Comprehensive comparison of all 17 COSMIC indel (ID) signatures in IDHmut glioma. Top 2 panels display 
longitudinal comparison of absolute signature contributions separated by radiation treatment (RT!+!and RT-). Middle 2 panels display longitudinal 
comparison of relative signature contributions separated by radiation treatment. For these panels two-sided paired Wilcoxon signed-rank test was applied 
for statistical testing. Bottom panels display comparison of absolute (left) and relative (right) signatures of post-treatment indels between RT-treated and 
RT-naïve samples. For these panels two-sided Mann-Whitney U test was applied for statistical testing. (ns!=!not significant, * = p!<!0.05, ** = p!<!0.01, 
*** = p!<!0.001, **** = p!<!0.0001). Note that ID8 is the only signature consistently associated with radiation therapy across different comparisons, 
nominating it as a robust signature of radiotherapy. Boxes span quartiles, center lines as medians, whiskers represent absolute range, excluding outliers. 
f, Absolute (top) and relative (bottom) contribution of ID8 signature in metastatic cohort compared between cases with prior radiation treatment and 
cases without prior radiation treatment separated by tumor types. Note that most tumor types show significantly higher values of the signature in curative 
RT!+!cases. Two-sided Kruskal-Wallis test was applied for statistical testing. Boxes span quartiles, center lines as medians, whiskers represent absolute 
range, excluding outliers.
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Extended Data Fig. 4 | Effects of radiotherapy on structural variants. a, Analysis of structural variants (SVs) in glioma samples (Translocations, 
Duplications, Deletions, Inversions). For each patient, number of SVs were calculated pre-and post-treatment and the proportional increase after 
therapy for each SV- type was plotted separately for RT-naive and RT-treated samples. Based on the distribution of proportional increase from primary 
to recurrence, a cutoff was defined for >50% increase that was further used for analyses in Fig. 4a. b, To support analyses presented in Fig. 4a, a 
multivariable logistic regression model was fitted for the >50% increase values of the structural variant types. Two-sided Wald test. This model includes 
radiation therapy, temozolomide therapy, molecular subtype and surgical interval as variables. c, Schematic overview of separation of aneuploidy 
events into whole chromosome aneuploidy as a result of simple segregation errors and partial aneuploidy as a result of complex segregation errors. d, 
Longitudinal analysis of partial aneuploidy in IDHmut glioma samples. Dots are proportional to the frequency of whole chromosome loss integer for 
each subgroup. Two-sided paired Wilcoxon rank-signed test. e, Multivariable Poisson regression model for whole chromosome losses in IDHmut glioma 
including molecular subtype, RT, TMZ, surgical interval and CDKN2A status at recurrence as variables. Two-sided Wald test. Note that CDKN2A homdel, 
but not RT is independently associated with higher whole chromosome losses. f, Density plots over integers of whole chromosome deletion scores for 
comparison between primary vs recurrent glioma samples, separated by radiotherapy. g, Density plots over integers of whole chromosome deletion scores 
for comparison between RT-naïve vs RT!+!pal vs RT!+!cur and/or CDKN2A homdel vs. wild-type (WT) samples from the HMF dataset. Note that CDKN2A 
homdel is associated with higher whole chromosome deletion scores, independent of RT. Within samples with CDKN2A homdel, samples that were 
RT-treated with curative intent show the highest deletion scores.
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Extended Data Fig. 5 | Radiotherapy-associated genomic scars linked to poor survival. a, Left: Kaplan-Meier survival plot comparing overall survival 
time dependent on CDKN2A status at recurrence using two-sided log-rank test in IDH mutant glioma samples. Right: Multivariable cox regression model 
including CDKN2A status at recurrence, TMZ-treatment, molecular subtype and Age as variables. Two-sided Wald test was applied. b, Left: Kaplan Meier 
survival plot comparing survival time dependent on CDKN2A status at metastasis using two-sided log- rank test RT-treated metastases (n!=!958 with 
available survival information). Middle: Kaplan Meier survival plot comparing survival time dependent on aneuploidy burden at metastasis using two-sided 
log-rank test in RT-treated metastases (n!=!958 with available survival information). Samples were separated into 3 tertiles based on whole chromosome 
loss aneuploidy scores: high (top tertile), intermediate (middle tertile) and low (bottom tertile). Right: Kaplan Meier survival plot comparing survival time 
dependent RT signature ID8 burden at metastasis using two-sided log- rank test in RT-treated metastases (n!=!958 with available survival information). 
Samples were separated into 3 tertiles based on ID8 burden: high (top tertile), intermediate (middle tertile) and low (bottom tertile). Note that a low ID8 
burden is associated with better survival, indicating a better response to RT. c, Multivariable cox regression model including deletion burden at recurrence 
as continuous variable, CDKN2A homozygous deletion, Temozolomide-treatment, molecular subtype and age as variables in RT-treated IDH mutant 
samples.
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Chapter 5 
Glioma progression is shaped by genetic 
evolution and microenvironment 
interactions 
 

This chapter is based on the following publication64: 

Varn, F.S., Johnson, K.C., Martinek J., Huse J.T., Nasrallah, M.P., Wesseling, P., 
Cooper, L.A.D., Malta, T.M., Wade, T.E., Sabedot, T.S.,Brat, D., Gould, 
P.V., Wöehrer, A., Aldape, K., Ismail, A., Sivajothi, S.K., Barthel, 
F.P., Kim, H., Kocakavuk, E., et al. Glioma progression is shaped by genetic 
evolution and microenvironment interactions. Cell 185, 2184-2199 (2022). 
https://doi.org/10.1016/j.cell.2022.04.038  
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SUMMARY

The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-
associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally
separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant
glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable
to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hy-
permutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic
cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were
more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling
programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesen-
chymal transition was associated with the presence of a myeloid cell state defined by specific ligand-recep-
tor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent
potential targets to alter disease progression.

INTRODUCTION

Diffuse gliomas in adults are primary tumors of the central ner-
vous system that are characterized by a poor prognosis and

the development of resistance to a surgery and chemoradia-
tion treatment regimen (Wen et al., 2020). Genomic profiling
has identified drivers of glioma progression and led to the
definition of clinically relevant subtypes based on the
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presence of somatic mutations in the isocitrate dehydroge-
nase (IDH) genes and co-deletion of chromosome arms 1p
and 19q (Cancer Genome Atlas Research Network et al.,
2015; Ceccarelli et al. 2016; Louis et al., 2016). Bulk and sin-
gle-cell transcriptional profiling has revealed that the gene
expression programs in neoplastic glioma cells are influenced
by underlying somatic alterations and interactions with the tu-
mor microenvironment. These cells additionally exhibit high
plasticity that enables them to respond dynamically to diverse
challenges (Johnson et al., 2021; Neftel et al., 2019; Ven-
teicher et al., 2017; Wang et al., 2017). Bulk genomics
approaches have revealed therapy-related mesenchymal
transitions and both branching and linear evolutionary pat-
terns (Barthel et al., 2019; Kim et al., 2015a, 2015b; Korber
et al., 2019; Wang et al., 2016, 2017). However, the extent
to which individual neoplastic and microenvironmental host
cells interact and evolve over time to facilitate therapy resis-
tance remains poorly understood.
To identify the drivers of treatment resistance in glioma, we

established the Glioma Longitudinal Analysis Consortium
(GLASS) (GLASS Consortium, 2018). We previously assembled
longitudinal whole-exome and whole-genome sequencing
data from 222 patients to define the clonal dynamics of
glioma under therapy (Barthel et al., 2019). Here, we expand
upon these analyses by integrating longitudinal genomic data
with overlapping transcriptomic data. We apply single-cell-
based deconvolution and spatial imaging approaches to
infer a tumor’s physical structure and identify the cell-state in-
teractions across IDH-wild-type and IDH-mutant glioma.
Collectively, we find that gliomas exhibit several common tran-
scriptional and compositional changes at recurrence that
represent promising therapeutic targets for delaying disease
progression.

RESULTS

GLASS cohort
We expanded the GLASS cohort, with an emphasis on collecting
orthogonal RNA sequencing profiles, to 381 patients treated
across 37 hospitals (Table S1). After applying quality control fil-
ters, the final cohort comprised 304 patients, with 168 having
RNA sequencing data for two or more time points, 256 having
DNA sequencing data for two or more time points, and 115 hav-
ing overlapping RNA and DNA available for at least two time
points. The cohort of 168 patients used for RNA sequencing
analyses comprised each of the three major glioma subtypes,
with 128 IDH-wild-type (IDHwt), 31 IDH-mutant 1p/19q intact
(IDHmut-noncodel), and 9 IDH-mutant 1p/19q co-deleted
(IDHmut-codel) glioma pairs (Figure 1A; Table S2). Given the
limited number of IDHmut-codel cases, we pooled the IDH-
mutant categories (IDHmut), unless specified otherwise. All pro-
cessed genomic data and clinical annotation are available via
https://www.synapse.org/glass.

Longitudinal cellular heterogeneity in glioma
We first assessed the representation of the classical, mesen-
chymal, and proneural bulk transcriptional subtypes across the
GLASS cohort. IDHwt tumors exhibited primarily classical and
mesenchymal characteristics compared with IDHmut tumors,
which were largely proneural (Figure 1A). Longitudinally, the
dominant subtype in IDHwt tumors switched in 49% of patients,
with classical to mesenchymal being the most common transi-
tion. In contrast, 78% of IDHmut tumors remained proneural
at both time points (Figure 1B). Next, we deconvoluted the
GLASS gene expression dataset by applying CIBERSORTx
(Newman et al., 2019) using reference cell-state signatures
derived from 55,284 single-cell transcriptomes from 11 adult
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32Department of Neurology, Columbia University Medical Center, New York, NY, USA
33Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
34Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
35Department of Neurosurgery, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands
36Lead contact
*Correspondence: roel.verhaak@jax.org
https://doi.org/10.1016/j.cell.2022.04.038

ll

Cell 185, 2184–2199, June 9, 2022 2185

Resource



Mutational signatures of genotoxic cancer therapies 

  67 

  

patients spanning glioma subtypes and time points (Johnson
et al., 2021) (Table S3). Unsupervised analyses of this data iden-
tified 12 cell states representing the glial, stromal, immune, and
neoplastic cells commonly observed in glioma. The neoplastic
population expressed a shared set of markers (e.g., SOX2),
and it was split across three pan-glioma cell states, differenti-
ated-like, stem-like, and proliferating stem-like, that together
captured the developmental, lineage commitment, and prolifer-
ation states observed across numerous glioma single-cell
studies (Bhaduri et al., 2020; Castellan et al., 2021; Couturier
et al., 2020; Garofano et al., 2021; Neftel et al., 2019; Richards
et al., 2021; Tirosh et al., 2016; Venteicher et al., 2017;
Wang et al., 2019; Yuan et al., 2018). Specifically, the differenti-
ated-like state encompassed neoplastic cells exhibiting oligo-
dendrocyte-like, astrocyte-like (EGFR+), and mesenchymal-like
(CD44+) processes, whereas the stem-like states could be

segregated by cell-cycle activity (Ki67+) and resembled undiffer-
entiated and progenitor-like neoplastic cells (OLIG2+) (Neftel
et al., 2019; Venteicher et al., 2017). To validate this approach,
we applied the method to bulk glioma RNA-seq profiles that
had ground truth cellular proportions determined by (1) synthetic
mixing of single-cell profiles, (2) single-cell RNA-seq, and (3)
histo-cytometry of whole-slide multiplex immunofluorescence
scans (Figures S1A–S1C). Together, these orthogonal analyses
supported the validity of the CIBERSORTx deconvolution
approach in glioma.
When deconvoluting the GLASS dataset, we observed varia-

tions in cellular composition across each subtype consistent
with prior literature (Neftel et al., 2019; Wang et al., 2017). The
classical and mesenchymal subtypes were dominated by differ-
entiated-like neoplastic cells, with mesenchymal samples also
having high levels of stromal and immune cells. The proneural

Figure 1. Longitudinal cellular heterogeneity in glioma
(A) Each column represents an initial (I) and recurrent (R) tumor pair. Pairs are arranged based on the combined representation of the proneural andmesenchymal

subtypes in their initial tumors. The first track indicates whole-exome (WXS) or whole-genome sequencing (WGS) data availability. The next three tracks indicate

bulk subtype signature representation. Stacked bar plots indicate cell-state composition based on the single-cell-based deconvolution method, CIBERSORTx.

(B) Sankey plot indicating whether the highest-scoring transcriptional subtype changed at recurrence. Numbers in parentheses indicate the number of samples of

each subtype: proneural (Pro.), classical (Class.), and mesenchymal (Mes.).

(C) Average cell-state composition of transcriptional subtypes (left) and initial and recurrent tumors by IDH status (right).

See also Figure S1 and Tables S1, S2, and S3.

ll

2186 Cell 185, 2184–2199, June 9, 2022

Resource



Mutational signatures of genotoxic cancer therapies 

  68 

  

subtype, in contrast, consisted mostly of proliferating stem-like
and stem-like neoplastic cells (Figure 1C). Subtype composi-
tions were similar regardless of whether the tumor was initial or
recurrent, and we observed similar associations in the Cancer
Genome Atlas (TCGA) glioma cohort (Figures S1D and S1E).
Longitudinally, IDHwt tumors had significantly higher levels of ol-
igodendrocytes and significantly lower levels of differentiated-
like neoplastic cells at recurrence (p = 5e!6 and 4e!3, paired
t test). These changes remained significant even after account-
ing for the extent of surgical resection, suggesting a greater
admixture of neoplastic cells and oligodendrocytes (Figure S1F).
We observed similar changes in cellular composition when using
an independent IDHwt glioma cell-state classification model
(Neftel et al., 2019), including a significant decrease at recur-
rence in the astrocyte-like neoplastic cell state that is dominant
in classical tumors (p = 7e!3, paired t test; Figure S1G). Recur-
rent IDHmut tumors exhibited significantly higher levels of
proliferating stem-like neoplastic cells and a significantly lower
differentiated-like neoplastic cell fraction (p = 1e!3 and 2e!6,
paired t test; Figure 1C). Stratifying this group by 1p/19q co-
deletion status revealed that the increase in proliferating stem-
like cells was only significant in the IDHmut-noncodel subtype,
whereas IDHmut-codel tumors exhibited a significant increase
in stem-like cells (p = 0.04, paired t test; Figure S1H). Overall,
these results indicated that IDHwt and IDHmut tumors undergo
distinct cell-state changes at recurrence.

Histological features underlie subtype switching and
cell-state changes at recurrence
Intratumoral heterogeneity is a hallmark of glioma and is abun-
dant in hematoxylin and eosin-stained (H&E) tissue slides, where
features such as microvascular proliferation and necrosis are
used for diagnosis and grading by pathologists (Kristensen
et al., 2019). The Ivy glioblastoma atlas project (Ivy GAP) has
defined and microdissected five ‘‘anatomic’’ features on the ba-
sis of reference histology, including two features at the tumor pe-
riphery (leading-edge and infiltrating tumor) and three features in
the tumor core (cellular tumor, pseudopalisading cells around
necrosis, and microvascular proliferation) (Puchalski et al.,
2018). Each feature exhibits a distinct transcriptional profile, sug-
gesting that the cell-state composition changes we observed at
recurrence may be related to changes in a tumor’s underlying
physical structure. To better understand this relationship, we as-
sessed the cellular composition of each feature through tran-
scriptional deconvolution and multiplex immunofluorescence
(Figures 2A and S2A). Leading-edge features, which have been
shown to exhibit proneural subtype and neural tissue character-
istics (Gill et al., 2014; Puchalski et al., 2018), were rich in oligo-
dendrocytes and stem-like neoplastic cells. Pseudopalisading
cells around necrosis features, which are areas of hypoxia,
exhibited high levels of differentiated-like neoplastic cells.
Conversely, microvascular proliferation features were enriched
in proliferating stem-like neoplastic cells, supporting the role of
oxygen in influencing cell state. Finally, the cellular tumor feature
exhibited sample-specific variation, with high levels of differenti-
ated-like neoplastic cells in IDHwt samples and high levels of
stem-like cells in IDHmut samples. Overall, each cell state’s dis-
tribution was more significantly associated with the histological

feature than with the patient from which it was derived (two-
way ANOVA; Figure S2B).
Next, we examined how feature representation varied over

time by deconvoluting the GLASS dataset with Ivy GAP
feature-specific gene signatures. To assess the performance,
we compared the resulting proportions with pathologist esti-
mates of related features in a subset of samples with matched
H&E slides (Table S4). This revealed that the method accurately
distinguished periphery- and tumor core-associated features
(Figure S2C) and identified expected correlations between the
pseudopalisading cells around necrosis feature and pathologist
estimates of the slide area occupied by necrosis (Figure S2D).
However, in recurrent samples, the deconvolution performance
of some features was influenced by the presence of recur-
rence-specific histological features that were not profiled by
Ivy GAP (Figure S2E). In GLASS, differences in each bulk tran-
scriptional subtype’s anatomy were consistent with their under-
lying cell-state composition (Figure 2B). Longitudinally, IDHwt
tumors had significantly higher leading-edge content at recur-
rence (p = 4e!5, paired t test; Figure 2B), consistent with the
oligodendrocyte increase in this subtype (Figure 1C). In most
cases this increase was independent of whether a tumor under-
went a transcriptional subtype transition, suggesting that it was a
general feature at recurrence (Figure 2C). At the cell-state level,
we found that changes in the abundance of different neoplastic
cell states over time associated with changes in different histo-
logical features in a subtype-dependent manner (Figure 2D).
Specifically, in IDHwt tumors, changes in the abundance of
differentiated-like, stem-like, and proliferating stem-like cells
positively associated with changes in pseudopalisading cells
around necrosis, leading edge, and microvascular proliferation
features, respectively.
Given these associations, we hypothesized that some subtype

switches in IDHwt tumors are attributable to changes in histolog-
ical feature composition over time. To test this, we inferred the
cell-state composition of each sample’s tumor core by
adjusting for the presence of non-neoplastic cells and leading-
edge content. Although several subtype switches were associ-
ated with changes in at least one neoplastic cell fraction pre-
adjustment, the strongest difference observed post-adjustment
was a decrease in stem-like cells in tumors that underwent a
proneural-to-mesenchymal transition (p = 3e!4, paired t test;
Figures S2F and S2G). This association remained significant
after adjusting for the remaining non-cellular tumor features,
suggesting that tumors undergoing this switch exhibit a loss of
stem-like cells independent of histological feature composition
(Figures 2E and S2F). Collectively, the results indicate that
most IDHwt subtype switches relate to changes in a tumor’s un-
derlying physical structure and microenvironment. However,
changes observed in the proneural-to-mesenchymal transition
may be indicative of tumor-wide changes that reflect neoplastic
cell-intrinsic processes at recurrence.

Acquired somatic alterations at recurrence associate
with changes in cellular composition
Although most tumors exhibited changes in cell state and asso-
ciated histological feature composition, the factors underlying
these changes remained unclear. Somatic genetic alterations
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have been shown to associate with cell-state distribution in
IDHwt and IDHmut glioma (Johnson et al., 2021; Neftel et al.,
2019; Tirosh et al., 2016; Verhaak et al., 2010). Thus, we hypoth-
esized that genetic changes at recurrence impact cellular
composition. To test this, we compared neoplastic cell-state dis-

tribution between samples that acquired or lost driver mutations.
Within IDHmut tumors, this revealed acquired alterations in cell-
cycle regulators, including deletions in CDKN2A and amplifica-
tions in CCND2, to be associated with increases in proliferating
stem-like cells (p = 3e!3, paired t test, n = 6; Figure 3A).

Figure 2. Histological features underlie subtype switching and cell-state changes at recurrence
(A) Cell-state composition of each of the reference histology-defined Ivy GAP features across 10 patients. Each patient is indicated by a different color in the

patient track.

(B) Average histological feature composition of transcriptional subtypes (left) and initial and recurrent tumors by IDH status (right) in GLASS.

(C) Heatmap depicting the changes in each histological feature between initial and recurrent tumors undergoing the indicated subtype transition. The initial

subtype is indicated in the columns, and the recurrent subtype is indicated in the rows. Colors represent the change in the fraction of the indicated features.

(D) Heatmap depicting the Pearson correlation coefficients measuring the association between the change in a histological feature and the change in a cell state

when going from an initial tumor to recurrence. In (C) and (D) * indicates a significant correlation (p < 0.05).

(E) Left: ladder plot depicting the change in the adjusted stem-like cell proportion between paired initial and recurrent tumors undergoing a proneural-to-

mesenchymal transition. Right: the average adjusted neoplastic cell proportions for the tumor pairs outlined on the left. Neoplastic cell proportions were adjusted

for the presence of non-neoplastic cells as well as non-cellular tumor content. p value from paired t test.

See also Figure S2 and Table S4.
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Whole-slide multiplex immunofluorescence scans of a recurrent
IDHmut tumor with an acquired CDKN2A deletion showed a
significantly higher number of SOX2+/Ki67+ cells in comparison
with the matched primary, confirming the association (p < 1e!5,
Fisher’s exact test; Figure 3B). We did not observe this associa-
tion in IDHwt tumors, which typically harbor CDKN2A deletions
at initial presentation (Figure S3A).
Next, we examined how neoplastic cell states associated with

treatment-induced hypermutation, which frequently occurs after
the administration of alkylating agents such as temozolomide

(Barthel et al., 2019). In both IDHwt and IDHmut glioma, hyper-
mutation was also associated with increased proliferating
stem-like neoplastic cells (p < 0.05, paired t test, n = 13 and 7,
respectively; Figure 3C). Multiplex immunofluorescence scans
of an IDHwt tumor pair with a hypermutated recurrence
confirmed this association, with the recurrence having a signifi-
cantly higher number of SOX2+/Ki67+ cells (p < 1e!5, Fisher’s
exact test; Figure 3D). In IDHmut tumors, hypermutation largely
occurred independent of acquired copy-number changes in
CDKN2A andCCND2, suggesting that there are multiple genetic

Figure 3. Acquired somatic alterations at recurrence associate with changes in cellular composition
(A) Left: ladder plot depicting the change in the proliferating stem-like cell proportion between paired initial and recurrent IDHmut tumors that acquired CDKN2A

deletions orCCND2 amplifications. p value from paired t test. Right: stacked bar plot depicting the average proportions of each cell state for the tumor pairs in the

ladder plots.

(B) Left: representative multiplex immunofluorescence images from a matched initial and recurrent IDHmut tumor pair that acquired a CDKN2A deletion at

recurrence. Right: stacked bar plot depicting the proportion of SOX2+/Ki67+ cells among all SOX2+ cells across the entire tissue section for each sample.

(C) Top: ladder plots depicting the change in the proliferating stem-like cell proportion between paired initial and recurrent tumors, stratified by hypermutation

status. Paired t test p values are indicated. Bottom: average proportions of each cell state for the tumor pairs outlined above.

(D) Left: representative multiplex immunofluorescence images from amatched initial and recurrent IDHwt tumor pair that was hypermutated at recurrence. Right:

stacked bar plot depicting the proportion of SOX2+/Ki67+ cells among all SOX2+ cells across the entire tissue section for each sample.

(E) Change in proliferating stem-like cell fraction between initial and recurrent tumors from IDHmut tumor pairs.

(F) Kaplan-Meier plot depicting the survival distributions of patients that exhibited an increase or non-increase in proliferating stem-like cells at recurrence. p value

from log-rank test.

In (B) and (D), scale bars represent 50 mm. See also Figure S3.
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routes to increasing proliferating stem-like neoplastic cells at
recurrence (Figure 3E). Notably, neither of these alterations
associated with changes inmicrovascular proliferation, suggest-
ing that increases in proliferating stem-like neoplastic cells were
a result of genetics and not microenvironmental interactions
(Figure S3B). Survival analyses revealed that increases in prolif-
erating stem-like neoplastic cells in IDHmut tumors were signif-
icantly associated with reduced overall survival (p = 0.02,
log-rank test; Figure 3F) and remained so after adjusting for
age, grade, and 1p/19q co-deletion status (p = 0.02, Wald test;
Figure S3C). Collectively, these results indicate that genetic
evolution at recurrence can alter neoplastic glioma cells toward
a more proliferative phenotype that associates with poor
prognosis.

