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Abstract: Drug discovery is usually a rule-based process that is carefully carried out by pharmacists.
However, a new trend is emerging in research and practice where artificial intelligence is being
used for drug discovery to increase efficiency or to develop new drugs for previously untreatable
diseases. Nevertheless, so far, no study takes a holistic view of AI-based drug discovery research.
Given the importance and potential of AI for drug discovery, this lack of research is surprising. This
study aimed to close this research gap by conducting a bibliometric analysis to identify all relevant
studies and to analyze interrelationships among algorithms, institutions, countries, and funding
sponsors. For this purpose, a sample of 3884 articles was examined bibliometrically, including studies
from 1991 to 2022. We utilized various qualitative and quantitative methods, such as performance
analysis, science mapping, and thematic analysis. Based on these findings, we furthermore developed
a research agenda that aims to serve as a foundation for future researchers.

Keywords: drug discovery; drug development; artificial intelligence; machine learning; deep learning;
bibliometric study

1. Introduction
1.1. Motivation

Diseases and sickness can be defined as conditions that negatively affect an organism
and its functions. Diseases can affect most living organisms, including humans. Under-
standing the nature to develop new drugs and medicine to fight diseases is therefore a goal
that is as old as human civilization itself [1]. Life expectancy, one of the key metrics to
assess the health of a population, increased significantly over the last decades [2]. There
is a debate about what the reasons for the increase in life expectancy are, as hygiene and
nutrition also improved. However, there is little doubt that advances in modern medicine
and the development of new drugs played a key role in fighting and controlling infectious
diseases [3].

The process of drug discovery and its underlying paradigms were subject to several
changes and developments over the last centuries. This process went from a trial-and-
error method of natural products to the development of synthetic, biotechnological, or
biopharmaceutical drugs [1]. The instruments and tools that are used for the process of drug
discovery did change significantly. Especially in the last decades, digital technologies were
increasingly applied in the process of drug discovery. Examples of digital technologies in
pharmacy are the usage of laboratory robotics [4] or automation in medicinal chemistry [5].
One of the most discussed technologies of the digital age that is also increasingly used for
medical purposes is artificial intelligence (AI). “AI” is a trending term that has, to the best
of our knowledge, no precise and generally accepted definition [6]. In general terms, AI
refers to the approach of simulating intelligence with computers [7]. It aims to understand
and replicate cognitive processes and relies on principles and input from many different
disciplines, including mathematics, biology, and engineering [8].
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Recent advances in technology and the availability of new hardware that allow fast
parallel processing have made AI a technology that is applicable to many real-world applica-
tions [9]. Additionally, data that are necessary to train AI systems have become more easily
available. PubChem is probably one of the most known public repositories and contains
information on chemical substances, as well as experimental data identifying the biological
activities of these molecules [10,11]. Driven by these developments, the application of AI
technologies within drug discovery grew significantly in the last decade. Established AI
and machine learning methods such as support vector machines (SVM) [12,13] and artificial
neural networks [14,15] were increasingly used to discover and understand drugs and
their properties. Especially in the last few years, deep learning evolved a lot and proved
to have an advantage over other machine learning technologies in many areas [16]. Deep
learning has also been successfully applied in drug discovery [17], for example, to predict
pharmaceutical properties [18] or for the discovery of antibiotics [19]. AI’s high potential
is also reflected in the AI in pharma market, which experienced strong growth in the last
years. Companies such as Microsoft, IBM Watson, Google, and Novartis are among the
major players participating in it. Until 2026, AI in pharma is forecasted to have a market
value of USD 3626 million US, with a compound annual growth rate of 30.9% [20].

Especially within the last five years, research on AI for drug discovery has grown
rapidly. It is nowadays a research field that consists of several contributions from scholars
of many different disciplines. For scholars and practitioners that are interested in that
field, it is hard to oversee all the different contributions and key issues that are addressed.
With this article, we aim to extend the literature and research on AI for drug discovery
by identifying the core topics, the most influential institutions and funding sponsors, and
the current development of this research field. We believe this is necessary to consolidate
existing contributions to provide both research and practice with a summarized overview
of AI for drug discovery. The first research question we aim to address is as follows:

RQ1: What is the present status of research on using AI for drug discovery, and what
topics have been investigated in previous research?

