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Abstract

This work evaluates methods and models for Large-Eddy Simulation (LES) using Direct
Numerical Simulation (DNS) data, with a specific focus on two aspects: grid resolution and
subgrid modeling, and their influence on simulation quality. Recent model developments are
assessed and applied to LES of turbulent reactive systems. The work is divided into two
parts.

The first part assesses the performance and quality of LES results for a canonical
configuration and a numerically well-studied laboratory experiment. Different subgrid models,
as well as DNS, are employed and compared. A workflow is proposed to assess the fidelity of
the simulations performed, and the investigated models are recently developed subgrid models
proposed in previous studies. The grid resolution is evaluated in a separate study, attempting
to formulate an indicator to quantify resolution quality based solely on the performed LES,
without the need for high-resolution reference data. The predictive ability of the indicator is
validated using reference data from DNS, and a wide range of grid qualities are evaluated.

The second part of this work applies high-fidelity models and numerical schemes to
the investigation of reciprocating engines, representing as a turbulent reactive system. A
back-tracing algorithm is proposed using Lagrangian tracers to trace the causes of physical
events in technical systems in time and space. The method is shown to be applicable to
both steady-state and transient engineering processes, providing insight into the convective
transport behavior of fluid parcels involved in the physical events studied. Any desired data
obtained from the simulation can be targeted and recorded in spatial and temporal protocols
by the particles. Finally, the proposed tools are also used for the case of a piston engine
exhibiting cyclic variability, demonstrating that high-order numerical models and methods
can replace complicated supplementary models for ignition and early flame evolution.





Zusammenfassung

Diese Arbeit bewertet numerische Methoden und Modelle für die Grobstruktursimulation
anhand von Daten aus Feinstruktursimulationen. Dabei werden insbesondere zwei Aspekte,
die Gitterauflösung und die Turbulenzmodellierung, hinsichtlich ihres Einflusses auf die
Simulationsqualität untersucht. Neuere Modellentwicklungen werden evaluiert und auf die
Grobstruktursimulation turbulenter reaktiver Systeme angewendet. Die Arbeit gliedert sich
in die folgenden zwei Teile.

Im ersten Teil werden Grobstruktursimulationen hinsichtlich ihrer Leistungsfähigkeit und
Ergebnisqualität für eine kanonische Konfiguration sowie für ein numerisch gut validiertes
Laborexperiment untersucht. Es werden Grobstruktursimulationen mit verschiedenen Turbu-
lenzmodellen sowie eine Feinstruktursimulation durchgeführt und verglichen. Ein Schema zur
Bewertung der Qualität der durchgeführten Simulationen wird vorgeschlagen und angewendet.
Bei den in den Simulationen eingesetzten Modellen handelt es sich um kürzlich entwickelte
Turbulenzmodelle, die in vorausgegangenen Studien vorgeschlagen wurden und in direktem
Zusammenhang mit dieser Arbeit stehen. Die Gitterauflösung wird in einer separaten Studie
bewertet, in der ein Indikator formuliert wird, der die Auflösungsqualität allein auf der
Grundlage der durchgeführten Grobstruktursimulation quantifiziert, ohne dass hochaufgelöste
Referenzdaten benötigt werden. Zur Validierung der Vorhersagekraft des Indikators werden
Referenzdaten aus Feinstruktursimulationen verwendet und ein breites Spektrum von Gittern
unterschiedlicher Qualität ausgewertet.

Im zweiten Teil werden die Ergebnisse des ersten Teils angewendet, indem Modelle und
numerische Schemata höherer Ordnung für die Simulation von Hubkolbenmotoren, die ein
turbulentes reaktives System darstellen, eingesetzt werden. Unter Verwendung der im ersten
Teil bewerteten Methoden wird ein Algorithmus vorgeschlagen, der Lagrangesche Partikel
verwendet, um Ursachen physikalischer Ereignisse in technischen Systemen zeitlich und
räumlich zurückzuverfolgen. Die Methode erweist sich sowohl in stationären als auch in
instationären technischen Prozessen als aufschlussreich und liefert detaillierte Einblicke in das
konvektive Transportverhalten von Fluidpaketen, die an zu untersuchenden physikalischen
Ereignissen beteiligt sind. Darüber hinaus können jegliche, von der Simulation generierte
Daten durch die Partikel erfasst und in zeitlich-räumlicher Korrelation protokolliert werden.
Darüber hinaus können jegliche von der Simulation generierten Daten von den Partikeln erfasst



xii

und in räumlich-zeitlicher Korrelation aufgezeichnet werden. Die vorgeschlagenen Methoden
und Modelle werden auch für die Simulation eines zyklisch schwankenden Hubkolbenmotors
eingesetzt. Es wird gezeigt, dass Methoden und Modelle höherer Ordnung in der Lage sind,
aufwendige Zusatzmodelle für die Zündung und die frühe Flammenausbreitung zu ersetzen.
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Lower case latin symbols
aij coefficients of the Runge-Kutta matrix -
b arbitrary quantity to be averaged in a mixture of species [b]
b exponent of the temperature in the Arrhenius law m/s
bi weights of a numerical scheme or filter -
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d diameter m
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gij grid-scale velocity gradient tensor 1/s
gi gravitational acceleration m/s2

h enthalpy J/kg
h0

f heat of formation J/kg
hs sensible enthalpy J/kg
k turbulent kinetic energy m2/s2

k wave number 1/m
ki slope at stage i of the Runge-Kutta scheme [ki]
krb backward reaction rate mol/(m3 · s)
krf forward reaction rate mol/(m3 · s)
l length m
lt turbulent length scale m
m mass kg
nα number of molecules of species α mol
ni face normal vector -
p pressure Pa
pmod modified pressure including the isotropic subgrid stresses Pa
r reaction rate mol/(m3 · s)
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rm randomized data -
s stages of the Runge-Kutta scheme -
sl laminar flame speed m/s
t time s
ui velocity vector m/s
um filtered signal -
xi spatial coordinate vector m
y distance from the wall m
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A area m2

A pre-exponential coefficient 1/s
A+ parameter of the van Driest model -
C normalized reaction progress variable -
Cm constant of static eddy-viscosity subgrid models -
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D diffusion coefficient m2/s
D dissipation matrix -
Dm differential operator of an eddy-viscosity subgrid model m4/s
E magnitude of the 2nd invariant of the velocity-gradient tensor 1/s
E total non-chemical energy J/m3

EA activation energy in the Arrhenius equation J/mol
FCS coherent structure function -
FD thickening factor in the ATF approach -
G filtering kernel -
Gij positive semidefinite grid-scale velocity gradient tensor m2/s2

I invariant of a tensor -
KC equilibrium constant -
L amplitude of a mathematical wave -
Lij residual of the Germano identity / Leonard stress tensor N/m2

Lv latent heat of vaporization J/kg
N number concentration of particles 1/m3

NR number of reactions -
NS number of species -
Q 2nd invariant of the velocity-gradient tensor 1/s
Q heat source term in energy equation J/kg
R specific gas constant J/(kg · K)
Rij subgrid-scale anisotropy term N/m2
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Ruu normalized auto-correlation -
Sij strain rate tensor 1/s
T temperature K
Tij test-filtered subgrid stress N/m2

T0 reference temperature K
U maximum velocity component in the domain m/s
Ui velocity signal obtained from the digital filtering technique m/s
Vc diffusion correction velocity m/s
Vk diffusion velocity m/s
W molecular weights kg/mol
Wij rotation rate tensor 1/s
Xα molar fraction of species α -
YP non-normalized progress variable -
Yα mass fraction of species α -
Z mixture fraction -

Lower case greek symbols
α angle rad
αD pre-factor of the dissipation matrix -
αij modified stress tensor in the Germano procedure N/m2

βij modified test-filtered stress tensor in the Germano procedure N/m2

δij Kronecker delta -
δ0

l thermal flame thickness m
ϵ rate of dissipation m2/s3

ηk Kolmogorov scale m
γ heat capacity ratio -
γ ratio of the resolved and total turbulent kinetic energy -
κ thermal conductivity W/(K · m)
λ propagation speed of a mathematical wave m/s
λB Batchelor scale 1/m
µ dynamic viscosity Pa · s
ν kinematic viscosity m2/s
ϕ general quantity -
ρ density kg/m3

σi singular values -
τ discretization error [ϕ]
τd droplet relaxation time s
τij subgrid stress tensor N/m2
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τj subgrid scalar flux vector for transport of the scalar ϕ [ϕ]m/s
χ formula of a chemical species -
ω̇ source term for species/progress variable kg/(m3 · s)
ω̇ specific rate of dissipation 1/s
ω̇α chemical source term for species α kg/(m3 · s)

Upper case greek symbols
Γ̇ϕ volumetric source term for ϕ [ϕ] /(m3 · s)
∆x cell size m
∆ filter width m
Φ general quantity in the context of filtering -
Ψ flux limiter function in the TVD schemes -
Ω flame sensor -

Subscripts to an arbitrary quantity ϕ

ϕA averaged over area
ϕa vector in index notation, a = 1, 2, 3
ϕb value on bottom cell face
ϕb vector in index notation, b = 1, 2, 3
ϕe value on eastern cell face
ϕij two dimensional tensor in index notation, i, j = 1, 2, 3
ϕi vector in index notation, i = 1, 2, 3
ϕj vector in index notation, j = 1, 2, 3
ϕk vector in index notation, k = 1, 2, 3
ϕmax maximum of ϕ

ϕmin minimum of ϕ

ϕn value on north cell face
ϕp at constant pressure
ϕres resolved contribution
ϕs value on south cell face
ϕt turbulent
ϕt value on top cell face
ϕV averaged over volume
ϕv at constant volume
ϕw value on western cell face
ϕ0 initial / reference state
ϕα value for species α
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Superscripts to an arbitrary quantity ϕ

ϕd deviatoric part
ϕsgs subgrid-scale
ϕ+ wall normalized
ϕ′ fluctuating part of a quantity

Operators to an arbitrary quantity ϕ

∆ϕ finite difference of quantity ϕ

dϕ total differential of quantity ϕ

∂ϕ partial differential of quantity ϕ

∇ϕ gradient of quantity ϕ

ϕ̇ time derivative of quantity ϕ

ϕ averaged part of quantity ϕ in RANS context
ϕ filtered part of quantity ϕ in LES context
ϕ̂ test-filtered quantity ϕ

ϕ̃ Favre filtered quantity ϕ

ϕ̌ Favre- and test-filtered quantity ϕ

ϕ
′ sub-filter part of fluctuating quantity ϕ in LES context

ϕ
′′ fluctuating part of Reynolds-decomposed quantity ϕ in RANS context

Dimensionsless numbers
Bh Spalding number for heat transfer: ratio of potential heat transfer

from gas phase to droplet to latent heat
Bm Spalding number for mass transfer: ratio of the transferable vapor

mass from droplet surface to the free gas to the total evaporated
mass

CFL Courant-Friedrichs-Lewy number: ratio of physical to numerical
velocity

Kn Knudsen number: ratio of mean free path of the gas molecules to
characteristic length of the flow

Le Lewis number: ratio of thermal diffusion to mass diffusion
Ma Mach number: ratio of fluid velocity to speed of sound
Nu Nusselt number: ratio of total heat transfer to conductive heat

transfer
Pr Prandtl number: ratio of momentum diffusion to thermal diffusion
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Re Reynolds number: ratio of inertial forces to viscous forces
Sc Schmidt number: ratio of momentum diffusion to mass diffusion
Sh Sherwood number: ratio of convective mass transfer to diffusive mass

transfer

Physico-chemical constants
kb Boltzmann constant 1.381 · 10−23 · J/K
NA Avogadro constant 6.022 · 1023 · 1/mol
Rm ideal gas constant 8.314 · J/(K · mol)

Abbreviations

1D One Dimensional
2D Two Dimensional
3D Three Dimensional
ADM Approximate Deconvolution Model
ANN Artificial Neural Network
ATF Artificial Thickened Flame
CCSS Center for Computational Sciences and Simulation
CDS Central Differencing Scheme
CFD Computational Fluid Dynamics
CV Control Volume
DNS Direct Numerical Simulation
EVM Eddy Viscosity Model
FDM Finite Difference Method
FEM Finite Element Method
FGM Flamelet Generated Manifolds
FVM Finite Volume Method
GA Genetic Algorithm
GEP Gene Expression Programming
HAB Height Above Burner
HOT Higher-Order Terms
IB Immersed Boundary
KKK1 Klein-Ketterl-Kobayashi model 1
KKK2 Klein-Ketterl-Kobayashi model 2
LES Large-Eddy Simulation
LHS Left Hand Side



Nomenclature xxxiii

LODI Local One Dimensional Inviscid
MIB Moving Immersed Boundary
MPI Message Passing Interface
NPFGM Non-Premixed Flamelet Generated Manifolds
NSCBC Navier-Stokes Characteristic Boundary Conditions
NSE Navier-Stokes Equations
PDE Partial Differential Equation
PFGM Premixed Flamelet Generated Manifolds
PINN Physically Informed Neural Network
QUICK Quadratic Upstream Interpolation for Convective Kinematics
RANS Reynolds Averaged Navier-Stokes
RHS Right Hand Side
RMS Root Mean Square
SES Sensor-Enhanced Smagorinsky model
SGS Subgrid-Scale
SI Sigma model
SM Smagorinsky model
SST Scale Similarity Type model
TV Total Variation
TVD Total Variation Diminishing
UDS Upwind Differencing Scheme
URANS Unsteady Reynolds Averaged Navier-Stokes





1 Introduction

1.1 Motivation

Turbulence is a phenomenon that has a direct impact on numerous processes and is ubiquitous
in modern engineering systems and processes operating at macro-scales. In these engineering
applications, the effects of turbulent flows can be either desirable or undesirable, and
sometimes both. Applications include reactors for chemicals and material synthesis, wind and
gas turbines for power generation, piston- and turbo-engines for vehicles, as well as heating,
ventilation and air conditioning for buildings. Large-scale environmental flows, such as the
transport of pollutants in urban areas or meteorological dynamics, add to this spectrum.
Numerical simulation has matured into a reliable tool for predicting and analyzing these flows,
and is an essential instrument in the design process of technical devices involving turbulence.
Different strategies for simulating turbulent flows exist, each with its own strengths and
weaknesses. Large-Eddy Simulation and Direct Numerical Simulation are particularly relevant
as research tools. Direct Numerical Simulation is typically suitable for fundamental studies
at moderate levels of turbulence, while Large-Eddy Simulation can employ a wide range of
models at arbitrary levels of turbulence. In general, Direct Numerical Simulation is used to
validate of Large-Eddy Simulation results.

The motivation of this study is the advancement of state-of-the-art simulation tech-
niques in computational fluid dynamics, which entail a plethora of models for different
applications ranging from the description of turbulence [216], multi-phase flows [10], chemical
reactions [212] to magneto-hydrodynamics [51]. Numerical solvers with varying levels of
accuracy and stability are applied to subsonic and supersonic flow regimes, independently
from the fluid simulation paradigm [291, 123, 237]. Typically, the resolution is set as high as
possible, with respect to a certain cost threshold. However, depending on the combination of
solver aspects, the outcome of a simulation may vary considerably. This is not only due to the
employed tools but also to the way they interact with each other. Therefore, evaluating these
tools can be challenging and expensive, and it can only be done successfully if their influence
is isolated and compared with a reference simulation of high quality. One fundamental aspect
of this analysis, which is of importance to this study, is that a comparison to a reference
simulation is only valid if the reference simulation was performed using otherwise identical



2 Introduction

numerics. Thus, the reference simulation must be executed using the same code as the one
used for the analyzed simulation. In this study, we propose strategies for investigating models
and required resolution using highly-resolved and simplified simulation techniques.

1.2 Outline

The numerical simulation of turbulent reactive flows aims to provide a mathematically
accurate representation of the physical phenomena inherent in such flows. This work presents
modeling approaches and numerical methods relevant to this objective, which are explained
in the Chapters 2 to 5. The fundamentals of the mathematical treatment of fluid flow are
laid out in Chapter 2, while Chapter 3 will delve into turbulence, its effects, and related
simulation techniques. Chapter 4 will outline the fundamentals of reactive flows and their
modeling, followed by an overview of numerical methods to handle the governing equations
in Chapter 5.

After establishing the theoretical foundations, subsequent chapters will introduce the de-
veloped strategies for high-fidelity modeling assessment and classification. These descriptions
comprise reprints of the reports published in leading international journals in the field of
turbulent and reactive flows.

Chapter 6 investigates subgrid closures for Large-Eddy Simulation with respect to their
ability to model scalar transport. For this purpose, a Direct Numerical Simulation of a free
turbulent jet featuring scalar transport and well-defined boundary conditions was performed.
In contrast to several comparable works, this study assesses the discretization of the respective
subgrid closure in addition to its formulation.

In Chapter 7, the evaluation of subgrid closures is extended by a novel comparison of their
performance in a turbulent reactive case. The range of subgrid closures was expanded to
include recent developments, facilitating an investigation of the interaction between chemistry
and turbulence modeling.

Chapter 8 aims to directly quantify simulation quality using the concept of informa-
tion entropy. The study intends to generate low- and high-quality simulation results to
systematically evaluate their impact on simulation quality estimators.

The goal of this research work is to contribute to the improvement of simulation by
highlighting the strengths and weaknesses of established and recent modeling frameworks.
The results of Chapters 6 through 8 are demonstrated and applied to the challenging and
highly turbulent case of a thermochemical energy converter in Chapters 9 and 10.

Finally, a concluding remark and outlook are given in Chapter 11.



2 Fundamentals of fluid-motion and ther-
modynamics

In engineering problems, fluids are typically described using macroscopic properties such
as density, momentum, pressure and temperature to represent the ensemble behavior of
molecules. These properties are considered to be well defined within infinitesimal volume
elements, which, by definition, are small compared to the characteristic length scale of the
examined problem, but large compared to the motion scale of molecules – this is also referred
to as continuity. Thus, these properties are defined to be continuous since only infinitesimal
changes in properties may occur over an infinitesimal change in space. Ultimately, this allows
for the treatment of fluids using a handful of spatial and temporal functions, instead of
dealing with equations for a plethora of individual molecules. The assumption of continuity
remains valid as long as the average distance traveled by a molecule is small compared to the
characteristic length scale of the given problem – this ratio is also known as the Knudsen
number.

Within this work, the Knudsen number remains small and the assumption of continuity
is made. The mathematical description of fluid-mechanics and -thermodynamics is based
on laws of conservation, which particularly balance the gain, loss and redistribution of the
properties mass, momentum, energy and chemical species. These laws are written down in
the form of Partial Differential Equations (PDE) which contain the temporal and spatial
information of the corresponding conserved property.

2.1 Conservation of a general quantity

The conservation of a general quantity ϕ in the context of fluid-dynamics is a balance equation,
which accounts for the quantities generation, transport and removal in time t and space xj.
The temporal change of the general quantity is represented by an accumulation term whose
calculation is typically the main objective when solving these equations. Generation and
removal are described by source terms that add-to or subtract-from the balance equation,
depending on any possible mathematical law. The transport of a quantity can be of convective
or diffusive nature. The convective contribution refers to the transport of a quantity due
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to the actual motion of the flow. This requires the presence of a flow field, which can be
either forced (e.g. by ventilation) or free (e.g. by thermal lift). Diffusion is a consequence of
the motion of the individual molecules within the fluid due to their thermal energy. This
motion is also referred to as Brownian motion and is generally considered to be random at
the macroscopic level. Thus, diffusion is a statistical process that results in a decrease in the
concentration of a property. Although it is a microscopic process by definition, the diffusive
transport is summarized in a diffusion rate, characterizing the speed of this process on a
macroscopic scale. It should be noted that this terminology may vary slightly depending on
the field of science. In some cases, the terms advective and diffusive transport are used, while
the term convection refers to both means of transport. In this work, however, the terms
convection and diffusion will be used. Considering all aforementioned terms, the conservation
equation of a general quantity ϕ is as follows:

∂ρϕ

∂t︸ ︷︷ ︸
accumulation

+ ∂ρujϕ

∂xj︸ ︷︷ ︸
convection

= ∂

∂xj

(
Dϕ

∂ϕ

∂xj

)
︸ ︷︷ ︸

diffusion

+ Γ̇ϕ︸︷︷︸
source

(2.1)

With the density ρ, the velocity field uj, the diffusion coefficient of the quantity ϕ within
the fluid Dϕ and the source term Γ̇ϕ. The conserved quantity is typically expressed in its
specific formulation and is thus converted to a volumetric quantity by multiplication with
the density contained in the conservation law. This yields the mass-independent value of the
conserved quantity when solving the equation for a given control volume.

A conservation law can be formulated for a wide variety of quantities. These can include
conventional quantities such as mass or energy, but also more abstract properties such as
an electric charge or even probability-distributions. In the following section, the conserved
quantities relevant to this work are discussed in more detail and the characteristic aspects of
their transport are presented.

2.2 Navier-Stokes equations

The Navier-Stokes Equations (NSE) are the central object of desire in Computational Fluid
Dynamics (CFD) as their solutions yield the density and velocity fields ρ and uj. The set of
equations developed by Navier and Stokes describes the conservation of mass and momentum
for Newtonian fluids. The NSE form a nonlinear set of PDEs with mixed parabolic-elliptic
character, implying that the solution of the initial/boundary-value problem might not always
yield a smooth solution. This question of the guaranteed existence of smooth solutions remains
unsolved to this day and is part of the most important unsolved problems in mathematics:
the Millenium Prize Problems [67]. The NSE are capable of fully describing any Newtonian
flow, but their solution is difficult to obtain. While analytical solutions exist for only a very
limited number of cases, the general solution approach requires numerical methods.
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2.2.1 Conservation of mass

The conservation of mass, also referred to as the equation of continuity, accounts for the
local and total changes in mass. The conservation of mass is formulated under the premise
that all relative effects are negligible and thus, the energy is independent of the mass. While
typically in classical mechanics, mass cannot be created or destroyed, source terms can
occasionally be found for multi-phase problems where phase-changes such as evaporation or
condensation occur. The conservation of mass contains no diffusion term. A flow consisting of
a completely homogeneous mixture of molecules and diffusion as a statistical process effects
can be considered. In this case, the effects of diffusion vanish as each molecule moving due to
Brownian motion is replaced by an identical one. In the case of an inhomogeneous mixture
different types of molecules will move around, resulting in differences in quantities such as
concentration. However, since each large molecule is replaced by a number of smaller ones,
no diffusive effects on mass can be observed. The conservation of mass is formulated as:

∂ρ

∂t
+ ∂ρuj

∂xj
= Γ̇ρ (2.2)

With Γ̇ρ being the mass source term. This term is zero for single-phase flows. For flows
involving gases and liquids or vapors, the source term is equal to the evaporation or conden-
sation rate in cases relevant to this work. In the absence of the source term Γ̇ρ = 0 and for
the case of a constant density ρ = const., the equation yields a divergence-free condition for
the velocity field ∇uj = 0.

2.2.2 Conservation of momentum

The conservation of momentum is an extension of Newton’s second law of motion by assuming
that the stress acting on the fluid is equal to the sum of the pressure term and the viscous
diffusion term. The momentum equation as present in the NSE is an expansion of Euler’s
equation – which is typically used in aerodynamics – by the effects of viscosity. The
conservation of momentum is expressed as:

∂ρui
∂t

+ ∂ρuiuj
∂xj

= − ∂p

∂xi
+ ∂

∂xj

(
µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3µ
∂uk
∂xk

δij

)
+ ρgi + Γ̇ρui (2.3)

With the pressure p, the dynamic viscosity µ and ρgi as the gravitational source term. This
term is commonly neglected in problems where the buoyant force is considered small, which
is typically the case for gas flows due to low densities. The term Γ̇ρui represents the exchange
of momentum between different phases and is zero in single-phase flows.
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2.3 Conservation of energy

The conservation of energy is of importance in non-isothermal flows, especially in reacting
flows. The quantity of interest while solving the energy equation is the temperature, which
is thermodynamically related to the energy. Therefore, the energy equation is usually
accompanied by additional modeling of the thermodynamic state. Energy can be formulated
in several ways and the choice can simplify the respective problem. In many works the term
energy-equation is a placeholder that refers to either the actual energy or the enthalpy. Since
a transport equation for either of these can be formulated using its non-chemical, chemical,
total non-chemical or total chemical formulation, there are a total of eight equations to choose
from. For a complete overview of the respective definitions and full transport equations the
reader is referred to Poinsot and Veynante [212]. In this work, only the total non-chemical
energy formulation is employed, which is also the most common choice for non-reactive flows.
Therefore, the conservation of energy within this work is formulated as:

∂ρE

∂t
+ ∂ρuj (E + p/ρ)

∂xj
= κ

∂2T

∂x2
j

+ ∂

∂xj
uj

(
µ

(
∂ui
∂xj

+ ∂uj
∂xi

− 2
3

∂uk
∂xk

δij

))
+ Q̇ (2.4)

With the total non-chemical energy E, the thermal conductivity κ, the temperature T and
the heat source term Q̇. The heat source term represents the effects of external heating – in
this formulation this strictly excludes chemical reactions – and can represent, e.g., heating
through walls. The total non-chemical energy is defined as:

E =
T∫

T0

cvdT − RT0 + 1
2uiui (2.5)

In this equation, cv is the isochoric specific heat and R indicates the specific gas constant. In
the following, some thermodynamic context will be given to clarify the quantities mentioned
in the energy equation.

2.3.1 Thermodynamics of the energy equation

While all transport equations mentioned above hold for both gaseous and liquid fluids, the
calculation of the material properties mentioned – especially those of the conservation of
energy – is phase-dependent. This work focuses on the investigation of gaseous flows, and
thus, all formulations given in the following will be made for gases without further emphasis.

Most mathematical relations used for the description of gas-physics rely on the assumption
of an ideal gas behavior. The concept of an ideal gas originates from statistical mechanics
and describes a gas-like composition of randomly moving point-particles that are not subject
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to interparticle interaction. The three assumptions of an ideal gas can be summarized as
follows:

• Ideal gas particles are free of attractive as well as repellent forces, and only collide
elastically with other molecules or walls

• Ideal gas particles do not occupy any volume

• Ideal gas particles are considered monoatomic and hence, do not vibrate or rotate

The ideal gas assumption is only valid for pressures that are relatively low compared to
the critical pressure and temperatures that are relatively high compared to the critical
temperature (this temperature threshold is also referred to as the Boyle temperature), as
this is where the interparticle interaction starts to show a stronger effect. If these conditions
are satisfied, the ideal gas model can be applied and the corresponding ideal gas law reads:

p = ρ
Rm
W

T (2.6)

With the ideal gas constant Rm and the molecular weight W – these can be converted into
the specific gas constant for a given gas following:

R = Rm
W

(2.7)

The ideal gas law forms the presumably most prominent equation of state as it links the
temperature to the pressure. This link is required to solve the conservation equation of
momentum and energy (Eqs. 2.3 and 2.4). The internal energy of an ideal gas solely depends
on its temperature and is defined as:

e =
T∫

T0

cvdT (2.8)

And its enthalpy as:

h =
T∫

T0

cpdT (2.9)

Where T0 is the temperature of the thermodynamic reference state and cp is the isobaric
specific heat. The isochoric and isobaric specific heats cv and cp are related by the specific
gas constant as Rm = cp − cv.

The model of the ideal gas can also be applied to gas mixtures by taking into account
the composition of the mixture. A mixture can be described by the contribution of each
component to the total number of molecules or mass of the mixture. This contribution to a
mixture of NS species can be quantified in terms of mole fractions Xα or mass fractions Yα
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as follows:
Xα = nα

NS∑
α=1

nα

(2.10)

With nα being the number of molecules of a species α. The mass fraction can be defined
accordingly using the mass mα of each species α:

Yα = mα

NS∑
α=1

mα

(2.11)

The mole/mass fractions are of fundamental value for characterizing a mixture. The mean
molecular weight of a mixture is calculated as:

W =
NS∑

α=1
WαXα (2.12)

As the transport equations are typically density-based and hence, require specific quantities,
the mass fractions are preferred for the calculation of mean material properties. For a general
property b, the mixture average is calculated as:

b =
NS∑

α=1
bαYα (2.13)

With the property contribution bα of each species α. It has to be noted, that molecular
averages are commonly written as b. In this work however, b will be used to avoid confusion
with the filtering that will be introduced later. The property b for instance can represent, e.g.,
the internal energy e, the enthalpy h, the isochoric specific heat cv or the isobaric specific
heat cp. Material properties are commonly tabulated or fitted using the NASA-polynomials
[117, 176].

2.4 Flow regimes and predictability of flows

The mathematical foundation for the description of flows satisfying the assumption of a
continuum was established. It is of interest to evaluate the physical behavior reflected in
these equations and to provide a basis for interpreting their respective solutions. Although
the assumption of continua holds, it should be noted that there is an influence acted from the
molecular level to the larger and more relevant scales for the given problem. In particular,
this influence is most prominently due to the Brownian motion which is superimposed on the
advective flow direction and will be referred to as perturbations in the following.

Different examples of flows from technology and nature such as vortex structures behind
ships, strong currents in a river or windstorms come to mind when thinking of the word flow.
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By definition, flows begin when resting fluid is set in motion and relative to a stationary
reference frame. The resulting flow regime is typically considered a direct consequence of the
inertial and shear forces – commonly also referred to as viscous forces – acting on the fluid.
While inertial forces lead to the acceleration of fluid parcels, the shear forces represent the
resistance of the fluid to relative motion between its parcels. These forces are interacting, and
their ratio is of critical importance in fluid dynamics. In particular, this ratio will indicate
how much the perturbations will affect the flow. The ratio is quantified by the Reynolds
number Re and is given as:

Re = ρUl

µ
(2.14)

Where U is the mean flow velocity and l is the characteristic linear dimension of the problem.
The characteristic linear dimension is a geometric length that is representative of the flow and
depends on the geometry of the given problem, such as the diameter of a pipe or nozzle or the
height of a channel. For many canonical studies of internal flows with constant cross-sections
the linear dimension can be covered by the hydraulic diameter, which can be obtained as the
ratio of the cross-sectional area to the wetted perimeter.

The Reynolds number is commonly used to distinguish between different flow regimes.
These regimes are discussed below in terms of their physical behavior.

2.5 Laminar and transient flows

Creeping flows or Stokes flows occur when the magnitude of the viscous forces significantly
exceeds the inertial forces, resulting in small Reynolds numbers Re ≪ 1. These conditions
are met for fluids of high viscosity, slow flow velocities, or for length scales that are small.
Linearizing the Navier-Stokes equations facilitates mathematical description of creeping flows,
significantly simplifying their solution by neglecting the inertial terms in the momentum
balance.

Laminar flows are characterized by the orderly motion of fluid in layers or filaments,
with each layer behaving in isolation from the others, precluding any interaction. The strong
viscous forces typically present in laminar flows are effective in damping out any perturbations
that may induce interaction between layers.

Within the transient flow regime, the dampening effects of viscous forces on small
perturbations are no longer present. Rather, the flow becomes highly sensitive to such
perturbations and amplifies them, resulting in their growth and eventual breakdown into
seemingly random behavior. This dynamic interplay often leads to spontaneous switching
between laminar and turbulent fluid motion, making it exceedingly challenging to accurately
describe flows in this regime.
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2.6 Turbulent flows

Turbulence is widely recognized as one of the most significant unsolved challenges in con-
temporary physics. To date, no comprehensive mathematical derivation exists that links the
Navier-Stokes equations to the framework of turbulence theory [75]. Despite this, the founda-
tions of turbulence theory were first established by Reynolds and subsequently extended by
Richardson and Kolmogorov, whose contributions remain of paramount importance to the
current understanding of this complex phenomenon.

As the Reynolds number increases and the inertial forces govern the flow, the regime
of fully developed turbulence is reached. Viscous forces now are no longer able to dampen
out the perturbations, which maintain the laminar flow structure. Small perturbations grow
and notably affect the flow by inducing crosscurrents to the main flow direction, which
ultimately lead to the characteristic flow structures of turbulence: the eddies. Eddies are
commonly referred to as vortices, but should generally be treated as a turbulent structure
that is coherent in the region of size l, is characterized by a velocity of magnitude u(l), and
therefore has the timescale τ(l) = l/u(l). The eddies interact with the main flow, producing
the characteristic unsteady and disordered fluid motion found in turbulent flows. Due to the
severe fluid interaction caused by turbulence, the eddies ultimately increase the exchange
of energy within the flow. Eddies are born and kept alive by draining the energy from the
main flow. These eddies have sizes equal to the largest turbulent scale of the flow, which is
referred to as the integral scale lt. As an undirected structure embedded in a flow field with
many of its kind, its lifetime is limited and it will eventually break down. The kinetic energy
stored in its motion will be conserved and distributed to newly forming eddies. It is evident
that when breaking down, an eddy can only form smaller eddies as the energy is distributed,
and consequently the inertial forces it exerts are reduced. The newly formed smaller eddies
again interact with the remaining flow and due to their overall lower energy content feature
a shorter longevity. Now equipped with a shorter lifetime, the eddies will break up again and
spread their energy, ultimately forming even smaller eddies. This process is repetitive and is
therefore referred to as the turbulent energy cascade. The main characteristic of this cascade
is the conservation of the energy held by the eddies. No energy is lost or created during the
breakup and reformation of the eddies, but solely transported between eddies of decreasing
size. After a large number of breakup and reformation steps, eddies will eventually reach a
size where the viscous forces are comparable in magnitude to the inertial forces. From this
point on, the viscous forces will progressively drain and dissipate the rotational energy from
the eddies, with the eddies becoming more susceptible to the viscous forces with decreasing
size. The rate of energy dissipation is determined at the beginning of the cascade, as the
energy fed into the cascade will eventually dissipate. The rate is given by ϵ = u(lt)3/lt. Since
the smallest eddy ultimately dissipates into heat and thus cannot form any smaller eddies, a
lowest possible eddy size exists. Typically, the energy cascade is represented in the form of a
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Figure 2.1 Turbulent energy spectra obtained from Reynolds number variation following the
idea of the model spectrum given by Pope [216] and Klein [132].

wavenumber-based double-logarithmic diagram. In physics, a frequency can be thought of as
a measure converted from time to timescale. In analogy to the frequency, the wavenumber
represents the inverse of a length, thus converting a geometric length into a lengthscale. The
wavenumber-based diagram is henceforth also referred to as the turbulent energy spectrum,
as it shows the distribution of energy over the different lengthscales within the problem.
An example of an energy spectrum can be found in Fig. 2.1, showing the energy density E

versus the wavenumber k. Since the geometrical extension of the given problem is typically
limited, it can be concluded that there must be a largest lengthscale. In particular, this
scale is referred to as the integral or the injection scale. It refers to the scale at which the
eddies form and feed on the energy of the main flow: the energy is injected into the turbulent
energy cascade. The largest eddies that form will always be comparable in size to the integral
scale – common examples for this are the vortices behind a ship’s propeller or the tumble
vortex in piston engines scaling with the respective diameters. The breakup of the largest
eddies initiates the cascade, which is called the inertial range. In the double-logarithmic
representation, the inertial range features a characteristic linear decrease of energy. This
is also referred to as the Kolmogorov −5/3-law [147]. The law dictates the energy density
within the inertial range following:

E(k) ≈ Cϵ2/3k−5/3 (2.15)

With the wavenumber k, the dissipation rate ϵ and C, which is a universal constant. It is
found that the spectrum begins to deviate from this law progressively as one approaches higher
wavenumbers, and this is when the viscous forces gain importance. These wavenumbers mark
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the beginning of the dissipation range and bear the name Kolmogorov scale. The Kolmogorov
scale can be derived from the Reynolds number at the integral scale Ret = u(lt)lt/ν, which is
typically representative of the flow problem. Dimensional analysis reveals the Kolmogorov
scale to be calculated from the dissipation rate and the viscosity ηk = (ν3/ϵ)1/4, which can
be rewritten using the identity for the dissipation rate as:

ηk/lt ∝ Ret
−3/4 (2.16)

Which is of crucial importance for the computational study of turbulent flows as it allows for
the calculation of the Kolmogorov scale from the basic parameters of the given problem.

Eddies occur as a spectrum of sizes ranging from the scale of the flow geometry down to
the smallest eddy size mentioned above. As stated by Kolmogorov, the characteristic velocity
and timescale of the eddies decrease with decreasing eddy size. With the energy injection
occurring on the scale of the flow geometry, it is implied that these quantities are directly
influenced by the main flow and its geometry. With the ongoing scale-reduction process
imposed by the cascade, it can be observed however, that the information inherited from the
geometry scale is lost and therefore the small eddies behave universally and are statistically
isotropic. This ultimately means that the statistics of the small-scale turbulence is universal
for all high Reynolds number flows.

The physical phenomena present in the turbulent energy cascade are fundamental to the
development and use of mathematical models. Three paradigms for the computational study
of turbulent flows exist at the current state and will be introduced in the following chapter.
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Although used frivolously in modern times, the term simulation – especially in the context of
fluid dynamics – remains non-trivial. Simulation aims for the imitation of real-world physical
processes using mathematically constructed modeling strategies. A wide variety of models
and strategies exist for simulating fluid flow, and the choice must be carefully considered
for the problem at hand. Each model comes with strengths and limitations, and choosing
the appropriate model is crucial for achieving accuracy. While accuracy is generally an
attractive feature of a model, another important factor which goes in hand are the expenses.
Powerful and expensive models can be used, however, but their yield must be weighed against
the computational budget at hand. Although computational power has in fact increased
over the last decades, three different paradigms for the analysis of turbulent systems will
be introduced offering different levels of accuracy and cost. Figure 3.1 gives a first visual
insight into the three main paradigms of turbulent flows in computational fluid dynamics.
The three paradigms Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES)
and Reynolds-Averaged Navier-Stokes Simulation (RANS) involve a progressive degree of
modeling in this very order, which allows for less computational cost but also less accuracy.
Hence, the complexity of the physical phenomena as well as the geometry of the problem
ultimately dictate the paradigm used to solve the problem.

3.1 Direct Numerical Simulation

The Direct Numerical Simulation is considered the purest paradigm of turbulence simulation
as it fully resolves the turbulent energy spectrum without any additional modeling. The
Navier-Stokes equations are solved using a sufficient number of spatial points to fully cover all
turbulent scales from the integral down to the Kolmogorov scale. Hence, the DNS provides
the highest accuracy out of all three paradigms at the price of immense computational effort.

Equation 2.16 established the relationship between the Reynolds number and the Kol-
mogorov scale. Given the requirement that the Kolmogorov scale must be resolved within the
DNS, it can be concluded that the resolution requirements of the DNS become more stringent
as the Reynolds number increases. Since the resolution is a direct – indeed, the primary
– driver of the computational cost, the computational cost also scale alike. Furthermore,
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Figure 3.1 Simulation results of a planar free turbulent jet flow at a Reynolds number of
10, 000 by applying the three paradigms of turbulence simulation.

additional transport equations or models, such as for reacting or multiphase flows, may
further increase this computational effort.

In the case of problems involving scalar transport, it has to be noted that the resolution of
the Kolmogorov scale may not be sufficient for the simulation to be considered fully resolved.
While the dissipation of the smallest eddy gives the resolution limit for the mechanics of the
flow, the full resolution of the scalar transport is achieved when scalar parcels of the smallest
eddies’ size dissipate as fast as the smallest eddies themselves [18]. This scale is referred to
as the Batchelor scale and can be obtained using the Schmidt number of the scalar:

λB = ηk/Sc1/2 (3.1)

Here, Sc represents the Schmidt number, which quantifies the ratio between diffusive momen-
tum and diffusive scalar transport:

Sc = ν/D (3.2)

While the diffusion coefficient of the scalar D is often unknown, the Schmidt number is
typically known from experience and used to determine the latter. The Batchelor scale can
be interpreted as the smallest length scale of fluctuations in the transported scalar that can
exist before being dissipated by the molecular diffusion. Depending on the scalar, it has
to be considered that the Schmidt number can be greater than one, leading to even higher
resolution requirements.

In summary, DNS is a powerful tool with the potential to provide detailed insight into
the physics of a flow. Its power, however, comes at the price of high cost which rise even
further with increasing Reynolds number. State-of-the-art DNS is typically performed for
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Figure 3.2 Turbulent energy spectra of a Large-Eddy Simulation as well as under- and fully
resolved Direct Numerical Simulation.

Reynolds numbers up to the order of 10, 000 and in canonical cases (e.g., homogeneous
isotropic turbulence, free jet flows, pipe flows or turbulent channel flows [111, 133, 57, 185]),
which are typically considered low compared to real-world engineering systems. Therefore,
DNS remains applicable only for selected small-scale systems to either validate or generate
model data, but not yet to provide a detailed description of full technical processes.

3.2 Large-Eddy Simulation

Large-Eddy Simulation is a hybrid paradigm that includes both resolution and modeling
of the turbulent energy cascade. LES has its roots in meteorology and aims to overcome
the Reynolds number limitations of DNS. As the name implies, Large-Eddy Simulation
attempts to resolve the largest turbulent structures within the flow while modeling the effects
of the smaller scales. The LES theory is based on Kolmogorov’s hypothesis of universal and
isotropic small scales. While RANS modeling must cover the entire cascade and the highly
geometry-dependent turbulent eddies, LES modeling takes place only at the scales where
the information of the flow geometry has already decayed, thus, allowing for accurate and
comparatively simple LES models.

To separate these desired scales, a filtering operation is introduced using the filter width
∆ as suggested by Leonard [160]. The filter width marks the scale before which the cascade
is resolved and after which modeling of the cascade takes place. This effectively cuts off the
wavenumbers beyond the filter scale from the turbulent energy spectrum.
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The introduction of the cut-off scale and its effect on the turbulent energy cascade are
portrayed in Fig. 3.2 and compared to the previously introduced full spectrum of a DNS
introduced earlier. By filtering out the smaller scales – and thus the energy dissipation –
from the spectrum, the process of energy dissipation is removed from the energy cascade.
In particular, if there is no energy dissipation at the small scales, energy will accumulate at
the lowest possible scale as it is dictated by the energy cascade. This will be the case for
an underresolved DNS which is not experiencing dissipative effects from the solver. As the
accumulation of energy at the lowest scale is not physical, LES aims to improve this behavior
by introducing a subfilter model that effectively removes the energy up to the finest resolved
scale. Hence, the true character of a LES is always defined by the particular model used.

The mathematical basis for LES lies within the filtering operation:

Φ(x, t) =
∫

D3
Φ(x̆, t) G(x − x̆; ∆) dx̆ (3.3)

Where the transported variable Φ is convolved with the filtering kernel G and the filter width
∆ to obtain the filtered quantity Φ. The filtering is applied spatially in the three-dimensional
domain D3. To ensure that the filter does not change the solution integral – which is easily
noticed in the case of a constant function – integrating the filter kernel G must yield unity:∫

D3
G(x − x̆; ∆) dx̆ = 1 (3.4)

The achieved separation of scales is expressed mathematically by the decomposition of the
unfiltered quantity Φ into the filtered part Φ and the suppressed part (or subfilter part) Φ′,
leading to the identity:

Φ = Φ + Φ′ (3.5)

Along with the convolution integral come a few rules for the handling of the filtered terms.
The first rule dictates, that introducing a new filter level to a filtered quantity does not lead
to the same result:

Φ(x, t) ̸= Φ(x, t) (3.6)

As the filter smooths out the original field of Φ rather than converting it to a constant value.
The second rule states that filtering of the subfilter contribution will not result in values of
zero:

Φ′(x, t) ̸= 0 (3.7)

Which is intuitive, since filtering is designed to reduce amplitude rather than remove it.
It can be concluded that the filter is of crucial importance since it is directly merged with

the Navier-Stokes equations and thus takes control of their solution. To fully understand the
concept of LES and to interpret its results, it is necessary to know the effect of the filter and
to deal with its choice.
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Figure 3.3 Effects of low-pass filtering on a randomly generated signal using two different
filter widths.

Although filters are ubiquitous in the modern world, the effect of applying a filter to
a spatially-resolved quantity shall be revised. Filters are typically classified as low-pass,
band-pass and high-pass variants. Low-pass filters remove the small scale contribution to a
recorded signal and high-pass filters remove the large scale contribution, respectively. Band-
pass filters can be obtained by combining both low- and high-pass filtering, thus, narrowing
down the scales to a limited range. As the removal of the small scales is of interest for LES
theory, only low-pass filters will be considered in this work.

The effects of a low-pass filter on a spatially resolved arbitrary signal are demonstrated
in Fig. 3.3. Applying a filter to a known signal obtained from all scales allows for the
decomposition of the signal into the filtered Φ and the suppressed contribution Φ′. It can be
seen that the (low-pass) filter removes the small scale contribution in the signal and thus,
smooths the signal. In a three-dimensional problem this will ultimately lead to the desired
disappearance of the small turbulent structures for LES. To give a further insight, a variation
of the filter width ∆ is performed. Increasing the filter width leads to a progressive vanishing
of the small scales and hence, must be chosen carefully for the respective problem.

The mathematical foundations of filtering have been laid in the previous paragraphs. In
the following, the gap between the theory and the application of the filter within the equations
shall be closed. Filters are typically given as a mathematical instruction, specifically in the
form of an equation. While most of these equations are written down in a continuous domain,
it must be considered that simulation techniques for turbulent flows operate in a discrete
domain. Hence, filters applied to LES are typically of discrete nature.
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The discretization of the domain depends on the given problem and introduces a smallest
possible scale due to the computational limitations. In fact, the discretization dictates the
smallest scale that can be found in the computational problem. By effect the discretization
can be seen as a filter that suppresses the smallest scales of the given problem. Therefore,
the discretization may adopt this function and replace the definition of a separate filter. This
approach to filtering is referred to as implicit filtering and was introduced by Schumann [254].
Implicit filtering is the most commonly applied form of filtering within LES [68]. This is
not only due to savings of computational effort but also because employing a filter width
coarser than the discretization introduces a loss of resolution that is typically not considered
worth to afford. In this context, the question arises as to why a separate filter was originally
proposed. The true purpose of the filter is to draw a line between separation of scales and
discretization, which was shown to vanish in the case of implicit filtering. This also led to
the remaining inappropriate choice of terminology within LES and to the common use of
both, the terms subfilter and subgrid. The separation results in the control of wavenumbers
resulting from the nonlinear (convective) term that cannot be resolved on the computational
grid, which may lead to aliasing contamination of the solution. In contrast to its implicit
counterpart, the employment of an actual filter is also referred to as explicit filtering.

In order to further elaborate the influence of the filter, the concept and structure of LES
– or paradigms of turbulence simulation in general – needs to be discussed in more detail.
Following the theory, a paradigm of turbulence simulation is nothing but a set of equations
waiting to be solved for a certain set of boundary conditions dictated by the respective
problem. To actually obtain a solution from these equations in the case of an LES, the
following tools or frameworks may be employed:

• Spatial discretization

• Numerical procedure

• Filtering

• Subfilter/subgrid modeling

When performing LES, the solution obtained from it is a direct result of the coupling and
interaction of all the aspects included in the solver. Although usually being mathematically
complicated and computationally expensive, there are approaches to uncouple the effects
of these aspects. This is particularly important in the method development and evaluation
step, where only the effects of the newly implemented model are relevant. In the case of
implicit filtering no distinction is being made between the filter and the discretization. Hence,
their effects merge and become practically inseparable. While this is of rather little concern
in technical applications of CFD, it is considered a severe problem in the study of model
performance – especially in the area of LES quality-assessment. A more recent approach to
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reduce the coupling of solver-aspects is the implicit-LES, which omits the filtering as well as
the corresponding sub-filter modeling and employs specifically designed numerical schemes to
compensate for the lack of the latter [2, 98].

It can be seen that due to its hybrid nature LES requires special care in the choice of
models and methods. Furthermore the use of terminology within the community may appear
somewhat hypocritical – especially regarding the use of filter and subfilter-models. Although
a plethora of LES studies use implicit filtering, the use of explicitly filtered LES equations is
given at the beginning of most scientific documentation. For the sake of completeness of this
work, the derivation of the filtered LES equations shall be presented.

