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Zusammenfassung

Diese Arbeit befasst sich mit der Simulation mit einander verbundenen Grundoperationen, wie sie
bei der Verarbeitung und Herstellung von Feststoffen eingesetzt werden. Der Feststoff wird dabei als
ein Partikelensemble beschrieben, das möglicherweise in Flüssigkeiten (Kolloide) oder in einem Gas
(Aerosole) suspendiert ist. Die Verarbeitung der Partikel beruht auf physikalischen Mechanismen wie
Nukleation, Koagulation, Bruch, Verdampfung und Kondensation sowie Partikeltransport zwischen
den Grundoperationen. Die entsprechenden Raten dieser Mechanismen hängen dabei von den Eigen-
schaften der einzelnen Partikel ab: neben der Partikelgröße müssen für eine korrekte Beschreibung
ggf. weitere Partikeleigenschaften (wie Porosität, Oberflächenvolumen, elektrische Ladung, usw.)
berücksichtigt werden. Die Lösung der sich daraus ergebenden Populationsbilanzgleichung stellt eine
anspruchsvolle numerische Aufgabe dar, insbesondere wenn viele Partikeleigenschaften in einem Netz-
werk von miteinander verbundenen Kompartimenten oder Geräten modelliert werden.

Herkömmliche Lösungsstrategien für die Populationsbilanzgleichung umfassen 1) die Beschrei-
bung der Partikelpopulation nur durch die Momente der entsprechenden Verteilung oder 2) die
Diskretisierung des Partikelgrößenspektrums in eine endliche Anzahl von Größen oder Größenbereich-
en. Beide Strategien sind auf eine geringe Anzahl von Partikeleigenschaften (maximal 2–3 bei relativ
schlechter Auflösung) beschränkt. Stochastische Methoden, auch Monte-Carlo-Methoden genannt,
stellen eine attraktive Alternative zu diesen Ansätzen dar. Sie ermöglichen die Modellierung mehrerer
Partikeleigenschaften auf Kosten einer deutlich höheren Rechenzeit und eines inhärenten stochas-
tischen Rauschens der generierten Ergebnisse.

Im Rahmen dieser Arbeit werden neuartige Strategien zur Verringerung der erforderlichen Rechen-
zeit auf zwei Wegen erreicht: 1) der Einsatz von GPUs ermöglicht die Parallelisierung der erforder-
lichen Berechnungen und 2) die Formulierung neuartiger mathematischer Konzepte ermöglicht eine
neue Art von Monte Carlo Simulationen, die ein geringeres inhärentes Rauschen aufweisen und da-
her die gleiche Genauigkeit (im Vergleich zu konventionellen Methoden) garantieren, wenn weniger
Simulationspartikel – und damit Rechenressourcen – eingesetzt werden.

Dazu wird eine Reihe von parallelen Algorithmen vorgestellt und deren Implementierung auf der
GPU veranschaulicht. Die Algorithmen sind speziell für die gleichzeitige Behandlung einer großen
Anzahl von gewichteten Monte Carlo Simulationspartikeln konzipiert. Im Rahmen dieses Ansatzes
wird die parallele stochastische Simulation von Bruchereignissen für jedes Simulationspartikel möglich.
Die parallele Beschreibung des Partikelwachstums und der Verdampfung für jedes Partikel ermöglicht
– im Gegensatz zu seriellen CPU-Ansätzen – eine effiziente Simulation dieser Prozessschritte und
damit des Ostwald-Reifungsprozesses.

Die im Rahmen dieser Arbeit vorgeschlagenen neuartigen mathematischen Formulierungen basieren
auf unterschiedlich gewichteten Monte Carlo Simulationspartikeln, die es erlauben, eine Vielzahl von
Simulationsszenarien zu modellieren, die durch die Anwendung konventioneller Monte Carlo Tech-
niken, die auf ein Ensemble gleich gewichteter Simulationspartikel zurückgreifen, nicht zugänglich
sind. Dies wird explizit durch die Simulationen von Szenarien gezeigt, die 1) den Transport von Par-
tikeln in einem zusammenhängenden Kompartimenten-Netzwerk oder 2) die Nukleation von Partikeln
und das anschließende Partikelwachstum durch die Mechanismen der Koagulation und des Konden-
sationswachstums (bzw. der Verdampfung) beschreiben.

Neben der Formulierung dieser neuartigen Ansätze werden verschiedene relevante Benchmark-
Testfälle vorgestellt und die Gültigkeit der neuartigen Schemata wird durch den Vergleich der Sim-
ulationsergebnisse mit anderen Simulationstechniken, die auf Diskretisierungsmethoden oder analy-
tischen Ergebnissen basieren, demonstriert. Vergleiche mit anderen vorgeschlagenen modernen MC-
Simulationstechniken, die auf gewichteten Simulationspartikeln basieren (sogenannte stochastische
gewichtete Algorithmen (SWA)), zeigen 1) ein geringeres inhärentes statistisches Rauschen der neu
vorgeschlagenen Techniken für die Simulation der Koagulation und 2) ein erweitertes Partikelgrößen-
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spektrum, das durch die Partikelgrößenverteilung für die Simulation des Bruchs dargestellt wird.

iv



Abstract

This work discusses the modeling of interconnected unit operations as used for the processing and
production of solid materials. The materials are thereby described as single particles which are
possibly suspended in liquids (colloids) or in a gas (aerosols). The processing of the particles is based
on physical mechanisms such as nucleation, coagulation, breakage, evaporation and condensation
as well as particulate transport between the units. The corresponding rates of these mechanisms
depend thereby on the properties of the single particles: next to the particle size, additional particle
properties (like porosity, surface volume, electric charge, etc.) might have to be considered for a correct
description. The solution of the resulting population balance equation poses a challenging numerical
task, especially if many particle properties are modeled in a network of interconnected compartments,
or units.

Conventional solution strategies for the population balance equation encompass 1) the description
of the particle population only by its moments, or 2) the discretization of the particle size spectrum
into a finite number of sizes or size ranges. Both strategies are limited to a low number of particle
properties (maximal 2–3 with a low number of sections or points). Stochastic methods, also called
Monte Carlo methods, pose an attractive alternative to these approaches, enabling the modeling of
several particle properties at the cost of higher computational time and an intrinsic stochastic noise
of the generated result.

In the scope of this work, novel strategies for the reduction of the necessary computing time are
introduced by two means: 1) the application of GPUs allows the parallelization of the necessary
computations and 2) the formulation of novel mathematical concepts allows for a new kind of Monte
Carlo simulations which have inherent lower noise levels and guarantee therefore the same accuracy
(in comparison with conventional methods) if less computational particles – and thus computational
resources – are applied.

A suit of parallel algorithms is introduced and the GPU-implementation is shown. The algorithms
are specifically designed for the simultaneous treatment of a large number of weighted Monte Carlo
simulation particles. In the scope of this approach, the parallel stochastic simulation of breakage
events for each simulation particle becomes possible. The parallel description of particulate growth
and evaporation for each particle makes an efficient simulation of these processing steps and thus the
Ostwald-ripening process possible – in contrast to serial CPU approaches.

The novel mathematical formulations proposed in the scope of this work are based on weighted
Monte Carlo simulation particles which allow the modelling of a variety of simulation scenarios which
are not accessible by the application of conventional Monte Carlo techniques recurring to an ensemble
of equally weighted simulation particles. This is explicitly shown by the simulations of scenarios
describing 1) the transport of particles in an interconnected network of units or 2) the nucleation of
particles and subsequent particle growth through the mechanisms of coagulation and condensational
growth (resp. evaporation).

Next to the presentation of these novel approaches, different relevant benchmark test cases are
formulated and the validity of the novel schemes is demonstrated by the comparison of the simulation
results with other simulation techniques based on discretization methods (discrete-sectional methods
or the fixed pivot point technique) or analytical results. Comparisons to other proposed state-of-
the-art MC simulation techniques based on weighted simulation particles (termed stochastic weighted
algorithms (SWA)), shows 1) a lower inherent statistical noise of the novel proposed techniques for
the simulation of coagulation, and 2) an extended particle size spectrum rendered by the particle size
distribution for the simulation of breakage.
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Notation

Latin Nomenclature

Symbol Unit Description

ă − parameter for triangular PSD, Eq. (A.4)
b̆ − parameter for triangular PSD, Eq. (A.4)
b(vP) s−1 breakage rate of a parent particle with volume vP

bmax s−1 maximal b(vi) for all NMC particles i
B(vP) − total number of fragments resulting from breakage of parent particle

with volume vP, Eq. (4.4)
Bdim − total number of threads per block, Table 3.1
Bid − unique ID for each CUDA block, Table 3.1
c̆ − parameter for triangular PSD, Eq. (A.4)
CB
... various breakage rate constants

Table 2.1b shows units of CB
l and CB

q

CC
... various coagulation constants

Table 2.1a shows units of CC
c , C

C
sum, C

C
prod, C

C
fm and CC

co

CE
w − constant coefficients for RK error calculation, Table E.1a

CG
... various growth rate constants

Table 2.1d shows units of CG
c , C

G
l , C

G
d and CG

fm

CI
n,k − constant coefficients for RK interpolation, Table E.1c

CRK
n,w − constant coefficients for RK method, Table E.1a

CN
c m−3 s−1 constant nucleation rate, Table 2.1c

CT
n −

C −
d m
d∗ m
d

(j)
i m
d0 m
dPP

g m

constant coefficients for RK time calculation, Table E.1b
constant for fLV in Table 4.6, defined as C(vP) in [Paper III] Eq. (14) 
particle diameter
Kelvin diameter, Eq. (2.5)
particle diameter of i-th MC particle of j-th simulation
diameter of particles in monodisperse initial PSD
mean geometric diameter resulting from pivot point method, Eq.
(D.8)

(j)
g md mean geometric diameter of j-th MC simulation, Eq. (D.1)
dg m mean geometric diameter, mean value for NMC MC simulations, Eq.

(D.3)
dN/d log(d) m−3 number-based PSD (short notation for dN(d)/d log(d))
Em(i, j) − merging error, defined in Eq. (4.10)
ĕ − parameter for arcsine PSD, Eq. (A.3)
f̆ − parameter for arcsine PSD, Eq. (A.3)
f...(vF|vP) m−3 PDF for selection fragment volume vF resulting from breakage of

parent particle with volume vP

Table 4.6 shows fGen, fVB, fNB and fLV

Eq. (4.7) shows fVB−LV and fNB−LV

fU1→U2 s−1 particle flow rate from unit U1 to U2, Eq. (4.11)
f

(i)
sT (x) − Student’s t-test distribution for i degrees of freedom

Fj→i(nj(v, t)) m−6 s−1 on size v dependent rate of change of PSDs due to outflow of particles
from compartment j (with PSD nj(v, t)) into compartment i
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Notation

G(v, t) m3 s−1 growth rate of particle with volume v, see Eq. (2.7)
Table 2.1d shows definitions for Gc, Gl, Gd and Gfm

Gdim − total number launched blocks, Table 3.1
H(i) various arbitrary function defining SWA3 and SWA4 in Table 4.3
J m−3 s−1 nucleation rate Jc, Jcou, Jcls and Jgir are defined in Table 2.1c
k̆ − parameter for Pareto PSD, Eq. (A.2)
kB J K−1 Boltzmann constant
K(d) − Kelvin correction factor, see Table 2.1d
m̆ − parameter for log-normal PSD, Eq. (A.1)
mG kg atomic (resp. molecular) mass of the nucleating material
n(v), n(v, t) m−6 number-based PSD (short notation for dN(v)/dv)
nres(vF) m−6 PSD of breakage fragments in the stochastic mean, Eq. (4.5)
nexact(vF) m−6 exact PSD of breakage fragments described by γ, Eq. (4.6)
n(d) m−4 number-based PSD (short notation for dN(d)/dd)

nil(t) m−6

nl(t) m−6

N(t) m−3

N(t)l, Nl m−3

NPP m−3

N (j) m−3

N m−3

N
b+
, N

b− m−3

Nevap m−3

N I
evap m−3

NG m−3

nLN(d), nP(d), nAS(d) and nT(d) are defined in Appendix A.1
i-th linear combination factor in section l for PSD approximation by 
FEM
number-based PSD resulting from discretization into sections
total particle number concentration (i.e.: N(t) = N[0,∞](t)) particle 
number concentration of section or pivot point l
total particle number concentration resulting from pivot point 
method, Eq. (D.8)
total particle number concentration for j-th MC simulation, Eq. (D.1) 
total particle number concentration, mean value for NMC MC simu-
lations, Eq. (D.3)
bounds of the confidence interval for the total particle number con-
centration, Eq. (D.5)
correction for NG resulting from evaporation of MC particles during 
one RK step, Figure E.1
correction for NG resulting from evaporation of MC particles during 
one RK step with subsequent interpolation, Figure E.2 
concentration of atoms (or molecules) of the nucleating/condensing 
material

NAP,n
G m−3 used as NG in RK calculation of NRK,n

G and vRK,n
i , Eq. (E.1)

NRK,n
G m−3 RK variable for the calculation of NAP,n

G and NRK,new
G , Eq. (E.1)

ÑRK,n
G m−3 RK value for interpolation of NG, (E.15) and Eq. (E.17)

NRK,new
G m−3 approximation of NG after one RK step Eq. (E.3)

NRK,n
G,growth m−3 growth contribution toNRK,n

G (if no nucleation is simulated: NRK,n
G =

NRK,n
G,growth), Eq. (E.1)

N I
G(t) m−3 interpolated value of NG for time t using RK, Eq. (E.14)

Ns m−3 concentration of atoms (or molecules) of the nucleating/condensing
material at saturation pressure, Eq. (2.5) and Eq. (B.10)

Nsp m−3 surplus concentration of atoms (or molecules) of the nucleat-
ing/condensing material (Eq. (B.10))
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Notation

Ncells − number of cells (resp. compartments) used in CFD (resp. compart-
mental) modeling

N break
mc − number of MC particles with identical properties selected for breakage
NMC − total number of MC particles used for one MC simulation
NPP − number of pivot points used for discrete solution method of PBE
Nsample − number of randomly selected particle pairs, used by algorithm shown

in section 3.2
Nsec − number of sections used in sectional solution methods of PBE
Nsim − number of used MC simulations
mG kg atomic (or molecule) mass of the nucleating/condensing material
M kg m−3 total mass concentration of a particle species (e.g. MFe,p) or of a

gaseous material prior to condensation (e.g. MFe,g) or of the carrier
gas (e.g. MN2)

p
(k)
i various k-th property of particle i
ps Pa saturation pressure of the nucleating/condensing material
Psel − Psel((i,j) | (i,j) or (j,i)) is the selection probability for MC particle pair

(i, j) under the condition that either (i, j) or (j, i) are selected for sure
for coagulation in scope of SWA, Eq. (C.5) and (C.6)

Pi,j − coagulation probability for MC particles i and j during ∆τMC, Eq.
(2.21)

Pi,j(∆τs|∆τMC) – Conditional probability that coagulation of an AR selected pair takes
place within a time smaller than ∆τs if it takes place for sure within
∆τMC, see Eq. (4.3)

PAR
i,j − Pi,j for randomly selected MC particles i and j in AR approach, Eq.

(2.22)
PU1→U2(i) − probability for particle i in unit 1 for outflow to unit 2, Eq. (4.16)
Ql various general property of a section l (e.g. number concentration), described

and only used in the footnote on page 12
r − uniformly distributed random number
roff − random integer with 0 ≤ roff ≤ NMC, section 4.6.1.4
Ri,j s−1 coagulation rate for non weighted MC particles i and j, Eq. (2.17),

or for weighted MC particles:
RmMC
i,j and RSWA

i,j in Table 4.2, Rfp
i,j and Rsr

i,j in Table 4.4
Rmax s−1 maximum of all possible coagulation rates Ri,j
Rmean s−1 mean coagulation rate for a sample of randomly selected pairs
Rsum s−1 sum of coagulation rates Ri,j for a sample of randomly selected pairs
RA − maximum of ratios of RK errors to tolerance values in actual RK step,

Eq. (E.6)
RL − value of RA during last accepted RK step
s̆ − parameter for log-normal PSD, Eq. (A.1)
S − supersaturation, Eq. (2.5)
t s time
tend s simulation end time
tI s time for RK interpolation, Eq. (E.13)
tsim s simulation time increasing from 0 to tend
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Notation

tRK s simulation time during RK routine, section E.1.4
tend
RK s simulation end time for RK routine
tstop s time interval between two artificial stops of the simulation
t(col) s time for collision/coagulation of 2 specific particles
t(col) s mean time for collision/coagulation of 2 particles
T K temperature
Tid − unique ID for each thread within a CUDA block, Table 3.1
Ud m arbitrary constant for normalization of PDFs (e.g. δ functions)
Uv m3 arbitrary constant for normalization of PDFs (e.g. δ functions)
v m3 particle volume
v∗ m3 Kelvin volume (volume of nucleating particles is v∗ + vG), Eq. (2.5)
val m3 boundary of a section l for sectional method, page 12 and section B.1
v•i m3 volume of i-th pivot point
v m3 defined in footnote 1 on page 10
v0 m3 volume of particles in monodisperse initial PSD
vi m3 particle volume of i-th MC simulation particle
v

(new)
i m3 vi after coagulation, see Table 4.2 for SWA, mMC; and Figure 4.2 for

SR and FP
vnew
i,U m3 particle volume of i-th MC simulation particle to be inserted in unit

U due to transport, Eq. (4.13)
vAP,n
i m3 value for vi during n-th part of one RK step, Eq. (E.1)
vI
i(t) m3 interpolated value of vi for time t using RK, Eq. (E.13)
vRK,n
i m3 RK value for interpolation of vi, Eq. (E.1)
ṽRK,n
i m3 RK value for the calculation of vi , Eq. (E.12)
vRK,new
i m3 new value for vi after one RK step, Eq. (E.3)
vF m3 volume of a fragment resulting from breakage of a parent particle
vG m3 atomic (or molecule) volume of the nucleating/condensing material
vlim m3 limit volume for fLV selection scheme in Table 4.6
vP m3 volume of a parent particle undergoing breakage
VB m3/m3 volume concentration within the nucleation buffer, section 4.7.3
VI

B(t) m3/m3 interpolated value of VB for time t using RK, Eq. (E.14)
VRK,n

B m3/m3 RK value for the calculation of VRK,new
B , Eq. (E.11)

ṼRK,n
B m3/m3 RK value for interpolation of VB, Eq. (E.16) and Eq. (E.17)
VRK,new

B m3/m3 new value for VB after one RK step, Eq. (E.11)
VT m3/m3 volume concentration threshold for MC nucleation, section 4.7.3
Vsys m3 volume of simulated system (representative for larger reactor volume)
Wi m−3 statistical weight of MC simulation particle i
W

(j)
i m−3 statistical weight of i-th MC particle of j-th simulation

Wi,U m−3 statistical weight of i-th MC particle in unit U
W

(new)
i m−3 Wi after coagulation, see Table 4.2 for SWA, mMC; and Figure 4.2

for SR and FP
W new
i,U m−3 Wi,U of novel particle to be inserted in unit U due to transport, Eq.

(4.13)
WF m−3 statistical weight of fragment assigned to MC particle after breakage,

Table 4.6 or Eq. (4.8)
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Notation

WP m−3 statistical weight of MC parent particle undergoing breakage
W tot

P m−3 total statistical weight of N break
mc MC parent particles undergoing

breakage
WMC m−3 statistical weight of equally weighted MC simulation particles
W m−3 mean statistical weight of all MC particles in one simulation, footnote

12 on page 39
x̆ − parameter for Pareto PSD, Eq. (A.2)
x m spatial coordinate(s) (1D: scalar / 2D, 3D: two, three component vec-

tor), used only in section 2.1.3.
xu m s−1 velocities at the spatial coordinate; scalar (1D) or vector (2D,3D)

used only in section 2.1.3.
z∗ − interval boundary for Student’s t-test distribution, Eq. (D.6)

Greek Nomenclature

Symbol Unit Description

αT − tuning factor for time-driven MC time step for breakage, section 4.3.2
αi,j − factor for weighted MC particles used by SWA with constraint in Eq. (4.1),

Table 4.3 lists specific values
β(v, v′) m3 s−1 coagulation kernel for particles with volumes v and v′, as used in Eq. (2.2)

explicit definitions are given in Table 2.1a as βc, βsum, βprod, βfm and βco

βi,j m3 s−1 coagulation kernel for MC particles i and j, short notation for β(vi, vj)
βi,k→l m3 s−1 integrated coagulation kernel for sections or pivot points i and k resulting

in particles in section (Eq. (B.2)) or pivot point (Eq. (B.7)) l
βl,k→ m3 s−1 coagulation kernel for coagulation of sections (resp. pivot points) l and k

resulting in particles in all other possible sections (Eq. (B.3)) resp. pivot
points (Eq. (B.8))

γ(vF|vP) m−3 breakage function described beneath Eq. (2.3)
γB(vF|vP) m−3 binary breakage function defined in Table 2.1b
δ − δ - Dirac function 1

δi,j − discrete form of Dirac function: δi,j = 1 ,if i = j; δi,j = 0, else
∆dg m arithmetic standard deviation for geometric mean diameters resulting from

NMC different MC simulations, Eq. (D.4)
∆N m−3 arithmetic standard deviation for total number concentrations resulting

from NMC different MC simulations, Eq. (D.4)
∆t s general time step for MC simulation
∆tRK s adaptive time step for one RK step
∆tnew

RK s novel value for ∆tRK calculated in (E.7)
∆tini

RK s initial value for ∆tRK, section E.1.4
∆tini,U

RK s ∆tini
RK in unit or compartment U

∆τB s adaptive time step for time-driven MC simulation of breakage, Figure 4.6
∆τUB s ∆τB in compartment or unit U
∆τMC s event-driven MC time step for coagulation, Eq. (2.20)
∆τUMC s ∆τMC in compartment or unit U

1The function δ(x) has the following properties: δ(0) =∞, δ(x 6= 0) = 0,
∫ +ε
−ε f(x)δ(x)dx = f(0), ε > 0 .
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∆τs s time step with ∆τs < ∆τMC

∆τTr s time step for transport
∆σg − arithmetic standard deviation for geometric standard deviations resulting

from NMC different MC simulations, Eq. (D.4)
∆RKvi m3 difference between 4th and 5th order RK value for vi, Eq. (E.4)
∆RKNG m−3 difference between 4th and 5th order RK value for NG, Eq. (E.4)
∆Wi,U m−3 change of statistical weight of MC simulation particle i in unit U within

one Euler step, Eq. (4.15)
ε.. – relative deviation between MC and pivot point method

εN (concentration), εdg (mean geometric diameter) and εσg (mean geometric
standard deviation) are defined in Eq. (D.10)

εG m−3 RK error tolerance for NG, Eq. (E.5)
εg,abs − absolute RK error tolerance for NG, used in Eq. (E.5)
εg,rel m−3 relative RK error tolerance for NG, used in Eq. (E.5)
εmerge − maximal allowable merging error in section 4.6.1.3
εv
i m3 RK error tolerance for particle i, Eq. (E.5)
εv,abs m3 absolute RK error tolerance for particle volume, used in Eq. (E.5)
εv,rel − relative RK error tolerance for particle volume, used in Eq. (E.5)
η Pa s dynamic viscosity of the carrier gas or fluid
θ − ratio of time increment for interpolation to full RK time step, Eq. (E.13)
κH − constant factor describing geometric grid spacing (i.e.: vl+1/vl = 2κH)
µn m3(n−1) n-th moment of a PSD n(v), defined in Eq. (2.11)
µd,n m(−3+n) n-th moment of a PSD n(d)
ρp kg m−3 particle density
σ J m−2 surface tension
σPP

g − geometric standard deviation resulting from pivot point method, Eq. (D.8)
σ

(j)
g − geometric standard deviation of j-th MC simulation, Eq. (D.2)
σg − geometric standard deviation, mean value for NMC simulations, Eq. (D.3)
τfm s characteristic time for coagulation in free-molecule regime, Eq. (A.10)
Υ − constant used for combination of breakage schemes, Eq. (4.7)
φ(v) − test function for FEM (φ(v) =

∑
k φ

l
k(v), for v ∈ (vl−1, vl))

φlk(v) − k-the part of test function φ in section l, used for FEM
χ − safety correction factor for calculation of Rmax from sample, Eq. (3.2)
ψil(v) − i-th Lagrange polynomial in section l used by FEM for PSD approximation
ωk − merging weight for k particle property, described in section 4.4.1
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Chapter 1

Introduction

Flowsheet simulations are a crucial tool for controlling and optimization of chemical engineering
processes as well as production processes in general - on laboratory and plant scales. Especially the
optimization of plant production processes leads to increased profitability and may also improve the
ecological footprint of the production. It may also help to understand complex assembly processes
and make thus the development of novel materials possible.

Chemical engineering processes in which liquid and gaseous materials have to be considered are
well understood and can be simulated to a sufficiently detailed accuracy by commercially available
flowsheet simulation software (e.g. ASPEN plus [1, 3], ChemCAD [4], etc. all using a unified standard,
CAPE-OPEN [2, 5], for material parameters and unit operations). The processing of solids, on the
other hand, is not well understood. This is mainly due to the many properties of the particulate
material, which have to be captured, in order to describe its physical and chemical behavior correctly.
While it is absolutely sufficient, to monitor only a few parameters, such as the pressure, temperature
and chemical composition, in order to describe and control the behavior of a gas or a liquid completely1,
the correct modeling of single particles which form the solid, is necessary in order to process a powder
correctly. This is mostly done by means of the particle size distribution (PSD), which describes the
amount of the particulate material in dependency of the size of the single particle. Such a description
takes into account, that differently sized particles may behave differently in the context of chemical
processing steps due to their sizes. It has been noted, however, that size is not the only one property,
which has to be taken into account, and there exists a fruitful discussion and research about, how to
capture which properties of a given powder, in order to describe its behavior correctly. Depending
on the application, different additional particle properties are considered, e.g. porosity and wet (or
binder) content for granulation [6, 7], sphericity for sieving[8], fractal dimensions and number of
primary particles for particulate production via the aerosol route [9, 10]. The combination of all these
different descriptions into one flowsheet simulation framework poses an intriguing research area [11,
12, 13, 14].

Next to the two intriguing questions, of 1.) how to measure these additional properties and 2.)
how to formulate a model which describes the influence of these additional properties on the process
correctly, there arises a third question, of 3.) how a correct simulation and prediction of the evolution
of a PSD with several particle properties is possible. The answer to this question is the main topic of
this thesis. But first, an exemplary production process is introduced in order to elaborate the notions
of particle properties and sizes a little bit further.

1.1 An Exemplary Production Process
Figure 1.1 shows an exemplary pharmaceutical production process. First the pharmaceutical agent is
created in a solid form (as crystals) in a crystallizer, by mixture of two liquid precursors. After the
crystallization, the resulting crystals are milled and undergo a granulation process - a binder is used
to ‘glue’ the agent into larger sizes of the product. The resulting particles (or granules) consist of two
components: the agent and the binder. In a subsequent step the granules are sorted with respect to

1Note that, liquid-liquid mixtures (e.g. emulsions), as well as liquid-gas mixtures (foams) might make more complex
descriptions necessary. The correct capture of the behavior of these mixtures treats one liquid (resp. gas) as dispersed
in the other, so that the formal approach for the treatment of particles can be applied to these systems (sometimes
referred to as colloidal systems).
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granulator mill
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screen

mixer mixer
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out flow
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Figure 1.1: Flowsheet of interconnected unit operations of a pharmaceutical production. Exemplary
particle size distributions are shown for single streams.

their size - only those in a certain size range are accepted as final product in the tablet press. Those,
too small are redirected to the agglomeration process and those which are too large are redirected to
the mill.

In order to describe this process correctly, it is necessary to foretell the particle size distributions
in every unit (i.e. crystallizer, mill, screen, granulator) at every time. At least two particle properties
such as the particle size and the ratio of pharmaceutical agent to binder have to be taken into account
(the PSDs in Figure 1.1 take only the particle (i.e. crystal or granule size) into account). At the end,
not only the correct amount of the agent in the product (i.e. the tablet) is important - the whole
dissolution behavior of the tablet is important - i.e. the agent has to be released after being exposed
to a biological ambient (the stomach) for a certain period of time. This dissolution behavior can only
be foretold, if the exact composition of the granules in the tablet is predicted. Maybe, an even more
detailed description of the particles, taking their shapes or composition out of primary agent crystals
with binder shells has to be made in order to describe this dissolution behavior exactly.

1.2 Unit Operations
The separation of the complex production process into single processes (or unit) operations, like
shown in Figure 1.1, allows to formulate the production process as the (potentially complex) interplay
of single units whose behavior is (more or less) clearly defined with its own models. Hence, dispersions
of particles in gaseous or liquid media are of the main interest of this thesis, a classification of unit

2



1.2. Unit Operations

operations is presented from the perspective, of how the properties of the dispersion i.e. the properties
of the single particles are altered. This perspective leads to the classification of unit operations into
chemical, thermal and particulate operations, as is exemplified in the following.

• Chemical processing: the chemical composition is changed.
One unit process can represent one chemical reaction as a processing step [15, 16]. During this
step, the chemical composition of the affected particles is changed. Examples are:

– reactions between different compounds
– chemical decomposition
– oxidation

• Thermal processing: the chemical composition remains unchanged, the disperse phase (i.e.
the particles) remain unchanged, too.
These unit operations may involve a change of the state of the matter, as long as the particulate
dispersion is not changed, examples are:

– heating or cooling
– melting of bulk matter

• Particulate processing: the chemical composition remains unchanged, the disperse phase is
(resp. the particle properties are) changed.
These unit operations encompass the traditional five mechanical processing steps as articulated
by [17] (the first five). Nowadays, 2 additional important particulate unit operations are con-
sidered [18], these are the last two on the following list of examples2:

– size enlargement (agglomeration)
– size reduction (comminution)
– storage and conveying
– separation
– mixing
– nucleation / crystallization
– drying or evaporation (of the dispersed particles)

Table 1.1 lists the relevant physical mechanisms for the particulate processing unit operations.
The agglomeration of particles can be enhanced due to the addition of the binder, whose nucleation,
growth and evaporation has to be taken into account. The breakage of single particles during the size
enlargement operation is thereby an unwanted side-effect of the process [19, 20, 21]. For the correct
description of the PSD, this side effect has to be considered for certain scenarios. In other cases, the
agglomeration is an unwanted side effect of milling of particles and has sometimes also to be taken
into account [22].

The mixing of particle streams is assumed to happen instantly in this work. This is the case, if the
typical time, which is needed to obtain a homogeneous mixture (e.g. miliseconds), is much shorter
than the characteristic times of the other considered processes (e.g. seconds or minutes).3

The population balance equation, as it will be introduced in the subsequent chapter 2, can be
used to capture all the unit operations in Table 1.1 by the rendering of the corresponding physical
mechanism, as it is listed in table 1.1. A discussion of conventional deterministic and stochastic (Monte
Carlo) solution strategies for the population balance equation and typical application scenarios is also
discussed there. Chapter 3 introduces the concepts of parallel programming methods for acceleration
of Monte Carlo simulations. And chapter 4 introduces a general solution framework based on parallel
Monte Carlo algorithms for the solution of problems like the one shown in Figure 1.1.

2In some classifications, the drying, evaporation and nucleation / crystallization of particles is also regarded as a
thermal process. Maybe the finer distinction in thermal particulate processes and mechanical particulate processes
would be more accurate.

3If such an assumption cannot be made, more complicated mixing models have to be applied. These models also
recur to simulations of transport, in which the considered unit would be separated into one mixed compartment (growing
in time) and two or more unmixed compartment (shrinking in time) and a particulate flow between the two [23, 24].
An alternative approach – using weighted Monte Carlo particles – would be the attachment of an additional particle
property: the mixing degree to each particle, which changes in time and has to be considered in the formulation of the
corresponding rates and kernels listed in Table 2.1. The mixing of particles, however, is described as “one of the oldest
and yet one of the least understood of the unit operations of process engineering” [16].
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1.2. Unit Operations

Table 1.1: Unit operations describing particulate processing with the population balance formalism
from chapter 2.

Unit Operation Mechanism Equation Section

size enlargement coagulation (primary mechanism) (2.2) 2.1.1.1
evtl. nucleation (of binder) (2.4) 2.1.1.3
evtl. growth/evaporation (of binder) (2.6) 2.1.1.4
evtl. breakage (unwanted side effect) (2.3) 2.1.1.2

size reduction breakage (primary mechanism) (2.3) 2.1.1.2
evtl. coagulation (unwanted side effect) (2.2) 2.1.1.1

conveying transport (2.10) 2.1.3
separation size (or other property) dependent transport (2.10) 2.1.3
mixing transport (mixed and unmixed compartments) − −

instantaneous homogeneous mixing (2.10) 2.1.3
drying evaporation (evtl. growth) (2.6) 2.1.1.4
crystallization nucleation (primary mechanism) (2.4) 2.1.1.3

evtl. growth/evaporation (2.6) 2.1.1.4
evtl. coagulation (2.2) 2.1.1.1

4



Chapter 2

The Population Balance Equation

The population balance equation (PBE) is applied in a very wide area of natural sciences and different
fields of engineering [25]. Some examples are: astrophysics (the formation of small planets or satellites
[26, 27]), medicine (the modeling of cancer cells [28] or cell growth in general [29]), environmental
sciences (particle formation in the atmosphere [30, 31], or sediment flocculation in marine environments
[32, 33]), even the modeling of sociological and political phenomena has been suggested recently [34].

In the field of chemical engineering, the PBE is often used to describe single apparatuses or
processes such as: milling [22, 35], crystallization (or precipitation) [36, 37, 38], drying [39], particle
production in aerosol reactors [9, 40], granulation in fluidized beds [19, 41] or in general [20, 6].

In the scope of this thesis, the PBE is applied to such diverse problems as particle formation due
to aggregation [Paper I] and [Paper II], decomposition of polymers [Paper III], particle formation in
aerosol reactors [Paper VI] or in systems mimicking atmospheric conditions [Paper IV]. But first, the
equation itself and some common solution strategies will be introduced.

2.1 Formulation of the Population Balance Equation

The main physical processes, which have to be considered in the flow sheet presented in Figure
1.1 are breakage, coagulation, condensational growth (resp. evaporation) and nucleation; as well as
particulate transport between the single units. The complex interplay between coagulation, nucleation,
growth (resp. evaporation), breakage and transport of particles can be formulated for each of these
units as a population balance equation (PBE) [42]. The PBE describes the temporal evolution of the
particle size distribution (PSD), n(v, t), where the integral term N(t) =

∫ v0+∆v
v0

n(v, t)dv denotes the
particle concentration (in units m−3) of all particles with the sizes v between v0 and v0 + ∆v. Where
v might also represent a vector with multiple components (like volume, binder content, etc..), in this
case the integration with respect to dv has to be taken with respect to each of these dimensions.

2.1.1 Mechanisms described by the PBE

In the following the equations will be presented for coagulation
(

dn(v,t)
dt

)
coag

, condensation / evapo-

ration
(

dn(v,t)
dt

)
growth

, nucleation
(

dn(v,t)
dt

)
nuc

and breakage
(

dn(v,t)
dt

)
break

. The modeling of all these
processes happening simultaneously can be achieved by simple addition of the presented equations as:

dn(v, t)
dt =

(
dn(v, t)

dt

)
coag

+
(

dn(v, t)
dt

)
growth

+
(

dn(v, t)
dt

)
nuc

+
(

dn(v, t)
dt

)
break

. (2.1)

The individual mechanisms are explained in the following sections.
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2.1. Formulation of the Population Balance Equation

2.1.1.1 Coagulation

(
dn(v, t)

dt

)
coag

= + 1
2

∫ v

0
β(v′, v − v′)n(v′, t)n(v − v′, t)dv′︸ ︷︷ ︸

coagulation birth term

(2.2)

− n(v, t)
∫ ∞

0
β(v, v′)n(v′, t)dv′︸ ︷︷ ︸

coagulation death term

.

The coagulation dynamic is described by the coagulation kernel β(v, v′) (in units (m3/s)). The
collision frequency per m3 (units 1/(m3 s)) between two particle species with the sizes v and v′ and
concentrations of N(v) and N(v′) (in units m−3) is given by: β(v, v′) ·N(v) ·N(v′). Eq. (2.2) assumes
that each collision of two particles with the sizes v and v′ leads to the formation of a novel particle
with the size v + v′. The coagulation birth term describes therefore the formation of novel particles
with the size v, resulting from the coagulation of all possible particle pairs with the sizes v − v′ and
v′ (the factor 1/2 prevents from double counting). The coagulation death term, on the other hand,
describes the depletion of particles with the size v due to their coagulation with particles of any other
size v′.

A wide range of coagulation kernels β have been suggested and its exact form depends on the
considered process. Examples of different kernels are given for granulation in [43], or aerosol processes
in [44, 45]. Table 2.1a summarizes all coagulation kernels used in this thesis.

2.1.1.2 Breakage

(
dn(v, t)

dt

)
break

= −b(v) · n(v, t)︸ ︷︷ ︸
breakage death term

+
∫ ∞
v

b(v′) · n(v′, t) · γ(v|v′)dv︸ ︷︷ ︸
breakage birth term

. (2.3)

The breakage of particles is described by the breakage rate b(v) (units 1/s) which is the rate at
which particles of size v break into smaller fragments, forming thus the breakage death term in Eq.
(2.3). The (number-based) breakage function γ(v|v′) (units m−3) allows to formulate the dimensionless
term γ(v|v′)dv which describes the number of particles (or fragments) of sizes between v and v + dv
resulting from the breakage of the (parent) particle of size v′. The integration over all possible parent
particle sizes v′ whose breakage may lead to new particles with the size v leads to the breakage birth
term in Eq. (2.3).

Several expressions for b and γ(v|v′) have been proposed for droplet breakage in liquid-liquid
dispersions [52], granulation processes [43] or grinding [53]. Two simple examples are shown in Table
2.1b.

2.1.1.3 Nucleation

(
dn(v, t)

dt

)
nuc

= + J(t) · δ(v − v∗(t)− vG)︸ ︷︷ ︸
nucleation

. (2.4)

The nucleation rate J(t) (units 1/(m3s)) describes the rate of formation of novel particles per
m3 into the simulated (reactor-)volume. The novel particles have the size v∗(t) + vG, δ describes
the delta-Dirac function. In the field of nucleation of aerosol nanoparticles, there exists a variety of
proposed theories for the forms of J (as well as v∗) [54], nucleation rates used for crystallization are
defined in [36, 37]. The nucleation theories for aerosols discussed in the results section of this thesis
are shown in Table 2.1c and resort to the following definition of the Kelvin volume v∗, resp. Kelvin
diameter d∗:

v∗ = π · (d∗)3

6 , d∗ = 4 · σ · vG

kB · T · ln(S) , S = NG/Ns , Ns = ps/(kB · T ) , (2.5)
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2.1. Formulation of the Population Balance Equation

Table 2.1: Coagulation kernels β, nucleation rates J , growth rates G, breakage rates b and breakage
functions γ.

(a) Definitions of kernels β for coagulation of particles with the volumes v and v′. βfm and βco are
discussed in [46].

Model Coagulation kernel β(v, v′) Unit of constant

Constant kernel βc = CC
c [CC

c ] = m3 s−1

Sum kernel βsum = CC
sum · (v + v′) [CC

sum] = s−1

Product kernel βprod = CC
prod · v · v′ [CC

prod] = m−3 s−1

Brownian motion:
βfm =

(
3

4π

)1/6
√

6kBT

ρp︸ ︷︷ ︸
CC

fm

√
1
v + 1

v′ ·
(
v1/3 + (v′)1/3

)2
[CC

fm] = m5/2 s−1free-molecule regime

Brownian motion:
βco = 2

3
kBT

η︸ ︷︷ ︸
CC

co

·
(
v1/3 + (v′)1/3

)
·
(
v−1/3 + (v′)−1/3

)
[CC

co] = m3 s−1continuum regime

(b) Examples for breakage rates b and functionsγ for breakage of parent particles with volume vP 
into fragments with volume vF. Solutions after [47] are listed in Table 2 of [Paper III].

Model Breakage rate b Breakage function γ Unit of constant

Linear binary breakage bl(vP) = CB
l · vP γB(vF|vP) = 2/vP [CB

l ] = m−3 s−1

Quadratic binary breakage bq(vP) = CB
q · v2

P γB(vF|vP) = 2/vP [CB
q ] = m−6 s−1

(c) Examples for nucleation rates J .

Model Nucleation rate J Unit of constant

Constant rate Jc = CN
c [CN

c ] = m−3 s−1

Courtney [48] Jcou(NG) = NG ·
√

2σ
π·mG

ps
kB·T · vG · exp

(
− 16·π·σ3·v2

G
3·k3

B·T 3·ln (S)2

)
−

Classic [49] Jcls(NG) = Jcou(NG) · S −
Girshick [50] Jgir(NG) = Jcou(NG) · exp

(
(36π)1/3 · σ · v2/3

G /(kB · T )
)

−

(d) Examples for growth rates G(v). Gfm describes spherical particles with v = πd3/6 in the free
molecule regime [46].

Model Growth rate G(v) Unit of constant

Constant Gc = CG
c [CG

c ] = m3 s−1

Linear Gl = v · CG
l [CG

l ] = s−1

Diameter independent Gd = v2/3 · CG
d [CG

d ] = m s−1

Free molecule (i), (ii) Gfm = πd2 · ps · vG√
2π ·mG · kB · T︸ ︷︷ ︸

CG
fm

(
S − exp

{
4 · σ · vG

kB · T · d

}
︸ ︷︷ ︸

Kelvin correction K(d)

)
[CG

fm] = m s−1

(i) This expression is a simplification of the more accurate formula (resulting from Eq. (B.9) in
combination with βfm):
Gfm,exact = π·(6/π)

2
3 ·vG·ps√

π·2·kB·T ·ρp
·
√

1
vG

+ 1
v ·
(
v

1
3
G + v

1
3

)2
·
(
S − exp

{
4·σ·vm

kB·T ·dp

})
.

The simplification shown in the Table is valid, if the particle volume is larger than the monomer
volume, i.e. v � vG. A discussion of the error can be found in [51].

(ii) In the case in which the Kelvin correction might be neglected (for large particles, if K(d) =
1), the free molecule growth model is equal to the diameter independent growth model with:
(36π)1/3 · (S − 1) · CG

fm = CG
d .
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2.1. Formulation of the Population Balance Equation

where S is the supersaturation and Ns the monomer concentration at vapor pressure ps.

2.1.1.4 Condensation and Evaporation(
dn(v, t)

dt

)
growth

= −∇v (G(v, t)n(v, t))︸ ︷︷ ︸
growth (G > 0) / evaporation (G < 0)

. (2.6)

The growth rate G(v, t) describes the change of the particle size due to condensation or evaporation
of single atoms or molecules forming the particle (or a compound of it). The evolution of the particle
size v due to the growth process could be described by a single discrete equation - given the absence
of other processes such as coagulation:

dv
dt = G(v, t) . (2.7)

The particles grow, if G(v, t) > 0 and evaporate for G(v, t) < 0. There exist several explicit functions
proposed for the growth rate G, see e.g. [55].

The concentration NG of atoms (or molecules) of the nucleating/condensing material is often
included into the modeling, because it directly affects the growth and nucleation rates (i.e. G =
G(v,NG, t) and J = J(NG, t)). A mass balance helps to model the depletion of these atoms (or
molecules) due to condensation or nucleation:

dNG

dt = −v
∗ + vG

vG
· J(NG, t)−

1
vG
·
∫ ∞

0
G(v, t)n(v, t)dv , (2.8)

where vG is the atomic (or molecule) volume of the nucleating/condensing substance and v∗ + vG
the volume of the nucleating particle.

2.1.2 Dynamic Kernels and Rates
The dynamic of the system is expressed through the kernels and rates describing the kinetics, which
are β in Eq. (2.2), b, γ in Eq. (2.3), J, v∗ in Eq. (2.4) and G in Eq. (2.6).

An example for one of these expressions is the coagulation kernel in the free-molecule regime (see
e.g. [44, 46]):

βfm =
(

3
4π

) 1
6
√

6kBT

ρp
·
√

1
v1

+ 1
v2
·
(
v

1
3
1 + v

1
3
2

)2
, (2.9)

where kB is the Boltzmann constant, the other variables in Eq. (2.9) can be separated into three
classes:

• Material variables: e.g. the density ρp,

• Process variables: e.g. the temperature T , particle concentration n(v)dv (changed via dilution),

• Particle properties: e.g. the size v.

The process variables can be changed and allow thus a certain level of control over the resulting particle
properties and thus the overall process. The explicit form of the rates and kernels β, G, J, v∗, b, γ
is, however, dependent on the particular process and several formulations have been proposed for
different fields [56, 57, 25]. The attribution of specific values for β, G, J, v∗, b, γ from experimental
data is termed ‘the inverse problem’ [57, 58, 59] - it is, however not clear how well the results from one
material class can be transferred to another and whether completely new measurements are necessary,
if the material system is changed. A second problem is the dependency of these parameters on the
properties v and the question, how many and which of these properties of the particle have to be taken
into account. The fractal dimension and number of primary particles of aerosol nanoparticles [60, 61]
or the wet-content and porosity in the context of granulation processes [62, 63, 21] are two examples.
The inverse problem becomes more complicated, if multiple particle properties are involved [63].

2.1.3 Accounting for Spatial Inhomogeneity
The Eqs. (2.2)-(2.6) model spatial homogeneous systems, which reflect relevant batch production
processes, like crystallization [64] or polymerization [65].
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2.2. Solution Methods

In the scope of a more general formulation [42, 66], the PSD is not only dependent on the particle
properties v (termed the ‘internal coordinates’), but also spacial coordinates, x, (termed ‘external
coordinates’) have to be taken into account: n(v;x). The dynamic can be considered in one dimension
(1D: x is a scalar), two dimensions (2D x is a vector consisting of two components) or three dimensions
(3D: x is a vector with three components). The dynamic variables β, G, J, v∗, b, γ can in turn
model spacial inhomogeneities as well, the coagulation kernel βfm could reflect for example an applied
temperature profile T (x) or a position dependent growth rate G(x) in a crystallizer could be modeled.
The necessity of additional modeling of the velocity xu of the particles as an external coordinate has
been proposed for the correct modeling of perpendicular particle jets [66] - resulting in the Boltzmann
equation [67, 68] instead of Eq. (2.2). Sometimes the addition of diffusion terms to Eq. (2.1) is also
proposed [69, 66, 70]. The explicit modeling of external coordinates is not used in this thesis. Instead,
spacial inhomogeneities are treated in the two following ways:

• The dynamic variables β, G, J, v∗, b, γ change in time, mimicking thus typical trajectories of a
small volume element through the simulated equipment. Such simulation approach is very well
suited for plug-flow reactors [71] or laminar flames [72, 73] - where the position of the simulated
volume can be transformed to a simulation time. More complicated, turbulent simulation con-
ditions can be treated by direct numerical simulations (DNS) or simplified computational fluid
dynamics (CFD) approaches, where Lagrange particle tracking is used to extract one or several
(weighted) paths from the simulations, providing thus the temporal evolution of the dynamic
variables for the PBE [37]. Steady state considerations allow the integration of such an approach
into flowsheet simulations [74].

• An interconnected network of Ncells compartments (or cells in combination with CFD) is simu-
lated. Each of these compartments has its own PSD, ni(v, t) and dynamic variables β(i), G(i),
J(i), v∗(i),b(i),γ(i). Particulate flows from compartment i to compartment j can be defined as
general functions Fi→j(ni(v, t)), with i, j = 1, . . . ,Ncells and i 6= j. This leads to the following
general set of Ncells coupled equations:

dni(v, t)
dt =

(
dni(v, t)

dt

)
coag

+
(

dni(v, t)
dt

)
growth

+
(

dni(v, t)
dt

)
nuc

+
(

dni(v, t)
dt

)
break

+
∑

all j with
out stream to i

Fj→i(nj(v, t))−
∑

all j with
in stream from i

Fi→j(ni(v, t)) . (2.10)

– The set of Eqs. (2.10) can be combined with CFD simulations, allowing thus to couple the
particle dynamics with the dynamics of the gas flow (see, e.g. [75, 76]). CFD simulations
typically require the modeling of a large amount of cells (ranging from ca. 10 000 [77] to
1 000 000 [78]).

– Due to the computational complexity of such a coupling, the modeling of homogeneous
zones of the simulated equipment is often applied, so that a low number of compartments
(typically 2 - 16) can be used to render the particle dynamics described by Eqs. (2.10). Such
a modeling can still capture spatial differences of single apparatuses, assuming for example
several homogeneous spray zones within a granulator [79, 80], different mixing zones within
a continuous stirred tank reactor (CSTR) [81], compartments for bioreactors [82] or multiple
homogeneous zones within an aerosol particle reactor [83, 84]. This approach also allows to
simulate the connections of diverse units like shown in Figure (1.1) by means of a flowsheet
simulation [85, 86, 11, 87].

2.2 Solution Methods

Despite the complexity of the integro-differential Eqs. (2.1)–(2.10), analytical solutions can be formu-
lated – for a few special cases, among them the famous solution of Smoluchowski from 1917 [88]. The
simplicity of the dynamics of the presented special cases limits the applicability of analytical solutions
to the modeling of relevant engineering problems. They pose, however, an important reference which
helps to test and validate newly developed techniques for the solution of the PBE (see e.g. [89, 90]).
Some examples are listed in Table 2.2 demonstrating the simplicity and thus limitations of possible
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2.2. Solution Methods

Table 2.2: Examples for particulate systems for which analytical solutions can be formulated.

Mechanism Kernel, rate or function Source
Coagulation Constant kernel βc [88]

Sum and the product kernel βprod, βsum [91]
Linear combinations of βc, βsum and βprod [92]

Breakage binary breakage γB with bl or bq [47]
Breakage and coagulation βc with γB and bl [93, 94, 95]
Transport and breakage monodisperse feed streams with γB and bl [96]
Growth constant or linear growth rates (Gc or Gl) [97]
Growth and coagulation Gl or Gc with βc or βsum [98]

application scenarios. The subsequent sections will introduce numerical solution methods for the ap-
proximation of a solution for the PBE which are applicable to a broad range of problems. These
approximations resort to 1) the simulation of the moments of the PSD (section 2.2.1 elaborates the
term), 2) discretization of all possible particle sizes into bins (section 2.2.2) and 3) stochastic methods
(section 2.2.3).

2.2.1 Method of Moments
Hulburt and Katz [99], the authors which where among the first (with [100] and [101]) to propose to
apply Equation (2.1) in order to describe industrial particulate processes, found that the formulation
of an explicit form of n(v) is too demanding and not feasible with the mathematics and computers
available at the time. They therefore suggested to regard the evolution of the n-th moment of the
distribution, µn, instead. The mathematical definition of a moment of a distribution is:

µn =
∫ ∞

0
vn · n(v) dv . (2.11)

The zeroth moment µ0 describes the total particle concentration, the first moment µ1 the total volume
concentration of the distribution, the ratio µ1/µ0 is the arithmetic mean volume, and the second
moment µ2 can be used to describe the variance1 given by: µ2/ µ0 − µ2

1 / µ
2
0.

One can formulate the equations describing the rate of change of the moments by multiplying Eq.
(2.2) with vn from both sides and integrating over the domain (0,∞) with respect to dv. Hulburt
and Katz obtain by applying this method the following system of equations given a size independent
coagulation kernel βc = CC

c in the absence of other processes [99]:

dµ0

dt = −1
2 · C

C
c · µ2

0 ,
dµ1

dt = 0 , dµ2

dt = +CC
c · µ2

1 . (2.12)

The term dµ1
dt = 0 states that there is no change of the total mass due to coagulation.

Thus the problem of estimating n(v) from the integro–differential Eq. (2.2) has been reduced to a
simple set of coupled ordinary differential Eqs. (2.12) for µ0, µ1 and µ2. This problem can be easily
solved with available numerical solvers. Such a simplification is - unfortunately - only possible because
of the simple form of the postulated coagulation kernel. The application of this method to a more
relevant coagulation kernel leads to the so called ‘closure problem’. For example, the following set of
equations results for the Brownian coagulation kernel in the continuum regime βco - in the absence of
other processes [102]:

dµ0

dt = −CC
co · µ2

0 − CC
co · µ 1

3
· µ− 1

3
,

dµ1

dt = 0, dµ2

dt = 2 · CC
co · µ2

1 + 2 · CC
co · µ 4

3
· µ 2

3
. (2.13)

Unlike Eq. (2.12), this set of Eqs. (2.13) contains unknown expressions µ 1
3
, µ− 1

3
, µ 2

3
, µ 4

3
, so that a

simple solution by application of a solver for differential equations is not possible.
Many methods (see e.g. [103]) have been proposed in order to obtain a closure for sets of differential

equations like Eqs. (2.13), among others:

• Assumption on PSD shape. Assuming n(v) to be distributed according to a log normal
1The variance of the distribution is defined as:

∫∞
0 (v − v)2 · n(v) dv / µ0 , with v =

∫∞
0 v · n(v) dv / µ0 = µ1 / µ0 .
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diameter / µm

Arcsine distribution

Pareto distribution

Triangular distribution

Log normal distribution

Figure 2.1: Exemplary PSDs with equal zeroth, first and second moments. The explicit definitions
of the functions n(d) are described in appendix A.1.

distribution allows to express all moments µx in terms of parameters which characterize the
log normal distribution [102]. This modeling has been often applied in aerosol sciences [104].
The assumption of a monodisperse distribution [105] (instead of a log normal one) can be also
interpreted as a branch of the method of moments.

• The quadrature method of moments (QMOM) [106, 107] approximates the integration
of Eq. (2.2) with respect to dv using an n−point Gaussian quadrature (see e.g. [108]).

• The direct quadrature method of moments (DQMOM) [109] goes even a step further
than QMOM and formulates instead of differential equations for the moments µi, differential
equations for weights and abscissas needed for the Gaussian quadrature.2

The simplicity of the resulting equations makes methods like QMOM or DQMOM very attractive for
simulations where detailed reactor structures and gas flows have to be taken into account. This is
mostly done by a coupling of the PBE model with computational fluid dynamics (CFD) simulations,
where the number of equations to be solved corresponds to the number of modeled cells times a small
number of equations for the moments (i.e. 3− 7 · Ncells), see e.g. [112, 113, 114, 115, 116].

Although the method has been validated on several test cases [110], it is not clear whether the
approximations done by the Gaussian quadrature are valid for a large range of applications. Some
concerns about the validity of the method have been reported lately for multi-phase flow simulations
[117] or for polymer degradation problems involving random scission [118].

The great disadvantage of the moment based methods is that the unequivocal reconstruction of
the PSD from a finite set of its moments is not possible. This is demonstrated in figure 2.1: all shown
distributions have equal moments µ0, µ1 and µ2, the explicit definitions of the PSDs and the values
of the moments are described in appendix A.1.

Several methods have been proposed for a possible reconstruction of the PSD [119]. It is now
generally agreed, however, that some theoretical or experimental insight on the form of the PSD is
needed prior to the reconstruction [120]. This might be the reason, why the chosen reconstruction
method depends on the specific application: different approaches are proposed for depolymerization
processes [121], pharmaceutical drying processes [122] or soot formation [123], to name a few.

Thus, the method of moments is a good choice when computational costs have to be kept to a
minimum (for example in combination with CFD simulations, e.g. [124]) and a good understanding

2The Gaussian quadrature approximates the integral expression
∫
vkn(v)dv ≈

∑
wi · vki n(vi) with the help of the

abscissas vi and weights wi. The finding of the correct values of the abscissas vi and weights wi poses a major problem
for QMOM, especially for multivariate problems. [109, 110, 111] Therefore, DQMOM treats instead the differential
equations for the moments, dµn

dt , differential equations for the abscissas and weights: dwi
dt and dvi

dt .
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Figure 2.2: The approximation of the PSD n(v, t) with piece-wise constant functions nl(t) (shown
in 2.2a) resulting in number concentrations Nl (shown in 2.2b) for each section l.

about the shape of the PSD is available prior to the simulation. The method is less applicable in
scenarios in which the shape of the PSD cannot be foretold, especially if its shape is crucial for the
overall process. For example, the separation-function of a sieve could lead to dramatically different
feed-back streams, depending on which of the functions from figure 2.1 is gained as a result of the
reconstruction.

2.2.2 Discretization Methods
The most simple discretization method is to allow only discrete volume values vm and integer multiples
of it (i.e v = vm, 2vm, 3vm, . . . ). Such a modeling would lead, however to a very small particle size
spectrum, which could be rendered: a relatively small particle range covering values from 1 nm to 10 nm
would already require 1 000 discrete points with the corresponding coupled differential equations for
each point.

As examples for more efficient discretization methods, the sectional, the discrete-sectional and the
pivot point method are presented in this section.

• Sectional methods [125] divide the continuous particle size spectrum v, into a finite number
of sections. The shape of the PSD n(v, t) is thereby assumed to take a specific form within the
section l. The most simple assumption is a constant distribution to the value n(v, t) = nl(t), for
val−1 ≤ v < val , like shown in Figure 2.2a.

• Discrete-sectional (DS) methods [126] combine the approach of few (e.g. 100) discrete
points for the smallest particle volumes (i.e v = vm, 2vm, 3vm, . . . ) with the continuous grids of
the sectional method for larger particle volumes.

• Pivot point methods render the PSD as a set of concentrations Nl for fixed [127] or moving
[128] particle sizes (termed ‘pivot points’). The PSD is thereby approximated by the values of
Nl at these specific points, as suggested by Figure 2.2b.

Both discretization techniques allow the transformation of the partial integro-differential (Eq.
(2.1)) to a more simplified set of coupled ordinary differential equations (ODEs) for the concentrations
Nl

3, with l = 1, . . . ,Nsec.

3Instead of the number concentration Nl (number-based model Ql(t) = Nl(t) =
∫ vl

vl−1
n(v, t)dv, like shown in Figure

2.2b), other, general properties Ql have been suggested in the scope of sectional methods [126], e. g. the volume
concentration (volume-based model Ql(t) = Vl(t) =

∫ vl

vl−1
v · n(v, t)dv).
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In the following two sections, the discretization of two mechanisms, 1) coagulation and 2) growth
will be presented in more detail.

2.2.2.1 Coagulation

The piece-wise integration of the PBE for coagulation (Eq. (2.2)) with respect to dv over single
sections l (i.e. v = val−1 . . . v

a
l ) leads to the set of equations described by Eq. (2.14):

(
dNl
dt

)
coag

=
∑
i

∑
k≤i

Ni ·Nk · βi,k→l −Nl ·
∑
k

Nk · βl,k→ for l = 1, 2, 3 . . .Nsec . (2.14)

The resulting equation is a PBE for coagulation in a discrete form with the modified coagulation
kernel βi,k→ for coagulation of particles from the sections i and k with each other. All possible
coagulations of particles A from section i (i.e. with vai−1 < vA ≤ vai ) with particles B from section k
(i.e. with vak−1 < vB ≤ vak ) resulting in particles within section l (i.e. with val−1 < vA + vB ≤ val ) are
described by βi,k→l. Many of the βi,k→l values can be determined to be zero prior to the integration,
simplifying thus the calculation [129]). The explicit values of βi,k→l and βi,k→ termed ‘collision
integrals’ in [126] are shown as Eq. (B.2) and Eq. (B.3) in appendix B.1.

The integrations necessary for the determination of βi,k→l might become computationally expensive
to calculate. Some approaches formulate ideal geometric grids (e.g. val+1/v

a
l = 2 [130] or val+1/v

a
l =

2κH [131]) and derive the factors βi,k→l from considerations that the development of the moments is
described correctly.

A much simpler approach was proposed by the group of Ramkrishna [127], which treated instead
of constant sections, discrete points, named ‘pivot points’ (or pivot elements). The coagulation of
two particles with the sizes of the pivot points i and j, with the volumes v•i and v•j leads to particles
with the size vnew = v•i + v•j . If there is no pivot point, which corresponds to the exact value, the
production rate of this new particle is divided between the two adjacent pivot points k and k + 1
with v•k < vnew ≤ v•k+1. The splitting is done in such a way that the total change of the number
concentration and the volume concentration due to the growth of the nodes k and k+1 is the same as
it would have been due to the production of novel particles with the size vnew. The relatively simple
expressions for βi,k→l are listed in appendix B.2.1 as Eq. (B.7) in more detail.

Vanni [132] compares these suggested approaches (together with another sectional method pro-
posed by [133]) for aggregation-breakage problems and finds that sectional methods [126, 125] as well
as fixed pivot methods are able to produce the most reliable results and favors the fixed pivot approach
[127] due to its simplicity.

The main characteristic of these methods is, that the accuracy of the results is dependent on the
number of used sections or pivot points [132, Paper I], allowing thus to simply increase the accuracy
by applying a finer grid at the cost of additional computational resources and especially computing
time.

2.2.2.2 Growth and Numerical Diffusion

One way to include condensational growth into a pivot point method is to model the monomers in the
gaseous phase as first pivot points, as proposed by [134], which leads to the following set of equations
for positive growth rates (G(v•j ) > 0):(

dNj
dt

)
growth

= −
G(v•j ) ·Nj
v•j+1 − v•j

+
G(v•j−1) ·Nj−1

v•j − v•j−1
, (2.15)

where v•j are the volumes and Nj the corresponding concentrations of the j-th pivot points, j =
2 . . . (NPP − 1). The closure of these equations (Eq. (B.17) for j = 1 and Eq. (B.16) for j = NPP) as
well as the modeling of evaporation are presented in appendix B.2.2. It should be noted, that these
equations correspond to the application of a first order upwind scheme [135], if an equidistant grid is
used, i.e. vj+1 − vj = ∆v for all j. The term ‘finite differences’ is used, if the particle concentration is
considered at single (pivot) points (see. e.g. [136, 137]). The term ‘finite volume’ describes a variant
of Eq. (2.15) for sections (see e.g. [138, 139]). Thereby, the values for G(v•j ) in Eq. (2.15) have to be
replaced with results of integration over single sections j, G(vaj ).
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Figure 2.3: The PSDs resulting for a diameter independent growth rate dd
dt = 10µm s−1 in combina-

tion with the set of Eqs. (2.15). The explicit simulation conditions are summarized in appendix A.2.

One of the main problems encountered in the application of discretization methods for the simula-
tion of condensational growth is the phenomenon of ‘numerical diffusion’ [140]. Figure 2.3 shows the
artificial broadening of the PSD due to numerical diffusion for an exemplary simulation of a constant
growth rate.

