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Abstract: Understanding the diagnostic goal of medical reports is valuable information for under-
standing patient flows. This work focuses on extracting the reason for taking an MRI scan of Multiple
Sclerosis (MS) patients using the attached free-form reports: Diagnosis, Progression or Monitoring.
We investigate the performance of domain-dependent and general state-of-the-art language models
and their alignment with domain expertise. To this end, eXplainable Artificial Intelligence (XAI)
techniques are used to acquire insight into the inner workings of the model, which are verified on
their trustworthiness. The verified XAI explanations are then compared with explanations from a
domain expert, to indirectly determine the reliability of the model. BERTje, a Dutch Bidirectional En-
coder Representations from Transformers (BERT) model, outperforms RobBERT and MedRoBERTa.nl
in both accuracy and reliability. The latter model (MedRoBERTa.nl) is a domain-specific model,
while BERTje is a generic model, showing that domain-specific models are not always superior. Our
validation of BERTje in a small prospective study shows promising results for the potential uptake of
the model in a practical setting.

Keywords: natural language processing; health informatics; BERT; text classification

1. Introduction

With the rising costs for healthcare [1], policy makers want the reduce costs while
ensuring proper patient treatment. To inform policy makers where and how improvements
can be made, it is key that patient flows are quantified. Knowing where to go is impos-
sible without knowing where one stands. Furthermore, with the same data (quantified
patient flows) it is possible to train models to, e.g., predict risk probabilities or advise
in treatments, enabling further healthcare improvements. Clearly, well-annotated data
is important. However, medical records are often free-form reports, hiding information
in unstructured sentences and inconsistent language. Requiring medical personnel to
manually enter information into dedicated discrete fields, instead of writing free-form
reports (to bypass the natural language problems), is more time-consuming, inflexible, and
error-prone [2–5]. Therefore, to (further) implement Data-Driven Healthcare—the latest
development in healthcare [6]—one needs automatic analysis of natural language. One
example is extracting the reason for taking an MRI scan of Multiple Sclerosis (MS) patients
using the attached free-form reports: Diagnosis, Progression or Monitoring.

Automatic analysis of free-form electronic health records is nearly impossible without
specialized Natural Language Processing (NLP) models. Specialized models are needed be-
cause general language models are (A) often only able to handle English corpora and/or (B)
only able to handle ’standard’ language as found in books or on the web. Namely, medical
records differ considerably in their language usage. They contain a magnitude of medical
terms: e.g., symptoms, names of diseases and treatments, devices, and instruments [7],
which occur only seldom in books, news articles and on the web (which are frequently used
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for training NLP models). Furthermore, the records are often written in a time-efficient
manner, resulting in—amongst others—unintentional grammatical and spelling mistakes,
and intentionally omitting function words and using domain-specific abbreviations.

If a model is able to correctly classify the reports, it is also key that the model classifies
the reports based on the right reasons instead of spurious features. This can be investigated
through the usage of eXplainable Artificial Intelligence (XAI) techniques, which give insight
into the inner workings of the model. The goal is to have a model of this domain that is
accurate, is able to correctly classify the reports reliably, and uses the correct features for
its decision.

In this study, we apply multiple state-of-the-art NLP models to classify the MRI reports
of MS patients. MRI scans are conducted for specific purposes on MS patients, radiologists
produce a report for each scan that details the underlying rationale for performing the MRI.
Using NLP models, we extract the reasons for taking the MRI, quantifying the model’s
ability to classify MRI reports from MS patients. It’s worth noting that we do not classify the
MRI scans directly, but rather the accompanying reports. We compare conventional NLP
models against Bidirectional Encoder Representations from Transformers (BERT) models.
BERT is a machine learning framework for NLP introduced by Devlin et al., composed
of Transformer encoder layers and trained to learn latent representations of words and
sentences [8]. Next, we investigate their ability through the usage of XAI techniques and
compare the explanations with explanations given by a domain expert (a board-certified
radiologist specializing in neurology). We show that BERTje outperforms other BERT
models in this task, both by achieving high accuracy and reasoning close to a domain
expert. Most notably, BERTje outperforms a domain-specific BERT model, indicating that
for this task a domain-generic model is superior. Additional to the retrospective evaluation,
we validate the model in a small prospective study and observe similar performance on the
new dataset.

2. Related Work

We review work on natural language processing, and the BERT transformer model
with special attention to the Dutch language. Further, we briefly methods from the area of
XAI aiming at eliciting the reasoning of the model.

2.1. Natural Language Processing and Language Models

In classical natural language processing, the text is converted into vectors by first cre-
ating a vocabulary of words and then estimating the importance of a term for a document.
A prominent example for estimating the importance of a term is Term Frequency-Inverse
Document Frequency (TF-IDF) [9]. The most recent revolution in NLP came with the intro-
duction of a new neural network architecture called Transformers [10], originally introduced
for machine translation, which utilizes attention layers and is able to handle long-range
dependencies in a sentence. This architecture has been used in auto-regressive models such
as GPT [11], GPT-2 [12] and XLNet [13]. To counter the unidirectional constraints of GPT
and GPT-2, a bidirectional Transformer model, Bidirectional Encoder Representations from
Transformers (BERT) [8], was introduced.

BERT has shown potential in a wide range of fields. Originally created and published
in 2018, BERT was designed to learn deep bidirectional representations from unlabelled
text [8]. It is pre-trained using two unsupervised tasks: Masked Language Modelling
(MLM) and Next Sentence Prediction (NSP). BERT’s primary limitations are the significant
model size which makes it computationally demanding to train and apply, as well as its
incapability to handle non-English corpora. While BERT was created for tasks with an
English corpus, mBERT was created using all Wikipedia pages with 104 different languages,
making it able to handle tasks in multiple languages [8]. However, this resulted in worse or
comparable performance to monolingual models with BERT’s architecture settings [14]. It
has been speculated that this is because Wikipedia is not representative of general language
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use [15]. Currently, there exist monolingual models in at least 21 different languages [16].
For Dutch, there are three different monolingual domain-generic models.