The filtering of the source-free conservation equation of mass and momentum will be
given to demonstrate the effect of the filter. Applying the filtering operation following Eq. 3.3
and employing a constant filtering width – indicated as (·) – yields:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0 (3.8)

Per definition the filtering integral is linear:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0 (3.9)

Following the Schwarz rule, the filter and the derivative are commutable:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0 (3.10)

It can be seen that incorporating the filtering operation into the equation produces a merged
filtered term ρuj that contains the product of two variables at the subfilter level. A major
objective of LES is to avoid these terms, since by definition they cannot be obtained at
the LES resolution. Therefore, for the case of flows with variable density, the concept of
Favre-filtering is introduced [66]. The Favre-filtering – indicated as (̃·) – aims at avoiding
coupled terms by replacing the conserved quantity Φ as follows:

Φ̃ = ρΦ
ρ

(3.11)

And thus allows for the replacement of the unknown subfilter terms:

∂ρ

∂t
+ ∂ρũj

∂xj
= 0 (3.12)

The filtered equation has the same structure as its counterpart. Therefore, it can be concluded
that the conservation of mass still holds for the filtered quantities. In the next step, the filter
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is applied to the source-free conservation of momentum:

∂ρui
∂t

+ ∂ρuiuj
∂xj

= − ∂p

∂xi
+ ∂

∂xj

(
µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3µ
∂uk
∂xk

δij

)
(3.13)

Again the terms within the filter are decomposed:

∂ρui
∂t

+ ∂ρuiuj
∂xj

= − ∂p

∂xi
+ ∂

∂xj

(
µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3µ
∂uk
∂xk

δij

)
(3.14)

The application of the Schwarz rule allows for the commutation of the filtering operation and
the derivative:

∂ρui
∂t

+ ∂ρuiuj
∂xj

= − ∂p

∂xi
+ ∂

∂xj
ρν

((
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3
∂uk
∂xk

δij

)
(3.15)

With the Favre-filtering the equation can be rewritten as:

∂ρũi
∂t

+ ∂ρũiuj
∂xj

= − ∂p

∂xi
+ ∂

∂xj
ρν

((
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3
∂uk
∂xk

δij

):

(3.16)

It is found that the viscous stresses have a structure that is difficult to assess using the
filter-scale quantities. Hence, it is assumed that for the Favre-filtering – for all i and j – the
kinematic viscosity ν and the velocity gradient ∂ρũi

∂xj
are uncorrelated. While this holds only

true for the case of constant viscosity flows, the introduced error is assumed to be small, in
particular compared to the error introduced by the modeling of the subfilter scales. This is
especially the case for high Reynolds numbers where the turbulent dissipation is significantly
stronger than the laminar dissipation. It can then be argued that, due to the dominance of
the turbulent dissipation, the treatment of the viscosity within the filter is an error introduced
by the subgrid modeling. A simplification of the equations can be formulated as:

ρ
˜

ν
∂ui
∂xj

≈ ρν̃
∂ũi
∂xj

(3.17)

It can be seen that the Favre-filtering yields an unclosed term ∂ρũiuj/∂xj, which again
consists of subfilter variables that cannot be obtained. This is the linchpin of LES theory, as
this term represents the compromise of information by the filter. To preserve the original
structure of the equation, a zero-sum addition is proposed:

∂ρũiuj
∂xj

= ∂ρũiuj
∂xj

+ ∂ρũiũj
∂xj

− ∂ρũiũj
∂xj

(3.18)
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The term mimics the original convective transport term but produces another term as a
byproduct:

∂ρũiũj
∂xj

+ ∂ρũiuj
∂xj

− ∂ρũiũj
∂xj

= ∂ρũiũj
∂xj

− ∂ρ(ũiũj − ũiuj)
∂xj

(3.19)

Resulting from the filtering of the NSE, this term represents the influence of the removed
scales on the resolved scales. Hence, it is of crucial importance for the preservation of the
turbulent energy spectrum, since this term removes the energy at the smallest scale found
in the LES domain. This term retains the name subfilter stresses, although mostly being
referred to as Subgrid Stresses (SGS) due to the common use of implicit filtering. For the
sake of clarity, and due to this work employing implicit filtering, the stresses will be referred
to as subgrid stresses in the following. One of the defining aspects of LES is the treatment of
this unclosed term, the respective approaches of which are discussed in detail in this work.
Following the above derivation, the subgrid stresses are defined as:

τ sgs
ij = ũiũj − ũiuj (3.20)

Using the newly derived term, the LES-filtered equation of momentum conservation can be
composed:

∂ρũi
∂t

+ ∂ρũiũj
∂xj

= − ∂p

∂xi
+ ∂

∂xj

(
ρν̃

(
∂ũi
∂xj

+ ∂ũj
∂xi

)
− 2

3ρν̃
∂ũk
∂xk

δij

)
+

∂ρτ sgs
ij

∂xj
(3.21)

As the filtering of the momentum equation yields an additional term to account for the
suppressed scales, it is of interest to investigate the effect of the filtering on the scalar
transport equations. The source-free scalar transport equation from Sec. 2.1 will be used to
demonstrate the filtering:

∂ρϕ

∂t
+ ∂ρϕuj

∂xj
= ∂

∂xj

(
ρDϕ

∂ϕ

∂xj

)
(3.22)

Decomposing the filtered term yields:

∂ρϕ

∂t
+ ∂ρϕuj

∂xj
= ∂

∂xj

(
ρDϕ

∂ϕ

∂xj

)
(3.23)

Further change the order of the derivative and filter convolution:

∂ρϕ

∂t
+ ∂ρϕuj

∂xj
= ∂

∂xj

(
ρDϕ

∂ϕ

∂xj

)
(3.24)

Favre-filtering is employed to decouple the merged quantities. The simplification as demon-
strated in Eq. 3.17 is applied assuming that the diffusion coefficient is uncorrelated with the
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scalar gradient ∂ϕ
∂xj

for all j:

∂ρϕ̃

∂t
+ ∂ρϕ̃uj

∂xj
= ∂

∂xj

ρ
˜

Dϕ
∂ϕ

∂xj

 (3.25)

Again, the convective term cannot be obtained from the LES filtered quantities and is
rewritten:

∂ρϕ̃uj
∂xj

= ∂ρϕ̃uj
∂xj

+ ∂ρϕ̃ũj
∂xj

− ∂ρϕ̃ũj
∂xj

(3.26)

The zero-sum within this term can be treated analogous to the step taken in Eq. 3.19:

∂ρϕ̃uj
∂xj

= ∂ρϕ̃ũj
∂xj

− ∂ρ(ϕ̃ũj − ϕ̃uj)
∂xj

(3.27)

A structure similar to that of Eq. 3.20 is found. The resulting term represents the influence
of the subfilter scalar transport on the resolved transport. Due to their similar structure
and physical interpretation, this term is also referred to as the subfilter scalar flux. In this
work, the term subgrid scalar transport is used specifically due to the employment of implicit
filtering:

τ sgs
j = ũjϕ̃ − ũjϕ (3.28)

By embedding the subgrid scalar flux into the LES-filtered scalar transport equation, the
structure of the scalar LES equations can be derived:

∂ρϕ̃

∂t
+ ∂ρϕ̃ũj

∂xj
= ∂

∂xj

ρ
˜

Dϕ
∂ϕ

∂xj

+
∂ρτ sgs

j
∂xj

(3.29)

Again, a coupling – this time between the scalar gradient and the diffusion coefficient – can
be observed. This is approached in the same manner as for the viscosity in Eq. 3.17 and
hence, in the scalar case reads:

ρ
˜

Dϕ
∂ϕ

∂xj
≈ ρD̃ϕ

∂ϕ̃

∂xj
(3.30)

Leading to the final formulation of the scalar transport equation:

∂ρϕ̃

∂t
+ ∂ρϕ̃ũj

∂xj
= ∂

∂xj

(
ρD̃ϕ

∂ϕ̃

∂xj

)
+

∂ρτ sgs
j

∂xj
(3.31)

A further decomposition of the obtained subgrid stresses was proposed by Leonard [160] and
gives room for a better interpretation of the structure of the stresses. The decomposition
may be performed by inserting the separation of the velocity into a resolved scale and the
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subgrid scale contribution into the definition of the subgrid stresses ui = ũi + u′
i:

τ sgs
ij = ũiuj − ũiũj = ˜̃ui ũj − ũi ũj︸ ︷︷ ︸

Lij

+ ˜̃uiu′
j + ũ′

iũj︸ ︷︷ ︸
Cij

+ ũ′
iu

′
j︸︷︷︸

Rij

(3.32)

The decomposition yields the components Lij – the Leonard stresses –, Cij – the cross stresses
– and Rij – the Reynolds subgrid stresses. Here, the Leonard term represents the interaction
between the resolved scales, the cross-stress term describes the interaction between the
resolved and subgrid scales and the Reynolds subgrid term quantifies the interaction between
the subgrid scales. While the Leonard term can be calculated directly using an explicit filter,
the Reynolds subgrid stresses must be modeled. The Leonard stress term will be relevant for
some closure-approaches of the subgrid stresses.

The effect of the filtering on the different laws of conservation was discussed. It has been
revealed that filtering leads to the formation of an additional flux term within the transport
equation, which takes into account the suppressed scales. The closure of this term relies on
additional models. In the following, an introduction to different modeling strategies will be
given.

The closure of the subgrid stresses and fluxes can be seen as the heart of LES – especially
in the context of implicit filtering – and aims at modeling the effects of the suppressed scales
using resolved quantities. There is a plethora of approaches, the most important of which
will be discussed in the following pages. There are two sets of requirements that are generally
taken for granted and have been summarized by Sagaut [244]. The employed subgrid model
must comply with the following types of constraints:

• Physical constraints: consistency with the modeled physics

– Conserve the mathematical properties of the equation it is embedded in

– Vanishing contribution locally where no small scales occur

– Induce an effect of the same kind as the modeled terms

– Do not alter the dynamics of the resolved scales and do not interfere with the flow
driving mechanism

• Numerical constraints: consistency with the numerical algorithm

– Acceptable numerical costs

– Results produced local in time and space

– Maintain or improve numerical stability

– Insensitivity to the discretization

Two different types of approaches have emerged to satisfy the above mentioned constraints.
The first type are the functional models, which follow a more empirical approach, as they
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aim to provide a similar effect using resolved quantities without maintaining the same
mathematical structure as the true subgrid stresses. The second type is the structural models,
which aim at a precise representation of the subgrid stresses, ultimately yielding an exact
mathematical expression of the subgrid stresses employing deconvolution or series expansion.
The two approaches require different knowledge of the dynamics of the treated equations and
provide a different quality of results. Functional models typically rely on information about
the nature of the interscale interaction, while structural models require sufficient information
about the structure of the small scales. In the following, the most relevant models in the
context of this work will be discussed.

3.3 Functional models

The first class of LES subgrid models are the functional models, the most prominent group
of which are the Eddy-Viscosity Models (EVM ). The basis of this group of models is the
approximation of Boussinesq [25], which states that the suppressed small scales act as an
additional viscosity leading to the removal of energy from the resolved scales. In particular,
the subgrid stresses can be related to the resolved stresses due to the assumed viscosity, as
follows:

τ sgs,d
ij = τ sgs

ij − 1
3τ sgs

kk δij = −ρ̄ν̃t

((
∂ũi
∂xj

+ ∂ũj
∂xi

)
− 2

3
∂ũk
∂xk

δij

)
(3.33)

Where νt is the turbulent viscosity. It is the target of all EVM to calculate the turbulent
viscosity. The formulation of the Boussinesq hypothesis demonstrates the standard treatment
of the subgrid stresses. Typically, the subgrid stresses are decomposed into an isotropic and
a deviatoric (also referred to as anisotropic) part.

The scalar fluxes are treated respectively by assuming gradient-driven diffusion [297]:

τ sgs
j = − ν̃t

Sct

∂ϕ̃

∂xj
(3.34)

Where Sct is the turbulent (or subgrid) Schmidt number. From the structure of the equations
it can be seen that the isotropic part remains untreated. In fact, its treatment depends on
the strategy of solving the LES-filtered equations. One procedure is to take advantage of the
isotropic nature and to treat the term as an addition to the pressure resulting in a modified
pressure, reading:

pmod = p + 1
3τ sgs

kk δij = p + 1
3ρ
(
ũ2

k − ũ2
k

)
(3.35)

This is the case for low Mach number solver architectures; the unknown isotropic subgrid
stresses are determined together with the pressure. For high Mach number solver architectures,
the isotropic part requires additional modeling and respective strategies have been proposed,
e.g. by Yoshizawa [311], Moin [184] and Speziale [264]. It can be mentioned that Erlebacher
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[63] found that the influence of the isotropic contribution remains comparatively small up to
turbulent Mach numbers below a value of 0.4.

The eddy viscosity is generally defined as:

νt =
(
Csgs∆

)2
Dm (3.36)

Where Csgs is the respective model constant and Dm is the term which is characteristic of each
EVM. While commonly being referred to as the differential operator, strictly mathematically
seen Dm is not a differential operator. Different EVM provide procedures for the calculation
of the operator required for the turbulent viscosity. While all produced turbulent viscosities
can ultimately be cast into equation Eq. 3.33, their calculation may strongly differ. A crucial
aspect of EVM models is that the turbulent viscosity is always bounded to positive values
νt > 0. This strictly limits the subgrid model to dissipative behavior, which favors numerical
stability, but at the same time prohibits backscattering, which leaves the prediction of the
energy cascade incomplete and leads to an overall increase in dissipation. In fact, early
studies by Bardina [15] show generally poor alignment between the subgrid stresses produced
by the EVM and the true stresses. At this point it also has to be stressed that the very basis
of the EVM models – the Boussinesq hypothesis – has never been demonstrated to be fully
valid experimentally or in DNS [250].

3.3.1 Smagorinsky model

The most commonly employed subgrid model is also the first subgrid model ever to be
developed. The Smagorinsky model originates from the very motivation of LES which
is meteorology and where it is still a popular choice – it bears the name of its creator
Smagorinsky [259]. Common reasons for its use are its robustness, its efficiency and its
simplicity.

Despite the advantages that lead to its popularity, the Smagorinsky model has some
drawbacks that should be taken into account as they may pollute the solution obtained by
LES. The drawbacks have already been discussed in detail by Launder and Sandham [154] and
will be reviewed as an overview. A major discussion is the calibration of the model constant,
the choice of which depends on the type of flow and geometry, the Reynolds number and
the numerical discretization. The most general value proposed by Lilly [164] is Csgs = 0.173,
while for wall bounded flows values of Csgs = 0.065 are suggested by Moin and Kim [183].
To overcome this issue, the dynamic procedure as developed by Germano [80] can be used.
This procedure uses filtering to use information from the resolved scales near the cutoff scale
and replaces the fixed constant with a value that varies in space and time. However, the
model constant obtained from this procedure is overdetermined and fluctuates, which requires
stabilization, e.g. by spatial averaging or temporal relaxation, as suggested by Breuer and
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Rodi [26]. As with all EVMs, the stability of the Smagorinsky model comes at the cost of its
strict dissipativity, and thus its inability to predict backscatter.

The Smagorinsky model calculates the operator Dm as follows:

D
Smagorinsky
m =

√
2S̃ijS̃ij (3.37)

With the inner product of the grid-scale strain tensor S̃ijS̃ij, where the strain tensor S̃ij is
defined as:

S̃ij =
(

∂ũi
∂xj

+ ∂ũj
∂xi

)
(3.38)

It shall be revised that the inner product of a tensor in fact yields a scalar and must be seen
as the sum of the products of all tensor elements. The full product can be written out as:

S̃ijS̃ij = S̃11S̃11 + S̃12S̃12 + S̃13S̃13

+S̃21S̃21 + S̃22S̃22 + S̃23S̃23

+S̃31S̃31 + S̃32S̃32 + S̃33S̃33

(3.39)

A common problem with the use of the Smagorinsky model is the incorrect prediction of
wall scaling for wall-bounded flows. Adequate damping of velocity fluctuations in EVM
is achieved when ν̃t ∝

(
y+)3 holds sufficiently close to the wall. However, the standard

Smagorinsky model does not scale the eddy viscosity, leading to increased dissipative behavior.
This behavior can be improved by applying a damping correction to the model constant as
suggested by van Driest [284]:

D
(
y+
)

= 1 − e−y+/A+ (3.40)

Where A+ is a parameter to adjust the damping behavior. In general, the van Driest
correction achieves a wall scaling of ν̃t ∝

(
y+)2, which significantly improves the standard

Smagorinsky model, but is not completely correct. The true scaling can be found by further
modifying the van Driest approach according to Launder and Sandham [154], such as:

D
(
y+
)

=
(

1 − e−(y+/A+)3
)1/2

(3.41)

Another alternative is a dynamic procedure, which produces correct wall scaling behavior
and will be discussed in more detail later. Finally, the Smagorinsky model struggles in the
case of laminar-turbulent transition. By its very nature, the Smagorinsky model produces
turbulent viscosities even in the case of laminar flow, exhibiting unphysical dissipation that
makes it difficult to apply to this type of flow.
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3.3.2 Sigma model

The shortcomings of the Smagorinsky model are discussed by Nicoud et al. [192], who
posed a list of requirements for the operator Dm to overcome these shortcomings. The most
important properties of the operator are related to stability and therefore require local values
for its calculation as well as positive values of the operator to suppress backscatter. To
improve the accuracy of an EVM, it is desirable for the operator to vanish for laminar and
two-dimensional flows, as well as near boundaries, where it is expected to scale with the cube
of the wall distance. The same work proposes a formulation for the operator that satisfies
all of the above requirements and forms a powerful model. It can be computed using the
singular values of the grid-scale velocity gradient tensor:

g̃ij = ∂ũi
∂xj

(3.42)

Precisely this tensor was chosen in order to meet the previously stated requirements for
the operator Dm – thus, it may be argued that this leads to a mathematical rather than a
physical definition. These singular values are by definition always non-negative, since Gij is
positive semidefinite. In particular, the smallest singular value will be zero only if a row or
column of g̃ij is zero, which corresponds to the case of a two-dimensional flow. Furthermore,
analysis using a Taylor series expansion of the resolved velocities as a function of the wall
distance showed that for a suitable combination of the singular values in the definition of
Dm, cubic behavior can indeed be obtained near the wall. The singular values are commonly
denoted as σi, which is why the model is also called the Sigma model. The singular values
are obtained as roots of the eigenvalues of the following tensor:

Gij = g̃kig̃kj = ∂ũk
∂xi

∂ũk
∂xj

(3.43)

The invariants of Gij must first be obtained to compute the singular values:

I1 = tr(Gij) (3.44)
I2 = (tr(Gij)2 − tr(G2

ij))/2 (3.45)
I3 = det(Gij) (3.46)
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Here tr() denotes the trace and det() denotes the determinant operator, following the literature.
In the next step, the angles are obtained from the invariants:

α1 = I2
1
9 − I2

3 (3.47)

α2 = I3
1

27 − I1I2
6 + I3

2 (3.48)

α3 = 1
3arccos(α−3/2

1 α2) (3.49)

The singular values of g̃ij can be calculated directly from the angle values:

σ1 =
(

I1
3 + 2α

1/2
1 cos (α3)

)1/2
(3.50)

σ2 =
(

I1
3 − 2α

1/2
1 cos

(
π

3 + α3

))1/2
(3.51)

σ3 =
(

I1
3 − 2α

1/2
1 cos

(
π

3 − α3

))1/2
(3.52)

Where σ1 ≥ σ2 ≥ σ3 ≥ 0 always holds. The operator Dm is assembled:

Dm = σ3(σ1 − σ2)(σ2 − σ3)
σ2

1
(3.53)

Nicoud suggests a universal constant of Csgs = 1.5 for his model. The model has been
shown to yield good results using static and dynamic procedures [192]. Overall, the Sigma
model generally outperforms the standard Smagorinsky model due to its design, following
the desired properties. However, it is occasionally argued that the turbulent viscosities νt are
of a non-physical nature and exhibit strong scattering behavior due to the model following a
strictly mathematical definition [60, 96].

3.3.3 Germano’s dynamical procedure

The dynamical procedure by Germano forms a tremendous upgrade to parameter-based eddy
viscosity models – although initially proposed to improve the standard Smagorinsky model –
at the cost of increased computational effort. While originally proposed by Germano, several
improvements and extensions exist such as by Lilly [165], Meneveau [178] and Moin [184]. As
the advantages and the working principle were briefly discussed before, more light shall be
shed on the mathematics of the dynamic procedure. The aim of the dynamic procedure is to
construct a suitable model constant from the smallest resolved scales as they contain the most
accurate information on the grid about the suppressed scales. For this purpose it is assumed
that the model constant to be determined is only a weak function of the wavenumber and
hence, all information for its construction may be taken from the smallest resolved scales. An
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additional filtering level is introduced (typically at the double of the cut-off scale ∆̂ = 2∆)
leading to the formulation of a new but known test filter stress T sgs

ij , which is fully known
due to the information obtained from the cut-off scale resolved variables. This test filter
stress is obtained by applying the test filter on the LES-filtered variables. In the following,
the framework by Lilly [165] – allowing for variable densities – is presented for the sake of
consistency with the LES-filtered equations. It has to be noted henceforth, that together
with the test filtering a second Favre-filtering level is introduced, following Eq. 3.11, which
dictates:

ˇ̃Φ = ρ̂Φ̃
ρ̂

(3.54)

And allows for simplification of mathematical terms used in the derivation process. The
cut-off and test filter scale stresses can be formulated as:

τ sgs
ij = ρui ρuj

ρ
− ρuiuj

T sgs
ij = ρ̂ui ρ̂uj

ρ̂
− ρ̂uiuj

(3.55)

It has been stated earlier that the Leonard stress can be obtained directly in LES by applying
an explicit filtering level to the grid-scale variables. Germano’s procedure thereby employs
the test filter to establish a relationship between the previously introduced Leonard stresses,
the subgrid stresses and the test-filter stresses. This expression can be simplified using the
additional Favre-filtering level from Eq. 3.54. Due to its relevance for the procedure, this
relation is also referred to as the Germano identity:

Lij = T sgs
ij − τ̂ sgs

ij = ρ̂ũiũj − ρ̂ũi ρ̂ũj

ρ̂
(3.56)

It can be seen that the Leonard stress consists only of known quantities and hence, casting
the baseline Smagorinsky model into this identity serves as a basis for the determination of
the model constant. To include the modeling constant in the identity, Smagorinsky’s model
is formulated at the cut-off and test-filter scale, leading to two expressions for the respective
subfilter and subgrid stresses, which are assumed to be modeled by the same constant:

τ sgs
ij − 1

3τ sgs
kk δij = ρC2

m∆2
Dm(ũi)

(
2
3

∂ũk
∂xk

δij −
(

∂ũi
∂xj

+ ∂ũj
∂xi

))

T sgs
ij − 1

3T sgs
kk δij = ρ̂C2

m∆̂
2
Dm(̂̃ui)

(
2
3

∂ ̂̃uk
∂xk

δij −
(

∂ ̂̃ui
∂xj

+ ∂ ̂̃uj
∂xi

)) (3.57)
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To simplify the notation and to separate the unknown modeling constant Cm from the
remaining terms, which can be computed directly, two variables αij and βij are introduced:

βij = C2
m

(
τ sgs

ij − 1
3τ sgs

kk δij

)
αij = C2

m

(
T sgs

ij − 1
3T sgs

kk δij

) (3.58)

These variables are merged into the deviatoric part of the Germano identity given in Eq. 3.56,
which yields a set of six equations in the case of variable density. An overdetermined system
of equations is obtained, which reads:

Lij − 1
3Lkkδij = Ĉ2

mβij − C2
mαij = Mij (3.59)

However, the desired constant Cm is convolved in the filter operator. Following the ideas of
Germano [80], Moin [184] and Lilly [165], the modeling constant is assumed to be independent
of the test filtering operation for at least one interval of the test filter cut-off length.

In general, it is desired to obtain one equation while solving for a scalar. Therefore,
Germano [80] proposed to contract the tensor using the strain tensor S̃ij:

C2
m =

(
Lij − 1

3Lkkδij
)

S̃ij(
β̂ij − αij

)
S̃ij

(3.60)

A common problem with determining Cm using this equation is the occurrence of numerical
instabilities, since the denominator can become zero independently of the nominator. It is
common practice to deal with this by assuming a spatially homogeneous constant Cm in
several directions and applying filtering.

Lilly [165] suggested the use of a least squares approximation. In analyzing this method,
it was found that Mij provides a suitable contraction:

C2
m =

(
Lij − 1

3Lkkδij
)

Mij

MijMij
(3.61)

Another possibility is the use of a modified version of Piomelli and Liu [208], also referred to
as a localized dynamic model which is considered even more robust than the work of Lilly
[165]. This approach employs the value of C∗

m at the previous time iteration n∗
t and does not

require the assumption of a partially spatially homogeneous constant. This is achieved by
using the strain tensor with the difference of (β̂ij − αij) as the contraction:

C2
m =

(
Lij − 1

3Lkkδij − Ĉ∗2
m βij

)
αij

αijαij
(3.62)



3.3 Functional models 31

In order to ensure a good performance of the dynamic procedure – regardless of the chosen
way of calculating Cm –, an additional limitation of the obtained constant is performed.
The most important one is the exclusion of backscattering, which might lead to numerical
instability by prohibiting negative viscosities. While the choice of Cm such that ν + νt ≥ 0 is
legitimate, it is more common to simply set Cm > 0. Another possible limitation that can
be applied are maximum values to avoid excessive dissipation or local numerical instability
produced by the model Cm ≤ Cm,max.

The dynamic procedure is a powerful extension to EVM-type models, which has been
reported to greatly improve their performance [80, 216, 244]. However, along with the
choice of the dynamical procedure come limitations and effects on the model behavior. One
constraint that is theoretically relevant, but not always met, is the choice of grid size. Since
the test filter uses a coarser level than the grid size, it must be ensured that both filter
levels remain within the inertial subrange, which may not be the case for the test filter on
coarser grids. It was shown a-posteriori that this is comparatively unimportant and that
satisfactory results can be obtained without fulfilling this requirement [216]. While the
dynamical procedure is able to correct the behavior of its host model to a certain degree,
some properties of the model are preserved despite the dynamical procedure. In particular,
for the Smagorinsky model, it was shown that there is only a weak correlation between the
resolved and subgrid stresses in the a-priori tests, which can be considered as a reason for
the highly fluctuating nature of the constant obtained from the dynamical procedure [216].

3.3.4 Sensor-enhanced Smagorinsky model

An elegant way to deal with the drawback of the standard Smagorinsky model is the Sensor-
Enhanced Smagorinsky model (SES) proposed by Hasslberger [96]. The sensor-enhanced
variant of the Smagorinsky model aims at dynamically controlling the subgrid-dissipation
to improve the performance of the standard Smagorinsky model in the vicinity of walls and
for transitional flows. An important aspect hereby is the correction of the wall scaling of
νt by the sensor. The sensor can be understood as an additional multiplier to the stresses
produced by the standard Smagorinsky model τSmagorinsky

ij and reads:

τ sgs
ij = τSmagorinsky

ij |F̂CS − FCS|3/2Csensor (3.63)

The coherent-structure function FCS is a central concept within the sensor and was introduced
by Kobayashi [141]. The structure function is defined as the ratio of the second invariant of
the grid-scale velocity-gradient tensor Q and its magnitude E, i.e. with:

Q = 1
2
(
W̃ijW̃ij − S̃ijS̃ij

)
(3.64)
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And:
E = 1

2
(
W̃ijW̃ij + S̃ijS̃ij

)
(3.65)

Where the grid-scale strain rate shall be repeated:

S̃ij = 1
2

(
∂ũi
∂xj

+ ∂ũj
∂xi

)
(3.66)

And the grid-scale rotation rate is:

W̃ij = 1
2

(
∂ũi
∂xj

− ∂ũj
∂xi

)
(3.67)

Leading to the structure function being bounded between −1 and +1. In Eq. 3.63, the
coherent-structure function F̂CS recruits an additional filtering level and the filtering operation
as described by Anderson and Domaradzki [8] is recommended in the original work. The
sensor constant Csensor has to be chosen with respect to the numerical scheme treating the
momentum equations and is calibrated for the test case of homogeneous isotropic turbulence.
A sensor constant of Csensor ≈ 0.016 was found for the use of central differences while the
quadratic upstream interpolation should use a constant of Csensor ≈ 0.013.

3.4 Structural models

3.4.1 Bardina’s and Liu’s models

As the EVM type models are of importance to the functional models, the presumably most
important group of structural models are the Scale-Similarity Models (SST ). The SST-type
models aim to directly mimic the subgrid-stress tensor and root in the works of Bardina [15]
and Liu [168]. The model of Bardina reads:

τ sgs
ij = ˜̃uiũj − ˜̃ui ˜̃uj (3.68)

τ sgs
j = ˜̃

ujϕ̃ − ˜̃uj
˜̃
ϕ (3.69)

And the approach by Liu is based directly on the work of Bardina and employs a separate
cut-off filter so that:

τ sgs
ij = ̂̃uiũj − ̂̃ui ̂̃uj (3.70)

τ sgs
j = ̂̃

ujϕ̃ − ̂̃uj
̂̃
ϕ (3.71)

Both models were found to yield considerable correlation with the true subgrid stresses in an
a-priori analysis. However, all a-posteriori tests revealed severe stability problems of the two
models, emphasizing the need to use additional EVM-type models.
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3.4.2 Clark’s model

A model proposed independently by Clark [42] and Lele [159] can be derived by approximating
the filter of the velocity ui as well as uj using Taylor-series expansion and inserting this
approximation into the equations of Bardina and Liu, thus, yielding a second-order expansion
of the subgrid-stress tensor [136, 244]. Although being classified as a gradient-type model,
Clark’s model is typically mentioned in the same breath as the scale-similarity models. The
model reads:

τ sgs
ij = ∆2

12
∂ũi
∂xk

∂ũj
∂xk

(3.72)

τ sgs
j = ∆2

12
∂ũj
∂xk

∂ϕ̃

∂xk
(3.73)

Clark suggested combining his model with additional models to provide sufficient energy
dissipation.

3.4.3 Mixed models

It can be concluded that the structural models exhibit a considerable correlation with the true
subgrid stresses at the level of individual tensor components, while suffering from stability
problems due to insufficient energy dissipation. This reduces their applicability. On the other
hand, the functional models show only low correlation with the true subgrid stresses, but
adequately model the energy transfer from the resolved scales to the subgrid scales. While
the idea of combining these two approaches already emerged with the development of the
first structural models [15, 42, 293, 312], it is well known that combining their strengths can
lead to improved results [132]. In the scope of this work, the role of the functional model can
be represented by an EVM-type model, leading to the general formulation of a mixed model
being:

τ sgs
ij = CSSTτ sgs,SST

ij + CEVMτ sgs,EVM
ij (3.74)

3.4.4 Klein’s scale-similarity type models

The models proposed by Klein are based on the ideas of Kobayashi [142] and Abe [1].
Kobayashi aimed to formulate scale-similarity type models by casting them into a mixed
model-like structure, which aims to eliminate energy transfer against the direction of the
Kolmogorov cascade in the case of backscatter. The elimination of backscatter provides the
desired property of stability to the scale-similarity type models. Two terms are commonly
used in the analysis and treatment of backscatter. The first is called interscale energy transfer
and is defined as −τSST

ij S̃ij. The sign of this term directly indicates the direction of the energy
transfer and thus the presence of backscatter. In the case of forward scattering −τSST

ij S̃ij

is positive, which corresponds to the Kolmogorov cascade process, while negative −τSST
ij S̃ij

occur in the case of backscattering. Note that the expression τSST
ij S̃ij appears as a production
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term within the conservation equation of the subgrid scale turbulent kinetic energy ksgs,
indicating that the energy transfer from the grid scale to the subgrid scale is equal to the
energy transfer between the subgrid scales. The second term is the subgrid scale force and
characterizes the effect of the subgrid scale stresses on the conservation equations and is
defined as ∂τSST

ij /∂xj.
Kobayashi’s model structure goes back to the ideas of Abe [1], who aimed at stabilizing

Bardina’s scale-similarity model [15]. Although not directly relevant to the present work,
Abe’s idea will be summarized below, as it allows for a better understanding of Klein’s
successor models. Abe tried to transfer the structure of the robust EVM models to an SST
model. The anisotropic part of the EVM model is as introduced earlier:

τEVM,d
ij = −2νtS̃ij (3.75)

Abe assumed the existence of an SST-type model of the same form:

τSST,d
ij = −2νtS̃ij (3.76)

Multiplication by the resolved strain tensor S̃ij converts the tensor-products into scalars and
the equation can be solved for the newly introduced viscosity:

νt = −
τSST,d

ij S̃ij

2S̃ijS̃ij
(3.77)

The residual of the newly crafted model and the original SST model is summarized as:

Rij = τSST,d
ij −

(
−2νtS̃ij

)
(3.78)

According to Abe, the EVM-type model used is typically recognized as an isotropic model,
and thus Rij is also referred to as the subgrid-stress anisotropy term. An SST-type model
that emulates the idea of EVM-type models can be written as:

τSST,d
ij = −2νtS̃ij + Rij (3.79)

This structure implies that these particular models yield the entire subgrid stress tensor, as
opposed to common models that target only its deviatoric part. Because of its relation to
the turbulent viscosity, the subgrid turbulent kinetic energy ksgs was the choice of Abe and
Kobayashi to construct the unknown terms in this equation at the cost of incorporating a
corresponding transport equation. Klein suggested a possible elimination of the need for a
transport equation for the subgrid turbulent kinetic energy ksgs, which drastically reduces
the computational effort and thus provides an attractive reformulation of Kobayashi’s model.
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Work by Sagaut [244] and Klein [138] showed that it is a reasonable assumption to express
the subgrid kinetic energy using the isotropic part of the subgrid stress ksgs ≈ τ sgs,SST

kk /2.
Due to the nature of its development, the resulting model is not a stand-alone model, but

rather can be seen as an extension of existing scale-similarity type models. Initially, Klein’s
models were proposed and analyzed in combination with Clark’s model. The equations read:

τ sgs
ij = −τSST

ab S̃ab + | − τSST
ab S̃ab|

−τSST
ab S̃ab

τSST
ij +

(
τSST

ij + −τSST
ab S̃ab

S̃ab S̃ab
S̃ij

)
(3.80)

τ sgs
j = −τSST

a ∂ϕ̃/∂xa + | − τSST
a ∂ϕ̃/∂xa|

−τSST
a ∂ϕ̃/∂xa

τSST
j +

τSST
j + −τSST

a ∂ϕ̃/∂xa(
∂ϕ̃/∂xa

)2 ∂ϕ̃/∂xj

 (3.81)

It becomes evident that the pre-factor in the first summand can only take values of 0 or 2.
The second term was found to represent only the subgrid force and thus, is considered to be
of no particular relevance. The simplified model reads:

τ sgs
ij = τSST

ij − max
(

τSST
ab S̃ab

S̃ab S̃ab
, 0
)

S̃ij (3.82)

τ sgs
j = τSST

j − max

τSST
a ∂ϕ̃/∂xa(
∂ϕ̃/∂xa

)2 , 0

 ∂ϕ̃

∂xj
(3.83)

The stabilization mechanism of the model can be understood as follows. The central
assumption is that instability is a consequence of backscattering rather than lack of dissipation.
The model retains the properties of the τSST

ij baseline model in the case of forward scattering.
In the case of backscattering, however, the baseline model τSST

ij is replaced by a projection
onto an energy-transfer neutral tensor, which is the subgrid scale force. The interscale
energy transfer expressed by −τSST

ij S̃ij, where its sign is an indicator of its direction – thus
representing forward or backward scattering. The mechanism can be nicely illustrated in
Eq. 3.82, where forward scattering is characterized by negative τSST

ij S̃ij and thus yields the
baseline scale similarity model. Positive τSST

ij S̃ij indicate backward scattering and lead to an
additional term to support the baseline model.

These models are a fundamental aspect of this work and will be elaborated further in
Chapters 6 and 7.

3.5 Modern closure approaches

All of the approaches presented so far share a physical modeling philosophy. The presented
models aim to model either the effects of suppressed turbulence or the energy cascade directly.
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This modeling approach is sometimes referred to as classical LES subgrid modeling. However,
many recent developments follow a purely mathematical basis.

An important mathematical approach is the Approximate Deconvolution Model (ADM )
introduced by Stolz [271, 272], which approximates the deconvolution of a filtered quantity by
repeated filtering. Another group of approaches are data-driven models. Data-driven models
based on Gene-Expression Programming (typically GEP – or GA for Genetic Algorithm)
methods assume a certain relationship between the data available within the LES and the
unknown subgrid stresses. This relationship is improved iteratively, starting from a certain
initial set of functions and parameters by generating new sets based on the combination of
elements from the set given in the previous iteration [162, 226]. Therefore, GEP approaches
are very suitable for in-the-loop application in LES. Another data-driven type of model
that is typically not used in-the-loop are Artificial Neural Networks (ANN ). ANN-based
LES subgrid models feed on vast amounts of DNS data and then perform a fit to close the
unknown subgrid stresses [199, 317, 246]. Such ANN need to be trained using a plethora of
test cases to achieve a certain generality that makes them applicable to a-posteriori LES.
Another important flavor of ANN are the Physics Informed Neural Networks (PINN ), which
can support the fitting performed by the ANN by physical laws, making the closure of the
subgrid stresses more of a guided rather than a random guess [309, 74].

3.6 Remarks on subgrid modeling

An overview of different closures for the subgrid stresses is given. Various extensions and
improvements worth mentioning exist, however, for the sake of brevity they cannot be listed
here. The aim is to give an insight into the closures relevant for this work and to provide a
basis for the contributions presented in this work.

The very fundamentals of LES and turbulence modeling were laid down. In theory, LES
can be seen as an most optimal compromise between DNS and RANS. Especially for technical
applications with high Reynolds numbers and large-scale unsteady characteristics, LES brings
the tools for accurate simulation into the field. While after more than fifty years of research
the theory of LES appears mature and the modeling approaches refined, several aspects
remain unsolved and are summarized by Klein [132]:

• Use of explicit or implicit filtering procedure

• Improved subgrid modeling

• Suitable numerical discretization

• Transient boundary conditions

• Near wall treatment
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• Simulation quality assessment

• Multiphysics problems

• Complex geometries

In fact, no LES procedure has established itself as standard and most of the questions posed
are highly controversial within the scientific community. The relevance of each question
varies from problem to problem and each case presents its own challenges and difficulties. A
sobering truth was formulated by Klein [132] stating that LES will not reach the state of
solving general technical problems in the near future. However, LES is a promising approach
and should be applied to realistic problems while taking into account the uncertainty of the
employed solver, as it will be further elaborated in this work.

3.7 Reynolds-Averaged Navier-Stokes Simulation

Although not being used in this work the very fundamentals of the Reynolds-Averaged Navier-
Stokes Simulation shall be discussed. The basis for the RANS approach is the decomposition
proposed by Reynolds, which separates turbulence into two terms of stationary and fluctuating
nature. Given an arbitrary turbulent variable Φ, the decomposition reads:

Φ = Φ + Φ′′ (3.84)

Featuring the stationary term Φ and the fluctuating term Φ′′. For the sake of brevity, the
bars (·) indicate averaging only within this section. The stationary term, by definition, can
be obtained by time averaging the quantity Φ:

Φ = lim
T →∞

1
T

T∫
0

Φ(xi, t)dt (3.85)

To obtain a stationary set of RANS equations the averaging interval is set to an infinitely
long time of sampling. However, for processes where the process timescale is much larger
than the turbulence timescale, a finite sampling time can be chosen and hence, allowing for
the study of transient and non-stationary physical processes. In this case, one speaks of
Unsteady Reynolds Averaged Navier-Stokes (URANS), which is commonly employed for the
transient technical systems such as piston engines or turbomachinery. It is a requirement
of the applicability of URANS that the turbulent timescales are short in comparison to the
unsteady timescale.

The equations for the RANS simulation are obtained by inserting in the Reynolds
decomposition from Eq. 3.84 into the Navier-Stokes equations and then applying the averaging.
Two rules apply when performing the averaging that will simplify the derivation of the set
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of RANS equations. The first one states that averaging a quantity that has already been
averaged again yields the average itself:

Φ = lim
T →∞

1
T

T∫
0

Φ(xi, t)dt = ⟨Φ⟩ lim
T →∞

1
T

T∫
0

dt = Φ (3.86)

As the already averaged value Φ is no longer a function of time, it does not need to be
considered for time integration, hence, leading to this simple identity. The second rule can
be derived from the result of the first rule. The rule dictates that averaging the fluctuation
part will yield a signal of zero, which can be shown by inserting the identity from Eq. 3.84
into the filter operation given in Eq. 3.85 and then applying Eq. 3.86:

Φ′′ = Φ − Φ = Φ − Φ = 0 (3.87)

Given the previous findings for a general quantity Φ, it is now of interest to apply them
within the desired equations. It has to be noted, however, that the quantity Φ always appears
in the equations in its specific form as ρΦ, which adds complexity to the averaging procedure
in the case of a variable density flow. It is of interest to obtain the solution of the variable
Φ uncoupled from the density. The most common strategy to resolve this coupling is the
so-called Favre density weighted averaging:

Φ̃ = ρΦ
ρ

(3.88)

And thus transports the density-weighted quantity Φ̃ within the corresponding equation.
This averaging is applied only within the definition of the variable in the transport equations
and no additional processing is performed after their respective solution. Having established
the mathematical framework necessary for the derivation of the source-free RANS equations,
it is these equations that will be given here without step-by-step instructions. However, in
order to stay within the scope of this work, only the conservation of mass and momentum
will be presented:

∂ρ

∂t
+ ∂ρũj

∂xj
= 0 (3.89)

∂ρũi
∂t

+ ∂ρũiũj
∂xj

= − ∂p

∂xi
+ ∂

∂xj

(
µ

(
∂ũi
∂xj

+ ∂ũj
∂xi

)
− 2

3µ
∂ũk
∂xk

δij

)
+ ρgi −

∂ρũ′′
i u′′

j
∂xj

(3.90)

It can be seen that the conservation of mass given in Eq. 3.89 follows the same structure as its
non-averaged counterpart from Eq. 2.2.1. The conservation of momentum, however, features
an additional term with a structure similar to the convective flux, containing the turbulent
fluctuations of the velocity field. This term is also referred to as the Reynolds stresses and is
a direct result of the averaging procedure. Applying the average to the equations removes
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all physical – and mathematical – information about the turbulence, leaving the equations
with only the information about the stationary solution. To still include the influence of the
turbulence on the averaged solution, the equations hold the Reynolds stresses as the solution
of the original NSE is partially suppressed. This information remains to be closed by the
Reynolds stresses and their respective models. Modeling the Reynolds stresses appears to be
more challenging than LES modeling as RANS suppresses not only the smallest scales but
the entire energy spectrum. A suitable RANS model therefore provides information on all
scales within the turbulent flow, which is difficult to achieve.

The most commonly used turbulence model for free turbulence within the RANS framework
is the k-ϵ model proposed by Jones and Launder [114]. The model is based on two additional
transport equations – hence, being referred to as a two-equations model – for the turbulent
kinetic energy k and the turbulent dissipation rate ϵ. The model produces a turbulent
viscosity µt based on the turbulent kinetic energy and dissipation rate obtained from the
transport equations. This turbulent viscosity is then used to calculate the Reynolds stresses
following the Boussinesq hypothesis introduced in Sec. 3.2.

However, since it is calibrated for isotropic turbulence, the k-ϵ model has shortcomings in
flows with anisotropy, which may be introduced by walls or swirling flow. A popular approach
to problems involving these is the related k-ω model found independently by Kolmogorov [146]
and Saffman [243]. Again, this model features two equations, this time including the turbulent
kinetic energy k and the specific rate of dissipation ω.

In order to combine the advantages of both models, a blending of the k-ϵ and the k-
ω model, also known as the SST-model, was proposed [179], leading to an overall good
performance in the absence and presence of walls and thus earning the status of one of the
most popular RANS models.

Overall RANS is typically considered to be the least expensive paradigm for turbulence
simulation. However, its robustness and efficiency have made it very popular, especially for
problems that require expensive additional modeling. This makes RANS, in its current state,
the number one choice for turbulence problems in industry. Although computational power
is increasing, RANS is expected to still maintain this status for the near future.





4 Treatment of reacting flows

The mathematical description of chemical reactions within a flow forms a common application
in CFD. In particular, the modeling of exothermic reactions is relevant to this work. Since
this work does not investigate the performance of these models, but rather their interaction
with numerical methods and other modeling philosophies, the very basics of the reaction
models used in this work are summarized.

4.1 Combustion as a reacting flow

Combustion is one of the most prominent reacting engineering flows and is of particular
relevance to this work. In particular, combustion is a chain reaction characterized by the
release of heat and light. To start this chain reaction, a mixture of a fuel and an oxidizer
is required. The composition of this mixture is of crucial importance for the resulting
combustion. Of particular relevance are the species that form the mixture as well as their
relative amounts present in the mixture, as they control whether combustion of the mixture
can occur and under what thermochemical conditions it will occur.

In the literature, two modes of combustion are typically distinguished on the basis
of mixture formation: the premixed and the non-premixed (or diffusive) combustion. A
visualization of a generic example for both modes can be found in Fig. 4.1. In premixed
combustion the educts – fuel and oxidizer – are mixed prior to entering the reaction zone.
The resulting flame can be considered as an interface between the mixture and the products
of combustion. This flame propagates through a quiescent mixture at a characteristic velocity
sl, referred to as the laminar flame speed. As this velocity is driven solely by the chemical
reactions, its value only depends on the mixture temperature, composition and pressure.
Non-premixed combustion is characterized by the fuel and oxidizer entering the reaction zone
separately and hence, mixture is formed directly at the flame.

Technical applications, however, typically operate under conditions ranging between
premixed and non-premixed combustion modes. This condition is also referred to as partially
premixed combustion. Flames of this combustion mode involve a mixing process between
the fuel and the oxidizer, as these are commonly brought together inside the combustion
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Figure 4.1 Generic example for the temperature, fuel and oxidizer mass-fraction profiles for
the case of a one-dimensional premixed and non-premixed flame.

chamber for safety reasons. The completeness of the mixture formation varies spatially, thus,
leaving premixed and non-premixed regions within the domain.

4.2 Mathematical description of reactive mixtures

The fundamentals of gas flows and thermodynamics given in Chp. 2 are now extended to
describe reactive mixtures of different species. Conservation of species is introduced to take
into account for the transport, consumption and generation of each species present in a
reacting flow. The conservation of species states, that no mass contributed by the different
species must be lost. Opposed to the previous transport equations, the conservation of species
consists of a set of Ns equations, where each equation represents one species. The sum of all
species transport equations employing the definition of the mass fractions (Eq. 2.11) yields
the conservation of mass (Eq. 2.2). The transport equation for the species α reads:

∂ρYα

∂t
+ ∂ρYαuj

∂xj
+ ∂ρYαVj,α

∂xj
= ω̇α + ω̇ρYα (4.1)

With α ranging between 1 and Ns, Vj,α being the diffusion velocity (relative to the flow
velocity uj) in the direction j of the species α due to interdiffusion and ω̇α being the chemical
source term describing the consumption or production of the species α due to chemical
reactions. The term ω̇ρYα takes into account the generation or removal of chemical species
apart from reactions, which can be, for instance, evaporation of droplets in the gas-phase.
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4.2.1 Diffusion of chemical species

As introduced earlier, diffusion is a macroscopic summary of the microscopic motion of
molecules. When considering the diffusion of chemical species, a complete description of
diffusion requires to take into account all of the drivers of this microscopic motion. In
particular, these can be gradients of concentration, temperature and pressure, as well as
volume forces that act differently on the individual species. On the macroscopic scale, this
motion is represented by the diffusion velocity. The diffusion velocity Vj,α of a species α

is typically related to the aforementioned gradients – in the direction j – together with a
constant which characterizes the mobility of the species α within the whole ensemble. This
constant is typically referred to as the diffusion coefficient. The true nature of diffusion
requires the consideration of the pairwise diffusion of a mixture’s component α within another
component β. The diffusion velocities are obtained by implicitly solving the following system
of equations, which can be obtained from the conservation of momentum of the mixture’s
molecules after collision (for the full derivation the reader is referred to Williams [303]):

∂Xα

∂xj
=

NS∑
β=1

XαXβ

Dα,β
(Vβ − Vα) + (Yα − Xα)1

p

∂p

∂xj
+ ρ

p

NS∑
β=1

YαYβ(fα − fβ) (4.2)

Where Dα,β is the binary diffusion coefficient – which is typically obtained from kinetic gas
theory using the Chapman-Enskog theorem [35] – and fα as well as fβ refer to external
forces acting on the species. Considering the mixture to consist of Ns species, it becomes
evident that a total of Ns × Ns equations has to be solved at each point in time. In fact,
most computational applications avoid solving these equations [64, 151].

The presumably most common choice for the calculation of the species diffusion – especially
in the field of combustion – is Fick’s law of diffusion. Although the original formulation of
Fick was found experimentally, it can be fully derived from Eq. 4.2 for the case of a binary
mixture where the body forces do not differ for all species and the local pressure gradients
are assumed to be small:

YαVj,α = −Dαβ
∂Yα

∂xj
(4.3)

Where Dαβ refers to the diffusion coefficient characterizing the whole mixture consisting of
the species α and β.

Typical mixtures, however, are of more complex composition and thus violate the binary-
mixture simplification. As the solution of the full equations system above is not an option in
the most cases, the solution matrix produced by this system can be approximated to the first-
order by following Hirschfelder and Curtiss [101]. Instead of binary diffusion coefficients, this
approach considers mixture-averaged diffusion coefficients Dα, which describe the diffusion
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of a species α into the remaining components of the mixture:

YαVj,α = −Dα
∂Yα

∂xj
+ YαVc,j (4.4)

Where the mixture-averaged diffusion coefficient Dα of the species α can be computed as:

1
Dα

=
NS∑

β ̸=α

Xβ

Dαβ
+ Xα

1 − Yα

NS∑
β ̸=α

Yβ

Dαβ
. (4.5)

However, the summation of all diffusive fluxes must yield zero to maintain continuity. A
correction velocity Vc,j must be included to enforce continuity:

Vc,j = −
NS∑

α=1
YαVj,α (4.6)

Following Poinsot [212], it is a common approach to use the correction velocity and additionally
solve the equations of only Ns − 1 species to enforce continuity. Following the conservation
of all species, the mass fraction of the remaining species must obey:

YNs = 1 −
NS−1∑
α=1

Yα (4.7)

It is recommended to choose α = Ns as a non-sensitive species, which requires comparably
high mass fractions. As it is desirable for α = Ns to be chemically inert a common choice for
this species is nitrogen, which also yields high mass fractions for chemical processes involving
air.

A strong yet popular simplification is the assumption of a universal diffusion coefficient
D for all species within the given problem. This assumption must be made with respect to
the species present in the given problem as the diffusivity of a species is strongly dependent
on its weight. While problems involving hydrocarbons such as methane can be treated with
rather little concern using this assumption, species such as hydrogen are small and tend to
diffuse much faster, and heavy hydrocarbons such as octane diffusive much slower than the
rest of typical mixtures. The diffusion behavior of a species is often characterized using the
Lewis number. By definition, the Lewis number gives the ratio of the thermal diffusivity to
the mass diffusivity within a flow, which implies how fast heat is transported through a flow
relative to the diffusion of chemical species. It is evident that the Lewis number hence, is of
critical importance in the field of combustion where the flame is a result of heat and reactant
diffusion through the flow [161]. The Lewis number is calculated as:

Le = κ

ρDcp
(4.8)
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Where the isobaric specific heat and the heat conductivity are typically tabulated or calculated
employing polynomials as mentioned in Sec. 2.3.1. In fact, it is common practice to extract the
diffusion coefficient – either globally or for each species – using the Lewis number. Especially
the assumption of a unity Lewis number for all species is a popular simplification, which is
also known as the unity Lewis number assumption.

4.2.2 Closure of the chemical source term

The chemical source term ω̇α is the result of chemical reactions within the flow and couples
the species transport with the reaction kinetics and therefore yields the consumption or
production of the species α by chemical reactions. The full chemical source term is a function
of the chemical and thermodynamic state and as such can be challenging to assess. The full
chemical conversion from educt to product species does not occur within a single step but in
an ensemble of reactions between a plethora of species which may form during this process. In
literature, the full conversion from educt to product species is referred to as a global reaction,
while the different reactions ultimately leading to the formation of the product species are
referred to as elementary reactions. The step-by-step sequence of chemical reactions leading
to the conversion from educt to product species is called reaction mechanism. Typically a
reaction then traverses through the following phases:

• Initiation: chemical bond breaks (e.g. due to heating or absorption of light) and creates
a chain carrier molecule

• Progression: a chain carrier molecule is involved in a chemical reaction

– Propagation: a chain carrier forms another chain carrier

– Branching: a chain carrier forms multiple chain carriers

– Retardation: a chain carrier does not form another chain carrier

• Termination: all chain carriers are consumed by reaction or by an external influence

A chemical reaction can be written down in the following form:

NS∑
β=1

ν ′
β,rXβ −−⇀↽−−

NS∑
β=1

ν ′′
β,rXβ (4.9)

Where the reaction equations r from 1 to NR balance the molar stoichiometric coefficients ν ′
β,r

and ν ′′
β,r – with ′ indicating the educt and ′′ indicating the product species – of the species β

with the chemical formula Xβ . It shall be noted that the indexing of species is written using
β as all following considerations must be made for the calculation of each source term ω̇α.

