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Kurzfassung

An den Bearbeitungsprozess angepasste Kühlschmierstoffe sind wichtig für eine
verlässliche und effiziente Zerspanung. Schmieraktive Substanzen lagern sich an
der Oberfläche an, verringern Reibung und Temperatur in der Kontaktfläche zwis-
chen den Reibpartnern und können so den Verschleiss mindern. Die Einordnung
der Schmierleistung ist von grosser Bedeutung. Aufgrund des breiten Spektrums
an Anwendungen eignet sich nicht jeder Kühlschmierstoff für alle Einsatzfälle. Um
verlässliche Empfehlungen für einen Kühlschmierstoff auszusprechen, müssen die
Anforderungen des Anwenders bekannt sein. Die Schmierwirkung ist dabei nur
eine von vielen weiteren typischen Anforderungen an Kühlschmierstoffe. Die Leis-
tung von wassergemischten Kühlschmierstoffen und Bearbeitungsölen wird im Kühl-
schmierstofflabor anhand verschiedener standardisierter Testmethoden bewertet und
eingeordnet.

Der Tapping Torque Test (TTT), auch Drehmomenttest genannt, ist ein standard-
isierter Test, um die Schmierwirkung von Kühlschmierstoffen zu bestimmen. Bei der
Herstellung von Innengewinden wird das benötigte Drehmoment als Kriterium für
die Kühlschmierstoff-Qualifizierung herangezogen. Ein niedriges Drehmoment zeigt
dabei eine gute Schmierwirkung des Testfluids an. Die Möglichkeit viele verschiedene
Werkstoffpaarungen miteinander testen zu können, macht diesen Test als praxisna-
hen Schmierstofftest besonders interessant. Die Anwendung der aktuellen Norm für
den TTT, ASTM D8288-19, ermöglicht jedoch nicht immer eine Unterscheidung der
Kühlschmierstoffe, insbesondere nicht, wenn sich die Kühlschmierstoffe chemisch
nur gering unterscheiden. Es ist das Ziel der vorliegenden Arbeit, die Grundlagen
und Möglichkeiten neuer Testverfahren zur Differenzierung von Kühlschmierstoffen
in spanlosen Bearbeitungsprozessen zu schaffen.

Bei dem Versuch die Differenzierbarkeit der Kühlschmierstoffe im TTT zu verbessern,
wird neben dem Drehmoment als zweite Messgrösse der Körperschall eingeführt.
Während der Gewindeherstellung finden elastische und plastische Verformungen
statt, die im Werkstoff durch die Verschiebung von Korngrenzen Schallwellen außer-
halb des wahrnehmbaren Bereichs des Menschens erzeugen. Die Emission im Ul-
traschallbereich wird in dieser Arbeit als Acoustic Emission (AE) bezeichnet. Die
AE-Signale werden zusätzlich für die Klassifikation der Kühlschmierstoffe verwen-
det. Es werden Vorteile, Möglichkeiten und Grenzen des Einsatzes von AE-Signalen
für den Zweck der Kühlschmierstoffbewertung aufgezeigt. Dafür werden die AE-
Signale sowohl als Rohdaten als auch als weiterverarbeitete/transformierte Daten in
unterschiedlichen Klassifikationsverfahren genutzt.

Die Experimente werden in dem Prozess des Gewindeformens durchgeführt. Dabei
werden verschiedene Kühlschmierstoffe als Testfluide eingesetzt. Zunächst wird
der Testablauf nach ASTM vorgestellt und kritisch begutachtet. Ein veränderter
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Testablauf, der die während der Versuche neu entdeckten und als signifikant bew-
erteten Nebeneffekte berücksichtigt, wird vorgeschlagen. Für die Mittelwerte der
Drehmomente wird eine neue Berechnungsmethode entwickelt, die die Differenzier-
barkeit der Testfluide bereits verbessert. In den Kernexperimenten dieser Arbeit
werden dann auch die AE-Signale aufgenommen. Da das Drehmoment nicht immer
eine Unterscheidung der Kühlschmierstoffkomponenten erlaubt, werden AE-Signale
zur Klassifikation genutzt. Hierzu werden Klassifikationsmethoden wie k-means clus-
tering oder konvolutionale neuronale Netzwerke, eine Methode des maschinellen Ler-
nens, angewendet.

Die Ergebnisse zeigen, dass grössere Unterschiede in der Kühlschmierstoffzusammen-
setzung schon mithilfe der Drehmomentmittelwerte erkannt werden können. Bei sehr
viel kleineren Unterschieden, die bis auf die chemische Ebene der Additivmoleküle
gehen, übertreffen die neuen Methoden mit der Bewertung der AE-Signale den klas-
sischen TTT. Die höchsten Klassifikationsgenauigkeiten werden mit einem konvolu-
tionalen neuronalen Netzwerk erreicht, bei dem die transformierten AE-Signale als
Eingangsdaten verwendet werden. Sogar der Ansatz des Transferlernens zwischen
zwei Datensätzen erreicht zufriedenstellende Ergebnisse. Mithilfe dieses Verfahrens
ist es sogar möglich, zwischen unterschiedlichen Molekülkettenlängen oder Element-
gehalten der Kühlschmierstoffzusätze zu differenzieren. Das Verfahren liefert jedoch
keine direkte Aussage über die Schmierwirkung des Testfluids.

Diese Ergebnisse könnten eine grosse Rolle bei der Online-Zustandsüberwachung
von Kühlschmierstoffen spielen. Während des Zerspanprozesses könnte zukünftig
die Eignung des Kühlschmierstoffes für die aktuell vorliegende tribologische Paarung
bewertet und eventuell die Zusammensetzung automatisch angepasst werden. Dieses
kontinuierliche Fluidmanagement könnte die Zuverlässigkeit und Produktivität von
Zerspanprozessen erhöhen.
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Abstract

Well-suited metalworking fluids (MWFs) are important for reliable and efficient
machining processes. Lubricants adhere on the surfaces, reduce friction and tem-
perature in the contact zone of the tribological pair, and can reduce wear. The
classification of lubricant’s performance is important. Due to the wide range of
applications, not every MWF can be successfully used for all applications. For a re-
liable recommendation, quality requirements of the user have to be known. Lubricity
is only one of multiple typical requirements. For evaluation of fluid performance,
diverse standardized test methods are available to qualify lubricating oils and water-
mixed MWFs.

Tapping Torque Test (TTT) is a standardized evaluation approach to determine the
lubricity of MWFs. During internal threading, tapping torque is used as a feature
for fluid qualification. A low tapping torque indicates a good lubricity of the test
fluid. The large amount of possible tribological pairs is a great advantage of TTTs
and enables a evaluation by conduction of very near-to-practice tests. Chemically
different fluids measured according to the relevant standard ASTM D8288-19 of-
ten cannot be distinguished. It is the aim of this thesis to establish fundamentals
and possibilities of new test methods for the differentiation of MWFs in machining
processes.

Trying to enhance the distinguishability of TTTs, Acoustic Emission (AE) is intro-
duced as a second measure to the tapping torque measurement. During threading,
elastic and plastic deformations take place which generate acoustic waves in the ma-
terial outside the human audible range due to the displacement of grain boundaries.
The emission in the ultrasonic range is called AE in this work. These AE signals
are additionally used for MWF classification. Advantages, possibilities, and limits
of AE signals for evaluation of MWFs are shown. For this purpose, AE signals are
used as raw data as well as processed data after wavelet transformation in different
classification approaches.

Different MWFs are tested in thread forming experiments. The test procedure ac-
cording to ASTM is critically reviewed. A changed, new test procedure is proposed
considering important side effects recently found out during the research. A new
evaluation approach for tapping torque means is developed to enhance the distin-
guishability of test fluids. During the main experiments of this work, AE signals
are additionally recorded. While tapping torque means do not always allow the dis-
tinction of MWFs’ additives, AE signals are used to classify MWFs. Here, k-means
clustering and Convolutional Neural Networks, a method of machine learning, are
applied as classification approaches.

The results show that larger differences in test fluids’ compositions can already be
detected by tapping torque means. For smaller differences on the chemical level of
the used additives, the new approaches evaluating AE signals outperform classical
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TTT. The classification accuracies of Convolutional Neural Network based methods
using transformed AE signals as inputs are the highest. Even Transfer Learning be-
tween two datasets obtain satisfying results. Furthermore by looking at the chemical
structure of MWF’s additives, it is possible to distinguish between different chain
lengths of molecules or different contents of special elements. However, the method
does not provide any direct information about the lubricating effect of the test fluid.

These results indicate the importance of this work for online fluid condition moni-
toring during machining processes. In the future, the suitability of MWFs could be
evaluated for the current tribological pair and possibly be automatically adapted.
This could increase reliability and productivity of machining processes by continuous
fluid management suited on the current situation.
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1 Introduction

The use of metalworking fluids (MWFs) in industrial machining processes is widely
spread. The fluids cool and lubricate the contact zone between tool and workpiece
to prevent tool wear and to ensure manufacturing of required geometries and surface
qualities. Digitization can be used as tool for quality management for early failure
recognition in machining. Condition monitoring and structural health monitoring
is not only applied in moving machine parts but also for manufacturing. Reliable
process automation and monitoring becomes more important in regard to application
of digital twins and artificial intelligence.

Artificial intelligence is already used for tool condition monitoring. During ma-
chining, one of the worst failures is tool breakage. A broken tool can damage the
workpiece irreparably. This could mean expensive rework or a total dismiss of
the workpiece. Dependent on the complexity and sensitivity of the workpiece, a
no-failure-strategy is predefined. In most monitoring techniques, tool condition is
highlighted. Proceeding tool wear is monitored to predict the risk of failures and
the end of tool life. Indirectly, friction between tool and workpiece is measured.
The higher the friction, the faster can proceed the process of tool wear. Conclud-
ing, tool wear can be positively influenced by reducing friction during machining.
Lubrication reduces friction between tool and workpiece and can increase surface
quality and tool life time. A general statement is not possible and the machining
result depends on the effects of the fluid’s contents. The type of lubricant and its
contents/additives mainly affect tool wear and surface roughness or make higher
machining speeds possible to decrease manufacturing time and increase the output.
A monitoring of MWFs in regard to quality of workpieces or efficiency of machining
is not realized in common monitoring techniques.

In practice, one MWF is used in the same machining center for various workpieces.
Before starting the machining process of a newly developed workpiece, usually, no
check of the lubrication condition is conducted. Metalworking fluid and its concen-
tration are kept the same. When the first tools were severely damaged or broken
and the machine operator has tried to change all possible machining parameters,
then the lubrication condition will be considered. Metalworking fluids are mainly
viewed as auxiliary tool. Recently, they are more and more recognized as liquid tool
with an higher influence than expected. Environmental aspects raised the interest
in efficient lubricating concepts in the last years. Developing efficient lubrication
means monitoring, analyzing, and understanding of tribological contacts.

Lubricant manufacturers use empirical data of similar applications as well as re-
sults from standard laboratory wear tests to recommend the best suitable MWF
for each machining process. Standardized wear test such as Reichert and Brugger
test or cutting force tests e.g. Tapping Torque Test (TTT) are used to qualify their
products. Lubrication can increase surface quality and tool life time by reducing
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friction between tool and workpiece. The functionality depends on the effects of
the fluid’s additives mainly affecting tool wear and surface roughness. By improv-
ing friction and cooling properties, higher machining speeds could be possible and
manufacturing time could be decreased.

1.1 Motivation and research questions

The goal of this work is to show techniques to monitor and classify lubrication states
during thread forming. Real-time evaluation of lubrication during machining could
be an important step towards fully automated production processes including MWF
condition monitoring. For changing workpiece materials – meaning for changing
tribo-pairs – the MWF could be adapted in short term by automatically dosage of
needed additives or concentrate. Application of artificial intelligence could enable
the control system to adapt the MWF by previously learnt events. The prediction of
maintenance tasks would make timely intervention possible. This could reduce the
needed resources to keep the MWF stable and efficient. A more reliable machining
process of the future could be the result.

The present dissertation contributes a small part to the goal of monitoring lubri-
cation during machining. Different MWFs are investigated in thread forming pro-
cesses. In threading, workpiece material is elastically and plastically deformed by
the forming lobes of the tap. The contact condition between tap and workpiece
is monitored indirectly by measuring tapping torque and Acoustic Emission (AE)
signals. The focus of this work is to show the possibility of MWF qualification
and distinction by these measures. The first part of this research is more or less a
feasibility study. In the second part, the limits of different evaluation approaches
applied on a more demanding dataset are investigated. Thus, two different datasets
are used in this work. Classification approaches are developed including statistical
analysis, unsupervised partitioning methods, and machine learning methods such as
neural networks. The performance of these approaches is evaluated using two differ-
ent datasets. In both cases, the qualification of MWFs by classification of tapping
torque or AE signals is focused. The research questions are formulated as follows

• Is the conduction of TTTs efficient for the distinction of MWFs?

• Are tapping torque or AE signals generally suitable to reflect changes in
MWFs?

• Which features and which approaches can help to differentiate MWFs?

• Is a detection of quite large differences in MWFs like between lubricating oils
and emulsions possible by AE signals?

• Are even chemical differences such as chain lengths of additives in MWFs
detectable?

• Can neural networks improve the classification result or make a classification
even possible when other approaches fail?



1.2 Organization of the dissertation 3

1.2 Organization of the dissertation

In Chapter 2, the use of MWFs including lubricating mechanisms, functions of
MWF additives, and laboratory tests for fluid qualification are detailed. A liter-
ature review about TTTs to differentiate MWFs is included. Chapter 2 consists
further of literature reviews about AE techniques used for tool condition monitor-
ing in machining processes. Directly after this, machine learning methods used in
manufacturing processes are reviewed and some basic machine learning methods
are surveyed. The second chapter is closed by summarizing the research gaps and
describing the scientific goals of this dissertation.

In Chapter 3, the experimental setup of the newly developed extended TTT is
illustrated and test fluids and test parameters are described for two datasets. The
chemical structures of the used lubricating additives are illustrated in detail.

In Chapter 4, the evaluation approaches for analyzing tapping torque and AE signals
are introduced. Conduction and evaluation of TTTs are introduced. Problems with
the relevant standard test method are highlighted. At the same time, important and
so far unnoticed facts to the current test method are revealed and improvements
are suggested. Furthermore, basics about AE signal transformation methods and
clustering approaches are briefly described. For the approaches using Convolutional
Neural Networks (CNNs), the models applied on the two datasets are presented.
Used prefilters are described and CNN architectures are shown.

In Chapter 5, results for both datasets applying the previously introduced ap-
proaches are presented. The results are shown in order to the datasets. If required
for scientific aspects, small specific changes in the models are mentioned at appro-
priate place. After presentation of all results for one dataset, results are summarized
in a table. The chapter is closed with a discussion.

In Chapter 6, the whole thesis is summarized and suggestions for future work are
given.
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2 Literature review and theoretical background

In times of rising interest in Industry 4.0, applications for process monitoring are
focused by industrial and scientific researchers. Monitoring of machining processes
has become an important part for increasing process stability and reliability. Real-
time monitoring techniques are developed to prevent machine malfunctions [1]. The
operation of unmanned machines and the need for reliable sensory have already been
discussed 40 years ago [2]. Reliable automated monitoring techniques to enhance
process stability are still in focus of industrial research [3, 4, 5, 6, 7].

This chapter includes

1. theoretical background about lubrication strategies in machining, requirements
and characteristics of MWFs,

2. overview about lubricating mechanisms and effect of lubricating additives,

3. introduction to general laboratory tests for MWF qualification,

4. basics about tapping and literature review about application of TTT,

5. basics and review about AE measurement,

6. review for tool condition monitoring in different machining processes with
focus on AE techniques,

7. review about different machine learning approaches used for machining pro-
cesses, and

8. theoretical background about CNN used in this work.

In this chapter, parts of own publications [8, 9, 10, 11, 12] have been taken over.
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2.1 Metalworking fluids in machining

The importance of lubricants for machining processes has been shown for example
in [13, 14, 4]. The performance of different lubricants has been evaluated in punch-
ing and blanking in [15]. Application in journal bearings and gears is typical for
lubricants such as gear oils or greases. A recent review about the performance of
non-water miscible lubricants is given by [16]. Investigations concerning tribolog-
ical contact, wear development, condition monitoring, and predictive maintenance
of these systems are diverse and widely spread [17, 18, 19, 20, 21, 22, 23].

In regard to their two main tasks, MWFs are also called coolants or lubricants.
They cool and lubricate the contact zone between tool and workpiece. In addition
to thermal, chemical, and tribological tasks, MWFs have the task of transporting
chips out of the machining zone. Worse chip transportation can mainly affect ma-
chining qualities when chips get stuck in the machining zone and damage surfaces
irreversibly. Furthermore, chip formation is influenced by jet pressures of MWF.
High jet forces cause the chip to twist and break off [24]. In the present work, the
chemical composition of MWFs influencing the lubricating performance is focused.

2.1.1 Lubrication strategies

During many machining processes the contact zone between tool and workpiece is
splashed with a MWF. The MWF influences the development of wear and can in-
crease tool life time [25]. Several lubrication concepts and application ways can
be applied: Exterior or interior cooling with flooding or minimum quantity lubri-
cation, air or cryogenic cooling. The choice of lubrication concept depends on the
machining task, existing machine periphery, and individual requirements of the end
user. Different lubrication concepts, twist angles of the drilling tool, and feed rates
have been tested in drilling carbon fibre reinforced plastics by [26]. It was found
that the lubrication concept had the highest impact on the workpiece quality with
a contribution ratio at 52.88 % [26].

In minimum quantity lubrication, typically 50 ml/h oil volume is used in average [27].
MWF is sprayed as an aerosol onto the contact zone. Minimum quantity lubrication
is a loss lubrication; the used MWF is not reused. Heat reduction or chip removal
cannot be realized as reliably as with flooding lubrication. Less machine periphery
and less control and care are necessary when using minimum quantity lubrication.
In terms of waste reduction, this technique is handled as being more sustainable than
flooding lubrication. Recent research deals with the topic of sustainable minimum
quantity lubricants e.g. [28, 29, 30, 31, 32]. Furthermore, minimum quantity lubri-
cation can be combined with cryogenic cooling so that the cooling effect is improved
e.g. with carbon dioxide [28, 31, 33], nitrogen [34, 33], or argon [34].



2.1 Metalworking fluids in machining 6

In the present work, MWFs typically used in flooding lubrication are focused because
this concept is still wide spread and the conventional way of MWF application. In
various application cases, it can provide better performance compared to minimum
quantity lubrication that has for example been shown in [35]. During grinding of
VP50IM steels, the conventional flooding lubrication provided better performance
than the applied minimum quantity lubricant [35]. By flooding, chips and heat can
be well removed out of the machining zone.

If a MWF is used in flooding lubrication, it is circulated and reused for months
and sometimes even years. It is continuously filtered after usage to separate chips
and machining dust from the fluid. A local storage tank next to a single machine
includes at minimum 300 l and in most cases more than 1000 l of the MWF. In
regard to the fluid’s reuse, regular monitoring and caring of the fluid is required.

2.1.2 Requirements

In Germany, the application of MWFs is ruled by standards for example of the
German Statutory accident insurance. In standard BGR/GUV-R 143, requirements
for risk assessment, protective measures, control and care, and disposal are described
to protect human health and ensure safety [36]. Furthermore, machining industry
set additional requirements concerning improvements of the machining process. An
overview of important requirements are mentioned in Figure 2.1.

Figure 2.1: Important requirements of MWFs

On the basis of standardized laboratory fluid tests and empirical earned experiences,
special fluids are proposed for each application. The condition of the MWF is very
important for performance and reliability of the machining process. A degraded fluid
is not able to save the tool from wear or the workpiece from corrosion as a well-
conditioned fluid. Therefore, it can occur for example that corrosion problems arise
at first after several months of successful application. It is possible that corrosion
inhibiting substances are carried out over time by workpieces and chips. Choosing



2.1 Metalworking fluids in machining 7

a suitable MWF and ensuring its steadily good condition are fundamental for an
economical and harmless application.

2.1.3 Characteristics

Two main groups of MWFs can be distinguished: Non-water mixable and water
mixable MWFs. Both types of MWF can be used in flooding lubrication. Advan-
tages of non-water mixable fluids (oils) are for example a very high lubrication, no
bacteria and fungi problems due to the lack of water, and the resulting long ser-
vice life. The disadvantages of higher initial filling costs, less cooling effect, and
sometimes special fire protection requirements often lead to the application of water
mixable fluids. Water mixable MWFs are divided into in water soluble and in water
emulsifiable concentrates. For application, these concentrates are mixed with water
typically in a ratio from 1:20 to 1:10. For water containing fluids, monitoring is
more complex than for pure oils. Typical values to be checked are concentration,
nitride content, pH value, and water hardness. In regard to evaporation, the filling
level of the MWF must be constantly checked and filled up. Soluble MWFs are
mainly used for processes with undefined cutting edge such as grinding or for easier-
to-work materials such as wrought aluminum alloys. Recently, for difficult-to-cut
materials such as Inconel 718, titanium alloys or nickel based steel alloys, emulsions
are increasingly being used.

In MWFs, a lot of different ingredients are used. These so called additives are used
to adjust certain functions of the lubricants and to meet requirements of certain
applications. In this work, mainly mineral oil containing emulsions are focused
and investigated. An overview of typically used constituents in emulsifiable MWF
concentrates is given in Table 2.1. Water and oil are two of the main components of
emulsifiable MWF concentrates. Emulsifier has to be used additionally for dispersing
oil in water. Due to corrosion inhibition properties and for prevention of bacteria
growth, the pH value of water-mixed MWF is generally stabilized in the alkaline
range. Functional additives are used for corrosion protection, extreme pressure
(EP) applications, or anti wear (AW) tasks and are partly described and explained
in the following section.

In literature, the effect of different MWFs has partly been studied. Five different
vegetable oils were applied for 45 steel milling and the result shown that cottonseed
and palm oils performed better than castor, soybean, and peanut oils by measuring
temperature [37].

Modified vegetable oils were employed for turning and drilling of AA 6061 aluminum
and AISI 304L stainless steel and their machinability and rheological properties
were investigated [38]. Yeast-based MWF was used for milling process of Ti6Al4V
titanium alloy and the results showed that it performed similar or better comparing
with a mineral oil based reference fluid [39].
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Table 2.1: Typical constituents in emulsifiable MWF concentrates

Constituent Typical content [%]

Mineral or ester oil 10 – 40
Water 5 – 50
Emulsifier 10 – 30
Stabilizer of pH value 5 – 20
Functional additives 0 – 20
Conservatives 0 – 5
Defoamer 0 – 1

In the process of tapping, the surfactant structure influence on film forming ability
of emulsion was studied [40]. A novel developed biodegradable MWF was designed
and its performance was measured during turning of AISI 420 material [41]. In
thread forming processes when threads are formed by taps into pilot holes, the MWF
prevent the tool from welding with the workpiece material by reducing friction and
temperature at the forming lobes. Types and different characteristics of MWFs
effect thread quality [42] and tool wear [43].

2.1.4 Lubricating mechanisms

The basics of lubricating mechanisms are well researched but not completely under-
stood. In [44], two different models are proposed for the effect of lubricant additives:
adsorption through dipoles and chemical reaction through the input of energy. In
[45], lubricating mechanisms of disulfides were investigated by analyzing the worn
surfaces using X-ray Photoelectron Spectroscopy. In [46], the tribofilm formation of
dialkylpentasulfide was studied using X-ray Absorption Near Edge Structure Spec-
troscopy and Energy Dispersive Spectroscopy. In [30], the adsorption of two different
ionic liquids was simulated. For ionic liquids, lubrication mechanisms were proposed
in [47]. The interaction of additives with metallic surfaces was investigated by dif-
ferent authors in [48, 49, 50, 51, 52, 53].

Dependent on the tribofilm thickness, four lubrication regimes are defined: i) bound-
ary, ii) mixed, iii) elastohydrodynamic, and iv) hydrodynamic lubrication [54]. The
lubrication regimes are related to the Stribeck curve as shown in Figure 2.2. The
Stribeck curve starts at a high friction coefficient in the boundary lubrication regime
and decreases in mixed lubrication regime by growing film thickness. In elastohy-
drodynamic and hydrodynamic lubrication, the friction coefficient increases due to
the parameters of fluid friction.

Schemes of boundary and elastohydrodynamic regimes are depicted in Figure 2.3.
In boundary lubrication, the surfaces get in contact with each other. By friction,
adsorption and reaction layers of the metallic surface are removed and afterward
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Figure 2.2: Stribeck curve and related lubrication regimes [54]

re-formed. In mixed lubrication, the presence of a lubricant partly prevents direct
contact of the friction partners. Where the lubrication film is not thick enough,
surface asperities lead to metal-on-metal contact. In hydrodynamic lubrication, the
lubricant achieves a nearly complete separation of the friction partners by forming
a sufficiently thick liquid separation layer.

For a sufficient lubricity, the lubricant has to be able to carry pressure applied on
the friction partners. For a good load-carrying capacity, EP additives are used in
lubricants. According to [56], mild EP additives are called AW additives and are
organic compounds which are primarily adsorbed on the metal surface by physical
forces as Van-der-Waals-force. From a chemical point of view, these additives have
at minimum one polar group and thus a high dipole. Example for AW additives
are saturated and unsaturated fatty acids, natural or synthetic fatty acid esters, or
primary and secondary alcohols [56]. For adsorption, not only polarity is important.
The polar group must be able to go into a hydrogen-bonding with the oxygen of the
surface [57]. The polar head, for example a carboxyl-group, adsorbs on the oxidized
metal surface and the unpolar rest of the molecule, for example alkyl-rest, builds
the tribofilm (Figure 2.4a).

In case of sulfur molecules as depicted in Figure 2.4b, the negative dipole of the
sulfur molecule interacts with the iron and with hydrogen in the oxidized metal
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Figure 2.3: Schemes of mixed and hydrodynamic lubrication [55]

surface due to their negative dipoles. For an overbased sodiumsulfonate, an ionic
interaction is assumed between the positive sodium atom and the negative oxygen
atom on the oxidized metal surface [52]. For native and synthetic esters, two polar
oxygen atoms are located between the acid groups and the ester group. These can go
into a covalent bonding with neighboring carbon atoms [44]. Phosphorus additives
work under the same principle regardless their composition. Phosphorus is brought
into contact with the metal surface and can be adsorbed [55]. Highly-efficient EP
additives build stable surface layers by chemical reaction [56]. These layers adhere
well and are easy to shear.

Tribochemical processes are influenced by the following factors [56]

1. the surface mechanically activated by the friction process,

2. the frictional work as one of the energy suppliers for the reaction,

3. the very short reaction time, and

4. the presence of oxygen.

