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Networked Embedded Systems Group (NES)

Institut für Informatik und Wirtschaftsinformatik (ICB)

Essen, Dezember 2021



Gutachter:

Prof. Dr. Pedro José Marrón
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Abstract

In the last two decades, wireless communication has evolved to one of the
most important techniques for exchanging information. Providing much
more flexibility and possibilities compared to its wired alternative, applic-
ations utilising wireless communication require elaborated conceptions of
planning the underlying network to achieve desired operational requirements
and ensure reliability. However, realising these objectives requires to exploit
network-specific knowledge, e.g., about the environment with its distinct
characteristics or the used device hardware and applications, possibly entail-
ing further efforts and costs to obtain, e.g., by performing time-consuming
measurement campaigns. Thus, solutions are often required being practical
and adapted to a given situation. Goal of this thesis is the development of
universal approaches for analysing and improving wireless networks without
constraining their applicability by underlying assumptions while usefully
exploiting available network information. Breaking down the process of
knowledge generation and exploitation into consecutive steps based on the
amount of available information allows to provide granular approaches able
to adapt to a wide range of scenarios considering their highly individual
conditions. Distinguishing and addressing four leverage points, this thesis
makes the following contributions to further understand and optimise wire-
less networks: (1) identifying the network topology and localise its devices,
(2) modelling wireless communication in a fast and accurate way, (3) under-
standing the cause-effect relationship for changing network behaviour and
exploit the knowledge for (4) improving the network with regard to spe-
cifiable performance metrics. The evaluation was conducted in several real-
world scenarios, demonstrating the viability of automated general solutions
for network analysis and optimisation at different levels of knowledge, man-
aging to realise universal, network-independent applicability on one side and
adaptability to specific systems and environments on the other side. The
presented approaches are able to flexibly operate with variable amounts of
information, ranging from the necessary minimum up to a large amount of
further relevant details, enhancing the quality of results. Conclusively, each
contribution of this thesis provides an approach to analyse a different aspect
of the network and extract valuable knowledge to exploit. Altogether, they
cover the complete range of knowledge acquisition to assist users in gaining
insights about their network to ultimately improve the performance of their
setup.
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1 Introduction

1.1 Background and Motivation

In the last two decades, wireless communication has evolved to one of the
most important techniques for exchanging information. Development has
yielded a wide range of standardised technologies, each tailored to spe-
cific requirements. Around these technologies several areas of application
for wireless communication have evolved finding their way into everyday
life, such as cellular networks, the Internet of Things (IoT), Cyber-Physical
Systems (CPS) and Industry 4.0. In spite of their distinctions, all these
applications have in common relying on electromagnetic waves carrying in-
formation from a sender to a receiver wirelessly over the air. For operating
properly, systems heavily depend on successful, unimpeded communication
between the involved devices, which in their entirety represent a network.
By propagating through space, to achieve a successful transmission of in-
formation, the signal must be able to reach its destination with sufficient
power, defying environmental conditions, e.g., intermediate obstacles, in-
terfering noise or climatic changes. Providing much more flexibility and
possibilities compared to its wired alternative, applications utilising wire-
less communication require elaborated conceptions of planning the under-
lying network as there are many relevant aspects to consider [p82, p157].
Therefore, an adequate understanding of electromagnetic wave propagation
as well as of involved influencing factors of the environment, in which the
devices operate, is crucial to ensure a functional application. However,
taking all factors into account is a complex and challenging task. While
the influence of one single factor might be comprehensible in many cases,
the combination of all these factors result in highly individual conditions
for each pair of wirelessly communicating devices, hence creating unique
scenarios. As a consequence of distinct scenario characteristics, solutions
are often required being practical and adapted to a given situation. When
planning and realising a new deployment, this diversity hampers a direct
transfer of solutions used in other scenarios highlighting the necessity and
importance of obtaining and exploiting site-specific knowledge to create a
tailored solution.
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Identified by researchers as persisting challenge for the upcoming decade
[p32], a thorough planning and deployment of a network is crucial to achieve
desired operational requirements and ensure reliability even in case of oc-
curring disturbances. Acquiring knowledge of network and environment re-
quires expertise and is a costly and time-consuming effort usually obtained
by sophisticated experimental campaigns [p102, p27]. For this reason, many
networks lack such in-depth preplanning being prone to disregarded inter-
ferences during operation. Instead, devices are often placed based on an
intuitive understanding of “good” positions for wireless reception, e.g., in
central positions or at higher spots to achieve either better coverage or avoid
obstacles. In many cases this approach works well, but in others it may not
achieve the desired effects, e.g., when unknown environmental properties or
interfering sources influence wireless communication. This missing inform-
ation is implicitly reflected in the behaviour of the network and thus can be
inferred by applying further analysis to actual data, e.g., the measured signal
strength between devices. Exploiting such information then facilitates the
development of optimisation plans steering the network performance into
the desired direction. Offering the tools providing knowledge in realising
a general and automated approach of analysis and optimisation applicable
to new and also existing infrastructures would simplify the process of de-
ployment and adjustment significantly by saving time as well as costs by
eliminating the necessity of domain experts.

1.2 Challenges

Developing universal approaches for analysing and improving wireless net-
works without constraining their applicability by underlying assumptions
while usefully including available network information though creates sev-
eral challenges.

Heterogeneous Networks The variety of equipped hardware, e.g., boards,
sensors and radios, provides diverse types of analysable data to gain inform-
ation about the device, the network and the environment. However, espe-
cially when investigating the IoT consisting of large numbers of potentially
different devices participating in a network, the heterogeneity aggravates as-
sumptions on finding a basic set of commonly available information to agree
on. This underlines the importance of establishing common standards to
ensure proper operation. As a consequence, a large variance of exploitable
information can be expected not only across multiple networks but also over
different devices in the same network. Therefore realising approaches work-
ing in the most general way necessitates a reduction of expected information
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to a common and indispensable minimum, each network should be able to
provide, such as the received signal strength between two devices or the
communication frequency of sent signals. In spite of information scarcity,
optimisations and knowledge gain still need to remain possible.

Costs of Information Exploiting available information is essential for
knowledge acquisition and network optimisation. Self-evidently, a larger
amount of information comprises more potential for achieving better results
in the quality of optimisation approaches. However, obtaining additional in-
formation beyond the available one implies costs which have to be assessed
in relation to their benefit. Information gain and costs in this context
may occur in various ways. On the one hand it can arise through manual
external effort, e.g., performing deployment site measurements to acquire
positional or structural information of network and environment properties,
requiring financial resources, time and expertise. On the other hand it can
emerge through an automated internal effort, deriving implicitly contained
knowledge from the available information, e.g., obstacle influences on tem-
poral signal changes, involving input and computation times of the analysis
tools as primary costs. Since an automatic approach for information ex-
traction already comprises incorporated expertise, it is preferable due to a
more general applicability and potentially lower costs. This is achieved by
an omission of otherwise recurring required personal expertise in case of a
manual realisation. As a consequential requirement, developed algorithms
have to cope with variable amounts of information as well as taken design
and deployment decisions and exploit them comprehensively. This flexibil-
ity then is crucial for achieving the best results with fewest possible effort
and costs.

System Uniqueness Experimental campaigns reveal invaluable insights
into the properties of a network and its environment, aiding a sophisticated
network optimisation. However, as these campaigns are usually conducted
to reveal traits of a specific network, the transferability of such insights is
limited and universally applicable knowledge hard to derive as each net-
work is situated in a unique setting. Such setting comprises a large number
of factors to consider, such as the devices, their hardware and its prop-
erties, the environment containing structural features, positions of walls,
other obstacles, static and mobile, their construction materials and other
possibly interfering signal sources. The unique interplay of these factors
is highly unlikely to occur at any other system in the same way again,
always preventing an unrestricted transfer of insights to other networks.
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Figure 1.1: Visualisation of contributions of this thesis. For each phase in
the depicted process of gaining network knowledge, an approach is proposed to
increase and utilise the available knowledge.

Therefore general solutions for network optimisation cannot be as granu-
lar as dedicated ones and also require network-independent approaches at
first, adaptable to system and environment of a specific network in a second
step.

1.3 Goals and Contributions

Goal of this thesis is to extend the state of the art in understanding and op-
timising wireless networks in a universally applicable manner by providing
flexible approaches tackling different stages of knowledge generation and ex-
ploitation. Figure 1.1 visualises the addressed consecutive levels of network
knowledge in conjunction with an increasing amount of required informa-
tion about the system, either provided by the network itself or externally. In
detail, this thesis focuses on how information provided by operating wireless
networks and their environments can be analysed to automatically derive
valuable knowledge about their properties. Ultimately, this knowledge in
turn becomes exploitable to enable an optimisation of the network beha-
viour towards specific performance goals. This thesis provides solutions for
topology determination and device localisation based on varying amounts
of information, as well as techniques to identify causes of changing network
behaviour by incorporating a description of the environment a network is
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located in. Furthermore, it evaluates how these insights and their implica-
tions foster optimisation strategies based on relocation of devices to achieve
better network performance. As a secondary objective, the introduced ap-
proaches are kept practical and simple to apply while requiring minimal ef-
fort to configure inputs as well as exhibiting acceptable computation times,
facilitating their applicability on common systems and by inexperienced
users. Addressing the aforementioned challenges, this thesis makes four
contributions for extracting and exploiting network knowledge in a more
general and automatised way. These contributions are briefly stated in the
following, referencing to the corresponding stage numbers of Figure 1.1.

(1) Topology Identification and Device Localisation with Minimal In-
formation Repeatedly emerging and changing infrastructures impose a
challenge for ensuring a proper operation of a network while fulfilling its per-
formance requirements, such as reliability, robustness or timeliness. Know-
ledge of device locations is a key element for understanding and improving a
network. Not in all cases, positions have been tracked or known beforehand.
In addition, the heterogeneity of networks, especially in the case of IoT, does
not allow for many assumptions on a network and the provided information
without significantly restricting the applicability of an employed approach.
This thesis introduces FLoW [a4] a general approach able to work with
different amounts of information, ranging from the absolute basic informa-
tion, the strength of a received signal, each radio chip is able to measure,
over an outline of the deployment scenario up to the knowledge of a few
locations of devices using them as anchors. The proposed approach is able
to generate a topology estimation of the network using minimal information
and refine it in an incremental process by estimating the device positions
when provided with aforementioned supplementary information.

(2) Fast and Accurate Runtime-Adaptable Wireless Communication
Modelling Being able to accurately predict the signal quality at arbit-
rary locations is an effective way to prevent a costly trial-and-error method
when exploring new positions for devices. In general, modelling of wireless
communication can be realised in two ways, an empirical, network-based
approach and a deterministic, environment-based one utilising physics of
signal propagation independent of the actual network. The more fruitful
option regarding generality, predictability and knowledge gain potential is
the latter as it comprises a description of the environment enabling to take
environmental features into account and interrelate them with network ob-
servations in a second step. An increasing amount of provided details com-
monly improves the accuracy of a model but also increases computation
time. To keep a balance between acceptable speed and sufficient exactness
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this thesis proposes solutions for achieving both. Either by compensating
missing details through fusing observations and physics in a hybrid approach
or by utilising massive parallel architectures of modern graphic processing
units [a1, a3, a2]. These models, joint together in a set called MOVE, serve
as foundation for the subsequent contributions of this thesis.

(3) Cause-Effect Relationship for Changing Network Behaviour The
importance of understanding the behaviour of wireless communication in
practice has promoted many experimental studies, characterising signal
propagation in specific environments. Despite the gathered knowledge, the
perceived discrepancy between abstract models and actual network perform-
ance has supported the belief that system design and debugging can rely
only on direct experience and trial-and-error. As a result, reasoning about
wireless systems is nowadays a tedious, manual process. This contribution,
called Follow [a2] walks the playground between model and reality to
make wireless networks understand their own behaviour in the environment
where they operate. It provides a technique based on ray tracing incor-
porating a description of its deployment scenario without the necessity of
providing highly detailed accuracy. The approach is able to estimate the im-
pact of obstacles, typically found in indoor scenarios, e.g., doors, windows or
elevators on the network by exploring possible wireless signal paths interact-
ing with an obstacle. To circumvent an accuracy loss of model predictions
caused by an inaccurate environment description, a coarser classification
between strong and weak expected signal strengths is performed rather than
a qualitative analysis. Based on the estimated impact, it becomes then pos-
sible to automatically assign observed changes during the operational phase
to the corresponding obstacles identifying them as a reason.

(4) Network Performance Optimisation The design and deployment of
networked embedded systems is a challenging task. In particular, the envir-
onment in which the system operates has a severe impact on the final per-
formance. As fourth contribution, MOTION [a3] is presented, an approach
exploiting the aforementioned hybrid modelling technique able to charac-
terise indoor wireless communication in the target environment based on
measurements and descriptions. Investigations of arbitrary displacements
of devices become feasible aiding in exploring and evaluating the optimisa-
tion potential of networks. By controlling the relocation of a single node
based on the information provided by the model, it is possible to improve
performance metrics, such as latency, throughput and energy consumption
of typical applications. Ultimately, this contribution constitutes the final
step of enabling a directed situated optimisation of wireless systems by ex-
ploiting the available network knowledge obtained in previous steps.
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1.4 Outline

1.4 Outline

The remainder of this thesis comprises the following. Chapter 2 covers the
background of wireless communication. Chapter 3 describes the related
work of the subsequent contributions presented in this thesis. Chapter 4
discusses FLoW, a technique for analysing network communication gen-
erating topology information [a4]. Chapter 5 introduces MOVE, a set of
models for wireless signal propagation [a1, a3, a2]. Chapter 6 describes
Follow, a method to identify obstacles as reasons for temporal changes in
signal reception [a2]. Chapter 7 explainsMOTION, an approach for optim-
ising network application performance by relocating devices [a3]. Chapter 8
contains the evaluation of the previous contributions. Chapter 9 concludes
the work and presents an outlook of future research directions.
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2 Background of Wireless
Communication

This chapter provides the substantial background of wireless communica-
tion, explains associated terms and elaborates on the physical properties
relevant for modelling signal propagation. Furthermore an introduction to
ray tracing is given, the models covered in this thesis are based on. Finally,
challenges of modelling wireless communication are discussed, justifying the
design choices made, described in the succeeding chapter.

2.1 Wireless Communication

Wireless communication has evolved to one of the most important tech-
niques for exchanging information and fundamentally influenced the techno-
logical development during the last decades. Besides the obvious advantage
of not requiring any physical connection between communicating devices
and thus facilitating scenarios including mobility, wireless communication
has several further advantages over the wired alternative. Due to the ability
of radio waves passing solid materials, connecting to a network via station-
ary access point is rather bound to an area, instead of being limited to single
positions providing sockets, massively increasing availability and flexibility.
In addition, to establish a network connection, further hardware except for
the radio chip of the communicating device becomes dispensable, reducing
the costs as well as opening the possibility to offer services at a larger scale
[p82].

However, ubiquitous availability and increased flexibility comes at a cost.
The first noteworthy field not covered in this thesis, but mentioned for the
sake of completeness is security. Although mostly designated to a specified
receiver, the radio signal containing a message spreads on the entire area,
allowing third persons to more simply overhear communication and possibly
extract confidential information. Taking the risks of a freely receivable com-
munication into account, security is an essential topic in wireless communic-
ation [p111, p80]. For the common standardised transmission technologies
many publicly available encryption standards exist, protecting exchanged
messages from being readable [p140].
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Even though security is a steadily prevailing topic, this thesis focuses on
a different yet similarly relevant area of problems. It aims at extending
the state of the art of wireless communication by identifying and improving
the network properties through focusing on the physical aspects of signal
propagation and their implications to identify the reasons behind observed
network behaviour by an automated analytical approach. In this context,
some commonly used terms are introduced and explained in the following.

RSSI The strength at which a signal is received determines whether a radio
chip is able to differentiate between the sent signal and the background noise
to successfully extract the sent information (for details see Section 2.2.2).
This strength is measured by most radio chips upon successful reception
and provided as an integer value, the so-called received signal strength in-
dicator (RSSI). Although containing minor inaccuracies depending on the
used hardware, the RSSI still provides a viable estimation of the signal qual-
ity. Therefore it facilitates to evaluate signal propagation and coverage with
any wireless device, delivering valuable information about environment and
network. Especially the fact being one of the few commonalities among the
otherwise heterogeneous variety of wireless devices predestines the RSSI to
be utilised for analysis as one key metric. Consequently, all contributions
of this thesis directly or indirectly use the RSSI for deriving information.

Link By being able to receive a signal at sufficient strength, the two in-
volved devices establish a unidirectional link from the sender to the receiver.
Accordingly, if a reception is reversely possible too, the devices share a bid-
irectional link. However, in the context of this thesis, the term link is used to
describe the unidirectional way of signal transmission, resulting in counting
two links in case of successful bidirectional transmissions of signals.

WSN A wireless sensor network (WSN) describes a set of autonomous
wirelessly communicating devices equipped with sensors monitoring envir-
onmental characteristics, such as temperature, humidity or light levels. Due
to the mostly mobile usage in large numbers of up to thousands of devices
[p52] and the small device size, hardware capabilities are restricted to fulfil
basic computations and sensing tasks only. Being dependent on battery
sources, devices are mostly designed for operating over long periods of time
prolonging the necessity of a costly battery exchange if scheduled at all.
The devices organise themselves in networks to deliver their gathered data
to a central collecting device, the sink, which usually has larger compu-
tational capabilities for processing and analysing this data. The technical
standard of the Institute of Electrical and Electronics Engineers (IEEE),
802.15.4 [p70] provides a basis for low-data-rate wireless communication,
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also taking devices with limited energy resources into account by confining
to implementations of very low complexity at hardware level. It also reg-
ulates communication on three possible frequency bands, operating at 868
MHz, 915 MHz and 2.4 GHz. Building on this standard, several protocol
specifications have emerged, such as ZigBee [p73] and Thread [p150], provid-
ing further implementations of higher communication layers. Appropriate
due to their versatility and flexibility, WSNs have been used in a large range
of scenarios, e.g., environmental sensing [p152, p163], structural monitoring
[p28, p29], health care [p85, p31], education [p172], disaster detection [p21]
and industrial maintenance [p151, p167].

WiFi Dedicated to wireless communication in a less resource constrained
context and usually with higher transmission powers, the term WiFi de-
scribes a set of protocols that have evolved based on the IEEE 802.11 stand-
ard [p69]. For WiFi, frequency bands of 5 GHz and 2.4 GHz are used,
partially overlapping with the frequencies used in IEEE 802.15.4. A large
portion of RSSI measurements used for evaluating the contributions of this
thesis were collected from WSN testbeds and WiFi networks.

2.2 Properties and Physics

In this section, the relevant basics of radio signal propagation are sum-
marised, based on the contents of [p164], [p62], [p121] and [p123] if not
otherwise stated. These are important to understand the principles, which
the presented physical models use to perform their predictions.

2.2.1 Electromagnetic Waves

Transmitting information from a source to a destination requires a medium,
to which this information is attached. In wireless communication, electro-
magnetic waves are utilised to convey information (signals), over the air.

Electromagnetic waves consist of two synchronously sinusoidal oscillating
perpendicular fields, an electric and a magnetic one, containing energy and
transporting it through space, as shown in Figure 2.1. These propagate
at the speed of light c = 299.792.458 m s−1 in a vacuum and at reduced
speed in matter based on the permeability. An electromagnetic wave is
characterised by an amplitude and a frequency of oscillation f , measured
in hertz (Hz (s−1)), or alternatively the wavelength λ in metres, i.e., the
distance at which an oscillation repeats. Frequency and wavelength are
convertible through the equation:
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2 Background of Wireless Communication

Figure 2.1: Oscillating electromagnetic wave consisting of an electric (E⃗) and
a magnetic (B⃗) field carrying energy through space in the direction of v⃗ (image
source: [m13]).

f =
c

λ
. (2.1)

For electromagnetic waves the amplitude denotes the maximum field strength
of electric and magnetic fields whose energy is proportional to the squared
amplitude. The total energy of a wave in turn is the sum of smallest units
(quanta) with discrete amounts of energy, called photons. According to
the quantum theory, photons exhibit characteristics of both particles and
(electromagnetic) waves. They have a fixed amount of carried energy E,
measured in joule (J (kg m2 s−2)), which is determined by their frequency
according to the Planck-Einstein equation

E = h f (2.2)

with h = 6.62607015 × 10−34 J s as the Planck constant. This constant
defines the minimum amount of energy for an electromagnetic action to
take place. In order to increase the amount of transmitted energy of a
wave, either the frequency or the quantity of emitted photons has to be
increased. Electromagnetic waves do not influence each other, allowing an
overlapping of multiple waves while propagating in space. Due to this ap-
plicable superposition principle, electric and magnetic fields of each particle
contribute to existing respective fields of other sources at the same loca-
tion. When propagating in the same direction, multiple particles add up
their energy forming one large observed electromagnetic wave accumulating
the individual energies. The rate of energy transfer (power) is measured in
watt (W (J s−1)) [p149].

Electromagnetic waves are a result of oscillation or acceleration of electric-
ally charged particles emitting energy outwards. Once emitted, waves carry
the radiated energy away from their source and distribute it through space
in an expanding wavefront. A wavefront describes the surface on which
all points have the same time of travel regarding their source. The actual
shape of a wavefront depends on the type of emitting source. Assuming a
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single point source, the wavefront propagates away from that point equally
in each direction as a sphere. Upon permeating matter during propagation,
an energy transfer back to other particles is possible, depending on the wave
frequency and the type of matter.

The general principle of wireless communication builds on the exploitation of
aforementioned electromagnetic wave properties. Although emerging under
various conditions, the relevant method for emitting electromagnetic waves
in the context of wireless communication is to accelerate charged particles
by regulating the current flow through an antenna. This technique enables
a controlled and precise way of electromagnetic wave generation to transmit
signals with certain frequency and power (strength). Common frequencies
used for wireless communication range from a few Hz up to many GHz [p35].
Common transmission powers are usually given in the range of milliwatts
(mW ), due to regulations of wireless communication, prohibiting the use
of stronger signals above a few watts for civil usage. E.g., in wireless local
area networks using the 2.4 GHz band, the maximum allowed transmission
power in Europe is limited to 100 mW [m7].

2.2.2 Signal Path Loss

During the transition from transmitter to a destination, signals experience
losses resulting in less received power, caused by the expanding coverage of
the wavefront in space and the interaction with obstructions on its path,
called attenuation. The difference between transmitted and received power
is called path loss and is a key value in predicting wireless signal propagation.
It is measured in decibel (dB), a relative unit to represent the ratio L of a
value of power (or field) quantity P to another reference value P0 using a
logarithmic scale [p148, p68]:

LP = 10 log
P

P0

(2.3)

According to Equation 2.3, a difference of, e.g., LP = 1 dB corresponds to
a power ratio of 10

1
10 for P compared to the reference value P0. If used as

absolute value, the unit of reference is commonly appended as suffix. In
case of watts, the unit dBW is used, in case of milliwatts the unit dBm. A
transmission power of 0 dBm is then equivalent to 1 mW.
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Figure 2.2: Section of a spherical wavefront propagation with quadratic areal
increase in relation to the distance r (image source: [m6]).

Free Space Propagation

Having a clear line of sight between transmitter and receiver without any
obstructions, Friis free space Equation 2.4 [p50] can be applied, describing
the received power Pr as a function of distance:

Pr(d) =
Pt Gt Gr λ

2

(4π)2 d2 L
(2.4)

with Pt as the transmitted power, Gt and Gr denoting the transmitter and
receiver antenna gains (dimensionless) and L as losses related to hardware
(dimensionless, L ≥ 1). As an electromagnetic wavefront propagating away
from a source expands in space, the power of a received signal decreases in
dependency of the square of the distance between transmitter and receiver
according to the inverse square law. With an increasing distance, the initial
transmission power Pt is distributed on a larger area of the wavefront, redu-
cing the power density and thus the received power. Figure 2.2 illustrates
the quadratic areal growth and the decreasing power density of a wavefront
emitted by a source S for an increasing distance r.

Expressing the free space power density reduction as path loss (PL) in
decibels while assuming no losses in hardware (L = 1) gives Equation 2.5:

PL(dB) = 10 log
Pt

Pr

= 10 log

[
(4π)2 d2

Gt Gr λ2

]
(2.5)

Optionally, the effects of antenna gains may be excluded to simplify the
above equation even further, assuming unity gain Gt = Gr = 1. Reshaping
the above equation produces the following, simply to compute equation:

14



2.2 Properties and Physics

PL(dB) = 10 log

[(
4πd

λ

)2
]
= 20 log

(
4πdf

c

)
= 20 log(d) + 20 log(f) + 20 log

(
4π

c

)
= 20 log(d) + 20 log(f)− 147.55

(2.6)

Equation 2.6 is utilised by the ray tracing model (Chapter 5) to compute the
share of the distance-based losses on the overall path loss for each possible
signal path to a destination. The equations based on Friis free space model
only produce valid predictions for Pr if the distance d is located in the so-
called far-field of the transmitter antenna. This means d has to be greater
than the far-field distance df which is defined as:

df =
2D2

λ
if df ≫ D and df ≫ λ (2.7)

with D as the largest physical linear dimension of the antenna. At closer
(near-field) distances, interactions between antenna and electromagnetic
fields complicate an accurate prediction of the actual distance losses. To
take the far-field region into account, for modelling path losses a reference
distance d0 is chosen which is larger than df , but smaller than any distance
d, for which predictions have to be performed. The computation of the
received power Pr(d) at distance d can then be expressed in relation to the
received power Pr(d0) at the reference distance, giving Equation 2.8:

Pr(d) = Pr(d0)

(
d0
d

)2

d ≥ d0 ≥ df (2.8)

According to [p123], typical reference distances are 100 m or 1 km in out-
door and 1 m in indoor environments when describing systems with low-
gain antennas. The received power at reference distance P (d0) can either
be computed using Equation 2.4 or determined empirically by performing
measurements in the modelled network. In the context of this thesis, re-
ceived power levels are expressed in units of decibels using milliwatts as
reference unit (dBm) to depict their large range:

Pr(d) [dBm] = 10 log

[
Pr(d0)

0.001 W

]
+ 20 log

(
d0
d

)
(2.9)
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(a) (Specular) reflection (R)
and transmission (T)

(b) Diffraction (D) (c) Scattering (S) on a
rough surface

Figure 2.3: Basic signal propagation effects of an incident wave (I).

2.2.3 Signal Propagation and Attenuation

In addition to the plain propagation in space through one medium, elec-
tromagnetic waves may also encounter obstructions of different media with
varying properties affecting their propagation behaviour. Three basic effects
can be distinguished influencing both propagation direction and power dens-
ity of a wavefront: reflections, diffractions and scattering. These effects are
depicted in Figure 2.3 and described in the following.

Reflection/Transmission

Reflection describes the process of a change in direction of a propagating
electromagnetic wavefront occurring on contact with a plain surface of a dif-
ferent medium that has a large size compared to the wavelength. Depending
on the medium, the wavefront is split into a reflected and a transmitted part
with different fractions of field intensity (power). While propagating in a
new medium, a wavefront may also experience absorption losses due to the
material properties of this medium. E.g., if the wavefront impinges on a
perfect dielectric, i.e., a medium with high permittivity and zero conduct-
ivity (terms are explained in next paragraph), it is split but does not have
any absorption losses. In case of a perfect conductor, i.e., a medium with
infinite conductivity, all the energy is reflected without any transmission or
absorption losses. Figure 2.3 (a) generally visualises this effect of wavefront
separation. The electric field intensities of both, the resulting reflected and
transmitted waves, depend on the Fresnel reflection coefficient Γ. Γ is a
function depending on the involved material properties as well as the angle
of incidence, wave frequency and polarisation, visualised in Figure 2.4 (a).

Relating to reflections, three properties of a material are relevant: con-
ductivity σ, permeability µ and permittivity ϵ. Conductivity describes the
property to let an electric current pass through. A high conductivity results
in an easier flow of current with less resistance to overcome. Permeability
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(a) Relevant parameters for reflection
computations

(b) Plane of incidence

Figure 2.4: Reflection of an incident wave.

states the characteristic to resist to an applied magnetic field, determining
the degree of magnetisation it experiences as consequence. Permittivity on
the other hand describes the property of a material to react to an applied
electric field by polarising its particles, i.e., the alignment of electric charges
within the material. High permittivity relates to a larger tendency of po-
larisation transferring more energy into the emerging electric field. The
complex-valued dielectric constant ϵ of a material stating its permittivity
is often expressed with a relative value ϵr in relation to the permittivity of
the vacuum which is given as ϵ0 ≈ 8.854× 10−12F m−1:

ϵ = ϵrϵ0 − iϵ
′
= ϵrϵ0 − i

σ

2πf
(2.10)

with i as the imaginary unit and f as the frequency of an incoming wave.
The imaginary part ϵ

′
describes the absorption effect, occurring upon propaga-

tion of an electromagnetic wave through a lossy dielectric medium (σ > 0).
In case of a perfect (lossless) dielectric (σ = 0), ϵ can be expressed as ϵ = ϵrϵ0
since the imaginary part ϵ

′
becomes zero.

In case of well conducting media (f < σ/(ϵrϵ0)), permittivity ϵr and con-
ductivity σ are insensitive to the frequency, but for lossy dielectric media
this can be different. Thus, these material properties need to be provided
for each of the investigated frequency ranges individually.

In the context of electromagnetic waves, polarisation describes the geomet-
rical orientation of oscillation of the electric field component. For reflections,
only two relevant types of polarisation need to be distinguished, the parallel
and perpendicular electric field polarisation. The electric field component
either oscillates parallel or perpendicular to the plane of incidence, which
is spanned by the vector of the incoming wave and the normal vector of
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the reflection surface, as outlined in Figure 2.4 (b). Each polarised wave
can be expressed as the sum of two linear polarisations, which are spatially
orthogonal, allowing a reduction to these two cases. The Fresnel reflection
coefficients [p49] of both polarisation directions are then given by:

Γ⊥ =
Er

Ei

=
η2 cos θi − η1 cos θt
η2 cos θi + η1 cos θt

for perpendicular polarisation (2.11)

Γ∥ =
Er

Ei

=
η2 cos θt − η1 cos θi
η2 cos θt + η1 cos θi

for parallel polarisation (2.12)

describing the ratio of electric field amplitudes of the reflected (Er) and
incident wave (Ei). η is the intrinsic impedance of a medium, which is a
complex number for lossy media. For perfect dielectrics, the computation
of η is reduced to

√
µ/ϵ.

Upon transition into another medium, incoming waves are refracted, chan-
ging their direction depending on the angle of incidence and the change of
propagation speed between the two media. Snell’s law relates the alteration
in direction to the change of propagation speed:

sin θ1
sin θ2

=
v1
v2

=

√
µ2ϵ2
µ1ϵ1

(2.13)

where the velocity is given by v = 1/
√
µϵ. This relation also implies the law

of reflection: for the reflected part of a wave, incident angle θi and reflected
angle θr have to be equal since the reflected wave stays in the same medium,
i.e., v1 = v2. Equation 2.13 can be applied to substitute one of the angles
by the other, allowing a computation of the reflectivity using the incident
angle only.

To obtain the fraction of reflected power or reflectivity R which is more rel-
evant for modelling wireless communication, Γ has to be squared since the
power is proportional to the squared amplitude of an electric field, yielding
R = |Γ|2. The opposite, i.e., the share of transmitted power or trans-
missivity T is given as T = 1− R, which is a direct consequence of energy
conservation. This relation does not consider subsequent absorption losses
due to wave propagation in a potentially lossy medium. Figure 2.5 visual-
ises both coefficients R and T in dependency of the incident angle and wave
polarisation for the transition from air to either glass or plywood [p159].

18



2.2 Properties and Physics

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90R
e
fl
e
ct

iv
it

y
 /

 T
ra

n
sm

is
si

v
it

y

Incident Angle θi (degrees)

  R⊥
  T⊥
 R||
 T||

(a) Transition from air to glass
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(b) Transition from air to plywood

Figure 2.5: Reflectivity and transmissivity of perpendicularly and parallelly po-
larised waves for transition from air to either glass (left) or plywood (right), based
on relative permittivity values of [p159].

For waves with parallel polarisation exists an angle θB, at which a wave is
entirely transmitted into a second dielectric medium without any reflection.
This angle, for which Γ∥ = 0, is called Brewster angle, satisfying:

cos θB =

√
ϵ1

ϵ1 + ϵ2
. (2.14)

For the two example transitions, depicted in Figure 2.5, the Brewster angle
from air to glass is θB = 63.43◦, from air to plywood θB = 49.80◦.

Diffraction

Diffraction describes the effect of an electromagnetic wavefront bending
around the surface of an obstacle, then being able to reach regions behind
an obstacle which are not in line of sight to the source. While advancing
deeper into this shadow region, a larger angle of deviation compared to line
of sight successively reduces the received signal power. This is exemplarily
shown in Figure 2.3 (b). Diffraction is attributable to Huygen’s principle
[p66] where each point on a wavefront is considered to be the source of
another, secondary wave propagating into all directions. After passing an
obstacle, e.g., an edge of a wall, these secondary waves allow the signal to
propagate around it causing the diffraction effect.
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(b) Destructive interference

Figure 2.6: Wave interference effects in dependency of their phase difference.

Especially in outdoor scenarios without line of sight connections and large
distances to cover, diffraction effects play a significant role when predicting
signal strengths since they apply to geographic features, e.g., hills, moun-
tains and the curvature of the earth. Also indoors, a consideration of diffrac-
tion effects contributes to more accurate signal predictions as the combina-
tion of propagation effects produces small-scale fading (Section 2.2.4).

To understand the influences of obstructions on a diffracted wavefront and
determine the potential losses of the received power, the possible paths of
waves arriving at the receiver at the same time need to be investigated. Es-
pecially the differences in travelled path lengths have a significant influence
on the received field strength of a wave as they determine the phase shift of
multiple arriving waves. The phase describes the current position of a wave
within its periodic sinusoidal oscillation. Depending on the phase difference,
these waves can either interfere constructively, increasing the resulting wave
amplitude or interfere destructively, decreasing the amplitude. The inter-
ference effect is depicted in Figure 2.6, showing two shifted waves of varying
difference and same amplitude, adding up both phases in a resulting wave.
If the difference of the travelled path length between two waves of the same
frequency arriving at a specific position is an even multiple of their half
wavelength, both will be in the same phase, creating the best possible con-
structive interference. The opposite occurs if shifted by an odd multiple of
the half wavelength, entirely cancelling out both waves in the worst case.

To demonstrate and explain the effect of diffraction, the following explan-
ations base on signal propagations in outdoor scenarios covering large dis-
tances. Considering the geometry shown in Figure 2.7, the excess path
length ∆ compared to a straight wave propagation can be approximately
described as:

∆ =
h2 (d1 + d2)

2 d1 d2
(2.15)
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Figure 2.7: Diffraction example at a knife-edge obstructing the line of sight
between sender and receiver.

Figure 2.8: Profile view of the ellipsoid Fresnel regions at a specific position
between sender and receiver showing the Fresnel zone boundaries marked by the
dashed circles.

for d1, d2 ≫ h and h ≫ λ. In case of different sender and receiver heights,
large distances likewise allow an approximation by assuming hs ≈ hr. The
resulting phase difference in dependency of ∆ is then given by:

Φ =
2π∆

λ
=

2π

λ

h2 (d1 + d2)

2 d1 d2
=

π

2
v2 (2.16)

with v as the Fresnel-Kirchhoff diffraction parameter defined as:

v = h

√
2(d1 + d2)

λd1d2
. (2.17)

Referring to the mechanism of interference, to illustrate the diffraction loss,
the concept of Fresnel zones is elucidated. Fresnel zones describe disjoint el-
lipsoid regions with the positions of sender and receiver as their focal points,
surrounding the direct line of sight path between both. They delimit the
regions in which secondary waves arriving at a receiver have an excess path
length of nλ/2 compared to the shortest line of sight distance. Figure 2.8
depicts the Fresnel zone boundaries on a profile view of the ellipsoid regions.
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2 Background of Wireless Communication

Waves arriving from consecutive Fresnel zones alternately contribute to the
received amplitude with constructive and destructive interference. The ra-
dius rn of the n-th Fresnel zone circle at an arbitrary position between
sender and receiver can be approximated by:

rn =

√
nλd1d2
d1 + d2

(2.18)

for d1, d2 ≫ rn. The maximum Fresnel zone radii are obtained on the half
distance (d1 = d2), decreasing when approaching one of the focal points.
Equation 2.18 emphasises the relevance of the wave frequency as well as the
position of an obstruction when determining the impact of diffraction on a
received signal. These diffraction losses arise if parts of Fresnel zones are
blocked by obstacles, preventing a fraction of waves and their energy from
reaching the receiver. Most energy is transmitted by waves from within
the first Fresnel zone. If this zone is kept mostly clear, obstructions of
other Fresnel zones result in negligible losses only. Practical experience in
designing line of sight microwave links has shown that an obstruction of up
to 40% is tolerable without detecting remarkable losses [p33].

An exact computation of diffraction losses in practice is not possible due to
the difficulty of mathematically describing complex and irregular environ-
ments. Thus simplified considerations applicable to certain scenarios have
been derived. One of these simplifications is stated as the knife-edge model,
in which the obstacle, a diffraction is occurring at, is treated as a sharp
edge. Fresnel zones can be used to estimate diffraction losses. The ratio of
an electric field strength Ed of a diffracted wave to the field strength of an
unobstructed wave in open space Eo is given by the complex Fresnel integral
F (v):

Ed

Eo

= F (v) =
(1 + i)

2

∫ ∞

v

exp((−iπt2)/2)dt . (2.19)

The diffraction gain Gd resulting from a knife-edge is then given by:

Gd(dB) = 20 log |F (v)| (2.20)

which is mostly approximated by numerical solutions, as done by Lee [p93]
for different ranges of v:
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Figure 2.9: Diffraction gain in dependency of the Fresnel-Kirchhoff parameter
v.

Gd(dB) =



0 for v ≤ −1

20 log(0.5− 0.62v) for − 1 ≤ v ≤ 0

20 log(0.5 exp(−0.95v)) for 0 ≤ v ≤ 1

20 log(0.4−
√

0.1184− (0.38− 0.1v)2) for 1 ≤ v ≤ 2.4

20 log
(
0.225
v

)
for v > 2.4

(2.21)

Approximation and exact solution in dependency of v are shown in Fig-
ure 2.9. This computation describes the effect of one single diffraction on
the propagating wave. If multiple consecutive diffractions occur, instead of
computing each diffraction separately, their gains can also be computed in a
combined way [p44, p38]. However, while this is often applicable to outdoor
scenarios, e.g., signals being diffracted at several hills without further in-
termediate effects, in indoor scenarios, different propagation effects usually
occur in rather arbitrary order.

Scattering

The third propagation effect, scattering, occurs in association with obstruc-
tions which are small compared to the wavelength. These are, e.g., foliage
and street signs outdoors, office utensils and small furniture indoors, but
also in general irregularities of large, but rough surfaces. In most cases,
the surface a radio wave impinges on is not perfectly smooth, causing the
signal to be scattered in directions different from the specular reflection.
This increases the dissemination of a stronger signal in the vicinity of the
impact site beyond the direction of the angle of reflection, but also increases
the loss in the main direction of propagation. Figure 2.3 (c) visualises the
effect of scattering on a rough surface.
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2 Background of Wireless Communication

To determine whether a surface is rough, the Rayleigh criterion is used,
given by:

hc =
λ

8 sin θi
(2.22)

defining the critical height hc above which the maximum height difference
h of an uneven surface for the given incident angle θi (see Figure 2.4 (a)) is
expected to produce scattering effects. In this instance, to account for the
occurring losses, a loss factor ρs is multiplied by the reflection coefficient Γ,
which describes the electric field of the specular reflection on plain surfaces
yielding Equation 2.23:

Γr = ρsΓ (2.23)

with Γ depending on the wave polarisation and ρs initially introduced by
[p11] as:

ρs = exp

[
−8

(
πσh sin θi

λ

)2
]

. (2.24)

The standard deviation of the surface height h is denoted as σh. This loss
factor was later amended in [p24] by additionally considering the Bessel
function I0:

ρs = exp

[
−8

(
πσh sin θi

λ

)2
]
I0

[
−8

(
πσh sin θi

λ

)2
]

. (2.25)

Originating from the solutions of Bessel’s second-order linear differential
equation, which describe decaying oscillations of waves during their propaga-
tion, the multiplication of the Bessel function in Equation 2.25 allows to bet-
ter fit the computed scattering losses with respect to actual experimental
observations.

2.2.4 Small Scale Fading

Previous descriptions mainly focused on large scale path losses of a signal
arising from the covered distance as well as the interaction of the carry-
ing waves with obstructions. This section focuses on small scale fading or
fading, describing the occurrence of remarkable fluctuations of the received
field strength within a short time interval or a small distance. To observe
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Figure 2.10: Exemplary curve of large scale path loss in relation to small scale
fading.

fading effects, at least one mobile element is required, either in the sur-
rounding environment altering wave propagation paths over time or moving
transmitters and / or receivers in case of static environments. Fading is a
result of the interference of multiple waves of the same transmitted signal,
arriving at a receiver at a particular time via different paths. Due to vary-
ing travel times, these multipath waves can differ in phase and amplitude,
hence causing con- and destructive interferences depending on their phase
difference. Furthermore, changes in frequency also arise from movements in
direction of the wave propagation, called Doppler shift. Lastly, large differ-
ences in travelling distances cause time dispersions, receiving waves of older
and newer signal states overlapping at the same time, possibly preventing
a correct decoding of information.

Especially in absence of a straight line of sight path between sender and re-
ceiver, whose related wave usually provides the strongest signal and is rather
resistant to interference from comparably weaker indirect waves, fading can
have significant impact on the received power. In urban outdoor scenarios
with densely built-up areas, e.g., in case of radio broadcasts from stations
many kilometres away where a signal travels large distances, many alternat-
ive paths facilitate fading. Likewise occurring at smaller spatial dimensions,
fading is also relevant for indoor propagation, providing a high density of
various obstructions creating many possible signal paths.
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3 State of the Art

This chapter elaborates on state of the art work related to the contributions
covered in this thesis on the different stages of available network knowledge.
Beginning with only a sparse set of available information and increasing the
amount gradually, this section introduces existing approaches for extracting
knowledge out of a network, describes the addressed problems, elaborates
on the challenges and requirements and discusses their advantages and lim-
itations.

3.1 Network Analysis

Gathering basic knowledge about a network and its properties is the first
important step in order to be able to conduct further analyses and gain
new insights based on this knowledge. Once a wireless network has been
deployed and is in operation, the arising data can contribute to a better
understanding of the network behaviour. However, this data has to be
gathered from the network first before it can be exploited.

3.1.1 Data Acquisition and Analysis

Analysing information on the network connectivity, e.g. the (non-)existence
of links as well as the RSSI of those existent allow to draw first conclusions
about the network properties and reveal possible deficiencies. To obtain and
analyse such connectivity information, dedicated tools exist, aiding users in
this process by automating certain steps.

With TRIDENT [p75], a tool for in-field connectivity assessments in WSNs
is proposed. Data can be gathered without requiring additional infra-
structure by providing a configurable workflow, installing pre-compiled and
experiment-agnostic software on the network devices, performing measure-
ments and allowing for user interaction. Within the provided graphical
user interface, several collected metrics can be visualised to gain insights
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into the basic network properties. E.g., the ”in-field assistant” visualises
connectivities and packet delivery rates (PDR) of nodes, allowing to ana-
lyse the gathered connectivity data across multiple experiments to reveal
insights about the network.

With providing these features, TRIDENT addresses users without dedic-
ated WSN expertise and enabling them to conduct experiments by taking
the part dealing with the hardware off their hands. However, due to its
focus on WSN devices with their quite specific hardware and the approach
to provide an automated solution requiring low user effort for obtaining
information, the area of application of TRIDENT is limited. The tool sup-
ports automated assessments for two types of devices, TMote Sky, mainly
used in research and Waspmote, rather used in industrial applications. The
support of each new type of device requires specific adaptations due to the
individual hardware capabilities including the configuration and the abil-
ity to provide different types of data. Therefore, extending the features of
TRIDENT to provide automations for further devices requires noticeable
efforts including additional expertise on the developer side, demonstrating
the drawback of such specialised, but beneficial approaches.

A similar approach but with a larger focus of data analysis is provided by
IRIS [c5]. It supports direct connections to base station nodes of TinyOS-
based wireless sensor networks [p94] to download information of exchanged
messages stored on the devices and to send messages into the network as
well. The obtained data can then be analysed using the contained com-
ponents. Having a basic set of tools available, such as a message explorer
and a graph visualisation component, as shown in Figure 3.1, the modu-
larised architecture also enables further customisation to better match the
requirements of a targeted network analysis. E.g., functions can be defined
and applied to metrics of a measurement in arbitrary order and afterwards
visualised in different ways.

This freedom of customisation, though, comes at the cost of increased ef-
forts on the user side when requiring computations beyond the scope of
the available, more general components, but on the other hand offers more
potential for obtaining the desired results and knowledge. In general, a
larger set of features and capabilities introduces more complexity and in-
creases the expertise required by the users. Depending on the actual use
case, including the level of available network knowledge as well as the user
expertise, providing both options, predefined and extensible components,
can be beneficial to preserve applicability for most scenarios.

Aforementioned tools can be very helpful for obtaining a data basis with
low effort on which further analyses can be conducted. However, as stated
in Section 1.2, the capabilities of these tools to obtain and subsequently
analyse certain data are limited to the ability of individual networks and
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Figure 3.1: IRIS tool for obtaining and analysing data in wireless networks
(image source: [c5]).

devices to provide such information. The same heterogeneity also aggravates
a general applicability of automated approaches, e.g., supporting different
types of hardware requires dedicated adaptations to be made, including
time, costs and expertise. Thus, enabling the advantages of such approaches
is preceded by the corresponding phases of setup and preparation. This
mostly inevitable effort imposes a significant limitation when targeting at
offering such features for a wider range of networks. As a consequence, when
designing tools, a decision between generality and specificity with regards
to the offered capabilities usually has to be made. Ideally, such approaches
for analysing and obtaining network knowledge are able to offer both in
order to cope with the wide range of individual conditions of each network
in the best possible way.

3.1.2 Device Localisation and Topology Detection

Having the connectivity data of a network available marks the foundation for
analysing and revealing basic network properties, such as a logical topology,
visualising the data flow or a coarse relative distance estimation based on
the signal strengths between devices. An exclusive view on these data,
though, restricts the informative value due to the lack of reference to the
environment. Instead, the combination with other additionally available
information establishes this reference to the environment, such as device
positions and maps, opens up a multitude of new possibilities and yields
further valuable insights which on their part can serve as foundation for
optimisations. Within this section, approaches are presented and discussed
enabling the localisation of devices with the help of connectivity data and
information about the environment.

Localisation is a long treated topic, in particular indoors where a variety
of wireless technologies and approaches have been used to support many
applications [p91, p104, p139]. In contrast to most outdoor scenarios in
which satellite systems for navigation are available providing accurate posi-
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(a) Triangulation (b) Trilateration (c) Fingerprinting

Figure 3.2: Common localisation techniques.

tion estimations like the commonly used Global Positioning System (GPS),
there does not exist any comparable predominant approach for indoor scen-
arios. Therefore, a variety of approaches have evolved taking the diverse
circumstances of each scenario into account to enable localisation, such as
the available infrastructure and hardware capabilities. In case of limited
data and hardware, range-free algorithms provide localisation capabilities
without requiring distance measurements by using network-related inform-
ation, such as the number of hops between devices. However, utilising such
coarse information comes at the cost of accuracy, resulting in a position-
ing of nodes relative to each other. In contrast, range-based localisation
approaches require the availability of inputs enabling distance calculations.
Hence, the position of several so-called anchor devices or base stations is as-
sumed to be known in order to compute the position of other devices in the
same network. With such reference positions, various techniques can exploit
different types of measurements which are described in the following.

Angle of Arrival

Using the Angle of Arrival (AoA) technique, the position of a device is es-
timated based on the direction on which a signal was received at multiple
reference devices [p112]. By utilising geometric relationships the position
at the intersection of lines is computed, known as triangulation, as depicted
in Figure 3.2 (a). In two-dimensional space, at least two base stations as
well as the corresponding angles of the device to these are required to per-
form a localisation. In order to obtain the necessary angle information, this
approach requires dedicated hardware on each of the anchors using either ro-
tating or multiple antennas. In case of the latter, the direction and thus the
angle to the anchor device upon receiving an incoming signal is computed
by measuring the time difference of arrival on the different antennas.
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Although it is quite simple to compute the device position once the required
information is available, applying this technique requires the aforementioned
antenna hardware on the base stations to determine the angles, narrowing
down the applicability. Especially in IoT networks, where the hardware cap-
abilities are restricted in terms of equipment and performance due to limited
energy resources, the Angle of Arrival is a rather inappropriate approach
for localisation. In this context, other techniques are more reasonable to
use, which are less relying on required hardware but on analysing the data
available with respect to the given restrictions, such as the received signal
strength, which is provided by almost all radio chips. Furthermore, minor
errors in the angle estimation can have a significant impact on the accuracy
as the possible error range linearly increases with distance. Hence, the usage
of further base stations is required at larger distances to limit the error and
maintain accurate localisations. Due to the previously mentioned aspects,
the Angle of Arrival is rather used as supplementary technique to increase
the accuracy in combination with other localisation techniques [p169, p5].

Signal Propagation Time

A different approach for estimating the position of a device is by measuring
the Time of Arrival (ToA) of a sent signal [p130]. Thereto, the device to be
localised includes a timestamp containing the information when the message
was sent. Based on the signal propagation speed and the travel time between
the sending of a message and its reception, each base station can then
compute the distance to the device. The potential position of a node is then
located on a circle in two-dimensional space or a sphere in three-dimensional
space with the respective estimated distance as radius. To narrow down
the device position to a specific point, lateration is used requiring three
respectively four base stations. An example for a two-dimensional scenario
is shown in Figure 3.2 (b).

Besides also considering arriving signals from indirect, non line of sight paths
which might distort distance estimations, exactly measuring the travel time
of a signal requires a precise time synchronisation between the involved
devices. Minor deviations of a few milliseconds already result in large es-
timation errors because of the propagation of electromagnetic signals at the
speed of light. However, especially when dealing with IoT devices, clock syn-
chronisations are necessary quite frequently, but also challenging as well due
to observed large clock drifts within short time periods and poor clock rate
stabilities [p99]. Thus, using the Time of Arrival as localisation technique
introduces further overhead resulting in additional effort for employing a
time synchronisation protocol if not already present as well as increased
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energy consumption. For devices with high-quality hardware or a perman-
ent power supply this additional costs might be limited and acceptable, but
especially the increased energy demand again means that this localisation
technique is not suitable for usage in IoT networks.

To circumvent the need of synchronisation between base stations and device,
instead of using absolute time values, the Time Difference of Arrival (TDoA)
can be measured [p138]. In this case, only the base stations are required
to synchronise and then pairwise compare their measured point in time
when a signal was received, resulting in the possible locations of the send-
ing device being located on a hyperbole. Additional pairs of anchors or
exclusion principles based on prior observations allow to further limit the
device positions. By using this TDoA approach, the devices to be local-
ised do not need to actively take part in the localisation process by sending
timestamps or synchronising clocks, hence increasing the area of applic-
ation since any device communicating with the network can be localised
without implementing dedicated protocols. Nevertheless, the base stations
still have the additional overhead to regularly exchange messages for time
synchronisation and to perform their localisation computations.

Alternatively, to entirely eliminate the need for time synchronisation, two
ways of transmitting a signal can be used in parallel, such as radio and
ultrasound waves [p20]. The time difference of the reception of both signals
and the known propagation speeds of both wave types allow to calculate
the device distance at each base station independently. However, similar to
the Angle of Arrival localisation, this approach requires dedicated hardware
and thus restricts the applicability to networks with such capabilities to send
signals using different wave types.

Utilising the signal propagation time to estimate the distance to other
devices and use this information to localise them when combining multiple
of these estimations is a simple and effective technique. However, as dis-
cussed before, a network and its devices have to meet certain requirements
depending on the exact approach, either on the software or the hardware
side. An approach pursuing the goal of being suitable and usable for most
networks ideally should have as few hardware requirements as possible and
no need to use special software or protocols. Against this background, the
consideration of other techniques is appropriate, utilising different inform-
ation whose collection implies fewer constraints on a network.
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Received Signal Strength

A commonly available information in wireless communication is the signal
strength which is measured and provided by radio chips upon reception of
a signal. This information can be obtained from the devices without much
effort and allows to estimate distances based on the logarithmic decay over
distance, given the initial transmission power [p98]. With the distance to
other devices available, lateration can be used again to perform a localisa-
tion.