A chemical reaction is a reversible thermodynamic process. Every chemical reaction
features a forward and a reverse direction. All chemical reactions are driven by the urge of
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reaching the chemical equilibrium and this equilibrium is reached when the forward reaction
proceeds at the same rate as the reverse reaction. The rate of a reaction is quantified by the
reaction rate qr, which is typically calculated using the law of mass action, but can depend
on the nature of the given reaction. The law of mass action reads:

qr = kf,r

NS∏
β=1

[Xβ]ν
′
βr − kb,r

NS∏
β=1

[Xβ]ν
′′
βr (4.10)

Where concentration of a species β can be obtained from its respective mass fraction and its
molar weight:

[Xβ] = Yβ
ρ

Wβ
(4.11)

As the true rate of a reaction is the result of a counterplay between forward and backward
reaction, two reaction rate constants kf,r and kb,r are required to characterize the respective
directions. These constants are temperature dependent and the forward reaction rate constant
can be obtained from the Arrhenius law [12, 13]:

kf(T ) = AT bexp
(

− Ea
Rm T

)
(4.12)

This law is an empirical relationship between the temperature and the reaction rate constant
found by Arrhenius, who also provided a physical interpretation [45]. Strictly speaking,
the herein introduced formulation is the so-called modified Arrhenius law, which is a more
accurate description of this empirical relationship. The product AT b is also referred to as
the collision frequency, describing the total number of collisions between the molecules in the
gas. These collisions are necessary for a reaction to take place. The pre-exponential factor A

and the exponent b are characteristic of each specific chemical reaction. In gas kinetics, the
temperature is defined as a measure of the kinetic energy of the molecules forming the gas.
Multiplication by the universal gas constant – which is the molar equivalent of the Boltzmann
constant, linking kinetic energy and temperature within a gas – yields the kinetic energy of
the molecules RmT . With Ea describing the activation energy of a reaction, the ratio within
the exponential function indicates whether the molecules can overcome the potential barrier
that maintains the stable state of a molecule. Thus, the structure of the equation can be
explained: AT b is the number of collisions per time and exp (−Ea/Rm T ) is the probability
that any given collision will result in a reaction. It can be concluded that the reaction rate
constant is the number of collisions that result in a reaction per time.

The backward reaction rate constant is linked to the forward reaction rate constant by
the equilibrium constant:

KC = kf
kb

(4.13)
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The equilibrium constant is obtained from the thermodynamic activities of the species present
in the reaction equation.

This procedure is used unchanged for the treatment of elementary reactions. Elementary
reactions are the first type of reactions that consist of a pair of reactants forming one or
more products. Some reactions are characterized by an imbalance between the energies of the
reactants and the products. A so-called third-body, which is potentially any species present
in the gas but not involved in that particular reaction, serves as a compensation for this
imbalance. These reactions are called third-body reactions. The respective reaction rate is
simply calculated as for an elementary reaction and is then multiplied by the concentration
of the third-body species. The last category of reactions are the pressure-dependent reactions.
This type of reaction changes its behavior as a function of the pressure and typically
requires a high-pressure and a low-pressure formulation of the reaction. This may differ in
that the reaction at the one pressure-level requires a third-body in the reaction equation,
while the reaction at the other pressure does not. The calculation of the corresponding
reaction rate constant requires additional modeling and the reader is referred to the works of
Lindemann [166], Gilbert [84] and Stewart [268] for further insight.

When the reaction rate is known, the chemical source term of the species α can be
calculated considering all reactions r involving α:

ω̇α = Wα

NR∑
r=1

(
ν ′′

α,r − ν ′
α,r

)
qr (4.14)

4.3 Coupling of chemical reactions with flow solvers

Chemical reactions take place on atomic length-scales that are by a factor of more than
a one-thousand smaller than the macroscopic length-scales present in CFD. It becomes
evident that these processes cannot be resolved with current CFD techniques and therefore
need to be modeled. Chemical reactions include a cascade of various reactions involving
a plethora of chemical species with different lifetimes, further complicating the ability to
directly incorporate these reactions in-situ into a simulation. Several approaches exist to cast
the reaction chemistry into models that are digestible for a simulation.

The first group of approaches calculates the chemistry in-situ, however, with the strongly
simplification of assuming single-step chemistry. Single-step chemistry reduces the entire
reaction mechanism from a manifold to a single global conversion step from educts E to
products P :

E
k−→ P (4.15)

Where the rate k of the global reaction is obtained from resolved data within the simulation
or from additional models. The reduction of a reaction mechanism to a global reaction is
a harsh simplification and hence, the accuracy of this modeling philosophy is very limited.
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Despite their simplicity, single-step models are popular due to their low cost and numerical
robustness.

The second group of models outsources the calculation of chemistry to the preprocessing
and no chemical reaction is calculated during the simulation run. Instead, the chemical and
thermodynamic variables of state calculated from all possible chemical reactions are arranged
in the form of a look-up table. Based on certain indicator variables that are transported in
the simulation, these tabulated quantities are then read and assigned during the simulation
run. This allows for an arbitrary degree of detail in the chemical model, but results in a
tremendous preprocessing effort to generate the look-up tables. Henceforth, the independent
variables used to access the look-up table must be carefully chosen in order to reduce the
complexity of the table and the simulation cost due to the additional transported variables.

The third group, describing chemistry in CFD, aims at the direct calculation of the
chemical kinetics within the simulation. It was discussed earlier that this is not possible in a
microscopic way and therefore the kinetics are calculated in a macroscopic framework using
species mass fractions. It becomes evident that these approaches are highly expensive and
are typically used only with reduced reaction mechanisms. Reduced mechanisms focus on
the most important pathways within a full reaction mechanism and thus retain chemical
significance at the cost of observability of the behavior of minor species. The main costs arise
from the need for a separate additional transport equation to be solved for each chemical
species and from the solution of the kinetic equations, which scale with the number of
reactions present in the mechanism.

Due to its employment in the present work, one particular method of the second group
will be explained in more detail.

4.4 Flamelet generated manifolds

The concept of Flamelet Generated Manifolds (FGM ) goes back to van Oijen and de
Goey [286], and aims at the description of turbulent flames. The very basis of FGM is
the assumption that any three-dimensional flame may be considered as an ensemble of
one-dimensional flames. These one-dimensional flames – also referred to as flamelets – are
precomputed and the thermo-chemical variables obtained from their solution are stored in a
low-dimensional table. The FGM approach can be formulated for Premixed (PFGM ) and
Non-Premixed (NPFGM ) flame modes, and its application to partially premixed flames is still
widely discussed. In particular, the works of Mueller [186], Noselov et al. [196] and Fiorina
et al. [70] should be mentioned, which paradoxically state that no clear statements can be
made and that the applicability of PFGM or NPFGM to partially premixed combustion is
highly case dependent.

Flamelets are freely propagating (premixed) or counterflow (non-premixed) flames de-
scribed using the one-dimensional form of the conservation laws as described in Chp. 2 for



4.4 Flamelet generated manifolds 49

Figure 4.2 Generic example for the temperature, reactants and product mass fractions with
the height above the burner (HAB) obtained from a one-dimensional freely propagation
flame.

a steady state. Their boundaries are closed by a Dirichlet-type boundary condition on the
unburnt side to ensure the inflow of fresh mixture and a von-Neumann-type boundary condi-
tion on the burnt side. A generic example is shown in Fig. 4.2. Each flamelet describes the
conversion of a specific mixture from educts to products. The degree of conversion is typically
described by a progress variable YC, whose definition is not unique. A plethora of definitions
for the progress variable exists and can include, e.g., ratios of fuel and oxidizer mass fractions,
weighted sums of element mass fractions or ratios of temperatures – and it is common practice
to choose its definition by experience [107, 194, 223]. It has to be noted, that this progress
variable does not necessarily require an upper bound of unity. As the progress variable is
transported, it is normalized within the tabulation as C = (YC − Y min

C )/(Y max
C − Y min

C ). The
flamelet itself is described by the mixture of fuel and oxidizer which quantifies their respective
stoichiometries. These ultimately determine the heat release and thus, the evolution of the
thermo-chemical variables through the flamelet. Again, several definitions for the mixture
fraction Z exist and a common choice in the context of carbohydrate flames is the definition
proposed by Bilger [22]. In addition, other variables may be added to access the table. These
may include, e.g., multiple mixture fractions as in the case of multi-phase flows [177] or
variances of the progress variable and mixture fraction [298, 38].

The approach involving a progress variable YC and a mixture fraction Z is a common
choice – in particular in single-phase flows – and requires the solution of their respective
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transport equations, in the DNS-case reading:

∂ρYC
∂t

+ ∂ρYCuj
∂xj

= ∂

∂xj

(
ρD

∂YC
∂xj

)
+ ω̇C (4.16)

∂ρZ

∂t
+ ∂ρZuj

∂xj
= ∂

∂xj

(
ρD

∂Z

∂xj

)
(4.17)

The chemical reactions induced in the flow by the flame are incorporated in the transport
equation by the reaction source-term ω̇C . The corresponding value is obtained from the table.

The generation of tables with thermo-chemical data is performed by solving the previously
mentioned equations for flamelets. While this is possible using custom-built frameworks, a
toolkit worth mentioning and of particular importance for this work is the Cantera library
developed by Goodwin [86].



5 Numerical methods

The previous chapter discussed the mathematical foundations of the key physical phenomena.
To accomplish this, computational fluid dynamics aims to predict flow phenomena using
complex equations, which are highly nonlinear and have no analytical solutions for non-trivial
cases. Numerical methods provide the means to translate these equations into an algorithm
and extract information from physical laws. Therefore, the choice of numerical method is
critical in determining the outcome of a CFD simulation. This section discusses basic and
advanced numerical tools and their impact on the simulation performance.

5.1 Discretization

Computational fluid dynamics aims to solve problems of flow physics using computers.
However, computers can only handle a finite amount of data, which limits the information
that can be processed when solving a CFD problem. Therefore, the information stored in the
equations defined in a continuous time and space domain has to be extracted on a discrete
domain. Several approaches exist and the most relevant spatial and temporal discretizations
are presented below. Examples are given using the general transport equation as introduced
in Eq. 2.1. Some of the most important advances in this field were made by Euler [65], who
laid the foundation for modern computational mathematics, although he was far from having
access to these computational tools in his time.

5.1.1 Spatial discretization

Spatial discretization is essential to extract space-dependent information from the equations
describing the given problem. There are different strategies and the most prominent ones
are the Finite Difference Method (FDM ), the Finite Element Method (FEM ) and the Finite
Volume Method (FVM ). Within this work, the FVM is of great importance as it is suitable
for problems based on conservation laws and therefore will be described in more detail.

The Finite Volume Method decomposes a physical domain into a discrete set of volumes of
finite size, called Control Volumes (CV ). The conservation laws describing the given problem
are then solved for each individual CV. The center coordinates of each CV are mapped onto
a data structure called a mesh. FVM relies heavily on the center-point rule, which assumes
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that the volume-averaged value of a conserved quantity is representative of the distribution of
that quantity within the CV and is located at the center of that CV [68]. The mathematical
application of FVM will be demonstrated for the case of conservation of a general quantity.
The conservation law is repeated for convenience:

∂ρϕ

∂t
+ ∂ρujϕ

∂xj
= ∂

∂xj

(
Dϕ

∂ϕ

∂xj

)
+ Γ̇ϕ (5.1)

The first step in FVM is to integrate this equation over the CV of the volume V :

y

V

∂ρϕ

∂t
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y

V

∂ρujϕ

∂xj
dV =

y

V

∂

∂xj

(
Dϕ

∂ϕ

∂xj

)
dV +

y

V

Γ̇ϕdV (5.2)

To reduce the mathematical effort, the Gauss theorem can be used to relate the divergence in
a closed volume V to a flux of the vector field through the closed surface S of the respective
volume. The Gauss divergence theorem reads:

y

V

∂fj
∂xj

dV =
x

S

fjnjdS (5.3)

With the vector field fj and the surface normal vector nj. The theorem is used to simplify
the convective and diffusive contributions in this transport equation:
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∂ρϕ
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S

ρujϕnjdS =
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(
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∂xj

)
njdS +

y

V

Γ̇ϕdV (5.4)

Applying the rule of Schwarz allows for alternating the order of integration and spatial
derivative:

∂

∂t

y

V

∂ρϕdV +
x

S

ρujϕnjdS =
x

S

(
Dϕ

∂ϕ

∂xj

)
njdS +

y

V

Γ̇ϕdV (5.5)

The design of the mesh typically depends on the solver used and is usually composed of
cuboids, tetrahedrons, or hexahedrons in the three-dimensional case. Each CV must not
overlap with neighboring CVs. Two types of meshes are distinguished in the literature:
structured and unstructured meshes. Structured meshes have a repetitive topology and its
CV are positioned in a homogeneous grid so that each CV can be indicated by indices. The
advantages of structured meshes are the unambiguous indication of cells, lower memory
requirements due to the absence of identification tables, more accurate results if the CV align
well with the flow, and easy implementation of all numerical algorithms. Unstructured meshes,
on the other hand, are a tessellation of simple geometric shapes in an irregular pattern. The
mesh is not periodic and cannot be easily referenced. The unstructured approach allows
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extremely fast generation of meshes even for complex geometries, which can even be locally
refined without further drawbacks.

This work relies on structured cubic-equidistant meshes only and the CV indication is
visualized in Fig. 5.1. The basis for each presented numerical stencil is the cell center (C),

Figure 5.1 Indexing and nomenclature on a cubic equidistant grid in three dimensions.

thereby, following the coordinate system, the cells in the positive x, y and z directions are
referred to as the eastern (E; i+1,j,k), northern (N; i,j+1,k) and top (T; i,j,k+1) neighboring
cells and in the negative directions as the western (W; i-1,j,k), southern (S; i,j-1,k) and
bottom (B; i,j,k-1) cells respectively. The corresponding cell interfaces are referenced by
the same lowercase letters for the eastern (e; i+1/2,j,k), western (w; i-1/2,j,k), northern (n;
i,j+1/2,k), southern (s; i,j-1/2,k), top (t; i,j,k+1/2) and bottom (b; i,j,k-1/2) cells.

The treatment of the volume and surface integrals is greatly simplified by the midpoint
rule, e.g. the volume integral over the cell C is approximated as:

y

VC

ϕdV ≈ ϕCV (5.6)

And the surface integral over the interface e between C and E respectively as:
x

Se

ϕdS ≈ ϕeA (5.7)

Considering the equidistant cubic mesh used in this study, the cell volume and surface area
can be calculated as V = ∆x3 and A = ∆x2. Thus, the fully spatially discretized form of the
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general transport equation reads:

∂

∂t
(ρϕ) ∆x3 ≈ −

∑
S

(Dϕ
∂ϕ

∂xj
nj)∆x2 +

∑
S

(ρujϕnj)∆x2 + Γ̇ϕ∆x3 = RHS (5.8)

Application of the FVM to the general transport equation reveals the true objects of interest
to be the transported variables on the CV surfaces. While information about these variables
is known at the cell centers, their respective values on the surfaces have to be derived.
Thus, interpolation techniques are utilized to determine the surface values. Many techniques
exist that provide different levels of accuracy and stability, and the choice of interpolation
technique often depends on the solver framework and the given problem. In fact, several
of the approaches discussed in the following include the term differencing in their names,
as these schemes were developed in FDM to approximate differencing quotients. Thus, the
term interpolation appears more suitable in the context of this work, however, is not chosen
to maintain the nomenclature of the literature within this work [69]. The techniques for
handling convective and diffusive fluxes are discussed below.

Spatial discretization reduces a continuous domain to a finite number of data points,
resulting in a loss of information and introducing an error known as the discretization
error. This error arises from approximating a derivative dϕ/dx by a finite difference quotient
∆ϕ/∆x due to the finite gridsize ∆x. Numerical consistency is a prerequisite for discretization
techniques. This property is fulfilled if, for the discretization width ∆x, ∆ϕ/∆x approaches
the continuous differential dϕ/dx and thus the discretization error vanishes. The consistency
of a discretization scheme ensures that the numerical algorithm solves the discretized problem
and not a problem modified due to the introduction of discretization.

While the discretization error decides over the general applicability of a discretization
scheme, the truncation error characterizes its respective solution behavior. The spatial
discretization error is defined as τ = dϕ/dx − ∆ϕ/∆x and depends on the employed scheme,
the discretization width ∆x and the gradients within the analyzed variable. The truncation
error may occur in two different forms.

A diffusive leading truncation error smoothes gradients and dampens small perturbations
and fluctuations in the solution. Diffusion errors are commonly tolerated, since the damping of
perturbations improves the numerical stability of the employed scheme. However, numerical
diffusion can easily outweigh the effects of physical diffusion, which eventually leads to
inaccurate solutions.

A dispersive leading truncation error on the other hand leads to numerical oscillations
– especially at locations where sharp gradients occur in the solution. These oscillations
amplify as the algorithm proceeds and eventually lead to unphysical solutions. Hence, a
dispersion error causes numerical instability and is generally undesirable. However, the
low-dissipative nature of such schemes is desirable, and oscillations can be treated by adding
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artificial dissipation, to dampen the growth of the oscillations, which is the reason that certain
dispersive discretization schemes are still usable within a suitable numerical algorithm.

To quantify the truncation error, a Taylor series of the function f can be computed and
modified to construct the expression of the respective discretization scheme. The truncation
error is given by the Higher-Order Terms (HOT) that are not included in the discretized
expression. The truncation error is dissipative if the order of the derivative in the first HOT
is even. The truncation error appears dispersive when the order of the first HOT is odd. The
order of the first HOT is relevant because all terms of even higher order vanish faster with
refinement of the discretization width [9].

Figure 5.2 Solution of a one-dimensional linear convection equation employing three common
discretization schemes visualizing the two different forms of the discretization error.

The nature of the discretization error is visualized in Fig. 5.2. The profiles are obtained
from solving the linear convection equation ∂ϕ/∂t + u · ∂ϕ/∂x = 0 and employing three
different discretization schemes for the convective term. The initial solution is a simple
top-hat function which features strong gradients to demonstrate the nature of the error. The
true solution is indicated by shifting the initial solution in the transport direction with the
simulation run time. The mathematics of the employed schemes will be explained in greater
detail later on.

Two of the presented schemes flatten the initially steep gradients of the top hat profile.
The observed behavior will progressively alter the profile by reduction of the gradients in
the profile until no gradients are left in the computational domain. The remaining scheme
features numerical oscillations that lead to the formation of new steep gradients. These
oscillations will grow progressively and ultimately result in a crash of the simulation run.
While the diffusive error can be generally tolerated, the dispersive error will always introduce
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instability. It can be concluded, however, that a combination of both errors may lead to
improved solution behavior.

The family of the Central Differencing Schemes (CDS) is one of the most prominent
discretization techniques and aims for the linear interpolation of the neighboring cell face value
using symmetrical stencils. The order of the CDS can be increased almost arbitrarily and the
respective stencils can be crafted using Taylor-series expansion. The standard second-order
CDS reads:

ϕi+1/2 = 1
2ϕi + 1

2ϕi+1 (5.9)

The FDM formulation of the FVM CDS can be obtained by casting its stencil into a finite
difference coefficient describing the differential dϕ/dx ≈ (ϕe − ϕw)/∆x leading to:

dϕ

dx
≈

ϕC+ϕE
2 − ϕW+ϕC

2
∆x

= ϕE − ϕW
2∆x

≡ ϕi+1 − ϕi-1
2∆x

(5.10)

To assess the order of a discretization scheme, its expression has to be reconstructed using a
Taylor-series expansion:

ϕ(x) = ϕ(xi) + 1
1!

dϕ

dx
|xi(x − xi) + 1

2!
d2ϕ

dx2 |xi(x − xi)2 + 1
3!

d3ϕ

dx3 |xi(x − xi)3 + . . . (5.11)

Which can be evaluated at the two respective locations xi-1 and xi+1:

ϕ(xi-1) = ϕ(xi) − 1
1!

dϕ

dx
|xi∆x + 1

2!
d2ϕ

dx2 |xi∆x2 − 1
3!

d3ϕ

dx3 |xi∆x3 + . . . (5.12)

ϕ(xi+1) = ϕ(xi) + 1
1!

dϕ

dx
|xi∆x + 1

2!
d2ϕ

dx2 |xi∆x2 + 1
3!

d3ϕ

dx3 |xi∆x3 + . . . (5.13)

Subtracting and rearranging these two series expansions will lead to an expression for the
difference quotient:

dϕ

dx
|xi = ϕ(xi+1) − ϕ(xi-1)

2∆x
+ 1

3
d3ϕ

dx3 |xi∆x2 + HOT(∆x4) (5.14)

It can be seen that the first higher-order term vanishes at a rate of ∆x2, which yields an order
of 2 for the standard CDS scheme. The third-order derivative implies an error of odd order
for the truncation error, leading to a dispersive nature of the error as observed in Fig. 5.2.

The respective stencils are not unique and can be customized e.g., by rearranging the
Taylor-series expansion following the example given above. The stencils relevant to this work
were chosen following Kennedy and Carpenter [123] and are summarized in Tab. 5.1.

The accuracy of CDS was shown and it can be concluded that CDS is a powerful scheme
with the disadvantage of amplifying oscillations near steep gradients. These oscillations can
be suppressed by pressure solvers, dissipative subgrid models or additional procedures to
detect and remove numerical oscillations, such as the combination of schemes or self-adaptive
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Table 5.1 Coefficients of the CDS discretization of different order. Only the right half of the
symmetric stencil is written.

order i + 1 i + 2 i + 3 i + 4
2 1/2
4 27/48 −3/48
6 5859/10000 −977/10000 177/10000
8 5981/10000 −1196/10000 239/10000 −24/10000

methods, e.g. by Ciardi et al. [41]. It is common practice to support the CDS stencils,
especially in the context of density-based solvers, by applying filtering of even higher order to
suppress numerical oscillations [37]. The interested reader is referred to the works of Kennedy
et al. [124] and Ray et al. [225]. Due to their relevance to this work, the stencil suggested
by Kennedy et al. [124] and its corresponding notation is explained in the following for the
one-dimensional case. Given the commutativity of the filter, multidimensional filtering is
achieved by applying the filter in sequentially in the respective dimensions. The filtering
stencil consists of the dissipation matrix D – this matrix is chosen to have negative eigenvalues
to ensure the dissipative nature of the filter. The digital filter is convolved as:

u = ((1 + αDD) ∗ u) (5.15)

Where for a 2n-th order filter, the prefactor αD is calculated as:

αD = (−1)n+1 2−2n (5.16)

Approaching physical or computational boundaries within the domain poses a challenge as
the filter stencil is not supported with enough cells in the respective direction of the boundary.
To maintain the order of the filter in that direction, the stencil is skewed and included in the
dissipation matrix. The upper portion of the dissipation matrix for a tenth-order filter is
given as:

+1 −5 +10 −10 +5 −1
−5 +26 −55 +60 −35 +10 −1
+10 −55 +126 −155 +110 −45 +10 −1
−10 +60 −155 +226 −205 +120 −45 +10 −1
+5 −35 +110 −205 +251 −210 +120 −45 +10 −1
−1 +10 −45 +120 −210 +252 −210 +120 −45 +10 −1


(5.17)

The structure of the matrix is to be read as follows. The rows give the one-dimensional
stencil to be applied to the desired variable. The different rows give the progressively skewed
stencils with the first row being fully skewed and the last row being fully unskewed. The
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mathematical center of the stencil and hence, the cell to be filtered, lies on the main diagonal
Di,i – this center is highlighted in Eq. 5.17. Thus, the first row D1,j is the fully skewed
and one-sided stencil. The second row gives the stencil with a distance of one cell to the
boundary and the last row shows the stencil without any necessary modifications due to
boundaries – this is the fully symmetric stencil. The minor diagonals are continued from
each entry Di,5 with the respective value found in Di,5. The filtering approach is extended in
this work by reducing the order of both the interpolation scheme and the numerical filter
near the boundaries successively by two, until the highest possible order stencil fits to the
corresponding cell.

The Upwind Differencing Scheme (UDS) is an unconditionally stable scheme that directly
assigns the center values of a neighboring cell to the cell surface based on the flow direction –
thus, it is called upwind scheme. The UDS is of first order accuracy and reads:

ϕi+1/2 =

ϕi ui+1/2 ≥ 0

ϕi+1 ui+1/2 < 0
(5.18)

The accuracy of the UDS can be analyzed using Taylor-series expansion in the same manner
as for the CDS. The first row assumes a non-negative velocity and the second row assumes a
positive velocity:

dϕ

dx
≈ ϕC − ϕW

∆x
≡ ϕi − ϕi-1

∆x
(5.19)

dϕ

dx
≈ ϕE − ϕC

∆x
≡ ϕi+1 − ϕi

∆x
(5.20)

Reusing the Taylor-series expansion from Eq. 5.12 and 5.13, as well as rearranging yields the
full form of the UDS discretization:

dϕ

dx
|xi = ϕ(xi) − ϕ(xi-1)

∆x
+ 1

2
d2ϕ

dx2 |xi∆x + HOT(∆x2) (5.21)

dϕ

dx
|xi = ϕ(xi+1) − ϕ(xi)

∆x
− 1

2
d2ϕ

dx2 |xi∆x + HOT(∆x2) (5.22)

The resulting expression immediately indicates that the UDS is of first order accuracy. The
numerical error is diffusive, which is the main reason for the numerical stability. Fig. 5.2
confirms that UDS provides the strongest smoothing among the schemes compared. Thus,
UDS is able to capture even discontinuities such as shock waves and always maintains the
boundedness of the transported quantity. However, the strong dissipative nature of UDS is a
common reason for choosing other numerical schemes that provide similar stability with less
dissipation [100].

A common alternative is therefore to use higher-order interpolation methods instead,
which are bounded using a suitable limiter function. These methods dynamically blend the
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previously introduced CDS and UDS methods in order to achieve better accuracy through
a higher CDS contribution and, if necessary, to increase stability through a higher UDS
contribution. These blends form a family of schemes that are characterized by their ability
to reduce the Total Variation (TV ) that occurs while solving a PDE, as introduced by
Harten [94]:

TV(ϕn) =
∑

j

|ϕn
j+1 − ϕn

j | (5.23)

Where the total variation TV diminishes if:

TV(ϕn+1) ≤ TV(ϕn) (5.24)

Due to their shared property of being Total Variation Diminishing, this family of schemes is
also referred to as TVD schemes.

Figure 5.3 Nomenclature for the upstream and downstream cells involved in the TVD stencil.

TVD schemes rely heavily on flow-oriented indexing due to their upwind nature. Figure 5.3
shows the indexing of the cells involved as a function of flow direction. To quantify the mixing
of the UDS and CDS nature, the ratio r is used, which relates the downstream gradient to
the upstream gradient:

r = ϕD − ϕU
ϕU − ϕUU

(5.25)

So that the blending is built as:

ϕi+1/2 = ϕU + 1
2Ψ (r) (ϕU − ϕUU) (5.26)

Given this definition, it can be concluded that the nature of the TVD scheme strongly
depends on the used limiter function Ψ(r). Looking closely at the formulation in Eq. 5.26,
it can be seen that the choice of the limiter at 0 or r leads to the definitions of UDS and
CDS according to the above nomenclature, which are therefore also part of the TVD family.
There is a wide range of limiter functions, and some of the most commonly used limiters are
summarized in Tab. 5.2.

Due to the nature of the blending, it becomes evident that the order of accuracy of
the TVD schemes is not straightforward and heavily depends on the limiter function Ψ(r).
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Table 5.2 Commonly employed flux limiters Ψ(r) and their bounds within the r − Ψ(r) space.

Limiter Ψ(r) Ψ(r) ∈ Reference
UDS 0 {0}

MINMOD max(min(r, 1), 0) [0, 1] Roe [238]
VAN-LEER (r + |r|)/(1 + |r|) [0, 2) van Leer [285]

EXP 2(1 − exp(log(0.5) · max(r, 0))) [0, 2) Proch [219]
CHARM max(r, 0) · (3max(r, 0) + 1)/(max(r, 0) + 1)2 [0, 3) Zhou [317]

SUPERBEE max(min(r, 2), min(2r, 1), 0) [0, 2] Roe [238]
CDS r [0, ∞)

Figure 5.4 Comparison of selected flux limiters Ψ(r) as a function of the ratio of successive
gradients r. The second-order region as introduced by Sweby [274] is marked by the shaded
area.

Sweby [274] assessed the values of r and Ψ(r) for which the CDS contribution achieves a
maximum while maintaining stability. The result is an area in the r − Ψ(r) space, shaded in
Fig. 5.4, which is also referred to as the second-order region.

A limiter function that lies entirely within the gray shaded area results in a fully second
order TVD scheme. This requirement is met by the MINMOD, VAN-LEER, EXP, and
SUPERBEE limiters, which lie either inside or at the boundaries of the second order region.
It is of interest to evaluate the performance of the different limiters in a-posteriori simulation.
A one-dimensional linear transport equation with periodic bounds for a scalar quantity was
solved and compared to the shifted initial solution.

Following the findings of Kempf [119], Klein [132] and Stein [266] it is not sufficient to
demonstrate the different limiters with a top-hat-like function. Instead, a top-hat function
and a sine-function are transported to investigate the influence of gradients on the limiters.



5.1 Discretization 61

Figure 5.5 Solution of a linear convection equation employing the limiter functions Ψ(r) as
presented in Tab. 5.2 and two different initial solutions: top-hat and sine function.

A detailed study of the limiters was performed by Kemm [118] and the interested reader
is referred to the respective work. Furthermore, the simulation run time was chosen long
enough to reveal the effects of the different limiters.

The results, including the shifted initial solution, can be seen in Fig. 5.5. In the absence
of blending, one obtains the pure UDS, which is always stable and does not exhibit any
over-compressive behavior. However, it can be seen that this comes at the cost of strong
diffusion, which changes the shape and magnitude of the transported profiles. The MINMOD
limiter is located at the lower limit of the stable second-order region, which implies the lowest
possible CDS contribution while maintaining second-order accuracy – or in other words, the
highest possible UDS contribution. Hence, the MINMOD limiter is the most dissipative
second-order limiter, as can be seen from the strongly smoothed top-hat. The transported
sine function reveals that the MINMOD limiter has a tendency to maintain plateaus while
being dissipative, as shown by the very pronounced plateaus at the extrema, as well as the
poor results for the slopes.

On the upper limit of the stable second-order region lies the SUPERBEE limiter, which is
the least dissipative limiter due to the maximum CDS contribution. The low dissipativeness
makes the limiter theoretically very attractive as it is capable of preserving sharp gradients,
which is also seen in the top-hat profile. However, the SUPERBEE exhibits the most over-
compressive behavior among the presented limiters. Over-compression is the tendency of a
scheme to steepen gradients, which can be observed in most limiter functions. This leads to
the characteristic formation of plateaus, as present for the sine profile.

The VAN-LEER limiter lies in the second-order stable region and hence compromises
between the MINMOD and SUPERBEE limiter. This can be seen by reasonable results for
both transport cases, where it reveals moderate dissipation for the top-hat but also moderate
over-compression for the sine case. Another limiter partially lying in the second-order stable
region is the CHARM limiter. The CHARM limiter, like the VAN-LEER limiter, shows
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degressive growth but does not converge within the second-order stable region, leading to
instabilities in the case of strong gradients. However, this implies that the CHARM limiter
overall includes a higher CDS contribution, leading to slightly better results in the case of
smooth transported profiles. The CHARM limiter is the standard choice for TVD in this
work.

The EXP limiter is not a conventional limiter formulation from the literature and was
developed by Proch [219] to mimic the behavior of the CHARM limiter while remaining in the
second-order stable region at the same time, as shown in Fig. 5.4. The EXP limiter reveals
similar results to the CHARM limiter, with slightly better symmetry-preserving properties
than the remaining limiters.

In the case of CDS, the scheme is of second order accuracy, but it only marginally falls
within the stable second-order region. Not surprisingly, the CDS exhibits strong oscillations
when transporting the top-hat function due to its steep gradients. The oscillations present in
the transported sine function are comparatively small due to the overall smoother profile.
Therefore, it takes longer for oscillations to develop. A common problem for the CDS can be
observed within the top-hat function. Compared to all other profiles, the CDS features a
phase-shifted profile, which is a consequence of the dispersive error. This has to be considered
when using dissipation-supported CDS, and for a detailed investigation the reader is referred
to Klein [132].

After common techniques for the determination of the cell face values were given above,
it is finally of interest to describe differential quotients in an appropriate way, especially for
assessing diffusive fluxes. A differential quotient on a surface can be written as the change in
value between adjacent cells:

∂ϕ

∂x
|i+1/2 ≈ ϕi+1 − ϕi

∆x
(5.27)

Which is the most common approach to deal with differential quotients occurring in transport
equations [68] – typically in the form of diffusive fluxes. While the above formulation is
employed within this work, the reader is referred to the work of Pletcher et al. [211] for more
details on higher-order closures of diffusive fluxes.

5.1.2 Temporal discretization

The spatial discretization has been shown to decompose the physical domain into a finite
number of points at which solutions of the fundamental equations can be obtained and which
are representative for the given problem. The temporal discretization aims at advancing the
solution at these points in time, again using discrete time intervals. The spatial discretization
provides instructions on how to handle the spatial derivatives within the transport equation
at a given point in time, and the temporal discretization connects these points in time using
the current time as initialization to predict the state after the next interval.
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Mathematical properties of temporal discretization

It is evident that the simplest approach to connect two points in time from a given initialization
is linear extrapolation. This idea was proposed and further analyzed by Euler, which is why
it is often referred to as the Euler method. The Euler method reads:

∂ρϕ

∂t
= RHS ≈ (ρϕ)n+1 − (ρϕ)n

∆t
(5.28)

Where the indices n and n+1 denote the steps at initial- tn and target-time tn+1 framing the
interval of interest. Hence, the length of the interval denoted as ∆t is defined as ∆t = tn+1−tn.
From an accounting point of view, it is not far-fetched to think that large stepping intervals
are desirable in order to advance quickly in time and to save iterations and thus costs.
However, the size of the interval is limited by numerical stability, which can vary greatly from
problem to problem. An important property of the equation to be solved that characterizes
its stability is the so-called stiffness. While generally non-trivial in its definition, stiffness can
be simply described as the sensitivity of the equation to timestep widths due to the presence
of a broad range of timescales. This is due to individual terms in the equation leading to
potentially large variations in the solution over small increments, which can contaminate
or ruin its solution properties. Thus, a stiff equation is typically considered one where the
timestep size must be extremely small to maintain numerical stability. The stiffness of an
equation can be analyzed or, in the case of CFD, it can be known from experience and must
be taken into account when choosing the time discretization scheme. It should be noted that
the use of an explicit scheme for a stiff PDE is not necessarily inappropriate if the physics
involved in the problem already requires high temporal resolution.

Figure 5.6 Solution behavior of a stiff differential equation for different step sizes.
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The effects of stiffness are visualized in Fig. 5.6. The lines represent the solutions of
dy/dx = −15y employing the explicit Euler method as well as the analytical solution. The
different solutions exhibit a strong dependency on the numerical step size, illustrating the
concept of stiffness. Step sizes of 1/4 reveal divergent behavior, while the solution for a step
size of 1/8 remains bounded but does not converge to the true solution. Only a step size of
1/16 succeeds in reproducing the true solution behavior. The difference between the analytical
and numerical solution is further reduced by using even finer step sizes. For a detailed study
of a chemical problem, the interested reader is referred to the work of Robertson [236].

One remaining question is the time dependence of the sum of the flux terms, also called
the Right-Hand Side (RHS). It comes to mind that the RHS can be defined for both ends of
the interval as RHSn or RHSn+1. The first definition, RHSn, results in all terms within the
equation being fully known, and thus forms the simplest temporal discretization, referred to
as the explicit Euler method:

ϕn+1 = ϕn + ∆t · RHSn (5.29)

The other possible option is to treat the right-hand side as a function of the unknown time
step RHSn+1. This leads to the similar definition:

ϕn+1 = ϕn + ∆t · RHSn+1 (5.30)

Since the term RHSn+1 is now unknown, the solution is not as easy to compute as before.
Since the solution ϕn+1 can no longer be recovered explicitly, this method is called the implicit
Euler method. Instead, the solution ϕn+1 appears on both sides of the equation and must be
obtained by solving an additional algebraic equation.

Both variants of Euler’s method are of first order accuracy. The numerical accuracy is
defined by the local truncation error τn. This error characterizes the deviation between the
time discretization and the true solution within a single time step. For a better understanding,
the procedure for obtaining this error will be demonstrated using the example of the explicit
Euler method. The Taylor-series expansion is used to formulate and reconstruct the definition
of the investigated method:

ϕ (t) = ϕn + ϕ̇n

1! (t − tn) + ϕ̈n

2! (t − tn)2 + . . . (5.31)

Inserting tn+1 for t and using ∆t = tn+1 − tn allows for the rearrangement of the equation
into:

ϕ̇n = ϕn+1 − ϕn

∆t
− ϕ̈n

2 ∆t + HOT(∆t2) (5.32)

From this identity it can be concluded that the deviation between the true derivative ϕ̇n and
the approximation reduces with the order of one, as the slowest decreasing residual term has
the prefactor ∆t. Thus, the explicit Euler method is of first order accuracy. The same result



5.1 Discretization 65

can be found for the implicit Euler scheme by altering the Taylor-series expansion around
tn+1 and inserting tn and inverting the sign in front of the higher-order terms. An example
for the analysis of numerical accuracy was given. Now it is of interest to characterize the
numerical stability.

The Euler method will serve as an example of the effects of treating the time dependence
of the RHS, allowing for a discussion of the stability of the time discretization. In general, the
term numerical stability refers to a broad field, and most commonly the concept of A-stability
is meant when speaking of numerical stability of the time discretization. A-stability of a
numerical method is investigated by means of the so-called test equation, which is defined
as ϕ̇ = −αϕ with α ∈ R+ and features the analytical solution ϕ = ϕ0e−αt with ϕ0 > 0. The
first step is to rewrite the explicit Euler scheme from Eq. 5.29 as ϕn+1 = ϕn + ∆ · RHSn. The
test equation is inserted into this formulation, resulting in the expression:

ϕn+1 = (1 − α∆t) ϕn (5.33)

The expression g (α∆t) = (1 − α∆t) is typically referred to as the stability function, which is
by definition a complex function. The true solution of the test equation remains positive and
converges to zero. These conditions are equivalent to |g (α∆t) | < 1. The region of absolute
stability can thus be defined as {α∆t ∈ C, |g (α∆t) | < 1}. The investigated method is called
A-stable if {α∆t ∈ C, Re(α∆t) > 0} is satisfied.

Figure 5.7 Stability planes obtained for the explicit and implicit Euler method.

The extent of the stability region of the explicit and implicit Euler methods obtained
from the test equation is shown in Fig. 5.7. The stability plane of the explicit Euler method
shows a disk located in the left half of the complex half-plane, indicating that the explicit
Euler method is not A-stable. For the implicit Euler method, the region of absolute stability
is the complement in the complex half-plane of the disk with a radius of unity centered
at Re(α∆t) = 1, thus including the entire left half of the complex half-plane, making it
particularly suitable for solving stiff differential equations [29].
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As the stability of the Euler method was discussed in a general manner it shall be
elaborated in the direct context of solving the conservation laws given in Sec. 2. The
most crucial condition for the stability of the time discretization scheme when solving the
NSE is the Courant-Friedrichs-Lewy number CFL [46]. Its importance and origin can be
demonstrated using a simplified form of the general conservation law from Eq. 2.1 for a
simple one-dimensional convection problem at constant density and transport velocity thus,
consider:

∂ϕ

∂t
+ u

∂ϕ

∂x
= 0 (5.34)

The equation shall be discretized using the explicit Euler method for time as well as the UDS
for space – for simplicity, it is assumed that transport occurs only in the positive direction.
Inserting the respective formulations for the explicit Euler method and the UDS yields:

ϕn+1
i − ϕn

i
∆t

+ u
ϕn

i − ϕn
i-1

∆x
= 0 (5.35)

While this equation is formally a PDE and is usually solved numerically, a heuristic analysis as
performed by Hirt [102] sheds more light on the true mathematical nature of this discretized
formulation. Therefore, a Taylor-series expansion is employed once more around tn and xi.
The value of tn+1 is inserted into the corresponding Taylor series right away, and the resulting
equation is solved for the discretization expression:

ϕn+1
i − ϕn

i
∆t

= 1
1!

∂ϕ

∂t
+ 1

2!
∂2ϕ

∂t2 ∆t + . . . (5.36)

For the spatial discretization a value of xi-1 is inserted, yielding:

ϕn
i − ϕn

i-1
∆x

= 1
1!

∂ϕ

∂x
− 1

2!
∂2ϕ

∂x2 ∆x + . . . (5.37)

Rewriting and deriving Eq. 5.35 in time establishes the following relationship between the
spatial and temporal derivatives:

∂2ϕ

∂t2 = −u2 ∂2ϕ

∂x2 (5.38)

Reforming the discretized transport equation leads to:

ϕn+1
i − ϕn

i
∆t

+u
ϕn

i − ϕn
i-1

∆x
= 1

1!
∂ϕ

∂t
+ 1

2!
∂2ϕ

∂t2 ∆t+O(∆t2)+u
1
1!

∂ϕ

∂x
+u

1
2!

∂2ϕ

∂x2 ∆x+O(∆x2) (5.39)

Which can be rewritten as:

ϕn+1
i − ϕn

i
∆t

+ u
ϕn

i − ϕn
i-1

∆x
= ∂ϕ

∂t
+ u

∂ϕ

∂x
+ 1

2

(
∂2ϕ

∂t2 ∆t + u
∂2ϕ

∂x2 ∆x

)
+ O(∆t2, ∆x2) (5.40)
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Employing the new found identity:

ϕn+1
i − ϕn

i
∆t

+ u
ϕn

i − ϕn
i-1

∆x
= ∂ϕ

∂t
+ u

∂ϕ

∂x
+ 1

2u∆x (1 − CFL) ∂2ϕ

∂x2 + O(∆t2, ∆x2) (5.41)

It is evident that the choice of discretization resulted in the formation of a convection-
diffusion equation, which was not the true object of interest. Instead, the problem now
exhibits diffusive behavior, which is one of the major challenges in CFD numerics. In this
particular case, the numerical diffusion coefficient is given as u∆x (1 − CFL) /2. Numerical
stability is maintained if this coefficient remains positive, which is true as long as CFL < 1,
which is the stability condition for the explicit Euler method in time and UDS in space.

The CFL number is defined as:

CFL = U∆t

∆x
≤ CFLmax (5.42)

Where U is the maximum velocity component in the domain and CFLmax is the maximum
allowed value for CFL for maintaining stability dictated by the employed temporal and
spatial discretization. The CFL number gives a ratio between a physical velocity U and a
numerical velocity ∆x/∆t and can be interpreted as follows. The ratio indicates how fast
physical information is transported through the numerical grid. In particular, ratios less than
one indicate that the physical information is transported more slowly than the information
propagates from cell to cell. In this sense, the CFL number can be interpreted as how many
cells the physical information travels per timestep. It may seem intuitive that the physical
information should propagate on the order of one cell per timestep to maintain stability. The
most commonly encountered value for CFLmax is unity, which is the limit for the case of the
explicit Euler method, while for some methods – such as the later introduced Runge-Kutta
methods – a CFLmax beyond unity is allowed.

Runge-Kutta methods

Runge-Kutta methods are state-of-the-art time integration methods of great relevance to
this work. Occasionally called the Runge-Kutta method, Runge-Kutta refers to a family
of multi-stage single-step methods of explicit or implicit nature [240, 152]. In fact, the
explicit Euler method is the simplest Runge-Kutta method. For convenience and to study the
structure of Runge-Kutta methods, the simplified equation to be solved in time discretization
will be rewritten:

∂ϕ

∂t
= RHS (5.43)

Runge-Kutta methods aim to solve the equation by introducing a manifold of s stages to
decompose the timestep ∆t and ultimately find a better estimate for the slope connecting
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the given and desired point in time [218]. The general form of a Runge-Kutta scheme reads:

ϕn+1 = ϕn + ∆t
s∑

i=1
biki (5.44)

Here, ki denotes the slopes obtained from the staging which are then averaged using the
weights bi to compose the estimate of the slope used for the final time integration step. The
slopes ki at the different stages i are calculated as follows:

k1 = RHS (tn, ϕn) (5.45)
k2 = RHS (tn + c2∆t, ϕn + ∆t (a21k1)) (5.46)
k3 = RHS (tn + c3∆t, ϕn + ∆t (a31k1 + a32k2)) (5.47)
... (5.48)
ks = RHS (tn + cs∆t, ϕn + ∆t (as1k1 + as2k2 + · · · + as,s−1ks−1)) (5.49)

To fully characterize the Runge-Kutta scheme, the number of stages s, the Runge-Kutta
matrix aij, the weights bi, and the nodes ci must be given. It is common practice to visualize
these coefficients in a mnemonic structure known as the Butcher tableau [110]. In general,
an explicit Runge-Kutta scheme of s stages can have a maximum order of s. The coefficients
can be found empirically or using Butcher trees to obtain a desired compromise between
accuracy, stability, and consistency.

The foundations of the stability of time discretization were laid using the example of the
Euler method. Since there are a large number of Runge-Kutta schemes, not all of them can
be discussed here. However, because of its relevance to this work, the low-storage three-stage
Runge-Kutta scheme proposed by Williamson [304] will be introduced in some detail. It
should be noted that this scheme was developed at a time when memory problems were more
severe. However, since it has the same accuracy compared to regular three-stage Runge-Kutta
schemes, it is still state of the art. To achieve the low memory requirements, the structure of
the scheme is slightly modified:

ϕn
1 = ϕn + (b1RHS (tn, ϕn)) ∆t (5.50)

ϕn
2 = ϕn

1 + (a2b2RHS (tn, ϕn) + b2RHS (tn
1 , ϕn

1)) ∆t (5.51)
ϕn

3 = ϕn
2 + (a2a3b3RHS (tn, ϕn) + a3b3RHS (tn

1 , ϕn
1) + b3RHS (tn

2 , ϕn
2)) ∆t = ϕn+1 (5.52)

The equations contain the reduced matrix as = (0, −5/9, −153/128), the weights bs =
(1/3, 15/16, 8/15) and the nodes cs = (1/3, 5/12, 1/4) to compute the Runge-Kutta times
ts = ts-1 + cs∆t.

An example of an implicit Runge-Kutta method (without further discussion) is the
Crank-Nicolson method. While it is only second-order accurate, it has the advantage of
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being unconditionally stable [47]. The Crank-Nicolson method is commonly used within the
OpenFOAM framework [301].

5.2 Pressure-Velocity coupling

While general approaches to deal with the discretization of the equations of fluid motion were
given above, a fundamental distinction is made between two states of flow which dictates the
solver architecture. In thermodynamics, this distinction is made based on the dependence of
the density of the flow medium on the pressure and is referred to as compressibility. While
variation of density can have multiple sources, only the pressure-induced variation defines the
compressibility. From a numerical point of view, compressibility is a harsh boundary that
strictly determines whether the density of a medium is pressure dependent or not. Thus, in
CFD, a flow medium is typically either compressible or incompressible. It becomes obvious
that along with this distinction, different models and solver frameworks become necessary.
Furthermore, in CFD this separation is linked to the Mach number Ma, which characterizes
the ratio of flow velocity to sonic velocity. Gas dynamics dictates a direct relationship between
the changes of velocity, changes of density and the Mach number, which can be obtained
from the differential form of the conservation laws. This relation reads:

−dρ

ρ
= Ma2 du

u
(5.53)

It is observed from this relationship that the Mach number serves as a sensitivity parameter
that links the variation of the density to the variation of the velocity, and this relationship
becomes stronger as the Mach number increases. However, the relationship does not imply a
strict separation, which is thus up to the designer of the CFD algorithm. The most common
limit to distinguish between incompressible and compressible solvers is chosen to be Ma = 0.3.
This limit does not result from theoretical arguments but from the willingness to accept
a certain error, as incompressibility is an idealization after all. Due to the Mach number
serving as the indicator for distinguishing between the required solver architecture the terms
low-Mach and high-Mach solvers are used.

5.2.1 Compressible solver framework

Also known as density-based or high-Mach solvers, compressible solver frameworks do
not assume that the density is independent of the pressure. Instead, they incorporate a
thermodynamic equation of state, denoted as f(p, T, ρ) = 0, which couples the density to
the pressure. This equation of state must be included in the solver framework to access the
pressure from the transported variables. Common choices for the equation of state are the
ideal gas law (as shown in Eq. 2.6) or the van-der-Waals equation. The ideal gas law can be
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expressed as follows for the purpose of this discussion:

p = ρ
Rm
W

T (5.54)

The van-der-Waals equation is a thermodynamic model that accounts for intermolecular forces
and the volume occupied by gas particles, which the ideal gas law neglects. It introduces two
parameters, the cohesion pressure parameter a and the molar volume parameter b, to capture
the effects of intermolecular forces and particle volume, respectively. In many engineering
applications, the van-der-Waals equation can be simplified by neglecting a and b at pressures
below 10 bar. The van-der-Waals equation is typically formulated in terms of the amount of
substance n and can be expressed as follows:(

p + n2a

V 2

)
(V − b) = nRmT (5.55)

The equation of state requires a temperature T to complete the coupling between pressure
and density. Since the equation of state is already reserved for the calculation of the pressure,
a conservation law for the energy is incorporated in addition with a caloric equation of state
to derive the temperature from the energy. It can be concluded so far that the compressible
solver framework requires an additional transport equation, which is not necessarily needed
in a comparable incompressible framework.

Another aspect of compressible solvers is their ability to resolve the pressure-dependent
variation of the density. These pressure-induced variations of the density are also referred to
as weak perturbations, which ultimately are pressure waves. Pressure waves spread through
space at the speed of sound – which, by definition, is the speed of pressure waves. It was
discussed earlier that it is of crucial importance for maintaining stability to limit the speed at
which information propagates through the grid. Due to the presence of acoustic phenomena,
however, this speed is not only the convective speed of the flow, but also the speed at which
sound waves propagate. Therefore, in a compressible solver framework, it is necessary to
include the speed of sound in the calculation of the timestep, which typically reduces the
timestep width by at least one order of magnitude. In this context, the CFL number is also
referred to as the acoustic CFL number.