Many methods have been proposed in order to avoid the numerical diffusion, the three following
approaches seem to be mostly used:

• Anti diffusion terms and flux limiters. The application of the Lax-Wendroff method [141]
for finite differences and for finite volumes methods [138, 139] introduces an anti-diffusion term
to the set of equations (2.15). This leads to spurious oscillations in some relevant test cases
[142], so that the additional application of flux limiters (i.e. functions which mitigate the effects
of the anti diffusion terms) becomes necessary [138, 139, 142]. Different formulation for the flux
limiter have been proposed [143, 144], so that some might perform better for certain simulation
conditions than others.

• Finite elements methods (FEM) pose an alternative approach, where the PSD n(v) is
approximated for each section l, as a linear combination of p Lagrange polynomials ψil (i =
1 . . . p), so that:

n(v, t) ≈
p∑
i=1

ψil(v) · nil(t) for: vl−1 ≤ v < vl . (2.16)

Weighted residual statements are formed by multiplying the PBE (2.1) with a weight function
φ(v) and integrating over the domain (val−1, v

a
l ) of each section (also called ‘element’ in the

framework of the FEM). This procedure leads to p coupled differential equations (e = 1 . . . p)
for the values for the factors nel (t) for each element l - instead of only one equation for each
section like in the finite volume/differences approach (2.14) and (2.15). In order to obtain these
equations, specific functions φ(v) have to be formulated, mostly in form of: φ =

∑
φlk(v), if

val−1 ≤ v < val . The use of B-splines as φlk(v) is reported to lead to oscillations [145], the
collocation approach defines φlk(v) to be delta-Dirac functions [146] and Galerkin formulations
use φlk(v) to be Lagrange polynomials (like ψlk(v)) [146, 147]. These formulations are reported
not to exhibit numerical diffusion but to be computational costly for time-dependent coagulation
kernels and multidimensional problems [29]. Furthermore, additional adjustments have to be
made in order to cover discontinuities or singularities of the PSD, which are typically encountered
in nucleation processes [59].
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• Moving grid techniques have been proposed for sectional methods [148, 149] by allowing the
section boundaries to change their position val according to the corresponding growth rates,
G(val ), i.e. dval

dt = G(val ) . The combination of these approaches with aggregation processes is
generally deemed to be difficult [150]. Aggregation and breakage processes can be integrated
for moving pivot point grids [128] and combined with particulate growth [97]. This approach
as applied for the modeling of soot formation in plug flow reactors [71] or TiO2 formation in
aerosol reactors [151].

2.2.2.3 Discretization Methods: Applications and Modeling of Spatial Inhomogeneities

The main advantage of discretization methods is that no assumptions on the shape of the PSD have to
be made and that the accuracy of the method can be increased by an increase of simulated sections (see
e.g. [132]). The main drawback of the method is that it is only applicable to a relatively low number
of particle properties. The resulting integral expressions for multiple dimensions are complicated [152,
153] and they become even more complicated if strategies to counter numerical diffusion are employed
like flux limiters [154, 137] or finite element formulations [155]. The application of moving grids
complicates the modeling of particle transport between CFD mesh cells, as the grids of two adjacent
mesh cells may have completely different forms.

The main limiting factor, however, is the vast number of resulting differential equations. If, for
example, 100 sections are used to represent each dimension, a number of 1002 = 10 000 coupled
differential equations results for two dimensional problems, while 1003 = 1 000 000 coupled differential
equations would result for three dimensional problems – this type of problem is no more feasible within
acceptable computing times with modern day desktop computers.

Sectional methods are thus very effective, if only one or two particle properties are of interest and
if growth due to condensation or evaporation of the particles can be neglected. They are integrated
in flowsheet simulation software like Parsival [156, 157] or DynSim [11] – the combination of different
sectional methods for different unit operations is often applied in this context [157, 11].

In the context of CFD simulations, the number of sections is limited by the large amount of mesh
cells (ranging from ca. 10 000 [77] to 1 000 000 [78] cells). In a typical Euler-Euler approach, the
transport of each section l is modeled as an individual phase of the gas, so that typical numbers of
sections range between 12 [75] and 30 [76] – while simulations of exemplary flowsheet processes (with
a relatively low number of 3 units) make more detailed grid-layouts consisting of more than 1000
sections possible [87]. Some application examples encompass the simulation of bubble columns [75,
158], crystallization reactors [76] or nanoparticle formation via the aerosol route [159].

2.2.3 Monte Carlo Methods
The usage of stochastic methods for the solution of scientific problems can be traced back to the
18th century and Bouffon’s needle problem. Laplace suggested that the inherent randomness of the
location and orientation of thrown needles could be used to approximate a value for the mathematical
constant π [160]. Following this approach, few experiments were carried out in the 19th century, which
– indeed – yielded very crude approximations for π [161].

The term ‘Monte Carlo’ (MC) originated in the mid 20th century [162] and refers to the renowned
casino in Monaco and the gambling habits of Stanislaw Ulam’s uncle [163]. Building upon the pi-
oneering works of Enrico Fermi and John von Neumann, the authors Stanislaw Ulam and Nicholas
Metropolis suggested in 1949 [162, 163] the usage of computing machines for the generation of random
numbers.4 These random numbers allow, in turn, to obtain a stochastic solution of the Boltzmann
equation of gases. The authors note, that their statistic method is applicable to a wide range of
problems which “occur in various branches of the natural sciences” [162].

This prediction should prove to be correct, nowadays the MC method can be found in such diverse
fields as biomedicine (modeling of light transport through tissues [164]), computer graphics (ray
tracing, i.e. solutions of the render equation [165, 166]), semiconductor device fabrication (modeling
of electron transport and scattering [167, 168]) and many more. This leads to a broad variety of
suggested methods [169].

All these simulation approaches have in common that the produced results depend upon the specific
sequence of used random numbers. Different random number sequences lead to different simulation

4The ‘random numbers’ were generated by deterministic algorithms, mimicking randomness. The resulting numbers,
however, were deemed to be enough ‘random’ for the intended applications.
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scenario 1 scenario 2 scenario 3 mean coagulation
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Figure 2.4: Exemplary paths of particles undergoing Brownian motion and the relation to the mean
coagulation rate.

results. This stochastic noise makes the repetition of the same simulation with different random
number sequences necessary in order to provide a confidence interval as a measure for the accuracy of
the gained results.

In the following, the specific application of MC to the solution of the coagulation equation Eq.
(2.2) will be sketched. Further solution strategies for breakage, nucleation, transport, growth and
evaporation will be discussed in chapter 4 of this thesis.

2.2.3.1 Monte Carlo Simulation of Coagulation

In the scope of the direct simulation Monte Carlo method [89], the PSD n(v, t) is rendered by discrete
particles. Figure 2.4 shows exemplary Brownian motions of aerosol particles leading to collisions and
thus coagulation. The exact paths depend on the initial positions and velocities of the particles as
well as every single gas molecule of the carrier gas. Changes in these initial conditions lead to different
paths of the particles and thus different times t(col) for a collision to take place. Analogous to the
approach by Boltzmann to calculate the velocity distribution of single gas molecules of a gas as well
as the free mean path (see e.g. [170, 171]), the means of statistical physics can be applied in order
to calculate the mean collision times, t(col), by averaging over all possible situations [172, 173]. For
more complex particulate structures, atomistic molecular dynamics simulations might be performed,
in order to extract the value of t(col) [174, 175, 176].

The collision frequency 1 / t(col), or coagulation rate Ri,j , for particles i and j with concentration
Ni and Nj and volume (or general property) vi and vj defines the coagulation kernel β(vi, vj) via:

Ri,j = Vsys ·Ni ·Nj · β(vi, vj) = 1 / t(col) , (2.17)

where Vsys is the considered system volume. This mean collision frequency subsumes all possible
initial positions and velocities, so that the computational expensive tracking of the exact paths of
single particles is no longer necessary in the formulation of the PBE for coagulation (2.2).

The same idea is applied by the MC simulation: a finite number of particles is simulated by storing
the properties of each of these particles on the computer.

In the scope of conventional (non-weighted) modeling, one MC particle represents one real particle
in a small, representative system volume, Vsys (i.e. both particles represent the same concentration
Wi = Wj = WMC = 1/Vsys). The rate of coagulation between each of the MC particles i and j is
therefore given by:

Ri,j = β(vi, vj)/Vsys . (2.18)

If particles coagulate with each other, the particle properties are changed accordingly: one particle
is removed from the simulation and the other particle contains now the properties of the particle
resulting from the coagulation. For example, if the coagulation of droplet spheres is simulated with
the volumes v1 and v2, the volume of the new droplet sphere resulting from the coagulation would be
vnew = v1 +v2. Figure 2.5 sketches the main idea of successive changes of the particle population after
successive time steps ∆t. This kind of modeling makes the method very suitable for the simulation of
multiple particle properties: it is only necessary to store all these properties for each of the particles on
the computer and update them accordingly after each coagulation. Another advantage of this approach
is, that the particles assume their sizes or compositions as described by the simulated dynamics and
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������

Figure 2.5: Successive changes of a particle population at the beginning and after one, two and n
MC steps.

no a priori knowledge is needed on the form of the PSD. Such a priori knowledge might be otherwise
necessary, in order to set up an adequate grid for discretization methods or reconstruct the PSD from
moment methods.

There are two main simulation approaches for the decision whether particles coagulate within a
time frame ∆t:

• Time-driven methods. It is considered in this approach, see e.g. [177, 178], that each possible
particle pair i, j may possibly coagulate within a freely chosen time step ∆t. The corresponding
coagulation rate Ri,j is interpreted as the rate of a Poisson process and it has to be checked for
each possible pair, whether this pair coagulates (smart bookkeeping methods [179] might reduce
the vast number of all possible checks but are less applicable if the MC simulation is coupled
with other processes). Usually, one uniformly distributed random number r ∈ (0, 1) is generated
and particles coagulate, if

r < 1− exp(−∆t ·Ri,j) . (2.19)

The advantage of this approach is that the time step can be set variably. A reasonable time step
should be provided, however, because a too small time step would lead to too many unnecessary
comparisons and a too large time step leads to errors [178].

• Event-driven methods. The rate at which any coagulation happens is given by the sum of all
possible coagulation rates:

∑
all i>j Ri,j . This defines the mean time at which one coagulation

event happens [180], also termed ‘the interval of quiescence’ [181]:

∆τMC = 1/
∑

all i>j
Ri,j . (2.20)

The deduction of which coagulation pair coagulated during this time frame is done by modeling
the probability of each particle pair for coagulation to be proportional to its coagulation rate
[182]:

Pi,j = Ri,j/
∑

all i>j
Ri,j . (2.21)

After the pair (i, j) has been selected and coagulated, the rates for coagulation of the novel MC
particle and the remaining MC particle population, Ri,j , change and with it changes the time
step ∆τMC in Eq. (2.20). Several of these coagulation steps are performed in this approach to
simulate the desired time ∆t.
Although this approach offers the advantage of an optimal time step for every condition, it leads
to some complications, if a smaller time step ∆t < ∆τMC is needed (e.g. due to combination
with other processes). A solution strategy for this problem has been developed in the scope of
this thesis and will be presented in section 4.2.1.

The strategy with which the particle pair for coagulation is determined according to Eq. (2.21) can
be grouped into two classes, so that event-driven methods can be subsumed into:

• Inverse selection methods. In the scope of this approach, one uniformly distributed random
number r ∈ (0, 1) is generated. The cumulative sum of all possible coagulation probabilities is
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used to determine the coagulation pair [89, 183]. If, for example three particles (1, 2, 3) are
simulated, there are only three possible coagulation pairs with the corresponding coagulation
probabilities P1,2, P1,3 and P2,3. So that:

if, r ≤ P1,2 ⇒ the pair (1, 2) is chosen,
if P1,2 < r ≤ P1,2 + P1,3 ⇒ the pair (1, 3) is chosen,

if P1,2 + P1,3 < r ≤ P1,2 + P1,3 + P2,3 = 1 ⇒ the pair (2, 3) is chosen.

The calculation of these cumulative sums can become very expensive as there exist N 2
MC−NMC

possible coagulation pairs, if NMC MC particles are simulated. Special bookkeeping strategies
which store and update the cumulative sums in an efficient way have to be applied [179].

• Acceptance-Rejection (AR) selection methods. In the scope of this approach [182], two
particles i and j are selected randomly by two uniformly distributed random numbers. A third
uniformly distributed random number r ∈ (0, 1) is used to decide whether to accept the selected
pair or not. The pair is selected if the random number is smaller than the selection probability
PARi,j :

r < (PAR
i,j ) = Ri,j/Rmax , (2.22)

where Rmax is the maximum of all possible values for Ri,j . If the random number is larger than
PAR
i,j , than a new pair of particles is randomly selected and condition (2.22) is checked again.

Thereby a large number of iterations might be required in order to find a pair for coagulation.

The computation of Rmax and ∆τMC is generally expensive: N 2
MC −NMC pairs have to be calculated

for the simulation based on NMC MC particles in order to obtain exact values. There are generally
two ways to reduce the complexity of this calculation: 1) majorant kernel approaches in combination
with fictitious jumps[184, 185] and 2) the usage of a population sample from which Rmax and ∆τMC
is approximated [183, 186]. The latter approach is used for the works presented in this thesis - and
presented in more detail in section 3.2.

The second problem encountered in the description of the coagulation by MC particles is the deple-
tion of the MC particles due to coagulation, hence each coagulation event is rendered by introducing
one novel particle, which replaces two existing particles, as it is shown in Figure 2.5. The following
three approaches are mostly used to treat this problem.

• Topping up [177]. If the number of MC particles reaches a critical value (e.g. 500), the existing
particles are copied (resulting in 1000 particles) and the simulated system volume Vsys is doubled.

• Constant number Monte Carlo (CNMC) [187, 180, 188, 189]. In this approach, one
randomly selected particle is copied after each coagulation event. The simulated system volume
Vsys has to be adjusted in such a way that the total mass concentrationM of all particles does not
change due to the copy operation (i.e. M (old)/V

(old)
sys = M (new)/V

(new)
sys , where the superscripts

(old) and (new) refer to the system before and after the copy operation).

• Weighted simulation particles [184, 185, 190]. Both above mentioned techniques apply the
same statistical weight, WMC = 1/Vsys, for all simulated MC particles5. The PSD is thereby
approximated by:

n(v) ≈
NMC∑
i=1

WMC ·
1
Uv
· δ
(
v − vi
Uv

)
, (2.23)

where δ is the Dirac-δ function, Uv an arbitrary normalization unit (e.g Uv = 1 m3) and vi the
volume of the i-th MC particle. MC schemes based on weighted particles attach an additional
property to each particle i: the statistical weight Wi. In the scope of this modeling, the PSD is
approximated by:

n(v) ≈
NMC∑
i=1

Wi ·
1
Uv
· δ
(
v − vi
Uv

)
. (2.24)

5This statistical weight changes in the course of the simulation, namely each time a topping-up is performed (the
doubling of the system volume Vsys leads to: W (new)

MC = W
(old)
MC /2) or during every time step in the scope of Matsoukas’

constant number scheme (here: W (new)
MC = W

(old)
MC · V (old)

sys /V
(new)

sys ).
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The coagulation of two weighted particles is realized by the change of statistical weights and
all other particle properties of both particles (or only for one particle [185]). This avoids the
depletion of MC particles and makes constant number schemes possible, as it is described in
section 4.1 in more detail.

2.2.3.2 MC Methods: Applications and Modeling of Spatial Inhomogeneities

The main advantage of MC methods is that multiple particle properties can be covered and abso-
lutely no a priori knowledge about the PSD is needed. This makes this method the only possible
choice if complex particle morphologies have to be taken into account (for example crystallization in
batch conditions [191] or TiO2 formation in flame processes [192]) or multiple properties describe the
particulate dynamics (e.g. during fluidized bed spray drying [62] or granulation [193]).

Compartmental MC methods are often applied and can be found in the modeling of industrial re-
actors [83, 84], multiphase loop reactors [194], polymerization and gelation [195], granulation processes
[196] or reactor networks in general [197].

Long computing times are the main drawback of MC simulations, making a full CFD-PBE coupling
costly: The computation time of 47 h (10 h, if a parallel computing cluster with 11 nodes is applied)
for the simulation of only 400 cells and 200 000 MC particles (i.e. 500 MC particles per each cell) has
been reported [198]. Such a coupling is however, necessary to model the interaction of the particle
population with the gas phase [199, 200].

A two step methodology has been proposed by [192]: in a first step a numerically efficient moment
based method is used for a coupled CFD-PBE simulation, taking thus the particle gas-phase coupling
into account. In a subsequent second step, Lagrangian tracking of a volume element is applied to
provide simulation conditions for a detailed MC simulation allowing thus the prediction of complex
particle morphologies.

2.3 Summary
This chapter describes the PBE and shows the range of applications in the field of chemical engi-
neering. Specific solution strategies such as the method of moments, discretization methods and MC
methods are briefly outlined. The application of these methods for the modeling of reactor networks
in combination with CFD simulations has been assessed. It has been found, that while the moment
method is the computationally most efficient method, the reconstruction of the PSDs is not unequivo-
cally possible, which might pose a problem for flowsheet simulations with sieve units. The application
of discretization methods is computationally more costly but the formulation of the flow equations
between compartments or CFD cells is very simple (if non-moving grids are applied). The main lim-
itation of this method is the very low number (2-3) of particle properties it can capture. The MC
methods are able to capture a large number of particle properties (even 1000 is computationally feasi-
ble for smaller compartment networks, i.e. less than 100 compartments). The introduction of different
statistical weights to each MC particle facilitates the modeling of particulate transport between single
compartments or CFD cells. The main drawback of the MC method is a high computation time. The
reduction of the computation time due to the application of Graphic Processing Units (GPUs) as well
as the development of more efficient, weighted MC particle-based methods for single processes like
coagulation, nucleation, growth, breakage and transport are the main topics treated in the subsequent
chapters of this thesis.
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Chapter 3

Parallel Computing for MC-PBE
Modeling

The programming of graphic processing units (GPUs) is one alternative approach for parallelization in
contrast to the programming of several central processor units (CPU) of larger computing clusters (see
e.g. [198]). The main advantage of the GPU is the sheer computing power for a relatively low price.
For example, a RTX 2080 Ti (sold since 09/2018) costs ca. 700 e(in the year 2022) and consists of
68 parallel streaming multiprocessors (SMs) [201]. Each of these SMs can perform up to 1024 parallel
instructions, so that a total of up to 68×1048 = 69 632 instructions (called ‘threads’) can be executed
in parallel.

The application of GPUs for the acceleration of numerical solutions of the PBE poses thus an
interesting possibility and different strategies have been proposed for the acceleration of the method
of moments [202], discretization methods [203, 87] and MC methods [184, 204, 183].

Many toolkits for different programming languages have been developed, allowing the direct pro-
gramming of GPUs (e.g. openCL [205], openACC [206]). In the following section 3.1 a quick overview
of the Compute Unified Device Architecture (CUDA) programming language [207, 208] - an extension
to C++ [209] - is given1. The second section 3.2 of this chapter sketches some parallelization strategies
for the acceleration of MC simulations.

3.1 GPU Architecture and Programming
The SM of a GPU consists of several vector processors (see e.g. [210]) which can perform 32 arithmetic
operations in parallel2. The hardware associated with the processing of one operation is given the
marketing name ‘CUDA core’ [211].

Figure 3.1 depicts the relation of the CUDA cores to the processed data. The CUDA cores operate
on registers of the Multiprocessors which are grouped in so called warps (another Nvidia marketing
name), each warp represents 32 execution threads. In Figure 3.1, only 4 vector processors (or 4 x
32 CUDA cores) are present in each SM, while 64 warps (à 32 execution threads) are arranged for
execution3. The single vector processor can access registers from different warps (depicted as ‘context
switch’). If an arithmetic operation consists of many stages, instruction pipelining is used, so that
data of different warps is handled at different stages simultaneously.

The threads can access the local registers of each warp and the local memory of each SM - these
accesses are very fast compared to an access to values stored in the main memory of the GPU.

Due to the architecture shown in Figure 3.1, the programmer has to arrange the intended parallel
threads into so called ‘blocks’ (up to 231 − 1 ≈ 2.15 · 109). Each block consists of up to 1024 threads
(or 32 warps) and is executed on one SM - in this way all threads within a block can access local
shared variables and can be synchronized (i.e. forced to stop at a specific point of the code). The
number of blocks which can be launched on one SM depends on the executed kernel, more specifically:
on the amount of needed local memory, the number of needed registers and the number of requested

1The presented programming strategies could also be implemented with the OpenCL programming language[205].
This approach is not discussed in this thesis.

2The 32 operations are divided in 2 pipelines, each processing 16 elements in parallel.
3This example describes a GTX 980 Ti. The SMs of the RTX 2080 Ti, for example, contain each only 2 x 32 CUDA

cores and allow the parallel execution of only 1024 threads (or 32 x 32 warps).
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Figure 3.1: Simplified scheme of the components of a GPU and memory access patterns. The
number shows the maximal possible number of warps per SM for a GTX 980 Ti.

threads per block. For this reason, different blocks may be launched on different SMs and therefore
no synchronization between threads in different blocks is possible. If the programmed kernel requests
too many resources (e.g. one block requires more memory than a SM can provide), an error will be
issued at run-time and the program has to be terminated.

An exemplary instruction dispatch using CUDA is shown in Algorithm 1, the last line invokes the
parallel execution of a kernel with the name TestKernel. The variable Block_No defines the number
of blocks and Thread_No the number of threads which will be used, these are set up by the <�<�< , >�>�>
notation syntax. The shown code requests therefore the invocation of 5 984 blocks, each consisting of
256 parallel threads. Assuming that the kernel is so simple that all threads of a SM (2048 (for the
GTX 980 Ti) or 1024 (for the RTX 2080 Ti)) can be used for the computation leads to the situation
where each SM can process 8 blocks (GTX 980 Ti) resp. 4 blocks (RTX 2080 Ti). Thus, the RTX
2080 Ti (with 68 SM) would need to loop the requested instructions 5 984 / (4× 68) = 22 times, while
a GTX 980 Ti (with only 22 SM) would need to loop the requested instructions 5 984 / (8× 22) = 34
times.

Algorithm 1 Function call of a predefined CUDA-kernel TestKernel shown as Algorithm 2.
float* d_input; // pointer to GPU array containing input data
float* d_output; // pointer to GPU array containing output data
... // Allocation of GPU memory for d_input and d_output not shown
int Block_No = 5984;
int Thread_No = 256;.
TestKernel <�<�< Block_No, Thread_No >�>�> (d_input, d_output);

An exemplary code for the GPU kernel TestKernel is shown in Algorithm 2. The simple calcula-
tion y = x2+10 is carried out, where y refers to each element of d_output arrays and x to the elements
of the d_input arrays stored in the main memory of the GPU. Each of the launched threads performs
the same calculation on a different element of the data following the single instruction multiple data
(SIMD) paradigm. The element is defined by its array index and accessed by the index variable.

Each launched block has a unique identification number and each thread within a block has also a
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3.1. GPU Architecture and Programming

Algorithm 2 The keyword __global__ declares the shown routine to be executed as a CUDA-kernel
on the GPU.
__global__ void TestKernel(float* d_input, float* d_output) {

int index = threadIdx.x + blockIdx.x * blockDim.x ;
d_output[index] = d_input[index]*d_input[index] + 10;

}

Table 3.1: Variables used for the calculation of the index of elements in the d_input and d_output
array in algorithm 2. The specific values of Thread_No and Block_No are passed to the kernel in the
last line of algorithm 1.

Symbol Variable name Range Description

Tid threadIdx.x 0 . . . (Thread_No −1) unique ID for each thread within a block
Bid blockIdx.x 0 . . . (Block_No −1) unique ID for each block
Bdim blockDim.x Thread_No (one value) total number of threads per block
Gdim gridDim.x Block_No (one value) total number of launched blocks

unique number. This allows the calculation of a unique index value for each possible (block, thread)
pair as it is shown in the second line of Algorithm 2. The variables used for the calculation are
described in Table 3.1 in more detail.

The arrays d_input and d_output are passed to the routine TestKernel and it is the respon-
sibility of the programmer to make sure that these pointers point to valid addresses on the GPU.
The programmer has also to ensure that enough memory has been allocated, so that the accesses
dispatched by the TestKernel routine do not lead to run-time errors (i.e. segmentation faults).
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Figure 3.2: Typical running times (mean of 10 runs) for Algorithm 2 run on a GPU (GTX 980 Ti)
compared to a serial CPU (Intel i7-4790K) implementation (Algorithm 3), as well as the data transfer
times between GPU and CPU memory. A constant Thread_No of 256 has been used, while Block_No
has been varied.

Figure 3.2 shows a comparison of run-times of the parallel algorithms (Algorithms 1 and 2) to the
serial CPU implementation using a simple for-loop (shown as Algorithm 3). It can be seen in Figure
3.2 that for relatively low numbers of processed elements (i.e. < 7 000) the CPU computation is much
faster. The CPU times scale linearly with the number of processed elements. The GPU computing
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3.2. Parallel Algorithms for Coagulation of MC Particles

times show also a linear scaling for values greater than 2 · 105, however, the computing times are
nearly 100 times smaller than the CPU computation times. It can also be seen that the copies of the
calculated values from GPU memory to the CPU are more costly than the simple calculation. For
this reason, the application of a GPU is advantageous for applications for which the copy operations
between CPU and GPU can be kept to a minimum, forming only a small fraction of the overall
computing times. This is the case in the presented algorithms in the following, where - disregarded
from copying a few integer values for algorithmic control purposes - the CPU-GPU copy is only used
to initiate the particle properties at the beginning of the simulation and export the particle properties
to files at 20-100 specific simulation time points for further post-simulation analysis.

Algorithm 3 The serialized version of Algorithm 2 with arrays output and input allocated on CPU
main memory.
for(int index = 0; index < Block_No * Thread_No; index++) {

output[index] = input[index] * input[index] + 10;
}

3.2 Parallel Algorithms for Coagulation of MC Particles
Parallel strategies have been proposed for the MC based simulation of coagulation using the inverse
method [183] and the acceptance rejection (AR) method [204], both methods have been briefly outlined
in section 2.2.3.1 on page 17. A more detailed implementation of the GPU-based AR method is
shown in Figure 3.3. The shown algorithm selects 256 (this is the used number of threads per block)
random MC particle pairs (i, j) in parallel and calculates the corresponding coagulation rates Ri,j .
A pair will be chosen for coagulation, if a uniformly distributed random number (URN) r satisfies
the condition r < Ri,j/Rmax, as stated in Eq. (2.22). By performing all of these checks in parallel,
a significant speed-up is gained compared to a serial loop implementation where 200 iteration would
be needed in the statistical mean in order to find a coagulation pair (if χ = 200 is used). The second
advantage of the presented algorithm is that the randomly selected coagulation pairs can be used as
a representative population sample, allowing the parallel addition (as in Figure 3.3 and discussed for
example in Chapter 39 of [212] for prefix sums) of Ri,j for the fast approximation of ∆τMC (introduced
in Eq. (2.20)) via:

∆τMC = 1∑
all i>j Ri,j

≈ 2 · Nsample

NMC · (NMC − 1) ·Rsum
, with: Rsum =

∑
all pairs (i,j)

in sample

Ri,j , (3.1)

where Nsample is the size of the selected sample and NMC is the number of all simulation particles -
thus (NMC · (NMC − 1))/2 is the number of all possible coagulation pairs. The sample size Nsample,
as well as Rsum increase each time an unsuccessful selection attempt has been performed. This leads
to more accurate values for Rsum and thus for ∆τMC due to larger sample sizes. The values are reset
to zero if a new coagulation pair is found, in this way the algorithm adjusts to the novel coagulation
dynamics.

The maximum possible coagulation rate, Rmax, can be approximated with the help of a constant
safety factor χ:4

Rmax ≈ χ ·Rsum/Nsample . (3.2)

It could be shown that the parallel implementation of the AR method shown in Figure 3.3 is 20–40
times faster (depending on the number of used simulation particles) than the CPU version [213]. The
advantage of handling of thousands of cells in a parallel fashion (by simply launching the algorithm
in Figure 3.3 for 1000 blocks in parallel) is also pointed out in [213].

4For coagulation scenarios, χ has been reported to be sufficient to be set to constant values between 40 and 200 [204,
186]. For more demanding simulation scenarios values of 10 000 are necessary to obtain accurate results [Paper I] .
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Figure 3.3: A GPU algorithm for the event-driven AR-based MC simulation as described in [204].
Uniformly distributed random numbers (URN) ri ∈ (0, 1) are used.
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Chapter 4

Parallel Simulation Techniques for
Weighted MC Particles

The main motivation for the usage of weighted MC particles is the ability to model simulation condi-
tions in which two particle populations A and B interact and both populations differ in their particle
number concentrations in several orders of magnitude. The populations A and B might also describe
typical particles in different zones of a reactor or different apparatuses of a flowsheet simulation.

Let for example species A describe freshly nucleated particles of a size of around 3 nm with a total 
concentration of 1011 cm−3 and species B represent a background particle population (intended to 
be coated with the newly nucleated particles A) with sizes of the magnitude of 100 nm and a total 
concentration of 106 cm−3. If each MC particle would represent the same number of real particles per 
m3, WMC, than WMC would at least to be chosen to be 104 cm−3 (or 105 cm−3) in order to render 
at least 100 (or 1000) particles of the population B. One might argue that this low number of MC 
particles is insufficient to describe the behavior of the population B correctly, but even this very 
low number would entail 107 (or 108) MC particles representing the population A. Such a detailed 
representation of population A is 1) not necessary and 2) computationally extremely expensive. If, on 
the other hand, each MC particle i is assigned an individual statistical weight Wi, both populations 
A and B can be modeled with as many or as few MC particles, as it is deemed necessary. Such a 
modeling has already been briefly mentioned in section 2.2.3.1; the difference of the approximation of 
the PSDs by weighted and non-weighted MC particles is described by Eq. (2.23) and Eq. (2.24).

The assignment of a specific statistical weight to each MC particle combined with the application
of parallel computing (by means of a GPU) allows the development of novel strategies for particulate
processes. These techniques can be combined for the general solution of the PBE for a network of
compartments (Eq. (2.10)). Where each compartment represents a unit of a flowsheet, like the one
shown in Figure 1.1. Thereby, the single processes can be separated for short periods of time, ∆t,
leading to the following general algorithm:

1. Initiate initial tsim = 0, tend and ∆t.

2. As long as tsim < tend do:

(a) For each unit(or compartment) U :
i. If coagulation has to be considered in unit U :

• Perform one (or several, if ∆t > ∆τUMC) coagulation step(s) for weighted simulation
particles (section 4.1) in combination with parallel algorithm from section 3.2.

• If a fractional time step is needed (e.g.: if ∆t < ∆τUMC), use the fractional time
steps from section 4.2.

• Store intrinsic time step ∆τUMC.
ii. If breakage of particles has to be considered in unit U :

• Perform parallel breakage algorithm for time ∆t from section 4.3.
• Store intrinsic time step ∆τUB .

iii. If nucleation without condensation/evaporation has to be considered in unit U :
• Apply the method for nucleation in section 4.5 for a time step ∆t, based on the

merging of particles from section 4.4.

27



4.1. Constant Number Schemes for Coagulation of Weighted MC Particles

iv. If condensation/evaporation without nucleation has to be considered in unit U :
• Apply the method for growth and evaporation in section 4.7.1 for a time step ∆t,

detailed in section E.1.
• Store intrinsic time step ∆tini,U

RK .
v. If nucleation and condensation/evaporation have to be considered in unit U :

• Apply the algorithm for the growth, evaporation and nucleation from section 4.7.3
for a time step ∆t, detailed in section E.2. This algorithm uses the method for
nucleation in section 4.5, based on the merging of particles from section 4.4.

• Store intrinsic time step ∆tini,U
RK .

(b) Simulate particle transport for time ∆t between compartments (or units) U , using method-
ology from section 4.6.1 based on merging of particles from section 4.4. Provide intrinsic
transport time step ∆τTr.

(c) Increase time tsim = tsim + ∆t.
(d) Estimate new time step ∆t. For example: ∆t = minall U (∆τUMC,∆τUB ,∆t

ini,U
RK ,∆τTr).

3. Export results and end simulation.

The order of execution of the single algorithmic steps 2(a), 2(b) and 2(a)i - 2(a)v is rather arbitrary.
The difference of the results between an algorithm performing step 2(b) first and then step 2(a) and
the one which is shown (step 2(a) first and then 2(b)) could provide an approximation of the error
introduced due to the operator splitting technique. It is expected to become smaller, the smaller ∆t
is chosen, at the cost of increasing computing times. Such complex simulations are, however beyond
the scope of this thesis. The main topics are, however, the formulation and validation of each of the
single components of this algorithm. Table 4.1 summarizes the mechanisms treated in the following
sections in connection with the publications in which more detailed information can be found.

Table 4.1: Publications introducing the novel algorithms for mechanisms discussed in the following
sections. The additional results can not be found in the listed papers.

Section Mechanism Publications Additional results

4.1 Coagulation [Paper I] Method comparison (Figure 4.3)
SWA derived from SR (appendix C)

4.2 Coagulation [Paper II] –
4.3 Breakage [Paper III] –
4.4 Merging [Paper I] –
4.5 Nucleation [Paper I] Random Merging (Figure 4.9)
4.6 Transport [Paper V],[Paper VIII] Stochastic outflow (Figure 4.11)
4.7 Growth/Evap., [Paper IV],[Paper V], Validation (Figures 4.12–4.16)

Nucleation, [Paper VI],[Paper VII] RK Implementation (appendix E)
Coagulation Pivot point method (appendix B.2)

4.1 Constant Number Schemes for Coagulation of Weighted
MC Particles

The coagulation of weighted simulation particles (i and j) poses a fundamental problem, hence one 
has to devise a rule, of how a particle population represented by a concentration of e.g. Wi = 108 cm−3 

real particles (stored as MC particle i) interacts with another particle population represented by a 
concentration of e.g. Wj = 1010 cm−3 (stored as MC particle j). The more complicated mathematical 
concepts offer, on the other hand, the opportunity to formulate constant number schemes and avoid 
thus the necessity of continuous topping-up schemes or rescalings of the simulation volumes – as briefly 
discussed at the end of section 2.2.3.1.
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4.1. Constant Number Schemes for Coagulation of Weighted MC Particles

4.1.1 Multi Monte Carlo (mMC) and Stochastic Weighted Algorithm (SWA)

Some approaches express the statistical weight as a function of the particle property. The mass
flow algorithm (MFA) [214], for example, allows only statistical weights Wi for which the volume-
concentration of each particle i (with volume vi) remains constant throughout the simulation, i.e.
vi ·Wi = const. This approach might be useful for certain particle production processes, but might
be less applicable for simulation scenarios in which different particle populations representing vastly
different mass-concentrations are mixed.

One early formulation using individual weightsWi which are absolutely independent on the particle
properties was the multi-Monte Carlo (mMC) formulation [215, 216]. This scheme provided a modified
coagulation rate RmMC

i,j and rules, how to adjust the statistical weights Wi and Wj of the particles
with the volumes vi and vj , if selected for coagulation, Table 4.2 summarizes these values. Note,
that the coagulation rates RmMC

i,j (as well as the resulting novel particle properties) differ, dependent
upon, whether the coagulation pair (i, j) or (j, i) has been selected for coagulation. The rates and new
properties provided by Table 4.2, can be used in combination with the already described methods for
the MC simulation for coagulation in sections 2.2.3.1 and 3.2 simply by using the expression RmMC

(resp. RSWA) instead of R and changing the particle volumes and weights accordingly to Table 4.2.

Table 4.2: Coagulation rates for coagulation of weighted MC particles i and j (where βi,j is the
coagulation kernel). The particle weightsW (new)

i , W
(new)
j and volumes v(new)

i , v
(new)
j after coagulation

of particles with weights Wi,Wj and volumes vi, vj before coagulation. αi,j has to satisfy condition
(4.1), suggested choices by [185] are shown in Table 4.3.

Method Coagulation rate W
(new)
i v

(new)
i W

(new)
j v

(new)
j

mMC [215] RmMC
i,j = Wj · βi,j Wi/2 vi + vj Wj vj

SWA [185] RSWA
i,j = Wj · βi,j αi,j ·Wi vi + vj Wj vj

A family of stochastic weighted algorithms (SWA) was introduced by [185] (also summarized in
Table 4.2), the authors could show that the thus defined jump processes converge towards the expected
solutions, if αi,j is chosen in the following way:

αi,j + αj,i = 1 . (4.1)

The authors noted, that the specific choice of αi,j could be also an arbitrary function H(i) (resp.
H(j)) dependent on the properties of the considered particle i (resp. j). Table 4.3 lists the explicit
choices for αi,j introduced by [185].

Table 4.3: Different settings for αi,j as published in [185]. The function H(i) may be any function
depending on the properties of particle i, the formulation H(i) = 1/Wi is used in the following –
implying thus: SWA1 = SWA3.

SWA1 / MFA 1 SWA2 / mMC SWA3 / SWA1 2 SWA4

αi,j
Wj

(Wi+Wj)
1
2

H(i)
H(i)+H(j)

√
WiH(i)√

WiH(i)+
√
WjH(j)

Despite a rigorous proof of the convergence of SWA2 [185], high noise levels remain an often
lamented, inherent feature of this method [217]. Another disadvantage of all the methods presented
in Table 4.2 is that the total volume concentration of all particles is not preserved exactly, but only in
the statistical mean – except in the special case in which all particles satisfy vi ·Wi = const – SWA1
is equivalent to MFA then.

1The SWA1 is equivalent to MFA only, if all particles represent the same volume concentration at the beginning of
the simulation i.e. vi ·Wi = V0 for all i. It is in this case: αi,j = Wj/(Wi +Wj) = vi/(vi + vj), one can see the volume
conservation by inserting αi,j into the expression for W (new)

i in Table 4.2, which results in W (new)
i · v(new)

i = vi ·Wi.
2If the function H(i) = 1/Wi is used in combination with vi ·Wi = const., then SWA3 is equivalent to SWA1 and

MFA.
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4.1. Constant Number Schemes for Coagulation of Weighted MC Particles

4.1.2 Fictitious Particle (FP) Theory and Stochastic Resolution (SR)

The fictitious particle (FP) theory [190] represents an elegant, volume preserving, coagulation scheme,
as it is presented in Figure 4.1, but poses a somewhat cumbersome derivation of the corresponding
coagulation rates. Especially the resulting asymmetric coagulation rates for the same event (depending
on, whether particle i coagulates with particle j or vice versa) is conceptually difficult to comprehend3.

split into 2  
    

case 2:

case 1:

coagulation    

coagulation    

Figure 4.1: Coagulation scheme for weighted particles proposed by [190].

The scheme depicted in Figure 4.1 comprises two cases. If both particles are equally weighted (case
1), then a coagulation scheme as described for equally weighted particles can be applied, resulting
in only one particle. This MC particle can be split up into two existing MC particles with half of
the original weight, so that the same population is rendered by two simulation particles again. The
second case shown in Figure 4.1 is more complicated: here only a part (Wmin) of all particles repre-
sented by the particle with Wmax undergo the coagulation with the particle population represented
by Wmin. Resulting in a particle population with the statistical weight of Wmin and the properties
after coagulation vmin + vmax. While the particles representing a statistical weight of Wmax −Wmin
do not participate in the coagulation at all. How can one formulate or derive the process rate for such
a process?

The concept of stochastic resolution (SR) has been introduced in [Paper I], the idea is to consider
a different system volume Vsys for each coagulation pair (i, j). The size of the chosen system volume
can be considered as a stochastic resolution (called 1/sF in [Paper I]): the larger the value for Vsys, the
more details of the PSD can be captured.

The system volume Vsys is changed in such a way, that the concentrationWmin translates to exactly
one particle of the Wmin–species, and Wmin/Wmax of the Wmax–species:

Vsys = 1/WMC = 1/Wmin . (4.2)

In this situation, the only one Wmin–species particle undergoes a coagulation with one of the other
particles, while Wmin/Wmax− 1 of the Wmax–species remain unchanged. This situation is sketched in
Figure 4.2.

coagulation    

Reinterpret as two differently 

weighted MC particles  

Interpret as equally weighted

MC particles with 

Figure 4.2: The reinterpretation of differently weighted MC particles as equally weighted particles
helps to calculate the coagulation rates for a constant number scheme as suggested in [Paper I].

3The asymmetric rates described in Table 4.2 are on the other hand justified, hence the coagulation of the pair (i, j)
leads to different W (new)

i ,W
(new)
j , v

(new)
i and v(new)

j than the coagulation of the pair (j, i).
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4.1. Constant Number Schemes for Coagulation of Weighted MC Particles

The derivation of the coagulation rate of this process is documented in section 2.2 in [Paper I] 
and written in comparison to the fictitious particle theory in Table 4.4. The SR theory formulates 
rates for each coagulation event - independent on whether particle i coagulates with j or vice versa, 
the summation of all coagulation rates is therefore only over all pairs (i, j) with i > j. In the scope
of the FP, in contrast, the rate Rfp

i,j has to be interpreted as probability that particle i undergoes a
coagulation with j, and the rate Rfp

j,i has to be interpreted as probability that particle j undergoes
a coagulation with i, and the overall event-rate for the coagulation of the pair (i, j) is assumed to
be the mean of both rates (Rfp

i,j +Rfp
j,i)/2, which is the expression used for the time step calculation,

where the summation is performed over all pairs (i, j) with i 6= j. Hence (Rfp
i,j +Rfp

j,i)/2 = Rsr
i,j , both

methods lead to the same results. The description of the previously introduced SWA by SR can be
found in appendix C.

Table 4.4: Coagulation rates and calculation of the time-steps ∆τMC for different weighted particle
theories.

Coagulation rate Time step

Fictitious particle (FP) [190] Rfp
i,j = 2βi,jWj ·max(Wi,Wj)/(Wi +Wj) 2/

∑
i6=j R

fp
i,j

Stochastic resolution (SR) [Paper I] Rsr
i,j = βi,j ·max(Wi,Wj) 1/

∑
i>j R

sr
i,j

4.1.3 Comparison and Validation of Constant Number Schemes
The presented methods in Table 4.2 and Table 4.4 are compared with each other and Matsoukas’
constant number scheme (CNMC, described on page 18) for equally weighted MC particles [180]4
in the following. The parallel algorithm presented in section 3.2 (the coagulation rates βi,j between
particles i and j have to be replaced with βsr

i,j) is used for this purpose. As test case, the coagulation in
the free-molecule regime of a monodisperse particle population is considered, as described in appendix
A.3. The results are shown in dependency to the characteristic time τfm defined in Eq. (A.10).
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(a) PSDs after t = 1000 τfm.
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(b) Noise in number concentration.

Figure 4.3: Comparison of different methods for coagulation of NMC = 104 weighted simulation
particles under the conditions summarized in appendix A.3. N is defined in (D.3) and ∆N in (D.4).

Figure 4.3a shows that all simulation techniques are able to reproduce the PSD correctly by compar-
ison to the discrete-sectional method (DS). The statistical noise resulting from different (quasi-)random

4The Markov jump technique [184] is similar to CNMC in the case of equally weighted simulation particles at the
beginning of the simulation.
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4.2. Fractional MC Time Steps for Coagulation

number sequences is, on the other hand, starkly dependent on the applied simulation technique. These
noise levels can be quantified by the ratio of the arithmetical mean of all number concentrations N
(defined in Eq. (D.3)) compared to the arithmetical standard deviation ∆N (defined in Eq. (D.4))
of 100 different quasi-random number sequences (and thus 100 different particle populations) for each
simulation technique. Lower ratios ∆N/N allow more precise estimations (i.e. smaller confidence in-
tervals) of the number concentration, this is elaborated a little more further in appendix D.1. Figure
4.3b shows the values ∆N/N for different simulation techniques, it can be seen that the SR based
levels are even a little bit lower than the CNMC levels and much lower than those of the SWA tech-
niques. Similar findings can be made for the values ∆dg/dg, ∆σg/σg or for the ratio of the mean to
the standard deviation of the concentration within single bins of a PSDs (only the mean values are
shown in Figure 4.3a).

Table 4.5: Noise levels after t = 1000 τfm, required computation times and number of MC steps for
the simulation conditions summarized in appendix A.3.

NMC = 103 particles NMC = 104 particles

Method Accuracy Number of MC Computing Accuracy Number of MC Computing
∆N/N steps / 1000 time /sec ∆N/N steps / 1000 time /sec

SR 0.011 13.1 7.46 0.0040 130.7 114.4
SWA1/3 0.039 21.4 13.26 0.0128 214.4 160.0
SWA2 0.187 21.4 13.48 0.0653 213.0 163.4
SWA4 0.043 21.4 13.26 0.0163 214.4 162.6
CNMC 0.016 9.7 5.78 0.0052 97.1 99.1

Table 4.5 compares the required computation times (an NVIDIA GTX 980 Ti has been used)
and necessary number of MC steps with the gained accuracy for different simulation techniques and
number of simulation particles. It can be seen, that the SR based simulation is able to assure levels of
accuracy for 103 MC particles, which the SWA techniques are only able to attain if 104 particles are
used – at the cost of much higher computation times, hence ten times more MC steps are required
for this kind of simulation. The large difference in noise levels between SR and SWA algorithms is
explained in appendix C.

4.2 Fractional MC Time Steps for Coagulation

Many application scenarios require a combination of the coagulation process with other mechanisms
like nucleation, growth, breakage or transport as introduced in section 2.1. Approaches, which treat
all of these processes in a stochastic way formulate for each particle probabilities for surface growth,
breakage or transport (see e.g. [188]). Such formulations might prove computationally very costly and
alternative approaches, which couple the stochastic simulation of coagulation with deterministically
modeled surface processes (see e.g. [218, 219]) might not only prove to be computationally more
effective, but also to produce less statistical noise – hence only one of many mechanisms is treated
stochastically. In the scope of operator splitting techniques, the single mechanisms are decoupled for
short periods of time, ∆t. The method leads to errors if ∆t is chosen to be too large and is less
effective if ∆t is too small. The stochastic simulation for coagulation should be therefore able, to
simulate any desired time step ∆t. This can be easily done by time-driven MC approaches which are,
however, computationally less effective than event-driven methods as discussed in section 2.2.3.1 on
page 17.

In order to be able to use the parallel algorithm discussed in section 3.2 in an operator-splitting
approach, the algorithm has to be modified in such a way, that also time steps ∆t which are smaller
than the intrinsically approximated MC time step ∆τMC (Eq. (3.1)) are treated correctly. In the
following section 4.2.1, the concept of ‘fractional MC time steps’ introduced in [Paper II] will be
briefly sketched. It is also shown in section 4.2.2 that this methodology is necessary in order to
simulate accurate results, which alternative approaches, like [198], are not able to reproduce.
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Figure 4.4: Simulation results of coagulation for conditions listed in section 3 in [Paper II].  N is 
defined in (D.3) and ∆N in (D.4).

4.2.1 Concept of Fractional MC Time Steps
The main idea of the concept of ‘fractional MC time steps’, is to consider the event-driven time
step, ∆τMC , as a time frame during which the coagulation of the selected particle pair (i, j) would
take place. If a smaller time step, ∆τs, has to be simulated, than there are only two possibilities:
1) the selected particle pair has already coagulated during ∆τs, or 2) no coagulation took place at
all. This situation can be modeled with the conditional probability Pi,j(∆τs|∆τMC), which states the
probability that the coagulation of the particles takes place within ∆τs, under the condition that the
particles coagulate for sure within a larger time frame ∆τMC.

If Pi,j (∆τs|∆τMC) is known, a random number r can be used to decide, whether 1) the particles 
coagulate (if r < Pi,j (∆τs|∆τMC)) or 2) no coagulation took place (if r ≥  Pi,j (∆τs|∆τMC)). The full 
algorithm is depicted in Figure 2 in [Paper II]. There, in section 2.1, the rule of Bayes is applied for the 
derivation of Pi,j (∆τs|∆τMC). The result is:

Pi,j(∆τs|∆τMC) ≈ ∆τs/∆τMC . (4.3)

4.2.2 Validation of the Methodology and Stochastic Accuracy
In order to test the influence of the fractional time steps, the simulation of coagulation of a particle
population was forced to stop each time the simulation time increased by an interval tstop. For
tstop = 10−3 s, a total simulation time of 51.8 seconds translates to 51 800 artificial stops or necessary
fractional MC steps. The PSDs resulting from such a simulation are shown in Figure 4.4a. It can be
seen, that the application of fractional MC time steps marked as ’fractional steps‘ is able to reproduce
the benchmark results gained by the discrete-sectional method [126] with grid settings as in [Paper
II]. It can also be seen, that the following two approaches are not able to reproduce the simulation
results:

1. No step: the chosen pair for coagulation is not coagulated, if the simulation time surpasses a
time point for an artificial stop5. This corresponds to the setting Pi,j(∆τs|∆τMC) = 0 instead
of Eq. (4.3).

5This approach has been applied in the context of a coupling to a CFD simulation [198], where the CFD simulation
provided the external time frame.
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2. Full step: the chosen pair for coagulation is coagulated, if the simulation time surpasses a time
point for an artificial stop. This corresponds to the setting Pi,j(∆τs|∆τMC) = 1 instead of Eq.
(4.3).

Increasing the number of forced stops (i.e. reducing tstop) leads also to the same level of accurate 
reproduction of the PSDs for fractional time steps (see Figure 4 for tstop = 10−5 s), it leads, however, to 
deviations for other methods (see Figure 5 for the ’no step‘ scenario, τTR in the Paper corresponds to 
tstop).

Hence random numbers are used to model the probability defined in Eq. (4.3), additional stochastic
noise is introduced to the simulation by introduction of artificial stops. This is shown in Figure 4.4b,
where a slight increase of noise levels (Eq. (D.3) and Eq. (D.4) define N and ∆N) for the simulations
with artificial stops – compared to simulations without artificial stops (meaning simple simulation of
coagulation with tstop = tend = 51.8 s) – can be seen. The noise levels are, however, controllable
by the number of applied simulation particles, NMC. The increase is of the same magnitude as the
difference between the Methods SWR and CNMC shown in Figure 4.3b.

4.3 Breakage of Weighted MC Particles
The main problem in the MC based description of particle breakage is the vast increase of particle
numbers during the simulation. In a typical milling process, particles might be ground from 500µm
to 5µm. This means that each initial particle of the size of 500µm is replaced by ca. 106 particles
with the sizes of around 5µm at the end of the simulation – simply due to the conversation of mass.
In order to be still able to simulate this process, early MC simulations resorted to the binning of
particle sizes and counting the number of particles in each bin (or section) [220, 221, 222]. Such an
approach has the main disadvantage of sectional methods, already discussed in section 2.2.2, namely
the limitation to only 2-3 particle properties which can be tracked with discretization methods.

4.3.1 Constant Number Schemes for Particle Breakage
The application of weighted simulation particles allows new modeling techniques for the breakage
process: the merging of the resulting fragments [216] has been suggested, this is shown in Figure 4.5:
a weighted MC parent particle with the statistical weight WP and volume vP breaks into two equal
fragments with the volumes vF. Because both fragments are equal, they can be stored as one weighted
MC particle with the statistical weight WF = 2 ·WP. As a consequence no novel particles have to be
introduced into the simulation and the parent particle becomes the fragment.

store as

Figure 4.5: The breakage of a parent MC particle with the statistical weight WP and volume vP
into two equal fragments (with WF and vF).

In the majority of realistic applications, however, the resulting fragments will have different volumes
and more advanced merging strategies have to be applied for the resulting fragment distributions,
one possible approach will be shown in section 4.6.1.3. Due to the computational intensity of such
approaches, especially in cases where the breakage of one particle might result in e.g. 100 different
fragment sizes, the stochastic determination of only one possible fragment volume has been suggested
in the literature [79, 223].

4.3.1.1 Volume Based (VB) Selection Scheme

The MFA for coagulation has been extended by [223] to treat continuous breakage functions, γ(vF|vP).
The fragment properties, vF, are thereby selected according to the probability density function (PDF)
fVB(vF|vP) in Table 4.6, where the properties of the parent particle, vP, are used. Once the new
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Table 4.6: Definition of different methods for the selection of fragment sizes vF after the breakage
of a parent particle with the statistical weight WP and volume vP.

Selection method PDF for selection of vF Statistical weight WF(vF, vP)

Volume based (VB) [223] fVB = γ(vF|vP) · vF/vP WP · vP/vF

Number based (NB) [79] fNB = γ(vF|vP)/B(vP) (i) WP ·B(vP)
General [Paper III] fGen(vF|vP) WP · γ(vF|vP)/fGen(vF|vP)
Low volume (LV) [Paper III] fLV = (C max(vF, vlim))−1 (ii) WP · γ(vF|vP)C max(vF, vlim)

(i) The function B(vP) is defined in Eq. (4.4).
(ii) The constant ‘cut-off volume’ vlim is needed for the normalization of fLV. It is used in the

following:  vlim = 10 −11 v0  (with the initial volume v0).  The constant  C  - written  as C(vP) in 
[Paper III] - is defined in Eq. (14).

fragment volume vF is estimated, the statistical weight, WF, of the fragment is calculated using
the statistical weight of the parent WP, like listed for VB in Table 4.6. It can be seen that the
volume-concentration rendered by one MC particle is conversed during breakage for this scheme, i.e.
vP ·WP = vF ·WF.

4.3.1.2 Number Based (NB) Selection Scheme

The formalism of the MFA was extended by [79], the authors introduced a whole class of breakage
schemes based on fragmentation weight transfer functions (FWTF) - one of these schemes is listed as
NB in Table 4.6. The term B(vP) describes the number of all fragments6 resulting from the breakage
of one parent particle with the volume vP:

B(vP) =
∫ vP

0
γ(vF|vP)dvF . (4.4)

The NB scheme does not conserve the mass of the single particle during breakage (i.e. vP ·WP 6=
vF·WF), but it ascribes the correct increase B(vP) of the number concentration for each single breakage
event – independently on the selected fragment volume vF.

4.3.1.3 General Formulation for Selection Schemes

Both mentioned schemes VB and NB are not able to reproduce the smallest fractions of fragmented
particles for continuous breakage functions – as shown in section 4.3.3. In order to be able to sketch
even the smallest fragments resulting from breakage a novel approach has been introduced in [Paper
III].

This approach is based on the consideration that the fragment properties, vF, can be chosen
independently of the breakage function, γ(vF|vP), purely based on any possible PDF, fGen(vF|vP)7

– as long as the statistical weights of the resulting fragments, WF, are corrected accordingly. If a
large number N break

mc (e.g. 100) MC particles with identical volumes vP and weights WP and a total
number concentration of W tot

P = WP · N break
mc would break, the resulting fragment volumes would be

distributed – in the statistical mean – like the PSD nres:

nres(vF) = N break
mc · fGen(vF|vP) ·WF(vF|vP) , (4.5)

where WF(vF|vP) is a function describing which statistical weight needs to be set, depending on the
selected fragment volume, vF. The exact PSD nexact of fragments is given by γ(vF|vP), it is :

nexact(vF) = W tot
P · γ(vF|vP) . (4.6)

6One can reinterpret the formalism which was introduced by [79] for binary breakage only (B(vP) = 2), easily for a
broader class of problems (i.e. B(vP) > 2), as it is done here.

7The function fGen(vF|vP) describes for each possible parent volume vP a PDF for the selection of vF, the only
three constraints on the function are: 1.)

∫ vP
0 fGen(vF|vP) = 1, 2.) fGen(vF|vP) ≥ 0 , and 3.) fGen(vF|vP) > 0 if

γ(vF|vP) > 0 .
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Setting now Eq. (4.5) equal to Eq. (4.6) leads to an expression for WF(vF|vP) for any possible 
PDF fGen(vF|vP) - this result is written as general formulation in Table 4.6. This selection method 
encompasses much more possible schemes as the suggested FWTF methodology by [79], as it is 
discussed in Appendix A of [Paper III]. The proposed low volume selection (LV) in Table 4.6 and the 
combined schemes further below can not be formulated with the FWTF formalism.

4.3.1.4 Low Volume (LV) Selection Scheme and Combination of Schemes

In order to capture the smallest fragments resulting from breakage, the PDF fLV can be set pro-
portional to (vF)−1 - at least for the interesting particle sizes, hence a ‘cut-off’ value vlim is needed
for the PDF normalization condition. This does not mean, that sizes vF < vlim are excluded from
consideration, but are selected independent on their size instead of proportionally to (vF)−1. It will
be shown in the results section 4.3.3 that this approach is able to reproduce a much more detailed
PSD at the beginning stages of the simulation, than the VB and NB methods.

4.3.1.5 Combination of Schemes NB-LV and VB-LV

The LV method, however, is not able to reproduce the correct results for longer simulation times (as
shown in section 4.3.3). For this reason, the combination of schemes has been introduced in [Paper
III], it is based on the idea that two different PDFs fVB (resp. fNB) and fLV can be simply combined
to a new PDF fVB−LV (resp. fNB−LV) with the help of a constant Υ:

fVB−LV(vF|vP) = Υ · fVB + (1−Υ) · fLV,

resp.: fNB−LV(vF|vP) = Υ · fNB + (1−Υ) · fLV, with: 0 < Υ < 1 . (4.7)

The statistical weights WF can be calculated for the selected fragment volume vF using the general
rule in Table 4.6:

WF(vF, vP) = WP · γ(vF|vP)/fVB−LV(vF|vP)
resp.: WF(vF, vP) = WP · γ(vF|vP)/fNB−LV(vF|vP) . (4.8)

It will be shown in the results section 4.3.3, that such a modeling is indeed able to reproduce the
whole PSD also for longer simulation times, but first a parallel implementation of these methodologies
will be briefly sketched.

4.3.2 Time-Driven GPU-Implementation
In contrast to the coagulation of particles, time-driven algorithms are a suitable choice for the simu-
lation of (pure) particle breakage. This is because all breakage events can be considered to happen
independently from each other. Figure 4.6 shows an exemplary parallel algorithm, performing the
following steps:

1. The maximal breakage rate is calculated using a parallel comparison algorithm, similar to the
parallel sum algorithm discussed in Figure 3.3. For the calculation of the time step, ∆τMC, the
tuning factor, αT, is used. It is set to a value of 0.1 for the simulations shown in the following
section.

2. For the decision, whether a particle breaks within ∆τMC, Eq. (2.20) is implemented, where the
coagulation rates βi,j are replaced by the breakage rates of single particles, b(vi).

3. If the particle is selected for breakage, then

(a) its new volume is selected according to the PDF fGen(vF, vP). A simple AR algorithm8 is
used for this purpose marked as ‘AR vF,.. selection’ in Figure 4.6.

(b) The newly generated fragment volume vF is used for the calculation of the new statistical
weight of the particle, WF, according to the formula in Table 4.6, resp in Eq. (4.8).

8The shown algorithm works very well for NB and VB schemes. However, the implementation of the LV scheme (or 
combinations of it) in this simple AR-scheme leads to extremely large computing times. The reason for this and the 
generation of non-uniformly distributed random numbers as a remedy are discussed in section 3.2.2 in [Paper III].
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Figure 4.6: Parallel algorithm for MC simulation of particle breakage as described in [Paper III].
Uniformly distributed random numbers (URN) ∈ (0, 1) are used.

4.3.3 Validation
It can be seen in Figure 4.7 that the LV scheme is able to render the full particle size spectrum at the
beginning of the simulation, for longer simulation times, however the PSDs start to deviate from the
analytic solutions. The introduced combination schemes, however, are able to reproduce the PSDs
correctly, even for longer simulation times. It can also be seen, that the VB combinations are more
accurate than the NB schemes. Higher fractions Υ of the VB (respectively NB) in the combination
with the LV lead to a higher precision at the cost of less MC particles rendering smaller particle
sizes. It could be shown recently that the errors are correlated to inaccuracies of the total volume
concentration of the MC particles [CoPaper I] – the volume loss of the system could thus be used to
devise an adaptive algorithm which adjusts the value for Υ automatically.

4.4 Merging of Weighted MC Particles
Both, the simulation of nucleation and of particulate transport lead to a situation, where novel particles
have to be inserted into the simulation, on the one hand. On the other hand, only a finite number of
MC particles can be stored in the memory. This problem is mostly solved by the removal of randomly
selected particles – based on constant number schemes [180, 189, 188]. The simulation volume (resp.
the statistical weights of all particles) is thereby adjusted in such a way, that the total mass (resp.
volume) concentration of the MC particle population does not change due to the removal. In some
cases, the subsequent removal of randomly selected particles increases the noise levels to such high
values, that the produced results become unreliable - as it is shown for the nucleation in section 4.5 and
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Figure 4.7: PSDs resulting from simulation conditions described as ‘Case 1’ (γB and bl) in [Paper 
III], section 4. The analytic solution from [47] is listed in Table 2.

the transport in section 4.6. But first, an alternative to the random removal, the merging techniques,
will be introduced in section 4.4.1.

The idea of merging has been introduced by [216] for particles with equal properties and is sketched
in Figure 4.5: both resulting breakage fragments can be stored as one weighted MC particle, simply by
adjusting its statistical weight – something, which is not possible for equally weighted MC particles.
However, no guidance is given by [216] on:

1. How to find MC particles with equal (or almost equal) properties? In the simulated scenario
[216], the breakage of one parent particle resulted in many identical fragments.

2. What to do, if no such equal particles can be found at all? Or, how to save two different particles
as one. Or, how to merge them?

While the second problem ‘how to merge particles?’ is solved easily with the merging scheme
described in section 4.4.1 further below, two merging algorithms will be introduced in sections 4.5 and
4.6 which address the fist problem ‘how to find suitable particles for merging’.

