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Chapter 1

General introduction

Insurance companies are currently facing many challenges. One of these challenges is the
current low-interest phase, which has already lasted for several years. But the high fluctu-
ation of interest rates also represents a fundamental financial risk for insurance companies.
In general interest rate risk has a major impact on the solvency of insurance companies.
In particular, the actuarial reserve of life insurance companies, whose portfolios consist of
policies with long maturities that promise a relatively high guaranteed return, is affected
by interest rate risk (cf. Berdin and Gründl (2015), Hieber et al. (2015)).

The subject of this work are life insurance companies who provide participating
life insurance contracts. Especially German life insurer have a huge amount of long term
contracts in their portfolio, such that they are exposed to potential risks on the financial
stability, in particular interest rate risk i.e. losses due to interest rate fluctuations. Life
insurance contracts with (innovative) guarantees, which are of particular relevance for life
insurance companies due to the ongoing low-interest phase and the high fluctuations on the
financial markets as well as the regulatory requirements from Solvency II (cf. Schmeiser
and Wagner (2015)), are investigated in this thesis. Those participating life insurance
contracts are contracts where the insured participates in the return of the insurers asset
portfolio with her initially paid premium. In addition, a minimum return on her premium
is often guaranteed. A distinction is made between terminal and cliquet-style guarantees,
whereby terminal guarantees only take into account the return at the contract maturity,
while cliquet-style guarantees do it regularly at specific intervals (e.g. annually).

In the German life insurance market, participating life insurance policies still account
for a large proportion of all current insurance policies, although the number decreased in
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1 General introduction

recent years (c.f. GDV (2022)). One risk affecting such policies is that the return on the
insurer’s investment portfolio may be lower than the guaranteed minimum return promised
to the policyholders. In this case, the insurer is liable. For this reason, the policyholder
pays a risk premium to the insurer. This risk threatens the solvency of the insurers and
must therefore be adequately managed. Moreover, due to this, the minimum guaranteed
return of such policies are regulated by local authorities. In Germany, an upper limit for
these minimum guaranteed returns is set by the German Federal Ministry of Finance based
on the recommendations of the German Association of Actuaries (DAV) and the German
Federal Financial Supervisory Authority (BaFin). In order to earn the guaranteed returns
on older policies, insurers must make investments that promise a higher return than the
risk-free rate. Since a higher return is associated with more risk, insurers must therefore
take more risks in order to avoid insolvency.

German government bond 30 years yield vs. upper bound on minimum
guaranteed return from 01/2010 to 08/2022

2010 2012 2014 2016 2018 2020 2022

0

1

2

3

4

R
e
tu
rn
in

%

Figure 1.1: A comparison between the development of the monthly yield of German government bonds
with a maturity of 30 years (solid line) and the upper bound on the minimum guaranteed return set by the
German Federal Ministry of Finance (dashed line) in the period from January 2010 to August 2022. The
data of the government bonds originates from Refinitiv Workspace while the data one the upper bound
comes from the German Association of Actuaries (DAV).

Figure 1.1 shows the development of this upper limit for these minimum guaranteed
returns (dashed line). Currently, the upper limit is 0.25%. Since this upper limit only
applies to new policies, many insurers still have old policies in force that provide minimum
guaranteed returns of over 2%. The upper limit for these minimum guaranteed returns was
much higher before 2010 with values up to 4% from 1995 to 2000. In comparison, figure
1.1 also shows the development of the yield on German government bonds with a term of
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1 General introduction

30 years (solid line), which can be regarded as a representative risk-free interest rate due
to its high rating. In fact, Figure 1.1 shows that the current risk-free interest rate is well
below the current upper bound for minimum guaranteed returns. It can also be observed
that participating life insurance contracts currently offered by German life insurers meet
this upper limit.

The aim of this thesis is to examine participating life insurance products with regard
to their exposure to interest rate risk. In addition to the question of the optimal design
of these products, this thesis also deals with the question of how an appropriate choice of
different products can hedge against interest rate risk. Furthermore, the regulatory basis
for hedging interest rate risks in the EU given by Solvency II will be examined.

Chapter 2 analyzes minimum return rate guarantees (MRRGs) including fixed guar-
antee rates prevailing for the whole contract horizon as well as floating guarantee rates
which are linked to the interest rate evolution. In a complete arbitrage free market where
the asset and bond price dynamics are given by Gaussian processes, we obtain closed
form pricing solutions for both guarantee schemes. Differences in the guarantee costs are
then explained by the difference of the arbitrage free values of the fix and floating rate
guarantees and the difference between cumulated volatilities resulting from forward and
simple volatilities. We then consider the perspective of the asset liability management, i.e.
we analyze the sensitivities of the asset and liability side against changes in the interest
rate by determining the duration and convexity. We show that a combination of fix price
and floating strike guarantees enables a natural hedge against changes in the interest rate.
Furthermore we analyze the derived hedging strategy of fix and floating strike guaran-
tees regarding the risk management of insurance companies by considering different risk
measures like the value at risk and the conditional value at risk.

Chapter 3 analyzes the design of participating life insurance contracts with mini-
mum return rate guarantees. The default risk, i.e. the risk that the value of the asset is
lower than the intended guaranteed payout at the end of the term, is considered. In this
context, a simple contract design of participating life insurance contracts with a mini-
mum return guarantee (MRRG) is presented. Without default risk, the insured receives
the maximum of a guaranteed rate and a participation in the investment returns. With
default risk, the payoff is modified by a default put implying a compound option. Under
regulatory guidelines for this probability of default, the optimal design of the MRRG is
then determined in a simple Black Scholes model setup and under the assumption of a
constant mix strategy. We represent the yearly returns of the liabilities by a portfolio

3



1 General introduction

of plain vanilla options. A closed form of the probability of default as a function of the
equity ratio is derived. In a Black and Scholes model, the optimal payoff constrained by
a maximal shortfall probability can be stated in closed form. Due to the completeness of
the market, it can be implemented for any equity to debt ratio.

Chapter 4 analyzes the Solvency II capital requirements under the interest rate risk
submodule. The aim of this chapter is to compile the results of these studies and to provide
an overview of the strengths and weaknesses of the SCR with regard to protection against
interest rate risk. At the end, the question whether the SCR under the current Solvency
II regulations represents an adequate capital reserve for insurance companies regarding
interest rate risk will be discussed on the basis of the available scientific literature. It
begins by a brief introduction to Solvency II regulation. It then introduces the interest
rate risk submodule and discusses the minimum capital requirements under the standard
formula. Finally it summarizes the results from a collection of research papers that relate
to capital requirements under the interest rate submodule.

Chapter 5 concludes this thesis. In addition, the appendix contains an analysis of
the Vasicek model with respect to the derivation of the formulas, the simulation, and the
estimation of the parameters.

4



Chapter 2

Natural hedging with fix and
floating strike guarantees

2.1 Introduction

Low interest rate scenarios and (downward) changes in the term structure of interest rates
may deteriorate the solvency situation of a life insurance company. In this chapter, we
focus on the possibilities to build a natural hedge against interest rate risk by offering a
suitable product mix of different minimum return rate guarantee schemes (MRRGs). In
particular, we consider both, immunization of the interest rate risk on the liability side as
well as on the asset and liability side simultaneously.

MRRGs are embedded in traditional and innovative participating life insurance
products which are e.g. popular in German speaking countries.1 Here, the savings ac-
count of the insured grows at least according to a guaranteed rate, but the insured also
participates in the excess returns of the investment strategy conducted by the insurer, i.e.
if there is any.

In view of the long-term horizons which are common in life insurance products, the
guarantees (long term put options) can cause a substantial risk exposure to the provider.
Recently, writing (traditional) long term terminal guarantees is often considered as too
expensive by the insurance industry, in particular in view of low interest rate regimes and

1 For example, reference is made to the products KonfortDynamik, InvestFlex and IndexSelect of Allianz,
PrivatRente Performance of R+V and TwoTrust Vario of HDI.

5



2 Natural hedging with fix and floating strike guarantees

the capital requirements posed by the Solvency II regulation, cf. Berdin and Gründl (2015)
and Mirza and Wagner (2018). In consequence, there are innovative insurance products
discussed and placed on the market linking the guaranteed rate to the interest rate evo-
lution and/or the insurer’s investment results which are considered as less expensive and
riskily if compared to traditional guarantees, cf. Eling and Holder (2013) and Reuß et al.
(2016).

In a dynamic version, a natural hedge (on the liability side) implies that the value
of the product mix does not change if there is a change in the term structure of interest
rate, i.e. if the interest rate sensitivities of both products (each weighted by the number of
products) coincide. In the first instance, we analyze the possibilities of building a natural
hedge. Regarding the products, we compare fixed guarantee rates prevailing for the whole
contract horizon and floating guarantee rates linked to the interest rate evolution.

W.r.t. the numerical illustrations, we place ourselves in a complete and arbitrage
free financial market model setup where the asset and bond price dynamics are given in
terms of Gaussian processes. We assume a competitive insurance and financial market (as
well as competition between the insurance and financial market) such that the guarantee
contracts under consideration are priced under the no arbitrage condition. Using well
known pricing results concerning the option to exchange two (lognormal) assets, we obtain
closed form pricing solutions for the benchmark contract/guarantee designs. A contract
is called fair (competitive) if the arbitrage free value of the liabilities to the insured are
equal to her (up front) contribution. For a given initial contribution and guarantee rate,
it is basically possible to determine the participation (in the excess returns) such that
the contract is fair.2 In particular, higher guarantee costs are associated with a lower
participation fraction. We compare the participation rates of fixed rate and (interest rate
linked) floating strike guarantees. The Gaussian model setup is especially convenient to
obtain an intuitive explanation for the differences in the guarantee costs of fix and floating
rate guarantees. Both guarantee costs are exclusively specified by the arbitrage free values
of the (fix, floating) guaranteed amount and the difference between cumulated volatilities
resulting from forward and simple volatilities of the asset side which is determined by
an investment strategy in assets traded on the financial market. We then consider the
price sensitivities of the asset (investment strategy) and liability side (consisting of fix
and floating strike guarantees) towards changes in the interest rates and the correlation

2 Alternatively, one can determine the fair guarantee rate for a given participation fraction.
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2 Natural hedging with fix and floating strike guarantees

between the assets and the interest rate. We show that fix and floating strike guarantees
give rise to opposing effects such that a suitable combination of fix and floating interest
rates can build a natural hedge against interest rate and correlation risk. Illustrations are
given in terms of a Black and Scholes (1973)/extended Vasicek model (c.f. Hull and White
(1990)). We further analyze the meaning of fix and floating strike guarantees for the risk
management of insurance companies.

The contributions of the chapter can be summarized as follows. While natural hedg-
ing possibilities are for example discussed in the context of life insurance and annuities (cf.
Gatzert and Wesker (2012)), we are, to the best of our knowledge, the first who discuss
the possibility to build up a natural hedge by means of a suitable product mix of different
guarantee schemes. Compared to an immunization of the buffer (difference of assets and
liabilities) by adjusting the duration of the asset side, the natural hedge has in addition
the following advantage. Reducing the (stochastic) duration of the asset side may be dif-
ficult because it is not necessarily possible to trade in (liquid) bonds which are consistent
with the long maturities of life insurance contracts. In addition, any modification of the
investment strategy (asset side) also impacts the value of the guarantees (liability side). In
contrast, a natural ALM hedge based on a product mix on the liability side has no impact
on the asset side.

This chapter is related to several strands of the literature including the ones on (i)
pricing and hedging embedded guarantees/options, (ii) portfolio planning, (iii) innovative
guarantee contracts, and (iv) natural hedging by means of life insurance products. Without
postulating completeness, we only refer to the most related literature and hint at the
additional literature given within the mentioned papers.

Pricing embedded options by no arbitrage already dates back to Brennan and
Schwartz (1976). For a fair valuation of participating life insurance contracts, we refer,
among others, to Briys and De Varenne (1994), Tanskanen and Lukkarinen (2003), Bal-
lotta (2005), and Bauer et al. (2006), Eckert et al. (2016), Orozco-Garcia and Schmeiser
(2019) and Bacinello et al. (2021). Risk management and hedging aspects are e.g. dis-
cussed in Mahayni and Schlögl (2008), Klusik and Palmowski (2011) and in the context
of variable annuities in Feng and Yi (2019).

Literature on portfolio planning with a main focus on insurance contracts with
guarantees includes e.g. Huang et al. (2008), Milevsky and Kyrychenko (2008), Boyle and
Tian (2008), Branger et al. (2010), and Mahayni and Schneider (2016). Portfolio planning
itself dates back to Merton (1975) who, amongst other results, solves the portfolio planning
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2 Natural hedging with fix and floating strike guarantees

problem for a CRRA investor. For alternative or innovative guarantee contracts, we refer
to Eling and Holder (2013), Mahayni and Muck (2017) and Ruß and Schelling (2018).

Hedging of mortality risk in life insurance contracts is related to our basic idea
since contracts with opposing sensitivities to mortality risk are combined. Cox and Lin
(2007) e.g. analyze natural hedging of life insurance and annuity liabilities. Wang et al.
(2010) show that natural hedging can Gatzert and Wesker (2012) lower the sensitivity of an
insurance portfolio with respect to mortality risk. They use simulations to select portfolios
of insurance contracts which immunize the insurer’s solvency against chances in mortality.
While Wang et al. (2010) only concentrate on the liability side and do not consider the asset
side, Gatzert and Wesker (2012) take into account both, asset and liabilities, as well as
their interaction. Luciano et al. (2017) extend the previous literature by introducing hedges
within a single generation and across generations in the presence of both, longevity and
interest-rate risks. Wong et al. (2017) further analyze the effect of life insurance product
design on natural hedging by using a variety of standard products. A natural hedge based
on a product mix is also subject to the work of Bernard and Boyle (2011). The authors
focus on equity indexed annuities and consider a standard equity linked contract and a
so-called Monthly Sum Cap EIA, both accounting for a fix strike guarantee. However, we
consider a product mix of a fix strike guarantee and a floating strike guarantee which is
linked to the interest rate evolution in a participating life insurance contract where the
insured also participates in the insurer’s excess returns of the driven investment strategy.

The rest of the chapter is organized as follows. Section 3.2 introduces fix strike
and floating strike guarantees. We state the model setup for the asset and interest rate
evolution and derive the pricing formulas for the different benchmark guarantee schemes.
In Section 3, we model the asset side of the insurer by means of a strategy conducted at
the financial market. We then analyze the sensitivities of the asset and liability side w.r.t.
changes in the interest rate. We then discuss the possibilities to obtain a natural hedge on
the liability side which immunizes the buffer (assets minus liabilities) against changes in
the interest rate. In Section 4, the results are illustrated in a Black and Scholes/Vasicek
model setup. Section 2.6 concludes the paper.

2.2 Preliminaries

Throughout the following, we analyze two versions of MRRGs which are meaningful in the
context of participating life insurance contracts. One version is implied by a guaranteed
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2 Natural hedging with fix and floating strike guarantees

rate which terminal value is once determined at the contract inception. We refer to it as fix
strike guarantee. The other version is a (stochastic) guarantee rate which is implied by the
interest rate accumulation over the contract horizon. We call it floating strike guarantee.
These two versions are understood as corner cases of more general contract designs.

Since the insured receives the maximum of the guarantee and a fraction of the
asset result, we need assumptions on the evolution of the asset side and the interest
rate dynamics. We use a Gaussian model setup which gives rise to closed-form (market
consistent) values of the liabilities of the insurance company and allows to obtain first
insights about the (basic) differences of the guarantee costs associated with fix strike and
(interest rate) floating strikes. A detailed analysis of the interactions of asset and liabilities
which are closely linked to the investment strategy conducted by the insurance company
is dedicated to the subsequent section.

2.2.1 Contract design, model setup and pricing

The contribution of the insured consist of a single premium P0 at the inception t = 0
of the contract.3 Her payoff prevails at T > 0 and is given in terms of a participation
on positive investment results/returns and includes a return guarantee. To simplify the
expositions, we restrict ourselves to terminal guarantees and, as mentioned above, we
distinguish between two corner cases. One is implied by a guarantee which is determined
at the contract initialization. The other benchmark case is given by a guarantee which is
proportional to a (stochastic) money account growing with the interest rates (rt)t∈[0,T ].
Formally, the benchmark guarantee schemes (contracts, respectively) are described as
follows. Let (At)t∈[0,T ] denote the value process of the insurer’s investment portfolio (asset
side), then the payoff to the insured with a terminal guarantee is of the form

PT = P0 max
{

K, α
AT

A0

}
= P0

(
α

AT

A0
+
(

K − α
AT

A0

)+
)

(2.1)

where K = f(I(0, T )) and I(t, T ) :=
∫ T

t
ru du

and α denotes the participation fraction of the investment return AT
A0

. K represents the
terminal guaranteed return which we refer to as strike guarantee, since the payoff can be

3 Since we abstract from mortality or surrender risk, there is no loss of generality due to a single premium
compared to more flexible premium payments.
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2 Natural hedging with fix and floating strike guarantees

represented in the form of a put option on insurer’s assets with strike K. In the following
we consider two types of guarantees:

(i) The fix strike guarantee is given by a constant strike K = Kfix.

(ii) The floating strike guarantee is given in terms of a strike which is proportional to
the money market account, i.e. Kfl. = α̃eI(0,T ) where α̃ denotes the fraction of the
interest rate accumulation.

Assuming a competitive insurance (and financial) market, the participation fraction α (or
the strike K of the guarantee option) is determined such that the initial contribution P0

matches the (arbitrage-free) value of the contract payoff. Thus, we have to pose assump-
tions on the asset and interest rate dynamics. We assume a complete and arbitrage-free
financial market model under interest rate risk where the dynamic of the price process
(At)t∈[0,T ] as well as the dynamics of the zero coupon bonds B(·, t̄) paying one monetary
unit at maturity t̄ ∈ [0, T ] are lognormal.4

Thus, the index dynamic is modeled along the lines of Black and Scholes (1973), the
interest rate dynamic is given by a Gaussian Markov Heath, Jarrow and Morton (1992)
model. In particular, there exist a uniquely defined martingale measure P ∗ such that

dAt = At (rt dt + σA(t) dW ∗
t ) (2.2)

dB(t, t̄) = B(t, t̄) (rt dt + σt̄(t) dW ∗
t ) (2.3)

where W ∗ denotes a d-dimensional Brownian motion with respect to P ∗, and σA and σt̄

satisfy the usual regularity conditions.

To simplify the notation further, we introduce the cumulated volatility (of the pro-
cess Z) from time t up to time T by v(t, T ), i.e.

v(t, T ) :=

√∫ T

t
∥σZ(s)∥2 ds (2.4)

where ∥ · ∥ depicts the euclidean norm. The subsequent pricing results can be traced back
to the pricing of an option to exchange two assets. The pricing formula for a European

4 We call a stochastic process (Zt)0≤t≤T lognormal iff it is a solution of

dZt = Zt(µt dt + σZ(t) dWt)

with deterministic dispersion coefficient σZ : [0, T [→ Rd
+
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2 Natural hedging with fix and floating strike guarantees

option to exchange two lognormal assets dates back to Margrabe (1978) and is summarized
in the following lemma.

Lemma 2.2.1 (Pricing formula for exchange option) Let X and Y denote two log-
normal assets.5 Then, the t–value of the European option to exchange the asset Y for the
asset X at maturity T with payoff [XT − YT ]+ is given by

C(t, Xt, Yt) = XtN (d1(t, Zt)) − YtN (d2(t, Zt)) (2.5)

where Z := X
Y and

d1(t, Z) :=
ln(Z) + 1

2v2(t, T )
v(t, T ) , d2(t, Z) = d1(t, Z) − v(t, T ),

and v(t, T ) :=

√∫ T

t
∥σZ(s)∥2 ds.

Using the above pricing formula for the option to exchange two lognormal assets X and Y

immediately implies closed-form pricing formulas for the insurance contracts with fixed and
floating strikes. To simplify, from now on we concentrate on the case where P0 = A0 = 1,
i.e. where the initial single premium paid by the insured as well as the initial value of the
insurer’s investment portfolio is normalized.

(i) First, consider the fix strike guarantee (K = Kfix). Let Yt = αAt, i.e. Y is (along
the lines of Eqn. (2.2)) a lognormal process. In addition, observe that the guarantee payoff
is [XT − YT ]+ where XT = Kfix. Notice that the (arbitrage free) value of the payoff XT at
time t is given by the expectation (under the pricing measure P ∗ and given the information
prevailing at t) of the discounted payoff, i.e.

Xt = E∗
[
e−I(t,T )Kfix|Ft

]
= KfixE∗[e−I(t,T )|Ft] = B(t, T )Kfix.

In addition, we need the cumulated volatility v(t, T ) of the quotient process Zt = Xt
Yt

. It
is given by

v(t, T ) =

√∫ T

t
∥σZ(s)∥2 ds =

√∫ T

t
∥σA(s) − σT (s)∥2 ds.

5 A lognormal (synthetic) asset in fact means that its dynamic is lognormal and that under the risk
neutral pricing measure the local drift coefficient is equal to rt.
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(ii) Now, consider the floating strike guarantee (K = α̃eI(0,T )). Again, let Yt = αAt.
Now it holds XT = α̃eI(0,T ) such that the t-value of the asset X now is given by

Xt = E∗
[
e−I(t,T )α̃eI(0,T )|Ft

]
= α̃E∗[e−I(t,T )+I(0,T )|Ft] = α̃eI(0,t).

Notice that

dXt = d

(
α̃e
∫ t

0 ru du
)

= α̃rte
I(0,t) dt = Xtrt dt.

such that the cumulated volatility v(t, T ) of the quotient process Zt = Xt
Yt

is given by

v(t, T ) =

√∫ T

t
∥σZ(s)∥2 ds =

√∫ T

t
∥σA(s)∥2 ds.

Thus, using Lemma 2.2.1 together with the payoff definition of fix and floating strike
guarantees gives the following pricing results for the guarantee contracts.

Proposition 2.2.2 (Contract Pricing) Let P0 = 1 and let C(t, Xt, Yt) be defined by
Equation 2.5. Then the arbitrage-free prices Cw(t, Kw

t , αAt) (w ∈ {fix, fl.}) of the guar-
antee payoffs are given by

Cw (t, Kw
t , αAt) = αAt + C (t, Kw

t , αAt)

(i) for w = fix (fix strike guarantee) it holds

Kfix
t = B(t, T )Kfix and vfix(t, T ) =

√∫ T

t
∥σA(s) − σT (s)∥2 ds.

(ii) for w = fl. (floating strike guarantee) it holds

Kfl.
t = α̃eI(0,t) and vfl.(t, T ) =

√∫ T

t
∥σA(s)∥2 ds.

Recall that C(t, K, αAt) denotes the option price to exchange the strike K for the insured
asset fraction αAt. In its interpretation, this option is a put on the insurer’s assets, i.e.
a option to sell the assets back at strike K, which is granted in addition to the asset
participation. The contract price of a fix strike (floating strike) guarantee contract is thus
obviously increasing in Kfix (in α̃). An important observation concerns the pricing impact
of the correlation between the asset price and interest rate.
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2.2.2 Fair pricing

Before further analyzing the effects of interest rate changes on the guarantee values, we
first express the guarantee costs by means of the participation fraction α which ensures
that the contract value is equal to the initial contribution of the insured.6 We call the
associated participation fraction the fair participation fraction. In fact, the participation
fraction is valid if one assumes a competitive market.

Formally, let C(t, Xt, Yt) be defined by equation (2.5). For w ∈ {fix, fl.} and for
given guarantee strikes (Kfix or accumulation factor α̃, respectively), the participation
rate αw is called fair iff

αwA0 + C (0, Kw
0 , αwA0) = P0

where Kw
t is given as in Proposition 2.2.2. Note that the guarantee costs can be resembled

by the fair participation fraction αfair, i.e. the lower the αfair, the higher the guarantee
costs. In particular, since we assume P0 = A0 = 1 the actual guarantee costs are

C (0, Kw
0 , αw) = 1 − αw.

We want to shed a light on the question whether the costs of a floating strike guarantee
are lower than the ones of a fix strike guarantee. The answer is simple if one assumes that
the present value of the guarantee is equal, i.e.

α̃ = B(0, T )Kfix.

Recall that the option price which defines the guarantee costs is increasing in the cumulated
volatility of the quotient process Z. Thus, for α̃ = B(0, T )Kfix, the difference of the
floating strike guarantee and fix strike guarantee is determined by the difference of the
cumulated volatilities. It immediately follows that for α̃ = B(0, T )Kfix the guarantee
costs of the floating strike guarantee are lower than the ones of the fix strike guarantee
(i.e. αfix

fair < αfl.
fair), iff ∫ T

0
∥σA(s) − σT (s)∥2 ds >

∫ T

0
∥σA(s)∥2 ds.

Remember that at time s the local forward volatility
√

∥σA(s) − σT (s)∥2 which defines
the guarantee costs of the fix strike guarantee is decreasing (increasing) in the local asset

6 Notice that analogous reasoning can be conducted along the lines of the strikes, i.e. one can also fix the
participation fraction α and determine the fair strike Kfix (accumulation factor α̃).
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bond (interest rate) correlation. In contrast, the correlation between the interest rate (bond
prices) and asset value does not affect the guarantee costs of the benchmark floating strike
guarantee. Thus, the difference of fix and floating strike guarantee costs is decreasing
(increasing) in the asset bond (interest rate) correlation. Assuming a constant correlation
between asset prices and interest rates e.g. implies that there exists a critical level ρcrit of
the correlation such that the fair participation fractions of fix and floating strike guarantees
are equal.

In addition, it is worth mentioning that, ceteris paribus, the price of the floating
strike guarantee does not depend on the initial interest rate term structure (zero bond
curve, respectively). In contrast, falling interest rates (rising bond prices) positively impact
the value of a fix strike guarantee contract. In addition, it is necessary to consider the
impact of the term structure of interest rates which is introduced by its impact on the
asset value At. The value of both guarantee versions, fix and floating, are given in terms of
the prices of options written on the asset value of the insurance company. Thus, a change
in the term structure of the interest rate effects the asset value and thus also the liability
value. For further clarification, we are going to model the asset dynamics of the insurance
company by means of the value process of an investment strategy with financial market
instruments in the next section.

2.3 Financial market model, investment strategies, and risk
management

Recall that in both cases, fix and floating strike guarantees, the contract value at time
t ∈ [0, T ] depends on the dynamics of the insurer’s asset side (At)t∈[0,T ]. In the previous
section we assumed that the asset dynamics is described by a lognormal process (cf. Eqn.
2.2) such that the contract values are explicitly given in terms of the current value of the
insurer’s assets At and the riskiness of the asset side measured by the cumulated volatility
v(0, T ) (cf. Proposition 2.2.2). In the following section we model the asset side as the result
of an investment strategy conducted by the insurance company on the financial market.
In the first instance we pose assumptions on the investment strategies and the investment
opportunity set which are consistent with the closed-form pricing formulas derived in the
previous subsection. Thus, the contract prices can still be expressed in closed-form. The
same is true for the sensitivities of all risk factors.
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2.3.1 Financial market model and investment strategies

Throughout the following, we assume that the insurer can invest in one risky asset S and
(risky) bonds B(·, t̄) with maturities t̄ ∈ [0, T ]. We assume that the bond dynamics (under
the pricing measure P ∗) are given as defined by Eqn. 2.3. The stock dynamic is modeled
by

dSt = St (rt dt + σS dW ∗
t ) (2.6)

where W ∗ denotes a d-dimensional Brownian motion with respect to P ∗ and σS denotes
the constant stock volatility. In particular, P ∗ is uniquely defined (the financial market
model is complete in the stock and d − 1 bonds with different maturities). In order to
stick to a Gaussian model setup w.r.t. the insurer’s asset dynamics At (and also w.r.t.
realistic applications), we assume that the investment strategy conducted by the insurer is
a constant mix strategy, i.e. a strategy which is defined by constant fractions of portfolio
wealth invested into the traded assets. Let the fractions of wealth invested in S and the
bonds with maturities t1 < t2 < . . . td−1 be denoted by π = (πS , π1, . . . , πd−1) where
πS +

∑d−1
i=1 πi = 1. The above assumptions imply that the dynamics of the asset side is

given by a (d-dimensional) lognormal process, i.e.

dAt

At
= πS

dSt

St
+

d−1∑
i=1

πi
dB(t, ti)
B(t, ti)

. (2.7)

Alternatively, the above dynamics can be represented in terms of the numbers ϕ
(S)
t = πSAt

St

and ϕ
(i)
t = πiAt

B(t,ti) , i.e.

dAt = ϕ
(S)
t dSt +

d−1∑
i=1

ϕ
(i)
t dB(t, ti). (2.8)

Since the strategy ϕ =
(
ϕ

(S)
t , ϕ

(1)
t , . . . , ϕ

(d−1)
t

)
is self-financing, we also have

At = ϕ
(S)
t St +

d−1∑
i=1

ϕ
(i)
t B(t, ti). (2.9)

Thus, we still can rely on the closed-form pricing formula summarized in Proposition 2.2.2
and shed further light on the (joined) sensitivities of the asset and liability side of the
insurance company.
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2.3.2 Interest rate sensitivities and natural hedging

Proposition 2.2.2 implies that the sensitivities (Greeks) of both, fix and floating strike,
guarantee contracts can be stated in closed-form.7

Our main focus is on the asset liability management of interest rate risk. Thus, we
also focus on the sensitivities of the asset and liability side, i.e. on the sensitivity of the
buffer At −Lt. Since we intend an immunization on the basis of the duration as well as the
convexity, we consider in the following the first two derivations according to the interest
rate. Along the lines of our assumptions, At is defined by Eqn. (2.7). We assume that the
insurer issues one type contract with a fix strike guarantee and one type of contract with
a floating strike guarantee. Let ηfix and ηfl. denote the fractions of those fix and floating
contracts issued by the insurer and ηfix + ηfl. = 1 such that the liabilities can be described
by

Lt = ηfixCfix
(
t, Kfix

t , αfixAt

)
+ ηfl.Cfl.

(
t, Kfl.

t , αfl.At

)
=
(
ηfixαfix + ηfl.α

fl.
)

At + ηfixC
(
t, Kfix

t , αfixAt

)
+ ηfl.C

(
t, Kfl.

t , αfl.At

)
. (2.10)

Eqn. (2.10) shows that the value of the liabilities can be divided into three parts. One part
refers to the assets, one to the guarantee costs of the fix strike guarantee and one of the
floating strike guarantee. It follows, that the buffer value can be described by

At − Lt =(
1 − ηfixαfix − ηfl.α

fl.
)

At − ηfixC
(
t, Kfix

t , αfixAt

)
− ηfl.C

(
t, Kfl.

t , αfl.At

)
. (2.11)

A default occurs if the buffer value becomes negative, i.e. At − Lt < 0. Notice that the
proposed bond dynamics are affine, i.e.

B(t, T ) = e−B(t,T )rt+A(t,T ). (2.12)

With Eqns. (2.9) and (2.12), the interest rate sensitivities of the asset side are given by

∂At

∂rt
=

d−1∑
i=1

πiAt

B(t, ti)
(−B(t, ti)B(t, ti)) = −At

d−1∑
i=1

πiB(t, ti) < 0 (2.13)

∂2At

(∂rt)2 = −∂At

∂rt

d−1∑
i=1

πiB(t, ti) = At

(
d−1∑
i=1

πiB(t, ti)
)2

> 0 (2.14)

7 Closed form solutions for the price sensitivities are especially convenient since numerical approximation
of the derivatives of non-closed-form solutions are demanding.
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where B(t, ti) denotes the duration of the bond maturing at ti, i.e. B(t, ti) is an increasing
function in ti and

∑d−1
i=1 πiB(t, ti) is the duration of the portfolio.

Proposition 2.3.1 (Interest rate sensitivities of the buffer value) The interest rate
sensitivities of the buffer value are given by

∂(k)(At − Lt)
(∂rt)(k) =

(
1 − ηfixαfix − ηfl.α

fl.
) ∂(k)At

(∂rt)(k) − ηfix
∂(k)C

(
t, Kfix

t , αfixAt

)
(∂rt)(k) − ηfl.

∂(k)C
(
t, Kfl.

t , αfl.At

)
(∂rt)(k) .