Furthermore, the reaction intensity of some additives is temperature related. In [58],
the function of the additive zincdithiophosphate mainly was explained: It operates
in the mixed lubrication regime as AW agent. The film thickness and composition
of the tribofilm is temperature related. At low temperatures, zincdithiophosphate
is reversibly absorbed onto the metal surface. For rising temperature, zincdithio-
phosphate is decomposed to dialkyldithiophosphoryl disulfide and disulfide absorbed



2.1 Metalworking fluids in machining 11

Figure 2.4: a: Polar head adheres to hydrogen of the oxidized metal surface. [57]
b: Negative dipole of sulfur interacts with positive dipole of iron

and hydrogen on the oxidized metal surface. [52]

onto the metal surface [58]. This reaction might only occur during processes with
longer reaction time, for example in bearings or engines, but it may not occur during
machining where material is removed and new surfaces are steadily built. For ma-
chining tasks, different additives are used in MWFs but the principle of protecting
the surface through adsorption of certain molecules on the surface of tool and/or
workpiece is the same. The temperature dependency was also reported for other
sulfur containing compounds for example in [59].

2.1.5 Influence of different additives

Additives are used to adjust certain functions of lubricants and to meet requirements
of certain MWF applications. In industry and research, it was found that additives
may significantly affect the functionality.

A lot of recent research has been carried out on the influence of nanoparticles in
lubricants. These particles may contribute to less friction by entering the tribolog-
ical contact zone and by improving the stability of the tribofilm. In [60], it was
discovered that the mixing procedure of boron nitride nanoparticles, oleic acid, and
polyalphaolefin has significant impact on the lubricity. The best mixture with 0.5
wt% for nanoparticles and 1 wt% for oleic acid achieved a reduction of coefficient
of friction from 0.096 to 0.060 and a reduction of wear rate by 95 %. [60] Sim-
ilar results could be reached for example with hexagonal boron nitride particles
[61], molybdenum disulfide particles [62], silicate hydroxide-molybdenum disulfide
particles [63], silicon dioxide nanoparticles [64] graphene nanosheets [65], and alkyl-
functional boric acid nanoparticles [53]. In the present thesis, no nanoparticles were
used in the test fluids because they would disturb the AE signals during the tapping
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process. In recent applications, nanoparticles are not typically used in water-mixed
MWFs that are focused in this work.

Research has recently been carried out in the field of plant-based oils as an alternative
for mineral oil. In [66], jojoba oil and soybean oil were chemically transformed to
meet the physical requirements of oils for lubricants. Similar investigations were
carried out in [67] with rice bran and karanja oils. A comparison with a widely used
polyalphaolefin was made in [68] using a trimethylolpropane trioleate as eco-friendly
additive. In [69], jathropha oil and palm oil were tested as minimum quantity
lubricants in turning of stainless steel. The jatropha oil outperformed the palm
oil and the tested synthetic ester in concerns of cutting forces, chip characteristics,
and properties of the cutting tool [69]. In milling of stainless steel, different water-
mixed MWFs containing more or less vegetable-based additives were tested in [70].
It was found that the developed bio-lubricants achieved lower cutting forces than
the tested standard emulsions. Sunflower and rapeseed oil-based fluids showed good
results in tool wear behavior. [70] Ionic liquids are also researched as more ecological
alternatives to mineral oils. In [30], the absorption strength of the two tested ionic
liquids was closely related to the lubricating effect. The complexity of the molecules
was found to be significant for tribofilm formation [30]. In [47], physicochemical
and frictional properties of two oil soluble ionic liquids have been investigated and
the coefficient of friction could be reduced by 50 %. Lubricant based on cotton was
developed and tested in [71].

In [72], an oil in water emulsion with lypophilic emulsifiers achieved better lubricity
than with hydrophilic emulsifiers. In [40], the chemical structure of the used sur-
factant had significant impact on the adsorption of a trimethylolpropane oleat in
machining of titanium alloy. An increasing number of ethoxylations of an anionic
surfactant positively influenced the adhesion of the ester molecule. Furthermore,
tapping torque decreased with an increasing carbon chain length of the surfactant
[40]. Alkyl glyceryl ethers, belonging to non-ionic surfactants, were tested in com-
bination with xanthan gum as dispersant in a water-mixed MWF by [73]. Longer
alkyl chain length of the ethers positively influenced the lubrication performance
[73].

In [74], a strong impact on friction behavior was found for additives with long alkyl
chains together with the sliding speed of the test specimens. A similar result was
achieved in [75]. By studying the effect of polyol ester base oils, the friction was
reduced by longer alkyl chains and an increasing number of ester groups [75].

Tribological performance of copolymers in aqueous solutions has been investigated
by Lin et al.. The copolymer with a longer polypropylene oxide chain formed thicker
tribofilm. The chemical structure of the copolymer significantly influenced the re-
sults [76].

In this thesis, a natural ester based on coconut oil (2-ethylhexylcocoate) is used in
dataset 2019 in comparison to a synthetic polymeric ester (cf. Table 3.4). Esters
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are chemical compounds of acid and alcohol or phenol forming a triglyceride [28].
Vegetable oils contain fatty acids being reactive to oxygen and resulting in faster
aging. The long-term and oxidative stability of such oils has to be improved by
suitable additives. The viscous behavior of vegetable oils is often more advantageous
compared to mineral oils. The tribofilm can even sustain high loads [28].

Results about the performance of coconut oil have been reported by [43, 38, 28, 77,
78]. In [78], coconut oil achieved lower surface roughness and lower tool wear in
comparison to a soluble oil with lower viscosity and to a straight cutting oil with
higher viscosity. In turning, tool wear was determined using soybean, sunflower,
coconut, and groundnut oil as minimum quantity lubricants in [43]. Soyabean oil
showed best and coconut oil medium performance [43]. In [77], a water-mixed MWF
containing coconut oil was developed and was compared as minimum quantity lu-
bricant with an commercially available MWF and dry machining. With the coconut
oil-based emulsion, lower cutting force and lower temperatures than dry machin-
ing could be achieved in most experiments. For the lowest tested cutting feed at
0.05 mm/rev, the coconut emulsion even outperformed the commercial MWF [77].
In [28], coconut, sunflower, and mineral oil were used as base oils and were mixed
with the same additive. In turning, the performance of the fluids used as minimum
quantity lubricants for cryogenic cooling was compared.

Friction properties of coconut and paraffin oil was compared with nanoparticles con-
taining coconut oil and nanoparticles containing paraffin oil in [38]. The coefficient
of friction was reduced by molybdenum disulfide in both cases. The coefficient of
friction of pure coconut and pure paraffin oil were similar. In [38], a review sum-
marizing the research about the effect of coconut oil in machining applications is
included. A review containing findings about coconut oil was provided by Lawal et
al. [79].

By Huesmann-Cordes et al., the effect of polysulfides with three and five sulfur
atoms and an overbased sodiumsulfonate on the wear behavior was examined for
two different steel alloys. With increasing complexity of the molecules, the optimal
content of polysulfides decreases for 100Cr6. The larger the molecule, the faster the
surface is covered, even at low concentrations. The effect of overbased sodiumsul-
fonate is stronger for larger polysulfide molecules. Here, an increase in concentration
of overbased sodiumsulfonate resulted in a reduction of worn area [52].

Further sulfur compounds have been investigated by other researchers: disulfides
in naphtenic oil [45], a biobased fatty acid methyl ester disulfide in two different
base oils [80], dialkylpentasulfide in synthetic ester [46], and sulfur and phosphorus
compounds of different oxidation states [81]. By Zheng et al., the produced MWF
was tested as emulsion and the additive had negative effect on wear scar and friction
coefficient in comparison to the same fluid without additive. The built tribofilms
mainly contained FeS and FeS2 that did not have that good AW performance as the
FeSO4 tribofilms built during the application of the MWF concentrate [46].
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Phosphorus additives are applied for antioxidation properties and for AW tasks.
By Phillips et al., the chemical structure of various phosphorus compounds used
as lubricants additives are introduced. As friction modifiers mainly act long-chain
phosphites and phosphonates. As AW additives, neutral organic phosphates and
phospites are used [55].

By Fleming, different additives including phosphate ester are tested in cold forging
steel. In comparison to pure mineral oil, phosphate ester reduced the process torque
by 13 % and maximum torque by 16 %. The surfaces forged using the phosphate
ester showed clear advantages compared to the surfaces using molybdenum disulfide
or boron nitride nanoparticles [82].

In [83], phosphorus-based additives showed a positive effect on the adhesion of alu-
minum on coated tools during tapping of AlSi6.5. The adsorption of phosphorus in
dependency with the presence o sulfur was investigated using X-ray Absorption Near
Edge Structure Spectroscopy in [84]. Applying diphenyl phosphate and triphenyl
phosphate, the tribofilm mainly consisted of iron polyphosphates. Similar results
were found by Fu et al. [85]. Najman et al. found out that diphenyl phosphate was
able to react at lower temperatures with the substrate than triphenyl phosphate.
The authors revealed competitive interactions between phosphorus and sulfur addi-
tives [84].

In [85], phosphite esters with longer alkyl chains showed better AW properties than
those with shorter alkyl chains. For good EP properties, shorter alkyl chains were
better. In [86], the wear behavior of different dithiophosphates and different phos-
phorothionates was investigated. The phosphorothionates showed poor AW proper-
ties. Some dithiophosphate built a functioning tribofilm and some not [86]. Thio-
phosphates also positively influenced the tribofilm formation in a study of [87].

Chain lengths of glycols effect their lubricating performance. Frictional performance
of glycol-based lubricant was investigated in [88]. For glycol-based lubricants, it was
observed that increasing glycol chain length decreased friction.

2.1.6 Laboratory tests for fluid qualification

In addition to physical properties such as density, viscosity of the concentrate and
pH-value of the emulsion, tribological properties of MWF are determined. The large
number of lubricant applications presupposes that a large variability of the contact
conditions can be represented. For the variety of contacts and the variety of friction
types (Figure 2.5), different test rigs are industrially available. Probably the best
known test for characterizing greases and lubricating oils is the 4-ball-apparatus: A
single ball rotates on three other identical balls; in between is the lubricant. At the
lubricant manufacturer, the lubricants are characterized using various tribological
test machines differing in the tested contact condition. Depending on their sub-
sequent application, lubricants are tested in the closest suitable contact condition.
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The Reichert test is typical for characterization of water-mixed MWF. The tribolog-
ical system corresponds to Figure 2.5a 4. A cylinder gets in contact with a rotating
ring under a specified pressure. The ring is immersed to a certain depth in a small
temperature-controlled basin containing the test fluid. The wear scar area is deter-
mined after a defined rotating distance. The smaller the wear scar area, the higher
is the lubricity of the test fluid for the tested material pair.

Figure 2.5: a: Principles of tribological testers: 1) Pin-on-disc, 2) Pin-on-plate,
3) Disc-on-disc, 4) Cylinder-on-ring, 5) Roller-on-disc, and
6) 4-ball-test acc. to [89],

b: Friction types: 1) Sliding, 2) Rolling, and 3) Spinning friction [90]

The TTT is a test method to compare lubrication performances of MWFs and to
evaluate their suitability for a certain tool-workpiece-combination. This test will be
focused in detail in Section 4.1.

2.1.7 Maintenance and monitoring

Ensuring a reliable and not harmful usage of MWFs, the fluid’s condition has to be
checked regularly. A loss of oil concentration in emulsions or an unintentional intro-
duction of foreign oil into the MWF system can reduce stability and functionality
of the MWF. Content of this section and the three subsections is mainly based on
the contribution [8].
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2.1.7.1 Analyzing methods of MWFs

The condition of a MWF, oil, or lubricant within a tribological system is significant
for its functionality. The performance of the used processing fluid is important to
provide machine elements of failure and to enhance the reliability of processes. With
a processing fluid optimized for the individual application and each metal-to-metal
contact a reduction of wear of machine elements or tools is possible. Concerning
the machining of metals, a suitable MWF is able to enhance surface qualities and
to increase process stability. Regular investigations are necessary to fix the best
condition of the MWF. The Technical Rules for Hazardous Substances 611 define
the correct use of MWF and prescribe weekly checks of pH value and nitrite content
[91]. Other characteristics influencing the MWF’s performance can be analyzed by
several measurement techniques for example the pH value or the concentration.

For industrial applications, fluid control systems are provided for example by Rhenus
Lub, Tiefenbach, and Oemeta [92, 93, 94]. Depending on the system flow, concen-
tration, conductivity, pH value, temperature, germ count, and the filling level of
storage tanks – if the system provides automatic refill or dosage – can be monitored.
An online measurement of MWF can be realized and a fast intervention in form of
an adjustment of concentration or a treatment of microbiological activity is possible.

Here, measurement techniques for analyzing processing fluids are described. Such
techniques with applicability for online measurements of water miscible MWF are
focused. The aim is to figure out the diversity of techniques and characteristics to
be measured and analyzed.

2.1.7.2 Oil concentration in MWF

In practical applications the oil concentration of water mixed MWF is measured
with the help of a refractometer. After a short calibration of the refractometer the
refraction index of the fluid can be measured. The MWF’s concentration can be
determined approximately with the known refractive coefficient and the density of
the measured fluid. That is a practical and state-of-the-art measuring method in
lubricant industry.

An interesting measurement strategy that could be applied in real-time for MWF
is the monitoring of oil viscosity by ultrasonic-based testing. A method indicating
changes in viscosity was described in [95]. The authors state that the system mea-
sures the acoustic absorption by leading an ultrasonic wave through the fluid. The
ultrasonic wave sent out is weakened by frictional effects caused by the fluid’s vis-
cosity so that a detection of viscosity changes is possible: The higher the viscosity,
the longer the relative transit time of the existing emitted ultrasonic waves. The
application for concentration measurements in MWF could be considered.
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The technique of dynamic light scattering was applied and tested for industrial
degreasing baths [96]. To monitor the condition of the degreasing bath the micelles
are measured optically. In degreasing baths, the micelles get larger and multiple
when the condition of the bath gets worse. The capacity of degreasing declines by
rising micelles. With the help of this technique the determination of the micelles’
sizes is possible. The contamination rate and the loss of detergent could be concluded
from this measurement. Possibly the dynamic light scattering technique could be
applied to determine the concentration or the dispersity in emulsified MWF.

2.1.7.3 Fluidic contaminants

A processing fluid can be contaminated with fluidic contaminants such as tramp
oils, water, gasoline, or coolant. An optical sensing method was developed in [97].
The object shape-based methodology was able to detect different concentrations of
water, gasoline, or coolant by capturing and processing images of the fluid. The
online applicability of this system was verified for engine lubricant oil with artificial
generated contaminant concentrations. The optical sensing method could be feasible
for water miscible MWF concerning the contamination with tramp oil or coolant.
Because oil droplets within the fluid could cause incorrect measurements, the method
could only be practical for water soluble MWF.

2.1.8 Summary

Lubricants are used to reduce friction. In machining, MWFs have significant impact
on tool wear, surface quality, and machining accuracy. Due to their application,
MWFs have different constituents. Lubricant additives determine lubricity and
performance of a MWF.

Functions and mechanisms of selected lubricant additives are well studied. In gen-
eral, the mechanisms of tribofilm formation are explained by adsorption, adhesion,
and chemical reaction. The latter is only possible through higher temperature and
longer contact times. Thus, the mechanisms taking place during machining are
mainly adsorption of molecule polar groups and adhesion of atoms with dipoles.
From literature review results as well that additives interact. In which way the
interaction influences the lubricity of the MWF depends on the molecule structure
and the application ratio of the additives. Rather, it has been shown that sulfur can
compete with other additives for the surface.

It is not in the focus of the present work, two investigate the composition of tri-
bofilms. No spectroscopy will be performed and no theories of lubricating mecha-
nisms will be developed. But the knowledge about these mechanisms is crucial for
the choice of additives and for the development of a base fluid that is then equipped
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with these additives. According to the results of the literature research, it is fun-
damentally important for the experiments in this dissertation that only one active
lubricating additive is contained in each lubricant formulation. In this way, such
interactions are systematically excluded.

Two polysulfides, different phosphorus additives, two esters and two glycols will be
used as additives in the experimental part. They will be used as single additives
combined with a constant base fluid and not in combination with other surface-active
additives. Sulfur additives are used for EP applications and phosphorus additives
are applied as oxidation inhibitors and as AW agents. As esters, the additive 2-
ethylhexylcocoate (F07), an ester based on coconut oil, is compared with a synthetic
polymeric ester (F08) and a naphtenic mineral oil (Ref). The used glycols differ in
their molecular structure. From literature, it is known that molecules with higher
polarity adsorb faster on the metal surface than those with lower polarity. The
unpolar part builds the tribofilm: The longer it is, the better is the separation of
friction partners.

The MWF condition has to be checked regularly. For water-mixed MWF, wa-
ter evaporates, AW or EP additives are carried out by workpieces, concentration
changes, bacteria grow. No real-time capable condition monitoring technique for
MWFs is known evaluating the current lubrication performance. The aim of this
dissertation is to develop a measuring method which makes for the future of fully-
automated machines an in-process qualification of MWF’s suitability possible.
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2.2 Tapping processes

This section first contains a description of threading processes in general. In the
second subsection, the literature review published in [98] concerning conduction and
evaluation of TTTs is included.

2.2.1 Basics

In this work, machining of internal threads is focused. Tapping is a manufacturing
process that generally appears very late in the process. Errors in this process usually
lead to very costly rework or even to complete component rejects. In the present
work, torque and AE will be measured during the tapping process. A typical torque
curve of cut tapping is mapped in Figure 2.6. Entering the pre-hole, torque increases
(1.) until a nearly constant value (2.) is reached. At the end of the thread, tap’s
rotation is stopped (3.) and the direction of rotation changes.

Figure 2.6: General torque curve during the forward process of cut tapping
acc. to [99]

Threading is a common application in industry. Internal threads can be realized by
cut tapping or form tapping. In cut tapping, material is cut away by the cutting
edges of the tap. A new surface is built by forming chips (Figure 2.7a). Threads
can also be realized by form tapping where the existing material is elastically and
plastically deformed by the tap lobes (Figure 2.7b). Therefore, the diameter of the
pre-holes for form tapping is larger than that for cut tapping.
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Figure 2.7: a: Thread cutting b: Thread forming

From Figure 2.8, it can be concluded that torque of form tapping (blue line) is
generally higher than torque of cut tapping (green line). It is expected that differ-
entiation of MWFs will be easier in form tapping when torque is generally higher.
Additionally, tapping torque depends on tap size, material strength, and lubrication.
The torque needed for a thread of size M3 is 10 % of that of size M16.

Figure 2.8: Tapping torque depending on various parameters acc. to [99]

Furthermore, chips are built in cut tapping as shown in Figure 2.9. The geometry
of the tool ensures that the chips are transported out of the machining zone. For
blind holes, the chips are transported out by the twist of the tap but they could
get stuck in the thread. In regular distances, chip breaking is necessary for thread
cutting. Both processes could interfere with the AE signals.

Form tapping is a non-cutting process; no chips are produced. The diameter of the
pre-hole is chosen as big as there is enough remaining material volume to build the
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Figure 2.9: Difference between chip curling in through and blind holes
due to tap twist [99]

new geometry. The geometry of a formed thread is shown in Figure 2.10. A split
crest is built at the top of the thread. The smaller the pre-hole diameter is the
smaller the split crest. The lower the provided material volume was, the larger the
split crest is. If there is too much material volume or too little lubrication, the tap
will get stuck in thread. In this case, the risk of tap breakage is very high. Hardness
and stability of formed threads are better than of cut threads [100]. In [100], the
microhardness of formed threads was reduced by using lubricating oil instead of
emulsion. Obviously, lubrication significantly influences the formation of the metal
lattice structures during forming.

Figure 2.10: a: States of thread formation [101]
b: Geometry of formed threads in dependence on pre-hole diameter [99]

Form tapping is chosen for the experiments by the following reasons:

1. higher torque for possibly better differentiation of lubricants,
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2. no chips possibly disturbing the signals, and

3. continuous process over the whole thread depth, no chip breaking necessary.

For performing a correct thread into a pilot hole, a large number of different tools
are available: A tap can be chosen from a variety of tapping tools. In Figure 2.11,
a small selection is exemplary shown for taps in size of M6. Taps can vary e.g. in
coatings, number of flutes, flute’s geometry, and number of cutting edges or forming
lobes.

Figure 2.11: Various tools for cut or form tapping

The workpiece material also determines i) the type of tap and ii) the type of lubri-
cant. Dependent on workpiece and tool material, tool wear can occur as abrasive
(tool material is lost) and/or adhesive wear (extra material is welded on tool). The
aim of lubricant application is to prevent tool wear and to elongate tool life. If best
lubricating performance is the goal of a machining process, well adjusted MWFs
have to be applied. For difficult-to-cut materials such as Nickel based steel alloys
(e.g. X5CrNi18-10) a different MWF has to be used than for easier-to-cut materials
such as wrought aluminum alloys (e.g. AlMgSi1). The whole process consisting of
workpiece material, tool material, and lubricant determines the tribological pair.

2.2.2 Tapping Torque Test

This section is based on publication [98].

A literature review is given on experiences with TTTs with respect to contributions
applying the standard of TTTs, ASTM D5619-00, or a modified version. Here, ar-
ticles are focused using tapping torque as a measure to evaluate the functionality
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of tool coatings, effect of different pre-hole diameters, or other test related param-
eters. At the time of publication, the new standard ASTM D8288-19 has not been
published yet.

The use of MWFs in industrial machining processes is widely spread. The fluids
cool and lubricate the contact zone between tool and workpiece to prevent tool wear
and to ensure manufacturing of required geometries and surface qualities. To recom-
mend the best suitable MWF for each machining process, lubricant manufacturers
use empirical data of similar applications as well as results from standard labora-
tory wear tests e.g. Reichert and Brugger test or cutting force tests e.g. TTT. In
comparison to cutting force tests in drilling, turning, or reaming operations, tap-
ping tests show the best relative resolution related to special cutting fluids and work
materials [102]. Lubrication reduces friction between tool and workpiece and can
increase surface quality and tool life time. A general statement is not possible and
the machining result depends on the effects of the fluid’s contents. The type of fluid
and its contents/additives mainly affect tool wear and surface roughness or make
higher machining speeds possible to decrease manufacturing time and increase the
output. Apart from good lubricating and cooling properties, other properties such
as corrosion inhibition, flushing and defoaming properties, long-term stability, skin
and environmental compatibility can also be included in fluid requirements.

Most of these established tests are performed strongly related to conformed stan-
dards and rules of relevant institutions. The relevant regulation for TTT is ASTM
D5619-00 (2011), Standard Test Method for Comparing Metal Removal Fluids Using
the Tapping Torque Test Machine. The last active version of ASTM D5619-00 (2011)
has been withdrawn in 2016 with no replacement. Due to missing alternative it can
be assumed that the last version is still widely used to evaluate the performance of
MWFs. The present contribution highlights the problems of the withdrawn stan-
dard and proposes changes to improve test conduction, evaluation, and significance
of test results for a new version and therefore provides the fundamentals for an
alternative.

Threads can be realized in two different ways: cut tapping or form tapping. The
diameter of the pre-holes for cut tapping is smaller than that for form tapping
because excess material is cut away by the cutting edges of the tap to build the final
thread. In form tapping the existing material is elastically and plastically deformed
by the lobes of the tap. Tools for cut tapping have flutes for chip transportation.
Tools for form tapping can have oil grooves for lubricating aspects. In this case,
the forming lobe is located just between the grooves. The fundamental processes
of cut and form tapping processes differ strongly [103, 104] and are not focused in
this article. Cut tapping is the less reliable process for TTTs because chip curls can
drag and jam in the tap’s flute and can contribute to the measured tapping torque.
Thus, the ASTM D5619 is not only realized and applied for cut tapping but also for
form tapping. In the experimental part of this article, tests are conducted in form
tapping.
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In the present contribution, the fundamental processing of cut and/or form tapping
is not focused. Here, the methodology of performing and evaluating tapping tests is
discussed in general. The literature review contains contributions dealing with cut
or form tapping. The contributions are analyzed regarding test procedure, reference
measurements, start parameters/running-in of tools, tool qualification processes,
considering of carryover effects, number of replicates and test deviations. The result
evaluations of these contributions are investigated due to differences between test
fluids and statistical evaluations. These criteria are important for tests using cut
taps as well as form taps.

In literature, many contributions have dealt with TTTs or tapping processes. Most
of TTTs were performed according to ASTM D5619 [103, 105, 106] or to a modified,
similar procedure. Uncoated or coated tools with diameters between M4 and M10
were used in thread cutting and thread forming operations in workpiece materials
reaching from carbon steels to highly alloyed steels or various aluminum alloys. The
effect of different fluids i.e. base oils, additives on the tapping torque [107, 83, 103,
105, 42, 108] and of different tool geometries [109] was investigated. Exemplary, a
less effective oil needs a 53 % higher torque than a highly effective oil in form tapping
of hardened steel [42]. Tool coatings have a significant effect on tapping torque and
tool wear [83, 110, 104, 111, 112] and on thread surface quality [111]. Lubricants
not only influence the tapping torque but can also affect the micro-hardness of the
flank of the formed thread [100]. Pre-hole diameters and forming speeds influence
the tapping torque [106].

The usability of tapping torque and reaming torque tests for cutting fluid evaluation
were investigated. By comparing both tests, reaming torque tests were evaluated to
be a viable alternative to TTTs [113]. Different machining methods were tested to
evaluate cutting fluid efficiencies [114, 115]. Laboratory lubrication tests were com-
pared with real manufacturing processes: Brugger and TTTs were performed using
non-water miscible MWFs with different additive combinations. A transferability
of both tests to industrial forming processes was proven using the same workpiece
and tool material combination [116]. A good correlation between measurements of
TTTs with high resolving power and field performance were obtained using the same
fluids [112].

The running-in behavior of tapping tools to be used for TTTs has rarely been
investigated. For dry tapping and tapping with minimum quantity lubricant without
additives, a running-in behavior of the used cutting taps can be recognized [83]. It
can be concluded that the running-in effect is not recognizable for higher lubricating
conditions with flooded tap oil or minimum quantity lubricant containing additives.
The running-in phase is possibly affected by the lubricating ability of the used fluid.

The necessity to run-in the taps before starting the test sequence is mentioned in
several contributions. Details about the number of threads or the tolerated deviation
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of the means are often not given. The importance of repeating reference measure-
ments after the running-in is emphasized to verify that tool wear has no effect on
the measured tapping torque [112]. The tolerated deviation from the reference value
is not mentioned and the repeated reference values are not taken into account in the
calculation of tapping torque efficiency.

Before conducting the lubricant’s test, the forming taps are firstly used with the
reference fluid [103]. It is not mentioned for how many threads the reference fluid
is used but the measurement values are used to qualify the taps. Taps with a
repeatability of 2 % are qualified [103]. The equation to determine the repeatability
is not given.

In a few contributions [116, 117, 118], the test procedure is considered in more detail.
Good repeatability and reproducibility of TTTs are obtained applying a suitable or-
der of test sequence for the fluids [117, 118]. Regular reference measurements are
performed [116, 117, 118] to monitor the effect of tap wear. In most cases, the
changed reference values are not integrated in the calculations of tapping torque
efficiencies. Reference values can change up to 12 % when using new forming taps
of the same batch [103]. To be able to compare the measurement values of different
taps, a coefficient of correction is introduced. Although the calculation of this coef-
ficient is not described, it is used to calculate an average tapping torque corrected
[103]. The corrected values are used to directly compare the test results of fluids
obtained with different forming taps.