However, similar to the propagation time, the signal might have not arrived
at the receiver using the shortest direct path or was even influenced by
multipath interferences. Therefore, also the received signal strength can
provide a distorted view on the actual distances between devices when used
exclusively. Nevertheless, it allows for coarse first estimates and provides
valuable information about the network topology that can be refined when
combined with further information. As already mentioned in Section 2.1,
the wide availability of the measured signal strength qualifies this metric
to be employed in general approaches for providing localisation for a wide
range of networks. In addition, further network adaptations or protocols
are not required when basing the analysis on this information.

A different approach of using the signal strength is to build fingerprinting
maps of the environment and match the observations against pre-recorded
values to localise devices [p17, p168], as depicted in Figure 3.2 (c). Thereto,
the signal strength of nearby base stations is recorded at a large number of
defined positions within the network environment to build up a data set.
These fingerprints are then compared against measurements taken from
devices which should be localised to find the best matching position. With
a sufficiently large number of base stations, each recorded position is clearly
distinguishable from the others and enables accurate localisations.

Although combining multiple signal measurements in a meaningful way,
fingerprinting is often indicated as an impractical approach for most applic-
ations and environments. First, depending on area size and targeted resolu-
tion, a comprehensive collection of fingerprints is costly and time consuming.
Furthermore, the data sets have to be updated frequently since local changes
in the environment can otherwise falsify measurements and reduce the local-
isation accuracy. Thus, fingerprinting requires recurring efforts to maintain
proper functionality. Such tasks of data collection have been partially auto-
mated by using robots [p22, p110] or crowdsourcing [p133]. Nevertheless,
such possibilities are only available to a limited number of networks and
therefore the manual overhead remains in most of the cases.
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Other Approaches

The approaches that most closely relate to the contribution of this thesis
are the ones that reconstruct topologies based on connectivity information
only. [p88] shows that it is possible to deterministically identify the network
boundaries and extract topologies for a self-organisation of large wireless
networks in urban scenarios through the use of Voronoi clusters. In mul-
tiple distributed computational steps, the algorithms determine boundaries
of a network and identify street patterns and crossings via clustering. The
work, however, bases on the assumption of an ideal unit-disk communica-
tion model, i.e., a binary reception model depending on the distance to the
sending device, and it is also demonstrated only in a large simulated net-
work. Thus, the approach does not consider environmental influences and
is rather suitable for outdoor modelling with many line of sight connections.
In indoor scenarios, depending on the shape of the buildings, topologies are
usually more compact and connectivity data is significantly influenced by
propagation effects due to walls and other obstacles which might distort
resulting topology graphs with respect to reality.

Multidimensional scaling (MDS) [p136] is a process used in statistics which
creates graphs based on relative pair-wise dissimilarity between nodes. It
arranges nodes spatially in such a way that the distances between them
in space correspond as closely as possible to the surveyed dissimilarities.
In case of localisation in wireless networks these values can be, e.g., the
measured signal strength, the number of hops or any other metric reflect-
ing connectivity between two devices. As MDS can be applied without any
further information regarding the network except from measurements, it
is subject to the same problems as the approach presented in this thesis.
Without reference points, the resulting device positioning can be an arbit-
rarily rotated and flipped and then requires up to three anchor nodes to
solve them. MDS is used as reference approach to compare against the
mentioned proposed solution for localisation (Chapter 4).

Discussion

As already evident from previous approaches and also concluded in research
[p91], no prevailing single localisation solution exists for indoor areas due to
the different and unique properties of each network. Therefore, approaches
have to be combined considering and covering a larger amount of individual
circumstances in order to extend their applicability to as many networks as
possible. However, many approaches rely on assumptions or have certain
requirements, not all networks are able to fulfil, e.g. having two or three
anchors in range of each node or knowing the position of the devices. There
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exist only few approaches which are able to provide localisation for a min-
imum amount of available information and network intervention as well.
However, such approaches which in addition are able to include further
optional information to improve accuracy are lacking.

The localisation approach presented in this thesis exactly addresses this is-
sue and is based on the received signal strength which is available on most
of the wireless devices. It provides the possibility to include supplementary
information of environment and network to increase the accuracy. Further-
more it uses a combined approach to discover topology and localisation of
a complete network at once by utilising force-directed graph algorithms,
which provide an effective way of arranging graphs neatly by utilising phys-
ical laws to determine the positions of the vertices (Section 4.3.1).

3.2 Wireless Communication Modelling

Once basic information about a network are available, a next step is to gain
further knowledge and deeper insights about the network and its properties.
One possibility is to utilise the obtained information by employing wireless
communication models. With proper modelling approaches and sufficiently
detailed input, they are not only capable of reproducing the communication
behaviour of the actual network, but also to enable predictions on the be-
haviour at arbitrary locations. Therefore, by shifting from mere knowledge
acquisition to utilisation, such modelling is an essential first step offering
possibilities for deeper network analysis and opening up new opportunities
for optimisations. In general, it is possible to identify two alternative ap-
proaches to the problem of describing wireless communication properties,
an empirical and a deterministic one.

Empirical (or statistical) models are based on statistical analyses using col-
lected measurements as input. Their prediction accuracy is based on data
quality and quantity of the gathered measurements. Usually the computa-
tions are fast and they are able to accurately reproduce observed behaviour,
but provide less accurate results for unknown positions since the target en-
vironment is not taken into consideration directly. On the other hand, de-
terministic models base their predictions on the physical propagation char-
acteristics and rely on knowledge of the network environment instead of
network communication measurements. Due to the adherence to physical
laws, they provide more accurate results than statistical models but also
require detailed input data regarding the environment geometry as well as
more complex computations. Depending on the available information re-
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Table 3.1: Path loss components for different environments [p123].

Environment Path Loss Component γ

Free Space 2

Urban Area Cellular Radio 2.7 to 3.5

Shadowed Urban Cellular Radio 3 to 5

In Building Line of Sight 1.6 to 1.8

Obstructed in Building 4 to 6

Obstructed in Factories 2 to 3

garding measurements and environment, either empirical or deterministic
models should be employed, preferring the former when reproducing ob-
servations and the latter when requiring predictions at specific, unknown
locations. In the following, related models of both types are adduced.

3.2.1 Empirical Modelling

Experimental studies have been largely used to characterise specific envir-
onments and technologies in details [p142, p27, p37], further highlighting
the significant difference between distinct environments [p108, p102, p122,
p125] or distinct weather conditions [p23]. While these studies provide in-
valuable insights on communication behaviour in real-world environments
under specific conditions, they suggest the need of a manual experimenta-
tion in-situ before deployment. In this thesis, it is explored how modelling
techniques together with observations taken in an operational system can
be used to understand the reasons for specific communication properties
and variations.

One of the most basic approaches, the log-distance path loss model [p123],
is widely used in simulation and signal prediction, since it requires a low
computational effort and considers the characteristics of signal fading in
different surroundings according to the following equation:

PL(dB) = PL(d0) + 10γ log

(
d

d0

)
(3.1)

The path loss at a reference distance d0 is given by Equation 2.6 and the
environment-specific coefficient γ, also called path loss component, can be
derived empirically from measurement data [p119, p9]. Examples for path
loss exponents depending on the specific environment are given in Table 3.1.
As it can be seen, these values largely vary based on the local circumstances
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including environment properties and also whether there exist line of sight
or obstructed connections between the devices. Furthermore using such sim-
plified equation, the model assumes a continuous decay over distance and is
not able to take the dynamics of the environment into account. Hence, the
log-distance model provides a general description that may deviate from the
specificity of individual links, e.g., depending on their length [p83]. There-
fore, more detailed approaches have been introduced adding further correc-
tion values to the predicted path loss, tailored to specific scenarios, e.g.,
in- and outdoor deployments with certain frequency ranges and obstruction
densities [p1].

Outdoor Modelling

Designated for outdoor propagation modelling, several empirical models ex-
ist [p36, p59]. Most of them are modifications, extensions or combinations
of basic models developed in the 1980s, e.g., Hata [p60], Walfisch-Bertoni
[p161] and Ikegami [p71]. These models describe radio wave propagation in
urban scenarios by incorporating the influence of physical effects as para-
meters into the path loss computations, such as antenna heights or incidence
angles. Although all these models include rudiments of propagation phys-
ics they still base their predictions on empirical values without performing
actual signal path computations.

The Hata model [p60] describes the influence of antenna heights on wire-
less communication in urban scenarios. It provides modelling approaches
for areas of different population density, distinguishing three types of ter-
rain, urban, suburban and rural areas within propagation distances up to
20 kilometres. The antenna emitting the signal is assumed to be located
above adjacent roofs (30m-200m from ground) while the receiver antenna is
located below (1m-10m from ground). The investigated frequencies covered
by the original Hata model range up to 1500 MHz. With additional analysis
and measurements, this range has been later adapted by the COST-Hata-
Model [p36] to also cover frequencies between 1500 MHz and 2000 MHz.
Afterwards due to the growing demand for more and thus higher frequency
bands, the Stanford University Interim (SUI) models [p59] furthermore im-
proved and extended the Hata model to frequencies above 1900 MHz.

In addition to the free space loss and the path loss component of Equa-
tion 3.1, specific correction factors have been introduced for each of the
terrain types to take the individual influences of the building densities on
the signal attenuation into account:

PL(dB) = PL(d0) + 10γ log

(
d

d0

)
+Xf +Xh + S (3.2)
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where Xf is a loss correction based on and increasing with the frequency, Xh

a correction based on the antenna height of the receiver and S incorporates
shadowing effects. To provide accurate predictions these corrections differ
depending on the modelled scenario.

With only few required information regarding the scenario characteristics
and therefore rather low effort, Hata and the derived models provide mean-
ingful general signal strength estimations in urban scenarios. However,
signal propagation effects as mentioned in Section 2.2 are only implicitly
covered by these models through the conducted measurements, the estim-
ations and correction values are based on. Despite a generally acceptable
accuracy, this complicates precise predictions for specific positions.

Considering further influencing factors aside from the antenna heights, the
COST-Walfisch-Ikegami propagation model [p36] also takes diffraction ef-
fects into account. In urban non line of sight communication the receiver is
assumed to be located in a street canyon between larger buildings where the
signal, propagating above the roofs, is then diffracted at the edges of these
buildings. To describe the scenario and provide meaningful estimations,
more information is required such as (average) building heights and separ-
ation distances, road widths and orientations in relation to the direct radio
path. Albeit required in a mostly general manner, each additional informa-
tion entails further efforts for acquisition and also increases the complexity
of the model. Nevertheless, this model is capable of estimating the signal
quality in urban scenarios including the empirical description of diffractions
while still refraining from requiring precise geometrical details about the
environment.

Empirical outdoor models provide a useful approach for a fast and wide-
spread application of signal predictions when a general overview is sufficient
and precise spatial characteristics of minor importance. Requiring rather
general information, adaptations to specific scenarios within the constraints
of the models can be realised without much effort. Especially for covering
scenarios with similar conditions, these models provide widely acceptable
estimations due to the preceded sophisticated measurement campaigns, the
computations are based on. However, the generality is acquired at the cost
of accuracy since unspecific general information about a scenario is evidently
never able to describe propagation processes in such detail as precise site-
specific information would do, which of course in turn require much more
efforts to obtain. Therefore for large-scale outdoor scenarios with many
potential individual characteristics to consider, the usage of a more general
modelling concept, as empirical models provide, is a reasonable option.
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Indoor Modelling

Entailing a different set of challenges, the same comprehensiveness of ap-
proaches exists for indoor propagation modelling [p131, p12, p141]. While
in large urban outdoor scenarios more specific individual information on,
e.g., the presence of a bus stop cottage or the building materials are insig-
nificant, the smaller scale of area shifts the focus on exactly these details.
The building structure, including existence and materials of walls, doors,
windows or other obstacles becomes the most essential influencing factor
on the signal propagation [p97, p96]. Furthermore, indoors spatio-temporal
events like moving persons or interfering noises have far more weight on
the network behaviour and thus have to be considered as well to ensure a
proper operation [p129].

The International Telecommunication Union (ITU) has proposed a model
for indoor signal predictions covering multiple floors and implicitly includ-
ing effects like transmissions through obstacles [p135]. In addition to the
distance-based signal decay, the frequency and the number of travelled floors
is considered for the path loss computation as well:

PL(dB) = 20 log f +N log d+ Lf (n)− 28 (3.3)

where f is the frequency in MHz, N the power loss coefficient, d the distance
between sender and receiver and Lf (n) the floor penetration loss factor
based on the number of travelled floors. For N and Lf , the model provides
different values in dependency of the used frequency and building type, i.e.,
residential, office and commercial buildings.

By differentiating between path losses occurring on the same, but also on the
transition to a different floor, the ITU model combines two basic aspects
of indoor signal propagation in a simple formula to calculate. However,
specific effects caused by the individual constellation of obstacles defined
by the building floor plan and furniture are only reflected indirectly within
the empirically determined values. Thus, the universally applicable mod-
elling is again achieved at the cost of reduced accuracy compared to other
models including more specific details of the environment [p63] like the one
described next.

Taking the significance of obstacles on the signal propagation in indoor
scenarios into account, the Motley Keenan multi-wall model [p81] proposes
a more detailed method to consider losses which are caused by walls. By
distinguishing different coarse wall categories, the model sums up their type-
specific attenuations depending on the number of walls located between the
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communicating devices. Since the original model only considers certain
reference walls with fixed attenuations, it has been refined in later studies
by considering the actual wall thickness and its effect on the attenuation as
well [p96]:

PL(dB) = PL(d0) + 10γ log

(
d

d0

)
+

n∑
i=1

ki L0i 2
log3

(
ei
e0i

)
(3.4)

where ki is the number of walls of type i, L0i the penetration loss of the
reference wall, e0i the thickness of the reference wall and ei the thickness
of the actual wall. With this approach, the experimentally determined
attenuations of specific wall types can be better tailored to a broader set of
scenarios resulting in an increased estimation accuracy while still limiting
to certain general wall categories.

To properly apply the Motley Keenan model, general knowledge of the floor
plan, the type of existing walls and the positions of the devices have to be
present, though. Additionally including the thickness of individual wall
types requires even further detailed knowledge about the environment. Due
to the complexity of indoor communication, many empirical models are sup-
plemented with increasingly specific environmental information to improve
accuracy. Given the network-wide availability of such details, the usage of
a deterministic model could also be a reasonable option at a certain point,
depending on the targeted accuracy. Since transmissions and therefore wall
attenuations play a significant role in indoor signal propagation, the general
concept of Motley Keenan has also been adopted for the ray tracing models,
presented in Chapter 5.

Indoor scenarios pose a special challenge to propagation models. As a result
of the much higher density of obstacles and thus a significantly larger poten-
tial interplay of propagation effects, precise estimations in indoor scenarios
on a local level are more difficult to achieve, especially for empirical mod-
els. Thus, more environmental information are taken into consideration by
these models to mitigate the difficulties.

Overarching Approaches

With an increased demand and growth of large scale urban networks, indoor
signal coverage also needs to be taken into account when exchanging signals
with a source located outdoors. Due to availability of detailed structural
information in cities, out- to indoor modelling approaches exist combining
both domains using various frequencies [p89, p128, p146].
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Since in this case challenges of both areas have to be considered, the compu-
tations of these models are usually composed of multiple steps, first dealing
with the outdoor propagation to the respective target building and then
handling the indoor propagation using different sets of equations and para-
meters. However, each building is individual regarding construction mater-
ials, floor plan and furnishing. Hence, the prediction accuracy of a com-
bined modelling approach is highly dependent on the availability of such
information for a modelled area. To reduce inaccuracies introduced by the
increasing complexity, e.g., [p89] includes an increased amount of determ-
inistic elements, such as a grid-based path segmentation on the basis of
terrain data, angle computations and a differentiation between line of sight
and non line of sight situations. As a consequence, the more details have
to be taken into account, the more the boundaries between empirical and
deterministic models start to fade.

Finally, recent trends on applying machine learning have not omitted propaga-
tion modelling [p15, p126]. Producing accurate predictions is possible, but
time-consuming phases of collecting measurements and network training
are required before the model becomes usable. Moreover, in comparison
to other reference models the improved accuracy is obtained at the cost of
increased resource requirements, i.e., time and memory consumption and
applying such model to other scenarios with different properties again re-
quires further training phases to be conducted. Therefore, machine learning
provides useful estimations, once trained properly, but are lacking flexibil-
ity. Hence models based on this approach suffer from similar problems of
scenario specificity as their manually configured counterparts.

Discussion

Although relying mostly on measurements, upon targeting more accurate
predictions, empirical models still require an increasing amount of inform-
ation about the environment. As more and more additional factors are
considered, the model complexity naturally increases, especially when keep-
ing them applicable and valid for a multitude of parameters, e.g., frequen-
cies, distances or environment-specific settings. Setting up and validating
such equations for each of the regarded cases on the other hand require
many measurements to be performed. In addition, conducted measurements
might deliver insights which are not fully applicable to other scenarios since
certain important characteristics are different. Depending on the required
details and targeted accuracy as well as considering the growing availability
of topological information about cities and even building interiors, at some
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point the usage of deterministic models constitutes a reasonable alternative
to empirical ones. Apart from that, most empirical models already contain
deterministic elements in order to improve their predictions so that a clear
categorisation of such models is difficult in practice.

Furthermore, their dependency on experimentally determined input para-
meters for achieving accurate predictions restricts empirical models for wire-
less communication to rather static scenarios with only marginal changes
over time. From a global point of view they provide good general approx-
imations for signal quality and thus are convenient for predictions on a
macro-scale, e.g., planning where to place cellular transmitter in an urban
environment. However, they lack in details, e.g., considering specific po-
sitions of smaller but relevant obstacles, necessary to accurately predict
signal quality at a local scale. Empirical models are incapable of taking
environmental dynamics into account, as these again would require further
adaptations of the model parameters to be considered. This renders such
models inappropriate for describing temporal effects such as spatially lim-
ited influences on the signal propagation, like moving traffic or persons. As
a consequence, different types of models have to be specified allowing for
more flexible but still precise predictions.

3.2.2 Deterministic Modelling

Wireless communication bases on radio waves that propagate and interact
with objects in the environment according to laws of physics. Focusing on
these, deterministic models provide realistic predictions and are not reliant
on experimentally determined input parameters but rather on site specific
information of the environment. However, reflection, diffraction and scat-
tering are effects that are very hard to model due to impact of, e.g., object
shapes and materials as well as of the exact location of senders and re-
ceivers [p171]. Hence to achieve accurate predictions, deterministic models
require detailed information, are usually complex to implement and compu-
tationally expensive, especially for 3D models [p124, p166]. For obtaining
predictions of wireless communication in a given environment several ap-
proaches exist, focusing on different aspects of wave propagation. Many of
them base on geometrical optics, such as the approaches described in the
following section.
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Figure 3.3: Images using ray tracing for rendering light effects (image sources:
[m15, m14]).

Ray Tracing

Simulating the physical propagation of waves in a computer model by re-
garding and computing continuous wavefronts as discrete amounts of indi-
vidually traceable waves, named rays, is called ray tracing. This technique
has been used in many applications, in-, outdoor and hybrid scenarios both
in two and three-dimensional realisations [p134, p156, p6, p48, p72, p30,
p132, p137, p154]. Behaviour and properties of a generated wavefront at
any position in a given environment are reconstructed by tracking the paths
of each ray leading to this position. Applying laws of physics on the interac-
tion with obstacles and the propagation in space for each ray, the expected
attenuation and thereby the coverage and energy of the wave at arbitrary
positions can be computed. Although varying on the specific characteristics
in interaction with obstacles at different frequencies, the basic wave propaga-
tion effects remain the same. Therefore ray tracing can be used to simulate
phenomena involving waves of different wavelengths. One prominent applic-
ation is to model effects of visible light, i.e., waves with frequencies between
430 THz and 750 THz, in images and gaming applications to provide a
realistic impression of an illuminated scenario [p65]. Figure 3.3 displays
two examples of image rendering using ray tracing to compute light effects,
such as reflection and refraction. Besides the energy of traced rays and the
resulting shown intensity, colour information, i.e., the exact wavelengths,
have to be considered in image rendering as well when dealing with visible
light.

43



3 State of the Art

Figure 3.4: Rays computed by aimed (orange) and launched methods (orange &
black).

In contrast to visible light, applying ray tracing to model signal propagation
in wireless communication usually requires to analyse signals given at one
specific wavelength. Minor frequency shifts due to propagation effects are
neglectable since radios are designed to receive signals within a tolerance
around the designated frequency. Therefore when modelling wireless com-
munication, a prediction of the signal power at a given position is the most
relevant information to obtain.

For implementing ray tracing, there exist two basic concepts how rays are
computed: a quantitative launched and a qualitative aimed approach. Fig-
ure 3.4 demonstrates the difference in the amount of computed rays between
aimed and launched approaches. In the context of this thesis, both ap-
proaches, aimed and launched ray tracing, are utilised for modelling wireless
communication, combining benefits of both methods (see Chapter 5).

Launched Ray Tracing In the launched approach numerous rays are shot
in all directions around the sender and tracked whether arriving at the re-
ceiver [p134, p30]. For each ray, computations mostly consist of finding the
closest obstacle crossing the current propagation direction of the tracked ray.
If found, depending on the provided detail of the ray tracing implement-
ation, one or more propagation effects are applied at the point of impact,
changing the state and possibly the direction of the investigated ray. This
process is repeated until the ray either arrives at the receiver or is marked
as invalid due to given limitations, e.g., exceeding the maximum travel dis-
tance, the number of considered effects or leaving the scene boundaries.

Launching a large but finite amount of rays at arbitrary directions in a
trial and error principle implies many irrelevant path computations for rays
not reaching the receiver and also involves the risk of false misses. Despite
drawbacks and risks, due to being limited to subsequent and independent
obstacle collision tests, the tracking of launched rays requires considerably
less computational resources compared to an aimed approach. Further-
more computations can benefit from parallelisation, central processing units

44



3.2 Wireless Communication Modelling

(CPUs) and graphic processing units (GPUs) are able to provide. Especially
the latter GPU parallel architectures, which intended usage is to efficiently
handle 3D environments with respect to light waves, offer ideal precondi-
tions for performing radio wave computations.

Aimed Ray Tracing In contrast, an aimed approach focuses on construct-
ing only valid ray paths [p156, p6, p48, p137]. Starting from the sender,
instead of tracking a fixed number of previously generated rays with spe-
cific directions, surrounding obstacles are analysed for possible interactions
providing ray paths either reaching or reducing the distance to the receiver.
Promising paths are further pursued, unfavourable ones discarded, suc-
cessively constructing valid paths to the receiver while involving further
obstacles.

Assuming unrestricted computational resources and sufficient details of the
environment available, the aimed approach is able to perform an exhaustive
search reliably discovering all possible ray paths from sender to receiver.
However, constructing ray paths entails significantly more computational
effort than just launching rays and following their path, as each path has
to be recursively tracked to assess its validity when reaching the receiver.
Considering each and every combination of obstacle interactions for a single
ray quickly creates large path trees with countless branches depending on
the number of present obstacles. Consequently, an introduction of limita-
tions and the usage of accelerating shortcuts and algorithms are inevitable
to make an appropriate trade-off between accuracy and computation time
[p7].

Area-based Propagation Modelling

In contrast to determining single-point signal propagation paths, the fol-
lowing models compute signal paths using areal approaches to provide their
estimations.

Entirely focusing on reflections, a technique similar to ray tracing, com-
puting entire sets of rays instead of individual ones, is called beam tracing
[p147, p47]. All positions a ray is able to reach after being reflected on
a certain surface are described as a cone. Starting from the sender, these
cones are constructed recursively using the image method (Section 5.3.2) to
determine reflected paths to the receiver. This approach was proposed to
quickly trace reflection paths in indoor scenarios.
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As experienced during the implementation of the ray tracing approach
(Chapter 5), restricting path computations to reflections exclusively indeed
speeds up the computation time compared to combined approaches con-
sidering other propagation effects as well. However, as the authors also
noted themselves, neglecting the similarly important effects of diffraction
and transmission might affect prediction accuracy. Thus a more general
and comprehensive model needs to take the latter into account as well.

Utilising another algorithm used in computer graphics, a radiance model is
proposed in [p107]. Radiosity is a rendering procedure determining surfaces
on which light sources are reflected diffusely to illuminate entire scenes in
a more realistic way. Transferring this concept to signal propagation, the
model uses facets and edges of buildings in urban scenarios to identify areas
in which radiance transfers can occur via reflection and diffraction. By
combining a three-dimensional grid-based spatial division of the geometric
elements to limit intersection tests with a precomputed visibility graph,
paths from sender to receiver can be constructed.

For the computations of the conducted evaluation, equal reflective prop-
erties for all 303 buildings have been assumed in the investigated area of
approximately 1 km2. To further increase the accuracy of estimations, the
individual reflective properties of each building have to be taken into ac-
count, which the authors have refrained from. While the geometry can be
retrieved from now publicly available databases, however, obtaining con-
struction materials and properties of each building at an urban scale is
difficult. Consequentially, the full potential of the given approach cannot
be exploited.

A different approach is presented in [p55], called multi-resolution frequency
domain ParFlow. The underlying concept is to consider wave propagation
in an environment as an energy flux. Dividing the site area into smaller
segments, preferentially alongside and around obstacles like walls or pillars,
the exchange of energy between these segments is computed. To obtain a
prediction, the paths of energy flow from the segment of the sender to the
segment of the receiver is determined by traversing the precalculated tree-
based structure of adjacent segments. The computation time is comparable
to unoptimised basic ray tracing methods [p56] and provides a similar pre-
diction accuracy.

To perform predictions in a reasonable time, ParFlow relies on the precom-
puted segmentation of the environment which is the most time-consuming
part of the computations. Ideally such segmentations have to be done once,
but changes in the environment can invalidate the optimisations and require
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to trigger repeated adaptations. Thus, such approaches have difficulties in
adapting to frequently occurring dynamic changes, e.g., moving obstacles
or persons, without sacrificing either accuracy by ignoring these changes or
speed by discarding or repeating precalculations.

Discussion

The previously introduced models use individual physical approaches to
determine the expected signal strength at target positions. Areal model-
ling approaches offer the benefit of providing predictions for larger regions
with fewer computations. Especially in cases of a high scenario complexity
where the computation becomes increasingly more expensive due to many
obstacles to be taken into account, these models are advantageously when
requiring exhaustive predictions. On the other hand, targeted approaches
such as ray tracing allow for selective and locally restricted, but fast compu-
tations on, e.g., dynamically changing obstacles, moving transmitters and
receivers. Compared to areal approaches they usually require less complex
computations for a single iteration and thus can better adapt to changes in
the environment.

As a consequence of their more detailed way of computation based on geo-
metrics of the environment and physical laws, deterministic models have
correspondingly higher requirements for necessary details. With the in-
creasing complexity of larger scenarios, obtaining such specifics could be-
come costly, reaching a point where the procurement may no longer be pro-
portionate to the benefits. Hence, if refraining from taking the necessary
effort, a reduced prediction accuracy has to be accepted instead. Further-
more, the utilisation of such details is reflected in increased computation
times, requiring optimisations and shortcuts to keep the approaches prac-
tical. Besides potential trade-offs in accuracy, especially shortcuts based on
intensive precalculations also bear the risk of reducing the flexibility of the
underlying approaches and thus narrow down their areas of application. For
this reason, it should be assessed individually for each application purpose
which of the available approaches can be considered for modelling the given
scenario with which required level of detail.

Tackling the aforementioned conflict of finding an appropriate balance between
requirements and targeted accuracy with regard to the availability of inform-
ation in a given scenario, this thesis proposes an adaptive approach which
preserves the flexibility of usage (Chapter 5). Consisting of multiple com-
munication models of both types, deterministic and empirical, which are
either used individually or jointly, the advantages of the different models
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are combined to extend the applicability and create synergies which improve
the accuracy of the given models. Hence, a modelling of wireless commu-
nication is made available to a wide range of scenarios, allowing to further
increase the network knowledge by discovering new device positions.

3.3 Understanding Changes in the Environment

Insights and results gathered by the approaches mentioned in the previ-
ous sections during the earlier stages of knowledge acquisition support net-
work operators in obtaining a basic understanding of their network topology
and discover potential optimisation spots. These improvements are mainly
based on single snapshots of the respective networks. Since the communic-
ation behaviour of most networks varies over time due to changes in the
environment, additionally including temporal aspects in network analysis
helps to reveal coherences and thus to better understand the network be-
haviour. This in turn is beneficial to make educated decisions on possible
optimisation steps. Within this section, a general overview of existing ap-
proaches is given analysing and understanding network dynamics caused by
changes in the environment.

3.3.1 Impact of Obstacle Movements on Wireless Signals
and their Detection

Considering a specific point in space, one of the main reasons for occur-
ring fluctuations of the signal quality over time is the movement of objects
or obstacles, in the following also called events, temporarily or perman-
ently altering the propagation paths and thus affecting the measured signal
strength. These obstacles can be classified into three categories: static,
semi-dynamic and mobile. Static objects are not expected to often alter
their positions (if at all) as for example any building structures outdoors or
larger furniture indoors. Semi-dynamic obstacles are able to move locally,
but within limited degrees of freedom, e.g., doors, windows or elevators.
Lastly, mobile objects are capable of freely moving through the environ-
ment without any restrictions, e.g., humans, animals, vehicles or robots.
With an increasing mobility, the predictability on the network behaviour
naturally decreases as more object states and positions have to be taken
into consideration. However, in order to obtain a full picture of the net-
work environment, reveal possible risks and implement counter-measures,
detailed investigations regarding potential impacts on the network perform-
ance are required. An overview regarding current research of the previously
mentioned object categories is provided below.
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Table 3.2: Mean path loss for three classroom configurations [p127].

Configuration Empty Furnished
Furnished and

Persons Present

∅ Path Loss 73.05 dB 79.38 dB 80.69 dB

Static Objects

The impact of walls and other fixed building structures on the signal propaga-
tion behaviour has already been tackled in Section 3.2. Instead, research on
the effects of rather static, but potentially movable objects is now examined
in more detail, as these are of greater relevance exerting influence on the
network behaviour during operation anyhow.

The general effect of larger interior objects on infrared frequencies has
already been investigated in simulation [p2]. By extending the prediction
model described in [p19] computing multiple signal reflections in rectan-
gular rooms with the geometry of furniture, predictions could be better
aligned with observed behaviour compared to simulations using only basic
walls. Providing first insights on the complexity of indoor signal propaga-
tion, this approach tackles furniture effects in an elementary way. The
influence of furniture for predicting wireless signals is further examined em-
pirically in [p127]. Wireless signal strength is measured at 24 different
positions in an either completely empty, furnished or both furnished and
crowded classroom. The results are shown in Table 3.2. Evaluations have
shown that the difference in signal quality between an empty and a fur-
nished classroom without persons inside is much larger compared to the
difference between a furnished, but deserted and a furnished and crowded
classroom. This highlights the importance of considering such obstacles for
understanding communication properties of wireless networks.

Similar to providing site-specific attenuation coefficients in urban scenarios
depending on the building density, other research integrates furniture into
empirical models in the same way [p16]. By providing a coverage index,
the average furniture density per room is incorporated into the attenuation
computation. Nevertheless, due to the unspecific general index, this way of
considering furnishing does not allow to draw any conclusions about the in-
fluence of particular objects on the signal propagation. Here the weakness of
the empirical models again becomes apparent in return for a simplified cal-
culation, only providing a coarse depiction of furniture. However, to enable
further analysis beyond the pure consideration in predicting expected signal
strengths, a detailed geometrical representation and precise positioning of
each object within the modelled environment would be required.
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In the context of wireless networks, static obstacles are a fundamental part
of the environment. As they have the most significant impact on the network
behaviour, the initial positioning of network components is carried out on
their determining basis. Therefore, static obstacles should be thoroughly
investigated during the planning phase and the device positioning adjusted
accordingly. However, due to a rather rare relocation, they have the highest
predictability when analysing temporal fluctuations. Thus, for a detection
of behavioural changes during operation they are of minor relevance.

Semi-dynamic Objects

Turning now to the category of semi-dynamic objects which are expected
to regularly undergo movements. Taking into account the capability of
objects to alternate between different states and positions implies a potential
influence on network links in their vicinity upon transition which has to be
investigated. There exists several research on the effect of typical semi-
dynamic indoor obstacles, such as doors and windows [p90, p84, p160, p8]
as well as elevators [p100, p103].

Using a geometry-based modelling approach, the effect of typical indoor
obstacles is simulated at a larger scale for entire buildings in [p160]. A three-
dimensional ray tracing model is utilised to create WiFi signal predictions
involving a building database to obtain the obstacle geometry. Coming back
to static objects once again, it is investigated, how missing objects in the
database, such as walls or furniture, affect the accuracy of the used models
as well as the influence of adjacent buildings. Furthermore, this work also
examines the expected effect of changing door states on the signal quality
by changing the door state in the virtual representation of the environment
and performing a prediction afterwards, observing slow fading effects on
the links in the vicinity. However, these changes were only investigated in
a simulated (incomplete) environment.

Verifying these insights in reality, a follow-up research examines the effects of
door movements by conducting measurements in a small scenario consisting
of two adjacent rooms [p8]. The rooms are separated by a concrete wall and
each room has one door leading to an outside corridor without any direct
connection between the two rooms. With changing transmitter and receiver
positions, the effects of the door states on the link quality were recorded
and analysed. Confirming the observations on the significance of changing
door states on the signal strength in simulation from [p160], the insights
were then transferred to the model by introducing an empirical parameter
reflecting the door’s influence and thus improving the prediction accuracy.
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The significance of semi-dynamic elements has been identified and confirmed
in simulation and reality, providing important insights on possible influences
on a network during its operation. Nevertheless, these rather general invest-
igations are only a first step since they mainly focus on signal changes and
predictions on link level and also not consider such effects during regular
operation and on a network-wide scale.

Mobile Objects

Focusing on the last category of obstacles, mobile ones have the highest
potential of temporarily affecting network properties in a considerable way.
As these are able to move to any position within the environment and
therefore might influence the network in arbitrary and unpredictable ways, it
is difficult to entirely asses their actual impact on a specific network without
performing comprehensive experimental campaigns. The latter, however, is
often not feasible in larger scenarios. Thus, the general properties of mobile
objects should be explored thoroughly to estimate risks beforehand and
consider them during network planning in conjunction with an observation
during operation.

Especially in indoor and public WiFi scenarios, but also in other wireless
applications, humans are often located in the network environment and thus
are a relevant aspect with respect to the network behaviour. As the human
body significantly attenuates wireless signals, understanding and modelling
such impact allows to increase localisation and signal prediction accuracy.
The attenuation of the signal strength between a WiFi access point and a
held mobile device in dependency to the orientation of the near human body
is investigated more closely in [p46]. The results are then used to create
an attenuation model for the human body eliminating the need to collect
fingerprint measurements for multiple orientations at the same position and
therefore reducing the amount of necessary data to be gathered. Focusing
rather on the distance than on the orientation to a mobile device, the influ-
ence of persons on links between access point and mobile devices in WiFi
networks is examined in [p10]. Based on the observations, a people presence
influence distance is defined, within which a human body significantly influ-
ences the signal strength, diminishing gradually with an increasing distance
to the device.

Obtaining general knowledge as done in the previous two examples is an
important first step addressing the numerous possibilities of mobile ob-
jects to influence the network behaviour in rather unpredictable ways. The
application of this knowledge, integrated into models and other analysis
components, can serve as basis for more extensive analyses, gaining further
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knowledge, particularly with respect to the network in operation. This com-
prises, e.g., localising and identifying observed events with humans involved
or enabling new applications to detect human features [p78, p4] through the
appropriate analysis of RSSI measurements.

Non-solid Influences Aside from interfering moving objects, also envir-
onmental conditions affect the signal quality which are not attributable to
solid matter. Depending on the the used hardware, temperature and hu-
midity can have a measurable impact on radio chips used in typical sensor
nodes. With increasing temperatures above 30 ◦C and humidities of more
than 42 %, respectively, the reception capabilities decrease, producing more
bit errors and in the worst case even turning an otherwise reliable link into
a non-existent one [p101]. Especially when planning networks in scenarios
with fluctuating and extreme weather conditions, these effects have to be
taken into account as well. Fortunately, these conditions can be easily meas-
ured using respective sensors. In typical indoor scenarios, however, such
effects rather have minor relevance as the conditions are typically stable.

Discussion

The significant impact of moving obstacles on the link quality has been
proven in virtual and real scenarios providing valuable insights for under-
standing the network behaviour. Nevertheless, utilising this general know-
ledge is only one advanced part of understanding the causes of observed
and initially unknown events in an operating network. The first preceding
step is the detection of actual changes, followed by a spatial determination
of these. Once this is done, an analysis can be performed, applying know-
ledge of the obstacles and their properties to determine the most probable
reason.

In the previously mentioned research, the comparison of the observations
with the resulting conclusions was performed manually afterwards. In this
case, the presented approaches are limited to providing prediction results
and not capable of correlating observations to possible causes. Requiring a
subsequent manual analysis on the results aggravates an extensive applic-
ation in other scenarios. Therefore, a comprehensive approach should also
be able to identify changes and relate them to possible causes in order to
provide insights with as little user intervention as possible.
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However, identifying the exact reason of a network change in the final step
is difficult since the determined location of occurrence still has to be associ-
ated with other information, such as a map containing local characteristics.
As a consequence, a model of the network environment is necessary which
integrates descriptions of the obstacles to be identified as potential causes
in order to being able to relate them to any observations.

To the best of the author’s knowledge, however, specific models that de-
scribe how wireless waves exactly propagate in the case of typical objects
that populate indoor environments and exploit this information to under-
stand the interplay of objects and network, are lacking. With this respect,
the work presented in Chapter 6 provides a first step towards building a map
of events happening in the environment against corresponding observed fin-
gerprints, thus paving the way for further advancements in the modelling
of environments that change over time.

3.4 Network Optimisation

Acquiring and utilising knowledge of a network ultimately enables develop-
ing elaborate strategies to optimise the behaviour towards specified goals.
Self-evidently, the more complete the picture of the environment and its
influencing factors is, the better optimisation measures can be implemented
considering these aspects, yielding more persistent improvements. Con-
ceptually two optimisation approaches exist, either modifying the software
components to adapt the communication behaviour of a device to the char-
acteristics of the environment or to relocate the physical position of a device
and therefore locally changing the properties of the surrounding. Examples
for both approaches are given in this section. Since these approaches are
orthogonal, a combination of both is possible and entails the most potential
for achieving results if one approach alone would not be sufficient.

3.4.1 Software Tuning

For optimising wireless networks, one solution is to perform adjustments
to the software running on the devices. This includes modifications to
parameters of underlying communication protocols, e.g., changing various
thresholds to adjust the operational behaviour, or of hardware configura-
tions, e.g., controlling the transmission power. The resulting effects on the
network behaviour are then used to steer the relevant metrics towards the
desired direction.
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Beginning with optimisations on link level, [p51] proposes an approach, loc-
ally executable on a device, to detect link anomalies using a Bayes threshold
on the RSSI value and initiate individual transmission power level adjust-
ments for compensation. Using this type of local optimisation, evaluated
by and regulated on the device itself, introduces the beneficial capabil-
ity of self-correction in the preservation of links and has the advantage of
not requiring any external coordination. Thus additional communication
costs are spared which would otherwise be required for synchronisation.
However, individual adaptations to detected and locally restricted changes
might lead to cascaded adaptations on adjacent devices taking some time
before the network has stabilised. Furthermore, the limited overview of
each device spatially restricted to adjacent devices in communication range
aggravates a realisation of potentially more effective network-wide optim-
isations. On the other hand, the latter requires a complete overview of
the network and its current performance, which is not always available.
Hence, device-local approaches offer more flexible deployment options and
thus provide a reasonable complement to globally coordinated optimisation
approaches, presented next.

The medium access control (MAC) layer, the second lowest layer of the net-
work protocol stack, regulates the interaction of the device hardware with
the transmission medium. MAC protocols ensure that multiple devices have
an organised access to the common medium which cannot be used simul-
taneously, minimising the risks of data loss. The chosen parameters of such
protocols impact the performance of the applications and thus are chosen
to optimise certain metrics. However, changes in the network behaviour
might require adaptations to these parameters to preserve the performance.
Focusing on the optimisation of such parameters for sensor network ap-
plications, [p175] provides a framework for automated adaptation during
runtime. Based on a model of the network stack and real-time information
of the system, the approach continuously monitors the network perform-
ance. Once the monitoring detects a degradation of the performance below
the specified requirements, an adaptation is triggered. Depending on the
system dynamics, it adjusts different MAC protocol parameters, i.e., the
time for and between radio channel checks as well as the maximum num-
ber of retransmissions, to restore the performance. The optimal trade-off
solution between the considered performance metrics, lifetime, latency and
reliability is determined mathematically by solving an optimisation prob-
lem. A different approach of finding the best parameters for a given scenario
is investigated in [p145]. Network simulations are utilised to discover the
optimal application configuration by collecting connectivity data from the
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deployed application and configuring the simulation environment to match
the operational one. Running a multitude of simulations with different
protocol parameters, the ones with the most promising outcome regarding
observed performance metrics are chosen to applied in reality.

Mainly targeting different protocols and scenarios, similar approaches to
modify MAC parameters are also pursued in other research. In [p106], an
adaptation framework is proposed for specifying algorithm and application
requirements for WSNs using the TinyOS operating system [p94]. Having a
set of pre-evaluated configurations and their impact on several performance
metrics available, such as power consumption, latency or delivery ratio, the
framework then decides on the configuration best matching the required
behaviour. Similarly, the packet length can be adjusted depending on the
channel stability [p42]. Based on user requirements and a set of models for
environment, hardware and protocols, [p115] automates the parametrisation
of IoT protocols. By employing mathematical optimisation techniques, this
approach selects a protocol configuration depending on the environmental
conditions to influence single network properties.

Aforementioned approaches analyse a network in its entirety in order to
perform more effective optimisations on a network-wide level requiring a
centralised coordination of optimisation measures. The benefit of such hol-
istic approaches, though, comes at a cost. A network-wide coordination
includes exchanging messages for constantly measuring performance met-
rics and sending adaptation commands, entailing constant overhead. To
moreover enable adaptations on the network layers, implementations often
require individual modifications or additions to the code running on the
devices in order to gain access to certain data or enable modifications dur-
ing runtime. This implies individual solutions depending on the hardware
and protocols used and aggravates a widespread application.

As shown in research, changes made to the software affecting the behaviour
of the executing devices constitute a beneficial approach to counteract tem-
poral variances in network performance, especially if infrastructural changes
are undesirable or infeasible. However, such changes are not able to exert
any direct influence on the surrounding environment of the devices, only
to mitigate experienced issues. Indeed, software tuning can be sufficient
in many cases, although the effect of such changes is limited. Eventually,
physical adjustments of network components become necessary due to long-
term changes in the environment which severely affect the performance and
as a consequence question the position of certain devices.
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3.4.2 Physical Adjustments

In this section, optimisation approaches are based on precise descriptions of
network environments as well as accurate estimations of communication, en-
abling physical modifications of the network structure by adding, removing
or relocating devices. Requiring aforementioned larger amount of details for
implementation, the potential benefits of modifying the network structure
are likewise greater. Furthermore, besides pure optimisation, approaches
focusing on physical adjustments open up possibilities for new applications,
such as designing entire networks while considering and satisfying given
requirements or assisting users during device deployment.

An incremental approach for the initial indoor deployment of IoT devices
is presented in [p41], with the goal of creating a fully connected network.
Requiring a model of the environment to perform the planning, a user can
interactively mark cells on a two-dimensional grid containing walls to define
the outline of the scenario, place existing devices and define areas in which
relay nodes might be deployed to interconnect the former. The deploy-
ment is then performed within three phases. In a first offline phase, relay
nodes positions are determined within the specified areas to connect all ex-
isting nodes on paths leading through the building, ignoring possible paths
outside. The second online phase involves the physical placement of the
identified relay node positions and a subsequent validation of existing con-
nectivity between these relays. As solution, disconnected relays are moved
closer to the other nodes one at a time until a connection is established,
eventual emerging gaps are again filled with further relay nodes until all
deployed nodes are connected. Finally in the last phase, the connectivity is
optimised by eliminating weak links and redundant relay nodes.

Offering a large advantage for users to design entire networks, consider-
ing and interconnecting desired device positions, this approach, however,
aims at creating connected networks with sufficiently strong links above
a given RSSI threshold rather than focusing on individual network per-
formance metrics. This may result in subsequent adjustments for fulfilling
potential application requirements. Furthermore, other elements of the en-
vironment except devices, walls and free space are not considered. These
are of minor relevance in this case as the path losses are computed using a
modified version of the empirical log-distance path loss model [p123], addi-
tionally considering the number of walls in the direct path between sender
and receiver. Thus, physical effects like reflection and diffraction are not
considered at all when determining suitable positions for relay nodes.
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Focusing on improving already deployed networks, a coverage analysis of
WiFi access points is performed in [p79] using the Motley Keenan multi-
wall model [p81], distinguishing three different types of materials to find
the best positions for a varying number of available devices, maximising
the channel capacity in an area of interest. This approach optimises the
coverage of sending devices which are independent of each other, but it
does not consider the interaction among the devices itself as it is required
for optimising, e.g., application performance metrics.

Dealing with an expansion of the network range as well, the effective place-
ment of relay nodes to circumvent large obstacles of arbitrary shape, such
as rock formations in outdoor scenarios, is investigated in [p158]. In two-
dimensional space, an approach for creating a minimal set of relay nodes
bypassing the obstacle and connecting the network is proposed. Considering
the network as a graph with nodes as vertices and links between nodes as
edges, a minimum Steiner tree [p67] is computed, describing a graph with
the shortest possible connection between all existing vertices. In order to
circumvent existing obstacles, additional vertices can be considered to be
placed as junction points.

Similar goals are considered in [p170], which uses simplistic descriptions
of the deployment scenario to estimate the minimum number of relays ne-
cessary to build a connected network. By using a weight-based approach
determined via path-loss predictions of a multi-wall model [p36], weak links
are identified to be bypassed by relay nodes. After determining and evalu-
ating candidate positions for such links, a minimisation step is performed
to merge redundant relay positions.

Pursuing the same idea as the approach presented in this thesis, improving
a deployed network by utilising models for signal path prediction, the afore-
mentioned work focuses on improving reliability of weakly connected and
disconnected networks, but does not consider other metrics on a network
or application level, similar to the previously mentioned work [p41]. Hence,
it covers only a subset of possible performance optimisations and moreover
does not verify its functionality in a real deployment, only in simulation.

Following this general idea and going one step further by incorporating real-
ity into the process as well, Moρϕευς [c7] demonstrates the capabilities of
network simulations creating results that correspond to reality in order to
evaluate them finding potential device positions for optimisation. In con-
trast to the approach mentioned in the previous section [p145], this work
focuses on the effects of node placements instead of protocol parameters
on the resulting network performance. Bottlenecks of a given network are
first identified by simulating the network behaviour based on obtained con-
nectivity data. By adding, removing or relocating simulated devices at cer-
tain positions in the virtual network, the effect on application performance
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metrics, such as latency, throughput or radio on-time are then evaluated.
Promising configurations with outcomes showing improvements are then
transferred to reality. There, the suggested configurations were able to im-
prove the targeted application metrics significantly as well, confirming the
simulated observations.

Optimisations attributable to physical interventions on the network struc-
ture demonstrate their capabilities of improving various aspects of a net-
work. Supplemented by simulations to cover and manage the countless
number of possible options for modifications, both provide a powerful com-
bination, assisting users in pursuing their optimisation tasks in a convenient
way obviating the need for time consuming trial and error approaches. Ex-
ploiting the potential and removing the limitations, Moρϕευς is subject to,
this thesis presents an approach independent of specific requirements and
application metrics (Chapter 7), supporting general wireless system optim-
isation goals while taking details of the environment into account.
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Thanks to the ease and flexibility of deployment, a forthcoming future is
envisioned where the Internet of Things and cyber-physical systems will
pervade everyday life with a multitude of low-power wireless devices. The
scale at which the technology is expected to enter environments will quickly
make it impractical to both operate and keep track of each individual device.
Furthermore, new infrastructures will have to be quickly deployed as well
as merged with existing ones in a continuously evolving ecosystem. The
maintenance of this technology becomes then a crucial challenge that needs
to be addressed in order to make the vision practical.

One of the key properties of a wireless infrastructure is the location of each
device. In fact, from this information depends not only the ability to make
sense of the observations performed by the sensors, but also the capacity of
understanding system behaviour and resolving failures. However, keeping
a record of the device positions in evolving and dense networks made of
wireless devices is problematic, even more with an increasing system scale.
As a result, an effective monitoring solution to know where devices are
deployed should rely on as few information as possible.

Analysing information on the network connectivity, the (non-)existence of
links as well as the signal strengths of those existent allow to draw first
conclusions about the network properties and reveal possible deficiencies.
Fusing connectivity information with other additional information, such as
device positions, floor plans or obstacle properties yield further valuable
insights which on their part can serve as foundation for optimisations. This
chapter introduces an approach for localising wireless devices in indoor en-
vironments based on an adapted force-directed algorithm, originally used
for visualising graphs.

4.1 Challenges

Realising a localisation approach which is able to incorporate different in-
formation to achieve more accurate results entails some challenges regard-
ing the handling of the availability as well as the quality of information,
explained in the following.
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Reconciling Individual Conditions

As already stated in the previous chapter, there does not exist a universal
solution for indoor localisation, as the conditions of each scenario are too
different. The heterogeneity of devices as well as continually changing infra-
structures aggravate making assumptions on information, obtainable from
and about a network. Thus a general solution needs to regard and comprise
different amounts of available information to dynamically adapt to a given
scenario and optimally exploit its features. Nevertheless, it is necessary to
agree on a common set of basic information, each scenario should be able
to provide as a minimum requirement. Beyond that, however, there should
be as few other requirements as possible to preserve applicability.

Addressing this issue, the localisation approach presented in this chapter
is based on the received signal strength which is available on most of the
wireless devices. In a multi-stage process, the algorithm is able to include a
flexible amount of information, beginning with the very basic connectivity
data (RSSI), extendable with optional information of a floor plan and anchor
node positions, to increase the quality of localisation.

Ambiguity of Sparse Information

Allowing a solution to work with a flexible amount of details to preserve ap-
plicability requires to examine the edge cases. As a consequence of (exclus-
ively) using the most common and basic information, the results of analysis
might be inaccurate or subject to certain ambiguities. Taking the RSSI,
which combines many influencing aspects of hardware and environment in
one single number, the informative value of such is limited. Considered
individually, it is difficult to derive meaningful conclusions on the reasons
of having observed a specific value, e.g., if it is was measured due to dis-
tance losses, obstructions on the path, a defect radio chip or for any other
plausible reasons. Thus, more context is required in order to resolve such
ambiguities. This can either be achieved by relating more information of
the same type or by incorporating other types.

Given the unavailability of the latter, the presented localisation approach
which utilises a force-directed algorithm, is able to implicitly relate all of
the measured RSSI values due to the underlying physical principles. Based
on the RSSI value, a link exerts an influence on the two devices it relates
to, but also on other devices in the direct vicinity. In this way, individual
local inaccuracies are corrected by the entirety of data. However, although
mitigating the problem, certain inaccuracies are still inevitable and have to
be accepted in such cases in which further details are lacking.
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4.2 Approach

The idea of modelling a network as energy system with forces depending
on connectivity information has already been exploited for localisation in
some approaches. [p64] utilises a mass-spring relaxation algorithm to loc-
alise nodes in a self-organising robotic network and improve the floor plan
maps, generated by the robotic sensors while traversing the environment
and discovering devices. Sensor drifts of the robots resulting in imprecise
and displaced mappings could be corrected by the force-directed algorithm
as well as measurements from multiple robots aligned. A similar approach
is used in [p92], but it assumes the pair-wise distances between nodes to
be known beforehand. These solutions define decentralised algorithms able
to integrate distance information in force-directed graphs and demonstrate
the benefits of such algorithms within the given scenarios quite clearly. In
this work, however, it is aimed at experimenting with various amounts of
information to understand the impact on the resulting accuracy. Moreover,
in the analysis part it is refrained from changing the existing system infra-
structure, exploiting only available data.