In addition to neoplastic cells, genetic alterations have been
associated with changes in the microenvironmental composition
of tumors (Wellenstein and de Visser, 2018). Thus, we examined
how each non-neoplastic cell state differed across tumor pairs
that acquired or lost selected driver mutations at recurrence. In
IDHwt tumors, non-hypermutated recurrences that acquired
NF1 mutations all underwent a mesenchymal transition and
exhibited increases in granulocytes and myeloid cells, with the
granulocyte association being significant (p = 0.03, paired
t test, n = 3; Figure S3D). Additionally, several copy-number alter-
ations, such as loss of EGFR or PDGFRA amplification, associ-
ated with increased non-neoplastic cell content (p < 0.05, paired
t test, n =11andn=4, respectively) anda transition to themesen-
chymal subtype (p = 0.05, Fisher’s exact test; Figures S3E and
S3F). We did not observe any significant changes in the fractions
of non-neoplastic cells when comparing hypermutated recur-
renceswith their corresponding non-hypermutated initial tumors,
including Tcells (FigureS3G). These results together indicate that
although genetic evolution is a major driver of changes in
neoplastic cell-state composition at recurrence, it has less of
an effect on a tumor’s microenvironment during this time.

Neuronal signaling activity is increased in recurrent
IDHwt tumors
Only a subset of tumors demonstrated a genetic-associated
increase in proliferating stem cell content at recurrence. We hy-
pothesized that in remaining gliomas, treatment-induced cell-
state changes may not manifest as a ubiquitous shift in cellular
composition. To test this, we utilized our pan-glioma single-cell
RNA-seq dataset (Johnson et al., 2021) as a reference to decon-
voluteGLASSbulk gene expression profiles into their component
differentiated-like, stem-like, proliferating stem-like, andmyeloid
gene expression profiles (Figure S4A). To validate these profiles,
we compared them with those derived from fluorescence-acti-
vated cell sorting (FACS)-purified glioma-specific CD45- and
myeloid populations (Klemm et al., 2020). This revealed strong
concordance between the corresponding profiles of each cell
state (Figures S4B and S4C). Next, we compared the cell-state-
specific gene expression profiles between the initial and
recurrent tumor for each pair receiving temozolomide and/or
radiotherapy. In IDHwt tumors, 10.0% of the 7,511 genes that
could be inferred in stem-like cells were significantly differentially
expressed at recurrence (false discovery rate [FDR] < 0.05, Wil-
coxon signed-rank test). This number was 7.6% of the 11,641

differentiated-like state genes and 6.3%of the 6,019 proliferating
stem-like state genes (Figure 4A; Table S5). Based on these re-
sults, we defined recurrence-specific signatures as the genes
that were significantly up-regulated at recurrence in each cell
state. Within our pan-glioma single-cell dataset, we confirmed
the recurrence-specific nature of each signature by comparing
their expression between single neoplastic cells fromunmatched
recurrent and initial tumors (Figure S4D). To understand the
functions these cell states up-regulate at recurrence, we then
performed gene ontology (GO) enrichment analysis on each
signature. This revealed that the stem-like signature was signifi-
cantly enriched in terms relating to neuronal signaling, whereas
the differentiated-like and proliferating stem-like signatures ex-
hibited similar, but weaker, associations (Figures 4B and S4E).
Given our observation that recurrent IDHwt tumors show an in-

crease in oligodendrocytes and leading-edge content, we hy-
pothesized that neuronal signaling in stem-like neoplastic cells
may result from tumor-neuron interactions. To test this hypothe-
sis, we examined how the stem-like neoplastic cell recurrence
signature associated with histological feature content in the
GLASS cohort. This revealed a positive association between
neuronal signaling in the stem-like neoplastic cell-specific
expression and leading-edge content (Figure 4C). Notably, we
observed this result at both time points, suggesting that neuronal
signaling in stem-like neoplastic cells may be driven more by
tumor-neuron interactions themselves than neoplastic cell-
intrinsic changes that take place at recurrence. We next evalu-
ated neuronal signaling by comparing how the expression of
the stem-like neoplastic cell recurrence signature differed be-
tween single neoplastic cells collected from the invasive rim,
where there are high levels of neurons, versus those collected
from the tumor core (Yu et al., 2020). This revealed significantly
higher signature expression at the invasive rim, further support-
ing the association between neuronal signaling and tumor-
neuron interactions (Figure 4D). Finally, we performed multiplex
immunofluorescence to examine how neoplastic cell expression
of neuronal markers differed between pathologist-annotated his-
tological features in recurrent glioma (Figure S4F). Within the
infiltrating tumor region, we found neurons (NeuN+) and a high
number of neoplastic cells (SOX2+) staining positively for
SNAP25, a neuronal marker that was part of our stem-like
neoplastic cell recurrence signature. In contrast, there were
few neurons and no SNAP25+ cells in the cellular tumor region
(Figure 4E). Collectively, these results suggest that increased
normal cell content at recurrence associates with higher
signaling between neoplastic cells and neighboring neural cells.
Although we did not observe an association between increased
neuronal signaling in stem-like neoplastic cells and overall sur-
vival (p > 0.05, Wald test), neuron-to-glioma synapses have pre-
viously been implicated in increased tumor growth and invasion
(Venkataramani et al., 2019; Venkatesh et al., 2015, 2017, 2019).
Our results are consistent with these findings and support a
model of greater tumor invasion into the normal brain at recur-
rence that could be facilitated by increased interactions between
neurons and neoplastic cells.
The neoplastic cell-state signatures in recurrent IDHmut

tumors that received treatment were distinct from those in
IDHwt tumors, with the largest proportion of differentially

ll

2190 Cell 185, 2184–2199, June 9, 2022

Resource



Mutational signatures of genotoxic cancer therapies 

  72 

  

Figure 4. Neuronal signaling activity is increased in recurrent IDHwt tumors
(A) Heatmaps depicting the average normalized log10 expression level of genes that were differentially expressed between neoplastic cell states from initial and

recurrent IDHwt tumors that received treatment. Fractions indicate the number of differentially expressed genes out of the number of genes inferred for that cell

state’s profile.

(B) Bar plot depicting the !log10(FDR) from a GO enrichment analysis of the genes significantly up-regulated at recurrence in stem-like neoplastic cell-specific

gene expression profiles from IDHwt tumors.

(C) Scatterplot depicting the association between leading-edge fraction and the average expression of the stem-like neoplastic cell recurrence signature for

samples in the GLASS dataset.

(D) Violin plot depicting the average expression of the stem-like neoplastic cell recurrence signature in neoplastic single cells collected from the invasive rim and

tumor core of 9 grade 4 gliomas (Yu et al., 2020). p value from Wilcoxon rank-sum test.

(E)Multiplex immunofluorescence images of the interface between the cellular tumor (top right; CT) and infiltrating tumor (bottom right; IT) histological features in a

recurrent IDHwt tumor. Histological features were defined by a neuropathologist using the H&E image in Figure S4F.

(F) Heatmaps depicting the average normalized log10 expression level of genes that were differentially expressed between neoplastic cell states from initial and

recurrent IDHmut tumors that received treatment. Fractions are as outlined in (A).

(G) Bar plot depicting the !log10(FDR) from a GO enrichment analysis of the genes significantly up-regulated at recurrence in differentiated-like neoplastic cell-

specific gene expression profiles from IDHmut tumors.

In (B) and (G), the dashed line corresponds to FDR < 0.05. See also Figure S4 and Table S5.
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expressed genes found in the differentiated-like instead of the
stem-like state (FDR < 0.05, Wilcoxon signed-rank test; Fig-
ure 4F; Table S5). The genes in the differentiated-like state that
were up-regulated at recurrence were significantly enriched in
terms relating to the cell cycle and mitosis (FDR < 0.05; Fig-
ure 4G), whereas the stem-like signature exhibited similar
associations at a relaxed significance threshold (FDR < 0.1; Fig-
ure S4G). These signatures were consistent with those found in
higher-grade tumors, and accordingly, we observed that these
changes were strongest in the tumor pairs that recurred at a
higher grade (Figure S4H). Furthermore, when we compared
signature expression in single cells of the same cell state, we
found that the signatures were differentially expressed in cells
derived from grade 3 versus grade 2 tumors (Figure S4I). Taken
together, these results indicate that IDHwt and IDHmut tumors
recur in distinct manners that reflect distinct microenvironmental
and genetic contributions.

Mesenchymal tumors exhibit a distinct myeloid cell
phenotype
The mesenchymal subtype has been associated with high levels
of myeloid cells, treatment resistance, and poor patient survival
(Bhat et al., 2013; Kim et al., 2021; Wang et al., 2017). Thus, we
sought to understand the factors driving tumors toward this sub-
type over time. Confirming previous findings, IDHwt tumors with
a mesenchymal recurrence exhibited a significantly shorter sur-
gical interval compared with those with non-mesenchymal re-
currences (p = 0.03, log-rank test; Figure S5A) (Wang et al.,
2017). However, this association was weaker in a multi-variate
model (Figure S5B). Single-cell studies have previously shown
that samples of this subtype exhibit high levels of neoplastic cells
that express a distinct mesenchymal-like expression signature
(Neftel et al., 2019). Analysis of the neoplastic cell-state-specific
expression profiles in samples undergoing a mesenchymal tran-
sition revealed that differentiated-like cells, but not stem-like
cells, up-regulated this signature at recurrence (Figure S5C).

Given the changes in cellular composition associated with a
mesenchymal transition, we hypothesized a role for interactions
between tumor-infiltrating myeloid cells and neoplastic cells. To
test this, we compared the myeloid compartment between gli-
oma subtypes by deconvoluting the myeloid-specific gene
expression profiles from 687 TCGA glioma transcriptomes. The
myeloid compartment in IDHwt tumors was characterized by
high blood-derived macrophage signature activity (Muller et al.,
2017), whereas themyeloid cells in the IDHmut-noncodel tumors
exhibited a high expression of genes associated with brain-resi-
dent microglia (Figure 5A). Stratifying this cohort by transcrip-
tional subtype revealed that the blood-derived macrophage
signature was directly correlated with mesenchymal subtype
representation, whereas microglial gene expression was highest
among tumors of the mixed subtype classification that is seen
most frequently in IDHmut-noncodel glioma (Figure S5D).
Consistent with these results, principal component analysis of
tumor and normal brain myeloid cell expression profiles revealed
that those from proneural tumors most closely resembled those
from normal brain tissue, whereas mesenchymal myeloid pro-
files were more distinct (Figure S5E). Histological feature associ-
ations in IDHwt tumors revealed that the blood-derived macro-

phage signature was positively correlated with the abundance
of microvascular proliferation and pseudopalisading cells
around necrosis features, whereas the microglia signature asso-
ciated with leading-edge content. In contrast, the blood-derived
macrophage signature was negatively associated with leading-
edge content in IDHmut tumors, whereas the microglia signature
did not exhibit any clear associations (Figure S5F). Longitudi-
nally, when holding the transcriptional subtype constant, we
observed very few differentially expressed genes in the myeloid
cell profiles from matched initial and recurrent tumors (Fig-
ure S5G). However, the myeloid profiles in IDHmut tumors that
increased grade at recurrence exhibited a significant decrease
in microglia signature expression, suggesting a shift in myeloid
cell states away from brain-resident microglia (p = 4e!4, Wil-
coxon signed-rank test; Figure 5B).
Macrophages are highly plastic and capable of changing their

transcriptional programs in response to different stimuli (Xue
etal., 2014).Thus,wehypothesized thatdifferentglioma transcrip-
tional subtypes would exhibit distinct myeloid expression pro-
grams. To test this, we compared myeloid-specific expression
profiles from each transcriptional subtype to those from normal
brain tissue (FigureS5H;TableS6).Myeloidcells fromtheclassical
and mesenchymal subtypes exhibited an immunosuppressive
phenotype, with each signature including genes from the blood-
derived macrophage signature as well as the immune checkpoint
genes,PDCD1LG2 and IDO1. In addition to this shared signature,
myeloid cells frommesenchymal glioma specifically up-regulated
another 300 genes, suggesting distinct biology. To better under-
stand the processes taking place in this subtype, we directly
compared the myeloid gene expression profiles between mesen-
chymal and non-mesenchymal IDHwt tumors in TCGA. This anal-
ysis revealed a 186-gene signature that was significantly up-regu-
lated in mesenchymal tumors (FDR < 0.05, fold-change > 1.5;
Figure 5C; Table S7) and enriched in chemokine signaling and
lymphocyte chemotaxis functions (Figure S5I). Expression of this
signature in single myeloid cells from our single-cell dataset was
strongly associatedwith bulkRNA-seqmesenchymal glioma sub-
type score from the samepatient (R = 0.89, p = 3e!3; Figure S5J).
Longitudinally, IDHwt tumors undergoing a mesenchymal tra-
nsition exhibited myeloid-specific expression profiles with signifi-
cantly higher expression of this signature at recurrence (p = 8e!8,
Wilcoxon signed-rank test; Figure 5D).
Overall, these analyses revealed a mesenchymal-specific

myeloid cell state that associated with dynamic changes in
neoplastic cell expression over time.We hypothesized that these
cells represent a subset of blood-derived macrophages that
interact directly with mesenchymal neoplastic cells. We used
the Ivy GAP dataset to determine where this myeloid cell state
resided in the tumor. This revealed that the mesenchymal
myeloid signature expression was strongest in the pseudopali-
sading cells around necrosis andmicrovascular proliferation fea-
tures that also harbor high levels of blood-derived macrophages
(Figure 5E). Correlating the myeloid-specific expression of this
signature with histological feature proportions in TCGA revealed
similar results (Figure S5K). Next, we performed a ligand-recep-
tor interaction analysis to identify candidate ligand-receptor
pairs that associate with mesenchymal transitions over time.
To probe these interactions, we downloaded a set of 1,894

ll

2192 Cell 185, 2184–2199, June 9, 2022

Resource



Mutational signatures of genotoxic cancer therapies 

  74 

  

literature-supported ligand-receptor pairs (Ramilowski et al.,
2015) and identified all pairs that had one component expressed
in a tumor’s deconvoluted myeloid profile and the other ex-
pressed in the differentiated-like neoplastic cell profile. We

then compared how the longitudinal expression change of
each component associated with the change in each tumor
pair’s mesenchymal subtype score. This identified 105 putative
ligand-receptor pairs where each component exhibited a

Figure 5. Mesenchymal tumors exhibit a distinct myeloid cell phenotype
(A) Left: uniform manifold approximation and projection (UMAP) dimensionality reduction plot of the CIBERSORTx-inferred myeloid profiles from TCGA. Right:

UMAP plot colored based on the relative mean expression of macrophage and microglia signatures.

(B) Box and ladder plots depicting the difference in themean expression of the indicated signatures between initial and recurrent IDHmut tumors fromGLASS that

do and do not recur at higher grades. *** indicates Wilcoxon signed-rank test p value < 1e!3.

(C) Heatmap depicting the normalized expression Z score of genes that were differentially expressed between myeloid cells from mesenchymal and non-

mesenchymal TCGA tumors. The top sidebar indicates the bulk mesenchymal score of each sample divided by 1,000. The right sidebar indicates the !log10
Wilcoxon rank-sum test FDR of the association for each gene. The bottom sidebar indicates the transcriptional subtype of each sample per (A).

(D) Box and ladder plots depicting the difference in the mean expression of the mesenchymal myeloid signature between initial and recurrent IDHwt tumors un-

dergoing a mesenchymal transition in GLASS. **** indicates Wilcoxon signed-rank test p < 1e!5.

(E) Boxplot depicting the mean mesenchymal myeloid signature expression for CIBERSORTx-inferred myeloid profiles from different histological features in the

Ivy GAP dataset: leading edge (LE), infiltrating tumor (IT), cellular tumor (CT), pseudopalisading cells around necrosis (PAN), and microvascular prolifera-

tion (MVP).

(F) Representative multiplex immunofluorescence images of myeloid cells near blood vessels from classical (left) and mesenchymal (right) IDHwt tumors. Scale

bars represent 20 mm.

See also Figure S5 and Tables S6, S7, and S8.
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positive association (R > 0, FDR < 0.05). Of these pairs, 49 also
exhibited these associations in our single-cell dataset (Table S8).
This analysis revealed that the expression of oncostatin M (OSM)
and oncostatinM receptor (OSMR) bymyeloid cells and differen-
tiated-like neoplastic cells, respectively, was one of the stron-
gest correlates of the mesenchymal subtype, consistent with
studies showing that this signaling associates with mesen-
chymal-like expression programs both in vitro and in vivo (Hara
et al., 2021; Junk et al., 2017). To determine whether spatial
convergence of OSM-expressing myeloid cells (CD14+) and
mesenchymal-like neoplastic cells (CD44+/SOX2+) takes place
in human tissue samples, we examined their distribution using
multiplex immunofluorescence. In mesenchymal IDHwt glioma,
we observed high OSM expression in myeloid cells near blood
vessels and mesenchymal neoplastic cells, while these expres-
sion patterns were not observed in classical glioma (Figure 5F).
These analyses together identify a candidate ligand-receptor
interaction that can potentially be targeted to change a tumor’s
trajectory following treatment.

Antigen presentation is disrupted at recurrence in
IDHmut-noncodel glioma
The interactions between myeloid cells and mesenchymal
neoplastic cells suggest a role for the immune system in shaping
glioma evolution. T cells may drive cancer evolution through the
elimination of neoantigen-presenting tumor subclones (Grasso
et al., 2018; McGranahan et al., 2017; Rooney et al., 2015;
Rosenthal et al., 2019; Zhang et al., 2018). Although rare in gli-
oma, these cells have been shown to select for epigenetic
changes and specific genetic alterations (Gangoso et al., 2021;
Kane et al., 2020) and converge with rare, recorded responses
to immune checkpoint inhibition (Cloughesy et al., 2019; Zhao
et al., 2019). We hypothesized that if T cell selection was taking
place in glioma, we would observe high rates of loss of heterozy-
gosity (LOH) in the human leukocyte antigen (HLA) genes that are
central to the presentation of neoantigens. We observed HLA
LOH in at least one time point in 19% of GLASS patients (Fig-
ure 6A). Within IDHwt and IDHmut-codel tumors, HLA LOH
was found at similar rates between initial and recurrent tumors,

Figure 6. Antigen presentation is disrupted at recurrence in IDHmut-noncodel glioma
(A) Left: Sankey plots indicating whether a tumor pair acquires or loses HLA LOH at recurrence. The colored lines indicate HLA LOH in the initial tumor, and the

dark gray lines indicate acquired HLA LOH. Right: stacked bar plot indicating the proportion of samples for each glioma subtype that acquired HLA LOH at

recurrence. *Fisher’s exact test, p value < 0.05.

(B) Violin plot depicting the difference in T cell proportion in samples with and without HLA LOH. p values from the t test.

(C) Left: ladder plots depicting the change in SCNA burden between paired initial and recurrent IDHmut-noncodel tumors that did and did not acquire HLA LOH.

p values from Wilcoxon signed-rank test. Right: boxplot depicting the difference in the change in SCNA burden between IDHmut-noncodel tumor pairs that did

and did not acquire HLA LOH. p value from Wilcoxon rank-sum test.

See also Figure S6.
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with most affected pairs exhibiting this alteration at both time
points. In contrast, significantly more IDHmut-noncodel tumors
acquired HLA LOH at recurrence (p = 0.04, Fisher’s exact test),
suggesting this alteration could be under positive selection. To
test this, we used a simulation approach (McGranahan et al.,
2017) that determined whether focal losses of the HLA genes
occurred at a higher rate than expected by chance, given a sam-
ple’s overall somatic copy-number alteration (SCNA) burden.
In both IDHwt and IDHmut recurrences, we did not observe
evidence of positive selection using this approach (p > 0.05).
Furthermore, we did not observe an association between HLA
LOH status and T cell-mediated selection metrics, including
the fraction of infiltrating T cells in each tumor (Figure 6B),
the rates of neoantigen depletion (Figure S6A), and the
number of neoantigens binding to the kept versus lost alleles
(Figure S6B).
Overall, our results suggested that HLA LOH in glioma was not

selected for, contrasting it with other cancer types. We hypothe-
sized instead it was a passenger event and thus would be more
likely to occur in samples with high SCNA burdens. In support
of this, we found that IDHmut-noncodel tumors that acquired
HLA LOH at recurrence exhibited significantly larger increases
in SCNA burden than those that did not (p = 0.02, Wilcoxon
rank-sum test; Figure 6C). In IDHwt tumors, we did not observe
these longitudinal associations. However, at both the initial and
recurrent time points, IDHwt tumors with HLA LOH exhibited
significantly higher SCNA burdens than those with both HLA al-
leles, supporting that HLA LOH is a passenger event in these tu-

Figure 7. Recurrent diffuse gliomas can be
grouped into three recurrence phenotypes
Analysis of the GLASS dataset reveals that recur-

rent IDHwt and IDHmut tumors can be grouped

into three recurrence phenotypes: neuronal,

mesenchymal, and proliferative. Each of these

phenotypes is associated with specific cellular

and histological features and molecular alter-

ations, with some also associating with poor pa-

tient survival. Some tumors can exhibit multiple

phenotypes at once. Frequencies of the neuronal,

mesenchymal, and proliferative phenotypes in

the GLASS cohort were determined based on the

number of recurrent samples that exhibited

increased oligodendrocyte content, the classifica-

tion as the mesenchymal transcriptional subtype,

and increased proliferating stem-like content,

respectively.

mors aswell (p < 0.05,Wilcoxon rank-sum
test; Figure S6C). Taken together, these
results suggest that disruption of antigen
presentation inglioma is likely abyproduct
of genome-wide copy-number changes
rather than being a result of selection by
cytolytic T cells.

DISCUSSION

Here, we combined longitudinal, single-
cell, and spatially resolved datasets to comprehensively define
the transcriptional and compositional changes that gliomas sus-
tain at recurrence. Supplementing the treatment-associated ge-
netic alterations we previously described (Barthel et al., 2019;
Kocakavuk et al., 2021), we have identified the following three
distinct recurrence-specific phenotypes: neuronal, mesen-
chymal, and proliferative. Through integrative profiling, we found
that each phenotype converges with cellular, genetic, and histo-
logical features that emerge at recurrence (Figure 7). Conse-
quently, they associate with less favorable clinical trajectories
and are present in IDHwt and IDHmut tumors at different rates,
with IDHwt tumors exhibiting all three phenotypes at recurrence
and a subset of IDHmut tumors exhibiting the proliferative
phenotype. Notably, these are not mutually exclusive, with
some IDHwt tumors simultaneously exhibiting features associ-
ated with multiple phenotypes. Overall, this grouping offers a
framework to better understand progression in diffuse glioma,
and it can help guide clinical decision-making for recurrent
disease.
Through single-cell- and histology-based deconvolution ap-

proaches, we observed that IDHwt tumors exhibited significant
increases in oligodendrocytes and leading-edge features that
were consistent with increased infiltration into the brain paren-
chyma at recurrence. Stem-like neoplastic cells of these tumors,
especially cells at the invasive tumor margin, upregulated genes
related to neuronal signaling. Overall, these changes occurred in
66% of the IDHwt tumor pairs in the GLASS cohort, suggesting
that this neuronal phenotype is a frequent feature at recurrence.
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This phenotype likely derives from exposure of neoplastic cells
to neuronal cells that may exist at diagnosis but is more frequent
at recurrence when more tumor cells have invaded the nei-
ghboring brain tissue. Our findings build upon a growing appre-
ciation of the role that neuron-glioma interactions play in glioma
invasion and progression (Venkataramani et al., 2019; Venkatesh
et al., 2015, 2019).