2.2. Dutch BERT Models

The three Dutch domain-generic models are BERT-NL [17], BERTje [15], and Rob-
BERT [18]. BERT-NL [17] is a BERT-based model that was pre-trained exclusively on the
SoNaR-500 corpus [19], a corpus comprising 500 million words from a wide range of do-
mains and genres. In contrast, BERTje (also BERT-based) was not only pre-trained on this
corpus but also on books, news articles and related documents, and Wikipedia articles (total
12 GB) [15]. The last model is RobBERT [18] (RoBERTa-based), which was pre-trained on
the Dutch part of the OSCAR corpus (39 GB), a pre-processed version of the 2018 Common
Crawl [20]. RobBERTv2 outperformed BERTje in Die/Dat Disambiguation (DDD) and Sen-
timent Analysis (SA) [18]. However, a larger pre-training dataset does not exclusively mean
better performance. BERTje has shown better results than RobBERT (but also BERT-NL
and mBERT) in Named Entity Recognition (NER) and Part-of-speech tagging (POS) [21].
Additionally, a distilled version of RobBERT has been created to increase efficiency with
only a small decrease in performance [22].

BERT models can be customized for specific domains by training them further with
domain-specific vocabulary. There are three types of BERT models: (i) pre-trained on a
generic corpus; (ii) pre-trained on a generic corpus and further on a domain corpus; and
(iii) pre-trained exclusively on a domain corpus. All types require fine-tuning on a specific
task after pre-training. Domain-specific BERT models can have significant benefits [23,24],
but training from scratch requires a large amount of data and computational resources.
Examples of Dutch domain-specific models include ArcheoBERTje [25] (type ii), Legal-
RobBERT [26] (type ii) and MedRoBERTa.nl [27] (type iii).

2.3. Explainable AI

As AI technology advances, understanding the inner workings of models becomes
increasingly important. XAI techniques can be used to verify the trustworthiness of
models and gain insight into how they can be improved. In NLP, there are several options
for explaining the inner workings of models, which can be categorized based on their
approaches, such as surrogate model, example-driven, induction, provenance, and feature-
importance [28]. Surrogate model XAI techniques involve training a second model to
explain predictions, while example-driven XAI techniques provide comparable examples
to explain predictions. Induction XAI techniques use human-readable representations,
and provenance XAI techniques show a subset of the prediction process [29]. Feature-
importance XAI techniques, such as Integrated Gradients (IG) [30], Local Interpretable
Model-Agnostic Explanation (LIME) [31], and Shapley Additive Explanation (SHAP) [32],
quantify the impact of specific features on the model’s predictions.

2.4. Natural Language Processing on Radiology Reports

The usage of NLP for the automatic analysis of radiology reports has a long history.
In recent history, it is mostly used for information extraction and report classification.
Examples of the former are Named Entity Recognition in brain MRI and CT reports [33],
and quantifying number, associated factors, and topography of cerebral microbleeds from
brain MRI report [34]. Examples of the latter are the classification of brain MRI reports into
acute ischemic stroke [35], classification of ischemic stroke subtype [36], and systematically
identification silent brain infarction cases [37]. BERT-based methods are also used in this
domain, e.g., in labeling radiographic images, so they can be used as training data for a
further model [38,39]. Specifically for MS, rule-based NLP algorithms were developed
to identify and extract information concerning the clinical course of disease [40], feature-
extraction with Naïve Bayes classification was used to diagnose patients with MS [41], and
a Convolutional Neural Network was used to predict the Expanded Disability Status Scale
(EDSS) to monitor the progression of MS patients [41]. More relevant to this paper, BERT
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was also used for MS. Namely, MS-BERT was created to generate embeddings and predict
EDSS together with MSBC (a classifier for applying MS-BERT) [42]. MS-BERT has been
trained on notes from neurological examinations. However, to our knowledge, BERT-based
models have never before been used on Dutch radiology reports from MS patients.

3. Dataset and Preprocessing

We use a dataset of 826 reports for MRI scans on 360 different Multiple Sclerosis (MS)
patients (76.1% female, 24.9% male). The average age of a patient at the time of scanning
was 44 ± 13 years. 22.5% came from Almelo and 14.2% from Hengelo (two municipalities
where the hospital has a location) and the other 60.3% from surrounding municipalities in
the province (Overijssel). 3.1% came from municipalities outside the province.

In each report, the radiologist notes relevant information about the patient (symptoms,
medical history), their findings and a conclusion in a report. The reports are from MRI
scans with 3DT1 after contrast (T1 Vibe FS contrast) and/or 3DFLAIR (T2 SPACE Dark
fluid), made on patients under the Dutch MS invoice code (0330-0531 or 0330-9920). The
dataset contains reports from over 5 years (1 January 2017 up to and including 3 May 2022).

Each report was manually classified by a radiologist into one of three classes: (1) Diag-
nosis; (2) Progression; or (3) Monitoring. This classification was performed in accordance
with the MAGNIMS (Magnetic Resonance Imaging in MS) criteria [43]. Table 1 provides
an overview of the dataset, the number of reports is calculated after the data cleaning
steps detailed later in this section. The dataset is quite imbalanced, therefore we applied
to oversample before training the models (cf. Section 4.3 of details). Furthermore, class 3
can semantically be seen as a subset of class 2. Since there is no overlap between classes 1
and 2, we treat the problem as a single-label classification problem instead of a multi-label
classification problem.

Table 1. MRI report classification scheme and report distribution.