For w ∈ {fix, fl.} C (t, Kw
t , αwAt) denotes the price of the exchange option according to

Eqn. (2.5). It holds

∂C(t, Kw
t , αwAt)

∂rt
= ∂Kw

t

∂rt
N
(

d1

(
t,

Kw
t

αwAt

))
− αw ∂At

∂rt
N
(

d2

(
t,

Kw
t

αwAt

))
In particular,

∂Kfix
t

∂rt
= −B(t, T )B(t, T )Kfix < 0, (2.15)

∂Kfl.
t

∂rt
= rtKfl. > 0. (2.16)

For the convexity it holds

∂2C(t, Kw
t , αwAt)

(∂rt)2 = ∂2Kw
t

(∂rt)2 N
(

d1

(
t,

Kw
t

αwAt

))
− αw ∂2At

(∂rt)2 N
(

d2

(
t,

Kw
t

αwAt

))

+ N ′
(

d1

(
t,

Kw
t

αwAt

)) 1
v(t, T )

(
1√
Kw

t

∂Kw
t

∂rt
+
√

Kw
t

At

∂At

∂rt

)2

and

∂2Kfix
t

(∂rt)2 = B(t, T )2B(t, T )Kfix > 0, (2.17)

∂2Kfl.
t

(∂rt)2 =
(
1 + r2

t

)
Kfl. > 0. (2.18)

A proof for Proposition 2.3.1 can be found in the appendix.

Proposition 2.3.1 states the following. With regard to the general interest rate sensi-
tivity of the buffer value, we can see three influencing factors. One factor is represented by
the interest sensitivity of the asset portfolio, one by the interest sensitivity of the exchange
option price with the fix strike and one with the floating strike guarantee. The exchange
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option price sensitivity depends on two factors, one regarding the interest rate sensitivity
of the strike and on regarding the interest rate sensitivity of the asset portfolio. For the
fix strike one can see, that the interest rate sensitivity is negative (Eqn (2.15)). For the
fix strike option it holds

∂C(t, Kfix
t , αfixAt)
∂rt

= ∂Kfix
t

∂rt︸ ︷︷ ︸
<0

N
(

d1

(
t,

Kfix
t

αfixAt

))
︸ ︷︷ ︸

>0

− αfix ∂At

∂rt︸ ︷︷ ︸
<0

N
(

d2

(
t,

Kfix
t

αfixAt

))
︸ ︷︷ ︸

>0

In general the exchange option price with a fix strike is decreasing with increasing interest
rate, if it holds

∂Kfix
t

∂rt
N
(

d1

(
t,

Kfix
t

αfixAt

))
< αfix ∂At

∂rt
N
(

d2

(
t,

Kfix
t

αfixAt

))

Thus, depending on the investment strategy (and the option’s moneyness), we may observe
a option price which is increasing, decreasing, or immune against interest rate changes.
Formally, there exists a critical level l∗ such that, for −∂At

∂rt
< l∗ (sufficient low interest

rate duration of the asset side) it holds

∂C(t, Kfix
t , αfixAt)
∂rt

> 0.

The critical level is defined by

l∗ = −∂Kfix
t

∂rt

N
(

d1

(
t,

Kfix
t

αfixAt

))
αfixN

(
d2

(
t,

Kfix
t

αfixAt

)) (2.19)

Contrary to this the exchange option price with a floating strike is always increasing
with increasing interest rate, i.e.

∂C(t, Kfl.
t , αfl.At)

∂rt
= ∂Kfl.

t

∂rt︸ ︷︷ ︸
>0

N
(

d1

(
t,

Kfl.
t

αfl.At

))
︸ ︷︷ ︸

>0

− αfl. ∂At

∂rt︸ ︷︷ ︸
<0

N
(

d2

(
t,

Kfl.
t

αfl.At

))
︸ ︷︷ ︸

>0

> 0

Thus, if the directional effects are opposing each other, a suitable number of fix and
floating strike guarantee products can (locally) immunize the interest rate sensitivity on
the liability side. However, from the perspective of the asset liability management, it is
merely important to immunize the difference of the asset and the liability value against
interest rate changes. We call this a natural ALM hedge in fix and floating strike guarantee
products.
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2 Natural hedging with fix and floating strike guarantees

Such a natural hedge is meaningful if the duration of the asset side is low compared to the
duration implied by a full investment in the bond maturing at the terminal contract date
T . In particular, this is the situation faced by the life insurance industry. In particular,
assuming that the interest rate duration of the asset side is rather low we can determine
the optimal fraction η∗

fix of fix strike guarantees such that the buffer value is immunized
against a change in the interest rate, i.e. such that

∂(At − Lt)
∂rt

= 0.

There are a few comments worth mentioning. Basically, one can also obtain an immuniza-
tion of the buffer by adjusting the duration of the asset side. Normally, the duration of
the asset side of a life insurer is much lower than the one of the liability side. However,
this may turn out difficult because of at least two reasons. For one, it is not necessarily
possible to trade in (liquid) bonds which are consistent with the long maturities of life
insurance contracts. In addition, any modification of the investment strategy (asset side)
also impacts the value of the guarantees (liability side). In contrast, a natural ALM hedge
which is constructed by a product mix (on the liability side) has no impact on the asset
side.

In the following section, we illustrate and quantify the results by means of a two
factor model.

2.4 Illustration – two factor model

The main focus of the following subsection is an illustration of the possibilities to obtain
an interest rate immunization by introducing floating strike guarantees in addition to fix
strike guarantees.

2.4.1 Two factor model (d = 2)

For the numerical illustrations we assume that the asset price dynamics S is lognormal
with a constant volatility σ, and the interest rate dynamics are given along the lines of
the (extended) Vasicek model, i.e. we place ourselves in a two dimensional Gaussian setup
along the lines of Eqn. (2.2) and (2.3) where

σS =

 ρσ√
1 − ρ2σ

 , σT (t) =

 σT (t)
0

 where σT (t) = σr

a
(1 − e−a(T −t)).
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2 Natural hedging with fix and floating strike guarantees

Alternatively, we can formulate this model setup by means of the asset and Vasicek interest
rate dynamics (and in terms of two independent Brownian motions) where under the risk
neutral probability it holds

dSt

St
= rt dt + ρσ dW

(1)
t +

√
1 − ρ2σ dW

(2)
t (2.20)

drt = a(θ(t) − rt) dt + σr dW
(1)
t . (2.21)

W (1) and W (2) denote two independent Brownian motions under the risk neutral measure
P∗. In addition, the volatility σ of the stock is a constant, σr is also a constant. a denotes
the speed of mean reversion of the Ornstein Uhlenbeck process driving the interest rate
dynamics with mean reversion level θ(t) where θ(t) is a deterministic function of the
extended Vasicek model. In the special case of the Vasicek model it is constant, i.e. θ(t) = b.
In particular, the above mentioned interest rate dynamics implies the following bond price
dynamics

dB(t, t)
B(t, t) = rt dt − σrB(t, t) dW

(1)
t where B(t, t) = 1

a

(
1 − e−a(t−t)

)
(2.22)

implying (cf. e.g. Brigo and Mercurio (2006))

B(t, t) = e−B(t,t)rt+A(t,t) (2.23)

where A(t, t) = (B(t, t) − (t − t))
(

b − σ2
r

2a2

)
− σ2

r

4a
B2(t, t). (2.24)

Notice that the interest rate model is complete in two bonds. In particular, this implies
that any duration of the asset side (cf. Eqn. (2.13)) can be resembled by an investment
strategy which only refers to two bonds. Thus, we simplify the exposition by referring to
investment strategies including the stock and two bonds with different maturities.

Let π = (πS , π1, π2) with (πS + π1 + π2 = 1) denotes the (constant) fractions of
wealth invested in the asset S and the zero coupon bonds with maturities T1 and T2. This
implies the insurer’s asset process A given by

dAt

At
= πS

dSt

St
+ π1

dB(t, T1)
B(t, T1) + (1 − πS − π1) dB(t, T2)

B(t, T2) . (2.25)

Since all three asset dynamics are given by lognormal processes, the process A is also
lognormal. For the pricing purpose, we only need the volatility structure of A and B(., T ),
i.e. (in terms of a two dimensional Brownian motion)

σA(t) =

 ρπSσ + π1σT1(t) + (1 − πS − π1)σT2(t)√
1 − ρ2πSσ

 , σT (t) =

 σT (t)
0


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2 Natural hedging with fix and floating strike guarantees

where σT (t) = σr
a (1 − e−a(T −t)). W.l.o.g., we restrict ourselves to the case where T1 = T

and a very short bond T2 → t (i.e. a cash position) such that

σA(t) =

 ρπSσ + πBσT (t)√
1 − ρ2πSσ

 , σT (t) =

 σT (t)
0


where πB = π1 is the fraction invested in the bond and 1−πS −πB is the fraction invested
in the cash position.

Table 2.1: Benchmark parameter setup

Contract Black Scholes Vasicek Portfolio
α T P0 S0 σ µS r0 a b̃ b σr ρ πS πB

0.9 5 1 1 0.2 0.07 0.0115 0.3 0.042 0.0305 0.015 0.15 0.15 0.4

For simulation we need to change to the real world measure P. Assuming a constant
market price of interest rate risk λr leads to asset and interest rate dynamics under the
real world measure given by

dSt

St
= µS dt + ρσ dW̃

(1)
t +

√
1 − ρ2σ dW̃

(2)
t (2.26)

drt = a(b̃ − rt) dt + σr dW̃
(1)
t , (2.27)

where b̃ = b + λrσr
a . If not otherwise mentioned, we use the model parameters summarized

in Table 2.1. For the market price of interest rate risk we set λr = −0.23.8

2.4.2 Illustration of correlation effects

Recall that at time t (t ≤ T ) the guarantee costs depend on the cumulated asset volatilities
(respectively forward volatilities) v(t, T ). Depending on the investment fractions πS (stock

8 Our benchmark parameter setup is consistent with the one used in recent literature (e.g. Hieber et al
(2019), Graf et al. (2011)).

21



2 Natural hedging with fix and floating strike guarantees

Cumulated volatilities and fair participation rates
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Figure 2.1: For varying asset bond correlation ρ, the figure on the left hand side depicts the cumulated
volatility for fix (black line) and floating strike (dotted line) options. The figure on the right hand gives
the corresponding fair participation rates. The underlying model parameters are given as summarized in
Table 2.1. (We set Kfix = e0.02 and α̃ = B(0, T )Kfix.

fraction) and πB (wealth fraction invested in the bond with maturity T ), it holds

v2
fix(t, T ) =

∫ T

t
∥σA(s) − σT (s)∥2 ds

= π2
Sσ2(T − t) +

∫ T

t
(2ρπS(πB − 1)σσT (s) + (πB − 1)2σ2

T (s)) ds,

v2
float.(t, T ) =

∫ T

t
∥σA(s)∥2 ds = π2

Sσ2(T − t) +
∫ T

t
(2ρπSπBσσT (s) + π2

Bσ2
T (s)) ds.

Assuming that the investment fractions are non-negative (no short positions), the above
formulas implies that the directional effects of the bond position πB on the volatilities
(cumulated volatilities) of fix and floating strike guarantees are different, i.e. for a given
asset fraction πS . While the (cumulated) volatility σA needed for pricing the floating strike
guarantee contract is increasing in the bond fraction πB, this is not necessarily true for
the forward volatility σA,T needed for pricing the fix strike guarantee. Notice that the
difference of fix and floating (cumulated) volatilities is determined by∫ T

t
∥σA(s) − σT (s)∥2 ds −

∫ T

t
∥σA(s)∥2 ds

= − 2ρπsσ

∫ T

t
σT (s) ds + (1 − 2πB)σ

∫ T

t
σ2

T (s) ds,

i.e. for a sufficiently high asset bond correlation, the fix strike cumulated volatility is lower
than the floating strike cumulated volatility.
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2 Natural hedging with fix and floating strike guarantees

Based on the benchmark parameters summarized in Table 2.1, Figure 2.1 illustrates
the cumulated volatilities (and fair participation rates) of fix and floating strike guarantees
in the special case that πS = 1 and πB = 0. Here, the cumulated volatility of the floating
strike guarantee is constant while the one of the fix strike guarantee is decreasing.9

Cumulated volatilities for varying bond fraction
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Figure 2.2: For varying bond fractions π1, the figures depict the cumulated volatility for fix (black lines)
and floating strike (dotted lines) guarantees. The upper (lower) figures refer to a stock fraction πS = 0.375
(πS = 0.125). The figures on the left (right) hand side are based on an asset bond correlation of ρ = 0.25
(ρ = 0.1). The underlying model parameters are given as summarized in Table 2.1. Furthermore we set
T = 1.

9 In particular, in the special case πS = 1 and πB = 0 (pure stock investment) it holds (cf. Appendix B.2)

v2
fix(t, T ) =

∫ T

t

∥σA(s) − σT (s)∥2 ds

=
(

σ2 − 2ρσ
σr

a
+ σ2

r

a2

)
(T − t) + 2

(
ρσ

σr

a2 − σ2
r

a3

)(
1 − e−a(T −t))+ σ2

r

2a3

(
1 − e−2a(T −t)) ,

v2
float.(t, T ) =

∫ T

t

∥σA(s)∥2 ds = σ2(T − t).
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2 Natural hedging with fix and floating strike guarantees

An illustration of the (cumulated option) volatility effects w.r.t. the asset fraction
πS , πB and the asset bond correlation ρ is given by Figure 2.2. Along the lines of the above
reasoning, for a given asset fraction, the cumulated volatilities embedded in the pricing of
the floating strike guarantee options are increasing in the investment fraction for the long
bond (cf. dashed lines). However, the effect may be reversed in the case of the fix strike
guarantee options.

Cumulated volatilities depending on various parameters
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Figure 2.3: This Illustration shows the effect of different parameters on the cumulated volatility of fix
(solid lines) and floating (dotted lines) strike guarantees. The upper row refers to the correlation ρ (left),
stock volatility σ (mid) and interest rate volatility σr (right), while the lower row refers to the stock fraction
πS (left), bond fraction πB (mid) and time to maturity T (right). The underlying model parameters are
given as summarized in Table 2.1. Furthermore we set Kfix = e0.02 and α̃ = B(0, T )Kfix.

A further analysis of the cumulated volatility is given in Figure 2.3, which illustrates
the cumulated volatility of fix and floating strike guarantees in dependence of the corre-
lation ρ, stock volatility σ, interest rate volatility σr, stock fraction πS , bond fraction πB

and time to maturity T . It shows that the cumulated volatilities have opposing affects on
the correlation ρ and the bond fraction πB and otherwise same effects.

2.4.3 Illustration price and strikes

As mentioned above, the guarantee costs depend on the cumulated asset volatilities. After
taking a further look on the cumulated volatilities we now take deeper look at the guarantee
prices and examine the influence of the various parameters on them. Recall, that the
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2 Natural hedging with fix and floating strike guarantees

contract prices are given in Proposition 2.2.2. Besides the cumulated volatility, the contract
price also depends on the strike. Figure 2.4 illustrates the K fair

fix and α̃fair for varying
correlation ρ, interest rate volatility σr and time to maturity T .

At first glance, one can see that the correlation ρ have the same effect on both
strikes, where K fair

fix is greater then α̃fair. For low interest rate volatility the K fair
fix is always

greater then α̃fair and for higher interest rate volatility otherwise. Moreover, Figure 2.4
shows that K fair

fix Gatzert and Wesker (2012) increases with a higher time to maturity T ,
while α̃fair slightly decreases. An explanation for this distinction is given by the following.

Kfix is the terminal value of the fix strike, i.e. the value of the strike process

Kfix
t = E[e−I(t,T )Kfix|Ft] = E[e−I(t,T )|Ft]Kfix = B(t, T )Kfix

at time T , where B(t, T ) is the value of a Zero-Coupon-Bond with maturity T . At inception
the strike value is Kfix

0 = B(0, T )Kfix.

Kfloat is the terminal value of the float strike, i.e. the value of the strike process

Kfloat
t = E[e−I(t,T )α̃eI(0,T )|Ft] = E[eI(0,t)|Ft]α̃ = eI(0,t)α̃

at time T . At inception the strike value is Kfloat
0 = α̃. So the floating strike can be

interpreted as investing the amount α̃ on a bank account with continuously compounded
interest rate I(0,T )

T .

To sum up Kfix = Kfix
T and α̃ = Kfloat

0 so the difference is that for the fix strike
guarantee the terminal guarantee is known at inception while for the floating strike guar-
antee the terminal guarantee depends on the interest rate dynamics.

Now we can finally examine the contract prices. To do so, Figure 2.5 illustrates
the impact of the various parameters on the contract prices. Under investigation is the
correlation ρ, interest rate volatility σr, stock fraction πS , bond fraction πB, the associated
strikes and the time to maturity T .

First, it shows that the correlation has opposing effects, where the the fix strike
guarantee is decreasing and the floating strike guarantee is increasing with increasing
correlation. Both prices increasing with the interest rate volatility, whereby the fixed strike
guarantee increases more steeply.

Furthermore the illustration shows, that the floating strike guarantee is higher than
the fix strike guarantee, when the same strike is assumed. In addition, a lower floating
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Fair strikes depending on various parameters
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Figure 2.4: This Illustration shows the effect of different parameters on Kfair
fix (solid lines) and α̃fair (dotted

lines). Figures refers to the correlation ρ (left), interest rate volatility σr (mid) and time to maturity T (left).
The underlying model parameters are given as summarized in Table 2.1. Furthermore we set Kfix = e0.02

and α̃ = B(0, T )Kfix.

strike is necessary for the guarantee price to be fair, then for the fix strike, such that the
fair floating strike is lower than the fair fix strike, as stated above.

Moreover Figure 2.5 illustrates the effect of a increasing maturity on the guarantee
prices. The guarantee prices shows an opposing behavior on the time to maturity. The
floating strike guarantee is increasing with maturity while the fix strike guarantee is de-
creasing. The price of a floating strike guarantee is higher for longer maturities with T > 5
and lower for short maturities T < 5 than the price of a fix strike guarantee.

2.4.4 Interest rate sensitivity and convexity

In the following section we are going to investigate the interest rate sensitivity and con-
vexity of the exchange option of the fix and floating strike guarantee as well as of the
asset portfolio. Recall that the interest rate sensitivities of the asset portfolio are derived
in Section 2.3.2 and given by

∂At

∂rt
= −AtπBB(t, T )

∂2At

(∂rt)2 = At (πBB(t, T ))2 .

Moreover recall, that the interest rate sensitivities of the exchange option are stated in
Proposition 2.3.1. As stated above, a natural hedge against interest rate risk is possible, if
interest rate duration of the asset side is sufficient low, i.e. if −∂At

∂rt
< l∗ where the critical

level is defined by Eqn. (2.19). We are now going to investigate if this condition is fulfilled
for a model setup given by Table 2.1. Therefore, Figure 2.6 illustrates the relationship
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Guarantee prices depending on various parameters
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Figure 2.5: This Illustration shows the effect of different parameters on the fix (solid lines) and floating
(dotted lines) strike guarantee prices. The upper row refers to the correlation ρ (left), interest rate volatility
σr (mid) and stock fraction πS (right) while the lower row refers to the bond fraction πB (left), the strikes
(mid) and time to maturity T (right). The underlying model parameters are given as summarized in Table
2.1. Furthermore we set Kfix = e0.02 and α̃ = B(0, T )Kfix.

between the duration of the asset side given by −∂At
∂rt

and the critical level l∗. The Figure
shows that the condition is always fulfilled for different levels of stock fractions πS , bond
fractions πB and time to maturities T . Moreover, the figure shows that the duration of
the asset portfolio is independent of the stock fraction, which already follows from the
above stated formula, as the stocks are independent of the interest rate. In addition, the
duration of the asset portfolio increases with the bond fraction and the time to maturity.
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Guarantee prices for various parameters
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Figure 2.6: This Illustration shows the relationship between the duration of the asset side given by
− ∂At

∂rt
(solid line) and the critical level l∗ given by (2.19) (dashed line) for various stock fractions πS , bond

fractions πB and time to maturities T . Furthermore we set Kfix = e0.02 and α̃ = B(0, T )Kfix.

Interest rate sensitivity of asset portfolio and exchange options
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Figure 2.7: This Illustration shows the relationship between the duration of the asset side given by
− ∂At

∂rt
(solid line) and the critical level l∗ given by (2.19) (dashed line) for various stock fractions πS , bond

fractions πB and time to maturities T . Furthermore we set Kfix = e0.02 and α̃ = B(0, T )Kfix.

Next, we look at the interest rate sensitivity of the exchange options. Figure 2.7
therefore illustrates the interest rate sensitivity of the asset portfolio (solid line), the
exchange option of the fix strike guarantee (dashed line) and of the floating strike guarantee
(dotted line) for varying stock fraction πS , bond fraction πB and time to maturity T . First
of all, it becomes apparent that the interest rate sensitivity of the floating strike is positive
while for the fix strike and the asset portfolio is negative. It is also seen that the interest
rate sensitivity of both exchange options increases with bond fraction, while it decreases
for the asset portfolio.

To hedge against interest rate risk, the interest rate sensitivity of the asset side must
coincide with that of the liability side. For this reason, we now look at the interest rate
sensitivity of the buffer value. Recall that the interest rate sensitivities of the buffer value
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Interest rate sensitivity of the buffer value
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Figure 2.8: This Illustration shows the relationship between the duration of the asset side given by
− ∂At

∂rt
(solid line) and the critical level l∗ given by (2.19) (dashed line) for various stock fractions πS , bond

fractions πB and time to maturities T . The solid line refers to short term T = 5, the dashed line to mid
term T = 10 and the dotted line to long term T = 20 contracts. For the last two figures, it is assumed that
an equal number of fixed strike and floating strike guarantees are sold, i.e. ηfix = ηfl. = 0.5. Furthermore
we set Kfix = e0.02 and α̃ = B(0, T )Kfix.

At −Lt is also stated in Proposition 2.3.1. Figure 2.8 presents the interest rate sensitivities
of the buffer value for varying fraction of fix strike guarantees sold ηfix, stock fraction πS

and bond fraction πB. The first illustration shows that a natural hedge can be achieved
for all maturities with ηfix = 0.4. The last figure shows that a natural hedge can also be
achieved by a suitable bond fraction.

As already mentioned in the second chapter of this thesis, the first derivation only
provides a hedge against small changes in the interest rate. To obtain a better hedge against
interest rate risk, it is worthwhile to take into account the curvature represented by the
second derivative. For this reason, we now also consider the convexity, which is represented
by the second derivative according to the interest rate. The convexity of each exchange
option and the buffer value is also stated in Proposition 2.3.1. Figure 2.9 presents the
convexity of the asset portfolio (solid line), the exchange option of the fix strike guarantee
(dashed line) and of the floating strike guarantee (dotted line) for varying stock fraction
πS , bond fraction πB and time to maturity T . The figures show that the convexity of the
fixed strike guarantee is Gatzert and Wesker (2012) larger than that of the floating strike
and the asset portfolio.

Finally, we consider the convexity of the buffer value. Figure 2.10 presents the con-
vexity of the buffer value for varying fraction of fix strike guarantees sold ηfix, stock frac-
tion πS and bond fraction πB. The figures show that a natural hedge due to a convexity
matching is not possible. In particular, it is not possible to hedge against interest rate risk
simultaneously using interest rate sensitivity and convexity. It is not possible to find a
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Convexity of asset portfolio and exchange options
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Figure 2.9: This Illustration shows the relationship between the duration of the asset side given by
− ∂At

∂rt
(solid line) and the critical level l∗ given by (2.19) (dashed line) for various stock fractions πS , bond

fractions πB and time to maturities T . Furthermore we set Kfix = e0.02 and α̃ = B(0, T )Kfix.

Convexity of the buffer
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Figure 2.10: This Illustration shows the relationship between the duration of the asset side given by
− ∂At

∂rt
(solid line) and the critical level l∗ given by (2.19) (dashed line) for various stock fractions πS , bond

fractions πB and time to maturities T . The solid line refers to short term T = 5, the dashed line to mid
term T = 10 and the dotted line to long term T = 20 contracts. For the last two figures, it is assumed that
an equal number of fixed strike and floating strike guarantees are sold, i.e. ηfix = ηfl. = 0.5. Furthermore
we set Kfix = e0.02 and α̃ = B(0, T )Kfix.

suitable combination of fixed and floating strike guarantees so that both the interest rate
sensitivity and the convexity of the buffer value are zero. In the following section, we will
restrict ourselves to hedging with the help of interest rate sensitivity. We will determine
a suitable combination of fixed and floating strike guarantees so that the interest rate
sensitivity of the buffer value is zero and then specify the associated convexity.

2.4.5 Illustration natural hedging

We now illustrate the perspective of the asset liability management. The main focus is on
the possibility to obtain a natural hedge by means of a suitable mix of fix and floating strike
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2 Natural hedging with fix and floating strike guarantees

Table 2.2: Natural hedging

T α πS πB Kfair
fix α̃fair ∂At

∂rt

∂Cfix
∂rt

∂Cfloat.
∂rt

η∗
fix

∂At−Lt

∂r2
t

5 0.9 0.15 0. 1.1331 0.9983 0. -2.3088 0.0108 0.0047 -1.0330
5 0.9 0.15 0.2 1.1345 0.9980 -0.1757 -2.2194 0.1572 0.0736 -2.4691
5 0.9 0.15 0.4 1.1354 0.9973 -0.3515 -2.1123 0.2988 0.1385 -3.9745
5 0.9 0.15 0.6 1.1359 0.9963 -0.5272 -1.9882 0.4329 0.2006 -5.5759
5 0.9 0.15 0.8 1.1362 0.9949 -0.7030 -1.8492 0.5576 0.2609 -7.4074
10 0.9 0.15 0. 1.3425 0.9930 0. -2.3179 0.0098 0.0042 -0.978
10 0.9 0.15 0.2 1.3511 0.9915 -0.1457 -2.3510 0.1170 0.0533 -2.5973
10 0.9 0.15 0.4 1.3574 0.9883 -0.2914 -2.3621 0.2149 0.0947 -4.2869
10 0.9 0.15 0.6 1.3614 0.9835 -0.4371 -2.3388 0.3004 0.1304 -5.9642
10 0.9 0.15 0.8 1.3632 0.9769 -0.5828 -2.2714 0.3728 0.1630 -7.6736
20 0.9 0.15 0. 1.9247 0.9799 0. -1.9174 0.0085 0.0044 -0.8488
20 0.9 0.15 0.2 1.9585 0.9754 -0.0974 -2.0256 0.0683 0.0373 -1.7645
20 0.9 0.15 0.4 1.9852 0.9665 -0.1947 -2.1281 0.1195 0.0618 -2.7044
20 0.9 0.15 0.6 2.0036 0.9535 -0.2921 -2.2033 0.1604 0.0802 -3.6047
20 0.9 0.15 0.8 2.0128 0.9370 -0.3895 -2.2207 0.1923 0.0958 -4.4428

guarantees. To simplify the exposition, we normalize the current asset value to one, i.e. we
set At = 1. In reality, the duration (minus times the interest rate sensitivity) of the asset
side of an insurance company is lower than the duration of the liability side. Basically,
the insurance company can obtain a higher duration of the asset side by changing its
investment strategy towards investments in bonds with higher time to maturity. However,
any modification of the investment strategy has also an impact on the liability side.

Recall that, in the two factor model setup, the interest rate duration can be resem-
bled by the duration of an investment in two bonds only, in particular a long-term bond
(maturing at the guarantee contract horizon T ) and a very short term bond (i.e. cash
position). In addition, we consider an investment in stocks. Notice that (for a given frac-
tion of stock investment πS), an increase of the investment fraction πB of the long-term
bond is the same as a reduction of the cash position 1 − πS − πB. Intuitively, it is clear
that the value of a fix (floating) strike guarantee is increasing (decreasing) in the fraction
πB of the long-term bond. While the fix strike guarantee can be honored almost surely
for a sufficiently large investment in the long-term bond (in this case, the guarantee put
is worthless), a higher cash position (accumulation according to the short term interest
rate) decreases the value of the floating strike guarantee put. Thus, the directional effect
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Natural hedging depending on bond fraction
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Figure 2.11: For varying bond fractions πB , the figures depict the number of floating strike guarantees
per fix strike guarantee. The black lines refer to a time to maturity T = 5, the dashed black lines to T = 10,
and the dotted gray lines to T = 20. The stock fraction is equal to πS = 0.15. The figure on the left (right)
hand side are based on an asset bond correlation of ρ = 0.25 (ρ = 0.1). Otherwise, the underlying model
parameters are given as summarized in Table 2.1.

of varying the investment fraction πB has an opposing effect w.r.t. fix and floating strike
guarantees.

In order to make the guarantee contracts comparable, we consider only contracts
which are equal in their value. In Table 2.2, we fix the varying long-term bond investment
fractions πB and the participation rate α = 0.9 and determine the fix strike Kfix (column
five) and the floating strike accumulation factor α̃ (column six) such that the contract
value is equal to one. Along the lines of the above reasoning, observe that Kfair

fix (α̃fair) is
increasing (decreasing) in the long-term investment fraction πB, i.e. increasing πB reduces
(increases) the value of a fix (floating) strike guarantee which is compensated by increasing
(decreasing) the strike. We then summarize the interest rate sensitivities of the asset side
(column seven), the fair fix strike guarantee (column eight), and the floating strike guar-
antee (column nine) for different investment strategies (in terms of πS and πB). Observe
that the interest rate duration (minus times the sensitivity) of the asset side is increasing
in the long-term investment fraction πB. The same is true for the (fairly priced) fix and
floating strike guarantee contract. However, as long as the duration of the asset side is not
too large, the sign of the interest rate duration of the floating strike contract is negative
while the one of the fix strike guarantee is positive, i.e., ceteris paribus, writing floating
strike guarantee contracts can reduce the duration of the liability side (and thus immunize
the duration of the asset side). Then, the fraction of fix strike guarantees is stated in
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2 Natural hedging with fix and floating strike guarantees

the penultimate column. A graphical illustration of this number is given in Figure 2.11.
Finally, the last column states the convexity of the buffer immunized by the interest rate
sensitivity.

To sum up, natural hedging with floating strike guarantees is possible if the duration
of the asset side is rather low (consistent with the situation of participating life insurance).
While switching to a higher duration on the asset side (increasing the money spent in long-
term bonds, if possible) has an impact on the liability side at the same time, the reduction
of the duration of the liability side can be obtained without impact on the asset duration.

2.5 Value at Risk

We now assess the natural hedging strategies using the 1 year value at risk in line with
Solvency II. Therefore we generate 100,000 paths of short term interest rates using Equa-
tion (2.21) and investment portfolios using Equation (2.25) simultaneously based on the
benchmark parameters summarized in Table 2.1. Prices of zero-coupon bonds are deter-
mined for each path using Equation (2.23). For given investment fractions πS and πB and
participation rate α = 0.9 the fix strike Kfix and the floating strike accumulation factor
α̃ are determined such that the contract value is fair. The values of the guarantees at
time t = 1 are calculated as given in Proposition 2.2.2. For all simulation paths we then
determine the buffer value after one year B1 = A1 − L1 using Equation (2.11). In addition
to the 1 year value at risk of the buffer value, we also calculate the conditional value at
risk and the variance of the buffer value at time t = 1. Solvency II requires insurers to
hold sufficient capital such that the probability of default is equal to 0.5%. Default occurs
if the buffer value becomes negative, such the the 1 year value at risk and the conditional
value at risk with confident level β is given by

V aR1yr
β = argmin

x
{P (B1 < x) = 1 − β}

CV aR1yr
β = E [B1|B1 < V aRβ]

To meet the capital requirements provided by Solvency II we consider a 1 year value at
risk with confidence level 0.995. Furthermore, we choose a confident level of 0.985 for
the conditional value at risk. First, we examine the impact of the distribution of fixed
and floating strike guarantees on the risk measures. Therefore Figure 2.12 presents the
different risk measures for varying levels of ηfix. Moreover a comparison of the 1 year
value and the value at maturity T of each risk measure is made. The Figure shows, that
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Risk measures for varying fraction of fix strike guarantees
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Figure 2.12: This Figure shows the Value ar Risk with confident level 0.995, the conditional Value at
Risk with confident level 0.985 and the Variance of the Buffer for varying fraction of fix strike guarantees
ηfix. The solid line refers to the value at maturity T = 5 and the dashed line to the value at time t = 1.

the 1 year value is always below the T year value. Furthermore the figure shows that a
suitable combination of fix and floating strike guarantees can minimize the corresponding
risk measure. The exact value as well as the values for different maturities can be found
in the Appendix of this thesis.