Other cohort-wide changes in the microenvironmental
composition of recurrent IDHwt tumors were limited. However,
in agreement with other studies, we found that myeloid cell phe-
notypes varied in relation to tumor subtype and neoplastic cell
state (Chen et al., 2021; Klemm et al., 2020; Ochocka et al.,
2021; Pombo Antunes et al., 2021; Sa et al., 2020). Notably,
myeloid cells in mesenchymal tumors exhibited a distinct
transcriptional program compared with other subtypes. This
signature was apparent in tumors undergoing a mesenchymal
transition, suggesting a distinct myeloid cell state is involved in
driving tumors toward the mesenchymal subtype in response
to treatment. In support, ligand-receptor analyses revealed
several candidate signaling pairs associated with mesenchymal
transitions, including the previously identified OSM-OSMR inter-
action (Hara et al., 2021; Junk et al., 2017). Resolving the direc-
tionality of these tumor-myeloid interactions, and determining
whether additional factors mediate them, will help predict which
tumors will exhibit a mesenchymal phenotype at recurrence.

A subset of IDHwt and IDHmut gliomas exhibited a prolifera-
tive phenotype that was characterized by increased proliferating
stem-like neoplastic cells and shorter overall survival. Analysis of
the acquired somatic alterations in these tumors revealed that
this phenotype was associated with temozolomide-driven hy-
permutation and acquired alterations of the cell-cycle regulators
CDKN2A and CCND2, which have been shown to occur exclu-
sively in post-radiation IDHmut gliomas (Kocakavuk et al.,
2021). These findings suggest that tumors undergo co-occurring
genetic and cell phenotype evolutionary processes in response
to chemotherapy and radiotherapy. Our data highlight an unmet
clinical need for tools that predict treatment-induced genetic
changes and identify patients that may benefit from subsequent
chemoradiation-sensitizing therapies.

Therapy resistance remains a significant obstacle for patients
with diffuse glioma and must be overcome to improve quality of
life and survival. Overall, our results reveal that gliomas undergo
changes in cell states that associate with changes in genetics
and the microenvironment, providing a baseline for building pre-
dictive models of treatment response. Future efforts by the
GLASS consortium include expansion of the cohort, integration
of digitized tissue sections, and associating clinical and genomic
datasets with radiographic imaging data (Bakas et al., 2020).
Going forward, the transcriptional and compositional changes
we have identified can be integrated with imaging-based results
to further assess the molecular and microenvironmental hetero-
geneity of glioma and identify clinically targetable factors to aid in
shaping a patient’s disease trajectory.

Limitations of the study
The GLASS patient cohort consists of relatively younger individ-
uals who had a more favorable clinical outcome resulting from
the requirement they can sustain multiple surgical procedures

across their disease trajectory. Findings from our study may
be less applicable to patients experiencing severe disease.
Regarding the methods used in this study, bulk RNA-seq profile
deconvolution approaches are limited in their ability to detect
rare cellular subpopulations and can only attribute cell-state-
specific expression activity to the cell states defined in their input
signature matrix. The signature matrices that we used lacked
neurons and astrocytes, as well as recurrence-specific histolog-
ical features, limiting the direct assessment of their respective
contributions to mediating treatment resistance. Due to these
limitations, our analyses were mainly directed toward under-
standing the broad differences between longitudinal samples
and transcriptional subtypes where we were well powered to
make comparisons.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

BV421 anti KI67 BD Biosciences RRID:AB_2686897

AF488 anti SOX2 Thermo Fisher Scientific RRID:AB_2574479

AF555 anti EGFR Cell Signaling Technology Cat#5108S

Rabbit anti CD14 Abcam RRID:AB_2889158

AF647 anti Olig2 Abcam Cat#ab225100

AF700 anti CD44 Novus Biologicals Cat#NBP1-41266AF700

AF568 Goat anti Rabbit Highly cross

absorbed secondary antibody

Thermo Fisher Scientific RRID:AB_10563566

AF594 anti SNAP25 Novus Biologicals Cat#NBP2-74245AF594

AF700 anti NeuN Novus Biologicals Cat#NBP1-92693AF700

AF647 anti alpha SMA Novus Biologicals Cat#NBP2-34522AF647

JF549 anti Oncostatin M Novus Biologicals Cat#NB120-10842JF549

Biological samples

Glioma tissue and matched normal blood Henry Ford Health System N/A

Glioma tissue and matched normal blood Seoul National University N/A

Chemicals

Histo-Clear National Diagnostics Cat#HS-202

Antigen Retrieval Buffer (Citrate, pH6) Abcam Cat#ab93678

Fc Receptor Blocker Innovex Cat#NB309

Background Buster Innovex Cat#NB306

Fluoromount G SouthernBiotech Cat#0100-01

Cover Glass Thermo Scientific Cat#152450

Slides Denville Scientific Cat#M1021

Saponin Sigma Cat#S7900-100G

Triton X-100 Sigma Cat#T8787

Bovin serum albumin IgG free Jackson Immuno Research RRID:AB_2336946

Normal rabbit serum Jackson Immuno Research RRID:AB_2337123

Sytox blue Thermo Fisher Cat#S11348

DAPI Thermo Fisher Cat#D1306

Critical commercial assays

AllPrep DNA/RNA Mini Kit Qiagen Cat#80204

SureSelectXT Low-Input Reagent Kit Agilent Cat#5191-4080

SureSelectXT Human All Exon V6 +COSMIC Agilent Cat#5190-9307

QIAamp DNA Mini Kit Qiagen Cat#51104

KAPA Hyper Prep Kit (Illumina) Roche Cat#7962363001

KAPA mRNA Hyperprep Kit Roche Cat#8098123702

Tempus xO Assay Tempus N/A

KAPA stranded mRNAseq Kit Roche Cat#7962207001

NuGEN Ovation RNAseq System Tecan Cat#7102-A01

Deposited data

Processed DNA somatic alteration data This paper https://www.synapse.org/glass

RNAseq pseudocount and TPM data This paper https://www.synapse.org/glass

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Digitized H&E images This paper https://styx.neurology.emory.edu/girder/#collection/

625dda70622f966e826a0446

Custom pipeline and analysis code This paper https://github.com/fsvarn/GLASSx/

Longitudinal glioma RNAseq fastq files European Genome

Phenome Archive

EGAS00001001041

Longitudinal glioma RNAseq fastq files European Genome

Phenome Archive

EGAS00001001880

Longitudinal glioma RNAseq bam files European Genome

Phenome Archive

EGAS00001001033

Longitudinal glioma RNAseq bam files European Genome

Phenome Archive

EGAS00001001255

Longitudinal glioma RNAseq fastq files European Genome

Phenome Archive

EGAS00001003790

Longitudinal glioma RNAseq fastq files Sequencing Read Archive BioProject#PRJNA320312

Longitudinal glioma whole exome and

RNAseq fastq files

Sequencing Read Archive BioProject# PRJNA482620

Longitudinal TCGA GBM LGG RNAseq

fastq files

Genomic Data Commons https://portal.gdc.cancer.gov/

TOIL TCGA TARGET GTEx RNAseq

TPM data

University of California

Santa Cruz Xenabrowser

https://xenabrowser.net/datapages/

Ivy Glioblastoma Atlas Project RNAseq

FPKM data

Ivy GAP https://glioblastoma.alleninstitute.org/

static/download.html

Processed glioblastoma single-cell data Broad Single Cell Portal Study: Single cell RNA-seq of adult

and pediatric glioblastoma

Multi-sector single-cell glioma RNAseq

count data

Gene Expression Omnibus GSE117891

RNAseq count data from FACS-sorted

glioma cell populations

BrainTIME Portal https://joycelab.shinyapps.io/braintime/

b37 reference genome

(human_g1k_v37_decoy)

GATK Resource Bundle https://gatk.broadinstitute.org/hc/en-us/

articles/360035890811-Resource-bundle

Pan-glioma single-cell RNAseq data Synapse https://www.synapse.org/#!Synapse:syn26375549

Software and algorithms

bedtools Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

Seuratv3.2.3 Stuart et al., 2019 https://satijalab.org/seurat/

BWA MEM 0.7.17 Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

GATK 4.0.10.1 McKenna et al., 2010 https://gatk.broadinstitute.org/hc/en-us

TITAN Ha et al., 2014 https://github.com/gavinha/TitanCNA

OptiType v1.3.2 Szolek et al., 2014 https://github.com/FRED-2/OptiType

pVACseq v4.0.10 Hundal et al., 2016 https://pvac-seq.readthedocs.io/en/latest/

LOHHLA McGranahan et al., 2017 https://bitbucket.org/mcgranahanlab/lohhla/

STARv2.7.5 Dobin et al., 2013 https://github.com/alexdobin/STAR

fastp v0.20.0 Chen et al., 2018 https://github.com/OpenGene/fastp

kallisto v0.46.0 Bray et al., 2016 https://pachterlab.github.io/kallisto/

ssgsea.GBM.classification Wang et al., 2017 N/A

CIBERSORTx webserver Newman et al., 2019 https://cibersortx.stanford.edu/

CIBERSORTx docker Newman et al., 2019 https://hub.docker.com/r/cibersortx/hires

Imaris 9.0.2 and 9.4 Bitplane http://www.bitplane.com/imaris/imaris

Flowjo v10 Flowjo LLC https://www.flowjo.com/solutions/flowjo

R v3.6.1 The R Project for

Statistical Computing

https://www.r-project.org/

topGO v2.38.1 Bioconductor https://bioconductor.org/packages/

release/bioc/html/topGO.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the lead contact, Roel Verhaak (Roel.Verhaak@jax.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Estimated count and transcript per million gene expressionmatrices as well asmutation calls, copy number calls, and all down-

stream tables generated for this study can be downloaded on Synapse (https://www.synapse.org/glass). Digitized H&E images
are available on the Digital Slide Archive (https://styx.neurology.emory.edu/girder/#collection/625dda70622f966e826a0446).

d All custom scripts, pipelines, and code used in data processing and figure creation is available on the project’s Github repos-
itory (https://github.com/fsvarn/GLASSx).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Human tissue collection was performed with written informed consent from patients. The protocol used to collect and sequence
specimens, or collect and analyze data from patients, was approved by the institutional review board (IRB) of the Jackson Laboratory
(17-007 DUA MDA 17349-JGM, 17-008 DUAMDA 17425-JGM, 18-003 DUA Kyoto-JGM, 18-004 DUA Samsung-JGM, 18-005 DUA
Vienna-JGM, 18-006 DUA Dana-JGM, 18-008 DUA LEEDS-JGM, 19-007 DUA DKFZ-JGM, 19-008 DUA Case-JGM, 20-005 DUA
HenryF-JGM, 20-015 DUA MDA-JGM, 20-26541 dbGaP-JGM, 2019-057-JGM, 2019-084-JGM). Patients were males and females.
Clinical characteristics of the cohort are summarized in Table S2.

METHOD DETAILS

GLASS datasets
Datasets added to GLASS came from both published and unpublished sources (Table S1). Collectively, the newly added data con-
sisted of DNA sequencing data from 109 glioma samples (53 patients) and RNA sequencing data from 392 samples (206 patients).

Newly generated DNA and RNA sequencing data was collected for a cohort of frozen samples fromHenry Ford Health System and
Seoul National University. For the Henry Ford Health System cohort, DNA and RNAwere simultaneously extracted from each sample
using the AllPrep DNA/RNA Mini Kit from Qiagen (#80204). Exon capture was then performed using the Agilent SureSelectXT Low-
Input Reagent Kit and the V6 + COSMIC capture library and the resulting reads were subjected to 150 base pair paired-end
sequencing at the University of Southern California using an Illumina NovaSeq 6000. RNA from these tissues was processed and
sequenced at Psomagen. For the Seoul National University cohort, DNA and RNA were simultaneously extracted from each tumor
sample at The Jackson Laboratory for Genomic Medicine using the AllPrep DNA/RNAMini Kit from Qiagen (#80204). For blood sam-
ples, DNA was extracted using the QIAamp DNAMini and Blood Mini Kit from Qiagen (#51104). 200ng of DNA was sheared to 400bp
using a LE220 focused-ultrasonicator (Covaris) and size selected using Ampure XP beads (Beckman Coulter). The fragments were
treated with end-repair, A-tailing, and ligation of Illumina unique adapters (Illumina) using the KAPA Hyper Prep Kit (Illumina) from
Roche (#7962363001). Whole genome libraries were then subjected to 150 base pair paired-end sequencing on the Illumina
NovaSeq 6000 to achieve 25X coverage for normal samples and >35-40X coverage for tumor samples. RNAseq libraries were pre-
pared with the KAPAmRNAHyperprep kit fromRoche (#8098123702) and then sequenced using an Illumina NovaSeq 6000 platform
generating paired-end reads of 150 base pairs.

New RNAseq data was also generated for cohorts coming from Case Western Reserve University, the Chinese University of Hong
Kong, the Luxembourg Institute of Health, and MD Anderson Cancer Center. For CaseWestern Reserve University, RNA from frozen
tissues was processed at Tempus (Chicago, IL) using the Tempus xO assay and then sequencing using an Illumina HiSeq 4000 plat-
form. For the Chinese University of Hong Kong cohort, RNAseq libraries were prepared with the KAPA Stranded mRNAseq kit
(Roche) and then sequenced at The Jackson Laboratory for Genomic Medicine using an Illumina HiSeq4000 platform generating
paired-end reads of 75 base pairs. For the Luxembourg Institute of Health cohort, RNAseq libraries were prepared with the KAPA
mRNA Hyperprep kit (Roche) and then sequenced at The Jackson Laboratory for Genomic Medicine using an Illumina NovaSeq
6000 platform generating paired-end reads of 150 base pairs. For the MD Anderson cohort, purified double-stranded cDNA gener-
ated from 150 ng of FFPE sample-derived RNA was prepared using the NuGEN Ovation RNAseq System and subjected to paired-
end sequencing using an Illumina HiSeq 2000 or HiSeq 2500 platform.

The remaining datasets were generated as described in their respective publications (cited below). For most of these cohorts,
whole exome and/or whole genome sequencing data were downloaded and processed as described during creation of the initial
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GLASS dataset (Barthel et al., 2019). RNAseq fastq files from the Samsung Medical Center (SM) cohort were delivered via hard disk
and are available to download from the European Genome-Phenome Archive (EGA) under accession numbers EGAS00001001041
and EGAS00001001880 (Kim et al., 2015b; Wang et al., 2016). RNAseq bam files for the original Henry Ford Health System (HF) and
the University of California San Francisco (SF) cohorts were downloaded from EGA under accession numbers EGAS00001001033
and EGAS00001001255, respectively, and converted to fastq files for subsequent processing using bedtools (Kim et al., 2015a; Ma-
zor et al., 2015; Quinlan and Hall, 2010). RNAseq fastq files for the University of Leeds (LU) cohort were downloaded from EGA under
accession number EGAS00001003790 (Droop et al., 2018). For the first Columbia cohort (CU-R), which consisted of samples orig-
inally collected from the Istituto Neurologico C. Besta, RNAfastq files were delivered via hard disk and are available to download at
the Sequencing Read Archive (SRA) under BioProject number PRJNA320312 (Wang et al., 2016). For the second Columbia cohort
(CU-P), which featured samples that had been treated with immune checkpoint inhibitors, raw fastq reads for whole exome andRNA-
seq were obtained from SRA under BioProject number PRJNA482620 (Zhao et al., 2019). RNAseq fastq files from the Low Grade
Glioma (LGG) andGlioblastomaMultiforme (GBM) projects in TCGAwere obtained from the Genomic Data Commons legacy archive
(https://portal.gdc.cancer.gov/legacy-archive/) (Brennan et al., 2013; Cancer Genome Atlas Research Network et al., 2015).
For each dataset, clinical data based on patient medical records was provided by the participating institution or, when not avail-

able, was obtained from the dataset’s respective publication. To create a shared clinical dataset to be used throughout the study,
clinical data sheets were combined and organized into a common set of variables as previously described in the supplemental in-
formation of the original GLASS study (Barthel et al., 2019).

Public datasets
Processed and batch-corrected RNAseq data from the TCGA and Genotype-Tissue Expression (GTEx) projects were obtained from
the University of California Santa Cruz Xenabrowser (cohort: TCGA TARGET GTEx, dataset ID: TcgaTargetGtex_rsem_gene_tpm,
author: UCSC TOIL RNA-seq recompute) (Goldman et al., 2020), and then subset to only include TCGA glioma (GBM/LGG), GTEx
Brain Frontal Cortex, and GTEx Cortex samples. Normalized gene-level fragments per kilobase million (FPKM) for the Ivy Glioblas-
toma Atlas Project (Ivy GAP) dataset were obtained from the Ivy GAP website (https://glioblastoma.alleninstitute.org/static/
download.html) (Puchalski et al., 2018). Processed single-cell data and associated metadata for a set of 28 IDHwt glioblastomas
processed using SmartSeq2 was obtained from the Broad Single Cell Portal (Study: Single cell RNA-seq of adult and pediatric glio-
blastoma; https://singlecell.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-pediatric-glioblastoma)
(Neftel et al., 2019). Raw count data and metadata from a multi-sector single-cell RNAseq dataset (Yu et al., 2020) was obtained
from the Gene Expression Omnibus (GSE117891) and processed using the ‘‘NormalizeData’’ function in the R package ‘‘Seurat’’
v3.2.3 (Stuart et al., 2019). Neoplastic cells in this dataset were determined as described previously (Garofano et al., 2021). Raw count
data and clinical annotation data from a set of glioma-derived cell populations purified using fluorescence activated cell sorting
(FACS) were obtained from the Brain Tumor Immune Micro Environment (BrainTIME) portal and converted to counts per million
(CPM) for downstream analysis (https://joycelab.shinyapps.io/braintime/) (Klemm et al., 2020).

Whole-exome and whole-genome analysis
Whole exome and genome alignment, fingerprinting, variant detection, variant post-processing, mutation burden calculation, copy
number segmentation, copy number calling, copy number-based purity, ploidy, HLA typing, and neoantigen calling were all per-
formed using previously described pipelines that were developed during the initial GLASS data release (Barthel et al., 2019). Briefly,
whole exome and whole genome reads were aligned to the b37 genome (human_g1k_v37_decoy) using Burrows-Wheeler Aligner
(BWA) MEM 0.7.17 (Li and Durbin, 2009) and pre-processed according to GATK Best Practices with GATK 4.0.10.1 (McKenna
et al., 2010). Fingerprinting on the resulting files was performed using ‘CrosscheckFingerprints’ to confirm all readgroups from a given
sample and all samples from a given patient match, with all mismatches being labelled and dropped from downstream analysis.
Somatic mutations were called using GATK4.1 MuTect2. Hypermutation was defined for all recurrent tumors that had more than
10 mutations per megabase sequenced, as described previously (Barthel et al., 2019). Copy number segmentation and calling
was performed according to GATK Best Practices as previously described. Copy number-based tumor purity and ploidy were deter-
mined using TITAN (Ha et al., 2014). Four-digit HLA class I types were determined from the normal bam files for each sample using
OptiType v1.3.2 (Szolek et al., 2014). Neoantigens were called from each patient’s somatic mutations and HLA types using pVACseq
v4.0.10 (Hundal et al., 2016). Neoantigen depletion was calculated as described previously (Barthel et al., 2019). Loss of heterozy-
gosity (LOH) for each sample’s HLA type was called from their respective matched tumor and normal bam files using LOHHLA run
with default parameters and a coverage filter of 10 (McGranahan et al., 2017). HLA LOH was called if the estimated copy number for
an allele using binning and B-allele frequency was < 0.5 and the P-value for allelic imbalance was < 0.05 (paired t-test). Positive se-
lection of focal HLA LOH events was determined using a previously described simulation approach (McGranahan et al., 2017) where
a tumor’s null probability of deletion LOH for a given genomic region was determined based on the overall proportion of its genome
exhibiting a deletion LOH event according to TITAN.

RNA preprocessing
To ensure each RNAseq file matched to the DNA and RNAseq files from their respective sample and patient, RNAseq fastq files were
aligned to the b37 genome using STARv2.7.5 (Dobin et al., 2013) and the resulting bams were then preprocessed using the same
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pipelines described for DNA sequencing (Barthel et al., 2019). Fingerprinting was then performed on each bam at the readgroup and
patient levels using ‘CrosscheckFingerprints.’ For each patient-level comparison, each RNA bamwas compared to all other RNA and
DNA bams coming from the same patient. All mismatches were labelled and dropped from downstream analysis.

RNAseq fastq files were pre-processed with fastp v0.20.0 (Chen et al., 2018). Transcripts per million (TPM) values were then calcu-
lated from each sample’s pre-processed files using kallisto v0.46.0 (Bray et al., 2016) inputted with an index file built from the En-
semblv75 reference transcriptome. Strand-specific library preparation information was obtained for each sample from the source
provider or using STARv2.7.5 quantMode set with the ‘GeneCounts’ parameter. The resulting TPMvalues for each samplewere com-
bined into a transcript expression matrix for downstream analysis. To create a gene expression matrix, transcript TPM values were
collapsed and summed by their respective gene symbols.

Quality control
To be included in longitudinal downstream analyses, all samples from the same patient had to be collected at least one month apart,
as described previously (Barthel et al., 2019). For DNA samples to be included in longitudinal downstream analyses, two samples
from a given patient had to pass a previously described quality control process based on fingerprinting, coverage, and copy number
variation (Barthel et al., 2019). For RNA samples to be included in longitudinal downstream analyses, two samples from a given pa-
tient had to pass a patient-level fingerprinting filter that ensured that the RNA samples matched each other and the patient’s respec-
tive DNA samples if available. Tumor pairs that had DNA and RNA that passed filtering at each timepoint were used in all downstream
analyses that integrated DNA and RNA data.

Bulk transcriptional subtype classification
Bulk transcriptional subtyping was performed on each GLASS or TCGA sample’s processed RNAseq profile using the
‘‘ssgsea.GBM.classification’’ R package (Wang et al., 2017). Thismethod outputs an enrichment score quantifying the representation
of each of the three bulk glioma subtypes in a sample as well as a P-value indicating the significance of this representation. For an-
alyses that required a single subtype to be assigned to each sample, the subtypewith the lowest P-value was chosen. In cases where
there were ties between subtypes, the subtype with the highest enrichment score was chosen. For analyses that did not require a
single subtype designation, all subtypes with P-value < 0.05 were assigned to the sample, with ‘‘mixed’’ subtype designations
used when all subtypes were equally represented.

Joint single-cell and bulk RNAseq dataset
Single-cell and bulk RNA sequencing data were generated and processed as previously described (Johnson et al., 2021) and are
available for download on Synapse (https://www.synapse.org/#!Synapse:syn2225778). Briefly, tumor surgical specimens were
freshly collected, minced, and partitioned into single-cell and bulk fractions from the same tumor aliquot. The tissues aliquoted
for single cell analyses were then mechanically and enzymatically dissociated using the Brain Tumor Dissociation Kit (P) (Miltenyi
Cat. No. 130-095-942). FACS was performed to select for viable single cells (Propidium Iodide-, Calcein+ singlets) and enrich for tu-
mor cells by limiting the proportion of non-tumor cells (e.g., immune (CD45+) and endothelial (CD31+) cells). Sorted cells were then
loaded on a 10X Chromium chip using the single-cell 3’ mRNA kit (10X Genomics). The Cell Ranger pipeline (v3.0.2) was used to
convert Illumina base call files to fastq files and align fastqs to hg19 10X reference genome (version 1.2.0) to be compatible with
our bulk sequencing data. Data preprocessing and analysis was performed using the Scanpy package (1.3.7) (Wolf et al., 2018)
with batch correction performed using BBKNN (Polanski et al., 2020). RNA was extracted for tissues with sufficient tissue and
bulk RNAseq libraries were prepared with KAPA mRNA HyperPrep kit (Roche). Bulk RNA sequencing data was processed with
the same pipeline as the GLASS samples.