Departing from the body of work done on device localisation based on wire-
less measurements and dedicated infrastructures (Section 3.1), this chapter
presents FLoW, a Force-directed Localisation of Wireless Devices algorithm
able to work with different amounts of provided information [a4]. FLoW
starts by unfolding a graph where vertices repel each other and edges build
attraction based on connectivity information. This topology without phys-
ical awareness can then be positioned inside a map of the scenario, if avail-
able, and expanded to best fit the specific environment shape. In case in
which the physical position of some node is provided, this knowledge can be
exploited to resolve ambiguities. In exploring each of these steps, this work
(1) defines techniques able to exploit information to the extent available in
order to practically infer the position of wireless devices, (2) analyses the
impact of information on the achievable accuracy and (3) demonstrates to
what degree localisation can be achieved in real systems without dedicated
infrastructures and protocols. Exploring the trade-offs between localisation
accuracy and the amount of information about the system and the environ-
ment made available, the investigation focuses on scenarios, whose complex
structures with strong impact on low-power wireless communication affects
the ability to match simple measurements with physical distances. By real-
ising the aforementioned, FLoW makes the following contributions:
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Position Inference with Basic Information and Incremental Refinement
Using the basic force-directed graph mechanism with connectivity informa-
tion, FLoW enables to obtain a first estimation of device positions without
any further required knowledge about network or environment. Thus it can
help to gain a basic understanding of the network topology and the spatial
arrangement of nodes in the environment without much effort. However, as
the accuracy of the output is limited when using coarse basic data, further
information can be added as needed. FLoW exploits information from dif-
ferent sources, network and environment, in a flexible process to achieve the
most accurate results with the given data, individual to each scenario.

Localisation Independent of Dedicated Hardware While certain ap-
proaches, e.g., AoA or ToA, require the availability of specific equipment or
software features, FLoW enables a localisation without any constraints on
used hardware. The only requirement is the possibility to measure the sig-
nal strength, which each radio is capable of, in order to gather the required
connectivity information of a network. Since other exploited information
used in further computation steps refers exclusively to the environment, the
localisation of FLoW is applicable to a wide range of wirelessly communic-
ating networks, as it can be employed independently of the used devices.

To obtain device position estimations and exploit different amounts of avail-
able information, FLoW uses a multi-stage incorporation process, success-
ively adding data and thus refining the accuracy. This process is shown in
Figure 4.1, starting with the basic RSSI values as input, producing a relative
node displacement utilising the adapted force-directed algorithm, described
in Section 4.3.1. The output of this step, however, lacks any reference points
and cannot be transferred to actual positions or distances. By adding a floor
plan outline in the second refinement step, the device positions are adjusted
to fit the given shape. Maintaining the relative displacements of the first
step, this is achieved by transforming the whole graph using simple opera-
tions, i.e., translation, rotation, mirroring and scaling. As a result, absolute
device coordinates are obtained which can be refined by specifying positions
of anchor nodes in the third step, producing more accurate results. These
stages are described in detail in the following sections, beginning with a
general description of the utilised force-directed algorithm, followed by the
steps taken to estimate device positions and finally refining them with the
usage of anchor node positions.
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Figure 4.1: FLoW multi-stage output refinement process using variable amount
of information. The first step uses a multilevel force-directed (MLF) algorithm
[p162] to create the initial graph.

By applying FLoW in real-world deployments as well as in challenging
artificial setups (Section 8.3), it is investigated how the approach is able
to exploit available domain knowledge to estimate the position of devices
and to increase the accuracy when successively provided with additional
information. Furthermore, restrictions of the approach resulting from the
usage of limited information are revealed and analysed.

4.3 Implementation

In this section, the three output stages of FLoW are described in de-
tail. It is described how force-directed algorithms help to localise devices
in unknown deployments just by providing connectivity information and an
outline of the scenario. It is also discussed how further system knowledge
can be used to resolve ambiguities.

4.3.1 Force-directed Algorithms

Force-directed algorithms [p18, p86] provide an effective way of arranging
graphs neatly by utilising physical laws to determine the positions of the
vertices. To realise a proper dispersion, vertices are treated as particles
that repel each other. Edges, instead, imply an attractive force between
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the corresponding vertices, preventing them from drifting apart infinitely.
Combining both properties result in a graph which, once an equilibrium is
reached, occupies a given space with vertices whose proximity depends on
the interconnecting edges.

This property of force-directed algorithms makes it very suitable for visu-
alising wireless networks. Nodes can be represented as vertices and con-
nectivity information as edges of the graph. The only constraint is that
the network graph is fully connected, without isolated nodes or network
partitions. Otherwise these partitions would repel each other and impede a
proper graph expansion within given boundaries.

Going into more detail, the general basic two-dimensional force-directed al-
gorithm used and extended by FLoW is depicted by Algorithm 4.1 and
works as follows. Initially, vertices are placed randomly in a given drawing
area. Then the following steps are repeated several times (rounds) until
an equilibrium is established, i.e., vertex displacements have to be below
a given threshold thr. For each pair of vertices, their vectorial repulsive
forces are computed according to the variable function fr(x) which is based
on their absolute distance x. In case of existing edges between two vertices,
opposing attractive forces are computed as well using fa(x). If modelling
heterogeneous vertices with different properties, a weight factor w can be
additionally considered, individually influencing forces on each vertex. The
sum of all repulsive and attractive forces yields the displacement of a vertex
which is applied either after each individual vertex computation or after all
vertices have been processed, depending on the implementation. Achiev-
ing a controllable graph expansion and constraining the occupied space in
dependency of the total number of vertices, an equilibrium length k is in-
troduced. This variable determines the distance at which repulsive and
attractive forces of connected vertices are equal, cancelling out each other.
In complex graphs, certain tensions between connected vertices are inevit-
able, causing them to move back and forth between each computation step.
To deal with such occurrences and nevertheless achieve a convergence, a
damping factor t, called temperature, is furthermore introduced, limiting
the maximum allowed vertex displacement in each step. Starting with large
values allowing strong movements at the beginning of the algorithm, the
temperature is successively reduced in further steps by applying a cooling
function until converging. By customising the aforementioned algorithm
parameter, described in the following Section 4.3.2, the output of force-
directed algorithms can be adapted to certain requirements.

The reference approach [p162] uses a multilevel force-directed (MLF) al-
gorithm to optimally expand a connected graph in a two-dimensional space.
To avoid local force minima and thus possible incorrect unfolding steps of
a graph, the initial set of vertices is reduced stepwise by conflating each
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Algorithm 4.1 Basic force-directed algorithm, referring to [p162].

1: function forceDirectedPlacement(V ertices, Edges, t)
2: converged := false;
3: while (¬ converged) do
4: converged := true;
5: for (v ∈ V ertices) do
6: Θ := 0;
7: for (u ∈ V ertices, u ̸= v) do
8: ∆ := u.position− v.position;
9: Θ := Θ + fr(||∆||);
10: if (eu→v ∈ Edges) then
11: Θ := Θ + fa(||∆||);
12: ∆ := (Θ/||Θ||) ∗min(t, ||Θ||);
13: v.position := v.position+∆;
14: if (∆ > thr) then
15: converged := false;

16: t := fc(t);

Figure 4.2: Example of the unfolding procedure for a graph based on traces
gathered from the WSN Testbed (Section 8.3.1).

two most spatially correlated vertices into a new single vertex. Hence, the
number of vertices is halved in each step until only two vertices remain,
serving as starting point for the algorithm. Once these two vertices reach
an equilibrium of forces, the conflation process is reversed by expanding
the compressed nodes again at their current position and repeating the
force computations until all nodes have been restored and the equilibrium
established, as illustrated in Figure 4.2. This approach generates graphs
significantly closer to the actual topology shape compared to a random ini-
tial placement and unfolding. The conflation process, adapted to FLoW,
is described in Section 4.3.3.

4.3.2 Algorithm Parameter Adaptation

Starting from the algorithm described in [p162], functions, thresholds and
constants used in the implementation of FLoW have been mostly set ac-
cording to the recommended for achieving the best graph unfolding and
hence positioning accuracy.
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Table 4.1: Overview of parameters and chosen values adapting the MLF al-
gorithm to FLoW.

Parameter Description Value

thr Convergence Threshold 0.01

t0 Initial Temperature k

fc(t)
Cooling Function 0.9ti−1

(Temperature in Round i)

fr(x) Repelling Function −0.2k2/x

fa(x,w) Attraction Function x2w/k

k0
Initial Unfolding min(mapHeight,mapWidth)

Equilibrium Distance

kj
Equilibrium Distance √

4/7 kj−1

in Unfolding Step j

Table 4.1 summarises these parameters and contains the corresponding val-
ues chosen. The convergence threshold is set to 0.01 metres allowing only
minor vertex movements in each round before stopping the algorithm. A
continuous decrease of temperature by a factor of 0.9 leads to a fast drop in
the first steps followed by a smooth decay in later steps until finally conver-
ging after a finite number of rounds. Repulsive forces between each pair of
vertices are computed according to fr(x) = −0.2 ∗ k2/x, declining with in-
creasing absolute distance x between two vertices. Attractive forces in case
of an existing edge on the other hand increase at a quadratic scale using
fa(x,w) = x2 ∗ w/k. As the purpose of this algorithm is to determine dis-
tances between nodes in dependency of measured RSSI values, an additional
weight factor w has been added to the attraction function incorporating this
feature. Details on the weight determination follow in Section 4.3.3.

During MLF graph unfolding phase, the equilibrium distance k is success-
ively decreased in order to counterbalance the increased space demand. Ac-
cording to [p162] a reduction by factor

√
4/7 in each unfolding step shows

the best results. Furthermore, displacements are applied directly after force
computations have been completed for each vertex.
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4.3.3 Position Estimation

The solution just presented assumes that the graph can freely unfold, thus
resulting in range-free positioning of nodes. The goal of this work is, how-
ever, to localise devices in a specific environment within its boundaries based
on connectivity information. For this reason a limitation of the graph ex-
pansion to the outer boundaries of a given floor plan is required, resulting
in constrained, range-based localisation. To achieve this, different possible
extensions of the basic algorithm depending on the available information
of the deployment scenario are explored, as described in the following sec-
tions.

For the internal handling of graph structures and force-directed compu-
tations, a corresponding data representation has been defined, listed by
Algorithm 4.2. Since the MLF approach requires to deal with changing
graph structures, a data type has been defined in order to describe mul-
tiple graph layouts at different levels of conflation. Additionally, a scaling
factor is stored, which becomes relevant in the finalisation of the second step
when fitting the graph to the floor plan. Apart from information regarding
identification and position, each vertex has two optional fields describing
the vertices it consists of to allow for an efficient initial unfolding proced-
ure. Lastly, besides the vertices it connects, each edge requires to store the
attraction forces both vertices exert on each other.

Algorithm 4.2 Internal data structures for graph handling.

struct Graph {
List V ertices, Edges;
Float scaling;

}

struct Vertex {
Integer id;
Vertex subV1, subV2;
Position pos;

}

struct Edge {
Vertex v1, v2;
Float force;

}
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Using Wireless Connectivity as Graph Edges

Utilising the adapted MLF algorithm, measurements of the RSSI as ob-
tained by the nodes communicating in the deployed system are employed.
While in theory any connectivity metric could be used, e.g., link quality
indicator or the plain existence of a link, the quality of the output topo-
logy depends on how well these values correlate with the physical distance
between the nodes. By using the measured RSSI, a first estimate of distance
based on the free space path loss model and use of the inverse formula as
edge attraction weight is built. Needless to say, this works accurately only
in clear line of sight conditions, unlikely in indoor setups. Nevertheless, to
keep the approach simple and practical at the cost of a reduced accuracy,
it is refrained from requiring detailed information about physical obstacles
hindering the wireless signal propagation.

In addition, given that according to the path loss model the signal degrades
logarithmically with the distance, links with a weak signal are more likely to
introduce errors, even more in the presence of obstructing elements nearby.
To mitigate this, weaker links (< −90 dBm) are not considered when gen-
erating edges, favouring stronger and meaningful RSSI values. Further-
more, the signal strengths of both link directions are averaged, ensuring a
symmetric force relation between two connected vertices, fostering faster
convergence. As a consequence, unidirectional links are discarded as well.
Moreover, a minimum bound on the attraction forces for the lowest con-
sidered RSSI values for an estimated distance higher than 20 metres is set.
However, this approach benefits by the fact that the distance between two
vertices is not only influenced by their attraction through edges, but also
by the repelling forces of close vertices, providing a certain degree of self-
correction, especially at higher node densities.

Configuring FLoW for generating the initial graph, the given RSSI values
are processed first as summarised by Algorithm 4.3. Iterating through the
set of all existing links L between the nodes N of the network, the previ-
ously mentioned link filtering and averaging of the link path losses (PL) are
applied first. The path loss is determined by subtracting the transmission
power txpwr from the measured RSSI value. The free space distance d of a
given path loss PL is then obtained by rearranging Equation 2.6 to provide
the distance in dependency of the signal strength:

d =
100.05PL+7.3775

f
(4.1)

The symmetric attraction weight wij, used in Table 4.1, to determine the
proximity of two connected vertices i and j is then given by:
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wij = max(0.05, 1/dij) (4.2)

Algorithm 4.3 RSSI-based initial edge attraction weight computation.

1: function computeEdgeAttractionWeights(L,N, txpwr, freq)
2: WeightMap := new Map()
3: for (ln1→n2

∈ L, n1 ∈ N,n2 ∈ N,n1.id < n2.id) do
4: if (ln2→n1 /∈ L) then
5: continue with next l;

6: if ((ln1→n2
< −90dBm) ∨ (ln2→n1

< −90dBm)) then
7: continue with next l;

8: avgPL := ((ln1→n2 − txpwr) + (ln2→n1 − txpwr))/2;
9: dn1,n2 := 100.05∗avgPL+7.3775/freq; (Equation 4.1)
10: wn1,n2

:= max( 1
20 ,

1
dn1↔n2

); (Equation 4.2)

11: WeightMap.put(ln1→n2
, wn1,n2

);
12: WeightMap.put(ln2→n1 , wn1,n2);

13: return WeightMap;

Based on the weights, the MLF graph reduction is performed afterwards, as
described by Algorithm 4.4. Starting with the initial graph g0, containing all
nodes and edges of the real network, the number of vertices is halved in each
step until a reduction down to two vertices is achieved. During the conflation
process, the two vertices sharing the strongest links and consequently have
highest edge weight are merged to a new vertex first, maintaining edges to all
vertices each of the two initial vertices were connected to. The weights of the
edges are either kept or averaged if both merged vertices shared an edge to
another vertex. The remaining graph generation procedure corresponds to
the MLF process, alternating between equilibrium computation and graph
unfolding until the complete graph has been restored.

Positioning of the Graph in the Deployment Map

Based on the RSSI information, filtered as described in the previous step,
the range-free graph expansion results in a first estimate of the network
topology. However, two flaws prevent the use of this graph for localisation.
First, the distances between vertices are only relative and second, the graph
can be arbitrarily rotated, scaled and mirrored to fit the actual scenario.
In order to solve these issues, reference points to absolute coordinates are
required. Due to the expansive nature of force-directed graphs, it has been
decided to provide these points by setting bounds to the algorithm based
on the outline of the floor plan, in which the network is located. In this way
it becomes possible to find a suitable transformation of the graph as well as
to obtain absolute positions of the nodes within the floor plan coordinate
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Algorithm 4.4 Graph conflation process.

1: function conflateGraph(g0)
2: ConflatedGraphList := new List();
3: ConflatedGraphList.add(g0);
4: gcurr := g0;
5: while (gcurr.V ertices.size() > 2) do
6: gprev := gcurr;
7: gcurr := new Graph();
8: toCluster := new List(gprev.V ertices);
9: idnext := 1;
10: while (¬ toCluster.isEmpty) do
11: v1 := toCluster.getF irst();
12: toCluster.remove(v1);
13: v2 := findClosestNeighbour(v1, toCluster, gprev.edges);
14: if (v2 ̸= null) then
15: toCluster.remove(v2);

16: vc := new Vertex(idnext, v1, v2, null);
17: gcurr.V ertices.add(vc);
18: idnext += 1;

19:
20: for (v1, v2 ∈ gcurr.V ertices, v1 ̸= v2) do
21: commonLinks := 0;
22: forceSum := 0;
23: for (eprev ∈ gprev.Edges) do
24: if ((eprev.v1 = v1.subV1) ∨ (eprev.v1 = v1.subV2))

∧ (((eprev.v2 = v2.subV1) ∨ (eprev.v2 = v2.subV2))) then
25: commonLinks += 1;
26: forceSum += e.force;

27: if (commonLinks > 0) then
28: forceMean := forceSum/commonLinks;
29: ec := new Edge(v1, v2, forceMean);
30: gcurr.Edges.add(ec);

31: ConflatedGraphList.add(gcurr);

32: return ConflatedGraphList;

system. In order to decide on the best matching graph transformation, all
different combinations of rotation (in steps of one degree) and mirroring of
the graph shape are tested with different scaling factors and displacements.
The resulting possible configurations are listed in Table 4.2.

Given mirroring and rotation of the graph, the scaling factor is determined
based on four different approaches: (1) fitting the total width of the floor
plan, (2) fitting the total height of the floor plan, (3) using the average of
both width and height scalings, (4) averaging the scalings resulting from
splitting the map into vertical segments for which the height scaling is com-
puted individually. The latter approach, depicted in Figure 4.3 (a), should
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Table 4.2: List of transformation variants tested for each operation. The com-
bination of all four operations results in a new configuration.

Operation Mirror Rotation Scaling Translation Total

Variants 4 360 4 9 51840

(a) Vertical segment scaling (b) Translation alignment positions

Figure 4.3: Illustration of scaling and translation principles.

prevent using scalings with an oversized graph just because the extent of
the outline is large at certain areas. For displacements within the floor plan
shape, the graph is aligned to nine different positions, which are shown in
Figure 4.3 (b).

These configurations are rated based on two weighted properties: the areal
coverage of the graph with respect to the floor plan and the number of
vertices outside the map bounds. Thereto the outer vertices and edges of
the graph form an area, which can be compared against shape and area of
the actual deployment map. For this, the Jaccard coefficient [p76] is used,
which measures the similarity of two given sets A and B:

J(A,B) :=
|A ∩B|
|A ∪B|

. (4.3)

A value close to 1 (or 0) denotes a high (or low) similarity between the
two sets or in this case, areas. This value is then multiplied with a factor
based on the number of nodes outside the map boundaries, resulting in the
conformity equation:

conformity := J(A,B) ·
(
1− ln

(
#noff

|N |
+ a

)
− b

)
(4.4)
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where #noff is the number of estimated node positions lying outside of the
actual boundaries and N is defined as the set of nodes N := {n1, n2, . . . , nl},
with |N | as the total number of nodes in the network. The weight of outlying
nodes on the conformity value is based on an adapted logarithmic curve,
penalising more the first few nodes laying outside the boundaries than the
subsequent ones. Throughout tests, such curve could be fit with a = 0.6
and b = 0.5.

Comparing only the area coverage indicates how well the shapes of both
areas match and therefore the likelihood that the current graph configura-
tion has the correct orientation and scaling. However, preferably in networks
with an uneven node distribution, high similarity values could be observed
in cases with a significant amount of nodes lying outside of the bounding
shape (the floor map). As a consequence, it seems natural to also take the
outlying nodes into account in addition to the area coverage.

The complete process of graph positioning is described by Algorithm 4.5.
Starting with the graph obtained from the previous step, which contains the
relative positioning of the vertices, it is iterated through the different graph
transformations of mirroring, rotation, scaling and translation. To avoid
repeating computation steps, the graph is copied after each transformation.
In order to perform scaling computation and transformation alignment cor-
rectly, in addition to the position adaptations, the bounding boxes from
previous transformations have to be determined. After all transformations
have been performed on the graph, the conformity value (Equation 4.4) is
computed by incorporating the nodes, which are positioned outside of the
floor plan (line 40) and comparing the enclosed areas of graph and map
(line 44). Among all tested configurations, the one with the highest con-
formity value is chosen for the next step.

Fitting the Available Space

Continuing with the most conform configuration, the force-directed algo-
rithm is applied again with an appropriate distance scaling to adjust the
distribution of the nodes within the shape. In the previous step, a scaling
factor has been found for the areal adaptation of the graph. However, this
scaling has to be transferred to the expansion behaviour of the force-directed
graph algorithm as well by regulating the temperature t0. The adjustment
procedure is described by Algorithm 4.6. The goal is to approximate the
graph area produced by the algorithm to the area which was specified by the
fitting process of the previous step until the deviation is less than five per-
cent. Thereto, the scaling is successively adjusted and used as input to the
force-directed algorithm. Afterwards the area of the newly produced graph
is determined and the ratio between initial and current areas computed. In
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Algorithm 4.5 Graph positioning on the deployment map.

1: Mirrorings := {NONE, HORIZONTAL, VERTICAL, BOTH};
2: Scalings := {WIDTH, HEIGHT, BOTH, SEGMENTS};
3:
4: function positionGraphInDeploymentMap(grel,map)
5: confbest := −1;
6: gbest := null;
7: for (mirror ∈ Mirrorings) do
8: for (rotation ∈ N, 0 ≤ rotation ≤ 360) do
9: grotate := grel.copy();
10: prot,min := new Point(∞,∞);
11: prot,max := new Point(−∞,−∞);
12: for (v ∈ grotate.V ertices) do
13: if ((mirror = VERTICAL) ∨ (mirror = BOTH)) then
14: v.pos.x −= 2 ∗ v.pos.x;
15: if ((mirror = HORIZONTAL) ∨ (mirror = BOTH)) then
16: v.pos.y −= 2 ∗ v.pos.y;
17: radians := toRadians(rotation);
18: v.pos.x := v.pos.x ∗ cos(radians)− v.pos.y ∗ sin(radians);
19: v.pos.y := v.pos.y ∗ cos(radians) + v.pos.x ∗ sin(radians);
20: prot,min.set(min(prot,min.x, v.pos.x),min(prot,min.y, v.pos.y));
21: prot,max.set(max(prot,max.x, v.pos.x),max(prot,max.y, v.pos.y));

22: for (scaling ∈ Scalings) do
23: factor := getScalingFactor(scaling,map.bounds, prot,min, prot,max);
24: gscale := grotate.copy();
25: gscale.scaling := factor;
26: psc,min := new Point(∞,∞);
27: psc,max := new Point(−∞,−∞);
28: for (v ∈ gscale.V ertices) do
29: v.pos.x ∗= factor;
30: v.pos.y ∗= factor;
31: psc,min.set(min(psc,min.x, v.pos.x),min(psc,min.y, v.pos.y));
32: psc,max.set(max(psc,max.x, v.pos.x),max(psc,max.y, v.pos.y));

33: for (translation ∈ N, 0 ≤ translation ≤ 9) do
34: ptrans := getTranslationOffset(translation,map.bounds,

psc,min, psc,max);
35: gtrans := gscale.copy();
36: for (v ∈ gtrans.V ertices) do
37: v.pos.x += ptrans.x;
38: v.pos.y += ptrans.y;
39: outOfBounds := 0;
40: if (¬ map.bounds.contains(v.pos)) then
41: outOfBounds += 1;

42: areagraph := getAreaShape(gtrans);
43: areamap := getAreaShape(map);

44: jaccard :=
|areagraph ∩ areamap|
|areagraph ∪ areamap| ; (Equation 4.3)

45: conf := jaccard ∗
(
1− ln

(
outOfBounds

gtrans.V ertices.size() + 0.6
)
− 0.5

)
;

(Equation 4.4)
46: if (conf > confbest) then
47: confbest := conf ;
48: gbest := gtrans;

49: return gbest;
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case the new area is too large, the scaling factor is adjusted down and vice
versa. To avoid a repeated alteration between increasing and decreasing the
scaling factor, the adjustment steps decrease when overstepping the target
ratio interval, ensuring a convergence of the algorithm.

Algorithm 4.6 Graph scaling adjustment process.

1: function adjustScaling(g,map)
2: scalingComplete := false;
3: acreagestart := getAcreage(g);
4: acreagemap := getAcreage(map);
5: adaptFactor := g.scaling;
6: change := 0.2;
7: lastAdjustment := NONE;
8: while (¬ scalingComplete) do
9: forceDirectedP lacement(g.V ertices, g.Edges, k ∗ adaptFactor);
10: acreagecurr := getAcreage(g);
11: ratio := acreagecurr/acreagestart;
12: if (0.95 < ratio < 1.05) then
13: scalingComplete = true;
14: else if (ratio < 0.95) then
15: if (lastAdjustment = DOWN) then
16: change ∗= 0.5;

17: adaptFactor += change;
18: lastAdjustment := UP;
19: else
20: if (lastAdjustment = UP) then
21: change ∗= 0.5;

22: adaptFactor −= change;
23: lastAdjustment := DOWN;

24: return adaptFactor;

Once the adaptation factor to the temperature has been found, ensuring
that the nodes will move within the given map boundaries, the force-directed
algorithm is run again. This time the outer walls provided by the map
serve as solid barriers to the vertices, only allowing them to move within
the boundaries of the map. Vertices which were located outside of the map
beforehand are relocated next to the closest vertex inside the map, ensuring
all vertices being inside. As a side effect, minor deformations conflicting
with the actual topology are corrected through forcefully fitting the graph
into the shape. To assure a complete distribution of the vertices within the
given map space, an outer wall attraction is introduced in the final step.
For each wall segment, three virtual points are created, one for each end
and one in the middle, providing an attraction force to their closest vertex
to fill possible remaining gaps smoothening the final result. If one vertex is
closest to multiple such points, it will only be attracted by the one with the
least distance.
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Table 4.3: Performed map positioning computations in dependency of available
anchors.

Anchors Map Positioning Decision Problem Addressed

0 Max conformity -

1 Max conformity without translation Displacement

2
Best mirror configurations: min SSE

Rotation angle
Final configuration: max conformity

≥ 3 Min SSE Mirroring

4.3.4 Anchor Nodes

As previously indicated, topologies with an erroneous node placement can
still manifest a high conformity with the floor plan, thus leading to high
errors. This undesirable outcome depends on two circumstances: the sym-
metry of the map and the difference between the shape of the generated
topology and the actual one. The former leads to ambiguities which cannot
be reliably resolved by the matching algorithm without providing further
information. The latter is a property of force-directed algorithms to place
nodes without a common edge as far away as possible from each other within
the limits of the given attraction and repulsion forces. One can think about
a scenario shaped like an S; in this case the pure force-directed graph would
hardly reproduce a bend in the topology (a more in depth discussion for this
scenario is reported in Section 8.3.1).

To address this problem, more information about the system is necessary. In
particular, if the actual position of some node is available, it can be used to
anchor the graph and counteract the intrinsic limitations of the matching
algorithm. Depending on the number of nodes whose location is known,
it is possible to resolve the displacement within the map (with 1 anchor),
determine the rotation angle (with 2 anchors) and address mirroring (with 3
anchors). To consider this, the selection of the best matching configuration
has to be modified, as shown in Table 4.3.

Having exactly one anchor spares the need of shifting the graph around
during the matching phase since it can be attached to the anchor, primarily
reducing the configurations to test against. In the case of more anchors, the
main matching process is based on finding the minimum sum of squared er-
rors (SSE) between the estimated anchor positions and the real ones. Start-
ing from three anchors, it is also possible to supersede the computations
necessary to ensure the area coverage. For two given anchors, a combined
approach is chosen that still may lead to a mirrored configuration although
the anchor vertices match their positions. For each of the four possible ways
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of mirroring a graph, the conformity values of the configurations with the
lowest squared anchor distance error are compared against each other and
the configuration with the highest one chosen for the next step. To achieve
a more realistic distribution and compensate for the mentioned property of
providing maximum possible distances between unconnected vertices, an-
chor vertices are steadily dragged towards their real position in the final
space-fitting phase, implicitly applying resulting position corrections also
to surrounding vertices.

4.4 Conclusion - FLoW

Low-power wireless technology has allowed the free and flexible deploy-
ment of embedded systems in a variety of scenarios. As more and more
systems get deployed and an increasing number of devices are introduced
in scenarios with already existing infrastructures, it becomes increasingly
important to understand system properties with limited information and
intervention from the user. In this chapter, FLoW is presented [a4]. This
approach focuses on understanding the positioning of wireless devices in an
indoor environment with use of connectivity information and a physical map
of the scenario as well as optional anchor devices. With limited information,
it is explored how the location of devices can be estimated through the use of
force-directed graphs and how specific domain knowledge can be exploited
to improve the localisation process. In this context, necessary adaptations
to the utilised graph approach as well as potential problems and limitations
are discussed and how to address them by providing additional information.
In the evaluation (Section 8.3), it is then investigated to what extent the
correct positioning can be inferred by looking at different indoor testbeds
and challenging simulated scenarios. Furthermore, the assumptions that
needed to be made are discussed, thus exploring to what extent FLoW can
be employed in practice.

From the overarching perspective of this thesis, FLoW addresses the first
and earliest stage in the endeavour of gaining knowledge about a network
and its properties. Having almost no information available, except con-
nectivity information and optionally a rough understanding of the envir-
onment and its dimensions, FLoW is yet able to exploit and combine
such coarse information to provide first insights regarding the positioning of
devices. Thus it assists the user to fill the existing gap regarding the under-
standing of how the network is situated in its environment and to work to-
wards a basis for further knowledge gain and optimisation processes, carried
out by the other contributions of this thesis. For modelling wireless com-
munication behaviour, as done in the second contribution, the integration
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of device positions provided by FLoW can be beneficial to perform basic
predictions, assuming an unchanged rudimentary level of knowledge. How-
ever, due to the limitations given by the inherent imprecision of the basic
inputs, a room specific device localisation cannot be achieved. Especially in
view of the subsequent contributions, obtaining advanced knowledge, such
more detailed input becomes necessary to exploit the physical properties of
signal propagation by the model. Accordingly, the localisation of FLoW
does not provide sufficient accuracy to meet these requirements. Never-
theless, considering the low requirements on the provided inputs, FLoW
serves as a starting point for obtaining first insights for an, at that point
mostly unknown network that needs to be understood.
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5 Efficient and Accurate Wireless
Communication Modelling

Understanding the behaviour of a wireless network is an essential first step
offering possibilities for improving its properties. By modelling wireless
communication, incorporating knowledge of either preceding observations
or physical propagation laws and properties of the environment, predictions
of expected signal quality become possible at arbitrary locations. This in-
formation is invaluable when taking action for improvements by discovering
new or alternative positions for devices or basing subsequent algorithms on
them. However, providing a general solution is difficult, as the available
information about network and environment differs regarding quality and
quantity in each scenario. Consequentially, models are required which are
able to handle the given information in individual and appropriate ways.

With real-world traces of reception probabilities and corresponding features,
e.g., RSSI, a statistical model can match the behaviour of wireless com-
munication at known (observed) positions. For unknown positions, this
model can only interpolate between the locations of the provided measure-
ments. With an increased complexity of the environment and the presence
of obstacles, such approximation loses accuracy. In contrast, with a large
amount of computation time and resources, physical models are able to pre-
dict how the wireless signal propagates in detail. In this case, the accuracy
is bound to the precision of the provided information about the physical
displacement and size of objects, e.g., walls, and of their specific impact on
the signal propagation.

In this chapter, an approach is introduced, providing multiple solutions for
modelling wireless network communication, utilising different input data as
well as computational methods, for generating predictions at a desired ac-
curacy and complexity. These models serve as basis for the other subsequent
contributions discussed in this thesis.
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5.1 Challenges

Considering the goals of this thesis, comprehending wireless networks in a
universally applicable manner by providing flexible approaches bears several
challenges relating to modelling wireless communication. Especially pursu-
ing a more complex physical approach, accurately reproducing the signal
propagation of the real world in a virtual model requires to consider the
interplay of multiple physical effects. As mentioned in Section 2.2, in order
to correctly simulate certain effects, specific details of the target environ-
ment need to be provided. However, as the available information could
considerably differ in each scenario, these details might not be available.
Therefore, communication models need to provide capabilities dealing with
both situations, adjusting the accuracy based on the availability and the
given amount of information. This conflict of model design, preciseness
versus practicability, is illustrated by the two subsequent example cases
which also have been dealt with in the context of this thesis.

Interdependencies of Properties

Achieving good signal coverage in a wireless network requires either well
prepared planning, comprising knowledge of the environment or time-consu-
ming trial and error to accomplish an effective placement of access points.
Pursuing the former elaborated approach, obtaining knowledge to perform
an accurate physical modelling also comprises considering material charac-
teristics in relation to the chosen frequency of wireless communication.

Each frequency exhibits different properties, e.g., the occurring propaga-
tion loss when passing through specific materials or the ability to bend
around sharp edges depending on the wavelength. Existing communication
frequencies in almost any range from a few Hz (submarine communica-
tions [p153]) up to 100 GHz (5G cellular network technology [m2]) require
extended measurement campaigns to accurately model the signal interac-
tion with obstacles of different materials and thus are costly. According
to [p144], conducting a comprehensive experimental study on radio signal
attenuation, testing frequencies between 0.5 GHz and 8 GHz penetrating 20
different common construction materials, an increasing frequency in general
increases the propagation loss for most of the materials. However, there are
some exceptions to take into account, e.g., glass and plywood, where at cer-
tain discrete higher frequencies resonance effects even increase the received
power. These effects may also vary over different pieces of the same material
depending on the manufacturing process or the type of performed experi-
ments as seen in a similar study on material properties [p165], exacerbating
a precise modelling even more.
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As a consequence, models either have to be designed considering influen-
cing factors in the minutest details, requiring large amounts of information
providing an individually tailored solution to one specific scenario in the
end or following a more general approach applicable to various scenarios at
the cost of accuracy. Complying with the goals of this thesis, limiting the
amount of necessary information to achieve a flexible and practical solution,
the more general approach is pursued and implemented to model wireless
communication.

Interplay of Effects and Required Details for Their
Modelling

Conversely, in order to realistically model certain propagation effects, the
availability of specific details is essential. E.g., to accurately model scat-
tering effects and their impact on signal propagation, the surface roughness
of the involved materials is required as well as the wave polarisation (see
Equations 2.22, 2.23). In absence of such information, the influence of scat-
tering can at most be estimated, if considered at all. Con- and destructive
interferences on the other hand depend on the phases of multiple waves
superimposing at the same point in space and time. As amplification and
cancellation differ only by half of a wavelength, corresponding to a distance
of either around 17 cm for 900 MHz or 6 cm for 2.4 GHz frequencies, a
precise signal path length computation is indispensable. Hence, the de-
scriptions of the modelled environments have to be of the highest possible
accuracy regarding device and obstacle positions. Computed interferences
may otherwise predict the exact opposite of what is observed in reality in
the worst case, rendering them useless.

Accordingly, a trade-off has to be made, either to provide a sophisticated
modelling close to reality by considering a large number of physical effects
at the consequence of increased detail requirements or to refrain from the
necessity of such details, again, at the cost of accuracy. In the context
of this work, the latter approach has been chosen, minimising the require-
ments for maintaining an applicability in a large number of scenarios where
such information may not be available or require a disproportional effort to
obtain.
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5.2 Approach

Modelling of actual wireless communication in real environments can be
based, in practice, on statistical, experimental observations of signal prop-
erties between devices once deployed in a specific setup [p108]. This statist-
ical approach has the benefit of being fast to compute once measurements
are available; no prior, detailed information is necessary about the scenario
and, once a system is deployed, the obtained estimations adhere closely to
the real existing environment and system structure. However, the measure-
ments make it hard (if possible at all) to generalise the gathered description
to other scenarios or even to other device positioning inside the same scen-
ario. Similarly, it is impossible to reason about the causes of changes in the
wireless signal as no description of the scenario is available.

On the other side, the physical properties of the environment and the laws of
electromagnetic wave propagation offer the possibility, in theory, to exactly
model the expected wireless features. This comes, however, at the cost of
complexity in terms of both the degree of details that need to be provided in
order to accurately describe the surroundings as well as the computational
resources necessary to process the actual model features throughout the
environment.

Evidently, the more knowledge of a network is available, the more pro-
found predictions can be made when modelling wireless communication at
unknown positions. Nevertheless, in each scenario the available amount of
information differs, aggravating the usage of one specific type of model when
targeting to achieve the most accurate estimations for a given input. Con-
sequentially, the used approaches have to provide the flexibility to adapt to
the information available. Since both types of models, statistical and phys-
ical, use orthogonal data as their inputs, each of these are valuable to use
when dealing with heterogeneous scenarios with varying information about
network and environment.

Pursuing the goal of providing practical and general solutions, applicable
to a wide range of networks, this chapter introduces Models for Network
Optimisation in Versatile Environments (MOVE), a collection of models
for predicting wireless signal propagation [a1, a3, a2]. With the main fo-
cus on the physical aspect of modelling due to better exploitability of loc-
ally accurate predictions for gaining network knowledge, MOVE provides
four models in total, appropriate for communication modelling under dif-
ferent conditions: (1) a two-dimensional physical model, (2) an improved
three-dimensional version, (3) a statistical model and (4) a hybrid approach
combining the traits of both model types, physical and statistical. Due to
its individual characteristics, each of these models offer benefits which are
described below.
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Two-Dimensional Physical Model The first introduced model PHY ba-
ses its predictions on ray tracing to compute signal paths in a two-dimen-
sional space. Given the availability of a description of the environment, it
offers the possibility to perform accurate predictions and thus to investigate
signal properties at arbitrary positions within a network. By implementing
optimisations of ray path investigation and parametrisations on the compu-
tation limits (see Section 5.3.2), this model is able to provide estimations
on the communication behaviour at an adjustable quality and computation
time. Intended for execution on a CPU and thus suitable for use on almost
any hardware, it represents the base model of MOVE and is furthermore
utilised in subsequent contributions to increase the knowledge about the
network.

Three-Dimensional Physical Model Pursuing physical modelling approa-
ches while having limitations on any resource requires a trade-off between
accuracy and accepted costs, e.g., efforts for obtaining further network
knowledge in case of lacking details, or execution time in case of limited
computational resources. To mitigate this problem in favour of improved
accuracy and/or reduced costs, one approach is to improve the efficiency
of computations by adapting them to the given hardware used for the exe-
cution of model predictions. Considering the required computational effort
to generate an accurate model by including more physical details, a three-
dimensional ray tracing model 3D GPU has been developed, executable
on the GPU and utilising its parallelisation capabilities to handle the prob-
lem complexity (Section 5.3.3). In this way, it becomes possible to increase
the accuracy while retaining the calculation time compared to the previous
approach using the CPU. However, as appropriate graphics cards, albeit
widely used, cannot be assumed to be available in any scenario, this ap-
proach comes at the cost of less applicability and is considered as an optional
improvement of the otherwise applicable two-dimensional CPU model.

Statistical Model The third model of MOVE introduces a statistical ap-
proach STAT, based on Kriging interpolation [p87], applying a logarithmic
interpolation between known data points (Section 5.3.4). In absence of a de-
scription of the environment, but existing measurements from the network,
this model is able to perfectly reproduce the network behaviour within a
fraction of time compared to the physical models of MOVE, thus acting as
their complement. Compared to other statistical models, this model does
not require any empirically determined coefficients as input, which have to
be set specific to the environment. Device positions and traces collected
from the network are sufficient for performing predictions. However, as
STAT is not aware of any local environment properties, accuracy decreases
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with an increasing distance to known positions, aggravating predictions at
positions with sparse coverage of data points. Nevertheless, this model
comes into play when physical modelling is not applicable, thus providing
a valuable addition to MOVE.

Hybrid Model Investigating the potential of combining benefits of both
model types, the fourth model introduces an approach, fusing PHY and
STAT into one HYBRID model (Section 5.3.5). To generate predictions,
a weighted output of both models is used, favouring one or the other in
dependency of the distance to known positions. Due to combined usage,
the weaknesses of both models are mostly compensated by the strengths of
the respective other. The inherent impreciseness of PHY, attributable to
inaccurate descriptions and unconsidered effects, is locally corrected by ob-
servations taken from STAT. On the other hand, the decreasing prediction
quality of STAT at larger distances is counteracted by the environment
description utilised by PHY. Hence, in case a scenario offers extensive in-
formation enabling the usage of either STAT and PHY, HYBRID can be
used instead to fuse the data obtaining predictions at an enhanced accur-
acy.

Figure 5.1 visualises the signal strength predictions of the different models
of MOVE for a sending device highlighted in orange in (a), which is loc-
ated in the main evaluation scenario WSN Testbed (Section 8.1). Due to
their individual ways predicting signal strengths, the outputs of STAT (b)
and PHY (c) look different. While STAT produces continuous interpola-
tions between known device positions, the signal strengths of PHY might
change abruptly depending on the obstacles located in the environment. As
being a combination of the two former models, the visual representation of
HYBRID (d) contains properties of both. Considering the characteristics
of each individual model as well as the added value of the complete set,
MOVE makes the following contributions:

Modelling Fitting the Conditions of a Scenario MOVE provides suit-
able modelling approaches for a variety of scenarios with different inform-
ation and capabilities available. Having either traces of network commu-
nication or a description of the environment exclusively available, MOVE
enables a modelling in both cases by providing either a statistical or phys-
ical model. Upon the availability of computational resources, the degree of
detail can further be adjusted by increasing the complexity and thereby the
accuracy of the predictions. Thus, MOVE utilises the individual circum-
stances given in each scenario to enable a modelling in the most suitable
way.
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(a) Sender node position (b) Kriging STAT model

(c) Ray tracing PHY model (d) HYBRID model

Figure 5.1: STAT, PHY and HYBRID estimations of reception probabilities
for the sending node highlighted in orange in (a). The colours denote an expected
clear reception (green), bad connectivity (red), or a transitional region (blue).

Accurate Physical Modelling Without Detailed Descriptions As de-
scribed in the challenges, modelling certain physical effects correctly requires
a minimum amount of detail, e.g., centimetre accuracy for computing inter-
ference effects. Instead, the physical models of MOVE demonstrate that
it is possible to achieve a satisfiable accuracy without incorporating such
effects and thus, although certainly beneficial, not requiring the minutest
details as well.

Synergy Exploitation by Combining Different Inputs Considered alone,
both types of model play out their individual strengths. However, by provid-
ing and combining details on both, traces and environment, the advantages
of both models can be exploited and synergies created. Realising the fu-
sion of these two classes of models into a single, hybrid description of signal
propagation,MOVE allows to benefit from the availability of different types
of information about a network by gaining increased accuracy.
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The models of MOVE are evaluated using data traces collected from mul-
tiple indoor scenarios (Section 8.1). Different qualities in the available meas-
urement data, as well as environmental information, show that MOVE
provides a suitable model for each scenario, exploiting the given data and
achieving accurate predictions for entire networks within few seconds (Sec-
tion 8.4), even with the more complex physical models. Furthermore, the
results demonstrate that the introduced HYBRID technique is able to ac-
curately follow the best models for the given scenario and the available in-
formation. The predictions of HYBRID are computed in the same amount
of time than the two models, it consists of, demonstrating the practicality of
the solution. Finally, the transferability of the physical model to networks
with different hardware setups and communication properties is examined
in more detail, revealing further insights about influences on the link quality
predictions as well as capabilities and limitations of the chosen approach.

5.3 Implementation

In this section, the specific contributions are described to make physical
modelling practical both in 2D and 3D descriptions, for the latter in partic-
ular exploiting the use of GPU computational power. Afterwards, a hybrid
solution is introduced, enhancing the physical model by incorporating em-
pirical observations via usage of a likewise introduced statistical model,
combining the benefits of both modelling types and improving the predic-
tion accuracy.

5.3.1 Definition of a Map

The most important information for physical modelling is the map of the
environment, including the objects present in it. While autonomous 3D
mapping of environments is making significant progress [p45], it is still chal-
lenging to perceive the specific features of relevance for techniques such as
ray tracing. In particular, the understanding of the main involved materials
is a tedious task that still relies on manual supervision. In this thesis, an
effort is made in simplifying and reducing the information that needs to
be gathered and provided as input to the various implemented modelling
engines.

For indoor environments, a two-dimensional representation of main elements
is necessary such as inner and outer walls. Depending on the level of ac-
curacy required, information about surrounding buildings that could reflect
signals might also be provided. In addition, relevant objects like doors,
windows and ceilings are expected to be described with their height and, if
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Figure 5.2: Example image of a 2D ray tracer showing different paths from the
sender at the bottom to the destination (blue circle) located in the middle of the
room.

applicable, tagged as objects that can change their state from closed to open
and vice versa. The identification of the involved materials with their cor-
responding attenuation and reflection coefficients can be limited to coarse
categories [p165]. In particular, ten types of objects are distinguished: two
types of doors (thick and thin), five categories of walls (thick, very thick,
brick, dry and outer walls), windows and two different closets (wooden and
metallic). While more details, e.g., chairs or tables could further increase
the model accuracy [p34], it is refrained from including them. Instead, the
representation is limited to include big visible metallic furniture like cup-
boards. Finally, the position and optionally the height of wireless devices
are can be exploited.

This information can easily be obtained through a floor map and a quick
survey of the scenario, providing a machine-readable description that can
be easily supported with computer-aided editing tools. Even though the
amount of details to be provided is restricted, it must be clear that the
accuracy of the supplied scenario descriptions is essential in defining the
resulting model adherence to reality. In particular, centimetre accuracy is
required in order to correctly compute con- and destructive interference from
rays taking different paths to reach a destination. However, since providing
such accuracy is impractical, techniques will be introduced to circumvent
the necessity of highly detailed maps.
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5.3.2 CPU-based 2D Ray Tracing Model

The first introduced model is a reference approach as depicted in the liter-
ature [a3], from which an own engine has been implemented exploiting the
same principles. The developed physical model PHY is based on the ray
tracing model implemented in the Cooja simulator [p116]. In particular,
this Java-based modelling tries to aim rays in order to reach the destina-
tion from the source directly (through line of sight in free space or through
transmission) or indirectly (through diffraction or reflection) by identifying
surrounding obstacles. An example of the computed ray paths from a source
to a destination is given in Figure 5.2. Given the complexity of comput-
ing a full 3D model of the propagation with just the resources offered by
a (even if multi-core) CPU, the computation remains in a ”flat” 2D world.
In fact, a CPU-based approach offers limited parallelism, imposing the use
of an aimed approach in order to increase speed. Similarly, as rays depart
from the source and encounter obstacles, the number of possible paths to be
computed grows exponentially, affecting the processing time. As later eval-
uated, this time required to compute the model is significantly high, even for
small environments with few obstacles and devices. This makes the model
impractical in several use cases, e.g., for in-field system deployment and
maintenance or for the integration in live drag-and-drop user design tools.
Restrictions are then necessary, in particular for the maximum number of
effects to consider and their combinations (e.g., reflection and diffraction
are not considered together). Due to a large set of parameters, PHY offers
the capabilities to adapt computations and their complexity to a given scen-
ario. The most relevant parameters are listed Table 5.1, divided in three
categories:

1) Basic parameters, including signal frequency, transmission output power
and fixed losses for static effect computations. The former two have to
be set individually for each scenario in dependency of the hardware spe-
cifications, the latter provide the base attenuation values in case material
properties are not available.

2) Parameters related to complexity, determining the maximum number
of transmissions/reflections/diffractions to consider for each ray path
computation. As these values directly influence the accuracy and exe-
cution time of the ray tracing process, they should be adjusted based
on multiple factors, e.g., the obstacle density, computational resources,
targeted accuracy and accepted waiting time for the path computations.
The impact of different combinations of effect limits is investigated in
Section 8.4.2.
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Table 5.1: Parameters used by PHY and chosen values for evaluation.

Parameter Description Value

f Signal frequency 868 MHz / 2.4 GHz

txpwr Transmission output power −15 dBm to 0 dbm

atttrans Fixed losses for static transmission effect 3 dBm

attrefl Fixed losses for static reflection effect 5 dBm

attdiff Fixed losses for static diffraction effect 10 dBm

maxtrans Maximum number of transmissions 5-7

maxrefl Maximum number of reflections 1-2

maxdiff Maximum number of diffractions 1

bmaterial Consider individual material properties ✓

bangle Use angle-dependent diffraction loss ✓

b2.5d Incorporate obstacle height information ✓

bradiation Include device radiation patterns ×
binterference Compute interference effects ×

3) Optional features of PHY improving the prediction accuracy upon avail-
ability of additional information, comprising individual material atten-
uation, angle dependency, height consideration and radiation patterns.
Optimisations are described in Section 5.3.2.

Utilising the aforementioned parameters, the complete computation process
of PHY is visualised in Figure 5.3. Until receiving the final prediction for a
given pair of starting and destination positions, three phases are passed, the
initialisation, the path computations using ray tracing and the finalisation
phase in which the found valid paths to the receiver are evaluated. These
phases are explained below.

Initialisation

Prior to the actual computations, the model has to be initialised first, in-
cluding the construction of a geometric representation in which rays can
be traced. As already stated, PHY uses an aimed approach to identify
paths while involving the information provided by the environment map.
To significantly accelerate computations, each obstacle shape is internally
represented as a rectangle of individual dimension. This simplification al-
lows for performing very fast hit tests and angle computations to efficiently
handle larger environments with many present obstacles.
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Figure 5.3: Ray path computation steps of PHY.

To decrease computation time, the paths of the signals and the visibility
areas are precomputed and exploited to prune paths with minor contribu-
tions increasing usability for interactive design tools. For reflections, each
obstacle is decomposed into the visible surface segments for which in turn all
reachable other segments are computed. Due to the independent computa-
tion of reflections and diffractions, this allows for a fast exploration of valid
reflection paths. In order to accelerate computations for diffractions, relev-
ant edges on each obstacle are identified beforehand as well as which other
edges are reachable, enabling a direct aiming at these edges when computing
the ray paths similar to the aforementioned reflection computations.

Beginning with the precomputation of diffraction edges, the process is shown
by Algorithm 5.1. The edges of each obstacle, i.e., top left (index 0), top
right (index 1), bottom right (index 2) and bottom left (index 3), are checked
for being blocked by other obstacles first and remaining free ones are set
as diffraction edges, which the path computation aims at. Afterwards, the
visibility to other reachable diffraction edges is evaluated by drawing a line
between both points which must not intersect the other obstacle except for
the diffraction point. Furthermore, although each diffraction produces a new
wavefront which can move into any direction, only sharp edge diffractions
are considered in PHY, bending around the obstacle to reach the shadowed
region behind. E.g., for a top left edge of an obstacle, only other edges are
relevant which are positioned right and above, or left and below as these
are the only two directions, a ray can proceed when being bent around this
edge without passing the related obstacle again. To improve readability,
the visibility checks are only shown for the top left edge as the principle is
similar for the other edges.
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Algorithm 5.1 PHY diffraction edge precomputation.

1: function precomputeDiffractionEdgeVisibility(env)
2: O := env.getStaticObstacles();
3: EdgeMap := computeDiffractionEdges(env);
4: V isibilityMap := new Map();
5: for (ovis ∈ O) do
6: Edgesvis := EdgeMap.get(o);
7: for (i ∈ N, 0 ≤ i ≤ 3) do
8: if (Edgesvis[i] = null) then
9: continue with next n;

10: V isibleEdges := new List();
11: evis := Edgesvis[i];
12: for (oother ∈ O, ovis ̸= oother) do
13: Edgesother := EdgeMap.get(o);
14: for (j ∈ N, 0 ≤ j ≤ 3) do
15: eother := Edgesother[j];
16: if (i = 0) then
17: if (¬ oother.rectangle.intersectsLineOfPoints(evis, eother)

∧ (((evis.x < eother.x) ∧ (evis.y < eother.y))
∨ ((evis.x > eother.x) ∧ (evis.y > eother.y))) then

18: V isibleEdges.add(eother);

19: else if (i = 1) then
20: ...
21: V isibilityMap.put(svis, V isibleEdges);

22: return V isibilityMap;

23:
24: function computeDiffractionEdges(env)
25: O := env.getStaticObstacles();
26: EdgeMap := new Map();
27: for (o ∈ O) do
28: Edges := getObstacleEdges(o);
29: for (i ∈ N, 0 ≤ i ≤ 3) do
30: if (env.getObstaclesAt(Edges[i]).size() > 1) then
31: Edges[i] := null;

32: EdgeMap.put(o, edges);

33: return EdgeMap;

34:
35: function getObstacleEdges(o)
36: Edges := new Array(4);
37: Edges[0] := new Point(o.minX, o.minY );
38: Edges[1] := new Point(o.maxX, o.minY );
39: Edges[2] := new Point(o.minX, o.maxY );
40: Edges[3] := new Point(o.maxX, o.maxY );
41: return Edges;
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The visibility precomputation for reflection surfaces is described by Al-
gorithm 5.2. After decomposing an obstacle into its four outer segment
lines: top (index 0), right (index 1), bottom (index 2) and left (index 3),
these are checked for overlaps with other obstacle segments. The parts
which are not blocked by other obstacles are set as reflection surfaces for
which visibility computations are preformed. Considering the direction of
the surface and the relative position to other obstacles, only certain surfaces
can be potentially reached for further reflections. E.g., a surface facing up-
wards can never see other surfaces facing upwards and the other three sides
only when the former is positioned below. Due to the similar process for all
four sides, the depicted algorithm only shows the process for the top side.