Table 2.3 shows the results of the simulation by supplementing the previous results
by the 1 year value at risk for a level of 0.995, the 1 year conditional value at risk with
confidence level 0.985 and the 1 year variance of the buffer. We use a lower confidence level
(98.5%) for 1 year conditional value at risk compared to the 1 year value at risk (99.5%)
so that both values are comparable.
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Table 2.3: Risk measures induced by natural hedging

T α πS πB Kfair
fix α̃fair η∗

fix
∂At−Lt

∂r2
t

V aR1yr
0.995 CV aR1yr

0.985 V ariance

5 0.9 0.15 0. 1.1331 0.9983 0.0047 -1.0330 0.0708 0.0693 0.00089
5 0.9 0.15 0.2 1.1345 0.9980 0.0736 -2.4691 0.0690 0.0674 0.00084
5 0.9 0.15 0.4 1.1354 0.9973 0.1385 -3.9745 0.0675 0.0659 0.00079
5 0.9 0.15 0.6 1.1359 0.9963 0.2006 -5.5759 0.0664 0.0648 0.00075
5 0.9 0.15 0.8 1.1362 0.9949 0.2609 -7.4074 0.0652 0.0640 0.00073
10 0.9 0.15 0. 1.3425 0.9930 0.0042 -0.9780 0.0692 0.0681 0.00080
10 0.9 0.15 0.2 1.3511 0.9915 0.0533 -2.5973 0.0661 0.0650 0.00072
10 0.9 0.15 0.4 1.3574 0.9883 0.0947 -4.2869 0.0631 0.0617 0.00065
10 0.9 0.15 0.6 1.3614 0.9835 0.1304 -5.9642 0.0598 0.0583 0.00058
10 0.9 0.15 0.8 1.3632 0.9769 0.1630 -7.6736 0.0564 0.0549 0.00052
20 0.9 0.15 0. 1.9247 0.9799 0.0044 -0.8488 0.0637 0.0623 0.00062
20 0.9 0.15 0.2 1.9585 0.9754 0.0373 -1.7645 0.0602 0.0586 0.00056
20 0.9 0.15 0.4 1.9852 0.9665 0.0618 -2.7044 0.0556 0.0542 0.00048
20 0.9 0.15 0.6 2.0036 0.9535 0.0802 -3.6047 0.0508 0.0495 0.00041
20 0.9 0.15 0.8 2.0128 0.9370 0.0958 -4.4428 0.0463 0.0451 0.00035

A graphical illustration of this result is given in Figure 2.13. For varying investment
fractions in the corresponding long-term bond (πB = 0, 0.2, 0.4, 0.6, 0.8), the fair initial
strike of a fixed strike K fair

fix guarantee, the fair accumulation rate of a floating strike
option α̃fair, the fraction of fix strike guarantee contracts which immunizes the buffer
At − Lt against changes in the interest rate and the resulting convexity are adopted from
Table 2.2. Additionally the 1 year value at risk with confidence level 0.995, the 1 year
conditional value at risk with confidence level 0.985 and the 1 year variance of the buffer
are stated in the last three columns. Observe that all three risk measures are decreasing
in the long term investment fraction πB. The Figure illustrates the reduction in the risk
for different maturities. The results can also contribute to the debate on the comparison
of value at risk and conditional value at risk. As noticeable the conditional value at risk
with confident level 0.985 is slightly below the value at risk with a higher confident level of
0.995. Furthermore, the results show that variance leads to a significant underestimation
of risk compared to the other risk measures.
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Risk management depending on bond fraction
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Figure 2.13: For varying bond fractions πB , the figures depict the 1 year value at risk with confidence
level 0.995 on the left and the 1 year conditional value at risk with confidence level 0.985 on the right. The
black lines refer to a time to maturity T = 5, the dashed black lines to T = 10, and the dotted gray lines
to T = 20. The stock fraction is equal to πS = 0.15. Otherwise, the underlying model parameters are given
as summarized in Table 2.1.

2.6 Conclusion

Low interest rate scenarios and (downward) changes in the term structure of interest rates
may deteriorate the solvency situation of a life insurance company. In this paper, we focus
on the possibilities to build a natural hedge against interest rate risk by offering a suitable
product mix of different minimum return rate guarantee schemes (MRRGs).

We analyze two versions of MRRGs which are meaningful in the context of par-
ticipating life insurance contracts. One version is implied by a guaranteed rate which is
once determined at the contract inception (fix strike guarantee). The other version is a
(stochastic) guarantee rate which is implied by the interest rate accumulation over the
contract horizon (floating strike guarantee). We use a Gaussian model setup which gives
rise to closed-form (market consistent) values of the liabilities. This is especially convenient
to obtain insights in the price sensitivities.

We then propose a natural hedge against changes in the term structure of interest
rates. The natural hedge is based on the coexistence of fix and floating strike guarantee
products. Normally, the duration of the asset side of a life insurer is much lower than
the one of the liability side. In this case, we show that selling floating strike guarantee
products reduces the (stochastic) duration of the liability side such that it is possible to
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2 Natural hedging with fix and floating strike guarantees

obtain an immunization.

Compared to an immunization of the buffer (difference of assets and liabilities) by
adjusting the duration of the asset side, the natural hedge has the following advantage.
Reducing the duration of the asset side may be difficult because it is not necessarily
possible to trade in (liquid) bonds which are consistent with the long maturities of life
insurance contracts. In addition, any modification of the investment strategy (asset side)
also impacts the value of the guarantees (liability side). In contrast, a natural ALM hedge
which is based on a product mix on the liability side has no impact on the asset side.
Finally, we illustrate the results by means of a two factor model. Additionally we analyzed
the risk profile by considering different risk measures.
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Chapter 3

Participating life insurance
contracts with minimum return
rate guarantees under default risk

3.1 Introduction

This chapter analyzes the optimal design of participating life insurance contracts with
minimum return rate guarantees (MRRGs) under default risk and is based on Mahayni
et al. (2021).1 The benefits to the insured are linked to an investment strategy which
is conducted by the insurer on the financial market as e.g. observed in participating life
insurance contracts. Unless there is a default event, the insured receives the maximum
of a guaranteed rate and a participation in the investment returns. An optimal contract
design implies the highest expected utility to the insured. The focus is on MRRGs which
are fairly priced (pricing by no arbitrage condition) and satisfy regulatory requirements
posed on the probability that the guarantees are violated (quantile MRRGs).

It is worth mentioning that we merely focus on a savings plan which is motivated
by participating life insurance contracts. In reality, these contracts are much more com-
plicated. They also include a term life insurance component and possess several premium
payment options to policyholders. It is often criticized, that the underlying of this kind of

1 In particular, we refer to annual return rate guarantees which are common in German-speaking countries.
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3 Participating life insurance contracts with minimum return rate guarantees under default risk

life insurance product is in reality typically based on book values and not market values
like it is suggested in most research papers. However, the main effect is, that the underlying
possesses a lower volatility (via "smoothing") and - ceteris paribus - the value of the embed-
ded options is lower. In any case, one can in principle account for this effect via choosing
the "appropriate" volatility in the GBM - whenever her model is adjusted to empirical data
via time series data. For a detailed description of participating life insurance contracts, we
refer e.g., to Grosen and Jørgensen (2000) and Grosen and Jørgensen (2002). Additionally
to these facts, the insurance companies even smoothen their asset and liability sides in
reality to overcome bad financial years with the surplus of good years.2 Furthermore, we
also define the default event exclusively in terms of the investment returns and do not
consider that the insurance company may itself default.

Considering the possibility that the liabilities (guarantees) can not be honored im-
pedes the basic idea of a guarantee. However, in reality there is no guarantee prevailing
with probability one. Any guarantee may fail in times of extremely negative market condi-
tions, i.e. guarantees are only valid under sufficiently good scenarios. Thus, one may soften
the term guarantee and imagine it as honored with a high probability (quantile guaran-
tee). In the context of participating life insurance contracts the guarantee is secured by
regulatory requirements on the maximal shortfall probability. For example, Solvency II
contains the condition that the shortfall probability w.r.t. a time horizon of one year
is limited to 0.5%. Intuitively, it is clear that the value of a guarantee is decreasing in
the shortfall probability. Default risk mitigates the guarantee component (it is less often
binding and thus the guarantee is cheaper than without default risk). In contrast, control
of the shortfall probability makes the guarantee more binding. In summary, the pricing
effects due to the impact of default risk are rather obvious. The impacts on the utility
to the insured is more ambivalent, unless the insurer implements an optimal investment
strategy. Therefore, our main focus is on the optimal contract design in the presence of
an upper probability bound on the shortfall probability posed by the regulator, i.e. the
optimal design of quantile MRRGs.

We proceed as follows. In the absence of mortality and surrender risk, we discuss
the modification of the (return) payoff which arise by introducing default risk referred to a

2 A paper on this topic is for example Maurer et al. (2016), where a stylized model with payout smoothing
is provided and a literature overview of this topic is given. In addition, Kling et al. (2007) shows an
example how smoothing can be modeled when analyzing some question related to participating products.
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strictly binding guarantee. In a stylized manner, we model the asset side of the insurance
company (the contract provider) by means of the value process of an admissible financial
market investment strategy, i.e. a self-financing strategy where the initial value is given
by the sum of equity and the contributions of the insureds. The liability side, i.e. the
benefits to the insured, depends on the guarantee promise as well as on the question how
the surpluses, if any, are distributed between the shareholders and the insured. This is
modeled by a participation fraction on the investment returns. Considering default risk,
the return payoff to the insured also depends on the amount of equity backing up the
guarantee. If the intended payoff which is paid in a default free version is not obtained
by the investment strategy, the remaining amount is provided by reducing the equity, i.e.
unless the equity amount drops to zero.

In summary, the impact of the default risk on the contract pricing is captured by a
short position in a default put option. In financial terms, the default put is a compound
option (option on an option). The inner option is introduced by the guarantee option of
the insured, i.e. arising from the (intended) guarantee. The outer option is implied by the
default possibility, i.e. the intended payoff is only honored if the asset/investment perfor-
mance is sufficiently good. We show that, w.r.t. each annual return payoff, the (return)
payoff of the compound option can (for a suitable distinction of the equity to debt ratio
compared to a function of the guarantee and participation fraction) be disentangled into
a piecewise linear payoff function (of the investment return), i.e. the payoff can be stated
in terms of plain vanilla options. The same is true for the liabilities to the insured (Propo-
sition 3.2.5). Closed form solutions for pricing the default put and the insurance contract
itself are possible in any financial market model setup which provides closed form solutions
for plain vanilla options. Closed-form solutions for the return payoff in the context of no
default risk but with mortality risk can be found e.g. in Bacinello (2001).

The Cliquet-style contracts can then be solved in closed form in any model and
investment setup which implies independent and identically distributed return increments,
at least if one assumes a constant or deterministic equity to debt fraction. Some general
implications of considering (i) default risk and (ii) regulatory requirements on the shortfall
probability can already be derived in a model free manner such that the results are valid
in any arbitrage free model setup. We illustrate and quantify the results in a Black and
Scholes model setup. This simple model setup in combination with the assumption that
the insured is described by a constant relative risk aversion (CRRA) gives further insights
on the utility effects from the perspective of the insured.
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Due to the completeness of the model setup and the exclusion of mortality and
surrender risk, we can even solve the resulting pure portfolio optimization problem and
state the expected utility maximizing return payoff under the quantile condition posed
by the regulator, i.e. the upper bound on the shortfall probability (Proposition 3.3.1).3

In particular, the derivation of the optimal quantile contract is tractable because of the
complete market assumption. W.l.o.g., one can analyze the relevant optimization problem
without considering equity, i.e. by means of setting the equity to debt fraction to zero.
Once the optimal return distribution is computed without equity, the same return payoff
distribution can be implemented in the presence of any equity amount held by the insur-
ance company. We compare the optimal quantile MRRG with the unrestricted solution
(no shortfall condition posed by the regulator) as well as with solutions which are based
on restrictions on the investment strategy implemented by the insurance company. For
example, we consider the case that the insurer is restricted to constant mix strategies.
Intuitively it is clear that the upper bound on the shortfall probability (if binding) affords
some kind of quantile hedge. The resulting optimal payoff is not attainable without some
(synthetic) option positions and can not be contained by a fixed sharing rule between eq-
uity and debt. We show that the utility loss to the insured arising if the insurer implements
a suboptimal investment strategy can be significant.

The contributions of the paper can be summarized as follows. Based on the dis-
tinction between a high and a low equity to debt ratio (compared to the combination of
guarantee and participation fraction), we state the return payoff to the insured (Proposi-
tion 3.2.5) by means of piecewise linear functions of the return of the insurers asset returns.
On the one hand, this simplifies the pricing problem under default risk to the pricing of
standard call (put) options. On the other hand, this already gives model independent in-
sights, i.e. insights which are true w.r.t. any arbitrage free financial market model setup.
For example, a low (high) equity to debt ratio implies a concave (piecewise concave and
convex) payoff.4 Thus, for a low equity to debt ratio, the value of the liabilities is de-
creasing in the riskiness of the insurer’s assets. Consequently, the default risk dominates
the guarantee option which contradicts the guarantee concept, i.e. if the admissible asset
distributions are not restricted by an upper bound on the shortfall probability (on the

3 Notice, that in general Solvency requirements and Solvency II in particular lead in fact to restrictions
when it comes to optimal asset allocation settings.

4 In our setup, a low equity to debt ratio is always implied if there is a return guarantee which gives a
return accumulation higher (or equal) one.
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guarantee). A further contribution is then given by deriving the optimal return payoff
distribution to the insured (Proposition 3.3.1). Because of the market completeness, the
optimal (return) payoff to the insured can be implemented for any equity to debt ratio.
Finally it is important to point out that there are utility losses to the insured (and there
is too much equity involved) if the insurer implements a suboptimal investment strategy.

Our paper is related to several strands of the literature including the ones on (i) pric-
ing and hedging embedded guarantees/options, (ii) the impact of default risk (emphasizing
on participating life insurance contracts), (iii) utility losses caused by guarantees and/or
suboptimal investment decisions (conducted by insurance companies or pension funds),
(iv) portfolio planning, (v) quantile hedging, and (vi) the analysis of piecewise convex and
concave contingent payoffs. Without postulating completeness we only refer to the most
related literature and hint at the additional literature given within the mentioned papers.

Pricing embedded options by no arbitrage already dates back to Brennan and
Schwartz (1976). A more recent paper is Nielsen et al. (2011). Risk management and hedg-
ing aspects are discussed in Coleman et al. (2006), Coleman et al. (2007), and Mahayni
and Schlögl (2008). An early paper which already provides tools to determine closed-form
solutions for the solvency restriction based on a shortfall concept under certain distribu-
tion assumptions (normal and log normal case) is given by Winkler et al. (1972) using
partial moments. Non-linear optimization problems under shortfall constrains have al-
ready been solved in the past, c.f.McCabe and Witt (1980) who calculated the optimal
chance-constrained expected profit of a non-life insurer.

Considering default is, in the context of participating life insurance contracts, firstly
analyzed in Briys and De Varenne (1997) and Grosen and Jørgensen (2002). More re-
cent papers are Schmeiser and Wagner (2015) and Hieber et al. (2019). Other papers on
participating life insurance contracts excluding default risk are e.g. Bacinello (2001) who
discusses amongst other results how a minimum interest rate guarantee "technical rate")
has to be set, such that the contracts are fairly priced and Gatzert et al. (2012) where the
customer value of the policyholder is maximized.

Papers on utility losses caused by (suboptimal) investment strategies include Jensen
and Sørensen (2001), Jensen and Nielsen (2016) and Chen et al. (2019).5 Chen et al.
(2019) consider a general utility maximization under fair-pricing and budget constraints

5 In particular, Jensen and Sørensen (2001) analyze wealth losses for pension funds and emphasize that
the individual investor can substantially suffer from the investment strategy conducted by the sponsor.
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in a complete, arbitrage-free Black and Scholes model setup for an CRRA Investor. The
payoff function is chosen such that it also includes default risk. They apply their results
on equity-liked life insurances using a constant mix strategy and examine the effect of
taxation.

Literature on portfolio planning with a main focus on insurance contracts with
guarantees includes Huang et al. (2008), Milevsky and Kyrychenko (2008), Boyle and Tian
(2008) and Mahayni and Schneider (2016). The general idea of maximizing the expected
utility of the insured by choosing optimal parameter settings which fulfill fair pricing
conditions has been provided in the literature before. The paper of Branger et al. (2010)
analyzes different forms of point-to-point guarantees. Cliquet-style options are analyzed
in Gatzert et al. (2012) and Schmeiser and Wagner (2015). In contrast to these articles
we add the portfolio composition as a decision variable in the optimization problem to
determine the overall expected utility maximizing payoff of the insured in quasi-closed
form.

Portfolio planning itself dates back to Merton (1975) who, amongst other results,
solves the portfolio planning problem for a CRRA investor. The solution for investors who
must also manage market-risk exposure using the Value-at-Risk (VaR) is firstly mentioned
in Basak and Shapiro (2001). Yiu (2004) solves the problem where the VaR constraint is
posed for the entire investment horizon. More recently, Gao et al. (2016) derive the solution
for an investor with a dynamic mean-variance-CVaR and a dynamic mean-variance-safety-
first constraint. A joint (terminal) VaR and portfolio insurance constraint is considered in
Chen et al. (2018a). Multiple VaR constraints are analyzed in Chen et al. (2018b).

With respect to European and American guarantees, we also refer to El Karoui et
al. (2005). Quantile hedging already dates back to Föllmer and Leukert (1999). For an
analysis of retail products with investment caps (piecewise convex and concave payoffs)
we e.g. refer to Bernard and Li (2013), Bernard and Li (2013), Mahayni and Schneider
(2016).

Literature on the insurance demand dates back to Leland (1980) and Benninga and
Blume (1985) who show that in a complete financial market setup with risky and risk-
free asset investments and a utility function with constant risk aversion the investor will
never buy portfolio insurance, instead buys the asset itself directly. Ebert et al. (2012)
confirm the result for guarantee contracts, i.e. for CRRA Investors with reasonable risk
aversion parameter Cumulative Prospect Theory (CPT) can not explain the demand for
complex guarantee contracts. Ruß and Schelling (2018) introduce the concept of Multi
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Cumulative Prospect Theory (MCPT) which does not only consider the terminal value
of the investment but also the annual value change. Under the MCPT the demand for
complex guarantee products can be explained.

There is a great body of literature that discusses the duration of insurance liability.
Briys and De Varenne (1997) present a model for pricing a terminal participating life
insurance policy. Moreover, the effective duration and Macaulay duration is examined.
Briys and De Varenne (1997) state, that the effective duration is greater than the Macaulay
duration for maturity below five year. Otherwise the effective duration is less then the
Macaulay duration.

Kim (2005) investigates the impact of surrender rates on the value and interest rate
sensitivity of interest indexed annuities. In summary, Kim (2005) shows that surrender
behavior has a large impact on the duration and convexity of interest indexed annuities.
In addition, Kim (2005) shows that duration and convexity also depend on the choice of
interest rate model. It should be noted that single-premium contracts are less common than
level-premium contracts and that the duration of such products can differ significantly.

Tsai (2009) examines the duration of the policy reserves for an endowment life
insurance. Tsai (2009) shows that the duration of the cover reserve can be negative and/or
have a high value. Policies with abnormal high or negative duration have longer maturities
and therefore smaller reserves than policies with normal figures, such that they have no big
impact on the duration of the aggregated reserves. Tsai (2012) complements the findings of
Tsai (2009) by adding an empirical surrender rate model analyzing the impact of surrender
options on the durations of insurance policy reserves. In general, Tsai (2012) showed that
surrender options reduce the duration of policy reserves.

Charupat et al. (2016) study the impact of the interest rate risk on the prices of
life annuities. Charupat et al. (2016) show that insurer do not instantaneously adjust
annuity prices to changes of interest rates. Furthermore Charupat et al. (2016) shows that
the duration is higher when interest rates are increasing than decreasing. With increasing
interest rates the annuity prices are decreasing more quickly and in larger magnitude than
when interest rates are decreasing.

Finally, Lin and Tsai (2020) investigates natural hedging strategies for mortality
and interest rate risk. For this purpose, Lin and Tsai (2020) derive closed-form solutions
for mortality-interest rate duration and convexity of the net single premiums of whole life
insurance and deferred whole life annuity products. Moreover Lin and Tsai (2020) compute
a suitable portfolio allocation of both products such that the portfolio is immune against

44



3 Participating life insurance contracts with minimum return rate guarantees under default risk

mortality and interest rate risk.

The rest of the paper is organized as follows. Section 3.2 describes the contract
design. In particular, it is based on a combination of the contract parameters and the
equity fraction such that the contract design gives no rise to any arbitrage opportunity. In
addition, the contract design must meet some regulatory requirements regarding an upper
bound on the shortfall probability. Along the ways, we give some convenient representa-
tions of the payoff profiles. We illustrate the contract design and some important properties
in a Black and Scholes model setup. In Section 3.3, we derive the optimal contract de-
sign (return payoff, respectively) of a quantile minimum return guarantee (MRRG), i.e.
a return guarantee which satisfies the fair pricing condition and an upper bound on the
shortfall probability, and in view of an insured whose preferences are characterized by a
constant relative risk aversion. We illustrate the utility loss to the insured which is caused
if the insurer implements a suboptimal investment strategy. We further investigated on
the interest rate risk of those quantile guarantees. We therefore calculated the effective
duration and convexity for suitable combinations of the minimum return rate guarantee
and the corresponding fair equity ratio. Section 3.5 concludes the paper.

3.2 Participating life insurance contracts with minimum re-
turn rate guarantees

3.2.1 Preliminaries

In the following section participating life insurance with minimum return rate guarantees
are introduced and analyzed. Mortality risk and surrender risk are not taken into account.
The policyholder pays a single premium at the inception of the insurance contract denoted
by P0. This premium is thus called upfront premium. Together with its existing equity
amount, the contract provider invests this premium on the financial market. The existing
equity amount of the contract provider is denoted by E0 and the value of the investment
portfolio at inception is given by A0 = P0 +E0. Throughout the following we set P0 = 1, so
we normalize the policyholders premium, and we set E0 = αE , where αE ∈ [0, 1] represents
the equity ratio (resp. equity to debt ratio). The terminal value of the investment portfolio
is denoted by AT , where T defines the maturity of the insurance contract. For simplification
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we set T = 1 fo this section, i.e. a one period setting.6 This assumption implies, that the
policyholder has no other premium payment option than the upfront premium.

At the contract maturity, the policyholder receives the premium paid, compounded
at either a guaranteed interest rate g ≥ −1 or a participation on the return of the invest-
ment portfolio whichever is higher. So g is referred to a the minimum return rate guarantee
(MRRG). The terminal payoff of the insurance contract is then given by

P1 = 1 + max
{

g, α

(
A1
A0

− 1
)}

(3.1)

where α ∈ [0, 1] denotes the participation fraction on the investment portfolio. The special
case g = −1 represents a contract without guarantee. This leads to the following lemma.

Lemma 3.2.1 (Intended payoff representation)
The intended payoff of a participating life insurance contract with maturity T = 1 and
initial premium paid by the policyholder P0 = 1 is given by

P I
1 = 1 + g + α

(
A1
A0

− K

)+
, with K = 1 + g

α
, (3.2)

where α ∈ [0, 1] denotes the participation fraction on the investment portfolio, g ≥ −1 is
the minimum return rate guarantee, A0 = 1 + αE is the value of the investment portfolio
at inception stated with the equity ratio αE ∈ [0, 1] and finally A1 denotes the terminal
value of the investment portfolio. Moreover

(
A1
A0

− K
)+

= max
{

A1
A0

− K, 0
}

.

The payoff presented in Lemma 3.2.1 is called intended payoff, because it may differ
from the actual payoff L1 in case of a default event, which we will introduce later in
this section. Lemma 3.2.1 shows, that the intended payoff can be replicated by (i) a long
position in e−r (1 + g) zero bonds with maturity T = 1 (where r denotes the continuously
compounded bond yield), and (ii) a long position in α

A0
call options on the synthetic asset

A with maturity T = 1 and strike K = A0
(
1 + g

α

)
. The effect of parameters α, g and αE

on the intended payoff P I
1 is illustrated in Figure 3.1.

6 The assumption of a maturity T = 1 gives us the possibility to state the payoff of the insured in closed-
form. For a maturity T > 1 this is not possible anymore. See for example the comment in the paper of
Schmeiser and Wagner (2015) on page 669.
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Effect of parameters α, g and αE on the intended payoff P I
1
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Figure 3.1: This figures illustrate the effect of parameters α, g and αE on the intended payoff P I
1 . The

figures show the intended payoff P I
1 in dependence of the terminal value of the investment portfolio A1.

By standard the parameters are α = 0.8, g = 0.1 and αE = 0. The adjusted parameters are given in the
legend above the corresponding illustration.

The standard case is given by the black solid line and refers to the parameter setup
α = 0.8, g = 0.1 and αE = 0. While the terminal value of the investment portfolio A1 is
below the strike K = A0

(
1 + g

α

)
= 1.125, the payoff considers only the guaranteed part

given by 1 + g = 1.1. If the terminal value of the investment portfolio exceeds the strike,
the payoff is increased by a participation fraction on the investment return by 0.8A1 −0.9.

The upper left illustration shows the impact of the participation fraction α on the
intended payoff P I

1 . It reflects the extent to which the policyholder participates in the
investment return. A higher α increases this participation, which is shown by a steeper
rise of the graph. In addition, the participation fraction also influences the strike and
thus also the extent to which the policyholder participates in the investment return. As
α increases, the strike decreases, which means that the investment return must be greater
for the policyholder to participate.
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The upper right illustration shows the impact of the minimum return rate guarantee
g on the intended payoff P I

1 . It influences the guaranteed return that the policyholder
receives. A higher g increases this guaranteed return. Furthermore, the minimum return
rate guarantee also affects the strike. A falling g lowers the guaranteed return and thus
leads to an earlier participation in investment return and vice versa.

Finally, the lower illustration shows the impact of the equity ratio αE on the intended
payoff P I

1 . The equity ratio mainly influences the initial value of the investment portfolio
A0. With a higher equity ratio, the initial value of the investment portfolio is higher. Thus,
the final value of the investment portfolio must also be higher in order for the policyholder
to participate in the investment return.

3.2.2 Consideration of default risk

In the following we first introduce a default event. A default occurs, if the terminal value
of the investment portfolio A1 is higher than the intended payoff P I

1 . Therefor the policy-
holder only receives the intended payoff P I

1 if the terminal value of the investment portfolio
A1 is sufficiently high. When default occurs and the terminal value of the investment port-
folio A1 is not sufficiently high the policyholder only receives the terminal value of the
investment portfolio A1 as compensation. The actual payoff L1 to the policyholder where
default risk is considered is thus given by

L1 = P I
1 −

(
P I

1 − A1
)+

, where(
P I

1 − A1
)+

=
(

1 + g + α

(
A1
A0

− K

)+
− (1 + αE)A1

A0

)+

with K = 1 + g

α

can be interpreted as a default put option of the contract provider. The terminal value of
the default put option is the difference between the default free (intended) payoff and the
payoff in presence of a default. Although the default put option is given in terms of a nested
version of the max operator (a compound option feature), it is possible to disentangle the
payoff in terms of the payoffs of plain vanilla options, only. To disentangle the nested
payoff, we make a case distinction where we consider the inner call option

(
A1
A0

− K
)+

given from the intended payoff and the (outer) default put option
(
P I

1 − A1
)+

given from
the actual payoff, respectively.

1. Case: A1
A0

≤ K1 = 1 + g
α

At first we consider the case where the inner call option is out the money, i.e. A1
A0

≤ K1 =
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1 + g
α , so the intended payoff is P I

1 = 1 + g, so the intended payoff only considers the
guaranteed return. Then the default put option is given by(

P I
1 − A1

)+
=
(

1 + g − (1 + αE)A1
A0

)+
= (1 + αE)

(
K2 − A1

A0

)+
, (3.3)

where K2 = 1 + g

1 + αE
. (3.4)

Thus the default put option can be stated in terms of a put option on the terminal value
of the investment portfolio A1 with strike

(
1 + αE

)
K2 = 1 + g.

2. Case: A1
A0

≥ K1 = 1 + g
α

Secondly we consider the case where the inner call option is in the money, i.e. A1
A0

≥ K1 =
1 + g

α , so the intended payoff is P I
1 = 1 + α

(
A1
A0

− 1
)
. Then the default put option is given

by (
P I

1 − A1
)+

=
(

1 + α

(
A1
A0

− 1
)

− (1 + αE)A1
A0

)+
= (α − A0)

(
K3 − A1

A0

)+
, (3.5)

where K3 = 1 − α

1 + αE − α
. (3.6)

Thus the default put option can be stated in terms of a put option on the terminal value
of the investment portfolio A1 with strike

(
1 + αE

)
K3 =

(
1 + αE

)
1−α

1+αE−α
.

In consequence, we can express the payoff of the default put option by means of
piecewise linear functions as follows:

(
P I

1 − A1
)+

=



(
K2 − (1 + αE)A1

A0

)
if A1

A0
≤ K1 and A1

A0
≤ K2

α−1−αE

1+αE

(
K3 − (1 + αE)A1

A0

)
if A1

A0
≥ K1 and A1

A0
≤ K3

0 else

=
(

K2 − (1 + αE)A1
A0

)
1{A1≤min{K1,K2}}

+ α − 1 − αE

1 + αE

(
K3 − (1 + αE)A1

A0

)
1{K1≤A1≤K3},

where

K1 = 1 + g

α
, K2 = 1 + g

1 + αE
, K3 = 1 − α

1 + αE − α
. (3.7)

A crucial distinction is given by a different ranking order of the strikes K1, K2 and K3.
However, the relation between the strikes is given by comparing the equity ratio αE to
the minimum return rate guarantee g and the participation fraction α. The result is
summarized in the following lemma.
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Lemma 3.2.2
Let K1, K2 and K3 be defined as in Equation (3.7), then the following relations hold

(i) K1 = K2 = K3 ⇔ αE = g(α−1)
g+α

(ii) K1 ≥ K2 ≥ K3 ⇔ αE ≥ g(α−1)
g+α

(iii) K1 ≤ K2 ≤ K3 ⇔ αE ≤ g(α−1)
g+α

In particular it holds

αE = g(α − 1)
g + α

⇔ g = ααE

α − 1 − αE

A visualization of the relation between the strikes and the minimum return rate guarantee
g and the equity fraction αE is given in Figure 3.2 for fix α = 0.8.

First we discuss the dependence on the minimum return rate guarantee g, i.e. the
upper row. The left hand side is based on αE = 0 and shows that the ordering of the strike
changes at g = 0. The right hand side is based on αE = 0.1 and shows that the ordering
of the strike changes at g ≤ 0. In particular the strikes coincide at g = ααE

α−1−αE .

Nest we discuss the dependence on the equity fraction αE = 0, i.e. the lower row.
The left hand side is based on g ≥ 0 and shows that the ordering of the strike does not
change at all. The right hand side is based on g ≤ 0 and shows that the ordering of the
strike changes at αE = g(α−1)

g+α
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Relation between the strikes and parameters g and αE
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Figure 3.2: This figures illustrate the strikes K1, K2 and K3 depending on the minimum return rate
guarantee g in the upper row and the equity fraction αE in the lower row. We fix α = 0.8. The upper left
hand figure is based on αE = 0 while the upper right hand figures is based on αE = 0.1. The lower left
hand figure is based on g = 0.1 while the lower right hand figures is based on g = −0.1.

Let us now take a closer look on the term g(α−1)
g+α . At first one should recognize that

g ≥ 0 ⇒ g(α−1)
g+α ≤ 0 for every α ∈ [0, 1]. Thus g ≥ 0 implies αE ≥ g(α−1)

g+α as the equity
ratio αE ∈ [0, 1] is nonnegative by definition. This is also shown in the illustration at the
bottom left of Figure 3.2.

In summary, the payoff (return) of the default put can be represented as follows.

Proposition 3.2.3 (Payoff representation of the default put option)
The payoff of the default put option can be stated in terms of a piecewise linear function
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in the asset increments A1
A0

, i.e.

(
P I

1 − A1
)+

=



(
1 + αE

) (
K2 − A1

A0

)
1{A1

A0
≤K1

}
+
(
α − 1 + αE

) (
K3 − A1

A0

)
1{

K1≤ A1
A0

≤K3

} for αE ≤ g(α−1)
g+α(

1 + αE
) (

K2 − A1
A0

)+
for αE > g(α−1)

g+α

. (3.8)

WE now take a look at the actual payoff L1 to the policyholder. An intuitive way to
understand the liability side under default risk is analogously given by stating the payoff
L1 depending on the asset increment A1

A0
. First recall that, without default risk, the call

option of the policyholder (cf. Lemma 3.2.1) is in the money if A1
A0

> K1 = 1+ g
α . Otherwise

the intended payoff is 1 + g. In this case, under default risk, the policyholder only receives
1+g if this is possible, i.e. if A1 > 1+g, or equivalent if A1

A0
> 1+g

1+αE = K2. So for A1
A0

≤ K1,
the policyholder only receives the minimum of 1 + g and A1.