Deconvolution analyses
Cellular proportions and cell state-specific gene expression matrices were inferred from bulk RNAseq gene expression matrices us-
ing CIBERSORTx (Newman et al., 2019). Reference scRNAseq signature matrices were created from our internal 10x-derived
scRNAseq dataset (Johnson et al., 2021) and a publicly available SmartSeq2-derived scRNAseq dataset (Neftel et al., 2019) using
the ‘Create Signature Matrix’ module on the CIBERSORTx webserver (https://cibersortx.stanford.edu/) with default parameters and
quantile normalization disabled. The Ivy GAP signature matrix was downloaded from a prior publication (Puchalski et al., 2018). The
CIBERSORTx webserver currently recommends users input no more than 5,000 different single-cell profiles when creating their
signaturematrix (Steen et al., 2020). Tomeet this recommendation, our internal scRNAseq dataset, which ismade up of 55,284 single
cells, was randomly downsampled to 5,000 cells using the ‘sample’ command in R with the seed set to 11. The cells not included in
signature matrix formation were then set aside for validation analyses.

Single-cell-derived cellular proportions and cell state-specific gene expression profiles were inferred from bulk RNAseq datasets
using the CIBERSORTx High-Resolution docker container (https://hub.docker.com/r/cibersortx/hires) following CIBERSORTx in-
structions. For all runs, the bulk RNAseq dataset was input as the ‘mixture’ file and the respective signature matrix was input as
the ‘sigmatrix’ file. For runs using our 10x-derived internal scRNAseq signatures, batch correction was done in ‘S-mode’ by setting
the ‘rmbatchSmode’ parameter to TRUE, while for runs using SmartSeq2-derived scRNAseq signatures batch correction was
done in ‘B-mode’ by setting the ‘rmbatchBmode’ parameter to TRUE. For each run, the input signature matrix’s respective
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CIBERSORTx-created ‘‘source gene expression profile’’ was input for batch correction. For all runs, the ‘subsetgenes’ parameter
was set to a file containing the intersection of the gene symbols between the run’s respective source gene expression profile and
the bulk RNAseqmatrix that was being deconvoluted. For the run applying our internal scRNAseq dataset to the bulk GLASSRNAseq
matrix, the ‘groundtruth’ parameter was set to a ground truth FACS-purified dataset that was generated as described below. Cellular
proportions representing pre-created Ivy GAP signatures were inferred using the ‘Impute Cell Fractions’ module on the CIBERSORTx
webserver set to relative mode with quantile normalization and batch correction disabled and 100 permutations for significance
analysis.

Immunofluorescence staining and image acquisition
Tissue samples used in multiplex immunofluorescence microscopy were formalin-fixed, paraffin-embedded and sectioned to a
thickness of 5 mm unless otherwise stated. Tissue sections were heated at 58!C for 10 minutes, dewaxed in Histoclear (National
Diagnostics) for 20 min and rehydrated in a graded series of alcohol (ethanol:deionized water 100:0, 90:10, 70:30, 50:50, 0:100;
5min each). Heat-induced epitope retrieval (95!C) was conducted in citrate buffer (pH 6) for 15min using a BioSB TinoRetriever. After
antigen retrieval, tissue sections were permeabilized with PBS 0.1% Triton-X100, washed with PBS and consecutively treated with
Fc Receptor Block (Innovex bioscience) for 40 min + Background Buster (Innovex bioscience) for an additional 30 min. The sections
were then stained with primary antibodies, diluted in PBS + 5% BSA overnight at 4!C, and then washed and stained with the sec-
ondary antibodies at room temperature for 30 minutes. Afterwards, tissues were washed and secondary antibodies were saturated
with rabbit normal serum diluted at 1/20 in PBS for 15 minutes at room temperature. Tissues were then stained with directly conju-
gated antibody mix for 1 hour at room temperature and washed. Nuclei were counterstained with 4’,6-diamidino-2-phenylindole
(1ug/mL) or SytoxBlue 1/3000 for 2 minutes. Tissues were then mounted in Fluoromount-G mounting media.
Images were acquired on a Leica SP8 confocal microscope equipped with an automated motorized stage. Spectral unmixing was

achieved with combination of white light laser tuned laser line for each specific fluorophore, tunable detection window for each
marker and sequential acquisition. Whole-slide scans were acquired with a dry 20x objective, while partial slide scans for the panels
that included OSM and SNAP25 were acquired with a 40x oil immersion objective. Tiles were stitched andmax projected using Leica
LAS X software.

Histo-cytometry
Quantification of single-cell protein expression from immunofluorescence scans was performed using histo-cytometry as previously
described (Gerner et al., 2012; Wang et al., 2018; Wu et al., 2018). Briefly, each whole slide tissue scan was segmented using Imaris
software (version 9.0.2). Using the ‘‘spot’’ function in Imaris, images were segmented using individual cells with a nucleus equal or
larger than 5 mm as a seeding point to extend each cells’ surface. The accuracy of the segmentation was manually verified for each
sample and adjusted if needed. For each generated spot, x and y coordinates and mean intensity values for all channels were com-
bined and exported into Flowjo v10 to select regions of interest, if needed. Final coordinates and intensity values were exported into a
csv file for further analysis in R.

Validation of cell-state proportions
Cell state proportions derived from our internal scRNAseq dataset were validated using three approaches. In the first approach, syn-
thetic mixtures were made using the single-cell gene expression profiles that had been left out of signature creation. Each synthetic
mixture represented the average expression profile of 5,000 single cells where the number of cells of one cell state were manually set
and the remaining cells were randomly sampled. Each cell state had its level manually set in 11 mixtures, where it represented 0% of
the cells in the first mixture and then increased in 10% increments until reaching 100% in the final mixture. In cases where there were
fewer than 5,000 single cells of a given cell state, making 100% representation not possible, the preset proportion instead repre-
sented the percent of available cells of that cell state rather than the percent of cells in the mixture. Each synthetic mixture had its
true proportions recorded and the resulting mixtures were input into CIBERSORTx for deconvolution. Comparisons of the true
and inferred proportions were then performed through correlation analysis.
In the second approach, the cell state proportions inferred from bulk RNAseq data were compared to the cell state proportions

quantified by scRNAseq for each sample in our internal scRNAseq dataset. Some samples in the scRNAseq dataset were enriched
for CD45- cells via FACS and therefore precluded true cell state abundance when considering both neoplastic and non-neoplastic
cells. To address this, comparisons were restricted to the relative proportions of each neoplastic cell state. Non-neoplastic cell pro-
portions were removed, and neoplastic cells proportions were then renormalized so that the sum of each neoplastic cell state pro-
portion in each sample added up to 1.
In the third approach, cell state proportions inferred from bulk RNAseq data were compared to the cell state proportions quantified

throughmultiplex immunofluorescence and histo-cytometry analyses performed onwhole tissue scans for a subset of samples in the
GLASS cohort. To determine the identity of each cell in a tissue scan, expression thresholds were set for each marker based on the
marker’s expression distribution across the dataset. For bimodal distributions the threshold was set to the local minima between
the two maxima, while for normal distributions the threshold was set to the global maximum. Cells that were negative for all markers
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were excluded from further analysis. To facilitate comparisons between expression and immunofluorescence-based estimates, an-
alyses were restricted only to the cell states identified in both platforms, and the resulting fractions were renormalized so that the sum
of each proportion added up to 1.

Annotation and validation of histological features
Digitized images of H&E slides were obtained for a subset of GLASS samples and stored centrally on the Digital Slide Archive (https://
styx.neurology.emory.edu/girder/). In a subset of samples for which FFPE slides were available for multiplex immunofluorescence
staining, representative histological features were digitally outlined by a board-certified neuropathologist.

Transcriptomic histological deconvolution was validated by comparing expression-based and neuropathologist-based estimates
of feature abundance. To accomplish this, a team of six neuropathologists were instructed to estimate the proportion of the slide area
occupied by different histological features for 10 GLASS samples (5 primary-recurrent tumor pairs) where the H&E slide was directly
adjacent to the tumor region sent for RNA-sequencing. Neuropathologists were blinded to the type of glioma in each slide and did not
have knowledge of the expression-based scores prior to scoring. To standardize feature evaluation across neuropathologists, com-
mon definitions for each feature were established. Definitions for features expected to be observed in both primary and recurrent
tumors were loosely based on those used by Ivy GAP, while recurrence-specific features were collaboratively defined by the neuro-
pathologist team. During the evaluation process, each evaluator received a template with these feature definitions andwas instructed
to annotate the entire slide so that the total estimates for each sample summed to 100% (Table S4). Consensus pathology estimates
for each slide were then calculated as the mean neuropathologist estimate of a given feature and were used for all downstream an-
alyses. Results for the necrosis feature samples were additionally reproduced using publicly available neuropathologist estimates
from TCGA H&E slides (Cooper et al., 2012).

Histological feature adjustment
For analyses examining how histological features influenced subtype switching, a tumor sample’s cell state composition profile was
adjusted to remove cell states that could be attributed to a specific histological feature. To do this, the tumor sample’s proportion of a
given histological feature wasmultiplied by the average proportion of each cell state from all samples of that feature in Ivy GAP. These
numbers were then subtracted from their respective cell state’s proportion in the tumor sample and the resulting profile was then
renormalized so that all proportions summed to 1. In cases where the new cell state proportion was less than 0, the value was set
to 0 before renormalization.

Validation of cell state gene expression profiles
Concordance between CIBERSORTx-inferred cell state-specific gene expression profiles and a ground truth set of FACS-purified
gene expression profiles was assessed using the ‘groundtruth’ parameter in CIBERSORTx. The ground truth dataset used in this
step was generated from a previously released glioma dataset (Klemm et al., 2020) by collapsing all glioma-derived CD45- profiles
into an average CD45- profile and all glioma-derived macrophage/microglia profiles into an average myeloid cell profile. This dataset
was input into CIBERSORTx using the ‘groundtruth’ parameter during the run applying our internal scRNAseq signature matrix to the
GLASS bulk RNAseq dataset. The resulting quality control files output during this run, primarily ‘‘SM_GEPs_HeatMap.txt’’, were then
used to perform correlation analyses assessing the similarity between the inferred neoplastic cell andmyeloid profiles and the ground
truth profiles.

Cell-state gene expression profile analysis
To facilitate downstream analyses on each CIBERSORTx-inferred cell state-specific gene expression profile, each of the resulting
expression matrices were log-transformed and all genes that could not be imputed or had a variance of 0 across the dataset
were removed. For each cell state-specific gene expression matrix, Wilcoxon signed-rank tests were used to determine the differ-
entially expressed genes between initial and recurrent tumors and the resulting P-values were corrected for multiple testing using the
Benjamini-Hochberg procedure. Signature scores in cell state-specific gene expression profiles and single-cell RNAseq profiles
were defined as the average expression of the genes in the signature. In cases where the expression of some of the genes in the
signature could not be determined, the intersection of the signature and the available genes was takenwhen calculating the signature
score. For GO enrichment analyses on signatures derived from cell state-specific gene expression profiles, the background gene set
only included the genes CIBERSORTx was able to impute for the cell state from which the signature was derived.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analyses were conducted in R v3.6.1 and PostgreSQL 10.6. GO enrichment analyses were performed using the ‘‘classic’’
algorithm in the R package ‘‘topGO’’ v2.38.1. Survival analyses were performed using the R ‘‘survival’’ package. When comparing
variables between groups, t-tests were used for cell state proportions while non-parametric tests were used for all other variables
(i.e., gene expression, signature score, neoantigen number).
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Supplemental figures

Figure S1. Validation of deconvolution results, related to Figure 1
(A) Scatterplots depicting the association between the true proportion and the CIBERSORTx-inferred proportion for each cell state in gene expression profiles

from synthetic mixtures composed of different combinations of single cells.

(B) Scatterplots depicting the association between the proportion of each neoplastic cell state determined from single-cell RNA-seq and the non-neoplastic cell-

adjusted neoplastic cell-state proportion inferred from CIBERSORTx applied to each sample’s respective bulk tumor RNA-seq profile.

(C) Scatterplots depicting the associations between the relative proportions of proliferating stem-like neoplastic cells (SOX2+ and Ki67+), stem-like neoplastic

cells (SOX2+, OLIG2+, and Ki67!), differentiated-like neoplastic cells (SOX2+, OLIG2!, Ki67!, EGFR+ or CD44+), and myeloid cells (CD14+ and SOX2!) in-

ferred using multiplex immunofluorescence and the corresponding cell-state proportions inferred from expression data using CIBERSORTx. The myeloid cell

CIBERSORTx fraction represents the sum of the myeloid, granulocyte, and dendritic cell fractions. In all plots, Pearson correlation coefficients are indicated.

(D) The average cell-state composition of each bulk transcriptional subtype across initial and recurrent GLASS samples.

(E) The average cell-state composition of each bulk transcriptional subtype across all TCGA samples.

(F) Left: stacked bar plot indicating the proportion of IDHWT tumors that underwent a gross total resection at each time point. Right: the average proportions of

each cell state for tumors that underwent a subtotal resection at initial time point and a gross total resection at recurrence (subtotal-gross total) and tumors that

underwent a gross total resection at both time points (gross total-gross total).

(G) Left: the average Neftel et al. cell-state composition of each bulk transcriptional subtype for all IDHWTGLASS tumors. Right: the average Neftel et al. cell-state

composition of initial and recurrent IDHWT tumors.

(H) The average cell-state composition of initial and recurrent IDHmut tumors stratified by 1p/19q co-deletion status. Colors for all panels are indicated at the

bottom of the figure.

See also Tables S1, S2, and S3.
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Figure S2. Relationship between cell state and histological feature composition, related to Figure 2
(A) Representative H&E andmultiplex immunofluorescence images for each Ivy GAP histological feature. Featureswere identified by a neuropathologist based on

the H&E images on the left. The leading edge, infiltrating tumor, and cellular tumor features are from GLSS-LU-0B10 (primary), whereas the pseudopalisading

cells around necrosis and microvascular proliferation features are from GLSS-LU-00B9 (primary). Scale bars represent 50 mm.

(B) Bar plot depicting the !log10 p value from a two-way ANOVA measuring whether the fractions of each cell state in a sample associate with the patient the

sample was derived from (red bar) and the feature the sample represents (blue bar). The dashed line corresponds to p = 0.05.

(C) Heatmap depicting the Pearson correlation coefficientsmeasuring the association between pathologist and CIBERSORTx estimates of nucleated tumor core-

and periphery-related histological features. Evaluations were performed across 5 initial and 5 recurrent samples.

(legend continued on next page)
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(D) Scatterplots depicting the association between pathologist estimates of necrosis and CIBERSORTx estimates of the IvyGAP pseudopalisading cells around

necrosis feature in the GLASS and TCGA datasets. Shapes indicate initial and recurrence status.

(E) Heatmap depicting the Pearson correlation coefficients measuring the association between pathologist estimates of recurrence-specific nucleated histo-

logical features and CIBERSORTx estimates of IvyGAP features. Evaluations were performed across 5 recurrent samples. In (C)–(E), pathologist estimates were

based on the relative percent of the H&E slide area occupied by a given feature while CIBERSORTx estimates were based on RNA-seq. Abbreviations: leading

edge (LE), infiltrating tumor (IT), cellular tumor (CT), pseudopalisading cells around necrosis (PAN), and microvascular proliferation (MVP).

(F) Heatmap depicting the changes in each neoplastic cell state between initial and recurrent tumors undergoing the indicated subtype transition. The initial

subtype is indicated in the columns, and the recurrent subtype is indicated in the rows. Each row of heatmaps reflects a different histological feature adjustment.

Colors represent the change in the fraction of the indicated features between initial and recurrent tumors, while * indicates a paired t test p value < 0.05.

(G) Left: ladder plot depicting the change in the adjusted stem-like cell proportion between paired initial and recurrent tumors undergoing a proneural-to-

mesenchymal transition. Right: the average adjusted proportions for neoplastic cells for the tumor pairs outlined on the left. Neoplastic cell proportions were

adjusted for the presence of non-neoplastic cells and leading-edge content. p value from paired t test.

See also Table S4.
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Figure S3. Cell-state changes in samples that have acquired or lost somatic alterations, related to Figure 3
(A) Left: ladder plot depicting the change in the proliferating stem-like cell proportion between paired initial and recurrent IDHWT tumors that acquired CDKN2A

deletions or CCND2 amplifications. Right: stacked bar plot depicting the average proportions of each cell state for the tumor pairs in the ladder plots.

(B) Ladder plots depicting the difference in microvascular proliferation fraction in IDHWT tumors that acquired hypermutation and IDHmut tumors that acquired a

cell-cycle alteration or hypermutation at recurrence.

(C) Forest plot depicting the results of a multivariable Cox proportional hazards model that included proliferating stem-like cell increase, age, initial grade, and 1p/

19q co-deletion status as variables. Points represent the hazard ratio, and lines represent the 95% confidence interval. p values were calculated using the

Wald test.

(D) Left: ladder plots depicting the change in granulocyte proportion in IDHWT tumors that acquired mutations in NF1 at recurrence. Right: the average propor-

tions of each cell state for the tumor pairs in the ladder plots.

(E) Non-neoplastic cell-state differences in IDHWT tumors that lost EGFR orPDGFRA amplifications at recurrence. (E) is split by alteration. Ladder plots depict the

change in the non-neoplastic cell-state proportion between paired initial and recurrent tumors, whereas the stacked bar plots depict the average proportions of

each cell state for these tumors.

(F) Sankey plot indicating whether the highest-scoring transcriptional subtype changed at recurrence for the tumors depicted in (E). Each color reflects the

transcriptional subtype in the initial tumors. Numbers in parentheses indicate the number of samples. Subtype abbreviations: proneural (Pro.), classical (Class.),

and mesenchymal (Mes.).

(G) Ladder plots depicting the difference in T cell fraction in tumors that underwent hypermutation at recurrence.

In all figures, p values were calculated using a paired t test unless otherwise noted.
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Figure S4. Validation and analysis of cell-state-specific gene expression profiles, related to Figure 4
(A) Schema for single-cell RNA-seq-based deconvolution of cell-state-specific gene expression profiles using the pan-glioma single-cell RNA-seq dataset

(Johnson et al., 2021).

(B) Heatmap depicting the relationship between the CIBERSORTx-inferred gene expression profiles and gene expression profiles from analogous cell types from

a FACS-purified ground-truth dataset (Klemm et al., 2020). In the CD45neg column in the Klemm et al. heatmap, which represents a composite gene expression

profile from the non-immune cells purified from a collection of glioma tumors, gene expression patterns from all three neoplastic cell states can be observed.

(C) Heatmap depicting the correlation coefficients between each CIBERSORTx-inferred cell-state-specific gene expression profile and the gene expression pro-

files from the FACS-purified ground-truth dataset.

(legend continued on next page)
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(D) Boxplot depicting the average signature expression in single cells of the indicated neoplastic cell states from unmatched initial and recurrent IDHWT tumors.

(E) Bar plot depicting the !log10(FDR) from a GO enrichment analysis of the genes significantly up-regulated at recurrence in the differentiated-like and

proliferating stem-like neoplastic cell-specific gene expression profiles from IDHWT tumors. The top 5 GO terms for each cell state are included. The dashed line

corresponds to FDR < 0.05.

(F) H&E image is used to define the histological features used for multiplex immunofluorescence staining in Figure S4E. Neuropathologist annotations of cellular

tumor and infiltrating tumor features are highlighted in the indicated colors. The scale bar represents 500 mm.

(G) Bar plot depicting the !log10(FDR) from a GO enrichment analysis of the genes significantly up-regulated at recurrence in the differentiated-like neoplastic

cell-specific gene expression profiles from IDHmut tumors. The dashed line corresponds to FDR < 0.1.

(H) Boxplot depicting the average signature expression in neoplastic cell-state-specific gene expression profiles for each IDHmut tumor pair in GLASS. Com-

parisons are stratified based on whether the tumor pair was grade stable or exhibited a grade increase at recurrence.

(I) Boxplot depicting the average signature expression in single cells of the indicated neoplastic cell states from grade 2 and grade 3. In (D) and (I), single cells were

derived from the joint single-cell and bulk RNA-seq dataset (Johnson et al., 2021).

Across all panels, **** indicates p < 1e!5, *** indicates p < 1e!3 and * indicates p < 0.05. p values in Figures S4D and S4H were calculated using the Wilcoxon

signed-rank test, while p values in Figure S4I were calculated using the Wilcoxon rank-sum test.

See also Table S5.

ll
Resource



Mutational signatures of genotoxic cancer therapies 

  94 

  

Figure S5. Characterization of the mesenchymal myeloid signature, related to Figure 5
(A) Kaplan-Meier plot depicting the surgical interval distributions of patients with tumors that were and were not mesenchymal at recurrence. p value was

calculated using the log-rank test.

(B) Forest plot depicting the results of a multivariable Cox proportional hazards model that included recurrent tumor subtype, age, and initial grade as variables.

Points represent the hazard ratio, and lines represent the 95% confidence interval. p values were calculated using the Wald test.

(C) Box and ladder plots depicting the difference in the median-normalized mean expression of the Neftel et al. MES-like signature between initial and recurrent

IDHWT tumors from GLASS undergoing a mesenchymal transition. Point colors indicate transcriptional subtype. p values were calculated using the Wilcoxon

signed-rank test.

(legend continued on next page)
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(D) Boxplots depicting the average macrophage and microglia gene expression signatures in CIBERSORTx-inferred myeloid-specific gene expression profiles

from TCGA. Samples are stratified by IDH and 1p/19q co-deletion status (left) and bulk transcriptional subtype (right). **** indicates Wilcoxon rank-sum test

p value < 1e!5.

(E) Left: principal component analysis plot of the CIBERSORTx-inferred myeloid profiles from TCGA and GTEx. Colors indicate bulk transcriptional subtype;

shapes indicate tissue subtype. Right: density plot depicting the distribution of principal component 1 (PC1) among each transcriptional subtype.

(F) Bar plots depicting the Spearman correlation coefficients measuring the association between themyeloid-specific expression scores for the macrophage and

microglia signatures versus the presence of the four Ivy GAP histological features in TCGA. The features measured were leading edge (LE), cellular tumor (CT),

pseudopalisading cells around necrosis (CTpan), and microvascular proliferation (CTmvp).

(G) Heatmaps depicting the average normalized log10 expression level of genes that were differentially expressed between myeloid cell states from initial and

recurrent IDHWT and IDHmut tumors in GLASS that did not undergo a subtype switch. Fractions indicate the number of differentially expressed genes out of the

number of genes inferred for that cell state’s profile.

(H) Upset plot depicting the intersection of significantly up-regulated genes in the myeloid-specific gene expression profiles from each transcriptional subtype

relative to the normal brain cortex. Intersections between signatures are shown in the combination matrix. The number of genes uniquely found in each set is

indicated above each bar.

(I) Bar plot depicting the !log10(FDR) from a GO enrichment analysis for the genes in the mesenchymal myeloid signature.

(J) Scatterplot depicting the association between the mean mesenchymal myeloid signature expression in single myeloid cells and the mesenchymal subtype

score calculated from bulk RNA-seq for each patient.

(K) Bar plots depicting the Spearman correlation coefficients measuring the association between the myeloid-specific expression scores for the mesenchymal

myeloid signature versus the presence of the four Ivy GAP histological features in TCGA, as in (F).

See also Tables S6 and S7.
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Figure S6. Analysis of neoantigen-mediated T cell selection in glioma, related to Figure 6
(A) Scatterplots depicting the association between the T cell proportion and the neoantigen depletion rate in initial and recurrent GLASS samples.

(B) Box and ladder plots depicting the difference in the number of neoantigens binding to the kept and lost allele. Points are colored based on whether the sample

was an initial or recurrent tumor. p values were calculated using the Wilcoxon signed-rank test.