Additionally, an article that analyzes the prior literature can “provide directions
for future research with reference to new and novel ideas, theories, measures, methods
and novel research questions” [21] (p. 1). We follow [21] and believe that review articles,
including bibliometric studies, can and should identify future research questions to advance
a certain research field. Our second goal is therefore to serve as a foundation for interested
scholars by identifying opportunities for further research. Hence, we aim to address the
following second research question:

RQ2: What are promising future research avenues that can help to advance the field of
AI for drug discovery?

To answer the first research question, we followed a bibliometric approach. While
systematic literature reviews are used to qualitatively analyze smaller datasets of literature,
bibliometric studies aim at quantitatively analyzing large datasets by using statistical or
visualization tools [22]. Hereby, a bibliometric analysis can help to achieve a comprehensive
understanding of a research field and its boundaries and can furthermore help to identify
future research directions [23–26]. Although the bibliometric method is not new and
was discussed already in the 1950s and 1960s [27,28], it has gained popularity in recent
years. Due to their benefits and value, bibliometric studies have been applied in different
disciplines, including pharmacy [29,30], oncology [31], tourism management [32], human
resources management [33], and business administration [34]. Given a large amount of
research available on that topic, we found a bibliometric approach also suitable for the field
of AI for drug discovery.

While we used the bibliometric analysis to understand the structure and research
topics, we followed [23] and additionally applied content analysis. Similar approaches
have already been conducted by different researchers [23,32,35,36] to obtain more detailed
insights. In our study, we used additional content analysis to identify promising future
research topics to answer our second research question.
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1.2. Overview of Artificial Intelligence

AI is one of the newest fields that is investigated in science and engineering [37].
According to [38], the beginning of AI can be dated to 1943. Going back to this year, [39]
proposed the first idea of an artificial neuron. The term “AI” itself was coined a few years
later, in 1956 [37]. In the following decades, AI experienced several ups and downs [40].
Currently, AI is a broad and thriving field with many applications in practice and several
active research topics [41–43]. Advancing computing power and an increasing amount
of data are among the main reasons for the growing interest in AI in today’s business
environment and society [40]. Although AI is often considered to belong to computer
science, it is a multidisciplinary field that contains contributions from other disciplines,
such as psychology, mathematics, and neuroscience [44,45].

It is important to note, however, that today’s AI systems are not intelligent in the
proper sense of the word. In that regard, [46] was the first to propose a distinction between
strong and weak AI. Strong AI, or artificial general intelligence (AGI), describes machines or
systems that have human-like intelligence or capabilities [47,48]. These strong AI systems
might have emotions, feelings, and an understanding of their environment [44]. However,
strong AI is not yet realized [49], and some researchers even believe that AI will never be
capable of all human abilities [50]. The AI methods and applications of today are examples
of weak AI. Weak AI systems are not generally intelligent and are developed for single
tasks. They do lack emotions, feelings, general intelligence, or a conscious mind [44,46].
Therefore, weak AI systems are not intelligent, but only behave as though they are [37,51].

AI does not refer to one single tool or application; it is an umbrella term that describes
several different technologies. Machine learning is a group of AI methods that is nowadays
probably used most often. Nowadays, machine learning is driving many applications in
modern life. Examples include web searches, content filtering in social networks, or recommen-
dations on e-commerce websites. Additionally, machine learning is part of many consumer
products, such as cameras and smartphones [52]. In general terms, machine learning refers to
applications and systems that are able to automatically detect meaningful patterns in data [45].
That means that the performance of machine learning improves with “experience” [53], also
referred to as learning or training of machine learning systems. Based on the how the machine
learning system learns, two different types can be identified: those with supervised and
unsupervised learning techniques [54]. It must be noted that other types of learning exist.
Examples are, among others, semi-supervised learning, online learning [55], or reinforcement
learning [56,57]. However, supervised and unsupervised learning are the most used learning
algorithms [58]. The difference between supervised and unsupervised learning is the presence
of labels in the data that are used for training [58]. With supervised learning, the system
receives labeled input as the training data [59]. In comparison, in unsupervised learning,
a system only receives input but does not obtain information about the desired outcomes [60].