Now, consider the case that A1
A0

> K1, i.e. P I
1 = 1+α

(
A1
A0

− 1
)
. Again, under default

risk, the policyholder nevertheless only receives the lower of 1+α
(

A1
A0

− 1
)

and A1, which
is defined by the benchmark K3 = 1−α

1+αE−α
. In summary, we obtain

L1 =



(1 + αE)A1
A0

for A1
A0

< min{K1, K2}

1 + g for min {K1, K2} ≤ A1
A0

< K1

(1 + αE)A1
A0

for K1 ≤ A1
A0

< max{K1, K3}

1 + α
(

A1
A0

− 1
)

for A1
A0

≥ max{K1, K2, K3}.

Before we state the actual payoff as a function of the equity ratio, we need a brief
remark.

Remark 3.2.4
It follows from Lemma 3.2.2

min{K1, K2} =

 K1 for αE ≤ g(α−1)
g+α

K2 for αE > g(α−1)
g+α

,

max{K1, K3} =

 K3 for αE ≤ g(α−1)
g+α

K1 for αE > g(α−1)
g+α

,

max{K1, K2, K3} =

 K3 for αE ≤ g(α−1)
g+α

K1 for αE > g(α−1)
g+α

.
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Now we can specify the actual payoff as a function of the equity ratio.

Proposition 3.2.5 (Actual payoff representation)
Let K1, K2 and K3 be defined as in Equation (3.7). Then it holds

(i) Low equity ratio: For αE ≤ g(α−1)
g+α , the payoff (return) to the insured is given by

L1 =


(1 + αE)A1

A0
for A1

A0
< K3

1 + α
(

A1
A0

− 1
)

for A1
A0

≥ K3,

i.e. L1 = (1 + αE)A1
A0

− (1 − α + αE)
(

A1
A0

− K3

)+
. (3.9)

(ii) High equity ratio: For αE > g(α−1)
g+α it holds

L1 =


(1 + αE)A1

A0
for A1

A0
< K2

1 + g for K2 ≤ A1
A0

< K1

1 + α
(

A1
A0

− 1
)

for A1
A0

≥ K1,

i.e. L1 = (1 + αE)A1
A0

−
(
1 + αE

)(A1
A0

− K2

)+
+ α

(
A1
A0

− K1

)+
. (3.10)

For a low equity ratio (Case (i)), the above Proposition states that the liabilities of the
insured are given by the payoff of

(i) one long position in the insurer’s assets A and

(ii) 1−α+αE

1+αE short calls on A with strike
(
1 + αE

)
K3 =

(
1 + αE

)
1−α

1−α+αE .

For a high equity ratio (Case (ii)), the above Proposition states that the liabilities of the
insured are given by the payoff of

(i) one long position in the insurer’s assets A,

(ii)
(
1 + αE

)
short position in a call on A with strike

(
1 + αE

)
K2 = 1 + g and

(iii) α long calls with strike
(
1 + αE

)
K1 =

(
1 + αE

) (
1 + g

α

)
.

In addition, the above Proposition immediately implies the following important properties
of the liability payoffs.
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Corrolary 3.2.6 (Properties of the liability payoff)
Let L1 be the liability payoff stated in Proposition 3.2.5, then it holds

(i) L1 is increasing in g and αE. For g > 0, L1 is increasing in α.

(ii) For αE ≤ g(α−1)
g+α , L1 is concave in A1

A0
.

(iii) For αE > g(α−1)
g+α , L1 is piecewise concave and piecewise convex in A1

A0
.

An illustration of L1 is given in Figure 3.3. The left hand figure is based on αE ≤ g(α−1)
g+α

(low equity fraction) while the right hand figure is based on the case αE > g(α−1)
g+α (high

equity fraction). In particular, the payoffs on the left hand side are concave while the
payoffs on the right hand side are piecewise concave and convex while. Intuitively, it is
clear that a higher amount of equity means that the real degree of guarantee is, ceteris
paribus, higher than for a lower amount of equity. This is resembled in the payoff profiles,
i.e. a higher amount of equity gives more convexity to the payoff profile (implying a more
valuable guarantee).

Illustration of the contract payoff under default risk

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0
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A0

L
1
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1.5
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L
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Figure 3.3: For varying asset increments A1
A0

, the figures illustrate the actual contract payoff L1. It holds
0 = αE

1 < αE
2 < αE

3 . The black solid line refer to αE = 0, the black dashed line to αE = αE
2 = 0.1, and

the dotted line to αE = α3 = 0.2. The left hand figure is based on αE ≤ g(α−1)
g+α

(low equity fraction) while
the right hand figure is based on αE > g(α−1)

g+α
(high equity fraction). Moreover we set α = 0.7 and the

minimum return rate guarantee g = −0.3 for the left figure and g = 0.3 for the right figure.

3.2.3 Fair pricing and regulatory requirements

Throughout the following analysis, we make some assumptions on the contract design (and
the model setup for the financial market). We assume that the financial market model is
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arbitrage free. Furthermore, we assume that, because of competition, the contracts are
fairly priced such that no arbitrage is introduced (among the insurers and between the
insurance products and the financial market products):

Assumption 1 (No arbitrage)
We assume that the financial market model is arbitrage free. Thus, the fundamental the-
orem of asset pricing implies the existence of an equivalent pricing measure P∗ such that
the price of any traded asset X with payoff XT at T > 0 is given by the expected discounted
payoff under P∗,i.e.

X0 = EP∗

[
e−
∫ T

0 r̃u duXT

]
, (3.11)

where r̃u denotes the forward rate, such that
∫ T

0 r̃u du is the continuously compounded
interest rate prevailing at time T .

Assumption 2 (Fair pricing)
We assume competition between the insurance companies (and with the opportunity to
invest in the financial market). In particular, we thus assume that the insurance contracts
are fairly priced, i.e. depending on the investment decisions which are carried out by the
insurer on the financial market, the contract prices are given by the arbitrage free (financial
market) prices.7

Assumption 3 (Stakeholders)
The policyholders are not able to participate at the arbitrage free financial market, such
that they cannot replicate future cash-flows. They just have the possibility to invest in the
asset side of the insurance company. The insurer itself, resp. its shareholders, of course
have this access to the market.8

In addition, we assume later that an admissible contract design must honor regulatory re-
quirements as e.g. posed by an upper bound on the shortfall probability. First, we consider
the assumption on the contract pricing and the implications of postulating an arbitrage

7 It should be mentioned that in practice it would not be possible to e.g. make sure that all these
contracts are initially fair: Rather, in practice, cross-subsidizing effects are unavoidable (cf. e.g. Hieber
et al. (2015)).

8 This assumption is reasonable and has often been used in other literature dealing with this topic, e.g.
Schmeiser and Wagner (2015) or Briys and De Varenne (1997).
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free financial model setup. Subsequently, we introduce the regulatory requirement and
represent the shortfall probability in terms of the strikes introduced above.

Along the lines of Proposition 3.2.5, the arbitrage free value of the liabilities (and
the default put, respectively) is given by the (arbitrage free) value of the corresponding
portfolio of plain vanilla options. To simplify the exposition, we refer to a one year horizon,
i.e. the call (or put) options have a maturity of T = 1. The (arbitrage free) value of a call
(put) option (with maturity T = 1) and strike K is denoted by Call(K) (Put(K)). To be
more precise, Call(K) (Put(K)) denotes the t = 0 value of the T = 1 payoff (A1 − K)+

((K − A1)+, respectively).

Proposition 3.2.7 (Fair pricing conditions)
Assume that the asset A can be synthesized by a financial market strategy, i.e. the t = 0
price of the payoff A1 is A0 (A is an asset paying no dividends). In addition, assume
that the financial market is arbitrage free. Then, the fair pricing condition is given by
the condition that the market consistent price of the payoff L1 is equal to P0 = 1. In
particular, depending on the equity ratio αE, the minimum return rate guarantee g, and
the participation fraction α, the following pricing conditions hold:

(i) Low equity ratio: For αE ≤ g(α−1)
g+α , it holds

1 =
(
1 + αE

)
− (1 − α + αE)Call(K3). (3.12)

(ii) High equity ratio: For αE > g(α−1)
g+α , it holds

1 =
(
1 + αE

)
−
(
1 + αE

)
Call(K2) + αCall(K1). (3.13)

where the strikes K1, K2 and K3 are defined as in Equation (3.7).

Corrolary 3.2.8 (Properties of fair contracts under default risk)
The fair pricing conditions imply the following properties

(i) For αE = 0, a fair contract implies αfair = 1.

(ii) In the special case that g = −1 (no guarantee) it also holds αfair = 1.

The proof is straightforward and the results are intuitive: Part (i) states that without
equity, the insured face the whole risk of the asset investments, i.e. the (fair) liabilities are
given by L1 = A1. In particular, without further restrictions on the distribution of A1

A0
,
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i.e. restrictions on the riskiness of the investment strategy, there is no guarantee without
equity. The interpretation of part (ii) is analogous. Since there is no guarantee if g = −1,
a fair contract must imply L1 = A1.

Now consider the condition that there is a regulatory requirement on the shortfall
probability. Assume that the regulator requires an upper bound ϵ for the probability that
the intended guaranteed accumulation P I

1 is not honored because the asset value A1 is
lower, i.e.

P
(
A1 < P I

1

)
≤ ϵ. (3.14)

The event
{

A1 < P I
1

}
can be represented in terms of the strikes given by Equation (3.7):

K1 defines the level of A1
A0

such that the inner option is in the money, i.e. where the intended
payoff P I

1 pays out 1 + α
(

A1
A0

− 1
)

instead of 1 + g. The strike K2 defines the level of A1
A0

such that the put option is in the money, i.e. the intended Payoff P I
1 is equal to 1 + g,

but the asset side A1 is lower. K3 defines the level of A1
A0

where the liabilities can not be
satisfied if the inner option is in the money, i.e.{

A1 < P I
1

}
=
{

A1
A0

≤ K1; A1
A0

< K2

}
∪
{

A1
A0

> K1; A1
A0

< K3

}
. (3.15)

With Lemma 3.2.2 and the representation of the shortfall event in Equation (3.15), we
immediately obtain the following Proposition.

Proposition 3.2.9 (Shortfall probability)
The shortfall probability P

(
A1 < P I

1

)
is given by

P
(
A1 < P I

1

)
= P

(
A1
A0

< min{K1, K2}
)

+ P
(

K1 ≤ A1
A0

≤ max{K1, K3}
)

= P
(

A1
A0

< K3

)
1{

αE≤ g(α−1)
g+α

} + P
(

A1
A0

≤ K2

)
1{

αE>
g(α−1)

g+α

}. (3.16)

It is worth to emphasize that, e.g. in the context of Solvency II, the upper bound on
the shortfall probability determines the amount of equity which is needed to assure the
solvency to a high degree, i.e. to honor the liabilities to the insured. Obviously, the lower
the strike is, the lower is the probability that the value of a given investment strategy
drops below the strike. Since the above strikes are decreasing in the equity fraction αE , a
higher equity fraction is able to reduce the shortfall probability.9

9 However, if one assumes a complete financial market model, any reduction in the shortfall probability
can also be implemented by a change in the asset distribution by means of a suitable investment strategy.
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3.2.4 Black and Scholes model setup and illustration

Along the lines of the previous subsections, the contracts can be fairly priced in closed
form in any arbitrage free model setup which allows closed form solutions of plain vanilla
options. For the sake of simplicity, we place ourselves in a Black and Scholes model setup
to give some illustrations. The financial market model over the filtrated probability space
(Ω, F , (Ft)t∈[0,T ],P) is given by the Black and Scholes model, i.e. there are two investment
possibilities, a risky asset S and a risk-free asset B which accumulates according to a
constant interest rate r. The filtration (Ft)t∈[0,T ] is generated by the standard Brownian
motion (Wt)t∈[0,T ]. Because of the completeness of the Black and Scholes model, there
exists a uniquely determined equivalent martingale measure P∗ under which the process
(W ∗

t )t∈[0,T ] defines a standard Brownian motion. In particular, the risky asset (St)t∈[0,T ]

and risk free bond dynamics (Bt)t∈[0,T ] are given by

dSt = St (µ dt + σ dWt) = St (r dt + σ dW ∗
t ) , S0 = s

dBt = Btr dt, B0 = b.

Under the real world probability measure P, the asset price follows a geometric
Brownian motion with constant drift µ (µ > r) and constant volatility σ (σ > 0). Under
the uniquely defined equivalent martingale measure (pricing measure) P∗, the asset price
follows a geometric Brownian motion with constant drift r and constant volatility σ (σ >

0). The risk free bond B grows at a constant interest rate r.

Constant mix strategies

Assuming that the insurer decides to implement an investment strategy which is described
by a constant fraction of wealth m(A) invested in the risky asset (and the remaining fraction
1 − m(A) is invested in the risk free bond) implies that the asset process is also given by
a lognormal process, i.e.

dAt = At

(
m(A) dSt

St
+ (1 − m(A))r dt

)
.

Thus, w.r.t. an investment horizon of T = 1, it holds

A1 = A0eµ
(RW )
A − 1

2 σ2
A+σAW1 = A0er− 1

2 σ2
A+σAW ∗

1

where µ
(RW )
A = m(A)µ + (1 − m(A))r and σA = m(A)σ.
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µ(RW ) denotes the drift of the asset dynamics under the real word measure P. Under the
pricing measure P∗, the drift is equal to r. In particular, let N(µ, σ2) denote the normal
distribution with mean µ and variance σ2 and Φ(·) the cumulative distribution function
of the standard normal distribution. Then it holds

ln A1
A0

∼ N

(
µA − 1

2σ2
A, σ2

A

)
under P,

ln A1
A0

∼ N

(
r − 1

2σ2
A, σ2

A

)
under P∗.

In consequence, the arbitrage free (competitive) price of the liabilities L1 (the default put,
respectively) can be derived by means of Proposition 3.2.7 where the call price formula
Call(K) = Call(BS)(K, σA) is given by the Black and Scholes pricing formula (w.r.t. the
returns), i.e.

Call(BS)(K, σA) = Φ(d1(K, σA)) − e−rKΦ(d2(K, σA)), (3.17)

where d1(K, σA) =
− ln K + r + 1

2σ2
A

σA
and d2(K, σA) = d1(K, σA) − σA.
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Illustration of fair contracts (constant mix strategies)
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Figure 3.4: The contract and model parameters are given as in Table 3.1. The left figures illustrate
fair tuples of the contract parameter (α, g). The black line refers to αE

1 = 0.01, the black dashed line to
αE

2 = 0.02, and the dotted line to αE
3 = 0.05. The figure on the right hand side (the black line, respectively)

depicts fair contracts for the benchmark case in terms of fair combinations of the equity fraction αE and
the investment fraction m(A) (defining the volatility of the assets, i.e. σA = m(A)σ). The solid line refers
to α = 0.9, the dashed line refers to a lower participation fraction α = 0.85 and the dotted line refers to
α = 0.8.

Figure 3.4 gives an illustration of fair contract designs. The left figure illustrates
fair tuples of the contract parameter (α, g). Along the lines of the model free results,
the (return) payoff of the MRRG under default risk is increasing in α and g. Thus, in
order to stay on a fair contract design, an increasing guarantee g must be compensated
by decreasing the participation rate α. In addition, the fair (α, g) combinations are lower
for higher equity fractions, i.e. the black line refers to αE

1 = 0.01, the black dashed line
to αE

2 = 0.02, and the dotted line to αE
3 = 0.05. This result is straightforward and can,

for example, be found in Grosen and Jørgensen (2000). An interesting effect arises in
view of the piecewise concave and piecewise convex payoff structures (implied by g > 0
and αE > 0, cf. Corollary 3.2.6). Although the contract value is increasing in the equity
fraction αE , this is not necessarily true with respect to the riskiness of the investments, i.e.
w.r.t. m(A) (the volatility σA = m(A)σ, respectively). Thus, for a fixed equity fraction αE ,
there may be two investment fractions m(A,1) and m(A,2) such that the contract is fairly
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priced. This is illustrated in the right hand plot of Figure 3.4 which depicts fair contracts
for the benchmark case in terms of fair combinations of the equity fraction αE and the
investment fraction m(A) (defining the volatility of the assets, i.e. σA = m(A)σ). The solid
line refers to α = 0.9, the dashed line refers to a lower participation fraction α = 0.85 and
the dotted line refers to α = 0.8. For the shortfall probability given in Proposition 3.2.9,
the Black and Scholes model setup immediately implies

P
(
A1 < P I

1

)
= Φ

(
d0(K3)

)
1{

αE≤ g(α−1)
g+α

} + Φ
(
d0(K2)

)
1{

αE>
g(α−1)

g+α

}, (3.18)

where d0(K) :=
ln K − (µA − 1

2σ2
A)

σA
.

Again, notice that, e.g. in the context of Solvency II, the upper bound on the shortfall
probability is posed to determine the amount of equity which is needed to assure the
solvency to a high degree, i.e. to honor the liabilities to the insured. Obviously, the lower
the strike is, the lower is the probability of a constant mix strategy that its terminal value
drops below the strike. Since the above strikes are decreasing in the equity fraction αE ,
a higher equity fraction is able to reduce the shortfall probability, cf. Figure 3.5 for an
illustration.

It is worth noticing that any reduction of the shortfall probability can also be ob-
tained by suitably adjusting the investment strategy, i.e. the distribution of A1.

Table 3.1: Benchmark parameter settings

Model parameter Contract parameter Upper bound on P
(
A1 < P I

1

)
r µ σ P0 A0 α g ϵ

0.03 0.07 0.2 1 1+αE 0.9 0.0175 0.005

3.3 Optimal design of quantile guarantees

The following section discusses, from the perspective of the insured, the optimal design
of a MRRG under default risk and an upper bound on the shortfall probability. A fair
contract design which provides a higher (expected) utility to the insured is also beneficial
to the insurance company. The contract provider competes with other insurers and the
financial market. Choosing among different contracts, the insured selects the contract
which provides herself the highest (expected) utility. Throughout the following, we assume
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Fair contracts honoring the upper bound on the shortfall probability

Figure 3.5: If not otherwise mentioned, the contract and model parameters are given as in Table 3.1.
The black lines depict the fair contracts in terms of fair combinations of the equity fraction αE and the
investment fraction m(A) (defining the volatility of the assets, i.e. σA = m(A)σ). The shaded region is the
region where the upper bound on the shortfall probability (ϵ = 0.005) is honored. While the figure on the
left hand side refers to the benchmark guarantee g = 0.0175, the right hand side is implied by g = −0.0175.

that the preferences of the insured are described by a utility function u = u(CRRA) implying
a constant relative risk aversion (CRRA) denoted by γ, i.e. u(CRRA)(x) = x1−γ

1−γ (γ > 1)
and u(CRRA)(x) = ln x (γ = 1). Assuming CRRA preferences has its merits. There are
empirical investigations which justify CRRA preference, cf. e.g. Chiappori and Paiella
(2011). In addition, CRRA utility allows that the analysis is based on returns.10 The
relevant optimization problem is posed by maximizing the expected utility of the insured
under constraints posed by a competitive market (fair pricing) and the restrictions posed
by the regulator.11 In the first instance, we formulate the optimization problem without

10 It is worth mentioning that CRRA preferences can not explain the existence of (quantile) guarantees
using, cf. Leland (1980). However one can understand that policy makers provide tax advantages for
products with downside protection for old-age provision to reduce the risk of poverty among the elderly
and possible implications for tax payers - even if downside protection reduces utility on the individual
level for CRRA-type policyholders. For the effect of taxation on equity-linked life insurance we refer to
Chen et al. (2019)

11 The optimization procedure with a value at risk restriction can be referred to as a chance-constrained
approach. It is transferable in a non-linear (deterministic) optimization program of normal of log normal
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stating the optimization arguments, i.e.

maxEP [u(L1)] s.t. P
(
A1 < P I

1

)
≤ ϵ, EP∗

[
e−rA1

]
= 1 + αE and EP∗

[
e−rL1

]
= 1.

(3.19)

The first condition states the regulatory requirement on the upper bound on the shortfall of
the intended payoff (guarantee) P I

1 . The second condition ensures that the asset value A1

is obtainable by a self-financing investment strategy with initial investment A0 = 1 + αE ,
and the third part captures the fair pricing of the liabilities, i.e. the t = 0 value of the
liability payout at time t = 1 is equal to the contribution P0 = 1. To shed further light
on the (overall) optimal design of quantile guarantees, we discuss and compare (in the
Black and Scholes model setup) different approaches concerning the arguments which are
optimally chosen in the maximization problem (3.19) in order to maximize the utility
which is provided to the insured. As a benchmark, we consider the optimal unconstrained
strategy (no upper bound on the shortfall probability). For αE = 0, this is the classic
Merton problem (cf. Merton (1975)). The solution implies the highest possible utility and
thus provides an upper bound of the expected utility of all contract designs.

We also comment on an approach suggested in Schmeiser and Wagner (2015) who
assume that the insurer implements a constant mix strategy, but can decide on the fraction
of asset wealth which is invested riskily. The insurer simultaneously determines the equity
fraction αE and the investment fraction m(A) such that the pricing and shortfall constraints
are satisfied for a given guarantee g. The utility to the insured is then maximized by
selecting the guarantee g which gives the highest expected utility.

Finally, we consider the optimal solution under the pricing and shortfall constraints
(without restricting the insurer’s investment strategy to constant mix strategies).

3.3.1 The Merton solution as a benchmark

Assume that the insured is not committed to select among MRRG contracts, only. Instead,
assume that she can, without transaction costs, dynamically trade on the financial market.
In terms of the MRRG contracts, this is the special case that αE = 0 (the insured owns the

returns are assumed (cf. McCabe and Witt (1980)). Basically, we also consider log normal payoffs for
t = 1, 2, . . . under a Geometric Brownian Motion (GBM) assumption. However we have added the
assumption that the insured is described by a constant relative risk aversion (CRRA) which gives
further insights on the utility effects from the perspective of the insured.
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asset side herself) and a vanishing shortfall probability bound ϵ = 1 (she is not restricted
by the regulator). The optimization problem (3.19) then boils down to

max
A1

EP

[
u

(
A1
A0

)]
s.t. EP∗

[
e−r A1

A0

]
= 1,

i.e. the investor chooses the optimal payoff L1 = A1 (return, respectively, A0 = P0 = 1).12

Assuming a Black and Scholes model setup to describe the financial market model, gives
the classic Merton problem. The solution is firstly stated in Merton (1975). Under the real
world measure P, the optimal payoff L∗

1 = A∗
1

A0
is given by

A∗
1

A0
= eµ

(RW )
A − 1

2 σ2
A+σAW1 , (3.20)

where µ
(RW )
A = m(A)µ + (1 − m(A))r, σA = m(A)σ and m(A) = µ − r

γσ2 =: m(Mer).

In the optimum, the investor uses a constant mix strategy where the fraction m(A) of
portfolio wealth which is invested riskily is given by the quotient of the (local) excess return
(µ−r) and the squared asset volatility scaled by the parameter of relative risk aversion γσ2.
The certainty equivalent wealth/return CE which makes the investor indifferent to the
Merton payoff is defined by the condition u(CE) = EP[u(A1)], i.e. CE = u−1(EP[u(A1)]).
Straightforward calculations imply

CE∗ = e
r+ (µ−r)2

2γσ2 =: CE(Mer) and yCE∗ = ln CE∗ = r + (µ − r)2

2γσ2 , (3.21)

where yCE∗ denotes the (optimal Merton) savings rate. Notice that the above CE∗ defines
an upper bound to all certainty equivalents which are implied by (admissible) MRRG
contracts and refer to the upper bound by CE(Mer). Analogously, we refer to the optimal
Merton payoff (fraction) by A

(Mer)
1 (m(Mer)).

3.3.2 Upper bound on shortfall probability and restriction to constant
mix strategies

Schmeiser and Wagner (2015) consider the optimization problem under a shortfall prob-
ability condition but assume that the insurer implements a constant mix strategy. In
consequence, the insurer does not consider a quantile hedge to honor the guarantee. To
ensure the shortfall probability condition for a given guarantee, the insurer is restricted to

12 Recall that αE = 0 implies α = 1, cf. Corollary 3.2.8 . With A0 = 1 it follows L1 = A1.
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suitable combinations of investment fractions and equity capital. Amongst other results,
Schmeiser and Wagner (2015) consider the optimization problem

max
g∈G

EP[u(L1)],

where G denotes the set of admissible guarantee rates and where the equity fraction αE

and the investment fraction of the asset side m(A) are determined simultaneously by the
conditions13

P
(
A1 < P I

1

)
≤ ϵ and EP∗

[
e−rL1

]
= 1.

Notice that P
(
A1 < P I

1

)
is analytically given by Equation (3.18). The liability value

EP∗ [e−rL1] is stated in Proposition 3.2.7 in combination with Equation (3.17).14 A few
comments are worth mentioning here: Schmeiser and Wagner (2015) consider the exact
fulfillment of the shortfall probability corresponding to the minimum safety requirement
where the ruin probability P

(
A1 < P I

1

)
is equal to the upper bound ϵ. Intuitively, this is

meaningful if the shortfall constraint is binding in the case without equity capital, i.e. if
the upper bound on the shortfall probability ϵ is sufficiently low compared to the lowest
guarantee contained in the set G.

13 Notice that the condition EP∗
[
e−rA1

]
= 1 + αE is ensured since the insurer implements a constant mix

strategy with initial investment 1 + αE .
14 Once the equity fraction αE and the investment fraction of the asset side m(A) are determined, the

expected utility (and CE) can be stated in quasi closed form. Schmeiser and Wagner (2015) determine
the solution by Monte Carlo simulations.
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Table 3.2: Certainty equivalents of quantile MRRGs under the additional restriction to
constant mix strategies (ϵ = 0.005)

g αE m(A) L0 SFP CEγ=2 CEγ=3.56 CEγ=5.94

m(Mer) = 0.5 m(Mer) = 0.28 m(Mer) = 0.169
CE(Mer) = 1.0408 CE(Mer) = 1.0363 CE(Mer) = 1.0339

-0.100 0.1285 0.5277 1 0.005 1.0405 1.0341 1.0247
(1.0406)

-0.095 0.1250 0.5101 1 0.005 1.0405 1.0345 1.0257
-0.090 0.1211 0.4921 1 0.005 1.0404 1.0348 1.0266
-0.085 0.1175 0.4745 1 0.005 1.0403 1.0351 1.0275
-0.080 0.1140 0.4571 1 0.005 1.0401 1.0353 1.0283
-0.075 0.1105 0.4397 1 0.005 1.0400 1.0355 1.0290
-0.070 0.1073 0.4229 1 0.005 1.0398 1.0357 1.0297
-0.065 0.1034 0.4047 1 0.005 1.0396 1.0359 1.0304
-0.060 0.1000 0.3876 1 0.005 1.0394 1.0360 1.0310
-0.055 0.0970 0.3710 1 0.005 1.0392 1.0361 1.0315
-0.050 0.0925 0.3521 1 0.005 1.0389 1.0361 1.0320
-0.045 0.0890 0.3347 1 0.005 1.0386 1.0361 1.0324

(1.0362)
-0.040 0.0850 0.3165 1 0.005 1.0383 1.0361 1.0328
-0.035 0.0812 0.2987 1 0.005 1.0380 1.0360 1.0331
-0.030 0.0775 0.2811 1 0.005 1.0377 1.0359 1.0334
-0.025 0.0738 0.2634 1 0.005 1.0373 1.0358 1.0336
-0.020 0.0694 0.2443 1 0.005 1.0369 1.0356 1.0337
-0.015 0.0653 0.2259 1 0.005 1.0365 1.0354 1.0338
-0.010 0.0611 0.2074 1 0.005 1.0360 1.0351 1.0338

(1.0338)
-0.005 0.0569 0.1887 1 0.005 1.0356 1.0349 1.0338
0.000 0.0519 0.1684 1 0.005 1.0350 1.0345 1.0336
0.005 0.0471 0.1485 1 0.005 1.0345 1.0341 1.0334
0.010 0.0419 0.1278 1 0.005 1.0339 1.0336 1.0331
0.015 0.0362 0.1063 1 0.005 1.0333 1.0331 1.0328
0.020 0.0299 0.0833 1 0.005 1.0326 1.0325 1.0323
0.025 0.0219 0.0567 1 0.005 1.0318 1.0317 1.0317
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In addition, we consider an exogenously given participation fraction α (e.g. α = 0.9
as implied by German legislation). However, α (1 − α, respectively) implicitly defines a
guarantee fee, i.e. the insured gives up some upside participation for downside protection.
In particular, if α is already sufficiently low (compared to g), there does not exist an equity
fraction αE ≥ 0 such that the (fair) pricing condition can be satisfied, cf. Figure 3.4 and
the results in Schmeiser and Wagner (2015).

As a numerical example, we refer to the benchmark parameter setting summarized
in Table 3.1 and consider the above optimization problem for the guarantees g, taking the
values g ∈ G = {−0.1, −0.095, . . . , 0.02, 0.025} and a shortfall probability bound given by
ϵ = 0.005. For each g ∈ G, Table 3.2 summarizes the combination of equity fraction αE

and investment fraction m(A) (implying that the SFP is exactly met and the contract is
fairly priced) as well as the certainty equivalent contract wealths CEs of insureds which
are described by three different levels of relative risk aversion (γ = 2, 3.56, and 5.94). In
addition, the Merton solution is summarized in the upper line. For each level of relative
risk aversion, the highest certainty equivalent (CE) is marked which implies the optimal
guarantee rate. Observe that the CEs obtained by the (optimal) contracts are close to (but
below) the Merton solution. In addition, the corresponding investment fractions m(A) are
close to (but above) the Merton fractions. Intuitively, this is explained by the participation
fraction α which is (along the lines of the benchmark parametrization) equal to α = 0.9,
i.e. the investor gives up 10% of the upside returns.

3.3.3 Optimal quantile payoff

As mentioned above, the Black and Scholes model is complete such that any state depen-
dent payoff is attainable, i.e. it can be synthesized by a self-financing strategy in the asset
S and the risk free investment opportunity B. In addition with the assumption that the
contracts are fairly priced, we can obtain the utility maximizing quantile guarantee payoff
L1 with an initial investment of P0 = 1, i.e. the optimal payoff is independent of the equity
fraction αE . Thus, w.l.o.g. we can set αE = 0. Recall from Corollary 3.2.8 that for αE = 0,
a fair contract implies α = 1, i.e. L1 = A1 = A1

A0
(since P0 = 1 and A0 = 1 + αE = 1), such

that the optimization problem (3.19) simplifies to

max
A1

EP [u(A1)] s.t. P (A1 < 1 + g) ≤ ϵ and EP∗
[
e−rA1

]
= 1. (3.22)

The solution to this problem can already fully be traced back to Basak and Shapiro (2001)
who state the optimal payoff (in dependence of the state prices) under a terminal VaR
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constraint.15

Proposition 3.3.1 (Optimal quantile return payoff)
If the shortfall probability is not binding, i.e. if P

(
A

(Mer)
1
A0

≤ 1 + g

)
≤ ϵ, the optimal so-

lution coincides with the Merton solution. If the shortfall probability is binding, i.e. if
P
(

A
(Mer)
1
A0

≤ 1 + g

)
> ϵ, the optimal return payoff w.r.t. the optimization problem (3.22)

is given as follows

A∗
1

A0
= β

A
(Mer)
1
A0

+
(

1 + g − β
A

(Mer)
1
A0

)
1{

K<β
A

(Mer)
1
A0

≤K

},

where 0 ≤ K ≤ K := 1 + g. K is determined by the SFP bound ϵ and β by the pricing
condition, i.e.

P
(

A
(Mer)
1
A0

≤ K

β

)
= ϵ and 1 − β = e−rEP∗

(1 + g − β
A

(Mer)
1
A0

)
1{

K<β
A

(Mer)
1
A0

≤K

}
 .

In the limiting cases ϵ → 1 (no constraint on the shortfall probability) and ϵ → 0 (full
guarantee) it holds

(i) For ϵ → 1 (and/or P
(

A
(Mer)
1
A0

≤ 1 + g

)
≤ ϵ), it holds β = 1, and K = K, i.e. the

optimal (return) payoff is given by the Merton solution
(

A∗
1

A0
= A

(Mer)
1
A0

)
.