Label Description Reports

Diagnosis For initial diagnosis, or to create a (new) baseline 271
Progression Progression or monitoring medication effect 531
Monitoring Monitoring on secondary complications (mostly PML) 21

We apply the following standard preprocessing steps: tokenization, lemmatization,
and lower casing. We remove new line characters, stopwords (using the list provided
in the NLTK toolkit), punctuation, single character-words, and numbers. Tokenization
and lemmatization is not perfect (in Dutch), especially for medical words. Examples of
incorrect processed words are abbreviations: “afwk” is short for “afwijking” (impairment)
and should be processed to “afwijken” (impair) but is unchanged, domain-specific words:
“susceptibiliteitsartefacten” (susceptibility artifacts) should be processed to “susceptibiliteit-
sartefact” but remained unchanged, and spelling errors: “coordinatie” should be corrected
to “coördinatie” (coordination) but remained unchanged. These examples can be found in
context in the reports provided in Appendix A.

To verify the intra-annotator agreement, we ask the radiologist to re-classify a subset
of 51 reports. To reduce manual labeling effort, we chose the reports for relabelling as
follows. We randomly selected 8 reports of each class (i.e., 24 in total), and 22 reports
that were consistently classified wrong by a preliminary version of a model. We added
5 reports (1 for class 1, 1 for class 2, 3 for class 3) that that do not contain words identified
as relevant for their ground-truth class (using feature importance and preliminary versions
of the models).

Next, the radiologist reclassified the reports without access to the initial label. If a
report is classified differently than the first time, we ask the radiologist to classify those
again so we can take the majority as ground truth. Analyzing the annotations, we observe
the following error cases:
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Ambiguity: Both, classes 1 and 2 are correct (2 reports).

Exception: This report is an exception (3 reports). Patient is pregnant, patient switched
hospital, or standard protocol was not followed.

Exclusion: This report should not be in the dataset. The patient is not a MS patient, or the
report is not about an MRI scan related to their MS (3 reports).

The ambiguous cases and exceptions were among the 22 reports that were constantly
mislabelled by preliminary versions of the classifier. All reports in Exclusion belong to class
1 (Diagnosis). Overall, 13 out of 51 reports were labeled differently than the first time. All of
them were constantly mislabelled by the classifiers before. Based on the subset (without the
exclusion cases), this implies a Cohen’s kappa score of 0.6. However, when only considering the
randomly selected reports, the kappa score is 1, implying a high intra-annotator agreement. The
label of these reports was corrected and the reports in Exclusion were removed before training.
The numbers given in Table 1 reflect these changes, which results in 823 reports in total.

4. Experimental Setup

Our goal is to investigate whether NLP models can accurately classify MS reports
and which models are more reliable for the task. We apply XAI techniques to acquire
explanations for the model’s results, and then match these explanations with explanations
given by a domain expert to check the model’s reliability. We repeat this for several models
and compare the results. An overview of our approach is shown in Figure 1.

…

Report
Classification 

Models

Model Explainer 
(Shap, LIME, IG)

MRI Reports 
01/01/2017 to 03/05/2022

Technical 
Evaluation

Report
Classification 

Model

Important 
words

Radiologist

Annotation

Verification

Leave-one-out training

Leave-one-out 
Testing Retrospective StudyProspective Study

MRI Reports 
06/05/2022 to 24/11/2022

Full Training

Technical 
Evaluation

…

Testing

Figure 1. Overview of our study setup. In the retrospective study (right), we train and test models on
data collected retrospectively. The models are evaluated with leave-one-out cross-validation. Three
standard XAI feature importance techniques are applied to the trained models, and their resulting
feature importance is verified by a domain expert. The explanations are additionally validated w.r.t.
to their fidelity to the model they explain. The setup and results of the prospective study are reported
in Section 5.4.

4.1. Machine Learning Models

We compare the deep learning models with classical approaches. Our baselines use
TF-IDF feature space weighting or doc2vec embeddings. As classifiers, we use a Support
Vector Machine (SVM), a Random Forest (RF) model and a logistic regression (LR) classifier
with standard settings (https://scikit-learn.org, accessed on 10 October 2022). Both TF-IDF
and doc2vec models are tuned using the training dataset. The doc2vec model is trained for
20 epochs with default settings [44]. Additionally, we report the performance of a majority
classifier (i.e., assigning all test samples to class 1).

Further, we evaluate three language models based on the BERT architecture: BERTje [15],
RobBERT [18], and MedRoBERTa.nl [27]. RobBERT v2 is used: https://huggingface.co/
pdelobelle/robbert-v2-dutch-base (accessed on 10 October 2022). We use pretrained versions
of all language models in two different settings, as feature representations or in an end-to-end

https://scikit-learn.org
https://huggingface.co/pdelobelle/robbert-v2-dutch-base
https://huggingface.co/pdelobelle/robbert-v2-dutch-base
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fashion. To use the feature representations, we pass the reports through the pre-trained
models and obtain the text embedding. We then train SVM, RF and LR classifiers on those
embeddings. In the end-to-end approach, we do not use the hidden states as fixed features
but train the model end-to-end, i.e., all model parameters are trainable. Specifically, we use
the Adam optimizer with a learning rate of 5 × 10−5, and cross-entropy loss and train the
models for 2 epochs [45]. We use the Keras deep learning library with Tensorflow models.

4.2. Model Explanations

We use three XAI feature importance methods to get insight into end-to-end BERT
models. More specifically, we apply SHAP [32], LIME [31] and IG [30]. We apply SHAP,
LIME and IG, on all test reports resulting in five important words per report with associated
importance scores The methods retrieve the five most important words for the model
prediction, independent of whether the prediction is correct or not. The goal is to explain
the model as is, not the prediction as it should be were the model correct for the error cases.

We test the resulting explanations by measuring the classifier’s prediction with only
(Fidelity) and without the important words (Deletion Check) [46]. If relevant words for
the classifier were selected by the explanation method, one would expect that the accuracy
stayed similar to the original model with only the important words and is significantly
reduced if the important words are removed.