Multiple tapping torque testbeds are proposed to increase the sensitivity of TTTs
[112]. The importance of selecting suitable test conditions to be able to distinguish
between MWFs is emphasized. Differences between measurement results are ana-
lyzed using a statistical significance test (t-test) assuming a normal distribution for
the plateau area of the torque curve. As a result, it is stated that tool coatings,
tool sizes, and machining speeds significantly affect the resolving power of the tests
[112]. Four different tap coatings and four different fluids were evaluated in tapping
of carbon steel (SAE 1018) at 500 and 1000 rpm. Coated high performing tools
were found to be ineffective for MWF examination because of very small and not
statistically significant differences between test fluids [112]. The highest resolving
power was gained with an uncoated M6 high speed steel tap at 1000 rpm [112]. A
minimum number of replicates of each test condition has been determined to allow
statistically distinguishable values for the test fluids [112]. Based on experimental
experience, 20 to 30 replicates are proposed depending on the resolving power of the
chosen test conditions.

Fluid type, tool coatings, workpiece to workpiece variation, and tool to tool variation
have statistical significance on the measurement results [112]. Tool to tool variation
is discussed to have less effect on the results than the other three parameters. That
means the allowed standard deviation of ± 2 % between tools defined in ASTM
D5619 is surpassed by fluid type, tool coating, and workpiece variation [112]. In
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another contribution, the differences between the taps are evaluated as so significant
that a correction coefficient is applied to compensate the differences between the taps
[103].

To my best knowledge, no contribution is known investigating carryover effects by
previously used fluids on TTT results. In some articles [103, 116], the test procedure
is described in such a way that the conditions before starting a test run are adapted.
A reference fluid is used for one thread to set the same starting conditions before
changing the fluid and to monitor a drift of the measurement values [116]. An
influence of the previously measured fluid is assumed to be significant but it is not
investigated further. A comparison between measurements with and without this
initial condition is not made. In another contribution, each tap is only used for the
reference fluid and for one lubricant to strictly avoid contamination effects [103].

2.2.3 Summary

Summarizing the literature review, a transferability into field application has been
shown for TTTs. The necessity of regular reference measurements or the signifi-
cance of carryover effects has not been investigated in detail. The strong difference
between initial values of taps has been considered only in one case by introducing a
correction coefficient. Details about measurement deviations are often missing and
measurement results have been statistically analyzed only in few cases. No contri-
bution can be found considering the definition of the initial test condition or dealing
with the investigation of the characteristic built-up edge to precisely define the end
of running-in phase of a tap. Therefore, suitable measurement methods or useful
features have not been discussed.
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2.3 Acoustic Emission in machining

This chapter is mainly based on contributions [8, 9].

Acoustic Emission is known as a passive, non-destructive testing technique. In gen-
eral, AE refers to elastic stress waves that can be detected on structures under load
or stress due to damage. These are located in the ultrasound regime and propagate
through structures over significant distances. Therefore, the AE signal entails in-
formation regarding underlying physical source mechanisms. Due to its origin as a
non-destructive testing technique, AE has decisively shaped many structure health
monitoring applications such as monitoring of aircraft structures, wind turbines,
or bridges. Besides detection and characterization micro-mechanical damages, also
monitoring of wear in friction contact is relevant to structure health monitoring.
During elastic-plastic interaction of surfaces under sliding motion structural alter-
ations at the surface of the material can be observed, which ultimately cause surface
fatigue and loss of material. Here, different principal mechanisms, namely adhesive
and abrasive wear, can be distinguished. Since the contact zone is difficult to ac-
cess, AE has recently been used to study wear in friction contact. It is generally
accepted that wear mechanisms can be distinguished based on the frequency content
of the related AE. However, relation to corresponding physical mechanisms is not
unambiguous.

Asamene et al. studied the effect of different parameters in reciprocating contact
of flat steel surfaces on the corresponding AE [119]. In this study, frequencies
of 100 kHz and above, up to 700 kHz are considered. Plastic deformation was
characterized as weak signal which is close to white noise [120]. Hase et al. studied
the AE during pin-on-block experiments to relate properties of the AE signal to
distinct wear mechanisms [121]. Here, frequencies between 250 kHz and 1 MHz are
attributed to abrasive wear, whereas frequencies of up to 1.1 MHz can be related
to adhesive wear. However, mild adhesive wear also excites frequencies in a lower
regime between 10 kHz and 100 kHz [122]. Baccar and Söffker proposed novel health-
monitoring approach for tribological system using frequency-selective analysis of
AE [123]. Three distinct wear phases of metallic plates in sliding contact can be
distinguished according to the frequency content of the AE signal.

Acoustic emission technique has already been used as a feature for condition moni-
toring during machining in [124, 125, 126, 127]. Especially for tool condition mon-
itoring, AE is frequently used as a means for indirect wear estimation in different
machining operations. To develop indicators describing tool wear states, correla-
tions between AE signal features and process parameters (i.e. power consumption,
torque, or cutting forces) are exploited [128]. Gomez et al. [129] investigated the
correlation between AE and torque in drilling operations using mean power and
Average Spectral Power in different frequency bands. Burst type-events could be
related to chip breakage, whereas continuous AE is attributed to plastic deformation
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and friction, respectively. Statistical analysis shows that different types of worn drill
bits (i.e. cutting edge and flute edge) can be distinguished. Additionally, increase
in tool wear leads to a shift of signal power spectrum to increased frequencies. Us-
ing this approach, severely worn tools are identified reliably. Similarly, Ferrari and
Gomez [130] addressed relationship between thrust and AE in drilling. Compared
to torque, thrust is considered to be particularly well suited to assess time behav-
ior of the drilling process. Sensitivity of AE to tool wear is confirmed. However,
correlation between thrust and tool wear was not established.

Similarly, AE has been considered to assess the tool condition in turning. Bhuiyan et
al. investigated the effect of tool wear on AE and vibration measurements in turning
during dry machining based on root mean square of AE and vibration signals. As a
conclusion, AE is sensitive to wear rates of the tool, whereas vibrations are related
to surface roughness [125]. Hase et al. [131] identified chip generation (continuous
or discontinuous) as major influencing factor on AE. Furthermore, special emphasis
is placed on the complex interaction between flank wear, cutting conditions (shear
angle), and roughness of the machined surface during generation of chips. Moreover,
Maia et al. [122] attempted to distinguish between different source mechanisms (i.e.
adhesive and abrasive wear, plastic deformation) using frequency content of AE
signal.

From the summary above, it is apparent that most frequently the condition of
the tool is subject of investigation. However, machining operations are usually
not performed under dry conditions. To achieve improved performance, MWFs
suitable for the tribological pair should be used [132]. To date, the underlying
mechanisms are partly researched. Formation of tribofilms or lubrication regimes has
been researched in connection with AE measurement. It is possible to differentiate
between boundary and hydrodynamic lubrication [133].

In [134], AE was measured in lubricated contact conditions in a ring-on-disc and
a journal bearing test setup. The root mean square was calculated from the AE
signals and a spectral analysis using different ways of Fourier Transformations was
performed. The root mean square correlated well with proceeding wear. The power
spectrum was analyzed until 425 kHz and the range of 60-225 kHz was found to be
related to the tribological contact including oil and material combination [134].

2.3.1 Monitoring techniques during machining

Parts of this and following subsections are based on the contribution [8] published
in 2016.

Process control has become more and more important to ensure products with con-
stant quality and to decrease the number of process failures. In engineering there
is an increasing demand for higher productivity, reproducible products, and lower
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costs. Machining processes like turning, drilling, or milling are monitored in real-
time to predict tool breakage and to prevent machine failure. The application of
monitoring systems can reduce costs for machining tools and can improve process
reliability. Nowadays, tool condition monitoring is implemented into machining cen-
ters as standard. The main techniques used are cutting force (thrust, support force,
torque), vibration, or AE measurements. Advanced technologies do not only use a
measurement system but also contain implemented neural networks for the diversity
of tools. The regular process of each tool is trained so that the abnormal process
can be detected by changes in measurement results. Additionally, prediction of tool
life time is possible as a task of predictive maintenance. The tool change can be pre-
dicted by the system after related thresholds had been implemented. Detection rate,
amount of false alarms, or the necessity of human intervention are less discussed in
literature.

2.3.2 Tool condition monitoring techniques

Reviews with the focus on tool condition monitoring have for example been pub-
lished by [135, 136, 137, 128, 138].Tool condition plays a significant role in reaching
demanded surface qualities or demanded machining accuracy. Tool wear increases
with increasing machining time [139]. Tool’s lifetime depends on the respective
tribo-pair including workpiece material, tool material, the cutting parameters, and
the used MWF.

During machining, workpiece material is deformed plastically by tool material. This
generates high friction between tool and workpiece. The tool material wears off. Tool
wear can appear in several forms: flank wear, crater wear, plastic deformation, chip-
ping, breakage, and built-up edge [140]. A worn tool is not able to fulfill constant
qualities of the machined workpieces. A tool breakage can damage the workpiece
irreparable. A tool condition monitoring system can warn against highly worn tools
so that those can be replaced in time. Process stability can be saved and produc-
tion failures caused by tool breaks can be reduced. As a result, a tool condition
monitoring system can reduce production costs.

2.3.3 Manufacturing solutions

Manufacturers of milling or turning machines recognized the need for tool monitoring
and offer several tool condition monitoring systems optionally for their products. In
the following, systems of some companies are mentioned focusing on systems with
AE technique. Komet Brinkhaus offers monitoring systems for example for tapping
processes [141]. The system is able to learn and to differentiate between a normal
and an abnormal process. The products of MCU GmbH contain sensors measuring
the active power, force, structure-borne noise, vibration/oscillation, and collision.
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The limit of tool condition monitoring measurements by power current is given for
very small tools. When the current consumed power of the spindle is as low as the
no-load current power, a detection of process failures is not possible. Here, AE is
used to monitoring the condition of very small tools [142].

Schwer + Kopka developed process monitoring systems for cold and hot forming,
stamping, and assembling [143]. Different piezoelectric sensors are used to mea-
sure forces, strain, AE signals, electrical power consumption, and tool breakage.
Nordmann divide their sensors in seven categories [144]: effective power and torque,
force, AE and vibration, distance and gab, tool length and workpiece position con-
trol, workpiece dimension control, and tool position control. Acoustic Emission is
used to detect tool breakage through the cooling jet or to control the gap for grind-
ing machines. An in-process quality control system from Hufschmied uses artificial
intelligence to classify sound images of the machining process [145]. The detection
rate was not specified for each of these systems or sensors.

2.3.4 Scientific research

In literature, tool condition monitoring has been investigated on the basis of forces
[138, 146, 147, 148, 149, 150, 151, 152, 153], vibrations [139, 154, 155, 156, 157, 158,
159, 160], optical features [161, 162, 163, 164, 165], spindle or feed motor currents
[166, 167], wear images [154, 161, 163, 164, 165], sound energy, power consumption,
ultrasonic emission, or temperature [128]. In addition, many research has been
taken out on the combination of different features for tool condition monitoring for
example in [148, 168, 169, 170, 171, 172, 173, 174].

Soft computing techniques with artificial intelligence as neural networks, Support
Vector Machine or fuzzy classifier [167, 168, 172, 175, 176] are used to predict process
data and to optimize process stability [135]. The main part of the investigated
techniques is based on monitoring forces, vibrations, and AE that have been tested
for several machining operations like milling, drilling, or turning. Furthermore, AE
techniques were used intensively for forming and grinding operations.

This literature research focuses on research concerning AE. There have been several
reviews on tool condition monitoring including AE [128, 135, 138, 177]. These
reviews give a detailed view over the monitoring techniques in several machining
operations. In [128] the application of AE is described for turning, drilling, face
milling, and end milling. The authors in [135] focus the monitoring systems using
digital images. A review on artificial neural networks during turning is focused in
[138]. The paper of [177] was published in 1995 and includes a detailed review on
AE techniques.
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2.3.5 Different machining processes

For the content of this subsection, publications with monitoring techniques for differ-
ent machining processes have been investigated. Sensing combination systems based
on cutting force, vibration, and/or strain was developed for example in [151, 169].
The fusion of vibration features and digital images was investigated in [178]. This
review part focuses on techniques using AE as feature. The machining processes
turning, drilling, and milling are included.

2.3.5.1 Turning

Acoustic Emission measurement was combined with other measurement techniques
as vibration or cutting forces. The correlation of these methods was investigated for
example in [172]. A multiple sensor system based on cutting force, vibration, and
AE was tested during turning. The measurement results were evaluated by neural
network. Additionally, a tool life time prediction model was implemented. With
the help of an online cognitive decision making system it was possible to realize a
machine learning algorithm [172].

In turning, the wear of the tool was monitored by AE [122]. A piezoelectric sensor
was placed on the tool holder. Acoustic Emission signals were analyzed by power
spectral density technique. The value was high for a new tool, decreased at the
middle of the tool life, and finally increased until the end of tool life. The average of
the power spectral density correlated with the maximum flank wear of the turning
tool [122]. By implementing suitable thresholds for each tool, the tool’s usability
could be limited.

The root mean square value of AE signal in turning was investigated in [126]. Turn-
ing tests were performed at different cutting speeds, feed rates, and depths of cut.
Flank wear and AE was measured during the tests. It was found out that the im-
portant signals mainly occur within a frequency range of 30 to 60 kHz. The root
mean square value correlates with the flank wear [126].

The relation of AE and vibration signals during turning was investigated in [125].
With increasing flank wear the surface roughness as well as the signals based on AE
first decreased to a minimum value and then increased steadily until the end of tool
life. Acoustic Emission and vibration signals were evaluated to be useful to monitor
the turning process. The progression of tool wear could be monitored well by AE
whereas surface roughness could be indicated better by vibration signals [125].

By Kamarthi et al., flank wear could be estimated using AE signals in wavelet
representation. In addition, a recurrent neural network was trained and the results
outperformed previous methods using Fourier transformed AE signals [179].

The quality of the machined surfaces was focused in [180]. Acoustic Emission was
measured during turning. An indirect correlation between the root mean square
value of the AE and the measured surface roughness could be drawn [180].



2.3 Acoustic Emission in machining 32

2.3.5.2 Drilling

By Kimmelmann et al., burr formation mechanisms appearing during drilling of
carbon reinforced plastic have been investigated by AE technique. It was shown
that burr height could be estimated already during machining by AE signals after
Fourier Transformation [181].

By Möhring et al., workpiece quality and tool wear in drilling of stacks have been
investigated by AE technique. By two AE sensors and a high speed camera, the
drilling of carbon fiber reinforced plastics–aluminum–stacks is monitored. Charac-
teristic features of the AE spectrum can be used to evaluate the bore hole quality.
The surface roughness of the aluminum layer could be estimated from the AE signal.
The authors did not find a correspondence between tool wear and AE signals [182].

By Ferrari and Gomez, AE in correlation to the thrust force was investigated. Tools
with five different wear states were used. Acoustic Emission and thrust force were
recorded simultaneously. The AE sensor was placed on the workpiece. The root
mean square value, the measured area under the rectified signal envelope energy,
the amplitude, and the mean power were selected as AE based features. The author
concluded that the mean power could be used for tool wear characterization [130].

By Arul et al., the correlation between AE, flank wear, and drill hole shrinkage
was evaluated concerning drilling of glass fiber reinforced epoxy resins. Flank wear,
thrust force, and hole shrinkage are influenced by cutting parameters. Acoustic
Emission signals were evaluated in frequency domain. The power of the measured
signal increases with the number of drilled holes. Furthermore, the root mean square
correlates to the thrust force, the flank wear and the hole shrinkage in regard to the
number of holes. The values increase with the number of drilled holes. The root
mean square of AE correlates best with the flank wear so that a determination of
the flank wear via AE was possible in this case [183].

By Quadro and Branco, the effect of tool coatings was investigated using AE based
on the quantification of wear and the identification of five different wear states. An
increasing tool wear results in an increase of the measured rectified signal envelope
of AE. In relation to tool wear, peaks in AE change [184].

2.3.5.3 Milling

By Liu et al., a decision making model was developed based on AE data collected
during milling tests. With increasing tool wear amplitude and distribution of the
AE signal changed. The signals were analyzed by wavelet packet transform and
the wavelet packet energy was calculated. The normalized energy increased with
machining time and increasing wear [185].
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By Gao et al., Artificial Neural Network based on features of cutting forces, vibra-
tions, and AE was developed and tested during milling tests. The model provided
a higher precision than a model based on single features [176].

By Marinescu and Axinte, AE was used to detect tool and workpiece malfunctions
during milling. The aims were to identify AE signals independent from the tool path
to calibrate AE sensory against proceeding tool wear and to detect surface anomalies
resulting from machining failures. Milling tests were conducted at an Inconel 718
workpiece and the AE sensor was placed onto the workpiece. During the tests,
AE, forces in three dimensions, and torque were recorded. From the test evaluation
resulted that monitoring of the cutting insert’s wear was possible by applying Short
Time Fourier Transformation (STFT) to the AE signals. With the help of the area
underneath the envelope of the resultant cutting force, the measured area of the
rectified AE signal envelope, and metallographic investigations a relation between
AE, cutting forces, and surface quality could be established [186].

Marinescu and Axinte, investigated further a cutting tool with an intentionally
damaged insert. The AE signal was analyzed in time-frequency domain. A differen-
tiation between normal cutting and cutting with resulting surface anomalies could
be detected [187].

Jemielniak and Arrazola, explored the application of AE and cutting forces for
tool condition monitoring in micro-milling. A strong relation between AE and tool
wear was found. Although the cutting force signals were disturbed by vibrations
the monitoring of tool wear was possible. The author suggested that the usage of
more signals is preferable to minimize the diagnosis uncertainty and to make tool
condition monitoring more reliable. Better results are achieved by the measurement
of cutting forces and AE than a technique only based on AE measurement [124].

2.3.5.4 Other processes

Dornfeld et al. investigated AE technique for precision machining. It was concluded
that AE was very sensitive to control parameters in high frequency range. Normally
force or vibration sensors lose accuracy in the high frequency range because of limited
band width and due to noise. High frequency signals of AE were measured for a
small length scale of material removal whereas the frequency declines for increasing
material removal. It was shown that AE is more sensitive for small material removals
and high levels of precision whereas the use of forces or vibration signals is better
for larger chip thicknesses. Concerning the ultra-precision machining and micro
cutting mechanisms, signal measurements based on AE are suitable techniques for
monitoring because noise and disturbances caused by machine elements could be
minimized [188].
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Acoustic Emission was tested to control the wear status of gears [189, 190] or for
forming and grinding operations [191, 192, 193]. Friction and wear states of sliding
plates were investigated in [123, 194].

By Liu et al., the lubrication effect at a head/disk interface was examined with AE.
Three different lubricants were investigated and difference between AE responses has
been observed due to higher wear of the disk. Concerning the head/disk interface
the lubricant was identified “as one of the most important factors”. The occurring
debris in the interface could be measured by changes in the AE signal. The levels of
AE signal were higher for increasing wear and increasing lubricant degradation [91].

2.3.6 Summary

Using AE, an indirect measurement of tool wear in turning, drilling, and milling
is possible. The roughness of turned surfaces is related to AE signals. Special
features of AE signal can be used to detect different wear states of a drilling tool.
In drilling, the correlation between AE and drill hole shrinkage or between burr
formation was found. Changes in cutting speeds, feed rates, and tool coatings could
also be detected during drilling. Regarding milling processes, the differentiation
between normal and abnormal machining could be made by measuring AE signals.
A correlation between AE, tool wear, and surface quality was found. For head/disk
interfaces, detection of higher wear caused by lubricant degradation was possible by
measuring AE signals.

Tool condition monitoring systems have been using AE for a long time for different
tasks including life time prediction tasks. In most of the aforementioned contribu-
tions, the use of a lubricant is not mentioned although most of these processes are
performed wet. Obviously, the role of lubricant for the tribological contact is often
underestimated and not considered. No contribution is known, using AE for real-
time monitoring of the lubricant’s condition as aging or for predictive maintenance
of lubricants during machining.
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2.4 Machine Learning in manufacturing processes

Machine Learning is nowadays used in many areas of life as well in the field of tri-
bology [195]. It is more often fundamentally important for process improvements
and/or innovative business models [196]. In machining, Machine Learning algo-
rithms are most commonly applied for classification tasks, or prediction of lifetimes
of machine parts or machine tools. These self-learning algorithms are first tuned
with a training dataset. The quality of the resulting model is then checked with a
test dataset. Generally, test data are not included in the training dataset. Reviews
about Machine Learning methods applied in tool condition monitoring are given
for example in [6, 128, 197, 198]. New research about tool condition monitoring
methods without learning processes have become rare. König et al. used a face
recognition technique based on an eigenface algorithm for the evaluation of tool
wear images. New images are compared with a set of existing reference images. The
evaluation is only statistical and learning-free and does not need any training. [162]
One advantage of learning-free monitoring systems is that they usually work faster.
But main disadvantages are unflexibility and strongly reduced transferability. In
this dissertation, learning algorithms are focused.

2.4.1 Machine Learning approaches

Different kinds of machine learning algorithms like Hidden Markov Models, Support
Vector Machines, random forest/decision trees, Artificial Neural Networks, Convo-
lutional Neural Networks, etc. have been used in literature to monitor, evaluate,
and predict friction contacts. The following part does not represent a complete pre-
sentation of the aforementioned algorithms. Rather, the selected references focus on
frictional contacts and AE measurements. Parts of this section are related to the
publications [10, 11].

2.4.1.1 Hidden Markov Model

A Hidden Markov Model is a stochastic model. States are connected with certain
probabilities of occurrence. These states are hidden and have observable outputs
occurring with probabilities depending on the respective state. These models have
a simple structure allowing fast training, are good in nonlinear and non-stationary
signals, and can easily be generalized [136]. Due to these characteristics, Hidden
Markov Models are primarily applied for fault recognition for example in rolling
bearings [199] and for health state identification of cutting tools [200]. Ertunc et
al. used Hidden Markov Models to estimate tool wear status during drilling. A
classification into the three conditions sharp, workable, and dull was possible with
thrust force and torque signals [149].
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2.4.1.2 Support Vector Machine

A Support Vector Machine works as a supervised binary classifier. The classes have
to be learned by training data. The algorithm calculates an optimal hyperplane
dividing the data in two classes by placing the hyperplane at a position with the
maximal possible distance between the nearest data points. In [127], tool condition
monitoring during milling was performed using vibration and acoustic data. With
both features, AE data after STFT and vibration energy, 98.46 % classification
accuracy could be reached using a Support Vector Machine as linear classifier [127].
Brezak et al. used a Support Vector Machine algorithm for tool wear estimation.
Feed force, AE, and feed drives nominal current signals were measured and relevant
features were selected during an fuzzy logic classification [168].

For fault diagnosis in bearings, Saimurugan et al. used a decision tree algorithm for
feature selection and a Support Vector Machine for classification of vibration signals
[159]. Saeidi et al. classified AE signals resulting from lubricated sliding contacts
using a Support Vector Machine to identify the transition from the steady-state
regime to the scuffing regime [194]. In [201], the performance of Support Vector
Regressors has been tested for wear identification of taps during thread forming.
Bustillo et al. found out that the radial Support Vector Regressor reached bet-
ter results than the linear Support Vector Regressor. Cho et al. designed a tool
condition monitoring system for milling based on multiple sensors by testing two
different feature selection methods and three classifiers. The highest accuracy of
97.67 % was reached with fusion of features from force, vibration, and AE signals.
The applied support vector machine outperformed the two other machine learning
classifiers, Multilayer Perceptron Neural Network and Radial Base Function Neural
Network [170]. Comparable results regarding milling were published in [175].

Sun et al. successfully implemented a revised Support Vector Machine and were able
to classify tool flank wear based on AE signals [202]. Alves and Poppi identified the
contamination of a paraffinic base oil with naphthenic or vegetable oil by processing
data of a spectroscopy using a Support Vector Machine [203].

2.4.1.3 Random forest and decision tree

Random forest is a classifier that combines several decision trees. Each tree makes a
decision and the majority decides on the final classification [204]. In a decision tree,
consecutive decisions are hierarchically arranged. Random forests need training and
test data. Bienefeld et al. estimated the remaining useful lifetime of lubricated
rolling bearings using structure-borne sound signals. With 500 decision trees in the
random forest and different feature combinations, the smallest achievable relative
error of prediction was 8.9 % [17]. Bustillo et al. used decision tree based regressors
for identification of tap wear. The best performance was achieved by a rotation forest
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with reduced-error pruning trees [201]. Prost et al. used a random forest classifier
for identification of four states in journal bearings using lateral force signals. The
trained algorithm was able to classify the states with an accuracy up to 93.9 % [205].
Krishna Pradeep et al. used decision trees as classifiers of vibration signals and/or
digital images for tool condition monitoring. The classification efficiency reached 98
% for the approach with both features fused [173].

2.4.1.4 Mahalanobis-Taguchi system

Mahalanobis-Taguchi systems are used for diagnosis and forecast. The Mahalanobis
distance is used as measure for the distance between abnormal and normal observa-
tions [206]. Mahalanobis-Taguchi systems were used for prediction of tool breakage
during drilling [207] and fastened grip length of bolted joints [208]. Rai et al. mea-
sured thrust force and torque during drilling and identified useful features for tool
life time prediction. Saygin et al. used torque signals and torque-angle signatures
of an optical encoder in a Mahalanobis-Taguchi system for the detection of various
grip lengths and achieved an accuracy over 95 % [208]. A review of recent research
results obtained with Mahalanobis-Taguchi systems has been made in [206].

2.4.1.5 Artificial Neural Network

Following Rojas, in Artificial Neural Networks, biological neural networks as the
human brain are imitated. Principally, artificial neural networks are treated as black
box which should produce a certain output vector for a certain input vector. Neural
networks can have hierarchical structures and transmission of information can take
place between layers and between all elements of the network. Data is stored at the
contact point between different neurons and partly in the transmission channels.
The behavior of the network is only finally determined in a learning process. If
there are no feedback loops, the network is feed-forward and the calculation process
is unique. If the output of a node is fed back to it as an argument, it is a recursive
network and there are countless possible outputs [209].

Neural networks are applied in many fields of industrial applications. A review about
the applications of Artificial Neural Networks for tool wear monitoring is given in
[210]. Karam et al. developed a prediction model for tool life during turning based
on sensor fusion and neural network. Cutting force, vibration, and AE signals
were used in differently configured three-layer feed-forward backpropagation neural
networks. An online cognitive system continuous learning from new inputs has been
developed [172]. A neural network model was developed in [211] to classify force
signals to related wear states during turning.

Sadegh et al. used AE for identification of the three lubrication regimes in jour-
nal bearings. Features are extracted in time domain and after continuous wavelet
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transformation. The extracted features are classified by genetic algorithms in com-
bination with Artificial Neural Network. Lubrication regimes can be identified by
using at least four features and a combination of genetic algorithms and Artificial
Neural Networks. Root mean square, crest factor, and impulse indicator have been
identified as important features [212].