(ii) For ϵ → 0, it holds K = 0 (and K = 1 + g) such that

A∗
1

A0
= (1 + g) +

(
β

A
(Mer)
1
A0

− (1 + g)
)+

,

where β solves

1 = e−r(1 + g) + βCall(BS)
(1 + g

β
, σ

(Mer)
A

)
and Call(BS) is given by Equation (3.17).16

15 Basak and Shapiro (2001) state the optimal solution in dependence of the state prices for a general
class of utility functions in a dynamic complete market setup where the investor can choose between
one risk-less bond and several risky stocks.

16 Notice that the pricing condition is, by means of the put call parity, now given in terms of the call price.
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Instead of explicitly stating the adoption to our setup, it is worth to comment on
the intuition behind the result. Obviously, if the quantile constraint is not binding, the
optimal solution is given by the Merton solution. W.r.t. the other limiting case where the
return payoff is constrained by a shortfall probability of zero (ϵ → 0), we also refer to
El Karoui et al. (2005). The optimal unconstrained payoff is a modification of the Merton
solution (unconstrained solution).17 Intuitively, it is clear that a full hedge of the guarantee
features a put option. Notice that

(1 + g) +
(

β
A

(Mer)
1
A0

− (1 + g)
)+

= β
A

(Mer)
1
A0

+
(

(1 + g) − β
A

(Mer)
1
A0

)+

,

i.e. the return of the Merton solution is backed up by a put option with strike K = 1 + g.
The put payoff gives the tightest (and thus cheapest) possibility to obtain a full hedge
of the guarantee. Thus, it enables the investor to obtain the tightest modification of the
unconstrained optimal payoff.

To honor the pricing condition, i.e. the value of the payoff must be equal to one,
the investor can no longer obtain the full Merton return but only a fraction β of it. In
particular, while the value of A

(Mer)
1
A0

is equal to one, the investor now receives only a
fraction of the return, i.e. in the presence of a (non vanishing) guarantee, her investment
amount which is not needed to finance the put is only a fraction β (0 < β < 1).

In summary, the fraction β is determined by a fix point problem which is due to the
condition that the value of the put on the return β

A
(Mer)
1
A0

must be equal to the reduction
of the initial investment 1−β (i.e. both sides depend on β). Intuitively it is now clear that
any deviation from a perfect guarantee (ϵ → 0), an admissible shortfall probability which
is higher than zero gives rise to lower hedging costs than the solution characterized above.
While in the case of a zero shortfall probability the optimal payoff is given by

β
A

(Mer)
1
A0

+
(

(1 + g) − β
A

(Mer)
1
A0

)
1{

K<β
A

(Mer)
1
A0

≤K

},

where K = 0 and K = 1+g, the investor is now allowed to implement a smaller guarantee
interval [K, K] where 0 ≤ K < K ≤ 1 + g. Notice that the upper bound on the shortfall
probability implies that fixing either K or K implies the other strike such that β is
determined by the resulting fix point problem.

17 In fact, the result does not depend on the Black and Scholes model which implies the Merton solution.
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However, the cheapest way to do so is by setting K = 1 + g, i.e. starting with the
high asset prices (Merton returns, respectively) which are linked to the cheapest states
(to be hedged). In summary, the optimal quantile hedge is a scaled version of the Merton
solution overlaid by the (cheapest) quantile hedge which honors the SFP bound.18 In order
to illustrate the improvement obtained by the optimal quantile hedge, we add in Table 3.2
the CEs associated with the optimal quantile guarantees, cf. italic numbers in brackets
below the bold faced numbers referring to the optimal values under the restriction to
constant mix strategies (and choosing the guarantee). Again, it is worth to emphasize
that the optimal quantile payoff can be implemented for any equity fraction αE of the
insurer.

3.4 Interest rate risk management

Interest rate risk plays an important role for life insurance companies. In particular when
assessing life insurance liabilities, interest rate risk should be considered. In the following
section we shed a light on the interest rate risk of the above stated guarantee scheme. In
order to evaluate the interest rate risk, we first recall the arbitrage-free price at time t = 0
of the payoff L1 in a Black and Scholes model setup.

Proposition 3.4.1 (arbitrage-free price at time t of the payoff L) The arbitrage-
free price at time t of the payoff L is given by the following:

(i) Low equity ratio: For αE ≤ g(α−1)
g+α , it holds

Lt = At − (1 − α + αE)Call(K3). (3.23)

(ii) High equity ratio: For αE > g(α−1)
g+α , it holds

Lt = At −
(
1 + αE

)
Call(K2) + αCall(K1). (3.24)

where the strikes K1, K2 and K3 are defined as in Equation (3.7) and further Call(K) =
Call(BS)(K, σA, t) is given by the Black and Scholes pricing formula (w.r.t. the returns),

18 W.r.t. quantile hedges, the interested reader is referred to Föllmer and Leukert (1999) who show how
to obtain the highest success probability when hedging a claim with a lower initial investment than the
one needed for a full hedge (or the other way round).

70



3 Participating life insurance contracts with minimum return rate guarantees under default risk

i.e.

Call(BS)(K, σA, t) = AtN (d1(K, σA)) − e−r(T −t)KN (d2(K, σA)), (3.25)

where d1(K, σA) =
ln
(

At
K

)
+
(
r + 1

2σ2
A

)
(T − t)

σA

√
T − t

and d2(K, σA) = d1(K, σA) − σA

√
T − t.

Next we define the interest rate sensitivity of the liability Lt.

Proposition 3.4.2 (Interest rate sensitivities) The interest rate sensitivity of the li-
ability Lt is given by following:

(i) Low equity ratio: For αE ≤ g(α−1)
g+α , it holds

∂Lt

∂r
= (1 − m(A))At − (1 − α + αE)∂Call(K3)

∂r
. (3.26)

(ii) High equity ratio: For αE > g(α−1)
g+α , it holds

∂Lt

∂r
= (1 − m(A))At −

(
1 + αE

) ∂Call(K2)
∂r

+ α
∂Call(K1)

∂r
. (3.27)

where the strikes K1, K2 and K3 are defined as in Equation (3.7) and the interest rate
sensitivity of the call option Call(K) = Call(BS)(K, σA, t) is given by

∂Call(BS)(K, σA, t)
∂r

=(1 − m(A))AtN (d1(K, σA)) + AtN ′(d1(K, σA))(1 − m(A))(T − t)
σA

√
T − t

+ (T − t)e−r(T −t)KN (d2(K, σA))

− e−r(T −t)KN ′(d2(K, σA))(1 − m(A))(T − t)
σA

√
T − t

where d1(K, σA) =
ln
(

At
K

)
+
(
r + 1

2σ2
A

)
(T − t)

σA

√
T − t

and d2(K, σA) = d1(K, σA) − σA

√
T − t.

Proof: The proof is given in Appendix C. □

The interest rate sensitivity of the asset side is given by

∂At

∂r
= (1 − m(A))At

and the interest rate sensitivity of the buffer is then defined by ∂At−Lt
∂r .
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Interest rate sensitivities for different levels of g, α and αE
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Figure 3.6: This Illustration show the interest rate sensitivity for different levels of g, αE and α. If not
stated otherwise the parameters are given by Table 3.1 and αE = 0.

First we discuss the interest rate sensitivity in more detail. Therefore, Figure 3.6
illustrates the interest rate sensitivity of the price of the liability L. For the parameter
setup given by Table 3.1 and αE = 0 the illustration shows the interest rate sensitivity for
different levels of g, αE and α. For a rather low equity ratio the interest rate sensitivity is
increasing in the guaranteed rate g. Furthermore the interest rate sensitivity is increasing
with increasing participation fraction α. Moreover, Figure 3.6 shows that the equity ratio
αE does not have a monotonic effect on the interest rate sensitivity. Only in the case of a
negative guarantee rate g it can be seen that the interest rate sensitivity falls monotonically
as the equity ratio αE rises.

We then examine interest rate sensitivity for quantile MRRGs. For this purpose, we
add the corresponding values of the interest rate sensitivity to the Table 3.2. The results
are given in Table 3.3. We also added the interest rate sensitivities of the asset portfolio as
well as of the buffer. On the asset side, the influence of the interest rate is only represented
by the investment in the risk-free bond. For this reason, the interest rate sensitivity of the
asset portfolio increases as the guarantee rate g rises, as this is also accompanied by an
increase in the share of the risk-free bond given by (1 − m(A)). Table 3.3 shows that the
interest rate sensitivity of the liabilities is first increasing with g until it hits its maximum
in g = −0.035. Then it decreases with increasing g. For g ≤ −0.1 and g ≥ 0 the interest
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rate sensitivity of the liabilities is negative. Furthermore Table 3.3 shows that the asset
portfolio is more sensitive to changes in the interest rate than the liabilities. The lowest
interest rate sensitivity of the buffer value is therefore given by the smallest guarantee
rate considered in this observation interval g = −0.1, because this also leads to the lowest
bond fraction (1 − m(A)). A visualization of these results is given in Figure 3.7.

Table 3.3: Interest rate sensitivity of quantile MRRGs

g αE m(A) L0 SFP ∂Lt
∂r

∂At
∂r

∂At−Lt
∂r

-0.100 0.1284 0.5274 1 0.005 -0.0090 0.5333 0.5422
-0.095 0.1252 0.5104 1 0.005 0.0055 0.5509 0.5454
-0.090 0.1213 0.4924 1 0.005 0.0210 0.5692 0.5482
-0.085 0.1178 0.4749 1 0.005 0.0353 0.5870 0.5517
-0.080 0.1142 0.4574 1 0.005 0.0489 0.6046 0.5557
-0.075 0.1107 0.4400 1 0.005 0.0617 0.6220 0.5603
-0.070 0.1073 0.4228 1 0.005 0.0735 0.6391 0.5656
-0.065 0.1037 0.4054 1 0.005 0.0845 0.6563 0.5717
-0.060 0.1001 0.3879 1 0.005 0.0948 0.6734 0.5786
-0.055 0.0962 0.3698 1 0.005 0.1045 0.6908 0.5863
-0.050 0.0928 0.3526 1 0.005 0.1118 0.7075 0.5956
-0.045 0.0891 0.3349 1 0.005 0.1180 0.7244 0.6064
-0.040 0.0853 0.3171 1 0.005 0.1219 0.7412 0.6192
-0.035 0.0815 0.2993 1 0.005 0.1233 0.7578 0.6345
-0.030 0.0774 0.2809 1 0.005 0.1221 0.7748 0.6527
-0.025 0.0735 0.2628 1 0.005 0.1169 0.7914 0.6745
-0.020 0.0695 0.2445 1 0.005 0.1068 0.8080 0.7012
-0.015 0.0653 0.2260 1 0.005 0.0889 0.8245 0.7357
-0.010 0.0611 0.2072 1 0.005 0.0641 0.8412 0.7772
-0.005 0.0567 0.1882 1 0.005 0.0247 0.8578 0.8331
0.000 0.0520 0.1687 1 0.005 -0.0359 0.8745 0.9104
0.005 0.0472 0.1487 1 0.005 -0.1224 0.8915 1.0139
0.010 0.0420 0.1280 1 0.005 -0.2632 0.9086 1.1719
0.015 0.0363 0.1063 1 0.005 -0.5088 0.9261 1.435
0.020 0.0298 0.0830 1 0.005 -1.0132 0.9443 1.9575
0.025 0.0220 0.0568 1 0.005 -2.4190 0.9640 3.3829
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Interest rate sensitivity for different levels of g
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Figure 3.7: This Illustration show the interest rate sensitivity of quantile MRRGs Lt, the asset portfolio
At and the Buffer At − Lt.

3.5 Conclusion

This chapter analyzes the optimal design of participating life insurance contracts with
minimum return rate guarantees under default risk. The benefits to the insured depend
on the performance of an investment strategy which is conducted by the insurer. This
strategy is initialized by an amount given by the sum of equity and the contributions of the
insured. Unless there is a default event, the insured receives the maximum of a guaranteed
rate and a participation in the returns. Considering default risk modifies the payoff of the
insured by means of a default put implying a compound option feature (nested maximum).
Based on yearly returns, we show that,in spite of the compound option feature, the (yearly
return) payoff of the default put (and the liabilities to the insured) can be represented by
piecewise linear functions of the investment return, i.e. the payoff of a portfolio of plain
vanilla options. Thus, the liabilities are easily priced in any model setup which gives closed
form solutions for standard options.

In a complete market setup, we then derive the optimal (expected utility maximiz-
ing) quantile guarantee payoff of an investor/insured with constant relative risk aversion.
Because of the completeness assumption, the return payoff can be implemented by the
insurance company for any equity to debt ratio. We illustrate the utility loss which arise
if the insurer implements a suboptimal investment strategy.

We further investigated on the interest rate risk of those quantile guarantees. We
therefore calculated the effective duration and convexity for suitable combinations of the
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minimum return rate guarantee g and the corresponding fair equity ratio αE .

For future work, it would be useful to extend the model to T > 1 and additionally
consider, for example, periodic contributions. It could also be of interest to consider further
interest rate models in order to ensure a more accurate assessment of interest rate risk.
Furthermore, the consideration of mortality risks and surrender options would be a useful
addition.
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Chapter 4

The interest rate risk submodule
under Solvency II: An Overview

4.1 Introduction

The crises of the past few years, as well as those that are still ongoing, have led to a
rethinking on the part of financial regulators. In this process, regulation has become more
comprehensive and demanding. In the area of banking regulation in Europe, a revision of
Basel III regulation has been published in the form of the Review of the Trading Book. In
the insurance sector, the area of risk measurement has been revised within Solvency II. In
addition, the rapid development of financial products is accompanied by increasing com-
plexity, which makes valuation more demanding. Furthermore, the ongoing low-interest
phase continues to cause difficulties for insurance companies. Life insurance companies in
particular are experiencing difficulties in fulfilling their guaranteed returns. Moreover, the
range of innovative contracts is increasing compared to traditional life insurance policies,
which also involve riskier investments. At the same time, the attractiveness for customers
must be ensured.

In this respect, quantitative requirements for insurance companies are becoming
increasingly important. Solvency II provides the regulatory basis for this. In order to
maintain stability, insurance companies are required to form capital reserves. Too low
capital reserves represents an insufficient hedge against various risks, while too high capital
reserves impairs insurers’ ability to do business by lowering their own funds. These capital
reserves form the Solvency Capital Requirements (SCR) under Solvency II.
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Solvency II is a supervisory system for the European insurance market which entered
into force in 2016. Under the Solvency II regulation interest rate risk is being addressed
by imposing the SCR based on the 99.5% Value at Risk. This SCR is basically determined
either by a standard formula or an internal model. The standard formula is specified by
the regulator with implementing standards, the internal model is developed by the insurer
itself and is certified by the supervisory authorities. Most insurers to which this regulation
applies use a standard formula to calculate the SCR. The standard formula is based on
a bottom-up approach, where the basic SCR (BSCR) is being calculated based on six
risk modules. In this paper we refer to the market risk model and more precisely to the
interest rate risk sub module which is addressed in the delegated regulation (EUR-LEX
(2015) Art. 165 ff.).

There is already a large body of literature that examines the SCR with regard to
various aspects. The aim of this paper is to compile the results of these studies and to
provide an overview of the strengths and weaknesses of the SCR with regard to protection
against interest rate risk. This brief literature review shall establish an understanding
of the Solvency II interest rate risk submodule. At the end, the question whether the
SCR under the current Solvency II regulations represents an adequate capital reserve
for insurance companies regarding interest rate risk will be discussed on the basis of the
available scientific literature.

An overview on internal risk models in the context of Solvency II is given by Liebwein
(2006). An analysis of the mathematical aspects of the standard formula is given by Scherer
and Stahl (2021). Möhlmann (2021) investigates the sources of interest rate risk for life
insurers.

The rest of the chapter is organized as follow. The following section begins with
a brief introduction to Solvency II regulation. It then introduces the interest rate risk
submodule and discusses the minimum capital requirements under the standard formula.
The fourth section summarizes the results from a collection of research papers that relate
to capital requirements under the interest rate submodule. The final section concludes.

4.2 Solvency II regulation and standard approach

The main objective of the supervision through the Solvency II regulation is the protection
of policyholders. In this context, Solvency II regulation follows a three-pillar approach. The
first pillar deals with quantitative requirements for capital adequacy, the second pillar
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with qualitative requirements for risk management and corporate governance, and the
third pillar with market transparency and reporting requirements. The capital adequacy
requirements under the first pillar are intended to ensure that insurance companies are
protected against possible unexpected losses arising from the risks to which they are
exposed. These capital requirements are determined in two steps. First, a solvency balance
sheet is to be prepared containing all assets and values of all liabilities. The difference
between the assets and values of all liabilities represents the basic own funds. In the
second step, the SCR is determined on the basis of the various risk modules. Sufficient
solvency is ensured if the basic own funds plus additional own funds exceed these SCR.
The SCR should be high enough to ensure that insolvency occurs at most every 200 years
(i.e. the one-year probability of default is less than or equal to 0.5%). In order to ensure
this, the value at risk at the confidence level 0.995 of the distribution of own funds at the
end of the year shall be used to determine the SCR in general. In order to determine the
SCR, one can either use the standard formula, resort to an internal model, or use a partial
model as a hybrid of both approaches. The standard formula is specified by regulation and
provides a simplified representation and measurement of risks. The internal model, on the
other hand, is developed by the insurer itself and provides a more detailed representation
and measurement of the risks. Compared to the standard formula, the internal model is
more complex, but offers more flexibility.

The standard formula is based on a modular structure. A distinction is made between
actuarial risks (health, life and non-life risks), market risks, counterparty default risks and
intangible asset risks, with some of these modules consisting of further submodules. The
SCR using the standard formula are determined using a "bottom-up" basic principle. First,
the SCR of the individual submodules are determined. Then, taking diversification effects
into account, the SCR of the individual submodules are aggregated to form the basic SCR
(BSCR). The final SCR is then composed of this BSCR, the SCR for operational risks and
an adjustment for the risk-reducing effect of the surplus participation and deferred taxes.

The market risk module takes into account the risk arising from the level and volatil-
ity of the market prices of financial instruments that affect the measurement of assets and
liabilities. The interest rate risk submodule is part of the market risk module. It repre-
sents the change in basic equity based on a change in the risk-free nominal interest rate. In
the interest rate risk sub module, the capital requirements Mktint are determined based
on the present value of interest rate risk exposures. The present value PV of all inter-
est rate sensitive exposures is given by discounting the respective aggregated cash flows
CF (t) =

∑
j=1 CFj(t) of all single cash flows at time t using the risk-free rate rt at time
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t, i.e.

PV =
T∑

t=1

CF (t)
(1 + rt)t

with T = max{t|CF (t) ̸= 0}. The interest rate sub module is based on the consideration
of two different stress scenarios, a upward and a downward shift of the interest rate. Thus
stressed present values are being determined adding a upward shock given by sup(t) at
time t and a downward shock sdown(t) at time t on the risk free rate rt. The corresponding
present value is then given by

PV k =
T∑

t=1

CF (t)
(1 + rt · (1 + sk(t)))t

, k ∈ {up, down}.

To obtain the Mktint the impact of the stress scenarios need to be calculated by determined
the difference between the present value and the stressed present value

Mktk = PV − PKk, k ∈ {up, down}.

The capital requirements for the interest rate sub module are then given by

Mktint = max{Mktup, Mktdown}.

4.3 Selected aspects of regulatory requirements for interest
rate risk according the standard model of Solvency II
addressed by the literature

4.3.1 Comparison between standard model and partial internal model

Gatzert and Martin (2012) compare the standard formula for the market risk module with
a partial internal model by looking at a asset portfolio consisting of fixed income bonds
and stocks. The SCR in the internal modal is calculated by the change of the market value
of the asset portfolio over one year applying the Value at Risk with confidence level 99.5%
which is in line with Solvency II. In the internal model it is assumed that the stocks follow
a geometric Brownian motion and the short rate is described by the CIR short rate model.
The capital requirements are then derived by

SCRIM = MV (0) − V aR0.005

(
e−
∫ 1

0 rtdtMV (1)
)
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where MV (t) is the market value of the asset portfolio at time t. The market value of the
asset portfolio at time t = 1 is discounted with the risk free short rate rt. To asses credit
risk, Gatzert and Martin (2012) uses the Jarrow-Turnbull model which quantifies credit
risk by credit ratings and possible changes in those ratings. To take into account model
risk Gatzert and Martin (2012) replace the stock, interest rate and credit risk models.
Furthermore, diversification effects between stocks and bonds are also investigated in two
ways. The first level diversification effect describes the diversification effects of pure stock
or bond portfolios and is defined by

d1(K) = SCRK∑
k∈K SCRk

− 1, K ∈ {S, B}

where SCRk is the capital requirement corresponding to a individual asset k of the asset
class of stocks S or bonds B and SCRK denotes the capital requirements for a portfolio
consisting only of stocks or bonds. The second level diversification effect considers portfolio
of both stocks and bonds and is defined by

d2(S + B) = SCRS+B

SCRS + SCRB
− 1

where SCRS+B denotes the capital requirements for a portfolio including stocks and
bonds.

Gatzert and Martin (2012) demonstrate that the SCR calculated by the standard for-
mula is inappropriate comparing to their internal model, especially for bond investments.
They show that the predefined scenario in the standard model both over- and underesti-
mates the actual risk belonging to investments, such that the risk situation is not being
sufficiently reflected. Regarding diversification effects, Gatzert and Martin (2012) show
that although the SCR for individual stocks is higher in case of the internal model, the
SCR for a portfolio of those stocks in lower. So diversification effects implied a significant
reduction of the SCR in the internal model compared to the standard model. Furthermore
Gatzert and Martin (2012) show that model risk can have a strong impact on the internal
model. The capital requirements are substantially higher if the stock dynamics are mod-
eled by the Heston model instead of a geometric Brownian motion. Regarding interest rate
models the SCR is higher using the Vasicek model than CIR model for high rated bonds
like AA or AAA. For B-rated bonds this difference almost vanish. Gatzert and Martin
(2012) explain this effect with the diminishing importance of interest rate risk for lower
rated bonds, where credit risk is becoming the major risk driver in the SCR.

Asadi and Al Janabi (2020) compare the standard model under Solvency II with an-
other innovative internal model, with regard to sufficient capital requirements in times of
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extreme events. Equity risk, interest rate risk and spread risk were taken into account for
different stock and bond portfolios. With regard to the internal model, the marginal dis-
tribution of the individual stocks is modeled using a hybrid Glosten-Jagannathan-Runkle
Extreme Value Theory (GJR-EVT) model. Subsequently, the students t-copula function
is used to model the dependence structures of the individual stocks on each other. Finally,
the SCR is determined using the value at risk. To assess the risks for bond portfolios, an
approach based on Lando and Mortensen (2003) is used. The Cox-Ingersoll-Ross model is
used to model the short rate.

On the one hand, Asadi and Al Janabi (2020) show that the internal model requires
a higher SCR than the standard model for the equity risk for stock portfolios. For bonds
with high rating quality and long maturity, the results between the internal model and
the standard model are similar. This is also in line with the findings of Gatzert and
Martin (2012). However, bonds with low rating quality and short maturity are overvalued
according to the standard model. In this case, the interest rate risk is underestimated and
the spread risk overestimated. This result contradicts the findings of Gatzert and Martin
(2012), using their internal model approach.

4.3.2 Impact on asset allocation

Höring (2013) examines the impact of the Solvency II standard model capital requirement
for the market risk module on the asset allocation of European insurers. In doing so,
Höring (2013) examines whether the capital requirements for market risk under Solvency
II lead to a mandatory portfolio rebalancing for European insurers. To test this, a fictitious
and representative European life insurer is assumed. The capital that the life insurer must
hold for market risk is determined and compared using the standard model under Solvency
II and the Standard & Poor’s (S&P) rating model. S&P evaluates insurance companies
with regard to their creditworthiness on the basis of quantitative and qualitative criteria.
In the process, certain security levels are defined for different rating levels. The target
rating of "A" requires risk-based capital requirements based on a confidence level of 99.4
percent, which corresponds to the confidence level of 99.5 percent required by Solvency II
for calibration. For a rating of "BBB", the confidence level is 97.2 percent, "AA" is based
on a level of 99.7 percent and "AAA" is based on 99.9 percent. The diversification effects
between shares, bonds and real estate are also taken into account at S&P. The market
risk portfolio of the fictitious insurer consists of 82 percent debt instruments, of which 49
percent is sovereign debt and 36 percent is corporate debt. The remainder are covered
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bonds. The duration of the liabilities is 8.9 years and the duration gap between assets and
liabilities is 2.1 years.

Höring (2013) shows that, taking into account the risk-mitigating effect of provisions
and deferred taxes of Solvency II, insurance companies have to hold 68 percent more capital
for net market risk with a target rating of "A" compared to Solvency II. If only the interest
rate risk is considered, the capital requirements under Solvency II are 14 percent higher.
Even for a target rating of "BBB", the capital requirements under S&P are 27 percent
higher than under the Solvency II standard model. Höring (2013) concludes from these
findings that insurers with a good credit rating and good regulatory solvency standing are
not expected to adjust their asset allocation due to the introduction of the Solvency II
regulation.

Nevertheless, the study presented is also subject to limitations. Firstly, when consid-
ering the fictitious insurer, no precise assumptions are made about the liability portfolio
in terms of policies issued. Furthermore, a comparison of capital requirements is made be-
tween the standard and the rating model, which assumes that the insurers only maintain
the regulatory minimum ratio. Also, the insurance company may use internal models or
partial internal models instead of the standard formula.

Braun et al. (2018) examine the impact of Solvency II on risk-adjusted performance
measures of life insurers through adjustments to asset allocations. For this purpose, a
stylized insurance company is considered. A dynamic single-period model is used to model
the assets and liabilities. The initial investment portfolio is divided into equity and the
premium payments of the policyholders. The initial liabilities are given by the present value
of the expected future payments to its policyholders. The asset return and the liability
growth rate are assumed to be normally distributed. Furthermore, a diversification index
is introduced, which is based on the Herfindahl index and reflects the level of concentration
within the asset portfolios. The return on risk-adjusted capital (RORAC) is considered
as a performance measure. Here, the expected change in equity is set in relation to the
SCR according to the market risk standard model. Five typical investment types of a
European life insurer are considered, consisting of stocks, government bonds, real estate,
corporate bonds and money market instruments. Two scenarios are considered. For the first
scenario, historical data between 2000 and 2015 is used to calibrate these investments and
the investment in money market instruments is not considered. The second scenario takes
into account data between 2011 and 2015 and includes the investment in money market
instruments. This distinction is intended to represent different interest rate environments,
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business cycles and other macroeconomic effects.

The results from Braun et al. (2018) show that there is a negative correlation be-
tween the diversification index and the asset risk represented by the standard deviation
of the asset portfolio. This means that a lower-risk portfolio implies greater diversifica-
tion. Moreover, the diversification index in the first scenario is more dispersed than in
the second scenario. Analyzing the expected profit for each portfolio, it can be seen that
the average profit for the first scenario is 389 million euros and for the second scenario
287 million euros. Looking at the Solvency II capital requirements, the average capital
requirement for the first scenario is 679 million euros and for the second scenario 724 mil-
lion euros. Two conclusions can be drawn from these observations. First, asset portfolios
with a higher risk achieve a higher expected profit. On the other hand, lower-risk and thus
broadly diversified portfolios are subject to a higher capital requirement under Solvency
II.

When analyzing the RORAC values, the reverse effect can be observed for the cap-
ital requirements. For the first scenario, the average RORAC values are 61.1% and for
the second scenario 41.8%. Consequently, the low-risk and thus well-diversified portfolios
are associated with low RORAC values. This is the exact opposite for the risky asset
compositions. This shows that the RORAC values are more strongly influenced by the
Solvency II capital requirements than the expected profits. This is the exact opposite for
the risky asset portfolios. It shows that the RORAC values are more strongly influenced
by the Solvency II capital requirements than the expected profits. To the extent that an
insurance company uses RORAC as a key performance indicator, it will seek to reduce
the cost of capital rather than maximize expected profits.

In summary, Braun et al. (2018) shows that the RORAC essentially depends on
capital requirements. Expected profits, on the other hand, play a minor role. In addition,
the standard formula requires a low capital charge for low-diversified portfolios with a
high asset risk. This leads to high RORAC values. Lower-risk portfolios that are broadly
diversified require a higher capital deposit. This results in low RORAC values. If a life
insurer manages its performance measurement on the basis of RORAC, this can have a
negative impact, especially for its stakeholders.

In addition, there is further literature that has examined the potential impact of
Solvency II on asset allocation. Van Bragt et al. (2010) investigate the impact of Solvency
II on the risk and return trade off for life insurance companies. They show that asset allo-
cation and asset duration can have a large impact on the Solvency II capital requirements.
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Reducing the interest rate risk by matching the duration of the asset and liabilities might
decrease the long term expected return and thus also the capital requirements.

The actual changes in the asset allocation of German life insurers from 2005 to
2021 is illustrated in Figure 4.1 based on GDV (2014) and GDV (2022). The Solvency
II directive was published in 2009 and has been in force since January 2016. Figure 4.1
shows that since publication, the proportion of stocks has increased annually from 25,4
% in 2009 to 41,4 % in 2010 and the proportion of bonds has decreased from 58,5 % in
2009 to 41,2 % in 2021.1 Within the bond shares, it is clear that the share of registered
bonds, promissory notes and loans is falling while the share of bearer bonds and other
fixed-income securities is rising since publication.

Asset allocation of German life insurers from 2005 to 2021
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Figure 4.1: This Figure shows the changes in the asset allocation of German life insurers from 2005 to
2021 based on data from GDV (2014) and GDV (2022).

1 Bond shares include registered bonds, promissory notes and loans as well as bearer bonds and other
fixed-income securities.
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4.3.3 Impact of model risk

Martin (2013) ties in with Gatzert and Martin (2012) and compares the SCR for interest
rate risk and credit risk derived from the standard model with the one derived by the
partial internal model introduced by Gatzert and Martin (2012) by assessing model risk.
In doing so, the author refers to the choice of model for interest rates and examines what
impact the choice of model has on the SCR with respect to bond investments. Three
interest rate models in continuous time are considered, the Merton model, the Vasicek
model and the CIR model. These models are considered because they provide bond prices
with an affine term structure, which allow for analytical tractability. Moreover, similar to
Gatzert and Martin (2012), credit ratings are adapted using the Jarrow Lando Turnbull
model. So bonds are assigned with credit ratings whose dynamics are represented by
Markov chains. Both corporate and government bonds are considered. For individual bonds
as well as for bond portfolios, the SCR is calculated regarding interest rate risk, credit risk
and for both risks, taking into account diversification benefits, using the internal model
based on the three interest rate models and the Solvency II standard formula.

First, single corporate bonds were considered. For corporate bonds with a high rat-
ing, the SCR is affected by the choice of the interest model, as the interest risk drives a
bigger role for the SCR compared to the credit rating. Here the Merton model lead to
the highest SCR in the internal model, while CIR model leads to the lowest SCR. Nev-
ertheless, the standard formula provides the highest SCR taking both risks into account.
For corporate bonds with a low rating, the SCR with regard to the credit risk increases
significantly for all approaches. It is clear that the standard formula significantly underes-
timates the credit risk compared to the internal model. With regard to the internal model,
the SCR is similar for all interest rate models. For corporate bonds with a long maturity,
the interest rate risk increases. The Merton model provides the highest SCR for interest
rate risk, while the CIR model gives the lowest SCR. For government bonds, the results
are the similar to those for corporate bonds.

The SCR for the bond portfolio is then considered, with the bond portfolio consisting
largely of highly rated government and corporate bonds. The results for the interest rate
risk as well as for the credit risk are the similar to the single bond exposure. In addition,
the impact of the interest rate model parameters on the SCR in the internal model is
examined. For this purpose, both the initial interest rates r0 and the volatility σr of each
interest rate process is separately increased and decreased by 20 percent. These shocks
show a great influence on the interest rate risk. For example, a 20 percent decrease in the
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initial interest rate leads to a 17.5 percent decrease in the SCR in the CIR model, and a
20 percent increase in volatility leads to a 15.3 percent increase in the SCR in the Merton
model. This identifies model parameter calibration as an important source of risk when
using internal models.

Subsequently, the difference between the SCR determined by the standard model
and the internal model is examined, considering all three interest rate models. It becomes
clear that the SCR for the standard model differs significantly from the SCR for the
internal models. The difference is smallest when the Vasicek model is used. The lowest
SCR level is provided by the CIR model.