(C) Violin plots depicting the distribution of the somatic copy-number alteration burden in initial and recurrent IDHWT GLASS samples that did and did not exhibit

HLA LOH. p values were calculated using the Wilcoxon rank-sum test.
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Chapter 6 
Comparative molecular life history of 
spontaneous canine and human gliomas 
 

This chapter is based on the following publication65: 
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Comparative Molecular Life History
of Spontaneous Canine and Human Gliomas
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SUMMARY

Sporadic gliomas in companion dogs provide a window on the interaction between tumorigenic mechanisms
and host environment. We compared the molecular profiles of canine gliomas with those of human pediatric
and adult gliomas to characterize evolutionarily conserved mammalian mutational processes in gliomagen-
esis. Employing whole-genome, exome, transcriptome, and methylation sequencing of 83 canine gliomas,
we found alterations shared between canine and human gliomas such as the receptor tyrosine kinases,
TP53 and cell-cycle pathways, and IDH1 R132. Canine gliomas showed high similarity with human pediatric
gliomas per robust aneuploidy, mutational rates, relative timing of mutations, and DNA-methylation patterns.
Our cross-species comparative genomic analysis provides unique insights into glioma etiology and the
chronology of glioma-causing somatic alterations.

INTRODUCTION

The natural history of cancer is marked by temporal acquisi-
tion of diverse genetic and epigenetic aberrations. The inevi-

table intratumoral and interpatient heterogeneity among
evolving cancer cells poses a major obstacle in our under-
standing of cancer evolution and designing effective treatment
strategies (Alizadeh et al., 2015). Recent developments in
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Site & Department of Neurosurgery, University Hospital Essen, Essen, Germany
6Department of Neurosurgery, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
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(Affiliations continued on next page)

Significance

Diffuse gliomas are the most common malignant brain tumors, with high-grade tumors carrying a dismal prognosis.
Preclinical models have proven themselves as poor predictors of clinical efficacy. Spontaneous glioma in dogs provides
an attractive alternative model because of their comparable tumor microenvironment and tumor life history. We determined
the similarities and differences between human and canine gliomas through genomic profiling, and leveraged our datasets
to identify conserved somatic drivers, mutational processes, and temporal ordering of somatic glioma events across
species. Canine gliomas resemble human gliomas at (epi-)genetic levels and are more reminiscent of pediatric than adult
disease, thus rationalizing sporadic canine glioma as a preclinical model tailored to measuring treatment efficacies in
patients with canine or human glioma.
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high-throughput lineage tracing, organoid cultures, and pa-
tient-derived xenografts have provided better resolution of
heterogeneity and driver events. Nonetheless, in the absence
of natural host response, preclinical in vitro and rodent models
are unable to fully recapitulate a spontaneously evolving tu-
mor’s life history. This limitation challenges the accuracy of
predicting therapeutic responses in these preclinical models,
especially response to immunotherapies (Buque and Galluzzi,
2018).

Somatic evolution of cancers may follow convergent pat-
terns across mammalian species by selecting cells that carry
beneficial mutations in highly conserved regions, i.e., genes
and their regulatory non-coding regions enabling one or
more cancer hallmarks (Hanahan and Weinberg, 2011). Unlike
induced cancer models, comparative genomics of sponta-
neous tumors across species provides a unique advantage
to identify defects in such shared, evolutionarily constrained
regions (Lindblad-Toh et al., 2011) and to evaluate the impor-
tance of host context in the tumor’s evolution. In addition to
their natural tumorigenesis, spontaneous cancers in dogs
are marked by the presence of a fully functional tumor micro-
environment (Khanna et al., 2006; LeBlanc et al., 2016).
Cancer cells are subject to clonal selection and drift, and
the resulting tumor is molded by selection pressure from the
tissue context (DeGregori, 2017; Fortunato et al., 2017). This
Darwinian adaptation may select for somatic alterations in
evolutionarily conserved regions in both dogs and humans
that are relevant to tumorigenesis.

Sporadic gliomas occur in companion dogs at frequencies
similar to those in humans (Snyder et al., 2006; Song et al.,
2013). Genomic characterization of canine glioma has a
distinct merit, in that dogs are diagnosed in the adult stage
of life but with an age distribution that is comparable with
human pediatric disease. This seeming conundrum in fact
creates an opportunity to compare somatic drivers and
their relative timing in canine glioma with those in human gli-
oma. Studies involving comparative genomics of spontaneous
canine cancers have already enabled identification of breed-
specific, disease-risk loci under strong evolutionary con-
straints and with known roles in human cancer, e.g., germline

FGF4 retrogene expression in chondrodysplasia (Parker et al.,
2009), somatic BRAF V600E mutation in canine invasive
transitional cell carcinoma of the bladder (Decker et al.,
2015b), recurrent somatic SETD2 mutations in canine osteo-
sarcoma (Sakthikumar et al., 2018), and TP53 pathway alter-
ations in canine melanoma (Hendricks et al., 2018; Wong
et al., 2019). Earlier studies in canine gliomas have character-
ized somatic copy-number alterations syntenic with those
in human adult gliomas (Dickinson et al., 2016) and have
identified genetic susceptibility factors near genes such as
CAMKK2, P2RX7, and DVL2 (Mansour et al., 2018; Truve
et al., 2016).
Here, we have performed comparative genomic, transcrip-

tomic, and epigenetic profiling across three population struc-
tures, canine glioma, human adult glioma (Ceccarelli et al.,
2016), and human pediatric glioma (Gröbner et al., 2018; Ma et
al., 2018), to study somatic evolutionary traits of glioma across
two species and in different age groups. We leveraged genomic
profiles to infer molecular life history in order to understand
cross-species convergent evolution of glioma (Aktipis et al.,
2013; Stearns, 1992).

RESULTS

Human Glioma Driver Events Are Frequently Found in
Canine Disease
We performed whole-genome, exome, transcriptome, and
methylation sequencing (373 libraries) on canine gliomas (n =
83) and germline (n = 67) samples from 83 dogs (NCBI SRA
accession: PRJNA579792), with all samples obtained via nec-
ropsy. Using the recently updated criteria for diagnostic histo-
pathological classification (Koehler et al., 2018), 46 cases were
classified as oligodendroglioma, 31 cases as astrocytoma, and
6 cases as undefined glioma (Table S1). We defined a common
set of 81 cases for which whole-genome and exome data were
available with minimum of 303 coverage in exome regions
(Table S1 and Figure S1A; STAR Methods). From mutation calls
derived from all 81 cases, we detected somatic mutational driver
events using dNdS (Martincorena et al., 2017), MuSiC2 (Dees
et al., 2012), and a semi-supervised comparison with known
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Figure 1. Comparative Somatic Landscape of Canine and Human Gliomas
(A) Somatic variants in canine gliomas. Top bar plot shows patient-wise frequency of somatic variants (n = 46 of 81 canine patients) and right-side bar plot shows

gene-wise frequency of somatic variant types. Bottom annotations show relevant patient-specific annotations.

(legend continued on next page)
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cancer drivers in human adult and human pediatric cancers
(Bailey et al., 2018; Gröbner et al., 2018; Ma et al., 2018) (Fig-
ure 1A and Table S2; STAR Methods). We detected mutations
in genes associated with human pediatric (Mackay et al., 2017)
and adult glioma (Brennan et al., 2013; Ceccarelli et al., 2016)
such as the TP53, PDGFRA, PIK3CA, and EGFR (Figure S1B),
as well as recurrent hotspot and mutually exclusive mutations
with high oncogenic impact according to the Catalog of Somatic
Mutations in Cancer (COSMIC) database (Tate et al., 2019) in
PIK3CA H1047R/L (n = 8), PDGFRA K385I/M (n = 6), IDH1
R132C (n = 3), and SPOP P94R (n = 1; 1 shared with PIK3CA
H1047R) (Figure 1B and Table S3). These mutations were also
identified as being under positive selection or as significantly
mutated genes using the dNdS (Martincorena et al., 2017)
approach (Table S2) and thus indicating driver mutations of
canine gliomas. Mutations affecting the IDH1 R132 codon are
a defining characteristic of low-grade adult gliomas (Cancer
Genome Atlas Research Network et al., 2015) andwere detected
infrequently in pediatric and canine gliomas (n = 3/81). Overall,
36/81 (44%) of canine gliomas carried at least one significantly
mutated gene. This proportion was comparable with published
findings in human pediatric gliomas (114/217, 52%, chi-square
p value 0.54) (Gröbner et al., 2018) but contrasted with the fre-
quency at which adult gliomas contain at least one significantly
mutated gene alteration (753/812, 93%, chi-square p value
0.0004). To demonstrate similarity between canine gliomas and
human gliomas, we summarized levels of somatic coding muta-
tions, high-level copy amplifications and deep deletions in gene
sets reflecting previously reported cancer hallmarks (Table S4).
We tallied weighted pathway contributions per cohort (canine,
adult, pediatric) by the number of coding mutations within each
cohort and genes per pathway. Adult glioma is commonly sepa-
rated into subtypes on the basis of IDHmutation as well as chro-
mosome arm 1p and 19q deletion, resulting in three subtypes: (1)
IDH wild type; (2) IDH mutant with codeletion (IDHmut-codel);
and (3) IDH mutant without codeletion (IDHmut-noncodel) (Louis
et al., 2016). Pediatric high-grade gliomas are separated based
on histone H3 mutation status into two subtypes: histone H3
gene mutant (H3 mutant) versus wild type (H3 wild type) (Louis
et al., 2016). We did not include low-grade pediatric gliomas in
our comparison due to the paucity of somatic alterations in these
glioma types (Jones et al., 2013; Pollack et al., 2019; Zhang et al.,
2013). We found that canine gliomas were most similar to pedi-
atric H3 wild-type gliomas at the pathway alteration level, i.e.,
comparable hallmark enrichment with no significant difference
between groups. Pediatric H3 mutant, adult IDH wild type, and

IDHmut-noncodel gliomas showed increased frequency of
genemutations in cancer hallmarks such as deregulating cellular
energetics, genomic instability, and resisting cell death (Figures
1C and S1C). Among all 11 cancer hallmarks tested, ‘‘avoiding
immune destruction’’ scored low across both canine and human
gliomas (Table S4), potentially owing to the immune-cold nature
of gliomas (Boussiotis and Charest, 2018; Brown et al., 2018).
We compared mutation burden between canine and a variety

of human pediatric and adult cohorts using coding mutation
rates from 4,761 human patients (Bailey et al., 2018; Ceccarelli
et al., 2016; Gröbner et al., 2018; Ma et al., 2018) (STAR
Methods). The somatic mutation rate of canine glioma (0.34 cod-
ingmutations permegabase; 95%confidence interval [CI]: 0.15–
0.6) was similar to that of human pediatric gliomas (Figures 1D
and S1D). High-grade canine gliomas (n = 63/81) had mutation
rates comparable with those of pediatric H3-mutant and H3
wild-type subtypes (0.34, 0.27, 0.25 coding mutations per meg-
abase, respectively; Wilcoxon p value 0.18 and 0.1; Figure S1E),
but significantly lower than in human adult IDH-mutant and IDH
wild-type gliomas (0.77 and 1.67 coding mutations per mega-
base, respectively; Wilcoxon p values of 8 3 10!9 or less). Low
mutation burden has been linked to fewer mutations in cancer-
driving genes (Martincorena et al., 2017) and may explain the
relative paucity of significantly mutated genes observed in
canine gliomas, including weaker positive selection (q > 0.1)
for known and mutated cancer genes (n = 50; Figure S1F). These
results demonstrate that the landscape of somatic single-nucle-
otide variants is similar to that of human glioma, and suggests
that canine glioma aligns more closely with human pediatric gli-
oma than with adult disease.

Aneuploidy Is a Major Driver of Canine and Pediatric
High-Grade Glioma
We compared the DNA copy-number landscape of glioma
across species with a focus on the >50% of canine gliomas
(45/81) without evidence of significantly mutated genes. No focal
copy-number amplifications were detected among canine gli-
omas. Human glioma tumor-suppressor gene CDKN2A/B was
homozygously deleted in 8/67 (12%, all astrocytomas), and
PTEN in 2/67 (3%) of canine glioma genomes (Figures 2A and
S2A). Together, 67/81 (83%) patients with canine glioma con-
tained somatic mutations and/or focal copy alterations in known
human glioma drivers (Figure S1E). Contrasting with the limited
presence of focal DNA copy-number alterationswas the high fre-
quency of arm-level copy gains (canine chromosomes 7q, 13q,
16q, 20q, 34q, 35q, and 38q) and arm-level losses (canine

(B) Gene lollipop plots showing recurrent hotspot mutations for three genes: PIK3CA, IDH1, and SPOP. All hotspot mutations are ortholog to validated COSMIC

mutations in human cancers.

(C) Hallmark enrichment of somatic cancer drivers (mutations and copy-number alterations) across canine glioma (CG) and WHO molecular subtypes of human

adult (IDH wild-type, IDHmut-codel, IDHmut-noncodel) and pediatric (H3-mutant and H3wild-type) high-grade glioma. y axis represents proportion of patients in

the respective cohort harboring mutations in selected five hallmarks. Two-sided Fisher’s exact test was used for comparison of proportions between cohorts.

p values less than the threshold (p < 0.05) are shown (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

(D) Somatic mutation rate across canine and human brain tumors: Box plot showing somatic mutation rates as coding mutations per megabase in log1p or

log(x+1) scale. x axis shows 11 types of pediatric brain tumors (Gröbner et al., 2018), canine glioma (n = 81), adult pediatric high-grade gliomas separated by H3

mutant and H3 wild type, and adult gliomas separated by IDH mutation and 1p/19q codeletion status (far right). Each box spans the first and third quartiles with

the median in the center. The lower and upper whiskers extend up to 1.5 times interquartile range, and values outside whiskers are outliers. PA, pilocytic

astrocytoma; ATRT, atypical teratoid rhabdoid tumor; EPD_ST, ependymoma supratentorial; ETMR, embryonal tumors with multilayered rosettes; MB,

medulloblastoma. Tumors are sorted in ascending order by increasing mutation rate.

See also Figure S1 and Tables S1, S2, S3, and S4.
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chromosomes 1q, 5q, 12q, 22q, and 26q) (Figure S2B). Themost
frequent arm-level alteration comprised the shared syntenic re-
gions of glioma drivers PDGFRA, KIT, and MYC (Figure S2C)
and typically resulted in more than four copies of these genes
(canine 13q+; 11/67 cases, 16%). Other common arm-level
alterations included PIK3CA (canine 34q+) and theHIST1 cluster
(canine 35q+) as well as hemizygous loss of heterozygosity of
tumor-suppressor genes TP53, RB1, and PTEN (Figure 2A).

We quantified the prevalence of aneuploidy across the canine,
human pediatric, and adult glioma populations (Taylor et al.,
2018). For copy-number estimation, matched tumor-normal
whole-genome sequencing profiles from canine (n = 67) and
pediatric gliomas (n = 50) (Ma et al., 2018), and Affymetrix
SNP6 profiles for adult gliomas (n = 969) (Ceccarelli et al.,
2016) were analyzed (STARMethods). We calculated aneuploidy
as the proportion of the copy-number segmented genome that
was non-diploid (STAR Methods). Canine glioma independent
of tumor grade had a median of 25% genome aneuploidy, which
was significantly higher than that in adult IDH-mutant tumors
(8%–9% of genome) and marginally higher than in adult IDH
wild-type glioma (18% of genome) (Figure 2B). In contrast, pedi-
atric H3 wild type (19% of genome) and H3 mutant (26% of
genome) showed rates of aneuploidy comparable with that of
canine glioma. We then searched for aneuploidy within syntenic
regions, which may be subject to selection pressure during
gliomagenesis. We mapped canine chromosome arms to their
human counterparts and used unsupervised hierarchical clus-
tering of the most variable syntenic aneuploid regions to identify
regions of shared aneuploidy (Figure 2C). The analysis revealed
three aneuploidy clusters. The first cluster (blue dendrogram)
consisted of human 1p/19q codeletions seen commonly in adult
IDH-mutant gliomas but observed in 20%–36% of canine
(across four canine chromosomes of cases) and 25% of H3
wild-type and H3-mutant human pediatric gliomas. The second
cluster (red dendrogram) consisted of arm-level aneuploidy of
human 7p (EGFR) and 10q (PTEN) arms characteristic of human
adult IDH wild-type (86% and 92% of patients, respectively) and
pediatric H3-mutant and H3 wild-type gliomas (33% and 75% of
patients) for which 5% and 14% of canine gliomas showed

arm-level aneuploidy in the EGFR and PTEN regions, respec-
tively. None of three IDH1 mutant canine gliomas shared these
syntenic aberrations, suggesting a mutually exclusive pattern
as observed in human gliomas. The third cluster (black dendro-
gram) consisted of human 4p/8q and syntenic canine 13q arm,
which contains the genes PDGFRA and MYC, amplified in
78% of canine gliomas. The ACVR1 and the HIST1 genes
are frequently mutated in pediatric high-grade gliomas and in
particular H3.1K27M diffuse intrinsic pontine glioma (Mackay
et al., 2017). We observed loss of the syntenic human 2q/canine
36q region (containing ACVR1) within 37%, 28%, and 17% of
canine, pediatric H3 wild-type, and H3-mutant gliomas, respec-
tively. In contrast, this alteration was not observed in human
pediatric or adult IDH-mutant glioma and was present in 6% of
IDH wild-type adult gliomas. Similarly, human chromosome
arm 6p/canine chromosome arm 35q, containing the HIST1
gene cluster, was frequently amplified in canine gliomas (70%)
and pediatric H3 wild-type (50%) and H3-mutant gliomas
(13%) but not in pediatric low-grade or adult gliomas (<5%).
We measured intratumoral heterogeneity using the Shannon

Diversity Index per each patient tumor sample across canine
gliomas and different molecular subtypes of human gliomas.
Shannon entropy value correlated with the proportion of
variants per subclone and the total number of subclones in
a tumor sample, i.e., values near zero indicated lower intratu-
moral diversity (homogeneity or a dominant clone), while
values closer to 1 or higher were associated with increased di-
versity and tumors consisting of more than one subclone (Wolf
et al., 2019). We found that the canine gliomas showed a rela-
tively bimodal distribution, with 25% of canine gliomas (15/60;
7 cases had no resolved clonal structure for intratumoral
heterogeneity analysis) being very heterogeneous (Shannon
Diversity Index R 0.45—third quartile) while remaining cases
showed patterns suggesting clonal dominance (median Shan-
non Diversity Index 0.03, 95% CI: 0.02–0.07). Intratumoral
heterogeneity of canine gliomas was comparable with adult
IDH wild type or IDHmut-noncodels (unpaired two-tailed
Wilcoxon test p value >0.18). In contrast, canine gliomas
had significantly higher heterogeneity over H3 wild-type

Figure 2. Aneuploidy Is a Major Driver of High-Grade Gliomas
(A) Focal somatic copy alterations in canine gliomas (n = 43 of 67 canine patients). Squared symbol in cell suggests either amplification (>4 copies) or deep

deletion (2 copy loss) based on GISTIC2 gene-level calls (STAR Methods). Top bar plot shows patient-wise frequency of somatic variants and copy-number

alterations, and right-side bar plot shows driver-wise frequency of somatic variant types, including copy-number alterations. Bottom annotations show relevant

patient-specific annotations.

(B) Comparative aneuploidy score: box plots showing fraction of genomewith aneuploidy (y axis) for canine gliomas (n = 67), H3-mutant (n = 10), and H3wild-type

(n = 13) pediatric high-grade gliomas, and human adult glioma (n = 969), separated by IDH mutation and 1p/19q codeletion status. Each box spans the first and

third quartiles with the median in the center. The lower and upper whiskers extend up to 1.58 times interquartile rage divided by square root of samples per box

plot (displayed as dots; STAR Methods), and values outside whiskers are outliers. p values were calculated using two-sided Wilcoxon rank-sum non-parametric

test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

(C) Aneuploidy metrics across shared syntenic regions of canine and human genome: Heatmap showing comparative aneuploidy across three cohorts. Each

column shows the proportion of patients with the most variable arm-level aneuploidy (present or absent) for a given shared syntenic region. x-axis label shows

syntenic chromosome arms for human (H) and canine (C) genome. Each row represents canine glioma and molecular subgroups of human high-grade pediatric

and adult glioma as detailed in (B), plus pediatric low-grade gliomas (PG_LGG). Colored dendrogram branches (blue, red, and black) represent three aneuploidy

clusters described in the main text. Corresponding glioma driver alterations are highlighted below syntenic chromosome arms.

(D) Scatterplot showing distribution of somatic glioma driver genes with respect to their cellular prevalence (cancer cell fraction) and intratumoral heterogeneity

(Shannon entropy) across canine and molecular subtypes of human pediatric and adult gliomas. Each circle represents a clonal cluster assignment per tumor

sample. Size of the circle represents a major (1 clone) versus minor subclones (ranging from 2 to 4). Labeled genes represent glioma drivers shown in Figure 1A.

Darker to lighter blue scale for circle and driver genes it may contain (arrows) represents the increase in intratumoral heterogeneity as measured by Shannon

entropy.

See also Figure S2 and Table S3.
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Figure 3. Molecular Life History Analysis Using Mutational Signatures and Timing Analysis
(A) Deconvolution of known human mutational signatures on canine glioma somatic variant data. Stacked bar plots show relative contribution of known human

mutational signatures in individual canine patients. Signature contributions were aggregated based on their grouping into proposed mechanism. Only signatures

with a relative contribution of more than a third quartile per sample are shown in the plot. Plot on the left side shows eight cases with highest mutational frequency

(based on outlier mutational profile, STAR Methods) and plot on the right side shows nine representative cases with median signature contribution within in-

terquartile range. Signatures with no proposed mechanism are grouped into the unknown category. APOBEC AID, activation-induced cytidine deaminases; HR

defect, homologous repair defect; MMR, mismatch repair; TMZ-induced, alkylating agent temozolomide-associated signature.

(B) Hierarchical clustering of cosine similarities between known human mutational signatures and de novo signatures constructed using available whole-genome

data from canine (CG), pediatric (PG), and adult (AG) data. Higher cosine similarity (red color) indicates higher resemblance of de novo signature to known

mutational signature. Only one of three cluster groups are shown here; the complete clustering is shown in Figure S3D.

(C) Horizontal stacked bar plots represent percentage contribution of signature groups (x axis) for somatic driver mutations (y axis) found in canine and human

gliomas. Each of seven signature groups represents a combination of one of more known human signatures. S16_S25 and S18_Neuroblastoma: signatures were

previously described by Gröbner et al. (2018).

(legend continued on next page)
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(p value 0.002) and H3-mutant (p value 0.007) pediatric gli-
omas (Figure S2D).

To better understand the potential functional versus non-func-
tional nature of intratumor heterogeneity (Jamal-Hanjani et al.,
2017), we asked whether frequent driver mutations found in
canine gliomas (Figure 1A) are part of major (dominant) versus mi-
nor clone, and how these driver events compare with measured
heterogeneity across molecular subtypes in human pediatric
and adult gliomas (Williams et al., 2016).We observed that among
less heterogeneous tumor samples (Shannon entropy near 0),
shared driver events across canine and adult gliomas are part of
major clones, including PIK3CA mutations in canine gliomas,
IDH1/2mutations in IDH-mutant adult gliomas, andEGFR somatic
mutations in adult IDH wild-type GBM (Figure 2D). Among tumor
samples with increased heterogeneity, we found mutations in
PDGFRA in canine gliomas (n = 7/60) and H3 wild-type pediatric
gliomas (n = 2/14), whereas mutations in TP53 (n = 9/20) and
PTEN (3/20) were seen among IDH wild-type and IDHmut-nonco-
del patients. We did not observe significant enrichment of driver
events within minor clone(s).

Collectively, the observed high degree of aneuploidy and
clonal nature of somatic drivers in canine glioma may suggest
progressive genomic instability. Comparing the aneuploidy
score among canine gliomas with high versus low coding
mutational rate showed significant increases (Figure S2E;
Wilcoxon p value 0.006) in aneuploidy among patients with a
high mutational rate, suggesting that an underlying mutational
process promotes genomic instability during gliomagenesis.