5.2.2 Incompressible solver framework

The so-called pressure-based, low-Mach, or incompressible solver frameworks rely on the
idealization of the density being independent of the pressure. Therefore, a coupling between
pressure and density through a thermodynamic law is not possible as ρ ̸= f (p). The
incompressible solver instead assumes a static background pressure – which in most works is
given by the atmospheric pressure – and superimposes on this pressure with the corresponding
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pressure gradient required for the conservation of momentum. This pressure gradient is
implicitly dictated by the conservation of mass. For the general case of a varying density –
e.g. due to thermal effects – the conservation of mass can be rewritten as a target-divergence
condition:

∂ρuj
∂xj

= −∂ρ

∂t
(5.56)

This can also be understood in the following way: at the beginning of each new timestep, the
momentum field must satisfy the divergence dictated by the density field. Employing a simple
explicit Euler method, the procedure is further elaborated. This procedure is still valid when
using Runge-Kutta methods, but the pressure must be corrected at each Runge-Kutta stage
and the timestep width must be adapted to the Runge-Kutta method. The conservation of
momentum can be rewritten as:

(ρui)n+1 = (ρui)n + ∆t

(
−∂ρuiuj

∂xj
− ∂p

∂xi
+ ∂τij

∂xj

)
(5.57)

It is now of interest to obtain the pressure gradient, which serves to complete the time
iteration. Hence, the new momentum field is decomposed:

(ρui)n+1 = (ρui)n + ∆t

(
−∂ρuiuj

∂xj
+ ∂τij

∂xj

)
− ∆t

∂p

∂xi
= (ρui)∗ − ∆t

∂p

∂xi
(5.58)

Where (ρui)∗ denotes the predicted momentum using only the convective and diffusive
contributions. Applying the divergence operator to this equation yields:

(
∂ρui
∂xi

)n+1
= ∂

∂xi

(
(ρui)∗ − ∆t

∂p

∂xi

)
(5.59)

This finding can be combined with the divergence condition found from the conservation of
mass:

−
(

∂ρ

∂t

)n+1
=
(

∂ρui
∂xi

)∗
− ∆t

∂

∂xi

(
∂p

∂xi

)n+1
(5.60)

Which yields the following identity for the pressure:

∂

∂xi

(
∂p

∂xi

)n+1
= 1

∆t

((
∂ρ

∂t

)n+1
+
(

∂ρui
∂xi

)∗
)

(5.61)

This equation is a Poisson-type equation that can be solved implicitly using an appropriate
algorithm. The solver used must be chosen with respect to the case and boundary conditions.
Typical candidates are the successive-overrelaxation Gauss-Seidel solver, the Jacobi solver, or
the conjugate gradient method – all of which are well established, and for details on their
algorithmic structure the reader is referred to the appropriate literature [218]. It may now be
argued that the inclusion of an iterative solver will add a significant amount of computational
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cost, which may not encourage the use of incompressible frameworks. However, it should
be noted that incompressible solvers do not require the resolution of acoustic phenomena,
which greatly increases the possible time step size. Finally, the pressure obtained is not of
thermodynamic nature, but only the dynamic pressure of the fluid motion, and therefore
must not be used for further thermodynamic analysis.

The present work employs an density based on the thermochemical state and referred
to as target density, for providing the temporal derivative of the density based on the work
of Kempf [119] – for open access the reader is referred to the related work of Stein [266]
and Pierce [207]. The stages for a single timestep included in the present algorithm are
summarized as follows:

1. Calculate the predicted momentum (ρui)∗ at the present timestep n using all known
contributions to the momentum equation except the pressure:

(ρui)∗ = (ρui)n + ∆t

(
−∂ρuiuj

∂xj
+ ∂τij

∂xj

)
(5.62)

and applying the respective boundary conditions.

2. Solve all scalar transport equations besides the momentum equation using un
i to obtain

the conserved variables (ρϕm)n+1 (where m = 1 . . . N). The density is potentially
a function of ϕm and hence, the additional transport equation is included to give a
prediction of ρn+1 to be used to extract ϕn+1

m from (ρϕm)n+1. Thus, the density based
on the reactive models can be calculated as ρs = f

(
ϕn+1

m
)
. The respective boundary

conditions for the conserved scalars need to be applied.

3. Use the target density to calculate the density gradient as:

∂ρ

∂t
≈ ρs − ρn+1

∆t
(5.63)

The target divergence is inserted into the Poisson-type equation and is implicitly solved
for the pressure. The respective boundary conditions for the pressure are applied.

4. Assemble the correct momentum field (ρui)n+1 using the pressure gradient and apply
the respective boundary conditions for the momentum field.

As the pressure is obtained using this procedure and then merged into the momentum equation,
some aspects of the spatial discretization gain even more relevance. For demonstration
purposes, an excerpt of the momentum conservation law is presented:

∂ρui
∂xi

= − ∂p

∂xi
+ . . . (5.64)
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This structure can be used to identify the nature of the pressure. The pressure is a scalar
field and acts as an additional acceleration away from the pressure peaks as dictated by the
gradient. The equation is treated using Euler’s explicit time and CDS spatial discretization
for the one-dimensional case:

(ρu)n+1
C − (ρu)n

C
∆t

= pn
w − pn

e
∆x

(5.65)

The CDS discretization then estimates the face values of the pressure by the center values of
the neighboring cells w = (W + C)/2 and w = (C + E)/2 ultimately yielding:

(ρu)n+1
C = (ρu)n

C + ∆t

2∆x
(pn

W − pn
E) (5.66)

The potential problems with this equation become apparent. The change in momentum in
a cell C due to pressure gradients depends only on its neighboring values, but not on the
pressure value within the same cell. Hence, decoupling between the momentum and the
pressure field may occur, which potentially leads to unphysical pressures as not the absolute
values but the relative pressure values are now of importance. This is also referred to as
checkerboarding due to the independence solutions of odd and even cell indices on a cubic
grid [69]. The most common approach found in the literature to tackle checkerboarding is
referred to as staggering [93]. While collocated meshes store all variables at the cell centers,
staggered meshes compute the momentum equations at the cell-face centers of the volumes
used for the other transported variables and the pressure. Staggered meshes typically come
with increased computational cost and are more difficult to formulate on unstructured meshes.
A more convenient method that does not depend on the architecture of the mesh has been
proposed by Rhie and Chow [227]. This approach prevents the decoupling of momentum and
pressure by applying a correction to the velocity obtained at the cell faces that emulates
the effects of a staggered mesh. Ultimately, this leads to possible checkerboard patterns in
the pressure field modifying the transport velocity at the cell faces in such a way, that these
patterns are removed due to change of mass transport. Following the nomenclature from the
example above, the modification for the eastern cell face reads:

un+1
e = 1

2

(
(ρu)∗

C
ρn+1

C
+ (ρu)∗

E
ρn+1

E

)
− ∆t

(
pn+1

E − pn+1
C

)
/∆x(

ρn+1
C + ρn+1

E

)
/2

(5.67)

5.3 Boundary Treatment

5.3.1 Conventional boundary conditions

The NSE form a set of partial differential equations with an additional set of constraint,
and is therefore considered a boundary value problem. The additional constraints serve
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the purpose of finding a unique solution – the problem is then referred to as being well
posed. The process of translating the physical problem into the computational domain was
introduced. To incorporate the boundary values into the computing problem, an additional
type of cells is introduced. While all conservation laws for the discretized domain are solved
using physical cells, additional layers of cells – the ghost cells – are wrapped around the set
of physical cells. The ghost cells are filled with values dictated by the boundary conditions
which are used to complete the discretization at the outer physical cells and their values are
updated at each timestep. The integration of ghost cells into the computational domain for a
one-dimensional case is shown in Fig. 5.8. The ghost cells form layers around the physical
domain and the number of layers typically depends on the spatial discretization. If higher
order numerical schemes are employed, a larger number of ghost cell layers will be required.

Figure 5.8 Location of ghost cells on the computational grid and the change of indexing for
the one-dimensional case.

The most classical boundary conditions typically consist of two types, which either directly
prescribe a certain value at the boundary or implicitly prescribe values by dictating a certain
gradient. The Dirichlet condition dictates a value for the respective quantity directly at the
boundary. The von-Neumann condition prescribes a gradient for the transported quantity at
the boundary. In mathematical literature it is common practice to further generalize these
two fundamental boundary conditions to the so called Robin condition, which aims at setting
a weighted combination of a Dirichlet and a von-Neumann condition at the boundary [3].
The third fundamental boundary condition is the periodic boundary condition. As the name
implies, the periodic boundary condition closes two opposite boundaries with each other.
This causes the fluid to leave the domain on one side and re-enter on the corresponding
opposite side. This boundary condition is very precise, but appears to be of more academic
value. Hence, this boundary condition is heavily employed in benchmark cases for model
development as well as in turbomachinery applications due to its rotational symmetry.

5.3.2 Navier-Stokes characteristic boundary conditions

It becomes evident that, due to the nature of the solver framework used, special care needs
to be addressed to the boundary conditions, as they will interfere with the pressure waves
traveling through the domain. This is particularly the case for pressure waves that travel out
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Table 5.3 Summary of the most commonly employed boundary conditions in CFD problems.

Boundary Condition Prescription
Dirichlet ϕ (xGC) = f
von Neumann ∂ϕ/∂n⃗ (xGC) = f
Periodic ϕ (xGC) = ϕ (xN)

of the domain. Standard boundary conditions will typically lead to at least partial reflection
of the pressure waves, resulting in contamination of the solution, and in the worst case,
numerical instability. This is a consequence of the fact that conventional boundary conditions
impose fixed or gradient-based values at the boundary, which do not exhibit compression and
relaxation for sound waves approaching the boundary. Therefore, the boundary conditions
must be designed in such a way that they do not interfere with the outgoing pressure waves.
This desired property of boundary conditions is also referred to as non-reflecting boundary
conditions. For the case of compressible NSE-based solvers, the concept was introduced by
Poinsot and Lele [213] and is henceforth known as Navier-Stokes Characteristic Boundary
Conditions (NSCBC ). For a detailed overview in the context of reactive systems, the reader
is referred to the work of Poinsot and Veynante [212].

The propagation of mathematical waves in a set of hyperbolic equations is typically
described by the propagation velocity λ of the wave and the variation of its amplitude L in
space. Assuming that the original equation is given in the common form of a conservation
law, it is referred to as the primitive form of the equation with the vector of primitive state
variables UUU :

∂UUU

∂t
+ A

∂UUU

∂x
+ C = 0 (5.68)

Using characteristic analysis, the propagation velocity and amplitude variation for the waves
featured in the primitive set of equations can be obtained, leading to the characteristic form
of the equation – which represents the propagation of waves. A detailed derivation for the
case of the Euler equations was performed by Thompson [279, 280]. The same procedure is
performed for the Navier-Stokes equations and leads to the following set of equations, which
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is solved at a boundary normal to the direction x when using the NSCBC:

∂ρ

∂t
+ d1 + ∂ρv

∂y
+ ∂ρw

∂z
= 0 (5.69)

∂ρE

∂t
+ 1

2

( 3∑
k=1

uk
2
)

d1 + d2
γ − 1 + ρud3 + ρvd4 + ρwd5

+∂v (ρE + p)
∂y

+ ∂w (ρE + p)
∂z

= ∂

∂xi

(
κ

∂T

∂xi

)
+ ∂uiτij

∂xi
+ Q̇ (5.70)

∂ρu

∂t
+ ud1 + ρd3 + ∂ρvu

∂y
+ ∂ρwu

∂z
= ∂τ1j

∂xj
(5.71)

∂ρv

∂t
+ vd1 + ρd4 + ∂ρvv

∂y
+ ∂ρwv

∂z
+ ∂p

∂y
= ∂τ2j

∂xj
(5.72)

∂ρw

∂t
+ wd1 + ρd5 + ∂ρvw

∂z
+ ∂ρww

∂z
+ ∂p

∂z
= ∂τ3j

∂xj
(5.73)

∂ρYk
∂t

+ Ykd1 + ρd5+k + ∂ρvYk
∂y

+ ∂ρwYk
∂z

= ∂

∂xj

(
ρD

∂Yk
∂xj

)
− ω̇k

for k = 1 ... N (5.74)

The vector di is a result of the characteristic analysis and contains derivatives of the primitive
variables featured in the Navier-Stokes equations [279, 280]. The terms are calculated as:

di =



d1

d2

d3

d4

d5

d5+k


=



1
c2

[
L2 + 1

2(L5 + L1)
]

1
2(L5 + L1)
1

2ρc(L5 − L1)
L3

L4

L5+k


=



∂ρu
∂x

ρc2 ∂u
∂x + u ∂p

∂x

u∂u
∂x + 1

ρ
∂p
∂x

u ∂v
∂x

u∂w
∂x

u∂Yk
∂x


(5.75)

Since these derivatives di can be calculated directly from the characteristic wave amplitude
variations Li and the wave propagation velocity λi, rewriting the Navier-Stokes equations
in this form allows direct control of the wave propagation through the boundaries. The
characteristic velocities λi of the waves follow from the analysis of the eigenvalues of the
system of equations:

λ1 = u − c ; λ2 = λ3 = λ4 = λ5+k = u ; λ5 = u + c (5.76)

Considering the velocity u to be surface-normal to the boundary and c being the local speed
of sound given by c2 = γp/ρ under the assumption of adiabatic sound wave propagation in
an ideal gas at sufficiently high speed of the sound wave.
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The eigenvalues and the gradients of the primitive variables are used to reconstruct the
amplitude variation of the traveling waves Li, which are calculated as:

L1 = λ1

(
∂p

∂x
− ρc

∂u

∂x

)
(5.77)

L2 = λ2

(
c2 ∂ρ

∂x
− ∂p

∂x

)
(5.78)

L3 = λ3
∂v

∂x
and L4 = λ4

∂w

∂x
(5.79)

L5 = λ5

(
∂p

∂x
+ ρc

∂u

∂x

)
(5.80)

L5+k = λ5+k
∂Yk
∂x

(5.81)

The strategy of the NSCBC is to advance the solution at the boundary in time using a separate
system of equations given in Eq. 5.69 - 5.74, which allows for control of the waves crossing the
boundaries of the domain. All featured terms tangent to the boundary can be treated using
the same numerical approximations as for the main computational domain. The terms Li are
aligned normal to the domain boundary, which requires one-sided differences for calculating
Li of the waves leaving the domain through the boundary. However, the amplitude variations
Li of the waves entering the domain from the outside are unknown. Although there is no exact
approach to determine these amplitude variations in a general form for three-dimensional
viscous problems, expressions can be found for inviscid one-dimensional equations. To fit these
values to the NSE, the one-dimensional inviscid solutions are augmented with viscous terms
and terms representing the neglected dimensions. This approach is widely known as the Local
One-Dimensional Inviscid (LODI ) relations. The procedure is not considered a physically
correct boundary condition, but serves as a supplement to determine the characteristic wave
amplitude variations Li at the boundary.

The set of corresponding LODI equations is obtained by reducing the original Navier-
Stokes equations at the boundary given in Eq. 5.69 - 5.74 by neglecting the transverse,
viscous and reaction contributions. The LODI relations can be used to formulate equations
that close the surface normal gradients of the primitive variables at the boundary using the
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wave amplitude variations:

∂ρ

∂x
= 1

c2

[
L2
u

+ 1
2

(
L5

u + c
+ L1

u − c

)]
(5.82)

∂p

∂x
= 1

2

(
L5

u + c
+ L1

u − c

)
(5.83)

∂u

∂x
= 1

2ρc

(
L5

u + c
− L1

u − c

)
(5.84)

∂v

∂x
= L3 (5.85)

∂w

∂x
= L4 (5.86)

∂T

∂x
= T

γp

[
−L2

u
+ 1

2 (γ − 1)
(

L5
u + c

+ L1
u − c

)]
(5.87)

5.3.3 Static geometrical boundaries

A crucial aspect of most CFD frameworks is the design of the computational grid. The
quality of the grid has a massive impact on the accuracy of the CFD framework and must be
appropriate for the given problem. For CFD of technical systems, the computational grid
is limited by boundaries that can allow or prohibit fluid transport. Boundaries with fluid
transport properties were discussed in Sec. 5.3.1. Typically, the remaining boundaries of a
technical system are given by walls of a certain geometry. Due to their ability to accurately
represent even complicated geometries, unstructured meshes as described in Sec. 5.1.1 are the
most common meshing-strategy in open-source CFD. The present work, however, employs
a structured equidistant cubic mesh and hence, cannot arbitrarily refine or rotate the cells
in order to satisfy geometric constraints. Instead, the constraining geometry of the given
problem is incorporated by distinguishing the cells in the computational domain between
fluid-type and wall-type cells, where the fluid-type cells store the solutions to the conservation
equations and the wall-type cells are computed to mimic the effects of walls. This typically
results in an overabundance of cells, which is accepted for the sake of the simplicity of the
grid. The walls in this work are inelastic and enforce the zero-slip condition for the velocity
field. The approach employed within this work is referred to as the Immersed Boundary
(IB) method and was proposed by Peskin [202]. To maintain computational efficiency, the
conservation equations are solved for all fluid-type cells. The wall-type cells are rewritten as
such that no convective or diffusive fluxes occur at the fluid-wall cell interfaces. Convective
fluxes will vanish because the convection velocity is forced to have a value of zero when a
wall-type cell is adjacent to the fluid-type cell face. Velocities and momentum in the first
layer of wall-type cells are mirrored with a negative sign to satisfy the zero-slip boundary
condition.

The IB-method is applicable to the description of moving boundaries. The moving
geometry is modeled in a Lagrangian framework and each cell occupied by the geometry
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is treated as an immersed boundary. A key-aspect for this description is the concept of
mirror-flow as introduced by Forrer and Berger [71]. This method imposes the values in the
immersed boundary cells describing a moving geometry using an extrapolation between the
kinematics of the moving geometry and the neighboring fluid cells. A disadvantage is the
coupling between the resolution of the geometry and the domain. The given geometry must
be decomposed into cells using a voxelizer prior to the simulation run, leading to an increased
amount of preprocessing. This approach was pioneered and evaluated by Nguyen et al. [191].

5.3.4 Moving geometrical boundaries

The description of moving geometry is a desirable aspect in a variety of engineering applications
and CFD problems. There are several approaches to incorporate a moving geometry into an
existing solver and the most common approaches are: cell deformation, cell splitting and cell
occupation. The previously introduced unstructured meshes typically describe the motion of
the geometry by deforming existing cells, which is an attractive approach in these solvers
because the tabulation and identification of cells does not need to be modified. Existing
cell interfaces do not need to be modified, and during volume reduction, resolution near
the moving boundary increases due to the formation of smaller cells. For solvers based on
structured meshes, cell splitting is a common approach. Structured meshes generally require
more elaborate workarounds for cell deformation. A common compromise is to split cells that
are partially occupied by moving geometry, as this counteracts the loss of resolution when
cells are occupied by both fluid and geometry. For structured meshes in solvers that cannot
efficiently describe cell splitting, the approach proposed earlier by Nguyen [191] provides a
powerful alternative. This approach combines the ideas of Forrer and Berger [71] with the
concept of immersed boundaries of Peskin [202] and is particularly relevant for this work.

𝑥w
𝑥 ො𝑥(𝑥)

Figure 5.9 Visualization of the coordinate transformation performed for the mirror-flow
approach as presented by Forrer and Berger [71].

Forrer and Berger base their method on the concept of mirror flow, which was formulated
for inviscid flows [71]. The notion of mirror flow results from the introduction of a transformed
coordinate linking each coordinate x outside the wall to a corresponding coordinate x̂ inside
the wall, both having the same distance from the solid-fluid interface xw. The transformation
reads:

x̂(x, t) = 2xw(t) − x (5.88)
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And the respective velocity can be found by applying the time derivative:

û = 2ẋw − u (5.89)

With this identity being used in the following to correct the velocities within the immersed
boundaries. The acceleration of the wall will be used to adjust the pressure values in the
wall. The treatment of the density and pressure requires the application of a zero-gradient
boundary condition at the moving interface. While the density does not require any further
modifications, the pressure increment directly at the wall can be obtained from the acceleration
of the moving wall ẍw using the second law of Newton:

∆p = −ρ(xw)ẍw (5.90)

The approach of incorporating moving geometries into the solver is based on the ideas of
Forrer and Berger [71] as well as Nguyen et al. [191] and necessarily requires knowledge of
the thermodynamic pressure which is obtainable from the equation of state, e.g. given in
Eq. 5.54 as p = ρRmT/W . Due to the accessibility of the pressure, the original works based
their ideas on the compressible solver-framework. The procedure embedded in the algorithm
for one timestep can be summarized as follows:

1. Calculate the thermochemical state

2. Obtain the thermodynamic pressure and update all related boundary conditions

3. Update the density to take into account the changes in the boundary conditions of the
pressure

4. Enforce a zero-gradient boundary condition at the wall cells for the density ρ

5. Move the respective boundaries; in particular within this framework: relocate the
immersed boundary based on the new boundary location

6. Apply new values in the moving wall for:

(a) Pressure p

(b) Momentum ui

(c) Energy e

At the respective fluid-structure interfaces using the framework presented by Forrer
and Berger [71]

7. Enforce a zero-gradient boundary condition at the wall cells for all remaining transported
quantities ϕ
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8. Calculate additional source terms

9. Solve all transport equations for one timestep

10. Update all boundary conditions

In the Moving Immersed Boundary (MIB) method applied by Nguyen et al. [191], a geometric
shape is decomposed into a cloud of data points. These data points are treated in a
Lagrangian framework, also referred to as Lagrangian particles. Each particle is characterized
by a location xi, a velocity vi and an acceleration ai. The decomposition of a geometry
into discrete Lagrangian particles for a given mesh can be achieved using a voxelizer. The
acceleration, velocity and position of these particles can either be derived from the kinematic
laws given by the problem, or can be obtained by applying Newton’s theorem and integrating
the acceleration and velocity to obtain the positions at each timestep. However, it is strongly
recommended that these properties be tabulated or calculated analytically, if possible, to
avoid any numerical error affecting the motion of the geometry. A decomposition of a
geometry into a cloud of particles is shown in Fig. 5.10 for two different grid resolutions.

2∆ ∆

fluid interface-cell

solid interface-cell

Figure 5.10 Decomposition of a geometrical shape into data points and their distribution on
the numerical grid. Two gridsizes of the domain are presented two demonstrate the effect of
voxelization on the grid.

It is evident that the description of the geometry is directly coupled to the grid resolution.
The visualization shows that the shape of the geometry when projected onto the numerical
grid depends on the treatment of the data points on cells containing fluid and geometry.
Ultimately, there is no rule on how to treat these cells, but in the context of this work it was
found that the geometry is better preserved on fine grids when the ratio of the cell volume
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occupied by the geometry to the total cell volume is greater than zero, which is also applied
in this work. On coarser meshes, it is recommended to define a case-dependent threshold for
the treatment of these cells.

In this work, the particle acceleration, velocity and position are calculated analytically
during the simulation run in order to avoid numerical errors due to integration when applying
kinematic laws.

The velocity within the fluid-structure interface cells is adjusted based on the velocity
of the moving boundary vi and the average of the velocity values un

i,MIB in all neighboring
interface cells nNB before their respective correction:

un+1
i,MIB = 2vn+1

i −
nNB∑

un
i,MIB/nNB (5.91)

A similar procedure is used for the pressure in the moving boundary. Based on the acceleration
of the moving boundary, a pressure gradient is added to the fluid cells adjacent to the moving
boundary. The pressure gradient is calculated from the acceleration of the moving boundary
and the average of the density values ρn

MIB in all neighboring boundary cells nNB:

un+1
i,MIB = −an+1

i

nNB∑
ρn

MIB/nNB (5.92)

The energy in the moving wall is simply increased by the kinetic energy due to its movement.
This kinetic energy is calculated from the velocity of the particle in each cell containing a
moving boundary. While in static geometries the wall simply holds its respective internal
energy, the energy value in the moving wall reads:

eMIB = 1
2v2

i + cv,MIBTMIB (5.93)

The advantage of the approach by Nguyen et al. [191] becomes evident. The equations to be
introduced into the solver are of low complexity, since only Lagrangian particles need to be
simulated and the values in the now moving immersed boundary need to be adjusted. The
corrected values are calculated in such a way that the immersed boundary method works as
before: the fluxes are blocked at static boundaries and modified at moving boundaries to
account for the change in the conserved variables. It is important to note that the fluxes at
the moving boundaries are not blocked, but instead fluxes are introduced to account for the
displacement of the fluid at the boundary. This allows the method to be highly efficient with
little additional computational time required.

The explained procedure allows for the movement of walls within the computational
domain using Lagrangian particles. The particles are moved through the domain in steps
smaller than the gridsize. All cells occupied by a Lagrangian particle are blocked by enforcing
immersed boundary treatment. If a wall moves to another cell, that cell is blocked and
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treated as an immersed boundary. The values of the conserved quantity within this cell
are then adjusted to allow the description of the moving wall. When the wall leaves a cell,
the cell is no longer treated as an immersed boundary and the conservation equations are
solved again for this cell. The cell needs to be initialized with physically meaningful values.
However, the true physical state in the released cell is unknown, so an average of the values
in all neighboring cells is used.

5.3.5 Turbulent inflow generation

The turbulent inflow generator is a powerful method to artificially induce turbulent-like
behavior at the inflow boundary of the domain. This is of crucial importance for almost
all LES or DNS of technical applications due to their mostly turbulent nature. While the
simulation of laminar-turbulent transition can be achieved by an appropriate choice of the
inlet geometry, the additional cost of including it in the computational domain can be
enormous. Due to their general importance and, in particular, their relevance in this work,
the digital inflow generator of Klein [133] and its modification by Kempf [120] are discussed.
For related work following a similar philosophy, the reader is referred to the work of Glaze,
Lee, and Smirnov [85, 157, 261].

The aim of a turbulence generator is to provide a velocity signal ui with certain desired
statistical properties such as averages, fluctuations, cross-correlations or energy-spectra.
The first step in obtaining this signal is to generate a signal Ui with two-point statistics
characterizing the length scale and the energy spectrum. The digital filtering technique
creates the signal Ui based on a series of randomized data rm with ⟨rm⟩ = 0, ⟨rmrm⟩ = 1 and
⟨rmrn⟩ = 0 for m ̸= n. Applying a digital filter on this data yields:

um =
N∑

n=−N

bnrm+n (5.94)

With the kernel size 2N + 1 and the filter coefficients bn. To extend this definition to the
desired three dimensions, the proposed one-dimensional approach is convolved, yielding
the three-dimensional filter bijk = bibjbk. By applying the filter to the randomized data, a
nonlinear implicit relationship between the filter coefficients and the autocorrelation of the
filtered signal um can be found [133]. The filter coefficients can be obtained from the implicit
relation if the auto-correlation is given, which in the discussed works is assumed to be a
Gaussian function based on the length scale L. So far, it can be noted that this provides
an elegant way to include the length scale of the inflowing turbulent structures. Thus, the
autocorrelation for the one-dimensional stencil at cell k is given by:

Ruu(k) = exp
(

−k2∆x2

4L2

)
(5.95)
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Thus, following Klein [133], the coefficients of the digital filter can be reconstructed as:

bk ≈ b̃k/

 N∑
j=−N

b̃2
j

0.5

with b̃k = exp
(

−k2∆x2

2L2

)
(5.96)

It was the idea of Kempf [120], who suggested to use the separability of this filter formulation
and to perform three consecutive one-dimensional filters instead of one three-dimensional
filtering operation. This approach reduces the computational complexity from (2N + 1)3

cells to 3 (2N + 1), resulting in a highly efficient implementation of the digital filter-based
inflow generator.

In the second step, the cross-correlations between the different velocity components are
established, which is not necessary in the case of homogeneous isotropic turbulence. The
cross-correlations are typically obtained following the idea of Lund [172]. First, the signal
from the first step is generated in such a way that ⟨Ui⟩ = 0 and ⟨UiUi⟩ = δi, so that the
desired velocity signal reads ui = ⟨ui⟩ + aijUj. The desired mean ⟨ui⟩ depends on the problem
under investigation. The correlations are obtained from the tensor aij, which is defined as
follows:

aij =


(R11)1/2 0 0
R21/a11 (R22 − a2

21)1/2 0
R31/a11 (R32 − a21a31)/a22 (R33 − a2

31 − a2
32)1/2

 (5.97)

Where Rij is the Reynolds stress-tensor to be prescribed.

5.3.6 Interblock boundaries – Message-Passing Interface

Based on the findings of the previous sections, it is clear that LES and DNS of engineering
applications require fine grid resolutions, which leads to a large number of computational cells.
Such a number cannot be handled by a single processor core, but by multiple cores. Therefore,
the domain needs to be decomposed into subdomains, each identified by a unique rank and
handled by a separate core. The number of cores is equal to the number of ranks. Due to the
decomposition, each rank will have cells at the outer boundaries that lack neighboring cells
to close the numerical discretization. To counteract this problem, the parallelization in this
work relies on a distributed memory approach that exchanges information about each rank
and its neighbors. The technique used to exchange this information is called the Message
Passing Interface (MPI ).

A major strength of the MPI employed within this work is achieved by the so-called
non-blocking communication. This form of communication allows for the exchange of data
in the background while subsequent tasks are performed simultaneously. Another aspect of
saving computational costs time is the sequential evaluation of diffusive fluxes, convective
fluxes and time integration for each conserved variable. The communication for one conserved
variable is started after the time integration, followed by the solution process for the next
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conserved variable. Another aspect of the iterative solver required for the later introduced
projection method is the need to communicate only the cells adjacent to the rank boundary.
This allows the iterative solver to be designed in such a way that the cells adjacent to the
boundary are communicated while the computation of the remaining cells is already started.

Although MPI is a parallelization technique, it comes with a set of boundary conditions.
However, these boundary conditions do not address the boundaries of the physical domain,
but rather the inner boundaries between the ranks. Fig. 5.11 illustrates the use of ghost cells
for the decomposition of the domain into ranks.

Figure 5.11 Arrangement of ghost cells for the one-dimensional parallelization case based on
three ranks.

For each transported quantity, the ghost cells of a rank need to be filled with the values
of the respective quantity within the cells on the neighboring rank adjacent to the boundary
of this particular ranks. As the three-dimensional case is most commonly encountered, this
communication between the rank has to be performed with up to eight neighboring ranks
depending on the location of the rank within the whole ensemble of ranks. In this particular
work the exchange occurs at least once during each Runge-Kutta stage. Hence, it is only
of interest to design the communication operation as efficient as possible, especially with
respect to highly-parallelized simulations and also to avoid unnecessary communication.
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Abstract

Scale similarity or gradient models represent attractive, functionally simple expressions for
large eddy simulation (LES) subgridscale (SGS) models, showing excellent behaviour in
a-priori LES studies for small to moderate filter sizes. However, when applied a-posteriori
to real LES calculations, they frequently suffer from numerically unstable behavior. A
recent regularization approach revealed promising results for both wall-bounded and free
turbulent flows. One attractive feature of this modelling strategy is that it can potentially
be applied in many different contexts, such as momentum transport in single or two phase
flows, different fluids such as non-Newtonian fluids, etc. The aim of the present study is
to test the application of this regularisation technique to turbulent transport of bounded
passive scalars. The performance of the model together with suitable discretization strategies
will be assessed for turbulent plane free jet simulations. LES results will be benchmarked
against DNS calculations of the same configuration obtained with the same code. The new
model exhibits good results for momentum and scalar transport, outperforming standard
eddy-viscosity models particularly with respect to the prediction of second order moments.
Further, they provide good stability and are easy to implement. While the influence of the

This chapter was previously published in Computers and Fluids [59] and is reprinted with
permission of the journal.
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SGS model for scalar transport is not negligible, it is shown that an appropriate momentum
SGS-closure is likely to be more important.

6.1 Introduction

Large-Eddy Simulation (LES) can be considered a state-of-the-art technique for detailed
simulations of turbulent flows. Taking account of the growing efficiency of modern CFD-
methods and rising computing power, an increase of LES-usage in research and industrial
applications can be expected. While LES aims for the resolution of the energy-carrying
scales of the flow, a universal behavior of the smaller scales is assumed and henceforth,
grids are chosen coarse enough to resolve large-scale turbulent structures only, applying a
filter-like effect on the remaining resolved scales. The influence of the unresolved motion
on the resolved flow is unknown and has to be expressed by a closure-model based on the
resolved quantities, which strongly determines the overall quality of the simulation results.
Besides the transport of momentum, the transport of scalars is very important in many
applications involving mixing or chemical reactions. Scalars are often bounded between
zero and unity, and numerical discretization as well as physical modeling have to obey this
constraint. As a result of this, despite the existence of high fidelity SGS closures for scalar
transport [293, 184, 192], the gradient diffusion assumption is mostly employed [316].

As a recurring configuration in both natural and technical flows turbulent jet flows have
been the subject of numerous experimental and numerical studies. Although the flow-setup
is comparatively simple, turbulent jet flows feature flow-phenomena that are challenging
to measure and to model, conferring jet flows the status of an important benchmark case.
While it is common to compare simulation results with experimental data, the assessment of
numerical techniques and modeling strategies in the LES context is preferably performed
using DNS reference data. In spite of their apparent simplicity, jet flows are demanding when
it comes to proper modelling of the boundary conditions, turbulent inflow, lateral entrainment
and turbulent backflow at the outlet boundary. In order to eliminate any systemic errors,
model development should ideally be done using DNS data obtained with the same numerical
code employing exactly the same boundary conditions. This approach is followed in this
work by first establishing a DNS database for a turbulent plane jet at Re = 10, 000 based on
the nozzle width D = 0.01m, including scalar transport. This dataset is subsequently used
for benchmarking a variety of LES simulations with different combinations of momentum
and scalar SGS closures and by employing different discretization techniques. The main goal
of the present study is the testing of a recently proposed scale-similarity type model [140] to
scalar transport and a scrutinizing assessment of its performance.

This chapter was previously published in Computers and Fluids [59] and is reprinted with
permission of the journal.
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6.2 Modeling strategy

Even in modern LES, eddy-viscosity models (EV M) remain the most commonly used closures
for the subgrid-contribution in the filtered Navier-Stokes equations

τij = uiuj − ui uj (6.1)

and share the following form

τEVM
ij = −2νt

(
Sij − 1

3Skkδij

)
(6.2)

with the filtered strain-tensor Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. To close the subgrid scalar transport

τj = ϕuj − ϕ uj (6.3)

the gradient-diffusion hypothesis (GDH) based on the turbulent viscosity νt and the subgrid
Schmidt-number Scsgs is often used

τGDH
j = − νt

Scsgs

∂ϕ

∂xj
(6.4)

Generally, the turbulent viscosity νt is defined as

νt = (Cm∆)2Dm (6.5)

with the model constant Cm and the gridsize ∆ (filter-width for LES with explicit filtering).
The actual type of eddy-viscosity model aims for an expression of the inverse timescale
Dm. For the well-known Smagorinsky model [259], Dm can be expressed with the resolved
characteristic rate of strain as

Dm =
√

2Sab Sab. (6.6)

Nicoud’s Sigma-model relies on the ordered singular values σ1 ≥ σ2 ≥ σ3 of the resolved
velocity gradient tensor gij = ∂ui/∂xj [192, 230]. The singular values can be calculated as
the square roots of the eigenvalues of gik gkj and lead to

Dm = σ3 (σ1 − σ2) (σ2 − σ3)
σ2

1
(6.7)

The static Smagorinsky and Sigma model will be referred to as SM and SI respectively. The
dynamic procedure to determine the Smagorinsky constant by Germano et. al. [80] will be
denoted as DSM.

Even though both the Smagorinsky and Sigma models are numerically stable and give
satisfactory results in LES, it is known that the underlying gradient-diffusion leads to a

This chapter was previously published in Computers and Fluids [59] and is reprinted with
permission of the journal.
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poor alignment with the true stresses [250, 16]. This led researchers to the development of
scale similarity [16, 169] and gradient models [42, 244]. As these are prone to numerical
instability, different regularization techniques have been suggested [244, 1, 142] and a recently
proposed methodology - the KKK model - by Klein et al. [140] will be employed. For deeper
insight, the authors refer to the studies by [1, 142, 138] and only a brief overview of the model
equations and model assumptions will be given here. The fundamental idea is that backscatter
is likely to cause stability problems. To avoid this problem in the event of backscatter, the
subgrid-scale tensor produced by the model is projected onto a tensor that has no energy
transfer but can be considered a SGS force. In the following text structural models (such as
scale similarity or gradient type models) will be referred to as scale similarity type models
(SST). A possible regularization is now introduced. The subgrid momentum-contribution of
the first model reads

τKKK1
ij = −τSST

ab Sab + | − τSST
ab Sab|

−τSST
ab Sab

τSST
ij

+
(

τSST
ij + −τSST

ab Sab

Sab Sab
Sij

) (6.8)

with the following counterpart of subgrid-contribution to transport of the scalar ϕ

τKKK1
j = −τSST

a ∂ϕ/∂xa + | − τSST
a ∂ϕ/∂xa|

−τSST
a ∂ϕ/∂xa

τSST
j

+

τSST
j + −τSST

a ∂ϕ/∂xa(
∂ϕ/∂xa

)2 ∂ϕ/∂xj

 (6.9)

The second model is given by

τKKK2
ij = τSST

ij − max
(

τSST
ab Sab

Sab Sab
, 0
)

Sij (6.10)

for momentum transport, while the scalar transport reads

τKKK2
j = τSST

j − max

τSST
a ∂ϕ/∂xa(
∂ϕ/∂xa

)2 , 0

 . (6.11)

Here, τSST
ij denotes an arbitrary baseline scale similarity type model. In the present study

Clark’s tensor-diffusivity model [42] is chosen for its good performance in a-priori testing,
which provides for momentum transport

τCT M
ij = ∆2

12
∂ui
∂xk

∂uj
∂xk

(6.12)

This chapter was previously published in Computers and Fluids [59] and is reprinted with
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and for scalar transport

τCT M
j = ∆2

12
∂uj
∂xk

∂ϕ

∂xk
(6.13)

Liu’s model, reading τLSS
ij = ûiui − ûi ûi and τLSS

j = ûjϕ − ûj ϕ̂ respectively, can be used
alternatively, but requires an additional filtering level (̂·) [169].

6.3 Numerical methods

The in-house code PsiPhi has been used to perform all simulations. It has been developed at
the Imperial College London and the University of Duisburg-Essen. PsiPhi was utilized in
many LES calculations – some of them highly resolved up to DNS resolution – of reactive and
non-reactive flows [232, 221, 108]. A finite volume method (FVM) and a cubic, equidistant
grid allow for the solution of mass, momentum and a variable number of scalar transport
equations. This study is based on the solution of the incompressible Navier-Stokes equations,
which, for constant density, viscosity and diffusivity, takes the form:

∂uj
∂xj

= 0 (6.14)

∂ρ ui
∂t

+ ∂ρ ui uj
∂xj

+ ∂p

∂xi
= ∂

∂xj

(
µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
− ρ τ sgs

ij

)
(6.15)

∂ρ ϕ

∂t
+ ∂ρ ϕ uj

∂xj
= ∂

∂xj

(
Dϕ

(
∂ρϕ

∂xj

)
− ρ τ sgt

j

)
(6.16)

Using a convolutional filter to allow for the separation of scales

Z(x⃗, t) =
+∞y

−∞
Z(r⃗, t) · g(x⃗ − r⃗, t) dr⃗ (6.17)

τ sgs
ij denotes the subgrid-stresses and τ sgt

j refers to the subgrid scalar transport. The
momentum transport equations are spatially discretized using fourth-order central differencing
(CDS - strictly speaking called linear interpolation in the context of FV) for the LES and
DNS calculations. The additional scalar transport equation is discretized using fourth-order
central differencing in the DNS, while the resolved convective scalar transport in the LES
calculations is treated with a total variation diminishing (TVD-CHARM) scheme [317].

It is common in literature for eddy-viscosity models to use the same numerical discretiza-
tion for diffusive and subgrid fluxes [182]. However in this study, the effect of the discretization
scheme of the scalar subgrid fluxes τ sgt

j in the LES calculations is investigated by comparing
different approaches: a treatment of the scalar subgrid fluxes using the TVD-CHARM flux
limiter, using a second order CDS method and using a fourth order CDS method, leading

This chapter was previously published in Computers and Fluids [59] and is reprinted with
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to possibly different forms of discretization for the resolved scalar convective and subgrid
fluxes - e.g. treatment of convective scalar fluxes with second order CDS and treatment of
subgrid scalar fluxes with TVD. To achieve the discretization of the turbulent scalar fluxes,
the Gaussian divergence theorem is used:

y

V

∂ρτ sgt
j

∂xj
dV =

x

S

ρτ sgt
j njdA (6.18)

Using the midpoint-rule on a equidistant cubic mesh with nj being the surface normal vector,
the integral can be decomposed into

x

S

ρτ sgt
j njdA =

S∑
m

(
ρτ sgt

j njA
)

m
(6.19)

The values of τ sgt
j are stored in the cell centers and have to be obtained on the cell-surfaces m

by using the aforementioned discretization methods. Given - for instance - the TVD-CHARM
approach, (τ sgt

j )m is calculated using the values (τ sgt
j )

C
of a cell C, as well as its values (τ sgt

j )
U

in the cell upstream U and (τ sgt
j )

D
in the cell downstream depending on the flow velocity,

using:
(τ sgt

j )m = (τ sgt
j )

C
+ B

2
(
(τ sgt

j )
C

− (τ sgt
j )

U

)
(6.20)

Where B = r (3r + 1) /(r + 1)2 ∧ r > 1 is the limiter function for a CHARM-limiter and r is
the gradient-ratio

r =
(τ sgt

j )
D

− (τ sgt
j )

C

(τ sgt
j )

C
− (τ sgt

j )
U

(6.21)

If (τ sgt
j )

C
= (τ sgt

j )
U

, the operator fails and one forces (τ sgt
j )m = (τ sgt

j )
C

.
Timestepping is achieved by a low-storage, third-order Runge-Kutta scheme and continuity

is enforced by a fractional-step method [129], while the Poisson-equation is solved using a
conjugate gradients method [283].

6.4 Case description

A plane turbulent jet based on previous work by Klein et al. [133] and Stanley et al. [265]
is the basis for the present test case. A computational domain of 20D × 20D × 6.4D in
streamwise (x), normalwise (y) and spanwise (z) direction with a nozzle width D is chosen.
The homogeneous direction is treated by periodic boundary conditions and boundaries in
normalwise direction use Dirichlet conditions with velocity data from the DNS of Klein [133].
Hence, the normalwise velocity component v at the normalwise boundaries is defined as
constant +3.3% of U0 at y = 0 and −3.3% of U0 at y = 20D over the boundary, while stream-
and spanwise velocity components are set to zero, which is based on the averaged velocity
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Figure 6.1 Instantaneous snapshot of the normalized passive scalar distribution ϕ/ϕ0 of a
plane jet LES without turbulence model (left) together with the benchmark DNS (right) in
the x − y midplane.

values observed at the boundary in the DNS of Klein. In addition to the von-Neumann
conditions for pressure and velocity (clipping for negative velocities), filtering by Anderson
and Domaradzki is applied in a thin buffer layer of thickness D/4 at the streamwise outlet
to ensure unperturbed turbulent outflow and to avoid the formation of unwanted artifacts
at the boundary [8]. The three-dimensional filter is the product of the convolution of three
one-dimensional filters with coefficients (b−1, b0, b1) = (C, 1 − 2C, C), given by

ϕ̂ijk =
1∑

l=−1

1∑
m=−1

1∑
n=−1

bl · bm · bn · ϕi+l,j+m,k+n (6.22)

The constant C is set to C = 1/12 but can vary between 0 < C ≤ 1/3 [127]. The
inflow velocity U0 is chosen in order to achieve a Reynolds number of Re = 10, 000 at the
nozzle and the initial passive scalar value ϕ0 is set to unity for incoming fluid and ϕ = 0
for the surrounding ambient fluid. The Schmidt-number is set to Sc = 0.2, allowing for an
accurate and efficient solution of convective scalar transport using central schemes in the
DNS. Turbulent inflow data is generated at the streamwise inlet using an efficient, low-storage
implementation [120] of the inflow generator developed by Klein et al. [133] and setting
the inflow-lengthscale to the product of the von-Karman constant and the maximum wall
distance in the nozzle. The velocity profile prescribed at the inflow is approximated using a
hyperbolic-tangent relation based on findings of Thomas and Goldschmidt [278]

u = U0
2 + U0

2 tanh
(−|z| + 0.5D

2Θ

)
, (6.23)
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with the shear layer momentum thickness Θ being set to D/20 according to Ribault [155].
The normal- and spanwise mean velocity components v and w are chosen as zero. For the
DNS, the nozzle width D is discretized by 80 cells, while the LES uses 20 cells for the nozzle.
Consistent with the plane jet DNS of Stanley at al. [265] and Klein et al. [133], the DNS
grid provides a resolution of approximately ∆x/η ≈ 3 where η denotes the Kolmogorov scale.
The LES resolution was chosen to allow for a sufficient scale separation between LES and
DNS and at the same time for a sufficient resolution of the shear layer dictated by the mean
inlet velocity profile. Both setups rely on an equidistant cubic grid, which leads to a total
number of 1.3 billion cells for the DNS and 20 million cells for the LES respectively. While
the new scale-similarity models are free of any parameters, the Sigma model uses Cs = 1.5
[192] and the static Smagorinsky model features Cs = 0.173 [163].

The instantaneous scalar field in Fig. 6.1 demonstrates the capability of DNS to resolve fine
structures in the flow field compared to the LES without turbulence modelling (underresolved
DNS / implicit LES).

The computational time needed for the LES calculations using the different turbulence
models is shown in Tab. 6.1, indicating a very moderate computational overhead of the KKK
models (13%) relative to the Smagorinsky model, compared to the Sigma model (35%) and
the DSM model. (109%).

Table 6.1 Comparison of computational costs for the used models in thousand CPU-hours.

Model Cost [kCPUh]
SM 160.4
SI 217.0
KKK1 182.5
KKK2 181.7
DSM 336.0
none 124.4

The nomanclature for the presented combinations of turbulence model and discretization
schemes are given in Tab. 6.2.

6.5 Results

6.5.1 Influence of scalar subgrid discretization

The scalar subgrid closure has a crucial influence on LES simulation quality and interacts
with the numerical scheme [82]. While central differencing methods are the most common
approach for subgrid momentum fluxes due to their kinetic energy preserving properties,
numerical oscillations have been observed for transport of bounded scalars before jet break-up
when using models without limiter. Close to the nozzle, the steep gradients of the mean
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Table 6.2 Configuration of turbulence models and discretization schemes.

Configuration SGS-Model Convective Discretization SGS Discretization
ρu⃗ ρϕ ρu⃗ ρϕ ρu⃗ ρϕ

SI-CDS2 Sigma Sigma CDS4 TVD CDS2 CDS2
SI-CDS4 Sigma Sigma CDS4 TVD CDS2 CDS4
KKK1-CDS2 KKK1 KKK1 CDS4 TVD CDS2 CDS2
KKK1-CDS4 KKK1 KKK1 CDS4 TVD CDS2 CDS4
SI Sigma Sigma CDS4 TVD CDS2 TVD
SM Smag. stat. Smag. stat. CDS4 TVD CDS2 TVD
DSM Smag. dyn. Smag. dyn. CDS4 TVD CDS2 TVD
KKK1 KKK1 KKK1 CDS4 TVD CDS2 TVD
KKK2 KKK2 KKK1 CDS4 TVD CDS2 TVD
none none none CDS4 TVD none none
SI-KKK1 Sigma KKK1 CDS4 TVD CDS2 TVD
KKK1-SI KKK1 Sigma CDS4 TVD CDS2 TVD

scalar flux profiles feature high frequency modes and this results in large dispersion errors for
central differencing schemes. It appears that such problems cannot be removed by SST-type
models and it turned out that also the regularization technique suggested in Eq. 6.9 or
6.11 was not able to eliminate this problem. Further, it has been speculated in combustion
literature, that models that feature counter gradient transport, result in instabilities of the
flame [156]. It has been observed that a possible solution is to write the SGS model within
the flux limiter as described at the end of section 6.3, which successfully prevents any over-
or undershoots. The use of this approach for the scalar subgrid-fluxes τ sgt

j will be indicated
by adding TVDτ(ϕ) to the model name in the figure-key.

To investigate the effects of the discretization of scalar subgrid fluxes, results using second-
and fourth-order central differencing schemes, and the TVD scheme for scalar subgrid-fluxes
are compared, while in all cases the convective term for scalar transport has been discretized
using the TVD scheme. In this subsection, the SI and KKK1 model are used to represent
eddy-viscosity and scale-similarity approaches.

Figure 6.2 shows the results for the deviations from the mean passive scalar due to oscilla-
tions using central differencing before jet break-up. The maximum allowed deviation σalwd. is
defined as the maximum deviation of the local mean value ⟨ϕ⟩ within the physically meaning-
ful range of the bounded scalar ϕ and is calculated as σalwd. = min ((1 − ⟨ϕ⟩/ϕ0) , ⟨ϕ⟩/ϕ0).
Comparing the maximum allowed deviation σalwd. to the observed standard deviation of
the instantaneous passive scalar σtrue in a statistical sense physically allowed oscillations
if σtrue ≤ σalwd.. The dotted curves show the maximum allowed deviation from the mean
profile to avoid over- or undershoots while sampling over ten flow-through times, together
with the standard deviation of ϕ as a measure for the mean deviation shown in dashed lines.
As the passive scalar is constructed to range between values of 0 and 1, a standard deviation
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σtrue exceeding the physically meaningful value σalwd. indicates numerical oscillations. Both
models show dispersion errors resulting in over- or undershoots as the allowed deviation is
exceeded in the range of y/D = 0.5 and 0.75 for all curves. Differences between CDS2 and
CDS4 remain small, even negligible for the SI model. The differences of discretization for
the KKK1 model are small, but more distinct compared to the Sigma model with the CDS4
scheme showing slightly larger deviations.