There are a large number of different algorithms that are subsumed under the term
machine learning. Among these are tree-based methods, such as the decision tree, random
forest, and XGBoost, as well as methods that are inspired by the human brain, such as
neural networks [42,61].

The remainder of this article is structured as follows. The second section is divided
into three subsections and presents the findings and results of our bibliometric analysis.
After that, section three contains a discussion that consists of a future research agenda and
implications of our study for research and practice. This is followed by Section 4, in which
the bibliometric approach and steps of data collection and analysis are discussed. Finally,
the last section contains concluding remarks.

2. Results

This section presents the findings of the bibliometric analysis. It consists of three sub-
sections. First, a general overview of the field of AI for drug discovery is given. The second
subsection shows the results of our performance analysis. Finally, the last subsection
contains a network analysis and a thematic overview.
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2.1. General Overview

This section gives an overview of the research field of AI applied for drug discovery.
Table 1 shows an overview of key metrics of the identified publications. In total, 3884 differ-
ent documents were identified that dealt with that topic. These documents were published
in 1073 different journals or conferences. In total, 217,668 references were cited by the 3884
documents. In total, 6790 different author keywords were used. Apart from the author key-
words, which are provided by the original authors of a document themselves, keywords plus
are an additional way to analyze a document’s content. Keywords plus are automatically
generated and are words or phrases that appear in the titles of an article’s references [62,63].
In summary, 19,326 different keywords plus were identified in our sample.

Table 1. General overview and key metrics of the identified publications.

Metric Value

Main information
Timespan of publications 1991–2022

Sources (conferences and journals) 1073
Documents 3884

Average citations per document 36.08
Average citations per year per document 5.70

Total number of references 217,668
Number of author’s keywords 6790

Number of keywords plus 19,326
Document Types

Journal article 2452
Conference article 503

Review 928
Authors

Number of different authors 12,044
Total number of author appearances 19,011

Average number of authors per document 4.89
Documents per author 0.322

Single-authored documents 261
Multi-authored documents 3623

Authors of multi-authored documents 11,803
Collaboration index 3.26

In total, 12,044 different researchers authored the 3884 articles dealing with AI-based
drug discovery. A total of 19,011 authors appear in the publications, and this is equivalent
to an average number of 4.89 authors per document. Only 261 documents are single-author
papers, and this is equivalent to 6.7% of the articles. This might be an indicator of the
topic’s high complexity, which makes it necessary to collaborate with other researchers.
This assumption is underpinned by the high number of almost five researchers authoring
one document on average. To analyze the cooperation among researchers, the collaboration
index (CI) is an often-used variable. It is calculated by dividing the total number of authors
of multi-authored documents by the total number of multi-authored articles [64,65]. For
our sample, we received a collaboration index of 3.26. This is a high value compared to
other bibliometric studies (see Table 2 for a comparison).

Table 2. Comparison of different bibliometric studies.

Study [66] [67] [68] [69] This Study

Topic Data quality Blockchain in accounting Waqf research Data governance AI for drug discovery
Documents 159 93 527 780 3884

Documents per author 0.305 0.443 0.599 0.367 0.322
Collaboration index 3.60 2.83 2.53 3.26 3.26