Signal Path Computation

The first step performed by the model in predicting the expected RSSI is to
determine possible signal paths from a given starting position to a destina-
tion. Each path consists of several segments, separated by the encountered
effects, holding information of position, effect type, involved obstacle and
incident angle. Combining these, a full reconstruction of the signal path
becomes possible enabling a calculation of the expected signal attenuation
on the path afterwards. A path is considered as valid if it reaches a destin-
ation within the given limits of allowed effects. Once one of these limits is
exceeded during computation, this path is discarded immediately.

Depending on the types of effects to consider, the model computes paths
to a destination in three different ways: directly as a straight line including
transmissions and indirectly either via reflections or diffractions. In PHY,
reflections and diffractions are not considered together. This decision was
made due to the increased necessary computational effort at both sides,
reflection and diffraction. A combination of both effects would complicate
the individually optimised methods of path finding (Section 5.3.2). For re-
flections, path building and mirroring (explained below) need to be applied
on multiple sections depending on how many diffractions are on a path. In
case of diffraction, a validation only becomes possible after the entire fol-
lowing reflection path has been validated. In the worst case a completely
computed path is then invalidated, wasting a large amount of computation
time.

Signal paths resulting from scattering effects are not taken into account.
Compared to the power of the incident wave and the transmitted and re-
flected parts, the impact of scattered waves is not insignificant, but limited
[p118] and requires specific information about the surface roughness of the
involved materials [p117] as well as increased computational effort to de-
termine the radiated power. In addition, detecting scattering effects in the
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Algorithm 5.2 PHY reflection surface visibility precomputation.

1: function precomputeReflectionSurfaceVisibility(env)
2: O := env.getStaticObstacles();
3: SurfaceMap := computeReflectionSurfaces(env);
4: V isibilityMap := new Map();
5: for (ovis ∈ O) do
6: Surfacesvis := SurfaceMap.get(o);
7: for (i ∈ N, 0 ≤ i ≤ 3) do
8: V isibleSurfaces := new List();
9: svis := Surfacesvis[i];
10: for (oother ∈ O, ovis ̸= oother) do
11: Surfacesother := SurfaceMap.get(o);
12: if (i = 0) then
13: if (Line.isBelow(svis, Surfacesother[2])) then
14: V isibleSurfaces.add(Surfacesother[2]);

15: if (Line.isLeft(svis, Surfacesother[3])) then
16: V isibleSurfaces.add(Surfacesother[3]);

17: if (Line.isRight(svis, Surfacesother[1])) then
18: V isibleSurfaces.add(Surfacesother[1]);

19: else if (i = 1) then
20: ...
21: V isibilityMap.put(svis, V isibleEdges);

22: return V isibilityMap;

23:
24: function computeReflectionSurfaces(env)
25: O := env.getStaticObstacles();
26: SurfaceMap := new Map();
27: for (orefl ∈ O) do
28: Sidesrefl := getObstacleSides(orefl);
29: for (oother ∈ O, orefl ̸= oother) do
30: Sidesother := getObstacleSides(oother);
31: for (i ∈ N, 0 ≤ i ≤ 3) do
32: if (Line.overlap(Sidesrefl[i], Sidesother[(i+ 2) mod 4])) then
33: Sidesrefl[i] :=

Line.difference(Sidesrefl[i], Sidesother[(i+ 2) mod 4]);

34: SurfaceMap.put(orefl, Sidesrefl);

35: return SurfaceMap;

36:
37: function getObstacleSides(o)
38: Sides := new Array(4);
39: Edges := getObstacleEdges(o);
40: for (i ∈ N, 0 ≤ i ≤ 3) do
41: Sides[i] := new Line(Edges[i], Edges[(i+ 1) mod 4]);

42: return Sides;
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vicinity of an investigated position would necessitate further path compu-
tations as each intersection with an obstacle surface can then be the source
of numerous new signal paths in any direction, whose tracing in turn would
notably increase the complexity. Thus, despite possible losses in the pre-
diction accuracy, scattered rays are not considered to keep the amount of
required details and the computation effort low.

Transmissions For the direct computation, each obstacle crossing the
straight line from sender to destination is added to the path as transmis-
sion effect. After a transition of a wave into a different medium and back,
there is usually a position shift of the outgoing ray due to refractions on
the boundaries of the medium. However, as this angular change is depend-
ent on the specific material type, an accurate computation is not possible.
Furthermore in most cases, providing representations of large environments
with centimetre accuracy is not feasible. Therefore, the refraction effect
is disregarded and the comparatively insignificant additional inaccuracy is
accepted at the benefit of simplified computations. In general, PHY de-
termines transmissions during path computation when aiming at the next
relevant position, i.e., obstacle surfaces for reflections, edges for diffractions
or the destination.

The transmissions occurring on the straight path between two points are
computed according to Algorithm 5.3. Obstacles crossing this path are
added to the list, including hit point and angle determination. In order to
reduce comparisons and thus to speed up the computations, obstacles are
spatially grouped into smaller segments so that only those in the vicinity of
the investigated direct path have to be compared. Finally, all hit obstacles
are sorted by their distance to the source in an ascending order, obtaining
the actual sequence of transmissions.

Reflections Taking reflections into account requires to focus on the sur-
faces of obstacles located in the environment. Accordingly, each obstacle is
decomposed into its visible surface segments during initialisation of PHY
(Section 5.3.2). For determining the next reflection, surfaces are successively
targeted facing the direction of the current ray. Paths involving multiple
reflections are then explored in a recursive way tracking hit obstacles. Fi-
nally, to obtain valid ray paths including reflections the image method is
used, as shown in Figure 5.4. If there exists a straight line from the starting
position to the mirrored destination crossing all reflecting surfaces, a path
is considered. Actual positions and angles of the reflections on the surfaces
only then become determinable and are added to the path information.
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Algorithm 5.3 PHY transmission path computation.

1: struct PathElementtrans{
2: Point hitPoint;
3: Float hitAngle;
4: }
5:
6: function computeDirectPath(psource, pdest)
7: Path := new List();
8: linepath := new Line(psource, pdest);
9: Ocandidate := getObstaclesInSegmentCrossingLine(linepath);
10: for (o ∈ Ocandidate) do
11: pintersect := Rectangle.getLineIntersectionPoint(o.rectangle, linepath);
12: if (pintersect ̸= null) then
13: angle := Line.getAngle(linepath, getIntersectionSegment(o.rectangle));
14: Path.add(new PathElementtrans(pintersect, angle));

15: Path := {pe1, ... , pen |
Point.distance(psource, pei) < Point.distance(psource, pei+1) ∀pe ∈ Path};

16: return Path;

Figure 5.4: Image method to compute intersection points of reflected rays using
aimed ray tracing.

The detailed process is described by Algorithm 5.4. In order to process
the reflections efficiently, a helper object is defined, containing the original
position of the surface line, a mirrored version for checking the validity of
a reflection path and the exact position and angle at which the ray inter-
sected the surface. The recursion starts by verifying the current reflection
path including the latest added surface by using the image method (line 13).
Beginning with the actual, unchanged positioning of elements, it is iterated
through the current path of reflections in order of their occurrence. Source
point and previous surfaces are mirrored using the current surface as axis.
Having build up the image positions, the intersection test for each surface
with the straight line between sender and destination position is performed
afterwards (line 22). If not all surfaces are intersected, the path is discarded
and it is proceeded with the next one. However, as it is still possible that
the currently discarded path can become a valid one after adding further
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Algorithm 5.4 PHY reflection path computation.

1: struct PathElementrefl{
2: Line hitSurface,mirrorSurface;
3: Point hitPoint;
4: Float hitAngle;
5: }
6:
7: function computeReflectedPaths(psource, pdest)
8: V alidPaths := new List();
9: reflectedPathRecursion(V alidPaths,new Stack(), psource, pdest);
10: return V alidPaths;

11:
12: function reflectedPathRecursion(Paths, PathStack, psource, pdest)
13: pmirror := psource;
14: for (i ∈ N, 0 ≤ i < PathStack.size()) do
15: pe := PathStack.get(i);
16: pe.mirrorSurface := pe.hitSurface;
17: pmirror := Point.mirrorAtLine(pmirror, pe.hitSurface);
18: for (j ∈ N, 0 ≤ j < i) do
19: peprev := PathStack.get(j);
20: peprev.mirrorSurface :=

Line.mirrorAtLine(peprev.mirrorSurface, pe.hitSurface);

21:
22: linemirror→dest := new Line(pmirror, pdest);
23: for (i ∈ N, PathStack.size() > i ≥ 0) do
24: pe := PathStack.get(i);
25: pintersect := Line.getIntersectionPoint(linemirror→dest, pe.mirrorSurface);
26: if (pintersect = null) then
27: goto recursionStep;

28: pe.hitAngle := Line.getAngle(linemirror→dest, pe.mirrorSurface);
29: for (j ∈ N, PathStack.size() > j > i) do
30: peprev := PathStack.get(j);
31: pintersect := Point.mirrorAtLine(pintersect, pe.hitSurface);

32: pe.hitPoint := pintersect;

33:
34: counttrans := 0;
35: plast = pdest;
36: for (i ∈ N, PathStack.size() > i ≥ 0) do
37: SubPath := computeDirectPath(PathStack.get(i).hitPoint, plast);
38: counttrans += SubPath.size()− 1;
39: plast := PathStack.get(i).hitPoint;
40: if (counttrans > maxtrans) then goto recursionStep;

41: SubPath := computeDirectPath(psource, plast);
42: if (counttrans > maxtrans) then goto recursionStep;

43: Paths.add(includeIntermediateTransmissions(PathStack));
44:
45: recursionStep:
46: if (PathStack.size() < maxrefl) then
47: pbase := PathStack.isEmpty() ? psource : PathStack.top().hitPoint;
48: Svis := getV isibleReflectionSurfaces(pbase));
49: for (svis ∈ Svis) do
50: PathStack.push(new PathElementrefl(svis, svis, null, 0));
51: computeReflectedPaths(Paths, PathStack, psource, pdest);
52: PathStack.pop();
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reflections, the recursion is continued at that point and only the current
path is not added to list. In case a valid reflection path to the destination
exists, the actual and exact hit positions of the ray are computed by re-
verting previous mirroring (line 29). Next, the path to the destination is
determined and the transmitted obstacles between the reflections are coun-
ted (line 34). If the number of transmissions lies within the allowed limits
of transmissions, the reflection path is added to the list of valid paths, in-
cluding intermediate transmissions, and otherwise discarded. Finally, for
the next recursion step, surfaces reachable from the current position are
determined, using the precalculated visibility map (line 45). For every sur-
face, the method is recalled with an updated stack containing the newest
one to continue the exploration of the reflective paths until the maximum
number of reflections has been reached.

Diffraction An identification of suitable edges is necessary to compute
diffraction effects. Thereto, the edges of each obstacle are checked whether
they are blocked by other obstacles. As the static elements of an environ-
ment do not change, a precomputation of relevant edges is obvious and per-
formed during initialisation (Section 5.3.2). Suitable edges are then aimed
at from the starting position. From the position of the chosen edge, it is
either aimed at the destination position or another edge. Multiple diffrac-
tions are computed similarly to reflections. Depending on the direction of
the subsequent path segment, the plausibility of the diffraction is reassessed.
If the ray to the next position intersects the obstacle providing the edge, it
is not a valid diffraction and thus the path is discarded.

Algorithm 5.5 shows the diffraction path computation PHY in detail. The
general process is similar to the one for reflections, using a recursive ap-
proach. In contrast to reflections, however, the exact positions of diffractions
are already fixed during the selection of the edge since they do not change
with the addition of subsequent diffraction edges. The only exception is the
angle of diffraction which only becomes clear once the next destination is
set. Hence, only the lastly added segment of the path has to be adapted
and checked for validity instead of the whole path, reducing the complexity.
At the beginning of a recursion step, the latest added diffraction edge is ex-
amined regarding the reachability of the destination position (line 14). This
includes checks whether the total number of transmitted obstacles does not
exceed the overall limit, the diffraction is a sharp edge diffraction, bending
around the obstacle at an angle between 90◦ and 180◦, and the direct path
is not intersecting the same obstacle again where the diffraction happened.
Fulfilling these conditions, the angle is updated and the path considered as
valid, adding it to the list, again including intermediate transmissions. On
the other hand, the recursion path is aborted if either the diffraction limit
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Algorithm 5.5 PHY diffraction path computation.

1: struct PathElementdiff{
2: Point hitPoint, prevPoint;
3: Float hitAngle;
4: }
5:
6: function computeDiffractedPaths(psource, pdest)
7: V alidPaths := new List();
8: diffractedPathRecursion(V alidPaths,new Stack(), psource, pdest, 0);
9: return V alidPaths;

10:
11: function diffractedPathRecursion(Paths, PathStack, psource, pdest, cnttrans)
12: if (PathStack.isEmpty()) then
13: goto recursionStep;

14: pedge := PathStack.top().hitPoint;
15: pprev := PathStack.top().prevPoint;
16: SubPathdest := computeDirectPath(pedge, pdest);
17: cntnewTrans := cnttrans + SubPathdest.size()− 1;
18: angledest := computeDiffractionAngle(pprev, pedge, pdest);
19: if ((cntnewTrans ≤ maxtrans)

∧ (getObstacleAt(pedge).rectangle.intersectsLineOfPoints(pedge, pdest))
∧ (90 ≤ angledest < 180)) then

20: PathStack.top().hitAngle := angledest;
21: Paths.add(includeIntermediateTransmissions(PathStack));
22: else if ((PathStack.size() = maxdiff ) ∨ (cntnewTrans > maxtrans)) then
23: return ;

24:
25: recursionStep:
26: pbase := PathStack.isEmpty() ? psource : PathStack.top().hitPoint;
27: Evis := getV isibleDiffractionEdges(pbase));
28: for (pvis ∈ Evis) do
29: SubPathdiff := computeDirectPath(pedge, pvis);
30: cntnewTrans := cnttrans + SubPathdiff .size()− 1;
31: if (cntnewTrans ≤ maxtrans) then
32: continue with next pvis;

33:
34: if (¬ PathStack.isEmpty()) then
35: anglediff := computeDiffractionAngle(pprev, pedge, pvis);
36: if ((anglediff < 90) ∨ (anglediff ≥ 180)) then
37: continue with next pvis;

38: PathStack.top().hitAngle := anglediff ;

39:
40: PathStack.push(new PathElementdiff (pvis, pedge, 0));
41: computeReflectedPaths(Paths, PathStack, psource, pdest, cntnewTrans);
42: PathStack.pop();
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has been reached with the latest edge or too many transmissions occurred.
For the preparation of the next recursion step, visible diffraction edges are
obtained from the precomputations and each edge evaluated regarding the
possibility of being the next targeted position (line 25). This evaluation
part basically contains the same steps as for the previous computation to
the destination position, excluding the intersection test on the same obstacle
as this has been checked previously during precomputations of the edge vis-
ibilities. Remaining edges forming a valid path are then pushed onto the
stack one after the other to start the next recursion step.

Signal Strength Prediction

Once the valid paths have been computed, the postprocessing phase begins,
evaluating each path and computing the expected path loss to finally gener-
ate an RSSI prediction. In this context, several optimisations on the paths,
described in the next paragraph, are also applied. To determine the loss,
each ray path is decomposed again into its segments. The total length of
the path from sender to destination including the determined effects is used
to compute the path loss in free space. Depending on the effects and chosen
model parameters, additional losses are added either as a fixed loss constant
or a dynamic value depending on the material type and thickness (trans-
mission) or angle of direction change (diffraction). After completion, the
path exhibiting the lowest expected path loss at the destination is chosen
to compute the final RSSI prediction by adding the loss to the transmission
power of the sender.

As they are mostly applied during the signal strength prediction of PHY,
optimisations are discussed before turning to a detailed explanation of the
computations. To exploit the benefits of PHY and make it usable in prac-
tice, several optimisations are introduced to either accelerate the model
computation and improve its scalability, without sacrificing accuracy or im-
prove the latter at only little additional cost. The effect of the optimisations
on the model accuracy is investigated in Section 8.4.4.

Angle Dependency For each ray, the angle at which obstacles are en-
countered is determined in order to identify the different components that
either penetrate the object or are reflected from it. However, as the reflectiv-
ity of an obstacle depends on the specific material properties, an accurate
modelling is not possible when restricting to coarse material categories only.
Thus angle dependent effects involving materials are not considered, exclud-
ing transmissions and reflections. In contrast, the determination of the at-
tenuation in case of diffractions is independent of the material and included
into PHY computations. When a radio wave signal is bending around an
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edge, the angle has a significant influence on the signal strength. While the
attenuation is quite low at smaller angles of few degrees, it rapidly increases
at larger angles until reaching the deep shadow area where the signal is
practically not present anymore. Taking this strong angle dependency into
account and not assuming a fixed attenuation on each diffraction, as done
in the original version of the model, results in a more realistic modelling of
signal behaviour, significantly reducing the number of false predictions.

Height Consideration (2.5D) To provide better distance estimation and,
as a consequence, more accurate description of the attenuation of the signal
over distance, the modelling accounts for the heights of the wireless devices
and obstacles (if available), as done in [p77], saving computation time with
respect to a complete 3D description. Thereto, after the ray computation
in the two-dimensional space has been performed, each of the found paths
is adapted, as described by Algorithm 5.6. Using Pythagoras’ theorem,
the height difference between sender and receiver is utilised to adjust the
length of each path (line 1). Moreover, each interaction with an obstacle
is rechecked whether occurring at all, taking the height of ray and obstacle
at the given position into account (line 11). If a ray misses an obstacle
which it should have hit, this effect is removed from the signal path and
the obstacle specific attenuation not considered when computing the signal
path loss. In case of missing reflections and diffractions the entire path
becomes invalid and therefore is removed from the list of rays reaching
the destination position. A consideration of available height information
does not require complex computations and helps to improve the prediction
accuracy of PHY, as shown in the evaluation.

Radiation Patterns To increase fidelity, it is possible to consider the in-
tegration of the specific antenna radiation pattern of the deployed wireless
devices. In fact, the notable impact that such details could have on net-
work behaviour is known [p174]. However, including such effect requires
disproportionately more information than the benefit would provide. First,
as the radiation pattern depends on the used antenna, an individual and
sufficiently accurate representation is necessary for each used antenna type.
Second, to compute the radiation angle correctly, in addition to its position
an exact orientation of each device in the environment has to be provided as
well. Therefore, although computed in two dimensions, a three-dimensional
representation is required to take account for arbitrary device orientations.
After some initial experimentation, is has been decided to discard this as-
pect for the work of this thesis and sacrifice accuracy in order to keep the
approach practical.
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Algorithm 5.6 PHY height consideration.

1: function includeHeightOnFullPath(pathLength2D, psource, pdest)
2: heightDiff := |psource.z − pdest.z|;
3: pathLength3D :=

√
(pathLength2D)2 + (heightDiff)2;

4: return pathLength3D;

5:
6: function includeHeightOnPathSegment(segmentLength2D,

pathLength2D, psource, pdest)
7: pathLength3D := includeHeightOnFullPath(pathLength2D, psource, pdest);
8: segmentLength3D := pathLength3D ∗ (segmentLength2D/pathLength2D);
9: return segmentLength3D;

10:
11: function includeHeightOnRayPaths(AllPaths, psource, pdest)
12: ;
13: for (Path ∈ AllPaths) do
14: pathLength2D := computeFullPathLength(Path, psource, pdest);
15: currLength2D := 0;
16: plast := psource;
17: for (i ∈ N, 0 ≤ i < Path.size()) do
18: pe := Path.get(i);
19: pcurr := pe.hitPoint;
20: o := getObstacleAt(pcurr);
21: currLength2D += Point.distance(plast, pcurr);
22: currHeight := psource +

(currLength2D/pathLength2D) ∗ (pdest.z − psource.z);
23: plast := pcurr;
24: if (heightcurr > o.height) then
25: if (pe.isTransmission()) then
26: Path.remove(i);
27: else if (pe.isReflection() ∨ pe.isDiffraction()) then
28: AllPaths.remove(Path);
29: continue with next Path;

30:
31: function computeFullPathLength(Path, psource, pdest)
32: pathLength2D := 0;
33: plast := psource;
34: for (i ∈ N, 0 ≤ i < Path.size()) do
35: pcurr := Path.get(i).hitPoint;
36: pathLength2D += Point.distance(plast, pcurr);
37: plast := pcurr;

38: return pathLength2D;
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Turning back to the signal strength prediction, the evaluation of the com-
puted paths is described in detail by Algorithm 5.7. Starting with the
computation of aforementioned paths, the results are collected for further
processing (line 2). If available, height information is subsequently incor-
porated to the found paths. For each found ray path, path length and
losses are computed next (line 9). The former is composed of the length
of all individual segments between the interactions with obstacles, the lat-
ter depends on the type of encountered effects. In case of transmissions, a
fixed loss of the signal is assumed due to the reflected part of the signal as
described in Section 2.2.3. Additionally, if material types are available, the
signal attenuation caused by the propagation within a different medium is
considered as well, depending on the travelled distance. For each reflection,
a fixed value is added to the accumulated path loss, as the exact amount of
reflected energy depends on specific material properties as well as the po-
larisation of the incident wave, which are, however, not modelled by PHY.
Lastly, in case of diffraction effects, Lee’s numerical formula for computing
diffraction losses (Equation 2.21) is used in combination with the Fresnel-
Kirchhoff diffraction parameter computation (Equation 2.17), if desired or
otherwise again a fixed value added as loss. Finally, the path length is
optionally adjusted to a three-dimensional one before the free space path
loss (Equation 2.6) for the travelled signal distance is computed to obtain
the total loss of the investigated path. The path with the lowest loss is
then subtracted from the transmission power of the device to determine the
expected signal strength at that position.

The original ray tracing model, which PHY builds upon, also offers the
possibility of computing constructive and destructive interferences by ana-
lysing n most relevant paths and their lengths. However, the length of a
radio wave of the 2.4 GHz band is around 12.5 cm. To determine how much
two incoming signals are out of phase, the provided description of the en-
vironment requires centimetre accuracy to obtain a reasonable interference
prediction. As already stated, due to the impracticability of providing such
information, PHY does not use this method and solely relies on the signal
strength provided by the strongest found path.
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Algorithm 5.7 PHY signal strength prediction.

1: function computeSignalStrength(psource, pdest)
2: AllPaths := new List();
3: AllPaths.add(computeDirectPath(psource, pdest));
4: AllPaths.add(computeDiffractedPaths(psource, pdest));
5: AllPaths.add(computeReflectedPaths(psource, pdest));
6: if (b2.5d) then
7: includeHeightOnRayPaths(AllPaths, psource, pdest);

8:
9: pathLosslowest := ∞;
10: for (Path ∈ AllPaths) do
11: pathLength := computeFullPathLength(Path, psource, pdest);
12: pathLoss := 0;
13: plast := psource;
14: for (i ∈ N, 0 ≤ i < Path.size()) do
15: pe := Path.get(i);
16: pcurr := pe.hitPoint;
17: pnext := ((i+ 1) < Path.size()) ? Path.get(i+ 1) : pdest;
18: if (pe.isTransmission()) then
19: pathLoss += atttrans;
20: if (bmaterial) then
21: o := getObstacleAt(pcurr);
22: linetrans := new Line(pcurr, pnext);
23: lineobst := getSegmentWithinRectangle(linetrans, o.rectangle);
24: distobst := Line.segmentLength(lineobst);
25: if (b2.5d) then
26: distobst := includeHeightOnPathSegment(distobst,

pathLength, psource, pdest);

27: pathLoss += o.attenuation ∗min(distobst, o.thickness);

28: else if (pe.isReflection()) then
29: pathLoss += attrefl;
30: else if (pe.isDiffraction()) then
31: if (bangle) then
32: pathLoss += getLeeAttenuation(plast, pcurr, pnext, f);

(Equations 2.17 and 2.21)
33: else
34: pathLoss += attdiff ;

35: plast := pe.hitPoint;

36: if (b2.5d) then
37: pathLength := includeHeightOnFullPath(pathLength, psource, pdest);

38: pathLoss += getFreeSpacePathLoss(pathLength, f); (Equation 2.6)
39: pathLosslowest := min(pathLosslowest, pathLosscurr);

40: predictedRSSI := txpwr − pathLosslowest;
41: return predictedRSSI;
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5.3.3 GPU-based 3D Ray Tracing Model

Generating an accurate wireless model is extremely computation intensive,
with a complexity that drastically increases with the amount of obstacles
present in the scenario. In general, it is possible to optimise this process by
trying to either identify which rays might contribute more significantly to
the received signal or testing which intersections with obstacles are relev-
ant, discarding irrelevant ray paths. An alternative solution to handle the
problem complexity is to exploit current GPU parallel architectures.

The computation of each individual ray departing from the source is, indeed,
independent from the others until it reaches the destination. Therefore, it
is conceivable to parallelise the computation of each ray path towards the
destination and offload the processing to the thousands of cores available in
current GPUs. Not only this makes it much faster to compute the proper-
ties of the signal propagating from a source to a destination, but it allows to
avoid prefiltering specific ray directions in favour of a full exploration of the
space. As a consequence, rays instead are launched by the sender in all dif-
ferent directions and their paths tracked whether reaching the destination.
Ultimately, the use of GPUs makes modelling wireless communication in 3D
environments possible. In the remaining of this section, an own design for a
GPU-based ray tracing engine, subsequently called 3D GPU, is introduced,
utilising Aparapi [m4] in order to compile Java code into more efficient Open
Computing Language (OpenCL) [p109] code able to run directly on GPUs.
To exploit the characteristics of nowadays GPU architectures, the ray tra-
cing engine introduced in Section 5.3.2 needs to be modified.

Environment Adaptation

First of all, the two-dimensional environment description needs to be ex-
tended to include height information for all elements including doors and
windows; walls can already be assumed to reach the ceiling; floor and ceiling
need to be explicitly defined. This approach does not require a pure and
detailed three-dimensional representation for each obstacle. The basic two-
dimensional information on the environment necessary to operate PHY is
sufficient for transferring these into a three-dimensional representation by
providing the mentioned additional details. Even if these details are missing,
a usage in 3D GPU is still possible when applying default values, fitting
most indoor environments. Pursuing the basic goals to keep the approach
practical and the computational effort low, the internal representation of
the environment is restricted to a few primitive solids and surfaces, allow-
ing also fast collision tests in three-dimensional space. Receiving devices
are represented as spheres, obstacles as boxes, diffraction edges, floor and
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ceiling as planes. Boxes are in turn decomposed into rectangular surfaces
as well. Although more complex solids and shapes could be beneficial for
path finding, it is refrained from including these in 3D GPU, as it would
complicate collision checks and increase the required effort to provide an
accurate representation of the environment.

Architecture Adaptation for GPU Execution

The libraries of Aparapi provide methods to control the execution of instruc-
tions on a GPU while hiding the code conversion and execution process from
the developer. Simplified, the basic flow comprises three steps. Before exe-
cution, relevant data, e.g., parameters or structures for storing results need
to be transferred from the Java program environment stored in RAM to
the GPU memory. The code is then executed by specifying the number
of instances to generate performing concurrent computation tasks, which
are assigned to the available GPU cores. Afterwards, the data has to be
fetched back from the GPU to enable further processing. GPU-executable
code is written by extending a given Java class and implementing the re-
quired algorithms. Unfortunately, the conversion to OpenCL code does not
support object oriented design as OpenCL and the associated performance
advantages are based on simple data types like 32-bit integers or floats and
one-dimensional arrays of these. Thus the mostly object oriented internal
data representation of PHY needs to be entirely adapted to match these
requirements, shifting the focus to a memory-centric perspective for the ar-
chitecture design. Due to a lower abstraction level compared to Java, having
a much simpler memory management, a careful planning and separation of
memory space become necessary. During parallel execution, all GPU cores
share and work on the same data stored in a continuous memory space.
Coordinating proper access is crucial to avoid overlaps, race conditions and
erroneous results.

In 3D GPU, relevant and constantly changing information on the compu-
tation of a ray path, which were distributed on multiple objects in PHY
before, are now consecutively joined in one data block of known size. En-
abling to keep track of multiple paths simultaneously, these blocks are then
arranged one after the other yielding a large data array which is passed to
the GPU memory. This clear structure allows to assign each computation
instance its own range within the array for writing, addressed by its unique
and successive id. Less critical read-only information such as obstacles or
configuration settings, are passed in separate arrays in a similar way. How-
ever, the usage of static array structures introduces several challenges.
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As upon creation the size of an array has to be known, the maximum number
of possible rays needs to be calculated. Within each computation round,
i.e., following the direction of a ray until hitting the next obstacle, the
number of rays can at most double (Section 5.3.3). Based on the number
of launched rays and the maximum number of computation rounds, which
are both parameters of 3D GPU, as well as the number of values of a ray
data block, the array length is determinable as:

lengthraydata = #startRays ∗ 2#rounds ∗#dataV alues . (5.1)

Nevertheless, requiring an adequate number of initial rays starting from the
sender to cover the three-dimensional space in combination with a suffi-
ciently accurate number of rounds can quickly exceed the array limit. Since
a 32-bit signed integer is used as the addressing index, the limit is equival-
ent to 231 elements. To minimise the required space of a ray data block, by
default only the current computation state of a ray is stored instead of its
full path. This comprises the current position and direction (three values
each for x/y/z axes), the path length so far, the identification number of the
last hit obstacle as well as the accumulated losses of obstacle interactions
and the entire ray attenuation including the path loss, requiring a total of
10 values for each ray. An overview of the contents of a ray data block is
given in Figure 5.5. A tracking of the exact ray path by storing the position
of each round additionally requires space for:

lengthtrackdata = #startRays ∗ 2#rounds ∗ 3 ∗#rounds (5.2)

elements. Thus, the tracking is an optional feature and can be enabled upon
request. To not exceed the boundaries and ensure a sufficient accuracy, the
default parameters have been set to 50000 initial rays and 7 computation
rounds requiring approximately 226 elements or 3.13 % of the maximum
array space. However, with reaching the boundaries of array size, also the
memory requirements increase. The above array with 226 elements requires
256 MB of space for ray information and additional 512 MB when track-
ing the ray paths, preventing more accurate computations of 3D GPU on
weaker GPUs with insufficient memory capacities.

Signal Path Computation

Instead of directing rays in specific directions, GPU architectures favour
the parallel analysis of rays launched by the sender in all different direc-
tions. In contrast to an aimed approach, there is no effort made in directing
rays towards the destination. Instead, paths are evaluated based on a trial
and error principle, finding valid paths randomly just by the sheer number
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Figure 5.5: Contents of a ray data block.

of rays. This randomness on the one hand has the disadvantage of wast-
ing time on a computation of irrelevant rays, but on the other hand also
provides the possibility of discovering paths with an arbitrary combination
of effects. However, omitting aiming and the corresponding path validation
mechanisms (Section 5.3.2) significantly decrease the complexity of com-
putations, enabling fast parallel processing of ray paths, making the risk
of tracking irrelevant rays tolerable. Further reducing redundant computa-
tions, 3D GPU offers the possibility of considering multiple receivers within
one execution, taking advantage of the launching approach.

To provide a good spatial coverage in three-dimensional space and increase
chances of reaching the destinations, in addition to a sufficient quantity,
the initial directions of the launched rays are important as well. Therefore,
the ray directions are distributed according to the Fibonacci lattice [p54],
shown in Figure 5.6, which spreads points on a sphere at equal distance in
dependency of the total number of rays. In spherical coordinates, the ith
point is computed as defined by Equation 5.3:

lati = arcsin

(
2i

P

)
loni = 2πiΘ−1 = 2πi

(√
5− 1

2

) (5.3)

which is translated to a direction vector Vi on a unit sphere with a radius
of one by using Equation 5.4:

Vi =

x
y
z

 =

cos(lati) ∗ cos(loni)
cos(lati) ∗ sin(loni)

sin(lati)

 . (5.4)
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(a) N = 100 (b) N = 500 (c) N = 2000

Figure 5.6: Fibonacci lattice for different amounts of points.

Starting with these directions from the sender position, each ray is tracked
until it either arrives at a destination, exhibits too large signal losses or
leaves the area. In order to counteract the loss of accuracy caused by both
the gap between the rays launched from the sender and the distance between
the devices, each receiver is represented by a sphere instead of a point.
Including the benefits of PHY, a small set of rays are additionally aimed
at all receivers to further decrease the chances of missing the reception of a
ray due to this discretisation procedure. In particular, the first rays starting
from the sender or a diffraction edge are always directed exactly towards
the destinations. Indirect, single-reflected paths via floor and ceiling are
also considered in this additional set of aimed rays. The discovery of more
complex paths is then left to the launching approach. This partial aiming
ensures having at least these rays hitting the reception spheres in case all
launched rays miss them.

After a first setup, setting obstacle information and initial ray directions
and transfer them to the GPU memory, the processing progresses in a se-
quence of steps, as shown in Figure 5.7. These are repeated multiple times
depending on the number of defined computation rounds. In each round,
there is an alternation between computations on the GPU and their evalu-
ation on the CPU within the Java program. For each ray, the next collision
with an obstacle (if existing) is computed by a single GPU core, updating
the ray state depending on the hit object. In general, the ray position is
set to the collision point, the direction changed (reflection only), the path
length increased by the travelled distance and the obstacle identifier set
to the last hit object. By tracking the latter two pieces of information, a
continuous update on the expected ray path loss up to the point of com-
putation becomes possible, simplifying the evaluation in a later step. More
details on this are explained later. The results are then fetched back to the
Java program where the ray data array is traversed and relevant information
are extracted before the path computation continues with the next round.
This step becomes necessary due to the chosen memory management as the
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Figure 5.7: Ray path computation steps of 3D GPU.

reserved memory space for each ray is reused and updated in each round.
Relevant information needs to be extracted before being overwritten, partic-
ularly ray interactions with virtual objects not representing solids in reality
and therefore also not affecting the state of a ray directly, i.e., reception
spheres or diffraction edge planes. To minimise memory transfers, except
for small configuration data, e.g., the counter of the current round, data
is only read from the GPU memory without any changes. After perform-
ing collision tests for each ray, four outcomes are possible, described in the
following.

Signal Reception Upon hitting a reception sphere, the ray data is stored
in a receiver-specific list sorted by the estimated path losses. This step
is performed within the Java program on the CPU. Since the expected
path losses are computed and updated on the GPU during path tracking,
further computation steps are omitted, keeping the CPU time of the array
traversal quite low. Due to the possibility of reaching further destinations,
path computations on this ray are resumed by the GPU in the next round.

No Collision and Weak Rays Rays leaving the scene without collisions or
having incurred too many losses on their path are detected during compu-
tations on the GPU. In both cases, these rays are irrelevant for the current
signal prediction and thus are marked as invalid to not be considered in
subsequent steps anymore. Especially in later rounds, the amount of these
types of rays rapidly increases, shortening the computation time despite an
increasing amount of total rays.
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Figure 5.8: Ray data replication strategy and array usage in dependency of the
round of computation.

Transmissions and Reflections If an obstacle is encountered, a split oc-
curs between the transmitted and the reflected part of the original ray, each
of which is processed by a different GPU core in the next step. Thereto, the
ray state is copied to an empty array position, still unused in the current
round r, according to Figure 5.8.

The attenuations resulting from the interaction with the obstacle are then
computed based on either of the two effects, as done in PHY. For trans-
missions, the ray direction is kept, the position set to the location after
passing the obstacle and the attenuation added based on the material type
and distance within the medium. In case of the reflected part of the ray,
the direction is changed according to the incident angle on the reflecting
surface and the attenuation reflection coefficient is added. The omission of
the validation part using the image method simplifies the reflection com-
putations and also eliminates the necessity of post-processing on the CPU.
Apart from this, a retrospective validation would only be possible with the
chosen memory management if the ray path is tracked.

Diffractions For diffractions, a special case is handled. In fact, each dif-
fracted ray potentially produces a complete new wavefront, which would
require a new computation process on its own. In the aimed approach of
PHY, only some specific rays of these wavefronts were selected for further
investigation, which is not possible when using the rather explorative way
of a launched approach. To nonetheless enable the consideration of diffrac-
tion effects in predictions, the procedure is simplified by only starting new
rays in all directions of the diffraction edge basing on the strongest previous
ray reaching this edge. As the aiming is omitted, declaring a single point
or, transferred to three-dimensional space, a line as diffraction edge is not
sufficient anymore, complicating the determination of potentially diffracted
rays. Instead, on each unblocked valid diffraction edge, a rectangular plane
is spanned to detect rays hitting this edge, as shown in Figure 5.9.
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Figure 5.9: Diffraction edge detection plane (blue).

After each GPU computation, rays colliding with such planes are stored
in edge-specific lists to determine the strongest ray reaching these edges
after finishing the entire computation cycle. Depending on the configured
number of considered diffractions, the ray tracing computation is repeated
that many times, launching new wavefronts based on the positions of the
strongest rays reaching each edge. To not require an additional computation
cycle for each edge, the available space of the ray data array is split equally
among the edges, having #startRays/#edges rays to launch from each
position. At this point, ray path computations continue in the same way as
from the starting position over the specified number of rounds.

Once all computations on the GPU have been completed and the paths
to each receiver determined, the remaining step on the CPU is to merge
the results which have already been obtained during the various rounds by
selecting the strongest ray reaching each receiver, equal to PHY.

GPU Code Execution Algorithm 5.8 shows the ray computation process
which is executed on the GPU for each ray. For better readability, the offset
computation and handling of the one-dimensional array access has been
replaced by an object-like access notation. In the very first round, the values
for each ray are initialised and the initial direction determined. Depending
on the number of simultaneously handled receivers, the rays with the lowest
ids are aimed directly or indirectly via floor and ceiling reflection towards
these positions, the direction of the remaining ones are computed according
to the Fibonacci lattice. In case of a newly started diffraction iteration,
the three-way aiming principle remains the same, but is subject to some
restrictions, described later with the diffraction code. Subsequently, the
regular part of the processing begins, checking the current ray for validity.
The ray computation was either discontinued in a previous step (line 18),
immediately stopping the processing or the outcome of the last round needs
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Algorithm 5.8 3D GPU ray computation process executed by each GPU
core in every round.

1: function run(rayID,Rays,Obstacles, Cfg)
2: if (Cfg.round = 0) then
3: if (Cfg.rayOrigin = ORIGIN SENDER) then
4: if (rayID < Cfg.receiverCount) then
5: setDirectionToDest(rayID,Rays,Obstacles, Cfg);
6: else if (rayID < Cfg.receiverCount ∗ 3) then
7: setDirectionToDestV iaReflection(rayID,Rays,Obstacles, Cfg);
8: else
9: fibonacciSpherePointInit(rayID,Rays, Cfg.totalRays);

(Equations 5.3 and 5.4)

10: raycurr := Rays[rayID];
11: raycurr.pathLength := 0;
12: raycurr.lossobst := 0;
13: raycurr.losstotal := 0;
14: raycurr.lastHitObst := −1;
15: else if (Cfg.rayOrigin = ORIGIN DIFFRACTION EDGE) then
16: computeDiffractedRay(rayID,Rays,Obstacles, Cfg);

17:
18: if rayIsDone(raycurr) then
19: return;

20: effectCount := countRayEffects(raycurr);
21: lastEffect := lastRayEffect(raycurr);
22: if ((raycurr.pathLength = NOT COMPUTED)

∨ (raycurr.pathLength = MAXIMUM DISTANCE)
∨ (raycurr.losstotal + Cfg.txpwr < MINIMUM RSSI)
∨ (lastEffect = RAY EFFECT DESTINATION)
∨ (lastEffect = RAY EFFECT DIFFRACTION ∧ Cfg.round > 0)
∨ (effectCount > Cfg.maximumEffects)) then

23: setToDone(raycurr);

24:
25: distance := findClosestIntersection(rayID,Rays,Obstacles, Cfg);
26: if (distance < MAXIMUM DISTANCE) then
27: updateRay(rayID,Rays,Obstacles, Cfg);
28: else
29: raycurr.pathLength := MAXIMUM DISTANCE;
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to be evaluated regarding certain criteria (line 20): (1) the reserved ray slot
has not been used (see Figure 5.8), (2) the ray did not intersect an obstacle
and thus has infinite length, (3) the accumulated losses exceeded the defined
limit for too weak signals, (4) the ray reached a destination position, (5) a
diffraction edge was hit and the computation will be resumed in the next
iteration or (6) the maximum number of considered effects has been reached.
If one of these are fulfilled, the ray computation is marked as completed
and the processing stopped as well. In the other case, the ray computation
proceeds and the next obstacle interaction is determined (line 25). The
distance to the closest intersected obstacle is returned or the maximum
distance, indicating no further intersections. Upon a new intersection, the
ray data is updated in dependency of the encountered effect, as described in
the previous paragraphs and the computation round finished for this ray.

The process of computing the direction of diffracted rays is described by
Algorithm 5.9. As previously mentioned, once a new diffraction iteration
has been started, the initial direction of the rays has restrictions, similar to
the ones used in PHY. This means, the ray should not change its direction
by more than 90◦. This holds for the aimed rays towards the destination
positions as well as for the other rays for which the Fibonacci lattice is used.
In case this limit is exceeded, the direction is discarded and a new one is
determined until the condition is satisfied, again using the Fibonacci lattice
(line 13). However to avoid computing directions which would be regularly
assigned to other rays, the total amount of rays passed to the function is
halved each time, creating a different distribution of points on the sphere.
Afterwards, depending on the actual angle, the diffraction attenuation is
added to the obstacle attenuation value. Due to the memory-efficient re-
usability of ray data arrays, information on the starting point of the previous
ray segment are not available anymore, which are however required for com-
puting the Fresnel-Kirchhoff diffraction parameter (Equation 2.17). Hence,
instead of Lee’s formula (Equation 2.21) an approach using an angle-based
increase has been chosen to approximate the attenuation of diffraction for
larger angles as depicted in Figure 2.9. The attenuation increases faster for
smaller Fresnel-Kirchhoff parameter values (0 < v < 1.5) and slower for lar-
ger values (v > 1.5). Since the angle correlates with distances d1 and d2 and
thus with v regarding the sharp-edge diffraction computation, the transition
angle for the curve flattening has been set to 35◦ for adaptation. With a
default attenuation of diffraction attdiff = 10dBm, the attenuation curve is
approximated. If, nonetheless, no valid direction has been determined, the
ray is discarded and not further processed.
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Algorithm 5.9 3D GPU ray diffraction direction computation process
upon the beginning of a new iteration.

1: function computeDiffractedRayDirection(rayID,Rays,Obstacles, Cfg)
2: raycurr := Rays[rayID];
3: dirold := raycurr.direction;
4: totalRays := Cfg.totalRayCount;
5: if (rayID < Cfg.receiverCount ∗ 3) then
6: if (rayID < Cfg.receiverCount) then
7: setDirectionToDest(rayID,Rays,Obstacles, Cfg);
8: else
9: setDirectionToDestV iaReflection(rayID,Rays,Obstacles, Cfg);

10: dirnew := raycurr.direction;
11: angle := Vector.angle(dirold, dirnew);

12:
13: while ((angle > 90) ∧ (totalRays > 0)) do
14: fibonacciSpherePointInit(rayID,Rays);
15: dirnew := raycurr.direction;
16: angle := Vector.angle(dirold, dirnew);
17: totalRays /= 2;

18:
19: if (angle ≤ 90) then
20: raycurr.lossobst += (1− 90−angle

90 ) ∗ Cfg.attdiff ;
21: if (angle ≤ 35) then
22: raycurr.lossobst += (1− 35−angle

35 ) ∗ Cfg.attdiff ;
23: else
24: raycurr.lossobst += Cfg.attdiff + (1− angle−35

65 ) ∗ Cfg.attdiff ;

25: else
26: raycurr.pathLength := NOT COMPUTED;

Optimisations The necessary clear memory separation between the dif-
ferent execution instances makes splitting of rays and building path trees
restrictive, limiting the possibilities for optimisation as well. From the men-
tioned optimisations of PHY, 3D GPU implements the angle dependent
attenuation on diffraction edges and implicitly incorporates height inform-
ation by performing computations in three-dimensional environments. Pre-
computations are limited to surface decomposition of obstacles represented
by boxes and the generation of diffraction edges. Visibility trees for building
fast reflection or diffraction paths are expendable when not using an aimed
approach. Finally, as previously mentioned, realising three-dimensional ra-
diation patterns for individual devices at a sufficient resolution is impractical
and thus not realised.
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5.3.4 Statistical Modelling

A statistical model STAT uses data traces as input to generate a description
of the observed feature, e.g., communication, using the physical location
of the observations as anchor points. Such traces can be gathered also
during system lifetime, refining the available information in case of system or
environment changes. At the observed positions, the model reproduces the
measured behaviour with high accuracy. To provide estimates at unknown
positions, STAT interpolates the information based on the distance from
known data points. For MOVE in particular, Kriging interpolation [p87] is
applied, which uses a Gaussian process to model and predict intermediate
values between known data points. The method has been adopted to solve
a wide range of problems, e.g., in geology to assess the recoverable amount
of ore in deposits [p43] or in WSNs to interpolate sensor data [p155].

One propagation model for each sender is computed. The RSSI traces of
messages received from one sender serve as training data for the computa-
tion of the model. The Kriging interpolation method is adapted, instead of
performing a linear interpolation between known points, a logarithmic decay
with distance is applied as predicted by the radio signal attenuation model
in open space [p123]. An example of the model for one sender, calculated
from data collected in WSN Testbed described in Section 8.1, is reported
in Figure 5.1 (b). The model smoothly interpolates the known values at the
different receivers, independently from the actual environment shape. For
the latter reason, the STATmodel is implemented for solely operating in the
two-dimensional space. In contrast to PHY, including height information
provides only minor additional benefit to this model compared to the costs
of three-dimensional computations. At most, the predicted signal strengths
slightly decrease due to increasing distances related to possible height dif-
ferences, similar to the 2.5D optimisation of PHY (Section 5.3.2). Other
than that, the integration of height information does not have any beneficial
effect on the interpolation process of STAT, which is solely based on the
recorded traces as data source, not considering any resulting consequences
of an additional dimension with respect to the environment except for the
potential change of distance.

For the integration into STAT, a publicly available implementation of the
Kriging interpolation has been used [m3]. In order to use Kriging for per-
forming predictions on the signal quality, certain operating parameters have
to be configured first. The Kriging interpolation bases its value estimations
at unknown positions on semivariograms. A semivariogram is a function
γ(si, sj) describing the relation of similarity between two locations si and
sj in dependency of their distance. In general, the closer two locations are
spatially, the more similar their values are and vice versa. Hence, in com-
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Figure 5.10: A semivariogram with relevant parameters.

bination with given data at known positions, the semivariogram defines the
expected difference of values from these known position at a specific dis-
tance. The semivariogram used by STAT is based on empirical data and
uses three key parameters: the range, the nugget and the sill. These para-
meters define the course of the graph, as depicted in Figure 5.10, and have
to be adapted to the needs of signal modelling. The nugget describes the ini-
tial dissimilarity at zero distance and represents the initial variation or noise
occurring at infinitely small distances. In terms of wireless measurements,
it would be comparable to measuring the signal close by the position, it is
originating from. However, even when measuring closely, the signal already
suffered from a loss, which is reflected by this value and has been set to
−10 dBm. For comparison, according to Equation 2.6, the path loss at a
distance of 5 centimetres is already −14 dBm, justifying the above value.
The second parameter, the range, describes the distance at which the graph
levels off and the similarity change over distance becomes negligible. Trans-
ferred to wireless signal propagation, this means a distance at which the
signal is already so weak that it is actually irrelevant as it is not received
at all. Thus, the range has to be chosen in dependency of the reception
capabilities of the used hardware. For the indoor scenarios used in the eval-
uation (Section 8.1), a range of 30 metres is sufficient, as the attenuations
on the path caused by the obstacles do not allow any links beyond that
distance. Lastly, the sill is the value, which the semivariogram function
outputs at the defined range. Taking into account the explanations on the
range, this value corresponds to a signal strength which is not measurable
by the devices anymore. Since for the hardware used in the main evaluation
scenarios, the lowest receivable RSSI is −97 dBm, a value of −100 dBm has
been chosen. Alternatively, also the lowest received RSSI value from the
measurements can be taken as reference to determine the lower bound.
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5.3.5 Hybrid Modelling

The STAT and PHY models are either based on system or on environment
information exclusively, resulting in the aforementioned discrepancies. How-
ever, wireless communication is affected by the environment and modelling
approximations result in deviations from the predicted physical propagation.
In HYBRID, the two modelling techniques are fused together, exploiting
the benefits of both to generate synergies.

Optimisations The known data points in the STAT model are exploited
to first calibrate the parameters of the PHY model. Configuring the key
parameters of the model, e.g., the specific impact of materials on the signal
propagation, is challenging, yet crucial to achieve a good accuracy. Start-
ing from the gathered observations and the approximate descriptions of
the obstacles present in the environment, HYBRID adjusts the individual
parameters of the PHY model to closely match the actual values for all
observed positions. This is done through a gradient descent on the accumu-
lated squared error of all the measured receivers for a single sender through
a gradual change of the individual parameters. To preserve a low compu-
tation time, alternative, more complex techniques are avoided. Anyway,
even in case of a sub-optimal configuration, the described simple procedure
still contributes to compensate for the errors introduced by an imprecise
description of the environment.

The parameter optimisation for a specific node nopt is described by Al-
gorithm 5.10. For the exploration, a parameter interval (PI) helper class
has been defined which defines the parameter to change, default and cur-
rent value, upper and lower limits and the step size in which it is iterated.
An interval can be defined for any parameter of PHY which should be
optimised. As a reference, the model initially predicts the link qualities
between the known devices (N) using the default configuration parameters.
For each link, the difference between prediction and measured value (Lreal)
is computed using the same metrics as defined in the evaluation (Table 8.8).
To penalise larger deviations more than smaller ones, the value is squared
before it is added to the accumulated difference, which is then used for
comparison to determine whether an improvement has been achieved. The
parameters are now changed repeatedly one by one in either ascending or
descending order as long as an improvement occurs, finishing after one full
iteration over all parameters without any changes.

Moreover in PHY, small changes of a few centimetres in the position of
a node can significantly impact the prediction accuracy. Figure 5.11 ex-
emplarily visualises the impact of small distance changes on the reception
probability of a device located at border distance from a sender as predicted
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Algorithm 5.10 HYBRID parameter optimisation.

1: class ParameterInterval {
2: Parameter parameter;
3: Float default, lower, upper, step, current;
4:
5: function nextUp()
6: return min(upper, current+ step);
7: function setUp()
8: current := min(upper, current+ step);
9: function nextDown()
10: return max(lower, current− step);
11: function setDown()
12: current := max(lower, current− step);
13: }
14:
15: function optimiseParameterForNode(nopt, N, Lreal, P I,mdl)
16: for (pi ∈ PI) do
17: mdl.changeParameter(pi.parameter, pi.default);

18: Lpred := mdl.predictLinksForNode(nopt, N);
19: diffToRealitybest := getSquaredDiffSum(Lreal, Lpred);
20: isF inished := false;
21: lastImprovedParam := null;
22: while (¬ isF inished) do
23: for (i ∈ N, 0 ≤ i < PI.size()) do
24: pi := PI.get(i);
25: if (lastImprovedParam = pi.parameter) then
26: isF inished := true;
27: break for loop;

28: if (lastImprovedParam = null) then
29: lastImprovedParam := pi.parameter;

30: statusparam := INCREMENT;
31: while (statusparam ̸= DONE) do
32: hasImproved := false;
33: if (statusparam = INCREMENT) then
34: mdl.changeParameter(pi.parameter, pi.nextUp());
35: else if (statusparam = DECREMENT) then
36: mdl.changeParameter(pi.parameter, pi.nextDown());

37: Lpred := mdl.predictLinksForNode(nopt, N);
38: diffToRealitycurr := getSquaredDiffSum(Lreal, Lpred);
39: if (diffToRealitycurr < diffToRealitybest) then
40: diffToRealitybest := diffToRealitycurr;
41: hasImproved := true;
42: lastImprovedParam := pi.parameter;

43: if (hasImproved) then
44: if (statusparam = INCREMENT) then
45: pi.setUp();
46: else if (statusparam = DECREMENT) then
47: pi.setDown();

48: else
49: if (statusparam = INCREMENT) then
50: statusparam := DECREMENT;
51: else if (statusparam = DECREMENT) then
52: statusparam := DONE;
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Figure 5.11: Reception probability map of a signal emitted from a sender (not
shown here) at border distance to the depicted receiving node predicted by the
PHY model. A change in position of few centimetres decides on a successful re-
ception. The box around the node represents the area in which nodes are relocated
within the model to best match observations.

by the PHY model. Since even detailed representations of the environment
may contain small inaccuracies, nodes are moved in the range of a few centi-
metres around their location (box in Figure 5.11) to find the best positioning
matching the measurements. The benefits of these correction as well as the
parameter optimisations are evaluated in Section 8.4.4.