The dispersion errors vanish for all streamwise distances from the nozzle beyond jet
break-up. The influence of the discretization on the statistics are shown in Tab. 6.3 and
6.4 for x/D = 3 and 11. Overall, central differencing improves the results of the Sigma
model, where the improvement using fourth-order exceeds the second-order CDS. The SI
model does not promote over- or undershoots and there is no necessity to write it inside
the flux limiter. Hence, the combination SI-TVD was investigated for completeness. The
performance of the KKK1 model with all three discretizations is comparable for both axial
positions, but the KKK1-TVD scheme prevents over- and undershoots close to the nozzle.
Hence, this TVD-CHARM discretization will be used for subgrid scalar fluxes for all following
simulations.

y/D
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/φ

0
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Figure 6.2 Averaged maximum allowed (alwd.) deviation (i.e. min ((1 − ⟨ϕ⟩/ϕ0) , ⟨ϕ⟩/ϕ0)) of
instantaneous passive scalar ϕ/ϕ0 from mean value in order to avoid over- and undershoots
(dotted lines) and standard deviation profiles with normalwise distance from the centerline
y/D at a streamwise distance of x/D ≈ 0.5 from the nozzle for CDS2 and CDS4 discretization
schemes for the scalar turbulent subgrid-fluxes (dashed lines) and by employing the SI and
KKK1 models

6.5.2 Standard configuration

The LES results include the newly proposed scale-similarity-type models by Klein et al. [140]
(denoted as KKK1 and KKK2 ), as well as the well known Smagorinsky (static denoted as
SM, dynamic denoted as DSM ) and Sigma (denoted SI ) models (- these simulations use
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Table 6.3 Quantitative error measure for the plane turbulent jet using ∥ϕDNS − ϕLES∥2 at
x/D = 3 based on the present flow quantities. Object of investigation is the discretization of
scalar subgrid flux.

ϕ/ϕ0
√

ϕ′ϕ′/ϕ0 ϕ′u′/ϕ0U0

SI-CDS2 0.03021 0.02509 0.00444
SI-CDS4 0.02993 0.02501 0.00429
SI-TVD 0.02968 0.02706 0.00496

KKK1-CDS2 0.02950 0.01955 0.00278
KKK1-CDS4 0.02996 0.01828 0.00253
KKK1-TVD 0.03068 0.01890 0.00252

Table 6.4 Quantitative error measure for the plane turbulent jet using ∥ϕDNS − ϕLES∥2 at
x/D = 11 based on the present flow quantities. Object of investigation is the discretization
of scalar subgrid flux.

ϕ/ϕ0
√

ϕ′ϕ′/ϕ0 ϕ′u′/ϕ0U0

SI-CDS2 0.02580 0.02340 0.00337
SI-CDS4 0.02641 0.02197 0.00298
SI-TVD 0.02668 0.02374 0.00326

KKK1-CDS2 0.02016 0.01564 0.00218
KKK1-CDS4 0.01899 0.01627 0.00227
KKK1-TVD 0.02020 0.01495 0.00212

the same turbulence model for momentum and scalar transport, while different models for
momentum and scalar transport will be combined in section 6.5.3). Calculations without
turbulence modeling (denoted none) are included to demonstrate the improvement of results
by using a turbulence model. Further, crossover combinations using the Sigma model for
momentum transport and KKK1 model for scalar transport (denoted as SI-KKK1 ) - and
vice versa (denoted as KKK1-SI ) - have been performed to assess the influence of the subgrid
momentum contribution on the scalar transport and will be reported in the next section.

Two different axial locations have been evaluated - at x/D = 3 just upstream of the jet
break-up and at x/D = 11, close to the fully-developed region of the flow. Profiles of the
mean streamwise velocity u and passive scalar ϕ as seen in Fig. 6.3 and 6.5 exhibit negligible
differences between the subgrid-models for both sampling locations, which suggests that for
this configuration no turbulence modeling is needed if only mean profiles are of interest. Of
course, the evaluation of fluctuation and shear-stress profiles is very important for unsteady
resolving simulation techniques and these are more challenging to capture properly with LES.

More distinct differences between the subgrid-models can be observed for the averaged
(in the following denoted without operator ⟨.⟩) streamwise ⟨

√
u′u′⟩ and normalwise ⟨

√
v′v′⟩

fluctuating velocity components, the averaged shear stress ⟨u′v′⟩, the passive scalar fluctuations
⟨
√

ϕ′ϕ′⟩ as well as ⟨ϕ′u′⟩, which are commonly described as challenging to simulate correctly
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Figure 6.3 Normalized mean streamwise velocity u/U0 and streamwise velocity fluctuation√
u′u′/U0 profiles with normalwise distance from the centerline y/D at a streamwise distance

of x/D = 3 from the nozzle
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from the nozzle
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ϕ′ϕ′/ϕ0 and
cross-correlation u′ϕ′/ϕ0U0 profiles with normalwise distance from the centerline y/D at a
streamwise distance of x/D = 3 from the nozzle
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Figure 6.6 Normalized mean streamwise velocity u/U0 and streamwise velocity fluctuation√
u′u′/U0 profiles with normalwise distance from the centerline y/D at a streamwise distance

of x/D = 11 from the nozzle

in LES [155] and hence, serve as good reference for the model performance. The Sigma,
static Smagorinsky and no-model calculation show the strongest deviations from the DNS
data at x/D = 3 for the velocity fluctuations. These profiles feature a constant offset until
y/D = 1, which decreases rapidly and eventually vanishes for larger y/D. The best agreement
is achieved by the KKK-models and the dynamic Smagorinsky model, with the KKK1 model
outperforming the KKK2 and dynamic Smagorinsky model and showing the best results in
resolving the peak height. The passive scalar profile at x/D = 3 reveals stronger deviations
of the eddy-viscosity models. The simulation without model shows good results at the peak
region, but is outperformed by the KKK1 model for the remaining y/D values, while all
calculations fail to give a proper estimate of centerline fluctuations.

The normalized streamwise mean velocity and velocity fluctuation at x/D = 11 can be
seen in Fig. 6.6. Minor differences between the LES models are observed. However, the
KKK1 model reveals slightly better agreement with the DNS data than the remaining models.
The profile of streamwise velocity fluctuations

√
u′u′ features only small differences between

the models for y/D < 1, with the dynamic Smagorinsky model showing tendencies of better
agreement for smaller and the KKK1 leading to better agreement for larger y/D. For the
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streamwise distance of x/D = 11 from the nozzle
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Table 6.5 Quantitative error measure for the plane turbulent jet using ∥ϕDNS − ϕLES∥2 at
x/D = 3 based on the present flow quantities. The smallest error is visualized in bold letters,
the second smallest one in italics.

u/U0
√

u′u′/U0
√

v′v′/U0 u′v′/U2
0 ϕ/ϕ0

√
ϕ′ϕ′/ϕ0 ϕ′u′/ϕ0U0

SI 0.01944 0.01665 0.01493 0.00130 0.02968 0.02706 0.00496
SM 0.01878 0.01572 0.01437 0.00117 0.02811 0.02706 0.00493

DMS 0.01975 0.01322 0.01163 0.01111 0.02318 0.02642 0.00523
KKK1 0.01955 0.01203 0.01042 0.00086 0.03068 0.01890 0.00252
KKK2 0.01909 0.01460 0.01327 0.00105 0.02970 0.02176 0.00358
none 0.01841 0.01627 0.01519 0.00113 0.02971 0.02198 0.00365

Table 6.6 Quantitative error measure for the plane turbulent jet using ∥ϕDNS − ϕLES∥2 at
x/D = 11 based on the present flow quantities. The smallest error is visualized in bold
letters, the second smallest one in italics.

u/U0
√

u′u′/U0
√

v′v′/U0 u′v′/U2
0 ϕ/ϕ0

√
ϕ′ϕ′/ϕ0 ϕ′u′/ϕ0U0

SI 0.02651 0.01124 0.00892 0.00083 0.02668 0.02374 0.00326
SM 0.02950 0.01006 0.00693 0.00086 0.02525 0.01922 0.00282

DSM 0.02759 0.00972 0.00783 0.00069 0.02676 0.02043 0.00347
KKK1 0.01815 0.00810 0.00798 0.00063 0.02020 0.01495 0.00212
KKK2 0.02355 0.01024 0.00850 0.00078 0.02411 0.02102 0.00302
none 0.02073 0.00957 0.00748 0.00067 0.02234 0.02028 0.00275

normalwise velocity fluctuations
√

v′v′, the KKK1 and dynamic Smagorinsky model give
equally good agreement, but are succeeded by the static Smagorinsky model. Again, the
KKK1 model leads to good overall results for u′v′ and shows a clear improvement of the LES
results for the passive scalar fluctuations compared to the remaining simulations. It may be
concluded, that the new scale-similarity models lead to good results, with the KKK1 model
showing the best overall agreement with the DNS data of the tested models.

The previous qualitative observations have been validated by applying quantitative error
measures for the deviations from the DNS data. Since previous work has proven high
correlations between a variety of error measures, the choice of Euclidean norm is considered
to give sufficient insight [140]. Results of Tab. 6.5 and 6.6 confirm the KKK1 model to give
the best overall agreement with the DNS data, as it leads to the smallest error for almost
all quantities at both streamwise distances from the nozzle. The overall second best model
appears to be the KKK2 model closer to the nozzle, and no turbulence model OM further
downstream.

It is worth noting that the present configuration and numerics is not identical to the
one investigated in Klein et al. [140]. Nevertheless, results for momentum transport are
qualitatively consistent.
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While the present study features a moderate Reynolds number when thinking of technical
applications [216], similar prediction quality for higher Reynolds numbers is expected. Since
the DNS work by Klein et. al. [134] suggests Reynolds number independance of first- and
second-order statistics of the plane jet at similar Reynolds numbers as in the present study, it
can be speculated that the prediction quality for LES with higher Re will not become worse,
unless the nozzle flow changes drastically.

6.5.3 Cross configuration

The foregoing investigation confirms the KKK1 model as the most accurate option amongst
the tested models for momentum and scalar transport. To investigate whether the improved
scalar transport is a consequence of better momentum transport or actual scalar transport,
a hybrid approach featuring momentum and scalar subgrid transport expressed by KKK1
and Sigma model - and vice versa - is evaluated. Here, SI-KKK1 refers to the SI model
for momentum and KKK1 model for scalar transport, whereas the opposite holds for the
combination KKK1-SI. As the momentum transport remains uninfluenced by the different
model for the passive scalar subgrid fluxes, only results of scalar quantities are shown. The
results for ϕ′u′/ϕ0U0 have to be considered with care in this context due to the influence of
momentum transport on this quantity.

Results from the combined model approaches are shown in Fig. 6.9 at x/D = 3 and Fig.
6.10 at x/D = 11. The graphs reveal better results if KKK1 is used for momentum transport
for both distances from the nozzle, confirming that high fidelity modeling of momentum
transport is crucial also for the prediction of scalar transport. For a more detailed analysis,
quantitative error measures are utilized and shown in Tab. 6.7 and 6.8.

From the results of the previous section it can be concluded that the SI model results in
a poorer prediction of momentum transport. The crossover-simulations exhibit better results
for scalar transport if the KKK1 model is used for subgrid momentum transport, while
improvements due to scalar subgrid contribution remain small. The KKK1 and KKK1-SI
models lead to similar errors at x/D = 3, while the KKK1 model shows the best results
at x/D = 11. Hence, for larger distances from the nozzle, the influence of scalar subgrid-
transport increases and the scalar KKK1 model yields a notable improvement of the subgrid
scalar transport.

The improvement from KKK1-SI to KKK1 remains comparably small, which implies a
stronger influence of momentum-closure on scalar statistics than the influence of scalar-closure.
Still, to achieve optimal results for scalar-transport, a proper subgrid-closure for momentum
and scalar subgrid-transport should be chosen.
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Figure 6.9 Mean passive scalar ϕ/ϕ0, passive scalar fluctuation
√

ϕ′ϕ′/ϕ0 and normalized
cross-correlation u′ϕ′/ϕ0U0 profiles with normalwise distance from the centerline y/D at a
streamwise distance of x/D = 3 from the nozzle

Table 6.7 Quantitative error measure for the plane turbulent jet using ∥ϕDNS − ϕLES∥2 at
x/D = 3 based on the present flow quantities. Object of investigation is the performance of
scalar transport using combined model approaches.

ϕ/ϕ0
√

ϕ′ϕ′/ϕ0 ϕ′u′/ϕ0U0

SI 0.02968 0.02706 0.00496
KKK1 0.03068 0.01890 0.00252

SI-KKK1 0.03115 0.02401 0.00427
KKK1-SI 0.02917 0.01841 0.00251
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Figure 6.10 Mean passive scalar ϕ/ϕ0, passive scalar fluctuation
√

ϕ′ϕ′/ϕ0 and normalized
cross-correlation u′ϕ′/ϕ0U0 profiles with normalwise distance from the centerline y/D at a
streamwise distance of x/D = 11 from the nozzle

Table 6.8 Quantitative error measure for the plane turbulent jet using ∥ϕDNS − ϕLES∥2 at
x/D = 11 based on the present flow quantities. Object of investigation is the performance of
scalar transport using combined model approaches.

ϕ/ϕ0
√

ϕ′ϕ′/ϕ0 ϕ′u′/ϕ0U0

SI 0.02668 0.02374 0.00326
KKK1 0.02020 0.01495 0.00212

SI-KKK1 0.02729 0.02235 0.00332
KKK1-SI 0.02029 0.01732 0.00220
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6.6 Summary

In the present work, two newly proposed scale-similarity type models have been compared to
standard eddy-viscosity (static and dynamic) Smagorinsky and Sigma models for a plane
turbulent jet. A-posteriori calculations using different discretization methods for subgrid
scalar fluxes and crossover model configurations have been considered as well to assess
the influence of the scalar subgrid model and its discretization on the simulation quality.
The simulations have been supplemented by calculations without a turbulence model, to
demonstrate the models ability to improve the simulation results. It has been found that the
use of a limiter for the scalar subgrid discretization eliminates dispersion errors and does
not deteriorate the overall simulation results. All results have been compared to a DNS
performed using the same code and setup to eliminate systematic errors not caused by the
turbulence modeling. The new KKK1 model achieves good agreement with the DNS data
for mean and fluctuation values. Quantitative analysis of the error revealed the best overall
performance for the new model and the KKK2 model showing second best agreement with
the DNS data closer to the nozzle and the no-model calculation in the fully developed region.
Calculations using crossover model configurations reveal a stronger influence of the treatment
of momentum subgrid transport on the results of scalar quantities than the treatment of
scalar subgrid transport. In summary, the new model improves the overall performance of
this shear flow LES, while being free of parameters and easy to implement.
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Abstract

Although overall increasing computing power allows for higher resolution in Large-Eddy
Simulation (LES), an appropriate choice of the subgrid-model is still decisive for the simulation
quality. The relevance of the subgrid-model increases even further, if transported quantities
are used in additional thermo-chemical models, which are coupled to the flow field. The present
study investigates the impact of the choice of the subgrid-model for reactive flows in LES in
the context of tabulated chemistry using well known and recently suggested modifications of
eddy viscosity and scale-similarity-type models. LES calculations of the well investigated
Cambridge stratified swirl burner have been performed with flamelet generated manifolds in
combination with artificial flame-thickening. The simulations have been compared with flame-
resolved results using the same numerical setup. Encouraging results have been obtained
for a regularized scale-similarity-type model (applied to momentum- and scalar-fluxes). The
sensor-enhanced Smagorinsky model outperforms well known eddy viscosity models while
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maintaining stability and being straight forward to implement with very low computational
overhead compared to the static Smagorinsky model.

7.1 Introduction

Large-Eddy Simulation (LES) research experienced a major boost with the increase of
computational power in recent decades. The development and improvement of numerical
methods, subgrid-closures and boundary conditions led to an overall rise of simulation quality
and confirms LES being a promising tool for scientific and industrial applications. The
arguably most discussed aspect of LES since its early introduction remains the choice of
the subgrid-closure for the LES-filtered Navier-Stokes equations [217]. As a plethora of
subgrid-closures exists, it might become difficult to decide which closure satisfies the given
requirements in the optimal manner. The class of eddy-viscosity approaches forms the oldest
and - even today - the most popular group of closures featuring prominent models such as
the Smagorinsky model [260] or Nicoud’s Sigma model [192]. Based on the hypothesis of the
interaction of small turbulent structures behaving like an additional viscosity, eddy-viscosity
approaches provide excellent stability and satisfactory results. This hypothesis, however,
has never been confirmed experimentally or by Direct Numerical Simulation (DNS ; in
particular in the context of reactive flows [135, 206]) and excessive dissipation is occasionally
criticized, leading to the development of different approaches. Another well known class of
LES turbulence models are the scale-similarity-type models with the model of Bardina [16]
being the best known approach. Scale-similarity-type models gained attention due to its
mathematically exact formulation of the subgrid-stresses while leading to excellent results
in a-priori analysis. Still many of these models lack a sufficient amount of dissipation to
be effectively used in a-posteriori LES. While the conceptual background of a model may
already form a controversial basis, the actual value of a subgrid-closure is always judged by
a-posteriori results. It is a consequential development, therefore, that subgrid-closures are
evaluated for a broad variety of flow cases and conditions, such as Reynolds number and
resolution. While canonical cases such as channel flows, homogeneous isotropic turbulence
and jet flows form a frequently used benchmark repertoire [216], further cases are rarely
reported either due to lack of reliable reference data or the case being rather exotic. The
prediction of velocity profiles and stresses is a minimum requirement for many researchers to
consider the use of a turbulence model and passive, as well as active scalar prediction is of
great importance for multidisciplinary fields such as chemical modeling, multi-phase flows
and hydroelectric flows. Most of these applications rely on the transported scalars to feed
additional physical models, which may react upon the flow field and hence, interact with the
subgrid-model.

In state-of-the-art combustion modeling, flamelet generated manifolds (FGM ) gained
popularity due to their ability to provide detailed chemical information in the form of tabula-
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tion at reasonable computational cost [286, 287, 294]. While originally being developed for
premixed configurations, FGM has been further extended to account for stratified conditions.
In the FGM approach it is assumed that the turbulent three-dimensional flame structure
consists of an ensemble of one-dimensional laminar flames. Hence, one-dimensional freely
propagating flames are computed using a detailed chemical mechanism. The results are
mapped over a set of control variables (such as progress variable and fuel mixture fraction)
and subsequently stored in a low dimensional lookup-table, which is accessed by the numerical
solver. Common LES grids are usually too coarse to fully resolve the flame front. Hence, the
flame needs to be spatially thickened in the flame-normal direction. This can be achieved by
reducing the source term and increasing the diffusion term in the transport equations for the
fuel mass fraction. This technique originally suggested by Colin et al. [44] is referred to as
the artificially thickened flame (ATF) approach, which has been successfully applied in the
LES context.

The influence of the subgrid-closure on the numerical overall model’s behavior is a critical
factor deciding on the subgrid-model’s attractiveness. The aim of this study is the assessment
of state-of-the-art turbulence models and recently proposed modifications based on momentum
and active scalar quantities from DNS and LES calculations.

7.2 Modeling Approach

A set of five different LES subgrid-models is investigated. In addition to the well-established
Smagorinsky and Sigma models, calculations using the KKK1 and KKK2 scale-similarity-
type models by Klein et al. [140, 59] and a robust dynamic adaption of the Smagorinsky
model by Hasslberger et al. [96] have been performed. The different approaches for the
closure of the subgrid-stresses τ sgs

ij and scalar subgrid fluxes τ sgs
j are briefly presented below.

For further details, the authors refer to the respective original publications.
The subgrid-stresses of the Favre-filtered equations arise from the filtering of the Navier-

Stokes equations and represent the influence of the unresolved on the resolved scales

τij = ũiuj − ũi ũj. (7.1)

Eddy-Viscosity models (denoted as EVM ) aim for the expression of the stresses using an
additional turbulent viscosity νt, which allows for calculation of the subgrid-stresses in the
following form

τEVM
ij − 1

3τEVM
kk δij = −2νt

(
S̃ij − 1

3 S̃kkδij

)
(7.2)

where
S̃ij = 1

2

(
∂ũi
∂xj

+ ∂ũj
∂xi

)
(7.3)
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corresponds to the Favre-filtered strain-rate tensor.
Accordingly, filtering the transport equation of a scalar variable ϕ leads to the scalar

subgrid-fluxes
τj = ϕ̃uj − ϕ̃ ũj. (7.4)

The gradient-diffusion hypothesis (GDH) based on the turbulent viscosity νt and the subgrid
Schmidt-number Sct is used in the context of eddy-viscosity models to express the unknown
scalar subgrid-contribution

τGDH
j = − νt

Sct

∂ϕ̃

∂xj
(7.5)

The turbulent viscosity νt remains to be determined by the respective subgrid-model. A
general form for calculating the turbulent viscosity reads

νt = (Cm∆)2D̃m (7.6)

with the model constant Cm and the filter-width ∆. The various eddy-viscosity models most
commonly differ in the way of calculating the inverse timescale D̃m.

For the well-known Smagorinsky model [260], D̃m can be expressed with the resolved
characteristic rate of strain as

D̃m =
√

2S̃ab S̃ab. (7.7)

Nicoud’s Sigma-model relies on the ordered singular values σ1 ≥ σ2 ≥ σ3 of the resolved
velocity gradient tensor g̃ij = ∂ũi/∂xj [192]. The singular values can be calculated as the
square roots of the eigenvalues of g̃ik g̃kj and lead to

D̃m = σ3 (σ1 − σ2) (σ2 − σ3)
σ2

1
(7.8)

Within this study, a model constant of Cm = 0.173 is used for the Smagorinsky model
(i.e. the theoretical value [260]) and the Sigma calculations were performed using Cm = 1.5
as suggested by Nicoud et al. [192]. The KKK1 and KKK2 models follow the idea of
regularizing existing scale-similarity-type models to make them applicable in real LES. Hence,
to avoid the stability-problems in the event of backscatter, the subgrid-scale tensor produced
by the model is projected onto a tensor that has no energy transfer but can be considered a
subgrid-scale force. In the following text, structural models (such as scale-similarity-type or
gradient-type models) will be referred to as scale-similarity-type models (SST ).

The regularized model require an arbitrary baseline scale-similarity-type model, denoted
as τSST

ij . In the present study Clark’s tensor-diffusivity model (CTM ) [42] is chosen for its
good performance in a-priori testing, which provides for momentum transport

τCTM
ij = ∆2

12
∂ũi
∂xk

∂ũj
∂xk

(7.9)
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and for scalar transport

τCTM
j = ∆2

12
∂ũj
∂xk

∂ϕ̃

∂xk
(7.10)

The regularization reads

τKKK1
ij = −τSST

ab S̃ab + | − τSST
ab S̃ab|

−τSST
ab S̃ab

τSST
ij

+
(

τSST
ij + −τSST

ab S̃ab

S̃ab S̃ab
S̃ij

) (7.11)

( ab indicates an additional set of indices and | − τSST
ab S̃ab| = abs(−τSST

ab S̃ab)) and the
subgrid-contribution for a scalar ϕ̃ follows a similar form

τKKK1
j = −τSST

a ∂ϕ̃/∂xa + | − τSST
a ∂ϕ̃/∂xa|

−τSST
a ∂ϕ̃/∂xa

τSST
j

+

τSST
j + −τSST

a ∂ϕ̃/∂xa(
∂ϕ̃/∂xa

)2 ∂ϕ̃/∂xj

 (7.12)

The KKK2 model is given as a further simplification of the KKK1 model

τKKK2
ij = τSST

ij − max
(

τSST
ab S̃ab

S̃ab S̃ab
, 0
)

S̃ij (7.13)

for momentum transport, while the scalar transport parameterization reads

τKKK2
j = τSST

j − max

τSST
a ∂ϕ̃/∂xa(
∂ϕ̃/∂xa

)2 , 0

 ∂ϕ̃

∂xj
. (7.14)

Both SST models yield the same subgrid contribution in the case of back-scattering. If
τSST

ab S̃ab > 0, the first term of KKK1 vanishes and the second term equals the formulation of
KKK2. As the interscale energy transfer is −τijS̃ij, the models exhibit no energy transfer and
purely act as a subgrid-scale force. The major difference between the two SST models lies
within their treatment of forward-scattering. Both terms of KKK1 are active for the case of
τSST

ab S̃ab < 0 and the first term results in twice the dissipation of the baseline SST model in
contrast to KKK2 [140, 142].

The sensor-enhanced Smagorinsky (SES) model by Hasslberger et al. [96] aims for
dynamical control of the subgrid-dissipation to improve the performance of the standard
Smagorinsky model in the vicinity of walls and for transitional flows. Following Kobayashi,
the sensor is based on a coherent structure function FCS, defined as

FCS = Q/E (7.15)
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The structure function FCS includes the second invariant of the grid-scale velocity-gradient
tensor Q and its magnitude E [141], i.e. with

Q = 1
2
(
W̃ijW̃ij − S̃ijS̃ij

)
(7.16)

and
E = 1

2
(
W̃ijW̃ij + S̃ijS̃ij

)
(7.17)

where the grid-scale strain rate S̃ij is given in Eq. 7.3 and the grid-scale rotation rate is

W̃ij = 1
2

(
∂ũi
∂xj

− ∂ũj
∂xi

)
(7.18)

leading to the structure function being bounded between −1 and +1 following Kobayashi
[141]. The final formulation of the sensor-enhanced model reads

τSES
ij = τSmago.

ij |F̂CS − FCS|3/2Csensor (7.19)

The model includes a constant Csensor, which is used to take account for the filter and the used
numerical scheme for the momentum transport. For the suggested filter by Anderson and
Domaradzki [8] and the central differencing schemes used within this study, the constant is
set to a value of Csensor = 1/0.16. The proposed modification requires a spatially test-filtered
coherent structure function F̂CS. Hasslberger et al. [96] recommend explicit filtering as
described by Anderson and Domaradzki [8], which reads

̂̃
ϕijk =

1∑
l=−1

1∑
m=−1

1∑
n=−1

bl · bm · bn · ϕ̃i+l,j+m,k+n (7.20)

With the coefficients (b−1, b0, b+1) = (C, 1−2C, C) and the constant C being set to C = 1/12,
however, values between 0 < C ≤ 1/3 are possible [127]. The indices i,j,k indicate the
filtered cell within the x, y and z coordinate directions and m,n,l the filter-stencil within the
respective direction. In the case of wall-bounded flows, the coherent structure function FCS

is set to zero directly at the wall, where Q = 0 holds.

7.3 Test Case

Ideally, the evaluation of LES-subgrid-models should be conducted with DNS and LES
calculations performed with the same code, to avoid drawing the wrong conclusions due
to inconsistent boundary conditions or numerical schemes. Hence, the DNS calculations
of the Cambridge bluff-body burner by Proch et al. [221, 222] and Inanc et al. [109] are
used for reference, as the present calculations have been performed using the same code and

This chapter was previously published in Computers and Fluids [60] and is reprinted with
permission of the journal.



7.4 Numerical Methods 115

Table 7.1 Velocities and equivalence ratios of the inner (Ui, ϕi) and outer (Uo, ϕo) stream, as
well as co-flow (Uco, ϕco) at the investigated operating condition of the burner.

Case Ui Uo Uco T ϕi ϕo ϕco
[m/s] [m/s] [m/s] [K] [-] [-] [-]

SwB1 8.31 18.7 0.4 295 0.75 0.75 0
SwB5 8.31 18.7 0.4 295 1.0 0.5 0

setup, albeit on LES-grids. Earlier studies assessing the performance of the subgrid-closures
presented in this study feature canonical cases covering laminar-turbulent transition (Taylor-
Green vortex), wall dominated flows (turbulent channel flow) and a jet flow including passive
scalar mixing (free planar jet) [140, 96, 59]. The Cambridge burner experiment features
recirculation, swirl as well as chemical reaction under stratified conditions, offering a level
of complexity that has not been covered by the previous cases. The context of combustion
modeling provides a challenging case featuring transport of momentum and active scalars
requiring an accurate subgrid-closure. Both calculations have revealed good agreement with
the experimental evidence by Sweeney and Zhou [275, 276].

Statistics have been obtained by sampling over eight flow-through times, based on the inner
streamwise velocity Ui. To ensure the removal of all roll-up vortices during the development
of a stationary jet-flow, sampling is started after seven flow-through times. Hence, remaining
artifacts from the initialization process are flushed out of the domain before the start of the
sampling.

The present burner has been investigated within the well-known Cambridge stratified
flame series by Sweeney and co-workers [275, 276, 318]. The burner consists of a bluff-body
surrounded by two co-annular ducts transporting premixed methane and air with adjustable
equivalence ratios at ambient conditions, allowing for the stratification of the flame. The
flame is embedded in a co-flow of air.

Two different operating points SwB1 and SwB5 are investigated, representing two lean
fuel jets (case SwB1 ) and a stratified flame with a stoichiometric inner and a lean outer fuel
stream (case SwB5 ). The characteristic quantities are summarized in Tab. 7.1.

7.4 Numerical Methods

All numerical methods are used as described by Proch et al. [221, 222] and Inanc et al.
[109]. The calculations were performed using the in-house code PsiPhi, which uses a pressure-
based finite-volume approach to solve for the Navier-Stokes equations and has been used
in numerous medium and highly resolved simulations of nanoparticle-synthesis, flames and
canonical studies [167, 255]. The last 12 mm of the burner geometry were included in the
simulation domain using the immersed boundary approach by Peskin [202]. A uniform
Cartesian grid of 0.5 mm size has been chosen in order to achieve a sufficient scale separation
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Figure 7.1 Sketch of the nozzle exit of the burner configuration [220]. The streams are
characterized by the inner stream velocity Ui, the outer stream velocity Uo and the co-flow
velocity Uco.

between the LES- and DNS resolution of 0.1 mm grid size, while providing an adequate
amount of cells for the resolution of the burner orifice. This leads to a total amount of
13.4 million cells for the LES. Time-stepping is performed using an explicit low-storage
Runge-Kutta method of third order and a CFL number of 0.5. Momentum equations are
spatially discretized using second-order central differences, and gridscale- and subgrid-fluxes
in additional scalar equations are treated with a Total Variation Diminishing TVD method
relying on the CHARM -limiter [317]. The pressure equation is solved using a successive
over-relaxation (SOR) Gauss-Seidel solver allowing a maximum residual pressure of 0.1 Pa,
continuity is enforced by a pressure correction method embedded in a predictor-corrector
scheme. Artificial fluctuations at the inlet were generated using an efficient implementation
[120] of Klein’s well known filter-based generation of inflow data [133] with an integral
lengthscale of l = 1.0 mm and a fluctuation level of 10% of the mean velocity for all streams.
The subgrid Schmidt-number Sct is set to 0.7 and the Lewis number is assumed to be unity
for all species.

Including the modeling of the chemical state, the following Favre-filtered equations are
solved

∂ρ

∂t
+ ∂ρũj

∂xj
= 0 (7.21)

∂ρũi
∂t

+ ∂ρũiũj
∂xj

= − ∂p

∂xi

+ ∂

∂xj

(
µ

(
∂ũi
∂xj

+ ∂ũj
∂xi

− 2
3

∂ũk
∂xk

δij

)
− ρτ sgs

ij

) (7.22)

∂ρỸC
∂t

+ ∂ρỸCũj
∂xj

= ∂

∂xj

(
FEρD

∂ỸC
∂xj

− (1 − Ω) ρτ sgs
j

)
+ E

F
ω̇C (7.23)
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∂ρZ̃

∂t
+ ∂ρZ̃ũj

∂xj
= ∂

∂xj

(
ρD

∂Z̃

∂xj
− ρτ sgs

j

)
(7.24)

Within the scope of this study, the subgrid-terms, as presented in Sec. 7.2, are treated
using Favre-filtering as well. Gravitational effects are neglected to remain consistent with the
reference calculations. Following Proch et al. [220–222], the flame modeling is performed
using Premixed Flame-Generated Manifolds (PFGM ) tabulation, as originally developed by
van Oijen, de Goey and Bastiaans [286, 288]. Two-dimensional flamelet tables of the chemical
state depending on the progress variable YC and the mixture fraction Z have been generated
using Cantera for a one-dimensional freely-propagating flame and the GRI-3.0 mechanism by
Smith et al. [262]. Both independent lookup-variables are obtained by the previously shown
corresponding transport equations, allowing for access to density, laminar viscosity, source
term of the progress variable, as well as temperature and species mass fractions.

As flame-thicknesses of typical burner-flames can range between 0.1 and 0.5 mm depending
on the fuel, pressure and mixture and hence, can be challenging to resolve, typical grids for
LES require an artificial thickening of the flame. A dynamical thickening-factor as described
by Legier et al. [158] is introduced, to stretch the flame front over a desired amount of cells,
while preserving the laminar flame propagation speed. This factor is only applied in the
flame-zone and smoothly set to unity outside of the flame to avoid excessive thickening. The
flame-zone is determined by the flame-sensor Ω, which yields unity within and zero outside
the flame. An overview of the approach is given below, for detailed insights the authors refer
to Proch et al. [220].

The flame-sensor Ω is based on the normalized gradient of the progress variable YC and
has been tabulated using a one-dimensional calculation in Cantera for a given range of
progress variables and mixture fractions

Ω (YC, Z) =

 dYC
dx

max
(

dYC
dx

)


1D

(7.25)

The need for flame-thickening is determined by the flame-sensor Ω, which leads to the
dynamical formulation for the thickening-factor

F = 1 + Ω (Fmax − 1) (7.26)

while the maximum thickening-factor Fmax is depending on the desired amount of grid-points
n to resolve the flame

Fmax = max
(

n∆
δ0

l
, 1
)

(7.27)

with the unstretched laminar flame thickness δ0
l . The limitation of Fmax to minimum values

of 1 avoids thinning of the flame. It is suggested by Charlette et al. [36] to resolve the flame

This chapter was previously published in Computers and Fluids [60] and is reprinted with
permission of the journal.



118
A-posteriori assessment of Large-Eddy Simulation subgrid-closures for momentum and scalar

fluxes in a turbulent premixed burner experiment

using n = 5. To account for the loss of flame-wrinkling due to the thickening of the flame, a
modified version of Charlette’s [36] efficiency function E by Wang et al. [296]

E =
(

1 + min
[
Fmax − 1, Γ∆

(
Fmax,

u′
∆

s0
l , Re∆

)])β

(7.28)

is used. The constant β is chosen as 0.5, following the recommendation by Charlette et al.
[36].

The thickening factor F and efficiency function E are applied to the diffusive flux and
the source term of the flame progress variable YC conservation equation (Eq. 7.23) as

∂

∂xj

(
FEρD

∂ỸC
∂xj

− (1 − Ω) ρτ sgs
j

)
+ E

F
ω̇C (7.29)

The subgrid-contribution is deactivated within the flame using the flame sensor Ω. The
influence of the subgrid-fluxes on the transport equation of YC are controlled by two different
quantities, which may lead to the removal of the subgrid-contribution. The first quantity is
the spatial gradient of the progress variable ∂ỸC/∂xj (as found in Eq. 7.5, 7.12 and 7.14),
which vanishes outside the flame-region due to the gas being either unburnt or fully burnt.
The second quantity is the flame sensor Ω, which obtains a value of zero outside and unity
within the flame. While the spatial gradient of the flame progress variable leads to the
suppression of subgrid-fluxes outside the flame, the flame sensor reduces the fluxes to zero
for values within the flame, leaving remaining subgrid-fluxes only in the outer preheat-zone
and oxidation-layer of the flame.

7.5 Results of SwB1

The results will be discussed in two sections for the respective cases SwB1 and SwB5.
To provide a first visual impression, Fig. 7.2 shows the instantaneous and time-averaged

(mean) fields of the equivalence ratio ϕ in the x − y midplane for the LES calculations of the
cases SwB1.

The equivalence ratio fields show steep gradients between the outer stream and the co-flow.
The higher fluctuation level in the outer jet leads to wrinkling in the equivalence ratio field
immediately after the nozzle exit. Turbulent mixing occurs in the mixing layer between
the inner and outer streams and the air co-flow, forming Kelvin-Helmholtz roll-ups, which
grow in thickness when moving downstream. The flame is not influenced by strong turbulent
fluctuations in the near region, where it is only moderately wrinkled. Different observations
can be made in the far region, where the flame front burns across the shear layer and gets
wrinkled more strongly. Fresh gas starts penetrating into the burned region, this results in

This chapter was previously published in Computers and Fluids [60] and is reprinted with
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Figure 7.2 Snapshots of the mean and instantaneous equivalence ratio ϕ for SwB1 in the
x − y midplane. The streamwise flow direction points from bottom to top.

unburnt mixture fingers as described in previous works. Also the opposite phenomenon can
be observed when narrow regions of burned gas penetrate into the fresh gas, which further
downstream leads to regions where pockets of burned gas exist in the fresh gas and regions
where fresh gas is surrounded by burned gas in the burner mid-section [221, 21, 214, 215].

The standard eddy-viscosity models reveal distinct differences from the modified Smagorin-
sky and the scale-similarity-type models. The Smagorinsky and Sigma model feature coarser
turbulent structures in the shear-layer and stronger diffusivity - as seen in the mean fields -
which is a common problem of standard eddy-viscosity approaches.

Computations for the assessment of five LES subgrid-models including the standard
Smagorinsky- (denoted as Smago.), the Sigma- (Sigma), the sensor-enhanced Smagorinsky-
(SES), the KKK1- (KKK1 ) and the KKK2- (KKK2 ) model, as well as an LES without
subgrid-modeling (underresolved DNS, no model) have been performed. The no model
calculations are included to assess if the subgrid-modeling leads to an improvement of the
LES results. The respective computational times are displayed in Tab. 7.2 and are normalized
by the run-time of the no model calculation. The table reveals similar run-times for all
calculations, with the standard eddy-viscosity models requiring slightly less computational
time than the new models. Further, it can be observed, that the eddy viscosity models
require more computational time for the solution of the Poisson equation, which might be
interpreted as an indication for the more physical nature of the subgrid-fluxes obtained from
the SST models.

This chapter was previously published in Computers and Fluids [60] and is reprinted with
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Table 7.2 Computational times of the performed calculations using different subgrid-models
for SwB1.

Model Total computational time Projection time Turbulence time
% - no model % - Total % - Total

Sigma 1.05 23.6 2.2
Smagorinsky 1.04 24.9 3.3
SES 1.17 30.1 3.5
KKK1 1.22 20.2 15.0
KKK2 1.16 19.9 12.0
no model 1.00 23.3 0

Smago.
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Figure 7.3 Instantaneous snapshots of the laminar (left) νl and turbulent (right) νt viscosity
produced by the eddy-viscosity models (Smagorinsky, SES, Sigma) in the x − y midplane for
SwB1. The streamwise flow direction points from bottom to top.
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Figure 7.4 Radial profiles of the mean and rms streamwise velocity U at different streamwise
positions with 10 mm, 30 mm, 50 mm and 70 mm distance to the nozzle exit for SwB1.

Instantaneous fields of the laminar and eddy viscosities of the Smagorinsky model without
and with the use of the sensor, as well as the Sigma model are shown in Fig. 7.3. The structure
of the eddy-viscosity fields clearly visualizes the key differences between the three models.
While the standard Smagorinsky model leads to often criticized high turbulent viscosities, the
SES model features less excessive turbulent viscosities, which agree with the evolution of the
shear layer. The Sigma model produces - probably unphysical - high-frequency fluctuations
of turbulent viscosity, which is assumed to be a consequence of the eigenvalue calculation in
the determination of D̃m.

Figure 7.4 shows the radial mean and rms value of the streamwise velocity U for four
different heights 10, 30, 50 and 70 mm above the burner cap for all calculations, including
the flame-resolved results of Proch et al. [221], which have been obtained using the same
code. All models are in good agreement with the reference data, while the eddy-viscosity
type models appear to resolve the peak velocity slightly better closer the burner and the
scale-similarity-type models tend to give better results in the peak region further downstream.
It is a common recommendation in literature to use second order statistical moments to assess
the performance of numerical simulation, as the comparison of mean values tends to show
little differences, which can also be observed in this case. For the streamwise velocity rms, the

This chapter was previously published in Computers and Fluids [60] and is reprinted with
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Figure 7.5 Radial profiles of the mean and rms radial velocity V at different streamwise
positions with 10 mm, 30 mm, 50 mm and 70 mm distance to the nozzle exit for SwB1.

eddy-viscosity models tend to overall overpredict the rms-statistics, while the KKK1 model
tends to underpredict the profiles. The Sigma and Smagorinsky model are in good agreement
with the DNS data at z = 10 mm, while all calculations show good visual performance at
z = 30 mm. The best agreement with the DNS data for larger distances from the burner is
shown by the SES, the KKK2 and the no model calculation.

The radial profiles of the mean and rms of the radial velocity V are shown in Fig. 7.5.
All calculations capture the overall trend of the mean velocity profiles, while the prediction
of the peak magnitude worsens with increasing distance from the burner. Again, only little
deviation between the different models can be seen for the mean profiles. It can be noted
that all calculations show weak oscillations between a radius of 10 and 20 mm at z = 10
mm, where the inner and outer streams merge. The rms statistics again reveal considerable
overprediction of the reference data by the conventional eddy-viscosity models for distances
of z = 10 mm and onwards. The best performance is shown by the sensor-enhanced model
and the KKK2 model, as well as the no model calculation.

Figure 7.6 shows the radial mean and rms profiles of the temperature T at the given
distances from the burner orifice. All calculations struggle to properly capture the temperature

This chapter was previously published in Computers and Fluids [60] and is reprinted with
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Figure 7.6 Radial profiles of the mean and rms temperature T at different streamwise positions
with 10 mm, 30 mm, 50 mm and 70 mm distance to the nozzle exit for SwB1.

gradient through the flame front. The standard eddy-viscosity Smagorinsky and Sigma models
show progressive flattening of the profile with increasing distance from the burner, while the
SES model performs better, like the scale-similarity-type models. The radial rms profiles
are underpredicted to the reference data, especially at axial distances of 10 mm and 30 mm.
While the prediction of the peak with increasing streamwise distance becomes more accurate,
the spreading of the Smagorinsky and Sigma curve intensifies. Although the boundedness of
mean temperature results between unburned and burned temperature is maintained for all
models, the agreement of the rms results with the reference data remains quite unsatisfactory.
It has to be noted, that the temperature is obtained from the flamelet tables using the
mixture fraction and the flame progress variable, with the latter one being influenced by
the flame thickening. The thickening affects the flame by stretching the flame front over
a desired amount of cells and hence, also flattens the temperature gradient. In this case
in particular, the thickening is performed based on the laminar flame thickness, which is
obtained from the maximum temperature gradient of the one-dimensional calculation [220].
Applying the thickening then rescales the temperature gradient precisely by the chosen
maximum thickening factor, which changes the mean temperature profiles and hence, leads
to a misprediction of the rms values as well. Thus, the subgrid-model does not take the
responsibility for the deviation in the maximum temperature gradient at least near the burner,

This chapter was previously published in Computers and Fluids [60] and is reprinted with
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Figure 7.7 Radial profiles of the mean and rms equivalence ratio ϕ at different streamwise
positions with 10 mm, 30 mm, 50 mm and 70 mm distance to the nozzle exit for SwB1.

however, certainly is the cause for the strong flattening as in the Sigma and Smagorinsky
model calculations.

The mean and rms radial profiles of the equivalence ratio ϕ can be seen in Fig. 7.7 for
all streamwise locations. The LES results are in good agreement with the DNS data at
z = 10 and 30 mm, with the inlet value of ϕ = 0.75 being maintained well, as ϕ is obtained
from the mixture fraction, which is not influenced by the flame thickening. For larger z, the
scale-similarity-type models and the SES model are in good agreement. The Sigma and
Smagorinsky model show stronger smoothening of the profiles, which can be a consequence
of the aforementioned strong diffusivity provided by these models. For the rms profiles, the
eddy-viscosity models show strong flattening of the curves from z = 50 mm and onwards,
while overpredicting the DNS data at z = 30 mm. The SES and the KKK models fail to
predict the peak properly for smaller z but show very good agreement for larger distances
from the burner cap.

Figure 7.8 shows the CO mass fraction YCO with radial distance from the centerline.
The intermediate species CO has been chosen to allow for insight into the resolution of
inner-flame processes. The mean profiles show little difference at distances of 10 mm and 30

This chapter was previously published in Computers and Fluids [60] and is reprinted with
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Figure 7.8 Radial profiles of the mean and rms CO mass-fraction YCO at different streamwise
positions with 10 mm, 30 mm, 50 mm and 70 mm distance to the nozzle exit for SwB1.

mm above the burner cap. All calculations strongly overpredict the peak mean CO mass
fraction. The Sigma and standard Smagorinsky model manage to capture the peak value
for higher distances, but feature strong spreading. The remaining models lead to better
resolution of the spreading, but overpredict the peak value. The overall match between
the LES and DNS data is better for the rms profiles. The Sigma and Smagorinsky models
manage to resolve the magnitude more accurately, while showing the largest offset. The CO
mass fraction is influenced by the flame thickening in a similar manner as the temperature.
However, as the thickening is applied in all calculations equally, the differences between the
models are caused by the subgrid-model only and hence, may be interpreted in the context
of the respective model used.

The total deviation from the DNS data for the SwB1 -case has been calculated and
visualized in Fig. 7.9. The normalized 1-norm (i.e. the sum of the absolute values of the
deviations) between the LES and DNS data has been chosen to measure the quantitative
error as previous investigation by Klein et al. [140] revealed little difference between different
error measures and the 1-norm provided the best agreement between visual inspection of
the profiles in Figs. 7.4-7.8 and the quantitative error measures in Figs. 7.9 and 7.10. The
velocities are normalized (indicated by index n in Fig. 7.9) using Ui for the mean and 0.1Ui

This chapter was previously published in Computers and Fluids [60] and is reprinted with
permission of the journal.



126
A-posteriori assessment of Large-Eddy Simulation subgrid-closures for momentum and scalar

fluxes in a turbulent premixed burner experiment

for the rms values (corresponding to the prescribed inlet fluctuation intensity), while the
temperature is normalized with (Tb − Tu) for the mean and 0.1(Tb − Tu) for the rms values
respectively. The equivalence ratio and the species mass fraction are normalized using unity.
The results of the quantitative assessment confirm the findings obtained from the qualitative
analysis of the radial profiles from Fig. 7.4 to 7.8. Overall, the standard Smagorinsky model
shows the largest deviations. The Sigma model shows improved behavior compared to the
Smagorinsky model but features some outliers, which can be avoided by using the SES model.
The KKK1 model shows acceptable results, however, the KKK2 model is preferred over the
KKK1 model as it shows the smallest errors.

Overall, the KKK1 model shows modest performance. While this case shows more
similarities with a jet-flow than a closed channel, it has to be noted, that the tip of the
burner is included into the domain and hence, makes walls present for the inflow. Previous
studies showed, that the performance of the KKK1 model deteriorates in the presence of
walls [140, 59]. Hence, one might assume that the weaker performance of the KKK1 model
is a consequence of the burner-orifice at the inlet of the domain and that the model might
perform better, if no burner geometry is included into the computational domain.

The graphical presentation of the error in Fig. 7.10, which represents the absolute mean
error over all axial locations as depicted in Fig. 7.9, shows that the KKK2 model has the
overall best behaviour and also outperforms the simulation without a subgrid model. The
SES model is the second best model for predicting the fluctuations and considerably better
than the other EDV models. The velocity bars of the mean quantities should be interpreted
with care because the error is mostly on a small level and the model performance is more or
less similar. The overall improved rms predictions of the KKK2 and SES models result in a
better mixing behaviour which translates into a better prediction of all mean and rms scalar
quantities.

7.6 Results of SwB5

The results of case SwB5 are discussed in this section. Opposed to SwB1, the equivalence
ratios of the inner and outer stream differ, leading to stratification of the flame.

The equivalence ratio distributions for this case are shown in Fig. 7.11. The gradient
appears more flat in this configuration as the equivalence ratio is first reduced from the
inner to the outer stream and then vanishes in the co-flow. Following Proch [220], one can
distinguish three characteristic flame regions. The first region is perfectly premixed and
characterized by a constant mean flame angle and only moderate broadening of the mean
flame brush. The second region starts where the flame enters into the region of equivalence
ratio gradients, and is exposed to stratification. The curvature of the gradient-front increases,
resulting in a broadening of the mean flame brush. Further onwards the whole flame is
exposed to an equivalence ratio gradient. The equivalence ratio at the burnt side of the flame
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Figure 7.9 Graphical presentation of LES-DNS deviation for SwB1. The dashed lines show
the smallest and the largest deviation.
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Figure 7.10 Graphical presentation of LES-DNS deviation for SwB1 summarized over all
distances from the nozzle. The dashed lines show the smallest and the largest summarized
deviation.
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Figure 7.11 Snapshots of the mean and instantaneous equivalence ratio ϕ for SwB5 in the
x − y midplane. The streamwise flow direction points from bottom to top.

Table 7.3 Computational times of the performed calculations using different subgrid-models
for SwB5.

Model Total computational time Projection time Turbulence time
% - no model % - Total % - Total

Sigma 1.02 22.2 2.2
Smagorinsky 1.01 23.5 3.1
SES 1.18 32.2 3.3
KKK1 1.12 19.7 12.1
KKK2 1.12 19.2 11.9
no model 1.00 22.5 0

converges then towards a value of 0.6, which is the mean of the value at the flammability
limit. On the unburnt side of the flame the equivalence ratio converges towards the average
value at the inlet, which is 0.75 for all cases. The transition point to the third region is
located where the instantaneous flame touches the flammability limit line. Here, the motion
of the unburnt side of the flame is determined by the mixing behavior [220].

To allow for the investigation of a different mixture composition, the same analytics
have been applied to simulations of the SwB5 case. The total computational times as well
as the computing time spent on the projection-method and the turbulence modeling are
documented in Tab. 7.3. Again, the standard eddy-viscosity models require the lowest
computational time, while the new models take around ten percent more computational time.
The scale-similarity-type models require more computational time for the calculation of the
subgrid-fluxes and less time for the projection-method. Figure 7.12 shows instantaneous fields
of the laminar νl (left) and eddy- νt (right) viscosity of the Sigma, standard Smagorinsky

This chapter was previously published in Computers and Fluids [60] and is reprinted with
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SwB5. The streamwise flow direction points from bottom to top.
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Figure 7.13 Radial profiles of the mean and rms streamwise velocity U at different streamwise
positions with 10 mm, 30 mm, 50 mm and 70 mm distance to the nozzle exit for SwB5.

and SES model. The standard Smagorinsky model exhibits high overall viscosities compared
to the sensor-enhanced version, which appear more physical than for the Sigma model,
as coherent structures are well preserved by the SES model. The Sigma model produces
lower viscosity-values, which are non-physically scattered. The standard Smagorinsky model
appears to show similar physical structures to the SES model, which seem to be superimposed
by excessive eddy-viscosities however.