Single-authored
documents - 29% 50% 22.18% 6.7%
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Figure 1 shows the distribution of the identified publications among the different
disciplines. The data for Figure 1 were derived from Scopus, where the publications are
assigned to disciplines based on the outlets they were published in. An outlet can be related
to more than one discipline. Therefore, the total number of documents in Figure 1 is higher
than the number of identified documents.
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In total, the 3884 identified documents cover 26 different disciplines. The fact that
scholars from many different disciplines contributed to it shows the interdisciplinary
nature of this research field and AI in general [61]. We can see that most articles have been
published within four disciplines. Three of these disciplines are directly related to medicine
and topics related to drug development, namely “Biochemistry, Genetics, and Molecular
Biology”, “Pharmacology, Toxicology, and Pharmaceuticals”, and “Chemistry”. The fact
that “Computer Science” is the discipline with the second-highest number of publications
is not surprising, since AI is a traditional topic within computer science. In comparison,
“Biochemistry, Genetics, and Molecular Biology” and “Pharmacology, Toxicology, and
Pharmaceuticals” are fields that are concerned with discovering and developing new drugs.

Figure 2 depicts the number of publications for every year. The first identified pub-
lication dealing with AI for drug discovery was published in 1991 [70]. In this article,
the authors present their preliminary results about the application of machine learning
computer-aided molecular design. In this early work, the machine learning that is used
is trained with a knowledge base of chemical properties. The goal of the model was to
automatically identify relevant fragments in a molecule that are “responsible for activity in
a set of inhibitors of thermolysin and, furthermore, to determine a generalized model for
an optimal inhibitor” [70].

In the next years, however, we observe only slow growth of research on AI for drug
discovery. In total, only 40 articles were published between 1990 and 1999. From 2000 on,
there was an increasing interest in the field of AI applied for drug discovery. From 2000
until 2005, four times as many articles were published than in the 10 years before. By
the year 2006, the annual number of research is steadily increasing, with the exception of
only three years (2008, 2010, and 2016). In the first eight months of 2022, 488 articles were
published. We therefore can assume that the trend of an increase in publication numbers
will be ongoing in 2022. Since, in previous years of our final sample, statistically more
publications appear in the last months of the year, we extrapolated the total number of
publications for 2022 to 957 in total.
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In summary, Figure 2 shows that the research interest in AI for drug discovery has
increased significantly over the last few years. It has to be noted, however, that this
development is not unique to AI applications for drug discovery. Instead, AI in general is
a topic that has gained a lot of attention in the last years, notwithstanding the application.

2.2. Performance Analysis

This subsection presents the results of our performance analysis, while the previous
subsection aimed to give a general overview. The 3884 publications that were included in
our final sample were published in 1073 different sources. From these sources, 263 were
conferences and 810 were journals. Table 3 lists the outlets with the most publications
on AI applied for drug discovery. The leading journal with the most articles (n = 222) on
this subject is the Journal of Chemical Information and Modeling. This outlet is followed by
the Briefings in Bioinformatics, Drug Discovery Today, BMC Bioinformatics, and the Journal of
Cheminformatics. Among the 20 sources with the most publications, only one item referred
to conference proceedings (Lecture Notes in Computer Science on rank 10). The thematic focus
of the sources reflects the strong dominance of computer science and biochemistry that was
already outlined above (see Figure 1).

AI for drug discovery is a topic of international and global interest. In total, researchers
from 100 different countries have contributed to the studies that were identified. In Table 4,
the 20 countries with the most publications are listed. A publication is assigned to a coun-
try when its corresponding author is affiliated with an institution or company located
in this nation. If the corresponding author was not clearly identifiable, an article was
excluded from the analysis. In total, 3236 of the identified 3884 articles had a clearly defined
corresponding author.
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Table 3. Overview of the sources with the most publications.

Rank Source Publications

01 Journal of Chemical Information and Modeling 222
02 Briefings in Bioinformatics 95
03 Drug Discovery Today 85
04 BMC Bioinformatics 71
05 Journal of Cheminformatics 70
06 Molecules 70
07 International Journal of Molecular Sciences 69
08 Expert Opinion on Drug Discovery 64
09 Bioinformatics 57
10 Lecture Notes in Computer Science 56
11 Journal of Computer Aided Molecular Design 55
12 Molecular Informatics 53
13 Scientific Reports 52
14 Molecular Pharmaceutics 46
15 Current Topics in Medicinal Chemistry 44
16 PLOS One 44
17 Journal of Medicinal Chemistry 39
18 IEEE ACM Transactions on Computational Biology and Bioinformatics 36
19 Molecular Diversity 36
20 Frontiers in Pharmacology 33

Table 4. Overview of the countries with the most publications (n = 3236).