Weighted Output Creation After calibration, in order to combine the
STAT and PHY outputs, the most informative model at each specific loc-
ation has to be identified. For this reason, the HYBRID model determines
a weight for each output based on the system and environment information
available. In particular, due to the interpolation, the accuracy of the STAT
model decreases as the physical distance from known points increases. Then
the absolute distance of position p to the closest known observation dmin(p)
is used as weight. Subsequently, three regions depending on dmin(p) are
distinguished. At a distance smaller than a threshold dstat, only the STAT
model is considered. Similarly, at a distance bigger than a threshold dtrans,
exclusively the output of the PHY model is used. In the transitional region
in between, each model is weighted so that the contribution of the STAT
model degrades linearly with distance while the PHY one increases. This
reflects the ability of the STAT model to accurately describe only the close
surrounding of observed positions.

Algorithm 5.11 describes the decision process on which type of model to
use with which weighting depending on whether for the given positions
of source and destination measurements are available. If both positions
are known, then STAT is used without any involvement of PHY. In the
opposite case without any measurements for both positions, PHY is the
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only option as STAT does not have data to perform predictions. For the
remaining and more common situations, in which only one of two positions
are known, a weighted combination of both model outputs is chosen, based
on the aforementioned distance to other known positions.

Algorithm 5.11 HYBRID weighted decision algorithm.

1: function computeHybridPrediction(psource, pdest)
2: sourceKnown := isKnownPosition(psource);
3: destKnown := isKnownPosition(pdest);
4: if (sourceKnown ∧ destKnown) then
5: predictedRSSI := computeStatPrediction(psource, pdest);
6: else if (sourceKnown) then
7: weightSTAT := determineWeight(psource, pdest);
8: predictedRSSI := computeStatPrediction(psource, pdest) ∗ weightSTAT +

computePhyPrediction(psource, pdest) ∗ (1− weightSTAT);
9: else if (destKnown) then
10: predictedRSSI := computeHybridPrediction(pdest, psource);
11: else
12: predictedRSSI := computePhyPrediction(psource, pdest);

13: return predictedRSSI;

14:
15: function determineWeight(psource, pdest)
16: dknown := getClosestKnownPositionDistance(pdest);
17: if (dknown ≤ dstat) then
18: return 1;
19: else
20: weightSTAT := max(0, (dtrans + dstat − dknown))/dtrans;
21: return weightSTAT;

Referring back to Figure 5.1, the resulting weighted computation of the
wireless propagation for a sender is shown in (d), according to the imple-
mentation of HYBRID, combining the outputs of STAT (b) and the op-
timised implementation of the PHY model (c). The PHY model is driven
by the obstacles, e.g., doors and walls. With respect to the STAT model,
the difference is evident. In particular, STAT shows that some devices are
unable to communicate with the sender even if PHY predicts a perfect link.
On the other side, the STAT model expands areas with bad connectivity
beyond the physical obstacles that most likely cause them. To address such
characteristics in HYBRID, more complex weighting functions can also
be used, e.g., to analyse the distance to obstacles, whose impact might be
better estimated by PHY. These functions would, however, significantly
increase the required processing time, striving against the set goals. In Sec-
tion 8.7, the accuracy of the weighting function is discussed, showing its
ability to support the design of effective network optimisation strategies.
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5.4 Conclusion - MOVE

In this chapter Models for Network Optimisation in Versatile Environments
(MOVE) are introduced, a collection of models for predicting wireless sig-
nal propagation. As the core contribution, MOVE provides four models,
serving as basis for the other approaches presented in this thesis. While pur-
suing the principles of this thesis to keep all approaches practical and gen-
erally applicable without requiring expert knowledge, each model provides
a different approach addressing specific conditions regarding the availability
of information found in diverse networks. Thus, MOVE provides suitable
solutions for a large number of scenarios.

First, the PHY model is introduced, a two-dimensional ray tracing model
basing predictions entirely on a description of the environment. By apply-
ing physical laws of signal propagation in interaction with obstacles, PHY
computes possible signal paths from a sender to a destination in order to
estimate the expected signal strength at arbitrary positions. Being executed
on a CPU, PHY is limited to a certain degree of detail as an increasing
number of considered interactions exponentially increases the computation
effort. To mitigate this limitation several optimisations have been imple-
mented either reducing computation times without sacrificing much accur-
acy, e.g., simplifying path computations by skipping certain less relevant
signal paths, or vice versa, e.g., including optional height information ad-
justing path lengths computed on the 2D plane. As the evaluation has
shown (Section 8.4), PHY is able to provide accurate predictions of signal
propagation with a sufficiently detailed representation of the environment.
In the main scenario WSN Testbed an average error per existing link
between 7 dBm for the lowest and 8.5 dBm for the highest power level is
achieved. In FLoW [a2] (Chapter 4), PHY is used to compute the signal
quality of simulated networks from which the network topology has to be
estimated in challenging artificial scenarios.

Taking advantage of the independence of each ray in computation, a 3D
GPU model has been developed, tailored to the functionality and utilising
the massive parallelisation capabilities of current graphics cards. It builds
upon principles of the PHY model and extends it by adding a third di-
mension as well as increasing the number of considered effects, relaxing the
restrictions, which approaches executed on the CPU suffer from. Executing
3D GPU on a modern graphic card, it turns out that computing 3D mod-
els of the environment in which the devices operate can be made practical
and that its processing can be accelerated without sacrificing accuracy. The
3D GPU model is utilised in Follow [a4] (Chapter 6) to identify possible
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reasons for observed changes in signal strength. An incorporation of the
third dimension allows to discover further possible signal paths relevant to
improve prediction accuracy as well as to better identify dynamic obstacles
accountable for changes in signal quality.

Having no detailed description of an environment available, the STAT
model enables predicting signal quality by basing entirely on observations
taken from the network. To generate signal maps for each sender, it util-
ises Kriging interpolation calibrated with collected traces and applies log-
arithmic signal decay to determine expected RSSI values for unknown pos-
itions. Considered exclusively, the STAT model is able to perfectly repro-
duce communication behaviour for a given network with smooth transitions
of signal quality between known positions. Due to its data-based nature, it
does not account for any local environment properties, exacerbating predic-
tions at positions with sparse trace coverage. However, the prediction accur-
acy for such uncovered positions can be improved by integrating the missing
knowledge about the environment via complementary PHY model.

The last model of MOVE, HYBRID fuses the available information about
the scenario together with observations taken by deployed devices into a
single model describing wireless communication at each possible location
in the environment. Consisting of STAT and PHY models, it takes ad-
vantage of both approaches by weighting their outputs, depending on the
distance to known locations. Furthermore, incorporating recorded traces
allows for a minimisation of error by serving as validation when calibrat-
ing the PHY model parameter to adjust its predictions towards observed
values. The evaluation shows that HYBRID is able to exploit the most
accurate information of both models available at each location with a low
computational effort. MOTION [a3] (Chapter 7) then uses predictions of
the HYBRID model to improve network topologies towards specific user
goals by relocating devices in the environment.

In the overall view of this thesis, MOVE constitutes the second phase of
increasing the knowledge about a network. Considering the individual cir-
cumstances of each scenario, the different models of MOVE provide flexible
approaches for modelling wireless communication. Independent of the re-
quirements specific to each model, a basic understanding of the location of
network devices is necessary to enable predictions of the communication be-
haviour. These positions can be provided by FLoW with an approximate
accuracy, suitable for modelling, which does not consider the environment
directly, as for example the statistical model. However, for utilising the
more precise physical models, positions have to be provided in a more exact
way, so that they at least match the rooms, given by the likewise required
description of the environment, which has to be provided by the user. Due
to its ability to predict network behaviour at unknown positions, MOVE
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represents a key element of this thesis as it marks a significant transition
from the mere collection of knowledge to an actual exploitation. This cap-
ability of prediction opens up opportunities for more advanced approaches
obtaining a deeper understanding of the network and its properties. This is
especially relevant for the two following contributions, Follow and MO-
TION, as these exploit the predictions of MOVE to achieve their goals.
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6 Understanding Changes in the
Environment

Wireless communication is becoming an integral part of our everyday life.
Not only personal devices but also industrial equipment are embracing this
vision with more and more integration of wireless elements. However, while
for personal use an unreliable wireless connection is acceptable (even though
admittedly annoying), industrial setups require known properties of the
interconnection between the different components. An increasing number
of interactions with domain experts highlights how reliability, timeliness and
robustness are key requirements that cannot be traded off. Understanding
wireless communication properties becomes, as a consequence, an essential
challenge that needs to be undertaken.

This need was recognised since long time, motivating a plethora of experi-
mental studies (Section 3.2). These studies have, over time, replaced mod-
elling and simulation as the reference methodology to acquire knowledge
about wireless communication. Arguably, such approach was justified by
the experienced discrepancy between modelled environments and real ones,
corresponding to a significant mismatch between expected behaviour ana-
lysed in simulation and measured performance of real systems. As a result,
the design, deployment, validation and maintenance of systems nowadays
rely mostly on factual, single knowledge and individual experience [p173].

In this chapter, modelling is resumed as key methodology to reason about
the behaviour of a deployed system situated in its operational environment.
The goal is to look at communication in indoor scenarios where obstacles
impact wireless signals in unpredictable ways depending on their shapes
and construction materials. Moreover, such unforeseeable effect on network
performance can change over time depending on the different states and
positions of such objects during the system lifetime. A dynamic model able
to capture the cause-effect relationship between changes in the scenario and
the resulting variations in the wireless signal propagation in the specific op-
erational environment would allow to reason about the network behaviour,
exposing new knowledge.
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6.1 Challenges

Defined by the goals and depending on the available knowledge about the
environment, investigations of temporal network changes have to be con-
ducted in different ways. Focusing on individual, predetermined objects or
properties within limited boundaries, e.g., the movements of an elevator on
a certain floor or the temperature in a specific room, experiments yield the
most information, especially when having full control over the setup. Being
able to adjust and iterate through possible states, an exhaustive analysis
can be performed to gain insights on the subject. In this case, however, the
cause of the observed effects is known beforehand and an assignment has
already been anticipated. This important step of assigning observations to
their actual cause has to be undertaken if either more general investigations
without focus on specific objects are targeted or site-specific information
have to be gathered at a larger scale in lack of resources to perform detailed
investigations of each individual object in the whole area.

This expansion of investigations to a larger scope or area imposes two chal-
lenges regarding the combination of generality and efficiency. First, to per-
form detection and assignment in such a way that it works with few inform-
ation and ideally requires no user intervention once in operation. Second, to
conduct an investigation obtaining the most comprehensive insights despite
uncertainties in the assignment.

Enabling Automated Cause Assignments

In order to realise an approach which is able to determine cause-effect rela-
tionships, certain prerequisites have to be fulfilled. Implementing an auto-
mated process, the approach has to compare and analyse measurements
taken from the network in order to detect individual changes on link level,
requiring a distinction between usual fluctuations in the link quality and
those induced by events. Depending on the used hardware and scenario,
the boundary between the two might be different. Those individual links
which are then classified to be significantly changed have to be correlated af-
terwards to determine the location of an observed event. Since a localisation
is crucial to clearly identify the reasons for network changes in a subsequent
step, the usage of a detailed geometric model of the environment, includ-
ing device positions, is obvious. Finally, combining the information from
previous steps, the approach needs to assign the observations to a cause,
making a decision between available options. This requires a decision func-
tion, which has to be defined based on the properties of the potential types
of causes.
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An automated assignment, however, has limitations. A system is only cap-
able of acting within its own boundaries, i.e., recognising and assigning
observations to causes which are known. The availability and utilisation
of knowledge about possible influencing factors are therefore essential for
a successful deployment. Consequentially, the properties about the under-
lying causes of the events to be detected have to be known beforehand so
that such an approach is able to make unambiguous assignments at all.
Obviously, the actual reasons for changing network behaviour might vary
depending on the scenario. In order to cope with this multitude of potential
reasons, an automated solution ideally should incorporate as much of this
general knowledge as possible to ensure broad applicability. Additionally,
information specific to the environment of the scenario are required as well,
e.g. the position of doors, windows or furniture. Otherwise, without suffi-
cient scenario data, only imprecise guesses based on the general knowledge
would be possible.

Uncertainty of Cause Determination

The second challenge is the exploitation of available information to achieve
the best possible knowledge gain for a given scenario. At the simplest, a
newly detected event and its fingerprint match with a previously observed
event where the cause is known. However, besides a confirmation of previous
data, this case does not provide much gain in knowledge about the envir-
onment. The more interesting and valuable case is the opposite, observing
events with a yet unseen effect on the network. When examining certain
objects as possible causes, fingerprints regarding the actual effect of these
on the links in their vicinity might not be available at all if events related to
them have not been observed before. To perform a cause-effect assignment
in this case, an approach has to estimate the impact based on an underlying
network communication model and select the most probable. Without any
confirmation on the correctness, in particular for an automated assignment,
this decision is subject to uncertainty caused by inaccurate estimations due
to incomplete or imprecise information about the environment. To ensure
correctness and usefulness of the insights, this uncertainty has to be min-
imised.
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6 Understanding Changes in the Environment

6.2 Approach

Unexpected temporal changes originating from the environment can con-
siderably affect the performance of a network. Hence, having as much
knowledge as possible about potential causes is helpful to foresee and avoid
adverse effects. As previously mentioned, especially in large networks it
is difficult to perform exhaustive experimentations revealing the complete
range of possible influences. To address this problem, such causes can be
investigated by analysing the impact of certain objects in a virtual envir-
onment. Having the appropriate tools to model wireless communication in
a given environment, their exploitation opens up such opportunity to gain
further knowledge about the underlying network as well as the environ-
ment itself. During the computation of signal propagation paths, physical
models use a snapshot of the respective network and environment reflecting
their current state. However, since the communication behaviour of most
networks is subject to frequent changes, investigating these temporal dy-
namics with the help of a model can provide additional insights. Given the
model estimations on the impact of different objects in different states, ob-
servations of previously unknown changes in the communication behaviour
of the network can then be matched against their possible causes.

Realising the aforementioned, this chapter introduces Follow the Rays
(Follow) [a2], utilising the ray tracing engines of MOVE (Chapter 5),
which is able to efficiently compute the propagation of the wireless signal
in an indoor environment from a basic floor map. Starting from this base,
a technique is devised able to detect and localise events producing lasting
changes to the interconnection between devices. Through the observation of
the actual link conditions and variations, the computed model is exploited
to derive which rays could have caused such changes and match them to
the provided floor map, thus understanding the cause. While alternative
event detection approaches exist, Follow extends the state of the art by
exploiting models to map the events and match the corresponding unique
fingerprint, providing the following contributions:

Robust Model Signal Impact Determination In order to determine the
potential influence of an obstacle on the communication behaviour, an in-
tuitive approach would be to predict the signal strength for each link in
presence and absence of the investigated obstacle and then use the differ-
ences across all affected links as unique fingerprint. However, especially
for scenarios with coarse descriptions of the environment lacking centimetre
accuracy, small predicted link differences of only few dBm are susceptible
to errors, as these might be affected by interference effects which cannot be
taken into account correctly. Addressing this issue and therefore enabling
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a robust determination of obstacle impacts for mentioned scenarios as well,
the approach of Follow does not consider a qualitative analysis of link
changes, but a quantitative one. The presence of necessary basic details of
the environment given, i.e., device positions, walls, large furniture, doors
and windows, just a coarse distinction between strong and weak links is
made to either keep or discard links. Focusing only on strong and mean-
ingful connections when analysing changes, those links are considered to be
affected by an obstacle for which a sufficiently strong signal path exists,
involving that obstacle. As a consequence, the obstacle fingerprints exclus-
ively base on the affected links, but not on their actual change, abstracting
from otherwise required details for interference computations and thereby
improving the applicability of Follow.

Model-based Cause-Effect Reasoning Utilising the ability of physical
models to alter the state of certain elements within the virtual represent-
ation of the environment, the impact of such changes can be estimated
by Follow before they actually occur in reality. Once observed in the
operating network, the subsequent comparison constitutes an implicit veri-
fication at the same time, if the actual link changes match the predicted
ones. Simulation and reality are combined to enable a model-based analysis
of network behaviour without the need to perform dedicated experiment-
ation campaigns on exploring the effect of certain obstacles located in the
environment. In this way, Follow provides an automated approach to un-
derstand the causes originating from changes in the environment, increasing
network knowledge and eliminating the manual effort that would otherwise
be required to gain such insights.

The concept of Follow is visualised in Figure 6.1, describing the two-folded
process of obtaining fingerprints of events observed in the real network (left)
and of obstacles based on model estimations (right) to ultimately perform
a matching between an event and its possible cause. In order to derive
event fingerprints from the real network, deviations with respect to the
regular network behaviour have to be identified first. Thus, observations
on link level become necessary for which changes have to be recognised
individually. As such changes occur on different links and in different places
with a temporal delay as well, these have to be correlated, yielding sets
of links related to an event, which is then used for comparison. On the
other hand, for obtaining obstacle fingerprints which reflect the behaviour
of the network links after state changes, a description of the environment
is required, including the objects to be investigated as well. Changing the
position of these objects in the virtual description, the physical models
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Figure 6.1: Follow concept of determining the cause-effect relation between
environment and observations.

are utilised to predict the impact on the surrounding links, producing a
fingerprint for each obstacle. Comparing the event fingerprint to the ones
from the predicted obstacle fingerprints, the highest similarity determines
the assumed cause for the observed network changes.

To tackle aforementioned challenges, Follow takes the following measures.
Implementing an automated approach for the detection and assignment of
events to their potential causes, Follow focuses on semi-dynamic obstacles
found in typical indoor scenarios, i.e., doors, windows and elevators. Since
the number of possible states of this type of obstacle might be large, but
is yet limited, the resulting effects on the network behaviour can be, in
theory, entirely determined as well, given the required resources to enable
an examination at highest possible detail, which is, though, refrained from.
The spatial anchorage of semi-dynamic objects yields a defined amount of
attributable objects and thus enables clearly localised assignments in com-
parison to completely mobile objects which might originate from outside
the network boundaries and thus are not part of the environment descrip-
tion. In addition, the spatial limitation of movements allows for a better
distinguishability between different obstacles reducing uncertainties.
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Follow is evaluated in an indoor testbed consisting of 40 low-power wire-
less devices (Section 8.6). The ability of the proposed solution to detect
events and correctly map them to their location is studied with respect to
the number of devices active as well as the employed transmission power,
thus exploring the impact of system properties on the detection accuracy.
Additionally, the analysis of the alternative models shows that it is pos-
sible to increase the computation complexity and gain predictions closer to
reality by adding the third dimension at no additional costs in time. By
progressively increasing transmission power, it is possible to attribute up to
91% of the measurements to the corresponding obstacles correctly. From
this analysis, further use cases are identified where the approach could be
exploited (Section 9.2). In conclusion, it is demonstrated that a system
can automatically define an event-dependent dynamic model of its wireless
communication properties mapped to in-situ gathered fingerprints.

6.3 Implementation

This section focuses on the possibility to understand the interplay between
events happening in the environment with long lasting impact on commu-
nication and the wireless propagation properties between the devices. Pure
statistical models based on measurements would only be able to passively
observe changes in the communication properties as events happen in the
environment but would not be able to trace back the actual cause of such
changes. Only a model able to describe how wireless waves should be af-
fected by a specific event can support this type of cause-effect reasoning.

A base measurement set is assumed available, which provides information
about RSSI observations from all the links in an empty environment in its
default state, e.g., with all doors and windows closed. Such measurements
can be easily gathered at system deployment or at times in which the system
is detected being in a quiet state. It is then necessary to gather individual
traces for each possible event happening in the environment to complete the
description of the links before and after an event. Figure 6.2 exemplarily
demonstrates the effect of such an event on the RSSI of different links,
opening a previously closed door. While exhibiting fluctuations during the
movement from seconds 15 to 20, the selected links show a contrasting
behaviour in closed and open door states. These permanent changes in
the link qualities represent the unique fingerprint of each event, allowing
an assignment to its possible cause as well as a later recognition. As also
discussed in Section 8.6.3, this gathering procedure can be integrated in an
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Figure 6.2: Contrasting influence of door movements on the signal strength of
different crossing links.

online observation system to let systems calibrate themselves. The result
is a mapping between localised events and corresponding fingerprints made
of real-world wireless observations obtained by the deployed system. In the
following, the approach to build such a mapping is described.

6.3.1 Detection of Link Anomalies

Using the base measurements as reference, event fingerprints are created
out of temporally and spatially correlated link changes, which manifest a
significant variation above a given threshold. An event fingerprint consists
of RSSI average and variance values for all the affected and relevant links.
In order to identify which links are relevant, the different phases of change
in RSSI values during an event have to be identified for each individual
link first. Figure 6.3 breaks down the three typical phases of an affected
link, beginning with the pre-event phase usually evincing stable RSSI values
with minor variance. This phase is followed by the event itself typically
characterised by rapid changes in observed RSSI values with a high variance
due to the movements of objects in the environment and thereby constantly
changing signal paths. Finally, during the post-event phase the link quality
might have changed in case of an altered environment in the vicinity of this
link, e.g., an opened door. The identification of these phases enables a clear
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Figure 6.3: Phases of RSSI change in case of occurring events.

separation between RSSI samples from before and after an event to compute
the difference without possible distortions in the fingerprint from the event
itself. Therefore, RSSI samples related to an event have to be recognised
and discarded.

To determine beginning and end of an event, an approach is required which
is able to detect abnormal deviations in a sequence of collected RSSI samples.
In the literature, sliding windows provide an effective and computationally
inexpensive solution where RSSI values are successively added in chrono-
logical order [c1]. These windows only store the last swindow inserted val-
ues, while the newest value always replaces the oldest, allowing to analyse
the progression of link quality over time (LoT ) and to deal with a limited
amount of RSSI samples only. Further computations are then performed on
the contained values, such as the calculation of the mean value or the afore-
mentioned variance which in turn can be analysed to detect events. In case
of the variance, an event is assumed to take place while the value exceeds
a certain threshold tvar. The parameters, relevant to the variance detection
are listed in Table 6.1 and the process is shown by Algorithm 6.1. The an-
omaly detection algorithm has been taken from [c1] and adapted to the need
of distinguishing the previously described event phases by identifying first
and last packets during which an event took place. The used parameters, on
the other hand, are not changed as these provide distinct detections of the
event borders with respect to the inserted RSSI values. Especially for online
observation systems and traces containing continuous event transitions, the
approach of using sliding windows and observing changes in the RSSI vari-
ance is an appropriate way to identify changes of link characteristics and
isolate the timespan of occurrence [p25].
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Table 6.1: Parameters and chosen values used by the link anomaly detection as
described in [c1].

Parameter Description Value

swindow Sliding window sample size 10

wmean Weight of the mean value from the previous step 0.9

tvar Event starting variance threshold 5 dBm

Algorithm 6.1 Link anomaly detection using a variance window as defined
in [c1].

1: struct Event {
2: Node sender, receiver;
3: Integer startPacket, endPacket;
4: }
5:
6: function detectLinkAnomalies(LoT(n1→n2))
7: Events(n1→n2) := new List();
8: ws := swindow;
9: Win := new Array(ws);
10: mean := LoT(n1→n2)[0];
11: estart := −1;
12: for (i ∈ N, 0 ≤ i < LoT(n1→n2).size()) do
13: RSSIi := LoT(n1→n2)[i];
14: Win[i mod ws] := RSSIi;
15: mean := wmean ∗mean+ (1− wmean) ∗RSSIi;
16:
17: if (i < ws) then
18: continue with next i ;

19:

20: var := 1
n

ws∑
k=0

(Win[k]−mean)2;

21:
22: if ((var ≥ tvar) ∧ (estart = −1)) then
23: estart := i;
24: else if ((var < tvar) ∧ (estart ̸= −1)) then
25: Events(n1→n2).add(new Event(n1, n2, estart, i− 1));
26: estart := −1;

27: return Events(n1→n2);
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After identifying the time interval, in which an event occurred, the RSSI
difference between pre and post-event is computed. Thereby, links that
appeared or disappeared as a consequence of the event happening are re-
cognised as well. Out of these links, the ones are preserved which are bi-
directional, reliable with at least −90 dBm in both directions and where
both directions change remarkably. In the experimentation, a threshold
corresponding to the maximum between 2 dBm and twice the standard de-
viation of the link RSSI demonstrated to be sufficient to identify the relevant
links.

Although event detections on a link level are a prerequisite for the follow-
ing steps, they are not the main focus in the context of Follow, but the
ability of the models of MOVE to attribute such identified, affected links
to a cause. Thus, the previously mentioned approach for detecting link
anomalies is not applied during the evaluation of the succeeding match-
ing process to prevent an interference with possibly erroneously discarded
links. Instead, the utilised RSSI measurements for the evaluation have been
recorded before and after an event had taken place, achieving a clear tem-
poral separation between pre and post-event states and allowing to directly
proceed with the identification of links relevant for the next steps.

6.3.2 Clustering of Links

After being able to detect events on a link level, the next step is to spatially
and temporally relate these recognitions to determine all links affected by
a specific event and derive the corresponding fingerprint. Thereto, a clus-
tering algorithm is applied, shown in Figure 6.4, consisting of a first cluster
generation phase and a subsequent minimisation.

First, detected link anomalies are grouped if their determined time intervals
overlap by simply comparing the timestamps of the corresponding packets.
Since the movement of an object through the environment might start to
affect links at different points in time, especially at slow velocities, it is
considered as sufficient that at least one event-related RSSI sample of both
links temporally overlap. This approach minimises the amount of gener-
ated events, but on the other hand tends to create chunks of links if mul-
tiple events occur at the same time. To prevent the latter and distinguish
spatially separated events, remaining links are afterwards clustered based
on the rooms in which they are located. In the given map, it is possible
to identify rooms by searching for areas enclosed by walls. To each room,
the position in the map can then be assigned as well as the nodes and
obstacles contained. This offers the possibility to better localise events by
tentatively assign them to one or more rooms. First, the map is consulted
to identify the specific position and room of each node interconnected by
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Figure 6.4: Performed steps of the link clustering algorithm. First, clusters are
generated based on their spatio-temporal correlation and then minimised in the
subsequent phase.

links marked as significantly changed. A cluster is assigned to each room
including the affected links that either have at least one end point in the
room or simply traverse it. According to this scheme, the same link might be
present in different clusters. The room-based cluster generation is described
by Algorithm 6.2. Each cluster contains a list of assigned events and the
corresponding room, it is assigned to. Initially, one cluster is generated for
each room. These clusters are then filled with all the event links for which
the straight line between sender and receiver intersects the corresponding
rooms.

Subsequently, a phase starts with the goal of minimising the considered
clusters. In order to achieve that, pairs of clusters not sharing any link are
kept and complete subsets of others removed. In the case in which only
a partial overlapping exists, if one cluster is smaller than another but the
number of common links is sufficiently big, the two clusters are merged
into one that is assigned to the room of the bigger. Finally, in the case in
which both clusters have the same size and share enough links, the tie is
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Algorithm 6.2 Room-based cluster generation.

1: struct Cluster {
2: List events;
3: Room room;
4: }
5:
6: function clusterGeneration(Events, env)
7: Rooms := env.getRooms();
8: Clusters := new List();
9: for (room ∈ Rooms) do
10: Clusters.add(new Cluster(new List(), room));

11:
12: for (e ∈ Events) do
13: linee := new Line(e.sender.position, e.receiver.position);
14: for (c ∈ Clusters) do
15: linkCrossesRoom := c.room.intersectsLine(linee);
16: if (linkCrossesRoom) then
17: Clusters.events.add(e);

18: return Clusters;

Algorithm 6.3 Cluster minimisation for total inclusions.

1: function clusterMinimisationInclusion(Clusters)
2: for (c1 ∈ Clusters) do
3: for (c2 ∈ Clusters, c1 ̸= c2) do
4: if (c1.events.containsAll(c2.events)) then
5: if (c1.events.size() ̸= c2.events.size()) then
6: Clusters.remove(c2);
7: else
8: linkLength1 := 0;
9: for (e1 ∈ c1.events) do
10: linee1 := new Line(e1.sender.position, e1.receiver.position);
11: linkLength1 += Line.segmentLength(

room.getIntersectionSegment(linee1));

12: linkLength2 := 0;
13: for (e2 ∈ c2.events) do
14: linee2 := new Line(e2.sender.position, e2.receiver.position);
15: linkLength2 += Line.segmentLength(

room.getIntersectionSegment(linee2));

16: if (linkLength1 > linkLength2) then
17: Clusters.remove(c2);
18: else
19: Clusters.remove(c1);

20: return Clusters;
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resolved by finding the most occurring node in the links of both clusters
and assigning the merge of the clusters to the room containing such a node.
What remains are the clusters of spatially correlated changed links assigned
to the most probable room of reference.

Algorithm 6.3 describes the cluster minimisation by applying an inclusion
check. For the existing clusters, it is checked whether one list of events
fully contains the events from another cluster. If this is the case and the
cluster c1, which contains the events of the other c2, is larger, the latter is
just removed. In case both clusters contain exactly the same events, the
cluster is kept, in which room the straight-line signal of a link covers the
greater distance. In this way, the room with the larger potential impact on
the signal quality is selected.

Algorithm 6.4 Cluster minimisation for partial intersections.

1: function clusterMinimisationIntersection(Clusters)
2: for (c1 ∈ Clusters) do
3: for (c2 ∈ Clusters) do
4: commonEvents := c1.events ∩ c2.events;
5: if (commonEvents ̸= ∅) then
6: sharec1 := commonEvents.size()/c1.events.size();
7: sharec2 := commonEvents.size()/c2.events.size();
8: if ((sharec1 > smin) ∧ (c1.events.size() < c2.events.size())

∧ (diffHasIndirectConnectionsToClusterOnly(c2, c1))) then
9: for (e1 ∈ c1.events) do
10: c2.events.add(e1);

11: Clusters.remove(c1);
12: else if ((sharec2 > smin) ∧ (c2.events.size() < c1.events.size())

∧ (diffHasIndirectConnectionsToClusterOnly(c1, c2))) then
13: for (e2 ∈ c2.events) do
14: c1.events.add(e2);

15: Clusters.remove(c2);
16: else if ((sharec1 > smin) ∧ (sharec2 > smin) ∧

(c2.events.size() = c1.events.size())) then
17: mostFrequentNode := getMostFrequentNode(c1, c2);
18: if (c1.room.containsNode(mostFrequentNode)) then
19: for (e2 ∈ c2.events) do
20: c1.events.add(e2);

21: Clusters.remove(c2);
22: else
23: for (e1 ∈ c1.events) do
24: c2.events.add(e1);

25: Clusters.remove(c1);

26: return Clusters;
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Afterwards, the partial overlapping of clusters is further investigated by
Algorithm 6.4. Thereto, the set of common events between two clusters
is computed. In case an actual intersection exist, the share of this set
with regards to the overall size of each cluster is determined. A cluster
is merged with another cluster if the following conditions apply (line 8):
(1) the share of the cluster is larger than smin, which has been set to 60 %,
(2) its size is smaller than the one from the other cluster and (3) all other
event links from the first cluster, which are not part of the intersection,
have a common node with an event link of the second cluster. Especially
the latter condition prevents that single event links, which do not have
a spatial correlation to the ones in the other cluster, are falsely merged,
potentially missing a different second event occurring close to the first one.
Having a sufficiently large share in both clusters and an equal number of
events, the tie is resolved by determining the most frequent node in both
clusters (line 17). To not give larger clusters an advantage, the node count is
divided by the total number of events of each cluster first and then averaged
between both clusters. Based on this value, the most frequent node is chosen
and the corresponding cluster which belongs to the room of this node, is
kept. The just described utility methods used for cluster minimisation are
given by Algorithm 6.5.

The presented approach of grouping links is able to distinguish spatially or
temporally separated events. However, the usage of RSSI values to observe
changes in the environment has limitations. If multiple events overlap in
space and time, a clear separation between both events and an attribution
of the affected links is hardly possible as the effects of both events are
inseparably intermixed within the observed RSSI values.

6.3.3 Measurements-to-Event Matching

The identification of links that changed over time and can be ascribed to
the same event makes it possible to reason in more details about the actual
cause for the observed link changes in addition to a first approximation
of the possible event location. To make further inferences about potential
causes, additional analysis is required. Follow focuses on obstacles able to
change their status and influence the RSSI of links in a stable long-lasting
manner with limited fluctuations. This type of events are in contrast to
volatile ones, manifesting high variability and hindering the detection of
stable events that are co-located.

If fingerprints observed in the specific scenario for all the possible events
are available, it would be possible to match the actual observations against
such database. This possibility is discussed in Section 8.6.3. Without such
information, traces can only be analysed in comparison to the given map,
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Algorithm 6.5 Cluster minimisation utility methods.

1: function diffHasIndirectConnectionsToClusterOnly(ccompare, cbase)
2: EventDiff := ccompare.events \ cbase.events;
3: hasCommonNode := false;
4: for (ediff ∈ EventDiff) do
5: hasCommonNode := false;
6: for (ebase ∈ cbase.events) do
7: if ((ediff .sender = ebase.sender) ∨ (ediff .sender = ebase.receiver)

∨ (ediff .receiver = ebase.sender) ∨ (ediff .receiver = ebase.receiver))
then

8: hasCommonNode := true;
9: continue with next ediff ;

10: if (¬ hasCommonNode) then
11: return false;

12: return true;

13:
14: function getMostFrequentNode(c1, c2)
15: nodeCount1 := countNodeOccurrences(c1.events);
16: nodeCount2 := countNodeOccurrences(c2.events);
17: allNodes := nodeCount1.keys() ∪ nodeCount2.keys();
18: frequentNode := null;
19: freqbest := −1;
20: for (node ∈ allNodes) do

21: freq :=
(

nodeCount1.get(node)
c1.events.size()

+ nodeCount2.get(node)
c2.events.size()

)
/2;

22: if (freq > freqbest) then
23: frequentNode := node;
24: freqbest := freq;

25: return frequentNode;

26:
27: function countNodeOccurrences(Events)
28: nodeCntMap := new Map();
29: for (e ∈ Events) do
30: nodeCntMap.put(e.sender, nodeCntMap.getOrDefault(e.sender, 0) + 1);
31: nodeCntMap.put(e.receiver, nodeCntMap.getOrDefault(e.receiver, 0)+1);

32: return nodeCountMap;
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Table 6.2: Parameters and chosen values used by the obstacle link determination
of Follow.

Parameter Description Value

tstrongLink Strong link RSSI threshold −90 dBm

tpathDiff Ray path difference threshold 20 dBm

through the lenses of the ray tracing models mentioned in Section 5.2. In
order to study a specific obstacle as possible cause for an observed change,
the theoretical influences of each obstacle on the network links have to be
known.

By exploiting the introduced ray tracing models, it is possible to precom-
pute, for each obstacle, its expected impact on communication links if its
state or position is changed, e.g., in case of a door or window if it is opened
or closed. An intuitive approach would be to check if any such event would
cause changes matching the actual observations. In following this approach,
however, it needs to be taken into account that in most cases the scenario
description does not provide centimetre accuracy for practical reasons (as in
the evaluated case). Therefore, the model output cannot rely on the correct
computation of interference effects, which however have been demonstrated
to play a significant role in reality.

Algorithm 6.6 Obstacle link influence determination.

1: struct ObstacleLinks {
2: Obstacle obstacle;
3: Set links;
4: }
5:
6: function computeObstacleLinkInfluence(N,mdl, env)
7: O := env.getSemiDynamicObstacles();
8: L := mdl.predictLinks(N, env);
9: OL := new Set();
10: for (o ∈ O) do
11: Lo := new Set();
12: for (l(n1→n2) ∈ L) do
13: Paths(n1→n2) := mdl.getSignalPaths(n1, n2, env);
14: for (path ∈ Paths(n1→n2)) do
15: if (path.rssi > tstrongLink

∧ (l(n1→n2) − path.rssi) < tpathDiff

∧ (path.intersects(o.closedPosition)
∨ path.intersects(o.openPosition))) then

16: Lo.add(l(n1→n2));
17: continue with next l ;

18: OL.add(new ObstacleLinks(o, Lo));

19: return OL;
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Figure 6.5: Example ray path computation between two nodes. For each of the
semi-dynamic obstacles an intersecting ray path exists, marking each obstacle
within this room as a possible influence on this link.

Without the possibility to account for the effect of interferences, the RSSI
predictions computed by the model for a specific position become worthless
when analysing the effect of small changes to the environment. In order to
circumvent the consequences of a less accurate map on the model output
as well as on the correctness of the event detection, an approach is used
that depends less on the actual RSSI values. The ability of ray tracing is
exploited to track each possible path of a radio signal between sender and
receiver. For the needs of Follow, the relevant information corresponds to
the existence of a possible path to a receiver at a sufficient signal strength
that interacts with the investigated obstacle, e.g., via reflection, in at least
one of its possible states, e.g., if a door is open or closed. Algorithm 6.6
describes the process of determining relevant signal paths. In accordance
with Table 6.2, only paths with a signal strength of above tstrongLink = −90
dBm and a difference of less than tpathDiff = 20 dBm to the strongest
received signal are considered. Figure 6.5 visualises such an example of
testing possible ray paths from node 7 on the bottom left to node 9 on
the upper right for intersections with semi-dynamic obstacles located in the
room. In this case, all obstacles possibly have an influence on this link.

Once the sets of possibly influenced links for all the obstacles in the scenario
have been generated, these can be compared against the clusters computed
based on the gathered observations. The comparison process is described
by Algorithm 6.7. As decision criterion, the Jaccard similarity coefficient
[p76] is used to measure the similarity between two sets. The size of the
intersection of both link sets divided by the size of their union builds a
target coefficient (see Equation 4.3). The highest coefficient among all the
set comparisons yields the decision regarding which obstacle is considered
as the event cause.

142



6.4 Conclusion - Follow

Algorithm 6.7 Cause determination by link set comparisons.

1: function determineMostProblableEventCause(Levent, OL)
2: corrbest := 0;
3: obstbest := null;
4: for (ol ∈ OL) do
5: Lobst := ol.links;

6: corr := |Levent ∩ Lobst|
|Levent ∪ Lobst| ; (Equation 4.3)

7: if (corr > corrbest) then
8: corrbest := corr;
9: obstbest := ol.obstacle;

10: return obstbest;

6.4 Conclusion - Follow

The Internet of Things and cyber-physical systems rely on wireless inter-
connections. The importance of understanding the behaviour of wireless
communication in practice has promoted many experimental studies, char-
acterising signal propagation in specific environments. Despite the gathered
knowledge, the perceived discrepancy between abstract models and actual
network performance has supported the belief that system design and de-
bugging can rely only on direct experience and trial and error. As a result,
reasoning about wireless systems is nowadays a tedious, manual process.

The approach presented in this chapter, Follow [a2], walks the playground
between model and reality to make wireless networks understand their own
behaviour in the environment where they operate. First, the previously in-
troduced models of MOVE are utilised to efficiently and accurately charac-
terise wireless signal propagation in 2D and 3D environments with obstacles.
Then the model is exploited to make systems autonomously derive the im-
pact of obstacles such as doors and windows on the link conditions. With an
outline of the operational scenario and measurements from deployed devices,
it is possible to effortlessly generate a situated, dynamic wireless map. Fol-
low is demonstrated in an indoor testbed, showing its practicability and
effectiveness. The evaluation reveals that Follow attributes up to 91%
of the measurements to the corresponding obstacles correctly. Finally, it
is shown how that different modelling techniques have an impact on such
detection accuracy, promoting the use of 3D environment descriptions.

With Follow as the third contribution of this thesis, a further advance-
ment is made towards understanding the properties of a network. In con-
trast to the previous two contributions, where the network is analysed based
on observations made at one specific point in time, Follow incorporates
observations over longer time periods to analyse temporal variations in the
behaviour of links. Requiring exact signal paths to determine possible influ-
ences located in the environment, this solution exploits the physical mod-

143



6 Understanding Changes in the Environment

elling provided by MOVE. However, compared to the plain usage of the
previous step, Follow has increased demands on the model to achieve
its goals. To enable the physical model making temporal changes visible
in its predictions, it becomes necessary to include the relevant obstacles
as part of the environment description whose state can then be changed.
This information has to be provided by the user in addition to the other
required static obstacles. Building upon the available knowledge of how sig-
nals propagate in a given environment, the results of Follow yield further
valuable insights which can be used to gain a better understanding with
respect to the other steps. E.g., previously unconsidered influences might
explain inaccuracies for certain links in the predictions of MOVE or certain
devices and positions can be considered as more or less suitable during the
optimisation phases of MOTION.
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Planning and operating networked embedded systems is a challenge for de-
velopers and operators, especially in times of the rising Internet of Things.
A large variety of devices is expected to seamlessly cooperate to make every-
day scenario smarter. However, that same scenario and its specific envir-
onment have a peculiar impact on wireless communication [p108], affecting
the system performance. Being able to analyse the characteristics of the en-
vironment helps to gain further knowledge about the system, identify weak
spots and develop solutions to preserve and optimise its functionality and
performance. Nonetheless, the design and validation of system solutions are
typically based on tools that are agnostic to the environment.

Simulation [p105] can be used to test solutions in arbitrary setups, enabling
general evaluation of protocols and their implementation, abstracting from
the specificity of individual configurations and scenarios. Acknowledging
the discrepancy between simulation and reality, the community has realised
public testbeds [p58, p40], which have become an established validation
methodology. Despite the possibility to demonstrate the effectiveness of
solutions in concrete settings, they depict one specific environment and are
unable to provide the insights necessary to configure an arbitrary system in
its specific deployment site. As a result, during deployment, developers and
operators resort to trial and error in order to debug and optimise running
systems [p173].

Thus, for the optimization of networks, either real validation approaches
tailored to specific scenarios with missing transferability or simulations in-
dependent of scenario but without reference to reality are available. Ap-
proaches that combine the versatility of simulations with the possibilities of
real systems in such a way that they become applicable in arbitrary scen-
arios, are missing. Recognising the lack and need of holistic and universally
applicable optimisation tools, this chapter presents an approach for realising
such, bringing the flexibility and usefulness of simulations to reality. Per-
forming the final step of exploiting the available knowledge gathered from
the network to ultimately trigger optimisation measures, a communication
model based on a description of the target environment is employed, whose
outputs are translated into physical relocations of devices, impacting the
system behaviour in the desired way.
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7.1 Challenges

Realising the targeted automated optimisation process comprises multiple
steps. First, the utilisation of the communication model as foundation for
any further actions, requiring reliable outputs. Second, the evaluation of
given predictions in order to develop effective optimisation strategies. And
lastly, the actual conduction of physical modifications to the network relo-
cating its devices and thus impacting the system behaviour. These steps,
individually and jointly considered, pose several challenges to be met.

Divergence of Simulation and Reality Utilising virtual models for estim-
ating network behaviour provides the huge benefit of evaluating a multitude
of potential optimisation configurations without the need of testing all of
them in reality. Undesired outcomes can be discarded and the set of config-
urations thus be narrowed down to a selection of the most auspicious ones.
However, this assumes a basic level of reliability regarding the accuracy
of the predictions. Considering the heterogeneity of available information
in different scenarios, this unfortunately cannot be guaranteed since even
minor inaccuracies or missing details in the network description might lead
to deviating outcomes. Therefore, besides necessitating detailed and ac-
curate scenario descriptions, such risks of diverging predictions have to be
minimised by thorough algorithms, considering many details and desirably
providing the possibility of correcting divergences from reality.

Spatial Limitations The architecture of a wireless network is planned in
accordance with the structural conditions of the environment. Existing
restrictions might limit possible relocation positions to specific areas which
might not be optimal with respect to the targeted network metrics to be
improved. Thus, an optimisation approach has to take such limitations into
account and provide alternative positions from which can be chosen, finding
the best trade-off between possible positions and improvements.

Mutual Impact of Multiple Physical Changes Performing profound op-
timisations on a network usually involves multiple physical changes to achieve
the targeted effect. Each individual modification of the network topology
has an effect on the performance, either imperceptible or significant. Ideally,
the behaviour observed after a device relocation matches the expected one
which was estimated by the model before. However, as already stated, in-
accuracies in the environment model or unconsidered effects might lead to
unintended side effects and hence a deviating behaviour. In an unfavour-
able case, such deviations then have an impact on the entire relocation plan,
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requiring ad-hoc adjustments. To address this issue, a comprehensive solu-
tion has to provide options for a stepwise realisation of larger optimisation
strategies with the possibility of re-evaluating expected and actual states
during each deployment step to perform dynamic adaptations based on new
observations.

7.2 Approach

Picking up the approach described in Section 3.4.2, Moρϕευς [c7] demon-
strates the powerful optimisation capabilities of combining simulation and
reality. Simulations execute a given application which to optimise in per-
formance, exploring various alternative configurations by adding, removing
or relocating simulated devices at certain positions in the virtual network.
The results are evaluated to find the best configurations improving the tar-
get application metrics, which are then applied in reality.

For device communication, the simulation used in Moρϕευς solely relies
on communication properties observed at a real network, i.e., packet re-
ception rates for all existing links between devices, which are taken as the
basis when employing simulated communication. Hence, relying only on
connectivity data has limits when exploring new positions in a network,
neglecting possible effects of the environment on the link quality. Actually,
the used communication model is not able to perform predictions for any
unknown location. Since the main focus of Moρϕευς was not to foresee
communication behaviour, but to demonstrate the realism of simulation in
reproducing an application behaviour close to reality, the investigated can-
didate positions were restricted to known positions where further devices
were already in place and thus for which real communication data was avail-
able. Consequentially, the simulated optimisation proposals were applied in
reality by (de-)activating certain present devices. However, besides the clear
advantage of not requiring any details about the network environment ex-
cept for the connectivity data, this also reveals the limitations of Moρϕευς,
restricting the explorable positions to known ones and therefore also the
ability to exploit the full optimisation potential.

In fact, in the operational scenario, information is typically available from
the devices already deployed at their fixed position. Foreseeing the im-
pact of an alternative displacement of devices becomes challenging and, at
the same time, crucial to satisfy the user requirements. This challenge is
tackled by accurately modelling wireless communication in the operational
environment starting from information gathered by the system in its current
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configuration and from external descriptions of the scenario. As a result, it
becomes possible to reason about the impact of specific device positioning
on the system behaviour, enabling the optimisation of networks situated in
their operational environments.

Taking up and extending the idea of exploiting insights gained from compu-
tations of simulated scenarios and transfer them to reality by applying ac-
tual modifications to a network, this chapter presents MOTION, a Model-
based Optimisation of Wireless Networks [a3]. Instead of simulating and
evaluating the application itself to derive optimisation measures, MOTION
uses a different approach, investigating the underlying network and focusing
on device communication. A technique to support in situ deployment and
maintenance of systems is introduced, utilising the HYBRID modelling of
MOVE (Section 5.3.5) that fuses information from gathered measurements
of wireless communication in the operational system with a physical model
of the expected signal propagation. To make the technique practical and
beneficial, this approach relies on the introduced optimisations to speed
up the time required for the computation of the models, minimising the
sacrificed accuracy (Section 5.3.2). Utilising the capabilities of MOVE to
virtually explore alternative device positions in a systematic way, predic-
tions of the expected communication behaviour are generated for each of
the investigated positions. These predictions are then evaluated and the
benefits of MOTION explored by devising some relocation strategy (Sec-
tion 7.3) aiming at optimising the overall resulting network performance.
By this means, MOTION extends the state of the art in two ways:

Network-wide Exploration of Optimisations With a model of the net-
work defined by MOVE, it becomes possible to reason about device posi-
tioning and its impact on the system performance. Traditional approaches
for network optimisation, design and analysis, as discussed in Section 3.4,
focus on tuning software parameters by analysing specific network stacks or
optimising defined network or application metrics. MOTION could extend
all these techniques to allow the study of networks with devices at arbitrary
positions, providing an accurate estimation of communication situated in
the operational scenario.

Application-agnostic System Improvements MOTION focuses on op-
timising system performance in a pure application-agnostic fashion through
a controlled relocation of devices. It is refrained from exploiting any know-
ledge coming from specific protocols running in the system, relying exclus-
ively on the properties of the underlying physical topology. In this manner,
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Figure 7.1: MOTION concept of incremental network performance improve-
ments.

the need for any simulation of specific software implementations or any pro-
tocol model is obviated, thus gaining general applicability. Nonetheless, the
ability of MOTION to accurately control the network topology can already
be exploited to optimise system behaviour.

The concept MOTION is visualised in Figure 7.1, demonstrating the cycle
of improvement, alternating between network analysis and device reloca-
tion: The predictions of the HYBRID model, using inputs of both re-
corded traces from the network and a description of the environment, are
utilised by an optimisation policy (Section 7.3.2) which proposes the most
promising relocation positions to the user. After choosing one option and
performing the physical device relocation, the position is updated in the
virtual description of the environment as well and the network performance
assessed again. Based on the targeted improvements, the process can be
repeated and further relocation steps undertaken.
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Implementing MOTION in the aforementioned way, the described chal-
lenges of an automated optimisation process are addressed. The potential
problem of a mutual impact of multiple device relocations is solved by the
given optimisation cycle, including a re-evaluation of the network perform-
ance after each relocation, allowing for an adaptation of plans if actual
observations deviate from the predicted ones. The closely associated prob-
lem of a possible divergence between simulation and reality is tackled by
the usedHYBRIDmodel which incorporates connectivity data from known
positions into its predictions, which are preferred over those generated by
the physical computations. Thus a back channel is established, which allows
a correction of the model in case of deviations. Furthermore, this imple-
mentation of HYBRID, observation over computation, at least allows a
local repositioning even if the description is inaccurate. Finally, restrictions
to the placement of devices are considered by the possibility to specify the
area in which the optimisation policies search for suitable alternatives. This
can be one or a combination of the following options to consider: (1) a max-
imum distance from the current device position, (2) a minimum distance to
other nodes, (3) only the same room, in which the device is already located
and (4) wall positions exclusively, in case a positioning within the room is
not possible.

MOTION is evaluated on data traces collected from the WSN Testbed
(Section 8.1). Predictions of HYBRID are utilised to perform device re-
locations comparing expected link quality and quantities against reality,
proving their correctness. Furthermore, the impact of such relocations on
application metrics is investigated. Based on the experimentation (Sec-
tion 8.7), it is highlighted how MOTION can become a stepping stone
towards the integration of environment information in the holistic, situated
design of wireless systems.

7.3 Implementation

In this section, the approach of network optimisation is discussed from the
technical perspective of MOTION. Re-utilising the deterministic signal
propagation modelling of MOVE, the description of the environment, used
by the HYBRID model, is a key component as it enables spatially precise
predictions for any position and thus opens up the possibility to explore
alternative locations for devices. Additionally, relocations applied to the
network can easily be adjusted in the environment description and thereby
reflected in subsequent computations. Since each model inevitably suffers
from inaccuracies, even if these are small, the chosen incremental approach
mitigates their impact by counteracting accumulating errors due to regular
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model updates after each relocation. As discussed and shown in Figure 7.1,
MOTION performs optimisations in an iterative cycle, consisting of three
steps: (1) position exploration via communication model, (2) application of
an optimisation strategy and (3) user-driven relocation of one of the pro-
posed devices. Because details regarding the functionality of the HYBRID
model have already been mentioned in Chapter 5, it is proceeded with the
discussion of the optimisation process.

7.3.1 Incremental Optimisation

To support network optimisation in a fully application-agnostic fashion,
MOTION exploits information available only at the physical network layer.
Moreover, the approach bases on measurements that can be taken by the
wireless devices themselves. This allows to inspect the environment from
the perspective of the specific wireless elements operating in the final sys-
tem and to update the model during system lifetime. If typical radios are
considered, it is usually possible to measure channel noise, RSSI and correct
packet reception. While additional information, e.g., reception of corrupted
messages, can also be used, this work has been restricted to a minimum set
of information. Further details can be integrated in the model to increase
its accuracy. Based on this information, it is possible to compute link and
network metrics, e.g., the number of incoming or outgoing links per node,
the average RSSI per link and the network diameter.

MOTION estimates the communication properties of arbitrary locations
in the modelled environment. Therefore, the main parameter of system
optimisation becomes the chosen location of devices. Utilising the obtain-
able network data and the predictions provided by the HYBRID model
in a flexible and generic way, MOTION realises the concept of modular
policies, evaluating this information with different optimisation priorities
(cf. Figure 7.1). An optimisation policy could then analyse the impact of
relocating devices, defining constraints and goals. The policy could impose
to respect network, e.g., avoid partitioning and preserve existing reliable
routing paths, or application, e.g., sensing coverage, requirements. Satis-
fying these constraints, the network topology could be optimised to, e.g.,
remove weak links, increase or decrease the number of links, increase the
network average RSSI. As a result, the most promising positions for reloca-
tion improving the network behaviour with respect of the chosen policy, are
computed. Among these options, the user has to choose the preferred one
and then physically relocate the node to the declared position. After that,
a new phase starts where policies can be applied incrementally to further
adjust device positions until the network evinces the desired behaviour.
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Table 7.1: Common parameters and chosen values used by the implemented
policies of MOTION.