Artificial Neural Network was used for wear distinction by Jafari et al.. Types of
valve damages in internal combustion engines were detected by evaluation of AE
signals in time domain [213].

2.4.1.6 Convolutional Neural Network

This section deals with the introduction of CNNs and with a review about the use
of CNNs in monitoring/classification of frictional contacts. It is mainly based on
publication [10].

In the early 1960s, David Hubel and Torsten Wiesel improved the concept of re-
ceptive fields. In 1975 and 1980, Kunihiko Fukushima extended the theory basis
by implementing the concept of ‘cognitron’ and ‘neocognitron’, the biological the-
ory of CNNs. In 1986, Rumelhart et al. raised back propagation. Yann Lecun et
al. applied the back propagation algorithm to train neural network and proposed
LeNet-5 [214] which is the prototype of recent CNNs. In 2012, Krizhevsky et al.
introduced the new deep structure and dropout method in CNNs [215] by raising
test accuracy to 84.6 % which aroused people’s interest and started a new epoch of
CNN. From 2012, many CNN models were developed such as LeNet, AlexNet, VGG,
GoogLeNet, ResNet which are widely applied in many fields of living and working.

In this thesis, CNN as a sub-field of Deep Neural Network is applied and this in
turn as sub-set of Machine Learning [216]. It can also be called as a type of deep
learning model for process data and it usually works supervised. The architectures
of CNNs is inspired by the organization of animals’ visual cortex. It is designed to
automatically and adaptively learn spatial hierarchies of features from low to high
level patterns [217]. Nowadays, CNNs are used for pattern recognition, classification,
fault diagnosis, and prognosis tasks.

A CNN is typically forward directed (without feedback loops) and designed with
three different types of layers: convolutional (conv) layers to extract features, pooling
layers to reduce dimensions and calculation time, and the fully connected (fc) layer
at the end to classify data into predefined classes [218].

The fundamental block for CNNs is convolution layer which is composed of a stack of
mathematical operation called convolution. In convolution operation, the element-
wise product between each element of the kernel and the input tensor is calculated
and summed to obtain feature map. In convolution layer, the convolution operation
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is repeated, applying multiple kernels to form an arbitrary numbers of feature maps
which represent different characteristics of the input tensors [219].

Usually, the output of the convolution layer is then passed through a nonlinear
activation function which is used to increase the expression ability of neural network
model. There are several common nonlinear activation functions like sigmoid, tanh,
rectified linear unit (relu) etc.. After multiple stages of conv and nonlinear layers
to reduce the computational requirements progressively through the network as well
as minimizing the likelihood of overfitting, pooling layers are used. There are four
types of pooling: max pooling (mpool), average pooling, global max pooling, and
global average pooling.

The output feature maps of the final conv or pooling layer are transformed into a
one-dimensional array of numbers or vector and connected to one or more fc layers,
in which every input is connected to every output by a learnable weight. The features
generated by the final conv and pooling layer correspond to a portion of the input
image as its receptive field does not cover the entire spatial dimension of the image,
thus, fully connected layer is mandatory in CNN [220].

Besides the classic building blocks in CNN, according to the task, another activation
function would be applied to the last fully connected layer. For classification task,
softmax would be used to normalize output values to target class probabilities.

In [221], three different wear modes in sliding bearings were detected by AE signals
processed in CNN using the method GoogLeNet. The inputs were time-frequency
images of AE hits after Continuous Wavelet Transformation (CWT). With particles
contaminated oil could be classified with 100 % accuracy whereas the distinction
between running-in and inadequate lubrication reduced the overall accuracy to 82.5
% [221]. Prosvirin et al. combined CNN with kurtogram representation of AE
signals for bearing fault diagnosis [222]. Wang et al. performed bearing diagnosis by
measuring vibrations and acoustic signals. They developed a CNN for classification
for the different groups of bearings [223]. Shevchik et al. used spectral CNN for
in-situ quality monitoring in additive manufacturing [224].

Möhring et al. developed a CNN to classify the surface roughness from sensory data
of a milling process. The trained CNN reached an accuracy of 96 % in determining
four predefined classes of surface roughness [225].

For tool condition monitoring, CNN was used to classify vibration signals [226]. Cao
et al. combined derived wavelet frames and CNN and successfully identified wear
states during milling.

Most commonly used CNNs are feed-forwardly designed. The idea of a full scale
training loop was proposed by [227] and successfully used for the prediction of driv-
ing behaviors. The loop was used to optimize both model structure and model
training [227]. As shown in Figure 2.12, all unknown parameters including prefilter
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and hyperparameters are treated as design parameters and are included in the op-
timization loop. The design of concept used in the present work has a loop between
data processing steps and CNN.

Figure 2.12: Scheme of a full scale training loop [228]

2.4.2 Summary

Machine Learning methods have been applied during machining for various pur-
poses: damage detection in valves, flank wear detection of tools, prediction of tool
breakage, and even for identification of lubrication regimes. The mostly used signals
were cutting force, vibration and AE. Different features were extracted from these
signals and used for classification. As classifiers and/or for feature selection, neural
networks, decision trees, or support vector machines were applied. Convolutional
Neural Networks have been used for detection of wear in sliding contacts and for
quality monitoring during additive manufacturing. A newly developed idea of a
full scale training loop for CNN optimization achieved good results in prediction
of driving behaviors [228]. No contribution is known investigating the effect of dif-
ferent lubricants during a metal forming or metal removing process using Machine
Learning methods.
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2.5 Research gaps and scientific goals

In the areas of machining and monitoring of tribological contacts, applications of
lubricants in different systems are well researched. Especially in steady frictional
contacts as journal bearings, lubrication regimes and reaction of lubricating addi-
tives with surfaces are investigated. It is known that special elements adhere or
even react – due to contact time and temperature – with metallic surfaces building
protective layer(s), the tribofilm. The composition of such tribofilms is only partly
researched. Few contributions deal with indirect measurement of tribofilm thick-
ness and lubrication states. For these cases, AE is already used as measure. In this
thesis, it is investigated if interactions between tool and workpiece can be measured
during thread forming. The contact conditions and process-kinematic effects during
thread forming are not analyzed.

For tool condition monitoring, different features of AE are used in several machining
operations. It is successfully applied for monitoring of proceeding tool wear, detec-
tion of different wear types, and surface qualities. The relation between tool wear
and lubrication state remains unnoticed in the examined contributions. Despite of
own publications in the last years, during a real machining operation, AE has not
yet been used for evaluation of lubrication conditions.

Real-time monitoring of MWFs is still unpopular. Meanwhile, users from industry
have realized that a regular control of the MWF in use is necessary in order to
maintain its positive properties such as less tool wear or corrosion inhibition for
machines and workpieces. Especially for difficult-to-cut materials, acceptance and
insight even go so far that special MWFs are required for machining. The com-
position of MWFs play a significant role for tool wear and qualities of machined
surfaces. Real-time condition monitoring systems for MWFs in use are hardly avail-
able. In existing systems only the suitability of MWF’s characteristics to its target
values e.g. concentration is checked but not its suitability to the current machining
situation. The development of a technique/system for monitoring of the current
tribo-contact would be a novelty. Fundamental research for a suitable and real-time
capable technique for the analysis of lubricity does not exist.

The performance of MWFs is determined by mostly standardized tests. Lubricity
can be evaluated by TTTs. Results of TTTs are transferable into practice if the
same workpiece material is used. Existing researches about TTT often do not discuss
standard deviations of means or statistical distinguishability of test results. From
own experiences, the sensitivity of TTTs could be improved because small changes
in MWFs cannot be detected by torque means. Knowledge and effects occurring in
conduction of TTTs are not well researched.

For enhancing the importance of TTTs, AE is implemented as second measure in
this thesis. There is no existing research in which different features of AE signals
e.g. images of raw data, spectrograms, scalograms, or AE energy have been tested as
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classification variable in different algorithms. No contribution is known evaluating
AE signals in CNNs or using Transfer Learning (TL) for fluid classification tasks.

The research gaps are arranged by the following points:

• Interaction of tool and workpiece during thread forming has not been analyzed
by AE technique in detail.

• The evaluation of lubrication conditions has not been performed during ma-
chining using AE.

• Fundamentals of a technique focusing condition monitoring of lubricity in real-
time have not been researched well.

• Side effects occurring in TTTs and influencing the differentiability of torque
means have not been detailed explored.

• Classification approaches using different features of AE signals to enhance the
differentiability of test fluids in TTTs have not been developed.

The scientific goals concerning the qualification of MWFs in TTTs are summarized
as

• studying influencing factors on tapping torque means in the current test pro-
cedure,

• improving repeatability and comparability of TTT results by proposing new
rules and calculation methods,

• investigating the suitability of AE as additional measure to enhance the sen-
sitivity of TTT results,

• developing a series of comparable test fluids to generate suitable experimental
datasets,

• searching for limitations of AE signals to evaluate differences in test fluids,

• testing various classification approaches to differentiate MWFs by means of
AE, and

• evaluating the developed technique for condition monitoring of MWFs in use
in the future.
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3 Experimental datasets

The experimental design is described in this chapter. Experiments are carried out
with an extended TTT. First, the idea of conducting an extended TTT is introduced.
Second, the test rig is described including standard test rig, tool, and workpiece
materials. The technique for the additional measurement of AE signals is introduced.
Third, datasets of 2016 and 2019 are described and chemical structures of MWF’s
additives of dataset 2019 are explained.

3.1 Extended Tapping Torque Test

This section was mainly published in [11].

In TTT, test fluids are evaluated by the used tapping torque during threading.
Threading is a common operation in industry. By comparing MWFs, a lower tapping
torque indicates a higher lubricity. The possibility for testing a greater variety of
tribological pairs is given by the TTT. According to ASTM D8288-19, tap and
workpiece materials as well as MWF concentration and water hardness has to be
chosen by the test operator. In literature, it is reported that results of TTT can
be transferred to field applications if the same workpiece material is used [112].
Therefore, TTT are in general very convenient for evaluating MWFs’ suitability for
a specific material combination.

Because of limited differentiability of test fluids in the TTT by applying ASTM
D5619-00, researchers experiment in test procedure and evaluation to increase the
importance of TTT. Zimmerman et al. performed multiple testbeds leading to
higher sensitivity of TTT and the resolving power of the tests is influenced by tap
size, coating, and speed [112]. Demmerling and Söffker recognized carryover effects
of the previously measured fluid significantly affecting the differentiability of test
fluids. These have to be taken into account by calculating torque mean values.
Water-mixed MWFs of 5 and 10 % concentration could be distinguished in C45E
with a significance of 99 % by complying with specific test procedures and calculation
methods [98].

Wirtz et al. developed an extended TTT by integrating AE technique into the
torque measurement. This technique was used to increase the sensitivity of TTT
and to find differences in phosphorus contents of test fluids [9]. Acoustic Emission
is a passive non-destructive testing technique used e.g. in process monitoring and
quality control in manufacturing processes. Acoustic Emission technology is widely
applied in metalworking processes but only a few papers refer to the relationship
between AE technique and MWFs. Water-mixed MWF with different phosphorus
contents can be distinguished by AE energy in a certain frequency range after CWT.
A lower sum of AE energy is related to an higher content of phosphorus. [9]
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Other contributions deal with AE for identification of contaminants in lubricants,
oil viscosity, or lubrication regimes. Hase et al. investigated the relationship of
wear and AE signals in time domain. The number of wear elements was directly
related to the amplitude of AE [229]. Similar results were found by Strömbergsson
et al. by using lubricant during a superfinishing process. The AE signal was stable
when the surface roughness was not improved further [230]. By AE and vibration
signals, it was possible to monitor the contamination of journal bearings with silica
sand in different sizes and concentrations [231]. Root mean square and energy
of AE signals increased by increasing particle size and concentration. Here, energy
achieved better detectability than root mean square of AE. Miettinen et al. used AE
for distinction of contaminated grease in rolling bearings. They found a correlation
of grease composition and numbers of signal bursts in time domain of AE signals.
It was possible to differentiate between concentration and hardness of the solid
contaminants in the grease [232].

The correlation of AE and two types of lubrication oils in an engine test rig was
analyzed by Wei et al.: the lower the oil’s viscosity, the lower the AE amplitude
[233]. Wei et al. obtained similar results for different fuels [234]. In journal bear-
ings, a lower lubricant’s viscosity resulted in significant higher AE amplitudes in a
frequency range below 100 kHz [235]. Signals of AE in mechanical seals were not
only generated by asperity contacts of tribological partners but also by viscous fric-
tion in the lubricant. Thus, AE time domain data can be used to identify lubrication
regimes [236].

Monitoring of lubrication regimes was studied in pin-on-disc tests for a Nickel-steel
and an Argentum-steel tribopair by Moshkovich et al.. The AE waveforms in time
domain of elastohydrodynamic lubrication and boundary lubrication differed as well
as the waveforms of the two different materials. It has been recognized that AE
energy in boundary lubrication was higher than in elastohydrodynamic lubrication.
This effect was more significant for the Argentum-steel tribopair [237]. Hamel et al.
studied tribofilm thickness by evaluating AE signals in a gearbox. The reduction of
oil film thickness correlated with an increase of AE root mean square level [133].

3.2 Test rig

Content of this section is based on publications [9, 98].

The experimental setup is shown in Figure 3.1. The test rig for TTT includes
tribometer, test platform, tapping tool for thread forming, different test fluids, and
a cleaning station. The nut blanks in the test platform are filled with test fluids.
Then, threads are tapped into the nut blanks by measuring tapping torque. By
brushes and an air blow system, chips and fluid residues are removed from the tap
after every thread.
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For the experiments, a tapping tribometer (Tauro R©120, Taurox e. K., Germany)
with a spindle that is fixed at a weight compensated suspension is used; no rigid
tapping is used. The tribometer does not have an automatic feed as it is usual for
cutting machines. Before starting the test procedure, the zero point of the z-axis
is set at the entry of a nut blank. For the first two revolutions, the tool is pressed
into the nut blank with a defined pressure using an air pressure system. This short
feed distance is enough that the forming lobes of the tap’s entry taper have caught
enough material to pull the rest of the tap into the nut blank simply by rotating it.
As a result, the axial force only works on the entry taper of the tap.

The used titanium carbon nitride coated tap depicted in Figure 3.1c and d has a
five-polygon form, an entry taper with three pitches, and a thread length of about
8 mm.

Figure 3.1: Experimental setup [11]
a: Tapping machine, tap, pre-drilled test platform

with piezoelectric transducer and cleaning station (Rhenus Lub)
b: Exemplary starting tapping process
c: Titanium carbon nitride coated tap 6 mm diameter
d: Tap: 5-polygon form, without flutes

Torque is directly measured by the tribometer through the power consumption of
the spindle. For extended TTTs, a technique based on field programmable gate
arrays for measuring AE during threading is added to the setup. To this end, a
disc-shaped broadband piezoelectric transducer of dimensions Ø10 mm and 0.55
mm in thickness with corresponding resonant frequency of 3.6 MHz is mounted on



3.2 Test rig 46

the workpiece using cyanoacrylic glue (Figure 3.1b). The AE waveforms are acquired
continuously at a sampling rate of 4 MHz. Test material and parameters are listed
in Table 4.1. These parameters are kept during all tests. The AE signal is manually
recorded during the forward and the reverse process. The measurement is started
before the tap reaches the pilot hole and is stopped after the tap was fully retracted
out of the thread. Each measurement lasts about 5 s. During all measurements,
torque and AE signals are recorded. Temperatures in the contact zone are not
measured.

Table 3.1: Test material and parameters for extended TTT [11]

Workpiece material C45E
Process Thread forming
Hole diameter [mm] 5.6 H7
Hole depth [mm] 31.3
Forming speed [m/min] 20
Fluid volume per thread [ml] ≈ 0.8
Tapping depth [mm] 27.3
Torque sample rate [Hz] 500
Diameter of piezoel. transducer [mm] 10
Thickness of piezoel. transducer [mm] 0.55
Resonant frequency of transducer [Hz] 3600
AE sample rate [Hz] 4000

The used workpiece material is made of C45E (1.1191). It is assumed that the
micro-structure of this material is homogenous and complies with those of standard
applications. The pre-drilled and pre-reamed holes in the test platform are only
suitable for M6 forming taps. Diameter, roundness, and cylindricity mainly affect
tapping torque. The producer of the test platform guarantees a dimensional accuracy
for 99 % of the holes. Additionally, diameters are previously checked using a go/no
go-gauge of 5.6H7. The platform has 368 holes in 23 columns of 16 holes. The
threads are machined column by column from back to front due to the automatic
program of the tribometer. Before tapping the next hole, abrasion particles and
other solid residues on the tap are removed by air blow and brushes in the cleaning
station.

This experimental setup is used for qualification of MWFs of two different datasets.
A dataset consists of numerous measurement series. Measurements within one series
are performed applying the same test fluid. Number of series, measurements, and
fluids in the two datasets are different. Additionally, types of fluids and components
in fluids differ. In the following sections, the datasets, namely dataset 2016 and
dataset 2019 due to the year of test conduction, are introduced.
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3.3 Dataset 2016

This dataset has been published in [9] for the first time. The aim was to investigate
the feasibility to use AE signals for distinction of i) emulsion and oil, ii) phosphorus
content in emulsions, and iii) phosphorus content in oils. Besides a reference fluid,
two test emulsions and two oils with different phosphorus contents are used in dataset
2016. Compositions of the test fluids are listed in Table 3.2. The composition of
MWFs differs in the concentration of phosphorus which is considered as anti-wear
additive. For emulsion 1, the phosphorus content is 66 times that of emulsion 2. For
oil 2, the phosphorus content is 20 times that of oil 1.

Table 3.2: Fluids applied in dataset 2016 [12]

MWF Basis Water Oil Ester Phosphorus

Reference Water 95 % 0 % 1.25 % 50 ppm
Emulsion 1 Water 95 % 1.4 % 0 % 3163 ppm
Emulsion 2 Water 95 % 1.4 % 0 % 48 ppm
Oil 1 Oil 0 % 85 % 6.5 % 80 ppm
Oil 2 Oil 0 % 85 % 6.5 % 1600 ppm

The particular sequence of trial series is stated in Table 3.3. First, 32 trials are
performed using the reference emulsion to run in the new tap. Then, emulsions are
tested before the oils. Each series consists of eight measurements corresponding to
half of a column on the test platform. After a repeated reference measurement, oils
are tested before the emulsions. The influence of a previously measured fluid on the
test result is investigated.

Table 3.3: Sequence of thread forming trials of dataset 2016 [9]

Series Synonym MWF Thread no.

1 ReF Reference 1-32
2 E1 Emulsion 1 33-40
3 E2 Emulsion 2 41-48
4 O1 Oil 1 49-56
5 O2 Oil 2 57-64
6 ReF Reference 65-72
7 O2 Oil 2 73-80
8 O1 Oil 1 81-88
9 E1 Emulsion 2 89-96
10 E2 Emulsion 1 97-104
11 ReF Reference 105-112
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The aim of this dataset is to find out whether it is possible to differentiate between
oils and emulsions and between different phosphorus contents in both. Three dif-
ferent classification approaches described in Chapter 4 are applied on the recorded
tapping torque or AE signals. Related results are presented in Section 5.1.

3.4 Dataset 2019

Dataset 2019 was developed after the evaluation of the results of dataset 2016. First,
dataset 2016 was mainly used as a feasibility study. The differences between the
fluids were comparatively large. In dataset 2019, the differences between the fluids
is much more nuanced. The focus is more on the chemical structure of the additives
and on smaller differences between the active substances. The aim of this dataset
is to show the usability of the approaches developed for dataset 2016. Additionally,
the knowledge obtained during experiments for publication [98] is applied in dataset
2019. The number of measurements per series is increased from 8 to 16 threads
considering carryover effects of previously measured fluids. The test sequence is also
changed. A complete series with the reference fluid is measured after every test fluid
series.

In dataset 2019, a reference fluid and ten test fluids are measured in extended
TTTs. The reference fluid used in 2019 is different from that used in 2016. Each
series contains 16 threads corresponding to one column on the platform. Reference
fluid and test fluids are all emulsions and the compositions are very similar. A
water miscible base concentrate is developed to build the core structure of the other
MWF concentrates. This base concentrate is not a 100 % receipt. The missing
percentages to 100 % are filled up with certain additives. That means test fluids in
dataset 2019 have the same basis and only one additive is varied. Before testing,
an 8 % emulsion is prepared: 8 g MWF concentrate is added to 92 g demineralized
water and the mixture is homogenized using a magnetic stirrer. The additives are
described in Table 3.4. The concentration of the active substance is given for the
water-mixed emulsion of the specific test fluid. Using a base concentrate for all
fluids, comparability is given between all test fluids.

The aim is to distinguish fluids in extended TTTs with chemically similar lubricant
additives and only slightly varying contents of active substance. In Group S with
sulfur as active lubricating substance are F02 and F03, in Group P with phosphours
as active lubricating substance are F04, F05, and F06, in Group E with ester as
active lubricating substance are F07 and F08, and in Group G with glycol as varying
substance are F09 and F10. The used sodium sulfonate in F01 is applied as emulsifier
and could only help indirectly by the adhesion of lubricating additives as stated in
[116]. The effect of sodium sulfonate will not be discussed in this work.

The dataset consists of 21 series listed in Table 3.5. The first and the last series
are performed with the reference fluid. In between the measurements with the test
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fluids, the reference fluid is repeated. With this test sequence, the test differences
due to carryover effects of different previously measured fluids are minimized because
every test fluid has the same predecessor fluid.

Table 3.4: Water-mixed test fluids and their contents of special additives [11]

Fluid Description of additive Active substance [ppm] Group

Ref Based on naphthenic mineral oil - -
F01 Sodium sulfonate 4800 -
F02 Polysulfide 1600 S
F03 Polysulfide 2400 S
F04 Lauryl ethylene oxide phosphate 160 P
F05 Oleyl ethylene oxide phosphate 160 P
F06 Stearyl ethylene/propylene

oxide phosphate
86 P

F07 2-ethylhexylcocoate 8000 E
F08 Synthetic polymeric ester 8000 E
F09 Diethylene glycol 8000 G
F10 Polypropylene glycol 8000 G

Table 3.5: Sequence for thread forming trials of dataset 2019 [11]

Series m01 m02 m03 m04 m05 m06 m07 m08 m09 m10
Fluid Ref F01 Ref F02 Ref F03 Ref F04 Ref F05

Series m11 m12 m13 m14 m14 m16 m17 m18 m19 m20 m21
Fluid Ref F06 Ref F07 Ref F08 Ref F09 Ref F10 Ref

The aim of this dataset is to find out whether it is possible to differentiate between
chemical structures of lubricating additives by evaluating signals during thread form-
ing. Different classification approaches described in Chapter 4 are applied on the
recorded tapping torque or AE signals. Results are shown in Section 5.2.

3.5 Lubricant additives of dataset 2019

Additives used in dataset 2019 have similar chemical structures. These are shown
and lubricating effects are discussed using knowledge from Section 2.1.5.

Fluids F02 and F03 contain similar sulfur additives with different sulfur concen-
trations. The chemical structures of the used additives are depicted in Figure 3.2.
The polysulfide molecule of F02 contains three sulfur atoms whereas the polysulfide
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molecule of F03 has five sulfur atoms. The negative dipole of both molecules is lo-
cated at the sulfur atoms. The molecule of F03 has a stronger dipole and therefore a
higher adhesion effect. A higher lubricating effect is assumed for F03 with an higher
sulfur content.

Figure 3.2: a: Polysulfide in F02 with 20 % sulfur
b: Polysulfide in F03 with 32 % sulfur

In fluids F04, F05, and F06, different phosphorus additives are used. The chemical
structures of the used additives are depicted in Figure 3.3. The phosphorus content
of additives in F04 and F05 is the same but the used phosphate molecules have
different side chains. The phosphate in F04 has a lauryl group whereas the phosphate
in F05 has oleyl group and the phosphate in F06 a stearyl group. These groups are
depicted in Figure 3.3a-c. The negative dipole of all phosphate molecules is located
at the oxygen atom with double bond to the phosphorus atom. The strength of
dipole of all additives is the same; the difference is only the R-group. The evaluation
which additive is expected to have the highest lubrication effect is not trivial. On
the one hand the long stearyl chain could build a good tribofilm and separate friction
partners. On the other hand the big chain length could be disadvantageous because
it prevents further molecules from adhesion. A similar argumentation is possible for
the oleyl chain. The chain is not only long but also twisted and could prevent other
molecules from adhering.

Figure 3.3: a: Lauryl ethylene oxide phosphate in F04
b: Oleyl ethylene oxide phosphate in F05
c: Stearyl ethylene oxide phosphate in F06

Two different ester oils are applied in F07 and F08. The chemical structures of the
used additives are shown in Figure 3.4. The ester content in F07 and F08 is the same
but molecules’ structures differ. Coconut oil is the basis of 2-ethylhexylcocate in F07.
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Natural esters are usually less temperature-stable than synthetically produced esters
and need additional anti-oxidants. The molecular structure of the synthetic ester is
polymeric and therefore more complex. It is expected that the polymeric ester with
its numerous polar groups outlined as spheres in Figure 3.4b has a higher lubricating
effect than the ester with only one polar group at one end. The adhesion effect of
the polymeric ester will most likely be higher.

Figure 3.4: a: Naturally based ester in F07
b: Synthetic polymeric ester in F08 [238]

Fluids F09 and F10 differ in the type of glycol additive. In emulsions, glycols are
typically used as solubilizer. In fully synthetic and water-soluble MWFs, glycols can
act as lubricating additives. This effect is investigated for F09 and F10. Glycols
used are diethylene glycol and polypropylene glycol. Diethylene glycol is a linear
molecule with hydroxy groups at both ends (Figure 3.5a). Polypropylene glycol
has a hydrogen atom on one end and a hydroxyl (OH) group on the other (Figure
3.5b) [239]. A negative dipole is located at each oxygen atom. Due to the poly-
chains, polypropylene glycol has a longer chain in comparison to diethylene glycol.
It is assumed that polypropylene glycol shows an advantageous lubricating effect in
comparison to diethylene glycol.

Figure 3.5: a: Diethylene glycol used in F09
b: Polypropylene glycol used in F10
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4 Evaluation approaches

Content of this chapter is related to the publications [9, 98, 11, 10, 12].

The following approaches are used to distinguish between test fluids in extended
TTTs:

1. Torque means are calculated following [98] and differences are statistically
analyzed using two-sided t-tests abbreviated as norm-TT-means.

2. AE signals are analyzed in time-frequency domain after CWT and k-means
clustering following [9] abbreviated as clust-CWT-AE-energy.

3. AE signals are analyzed in time domain. Feature extraction and fluid classifi-
cation are realized using CNN [10] abbreviated as raw-AE-CNN.

4. Transfer Learning is applied from dataset 2019 to dataset 2016 using AE sig-
nals in time-frequency domain after STFT [12] abbreviated as STFT-AE-TL.