Rank Country Publications Percentage Citations Avg. Cit. per Document

01 USA 850 26.27% 69,461 81.72
02 China 577 17.83% 11,290 19.57
03 India 216 6.67% 3496 16.19
04 United Kingdom 207 6.40% 6517 31.48
05 Germany 152 4.70% 5601 36.85
06 Japan 106 3.28% 1588 14.98
07 Switzerland 90 2.78% 4965 55.17
08 South Korea 87 2.69% 1380 15.86
09 Canada 82 2.53% 4817 58.74
10 Italy 69 2.13% 2199 31.87
11 Spain 62 1.92% 2400 38.71
12 France 60 1.85% 967 16.12
13 Iran 58 1.79% 729 12.57
14 Sweden 53 1.64% 1804 34.04
15 Brazil 49 1.51% 1165 23.78
16 Australia 41 1.27% 719 17.54
17 Portugal 40 1.24% 920 23.00
18 Singapore 30 0.93% 1314 43.80
19 Turkey 30 0.93% 698 23.27
20 Netherlands 24 0.74% 925 38.54

Authors from the United States have authored, by far, the most publications. In total,
850 of the 3236 publications have corresponding authors from institutions or companies in
the United States, which is equal to more than 26%. The United States are followed by China,
with 577 publications. In summary, authors from China and the United States corresponded
to 44% of all publications dealing with AI for drug discovery. China and the United States
are followed by India (216 publications) and the United Kingdom (207 publications). With
152 publications, Germany is the first country from the European Union to appear in our
list, on the fifth rank.

The United States is also leading in terms of the total citation count. In summary, the
articles with a corresponding author from the United States received 69,461 citations, which
is equal to an average citation count of 81.72 per document. It is important to mention,
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however, that one single article, dealing with deep learning in general [52] is responsible
for 37,560 of the 69,461 citations of the United States, and this is equal to more than 54%.
In terms of the total citation count, the United States is followed by China, the United
Kingdom, Germany, Switzerland, and Canada. Additionally, it is interesting to observe
that a high number of articles does not necessarily correlate with a high number of citations.
When we focus on the average number of citations per document, the United States is
followed by Canada, Switzerland, and Singapore.

Next, we take a look at the sponsors that funded most of the articles. Table 5 shows
an overview of the top 20 funding sponsors of all articles. Of the 3884 sources we identified,
2003 were supported by funding sponsors. Although the majority of the 2003 articles was
funded by only one sponsor, several projects were supported by more than one institution.
We can observe that funding sponsors from China, the United States, and the European
Union are most often present on the list. Of the top 20 sponsors, 8 were from the United
States, four from China, and three from the European Union. The National Natural Science
Foundation of China funded the most articles of our sample (361 publications), followed by
the National Institutes of Health (327 publications, United States), and the National Science
Foundation (153 publications, United States). While most of the funding sponsors belong
to one single country, three funding programs were from the European Union, namely
the Horizon 2020 Framework Programme, the European Commission, and the Seventh
Framework Programme.

Table 5. Overview of the funding sponsors.

Rank Funding Sponsor Country/Region No.