4.3. Evaluation and Verification with Domain Knowledge

To technically evaluate the models, we apply a leave-one-out evaluation protocol. In
each training iteration, we use oversampling to account for class imbalance. We report
accuracy, macro-averaged precision, recall and F1. Accuracy, precision, recall and F1 can be
defined in terms of the number of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN). Accuracy is the ratio of true positives and all predictions.
Precision is the ratio of TP and all samples that were predicted as true. Recall is the ratio of
TP and all samples that should have been predicted as true. F1 is the harmonic mean of
precision and recall:

accuracy =
TP

TP + FP + TN + FN

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2
precision · recall

precision + recall

In macro-averaging, all values are first calculated for each class and then averaged,
giving each class the same importance for the final prediction independent of the number
of samples for this class. We additionally report the performance of the Majority Baseline,
i.e., a classifier that predicts the most common class (Progression) for each test sample as a
practical lower bound.

Additionally, we test how well the model explanations (i.e., the as important identified
words) align with domain knowledge. To this end, we ask the radiologist to indicate which
words they used to label the reports (using the same subset as in Section 3). We then present
the list of important words identified by the feature importance techniques and ask the
radiologist to judge them for their relevancy to the decision. For example, the word “MRI”
would be rated as a spurious feature, because all reports are written about MRI scans, and
the word MRI gives no information about its class. The word “baseline”, however, can be
considered valid for class 1 (diagnosing and (re)baseline). We summarise these findings
into several word lists, namely valid words (one list per class), perhaps valid words (whose
validity depends on the context, one list per class) and wrong words (spurious features).
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We then determine for each word retrieved by the feature importance if they are
(i) valid, (ii) perhaps valid, or (iii) invalid. A word could be invalid for two reasons. Either
is contained in the list of “wrong words”, or it is in the “valid” or “perhaps valid” list of
another class, but not in the list of the predicted class. From the feature importance methods,
we obtain the five most important words with their importance score si (cf. Section 4.2).
We normalize these scores such that ∑i si = 1, manually correct misspellings and resolve
synonyms. For each report, we then categorize the words as (i) valid, (ii) perhaps valid,
and (iii) invalid using the manually curated list described above and sum the weights per
category. Thus, we obtain an indication of how much the model relies on valid, perhaps
valid, or invalid words. We summarise these results by averaging over all leave-one-out
splits (i.e., averaging over all reports) to obtain a score for each BERT model.

5. Results

In the following, we report the performance of the models (cf. Section 5.1), the technical
quality of the explanations and the verification of the explanations (cf. Section 5.2), and
consequently of the models with domain knowledge (cf. Section 5.3). Finally, Section 5.4
reports on the results of the prospective study.

5.1. Technical Evaluation

The results of the leave-one-out evaluation are shown in Table 2. Overall, all tested
combinations of feature representations and classifiers achieve high accuracy (≥0.79),
outperforming a simple majority classifier (accuracy 0.65) by a large margin. The best
classical model (TF-IDF + LR, F1 = 0.83) is on par with the best end-to-end deep learning
approach (BERTje, F1 = 0.8), while the latter has better precision and recall trade-off. We find
a huge difference in performance for the different BERT models, ranging from F1 = 0.63 for
MedRobERTa.nl to F1 = 0.82 for BERTje. This can also be seen in Figure 2, which illustrates
that only BERTje classified the majority of class 3 correctly. However, all three BERT models
frequently classify classes 1 and 2 correctly.

Table 2. Leave-one-out evaluation results reporting accuracy, macro-averaged precision, recall and F1.
BERT-based model + LR/RF/SVM indicates that the classifier was trained on hidden states yielded
by the encoder stack of the pre-trained BERT-based model. Best values marked bold.

Accuracy Precision Recall F1

TF-IDF

+LR 0.89 0.92 0.78 0.83
+RF 0.86 0.91 0.60 0.63
+SVM 0.85 0.89 0.63 0.67

doc2vec

+LR 0.82 0.63 0.65 0.64
+RF 0.78 0.68 0.57 0.61
+SVM 0.82 0.67 0.64 0.66

BERTje

+LR 0.84 0.71 0.65 0.67
+RF 0.81 0.55 0.52 0.53
+SVM 0.82 0.65 0.65 0.65
end-to-end 0.90 0.81 0.82 0.82

RobBERT

+LR 0.86 0.78 0.79 0.79
+RF 0.84 0.56 0.55 0.55
+SVM 0.79 0.63 0.81 0.66
end-to-end 0.87 0.72 0.64 0.67
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Table 2. Cont.

Accuracy Precision Recall F1

MedRoBERTa.nl

+LR 0.80 0.59 0.60 0.60
+RF 0.83 0.88 0.56 0.57
+SVM 0.80 0.62 0.71 0.64
end-to-end 0.89 0.70 0.62 0.63

Majority Baseline 0.65 0.22 0.33 0.26

Figure 2. Confusion matrices for the three BERT models.

5.2. Model Explanations

To validate the correctness and completeness of the explanation w.r.t. to the model,
we report the model’s performance with only the important words, and without important
words. Results are shown in Table 3. For both, SHAP and LIME, the reports can be classified
with similar accuracy with only the five most important words than with the original report.
Removing those words, however, also leads to similar accuracies. This means that the five
words are important and sufficient for accurate classification, but without those words,
there is enough information in other words in the report to classify them correctly. For IG,
the accuracy with only the important words drops significantly (from the range of 0.90 to
0.70), while classification accuracy is higher without the important words. We conclude
that IG fails to identify the words that are important for the classifier’s decision without
additional context, leaving them at least partially in the reports “without important words”.
Examples of (anonymized) reports with their respective highlighted words are shown in
Appendix A.

Table 3. Accuracy with reduced reports, based on feature importance methods. Accuracy of the
majority classifier is 0.65.