Overall, Martin (2013) shows that model risk has a major impact on the SCR for
government and corporate bonds in several aspects. On the one hand, the choice of in-
terest rate model in the internal model is an important factor. Furthermore, the model
parameter calibration is also an important risk factor. Moreover, Martin (2013) shows that
diversification has a large impact on the SCR of bond exposures.

4.3.4 Default probability

Braun et al. (2015) address the default probability implied by the standard formula in
respect of the market risk submodule. In addition, the standard model is compared with
an own partial internal model. Braun et al. (2015) consider a stylized balance sheet ap-
proach to capture the asset portfolio structure of life insurers. For this purpose, a large
number of mean-variance efficient portfolios based on six different asset classes are con-
structed and then examined with regard to their SCR. The investment limits imposed by
the German regulator are taken into account as well as short sale constraints in the con-
struction of those portfolios. In total about 130,000 portfolios without investment limits
and 75,000 portfolios with investment limits are considered. First, the capital requirements
are calculated according to the standard model. It shows that portfolios with a very high
proportion of investments in the money market and in government bonds are admissible
under Solvency II. Admissible under Solvency II means that the following condition must
be met:

SCRMkt ≤ BOF0

i.e., that the capital requirements under the Solvency II standard model regarding the
market risk module are covered by the current basic own fund of the insurer. Subsequently,
the actual default probability of the individual portfolios was determined using the partial

86



4 The interest rate risk submodule under Solvency II: An Overview

internal model. This shows that some of the portfolios admissible under Solvency II have
a significantly higher default probability than the 0.5 percent targeted by Solvency II.
A sensitivity analysis shows that an increase in equity capital increases the number of
admissible portfolios, but also increases the number of admissible portfolios with an actual
default probability of more than 0.5 percent. This increases the likelihood of selecting a
portfolio allocation with an inappropriately high default probability.

Braun et al. (2015) conclude from their findings that the current framework and the
calibration of the Solvency II standard model for market risk are insufficient. Furthermore,
they consider the assessment by the standard model using only stress scenarios to be
incompatible with the insurance industry, as this approach is designed to avoid risks rather
than to offset them.

Fischer and Schlütter (2015) shows that reducing the investment risk by increasing
the stock risk parameters in the calibration of the standard formula does not necessarily
lead to a reduction in the default probability.

4.3.5 Stress scenario calibration

EIOPA (2016) investigates whether the Solvency II interest rate risk calibration is still
adequate in the current low interest situation. The standard formula for the interest rate
sub module was firstly released in 2009 where negative interest rates were not yet foresee-
able. Since then, no adjustments have been made to the shock scenarios with regard to
negative interest rates. EIOPA (2016) states that one drawback of the standard formula
is, that the shock scenarios are given in terms of percentage on the actual short rate, so
the absolute shock is decreasing with decreasing interest rates and it is zero for negative
rates. In the standard formula there is a minimum upward shock of 1% and no minimum
downward shock. In addition, negative interest rates are not stressed downwards. EIOPA
(2016) therefore concludes that the current shock calibration is not appropriate. Analo-
gous to the upward show, introducing a minimum downward shock of 1%, as proposed
in CEIOPS (2009), would result in only a small improvement. Furthermore, it would also
only bring a smaller improvement if negative interest rates were also stressed downward.
EIOPA (2016) proposes alternative methods to incorporate the stress scenarios into the
risk-free curve. One approach is given by an additive stress where the stressed short rate
is of the form

rk
t = akrt + bk, k ∈ {up, down}
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where ak and bk depend on the scenario and the maturity. To sum up, EIOPA (2016)
show that the stress scenarios significantly underestimates interest rate risk in the current
interest rate environment.

Fischer and Schlütter (2015) examine the impact of the standard formula calibration
on insurer’s capital and investment strategy. They show that the insurer decreases the
fraction invested in risky stocks, when the stock risk parameter increases in the calibration,
which is intuitive. A low equity risk stress factor in the calibration can lead to higher
investment risk without impacting capital requirements.

4.3.6 Comparison between Value at Risk and Expected Shortfall

In accordance with Solvency II, the Value at Risk (VaR) with a level of 99.5 percent on
a 1-year period is used to calibrate the stress scenarios of the standard model. Boonen
(2017) investigates the impact on the SCR of using the Expected Shortfall (ES) instead
of the VaR. Boonen (2017) also examines the impact on the SCR of empirically deter-
mining the stress scenarios. The market risk submodules equity risk, interest risk and the
life submodule longevity risk are considered in this context. For this purpose, a fictitious
life annuity insurer is considered, whose liability portfolio consists of 100,000 male poli-
cyholders aged between 21 and 79, with an average age of 50. The considered policy is a
(deferred) single-life annuity that is paid at the end of each year starting at age 65. It is
assumed that the insurer has no basic own funds. The insurers asset portfolio is composed
of 25 percent global equity and 75 percent 5- and 30-year bonds.

A first result shows that the confidence level of the ES must be equal to 98.5 percent
if the SCR under the VaR with confidence interval 99.5 percent should match to the SCR
under the ES. If the VaR is considered at the level of 98.5 percent, a level of 97 percent
must be considered for the ES. The stress scenarios are then determined using the VaR
and the ES. The difference is small when the confidence level of 99.5 percent is considered
for the VaR, with the VaR providing a slightly larger stress rate. If 98.5 percent is taken
as the confidence level, the difference is greater. The downward shock is greater than
the upward shock. Applying these stress scenarios to the determination of the SCR, the
reduced total SCR is 23.24 percent of the best estimate of the liabilities (BEL), which
represents the present value of the expected future liability payments. When applying
these stress scenarios to the determination of the SCR, it can be seen that the SCR under
VaR is always lower than under ES, if the same confidence level is considered for both risk
measures. In addition, Boonen (2017) examines how proportion of the interest rate SCR to
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the reduced total SCR changes when the ES is used instead of the VaR in the calibration.
It becomes clear that the change is small when a level of 99.5 percent is chosen for the
VaR. When the level is lowered to 98.5 percent, the change becomes more noticeable,
with the interest rate SCR increasing by 2.27 percent. Boonen (2017) then examines how
the share of interest rate SCR changes when stress scenarios are determined empirically.
For this purpose, it is assumed that the distribution of past returns corresponds to the
expected future returns. The empirical VaR and ES are then derived in order to compute
the stress scenarios. The interest rate SCR decreases by 13.09 percent compared to the
SCR using the VaR with a level of 99.5 percent. The proportion of the interest rate SCR
changes slightly with empirical calibration, both for a level of 99.5 percent and for 98.5
percent. However, the empirical calibration has a large impact on the other risk modules
considered, so that overall it can be said that the differences in SCR allocations by using
the ES instead of the VaR are significantly larger when the calibration of the stress scenario
is done empirically. In a subsequent sensitivity analysis, in which the shares of the insurer’s
asset portfolio and the average age in the liability portfolio was varied, the above results
can be confirmed.

4.3.7 Compersion between Solvency II and Basel III

Laas and Siegel (2017) compare the market risk and credit risk assessments in the Sol-
vency II and Basel III standard model. In doing so, they examine both approaches both
theoretically and quantitatively for their consistency. With regard to banking regulation,
both the current Basel III regulation and the forthcoming adjustment of the market risk
and credit risk frameworks named Basel III* are considered.

In the theoretical investigation, the mechanics of the standard models are opposed
to each other. Significant discrepancies between the two approaches are becoming ap-
parent. On the one hand, it is clear that under Basel III, capital requirements are only
based on the asset side and the liability risk is not considered. In contrast, Solvency II
takes both assets and liabilities into account. In Basel III, the 99 percent value at risk
is used to calibrate parameters, while Solvency II requires the 99.5 percent value at risk.
In the adjusted Basel III* regulation, the 97.5 percent expected shortfall is used. There
are conceptual differences, particularly in the interest rate risk sub-model. On the one
hand, Basel III distinguishes between specific and general capital charges. Under Basel
III, capital requirements for assets are determined using predefined yield changes, their
modified duration and their respective market value. Solvency II, on the other hand, uses
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interest rate shocks, as described above, to determine capital requirements. In addition,
under Solvency II, liabilities are also taken into account and total requirements are de-
termined using stress scenarios. Finally, interest rate risk for bonds in the banking book
is not taken into account under Basel III. The adjustment of Basel IIII* also changes the
assessment of interest rate risk. Under Basel III*, the risk-free yield curve is shocked at
each maturity point separately, whereas under Solvency II the yield curve is stressed for
all maturity points simultaneously. Thus, under Basel III*, this means that a number of
changes in the present value is considered and aggregated.

Subsequently, a numerical investigation of the standard approaches is carried out.
For this purpose, a stylized balance sheet approach is adopted to capture the asset port-
folio structure of European life insurers, as in Braun et al. (2015). The asset portfolio is
composed as follows: 35 percent government bonds, 38 percent bonds, 38 percent corporate
bonds, 9 percent stocks, 4 percent property, 6 percent cash at bank, 6 percent residential
mortgage loans, and 2 percent alternative investments. The liability side is structured in
such a way that 87 percent represent life insurance liabilities and the remaining 13 percent
are basic own funds. The asset portfolio in this stylized version is used to determine the
capital requirements under both Solvency II and Basel III/III*. Taking into account the
risk-mitigating effect of future discretionary participation and the loss-absorbing capacity
of deferred taxes under Solvency II, the final SCR is lower than the capital requirements
under Basel III and Basel III*. According to the banking regulations, a distinction is made
between global systemically important banks (GSIB) and non-global systemically impor-
tant banks (non-GSIB). GSIBs must take a larger buffer into account, so that GSIBs must
meet significantly higher capital reserves overall. The numerical analysis shows that un-
der the adjusted Basel III* regulation, non-GSIBs already have to set aside twice as high
capital reserves as insurers under Solvency II. The capital requirements for GSIBs even
exceed those of insurers by 139 percent.

Subsequently, the individual portfolio weights of the various assets were varied as
part of a sensitivity analysis. The analysis shows that the Basel III* capital requirements
exceed the Solvency II requirements in all adjusted portfolios.

4.3.8 A scenario-based approach

Schlütter (2021) presents a scenario-based approach for measuring interest rate risk that
is intended to address the disadvantage of the current standard formula presented by the
Solvency II regulation outlined by Gatzert and Martin (2012) and by EIOPA (2016). The
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value at risk is approximated using a principal component analysis to consider various
stress scenarios. For this purpose, the interest rate is approximated using the Nelson-
Siegel model as well as an adjusted version of the Nelson-Siegel model, which takes into
account lower limits for the interest rates. The calculated value at risks approximations
are backtested based on historical return curves and stochastic models. For this purpose,
1000 hypothetical asset-liability portfolios with associated deterministic cash flow patterns
are considered. For each portfolio, the accuracy of the value at risk approximations is
measured. The backtest shows that the results of the traditional Nelson-Siegel model are
similar to the adjusted ones. This shows that by adjusting the Nelson-Siegel model with a
lower bound on the interest rate, one does not get a deterioration in accuracy. Such a lower
bound is particularly important in a low interest rate environment to avoid unjustifiably
high negative interest rates. Furthermore, Schlütter (2021) shows that the approximation
of the scenario-based approach can be improved by taking correlation parameters into
account when aggregating the results of the individual scenarios.

4.4 Conclusion

Within these literature reviews it has been examined whether the SCR under the current
Solvency II regulations represents an adequate capital reserve for insurance companies with
regard to interest rate risk. The literature presented on this chapter has demonstrated the
advantages and disadvantages of the standard formula in the assessment of interest rate
risks.

First, the insurers asset allocation has a large impact on the SCR. In more detail,
predefined scenario in the standard model both over- and underestimates the actual risk
belonging to investments, such that the risk situation is not being sufficiently reflected.

Conversely, it was shown that insurers with a good credit rating and good regulatory
solvency standing are not expected to adjust their asset allocation due to the introduction
of the Solvency II regulation. This is due to the fact that the requirements of rating
agencies are higher than under Solvency II in terms of the default probabilities of asset
investments, so that the capital requirements seems not to be a binding constraint.

Furthermore, model risk is also a major factor influencing the determination of
capital requirements under Solvency II. The choice of interest rate model also plays a
significant role in the calculation of minimum capital requirements. The SCR for the
standard model differs significantly from the SCR for the internal models. The difference
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is smallest when the Vasicek model is used.

When considering the probability of default, the current design and calibration of
the Solvency II standard model appears to provide insufficient protection against interest
rate risk. In particular, the assessment by the standard model using only stress scenarios
to be incompatible with the insurance industry, as this approach is designed to avoid risks
rather than to offset them.

A common point of criticism in the Solvency II calculation is the use of value at risk
as the underlying risk measure. Since value at risk is not sub-additive, diversification is not
rewarded. Furthermore, the value at risk does not take into account tail risks outside the
confidence interval. As a result, worst case scenarios are not taken into consideration. A
risk measure that does not have these disadvantages is the expected shortfall. It has been
shown that for the calibration of the stress scenarios, the value at risk and the expected
shortfall provide similar results. In order to generate the same results when calculating
the minimum capital requirements, a confidence level of 98.8% must be considered in the
case of the expected shortfall.

Comparison with the Basel III banking regulations reveals substantial discrepancies
in the level of minimum capital requirements. The capital requirements under Basel II
exceed those under Solvency II.
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Chapter 5

General conclusion

This thesis can be placed within the literature in interest rate risk for participating life
insurance products. In particular, we discussed the optimal design of participating life
insurance contracts with minimum return rate guarantees under interest rate risk. In
addition we focus on interest rate sensitivity of those products. Moreover we investigate
on hedging strategy on interest rates for a portfolio of different participating guarantee
schemes. The results are of interest to both practitioners and academics in the research
field of liability insurance and risk management.

In the second chapter we focus on ways to build a natural hedge against interest
rate risk by offering an appropriate product mix of different minimum return guarantees
(MRRGs). In particular, we analyze two versions of MRRGs that are relevant in the
context of participating life insurance contracts. One version implies a guaranteed rate
that is fixed once at the inception of the contract (fix strike guarantee). The other version
is a (stochastic) guarantee rate which is implied by the interest rate accumulation over
the contract horizon (floating strike guarantee). Furthermore, we propose a natural hedge
against changes in the term structure of interest rates. The natural hedge is based on the
coexistence of fix and floating strike guarantee products. The duration of the asset side
of a life insurer is usually much lower than that of the liability side. In this chapter, we
show that selling floating strike guarantee products shortens the duration of the liability
situation such that it is possible to achieve immunization.

In the third chapter we analyzes the optimal design of participating life insurance
contracts with minimum return rate guarantees under default risk. Unless there is a de-
fault event, the insured receives the maximum of a guaranteed rate and a participation
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in the returns. Considering default risk modifies the payoff of the insured by means of
a default put implying a compound option feature (nested maximum). Based on yearly
returns, we show that, in spite of the compound option feature, the (yearly return) payoff
of the default put (and the liabilities to the insured) can be represented by piecewise linear
functions of the investment return, i.e. the payoff of a portfolio of plain vanilla options.
Thus, the liabilities are easily priced in any model setup which gives closed form solutions
for standard options. Furthermore we derive the optimal (expected utility maximizing)
quantile guarantee payoff of an investor/insured with constant relative risk aversion in a
complete market setup. We further investigated on the interest rate risk of those quan-
tile guarantees. We therefore calculated the effective duration and convexity for suitable
combinations of the minimum return rate guarantee and the corresponding fair equity
ratio.

In the fourth chapter we analyzes the Solvency II capital requirements under the
interest rate risk submodule. First we give a brief introduction to the Solvency II regu-
lation. We then introduces the interest rate risk submodule and discusses the minimum
capital requirements under the standard formula. Finally we summarizes the results from
a collection of research papers that relate to capital requirements under the interest rate
submodule.
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Appendix A

Interest rate modeling with the
Vasicek model

In the following chapter two frequently used one factor short rate models are introduced.
The first one, the Vasicek model, is discussed intensively while for the Cox Ingersoll Ross
model only the most important information is addressed. The following elaborations are
mostly based on Brigo and Mercurio (2006).

A.1 Vasicek Model

In the following section we introduce the Vasicek model which was first mentioned in
Vasicek (1977). In the Vasicek model it is assumed that the short rate follows an Ornstein-
Uhlenbeck process with constant coefficients such that the short rate dynamic is given by

drt = a(b − rt)dt + σdWt (A.1)

where r0, a, b and σ are positive constants. r0 is the initial process value at t = 0. The
parameter b is called mean revision level. If the short rate rt is higher than b, the drift
term (b − rt) becomes negative and the drift will tend to decrease the process to the level
of b. Otherwise, if the short rate rt is below b, the drift term is positive and therefore it
will tend to increase the process to the level of b. A process with this property is called
mean-reverting. The parameter a is called mean revision speed and it defines the force
of the drift term on the process. With higher a the force increases such that the process
tends stronger to the mean revision level b. Last the parameter σ is called volatility and
it depicts the impact of the randomness defined by the standard Brownian motion Wt.
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Impact of parameters on Ornstein-Uhlenbeck processes
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Figure A.1: The figures illustrates the impact of the parameter in the Ornstein-Uhlenbeck process. All
figures shows three simulated paths where one parameter is varying and the others are fixed at a certain
level. Each path consist of 200 simulated values. The left figure shows the impact of the mean revision level
b by varying the initial value r0, where b = 1, a = 1 and σ = 0.2 are fixed. The solid lines shows r0 = 0,
the dashed line r0 = 1 and the dotted line r0 = 2. The center figure shows the impact of the mean revision
speed a, where r0 = 0, b = 1 and σ = 0.2 are fixed. The solid lines shows a = 0.3, the dashed line a = 1
and the dotted line a = 5. The right figure illustrates the impact of the volatility σ, where r0 = 1, b = 1
and a = 1 are fixed. The solid lines shows σ = 0.05, the dashed line σ = 0.2 and the dotted line σ = 0.6.

The impact of those parameters are illustrated in Figure A.1, showing the mean-
reverting property. The left figure illustrates the impact of the mean revision level b by
varying the initial value r0. When the initial value is below the mean revision level b

(solid line), the process tends to increase in time, while when it is above (dotted line),
the process tends to decrease in time. When the process starts at the mean revision level
(dashed line), the process fluctuates around the mean revision level. The center figure
illustrates the impact of the mean revision speed a. With a rather low speed (solid line)
the process tends to reach the mean revision level much slower than with a rather high
speed (dotted line). At last, the right figure illustrates the impact of the volatility σ. This
figure shows, that with increasing σ the process fluctuates more whereby for a low σ (solid
line) the process seems to follow closer the mean revision level than for a high σ (dotted
line), which shows more breakouts around the mean revision level. In the following the
solution of the stochastic differential equation given by (A.1) is derived.

Theorem A.1.1 The solution for the stochastic differential equation given by (A.1) for
s ≤ t is

rt = rse−a(t−s) + b
(
1 − e−a(t−s)

)
+ σ

∫ t

s
e−a(t−u)dWu.
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Proof: First we rewrite the dynamics (A.1) to

drt = (ab − art)dt + σdWt. (A.2)

Then by using the chain rule it follows that

d

(1
a

eat(ab − art)
)

= −eatdrt + eat(ab − art)dt. (A.3)

Multiplying both sides of (A.2) by −eat leads to

−eatdrt = −eat(ab − art)dt − eatσdWt.

Inserting this to (A.3) gives

d

(1
a

eat(ab − art)
)

= −eat(ab − art)dt − eatσdWt + eat(ab − art)dt = −eatσdWt.

Integrating both sides gives

1
a

eat(ab − art) − 1
a

eas(ab − ars) = −σ

∫ t

s
eaudWu

⇔ 1
a

eat(ab − art) = 1
a

eas(ab − ars) − σ

∫ t

s
eaudWu.

Finally multiplying both sides with ae−at leads to

ab − art = e−a(t−s)(ab − ars) − aσ

∫ t

s
e−a(t−u)dWu

⇔ −art = −ab + e−a(t−s)(ab − ars) − aσ

∫ t

s
e−a(t−u)dWu

⇔ rt = b − e−a(t−s)(b − rs) + σ

∫ t

s
e−a(t−u)dWu

⇔ rt = rse−a(t−s) + b
(
1 − e−a(t−s)

)
+ σ

∫ t

s
e−a(t−u)dWu.

□

Remark A.1.2 Theorem A.1.1 implies that the short rate rt is normally distributed with
mean E [rt|Fs] and variance V ar [rt|Fs], i.e. rt ∼ N (E [rt|Fs] , V ar [rt|Fs]), where

E [rt|Fs] = rse−a(t−s) + b
(
1 − e−a(t−s)

)
= rse−a(t−s) + b − be−a(t−s)

= (rs − b) e−a(t−s) + b

V ar [rt|Fs] =
∫ t

s
σ2e−2a(t−u)du = σ2

2a

(
1 − e−2a(t−s)

)
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This implies that for all t the short rate rt can be negative with probability

Φ
(

−E [rt|Fs]√
V ar [rt|Fs]

)
> 0

where Φ describes the cumulative distribution function of the standard normal distribu-
tion. The past development of the historical short rate has shown that a negative short
rate is very much possible. Since lim

t→∞
E [rt|Fs] = b one can confirm the mean-reverting

property of the process, as it shows, that the expected short rate tends to the mean revi-
sion level b for t going to infinity. So the mean revision level b is also referred to as a long
term average rate. To derive the price of a zero coupon bond it is necessary to specify the
distribution of the interest rate integral I(s, t) :=

∫ t
s rudu.

Lemma A.1.3 The interest rate integral I(s, t) :=
∫ t

s rudu is given by

I(s, t) = B(s, t)(rs − b) + b(t − s) + σ

a

∫ t

s

(
1 − e−a(t−u)

)
dWu

where B(s, t) := 1
a

(
1 − e−a(t−s)

)
.

Proof:

I(s, t) =
∫ t

s
rudu

=
∫ t

s

(
rse−a(u−s) + b

(
1 − e−a(u−s)

)
+ σ

∫ u

s
e−a(u−v)dWv

)
du

= rs

∫ t

s
e−a(u−s)du + b

∫ t

s
du − b

∫ t

s
e−a(u−s)du + σ

∫ t

s

∫ u

s
e−a(u−v)dWvdu

= rsB(s, t) + b(t − s) − bB(s, t) + σ

∫ t

s

∫ t

v
e−a(u−v)dudWv

= rsB(s, t) + b(t − s) − bB(s, t) + σ

a

∫ t

s
(1 − e−a(t−v))dWv

= B(s, t)(rs − b) + b(t − s) + σ

a

∫ t

s
(1 − e−a(t−v))dWv

□

It is now possible to specify the distribution of I(s, t).

Remark A.1.4 The interest rate integral I(s, t) :=
∫ t

s rudu is normally distributed with
mean E [I(s, t)|Fs] and variance V ar [I(s, t)|Fs], i.e.

I(s, t) ∼ N (E [I(s, t)|Fs] , V ar [I(s, t)|Fs]) ,
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where

E [I(s, t)|Fs] = B(s, t)(rs − b) + b(t − s)

V ar [I(s, t)|Fs] = σ2

a2

∫ t

s
(1 − e−a(t−u))2du = σ2

a2

∫ t

s
(1 − 2e−a(t−u) + e−2a(t−u))du

= σ2

a2

(
(t − s) − 2B(s, t) + 1

2a

(
1 − e−2a(t−s)

))

with B(s, t) := 1
a

(
1 − e−a(t−s)

)
.

Now it is possible to derive the price of a zero coupon bond.

Theorem A.1.5 The arbitrage-free price at time s of a zero coupon bond with maturity
t is given by

B(s, t) = eA(s,t)−B(s,t)rs

where

A(s, t) =
(

σ2

2a2 − b

)
((t − s) − B(s, t)) − σ2

4a
B(s, t)2

B(s, t) = 1
a

(
1 − e−a(t−s)

)
The yield is then described by

y(s, t) = A(s, t)
t − s

− B(s, t)
t − s

rs

Proof: A zero coupon bond pays one unit at maturity t. The arbitrage-free price is then
given by the expectation of the discounted payoff under the risk neutral measure, i.e.

B(s, t) = E
[
e−I(s,t)|Fs

]
Since I(s, t) is normally distributed with mean E [I(s, t)|Fs] and variance V ar [I(s, t)|Fs],
it follows that e−I(s,t) is log-normally distributed with parameters E [−I(s, t)|Fs] and
V ar [−I(s, t)|Fs]. The expected value of e−I(s,t) is then given by

E
[
e−I(s,t)|Fs

]
= eE[−I(s,t)|Fs]+ 1

2 V ar[−I(s,t)|Fs]
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For the exponent it follows

E [−I(s, t)|Fs] + 1
2V ar [−I(s, t)|Fs]

= −B(s, t)(rs − b) − b(t − s) + 1
2

σ2

a2

(
(t − s) − 2B(s, t) + 1

2a

(
1 − e−2a(t−s)

))
= −B(s, t)rs + B(s, t)b − b(t − s) + σ2

2a2 (t − s) − σ2

a2 B(s, t) + σ2

2a2

( 1
2a

(
1 − e−2a(t−s)

))
In the next step the last term 1

2a

(
1 − e−2a(t−s)

)
is unformed in the following way

−a

2B(s, t)2 + B(s, t) = −a

2

( 1
a2

(
1 − 2e−a(t−s) + e−2a(t−s)

))
+ 1

a

(
1 − e−a(t−s)

)
= − 1

2a
− 1

a
e−a(t−s) − 1

2a
e−2a(t−s) + 1

a
1 − 1

a
e−a(t−s)

= 1
2a

− 1
2a

e−2a(t−s)

= 1
2a

(
1 − e−2a(t−s)

)
So it follows

− B(s, t)rs + B(s, t)b − b(t − s) + σ2

2a2 (t − s) − σ2

a2 B(s, t) + σ2

2a2

( 1
2a

(
1 − e−2a(t−s)

))
= − B(s, t)rs − b ((t − s) − B(s, t)) + σ2

2a2 (t − s) − σ2

a2 B(s, t) + σ2

2a2

(
−a

2B(s, t)2 + B(s, t)
)

= − B(s, t)rs − b ((t − s) − B(s, t)) + σ2

2a2 (t − s) − σ2

a2 B(s, t) − σ2

4a
B(s, t)2 + σ2

2a2 B(s, t)

= − B(s, t)rs − b ((t − s) − B(s, t)) + σ2

2a2 (t − s) − σ2

2a2 B(s, t) − σ2

4a
B(s, t)2

= − B(s, t)rs − b ((t − s) − B(s, t)) + σ2

2a2 ((t − s) − B(s, t)) − σ2

4a
B(s, t)2

= − B(s, t)rs +
(

σ2

2a2 − b

)
((t − s) − B(s, t)) − σ2

4a
B(s, t)2

︸ ︷︷ ︸
=:A(s,t)

□

Theorem A.1.5 shows that the continuously-compounded spot rate is an affine func-
tion of the form

A(s, t) − B(s, t)rs.

Models with this property are referred to as affine term-structure models.
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A.1.1 Real World Measure

Under the real world measure P the interest rate dynamics can be described by

drt = a

(
b + λσ

a
− rt

)
dt + σdW P

t

= a
(
b̃ − rt

)
dt + σdW P

t (A.4)

where λ is referred to as the market price of risk. It is usually assumed that the market
price of risk is constant in the Vasicek model, such that the Novikov condition is satisfied,
i.e. the Radon-Nikodym derivative

dQ
dP

= e− 1
2

∫ t

0 λ2rsds+
∫ t

0 λrsdW P
s

is a martingale. By Girsanov theorem it follows that Q is equivalent to P and that

dW P
t = λdt + dWt

is a Brownian motion under P.

A.1.2 Maximum Likelihood Estimation

In the following section we derive the maximum likelihood estimators for the Vasicek
model. The estimation is made on the basis of n+1 historical short rates r = (r0, r1, . . . , rn)
with equidistant time partition dt. Since we use real world data as a basis of the estimation
the estimation parameters are given by the short rate dynamics under the real world
measure P given by (A.4). The mean and variance for each ri, i = 1, 2, . . . , n is given by

EP [ri] = ri−1e−adt + b̃(1 − e−adt)

V arP [ri] = σ2

2a
(1 − e−2adt).

For a sample r = (r0, r1, . . . , rn) the probability function is therefore given by

f(ri; a, b̃, σ2) = 1√
2πV arP [ri]

e
− (ri−EP[ri])2

2V arP[ri] .

The likelihood function is then defined by

l(a, b̃, σ2) =
n∏

i=1
f(ri; a, b̃, σ2) =

(
1√

2πV arP [ri]

)n n∏
i=1

e
− (ri−EP[ri])2

2V arP[ri] .
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The log-likelihood function is therefore given by

L(a, b̃, σ2) = ln
(
l(a, b̃, σ2)

)
= −n

2 ln (2π) − n

2 ln (V arP [ri]) −
n∑

i=1

(ri − EP [ri])2

2V arP [ri]

= −n

2 ln (2π) − n

2 ln
(

σ2

2a
(1 − e−2adt)

)
−

n∑
i=1

(ri − ri−1e−adt − b̃(1 − e−adt))2

σ2

a (1 − e−2adt)

The maximum likelihood estimators â, ˆ̃b and σ̂2 are then given by maximizing the log-
likelihood function, i.e.

max
(a,b̃,σ2)

L(a, b̃, σ2) = L(â, ˆ̃b, σ̂2).

It the next step we are going to derive closed form solutions for the maximum likelihood
estimators â, ˆ̃b and σ̂2.

Theorem A.1.6 The maximum likelihood estimators â, ˆ̃b and σ̂2 are given by

â = − 1
dt

ln

n
∑n

i=1 ri−1ri −
∑n

j=1 rj−1
∑n

i=1 ri

n
∑n

i=1 r2
i−1 −

(∑n
j=1 rj−1

)2


ˆ̃b =

∑n
i=1(ri − ri−1e−âdt)

n(1 − e−âdt)

σ̂2 = 2â

n(1 − e−2âdt)

n∑
i=1

(ri − ri−1e−âdt − ˆ̃b(1 − e−âdt))2

Proof: At first we define

A = e−adt

B = σ2

2a
(1 − e−2adt)

such that the log-likelihood function can be rewritten as

L(a, b̃, σ) = −n

2 ln (2π) − n

2 ln (B) −
n∑

i=1

(ri − ri−1A − b̃(1 − A))2

2B

Proof for ˆ̃b: To find the maximum we need to derive the log-likelihood function regarding
to b̃, i.e.

∂L

∂b̃
= 1 − A

B

n∑
i=1

(ri − ri−1A − b̃(1 − A)).

110



Appendix A

Setting the right side equal to zero and assuming a ̸= 0 leads to
n∑

i=1
(ri − ri−1A − b̃(1 − A)) = 0

⇔nb̃(1 − A) =
n∑

i=1
(ri − ri−1A)

⇔b̃ =
∑n

i=1(ri − ri−1A)
n(1 − A)

So the maximum likelihood estimator for b̃ is given by

ˆ̃b =
∑n

i=1(ri − ri−1e−adt)
n(1 − e−adt) . (A.5)

Proof for σ̂2: To find the maximum we first need to derive the log-likelihood function
regarding to B, i.e.

∂L

∂B
= − n

2B
+ 1

2B2

n∑
i=1

(ri − ri−1A − b̃(1 − A))2.

Setting the right side equal to zero and multiplying both sides by B leads to

− n

2 + 1
2B

n∑
i=1

(ri − ri−1A − b̃(1 − A))2 = 0

⇔ 1
2B

n∑
i=1

(ri − ri−1A − b̃(1 − A))2 = n

2

⇔B = 1
n

n∑
i=1

(ri − ri−1A − b̃(1 − A))2

Substituting B = σ2

2a (1 − e−2adt) and A = e−adt gives finally the maximum likelihood
estimator for σ2

σ̂2 = 2a

n(1 − e−2adt)

n∑
i=1

(ri − ri−1e−adt − b̃(1 − e−adt))2

Proof for â: To finally derive the maximum likelihood estimator for a we first need to
rewrite the log-likelihood function L(a, b̃, σ2) by substituting (1 − A)b̃∗ = 1

n

∑n
j=1(rj −

rj−1A) from (A.5), i.e.

L(a, b̃, σ2) = −n

2 ln (2π) − n

2 ln (B) − 1
2B

n∑
i=1

(ri − ri−1A − 1
n

n∑
j=1

(rj − rj−1A))2

= −n

2 ln (2π) − n

2 ln (B) − 1
2B

n∑
i=1

ri − ri−1A − 1
n

 n∑
j=1

rj

+ A
1
n

 n∑
j=1

rj−1

2
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Now we need to derive this function by A in order to find maximum likelihood estimator
for a, i.e.