01 National Natural Science Foundation of China China 361
02 National Institutes of Health United States 327
03 National Science Foundation United States 153
04 National Institute of General Medical Sciences United States 119
05 National Key Research and Development Program of Chinas China 83
06 U.S. Department of Health and Human Services United States 79
07 National Cancer Institute United States 72
08 National Research Foundation of Koreas South Korea 68
09 Horizon 2020 Framework Programme European Union 62
10 European Commission European Union 59
11 Japan Society for the Promotion of Science Japan 54
12 National Center for Advancing Translational Sciences United States 54
13 National Institute of Allergy and Infectious Diseases United States 46
14 Fundamental Research Funds for the Central Universities China 41
15 Engineering and Physical Sciences Research Council United Kingdom 40
16 Ministry of Education, Culture, Sports, Science and Technology Japan 37
17 U.S. National Library of Medicine United States 35
18 Seventh Framework Programme European Union 35

18 Schweizerischer Nationalfonds zur Förderung der
Wissenschaftlichen Forschung Switzerland 34

19 Ministry of Science and Technology of the People’s Republic of China China 34
20 Deutsche Forschungsgemeinschaft Germany 33

The following Table 6 shows the top 20 funding sponsors of the 100 most cited articles
of our sample. With 13 funding sponsors, a majority of the 20 top funding sponsors originate
from the United States. Furthermore, two funding sponsors from Switzerland are among the
top 20, namely the Eidgenössische Technische Hochschule Zürich and the Schweizerischer
Nationalfonds zur Förderung der Wissenschaftlichen Forschung. Switzerland is thus the
only country in Table 5, apart from the United States, that is represented more than once.
The Horizon 2020 Framework Programme is ranked 6th and funded 3 of the 100 most
cited articles on AI-supported drug discovery. The National Natural Science Foundation of
China, which funded the most articles in total, funded four of the most cited articles.
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Table 6. Overview of the funding sponsors of the 100 most cited articles.

Rank Funding Sponsor Country/Region No.

01 National Institutes of Health United States 12
02 National Institute of General Medical Sciences United States 7
03 National Science Foundation United States 6
04 National Natural Science Foundation of China China 4
05 National Heart, Lung, and Blood Institute United States 4
06 Horizon 2020 Framework Programme European Union 3
07 Eidgenössische Technische Hochschule Zürich Switzerland 3
08 Biotechnology and Biological Sciences Research Council United Kingdom 2
09 Canadian Institutes of Health Research Canada 2
10 Deutsche Forschungsgemeinschaft Germany 2
11 Japan Society for the Promotion of Science Japan 2
12 National Cancer Institute United States 2
13 National Center for Advancing Translational Sciences United States 2
14 National Institute of Allergy and Infectious Diseases United States 2
15 National Institute of Biomedical Imaging and Bioengineering United States 2
16 NVIDIA United States 2
17 Pharmaceutical Research and Manufacturers of America Foundation United States 2

18 Schweizerischer Nationalfonds zur Förderung der
Wissenschaftlichen Forschung Switzerland 2

19 U.S. Food and Drug Administration United States 2
20 U.S. National Library of Medicine United States 2

Finally, our performance analysis consists of an overview of the most productive
affiliations. To address this, Table 7 shows an overview of the 20 most productive affiliations.
In total, the 12,044 authors that contributed to the research about AI-based drug discovery
came from 2970 different affiliations. With 138 authors, the University of California, in
the United States, was most often represented in research about AI for drug discovery.
The University of California is followed by the Zhejiang University, the Central South
University (both located in China), and the University of Cambridge (United Kingdom).
From ten affiliations, more than 100 authors contributed to research on AI for drug discovery.
The Uppsala University from Sweden and the National University of Singapore are the
two only affiliations that are not located in the United States, China, or the United Kingdom.

Table 7. Overview of the most productive affiliations.

Rank Affiliation Country/Region No.