BERTje SHAP LIME IG

full report no selection: 0.90
only important words 0.89 0.76 0.69
without important words 0.87 0.75 0.73

RobBERT SHAP LIME IG

full report no selection: 0.87
only important words 0.87 0.80 0.68
without important words 0.87 0.80 0.73

MedRoBERTa.nl SHAP LIME IG

full report no selection: 0.89
only important words 0.90 0.83 0.74
without important words 0.88 0.83 0.80

5.3. Verification with Domain Knowledge

To analyze if the outcomes of the XAI techniques match with domain knowledge,
we compare words identified as important by the feature importance techniques with
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lists formulated by a radiologist. The results are shown in Table 4. Spelling mistakes
and synonyms are corrected manually. If a word from the XAI explanations has not been
encountered by the radiologist, it is sorted in the “unknown” category. For all models,
either SHAP or LIME is the most positive, as their results indicate that the models base
their predictions for the most part on valid words. Specifically, (perhaps) valid words
have—according to LIME—on average an impact of 0.54 on BERTje’s predictions, 0.52 for
RobBERT and 0.41 for MedRoBERTa.nl. For SHAP this is 0.56, 0.51, and 0.38, respectively.
This means that LIME and SHAP explanations align largely with domain knowledge.

Table 4. Comparison between important words as identified by XAI methods and domain knowledge
(manually constructed lists). “Unknown”: word not in manual lists, thus unable to determine which
category it should fall in.

BERTje SHAP LIME IG

valid 0.53 ± 0.26 0.47 ± 0.29 0.22 ± 0.18
perhaps valid 0.03 ± 0.08 0.07 ± 0.13 0.06 ± 0.11
unknown 0.35 ± 0.27 0.30 ± 0.28 0.32 ± 0.21
invalid: other 0.04 ± 0.08 0.10 ± 0.17 0.08 ± 0.13
invalid: wrong 0.05 ± 0.09 0.06 ± 0.11 0.32 ± 0.17

RobBERT SHAP LIME IG

valid 0.49 ± 0.26 0.47 ± 0.26 0.26 ± 0.24
perhaps valid 0.02 ± 0.07 0.05 ± 0.10 0.03 ± 0.09
unknown 0.33 ± 0.28 0.27 ± 0.25 0.62 ± 0.26
invalid: other 0.11 ± 0.16 0.15 ± 0.16 0.04 ± 0.10
invalid: wrong 0.04 ± 0.09 0.07 ± 0.12 0.05 ± 0.10

MedRoBERTa.nl SHAP LIME IG

valid 0.36 ± 0.25 0.37 ± 0.25 0.23 ± 0.20
perhaps valid 0.02 ± 0.07 0.03 ± 0.06 0.01 ± 0.05
unknown 0.46 ± 0.28 0.41 ± 0.26 0.53 ± 0.28
invalid: other 0.08 ± 0.13 0.12 ± 0.16 0.12 ± 0.18
invalid: wrong 0.07 ± 0.11 0.07 ± 0.13 0.11 ± 0.15

5.4. Prospective Study

All additional MRI reports that were written in the hospital during the course of the
work were subjected to a prospective study. Note that during the study time, only MRIs
for diagnosis and progression were taken, thus, we do not have reports of the (rare) class
“Monitoring” in our test set. We trained our best-performing end-to-end model (BERTje)
on the full original dataset and evaluated it on the datasets with the new reports. We use
the same preprocessing (including oversampling) and hyperparameters as reported before.
Table 5 reports on the results of this study. We reported weighted recall, precision and
F1, as there are no reports from class 3 (Monitoring) in the dataset. The accuracy (0.92) is
comparable to the accuracy found in the retrospective study (0.90).

Table 5. Overview of the prospective study using a finetuned BERTje: number of reports in each
dataset and the results on the new dataset. Reporting accuracy and weighted precision, recall and F1.

Dataset
Set Type

Type of Reports

Diagnosis Progression Monitoring

Train (Original) 271 531 21
Test (New) 19 101 0

Results
(BERTje)

Metrics

Accuracy Precision Recall F1-Score

0.92 0.95 0.92 0.93
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6. Conclusions and Future Work

In this work, we have investigated the task of classifying radiology reports from MS
patients with three Dutch BERT models: two domain-generic models and one domain-
specific model. BERTje outperforms the other tested BERT models and retains similar
predictive performance in a prospective study. A simple logistic regression classifier in TF-
IDF feature space, however, achieves comparable performance. We expect BERTje to benefit
from a larger dataset, be able to exploit its distributed reasoning strategies and outperform
the bag-of-words approaches. While BERTje (a domain-generic model) outperforming
RobBERT (another domain-generic model) is not that notable, BERTje outperforming
MedRoBERTa.nl (a domain-specific model) in the domain of the latter is quite notable. This
implies that a domain-specific BERT model is not always better than a domain-generic
model for a domain-specific task. Both RobBERT and MedRoBERTa.nl are RoBERTa-based,
and BERTje (BERT-based) outperformed them both, so it could also be that BERT-based
models are better suited for this specific task.

Assessing the most important words for the decision with the feature importance
technique, we found (i) SHAP and LIME to produce correct features, which are (ii) largely
in correspondence with domain knowledge.

Our reports were annotated by one radiologist because annotations from domain
experts are expensive, training of radiologists with the annotation scheme requires addi-
tional time, and inter-annotator agreement on tasks involving natural language has been
shown to be low. For instance, Bobicev and Sokolova report values between 0.5 and 0.7
for a sentiment classification task [47]. We observe an intra-annotator score of 0.6 (Cohen’s
kappa) on all reports that were subjected to a second annotation (including the difficult
ones), whereas for the random samples, we observe a score of 1.0. In order to obtain a
solid ground truth, we repeated the annotation for reports that we differently labeled
in previous steps (cf. Section 3). We acknowledge that in a reproduction study, slightly
different ground-truth labels might emerge due to inter-annotator differences. However,
we do not expect those differences to have a negative impact on the performance of the
classifiers or the general results.