Parameter Description Value

drelocMax Maximum x/y node relocation distance 3 m

sgrid Relocation position grid size 0.25 m

dnodeMin Minimum distance to other nodes 1 m

brelocRoom Restrict relocation to same room ✓

brelocWall Restrict relocation to wall positions ×
blinkPreserve Preserve existing strong links ✓

blinkNoWeak Disallow weak links ✓

tstrongLink Strong link RSSI threshold −90 dBm

Common Parameters For performing meaningful optimisations, policies
can be customised to fit the requirements of a given scenario. A detailed
overview of the available common adaptation parameters and the chosen
values used for the evaluation is given in Table 7.1. Since they have been
applied to the same scenario, both used policies share the same parameter
values. To guarantee the sensing coverage of all the rooms, the possible
relocations are restricted to other positions in the same room. Similarly,
nodes too close to each other are avoided. Despite offering the feature of
only considering positions close to walls for relocation, useful when a central
placement of devices within a room is not possible, it has been refrained from
using it to not further reduce the number of considered positions. Limiting
the maximum relocation distance to three metres within the same room
while keeping at least one metre distance to other devices already limits the
number of evaluated positions, which is at most 144 with a quarter of a metre
as grid size. In addition, it can be beneficial to preserve the existing network
topology if reliable, preventing the strategy from destroying existing good
links and creating weak links as well. The threshold for such links has
been defined at −90 dbm in the given scenario due to the used hardware
(Section 8.2). The chosen restrictions ensure to not change the network
topology remarkably, but nevertheless demonstrate that also minor changes
in position can have a significant impact on the network behaviour.

Before explaining the optimisation process in more detail, Table 7.2 lists the
abbreviations which are used by the following algorithmic descriptions and
gives a short explanation on their meaning to ensure a better readability due
to a more compact notation. For the same reasons, the following algorithms
depict the conceptional core of the realised processes and thus, despite fol-
lowing the described approach, might be realised differently in the actual
implementation, e.g., different naming, call orders or method parameters.
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Table 7.2: Explanation of identifiers used for the algorithmic descriptions of
MOTION.

Name Description

n A node which is part of the network

N Set of all network nodes (n)

l(n1→n2) A link RSSI value between two nodes (sender: n1, receiver: n2)

L Set of all real or predicted existing links (l) for a network

Par Set of parameters as defined by Table 7.1

mdl Instance of HYBRID model

env The environment description containing obstacle geometry

op An optimisation policy

Opt Set of optimisation proposals returned by a policy

p A position within the environment

Pos Set of positions (p) used for relocation

mtr Network metrics for a specific node position provided by a policy

The general process, which is triggered for each optimisation is depicted by
Algorithm 7.1. For each node, possible relocation positions are collected for
which an improvement regarding the optimised metric is expected. First,
the metrics relevant for the used policy are collected for the current state.
Afterwards, potential positions for relocation are determined, for which link
quality predictions are made by the model. Filtering these predictions with
respect to the general requirements defined by the parameters (described
below), the remaining candidate positions are then evaluated based on the
policy metrics. Those who improve the current state are finally collected
and returned to the user to make a decision for the relocation.

Algorithm 7.1 Optimisation policy execution process.

1: function applyOptimisationPolicy(N,Lreal,mdl, env, op)
2: Opt := new Set();
3: for (nopt ∈ N) do
4: mtrcurrent := op.computeMetricsForNode(nopt, Lreal);
5: Pos := computeExplorablePositions(nopt, N, env);
6: for (p ∈ Pos) do
7: Lpred := mdl.predictLinksForNodeAtPosition(nopt, p,N, env);
8: if (¬ nodeLinksFulfilRequirements(nopt, Lreal, Lpred)) then
9: continue with next p;

10: mtrp := op.computeMetricsForNode(nopt, Lpred);
11: if (op.improvesNetworkMetrics(mtrcurrent,mtrp)) then
12: Opt.add(new Optimisation(nopt, p,mtrp));

13: return Opt;
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The determination process of possible relocation positions for further ex-
amination is described by Algorithm 7.2. As a starting point, the current
position of the respective device is taken. Using the current position of
the respective device as centre, a grid of candidate positions is computed
around it, whose size and density can be defined by parameters. Thereof
now such points are valid, which do not intersect any other obstacle within
the environment and optionally are located close to walls and/or in the same
room as the device. Additionally, a minimum distance to other devices has
to be satisfied to still benefit from the spatial difference between them.
The remaining positions, fulfilling all these requirements are returned for
investigation.

Algorithm 7.2 Exploration of optimisation positions.

1: function computeExplorablePositions(nopt, N, env)
2: Pos := new Set();
3: pn := env.positionOf(nopt);
4: for (p ∈ {p | |p.x− pn.x| ≤ drelocMax ∧ |p.y − pn.y| ≤ drelocMax ∧

|p.x−pn.x|
sgrid

∈ N∧ |p.y−pn.y|
sgrid

∈ N∧¬ env.intersectsObstacle(p)}) do
5: if (brelocRoom ∧ ¬ env.roomOf(nopt).contains(p)) then
6: continue with next p;

7: if (brelocWall ∧ (env.closestWallDist(p) ≤ sgrid)) then
8: continue with next p;

9: for (n ∈ N,n ̸= nopt) do
10: if (|n.position− pn| < dnodeMin) then
11: continue with next p;

12: Pos.add(p);

13: return Pos;

After employing the model to predict the estimated link qualities of the
new positions, the predictions are further filtered based on the optimisation
requirements on link level as shown by Algorithm 7.3. In this context, two
aspects are relevant. Any weak links to the target device are avoided for
the investigated positions, falling below the specified threshold. Likewise,
previously existing stable links are preserved. Positions violating one of
these two optionally selectable rules, are discarded.

With the aforementioned processes, a basis for performing network optim-
isations is provided. In order to fulfil the varying requirements individual to
each scenario, an implementation of different optimisation policies becomes
necessary. These are described in the following.
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Algorithm 7.3 Link requirement fulfilment.

1: function nodeLinksFulfilRequirements(nopt, Lreal, Lpred)
2: if (blinkNoWeak) then
3: for (l(n1→n2) ∈ Lpred, n1 = nopt ∨ n2 = nopt) do
4: if (l(n1→n2) < tstrongLink) then
5: return false;

6:
7: if (blinkPreserve) then
8: for (l(n1→n2) ∈ Lreal, (n1 = nopt ∨ n2 = nopt) ∧

l(n1→n2) ≥ tstrongLink) do
9: if ((l(n1→n2) /∈ Lpred) ∨ (l(n1→n2) < tstrongLink))

then
10: return false;

11: return true;

7.3.2 Optimisation Policies

To demonstrate the impact of MOTION, two optimisation policies have
been implemented and evaluated. Both strategies aim at improving network
metrics, which in turn have the capability of positively affecting application
metrics as well.

Link Quality and Quantity

The first policy focuses on improving network metrics, the overall link qual-
ity and quantity with the main goal to increase the number of strong and
reduce the number of weak links (Section 8.7.1). This policy initially de-
termines the average link RSSI of each device to prioritise the ones with the
lowest values for optimisation. The strategy then analyses, for each node
in the system, the links from and to the device in each possible position
derived from the physical map at a chosen grid resolution and maximum
distance. The estimated RSSI for each link is compared against the RSSI
of the node in its original position to determine the quality of each link.
The difference in the network topology is then computed, including pos-
sible new as well as removed links. Thereout, it is possible to identify the
best positions to improve each individual node connectivity by enhancing
the average reliability.

Figure 7.2 depicts a map of estimated relocation improvements of the marked
node 11 in the upper left applying this optimisation strategy while pre-
serving already existing links. Green areas indicate an expected improve-
ment of overall link quality while red ones predict a decrease in quality
with respect to the links to be preserved. Blue areas represent disregarded
obstacle positions.
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Figure 7.2: Map of estimated relocation improvements using the network optim-
isation strategy of improving link quality and quantity for the selected node 11.

The computation of metrics used the link improvement policy is listed by
Algorithm 7.4. Since the relevant metrics for this policy directly base on
RSSI values in order to distinguish good from weak links, the computation is
straight forward. Comparing the predicted link strengths with the threshold
defined via parameter, the number of good and weak links is counted and
the average RSSI value across all links of the given node is computed.

Algorithm 7.4 Link improvement policy metric computation.

1: struct LinkMetrics {
2: Integer goodLinks, weakLinks;
3: Float avgRSSI;
4: }
5:
6: function computeMetricsForNode(nopt, N, L)
7: mtr := new LinkMetrics(0, 0, 0);
8: for (l(n1→n2) ∈ L, (n1 = nopt) ∨ (n2 = nopt)) do
9: mtr.avgRSSI += l(n1→n2);
10: if (l(n1→n2) > tstrongLink) then
11: mtr.goodLinks += 1;
12: else
13: mtr.weakLinks += 1;

14: mtr.avgRSSI /= (mtr.goodLinks+mtr.weakLinks);
15: return mtr;

After computing the network metrics for an investigated position, these are
compared against the actual metrics to determine whether a relocation to
the new position is expected to improve the current state. This comparison
is described by Algorithm 7.5. It is expected to have at least either an
increase of good or a decrease of bad links in order to not discard the
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given position. Focusing on the sufficient binary quality classification of
existing links rather than their exact RSSI value, the average RSSI serves
as supplementary information and is thus not directly considered in metrics
comparison.

Algorithm 7.5 Link improvement policy metric comparison.

1: function improvesNetworkMetrics(mtrcurrent,mtrnew)
2: if (((mtrnew.goodLinks > mtrcurrent.goodLinks)

∧ (mtrnew.weakLinks ≤ mtrcurrent.weakLinks))
∨ (((mtrnew.goodLinks ≥ mtrcurrent.goodLinks)

∧ (mtrnew.weakLinks < mtrcurrent.weakLinks))) then
3: return true;
4: else
5: return false;

Network Diameter

The second policy has the goal to improve the network as a whole by redu-
cing the network diameter. In distinction from the previous policy, for each
device a hop map using Dijkstra’s algorithm [p39] is initially built for de-
termining the minimum number of links (hops) to reach any other device in
the network. Alternatively the hop counts can also be reduced with respect
to specific devices. For the nodes having the largest hop counts, relocation
positions are then evaluated, which are expected to reduce the path by es-
tablishing new reliable links to devices closer to the destination position.
Regarding considered relocation positions, the same constraints from the
aforementioned policy can be applied to this policy as well. Ultimately,
the reduction of the network diameter has been chosen to demonstrate a
positive impact on application metrics (Section 8.7.2).

Algorithm 7.6 Diameter reduction policy metric computation.

1: struct DiameterMetrics {
2: Integer maxHopCount;
3: Node maxHopSink;
4: }
5:
6: function computeMetricsForNode(nopt, N, L)
7: mtr := new DiameterMetrics(0, null);
8: for (n ∈ N) do
9: maxHops→n := getMaximumShortestReliablePathToNode(n,N,L);
10: if (mtr.maxHopCount < maxHops→n) then
11: mtr.maxHopCount := maxHops→n;
12: mtr.maxHopSink := n;

13: return mtr;
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Algorithm 7.6 lists the metric computation of the diameter reduction policy.
Improving the network in general, it is required to find the highest hop count
from all shortest paths between any two devices. Hence, the relocated node
does not need to be processed in a different way than the other nodes as
each of these needs to be checked to determine the diameter. In contrast
to the link improvement, this policy has to further process the predictions
given by the model.

Using Dijkstra’s algorithm [p39], the shortest path to a given destination
node is computed for each other device of the network, described by Al-
gorithm 7.7. Beginning from the destination node, it is successively iterated
over neighbouring nodes which have a link to an already processed node to
determine their hop count for only good links above the given threshold
are considered. To ensure building up a reliable network, the optimisation
policy used for evaluation was configured to not only reduce the diameter,
but try to reduce existing and avoid new weak links as well.

Algorithm 7.7 Diameter reduction policy shortest path computation based
on Dijkstra’s algorithm [p39].

1: struct HopInfo {
2: Integer hops;
3: Node predecessor;
4: }
5:
6: function getMaximumShortestReliablePathToNode(ndest, N, L)
7: hopInfo := new Array(|N |);
8: Q := new Set();
9: for (n ∈ N) do
10: hopInfo[n] := new HopInfo(∞, null);
11: Q.add(n);

12: hopInfo[ndest].hops := 0;
13: while (Q ̸= ∅) do
14: nnext := (n ∈ Q :

hopInfo[n].hops <= hopInfo[nother].hops ∀nother ∈ Q,nother ̸= n);
15: Q.remove(nnext);
16: for (nadj ∈ Q : ∃l(nadj→nnext) ∈ L :

l(nadj→nnext) > tstrongLink) do
17: if (hopInfo[nadj ].hops > hopInfo[nnext].hops+ 1) then
18: hopInfo[nadj ].hops := hopInfo[nnext].hops+ 1;
19: hopInfo[nadj ].predecessor := nnext;

20:
21: maxHopInfo := (h ∈ hopInfo :

h.hops >= hother.hops ∀hother ∈ hopInfo, h ̸= hother);
22: return maxHopInfo.hops;
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For the sake of completeness, Algorithm 7.8 shows the metric comparison
to decide on an expected improvement. Since the main goal is to reduce
the network diameter, the maximum hop count is solely taken into con-
sideration, providing a plain decision criterion. However, when optimising
paths to specific nodes, further constraints might be required, e.g., ensuring
certain paths to be existent with sufficient link quality.

Algorithm 7.8 Diameter reduction policy metric comparison.

1: function improvesNetworkMetrics(mtrcurrent,mtrnew)
2: if (mtrnew.maxHopCount < mtrcurrent.maxHopCount) then
3: return true;
4: else
5: return false;

7.4 Conclusion - MOTION

The design and deployment of networked embedded systems is challenging.
In particular, the environment in which the system operates has a severe
impact on the final performance. Existing tools trade generality for spe-
cificity with arbitrary setups, e.g., in simulation, or specific configurations,
e.g., in public testbeds. As a result, the peculiar effect of the target de-
ployment scenario on the system performance can only be experienced by
hand. Optimising and adapting the system to the operational environment
becomes then a trial and error, impractical challenge.

In this chapter, MOTION is introduced, a technique to optimise wire-
less networks by relocating devices in the environment [a3]. It utilises the
HYBRID modelling technique able to characterise indoor wireless com-
munication in the target environment from measurements and descriptions,
e.g., maps, of the deployment area. MOTION can then support tradi-
tional design and analysis tools in investigating the impact of arbitrary
displacements of devices in the target environment. E.g., by controlling the
relocation of a single node based on the information provided by the model,
it was possible to reduce the latency of a typical application by up to 21.4%
(Section 8.7). Ultimately, MOTION allows situated network optimisation
of wireless systems where devices can be freely moved in the environment
and the corresponding impact on the network performance can be estimated
beforehand.

MOTION, as the fourth contribution of this thesis, constitutes the final
phase in the endeavour of acquiring knowledge about the network. In this
last step, previously collected knowledge is exploited and translated into
recommended actions for modifying the underlying network, with the goal
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to optimise its behaviour. Proposing yet unknown locations for the relo-
cation of devices, MOTION mainly depends on the predictions provided
by MOVE. As the relocations are spatially precise, the used model has to
fulfil certain accuracy requirements, which requires to take the properties of
the environment into account as well, suggesting the use of a physical mod-
elling approach. Consequentially, the quality of optimisations performed
by MOVE is directly affected by the quality of the provided environment
description, which however does not have to be overly precise to achieve sig-
nificant improvements. Also knowledge of other network properties, gained
through Follow regarding the effects of obstacles on the communication
behaviour, can contribute to a more effective optimisation process by avoid-
ing positions which are, e.g., potentially affected by temporal fluctuations.
Once decided on a suitable position, the performed relocation influences the
behaviour of the network, which in turn again affects the other components
due to changing inputs. However, by adapting to the new situation, the
already existing knowledge can be further extended by the insights gained
from the updated device position. E.g., in case of MOVE, each new meas-
urement point can improve accuracy by providing an additional possibility
to verify predictions against reality and perform corresponding adjustments,
or for Follow, new device positions can help to better identify or distin-
guish the effects of obstacles. Hence, MOTION as one example of network
optimisation, does not conclude the whole process, but marks the end of
one iteration in a continual cycle of knowledge gain.
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After elucidating the four contributions related to different stages of net-
work knowledge, the evaluations of those approaches are presented in this
chapter. First, a description of the utilised scenarios is given (Section 8.1).
The second part briefly describes the used hardware and experimentation
methodology (Section 8.2). In the following, FLoW is addressed (Sec-
tion 8.3). Next, MOVE is analysed, validating the presented models (Sec-
tion 8.4) and afterwards investigating the model quality for heterogeneous
device configurations (Section 8.5), followed by the evaluation of Follow
(Section 8.6). Finally, MOTION is assessed (Section 8.7) and the chapter
concluded by a summary (Section 8.8).

8.1 Scenarios

This section introduces the real-world scenarios used to evaluate the pre-
viously introduced approaches and outlines their respective relevance by
describing their characteristics. An overview of which scenario is used for
each contribution is given in Table 8.1.

Table 8.1: Summary of the evaluation scenarios and their usages in each con-
tribution.

Scenario MOVE FLoW Follow MOTION

WSN Testbed ✓ ✓ ✓ ✓

FlockLab ✓ ✓

TWIST ✓ ✓

WiFi Office ✓

WiFi Hallway ✓
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Figure 8.1: Building of the WSN Testbed.

Figure 8.2: Map of the WSN Testbed.

WSN Testbed

The first and main reference scenario of this thesis, shown in Figure 8.1, is
a WSN testbed made of TelosB [p120] low-power 2.4 GHz wireless devices
located in a building of the university from the early 20th century. The
testbed contains 40 nodes, covering an area of 600 m2 (15 m2/node), dis-
tributed over ten rooms, including offices, big laboratories, small kitchens
and long as well as short corridors, where also an elevator is present. A map
of WSN Testbed including the device positions is shown in Figure 8.2.
This building has distinctive thick sustaining brick walls with high atten-
uation effect on radio signals, dividing the testbed into four areas, one of
which separated from the others by a long corridor.

The placement of devices is based on the group’s expertise with deployments
of this type. In this scenario, the devices could be reprogrammed to per-
form RSSI measurements with a scheduling scheme coordinating the trans-
missions of beacons in order to avoid collisions and receive signals, which
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(a) FlockLab (b) TWIST

(c) WiFi Office (d) WiFi Hallway

Figure 8.3: Maps of all used external real evaluation scenarios. Red points mark
the positions of the recorded traces (WiFi scenarios only).

are solely influenced by the characteristics of the given building structure.
During the experiments, all nodes were active either as senders or receiv-
ers, reporting each transmission or reception with the corresponding RSSI.
Moreover, this is the only scenario where it was possible to modify the
existing network infrastructure as well as to have full control over relev-
ant details of the environment, e.g., room occupancy, furniture placement
and states of doors, windows and elevator. Accordingly, WSN Testbed
is used as reference scenario for all approaches of this thesis and has the
most detailed environment representation of all scenarios, including struc-
tural details like wall thickness and material, height information of doors,
windows and devices. The experiments conducted and covered in this thesis
have been performed over a period of three years, inevitably leading to small
changes in the environment. Mainly large shelves and cupboards have been
moved over time causing minor fluctuations in RSSI reception throughout
collected traces across different analyses. To counteract accuracy changes,
adaptations on the scenario representation have been performed as well.
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FlockLab

FlockLab [p95], the second scenario, depicted in Figure 8.3 (a), is a test-
bed located at ETH Zurich with 27 TelosB devices. It covers an indoor area
of approximately 2250 m2 (84 m2/node), entailing a sparser network with
fewer links than the WSN Testbed scenario. Due to the larger distances
between the devices compared to the other scenarios, signals are required
to be transmitted at higher transmission power levels (c.f. Table 8.3) in
order to obtain a complete and sufficiently connected topology graph . For
this scenario, no further details on the environment were given except for
a map containing the room layout and the node positions. FlockLab is
used to evaluate MOVE and the capabilities of FLoW, where an outline
is sufficient to create a topology.

TWIST

The third reference scenario isTWIST [p58], a testbed at TU Berlin, shown
partially in Figure 8.3 (b). With 101 TelosB devices distributed over 3 floors,
this is the largest deployment in node count and density. Nodes are attached
to the ceiling and arranged in a grid structure providing a uniform distribu-
tion. Same as FlockLab, the TWIST scenario is addressed to evaluate
MOVE and FLoW as further information and physical control are lacking.
Since the base ray tracing model PHY and FLoW were implemented for
two-dimensional spaces, there is a limitation to analyse one floor at a time.
Due to the almost identical layout and similar results on all three floors, the
evaluation is confined to the shown fourth floor since it contains the most
nodes (32) which are spread over an area of 465 m2 (14 m2/node). The
more interesting property for the evaluation of FLoW is the rectangular
floor plan, causing mirroring problems during the matching phase.

WiFi Office

The WiFi Office scenario (Figure 8.3 (c)) as fourth scenario bases on
an existing WiFi infrastructure deployed for fingerprinting-based indoor
localisation. The 2.4 GHzWiFi access points are part of a system operating
in another floor of the same building as WSN Testbed, with a different
arrangement of rooms over a smaller area of approximately 200 m2. The
measurements were collected from a mobile phone recording the RSSI of
the beacons received from the various access points, having separate sender
and receiver devices and positions and thus unidirectional records only. The
observations were taken while walking through the rooms, pausing at each
position in order to record one RSSI sample from all access points and their
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corresponding identifying name. In contrast to the previous two scenarios,
the environment has been completely explored, leading to a higher density
of 190 observed locations, but with only one sample per transmitter for each
position as well as a significant influence of body shadowing. These notable
differences in the network structure, measurement collection methodology
and the quality of data qualify this as a suitable scenario for evaluating
MOVE under aggravating conditions.

WiFi Hallway

The last scenario corresponds to the hallway of a campus building of the
University of Mannheim, for which measurement traces are publicly avail-
able [m11]. The building consists of two shifted office wings connected
through a corridor, covering an area of 1200 m2. In this scenario, depicted
in Figure 8.3 (d), different 2.4 GHz WiFi access points are spread over the
area and located inside the offices. The measurements were taken with a
laptop equipped with an external antenna, while walking through the hall-
way, similar to WiFi Office. In total, signal strengths from 130 locations
have been collected and no measurements were taken inside the rooms where
the access points are located. Also in this scenario, only unidirectional re-
cords are available due to decoupled sender and receiver device roles, but
with multiple samples per location.

8.2 Hardware and Experimentation
Methodology

This section focuses on the hardware used in the main scenarioWSN Test-
bed and moreover elaborates on the organisation of measurements. The
evaluations of the main contributions of this thesis are based on TelosB
devices [p120] exchanging data wirelessly on the 2.4 GHz frequency via
CC2420 radio chip [m9] using an inverted F antenna printed on the board.
Due to their limited hardware resources, comparably cheap costs and mo-
bile, battery-driven operation, TelosB devices represent typical hardware
found in WSNs and are prevalent especially in the research community.
They are part of several testbeds [p14, p58, p3, p95, p13, m8], from which
two are also used for evaluation in this thesis, FlockLab and TWIST.
However, after having performed and analysed various experiments with
these devices, certain hardware-specific properties have been identified, af-
fecting the network behaviour and predictability of link qualities. One im-
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Figure 8.4: Evaluated devices in WSN Testbed, TelosB (left) and OpenMoteB
(right).

Table 8.2: Comparison of radios used in this evaluation for WSN Testbed.

Device TelosB OpenMoteB

Radio CC2420 CC2538 AT86RF215

Antenna printed F external dipole

RX Sensitivity −95 dBm −97 dBm −117 dBm

Frequency 2.4 GHz 2.4 GHz 2.4 GHz Sub-GHz

Links @ Pw7 449 534 808 958

portant aspect is the irregular radiation pattern of the printed inverted F
antenna, providing significant differences in the received RSSI depending
on the relative orientation to a sender. The effects of the radiation pattern
on reception are analysed in Section 8.5.1.

For analysing the effect of heterogeneous hardware on the network behaviour
(Section 8.5), additional OpenMoteB devices [m12] have been deployed in
the WSN Testbed scenario in place of TelosB devices, both shown in
Figure 8.4. These use a dual radio architecture, including a CC2538 trans-
ceiver [m10] capable of communicating on the 2.4 GHz frequency band and
an AT86RF215 transceiver [m5], communicating on both Sub-GHz and 2.4
GHz. While CC2420 and CC2538 have similar receiver sensitivities of −95
dBm and −97 dBm respectively, the AT86RF215 is able to receive signals
until −117 dBm increasing the effective range for receiving signals even fur-
ther. In addition and contrast to the TelosB devices two external dipole
antennas are attached, one for each frequency band. Furthermore, all three
radio devices use the same offset quadrature phase-shift keying (OQPSK)
modulation technique [p57] to send information, ensuring comparability in
the performed experiments. Table 8.2 gives an overview of relevant radio
characteristics and an exemplary link count recorded in WSN Testbed on
the lowest evaluated power level 7 (cf. Table 8.3).
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Table 8.3: Mapping of used power levels to transmission output power.

Power Level Pw7 Pw11 Pw19 Pw31

Output Power −15 dBm −10 dBm −5 dBm 0 dBm

Main areas of interest are the network topology and the quality of existing
links between the devices, measured by recording RSSI values and sources
of received transmissions for each individual device. For the evaluations of
this thesis, measurements from different scenarios have been used. These
were either pre-recorded at certain transmission powers or, in case of having
control over the deployment, performed on various power levels. Using three
scenarios, in which TelosB devices are deployed, the power level notation
is oriented towards the available settings of these devices, ranging from
the weakest transmission power level 3 up to the highest power level 31.
As power level 3 turned out to be too weak to establish an operational
network in the main scenario WSN Testbed, this level has been omitted,
beginning with power level 7 instead, increasing in linear steps up to power
level 31. To give an understanding of the nominal power output in dBm and
ensure a comprehensive analysis of measurements from different scenarios,
a mapping is given in Table 8.3.

8.3 Network Analysis

After discussing FLoW in Chapter 4 and how it allows to realise a localisa-
tion with as few information as possible, the approach is validated in this
section. To thoroughly assess the capabilities of FLoW to deal with differ-
ent topologies, varying in shape, size and density, this evaluation is based on
real as well as on simulated scenarios, each featuring unique characteristics.
An overview of the selected scenarios including network relevant paramet-
ers is given in Table 8.4. Aside from measuring the accuracy in real-world
deployments, topologies testing FLoW under specific conditions are also
analysed, e.g., large networks or unfavourable floor plans. The evaluation
is organised in three steps, increasing the amount of given information to
assess the corresponding influence on the localisation accuracy. In the ex-
perimentation, also the behaviour of MDS [p136] is assessed, a comparable
algorithm capable of localising devices only through connectivity data.
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Table 8.4: Summary of the FLoW evaluation scenarios.

Scenario Type Nodes Area Node Coverage ∅Links/Node

WSN P7 real 40 600 m2 15 m2/node 9.7

WSN P31 real 40 600 m2 15 m2/node 21.8

FlockLab real 27 2250 m2 84 m2/node 8.2

TWIST (4th floor) real 32 465 m2 14 m2/node 22.2

S-Shape sim 57 2850 m2 50 m2/node 19.0

H-Shape sim 52 2800 m2 52 m2/node 9.44

Square sim 200 22500 m2 112 m2/node 55.3-58.9

8.3.1 Scenarios of FLoW

To evaluate the viability of FLoW in real-world scenarios, three different
testbeds were chosen, for which access to floor plans and multiple connectiv-
ity measurements were given, WSN Testbed, FlockLab and TWIST
(Section 8.1). While for WSN Testbed two power levels 7 and 31 were
considered, for the latter two, measurements were conducted only using the
highest power level 31.

In addition, three artificial setups with specific features are also identified
constituting a challenge for FLoW, described in the following. In each sim-
ulated scenario, the nodes are uniformly distributed and the signal strength
of wireless links is derived by the PHY ray tracing model. Even if simulated
and characterised through idealised RSSI values, these scenarios allow to
stress specific behaviours not evident in the real deployments at disposal.

S-Shape The first artificial scenario is based on an environment with 57
nodes, shaped in the form of the letter S. There exist no bridging connections
between nodes in different segments which are not in line of sight resulting
in a tube shaped graph which is required to be bent in order to fit the
shape.

H-Shape An environment in the form of the letter H, containing 54 nodes
is used as second scenario. The possible problem arising here is an in-
trinsically flipped graph which cannot be solved by mirroring, but rather
by identifying and performing local changes on the affected parts of the
graph.
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Square Lastly, the evaluation scenario of MDS [p136] has been chosen:
a large square shaped area with no other obstacles. On the one hand the
intention here is to compare FLoW against MDS running under ideal cir-
cumstances. On the other hand another goal is to evaluate the performance
when dealing with larger networks and a constantly sparse amount of addi-
tional information, i.e., anchors. Thereto in contrast to the other scenarios,
except for four anchor nodes placed at each corner, 196 of the 200 used
nodes were randomly placed in an area of 150 m x 150 m and five different
runs were tested.

8.3.2 MDS: Multidimensional Scaling

Many localisation algorithms rely on more information than the mere con-
nectivity data or are based on strict assumptions. E.g., tri- [p114] or multi-
lateration algorithms require to have at least three anchors located in com-
munication range. Similar arguments apply to other range-free algorithms
like APIT [p61], Centroid [p26] or DV-Hop [p113]. Others require angu-
lar information to work, e.g., in [p112]. Thus a comparison is not possible
without providing detailed information. This additional knowledge may in-
crease the accuracy in localisation but also reduces the generality of the
approach if such information is not available or can be obtained only with
additional effort.

To the best of the author’s knowledge, the reference algorithm in the literat-
ure relying only on connectivity data is the multidimensional scaling-based
approach, MDS [p136]. It requires a completely filled |N | × |N | matrix,
representing the pairwise distance dissimilarities between each two nodes.
Without anchor nodes, the use of absolute distances is avoided in the first
evaluation cases. As an alternative, the RSSI values can be used. For in-
direct connections, the minimum hop count is used as distance metric, as
done in the original paper. For the implementation, the available MDS
Java library [m1] is employed. Both FLoW and MDS are then computed
centrally.

8.3.3 Localisation only with Connectivity Information

It is first evaluated if it is possible to understand the physical location
exclusively through connectivity information. As mentioned, the lack of
reference points results in topologies that are arbitrarily rotated, scaled and
mirrored, challenging the direct comparison with a real topology. In par-
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ticular, the use of absolute metric errors would offer a distorted perspective
as the algorithms at this stage can only find the correct topology shape
rather than the exact distances. Therefore, for this step, the performance
is analysed through a specific metric.

Comparison Metric

To obtain a meaningful comparison, an appropriate scaling factor for the
computed topologies needs to be identified, approximating both graphs in
size. Since the generated graphs contain different errors on each individual
link, it is impossible to find a uniform scaling factor fitting all distances.
Therefore, for each pair of nodes the relative distance deviation is com-
puted:

δij :=
dist(ni,real, nj,real)

dist(ni,algo, nj,algo)
(8.1)

where dist(na, nb) is the difference between the position of two nodes either
in reality or positioned by the algorithm. Then ∆ is defined as the set of
all pairwise scaling quotients:

∆ := {δij | 1 ≤ i < j ≤ |N |} (8.2)

The complete set ∆ may contain outliers influencing the scaling negatively
when computing the average. This error would also propagate to later
comparison steps if the graph is significantly over- or undersized. This
influence can be minimised by removing c highest and lowest values:

c :=

⌊
k · |∆|

2

⌋
(8.3)

For the evaluation, k = 0.3 is used, which provides suitable scaling factors
for all given scenarios. Using the set ∆c recursively defined as:

∆0 :=∆

∆m := ∆m−1\{min∆m−1,max∆m−1}
(8.4)

with 1 ≤ m ≤ c the average of the remaining scaling quotients is computed
leading to the final scaling factor s:

s :=
1

|∆c|
∑
δ∈∆c

δ (8.5)
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The positions of the nodes of the computed graph are then multiplied with
the scaling factor s. In the end, the relative error between two nodes can
be computed as:

relerrij :=

∣∣∣∣1− s

δij

∣∣∣∣ (8.6)

To not cancel out positive and negative deviations when computing the
average error, only the absolute values are considered. Accordingly, e.g., a
value of 0.1 indicates that the estimated distance between two nodes differs
by either +10 % or −10 % of the original length.

Scenario Comparison

The relative distance errors of both FLoW and MDS, when provided only
with connectivity information, are shown in Figure 8.5. For the real scen-
arios, four to five measurements, taken at different times have been used
for evaluation, marked with different colours. In addition to the effects of
the permanent static obstacles, influences of different day times and room
occupations are reflected in slight fluctuations of the RSSI for each link
between the measurements. On the other side, for the artificial scenario
Square, data sets have been generated by PHY. Thus, although utilising
model predictions, this scenario contains undistorted RSSI values, as they
only depend on the distance between devices without any further propaga-
tion effects as the map does not contain any obstacles. Hence, these values
actually reflect the distance between two nodes, allowing to evaluate the
potential of FLoW under ideal conditions. In order to obtain data sets
with different RSSI values, device positions have been randomly altered in
this case. The error for each pair of nodes is then computed according to
Equation 8.6.

In all real scenarios and the MDS reference scenario Square, the median
error is similar for both algorithms. However, FLoW exhibits less relat-
ive errors for the majority of the links, yielding a graph closer to the real
topology. Across different data sets for the same scenario, smaller changes
in RSSI and existing links may lead to different graph layouts and link
errors. With FLoW, minor changes are counterbalanced due to the force-
based mutual influence of vertices, explaining the more uniform results.
Noticeable is the slight improvement between the two power levels of WSN
Testbed. By doubling the average amount of links per node from 9.7 to
21.8 (cf. Table 8.4), the average relative link error decreases by 0.10 (0.53
vs. 0.43) as more edges imply more certainty for positioning a vertex in re-
lation to the surrounding ones. This only partially works since, as the nodes
become more connected, the graph successively loses its distinctive shape,
ending up in a circle in the case of full connectivity. Lastly, in Square both
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Figure 8.5: Relative pairwise distance errors of FLoW and MDS algorithms
applied on multiple data sets (different colours) from both, real scenarios and the
MDS reference scenario Square. With WSN Testbed P7 and P31, cases are
distinguished in which a transmission power level 7 (−15 dBm) or 31 (0 dBm)
were used. Note that the y-axis range has been capped at a value of 2 due to a
better visualisation, although few values above this limit exist.
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algorithms show their potential. Without any obstructions, the average re-
lative error over all five data sets is 0.15 for MDS and 0.12 for FLoW, with
the latter having more outliers on the one hand, but a lower distance error
for the large majority of device pairs on the other hand. Since the area of
Square is quite large compared to the other scenarios, this minor differ-
ence in the relative error translates to an absolute distance improvement of
around one metre in accuracy in favour of FLoW.

Having only RSSI values available, FLoW is able to reproduce the distance
relationships between node pairs more accurately than MDS, even in the
reference scenario. However, the accuracy of both heavily depends on the
influence of obstacles and propagation effects reflected in deviating RSSI val-
ues, compared to the pure signal loss over distance. Nevertheless, FLoW is
able to better compensate for such distortions due to the mentioned mutual
correction of adjacent nodes.

8.3.4 Localisation with the Help of Floor Plans

The use of the floor plan allows to translate relative positions to absolute
ones by matching areas and find the most suitable graph configuration. In
case of minor disparities in shape, the matching of FLoW forcefully fits
the graph into the floor plan. MDS has no anchor node available and it
is unable to exploit the information provided by a map of the scenario,
leaving no chance to obtain absolute coordinates. To nevertheless enable a
comparison, the same FLoW matching is applied on the MDS output. In
this case, no further adaptation to the floor plan through graph deformation
is possible without losing relative position information. The results are
shown in Table 8.5.

When successfully fitting the graph into the floor plan, FLoW achieves
better accuracy for node placement than MDS. However, in most scenarios
the mere floor plan is insufficient to ensure a reliable matching of the graph,
as exemplified in Figure 8.6. Due to the edgy shape, the FLoW matching
algorithm succeeds in placing the graph correctly in the WSN Testbed
P7 scenario in two cases, but in none for the P31 case. In all of the unsuc-
cessful attempts, the graph is flipped. Increasing the overall connectivity
loses distinctive characteristics, reducing the chances of a correct matching.
Although the matching may already provide a correct fitting, there are ex-
amples for which a correct result is highly affected by ambiguities caused
by symmetries intrinsic in the map, as shown in Figure 8.7.
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Table 8.5: Analysis of the impact of the floor plan information. The average
accuracy (∅Acc) bases on all available traces; RelErr denotes the relative error
of the average accuracy in relation to the diagonal of the floor plan bounding
box; the mismatch column (Mism.) shows the number of traces whose graph
representation was incorrectly matched or flipped. Due to the different focus, for
the simulated Shape scenarios only one set of connectivity data was generated.

Scenario Algorithm ∅Acc RelErr AccBest AccWorst Mism.

WSN P7 FLoW 6.55 m 14.9 % 3.24 m 9.77 m 2/4

MDS 7.57 m 17.2 % 4.14 m 10.97 m 2/4

WSN P31 FLoW 9.22 m 21.0 % 8.53 m 9.89 m 4/4

MDS 7.96 m 18.1 % 4.75 m 11.04 m 2/4

FlockLab FLoW 20.05 m 22.5 % 8.22 m 36.73 m 2/5

MDS 28.83 m 31.2 % 10.16 m 42.41 m 4/5

TWIST FLoW 15.82 m 45.9 % 8.28 m 18.09 m 5/5

MDS 10.45 m 30.3 % 8.35 m 17.48 m 4/5

S-Shape FLoW 51.79 m 52.5 % - - 1/1

MDS 52.44 m 53.2 % - - 1/1

H-Shape FLoW 41.60 m 49.0 % - - 1/1

MDS 38.78 m 45.7 % - - 1/1

Square FLoW 67.02 m 31.6 % 8.50 m 112.54 m 4/5

MDS 87.88 m 41.4 % 76.95 m 122.53 m 5/5

Figure 8.6: FLoW matching results for WSN Testbed P7 (left) and P31
(right), for which the graph is flipped w.r.t. the correct placement. The colour
denotes the difference between shown computed and real position. A pure green
(red) colour marks errors smaller than 2.5 % (bigger than 20 %) of the floor
diagonal.
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Figure 8.7: Examples of symmetric floor plans with a successful shape matching
but an incorrect node placement caused by the inability to resolve ambiguities.
The TWIST scenario is shown on the left, the H-Shape scenario on the right.

In conclusion, exploiting the information about the floor plan enables the
matching of relative to absolute distances and therefore of the estimation
of node positions. The success of the matching, however, heavily depends
on two factors: the shape of the floor plan and the average network con-
nectivity. First, the less symmetric the shape is, the easier an unambiguous
matching can be found. Second, although improving the local positioning of
nodes, an increasing connectivity reduces the number of distinctive shape
characteristics, complicating the fitting. To compensate for these issues,
further information on the positions of some anchor node are indispens-
able.

8.3.5 Localisation Assisted by Anchor Nodes

Now it is evaluated how a limited number of anchor nodes enables FLoW
to resolve ambiguous situations. For each scenario ten sets of random an-
chor nodes were chosen containing one to four anchors each. The impact
of manually selecting anchors placed at crucial positions is also evaluated,
ensuring an ideal distribution within the floor plan. Except for a better
matching, MDS does not benefit from adding anchors as it cannot be de-
formed without losing its relative node positions. Thus the presentation of
MDS results is restricted to four anchors to still enable a comparison with
FLoW. A complete overview of the results is given in Table 8.6.

In real scenarios, FLoW manifests errors within an average range of 6 %
to 9 % of the floor plan diagonal. Two examples of successful outcomes
are given in Figure 8.8. It is clear that once successfully matched, further
anchor nodes do not provide any significant benefit. Minor improvements
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Table 8.6: Impact of an increasing number of anchors (#A). The average ac-
curacy (∅Acc) is based on all available traces, each evaluated with ten different
randomly chosen anchors. ∅SelAcc denotes the average accuracy for anchors
manually selected close to the corners of the respective floor plans.

Scenario #A AccBest RelErrBest AccWorst ∅Acc ∅SelAcc

WSN P7 1 3.00 m 6.8 % 10.31 m 4.92 m 3.36 m

2 2.94 m 6.7 % 15.97 m 7.30 m 5.41 m

3 2.99 m 6.8 % 14.72 m 4.07 m 3.20 m

4 3.06 m 7.0 % 4.85 m 3.61 m 3.27 m

MDS 4 3.94 m 9.0 % 8.03 m 5.08 m 4.64 m

WSN P31 1 3.17 m 7.2 % 10.05 m 5.63 m 5.51 m

2 3.00 m 6.8 % 18.78 m 8.43 m 6.25 m

3 2.64 m 6.0 % 14.77 m 5.65 m 3.31 m

4 3.05 m 6.9 % 14.39 m 5.05 m 3.19 m

MDS 4 3.92 m 8.9 % 13.93 m 5.72 m 5.36 m

FlockLab 1 5.74 m 6.4 % 36.84 m 10.64 m 9.88 m

2 5.84 m 6.5 % 26.98 m 14.62 m 11.25 m

3 5.45 m 6.1 % 26.39 m 8.94 m 6.19 m

4 5.73 m 6.4 % 19.91 m 8.41 m 6.38 m

MDS 4 9.00 m 10.1 % 30.39 m 12.19 m 10.73 m

TWIST 1 3.19 m 9.3 % 18.29 m 6.79 m 4.78 m

2 3.16 m 9.2 % 19.21 m 4.86 m 3.84 m

3 3.12 m 9.1 % 14.44 m 5.06 m 3.82 m

4 2.91 m 8.4 % 7.81 m 4.05 m 3.86 m

MDS 4 4.21 m 12.2 % 8.65 m 5.53 m 7.14 m

S-Shape 1 16.98 m 17.2 % 53.14 m 25.56 m 18.12 m

2 16.29 m 16.5 % 24.35 m 19.95 m 39.50 m

3 17.04 m 17.3 % 34.88 m 21.50 m 15.35 m

4 14.83 m 15.0 % 21.63 m 18.22 m 12.01 m

MDS 4 19.58 m 19.9 % 44.59 m 24.23 m 22.42 m

H-Shape 1 15.72 m 18.5 % 18.41 m 16.50 m 17.07 m

2 15.39 m 18.1 % 33.01 m 22.96 m 14.38 m

3 10.84 m 12.8 % 16.70 m 15.23 m 11.65 m

4 9.53 m 11.2 % 16.42 m 14.44 m 4.90 m

MDS 4 6.58 m 7.8 % 10.14 m 8.26 m 6.82 m

Square 1 5.48 m 2.6 % 69.81 m 14.62 m 35.29 m

2 6.76 m 3.2 % 80.68 m 33.88 m 32.85 m

3 5.50 m 2.6 % 19.94 m 8.87 m 9.84 m

4 5.32 m 2.5 % 17.17 m 8.10 m 7.80 m

MDS 4 4.47 m 2.1 % 13.39 m 6.01 m 5.59 m
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Figure 8.8: Successful matching examples of the FlockLab scenario (left) and
the TWIST scenario (right).

are seen for TWIST, where the graph shape has no distinctive character-
istic. For the Square scenario, more anchors have no noticeable effect.
This can be attributed to the simpler floor plan shapes compared to the
other more complex simulated ones where an increasing number of anchors
successively reduces the error. In general, the more the shape of a floor
plan approaches a convex shape, the better a force-directed algorithm is
able to spread the graph throughout the available area. In the majority of
the scenarios, FLoW outperforms MDS already with a single anchor. MDS
performs better in the specific scenario of reference for its original evalu-
ation (Square) and otherwise only in the simulatedH-Shape for randomly
chosen anchors.

An increasing number of anchors reduces the chances of wrong graph matches,
reflected in a decreasing error in all worst cases. For the real scenarios,
three anchors are sufficient to produce correctly matched results for all of
the available data sets. Nevertheless, if chosen randomly, it is possible that
an adverse set of anchors still yields an incorrect result. Manually selected
anchor nodes, instead, provide good results with an error below the average
of a random anchor placement.

In general, scenarios with more complex shapes benefit from a deliberate
anchor choice. Figure 8.9 shows the specific case of S-Shape. The large
difference between the graph generated by FLoW having the shape of a
tube and the actual shape of the floor plan pose a challenge to the matching
part. In the middle figure, an exemplary result of an inconvenient anchor
choice is shown with a graph only occupying the right side of the floor plan.
Slightly better distributed, but still not optimal is the result depicted on the
right figure for manually selected anchors. In this case, the anchor nodes
force the graph to be stretched horizontally. The attraction force of a single
node compared to the combined force of several surrounding nodes is too
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(a) MDS Random (b) FLoW Random (c) FLoW Manual

Figure 8.9: Difference between localisations with random anchors (a/b) and
manually selected anchors (c) in the S-Shape scenario.

weak for a better distribution. Also MDS fails to address this problem,
in particular considering its inability to account for the scenario shape, as
demonstrated by the free placement of devices also outside the boundaries
of the physical map.

8.3.6 Computation Complexity

Lastly, the computation complexity of the approach is analysed for each
different step and scenario. As reported in Table 8.7, listing the computa-
tion time for different scenarios, MDS scales better than FLoW especially
in scenarios with a high connectivity where FLoW requires to perform
more computations due to an increased number of attraction forces to con-
sider. In general, the behaviour is justified by considering that the pro-
cessing executed by MDS depends exclusively on the number of nodes n
(O(n3) [p136]). The performance of the graph generation of FLoW is also
affected by the number of links l, thus impacting its scalability for more con-
nected scenarios. During the computation of forces, the position of nodes
is updated incrementally, requiring to perform a pairwise node comparison
and then to check for the existence of a corresponding link between these
two. Hence, the complexity is O(n2 l). Furthermore, because of the unfold-
ing procedure, the force-directed algorithm is applied r = ⌈log2(n)⌉ times
until the full graph is restored. Due to the reduced number of nodes, each
computation only requires a fraction of effort compared to the final one con-
taining all nodes. The total amount of considered nodes can be described
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Table 8.7: Average processing times of different computation steps for each eval-
uation scenario, performed on a single threaded i7-4550U CPU running at 2.1
GHz.

Comp.Step First Graph Matching (Map) Matching (Anchor)

Scenario \ Alg. FLoW MDS FLoW MDS FLoW MDS

WSN P7 48 ms 21 ms 3859 ms 3132 ms 1002 ms 735 ms

WSN P31 105 ms 33 ms 4328 ms 4128 ms 1571 ms 1144 ms

FlockLab 15 ms 5 ms 3460 ms 3273 ms 968 ms 871 ms

TWIST 34 ms 10 ms 2042 ms 1935 ms 1057 ms 858 ms

S-Shape 267 ms 90 ms 5664 ms 3538 ms 3061 ms 1415 ms

H-Shape 154 ms 32 ms 5918 ms 4974 ms 1790 ms 885 ms

Square 29737 ms 9829 ms 195822 ms 29079 ms 293734 ms 26691 ms

as a geometric series
∑r−1

k=0
1
2k
. As it converges to 2 for r → ∞, this re-

peated execution contributes to the complexity by at most doubling the
effort. In addition to that, during the incremental process of graph fitting,
scaling and position corrections, the algorithm is run multiple times. Since
the main focus of FLoW does not lay on scalability, but rather on a gen-
eral demonstration of the approach to perform precise localisation with a
variable amount of information, additional optimisations indeed have the
potential of reducing computation times. A link-based computation with
a concurrent update of node positions and a corresponding reorganisation
of data structure for example could decrease the computational complexity
in this case. However, the influence on the accuracy of FLoW would then
have to be further investigated as well.

8.3.7 Discussion

The evaluation has shown that FLoW can localise nodes of a network
within a given floor plan using very limited information with a relative er-
ror below 9 % for the investigated real scenarios. The main challenge resides
in translating the graph produced by the force-directed algorithm to a cor-
rect positioning within the floor plan, especially in the case of symmetric
shapes. Depending on the scenario, four reasonably placed anchor nodes
are sufficient to eliminate ambiguities.

In general, FLoW works better with floor plans having a convex shape with
less concave elements. This facilitates both matching and filling the map.
On the other hand, it also fosters ambiguities through emerging symmet-
ries, which can be resolved with anchor nodes. Furthermore, force-directed
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Table 8.8: Used metrics for estimating the model quality.

Reality

Model Link Existent
(RSSImodel ≥ RSSIminreal)

Non-Existent
(RSSImodel < RSSIminreal)

Invalid
Output

Link Existent
Real Prediction Error (RPE)

|RSSImodel −RSSIreal| False Neg. Count (False−)

False Pos. Count (False+)

Non-Existent False+Pred. Error (FPPE) Match Count (MC)

|RSSImodel − (RSSIminreal − 1)|

graphs require a single connected network without isolated nodes, where
degree and uniformity of node connectivity influence accuracy and fitting
success. Realising localisation with a lower and heterogeneous connectivity
yields a graph with a distinctive shape, easing a matching to the floor plan.
Unfortunately, increasing the connectivity removes these distinctive charac-
teristics, ending up in a fully connected circle. At the same time, a higher
connectivity reduces the positioning bias as more links disambiguate a node
position with respect to its vicinity. Less complex shapes, e.g., Flock-
Lab and Square, allow for a higher connectivity whereas more complex
ones, e.g., H-Shape, require the opposite. Indeed, the trade-offs between
the complexity of the map scenario and the network connectivity need to
be carefully analysed. This also opens interesting opportunities to further
process the connectivity information based on both the specific positioning
goals as well as the properties of the map shape at hand.

8.4 Model Validation

This section evaluates the models part of MOVE, their accuracy and ef-
fectiveness in modelling different setups. These models are then utilised by
the other contributions either by serving as foundation for Follow and
MOTION or providing simulated measurements for artificial scenarios in
FLoW.

8.4.1 Quality Estimation

Before turning to the model analysis, the applied methodology of computing
the model quality is described first. Depending on the combination of real
and predicted existence, several metrics used throughout the evaluation are
investigated and computed according to Table 8.8.
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The most important metric used in this section for determining model ac-
curacy or more precise the deviation between model prediction and reality is
the average RSSI error per link. For this purpose, the RSSI of each possible
pair of sending and receiving devices within the network is estimated by the
model (RSSImodel) and then compared to the recorded RSSI values in real-
ity (RSSIreal). To consider fluctuations and reduce the impact of possible
outliers in measurements, the average RSSI of the last 20 recorded packets
(if that many available) is taken as RSSIreal for comparison. If a link exists
in both, reality and model, the prediction error results from a subtraction
of both RSSI values. Same applies to a non-existent predicted link, where
non-existence is assumed if RSSImodel is below the lowest possible receiv-
able RSSI value (RSSIminreal) of the radio chip, which has been −95 dBm
for the CC2420 of TelosB devices. For existent links in reality, the error
between measurement and prediction is referred to as Real Prediction Er-
ror (RPE) providing a precise information on the prediction capabilities of
a model.

On the other hand, in case a link does not exist in reality, a direct compar-
ison is not possible as the reference value RSSIreal is unknown. Therefore it
is refrained from including these links when determining the average RPE
to not distort the prediction error by unconfirmed or optimistic assumptions
on non-existent links. Instead, to still cover the full set of possible links when
evaluating the model quality, non-existent links in reality are considered in
separate metrics. A partly exploitable metric yielding a non-binary error
is obtainable if the model produces a false positive (False+). To get an
estimate of the False+Prediction Error (FPPE) despite lacking the actual
theoretical signal strength is to assume it as just below RSSIminreal and thus
not getting received. Indeed, this metric is not absolutely precise, but gives
an indication of how optimistic a model computes False−. An agreement
on the non-existence of a link does not allow to extract any meaningful
non-binary information other than counting the number of these as Match
Count (MC). In the same way, false positives and false negatives (False−)
are counted in addition. Finally, invalid model outputs due to imposed lim-
itations, e.g., no ray reaches the destination within the maximum number
of effects to consider, constitute an exception and are not considered when
computing the prediction error, but are treated as a predicted non-existent
link when counting the secondary metrics.