Figure 7.13 shows the streamwise velocity U profiles for the given set of streamwise
distances from the burner orifice. All mean profiles are in good agreement with the DNS data,
however, more distinct differences can be observed for the rms profiles. The scale-similarity
models and the Smagorinsky models are in good agreement with the DNS data at z = 10
mm, while the Sigma model shows stronger underprediction than the remaining models.
The differences between the models emerge further for longer distances from the burner cap.
For lower radii, the eddy-viscosity models appear to underpredict the rms values and the
scale-similarity and no model calculations tend to overpredict the rms values, which may be
interpreted as a result of either too strong or too little dissipation. The models show more
similar behavior for r > 20 mm with the KKK1 model tending to underpredict the DNS
data.

This chapter was previously published in Computers and Fluids [60] and is reprinted with
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Figure 7.14 Radial profiles of the mean and rms radial velocity V at different streamwise
positions with 10 mm, 30 mm, 50 mm and 70 mm distance to the nozzle exit for SwB5.

The profiles of the radial velocity V can be seen in Fig. 7.14. The mean profiles feature
little difference between the calculations, but the standard eddy-viscosity models appear
to show slightly more flattening of the profiles than the remaining models. Similar to the
streamwise velocity profiles, the eddy-viscosity models underpredict the rms reference data at
z = 10 mm and show better agreement for z = 30 mm, however, overpredict the data. The
KKK2 as well as the SES models are in good overall agreement.

In Fig. 7.15, the temperature T with the radius for the four examined streamwise distances
z is shown. The scale-similarity models, the SES model and the no model calculation are in
good agreement with the DNS data for the mean profiles. The agreement of the standard
Sigma and Smagorinsky model with the DNS data worsens with increasing distance z and the
radial temperature gradient is significantly smoothened. All calculations underpredict the rms
of the reference temperature for smaller streamwise distances, but the agreement improves
for larger z. The Smagorinsky model stands out at z = 10 mm for strongly underpredicting
the peak rms of the temperature, but shows very similar performance to the Sigma model
for the remaining streamwise distances. While their agreement with the peak value at 50
and 70 mm is good, the profiles appear to be radially shifted and feature stronger spread

This chapter was previously published in Computers and Fluids [60] and is reprinted with
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Figure 7.15 Radial profiles of the mean and rms temperature T at different streamwise
positions with 10 mm, 30 mm, 50 mm and 70 mm distance to the nozzle exit for SwB5.

than the DNS data. The remaining profiles capture the reference data correctly in radial
direction but overall underpredict the peak. The best agreement can be found at z = 70
mm. Again, it may be argued that the overall mismatch between the maximum temperature
gradient at z = 10 is not solely caused by the subgrid-model, but more likely consequence of
the flame thickening. The excessive smoothening of the temperature gradient, however, may
be assumed to be a direct effect of the Smagorinsky and Sigma subgrid-models.

Due to availability of reference data, the OH mass-fractions are shown in Fig. 7.16. The
profiles show all models for the different streamwise locations. The radial mean profiles appear
similar for smaller z. For larger z, the standard eddy-viscosity approaches underpredict the
DNS data, while the remaining calculations show overprediction of the reference data. All
calculations fail to properly capture the peak of the rms of the mass-fractions at z = 10 mm
and z = 30 mm. Again, the standard eddy-viscosity model results appear radially shifted
for the largest distances z. The models overpredict the peak value at z = 50 and z = 70
mm. The SES model shows the best agreement with the DNS data at z = 70 mm. Again
the KKK2 model outperforms all other models including the no model simulation. The SES
model seems to be the most promising variant of eddy viscosity models.

This chapter was previously published in Computers and Fluids [60] and is reprinted with
permission of the journal.



134
A-posteriori assessment of Large-Eddy Simulation subgrid-closures for momentum and scalar

fluxes in a turbulent premixed burner experiment

0.000

0.002

0.004

YOH,mean / [-]

Sigma

Smago.

SES

KKK1

KKK2

no model

DNS

0.000

0.001

0.002
z = 10 mm

YOH,rms / [-]

0.000

0.002

0.004

0.000

0.001

0.002
z = 30 mm

0.000

0.002

0.004

0.000

0.001

0.002
z = 50 mm

0 10 20
r / [mm]

0.000

0.002

0.004

0 10 20
r / [mm]

0.000

0.001

0.002
z = 70 mm

Figure 7.16 Radial profiles of the mean and rms OH mass-fraction YOH at different streamwise
positions with 10 mm, 30 mm, 50 mm and 70 mm distance to the nozzle exit for SwB5.

The corresponding quantitative errors are visualized in Fig. 7.17. An error measure to
summarize all distances from the model is shown in Fig. 7.18 by averaging the difference of
each model error and the minimum error produced by a model at given nozzle distance. The
normalization is applied in a similar manner to Fig. 7.9. Both tables quantitatively confirm
the insights obtained from the radial profiles.

While the model performance can be categorized in a similar manner to the SwB1 setup,
the overall agreement of the LES and DNS results is worse for SwB5. The difference between
the cases lies within the different equivalence ratio ϕ, which has a value of 0.75 for the inner
and outer burner slot at SwB1, but has values of 1.0 for the inner and 0.5 for the outer burner
slot in the case of SwB5. This leads to stratification of the flame and a greater importance
of mixing processes. It can be speculated that the overall decreasing quality of simulation
results is a consequence of higher resolution requirements for capturing the mixing process
for case SwB5. The KKK2 and SES models tend to show the best results but it becomes
also apparent that the no model calculation performs comparable or better than the other
choices of subgrid-models. This observation is more pronounced for the SwB5 case. It may
be concluded in this context, that the flame phenomena and hence the simulation quality
strongly depend on the small scale phenomena, which are resolved better in the calculations
using less dissipative models.

This chapter was previously published in Computers and Fluids [60] and is reprinted with
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Figure 7.17 Graphical presentation of the absolute LES-DNS deviation for SwB5. The dashed
lines show the smallest and the largest deviation.
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Figure 7.18 Graphical presentation of the absolute LES-DNS deviation for SwB5 summarized
over all distances from the nozzle. The dashed lines show the smallest and the largest
summarized deviation.
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7.7 Prospect

An earlier study by Klein et al. revealed that more advanced subgrid modeling in the
case of turbulent premixed combustion might be necessary for the proper prediction of the
alignment characteristics of the SGS tensor [135]. Common flames produce increased strain
due to thermal expansion while leaving the local vorticity mostly unaffected. Although,
the observed additional strain due to thermal expansion is not of turbulent nature, it is
mistakenly considered in the calculation of the turbulent viscosity.

An adjustment of the Smagorinsky model may be suggested to take into account for the
strain-vorticity imbalance within the flame. The operator D̃m can be modified as

D̃m,f = min
(√

2S̃abS̃ab, 1.1055
√

2W̃abW̃ab

)
(7.30)

where the value of 1.1055 is the ratio of the strain rate and vorticity, and can be derived
from the critical value of the coherent structure function FCS ≈ −0.1 for homogeneous
isotropic turbulence [141]. Hence, the modification limits the eddy-viscosity within the flame.

To ensure this modification being applied within the flame region only, a blending for the
operator D̃m can be applied using the flame sensor Ω, which is present in many combustion
models already, such that

D̃m = min
(√

2S̃abS̃ab, 1.1055
√

2W̃abW̃ab

)
· Ω

+
(√

2S̃abS̃ab

)
· (1 − Ω)

(7.31)

Hence, the modification is only applied within the range of Ω > 0. Notable effects
may be expected for mildly thickened flames or for flame resolved calculations relying on
subgrid-modeling to improve stability. Only small differences have been observed for the
flames considered within this work and hence are not reported.

7.8 Summary

Large-Eddy Simulations using six different approaches for the subgrid fluxes have been
performed for the operation points SwB1 and SwB5 of the Cambridge stratified flame series.
The calculations have been compared using the identical numerical setup and the results
of the flame resolved direct numerical simulations of Proch and Inanc [221, 222, 109]. A
visual analysis of the streamwise velocity fields revealed stronger dissipation of the Sigma
and Smagorinsky models compared to the scale-similarity-type approaches. However, the
SES model suggested by Hasslberger et al. [96] is an effective way to reduce this excessive
dissipation. The new models required overall ten percent more computational time compared

This chapter was previously published in Computers and Fluids [60] and is reprinted with
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to the standard eddy-viscosity models due to more time spent in the turbulence routines,
while the costs of the projection method decreased. The relative influence of the turbulence-
modeling time reduces if more complex additional physical models (e.g. combustion models)
are used. Following the quantitative analysis, especially the KKK2 and the SES model are
in good agreement with the reference data. The Sigma and Smagorinsky model show good
results closer to the burner-cap but suffer from the strong dissipation for larger distances.
Among the two scale-similarity-type models, the KKK1 model showed overall inferior behavior
compared to the KKK2 model throughout all results. Previous work [59], however revealed
strong performance of the KKK1 model for free shear flows, while the KKK1 model results
were found to deteriorate in the presence of walls [140]. As a result it can be speculated that
the KKK1 results are dominated by the nozzle flow, an assumption which is underlined by the
fact that relatively large deviations occur already close to the nozzle. Overall, the results can
be summarized as follows: All models show similar performance for the prediction of mean
velocity components but substantially differ in the prediction of velocity rms. Good prediction
of velocity fluctuations is responsible for good mixing characteristics and hence the better
model performance here can be recovered in all statistics of scalar quantities. It is worth
noting that the prediction of scalar quantities is also influenced by the combustion model, such
that, for example, the momentum subgrid-closures should not be blamed for not capturing
the gradients in the flame front which are decreased due to the use of the flame thickening.
Hence, it has to be pointed out, that the performance of the subgrid-closure might change
employing a different combustion model due to the interaction of models for different unclosed
terms [137]. Further, model constants had to be chosen for the eddy-viscosity models used in
this study, which influences the performance of the respective models. Ideally, these model
constants need to be known before the simulation. Standard model constants and subgrid
Schmidt number have been chosen for this reason and calculations without subgrid-modeling
have been included as well. Dynamic determination of the turbulent viscosity is possible,
however, has been shown to be misleading if heat release effects overcome the effects of
turbulent velocity fluctuations [135]. As some commercial as well as academic codes aim for
stability and hence, are based on eddy-viscosity models, the use of the SES model is highly
recommended since its implementation is straight-forward. For slightly better results the use
of the KKK2 model can be a viable alternative.
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Abstract

The Shannon entropy is a rigorous measure that can be applied to evaluate the complexity in
dynamical systems. Shannon entropy allows for direct calculation from any set of experimental
or numerical data and yields the uncertainty of a given dataset. Originating from information
theory, the concept can be generalized from assessing the uncertainty in a message to any
dynamical system. Following the concept of ergodicity, turbulence forms another class of
dynamical systems, which is generally assessed using statistical measures. The quantification
of resolution quality is a crucial aspect in the assessment of simulation of turbulent flows.
While a vast variety of statistical measures for the evaluation of resolution is available,
measures closer representing the dynamics of a turbulent systems, such as Wasserstein metric
or Ljapunov exponent become popular.

This study investigates, how the Shannon entropy can lead to useful insights in the quality
of simulation of turbulent flows. The Shannon entropy is calculated based on distributions,
which enables direct evaluation from unsteady flow simulations or by post-processing. A
turbulent channel flow and a plane turbulent jet are used as validation tests. The Shannon
entropy is calculated for turbulent velocity- and scalar-fields and correlations with physical
quantities such as turbulent kinetic energy and passive scalars are investigated. It is shown
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that the spatial structure of the Shannon entropy can be related to flow-phenomena. This is
illustrated by the investigation of the entropy of the velocity fluctuations, passive scalars and
turbulent kinetic energy. Grid studies reveal the Shannon entropy as a converging measure.
It is demonstrated, that classical turbulent-kinetic-energy-based quality-measures struggle
with the identification of insufficient resolution, while the Shannon entropy might form a
solid basis for LES quality assessment.

8.1 Introduction

Turbulence theory has evolved, and many statistical measures are now available for describing
turbulence through statistical analysis-tools. Much of our knowledge on turbulence results
from Direct Numerical Simulation (DNS) experiments, where the largest available computers
generate detailed databases at increasing turbulent Reynolds numbers. Considering these vast
data-bases, one may ask about the properties of information in these simulation results, how
these properties can be quantified, and what these properties can teach us about turbulence
itself. In this context, the concept of information entropy is considered, which has been
introduced by Shannon [257] for a discrete random variable. The present paper examines,
how this concept can be applied to turbulent flows to obtain insight into simulation accuracy.

At this point, Large-Eddy Simulation (LES) can be considered as the state-of-the-art
technique for simulations of turbulent flows in engineering systems. However, the assessment
of simulation accuracy and quality of LES is in its infancy when it comes to quantifying
uncertainty and estimating a simulation’s accuracy or quality – in particular from the
simulation itself. Several quality estimators have been proposed, often based on energy-
related criteria. Given that it is very hard to find a truly sufficient and general quality
estimator for LES, it is worth exploring other options that may contribute to a more reliable
error estimator. In this context, test concept of information entropy is tested and it is
investigated what can be learnt from it about LES-quality.

A large number of statistical quantities can be considered to describe a turbulent flow –
including spectral information, spatial correlations, length-scales, structure functions and
others – which often require joint measurements or sampling at two different points in space.
An overview of commonly used statistical quantities is given in Pope [216] or Wilcox [302].
Several of these quantities are evaluated in the context of resolution quality by Davidson [50].

Easier to use and to consider are one-point statistics, for which the velocity probability
density function (PDF) provides the complete picture of the turbulence, but only its first two
moments are usually used to quantify turbulence. In LES, the related filtered density function
(FDF) provides the distribution of the velocities within a filter volume. The first moments
of the PDF are the mean velocities and the Reynolds stresses u′

iu
′
j in Reynolds-Averaged

Navier-Stokes (RANS) simulations, the second moment of the FDF (in LES) are the subgrid
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stresses uiuj − ui uj in LES. The Reynolds and subgrid stresses emerge as unclosed terms
from either averaging or filtering the Navier-Stokes equations and need to be modelled. These
stresses can be contracted into a (subgrid) turbulent kinetic energy 1

2u′
iu

′
i. Higher moments

can be derived and may appear in some modeling approaches, but we aim for a different
description of the PDF.

To quantify the probability of occurrence of the joint occurrence of two quantities, two-
point correlations and auto-correlations can be calculated and integral length scales can
be derived. Two-point correlations have been also used as an approximate measure for the
resolution of an LES [50].

A Fourier-transformation can also be used to describe a quantity in spectral space. Thus,
a function of length is transformed into a function of wavenumber, leading to energy spectra,
which are a common tool to assess how energy is distributed over the turbulent scales. To
obtain an impression of the quality of a simulation, results are sometimes compared to
Kolmogorov’s −5/3-rule of the inertial subrange [50].

The need for quantitative methods to assess the quality of LES has lead to numerous
studies [33, 131, 81]. With implicit (LES) filtering, the physical model for the subgrid scales,
the choice of numerical algorithm, grid resolution and filter size determine the quality of an
LES [188].

A well-known quality-criterion is attributed to Pope, which uses the ratio of resolved
turbulent kinetic energy kres and the sum of both resolved and modeled turbulent kinetic
energy kres + ksgs as an indicator for LES quality [217]. It is suggested, that the ratio γ

should achieve values of at least 80% for the LES to be considered as sufficiently resolved:

γ = kres
kres + ksgs

> 0.8 (8.1)

The criterion will indicate high resolution quality if ksgs is small - even falsely when a low
value of ksgs is caused by a small model constant or a dissipative numerical scheme. [190, 50].

The subgrid-activity parameter s proposed by Geurts and Fröhlich aims to quantify the
total amount of modeling and thus the possible modeling error of an LES [81]. The parameter
is calculated from the turbulent dissipation rate ⟨ϵt⟩ and the molecular dissipation rate ⟨ϵµ⟩:

s = ⟨ϵt⟩
⟨ϵt⟩ + ⟨ϵµ⟩

(8.2)

A subgrid-activity parameter of s = 0 would describe a DNS while a parameter of s = 1
represents an LES with infinite Reynolds number [81].

The Index “LESIQ” tries to assess the quality of LES with implicit filtering [33]. The
LESIQ has a similar structure to Pope’s approach in utilizing a ratio of the resolved and
total turbulent kinetic energy LESIQ = kres/ktot, but the subgrid scales are treated with
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Richardson-extrapolation. The total turbulent kinetic energy ktot = kres + αkhp relies on the
grid-size h and the order of the numerical scheme p. The coefficient αk is obtained from the
extrapolation, which requires simulations with the grid of interest and a further refined grid
[31, 234].

An approach that characterizes the error contributions of numerics and modeling separately
was developed by Klein [131, 73]. The strategy is to vary model parameters to control the
contribution of the model manually, which yields a different numerical and model error
contribution. Both errors are quantified by a Taylor-series expansion of the numerical
and modelling error terms. This requires solutions of the investigated LES, an LES with
modified model contribution and a coarsened-grid LES [132]. The method holds for a range of
applications, but needs to be further evaluated for high Reynolds-number flows and different
numerical schemes [131, 73].

Turbulence captured by LES exhibits unsteady behavior and sensitivity to the initial
solution, which attracts attention to the treatment of LES as a dynamical system, and hence,
putting the general aspect of information stored in the flow field into spotlight rather than
classical physical quantities. The fact that LES aims to capture turbulent dynamics, might
give reason to favor a dynamical measure rather than conventional measures which rather
assess the resolved temporal and spatial scales directly. Many quality-measures in common
use share the property of comparing a physical-value produced by the LES to an experimental
or estimated “true” value, but dynamic measures tend to quantify the frequency of occurrence
of a certain solution or the degree of freedom of the solution-state [239, 56, 305].

One example for a dynamical-based measure is the Lyapunov-exponent, which assesses
the separation of the solution of an LES when the initial solution is perturbated. While the
perturbated and unperturbated solution separate until non-linear saturation in a chaotic
system, the exponent quantifies the average separation of the solutions. Hence, the Lyapunov-
exponent solely remains on the turbulent dynamics in an LES calculation [305, 188].

Another example is the Wasserstein metric. The Wasserstein metric is based on the
“distance” of two variables of different states in the dynamical system. In the case of random
fluctuations the states may be scattered closeby and hence, the distance might fall short. A
single state is not meaningful for this set of data and should be replaced by a distribution
instead. The Wasserstein metric can be seen as a measure for “dissimilarity” between two
different states data [113, 305].

Entropy measures form a popular choice in the study of dynamical systems. The concept
of Shannon’s entropy was brought into the study of dynamical systems by Andrei Kolmogorov
[145]. Although there are plenty of forms of entropy in the context of dynamical systems,
they are all related together as they assess the complexity of a given set. This can be divided
into the study of the properties unpredictability, incompressibility, asymmetry and delayed
recurrence [99, 307].
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8.2 Shannon Entropy

From classical statistical thermodynamic arguments, the measure for the number of micro-
scopic configurations describing a thermodynamic system comes to mind. Thermodynamical
entropy has been used to assess dissipation and heat fluxes of an incompressible turbu-
lent shear flow [144]. The entropy production was used to investigate numerical stability
[189, 181, 55]. The question arises, if another form of entropy might lead to further insight
into turbulence.

Information entropy was first introduced by Shannon in 1948 to express the term "infor-
mation" mathematically [257]. In communication theory, any exchange of messages requires
a source and a destination. The source contains a defined set of messages of the cardinality
N , where each message from i = 1 to N has a probability pi of being sent. Each message has
its own value of information Ii, where the gain of information I means removal of uncertainty
and less likely messages carry higher values of information.

The value of information of the message i depends on its probability pi. The distribution
of messages i in the set A of a physical quantity X is treated as the alphabet of all messages i.
The set A can be the result of e.g. a series of measurements. In general, A can be described
as a set of tuples of the form A =

{
(xi, pi)|xi ∈ (x1, ..., xN), pi ∈ [0, 1] ∧

∑N
i=1 pi = 1

}
, with xi

being the values of X, which occur during the measurement.
Based on these formalities, the value of information can be formulated as Ii = − log2 p(xi)

with pi = p(xi). By definition, the binary logarithm is chosen to obtain the unit bit.
The statistical average of the value of information Ii for i = 1, ..., N leads to the Shannon

entropy H. It holds the name entropy because of its formal analogy to the formulation of the
entropy in statistical thermodynamics pioneered by Ludwig Boltzmann. Although arbitrary
quantities in fluid dynamics are traditionally denoted as ϕ, the symbol X is chosen in this
work to stay consistent with literature on information-theory. The Shannon entropy of a
quantity X, given in a set A, is defined as

H(X) = −
N∑

i=1
pi log2 (pi) (8.3)

Shannon entropy is a rigorous measure of uncertainty. Its calculation is solely based on
the probability distribution of the observed quantity X. The Shannon entropy is set to zero
for probabilities pi = 0, to enforce that messages i, which are never sent, lead to no gain of
information. As opposed to the standard deviation, the absolute values of xi do not have any
influence on the Shannon entropy.

The information entropy differs from other statistical measures in being a rigorous measure.
For the calculation of the entropy only the probability is statistically relevant, while the event
itself does not matter. Therefore, the investigated property does not have to be of numerical
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nature. Information entropy is dependant of the shape of a distribution and invariant
to permutation - as demonstrated in Fig. 8.1. Statements about multimodal probability
distributions can be derived easily from information entropy, while other statistical measures
commonly require high-order statistics. The information entropy can be applied in unsteady
and transient flows. It is in dependant of specific models (such as eddy-viscosity models
providing a turbulent viscosity) and geometry. The choice of sampling space is free, which
also allows application of the information entropy in local parts of the flow. An important
aspect of a quality-measure for LES is the additional (computational) effort to be invested
into a study, as measures which require additional calculations may be less attractive based
on the computational costs. Opposite to some other measures, the presented form of the
information entropy is easy to calculate, can be evaluated on-the-fly using a probability mass
function based on the present set of samples at negligible computational costs and could be
obtained for experimental data even for quantitative comparisons.

To illustrate the link between the Shannon entropy and a physical quantity such as a
velocity field, the evolution of a flow field in a mixing layer and its entropy is used as a
tangible example. Figure 8.2 shows the development of the flow field for the mixing of three
uniform velocity profiles of different magnitude. With increasing distance x from the nozzle,
the mixing layer evolves and the velocity-gradients decrease due to shear. The evolution of
the flow field shows the formation of a continuous spectrum of velocity values with proceeding
state of mixing from originally three discrete velocities. This leads to the occurrence of more
velocity values. Defining the feature velocity value as the baseline statistical event for the
Shannon entropy, the probability of a velocity value to occur in a certain state of mixing
can be assessed and the Shannon entropy can be calculated for each velocity profile. The
profiles reveal, that a more continuous range of velocities appear with advanced state of
mixing, which can be seen as a set of more distributed events, leading to an overall increase
of Shannon entropy. In addition, it can be seen that changing the magnitude of the velocities,
does not affect the outcome of the entropy, as it is a rigorous measure.

8.3 Numerical techniques and modeling

8.3.1 Demonstration case: Lorenz-attractor

The Lorenz-attractor [170] is a system of non-linear ODEs and arises from the simplified
Navier-Stokes equations for a problem of thermal convection between two plates and exhibits
chaotic solutions and therefore is interesting for studying uncertainty
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Figure 8.1 Information entropy H and standard deviation σ for a PMF consisting of (top)
two Dirac peaks at locations {−1, 1}, {−3, 3} and {−5, 5}. (bottom) PMF consisting of a
Gaussian normal distribution with 8 elements and reassigning their probabilities to other
elements randomly. The information entropy reveals information about the structure of the
distribution, while standard deviation changes with the mathematical values of the statistic
events.
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Figure 8.2 Top: Axial velocity profile of a hypothetical shear layer with various downstream
locations xA < xB < xC < xD < xE . Bottom: Probability distributions (PMF) at these
locations derived from the velocity profiles. Note the increase of information entropy H with
proceeding state of mixing and the Independence of H from the initial velocity value u and
u∗.

Ẋ = α(Y − X)
Ẏ = X(β − Z)
Ż = XY − γZ

(8.4)

The classic set of parameters is α = 10, β = 28 and γ = 8/3, which result from the non-
dimensionalization of the NSE, where α is the Prandtl-number and β is the Rayleigh-number.
The temporal derivatives Ẋ, Ẏ and Ż correspond to the velocity components u, v and w.
Since the Lorenz-attractor is a simple chaotic system, it is a well suited demonstration case
for the calculation- and evaluation-procedure for the information entropy.

The Lorenz-system is solved using a Runge-Kutta method of fourth-order accuracy. A
timespan of 300 seconds is chosen to generate the trajectory. The velocities tangential to
the trajectory are calculated at every point along the curve and their empirical probabilities
p(Ẋ), p(Ẏ ) and p(Ż) are computed. A probability distribution is generated for each velocity-
component u, v and w for which the Shannon entropy shall be evaluated. Based on studies
of Camesasca, Archambault and Perugini [30, 11, 201], the entropy is normalized with the
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Figure 8.3 Components x, y and z of the solutions of the Lorenz-Attractor with time and
their probability distributions. In the right column the entropy of the velocity components
Hn(Ẋi) and the kinetic energy of these components normalized by the squared absolute
velocity 1

2
Ẋi

2

| ⃗̇X|
2 can be seen.

binary logarithm of the number of bins . Thus, the influence of the chosen amount of bins
can be neglected. Being a scalar quantity, information entropy is calculated for each velocity
component u, v and w separately.

The Lorenz-attractor is used as a well-defined reference case for entropy studies in
turbulent flows. Figure 8.3 shows the velocity components along the trajectory with their
respective probability distributions to give an introducing impression of what probability
distributions are used for the calculation of the information entropy and how typical fields of
the given case look like. The value of each velocity component along the trajectory is given
by the color at the respective point, and the distribution of the respective velocity component
is shown on the right-hand side. The bar-plot visualizes the Shannon entropy calculated
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from the probability distributions and the contribution to the kinetic energy of each velocity
component.

The probability distributions of the Ẋ and Ẏ components are symmetric. The distribution
of Ż is skewed, which results from the fast downward motion on the trajectory in the center of
the attractor and the slow upward motion on the periphery of the discs. The main propagating
direction along the attractor is the Z direction, which leads to the high contribution of Ż to
the total kinetic energy, while the contribution of Ẏ to the kinetic energy is low. The attractor
features only small motions in Y direction as the attractor can be seen as two merged discs,
which hardly expand in Y direction. The X direction shows a medium contribution to the
kinetic energy. Velocities are larger on the outer rings of the attractor and slower on the
inner rings. The change of velocity on the outer turning points at the ends in X direction
show the same change of velocity while the direction is changed. Therefore, the distribution
appears to be very symmetrical.

The Shannon entropy is calculated based on the shown distributions for each velocity
component, leading to Hn(Ẋ), Hn(Ẏ ) and Hn(Ż). The Shannon entropy of Ẋ appears to be
the lowest, as its probability distribution is relatively narrow compared to the other variables.
This leads to a smaller range of statistical events, which indicates lower Shannon entropy.
Entropy values Hn(Ẏ ) and Hn(Ż) are higher than Hn(Ẋ), as the probability distributions
cover a wider range of statistical events.

The Lorenz-Attractor has been an object of interest for further studies of dynamical
measures such as the Lyapunov exponent or the Wasserstein metric, due to its dynamics being
representative to these observed in LES and DNS. The Lyapunov exponent is a dynamical
measure, which can be used to characterize the dynamical processes in a turbulent system
and can lead to statements about the predictability time of a turbulent system. A further
analysis can be found in [188, 305].

8.3.2 LES and DNS of a channel flow and Plane jet

The DNS and LES rely on the in-house code PsiPhi developed and used at the University
of Duisburg-Essen and at Imperial College London. The code is based on a finite-volume
technique on equidistant, isotropic Cartesian grids, relying on fourth-order central differencing
for transport of momentum, total variation-diminishing (TVD-CHARM) schemes for passive
and reactive scalars, pressure correction through a projection method, and a nominally
third-order low-storage Runge-Kutta scheme [173] for time-integration at a CFL number
of 0.7. Parallelization is achieved through domain decomposition and MPI. The code has
been used in many LES studies [267, 205, 231], some of them highly resolved, achieving
DNS-resolution away from the burner, [221, 222] and DNS of pulverised coal flame ignition
[232]. Turbulent initialisation and inlet data are obtained by an efficient implementation
[120] of Klein’s well-known inflow data generator [133]. For the LES, Nicoud’s Sigma model
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[192] and the classic Smagorinsky model [259] were tested - the latter for making the finding’s
more easy to interpret and transferable to other simulations [230].

The channel flow simulations of Reτ = 395 and Reτ = 934 have been performed with
the grids listed in table 8.1 and 8.2. The DNS of Moser et al. [185] and Hoyas and Jimenez
[106] use non-uniform grid spacing in wallnormal direction. In this LES, cubic cells are used,
leading to better resolution in streamwise and spanwise direction and hence, providing more
samples for the generation of the probability distributions. Periodic boundary conditions are
used in streamwise and spanwise direction, while an immersed boundary approach allows for
the representation of walls in normalwise direction [202].

A plane turbulent jet at Re = 10, 000 based on the DNS by Klein [133] serves as a
further testing case. The computational domain extends 20D × 20D × 6.4D in streamwise,
normalwise and spanwise dimension, with D being the nozzle width. Periodical boundary
conditions are applied in spanwise dimension and the boundaries in normalwise dimension
are treated with velocity data of the DNS by Klein. A filter by Anderson and Domaradzki is
applied near the outlet boundary in streamwise direction to ensure unperturbated outflow
[8]. For further description of the case design, the authors refer to a previous study [59].

Table 8.1 Channel flow grid parameters for Reτ = 395. The coordinates x, y and z correspond
to the streamwise, wallnormal and spanwise directions. Nα refers to the total number of cells.

wall units grid size streamwise spanwise wallnormal total
∆y+ ∆y [mm] Nx Ny Nz Nα [×106]

52.8 8.0 48 24 16 0.016
39.6 6.0 64 32 21 0.043
26.4 4.0 96 48 32 0.131
13.2 2.0 192 96 64 1.049
6.6 1.0 384 192 128 8.392
3.3 0.5 768 384 256 67.136

Table 8.2 Channel flow grid parameters for Reτ = 934. The coordinates x, y and z correspond
to the streamwise, wallnormal and spanwise directions. Nα refers to the total number of cells.

wall units grid size streamwise spanwise wallnormal total
∆y+ ∆y [mm] Nx Ny Nz Nα [×106]

93.4 6.0 64 32 21 0.043
62.3 4.0 96 48 32 0.131
31.1 2.0 192 96 64 1.049
15.6 1.0 384 192 128 8.392
7.8 0.5 768 384 256 67.136
3.9 0.25 1536 768 512 134.272
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Table 8.3 Jet flow grid parameters. The coordinates x, y and z correspond to the streamwise,
wallnormal and spanwise directions. Nα refers to the total number of cells.

cells/nozzle grid size streamwise spanwise wallnormal total
ND ∆y [mm] Nx Ny Nz Nα [×106]

5 2.0 100 32 100 0.32
10 1.0 200 64 200 2.56
20 0.5 400 128 400 20.48

8.3.3 Calculation of the Information entropy

The Shannon entropy is based on a discrete probability distribution, which requires a
probability mass function (PMF - probability distribution with finite bins). To calculate a
probability distribution, a field of any physical quantity is sufficient. The PMF is generated
on a single plane using histograms of the desired quantity, which decomposes the continuous
range of real values into a number of N discrete bins. The binning requires a width to
separate the continuous range of physical values into discrete intervals. However, choosing any
bin width appears to be arbitrary and violates the idea of finding an independent measure.
Hence, the information entropy is normalized with the binary logarithm of the number of
bins N [30, 201], so that the possible entropy values range between 0 and 1 using

Hn(X) = −
N∑

i=1
pi · log2 (pi)/ log2 (N) (8.5)

Another aspect is the choice of mathematical borders, between which the binning is
performed. While physical quantities can range between (−∞, +∞), a given field of a physical
quantity will be limited by the highest and lowest value Xmax and Xmin occurring in the
field. Applying histograms for values in the intervals (−∞, Xmin) and (Xmax, +∞) will lead
to empty bins and hence, probabilities of zero, which - by definition - do not contribute to
the value of entropy. Therefore, bins will only be applied within [Xmin, Xmax]. Although
different fields will feature different values of Xmin and Xmax, the entropy of a set of fields X

remains comparable as values outside of this interval cannot influence the entropy since the
values inside of this interval are converged with the number of bins. An algorithm is used to
calculate the normalized entropy for gradually refined bin widths. The converged value of
the entropy is then chosen to represent the distribution. A short summary of the necessary
steps can be found in table 8.4.
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Table 8.4 Instruction for calculation of the normalized Shannon entropy Hn(X) for a quantity
of interest X.

1. Perform the simulation of a chosen resolution up to temporally fully converged state
2. Choose a quantity X for calculation of the entropy Hn(X)
3. Choose a physically meaningful field of X
4. Apply histograms within the range [Xmin, Xmax] with nb bins on the chosen field and

divide by the total number of values in the field to obtain PMF
5. Calculate information entropy Hn(X) for the PMF using Eq. 8.5
6. Increase nb and repeat steps 4 to 6 until ∆Hn(X) vanishes
7. Sample Hn(X) over multiple timesteps

8.4 Results

8.4.1 A-priori study of the JHU channel flow at Reτ = 1, 000

The skill of models and indicators in LES is typically measured by their performance in a-
posteriori calculations. However, to investigate the convergence of information-entropy-based
measures with respect to the resolution, a-priori studies are a suitable method. Hence, the
DNS of the turbulent channel flow at Reτ = 1, 000 by Graham et al. [90] is used as a basis for
the a-priori investigation. The data is openly accessible and provided by the John-Hopkins
University (JHU) Turbulence Database. It has to be noted, that a-priori cases might give
limited insight into the true nature of a model in a-posteriori applications, a prominent
example affected by this being scale-similarity-type subgrid models for LES [140].

The friction Reynolds number for the database is Reτ = 1, 000 and the velocity-based
Reynolds number is approximately Re = 40, 000. The domain consists of approximately
1.6 ·109 cells with a non-uniform grid spacing of ∆x ≈ 13 and ∆z = 7 viscous wall units, while
∆y follows a hyperbolic tangent profile. Hence, filtering was applied following the classical
channel flow literature, e.g. Clark et al. [42] and Piomelli et al. [209] applying a Gaussian
filter kernel in streamwise and spanwise directions.

The DNS data is compared with a-priori evaluations using filter-widths of ∆ = 1, 2, 5 and
10∆z.

Figure 8.4 shows an instantaneous slice parallel to the wall in the channel center of the
original calculation (top-left) and the a-priori filtered fields (indicated by the annotated
filter-width ∆). The images reveal an increased blurring-effect with progressive increasing of
the filter-width. The removal of velocity fluctuations can also be observed with the decrease
of the total magnitude of the fluctuations in the field as shown in the colorbars and in the
probability distributions. Further, the probabilities of the fluctuation values close to zero
decrease, which is assumed to be a consequence of the filtering. In this context, it has to
be noted that the application of a filter on a strong velocity fluctuation in a velocity field
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Figure 8.4 Instantaneous streamwise velocity fluctuation u′ normalized with the friction
velocity uτ and the probability distributions based on the shown field of instantaneous
streamwise velocity fluctuations at the channel center for the JHU turbulent channel flow at
Reτ = 1, 000 unfiltered and with filter-widths ∆ = 2, 5 and 10∆z.
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Figure 8.5 Profiles of a-priori calculated entropies Hn(u′′) and Hn(w′′) with the wall distance
y+ in viscous units. The y+ axis is cropped to allow for good visualization of the channel
center and near-wall region.

can be compared to the filtering of a pulsed top-hat type signal with a low on/off-time ratio.
Sampling a top-hat type signal is a representative case for generating a bi-modal distribution,
as the signal is characterized by the alternating low and high values only. Applying a filter
on the top-hat-signal leads to smoothing of the flanks, which is achieved by decreasing and
increasing the values at the flanks respectively, thus increasing the total amount of values
characterizing the signal and therefore introducing more modes into the signal-distribution.
The generation of more modes in a distribution leads to a decrease of the probabilities of
the already present modes and hence will increase the entropy. This effect is enforced with
increasing the filter-width, however will be counteracted by the progressive decrease of the
signal amplitudes, which eventually will reduce the entropy due to the removal of modes
from the distribution. Therefore, filters are able to both increase and decrease the entropy of
a signal, depending if either the generation of mode outweighs their removal or vice versa.

Results of the a-priori analysis can be found in Fig. 8.5. The entropies of the wall-parallel
velocity-component fluctuations Hn(u′) and Hn(w′) were chosen as an generic example. The
y+ axis was cropped to allow for a better visualization of the near-wall and centerline regions
and comparison with the following a-posteriori calculations, while still showing the overall
entropy-behavior approaching the wall further. Both profiles reveal progressive deviation
from the unfiltered DNS data with increasing filtering width. The entropy of the streamwise
velocity fluctuations reveal a local maximum at y+ ≈ 10, which is approximately where
the production term of the turbulent kinetic energy reaches its maximum [28, 185]. This
region is governed by eddies with high turnover-velocities compared to the rest of the flow,
which by tendency lead to greater velocity-fluctuation magnitudes and therefore extend
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Figure 8.6 Profiles of viscous normalized streamwise velocity u+ and the resolved turbulent
kinetic energy kres with the wall distance y+ in viscous units at Reτ = 395. The underresolu-
tion (coarse grids) is intended to obtain simulations of different quality.

the interval of possible fluctuation values ( - the absolute values in this interval span from
zero to the highest value of velocity fluctuation) [171]. The mean flow occurs in streamwise
direction and statistically no mean flow in spanwise direction occurs. This implicates that
only little differences in the spanwise momentum occur compared to the streamwise direction,
leading to absolute spanwise velocity fluctuations being smaller than absolute streamwise
velocity fluctuations. Hence, the turbulent kinetic energy is mostly driven by the streamwise
velocity fluctuations, which is in accordance with the findings of Moser et al. or Rieth et al.
[185, 230]. Therefore, the peak is more pronounced for the entropy of the streamwise velocity
fluctuations. The entropy begins to decrease close to the wall due to the vanishing of the
turbulent kinetic energy. The entropy shows an overall increasing trend with the increasing
filtering width. This is assumed to be a consequence of the overall introduction of modes by
the filter, as discussed before.

8.4.2 A-posteriori LES of the channel flow at Reτ = 395

An LES is performed for six consecutively coarsened grids using Nicoud’s Sigma model [192],
the resulting mean velocity and turbulent kinetic energy profiles are shown in Fig. 8.6. The
results of the original DNS of Moser et al. [185] are added for reference and validation of the
simulation.

A good agreement with the DNS data can be achieved on the 0.5 mm, 1 mm and 2
mm grids, while grids with 4 mm size and coarser show progressively increasing deviations
from the reference data. Still, these grids were chosen intentionally to assess if the Shannon
entropy can indicate major differences in the quality of the results.
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On the left-hand side of Fig. 8.7, the instantaneous streamwise velocity fluctuation
u′ can be seen on a wall-parallel slice at the channel half-height δ. The right-hand side
shows the probability distributions of u′ obtained by applying the binning algorithm from
table 8.4 on the respective slices. The small line-plot features the value of the Shannon
entropy for the shown distributions. The flow fields feature stronger blurring with increased
gridspacing. The corresponding probability distributions feature stronger skew and extend
further towards negative velocity fluctuations on the fine grid. This extend may be assumed
to be a consequence of the field being located in the channel center. The turbulent mean
velocity profile predicts the maximum velocity at this location, which - following Prandtl’s
mixing-length hypothesis - leads to momentum exchange with regions closer to the wall due
to turbulent transport statistically favoring momentum deficits in the center of the channel.
The growth of the left flat part of the distribution in direction of negative values is assumed
to be a consequence of the increased grid resolution, allowing for more and smaller turbulent
structures in the flow field. The distributions appear more symmetric on the coarser grids.

The Shannon entropy of the resolved fluctuating velocity components u′, v′ and w′ is
calculated and the information entropy values of the streamwise component H(u′), the
wallnormal component H(v′) and the spanwise component H(w′) are obtained. Sufficient
resolution of the near-wall stresses is crucial to achieve a good agreement for channel flow
LES and DNS. The information entropy is calculated in dependence of the wall distance
utilizing wall parallel slices of the domain, to assess if statements about resolution quality
can be derived from this quantitiy.

The results are shown in Fig. 8.8 for six resolution levels. Particularly coarse grids are
used to examine if the entropy is able to show poor resolution through characteristic features.
The graphs of Hn(v′) and Hn(w′) feature a similar shape, since the entropy first rises with
the wall distance and peaks after around 100 non-dimensional wall units. The profile of
Hn(u′) features a maximum at 10 viscous wall units for the fine resolved simulations, the
entropy values decrease approaching the centerline further. The shape of the curve becomes
less distinct the coarser the grid becomes. Hn(v′) and Hn(w′) show a similar behavior for
larger y+, but stronger sensitivity in the near-wall region. This similarity may be assumed
to be a consequence of the similar behavior of statistics in these periodical directions. The
resolution quality of the near-wall region is vital for the quality of the simulation, which
might make the information entropy suitable for assessing simulation quality.

In boundary-layer theory it is postulated that the flow is laminar close to the wall [248].
Hence, the velocity profile is not affected by the turbulent fluctuations, which transform a
single value velocity into a distribution. In the fully evolved case, the flow can be seen as
orderly. For wall distances within the laminar sublayer, there is no uncertainty of which
velocity value is found as only one velocity value can be found. Thus Hn(u′) = 0 for a
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Figure 8.7 Instantaneous streamwise velocity fluctuation u′ normalized with the friction
velocity uτ and the probability distributions based on the shown field of instantaneous
streamwise velocity fluctuations at the channel half-height layer (x-y plane) for the grid
widths 0.5, 1 and 2mm at Reτ = 395. The additional set of axis shows the entropy Hn(u′) of
the three given fields arranged by grid size.
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Figure 8.8 Entropy results Hn(u′), Hn(v′), Hn(w′), the ratio of resolved and total kinetic
energy γ = kres/(kres + ksgs) based on Eq. 8.1, the LESIQ by Celik et al. [33] and the
subgrid-activity parameter s suggested by Geurts and Fröhlich [81] with the wall distance y+

in viscous units at Reτ = 395.
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plane parallel to the wall with a fixed wall distance in the laminar sublayer. Increasing the
wall distance and leaving the laminar sublayer, small turbulent structures arise, starting to
superimpose the velocity profile [216]. The mean velocity is then superimposed by weak
fluctuations induced by eddies of small size. For sufficient resolution of the near wall region,
the fluctuations lead to a greater number of velocity values besides the mean value and widen
the distribution. This leads to a rising uncertainty and therefore an increase of the Shannon
entropy Hn(u′) > 0.

The graph on the middle-right side of Fig. 8.8 shows an evaluation of the turbulent kinetic
energy ratio, where the subgrid turbulent kinetic energy was calculated following ideas of
Yoshizawa, Lilly and Vreman [310, 164, 292] based on the turbulent viscosity obtained from
the Sigma model. The ratio γ is shown versus y+ to investigate the relation between resolution
and wall distance. Following the - commonly used but often misleading - recommendation of
γ > 0.8 for sufficient LES quality, all grids would lead to satisfactory results except from the
4 mm grid at a wall distance of around 100 wall units. Furthermore, it may be concluded,
that sampling of γ in wallnormal direction would have lead to an overall ratio γ > 0.8 for all
simulations, which would imply sufficient resolution of even the coarse grids, which has been
proven wrong during the evaluation of Fig. 8.6. Even though the ratio indicates the right
trend of resolution and result quality for the fine 0.5, 1 and 2 mm grids, the criterion fails to
warn against actual poor resolution - a key property for a useful quality indicator.

The LESIQ is shown in the down left graph. A value of greater than 0.8 is suggested for
an LES to be considered properly resolved, while a value of 0.952 resembles a fully resolved
DNS. The finely resolved simulation of 0.5 mm grid size achieve the highest values, almost
reaching a constant value of 0.952, which would imply DNS-like resolution. This finding
however cannot be fully confirmed by the velocity and turbulent kinetic energy profile. Since
the very poorly resolved grids show lower values above 0.8, it might be concluded that the
LESIQ struggles with strong underresolution. However, compared to the energy ratio, the
LESIQ shows some form of convergence for the poorly resolved grids. The down right graph
shows the subgrid-activity parameter s. The parameter s shows stronger sensitivity towards
the subgrid model contribution for the fine grids. The overall behavior of the two indicators
appears very similar with respect to the curvature of the graphs, with the subgrid-activity
parameter being stretched over a larger range of values. Hence it may be considered, that
similar insights can be obtained from both measures.

To further investigate the connection between the Shannon entropy and the turbulent
kinetic energy, the entropy of the absolute velocity Hn(|u⃗′|) is plotted over the resolved
turbulent kinetic energy kres in Fig. 8.9. Both quantities are obtained from the wall-parallel
cross-sections for each distance from the wall, up to the channel half height. The behavior
of both quantities is linked as the entropy grows with increasing turbulent kinetic energy.
The resolved turbulent kinetic energy kres = 1

2u′iu′i is dominated by the streamwise velocity
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Figure 8.9 Profile of the entropy of the absolute velocity fluctuations Hn(|u⃗′|) with the wall
distance y+ (left) and dependency between the entropy of the absolute of velocity fluctuations
Hn(|u⃗′|) and the resolved turbulent kinetic energy kres (right) at Reτ = 395 - the marker size
(from large to small) indicates the proximity to the wall in viscous wall units for a discrete
chosen set of points with y+ = 30, 100, 200.

fluctuations [230]. It has been discussed before, that uncertainty reaches its maximum for the
strongest turbulent kinetic energy. Therefore, the entropy Hn(|u⃗′|) and the energy kres share
a similar contour while plotted versus the wall distance and must show some correlation.

While a correlation between the entropy Hn(|u⃗′|) and the turbulent kinetic energy kres has
been postulated, the location of both the maximum entropy and energy occur at around 10
viscous wall units on the fine grids. Both measures rely on the rms of the velocity fluctuations
in streamwise, wallnormal and spanwise direction. As the turbulent kinetic energy in a channel
flow is dominated by the streamwise velocity fluctuation, the location of the maximum of
kres is dictated by u′ [50]. The maximum of Hn(|u⃗′|) however only depends on the range
of different fluctuation values that can be observed at a given wall distance. Hn(|u⃗′|) will
reach large values, if a wide set of different fluctuation values |u⃗′| can be observed. Thus,
the entropy increases, if u′, v′ and w′ contribute from different magnitudes. Therefore, the
information entropy Hn(|u⃗′|) reaches a minimum value in the isotropic case. The velocity
fluctuations u′, v′ and w′ tend to achieve values of similar magnitude closer to the center
line and can be considered more isotropic than closer to the wall [216, 130]. This also shows
agreement with the decrease of Hn(|u⃗′|) for wall distances y+ > 100. At the wall, the velocity
fluctuations approach zero due to the no-slip condition. Increasing the wall distance, the
velocity fluctuations u′, v′ and w′ start to grow with different rates and differ more. This
also leads to a wider range of events which matches with the rising slope of Hn(|u⃗′|).

The link between the Shannon entropy and the turbulent kinetic energy is visualized
in Fig. 8.9. The entropy of the magnitude of the vector of velocity fluctuations is plotted
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as a function of the turbulent kinetic energy - the wall distance acts as variable along the
profile. Small distances to the wall are indicated with larger dots. The more fine grids reveal
a proportional increase between the entropy and turbulent kinetic energy, as can be expected
due to the similar behavior in the near wall region, leading to a straight line behaving similar
to an angle bisector. The curve then proceeds towards lower energies with comparably higher
entropies. Hence, the fine grids tend to reveal a higher value of entropy for similar values of
turbulent kinetic energy.

8.4.3 A-posteriori LES of the channel flow at Reτ = 934

To substantiate the findings from the previous subsection 8.4.2, another set of simulations
has been carried out at higher Reynolds number Reτ = 934 using the same setup. A refined
grid of 0.25 mm width has been added to take into account for the decreased boundary layer
thickness, achieving a resolution of 3.9 viscous wall units, while the coarsest grid of 8 mm is
neglected in this case.

Figure 8.10 shows the viscous normalized velocity profile and the turbulent kinetic energy
with the wall distance in viscous wall units featuring the reference data of Hoyas and Jimenez
[106]. The grids of up to 2 mm width show good agreement with the DNS data, while the
coarser grids lead to a stronger overprediction of the velocity profile. All grids manage to
predict the resolved turbulent kinetic energy well, with the wall-nearest point on the coarser
grids showing stronger deviations. Again, the results from (too) grids are kept to also show
the effect of poor resolution.

In Fig. 8.11 visualizations of the flow field of the instantaneous streamwise velocity
fluctuations u′ along with the corresponding probability distribution in the channel center
are shown for the three finest grids in the same manner as in Fig. 8.7. The flow fields appear
more blurred for the coarser grids, however the overall effect is not as distinctive as for the
lower Reynolds number. The obtained probability distribution shows a stronger skew towards
negative fluctuations on the finely resolved 0.25 mm grid opposed to the coarser grid, where
the distribution appears rather symmetrical.

Figure 8.12 shows the profiles of the information entropy of Hn(u′), Hn(v′) and Hn(w′)
as well as the ratio of the resolved and modeled turbulent kinetic energy kres/(kres + ksgs),
the LESIQ and the subgrid-activity parameter s. The entropy of the streamwise velocity
fluctuations Hn(u′) features a similar shape compared to the lower Reynolds number with one
maximum at y+ ≈ 10 and a local maximum closer to the channel center. The entropies of the
normalwise and spanwise velocity fluctuations Hn(v′) and Hn(w′) show an increase from lower
to higher wall distances. Again the entropy of the normalwise fluctuation reveals a strong drop
closer to the wall, which is a consequence of the conservation of mass prohibiting wallnormal
velocity components close to the wall and hence reducing the normalwise velocity fluctuations.
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Figure 8.10 Profiles of viscous normalized streamwise velocity u+ and the resolved turbulent
kinetic energy kres with the wall distance y+ in viscous units at Reτ = 934. The underresolu-
tion (coarse grids) is intended to obtain simulations of different quality.
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Figure 8.11 Instantaneous streamwise velocity fluctuation u′ normalized with the friction
velocity uτ and the probability distributions based on the shown field of instantaneous
streamwise velocity fluctuations at the channel half-height layer (x-y plane) for the grid
widths 0.25, 0.5 and 1mm at Reτ = 934. The additional set of axis shows the entropy Hn(u′)
of the three given fields arranged by grid size.
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The shape of the entropy curves become less distinct with reduced grid resolution, however
especially the Hn(u′) and Hn(v′) profiles feature a clear trend of curve-development when
increasing the grid resolution.