DNA Damage-Related Mutational Processes Shape
Somatic Driver Landscape and Maintain Genomic
Instability
We leveraged known mutational signatures from adult (COSMIC
v2, 1 to 30) and pediatric cancers (T1 to T12) to estimate and
compare underlying mutational processes across canine and
human gliomas (Alexandrov et al., 2013; Gröbner et al., 2018;
Ma et al., 2018) (Table S5). The most enriched signatures across
all canine gliomas (Figure S3A) were associated with aging
(COSMIC signature 1, pediatric signature T1), mismatch repair
deficiency (COSMIC signature 15), APOBEC-AID (COSMIC
signature 2, 9), homologous repair defect signatures (COSMIC
signature 8, pediatric signature T3), and signatures with un-
known relevance (COSMIC signature 12, pediatric signature
T10 and T11). Among the nine canine gliomas with the highest
mutation rates (median coding mutation rate of 0.55 per mega-
base) (Figure 3A), there was significant (Wilcoxon p value
0.025) enrichment of two additional mismatch repair signatures
(pediatric signature T9 or COSMIC signature 6, 15) (Figure S3B).
A frameshift indel in mismatch repair gene MSH6 was detected
in one case with an outlier mutation frequency (coding mutation
rate of 5.04 per MB) (Figure S3C). Among the remaining cases
(median coding mutation rate of 0.25 per MB), homologous
repair defect or ‘‘BRCAness’’ signatures (COSMIC signature 3

or pediatric signature T3, COSMIC signature 8 or pediatric signa-
ture T6) were the second most prominent signatures after clock-
like signatures (COSMIC signature 1, 5). Homologous repair
defect signatures have been reported to be enriched in pediatric
high-grade gliomas with higher genomic instability (Gröbner
et al., 2018). The known human signatures were validated by
clustering de novo constructed signatures for all three cohorts
(canine, human adult, and pediatric gliomas). Independent of
cohort type, we observed significant cosine similarity (>0.8; Fig-
ures 3B and S3D) of de novo signatures with known homologous
repair defect mutational processes (including COSMIC signature
3/pediatric signature T3, COSMIC signature 8/pediatric signa-
ture T6), further implying a role for these mutational processes
in cross-species gliomagenesis.
Next, we determined the relative contribution of mutational

processes (with deconvoluted human signatures as a proxy) in
generating mutations within significantly mutated genes, thus
to identify the dominant mutational process(es) active during
tumor evolution (Figure 3C). Although clock-like processes
(COSMIC signature 1, 5) largely contributed to an age-related in-
crease in mutations, including in driver genes, we found that
homologous repair defect signatures (COSMIC signature 3, 8)
contributed (26%, 21/81 cases) to driver mutations across all
three cohorts, emphasizing that homologous repair defect can
not only serve as a potential source for driver mutations but
also fuel progressive genomic instability along with observed
high aneuploidy (Blank et al., 2015; Targa and Rancati, 2018) in
high-grade gliomas across all three cohorts.

Comparative Molecular Timing Analysis Highlights
Context-Specific Early and Late Drivers of
Gliomagenesis
We inferred the sequential order of somatic alterations during
gliomagenesis by estimating clonality of glioma driver events
(Figure 3D) (Jolly and Van Loo, 2018; Shinde et al., 2018). In
brief, significantly mutated genes were timed as occurring
early (clonal) to late (subclonal) during tumor evolution based
on their cancer cell fraction after accounting for tumor purity,
ploidy, and copy-number status (STAR Methods). We
observed clonal PDGFRA and EGFR mutations as the only
shared and early event across all three cohorts. Subsequent
whole chromosome 13 amplification bearing the PDGFRA
mutant allele marked the emergence of the most recent com-
mon ancestor in six canine gliomas (Figure S3E), which grew
to be a dominant clone at the time of diagnosis. IDH1 mutation
marks an initiating event in IDH-mutant human gliomas
(Barthel et al., 2018). Correspondingly, IDH1 mutations were
ubiquitously timed as an initiating event (cancer cell fraction
[CCF] > 0.9) in three canine and three human adult IDH1
mutant cases, and as an early event in one case of pediatric
glioma (CCF = 0.83). We observed NF1 frameshift mutations
mostly as a late event across all cohorts, whereas PIK3CA
mutations appeared as an early event for canine and human

(D) Molecular timing of somatic drivers across canine and human gliomas: Stacked density plots, one per each of three cohorts, shows probability (x axis) of a

driver event (y axis) being a late event in tumor evolution and value of <0.5 being an earlier event. Density plots for each driver event were calculated based on

pairwise winning probability (where win is defined as an early event) as used in sports statistics (Bradley-Terry model). Winning probabilities were subtracted from

1 to display early events on the left side of the plot.

See also Figure S3 and Table S5.
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pediatric gliomas. Although the relatively uniform timing pat-
terns of these known glioma drivers suggest convergent
evolution in varied contexts, i.e., presence of hotspot muta-
tions in shared drivers (PDGFRA, PIK3CA) during clonal
evolution of glioma across two species and different age
groups, we also observed an oscillating pattern of timing
and consequent underlying natural selection for a set of epige-
netic drivers in the lysine methyltransferase (MLL) family (Rao
and Dou, 2015). MLL3 (KMT2C) gene mutations were clonal
events in canine and pediatric gliomas but subclonal in adult
gliomas, whereas ARID5B mutations showed the inverse
pattern (Figure 3D). MLL family genes include some of the
most commonly mutated genes in pediatric cancers, including
gliomas (Huether et al., 2014; Sturm et al., 2014), but not in
adult gliomas (Bailey et al., 2018).

Canine Gliomas Are Classified as Pediatric Glioma by
DNA Methylation
We hypothesized that epigenetic deregulation in canine gli-
omas may carry a tumor-specific methylation pattern reflecting
underlying tumor pathology, as has been observed across
human brain tumors (Capper et al., 2018). We leveraged
reduced representation bisulfite sequencing of canine gliomas
to generate genome-wide DNA-methylation profiles to classify
canine gliomas according to a classification model widely
used for human brain tumors (Capper et al., 2018). As the
human brain tumor classifier was developed using the Illumina
human 450k array platform, we developed a logistic regression
model to enable classification of the sequencing-based canine
DNA-methylation profiles. We found that the model classified

35/45 (78%) of canine samples as pediatric glioma (Figure 4).
Six of 45 (13%) samples were classified as IDH wild-type adult
glioma, and 4/45 (9%) samples were classified as IDH-mutant
adult glioma. Of the three samples carrying an IDH1 R132 mu-
tation, one was classified as IDH-mutant adult glioma, with a
classification probability of 99%, while a second IDH-mutant
sample had a relatively high classification probability for IDH-
mutant adult glioma (40%), in parallel with a 57% pediatric
glioma classification probability. The third sample had a low
classification probability for IDH-mutant adult glioma (13%)
and was classified as pediatric glioma with an 84% probability.
Although the majority of canine samples were classified as pe-
diatric glioma, the age of diagnosis of the patients in our canine
cohort exceeded the age of sexual maturity in canines, which is
reached between 10 months and 2 years of age (Thompson
et al., 2017). The distribution of age of diagnosis of canine
tumors classified as pediatric suggests that classification was
a function of methylation profile similarity rather than chrono-
logical age. Adult human high-grade glioma tends to be
restricted to the cerebral hemispheres, whereas pediatric
high-grade gliomas occur throughout the central nervous sys-
tem with about half of pediatric high-grade gliomas occurring
in midline locations (Mackay et al., 2017). Of ten midline canine
tumors (six cerebellar, four midline), eight were classified by
DNA methylation as pediatric glioma and two were labeled as
adult IDH mutant (Figure S4A).
DNA-methylation profiles have been used to estimate molec-

ular age (Pai et al., 2011). We used this approach to compare the
level of age acceleration in canine and human glioma. No signif-
icant difference was observed in inferred DNA-methylation age

Figure 4. Classification of Canine Gliomas Using Human Brain Tumor Methylation Classifier
Heatmap displaying results of L2-regularized, logistic regression classification of canine methylation profiles (n = 45). Each column of the heatmap represents a

sample, and each row in the top panel is the probability that that sample falls under a given subtype classification. The classification with the highest probability in

a given sample has a symbol with symbol color, size, and shape denoting sample histology, tumor grade, and anatomical location, respectively. Panels below the

probability heatmap show the tumor purity, somaticmutation rate, and age for the samples. The horizontal line on the age subpanel denotes the age ofmaturity for

canines (2 years). *Canine glioma patients with IDH1 R132H somatic mutation. See also Figure S4.
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between canine tumors classified as adult glioma versus those
classified as pediatric among tumors with a classification prob-
ability greater than 50% (5.945 versus 5.958, p value 0.9125),
consistent with the lack of correlation observed between canine
methylation classification and chronological age. The normal-
ized mean age acceleration was significantly higher for human
pediatric glioma samples (2.5) than either human adult glioma
(0.8) or canine glioma samples (!0.18) (Figure S4B). Unlike
human samples, the DNA-methylation-inferred age did not
correlate with chronological age for canine samples (Pearson
correlation coefficient 0.21), which may reflect limitations in the
aging clock model derived for canids, rather than biological
differences in canine tumor methylation. The DNA-methylation
profile of canine glioma further corroborates the evidence that
glioma in dogs is generally more similar to human pediatric gli-
oma than human adult glioma.

Immune Microenvironment
As spontaneous tumors arising in immune-competent hosts,
canine gliomas represent an excellent resource through which
to improve our understanding of how the immune system re-
sponds to and affects brain tumor development. To obtain a
baseline understanding of how the canine glioma (n = 11) im-
mune microenvironment compares with that of adult (n = 11)
and pediatric human gliomas (n = 5), we used immunohisto-
chemistry to profile the frequency of the various immune popula-
tions includingmonocytes (CD14), T cells (CD3), B cells (CD79A),
macrophage/microglia (IBA1), and M2 polarized innate immune
cells (CD163) using antibodies that had been validated for
cross-species staining. Tissue segmentation was performed
so that cell quantification was analyzed in a total of 33,029 fields
within the gliomas. Notably, there are many key shared im-
munological features between the human and canine gliomas
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Figure 5. Immunohistochemistry of Canine and Human Gliomas
(A) Representative hematoxylin & eosin and immunohistochemistry staining of human adult (n = 11), canine (n = 11), and human pediatric gliomas (n = 5) using

antibodies against T cells (CD3), macrophage/microglia (IBA1), M2 polarized innate immune cells (CD163), monocytes (CD14), and B cells (CD79A). Scale

bars, 50 mm.

(B) Violin plots represent the density of percentage positivity by field (y axis) for each of five antibodies described in (A). The points are the mean value of per-

centage positivity per patient within each of three cohorts, i.e., human adult (n = 11), canine (n = 11), and human pediatric gliomas (n = 5). Patients were grouped

into high- versus low-grade gliomas in the absence of available molecular subtype data.

See also Figure S5.
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such as the relative scarcity of both CD3+ T cell and CD79A+

B cells and a marked predominance of IBA1+ macrophage/
microglia and CD163+ M2 polarized innate immune cells, espe-
cially in high-grade and pediatric gliomas as previously
described (Wei et al., 2019), indicating that dogs with spontane-
ously arising gliomas may be valid models for the testing of
immune therapeutics (Figures 5A and 5B). Our immunohisto-
chemistry results converged with the relative immune cell frac-
tions derived from RNA-sequencing data by using the leukocyte
gene signature-based CIBERSORT deconvolution method
(Newman et al., 2015), which we applied on gene expression
profiles from human adult (n = 703), pediatric (n = 92), and canine
glioma (n = 40) (Figure S5). The relative immune cell fractions
found in each glioma type were well correlated with one another,
with the low-grade pediatric glioma exhibiting the lowest corre-
lation with high-grade canine glioma (Rho = 0.83).

DISCUSSION

Comparative genomic oncology is a robust approach for identi-
fying evolutionarily conserved drivers and for studying the
natural history of spontaneous tumors in an immune-competent
host, e.g., in domestic dogs (Decker et al., 2015a; Frampton
et al., 2018; Tollis et al., 2017). Our cross-species analysis using
comprehensive molecular profiling of sporadic gliomas high-
lights two key findings. First, convergent evolution of gliomas
is observed across canine, human pediatric, and human adult
gliomas, with shared molecular traits such as shared hotspot
and mutually exclusive mutations in PDGFRA and PIK3CA, and
in genes associated with the p53 and cell-cycle pathways,
among others. This is further supported by aneuploidy being
prevalent among canine and human pediatric high-grade gli-
omas, which are potentially under selection pressure within
shared syntenic regions of the genome. Also, DNA damage-
related mutational processes such as homologous recombina-
tion defects constitute a major source for progressive genomic
instability, and generate somatic variations upon which natural
selection acts to produce shared molecular and histopatholog-
ical features of glioma. Second, the molecular landscape of
canine gliomas resembles that of human pediatric gliomas
based on the observed pattern of somatic alterations among
non-shared drivers and DNA-methylation patterns. We did not
observe canine counterparts of rare human glioma variants
such as pleomorphic xanthoastrocytoma, giant cell glioblas-
toma, or pilocytic astrocytoma, by histopathology or by associ-
ation in somatic drivers. To make a definitive claim that the
canine gliomas are similar to one of the major categories of
either adult or pediatric molecularly defined gliomas, additional
characterization studies are needed that compare canine and
human glioma in terms of cellular states (Neftel et al., 2019) as
defined by single-cell transcriptomics.
Convergent evolution can reflect a footprint of adaptation to

similar selective pressures (Fortunato et al., 2017). While such
convergence is well appreciated in human cancers, and in
particular treatment-resistant cancers (Venkatesan et al.,
2017), our observation of such molecular and phenotypic
convergence across two species provides a strong indicator of
variations under selective pressures exerted by the tissue or
ecological context (DeGregori, 2017; Schneider et al., 2017).

We note that convergent evolution should not discount a possi-
bility of drivers unique to canine gliomas, especially within the
context of germline variants (Truve et al., 2016) and non-coding
regulatory regions (Lindblad-Toh et al., 2011; Villar et al., 2015).
Characterization of such species-specific drivers can be ofmuch
value to identify evolutionary linchpins, which if abrogated can
drive oncogenesis with similar histopathological and clinical
traits. Further studies are needed to help understand how the
time point at which tissue samples used in our comparative anal-
ysis were obtained, necropsy for canine samples, and diagnosis
for human samples affects our results.
The molecular life history of a tumor is marked by multiple,

often successive aberrations in genes (Armitage and Doll,
1954; Nowell, 1976). Accordingly, cancer is largely a disease of
old age except in cases with early exposures to mutagens,
e.g., germline or acquired defects in one or more hallmarks of
cancer (Hanahan and Weinberg, 2011). The median age of
occurrence for canine gliomas in our cohort was 9 years, i.e.,
dogs in their adult stage of life. However, we demonstrate that
canine gliomas have a significantly lower somatic mutation rate
and, consequently, a lower number of significantly mutated
genes than adult human gliomas. The mutation burden of canine
glioma is also less than what has been reported for other canine
cancers, although a direct comparison would require additional
standardization of sequencing and data-preprocessingmethods
(Hendricks et al., 2018; Lorch et al., 2019; Sakthikumar
et al., 2018).
Canine gliomas harbor significantly higher aneuploidy than

adult human high-grade gliomas, and are more similar to human
pediatric gliomas (Gröbner et al., 2018; Mackay et al., 2017). We
find additional support for aneuploidy as a major driver in canine
and pediatric H3-mutant and H3 wild-type high-grade gliomas
with the observation of aneuploidy in regions of shared synteny
containing the HIST1 and PDGFRA genes, known pediatric
glioma drivers (Gröbner et al., 2018; Mackay et al., 2017), and
in noting shared homologous repair defects as a mutational
process that could drive genomic instability (Blank et al., 2015;
Targa and Rancati, 2018). Recent efforts to engineer aneuploidy
have provided better understanding of the functional role of
aneuploidy and how it can be targeted in cancer (Bakhoum
and Cantley, 2018; Taylor et al., 2018). Canine high-grade gli-
omas carrying aneuploidy, especially among syntenic regions
carrying the HIST1 and ACVR1 genes, can be utilized as a pre-
clinical model for such functional screening as well as to validate
recent studies showing its role in immune evasion (Bakhoum
et al., 2018; Davoli et al., 2017).
Tissue context and tumor microenvironment are critical fac-

tors for tumorigenesis (Haigis et al., 2019; Wang et al., 2017),
and current models are unable to accurately represent the devel-
opment of spontaneous tumors (Buque and Galluzzi, 2018). This
renders preclinical evaluation ineffective and increases costs of
clinical trials and results in minimal yields for patients. Preclinical
trials of dog glioma patients enable identification of evolutionarily
constrained and potentially targetable drivers, but simulta-
neously benefit dogs with glioma by offering treatment options
that otherwise are prohibitive due to associated healthcare costs
(LeBlanc et al., 2016). Future efforts leveraging results from the
comparative genomics of glioma to study immune-mediated
host responses can shed light on the complex interplay between
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the tumor and host immune response and also aid in optimizing
ongoing parallel canine clinical trials (Addissie and Klingemann,
2018) in order to improve an otherwise limited response to immu-
notherapies in canine and human gliomas. Our findings of canine
gliomas with low tumor mutational burden but with a clonal na-
ture of somatic drivers would be relevant in development of a
preclinical model to dissect the interplay between mutation
burden and immune escape during tumor evolution due to loss
of clonal neoantigens (McGranahan and Swanton, 2019; Wolf
et al., 2019). With respect to the immune microenvironment,
differences in immune cell gene expression patterns between
species could confound immune cell comparisons by under- or
overestimating the presence of specific immune cell types.
Despite these potential differences, comparative transcriptomic
analyses of mouse and human immune cells have shown that the
cells in each species exhibit a high degree of global conservation
with one another, and signatures derived from murine immune
cells have provided accurate immune infiltration estimates in
human cancer types (Shay et al., 2013; Varn et al., 2017). Thus,
the estimates in this study provide a baseline for how the relative
fractions of major immune cells compare among adult, pediatric,
and canine gliomas. We would have liked to have done further
immune characterization including expression profiling of
immune checkpoint response markers such as PD-1+ tumor-
infiltrating lymphocytes and PD-L1 immune and tumor expres-
sion, but these antibodies have not been validated in canines.
Moving forward, signatures derived from canine immune cells
will be of value in examining the presence of more specific im-
mune cell types.

In summary, our study shows that the comparative molecular
life history of gliomas details conserved drivers of glioma at both
the genetic and epigenetic levels, with aneuploidy as a major
hallmark of high-grade disease. Our results effectively position
preclinical models of spontaneous canine glioma for use in
understanding glioma drivers, and evaluating therapies targeting
aneuploidy as well as immunotherapies, with relevance to all
human gliomas and pediatric disease in particular.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD3 antibody Agilent Cat# M725429-2; RRID: AB_2631163

CD79A antibody Agilent Cat# M705029-2; RRID: AB_2244527

CD163 antibody MyBioSource Cat# MBS9409179; RRID: N/A

IBA1 antibody Wako Cat# 019-19741; RRID: AB_839504

CD4 antibody GeneTex Cat# GTX84720; RRID: AB_10727465

CD14 antibody Novus Cat# NB100-77758; RRID: AB_1083332

Biological Samples

Canine Glioma Patient Samples This paper Detailed under Table S1

Critical Commercial Assays

AllPrep DNA/RNA Mini Kit Qiagen N/A

AllPrep DNA/RNA FFPE Kit Qiagen N/A

KAPA Hyper Prep Kit (Illumina) KAPA Biosystems/Roche N/A

SeqCap EZ Canine Exome

Custom Design

Roche Nimblegen canine 140702_canFam3_exomeplus_BB_EZ_HX1

probe set

Nimblegen SepCap EZ Kit Roche Nimblegen N/A

KAPA Stranded mRNA-Seq kit KAPA Biosystems/Roche N/A

Premium RRBS Kit Diagenode N/A

Deposited Data

DNA sequencing data - WGS and Exome This paper NCBI SRA Accession ID: PRJNA579792

RNA sequencing data This paper NCBI SRA Accession ID: PRJNA579792

RRBS sequencing data This paper NCBI SRA Accession ID: PRJNA579792

Software and Algorithms

bwa v0.7.15-r1140 http://bio-bwa.sourceforge.net/

Genome Analysis ToolKit (GATK) v4.0.8.1 https://software.broadinstitute.org/gatk/

Qualimap v2.2.1 http://qualimap.bioinfo.cipf.es/

fastp v0.19.5 https://github.com/OpenGene/fastp

kallisto v0.45.0 https://pachterlab.github.io/kallisto

sleuth v0.30.0 https://pachterlab.github.io/sleuth

FastQC v0.11.7 https://www.bioinformatics.babraham.

ac.uk/projects/fastqc

TrimGalore v0.5.0 https://github.com/FelixKrueger/TrimGalore

Bismark Bisulfite Mapper v0.19.1 https://github.com/FelixKrueger/Bismark

Bowtie2 v2.2.3 N/A

NGSCheckMate v1.0.0 https://github.com/parklab/NGSCheckMate

Mutect2 - GATK4 v4.0.8.1 https://software.broadinstitute.org/gatk/

VarScan2 v2.4.2 https://github.com/dkoboldt/varscan

LoFreq v2.1.3.1 https://github.com/CSB5/lofreq

SomaticSeq v3.1.0 https://github.com/bioinform/somaticseq

Variant Effect Predictor (VEP) v91 https://github.com/Ensembl/ensembl-vep

dNdScv 0.0.1.0 https://github.com/im3sanger/dndscv

MuSiC2 v0.2 https://github.com/ding-lab/MuSiC2

GISTIC2 v2.0.22 ftp://ftp.broadinstitute.org/pub/GISTIC2.0/

GISTICDocumentation_standalone.htm

HMMCopy v1.22.0 http://bioconductor.org/packages/release/

bioc/html/HMMcopy.html

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for data resources should be directed to andwill be fulfilled by the LeadContact, Roel Verhaak (roel.
verhaak@jax.org). This study did not generate new unique reagents.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Canine Patients and Tissue Samples
Tissue samples from canine patients with gliomaswere acquired withmaterial transfer agreements fromAuburn University College of
Veterinary Medicine, Colorado State University, Texas A&MCollege of Veterinary Medicine & Biomedical Sciences, UC Davis School
of Veterinary Medicine and Virginia-MD College of Veterinary Medicine. Tissue samples from resected tumor (n=83) and matched
normal tissue (n=67 or paired cases) were collected at the surgical treatment or immediately following euthanasia. There were
also four additional dog patients where we had adequate DNA and RNA for methylation (n=48) and RNA-seq (n=40) profiling but
unable to do WGS/Exome sequencing because of failed library preparation (Table S1). Matched normal tissue were from post-
necropsy sample of contra-lateral healthy brain tissue (n=38), white blood cells (n=13), and remaining 17 samples from other tissues.
Samples were archived in snap-frozen (n=37/67 paired cases; n=8/16 tumor-only cases) and Formalin-Fixed Paraffin-Embedded
(FFPE, n=30/67 paired cases; n=8/16 tumor-only cases) state. Samples were then shipped to sequencing core facilities for sample
preparation, quality control and sequencing (see STAR Methods Details below).

METHOD DETAILS

Published Data Sources
For comparison to human glioma, we downloaded both - raw sequencing data and processed tables for human pediatric and adult
gliomas with appropriate controlled-data access agreements where needed. We used published mutation rates (Figure 1D) and
mutational signatures (Figure 3) from pan-cancer datasets from adults (n=3,281) and pediatric (n=961) cohorts (Alexandrov et al.,
2013; Bailey et al., 2018; Gröbner et al., 2018). For aneuploidy and molecular life history analysis (details below), we downloaded
raw sequencing data and analyzed whole genomes from 53 pediatric gliomas (Ma et al., 2018; St. Jude Cloud Pediatric Cancer
Genome Project, https://pecan.stjude.cloud), SNP6 data from adult gliomas – IDHwt (n=517), IDHmut-codel (n=171), and
IDHmut-noncodel (n=281) cases (Ceccarelli et al., 2016), as well as whole genomes from 23 adult GBMs (Brennan et al., 2013).
For coding mutation rate calculation, we used a subset of TCGA glioma set where exome/whole genome based variant calls were
available: IDHwt (n=371), IDHmut-non-codel (n=268), and IDHmut-codel (n=169).