∂L

∂A
= 1

B

n∑
i=1

ri−1 + 1
n

 n∑
j=1

rj−1

ri −

ri−1 − 1
n

 n∑
j=1

rj−1

A − 1
n

 n∑
j=1

rj



= 1
B

n∑
i=1


ri−1 + 1

n

 n∑
j=1

rj−1

 ri −

ri−1 − 1
n

 n∑
j=1

rj−1

2

A

−

ri−1 + 1
n

 n∑
j=1

rj−1

 n∑
j=1

rj


= 1

B

 n∑
i=1

ri−1 + 1
n

 n∑
j=1

rj−1

 ri

−
n∑

i=1


ri−1 − 1

n

 n∑
j=1

rj−1

2

A


−

n∑
i=1

ri−1 + 1
n

 n∑
j=1

rj−1

 1
n

 n∑
j=1

rj


= 1

B

 n∑
i=1

ri−1ri + 1
n

 n∑
j=1

rj−1

 ri


−

n∑
i=1


r2

i−1 − 2ri−1
1
n

 n∑
j=1

rj−1

+ 1
n2

 n∑
j=1

rj−1

2
A


−

n∑
i=1

ri−1
1
n

 n∑
j=1

rj

+ 1
n2

 n∑
j=1

rj−1

 n∑
j=1

rj


= 1

B

 n∑
i=1

(ri−1ri) + 1
n

n∑
j=1

rj−1

n∑
i=1

ri

−

 n∑
i=1

r2
i−1 − 2 1

n

n∑
j=1

rj−1

n∑
i=1

ri−1 + 1
n

 n∑
j=1

rj−1

2
A

− 1
n

n∑
i=1

ri−1

n∑
j=1

rj − 1
n

n∑
j=1

rj−1

n∑
j=1

rj


= 1

B

 n∑
i=1

(ri−1ri) − 1
n

n∑
j=1

rj−1

n∑
i=1

ri −

 n∑
i=1

r2
i−1 − 1

n

 n∑
j=1

rj−1

2
A


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Setting the last term equal to zero leads to

1
B

 n∑
i=1

(ri−1ri) − 1
n

n∑
j=1

rj−1

n∑
i=1

ri −

 n∑
i=1

r2
i−1 − 1

n

 n∑
j=1

rj−1

2
A

 = 0

⇔
n∑

i=1
(ri−1ri) − 1

n

n∑
j=1

rj−1

n∑
i=1

ri −

 n∑
i=1

r2
i−1 − 1

n

 n∑
j=1

rj−1

2
A = 0

⇔

 n∑
i=1

r2
i−1 − 1

n

 n∑
j=1

rj−1

2
A =

n∑
i=1

(ri−1ri) − 1
n

n∑
j=1

rj−1

n∑
i=1

ri

⇔A =
n
∑n

i=1 ri−1ri −
∑n

j=1 rj−1
∑n

i=1 ri

n
∑n

i=1 r2
i−1 −

(∑n
j=1 rj−1

)2

Finally the maximum likelihood estimator for a can be derived by substituting A = e−adt, i.e.

e−adt =
n
∑n

i=1 ri−1ri −
∑n

j=1 rj−1
∑n

i=1 ri

n
∑n

i=1 r2
i−1 −

(∑n
j=1 rj−1

)2

⇔â = − 1
dt

ln

n
∑n

i=1 ri−1ri −
∑n

j=1 rj−1
∑n

i=1 ri

n
∑n

i=1 r2
i−1 −

(∑n
j=1 rj−1

)2


□

A.1.3 Parameter bias

In this section we investigate whether the maximum likelihood estimators are biased.
The discrete time version of the Vasicek model is a autoregressive model of order 1 with
autoregressive coefficient θ = e−adt, i.e. AR(1). Marriott and Pope (1954) and Kendall
(1954) showed, that

E[θ̂] = θ − 1 + 3θ

n
+ O

( 1
n2

)
where n is the sample size and θ̂ is the maximum likelihood estimator of the autoregressive
coefficient θ.

To illustrate that bias of the parameter a we use parameters regularly used in the
literature, i.e. Hieber et al. (2019) and Graf et al. (2011). We chose r0 = 0.0115, b̃ = 0.0305,
and σ = 0.015. For 100 different values of a ∈ [−0.5, 0.5] we generate 500 paths of monthly
short rates with a total sample size of 240 per path, using the above stated dynamics. For
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each path we then derive the maximum likelihood estimator â.

Relation between â and actual a
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Figure A.2: Relation between â and actual a.

Figure A.2 illustrates the bias of the maximum likelihood estimator â and the actual
a. The black line represents the relationship between the actual value a and its estimator
â. The Figure shows that for small values of a < −0.2 the distortion is rather small as it
follows the gray line. For values between −0.2 to 0 the bias is increasing. For values above
0 the bias is present, but not increasing with a. There are several methods mentioned in
the literature to correct this bias. One is a jackknife method proposed by Phillips and
Yu (2005). At first, the sample, consisting of n observations is divided into m consecutive
subsamples each with l observations, such that n = ml. Then the jackknife bias corrected
estimator is given by

θ̂JK = m

m − 1 θ̂ −
∑m

i=1 θ̂i

m2 − m

where θ̂ is the maximum likelihood estimator of θ = e−adt for the whole sample and θ̂i are
the maximum likelihood estimators for each of the m different subsamples. Phillips and
Yu (2005) suggest to use m = 4 which gives the best trade-off between bias reduction and
variance inflation. The result of the jack bias corrected estimator is illustrated in Figure
A.3.
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Relation between âJK and actual a
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Figure A.3: Relation between âJK and actual a.

A.1.4 Estimation

In the following section we are going to talk about the parameter estimation based of real
world interest rates used as reference rates. This data is collected in the real world, so the
statistical properties of those reference rates characterize the distribution of the short rate
process rt under the real world measure P. Therefore the model parameters derived by
estimation using real world references rates are given by the real world measure dynamics.
Later we are going to talk about calibrating the short rate by using observed prices of
derivatives and other financial products. Those prices are calculated using the risk neutral
measure Q, so the parameters derived by those prices are under the risk neutral dynamics.

Estimation on EONIA rates

In the following section we are going to calibrate the Vasicek model using the above derived
maximum likelihood estimators. We use daily Euro OverNight Index Average (EONIA)
rates from its inception, which was 04.01.1999 to 08.11.2021 as our basis for the estimation.
The development of the EONIA rate is illustrated in Figure A.4.
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EONIA rate from 04.01.1999 to 08.11.2021
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Figure A.4: The Figure shows the development of the EONIA rate from 04.01.1999 to 08.11.2021.

The EONIA rates are given on a daily basis, so we set dt = 1
260 . In total we have

n = 5961 interest rates given. The maximum likelihood estimators are calculated using
the formulas given in Theorem A.1.6. The results are stated in Table A.1.

Table A.1: MLE results based on EONIA

â ˆ̃b σ̂

0.385955 0.00965424 0.0178384

Estimation on Euro short-term rate

The Euro short-term rate (ESTR) is a new reference rate calculated by the European
Central Bank based on European money market data. It is meant to extend the EONIA
rates by also taking into account lending to money market funds, insurance companies and
other financial corporations while the EONIA only refer to inter-banking lending, which
gives the ESTR bigger relation to insurance companies. The ESTR is being published as
of the 1. October 2019 and is calculated by using overnight unsecured fixed rate deposit
transactions over 1 million euro for each TARGET2 business day. The development of the
ESTR rate from 01.10.2019 to 09.11.2021 is illustrated in Figure A.5.
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ESTR rate from 01.10.2019 to 09.11.2021
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Figure A.5: The Figure shows the development of the ESTR rate from 01.10.2019 to 09.11.2021.

The ESTR is also given on a daily basis, so we set dt = 1
260 . In total we have n = 551

interest rates given. The maximum likelihood estimators are calculated using the formulas
given in Theorem A.1.6. The results are stated in Table A.2.

Table A.2: MLE results based on ESTR

â ˆ̃b σ̂

2.68049 −0.00557684 0.021722

A.1.5 Calibration

In this section we calibrate the Vasicek model by using prices of financial products. As
already mention, those prices are calculated under the risk neutral measure Q, so the
parameters derived by those prices are under the risk neutral dynamics. One possibil-
ity is by using zero coupon bonds. The arbitrage-free price at time 0 of a zero coupon
bond with maturity T is given by B(0, T ) which was derived in Theorem A.1.5. The ob-
served price of zero coupon bonds with maturity T on the market are given by BM (0, T ).
One way of calibration is by choosing the parameters such that the aggregated quadratic
difference between the observed price and the calculated price for different maturities
T = T1, T2, . . . , TN is minimized, i.e.

min
a,b,σ,r0

N∑
i=1

(
BM (0, Ti) − B(0, Ti)

)2
.
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This problem can simply be rewritten in terms of the corresponding zero bond yields, i.e.

min
a,b,σ,r0

N∑
i=1

(
yM (0, Ti) − y(0, Ti)

)2
. (A.6)

For our calibration we use German treasury notes and zero coupon bonds. The yields are

Table A.3: German treasury notes as of 22.11.2021

Bond Maturity Coupon Time to maturity Yield in %
2019 IV Schatz 10.12.2021 0.00 0.05 −0.1491
2020 Schatz 11.03.2022 0.00 0.30 −0.7653
2020 II Schatz 10.06.2022 0.00 0.55 −0.7925
2020 III Schatz 16.09.2022 0.00 0.82 −0, 7511
2020 IV Schatz 15.12.2022 0.00 1.06 −0, 7868
2021 Schatz 10.03.2023 0.00 1.30 −0, 8257
2021 II Schatz 16.06.2023 0.00 1.56 −0, 8431
2021 III Schatz 15.09.2023 0.00 1.81 −0, 8204
2021 IV. (2023) Schatz 15.12.2023 0.00 2.06 −0, 7746

Table A.4: German zero coupon bond as of 22.11.2021

Bond Maturity Coupon Time to maturity Yield
2016 (2026) Bund 15.08.2026 0.00 4, 73 −0, 6777
2021 (2028) Bund 15.11.2028 0.00 6, 99 −0, 5123
2020 (2027) Bund 15.11.2027 0.00 5, 98 −0, 5781
2019 (2029) Bund 15.08.2029 0.00 7, 73 −0, 4788
2020 (2030) Bund 15.08.2030 0.00 8, 24 −0, 4662
2020 (2030) II Bund 15.02.2030 0.00 8, 73 −0, 4429
2021 (2031) Bund 15.02.2031 0.00 9.24 −0, 3904
2021 (2031) II Bund 15.08.2031 0.00 9.73 −0, 3378
2020 (2035) Bund 15.05.2035 0.00 13, 48 −0, 2114
2021 (2036) Bund 15.05.2036 0.00 14.49 −0, 1641
2019 (2050) Bund 15.08.2050 0.00 28.75 −0, 0383
2021 (2052) Bund 15.08.2052 0.00 30.75 −0, 0065
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The results of the calibration by solving Eq. (A.6) using the yields given in Table
A.3 and Table A.4 are stated in Table A.5.

Table A.5: Calibration results based on German yield curve

a b σ r0

0.324746 0.0208519 0.0711287 0.00631842

Yield curve of german government bonds as of 22.11.2021
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Figure A.6: This figure shows the Yield curve of german government bonds as of 22.11.2021.
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Appendix to Chapter 2

B.1 Derivation Margrabe formula

B.1.1 Model free pricing formula

We consider a time horizon T > 0 and a filtered probability space (Ω, F , Ft,P). We assume
two non dividend paying assets, whose price process is defined by (S1

t )t∈[0,T ] and (S2
t )t∈[0,T ].

The terminal payoff of a European option to exchange the asset S1 for the asset S2 at
time T is given by [S2

T − S1
T ]+ = max[S2

T − S1
T , 0]. We assume a arbitrage-free market, so

there exist a martingale measure P̃S1 and P̃S2 , which represent risk-neutral measures. Let
C(t, S1

t , S2
t ) denotes the price at time t of a European option to exchange the asset S1 for

the asset S2 at time T , i.e. C(T, S1
T , S2

T ) = [S2
T − S1

T ]+. Under the risk-neutral measure its
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holds

C(t, S1
t , S2

t ) = S1
t ẼS1

[
C(T, S1

T , S2
T )

S1
T

|Ft

]

= S1
t ẼS1

[
(S2

T − S1
T )+

S1
T

|Ft

]

= S1
t ẼS1

(S2
T

S1
T

− 1
)+

|Ft


= S1

t ẼS1

[(
S2

T

S1
T

− 1
)
1{S2

T >S1
T }|Ft

]

= S1
t ẼS1

[
S2

T

S1
T

1{S2
T >S1

T }|Ft

]
− S1

t ẼS1

[
1{S2

T >S1
T }|Ft

]
(Change numèraire S1 to S2)

= S2
t ẼS2

[
1{S2

T >S1
T }|Ft

]
− S1

t P̃S1

(
S2

T > S1
T

)
= S2

t P̃S2

(
S2

T > S1
T

)
− S1

t P̃S1

(
S2

T > S1
T

)

B.1.2 General model setup

Now we specify the model by assuming the following dynamics for the two assets S1 and
S2 with Brownian motions W 1

t and W 2
t .

dS1
t = S2

t

(
µS1(t)dt + σ1,S1(t)dW 1

t + σ2,S1(t)dW 2
t

)
dS2

t = S2
t

(
µS2(t)dt + σS2(t)dW 1

t

)
where µS1(t), µS2(t), σS1(t), σS2(t) are deterministic functions and σS1(t), σS2(t) ≥ 0. The
solutions of above dynamics are given by geometric Brownian motions

S1
t = S1

0e
∫ t

0 (µS1 (u)− 1
2 σ1(u,S1

u))du+
∫ t

0 σS1 (u)ρdW 1
u+
∫ t

0 σS1 (u)
√

1−ρ2dW 2
t

S2
t = S2

0e
∫ t

0 (µS2 (u)− 1
2 σ2(u,S2

u))du+
∫ t

0 σS2 (u)dW 1
u
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The dynamics of the fraction S2
t

S1
t

can then be derived by Ito’s lemma

d
S2

t

S1
t

= 1
S1

t

dS2
t − S2

t

(S1
t )2 dS1

t − 1
(S1

t )2 dS2
t dS1

t + S2
t

(S1
t )3 dS1

t dS1
t

=S2
t

S1
t

(
µS2(t)dt + σS2(t)dW 1

t

)
− S2

t

S1
t

(
µS1(t)dt + σ1,S1(t)dW 1

t + σ2,S1(t)dW 2
t

)
− S2

t

S1
t

(
µS2(t)dt + σS2(t)dW 1

t

) (
µS1(t)dt + σ1,S1(t)dW 1

t + σ2,S1(t)dW 2
t

)
+ S2

t

S1
t

(
µS1(t)dt + σ1,S1(t)dW 1

t + σ2,S1(t)dW 2
t

) (
µS1(t)dt + σ1,S1(t)dW 1

t + σ2,S1(t)dW 2
t

)
=S2

t

S1
t

[
µS2(t)dt + σS2(t)dW 1

t − µS1(t)dt − σ1,S1(t)dW 1
t − σ2,S1(t)dW 2

t

−σ1,S1(t)σS2(t)dt + σ1,S1(t)2dt + σ2,S1(t)2dt
]

=S2
t

S1
t

[(
µS2(t) − µS1(t) − σS2(t)σ1,S1(t) + σ1,S1(t)2 + σ2,S1(t)2) dt

+(σS2(t) − σ1,S1(t))dW 1
t − σ2,S1(t)dW 2

t

]
=S2

t

S1
t

[(
µS2(t) − µS1(t) − σS2(t)σ1,S1(t) + σ1,S1(t)2 + σ2,S1(t)2) dt

+
√

(σS2(t) − σ1,S1(t))2 + σ2,S1(t)2dW 3
t

]

=S2
t

S1
t

(µS2(t) − µS1(t) − σS2(t)σ1,S1(t) + σ1,S1(t)2 + σ2,S1(t)2)︸ ︷︷ ︸
:=µ S2

S1
(t)

dt

+
√

(σS2(t) − σ1,S1(t))2 + σ2,S1(t)2︸ ︷︷ ︸
:=σ S2

S1
(t)

dW 3
t


=S2

t

S1
t

[
µ S2

S1
(t)dt + σ S2

S1
(t)dW 3

t

]

We can now define the market price of risk by

θ(t) =
µ S2

S1
(t)

σ S2
S1

(t)

We define the Radon-Nikodým derivative by
dP̃S1

dP
= e

∫ t

0
(−θ(u))dW 4

u− 1
2

∫ t

0
(−θ(u))2du

Then by Girsanov theorem it follows that

dW 4
t = −θ(t)dt + dW̃t
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and W̃t is a Brownian motion under the risk neutral measure. So the dynamics of the fraction S2
t

S1
t

can be rewritten as

d
S2

t

S1
t

=S2
t

S1
t

[
σ S2

S1
(t)θ(t)dt + σ S2

S1
(t)
(
−θ(t)dt + dW̃t

)]
=S2

t

S1
t

σ S2
S1

(t)dW̃t

By applying Ito’s lemma the solution of this is given by

S2
t

S1
t

= S2
0

S1
0

e
−
∫ t

0
1
2 σ S2

S1
(u)2du+

∫ t

0
σ S2

S1
(u)dW̃u

This shows the distribution of the fraction S2
t

S1
t

under the risk neutral measure P̃S1 . Now we do a
numéraire change to the risk neutral measure P̃S2 . The Radon-Nikodým derivative is given by

dP̃S2

dP̃S1
=

S2
t

S1
t

S2
0

S1
0

= e

∫ t

0
σ S2

S1
(u)dW̃u−

∫ t

0
1
2 σ S2

S1
(u)2du

where the market price of risk is now given by −σ S2
S1

(u). Then by Girsanov theorem it follows that

dW̃t = −
(

−σ S2
S1

(u)
)

dt + dW t

and W t is a Brownian motion. So the dynamics of the fraction S2
t

S1
t

can be rewritten as

d
S2

t

S1
t

=S2
t

S1
t

σ S2
S1

(t)
(

σ S2
S1

(u)dt + dW t

)
=S2

t

S1
t

(
σ S2

S1
(u)2dt + σ S2

S1
(t)dW t

)
By applying Ito’s lemma the solution of this is given by

S2
t

S1
t

= S2
0

S1
0

e

∫ t

0
1
2 σ S2

S1
(u)2du+

∫ t

0
σ S2

S1
(u)dW u

123



Appendix B

This shows the distribution of the fraction S2
t

S1
t

under the risk neutral measure P̃S2 . Now we derive
the Probabilities P̃S1

(
S2

T > S1
T

)
and P̃S2

(
S2

T > S1
T

)
.

P̃S1
(
S2

T > S1
T

)
= P̃S1

t

(
S2

T

S1
T

> 1
)

= P̃S1

(
S2

t

S1
t

e
−
∫ T

t

1
2 σ S2

S1
(u)2du+

∫ T

t
σ S2

S1
(u)dW̃u

> 1
)

= P̃S1

(
e

−
∫ T

t

1
2 σ S2

S1
(u)2du+

∫ T

t
σ S2

S1
(u)dW̃u

>
S1

t

S2
t

)

= P̃S1

(
−
∫ T

t

1
2σ S2

S1
(u)2du +

∫ T

t

σ S2
S1

(u)dW̃u > ln
(

S1
t

S2
t

))

= P̃S1

(∫ T

t

σ S2
S1

(u)dW̃u > ln
(

S1
t

S2
t

)
+
∫ T

t

1
2σ S2

S1
(u)2du

)

= P̃S1

(
−
∫ T

t

σ S2
S1

(u)dW̃u ≤ ln
(

S2
t

S1
t

)
−
∫ T

t

1
2σ S2

S1
(u)2du

)

= Φ


ln
(

S2
t

S1
t

)
− 1

2
∫ T

t
σ S2

S1
(u)2du√∫ T

t
σ S2

S1
(u)2du︸ ︷︷ ︸

:=d2(t)


= Φ (d2(t))
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and

P̃S2
(
S2

T > S1
T

)
= P̃S2

(
S2

T

S1
T

> 1
)

= P̃S2

(
S2

t

S1
t

e

∫ T

t

1
2 σ S2

S1
(u)2du+

∫ T

t
σ S2

S1
(u)dW u

> 1
)

= P̃S2

(
e

∫ T

t

1
2 σ S2

S1
(u)2du+

∫ T

t
σ S2

S1
(u)dW u

>
S1

t

S2
t

)

= P̃S2

(∫ T

t

1
2σ S2

S1
(u)2du +

∫ T

t

σ S2
S1

(u)dW u > ln
(

S1
t

S2
t

))

= P̃S2

(∫ T

t

σ S2
S1

(u)dW u > ln
(

S1
t

S2
t

)
−
∫ T

t

1
2σ S2

S1
(u)2du

)

= P̃S2

(
−
∫ T

t

σ S2
S1

(u)dW u ≤ ln
(

S2
t

S1
t

)
+
∫ T

t

1
2σ S2

S1
(u)2du

)

= Φ


ln
(

S2
t

S1
t

)
+ 1

2
∫ T

t
σ S2

S1
(u)2du√∫ T

t
σ S2

S1
(u)2du︸ ︷︷ ︸

:=d1(t)


= Φ (d1(t))

To sum up the price at time t of a European option to exchange the asset S1 for the asset S2 at
time T

C(t, S1
t , S2

t ) = S2
t Φ (d1(t)) − S1

t Φ (d2(t))

where

d1(t) :=
ln
(

S2
t

S1
t

)
+ 1

2
∫ T

t
σ S2

S1
(u)2du√∫ T

t
σ S2

S1
(u)2du

, d2(t) = d1(t) −

√∫ T

t

σ S2
S1

(u)2du

and σ S2
S1

(t)2 = (σS2(t) − σ1,S1(t))2 + σ2,S1(t)2

B.1.3 Black Scholes model and Heath Jarrow Morton model

We assume a complete and arbitrage-free financial market model under interest rate risk where the
dynamic of the price process (At)t∈[0,T ] as well as the dynamics of the zero coupon bonds B(·, T )
paying one monetary unit at maturity T > 0 are lognormal. Thus, the index dynamic is modeled
along the lines of Black and Scholes (1973), the interest rate dynamic is given by a Gaussian
Markov Heath, Jarrow and Morton model introduced by Heath et al. (1992). In particular, there
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exist a uniquely defined martingale measure P ∗ such that

At = At

(
rtdt + σ1,A(t)dW 1

t + σ2,A(t)dW 2
t

)
B(t, T ) = B(t, T )

(
rtdt + σT (t)dW 1

t

)
where W ∗ denotes a d-dimensional Brownian motion with respect to P ∗, and σA and σT satisfy
the usual regularity conditions. The first asset from the above model S1

t is then represented by the
fraction of the investment return of the asset At, i.e. S1

t = α At

A0
. The dynamic can then be derived

by Ito‘s lemma and is given by

d

(
α

At

A0

)
= α

At

A0

(
rtdt + σ1,A(t)dW 1

t + σ2,A(t)dW 2
t

)
Fix strike

For the second asset S2
t we distinguish between two cases. The first case is the fix strike guarantee.

Then the asset is given by S2
t = B(t, T )Kfix, where Kfix is constant. Then the dynamic can be

derived either by Ito‘s Lemma and is given by

d(B(t, T )Kfix) = B(t, T )Kfix
(
rtdt + σT (t)dW 1

t

)
The price at time t of a European option to exchange the asset S1 for the asset S2 at time T

C

(
t, α

At

A0
, B(t, T )Kfix

)
= B(t, T )KfixΦ (d1(t)) − α

At

A0
Φ (d2(t))

where

d1(t) :=
ln
(

B(t,T )Kfix

α
At
A0

)
+ 1

2
∫ T

t
σ(u)2du√∫ T

t
σ(u)2du

, d2(t) = d1(t) −

√∫ T

t

σ(u)2du

and σ(t)2 = (σT (t) − σ1,A(t))2 + σ2,A(t)2

Floating strike

The second is the floating strike guarantee. Then the asset is given by S2
t = α̃eI(0,t), where I(t, T ) :=∫ T

t
rudu and (rt)t∈[0,T ] is the instantaneous spot rate. The dynamics are the given by

d
(

α̃eI(0,t)
)

= α̃eI(0,t)rtdt

The price at time t of a European option to exchange the asset S1 for the asset S2 at time T

C

(
t, α

At

A0
, α̃eI(0,t)

)
= α̃eI(0,t)Φ (d1(t)) − α

At

A0
Φ (d2(t))
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where

d1(t) :=
ln
(

α̃eI(0,t)

α
At
A0

)
+ 1

2
∫ T

t
σ(u)2du√∫ T

t
σ(u)2du

, d2(t) = d1(t) −

√∫ T

t

σ(u)2du

and σ(t)2 = σ1,A(t)2 + σ2,A(t)2
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B.2 Cumulated volatilities

Lemma B.2.1 For

σS =
(

ρσ√
1 − ρ2σ

)
, σT (t) =

(
σr

a (1 − e−a(T −t))
0

)

and σZ(t) = σS,T (t) = σS − σT (t) it holds∫ T

t

∥σZ(s)∥2ds

=
(

σ2 − 2ρσ
σr

a
+ σ2

r

a2

)
(T − t) + 2

(
ρσ

σr

a2 − σ2
r

a3

)(
1 − e−a(T −t)

)
+ σ2

r

2a3

(
1 − e−2a(T −t)

)
.

Proof:

∥σZ(t)∥2 =
(

ρσ − σr

a
(1 − e−a(T −t))

)2
+ (1 − ρ2)σ2

=
(

σ2 − 2ρσ
σr

a
+ σ2

r

a2

)
︸ ︷︷ ︸

A1

+ 2
(

ρσ
σr

a
− σ2

r

a2

)
︸ ︷︷ ︸

A2

e−a(T −t) + σ2
r

a2︸︷︷︸
A3

e−2a(T −t)

It follows∫ T

t

∥σZ(s)∥2ds = A1(T − t) + A2
1
a

e−a(T −t) + A3
1
2a

e−2a(T −t)

=
(

σ2 − 2ρσ
σr

a
+ σ2

r

a2

)
(T − t) + 2

(
ρσ

σr

a2 − σ2
r

a3

)(
1 − e−a(T −t)

)
+ σ2

r

2a3

(
1 − e−2a(T −t)

)
.
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B.3 Derivatives of the exchange option price C(t, Kw
t , αwAt)

C(t, Kw
t , αwAt) := Kw

t N
(

d1

(
t,

Kw
t

αwAt

))
− αwAtN

(
d2

(
t,

Kw
t

αwAt

))

First derivatives of d1 and d2

d1

(
t,

Kw
t

αwAt

)
:=

ln Kw
t

αwAt
+ 1

2 v2(t, T )
v(t, T ) ,

d2

(
t,

Kw
t

αwAt

)
:= d1

(
t,

Kw
t

αwAt

)
− v(t, T )

d1

(
t,

Kw
t

αwAt

)
:= ln(Kw

t )
v(t, T ) − ln(αwAt)

v(t, T ) + 1
2v(t, T ),

d2

(
t,

Kw
t

αwAt

)
:= ln(Kw

t )
v(t, T ) − ln(αwAt)

v(t, T ) − 1
2v(t, T )
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)
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(
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First derivative of d1 and d2 regarding cumulated volatility v(t, T )
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)
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(
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)
∂v(t, T ) = −
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First derivative of C(t, Kw
t , αwAt) regarding At

∂C(t, Kw
t , αwAt)
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(
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(
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t
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(
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(
t,

Kw
t
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Derivative (a)

∂N
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(
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t
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) ∂d1

(
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∂N

(
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(
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t
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∂d1

(
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t
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) 1
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(
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=
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(
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(
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(
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t
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−
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(
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(
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(
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(
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t
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(
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t
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Derivative (∗)

∂N
(

d2

(
t,

Kw
t

αwAt

))
∂d2

(
t,

Kw
t
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) = 1√
2π
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d2

(
t,
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(
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2π

e−
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2 e
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(
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(
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2 eln
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t
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2 e− v(t,T )2

2

= 1√
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(
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e
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(
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First derivative of C(t, Kw
t , αwAt) regarding Kw

t

∂C(t, Kw
t , αwAt)

∂Kw
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(
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(
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Second derivative of C(t, Kw
t , αwAt) regarding At

∂2C(t, Kw
t , αwAt)

(∂At)2 = −αw
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(
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Second derivative of C(t, Kw
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Second derivative of C(t, Kw
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First derivative of C(t, Kw
t , αwAt) regarding rt
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Second derivative of C(t, Kw
t , αwAt) regarding rt
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B.4 Derivatives of the asset portfolio At

At = ϕ
(S)
t St +

d−1∑
i=1

ϕ
(i)
t B(t, ti), ϕ

(S)
t = πSAt

St
, ϕ

(i)
t = πiAt

B(t, ti)

Bondprice B(s, t)

B(s, t) = e−B(s,t)rs+A(s,t)

B(s, t) = 1
a

(1 − e−a(t−s))

A(s, t) = (B(s, t) − (t − s))
(

b − σ2
r

2a2

)
− σ2

r

4a
B2(s, t).

First derivative of B(s, t) regarding rt
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Second derivative of B(s, t) regarding rt
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First derivative of At regarding rt
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Second derivative of At regarding rt
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B.5 Derivatives of strikes Kfix
t and Kfl.

t

Fix Strike Kfix
t

Kfix
t := B(t, T )Kfix

First derivative Kfix
t regarding rt

∂Kfix
t

∂rt
= Kfix

∂B(t, T )
∂rt

= −KfixB(t, T )B(t, T )

Second derivative Kfix
t regarding rt

∂2Kfix
t

(∂rt)2 = −KfixB(t, T )∂B(t, T )
∂rt

= KfixB(t, T )2B(t, T )

Floating Strike Kfl.
t

Kfl.
t := α̃e

∫ t

0
rsds

First derivative Kfl.
t regarding rt
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Second derivative Kfl.
t regarding rt
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0
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t e

∫ t

0
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∫ t

0
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t )
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B.6 Derivatives of the Buffer At − Lt

Liabilities

Lt = ηfixCfix(t, Kfix
t , αfixAt) + ηfl.Cfl.(t, Kfl.

t , αfl.At)

= ηfix (αfixAt + C(t, Kfix
t , αfixAt)

)
+ ηfl. (αfl.At + C(t, Kfl.

t , αfl.At)
)

=
(
ηfixαfix + ηfl.αfl.)At + ηfixC(t, Kfix

t , αfixAt) + ηfl.C(t, Kfl.
t , αfl.At)

Buffer At − Lt

At − Lt =
(
1 − ηfixαfix − ηfl.αfl.)At − ηfixC(t, Kfix

t , αfixAt) − ηfl.C(t, Kfl.
t , αfl.At)
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First derivative of At − Lt regarding rt

∂At − Lt

∂rt
=
(
1 − ηfixαfix − ηfl.αfl.) ∂At

∂rt
− ηfix ∂C(t, Kfix

t , αfixAt)
∂rt

− ηfl. ∂C(t, Kfl.
t , αfl.At)

∂rt

=
(
1 − ηfixαfix − ηfl.αfl.) ∂At

∂rt

− ηfix
[

∂Kfix
t

∂rt
N
(

d1

(
t,

Kfix
t

αfixAt

))
− αfix ∂At

∂rt
N
(

d2

(
t,

Kfix
t

αfixAt

))]
− ηfl.