In Figure 4.1, the approaches no. 1 to 3 are applied on relevant data for one
exemplary thread. In Figure 4.1a, raw data of tapping torque values are shown. At
the beginning of the thread (blue arrow), measurement values nearly start at 0 Nm.
Then, torque increases until all forming lobes of the tap are cut in (orange arrow). In
the following plateau-region, torque values nearly remain constant until the end of
thread (grey arrow). Reaching the demanded end of thread, tap rotation is stopped
and turned so that the tap gets out of thread. This so-called reverse process is not
recorded by the tribometer. For the first approach due to [98], tapping torque mean
values are calculated from the plateau-region.

In Figure 4.1b, raw data of AE signals in time domain are shown. The arrows in
this figure point at corresponding events in time as in the previous figure. The
measurements are stopped manually and AE recording is started before the tap
reaches the test platform. Forward and reverse process are recorded. In the forward
process where elastic and plastic deformation takes places, the amplitudes are higher
than in the reverse process. In the reverse process, mainly friction between tap and
workpiece material generates low amplitudes. These values are used in the third
approach developed and tested in [10].

In Figure 4.1c, AE data after CWT are shown. Lower amplitudes are mapped in
dark blue and higher amplitudes are mapped in yellow. The positions of the three
colored arrows correspond to the arrows in the figures above. The arrival of the tap
at the pilot hole surface (blue arrow) is indicated by an higher amplitude in half
of the measured frequency range. The same applies to the back turn of the tap at
the beginning of the reverse process (after grey arrow). The sum of AE energy in
significant frequency ranges is used in the second approach.
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Figure 4.1: Connection between tapping torque and AE [11]
a: Raw data of tapping torque with marked plateau region
b: Raw data of AE measurement in time domain
c: AE signals after CWT in time-frequency domain

4.1 Tapping Torque Test according to ASTM D5619

Content of this section is from contribution [98] published in 2019. At the time of
publication, the recent standard for performing TTTs was the withdrawn ASTM
D5619-00 of 2000. In the meantime, the standard ASTM D5619-00 for comparison
of MWFs has been replaced by ASTM D8288-19 in 2019. The summary at the end
of this section briefly describes the changes between the version discussed here and
the new version.

Key points of the standard are described in the first subsection so that the reader is
able to understand the consequences of existing definitions and the lack of necessary
definitions.To highlight the necessity for improvements of the withdrawn standard,
the problems are summarized in a critical evaluation in the second subsection. In the
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following subsections, experiments’ description, results, and conclusions concerning
the performed basic research in [98] are given in detail.

4.1.1 Key points of ASTM

The TTT is described as more accurate than previously available laboratory scale
tests to predict the performance of MWFs [240]. The aim is to find the best suitable
fluid for a specific application i.e. a specific material pair combination. Threads are
cut by taps into pre-drilled and pre-reamed holes while lubricating the contact zone
between tap and hole wall by a MWF. The required torque to cut a thread is
recorded and serves as the main feature to evaluate the test fluid in comparison to
a reference fluid. As defined in ASTM D5619, only measurement values from the
plateau region (Figure 4.2) of each thread have to be taken into account for mean
calculation. The lower the tapping torque mean, the higher the test fluid’s lubricity
for the tested material pair combination.

Figure 4.2: Plateau region from 6 to 27 mm of an exemplary torque measurement
in AlMgSi1 [98]

The final resulting characteristic value of a test fluid is the tapping torque efficiency
TTeff describing the quotient of reference fluid and test fluid as [240]

TT eff [%] = 100×Mref/Mtest (4.1)

with Mref denoting the mean of the reference condition and Mtest the mean of the
test condition.

Different taps and different workpiece materials can be used for TTTs. Each material
pair combination can result in another best suitable MWF. Test results strongly
depend on the chosen experimental design. To achieve results with best significance
and best transferability into practice, it is recommended to use the same material
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pair combination in the TTT as it is used in the real application [116]. To exploit
this main advantage of high flexibility of TTTs, workpiece and cutting materials are
not bindingly defined in ASTM D5619 as well as machining speeds and fluid types.

The ASTM D5619 prescribes a running-in and a qualification process for the taps
to be used for TTTs. New taps have to finish their running-in phase first, then to
be checked as qualified before using them for TTTs [240]. The necessity to run-in
new taps is established to achieve characteristic built-up edges on the tap. The
term built-up edge is given by ASTM to describe a characteristic wear state of the
used tap. These specific built-up edges are built on the cutting edges of the tap
and belong to the chosen test condition of tap and workpiece material, fluid, and
machining speed. How these built-up edges should be examined (microscopic wear
images, torque, or...) to obtain equal initial conditions is not described in ASTM
D5619.

The test conditions of running-in are not defined. It has to be assumed that they
match with those of the tap qualification process directly following the running-in.
Thus, the running-in of the tap would simultaneous be the qualification process. The
tap qualification is recommended to be performed in a 1215 steel alloy - regardless
in which material the test run later will be performed. The built-up edge on the tap
will be characteristic for cutting 1215 steel alloy using the reference fluid. The fluid
to be chosen as reference fluid should not contain surface activating additives and
should produce minimal built-up edges [240].

In the tap qualification process, five threads are performed. The standard deviation
is calculated according to the usual formula as

stddx =

√∑
(x− x)2

n− 1
(4.2)

with x denoting a single measurement value, x the sample mean, and n the sample
size.

The allowed standard deviation of the mean of each tap is ± 2 %. The allowed
difference between the mean of the reference tap and the mean of another tap is ±
2 %. Concluding, the mean of the other tap has to lie in between the lower and
upper 2 % bounds of the reference tap. Taps not fitting into this requirement have
to be discarded leading to high test effort and high tool costs.

After running-in and tap qualification, the test sequence can begin. At this point, it
is unclear if the reference fluid should be used in the same workpiece material before
using the test fluid or if the reference fluid is only tested in 1215 steel. Additionally,
it is not defined if regular reference measurements shall be performed between test
runs to monitor proceeding tool wear.
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The test fluid is measured for five threads. To calculate the test fluid’s mean, only
values of the last three threads are taken into account [240]. Possible carryover effects
of the previously used fluid are so taken into account by two threads. Reducing the
amount of values contributing to the mean implies a higher standard deviation and
worse statistical differentiability between test fluids.

4.1.2 Critical evaluation

This contribution focuses on a critical evaluation of the conduction and evaluation of
TTTs exclusively according to [240]. The ASTM D5619 provides many opportunities
to choose different workpiece materials, reference fluids, or manufacturers for tapping
tools. Recommendations for suitable reference fluids and the number of replicates
are given. A tap qualification process (2 % deviation) and an initial criterion (built-
up edge) are defined. Evaluation criteria for the built-up edge are not detailed.
Based on experimental experience, questions concerning the test conduction and
some problems with definitions of ASTM D5619 appear. These are not clearly
defined and should be more detailed to obtain unambiguous and repeatable test
results. The following points need to be improved:

1. The completion of a running-in phase is required before starting tests with
new taps. The running-in phase is finished when a characteristic built-up edge
has been built belonging to the specific type of tool and the specific fluid
used for running-in. Technical utilities to be used to evaluate built-up edges
(optical microscope for wear inspection, TTT rig for torque monitoring) are
not described. A systematic procedure to clearly identify the end of running-in
of a new tap is not explained.

2. For tap qualification, the use of a SAE 1215 carbon steel alloy is recommended.
Although the test method allows tests on other workpiece materials, the taps
should all be qualified on the same workpiece material. It should be noted
that not every tool has been developed for machining of SAE 1215 steel and
is possibly not suitable for this material. The workpiece material could cause
premature tool damage or the tool would even get stuck in the thread. As con-
sequence, misleading conclusions may occur when using workpiece materials
not recommended by tool manufacturers.

3. For qualified taps, a 2 % deviation of the means is allowed. This feature has to
be checked only during the tap qualification procedure by using the reference
fluid. Over the whole life of the tap, wear proceeds and the tap possibly does
not fulfill the qualification definition further. Regular reference measurements
to monitor the tool’s condition are not recommended. A criteria for the end
of tool life is not defined.
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4. Taps not fulfilling the recommended 2 % deviation are not qualified for TTTs
and have to be sorted out into appropriate qualified groups. Taps within
one group are comparable with each other. Taps between groups are not
comparable with each other. This recommendation increases experimental
costs because many taps are needed.

5. A strong effect of the workpiece material’s quality on the measurement results
is described. A procedure to qualify test platforms is not proposed. The
material composition of test platforms may significantly affect repeatability
and comparability of measurement results. This makes the development of a
data base containing directly comparable TTT results impossible. A reference
value valid for a specific material pair combination is missing that could be
used to normalize mean torques and to ensure comparability of test data.

6. Neither a special tool type or tool coating nor a geometry of flutes/grooves
and edges are recommended. Uncoated tools have higher resolving power
than coated tools so fluids can more often be distinguished using uncoated
tools than using coated tools [112]. High performance coatings can mask the
fluid’s performance so that uncoated tools seems more suitable than coated
tools. The aim of TTTs is to replicate field conditions as good as possible.
Coated tools are used in field applications. Using only uncoated tools reduces
the transferability into practice.

7. The number of threads per fluid is set to five. For the test run, the mean
torques of the first two threads are not included in the calculation of the over-
all fluid’s mean. The fluid’s mean and its standard deviation are based on three
measurements. This small number of measurements leads to high standard de-
viations, wide confidence intervals, and finally to non-suitable differentiability
of test fluids.

8. Carryover effects of previously measured fluids can affect the following test
run. By taking these effects into account, the first two of five single mea-
surements are discarded and the mean torque is calculated for the last three
measurements. Depending on reactions of the previously measured fluid with
the tool’s surface, two threads could be insufficient to eliminate carryover ef-
fects, especially when thread depth is not defined.

As illustrated, several problems with the current test procedure occur based on
reasonable considerations as well as on practical experiences. The existing regu-
lations lead to high tooling costs, not clearly defined initial test conditions, bad
comparability between test fluids over the whole tap life, possible not significant dif-
ferentiability between test fluids, and less transferability into practice. These points
could be avoided or significantly improved.

In this paper, first experimental results of TTTs are presented and statistically
validated. The aim is not to find a best suitable fluid for a specific application but
to improve the standard’s test procedure and the evaluation of test results. Second,
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suggestions are developed to overcome problems due to quality differences of taps,
proceeding wear, fluid carryover effects, and statistical significance of test results.
Third, comparisons based on statistical tests are made between the recent regulation
and two new approaches to show the effectiveness of the suggested changes.

4.1.3 Experiments for research on test procedure

Figure 4.3: Test rig and tools [98]
a: Tapping machine, tapping tool, pre-drilled test platform and
cleaning station used for TTTs (Rhenus Lub)
b: Different tapping tools for thread forming used in the tests

Table 4.1: Used test materials and parameters for TTT conduction
and evaluation acc. to [98]

Parameter AlMgSi1 C45E AlSi7Mg

Hole diameter [mm] 5.6 H7 5.6 H7 5.6 H7
Hole depth [mm] 31.3 31.3 26.5
Forming speed [m/min] 25 20 20
Water hardness [◦dH] 0 0 0
Fluid volume per thread [ml] ≈ 0.8 ≈ 0.8 ≈ 0.6
Tapping depth [mm] 27.3 27.3 24.3
Evaluated thread length [mm] 6-27 6-27 4-24
Sample rate [Hz] 500 500 500

The experimental test rig partly shown in Figure 4.3a consists of a tribometer
(Tauro R©120, Taurox e. K., Germany), test platform, tapping tool for thread form-
ing, different test fluids, and a cleaning station with brushes and air blow system to
remove chips and fluid residues. In the present tests, no rigid tapping is used. The
spindle is fixed at a weight compensated suspension. During threading, the spindle
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Table 4.2: Characteristics of used forming taps [98]

Tap Specification acc. to DIN 371, form C and DIN 2174

A Without grooves, entry taper 3 pitches, 10 mm thread length,
4-polygon form, HSS-E, multi layer coated, M6

B Five grooves, entry taper 3 pitches, 17 mm thread length,
5-polygon form, HSS-E-PM, TiCN coated, M6

C Five grooves, entry taper 3 pitches, 17 mm thread length,
5-polygon form, HSS-E, TiCN coated, M6

is turned into the nut blank through the thread flanks of the tap. The axial force
only works at the entry taper until the first thread flanks have caught material.

In Table 4.1, materials and test parameters are listed. The displayed forming speeds
are recommended by the tool manufacturer for his tap and the concerned workpiece
material.

Although fluids could be easier distinguished using uncoated tools in TTTs [112],
coated tools are chosen for the experiments (Table 4.2, Figure 4.3b). In practice,
coated tools are often preferred because higher speeds and longer tool life can be
achieved. Uncoated tools lead to early tool failure in comparison to coated tools
[111]. Another disadvantage of uncoated tools is that they may entail higher material
adhesion and wear. The use of uncoated tools can lead to a shortened steady-
state wear phase in comparison to coated tools. Less test measurements could
be performed with one tool leading to a higher number of tools to be acquired
and qualified. In this contribution, tapping of AlMgSi1, C45E, and AlSi7Mg is
investigated. It is assumed that the micro-structure of these materials complies
with those of standard applications and is homogenous. Similar alloys have been
tapped in other researches [83, 111, 241, 5, 242].

The contents of the used workpiece materials are listed in Table 4.3. Each test
platform has pre-drilled and pre-reamed holes with 5.6 H7 mm diameter suitable
for M6 forming taps. Platforms made of AlMgSi1 and C45E have 368 holes in 23
columns of 16 holes (Figure 4.4) and platforms made of AlSi7Mg have 112 holes in 8
columns of 14 holes. The machining table of the tribometer is programmed in such
a way that the threads are machined column by column from back to front.

The pre-hole diameter has a significant impact on tapping torque and thread geom-
etry [111, 243]. It is assumed that the given H7 tolerance ensures a comparability
between the holes and hence between the test results. Before testing, the holes are
proven by a GO/NO GO pin gauge. The maximum thread depth of the forming
process is limited either by the depth of the pre-hole (AlSi7Mg) or by the length of
the tapping tool up to its wider shaft (AlMgSi1, C45E). Before testing, platforms
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Table 4.3: Alloying elements of the used workpiece materials in % [98]

Alloy/Element C Si Mn P S Cr Ni Cu

C45E 0.444 0.232 0.683 0.014 0.005 0.016 0.005 0.008

Al Nb Mo V Ti

C45E 0.03 0.002 0.001 0.001 0.001

Si Fe Cu Mn Mg Cr Zn Ti

AlMgSi1 1.2 0.16 0.07 0.63 0.7 0.01 0.01 0.01

AlSi7Mg 7.0 0.45 0.15 0.35 0.5 - 0.15 0.2

Sn Ni Pb

AlSi7Mg 0.05 0.15 0.15

are cleaned in an ultrasonic bath for 15 min. using a cleaning solvent (1:1 mixture
of naphta and isopropyl alcohol) and dried in a drying oven at 50 ◦C for 15 min..
New taps are cleaned by repeated washing and wiping steps using the same solvent
mixture before using them for the first thread.

Due to the automatic program of the tribometer, the tap is automatically cleaned in
the cleaning station after every thread before the tapping process proceeds with the
next hole. To determine the mean of a single thread, the plateau region (Figure 4.2)
of the torque curve is chosen [240, 112, 42]. The values of the single measurement
curves are not filtered or smoothed as can be seen in Figure 4.2. Mean and standard
deviation of a single thread (Equation 4.2) are calculated by the software of the
tribometer according to the chosen definition range. Details about the used materials
and fluids used are given in the diagrams and figure captions.

4.1.4 Results about running-in

According to ASTM D5619, a cutting tap is finally broken-in when a characteristic
built-up edge has been formed by cutting threads using a reference fluid. The
appropriate term to built-up edge is adhered layer on the forming lobes. This term
does not specify if hard material or a chemical layer has occurred.The term a broken-
in tap means that the tap has finished its running-in phase. After the tap is broken-
in, a nearly stationary phase follows in which wear and resulting mean torque are
quasi constant.

The evaluation of built-up edges requires special equipment such as magnifiers or
microscopes and high expertise by the operator. To continuously control the edges
consumes time and increases measurement costs. To facilitate the determination
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Figure 4.4: Order of pilot holes and tapping scheme of a typical
Tauro R©test platform

of a broken-in tap, it is proposed to use the same features as are already used for
the final test procedure i.e. mean torques. Derived from the specific order of pre-
holes on the test platform (Figure 4.4, k number of holes per column), the following
criterion for a broken-in tap at thread number i is proposed

|M i+k-1 −M i | < stddMi (4.3)

with Mi denoting the torque for thread number i, k the number of threads per series
(k=16 for AlMgSi1 and C45E), and stddMi the standard deviation of the mean torque
of thread number i. In the stationary phase, single outliers are tolerated.

The criterion is used to characterize the end of running-in phases of taps. The
fulfillment of this criterion is exemplary shown for taps A-9 and B-4 in Figure
4.5a. For tap A-9, the criterion is fulfilled beginning from thread number 15. For
tap B-4, Equation 4.3 is always fulfilled. The assumption arises that tap type B
shows a shorter running-in phase because of higher production accuracy or additional
downstream production steps.

In Figure 4.5b, Equation 4.3 is applied to the measurement values of every tap to
find the end of their running-in phases. Thread numbers fulfilling Equation 4.3 for
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Figure 4.5: Running-in behavior of different taps [98]
a: Running-in behavior of two different tap types in AlMgSi1
b: Determination of broken-in taps by mean torques.

the first time are marked by black boxes. Different lengths of running-in phases
are observed for taps of type A: The running-in ends between thread no. 7 and
22. A correlation between k-value and the length of running-in phase can not be
recognized. A conclusion if the fluid affects the running-in behavior can not be
drawn from Figure 4.5b. As a consequence, the need for a running-in and the length
of the running-in depends on the tap and has to be investigated in each specific case
before performing TTTs.

4.1.5 Results about tap type

Subsequently, the running-in behavior of two different tapping tools is exemplary
investigated. In Figure 4.6a, the mean torques of the first 32 threads of tap types A
and B in AlMgSi1 are shown. Taps A-1, A-2, and A-3 as well as taps A-7 and A-9
as well as taps B-2, B-3, and B-4 are used on the same test platforms and with the
same fluids so a comparison between tools of the same group is possible.
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Figure 4.6: Comparison of running-in phases of different tap types [98]
a: Tap type A and B in AlMgSi1
b: Various taps of type B in AlMgSi1 (B-1 to B-4) and C45E (B-11)

The mean torques of tap type A start at around 2.4 Nm. Increasing the thread
number leads to a decreasing tapping torque until a steady-state is reached. A
running-in process can be detected. Taps of type B generally need a higher torque
for the threading process than taps of type A. For tap type B, a running-in phase
cannot be detected.

The strong impact of the tap type on the torque level can also be recognized by
comparing measurements of A-7 with A-9 (dotted lines) and taps of type B with
each other (Figure 4.6a). The slope of the mean torque can vary although the
same tap type and the same fluid are used. The example depicted in Figure 4.6a
can be used to explain tap qualification. The tap qualification process prescribes a
maximum allowed deviation of 2 % between taps. The allowed 2 % tolerance range
is applied to taps of type A and B and are listed in Table 4.4.

Taps A-1, A-2 and A-3 are in one group, A-7 and A-9, and B-2, B-3, and B-4. For
each reference tap, lower and upper bound are noted. By comparing the means with
the lower and upper bound of the reference tap, it is checked if the means are within
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the range. Tap A-1 is within the range of A-2 and a qualified tap. Tap A-3 is out
of the range of A-2 and is evaluated as disqualified. The mean of A-9 is out of the
range of A-7. Taps B-3 and B-4 are out of range of B-2. Following the criterion
for tap qualification defined by ASTM D5619, only one tap would be qualified and
four of eight taps of three different groups have to be discarded. Therefore, the
defined 2 % range has a strong impact on experimental costs. Quantifying torque
tolerances for each tap type and conducting significance tests to statistically evaluate
the differences between taps could be more economic than testing a very high number
of taps. Changing the equation of tapping torque efficiency (Equation 4.5) would
be efficient by implementing a normalization factor that is calculated from means
obtained during tap qualification. An equation for this purpose is introduced in
Section 4.1.7.

Table 4.4: Applying the 2 % tolerance range for tap qualification [98]

Tap Mean [Nm] Lower 2 % bound [Nm] Upper 2 % bound [Nm]

A-1 1.296 qualified
A-2 1.317 1.291 1.343
A-3 1.408 disqualified

A-7 1.658 1.628 1.691
A-9 1.433 disqualified

B-2 3.173 3.110 3.236
B-3 3.049 disqualified
B-4 3.376 disqualified

4.1.6 Results about workpiece materials

From Figure 4.6b, conclusions can be drawn regarding the effect of two different
workpiece materials on the tapping torque level. The effect of workpiece material
on the running-in behavior has been investigated for tap type B. Taps B-1 to B-4
are used in AlMgSi1 and tap B-11 in C45E. Taps B-1 to B-4 are broken-in from
the first thread on whereas B-11 is broken-in after eight threads. The workpiece
material may significantly affect the running-in phase of a tap.

Tap B-1 (dotted line) was used in another platform than taps B-2, B-3, and B-4.
The torque level of B-1 is higher than those of B-2 to B-4 so an effect of platforms of
the same workpiece material can be assumed. Summarizing, different platforms of
the same material can influence the level of mean torque and the workpiece material
can affect the running-in phase of the taps.
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Figure 4.7: Regular reference measurements in AlMgSi1 for checking and
monitoring the reference value [98]

4.1.7 Reference measurements

The test procedure of ASTM D5619 does neither consider nor recommend regular
reference measurements. Regular reference measurements will be important if one
tap is used for many test series with different MWFs and/or on different test plat-
forms. The introduction of a theoretical reference value at test series no. i will be
the basic of comparable measurement values when performing many test series with
the same tap. To show the importance and necessity of regular reference measure-
ments, experimental tests are performed (Figure 4.7). Taps A-10 to A-13 are used
in AlMgSi1 platforms to investigate the development of reference measurements up
to 288 threads. After tap’s running-in, the reference values slightly increase. Ex-
emplary, for tap A-11 the reference value starts at about 1.7 Nm (thread no. 64),
increases steadily and exceeds 2.0 Nm at thread no. 264. Applying Equation 4.1
to a fictitious test mean of 1.9 Nm, the tapping torque efficiency could vary be-
tween 89 % (1.7 Nm as reference value) and 105 % (2.0 Nm as reference value).
For correct efficiency calculations, the operator has to know the recent reference
value corresponding to the recent test measurement. As a consequence, not check-
ing the reference value in regular measurements could result in wrong test results
and misinterpretations.

A verification of the reference value before and after each test measurement, would
lead to immense experimental effort and costs. To get a sufficient approximation
to a real reference value, the following procedure is proposed: performing reference
measurements before and latest after every sixth test run. This means after the
first/beginning reference series, up to six test series are performed. The seventh
series is again a reference series. From each series, a mean is calculated representing
the measurement value of each series. Between the beginning and end reference
value, a linear slope is assumed so that a linear interpolation between these values
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is used to established a corresponding theoretical reference value of each test mea-
surement. This theoretical reference value is introduced to deal with tap wear over
the whole life of the tap.

The theoretical mean reference is calculated as

Mref,i = Mref,α + (Mref,ω −Mref,α)× (zi − zα)/(zω − zα), (4.4)

with Mref,i denoting the theoretical mean reference at test series no. i, Mref,α the
measured mean reference before the test series, Mref,ω the measured mean reference
after the test series, zi the test series no. i to be compared with the reference, zα
the number of reference measurement before the test series, and zω the number of
reference measurement after the test series.

As a result, the tapping torque efficiency is calculated as

TTTeff,i[%] = 100×Mref,i/Mi. (4.5)

Considering the equations for the theoretical reference value and the normalized
tapping torque efficiency, it is possible to compare the measurement obtained at
thread no. 40 with the measurement obtained at thread no. 200. For illustration,
measurement values of A-11 are given in Table 4.5. Tapping torque efficiencies
calculated according to Equation 4.1 (ASTM D5619) significantly vary in comparison
to the results obtained by the new Equations 4.4 and 4.5. For Lub 3 in Table 4.5,
tapping torque efficiencies range from 110 % to 118 %. These experimental results
show that monitoring of the reference value and normalization of the measurements
values are required.

In some cases, the comparison of mean torques is expedient, especially when com-
paring test results of different fluids statistically. For this issue, the introduction
of an overall reference value valid for all tools and platforms of the same material
combination becomes necessary. To use only normalized and thus comparable data,
the equation

Mi,norm = Mref,fix ×Mi/Mref,i (4.6)

for calculation of normalized mean torques Mi,norm is proposed, with Mref,fix denoting
a fixed and overall reference value valid for the combination of the same tool type,
same platform alloy, and same reference fluid. The normalized mean torque Mi,norm is
similar to the value of average tapping torque corrected introduced in [103] because of
differences between taps of the same type. Adjustment and normalization according
to Equations 4.4, 4.5, and 4.6 makes comparisons between test results obtained with
different tools and platforms of the same material combination possible. Discarding
of taps or platforms becomes redundant.

Summarizing the conclusions from Figure 4.7 and from the derived equations, regular
reference measurements are indispensable for comparable tapping torque results and
can be used to eliminate the effect of changed tools and platforms by applying the
developed equations.
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Table 4.5: Measured data of A-11 normalized acc. to ASTM and Equation 4.5 [98]

Series i Fluid Mi Mref,i TTTeff,i TTTeff acc. to ASTM

5 Reference 1.673 1.673 100 100
6 Lub 1 1.825 1.825 94 92
7 Lub 2 1.722 1.722 102 97
8 Lub 3 1.523 1.802 118 110
9 Reference 1.845 1.845 100 -

4.1.8 Results about carryover effects

Carryover effects due to an impact of the previously used fluid on the tap’s surface
can cause variability in the first test results with the following fluid. This effect is
considered in ASTM D5619 and leads to an elimination of the first two measurement
values of the following fluid. Other researchers met the risk of carryover effects by
using the reference fluid for one thread before each test run [116].

To investigate carryover effects, tap B-4 was used with three different test fluids in
AlMgSi1 (Figure 4.8a). The abscissa is divided in steps of 16 threads equivalent to
the number of holes per series on the test platform. Linear trend lines numerically
determined show the slope of tapping torque per series. From thread 1 to 96, a slow
falling tendency can be detected for B-4 and reference fluid F2.

Using F12 in the same concentration leads to an increase in tapping torque. The
series of F12 itself has a slightly decreasing tendency as well as the following mea-
surement with F11. The measurement with F11 starts at a slightly lower value in
comparison to F12. The end reference measurement with F2 starts at a significant
higher value than the last measurement of the first reference series. Torque decreases
to a similar value as of the first reference measurement. A carryover effect resulting
from the fluid change can be detected. The test results are interpreted as follows:
Fluid F11 shows a better lubricity than F12. The reference fluid lubricates better
than F12.