The ratio of the resolved and the modeled turbulent kinetic energy can be found in the
center-right plot. The finely resolved grids reveal very low contributions of the modeled
turbulent kinetic energy. The ratio of resolved turbulent kinetic energy decreases progressively
with coarsening the grid. Following the recommendation of the resolved turbulent kinetic
energy making up at least 0.8 of the total kinetic energy, the coarsest grids can only be
considered well resolved near the centerline or close to the wall. As revealed by the velocity
profile in Fig. 8.10, the resolution of both grids can be considered overall poor for all wall
distances. The LESIQ reveals a similar trend, with the finest grid achieving very high values
close to 0.952 which can be considered DNS-resolution. Celik et al. [33] suggest a value
of at least 0.8 for a LES to be well resolved and all calculations achieve values of at least
0.86 for all wall distances. The subgrid-activity parameter can be found in the bottom-right
plot. It features a similar trend to the ratio of kinetic energy and LESIQ with the finest
grid revealing the lowest subgrid-activity. While the subgrid indicator is often used as a
measure for assessing the contribution of the subgrid model, especially the criteria based on
the turbulent kinetic energy ratio and the LESIQ do not fully represent the findings from
the velocity profile in Fig. 8.10 as the agreement with the DNS results does not necessarily
improve with grid refinement.

To assess the link between the turbulent kinetic energy and the information entropy,
the entropy of the norm of the fluctuation vector and the turbulent kinetic energy can be
found in Fig. 8.13. The curve of the entropy Hn(|u⃗′|) features a maximum at y+ ≈ 10 and
an overall decrease for larger distances from the wall, similar to the findings for the lower
Reynolds number. Plotting the entropy versus the turbulent kinetic energy again reveals a
bisector-like behavior for the lower wall distances on the finer grids. After the peak values
of energy and entropy, the proportional behavior changes and leads to a weaker increase of
entropy with increasing kinetic energy as already observed in Fig. 8.13.

All entropy profiles shown in Figs. 8.8/8.12 & 8.9/8.13 reveal dependence on the grid size
and - more importantly - show a trend with decreasing (e.g. poorer) resolution: While the
single entropies of u′, v′ and w′ served as an introduction example, it may be argued, that
the entropy of the absolute fluctuation value Hn(|u⃗′|) is a more suitable representative for
generating statements about the simulation. Indeed the simulations, which can be considered
sufficiently resolved for the channel-flow, feature similar behavior in the peak-region and show
the predicted decrease of entropy for closer wall distances for Hn(|u⃗′|). While measures based
on the turbulent kinetic energy are often criticized for generating misleading statements
about the simulation quality [50, 190] - as emphasized in Figs. 8.6/8.10 - an entropy-measure

This chapter was previously published in Flow, Turbulence and Combustion [61] and is
reprinted with permission of the journal.



164 Towards the suitability of information entropy as an LES quality indicator

Figure 8.12 Entropy results Hn(u′), Hn(v′), Hn(w′) and the ratio of resolved and total kinetic
energy γ = kres/(kres + ksgs) based on Eq. 8.1, the LESIQ by Celik et al. [33] and the
subgrid-activity parameter s suggested by Geurts and Fröhlich [81] with the wall distance y+

in viscous units at Reτ = 934.
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Figure 8.13 Profile of the entropy of the absolute velocity fluctuations Hn(|u⃗′|) with the wall
distance y+ (left) and dependency between the entropy of the absolute of velocity fluctuations
Hn(|u⃗′|), the resolved turbulent kinetic energy kres (right) at Reτ = 934 - the marker size
(from large to small) indicates the proximity to the wall in viscous wall units for a discrete
chosen set of points with y+ = 50, 100, 200

based on the total fluctuation value may be considered, as it obtains its information about
the flow physics rather from the statistical structure of the flow field than from absolute
values.

8.4.4 A-posteriori LES of the plane turbulent jet

Figure 8.14 gives a visual impression of the jet for different mesh qualities and shows the
distributions used for the calculation of entropy, instantaneous fields of the passive scalar ϕ

and the corresponding probability distributions, along with the information entropy calculated
from the distributions. The finest grid with 20 cells per nozzle height D reveals the finest
structures in the flow field, which gradually disappear while coarsening the mesh to ten
and five points - again, a coarse grid has been used intentionally for testing the behavior of
information entropy. The LES resolution is chosen to allow for a sufficient scale separation
between LES and DNS and at the same time, provide a sufficient resolution of the shear
layer.

Figure 8.15 shows the streamwise velocity fluctuations
√

u′u′ and passive scalar fluctuations
√

ϕ′ϕ′ over the normalwise distance y/D from the centerline. Profiles of mean quantities ⟨u⟩
and ⟨ϕ⟩ are commonly considered as easy to predict, so that the focus lies on the fluctuations
that provide a more challenging test for the simulation. The agreement with the DNS data
gets worse with coarser grids, characterized by high fluctuation values for larger distances
from the centerline. While there is little difference between the 0.5 and 1 mm grids, deviations
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Figure 8.14 Instantaneous passive scalar field ϕ/ϕ0 (x-y plane), streamwise velocity fluctua-
tions u′ normalized by the bulk velocity U0 (x-z plane), the probability distributions of u′

and information entropy for the turbulent plane jet at grids using 0.5 mm, 1 mm and 2 mm
cells arranged by grid size.
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Figure 8.15 Profiles of streamwise velocity
√

u′u′ and passive scalar
√

ϕ′ϕ′ fluctuations with
the normalwise distance y/D from the centerline.

from the DNS data are significantly stronger for the 2 mm grid. Given the fact that simulation
results for the two finer grids show a similar match with DNS data and doubling the gridsize
leads to a notable drop in quality, the 2 mm grid may be considered insufficiently resolved.

The information entropy has been evaluated for the streamwise velocity fluctuations u′,
the absolute value of the velocity fluctuation vector |u⃗′| and the passive scalar fluctuations
ϕ′. The results are shown in Fig. 8.16 and the turbulent-kinetic-energy-based criterion (Eq.
8.1) has been added. Due to access to the complete DNS database, results of the Shannon
entropy for DNS resolution have been added.

The overall impression from the results reveals the entropy as an actual converging
measure, since differences between DNS and LES results decrease with grid refinement.
Strong differences for the velocity-fluctuation-based entropies Hn(u′) and Hn(|u⃗′|) can be
observed between the fine and coarse grids. The velocity-fluctuation-based entropies reveal
high values near the centerline, representing the strong shear also found in the previous
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fluctuation profiles, which goes in hand with higher overall fluctuation values and hence, more
possible velocity values, leading to a wider range of events and an increase in information
entropy. With decreasing shear, the entropy also reduces, but increases again at larger
distances y/D, which are governed by large-scale vortices that lead to an increase of entropy.
The decrease of entropy near y/D = 10 is considered to be the result of the boundary
conditions and hence, is not discussed any further. The entropy profile Hn(ϕ′) shows a
decrease with increasing centerline-distance. This is assumed to be a result of vortices in
the region of strong shear, transporting fluid of high ϕ values from the nozzle in normalwise
direction. The continuous mixing with the ambient fluid leads to progressive increase of cells
with values of ϕ = 0, which again reduces the possible set of values for ϕ and hence, causes a
decay of information entropy.

The profile of kres/(kres + ksgs) shows strong differences between all three mesh resolutions.
While quantitative deviations between the 0.5 and 1 mm grid have been shown to be small in
Fig. 8.15, the criterion states strong differences in resolution quality up to medium distances
from the centerline. The gridsize of 2 mm achieves values of γ below the suggested limit of
0.8 for y/D < 2, but considers the simulation to be resolved sufficiently for larger distances
from the centerline. Similar observations can be made for the subgrid-activity parameter
s, which predicts overall lower subgrid contributions for a finer grid. A different trend can
be observed for the LESIQ. The LESIQ claims overall better resolution with coarser grids,
which contradicts the findings from Fig. 8.15 - especially on the 2 mm grid. This indicator
predicts more poor resolution for larger distances y/D, while the actual agreement between
the LES and DNS data is improving according to Fig. 8.15.

8.5 Summary and conclusion

The utility of the Shannon entropy has been studied for different flow variables in different
canonical flows in LES. Calculations over a wide range of grid resolutions have been performed
to provide a set of differently resolved simulations, for which the Shannon entropy has been
evaluated. The Shannon entropy is a simple measure, which can be calculated during
a simulation or post-processed, without the need of performing further simulations with
modified parameters or grid sizes. The Shannon entropy obtains its information about the
flow physics rather from the statistical structure of the PMF and the underlying flow field
than from its absolute values, which provides a different view-point.

General observations about the Shannon entropy are that a) it drops off approaching the
wall and towards the center of a channel, with the finest simulations achieving the lowest
information entropy values at the wall, and that b) in a free shear layer information entropy
seems to drop with grid resolution, so that overall, achieving a low Shannon entropy may
imply a good resolution. For the underlying PMF, this would require a multimodal probability
distribution. This would imply that the probability distribution features characteristics such

This chapter was previously published in Flow, Turbulence and Combustion [61] and is
reprinted with permission of the journal.



8.5 Summary and conclusion 169

Figure 8.16 Entropy results Hn(u′), Hn(|u⃗′|), Hn(ϕ′), the ratio of resolved and total kinetic
energy γ = kres/(kres + ksgs) based on Eq. 8.1, the LESIQ by Celik et al. [33] and the
subgrid-activity parameter s as suggested by Geurts and Fröhlich [81] with the normalwise
distance y/D from the centerline. Hn has been calculated on fields in homogeneous and
streamwise direction for each y/D.
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as a characteristic state of mixing, a flow field being characterized by vortices of a certain
length-scale or a state of thermal equilibrium.

Low values of information entropy are achieved for distributions which are governed by
only few modes with high probabilities. Looking at a flow field, such a field would correspond
to locally identical values which can be considered as “steps” in spatial profiles - this is with
strongly localized gradients and curvature: relatively large zones of constant value must be
separated by thin layers of steep gradients and strong curvature to achieve a low entropy.
Requiring locally either very strong or low gradients, it may be argued that also the gradient
field must be composed of only few modes. An extreme example of such a low-entropy field
would be a very thin shear layer, right at a splitter plate, where only a very thin interface
separates a fast fluid A from a slow fluid B. After some mixing, the homogeneous zones of
values of just A or B will be separated by a thicker mixing layer - generating more states of
mixture and hence, a higher entropy. - Thinking about LES-quality, such a field can only
be maintained by very good numerical resolution - maintaining steps requires much better
numerical resolution than just maintaining minima and maxima. In that sense, entropy could
be seen as a more stringent quality criterion than resolved energy. In fact, low-entropy “steps”
require that multiple neighbouring cells take almost the same value - for example, by sharing
the same eddy. This implies that low entropy can only be achieved if eddies (of homogeneous
states) are resolved by two or more points - a sensible requirement for an LES! One therefore
might argue that information entropy could indicate whether a grid can actually resolve eddy
structures - which may be more than other criteria can provide.

Two test cases for a-posteriori LES were chosen to cover two common canonical flows
established for the assessment of new models, with the turbulent channel flow representing
wall-bounded flows and the plane turbulent jet representing free shear flows. The cases were
designed in such a way, that no effects of different boundary conditions or additional modeling
such as wall-modeling may be observed. In the case of the channel flow, wall-modeling
might be required for coarse grids. It might be argued that this error is introduced not
by the lack of an additional wall-model, but by the lack of sufficient resolution in the near
wall region. Therefore, in this study the resulting error is treated as a consequence of
underresolution, which in fact was intended to achieve on the coarse grids to demonstrate its
effect on the information entropy. Both cases feature Reynolds numbers which are considered
to be lower than in typical technical applications. Nevertheless, the turbulent channel flows
at the present Reynolds numbers form a popular choice in the context of LES modeling
assessment [209, 140, 96], as they allow for good resolution of the near wall region at moderate
computational costs using Cartesian grids and therefore allow for an affordable and broad
spectrum of grid qualities. Plane turbulent jets are a canonical case featuring the prominent
challenge of the choice of the right boundary treatment due to the presence of entrainment
phenomena. While there are several cases available in literature [133, 265], possible differences
in boundary treatment may introduce additional undesired errors [59]. To avoid these errors,
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a simple DNS case has been designed and all calculations have been performed using identical
numerical settings. While the Reynolds number in this case is moderate in comparison with
technical applications, the case is considered relevant for canonical LES studies and the
computation on a Cartesian grid remains affordable.

Considering the potential of Shannon entropy as a future LES quality indicator, we note
that Shannon entropy profiles reveal a converging trend with resolution increasing (towards
the limit of DNS), whereas the ratio of resolved and total turbulent kinetic energy struggled
with assessing the poor simulations, yet we do want to mention that other insights might be
obtained from vorticity- or enstrophy-based criteria, which were not in the focus of this study.
This may imply that besides being an interesting quantity for analyzing and interpreting
turbulent flows, Shannon entropy could help to assess the quality of LES. We would however
like to point out that much further research will be needed for establishing a reliable quality
criterion. At the same time, all statements about quality of resolution derived from the
Shannon entropy in this early state have to be assessed with care.
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8.7 Appendix: Simplified introduction to information entropy

The information entropy H can be seen as a measure quantifying the predictability of a discrete
statistical experiment, which is also referred to as the uncertainty of the experiment. Statistical
experiments with only one outcome may be considered fully predictable or experiments with
no uncertainty of the outcome. A statistical experiment may be seen as least predictable or
most uncertain if every outcome has the same probability.

For sake of simplicity, assume having a set of marbles only differing by color. A simple
experiment can be conducted by filling a bag with five marbles. In case A (Fig. 8.17 left) the
bag shall be filled with five marbles of the same color. While reaching for a marble from the
bag, the outcome of the experiment is already known. As only blue marbles exist in the bag,
the result blue marble is fully predictable and hence, may be seen as without uncertainty.
Equation 8.5 can be used to assess the value of entropy for this experiment. The number
of statistical events N equals 1, as there is only the event blue marble and the respective
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Figure 8.17 Discrete statistical experiment: Bag filled with five marbles. Case A: every
marble has the same color - the outcome is fully predictable. Case B: every marble has a
different color - the outcome is non-predictable.

probability is p = 1. Hence, Hn = −1 · log10 (1) / log10 (1) = 0. This result can be interpreted
as zero uncertainty over the outcome of the experiment.

The opposite scenario can be achieved by filling the bag with five marbles of different
color, which is referred to as case B (Fig. 8.18 right). The new setup leaves no tendency
for a certain colored marble as all colors appear with the same probability. For this setup
using five marbles, the predictability reaches a minimum and the uncertainty of the outcome
reaches its maximum. Hence, the information entropy as a measure for this uncertainty
reaches a maximum using Eq. 8.5, as Hn = 5 · [−0.2 · log10 (0.2) / log10 (5)] = 1.

It can be observed from cases A and B, that the value of entropy increases with more
equal distribution of the statistical events - which is represented by adding more marbles
of different colors. A more equal distribution can be achieved by adding more statistical
events to the experimental setup, as demonstrated in Fig. 8.18. To the original five blue
marbles, a purple marble is be added, which reduces the predictability in the experiment.
Drawing from the bag now leaves a small uncertainty of the outcome, since a purple marble
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Figure 8.18 Discrete statistical experiment: Bag filled with five blue marbles. Case C: marbles
of a new color are added incrementally to the bag and Hn is calculated at each step for the
bag filled with the current set of marbles.

might be the result of drawing. This uncertainty is represented by an increase of information
entropy. Adding another marble of a different color to the bag decreases the probability of
drawing a blue marble further and hence, increases information entropy. The addition of
more marbles of different colors continuously reduces the original significance of the blue
marbles by reducing the difference between the probabilities of drawing a blue marble and
drawing another marble.

The difference between the standard deviation and the information entropy in statistics
might be guessed already by the nature of the example chosen to introduce the information
entropy. The information entropy is also referred to as rigorous due to its ignorance towards
the nature of the statistical event. In the context of information entropy it does not matter if
the statistical event is the amount of prize money in a tombola, hitting a certain number at
a dice roll or receiving a specific marble while drawing from a bag. The standard deviation is
always bound to the mathematical value of a statistical event (a prize money, the number
of eyes rolled with a dice, the age of a person picked for a social study) and scales with
the orders of magnitude covered by all statistical events. Hence, it may be concluded that
information entropy is only influenced by the spreading of the statistical events. The standard
deviation depends on the spreading as well as on the mathematical value of the event.

This chapter was previously published in Flow, Turbulence and Combustion [61] and is
reprinted with permission of the journal.
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Abstract

In this study, a method which allows for causal backtracing of turbulent flow phenomena
is suggested. Key events in technical processes based on turbulent mixing can thereby be
studied by their detailed temporal and spatial convective history. As a demonstration case
for this method, a study of cyclic variations in internal combustion engines is used. Since it
is assumed that major influences on cyclic variations are transported convectively, a set of
Lagrangian tracer particles is generated at the start of a simulation run. The simulation is
performed until the point where an arbitrary phenomenon of interest is observed and the
simulation run is cancelled. The method then identifies particles in the neighboring region
and saves their identification. Subsequently, the simulation is restarted using the same exact
initial flow conditions for artificial turbulence generation and recreates the previous run.
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However, in the second run, only the identified particles are simulated and their spatial and
temporal trajectories are logged and observed in detail. The trajectory provides information
on pressure, temperature, velocities and mixture composition to reconstruct the causes of
the phenomenon of interest. This approach offers an efficient work-around of computational
memory and input/output problems, which occur in modern computational fluid dynamics
while also saving temporal and spatial information of small parts in the computational domain.
The presented method can be of fundamental value in the research of cyclical processes with
complex flows.

9.1 Introduction

In the context of technical flows, turbulence is a desirable phenomenon for applications
involving the mixing of fluids. Many reactive and non-reactive turbulent flows in the field of
energy and process engineering serve the purpose of setting a certain concentration or mixing
ratio between two or more substances. As the precision of adjusted mixing ratio is crucial for
the material or energetic output of processes like pharmaceutical reactors or energy conversion
units using both, redox reactions and direct combustion, a detailed understanding of the
turbulent pathways of fluid parcels involved in key events, e.g., initiation reactions in chemical
reactors or ignition in combustion engines, is required. The prediction and manipulation of
the fluid parcels involved in these phenomena provide further control of technical processes
and offer further potential for efficiency. Therefore, fluid parcels have to be tracked spatially
and temporally over the whole process and all influences on the parcel have to be assessed.

Direct-Numerical (DNS) and Large-Eddy Simulation (LES) form a basis for forward-
and backward-tracing in physical domains of reasonable sizes due to the accessibility of key
data to reconstruct spatial and temporal trajectories of single fluid parcels. To trace a flow
backwards in time, fluid and thermodynamical data need to be saved for each time-step,
which requires vast amounts of computational memory and hence, is not affordable on most
computational systems. Starting a simulation from a key event and enforcing time-stepping to
proceed temporally backwards causes negative diffusion and dissipation, which is numerically
unstable. Hence, the total amount of data stored while tracing has to be reduced. It is
evident that only the trajectories of the fluid parcels involved in key events are of interest,
which reduces the required memory drastically. However, these parcels can only be identified
after the key event has already happened.

Model development for computational fluid dynamics (CFD) have benefited from the
increase of computational power and powerful schemes as well as models have become more
affordable for the simulation of reactive and non-reactive flows. In the context of reactive
flows, early studies employed LES of premixed and non-premixed combustion and have proven
its suitability for the simulation of modern combustion systems [53, 210, 207, 77, 121].
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Unsteady Reynolds-averaged Navier–Stokes (URANS) is the most cost-efficient and widely
used approach for internal combustion engine (ICE) simulation in industry and research
applications. Numerous works have employed URANS for the simulation of ICE – some
with respect to cycle-to-cycle variations (CCV) [229, 72, 308, 247, 49, 200]. Nonetheless, the
discussion about the suitability of URANS for the analysis of CCV is still controversial. It is
commonly argued that URANS is lacking the presence of the small scale turbulent influences,
which are only captured in DNS and highly-resolved LES. Hence, a popular makeshift for the
study of CCV within the URANS community is the use of hybrid URANS-LES approaches
to achieve the resolution of small scale structures in the regions where the URANS resolution
is considered insufficient. In particular, their suitability was the subject of several studies,
e.g. by Hasse et al. [95], Krastev et al. [148, 149], Buhl et al. [27] and Celik et al. [34] in
a more general manner. Hybrid methods are considered state-of-the-art and are utilized in
numerous works.

The transition of engine simulation from URANS to LES was discussed by Celik et
al.[32], Richards et al. [228] and Rutland [241]. Flows in ICEs are characterized by different
turbulent length scales from the large tumble and swirl vortices to the small dissipative
structures. The resolution of these vortices is crucial for the correct description of the mixing
processes of fuel and oxidizer, which is the key for the prediction of the combustion and
emissions. LES allows for the resolution of the larger vortices, scaling with the characteristic
geometry, which is an important basis for the prediction of mixing processes. The simulation
of mixing through the gas exchange process was analyzed by Ameen et al. [6] and detailed
flow field investigations relevant to such processes were performed by Janas et al. [112]. The
availability of modern computational resources makes LES an attractive tool for the study of
cyclic variations, which requires the simulation of multiple cycles. Earlier studies of CCV
were performed by Vermorel et al. [290], Enaux et al. [58], Granet et al. [91] and d’Adamo
et al. [48].

While still considered niche, with computational power increasing, the DNS of ICE
processes is slowly gaining importance. DNS of engine-like assemblies and conditions were
extensively studied by Schmitt et al. [251, 253, 252]. With the most critical issues of engine
DNS being addressed by Frouzakis et al. [76], recent DNS works for selected problems in ICE
were performed by Keskinen et al. [125, 126] as well as Giannakopolous et al. [83], which
particularly focus on the near-wall physics such as boundary layers and heat transfer.

The LES and DNS approaches are of particular importance for this work. Overall, recent
advances within LES and DNS have been made in the field of Lattice-Boltzmann methods,
e.g., for large scale [180] and complex geometry flows [97] – with the latter work applying
the framework to engine simulation –, machine learning methods to improve the overall
efficiency of CFD [143] or for sub-grid closure [226, 199], detailed chemistry of single [40] and
multi-component fuels [78, 277] as well as environmental and urban flows [79, 153].
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Lagrangian–Eulerian frameworks have become the state of the art in LES and DNS
due to their versatility and efficiency. Techniques with relevance to the study case of this
work include the description of liquid sprays – a detailed mathematical overview is given by
Stiesch [270]. Numerous extensions for this method exist, e.g., the extension to high-pressure
flows [20], improvement of the droplet-turbulence interaction [193] or the description of
the spray-wall interaction [314, 281]. Another common application of Lagrangian–Eulerian
frameworks in this context are the description of complex moving geometries by arbitrary
Lagrangian–Eulerian methods (ALE). Since their development [104], several extensions, e.g.,
adaptive mesh refinement, were made and a summary with relevance to engine applications
was given by Barlow et al. [17]. Lagrangian–Eulerian frameworks serving for tracking methods
are of high relevance to the present work. Lagrangian–Eulerian tracking methods can be
directly coupled to physical particles that they aim to assess, such as soot [197], atmospheric
particles [263] or liquid droplets [245], but also fluid parcels such as transported passive
scalars, as demonstrated by Bonnani et al. [24] or within those of this work. While the
employment of Lagrangian tracers within LES is not novel, the present approach bridges
the gap between spatial and temporal causation for stationary and unsteady processes. The
proposed method uses the stochastic nature of LES and the deterministic nature of random
number generation in turbulence initialization and particle seeding and thus, allows for the
analysis of events that occur just once or in a repetitive nature.

In this study, a method employing Lagrangian tracer particles is proposed, allowing for
temporal backwards tracing of the causes of key events. The studied application case is an
ICE, which features the known problem of cyclic variation, making it a well-suited test case
for this method. However, this method is universally applicable and not only restricted to
combustion problems.

While new potential energy converters for electrical power supply and propulsion emerge,
many of these technologies are not yet mature enough to be reliable alternatives to ICEs for
the broad mass market. Internal combustion engines running on renewable fuels are expected
to play an important role during the energy transition and in future heavy-duty applications.
Hence, an efficient and clean operation of engines is required. Reducing CCV of in-cylinder
flows is one of the biggest challenges in engine design as CCV lead to significant variations in
mixture formation and flame propagation, reducing the overall performance of the engine.
Due to its ability to resolve the major scales of the turbulent energy cascade, LES has proven
itself to be a powerful tool in the assessment of CCV. Large-Eddy Simulations aiming for the
assessment of CCV with respect to the mixing and combustion process were performed by
Goryntsev et al. [88], Truffin et al. [282], Zhao et al. [315] and Ameen et al. [7].

The causes of CCV can be assessed using different measures obtained from experiment
and simulation. Goryntsev et al. [88] used common mean and RMS statistics to analyze
the air-fuel ratio as well as the flow velocities under direct-injection operation. Truffin et
al. [282] made use of the coefficient of variability and the Bravais–Pearson coefficient to
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study the correlation of different turbulent and thermodynamic quantities. Advances in
the experimental assessment of CCV were made by employing elaborate tools and analysis.
With machine learning (ML) methods becoming more popular in model development and
post-processing of results, Hanuschkin et al. [92] and Dreher et al. [54] utilized ML to assess
combustion variations in engines and were able to predict high energy cycles based on partial
flame topology from one snapshot of the flame propagation and based on flow field features,
respectively. An approach based on bivariate 2D empirical mode decomposition was proposed
by Sadeghi et al. [242], which attempted to separate instantaneous flow fields into large
scale structures and turbulent fluctuations and therefore, gives insight into the CCV of the
in-cylinder flow. A similar procedure aiming for the identification of coherent structures and
their effects on CCV relying on proper orthogonal decomposition was suggested by Wu et al.
[306]. Furthermore, analysis based on conditional statistics as suggested by Krueger et al.
[150] and correlation maps as presented by Bode et al. [23] revealed that the in-cylinder flow
can correlate to the ignition and the indicated mean effective pressure.

Measures of engine CCV typically assess correlation instead of the actually desired
causation. To thoroughly link correlation and causation, a large set of variables must be
evaluated, as shown by Welch et al. [300], who found that conditional statistics were required
in addition to multivariate correlations to obtain deeper insights into the causal chain of
ICE CCV. Ultimately, in the case of simulation, this leads to a large set of variables to
be computed over a large number of cycles and the need for expensive simultaneous data
measurements in the case of an experiment. This is supported by a study by Chu et al.
[39], who found that a high number of cycles were required to obtain correlations above
the significance level. Furthermore, ML approaches are more commonly trained using even
more cycles, leading to these techniques being applied more commonly to experimental
rather than simulation data. Similar to the correlation techniques, ML approaches require
the dependencies between several sets of data or variables to be able to give insights into
causation. The proposed technique is applied in-situ, which couples it directly to the physics
observed in the simulation. This not only allows for the direct insight into causation within
a set of data but also for the full control of data sets to be investigated without expensive
post-processing techniques. Furthermore, due to not being formulated as a black box model,
the proposed method can be validated using known physical phenomena, leaving less room for
speculation within the observations. Nevertheless, the method is not seen as a replacement
but as a useful addition to known approaches. While this method is demonstrated for the
study of engine CCV, it is not restricted to only this field.

The present method is complementary to the state-of-the-art tools to examine CCV,
as it not only allows for the analysis of convectively transported phenomena, but also for
the precise temporal tracing of fluid particles. The method potentially extends the works
of Krueger and Bode [150, 23] by providing even more information. Stiehl et al. [269]
investigated the influence of the intake port geometry on the in-cylinder flow. Furthermore,
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Desantes et al. [52] and Balz et al. [14] assessed the influence of the spray nozzle geometry
on ignition and combustion. The present method can extend these studies by revealing which
regions of the intake manifold are likely to have fluid reaching the spark plug or the spray
nozzle. Further, the particles can be assigned to spray droplets revealing which injector holes
are likely to produce droplets reaching the walls or piston gap. Phenomena such as intake,
injection or ignition can be assessed requiring little modification of this flexible method.

9.2 Modeling strategy

The proposed strategy is based on three assumptions:

⇒ Convective transport is significant for the observed phenomena

⇒ The performed simulation run is deterministic

⇒ The statistics obtained from the tracers converge with the number of tracers used

Lagrangian tracer particles are used to investigate the temporal evolution of the thermo-
chemical and fluid dynamical state of fluid parcel elements. The proposed methods require
two simulation runs of identical settings on the same machine to ensure a deterministic setup.
During the first simulation run, the tracer particles are initialized randomly at the inlet
boundary during the intake stroke and have no mass. Hence, the tracers are transported
passively based on the local flow velocity. During a key event – for this study ignition at the
spark plug – all tracer particles in close proximity to the event’s source – in this study the
spark plug – are saved and the simulation run is terminated. The run is then restarted with
only tracer particles which were saved in the previous run simulated and the variables of
state and space are stored with time to reconstruct the thermochemical states each tracked
fluid parcel has transitioned through. The number of tracer particles used per simulation
run is variable and more significant statistics are obtained employing a higher number of
tracers. However, the number of tracers is limited by the memory at hand on the respective
computing system.

9.3 Experimental test bench

To validate the numerical simulation, experiments were performed in the four-stroke single-
cylinder spark-ignition optically accessible research engine at TU Darmstadt. The Darmstadt
engine (AVL) is equipped with a four-valve spray-guided pent-roof cylinder head configuration
with a compression ratio of 8.7:1 and a bore and stroke of 86 mm each. Optical access is
provided by an optical-grade fused-silica cylinder liner and a flat fused-silica piston window,
which is connected to a Bowditch piston extension for mirror access. In the spray-guided
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Table 9.1 Engine specifications for the reference case as presented by Schmidt et al. [249].

Data Value
Engine Speed 1500 rpm
Bore 86 mm
Stroke 86 mm
Compression ratio 8.7 : 1
Crank angle range −360/ + 360° CA
Top dead center (TDC) 0° CA
Intake valve open (IVO) 325° CA
Intake valve close (IVC) −125° CA
Exhaust valve open (EVO) 105° CA
Exhaust valve close (EVC) −345° CA
Ignition/Tracing −14.2° CA
Intake Pressure 0.95 bar
Intake Temperature 308 K

cylinder configuration, the top 55 mm of the stroke and an additional 8 mm in the pent-roof
are visible. The engine runs under controlled boundary conditions for consistent operation.
Mass flow and pressure perturbations are damped by large plenums in the intake and exhaust.
For further details of the engine test bench, the authors refer to studies by Welch et al. [299]
and Baum et al. [19]. Figure 9.1 shows a cross-sectional representation of the engine and the
intake and exhaust ports. The operating conditions of the experimental test bench can be
found in Tab. 9.1.

The long intake pipe allows fuel for port fuel injection and seed particles for particle
image velocimetry (PIV) to homogeneously mix with the air before entering the combustion
chamber. Within the intake pipe, two relative pressure sensors (GU21C, AVL, referenced
to PMP4070, Kistler) measure the pressure just downstream of the noise reduction plenum
and just before the intake valves. For clarity, the same nomenclature as in the underlying
experimental works is used. Thus, the crank angles in this work range between −360°CA for
the beginning of the intake stroke and +360°CA for the end of the exhaust stroke, where
0°CA indicates compression top dead center (TDC).

9.4 Numerical methods

The in-house code PsiPhi was used to perform all simulations. It was developed at the
University of Duisburg-Essen and Imperial College London. PsiPhi has been utilized in
many LES calculations – some of which have been highly resolved up to DNS resolutions
– of reactive and non-reactive flows [232, 221, 59]. A finite volume method (FVM) and a
cubic, equidistant grid allow for the solution of mass, momentum and a variable number of
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Figure 9.1 Cross-sectional display of the experimental test bench.

scalar transport equations. The momentum equations are spatially discretized using eighth-
order central differencing (CDS) and tenth-order filtering to avoid spurious high-frequency
fluctuations following Chen et. al. [37, 122], while the discretization order is reduced
successively approaching the walls, and total variation diminishing (TVD) with the CHARM
limiter treat additional scalar transport equations [317]. PsiPhi expresses fixed and moving
walls with immersed boundaries [202], the latter being reduced to an ensemble of Lagrangian
particles with prescribed motion profiles, as proposed by Nguyen et al. [191]. Conservation
of the transported quantities such as momentum, mass and energy at the moving boundaries
is enforced by applying the mirror-flow technique proposed by Forrer [71]. The immersed
boundary cells are obtained by importing the geometry CAD data during the initialization of
the simulation and applying a voxelizer with the desired resolution, leading to approximately
30 million fluid cells within this study at bottom dead center, which corresponds to a cell
edge length of ∆x = 0.39 mm. Good results have been obtained using this resolution and the
same software framework in previous works [191, 190, 62]. The import of the geometry data
is parallelized using the message passing interface (MPI) and leads to a negligible invested
time at the beginning of the simulation and no additional computational effort during the
simulation run. Time-stepping is achieved by a low-storage third-order accurate Runge–Kutta
scheme [304]. A distributed memory domain decomposition approach, utilizing MPI and
a non-blocking implementation for simultaneous computations and exchange of data, yield
high parallel efficiency.

The following fully compressible, Favre-filtered transport equations are solved:

∂ρ

∂t
+ ∂ρũj

∂xj
= 0 (9.1)
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Figure 9.2 Velocity magnitude and its direction for the inflow boundary condition and GT-
Power results by Welch et al. [299].
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with the density ρ, the velocity ũi, the absolute total energy Ẽ and the pressure p. Hereby,
(̃·) denotes the Favre-filtered variables. A passive scalar quantity ϕ is used to identify old
and fresh gas. The momentum and scalar sub-grid fluxes τ sgs

ij and τ sgs
j are treated using an

improved eddy-viscosity approach as suggested by Hasslberger et al. [96] featuring reduced
dissipativeness and improved scaling behavior closer to the walls compared to the standard
static Smagorinsky model. The computational domain is kept compact due to the choice of
an equidistant, cubic grid and the immersed boundary approach. Hence, only a small part of
the intake and exhaust ports are included in the domain (50 mm in x-direction for each port,
also see Fig. 9.3). The resulting boundaries are treated using the Navier–Stokes characteristic
boundary approach as presented by Poinsot [213], where the intake and exhaust ports are
treated with non-reflecting inlet boundaries during the intake stroke and non-reflecting outlet
boundaries during the compression and exhaust stroke. The respective target values are
obtained from velocity estimates based on the port cylinder cross-section ratio and the
piston velocity, and pressure measurements in the ports. The boundary condition is switched
dynamically depending on the mean flow direction within the respective ports.
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Figure 9.3 Magnitudes of the averaged velocity calculated from the x- (u) and y-component
(v) of the velocities in the tumble plane at = −270° CA and = −90° CA obtained from the
simulation. The red contour gives the outline of the PIV-measurement area and the lines
indicate the sampling area used for the statistics.

Figure 9.2 shows the velocity magnitude imposed at the boundary based on the piston
velocity, as well as the integrated velocity to indicate the filling of the cylinder. Both,
1D-simulations of the engine (GT-Power) and experiments (not shown) feature a back flow
– indicated by the negative velocities – at the beginning of the cycle caused at the start of
the intake stroke by a negative pressure differential. While the model based on the piston
velocity profile is not able to take pressure oscillations in the intake pipe into account, the
qualitative agreement for the rest of the cycle remains acceptable and the total inflow of gas
is captured well.

9.5 Results

9.5.1 Validation of the global flow field

To ensure a reliable computational basis for the presented method, a sufficient prediction of the
flow field is required as the tracer particles are transported purely convectively. Simulations
of motored operation (unfired) are performed for a total set of 30 cycles. The calculations
can be performed without ignition, since the key event considered in this study is ignition
and no combustion occurs until that point. Statistics are obtained by neglecting the first two
cycles to ensure that all effects of the initialization are removed.

The experimental and numerical flow fields used for the comparisons are obtained in the
tumble plane (Fig. 9.3). The figure includes the intake ports and valves to allow for better
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Figure 9.4 Averaged flow fields of the x-component (u) and the y-component (v) of the
velocities in the tumble plane at = −270° CA obtained from the experiment (left column)
and simulation (right column).

orientation and to give an estimate of the features included in the computational domain. The
exhaust ports and valves were excluded from this figure to improve the visibility of the flow
field. Two crank angles of −270° CA and −90° CA (after TDC) were chosen to represent both
the intake and the compression stroke, as these are critical for particle movement. The flow
fields show the velocity magnitudes calculated from the velocity components in horizontal (x)
and vertical (y) direction within the image plane. Streamlines are superimposed to represent
the flow direction, which is dominated by the wake turbulence behind the valves during the
intake stroke (−270° CA) and the tumble vortex during the compression stroke (−90° CA).

The flow pattern obtained during the intake stroke is illustrated in Fig. 9.4 and compared
to the experimental measurements. The figure shows row-wise the magnitude of the two-
dimensional flow velocity

√
u2 + v2, the x-velocity component u and the y-velocity component

v. Furthermore, the experimental measurements are shown on the left side. The borders of
the PIV measurement region are represented by a black outline, which was superimposed
on the numerical flow fields. Capturing the correct in-cylinder flow during the intake stroke
is essential since the turbulence is mainly generated in this stage and then later affects the
mixture formation for direct injection cases or the flame propagation during combustion.
Despite the exclusion of the complex flow dynamics induced by intake flow oscillations in
the experiment, the intake flow is well-represented by the simulation. The good agreement
for the averaged velocities found in the comparison between the numerical results and the
measurement at −270° CA demonstrates the capability of the used approach to capture the
complex flow behavior as it was demonstrated by Nguyen et al. [191]. The RMS values of
the velocities, however, are under-predicted. As the RMS values represent fluctuations due
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Figure 9.5 Averaged flow fields of the x-component (u) and the y-component (v) of the
velocities in the tumble plane at = −90°CA obtained from the experiment (left column) and
simulation (right column).

to turbulence and variations of coherent structures, the RMS values serve as an indicator for
the predicted local turbulent energy. The under-prediction of these values is assumed to have
multiple causes. First, the simulation is not fully capturing the cyclic and turbulent variation
of all structures, which might be a consequence of too-strong numerical dissipation caused by
under-resolution or numerical modeling. Second, possible over-prediction by the experiment
due to noise and third, lack of cycles for a fully converged RMS field in the simulation.

Fig. 9.5 shows the x- and y-velocity components (u and v) as well as the magnitude
in the tumble plane for the experimental and computational results at −90° CA. Contrary
to the intake flow field, which is driven by high velocities emerging from the pressure
difference between the intake ports and cylinder, the in-cylinder flow during the compression
stroke is dominated by the remaining inertia of the flow and the compression by the piston
motion. Undergoing recirculation, interactions between tumble, eddies, moving walls, and
the dissipation of kinetic energy make the dynamics of the flow under compression difficult
to predict. Therefore, capturing the correct velocity fields at −90° CA is challenging. The
experimental and numerical results show a similar distribution of the low- and high-velocity
areas of magnitude, u and v. Some deviations can be seen in a region to the left below the
spark plug, where v is slightly under-predicted. Previous calculations with similar resolution
showed that the flow behavior during compression is sensitive and requires a large number of
cycles to converge towards the ensemble mean flow [191, 190].

The insights of the presented velocity fields must be further assessed by a quantitative
analysis to ensure proper validation of the proposed simulation method. For a quantitative
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Figure 9.6 Averaged flow field statistics of the x-component (u) and the y-component (v)
of the velocities in the tumble plane at = −270° CA and = −90° CA obtained from the
experiment and simulation. The profiles are obtained along four sampling lines within the
cylinder.
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comparison, the u and v velocity components are obtained along straight lines within the
tumble plane at the presented CA of −270° and −90°, as displayed in Fig. 9.3. The figure
shows the four chosen sampling lines with a spacing of 10 mm inside the tumble plane.
Fig. 9.6 shows the velocity profiles of the horizontal (u) and vertical (v) components in the
tumble plane at a CA of −270° and −90°. The agreement for the u velocity component at
−270° CA improves with distance from the valve. However, the agreement of the v velocity
components is less pronounced and no clear trend of improvement can be observed as for the
u component. This can be assumed to be a consequence of the complex flow field and highly
turbulent downward velocity of the intake flow forming due to the wake region below the
valve disc. The flow at this stage is driven by the intake boundary condition leading to similar
qualitative profiles but wrong prediction of magnitude. Due to the complex flow field and
highly turbulent downward velocity of the intake flow, agreement between the measurement
and the computation is difficult to reach, in particular for line plots. Nevertheless, the overall
agreement at −90° CA is better than for the earlier CA. Similar observations are made for
the qualitative flow fields and it is hypothesized that this is a consequence of the reduced
complexity and hence, easier to predict tumble flow driven by the piston when compared
to the valve and piston-induced flow characteristic of the intake stroke. For this CA, the
agreement diminishes with increasing distance from the cylinder roof. The tumble typically
has to be predicted in both, shape and location. The slight incorrect prediction of these
may lead to a great disagreement for line profiles, while flow fields still appear to match well.
This is in particular supported by the negative values of the computed profile at y = −30
mm, while the measured profile still remains positive. Thus, it can be concluded that the
simulation predicts the tumble center to be slightly higher than in the experiments, leading
to the occurrence of the negative horizontal velocity values at y = −30 mm. The agreement
of the lower distances might be compensated by over-predicting the shape of the tumble
vortex within this direction. Nonetheless, the profiles can still be considered to be captured
well in a qualitative and quantitative sense.

In Fig. 9.7, the volume-averaged velocity profiles within the reduced region of interest
(ROI ) of the spark plug, obtained from the simulation, can be seen. The ROI is a spherical
region around the spark plug, which serves for the detection of tracing particles. The results
are phase-averaged over all cycles with the grey envelope showing the maximum deviation
from the mean value. These velocities are crucial for the flame formation and propagation
in fired operation and in this study are indicators for the preferred direction from which
particles approach the spark plug.
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Figure 9.7 Phase-averaged velocities of the x-component (u) and the y-component (v) in the
region of interest (ROI )

around the spark plug for the simulation. The grey color shows the envelope of curves
around the averaged curve.

9.5.2 Generation of tracer trajectories

A set of spatial tracer particle trajectories for two variants of different sized spherical target
regions is shown in Fig. 9.8. The spherical ROIs are defined around the spark plug to visualize
the motion path from the point of tracer generation until the occurrence of the key event:
the ignition at −14.2° CA. Tracer particles inside the spherical ROI around the spark plug
at ignition timing are chosen for trajectory generation (a small part of the spherical ROI is
outside of the engine geometry and can not be reached by the tracer particles. This part is
of no relevance for the particle detection). A three-dimensional perspective as well as x-z
and x-y projections are shown to give better insight into the spatial trajectories. Further,
the engine geometry is displayed transparently to reveal the trajectory of the tracer particles
seeded between −345° CA and −270° CA. The black round markers within the spherical
ROI indicate the end of the trajectory to reveal the particles’ location during ignition. The
particle seeding was performed homogeneously over the two intake ports by choosing random
locations within the port cross-section for each time-step. The time frame of seeding the
particles is variable but was set to this window of CAs within this study. The variation of
the ROI size was performed to assess whether the results are sensitive to the number of
tracer particles. Using the full ROI, a number of ≈ 2000 tracer particles was detected per
cycle at the spark plug during ignition and their trajectories are tracked during the second
run. For the reduced ROI ≈ 500 tracer particles were detected per cycle. However, only a
fraction of the tracer trajectories are shown to ensure readability of the displayed trajectories.
The choice of the presented trajectories is arbitrary and serves the purpose of providing a
first insight. Furthermore, the trajectories are given different colors for better differentiation
based on the CA at which the particle was seeded. A few observed particles were trapped
in recirculation zones near rather complex geometry features and are not considered for
evaluation.
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The particles follow the in-flowing air stream through the intake ports into the cylinder.
Due to the narrow valve gap, particles are launched into the cylinder with high velocities.
Depending on the particle seeding time and entry location in the valve gap, the particle
trajectory varies due to the particle’s exposure to the tumble vortex, which can be seen by
the different shape of the trajectories shown. The particles seeded at earlier times (indicated
by darker colors) feature strong interaction with the turbulence generated in the wake behind
the valve disc as soon as the valve gap is passed – this is more apparent in the x−y projection.
The use of the larger ROI reveals that most of the trajectories follow a tumble-like motion,
which itself is governed by the intake momentum meeting the bounds of the cylinder and
the piston wall. Towards the end of the trajectory, the tracers approach the spark plug due
to the direction of the piston motion. A reduction of the ROI radius by 50% confirms this
observation. Overall, it can be observed that particles from the whole interval can potentially
reach the spark plug at ignition. Additionally, the particles traverse most of the in-cylinder
volume, indicating the occurrence of strong mixing.

9.5.3 Influence of numerical modeling

While the presented approach focuses on convectively transported phenomena, in general,
diffusive processes might change the relevance of the results.

Figure 9.9-a) reveals the ratio of the turbulent viscosity νt produced by the LES sub-grid
model and the laminar viscosity νl experienced by each tracer particle. During the intake
stroke, the ratio is between 1 and 10 as the turbulent viscosity succeeds the laminar viscosity
on average. Then this ratio reduces to a value less than ten during the late intake and the
compression stroke. During the late compression stage, however, the factor increases again.
This reveals, that the diffusion observed in the simulation is mainly of a modeling nature
and should reduce with grid refinement.

Based on the figure of the profile of the viscosity, the role of diffusion in the context of
the fluid particle tracing is investigated. For that reason, the Peclét number experienced
by each tracer particle based on the total diffusivity Dtot of the Euler phase is shown in
Fig. 9.9-b). As already observed in Fig. 9.9-a), the profiles are dominated by the turbulent
contribution. The total diffusivity-based Peclét number reveals intense dark coloring along all
lines at all CA. This indicates that the trajectories are superimposed by a strong fluctuation,
which is caused by the sub-grid viscosity. The overall values of the Peclét number hold
magnitudes up to a hundred, which indicates relevancy of the diffusive transport within this
calculation. Due to the early intake and the influence of compression, the convection is up to
a hundred times greater than the diffusion, while during the late compression, the ratio holds
values between 0.1 and 10. This also affects the ability of this approach to predict reality
considering the diffusion of momentum and scalars of the fluid parcels. The diffusion in this
study is further affected by the sub-grid model due to the contribution of turbulent viscosity.
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Figure 9.8 Three-dimensional projection of the tracer trajectories for the full and the reduced
size of the ROI around the spark plug.
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Figure 9.9 a) Ratio of the turbulent viscosity νt and the laminar viscosity νl experienced by
the tracer particles. b) Peclét number experienced by the tracer particles based on the total
diffusion of the Euler phase.

From a numerical perspective, it has to be noted that a major part of this modeled diffusion
is formed by suppressed convective phenomena, such as small-scale turbulent transport or
numerical schemes. In this context, the grid resolution is a crucial parameter when it comes
to controlling the influence of the modeled diffusion, as the numerical error vanishes with the
order of the numerical scheme and the resolution determines the contribution of the sub-grid
model. Hence, increasing the resolution will reduce the total diffusion and thus, also improve
the ability of the presented method to predict the flow.

9.5.4 Assessment of tracer trajectories

In the following section, the quantities observed by the tracers are analyzed with respect
to the flow physics. Figure 9.10-a) shows a cross-section of the intake manifold, in which
the tracer particles are seeded. The color of the local features of the cross-section shows
the probability density of a point to produce a particle that ends up in the ROI at the
spark plug during ignition. The probability density was obtained by sampling the number of
particles spawned in each seeding position over all tracer particles captured at the spark plug
from all simulated cycles. The number of tracers originating from each seeding position was
normalized such that integration over all cells inside the cross-section (including both intake
ports) yields a value of unity.

While the colored regions show the presence of tracer particles, the white regions imply
the absence of particles reaching the spark plug. In addition, the grey regions represent the
wall-geometry. The regions with particles reaching the spark plug form a kidney-like shape.
Particles seeded near the walls seem to not reach the spark plug. Interactions with the intake
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Figure 9.10 a) Probability density in the intake manifolds to produce a tracer particle that
ends up in the ROI of the spark plug during ignition. b) Crank angle and seeding positions
in the intake manifolds to generate a tracer particle that ends up in the ROI of the spark
plug during ignition. The detailed view on the left shows the location of the seeding plane
within the engine geometry.

valve stems appear to have the same effect, as can be observed by the white gaps in the
center of the intake manifold. Conversely, the regions with higher particle yield appear more
distinct and are concentrated in a rather narrow space. The high-probability regions form
diagonals through the ports, appearing in a V-shape stretched over both left and right intake
ports. The outer-top regions are the most likely to end at the spark plug. This might be
a consequence of the corresponding streamlines avoiding initial recirculation zones below
the valves. These zones appear mostly between and under the valves due to the mixing of
the streams from the two manifolds and the low-magnitude velocities below the valve disc.
Therefore, higher seeding locations in the cross-section allow the particles to find streamlines
that lead away from these turbulent zones and walls where the particles might get trapped
and hence, not reach the spark plug. The lower parts of the cross section are characterized by
low to zero probabilities of particles reaching the spark plug. Again, this is assumed to be a
consequence of the flow being highly dominated by walls, since the flow entering the cylinder
from this side of the valve is deflected by the valves, the cylinder walls and the piston during
the early intake stage.

Figure 9.10-b) shows the same cross-section as Fig. 9.10-a), however, it visualizes the
seeding CA of the tracer particles reaching the ROI of the spark plug. It can be noted, that
at the lower walls of the intake plane, two kernels of particle-seeding early CA are forming
within the ports as indicated by the blue-color zones.
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Figure 9.11 Three-dimensional projection of the tracer trajectories in the intake manifold
and valve gap. The trajectories are cut after the particles have passed the valve gap. The
coloring is chosen to indicate the upper and lower half of the intake manifolds. Features of
the flow are indicated as a, b and c.
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Given the insights of Fig. 9.8 and 9.10, it is assumed that the particles being seeded
in the lower half of the intake cross-section pass the intake valve disc closer to the cylinder
walls (w-side) and the particles being seeded in the upper half of the cross section pass the
intake valve disc closer to the cylinder axis (c-side). To further investigate this hypothesis,
the tracer trajectories of the particles from the time of seeding until the passing through the
valve gap – this takes ≈ 8 ° CA – are shown in Fig. 9.11. The particles being seeded in the
upper half of the intake manifold, colored in blue, remain on their respective side of the intake
manifold until they enter the cylinder. A similar observation can be made for the particles
being seeded in the lower half of the intake manifold. Furthermore, more particles traverse
the c-side (blue) of the manifold compared to the w-side (yellow). The flow feature a from
Fig. 9.11 reveals that the trajectories moving past the w-side tend to leave the valve disc
in the z-direction, rather than towards the cylinder liner (feature b). This leaves a smaller
number of particles going past the w-side and eventually reaching the spark plug. The flow
through the intake port evolves with increasing CA and flow velocities are lower for earlier
CA. It may be assumed that this allows the particles to follow the free flow on the w-side of
the valve more easily, as the streamlines can form freely and provide a sufficient distance
from the walls, reducing the chance of the particles getting stuck in low-velocity regions near
the wall. However, it is still interesting that these particles reach the spark plug, despite
their tendency to develop in a trajectory opposed to the tumble-dominated flow.