To obtain a meaningful overall assessment regarding the quality of a model,
a Model Quality Estimation (MQE) is defined in Equation 8.7. It com-
prises accuracy metrics for both, existent and non-existent links, reflecting
the distribution of the three occurring constellations of link errors between
model and reality by weighting them accordingly. A lower value translates
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Model Quality Estimation (MQE) :=

∑#links
n=1 p(n)

#links
(8.7)

with p(n) =


RPE(n) if n existent in reality

FPPE(n) if n non-existent in reality, but in model

0 dBm if n non-existent in reality and model

Equation 8.1: Model Quality Estimation (MQE).

into a better model quality yielding more precise estimations. However,
it is clear that the MQE itself does not provide the same expressiveness
as investigating each individual metric it is composed of, but provides an
approach to combine them and assess the model in a simple way1.

8.4.2 CPU-based 2D Ray Tracing Model

The first part of the evaluation of MOVE analyses the behaviour of the
basic two-dimensional physical model PHY (Section 5.3.2) in a stationary
environment. In particular, it is focused on accuracy as well as computation
time, a metric that is considered as an index of the possibility of using the
approach in real-time applications, e.g., for path planning or network mon-
itoring. In order to perform the analysis, a machine with an Intel i7-4550U
dual-core processor with four threads, 2.1 GHz per core and 2 GB of RAM
running a 64-bit Windows 8.1 was used. To provide comparable results for
the computation time, the corresponding tests have been performed in one
single thread in a 64-bit Java virtual machine. For determining the model
accuracy, RSSI traces gathered from all available scenarios were used. In
analysing the accuracy of the models, it is accounted for the fact that the
computation of constructive and destructive interference was disabled (even
though available in the implementation) due to negative impact imposed by
inaccuracies in the model description. Further, it is refrained from integ-
rating a description of the specific radiation patterns of the target wireless
devices, whose integration in the required environment description would
make the configuration of the ray tracing engines impractical, even more
when the information needs to be provided in three dimensions.

1The metrics regarding the prediction quality of the models and their computation,
presented in this thesis differ from the ones used in [a3] and [a2]. In the latter, the
average RSSI error is computed based on all possible links of a network and thus
contains also falsely predicted and non-existent links. A more exact distinction of
the possible constellations between reality and prediction (Table 8.8) enables a more
differentiated analysis of the models. As a consequence, the presented numbers and
graphs regarding the model evaluation deviate with respect to the publications.
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8.4 Model Validation

Physical Propagation Effects

First, the main parameters involved in the computation of the PHY model
are analysed. Beside deployment specific information, e.g., transmission
power, noise level, employed radio frequency, the most relevant aspect for
both the computation time and the prediction accuracy is the combina-
tion of maximum physical effects, i.e., x transmissions, y reflections, z dif-
fractions, considered. This configuration is referred to as C(x, y, z). This
analysis serves as a base to understand the trade-offs between computation
complexity and accuracy. In this case study, the objective is to find the op-
timal configuration that minimises both the overall prediction error as well
as the individual error on the worst prediction outliers, achieving highly
accurate link estimations over a wide area.

The typical assumption is that a higher number of considered effects cor-
responds to a better accuracy at the cost of longer computation times.
In Figure 8.10, the performance of the PHY model is depicted for different
combinations of effects considered in the modelling of three scenarios, WSN
Testbed, WiFi Office and WiFi Hallway. Using a configuration with
too few effects, especially when leaving out transmissions, PHY is barely
able to predict the links existing in reality basically limiting estimations
to devices of the same room. In WiFi Hallway, no predictions can be
made at all, as the access points are located within rooms, suggesting the
usage of a sufficiently high transmission count. With an increasing number
of existing links covered by the model, the error at first increases as well.
Links of larger distance introduce the potentially largest error due to an
accumulated error over distance.

Regarding computation speed, the number of considered transmissions in
general has a limited impact but provides a substantial contribution for
the number of successfully predicted links as well as the achieved accuracy.
Necessitating further obstacle collision tests, each additional transmission
increases the number of comparisons linearly in dependency of the number
of present obstacles: O(n #obstacles). Since in PHY, the direction of a
ray is not affected when passing obstacles, each transmission computation is
independent of previous ones. In contrast, the computations of ray paths in-
cluding reflections or diffractions exhibit a dependency to previous effects on
these paths. The recursive path building resulting from the pursued aimed
approach requires to compare combinations of multiple obstacles depending
on the number of considered reflection or diffraction effects to determine
the validity of a path. Therefore reflections and diffractions have an expo-
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(a) WSN Testbed
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(b) WiFi Office
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(c) WiFi Hallway

Figure 8.10: Accuracy for different PHY configurations in WSN Testbed,
WiFi Office and WiFi Hallway scenarios. Green bars indicate the share of
existing links, PHY is able to compute under a given configuration.
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Figure 8.11: Computation time for different PHY configurations in WSN
Testbed.

nential complexity O(#obstaclesn) and affect the computation time much
more as shown in Figure 8.11. By considering one more of either effect,
the average computation time per link increases by more than one order of
magnitude.

Once PHY is able to model all existing links with a certain number of
transmissions, including one effect of reflection and diffraction increases the
accuracy significantly. The error per link is reduced by more than 3.0 dBm
for the RSSI in the WSN Testbed scenario (Figure 8.10 (a)). In the WiFi
Hallway scenario (Figure 8.10 (c)), seven transmissions alone do not cover
all links due to the complex shape of the building. Only the addition of one
reflection and diffraction allows PHY to reach all measurement positions.
In case of the WiFi Office scenario (Figure 8.10 (b)), the error remains al-
most constant when considering more effects as they are conflicting with the
body shadowing, distorting the measured RSSI values. Furthermore, more
detailed configurations result in declining improvements on the accuracy,
which can be ascribed to insignificant influences of weak signals reflected
or diffracted multiple times as well as inaccurate and incomplete environ-
mental information. Especially for the WiFi Hallway scenario where only
rudimentary information about the environment were available, this lack of
detail is reflected in a higher overall average RSSI error compared to WSN
Testbed.

As a result, C(7, 1, 1) was chosen, counting seven transmissions, one re-
flection and one diffraction, which provides a reasonable trade-off between
accuracy and computation time for all used scenarios while covering all
measured links by the model. However, as it has been experienced when
studying the reconfiguration strategies of MOTION, a minimum number
of considered transmissions is necessary, especially for achieving precise es-
timates on the existence of weak links at arbitrary positions. Moreover,
these are required to obtain reliable relocation suggestions and avoid non-
calculable links.
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Figure 8.12: Average absolute error per link in the RSSI prediction (coloured
bars) and non-existent link matches (grey bars) performed by the PHY model for
various power levels using all available scenarios.

Prediction Accuracy

Second, the accuracy of PHY is evaluated for all given scenarios using
the chosen configuration C(7, 1, 1) and having all main accuracy optimisa-
tions enabled, which are material-specific attenuation and the inclusion of
available height information. As with incorporating observations in wire-
less communication modelling, further optimisations become possible. The
effect of individual optimisations on the model accuracy is investigated in
Section 8.4.4.

In Figure 8.12 the average absolute error per link is shown for each available
scenario. RSSI error values are based on all measured existing links since
C(7, 1, 1) allows PHY to compute the entire set of existing links in all cases.
In addition, the share of non-existing links is given in which reality and
model coincide. Providing further relevant information, Table 8.9 lists the
number of links measured in reality and computed by the model including
false predictions. Due to limited access or the usage of pre-recorded traces
only, not all power levels are available in all scenarios. At higher transmis-
sion powers more links become available as stronger signals travel further
and thus involve more obstacles on their path. As a consequence, errors
resulting from coarse environment descriptions and disregarded propaga-
tion effects accumulate increasing the prediction error in general concom-
itant with a growing number of false predictions. Depending on the size
and complexity of each scenario, the method of collecting measurements as
well as the amount of details provided, the prediction accuracy remarkably
differs.

Focusing on the three most similar scenarios first, WSN Testbed, Flock-
Lab and TWIST, all of them use TelosB devices collecting measurements
without direct human involvement and therefore less distorting effects. The
WSN Testbed scenario contains the most accurate description of the en-
vironment and has average size and complexity compared to the other two
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Table 8.9: Link distribution in reality and model per link for the PHY model
using different scenarios and power levels.

Scenario Linkreal Linkmodel False+ False− Share

WSN Testbed 1560 possible links in total

Power Level 7 473 572 169 70 15.3 %

Power Level 11 622 713 172 81 16.2 %

Power Level 19 798 856 171 113 18.2 %

Power Level 31 984 1027 168 126 18.8 %

FlockLab 702 possible links in total

Power Level 7 115 134 42 23 9.3 %

Power Level 19 204 228 63 39 14.5 %

Power Level 31 262 268 67 61 18.2 %

TWIST (4th floor) 992 possible links in total

Power Level 31 797 728 42 111 15.3 %

WiFi Office 2280 possible links in total

Power Level 31 1083 1710 653 26 29.8 %

WiFi Hallway 1300 possible links in total

Power Level 31 1020 920 132 232 28.0 %

scenarios as reported in Section 8.1 and Table 8.4. In relation to node dens-
ity and number of links, the PHY model shows the best accuracy results
in this scenario. The congruence of non-existent links between reality and
model is constantly around 87 %. Considering the FlockLab scenario,
the prediction error is around 20 % higher than for the WSN Testbed
scenario as a result of the less detailed provided description of the environ-
ment. In contrast, the non-existent match share is higher due to the large
area this scenario covers in conjunction with the low density of nodes. Only
few nodes are connected having a large number of correctly predicted non-
existing links versus a small number of existing links. The opposite occurs
in the TWIST scenario having a high node density in a small area. The
likewise coarse description of the scenario is compensated by only short-
distance link computations yielding less accumulated inaccuracy and thus
resulting in an average RSSI error comparable to the WSN Testbed scen-
ario.
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Figure 8.13: Average absolute error per link in the RSSI prediction based on
device distances performed by the PHY model for the highest power level in WSN
Testbed. There are 984 existent links in total.

Observing PHY behaviour over different power levels, the increasing num-
ber of false negative predictions becomes evident as more links at larger
distance become available. Accumulated errors from unconsidered paths
due to computational limitations provide a reasonable explanation. An-
other contemplable reason, overestimated attenuation effects of obstacles
along the path due to slightly different material properties is disproved as
exclusive cause in Section 8.4.3 where the 2D GPU model uses the same at-
tenuation values but produces more accurate results due to more considered
effects. In Figure 8.13, links taken in WSN Testbed on the highest power
level 31 are grouped by the distances between sending and receiving devices.
The average RSSI error computed exclusively for links of each group shows a
remarkably increasing prediction error at larger distances starting at around
15 metres but also a nearly constant prediction error before. The red line
shows the accumulated average RSSI error up to the given distance interval
including all previous links with smaller device distances. Since the major-
ity of links lies within 15 metres, greater errors from more distant links do
not significantly contribute to the total average RSSI error.

Turning to the WiFi scenarios, both exhibit special properties which are
not modelled by PHY, i.e., occurring body shadowing and constructive
interferences, resulting in either too many false positive or negative pre-
dictions. The mentioned effect of body shadowing becomes evident in the
WiFi Office scenario reflected in a much higher number of links predicted
to be existing by the PHY model, but not observed in reality. Therefore,
the non-existent match share is the lowest of all scenarios with only 36 %.
For the prediction of existing links, the error is comparable to FlockLab
although the scenario description is more accurate as the environment ma-
terials are known. In the WiFi Hallway scenario, traces were collected
with a laptop instead of a smartphone, showing less unexpected dead links
in reality, but still the largest overall error. The tube-shaped corridors where
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Table 8.10: Average computation times per link for the PHY model used in
different scenarios.

Scenario ∅ CompTime/Link StdDeviation σ Obstacle Entries

WSN Testbed 3.21 ms 0.17 ms 214

FlockLab 1.71 ms 0.07 ms 226

TWIST 0.59 ms 0.02 ms 90

WiFi Office 0.50 ms 0.01 ms 59

WiFi Hallway 3.87 ms 0.02 ms 249

measurements were taken create constructive interferences through massive
reflections increasing the effective distance of each access point. As inter-
ferences cannot be considered properly by PHY when considering a limited
number of reflections and using imprecise descriptions of the environment,
a more accurate modelling in this scenario is prevented. This assumption
is also supported by the large number of false negative link predictions (28
%) compared to the other scenarios. Due to decoupled sender and receiver
roles, the number of measured locations in the WiFi scenarios is much
higher increasing the potential of generating bad predictions at locations
where an only coarse representation of the environment, as present in WiFi
Hallway, is particularly disadvantageous.

Scenario Computation Time

Lastly, the average computation time of the PHY model for each link is
investigated, shown in Table 8.10. Depending on the complexity of the
scenario description, i.e., the number of obstacles to consider, the time var-
ies between a half of a millisecond in the rather small scenarios, TWIST
and WiFi Office, and a few milliseconds in the larger scenarios. Although
the model representation of FlockLab contains more elements than WSN
Testbed, computation times are remarkably lower. Existing obstacles bet-
ter distribute on the large area of the former scenario, reducing their overall
density and therefore resulting in a reduced number of performed collision
checks for each link when computing the signal paths. In addition, the
squareness of most rooms and missing details, such as pillars or recesses as
present inWSN Testbed andWiFi Hallway, leave less edges to consider
for computing diffractions in FlockLab and thus save time. On the basis
of the average computation times per link, PHY is able to provide signal
predictions for entire networks consisting of hundreds of devices located in a
medium-sized, well modelled area within a few minutes. This qualifies PHY
for being employed in real-time network monitoring and optimisation tools
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as changes in the position of, e.g., mobile objects, transmitting or passive
ones, and the resulting effects on the expected signal qualities can be pre-
dicted quickly. Furthermore, the independence of each ray path on the one
hand delivers constant computation times allowing for reliable estimations
and on the other hand opens the path for further improvements through
parallelisation utilising multi-core systems, as examined in the following
section.

8.4.3 GPU-based 3D Ray Tracing Model

In this section, differences between the previously evaluated two-dimensional
PHY model running on a CPU and the enhanced three-dimensional ray
tracing model optimised for GPU execution (Section 5.3.3) are investig-
ated. Furthermore, the prediction characteristics are analysed, relevant for
further usage in Follow. To allow for a clear distinction between the
approaches, the PHY model is referenced as 2D CPU model within this
section. The computation of the ray tracing models was performed on a
machine equipped with an Intel i7-7800X with six 3.50 GHz cores and a
GeForce 1080 GTX Ti with 3584 cores. The 2D CPU model was con-
figured to account for two reflections instead of one (C(7, 2, 1)) as these
become relevant when determining possible signal paths involving dynamic
obstacles. For the GPU case, each computation cycle started with 50000
rays with a maximum of seven reflections and/or transmissions in arbitrary
combinations, resulting in up to 6.4 million rays for each round. Given
that each diffraction requires a complete new computation cycle, they were
limited to a maximum of two. The reception sphere was set to 0.1 metres.

The evaluation in this section is entirely based on traces collected from
WSN Testbed since it is the only scenario where height information of the
environment were available, necessary for meaningful predictions of signal
paths in three-dimensional modelling approaches.

2D GPU Model To analyse the differences between the ray tracing en-
gines independently of the added ability to handle full 3D descriptions of
the environment, a downsized version of the GPU-based ray tracer has been
created handling only 2D scenario descriptions. In this case, the third di-
mension is fixed and the rays propagate on a plane. This allows to spread
much more rays and increase their space density, thus increasing the space
accuracy at higher distances at the cost of missing stronger signal paths
possibly generated around obstacles detectable only through a third dimen-
sion. To make, however, the comparison between the two 2D models fair,
the height information is preserved and used a posteriori to compensate for
incorrectness in the computed path length.
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Figure 8.14: Average RPE and non-existent link matches performed by the
different CPU and GPU modelling techniques for various power levels using WSN
Testbed.
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Figure 8.15: Percentage of existent links predicted within a given RSSI
threshold.

Model Accuracy Comparison

Figure 8.14 shows the accuracy of the models for different transmission
power levels. The average error of the GPU models is relatively low if
one considers that the map has imprecisions and various real effects are
not modelled, like constructive and destructive interferences and radiation
patterns. In particular, considering that 2.4 GHz signals are analysed, the
misplacement of objects and devices of few centimetres could lead to sig-
nificant different behaviours. Still, the approach of launching rays into
all directions and considering effects at arbitrary combination used by the
GPU models provides a noticeable improvement of accuracy. In contrast,
although reducing the error even further, the extension of path computa-
tions by considering the third dimension shows less distinct improvements
than changing the ray computation method. Using 3D GPU, the average
RPE reduces between 11.4 % (0.74 dBm) on the lowest power level and
15 % (1.16 dBm) on the highest power level compared to 2D CPU. A
further analysis shows that, however, a CPU approach makes bigger errors
in predicting the links that exist while performing better for links that do
not exist in reality. The opposite applies to the GPU case. This effect is
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Figure 8.16: Error per link in the RSSI prediction performed by the different
modelling techniques for various power levels.

analysed in more details later. Figure 8.15 shows a cumulative view of the
error distribution for 2D CPU and 3D GPU computations, highlighting
how greater errors are restricted to a small percentage of links. In com-
parison, depending on the transmission power, the 2D CPU model is able
to compute around 70 % to 80 % of the existing links with an error below
10 dBm while for the 3D GPU model more than 80 % of the links are
below this error. Furthermore, different power levels follow similar trends
with a small shift due to an increasing number of existing links for higher
transmission powers.

In Figure 8.16, a further view on the accuracy is provided to display the
variation inside the set of existent links. Indeed, the 2D CPU model under-
estimates the received signal strengths of a major part of the links whereas
the predictions of both GPU models are almost equally spread. The latter
behaviour will turn out to be beneficial during event matching of Fol-
low as more possible ray paths with higher signal strength will be avail-
able. More optimistic predictions, on the other hand, manifest in increased
False+rates, making it less suitable for reliably predicting links of border
regions at unknown positions. Table 8.11 reports the different number of
links that each model predicts. Overall, all models foresee more links than
what experienced in reality, an expected result caused by the anisotropic
antenna of the devices and the absence of a corresponding radiation pattern
description in the models. This fact is clear when looking at the number
of false positives in comparison to the false negatives. To confirm the con-
jecture, the number of the former is significantly higher than the latter.
Especially the GPU models show a larger gap than 2D CPU, having a
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Table 8.11: Comparison of the number of predicted existing and non-existing
links for different power levels in the WSN Testbed scenario.

Used Model 2D CPU 2D GPU 3D GPU

Power Level 7

Linkreal 473

Linkmodel 591 765 729

False+(pred< −90 dBm) 181 (97) 326 (201) 291 (180)

False−(real< −90 dBm) 63 (33) 34 (11) 35 (17)

Power Level 11

Linkreal 622

Linkmodel 739 957 937

False+(pred< −90 dBm) 191 (107) 375 (200) 341 (188)

False−(real< −90 dBm) 74 (28) 40 (17) 26 (11)

Power Level 19

Linkreal 798

Linkmodel 910 1128 1108

False+(pred< −90 dBm) 198 (129) 369 (181) 345 (177)

False−(real< −90 dBm) 86 (33) 39 (13) 35 (17)

Power Level 31

Linkreal 985

Linkmodel 1084 1269 1230

False+(pred< −90 dBm) 193 (106) 318 (120) 291 (119)

False−(real< −90 dBm) 94 (37) 34 (15) 46 (24)

tendency of overestimating most links. However, for higher power levels,
the 2D CPU model evinces the mentioned tendency of underestimating
links by producing an increasing number of false negative predictions while
the GPU show no remarkable tendency.

Computation Time

Table 8.12 describes the average time taken to compute the model of a
wireless link. Indeed, the massive parallelisation capabilities of the graphics
card help to complete the three-dimensional computation on a GPU slightly
faster than the computation performed by a CPU in two dimensions only.
To make the comparison fair, the two-dimensional model running on the
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Table 8.12: Average computation times per link performed by the different CPU
and GPU modelling techniques using the WSN Testbed scenario.

Used Model 2D CPU 2D GPU 3D GPU

∅ CompTime / Link 12.70 ms 18.23 ms 12.29 ms

StdDeviation σ 0.40 ms 0.38 ms 0.10 ms

GPU performs the same postprocessing to include the height information
that is also computed in the CPU case. Given that such computations can
be performed only once the GPU has processed all the rays and, therefore,
are performed afterwards by the CPU, the time taken to describe a wireless
link in the 2D GPU model is the highest.

8.4.4 Statistical and Hybrid Modelling

The last models of MOVE, the STAT and HYBRID models are jointly in-
vestigated in this section, mainly focusing on the latter. MOTION bases on
the HYBRID model fusing the description of the wireless signal propaga-
tion provided by the STAT and PHY models. For the STAT model the
prediction accuracy heavily depends on both, quality and quantity of avail-
able measurements.

To provide a comprehensive analysis, three heterogeneous scenarios were
chosen characterised by varying physical properties of the environment,
types of wireless technology, as well as distribution and amount of available
measurements. For all three scenarios, WSN Testbed, WiFi Office and
WiFi Hallway (Section 8.1) data was collected or available traces were
used in order to analyse the corresponding model accuracy and effective-
ness. Relevant characteristics of these scenarios for the HYBRID model
are briefly described in the following paragraphs.

WSN Testbed Scenario Peculiar to this scenario is the sparse, reduced
number of observed locations (40) with a high number of samples (20 per
link). This provides the STAT model with reliable mean values on the
one hand and sparse resolution of the observations on the other (1 per
15 m2). Therefore, WSN Testbed is representative of scenarios with few
locations for calibration, making the HYBRID model rely mostly on the
PHY description of the environment.
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Table 8.13: Impact of optimisation features for PHY and HYBRID models on
the accuracy for WSN Testbed measurements taken on power level 19 having
a balanced ratio of 798 existing and 762 non-existing links. The HYBRID model
uses all PHY optimisations by default.

Optimisation ∅RPE ∅FPPE False+ False− Share MQE

PHY Base 5.93 7.35 405 16 27.0 % 4.94

PHY Angle Dependency 6.02 7.47 373 18 25.0 % 4.86

PHY 2.5D 5.91 7.65 414 11 27.2 % 5.05

PHY Material Attenuation 7.63 7.23 241 95 21.5 % 5.02

PHY Material + 2.5D 6.73 7.18 256 72 21.0 % 4.62

PHY All Optimisations 7.20 6.85 198 86 18.2 % 4.55

HYBRID Parameter Opt. 7.02 6.66 203 80 18.1 % 4.46

HYBRID Node Adjustment 6.93 6.76 186 82 17.2 % 4.35

HYBRID All Optimisations 6.75 6.69 188 74 16.8 % 4.26

WiFi Office Scenario As this scenario has a high density of observed loca-
tions (1 per 1 m2), the HYBRID model can base mainly on the description
provided by the STAT model. In addition, involving observations will aid
compensating for body shadowing effects implicitly included in the collected
RSSI traces, which the PHY model does not take into consideration.

WiFi Hallway Scenario In this scenario, fewer obstacles are present in the
measured area, i.e., the corridor in the middle of the building (400 m2) with
130 observed locations (1 per 3 m2), which is also where the accuracy of the
HYBRID model can be verified, favouring the STAT model. Moreover,
in contrast to the other two chosen scenarios, the representation of the
environment was solely based on a given elementary map from which it was
not possible to derive any characteristics of the building materials or the
presence of smaller but possibly relevant obstacles.

Model Optimisations

Before evaluating the HYBRID model in comparison to other models, the
effects of specific optimisations on the accuracy are investigated first. In
addition to the PHY model optimisations, the exploitation of the available
connectivity information from the deployment enables MOVE to perform
further optimisations of PHY within the HYBRID model, as mentioned in
Section 5.3.5. Table 8.13 shows the optimisation features and their impact
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on the model performance in the WSN Testbed scenario, divided into the
major metrics as well as the combined share of False+and False−on the
entirety of possible links. To demonstrate the benefit of incorporating ob-
servations for calibrating the underlying physical model, the reported values
of HYBRID base on the exclusive output of PHY, ignoring the predictions
of STAT. Goal of the optimisations is to adapt links in an individual way,
reproducing the behaviour of the signal within the environment in conform-
ity with reality and hence minimising the values of all listed metrics. Too
general adaptations, equally affecting a large portion of links will mostly
shift the relation between false positive and negative predictions, but not
reducing the overall number.

Initially, the base PHY configuration is investigated, where a different but
fixed attenuation coefficient is added for each type of effect, independent of
the material type and thickness or the incident angle of a ray. The average
RPE is comparably low, but the high number of false predictions, especially
false positives is noticeable. These are a direct consequence of too weak at-
tenuations, neglecting the signal path dynamics. Adding an angle depend-
ent attenuation factor slightly increases both prediction errors, but reduces
the false positives and thus improving the MQE. In particular, rays being
diffracted at edges are attenuated more, the larger the angle of change in
direction turns out. Therefore this optimisation rather changes predictions
in a more pessimistic way. Having height information of the environment
available, a three-dimensional postprocessing is applicable, adjusting the
signal path in two ways. First, depending on the height difference of sender
and receiver, the length of each signal path and hence the path loss are
increased in most cases. The more important second effect is the possibility
of avoiding obstacles with limited height which would have been considered
otherwise in a pure two-dimensional computation. With potentially less
obstacles on their path, predicted signals are more optimistic, reflected in
an increased false positive count and a worse MQE when considering the
2.5D computation without individual material attenuation. In fact, adding
height information to a model that inappropriately describes the material
characteristics further accentuates the starting inaccuracies. Since transmis-
sions have the most significant effect on the model accuracy, an inclusion
of material type and thickness adds the aforementioned individual changes
to specific links. As result of higher attenuations due to different material
types compared to a flat addition of a fixed value, PHY predictions be-
come less optimistic. While increasing the average prediction errors, the
total number of false predictions significantly decreases. However, the com-
bination of the latter two approaches complementing each other achieves
better results. These are yet increased by adding the angle dependency
having all optimisations enabled, further eliminating false predictions yield-
ing the best MQE. Compared to the base version, the optimised version of
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PHY has a lower accuracy but a higher precision when predicting links in
the border region of reception. This is particularly important when optim-
ising networks to, e.g., explore positions of new devices which are usually
not placed in areas where the reception is strong enough anyway.

Basing the predictions of the ray tracing component on the most optimised
version of PHY, the HYBRID model utilises available measurements of
the network connectivity allowing further calibration. The individual sender
parameter optimisation slightly improves all of the metrics. Same applies
to the device position adjustment reducing the number of outliers and high-
lighting the impact of a few centimetres on the link quality. Lastly, combin-
ing available knowledge from environment and network clearly demonstrates
the benefits. Compared to the fully optimised PHY model, all metrics are
improved when using HYBRID optimisations, improving the overall model
quality even further.

Conclusively, applying the full range of available optimisations achieves im-
proved model predictions closer to reality. Primarily, the number of false
link predictions is significantly reduced by more than 10 % in conjunction
with a decreasing average FPPE. Although the average RPE increases by
roughly 1 dBm on the other hand, the MQE still improves as the false
rate reduction has a larger impact. In most cases, reliable predictions re-
garding the general existence of links in critical border regions or an adher-
ence of thresholds are of more interest for network optimisations than exact
predictions, albeit preferable. Furthermore, due to inaccurate scenario de-
scriptions and necessary trade-offs between computation time and details,
certain errors are inevitable.

Model Accuracy Comparison

Having chosen the proper configuration for theHYBRIDmodel, the overall
accuracy and the computational effectiveness of the resulting modelling are
now evaluated in comparison to the individual models. In this section, the
same machine setup is used as for the PHY model in Section 8.4.2. As
references, the individual STAT and PHY models were used. In addition,
the commonly used log-distance path loss model [p123] is also considered,
computing the path loss according to Equation 3.1.

The path loss at reference distance d0 is set to 1 metre and the parameter γ
is trained with the same measurements used for the calibration of the STAT
and HYBRID models. It is adjusted so that the predictions best match
the given measurements with the lowest possible accumulated squared RSSI
error. To enable an evaluation of the trace-dependent models, the RSSI
traces gathered for each scenario were divided between a certain percentage
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Figure 8.17: Quality metrics and their standard deviation for different calib-
ration sets (5) of the RSSI prediction performed by the different modelling tech-
niques for various amounts of observed locations used for training.
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of observed locations used for the calibration of the models and the remain-
ing locations, whose available measurements serve as ground truth. The
accuracy is then computed as MQE, RPE and False+rate for each meas-
ured link not used for the calibration and the corresponding model output.
To ensure comparability to WiFi Hallway and WiFi Office, only the
highest power level 31 has been used in WSN Testbed.

Starting with the log-distance model first, it achieves almost similar MQE
results as the models of MOVE in WSN Testbed and even outruns them
regarding the RPE, as shown in Figure 8.17. The quality of the log-distance
model depends on the availability of measurements to find appropriate coef-
ficients specific to the environment for configuration. If not obtainable, it
performs worse as the value has to be estimated based on the type of envir-
onment the model is applied to. One reason for the good performance is the
equal distribution of devices within the scenario, providing a suitable path
loss average over all distances, qualifying the model as a good estimation for
existing links. Thus the ability of the model to generalise improves accur-
acy compared to PHY especially when not having an accurate environment
description, as seen in WiFi Hallway. On the contrary when having in-
consistent measurements, e.g., resulting from body shadowing as in WiFi
Office, it performs worse than the other models of MOVE. However, the
biggest disadvantage of the log-distance model becomes obvious when ex-
amining the False+share on the number of non-existing links. Except for
WSN Testbed with sufficient calibration data, more than 90 % of these
links are always incorrectly assumed to be existing, clearly disqualifying the
model for exploring alternative positions for devices. As this is an integral
part of MOTION, the log-distance model is an inappropriate choice for
identifying specific spots in order to optimise a network.

Now focusing on the models of MOVE, the PHY and STATmodels behave
differently in each scenario. In general, for WSN Testbed, both models
provide quite accurate average estimations per link with significantly less
False+than the log-distance model. This is particularly true for PHY,
which is provided with a more detailed map of the environment. Concern-
ing the other scenarios, STAT clearly outruns PHY. In these cases, in fact,
an overall higher density of observed locations corresponds to a better es-
timate of communication based on actual measurements. As expected, the
accuracy of PHY is independent of the number of samples used for calibra-
tion, while STAT performs worse for smaller training sets. Finally, reducing
the data points has the lowest effect on the error of the STAT model in
WiFi Hallway, since the symmetric arrangement of observed locations
in the measured areas compensates for the omission of a large number of
samples. Only when reducing the sample size to 20 % and below, areas
not covered by observations significantly increase where HYBRID relies on
PHY predictions, resulting in a worse MQE and revealing the deficiency
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Figure 8.18: Percentage of links predicted by the HYBRID model within a given
RSSI threshold using different numbers of training samples.

of the environment description. If the errors of both individual models are
compared to the error generated by HYBRID, it can be seen that the lat-
ter is always able to closely follow the best prediction performed by either
STAT or PHY. This demonstrates its general applicability in heterogen-
eous scenarios and its independence from the measurement methodology.

In Figure 8.18, the cumulative distribution of the RPE for all existing
sender-receiver pairs is reported, for different sizes of training data. Con-
firming the observations from the previous charts, the training set size has
an impact on the error per link, the more HYBRID bases its predictions
on measurements. In WiFi Hallway, this dependency becomes most sali-
ent. Due to the high number of measurement points, a reduction of training
samples down to 40 % does not significantly influence the errors for 80 % of
the links. The balanced interplay of STAT and PHY in WiFi Office res-
ults in a more steady general degradation of the prediction error when using
less samples. For the most erroneous 25 % of links, less training samples
(20 % vs. 40 %) even reduce the errors. At that point, PHY takes over
most of the predictions, providing better estimations than STAT despite
not considering body shadowing effects (cf. Figure 8.17). Lastly, consider-
ing the WSN Testbed scenario, the training set size has almost no effect
on the distribution of link errors except for insignificant fluctuations due
to the random choice of considered devices as the density of observation
points with regard to the covered area is low. Using a sufficiently large set
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Figure 8.19: Time required to compute the different models in the WiFi Hall-
way scenario. The log-distance model, barely visible, performs best in terms of
computation time

of training samples, HYBRID is able to predict 45 % to 85 % of the exist-
ing links correctly within a range of +/− 5 dBm with 80 % of the training
data. Reducing the training data to a minimum of 10 %, the rate is still at
30 % to 45 %.

Computation Time

Finally, the required computation effort is analysed. As shown in Fig-
ure 8.19, it is possible to observe the impact of the number of observed
locations used for calibration on the computation of STAT. PHY is inde-
pendent from the training set and the log-distance path loss model is ex-
tremely fast (barely visible in the figure) at the cost of a worse False+rate.
In the HYBRID approach, the computation time is driven by the different
areas in which the estimation is based either on the STAT or the PHY
component exclusively or the combination of them. As a result, the com-
putation time decreases with the number of calibration data used, until the
reduced observed locations require a bigger part of the environment to be
described by the PHY component. In contrast to PHY and STAT model
where the setup of the model is performed almost instantly and optimisa-
tions are applied during link prediction, the optimisations of HYBRID are
applied beforehand requiring an initial pre-computation phase. To find the
best configuration, parameter and node position exploration perpetually
compare predicted against measured values for different settings. There-
fore the necessary time depends on the number of effects, the underlying
PHY model considers for performing predictions. Using C(7, 1, 1), the para-
meter optimisation takes around 30 seconds, the node position optimisation
around 90 seconds to finish, scaling in the same order of magnitude as the
link computation time (Figure 8.11).
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8.4.5 Discussion

The evaluation of MOVE has revealed strengths and limitations of the dif-
ferent approaches which are now discussed. All investigated models have
demonstrated the capabilities of predicting wireless signals within few mil-
liseconds and with a reasonable accuracy, scaling with the quality of the
respective required inputs.

The accuracy of the ray tracing models depend on the level of details of
the provided descriptions of the environment. More complex and cluttered
environments will require more time to be described depending on the tar-
geted accuracy also at an additional computational cost, even more in the
case of 3D computations. Similarly, the STAT model depends on the dis-
tribution and density of provided observations. Measurement campaigns
typically require a lot of time. Nonetheless, by sacrificing accuracy, MOVE
is able to provide first estimates that can be further refined upon need by
monitoring specific areas of the environment.

Being fully adaptable to the requirements, after finding the best trade-
off between prediction accuracy and computation time with respect to the
given scenario, PHY is able to provide accurate link descriptions. The
aimed approach of PHY provides a reliable way of determining the essen-
tial ray paths between two devices. Nevertheless, exponentially increasing
computation times for each additionally considered reflection and diffrac-
tion effect limit their numbers and require simplifications to ensure a better
scaling, especially in larger scenarios with many obstacles. Thus as a con-
sequence, more complex ray paths including multiple effects, which could
potentially reduce prediction errors are neglected. Applied optimisations at
other stages of computation, like the consideration of height information or
material properties help to mitigate or counteract the potential accuracy
losses of these restrictions.

By offloading ray tracing computations to the GPU, adding a third dimen-
sion becomes realisable without increasing computation times and requiring
only minor adjustments to the environment representation. In comparison
with the 2D CPU model, the 3D GPU model in general provides more
optimistic predictions improving accuracy for existing links. Besides having
more possible ray paths to discover due to the launching approach, an-
other reason for this is the increased number of effects taken into account.
Accordingly, the availability of special GPU hardware presumed, the 3D
GPU model is an appropriate choice for modelling dense networks with
many links. However, despite the larger but yet not unlimited number of
considered rays, the launched approach bears the risk of completely missing
a destination position at larger distance although in reality a path exists.
To prevent this possibility, 3D GPU also includes a small set of aimed rays,

202



8.4 Model Validation

targeted directly or indirectly via floor or ceiling at the destination. As a
further consequence, the richness of discovered paths decreases with dis-
tance until being degraded to the basic paths at last. Therefore 3D GPU
provides a more exhaustive and resource intensive modelling solution, able
to discover further signal paths at close and medium distances, thus showing
less prediction errors for existing links than PHY.

Comparing the aimed PHY model against the launched GPU models re-
veals strengths and weaknesses of both. PHY has a higher chance to dis-
cover relevant essential paths with few effects on larger distances than the
launched GPU models. In the latter case chances degrade over distance
since the probability of initial rays hitting the right obstacles in the cor-
rect positions to reach the destination reduces with distance. However,
the consistency of path discovery of PHY over distance comes at the cost
of considering less effects as well as a higher computation time per ray.
Conversely, the GPU models contribute to a lower RPE for existing links
at closer distances due to considering more effects and thus discovering
more ray paths. Hence the fields of application for aimed and launched
approaches differ. The aimed approach of PHY is more suitable for ap-
plications where spatially independent reliability is preferable, e.g., for con-
sidering possible available links when determining new device positions, to
improve connectivity, as done in MOTION (Section 8.7). The increased
number of discovered ray paths of a launched approach can rather be ex-
ploited to, e.g., analyse the influence of certain obstacles on the quality of
links in their vicinity, as required for Follow (Section 8.6). Nevertheless,
for both ray tracing models the waiver of centimetre accuracy as well as
inaccurate environment descriptions become noticeable in larger scenarios
and at high transmission powers when dealing with increasing distances as
the prediction error generally increases. Furthermore, the irregular radi-
ation pattern of the antennas also has a considerable impact on the model
accuracy as well as the other unconsidered scenario specific characterist-
ics. The severity of the former depends on the network hardware and it
was refrained from integrating such feature into the model to maintain its
general applicability and simplicity. In Section 8.5.1 the effects of radio an-
tenna and transceiver on the predictions of MOVE are further investigated.
Other irregularities related to certain scenarios, such as the distortions of
body shadowing in the measurements of WiFi Office are required to be
compensated or tolerated at the cost of accuracy.

The evaluation has shown that the HYBRID model is able to fairly accur-
ately predict link qualities when considering nodes at unknown positions.
The weighted combination of PHY and STAT models allows to achieve an
estimation accuracy close to the most accurate of both at a low computa-
tional cost. Provided measurements offer the possibility of compensating
local inaccuracies of PHY resulting from coarse environment descriptions,
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enabling two optional approaches for improving the prediction accuracy of
the HYBRID model. This flexibility increases the number of potential ap-
plication scenarios independent of which information are available. Besides
improving the overall MQE, exploiting these synergies of combining en-
vironment description and observations, especially the adjustment of node
positions, also underlines the importance of a precise positioning of devices
and obstacles for the physical models. Minimal adjustments of device posi-
tions in the environment model already improve the predictions noticeably
and furthermore demonstrate the actual capabilities of PHY.

With four different types of models, MOVE provides suitable solutions
for a wide range of scenarios. Available information, either in the form of
measurements, taken directly from a network, a provided description of an
environment or both, is exploited in an optimal way to enable best possible
and accurate predictions of network communication. Utilising these models
then facilitates the acquisition of further network knowledge by associating
their output with additional sources of information or ultimately optimise
network properties by translating into physical reconfigurations.

MOVE models communication based on the information gathered at a spe-
cific point in time. As the environment changes, the models require updated
physical maps and new measurements. Nevertheless, measurements can be
taken during the system operation to detect significant deviations from the
model estimations and used to restore the accuracy at least in the surround-
ing of the observed locations. With only up to few milliseconds per link, all
models of MOVE show acceptable computation times allowing to estimate
links and re-calibrate the models online.

8.5 Heterogeneous Device Setup

In this section, the impact of different hardware on the network behaviour
is investigated with regard to the predictions of MOVE. The other con-
ducted experiments in this evaluation using WSN Testbed are based on
TelosB devices [p120] exchanging data wirelessly on the 2.4 GHz frequency
using an inverted F antenna printed on the board. To evaluate the applic-
ability of the models using different configurations, comprising hardware as
well as transmission frequency, the TelosB devices of WSN Testbed have
been replaced with OpenMoteB devices [m12] to perform the experiments
presented in this section.
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In order to ensure best possible comparability between configurations, num-
ber and positions of devices remained unchanged. Unfortunately, the pos-
ition of a few shelves and lockers has changed over time generating minor
differences between both environments which have been compensated by
adapting the description accordingly. Similarly to Section 5.3.2, C(7, 2, 1)
is used as PHY configuration for the evaluations reported in this section.
Because of a defective radio chip, experiments with the OpenMoteB devices
have been performed with 39 devices in total. This device has been retro-
spectively removed in TelosB measurements as well. As the number of links
on the same power level remarkably differs depending on the radio, a dir-
ect comparison is difficult. Thus, when comparing two measurements from
different radios, packets received due to a more sensitive radio were filtered
so that both measurements only contain those in the same range of RSSI
values. The following sections compare and analyse the influences of two
main factors, antenna and frequency on the model prediction accuracy.

The proposed STAT model reproduces and interpolates predictions based
on the RSSI measurements, which are used as input. Beyond that, differ-
ent communication properties of utilised devices, ultimately providing RSSI
values, do not necessitate any further adaptations since STAT abstracts
from such details and does not require any information related to physical
signal propagation. Thus, the investigation of changes in communication
properties are only of interest with respect to those models of MOVE, in-
cluding such information. Accordingly, the following evaluations confine to
investigate the effect of changing communication properties on the PHY
model.

8.5.1 Radiation Pattern

Having worked with TelosB nodes over several years, certain hardware-
specific properties have been identified and investigated. As already in-
dicated in Section 8.7.3, especially the irregular radiation pattern of the
printed F antennas [p74] has a significant impact on the prediction quality
[p143]. Experience has shown that not modelling this property for the sake
of general applicability and simplicity introduced prediction errors affecting
the obtained results to the disadvantage of the used approaches. Giving two
experienced examples demonstrating the impact of using printed F anten-
nas, the devices 2 and 3 respectively 14 and 15 (cf. Figure 8.2) were unable
to communicate directly on lower power levels despite line of sight and a
distance of just a few metres. As their antennas lay exactly on the same
plane, blind spots prevented communication, whereas models predicted an
expected reception. As a consequence, an elimination of these exacerbat-
ing factors would expectedly reduce the prediction errors of the underlying

205



8 Evaluation

 0

 2

 4

 6

 8

 10

Telos OpenMote Telos OpenMote Telos OpenMote Telos OpenMote
 0

 0.5

 1

Pw7 Pw11 Pw19 Pw31

Ø
 R

P
E
 /

 L
in

k 
(d

B
m

)

N
o
n
-E

x
is

te
n
t 

Li
n
ks

 M
a
tc

h
e
d

Figure 8.20: Comparison of PHY average RSSI prediction errors for 2.4 GHz
WSN Testbed measurements on different power levels using both TelosB devices
with printed F antennas and OpenMoteB devices with external dipole antennas.

models and accordingly improve the quality of results. The external dipole
antennas of the OpenMoteB devices emit a signal in a more uniform way
closing the reception holes of the TelosB and thus leading to a more predict-
able signal behaviour closer to the model output. Due to similar transceiver
characteristics, measurements of OpenMoteB devices on the 2.4 GHz fre-
quency reported in this section have been recorded using the CC2538 radio.
In addition, links of the OpenMoteB CC2538 radio evincing RSSI values be-
low the reception capabilities of the TelosB CC2420 radio have been filtered
out, ensuring a fair comparison between both device types having the same
network size and reception preconditions.

Figure 8.20 compares PHY model predictions against both TelosB and
OpenMoteB measurements on four different power levels confirming the
change of the latter measurements closer towards the PHY predictions.
At all power levels, taking the OpenMoteB measurements as a basis, the
prediction error is constantly lower than for the TelosB measurements. Dif-
ferences in average errors vary between 0.8 dBm and 1.7 dBm, increasing
for higher power levels, demonstrating more reliable links with less bias at
larger distances when using external antennas. Likewise, non-existent links
are matched proportionately more often. As the model predictions for both
devices are almost identical except for a few links due to minor differences in
the environment description, this match improvement is mostly related to a
greater number of existing links, OpenMoteB devices are able to establish.
In absolute numbers, there are even less matches for OpenMoteB, but also
fewer non-existent links at all.

The influence of aforementioned larger reception distances on the prediction
error is investigated in the following. Thereto, recorded existing links are
assigned to sets, containing links from devices with their physical distance
lying within a certain range. The number of links for each set is shown in
Figure 8.21 (a). Especially for lower power levels, the difference in the num-
ber of existent links at medium distance become obvious. Within this range,
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Figure 8.21: Comparison of measured links and PHY average RSSI prediction
errors between TelosB and OpenMoteB devices based on device distances using
WSN Testbed on power level 7.

Table 8.14: Comparison of existent link statistics between TelosB and Open-
MoteB devices, recorded on power level 7.

Device

Links
Total

∅ RPE/
Link

Common
∅ RPE/
Link

Exclusive
∅ RPE/
Link

TelosB 449 6.81 dBm 364 6.32 dBm 85 8.92 dBm

OpenMoteB 534 6.20 dBm 5.70 dBm 170 7.26 dBm

OpenMoteB devices are able to establish additional 80 links compared to
the TelosB devices. For each of these sets, the prediction error is then com-
puted separately, reported in Figure 8.21 (b). Investigating the sets of links
at larger distances, the results likewise show an increasing prediction error,
except for the largest distance interval, which however only contains three
(TelosB) or four (OpenMoteB) links, respectively. Throughout all distance
intervals, the measured link qualities of OpenMoteB devices better match
PHY predictions than the ones measured with TelosB devices.

Table 8.14 compares the existing links from both measurements and divides
them into a common set of links, which existed in both cases and a set of
links exclusive to one of the two measurements. Only more than half (59 %)
of the total observations on existing links are shared by both measurements,
highlighting the significant variation in receiving signals from surrounding
devices, caused by the influence of radiation patterns on the observed links.
Common links show better predictability by the model than the disjoint
ones which contribute a remarkably greater error to the overall accuracy. As
already stated, links at larger distances become less foreseeable, especially
with unconsidered antenna properties as reflected in an even greater error
for TelosB devices.
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8.5.2 Frequency

To satisfy the demand for simultaneous communication of wireless devices,
utilising multiple frequencies is one option among others to achieve this
goal. Additionally, exploiting their distinct properties in interaction with
obstacles, using multiple frequencies can be beneficial for bypassing areas
exhibiting strong attenuations to a certain frequency band only. In this sec-
tion, the capabilities of the PHY ray tracing model to predict signal quality
in the Sub-GHz frequency band are evaluated and necessary adaptations
shown to achieve acceptable errors. As the AT86RF215 radio has signific-
antly different characteristics than the CC radio family, values reported in
this section are based on Sub-GHz (868 MHz) and 2.4 GHz measurements
taken from the former radio only to maximise comparability.

As a consequence of using different frequency bands, the model paramet-
ers have to be adapted accordingly. Especially the signal attenuation of
obstacles is an important factor for precise estimations. In general, lower
frequencies penetrate obstacles with less signal loss than higher ones [p144]
and therefore also achieve larger transmission distances in obstructed envir-
onments at the cost of lower data transmission rates.

Staying in line with the principle of applying plain and general approaches,
it is investigated how a common adaptation of the existing material atten-
uation values for 2.4 GHz to the Sub-GHz frequency affect the prediction
accuracy of PHY to analyse the transferability of the modelling approach
to other frequencies. Instead of manually adjusting each attenuation factor
individually for each material, which would be required when modelling dif-
ferent frequencies, existing values for 2.4 GHz are multiplied by a correction
factor depending on the frequency. Moreover, this enables an automated
adaptation when measurements on the target frequency are available. As
a drawback, implicit errors arising from imprecise attenuation values have
to be tolerated. Figure 8.22 shows several metrics of PHY when experi-
menting with different attenuation coefficients on various power levels using
868 MHz measurements. According to the average RPE of Figure 8.22 (a),
an attenuation coefficient of 0.6 leads to best predictions, slightly differing
between the four shown power levels. Similar to measurements using the
2.4 GHz frequency, higher power levels show greater prediction errors due
to the growing influence of an increasing amount of large distance links
which are more difficult to predict accurately. Since the error bases on ex-
istent links only, false positive predictions and their possible error do not
affect this value. Taking false model predictions into account, as reported
in Figure 8.22 (b), albeit decreasing compared to lower attenuation coeffi-
cients, the still large number of false positives at a coefficient of 0.6 becomes
obvious, especially for the lower power levels. Emphasised by a very low
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Figure 8.22: Quality metrics for Sub-GHz WSN Testbed predictions with
varying attenuation coefficients on different power levels using PHY with
C(7, 2, 1)

amount of false negatives, the model output can be regarded as still too
optimistic. This is supported by the FPPE, depicted in Figure 8.22 (c),
showing a substantial error for incorrectly assumed existing links per se,
naturally decreasing as the assumed material attenuation increases and the
false positive count decreases.

Considering the model behaviour from an optimisation perspective, choos-
ing too high obstacle attenuation values result in pessimistic predictions
and increase the number of false negatives, i.e., missing valuable links when
planning alternative device positions for optimisation. On the other side,
relying on too optimistic predictions could lead to worse network perform-
ance by depending on unreliable links in reality. Thus the goal is to find an
optimal balance, taking all relevant quality metrics into account. Using the
MQE, shown in Figure 8.22 (d), this is achieved for all power levels when
using a coefficient of 0.7, showing the lowest count of false predictions while
still being close to the smallest prediction error among the existing links.

Having chosen the most suitable attenuation coefficient, now the differences
between Sub-GHz and 2.4 GHz PHY predictions are analysed. Figure 8.23
compares both measurements of the AT86RF215 radio on different power
levels. As the receiver sensitivity is much higher, links are established at
larger distances compared to the CC radios. Accordingly, the prediction
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Figure 8.23: Comparison of PHY average RSSI prediction errors for Sub-
GHz and 2.4 GHz WSN Testbed measurements on different power levels using
OpenMoteB AT86RF215 radios.

Table 8.15: Comparison of existent link statistics of OpenMoteB devices, using
the AT86RF215 radios sending at 2.4 GHz and Sub-GHz on power level 7.

Device

Links
Total

∅ RPE/
Link

Common
∅ RPE/
Link

Exclusive
∅ RPE/
Link

2.4 GHz 808 6.29 dBm 723 6.22 dBm 85 6.89 dBm

Sub-GHz 958 8.38 dBm 8.08 dBm 235 9.33 dBm

error for 2.4 GHz on lower power levels is already greater than for the other
radios. On the highest evaluated power level 31, 85 % of all possible links
of WSN Testbed actually exist when sending at 2.4 GHz and even more,
94 %, when using Sub-GHz communication, almost covering the complete
area. Therefore the reported RPE value is an appropriate overall indicator
of PHY accuracy for the entire scenario. Comparing both frequencies, there
are two obvious possible reasons explaining the increased error on the Sub-
GHz band. On the one hand there is a further increase in range through the
lower frequency and on the other hand aforementioned errors resulting from
not using individual obstacle attenuation values. Figure 8.24 (a) depicts the
large increase of links at medium distance as well as the availability of a
few links at large distance on the Sub-GHz frequency even on low power
levels. These large distance links also evince the greatest error, as shown in
Figure 8.24 (b), but only contribute to the overall error in a negligible way
due to their small number. However, if restricting the RPE computations
exclusively to links established at both frequencies, shown in Table 8.15,
the resulting prediction accuracy of PHY decreases by almost 2 dbm (30
%). The greater average error can be observed throughout all links, indic-
ating the undifferentiated adaptation of attenuations as the most probable
reason.
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Figure 8.24: Comparison of measured links and PHY average RSSI prediction
errors for Sub-GHz and 2.4 GHz WSN Testbed measurements based on device
distances using OpenMoteB AT86RF215 radios on power level 7.

The evaluation in this section has shown the capability of PHY modelling
different frequencies by utilising existing knowledge from the 2.4 GHz band.
Even though certain materials show a completely different attenuation be-
haviour on lower signal frequencies, a general adaptation of all coefficients is
possible, although entailing remarkable losses in the prediction accuracy.

8.5.3 Discussion

This section has investigated the effect of using different devices and config-
urations on the prediction accuracy of MOVE. By conducting all experi-
ments at the same device locations of WSN Testbed, replacing the devices
on the spot, other disruptive factors related to site-specific effects could be
minimised, enabling to focus on the comparison of device properties and
configurations. Hence measured values of both device setups are compared
to predictions of PHY utilising almost identical scenario descriptions and
thus sharing the same underlying inaccuracies in both cases.

The investigation has highlighted a significant influence of an irregular ra-
diation pattern on the measurements. Eliminating this distortion by using
isotropic external antennas, the observations adhere closer to the model
predictions. As the radiation pattern of each antenna type is unique and
complex to model, a consideration would inevitably complicate the envir-
onment description as well. In addition, the exact antenna direction of
each device would be required to achieve best possible prediction accuracy,
leaving such sophisticated realisation infeasible. Yet, to stay in line with
the goal of simplicity, assuming an isotropic signal propagation is the only
reasonable option, even though the introduced pattern-related error has to
be accepted in that case.
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Furthermore, applying PHY to model communication on different frequen-
cies is possible without providing additional details and utilising existing
knowledge instead. However, this comes at the cost of reduced accuracy as
the applied knowledge does not necessarily fit the scenario without restric-
tions. On the other side, it also paves the way for realising an automated
approach with minimal user intervention to obtain first estimates of any
scenario in a practical time leaving the contribution of additional informa-
tion as option to refine predictions when required.