4.4.1 Merging Scheme
A weighted addition is introduced in [Paper I] for the merging of the particles i (with weight Wi and
several properties p(k)

i , k = 1, 2, . . . ) and j (with weight Wj and several properties p(k)
j ) into a new

particle, with the following statistical weight Wnew and properties p(k)
new 9:

Wnew = Wi +Wj , and p(k)
new = (Wip

(k)
i +Wjp

(k)
j )/(Wi +Wj), for all k . (4.9)

9This formula is applicable for properties which are simply added upon coagulation, like volumes or electrical charge.
If the properties are not simply added (as for example the diameter), the rule of coagulation should give a good hint,
on how to model the novel properties.
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A merging error Em(i, j) is introduced in [Paper I] in order to measure the deviation of particles
i and j from each other: is introduced:

Em(i, j) =
∑

all properties k
ωk ·

[(
p

(k)
i − p

(k)
j

)
/min

(
p

(k)
i , p

(k)
j

)]2
. (4.10)

The merging weights ωi are constant values and express the relative severity of deviations of a
property k1 (i.e. p(k1)

i − p(k1)
j ) compared to another property k2 (i.e. p(k2)

i − p(k2)
j ) . This formulation

is rather arbitrary and should not be interpreted as a result of a rigorous mathematical derivation.
There is especially no guarantee, that the merging of two different particle pairs with the same error
Em will have the same negative impact on the simulation. On the other hand, the specific tuning of
the merging weights αi as well as a good choice for Em (hence a lot of alternatives to Eq. (4.10) are
imaginable) might prove crucial for a correct and efficient merging algorithm10. Both points are also
discussed in [Paper I].

4.5 Simulation of Nucleation
The combined simulation of coagulation and nucleation can be performed using a simple operator
splitting technique resulting in the following two steps:

1. A parallel MC coagulation step is performed using the algorithm described in section 3.2 in
combination with the SR-based coagulation rates defined in Table 4.4. The algorithm also
provides a time step ∆τMC, as defined in Eq. (3.1).

2. If a constant nucleation rate, JC is used – the total concentration of newly nucleated particles
within ∆τMC can be simply calculated to: Wnuc = JC ·∆τMC, whereas the volume or diameter
of the nucleating particles are assumed to be constant in this test case (and as presented in
[Paper I]). The treatment of varying nucleation parameters as well as non-constant nucleation
rates is discussed in section 4.7.3, in [Paper IV], [Paper V], [Paper VI] and [Paper VII].

It suffices to insert only one MC particle after each time step ∆τMC in order to simulate the
nucleation11 – so that the merging of two MC particles creates enough space for the insertion of the
novel particle, i.e. only one suitable pair for merging has to be found.

For the simulation of transport, in contrast, the merging of a whole particle population might be
necessary, as will be elaborated in section 4.6 in more detail.

4.5.1 Low Weight Merging Algorithm for Nucleation
The search of the pair (i, j), with the minimum merging error, min(i,j)(Em(i, j)) is simply too costly, 
because a huge number of comparison ((N 2

MC − NMC)/2) is necessary for this purpose – even if a 
parallel GPU algorithm is applied (this is discussed in the supplementary material of [Paper I] in more 
detail). This huge number of necessary comparisons can be reduced dramatically, if a particle k is 
chosen and then the minimal merging error is searched between all possible pairs with k, i.e.: min(i)
(Em(i, k)) – this makes only NMC − 1 comparisons necessary, and is shown in an exemplary 
implementation in Figure 4.8. The merging of a particle with itself is, of course, excluded from 
consideration by setting simply Em(k, k) = ∞.

The particle k could be selected completely by random – resulting in the random merging (RM)
algorithm (which is not published in the papers). Or it could be selected as a MC particle with an
especially low weight, leading to the low weight merging (LWM) algorithm as published in [Paper I]
– the idea is to produce a list consisting of 100 MC particles with low statistical weights (i.e. whose
weights are smaller than W/10, where W is the mean statistical weight of all MC particles within one
simulation12, if less than 100 such particles are found, particles are selected by random). Each step,
one MC particle of the list is selected as particle k for the merging and after 100 merge steps a new

10The shown simulation results use only one particle property, the volume v, α1 can thus be set to any arbitrary
constant value, α1 = 1 has been used explicitly.

11Extremely high nucleation rates might make smaller time steps necessary and extreme low nucleation rates might
make larger time steps more computationally effective. An adjustment of the optimal time step for nucleation is strongly
connected – and better expressed – by the definition of a nucleation threshold VT as it will be discussed in section 4.7.3.

12The explicit definition is W =
∑NMC

i=1 Wi/NMC.
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Figure 4.8: The algorithm stores the indices with the minimal merging error for each block imin(Bid).
In a second run, these indices are used instead of the particle index, iTid . A third run is necessary if
the used number of MC particles is larger than 2562 = 65 536.

merge list is created. Hence the statistical weights of the merged particles are relatively small, the
changes of the PSD due to merging are also to be expected to be small.

4.5.2 Validation

The same demanding test case as presented in [Paper I] has been chosen to demonstrate the validity of
the proposed algorithm, by comparison with a solution resulting from the discrete-sectional method.
The test case describes the coagulation in the free-molecule regime (βfm in Table 2.1a) and a constant
rate nucleation JC = 1017 m−3s−1, the explicit settings are the same as listed in Table 1 of [Paper I].
Figure 4.9 shows comparisons of results from the RM, the LWM and the random removal (RR)
algorithm, as mentioned further above (the detailed implementation for weighted particles is described
in [Paper I]). As already described in [Paper I], the LWM is able to reproduce the PSD even for these
extreme simulation conditions, while the RR algorithm fails to reproduce the results accurately – this
can be attributed to the higher noise levels which are connected to the random removal of the particles.
Surprisingly, the RM algorithm also produces higher noise levels and is also not able to reproduce the
PSD correctly. These errors can not be attributed to the merging (even smaller merging errors Em(i, j)
are found in total for the RM than for the LWM). It is rather probable, that the vast differences in the
statistical weights of the MC particles due to the prolonged application of the RM (compared to the
application of the LWM), lead to a situation, where the approximations of ∆τMC and Rmax of the fast
coagulation algorithm (section 3.2) cannot be assumed to be accurate enough.13 This question could
be further elucidated by the combined simulation of nucleation and coagulation, where the coagulation
is treated by a method, like the smart book-keeping technique [179] or the majorant kernel technique
[184, 185], where no approximations are made on ∆τMC and Rmax, but such an investigation is out
of the scope of this thesis.

The introduced LWM has been used in combination with non-constant nucleation rates for particle
synthesis (resp. formation), as it is discussed in section 4.7.3 and in [Paper IV], [Paper V], [Paper VI]
and [Paper VII]. The applicability of this approach has also been demonstrated in the scope of a dual
PBE system describing the particle synthesis via flame spray pyrolysis [CoPaper II].

13Although the application of very high values of χ = 50 000 does not lead to an improvement of the shown results,
it cannot be ruled out, that even higher values, e.g. χ = 1 000 000, would lead to better agreement – such a simulation,
on the other hand is computationally very costly. The simulation for χ = 50 000 required several days, it is expected
that χ = 1 000 000 would require 20 times that much.
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Figure 4.9: Results of combined simulation of coagulation in the free-molecule regime (βfm in Table 
2.1a) and a constant rate nucleation JC = 1017 m−3s−1, the explicit settings are the same as listed in 
Table 1 of [Paper I] The characteristic time for coagulation ∆τfm is defined in (A.10), dg and ∆dg are 
defined in Eq. (D.3) and (D.4).

4.6 Simulation of Transport
As an introduction to the problematic, the transport between two units, U1 and U2 is considered.
Such a basic problem may be extended to more relevant applications, for example, the nucleation of
particles and their subsequent growth due to condensation and coagulation in unit U1 (the particles
are modeled with a PSD nU1), and the collection of the produced particles with a filter or due to
sedimentation in unit U2 (the particles are modeled with a PSD nU2) .

If a simple linear flow rate fU1→U2 can be assumed, then the change of the PSDs due to transport
is modeled as:

dnU1

dt = −fU1→U2 · nU1 ,
dnU2

dt = +fU1→U2 · nU1 . (4.11)

4.6.1 Modeling of Transport with Weighted MC Particles
In the scope of a MC simulation, the PSDs are represented by MC particles. The corresponding
number concentration of particles which is represented of each particle i in unit U1 is given by the
statistical weights Wi,U1 , so that the first part of Eq. (4.11) can be rewritten directly to represent the
depletion of the statistical weight of particles in unit U1:

dWi,U1

dt = −fU1→U2 ·Wi,U1 . (4.12)

The second part of Eq. (4.11) describing the inflow of novel particles into unit U2, can be modeled
by inclusion of novel particles with statistical weights W new

i,U2
and with exactly the same volumes as

the particles in unit U1, i.e.:

dW new
i,U2

dt = +fU1→U2 ·Wi,U1 , vnew
i,U2

= vi,U1 . (4.13)

The function fU1→U2 may be thereby dependent in time, or dependent on the specific properties
of the particle i in unit U1. If fU1→U2 has a constant value, one would obtain the solutions for a time
∆τTr:

Wi,U1(∆τTr) = Wi,U1(0)·exp(−∆τTr ·fU1→U2) and W new
i,U2

(∆τTr) = Wi,U1(0)−Wi,U1(∆τTr) . (4.14)
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Alternatively Eq. (4.12) and (4.13), can be approximated for very small time steps ∆τTr with the
Euler formalism to:

Wi,U1(∆τTr) ≈Wi,U1(0)−∆Wi,U1 , W new
i,U2

(∆τTr) ≈ +∆Wi,U1 , (4.15)
with: ∆Wi,U1 = Wi,U1(0) ·∆τTr · fU1→U2 .

Independent on whether an exact solution (Eq. (4.14)) is available or an approximation (Eq.
(4.15)) is used, changes to the MC particle population in unit 1 and unit 2 have to be performed.
These changes encompass 1) the particle outflow from unit 1 and 2) the particle inflow into unit
2. In the following two methods to model the outflow (a deterministic and a stochastic one will
be introduced) and two methods for the particle inflow (the merging and the random removal) are
presented.

4.6.1.1 Deterministic Particle Outflow

The application of weighted particles offers the opportunity to adjust the statistical weights accordingly
to the exact value Wi,U1 in unit 1 as provided by Eq. (4.14) (resp. (4.15)) and to create a particle
population with the exact weights W new

i,U2
for insertion into unit 2. However, a MC particle population

might be already stored in unit 2 (e.g. 10 000 MC particles), so that the novel MC particles (e.g. 10
000 MC particles) have to be merged with the existing population, or the random removal of particles
has to be implemented. It should be noted that the necessary adjustment of the statistical weights
can be very efficiently done by a parallel algorithm.

4.6.1.2 Stochastic Particle Outflow

One can also translate the values given by Eq. (4.14) (or resp. (4.15)) as probabilities PU1→U2(i) for
a particle i of being transported from unit 1 to unit 2:

PU1→U2(i) = W new
i,U2

(∆τTr) /Wi,U1(0) . (4.16)

For each particle i a URN ri ∈ (0, 1] is used to determine whether the particle is removed from unit
1 and inserted into unit 2 (if ri < PU1→U2(i)). As for the deterministic outflow, unit 2 might already
store a particle population (e.g. 10 000 MC particles), but this time a smaller fraction (depending on
PU1→U2(i) and thus on ∆τTr, e.g. 100 MC particles) has to be merged with the existing population.
It should be also noted that the empty places in unit 1 after the removal can be advantageous,
if some novel particles (from another unit) have to be inserted into unit 1. They can be easily
filled if weighted particles are used, simply by copying randomly selected particles and halving the
corresponding statistical weights.14

4.6.1.3 Merging Algorithm for Particle Inflow

Independent on whether the particles have been selected by methods described as a deterministic
outflow or a stochastic outflow, large particle populations (e.g. 10 000, resp. 100 MC particles) have
to be inserted into unit 2, where already a large particle population (e.g. 10 000 MC particles) is
stored.

The basic idea of the parallel merging algorithm is to define ( arbitrarily) a  m aximal allowable 
merging error, εmerge (e.g. εmerge = 10−4) and to merge all possible particle pairs i, j with Em(i, j) < 
εmerge. The application of a GPU enables to perform the necessary calculation, check Em(i, j) < εmerge 
and possible subsequent merging (described by Eq.(4.9), in section 4.4.1) for a huge number of particle 
pairs in parallel. Figures 10, 11 and 12 in [Paper V] depict the GPU implementation in more detail. 
This algorithm is forced to terminate by increment of the allowable merge error as the simulation 
progresses – this idea is also introduced in [Paper V] and [Paper VIII].

4.6.1.4 Random Removal for Particle Inflow

The constant number method [180] is applied. Thereby, the total volume concentration of all particles
is preserved, i.e. a correction is applied to the statistical weights of all particles after the removal,

14If equally weighted MC particles are used, particles for copy can be selected by random and the simulation volume
can be adjusted as in the random removal approach. This might lead, however, to the situation that particles in different
units have different statistical weight.

42



4.6. Simulation of Transport

Mixer 1 ScreenMixer 2Disperser Filter

Recycle Stream Fine Fraction

Coarse
Fraction

Particle
Feed 1

Particle
Feed 2

Figure 4.10: Exemplary flowsheet of the test case for validation. The explicit values for the flow
rates fA→B and the separation function for the screen unit are defined in [Paper VIII] .

so that the total volume concentration represented by the resulting MC particles is equal to the one
prior to the removal. This approach leads to the correct description of the coagulation, whereas the
conversation of the number concentration of all MC particles leads to wrong simulation results [180].
If applied in the here presented transport framework, no significant difference between a correction
based on the volume concentration and a correction based on the number concentration could be
seen15. The results for which the volume concentration is preserved during the removal is shown in
the following.

In combination with the deterministic outflow (10 000 new MC particles have to be added to
already existing 10 000 MC particles in the unit), a massively parallel implementation has been
devised, deciding in parallel for each particle i whether to keep an existing particle in place or to
replace it with a new particle. The probability for insertion of a new particle can be set to

1. 50% (MC particle number based), or

2. W new
i,U2

(∆τTr)/(W new
i,U2

(∆τTr) +Wi,U2) (number concentration based), or

3. W new
i,U2

(∆τTr) · vnew
i,U2

/(W new
i,U2

(∆τTr) · vnew
i,U2

+Wi,U2 · ·vi,U2) (volume concentration based).

Hence no decisive difference has been seen between any of these three approaches, the results for the
conventional first (MC particle number based) formulation are shown in the following - as in [Paper
V] and [Paper VIII].

In combination with the stochastic outflow a much smaller number of novel particles has to be
inserted into unit 2 (e.g. 100) - if particles were removed from unit 2 due to outflow to other units, than
these places can be easily filled with a copy operation. The same parallel code as for the deterministic
outflow is used on the remaining particles, but with a difference that a random offset index roff (with
0 < roff < NMC − 1) is generated at each inflow step and the i-th novel particle particle is compared
with the particle in unit 1 with the index i + roff (if this value equals or is larger than NMC, than
i + roff − NMC is used for comparison). As for the combination with the deterministic outflow, no
substantive differences between the three possible formulations for the removal probabilities have been
found and the results for the first formulation (MC particle number based) are shown.

4.6.2 Validation
The proposed algorithms are validated by simulation of the exemplary flowsheet system depicted
in Figure 4.10. It models the mixing of three different particle populations, which are distributed
according to a log normal distribution (with the mean geometric diameters being 50 nm (disperser),
10 nm (feed to mixer 1) and 3 nm (feed to mixer 2)), the explicit flow rates and other simulation
settings are defined in [Paper VIII]. The sieve unit is thereby separating the particles according to the
function defined in Eq. (VIII.5), so that the flow rates are explicitly dependent on the particle size.

The results of the 4 possible combinations (2 outflow methods combined with 2 inflow methods)
are shown in comparison with the results from the pivot point method in Figure 4.11. The PSDs

15Another possible approach would be to take the dynamics of the sieve unit – somehow – into account by approxi-
mating the correction with the separator function Ssep(vi), (Eq. (VIII.5)).
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Figure 4.11: Simulation results for the Mixer 2 unit shown in Figure 4.10 for flow rates defined in
[Paper VIII] with 32 720 MC particles and ∆τTr = 0.001. εN is defined in Eq. (D.10), N in (D.3) and
∆N in (D.4).
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indicate that both, the deterministic outflow (Figure 4.11a) as well as the stochastic outflow (Figure
4.11b) have to be combined with the merging routines in order to produce correct simulation results,
whereas the random merging leads to a wrong description. The deterministic transport in combination
with the merging method is a deterministic algorithm, producing the same results for identical initial
conditions – in the scope of numerical accuracy. However, if the memory places on which the particles
are stored are changed by a permutation, different particle pairs are considered for merging and
different particles are merged in comparison to the not permutated PSD. These differences can be
considered as intrinsic stochastic noise and are measured by choosing a different permutation of MC
particles for each simulation. The results are put into comparison with the internal stochastic noise
produced by the application of random numbers by the other methods in Figure 4.11c. It can be
seen, that the deterministic outflow combined with the merging produces far less statistical noise than
the stochastic outflow due to the application of random numbers. This in turn, leads to a better
approximation of the result from the pivot point method, as shown in Figure 4.11d.

Similar results (but for a different number of MC particles) are shown in [Paper VIII] for the 
deterministic outflow methods in the dependency of the setting ∆ τTr. It is shown how the accuracy of 
the simulation can be increased – at the cost of increasing computing times – by lower ∆τTr settings 
(in the frame-work of an Euler approximation of the flow equations - similar to Eq. (4.15)). The fine 
tuning of parameters for the parallel merging algorithm are discussed in [Paper V] (in section 
3.2.2). Although it is very probable, that the shown accuracy in Figure 4.11c and 4.11d is dependent 
on the choice of ε merge and the rules for its increment, a quantitative study of the impact of this and 
the other parameters mentioned in section 3.2.2 has not been presented to date. An important 
finding of [PaperV] is the identification of a minimal flowsheet system for which the random removal 
method is no longer applicable. It is found that the simplest flowsheet comprising of one recycle stream or one 
sieve unit are still described well with the combination of deterministic outflow and random removal – but the 
combination of a recycle stream and a sieve unit leads to severe deviations from the benchmark solution.

4.7 Growth and Evaporation of Weighted MC Particles
Coagulation, evaporation and growth are processes typically encountered during the production or
processing of (nano) particles. The evaporation of particles smaller than the critical (Kelvin) diameter
and the growth of particles which are larger than the Kelvin diameter is termed Ostwald-ripening and
used to describe the formation of nanocrystals (resp. particles) in liquids [36, 224], the degradation
of emulsions [225] or two-phase systems describing alloys [226]. It can also be used to model aerosol
particle formation processes, as it is done in the following.

First (section 4.7.1) a parallel simulation scheme for evaporation and growth of MC simulation par-
ticles will be introduced, then (section 4.7.2) the coupling of this scheme with the already introduced
simulation techniques for coagulation will be presented. And finally (section 4.7.3), this coupling will
be combined with the nucleation and merging of MC particles.

4.7.1 Parallel Algorithm for Growth and Evaporation
The growth (resp. evaporation) rate G of particles with volume v describes the exact change of volume
for each MC particle (Eq. (2.7) is formulated for each MC particle i):

dvi
dt = G(vi, NG) . (4.17)

A computational challenge is the coupling given by the mass balance equation for the depletion of
monomers with volume vG (Eq. (2.8)), which is reformulated in a discrete form:

dNG

dt = −
NMC∑
i=1

Wi ·G(vi, NG)/vG . (4.18)

The coupling makes the solution of this ODE system difficult.16 The change of the volumes of all
particles has to be taken into account for the correct calculation of the new concentration NG of the

16The discetization schemes of the corresponding continuous PBE formulation (Eq. (2.6)) make the application of
specialized numerical schemes necessary [227, 64].
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Figure 4.12: Simulation of condensation and evaporation for conditions listed in section A.4 with
S0 = 10. Horizontal lines mark the Kelvin diameter for respective time points.

gaseous material and thus the changed growth resp. evaporation rates G.
A large number of simulation particles makes it prohibitively costly to solve these differential equa-

tions numerically – if a CPU is applied. For this reason, growth is sometimes modeled as a stochastic
event [215]. Another approach to reduce the computational toll of the necessary calculations is a
deferred condensation [219] in a coagulation driven approach (i.e. if combined with the simulation of
coagulation, the condensation of single particles is treated only, if these particles have been selected
for coagulation). Such an approach is feasible if a more or less constant Kelvin diameter and super-
saturation can be expected – leading thus to constant growth rates. This is not the case in Ostwald
ripening scenarios, where the growth rate changes in time due to a fast evolving Kelvin diameter as
well as changes of the particle diameters itself.

The application of a GPU makes the simultaneous handling of the large number of differential
equations feasible. Not only the parallel evaluation of growth rates and update of particle volumes,
but also the parallel summation of the condensated / evaporated volumes becomes possible, acceler-
ating thus the calculation of the new gaseous monomer concentration via the mass balance equation
(Eq. (4.18)). This idea is sketched in [Paper VII] in section VII.3 and figure VII.1. The shown
algorithms are embedded in a framework already comprising coagulation and nucleation. Whereas
figure VII.1 sketches an Euler step and the extension to the applied RK45 simulation scheme is left
to the imagination of the reader, a more detailed description of the implementation can be found in
the appendix E.1. The combination of discrete evaporation events with this continuous simulation of
growth (resp. evaporation) can also be found in E.1.

4.7.1.1 Validation

In order to demonstrate the validity of this approach, a simple isothermic Fe system is considered.
In this system, an initial aerosol Fe particle population is embedded in a mixture of carrier gas
and supersaturated Fe vapor, as described in A.4. The changes of the PSD are shown in figure
4.12a, demonstrating not only the continuous growth of the PSD, but also the growth of the Kelvin
diameter. The obtained results are benchmarked by comparison with the pivot point technique (the
detailed implementation is described in A.4.2 and B.2.2). It can be seen, that higher number of used
pivot points (i.e. detailed grids) lead to better approximations of the PSDs, the convergence in figure
4.12b resembles the discussion of the numerical diffusion in figure 2.3 - an inherent feature and main
disadvantage of the pivot point method. However, the converging PSDs, as well as the convergence of
the mean values of the geometric diameter, as shown in figure 4.13a, indicate the validity of the MC
simulation technique.
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(b) Condensation, evaporation and coagulation.

Figure 4.13: Relative accuracy εdg defined in Eq. (D.10) for simulation conditions listed in section
A.4 with S0 = 10.

4.7.2 Algorithm for Growth, Evaporation and Coagulation
The operator splitting technique is often used in order to separate the growth/evaporation process
from the coagulation process for a short period of time. In this way, two different numerical techniques
can be applied, one for the coagulation and the other one for the growth/evaporation, so that the best
suited one is chosen for the solution of each of the two processes [228, 229].

In the scope of the here presented work, the event-driven time step, ∆τMC (defined in Eq. (2.20), in
combination with SR coagulation rates Rsr

i,j from Table 4.4) is used to simulate a stochastic coagulation
event. In a second step, the growth and evaporation of the resulting population is simulated for ∆τMC,
using the framework discussed above (section 4.7.1 and in more detail in E.1). Note, that the concept
of fractional time steps, as described in section 4.2.1 would also allow the usage of smaller resp. bigger
time steps, yielding possible gains in computational accuracy resp. efficacy. This makes another
important parameter available for the control of the accuracy of the simulation.

4.7.2.1 Validation

A demonstration of the validity of this approach is shown using the same particle population as de-
scribed above (section 4.7.1, or in detail in A.4) for the validation of the evaporation and condensation,
but the stochastic mechanism of coagulation is also included into the simulation. This combined ap-
proach leads to an excellent agreement with the pivot point method, as shown for the PSDs in Figure
4.14 and the deviation of the mean geometric diameter in Figure 4.13b.

[Paper VI] shows, that the consideration of all mechanisms (i.e. coagulation, evaporation and
coagulation) is necessary for the correct description of the PSD for a similar metallic system.

4.7.3 Algorithm for Growth, Evaporation, Coagulation and Nucleation
The operator-splitting technique as described above (section 4.7.2) with the MC time step ∆τMC, is
used to couple the stochastic simulation of coagulation with the combined simulation of evaporation,
growth and nucleation. While the growth (resp. evaporation) of single particles is still described
by Eq. (4.17), the change in the concentration NG has to take the depletion due to nucleation into
account, too. The mass balance in Eq. (4.18) is extended for this purpose to:

dNG

dt = −J · (v∗ + vG)/vG −
NMC∑
i=1

Wi ·G(vi, NG)/vG . (4.19)
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Figure 4.14: Simulation of condensation, evaporation and coagulation for conditions listed in section
A.4 for S0 = 10. Horizontal lines mark the Kelvin diameter for respective time points.

The continuous addition of nucleating particulate material (described by the nucleation rate J) is
stored within a nucleation buffer, via the following ODE which is added to the coupled ODE system
(Eq. (4.17) and Eq.(4.19)):

dVB

dt = (v∗ + vG) · J . (4.20)

The storage of the nucleated volume concentration ascertains a correct mass balance, even if the Kelvin
volume v∗, changes in time. Once the nucleated volume concentration reaches a preset threshold value
VT, a MC particle with the volume v∗ + vG and statistical weight VB/(v∗ + vG) is inserted into the
simulation, the low weight merging method discussed in section 4.5.1 is used in order to keep the
number of used simulation particles constant, so that no additional memory has to be created to
store the novel particle. Then, the nucleation buffer is reset to VB = 0 and the next RK time step
is simulated, the detailed algorithm is shown in section E.2, providing a little more details than in
[Paper VII].

4.7.3.1 Validation

The algorithm is validated by the simulation of the same particle population as for the both benchmark
cases above, the initial supersaturation, S, however has to be adjusted to S = 10 000 (the detailed
settings are listed in section A.4). This is because for S = 10 the nucleation rates J are negligibly
small (as shown in Table A.4), leading to the same results as shown in Figures 4.14 and 4.13b.

The non negligible nucleation rates for S = 10 000 lead to bimodal PSDs at the initial stages of the
simulation. These bimodal PSDs consist of a particle population resulting from nucleation and the
initial PSD. Hence the nucleation rates J differ in several orders of magnitude (the explicit values are
listed in Table A.4), the resulting particle populations differ in several orders of magnitude, too, as
can be seen in Figure 4.15a. The rendering of all three shown PSDs with a limited number of weighted
MC particles shows the superiority of this approach compared to conventional MC techniques with
non-weighted particles, it is hard to imagine, that these would be able to reproduce the shown PSDs.
The application of weighted particles, on the other hand, allows to adjust the weight of the inserted
particles to the desired order of magnitude simply by adjusting the critical threshold value VT. This
is one of the most important findings reported in [Paper IV], [Paper VI] and [Paper VII]. The specific
settings for the simulations discussed in this section are listed in appendix A.4.1.

The comparison of the resulting PSDs with those originating from the pivot point method (details
of the implementation can be found in the appendix A.4.2 and B.2) shown in Figures 4.15a and 4.15b
displays an excellent agreement between both simulation techniques. A convergence (better results
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Figure 4.15: Simulation of combined nucleation, coagulation, condensation and evaporation for
105 MC particles and conditions listed in section A.4 with S0 = 10 000. The nucleation rates Jcou
(Courtney), Jcls (Classic) and Jgir (Girshick) defined in Table 2.1c were used.
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(a) Nucleation rate Jcls (Classic).
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Figure 4.16: Relative accuracy εdg defined in Eq. (D.10) for simulations of nucleation, coagulation,
growth and evaporation for conditions listed in section A.4 with S0 = 10 000.

for higher number of used pivot points) can be seen in Figures 4.15c and 4.16.

4.7.3.2 Application Scenarios

Aerosol-based nucleation of particles can be subdivided in two different kinds of nucleation: 1) the
nucleation via chemical decomposition of a precursor and 2) the physically induced nucleation.

1. The particle production through chemical decomposition of a precursor concentration in a
gaseous phase is commonly modeled without the evaporation of the nucleated particles [9, 230,
151, 231]. This is due to the fact that typical Kelvin diameters encountered during the chemical
precursor decomposition are assumed (following classical nucleation theories (see e.g. [50]) to be
smaller than the size of a monomer (e.g. [232]). However, the surface growth has been identified
as essential process [151], next to the exact chemistry of the decomposition process [233] for the
description of this particle formation route.

2. The case of such a low Kelvin diameter (and thus the absence of evaporation) cannot be assumed
for the modeling of particle formation by physically induced nucleation in an aerosol system,
like it is encountered in condensation-evaporation reactors [234, 235], during laser ablation [236]
or spark and arc discharges [237]. Although the evaporation is not included into the modeling
of these works, it can be found in atmospheric aerosol modeling [228] (for phthalate at 300 - 400
K) or [238] (for typical atmospheric aerosols at 300 K).

The applicability of the presented simulation technique to the physically induced nucleation in the
context of particle synthesis has been discussed for a metallic system, similar to Fe, but with a different
vapor pressure, in [Paper VI] and [Paper VII], as well as for an Ag system in [Paper V], in section
2.3. The identification of suitable experimental conditions for the investigation of nucleation rates
(allowing thus to understand the nucleation mechanisms) during Ag particle synthesis is discussed in
[Paper V]. The implications of different nucleation theories on the formation of new particles (and
thus cloud condensation nuclei) have been discussed in [Paper IV].
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Chapter 5

Conclusions

A general framework for the solution of the PBE for a network of compartments is introduced in this
work. For its solution parallel stochastic and deterministic GPU algorithms are devised in combination
with the decoupling of single mechanism for short periods of time (operator splitting). In this context,
novel modeling techniques, or mathematical descriptions have been provided. These novel concepts
are tested on relevant test cases, for which they show an excellent agreement with benchmark methods
and also some superiority in comparison with alternative solution methods available to date, namely:

1. The concept of stochastic resolution (SR) offers a novel derivation of the coagulation rates for
the coagulation process as it is described by the fictitious particle (FP) theory, leading to a
somewhat simpler expression. It also allows to understand the description of alternative particle
approaches, such as the stochastic weighted algorithm (SWA) and allows to understand the
higher noise levels which are encountered in the application of the SWA simulation technique.
Lower noise levels, and thus a higher precision can be seen in comparison to the conventionally
used constant number MC (CNMC) technique.

2. The concept of fractional MC time steps allows the combination of artificially small time steps
with an intrinsically event-driven MC algorithm. It is shown that the application of this novel
algorithm is necessary for the reproduction of the correct PSD – in comparison to approaches
in which no fractional time steps are applied.

3. A general rule for the probabilistic description of breakage of weighted simulation particles
is introduced. This rule encompasses the existing, proposed schemes for the description for
breakage (number based (NB), volume based (VB), as well as all other fragmented weight
transfer function (FWTF) based formulations) of weighted MC particles. Novel descriptions,
not covered by the FWTF, become possible, like the LV and the combinations LV-NB and LV-
VB. This formulations allow to render all fragments and thus the full PSDs – in contrast to NB
and NV, where only particles with a higher concentration are rendered.

4. Explicit rules for merging of unequal particles are formulated in combination with a functional
expression for the merging error. This approach allows the formulation of parallel algorithms for
the inclusion of novel particles in the context of nucleation and transport. The merging poses
an attractive alternative to the otherwise used random removal (RR) method.

(a) A parallel merging algorithm, low weight merging (LWM), for the inclusion of nucleated
particles is introduced. It has been shown that the application of this algorithm is able to
render a good approximation of the PSDs even for prolonged simulation times, in contrast
to the method based on the RR of simulation particles.

(b) Another parallel algorithm has been introduced for the merging of entire particle popu-
lations, one representing the particulate inflow into one unit (or compartment), the other
representing the residing particle population within the unit (or compartment). It is shown,
that the merging of the populations produces correct PSDs, even for complex flowsheet
problems, involving screen units and tear streams. It is shown that for these systems, the
RR technique cannot be applied.
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The application of merging – and thus weighted simulation particles in general, hence the merging
method cannot be formulated for equally weighted simulation particles – is necessary for the
correct description of the presented test cases for transport and nucleation.

5. A parallel algorithm is presented for the simulation of growth and evaporation of weighted MC
particles, avoiding the problem of numerical diffusion encountered in sectional methods.

(a) It is demonstrated, that the application of a huge number of pivot points (3 200 – 12 800)
is necessary, in order to reach the accuracy of the MC algorithm. Such a high number rules
out the extension of the pivot technique to a 2D grid, rendering a second property.

(b) The deterministic algorithm for growth and evaporation can be combined with the stochas-
tic simulation of coagulation in an operator splitting technique, leading to excellent agree-
ment with the pivot point technique.

(c) The combined simulation of nucleation, coagulation, growth and evaporation shows also
an excellent agreement with the pivot point technique. The definition of a nucleation
threshold makes the explicit modeling of the statistical weight of the novel nucleating
particles possible - allowing thus the adjustment of the simulation for a broad variety of
simulation conditions, which could not be correctly described by the application of non-
weighted simulation particles.

Outlook
The introduced algorithms constitute a promising starting point for further investigations. The first
intriguing questions arise, of how to estimate optimal time steps for the operator splitting approach and
whether the decoupling of the single simulation steps, poses a good approximation for the simulation
of a complete flowsheet problem. The presented methods have all been formulated for particulate
systems characterized by only one property (the particle size) – this happened out of the necessity
to provide a benchmark case. The algorithms are, however, easily expandable to several properties.
An initial testing of the coagulation algorithm presented in the third chapter indicated, that the
computation of 2 or 8 properties lead to only slightly larger computing times. This is due to the fact,
that most of the computing time was used for parallel summations and not for calculations in which
the particle properties had to be considered. This raises the hope, that the other algorithms, which
work in a similar fashion may show the same scaling behavior and make thus an efficient multivariate
flowsheet simulation possible. Whether all of these algorithms can be combined in the present form
– or if some further modifications (e.g. for the merging algorithm) are necessary for the simulation of
such complex problems as introduced in the introduction remains an intriguing research question.

It is the hope of the author that the proposed methodology might in this or some modified and
sophisticated form contribute to what Professor Jim Litster calls “the joy of particulate products.”
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Appendices

Appendix A Used Functions and Simulation Conditions

A.1 PSDs with Equal Moments in Figure 2.1

The PSDs are constructed from known PDFs f(x), with
∫∞

0 f(x)dx = 1. An arbitrary normalization
constant CU is introduced, so that

∫∞
0 f(d/CU)dd = CU. The PSD n(d) = N0

CU
· f(d/CU) represents

a total concentration of N0
1. The plot of the curves of n(d) is identical to f(x), where the x axis is

replaced with the diameter d (unit CU for 1) and y with dN/dd, where 1 is replaced with N0/CU.

1. The log normal distribution is defined by the following function:

nLN(d) = N0

CU
√

2 · π · s̆ · (d/CU))
· exp

(
−(ln(d/CU)− m̆)2

2 · s̆2

)
, d ∈ (0,∞), [d] = m (A.1)

the plot is shown for the parameters:

m̆ = 3.22 . . . , s̆ = 0.2325 . . . , CU = 1µm and N0 = 105 cm−3 .

2. The Pareto distribution is defined by:

nP(d) = N0

CU
· k̆ · (x̆min)k̆

(d/CU)k̆+1
, d ∈ (x̆min · CU,∞) , (A.2)

the following parameters are used for the plot:

k̆ = 5.359 . . . , x̆min = 20.916 . . . , CU = 1µm and N0 = 105 cm−3 .

3. The arcsine distribution is defined by the following function:

nAS(d) = N0

CU · π ·
√

(d/CU − ĕ) · (f̆ − d/CU)
, d ∈ (ĕ · CU, f̆ · CU) , (A.3)

the plot in the figure is shown for:

ĕ = 17.143 . . . , f̆ = 34.286 . . . , CU = 1µm and N0 = 105 cm−3 .

4. The triangular distribution is defined by:

nT(d) = 2 ·N0

CU
·


(d/CU − ă)/

{
(b̆− ă) · (c̆− ă)

}
if d ∈ [ă · CU, c̆ · CU] ,

(b̆− d/CU)/
{

(b̆− ă) · (c̆− ă)
}

if d ∈ (c̆ · CU, b̆ · CU] ,
0 else ,

(A.4)

1While in the here presented example the dimensionless value z is replaced with d/CU, it might be replaced with
any other quantity, ψ/CU, as long as the unit of CU is chosen accordingly (i.e. [CU] = [ψ]).
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the following parameters are used for the plot:

ă = 6.787 . . . , b̆ = 35.273 . . . , c̆ = 35.0823 . . . , CU = 1µm and N0 = 105 cm−3 .

Instead of the volume-based definition µi =
∫
vi · n(v) dv, the diameter based definition is used:

µd,i =
∫
di · n(d) dd . (A.5)

This leads to the following moments of all distributions 1.-4.:

µd,0 = N0, µd,1 = N0 · CU · 25.714 . . . , µd,2 = N0 · C2
U · 697.959 . . . .

A.2 Simulation Conditions for Constant Growth in Figure 2.3
A.2.1 Grid Settings and Initial Conditions

The used 1D-grid consists of equidistant diameter values, di, defining the volumes vi of the pivot
points with:

di = d0 + ∆d · i , vi = π · d3
i /6 . (A.6)

The initial condition shown in Figure 2.3 describes a constant PSD for all particle diameters d with
1µm ≤ d ≤ 4µm. The constant value of dN

dd = 1016 m−4 corresponds to a total number concentration
of N0 = 3 · 1010m−3. The explicit values shown in Table A.1 ascertain that for all grid settings, the
value d0 + ∆d/2 = 1µm, which is the boundary between the first and second pivot point, as well as:
d0 + ∆d · (NPP

0 + 0.5) = 4µm - this is the boundary between the (NPP
0 + 1)-th and (NPP

0 + 2)-th pivot
point.

Table A.1: Values used for 1D-grid described by Eq. (A.6) and computing times.

Number of Number NPP
0 of initial Computation

pivot points d0/µm ∆d/µm pivot points with Nl 6= 0 time / sec
800 0.85 0.3 10 11

3 200 0.9625 0.075 40 253
12 800 0.990625 0.01875 160 14 857

A.2.2 Growth Rate and Analytical Solution

A diameter independent growth rate has been simulated with:

dd
dt = C̃G

d = 10µm s−1 ⇐⇒ G(v) = dv
dt = v

2/3 · (36π)1/3

2 · C̃G
d︸ ︷︷ ︸

CG
d in Table 2.1d

. (A.7)

The presented growth rate G(v) is used in combination with Eq. (B.15)-(B.17) (resp. (2.15)). The
growth rates G(vi) are independent on the monomer-concentration NG, it is set NG = 0 and the
monomer balance in Eq. (B.18) is not considered, dNG

dt = 0 is used instead.
The analytical solution for a constant growth rate can be written as (see e.g. [97] for a formulation

for n(v, t) and a volume independent growth rate):

n(d, t) = n(d− C̃G
d · t, 0) . (A.8)

A.3 Conditions for Pure Coagulation in Figure 4.3 and Table 4.5 in Section
4.1.3

The simulated test-case describes the coagulation in the free-molecule regime as described by βfm in
Table 2.1a in combination with the physical parameters listed in Table A.2. The table also displays
the safety factor which is used for the algorithm discussed in section 3.2 as well as the values for the
monodisperse initial particle population. The statistical weight W0 for each MC particle depends on
the number of used simulation particles NMC and the initial total number concentration N0:
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W0 = N0/NMC . (A.9)

Table A.2: Simulation conditions for pure coagulation discussed in section 4.1.3.

Parameter type Name Symbol Value Unit

Physical parameter Particle density ρp 1000 kg/m3

Temperature T 300 K
Computing parameter Safety factor χ 1000 –
Initial values Particle diameter d0 3 nm

Total number concentration N0 1013 m−3

The following characteristic time τfm is used for the presentation of the results:

τfm =
√

1 · ρp
3 · kB · T · d0

· 1
N0

. (A.10)

This is the time in which a monodisperse model would predict the reduction of the initial particle
number concentration by half [46]. Other physical parameters and initial values than those listed in
Table A.2 lead to the same results2 if the value for τfm is adjusted according to Eq. (A.10). The
compared methods (SWA, SR, CNMC) are expected to produce the same noise levels and to require
the same amount of MC steps (and thus computational times) as stated in Table 4.5 for the simulation
of a time frame of 1000 τfm.

A.4 Conditions for Condensational Growth, Evaporation, Coagulation and
Nucleation in Section 4.7

Table A.3 lists the physical parameters used for the simulation - these are used for the coagulation
kernel βfm and the growth rate Gfm in the free molecule regime, as well as for the nucleation rates
Jcou, Jcls and Jgir in Table 2.1c.

Table A.3: Simulation conditions for MC simulations of growth and coagulation discussed in sections
4.7.1 and 4.7.2, the supersaturation of S0 = 10 000 is used if the simulations of nucleation is also
included (section 4.7.3).

Parameter type Name Symbol Value Unit

Physical parameter Particle density ρp 7874 kg/m3

Temperature T 1600 K
Saturation pressure ps 0.1115 Pa
Surface tension σ 2.0038 J/m2

Atomic mass mG 9.273 · 10−26 kg
Atomic volume vG 1.177 · 10−29 m3

Computing parameter Safety factor χ 10 000 –
Initial values Total number concentration N0 1016 m−3

Supersaturation S0 10 or 10 000 –

The value for the surface tension for Fe is based on data from [239] and calculated with a linear
interpolation for the temperature T = 1600 K. All other material parameters are chosen according
to [240] – a formula for the interpolation of the partial pressure at the given temperature is provided
there. The atomic volume has been calculated via: vG = mG/ρp.

The initial PSD is a log normal distribution nLN(d) defined in Eq. (A.1), with the parameters:

m̆ = ln(2 · 10−9), s̆ = ln(1.2), CU = 1m and N0 = 1016 m−3 .

2The relative values d/d0 and N/N0 should be considered for the description of the PSDs in Figure 4.3a.
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The total particle mass concentration, MFe,p, of this distribution is calculated by MFe,p = ρp ·∫∞
0

πd3

6 nLN(d)dd ≈ 3.83 · 10−7 kg m−3. The application of the gas law yields the mass concentration
of the Fe vapor (MFe,g = ρp · Sps

kBT
≈ S · 4.81 · 10−7 kg m−3), as well as the mass concentration of the

carrier gas – N2 at 1600 K and atmospheric pressure – MN2 ≈ 0.2113 kg m−3. This values are put
into perspective as the mass load defined by (MFe,p + MFe,g)/MN2 tabulated next to the nucleation
rates for the discussed simulation scenarios in Table A.4.

Table A.4: Initial nucleation rates and mass loads (ratio Fe mass concentration to carrier gas mass
concentration) for S0 = 10 and S0 = 10 000.

Supersaturation S0 Jcou /m−3s−1 Jcls /m−3s−1 Jgir /m−3s−1 (MFe,p +MFe,g)/MN2 /−

10 2.61 · 10−118 2.61 · 10−117 1.90 · 10−108 2.43 · 10−5

10 000 7.97 · 10+16 7.97 · 10+20 5.80 · 10+26 2.25 · 10−2

A.4.1 Implementation of Nucleation for MC method

The nucleation threshold VT is adjusted after each insertion of novel particles to a new value Vnew
T by

multiplication with a constant factor (1.005) until a maximum value, Vmax, is reached:

Vnew
T = min(Vmax

T , 1.005 · Vold
T ) . (A.11)

The values Vmax
T and V ini

T are listed in table A.5.

Table A.5: Parameters for calculation of Vnew
T in Eq. (A.11).

Nucleation Theory Initial value V ini
T /− Maximal value Vmax

T /−

Courtney (Jcls) 10−26 10−18

Classic (Jcou) 10−22 10−14

Girshick (Jgir) 10−15 10−10

A.4.2 Implementation of the Pivot Point Method

According to the derivation presented in section B.2, the following set of coupled differential equations
is solved:

• Growth/Evaporation Eq. (B.15) – (B.18):

dNj
dt =

(
dNj
dt

)
growth

and dNG

dt =
(

dNG

dt

)
growth

. (A.12)

The discrete-logarithmic grid is used as described by Eq. (A.16) and Eq. (A.17) with vstart =
2vG.

• Growth/Evaporation and coagulation Eq. (B.15) – (B.18) and (2.14):

dNj
dt =

(
dNj
dt

)
growth

+
(

dNj
dt

)
coag

and dNG

dt =
(

dNG

dt

)
growth

. (A.13)

• Growth/Evaporation, coagulation and nucleation Eq. (B.15) – (B.18), (2.14) and (B.22)–(B.23):

dNj
dt =

(
dNj
dt

)
growth

+
(

dNj
dt

)
coag

+
(

dNj
dt

)
nuc

and dNG

dt =
(

dNG

dt

)
growth

+
(

dNG

dt

)
nuc

.

(A.14)

The presented solutions were obtained using MATLAB and the implicit ode15s solver. The rk45
solver was found to be not fast enough due to the stiffness of the problem. The discretized solution
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using an Euler approach - as suggested by [134] was found to be - of course - worse than rk45. It
requires a prohibitively small Euler time step - which has to be found via trial and error.

A.4.2.1 Grid Settings Growth/evaporation (with or without) coagulation
Combination of a linearly and logarithmic scaled grid - only allowing discrete multiples of vG first

and logarithmically increasing spacings ar at least as large as vG.

v•i =
{
vstart + vG · (i− 1) , for i ≤ NdPP ,

[vstart + vG · (NdPP − 1)] · q(i−NdPP) ,with: q = 10{9/(NPP−1)} , for NdPP < i .
(A.15)

The number of discrete points, NdPP, can be estimated by the condition, which ensures that the
logarithmic spaced pivot points are at least separated by vG. The real number N (R)

dPP for which the
logarithmic spacing would equal the discrete one is given by:

vstart + vG · (N (R)
dPP) = [vstart + vG · (N (R)

dPP − 1)] · q ⇐⇒ N (R)
dPP = q

q − 1 −
vstart

vG
. (A.16)

Hence NdPP has to be an integer, the smallest integer bigger than N (R)
dPP is used - with the ceiling

function dxe (designating the smallest integer i with i > x) one can write:

NdPP =
⌈
N (R)

dPP

⌉
=
⌈

q

q − 1 −
vstart

vG

⌉
. (A.17)

Note that higher numbers of pivot points, NPP lead to a lower value of q and thus to a higher
number of discrete points NdPP.

This grid is used for the benchmark of the evaporation / condensation simulation with or without
coagulation. (The results are shown in Figures 4.12 and 4.13).

Growth/evaporation, coagulation and nucleation
The logarithmically scaled grid used for the combined simulation of condensation/evaporation,

coagulation and nucleation is defined as:

v•i = 2 · vG · q(i−1) ,with: q = 10{8/(NPP−1)} . (A.18)

This grid consists of pivot points, describing fractional atomic values (e.g. for NdPP = 12 800: v•1 =
2vG, v

•
2 ≈ 2.0029 · vG, v

•
3 ≈ 2.0058vG, etc.), it thus approximates a continuous growth process (i.e.

Eq. (2.6) allows the particles to assume all possible fractional volumes v). While the grid defined
by equations Eq. (A.15) models a more physically relevant system, in which lower particle volumes
can only assume multiple atomic volumes (i.e.: v•1 = 2vG, v

•
2 = 3vG, v

•
3 = 4vG, . . . ). As can be

seen in figure A.1a, these different grids lead to markedly different results in the initial stage of the
simulation - which underlines that a different kind of MC simulation should be used if these very
early simulation stages are in the center of interest.3 It can also be seen, that for longer simulation
times, the choice of the grid becomes irrelevant - as shown in figure A.1b. There seems to be no
perceptible difference whether the continuous or discrete grid is used for the scenarios treating the
evaporation/condensation with or without coagulation. This fact raises the hope that - if one is
only interested in the (measurable) particle state for longer simulation times - the MC simulation
corresponding to the logarithmic scaled grid is sufficient enough in order to investigate the possibility
of formulating the complex dynamics of particle formation with the help of a single nucleation rate
J , coupled to continuous growth/evaporation and coagulation.

3A small (i.e. 100) number of MC-particles with a constant volume of multiples of vG could be used. The change
of the statistical weights due to condensation/evaporation can be easily modeled by the solution of the corresponding
equations already formulated for the pivot method (Eq. (B.15)). The coagulation could be treated as a discrete event,
which decreases the concentration of the MC particle with the fixed volume by the concentration of the colliding particle
(i.e. particle selected for coagulation).

57



Appendix A. Used Functions and Simulation Conditions

5  10 -10 10 -9 5  10 -9

diameter        

109
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

log grid
Girshick
Classic
Courtney

dis-log grid
Girschick
Classic
Courtney

(a) PSDs for t = 0.6µs
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Figure A.1: Simulation of combined nucleation, coagulation, condensation and evaporation for
conditions listed above (section A.4). Results for 12 800 Pivot points are shown using a discrete
logarithmic grid (dis-log: pivot point values defined by Eq.(A.15)) and a logarithmic grid (log: pivot
points defined by Eq. (A.18)).
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Appendix B Explicit Formulas for Discretization Methods

B.1 Collision Integrals for the Sectional Method
The approximation

n(v, t) ≈ Nl/(val − val−1) for val−1 < v ≤ val , (B.1)

is plugged into Eq. (2.2). The integration of the resulting expression with respect to dv over single
sections l (i.e. v = val−1 . . . v

a
l ) leads to two expressions.

1. For the particle number concentration increase in section l due to coagulation of sections i and
k:

βi,k→l =
1− δi,k · δk,l · 1

2
(vai − vai−1)(vak − vak−1)

·
∫ val

va
l−1

[∫ vai

va
i−1

β̃(v̂ − v′, v′)dv′
]

dv̂ , (B.2)

whith: β̃(v̂ − v′, v′) =
{
β(v̂ − v′, v′) , if vak−1 < v̂ − v′ < vak ,

0 , else .

and: δi, j =
{

1 , if i = j ,

0 , else .

The Factor 1/2 is used in the cases i = j = k to prevent a double-counting for the calculation of
βi,i→i.

2. For the particle number concentration decrease due to coagulation of section l with another
section k:

βl,k→ = 1
(val − val−1)(vak − vak−1)

·
∫ val

va
l−1

[∫ vak

va
k−1

β(v′, v̂)dv′
]

dv̂ . (B.3)

B.1.1 Extension for DS Method

If the sectional method is used in combination with discrete points - as in the (DS) methods [126],
additional integral expressions are used for

1. discrete point - section collision leading to increase in another section,

2. discrete point - discrete point collision leading to an increase in another section,

3. discrete point - discrete point collision leading to an increase in a discrete point.

The explicit values for these integrals can be found in [126].

B.2 Pivot Point Method
The in the following derived formulas recapitulate the formulation for coagulation ([127] in section
B.2.1) in combination with the evaporation and condensation in section as stated in [134] – with a
slightly more detailed description of the closures of the resulting equations. The real novelty is the
interpretation of the resulting rate equations in the scope of the method of lines as a set of coupled
ODEs as discussed in section A.4.2.

B.2.1 Coagulation

The coagulation of two particles with the volumes v•i and v•j leads to novel particles with the volume
vnew = v•i + v•j . The splitting on both adjacent pivot points l and l + 1 is done, so that the total
increase of concentration in both nodes is equal to the increase of concentration of the novel particle,
β(v•i , v•j ) ·Ni ·Nj ·(1− 1

2δi,j) (where the delta-Dirac function δi,j and the factor 1
2 prevents from double

counting of all possible coagulation pairs in the case i = j):

βi,j→l ·Ni ·Nj + βi,j→l+1 ·Ni ·Nj = β(v•i , v•j ) ·Ni ·Nj · (1−
1
2δi,j) . (B.4)
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Figure B.1: The evaporation of pivot point i with volume v•i and condensational growth of j with
v•j in the scope of the pivot point technique.

A similar equation can be postulated for the increase of the volume concentration due to coagulation
((v•i + v•j ) · β(v•i , v•j ) ·Ni ·Nj · (1− 1

2δi,j)):

v•l · βi,j→l ·Ni ·Nj + v•l+1 · βi,j→l+1 ·Ni ·Nj = (v•i + v•j ) · β(v•i , v•j ) ·Ni ·Nj · (1−
1
2δi,j) . (B.5)

Plugging an expression for βi,j→l+1 from Eq. (B.4) into Eq. (B.5) leads to:

βi,j→l =
v•l+1 − v•i − v•j
v•l+1 − v•l

· β(v•i , v•j ) · (1− 1
2δi,j) , βi,j→l+1 =

v•i + v•j − v•l
v•l+1 − v•l

· β(v•i , v•j ) · (1− 1
2δi,j) .

(B.6)
The second term results from plugging the first term above (i.e. left equation in (B.6)) into Eq. (B.4).

Eq. (B.6) can be rewritten to:

βi,j→l =


v•l+1−v

•
i−v

•
j

v•
l+1−v

•
l
· β(v•i , v•j ) · (1− 1

2δi,j), if: v•l+1 > v•i + v•j ≥ v•l ,
v•i +v•j−v

•
l−1

v•
l
−v•

l−1
· β(v•i , v•j ) · (1− 1

2δi,j), if: v•l ≥ v•i + v•j > v•l−1 ,

0 else .

(B.7)

For the overall outflow kernel the coagulation kernel is used:

βi,j→ = β(v•i , v•j ) . (B.8)

The term (1 − 1
2δi,j) is dropped, because two particles have to be removed from the same pivot

point i in the case of coagulation with each other.

B.2.2 Growth and Evaporation

A simple approach for the inclusion of condensational growth in the scope of fixed pivot simulation
techniques has been suggested by [134] (the pivot points are termed ‘nodes’ in [134]). The authors
proposed to treat condensational growth as coagulation of monomers (with volume vG) with particles
represented by single pivot points j (volume v•j ) and to split up the resulting particle (volume vG +v•j )
on the originating pivot point j and the adjacent larger pivot point j + 1 - just as it is done for the
coagulation of single particles, like shown in Figure B.1. The growth rate G is thereby associated with
the coagulation rate β via:

G(v•j ) = vG · β(vG, v
•
j ) ·Nsp , (B.9)
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where Nsp is the monomer surplus concentration which is calculated with the monomer concentration,
NG, the monomer concentration at saturation pressure, Ns, and the Kelvin correction term, K(d•j ),
i.e.:

Nsp = (NG −Ns ·K(d•j )) , Ns = ps/(kB · T ) and K(d•j ) = exp
{

4 · σ · vG

kB · T · d•j

}
, (B.10)

with: v•j = π ·
(
d•j
)3
/6 .

The evaporation of particles is described analogously to the condensation: the pivot point i with
the volume v•i is separated into 1) a smaller particle v•i − vG and 2) a monomer with the volume vG.
The smaller particle is split upon the originating pivot point i and the adjacent smaller pivot point
i− 1. The explicit rate of evaporation is also described by Eq. (B.9) (in this case NG < Ns ·K(dj)).

Analogously for the splitting of coagulation shown in the subsection above, the following formulas
for growth (resp. evaporation) of the pivot point j can be formulated:

G(v•j ) > 0 ⇒ Growth of j: decrease of Nj :
(

dNj
dt

)
j

growth
→j

= −
G(v•j )

v•j+1 − v•j
·Nj ,

(B.11)

incrase of Nj+1 :
(

dNj+1

dt

)
j

growth→ j+1
= +

G(v•j )
v•j+1 − v•j

·Nj ,

(B.12)

G(v•j ) < 0 ⇒ Evaporation of j: decrease of Nj :
(

dNj
dt

)
j

evap
→j

= +
G(v•j )

v•j − v•j−1
·Nj ,

(B.13)

increase of Nj−1 :
(

dNj−1

dt

)
j

evap→ j−1
= −

G(v•j )
v•j − v•j−1

·Nj .

(B.14)

The first terms in Eq. (B.11) and Eq. (B.13) take thereby 1) the increase due to the particles
resulting from the splitting and 2) the total depletion of the particles into account4. Assuming that
the pivot points are sorted (i.e. v•i < v•i +1) and that K(v) is smaller for increasing particle diameters
(i.e. v•i < v•j ⇒ K(v•i ) > K(v•j )), leads for the following growth rates of all pivot points:

(
dNj
dt

)
growth

{j 6=1,NPP}

=



− G(v•j )
v•

j+1−v
•
j
·Nj + G(v•j−1)

v•
j
−v•

j−1
·Nj−1 , for: v•j > v•j−1 > v∗ , (G(v•j ) > 0) ,

− G(v•j )
v•

j+1−v
•
j
·Nj , for: v•j > v∗ ≥ v•j−1 , (G(v•j ) > 0) ,

0 , for: v∗ = v•j , (G(v•j ) = 0) ,
+ G(v•j )
v•

j
−v•

j−1
·Nj , for: v•j+1 ≥ v∗ > v•j , (G(v•j ) < 0) ,

+ G(v•j )
v•

j
−v•

j−1
·Nj −

G(v•j+1)
v•

j+1−v
•
j
·Nj+1 , for: v∗ > v•j+1 > v•j , (G(v•j ) < 0) .

(B.15)

For the last pivot point, NPP (with the largest volume v•NPP
), no number concentration decrease

4The expressions for Eq. (B.11) and Eq. (B.12) result directly from the derived coagulation rates in Eq.(B.7):(dNj
dt

)
j

growth
→j

=
(
βG,j→j − βG,j→

)
NspNj =

G(v•j )
vG

(
v•j+1 − vG − v•j
v•j+1 − v

•
j

− 1
)
Nj = −

G(v•j )
v•j+1 − v

•
j

Nj ,(dNj+1

dt

)
j

growth
→ j+1

= βG,j→j+1NspNj =
G(v•j )
vG

·
vG + v•j − v

•
j

v•j+1 − v
•
j

Nj = +
G(v•j )

v•j+1 − v
•
j

Nj ,

and the mass balance:
(dNG

dt

)
j

growth
→

=− βG,j→NspNj = −
G(v•j )
vG

·Nj .

The evaporation is treated analogously by formulating equations similar to Eq. (B.4) and Eq. (B.5) for the split up
of the resulting particles with mass v•j over the adjacent pivot points with the volumes v•j−1 and v•j and a negative
coagulation coefficient resulting from Eq. (B.9).
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due to growth is modeled:

(
dNNPP

dt

)
growth

=


+ G(v•NPP−1)
v•NPP

−v•NPP−1
·NNPP−1 , for: v•NPP

> v•NPP−1 > v∗ , (G(v•NPP
) > 0) ,

0 , for: v•NPP
> v∗ ≥ v•NPP−1 , (G(v•NPP

) > 0) ,
like (B.15) , else .

(B.16)

If the last pivot point, NPP, assumes values > 0, the growth is no longer approximated correctly and
a larger grid with points representing larger volumes should be chosen.

For the first pivot point j = 1, a coupling to the monomers can be modeled in the following way:

(
dN1

dt

)
growth

=



− G(v•1 )
v•2−v•1

·N1 + β(vG,vG)·vG
2·(v•1−vG) ·N

2
G , for: v•1 > vG ≥ v∗ , (G(v•1) > 0) ,

− G(v•1 )
v•2−v•1

·N1 , for: v•1 > v∗ > vG , (G(v•1) > 0) ,
0 , for: v•1 = v∗ , (G(v•1) = 0) ,
+ G(v•1 )
v•1−vG

·N1 , for: v•2 ≥ v∗ > v•1 , (G(v•1) < 0) ,
+ G(v•1 )
v•1−v•G

·N1 − G(v•2 )
v•2−v•1

·N2 , for: v∗ > v•2 > v•1 , (G(v•1) < 0) .

(B.17)

The evaporation of the first pivot point is treated by splitting the resulting particle between the first
pivot point and the monomers with volume vG (the last two lines in Eq. (B.17). This depletion is also
accounted for in the monomer balance equation (last line of second term in r.h.s. of Eq. (B.18)). In
the case of growth, in which the coagulated monomers are stable (vG > v∗), an additional coagulation
kernel might be added, describing the production of particles due to coagulation of the monomers.
The depletion of the monomers undergoing the coagulation is also included in the monomer equation
(as first line):

(
dNG

dt

)
growth

= −

 ∑
i=1,...,NPP

G(v•i ) ·Ni/vG

+


−β(vG,vG)·v•1

2·(v•1−vG) ·N
2
G , for: vG ≥ v∗ ,

0 , for: v•1 ≥ v∗ > vG ,

− G(v•1 )
v•1−vG

·N1 , for: v∗ > v•1 , (G(v•1) < 0) .
(B.18)

The first term on the r.h.s. of this equation accounts for the monomer increase (or decrease) due
to evaporation (or condensation) over all nodes, like sketched in Figure B.1. Note that a change in
NG leads to different growth rates for each node, G(v•i ), as described by Eq. (B.9) and Eq. (B.10).
This leads to a set of differential equations, which proves to be very stiff, so that implicit solvers have
to be applied for a quick solution.

B.2.3 Nucleation

The presented nucleation theories (which differ in the nucleation rates Jcou, Jcls and Jgir in Table
2.1c) all assume that particles become stable (i.e. do not evaporate) for sizes larger than the Kelvin
diameter d∗ resp. the Kelvin volume v∗, as described in Eq. (2.5):

d∗ = 4 · σ · vG/(kB · T · ln(S)) , and v∗ = π · (d∗)3
/6 . (B.19)

Thus, nucleating particles are assumed, to have the volume vnuc, with:

vnuc = v∗ + vG . (B.20)

The supersaturation S – and v∗ as well as vnuc – changes in time and is calculated by the term
(resulting from the definitions in Eq. (2.5)):

S = NGkBT

ps
. (B.21)

Because vnuc changes in time, the adjacent pivot points l and l+1 with v•l < vnuc < v•l+1 change in
time, too. They have to be found (i.e. calculated) again for each time point. Once these pivot points
are found, the resulting concentration of nucleating particles is split upon these pivot points (similar
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to the split up of the resulting particle for coagulation as described by Eq. (B.7)), so that:

(
dNl
dt

)
nuc

=


v•l+1−vnuc
v•

l+1−v
•
l
· J, if: v•l+1 > vnuc ≥ v•l ,

vnuc−v•l−1
v•

l
−v•

l−1
· J, if: v•l ≥ vnuc > v•l−1 ,

0 else .

(B.22)

The mass balance is ensured by taking the depletion of the condensing vapor into account, each
nucleating particle contains vnuc/vG of atoms (resp. molecules) of the condensing material:

(
dNG

dt

)
nuc

= −J · vnuc/vG . (B.23)
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Appendix C Description of SWA with SR Approach

The stochastic resolution theory does not only clarify the fictitious particle approach, it can also be
used, to interpret the SWA methods described in Table 4.2, the statistical weights of the particles after
the coagulation are compared for the SWA and the SR (for the specific setting WMC = Wi·Wj/Wi+Wj)
in Table C.1.

Table C.1: Resulting particles properties after coagulation of particle i (size vi, weight Wi) and
particle j (size vj , weight Wj).