Labeling the reports is not necessarily unambiguous for radiologists. For cases where
the model was frequently in disagreement with the original label, we observed a low intra-
annotator agreement, whereas other cases had a high intra-annotator agreement. However,
it is important to note that only a subsection of the dataset was reviewed and corrected.
Therefore it is possible that a non-significant portion of the cases currently misclassified by
BERTje cannot be classified by either the radiologist or the model due to their complexity
or ambiguity. Alternatively, it is possible that the radiologist has misclassified some cases.
The latter implies that the accuracy of BERTje might be underestimated, as more reports
misclassified by BERTje could be misclassified by the radiologist instead.
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Appendix A. Example Reports

To give the reader some concrete examples, we have included several reports, see
Tables A1, A2 and A4. All reports were anonymised through replacement of sensitive health
information by surrogates, comparable to methods of Trienes et al. [48]. The prediction of
BERTje (trained on 80% of the dataset) and its explanations are also included.

Table A1. Example reports for class 1 with explanations indicated. Bold: LIME, underlined: SHAP,
and italics: IG. Prediction with only the important words from LIME: 0, without: 0. Prediction with
only the important words from SHAP: 0, without: 0. Prediction with only the important words from
IG: 0, without: 1.

Example A: Label 1, correctly classified as label 1 by BERTje

Klinische gegevens:
migraine aanvallen en visuskl afwk cerebraal ??

Verslag:
Onvolledig onderzoek aangezien patiënt voortijdig het onder-
zoek wou staken. Derhalve alleen sagittale T1, axiale T2 en
T2 TIRM sequentie. Ter correlatie de CT van 11/05/2015.
Hersenstam, pons, mesencephalon normaal. Cerebellum
zonder afwijkingen. Basale kernen en thalami zonder afwi-
jkingen. Witte stof en de grijze stof normaal. Normale sella
en suprasellaire regio. Ventrikel-systeem, basale cisternen en
sulci normaal. Flow-voids zonder afwijkingen.

Conclusie:
Voor zover te beoordelen bij incompleet onderzoek normaal
aspekt van het brein.

Clinical data:
migraine attacks and visuskl impairment cerebral ??

Report:
Incomplete study as patient wanted to stop the study prema-
turely. Therefore only sagittal T1, axial T2 and T2 TIRM
sequence. For correlation, the CT of 11/05/2015.
Brain stem, pons, mesencephalon normal. Cerebellum with-
out abnormalities. Basal nuclei and thalami without abnor-
malities. White matter and gray matter normal. Normal
sella and suprasellar region. Ventricular system, basal cis-
terns and sulci normal. Flow-voids without anomalies.

Conclusion:
As far as can be judged by incomplete examination, normal
aspect of the brain.

Example B: Label 1, misclassified as label 2 by BERTje

Klinische gegevens:
VG: Witte stof afwijkingen. Controle, toename, aankleuring?

Verslag:
Vergeleken met 23/12/2016. Volgens nieuw MS protocol, di-
rect na i.v. gadolinium. Het aantal en locatie van de witte
stof afwijkingen is ten opzichte van 23/12/2016 niet wezen-
lijk veranderd. Er zijn geen aankleurende laesies, geen ac-
tieve MS plaques. Ook in het cervicale myelum zijn geen
aankleurende MS plaques. Er is geen aanwijzing voor se-
cundair corticaal weefselverlies. Slanke centrale en perifere
liquorruimten en normale windingen. Geen verstoring van
bloedhersenbarrière. Geen andere nevenbevindingen.

Conclusie:
Geen aanwijzing voor toename van witte stof afwijkingen ten
opzichte van 2016 maar ook niet ten opzichte van 2014. Geen
aankleurende plaques en geen atrofie.

Clinical data:
VG: White matter abnormalities. Control, increase, enhancement
?

Report:
Compared to 23/12/2016. According to new MS protocol, im-
mediately after i.v. gadolinium. The number and location of
the white matter abnormalities has not changed significantly
compared to 23/12/2016. There are no coloring lesions, no
active MS plaques. There are also no coloring MS plaques in
the cervical myelum. There is no evidence of secondary corti-
cal tissue loss. Slim central and peripheral liquorspaces and
normal convolutions. No disruption of blood brain barrier.
No other incidental findings.

Conclusion:
No indication of an increase in white matter abnormalities
compared to 2016, but also not compared to 2014. No
coloring plaques and no atrophy.

gitlab.com/MTRietberg/nlp-ms-mri
gitlab.com/MTRietberg/nlp-ms-mri
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Table A2. Example reports for class 2 with explanations indicated. Bold: LIME, underlined: SHAP,
and italics: IG.

Example C: Label 2, correctly classified as label 2 by BERTje

Klinische gegevens:
controle RR MS ziekte activiteit

Verslag:
Bekende meervoudige periventriculaire, juxtacorticale en
infratentoriële laesies. Ongewijzigd sinds april 2012. Geen
aankleuring. Geen relevant volumeverlies van het hersen-
parenchym. Normaal aspekt van de weke delen van
aangezicht en de ossale structuren. Geen gebieden met abnor-
male susceptibiliteitsartefacten. Lichte inflammatoire ken-
merken van de neusbijholten.

Conclusie:
Stabiel beeld.

Clinical data:
control RR MS disease activity

Report:
Known multiple periventricular, juxtacortical, and infraten-
torial lesions. Unchanged since April 2012. No coloring.
No relevant volume loss of the brain parenchyma. Normal
aspect of the soft tissues of the face and the osseous struc-
tures. No areas of abnormal susceptibility artifacts. Mild
inflammatory features of the paranasal sinuses.

Conclusion:
Stable image.