The carryover effect can be recognized for tap type C in AlSi7Mg (Figure 4.8b).
In this figure, the gradients of the trend lines are added to examine the carryover
effect. From Lub K to Lub P, a decreasing tendency per series of seven threads can
be detected (14 holes per column on AlSi7Mg-platform). An increasing tendency
is detectable for Lub U. Carryover effects differently influence the following mea-
surement series. Taking the gradient of the trend lines as a feature to evaluate the
effect of the previously used fluid, Lub M (lower gradient) is not affected to the same
extent by Lub L as Lub L (higher gradient) is affected by Lub K.

Most of the measurement values level off only for the last three or four values (Lub
M, O, P, and U). For Lub K and L the values do not level off for the number of
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Figure 4.8: Torque slopes of different fluids [98]
a: Measurements of B-4 in AlMgSi1 to investigate carryover effects

from fluid to fluid
b: Test series and gradients of numerical trend lines for tap C-2

in AlSi7Mg

measured values. Concluding the experimental results, the carryover effect exceeds
the two threads defined in ASTM D5619. Possible reasons for the observed behavior
may be the existence of the tribological film built by the previously used fluid or the
formation of a characteristic adhered layer belonging to a specific test parameter
combination. Ignoring carryover effects leads to less statistical relevant effects and
misinterpretations.

4.1.9 Effect of the new methodology on the significance of test results

In the following, results of TTTs (Figure 4.9a) are statistically analyzed to show
the improvement of the new developed methodology by means of an improved sta-
tistical significance. The tests were conceived in such a way to be able to compare
the results of the standard methodology with the new developed methodology. A
reference fluid and the fluids Lub R, S, and T are tested at 10 % concentration in
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C45E. The fluid Lub T is also tested at 5 % concentration. The fluids significantly
vary in lubricating ingredients. Tapping Torque Tests are performed to show the
differences in lubricity for all fluids and for the higher concentration. The reference
measurements have similar torque levels and slopes (Ref 1 and Ref 2 in Figure 4.9a).
Significant differences between Ref 1 and Ref 2 are not expected.

Figure 4.9: Means and distribution of single measurements [98]
a: Raw data of exemplary measurement series in C45E

and subsequent significance tests
b: Distribution of a single tapping torque measurement

for Kolmogoroff-Smirnov test

Mean torques obtained by ASTM D5619 (approach named ASTM ) and by two im-
proved approaches are compared to show the necessity of considering a stronger
carryover effect and to increase the thread numbers per test run. In the first im-
proved approach ASTM-16, 16 threads are performed and the mean is calculated
from the last three threads. In the second improved approach RL-8-8, 16 threads
are performed and the mean is calculated from the last eight threads.

All means are statistically analyzed similar to the analysis in [112]. The torques from
the plateau area of the measurement are exemplary checked for normal distribution
applying the Kolmogoroff-Smirnov test (Figure 4.9b). For the significance test, the
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variances of the means are tested to be equal (F-test). Then, the means are analyzed
using a two-sided t-test [244] applying a confidence level of 95 % (α = 5 %) and 99
% (α = 1 %) to compare these with the resulting p-values.

Results obtained by ASTM D5619 and by the improved approach are given in Table
4.6. In both approaches, the number of contributing values is held constant to
investigate only carryover effects. Applying ASTM, a significant difference between
Ref 1 and Ref 2 and between Lub T5 and Lub T10 can be detected. Differences
between Lub S10 and T10 or Lub S10 and R10 are not obtained. In one of four
cases, approach ASTM provides sufficient test results. In comparison, approach
ASTM-16 gives sufficient results in all cases. Assuming a carryover effect for 15
threads instead of two threads leads to a better differentiability of test fluids in the
shown example.

Table 4.6: Results of significance test with α = 0.05.
Approach ASTM-16 achieves better results than ASTM. [98]

Compared fluids Difference
expected?

Result acc. to
ASTM

Result acc. to
ASTM-16

Ref 1 vs. Ref 2 no yes p=0.0012 no p=0.3064
Lub T5 vs. T10 yes yes p=0.0036 yes p=0.0172
Lub S10 vs. T10 yes no p=1.0000 yes p=0.0119
Lub S10 vs. R10 yes no p=0.4535 yes p=0.0034

Table 4.7: Results of significance test with α = 0.01.
Approach RL-8-8 achieves better results than ASTM-16. [98]

Compared fluids Difference
expected?

Result acc. to
ASTM-16

Result acc. to
RL-8-8

Ref 1 vs. Ref 2 no no p=0.4070 no p=0.9664
Lub T5 vs. T10 yes no p=0.0172 yes p=9.7E-5
Lub S10 vs. T10 yes no p=0.0118 yes p=0.0047
Lub S10 vs. R10 yes yes p=5.1E-6 yes p=0.0034

Results from Table 4.6 are based on a 95 % confidence level. To increase the reliabil-
ity of TTT results, the confidence level can be increased. A confidence level of 99 %
makes a differentiability more difficult so that approach RL-8-8 is applied to obtain
distinguishable test results further. New results obtained by approach ASTM-16
and by approach RL-8-8 at a 99 % confidence level are given in Table 4.7.

As a result of higher confidence level, the effectivity of approach ASTM-16 decreases
from four to two cases: A difference between Lub S10 and R10 can not be obtained
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anymore but a difference between the reference measurements Ref 1 and 2. The
improved approach RL-8-8 is successful in all four cases: Significant differences can
be detected between the two different concentrations of Lub T and between the
fluids Lub S10 and T10 or R10. The reference measurements are evaluated to be
statistically equal. Concluding, increasing the number of torque values contributing
to the mean leads to a better differentiability of test fluids especially for higher
confidence levels.

4.1.10 Summary and conclusions

Tapping Torque Tests are used to evaluate the performance of MWFs. The standard
ASTM D5619-00 has been withdrawn in 2016 and replaced by ASTM D8288-19 in
2019. In comparison, the test procedure of ASTM D8288-19 includes improvements
concerning regular reference measurements and tap qualification process. In [98],
carryover effects of the previously measured fluid have been recognized significantly
affecting the differentiability of test fluids. These have to be taken into account
by calculating torque mean values [98]. In ASTM D8288-19, carryover effects of
previously measured fluids or slowly but steadily proceeding tool wear are still not
considered. Better comparability or distinguishability between test fluids in com-
parison to ASTM D5619 is not provided by ASTM D8288.

Metalworking fluids have to be evaluated with a laboratory test transferable into
practice and flexible enough to reflect the numerous possibilities of tool material
and workpiece material combinations. In this section, problems with the last version
ASTM D5619 are discussed and improvements are proposed to increase comparabil-
ity and significance of test results for a new version. Content of this section does not
deal with the finding of the best suitable fluid for a specific application. Here, test
procedures and evaluation methods are focused. It is found out that the previously
fixed definitions lead to high experimental cost, no comparability between taps or
workpieces, and less significance of test results. In Section 2.2, tapping processes
used to evaluate the performance of MWFs and especially the used test procedures
and evaluation methods are reviewed.

The aim of the present investigations is to overcome the disadvantages discussed
and therefore to increase significance and comparability of TTT results obtained
with coated forming taps. To illustrate the real problems, as example three different
workpiece materials (AlMgSi1, C45E, and AlSi7Mg) are used to evaluate the effect
of tool, platform, or fluid changes on the test results. The running-in behavior of
two different forming taps is investigated. Strongly varying results are obtained for
the same tool-fluid-workpiece combination. A criterion to determine the end of a
tap’s running-in phase is proposed and exemplary applied for the tap qualification
defined in ASTM D5619. From the experimental results, it can be clearly concluded
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that the qualification criterion defined in ASTM D5619 is too strict and leads to an
high amount of disqualified taps.

The need for regular reference measurements is shown by appropriate tests over a
higher amount of threads. New definitions (equations) are introduced to normalize
the measurement values by the changed reference value. Concurrently, these new
equations meet the requirements to integrate disqualified taps into the test evalua-
tion. Applying the suggested definitions, the comparability of test results between
taps and platforms of the same material pair combination can be clearly enhanced.

The phenomenon of carryover effects when changing test fluids during a TTT is
investigated by applying statistical significance tests. For the chosen fluid sequence,
the carryover effect exceeds the two threads defined in ASTM D5619. The analysis of
different examination approaches shows that considering a stronger carryover effect
and increasing the number of threads per test series enhances the differentiability
between test fluids even by applying a higher confidence level. The results can be
summarized as follows:

1. The running-in phase has to be checked for each tap: Even taps of the same
material and type can have different running-in phases. The workpiece mate-
rial can also affect the running-in behavior. A criterion based on the measure
torque mean is introduced to identify the end of running-in. The optical ex-
amination of built-up edges or adhered layers becomes redundant and saves
time for test conduction. The starting condition for TTTs is clearly defined.

2. Regular reference measurements are indispensable for comparable TTTs: The
tap continuously wears off and the reference value changes over the increasing
number of TTTs. Test results are significantly affected and may lead to misin-
terpretations. Regular reference measurements lead to more reliable data and
comparable test results over the whole life time of the tool. The results show
that repetitive reference series after every sixth test series are necessary.

3. New calculation methods normalizing the measurement values by the theoret-
ical recent reference value are introduced. These equations make comparisons
between disqualified taps and workpieces of the same material possible al-
though such comparisons were not intended in ASTM D5619. Then, taps
being disqualified according to the allowed 2 % range can be used for TTTs.
Comparability is improved and costs for experiments are saved.

4. More threads have to be discarded because of carryover effects. The effect of
the previously used fluid on the following measurement result is stronger than
the two threads defined in ASTM D5619. Eight threads are evaluated to be
sufficient and reliable. Test fluids are easier to distinguish because of smaller
deviations of the contributing values. The usefulness of TTTs is significantly
improved.
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5. The thread number per test fluid has to be increased. The test procedure ac-
cording to ASTM D5619 leads to worse distinguishability between test fluids
because the mean calculation is only based on three single values. Increas-
ing the number of contributing values to eight leads to differentiability even
at higher confidence levels. Reliability and significance of TTT results are
increased.

6. Using the proposed test procedure and evaluation approach, coated tools can
be used for TTTs. Coated tools are used in field applications because of
better performance and longer tool life. The proposed changes lead to results
with smaller deviations and clearer differentiation options. As a result of the
improvements, it is possible to reflect field conditions more accurately.

For the core experiments in this dissertation, the knowledge of proceeding tool wear
is essential. Experiments in both datasets are performed with only one tap because
differences between taps even of the same type are significant (cf. Figure 4.6 in
Section 4.1.5). As will be described in Chapter 3, in dataset 2016 112 threads and
in dataset 2019 336 threads are performed. The aim of this work is to find differences
between MWF additives in an extended TTT. For this purpose, a variety of MWFs
is measured. Carryover effects can play a significant role in experiments of both
datasets (cf. Figure 4.8 in Section 4.1.8). For calculating torque means, effects of
tap wear and previously measured fluids have to be considered and their significance
has to be evaluated in each case.

4.1.11 Torque mean value calculation for datasets 2016 and 2019

In the first approach, normalized torque means for a statistical analysis are calcu-
lated as follows:

1. Means are calculated in the plateau region, i.e. between 6 and 27 mm as shown
in Figure 4.1a with orange and grey arrow.

2. With respect to carry over effects by the previously measured fluids, the slope
of the single means are depicted for one fluid. According to the recommenda-
tion in [98], first measurement values are excluded from the subsequent mean
calculation. Later, the remaining single means have to be normalized depend-
ing on the reference value.

3. Reference fluids are firstly treated like test fluids as described before. An
overall mean is calculated from the remained single means as described in
Section 4.1.7 by Equation 4.4.

4. The means of the reference fluid are used to normalize the means of the test
fluid. The equation for normalization has been described in Section 4.1.7 by
Equation 4.6.
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5. The normalized means of two test fluids are used for a statistical two-sided t-
test. P-values are calculated and compared with the error probability. If the p-
value is higher than the error probability, the examined means are statistically
equal.

Normalized tapping torque means and their standard deviations are graphically
shown in bar charts.

4.2 K-means clustering of Acoustic Emission energy

In parallel to each torque measurement, AE measurement is conducted. The mea-
surement is manually started and stopped and lasts about 5 s for each thread. At a
sampling rate of 4 MHz, this results in about 20 million data points for each mea-
surement. These data points in time-domain can be further processed to get a time-
frequency representation. Typical methods are here for example STFT and CWT.
By applying such transformation methods, raw data are divided into wavelets so
that a time-frequency representation is possible. An exemplary result of both trans-
formation methods is depicted in Figure 4.10. Raw signals containing two higher
magnitudes in quick succession and the related transformed signals using STFT or
CWT are shown.

The result of STFT (Figure 4.10b) is a so called spectrogram. Here, events in time
are not clearly detectable but frequency resolution is better. For Fourier Transfor-
mation, different parameters and window functions can be chosen. The result of
CWT (Figure 4.10c) is a so called scalogram: Events in time in higher frequency
bands are easier to detect. For wavelet transformation, different parameters and
wavelet functions can be chosen. The choice of parameters and functions depends
on the data and on the analytical goal. If data is recorded during an experiment for
the first time, the analytical goal is not clear. If frequencies or events in time are
more important, this will be found out during the investigation.

For the second approach, AE raw data are processed using CWT. The hypothesis
that tearing or thinning of lubricating film is characteristic for a certain lubricant
and results in AE events in time lead to this decision. After CWT, AE energies in
previously chosen frequency ranges are calculated. These energies are graphically
depicted as one data point for one thread in a dot chart. K-means clustering with
a 95 % confidence bound is applied on the data according to [9].

K-means clustering is a partitioning clustering method. Data is not viewed point
by point. Clusters are assigned at once for the whole dataset. Using k-means, the
number of clusters k is predefined. The goal is to divide data into clusters so that the
relative distance between all data points and their corresponding centroid is min-
imized. Although k-means algorithms can work differently due to implementation
ways, the general process is structured as follows [246]:
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Figure 4.10: Exemplary comparison of STFT and CWT result acc. to [245]
a: Raw signals
b: Time-frequency representation after STFT: Spectrogram
c: Time-frequency representation after CWT: Scalogram

1. Each data point is assigned to a random cluster.

2. Centers of clusters are determined.

3. Each data point is assigned to that cluster whose center it is closest to.

4. Steps 2 and 3 are repeated until the solution no longer changes.

How fast a stable solution is reached is significantly influenced by the start solution.
With usual cluster procedures, there is no evaluation of true or false. By clustering,
classes are discovered/found. In this thesis, clustering is used as a classification
method: The class of each data point is known from the experiment and can be
evaluated as true or false clustered point.

In literature, k-means algorithms are used for clustering of AE data for damage type
identification in composite material [247, 248, 249]. A health monitoring framework
for wind turbines using k-means clustering has been introduced in [250]. Wear
states in journal bearings were classified using an unsupervised k-means clustering
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algorithm in [205]. The AE burst signals of proceeding tool wear has been analyzed
by k-means clustering in [251].

The data points within the clusters are checked whether the true value really belongs
to this cluster or not. True clustered (TC) and false clustered (FC) data points are
counted for the accuracy calculation. The results can be presented in a confusion
matrix shown in Figure 4.11.

Figure 4.11: Principle of confusion matrices [252]
a: Confusion matrix of binary classification task
b: Confusion matrix of multi classification task

The choice of the relevant frequency bands acts as a prefilter. It could be neces-
sary to exclude certain frequency bands from the calculation of the AE energies.
Some frequencies could be influenced by dynamical effects. One example is the
distance between piezoelectric transducer and pilot hole. Initially, the distance is
wider because the measurement series starts at the rear end of the workpiece. With
proceeding measurement series, the distance becomes smaller. As shown in Figure
4.12, this effect is visible in AE energy of the higher frequency range 232 - 464 kHz.
For the last measurements of each series – when the process comes nearer to the
sensor (red) – the AE energy increases. This effect seems to be independent from
the used fluid. Compared to the AE energies in the other two frequency ranges, the
energy in this range is very small. Applying a k-means clustering approach on AE
energies from certain frequency ranges, this effect has to be considered.
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Figure 4.12: Influence of distance between sensor and thread in the range
of 232 - 464 kHz and related series on platform

4.3 Application of Convolutional Neural Network

This section and related subsections are published in [10, 12].

As a class of artificial neural networks, CNN is prevalent in various tasks as a type
of deep learning for processing data with grid patterns, such as images. The CNN
architectures are inspired and designed to automatically and adaptively learn spatial
hierarchies of features from low- to high-level pattern [217].

For deep neural network, so-called hyperparameters determine the neural network
structure and have to be defined by training. The choice of hyperparameters influ-
ences the results. For this reason, hyperparameter optimization, called tuning, is of
importance. Hyperparameters can be divided into those related to CNN architecture
and those related to training algorithm.

For CNN architecture, basic layers such as conv layers, pooling layers, and fc layers
are applied in the proposed models. Besides that, batch normalization (bnorm)
layers are added to speed up training and reduce network initialization sensitivity.
In addition, relu layers are used to increase the expression ability of neural network
model. Applying the relu function, inputs are converted to positive numbers, all
negative numbers are converted to zero and all positive numbers remain their value.
Furthermore, according to [253], dropout (drop) layers are employed in the proposed
models to reduce overfitting. This layer can improve generalization errors in CNN.
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4.3.1 Structure of optimization process

In Figure 4.13, the principle flow of the proposed CNN approaches is depicted.
Thread forming experiments are carried out using different MWFs. During these
experiments, AE signals are acquired for a subsequent use in CNNs. In datasets
2016 and 2019, a single measurement contains about 20 million data points. Due to
calculation time, the amount of data has to be reduced. Therefore, AE signals are
divided into samples and signals are selected.

According to the flowchart in Figure 4.13, hyperparameters have to be tuned next.
If hyperparameters are well tuned, the model could minimize a predefined loss func-
tion and give better results. As a large number of hyperparameters is needed to be
optimized, cross validation is applied for hyperparameter tuning. For one hyperpa-
rameter, different values are tried and the related performance is compared. For the
proposed CNN models, a systematic approach for hyperparameter tuning is used.
Several CNNs are trained differing only in the value of one hyperparameter. After
comparing the performance of these CNNs, the best setting is chosen. This opti-
mized setting is used for the future CNN. As a next step, another hyperparameter
is tuned and so on. In this way, the set of hyperparameters are optimized step by
step.

Figure 4.13: Flowchart of proposed CNN optimization loop acc. to [10]

4.3.2 Data segmentation

Data used for training and test of the CNNs in this work are i) AE raw data in
time domain ii) AE data after CWT and iii) AE data after STFT in time-frequency
domain. As already mentioned, one measurement contains about 20 million data
points which have to be reduced due to calculation time. To reduce the amount
of data for the CNN, signal selection and segmentation are necessary. In Figure
4.14, different segments of one AE measurement are displayed. From the raw signal
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in Figure 4.14a, three process phases can be recognized: air part, forward forming
process, and reverse process. From the technical point of view, more AE events
occur in the forward forming parts where elastic and plastic deformation take place.
Therefore, the forward part of each measurement is chosen for the calculations in
the CNN. In the measured raw signal, noise from the environment is included as has
been shown in Figure 4.1b.

Figure 4.14: Segmentation of raw data [11] a: One measurement b: One sample

Signal segments have not only be selected from one measurement. In dataset 2019,
certain measurements are selected from one measurement series. This will be de-
tailed in Section 4.3.4.

4.3.3 Dataset 2016

The AE signals acquired during threading are classified by CNN to check if the
fluids can be distinguished. The fluids have been introduced in Table 3.2 and the
measurement order has been listed in Table 3.3. The flowchart of this CNN ap-
proach is shown in Figure 4.13. Trial series 2 to 11 each contain eight threads. To
reduce the impact of carryover effects and the pre-hole location on the platform, four
measurements are chosen in the middle of each trial series. For example in series 2,
the measurement of threads no. 35 to 38 are chosen from the possible threads no.
33 to 40. Series 1 contains 32 measurements. For balancing the sample numbers in
every class, four threads are chosen from the middle of series no. 1.

A single measurement contains about 20 million data. For reduction of CNN cal-
culation time, the amount of data is reduced by segmentation. To maintain the
key points of each sample, data overlaps with adjacent samples. In this experiment,
different data (3400, 6800, 13600, and 27200 data for each sample) are used as CNN
input. After comparing the results, 13600 as best data/sample combination is cho-
sen as the CNN input. In order to maintain the key points of each sample, data



4.3 Application of Convolutional Neural Network 80

overlap with adjacent samples by factor 0.5. The comparison of one measurement
and one sample has already been given in Figure 4.14.

For the proposed CNN model, a systematic approach for hyperparameter tuning is
cross-validation between different sets of hyperparameters [254]. Hyperparameters
are tuned and optimized step by step. Since there are many tunable hyperparame-
ters, only those are examined that yield the best performance improvement. Values
of important hyperparameters are shown in Table 4.8.

Table 4.8: Hyperparameters of CNN for dataset 2016 [10]

Hyperparameter Value

Initial learning rate 0.01
Batch size 1380
Maximum number of epochs 40
Normalization factor 0.001
Drop probability 0.5
Receptive input size conv1 1 x 109 x 1
Receptive input size conv2 1 x 67 x 1
Receptive input size conv3 1 x 29 x 1
Receptive input size conv4 1 x 15 x 1

In Figure 4.15, the architecture of the proposed approach is shown. The layers of
this deep neural network are concatenating into a ’layer’-object which describes the
network’s architecture. It can be described as a 4-layer CNN because it consists of
four conv layers. Following [254], bnorm layers and one drop layer are integrated
into the model. As nonlinear activation function, relu function is chosen. For the
pooling layer, mpool function is elected. For classification, one fc layer and one
softmax layer are used. Softmax layers are involved in CNN to reduce calculation
time and avoid overfitting.

Figure 4.15: Architecture of CNN model applied on dataset 2016 acc. to [10]

4.3.4 Dataset 2019

A CNN model is used to distinguish between test fluids within one group listed in
Table 3.4. Signals of AE are analyzed in time domain.
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Each series consists of 16 measurements. With about 20 million data points for each
measurement, this means about 320 million data points for one series. Due to this
large amount of data, data has to be segmented and selected. In this case, each
series is divided into four parts
• Part 1: from the first to the fourth measurement (m01 - m04),
• Part 2: from the fifth to the eighth measurement (m05 - m08),
• Part 3: from the ninth to the twelfth measurement (m09 - m12), and
• Part 4: from the thirteenth to the sixteenth measurement (m13 - m16).

The first threads of each series could be effected by previously measured fluids [98].
Therefore, part 1 and part 2 are not chosen. Measurements in part 4 are very
near to the piezoelectric transducer. As it has been shown in Figure 4.12, these
measurements could contain additional features in specific frequency ranges that
could disturb the classification task. Thus, data of part 3 is selected.

Besides measurement selection for each series, specific data segments are additionally
selected in dataset 2019. From the technical point of view, more AE events occur
in the forward process than in the reverse process. In the forward process, elastic
and plastic deformation take place. The forward process is further segmented into
segments representing one round of the tap. The amount of data in this segment
can be calculated from the test parameters. The spindle speed is 1061 rpm, the tool
diameter is 6 mm and the tool pitch is 1 mm. For a sampling rate of 4 MHz, this
means that one tap round contains 226200 data points.

After the two prefiltering steps selection and segmentation, the remaining data rep-
resents the input into the CNN model. In the proposed CNN model, eight conv,
bnorm, relu, and pool layers are used. Aside from that, one drop, fc, and softmax
layer are implemented. To maintain the characteristic value of each sample, 0.5
overlap of adjacent samples is applied. Detailed architecture of the CNN used for
dataset 2019 is shown in Figure 4.16.

Figure 4.16: Architecture of CNN model applied on dataset 2019 acc. to [11]

For training of algorithm hyperparameters, optimizer selection is critical in CNN
as it is used to solve optimization problems by minimizing the function. Stochastic
gradient descent with momentum optimizer is employed. It combines advantages of
stochastic gradient descent and momentum and provide a boost to learning speed
[255]. Other hyperparameters related to model training are also tuned in the pro-
posed approach. These are for example initial learning rate, batch size, maximal
number of epochs, L2-regulation factor, drop probability, and kernel size. The result
of the optimized hyperparameters is shown in Table 4.9.



4.3 Application of Convolutional Neural Network 82

Table 4.9: Hyperparameters of CNN for dataset 2019 [11]

Hyperparameter Value

Optimizer SGDM
Initial learning rate 0.001
Batch size 1380
Maximum number of epochs 40
L2-regularization factor 0.0001
Drop probability 0.5
Kernel size conv1 1 x 109 x 1
Kernel size conv2 1 x 67 x 1
Kernel size conv3 1 x 57 x 1
Kernel size conv4 1 x 29 x 1
Kernel size conv5 1 x 15 x 1
Kernel size conv6 1 x 9 x 1
Kernel size conv7 1 x 5 x 1
Kernel size conv8 1 x 3 x 1

4.3.5 Transfer Learning between dataset 2016 and 2019

Content of this section is from [12, 256].

Transfer Learning is a machine learning method to adapt models developed for
a task for reusage as the starting point for a model on a second task [257]. In
addition that TL can train deep neural networks with comparatively little data,
it is also an optimization allowing rapid progress and improved performance to
model the second task. Models which are transferred to the second task could be
pre-trained outstanding models or models developed by users themselves. Many
research institutions release models developed on large and challenging datasets like
VGG-16, ResNet50, Inceptionv3, and EfficientNet etc.. It is an effective way by
selecting proper pre-trained models or parts of models and adapt or refine them to
the target task. Source data should be selected being related to the target dataset.
Then, a suitable model for the source dataset should be developed. Afterward, the
new model could be tuned and reused for the target dataset.

Transfer Learning is applied from dataset 2019 on dataset 2016. In both datasets,
the same workpiece material and the same tap type are used. Unlike previous work
[10, 11], where five or eleven MWFs are distinguished, for the developed TL approach
16 different types of MWFs are classified. Most of these MWFs belong to emulsions.
Two non-water miscible oil-based MWFs are also included.

In the procedure of classifying fluids of dataset 2019, a CNN-based model is de-
signed. For this classification approach, AE signals are previously transformed by
STFT. Images of spectrograms are the inputs to the CNN. The use of CWT and
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related scalograms revealed worse classification results. Hyperparameters are opti-
mized on dataset 2019. The model is trained and tested on dataset 2019. The best
configuration is chosen and the same model is applied on dataset 2016 to distinguish
fluids of this dataset.

Dataset 2019 contains more measurement series than dataset 2016. Besides, all AE
data in dataset 2019 are from water-based MWFs. In dataset 2016, water-based
and oil-based MWF are used. Furthermore, the series of measurements for each
MWF in dataset 2016 is more complicated than in dataset 2019. Data processing
in dataset 2016 is more complex than in dataset 2019. With respect to the above
considerations, dataset 2019 is chosen as source domain while dataset 2016 is the
target domain. Except for the reference fluid, 16 measurements are realized for other
MWFs in both experiments i.e. 16 samples can be used for training in each class.

Due to the fact that the temporal start and end of tapping are performed manually,
the tapping process can be divided into an air, a forward, and a reverse part as
shown in Figure 4.14a. In the air part, there are no usable AE data because the
tap is not in contact with the platform. For this reason, the data in this part are
removed as a pre-processing step. From a physical point of view, threads are mainly
formed in the forward part of the motion. Therefore, the relevant AE events occur
in this part.