Sample Preparation
DNA/RNA extraction - Genomic DNA and total RNA of fresh frozen tissue and FFPE tissue from paraffin scrolls were extracted simul-
taneously using AllPrep DNA/RNAMini Kit (Qiagen) and AllPrep DNA/RNA FFPEKit (Qiagen) according to themanufacturer’s instruc-
tions, respectively. Additional DNase treatment was performed on-column for RNA purification. WGS sample preparation - 200-
400ng of DNA was sheared to 400bp using a LE220 focused-ultrasonicator (Covaris) and size selected using Ampure XP beads
(Beckman Coulter). The fragments were treated with end-repair, A-tailing, and ligation of Illumina compatible adapters (Integrated

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TitanCNA v1.19.1 https://github.com/gavinha/TitanCNA

Snakemake v5.2.1 https://snakemake.readthedocs.io/en/stable/

flowr v0.9.10 https://github.com/sahilseth/flowr

NMF R package v0.21.0 https://cran.r-project.org/web/packages/NMF

Entropy R package v1.2.1 https://cran.r-project.org/web/packages/entropy

outliers R package v0.14 https://cran.r-project.org/web/packages/outliers/

MutationalPattern R package v1.6.2 https://bioconductor.org/packages/release/bioc/

html/MutationalPatterns.html

Palimpsest R package v1.0.0 https://github.com/FunGeST/Palimpsest

BradleyTerryScalable R package 0.1.0.9000 https://cran.r-project.org/web/packages/

BradleyTerryScalable/vignettes/BradleyTerryScalable.

html

DNANexus app for St Jude Cloud

data analysis

v1.1.6 (This paper) https://dxapp.verhaaklab.com/dnanexus_ngsapp

CIBERSORT webserver https://cibersort.stanford.edu
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DNA Technologies) using the KAPA Hyper Prep Kit (Illumina) (KAPA Biosystems/ Roche). For FFPE samples, 5 to 10 cycles of PCR
amplification were performed. Quantification of libraries were performed using real-time qPCR (Thermo Fisher). Libraries were
sequenced paired end reads of 151bp on Illumina Hiseq X-Ten (Novogene). WES sample preparation - Sample were prepared as
described above in theWGS sample preparation, targeting 200bp with PCR amplification. Target capture was performed using Seq-
Cap EZ Canine Exome Custom Design (canine 140702_canFam3_exomeplus_BB_EZ_HX1 probe set) (Broeckx et al., 2015) (Roche
Nimblegen). Briefly, WGS libraries were hybridized with capture probes using Nimblegen SepCap EZ Kit (Roche
Nimblegen) according to manufacturer’s instruction. Captured fragments were PCR amplified and purified using Ampure XP beads.
Quantification of libraries were performed using real-time qPCR (Thermo Fisher). Libraries were sequenced paired end of 76bp on
Hiseq4000 (Illumina). RNA-seq sample preparation - RNA-seq libraries were prepared with KAPA Stranded mRNA-Seq kit (Kapa
Biosystem/ Roche) according tomanufacturer’s instruction. First, poly ARNAwas isolated from 300ng total RNA using oligo-dTmag-
netic beads. Purified RNA was then fragmented at 85!C for 6 mins, targeting fragments range 250-300bp. Fragmented RNA is
reverse-transcribed with an incubation of 25!C for 10mins, 42!C for 15 mins and an inactivation step at 70!C for 15mins. This
was followed by second strand synthesis at 16!C, 60 mins. Double stranded cDNA (dscDNA) fragments were purified using Ampure
XP beads (Beckman). The dscDNAwere then A-tailed, and ligated with illumina compatible adaptors (IDT). Adaptor-ligated DNAwas
purified using Ampure XP beads. This is followed by 10 cycles of PCR amplification. The final library was cleaned up using AMpure XP
beads. Quantification of libraries were performed using real-time qPCR (Thermo Fisher). Sequencing was performed on Hiseq4000
(Illumina) generating paired end reads of 75bp. Reduced Representation Bisulfite Sequencing (RRBS) sample preparation - Library
preparation for RRBS was performed using Premium RRBS Kit (Diagenode) according to manufacturer’s instructions. Briefly, 100ng
of DNA was used for each sample, which was enzymatically digested, end-repaired and ligated with an adaptor. Subsequently, 8
samples with different adaptors were pooled together and subjected to bisulfite treatment. After purification steps following bisulfite
conversion, the pooled DNA was amplified with 9-14 cycles of PCR and then cleaned up with Ampure XP beads. Quantification of
libraries were performed using real-time qPCR (Thermo Fisher). Libraries were sequenced single end 101bp on Hiseq2500 (Illumina).

Sequencing Alignments, QC, and Fingerprinting
DNA alignments - DNA alignments for whole genome (WGS) and exome sequencing was done using bwa-mem (version 0.7.15-
r1140) (Fleshner and Chernett, 1997) with -M -t 12 argument and against CanFam3.1 reference genome from UCSC, https://
genome.ucsc.edu/cgi-bin/hgGateway?db=canFam3 (md5: 112bc809596d22c896d7e9bcbe68ede6). For each sample, fastq files
were aligned per read group and then merged using Picard tools (v2.18.0, http://broadinstitute.github.io/picard) SortSam command
to make an interim bam file. Final, analysis-ready bam file per sample – tumor and normal bam, if available – was created by series of
steps following best practices guidelines from GATK4 (version 4.0.8.1) (DePristo et al., 2011), namely MarkDuplicates, Indel
Realignment, and Base Quality Score Recalibration (BQSR). Alignment QC metrics were calculated using GATK4 DepthOfCoverage
(for WGS) and CollectHSMetrics (for exome) as well as Qualimap (version 2.2.1) (Okonechnikov et al., 2016) bamqc for merged bam
files. Coverage statistics were also based on regions of interest (ROIs) which consisted of exonic region-level annotations for bio-
types: protein-coding gene, microrna, lincrna, and pseudogene from Ensembl gene annotations for canine genome (v91 and higher).
We flagged samples as failed QC if merged bam file has a genome-wide coverage of < 30% or > 75% of ROIs have 30% or lesser
coverage. Accordingly, three samples (of three cases) failed QC step and they were removed from all analyses. Note that 83 cases in
patient tissues and samples section represent all cases which passed QC at WGS, exome, RNA-seq, andmethylation level data pre-
processing. RNA alignments - Raw fastq files from paired-end RNA-seq assay for 40 tumor samples and 3 matched normal tissue
samples were first preprocessed through fastp (version 0.19.5) (Chen et al., 2018) to perform read-based quality pruning, including
adapter trimming. Resulting fastq files were then used as input for kallisto quant (version 0.45.0) – a pseudoalignment based method
to quantify RNA abundance at transcript-level in transcripts per million (TPM) counts format. We then used sleuth R package (version
0.30.0) (Pimentel et al., 2017) to output model-based, gene-level normalized TPMmatrix which was also corrected for potential batch
effects due to RNA-seq data derived from two sequencing core facilities and tissue archival (snap-frozen vs FFPE). Detailed work-
flow, including command-line parameters for model fitting are in the software code repository (See Data andCode Availability). RRBS
alignments - Raw fastq files from RRBS assay for 45 tumor samples were processed through FastQC (version 0.11.7, https://www.
bioinformatics.babraham.ac.uk/projects/fastqc) and Trim Galore (version 0.5.0, https://github.com/FelixKrueger/TrimGalore) for
quality control, filtering low quality base calls, and adapter trimming. Trimmed reads were thenmapped to a bisulfite converted refer-
ence genome (canFam3.1, obtained from Ensembl release 85) using the Bismark Bisulfite Mapper (v0.19.1) with the Bowtie2 short
read aligner (v2.2.3) (Krueger and Andrews, 2011), allowing for one non-bisulfite mismatch per read. Cytosine methylation calls were
made for themapped reads using the Bismarkmethylation extractor (version 0.19). The resultingmethylation valueswere obtained as
b-values, calculated as the ratio of methylated to total reads at a given CpG site. DNA fingerprinting – DNA fingerprinting for each of
WGS and exome tumor-normal and tumor-only bamfileswas done usingNGSCheckMate tool (version 1.0.0) (Lee et al., 2017). Germ-
line snps in protein-coding regions was used as a variant reference panel to allow simultaneous fingerprinting of WGS and exome
libraries. NGSCheckMate does sample pairing QC based on shared germline variants found in samples (tumor and normal tissue
from the same patient) and also model difference between samples (or libraries) based on sequencing depth-dependent variation
in allelic fraction of reference variants. Fingerprint results for WGS and exome samples from 81 canine glioma did not show mixture
of tumor-normal or cross-patient sample contamination (See Figure S1F).
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Somatic Variant Calling
Somatic variant calls were called on the merged whole genome and exome bam files using three callers: GATK4 (version 4.0.8.1)
(McKenna et al., 2010) Mutect2 (Cibulskis et al., 2013), VarScan2 (version 2.4.2), and LoFreq (version 2.1.3.1) (Wilm et al., 2012).
Matching and fingerprint validated WGS and exome files per sample were merged using Picard tools (v2.18.0, http://
broadinstitute.github.io/picard), MergeSamFiles command. Three somatic callers were then run in either paired tumor – matched
normal (n=67) or tumor-only (n=14) mode. Mutect2 was first run in panel-of-normals (PON) mode using matched normal
samples. Resulting PON file was used for calling somatic variant calls using Mutect2 in both, paired and tumor-only mode along
with options: –germline-resources 58indiv.unifiedgenotyper.recalibrated_95.5_filtered.pass_snp.fill_tags.vcf.gz –af-of-alleles-not-
in-resource 0.008621. Tumor-only Mutect2 mode was run using default arguments and paired Mutect2 calls had following argu-
ments: –initial-tumor-lod 2.0 –normal-lod 2.2 –tumor-lod-to-emit 3.0 –pcr-indel-model CONSERVATIVE. Throughout the process
of using GATK4 based tools, including Mutect2, we followed best practices guidelines (DePristo et al., 2011) where practical for
canine genome, e.g., in contrast to human genome, population level resources are limited for canine genome. VarScan2 paired
mode was run with a command: somatic and arguments: –min-coverage 8 –min-coverage-normal 6 –min-coverage-tumor 8
–min-reads2 2 –min-avg-qual 15 –min-var-freq 0.08 –min-freq-for-hom 0.75 –tumor-purity 1.0 –strand-filter 1 –somatic-p-value
0.05 –output-vcf 1. VarScan2 tumor-only mode was run using command: mpileup2cns and arguments: –min-coverage 8 –min-
reads2 2 –min-avg-qual 15 –min-var-freq 0.08 –min-freq-for-hom 0.75 –strand-filter 1 –p-value 0.05 –variants –output-vcf 1. LoFreq
paired mode was run using command: somatic and arguments: –threads 4 –call-indels –min-cov 7 –verbose and tumor-only mode
was run using command: call and arguments: –call-indels –sig 0.05 –min-cov 7 –verbose -s. Resulting raw somatic calls - single
nucleotide variants (SNV) and small insertions and/or deletions (Indels) - from three callers were then subject to filtering based on
caller-specific filters and hard filters. Briefly, Mutect2 calls were subject to extensive filtering based on germline risk, artifacts arising
due to sequencing platforms, tissue archival (FFPE), repeat regions, etc. See Data and Code Availability and https://software.
broadinstitute.org/gatk/documentation/article?id=11136) for detailed parameters. VarScan2 somatic filters were applied as per de-
veloper’s guidelines (Koboldt et al., 2013). Hard filters were based upon filtering out variants present in dbSNP and PONs created via
GATK4 Mutect2. Filtered somatic calls from three callers (in VCF version 4.2 format) were then subject to consensus somatic calls
using SomaticSeq (version 3.1.0) (Fang et al., 2015) in majority voting mode with priority given to Mutect2 filtered (PASS) calls fol-
lowed by consensus voting based on calls present in VarScan2 and LoFreq filtered calls. Resulting consensus VCF file for 81 cases
were finally converted to Variant Effect Predictor (VEP version 91) (McLaren et al., 2016) annotated vcfs and Mutation Annotation
Format (MAF, https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format) using vcf2maf utility (https://github.com/mskcc/
vcf2maf). Annotated VCFs and MAFs were used for all of downstream analyses.

Significantly Mutated Genes (SMGs) Analysis
SMG analysis in canine gliomas (Figures 1A, 1C, and 2A) with paired tumor-normal samples (n=57) was performed using dNdS
(Martincorena et al., 2017) and MuSiC2 (version 0.2) (Dees et al., 2012). We excluded tumor-only cases for being conservative in
SMG analysis and minimize false-positives. Also, MuSiC2 required matched normal tissue required matched normal tissue for
SMG analysis. Detailed parameters for SMG analysis are in the software code repository (See Data and Code Availability). Detailed
output from both methods are in Table S2.

Cancer Hallmark Analysis
Cancer hallmarks were defined according to published ten hallmarks (Hanahan andWeinberg, 2011) and one additional hallmark, i.e.
epigenetic (Imielinski et al., 2012). A pool of 268 known glioma (Ceccarelli et al., 2016; Mackay et al., 2017) and pan-cancer driver
genes (Gröbner et al., 2018; Bailey et al., 2018) were mapped to hallmarks following a previously published computer-assisted
manual curation method (Table S4) (Iorio et al., 2018). Based on WHO molecular classification of brain tumors, somatic SNV and
copy-number data from patients with human adult gliomas (AG) (Ceccarelli et al., 2016) were stratified into IDHwt (n=373),
IDHmut-codel (n=169) and IDHmut-noncodel (n=268) subgroups while corresponding data from patients with human pediatric gli-
oma (PG) (Mackay et al., 2017) were subgrouped based on mutations in Histone H3 gene, namely H3mut (n=200) and high-grade
H3wt (n=126). For canine patients with glioma (CG), we used somatic mutations and copy-number calls from 67 cases with paired
tumor-normal samples. For each of the six cohorts coding mutations were mapped to eleven hallmarks and coverage adjusted rela-
tive proportions of patients harboring an alteration in a given hallmark were calculated. For comparisons between cohorts a two-
sided Fisher’s exact test was applied (Table S4).

Quantifying Somatic Mutation Rates
Somaticmutations (SNVs and Indels) rate was estimatedwithin coding genes and adjusted based on relative per-base coverage with
minimum coverage of 30X in coding regions (Figure 1D). Coding mutation rates for human pediatric (n=961) and adult cancers
(n=3,800, includes 811 adult gliomas) were taken from published studies (Ma et al., 2018; Ceccarelli et al., 2016; Gröbner et al., 2018).

Somatic Copy Number Segmentation
Somatic copy-numbers were called for paired tumor-normal cases (n=67) using HMMCopy tool (version 1.22.0) using author’s
recommendations. In brief, GC counts and mappability files for CanFam3.1 genome were generated with 1000 bp window size.
Read counts for each of tumor and normal bam files were generated using 1000 bp window size. Resulting count, mappability
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and count files were feed into HMMCopy algorithm (http://bioconductor.org/packages/release/bioc/html/HMMcopy.html) and
segmentations were called using Viterbi algorithm. Segmented copy number calls were used to generate Integrated Genome Viewer
(IGV) copy-number plots and GISTIC2 (version 2.0.22) based somatic copy number significance (Mermel et al., 2011), including
calling gene-level deep deletions, loss-of-heterozygosity (LOH), and amplifications (Figure 2A) as well as inferring aneuploidy metrics
(Figures 2B and 2C). Segmented copy number for pediatric gliomas (n=53) were called by using cloud-based TitanCNA workflow
(https://dxapp.verhaaklab.com/dnanexus_ngsapp). Segmented copy number for adult gliomas were derived from SNP6 based
platform from the TCGA Broad Firehose platform (version stddata__2016_01_28) with following download urls: http://gdac.
broadinstitute.org/runs/stddata__2016_01_28/data/GBM/20160128/gdac.broadinstitute.org_GBM.Merge_snp__genome_wide_snp_
6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg.Level_3.2016012800.0.0.tar.gz and http://gdac.
broadinstitute.org/runs/stddata__2016_01_28/data/LGG/20160128/gdac.broadinstitute.org_LGG.Merge_snp__genome_wide_
snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg.Level_3.2016012800.0.0.tar.gz Only pri-
mary tumor cases from TCGA GBM (n=577) and TCGA LGG (n=513) cohort were used for downstream analyses, i.e., pathway
analysis (Figure 1C) and aneuploidy metrics (Figures 2B–2D).

Allele Specific Copy-Number Analysis
We derived allele-specific copy numbers and copy-number based clonality inference (including purity and ploidy estimates) using
TitanCNA algorithm (version 1.19.1) (Ha et al., 2014). Snakemake (version 5.2.1) based workflow (Koster and Rahmann, 2018) was
implemented using default arguments and genome-specific germline dbSNP resource for WGS paired tumor-normal samples
from 67 canine patients. For pediatric gliomas (n=53) and adult gbms with WGS data (n=23), allele-specific copy-number calls
were used from TitanCNA workflow. Allele-specific copy-numbers were used for mutational signature and molecular timing analysis
(Figure 3).

Aneuploidy Metrics
The simplest metric of aneuploidy was computed by taking the size of all non-neutral segments divided by the size of all segments.
The resulting aneuploidy value indicates the proportion of the segmented genome that is non-diploid. In parallel, an arm-level
aneuploidy score modeled after a previously described method was computed (Taylor et al., 2018). Briefly, adjacent segments
with identical arm-level calls (-1, 0 or 1) were merged into a single segment with a single call. For each merged/reduced segment,
the proportion of the chromosome arm it spans was calculated. Segments spanning greater than 80% of the arm length resulted
in a call of either -1 (loss), 0 (neutral) or +1 (gain) to the entire arm, or NA if no contiguous segment spanned at least 80% of the
arm’s length. For each sample the number of arms with a non-neutral event was finally counted. The resulting aneuploidy score is
a positive integer with a minimum value of 0 (no chromosomal arm-level events detected) and a maximum value of 38 (total number
of autosomal chromosome arms – given all of canine chromosomes are either acrocentric or telocentric).

Clustering Shared Syntenic Regions
Shared syntenic regions between CanFam3.1 and hg19 reference genome were downloaded from Ensembl BioMart (version 94)
database using orthologous mapped Ensembl gene ids. Arm-level synteny was based on arm-level aneuploidy scores of shared
syntenic regions in the respective, canine and human genomes. Hierarchical clustering of proportion of patients per molecular
subtype having syntenic arm-level aneuploidy was then carried out for each of canine, human pediatric and adult cohort (Figure 2C).

Estimating Intra-tumoral Heterogeneity
We estimated patient-level ITH based onwhole-genome derived subclonal structure and number of somatic variants in each of these
subclones. Subclonal structure and cellular prevalence or cancer cell fraction of each tumor subclone (and underlying somatic var-
iants) was derived using TITAN allele-specific copy number calls. Since accuracy of inferred subclonal structure depends largely on
sequencing read depth and number of somatic variants per inferred subclone, we limited estimation of subclonal structure for
maximum five subclones per patient given a minimum sequencing read depth of 30X for whole genome data we had across all three
cohorts. Shannon entropy was then calculated using entropy function in the R package: entropy by taking number of somatic variants
per subclone per patient as a vector. A resulting Shannon entropy value was used to plot figures along with cancer cell fraction and
number of clones derived per patient. We acknowledge that our estimation of ITH and resolving subclonal structure can be improved
with higher depth of sequencing (100X or more) to detect subclonal structures (number of clones) (Deshwar et al., 2015).

Mutational Signature Analysis
Mutational signature analysis was performed in two-parts. First, de-novo signatures (Figure 3B) were constructed for canine (n=81),
human pediatric (n=53) and adult cohort (n=23) using somatic snvs from whole-genome data. Signatures were constructed using
non-negative matrix factorization (nmf R package, version 0.21.0) with brunet approach and 100 iterations with expected range of
signatures between 2 to 10. Optimal signatures were then selected using nmfEstimateRank function to match number of de-novo
signatures (clusters) – 1 where inflection point for cophenetic correlation coefficient was observed. Accordingly, three de-novo sig-
natures were found in canine and human pediatric gliomas while five in adult glioblastoma cohort. In the second part, known human
mutational signatures fromCOSMIC (v2, n=30) and published pediatric cancer signature from two studies, T1 to T11 (Ma et al., 2018)
and P1 (Gröbner et al., 2018) were pooled together and used to deconvolute (MutationalPattern R package, version 1.6.2) mutational
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trinucleotide context (n=96) from somatic snvs in each of three cohorts. Somatic ultra-hypermutation cases from pediatric (n=3) and
adult cohort (n=1) were excluded from signature analysis. Cosine similarities of known signatures with de-novo signatures was then
calculated and clustered using hierarchical clustering (Figure 3B). Absolute and relative contribution of known signatures per sample
was then quantified using fit_to_signatures function which finds the linear combination of signatures that closely resembles 96
context based mutational matrix by solving the nonnegative least-squares constraints problem. We then selected top contributing
signatures per cohort based on signatures which contributed per sample to higher than 3rd quartile of median value of each signa-
ture’s contribution (rowMedian) per cohort (Figure S3A). Top contributing signatures were further calculated using outlier profling on
canine patients showing highest mutational load (>3rd quartile of median coding mutation rate per megabase) and plotted in Fig-
ure 3A. Outlier sample detection was done using car::outlierTest function in R to label true outliers from entire cohort (2 cases) while
correcting for confounding effects due to type of tissue archival (snap-frozen vs ffpe) and analysis type (tumor-matched normal
versus tumor-only somatic variant calling). This was followed by second run of outlier by first excluding true outliers (2 cases),
and then labelling outliers (six cases) based on chi-squared statistics using outliers::scores function in R. Signatures contributing
to driver mutations (Figure 3C) were calculated based on first getting relative proportion of trinucleotide context per snv and then
finding known signatures withmaximum value for the same trinucleotide context. Known signatures were combined to a single group
where they are shown in literature as potential underlying process, e.g., aging group is associated with COSMIC signature 1 and 5,
and show significant cosine similarity (> 0.9) with pediatric signatures T1 and T4, respectively. Table S5 provides mapping between
signature and known/proposed mechanisms, if any.

Molecular Timing Analysis and Natural History of Tumors
Probabilistic estimation of relative timing of driver mutations (among 79 observed somatic snvs in cancer driver genes) was based on
existing methods (Gerstung et al., 2017; Jolly and Van Loo, 2018) with several steps carried out using Palimpsest R package (version
1.0.0; https://github.com/FunGeST/Palimpsest) (Shinde et al., 2018) and custom R scripts based on published approach
(McGranahan et al., 2015): First step involved categorizing somatic drivers into clonal vs subclonal events using estimated cancer
cell fraction (CCF) which is estimated fraction of cancer cells with a somatic snv. CCF per somatic snv was a product of variant allelic
fraction (VAF) of a somatic snv, adjusted by local copy number of gene locus and whole tumor sample (ploidy) as well as purity
estimate (tumor cell content) inferred from TitanCNA algorithm (Detailed under copy number estimation section above). A clonal
(early) vs subclonal (late) mutation was then classified based on upper boundary of CCF was above 0.95 (clonal) or not (subclonal).
Second, we timed copy number gain and copy-neutral LOH regions based on VAF of somatic snvs in these copy regions, i.e., early
mutations prior to copy gain will have higher VAF relative to VAF of late mutations after copy gain. Third, we ordered mutations in four
sequential categories: early clonal, early subclonal, late clonal, and late subclonal. We note here that early subclonal and late clonal
categories are result of underlying parallel and/or convergent evolution of multiple clones (Venkatesan and Swanton, 2016) and/or a
technical limitation (given !60X depth of merged bam files and lack of spatial sequencing data) in resolving polyclonal structure of a
tumor sample (Deshwar et al., 2015). We then tally frequency of each of these four categories per somatic driver mutation and get the
average frequency of each category per driver mutation at cohort (canine, pediatric, adult) level. These average frequencies are
converted to winning tables, similar to sports statistics where each driver mutation competes with remaining driver mutations
with winning being an early somatic event based on order of events using clonality (Jolly and Van Loo, 2018) (step 3). Finally, a winning
table is then passed to Bradley-Terry model (BradleyTerryScalable R package, version 0.1.0.9000) to estimate winning probability
(driver event being an early event) based on a Bayesian maximum a posteriori probability (MAP) estimate. Resulting winning prob-
ability per driver mutation is subtracted from 1 to plotmultiple density plots (ggridgesRpackage, version: 0.5.1.9000) with X-axis now
showing a probability of event being a late event (Figure 3D). We note that density plots are based on kernel density estimates and
thus, may extend their tails (probability distribution) beyond 1 or less than zero (https://serialmentor.com/dataviz/histograms-
density-plots.html).