Example D: Label 2, misclassified as label 1 by BERTje

Klinische gegevens:
Pijn en verminderde kracht in rechterlichaamshelft; bek-
end met MS .aankleurende laesie?

Verslag:
MRI hersenen met contrast:
Geen vergelijkend onderzoek mogelijk. Het hersen-
parenchym vertoont een periventriculaire witte stoflaesie
frontopariëtale overgang linker hemisfeer en een laesie ven-
traal in het stamgebied paramediaan rechts. Beide laesies
kleuren niet aan. Postcontrast geen pathologische aankleurin-
gen met name niet van de witte stoflaesie. Ventrikelsyste-
men licht symmetrisch verwijd. Flow-void in de grote in-
tracraniële vaten. In de parasellaire regio, brughoekregio
en cervico-occipitale overgang geen bijzonderheden. Geen
focale diffusierestrictie. Geen susceptibiliteitsartefacten ver-
dacht voor oude bloedingen.

Conclusie:
Een ovoïde niet-aankleurende periventriculaire witte stoflae-
sie rechterhemisfeer en een kleine (witte stof) laesie para-
mediaan links in het stamgebied. Beeld passend bij
demyelinisatie plaques.

Clinical data:
Pain and reduced strength in right half of the body; famil-
iar with MS .coloring lesion?

Report:
MRI brain with contrast:
No comparative study possible. The brain parenchyma
shows a periventricular white matter lesion frontoparietal
junction left hemisphere and a lesion ventrally in the trunk
region paramedian right. Both lesions do not stain. Post-
contrast no pathological enhancements especially not of the
white matter lesion. Ventricular systems slightly symmetri-
cally dilated. Flow-void in the great intracranial vessels. No
abnormalities in the parasellar region, bridge angle region
and cervico-occipital junction. No focal diffusion restriction.
No susceptibility artifacts suspected of old bleeding.

Conclusion:
An ovoid non-coloring periventricular white matter lesion
right hemisphere and a small (white matter) paramedian le-
sion in the left trunk region. Image matching demyelination
plaques.

Table A3. Predictions of BERTje on the examples: unchanged reports, only the important words and
without the important words.

Only the Important Words Without the Important Words

Example Ground Truth Unchanged Report LIME SHAP IG LIME SHAP IG

A 1 1 1 1 2 1 1 1
B 1 2 2 2 2 2 2 2
C 2 2 2 2 2 1 2 2
D 2 1 1 1 2 2 2 1
E 3 3 3 3 3 2 2 2
F 3 2 2 2 2 2 2 2
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Table A4. Example reports for class 3 with explanations indicated. Bold: LIME, underlined: SHAP,
and italics: IG.

Example E: Label 3, correctly classified as label 3 by BERTje

Klinische gegevens:
controle scan na start Natalizumab.
PML? Nieuwe afwijkingen?

Verslag:
Bekende MS. Ten opzichte van het meest recente onderzoek
van 22/08/2014 is er een evidente afname van het oedeem
rondom de witte stoflaesies, vrijwel op alle niveaus. Witte
stoflaesies lijken ook iets afgenomen in volume. Er is nu
geen aankleuring meer na i.v. gadolinium. Er zijn geen
nieuwe witte stof laesies bijgekomen. Kleine fusiforme laesie
tegen de falx aangelegen aan de linkerzijde occipitaal berust
waarschijnlijk op een klein falx meningeoom zie rondom
IMA 61 van serie 7 en rondom IMA 65 van serie 7. Er is
conform eerder lichte verwijding van centrale liquorruimten.
Perifere liquorruimten zijn nog normaal. Geen aanwijzin-
gen voor doorgemaakte microbloedingen op de SWI. Geen
diffusierestrictie op de DWI.

Conclusie:
Evidente afname van het perifocale oedeem rondom de lae-
sies op het vorig onderzoek. De bekende MS laesies kleuren
op huidig onderzoek niet aan. Er zijn geen nieuwe witte
stoflaesies. Evidente verbetering van het beeld. Mogelijk een
klein falx meningeoompje links occipitaal.

Clinical data:
control scan after starting Natalizumab.
PML? New deviations?

Report:
Known MS. Compared to the most recent study of
22/08/2014, there is an evident decrease in the edema around
the white matter lesions, almost at all levels. White matter
lesions also appear to be slightly reduced in volume. There
is now no more coloring after i.v. gadolinium. There were
no new white matter lesions. Small fusiform lesion adjacent
to the falx on the left occipital side probably due to a small
falx meningioma see surrounding IMA 61 of series 7 and
around IMA 65 of series 7. As before, there is slight dilation
of central liquor spaces. Peripheral liquorspaces are normal.
No evidence of prior microbleeds on the SWI. No diffusion
restriction on the DWI.

Conclusion:
Evident reduction of the perifocal edema around the lesions
on the previous examination. The known MS lesions do not
match current study. There are no new white matter lesions.
Obvious improvement of the image. Possibly a small falx
meningioma left occipital.

Example F: Label 3, misclassified as label 2 by BERTje

Klinische gegevens:
RRMS, sinds mei Tysabri. Toename krachtsvermindering en
coordinatie rechter lichaamshelft. Toename slikken en micite
klachten. Nieuwe laesies? PML?

Verslag:
MRI hersenen met contrast:
Een vergelijkend onderzoek d.d. 30/04/2012. Het hersen-
parenchym vertoont multifocale witte stoflaesies subcorti-
caal en periventriculair rechterhemisfeer meer dan de linker.
Drietal hyperintense subcorticaal gelegen witte stoflaesies
frontopariëtaal rechts ten opzichte van het vorig onderzoek
nieuwvorming. De twee laesies zijn zichtbaar in serie 6
coupe 77. Postcontrast kleuren deze drie laesies aan. De
overige oude witte stoflaesies kleuren niet aan. Geen sus-
ceptibiliteitsartefacten verdacht voor oude bloedingen. Geen
focale diffusierestrictie. Ventrikelsystemen symmetrisch nor-
maal. Flow-void in de grote intracraniële vaten. De orbita
links duidelijker dan rechts vertonen focaal afwijkend signaal
in de nervus opticus. Postcontrast wat dubieuze aankleur-
ing. De sinus maxillaris rechts vertoont een retentiecyste
met daarin mogelijk een kleine poliep.