8.6 Understanding Changes in the Environment

In this section, it is experimented with Follow in an indoor scenario.
The performance of each modelling approach is analysed and the ability in
matching wireless changes to their cause.

8.6.1 Methodology

The evaluation of Follow bases on the experience in the group’s indoor
WSN Testbed made of 40 low-power 2.4 GHz wireless TelosB devices
[p120]. As already stated, this platform has well-known radio propagation
irregularities that have a significant impact on system behaviour. Given that
the models discard the description of such irregular patterns in order to keep
the approach practical, this choice poses interesting challenges to this work.
The scenario and the location of the devices are shown in Figure 8.2.

Being the area completely under control, it was possible to experiment with
different events in a systematic way without interference. In particular,
the impact of opening or closing doors and windows could be analysed in
a quiet environment without people. During the experiments, the devices
were scheduled to perform RSSI measurements according to a transmission
scheme avoiding collisions along different transmission powers. Focusing the
evaluation on investigating the capabilities of MOVE to identify the links
affected by an event and perform the matching against the actual observed
changes without distortions, traces were recorded separately before and after
performing changes to the environment. Thus, pre and post-event state
detections on the link-level are forestalled, which would otherwise become
necessary in an online monitoring approach.
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Figure 8.25: Map of the investigated obstacles (doors, windows and an elevator)
and the minimum transmission power of correct assignment to the corresponding
measurements using all 40 nodes on varying power levels, as computed through
the use of the 3D GPU model. The colours denote successful assignments of
obstacles beginning at a certain transmission power level as more links become
available.

8.6.2 Matching Changing Wireless Properties

Now it is analysed to what extent the wireless communication descriptions
are able to reveal information of real systems. This evaluation offers a
specific usage scenario as an example of the more general applicability. It
was experimented with 23 different obstacles, whose state could be changed,
and different power levels were measured as done in the previous analysis of
MOVE. In particular, various doors and windows were considered and their
state changed by opening and closing them. Similarly, the impact caused
by the elevator was investigated when present or absent at the testbed floor.
A map of WSN Testbed including type, position and power level of the
first successful matching is depicted in Figure 8.25. Most of the doors and
windows have adjacent devices, allowing to study if they are essential for
the matching. Furthermore, in the upper left area, a more fine grained set
of windows was chosen to evaluate the ability of the solution to distinguish
among close events sharing most links.
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Table 8.16: Number of events matched correctly against an obstacle for different
models and power levels. On the weakest transmission power, 2 out of 23 events
were not reflected in any link change and resulted therefore invisible. In the
corresponding matching percentages, these links were excluded.

Used Model 2D CPU 2D GPU 3D GPU

Power Level 7 (only 21 events visible)

Correct Matches 12 12 13

Percentage 57 % 57 % 62%

Power Level 11

Correct Matches 15 14 17

Percentage 65 % 61 % 74 %

Power Level 19

Correct Matches 16 19 21

Percentage 70 % 83 % 91 %

Power Level 31

Correct Matches 20 20 21

Percentage 87 % 87 % 91 %

Model Cluster Matching

After taking a base RSSI measurement in an empty environment with all
doors and windows closed and the elevator absent, the state of the differ-
ent obstacles was changed one after the other while recording further RSSI
samples. Afterwards, the data was processed as described in Section 6.3
with the aforementioned exception of pre and post-event state detection
due to a prior separation of these phases. Through the computation of
the different models in the various possible object states, the sets of links
that should be influenced by each object are determined. Then, the 23
complete measurement sets corresponding to the different changes are com-
pared against the base measurement set to obtain the reference clusters of
relevant links that have manifested a significant variation. These clusters
serve as input for the matching algorithm to compare reality against the
model predictions.

The results of the matching algorithm are listed in Table 8.16. The first
evident result is that an increasing transmission power corresponds to a
steady increase in the amount of correct matches. At the lowest trans-
mission power only half of the changes find a correct match through the
observations and two events are completely invisible as no variations have
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Figure 8.26: Consequences of removing a single node on the number of correctly
matched obstacles for the highest transmission power.

been observed on any link. This problem disappears for higher transmis-
sion powers, since the number of links increases both in reality as well as in
the models, effectively offering a richer set of information to exploit. With
higher transmission powers, links increase their RSSI values and become
stronger, better exposing changes in correspondence to environmental dy-
namics. In general, more connectivity is beneficial as it reduces the possible
holes in the communication map caused by distant nodes in sparse regions.
However, it must be taken into account that new links might disturb the
matching, deviating the decision towards alternative obstacles. This can
happen in particular if a ray to an obstacle should exist according to the
model but it is not significantly affected in reality.

Before going into further details of the impact of specific nodes on the
matching accuracy, it can be observed that events with a high Jaccard sim-
ilarity coefficient are more robust to the changes in the number of available
links. At the centre of the environment, however, where more links are
present, events happening are harder to match correctly. The Jaccard coef-
ficient itself also presents limitations as a link match in a set with more links
counts less for the coefficient. Finally, describing the correct communica-
tion frequency has a significant impact as well. In this study, moving the
model from 2400 MHz to 2481 MHz (corresponding to the actual frequency
of the measurements gathered from the testbed) made the 3D GPU model
correctly match the changes caused by the elevator.
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Figure 8.27: Consequences of removing either node 4 or 33 from the measure-
ment on the matching using the 3D GPU model. For visual clarity, nodes 3,4,6
and 7 have been moved downwards from their original position next to the win-
dows.

Influence of Individual Nodes

Now the relevance of each individual node in matching the correct events
happening in the environment is analysed. In Figure 8.26, the difference in
the number of correct matching is reported when one node is removed from
the deployment. In general, it is possible to observe that the GPU-based
modelling is more robust to the presence or absence of individual nodes.
This behaviour can be justified by the fact that the CPU employs an aimed-
approach where rays are targeted through obstacles towards a destination
(the receiver), only through exclusive reflections or diffractions, without
exploring their possible combinations. On the other side, instead, the GPU
explores more possibilities by spreading rays equally in all directions and
considering the combination of multiple effects together. From these results,
it is also apparent, that specific nodes can contribute significantly to the
matching, in particular node 4 and 33 in this case.
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Figure 8.27 depicts the specific events that node 4 and 33 contribute to
detect when present or absent. Node 4 is a crucial node due to the high
density of observable events in its surrounding with 5 windows and 2 doors
close to it. Moreover, it lies on a line with many other nodes close to the
set of windows and is essential to distinguish between different windows.
Without node 4, in fact, the other links, e.g., between 3 and 6, would span
at least 3 windows, making it harder to differentiate between them. Node
33 presents similar conditions since its links cross multiple adjacent doors.
Without such node, indeed, these doors cannot be differentiated by the
remaining links that would inevitable cross both.

8.6.3 Discussion

Follow has demonstrated the ability of assigning events to their cause by
employing a ray tracing model identifying relevant links based on a descrip-
tion of the environment and interrelate them with observations from real-
ity. With an increasing transmission power and consequently also increas-
ing number of links affected by the obstacles present in the environment,
the matching accuracy can be successively improved up to 91 % of correct
matches. Furthermore, the differences between aimed and launched ray tra-
cing approaches have been revealed, favouring the latter due to its ability
to discover more individual and relevant paths, especially at closer link dis-
tances, which are of most importance to identify the obstacles. Achieving
the highest matching accuracy, however, requires the appropriate hardware
to run the 3D GPU model. Nevertheless, the less computationally in-
tensive, but also less exploitable aimed 2D CPU model, in terms of path
quantity, provides comparable results as well, especially at higher transmis-
sion powers.

Investigating the complexity of the performed computations and their cor-
responding scalability, the approach can be divided into two phases. The
first, most computationally intensive step in the presented solution involves
the identification of the sets of links impacting each obstacle. At this stage,
the ray tracing model is employed, whose computational complexity is af-
fected by the details of the environment as these can increase the number of
comparisons needed to evaluate the ray paths. Similarly, more nodes result
in a quadratic grow of links that need to be investigated.

An appropriate filtering based on the environment properties can speed up
these computation times. It is, however, worth noting that these factors
affect the complexity of a first step that needs to be computed only at
the very beginning. In the case of new or relocated nodes, exclusively the
associated links and ray paths need to be recomputed, favouring scalability
after the initial setup.
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The second phase identifies correlated link changes among links as well as
within rooms in comparison to the sets identified in the first stage. The
corresponding computational effort increases linearly with each link, room,
and comparison set, limiting its impact on scalability for bigger networks
or more complex scenarios.

As it is refrained from requiring centimetre accuracy, Follow is limited to
reliably predict link changes, but not to quantify their actual change. For
this reason, the approach is able to identify that an object has changed its
status but not to distinguish between subtle changes in an obstacle state,
e.g., the degree at which a door is open. This requires more accurate de-
scription of the environments and a supervised placement of nodes in an
area. The same applies to the distinction among changes to objects spatially
close to each other. Only the use of more detailed maps and a constrained
positioning of devices would allow to address such limitations.

8.7 Network Optimisation

In this section, the attention is turned to the implementation and evaluation
of MOTION. Using theHYBRIDmodel as basis, the ability of MOTION
to support network optimisation is studied. Afterwards, the limitations of
this approach are discussed.

The evaluated accuracy of theHYBRIDmodel has an impact on its support
for effective network optimisation. Therefore the effect of node relocation
strategies is analysed, as introduced in Section 7.3, on network metrics
as well as their potential, indirect benefit on the application performance.
WSN Testbed is used as scenario for these tests, where devices could be
freely relocated and reprogrammed with two different applications. At first,
a monitoring application monitors the network connectivity by scheduling
the transmission of beacons to avoid collisions and logging their reception.
Together with the corresponding RSSI information, these traces describe
the current network state and serve also as training data for the HYBRID
model. Based on this information, the reconfiguration strategy is computed
and the devices are relocated accordingly. In the specific instantiation of
the strategy, nodes were allowed to be relocated only in the same room and
at least 1 metre from another device used by the application; a decrease of
quality of maximum 60 % of the absolute RSSI difference from the noise
floor was allowed and differentiated between good and weak links with a
−90 dBm threshold (Table 7.1). Two strategies are evaluated with the
goals of either increasing the individual node connectivity or decreasing the
network diameter.
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Figure 8.28: Map of the selected nodes and relocation positions for the node
connectivity optimisation analysis. For reasons of clarity, all other nodes of the
deployment are not shown.

8.7.1 Network Metric Improvements

At first, a strategy is computed that ranks the expected improvement of
connectivity for each node in the network at the possible relocation po-
sitions. Based on this information, the nodes with the highest foreseen
benefit were selected for relocation. The chosen positions are depicted in
Figure 8.28 and the corresponding results are shown in Table 8.17. Cal
indicates the connectivity state of node n in its original position, when the
trace used for the calibration of the model was taken. Pred denotes the
predicted behaviour of the node relocated in its new position. It is referred
to the corresponding, measured real network behaviour with the physical
relocation of the device as Rel.

The results show that the HYBRID model is able to provide a correct es-
timation of good links for the given nodes at the indicated positions and
thus allows to increase their connectivity. However, further weak links are
also present at the target positions. These are in general hard to predict
precisely in the border region of reception due to both the inherent inac-
curacy of the model and hardware factors, e.g., the anisotropic antenna of
the tested devices. The combination of these factors leads to the occur-
rence of unforeseen links, especially for nodes located in the center of the
network, as depicted for nodes 11 and 12. Accordingly, the real RSSI value
is often worse than the predicted one, since the model is not always able to
detect all of these weak links for each position. If most of the weak links
have been considered and thus avoided when choosing a position for relo-
cation, prediction and reality match closely, as for node 26. Nonetheless,
the evaluation demonstrates that MOTION is able to improve the node
connectivity, complying with the optimisation goal.
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Table 8.17: Node connectivity in reality before and after relocation and predicted
by the HYBRID model. Since the model assumes symmetric links and isotropic
antennas, the prediction is the same for both directions.

Links to Node n Links from Node n

∅RSSI Links+ Links- ∅RSSI Links+ Links-

Cal n=2 −78.65 dBm 6 0 −78.54 dBm 6 0

Pred −76.25 dBm 8 0

Rel −80.02 dBm 9 0 −80.87 dBm 8 1

Cal n=3 −78.93 dBm 5 0 −76.42 dBm 5 0

Pred −75.94 dBm 8 0

Rel −79.60 dBm 8 1 −78.08 dBm 9 0

Cal n=4 −80.00 dBm 8 1 −79.52 dBm 8 1

Pred −78.48 dBm 10 0

Rel −79.01 dBm 8 2 −76.89 dBm 9 0

Cal n=11 −85.66 dBm 5 5 −84.38 dBm 9 2

Pred −80.10 dBm 12 0

Rel −86.63 dBm 11 6 −84.80 dBm 15 2

Cal n=12 −83.99 dBm 5 4 −81.01 dBm 5 2

Pred −78.90 dBm 11 0

Rel −84.91 dBm 12 5 −83.30 dBm 13 2

Cal n=22 −78.26 dBm 8 2 −79.16 dBm 8 2

Pred −73.65 dBm 9 0

Rel −80.02 dBm 9 1 −80.26 dBm 10 1

Cal n=26 −83.62 dBm 7 1 −82.16 dBm 8 0

Pred −73.54 dBm 8 0

Rel −73.76 dBm 8 0 −75.41 dBm 8 1
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Figure 8.29: Map of the selected nodes and positions for the optimisation of
the network diameter. Blue lines denote the shortest paths from each node to
the sink (node 31), green lines indicate newly created links after relocating the
correspondent node to the given position.

8.7.2 Application Metric Improvements

In the second step, it was experimented with the optimisation strategy
aiming at reducing the network diameter. Such strategy can be beneficial, in
particular, for traditional applications gathering data at a sink. To analyse
such impact, a default data collection application based on the Collection
Tree Protocol (CTP) [p53] is used. For each node, this protocol determines
the path to the sink which has the lowest costs with respect to a certain
metric. In [p53], the route with the lowest count of expected transmissions
(ETX) to the sink is chosen. By regularly advertising ETX information
regarding a node’s current optimal path to other nodes in transmission
range, the entire routing tree can be established and updated successively
in case of topological changes.

After multiple experiments, monitoring the states of the devices and track-
ing the transmissions of packets, three application metrics were computed,
i.e., throughput, latency and radio-on time (as an index of lifetime). This
application is executed on a subset of twelve nodes with node 31 as sink,
as depicted in Figure 8.29, spanning the routing tree denoted by the blue
lines. The setup (named Base) covers the whole floor with at least one
node per office or lab. With Reln, a setup is denoted in which node n was
relocated. The effects of these relocations on the application metrics are
shown in Figure 8.30.
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Figure 8.30: CTP application metrics behaviour for different network configur-
ations, reducing the diameter of the network by relocating single nodes.

Starting with the two leaf nodes 3 and 9 of the CTP tree, their relocation
has only minor impact on throughput and radio-on time, but shows a no-
ticeable improvement in latency since these nodes have the longest path to
the sink with 5 respectively 4 hops. A shorter path, as shown in Figure 8.29,
reduces the average latency either by 11.4 % or 7.2 %. Due to the beneficial
impact on several data paths, relocating node 10 shows the most significant
improvement for all metrics. The throughput changes from 93.9 % to 96.9
%, the average latency of 523 ms to 411 ms (corresponding to a decrease of
21.4 %) and the radio-on time from 39.8 % to 38.6 %. These results show
that MOTION is able to improve the application performance by properly
manipulating the underlying network without using dedicated knowledge.

8.7.3 Discussion

The evaluation of MOTION has shown that relocating specific nodes ac-
cording to the estimations given by the HYBRID model result in an actual
improvement of connectivity towards the predicted number of links demon-
strating the applicability of MOVE for optimising networks. However, as
the irregular radiation pattern of the antennas may have a considerable im-
pact on the model accuracy, this problem is also carried over to deployment
or relocation. Nonetheless, it is possible to rotate the device in situ and
monitor the resulting links to identify the orientation best matching the
model estimations.

In any case, it has been experienced that also small changes in the envir-
onment (in this case, few metallic closets and the presence/absence of the
elevator) can have a considerable impact on the network topology and the
system behaviour. This underlines the relevance and challenge of modelling
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the environment appropriately in order to design and deploy a system able
to match the user needs in the operational environment. When substantial
changes are experienced, maintenance procedures can employ MOTION
to detect deviations and reconfigure the system accordingly.

Finally, MOTION is able to support network optimisation at an applic-
ation level and change the physical network topology according to spe-
cific metrics. However, the aim to perform optimisation in an application-
agnostic manner limited the potential benefits. Indeed, by exploiting direct
application metrics and knowledge, it becomes possible to identify reloca-
tion strategies tailored to the specific application requirements.

8.8 Summary

The evaluation of this thesis comprises four main parts, related to the con-
tributions presented in Section 1.3. Before going into the details of each
contribution, the scenarios are introduced, in which the experiments of this
evaluation have been performed. Each scenario has unique characterist-
ics, providing variety in size, structural details and hardware equipment to
demonstrate the versatile applicability of the presented approaches. In the
following section, the used hardware as well as the organisation of measure-
ments are explained. Two devices used for most of the evaluations, TelosB
and OpenMoteB, are compared regarding their relevant radio communica-
tion properties, such as the frequency, receiver sensitivity and the utilised
antennas. Furthermore, RSSI measurements were performed at four linearly
increasing transmission power levels to assess links in varying numbers and
at different distances.

FLoW

Initially, FLoW and its capability of localising devices based on sparse
amounts of information are evaluated. In addition to three real-world scen-
arios, three artificial setups with specific features are identified constituting
a challenge for FLoW, e.g., large networks or unfavourable floor plans.

Connectivity Information At first, the physical localisation is performed
exclusively through connectivity information. Since this approach lacks of
any reference points, it results in topologies that are arbitrarily rotated,
scaled and mirrored, challenging the direct comparison with a real topo-
logy. For this reason, a specific metric has been defined, determining an
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appropriate scaling factor, transforming the graph of FLoW to a size sim-
ilar to the real topology. The relative distance error between estimated and
given topology is then computed for each pair of nodes. Results show that
FLoW is able to outperform the reference approach MDS by exhibiting
less relative errors for the majority of the links, yielding a graph closer to
the real topology.

Floor Plans The usage of the floor plan in the second step allows to trans-
late relative positions to absolute ones by matching areas and find the most
suitable graph configuration. When successfully fitting the graph into the
floor plan, FLoW achieves better accuracy for node placement than MDS.
The best accuracy could be achieved using a WSN Testbed measurement
taken on power level 7, generating a distinctive, edgy graph shape with
an average localisation error of 7.3 % of the floor plan diagonal (3.24 m).
However, in most scenarios the mere floor plan is insufficient to ensure a
reliable matching of the graph. Ambiguities caused by symmetries intrinsic
in the map highly affect the result, leaving an incorrectly matched or flipped
graph. To compensate for these issues, further information on the positions
of some anchor node are indispensable.

Anchors In the last part of this section, it is evaluated how a very limited
number of anchor nodes enables FLoW to resolve ambiguous situations.
For this purpose both, up to 4 random and manually chosen anchors have
been selected. In real scenarios, FLoW manifests errors within an average
range of 6 % to 9 % of the floor plan diagonal. Once successfully matched,
further anchor nodes do not provide any significant benefit. For the real
scenarios, three anchors are sufficient to produce correctly matched results
for all of the available data sets. Nevertheless, if chosen randomly, it is pos-
sible that an adverse set of anchors still yields an incorrect result. Manually
selected anchor nodes, instead, provide good results with an error below the
average of a random anchor placement. Regarding computation time, MDS
scales better than FLoW especially in scenarios with a high connectivity.
For the investigated real scenarios, the most accurate anchor-based match-
ing is performed in less than two seconds in both cases. The differences
become obvious when considering the largest and densest artificial scenario,
Square with 200 nodes and up to 12k links. Repeated executions of the
force-directed algorithm for fitting and optimisation increase computation
times of FLoW (5 minutes) by factor ten compared to MDS (30 seconds).

224



8.8 Summary

The evaluation has shown that FLoW can localise nodes of a network
within a given floor plan using very limited information with a relative er-
ror below 9 % for the investigated real scenarios. The main challenge resides
in translating the graph produced by the force-directed algorithm to a cor-
rect positioning within the floor plan, especially in the case of symmetric
shapes. Depending on the scenario, four reasonably placed anchor nodes
are sufficient to eliminate ambiguities.

MOVE

In the following section, MOVE is evaluated, validating the four contained
models in the first step and then assessing the capabilities of modelling
heterogeneous device configurations. In this context, several metrics are
introduced to comprehensively measure the quality of the prediction models
regarding different aspects. The Real Prediction Error (RPE) is the most
meaningful metric since both RSSI values, from measurement and model
are present in this case, allowing a precise assessment of the prediction
error. To also consider other constellations in which at least one RSSI
value is not available, a comprising Model Quality Estimation (MQE) is
defined, including also false positives and negatives as well as correctly
predicted, non-existent links. Although not as expressive as the particular
metrics alone, the MQE provide a meaningful overall assessment of a model
quality.

PHY From the four models of MOVE, the basic two-dimensional phys-
ical model PHY is analysed first. It uses ray tracing to determine signal
propagation paths through a given description of the scenario environment.
The prediction accuracy in dependency of the considered propagation ef-
fects, i.e., transmission, reflection and diffraction, is investigated at first as
these are continuously used in later evaluation steps. The best compromise
between computation complexity and accuracy for the available scenarios
is given by considering seven transmissions, one reflection and one diffrac-
tion (C(7, 1, 1)). This configuration allows successful computations for each
and every signal path reaching their destination within the range of con-
sidered effects in all discussed scenarios. Moreover, each link is computed
in a few milliseconds, depending on the detail and size of the given scenario
description, allowing to perform signal predictions of entire networks with
thousands of links within seconds.

Turning to the prediction accuracy of PHY, further analysis of different
scenarios and power levels revealed the strengths and weaknesses of the
given approach. As expected, the description of a scenario has significant
influence on the accuracy. For the main scenarioWSN Testbed, providing
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the most detailed description of all scenarios, PHY shows an average RPE
between 7.0 dBm and 8.6 dBm and a share of falsely predicted links between
15.3 % and 18.8 %. Both, prediction error and false rate increase with the
power level. At higher power levels, more links at larger distances become
available which are harder to accurately predict due to accumulated errors
from unconsidered paths caused by the given computational limitations. An
individual consideration of links at specific device distance intervals reveals
that closer links within a range of up to 15 metres are predicted with a
nearly constant error before the error gradually increases thereafter. Other
scenarios using the same devices as WSN Testbed, but having a coarser
environment description evince a greater prediction error. For the largest
scenario with the sparsest node distribution, FlockLab, PHY achieves
an average RPE of up to 10 dBm which is still close to WSN Testbed,
considering that the description of the environment has been derived from
a coarse floor map without any knowledge of the actual materials and that
the distances between the devices are larger.

Disregarded effects on the other hand can considerably affect the predic-
tion accuracy. E.g., measurements taken in the comparably small, but well
described WiFi Office scenario include an implicit body shadowing ef-
fect and in WiFi Hallway, more reflections are required to model sig-
nal propagation in the distinctive long corridors correctly. If unconsidered,
the observed measurements consequentially deviate from the predictions of
PHY, demonstrating its limitation, attributable to incomplete information.
However, as such mentioned effects might not be obvious when employing
PHY, MOVE provides a solution to circumvent this deficiency by integ-
rating taken measurements into the prediction computation as well using
the subsequently evaluated STAT and HYBRID models. Nevertheless,
at the presence of undistorted reference measurements, PHY provides ac-
curate predictions for entire networks within a reasonable amount of time,
exploitable for performing further optimisation steps.

3D GPU Making use of the independence of each signal path computation,
the two-dimensional approach of PHY is transferred to a three-dimensional
modelling approach, 3D GPU, exploiting the massive parallelisation cap-
abilities of modern graphic processing units. As an advantage of having
many computation cores available, the previously aimed signal path com-
putation strategy of PHY can be altered to a more explorative strategy,
launching rays into all directions from the sender. Albeit computing many
irrelevant paths not reaching any receiver position, this strategy allows to
discover much more possible signal paths without experiencing increased
computation times. To distinguish between the effects of adding a third
dimension and the path computation strategy on the prediction error, an
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additional intermediate 2D GPU model has been created, performing the
launching strategy on a two-dimensional plane. Evaluations show that both
amendments reduce the average RPE by either 8.2 % to 11.3 % (2D GPU)
or 11.5 % to 15.6 % (3D GPU) compared to the base PHY model in the
WSN Testbed scenario. Regarding prediction tendencies, the GPU mod-
els performing the launched approach provide more balanced outputs than
PHY, which has a tendency to underestimate link qualities. The latter
is beneficial when relocating devices as predictions are more conservative
reducing the probability of false positives. On the other hand when in-
vestigating relevant signal paths, as done in Follow, some of these might
be missed. Having the computational capabilities of a GPU available, 2D
GPU and 3D GPU provide the opportunity to further improve the pre-
diction accuracy of PHY.

STAT/ HYBRID The last models of MOVE, STAT and HYBRID are
jointly investigated. While STAT is entirely dependent on quality and
quantity of provided measurements to produce accurate predictions, HY-
BRID combines both approaches, STAT and PHY to benefit from their
respective advantages. The availability of verification measurements also en-
able further optimisations, in addition to the ones of PHY. While the latter
optimisations, especially the usage of material-specific obstacle attenuation,
are necessary to provide a more balanced model with fewer false predictions,
the HYBRID additions then result in further improvements of all relevant
metrics. Applied to three heterogeneous scenarios with varying qualities
in environment description and measurements, HYBRID demonstrates its
strengths. The weighted combination of PHY and STAT models allows
to achieve an estimation accuracy close to the most accurate of both at a
low computational cost. This flexibility increases the number of potential
application scenarios independent of which information are available.

With four different types of models, MOVE provides suitable solutions
for a wide range of scenarios. Available information, either in the form
of measurements, taken directly from a network, a description of an en-
vironment or both, is exploited in an optimal way to enable best possible
and accurate predictions of network communication. Utilising these models
then facilitates the acquisition of further network knowledge by associating
their output with additional sources of information or ultimately optimise
network properties by translating into physical reconfigurations.
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In the second part of MOVE evaluation, the goal is to analyse its applic-
ability to model different device configurations only utilising the existing
knowledge used in the first validation part without adding further inform-
ation. For this purpose, the TelosB devices in WSN Testbed have been
replaced by OpenMoteB devices on the spot to change the communication
behaviour without altering the environmental conditions.

Radiation Pattern First subject of investigation is the effect of the ra-
diation pattern caused by the usage of different antennas. While TelosB
devices use a printed F antenna, exhibiting a rather irregular radiation pat-
tern, OpenMoteB devices use external dipole antennas with an almost iso-
tropic radiation pattern. Since the physical models of MOVE refrain from
considering antenna-specific radiation patterns and assume isotropic radi-
ation to avoid requiring too many details and keep the approach practical,
a usage of devices with dipole antennas is expected to reduce prediction
errors. This expectation is also confirmed by the evaluation. For PHY, the
total prediction error of existing links decreases by 8.8 % to 13.7 % as well
as the rate of false positive links by around 4 % compared to the TelosB
measurements. By eliminating further distorting factors implicitly reflected
in the RSSI measurements, the actual prediction quality is revealed, entirely
based on the description of the environment.

Frequency Second, the capabilities of predicting communication at a dif-
ferent frequency are investigated. Focusing on the aspect of transferabil-
ity, PHY is applied to predict Sub-GHz measurements without providing
additional attenuation values for the materials specific to these frequencies.
Staying in line with the principle of applying plain and practical approaches,
the existing knowledge on materials at 2.4 GHz is adapted instead by mul-
tiplying a general correction coefficient to these attenuations. In compli-
ance with the property of lower frequencies to penetrate most materials
with fewer losses, a correction factor of 0.7 yields the lowest results on the
MQE. However, this general adaptation comes at the cost of reduced accur-
acy as the applied knowledge does not fit the scenario without restrictions.
The average RPE increases by 22 % to 30 % (+2 dBm) to compared to the
2.4 GHz measurements, still providing acceptable predictions.

The evaluations have demonstrated the ability of MOVE to model and
adapt to scenarios with heterogeneous hardware and configurations. Con-
sequentially, due to the pursued approaches of simplicity and flexibility, each
undifferentiated adaptation step or deliberately disregarded characteristic,
e.g., radiation pattern or body shadowing, comes at the cost of losses in
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the model accuracy. Nonetheless, this paves the way for realising an auto-
mated approach with minimal user intervention to obtain first estimates
of any scenario in a practical time leaving the contribution of additional
information as option to refine predictions when required.

Follow

In the next section, it is experimented with Follow in an indoor scenario.
It is analysed to what extent the wireless communication descriptions are
able to reveal information of real systems. The state of 23 different obstacles
located in WSN Testbed was separately changed by opening and closing
doors and windows as well as calling and sending away the elevator while re-
cording RSSI samples. Compared to a base RSSI measurement in an empty
environment with all doors and windows closed and the elevator absent,
the reference clusters of relevant links that have manifested a significant
variation were determined. These clusters serve as input for the matching
algorithm to compare reality against the precomputed predictions of the
physical models of MOVE.

Model Cluster Matching At the lowest transmission power only half of
the changes find a correct match through the observations, whereas at the
highest transmission power, up to 21 changes (91 %) could be matched
correctly. Between the models, there exist minor differences, with the most
detailed 3D GPU performing best and closely followed by the other two,
2D GPU and PHY with matching 20 changes (87 %) successfully. The
first evident result is that an increasing transmission power corresponds to a
steady increase in the amount of correct matches. With higher transmission
powers, links increase both, in numbers and RSSI values, better exposing
changes in correspondence to environmental dynamics, effectively offering a
richer set of information to exploit. However, it must be taken into account
that new links might disturb the matching, deviating the decision towards
alternative obstacles.

Influence of Individual Nodes A more detailed investigation on the rel-
evance of each individual node in matching the correct events reveals that
certain devices located in areas with a high density of observable events
are crucial. Placed at positions adjacent to these events they enable a clear
distinction, implying the necessity of a sufficiently high node coverage to im-
prove the matching accuracy in such areas. As it is refrained from requiring
centimetre accuracy, Follow is limited to reliably predict link changes,
but not to quantify their actual change. For this reason, the approach is
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able to identify that an object has changed its status but not to distinguish
between subtle changes in an obstacle state, e.g., the degree at which a door
is open. This requires more accurate description of the environments and a
supervised placement of nodes.

Summarising, Follow has demonstrated the ability of assigning events to
their cause by employing a ray tracing model identifying relevant links based
on a description of the environment and interrelate them with observations
from reality.

MOTION

Finally, in the last section of this chapter, it is evaluated, how MOTION is
able to support network optimisation by utilising the proposed HYBRID
model. Based on monitored network connectivity and the corresponding
RSSI information of WSN Testbed, two reconfiguration strategies were
computed and the devices relocated accordingly.

Network Metric Improvements The first strategy aims at improving the
individual node connectivity, focusing on the network level. By ranking
the expected improvement of connectivity for each node in the network at
possible relocation positions, nodes with the highest foreseen benefit were
selected for relocation. Comparing the links from and to the selected devices
before and after relocation, an increase of good quality links is observed in
many cases. The results show that the HYBRID model is able to provide
a correct estimation of good links for the given nodes at the indicated posi-
tions and thus allows to increase their connectivity. However, further weak
links are also present at the target positions. These are in general hard
to predict precisely in the border region of reception due to both the in-
herent inaccuracy of the model and hardware factors, e.g., the anisotropic
antenna of the tested devices. Nonetheless, the evaluation demonstrates
that MOTION is able to improve the node connectivity, complying with
the optimisation goal.

Application Metric Improvements For the second strategy, the applic-
ation layer is targeted for improvements by reducing the diameter of the
underlying network. Using the Collection Tree Protocol (CTP) applica-
tion as reference, which specifies data transfer paths to a sink based on
expected costs of each transmission, a reduction of the network diameter is
expected to influence these cost calculations and therefore the application
metrics. For the evaluation, three metrics were computed, i.e., throughput,
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latency and radio-on time (as an index of lifetime). By considering a net-
work consisting of a reduced number of devices and therefore less links, on
which CTP then establishes a collection tree, the effect on the relocation of
single nodes can be investigated more clearly. After identifying relocation
positions for three nodes using HYBRID with a predicted decrease of the
network diameter while maintaining all previously existing links, the actual
relocation then shows the expected effect. Depending on the position of a
device in the tree hierarchy and its number of children, the benefits of the
relocations differ. In all cases, the average latency of the collection process
could significantly be reduced by up to 21.4 % and the throughput notice-
ably improved from 93.9 % to 96.9 % when relocating the node with the
most significant effect.

The evaluation of MOTION has shown that relocating specific nodes ac-
cording to the estimations given by theHYBRIDmodel results in an actual
improvement of connectivity towards the predicted number of links demon-
strating the applicability of MOVE for optimising networks. It further
shows the ability of MOTION to improve the application performance
by properly manipulating the underlying network without using dedicated
knowledge.
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9.1 Conclusions

Understanding the environment in which a network is situated as well as
its characteristics are crucial for ensuring a proper operation and taking
effective measures to ultimately optimise the network behaviour towards
specific performance goals. However, each scenario is unique and provides
a differing amount of available knowledge about the network with regard to
both quality and quantity, requiring adaptable solutions able to deal with
such variation and exploit it in the best possible way. This thesis provides
approaches for deriving valuable knowledge about the properties of wireless
networks on different levels of available information. The process of know-
ledge gain is separated into four basic stages building on each other requiring
an increasing amount of information about the system: (1) identifying basic
network properties, (2) modelling wireless communication, (3) understand-
ing reasons for changing network behaviours, (4) improving the network
performance. Each of these steps is addressed by a contribution propos-
ing approaches of exploiting the varying amounts of available information
of each scenario in a flexible way while maintaining the general applicabil-
ity.

FLoW Addressing the first stage of identifying relevant basic information
of a network, FLoW provides an approach to identify a given network
topology and localise its devices using only minimal information. By calib-
rating the underlying force-directed algorithm with connectivity data, taken
from an operating network, FLoW is able to practically infer the relative
position of the wireless devices. With the addition of a floor plan outline
and up to four anchor node positions, graph placement ambiguities for the
evaluated indoor testbeds could be resolved and devices localised with an
accuracy of a few metres. Additional more challenging simulated scenarios
reveal limitations of the approach, such as more complex building struc-
tures and highly connected dense networks, complicating a proper graph
expansion and placement. However, such limitations can be addressed by
further increasing the number of anchors or dividing the localisation pro-
cess into multiple segments, thus reducing their complexity. In conclusion,
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this contribution shows that it is possible to position devices correctly in
common real scenarios with only limited user information and intervention,
having the network identify the displacement of its own components and
supporting further reasoning about system properties.

MOVE With MOVE, a fast and accurate modelling of wireless commu-
nication has been realised providing suitable solutions for a wide range of
scenarios. Including models of both empiric and deterministic types, re-
quiring orthogonal inputs, MOVE is able to deal with different types of
available information and combines the benefits of both types of models.
Measurements, taken directly from a network and a description of the en-
vironment, individually or jointly available, are exploited in an optimal way,
creating synergies to enable best possible and accurate predictions of net-
work communication. Focusing on the more fruitful deterministic physical
modelling for the process of knowledge gain due to their ability of taking the
environment into account, MOVE includes two ray tracing models, operat-
ing in two and three dimensions, respectively. Handling the complexity of
physical signal propagation, several optimisations, runtime-adaptable com-
putational parameters as well as the chosen granularity of the environment
description enable an apposite adjustment of MOVE to the given scenario
with the desired prediction accuracy. With only up to few milliseconds per
link, all models show acceptable computation times allowing to estimate the
connectivity of medium sized networks within seconds and thus quickly ad-
apt to changes in the network or the environment. The prediction accuracy
of MOVE is further proven by the other contributions, utilising the models
for the acquisition of further network knowledge by associating their output
with additional sources of information. Overall, this contribution realises
a flexible and precise modelling of wireless communication, supporting a
virtual exploration of signal paths and coverage estimation, sparing efforts
of manual measurements and serving as the basis of gaining further insights
about the network.

Follow Given sufficient knowledge about the environment of the investig-
ated scenario to model wireless communication, the third stage is addressed
by Follow. The implemented ray tracing models of MOVE are util-
ised to understand how events happening in the environment and causing
stable changes to the wireless communication impact signal propagation.
In particular, it is possible to exploit the features of the employed models
to localise such events and identify the causing obstacles, gaining further
insights about the network behaviour. As demonstrated in an indoor test-
bed, with an adequately dense network and devices placed at strategical
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positions, Follow is able to even distinguish adjacent obstacles, e.g., win-
dows, and match them to observed changes in the network connectivity.
As the approach rather focuses on the existence of signal paths above a
specific strength than exact predictions of their quality, certain computa-
tions of physical effects can be omitted, reducing the requirements regarding
provided information. Thus, Follow can be applied to a large number of
scenarios where only coarser descriptions of the environment are available,
giving networks the ability to reason about their own communication prop-
erties.

MOTION The fourth and last contribution, MOTION, concludes this
thesis and constitutes the final step following the process of knowledge
acquisition, exploiting it to ultimately improve the network performance.
MOTION provides a technique to optimise wireless networks by relocat-
ing devices in the environment. Based on the predictions of MOVE, the
impact of arbitrary displacements of devices in the target environment can
be investigated to devise relocation strategies, aiming at optimising the over-
all resulting network performance regarding specified goals and constraints.
These then recommend the most promising device relocation positions from
which one can be chosen to change the physical network topology accord-
ingly. Furthermore, by exploiting application knowledge and identifying
relevant key metrics, MOTION is able to support network optimisation
at an application level, adapting the network structure to the requirements
of the target application. In summary, MOTION exploits the available
network knowledge to provide an automatised approach for network mon-
itoring, analysis and optimisation, comprising the expertise to also assist
inexperienced users in a guided incremental relocation process.

This thesis has demonstrated the viability of automated general solutions
for network analysis and optimisation at different stages of knowledge, man-
aging to realise universal, network-independent applicability on the one side
and adaptability to specific systems and environments on the other side.
The presented approaches are able to flexibly operate with variable amounts
of information, ranging from the necessary minimum up to a large amount
of further relevant details, enhancing the quality of results. Allowing for
optional inputs beyond the minimal ones addresses the challenge of hetero-
geneity between and within networks, which may provide a large variance
of available information, and considers the network uniqueness as well. The
applicability is preserved due to demanding only indispensable information
as a requirement, while nonetheless being able to adapt the approaches to
characteristics of the given network. Furthermore, as the provision of more
detailed information then becomes optional, costs and efforts for collect-
ing can be saved if the already obtainable coarser results are considered
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as sufficient. To ensure usability for users at different levels of experience,
all approaches are kept practical requiring minimal user intervention once
configured with the initial inputs. In addition, evaluated on common com-
puter hardware, the approaches achieve acceptable computation times when
analysing medium size networks. Especially for the computationally most
expensive part of modelling wireless communication, the availability of dif-
ferent models and their configurable complexity allow for an adaptation to
any target system. Conclusively, each contribution of this thesis provides an
approach to analyse a different aspect of the network and extract valuable
knowledge to exploit. Altogether, they cover the complete range of know-
ledge acquisition to assist users in gaining insights about their network to
ultimately improve the performance.

9.2 Outlook

Taking the contributions of this thesis as a basis, there exist several possib-
ilities for further research topics as well as potential application scenarios
in other domains which can be pursued. Some of them are discussed in the
following.

9.2.1 Three-Dimensional Localisation Including Mobility

Interesting future work is an extension to the three-dimensional space for
localisation, which would allow to address networks spanning over multiple
floors but would also further exacerbate the relevance of the encountered
problems. Difficulties with graph distributions of FLoW on complex floor
plan shapes could be reduced by separating the graphs based on a decom-
position into simpler segments which are easier to match. However, this
would require further information about each segment, i.e., more anchors to
ensure the correct alignment with respect to the other segments on the one
hand and an algorithm to connect and merge the segments appropriately
on the other hand. Finally, employing FLoW to localise mobile devices
in stationary environments is worth of investigation, not only to obtain an
estimated position of the mobile elements but also to acquire further inform-
ation about the stationary nodes if their positions were to be estimated, too.
In this sense, FLoW is a first step in understanding the possibilities offered
by existing, already deployed and not customised infrastructures together
with scenario and system information. Positioning information is only one
knowledge about a system that FLoW demonstrated practically possible
to obtain.
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9.2.2 Online Event Detection and Reasoning

Due to fast computation times, an application of the approaches in online
monitoring domain is conceivable, especially the event detection of Fol-
low. The presented approach and analysis focus on individual events.
However, multiple events can happen simultaneously making the matching
of each event challenging due to the possible overlaps in the affected set
of links. In addition, persons present in the environment affect links in a
volatile manner while moving around. This produces complex fingerprints
that need to be preprocessed in order to extract the different, individual
components.

Even with a lower detection accuracy due to multiple events possibly hap-
pening in parallel, it is still possible to build a fingerprint that can be
integrated in an overall library with a corresponding probability assigned to
the possible causing events. By continuously observing the behaviour of the
system, it is possible to refine such estimations to progressively increase the
correctness of the acquired knowledge. Ultimately, this refinement cycle can
allow systems to reason about their own behaviour. At the same time, the
process can produce factual knowledge about fingerprints that the current
models are not yet capable of perceiving, further systematically highlighting
specific interesting cases worth investigating.

9.2.3 Exploiting Opportunistic Communication

The Internet of Things is made of devices with heterogeneous communic-
ation characteristics. The presented modelling techniques can seamlessly
work with different radio frequencies, depending on the specific employed
technologies. Considering that different frequencies correspond to different
impacts of obstacles and materials on the signal propagation, it becomes in-
teresting to explore how the approaches can exploit such richness of signals
and observations. This would allow to better recognise events happening
in the environment and identify the specific best radio technology to detect
each of them.

In addition, it would offer the possibility to use the model in order to, e.g.,
position the devices in the environment if signals are not affected by walls
and so on. Interestingly enough, this would allow any device visiting or
settling in an environment to contribute with active measurements to the
understanding of communication in the scenario, progressively refining their
situated system and network knowledge. This could provide a significant
step forward both in the ability of systems to self-configure and in the
validation, diagnosis and debugging of operational systems over time.
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9.2.4 Seeing Wireless Signals

To further support the deployment and design of networks with access-
ible user interfaces, the employed ray tracing techniques could be used to
guide, e.g., the placement of devices in an operational environment based
on specific application requirements and utility functions. Considering the
advancements in virtual and augmented reality, it is conceivable to let the
user ”see” actual wireless signals and navigate in an environment to explore
the behaviour of a network and modify its configuration. In this respect,
system reconfiguration and optimisation tasks could be integrated as well.
With machine learning techniques it would be possible to explore the space
of possibilities and learn about the impact of alternative configurations on
the system performance and robustness against specific events. Considering,
however, the complexity of exploring a 3D environment for optimal config-
urations, dedicated techniques need to be investigated in order to keep the
problem tractable.
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the Rays: Understanding the Interplay between Environment and
System through In-Situ Wireless Modelling”. In: Proceedings of the
22nd ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM’19). ACM.
2019, pp. 153–161. isbn: 9781450369046.

[a3] Sascha Jungen et al. “Situated Wireless Networks Optimisation
through Model-based Relocation of Nodes”. In: 2017 IEEE 14th
International Conference on Mobile Ad Hoc and Sensor Systems
(MASS). IEEE. 2017, pp. 389–397. isbn: 9781538623244.

[a4] Sascha Jungen et al. “Where are You? Localising Stationary Nodes
with Limited Information”. In: Proceedings of the IEEE 44th Con-
ference on Local Computer Networks (LCN). IEEE. 2019, pp. 161–
168. isbn: 9781728110288.

[c1] Falk Brockmann et al. “Accurate event detection and velocity es-
timation in wireless environments”. In: 2016 Federated Conference
on Computer Science and Information Systems (FedCSIS). IEEE.
2016, pp. 1057–1066. isbn: 9788360810903.

[c2] Eduardo Ferrera et al. “Marrying Stationary Low-Power Wireless
Networks and Mobile Robots in a Hybrid Surveillance System”.
In: 2018 14th International Conference on Distributed Computing
in Sensor Systems (DCOSS). IEEE. 2018, pp. 131–138. doi: 10.
1109/DCOSS.2018.00029.

[c3] Richard Figura et al. “Demo Abstract: IMAC, Enabling Flexible
Configuration and Result Analysis for Diverse Wireless Sensor Net-
work Experiments”. In: EWSN 2012 (2012), p. 6.

III

https://doi.org/10.1109/DCOSS.2018.00029
https://doi.org/10.1109/DCOSS.2018.00029


Bibliography

[c4] Richard Figura et al. “IRIS: A Flexible and Extensible Experi-
ment Management and Data Analysis Tool for Wireless Sensor
Networks”. In: International Conference on Sensor Systems and
Software. Springer. 2013, pp. 94–110. isbn: 9783319041667.

[c5] Richard Figura et al. “Iris: Efficient visualization, data analysis and
experiment management for wireless sensor networks”. In: EAI En-
dorsed Transactions on Ubiquitous Environments 1.3 (2014). doi:
10.4108/ue.1.3.e4.

[c6] Richard Figura et al. “Poster Abstract: Deployment, Recon-
figuration and Adaptation through Modelling and Simulation
in DREAMS”. In: EWSN 2015 Poster / Demo Session. 2015,
pp. 5–6.

[c7] Richard Figura et al. “Moρϕευς: Simulate Reality for the Orches-
tration of Deployed Networked Embedded Systems”. In: Proceed-
ings of the 2018 International Conference on Embedded Wireless
Systems and Networks. Junction Publishing. 2018, pp. 145–156.
isbn: 9780994988621.

[c8] Robert Sauter et al. “Notos: efficient emulation of wireless sensor
networks with binary-to-source translation.” In: SimuTools. 2015,
pp. 165–174. isbn: 9781631900792.

References to Scientific Publications

[p1] VS Abhayawardhana et al. “Comparison of empirical propagation
path loss models for fixed wireless access systems”. In: 2005 IEEE
61st Vehicular Technology Conference. Vol. 1. IEEE. 2005, pp. 73–
77.

[p2] Mohammad Abtahi and Homayoun Hashemi. “Simulation of in-
door propagation channel at infrared frequencies in furnished office
environments”. In: Proceedings of 6th International Symposium on
Personal, Indoor and Mobile Radio Communications. Vol. 1. IEEE.
1995, pp. 306–310.

[p3] Andreas Achtzehn et al. “MoteMaster: A scalable sensor network
testbed for rapid protocol performance evaluation”. In: 2009 6th
IEEE Annual Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks Workshops.
IEEE. 2009, pp. 1–3.

[p4] Fadel Adib et al. “Capturing the Human Figure Through a Wall”.
In: ACM Transactions on Graphics (TOG) 34.6 (Oct. 2015), 219:1–
219:13. issn: 0730-0301.

IV

https://doi.org/10.4108/ue.1.3.e4


References to Scientific Publications

[p5] Michiel Aernouts et al. “TDAoA: A combination of TDoA and AoA
localization with LoRaWAN”. In: Internet of Things 11 (2020),
p. 100236.

[p6] F Aguado Agelet, F Perez Fontan and Arno Formella. “Fast ray
tracing for microcellular and indoor environments”. In: IEEE trans-
actions on Magnetics 33.2 (1997), pp. 1484–1487.

[p7] F Aguado Agelet et al. “Efficient ray-tracing acceleration tech-
niques for radio propagation modeling”. In: IEEE transactions on
Vehicular Technology 49.6 (2000), pp. 2089–2104.

[p8] Alaa Alhamoud et al. “Empirical investigation of the effect of the
door’s state on received signal strength in indoor environments at
2.4 GHz”. In: Proceedings of the 39th Conference on Local Computer
Networks Workshops (LCN Workshops). 2014, pp. 652–657.

[p9] Abdulaziz AlSayyari, Ivica Kostanic and Carlos E Otero. “An em-
pirical path loss model for wireless sensor network deployment in
an artificial turf environment”. In: Proceedings of the 11th IEEE In-
ternational Conference on Networking, Sensing and Control. IEEE.
2014, pp. 637–642.

[p10] Iyad H Alshami et al. “The effect of people presence on WLAN RSS
is governed by influence distance”. In: 2016 3rd International Con-
ference on Computer and Information Sciences (ICCOINS). IEEE.
2016, pp. 197–202.

[p11] WS Ament. “Toward a theory of reflection by a rough surface”. In:
Proceedings of the IRE 41.1 (1953), pp. 142–146.

[p12] Cassio Bento Andrade and Roger Pierre Fabris Hoefel. “IEEE
802.11 WLANs: A comparison on indoor coverage models”. In:
CCECE 2010. IEEE. 2010, pp. 1–6.

[p13] Paramasiven Appavoo et al. “Indriya2: A heterogeneous wireless
sensor network (wsn) testbed”. In: International Conference on
Testbeds and Research Infrastructures. Springer. 2018, pp. 3–19.

[p14] Anish Arora et al. “Kansei: A high-fidelity sensing testbed”. In:
IEEE Internet Computing 10.2 (2006), pp. 35–47.

[p15] M Ayadi, A Ben Zineb and S Tabbane. “A UHF path loss model us-
ing learning machine for heterogeneous networks”. In: IEEE Trans-
actions on Antennas and Propagation 65.7 (2017), pp. 3675–3683.

[p16] Mohamad Ayadi and A Ben Zineb. “Body shadowing and furniture
effects for accuracy improvement of indoor wave propagation mod-
els”. In: IEEE Transactions on Wireless Communications 13.11
(2014), pp. 5999–6006.

V



Bibliography

[p17] Paramvir Bahl and Venkata N Padmanabhan. “RADAR: An in-
building RF-based user location and tracking system”. In: Proceed-
ings IEEE INFOCOM 2000. Conference on computer communic-
ations. Nineteenth annual joint conference of the IEEE computer
and communications societies (Cat. No. 00CH37064). Vol. 2. Ieee.
2000, pp. 775–784.

[p18] Michael J Bannister et al. “Force-directed graph drawing using so-
cial gravity and scaling”. In: International Symposium on Graph
Drawing. Springer. 2012, pp. 414–425.

[p19] John R. Barry et al. “Simulation of multipath impulse response
for indoor wireless optical channels”. In: IEEE journal on selected
areas in communications 11.3 (1993), pp. 367–379.

[p20] Marcel Baunach, Reiner Kolla and Clemens Muhlberger. “Beyond
theory: development of a real world localization application as low
power WSN”. In: 32nd IEEE Conference on Local Computer Net-
works (LCN 2007). IEEE. 2007, pp. 872–884.

[p21] Imane Benkhelifa, Nadia Nouali-Taboudjemat and Samira
Moussaoui. “Disaster management projects using wireless sensor
networks: An overview”. In: 2014 28th International Conference on
Advanced Information Networking and Applications Workshops.
IEEE. 2014, pp. 605–610.

[p22] Paul Blaer and Peter K Allen. “Topbot: automated network topo-
logy detection with a mobile robot”. In: 2003 IEEE International
Conference on Robotics and Automation (Cat. No. 03CH37422).
Vol. 2. IEEE. 2003, pp. 1582–1587.

[p23] Carlo Alberto Boano et al. “Hot Packets: A Systematic Evaluation
of the Effect of Temperature on Low Power Wireless Transceiv-
ers”. In: Proceedings of the 5th Extreme Conference on Commu-
nication (ExtremeCom). Thórsmörk, Iceland, Aug. 2013, pp. 7–12.
isbn: 978-1-4503-2171-6.

[p24] Lucien Boithias and L-J Libols. Radio wave propagation. North Ox-
ford acad. London, 1987.

[p25] Falk Brockmann et al. “RSSI Based Passive Detection of Persons
for Waiting Lines Using Bluetooth Low Energy”. In: Proceedings of
the 2018 International Conference on Embedded Wireless Systems
and Networks. EWSN’18. Madrid, Spain, 2018, pp. 102–113. isbn:
978-0-9949886-2-1.

[p26] Nirupama Bulusu, John Heidemann and Deborah Estrin. “GPS-
less low-cost outdoor localization for very small devices”. In: IEEE
personal communications 7.5 (2000), pp. 28–34.

VI



References to Scientific Publications

[p27] Marco Cattani, Carlo Alberto Boano and Kay Römer. “An Ex-
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Appendix

The appendix of this thesis is provided in digital form. The enclosed DVD
contains the following files:

� Java source code including implemented and used algorithms;

� Performed measurements used for the evaluation.
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