With the progressing intake stroke, high velocities occur in the valve gap, which form
smooth streamlines from the intake boundary into the cylinder flowing past the c-side of the
valve disc to enter the cylinder. At these high velocities, the flow on the w-side of the valve
disc is governed by wall impingement and curvature, and particles are likely to be flushed
into the wake region (feature b) behind the valve or collide with the wall. This is assumed to
strongly decrease the chances of a particle ending up near the spark plug, as most particles
are observed to travel deeply through the cylinder before reaching the spark plug. The flow
past the c-side near feature c appears to yield the highest success rate of tracer particles
reaching the spark plug, as the flow geometry is less complex and the trajectories follow the
natural tendency of the streamlines to form a tumble. This ultimately brings particles back
to the cylinder roof after impinging on the cylinder and then the piston walls. Furthermore,
this also agrees with the findings from Fig. 9.10.

Figure 9.12 shows the total cumulative travelled distance of the tracer particles with
time in crank angle degrees normalized with the mean piston velocity vm and the reference
timescale t0 = 1s. The initial slope of the travelled distance becomes steeper with later
seeding times, as the piston accelerates and hence, induces higher velocities in the intake
manifold. Likewise, the slope reaches a maximum when the particles travel through the valve
gap due to the high velocities experienced there. This is further represented by the addition of
the small figure showing the magnitude of the tracer velocity (derivative of travelled distance).
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Figure 9.12 Total travelled distance and the tracer particle velocity with time. The color of
the curve represents the seeding time of the particle with a brighter color indicating later
seeding times.

The gradient likely increases for particles seeded at later times due to the increasing piston
velocity in those intervals, which causes a greater pressure ratio at the valve gap. The curves
then progressively flatten down due to the overall decrease of the kinetic energy.

This trend can be observed also in the profile of the kinetic energy. Figure 9.13 shows
the resolved kinetic energy experienced by each tracer particle with time. The trajectories
were filtered to focus on the medium- and large-scale physical behavior. The plot is shown
using a logarithmic axis to emphasize the different energy magnitudes in the flow field. The
high transparency of the lines is used to focus the collective behavior of the particles, which
is now visible by the density and intensity of the line color. furthermore, the color of the
trajectories indicates the total travelled distance at the time of ignition; red colors indicate
higher travelled distance and blue colors indicate less travelled distance. All particles appear
to experience the highest kinetic energy within the intake manifold and the valve gap, as can
be observed by the initial peaks of the energy at the early CA. Due to few fluctuations of
the lines, it may be assumed that the particles are exposed to little turbulence within the
manifold. However, the fluctuations increase as the kinetic energy level decreases after the
particles have passed the valve gap. These fluctuations indicate an increase in the number of
turbulent structures that the particles pass. These early fluctuations pass and are caused in a
rather small volume, as the piston is still close to TDC. Thus, flow phenomena in the cylinder
are mostly governed by the turbulence generated due to the valve flow. As the piston expands
further and the volume increases, there is more space for the particles and they follow the
major tumble to further depth into the cylinder leaving the highly turbulent zone near the
valves. During compression of the piston, the two averages of high and low distance split
between −120 and −60° CA (the averages are indicated by the high and low annotation in
Fig. 9.13). A diverging colormap is chosen to emphasize the separation between the particles

This chapter is under review in Applied Energy.



9.5 Results 197

Figure 9.13 Experienced filtered kinetic energy by the tracer particles. The coloring of the
filtered trajectory indicates the total travelled distance of the particle at the time of ignition;
dark blue indicates lower distances and red indicates higher distances.

Figure 9.14 a) Experienced resolved kinetic energy kres and sub-grid kinetic energy ksgs. b)
Experienced distance from the cylinder liner walls and temperature.

of lower and higher travelled distance. The trajectories of the lower traveling distance show
more fluctuations than the particles of higher traveling distance. The two parts of the curve
eventually merge at around −60° CA, as the piston approaches TDC further. This is likely a
consequence of the tumble vortex breakup, which removes the large and directed structures
from the flow and leaves smaller turbulent structures behind. Furthermore, particles converge
onto the same location around the spark plug and consequently experience more similar
conditions. Both, the spatial homogenization of turbulent energy and spatial proximity agree
with the merging of red and blue lines.

Figure 9.14-a) shows the scattering of the resolved kinetic energy and the sub-grid kinetic
energy normalized with the average piston velocity vm = 2ns (with the engine speed n and
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Figure 9.15 Experienced passive scalar by the tracer particles.

the stroke s). The inflow into the cylinder can be observed by the vertical structure on the
right hand side, due to the high values of kinetic energy and the comparably small range
of sub-grid energy values. Therefore, the flow through the intake manifold gets perturbed
as the particles pass the valve. Both quantities appear mostly uncorrelated, as the kinetic
energy is not necessarily an indicator for turbulence.

Figure 9.14-b) shows the temperature within the cylinder normalized by the reference
intake temperature Tref = 308K versus the distance from the cylinder bounding walls
normalized by the radius of the bore rC. However, it should be noted that the spark plug
is not treated as a wall in this analysis. The plot reveals a dense streak of scattered values
for the low temperatures, which is assumed to be a consequence of the nearly constant
temperature during the intake stroke. As the tracer particles move completely freely, they
cover major parts of the geometry and hold all possible distances from the cylinder wall. This
changes, however, when the compression starts and the intake valves close, as the temperature
then increases. Hence, the temperature during the compression stroke may also be seen as a
measure of time. With ongoing compression, the tracked particles hold larger distances from
the walls, as they slowly converge towards the location of the spark plug. Particles being
transported too close to the wall or near the crevice region get stuck in stagnant regions and
can not be picked up again by the tumble vortex. Therefore, these particles will not reach
the spark plug. Yet, the highest density is not achieved at a value of unity, as the spark plug
is located slightly off-centered from the cylinder axis.

At each cycle, a bounded scalar of the value of unity is seeded at the inflow boundary
within the intake manifold, while the scalar field of the residual gas within the cylinder is
assigned to a value of zero. This scalar is transported passively as described earlier by Eq. 9.4
and may be used in a similar manner as quantities such as the fresh residual gas mixture, fuel
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mixture fractions or chemical tracers. The tracer particles experience the field of the passive
scalar on their path through the cylinder and the recorded values can be found in Fig. 9.15.
The curves of the single particles are colored using high transparency to move the focus from
the single particles’ behavior to the collective behavior of the particles. The particles seeded
within the intake manifold undergo scalar values of unity, as can be seen by the horizontal
line during the particle seeding time. The particles seeded at earlier CA quickly encounter
scalar values near zero, as indicated by the steep jump of the curves. Consequently, mixing
within the cylinder proceeds and increases the overall scalar value within the cylinder, which
ultimately leads to smaller jumps when the particles leave the intake manifold. This leads
to the displayed convergence of each curve, which is underlined by the increasing density of
the curves. The graph also reveals the present homogeneity of the mixture when assuming
the particles spread widely over the cylinder, which is confirmed by Fig. 9.8. As the curves
converge to a very narrow range of values between 0.8 and 0.85, the scalar distribution may
be assumed to be homogeneous.

To investigate the relation between location and scalar value for a set of selected tracers
reaching the spark plug, Fig. 9.16 displays the streamlines colored by the scalar value ϕ and
their absolute time derivative ∂ϕ/∂t. The graph starts with values of unity as shown in
Fig. 9.15. However, a few trajectories with a dark blue color can be observed and it is likely
that these belong to the first particles seeded in the cycle. The particles are seeded inside
the intake manifold and ride along the fluid, which is initialized with scalar values of unity.
Figure 9.15 reveals a quick transition from the scalar values to the value of final mixture,
which can also be observed visually in Fig. 9.16, as there is only a small region of green values
around the valve plate. Therefore, it is concluded that this is where major mixing processes
occur. To investigate the scalar mixing, the time derivative of the scalar experienced by each
tracer particle is visualized along the spatial trajectories in the lower section of Fig. 9.16. The
gradient is multiplied with the reference timescale t0 = 1s to non-dimensionalize the graph.
As expected, the strongest mixing occurs in the jet leaving the valve gap. Further, small
kernels with a low-high-low gradient transition can be observed on single tracer trajectories,
especially on the ones which reach deep into the cylinder. Only weak gradients are revealed
near the spark plug and between the valves as well as below the valves, which is interpreted
as a result of little mixing after the intake valves have closed.

To further investigate the correlations between the passively transported scalar and other
quantities, scatter-plots obtained from the trajectories are shown. Figure 9.17-a) assesses the
correlation between the passive scalar and the resolved kinetic energy. The transparency of
the markers is chosen to highlight the collective behavior of the tracers. Furthermore, the
scalar values range between the bounds of 0 and 1. From a temporal point of view (with
Fig. 9.15), the plot is formed from the edges on the left and right side to the center. At the
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Figure 9.16 Experienced passive scalar and experienced passive scalar time derivative by the
tracer particles for a set of trajectories.
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Figure 9.17 a) Scatter-plot of the experienced passive scalar versus resolved kinetic energy.
b) Experienced passive scalar versus normalized distance to spark plug.

beginning of the cycle, only scalar values of zero in the cylinder and values of unity at the
inflow boundary exist. The thin zone on the right-hand side with scalar values of unity and
the highest energies is a result of the particles traveling through the intake manifold and
valve gap. In this region, only fresh fluid is present and high velocities occur. Subsequently,
the passive scalar on the left side increases steadily due to the proceeding mixing within the
cylinder. The scalar values of zero vanish quickly, which can also be seen in the very low
color intensity within the graph and in the temporal history of the experienced scalar by the
tracers in Fig. 9.15. The low scalar values also only occur for the highest kinetic energies,
implying that the particles still hold a high kinetic energy from reaching the cylinder through
the valve gap more recently. The values then approach the center of the scatter-plot from
both sides and form a more color-intensive region for scalars between 0.6 and 0.9. This range
narrows down to a final scalar value of 0.8, which is achieved in late-stage compression and
also indicated by a larger range of energies. This agrees with Fig. 9.15 and is assumed to be
a consequence of the tumble breakdown, which produces turbulent structures of medium and
smaller scale and hence, lowers the kinetic energy of the particles. As the flow during the
compression stroke is governed by the large tumble vortex feeding energy to smaller turbulent
structures, the presence of smaller and medium sized structures at earlier times is revealed
by the spikes towards lower energies in the interval between 0.6 and 0.9. However, the spikes
show rather low color intensity, which is a consequence of the flow being dominated by the
large structures, which are rich in energy, and the interaction of the particles with the smaller
structures being comparably small.

In Fig. 9.17-b) the correlation between the experienced passive scalar and the tracer
particles’ distance from the spark plug is presented in the form of a scatter plot. Again, a
similar behavior can be observed for the scalar component, as the kernel in the center of
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the graph is formed by the tracers undergoing progressive mixing. The kernel reveals high
color intensity for a range of distances from the spark plug, which indicates a good mixture
homogeneity for the late-stage compression.

9.6 Summary

An efficient Lagrangian particle-based method for causal back-tracing of physical phenomena
was proposed and evaluated. Simulations of the Darmstadt optically accessible engine under
motored operation were performed and compared with experimental results at different CA.
Good agreement was achieved and a valid basis for the investigation of the proposed method
was formed. The performed LES captured the physics of the internal aerodynamics sufficiently
and the proposed method was used for further analysis. Spatial particle trajectories were
investigated and the influence of the seeding location on the success rate of the particles to
reach the spark plug was analyzed. The travelled distance, passive scalar values (representing
residual gas) and the experienced kinetic energy were used to interpret the tracer trajectories.
It was found that the regions on a diagonal line through the manifolds are most likely to
produce particles reaching the spark plug. The flexibility of the presented method allows for
future studies on the causation of various phenomena such as injection or knock.
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Abstract

Experimental measurements and multi-cycle Large Eddy Simulation (LES) are performed
in an optically accessible four-stroke spark-ignition engine to investigate Cycle-to-Cycle
Variations (CCV). High-speed combustion imaging is used to measure the early flame
propagation and obtain the flame radius and centroids. Large Eddy Simulation generates
data-bases for the flame propagation as well as the kinetic energy in the cylinder and confirms
the observations from the two-dimensional fields by three-dimensional simulation results.
Experiment and simulation are compared with respect to the strength and distribution of
CCV. Both approaches reveal CCV causing similar statistics of maximum pressures and
combustion speeds. The cycles are categorized as slow and fast cycles using the crank angle
of ten percent burnt fuel-mixture. Analysis of the flame centroids shows that slow cycles
move further towards the intake-side of the engine compared to fast cycles. The kinetic
energy during combustion is averaged for the slow and fast cycles based on the samples being
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in unburnt and burnt mixture. Studying the kinetic energy level in the unburnt and burnt
mixture reveals higher turbulent kinetic energy for the fast cycles as well as larger separation
between the global kinetic and the turbulent kinetic energy for the slow cycles, providing
evidence for a source of the CCV variations observed in this engine.

10.1 Introduction

Cycle-to-Cycle Variations (CCV ) form a major uncertainty and obstacle for achieving better
power and lower pollutant output from internal combustion engines, resulting in a high
demand to further the understanding of their origin. It is expected that inhibiting or
manipulating the variation of the mixture-quality and flame development could reduce the
potential of misfire and abnormal combustion, as well as improve the overall combustion
performance [198, 235].

Multiple sources for CCV exist, including the in-cylinder flow processes, the formation of
the mixture, the evolution of the early flame kernel and the flame propagation. The flame
propagation was object of detailed experimental [174, 4, 5, 204] studies. Deviations in the
early flame kernel development and flame propagation are considered to cause up to 50% of
the CCV [105, 273]. The early flame kernel is sensitive towards the flow field, and different
modes of combustion may appear, depending on the operating conditions of the engine [203].
Turbulence may be considered a crucial phenomenon driving CCV, not only by controlling
the speed of combustion due to flame wrinkling, but also by introducing small-scale variations
to the flow field, influencing the mixing-process and flame-propagation.

Three-dimensional Large Eddy Simulation (LES) forms a suitable and mature tool to
complement the experimental analysis, especially in the context of CCV. High-fidelity LES
was performed by Vermorel et al. [289, 290], Kazmouz et al. [116], and Richard et al. [228],
as well as Goryntsev et al. [87, 89] demonstrating the suitability of LES for analyzing CCV
in engine combustion.

In addition to classic pressure-based metrics, such as heat release analysis or multi-
dimensional measures, further metrics were introduced in the recent years to characterize
CCV relying on different data input. A bivariate 2D empirical-mode-decomposition was
employed by Sadeghi et al. [242] to identify CCV within the in-cylinder 2D flow fields. Jung
et al. [115] showed that the spark discharge energy and the in-cylinder turbulence level
influence the combustion stability. Hanuschkin et al. [92] followed a machine-learning based
approach to predict high- and low-energy cycles by analyzing the shape and position of the
early flame kernel. A joint evaluation of flow fields and heat-release data was performed by
Zeng et al. [313] to quantitatively compare the difference in flow and flame development
between fast and slow burning cycles. The different approaches taken to investigate CCV
are due to its complexity and suggest that both experimental and numerical techniques are
required to further its understanding.
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This work studies the CCV of the flame propagation in an optical research engine in a
joint approach of experimental observations and simulation data. A port fuel-injection (PFI )
strategy was used to allow for a high homogeneity of the fuel-air mixture. Thus, mixture
effects on the flame may be neglected. This reduces the number of phenomena influencing
the CCV. This study focuses on the turbulent effects on the early flame-propagation. In a
first step, pressure traces and flame-radii will be analyzed to ensure a reliable basis. Then,
the early evolution of the flame and the turbulence level in the cylinder will be investigated.

10.2 Methods

10.2.1 Experiments

The measurements and simulations were conducted for an optically accessible four-stroke
single-cylinder SI engine with port fuel-injection. The engine was operated at 1500 rpm, using
iso-octane as fuel. Table 10.1 summarizes the operating conditions. Optical access is provided
by a flat piston window and a quartz glass cylinder liner. In the experiments, to minimize
the potential influence of residual gas on CCV and to decrease the thermal load, each fired
cycle was followed by two motored cycles. Combining three subsequent measurements of
71 fired cycles lead to a data set of 213 cycles with short interruptions in between. The
pressure was measured using a piezoelectric pressure sensor. A high-speed camera captured
the line-of-sight integrated combustion luminosity (CH*) at a frame rate of 43 kHz. To
extract the apparent burnt area the images were segmented by a predictor-corrector scheme
[258]. Afterwards the equivalent flame radius was calculated [4, 5]. With a field-of-view
(FOV ) of 23 x 34 mm, only the region around the spark plug was imaged, and the recording
was performed from ignition timing at −20°CA until +5°CA1.

10.2.2 Simulation

Corresponding computations were carried out with the inhouse LES-solver PsiPhi. The Favre-
filtered conservation equations for mass, momentum, total internal energy, flame-progress
variable and mixture fraction were solved in a density-based framework. The finite volume
method was used to discretize the equations on an isotropic equidistant grid of 0.39 mm size
and a total of 38 Mio. cells. Convective fluxes were interpolated with an eighth-order central
differencing scheme (CDS) supported by a tenth-order filter for momentum, at Mach numbers
below 0.2. The CDS fluxes were blended linearly with a total variation diminishing (TVD)
scheme with the non-linear CHARM limiter for 0.1 < Ma < 0.2 and the full TVD fluxes were
used for higher Mach numbers. Scalar fluxes were discretized using TVD. Time integration
was performed with a low-storage third order Runge–Kutta scheme. The boundaries were

1This work assigns 0°CA to compression top-dead centre, i.e., crank angles during intake and compression
are negative.
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Table 10.1 Engine operating conditions.

Engine speed 1500 rpm
Bore 84 mm
Stroke 90 mm
Compression ratio 9 : 1
Intake valve open (IVO) 316°CA
Intake valve close (IVC) −112°CA
Exhaust valve open (EVO) 252°CA
Exhaust valve close (EVC) −326°CA
Ignition timing −20°CA
Fuel Iso-octane
Relative air/fuel ratio 1.1
Intake pressure 1 bar
Intake temperature 328.15 K
IMEP 7.7 bar
COV of IMEP 1%

Figure 10.1 Computational domain included in the simulation. Top: flame kernel and image-
normal velocity during early combustion phase (−17°CA). Bottom: image-normal velocity
component during intake stroke (−120°CA).

This chapter was previously published in Flow, Turbulence and Combustion and is reprinted
with permission of the journal.
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treated using the Navier-Stokes Characteristic Boundary Conditions, supplied by pressure
measurements inside the intake manifold and velocities obtained from GT-Power calculations
for the corresponding target values. The extend of the ports included into the computational
domain is shown in Fig. 10.1. All walls and moving parts of the engine follow a Lagrangian-
Particle and immersed boundary-based framework first described by Nguyen et al. [191]. The
Sigma model by Nicoud et al. [192] with Cm = 1.5 was employed to take into account the
subfilter transport along with a turbulent Schmidt number of Sct = 0.7. The simulation was
performed over a total of 30 cycles for sampling, discarding the first two cycles to not include
initial transient effects (different numbers of cycles for sampling can be found in literature,
typically ranging between 10 and 30 [289, 89, 191, 295]). To reduce costs and reproduce
the effect of the skip firing, the cycles were simulated consecutively without ignition. The
fired results were obtained from restarting and running the simulation separately from short
before ignition. Overall up to two cycles have been achieved on 1024 cores within 24 hours,
offering a good speed for an engine LES.

10.2.3 Combustion Modeling

The Flame-Surface Density (FSD) approach is employed within this work. FSD models
aim for the closure of the combined filtered laminar diffusion and reaction rate term using
a transport equation for the reaction progress variable c. The reaction progress variable
ranges between values of zero and unity, indicating fully unburnt mixture and completely
burnt mixture, respectively. In this study, the Favre-filtered reaction progress variable c is
transported using

∂ρc̃

∂t
+ ∂ρc̃ũj

∂xj
+ ∂ρ (c̃ũj − c̃uj)

∂xj

= ∂

∂xj

(
ρD

∂c

∂xj

)
+ ω̇c

(10.1)

with the diffusivity D and the reaction rate ω̇c. The Favre filtering of a general quantity Q is
denoted as Q̃ and the LES filtering as Q, respectively. The unclosed reaction and diffusion
terms may be rewritten using the flame-surface density

∂

∂xj

(
ρD

∂c

∂xj

)
+ ω̇c = (ρ0sd)sΣgen (10.2)

where ρ0 indicates the unburnt density, sd the flame displacement speed on the flame surface
s and the generalized flame-surface density Σgen, which combines the diffusion and source
terms. A popular choice to calculate Σgen is a modified transport-equation based model
by Colin and Truffin [43], which takes into account the subgrid-behavior of the early flame
kernel. The numerical framework used in the present study relies on the algebraic model by
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Figure 10.2 Experimentally and numerically obtained pressure traces from all cycles. Averages
are given by the colored lines. The insert shows the correlation between the peak pressure
and the crank angle at which peak pressure occurs.

Muppala et al. [187]. Following this modeling philosophy, the flame-surface density may be
approximated as

(ρ0sd)sΣgen ≈ ρuslΞ|∇c̃| (10.3)

The model gives the wrinkling factor Ξ based on

Ξ =
(

1 + 0.46
Le Re0.25

∆

(
u′

∆
sl

)0.3 ( p

p0

)0.2
)

(10.4)

with the Lewis number Le assumed as unity, the laminar flame speed sl and the pressure
p. Here p0 represents the ambient pressure. Re∆ refers to the turbulent Reynolds number
that can be rewritten using the turbulent lengthscale lt and the laminar flame thickness δl

as ≈ 4 (lt/δl) (u′
∆/sl). The turbulent lengthscale in the context of LES is assumed as lt = ∆.

The subfilter velocity fluctuations u′
∆ are calculated using the OP1 formulation following

Colin et al. [44]. The laminar flame speed sl and flame thickness δl are obtained from
tabulation, which was generated using calculations of one-dimensional freely propagating
flames with varying pressure, temperature and equivalence ratio in Cantera [86]. The ignition
was simulated by initializing a spherical kernel of burnt gas of 1.5 mm radius at the spark
plug.

This chapter was previously published in Flow, Turbulence and Combustion and is reprinted
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Figure 10.3 Experimentally and numerically obtained cumulative distribution function of
peak pressures from all cycles

10.3 Results

10.3.1 Comparison of experimental and numerical indicator quantities

Figure 10.2 shows the experimental and numerical pressure traces over the crank angle
interval of combustion. The overall agreement of the traces is good, even if the slowest
cycles are not fully reproduced by the simulation. The crank angle of the maximum pressure
shifts with the peak pressure-value, as indicated by the insert in Fig. 10.2. Linear regression
lines were obtained by the least-squares method for the measured and simulated results and
are displayed as lines. The scatter around the regression lines shows only little deviation,
which was found to indicate stable combustion cycles [175]. The slope of the numerical data
is slightly below that of the experiments. The lack of predictability of the slow cycles is
a known topic in engine simulation. A common practice is the use of one-step chemistry
for combustion modeling due to its robustness and efficiency, some works even applying
sophisticated additional modeling for the capture of the spark and early flame development,
that as a drawback have several sensitive calibration parameters. However, a shortcoming of
these models is their incapability to capture the sensitive chemistry, in particular after ignition.
It is possible that a spark model might improve the prediction of the slow cycles although
even works including this philosophy revealed difficulties with this issue [228, 282, 295].

In Fig. 10.3, the cumulative distribution function (CDF) for the experimental and
numerical samples is presented. The CDF reveals that the simulation indeed manages to
predict some of the weaker cycles. The agreement between the measured and simulated CDF
may be seen as an indicator for the simulation to contain a sufficient amount of cycles to
allow for a reasonable comparison with the experiment.

This chapter was previously published in Flow, Turbulence and Combustion and is reprinted
with permission of the journal.
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Figure 10.4 Experimentally and numerically obtained equivalent flame radii, calculated from
the two-dimensional projection along the camera line-of-sight axis. The maximum flame
radius produced by the simulation is indicated by the dashed line.

Figure 10.4 presents the values of the equivalent flame radius obtained from experiment
and simulation. The experiments yield the line-of-sight integrated light emissions within
the flame and the burnt gases. The projected area A2D of the two-dimensional region
was calculated, and the equivalent radius of a circle of the same area was computed as
r = (A2D/π)0.5. In the simulation, the progress variable field was projected in the same
direction, and the resulting image was processed following the same procedure. The initial
radii appear constant within the first crank angles. This is a consequence of the overexposure
caused by the ignition spark and the size of the initialized flame-kernel in the simulation.
After approximately four crank angle degrees – which may be interpreted as the time of
the early flame kernel development – the flame radii increase but with substantial variation
across the cycles. The spreading weakens as parts of the flame run into less turbulent regions
closer to the cylinder wall. Eventually, the flame encounters the wall, where further growth
is inhibited. The simulation exhibits somewhat stronger growth for the earlier crank angles
and slower growth for the later crank angles compared to the experiment. The strong initial
growth might be partially caused by the employed combustion model. A similar behavior
was discussed by Colin and Truffin [43], who proposed a modification to better consider the
initial flame curvature in the context of transported FSD-type models.

In Fig. 10.5, the equivalent flame radius r13 13°CA after ignition (calculated using the
projected aria in the imaging region as discussed in the previous paragraph) is plotted versus
the crank angle CA10, at which ten percent of the fuel mass are burnt. The figure reveals a
linear decrease of the flame radius and CA10 for experimental and numerical results. While
the slope is similar, with a slight underprediction indicating smaller CA10, the numerical
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Figure 10.5 Correlation between the equivalent flame radius r13 13°CA after ignition and the
crank angle CA10 of 10% percent fuel mass burnt for the experiment and the simulation.

values are shifted towards lower radii, as also shown by the linear regression lines. This, in
comparison with the experiment, may be interpreted as the simulation slightly underpredicting
the flame speed. Considering the findings from Fig. 10.2, the correlation confirms that the
simulation is struggling with reproducing the slowest cycles.

The metrics presented in Fig. 10.5 form the foundation for the classification of slow and
fast cycles. The equivalent flame radius at 13°CA after ignition is an optically measured
quantity, which indicates the quality of the combustion and correlates with the pressure.
Both r13 and CA10 form a plausibility check for properly capturing the combustion physics
in the experiment and simulation [4, 5]. The value of CA10 is chosen to identify the slowest
and fastest of the obtained cycles. As the propagation speed of the flame is crucial for the
combustion of ten percent fuel mass, the terms slow and fast were chosen.

10.3.2 Flame propagation and kinetic energy

Figure 10.6 shows the volume-rendered flame surface density Σgen projected along the cylinder
axis and the camera line-of-sight. The figure shows the averages, which were obtained for the
five fastest and slowest cycles. The images show crank angles until 30°CA to give insight into
the progression of the flame through the cylinder. It can be seen that the flames in the fast
cycles (columns two and four) are significantly faster than in the slow cycles (columns one and
three), showing almost complete combustion at 20°CA already. The flames are initialized as
a spherical kernel at the time of ignition. The flame then propagates and exhibits progressive
wrinkling with increasing crank angle. The flames are not fully circular but oval-shaped,
which causes the flame to take more time to reach the left side of the cylinder walls.

This chapter was previously published in Flow, Turbulence and Combustion and is reprinted
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Figure 10.6 Average of the volume-rendered flame surface density Σgen projected along the
cylinder axis (left column) and the camera line-of-sight (right column) for different crank
angles visualizing the progress of combustion. The averaging was performed using slow and
fast cycles separately.
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Figure 10.7 Experimentally and numerically obtained centroids of the flame for crank angles
up to 10°CA after TDC conditioned for slow and fast cycles.
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Fig. 10.7 presents the projections of the flame centroids obtained from experiment and
simulation. The viewing direction is indicated by the insert in the bottom right corner.
The location and size of the region shown in the figure is given by the rectangle within the
insert. The coordinate axis are moved to give values of zero at the location of ignition. The
experimental centroids are only found in the lower graph, due to lack of information about the
third dimension. The mean for the centroids of the slowest and fastest cycles were obtained
and are displayed by blue (slow) and red (fast) lines. The lines start at the spark plug and
extend towards the left side, as also observed from Fig. 10.6. The centroids overall behave
symmetrically in the z direction, only deviating by a millimeter. The flame centroids move
in negative y direction. The flames of the slow cycles travel further to the left than the fast
cycles. The slow cycles travel significantly further in the direction of negative x values than
in the experiment. The difference between fast and slow cycles, however, is similar. In both
experiment and simulation, the centroids of the weaker cycles traveled further. One should
note, however, that the centroids are a sensitive and challenging quantity to assess. Overall,
some deviations between the experiment and the simulation can be observed. Possible reasons
for these deviations are the predicted flow field and the flame propagation as a result of the
interaction of several numerical aspects including subgrid modeling, grid resolution, reaction
modeling and discretization. Other potential causes are the precision of the experimental
boundary conditions, the timing of ignition or the errors involved in the imaging of the flame
kernel.

Figure 10.8 shows the kinetic energies during the early combustion phase, using different
sampling methods. The figure shows the volume-averaged global kinetic energy (GKE)
kg =

∫
ũiũi/2 dV/V and the turbulent kinetic energy (TKE) kt =

∫
u′

iu
′
i/2 dV/V with the

velocity fluctuation u′
i = ũi − ⟨ũi⟩ based on the instantaneous velocity ũi and the phase-

averaged velocity ⟨ũi⟩, which were obtained using the entire three-dimensional domain
(denoted 3D) and a two-dimensional slice in the central tumble plane of the cylinder (2D).
The employed definition of TKE using the phase-average differs from the classical definition,
as it may include coherent structures that vary from cycle to cycle. The energies were
calculated with and without using the image-normal velocity component vz (vx,y,z and vx,y).
Also, the statistics are conditioned by using the energies in the fresh gas mixture YC = 0
for the first set and the energies of the burnt gas YC = 1 for the second set to perform the
averaging. The colored values are the averages of the five fastest (red) and slowest (blue)
cycles, the rest indicates the remaining cycles (grey). All values are obtained from the
simulation.

Overall, the fast cycles exhibit higher TKE than the slow cycles, indicating stronger
turbulence within the flow field, which potentially speeds up the flame propagation and
causes the fast cycles. The slow cycles feature a higher separation between the GKE and
TKE. This may be interpreted as a poorer distribution of the overall energy between the
turbulent and large scale structures. As a result, the energy of the turbulent structures is
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Figure 10.8 Simulated global kinetic energy kg (dots) and turbulent kinetic energy kt (crosses)
during early combustion for all cycles, as well as averaged for fast and slow cycles based on
different sampling methods: Conditioned for a progress variable YC of 1 and 0 for the whole
domain (3D) as well as the central tumble plane (2D).
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comparably smaller, which leaves less turbulence to increase the flame speed than in the
fast cycles. The GKE of the fast and slow cycles has similar values, revealing turbulence to
be the main driver of the observed CCV. While few differences for the GKE between fast
and slow cycles can be found, it is expected that a greater number of simulated cycles will
reduce these differences further. Consideration of the image-normal velocity component only
slightly increases the amplitudes of the shown energies without any change of the qualitative
findings, as only minor transport can be expected along the tumble axis. This indicates that
the typically two-dimensional experimental imaging techniques would capture similar physics
without significant loss of information for this setup.

For the samples within the unburnt mixture, the energy values obtained from the 2D
slice appear more scattered than for the 3D sampling. This results from the 3D sampling
being based on more samples and including regions nearby walls, where the flow field energy
is dampened. The decrease of GKE and TKE using the unburnt samples is low compared
to the burnt samples, which is assumed to be a consequence of the high density and low
viscosity. The GKE is overall decreasing until TDC for fast and slow cycles, which is assumed
to be a result of the tumble collapse and the decay of directed flow as a consequence thereof.
In the curves including the image-normal velocity component, the decrease between −15 and
−5°CA is interrupted by a slight increase of GKE, which is assumed to be a consequence of
the tumble collapse, leading to a less organized rotational but more unordered flow. The TKE
of the slow cycles remains constant. The fast cycles reveal decreasing TKE with increasing
crank angle. This might indicate that the fast cycles have experienced a stronger conversion
of GKE to TKE during the tumble collapse, which is now dissipating.

The samples conditioned for the burnt mixture exhibit decreasing energies with increasing
crank angle. This implies strong turbulence around the spark plug. The strong decay of
energy is interpreted as a consequence of the ongoing tumble collapse. The separation between
the GKE and TKE fades with increasing crank angle.

10.4 Conclusion

In the present study, the cyclical variation of the flame propagation in a port fuel-injected,
spark-ignited engine was studied by experiment and simulation. The pressure traces revealed
that both experiment and simulation are in good agreement for the peak pressure and its
timing. The flame radii evolved at a similar rate. The burnt fuel fraction was used to classify
slow and fast cycles.

The second part investigated the flame surface density terms for slow-burning and fast-
burning cycles, revealing a notable difference in the flame speeds. The simulated flame was
found to burn in an oval shape. Trajectories of the flame centroids showed that the flame
is traveling towards intake ports. Interestingly, the flame moved further in the slow cycles,
consistently in simulation and experiment. Finally, the global kinetic energy and turbulent
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kinetic energy was evaluated separately for slow and fast cycles, using samples of the unburnt
and burnt mixture to examine if the turbulence affects the strength of a cycle. Negligible
qualitative differences were observed between a two and three-dimensional sampling space,
indicating that for this configuration the same findings can be made using either two or
three-dimensional diagnostics. It was also found, that the differences between turbulent
kinetic energy and global kinetic energy are larger for slow than for fast cycles. As expected,
fast cycles were found to higher turbulent kinetic energies than slow cycles. The kinetic
energy conditioned on the burned state showed very high initial values, likely due to high
turbulence levels at the spark plug.

In this work, the simulation took PFI to simply mean a perfectly homogeneous mixture.
In reality, this is not the case, and slight mixture gradients occur that may influence CCV
and might have caused some of the difference between experiment and simulation. Overall,
the experiment and simulation have succeeded in demonstrating that much of the difference
in cycle strength can be explained by the turbulence levels – within the two-dimensional
tumble plane and outside of the plane.
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11.1 Summary

This comprehensive study delved into the impact of subgrid models on the simulation quality
of Large-Eddy Simulation using Direct Numerical Simulation, with the aim of providing
reliable and accurate results. Through extensive simulations with a range of well-known and
recently developed models, as well as without any subgrid models, the suitability of various
subgrid models was identified and validated against data from fully- and underresolved Direct
Numerical Simulation obtained from an identical numerical framework. The study revealed
that the influence of subgrid models on the simulation quality was non-trivial and highlighted
the importance of assessing both reactive and non-reactive cases of canonical and lab-scale
nature to ensure accurate results.

Furthermore, the study proposed a novel procedure for quantifying simulation quality
relying on an entropy-based measure, which was applied to simulations performed at different
resolutions. In contrast to several known quality indicators, this proposed measure demon-
strated a converging trend with improved simulation quality in both a-priori and a-posteriori
studies, which emphasizes its reliability in quantifying simulation quality.

The study also introduced a temporal backtracking method-based on a Lagrangian
framework for the reconstruction of fluid parcel paths in turbulent reactive technical systems.
The accuracy of this method depends on the quality of the simulation, which was validated by
comparing the simulations with experimental data. The proposed method was also compared
with known physical phenomena to assess its correctness. Finally, the study found that high-
fidelity numerical tools provide a reliable alternative to additional modeling for underresolved
physical phenomena, further emphasizing the importance of accurate simulation results.

11.2 Conclusion

The assessment of subgrid models presented in this work is a critical analysis of algebraic
approaches in Large-Eddy Simulation. While other possible approaches were outlined, this
study focuses on the strengths and weaknesses of the proposed strategies, particularly in
terms of the quality of the results and the computational resources invested. However, it’s
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important to note that the numerical implementation of these algorithms must be considered
for a wider application of these models, especially given the variety of codes and frameworks
available, which greatly affect the applicability of a model. Thus, the findings of this work
are an important contribution to identifying appropriate modeling strategies for a given
numerical framework.

The assessment of the grid resolution quality for canonical cases was conducted using
simulation data, providing valuable insights into the potential of the proposed approach.
Although only trends were observed, the importance of using experimental or simulation data
for evaluating simulation quality cannot be overemphasized, particularly given the general
lack of experimental data and the high cost of Direct Numerical Simulation. Therefore,
further studies in this area should be intensified to improve our understanding of the subject.

The assessment of cyclic variability in spark-ignited optical research engines presented a
challenging physics problem that required a high-quality framework to obtain satisfactory
results. An essential finding of this study was that high-order numerics can compensate for the
use of supplementary models that account for small-scale physics of ignition, underscoring the
need for high-fidelity software for simulating turbulent reactive systems. Unfortunately, many
simulations of such systems are performed using frameworks primarily designed to maintain
numerical stability, which may not lead to satisfactory results, as the predictive abilities of
these methods are greatly reduced. To compensate for these impairments, additional modeling
often featuring several parameters is employed, leading to simulation results that require
calibration with respect to reference data. Such practices are not high-fidelity and render
these simulations somewhat redundant. Hence, it is crucial to develop and use high-fidelity
numerical frameworks capable of accurately simulating complex phenomena.
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A Assessment of liquid injection in piston
engines

A.1 Introduction

The description of multiphase flows forms one of the most important applications of Large-
Eddy Simulation (LES). Liquids and solids may occur as a dispersion in a gaseous flow and
hence, may alter the behavior of the flow. A plethora of technical systems relies on the
injection of liquids for, e.g. cooling, cleansing or firing, all of which aim to disperse the
respective liquid phase in the gaseous flow. Thus, the appropriate description of the dispersed
phase and the numerical treatment of the gaseous phase are of great importance in order to
achieve satisfactory reproduction of the desired physics.

A common way to describe the dispersed phase which is of particular relevance to this
work, is the Euler-Lagrangian framework. In this framework, the dispersed phase is treated as
Lagrangian particles, while the surrounding gaseous phase is described by transport equations
in the Eulerian framework. Since the Lagrangian particles typically represent spherical
droplets, it can be concluded that these methods are only able to capture all the physical
processes after the secondary breakup of the injected liquid jet, and the effects of the primary
breakup have to be modeled by other means.

A purely Eulerian formulation is provided by the Volume of Fluid (VOF) approach
which has been introduced by Noh and Woodward [195] and further developed by Hirt and
Nichols [103]. The VOF methods track down fluid-fluid interfaces by introducing a fraction
function C. The values of C range between 0 and 1 to distinguish between the two fluid
phases present in the domain where values of 0 indicate the pure presence of the one phase
and values of 1 represent the other phase. A pure convection equation is solved for the
fraction function and its values are used to calculate the density and viscosity required for the
solution of the momentum equations. A detailed overview of the VOF method was provided
recently by Klein et al. [139] and Ketterl et al. [128].
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Table A.1 Engine operating conditions.

Engine speed 1500 rpm
Bore 84 mm
Stroke 90 mm
Compression ratio 9 : 1
Intake valve open (IVO) 316°CA
Intake valve close (IVC) −112°CA
Exhaust valve open (EVO) 252°CA
Exhaust valve close (EVC) −326°CA
Ignition timing −20°CA
Fuel Iso-octane
Relative air/fuel ratio 1.2
Intake pressure 1 bar
Intake temperature 333.15 K
Injection pressure 200 bar
1. Injection timing −330°CA
1. Injection duration 13.7°CA
1. Injection mass 21.6 mg
2. Injection time −56°CA
2. Injection duration 6.2°CA
2. Injection mass 10.0 mg

A.2 Experiments

The measurements and simulations were performed on an optically accessible four-stroke
single-cylinder SI engine with direct fuel-injection. The engine was operated at 1500 rpm and
was fueled using iso-octane. Table A.1 summarizes the operating conditions. Optical access
is provided by a flat piston window and a quartz glass cylinder liner. In the experiments, to
minimize the potential influence of residual gas on CCV and to reduce the thermal load, each
fired cycle was followed by two motored cycles. Combining three subsequent measurements
of 71 fired cycles resulted in a data set of 213 cycles with short interruptions in between. The
pressure was measured using a piezoelectric pressure sensor. A high-speed camera captured
the line-of-sight integrated combustion luminosity (CH*) at a frame rate of 43 kHz. With a
field-of-view (FOV ) of 23x34 mm, only the region around the spark plug was imaged, and
the recording was performed from ignition timing at −20°CA until +5°CA. This work assigns
0°CA to compression top-dead center, i.e., crank angles during intake and compression are
negative.

A.3 Numerical Modeling

Computations were carried out with an in-house LES-solver. The Favre-filtered conservation
equations for mass, momentum, total internal energy and fuel mixture fraction were solved in
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a density-based solver framework. The finite volume method (FVM ) was used to discretize
the equations on an isotropic equidistant grid of 0.39 mm size, leading to a total amount of
38 Mio. cells. Convective fluxes were interpolated with an eighth-order central difference
scheme (CDS) supported by a tenth-order filter for momentum for Mach numbers Ma below
0.2. The CDS fluxes were blended with a total variation diminishing (TVD) scheme with
the nonlinear CHARM limiter for 0.2 < Ma < 0.3 and the full TVD fluxes were used for
higher Mach numbers. All scalar-fluxes were discretized using TVD. Time integration was
performed with a low-storage Runge–Kutta scheme of third-order. All walls and moving
parts of the engine follow a Lagrangian particle and immersed boundary based framework
given by Nguyen [191]. The sensor-enhanced Smagorinsky model of Hasslberger [96] was
employed to take into account for the subfilter transport along with a turbulent Schmidt
number of Sct = 0.7.

A.4 Modeling of the liquid phase

The liquid phase is described in an Euler-Lagrangian framework which has been developed
and applied for the employed code successfully [233, 256] and for the detailed description
of the dispersed phase the reader is referred to the respective works. The droplets are
described employing equations for position xi,d, velocity ui,d, mass md and temperature Td

of Lagrangian form:

dxi,d
dt

= ud,i (A.1)
dui,d
dt

= f1
τd

(ũi − ui,d) +
(

1 − ρ

ρd

)
(A.2)

dmd
dt

= − Sh
3Sc

md
τd

log (1 + Bm) (A.3)

dTd
dt

= Nu
3Pr

cp
cp,d

(T − Td)
τd

log (1 + Bh)
Bh

+ Lv,d
mdcp,d

dmd
dt

(A.4)

In addition to the previously introduced gas phase quantities, these equations require the
droplet density ρd, the isobaric heat capacity cd,p and the latent heat Lv,d.

The drag force f1 is obtained from the droplet Reynolds number:

f1 = 1 + 3
20Red

0.687 (A.5)

Where the droplet Reynolds number is evaluated based on the velocity of the droplet relative
to the carrier phase:

Red = ρ|ũi − ud,i|dd
µ

(A.6)
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The characteristic droplet timescale τd can be calculated using the droplet diameter dd and
the gas phase viscosity µ as:

τd = ρdd2
d

18µ
(A.7)

The Schmidt number Sc, the Sherwood number Sh, the Nusselt number Nu, the Spalding mass
transfer number Bm and the Spalding heat transfer number Bh are needed to calculate the
above quantities. While the Schmidt number can be considered given for the respective flow
by experience, the Sherwood and Nusselt numbers are typically determined using empirical
correlations, which one of the most important ones being that of Ranz and Marshall [224]:

Sh = 2 + 0.552Red
1/2Sc1/3 (A.8)

Nu = 2 + 0.552Red
1/2Pr1/3 (A.9)

The Spalding mass transfer number is defined based on the mass fraction of the liquid
dissolved in the gas phase Y as:

Bm = Y S − Y ∞

1 − Y S (A.10)

Where Y S denotes the mass fraction directly on the droplet surface and Y ∞ indicates the
mass fraction in the distant gas phase. The mass fraction at the droplet surface Y S is
found under the assumption of equal ratios of mole fractions X and partial pressures for the
evaporated liquid phase and the gas phase:

Y S = XS

XS + (1 − XS) W
Wd

(A.11)

With the molar mass of the gas phase W and the molar mass of the liquid droplet Wd. The
respective molar fraction at the surface is obtained from the Clausius-Clapeyron equation:

XS = exp
(

Lv,d
Rm/W

(
1

Tb
− 1

T S
d

))
(A.12)

Which requires the boiling temperature of the droplet Tb and the surface temperature of
the droplet T S

d – within this work it is assumed that the temperature of the droplet is
homogeneous and hence T S

d = Td:

Bh = cp
Lv,d

(T − Td) (A.13)

To establish the coupling between the liquid and gaseous phases, a source term is included in
the conservation equations. As it directly indicates the evaporated liquid, the conservation
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Figure A.1 Averaged flow fields at crank angles of −270°CA and −90°CA in the tumble plane.

equation of the mixture fraction featuring the corresponding source term shall be given:

∂ρZ̃

∂t
+ ∂ρZ̃ũj

∂xj
= ∂

∂xj

(
ρD

∂Z̃

∂xj
− ρτ sgs

j

)
+ Γ̇ρZ̃ (A.14)

Where the source term Γ̇ρZ̃ is calculated from the evaporated droplet mass per timestep.
The droplets are treated in the simulation using the equations described above. Since

the Lagrangian-Eulerian framework does not allow for the description of atomization, the
droplets must be seeded in the simulation after the breakup stage. This requires a priorly
performed DNS of the near field of the injector employing the VOF method. Droplet statistics
are sampled from this preprocessing simulation and then seeded into the carrier phase LES.

A.5 Results

A.5.1 Flow Fields

For a qualitative insight into the dynamics of the mixing the flow fields in the tumble plane
are shown at two crank angles of −270°CA and −90°CA representing compression. The
left image features the intake flow, which is the basis for the mixing during and after the
first injection stage. The flow is characterized by strong motion into the cylinder, which
creates a strong wake region below the valves. While mixing is affected by this wake region,
the strong flow into the cylinder will spread the fuel to different regions in the cylinder.
As the piston enters the compression stroke and the valves are closed, the tumble motion
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Figure A.2 Visualization of the averaged three-dimensional mixture fields within the engine
geometry. The tumble plane is indicated by the averaged image-normal velocity component.

is forming, ultimately resulting in strong mixing. The tumble motion is the basis for a
homogeneous mixture. As the valves are closed, the internal geometry is greatly simplified
by the elimination of narrow gaps and wake regions, allowing for the flow to better reach
previously unmixed areas of the cylinder. The second injection takes place during the late
stage of compression before the tumble breakdown. This results in partial mixing of the fuel
and achieves the residual stratification that is the objective of the two-stage injection.

A.5.2 Spray topology

To assess the distribution of the evaporated fuel in the gas-phase three-dimensional fields
of the averaged equivalence ratio ϕ are shown in Fig. A.2 at different crank angles. Crank
angles during intake, early and late compression are shown to cover both injection phases
and to describe the spatial evolution of the mixture in time. The engine geometry is included
in the visualization for orientation purpose.

The vaporized spray is qualitatively visualized as a green cloud, with the blue shades
indicating a richer mixture and the transparent areas representing pure air. At a crank angle
of −270°CA, a dense parcel of rich mixture can be found below the intake valves as they
are protected from the inflowing air. Due to the isolation by the wake region around the
valve, this mixture is isolated from the surrounding pure air. Another dense kernel of rich
mixture can be found below the exhaust valves, close to the piston, due to the liquid spray
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hitting the piston with great force. The evaporating spray is pushed into this area by the
intake flow, resulting in the formation of this kernel. With ongoing intake stroke, this kernel
moves to the side of the intake valves where it is diluted by the progressing inflow of air.
The increased lift of the intake valves reduces the magnitude of the inflow velocity in the
valve gap, which leads to a weaker wake region and better mixing of the rich mixture below
the intake valve. Finally, at −180°CA, the piston motion stops and the intake flow reverses,
eliminating the wake region below the intake valve. Despite the loss of mixture due to the
outflow, this results in better mixing as the piston begins to progressively push the rich and
lean regions together.

A more homogeneous mixture can be observed during the compression stroke which is
characterized by a dense mixture as a consequence of the tumble motion and the progressively
decreasing volume. This is highlighted by the uniform coloration during −90°CA and −60°CA.
As a consequence of the second injection, the equivalence ratios at −20°CA feature less
homogeneity. While reducing the overall mixture inhomogeneity, the goal of the second
injection is the stratification of the charge. The last crank angle −20°CA confirms the
stratification of the charge near the spark-plug as seen by the dense kernel of mixture around
the spark-plug area.

It can be summarized that compared to the common hypothesis of a homogeneous mixture
in spark-ignited piston engines, the actual simulated mixture features notable inhomogeneities.
In particular, the second injection leads to a richer mixture in close proximity to the spark-plug
which is typically desired in stratified charge operation.

A.5.3 Spray Statistics

Line plots of the averaged equivalence ratio are generated in the tumble plane to provide a
more quantitative insight into the fuel distribution. Four lines are evaluated from the tumble
plane as illustrated in Fig. A.3 where the line center x = 0 corresponds to the cylinder axis.
The lines are shifted vertically along the y axis in steps of 10 mm. Six crank angles are
evaluated with three representing the intake and another three representing compression
respectively. The lines for different crank angles are kept within the same plot to better
visualize the temporal evolution of the mixture at each location. The profiles reveal little
evolution of the profiles obtained from the compression stroke with the −90°CA and −60°CA
particularly revealing homogeneous mixtures. The −20°CA profile can only be found at y = 0
mm as the piston is already close to TDC, causing all the remaining space in the cylinder to
vanish. This line features strong inhomogeneity due to the second injection closely before
TDC, which aims at stratifying the mixture. The lines of crank angles during the intake
stroke show strong variations which is a consequence of the more intense flow dynamics
during the intake. Due to the increasing domain and the variation of the intake jet above the
valve and the corresponding wake region forming below the valve, the intensity of the mixing
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Figure A.3 Averaged flow profiles and their respective standard deviation of the equivalence
ratio ϕ in the tumble plane.

process strongly increases as the intake stroke progresses. These observations are supported
by the standard deviations of the equivalence ratio. The early crank angles feature an overall
higher level of variation. During the compression stroke, the crank angle of −20°CA has to
be noticed, which again shows high variation due to the late injection which is interacting
with the tumble breakdown.
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