Conclusie.
Patiënte bekend met MS. Beide hemisferen rechts meer
dan links vertonen witte stoflaesies subcorticaal dan wel
periventriculair. Thans aanwijzingen voor drietal nieuw
aankleurende witte stoflaesies frontopariëtaal rechts. Afwi-
jkend signaal in de nervus opticus links duidelijker dan
rechts passend bij een neuritis opticus. Geen duidelijk beeld
van PML.

Clinical data:
RRMS, since May Tysabri. Increase in strength reduction
and coordination in the right half of the body. Increase in
swallowing and micturition complaints. New lesions? PML?

Report:
MRI brain with contrast:
A comparative study dated 30/04/2012. The brain
parenchyma shows multifocal white matter lesions subcor-
tical and periventricular right hemisphere more than the
left. Three hyperintense subcortical white matter lesions
frontoparietal to the right neoplasm compared to the pre-
vious examination. The two lesions are visible in series 6
slice 77. Post contrast stains these three lesions. The other
old white matter lesions do not stain. No susceptibility arti-
facts suspected of old bleeding. No focal diffusion restriction.
Ventricular systems symmetrically normal. Flow void in the
great intracranial vessels. The orbits on the left are more pro-
nounced than on the right, showing focally aberrant signal
in the optic nerve. Post-contrast some dubious coloring. The
maxillary sinus on the right shows a retention cyst possibly
containing a small polyp.

Conclusion.
Patient familiar with MS. Both hemispheres on the right
more than on the left show subcortical or periventricular
white matter lesions. Currently there are indications for
three new enlarging white matter lesions right frontoparietal.
Abnormal signal in the optic nerve on the left more clearly
than on the right consistent with an optic neuritis. No clear
picture of PML.



Diagnostics 2023, 13, 1251 14 of 15

References
1. Centraal Bureau voor de Statistiek. Zorguitgaven; Kerncijfers; Centraal Bureau voor de Statistiek: Hague, The Netherland, 2022.
2. Langlotz, C.P. Structured Radiology Reporting: Are We There Yet? Radiology 2009, 253, 23–25. [CrossRef]
3. Ashfaq, H.A.; Lester, C.A.; Ballouz, D.; Errickson, J.; Woodward, M.A. Medication Accuracy in Electronic Health Records for

Microbial Keratitis. JAMA Ophthalmol. 2019, 137, 929–931. [CrossRef]
4. Hernandez-Boussard, T.; Tamang, S.; Blayney, D.; Brooks, J.; Shah, N. New Paradigms for Patient-Centered Outcomes Research

in Electronic Medical Records. eGEMs 2016, 4, 1231. [CrossRef]
5. Payne, T.H.; Zhao, L.P.; Le, C.; Wilcox, P.; Yi, T.; Hinshaw, J.; Hussey, D.; Kostrinsky-Thomas, A.; Hale, M.; Brimm, J.; et al.

Electronic health records contain dispersed risk factor information that could be used to prevent breast and ovarian cancer. J. Am.
Med Inform. Assoc. JAMIA 2020, 27, 1443–1449. [CrossRef]

6. Gotz, D.; Borland, D. Data-Driven Healthcare: Challenges and Opportunities for Interactive Visualization. IEEE Comput. Graph.
Appl. 2016, 36, 90–96. [CrossRef]

7. Džuganová, B. Medical language—A unique linguistic phenomenon. JAHR-Eur. J. Bioeth. 2019, 10, 129–145. [CrossRef]
8. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186. [CrossRef]

9. Ramos, J.E. Using TF-IDF to Determine Word Relevance in Document Queries. Proc. First Instr. Conf. Mach. Learn. 2003, 242,
29–48.

10. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
arXiv 2017, arXiv:1706.03762.

11. Radford, A.; Narasimhan, K. Improving Language Understanding by Generative Pre-Training. 2018. Available online: https:
//cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf (accessed on 12 October 2022).

12. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

13. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q.V. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. arXiv 2019, arXiv:1906.08237.

14. Haley, C. This is a BERT. Now there are several of them. Can they generalize to novel words? In Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, Online, 20 November 2020; pp. 333–341.
[CrossRef]

15. de Vries, W.; van Cranenburgh, A.; Bisazza, A.; Caselli, T.; Noord, G.v.; Nissim, M. BERTje: A Dutch BERT Model. arXiv 2019,
arXiv:1912.09582.

16. Nozza, D.; Bianchi, F.; Hovy, D. What the [MASK]? Making Sense of Language-Specific BERT Models. arXiv 2020, arXiv:2003.02912.
17. Brandsen, A. Language Resources by TMR. 2019. Available online: http://textdata.nl (accessed on 10 October 2022).
18. Delobelle, P.; Winters, T.; Berendt, B. RobBERT: A Dutch RoBERTa-based Language Model. arXiv 2020, arXiv:2001.06286.
19. Oostdijk, N.; Reynaert, M.; Hoste, V.; Schuurman, I. The Construction of a 500-Million-Word Reference Corpus of Contemporary

Written Dutch. In Essential Speech and Language Technology for Dutch: Results by the STEVIN Programme; Spyns, P., Odijk, J., Eds.;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 219–247. [CrossRef]

20. Ortiz Suárez, P.J.; Sagot, B.; Romary, L. Asynchronous Pipeline for Processing Huge Corpora on Medium to Low Resource
Infrastructures. In Proceedings of the 7th Workshop on the Challenges in the Management of Large Corpora (CMLC-7), Cardiff,
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