Theory / rate After coagulation: statistical weights of particles with sizes
vi vj vj + vi

SR: (Wi +Wj)βi,j W 2
i /(Wi +Wj) W 2

j /(Wi +Wj) Wj ·Wi/(Wi +Wj)
SWA (i, j): Wjβi,j - Wj αi,j ·Wi

SWA (j, i): Wiβj,i Wi - (1− αi,j) ·Wj

The SWA can be interpreted in such a way – summarizing the more elaborate discussion in the
following two subsections: the exact statistical weights would be represented by the first line of Table
C.1, a third (new) MC particle has to be introduced into the simulation for the correct description
of the coagulation (as described by SR). Instead of introducing this third particle, the SWA sets
the statistical weights in Psel((i,j) | (i,j) or (j,i)) = Wj/Wi+Wj of all cases to the second line and in
Psel((j,i) | (i,j) or (j,i)) = Wi/Wi+Wj of all cases to the third line – resulting thus in the correct first
line, but only in the statistical mean (i.e. if a lot of identical particle pairs (i, j) are selected for
coagulation). This additional selection adds additional stochastic noise to the simulation, as it is
shown in subsection 4.1.3.

C.1 Description by SR

A step on the way to the coagulation rate for the constant number scheme is Eq. (6) for the
coagulation rate Ri,j(WMC) (named βsF

SE(i, j) in [Paper I]) of equally weighted simulation particles
with the weight WMC (named sF in [Paper I]):

Rsr
i,j(WMC) = Wi ·Wj

WMC
· β(vi, vj) . (C.1)

The coagulation rate depends on the stochastic resolution 1/WMC, whereNi = Wi/WMC is the number
of equally weighted particles (with the weight WMC) which are used for a weighted MC particle with
the weight Wi. The value of WMC can be adjusted freely and if it is set to WMC = Wmin, then the
constant-number coagulation scheme in Figure 4.2 is described. The following setting leads to the
description of the SWA:

W
(swa)
MC = Wi ·Wj/(Wi +Wj) ⇒ Rsr

i,j(W
(swa)
MC ) = Wi +Wj · β(vi, vj) , (C.2)

it is depicted in Figure C.1 5.
The resulting statistical weights after coagulation are according to Figure C.1:

New statistical weights of MC particles with volume:

vi : Wi −W (swa)
MC , vj : Wj −W (swa)

MC , vi + vj : W
(swa)
MC . (C.3)

Plugging of the expression for W (swa)
MC in Eq. (C.2) into these resulting expressions leads to the

first line of Table C.1.

5BecauseW (swa)
MC = Wmin ·Wmax/(Wmax +Wmin) < Wmin, there are always more than one equally weighted particles

necessary to render the Wmin particle species. The value W (swa)
MC −Wmin can thereby also assume fractional values.
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coagulation

Reinterpret as 3 differently 

weighted MC particles

Interpret as equally weighted

MC particles with

Figure C.1: The reinterpretation of the weighted MC particles as equally weighted MC particles 
with a stochastic resolution of 1/WMC: if WMC < Wmin, 3 weighted MC particles are necessary to 
render all the resulting particles – like also summarized in Figure 1 in [Paper I].

C.2 Description by SWA

In the scope of the SWA, the coagulation (i, j) and (j, i) are two distinct events, if one is possible, the
other has to be considered, too. So that the overall rate of any possible coagulation between the two
particles i and j is:

RSWA
i,j +RSWA

j,i = Wjβi,j +Wiβi,j = Rsr
i,j(W

(swa)
MC ) , (C.4)

this expression is equal to the rate used by the stochastic resolution with the weight WMC = Wi ·
Wj/(Wi +Wj).

The conditional probability Psel((i,j) | (i,j) or (j,i)) that the pair (i, j) has been selected for coagu-
lation if one of the pairs (i, j) or (j, i) have been selected for sure can be calculated as:

Psel((i,j) | (i,j) or (j,i)) =
RSWA
i,j

RSWA
i,j +RSWA

j,i

= Wj

Wi +Wj
, (C.5)

and analogously for the coagulation of the pair (j, i):

Psel((j,i) | (i,j) or (j,i)) =
RSWA
j,i

RSWA
i,j +RSWA

j,i

= Wi

Wi +Wj
. (C.6)

If a large number Npair of particle pairs(ik, jk), (k = 1, . . . , Npair) with equal (k-independent)
properties (vi,Wi, vj ,Wj) have been selected for coagulation. Then, in the SR theory one would
receive each time the three particles with the weights shown in the first line of Table C.1.

In the scope of the SWA the total of pairs (i, j) and the pairs (j, i) is selected with the same
rate (as stated by Eq. (C.4)). But a fraction Psel((i,j) | (i,j) or (j,i)) of pairs would be a coagulation
of the pair (i, j) and a fraction Psel((j,i) | (i,j) or (j,i)) would describe the coagulation of (j, i). In the
statistical mean one would thus receive the following weights (by multiplying the second (resp. third)
line of Table C.1 with the conditional probability Psel((i,j) | (i,j) or (j,i)) (resp. Psel((j,i) | (i,j) or (j,i)))
and adding up both results):

Resulting statistical weights for particles with volume

vi : Psel((i,j) | (i,j) or (j,i)) · 0 + Psel((j,i) | (i,j) or (j,i)) ·Wi = W 2
i

Wi +Wj
,

vj : Psel((i,j) | (i,j) or (j,i)) ·Wj + Psel((j,i) | (i,j) or (j,i)) · 0 =
W 2
j

Wi +Wj
,

vi + vj : Psel((i,j) | (i,j) or (j,i)) · αi,jWi + Psel((j,i) | (i,j) or (j,i)) · (1− αi,j)Wj = Wi ·Wj

Wi +Wj
.
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This result is exactly the same as described by the SR – absolutely independent on the choice of
αi,j (as long as Eq. (4.1) holds, i.e. αi,j + αj, i = 1) – but is only reached in the statistical mean.

Appendix D Characterization of Stochastic Results

D.1 Mean Values and Standard Deviations for MC Simulations

Each of the Nsim MC simulations uses different sequences of random numbers and produces therefore
different PSDs described by the single weights and properties of the NMC MC particles. The total
number concentration N (j), the mean geometric diameter d(j)

g and the geometric standard deviation
σ

(j)
g for each simulation j is calculated using the statistical weight W (j)

i and the diameter d(j)
i of the

i -th particle within the j-th simulation:

N (j) =
NMC∑
i=1

W
(j)
i , log (d(j)

g ) = 1
N (j)

NMC∑
i=1

W
(j)
i · log (d(j)

i ) , (D.1)

[
log (σ(j)

g )
]2

= 1
N (j)

NMC∑
i=1

W
(j)
i ·

[
log (d(j)

i )− log(d(j)
g )
]2
. (D.2)

These results for single simulations are used for the calculation of the mean values:

N = 1
Nsim

Nsim∑
j=1

N (j) , dg = 1
Nsim

Nsim∑
j=1

d(j)
g , σg = 1

Nsim

Nsim∑
j=1

σ(j)
g , (D.3)

as well as the (sample) standard deviations of these values:

∆N =

√√√√Nsim∑
j=1

(
N (j) −N

)2
Nsim − 1 , ∆dg =

√√√√√Nsim∑
j=1

(
d

(j)
g − dg

)2

Nsim − 1 , ∆σg =

√√√√√Nsim∑
j=1

(
σ

(j)
g − σg

)2

Nsim − 1 . (D.4)

D.2 Confidence Intervals for MC Simulations

The values obtained from Eq. (D.3) and (D.4) can be used in the framework of Student’s t-test statis-
tics to calculate the boundaries N b+ and N b− of the confidence intervals for N (similar calculations
can be done for dg (resp. σg) by replacing N and ∆N with dg and ∆dg (resp. σg and ∆σg)):

N
b+ = N + z∗(Pstat,Nsim − 1) · ∆N√

Nsim
, N

b− = N − z∗(Pstat,Nsim − 1) · ∆N√
Nsim

, (D.5)

where (Nsim − 1) are the degrees of freedom for Student’s t-distribution f (Nsim−1)
sT (x), and Pstat is

the statistical probability which the confidence interval has to ensure, defining thus z∗(Pstat,Nsim−1):

Pstat =
∫ z∗(Pstat,Nsim−1)

−z∗(Pstat,Nsim−1)
f

(Nsim−1)
sT (x) dx . (D.6)

Some exemplary values for z∗ are listed in Table D.1.
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Table D.1: Values for z∗ for some Nsim and Pstat calculated by the function tinv in Matlab 6.

Pstat Nsim z∗(Pstat,Nsim − 1) z∗(Pstat,Nsim − 1)/
√
Nsim

0.90 10 1.83 0.580
0.90 50 1.67 0.237
0.90 100 1.66 0.166
0.95 100 1.98 0.198
0.99 100 2.62 0.262

A good measure for the statistical accuracy is the relative size of the confidence interval compared
to the mean value. One can write for example for the number concentration:

(N b+ −N b−)/N = 2√
Nsim

· z∗(Pstat,Nsim − 1) · ∆N
N

. (D.7)

Reducing thus the value ∆N
N

(for example by application of more MC particles or the choice of
a method which produces simply smaller noise levels ∆N

N
) leads to smaller confidence intervals for a

given number of simulations Nsim for the desired statistical accuracy Pstat.

D.3 Statistical Values for Pivot Point Method
The concentrations Ni for each pivot point i (with the diameter d•i ) are used for the calculation of
the total concentration NPP, the mean geometric diameter dPP

g and the standard deviation σPP
g :

NPP =
NPP∑

1
Ni , ln(dPP

g ) = 1
NPP

NPP∑
1

(Ni · ln(d•i )) , (D.8)

ln(σPP
g ) =

√√√√ 1
NPP

NPP∑
1
Ni ·

[
ln(d•i )− ln(dPP

g )
]2
. (D.9)

D.4 Comparison of Pivot Point Values with MC Values
The deviations (εN ) between the concentrations (resp. mean geometric diameters (εdg) or geometric
standard deviations (εσg)) resulting from the MC method to those resulting from the pivot point
method are measured in relative values:

εN =
∣∣NPP −N

∣∣
N

, εdg =
∣∣dPP

g − dg
∣∣

dg
, εσg =

∣∣σPP
g − σg

∣∣
σg

. (D.10)

The MC values N , dg and σg are defined in Eq. (D.3), their pivot point counterparts in Eq. (D.8)
and (D.9).

6Pinv = 1− (1−Pstat)/2 is used as input probability for the function tinv, which determines the value z∗ for which
Pinv =

∫ z∗
−∞ f

(Nsim−1)
sT (x) dx , which is used for one-tailed tests in contrast to the two-tailed test described with Pstat

and Eq. (D.6).
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Appendix E Algorithms for Condensation, Evaporation and
Nucleation
“Every author of an ODE code wants to make it as easy as possible to use. At the same time the code
must be able to solve typical problems. It is not easy to reconcile these goals.”

Lawrence F. Shampine and Mark W. Reichelt introducing the Matlab ODE suite [241].

E.1 Growth and Evaporation
In the following a parallel implementation of the RK method for the solution of the system of ODEs
given by Eq. (4.17) and Eq. (4.18) is shown. Sections E.1.1 and E.1.2 depict thereby the parallel
implementation of the Runge Kutta (RK) 45 algorithm [242] as it is described for CPU application in
[108].

If particle volumes become smaller than vG, the corresponding particles are removed from the
simulation. Section E.1.3 discusses a strategy for this removal which ensures the numerical stability
of the RK algorithm. The explicit settings of the time step values for a simulation in combination of
coagulation in the framework of operator splitting is discussed in section E.1.4.

E.1.1 Calculation of New Particle Volumes due to Growth and Evaporation

For each time step ∆tRK and particle i, the seven values vRK,n
i (with n = 1 . . . 7) are calculated (and

stored in the main GPU memory for further computation) via:

vRK,n
i = ∆tRK ·G(vAP,n

i , NAP,n
G , t+ CT

n ·∆tRK) , (E.1)

with: vAP,n
i = vi +

n−1∑
w=1

vRK,w
i · CRK

n,w, and NAP,n
G = NG +

n−1∑
w=1

NRK,w
G · CRK

n,w .

The approximation values vAP,n
i and NAP,n

G are discarded after the calculation of vRK,n
i . For the

calculation of vRK,1
i the initial volume is used (vRK,1

i = vi). Explicit values for CRK
n,w are shown in

Table E.1a.
The growth rate G is evaluated at the time t + CT

n ·∆t the constants CT
n are tabulated in Table

E.1b.
The only change in the monomer results from growth (resp. evaporation), so that: NRK,n

G =
NRK,n

G,growth, with:

NRK,n
G,growth = −

NMC∑
i=1

Wi · vRK,n
i /vG . (E.2)

The new resulting particle volume vRK,new
i and the concentration in the gaseous phase NRK,new

G
after ∆tRK is calculated by:

vRK,new
i = v0 +

7∑
w=1

vRK,w
i · CRK

7,w , NRK,new
G = NG +

7∑
w=1

NRK,w
G · CRK

7,w . (E.3)

E.1.2 Calculation of the Next RK Time Step ∆tnew
RK

The differences between the 4th order and the 5th order RK result ∆RKvi for the particle volumes
(and ∆RKNG for the concentration of gas molecules) are given by:

∆RKvi =
∣∣∣∣∣

7∑
w=1

vRK,w
i · CE

w

∣∣∣∣∣ , ∆RKNG =
∣∣∣∣∣

7∑
w=1

NRK,w
G · CE

w

∣∣∣∣∣ . (E.4)

These differences (∆RKvi and ∆RKNG) are put into perspective by comparison with the tolerances
εv
i and εG defined as:
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Table E.1: Values of constants used for RK calculations.

(a) Constants CRK
n,w used for the n-th RK step (Eq. (E.1), (E.3) and (E.11)) and constants

CE
w for the error calculation in Eq. (E.4). Values as in [108].

Index w CRK
2,w CRK

3,w CRK
4,w CRK

5,w CRK
6,w CRK

7,w CE
w

1 1
5

3
40

44
45

19372
6561

9017
3168

35
384

35
384 −

5179
57600

2 0 9
40 − 56

15 − 25360
2187 − 355

33 0 0
3 0 0 32

9
64448
6561

46732
5247

500
1113

500
1113 −

7571
16695

4 0 0 0 − 212
729

49
716

125
192

125
192 −

393
640

5 0 0 0 0 − 5103
18656 − 2187

6784 − 2187
6784 + 92097

339200

6 0 0 0 0 0 11
84

11
84 −

187
2100

7 0 0 0 0 0 0 − 1
4

’
(b) Constants CT

n used for time calculation at n-th RK step.
Values as in [108].

CT
1 CT

2 CT
3 CT

4 CT
5 CT

6 CT
7

0 1
5

3
10

4
5

8
9 1 1

(c) Constants CI
n,k used for interpolation (Eq. (E.13) and (E.14)). Values as

seen in the Matlab implementation, based on [243, 108].

Index k CI
1,k CI

2,k CI
3,k CI

4,k CI
5,k CI

6,k CI
7,k

1 1 0 0 0 0 0 0
2 − 183

64 0 1500
371 − 125

32
9477
3392 − 11

7
3
2

3 37
12 0 − 1000

159
125
12 − 729

106
11
3 -4

4 − 145
128 0 1000

371 − 375
64

25515
6784 − 55

28
5
2

εv
i = εv,abs + εv,rel ·max(vi, vRK,new

i ), εG = εg,abs + εg,rel ·max(NG, N
RK,new
G ) . (E.5)

Table E.2 summarizes the constants used for the calculation of the discussed cases in this work.

Table E.2: Constants used as tolerances for RK error calculations.

εv,abs /m3 εv,rel /− εg,abs /m−3 εg,rel /−

0 10−4 10+12 10−7

The following measure RA is used for the assessment of the given error:

RA = max
(

(max
all i

∆RKvi/ε
v
i ),∆RKNG/ε

G
)
. (E.6)

The time step is rejected, if RA > 1. In this case the new time step ∆tnew
RK is calculated with the

help of the value of the error done in the last RK step, RL:

∆tnew
RK = ∆tRK · (RA)−0.7/5 · (RL)0.4/5

. (E.7)

In the case of an accepted time step, the same formula is used for the calculation of the time value
for the next RK step. The actual value of RA is stored for the next run (i.e. it is set: RL = RA).
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Update particle properties

Set particle i status = 2
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Figure E.1: Explicit formulas for the calculation of vRK,n
i ,vAP,n

i and NAP,n
G are shown in Eq.

(E.1), NRK,n
G in Eq. (E.2), vRK,new

i and NRK,new
G in Eq. (E.3), ∆RKvi and ∆RKNG in Eq. (E.4),

εv
i in Eq. (E.5), RA in Eq. (E.6) and tnew

RK in Eq. (E.7).
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E.1.3 Treatment of Evaporation Events

For each particle, an additional variable stores the status of the particle. It can assume three different
values:

• Particle status 0. The particle is active, its diameter larger than vG, the growth equation for
this particle is solved completely.

• Particle status 1. If during one of the n Rk steps, an intermediate value vAP,n
i with vAP,n

i < vG
is calculated, the particle status is ’marked’ for evaporation. This ensures numerical stability -
hence values smaller vG are often negative and may have dramatic effects on the coupled growth
terms - derailing the entire simulation.

1. If the time step is rejected (i.e. the used value ∆tRK deemed to large), than the particle
status is reset to 0.

2. If the time step is accepted - the new resulting particle volume is calculated. And all
the atoms (resp. molecules) forming the particle are moved to the gaseous phase - this is
done by adding these via a parallel summation to the value Nevap and later to NG and by
marking the particle as evaporated (i.e. setting its status to 2).

• Particle status 2. The particle is evaporated and no coupling to the gaseous phase is simulated
for this particle. A list is used to keep track of the indices of evaporated particles.

1. Newly nucleated particles can be stored on the position of these evaporated particles with-
out the application of merging routines. Simply by storing the particle properties at this
position and setting the status back to 0.

2. If there are particles with status 2 at the end of the entire RK step (i.e. if tRK = tend
RK , then

particles with high concentration are selected and their properties copied onto the empty
places (i.e. places with particle status =2) , the statistical weights are halved. This ensures
that all NMC particles are used for the (possible) following MC coagulation step.

The changing of the particle status allows thus the combination of discrete evaporation events
with the application of the RK methodology for continuous growth and evaporation, as it is shown in
Figure E.1.

E.1.4 Initialization of Simulation Times tRK, tend
RK and Time Step ∆tini

RK

The situation in which the simulation time prior to the coagulation is t and the internal MC time step
is ∆τMC is considered. The initial settings for the RK time variable is: tRK = t and for the end time
of the applied routine: tend

RK = t+∆τMC. The sketched RK-algorithm will perform several steps within
one MC step, hence normally ∆τMC � ∆tRK. The last RK time step, tend

RK − tRK, is usually smaller
than the RK time step according to the intrinsic RK error ∆tnew

RK , defined in Eq. (E.7). Assuming,
however, that the coagulation of one particle pair will lead to only slightly changes of the MC particle
populations, the intrinsic error ∆tnew

RK is far better suited as initial condition for the next RK time
step, ∆tini

RK, than the adjustment to reach the exact time value t + ∆τMC. The resetting of ∆tini
RK

during the last RK time step is also shown in Figure E.1. An appropriately small value for ∆tini
RK has

to be set for the first RK step. In the here presented test cases, ∆tini
RK = 10−12 s has been used.

E.2 Growth, Evaporation and Nucleation
The extension of the ODE system for growth and evaporation (in appendix E.1) to the coupled ODE
system including nucleation (given by Eq. (4.17), Eq.(4.19) and (4.20)) in the framework of the RK
45 [242] algorithm is discussed in section E.2.1.

The introduction of a nucleation threshold VT allows the control of the statistical weights of
the MC particles which are inserted into the simulation and allows thus to simulate a variety of
nucleation scenarios - as discussed in section 4.7.3.1. The numerical realization of this modeling
makes the identification of the explicit nucleation time point tnuc necessary. Hence (4.20) describes
a monotonously growing function, the nucleation takes places if during one RK step, the following
condition is registered:

VB(t) < VT ≤ VB(t+ ∆tRK) . (E.8)
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Figure E.2: Grey shaded parallel routines are the same as shown in more detail in Figure E.1.
Explicit formulas for the calculation of vRK,n

i ,vAP,n
i , NAP,n

G , NRK,n
G , vRK,new

i , NRK,new
G , ∆RKvi,

∆RKNG, RA and tnew
RK are shown in Eq. (E.1) – (E.7).
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In a naive approach, the MC particle with a statistical weight ofWnuc = VB(t+∆tRK)/(v∗+vG) could
be inserted into the simulation, without the search of the exact nucleation time point, tnuc. Due to
extremely high nucleation rates, this might result in values VB(t+ ∆tRK) which are several orders of
magnitude larger than VT. In this scenario, the inserted particle weights, too, would differ in several
orders of magnitude. Wnuc would then depend on factors, like the actual errors of the simulation
defining the time step7 in Eq. (E.7), or predefined time points (or simulation end times), for a result
export to the CPU. Certain simulation conditions lead to the situation where resulting PSDs are more
dependent on the preset simulation times for results export, and become independent on the values
of VT. This problem is avoided, if the exact nucleation time, tnuc is used. The interpolation of the
ODE system (given by Eq. (4.17), Eq.(4.19) and (4.20)) in the RK framework for a time t, with
tRK ≤ t ≤ tRK + ∆tRK, is termed dense output [108] and described in section E.2.2.

Figure E.2 shows the modifications (drawn in blue color) to the algorithm presented in section E.2.1
in order to incorporate the mechanism of nucleation. Novel particles are inserted into the simulation
by means of the low weight merging technique es discussed in section 4.5.1.

E.2.1 Calculation of Gas Concentration NG and Volume Concentration in Buffer VB

The approximate values vAP,n
i and NAP,n

G are used with the RK-coefficients for the volume approx-
imation vRK,n

i as described in the section before in Eq. (E.1). The concentration depletion due to
nucleation with a varying rate J(NG) is added to the growth equation (Eq. (E.2)):

NRK,n
G = −

NMC∑
i=1

Wi · vRK,n
i /vG + ∆tRK ·

(
dNG

dt

)
nuc

(NAP,n
G , t+ CT

n ·∆t) (E.9)

= NRK,n
G,growth −∆tRK · J(NAP,n

G , t+ CT
n ·∆t) . (E.10)

The volume concentration increase in the buffer for nucleating MC particles is calculated by:

VRK,n
B = +∆tRK · J(NAP,n

G , t+ CT
n ·∆t) · vnuc(NAP,n

G , t+ CT
n ·∆t) ,

VRK,new
B = VB +

7∑
w=1
VRK,w

B · CRK
7,w . (E.11)

E.2.2 Interpolation (Dense Output)

For the evaluation of the new particle volume, v(new)
i , only the first six evaluated volumes (vRK,1

i ,. . . ,
vRK,6
i ) are used, the value vRK,7

i is only necessary for the error estimation and the evaluation of the
next RK time step value. Once, both values are estimated, the vRK,7

i can be overwritten by the values
needed by the dense output routine for the evaluation of the exact event time point. (The vRK,2

i are
also not used and could be overwritten at this stage of the simulation). The vRK,7

i are reset to ṽRK,7
i

(in the prepare dense output routine):

ṽRK,7
i = ∆tRK ·G(vRK,new

i , NRK,new
G , t+ ∆tRK), ṽRK,n

i = vRK,n
i , if n < 7 . (E.12)

For the calculation of the volume vi of the particle i at the time t, with tRK ≤ t ≤ tRK + ∆tRK, the
following formula is used:

vI
i(t) =

7∑
n=1

4∑
k=1

ṽRK,n
i · θk · CI

n,k, with: θ = t− tRK

∆tRK
∈ [0, 1] . (E.13)

Analogously:

N I
G(t) =

7∑
n=1

4∑
k=1

ÑRK,n
G · θk · CI

n,k and: VI
B(t) =

7∑
n=1

4∑
k=1
ṼRK,n

B · θk · CI
n,k , (E.14)

7Especially the simulation scenario without background particle populations allows for very large time steps.
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with

ÑRK,7
G = −

NMC∑
i=1

Wi · ṽRK,7
i /vG −∆tRK · J(NRK,new

G , tRK + ∆tRK) , (E.15)

ṼRK,7
B = ∆tRK · J(NRK,new

G , tRK + ∆tRK) · vnuc(NRK,new
G , tRK + ∆tRK) , (E.16)

ÑRK,n
G = NRK,n

G , ṼRK,n
B = VRK,n

B , for n < 7 . (E.17)
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Monte Carlo simulations based on weighted simulation particles can solve a variety of 
population balance problems and allow thus to formulate a solution-framework for many 
chemical engineering processes. This study presents a novel concept for the calculation 
of coagulation rates of weighted Monte Carlo particles by introducing a family of 
transformations to non-weighted Monte Carlo particles. The tuning of the accuracy (named 
‘stochastic resolution’ in this paper) of those transformations allows the construction 
of a constant-number coagulation scheme. Furthermore, a parallel algorithm for the 
inclusion of newly formed Monte Carlo particles due to nucleation is presented in the 
scope of a constant-number scheme: the low-weight merging. This technique is found 
to create significantly less statistical simulation noise than the conventional technique 
(named ‘random removal’ in this paper). Both concepts are combined into a single GPU-
based simulation method which is validated by comparison with the discrete-sectional 
simulation technique. Two test models describing a constant-rate nucleation coupled to a 
simultaneous coagulation in 1) the free-molecular regime or 2) the continuum regime are 
simulated for this purpose.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The processes occurring during particle production are usually modeled with the help of the population balance equation 
(PBE) which is described in detail by [1]. This modeling approach plays a crucial role for the analysis of aerosol reactors [2], 
fluidized beds [3,4], crystallizers [5,6] and many other processes used in the field of chemical engineering [7].

A variety of methods exists allowing to solve the PBE numerically. However, the correct description of simultaneous 
processes like nucleation, coagulation, growth, breakage, mixing, sintering and other processing mechanisms poses a major 
problem, which has not been solved to a satisfactory extent, yet.

The classical moment methods [8,9] and the newer direct quadrature method of moments (DQMOM) [10] are only able 
to render the time-dependency of certain values for the moments of the particle size distribution (PSD), and not the full 
PSD. Sectional methods [11] face problems when combined with growth processes in the form of numerical diffusion [12]
and make the extension to multiple dimensions complicated [13]. Finite element methods avoid the problem of numerical 
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diffusion [14], but they are computationally demanding for time-depending coagulation kernels [15] and necessitate special 
treatment of discontinuities, which are typically encountered in nucleation processes [16].

The Monte Carlo (MC) simulation [17] avoids per se the problem of numerical diffusion for the growth process [18] and 
is easily extensible to multiple particle properties – making it thus a most promising approach in order to describe all of the 
processes mentioned above. The disadvantages of the MC simulation are long simulation times and the inherent stochastic 
noise of the method.

The description of the nucleation process poses a fundamental problem for the MC simulation, hence the continuous 
incorporation of newly nucleated particles has to be reconciled with limited computational capacities. The here presented 
work focuses on the simulation of coagulation and nucleation, only, in order to investigate the extent of the amount of the 
statistical noise stemming from different particle insertion techniques.

The traditional two solutions for the problem of including new simulation particles into the simulation are 1) the resizing 
approaches also called ‘topping-up’ [19] or 2) the so called constant-number approaches, introduced to coagulation first [20]
and extended to the joined simulation of coagulation and nucleation later [21], this approach will be called ‘random removal’ 
in the following. An alternative approach is the rarely applied merging of simulation particles, which is used by [22].

A novel merging strategy, the low-weight merging, for the inclusion of newly formed particles is proposed in this paper 
which is able to preserve all particle properties in contrast to the merging technique by [22], which preserves the properties 
only, if two simulation particles with equal properties can be found. It is shown that simulations using the low-weight 
merging technique produce far less statistical noise than the ones using the traditional random removal method [21].

The presented low-weight merging technique resorts to the use of weighted MC particles. The use of differentially 
weighted simulation particles (a particle i with statistical weight W i represents a concentration W i of real particles) has 
several advantages: it allows to describe the interaction between simulation particles having different concentrations com-
ing from different cells or compartments and it can also be used as a tool to control the number of simulation particles (e.g. 
to gain numeric accuracy). The combination of stochastically formulated coagulation events with an ordinary differential 
equation(ODE)-based growth and nucleation processes [18,23], based on the operator splitting technique, or [2] with less 
formal framework, is facilitated, because no restrictions are posed upon the statistical weight of the particles included into 
the simulation due to nucleation.

The difficulty associated with weighted MC particles is the correct description of the coagulation rates and schemes. The 
mathematically complex stochastic weighted algorithm developed by [24] and further refined by [25] has been suggested 
in this context. The recently proposed Markov jump models [26] describe the coagulation by resorting to constant-number 
methods introduced by the Matsoukas group [20]. An alternative approach has been elaborated by [27] leading to the 
concept of ‘fictitious particles’, the attribution of two distinct rates or probabilities for the same coagulation event are 
conceptually difficult to understand.

We introduce an alternative approach for the derivation of the coagulation rates for various coagulation schemes by 
elaborating the theory of ‘stochastic resolution’.

2. Theoretic concepts for weighted simulation entries

In order to provide more clarity, the differentially weighted MC particles (also named ‘stochastic particles’ [25], or 
‘fictitious particles’ [27] in other publications) will be called simulation entries (SE) for which the statistical weight (a con-
centration in units m−3) and the properties of the SEs are stored on the computer.

2.1. Operator splitting technique

The simultaneous nucleation and coagulation processes are described by the following PBE:

dn(v)

dt
= 1

2

v∫
0

β(v − v ′, v ′)n(v − v ′)n(v ′)dv ′ − n(v)

∫ ∞

0
β(v, v ′)n(v ′)dv ′ + δ(vnuc − v)RN(t) . (1)

The first two terms on the r.h.s. of the equation describe the coagulation process. n(v) is the number density of particles 
with the property v and β(v, v ′) is the coagulation kernel, describing the rate of coagulation between particles of types v
and v ′ (the newly formed particle has the type v + v ′). The particle properties are defined by the type space considered in 
the problem and this can be univariate or multivariate. The last term of Eq. (1) describes the insertion of particles with the 
property vnuc with the nucleation rate RN(t). For a given time-step τmc, the concentration of the nucleated particles can be 
written as:

Wnuc =
tstart+τmc∫

tstart

RN(t)dt . (2)

The nucleation rate RN as well as the volume (or multivariate properties) of the nucleated particles, vnuc, can be time-
dependent, especially in the context of a physically induced homogeneous nucleation (e.g. [28,29]) due to the dependence 
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on the supersaturation. A constant nucleation rate RN and a constant (one-dimensional) volume vnuc are used in this work. 
This simplifies Eq. (2) to:

Wnuc =
tstart+τmc∫

tstart

RN dt = τmc · RN . (3)

Instead of treating the nucleation as a competitive MC event (e.g. [30]) to the coagulation process, both processes can be 
simulated independently for small intervals of time [31]. This technique is called operator splitting [32]. The application of 
this algorithm in combination with weighted SEs has already been investigated and used (e.g. [23]). This work makes use 
of a simple implementation of this method:

1. An event-driven MC coagulation-step is performed (introduced in section 2.2.2, the explicit algorithm is in Appendix A). 
A specific value for the time-step τmc is gained by this algorithm.

2. Following Eq. (3), the statistical weight, Wnuc, of the SE representing the nucleated particles is calculated. Then a SE 
with this weight and the property vnuc is inserted by one of the insertion techniques introduced in section 2.3.

Both steps are repeated until the time t reaches or surpasses the simulation time ttot (i.e. t ≥ ttot). Algorithm 1 in 
Appendix A summarizes this simulation procedure.

2.2. Coagulation

Section 2.2.1 treats the coagulation of weighted SEs. The concept of ‘stochastic resolution’ is introduced, which defines 
specific coagulation events and states the corresponding rates at which these events occur. The implementation of the 
gained results in the framework of a GPU-based fast simulation technique is shown in section 2.2.2.

2.2.1. Rendering of coagulation events by weighted SEs
The PSD rendered by all SEs can be rendered by equally weighted simulation entries (EWSE). Each EWSE represents the 

same concentration sF of real particles (in the units m−3) in the scope of a ‘classic’ MC simulation. The more EWSEs are used 
(the lower the value sF) to render one specific PSD, the higher is the accuracy of the MC simulation: the coagulation events 
can be rendered at a higher resolution. The stochastic resolution of this transformation can conveniently be defined to 1/sF. 
Fig. 1 shows how one coagulation event between the particle populations represented by two SEs i and j is rendered in 
the scope of three arbitrarily chosen stochastic resolutions: First the SEs are converted to EWSEs. Second, two of the EWSEs 
coagulate with each other and form one new EWSE. This process takes place with the coagulation rate βsF

SE . Finally, all the 
EWSEs are converted back to weighted SEs.

The chosen stochastic resolution 1/sF determines the number of EWSEs Ni (resp. N j) which are used to render the SE i
(resp. j) with the weight W i (resp. W j) via:

Ni = W i

sF
and N j = W j

sF
. (4)

The continuous PSD, n(v), of the real particle population is approximated by all NEWSE EWSEs with the help of the Dirac 
delta function δ to:

n(v) ≈ sF

NEWSE∑
k

δ(v − vk) . (5)

The PBE for coagulation for continuous PSDs n(v) can be translated into a discrete form for single EWSEs. This procedure is 
outlined in Appendix B. The resulting coagulation rate βsF

SE(i, j) for two SEs i and j in Eq. (B.11) combined with the actual 
number of EWSEs defined via Eq. (4) yields:

β
sF
SE(i, j) = Ni N j · sF · β(vi, v j)

(4)= W i W j

sF
· β(vi, v j) . (6)

The coagulation event with the rate βsF
SE renders the coagulation of two EWSE into one new EWSE which represents 

a real particle concentration of sF. The SE representing the newly coagulated EWSE has therefore the statistical weight 
of W new

coag = sF. The statistical weights W i and W j of the coagulating SEs i and j have to be adjusted to W new
i and 

W new
j , reflecting the loss of real particles with a concentration of sF due to the coagulation event (like summarized in 

Fig. 1):

W new = W i − sF, W new = W j − sF, W new
coag = sF . (7)
i j
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Fig. 1. The hypothetical three-step process for the description of the coagulation of weighted SEs in the framework of EWSEs. The creation of an additional 
SE is necessary, if sF is set to a value lower than Wmin. If sF is set to a value higher than Wmin, the coagulation event cannot be rendered at all.

Fig. 2. The setting of sF = Wmin leads to a coagulation scheme, which preserves the number of SEs.

The properties v are modified via the following equation:

vnew
i = vi, vnew

j = v j, vnew
coag = vi + v j . (8)

These general expressions (Eqs. (6), (7) and (8)) are valid for all chosen values for sF, with sF ≤ min(W i, W j).

Constant-number scheme. In order to avoid the problem of creating at each coagulation step new memory space for new SEs 
resulting from the coagulation, the value of sF can be set for each coagulation pair to1:

sF = Wmin = min(W i, W j) . (9)

The coagulation rate of the pair (i, j) is calculated in a different stochastic resolution than the coagulation rate of the pair 
(k, l), if min(W i, W j) �= min(Wk, Wl). In this case, the coagulation of particles represented by the SEs i and j is described 
with a different accuracy (or resolution) than the coagulation of particles represented by the SEs k and l.

The corresponding coagulation rates β(SR)
i, j result from Eq. (6) in combination with Eq. (9), with Wmax = max(W i, W j):

β
(SR)
i, j = Wmax · β(vi, v j) . (10)

In the case W i = W j , the resulting SE can be split into two with the weight: W = Wmin/2, like shown in Fig. 2. The 
detailed algorithm is presented as Algorithm 2 in Appendix A.

Comparison to other methods. The thus gained coagulation scheme (Fig. 2) is different from the Markov jump model [26], 
but it is the same as the fictitious particle-based scheme introduced by [27]. However, the authors [27] state a different 
coagulation kernel β(FP) resulting from the fictitious particle-theory:

1 We consider sF as a function, which is dependent on the specific properties of the SEs i and j considered for coagulation, the specific setting in Eq. (9), 
is one out of many possibilities. Different settings lead to different non-constant-number schemes (see Fig. 1), a plethora of methods can be constructed in 
this way. Other properties, like e.g. the volume of the SEs can be taken into account in order chose the value of sF.
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β
(FP)
i, j = 2W j · Wmax

W i + W j
· β(vi, v j) . (11)

This coagulation rate is asymmetric, making a distinction necessary, whether SE i coagulates with j or vice versa. The co-
agulation event between i and j is the same as between j and i, as can be seen in Fig. 2. It is difficult to understand 
conceptually, how the same event can be described with two different rates, and thus probabilities. A more detailed discus-
sion of the differences between the fictitious particle based coagulation kernel and the stochastic resolution based one is 
given in Appendix C.

2.2.2. Fast simulation technique for coagulation
For the selection of one coagulation event, the calculation of the exact maximal coagulation rate βmax and the mean 

coagulation rate βmean is necessary in the framework of the acceptance–rejection (AR) method. Several methods exist in 
order to accelerate the computationally demanding calculation of these values. Book-keeping strategies [33] can be used in 
order to update the at the beginning of the simulation exactly calculated values βmax and βmean after each discrete event.2

This method becomes less applicable if the coagulation and nucleation processes are combined with growth or evaporation 
processes which are rendered in a hybrid continuous implementation.

Majorant kernel techniques ([25,26]) use simpler mathematical formulations β̂(vi, v j), which satisfy: β̂(vi, v j) ≥
β(SR)(vi, v j) and allow thus a simple and computationally efficient approximation of βmax. Although such a formulation 
can be easily formulated for many physical systems like the here used free-molecular regime, a general expression β̂(vi, v j)

for all sorts of coagulation kernels (possibly rendering multidimensional particle properties) might prove difficult to formu-
late or prove computationally very demanding.

A GPU-based acceptance–rejection technique introduced by [34] reduced the computation time for the MC simulation by 
the usage of a representative sample of pairs of SEs (256 pairs are used in this work, Nsample = 256). The mean value of the 
coagulation rates of this sample βmean is multiplied with a constant factor γ ≥ 1 in order to provide a coarse approximation 
of the maximal coagulation rate: β(app)

max ≥ γ · βmean.
This leads to the following algorithm for the fast selection of a coagulation pair:

1. Execute Nsample GPU-threads in parallel, each one repeats:
(a) Select a pair of weighted SEs (i, j) randomly.
(b) Participate in the Calculation of βmean (via Eq. (10))

βmean = 1

Nsample

∑
all sample SE-pairs (i, j)

β
(SR)
i, j . (12)

(c) Generate a random number ri, j ∈ (0, 1) and select the pair (i, j) for coagulation, if

ri, j ≤ βi, j

γ · βmean
= βi, j

β
(app)
max

(13)

until at least one pair has been found for coagulation (by at least one GPU-thread).3

2. Coagulate the coagulation pair according to Fig. 2.
3. Set the MC time step to

τ
(app)
mc = 2

NSE(NSE − 1)βmean
. (14)

A detailed description of this algorithm can be found as Algorithm 2 in combination with Algorithm 3 in Appendix A.
This approach leads to a mathematical correct description, if β(app)

max ≥ βmax. The results are therefore exact in the scope 
of the MC simulation, if γ is set high enough. Systematic errors are introduced into the simulation, if β(app)

max < βmax. The 
condition β(app)

max ≥ βmax ensures the correct description of the probabilities for the single events via Eq. (13), like in the 
scope of a majorant kernel technique, e.g. [25]. The majorant kernel technique ensures the correct time steps by the concept 
of ‘fictitious time steps’, which are selected coagulation pairs, which lead to a time increment, but to no coagulation of the 
selected SEs. Therefore, many successfully selected particles might be necessary in order to make one coagulation step. This 
is not the case for the γ -based method introduced by [34], where the time step for one coagulation attempt is approximated 
by Eq. (14), thus only one selected particle pair is sufficient to perform a full coagulation step.

2 If the SEs i and j have coagulated, the sum βsum of the rates is updated via: βsum = βsum − ∑
k βk,i(old) − ∑

k βk, j(old) + ∑
k βk,i(new) + ∑

k βk, j(new) , 
leading to βmean = βsum/NSE · (NSE − 1). Similarly, it is checked, whether a new maximal coagulation rate, βmax, has to be used, if any k exists, with 
βmax < βk,i(new) or βmax < βk, j(new) . The notation i(old) (resp. i(new)) designates the properties and statistical weight of the SE i before (resp. after) the 
coagulation. These updates require only a multiple of NSE computational steps, reducing vastly the cost of the exact calculation, which makes NSE · (NSE −1)

additions necessary.
3 Hence all (parallel) threads store the hypothetically found coagulation pair in the same place, only one selected pair is used for the following coagulation 

code. This specific point is discussed in Appendix A (Algorithm 3) in more detail.
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Fig. 3. Alteration of the NSE SEs during one random removal step.

Fig. 4. The concept of merging of SEs. The merging alters the PSD and introduces systematic errors as shown in (a). These errors can be limited by the 
selection of SEs whose properties are nearly similar (b).

2.3. Techniques for the insertion of new SEs

Constant-number algorithms can be used to model the inclusion of nucleated particles or particles included by other 
processes: like breakage or transport. First the conventionally used method, the random removal will be presented in sec-
tion 2.3.1. Section 2.3.2 introduces the newly developed low-weight merging technique.

2.3.1. Random removal
The modeling of the nucleation of new particles using a constant-number method was realized by the removal of ran-

domly chosen EWSEs [21]. In the scope of this approach it has been found, that the mass of the removed EWSE has to be 
redistributed over the remaining population.

This technique can be easily extended to weighted SEs, and is summarized in Fig. 3. If a SE (with the weight W rem and 
mass mrem) is removed from the simulation, the weights W i of all other SEs (with the mass mi ) have to be adjusted to new 
weights W (rd)

i via the following formula:

W (rd)
i = W i · MT

MT − mrem · W rem
, with: MT =

Nold
SE∑

k=1

Wk · mk , (15)

where 
∑Nold

SE
k=1 refers to the summation over all SEs including the removed SE, but without the freshly nucleated SE. A detailed 

implementation of this algorithm using smart bookkeeping is shown as Algorithm 4 in Appendix A.3.
This method conserves the total mass of the system exactly but not the total number-concentration of the simulated 

particles, if the volume (or mass) is the single property of the system. This approach has been successfully applied on 
weighted SEs, making it the conventionally used technique for the inclusion of new SEs [35,23,2].

2.3.2. Merging techniques
The following concept of merging of SEs is proposed here: if two SEs with exactly the same properties are merged, the 

resulting representation of the PSD will not change and all the physical processes will be described in the same way. If the 
SEs differ slightly in their properties, a small error will be introduced. The idea is summarized in Fig. 4.

Merging scheme. The here proposed merging scheme preserves 1) the statistical weight and 2) the properties of the SEs 
throughout the merge step.
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The merging of two SEs i (with the weight W i ) and j (with the weight W j) into a new SE at the position i (with the 
new weight W (mrg)

i ) conserves the number-concentration rendered by those SEs. This defines the value of W (mrg)

i by:

• Calculation of statistical weight:

W (mrg)

i = W i + W j . (16)

Furthermore, each SE i contains the values of the other properties vi =
(

v(1)
i , v(2)

i , v(3)
i , . . .

)T
of the rendered part of the 

particle population (where v(A)
i is a property of the SE such as the volume, composition, electric charge, etc. for A =

1, 2, 3, . . . ). In a general situation, conserved extensive properties4 v(A)
i are most suitable for the here presented merging 

scheme, because the total amount of the property (per system volume) v(A)
tot(i, j) rendered by the two SEs i and j can be 

rendered by a weighted addition:

v(A)
tot(i, j) = W i · v(A)

i + W j · v(A)
j . (17)

This total amount (per system volume) can also be rendered by the merged particle at the position i with the new properties 
v(A,mrg)

i , A = 1, 2, 3 . . . :

W (mrg)

i · v(A,mrg)

i = v(A)
tot(i, j) = W i · v(A)

i + W j · v(A)
j . (18)

This equation defines the new property values v(A,mrg)

i , for all A, because the value for the new statistical weight W (mrg)

i
has already been defined in Eq. (16). The combination of these two equations leads to an explicit formula for the value of 
the new property v(A,mrg)

i after the merge step:

• Calculation of each particle property value for A = 1, 2, 3 . . . :

v(A,mrg)

i = W i · v(A)
i + W j · v(A)

j

W i + W j
. (19)

By using Eq. (16) and Eq. (19), the total mass and the particle concentration of the simulated system can be preserved 
exactly, if the volume (or mass) is the single property of the SE. This stands in contrast to the merging method presented 
by [22], which does preserve the total mass only if two SEs with vi ≈ v j can be found.

Merging error. The error introduced into the simulation by the merging of the SEs i and j can be estimated by the following 
formula:

E(i, j) =
∑

all properties
A=1,2,...

αA ·
⎛⎝

(
v(A)

i − v(A)
j

)
min

(
v(A)

i , v(A)
j

)
⎞⎠2

, (20)

where αA are merging weights, which can be set arbitrarily (depending on the simulated physical system) they can be 
interpreted as a measure of the severity, which the deviation of the property v(A1)

i from v(A1)
j would have – compared to 

the deviation of other properties v(A2)
i from v(A2)

j . In the case of a single simulated particle property, any setting for the 
parameter α1 > 0 would lead to the same result of the low-weight merging algorithm further below. The specific value 
α1 = 1 has been used in this work.

Low-weight merging. The random selection of two SEs i and j would result in a random merging error E(i, j) which may be 
excessively high. The smallest possible merging error can be estimated by the comparison of all possible pairs of SEs. The 
determination of this pair would prove very costly: NSE · (NSE − 1) comparisons are necessary, if NSE SEs are used. A sound 
compromise between both scenarios is the sampling of a representation of the SEs and the estimation of the minimum 
error of this representation.

The low-weight merging is a technique for finding a SE-pair (i, j) with a minimal merging error. For one SE iLW with 
a low (statistical) weight the merging error, EiLW , j , which would arise from the merging with one of the other SEs j is 
calculated. A parallel algorithm, easily adaptable for GPU computing can be applied in order to calculate all NSE − 1 possible 

4 Conserved extensive properties, are properties whose total amount (per system volume) v(A)
tot(i) rendered by a SE i can be written as: v(A)

tot(i) = W i · v(A)
i . 

Examples for such properties are: the mass, volume, electric charge, etc.
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Fig. 5. One example for the parallel comparison algorithm, only log2(N) parallel steps are necessary in order to find the minimum value of N elements.

Fig. 6. Alteration of the NSE SEs during one low-weight merging step.

combinations and find the pair with the minimal value. Only log2 NSE computational steps are necessary if the algorithm in 
Fig. 5 is used. We discuss in the provided supplementary material, that the required resources for the exact computation 
of all NSE · (NSE − 1) merging pairs in order to find the exact merging error is not feasible with standard GPUs available to 
date, because the architecture of the GPU prohibits using Fig. 5 to compute the exact error with O (2 log2 NSE) cost.

The algorithm in Fig. 5 is similar to the calculation of the mean coagulation rate presented by [34]. Fig. 6 summarizes 
the steps of the low-weight merging algorithm, which is shown in full detail as Algorithm 5 in Appendix A.4.

A new list with the indices of 100 SEs with low weights is created after every 100 merge steps. The necessary search 
of SEs with low weights is replaced in this way by a simple load operation of the indices of the SEs. If no SEs with a low 
weight can be found (e.g. at the beginning of the simulation, if all SEs have equal weights), the index of a randomly selected 
SE is stored in the list.

The preference for SEs with low weights has two reasons: first, the alterations of the PSD are smaller than due to the 
merging of SEs with higher weights. Second, the replacement of SEs with the lowest statistical weights with SEs with higher 
weights allows the coagulation steps to be performed within a lower stochastic resolution and makes thus less simulation 
steps necessary.

3. Validation

3.1. Simulated system

Only one particle property, the volume v is used to characterize the SEs. The coagulation kernel for the free-molecular 
regime, βfm is chosen as one option for the description of the coagulation process (i.e. the kernel β).

βfm =
(

3

4π

) 1
6

√
6kBT

ρp
·
√

1

v1
+ 1

v2
·
(

v
1
3
1 + v

1
3
2

)2

. (21)

This coagulation kernel describes the rate of coagulation of two aerosol particles with the volumes v1 and v2, where the 
particle size is much smaller than the mean free path of the gas. The chosen variables and their settings are listed in Table 1, 
kB is the Boltzmann constant.

The coagulation kernel in the continuum regime, βco, has been investigated as well:

βco = 2kB · T ·
(

v
1
3
1 + v

1
3
2

)
·
(

v
− 1

3
1 + v

− 1
3

2

)
. (22)
3η
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Table 1
The parameters used for the simulation of combined nucleation and coagulation.

Free-molecular system (β = βfm) Continuum system (β = βco)

Temperature T = 300 K T = 300 K
Particle density ρp = 1 g

cm3 –
Viscosity – η = 1.865 · 10−5 Pa s
Initial concentration N0 = 1017 m−3 N0 = 1017 m−3

Initial/nuclei diameter d0 = 3 · 10−9 m d0 = 3 · 10−9 m
Nucleation rates RN = 1014,1015,1016, 1017 m−3s−1 RN = 1017 m−3s−1

Inserted nucleation mass 
during t(fm)

tot or t(co)
tot

ca. 5%, 50%, 500% and 5000%
fraction (%) of the initial mass

ca. 3000%

Simulation time t(fm)
tot = 1000 · τfm ≈ 51.8 s t(co)

tot = 1000 · τco ≈ 33.8 s

This kernel describes the coagulation of aerosol particles whose particle size is much bigger than the mean free path 
of the gas. It is also valid for particles in liquids, such as encountered in crystallization processes. The value for the used 
viscosity η is also listed in Table 1.

The particles are modeled as spheres and the usage of Eq. (21) (resp. Eq. (22)) in combination with the PBEs (Eq. (1)) 
implicitly states that particles formed due to coagulation are spheres as well.5 The diameter d of those particles will be 
used in order to describe the initial conditions and simulation results.

For both coagulation kernels, a monodisperse particle population with a concentration N0 and diameter d0 (both listed 
in Table 1) is used as initial condition. The concentration is distributed uniformly over the NSE SEs, so that each SE i has a 
statistical weight of W i = N0/NSE at the beginning of the simulation.

The typical time scale for the coagulation of such a monodisperse initial population is τfm for the free-molecular regime 
and τco for the continuum regime, with:

τfm ≈
√

1 · ρp

3 · kB · T · d0
· 1

N0
and τco ≈ 3

4
· η

kB · T
· 1

N0
. (23)

This is the time in which the initial concentration N0 would reduce to N0/2 due to the coagulation in a monodisperse model 
in absence of any other physical process [36]. A total simulation time of t(fm)

tot = 1000 ·τfm is simulated for the free-molecular 
regime and t(co)

tot = 1000 · τco for the continuum regime.
Constant nucleation rates listed in Table 1 have been investigated. The particles were included with a diameter d0 = 3 nm, 

which is the diameter of the monodisperse initial population. Although the diameters of the included SEs can easily be 
altered in the scope of the MC simulation, a constant diameter facilitates an accurate benchmark simulation with the help 
of the discrete-sectional method.

3.2. Validation method

For validation, a volume-based discrete-sectional model was applied, based on the work by [37] which is an extension 
of the sectional method introduced by [38] by discrete points in order to render the first monomer values more correctly. 
The simplification by [39] has been used, too. The discrete-sectional method solves the PBE (1) by a discretization of the 
continuous variable v into discrete points and sections, a one-dimensional grid (referred to as ‘grid’ in the following) is 
applied for the discretization. The partial differential equation (1) is transformed in this way to a set of coupled ordinary 
differential equations (ODE), which can be solved by application of available ODE solvers. The Gear method is used for 
this purpose in this work. The discrete-sectional-model is considered to produce a very exact numerical solution of the 
coagulation equation when a very fine discretization grid is chosen [11]. In this work, 250 discrete points designating 
integer multiples of the initial volume, and 400 sections, whose width increase with the factor 2

1
12 ≈ 1.059, have been used 

in combination with the discrete volume-based model from [37].
Simulations with finer grid settings have been performed in order to measure, whether further refinement of the grid 

has a significant impact on the PSD. The results for the free-molecular regime with a nucleation rate of RN = 1017 m−3 for 
the time tfm

tot are shown in the following, because they exhibited the strongest dependency on the grid settings. Table 2 sum-
marizes the used grid settings and the estimated values for the mean geometric diameter dDS and the geometric standard 
deviation σDS, the precise calculation of these values for discrete-sectional grids is described in [37]. The subscript ‘DS’ is 
used (instead of dg and σg ) in order to underline that the calculated values are estimated by means of the discrete-sectional 
method. We expect the ‘finest’ grid (with 1000 discrete points, and 1600 sections) to produce the most accurate results σ acc

DS , 
dacc

DS . In order to quantify the relative error in reference to these accurate results, the relative values �σDS and �dDS are 
used, which are defined by:

5 This models an instantaneous coalescence of the newly formed particles. The behavior of droplets can be described with the same kernel and PBEs as 
well.
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Table 2
Characteristic values of the PSD (for the free-molecular regime, RN = 1017 m−3 and t(fm)

tot ) resulting from different grid settings for the discrete-sectional 
method.

Grid settingsa Geometric mean diameter Geo. standard deviation Computing

Points/sections Q 21/Q dDS/nm �dDS/10−3 σDS �σDS/10−3 time/103 sec

63/100 (42) 3 1.260 3.4458 1.36 1.3455 2.01 0.01
125/200 (78) 6 1.122 3.4434 0.58 1.3440 0.89 0.18
250/400 (144) 12 1.059 3.4423 0.26 1.3433 0.37 1.82
500/800 (263) 24 1.029 3.4417 0.09 1.3429 0.07 18.7
1000/1600 (478) 48 1.015 3.4414 – 1.3428 – 240

a The number of used discrete points Ndp, the total number of used sections Nsec and (in brackets) the number of sections, which are smaller than 
100 d0 are shown. The factor Q is used to calculate the value 21/Q , with which the width of the sections increases. The specific values for boundaries of 
the sections are: Bk = d0 · (Ndp + 0.5)

1/3 · 2k/3·Q . The 2 boundaries Bk−1 and Bk define the section k with k = 1 . . . Nsec .

�σDS = |σ acc
DS − σDS|

σ acc
DS

, �dDS = |dacc
DS − dDS|

dacc
DS

. (24)

This values are dependent on the used grid and listed in Table 2. For the setting of 250 discrete points and 400 sections, 
a value of ca. �σDS = 2 · 10−4 is reached. This systematical error is lower than the inherent statistical noise of the MC 
simulations discussed in the results section below, and can be therefore neglected for the benchmarking process.

4. Results and discussion

In order to determine which particle insertion technique leads to the highest precision, the MC simulations were per-
formed for a very high γ -setting (γ = 2 · 104) with a coagulation kernel resulting from the stochastic resolution theory.

This high γ -values are necessary, in order to avoid systematic errors caused by the approximation of βmax by the fast 
simulation technique. Lower γ values than 20 000 lead to systematic errors, higher γ values lead to no palpable alteration 
of the simulation results. This stands in contrast to earlier findings of a relatively small γ -value for the simulation of 
coagulation (based on the fictitious particle theory) of broad, bimodal PSDs in the free-molecular regime (γ = 40) [34] or 
the continuum regime (γ = 40–200) [40]. Both cited studies used results of the integration of log-normal PSDs as statistical 
weights for the SEs. It can be assumed, that the statistical scatter of those weights is much smaller than the one resulting 
from the simulation algorithms (low-weight merging and random removal) presented in this study. The lower statistical 
scatter of those weights leads in turn to lower necessary γ -values. This would explain the discrepancy of the cited studies 
to the presented results.

4.1. Nucleation and coagulation in the free-molecular regime

In this section, the results of the nucleation combined with the coagulation in the free-molecular regime is discussed.
Fig. 7 shows exemplary PSDs for the nucleation rate RN = 1014 m−3 s−1 gained from MC simulation in comparison with 

the benchmark solution based on the discrete-sectional method. The inserted mass due to the nucleation process comprises 
only a small fraction of the initial mass (5% during t(fm)

tot ). The mass-based PSD assumes therefore a form which would be 
attained for the coagulation process (without nucleation) with a single ‘coagulation peak’. The number-based PSD is marked 
by the coagulation peak and a second ‘nucleation peak’ for larger simulation times t .

It can be seen, that both techniques (random removal and low-weight merging) reproduce PSDs in reasonable agreement 
with the benchmark solution. Higher nucleation rates lead to higher particle concentrations and thus higher coagulation 
rates and smaller MC time steps, τmc. Thus more MC time steps are needed for the simulation of the time t(fm)

tot and more 
SEs are inserted into the simulation. This leads to an augmentation of the systematic and stochastic errors.

For a high nucleation rate 
(

RN = 1017 m−3 s−1
)

and a long simulation time (t = 1000τfm), only the low-weight merging 
using 104 SEs is still able to produce a good approximation of the results, while using 1000 SEs or the random removal 
technique (with 103 or 104 SEs) lead to clear deviations from the benchmark solution, as shown in Fig. 8.

The mean geometric diameter dg is used to calculate the geometric standard deviation (GSD) σg by the summation over 
all SEs i with the diameter di and the statistical weight W i :

ln(dg) =
∑

i ln(di)W i∑
i W i

,
(
ln(σg)

)2 =
∑

i

(
ln(di) − ln(dg)

)2
W i∑

i W i
. (25)

The values of σg of the PSDs resulting from MC simulation results can be used as a measure of the statistical noise 
and the systematic errors. The statistical noise is measured by comparison of the arithmetic mean, σ MC, for 100 values of 
σg gained by MC simulations (with 100 different random numbers), to the arithmetic standard deviation �σMC of those 
values. Fig. 9 shows the ratio �σMC/σ MC. The much higher precision of the low-weight merging technique compared to 
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Fig. 7. Number- (dN/dlog(d)) and mass-based (dM/dlog(d)) PSDs resulting for the nucleation rate RN = 1014 m−3 s−1 and coagulation in the free-molecular 
regime.

Fig. 8. Number- (dN/dlog(d)) and mass-based (dM/dlog(d)) PSDs for the nucleation rate RN = 1017 m−3 s−1 and coagulation in the free-molecular regime.

the random removal method can be clearly seen. For longer simulation times, the simulations using the random removal 
technique with 10 000 SEs cannot attain the level of accuracy of the low-weight merging technique with 1000 SEs which 
applies only one tenth of the computational resources.

The increase of the statistical errors in the course of the simulation can be explained by the broadening of the PSD, for 
the random removal method. Hence the randomly selected particle can represent any part of the PSD, so that a broader PSD 
is more susceptible to the noise introduced by the random selection of the removed particle.

The systematic errors introduced into the MC simulations are measured by the comparison of σ MC to the bench-
mark value σDS, which is the value for σg resulting from the discrete-sectional simulations. Fig. 10 shows the values 
|(σ MC/σDS) − 1|.

The systematic errors introduced into the simulation due to the low-weight merging technique are increasing for higher 
nucleation rates 

(
1017 m−3 s−1

)
and longer simulation times t . This increase can be explained by the broadening of the cor-

responding PSDs, which diminishes the chances of finding a pair of SEs with a low merging error. However, the low-weight 
merging technique can clearly ascertain a higher accuracy than the random removal method, whose accuracy is limited by 
the much higher statistical errors shown in Fig. 9.
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Fig. 9. The ratio �σMC/σ MC for different nucleation rates RN and coagulation in the free-molecular regime. This ratio is used as a measure for the statistical 
errors.

Fig. 10. The value |(σ MC/σDS) − 1| for different nucleation rates RN and coagulation in the free-molecular regime. This value is used as a measure for the 
systematic errors of the MC simulations.

The simulation becomes less reliable for longer simulation times (for NR = 1017 m−3 s−1), casting a doubt on the appli-
cability of the simulation for particle sizes up to the micrometer scale (i.e. until d ≈ 103d0–104d0). For practical industrial 
applications, however, the assumption of a constant nucleation rate is not realistic for particle synthesis from the gaseous 
phase, i.e. [23,2], where particle sizes up to hundreds of nanometers are simulated. For particle growth to micron-sized 
particles, the supersaturation would be greatly reduced due to the monomer consumption and the nucleation rate would 
become very small.

A more challenging modeling task would be the application of coating of micron sized particles in fluidized beds [41], 
where continuously nanoparticles are fed into the reactor. The question whether the developed techniques are applicable to 
the simulation of such a bivariate system is out of the scope of this paper.

4.2. Nucleation and coagulation in the continuum regime

The results for the simulation of nucleation and coagulation in the continuum regime show the same characteristics 
as the simulations with the free-molecular regime, i.e. higher accuracy if the low-weight merging technique is used than 
the random removal method, given the same number of NSE. Higher numbers of SE, NSE = 105, have been used for the 
simulation in order to show that the accuracy can be increased further by the application of more SEs, as can be seen in 
the PSDs shown in Fig. 11.
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Fig. 11. Number- (dN/dlog(d)) and mass-based (dM/dlog(d)) PSDs for the nucleation rate RN = 1017 m−3 s−1 and coagulation in the continuum regime.

Fig. 12. The values �σMC/σ MC (statistical errors) and |(σ MC/σDS) − 1| (systematic errors) for the nucleation rate RN = 1017 m−3 s−1 and coagulation in the 
continuum regime.

Fig. 12 shows the increase of the statistical and systematic errors in the course of the simulation. These results are 
similar to the findings for the free-molecule regime presented in Fig. 9 and Fig. 10. As expected for MC simulations, the 
factor �σMC/σ MC is proportional to 1√

NSE
.

4.3. Computational efficiency

The required computational times are shown in Fig. 13. All MC simulations were carried out on a GPU, Nvidia’s GeForce 
GTX Titan X. The implementation on the GPU allows for the parallel calculation of 100 or more simulations,6 the computing 
times shown in Fig. 13 refer to these parallel calculations. The simulations for the discrete-sectional method were carried 
out on the CPU (Intel i7-4790K, quad-core 4.00 GHz and 32 GB RAM) and the CPU time for one simulation is shown 
in Fig. 13a. The computing times in dependency of the grid setting for the discrete-sectional method are discussed in 

6 This can at least be programmed, how many simulations are actually performed in parallel, depends on the complexity of the single computing step 
and the used GPU, a more detailed discussion of this topic can be found in the supplementary material (section 1.2).
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Fig. 13. The computational times for the simulation of the time t( f m)
tot required for simulations using the low-weight merging (LWM) or the random removal 

(RR) techniques for different nucleation rates RN/s−1 m−3 and the free-molecule regime. The results of the discrete-sectional method (DS) are shown for 
250 discrete points and 400 sections.