The data processing procedure can be divided into data selection, segmentation,
transformation, and normalization. Due to the fact that the reference fluid is tested
more frequently than other fluids, only the data from the first series of the reference
fluid are selected in both experiments. Only the data from the front part of each
measurement are used. By selecting the data, the number of measurements in each
class is the same. The data used are divided into appropriate segments according
to the travel speed. To obtain the main characteristics of each sample, the data
of adjacent segments overlap. Therefore, after data segmentation, there are enough
samples in each class for the deep learning approach, even if fewer measurements
are used for each class in total.

By adjusting parameters in STFT, segments are transformed from time domain to
time-frequency domain. Spectrograms are generated. In Figure 4.17, one segment
spectrogram is shown. Finally, to get rid of a number of anomalies which make anal-
ysis of the data more complicated and to reduce database space, spectrograms are
normalized by Z-Score and Min-Max techniques. To get better results, parameters
in each step are optimized by exhaustive sweep algorithm.

For spectrogram-based distinction, a deep learning approach based on CNN is used.
Hyperparameters determining the network structure and variables determining how
the network is trained have significant impact on classification.

The structure of the proposed model considered for training is a basic CNN with
six conv layers denoted as Basic6. The first layer of the Basic6 model is the image
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Figure 4.17: Spectrogram of one segment [256]

input normalized by Min-Max. Every input is normalized in the range from 0 to
1. Feature extraction is done by six convolutional blocks containing conv layers,
bnorm layers, relu activation function layer. Pool layers are applied to extract the
biggest value of each feature map in between conv blocks. To prevent the model from
overfitting, three drop layers are used between conv layer 2 to 5. The classification
is realized by a fc layer which has as many neurons as class numbers and softmax
layer. Final classification results are presented in the output layer. All layers of the
Basic6 network are shown in Figure 4.18.

Hyperparameters tuning on training algorithm is time-consuming. Many hyperpa-
rameters have to be tuned like optimizer, minimum batch size, initial learn rate,
maximum epochs etc.. To define proper hyperparameters, exhaustive sweep and
Bayesian optimization techniques are applied for the proposed CNN model. First,
an exhaustive sweep algorithm is used to sweep all possible combinations of hyper-
parameters values. In this step, a rough overview about good parameter ranges is
obtained. Second, Bayesian optimization is applied to minimize the distance of the
evaluation feature from its optimal value by changing the initial hyperparameter
values in a given ranked sequence. After hyperparameter optimization, the best
value of every hyperparameter and the best combination have been determined.

Figure 4.18: Architecture of CNN model used for TL task acc. to [256]

Like data processing in dataset 2019, AE data in dataset 2016 are selected, seg-
mented, transformed, and normalized. The threading process of one thread consists
of 27 tap spins that can be divided into segments due to one tap round. Tap speed
in the first experiment is 1061 rpm while tap speed in the second experiment is
1000 rpm. Considering sampling rate for both experiments is 4 MHz, each round
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contains 226200 data in the first experiment while each round contains 240000 data
in the second experiment. When selected part (forward) of each measurement are
partitioned into segments, segment’s length is designed based on data number of
one tap round. As result, segment length in the second experiment is larger than in
the first experiment. To keep the main properties of each segment, overlap among
adjacent segments is needed. In dataset 2019 and 2016, the overlap among adjacent
segments is similar but not identical. Other parameters related to the processes of
data segmentation, STFT, and normalization are equal. In the data processing step,
parameters in each step are transferred from dataset 2019 to dataset 2016.

Besides different data in dataset 2019 and 2016, the task for both datasets is MWF
classification. A model of CNN is trained using dataset 2019. This model is then
transferred to dataset 2016. Hyperparameters related to network structure are equal
in both datasets. The classification task of dataset 2019 is the distinction of eleven
different MWFs. Consecutively, the class number in the last layer is eleven. In
dataset 2016, five different MWFs have to be classified so that the class number is
set to five. Briefly, the class number needs to be changed by transferring the model
from dataset 2019 to 2016. According to the subsettings of these two datasets,
transductive TL is applied. Although the last classes numbers are different, other
hyperparameters in the CNN model are the same. Transfer of hyperparameters is
realized in this approach.
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5 Test results

In this chapter, results of the different approaches applied on datasets 2016 and 2019
are presented. These results have in main parts been published in [9, 10, 11, 12].The
approaches have been described and explained in Chapter 4. Where necessary, some
additional information is given for understanding or scientific completeness issues.

5.1 Dataset 2016

During an extended TTT, tapping torque and AE signals are acquired. Threads are
formed in alloyed steel C45E using different MWFs. For dataset 2016, a reference
fluid (ReF), two emulsions (E1 and E2), and two oils (O1 and O2) are used for in
total 112 threads of 28 mm depth. Test order has already been introduced in Table
3.3. After completing the running-in of the tap, eight threads are tapped with each
test fluid. The aim is to differentiate between the test fluids of the same type but
with different phosphorus contents. As described in Section 2.1, phosphorus acts as
an AW additive during metalworking processes.

5.1.1 Tapping torque means for dataset 2016

As presented in Table 3.3, each test fluid has been measured in eight threading
operations. As there are only eight measurements per series, the carryover effects
which were found and published later in [98] are not considered for dataset 2016.
Single means are calculated from the plateau region of the thread from 7.5 to 28
mm thread depth. All single means are taken into account for the tapping torque
mean of one test fluid. After normalization according to [98] considering proceeding
tap wear, the normalized means are depicted with means of raw data in Figure 5.1.
Normalized means are depicted in yellow and raw means in blue. Additionally, test
fluids E1 and E2 and test fluids O1 and O2 are compared using a statistical two-
sided t-test. The results of the statistical test are shown in tabular form in the same
figure.

From Figure 5.1, the slope of the three ReF means is analyzed first. Fluid ReF
has been used in series 1, 6, and 11. Raw means show that ReF mean of series 6
is the highest one. The three means fluctuate by up to 0.024 Nm around a mean
of 3.101 Nm. In respect to the standard deviation of about 0.025 Nm for ReF,
this means that tool wear was rather low over the experiment. Tool wear remained
within a limited range during the entire test procedure. Based on this comparison
of ReF means, only a small change is expected for the means of test fluids after
normalization according to [98].
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Figure 5.1: Tapping torque means of dataset 2016 and results of significance test
with α = 0.05

Obviously, differences between means of oils (O1 and O2) and means of emulsions
(ReF, E1, and E2) are large. Oil means are about 2.8 Nm and emulsion means
greater than 3.1 Nm. Here, a statistical analysis is not necessary to recognize that
oils and emulsions can be detected by tapping torque. As next step, the normalized
means of E1 and E2 and of O1 and O2 are compared. E1 and E2 as well as O1
and O2 differ in their phosphorus contents. The statistical comparison is performed
using a two-sided t-test with a confidence level of 95 %. If p-values are obtained that
are smaller than the error probability, then the compared means are significantly
different [244]. The obtained p-values are listed in the table in Figure 5.1. The
probability of error is α = 0.05 for all cases.

For E1 and E2, series 2 with 3 and series 9 with 10 have to be compared. In both
cases, means are significantly different . For O1 and O2, series 4 with 5 and series
7 with 8 have to be compared. Here, two different results are obtained. In the
comparison of means of series 4 and 5, the p-value is 0.00263 and therefore just
smaller than the assumed error probability of 0.05. For series 7 and 8, p-value is
0.41 and therefore greater than 0.05. The test result is not reproducible for O1
and O2 and is apparently influenced by variables that have not yet been taken into
account.

A similar effect can be recognized for the means of E2 in series 3 and 9. The mean of
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series 9 is significantly lower than of series 3, presumably influenced by the previous
measurements with the oils. The measurements in series 6 with ReF have obviously
not been influenced by the measurements of the oils in series 4 and 5.

In conclusion, a carryover effect by previously measured fluids, is recognizable for
E1 and E2. Why torque means of emulsion ReF are less affected, could be related
to additional lubricating ingredients of ReF. As listed in Table 3.2, ReF contains
ester in addition to phosphorus. Only phosphorus containing emulsions could be
significantly influenced by previously measured oils. For better lubricating emul-
sions, this effect is no more noticeable. Those results could be good indicators for
the lubricating effect of esters in material C45E. At this point, the question could
be asked whether this reference fluid is suitable for monitoring tool wear in this
experimental design. This point will be taken up again in Section 5.1.4.

In summary, different phosphorus contents in emulsions can be distinguished by
tapping torque means. For lubricating oils, this is not reliably possible.

5.1.2 K-means clustering of Acoustic Emission energy for dataset 2016

In this section, k-means clustering is used as a statistical analyzing method for
distinction of different MWFs based on AE signals. For the test sequence introduced
in Table 3.3, it is checked if changes in the interaction of surfaces during frictional
contacts can be detected by means of AE. As has been shown in previous sections,
torque and AE have frequently used as features for tool condition monitoring.

Before clustering, raw signals of AE have been previously transformed by CWT. In
Figure 5.2, raw signals in time domain and AE energies in time–frequency domain
are depicted. From Figure 5.2a and b, it can be concluded that amplitudes are not
very significant and that measurements include much noise. In Figure 5.2c and d,
two central frequency ranges f2 = 115 kHz and f1 = 57 kHz can be recognized with
high energies (in yellow).

In Figure 5.3, torque means and sums of AE energies in the complete analyzable
frequency range are depicted for each thread. A high AE energy tends to go hand
in hand with a high torque. By AE energy, additional features can be obtained
that are not observed by torque. In particular, in trial series 1 AE energy decreases
which can be related to the running-in of the tap. In contrast, torque means remain
nearly constant. Additionally, several peaks in AE energy e.g. in trial series 6, 10,
and 11 are not recognizable in torque.

Torque and AE energy are clearly affected by the used MWF. Using lubricating
oils (O1 and O2), lower values are achieved for torque and AE energy. Using E1
and E2, increased torque and increased AE energy can be detected. Moreover,
lubricating oils show more similar results for their two trial series than the emulsions.
In comparison to E1, E2 can be related to increased values of torque and of AE
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Figure 5.2: Exemplary measurements [9]
a: Raw AE data of Emulsion 2
b: Raw AE data of Oil 1
c: Data of Emulsion 2 after CWT
d: Data of Oil 1 after CWT

energy. For emulsions, it is additionally recognizable that the reduction in torque
and AE energy after the use of lubricating oils is permanent. In trial series 9 and
10, lower torque means and lower AE energies are detected compared to trial series
2 and 3. Fluid ReF shows similar torque means over all trial series and torque seems
to be less affected by previously measured fluids. This fluid has significantly higher
AE energy in trial series 1 than in series 6 or 11. Probably, the running-in effect
of the tap is much more than the assumed 32 threads that have been recognized in
torque values. Acoustic Emission seems to be a more sensitive measurement feature
than torque.

To conclude, AE energy and torque seem to be both related to the tribological
interaction between tool and workpiece. Trends that are not apparent in torque are
possible to detect in AE energy. Differences between individual trials are reflected
to an greater extend by AE energy.

In this section, statistical analysis using k-means clustering is conducted to inves-
tigate the distinction of different MWFs using AE energies in dominant frequency
bands. Energies in two central frequencies f2 = 115 kHz and f1 = 57 kHz are used
as features. The single peaks in AE energy in series 6 and 10 are excluded from the
evaluation. In Figure 5.4, clustering results of different MWF trial series are shown.
The confidence bound is set to 95 %.

Results for E1 and E2 that are presented in Figure 5.4a and b are in good agreement
with known ground truth. The clusters are well separated in f2 (forward process)
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Figure 5.3: Torque means and sums of AE energy [9]

but are overlapping with respect to f1 (reverse process). Apparently, each process
phase is affected to a different degree. Using E1, a lower AE energy is observed in the
forward forming process than using E2. Emulsion E1 contains a higher concentration
of phosphorus leading to improved lubrication. As a result, higher lubricity leads
to lower AE signals. In contrast to the possible distinction of the emulsions, a
distinction of lubricating oils is not possible (cf. Figure 5.4c). The clusters can not
clearly be separated and are overlapping.

The results for different MWF types (E2, O1, and ReF) are provided in Figure
5.4d. The clusters are well separated and the data points are in good agreement
with known ground truth. This indicates a strong dependence of AE energy on the
MWF’s composition. Lower energy is detected using well lubricating oils, whereas
higher AE energy is related to oil-in-water emulsions. The reference fluid is located
in between because of its higher lubrication activity resulting from a small amount of
ester. That higher lubricity leads to lower AE signals, this is confirmed by the results
in Figure 5.4d. Lower AE energy is observed using O1 than using the oil-in-water
emulsions ReF or E2.

From the data points in Figure 5.4, the accuracy is calculated and listed in Table
5.1. Very high accuracies of 100 % and 93 % are achieved for E1 and E2. The
different phosphorus contents are detected as two different clusters using k-means
clustering at a 95 % confidence level. The different phosphorus contents in the two
lubricating oils cannot be distinguished. The accuracy is only about 50 %. The AE
energies of the three different MWFs ReF, E2, and O2 can be accurately clustered
with 96 %.

In cases of the three tested emulsions, the used clustering algorithm delivers a sat-
isfactory result. The emulsions with different compositions are clustered with 100
% accuracy for series 2 and 3 and with 93 % accuracy for series 9 and 10. For the
tested lubricating oils, the clustering approach is not successful.
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Figure 5.4: Clustering results for dataset 2016 [9]
a: Emulsion series 2 and 3
b: Emulsion series 9 and 10
c: Oil series 4 and 5
d: Different MWF types

Table 5.1: Accuracy of k-means clustering results for dataset 2016

Series TC FC Accuracy=TC/(TC+FC)

E1 and E2, series 2 and 3 16 0 100 %
E1 and E2, series 10 and 9 14 1 93 %
O1 and O2, series 4 and 5 8 8 50 %
ReF, E2, and O1 22 1 96 %
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5.1.3 Acoustic Emission signal classification in time-domain by CNN for
dataset 2016

Results in this subsection have been published in [10].

The third approach, application of CNN on AE raw data, is applied on dataset 2016.
Using data from eleven measurement series, it is the aim to classify five different
fluids: ReF, E1, E2, O1, and O2. The fluids have been described in Table 3.2. For
ReF, AE data is taken from series: 1, 6, and 11. For the other MWFs, AE data
comes from two different series listed in Table 3.3. The process of signal selection
and segmentation has been described in Section 4.3.3. By describing the results, the
following classification goals are aimed at:

1. rough sample division into three classes: ReF, water-based (E1, E2), and oil-
based (O1, O2). For ReF, data from series 1 is employed. For water-based
MWFs, AE data in series 2, 3, 9, and 10 are categorized into one class. For
oil-based MWFs, AE data in series 4, 5, 7, and 8 are categorized in one class.

2. sub-division of water-based MWF into two classes: E1 and E2. To distinguish
between E1 and E2, data acquired in series 2 and 10 are put in one class and
data gotten from series 3 and 9 are categorized in a second class.

3. sub-division of oil-based fluids into two classes: O1 and O2. To distinguish
between O1 and O2, data acquired in series 4 and 8 are put in one class and
data gotten from series 5 and 7 are categorized in a second class.

Table 5.2: Classification results for dataset 2016 and CNN approach acc. to [10]

Step MWF type Test accuracy [%]

1 2 3 4 5 Mean

1 ReF/Oil/ Emulsion 70.17 71.20 71.84 70.18 72.95 71.27

2 E1/ E2 80.71 78.47 79.09 81.00 79.87 79.83

3 O1/ O2 70.21 73.87 61.71 70.48 67.54 68.76

The results for the proposed CNN approach are given in Table 5.2. The following
conclusions can be drawn:

1. Test accuracies in all steps range from 61.71 to 81.00 %.
2. The lowest deviation between the five calculated test accuracies is in step 2,

the widest in step 3.
3. The highest mean test accuracy is reached in step 2 with 79.83 %.
4. Test accuracy in step 3 is the lowest with 68.76 % in average.
5. From the results of step 2 and step 3, the following assumption can be drawn:

E1 and E2 can be easier distinguished than O1 and O2. Concluding, water-
based MWF are easier to distinguish by the proposed CNN model than oil-
based MWF. This result is similar to the k-means clustering result.
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5.1.4 Summary and conclusions for dataset 2016

This section includes comparison and discussion of the results of all approaches for
dataset 2016. Furthermore, open or unresolved points will be taken up again.

Table 5.3: Ability of approaches to classify fluids in dataset 2016

Classification goal Norm-TT-
means

Clust-CWT-AE-
energy

Raw-AE-
CNN

ReF/Oil/Emulsion Yes (95 %) Yes (96 %) No (71.27 %)

E1/E2 Yes (95 %) Yes (100 %)/
No (93 %)

No (79.83 %)

O1/O2 Yes (95 %)/No No (50 %) No (68.76 %)

There were three classification goals: at a confidence level of 95 %, distinction i)
between ReF, lubricating oils, and emulsions, ii) between E1 and E2, and iii) between
O1 and O2. By the approach norm-TT-means, all three classification goals could
be reached but for oils, the distinction was only possible for one of two comparisons.
By approach clust-CWT-AE-energy, it was possible to distinguish between ReF, E2,
and O1 wit an accuracy of 96 %. The classification accuracy of emulsions was only
for one of two comparisons higher than 95 %. The distinction of oils was not possible.
By approach raw-AE-CNN, the classification goal of 95 % confidence level could not
be reached in any case. The highest accuracy was 79.83 % for the emulsions.

As a result for dataset 2016, the approaches norm-TT-means and clust-CWT-AE-
energy performed satisfactory. The results of raw-AE-CNN were not good. Possibly,
AE raw signals are not suitable for classification tasks or the proposed CNN archi-
tecture including signal selection and segmentation would have to be improved for
dataset 2016.

As has been shown in Section 5.1.1, means of ReF are less affected by the lubricating
oils than E1 and E2. From these results could be concluded that ester containing
reference fluid could lubricate too well and thus could mask progressing tool wear.
For detection of tap wear during TTT, an ester-free emulsion could be more suit-
able. This fluid would probably be subject to larger fluctuations around the mean
value because the measurements are more strongly influenced by the previously mea-
sured fluids. This disadvantage must be weighed against the eventual masking of
wear. Further experiments must be performed for identification of the best suitable
reference fluid for monitoring tap wear in this experimental design.
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5.2 Dataset 2019

The result part for datset 2019 is subdivided into four parts. Firstly, results of
tapping torque mean values according to approach norm-TT-means are explained.
Secondly, clustering results of AE energies according to approach clust-CWT-AE-
energy are shown. Thirdly, CNN results of approach raw-AE-CNN are presented. In
the fourth part, these three approaches are compared in respect to their classification
ability.

5.2.1 Tapping torque means for dataset 2019

Figure 5.5: Results of norm-TT-means [11]
a: Mean of tapping torque per thread
b: Results of two-sided t-test with α = 0.05 and

normalized means including standard deviation

The results of TTT are depicted in Figure 5.5. In Figure 5.5a, raw data of tapping
torque in the plateau region of each thread is shown. Raw data is highly fluctuating.
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Even carryover effects of previously measured fluids are not recognizable. Wide
standard deviations are expected for the means.

The normalized means and their standard deviations are depicted in Figure 5.5b.
These means are analyzed using a two-sided t-test applying a confidence level of
95% (error probability α = 5 %). For evaluation of statistical differences, the error
probability α is compared with the resulting p-values. The p-values are listed in the
integrated table in Figure 5.5b. If the p-value is smaller than the corresponding error
probability α of 0.05, the compared values are significantly different. In the present
cases, the statistical tests reveal that all compared means are not distinguishable.
Conclusively, it is not possible to differentiate between the fluids within one group
by tapping torque mean evaluation.

5.2.2 K-means clustering of Acoustic Emission energy for dataset 2019

For the current measurements, the main frequency bands are chosen manually. From
Figure 4.1, it can be concluded that the main frequency bands of the present exper-
iments are from 50 to 108 kHz and from 217 to 464 kHz. Within these bands the
sum of AE energy is calculated. Energies are mapped as data points in diagrams
according to [9] and depicted in Figure 5.6a-d. Then, k-means clustering with a
confidence bound of 95 % is applied for each comparison. Clustering is evaluated as
being true clustered if a blue point is surrounded by a blue circle and a red point is
covered by a red cross. The compared fluids are more distinguishable if more (true)
data points are within their corresponding cluster (kmeans).

Table 5.4: Accuracy of results of approach clust-CWT-AE-energy [11]

Comparison TC FC Accuracy=TC/(TC+FC)

Group S 22 8 73 %

Group P 16 23 41 %

Group E 12 18 40 %

Group G 28 4 88 %

In Table 5.4, the numbers of true and false clustered data points resulting from the
pictures in Figure 5.6 are noted. Accuracies listed in the last column are calculated
from true and false clustered data points.

The comparison in group G reaches the highest accuracy of all groups: Fluids F09
and F10 are truly clustered with 88 % accuracy. The two different glycol types
used as additives in these fluids can be distinguished. Fluid F02 and F03 can be
clustered correctly with 73 % accuracy. The other comparisons only reach accura-
cies even lower than 50 %. Conclusively, the approach does not reach accuracies
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Figure 5.6: K-means clustering results of clust-CWT-AE-energy [11] for
a: F02 and F03
b: F04, F05, and F06
c: F07 and F08
d: F09 and F10

higher than 95 %. The approach clust-CWT-AE-energy is not suitable for the dif-
ferentiation of fluids that contain chemically very similar additives. Using k-means
clustering, it is not possible to differentiate the investigated polysulfides. Phosphates
and ester additives are clustered with no satisfying accuracy. It remains unsolved
to differentiate all fluids within one additive group using clust-CWT-AE-energy.

5.2.3 Acoustic Emission signal classification in time-domain by CNN for
dataset 2019

Results of CNNs are mainly affected by division of the used samples. In the used
approach, samples are divided into training, validation, and test data. The ration
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among them is: 0.7 : 0.15 : 0.15 according to [258].

To verify the robustness of the model, each step is calculated five times by shuffling
the samples each time. Resulting test and average accuracies are shown in Table
5.5.

Table 5.5: Test accuracy [%] for approach raw-AE-CNN acc. to [11]

Method no. Output classes 1st 2nd 3rd 4th 5th Mean

1 11 categories 95.8 93.7 97.9 97.9 97.9 96.6

2 6 categories 96.4 97.3 96.4 97.8 96.0 96.8

2 Fluids 02/03 98.5 98.5 95.6 95.6 100.0 97.7

2 Fluids 04/05/06 96.2 94.2 98.1 94.2 93.3 95.2

2 Fluids 07/08 100.0 100.0 100.0 100.0 100.0 100.0

2 Fluids 09/10 98.6 98.6 100.0 100.0 100.0 99.4

Metalworking fluids are divided differently to compare the accuracies of the different
methods. For method no. 1, eleven MWFs are categorized into eleven classes. For
method no. 2, eleven MWFs are divided firstly into six classes and then secondly
each class is sub-categorized in detail. The average test accuracy for method no. 1
and for eleven MWFs is 96.6 %. For method no. 2, the test accuracy is 96.8 % for
six classes. Sub-categorization into additive groups achieves test accuracies between
95.2 and 100 %. These results are very satisfactory for MWF distinction.

5.2.4 Summary and conclusions for dataset 2019

The objectives of this work are to investigate advantages and limits of the three
known evaluation approaches by means of a very challenging dataset. The per-
formance of each approach is examined to evaluate if it is usable or not. The best
performing approach is chosen by its ability to differentiate fluids within one additive
group.

To evaluate usability and performance of the three applied approaches, the ability
of each approach to differentiate fluids of one group are summarized in Table 5.6.
If a differentiation is possible with a confidence level of minimum 95 %, the corre-
sponding accuracy is inserted. The statistical two-sided t-test of normalized torque
means (norm-TT-means) showed that tapping torque means cannot be statistically
distinguished. Although the approach of k-means clustering of AE energies (clust-
CWT-AE-energy) reached partly better results than norm-TT-means, there was no
result higher than 95 %. Only the approach applying a CNN on the raw data of AE
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Table 5.6: Ability of approaches to classify fluids within one additive group [11]

Group Norm-TT-means Clust-CWT-AE-energy Raw-AE-CNN

S No No Yes (97.7 %)

P No No Yes (95.2 %)

E No No Yes (100.0 %)

G No No Yes (99.4 %)

signals (raw-AE-CNN ) achieved successful classification results for all fluid groups
with averaged test accuracies even up to 100 %.

Tapping Torque Tests are used in industry to evaluate the lubricity of MWF. Test
methods relying only on torque measurement provide a limited differentiability be-
tween test fluids of the same type. Especially for very small differences regarding
the chemical structure of the used fluid components, so called additives, tapping
torque alone is not sensitive enough to show these differences between the fluids. To
enhance sensitivity and interpretability of TTT, AE measurement is added to the
torque measurement. This new test setup can be denoted as extended TTT.

In this contribution, eleven different water-mixed MWFs are investigated during an
extended TTT. These test fluids differ only in one additive and are structured into
known additive groups related to the used chemical additives. The specialty of this
dataset is the high similarity between the fluids. The main objective is to clarify
whether it is possible to detect these very specific chemical differences in MWF using
an extended TTT. The fluids are investigated during thread forming in unalloyed
steel using a coated tap. Acoustic Emission signals are recorded in parallel to the
torque measurement.

The differentiability of the fluids is evaluated by three different approaches. The
first approach evaluates the normalized tapping torque means by a statistical two-
sided t-test. At a confidence level of 95 %, no differentiation of fluids within one
additive group is possible. The second approach uses data of the AE measurement.
After CWT, energies of AE signals from two main frequency ranges are summarized.
Sums of AE energy of fluids in one group are plotted in one diagram. By applying
a k-means clustering algorithm, it is checked if the fluids are true or false clustered.
The highest accuracy of 88 % is obtained for the fluids in the glycol group. The
required accuracy is 95 %. Thus, the proposed approach is evaluated as not suitable.

The best classification results are obtained by the third approach using AE raw
data. Applying a suitably designed CNN with tuned hyperparameters and several
different layers, test accuracies between 95 and 100 % can be achieved. Diethylene
glycol and polypropylene glycol can be distinguished. In the phosphorus group, an
averaged accuracy of 95 % can be achieved so it is possible to distinguish between
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a lauryl ethylene oxide phosphate and an oleyl ethylene oxide phosphate. The
best classification result is obtained for the fluids in the ester group. Here, an
accuracy of 100 % can be achieved so it is possible to distinguish between a 2-
ethylhexylcocoate and a synthetic polymeric ester. Applying the third approach
using CNN, a distinction of chemically very similar additives in water-mixed MWFs
is possible.

The AE-based classification of MWFs in TTTs is possible even for a small MWF
change. The additives can be differentiated directly but the lubricity can not be
determined by the proposed approach.

Therefore, it is not possible to decide which additives result in higher or lower
lubrication. Analyzing tapping torque means the conclusion – the lower the resulting
values the better the lubricating effect – can be drawn. A similar connection for
AE-related features could be possible: The lower the AE energy the higher is the
lubricity of the test fluid which had to verified by practical wear tests. By the CNN
approaches presented in this work, this statement is not possible yet. The ultimate
goal to differentiate MWFs for evaluation of lubricity is actually not reached.