[
∂Kfl.

t

∂rt
N
(

d1

(
t,

Kfl.
t

αfl.At

))
− αfl. ∂At

∂rt
N
(

d2

(
t,

Kfl.
t

αfl.At

))]
=
(
1 − ηfixαfix − ηfl.αfl.) ∂At

∂rt

− ηfix ∂Kfix
t

∂rt
N
(

d1

(
t,

Kfix
t

αfixAt

))
+ ηfixαfix ∂At

∂rt
N
(

d2

(
t,

Kfix
t

αfixAt

))
− ηfl. ∂Kfl.

t

∂rt
N
(

d1

(
t,

Kfl.
t

αfl.At

))
+ ηfl.αfl. ∂At

∂rt
N
(

d2

(
t,

Kfl.
t

αfl.At

))
=
(
1 − ηfixαfix − ηfl.αfl.) ∂At

∂rt

− ηfix ∂Kfix
t

∂rt
N
(

d1

(
t,

Kfix
t

αfixAt

))
− ηfl. ∂Kfl.

t

∂rt
N
(

d1

(
t,

Kfl.
t

αfl.At

))
+ ηfixαfix ∂At

∂rt
N
(

d2

(
t,

Kfix
t

αfixAt

))
+ ηfl.αfl. ∂At

∂rt
N
(

d2

(
t,

Kfl.
t

αfl.At

))
=
(
1 − ηfixαfix − ηfl.αfl.) ∂At

∂rt

− ηfix ∂Kfix
t

∂rt
N
(

d1

(
t,

Kfix
t

αfixAt

))
− ηfl. ∂Kfl.

t

∂rt
N
(

d1

(
t,

Kfl.
t

αfl.At

))
+
[
ηfixαfixN

(
d2

(
t,

Kfix
t

αfixAt

))
+ ηfl.αfl.N

(
d2

(
t,

Kfl.
t

αfl.At

))]
∂At

∂rt

=
[
1 − ηfixαfix − ηfl.αfl. + ηfixαfixN

(
d2

(
t,

Kfix
t

αfixAt

))
+ηfl.αfl.N

(
d2

(
t,

Kfl.
t

αfl.At

))]
∂At

∂rt

− ηfix ∂Kfix
t

∂rt
N
(

d1

(
t,

Kfix
t

αfixAt

))
− ηfl. ∂Kfl.

t

∂rt
N
(

d1

(
t,

Kfl.
t

αfl.At

))
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=
[
1 + ηfixαfix

(
1 − N

(
d2

(
t,

Kfix
t

αfixAt

)))
+ηfl.αfl.

(
1 − N

(
d2

(
t,

Kfl.
t

αfl.At

)))]
∂At

∂rt

− ηfix ∂Kfix
t

∂rt
N
(

d1

(
t,

Kfix
t

αfixAt

))
− ηfl. ∂Kfl.

t

∂rt
N
(

d1

(
t,

Kfl.
t

αfl.At

))
=
[
1 + ηfixαfixN

(
−d2

(
t,

Kfix
t

αfixAt

))
+ ηfl.αfl.N

(
−d2

(
t,

Kfl.
t

αfl.At

))]
∂At

∂rt

− ηfix ∂Kfix
t

∂rt
N
(

d1

(
t,

Kfix
t

αfixAt

))
− ηfl. ∂Kfl.

t

∂rt
N
(

d1

(
t,

Kfl.
t

αfl.At

))

Second derivative of At − Lt regarding rt

∂2At − Lt

(∂rt)2 =
(
1 − ηfixαfix − ηfl.αfl.) ∂2At

(∂rt)2 − ηfix ∂2C(t, Kfix
t , αfixAt)

(∂rt)2 − ηfl. ∂
2C(t, Kfl.

t , αfl.At)
(∂rt)2
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B.7 Simulation

In this section we present the simulation used to calculate the risk measures.

B.7.1 Product design

Pay-Off:

P fix
T = P0 max

{
Kfix, α

AT

A0

}
P fl.

T = P0 max
{

α̃eI(0,T ), α
AT

A0

}
Assume P0 = 1. Price at time t:

Cfix(t, Kfix) = α
At

A0
+ C

(
t, α

At

A0
, B(t, T )Kfix

)
Cfl.(t, α̃) = α

At

A0
+ C

(
t, α

At

A0
, α̃eI(0,t)

)
Fair Pricing:

Cfix(0, Kfix) = α
A0

A0
+ C

(
0, α

A0

A0
, B(0, T )Kfix

)
= P0 = 1 ⇒ C (0, α, B(0, T )Kfix) = 1 − α

Cfl.(0, α̃) = α
A0

A0
+ C

(
0, α

A0

A0
, α̃

)
= P0 = 1 ⇒ C (0, α, α̃) = 1 − α

Choose Kfair
fix and α̃fair such that

C
(
0, α, B(0, T )Kfair

fix
)

= 1 − α

C
(
0, α, α̃fair) = 1 − α

B.7.2 Model specification (Risk neutral measure)

Stock:

dSt

St
= rtdt + ρσSdW 1

t +
√

1 − ρ2σSdW 2
t

Interest Rate:

drt = a(b − rt)dt + σrdW 1
t

Bond:

dB(t, T )
B(t, T ) = rtdt − σr

1
a

(
1 − e−a(T −t)

)
dW 1

t
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Bank account:
d(eI(0,t))

eI(0,t) = rtdt

Investment Portfolio:
dAt

At
=πS

dSt

St
+ πB

dB(t, T )
B(t, T ) + (1 − πS − πB)d(eI(0,t))

eI(0,t)

=πS

(
rtdt + ρσSdW 1

t +
√

1 − ρ2σSdW 2
t

)
+ πB

(
rtdt − σr

1
a

(
1 − e−a(T −t)

)
dW 1

t

)
+ (1 − πS − πB)rtdt

=rtdt +
(

πSρσS − πBσr
1
a

(
1 − e−a(T −t)

))
︸ ︷︷ ︸

=:σ1,A(t)

dW 1
t + πS

√
1 − ρ2σS︸ ︷︷ ︸

=:σ2,A(t)

dW 2
t

B.7.3 Model specification (Real world measure)

The dynamic of the interest rate in the Vasicek model are given under the risk neutral measure P∗

drP
∗

t = a(b∗ − rP
∗

t )dt + σrdW 1,P∗

t .

For simulation we need to change to the real world measure P. Assuming a constant market price
of interest rate risk λ leads to P dynamics

drPt = a(b − rPt )dt + σrdW 1,P
t

where b = b∗ + λ σr

a . Furthermore under the real world measure P the stock dynamic is given by

dSt

St

P
= µSdt + ρσSdW 1,P

t +
√

1 − ρ2σSdW 2,P
t .

The Investment Portfolio dynamics are then given by

dAt

At

P
= (πSµS + (1 − πS)rPt )dt + ∥σA(t)∥dW 3,P

t

A0 = πS
S0

S0
+ πB

B(0, T )
B(0, T ) + (1 − πS − πB) = 1

Liabilities:

Lt = αAt + ηfixC
(
t, αAt, B(t, T )Kfair

fix
)

+ (1 − ηfix)C
(

t, αAt, α̃faireI(0,t)
)

L0 = α + ηfixC
(
0, α, B(0, T )Kfair

fix
)

+ (1 − ηfix)C
(
0, α, α̃fair)

= α + ηfix(1 − α) + (1 − ηfix)(1 − α) = 1

LT = ηfixP fix
T + (1 − ηfix)P fl.

T

= ηfix max
{

Kfair
fix , αAT

}
+ (1 − ηfix) max

{
α̃faireI(0,T ), αAT

}
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B.7.4 Distribution

If

dSt

St
= rtdt + ρσSdW

(1)
t +

√
1 − ρ2σSdW

(2)
t

drt = a(b − rt)dt + σrdW
(1)
t

it holds rt

ln St

Ss∫ t

s
rudu

∣∣∣∣∣∣∣
rs

Ss

S0∫ s

0 rudu

 ∼ N

 (rs − b) e−a(t−s) + b

B(s, t)(rs − b) +
(
b − 1

2 σ2
S

)
(t − s)

B(s, t)(rs − b) + b(t − s)

∣∣∣∣∣∣∣
c11 c12 c13

c21 c22 c23

c31 c32 c33




where

c11 = σ2
r

2a

(
1 − e−2a(t−s)

)
c12 = c21 =

(σr

a
+ ρσS

)
σrB(s, t) − σ2

r

2a2 (1 − e−2a(t−s))

c13 = c31 = σ2
r

a
B(s, t) − σ2

r

2a2 (1 − e−2a(t−s))

c22 = 2σr

a

(
−ρσS − σr

a

)
B(s, t) + σ2

r

2a3 (1 − e−2a(t−s)) +
(

σ2
r

a2 + 2ρσS
σr

a
+ σ2

S

)
(t − s)

c33 = σ2
r

a2

(
(t − s) − 2B(s, t) + 1

2a

(
1 − e−2a(t−s)

))
c23 = c32 = c33 + ρσS

σr

a
((t − s) − B(s, t))

and

B(s, t) := 1
a

(1 − e−a(t−s)).

Proof:

rt = rse−a(t−s) + b
(

1 − e−a(t−s)
)

+ σr

∫ t

s

e−a(t−u)dW (1)
u

E [rt|Fs] = rse−a(t−s) + b
(

1 − e−a(t−s)
)

= rse−a(t−s) + b − be−a(t−s) = (rs − b) e−a(t−s) + b

V ar [rt|Fs] =
∫ t

s

σ2
re−2a(t−u)du = σ2

r

2a

(
1 − e−2a(t−s)

)

I(s, t) :=
∫ t

s

rudu
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I(s, t) =
∫ t

s

(
rse−a(u−s) + b

(
1 − e−a(u−s)

)
+ σr

∫ u

s

e−a(u−v)dW (1)
v

)
du

= rs

∫ t

s

e−a(u−s)du + b

∫ t

s

1du − b

∫ t

s

e−a(u−s)du + σr

∫ t

s

∫ u

s

e−a(u−v)dW (1)
v du

= rsB(s, t) + b(t − s) − bB(s, t) + σr

∫ t

s

∫ t

v

e−a(u−v)dudW (1)
v (Fubini for stoch. integrals)

= rsB(s, t) + b(t − s) − bB(s, t) + σr

a

∫ t

s

(1 − e−a(t−u))dW (1)
u

= B(s, t)(rs − b) + b(t − s) + σr

a

∫ t

s

(1 − e−a(t−u))dW (1)
u

E [I(s, t)|Fs] = B(s, t)(rs − b) + b(t − s)

V ar [I(s, t)|Fs] = σ2
r

a2

∫ t

s

(1 − e−a(t−u))2du = σ2
r

a2

∫ t

s

(1 − 2e−a(t−u) + e−2a(t−u))du

= σ2
r

a2

(
(t − s) − 2

a

(
1 − e−a(t−s)

)
+ 1

2a

(
1 − e−2a(t−s)

))

ln

(
St

Ss

)
=
∫ t

s

rudu − 1
2σ2

S(t − s) +
∫ t

s

ρσSdW (1)
u +

∫ t

s

√
1 − ρ2σSdW (2)

u

=B(s, t)(rs − b) + b(t − s) + σr

a

∫ t

s

(1 − e−a(t−u))dW (1)
u − 1

2σ2
S(t − s) +

∫ t

s

ρσSdW (1)
u

+
∫ t

s

√
1 − ρ2σSdW (2)

u

=B(s, t)(rs − b) +
(

b − 1
2σ2

S

)
(t − s) +

∫ t

s

(σr

a
(1 − e−a(t−u)) + ρσS

)
dW (1)

u

+
∫ t

s

√
1 − ρ2σSdW (2)

u
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E
[
ln

(
St

Ss

) ∣∣∣∣Fs

]
=B(s, t)(rs − b) +

(
b − 1

2σ2
S

)
(t − s)

V ar

[
ln

(
St

Ss

) ∣∣∣∣Fs

]
=
∫ t

s

(σr

a
(1 − e−a(t−u)) + ρσS

)2
du +

∫ t

s

(1 − ρ2)σ2
Sdu

=
∫ t

s

(
σ2

r

a2 (1 − e−a(t−u))2 + 2ρσS
σr

a
(1 − e−a(t−u)) + ρ2σ2

S

)
du

+ (1 − ρ2)σ2
S(t − s)

=
∫ t

s

(
σ2

r

a2 (1 − e−a(t−u))2 + 2ρσS
σr

a
− 2ρσS

σr

a
e−a(t−u)

)
du

+ ρ2σ2
S(t − s) + (1 − ρ2)σ2

S(t − s)

=
∫ t

s

(
σ2

r

a2 (1 − e−a(t−u))2 − 2ρσS
σr

a
e−a(t−u)

)
du

+ 2ρσS
σr

a
(t − s) + σ2

S(t − s)

=
∫ t

s

(
σ2

r

a2 (1 − 2e−a(t−u) + e−2a(t−u)) − 2ρσS
σr

a
e−a(t−u)

)
du

+
(

2ρσS
σr

a
+ σ2

S

)
(t − s)

=
∫ t

s

(
σ2

r

a2 − 2σ2
r

a2 e−a(t−u) + σ2
r

a2 e−2a(t−u) − 2ρσS
σr

a
e−a(t−u)

)
du

+
(

2ρσS
σr

a
+ σ2

S

)
(t − s)

=
∫ t

s

(
2σr

a

(
−ρσS − σr

a

)
e−a(t−u) + σ2

r

a2 e−2a(t−u)
)

du

+ σ2
r

a2 (t − s) +
(

2ρσS
σr

a
+ σ2

S

)
(t − s)

=2σr

a

(
−ρσS − σr

a

)∫ t

s

e−a(t−u)du + σ2
r

a2

∫ t

s

e−2a(t−u)du

+
(

σ2
r

a2 + 2ρσS
σr

a
+ σ2

S

)
(t − s)

=2σr

a2

(
−ρσS − σr

a

)
(1 − e−a(t−s)) + σ2

r

2a3 (1 − e−2a(t−s))

+
(

σ2
r

a2 + 2ρσS
σr

a
+ σ2

S

)
(t − s)
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Cov

[
ln

(
St

Ss

)
, I(s, t)

∣∣∣∣Fs

]
=Cov

[∫ t

s

(σr

a
(1 − e−a(t−u)) + ρσS

)
dW (1)

u ,

σr

a

∫ t

s

(1 − e−a(t−u))dW (1)
u

∣∣∣∣Fs

]
=Cov

[∫ t

s

σr

a
(1 − e−a(t−u))dW (1)

u ,
σr

a

∫ t

s

(1 − e−a(t−u))dW (1)
u

∣∣∣∣Fs

]
+ Cov

[∫ t

s

ρσSdW (1)
u ,

σr

a

∫ t

s

(1 − e−a(t−u))dW (1)
u

∣∣∣∣Fs

]
=V ar

[∫ t

s

σr

a
(1 − e−a(t−u))dW (1)

u

∣∣∣∣Fs

]
+ ρσS

σr

a
Cov

[∫ t

s

dW (1)
u ,

∫ t

s

(1 − e−a(t−u))dW (1)
u

∣∣∣∣Fs

]
=V ar [I(s, t)|Fs] + ρσS

σr

a

∫ t

s

(1 − e−a(t−u))du

=V ar [I(s, t)|Fs] + ρσS
σr

a

(
(t − s) − 1

a
(1 − e−a(t−s))

)

Cov

[
ln

(
St

Ss

)
, rt

∣∣∣∣Fs

]
= Cov

[∫ t

s

(σr

a
(1 − e−a(t−u)) + ρσS

)
dW (1)

u , σr

∫ t

s

e−a(t−u)dW (1)
u

∣∣∣∣Fs

]
= Cov

[∫ t

s

σr

a
(1 − e−a(t−u))dW (1)

u , σr

∫ t

s

e−a(t−u)dW (1)
u

∣∣∣∣Fs

]
+ Cov

[∫ t

s

ρσSdW (1)
u , σr

∫ t

s

e−a(t−u)dW (1)
u

∣∣∣∣Fs

]
= Cov

[∫ t

s

σr

a
dW (1)

u , σr

∫ t

s

e−a(t−u)dW (1)
u

∣∣∣∣Fs

]
− Cov

[∫ t

s

σr

a
e−a(t−u)dW (1)

u , σr

∫ t

s

e−a(t−u)dW (1)
u

∣∣∣∣Fs

]
+ Cov

[∫ t

s

ρσSdW (1)
u , σr

∫ t

s

e−a(t−u)dW (1)
u

∣∣∣∣Fs

]
= σ2

r

a
Cov

[∫ t

s

dW (1)
u ,

∫ t

s

e−a(t−u)dW (1)
u

∣∣∣∣Fs

]
− σ2

r

a
V ar

[∫ t

s

e−a(t−u)dW (1)
u

∣∣∣∣Fs

]
+ ρσSσrCov

[∫ t

s

dW (1)
u ,

∫ t

s

e−a(t−u)dW (1)
u

∣∣∣∣Fs

]
= σ2

r

a

∫ t

s

e−a(t−u)du − σ2
r

a

∫ t

s

e−2a(t−u)du + ρσSσr

∫ t

s

e−a(t−u)du

=
(σr

a
+ ρσS

)
σr

∫ t

s

e−a(t−u)du − σ2
r

a

∫ t

s

e−2a(t−u)du

=
(σr

a
+ ρσS

) σr

a
(1 − e−a(t−s)) − σ2

r

2a2 (1 − e−2a(t−s))
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Cov [I(s, t), rt|Fs] = Cov

[
σr

a

∫ t

s

(1 − e−a(t−u))dW (1)
u , σr

∫ t

s

e−a(t−u)dW (1)
u |Fs

]
= σ2

r

a

(
Cov

[∫ t

s

dW (1)
u ,

∫ t

s

e−a(t−u)dW (1)
u |Fs

]
− V ar

[∫ t

s

e−a(t−u)dW (1)
u

∣∣∣∣Fs

])
= σ2

r

a

∫ t

s

e−a(t−u)du − σ2
r

a

∫ t

s

e−2a(t−u)du

= σ2
r

a2 (1 − e−a(t−s)) − σ2
r

2a2 (1 − e−2a(t−s))

In particular, if

dSt

St
= (rt + σSλt)dt + ρσSdW

(1)
t +

√
1 − ρ2σSdW

(2)
t

where λt = µS−rt

σS
it holds

E
[
ln

(
St

Ss

) ∣∣∣∣Fs

]
= σS

∫ t

s

λudu + B(s, t)(rs − b) +
(

b − 1
2σ2

S

)
(t − s).

B.7.5 Parameters

The parameters are chosen to be in line with recent literature (e.g. Hieber et al (2019), Graf et al.
(2011)).

Contract parameters:
α T P0

0.9 5 1
Black Scholes model parameters:

S0 σS µS

1 0.2 0.07
Vasicek model parameters:

r0 a b∗ (Risk neutral) λ b (Real world) σr ρ

0.0115 0.3 0.042 −0.23 0.0305 0.015 0.15

Calculated fair prices:

⇒ Kfair
fix = 1.1287

⇒ α̃fair = 0.9982

Investment Parameter:
πS πB

0.15 0.4

∆t = 1
365 ⇒ 365 · 5 + 1 = 1826 values per Path
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B.7.6 Simulation

Simulation of one path of interest rate, asset portfolio and interest rate
integral
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Figure B.1: This Figure illustrates a simulated path of the interest rate, asset portfolio and interest rate
integral under the real world measure.
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B.7.7 First simulation results

Simulating AT , P fix
T and P fl.

T for T = 5

Table B.1: Summery distribution and risk for T = 5

Mean Median SD Variance V aR0.995 CV aR0.985

AT 1.1510 1.1475 0.0875 0.0076 0.9439 0.9478
PT

fix 1.1400 1.1354 0.0181 0.0003 1.1354 1.1312
PT

float 1.1144 1.1119 0.0652 0.0043 0.9577 0.9615

Resulted histograms for T = 5
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Figure B.2: This figure shows the histogram of the simulated terminal value of the asset portfolio (top
left), fix strike guarantee (top right) and floating strike guarantee (bottom) with maturity T = 5.

To P fix
T : Remember that Kfair

fix = 1.1287. In most of the cases the fraction of the investment portfolio
is smaller then the strike, i.e. αAT < Kfair

fix , so the exchange option is out-of-the-money (α = 0.9).
To P fl.

T : In the Vasicek model negative interest rates are possible, so the bank account can be
decreasing. So the initial investment α̃fair = 0.9982 can decrease either.
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Simulating AT , P fix
T and P fl.

T for T = 10

Table B.2: Summery distribution and risk for T = 10

Mean Median SD Variance V aR0.995 CV aR0.985

AT 1.3693 1.3603 0.1573 0.0247 1.0094 1.0165
PT

fix 1.3738 1.3574 0.0484 0.0023 1.3574 1.3465
PT

float 1.3068 1.2983 0.1407 0.0198 0.9892 0.9950

Resulted histograms for T = 10
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Figure B.3: This figure shows the histogram of the simulated terminal value of the asset portfolio (top
left), fix strike guarantee (top right) and floating strike guarantee (bottom) with maturity T = 10.
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Simulating AT , P fix
T and P fl.

T for T = 20

Table B.3: Summery distribution and risk for T = 20

Mean Median SD Variance V aR0.995 CV aR0.985

AT 1.9731 1.9450 0.3380 0.1142 1.2529 1.1900
PT

fix 2.0343 1.9852 0.1273 0.0162 1.9852 1.9522
PT

float 1.8533 1.8261 0.3160 0.0998 1.1854 1.1263

Resulted histograms for T = 20
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Figure B.4: This figure shows the histogram of the simulated terminal value of the asset portfolio (top
left), fix strike guarantee (top right) and floating strike guarantee (bottom) with maturity T = 20.
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B.7.8 Simulating buffer at time t = T and t = 1

Table B.4: Risk measures for varying fractions of fix strike guarantees with T = 5

t = T t = 1
ηfix V aR0.995 CV aR0.985 Variance V aR0.995 CV aR0.985 Variance
0 0.158366 0.153661 0.00477675 0.0695071 0.0685395 0.000867232

0.1 0.155018 0.150083 0.00459635 0.0676866 0.0664799 0.000809602
0.2 0.153047 0.147995 0.00448746 0.0666358 0.06559 0.000776033
0.3 0.152547 0.147496 0.00445008 0.0670639 0.0659501 0.000766526
0.4 0.153289 0.148596 0.0044842 0.0693217 0.0675758 0.000781079
0.5 0.155649 0.151379 0.00458983 0.0724549 0.0705056 0.000819694
0.6 0.160002 0.155794 0.00476696 0.0768014 0.0746235 0.00088237
0.7 0.165866 0.161707 0.0050156 0.0815773 0.0797514 0.000969107
0.8 0.173245 0.169065 0.00533574 0.0876077 0.0857038 0.00107991
0.9 0.181964 0.177767 0.00572739 0.0942533 0.0923372 0.00121477
1 0.191561 0.187596 0.00619055 0.101819 0.0995766 0.00137369
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Risk measures for varying fractions of fix strike guarantees with T = 5
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Figure B.5: This figure shows the different risk measures of the buffer for varying frictions of fix strike
guarantees ηfix. The solid line refers to the buffer value at maturity T = 5 and the dashed line refers to
the buffer value at t = 1.
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Table B.5: Risk measures for varying fractions of fix strike guarantees with T = 10

t = T t = 1
ηfix V aR0.995 CV aR0.985 Variance V aR0.995 CV aR0.985 Variance
0 0.27178 0.2635 0.00959667 0.0680055 0.0659657 0.000726966

0.1 0.258107 0.250383 0.00901034 0.0638115 0.0623843 0.000648894
0.2 0.247923 0.240807 0.00871245 0.0619253 0.0601993 0.000601434
0.3 0.242179 0.235614 0.008703 0.0612037 0.0598364 0.000584585
0.4 0.241614 0.235473 0.008982 0.0631142 0.0616242 0.000598349
0.5 0.247745 0.241224 0.00954944 0.0671364 0.0655056 0.000642724
0.6 0.261498 0.252229 0.0104053 0.0721997 0.0711717 0.000717712
0.7 0.277029 0.268522 0.0115496 0.0799544 0.0782453 0.000823311
0.8 0.296498 0.289293 0.0129824 0.0882434 0.0864377 0.000959522
0.9 0.321584 0.313722 0.0147036 0.0979583 0.095453 0.00112635
1 0.348025 0.34093 0.0167133 0.107906 0.105128 0.00132378

Risk measures for varying fractions of fix strike guarantees with T = 10
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Figure B.6: This figure shows the different risk measures of the buffer for varying frictions of fix strike
guarantees ηfix. The solid line refers to the buffer value at maturity T = 10 and the dashed line refers to
the buffer value at t = 1.
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Table B.6: Risk measures for varying fractions of fix strike guarantees with T = 20

t = T t = 1
ηfix V aR0.995 CV aR0.985 Variance V aR0.995 CV aR0.985 Variance
0 0.52785 0.510567 0.0231846 0.0574121 0.0561246 0.000521507

0.1 0.490174 0.475111 0.0219246 0.0541114 0.05286 0.00045967
0.2 0.462045 0.447466 0.0219002 0.0522175 0.0509258 0.000421634
0.3 0.44294 0.43029 0.0231115 0.051976 0.0507322 0.000407402
0.4 0.439257 0.427366 0.0255585 0.0536088 0.0525241 0.000416972
0.5 0.450904 0.441922 0.0292411 0.0571585 0.0563008 0.000450344
0.6 0.4851 0.474488 0.0341593 0.0630621 0.0618151 0.00050752
0.7 0.532326 0.522464 0.0403132 0.0697324 0.0686174 0.000588497
0.8 0.592056 0.581094 0.0477028 0.0771709 0.0762803 0.000693277
0.9 0.659804 0.647062 0.056328 0.0856038 0.0845477 0.00082186
1 0.732273 0.717069 0.0661889 0.0946566 0.0933164 0.000974245
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Risk measures for varying fractions of fix strike guarantees with T = 20
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Figure B.7: This figure shows the different risk measures of the buffer for varying frictions of fix strike
guarantees ηfix. The solid line refers to the buffer value at maturity T = 20 and the dashed line refers to
the buffer value at t = 1.
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Appendix B

Optimal fraction of fix strike guarantees for varying πB and T with fixed
πS = 0.15
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Figure B.8: This figure presents the optimal fraction of fix strike guarantees ηfix depending on the
stock fraction πB and the time to maturity T . The left figure shows the optimal fraction depending on
T for different levels of πB and the right figure shows the optimal fraction depending on πB for different
maturities T . For the left line, the black solid line refers to πB = 0, the black dashed line to πB = 0.2, the
dotted line to πB = 0.4, the gray solid line to πB = 0.6 and finally the gray dashed line to πB = 0.8. For
the right figure, the solid line refers to T = 5, the dashed line to T = 10 and the dotted line to T = 20.
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Convexity depending on the maturity T for different levels of πB with fixed
πS = 0.15
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Figure B.9: This figure shows the convexity of the buffer depending on the maturity for varying levels
of πB . ηfix is chosen such that the interest rate sensitivity of the buffer is zero. The black solid line refers
to πB = 0, the black dashed line to πB = 0.2, the dotted line to πB = 0.4, the gray solid line to πB = 0.6
and finally the gray dashed line to πB = 0.8.

160



Appendix B

1 year risk measures for varying bond fraction
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Figure B.10: This Figure presents the 1 year risk measures of the buffer for varying stock fraction πB .
The upper left figure illustrates the V aR0.995, the upper right figure shows the CV aR0.985 and the lower
figure presents the V ariance. The solid line refers to a time to maturity T = 5, the dashed line to T = 10
and the dotted line to T = 20.
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Contour plot of the optimal fraction of fix strike guarantees depending on T

and piB

5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

T

π
B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure B.11: This Figure presents a contour plot of the optimal fraction of fix strike guarantees ηfix

depending on the maturity T and the bond fraction πB . ηfix is choose such that the interest rate sensitivity
of the buffer is zero. The brighter the surface, the higher is the ηfix.

Contour plot of the convexity of the buffer depending on T and piB
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Figure B.12: This Figure presents a contour plot of the convexity of the buffer depending on the maturity
T and the stock fraction πB . ηfix is chosen such that the interest rate sensitivity of the buffer is zero. The
brighter the surface, the closer the convexity is to zero.
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Appendix B

Optimal fraction of fix strike guarantees for varying πS and T with fixed
πB = 0.4
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Figure B.13: This figure presents the optimal fraction of fix strike guarantees ηfix depending on the
stock fraction πS and the time to maturity T . The left figure shows the optimal fraction depending on
T for different levels of πS and the right figure shows the optimal fraction depending on πS for different
maturities T . For the left line, the black solid line refers to πS = 0, the dashed line to πS = 0.2, the dotted
line to πS = 0.4 and finally the gray solid line to πS = 0.6. For the right figure, the solid line refers to
T = 5, the dashed line to T = 10 and the dotted line to T = 20.
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Appendix B

Convexity depending on the maturity T for different levels of πS with fixed
πB = 0.4
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Figure B.14: This figure shows the convexity of the buffer depending on the maturity for varying levels
of πS . ηfix is chosen such that the interest rate sensitivity of the buffer is zero. The black solid line refers to
πS = 0, the dashed line to πS = 0.2, the dotted line to πS = 0.4 and finally the gray solid line to πS = 0.6.
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Appendix B

1 year risk measures for varying stock fraction
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Figure B.15: This Figure presents the 1 year risk measures of the buffer for varying stock fraction πS .
The upper left figure illustrates the V aR0.995, the upper right figure shows the CV aR0.985 and the lower
figure presents the V ariance. The solid line refers to a time to maturity T = 5, the dashed line to T = 10
and the dotted line to T = 20.
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Appendix B

Contour plot of the optimal fraction of fix strike guarantees depending on T

and piS
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Figure B.16: This Figure presents a contour plot of the optimal fraction of fix strike guarantees ηfix

depending on the maturity T and the stock fraction πS . ηfix is choose such that the interest rate sensitivity
of the buffer is zero. The brighter the surface, the higher is the ηfix.

Contour plot of the convexity of the buffer depending on T and piS
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Figure B.17: This Figure presents a contour plot of the convexity of the buffer depending on the maturity
T and the stock fraction πS . ηfix is chosen such that the interest rate sensitivity of the buffer is zero. The
brighter the surface, the closer the convexity is to zero.
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Appendix C

Appendix to Chapter 3

C.1 Proof of Proposition 3.4.2

Recall that the arbitrage-free price at time t of the payoff L is given by the following:

(i) Low equity ratio: For αE ≤ g(α−1)
g+α , it holds

Lt = At − (1 − α + αE)Call(K3). (C.1)

(ii) High equity ratio: For αE > g(α−1)
g+α , it holds

Lt = At −
(
1 + αE

)
Call(K2) + αCall(K1). (C.2)

where the strikes K1, K2 and K3 are defined as in Equation (3.7) and Call(K) = Call(BS)(K, σA, t)
is given by the Black and Scholes pricing formula (w.r.t. the returns), i.e.

Call(BS)(K, σA, t) = AtN (d1(K, σA)) − e−r(T −t)KN (d2(K, σA)), (C.3)

where d1(K, σA) =
ln
(

At

K

)
+
(
r + 1

2 σ2
A

)
(T − t)

σA

√
T − t

and d2(K, σA) = d1(K, σA) − σA

√
T − t.

The interest rate sensitivity of the asset portfolio is then given by

At = A0em(A)µ+(1−m(A))r− 1
2 (m(A)σ)2+m(A)σWt

∂At

∂r
= (1 − m(A))A0em(A)µ+(1−m(A))r− 1

2 (m(A)σ)2+m(A)σWt = (1 − m(A))At.
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d1(K, σA) =
ln
(

At

K

)
+
(
r + 1

2 σ2
A

)
(T − t)

σA

√
T − t

=
ln At − ln K +

(
r + 1

2 σ2
A

)
(T − t)

σA

√
T − t

= ln At

σA

√
T − t

− ln K

σA

√
T − t

+ r
√

T − t

σA
+

1
2 σ2

A

√
T − t

σA

∂d1(K, σA)
∂r

=
∂ ln At

∂r

σA

√
T − t

+
√

T − t

σA
=

1
At

∂At

∂r

σA

√
T − t

+
√

T − t

σA
= 1 − m(A)

σA

√
T − t

+
√

T − t

σA

= (1 − m(A))(T − t)
σA

√
T − t

= ∂d2(K, σA)
∂r

∂N (d1(K, σA))
∂r

= ∂N (d1(K, σA))
∂d1(K, σA)

∂d1(K, σA)
∂r

= N ′(d1(K, σA)) (1 − m(A))(T − t)
σA

√
T − t

∂N (d2(K, σA))
∂r

= ∂N (d2(K, σA))
∂d2(K, σA)

∂d2(K, σA)
∂r

= N ′(d2(K, σA)) (1 − m(A))(T − t)
σA

√
T − t

∂Call(BS)(K, σA, t)
∂r

=∂At

∂r
N (d1(K, σA)) + At

∂N (d1(K, σA))
∂r

−
∂
(
e−r(T −t)K

)
∂r

N (d2(K, σA)) − e−r(T −t)K
∂N (d2(K, σA))

∂r

=∂At

∂r
N (d1(K, σA)) + At

∂N (d1(K, σA))
∂r

+ (T − t)e−r(T −t)KN (d2(K, σA)) − e−r(T −t)K
∂N (d2(K, σA))

∂r

=(1 − m(A))AtN (d1(K, σA)) + AtN ′(d1(K, σA)) (1 − m(A))(T − t)
σA

√
T − t

+ (T − t)e−r(T −t)KN (d2(K, σA))

− e−r(T −t)KN ′(d2(K, σA)) (1 − m(A))(T − t)
σA

√
T − t
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