Table 2. In order to make the computational times more comparable with each other, the CPU times for more than one 
simulation are shown for the discrete-sectional method in Fig. 13b, these values are linear projections (i.e. X times the 
measured value for one simulation is the CPU time for X simulations). It can be seen in Fig. 13b, that a certain level 
of parallelism can be attained for the MC simulations and that the simulation times become proportional to the number 
of simulations for larger numbers of simulations. The computational time which is required for 100 simulations is only 
10 times larger than the computational time required for one simulation. It can be seen in Fig. 13a, that the low-weight 
merging technique (marked as LWM) requires nearly the same simulation time as the random removal technique (marked 
as RR). The increment of the SEs by a factor of 10 leads to computational times, which are a factor 10 higher. However, 
even if the random removal technique is performed for 10 000 and not 1000 SEs, the statistical accuracy of the low-weight 
merging technique with just 1000 SEs cannot be reached at least for longer simulation times, as can be seen in Fig. 9. 
The discrete-sectional method, is an excellent benchmark for this specific problem, as can be seen in Table 2 by the high 
levels of accuracy which are gained by the different grid settings. Even a rather modest grid (consisting of 250 discrete 
points and 400 sections), whose CPU times are shown in Fig. 13, can provide a much higher level of accuracy (the shown 
value �(DS)σg = 3.7 · 10−4 in Table 2 is the maximal value attained at the end of the simulation) than MC simulations with 
104 SE.

5. Conclusions

The MC-based simulation of coagulation and nucleation is very challenging as the continuous inclusion of freshly 
nucleated particles has to be incorporated into the simulation. A simple test system simulating coagulation in the 
free-molecular regime and a constant rate nucleation has been proposed as a benchmark because very accurate sim-
ulation results can be gained by the application of the discrete-sectional method to this problem. The simulation of 
this system by MC methods poses a challenging task: The conventionally used random removal technique infers a 
large amount of statistical noise into the simulation, like shown in this work. An alternative approach has been pre-
sented for weighted simulation entries: the low-weight merging, which produces clearly less statistical noise and is 
able to render the simulation results correctly, for conditions for which the random removal method fails. The com-
putational times which are required for the low-weight merging are only slightly higher than for the random-removal 
method.

The coagulation of differentially weighted simulation entries is a relatively novel concept and several methods have 
been proposed [25,27,26] for the correct description of the coagulation rates, resulting in different coagulation schemes. 
A novel approach in order to estimate the coagulation rates has been presented in this paper: virtual transforma-
tion of the simulation entries to equally weighted simulation entries are proposed in order to calculate the coag-
ulation rates for distinct coagulation events. The setting of the accuracy of this transformation, the stochastic res-
olution, can be tuned in such a way, that only those coagulation events are considered, which keep the number 
of the simulation entries constant-describing a constant-number scheme in this way. This constant-number scheme 
is similar to the one proposed by [27] in the context of the fictitious particle theory. The corresponding coagula-
tion rates are however different, depending on whether the stochastic resolution or the fictitious particle theory is 
used.
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Notation

Latin letters

d diameter

d0 diameter of initial condition and nuclei diameter (Table 1)

dDS geometric mean diameter from discrete-sectional method

dacc
DS dDS for most points/sections in Table 2

dN/d log(d) number-based PSD

dM/d log(d) mass-based PSD

Ei, j merging error for 2 SEs i, j (Eq. (20))

n(v) PSD

N(ṽξ ) number of EWSEs with ṽξ (Eq. (B.1))

Ni number of EWSEs for SE i (Eq. (4))

N0 initial particle concentration (Table 1)

NSE total number of used SEs

RN nucleation rate/m−3 s−1 (Table 1)

sF concentration of real particles per EWSE/m−3 (Eq. (4))

t(fm)
tot , t(co)

tot total simulation time (Table 1)

vi property of EWSE i or SE i if dim(v) > 1: vi = (v(1)
i , v(2)

i , v(3)
i , . . . )T

v(A)
i component A of vector vi

v(A,mrg)

i v(A)
i after one merge step (Eq. (19))

ṽξ property which any EWSE has prior to or can attain due to coagulation (Eq. (B.1))

W i statistical weight of SE i/m−3 (Eq. (4))

W new
i W i after one coagulation event (Eq. (7))

W (mrg)

i W i after one merge step (Eq. (16))

W (rd)
i W i after one random removal step (Eq. (15))

Wmin min(W i, W j) for 2 SEs i, j

Wmax max(W i, W j) for 2 SEs i, j

Wnuc W i of freshly nucleated SE (Eq. (3))

Greek letters

β physical coagulation rate (Eq. (21) or Eq. (22))

βi, j coagulation rate for 2 SEs or EWMCs i, j

β(FP) fictitious particle based βi, j for 2 SEs (Eq. (11))

β(SR) stochastic resolution based βi, j for 2 SEs for the constant-number scheme (Eq. (10))

β
sF
EWSE coagulation rate for 2 EWSEs i, j (Eq. (B.10))

β
sF
SE coagulation rate for 2 SEs i, j (Eq. (6))

�dDS relative deviation of dDS from dacc
DS (Eq. (24))

�σDS relative deviation of σDS from σ acc
DS (Eq. (24))

�σMC arithmetic standard deviation of σg for 100 MC simulations

γ parameter (fast simulation technique, sec. 2.2.2)

σg number-based geometric standard deviation (Eq. (25))

σ MC mean σg from 100 MC simulations

σDS σg from discrete-sectional simulation

τfm, τco time scale for coagulation (Eq. (23))

σ acc
DS σDS for most points/sections in Table 2
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Appendix A. Algorithms

A.1. Main algorithm

Algorithm 1 Main algorithm for 1 CPU-thread.
t ← 0
repeat

MC_Coag_step (Algorithm 2) � calculates τmc

t ← t + τmc

Wnuc ← τmc · RN

vnuc ← v0

include_nuc_SE (Algorithm 5 low-weight-merging)
until t ≥ ttot

A.2. Fast Algorithm for one MC coagulation step

Algorithm 2 MC_coag_step algorithm for 1 CPU-thread.
repeat � calculates βmean

find_coag_pair (i, j) (Algorithm 3)
until a coagulation pair (i, j) is found

� coagulation like in Fig. 2
if W i == W j then

W i ← W i/2
W j ← W j/2
vi ← vi + v j

v j ← vi

else
if W i > W j then � Wmax = W i

W i ← W i − W j

v j ← vi + v j

else � Wmax = W j

W j ← W j − W i

vi ← vi + v j

end if
end if

� time step
τmc ← ((NSE − 1) · NSE · βmean/2)−1

The following calculation of βmean follows the algorithm presented by [34] and is also depicted in Fig. 5 (the comparison 
operations have to be replaced with additions).

Algorithm 3 find_coag_pair algorithm for Nsample GPU-threads which execute the code in parallel, the command ‘synchro-
nize threads’ forces the threads to stop and wait until all other threads have reached this point of execution.

� two SEs are drawn randomly (different values for each thread)
repeat

S E1 ← uniform random integer ∈ [0, (NSE − 1)]
S E2 ← uniform random integer ∈ [0, (NSE − 1)]

until S E1 �= S E2

� calculation of βmean

βlocal ← β(SR)(S E1, S E2) via Eq. (10)
βsum[Nsample] declared as array with Nsample elements shared by all threads
Tidx ← current thread index (Tidx ∈ [0, (Nsample − 1)])
βsum[Tidx] ← βlocal
synchronize threads
for i = 1 ; i ≤ log2(NT) ; i ← i + 1 do

DivBy ← 2i

Dist ← 2i−1

if mod(Tidx, DivBy) == 0 then
βsum[Tidx] ← βsum[Tidx] + βsum[Tidx + Dist]

end if
synchronize threads

end for
βmean ← βsum[0]/Nsample (stored as global variable)

� AR selection of coagulation pair
U3 ← uniform random floating point ∈ (0, 1)

if U3 < βlocal · (βmean · γ )−1 then
CoagPair (i, j) ← (S E1, S E2) (stored as global variable)

� The value is overwritten, if more than one pair is found.
end if
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If there are more than one selected pairs, the selection of the last pair is equivalent to the random selec-
tion of one pair out of the selected pairs. The probability to select a pair (i, j) is equal for any thread. If two 
specific pairs (i1, j1) and (i2, j2) have been selected by two threads t1 and t2, without knowing which specific 
thread t has selected which pair (i, j), the probability to find the pair (i1, j1) by t1 is equal to the probability to 
find (i1, j1) by t2. This is the fact for truly independent random numbers. We tested, that the XORWOW quasi-
random number generator [42] used in this work ensures a sufficient independence of the generated random num-
bers.

A.3. Random removal algorithm

The smart bookkeeping method doesn’t change the weights of the SEs during one random removal step, but adjusts 
a factor f , so that the explicit weight W (real)

i of the SE is W (real)
i = f · W (stored)

i . The weights W (stored)
i are used for 

each coagulation step, because the probabilities are the same, independent on whether W (real)
max = max(W (real)

i , W (real)
j ) or 

W (stored)
max = max(W (stored)

i , W (stored)
j ) = W (real)

max / f is used:

Pi, j = β(SR)

γ · β(SR)
mean

= f · W (stored)
max · β(i, j)

γ · f · ∑ W (stored)
max · β(i, j)

. (A.1)

The time step has to be adjusted, because the stored values of W (stored)
i are used to calculate a value β(stored)

mean , so that the 
value τ (stored)

mc is returned by Algorithm 2 instead of the real value τ (real)
mc :

τ
(stored)
mc = 2

(NSE − 1) · NSE · β(stored)
mean

,

τ
(real)
mc = 2

(NSE − 1) · NSE · β(real)
mean

. (A.2)

Hence β(real)
mean = β

(stored)
mean · f , the returned time step needs to be adjusted to the correct value by: τ (real)

mc = τ
(stored)
mc / f .

This leads to the following Algorithm 4 for the MC simulation of coagulation and nucleation implemented for the random 
removal algorithm:

Algorithm 4 Main algorithm for 1 CPU-thread replaces Algorithm 1.
t ← 0
f ← 1
MT ← ∑(NSE−1)

i=0 W i · vi

repeat
MC_Coag_step (Algorithm 2) � calculates τ (stored)

mc

Wnuc ← τ
(stored)
mc · RN/ f

vnuc ← v0

t ← t + τ
(stored)
mc / f

� estimate SE index R for removal
R ← uniform random integer ∈ [0, NSE − 1]

� set values for next removal steps, Eq. (15)
f ← f · MT/(MT − v R · W R )

MT ← MT + τmc · RN

� insert new SE
v R ← vnuc

W R ← Wnuc

until t ≥ ttot

For the nucleation entry, the value W stored
nuc = τmc · RN/ f is stored, so that the real value W real

nuc = f · W stored
nuc is rendered 

correctly.
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A.4. Parallel implementation of low-weight merging scheme

Algorithm 5 low_weight_merging algorithm for NSE GPU-threads which execute the code in parallel leading to a free S E1. 
The command ‘synchronize threads’ forces the threads to stop and wait until all other threads have reached this point of 
execution.

� select two SEs for the merging
S E1 ← low_weight_list[list_idx]
Tidx ← current thread index (Tidx ∈ [0, (Nsample − 1)])
if Tidx == 0 then

list_idx ← list_idx − 1
end if
S E2 ← mod(S E1 + Tidx, NT)

� calculation of Emin
E local ← E(i, j)(S E1, S E2) via Eq. (20)
Em[NT] declared as array with NT elements visible for all threads
mid[NT] declared as array visible for all threads
Em[Tidx] ← E local
mid[Tidx] ← Tidx

synchronize threads
for i = 1 ; i ≤ log2(NT) ; i ← i + 1 do

Div ← 2i

Dist ← 2i−1

if mod(Tidx, Div) == 0 and (Tidx + Dist ≤ NSE) then
if Em [mid[Tidx]] > Em [mid[Tidx + Dist]] then

mid[Tidx] ← mid[Tidx + Dist]
end if

end if
synchronize threads

end for
� merge and include new SE

if Tidx == 0 then
� merge step Eqs. (16) and (19) with global variables v and W

S E2 ← S E1 + mid[0]
v S E2 ← (

v S E1 · W S E1 + v S E2 · W S E2
)
/ (W S E1 + W S E2

)
W S E2 ← W S E1 + W S E2

� include new SE with global variables v and W
v S E1 ← vnuc

W S E1 ← Wnuc

end if

Appendix B. Transformation of the PBE to the discrete EWSE-form

A finite set of EWSEs implies a finite set (consisting of Nprop elements) of all possible property-values ṽξ (ξ =
1, 2, . . . , Nprop) which any EWSE has prior to – or could hypothetically attain after one coagulation step. Instead of summing 
over all EWSEs for the rendition of the PSD, one can also sum over all property values ṽξ :

n(v) = sF

∑
i

δ(v − vi) = sF

∑
ξ

N(ṽξ )δ(v − ṽξ ) . (B.1)

N(ṽξ ) denotes the number of all EWSEs, whose property v is exactly equal to ṽξ .
This expression (Eq. B.1) is inserted into the PBE for coagulation7:

dn(v)

dt
= 1

2

v∫
0

β(v − v ′, v ′)n(v − v ′)n(v ′)dv ′ − n(v)

∫ ∞

0
β(v, v ′)n(v ′)dv ′ . (B.2)

This yields the equation (B.3) = (B.4) + (B.5), with:

d

dt

⎛⎝sF

∑
ξ

N(ṽξ )δ(ṽξ − v)

⎞⎠ (B.3)

= s2
F

2

v∫
0

β(v − v ′, v ′)
∑
ξ

N(ṽξ )δ(ṽξ − (v − v ′)) ×
∑
χ

N(ṽχ )δ(ṽχ − v ′)dv ′ (B.4)

7 The term v ′′ = v − v ′ has to be interpreted in such a way, that the coagulation of two particles with the (possibly multi-dimensional) properties v ′ and 
v ′′ leads to a particle with the property v .



294 G. Kotalczyk, F.E. Kruis / Journal of Computational Physics 340 (2017) 276–296
− s2
F

∑
ξ

N(ṽξ )δ(ṽξ − v) ×
∞∫

0

β(v, v ′)
∑
χ

N(ṽχ )δ(ṽχ − v ′)dv ′ . (B.5)

The integrations can be evaluated with the following rule:∫
C

∑
ξ

N(ṽξ )δ(ṽξ − v)dv =
∑

ξ, ṽξ ∈C

N(ṽξ ) , (B.6)

this leads to an expression for Eq. (B.4):

(B.4) = s2
F

2

∑
ṽχ <v

β(v − ṽχ , ṽχ )
∑
ξ

N(ṽξ )δ(ṽξ − (v − ṽχ ))N(ṽχ ) . (B.7)

The short notation 
∑

ξ, ṽξ <v denotes the summation over all properties ṽξ which are smaller8 than v . The integration of 
Eq. (B.5) yields:

(B.5) = −s2
F

∑
ξ

N(ṽξ )δ(ṽξ − v)
∑
χ

β(v, ṽχ )N(ṽχ ) . (B.8)

For each of all possible property values, ṽφ , there exists a region, Cφ , so that ṽφ ∈ Cφ and all other ṽψ with ψ �= φ are 
not within Cφ : ṽψ /∈ Cφ . The integration of (B.3)–(B.5) over the so defined9 domain Cφ leads to:∫

Cφ

Eq. (B.3) = sF
d

dt

∫
Cφ

∑
ξ

δ(ṽξ − v)N(ṽξ ) = sF
d

dt
N(ṽφ) .

With Eq. (B.4) = Eq. (B.7) one receives:∫
Cφ

Eq. (B.4) = s2
F

2

∑
ξ,χ

ṽξ +ṽχ =ṽφ

N(ṽξ ) · N(ṽχ ) · β(ṽχ , ṽξ ) .

The short notation 
∑

ξ,χ : ṽξ +ṽχ =ṽφ
denotes the summation over all possible property pairs (ṽξ , ̃vχ ), for which a coagulation 

of two EWSEs with the properties ṽξ and ṽχ would lead to one EWSE with the property ṽφ .∫
Cφ

Eq. (B.5)
(B.5)=(B.8)= −s2

F · N(ṽφ)
∑
χ

β(ṽφ, ṽχ ) · N(ṽχ ) .

The division of the expression 
∫

Cφ
Eq. (B.3) = ∫

Cφ
Eq. (B.4) + ∫

Cφ
Eq. (B.5) by the factor sF leads finally to the PBE in its 

discrete form for each property ṽφ . The PBEs describe the evolution of the total number N(ṽφ) of all EWSEs with the 
property ṽφ in time:

dN(ṽφ)

dt
= 1

2

∑
all properties ṽξ ,ṽχ

with ṽξ +ṽχ =ṽφ

N(ṽξ )N(ṽχ )sFβ(ṽχ , ṽξ ) − N(ṽφ)
∑

all properties ṽξ

sFβ(ṽφ, ṽξ ) · N(ṽξ ) . (B.9)

The coagulation rate βsF
EWSE(vi, v j) between one EWSE with the property vi and one with a property v j can therefore be 

identified as the coagulation kernel of the PBE above (Eq. (B.9)):

β
sF
EWSE(vi, v j) = sF · β(vi, v j) . (B.10)

Hence the weighted SE i (resp. j) is converted to Ni (resp. N j) EWSEs (according to Fig. 1), the overall rate for the 
coagulation βsF

SE of two weighted SEs i and j (with the properties vi and v j ) is equal to the total coagulation rate of all 
EWSEs (Ni and N j) which represent those SEs:

β
sF
SE(i, j) = β

sF
EWSE(vi, v j) · Ni · N j = sF · β(vi, v j) · Ni · N j . (B.11)

8 For multidimensional properties, each component ṽ(A)
ξ of the vector ṽξ has to be smaller than the component v(A) of the vector v . Hence ∫ v

0 is 
interpreted as ∫ v(1)

0

∫ v(2)

0 . . . .
9 In a one dimensional property space, it suffices to chose an ε with ε ∈ R > 0 small enough: Cφ = [ṽφ − ε, ̃vφ + ε]. In a multidimensional space, ε can 

be considered as a radius of a multidimensional sphere Cφ , whose center is the point ṽφ .
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Appendix C. Detailed comparison between the fictitious particle theory and the stochastic resolution

Coagulation probabilities and rates for the inverse method.
In the framework of a MC simulation, the probability Pi, j , that two MC particles i and j coagulate within the MC time 

step τmc is defined via [17]:

Pi, j = βi, j∑
i �= j βi, j

, τmc = 2∑
i �= j βi, j

. (C.1)

Thereby denotes βi, j the coagulation rate between the MC particles i and j. The particles might be EWSEs ([17] then: 
βi, j = βEWSE(vi, v j)) or weighted SEs, the coagulation rate might be based on the FP-theory, like defined by ([27] then: 
βi, j = β

(FP)
i, j ), or on the stochastic resolution-theory (then: βi, j = β

(SR)
i, j ).

The overall probability P (tot) = Pi, j + P j,i , that one SE i coagulates with another SE j is the same within the theories of 
stochastic resolution and fictitious particle, because:

β
(FP)
i, j + β

(FP)
j,i = 2W j + 2W i

W j + W i
max

(
W i, W j

) · β(vi, v j)

= β
(SR)
i, j + β

(S R)
i, j = 2 · max

(
W i, W j

) · β(vi, v j) .

The MC time step, τmc, defined in equation (C.1) is equal as well.10

Therefore, the usage of both coagulation kernels (stochastic resolution or fictitious particle) will produce the same re-
sults, if those values are estimated exactly. The symmetric formulation of the stochastic resolution-based coagulation kernel 
makes, however, only half of the calculation effort necessary.

Appendix D. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jcp.2017.03.041.
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The event-driven acceptance rejection (AR) method is a computationally very advantageous

Monte Carlo (MC) simulation technique for the solution of population balance equations

(PBE)  of coagulating systems. In the scope of the event-driven simulation approach, the

simulation time is stepwise increased by a simulation time step �, which is given be the

simulated particle properties. Within this time step �, exactly one coagulation event takes

place. The method is therefore not applicable in situations, for which specific time points

have  to be reached by the simulation, or the time step has to be reset to a smaller value.

We  propose a methodology termed ‘fractional MC step’ which allows to reset the simulation

time  step of the AR method to any arbitrary smaller value than the one initially proposed.

The proposed method is validated by simulations of coagulation for different initial condi-

tions and comparison with results gained from the discrete sectional method. The potential

increase of the stochastic noise is investigated by comparisons with the results from conven-

tional MC simulation techniques. The advantages of a parallel implementation are briefly
opulation balance

ime step discussed.
©  2018 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

is not unequivocally possible.
.  Introduction

he solution of the population balance equation (PBE) (Ramkrishna,

000; Ramkrishna and Singh, 2014) is of importance for the description

f the behaviour of many apparatuses used in the field of chemical

ngineering. Unit operations like granulation (Cameron et al., 2005),

rystallization (Wang et al., 2014), milling (Sommer et al., 2006) or par-

icle production in aerosol reactors (Kraft, 2005) are typical examples,

n which the coagulation of particulate material has to be considered —

ext to other processes like nucleation, growth, evaporation, breakage

tc.

The modelling of the PBE as a set of many connected compart-

ents is often used in order to describe single unit operations, like

nhomogeneities of a single particle reactor (Hao et al., 2013; Irizarry,

012), or different spray zones within a granulator (Lee et al., 2015)

r in order to simulate entire flowsheet simulations (Skorych et al.,
017). In all these cases a PBE is solved for each compartment. The PBEs

∗ Corresponding author.
E-mail address: gregor.kotalczyk@uni-due.de (G. Kotalczyk).

ttps://doi.org/10.1016/j.cherd.2018.04.046
263-8762/© 2018 Institution of Chemical Engineers. Published by Elsev
include additional terms describing particulate transport between the

compartments.

In an equation oriented approach, all the concerning equations

have to be solved simultaneously. The additional coupling of the PBEs

complicates the already difficult solution of one uncoupled PBE even

more.1 The mostly applied solution techniques for a simple PBE can

be classified into 3 classes: (1) moment methods, (2) sectional methods

and (3) stochastic methods.

1) The classical method of moments (Hulburt and Katz, 1964), or newer

‘direct quadrature of moments’ approaches (Marchisio and Fox,

2005) are only able to track some moments of the particle size dis-

tribution (PSD). The reconstruction of the PSD from these moments
1 A sequential modular approach (Skorych et al., 2017) may sim-
plify the solution by reducing the complexity of the equations
— at the cost of additional computational times due to complex
convergence schemes, like the waveform relaxation technique.

ier B.V. All rights reserved.

http://www.sciencedirect.com/science/journal/02638762
www.elsevier.com/locate/cherd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cherd.2018.04.046&domain=pdf
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Fig. 1 – The transport time steps �TR1 and �TR2 define the synchronization time points Tsync1 and Tsync2. The MC time steps
�MC4 and �MC7 have to be reset to the fractional time steps �F1 and �F2 so that the synchronization time points Tsync1 and
Tsync2 can be reached exactly.
2) Simple sectional (Kumar and Ramkrishna, 1996; Landgrebe and

Pratsinis, 1990; Vanni, 2000) or more complicated finite element

(resp. volume) methods (Mantzaris et al., 2001; Qamar et al., 2006)

require a discretization of the particle properties into a grid. These

methods are only applicable to a limited number of particle proper-

ties (ca. 2–3) because the computational cost becomes too expensive

for many properties. The application of moving grids (Kumar and

Ramkrishna, 1996) becomes also more complicated if the transport

between simple compartments has to be included into the simula-

tion.

3) Stochastic simulation techniques or Monte Carlo (MC) methods

(Kruis et al., 2000; Maisels et al., 2004; Morgan et al., 2006; Smith

and Matsoukas, 1998) translate the continuous PBE into discrete

events with certain probabilities for each event. Because MC sim-

ulations are generally computationally demanding, if all processes

are modelled as discrete events (see e.g. Khalili et al., 2010), hybrid

methods based on the operator splitting technique are used. These

describe the coagulation in a stochastic way and other processes like

particulate growth in a deterministic way (Patterson et al., 2006).

The application of graphic processing units (GPU) in combination

with parallelized simulation techniques (Wei, 2014a; Wei and Kruis,

2013a) prove to further reduce the computational times significantly

(Wei, 2014b). The application of weighted simulation particles leads

to the reduction of the statistical noise (Zhao et al., 2009).

This work investigates the applicability of a parallelized MC simu-

lation technique for flowsheet simulations using an operator splitting

technique. Applying an operator splitting technique means to decou-

ple the single compartments for a small time step ��TR and solve

the corresponding PBE within each compartment independently of the

other compartments — and then to perform the exchange of particles

between each compartment.

Between the transport steps, the coagulation of particles has to be

simulated for the time interval �TR. This can be easily done, if a time-

driven MC technique is applied (see e.g. Liffman, 1992; Zhao et al., 2007).

In the scope of this technique, a small time step �MC can be set freely2

and it is checked for each possible coagulation event, whether it hap-

pened within the time step. Fig. 1 shows how some optimal MC time

steps �MC for the time-driven method (not too large and not too short)

have to be reset to shorter ‘fractional’ time steps �F in order to reach

the synchronization time points given by the transport time steps. This
adjustment is especially necessary in the case in which the small MC

time step �MC is much larger than the transport time step ��TR.

2 Although ��MC can be chosen freely, it has to be kept relatively
small, so that not too many  coagulation events happen within one
time step. Because each coagulation event alters the coagulation
rates between the simulation particles and it is assumed that the
coagulation rates between the particles calculated before the time
step are somehow constant throughout the time step and only
negligibly small changes occur.
Although the shorter fractional time steps can be easily simulated

by the time-driven approach (simply by replacing the ‘optimal’ time

step �MC), its application is computationally very demanding. Because

all possible coagulation events may happen within the time step �MC

(resp. �F), all of these events have to be considered (meaning the prob-

ability of their occurrence has to be compared to a random number)

during one MC time step. A much more effective approach is the

acceptance–rejection (AR) technique (Garcia et al., 1987; Wei and Kruis,

2013b). In the scope of this technique the coagulation pairs are selected

randomly and the very low probability to select a specific pair is incor-

porated into the coagulation probability — which would be otherwise

very low (Garcia et al., 1987). So that only few selection attempts are

necessary to find a coagulation pair. It is assumed that exactly one

coagulation event takes place during the specific time step �MC. This

time step cannot be set freely and is given by the properties of the sim-

ulated particle population (i.e. the reciprocal of the sum of all possible

coagulation rates, as it is elaborated further below) at the given time

point of the simulation. This makes the incorporation of the AR based

MC simulation into a flowsheet simulation, like it is sketched in Fig. 1

not possible.

This problem is addressed in this work by the introduction of

‘fractional MC time steps’, which allow to make a smaller stochastic

simulation step �F than the intrinsic AR-based MC time step �MC.

First, the notion of the ‘fractional MC’ step is introduced in the theo-

retic section of this paper. The derived methodology is tested on simple

coagulation problems for which accurate numerical solutions are eas-

ily obtainable by application of the known discrete sectional method

(Gelbard et al., 1980; Landgrebe and Pratsinis, 1990). It is shown in the

results section that the introduced fractional MC time steps – although

stochastic in its nature – only marginally increase the inherent sta-

tistical noise of the simulation (by comparison with MC simulations

without the fractional time steps). The computational advantages of

the parallel solution of PBEs describing particle populations whose con-

centrations vary with several orders of magnitude (which translates

to intrinsic MC steps which vary in several orders of magnitude) is

addressed as well.

2.  Theory:  fractional  MC  time  steps  for  the
acceptance–rejection  (AR)  scheme

The AR methodology allows the solution of the PBE for coag-
ulation given by:

dn(v, t)
dt

= +1
2

∫
0

v

ˇ(v − v′, v′) · n(v − v′, t) · n(v′, t)dv′
−n(v, t)

∫
0

∞
ˇ(v, v′) · n(v′, t)dv′, (1)
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here n(v,t) describes the PSD (i.e. the term N =
∫

n(v, t)dv is a
umber-concentration in units m−3) and ˇ(v, v′) describes the
ate of coagulation between the particles of the sizes v and v′.

In the context of MC  simulations, the PSD is rendered
y discrete MC  simulation particles, which are selected for
oagulation by stochastic means and alter their properties, if
elected for coagulation. In the scope of the AR method (Garcia
t al., 1987), exactly one coagulation pair (i, j) is selected within
ne time step �MC, defined by:

MC = 1 /
∑

i>j
ˇi,j . (2)

The summation accounts all possible coagulation pairs (i,
) with their respective coagulation rates ˇi,j (these rates are
erived from the continuous expression ˇ(v,v′)). A randomly
elected pair (i, j) is chosen for coagulation with the probability
(AR)
i,j , which is derived (Garcia et al., 1987) as:

(AR)
i,j = ˇi,j/maxi /=  j ˇi,j . (3)

For the application of this AR technique for flowsheet simu-
ations, the situation in Fig. 1 has to be accounted for, in which

 shorter time step �F than the suggested one by Eq. (2) has to
e performed in order to reach a synchronization time point.
e assume that a particle pair (i, j) that is selected accordingly

o Eq. (3) is the ‘correct’ coagulation pair for the time inter-
al �MC. Within the shorter time step �F, only two possibilities
an happen: (1) the selected pair (i, j) coagulates, or (2) no pair
oagulates at all. The decision whether the pair coagulates or
ot can be done stochastically, if the probability Pi,j(�F | �MC),
hich describes the probability that the pair (i, j) coagulates
ithin the time interval �F under the condition, that the pair is

oagulating for sure within the time interval �MC, is known. A
niformly distributed random number r can then be compared
ith the probability Pi,j(�F | �MC). The selected particles coagu-

ate if r is smaller than Pi,j(�F | �MC) or not, if it is larger. The full
lgorithm is displayed in Fig. 2. A detailed description of the

arallel AR algorithm for the selection of a coagulation pair
ccordingly to Eq. (3) can be found in Wei and Kruis (2013a) or

ig. 2 – Flowchart of the MC  simulation of coagulation and
ossibly other processes combined by the operator splitting
echnique. The simulation time Tsim is increased by the
onventional MC  time step �MC or a fractional time step �F

ntil the last synchronization time point Tend is reached.
Kotalczyk and Kruis (2017). In the results section, this imple-
mentation will be compared with two other algorithms: both
increase the simulation time only by �F if the synchronization
time point is reached, but no fractional time step is applied.
The first algorithm performs a normal (or ‘full’) MC  time step,
the second algorithm performs no coagulation at all. This sec-
ond approach is similar to the methodology proposed by Kruis
et al. (2012).

2.1.  Calculation  of  the  conditional  probability  Pi,j(�F |
�MC)

The conditional probability Pi,j(�F | �MC) can be described by
Bayes’ theorem as:

Pi,j(�F|�MC) = Pi,j(�MC | �F) · Pi,j(�F)/Pi,j(�MC) . (4)

The term Pi,j(�F) describes thereby the (non-conditional)
probability for the coagulation of the particles i and j within
the time interval �F. Pi,j(�MC) gives the coagulation probabil-
ity within the time interval �MC. The expression Pi,j(�MC | �F)
describes the probability that the particles i and j coagulate
within the time interval �MC under the condition that they
coagulate within the time interval �F. Hence �F < �MC, it follows
that Pi,j(�MC | �F) = 1. This simplifies Eq. (4) to:

Pi,j(�F | �MC) = Pi,j(�F)/Pi,j(�MC) . (5)

The coagulation of two particles (i, j) is generally considered
as a Poisson process, meaning that a given coagulation rate ˇi,j

is associated with a density distribution fi,j in respect to the
time point t at which the coagulation occurs with:

fi,j = ˇi,j exp(−ˇi,j · t) . (6)

The probability Pi,j(�) for the coagulation between the par-
ticles i and j within the time interval � can be calculated via
(i.e. (Garcia et al., 1987; Liffman, 1992), without the application
of the term ‘Poisson process’, sometimes the term ‘interval of
quiescence’ is used, if probabilities for all possible events are
considered (Shah et al., 1977; Song and Qiu, 1999)):

Pi,j(�) =
∫

0

�

fi,jdt = 1 − exp(−ˇi,j · �) . (7)

Especially for � = �MC follows:

Pi,j(�MC) = 1 − exp(−ˇi,j · �MC) ⇔ ˇi,j = − ln(1 − Pi,j(�MC))/�MC .(8)

The resulting expression for ˇi,j in Eq. (8) can be inserted
into Eq. (7) for � = �F, which yields:

Pi,j(�F) = 1 − (1 − Pi,j(�MC))(�F/�MC) . (9)

The expression (1 − x)˛ can be rewritten as the first
two terms of a Taylor series for small values of x, to:
(1 − x)˛ ≈ 1 − ˛·x. This simplifies Eq. (9) to:
Pi,j(�F) = Pi,j(�MC) · �F/�MC . (10)
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Table 1 – Physical parameters used for the simulation
describing typical aerosol properties.

Symbol Designated property Value

T Temperature 644 K
−3
�p Particle density 1000 kg m

The substitution of Eq. (10) into the description of the con-
ditional probability (Eq. (5)) leads to a simple expression for
the conditional probability:

Pi,j(�F | �MC) = �F/�MC . (11)

The approximation leading to Eq. (10) is valid, because
the term Pi,j(�MC) is usually small. This is because exactly
one event happens within �MC, which is equivalent to:∑

i>jPi,j(�MC) = 1. If a small number of 1000 simulation par-
ticles is used, the sum consists of (10002 − 1000)/2 = 499,500
elements. In the improbable case, in which Pi,j(�MC) becomes
too large for the approximation leading to Eq. (10), the exact
expression for Pi,j(�MC) defined via Eq. (7) can be inserted
into the exact formula defined by Eq. (9). Both expressions
are inserted into Eq. (5), leading to the correct expres-
sion: Pi,j(�F | �MC) = (1 − exp(−ˇi,j·�F))/(1 − exp(−ˇi,j·�MC)). This
approach, however is computationally more  expensive than
the application of the simple resulting formula (11).

3.  Validation  method

3.1.  System  for  validation

In order to discuss the influence of the application of frac-
tional time steps, compartments containing an initial particle
population are considered and the process of coagulation is
simulated only (without any transport steps between com-
partments). The kernel for coagulation in the free molecule
regime (i.e. the particle size is much smaller than the mean
free path of the carrier gas (Friedlander, 2000; Hinds, 2012)) is
used. It describes the rate of coagulation of two spherically
shaped particles with the volumes v and v′ by:

ˇfm(v, v′) =
(

3
4�

) 1
6

√
6kBT
�p

·
√

1
v

+ 1
v′ ·

(
v

1
3 + v′ 1

3

)2
. (12)

The parameters used for the simulation are summarized in
Table 1, kB designates the Boltzmann constant. It is assumed
that two coagulating spheres with the volumes v and v′ form
a new sphere with the volume v + v′.

Monodisperse initial conditions are simulated, with an ini-
tial particle diameter of d0 = 3 nm.  Five different scenarios
are used in this context, these describe different initial con-
centrations N0 spanning values which differ four orders of
magnitude: N0 = 1013 m−3,. . .,1017 m−3. The chosen MC time
step �MC depends vastly on the chosen initial concentration
and correlates to the characteristic time for coagulation �coag,
which is defined as the time in which the monodisperse initial
number-concentration reduces by half due to coagulation in a
monodisperse model (Kodas and Hampden-Smith, 1999):

�coag ≈
√
�p/(3 · kB · T · d0) / N0 . (13)

The different settings for the initial concentration N0 result

in vastly different characteristic times for coagulation �coag. All
scenarios are simulated for the same time span Tend which can
be also expressed as a multiple value of �coag (i.e. Tend = ˛·�coag).
The higher the multiplication factor ˛, the more  coagulation
events are expected to happen within the simulated time
span Tend. Table 2 summarizes the different simulated sce-
narios, the shown initial MC  time steps �

(0)
MC are defined for the

weighted particle methodology described further below.
In the absence of other processes besides the coagulation,

no artificial synchronization of the simulations is necessary.
However, for the validation of the proposed methodology and
the measurement of the potential increase of the intrinsic
stochastic noise of the MC simulations, artificial synchroniza-
tion points are included into the simulation. The simulations
are forced to stop after constant time spans �TR, which range
from �TR = 0.1 s,. . .,0.1 ms.  The used settings and the total num-
ber of synchronization points are summarized in Table 3. The
dependency of the simulation time and the added stochas-
tic noise for all scenarios (described in Table 2) is discussed
in dependency of the applied time span �TR (summarized in
Table 3) in the results section.

3.2.  Parallel  MC  simulations  based  on  weighted
simulation  particles

The methodology for the MC time steps introduced in the
theoretic section of the paper, culminating in the algorithm
presented in Fig. 2 is applicable to conventional AR methods
based on equally weighted MC particles (Garcia et al., 1987;
Maisels et al., 2004). The derived methodology can also be
applied for algorithms based on weighted simulation particles,
for which different theoretic descriptions of the coagulation
have been formulated recently (Kotalczyk and Kruis, 2017;
Patterson et al., 2011; Xu et al., 2015; Zhao et al., 2009).

In contrast to conventional methods, weighted simulation
particles are characterized by an additional property, the sta-
tistical weight W (which is a number concentration with units
m−3) of the rendered simulation particles. This additional
property is stored with all other particle properties. In this
work, only the particle size v is used as other particle property.

The application of weighted particles is advantageous,
especially in the context of flowsheet simulations, which
describe compartments with vastly different particle number-
concentrations. If, for example, two compartments with total
number-concentrations of 1013 m−3 and 1017 m−3 are sim-
ulated and at least 1000 simulation particles are needed
for a certain computational accuracy. The application of
equally weighted particles would lead to an equal weight
of 1013 m−3/1000 = 1010 m−3, which would entail a necessary
number of 1017 m−3/1010 m−3 = 107 simulation particles for the
compartment with the higher concentration of 1017 m−3. The
application of weighted simulation particles allows the simple
modelling of these different compartments by adjusting the
initial statistical weight W0 of the simulation particles accord-
ingly to the initial number-concentration N0 (and the number
of the used simulation particles NSP) via:

W0 = N0/NSP . (14)

3.2.1.  Initialization  of  weighted  simulation  particles
The weighted simulation particles in this work are initi-
ated with the initial volume which corresponds to the initial
diameter d0 = 3 nm.  For each initial number-concentration
summarized in Table 2, the values W0 are calculated via Eq. (14)

taking into account the used number of simulation particles,
NSP.
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Table 2 – Summary of the used scenarios defined by the initial concentrations N0, resulting in different characteristic
times for coagulation �coag, defined in Eq. (13) and initial MC  time steps, defined in Eq. (16) for 10,000 simulation particles.

Scenario Initial concentration N0 Initial MC time step �
(0)
MC Characteristic time �coag Total simulation time Tend

1 1013 m−3 12.5 ms 517 s 51.7 s = 0.1·�coag

2 1014 m−3 1.25 ms 51.7 s 51.7 s = 1·�coag

3 1015 m−3 125 �s 5.17 s 51.7 s = 10·�coag

4 1016 m−3 12.5 �s 517  s 51.7 s = 100·�coag

5 1017 m−3 1.25 �s 

Table 3 – The different values used for the time spans
�TR between different synchronization points.

Time span �TR Number of fractional time
steps within Tend

None None
100 ms 517
10 ms 5170
1 ms 51,700
0.1 ms 517,000
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0.01 ms 5,170,000

.2.2.  Coagulation  of  weighted  simulation  particles
n this work, the coagulation scheme based on the concept of
tochastic resolution (Kotalczyk and Kruis, 2017) is used. The
oagulation between two differentially weighted MC particles
s described according to the scheme presented in Fig. 3 (which
s equivalent to the scheme introduced by Zhao et al. (2009) in
he context of the ‘fictitious particle’ theory).

The rate of both coagulation schemes shown in Fig. 3 has
een derived by a transformation of the PBE (Eq. (1)) to a dis-
rete form for equally weighted particles (see Kotalczyk and
ruis, 2017 for details):

i,j = max(Wi, Wj) · ˇfm(vi, vj) , (15)

here ˇfm(vi, vj) denotes the coagulation rate between parti-
les with the size vi and vj, given by the continuous PBE (Eq. (1)).
n this work, the coagulation rate in the free-molecule regime
Eq. (12)) is considered.

The rate ˇi,j in Eq. (15) is used for the methodology described
n the theoretic part describing the fractional MC time steps. If
he particles are selected for coagulation, the scheme sketched
n Fig. 3 is applied upon the selected particles.

The calculation of the initial (full) MC  time step �
(0)
MC at the

eginning of the simulation is performed by the insertion of
q. (15) into Eq. (2). The consideration of the initial condition
efined by Eq. (14) leads to:

�
(0)
MC = 1/

⎡
⎣∑

i>j

max(Wi, Wj)ˇfm(vi, vj)

⎤
⎦

= 2/ [N0 (NSP − 1)ˇfm(v0, v0)] . (16)

Typical values for �
(0)
MC are listed in Table 2 (for 10,000 simu-

ation particles).

.2.3.  Fast  simulation  technique
he calculation of the exact values for the maximum coagula-

ion rate (maxi /=  jˇi,j, used in Eq. (3) for the selection probability
(AR)
i,j ) as well as the exact sum of all coagulation rates (

∑
i>jˇi,j,
sed in Eq. (2) for the calculation of the time step �MC) are
omputationally very expensive, hence all possible coagula-
51.7 s 51.7 s = 1000·�coag

tion pairs have to be considered for the exact calculation.
Alternatively to the widely used majorant kernel techniques
in combination with fictitious jumps (Patterson et al., 2011;
Xu et al., 2015), the exact sum (

∑
i>jˇi,j) can be approximated

by the calculation of the mean value ˇmean of a represen-
tative sample (Wei and Kruis, 2013a). This mean value can
also be used in order to approximate the maximum coagu-
lation rate by ˇmax = �·ˇmean, with a constant ‘safety’ factor
�, which assures that the so calculated value ˇmax is larger
than the exact value, i.e.: ˇmax > maxi /=  jˇi,j. This safety fac-
tor is necessary in order to ensure that all calculated selection
probabilities are smaller than 1. The implementational details
of this simulation technique can be found in Kotalczyk and
Kruis (2017). The calculation of the coagulation rates of the
randomly selected coagulation pairs can in this way not only
be used for the determination, whether the particles coagulate
(via Eq. (3)), but also for the quick approximation of ˇmax and
ˇmean. The other advantage of the scheme is, that it is appli-
cable for all sorts of coagulation kernels, especially for those,
for which a majorant kernel is not applicable — or at least
not computationally efficient applicable. A value of � = 10,000
is used for the discussed scenario in this work, which has
proven to be sufficient for more  demanding simulation sce-
narios (Kotalczyk and Kruis, 2017).

3.2.4.  Parallel  implementation  of  heterogeneous  flowsheet
conditions
The main advantage of the fast simulation technique used
in this work (Wei and Kruis, 2013a) is the parallel check of
randomly selected coagulation pairs. Hence the coagulation
probability is usually relatively low (even in an AR approach),
a large amount of comparisons might be necessary in order
to find a coagulation pair. In a serial implementation, most of
the selection attempts (marked as ‘(parallel) AR-algorithm in
Fig. 2) would fail and be called again (the decision marked as
“coagulation pair found?” would branch to the ‘no’ scenario).
A parallel implementation compares 256 coagulation pairs in
parallel (in our implementation) and reduces thus the number
of repetitions (the detailed implementation of this code can be
found in Kotalczyk and Kruis (2017)).

The mean number Nsel of selection attempts using the here
presented fast simulation technique can be approximated to
be the inverse of the mean probabilities P

(AR)
i,j

(defined in Eq.
(3)) to select the pair (i, j):

Nsel = (NSP(NSP − 1))/2
∑

i>j
P

(AR)
i,j

= ˇmaxNSP(NSP − 1)/2
∑

i>j
ˇi,j = ˇmax/ˇmean = �. (17)

The approximation of ˇmax via: ˇmax = �·ˇmean (as discussed
in the previous ‘fast simulation technique’ paragraph) has

been used. The GPU architecture forbids the efficient process-
ing of a large amount of data by one multi streaming processor
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Fig. 3 – The coagulation of weighted MC  particles is described by a change of the statistical weight W and the volume v of
the particles participating in the coagulation event. In the case of unequal statistical weights (case 1), only a fraction of the
particle population represented by Wi, participates in the coagulation, the rest Wi − Wj remains unchanged.

Fig. 4 – PSDs resulting from Monte Carlo (MC) simulation using 1000 simulation particles compared with the discrete
sectional (DS) method for a simulation time of Tend = 51.8 s for different initial number-concentrations ((ic), units: m−3). The
initial diameter d0 = 3 nm has been used for all simulations.
— for this reason, a large data set consisting of 10,000 data
points is divided in smaller blocks of 256 elements (alterna-
tively, 128, 512 or 1024 elements are commonly used). For the
here used value of � = 10,000, 40 parallel blocks (each process-
ing 256 coagulation pairs) are launched for each simulation.
If all 50 simulations are run in parallel — 50 × 40 = 2000 data
blocks are initiated to be launched in parallel via the CUDA
programming language, each one processing 256 particle pairs
in parallel. Due to the physical limitations of the used GPU, a
NVIDIA GTX 980 Ti, only up to 200 data blocks (which pro-
cess 256 data points in parallel) can be executed in parallel, so
that ca. 10 sequential processing steps of 200 parallel blocks
are executed. The advantage of executing all 5 simulation
scenarios in parallel (i.e. scheduling the launch of the com-
putation of 5 × 2000 = 10,000 parallel data blocks) in contrast
to the sequential computation of the 5 different scenarios is
discussed in Section 4.2.

3.3.  Discrete  sectional  method

In order to ensure that the MC  simulation techniques describe
the solutions correctly, the results are also compared with
the discrete sectional method (Landgrebe and Pratsinis, 1990),
which extends the sectional method proposed by Gelbard
et al. (1980) by discrete points. This makes the method very
accurate for the investigation of simulation scenarios with
monodisperse initial conditions. The initial particles can be
approximated by the first discrete point. In this work, a one
dimensional grid, consisting of 250 discrete points and 400
sections is used. It has been shown, that these settings are

able to reproduce the results with an accuracy much larger
than that of the MC  method (Kotalczyk and Kruis, 2017).
4.  Results  and  discussion

4.1.  Validation  and  statistical  accuracy

Fig. 4 shows the excellent agreement of the resulting MC
simulations with the DS benchmark. It can be seen that the
PSDs resulting from simulations using forced synchroniza-
tions (marked as ‘�TR = 10−5’ in Fig. 4, this setting corresponds
to a synchronization every �TR = 10−5 s) lead to similar PSDs as
the ones without synchronization points (marked as ‘no sync’
in Fig. 4).

The PSDs shown in Fig. 4 comprise simulation results
for the largest number of synchronization points (every
�TR = 10−5 s one synchronization point is included) and small-
est number of used simulation particles (1000). These results
cannot be reproduced, if instead of fractional time steps full
time steps or no time steps (following the algorithm in Kruis
et al., 2012) are used. Fig. 5 underlines this finding. It can
also be seen, that the algorithm with no MC time steps
underestimates (resp. the algorithm with full MC time steps
overestimates) the coagulation process leading to smaller
particle sizes at higher particle concentrations (resp. larger
particle sizes at lower particle concentrations). The smaller
the synchronization time intervals �TR are set, the larger are
the deviations from the benchmark results. It should also be
pointed out, that if the synchronization intervals �TR are set to
lower values than the initial MC time steps �

(0)
MC (defined in Eq.

(16) and tabulated in Table 2), the algorithm using no coagula-
tion step (Kruis et al., 2012) would not simulate the coagulation
at all. The initial monodisperse PSD would be reproduced for
all simulation times in this scenario.
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Fig. 5 – PSDs resulting from MC  simulations using fractional MC  time steps (marked as ‘frac step’) compared with
s p’) and normal MC time steps (‘full step’).
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Fig. 6 – The deviations NErr defined in Eq. (21) of the mean
values for the MC-based total number-concentration from
the values from the discrete sectional (DS) method, for an
initial condition of N0 = 1017 m−3 for different values of
imulations without additional time step (marked as ‘no ste

In order to quantify the influence of the applied simulation
articles and synchronization intervals �TR, the total num-
er concentration and the geometric mean diameter of the
esulting simulations are compared with each other for dif-
erent simulation settings and values for the synchronization
ntervals �TR.

The total number-concentration Ni and the geometric stan-
ard deviation d

(i)
g are calculated for one MC simulation i via:

i =
∑

n=1..NSP

W
(i)
n , (18)

n(d(i)
g ) =

∑
n=1..NSP

W
(i)
n · ln(d(i)

n )/Ni , (19)

here W
(i)
n is the statistical weight and d

(i)
n the diameter of the

-th simulation particle of the i-th MC  simulation. The mean
alues N̄ and dg for 50 MC  simulations used for the investiga-
ions of this work are calculated by:

N̄ =
∑
i=1..50

Ni/50 , d̄g =
∑
i=1..50

dg
(i)/50 . (20)

These values are used in the following for the comparison
ith the results originating from the DS method, NDS and dg,DS.
he calculation method for these values by means of the DS
ethod can be found in Landgrebe and Pratsinis (1990), the

pecific grid employed within this work (250 discrete points
nd 400 continuous sections) is specified in more  detail in
otalczyk and Kruis (2017).

The following formulas are applied for the measurement of
he systematic deviations NErr and dg,Err from the DS results:

NErr = |NDS − N̄|/NDS, dg,Err = |dg,DS − dg|/dg,DS . (21)

The assumed values of these systematic errors during the
imulation are displayed in Figs. 6 and 7. It can be seen, that
ndependent of the case, whether no synchronization points
re included (marked with ‘no sync’ in the figures) or the most
emanding setting is applied (marked with ‘�TR = 10−5’ and
orresponding to scenario 5 in Table 2) nearly the same devi-
tions are reached. Smaller numbers of simulation particles

NSP = 103) lead to higher deviations, which are connected to
igher noise levels of the simulations.
simulation particles NSP.

The statistical noise of the MC simulations is quantified
by comparison of the arithmetic standard deviation �N (resp.
�dg) to the mean values N̄ (resp. dg) defined in Eq. (20), the
explicit formulas for the calculation of the arithmetic standard
deviation applied in this work are:

�N =
√∑

i=1..50

(
Ni − N̄

)2
/49, �dg =

√∑
i=1..50

(
d

(i)
g − dg

)2
/49 . (22)

The stochastic noise for the mean concentration and the
geometric diameter is depicted in Figs. 8 and 9. It can be seen
that these values depend strongly on the number of used sim-
ulation particles NSP. As expected, an increase of simulation
particles by a factor of 100 leads to an increase of the stochas-
tic accuracy by a factor of 10 (the stochastic noise level of MC
simulations is expected to scale proportional to 1/

√
NSP). It can

also be seen in Figs. 8 and 9 that the noise levels of simu-
lations with the most synchronization points (marked with

‘�TR = 10−5’) lead to nearly the same noise levels as the simu-
lations without any synchronization (marked with ‘no sync’).
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Fig. 7 – The deviations dg,Err defined in Eq. (21) of the mean
values for the MC-based mean geometric diameter from the
values from the discrete sectional (DS) method, for an
initial condition of N0 = 1017 m−3 for different values of
simulation particles NSP.

Fig. 8 – The stochastic noise for the values of the mean
concentration for MC  simulations with an initial
concentration of N0 = 1017 m−3 for different values of
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Fig. 9 – The stochastic noise for the values of the geometric
mean diameter for simulations with an initial
concentration of N0 = 1017 m−3 for different numbers of
simulation particles NSP. Eqs. (22) and (20) define �dg and
dg.
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Fig. 10 – The stochastic noise for the values of the
geometric mean diameters for MC  simulations with
NSP = 105 simulation particles and different initial
concentrations N0 (shown values are in units of m−3). Eqs.

i-th simulation and � as mean value for all MC  simulations),
simulation particles NSP. Eqs. (22) and (20) define �N and N.

Similar findings concerning the systematic and statistical
accuracy of the simulation can be made for simulations with
different initial concentrations. Fig. 10 compares the evolution
of the noise levels for different values of initial conditions,
N0. The simulations with forced synchronizations (marked
with ‘�TR = 10−5’) and lower initial concentrations (N0 = 1013,
1015 m−3) exhibit much higher noise levels (up to a factor of 10)
than the simulations without synchronization points (marked
with ‘no sync’), at the initial stages of the simulations. At these
initial stages of the simulation, the noise levels are found to
be much lower than in the scenarios with the large initial
concentration (N0 = 1017 m−3).
This increase of the noise levels during the early stages
of the simulation can be explained by the transition of the
(22) and (20) define �dg and dg.

PSD from a monodisperse initial condition (which is exact,
so no noise at all is related to the initial condition) to a self-
preserving PSD (Friedlander and Wang, 1966), which is marked
by a constant noise level. The self-preserving PSD is attained
more  quickly if higher initial concentrations N0 are used. An
indicator for the attainment of the self-preserving PSD is the
geometric standard deviation of the simulations (�(i)

g for the
g

which can be calculated by:
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Fig. 11 – The geometric standard deviation �g for some
values of the initial concentration N0 (in units m−3) for
simulations without synchronization points and NSP = 105
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Fig. 12 – The deviations dg,Err defined in Eq. (21) of the
mean values for the MC-based mean geometric diameter
from the values from the discrete sectional (DS) method.
Different initial conditions N0 (in units m−3) are shown for
NSP = 105 simulation particles.
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Fig. 13 – The vertical axis shows the ratio of the
computation time for the given synchronization interval
�TR to the computational time without synchronization.
The values of the computational times are summarized in
imulation particles.

[
ln(�(i)

g )
]2 =

∑
n=1..NSP

W
(i)
n

(
ln(d(i)

n ) − ln(d(i)
g )

)2
/Ni, �g =

∑
i=1..50

�g
(i)/50 ,

(23)

here Ni is the total concentration of the i-th simulation and
(i)
g is the geometric mean value of the simulation, defined in

qs. (18) and (19). W
(i)
n is the statistical weight and d

(i)
n the diam-

ter of the n-th simulation particle of the i-th MC simulation.
The corresponding values are shown in Fig. 11. The plateau

f �g ≈ 1.46 has been found in earlier studies to correspond to
he onset of the self-preserving PSD (Vemury et al., 1994), with

 time-lag to reach this value of ca. 5·�coag (see Eq. (13) for the
efinition of �coag for the free-molecule regime discussed in
his work). Both findings are consistent with Fig. 11 and the
ifferent values �coag defined for each N0 in Table 2.

It can be thus concluded that the statistical noise increases
s the PSD are converging towards the self-preserving PSD and
hat the forced synchronization leads to much higher noise
evels due to the synchronization during this simulation stage.
nce the self-preserving PSD is reached, the simulations with
nd without synchronization exhibit nearly the same noise
evels. Hence the noise levels are relatively low, before the self-
reserving PSD is reached, the additional stochastic noise due
o the forced synchronizations has only small effects on the
ccuracy of the simulation. This can be seen in Fig. 12: the
eviations from the DS method are of the same magnitude
or the simulations without synchronizations (marked as ‘no
ync’) as those with the maximal number of synchronization
oints (marked with ‘�TR = 10−5’).

.2.  Computational  efficacy

he inclusion of artificial synchronization points leads to an
ncrease of the computational times (all simulations have
een performed on the NVIDIA GTX 980 Ti), as can be seen in
able 4. The smaller the synchronization intervals, the more

ynchronization points are included (as already mentioned in
able 3) and the longer are the simulation times. Although this
Table 4.

increase is negligible at first, it scales linearly at the end — this
is the situation, in which the number of synchronization time
points surpasses the genuine number of performed MC time
steps in the scenario without the synchronization time points.
Fig. 13 shows this typical scaling scenario.
In the context of flowsheet simulation, the 5 different sce-
narios representing different initial concentration N0 may
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Table 4 – The computational times are shown for different values of simulation particles NSP, initial concentrations N0 and
different synchronization intervals described by �TR, ‘no sync’ designates simulations without synchronization points.

Number of simulation
particles

Initial number
concentration

Computation times/seconds

No sync �TR = 10−1 s �TR = 10−2 s �TR = 10−3 s �TR = 10−4 s �TR = 10−5 s

1000 1013 m−3 2.6 3.5 23.3 223.4 2221.4 20,968.2
1014 m−3 8.2 10.3 23.3 225.4 2225.1 21,040.0
1015 m−3 18.8 21.0 34.3 218.4 2222.3 21,072.9
1016 m−3 29.9 32.7 46.4 229.2 2180.6 21,085.7
1017 m−3 41.4 43.8 57.9 241.0 2186.6 21,085.7

10,000 1013 m−3 14.8 17.2 24.3 220.5 2187.8 21,156.6
1014 m−3 73.6 76.8 91.7 221.5 2195.3 21,221.0
1015 m−3 181.1 184.6 201.2 329.8 2198.6 21,259.8
1016 m−3 293.6 298.9 315.7 445.3 2307.2 21,270.1
1017 m−3 408.9 414.5 431.3 560.6 2421.4 21,378.8

100,000 1013 m−3 137.8 141.6 159.5 240.5 2195.5 21,122.2
1014 m−3 732.2 741.8 762.5 926.4 2204.5 21,199.8
1015 m−3 1804.1 1818.4 1847.1 2065.7 3283.1 21,304.5
1016 m−3 2943.8 2965.5 2995.1 3175.6 4437.3 22,403.0
1017 m−3 4092.4 4117.8 4146.4 4317.6 5586.4 23,565.3

Table 5 – The computational times and speed up of the parallelized simulations. The speed-up factor is the ratio of the
parallelized simulation set up to the sequential simulation set up.

Number of simulation
particles

Simulation mode Computation times (seconds) or speed up (−)

No sync �TR = 10−1 s �TR = 10−2 s �TR = 10−3 s �TR = 10−4 s �TR = 10−5 s

1000 Sequential 100.8 111.2 185.4 1137.4 11,036.0 105,252.4
Parallel 55.4 102.0 153.5 880.2 8493.0 82,011.9
Speed-up 0.549 0.918 0.828 0.774 0.770 0.779

10,000 Sequential 972.1 992.0 1064.2 1777.8 11,310.2 106,286.4
Parallel 514.6 913.5 974.3 1493.9 8804.9 82,048.2
Speed-up 0.529 0.921 0.916 0.840 0.778 0.772

100,000 Sequential 9710.4 9785.0 9910.5 10,725.8 17,706.7 109,594.9
Parallel 5094.0 8988.9 9125.4 9745.2 15,030.1 86,048.3
Speed-up 0.525 0.919 0.921 0.909 0.849 0.785

tinct simulation conditions is set up. The particle population
represent 5 different simulation compartments. The 50 MC
simulations may be performed for each of these compart-
ments in a sequential order or all 250 simulations may be
performed in parallel at once. Table 5 shows that even the
already highly parallelized 50 simultaneous MC  simulations
can be parallelized further and that the parallel simulation
of these heterogeneous simulation settings leads to further
advantages. (It should be noted that a decrease of the com-
putational time from 105,000 s to 82,000 s corresponds to a
decrease of the simulation time from 29.2 h to 22.7 h).

Hence only one (on the used random numbers dependent)
fraction of all 50 (resp. 250) simulations finds a coagulation
pair (in Fig. 2, the decision marked as ‘coagulation pair found?’
would branch to the ‘yes’ scenario), only this fraction of sim-
ulations performs a full or fractional coagulation step �MC or
�F and increases the time. The increase is also dependent on
the used random numbers. This is the reason, why some sim-
ulations reach a synchronization time point earlier than other
simulations. The status of these simulations is switched to
‘inactive’ as they reach a synchronization time point, reducing
thus the number of active simulations Nactive Simulations. The
number of necessary parallel comparisons (in order to find
a coagulation pair) reduces as well to Nactive Simulations·256·40.
This may lead to the disadvantageous situation, that only a
few or even one simulation is active, so that the full parallel

architecture of the GPU is not used and many  computational
resources lie idle. This situation becomes more  dominant in
the simulation scenarios using fractional time steps, which
in turn leads to lower speed-up factors than the ones reported
for the non-synchronized simulations, as it is shown in Table 5
and Fig. 13.

5.  Conclusions

The applicability of event-driven MC simulations of coagula-
tion in the context of flowsheet simulations is investigated.
Event-driven MC methods define a time-step �MC within which
one MC event happens — the specific event is selected stochas-
tically and the simulation time is increased by �MC. We  find,
that this approach becomes not applicable if smaller simula-
tion time steps �F have to be simulated (i.e. �F < �MC), in order
to synchronize the simulation with other processes or simula-
tion compartments (or units within a flow sheet simulation).

In order to allow such a synchronization, a novel method-
ology – the concept of ‘fractional Monte Carlo time steps’ – for
the simulation of coagulation based on the acceptance rejec-
tion method is proposed. The fractional MC  time steps allow
to force an event driven MC simulation to stop at arbitrarily
defined synchronization time points.

An exemplary simulation of five compartments with dis-
and thus the intrinsic event-driven time steps vary by the
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rder of 104 between the largest and lowest initial number-
oncentrations.

Although the simulation of intercompartmental transport
s not included in the presented work, the compartments are
orcefully synchronized for a ‘hypothetic’ transport step in
rder to highlight the computational efficacy of the applica-
ion due to the parallelized simulation.

It is shown that the application of fractional MC time
teps leads to the same results as those gained by conven-
ional event-driven MC  methods and the discrete sectional

ethod. The comparison with the conventional event-driven
C method shows that the stochastic nature of the fractional
C steps does not increase the statistical noise of the sim-
lation significantly and that specific benchmark values are
eproduced with the same accuracy as by simulations without
he artificially added synchronizations.