5.3 Transfer Learning

This section is mainly taken from publication [12].

Different metrics can be used to evaluate training and test. In many recent contri-
butions [10, 217, 252], accuracy as the metric denoting the ration between the total
number of correct predictions and the total number of predictions for a dataset is ap-
plied. However, as performance measure, accuracy is inappropriate for imbalanced
classification problems. Precision and recall are alternatives. Precision quantifies
the number of positive class predictions that actually belong to the positive class
while recall quantifies the number of positive class predictions made out of all posi-
tive examples in the dataset. F-score provides a suitable step that balance both the
concerns of precision and recall in one number [252].

In most classification problems, imbalanced class distribution exists, so F-score is
a suitable alternative metric. For the proposed approach STFT-AE-TL, F-score is
applied as main metric. To compare with results in other contribution, accuracy
is applied as metrics in both datasets. Cross validation is a re-sampling procedure
used to evaluate machine learning models. Generally, results from cross validation
have a lower bias than other methods [259]. To eliminate bias and check robustness
of proposed approach, 4-fold cross validation is applied to evaluate trained models.

Knowledge and parameters in data processing as well as hyperparameter in convolu-
tional neural networks are transferred from dataset 2019 to dataset 2016. Detailed
results of both datasets are shown in Table 5.7. For dataset 2019, F-score for each
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Table 5.7: Test results [%] of 4-fold cross validation of approach STFT-AE-TL [12]

Dataset Result [%]

F-score of each fold Accuracy

1st 2nd 3rd 4th Mean

2019 98.58 98.80 98.15 98.92 98.61 98.58

2016 70.30 91.30 94.51 91.30 86.85 86.20

fold ranges from 98.15 % to 98.92 % and the mean F-score is 98.61 %. The accuracy
for dataset 2019 is 98.58 %. When the CNN model is transferred to dataset 2016, the
F-score ranges from 70.30 % to 94.51 % and mean F-score is 86.85 %. Accuracy for
dataset 2016 is 86.20 %. It can be concluded that approach STFT-AE-TL trained
from water-based MWF distinction could be successfully transferred to other kinds
of MWF classification tasks.

As conclusion, classification results for dataset 2016 are better than in Section 5.1.3.
AE signals of same kinds of MWFs are classified by CNN which trained by dataset
2016 itself. AE signal features are extracted in time domain. Five kinds of MWF
are firstly divided into three categories and then water-based and oil-based MWF
are subdivided. The best classification accuracy is 79.87 % and the worse result
is 67.54 %. Approach STFT-AE-TL using TL from dataset 2019 to dataset 2016
outperforms approach raw-AE-CNN.

Comparing with approach raw-AE-CNN, the following conclusions can be drawn
from the results of TL:

• Two datasets are calculated and 16 MWFs are classified in total.

• Segments are transformed into time-frequency domain and the resulting spec-
trograms are used as CNN input. In approach raw-AE-CNN, images of AE
raw data have been used.

• Spectrograms are normalized before their features are extracted in CNN.

• Structure of CNN is more detailed and hyperparameters are optimized auto-
matically. In approach raw-AE-CNN, hyperparameters are tuned manually.

• Although results in dataset 2016 are not as good as in dataset 2019, they
have been significantly improved in comparison to the obtained classification
accuracy of approach raw-AE-CNN.
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6 Summary, conclusion, and outlook

Measurement and evaluation of lubricity are necessary to qualify lubrication per-
formance of MWFs. Tapping Torque Tests conducted in laboratory scale are near-
to-practice tests transferable into real industrial applications. Current challenges
are related to the sensitivity of this test. Test fluids often cannot be distinguished.
The goal is the detection of even very small differences in MWFs in order to i)
save resources in the development of new MWFs – following the principle ”only as
much as necessary”, ii) monitor the condition of MWFs in use – always keeping
the best lubrication condition, iii) predict maintenance tasks – when change of aged
MWF is necessary. Related contributions presented in this thesis contribute to the
fundamentals of these goals. The first part deals with a critical discussion of the
current TTT method and includes proposals for better distinguishability based on
the existing measurement system. The second part is about a feasibility study of
implementing AE measurement into the TTT system, namely extended TTT. In
the third part, benefits and limitations of AE signals are shown by testing differ-
ent classification approaches for a dataset of challenging MWF compositions. In
this chapter, the whole thesis work is summarized, the important conclusions are
repeated, and suggestions for future work are given.

6.1 Summary and conclusion

Regarding the use of AE for qualification of MWFs and real-time techniques for
monitoring of tribological conditions, the following main research questions are es-
tablished in this thesis:

• Do changes in test procedure and tapping torque mean calculation lead to
improved distinguishability of test fluids in TTTs?

• Can changes in the interaction between tool and workpiece surfaces and in
MWF compositions be detected by AE signals?

• Is AE more suitable than torque as measure in TTTs?

• Can clustering or CNN classification approaches enhance the accuracy of MWF
distinction?

• Is AE technique suitable for online process monitoring especially for MWF’s
condition and/or tribological state evaluation?

• Could predictive maintenance tasks for MWFs be realizable through AE sig-
nals and neural networks?

• Could AE technique significantly contribute to resource saving in development
of new MWFs?
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These questions are mostly addressed in this thesis by presenting research results
contributed to journals or conferences.

In Chapter 2, literature research of MWFs in machining is presented focusing recent
monitoring techniques and lubricating mechanisms of additives. No online mea-
surement technique is available monitoring the performance of MWFs during the
process.

Additionally, Chapter 2 contains a review about AE techniques used in process
monitoring. Contents of this part are related to publication [8]. Tool condition
monitoring techniques are widely spread and AE technique has already been used in
turning, drilling, and milling processes. There are only few contributions about AE
technique used to examine lubrication states or different lubricants in tribological
contacts. No contribution is known examining single components of MWF by AE
during a real machining operation.

Basics of Machine Learning approaches are also introduced in Chapter 2. Different
approaches have been successfully used in tribological processes to detect tool wear
and to identify lubrication regimes. The functionality of CNNs is described. No
contribution is known applying Machine Learning for condition monitoring of MWFs
or for identification of different MWF additives.

In Chapter 3, two experimental datasets are introduced: datasets 2016 and 2019.
Dataset 2016 consists of five different fluids. Fluids to be distinguished vary in
phosphorus contents. Dataset 2019 consists of eleven different fluids. One novelty
of this work are the specifically designed water-mixed test fluids of dataset 2019.
A special MWF base concentrate has been developed allowing a direct comparison
of the changed additives. These additives can be sorted into four groups: sulfur,
phosphorus, ester, glycol. The goal is to distinguish fluids that are in the same
group and vary only in concentration of one element or in the molecule structure of
the used additive.

The evaluation approaches to classify fluids of datasets 2016 and 2019 are introduced
in Chapter 4. Research on TTT is presented in this chapter including findings pub-
lished in [98]. The current test method ASTM D8288-19 does not always allow a
distinction of MWFs. The following suggestions for enhancement of distinguishabil-
ity and repeatability are made:

• The running-in phase of new taps have to be completed before starting the test
procedure with test fluids. End of this phase can be determined by a stationary
criterion based on previously determined means. Misinterpretations could be
avoided.

• Carryover effects of previously measured fluids have to be considered in the cal-
culation of torque means. The extent of their influence depends on the compo-
sition of the fluids. Each measurement series has to be evaluated individually.
Repeatability and distinguishability of TTT results could be improved.
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• Regular reference measurements are necessary to observe proceeding tool wear
over all measurement series with one tap. The reference means have to be
used to normalize the torque means of test fluids. Comparability between
measurements with new taps and workpieces is established.

By implementing regular reference measurements in the test order and considering
running-in and carryover effects in mean calculations, repeatability, comparability,
and distinguishability of TTTs can already be improved. In this chapter, the method
of k-means clustering is introduced. Sum of AE energy is calculated in two main
frequency bands as first has been used in [9]. Concerning CNNs, the architectures are
described. Optimization loop and pre-filtering of data are explained. The principle
of TL and the architecture of the used CNN model are presented. The CNN is
trained and optimized with dataset 2019. Afterwards, knowledge and parameters in
data processing as well as hyperparameters of CNN are transferred to dataset 2016.

In Chapter 5, results for both datasets are presented. These can be summarized by
the following points:

• Tapping torque means allow distinction of MWFs if their differences are larger
as they are in dataset 2016. Different chain lengths of molecules or element
concentrations differing only around factor 2 as they are in dataset 2019 cannot
be reliably differentiated.

• Using k-means clustering technique, dependence between AE and lubrication
conditions can be used to distinguish MWF types. Emulsions can be reliably
separated from oils.

• Approaches evaluating tapping torque means and methods using k-means clus-
tering of AE energies have similar classification abilities. Their sensitivity is
not good enough to differentiate very small changes in MWFs.

• Applying CNN as classification method, MWFs even with very small differ-
ences can be distinguished. Images of AE signals transformed by STFT are
more suitable than images of raw AE signals.

• Transfer Learning from dataset 2019 to dataset 2016 using AE data in time-
frequency domain reaches better classification results than a CNN specifically
designed for dataset 2016 but using AE data in time-domain.

To address the research gaps and scientific goals from Section 2.5, new findings and
claims of this thesis can be summarized as follows:

• In performing TTTs, running-in phase of taps, carryover effects of fluids, and
regular reference measurements can increase repeatability, comparability, and
distinguishability of test results. Large differences in concentrations of same
lubricating additives are detectable by considering these principles.
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• Interactions between tool and workpiece can be detected by AE measurements.
Acoustic Emission energy and torque are closely related to changes in lubrica-
tion conditions. However, AE provides a more accurate representation of the
thread forming process.
• Only certain and specifically designed pre-filters allow a detailed look into the

temporal behavior of the machining operation by AE signals. Wear and/or
lubrication monitoring are possible by applying specific methods of data pro-
cessing.
• Tapping torque measurement is not as sensitive as AE measurement for very

small MWF changes. But for good classification accuracies, Machine Learning
algorithms such as neural networks have to be applied on AE signals. Signal
processing, selection, and segmentation have significant impact on the classi-
fication results.
• Signal transformation, selection of measurements, and segmentation of signals

improve the extracting process of signals features. The optimization process of
these pre-filters in a CNN can be designed time-saving by including them into
the optimization loop of the complete training procedure including filters and
hyperparameters. The best result is the parameter set achieving the highest
classification accuracy.
• Applying an optimized CNN using spectrograms of AE signals as input, MWFs

that differ only slightly chemically can be distinguished with an accuracy
higher than 95 %. This approach is very sensitive for very small MWF changes
and opens new possibilities for fluid condition monitoring systems.
• Structure and other hyperparameters of trained models from water-based

MWF classification can be transferred to similar classification tasks to suc-
cessfully distinguish other water-based and oil-based MWFs.
• The MWF additives are successfully distinguished in the classification using

CNN. However, no statement can be made about the lubricating effect of the
individual additives. The neural network only detects differences in images
of AE signals. A conclusion which test fluid performs better is recently not
possible from this point.

The recent work shows relevant potential of neural networks and AE technique for
process monitoring during machining. The results reveal that tribological interac-
tion – friction, wear, and lubrication – can be measured by AE. Monitoring of the
tribological contact including tool and MWF could be realized using AE technique
and artificial intelligence.

6.2 Outlook

The shown results open completely new possibilities for fluid development, analysis,
and monitoring in use. Further developments of neural networks for AE signals
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could focus the lubricity of MWFs so that the statement which additive is better for
the tribological process would be possible. For this, real machining trials would be
necessary to evaluate the MWF’s effects on tool wear and surface qualities. Chem-
ical analysis of surfaces would be important to support results and to increase the
knowledge about reactions of additives.

If classification of such small changes in MWFs is possible by AE signals, it will
probably be possible to monitor the aging of MWFs. This could be addressed in
future work. Additionally, the shown results could be interpreted with focus on
the evaluation of fluids’ lubricity. To the best of my knowledge, no explanation is
known so far why MWF additives generate different AE signals. Deeper investiga-
tions about the lubrication mechanism for each additive may contribute to a better
understanding of lubricants’ functionality in tribological contacts.

AE is considered as a valuable tool for in-situ monitoring of wear to be used in future
investigations to develop an in depth understanding of the fundamental mechanisms
in surface interactions governing wear phenomena.

In the future, an in-situ condition monitoring and fluid management could be used
during a fully automated machining process without human interruption. Changes
in fluid characteristics would be detected by the automation system and relevant
additives automatically dosed. Additionally, the MWF could be adapted to an-
other workpiece material. Using artificial intelligence algorithms in such monitoring
systems could make processes more reliable. Predictive maintenance could be an
interesting application field for saving resources in manufacturing.
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[56] U. J. Möller, U. Boor, Schmierstoffe im Betrieb, VDI Verlag, Düsseldorf, 1986.

[57] D. Kenbeck, T. F. Bunemann, Organic Friction Modifiers, in: L. R. Rudnick
(Ed.), Lubricant Additives, 2nd Edition, CRC Press, 2009, Ch. 7, p. 201.

[58] R. A. McDonald, Zinc Dithiophosphates, in: L. R. Rudnick (Ed.), Lubricant
Additives, 2nd Edition, CRC Press, 2009, Ch. 2, p. 58.

[59] T. Rossrucker, A. Fessenbecker, Sulfur Carriers, in: L. R. Rudnick (Ed.),
Lubricant Additives, 2nd Edition, CRC Press, 2009, Ch. 9, pp. 252–278.

[60] G. Wen, X. Wen, P. Bai, Y. Meng, L. Ma, Y. Tian, Effect of mixing procedure
of oleic acid and BN nanoparticles as additives on lubricant performance of
PAO8, Tribol Int 175 (107842) (2022) 1–10.

[61] A. V. Bondarev, A. Fraile, T. Polcar, D. V. Shtansky, Mechanisms of friction
and wear reduction by h-BN nanosheet and spherical W nanoparticle additives
to base oil: Experimental study and molecular dynamics simulation, Tribol
Int 151 (May) (2020) 106493.



BIBLIOGRAPHY 111

[62] Y. Morita, T. Onodera, A. Suzuki, R. Sahnoun, M. Koyama, H. Tsuboi,
N. Hatakeyama, A. Endou, H. Takaba, M. Kubo, C. A. Del Carpio, T. Shin-
yoshi, N. Nishino, A. Suzuki, A. Miyamoto, Development of a new molecular
dynamics method for tribochemical reaction and its application to formation
dynamics of MoS2tribofilm, Appl Surf Sci 254 (23) (2008) 7618–7621.

[63] Z. Guan, P. Zhang, V. Florian, Z. Wu, D. Zeng, J. Liu, B. Wang, X. Tu,
S. Li, W. Li, Preparation and tribological behaviors of magnesium silicate
hydroxide-MoS2 nanoparticles as lubricant additive, Wear 492-493 (204237)
(2022) 1–14.

[64] Y. Cui, M. Ding, T. Sui, W. Zheng, G. Qiao, S. Yan, X. Liu, Role of nanopar-
ticle materials as water-based lubricant additives for ceramics, Tribol Int
142 (105978) (2020) 1–7.

[65] J. Zhao, T. Gao, Y. Li, Y. He, Y. Shi, Two-dimensional (2D) graphene
nanosheets as advanced lubricant additives: A critical review and prospect,
Mater Today Commun 29 (March) (2021) 102755.

[66] H. S. Abdel-Hameed, S. M. El-Saeed, N. S. Ahmed, A. M. Nassar, F. El-
Kafrawy, A. I. Hashem, Chemical transformation of Jojoba oil and Soybean
oil and study of their uses as bio-lubricants, Ind Crops Prod 187 (PA) (2022)
115256.

[67] S. Edla, A. D. Thampi, P. Prasannakumar, S. Rani, Evaluation of physico-
chemical, tribological and oxidative stability properties of chemically modified
rice bran and karanja oils as viable lubricant base stocks for industrial appli-
cations, Tribol Int 173 (January) (2022) 107631.

[68] C. T. Lee, B. M. Lee, S. H. Hamdan, W. W. F. Chong, C. T. Chong, H. Zhang,
A. W. L. Chen, Trimethylolpropane trioleate as eco-friendly lubricant additive,
Engineering Science and Technology, an International Journal 35 (101068).

[69] A. S. A. Sani, S. Baharom, N. A. Mamat, A. S. M. Rozlan, N. Talib, Com-
parative evaluation of crude Tamanu oil performance as metalworking fluids,
Mater Today Proc 48 (2022) 1783–1788.

[70] E. Selbmann, M. Preiß, A. B. Achour, U. Teicher, A. Hänel, S. Ihlenfeldt,
Investigation of bio-based cooling lubricants for the machining of aircraft In-
vestigation of 28th cooling lubricants for the machining of aircraft stainless
steels stainless steels analyze the functional and physical architecture of exist-
ing products for, Procedia CIRP 110 (2022) 47–52.

[71] M. Gul, N. Zulkifli, M. Kalam, H. Masjuki, M. Mujtaba, S. Yousufe, M. N.
Bashir, W. Ahmed, M. Yusoff, S. Noor, R. Ahmad, M. T. Hassan, RSM
and Artificial Neural Networking based production optimization of sustainable



BIBLIOGRAPHY 112

Cotton bio-lubricant and evaluation of its lubricity tribological properties,
Energy Reports 7 (2021) 830–839.

[72] A. Pottirayil, S. V. Kailas, S. K. Biswas, Lubricity of an oil in water emulsion
in metal cutting : The effect of hydrophilic / lypophilic balance of emulsifiers,
Colloids Surf A Physicochem Eng Asp 384 (1-3) (2011) 323–330.

[73] F. H. de Paula, F. A. de Freitas, D. G. Nunes, S. Iglauer, A. P. Gramatges,
R. S. V. Nascimento, E. R. Lachter, Alkyl glyceryl ethers as water-based lu-
bricant additives in mixtures with xanthan gum, Colloids Surf A Physicochem
Eng Asp 634 (127881) (2022) 1–8. doi:10.1016/j.colsurfa.2021.127881.

[74] M. Masuko, M. Shibatsuji, M. Yokomizo, S. Aoki, A. Suzuki, On the effort to
discriminate the principal function of tribofilm on friction under the boundary
lubrication condition, Tribol Int 44 (6) (2011) 702–710.

[75] J. Airey, M. Spencer, R. Greenwood, M. Simmons, The effect of gas turbine
lubricant base oil molecular structure on friction, Tribol Int 146 (106052)
(2020) 1–11.

[76] B. Lin, A. K. Tieu, H. Zhu, B. Kosasih, O. Novareza, G. Triani, Tribological
performance of aqueous copolymer lubricant in loaded contact with Si and
coated Ti film, Wear 302 (1-2) (2013) 1010–1016.

[77] K. C. Wickramasinghe, H. Sasahara, M. Usui, Performance evaluation of a
sustainable metal working fluid applied to machine Inconel 718 and AISI 304
with minimum quantity lubrication, Journal of Advanced Mechanical Design,
Systems, and Manufacturing 15 (4) (2021) 1–13.

[78] M. A. Xavior, M. Adithan, Determining the influence of cutting fluids on tool
wear and surface roughness during turning of AISI 304 austenitic stainless
steel, J Mater Process Technol 209 (2008) 900–909.

[79] S. A. Lawal, I. A. Choudhury, Y. Nukman, Application of vegetable oil-based
metalworking fluids in machining ferrous metals - A review, Int J Mach Tools
Manuf 52 (1) (2012) 1–12.

[80] G. Biresaw, G. B. Bantchev, J. Lansing, R. E. Harry-O’kuru, Y. Chen, Sul-
furized Methyl Esters of Soya Fatty Acids: Synthesis and Characterization,
Tribol Lett 68 (61).

[81] K. S. Siow, L. Britcher, S. Kumar, H. J. Griesser, XPS Study of Sulfur and
Phosphorus Compounds with Different Oxidation States, Sains Malaysiana
47 (8) (2018) 1913–1922.



BIBLIOGRAPHY 113

[82] C. Fleming, Investigation into the behaviour of selected boundary regime lu-
bricants when cold forging steel under rolling-sliding conditions, Tribol Int
157 (106771) (2021) 1–15.

[83] S. Bhowmick, M. J. Lukitsch, A. T. Alpas, Tapping of Al-Si alloys with
diamond-like carbon coated tools and minimum quantity lubrication, J Mater
Process Technol 210 (15) (2010) 2142–2153.

[84] M. N. Najman, M. Kasrai, G. M. Bancroft, Investigating binary oil additive
systems containing P and S using X-ray absorption near-edge structure spec-
troscopy, Wear 257 (1-2) (2004) 32–40.

[85] X. Fu, L. Sun, X. Zhou, J. Li, B. Fan, T. Ren, Tribochemical behaviors of
phosphite esters and their combinations with alkyl amines, Appl Surf Sci 357
(2015) 1163–1170.

[86] B. H. Kim, J. C. Jiang, P. B. Aswath, Mechanism of wear at extreme load
and boundary conditions with ashless anti-wear additives: Analysis of wear
surfaces and wear debris, Wear 270 (3-4) (2011) 181–194.

[87] V. S. Sharma, G. Fromentin, G. Poulachon, R. Brendlen, Investigation of tool
geometry effect and penetration strategies on cutting forces during thread
milling, Int J Adv Manuf Technol 74 (2014) 963–971.

[88] S. C. Bernat, Hydraulic Fluids for Offshore Applications – the Lubrication
Mechanisms of Water-Based Fluids, Ph.D. thesis, NTNU Norwegian Univer-
sity of Science and Technology (2018).

[89] Bruker Corporation, Universal tribological testers (2017).

[90] H. Wittel, D. Muhs, D. Jannasch, J. Voßiek, Roloff/Matek Maschinenele-
mente, 20th Edition, Vieweg + Teubner, Springer Fachmedien Wiesbaden
GmbH, 2011.

[91] Y. Liu, C. L. Jiaa, A. Eltoukhy, S. Clara, Acoustic Emission Study of Lubricant
Effect On Proximity Contact Recording, IEEE Trans Magn 3 (5) (1997) 3160–
3162.

[92] Rhenus Lub GmbH Co. KG, FluidSafe LubControlSystem (2016) (accessed
07.10.2016) (2016) http://www.rhenuslub.de/en/fluidsafe.html.

[93] Tiefenbach Control Systems GmbH, Prozesssichere Kontrolle und Steuerung
wassermischbarer Kühlschmierstoffe, in: Schmierstoffseminar des Verbandes
Schmierstoff-Industrie e.V., Cologne, 2016.

[94] Oemeta Chemische Werke GmbH, Oemeta mit Offensive für mehr Nach-
haltigkeit, Diamond Business 4 (2022) 70–72.



BIBLIOGRAPHY 114

[95] M. Appleby, F. K. Choy, L. Du, J. Zhe, Oil debris and viscosity monitoring us-
ing ultrasonic and capacitance/inductance measurements, Lubrication Science
25 (2013) 507–524.

[96] M. Menta, J. Frayet, B. Grassl, C. Gleyzes, A. Castetbon, M. Potin-Gautier,
Development of an alternative analytical methodology to monitor industrial
degreasing baths by dynamic light scattering, J Clean Prod 113 (2016) 981–
988.

[97] E. Bordatchev, H. Aghayan, J. Yang, Object shape-based optical sensing
methodology and system for condition monitoring of contaminated engine lu-
bricants, Opt Lasers Eng 54 (2014) 128–138.
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[148] E. Kuljanic, M. Ã. Sortino, TWEM, a method based on cutting forces —
monitoring tool wear in face milling, Int J Mach Tools Manuf 45 (2005) 29–
34.

[149] H. M. Ertunc, K. A. Loparo, E. Ozdemir, H. Ocak, Real Time Monitoring of
Tool Wear Using Multiple Modeling Method, in: IEEE Electric Machines and
Drives Conference, 2001, pp. 687–691.

[150] M. Nouri, B. K. Fussell, B. L. Ziniti, E. Linder, B. K. Fussel, B. L. Ziniti,
E. Linder, Real-time tool wear monitoring in milling using a cutting cindition
independent method, Int J Mach Tools Manuf 89 (2015) 1–13.

[151] D. Shi, D. Axinte, N. Gindy, Development of an online machining process
monitoring system: a case study of the broaching process, Int J Adv Manuf
Technol 34 (2007) 34–46.

[152] H. Wiklund, Bayesian and regression approaches to on-line prediction of resid-
ual tool life, Qual Reliab Eng Int 14 (1998) 303–309.

[153] Y. Wu, G. Hong, W. Wong, Prognosis of the probability of failure in tool con-
dition monitoring application-a time series based approach, Int J Adv Manuf
Technol 76 (2015) 513–521.

[154] C. Madhusudana, S. Budati, N. Gangadhar, Fault diagnosis studies of face
milling cutter using machine learning approach, Journal of Low Frequency
Noise, Vibration and Active Control 0 (2016) 1–11.

[155] T. Moriwaki, E. Shamoto, Ultrasonic Elliptical Vibration Cutting, Annals of
the CIRP 44 (l) (1995) 31–34.

[156] S. Orhan, A. O. Er, N. Camuscu, E. Aslan, Tool wear evaluation by vibration
analysis during end milling of AISI D3 work tool steel with 35 HRC hardness,
NDT E Int 40 (2007) 121–126.

[157] K. Rao, B. Murthy, N. M. Rao, Cutting tool condition monitoring by analyzing
surface roughness, work piece vibration and volume of metal removed for AISI
1040 steel in boring, Measurement 46 (2013) 4075–4085.



BIBLIOGRAPHY 119

[158] A. Rmili, A. Ouahabi, R. Serra, R. Leroy, An automatic system based on
vibratory analysis for cutting tool wear monitoring, Measurement 77 (2016)
117–123.

[159] M. Saimurugan, K. I. Ramachandran, V. Sugumaran, N. R. Sakthivel, Multi
component fault diagnosis of rotational mechanical system based on decision
tree and support vector machine, Expert Syst Appl 38 (4) (2011) 3819–3826.

[160] K. A. Vikram, C. Ratnam, K. S. Narayana, Vibration diagnosis and prog-
nostics of Turn-milling operations using HSS and carbide end mill cutters,
Procedia Technology 23 (2016) 217–224.

[161] S. Dutta, A. Datta, N. D. Chakladar, S. Pal, S. Mukhopadhyay, R. Sen, De-
tection of tool condition from turned surface images using an accurate grey
level co-occurence technique, Precision Engineering 36 (2012) 459–466.
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[225] H.-C. Möhring, S. Eschelbacher, P. Georgi, Machine learning approaches for
real-time monitoring and evaluation of surface roughness using a sensory
milling tool, in: Procedia CIRP, Vol. 102, Elsevier B.V., 2021, pp. 264–269.

[226] X.-C. Cao, B.-Q. Chen, B. Yao, W.-P. Heb, Combining translation-invariant
wavelet frames and convolutional neural network for intelligent tool wear state
identification, Computers in Industry 106 (April 2019) (2019) 71–84.
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