Class Prediction Using Methylation Data
To compare the methylation patterns of human and canine glioma, the LIBLINEAR library was used to fit an L2-regularized logistic
regression classifier. Model training and validation was performed on the human glioma samples and normal controls in the
GSE109381 dataset (Capper et al., 2018), with the methylation status of CpGs located in regions of the human genome orthologous
to canine CpG islands used to predict DNAmethylation-based subtypes of glioma. Themethylation categories designated as regres-
sion outcome variables were derived from the World Health Organization classification of gliomas: IDH-wild-type adult glioma,
IDH-mutant, 1p/19q-intact adult glioma, IDH-mutant, 1p/19q-codeleted adult glioma, adult normal control, pediatric glioma, and
pediatric normal control. After model fitting, the logistic regression classifier was applied to the canine samples, using the b-values
of CpGs orthologous to the selected 11,495 Illumina 450K probes as input data. For classifier CpG sites in the canine samples
with no methylation observations, b-values were predicted using the DNA module of the DeepCpG algorithm, a deep learning algo-
rithm that predicts methylation state based on local DNA sequence context (Angermueller et al., 2017). The logistic regression
classifier outputs the probability that a sample matches a given methylation category. Category probabilities were calculated for
the canine samples, and these probabilities were compared with sample age, anatomical location, tumor grade, tumor purity, and
mutation rate (Figure 4).
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Immunohistochemistry
Staining
Hematoxylin & Eosin staining was used to classify glioma grade and lineage. The immunohistochemistry panel included those
antibodies that have been documented to work in canine tissues and include myeloid microglia/macrophages (IBA1), monocytes
(CD14) and their M2 skew subtype (CD163), and lymphoid T cells (CD3) and B cells (CD79a). Slides with 5um sections, were depar-
affinized and rehydrated in a dry incubator (60!C for 1 hour), xylene, and histological grade ethanol. Antigen retrieval was performed
using citrate buffer and a pressure cooker at 120!C23 for 12minutes. Quenching for endogenous peroxidase was performedwith 3%
H2O2 for 15minutes at room temperature. Non-specific binding wasminimized using ready-to-use protein blocker (Dako) applied for
15 minutes before the application of the primary antibody overnight at 4!C. All the washing was done using 1x T-PBS buffer mixed
with 0.1% Tween 20. The biotinylated secondary antibody was applied for 30minutes at room temperature followed by three washes
with buffer for 5 minutes each. Color development was performed using the DAKO DAB kit and color change was monitored until an
appropriate detectable level was achieved (10-60 sec depending on the antibody). Slides were counterstained with hematoxylin
(25 seconds) and bluing buffer, then rehydrated and cover-slipped with long lasting mounting solution. The immunohistochemistry
quantification were done blindly relative to the tumor pathology. Scanning and tissue segmentation - Scanning and analysis were
performed using the PerkinElmer Vectra Automated Quantitative Pathology Imaging System and the inForm Cell Analysis software
(ver 2.4). Slides were scanned twice on low- and high-power fields as follows: the first scan was of the whole slide on low power field
(10x) for manual tissue segmentation to identify three tumor regions/categories as necrotic center, tumor and invasive edge under the
neuropathologist’s supervision/direction. For each region, every fourth field was imaged (25%) on high-power field (20x) and resulted
in 21 to 274 fields per slide, which varies according to the size of the tissue and presence or absence of necrosis. For the training set,
heterogeneous fields were randomly selected to include tissue, non-tissue and damaged areas. Hematoxylin and DAB was used
to identify the nuclei. Positive and negative cells were distinguished visually and three optical densities (OD) thresholds were set
accordingly. The thresholds allowed 4-bin (0 = negative, +1 = weak positive, +2 = intermediate, +3 = strong positive) sorting of cells
depending on the positivity and its intensity. The intermediate positivity threshold was calculated as the midpoint after setting
the lower and higher threshold. The algorithm of the training set was applied for all the high-power fields captured. The results
were inspected and the nonspecific and defective fields were removed before compiling the dataset. The same process was applied
for all seven markers (Figure 5).

CIBERSORT Based Expression Analysis
Processed RNA-seq expressionmatrices from canine (n=40; 25 HGG, 14 LGG, 1 unknown grade), adult (n=703; 529 LGG, 174GBM),
and pediatric glioma (n=92; 42 LGG, 50 HGG) were each run as separate jobs into the CIBERSORT webserver (https://cibersort.
stanford.edu) and processed in relative mode using the following parameters: Signature Genes: LM22 CIBERSORT default,
Permutations run: 100, Quantile normalization disabled (Newman et al., 2015). The resulting cellular fraction tables were then
collapsed from 22 cell types into 11 based on lineage, using groupings from a prior publication (Gentles et al., 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R version 3.6.1. Statistical details for analyses are described in the respective sub-section
under the Method Details section above and summarized in figure legends. p value of <0.05 were considered statistically significant.
No statistical methods were used to predetermine study sample size.

DATA AND CODE AVAILABILITY

Sequencing data generated during this study is available in the Binary Alignment Map (BAM) format at the NCBI SRA database
with the BioProject accession ID PRJNA579792 [URL: https://dataview.ncbi.nlm.nih.gov/object/PRJNA579792]. Software code
used to generate figures is available at https://github.com/TheJacksonLaboratory/canineglioma and documented at the URL,
https://canineglioma.verhaaklab.com.
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Chapter 7 
Discussion  

This chapter serves to summarize, discuss, and contextualize the previous 

chapters. My analyses specifically followed the hypothesis that longitudinal and 

molecular characterization of cancer may help uncover the clonal trajectories of 

cancer, understand the impact of treatment on the cancer genome and reveal potential 

therapeutic avenues within a precision oncology approach.  

In Chapter 2, I provided an overview of the field of molecular characterization 

of cancer, the high unmet clinical need in glioma patient care and the potential 

opportunities for longitudinal analysis of cancer to contribute to an improved 

understanding of therapeutic effects and resistance mechanisms. Moreover, I highlight 

the gaps in knowledge on the genomic effects of radiotherapy and alkylating agent – 

based chemotherapy, which represent the clinical gold standard in glioma treatment. 

In Chapter 3, I present results derived from my participation in the analysis of 

matched initial (pre-treatment) and recurrent (post-treatment) glioma samples 

sequenced at the WGS/WES and RNA-seq levels as part of the GLASS consortium. 

Overall, this study revealed that most genomic alterations were shared between initial 

and recurrent gliomas, with little evidence of directed and predictable evolutionary 

routes. These results are consistent with a previous study of longitudinally analyzed 

IDHwt gliomas, suggesting that the most aggressive glioma subtype, GBM, formed its 

genomic repertoire prior to diagnosis and that treatment had no significant impact on 

the clonal evolution of the analyzed tumors samples66. However, IDHmut glioma 

samples classified as low-grade gliomas according to the 2016 WHO classification26, 

showed patterns of genomic alterations associated with an increase in grade. I 

quantified the proportion of the alkylating agent-associated hypermutator phenotype, 

indicating the highest susceptibility for the IDHmut-noncodel group. Mutational 

signature analysis further revealed a dominance of the single base substitution (SBS) 

11 signature, which was confirmed in a subsequent independent analysis67. Moreover, 

IDHmut gliomas were characterized by a significant increase in genome-wide and 

arm-level aneuploidy, which was typically preceded by the acquisition of CDKN2A 
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homozygous deletions in recurrent samples. These features appeared to be clinically 

relevant as they were associated with poorer overall survival.  

In Chapter 4, I addressed the question of whether RT has a specific imprint on 

cancer genomes and analyzed a pan-cancer metastatic dataset in addition to the 

GLASS dataset. While RT leads to DNA damage, e.g., in the form of DSBs, repair 

pathways can be activated. However, previous literature has attributed distinct repair 

pathways to RT-induced DNA damage, and studies performed with low samples sizes 

yielded conflicting results. In my analyses, I identified a significant increase in small 

deletions that could be specifically attributed to RT. These small deletions had distinct 

genomic features, including a length of 5-15 bp, a random genomic distribution across 

the genome and a corresponding independence of intrinsically mutagenic genomic 

sites, as well as a lack of microhomology at breakpoint sequences. These results 

provided important information about the repair pathways associated with RT-induced 

DNA damage by nominating canonical non-homologous end-joining (cNHEJ) as the 

preferred pathway for repairing RT-induced DSBs. Importantly, I was able to link this 

genomic outcome to a specific indel mutational signature, i.e. ID8, and provide a 

quantitative measure with potential translational value. Indeed, a high burden of RT-

associated deletion signature was associated with worse survival outcomes. 

Furthermore, we observed that RT was associated with an increase in larger structural 

variants, particularly for inversions and large deletions. It is reasonable to speculate 

that these, similar to small deletions, may results from erroneous repair of RT-induced 

DSBs. These changes were accompanied by an increase in aneuploidy, which was 

particularly driven by aneuploidy arm level loss events. These results suggest that RT 

may induce chromosome segregation errors during mitosis. Importantly, focal 

deletions on chromosome 9p21 leading to homozygous deletions in CDKN2A are rare 

in primary IDHmut gliomas but are of great clinical importance as negative prognostic 

markers, as recently recognized in the 2021 update of the WHO classification for 

central nervous system tumors (CNS5)68. My observations that acquisition of CDKN2A 

homozygous deletions were enriched exclusively in recurrent IDHmut glioma patients 

who had received RT suggests that RT may be mechanistically involved in the 

emergence of this poor prognostic biomarker and underscores the value of performing 

NGS analysis of post-treatment, recurrent tumors. 
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In Chapter 5, I participated in the follow-up analyses of the GLASS consortium, 

in which we analyzed DNA and RNA sequencing data from 304 patients with IDHmut 

and IDHwt glioma. We integrated genomic information with gene expression data that 

allowed us to infer cancer cellular states as well as the decomposition of the bulk tumor 

into malignant cells and cells of the microenvironment. In particular, I wase able to 

detect an increase in the proliferative stem-like cell state in IDHwt and IDHmut 

gliomas. This non-genetic longitudinal change was particularly driven by known 

genomic markers affecting survival, i.e. TMZ-associated hypermutation and RT-

associated CDKN2A homozygous deletions. The genomic resistance markers appear 

to correspond with an increasingly malignant and proliferative phenotype, which is 

underscored by a survival analysis indicating significantly worse survival for patients 

with a longitudinal increase in the proliferative stem like cell state. Chapter 5, in 

combination with Chapters 3-4, provides an integrative longitudinal model of genomic 

and non-genetic evolution of gliomas in response to treatment, depicting three modes 

of evolution (Fig 2).   

 
Figure 2. Clonal evolution of primary (left) and post-treatment (right) gliomas. TMZ can 
result in hypermutation (SBS 11 mutations in red). RT can result in RTscars (ID8 mutations 
in purple). Non-RTscars and non-HM samples appear to follow a neutral evolutionary 
mode. Non-genetic mechanisms may be relevant in each of these evolutionary modes. 
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 In Chapter 6, I performed a molecular analysis of 83 spontaneous canine 

gliomas and compared the molecular profiles with those of human adult and pediatric 

gliomas. Specifically, I found the genomic alteration pathways to be largely conserved 

between species, with canine gliomas displaying a high similarity to human histone 

H3-wildtype pediatric gliomas. The translational pipeline in gliomas has been largely 

unsuccessful in the past two decades, as exemplified by negative trial results for 

immunotherapies69,70. With an immunocompetent host environment, preclinical trials 

in canine glioma patients could provide novel translational opportunities, while 

simultaneously providing treatment options for dogs with gliomas. 

Mutational signatures of cancer therapies in the context of precision oncology 

Mutational signatures are a powerful tool for analyzing the underlying mechanistic 

patterns of mutations at the single base substitution (SBS), double base substitution 

(DBS) and insertion-deletion (ID) levels. In my work, I identified a strong enrichment 

of the SBS11 signature in TMZ-associated hypermutant samples and ID8 signature in 

samples with an RT-associated deletion signature. While I did not observe an impact 

of HM on overall survival, survival after recurrence was significantly shorter in HM 

patients compared to patients without HM, which was further confirmed in an 

independent cohort67. The RT-associated deletion signature resulted in worse overall 

survival in patients that were classified in the highest tertile based on newly acquired 

deletion burden after RT. More sophisticated clinical analysis of the RT-associated 

deletion signature revealed no survival differences for the surgical interval time point 

(survival between primary tumor and recurrence), but significantly worse post-

recurrence survival. Taken together, SBS11 (marker for hypermutation) and ID8 

(marker for RT-associated deletion signature) marked tumors that were resistant 

towards TMZ and RT, respectively, suggesting that continuation of the same treatment 

modality would not provide further clinical benefit.  

Based on these considerations, the identified markers could be translated as 

potential prognostic biomarkers into the clinical setting and help in therapeutic decision 

making in the relapse setting where there is no evidence for a standardized regimen 

in gliomas71. In addition to this prognostic value, the SBS11 and ID8 signatures may 

have predictive value that needs to be tested in prospective clinical trials72. I 

hypothesize that glioma patients harboring a high burden of the hypermutation-
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associated SBS11 signature are unlikely to benefit from further TMZ treatment. 

Similarly, cancer patients with a high burden of the RT-associated ID8 signature are 

unlikely to benefit from further RT. Instead, alternative treatment strategies could be 

considered in these instances. For example, an MMR-independent compound that has 

been shown to be effective in in TMZ-resistant gliomas should be considered for cases 

with hypermution73. Since the underlying mutational mechanism for the ID8 signature 

is the erroneous repair of RT-induced DSBs via cNHEJ, compounds targeting the DNA 

damage response pathway should be considered as a combination therapy with RT74. 

In this context, ID8 could serve as a biomarker for differential susceptibility.  

Having provided valuable insights into the biological processes underlying somatic 

mutagenesis, mutational signatures are gaining translational and clinical importance75. 

Cancers with homologous recombination deficiency (HRD) have been shown to be 

predictive of increased response to platinum-based treatment76 and targeted therapy 

with poly(ADP)-ribose polymerase (PARP) – inhibitors in a synthetic lethality 

approach77. Novel algorithms based on genomic signatures have high predictive value 

in terms of sensitivity and specificity in predicting HRD. The tool ‘HRDetect’ predicted 

BRCA1/BRCA2 deficiency with a sensitivity of 98.7% (AUC: 0.98)78 and was 

successfully validated in a real-world cohort79, supporting its translational and clinical 

value. The Classifier of HOmologous Recombination Deficiency (CHORD) algorithm, 

developed by the HMF group and was also used for my analyses in Chapter 4, 

identified bi-allelic inactivation of BRCA1, BRCA2, RAD51C or PALB2 as common 

mechanisms for HRD and is another example for a readily available tool for diagnostic 

and therapy decision purposes in the clinic80.  

Mismatch repair (MMR) deficiency is associated with an increased tumor 

mutational burden (TMB) due to increased numbers of mutations at short tandem 

repeats81. Importantly, patients with MMR deficient cancers respond remarkably well 

to immunotherapy with immune checkpoint inhibitors (ICIs)82-84, which led to the first 

tumor-agnostic approval of the ICI pembrolizumab for any solid cancer type with MMR 

deficiency by the US Food and Drug Administration (FDA) in 201785. One of the 

established clinical biomarkers for predicting the efficacy of ICI is TMB86, which reflects 

the number of mutations per megabase (mut/Mb). It is increasingly recognized that 

patients with a TMB of more than 10 mut/Mb are the most promising target group for 
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a successful response to ICI, but this biomarker cutoff leading to a binary classification 

has been the subject of controversy87. Improved detection of MMR deficient cancer 

samples has recently been demonstrated by using MMR deficiency – associated 

mutational signatures in the ‘MMRDetect’ algorithm, which limits false-positive and 

false-negative mutational calls48. Furthermore, a comprehensive meta-analysis 

incorporating genomic and transcriptomic sequencing data revealed that, in addition 

to the quantity of mutations measured as TMB, the quality of mutations (clonal vs. 

subclonal, SBS vs. ID etc.) played a major role in the response to ICIs88. A 

multivariable predictor incorporating multiple levels of biomarkers outperformed the 

use of TMB alone for predicting response to ICIs88.   

As WGS becomes increasingly implemented in clinical practice due to decreasing 

sequencing costs and improved turnaround times of sequencing reports89-93, it is 

presumably only a matter of time before mutational signatures become an important 

component of clinical decision making. 

Longitudinal phenotypic plasticity in response to therapy 

In Chapters 3-4, I comprehensively analyzed the genomic clonal evolution of 

cancer in response to treatment. In addition to genomic evolution, gliomas are 

characterized by marked transcriptional intratumoral heterogeneity and phenotypic 

plasticity94-100, which may increase their fitness advantage. These features are 

expected to further help bypass the evolutionary bottleneck caused by treatment. 

Cancer cells can activate a variety of non-genetic adaptive mechanisms that enable 

them to survive cancer treatment101. One converging mode of adaptation to 

therapeutic stress in various cancers appears to be the acquisition of cancer stemness 

signatures that impact tumor progression and clinical outcomes in patients. For 

example, B-cell lymphomas appear to enter a treatment-induced state of cancer cell 

senescence after chemotherapy102. It has been reported that a cell state switch 

involving upregulation of stem cell properties through activation of Wnt signaling 

enables cancer cells to have proliferative potential and escape cell-cycle blockade102. 

Consequently, intrinsic plasticity of cancer cells toward a stemness signature was 

enriched in relapsed B-cell lymphomas, indicating an adaptive growth advantage102. 

Strikingly similar mechanisms of treatment-induced stemness signature activation 

associated with drug-resistance and tumor recurrence have been observed in acute 
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myeloid leukemia (AML)103-105, colorectal cancer106, breast cancer107, melanoma108, 

and basal cell carcinoma109, among others.  

This consistent similarity in both hematologic and solid tumors suggested that 

similar phenotypic changes related to the stem cell signature might also play an 

important role in resistance to RT and TMZ in gliomas. Indeed, my analyses presented 

in Chapter 6 highlighted non-genetic evolutionary mechanisms, including an increase 

in a proliferative stemness signature that associated with an aggressive phenotype. 

Identification and targeting specific stemness signature pathways and genes 

represent a promising approach to overcome treatment failure. Recent studies have 

highlighted the role of epigenetic regulators in shaping distinct transcriptional cell 

states in gliomas99,100 and I suspect that a concept targeting such regulators may be 

an effective strategy to increase the efficacy of TMZ and RT, which needs to be tested 

in prospective studies.  

Integration of genetic and non-genetic treatment effects 

 In this thesis, I sought to characterize the patterns of mutations associated with 

RT and TMZ. Additionally, I found evidence of a quantitative increase in copy number 

(CN) alterations and structural variants (SV) that were related to RT. However, the 

qualitative nature of these larger genomic alterations remains unclear. In analogy to 

mutational signatures, comprehensive catalogs of CN signatures110,111 and SV 

signatures (SVs)112 have recently been established. Applying these tools, which were 

used only for pre-treatment primary cancer tissues, to the post-treatment GLASS and 

HMF datasets opens the opportunity of gaining insight into the mechanistic basis of 

previous quantitative observations, as presented in Chapter 4. Moreover, correlation 

of CN- and SV- signatures with treatment-associated mutational signatures may 

provide a detailed view of the whole genome effects of therapies. 

Cancer treatment is expected to modulate the interaction of cancer cells with 

their tumor microenvironment113. Specifically, longitudinal changes at the genomic 

level (including mutational, CN- and SV-signatures), could change the interplay with 

the immune system, potentially opening untapped opportunities for 

immunotherapies114,115. Chemotherapy and RT could lead to the generation of 

immunogenic neoantigens that could abrogate a local tumor immune response and 
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enhance the immunogenicity of immune-cold tumors116-118. Further follow-up analyses 

are needed to rigorously test these hypotheses. 

Ultimately, the goal of translational medicine is to provide new insights for the 

patient bedside and to improve patient outcomes. Genomics-based biomarkers, 

preferably at multiple levels using multi-omic approaches, have the potential to support 

clinical decision-making processes related to cancer diagnosis and prognosis, as well 

as prediction of treatment response and resistance. With the use of machine learning 

models and novel computational frameworks, the analysis of multimodal datasets is 

becoming increasingly feasible. In addition to the clinical and genomic features 

described in detail in this thesis, the use of data collected in routine clinical practice, 

such as radiological imaging, including computed tomography (CT), magnetic 

resonance imaging (MRI) and positron emission tomography (PET)119, as well as 

hematoxylin & eosin (H&E)-stained pathological slide images120-122, provide rich 

analytical outputs with clinical utility. The integration of multiple variables88 and 

modalities123 of clinical, molecular, radiological and histological imaging data into 

predictive models holds tremendous potential for biomarker development that will drive 

‘precision oncology’ in the coming years and decades124.  
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Chapter 8 
Appendices  
List of abbreviations 

53BP1 Tumor suppressor P53-binding protein 1 
a-EJ Alternative end joining 
AML Acute myeloid leukemia 
APOBEC apolipoprotein B mRNA editing enzyme, catalytic polypeptide 
bp Base pairs 
BRCA1/2 Breast cancer type 1/2 susceptibility protein 
C Cytosine 
CN Copy number 
CNV Copy number variation 
c-NHEJ Canonical/classical non-homologous end joining 
CDKN2A Cyclin-dependent kinase inhibitor 2A 
CHORD Classifier of HOmologous Recombination Deficiency 
CNS Central nervous system 
CT Connecticut 
CT Computed tomography 
CtIP Carboxy-terminal binding protein interacting protein 
d Day 
DNA Deoxyribonucleic acid 
DNA-PK DNA-dependent protein kinase 
DSB Double strand break 
FDA Food and Drug Administration 
GBM Glioblastoma 
G Guanine 
GLASS Glioma Longitudinal Analysis Consortium 
Gy Gray 
H&E Hematoxylin & eosin 
HM Hypermutation 
HMF Hartwig Medical Foundation 
HR Homologous recombination 
HRD Homologous recombination deficiency 
ICI Immune checkpoint inhibitor 
ID Insertion-deletion 
IDH Isocitrate dehyrogenase 
IDHwt IDH wild type 
IDHmut IDH mutant 
IDHmut-codel IDH mutant with chromosome arm 19/19q-codeletion 
IDHmut-noncodel IDH mutant without chromosome arm 19/19q-codeletion 
i.e. id est 
indel Insertion and deletion 
Mb Megabase 
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mg Milligram 
MGMT O(6)-methylguanine-DNA methyltransferase 
MLH1 MutL protein homolog 1 
MMR Mismatch repair 
MRI Magnetic resonance imaging 
MRN MRE11-RAD50-NBS1 complex 
MSH2 MutS-homolog 2 
MSH6 MutS-homolog 6 
mut Mutation 
m2 Square meter 
NMF Non-negative matrix factorization 
NGS Next generation sequencing 
O6-MeG O6-methylguanine 
PARP poly(ADP)-ribose polymerase 
PET Positron emission tomography 
PMS2 PMS1 homolog 2 
RCT Randomized controlled trial 
RNA Ribonucleic acid 
RT Radiotherapy 
SBS Single base substitution 
seq sequencing 
SSA Single strand annealing 
SSB Single strand break 
SV Structural variant 
T Thymine 
TMB Tumor mutational burden 
TMZ Temozolomide 
USA United States of America 
WES Whole exome sequencing 
WGS Whole genome sequencing 
WHO World Health Organization 
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