The computational costs of the forced synchronizations
nd the advantages of the parallel implementation are briefly
entioned and the advantages of a parallel implementation

f a heterogeneous simulation are shown.
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A B S T R A C T

Monte Carlo (MC) simulations based on weighted particles offer novel and more precise techniques for the
solution of the population balance equation for particulate systems. A recent constant-number approach
named stochastic weighted algorithm (SWA) (Lee et al. (2015), J. Comput. Phys. (303) 1–18) has been devel-
oped, which renders the breakage of a simulation particle by an alteration of its properties, without the
creation of novel simulation particles. The theoretic justification of the general formulation for all possible
SWAs is limited to binary breakage kernels. We present a novel approach for the derivation of the properties
of the MC particles representing fragments, which is applicable for all sorts of breakage kernels. This general
scheme encompasses the already introduced SWA schemes, especially a number-based (SWA1, named NBS
in this paper) and volume-based (SWA2, named VBS in this paper) breakage scheme, and it makes novel
formulations possible: the low volume scheme (LVS), which renders preferably lower fragment sizes, and
the combination of LVS with the NBS (LVS-NBS) or VBS (LVS-VBS). The implementation of these breakage
schemes in the context of a GPU-based time-driven method is presented and the gained results are validated
by comparison with results of the analytic solutions of a homogeneous binary breakage kernel. It is found,
that the SWA methods (NBS and VBS) are only able to render large particle sizes, and that LVS, NBS-LVS and
VBS-LVS are able to render the whole spectrum of particle sizes. Smaller noise levels are found for VBS and
specific VBS-LVS schemes, making both more suitable for prolonged simulations than the other presented
methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The solution of the Population Balance Equation (PBE) rendering
the breakage of particles is not only interesting for the description of
crushing and grinding processes, it is also used to understand liquid-
liquid dispersions, polymer degradation and formulation of products
through granulation. The most common approaches for the solution
of the PBE are the methods of moments, discretization methods and
Monte Carlo (MC) methods.

Sectional simulation methods encompass the discretization of the
particle property space, which can be combined with deterministic
formulations of the particle concentration in single sections [1,2],
or with the mass-conserving form of the PBE for a finite volume

* Corresponding author.
E-mail address: Gregor.Kotalczyk@uni-due.de (G. Kotalczyk).

scheme [3,4]. Those approaches require the specific a priori designa-
tion of the interesting particle size domain, which can become prob-
lematic in a multidimensional property space. Additional processes
like condensation and evaporation can only be incorporated with a
great computational effort (via moving grids [5] or by a reformu-
lation of the problem with the help of finite elements [6]) hence
simpler implementations of growth processes lead to numerical
diffusion [7].

Monte Carlo (MC) simulations render particle populations with
the help of simulation particles, each simulation particle represents
thereby a certain concentration (in m−3) of real particles and
avoid therefore the numerical diffusion characteristic for sectional
approaches. The rendering of the large number of particles which
are produced during the continuous breakage process poses a major
problem for MC simulations, because large computational resources
have to be provided for this purpose. In a typical milling process,
for example, reductions of the particle diameters from 500 lm to
0.5 lm are encountered, the same amount of volume, which is

http://dx.doi.org/10.1016/j.powtec.2017.05.002
0032-5910/© 2017 Elsevier B.V. All rights reserved.
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rendered by one simulation particle with a size of 500 lm has to be
rendered by 109 simulation particles with a diameter of 0.5 lm, if all
particles represent the same number concentration of real particles.

Early MC simulations solved this problem by a discretization of
the particle property into bins and counting, how many MC parti-
cles [8] or the corresponding volume [9] or mass1 [10] can be found
within a specific bin. These approaches bear the same disadvantages
as the sectional methods mentioned above.

An alternative concept in order to avoid large numbers of simu-
lation particles is the constant-number MC approach developed by
the Matsoukas group for the agglomeration [11], and extended to the
simulation of breakage [12]. In the scope of this approach, the loss of
simulation particles due to coagulation events could be compensated
by a copy of randomly selected simulation particles - and the mem-
ory space for new simulation particles resulting from the breakage
event could be created by the removal of randomly selected sim-
ulation particles. This method is known to produce a high level of
statistical simulation noise [13,14].

The MC-simulation based on weighted particles allows the tech-
nique of merging two simulation particles into one ([15], introduced
for the Multi-Monte Carlo approach). Although it was found that
the Multi-Monte Carlo method led to systematic errors of the sim-
ulation [16], the merging methods can be combined with other
simulation techniques based on weighted particles [14,17,18] or [13].
However, the resulting estimation of two suited simulation particles
for a merge step has to be performed for each additional particle
resulting from the breakage, leading to large computing times espe-
cially for particle systems describing the breakage of one particle into
a large number of fragments - assuming that two particles suitable
for the merging step can be found at all.

This problem is avoided by the mass-flow algorithm (MFA) which
was introduced for the coagulation process [19] and extended to
the breakage process [20] as well. In the scope of this approach, the
resulting fragments are represented by only one MC-particle which
replaces the original particle, selected for breakage, leading thus to
a constant-number scheme. The simulation particles used by the
MFA are differentially weighted (i.e. each simulation particle rep-
resents a different concentration of real particles) but renders the
same amount of mass concentration, so that the statistical weight
is defined by the property (mass) of the simulation particle. This
causes the incorporation of growth processes to be difficult, hence
specifically defined statistical weights as a second particle property
are needed [21]. This problem has been solved by the formulation
of stochastic weighted algorithms (SWA) [18] for the coagulation,
which could be extended to the breakage process [13].

A general breakage scheme is presented in the scope of the SWA
for breakage [13], consisting of two parts. The first part describes
the probability distribution function (PDF) with which the new vol-
ume of the simulation particle is selected. The second part describes
how to calculate the statistical weight of the simulation particle
depending on the selected volume. This derivation was performed
for a binary breakage kernel and is founded on symmetry argu-
ments. In this paper, we present an alternative approach for the
derivation of the breakage scheme in Section 2 by resorting to the
argument, that the breakage of many MC-particles with equal prop-
erties and weights has to lead to a particle size distribution (PSD) of
fragments, which is described by the corresponding breakage kernel.
The implementation of the gained results on the GPU in the scope of
a time-driven MC simulation will be discussed in Section 3.

1 The mass-based formulation is equivalent to the volume-based one, if the same
density q is assigned to the simulated particles. The assignment of different densities
for different particles is easily done in the scope of a MC simulation, but not inves-
tigated in this paper or the cited works. The terms ‘mass’ and ‘volume’ are therefore
used synonymously in this paper.

2. Theory

In order to provide a higher level of clarity, it will be distin-
guished between particles and differentially weighted simulation
entries (SE) in the following. The particles refer to existing physical
objects, whose behavior is described by kinetic equations. The SE are
representations of the PSDs of the particles stored on the computer.
A SE i contains the properties of the particles (in the here presented
case the volume vi) and an additional property: the statistical weight
Wi, which is a concentration (in units m−3).

The existing number-based and volume-based formulations
for (real) particles of the breakage process are summarized in
Section 2.1. Section 2.2 presents different selection schemes for the
properties of the fragment SEs in order to render the breakage
process.

The formulation of the population balance equation (PBE) used in
this work is based on one particle property, the volume v (the term
‘size’ is used synonymously).

2.1. Formulations of the PBE for breakage

2.1.1. Number-based formulation
The number-based PBE [2], for breakage describes the temporal

change of the number-based PSD2 n(v) of the particle population:

dn(v)
dt

= −S(v) • n(v) +
∫ ∞

v
n(v′) • S(v′) • bn(v, v′)dv′. (1)

The breakage rate of a particle with the volume vP is denoted
by S(vP). The number-based distribution of the resulting fragments
is described by the breakage function bn(vF, vP) which states, that
bn(vF, vP)dvF fragments with the volume between vF and vF + dv are
created due to the breakage of a parent particle with the volume vP.
The mean total number of fragments resulting from the breakage of
one parent particle is:

B(vP) =
∫ vP

0
bn (vF, vP) dvF. (2)

In the special case of a binary breakage, there are exactly two
fragments, so that: B(vP) = 2 for all vP.

The conservation of the volume during the breakage poses a
restriction on all possible formulations for bn(vF, vP) by the following
formula:

vP =
∫ vP

0
bn (vF, vP) • vFdvF. (3)

2.1.2. Volume-based formulation
The volume-based formulation of the PBE [1] can be gained by

setting the volume-based PSD M(v) to M(v) = v • n(v) :

dM(v)
dt

= −S(v) • M(v) +
∫ ∞

v
M(v′) • S(v′) • bm(v, v′) dv′. (4)

The thus resulting volume-based breakage kernel bm is written in
accordance to [1] as:

bm (vF, vP) =
vF

vP
• bn (vF, vP) .

2 This means, that the value N =
∫ vend

vstart
n(v)dv gives a number-concentration

(units m−3) of particles which can be found with vstart ≤ v ≤ vend.
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2.2. Selection schemes for volumes of the fragment SEs

The breakage of a SE i in the framework of a constant-number
scheme is rendered by the change of its volume v and statisti-
cal weight W due to the breakage event. The properties of the SE
representing the parent particle (vP(i), WP(i)) before the breakage are
stored in the same place on the computer as those of the fragment
SE (vF(i), WF(i)) after the breakage. The values of the volume vF(i) of
the fragment SEs are thereby distributed according to a probability
density function (PDF), fmc(vF, vP).

Although the probability to find fragments of the size vF is defined

by bn(vF,vP)
B(vP)

dvF, the function fmc can be set independently of bn(vF, vP)

and B(vP). This is because the used SE i contains the statistical weight
Wi as additional information, which can be set in such a way, that the
resulting fragment PSD (of the breakage of many SEs with vP) is equal
to the distribution bn(vF, vP). This notion is elaborated in Section 2.2.1
in more detail.

Table 1 summarizes the selection methods used in this work.
Each selection method is defined by the PDFs fmc for the selection
of the volume vF of the fragment SEs and the corresponding values
for the statistical weights WF. Table 1 can also be used as a look-up
reference for the abbreviations used in this work. The single methods
are explained in Sections 2.2.2–2.2.5.

In Section 2.2.6, an example is presented which shows how the
application of different functions fmc leads to the expected fragment
distributions by the adjustment of the statistical weights of the
fragment SEs according to Table 1.

2.2.1. General breakage scheme
It is assumed in the following, that a statistically large number of

SEs is used for the MC simulation, so that a statistically large number
Np of parent SEs have been selected for breakage and attain (nearly)
the same property (or at least cluster in the vicinity of) (vP, WP), so
that (vP(i), WP(i)) ≈ (vP, WP) for i = 1, 2, . . . , Np. The total statistical
weight WTot before the breakage event rendered by this population
is then:

WTot =
Np∑

i=1

WP(i) = Np • WP. (5)

The number-based PSD n(exact)
F (v) which results from the break-

age of all these SEs (i.e. all (vF(i), WF(i)) values with i = 1, 2 . . . , NP)
should be equal to the number-based breakage function bn(vF, vP)
times the total concentration WTot rendered by the SEs before the
breakage:

n(exact)
F (vF) = WTot • bn (vF, vP) . (6)

The probability Pmc(vF, vP) that the fragment SE is assigned a
volume v ∈ [vF, vF + dv] is given by Pmc(vF, vP) = fmc(vF, vP)dvF. If Np

SEs with the volume vP are selected for breakage, the number Nf(vF)
of fragment SEs with v ∈ [vF, vF + dv] is therefore described by:

Nf (vF) = Pmc (vF, vP) Np = fmc (vF, vP) dv • Np. (7)

The total number-concentration rendered by those SEs can be
written as:

n(mc)
F (vF) dv = WF (vF) • Nf (vF) dv

= WF (vF) • fmc (vF, vP) • Npdv. (8)

This value should be equal to the exact number-based PSD
(i.e.: n(exact)

F (vF) dv = n(mc)
F (vF) dv). One obtains therefore with

Eqs. (6) and (8):

WF (vF) =
WTot

Np
•

bn (vF, vP)

fmc (vF, vP)

(5)
= WP •

bn (vF, vP)

fmc (vF, vP)
. (9)

In addition to the non-negative requirement for a PDF, fmc(vF, vP) ≥
0, ∀0 ≤ vF ≤ vP, the function fmc(vF, vP) has to be non-zero if the
corresponding breakage function bn(vF, vP) is non-zero:

fmc (vF, vP) > 0, if: bn(vF, vP) > 0. (10)

This is necessary in order to guarantee Eq. (6) = Eq. (8).3 In addi-
tion to these requirements, fmc satisfies the normalization condition:∫ vP

0
fmc (vF, vP) dvF = 1, ∀vP. (11)

It is shown in Appendix A that this general description encom-
passes all of the breakage schemes introduced by [13] (named SWA).
The method proposed here is even more general, because the restric-
tions posed by Eqs. (10) and (11) are much weaker than the restriction
posed by Eq. (A.1) in the context of the SWA. In the following, the
specific choices for fmc will be discussed.

2.2.2. Number-based selection (NBS)
The simplest specific choice for fmc is to set it proportional to the

number-based breakage function: f N
mc ∝ bn (vF, vP). The normalization

condition (Eq. (11)) defines the PDF for the NBS, f N
mc, via:

f N
mc =

bn (vF, vP)∫ vP
0 bn (vF, vP) dvF

=
bn (vF, vP)

B (vP)
.

This specific choice leads to the following weights of the fragment
SEs - according to Eq. (9):

WF (vF) = B(vP) • WP.

So that the assigned statistical weight is independent on the
specifically chosen size of the fragment SE, vF. This scheme is
introduced by [13] as well, named SWA1.

Note, that the resulting number-concentration of the breakage
of particles with the total concentration WTot is always B(vP) • WTot,
which is the correct value, although the specific realization of
n(mc)

F (vF) depends upon the random variates for vF.

2.2.3. Volume-based selection (VBS)
The total volume (per system volume m3/m3) rendered by the SE

is conserved during the breakage event, if and only if:

vP • WP = vF • WF ⇐⇒ WF = WP •
vP

vF
. (12)

This setting defines the PDF for the fragment selection of the VBS,
f V
mc, via Eq. (9):

f V
mc =

WP

WF
• bn (vF, vP)

(12)
=

vF

vP
• bn (vF, vP) .

The value f V
mc (vF, vP) is indeed a probability density: the volume

conservation stated in Eq. (3) leads to:
∫ vF

0 f V
mc (vF, vP) dvF = 1.

3 The division by zero in Eq. (9) is per se avoided for fmc(vF, vP) = 0, hence no
fragment SE with vF is selected and Eq. (9) is not applied for the calculation of W(vF).
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Table 1
The shown methods are defined by the PDF for the selection of the volume vF of the fragment SE and the assignment of its statistical weight WF.

Method Probability density function (PDF) fmc(vF, vP)
or probability p̂mc(vF, vP) for selection of vF

Statistical weight WF of fragment
simulation entry (SE)

Remarks or alternative nomenclature
in literature

General form fmc

(
vF, vP

)
WP • bn (vF, vP) /fmc (vF, vP) Normalization condition:

∫ vP
0 fmc(vF, vP)dvF = 1

Number-based selection (NBS) f N
mc = bn (vF, vP) /B (vP) WP • B(vP) stochastic weighted algorithm (SWA) 1 in [13]

volume-based selection (VBS) f V
mc = bn (vF, vP) • vF/vP WP • vP

vF
Mass flow algorithm (MFA) in [20], SWA 2 in [13],
equivalent to [10]

Low volume selection (LVS) f L
mc = 1/ (C (vP) vmax) WP • bn(vF, vP)C(vP)vmax with vmax = max(vF, vlim) Eq. (14) defines C(vP)

Combined schemes VBS-LVS; NBS-LVS f C(R)
mc = Rf A

mc + (R − 1)f B
mc WP • bn(vF ,vP)

R·f A
mc+(R−1)·f B

mc
for all R with 0 < R < 1; A=VBS (resp. NBS) B=LVS

for discrete kernels b̂ p̂mc(vF, vP) WP • b̂n (vF, vP) /p̂mc (vF, vP) Normalization condition:
∑

all vF
p̂mc(vF, vP) = 1

The so derived scheme is equal to the SWA2 algorithm intro-
duced by [13]. In the absence of other processes (like growth), the
volume concentration rendered by one SE (m3/ m3) remains con-
stant throughout the entire simulation, so that the resulting scheme
is equivalent to the MFA presented by [20]. The grouping of the frag-
ment volume-concentration not as a specific SE but to a discretized
bin has been modeled by [10] with the same probabilities, hence the
PDF for VBS is equal to the volume-based breakage kernel: f V

mc = bm,
one can therefore speak of a certain equivalence of the methods.

2.2.4. Low volume selection (LVS)
The question arises, how a specific part of the PSD can be rendered

with more detail by the tuning of fmc(vF, vP). Hence initial testing
showed, that smaller particle size fractions couldn’t be rendered by the
resulting fragment SEs (this will be discussed in the results Section 5),
a scheme has been developed in order to render specifically those
smaller particle sizes. This can be done by setting fmc (vF, vP) ∝ 1

vF
,

leading to higher probabilities for smaller vF.
Some limitation has to be set, in order to ensure the normalization

condition stated in Eq. (11). This can be done, by setting fmc to
a constant maximal value for all particle sizes smaller than vlim,
leading to f L

mc (vF, vP) ∝ (max (vF, vlim))
−1. If the parent SE has a

volume smaller than vlim, then the volumes of the fragment SE will
be selected according to a uniform distribution. The explicit form of
fL
mc can be calculated with the help of a constant C(vP):

f L
mc (vF, vP) = (C (vP) • max (vF, vlim))

−1 . (13)

The value for C(vP) is given by the normalizing condition (Eq.
(11)):

C(vP) =

⎧⎨
⎩1 + ln

(
vP

vlim

)
, vP > vlim

vP
vlim

, vP < vlim .
(14)

The weights of the fragment SE result from Eq. (9):

W (vF) = (C(vP) • max (vF, vlim)) • bn (vF, vP) • WP.

This breakage scheme cannot be formulated in the scope of the
SWA-theory (even if a binary and thus symmetric breakage kernel bn

is postulated), because the corresponding function c (which results
from inserting f L

mc defined in Eq. (13) as fcmc into Eq. (A.2)) does not
meet the requirement defined in Eq. (A.1). The following combination
schemes cannot be formulated by the SWA for the same reason.

2.2.5. Combination of breakage schemes
In the scope of the NBS or the VBS scheme, the formation of

smaller particles is not possible, even if a large number of SEs are
used as will be shown later in the results Section 5. These small
particles can be described by the LVS scheme correctly, but larger
particles, which represent the main part of the simulated volume to

a specific time point, are not rendered with sufficient precision by
this method leading to systematic errors for longer simulation times
(this is discussed in the results section, too).

In order to render the whole particle size spectrum of the result-
ing particle population correctly, the LVS breakage scheme can be
used in combination with VBS (or NBS) by splitting up the rendering
of single breakage events between those two methods. If Np parent
particles have been selected for breakage, then R • Np breakage events
are rendered with VBS (or NBS) and (R − 1) • Np with LVS, R is a
constant factor with 0 < R < 1. This scheme is not only easy to
implement (this is shown in Section 3.2.2 and Appendix B.2), it is also
easy to formulate the PDF of this scheme f C(R)

mc by a combination of f V
mc

(or f N
mc) and f L

mc via:

f C(R)
mc = R • f V

mc + (R − 1) • f L
mc. (15)

The statistical weight, which has to be attributed to the fragment
SE can be gained via the general Eq. (9):

WF = WP
bn (vF, vP)

R • f V
mc (vF, vP) + (R − 1) • f L

mc (vF, vP)
. (16)

Several different combination methods can be constructed,
depending upon the selected value of R. The explicit equations for
the combination VBS-LVS are gained by replacing f V

mc by f N
mc in

Eqs. (15) and (16).

2.2.6. Example system
In order to illustrate the differences between the methods, a

simple example describing the polymer breakage of a 3-polymer
(volume vP = 3v0) into a 2-polymer (volume vF = 2v0) and a
1-polymer (volume vF = v0) is discussed. This break-up event is
modeled by a discrete breakage function b̂n (vF, vP) which assumes
the following two values:

b̂n(v0, 3v0) = b̂n(2v0, 3v0) = 1 . (17)

The total amount of particles which are produced by the breakage
of one particle is B(vP) = 2. If a concentration of W0 3-polymers
breaks, one expects to find exactly W0 2-polymers and W0 1-polymers.

One can write in general [22]:

bn =
∑
vF,i

d(v − vF,i) • b̂n ⇒ fmc =
∑
vF,i

d(v − vF,i) • p̂mc.

The continuous PDFs fmc (summarized in Table 1) are thus easily
reformulated as discrete probabilities p̂mc, via p̂N

mc = b̂
B and Eq. (17)

for NBS:

p̂N
mc(v0, 3v0) =

1
2

, p̂N
mc(2v0, 3v0) =

1
2
. (18)
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The probability p̂V
mc = b̂

B
• vF

vP
is used with Eq. (17) for VBS:

p̂V
mc(v0, 3v0) =

1
3

, p̂V
mc(2v0, 3v0) =

2
3
. (19)

For the LVS, no limit value vlim is needed for the normalization:

p̂L
mc =

(
vF • Ĉ

)−1
. (20)

The value of the constant Ĉ is for the here presented example:

1 =
1

Ĉv0
+

1

Ĉ2v0
⇐⇒ Ĉ =

3
2v0

. (21)

This leads to p̂L
mc =

ˆ2v0
3vF

for LVS:

p̂L
mc(v0, 3v0) =

2
3

, p̂L
mc(2v0, 3v0) =

1
3
. (22)

The statistical weights of the SEs are calculated analogously to
Eq. (9) by:

WF(vF) = WP •
b̂ (vF, vP)

p̂mc (vF, vP)
. (23)

This value is dependent on the used probability (i.e. whether p̂mc

is set to p̂N
mc, p̂V

mc or p̂L
mc). Fig. 1 shows the modeling of the initial

population by 6 SEs (in this case Np = 6) with the concentrations
W, so that W0 = 6W. It can be seen, how the number Nf(v0) (resp.
Nf(2v0)) of the resulting fragment SEs with specific volume v0 (resp.
2v0) depends upon which discrete probability (p̂N

mc, p̂V
mc or p̂L

mc) is used

and how the corresponding setting of the statistical weights, WF leads
to the correct PSD, n(mc)

F (vF).
Fig. 2 shows an exemplary combined NBS-LVS scheme with R =

2
3 , the initial population is modeled by 9 SEs (in this case Np = 9)
with the concentrations W, so that W0 = 9W.

3. Parallel time-driven GPU-implementation

3.1. Time-driven MC-simulation method

The derived breakage schemes in Table 1 can be implemented in
an event-driven (e.g. [23]) or time-driven MC-simulation (e.g. [24]).
Both methods can be explained with the concept of the interval
of quiescence [25]. The probability Pi(tev < Dt), that any event i
happens to a time tev, which is earlier than a time Dt, is modeled
in the scope of the interval of quiescence approach by a Poisson
distribution defined by the rate Ki of this event:

Pi (tev < Dt) = 1 − exp (−Dt • Ki) . (24)

3.1.1. Event-driven method
In the scope of the event-driven method, single events are

modeled, which occur with the total rate Ktot =
∑

Ki. This leads to an
inter-event time of 1

Ktot
, which has to be re-evaluated after each single

event. For each time step only one event is selected, the probability
Ps(i) to select the event is proportional to the event rate: Ps(i) = Ki

Ktot
.

3.1.2. Time-driven method
In the framework of the time-driven method, multiple events can

be rendered within a time step Dt. The probability that an event i
happens within the time Dt is given by Eq. (24) and has to be checked
for every event in order to describe one time step.

The rates are assumed to be constant throughout the time step Dt.
In order to avoid errors due to changes of the rates of the events, a
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Fig. 1. The changes of the properties of the SEs due to a breakage step are shown. Each of the fragment SEs represents one rectangle in the resulting PSD n(mc)
F (vF) - these are mean

values which would be attained, if this specific breakage event would be repeated multiple times. The total volume rendered by each SE is preserved by the VBS scheme only.
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Fig. 2. The changes of the properties of the SEs within a combined breakage step are shown, the factor R determines how many SEs are simulated by the schemes NBS and LVS
presented in Fig. 1 and defined in Table 1.

setting of Dt = [maxall rates i(Ki)]−1 •aT is suggested, with the tuning
factor aT, which is set to aT = 0.1 [24] (resp. aT = 0.01 in another
study [26]). The value Kmax = maxall rates i(Ki) has to be evaluated for
each time step.

For the specific simulation of breakage based on SEs, the event i
describes the breakage of the SE i within Dt, the subsequent breakage
of the resulting particle population (rendered by the fragment SE)
withinDt is not modeled in this approach.4 A low setting of the tuning
factor aT is therefore necessary, in order to avoid the situation, in
which the (real) particle population rendered by the SE undergoes
two breakage events within Dt.

3.2. Parallel GPU-algorithm

In the here presented parallel GPU-approach, each breakage event
of a single SE is treated as a specific process Ki, so that: Ki = S(vi) and
Kmax = maxall iS(vi). If 105 SEs are used for the simulation, then 105

breakage events (each S(vi)) have to be checked (via Eq. (24)) in each
time step Dt. This might sound very ineffective first, but we point out,
that the 105 comparisons are executed in parallel.

The thus gained parallel algorithm consist of the following simple
steps:

1. Initiate t = 0
2. Repeat

(a) Calculate the maximal breakage rate Smax =
maxall SEs i(S(vi)). The parallel implementation of this step
is shown in Section 3.2.1.

(b) Set the time step:

Dt = min
(
aT • S−1

max , tend − t
)
. (25)

(c) Perform for each SE in parallel:
i. Check, whether the SE breaks in the given time step.

This is done by a uniformly distributed random num-
ber U ∈ (0, 1). The particle breaks according to Eq. (24),
if U < 1−exp(−Dt • S(vi)).

ii. If the particle breaks, estimate the new fragment-SE
properties:
A. Select the fragment size vF by the rejection

algorithm using the probability density fmc(vF,vP)
summarized in Table 1. The procedure is explained

4 The t-leap technique [27,28] could be used for the modeling of multiple breakage
events of one SE during Dt. In this approach, the properties of the hypothetical
fragments have to be used for the calculation of the probability of a second breakage
event during the time step Dt.

in more detail in Section 3.2.2, and comprised
as Algorithm 1 (resp. Algorithm 2 for combined
methods) in Appendix B.2.

B. Calculate the new statistical weight WF(vF) summa-
rized in Table 1.

(d) Increase the simulation time to t + Dt.
Until t ≥ tend

The end time of the simulation, tend, is set by the user.

3.2.1. Parallel calculation of the maximal breakage rate
Fig. 3 shows an exemplary algorithm for the calculation of the

maximal breakage rate Smax. Only log2(NSE) computational steps are
necessary, if NSE SEs are used. This algorithm is similar to the algo-
rithms for a parallel sum (the sum has to be replaced with the
compare operation) calculation, used by [29,30] in the scope of the
parallel solution of the PBE for the coagulation process - a detailed
discussion of the computational efficacy of this algorithm can be
found in [14].

3.2.2. Selection of the fragment-size vF

The inverse method and the rejection method are the mostly used
methods for the generation of random variates vF for a given PDF fmc.
Both methods are discussed in Appendix B in more detail.

For the rejection method, a specific sampling is required for
the proposal of a random variate, two sampling methods, a uni-
form sampling (U) and an inverse sampling (I) are investigated in
Appendix B.2. The following findings are gained for the necessary
number of iterations YU (for uniform sampling) and YI (for inverse
sampling) in dependency of the applied selection schemes defined in

Fig. 3. An exemplary parallel algorithm for the estimation of the maximal breakage
rate Smax is shown. Each thread calculates the breakage rate S(vi) of one SE i.
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Table 2
The cases used for validation describe the homogeneous binary breakage of a monodisperse initial population with the volume v0.

bn(vF,vP) S(v) F(vF,1, vF,2) in [31] Solution n(v, t) for n(v, 0) = d(v − v0), tchar = S(v0)−1

Case 1 2/vP v 1 [2t + t2(v0 − v)]exp(−v • t) + d(v0 − v)exp(−t • v0), v ≤ v0

Case 2 2/vP v2 vF,1 + vF,2 2t • v0 exp(−t • v2) + d(v0 − v) exp(−t • v2
0) , v ≤ v0

Table 1 for the test cases introduced in Section 4 (i.e. specifically for
bn(vF, vP) = 2

vP
):

• For the NBS and VBS (see Table 1 for definitions), the uniform
sampling is more suited for application, hence it leads to a gen-
eration of a random number within only YU = 1 − 2 iterations
(in comparison with more than 20 iterations for the inverse
sampling (YI > 20)).

• For the LVS scheme (see Table 1 for definition), the number of
necessary iterations is found to be dependent on the volume
vP of the parent SE selected for breakage. More than YU = 109

iterations are necessary (for the initial volume of the test cases,
vP = v0) if the uniform sampling is used, leading to very long
computational times, while the application of the inverse sam-
pling leads to a relatively low number of necessary iterations
(i.e. YI < 10) for a large spectrum of particle sizes (i.e. ca.
vP > 10−10v0).

In order to provide a computational efficient selection method
for the combined methods NBS-LVS and VBS-LVS (see Table 1
for definition), an alteration of the classic acceptance-rejection
algorithm is presented in Appendix B.2, which uses the uniform sam-
pling for the fraction R of SEs described by the NBS (or VBS) and the
inverse sampling for the fraction (1 − R) of SEs described by LVS.

4. Validation

A system describing a homogeneous monomer-break-up (i.e.
bn(vF, vP) = 2

vP
⇒ B(vP) = 2) has been chosen for the validation

of the proposed methods and the measurement of the resulting MC-
noise. Analytical solutions of this system could be derived for the
breakage rate S(v) = vf and some values for the parameter f [31].
The used cases and the analytic solutions n(v, t) are summarized in
Table 4.

The authors [31] applied a specific form of the PBE, suited for
analytic derivations of the solution:

dn(v, t)
dt

= − n(v, t)
∫ v

0
F(vF, v − vF)dvF

+ 2
∫ ∞

v
n(vP, t) • F(v, vP − v)dvP . (26)

The expression F(vF,1, vF,2) denotes the rate of the break-up
of a parent particle with vP = vF,1 + vF,2 into 2 fragments with
the volumes vF,1 and vF,2, the same rate can also be written as
S(vF,1 + vF,2) • 1

2 bn(vF,1, vF,1 + vF,2). The equivalence of Eqs. (26) to (1)
can be therefore shown via:

F(vF,1, vF,2) = S(vF,1 + vF,2)
1
2

bn(vF,1, vF,1 + vF,2) .

Table 3
The values for minimal and maximal sizes of the fragment SE, v(min)

F and v(max)
F

(Eqs. (28) and (29)) are shown.

NBS VBS LVS

v(min)
F vP/NSE vP/

√
NSE

(
1 + ln( vP

vlim
)
)

• vlim
NSE

v(max)
F

(
1 − 1

NSE

)
• vP

√
1 − 1

NSE
• vP exp( −1

NSE
) •

(
vP

vlim

) −1
NSE • vP

The mean time of the breakage of the initial population has been
used as characteristic time tchar, i.e. tchar = S(v0)−1 and simulation
times up to tend = 108 • tchar have been investigated. The discussed
system exhibits a self-similar behavior for longer simulation times
(t � tchar) which are discussed by [22,32] and can be seen in the PSDs
in Figs. 4 and 5 in the result section.

Note, that a logarithmically normed representation is used in this
paper, i.e. the function dN

d log v representing the PSD in Figs. 4 and 5 is
defined by:

n(v)dv =
dN

d log(v)
d log(v) ⇐⇒ dN

d log(v)
= v • n(v) . (27)

5. Results and discussion

5.1. Limitations of the rendered PSD

The resulting PSDs are shown in Figs. 4 and 5. It can be seen, that
smaller particle sizes are not rendered by the number-based (NBS)
and volume-based (VBS) methods defined in Table 1.

The limitation of the particle sizes stems from the discrete repre-
sentation of the PSD by a finite number of SEs. The more SEs are used,
the larger is the rendered particle size spectrum. One can define max-

imal and minimal particle sizes, v(max)
F and v(min)

F , which define the
boundaries of the PSD resulting from the breakage of NSE SEs with
the volume vP. It can be approximated, that (nearly) all SEs repre-
senting the PSDs for t = tchar • 10−1 result from one breakage event
of the initial particle population.

A simple approximation for v(min)
F can be made by considering,

that the number of used SEs, NSE, defines the probability to select this
minimal size via:

1
NSE

= P(vF ≤ v(min)
F ) =

∫ v(min)
F

0
fmc(vF, vP)dvF . (28)

A similar approximation can be made for v(max)
F :

1
NSE

= P(vF ≥ v(max)
F ) =

∫ vP

v(max)
F

fmc(vF, vP)dvF . (29)

Table 5 shows the values of v(min) and v(max) in dependency of
the number of used SEs, the value for v(min)

F is also limited due
to the applied rejection scheme - which allows only values larger
than vlim AR = 10−12vP for the low volume scheme (LVS) defined
in Table 1. For 105 SEs, one receives v(min)

F = 10−5 • vP (for NBS),
v(min)

F ≈ 3.2 • 10−3 • vP (for VBS) and v(min)
F ≈ 2.6 • 10−15 • vP (for LVS

and the initial condition vP = v0, in this case the vF is also limited by

Table 4
Summary of the different sampling techniques for the rejection method used in this
work.

Method Uniform sampling (U) Inverse sampling (I)

PDF g(vF, vP) gU(vF) = 1/vP gI(vF) =
[

vF ln
(

vP
vlim AR

)]−1

vF = G−1(U1) G−1
U (U1) = U1 • vP G−1

I (U1) = vP • 10−12 • U1

limitations for vF 0 < vF < vP vlim AR = 10−12vP < vF < vP
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Fig. 4. The number-based PSDs are shown for various simulation time points, which are marked by a gray scale for the analytical results. The simulation results are shown for
aT = 0.1 and 105 SEs. The used abbreviations (methods) are defined in Table 1.

vlim AR). This is in good agreement with the shown PSDs in the Figs. 4
and 5 rendering the PSDs (for t = tchar • 10−1).5

Fig. 4 shows that the methods VBS, NBS and the combinations
NBS-LVS and VBS-LBS (all defined in Table 1) both with R = 0.9 are
able to approximate the results correctly even for long simulation
times. It can be seen that the NBS is able to render smaller particle
sizes than the VBS method - at the expense of more statistical noise
of the simulation. Both, the NBS-LVS(R = 0.9) and the VBS-LVS(R =
0.9) methods are able to render even the smallest particle sizes at the
initial stages of the simulation, the much higher level of statistical
noise is produced by the NBS-LVS combination.

Fig. 5 shows that the NBS-LVS schemes produce much more sta-
tistical noise than the VBS-LVS schemes - for all different settings of
R, i.e. R = 0.5, 0.7 and 0.8. It can also be seen, that the accuracy of the
simulation decreases with decreasing R-values and that accuracies as
high as in Fig. 4 (for R = 0.9) cannot be reached. It can also be seen
that the LVS method leads to severe systematic errors in the course
of the simulation, although it is able to render the PSD correctly for
early initial stages of the simulation (i.e. t/tchar = 10−1).

5 Standard MC methods would include 2 MC particles due to each breakage event,

so that Eq. (28) has to be modified to 1
2NSE

=
∫ v(min)

F
0 fmc(vF, vP)dvF. The properties

of the fragments would be selected with NBS (resp. VBS) if each classical MC par-
ticle represents the same concentration (resp. mass concentration) of real particles.

This would lead to the following formula: v(min)
F = v0

2NSE
(resp. v(min)

F = v0
2
√

NSE
). So

that NSE = 5 • 1011 (resp. NSE = 5 • 1023) MC particles would be necessary to render
particles of the size 10−12v0 at the simulation time t = tchar • 10−1.

It can be thus seen, that if a small particle fraction (10% ⇐⇒ R =
0.9) of the SE is used for the rendering of smaller particle sizes (i.e. in
combination with LVS), a more detailed rendering of the PSD can be
gained at the expense of a reasonable increase of the statistical noise.
The combination VBS-LVS tends thereby to produce less statistical
noise than NBS-LVS. The usage of higher fractions of the SEs for the
LVS-method (i.e. R < 0.9) leads to an increase of the statistical noise
and renders the results not usable for R ≤ 0.7.

5.2. Quantification of the statistical noise

In order to measure the statistical noise more quantitatively, the
total concentration N rendered by all SEs resulting from the MC sim-
ulation has been used. For 100 MC-simulations, the mean number
N and the arithmetic standard deviation of this value, DN, has been
calculated and the values DN

N
have been plotted in Figs. 6 and 7.

Fig. 6 shows the dependency of the statistical noise on the used
number of SEs. Lower noise values are attained for higher number of
SEs, NSE, as expected for MC-simulations (where values are usually
distributed according to ∝ 1√

NSE
). It can also be seen, that the VBS

method attains a constant value of statistical noise, while the NBS
method leads to a steady increase in the course of the simulation.
This is in agreement to earlier findings [13]. It can also be seen, that
the VBS-LVS(R = 0.9) scheme produces less statistical noise than the
NBS scheme, although it also increases throughout the simulation.

Higher levels of the statistical noise for lower R−settings can be
seen in Fig. 7. The NBS-LVS schemes produce more statistical noise
than the VBS-LVS scheme underscoring the results already shown in
the PSD-Figs. 4 and 5.
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Fig. 5. The number-based PSDs are shown for various simulation time points, which are marked by a gray scale for the analytical results. The simulation results are shown for
aT = 0.1, NSE = 105 SEs and case 1. The used abbreviations (methods) are defined in Table 1.

5.3. Systematic errors and computational efficacy

In order to measure the systematic errors introduced into the
simulation, the mean number N attained for all 100 MC-simulations
has been compared to the values NBM resulting from the analytical
solution summarized in Table 4, with:

NBM =
∫ v0

0
n(v)dv . (30)

The results are shown in Fig. 8 in dependency of the used tuning
factor aT.

The systematic error caused by the tuning factor dominates for
lower simulation times, for longer simulation times, the systematic
error is caused mainly by the statistical scatter of the simulation, the
level of this scatter can be seen in Fig. 6.

Lower values of aT lead to lower systematic errors, as expected. It
can be seen, that a setting of a = 0.1 leads to a reasonable systematic

error, that is in the same order of magnitude, as the statistical MC-
noise presented in Figs. 6 and 7.

The tuning factor has to be set to aT ≤ 0.1 in order to ensure a cer-
tain level of stochastic accuracy, lower values of aT lead on the other
hand to larger computing times, as can be seen in Fig. 9. The figure
shows the simulation times which are needed in order to simulate
100 MC simulations and depicts the efficiency of a GPU implemen-
tation of the presented algorithms: only 100 s are required for the
calculation of 100 simulations, each containing 105 SEs. For this spe-
cific setting, 107 evaluations of Eq. (24) are performed in parallel with
the optional subsequent while-loops (the specific algorithms are pre-
sented in Appendix B2) for each MC time step. (for aT = 0.1 ca.
2800 steps are needed to simulate a time frame of tend = 108tchar, for
aT = 0.01, the number of steps is ca. 28, 000).

6. Conclusions

The application of weighted MC simulation entries for the solu-
tion of the population balance equation for breakage is investigated.

Table 5
The mean number of iterations Y and the selection condition H (used in Algorithms 1 and 2) for the uniform (U) and inverse (I) sampling methods (Table 2) are shown in
combination with the PDFs fmc (presented in Table 1). YI is calculated (≈) for vAR lim = 10−12vP.

Scheme fmc for bn = 2
vP

HU = fmc (vF)
YUgU(vF) HI = fmc(vF)

YIgI (vF) Mean number of iterations YU Mean number of iterations YI

NBS 1/vP 1 vF/vP 1 ln
(

vP
vlim AR

)
≈ 27.63

VBS 2vF/v2
P vF/vP v2

F/v2
P 2 2 ln

(
vP

vlim AR

)
≈ 56.26

LVS (vP > vlim) 1
vmax

(
1+ln(

vP
vlim

)
) vlim/vmax vF/vmax

vP

vlim(1+ln(
vP

vlim
))

ln
(

vP
vlim AR

)
(

1+ln(
vP

vlim
)
)

vlim = 10−11v0 vmax = max(vF, vlim)
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Fig. 6. The statistical errors of the simulation schemes compared with each other. The
used abbreviations (methods) are defined in Table 1. The VBS-LVS method is shown
for R = 0.9. The results are shown for case 1 and aT = 0.1.

We present a theoretical derivation of several possible constant-
number breakage schemes, which describe the breakage of one
simulation entry by a modification of its weight and property (here:
volume). The thus gained results are applicable to all sorts of break-
age kernels and encompass the special results gained for a binary
breakage by [13].

The number-based breakage scheme (NBS - named SWA 1 in [13])
and a volume-based scheme (VBS - named SWA 2 in [13]) already
introduced in the literature could be further validated by compar-
isons with analytic results for two test cases.

The resulting PSDs (form NBS or VBS) are only able to cover the
particle size spectrum which corresponds to large particle concen-
trations. Parts of the PSD representing low particle concentrations
could not be rendered - in analogy to traditional MC methods

Fig. 7. The statistical simulation noise resulting from different R settings is shown for
case 1, aT = 0.1 and 105 SEs. The used abbreviations (methods) are defined in Table 1.

Fig. 8. The systematic errors in dependency of the tuning factor, aT, are shown
for case 1 and the volume-based selection (VBS) scheme. The used abbreviations
(methods) are defined in Table 1.

(where e.g. 1010 particles are necessary in order to render PSDs
which describe differences in particle concentrations ranging from
108m−3 to 1018m−3). We introduced a novel scheme (which cannot
be described with the SWA theory [13]) based on the selection of low
volume particles (LVS), which is able to render the full resulting PSDs,
which describe even extremely low particle concentrations correctly
- at least for the beginning of the simulation. For longer simulation
times, it is found that the LVS scheme leads to serious deviations
from the analytical solution.

These deviations can be curtailed to a minimal level by the com-
bination of the introduced LVS scheme with the already defined
NBS (or VBS) schemes. The theoretical concept of combination of

Fig. 9. The computational times are shown for different numbers of SE indicated in
the legend of the figure. The computational times refer to 100 simulations executed in
parallel for tend = 108tchar. The used abbreviations (methods) are defined in Table 1.
The results for the VBS-LVS combination are shown for R = 0.9.
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Fig. 10. The mean number of selection attempts YI and YU (in Table 3) for the LVS
scheme are shown in dependency of the volume vP of the SE selected for breakage.
The calculations are based on the specific values used in this work: vAR lim = 10−12vP

and vlim = 10−11v0.

breakage schemes is introduced for this purpose and an efficient
implementation in the scope of the acceptance-rejection approach is
documented. It is found, that these combinations (named NBS-LVS
and VBS-LVS) can describe the full particle size spectrum, even for
long simulation times.

A simple time-driven GPU implementation of the introduced
schemes is sketched. It is shown that the computing times of the
VBS-LVS scheme are within the same magnitude than those of the
NBS and VBS schemes.

Notation

bn number-based breakage kernel, Eq. (1)
b̂n number-based discrete breakage kernel
bm volume-based breakage kernel, Eq. (4)
B(vP) mean number of fragments, Eq. (2)
C(vP) constant for the LVS, Eq. (14)
fmc PDF for selection of vF, Table 1
Fmc Cumulative distribution function for fmc, Appendix B
g PDF for selection of vF for rejection method, Appendix B
G Cumulative distribution function for g for rejection

method, Appendix B
H abbreviation used in Algorithms 1 and 2, Table 3
Ki process rates defined in Section 3.1
M(v) volume-based PSD, Eq. (4)
n(v) number-based PSD, Eq. (1)
n(exact)

F (v) expected n(v) formed by particle fragments, Eq. (6)
n(mc)

F (v) n(v) formed by fragment SEs, Eq. (8)
Nf(vF) number of fragment SEs with vF

Np number of SEs selected for breakage, Section 2.2.1
NSE number of SEs used for simulation
NBM analytic value of total concentration, Eq. (30)
p̂mc probability to select vF for discrete kernels, Table 1
Pmc probability to select v ∈ [vF, vF + dv], Table 1
Pi(tev < Dt) probability that an event takes place within tev < Dt,

Section 3.1
R combination factor, Eq. (15), Eq. (16)
Si rate of a process in a general MC-formulation, Section 3.1

Smax maximal breakage rate of all SEs, Section 3.1
S(v) breakage rate, Eq. (1)
tchar characteristic time
U uniformly distributed random number
v volume of a particle or SE
v0 initial volume of the particle or SE
vF volume of a fragment or fragment SE
v(max)

F approx for maximal fragment volume, Eq. (29)
v(min)

F approx for minimal fragment volume, Eq. (28)
vP volume of a parent particle or SE
vlim cut-off value for LVS, Eq. (13)
vlim AR inverse-sampling cut-off value, Table 2
WF statistical weight of a fragment SE
WP statistical weight of a parent SE
WTot total statistical weight SEs selected for breakage
Y mean number of loops for rejection method, Appendix B
aT tuning factor for MC time step, Section 3.1
c fragmentation weight transfer function in [13], Eq. (A.1)
Dt MC time step value, Section 3.1
f parameter defining S(v) = vf in [31]
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Appendix A. Comparison of the general form in Table1 with SWA

In [13], a general formulation for breakage schemes (named SWA)
is presented based on the fragmentation weight transfer function
c(vF, vP) with the following restriction:

1
c(vF, vP)

+
1

c(vP − vF, vP)
= 1 . (A.1)

The PDF fcmc for the selection of the volume vF of a fragment SE is
stated as:

f cmc =
bn(vF, vP)
c(vF, vP)

. (A.2)

The statistical weight of the fragment, WF, is set to:

WF = c(vF, vP) • WP . (A.3)

The values vP and WP are the volume and statistical weight of the
selected SE for breakage.

This formulation is obviously equivalent to the presented Eq. (9),

hence WF = bn(vF,vP)
fcmc(vF,vP)

• WP. For a full equivalence, it is still necessary

to show that fcmc is a PDF.
The function c has been postulated for the symmetric binary-

breakage only, so having the following restrictions:

bn(vF, vP) = bn(vP − vF, vP) (A.4)



428 G. Kotalczyk et al. / Powder Technology 317 (2017) 417–429

and
∫ vP

0
bn(vF, vP)dvF = 2 . (A.5)

We show, that all these conditions lead in combination to the
normalization condition (Eq. (11)), i.e.:

∫ vP
0

bn(vF,vP)
c(vF,vP) dvF = 1. It is:

∫ vP

0

bn(vF, vP)
c(vF, vP)

dvF (A.6)

(A.1)
=

∫ vP

0
bn(vF, vP)dvF −

∫ vP

0

bn(vF, vP)
c(vP − vF, vP)

dvF

(A.4),(A.5)
= 2 −

∫ vP

0

bn(vP − vF, vP)
c(vP − vF, vP)

dvF .

The substitution n = vP − vF leads to:
∫ vP

0
bn(vP−vF,vP)
c(vP−vF,vP) dvF =∫ vF

0
bn(n,vP)
c(n,vP) dn , so that:

Eq. (A.6) ⇐⇒ 2
∫ vP

0

bn(vF, vP)
c(vF, vP)

dvF = 2 ,

which is equivalent to the normalization condition:
∫ vP

0
bn(vF,vP)
c(vF,vP) dvF =

1, or
∫ vP

0 fmc(vF, vP)dvF = 1.

Appendix B. Algorithms for the selection of the fragment size vF

B.1. Inverse method

In order to apply the inverse method (see e.g. [33]), the cumu-
lative probability distribution Fmc(vF) =

∫ vF
0 fmc(v′

F, vP)dv′
F has to

be inverted, yielding the function F−1
mc(U) which maps from U ∈

(0, 1) to vF ∈ (0, vP). Uniformly distributed random numbers U ∈
(0, 1) inserted into F−1

mc(U) produce therefore values vF which are
distributed according to fmc.

This method is more efficient than the rejection method, but it can
be applied only, if an analytical expression F−1

mc exists. This cannot be
guaranteed for all f N

mc or f V
mc, because these depend on the specifically

used breakage kernels bn (see Table 1). Although F−1
mc can be easily

calculated for the case bn = 2
vP

which is discussed in the results
section of this paper, we present the implementation in the scope of
the rejection method, so that the presented algorithm is applicable
to all general cases.

B.2. Rejection method

For the rejection method (see e.g. [33]), a random variate vF is
generated, which is distributed like a freely chosen PDF g(vF). The
function g(vF) can be chosen freely, but it should be chosen in such a
way, that it is easy to calculate G(vF) =

∫ vF
0 g(yF)dyF and its inverse

function G−1, hence a uniformly distributed random number U1 can
be used to generate vF via the inverse method: vF = G−1(U1).

The so generated random variate vF is accepted, if a second uni-
formly distributed random number U2 ∈ (0, 1) is smaller than the
expression fmc(vF, vP) • [g(vF) • Y]−1. If vF is rejected, new random num-
bers U1 and U2 are generated, leading to a new variate vF for which
the condition above is checked again, leading to Algorithm 1 which
generates values vF that are distributed according to fmc.

The constant factor Y has to be set in such a way, that fmc(vF,vP)
Y • g(vF) ≤ 1

for all vF (i.e. Y = max
(

fmc(vF,vP)
g(vF)

)
). The specific value of Y is the mean

number of selection attempts (i.e. loop iterations), which are needed
in order to generate one fragment-volume vF. (This is only true, if∫ vP

0 f (vF, vP)dvF = 1 and
∫ vP

0 g(vF)dvF = 1.)

Algorithm 1. Rejection method for vF selection, see Table 2 for the
exact values of G−1 and g.

In this work, two sampling methods described by gU and gI were
used. gU(vF) = 1

vP
leading to G−1

U (U2) = U2 • vP describes a uni-
form sampling. An inverse sampling is described by: gI(vF) ∝ vP

vF
. In

order to norm this function, fragment-sizes smaller than the value
vlim AR = 10−12vP are excluded from consideration6 allowing thus
only fragment values vF with vlim AR ≤ vF ≤ vP. This leads to the

following explicit form: gI = 1
vF

•

[
ln

(
vP

vlim AR

)]−1

and to G−1
I (U2) =

vU2
lim AR = vP • 10−12 • U2 , the detailed derivation is shown in Appendix

B.2.1.
Table 2 summarizes the used sampling methods and Table 3

shows how many iterations Y are necessary for each fragment parti-
cle selection scheme (i.e. NBS, VBS and LVS defined in Table 1). It can
be clearly seen, that the NBS and VBS require ca. 26 (resp. 56) less
iterations, if they are combined with the uniform sampling instead of
the inverse sampling. The corresponding values for the LVS scheme
are dependent on the volume, vP, of the SE selected for breakage
and are shown in Fig. 10. It can be seen that the LVS method can-
not be reasonably used in combination with the uniform sampling
(because of the computational time required for 109 iterations) but
is well suited for the inverse sampling (because of the relatively low
computational time required for less than 10 iterations). For smaller
particle volumes, vP < vlim, the LVS scheme attains constant values
which are equal to the ones for the NBS scheme shown in Table 3.
This is due to the definition of the LVS scheme, which is equal to the
NBS scheme for vP < vlim for the here discussed breakage function
bn = 2

vP
. (I.e. f N

mc = f L
mc, if vP < vlim.)

The combination of the NBS (resp. VBS) scheme with the LVS
scheme can be easily performed with an additional random number,
U3. A comparison of U3 with R determines which of the schemes is
used for the selection of vF, Algorithm 2 depicts this technique.

Algorithm 2. Rejection method for vF selection with the combined
NBS-LVS scheme. Table 2 summarizes the expressions for G−1

I , G−1
U

and gU, gI. The VBS-LVS scheme results by replacing f N
mc with f V

mc. The
values HU and HI are shown in Table 3 for the simulated cases.

6 Note that this exclusion is different from the setting vlim for the VLS scheme (all
particle sizes can be selected by LVS, but for sizes v < vlim the PDF is at a constant
maximum and not increasing). The value vlim is set to 10−11v0 and only dependent on
the initial volume. The value vlim AR = 10−12 • vP is dependent on the size vP of the SE
selected for breakage.
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B.2.1. Derivation of G−1
I (U2)

The distribution gI can be normed with a constant C, so that gI =
1
C

• vP
vF

hence vlim ≤ vF ≤ vP, it is:

1
C

•

∫ vP

vlim AR

vP

vF
dvF = 1 ⇒ C = vP ln

(
vP

vlim AR

)
.

This allows the calculation of G(vF):

G(vF) =
1

ln
(

vP
vlim AR

) ∫ vF

vlim AR

1
vF

=
ln

(
vF

vlim AR

)

ln
(

vP
vlim AR

) .

The inverse function is calculated by setting G(vF) = U which is
equivalent to:

ln
(

vF

vlim AR

)
= ln

(
vP

vlim AR

)U

⇐⇒ vF = vlim AR •

(
vP

vlim AR

)U
•

vP

vP

⇒ G−1(U) = vF = vP •

(
vlim AR

vP

)1−U

.

Hence the values for U are evenly distributed between 0 and 1,
one can replace the expression A(1−U) with AU This is equivalent to
changing the direction of the integration in the calculation of G(vF)
from

∫ vF
vlim AR

g(v)dv to
∫ vF

vP
g(v)dv.
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ABSTRACT
The application of the Monte Carlo (MC) simulation technique for the modelling of nucleation processes
with an existing background particle concentration is presented in this paper. Next to the nucleation of novel
particles, the coagulation of an existing particle population as well as the condensational growth and
evaporation of unstable particles (whose diameter is smaller than the critical Kelvin diameter) are included
into the simulation. The usage of statistically weighted MC particles allows the description of particle size
distribution (PSD), whose concentrations differ in several orders of magnitude. It is shown, that this
approach allows to model the complex interplay between freshly nucleated particles and an existing
background particle population. In this work, the nucleation of novel particles is modelled by three different
nucleation theories discussed by [Girshick, S. L. and C.-P. Chiu (1990), The Journal of Chemical Physics 93],
which comprise of (1) the classical nucleation theory, (2) a mathematical correction to (1) and (3) a self-
consistency correction of (2). For the chosen simulation conditions, the resulting PSDs are independent of
the used nucleation theory for longer simulation times, in which the simulations are described by the
coagulation mechanism only. The time-frame is identified for which relevant discrepancies of the PSDs have
to be taken into account.

Keywords: Monte Carlo, population balances, nucleation, coagulation, condensational growth, evaporation,
weighted simulation particles

1. Introduction

The description of particle formation processes plays an
important role in the context of atmospheric sciences
describing the planetary boundary layer (e.g. Svenningsson
et al., 2008; Karl et al., 2012; Kulmala et al., 2013) and the
free troposphere (Bianchi et al., 2016).

Atmospheric particulate matter is a product of a multi-
component mixture of vapours, such as sulphuric acid,
volatile organic compounds, ammonia, amines, ozone,
sulphur dioxide and nitrogen oxides, which undergoes a
complex nucleation mechanism (Kulmala et al., 2013).
CLOUD experiments investigate the role of single com-
ponents and their interactions on the particle nucleation
rates (Kirkby et al., 2011).

Traditional aerosol dynamic population balance meth-
ods recourse to sectional or moment models (Zhang
et al., 1999) or do not describe the composition of the
formed particles at all, resorting to a one component/
quasi-unary system (Olenius and Riipinen, 2017). The
internal composition is an important property of the par-
ticulate matter in the atmosphere and in the focus of
interest of atmospheric air quality, as well for the descrip-
tion of climatological systems. Therefore, there is a need
for the correct description of the composition of the par-
ticle population.

Multicomponent sectional models are theoretically
known (Gelbard, 1990), but their practical application is
limited to a relatively low number of components (i.e.
2–3). In order to avoid such a multidimensional discret-
isation (leading to huge numbers of necessary�Corresponding author. e-mail: gregor.kotalczyk@uni-due.de
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computational resources and times), the Monte Carlo
(MC) method can be applied; hence, the increment of the
necessary computational resources depends only linearly
on the number of used components.

It has already been shown that MC methods are well
suited to describe multicomponent coagulation of aero-
sols (Efendiev and Zachariah, 2003; Zhao and Kruis,
2014). The inclusion of the homogeneous nucleation into
a MC simulation is much more challenging, due to the
fact, that continuous nucleation leads to the increase of
the number of MC simulation particles. It was already
shown, that the application of weighted MC particles
makes this problem accessible. The designation of differ-
ent statistical weights to each simulation particle makes
the development of the concept of ‘particle merging’ pos-
sible (Kotalczyk and Kruis, 2017). We have also already
shown, that this method can be applied to nucleation and
growth in aerosol reactors (Kotalczyk et al., 2016, 2017).
In atmospheric systems, however, a population of earlier
formed background particles has to be taken into account
(e.g. Olenius and Riipinen, 2017). The simultaneous
description of (1) the background particle population and
(2) the freshly nucleating particles poses a numerical chal-
lenge; hence, the number-concentrations of those two
populations can differ several orders of magnitude. If the
number-concentration of the background particles is 1010

m�3 and the freshly nucleated particle are described by a
large number-concentration, like 1014 m�3, the applica-
tion of non-weighted MC particles becomes nearly impos-
sible: a huge number of 1,000,000 simulation particles
would be needed, if the background particle population is
to be modelled by a modest number of 100 particles. We
show in the following, that such systems can be simulated
by means of weighted MC simulation particles, but we
refrain the simulated system to one component, only.

The theoretical description of the nucleation poses a
difficult task, as described by the reviews (Oxtoby, 1992;
Ford, 2004; Bennett and Barrett, 2012; Zhang et al.,
2012). The great difficulty in the investigation of the
nucleation phenomena lies in the fact, that several reason-
able theories can be formulated, leading to nucleation
rates, which differ in several orders of magnitude. Most
theories resort to cluster–cluster interactions of unstable
molecules which grow to a critical size and become stable,
assumptions about interaction potentials (in case of
molecular dynamics simulations, e.g. Tanaka et al., 2014)
or about the kinetic collision rates (in case of kinetic for-
mulations, e.g. Oxtoby, 1992; Laaksonen et al., 1995)
have to be made. These assumptions cannot be verified
by experiments (yet), because an experimental technique,
which measures the concentration of the smallest
(unstable) clusters would be necessary for this purpose
(Wyslouzil and W€olk, 2016).

In this work, we focus on one component nucleation
as a result of rapidly changing atmospheric conditions,
e.g. a rapid temperature drop leading to a strong increase
of the supersaturation. This is numerically a more chal-
lenging system than the otherwise applied supersaturation
profiles used in atmospheric modelling, which describe a
slow increase of the supersaturation at lower supersatur-
ation levels. This system is tested by comparing three
well-known expressions for the nucleation rate with each
other. The decrease of the supersaturation, the total num-
ber concentration and the particle size distributions
(PSD) are compared for this purpose. We show, that
early stages of the simulation lead to strongly different
results, while for longer simulation times the results of
different nucleation models become undistinguishable
from each other.

2. Methods

In the first subsection, a general parallel simulation algo-
rithm for the solution of the PBE by means of weighted
simulation particles is sketched. In the following, second
section, the simulated system, consisting of the initial
conditions and the used nucleation theories, is discussed
in detail.

2.1. MC simulation algorithm

The use of statistically weighted MC simulation particles
(Zhao et al., 2009; Lee et al., 2015) allows new modelling
approaches, hence no limitations have to be set on the
statistical weight of the newly included simulation par-
ticles (Menz et al., 2012; Hao et al., 2013). We combine a
stochastic coagulation process of weighted MC particles
with a deterministically described growth and evaporation
process, which can be combined with the nucleation of
novel particles, too.

The discrete coagulation events are separated from the
continuous growth processes in a simple operator split-
ting approach (also used to describe the chemical decom-
position of a precursor concentration during particle
synthesis) (Celnik et al., 2007), so that the simulation of a
time step consists of two steps: the MC-driven coagula-
tion step and a growth (resp. evaporation) step which is
solved by the solution of the corresponding ODEs.
During the nucleation time step many particles could be
inserted into the simulation as described further below.
Treating the condensation as a continuous process
instead of formulating single events for events describing
monomer attachments or detachments leads to remark-
able speed-ups of the simulations (Patterson et al., 2006).
These approximations are valid for the description of
larger particle sizes (i.e. >1 nm), discretization errors
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might be found for lower particle sizes and a different
approach might become necessary, if the here presented
approach is coupled to a kinetic MC simulation describ-
ing the nucleation (like e.g. in Filipponi and Giammatteo,
2016 or Davari and Mukherjee, 2018).

2.1.1. MC coagulation step. First, the coagulation time
step smc is estimated from the given PSD, which is defined
by the reciprocal of the sum of all possible event rates:
smc ¼ 1=

P
i;j<i b

ðSRÞ
i;j , where bðSRÞ

i;j ¼ maxðWi;WjÞ � bðvi; vjÞ,
is the coagulation rate within the concept of ‘stochastic reso-
lution’, according to (Kotalczyk and Kruis, 2017), where vi
(resp. vj) are the volumes and Wi (resp. Wj) the statistical
weights of simulated MC particles with the indices i and j.
The coagulation kernel b describes the rate of coagulation
between two real particles.

The particles are selected for coagulation by selecting
the particle indices i and j by random and selecting this
random pair for coagulation, if an additional random
number r is smaller than bSRi;j =b

SR
max. The maximal coagula-

tion rate bSRmax can thereby be quickly approximated by a
fast parallel algorithm introduced by (Wei and Kruis,
2013). The parallel implementation of this algorithm can
be found in (Wei and Kruis, 2013) or (Kotalczyk and
Kruis, 2017). We point out, that the applied coagulation
time step smc ¼ 1=

P
i>j maxðWi;WjÞ � bi;j is also depend-

ent on the number of used simulation particles, and that
higher numbers of simulation particles lead to lower val-
ues for the applied time step (the values of maxðWi;WjÞ
decrease linearly with the increase of the simulation par-
ticles, while the number of summands increases quadrati-
cally). So that the tuning of shorter separation times of
the coagulation and the other processes becomes possible.

2.1.2. Continuous growth step. Second, in order to
describe the condensational growth (or evaporation) of
the particles, the corresponding growth equation is solved
for each particle:

dvi
dt

¼ G vi; nGð Þ (1)

The monomer concentration in the gaseous phase nG
determines thereby the Kelvin diameter d�. It is thus
determined whether the particle grows ðG>0 ; if d>d�Þ
or evaporates ðG<0 ; if d<d�Þ and the exact rate of this
process. The depletion (resp. increase) of the monomers is
taken into account by the following mass balance (i.e. the
first term on the r.h.s. of Equation (2)):

dnG
dt

¼ �
X
i

Wi � G vi; nGð Þ=vM�NR � i� (2)

The second term on the r.h.s. of Equation (2) describes
the monomer depletion of the monomer concentration due

to the nucleation of novel particles; each nucleated particle
consists thereby of i� monomers (where i� ¼ p � d�3=ð6 � vMÞ).

The coupled set of ordinary differential equations, con-
sisting of Equation (2) and as many equations of the
form of Equation (1), as there are MC particles (in the
here presented simulations, 10,000) is solved by the
Runga-Kutta technique for the time step smc, which is set
by the coagulation process discussed above.

The total mass of the nucleated material is stored as a
special buffer variable MB, so that the set above is
extended by one simple equation:

dMB

dt
¼ þNR � i� � vM (3)

If the value MB surpasses a pre-set limit MTR (in the
simulated scenario presented in this paper: MTR ¼
10�20kgm�3), a novel MC particle with the statistical
weight of Wnuc ¼ MB=ðvM � i�Þ is inserted into the simula-
tion by the procedure described in the following subsec-
tion. It should be noted, that many nucleation events are
possible during one coagulation step, dependent on the
set threshold MTR and on the number of performed
Runge Kutta (RK) time steps. These steps are set by
comparison of the RK result of the 4th order technique
to the 5th order technique. The difference between both
techniques is compared to a predefined acceptable error
in order to adjust the next time step or repeat the actual
RK step for a much smaller interval of time (like
described in Press et al., 2007).

2.1.3. Inclusion of newly nucleated particles: Low weight
merging. Hence, the continuous inclusion of novel par-
ticles would lead to large numbers of simulation particles
and thus higher computational times, the ‘low weight
merging’ of particles is applied. This technique selects
two ‘nearly similar’ MC particles (i,j) and it stores their
properties as one particle in the memory space of the for-
mer particle j, so that the newly nucleated particle can be
stored in the memory space of the former particle i. The
statistical weight Wnew of the novel particle and its new
volume vnew are calculated by:

Wnew ¼ Wi þWj and vnew ¼ Wi � vi þWj � vjð Þ=Wnew

(4)

This applied scheme preserves the total mass of the
involved particles exactly; hence, vnew �Wnew ¼
ðWi � vi þWj � vjÞ. As a measure for the magnitude of
the introduced error, the value Emer is introduced:

Emer ¼ vi�vjð Þ2=min vi; vjð Þ (5)

An algorithm is applied, which merges particles with
low statistical weights (in order to introduce the lowest
alternations to the PSD). The particles with low statistical
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weights are compared to all other particles, and the pair
with the lowest merging error, Emer is merged. The exact
computational procedure for the selection of two ‘nearly
similar’ particles is presented in (Kotalczyk and Kruis,
2017) in more detail.

2.2. Simulated system

The system consists of a background particle population and
a condensable monomer concentration nG (describing thus
the supersaturation S of the system). It is assumed that the
background particles and the gaseous monomers are one
compound, with the properties summarized in Table 1. These
values could designate a quasi-unary atmospheric aerosol
consisting of sulphuric acid and organic compounds in a
scenario describing sulphuric acid induced nucleation of the
organic molecules (Olenius and Riipinen, 2017). The system
is simulated for isothermal conditions (280 K) and 24hr.

The background particle population is modelled as a
lognormal distribution with a geometric mean of 50 nm
and a geometric standard deviation of 1.46, which corre-
sponds to the geometric standard deviation of the self-
preserving PSD for the coagulation process (Vemury
et al., 1994). These initial particles encompass a total
number concentration of N0 ¼ 1010m�3, this might
describe a polluted environment.

The initial supersaturation is set to the value of S0 ¼
105 at the beginning, which also corresponds to a pol-
luted environment—but is also tested for lower values
(S0 ¼ 104, 103 and 102). This modelling does not take
into account a slowly increase and decrease of the mono-
mer concentration, which is sometimes modelled in a
sinusoidal way reflecting the diurnal cycle (Olenius and
Riipinen, 2017). It is assumed that these conditions are
reached (due to drastic cooling or convection) at the
beginning of the simulation and that the condensational
growth or evaporation of the existing particles as well as
the nucleation are the only reasons for changes of the
supersaturation. This assumption is a rather artificial
modelling of the complex interplay of an existing back-
ground particle population with condensable material in
the form monomers in the gaseous phase, whose satur-
ation is slowly increased by cooling or monomer convec-
tion. It poses, however, a much more challenging system
for the here discussed MC methodology, hence a slow
increase would lead to less nucleation and thus less new
particles which have to be included into the simulation.
The kernel for coagulation in the free molecule regime is
used. It describes the rate of coagulation of two particles
with the sizes v and v’ by:

b v; v0ð Þ ¼ 3
4p

� �1
6
ffiffiffiffiffiffiffiffiffiffiffiffi
6kBT
qp

s
�
ffiffiffiffiffiffiffiffiffiffiffiffi
1
v
þ 1
v0

r
� v

1
3 þ v0

1
3

� �2
(6)

The used symbols are summarized in Table 1 and kB is
the Boltzmann’s constant:

The condensational growth is described by the formula
for the free-molecule regime as well and depends on the
volume vi (resp. the diameter di, with vi ¼ pd3i =6) of the
particle and the monomer concentration nG in the gas-
eous phase:

G vi; nGð Þ ¼ dvi
dt

¼ vM � p � di2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p �m1 � kB � Tp �

kB � T � nG � ps � exp 4 � c � vM= kB � T � dið Þ� �	 

(7)

The used symbols and its values are described in
Table 1. It is assumed, that the nucleated particles and
the background particle population consist of the same
material and that all simulated particles grow (resp. evap-
orate) like described by Equation (7). The exponential
term describes thereby the Kelvin correction, this leads to
an evaporation of all particles whose diameter di is
smaller than the Kelvin diameter d�, with:

d� ¼ 4 � c � vM= kB � T � ln Sð Þð Þ (8)

This diameter is also the diameter of the inserted par-
ticles due to nucleation.

Three different expressions are investigated for the
nucleation rate NR. First the classic nucleation theory by
(Becker and D€oring, 1935) has been investigated, denot-
ing it as ‘classic’ in this work, or as NðclsÞ

R in Equation
(10). A correction to this expression in the framework of
a kinetic formulation has been proposed by (Courtney,
1961) and its mathematical necessity is stressed by many
works (e.g. Girshick and Chiu, 1990; Oxtoby, 1992), it
will be marked as NðcouÞ

R in Equation (9). A self-consistent
correction to this kinetic nucleation theory (called
‘Courtney’ in the following) has been proposed by
(Girshick and Chiu, 1990) and is denoted as NðgirÞ

R in
Equation (10).

N couð Þ
R nGð Þ ¼ nG �

ffiffiffiffiffiffiffiffiffiffiffiffi
2c

p �m1

s
ps

kB � T � v1�

exp � 16 � p � c3 � v2m
3 � k3B � T3 � ln Sð Þ2

 !
; with S ¼ nGkBT

ps
(9)

N girð Þ
R nGð Þ ¼ N couð Þ

R � exp 36 � pð Þ13 � c � v
2
3
1

kB � T

 !
;

N clsð Þ
R nGð Þ ¼ N couð Þ

R � S (10)

3. Results

The compared nucleation theories influence directly the
characteristics of the simulated particle population. Due
to different nucleation rates, a different depletion of the
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monomer concentration takes place, as can be seen in
Fig. 1. These variations of the saturation in time affect
directly the nucleation rates, shown in Fig. 2. One can
coarsely distinct the simulation time into three regions:
(1) an initial time span (simulation times smaller than
1min), for which nearly constant nucleation rates can be
observed, which correspond to constant monomer con-
centration values—meaning that the depletion of the
monomer concentration due to condensational growth
and nucleation can be neglected during this time-span; (2)
a transition time span (simulation times between 1min
and 1 hr), in which a depletion of the monomer concen-
tration can be seen (caused by the condensational growth
on the existing particle population and the nucleation of
novel particles); (3) a steady state region (simulation
times larger than 1 hr), which is described by the continu-
ous growth/evaporation and coagulation and marked by

a slow decrease of the surplus supersaturation. In the
here presented simulation conditions, the contributions of
the growth/evaporation term are nearly negligible for lon-
ger simulation times and the supersaturation seems to
reach a steady state. Therefore, one can consider the
coagulation to be the only one driving force for particu-
late growth—in contrast to the system describing indus-
trial Fe production conditions (Kotalczyk et al., 2016),
for which the complex interplay of coagulation and
growth/evaporation has to be taken into account for the
correct description of the PSD (Kotalczyk et al., 2017).

The different nucleation rates have, of course a direct
impact on the overall number concentration of the par-
ticles, as can be seen in Fig. 3. A steep increase in the
particle concentration is found in the initial stage of the
simulation for the classic and Girshick nucleation theory.
The Courtney theory is not describing such high nucle-
ation rates as the other two theories (as can be seen in
Fig. 2), which leads to no drastic increase of the particle
concentration. The transition time span is marked by a
decline of the particle concentration, which can be
explained by the onset of the coagulation of the particles.

These findings can also be drawn from the PSDs
shown in Figs. 4–6 describing the particle populations
after a total simulation time of 1min, 1 hr and 24 hr. The
10,000 particles are sorted into 80 logarithmically spaced
bins and mean values for 100 simulations are shown.
Figure 4 shows that after 1min the differences of the par-
ticle concentrations presented in Fig. 3 can be attributed
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Fig. 1. The supersaturation surplus S�S1 for an initial
supersaturation of S0 ¼ 105 and S1 ¼ 1. The vertical lines
designate the simulation times of 1min and 1hr, a total
simulation time of 24hr is presented.
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Fig. 2. The nucleation rates for the three discussed nucleation
theories for an initial supersaturation of S0 ¼ 105. The vertical
lines represent the simulation times of 1min and 1 hr, a total
simulation time of 24hr is presented.

Table 1. Values used for the simulation describing typical aerosol
properties of a quasi-unary model, described by (Olenius and
Riipinen, 2017).

Symbol Designated property Value

m1 Molecular mass 1.62� 10–25 kg
ps Vapor pressure 5� 10–11 Pa
T Temperature 280 K
vM Molecular volume 1.085� 10–28 m�3

c Surface tension 0.05 N m–1

qp Particle density 1500 kg m–3
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to the nucleated particles, which represent the smaller
sizes of the particle size spectrum. The PSD based on the
Girshick nucleation theory exhibits not only higher con-
centrations of the nucleated particles as the other nucle-
ation theories, but the sizes of the particles are larger as
well. This indicates that the newly nucleated particles
have coagulated with each other. This explains the num-
ber concentration plateau for the initial stage of the simu-
lation shown in Fig. 3 for the Girshick nucleation theory:
the increase of the particle number concentration is lim-
ited by the onset of the coagulation, which decreases the
particle number concentration.

The part of the PSD representing mainly the back-
ground particle population changes its shape slightly. It
can be seen that the parts representing smaller concentra-
tions of the PSD are not rendered in the results based on
the Girshick and the Classic theory. This can be attrib-
uted to the ‘low weight merging’, necessary for the novel
inclusion of a nucleated particle. The higher the nucle-
ation rate and the more new particles have to be included
into the simulation, the less accurate becomes the render-
ing of the fringes of the background particle population.
It should be noted, that the regions, in which these inac-
curacies are observed constitute a small part of the PSD
(note the logarithmic plot). This small part (especially the
larger particles), could describe the part of the PSD,
which is responsible for the light-scattering behaviour of
the aerosol or act as cloud condensation nuclei (CCN).

The ‘removal’ of these particles due to the merging tech-
nique might therefore introduce serious errors in the con-
text of the simulation of an atmospheric system. These
errors could be prevented by the following 2 approaches:
(1) the particles which are large enough to act as CCNs
could be locked against merging, simply by not compar-
ing and merging them with other particles; (2) the light-
scattering cross-section (resp. power) ri of each particle i
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Fig. 4. The PSDs resulting from the three different nucleation
theories after a simulation time of 1min for S0 ¼ 105.
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Fig. 5. The PSDs resulting from the three different nucleation
theories after a simulation time of 1 hr for S0 ¼ 105.
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Fig. 3. The number concentration in dependency of the used
nucleation theories are shown. The vertical lines represent the
simulation times of 1min and 1hr, a total simulation time of
24hr is presented.
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could be considered for the calculation of the merging
error, in this approach, the expression in Equation (5)
could be replaced by: Emer ¼ ðvi�vjÞ2=minðvi; vjÞþ
ðri�rjÞ2=rgauche, where rgauche is some pre-set light-scat-
tering cross-section. This second approach would penalize
the merging of particles with different light-scattering
cross-sections, if one of them is higher than rgauche.

Although the fringes of the PSDs change due to the
here applied merging techniques, the total volume Vtot is
conserved in the course of the simulation, where:

Vtot ¼
X
i

Wi � vi þ nG � vm (11)

The mean value for Vtot (for all 100 simulations) is
compared with the initial value V0 at the beginning of the
simulation in Fig. 7. It can be seen that it changes only
slightly. The relative deviation of 10�7 corresponds to the
magnitude of the floating point precision applied for the
calculations. This value accumulates to levels of 10�6 for
simulations of high nucleation scenarios. These levels are
still acceptable.

We also observed, that the application of a higher
number of simulation particles leads to less deviations
within the background PSDs, so that the number of
simulation particles can be applied as a control parameter
for these deviations. The same values for the moments of
the PSDs (such as mean geometric diameter or total num-
ber-concentration) could be reproduced, independent on
the number of the applied simulation particles.

The PSD based on the Courtney theory expresses the
background condition with the same accuracy as the

initial condition, hence little to none particles have to be
inserted into the simulation in this scenario. In turn,
much higher differences between the concentrations of
the nucleated particles and the concentrations of back-
ground particles are described by the PSD based on the
Girshick theory as the one based on the Courtney theory.

In the time span, between 1min and 1 hr (the transition
time span), the nucleation of novel particles ceases com-
pletely (see Fig. 2). The evolution of the PSD in this time
span is mainly described by the coagulation of the par-
ticles, the condensational growth of the particle popula-
tion might be considered to be very small, hence the
corresponding driving force S�S1 decreases several
orders of magnitude, as can be seen in Fig. 1. The result
is a PSD, which consists of two peaks, which can be
attributed to the nucleated population and the initial
background particle population. Figure 5 shows that the
growth of the background particle population due to con-
densation and due to coagulation with the nucleated par-
ticles is relatively small. The part of the PSD, which
represents the background particles (around 50 nm), is
nearly of the same shape as the initial condition (disre-
garding the shape changes due to the merging on the
edges of this distribution).

The part of the PSD, which can be attributed to the
nucleated particles (covering the whole range between 1
and 20 nm) exhibits the form of the self-preserving form
for coagulation. The differences between the PSDs are
clearly visible, making a distinction between each other
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Fig. 6. The PSDs resulting from the three different nucleation
theories after a simulation time of 24hr for S0 ¼ 105.
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possible. The attribution of the corresponding nucleation
theory based on the size of the PSD in this size spectrum
would be therefore possible, while the form of the back-
ground particles (all particles with the size 20 nm or
higher) would not allow to draw conclusions on the
nucleation mechanisms

These distinctions vanish, however in the further
course of the simulation and the resulting PSDs attain a
self-preserving form for the coagulation, making no more
distinctions between each other possible, as can be seen
in Fig. 6. The depicted results describe the PSDs after
24 hr. A clear difference between the PSDs for 24 hr and
the initial PSD can be seen, which can be attributed to
the coagulation within this long ‘steady state time span’.
Each PSD is rendered with the same accuracy. This indi-
cates that the differences of the rendering of the back-
ground particle population in Figs. 4 and 5, which
originate from the ‘low weight merging’ technique did not
propagate into the simulation and were in fact not critical
for the correct description of the general behaviour of the
PSD. However, the negligence of the larger particles
might lead to a wrong description of the light scattering
behaviour of the aerosol—or its ability to act as CCNs—
both points could be addressed by modifying the merging
technique as discussed above.

Similar findings can be made for different values for
the initial concentration S0, exemplary plots of the super-
saturation in Fig. 8 and the number concentration in Fig.
9 show, that the nucleation takes place mostly during the

first minute of the simulation and that the depletion of
the supersaturation takes place between the first minute
and hour of the simulation. This time frame may also be
identified as the one, which allows to pose assumptions
on the nucleation mechanisms from the shapes of
the PSDs.

Higher nucleation rates can be—obviously—observed for
higher initial supersaturations S0 as can be seen in Fig. 8,
for the lowest supersaturation, S0 ¼ 100, no nucleation can
be observed at all and the total monomer concentration is
depleted due to condensational growth of the background
particles. This means, that high supersaturations are neces-
sary for the nucleation of novel particles in the presence of
a background particle population.

The decrease of the supersaturation is much faster for
S0 ¼ 105 than for S0 ¼ 104 or S0 ¼ 103. This can be
attributed to the much higher concentration of nucleated
particles of this system, which in turn act as a source for
monomer depletion through condensational growth—an
effect, which would not become apparent, if the growth
(resp. evaporation) of the particle population would not
be included into the simulation.

4. Conclusions

We investigate the homogeneous nucleation of an aerosol
under isothermal conditions and in the presence of a
background particle population. Three different nucle-
ation theories are simulated. We show that each of these
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theories results in different rates of nucleation and thus
different particle concentrations at the beginning of the
simulation. For longer simulation times (>1 hr), the
resulting PSD become undistinguishable from each other,
as can be expected from different systems with the same
total particulate mass, which are driven by the coagula-
tion only. In this way, the identification of a time frame
relevant for measurements can be established.

The applied MC simulation algorithm makes use of
weighted simulation particles. It is shown, that this simu-
lation technique is able to describe PSDs, which are char-
acterized by huge differences in the number-
concentrations of the freshly nucleated particles and the
already existing background particles. This shows that
the presented MC technique could also be used for the
description of a multicomponent atmospheric aerosol sys-
tem. An investigation of the influence of more complex,
kinetic MC simulation based nucleation theories (like
Davari and Mukherjee, 2018) could also be simulated in
a future work.
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Chapter 15
Compartmental Population Balances
by Means of Monte Carlo Methods

Gregor Kotalczyk and Frank Einar Kruis

Abstract Stochastic simulation techniques for the solution of a network of pop-
ulation balance equations (PBE) are discussed in this chapter. The application of
weighted Monte Carlo (MC) particles for the solution of compartmental PBE sys-
tems is summarized and its computational efficacy in form of a parallel GPU imple-
mentation is pointed out. Solution strategies for coagulation, nucleation, breakage,
growth and evaporation are thereby presented. An application example treats the
simultaneous coagulation, nucleation, evaporation and growth encountered during
particle production through the aerosol route. Furthermore, the simulation of a com-
partmental network is discussed and parallel simulation techniques for the transport
of weighted MC particles are presented. The proposed methodology is benchmarked
by comparison with a pivot method for a variety of test cases with an increasing
degree of complexity. Simulation conditions are identified, for which conventional,
non-weighted MC simulation techniques are not applicable. It is found, that the
specific combination of a screen unit with tear-streams cannot be simulated by con-
ventional methods, termed ‘random removal’, and make thus other techniques—like
the here introduced merging techniques necessary.

Nomenclature

b Breakage rate [s−1]
dg Geometric mean diameter [m]
Cdist Compare distance on GPU memory (integer) [–]
d∗ Kelvin diameter [m]
d Diameter of particle [m]
Ei, j Merging error of particles i and j [–]
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f A→B Relative particle exchange flow rate from compartment A to B [s−1]
FA→B Absolute particle exchange flow rate from compartment A to B [s−1]
G Growth rate [m s−1]
kB Boltzmann constant [J K−1]
m1 Atomic (resp, molecule) mass [kg]
NMC Number of MC simulation particles [–]
NG Concentration of gas atoms (or molecules) [m−3]
nC(v) PSD in compartment C [m−6]
oidx Destination index on GPU memory (integer) [–]
i∗ Number of atoms (resp. molecules) in critical cluster [–]
p(i)
A i-th property of particle A [unit of i-th property]

ps Saturation pressure [Pa]
QA→B Volumetric flow rate of carrier gas/liquid from compartment A to B [m3 s−1]
R Mixing ratio for breakage scheme [–]
RN Nucleation rate [m−3 s−1]
S Supersaturation [–]
Ssep Separation function for screen [–]
s f Reciprocal of stochastic resolution [m−3]
T Temperature [K]
t (simulation) time [s]
tchar Characteristic time [s]
v Particle volume [m3]
v∗ Kelvin volume [m3]
vM Atomic (resp. molecular) volume [m3]
VC Volume within compartment C filled with carrier liquid (or gas) [m3]
Wi Statistical weight of MC particle i [m−3]
αi Merging weight for property i
β Coagulation kernel [m3 s−1]
γ Breakage function [–]
ε Maximal admittable merging error [–]
τ Time step [s]
σ Surface tension [N m−2]

Indices

0 Initial values
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1 Introduction

The solution of the population balance equation (PBE) [1] plays an important role in a
wide area of applications ranging from natural sciences to many fields of engineering
[2]. Especially the modelling of chemical engineering problems such as crystalliza-
tion [3], milling [4], granulation [5] or particle production in aerosol reactors [6]
resort to PBE based process modelling.

The modelling of single apparatuses can be seldomly done with the assumption
of spatial uniformity (as in e.g. [7]) and the application of Computational Fluid
Dynamics (CFD) simulations and/or compartmental modelling becomes necessary
in order to describe different zones of single apparatuses correctly.

CFD modelling allows a very high spatial resolution of the investigated system:
30,000 [8]−1,000,000 [9] cells are sometimes applied. The drawback of a CFD-
PBEmodelling is its enormous computational cost, hence a PBE has to be solved for
each of these cells. Due to the high computational cost, only a rough approximation
of the particle size distribution (PSD) is encountered in such simulations which
typically resort to sectional methods with a low resolution (of ca. 12–30 discrete
points or sections [10, 11]) or to the method of moments [12, 13], limiting the
particle modelling mostly to one property—the size.

To overcome this problem, compartmental modelling is often applied, simplifying
the spatial complexity to a low number of compartments (examples are 3 compart-
ments or 10 compartments [14]). This allows, on the other hand, a more complex
particle modelling with a more detailed sectional grid (e.g. 1000 discrete sections for
3 compartments [15]) or even with aMonte Carlo (MC) simulation, where more than
one particle property allow to model a more complex morphology of the particles
[14].

The PBE for a network of compartments, like presented in Fig. 1. can be described
by the following formula:

dnC (v, t)

dt
= + 1

2

∫ v

0
βC (v′, v − v′)nC (v′, t)nC (v − v′, t)dv′︸ ︷︷ ︸

coagulation birth term

− nC (v, t)
∫ ∞

0
βC (v, v′)nC (v′, t)dv′︸ ︷︷ ︸

coagulation death term

+ RN,C (t) · δ(v − v∗
C (t))︸ ︷︷ ︸

nucleation

−∇v(GC (v, t)nC (v, t))︸ ︷︷ ︸
growth(G>0)/evaporation(G<0)

−bC (v) · nC (v, t)︸ ︷︷ ︸
breakage death term

+
∫ ∞

v

bC (v′) · nC (v′, t) · γC (v|v′)dv︸ ︷︷ ︸
breakage birth term

+
∑

inflow from all compartments i

fi→C · ni (v, t)

−
∑

outflow to all compartments i

fC→i · nC (v, t) (1)
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Fig. 1 A network of compartments. Each compartmentCi models parts of a reactor (or equipment)
volume, which is filled with the carrier gas (or liquid) with a volume VC . The compartment contains
a PSD, nC , and is described by other continuous variables, like temperature TC , a gas concentration
NG,C , etc

where the coagulation kernels βC , growth rates GC , nucleation rates RN,C and sizes
of the nucleating particles v∗

C , breakage rates bC(v) and breakage functions γC(v|v′)
can be defined differently for each compartment C . The shown particle exchange
flowrates fi→C and fC→i may assume constant values, or reflect more complex—
nonlinear—and particle size or time dependent forms. The given volumetric flow
rates QA→B (shown in Fig. 1) of the carrier gas (or liquid) and the volumes of the
carrier gas (or liquid) of the outflow compartments, VA, are thereby used in order to
determine the particle exchange flowrates via:

f A→B = QA→B/VA (2)

In this way, a complex reactor structure can be modelled in more detail [16, 17]
or the interconnection of single processing units in a flowsheet simulation can be
analyzed [15, 18, 19].

Although Eq. (1) describes only one particle property, the volume v, one could
interpret v as a vector describing multiple properties of the particle, such as volume
(p(1)), surface area (p(2)), wet content (p(3)), and so on, as suggested in Fig. 1. Only
a stochastic modelling is able to solve Eq. (1) for a high number of properties and
render the complete particle morphology.

In the following, stochastic solution strategies for Eq. (1) will be discussed in
the frame-work of an operator splitting approach meaning that the single processes
coagulation, nucleation, growth/evaporation, breakage and transport of particles are
decoupled for short periods of time τ . The approximation error introduced by this
decoupling can be minimized by a choice of a low enough separation time step τ .
For this reason, the solution strategies for single processes, like coagulation, nucle-
ation, growth/evaporation and breakage are discussed for one compartment first. The
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implementation of the coagulation in the framework of a compartmental network,
as well as the transport between single compartments is discussed in the section
afterwards, where the modelling of multiple compartments is applied.

2 Weighted Monte Carlo Particles for the Solution
of the Population Balance Equation

The use of weighted simulation particles (a particle with weight w represents w
real particles within a given reactor volume) has several advantages: it allows to
describe the interaction between simulation particles having different concentrations
coming from different cells or compartments [14, 20, 21]. It can also be used as a
tool to control the number of simulation particles (e.g. to gain numerical accuracy).
In the following, some techniques will be introduced to solve the single mechanisms
presented in Eq. (1) by the application of weighted MC particles.

2.1 Coagulation

The correct description of the coagulation rates for the weighted particles, especially
for a complex coagulation scheme, like the one introduced Zhao et al. [22] shown in
Fig. 2, poses a great difficulty.

The authors [22] presented the ‘ficticious particle theory’ which leads to the
following modified coagulation kernel:

β( f p) = 2Wjmax
(
Wi ,Wj

)
Wi + Wj

β (3)

The weights of the particles are denoted by Wi and Wj . The coagulation kernel β

describes the coagulation of the original (non-weighted) system—which might be
the Brownian kernel for the freemolecular regime, etc. The resulting coagulation rate
is asymmetric, making a distinction necessary, whether particle i coagulates with j
or vice versa. This definition is 1) difficult to understand conceptually and 2) difficult
to extend on other process—like nucleation or transport of fictitious particles.

We developed in [23] the concept of the stochastic resolution which describes
each coagulation in the frame-work of equally weighted MC-particles, where each
MC-particle describes s f real particles. The value for the parameter s f can be set
arbitrarily. Figure 2 shows that the setting s f = Wmin = min

(
Wi,Wj

)
leads to the

correct description of the coagulation-scheme. The scaling factor s f depends on the
chosen coagulation pair, so that different coagulation-events are described in different
stochastic resolutions.
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Fig. 2 The concept of ‘stochastic resolution’ can be used to describe the coagulation-scheme
developed Zhao et al. [22]. Only the choice for sf = Wmin leads to the correct description of the
general rule presented in the ‘simulation entries’ line

The coagulation rate β(w) for this coagulation-scheme can be derived from the
population balance equation:

dn(v)

dt
= 1

2

v∫
0
β
(
v − v′, v′)n(

v − v′)n(
v′)dv′ − n(v)

∞∫
0

β
(
v, v′)n(

v′)dv′ (4)

Instead of the ‘original’ concentrations n(v), the concentrations of the MC-
systems n(MC)(v) = n(v)

s f
are being considered. The multiplication of the PBE with

the factor 1
s f

= 1
Wmin

leads to the following modified coagulation rate of the MC-

particles: β(MC) = Wmin ·β. Hence there is one MC-particle of theWmin-species and
Wmax
Wmin

MC-particles of the Wmax-species, the overall rate for the coagulation between
one Wmin-MC-particle and one of the Wmax-MC-particles is:

β(w) = Wmax

Wmin
· β(MC) = Wmax · β (5)



to the nucleated particles, which represent the smaller
sizes of the particle size spectrum. The PSD based on the
Girshick nucleation theory exhibits not only higher con-
centrations of the nucleated particles as the other nucle-
ation theories, but the sizes of the particles are larger as
well. This indicates that the newly nucleated particles
have coagulated with each other. This explains the num-
ber concentration plateau for the initial stage of the simu-
lation shown in Fig. 3 for the Girshick nucleation theory:
the increase of the particle number concentration is lim-
ited by the onset of the coagulation, which decreases the
particle number concentration.

The part of the PSD representing mainly the back-
ground particle population changes its shape slightly. It
can be seen that the parts representing smaller concentra-
tions of the PSD are not rendered in the results based on
the Girshick and the Classic theory. This can be attrib-
uted to the ‘low weight merging’, necessary for the novel
inclusion of a nucleated particle. The higher the nucle-
ation rate and the more new particles have to be included
into the simulation, the less accurate becomes the render-
ing of the fringes of the background particle population.
It should be noted, that the regions, in which these inac-
curacies are observed constitute a small part of the PSD
(note the logarithmic plot). This small part (especially the
larger particles), could describe the part of the PSD,
which is responsible for the light-scattering behaviour of
the aerosol or act as cloud condensation nuclei (CCN).

The ‘removal’ of these particles due to the merging tech-
nique might therefore introduce serious errors in the con-
text of the simulation of an atmospheric system. These
errors could be prevented by the following 2 approaches:
(1) the particles which are large enough to act as CCNs
could be locked against merging, simply by not compar-
ing and merging them with other particles; (2) the light-
scattering cross-section (resp. power) ri of each particle i
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Fig. 4. The PSDs resulting from the three different nucleation
theories after a simulation time of 1min for S0 ¼ 105.
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Fig. 5. The PSDs resulting from the three different nucleation
theories after a simulation time of 1 hr for S0 ¼ 105.

10-1 100 101 102 103 104 105

time / sec

109

1010

1011

1012

1013

1014

1015

N
um

be
r 

co
nc

en
tr

at
io

n 
/ m

- 3

Courtney
Girshick
Classic

Fig. 3. The number concentration in dependency of the used
nucleation theories are shown. The vertical lines represent the
simulation times of 1min and 1hr, a total simulation time of
24hr is presented.
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could be considered for the calculation of the merging
error, in this approach, the expression in Equation (5)
could be replaced by: Emer ¼ ðvi�vjÞ2=minðvi; vjÞþ
ðri�rjÞ2=rgauche, where rgauche is some pre-set light-scat-
tering cross-section. This second approach would penalize
the merging of particles with different light-scattering
cross-sections, if one of them is higher than rgauche.

Although the fringes of the PSDs change due to the
here applied merging techniques, the total volume Vtot is
conserved in the course of the simulation, where:

Vtot ¼
X
i

Wi � vi þ nG � vm (11)

The mean value for Vtot (for all 100 simulations) is
compared with the initial value V0 at the beginning of the
simulation in Fig. 7. It can be seen that it changes only
slightly. The relative deviation of 10�7 corresponds to the
magnitude of the floating point precision applied for the
calculations. This value accumulates to levels of 10�6 for
simulations of high nucleation scenarios. These levels are
still acceptable.

We also observed, that the application of a higher
number of simulation particles leads to less deviations
within the background PSDs, so that the number of
simulation particles can be applied as a control parameter
for these deviations. The same values for the moments of
the PSDs (such as mean geometric diameter or total num-
ber-concentration) could be reproduced, independent on
the number of the applied simulation particles.

The PSD based on the Courtney theory expresses the
background condition with the same accuracy as the

initial condition, hence little to none particles have to be
inserted into the simulation in this scenario. In turn,
much higher differences between the concentrations of
the nucleated particles and the concentrations of back-
ground particles are described by the PSD based on the
Girshick theory as the one based on the Courtney theory.

In the time span, between 1min and 1 hr (the transition
time span), the nucleation of novel particles ceases com-
pletely (see Fig. 2). The evolution of the PSD in this time
span is mainly described by the coagulation of the par-
ticles, the condensational growth of the particle popula-
tion might be considered to be very small, hence the
corresponding driving force S�S1 decreases several
orders of magnitude, as can be seen in Fig. 1. The result
is a PSD, which consists of two peaks, which can be
attributed to the nucleated population and the initial
background particle population. Figure 5 shows that the
growth of the background particle population due to con-
densation and due to coagulation with the nucleated par-
ticles is relatively small. The part of the PSD, which
represents the background particles (around 50 nm), is
nearly of the same shape as the initial condition (disre-
garding the shape changes due to the merging on the
edges of this distribution).

The part of the PSD, which can be attributed to the
nucleated particles (covering the whole range between 1
and 20 nm) exhibits the form of the self-preserving form
for coagulation. The differences between the PSDs are
clearly visible, making a distinction between each other
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Fig. 6. The PSDs resulting from the three different nucleation
theories after a simulation time of 24hr for S0 ¼ 105.
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possible. The attribution of the corresponding nucleation
theory based on the size of the PSD in this size spectrum
would be therefore possible, while the form of the back-
ground particles (all particles with the size 20 nm or
higher) would not allow to draw conclusions on the
nucleation mechanisms

These distinctions vanish, however in the further
course of the simulation and the resulting PSDs attain a
self-preserving form for the coagulation, making no more
distinctions between each other possible, as can be seen
in Fig. 6. The depicted results describe the PSDs after
24 hr. A clear difference between the PSDs for 24 hr and
the initial PSD can be seen, which can be attributed to
the coagulation within this long ‘steady state time span’.
Each PSD is rendered with the same accuracy. This indi-
cates that the differences of the rendering of the back-
ground particle population in Figs. 4 and 5, which
originate from the ‘low weight merging’ technique did not
propagate into the simulation and were in fact not critical
for the correct description of the general behaviour of the
PSD. However, the negligence of the larger particles
might lead to a wrong description of the light scattering
behaviour of the aerosol—or its ability to act as CCNs—
both points could be addressed by modifying the merging
technique as discussed above.

Similar findings can be made for different values for
the initial concentration S0, exemplary plots of the super-
saturation in Fig. 8 and the number concentration in Fig.
9 show, that the nucleation takes place mostly during the

first minute of the simulation and that the depletion of
the supersaturation takes place between the first minute
and hour of the simulation. This time frame may also be
identified as the one, which allows to pose assumptions
on the nucleation mechanisms from the shapes of
the PSDs.

Higher nucleation rates can be—obviously—observed for
higher initial supersaturations S0 as can be seen in Fig. 8,
for the lowest supersaturation, S0 ¼ 100, no nucleation can
be observed at all and the total monomer concentration is
depleted due to condensational growth of the background
particles. This means, that high supersaturations are neces-
sary for the nucleation of novel particles in the presence of
a background particle population.

The decrease of the supersaturation is much faster for
S0 ¼ 105 than for S0 ¼ 104 or S0 ¼ 103. This can be
attributed to the much higher concentration of nucleated
particles of this system, which in turn act as a source for
monomer depletion through condensational growth—an
effect, which would not become apparent, if the growth
(resp. evaporation) of the particle population would not
be included into the simulation.

4. Conclusions

We investigate the homogeneous nucleation of an aerosol
under isothermal conditions and in the presence of a
background particle population. Three different nucle-
ation theories are simulated. We show that each of these
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Fig. 8. The supersaturation in dependency of its initial value S0

for the Girshick nucleation theory. The vertical lines represent the
simulation times of 1min and 1hr, a total simulation time of
24hr is presented.
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theories results in different rates of nucleation and thus
different particle concentrations at the beginning of the
simulation. For longer simulation times (>1 hr), the
resulting PSD become undistinguishable from each other,
as can be expected from different systems with the same
total particulate mass, which are driven by the coagula-
tion only. In this way, the identification of a time frame
relevant for measurements can be established.

The applied MC simulation algorithm makes use of
weighted simulation particles. It is shown, that this simu-
lation technique is able to describe PSDs, which are char-
acterized by huge differences in the number-
concentrations of the freshly nucleated particles and the
already existing background particles. This shows that
the presented MC technique could also be used for the
description of a multicomponent atmospheric aerosol sys-
tem. An investigation of the influence of more complex,
kinetic MC simulation based nucleation theories (like
Davari and Mukherjee, 2018) could also be simulated in
a future work.
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Chapter 15
Compartmental Population Balances
by Means of Monte Carlo Methods

Gregor Kotalczyk and Frank Einar Kruis

Abstract Stochastic simulation techniques for the solution of a network of pop-
ulation balance equations (PBE) are discussed in this chapter. The application of
weighted Monte Carlo (MC) particles for the solution of compartmental PBE sys-
tems is summarized and its computational efficacy in form of a parallel GPU imple-
mentation is pointed out. Solution strategies for coagulation, nucleation, breakage,
growth and evaporation are thereby presented. An application example treats the
simultaneous coagulation, nucleation, evaporation and growth encountered during
particle production through the aerosol route. Furthermore, the simulation of a com-
partmental network is discussed and parallel simulation techniques for the transport
of weighted MC particles are presented. The proposed methodology is benchmarked
by comparison with a pivot method for a variety of test cases with an increasing
degree of complexity. Simulation conditions are identified, for which conventional,
non-weighted MC simulation techniques are not applicable. It is found, that the
specific combination of a screen unit with tear-streams cannot be simulated by con-
ventional methods, termed ‘random removal’, and make thus other techniques—like
the here introduced merging techniques necessary.

Nomenclature

b Breakage rate [s−1]
dg Geometric mean diameter [m]
Cdist Compare distance on GPU memory (integer) [–]
d∗ Kelvin diameter [m]
d Diameter of particle [m]
Ei, j Merging error of particles i and j [–]
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f A→B Relative particle exchange flow rate from compartment A to B [s−1]
FA→B Absolute particle exchange flow rate from compartment A to B [s−1]
G Growth rate [m s−1]
kB Boltzmann constant [J K−1]
m1 Atomic (resp, molecule) mass [kg]
NMC Number of MC simulation particles [–]
NG Concentration of gas atoms (or molecules) [m−3]
nC(v) PSD in compartment C [m−6]
oidx Destination index on GPU memory (integer) [–]
i∗ Number of atoms (resp. molecules) in critical cluster [–]
p(i)
A i-th property of particle A [unit of i-th property]

ps Saturation pressure [Pa]
QA→B Volumetric flow rate of carrier gas/liquid from compartment A to B [m3 s−1]
R Mixing ratio for breakage scheme [–]
RN Nucleation rate [m−3 s−1]
S Supersaturation [–]
Ssep Separation function for screen [–]
s f Reciprocal of stochastic resolution [m−3]
T Temperature [K]
t (simulation) time [s]
tchar Characteristic time [s]
v Particle volume [m3]
v∗ Kelvin volume [m3]
vM Atomic (resp. molecular) volume [m3]
VC Volume within compartment C filled with carrier liquid (or gas) [m3]
Wi Statistical weight of MC particle i [m−3]
αi Merging weight for property i
β Coagulation kernel [m3 s−1]
γ Breakage function [–]
ε Maximal admittable merging error [–]
τ Time step [s]
σ Surface tension [N m−2]

Indices

0 Initial values
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1 Introduction

The solution of the population balance equation (PBE) [1] plays an important role in a
wide area of applications ranging from natural sciences to many fields of engineering
[2]. Especially the modelling of chemical engineering problems such as crystalliza-
tion [3], milling [4], granulation [5] or particle production in aerosol reactors [6]
resort to PBE based process modelling.

The modelling of single apparatuses can be seldomly done with the assumption
of spatial uniformity (as in e.g. [7]) and the application of Computational Fluid
Dynamics (CFD) simulations and/or compartmental modelling becomes necessary
in order to describe different zones of single apparatuses correctly.

CFD modelling allows a very high spatial resolution of the investigated system:
30,000 [8]−1,000,000 [9] cells are sometimes applied. The drawback of a CFD-
PBEmodelling is its enormous computational cost, hence a PBE has to be solved for
each of these cells. Due to the high computational cost, only a rough approximation
of the particle size distribution (PSD) is encountered in such simulations which
typically resort to sectional methods with a low resolution (of ca. 12–30 discrete
points or sections [10, 11]) or to the method of moments [12, 13], limiting the
particle modelling mostly to one property—the size.

To overcome this problem, compartmental modelling is often applied, simplifying
the spatial complexity to a low number of compartments (examples are 3 compart-
ments or 10 compartments [14]). This allows, on the other hand, a more complex
particle modelling with a more detailed sectional grid (e.g. 1000 discrete sections for
3 compartments [15]) or even with aMonte Carlo (MC) simulation, where more than
one particle property allow to model a more complex morphology of the particles
[14].

The PBE for a network of compartments, like presented in Fig. 1. can be described
by the following formula:

dnC (v, t)

dt
= + 1

2

∫ v

0
βC (v′, v − v′)nC (v′, t)nC (v − v′, t)dv′︸ ︷︷ ︸

coagulation birth term

− nC (v, t)
∫ ∞

0
βC (v, v′)nC (v′, t)dv′︸ ︷︷ ︸

coagulation death term

+ RN,C (t) · δ(v − v∗
C (t))︸ ︷︷ ︸

nucleation

−∇v(GC (v, t)nC (v, t))︸ ︷︷ ︸
growth(G>0)/evaporation(G<0)

−bC (v) · nC (v, t)︸ ︷︷ ︸
breakage death term

+
∫ ∞

v

bC (v′) · nC (v′, t) · γC (v|v′)dv︸ ︷︷ ︸
breakage birth term

+
∑

inflow from all compartments i

fi→C · ni (v, t)

−
∑

outflow to all compartments i

fC→i · nC (v, t) (1)
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Fig. 1 A network of compartments. Each compartmentCi models parts of a reactor (or equipment)
volume, which is filled with the carrier gas (or liquid) with a volume VC . The compartment contains
a PSD, nC , and is described by other continuous variables, like temperature TC , a gas concentration
NG,C , etc

where the coagulation kernels βC , growth rates GC , nucleation rates RN,C and sizes
of the nucleating particles v∗

C , breakage rates bC(v) and breakage functions γC(v|v′)
can be defined differently for each compartment C . The shown particle exchange
flowrates fi→C and fC→i may assume constant values, or reflect more complex—
nonlinear—and particle size or time dependent forms. The given volumetric flow
rates QA→B (shown in Fig. 1) of the carrier gas (or liquid) and the volumes of the
carrier gas (or liquid) of the outflow compartments, VA, are thereby used in order to
determine the particle exchange flowrates via:

f A→B = QA→B/VA (2)

In this way, a complex reactor structure can be modelled in more detail [16, 17]
or the interconnection of single processing units in a flowsheet simulation can be
analyzed [15, 18, 19].

Although Eq. (1) describes only one particle property, the volume v, one could
interpret v as a vector describing multiple properties of the particle, such as volume
(p(1)), surface area (p(2)), wet content (p(3)), and so on, as suggested in Fig. 1. Only
a stochastic modelling is able to solve Eq. (1) for a high number of properties and
render the complete particle morphology.

In the following, stochastic solution strategies for Eq. (1) will be discussed in
the frame-work of an operator splitting approach meaning that the single processes
coagulation, nucleation, growth/evaporation, breakage and transport of particles are
decoupled for short periods of time τ . The approximation error introduced by this
decoupling can be minimized by a choice of a low enough separation time step τ .
For this reason, the solution strategies for single processes, like coagulation, nucle-
ation, growth/evaporation and breakage are discussed for one compartment first. The
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implementation of the coagulation in the framework of a compartmental network,
as well as the transport between single compartments is discussed in the section
afterwards, where the modelling of multiple compartments is applied.

2 Weighted Monte Carlo Particles for the Solution
of the Population Balance Equation

The use of weighted simulation particles (a particle with weight w represents w
real particles within a given reactor volume) has several advantages: it allows to
describe the interaction between simulation particles having different concentrations
coming from different cells or compartments [14, 20, 21]. It can also be used as a
tool to control the number of simulation particles (e.g. to gain numerical accuracy).
In the following, some techniques will be introduced to solve the single mechanisms
presented in Eq. (1) by the application of weighted MC particles.

2.1 Coagulation

The correct description of the coagulation rates for the weighted particles, especially
for a complex coagulation scheme, like the one introduced Zhao et al. [22] shown in
Fig. 2, poses a great difficulty.

The authors [22] presented the ‘ficticious particle theory’ which leads to the
following modified coagulation kernel:

β( f p) = 2Wjmax
(
Wi ,Wj

)
Wi + Wj

β (3)

The weights of the particles are denoted by Wi and Wj . The coagulation kernel β

describes the coagulation of the original (non-weighted) system—which might be
the Brownian kernel for the freemolecular regime, etc. The resulting coagulation rate
is asymmetric, making a distinction necessary, whether particle i coagulates with j
or vice versa. This definition is 1) difficult to understand conceptually and 2) difficult
to extend on other process—like nucleation or transport of fictitious particles.

We developed in [23] the concept of the stochastic resolution which describes
each coagulation in the frame-work of equally weighted MC-particles, where each
MC-particle describes s f real particles. The value for the parameter s f can be set
arbitrarily. Figure 2 shows that the setting s f = Wmin = min

(
Wi,Wj

)
leads to the

correct description of the coagulation-scheme. The scaling factor s f depends on the
chosen coagulation pair, so that different coagulation-events are described in different
stochastic resolutions.
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Fig. 2 The concept of ‘stochastic resolution’ can be used to describe the coagulation-scheme
developed Zhao et al. [22]. Only the choice for sf = Wmin leads to the correct description of the
general rule presented in the ‘simulation entries’ line

The coagulation rate β(w) for this coagulation-scheme can be derived from the
population balance equation:

dn(v)

dt
= 1

2

v∫
0
β
(
v − v′, v′)n(

v − v′)n(
v′)dv′ − n(v)

∞∫
0

β
(
v, v′)n(

v′)dv′ (4)

Instead of the ‘original’ concentrations n(v), the concentrations of the MC-
systems n(MC)(v) = n(v)

s f
are being considered. The multiplication of the PBE with

the factor 1
s f

= 1
Wmin

leads to the following modified coagulation rate of the MC-

particles: β(MC) = Wmin ·β. Hence there is one MC-particle of theWmin-species and
Wmax
Wmin

MC-particles of the Wmax-species, the overall rate for the coagulation between
one Wmin-MC-particle and one of the Wmax-MC-particles is:

β(w) = Wmax

Wmin
· β(MC) = Wmax · β (5)
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The second case Wmax = Wmin , which is not shown in Fig. 2, is also described
with the resolution s f = Wmin . Both particle species are described by only one MC-
particle, so that only one MC-particle can be found after the coagulation. In order to
apply the constant number scheme, the weight of the simulation entry representing
this particle is divided by two and the particle properties are stored in both positions.

The thus derived coagulation kernel β(w) is easier to calculate than the origi-
nally introduced β( f p) —a speed up of the simulation up to 10% could be noticed.
Due to its symmetric form, computational advantages for the implementation of the
inverse method can be expected, as only half of the computations of the β(w) ker-
nel are necessary. The simulation results of particle coagulation for the newly esti-
mated coagulation kernel β(w) could be found to be as accurate as the β( f p)-kernel
results (which show excellent agreement with the solution produced by means of the
Discrete-sectional-method in the first place) within the MC-stochastic noise [23].

2.2 Nucleation

Homogeneous nucleation is amechanism that leads to the formation of new particles,
whichhave to be included among the simulation entries.Constant number simulation-
schemes sum up all possible algorithms, which update—somehow—the simulation
properties, but keep the number of the used simulation entries constant. Keeping the
number of simulation entries constant ensures a constant level of stochastic accuracy
and makes a simple prediction of needed computational resources possible. Figure 3
shows possible constant-number nucleation algorithms. They can be used to model
the inclusion of the nucleation particles or particles included by other processes: like
breakage or transport.

The random removal algorithm has been introduced Lin et al. [24] in the frame-
work of the concept of a ‘constant number Monte Carlo simulation’ which is based
on the not-weighted particle scheme. The algorithms applying the merging step are
based on the weighted-particles scheme and the concept of the merging error. They
cannot be used for non-weighted MC simulations. The merge-List is created each
100 merge-steps and contains 100 simulation entries with low-weights.

2.2.1 Merging

The concept of ‘merging’ of simulation entries is proposed in [23]: if two simulation
entries with exactly the same properties are merged, the resulting representation of
the particle size distribution will not change and all the physical processes will be
described in the same way. If the simulation entries differ slightly in their properties,
a small error will be introduced.
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Fig. 3 Different simulation algorithms which combine theMC constant-number simulations based
on weighted particles with the nucleation process

The merging scheme:
Each simulation entry contains the weightW, and other properties p(1), p(2), p(3), . . .

of the rendered part of the particle population (where p(i) could be the volume,
porosity, electric charge, etc.). If the simulation entry A (weight WA) and B (weight
WB) are merged into the new simulation entry C (weight WC and several properties
p(i)
C ), the following two rules should apply:

(i) The total weight of the simulation-entries before and after the merge-step should
be preserved:

WC = WA + WB (6)

(ii) If the total amount of the particle-properties is preserved one can write:

WC · p(i)
C = WA · p(i)

A + WB · p(i)
B ⇔ p(i)

C = WA · p(i)
A + WB · p(i)

B

WA + WB
(7)
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This is themost simple assumptionwhich should hold true formost of the physical
applications, but other definitions—which make a more complex calculation neces-
sary can be used. E.g., if the described property is the diameter d but the volume v

is preserved, one can write (assuming sphere-like particles):

WC · π

6
(dC)3 = WA · π

6
(dA)

3 + WB · π

6
(dB)3

⇔ dC =
(
WA · (dA)

3 + WB · (dB)3

WA + WB

)1/3

(8)

The merging error:
The error introduced into the simulation by the merging of the simulation entries can
be estimated by the following formula:

E(A,B) =
∑

all roperties i

αi ·
⎛⎝ p(i)

A − p(i)
B

min
(
p(i)
A , ·p(i)

B

)
⎞⎠2

(9)

where αi are merging-weights, which can be set arbitrarily—depending on the phys-
ical process—they can be interpreted as a measure of the severity, which the devia-
tion of the property p(i)

A from p(i)
B would have—compared to the deviation of other

properties p( j)
A from p( j)

B .

2.2.2 Parallel Merging Algorithm

The merging-algorithms presented in Fig. 3. use the selection of random simulation
entries, resulting therefore in a random merging error E(A,B)—which may be exces-
sively high. The smallest possible merging error can be estimated by the comparison
of all simulation-entry-pairs—which would prove very costly: NMC · (NMC − 1)/2
comparisons are necessary, if NMC simulation-entries are used. A sound compromise
between both scenarios is the sampling of a ‘representation of the simulation entries’
and the estimation of the minimum merging error of this representation. A parallel
algorithm can be applied for this purpose, easily adaptable for GPU computing: the
merging errors for (NMC − 1) pairs of simulation-entries can be computed in paral-
lel and the comparison of the calculated merging errors is done within only log2N
computational steps, like shown in Fig. 4.

2.2.3 Validation of Coupled Coagulation and Nucleation

The nucleation is combined with the simulation of coagulation in two steps: First, a
classical event-driven MC coagulation step is performed, this includes the selection
of the coagulation pair via the fast parallel A/R-method introducedWei [25] with the
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Fig. 4 The parallel low weight merging algorithm [23]: only 8 parallel thread-executions are
necessary in order to estimate the pair (1 out of 256) of simulation-entries with the minimal merging
error

weighting scheme based on the stochastic resolution—the actual time-step 	τMC is
evaluated in this step, too. In a second step, the number of the nucleating particles is
estimated, for this purpose the solution of the differential equation (which describes
the nucleation) can be approximated by the Euler-method (more complicated Runge-
Kutta methods or other ODE-solvers can be used for the modeling of the interaction
with the continuous phase [26, 27]). The newly created simulation entry is then
included by means of the merging algorithms from Fig. 4.

A typical benchmark test case1 shows the advantage of the merging of particles
compared to the random removal method, as sketched in Fig. 3. A part of the simu-
lation results already discussed in [23] are summarized in Table 1, where the mean
values dg and standard deviations 	dg of the geometric mean diameter are shown.
Hence each MC simulation is executed with a different sequence of random num-
bers, the resulting geometricmean diameter d(i)

g is different for each simulation i . The
arithmetic mean values (dg) and standard deviations 	dg of 100 d(i)

g values resulting
from of 100 MC simulations are shown. (Similar findings could also be presented
for the number concentration of the particles or the geometric standard deviations of
the resulting PSDs.) It can be clearly seen that the application of merging techniques
leads to significantly lower noise levels. For example, 10,000 simulation particles
in combination with the random removal method cannot reach the same precision
levels as the application of 1000 simulation particles in combination with the low

1A constant nucleation rate RN is assumed, so that newly introduced simulation entries have the
weight W0 = RN · 	τMC and a predefined diameter d0. For the simulation has been set: RN =
1014 1

m3 s
, d0 = 3 nm. A monodisperse population with an initial concentration of 1017 1

m3 has been
used as start condition, the initial MC particles are equally weighted. The temperature was set to
300 K and the particle density to 1 g

cm3 . The simulated time was ca. 25.8 s, which is 500 times the
characteristic time needed to reach the self-preserving distribution [28] due to coagulation.
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Table 1 Values of the geometric mean diameter and simulation times (CPU time) for the discrete
sectional (DS) method and MC simulations using Random removal (RR) and Low weight Merging
(LWM) with 1000 and 10,000 MC particles

Method Mean value dg
[nm]

Standard deviation
	dg (absolute)
[nm]

100	dg/dg
(percent) [–]

CPU time [s]

DS (20 100) 4.736 – – 8.4

DS (250 380) 4.740 – – 332.1

RR 1000 4.820 0.544 11.29 330.3

RR 10,000 4.736 0.180 3.79 3964.2

LWM 1000 4.733 0.100 2.11 300.4

LWM 10,000 4.742 0.033 0.70 3643.2

The number of used sections and discrete points for DS are indicated by the values in the brackets
(discrete points, sections). The exact 1D grid specifications are described in [23]

weight merging. It should also be noted that the computation of 10,000 MC particles
requires ca. 10 times larger computing times than of 1000 particles. The computing
times shown in Table 1 refer to the simulation of 100 MC simulations run in parallel
on the GPU and one discrete-sectional run sequentially on the CPU.

2.3 Coupled Condensational Growth and Evaporation,
Coagulation and Nucleation

A varying nucleation rate, RN, as well as a changing critical nucleus size, d∗, is
often encountered when a metallic vapor is created and then cools down, leading to
the nucleation rate increasing over tens of orders of magnitude and then going down
when the free atoms have been largely consumed. The size of the critical nucleus, d∗,
on the other hand, decreases from very large values to atomic sizes, and rises again
when the nucleation rate is increasing. This presents a severe test for the numerical
solution, as the source term is moving rapidly through the size spectrum, leading to
a dramatic change of the growth and evaporation rates of the simulated particles, as
well. Hence particles larger than the nucleating particle (i.e. with volumes vi > v∗)
will grow, while those which are smaller (i.e. with volumes vi < v∗) will evaporate.
This is described by the equation of the growth-rate G(vi , NG) of particles with the
volumes vi in the free-molecule regime [29]:

G(vi , NG) = dvi
dt

= vM · π · d2
i√

2π · m1 · kB · T
· (kB · T · NG − ps · exp{4 · σ · vM/(kB · T · di )}) (10)
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The value of the critical diameter is given by:

d∗ = 4 · σ · υM/(kB · T · ln(S))

with S = NGkBT
Ps

(11)

So that G(vi , NG) = 0 for vi = v∗ and G(vi , NG) > 0 for vi > v∗. The growth
rate of the particles is also dependent on the number of atoms (or molecules) of the
condensable material in the gaseous phase, NG. The depletion (resp. increase) of the
monomers due to condensation on (resp. evaporation of) the particles is described
by a mass balance:

dNG

dt
= −

∑
i

Wi · G(vi , NG)/vM − RN · i∗ (12)

Thereby, the nucleation of particles is also taken into account by the nucleation
rate RN and the number of atoms (resp. molecules) i∗ in a particle of the critical size
d∗.

We proposed an operator-splitting based approach for the parallel solution of this
system [26, 27, 30], by decoupling the growth-evaporation and nucleation mecha-
nism from the coagulationmechanisms for short periods of time, like in the presented
coupled simulation of coagulation and nucleation in Sect. 2.2.3. The condensational
growth (resp. evaporation) of the simulated particles is solved in parallel by applica-
tion of time-step adaptive Runge-Kutta techniques (see e.g. [31]). A parallel addition
algorithm, similar to the presented parallel comparison algorithm in Fig. 4, is used
for the fast calculation of the term

∑
i Wi · G(vi , NG) in Eq. (12). A more detailed

description of this approach can be found in [30]. This modelling of the continu-
ous PSD with discrete MC particles avoids the effect of numerical diffusion [32,
33], encountered in models describing particle growth, in analogy to moving grid
techniques for sectional methods [34].

It has be shown, that all of the mentioned mechanisms (i.e. evaporation, conden-
sation, nucleation and coagulation) have to be considered and that the omission of
one of these mechanisms leads to severe deviations from the ‘complete’ system [26].

The thus introducedmethodology can be used to determine the influence of differ-
ent formulations of nucleation rates and allows to identify experimental conditions
for the experimental investigation of those. There exist several approaches for the
description of nucleation theories [35]. We consider in the following these three
expressions for the nucleation rate RN, as discussed in [36]:

R(cou)
N (NG) =NG ·

√
2σ

π · m1

ps
kB · T · v1

· exp
(

− 16 · π · σ 3 · v2
M

3 · k3B · T 3 · ln(S)2

)
,
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Table 2 Material constants
for Ag at a temperature of
1300 K

Symbol Description Value Source

m1 Atomic mass 1.792 × 10−25 kg [37]

vM Atomic volume 1.922 × 10−29 m3 [37]

ps Vapor pressure 1.324 pa [37]

σ Surface tension 0.9024 J/m2 [38]

with S = NGkBT

ps
(13)

R(gir)
N (NG) = R(cou)

N · exp
⎛⎝(36 · π)

1
3 · σ · v

2
3
1

kB · T

⎞⎠; R(cls)
N (NG) = R(cou)

N · S (14)

The influence of these different nucleation theories has been discussed for atmo-
spheric simulation scenarios [27] and are briefly sketched for a metallic system
describing the nucleation of Ag vapor in the following. The material parameters in
Eqs. (10–14) assume values summarized in Table 2 at a temperature of T = 1300K.

The simulation of a isothermal nucleation induced due to an initial supersaturation
of S0 = 100 ofAg vapor and the presence of an initial (background) PSDwith amean
geometric diameter of 2 nmand a geometric standard deviation of 1.2 rendering a total
number-concentration of 1016 m−3 is used as an initial condition. The temperature
is kept constant to 1300 K during the course of the simulation.

The monomer concentration exhibits the fastest depletion rate for the Girshick-
based nucleation rate, as is shown in Fig. 5a. This is due the highest nucleation rate
which is plotted in comparison with other nucleation theories in Fig. 5b. This leads in
turn to the highest particle concentrations for the Girshick-based nucleation theory
(see figure Fig. 5c). The nucleation theories show the most striking differences at the
early stages of the simulation, for longer simulation times, (i.e. t > 0.01 s), similar

Fig. 5 Isothermal Ag particle synthesis with initial PSD and supersaturation S0 = 100. The
saturation surplus S − 1 (a), the corresponding nucleation rates (b) and the total particle number-
concentrations (c) are shown. The nucleation rates R(cou)

N (Courtney) R(gir)
N (Girshick) and R(cls)

N
(Classic) are defined in Eqs. (13) and (14)
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Fig. 6 Isothermal Ag particle synthesis with initial PSD and supersaturation S0 = 100. Resulting
PSDs after 2.2·10−4s (a) and 1.4·10−1s (b) for the nucleation rates R(kin)

N (Kinetic) R(gir)
N (Girshick)

and R(cou)
N (Courtney) defined in Eqs. (13) and (14)

supersaturations and concentrations can be observed (in Fig. 5 a-c). This is a signature
of the similar PSDs resulting from the simulation, as they are shown in Fig. 6.

The PSDs at the initial stages of the simulation (see Fig. 6a) show tremendous
differences and allow to attribute each of the different shapes to a specific nucleation
theory. For longer simulation times, on the other hand, a self-preserving PSD is
reached and all of the presented nucleation theories can be attributed to the shown
PSDs. The shown self-preserving PSD is the result of the complex coupling of
the mechanisms of coagulation and evaporation. This PSD deviates from the self-
preserving PSD for the coagulation only as reported Vemury and Pratsinis [28].
Similar self-preserving PSDs deviating from the self-preserving PSD for coagulation
only have been already reported for similar metallic systems [26] and [30]. This
approach allows thus to roughly approximate a time window, for which specific
differences between the different nucleation rates can be expected. Allowing thus to
give hints for measurements set-ups investigating the specific forms of the nucleation
rate RN.

2.4 Breakage

Breakage of particles is relevant for the modeling of particle mills, but also for
granulation, emulsions, sprays and even for aerosols when agglomerates break up
by collisions or turbulences. The rendering of the large number of particles which
are produced during the continuous breakage process poses a major problem for
MC simulations, because large computational resources have to be provided for
this purpose. In a typical milling process, for example, reductions of the particle
diameters from 500 to 0.5 μm are encountered, the same amount of volume, which
is rendered by one simulation particle with a size of 500 μm has to be rendered by
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109 simulation particles with a diameter of 0.5μm, if all particles represent the same
number concentration of real particles.

Traditional solutions of this problem encompass the discretization of the particle
property into bins [39], which would render the combination with the developed
growth/evaporation algorithm impossible, and constant-number approaches [40],
which are known to produce a high level of statistical noise [41].The application
of merging schemes [42] (i.e. the approximation of the properties of several sim-
ulation particles by one simulation particle) would pose an attractive alternative.
However, the vast amount of newly resulting particles makes a lot of merging steps
necessary, leading to large computing times. A recent constant-number method has
been presented [41], which renders the breakage event of one particle intomany frag-
ments by a single particle. The size of the fragment is selected stochastically, the use
of many simulation particles leads to the correct distribution of fragment sizes. This
scheme is only able to render the parts of the particle size distributionwhich represent
high number concentrations of the particles. Furthermore, only binary breakage can
be described.

We developed an alternative approach [43] for the derivation of the breakage
scheme by resorting to the argument that the breakage of many MC-particles with
equal properties and weights has to lead to a particle size distribution (PSD) of
fragments, which is described by the corresponding breakage kernel. It allows to
formulate any probability distribution function (PDF) with which the new volume of
the simulation particle is selected by adjusting the statistical weight of the resulting
fragments depending on 1) the selected particle properties, 2) the used PDF and 3)
the given breakage density function. This newly proposed scheme encompasses the
already introduced SWA schemes, especially a number-based (NB, named SWA1
in [41]) and volume-based (VB, named SWA2 in [41]) breakage scheme, and it
makes novel formulations possible: the low volume scheme (LV), which renders
preferably fragment particle sizes at the lower end of the size spectrum, and the
combination of LV with the NB (NB-LV) or VB (VB-LV). Exemplary simulation
results are shown in Fig. 7. It can be seen that the SWA methods (NB and VB) are
only able to render large particle sizes, and that LV, NB-LV and VB-LV are able to
render the whole spectrum of particle sizes. Smaller noise levels are found for VB
and specific VB-LV schemes, making both more suitable for prolonged simulations
than the other presented methods. The LV based simulation method fails to predict
the correct PSDs for longer simulation times. For this reason, the combinations of
LV with VB or NB are needed, in order to ensure the correct shapes of the PSDs for
longer simulation times. The combination ratio R ∈ (0, 1) between the LV and NB
leads to different schemes, while lower ratios R lead to a higher representation of
low-volume MC particles, they also lead to higher noise levels: the setting R = 0.6
leads to more statistical noise than R = 0.9, as it can be seen in Fig. 7. The adaptive
resetting of the factor R in order to avoid the systematical errors, as it is shown in
Fig. 7 for the LV scheme is briefly discussed in [44].

The required simulation times are listed in Table 3, 105 simulation particles are
required in order to ascertain a computational accuracy of less than 1%. (I.e. the
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Fig. 7 Resulting PSDs from the simulation of a test cases describing a binary, homogeneous
particle breakage function γ (vF, vP) = 2/vP and a breakage rate b(v) = v (test case 1 in [43]) for
a monodisperse initial condition v0 and the thus defined characteristic time tchar = b(v0)−1. The
MC-simulations are compared with analytic solutions found in [46]

Table 3 Computational times required for the simulation of t = tchar × 108 in dependency on the
used number of simulation particles

Simulation particles NB VB VB-LV

1000 0.5 s 0.8 s 0.6 s

10,000 2.8 s 4.4 s 3.0 s

100,000 27.1 s 42.5 s 29.8 s

arithmetic standard deviation of the moments of the distributions performed for 100
different sets of random numbers is smaller than 1% of the mean value.)

3 Compartmental Population Balance Modelling

The modelling of flow-sheet simulations in the scope of an operator-splitting
approach (see e.g. [47]) requires a specific time step management, so that ongo-
ing simulations processes can be forced to stop at specific simulation time points.
This issue is addressed first, in a second, longer paragraph, the implementation of
particle transport between single compartments by means of weighted MC particles
is introduced and some typical simulation scenarios are presented.
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3.1 Time Step Control for Compartmental PBE Networks

The combination of simultaneous processes rendered by the PBE solver poses a
challenging task, hence the characteristic time-scales for the corresponding processes
may differ in several orders of magnitude and change vastly during the simulation.
Although the developed algorithms for the breakage, coagulation and growth (resp.
evaporation) already adapt to the optimal time-step for each single process (in the
absence of other processes), the simulation of the combined coagulation, nucleation
and growth is driven by the discrete coagulation processes providing an inherent MC
time step τMC. This is a computationally advantageous setting, if the inherent growth
step τG is smaller than the coagulation step τMC. The opposite case, in which τG is
bigger than τMC, forces the simulation to use much smaller time steps τ ′

G and thus to
use much more computationally demanding growth steps. The incorporation of the
breakage as a third process with an inherent time step τB may force the simulation
to reset this step to a lower value τ ′

B in a coagulation driven implementation, as well.
This situation becomes even more complicated, if the PBE is solved for differ-

ent compartments and a particulate flow between the compartments is simulated.
Consider, for example two compartments, in which coagulation takes place, so that
compartment 1 has an intrinsic MC coagulation time step τ

(C1)
MC , while the second

compartment has the inherent coagulation time step τ
(C2)
MC , the additional particulate

flowrate between compartment 1 and compartment 2 might make the update of the
particle populations due to the transport of particles each time interval τTr necessary.
It depends on the specific modelled application, whether the minimum of these three
time steps has to be used, or some other minimal time step τmin can be applied. In
all cases, there exists the need, to perform, at least in one of the two compartments,
a smaller time step than the one intrinsically provided (τ (C1)

MC and/or τ
(C2)
MC ).

The application of time-driven MC methods [48] allows the setting of a variable
time step, but this time step has to be set proportional to the intrinsic step in order
to avoid systematical errors [49], although smaller values are allowed. The main
disadvantage of this approach is, however, its computational costs, hence all possible
coagulation pairs have to be checked for coagulation during the suggested time step—
special book-keeping methods [50] might help to address this problem for the single
simulation of coagulation but their usage is not possible2 in the context of a PBE
network modelling multiple simultaneous processes.

We have developed the concept of ‘fractional MC time steps’ [51], in order to
address this problem. In the scope of this approach, we modified the fast GPU
acceptance-rejection algorithm [25] in such a way, that an additional stochastic prob-
ability is formulated, whether the particles coagulate or not if a smaller time step than
the intrinsic MC AR-time step is needed. We compared our methodology (marked

2Special modeling is necessary in order to capture the changes of the ‘book kept’ entries due to
other non-coagulation processes—this might or might not be possible, depending on the specific
process being modelled. Additionally, the tracking of the changes might prove more expensive than
the application of the time-driven MC methods without book-keeping.
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Fig. 8 PSDs resulting from
simulation conditions as
described in [51]

as ‘MC full step’) with (1) another approach from the literature [21], where no coag-
ulation of the particles takes place in such an event (marked as ‘no step’) and (2)
with the self-proposed approach, where the particles simply coagulate—even if the
simulated time step is smaller than the intrinsic time step (marked as ‘full step’). A
typical isothermal coagulation scenario describing Brownian motion of particles in
the free-molecule regime (full details can be found in [51]), leads to the following
simulation results shown in Fig. 8, if the simulated system is forced to perform not the
intrinsic MC time steps but an artificial time step of 1 ms. It can be clearly seen, that
only the application of the fractional MC time steps leads to the correct description
of the PSDs, which is in excellent agreement with the reference result gained by the
application of the discrete-sectional method, as described in [52, 53].

3.2 Compartmental Monte Carlo Simulation

Modelling of MC particle transport as a stochastic process with discrete events is
sometimes suggested [54]. Such a modelling, could—however— entail a large num-
ber of stochastic events for small simulation times and slow down the simulation
considerably. The other disadvantage of such an approach is the potential increase
of the stochastic noise of the simulation.

The description of weighted simulation particles makes novel simulation strate-
gies for the transport possible, the adjustment of the statistical weight of each MC
particle makes the exact description of the depletion of particles due to particle out-
flow possible—as is discussed in [20] (termed ‘rescale outflow’) and shown in the
following. First, the description of a two-step (inflow and outflow) method is sug-
gested and themerging and random removal techniques are briefly described, then the
methodologies are validated and compared by simulations of exemplary flowsheets.
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3.2.1 Transport of Weighted MC Particles

In the following, the transport of MC particles from one compartment to other com-
partments will be described. It consists of two steps: (1) the particle outflow and
(2) the particle inflow. This is being realized by the computational implementation
of ‘streams’ which are able to store a population of MC particles, as large as the
population stored for each compartment.

In the first outflow step, particles are inserted into the streams. This can be easily
done by copying all particles from the hold-up into the stream and adjusting the
statistical weights accordingly, in the stream and in the hold-up. If, for example, the
particles from compartment 1 stream into compartment 2 with the size v dependent
relative rate f1→2(v), then one can describe for each particle i the change of its
statistical weight Wi for a small interval of time 	t as:

Wi (t + 	t) = Wi (t) − 	t · f1→2(vi ) · Wi (t) (15)

This is shown as particle outflow step in Fig. 9. The new weights Ws1
i and W

c1
i

are set to Ws1
i = 	t · f1→2(vi ) · Wc1

i and W
c1
i = Wc1

i − Ws1
i .

In the inflow step in Fig. 9, the particles from the streams are inserted into the
compartments. Analogously to the already discussed nucleation of particles, one
encounters at this step the problem of the limited CPU memory: each connecting
stream contains as many particles as the destination compartment, so that only a
fraction of all MC particles can be stored in the destination compartments. This
problem has been solved in two ways in the here presented work: (1) randomly
selected particles are removed from the simulation—adjusting the statistical weights
in such a way, that the mass of the system remains constant as in the conventionally
used constant number algorithms [55, 56] and (2) the particles are merged together
using a parallel merge algorithm as it is briefly discussed in [57].

Fig. 9 MCparticles stored in thememory assigned for compartment 1 and 2, aswell as in the stream
connecting both compartments. The stages (1) before the particle outflow (2) between outflow and
inflow and (3) after the inflow during the simulation of a single time step are shown



538 G. Kotalczyk and F. E. Kruis

...

...

...

...

...

...

...

...

Fig. 10 Compartment-Streammerge pattern. Each double arrow represents one merge attempt. All
merge attempts which are executed in parallel with the destination offset oidx = 0 are shown in
comparison with all parallel merge attempts made for the offset oidx = 1

3.2.2 Parallel Merge Algorithm

The merging algorithm described in Fig. 4 could be used for the merging of MC
particles within stream and the destination compartment. However, such an approach
would be computationally not efficient due to the large number of MC particles
ranging in typical applications between 1000 and 10000. This would imply 1000
or 10000 sequential or parallel invocations of the algorithm presented in Fig. 4. In
order to accelerate the merging process, a novel parallel algorithm has been briefly
sketched in [57] and is discussed here inmore detail. TheGPU’s capability to process
a large amount of data in parallel can be exploited in a more efficient way, if not only
one (as in Fig. 4) but a large number of MC particles has to be merged together (as
in Fig. 9).

Themerging scheme described by Eq. (6) and (7) can be thereby used in combina-
tionwith themerging error described by Eq. (9). Amaximal admittablemerging error
ε can be formulated and all particle pairs (i, j) with a merging error Ei, j (Eq. (9))
smaller than ε are merged together. A large number of parallel comparisons can
thereby be performed, forming potential pairs for the merging by calculation of the
merging errors of the pairs consisting of one particle in the destination compartment
and one particle in one of the streams, as shown as ‘Compartment-stream merge
pattern’ in Fig. 10. The destination offset, oidx, is thereby increased by one after
each comparison attempt, so that different pairs are formed for the calculation of the
merging error. After 512 steps, all possible pairs between each of the compartment
particle and another stream MC particle would have been checked in this way.3 An
internal check between particles stored in the compartment (resp. streams) is also

3In order to use the GPU efficiently, larger particle numbers (like e.g. 10000) have to be divided into
data blocks consisting of e.g. 512 particle numbers. In the here presented implementation, particle
numbers that are multiples of 512 are considered.
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Fig. 11 Intern merge
pattern. All merge attempts
which are executed in
parallel within one stream or
compartment with different
compare distances Cdist

performed, in order to address situations, in which the populations in the streams
are so different from the population in the compartment, that a merging is only pos-
sible with very high merging errors. These ‘internal merges’ are shown in Fig. 11.
The multiplication of the compared distance Cdist with the factor of 2, ensures the
treatment of different pairs after each invocation of the routine.

The complete algorithm for the parallel merging is shown in Fig. 12, the following
settings are set arbitrarily:

Fig. 12 Sketch of the merge algorithm for MC particle insertion. The Compartment-Stream merge
pattern is shown in Fig. 10 and the internal merge pattern is shown in Fig. 11
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Fig. 13 Exemplary flow-sheets with and without a feedback stream

• 8 Compartment-Stream merge patterns are performed for each invoked intern
merge-pattern (‘cs_count < 7’ in Fig. 12). This combination is invoked each time
before the (rather costly) check if all particles have been merged is initiated.

• After each 4 unsuccessful checks if all particles have merged, the maximal
admittable merging error is increased (‘err_count < 3’ in Fig. 12).

• The maximal admittable merging error is increased by a factor of 4 (‘ε = ε · 4’).
These settings prove towork efficiently for the presented test cases in the validation

section. Other settings might be more appropriate for other application scenarios and
the dynamic adaptation of these values to given simulation conditions might pose an
interesting research topic for future investigations.

3.2.3 Validation

The proposed simulation techniques are validated on several test-cases, which reflect
simple engineering problems and are shown in the figures Figs. 13 and 14. The
shown flowsheets increase in complexity, hence the implementation of a tear stream
(Flowsheet 2, Fig. 13) or a sieve unit (Flowsheet 3, Fig. 14) or both in combination
(Flowsheet 4, Fig. 14) poses a greater challenge for the numerical solution than
the simple flowsheet 1 in Fig. 13. This methodology allows to identify the specific
simulation scenario, for which conventional MC strategies are not suitable and the
here presented methodology based on weighted MC particles has to be applied in
order to obtain correct results.

For each of the presented units in Fig. 13, the evolution of the PSDs nM (mixer),
nF1 (filter 1) and nF2 (filter 2) can be modelled by the explicit set of differential
equations:

dnM(v, t)

dt
= + fF2→M · nF2(v, t) − fM→F1 · nM(v, t) − fM→F2 · nM(v, t)

+ FD→M · nD(v, t)



15 Compartmental Population Balances by Means of Monte Carlo Methods 541

Fig. 14 Exemplary flow-sheets with and without feedback including a feedback stream

dnF1(v, t)

dt
= + fM→F1 · nM(v, t)

dnF2(v, t)

dt
= + fM→F2 · nM(v, t) − fF2→M · nF2(v, t) (16)

The relative particle exchange rates fA→B from unitA to unitB aremultipliedwith
the particle PSDs in A, nA, which change over time. The external particle exchange
rate FD→M is multiplied with a PSD, nD , which does not change in time, realizing
thus in a constant in-flow into the mixer unit. The explicit values for the exchange
rates used for these benchmarking test cases are summarized in Table 4.

The system in Fig. 13 described by Eq. (16) does not take specific particle sizes
v into account, so that the same particle exchange rates apply for all sizes v. The
application of a screen unit changes this situation, so that the total particle exchange
rate from the screen to both filters, fS→F, is multiplied with the separator function,
Ssep(v). This leads to the following set of equations for the flowsheets shown in
Fig. 14:

Table 4 Particle exchange rates for Eqs. (16) and (17)

Flowsheet 1 in
Fig. 13

Flowsheet 2 in
Fig. 13

Flowsheet 3 in
Fig. 14

Flowsheet 4 in
Fig. 14

FD→M or
FD→S [1/s]

3 3 3 3

fM→F1 [1/s] 1 1 – –

fM→F2 [1/s] 2 2 – –

fM→F [1/s] – – 3 3

fF2→M or
fF2→S [1/s]

0 2 0 2
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dnS(v, t)

dt
= + fF2→S · nF2(v, t) − fS→F · nM(v, t) + FD→S · nD(v, t)

dnF1(v, t)

dt
= + fS→F · nS(v, t) · Ssep(v)

dnF2(v, t)

dt
= + fS→F · nS(v, t) · (1 − Ssep(v)) − fF2→S · nF2(v, t) (17)

The explicit particle exchange rates for these equations are summarized in Table 4.
The following form of the separation function Ssep(v) has been used for the screen:

Ssep(v) =
⎧⎨⎩

1, v > v
sep
max

(v − v
sep
min)/(v

sep
max − v

sep
min), v

sep
max > v > v

sep
min

0, v
sep
min > v

(18)

The separation cut-off values v
sep
max = π(dsep

max)
3/6 and v

sep
min = π(dsep

max)
3/6

correspond to the diameters dsep
max = 57 nm and dsep

min = 40 nm.
As initial conditions for the PSDs in the mixer n0M(v) (resp. screen n0S(v)), two

identic log-normal distributions with a geometric mean diameter of 50 nm, a geo-
metric standard deviation of 1.2 and a total number-concentration of 1010m−3 have
been used. The same distribution has been used as feed PSD, i.e. nD(v). Both filters
are empty at the beginning of the simulation (n0F1(v) = n0F2(v) = 0).

A fixed pivot method [58] has been used as benchmark. The continuous initial
PSDs are thereby discretized with the help of a geometric grid of 1000 pivot points,
covering a particle size range from 1 nm to 10 μm. In the scope of this approach,
the set of Eqs. (16) or (17) is interpreted as the rate of change for each single pivot
point with its respective volume v.

The resulting PSDs after a simulation time of 10 s are shown in Figs. 15, 16, 17,
18. It can be seen, that flowsheet 1 (without tear streams and a screen) is very well

Fig. 15 PSDs in compartments as described in Flowsheet 1 in Fig. 13 and Eq. (16)
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Fig. 16 PSDs in compartments as described in Flowsheet 2 in Fig. 13 and Eq. (16)

Fig. 17 PSDs in compartments as described in Flowsheet 3 in Fig. 14 and Eq. (17)

Fig. 18 PSDs in compartments as described in Flowsheet 4 in Fig. 14 and Eq. (17)
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reproduced by the merging as well as the random removal approach. The random
removal approach leads to larger noise levels, which can be seen in slight deviations
of the PSD in the mixer unit in Fig. 15. The addition of a tear stream leads to an
increase of these noise levels, as can be seen Fig. 16—the approximations based on
the random removal technique become less accurate but can be still considered to be
in accordance with the results obtained by the fixed pivot method.

The replacement of the mixer with a sieve unit (or replacing flowsheet 1 with
flowsheet 3) leads also to a system, which can be well simulated by the random
removal technique (see Fig. 17). The addition of a tear stream to flowsheet 3 (result-
ing in flowsheet 4) leads—however—to such a complex system, that the random
removal method is not applicable. Figure 18 shows the striking deviations of the
PSDs obtained with the random removal method—which predict a wrong particle-
number concentration in the screen and filter 2 by a factor of nearly 10. The suggested
merging techniques—on the other hand—are able to reproduce the benchmark results
with a very high accuracy. This allows to say, that the specific combination of tear-
stream and screen leads to a simulation scenario, which cannot be addressed with
conventional MC simulation techniques—as the random removal technique. This
finding also explains the failure of the random removal techniques to describe an
even more complex simulation scenario, reported in [57].

4 Conclusions

The application of weighted MC particles for the solution of a compartmental
network in the framework of an operator splitting approach (the single processes
like coagulation and nucleation are separated for short periods of time) has been
discussed.

First, the solution of a one-compartmental system has been discussed, it has been
found that:

• the application of the stochastic resolution allows to describe the coagulation
between weighted simulation particles (like already discussed in [23]).

• merging techniques allow to simulate the combined nucleation and coagula-
tion with a lower amount of statistical noise than conventional MC simulation
techniques (like already discussed in [23]).

• the parallel simulation of evaporation and condensational growth allows to simu-
late particles formation processes and investigate the role of different nucleation
theories (this has been already discussed for metallic [26] and atmospheric sys-
tems [27], but the here presented case-study of Ag-particle synthesis has not been
published prior to this work).

• novel selection andweighting techniques of theMC fragment population resulting
from particle breakage lead to simulation techniques which are able to render the
full particle size spectrum completely (these simulation techniques and findings
have already been presented in [43]).
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As a second step, the combination of the findings above in an operator splitting
approach for the full simulation of a compartmental network has been sketched. It
has been found that:

• the computationally advantageous event-driven simulation technique can be also
used for the simulation of smaller time steps than the intrinsic MC time step—
making this method applicable for a network of PBE compartments (like already
discussed in [51]).

• the merging techniques introduced in [23] can be used for the simulation of par-
ticle transport between single compartments. (These findings have already been
presented on a more complicated system in [57], the here presented description
of the simulation algorithm is, however, far more detailed.)

• out of 4 case studies of a flow-sheet with increasing degree of complexity,4 con-
ventionalMCmethods can simulate the 3 simplest caseswhilemerging techniques
are needed for the simulation of the most complex case (this finding has not been
published prior to this work).
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ABSTRACT 

A simulation method is presented which encompasses all relevant mechanisms, which are 

necessary for the description of the early stages of particle formation in arc discharges. Next to

discrete coagulation and nucleation events, a continuous surface growth process is included into

the simulation, making thus the description of the evaporation of thermodynamic unstable

particles possible. The driving force for the nucleation and growth/evaporation is coupled to the

monomer concentration in the gaseous phase and thus subject to change in the further course of 

the simulation. It is shown, that the simulation results gained by the incorporation of all three of

these processes cannot be reproduced, if one of those processes is not simulated.  

INTRODUCTION 

The scale-up of the production of metallic nanoparticles can be done efficiently by means

of arc discharge in an inert carrier gas. The use of many single production units in parallel, which

can be thoroughly optimized and tested on a lab scale for a given material, ensures that a highly 

effective scale-up of the synthesis process in terms of cost and energy consumption is possible.

We demonstrated the integration of this technology in the aerotaxy production line for solar 

cells, direct deposition of nanoparticles on textiles, nanocomposites, deposition of nanoparticles

within periodic arrays for photonics, higher heat transfer with nanoparticle dispersions and direct

deposition of catalytic nanoparticles on membrane structures. [1] 

This work addresses the problems which appear when modeling the particle formation 

from an atomic vapor, formed by plasma evaporation from a melt as in the case of arc discharge.

The modeling of particle formation initiated by a physically induced nucleation controlled by the

local temperature, is especially challenging due to a strong variation of the Kelvin diameter 

which makes it almost impossible to apply conventional discrete-sectional population balances. 

Inclusion of nucleation in a Monte-Carlo approach is challenging as the number of 

simulation particles which can be used is limited. The application of weighted simulation

particles offers here a practical solution. Keeping the number of simulation particles constant

requires strategies to discard other simulation particles while keeping the loss of information to a 

minimum, merging techniques show here the best performance. Another challenge is the 

modeling of condensational growth, here the continuous variation of the Kelvin diameter,

induced by e.g. temperature variation or monomer depletion, has to be taken into account. Care 

has to be taken that particles smaller than the Kelvin diameter effectively evaporate while large 

ones grow. Although many recent works deal with the same problem [2,3], these approaches are 

applied to particulate systems with a surface growth mechanism modelled by chemical reactions,

making a consideration of the evaporation of the simulated particles unnecessary. 
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We present the implementation of a test system, which describes the simultaneous 

mechanisms of coagulation, nucleation and growth, including a physical growth mechanism 

resulting from the saturation of the gaseous phase, which leads to the evaporation of particles

whose diameter is below the Kelvin diameter. It is shown, that the simulation of all three 

mechanisms leads to results, which cannot be reproduced, if one of these mechanisms is not

simulated. 

THEORY

Simulated physical system 

The physical particle synthesis is usually described by the onset of the nucleation of 

novel particles due to a rapid increase of the saturation S of the gaseous phase. This is usually 

done by a quick cooling of a saturated vapor (S=1). The cooling leads to decrease of the 

saturation pressure ps which in turn leads to changes of the nucleation rates over several orders of 

magnitude. The classical nucleation theory [4] describes the nucleation rate NR with the 

following formula (1): 
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nG is the monomer concentration in the gaseous phase and its decrease due to condensation or

nucleation is taken into account in this work, as well as an increase due to the evaporation of 

other particles. 

The other physical parameters used for the simulation model typical metallic properties ( density 
3

p 7.874 g cm  , atomic volume -29 3

M 1.178 10  mv   , atomic weight -26

 1 9.27 10  kgm   ,

surface tension 20.29 J m   and vapor pressure 0.805 Pasp  ), a temperature T of 1380 K

has been simulated. 

The nucleated particles form growth centers for further condensational growth, which, if

coupled to the continuous phase, lead to a further decrease of the monomer concentration. The 

free-molecular description of the growth process is adequate in the initial stages of the particle 

formation, given by the following formula (2): 
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The growth due to condensation of new monomers on the particle surface is described by 

positives values for G in (2), which are equivalent to a particle diameter d which is bigger than

the Kelvin diameter d
*
. The evaporation of particles smaller than d

* 
is described by negative

values for G in (2). In order to discuss the specific effect of the evaporation, simulation growth-

rates GALT, which do not depend on the particle size d have been added to the simulation. A

positive growth rate and no evaporation is expected for all saturations 1S  , if the following 

equation for the growth rate is used: 
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Coagulation is an additional growth mechanism, especially important, if high particle 

concentrations are encountered at the early stages of the simulation. In the following, the free-

molecular regime will be used for the simulation, given by formula (4): 
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Hybrid Monte Carlo simulation method based on weighted particles 

To account for the difficulties of the simulation of all these simultaneous processes, a 

Hybrid Monte Carlo simulation has been applied. The usage of weighted simulation particles 

introduced by [5] allows to describe multimodal particle populations, the single modes might

represent particle concentrations, which differ in several orders of magnitude from each other. 

The authors described the coagulation rate of differentially weighted particles with each other by 

introducing the concept of ‘ficticious particles’ which constitutes a constant number simulation

scheme. Figure 1 demonstrates the applied coagulation scheme, the value Wmax (resp. Wmin)

denotes the maximum (resp. minimum) of the statistical weights of the two particles selected for 

coagulation. 

Figure 1. The statistical weights W and the particle volumes v are altered during one coagulation

process, but the number of simulation particles remains constant. 

A speed-up of the computationally demanding Monte Carlo simulation could be recently 

gained by the application of a GPU algorithm, which uses a representative sample of coagulation

pairs, in order to determine quickly the maximal coagulation rate, which is needed for the correct

description of the coagulation probability in the scope of the acceptance-rejection algorithm [6].

This formulation allows not only a faster simulation, it is also applicable to all sorts of

coagulation kernels, and not only limited to certain forms, for which a majorant formulation (see 

e.g. [7]) can be found. 

We extended this coagulation algorithm by the addition of a condensation and nucleation

process., resorting to an operation splitting technique. Such approaches were already applied to

simulations based on weighted simulated particles [8], but these application are mostly limited to

surface growth resulting from chemical reactions and do not encompass the evaporation of 



particles whose diameter are smaller than the Kelvin diameter. In the simplest form of this 

approach, a time-driven Monte Carlo step is used to estimate a time-step which describes the

coagulation event, which is an inherent property of the simulated particles. Then, a growth step is

performed, which consists of the solution of the corresponding differential equations. No 

numerical diffusion [9] is encountered, if the growth process is modelled by discrete MC

particles. This growth simulation corresponds in some way, to the simulation of a moving pivot 

technique [10], where no diffusion is encountered. In contrast to the pivot technique, the 

coagulation is treated stochastically and new particles are created for each nucleation event. 

The differential equations describing the growth (resp. evaporation) of the existing 

particles as well as the formation of novel particles due to nucleation can be solved in an

efficient, parallel way on the GPU. The continuous nucleation process, which is described as a

steady inflow of particles, is discretized here by the use of a nucleation threshold. The total

amount of particle volume resulting from the nucleation is stored to a specific buffer. If the value

of this buffer surpasses a certain threshold, the volume stored on the buffer is included into the 

simulation as one simulation particle, containing all the volume in the buffer and the buffer is

cleared for the further simulation. In order to preserve a constant number of simulation particles,

two already existing particles are merged into a new one, leading to a free storage space, at

which the novel particle is included. (this technique is briefly mentioned by [11]).  

DISCUSSION

The combined processes of nucleation, coagulation and growth (called ‘complete 

system’) have been simulated for an initial particulate system described by a lognormal

distribution with the geometric mean value gd =2 nm and the geometric standard deviation g

=1.2, comprising a total number-concentration of 10
16

 m
-3

. This initial particle population has 

been combined with initial monomer saturations of S0= 4.5. The gained simulation results are 

compared with results of the simulation of two reduced systems, which are traditionally used in

order to decrease the level of complexity. The reduced systems investigated here are: 1) 

simulations of the coagulation and nucleation only (neglecting the growth/evaporation process),

for which the condensable material is included at the very beginning of the simulation, modelling 

thus a ‘nucleation burst (called ‘reduced system 1’ in the following) and 2) the single

combination of nucleation and growth (resp. evaporation), neglecting the coagulation process 

(called ‘reduced system 2’ in the following).  

In order to address the effect of the evaporation, the complete system and the system 2

are simulated with the full growth term G (marked with an additional (E) in the figures) and with

the growth term GALT neglecting the Kelvin effect (marked with an additional (NE) in the 

figures).  

1. Coagulation and nucleation only (reduced system 1)

For the reduced system 1, an additional particle population with a number-concentration

of 3 10
19

 m
-3

 and a diameter of 0.47 nm is inserted into the simulation, so that a 2
nd

 initial

condition is used for this case. This sudden inclusion can be interpreted as a ‘nucleation burst’.

Although clear higher particle number-concentrations can be found in the initial stages of the 

simulation for the reduced system 1 compared to the complete system (see figure 2a), the results

are predicted more accurately for the later stages of the simulation (figure 2b), the characteristic 



shape is – of course – the self-preserving size distribution for coagulation [12], which differs 

from the shape which is obtained for the combined processes of coagulation and growth. This

self-preserving distribution for combined coagulation and growth/evaporation has been discussed

recently by [13]. It can be seen, that the self-preserving PSD for coagulation is reached for the

reduced system and the complete system without the size-dependent evaporation term.  

Figure 2. The PSDs resulting from the reduced system 1 compared to the complete system with

evaporation (E) and without (NE) for S0=4.5 at the initial stage of the simulation (a) and for

longer simulation times (b).  

2. Nucleation and growth (reduced system 2)

Typical PSDs reached by the reduced system 2 are shown in figure 3 for an initial saturation of 

S0=4.5, which leads to significant deviations from the complete system, even after a short 

simulation time (figure 3a). Both simulation techniques lead to self-preserving size distributions.

The self-preserving size distribution for systems comprising the system 2 (E) due to coupling to

the continuous phase is described in the context of the LWS theory for liquid systems and 

reflects a broadening of the PSD [14,15]. Most theories used for aerosol systems do not describe 

the broadening of the PSD, because the evaporation can be neglected for the discussed cases 

[16,17]. Although the shape of the reduced system 2 approximates much better the shape of the 

complete system than the self-preserving distribution for the coagulation (reduced system 1), the

values of the mean diameters of both systems deviate significantly from each other, as can be 

seen in figure 3b. 

Figure 4a shows the driving force of the growth process, S S  , with 1S  . It can be seen, that

the value S S  is reached very quickly, if the evaporation is neglected. The reduced system 2 

(NE) attains therefore a constant state after a short time, which can be seen by the constant value 

for g  in figure 4b. The reduced system 2 (E) is described by two linear growth phases of the 

particles which are connected to the drop of g  , the self-preserving state reached at the end of 

the simulation is marked with a high simulation noise, which is a consequence of the rendering 

of the PSD with discrete particles. For the same reason, the self-preserving PSD for coagulation

is reached very quickly for the complete system (NE) with GALT, while the complete system with



G is marked by much broader distribution, which were found to have a self-preserving character

in [13]. 

Figure 3. The PSDs resulting from the reduced system 2 compared to the complete system are 

shown for systems comprising evaporation (E) and without (NE) at the initial stage of the 

simulation (a) and for longer simulation times (b).  

Figure 4. The saturation surplus S S  (with 1S  ) and the geometric standard deviation g

of the complete system compared to the reduced systems. No saturation is simulated for the

reduced system 1. 

4. Computational times

The computational times which are required for the simulation of the real time of 10

seconds of the considered system are shown in table 1. The results were gained by parallel

computations of 100 simulations (with identical initial conditions but different random numbers),

using a NVIDIA GTX 980 graphic processor unit (GPU). The simulations used 1000 weighted

MC simulation particles. This setting allowed a computational accuracy of ca. 2-4% (arithmetic 



standard deviations of the moments of the PSDs) throughout the simulation for all simulation

with included also the coagulation process. The reduced system 2, was limited by the numerical

accuracy, which is given by the accuracy of the used floating point numbers, i.e. 10
-14

.

Table 1. The computational times (in seconds) required for the simulation of the discussed

system compared with the complete system. The ‘X’ marks whether the single processes are 

simulated by the systems. 

Simulated system Coagulation Growth Nucleation  E (sec)  NE (sec) 

Complete system X X X 235.7   216.2 

Reduced system 1 X - Burst -  97.2 

Reduced system 2 - X X 6.4 2.5 

Table 1 makes obvious, that the coagulation process is the most demanding simulation process.

The computational times required for the complete system are in the same order of magnitude 

than the approximation of the nucleation burst (reduced system 1). This approximation leads

therefore to only modest increases of the computational efficiency for higher initial saturations. 

CONCLUSIONS

We discussed systems describing the combined processes of coagulation, nucleation and

growth (resp. evaporation) and their suitability for the modelling of early stages of particle 

synthesis due to physical nucleation and surface growth. It is shown, that all three processes have 

to be considered in order to describe the particle size distribution at all stages of the simulation. 

If the process of coagulation is not included into the simulation, severe deviations to the 

complete system (comprising the –simulation of all three processes) can be seen. If the process

rendering the particle growth is neglected and only the nucleation is included (which is rendered

as an instantaneous nucleation burst at the beginning of the simulation), the particle 

concentrations are clearly overestimated at the beginning of the simulation, however a coarse 

approximation of the complete system is given for longer simulation times. Hence only the 

coagulation is rendered by this simulation technique, the resulting self-preserving PSD, is only a 

coarse approximation of the self-preserving PSD resulting from the combined simulation of 

coagulation and growth / resp. evaporation.  
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Abstract
A hybrid Monte Carlo method is investigated, which combines discrete coagulation and nucleation
events with the continuous growth or evaporation of particles. An efficient parallel implementation
of this hybrid method on the GPU is discussed, taking into account the coupling of the growth
mechanisms to a continuous monomer concentration in the gaseous (or liquid) phase. Exemplary
simulations of the gas-phase synthesis of particles are presented, which lead to multimodal initial
particle size distributions which evolve into a self-preserving form for longer simulation times. This
self-preserving form is described by the competing mechanisms of coagulation and evaporation.

VII.1 Introduction
The synthesis and production of particles is usually modelled with the population balance equation
(PBE) [VII.1]. The Monte Carlo (MC) simulation is one method among others to solve this equation
numerically. It has the advantage that it can be easily adapted to particle populations described by
several particle properties. It can render single particle events and track thus the history of single
particles. The usage of weighted particles in the scope of the MC-simulation allows a higher accuracy
[VII.2] and the simple incorporation of nucleation processes into the simulation in the scope of a hybrid
approach [VII.3, VII.4] constituting thus an attractive alternative to the usually used constant-number
schemes [VII.5].

The MC-simulations require in general large computational times which arise due to the demand-
ing coagulation process. MC simulations are therefore not well suited for the coupling to CFD- or
compartmental models. Several techniques have been proposed to overcome this problem. One of
those recent approaches made use of a GPU and a fast approximation of the mean coagulation rate
[VII.6]. Speed-ups of a factor of 200 were reported by the mere use of the GPU for the coagulation
process [VII.7].
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We present in the following an extension of the constant-number algorithm for the simulation of
coagulation [VII.6]. The operator splitting technique [VII.8] is used to simulate in a hybrid approach
the growth of particles and nucleation of new ones during one MC time step. The implementation
of the nucleation algorithm is based on a parallel merging algorithm, which keeps the number of the
simulation-particles constant. The growth of single simulation particles is simulated by the parallel
solution of the corresponding differential equations describing the growth rates. This makes the
simulation of condensation and evaporation processes possible. We present in this context the fast
parallel summation technique in order to account for the mass-balance (i.e. the coupling to the gaseous
phase). This coupling influences in turn the nucleation and condensation (or evaporation) rates of the
simulated particles, so that Ostwald-ripening (typical for crystallization processes) can be simulated
by the algorithm as well.

We present the application of this algorithm to the simulation of particles in a hot wall reactor
and discuss the dependency of the particle properties on the initial saturation of the system.

VII.2 Population Balance Equation
The PBE describes the temporal change of the particle size distribution (PSD) n(v) for particles with
the volume v. The simultaneous process of coagulation, nucleation and growth are described by the
following equation:

dn(v, t)
dt =1

2

∫ v

0
β(v′, v − v′)n(v′, t)n(v − v′, t)dv′ − n(v, t)

∫ ∞
0

β(v, v′)n(v′, t)dv

−∇v(G(v, nG)n(v, t)) +NR(nG) · δ(v − vnuc(nG)) .
(VII.1)

The first two terms on the r.h.s. in equation (VII.1) describe the coagulation process for a given
coagulation kernel β(v, v′), which is the collision frequency between two particles with the volumes
v and v′. The third term on the r.h.s. describes the growth (if G(v, nG) > 0) or evaporation (if
G(v, nG) < 0) of a particle with the size v with the corresponding rate G(v, nG). The last term
describes the nucleation of new particles with the volume vnuc(nG) which are introduced with a
nucleation rate of NR(nG) into the simulated system. The growth and nucleation rates G(v, nG) and
NR(nG) (as well as the volume of the nucleated particles, vnuc(nG)) depend on the concentration nG
of the monomers in the continuous gaseous (or liquid, if precipitation processes are described) phase.
A general mass-balance equation has to be added in order to account for the conservation of the total
mass (neglecting optional terms, which describe an additional in or out flow of nG into the simulated
system):

dnG

dt = −NR(nG)vnuc

vM
− 1
vM

∫ ∞
0

n(v′)G(v′, nG)dv′ . (VII.2)

The atomic (resp. molecular) volume of the material is denoted by vM.

VII.3 Parallel, Hybrid Monte Carlo Algorithm
Instead of treating all simulated processes as competitive Monte Carlo events (see. [VII.5] for example),
the coagulation is combined in a hybrid manner with the growth and nucleation processes based on the
operator splitting technique. This technique decouples the coagulation and the nucleation and growth
for small intervals of time. These intervals are chosen in this work to be equal to the event-driven MC
time steps tMC. The following simulation algorithm describes this notion:

• Initiate the time t = 0 and the nucleation volume buffer VB = 0.

• Repeat:

1. Perform a parallel MC-event-driven step (one coagulation event) and estimate the time
step value tMC. This procedure is described in [VII.6] in detail.

2. Simulate the growth (or evaporation) of all particles in parallel for the interval of time tMC
by the repetition of small steps ∆t ≤ tMC :
– Initiate the time tGrowth = 0 .
– Repeat:
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(a) For each MC-particle i (which has a statistical weight Wi and a volume vi) the
following equation is solved:

dvi
dt = G(vi, nG)⇒ v

(new)
i = vi + ∆t ·G(vi, nG) . (VII.3)

(b) Remove particles r from the simulation, if v(new)
r < vM .

(c) Take the coupling to the continuous phase into account (Eq. (VII.2)):

n
(new)
G = nG−∆t ·NR(nG)vnuc(nG)

vM
− ∆t
vM

∑
not

evaporated
particles

WiG(vi, nG)+
∑

evaporated
particles

vr
vM

Wr .

(VII.4)
(d) Add the volume-concentration of newly nucleated particles to the buffer VB:

VB = VB + ∆t ·NR(nG)vnuc(nG) . (VII.5)

(e) If VB is greater than a specific threshold value VT, then:
i. include a new simulation particle into the simulation with the volume vnuc and

the statistical weight Wnuc = VB/vnuc.
ii. Reset the buffer which stores the nucleated volume: VB = 0.

(f) Increase the time tGrowth = tGrowth + ∆t .
– Until the time tMC is reached: tGrowth = tMC.

3. Increase the time t = t+ tMC .

• Until the simulation end time tend is reached: t ≥ tend .

The parallel implementation of step 2a and 2c of the algorithm is depicted in Figure VII.1, first the
updates of the volumes of each simulation particle are calculated, and then a parallel adding technique
is used in order to estimate the new value of the concentration nG. Only 14 parallel computational
steps are necessary for the summation of 10 000 simulation particles.

Figure VII.1 and the described algorithm depict a Euler-implementation of the solution of the
differential equation, in the here presented work a 4-5 Runge-Kutta-method has been used. This
method comprises of the calculation of 7 consecutive v values, the algorithm in Figure VII.1 is thus
repeated 7 times for one Runge-Kutta time step ∆t.

VII.4 Simulated Test Cases
Small particle sizes are encountered in early stages of the gas-phase synthesis. The coagulation kernel
describing the free-molecular regime can be used in order to describe the corresponding coagulation
process:

β(v, v′) =
(

3
4π

) 1
6
√

6kBT
ρp

·
√

1
v

+ 1
v′
·
(
v

1
3 + v′

1
3

)2
(VII.6)

Table VII.1 summarizes the parameter values and constants used for the simulation, kB is the Boltz-
mann constant.

Table VII.1: Constants and parameters used for the simulation.

Name Value
Temperature T = 1380 K
Density (Fe) ρp = 7.874 g cm−3

Atomic volume (Fe) vM = 1.178 · 10−29 m−3

Atomic weight (Fe) m1 = 9.27 · 10−26 kg
Surface tension (Fe, 1380 K) γ = 0.29J m−2

Vapor pressure (Fe, 1380 K) ps = 0.805 Pa

199



Paper VII: Simultaneous Nucleation, Coagulation and Growth – 2016 AIChE Annual Meeting

+

+

+ +

+

+ +

Figure VII.1: The parallel algorithm calculates the new volumes v(new)
i of the simulation particles

i in the first row. The evaluated values ∆t · G(vi, nG) ·Wi (resp. vi/vM in the case of evaporation)
are reused in the consecutive computational steps for the parallel calculation of n(new)

G .

The growth rate in the free-molecular regime is described by:

G(v, nG) =
vM · π ·

( 6v
π

) 2
3

√
2π ·m1 · kB · T

·

kB · T · nG − ps · exp

 4 · γ · vM

kB · T ·
( 6v
π

) 1
3


 . (VII.7)

The nucleation term is described by the classical kinetic theory:

NR(nG) = nG ·
√

2γ
π ·m1

ps

kB · T
· exp

(
− 16 · π · γ3 · v2

m

3 · k3
B · T 3 · ln (S)2

)
, with S = nGkBT

ps
. (VII.8)

The volume of the nucleated particles is given by the Kelvin diameter d∗, with

vnuc(nG) = π(d∗)3

6 = 64 · π4 · v3
M

6 · k3
B · T 3 · (ln(S))3 , with S = nGkBT

ps
. (VII.9)

The initial conditions for the simulated system consist of a lognormal PSD, with the geometric mean
value dg=2 nm and the geometric standard deviation σg=1.2, rendering a total number-concentration
of 1016 m-3. The change of the PSD depending on the initial saturations of S0=1.5, 2.5 and 4.5 are
discussed in the results section.

VII.5 Simulation Results
The nucleation rates depend strongly on the saturation of the system, as shown in Figure VII.2a and
VII.2b, a slight drop of the saturation from 2.5 to 1.5 leads to a drop off which comprises nearly 20
orders of magnitude. This leads in turn to dramatic changes of the number-concentration, as can be
seen in Figure VII.2c.

Exemplary PSDs are shown in Figure VII.3 for the time points marked by the horizontal lines in
Figure VII.2. A growth of the initial PSD is accompanied with the nucleation of novel particles in both
presented cases leading to a multimodal PSD. The higher nucleation rates for S0=4.5 (Figure VII.3b)
lead to a nucleation peak which describes particle concentrations, which are 3 orders of magnitude
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Figure VII.2: The saturation S (a), nucleation rates NR(nG) (b) and the number-concentration of
all simulation particles (c) are shown in dependency of the initial saturation S0.

higher than the particles rendered by the initial PSD concentration. It can be seen, that the usage
of weighted particles allows to render even such extreme PSDs, which are only reproducible if a very
large number of equally weighted simulation particles is used.
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Figure VII.3: The PSDs for the initial saturation S0=2.5 (a) and S0=4.5 (b) are shown.

The moments of the PSDs are shown Figure VII.4 it can be seen, that for longer simulation times
the geometric standard deviation reaches a constant value (large noise levels are found for this value
due to the rendition of evaporation by discrete particles, the left side of the PSD in Figure VII.5b),
while the mean geometric diameter increases linearly, this marks the characteristics of a self-preserving
particle size distribution (SPD), whose form is the same for all simulated initial saturations S0 and is
discussed for the case S0=1.5 in more detail.

Low initial saturation values S0 lead to negligible nucleation rates, so that the development of
the given initial PSD is described by the coagulation and growth only. Exemplary simulation re-
sults for this scenario are shown in Figure VII.5 for S0=1.5. It can be seen, that the PSDs attain
a self-preserving distribution (SPD), which is slightly different from the SPD which is attained for
the coagulation only. It can also be seen, that the major part of the SPD is smaller than the corre-
sponding Kelvin diameter and should therefore evaporate in the absence of the coagulation process.
The simulation particles have therefore to be simulated as long as they are bigger than the monomer
(atomic) size of the simulated material – instead of removing them already from the simulation when
they reach sizes which are smaller than the Kelvin diameter.

The computational times are summarized in Table VII.2, the results show the required simulation
times for 100 simulations which are executed in parallel, each simulation consists of 1000 simulation
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Figure VII.4: The geometric mean diameter (a) and standard deviation (b) are shown.
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Figure VII.5: The PSDs for the simulation of combined coagulation and growth are shown in (a)
for an initial saturation of S0=1.5. The PSDs are normed to the mean diameter v and the particle
number-concentration N in (b) in order to highlight the self-preserving character of the PSDs.

particles. This means, that 105 coupled differential equations have been solved in total (combined
with the event driven Monte Carlo code). This finding underscores the computational efficiency of
the presented algorithm. The simulations were performed on a NVIDIA GTX 980 graphics processing
unit.

VII.6 Conclusions
A hybrid GPU-based simulation technique for the simultaneous simulation of coagulation, nucleation
and growth (resp. evaporation) with a coupling to the continuous phase is presented. The combina-
tion of a parallel, event-driven Monte Carlo simulation with a Runge-Kutta based parallel solution
of differential equations is discussed for this purpose. The resulting Algorithm can be used to de-
scribe the gas-phase synthesis of particles. The usage of weighted simulation particles allows to render
multimodal PSDs, for which each mode represents different particle concentration which vary several
orders of magnitude and are typically encountered at the initial stages of the simulation. The detailed
rendering of the evaporation process of the particles allows the description of a self-preserving size
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Table VII.2: Computational times required for the simulation of t= 1000 seconds.

S0=1.5 S0=2.5 S0=4.5
Computing time 45 sec 74 sec 145 sec

distribution which results from the competing process of evaporation and coagulation and is encoun-
tered at the later stages of the simulation. Although the explicit calculations of several thousands
of coupled differential equations poses a severe computational task, we show, that an efficient GPU
implementation of this problem is able to produce relevant results which describe the simulated pro-
cess completely within just a few minutes. The algorithm is therefore applicable in the framework of
compartmental models or flow-sheet simulations.
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Parallel GPU-Based Monte Carlo Techniques for
the Flowsheet Simulation of Solid Processes

G. Kotalczyk, K. Lambach and F.E. Kruis

Abstract
We describe two parallel algorithms (the deterministic ‘merging’ algorithm and the stochastic ‘random
removal’ method) for the simulation of particulate flow between single units in the context of flow-
sheet simulations. These algorithms are tested on an exemplary flow-sheet system modelling typical
particle production processes. The mixing of several particulate instreams into single units as well as
the separation of particles in screen units according to their size are included into this test system.
The proposed methods are validated by comparison with numerical solutions of the corresponding
sets of differential equations. Although the ‘random removal’ technique can be used in the context
of coagulation or nucleation, we find that it leads to very high levels of statistical noise in the here
presented transport implementation. These high noise levels make the method nearly inapplicable
for problems of the same complexity as the here presented one. The presented introduced parallel
merging algorithm shows less statistical noise and a very good reproduction of the benchmark results
at the cost of greater computational complexity and thus computing times.

VIII.1 Introduction
The description of particle production processes by means of a flow-sheet simulation allows a simple
framework for performance analysis and optimization. The modularization of a whole process into
single unit operations allows the investigation of specific settings of single units and consequences of
these settings for the overall process. The solution of the corresponding equations, however, poses a
subject of great difficulty, hence mostly several particle properties have to be taken into account for
the complete characterization of the particulate material. The corresponding particle dynamics may
exhibit strong non-linear dependencies on these multi-variate properties and are mostly described by
the population balance equation (PBE) (see e.g. [VIII.1, VIII.2]). The Monte Carlo (MC) technique
poses a solution method for the PBE, which allows to take several particle properties into account.
Such multivariate modelling requires normally a large amount of computational resources, if a sectional
method is used for the solution of the PBE (see e.g. [VIII.3]).
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The modelled particle size distributions (PSD) can describe differences in particle concentrations
which can span several orders of magnitudes. The computational efficient description of such large
differences of particle concentrations becomes possible by the application of weighted MC simulation
particles [VIII.4, VIII.5]. Recent algorithms for the nucleation, coagulation [VIII.6], condensational
growth/evaporation [VIII.7] and breakage [VIII.8] of particles by means of weighted MC simulation
particles have been formulated specifically for graphic processing units (GPU). It has been shown that
the parallel computation of the GPU architecture could be exploited for the accelerated solution of
the PBE, making thus the incorporation of this stochastic technique for the simulation of flow-sheet
processes suitable.

Production processes on plant scale can be mostly formulated as a sequence of coupled unit op-
erations (with possible tear-streams), which in turn can be described by the PBEs. There exist
several approaches, to solve such a system, next to the sequential modular approach, a (simultane-
ous) equation-oriented approach can be chosen to describe such a coupled system (see e.g. [VIII.9,
VIII.10]). The parallel formulation of the solution of the PBEs by means of the MC method is best
suited for the equation-oriented approach.

We present in the following a parallel simulation algorithm for particulate transport, which allows
the incorporation of these several mechanisms in an operator splitting technique (see e.g. [VIII.11]),
this in turn allows the analysis and optimization of a complex manufacturing process, like it is described
in the next section further below.

VIII.2 Simulated System

We describe a transport algorithm for a particle production process as it is shown in Figure VIII.1.
The initial particulate material represented by large particles of the size of ca. 50 nm is dispersed
into a carrier gas. These initial particles are mixed in two subsequent units with pulsed aerosol feeds
carrying particles of different materials, representing size ranges of around 3nm and 10 nm, the exact
properties of the simulated particles can be found in Table VIII.1. In a real application, the particles
would grow due to agglomeration and the screen would separate large agglomerated product particles
(these are collected by the following filter) from smaller particles (these are directed to a mixer unit
for further agglomeration). Hence the agglomeration process is not considered in this work, the screen
is operating in a different size range (defined further below) than the one presented in Figure VIII.1.

Disperser Mixer 1 Mixer 2 Screen Filter

Initial Particles 
in Disperser:

Particles in
Pulsed Feed 1
 

Product
Particles
in Filter 
  

Particles in
Pulsed Feed 2
 

Figure VIII.1: Flowsheet of the simulated system.

206



Paper VIII: Monte Carlo Techniques for the Flowsheet Simulation of Solid Processes – 2018 WCPT

Table VIII.1: Properties of the initial particle populations and the particles within the feeds.

Location of particle population Initial population In Feed 1 In Feed 2
with unit number () or Feed symbol in disperser (1) F

(ext)
2,in F

(ext)
3,in

Particle concentration nF,i / kg (carrier gas) - 5 · 1015 2 · 1015

Initial number of particles in disperser / resp. total 1010 8 · 1011 3.2 · 1011

number of particles inserted by feeds in 28 s
Initial particle mass in disperser / resp. particle 5.98 6.28 0.07

mass inserted by feeds in 28 s / ng
Mean geometric diameter dg /nm 50 10 3
Geometric standard deviation 1.2 1.46 1.46.

VIII.2.1 Transport Equations for the Carrier Gas

The net amount of carrier mass M (C)
i (units kg) changes over time for each unit i and is modeled by

the following set of equations:

dMC
i

dt =
∑
j 6=i

(
f

(j)
i,in ·Mj − f (j)

i,out ·Mi

)
+ F

(ext)
i,in , with: f (j)

i,in = f
(i)
j,out∀i 6= j , (VIII.1)

where f (j)
i,in denotes the relative inflow rate (units 1/s) into unit i from unit j and f

(j)
i,in the outflow

from unit i to unit j. The exact values are listed in Table VIII.2. The pulsed feeds F (ext)
2,in and F (ext)

3,in
are described by the following formula:

F
(ext)
2,in (t) = F

(ext)
3,in (t) =

{
F

(max)
in = 0.01g/sec = , if bt/τFc = 0, 2, 4, 6, . . .

0 , if bt/τFc = 1, 3, 5, 7, . . . , with: τF = 4 sec .

(VIII.2)
The floor function bxc denotes thereby the largest integer number smaller than the rational number
x.

Table VIII.2: Initial Conditions and flow rates for each unit in Figure VIII.1. The properties of the
particle populations are listed in Table VIII.1.

Disperser Mixer 1 Mixer 2 Screen Filter

Unit number in (1) (2) (3) (4) (5)
Eqs. (VIII.1) and (VIII.3)

Initial particle populations Yes No No No No
Initial carrier gas 100 0.1 0.1 0.1 0

masses MC,(0)
i /mg

Outflow rates / s−1 f
(2)
1,out = 0.2 f

(3)
2,out = 1 f

(4)
3,out = 1 f

(2)
4,out = 0.7, f (5)

4,out = 2 No
External pulsed feeds – F

(ext)
2,in = 10 F

(ext)
3,in = 10 – –

maximal rates / mg /s

VIII.2.2 Transport Equations for Particles

We assume that the particles are mixed homogeneously and instantaneously upon arrival in each unit,
so that a constant concentration n(C)

i (units / kg) of particles can be found throughout each unit. For
the number of particles NP

i (dimensionless number, NP
i = n

(C)
i ·MC

i ) within each unit, the following
equations result for the change of the number of particles due to the transport:

dNi
dt =

∑
j 6=i

(
f

(j)
i,in ·Nj − f

(j)
i,out ·Ni

)
+ F

(ext)
i,in · nF,i for j 6= 4 , (VIII.3)
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with the relative flows f (j)
i,in, f

(j)
i,in and absolute flows F (ext)

i,in used in Eq. (VIII.1) and (VIII.2) and
tabulated in Table VIII.1. The values for the particle concentrations nF,i within the feeds are listed
in Table VIII.1. For the description of the screen (unit 4, j = 4), it is assumed, that the total
outflow of the carrier mass

(
f

(2)
4,out + f

(5)
4,out

)
corresponds to the correct decrease of the particle number,

Ni ·
(
f

(2)
4,out + f

(5)
4,out

)
, but that the particles are either found in the stream to the second unit or to

the fifth unit, depending on their volume v, resulting in the following modified particle flow rates:

f
P(2)
4,out(v) =

(
f

(2)
4,out + f

(5)
4,out

)
· S(v) , and: f

P(5)
4,out(v) =

(
f

(2)
4,out + f

(5)
4,out

)
· (1− S(v)) , (VIII.4)

where S(v) is a separation function describing the screening process. The resulting Eqs. (VIII.4) have
to be used instead of f (2)

4,out(v) and f
(5)
4,out(v) in Eq. (VIII.3) for the screen unit. In this work, the

following simplified separation function is applied:

S(v) =

 1 , v < vS = π · d3
S/6, with: dS = 40 nm ,

(vE − v)/(vE − vS) , vS < v < vE = vS + 2 · (π · d3
C/6− vS), with: dC = 50 nm ,

0 , v > vE = π · d3
E/6 with: dE ≈ 57.8 nm .

(VIII.5)

VIII.3 Simulation Methods
VIII.3.1 Transport of Weighted Monte Carlo (MC) Particles

The application of weighted MC particles allows to render the PSD in a more precise way [VIII.4].
Each MC particle in the unit is assigned an additional property, the statistical weight . This approach
allows alternative formulations to the stochastic determination, which particles are selected to leave
a compartment (or unit) and to be inserted into the next one (specific transport events are defined
by [VIII.12, VIII.13] allows multiple simulation particles to leave within one time step and formulates
binomial probabilities for these events).

If weighted MC particles are simulated, exact calculation of the removed weight becomes possible.
The following simple Euler approach summarizes this for the MC particle k in the unit i:

W
(i)
k (t+∆t) = W

(i)
k (t)−W (i)

k (t)·
∑
j 6=i

f
(j)
i,out ·∆t = W

(i)
k (t)·F, with: F = 1−

∑
j 6=i

f
(j)
i,out ·∆t . (VIII.6)

For each connected unit j which is connected to i, new MC particles are added with the same properties
as particle k in the unit i and the statistical weight:

W
(j)
new,k(t+ ∆t) = f

(j)
i,out ·∆t ·W

(i)
k (t) . (VIII.7)

A scaling factor F can be used to keep track of the depleted statistical weight for all particles, if
the flowrates are independent on the particle size, like proposed by [VIII.14]. However, in case of
a unit operation like the screening process, the flow rates depend on the particle properties (the
volume v according to Equation (VIII.4)), Equations (VIII.6) and (VIII.7) have to be evaluated
for each individual particle. This might be computationally disadvantageous in the case of a serial
implementation, but it is very efficient if a parallel implementation in combination with a graphic
processing unit (GPU) is applied. The new particles with the weights W j

new,k can be inserted into the
simulation by means of parallel merging algorithms or by the random removal of existing particles.

VIII.3.2 Merging

Following the approach presented in [VIII.6], two particles i and j with the statistical weights Wi, Wj

and the volumes vi and vj are merged with each other to a new particle with Wnew and vnew with the
merge error Em defined via:

Wnew = Wi +Wj , vnew = (Wi · vi +Wj · vj)/(Wi +Wj), Em =
((
vi − vj

)
/min

(
vi, vj

))2
.

(VIII.8)
While the parallel algorithm in [VIII.6] dealt with the problem to include one nucleated particle into
an existing particle population by finding merge partners with low statistic weights and the lowest
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merge errors of a sample, the here presented work merges two entire particle populations with each
other. This is done by a large number of parallel comparisons. The algorithm compares for two
particles, whether the merging error is smaller than a predefined value Emin. The pair is merged if
the condition is true. The value Emin is increased in the course of the simulation.1

VIII.3.3 Random Removal

The random removal algorithm has been introduced in the framework of a MC simulation of coag-
ulation, in order to ascertain a constant number of simulation particles and avoid the decrease of
computational accuracy [VIII.15]. We use this algorithm with some modifications for weighted simu-
lation particles (like described in [VIII.6]). MC particles of the streams are included into the holdup
by removing either the existing particles from the holdup or the particles from the stream and redis-
tributing the removed mass on the rest of the particle population by multiplication with a constant
factor. Random numbers are used for the selection of the particles which are to be removed.

VIII.3.4 Fixed Pivot Technique

For the validation of the transport code, a fixed pivot technique is used – although defined for the sim-
ulation of coagulation [VIII.16], it can be easily applied to the given problem. A fine one-dimensional
grid of 1000 pivot points is set up, spanning particle sizes from 1 nm (first pivot point) to 10 µm
(last pivot point), the sizes of two adjacent pivot points increase by a factor of 10(1/12) ≈ 1.028. The
pivot points are initiated with concentrations corresponding to the particle size distributions defined
in Table VIII.1, and for each point the transport equation (VIII.3) is solved numerically.

VIII.4 Results
Figure VIII.2 shows exemplary PSDs resulting from the prolonged application of the merging technique
as well as the random removal technique. The PSD in the disperser can be approximated by both
methods exactly, hence no particles have to be inserted into this unit. It can be seen, that the random
removal technique fails to predict the PSDs of the other units correctly. Both simulation techniques
preserve the total mass of all particles in all units in the scope of the floating point precision, like
it is shown in Figure VIII.3a. The total mass in all units resulting from the pivot method, Mpiv, is
compared in the Figure with the total mass MMC resulting from MC simulations. Similar results can
be seen for the number of particles (Npiv for the pivot method and NMC for MC particles) in the
screen unit, which is shown in Figure VIII.3. It can be seen, that the accuracy of the simulation can
be tuned by the choice of the Euler step size and that this accuracy increases for smaller step sizes.
Smaller step sizes lead, however to larger computational times, which are summarized in Table 3.

Table VIII.3: Computational times for 10 240 MC particles in seconds using a NVIDIA GTX 980
Ti GPU.

Euler step size (sec) ∆t = 0.1 ∆t = 0.01 ∆t = 0.001
Merging (10 parallel simulations) 198.9 2 012.7 19 928.6
Random Removal (100 parallel simulations) 49.5 128.7 1 181.5

It should also be mentioned, that the random removal methods exhibit a large amount of statistical
noise. The arithmetic standard deviations for the values of the number-concentration of the particles
(or the geometric mean diameter or the geometric standard deviations of the PSDs) are higher than
10% of the arithmetic mean of these values – this very high level of statistical noise disqualifies the
here presented random removal technique for many flowsheet applications.

1An increase of Emin by a factor of 4 is done after every 64 parallel comparison steps – if the program is not
terminated earlier because of the successful merging of all populations. During each parallel comparison step, 512 MC
particles from each stream are compared with 512 MC particles in the hold up. The compared pairs change with each
loop iteration, so that after 512 parallel loops (7 increments of Emin) each of the 512 MC particles in the holdup unit
would have been compared with every particle from every stream, if no particles could have been merged. The data
representing the particles is divided in blocks, where each block operates on its 512 particles for each stream and the
holdup of the unit (if 10240 MC particles are used for the simulation, then 20 data blocks are used in parallel). We
observed, that an initial setting of Emin = 10−4 leads to the successful merging of all streams long before the end of
the theoretically possible 512 loops – the last loop iteration would be done with the largest value for Emin, which is:
Emin =1.64.
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Figure VIII.2: PSDs for 3 units in Figure VIII.1 (the screen operates for particle ranges defined by
Equation (VIII.5)) for a simulation time of 28 seconds, 10 240 MC particles and an Euler time step
of ∆t = 0.1 sec.

Figure VIII.3: The deviations of the MC simulations from the pivot results for different values of
the Euler step ∆t. a) the total mass of the system is compared. b) the number concentration in the
screen unit is compared. The results are shown for 10240 MC particles.

VIII.5 Conclusions
We introduce and investigate Monte Carlo (MC) simulation techniques for the particulate transport in
a network of units (or compartments). The techniques are benchmarked by comparison to simulations
based on the fixed pivot method. The application of parallel algorithms, designed to run on graphic
processor units (GPUs) has been tested for the simulation of an exemplary production setup with
recycle streams, mixers and a screen unit. The simulation of the transport alone poses a challenging
task, and it could be shown, that the simulation of a deterministic outflow of particles from single
units coupled to a stochastically simulated inflow (simply termed ‘random removal’ in this work) is
not able to reproduce the benchmark results with a high level of accuracy. A deterministic method, a
massive parallel merge algorithm has been introduced, and the Euler step size has been identified as a
parameter, which allows to tune the accuracy at the expense of the required computational time. This
algorithm proves to reproduce the benchmark results with a high accuracy and is a promising candidate
for a computationally efficient simulation of a multivariate flow-sheet problem, which also includes
other non-linear particle processes, like coagulation, growth, evaporation, breakage, nucleation and
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others.
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