01 University of California United States 138
02 Zhejiang University China 129
03 Central South University China 128
04 University of Cambridge United Kingdom 128
05 Sun Yat-Sen University China 122
06 China Pharmaceutical University China 121
07 Novartis Institutes for Biomedical Research United States 120
08 Sichuan University China 118
09 East China University of Science and Technology China 116
10 University of Pittsburgh United States 115
11 National University of Singapore Singapore 89
12 Peking University China 74
13 National Institutes of Health United States 72
14 Stanford University United States 72
15 Tsinghua University China 72
16 Shanghai Jiao Tong University China 71
17 University of British Columbia United States 70
18 Uppsala University Sweden 66
19 Vanderbilt University United States 63
20 Shanghai Institute of Materia Medica China 62
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2.3. Science Mapping and Thematic Analysis

Next to the performance analysis that was presented in the last section, we conducted
science mapping to obtain a better understanding of the topics and structure of the research
field of AI in drug discovery. Together with performance analysis, science mapping is one of
the two main categories of bibliometric tools [22]. In contrast to performance analysis, which
aims to measure performance, science mapping examines interactions and relationships of
research constituents [22,71,72]. Science mapping is a widely adopted set of methods that
aims to shed light on a research field’s conceptual, social, and intellectual structure [73–75].
By conducting science mapping and studying keywords and their frequency, this section
aims to analyze the key topics addressed in research on using AI for drug discovery.

We begin our examination by looking at commonly used keywords that appeared
in the title, abstract, or keywords. In Table 8, we show the keywords that appeared most
frequently throughout our sample. Many of the most frequently used terms are not surpris-
ing since they also occurred in the search string that was used for the literature collection
(e.g., drug discovery, machine learning, artificial intelligence, deep learning, or artificial
neural network). It is worth mentioning that “machine learning” is the technical term that
appeared most frequently in our sample. This is not surprising, since “machine learning”
is an umbrella term that often includes frequently used technologies such as decision
trees and artificial neural networks [76]. Deep learning is another concept that belongs
to machine learning and is based on artificial neural networks [77]. It is therefore hardly
surprising that also deep learning is among the top 10 keywords, with 812 appearances of
that term in total.

Table 8. Overview of the most frequently used keywords.

Rank Keyword No.

01 Drug discovery 2127
02 Machine learning 1877
03 Human 1651
04 Drug development 1525
05 Humans 1391
06 Article 1369
07 Artificial intelligence 933
08 Procedures 912
09 Deep learning 812
10 Chemistry 782
11 Priority journal 729
12 Drug design 689
13 Review 689
14 Algorithm 669
15 Nonhuman 558
16 Algorithms 557
17 Prediction 549
18 Metabolism 525
19 Protein 494
20 Quantitative structure activity relation 490
21 Artificial neural network 440
22 Forecasting 432
23 High-throughput screening 426
24 Learning systems 419
25 Animals 417
26 Support vector machine 403
27 Controlled study 387
28 Computational biology 377
29 Ligands 375
30 Drug screening 371
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With 1651 and 1391 appearances, the terms “human” and “humans” are also among the
top five keywords within our sample. This indicates that a high percentage of the identified
research deals with drugs or proteins that are relevant for the human organism. Typical
research contributions within this category are machine learning and AI approaches for
predicting the interactions between SARS-CoV-2 and human proteins [78], the investigation
of human intestinal drug absorption for drug discovery [79], or for the development of
G-protein-coupled receptor (GPCR) agonists [80].

Figures 3 and 4 show word clouds from different time periods. The bigger a word
is, the more often it appeared throughout the keywords of the articles within that period.
We divided our sample into four different periods (see Table 9 for an overview). Figure 3a
shows the author keywords used most frequently from 1991 to 2007. This is the longest
period of time, and it contains 316 articles in total. It is the earliest stage of research on AI
for drug discovery. We see that “drug discovery” is by far the most dominant term. When
we focus on technology-related terms (e.g., artificial intelligence, machine learning, random
forest, etc.), it is interesting to see that there is no clear dominance of one single technology
in that early phase.
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Table 9. Overview of the time periods.

Years Number of Publications Duration of the Period

1991–2007 316 17 years
2008–2014 580 7 years
2015–2019 1197 5 years
2020–2022 1789 3 years

While machine learning and deep learning seem to dominate the discussions in later
periods, many technologies have an equal size in Figure 3a. This shows that researchers
were experimenting with different technologies in the early years. Already in the second
period that consists of 580 articles published between 2008 and 2014, machine learning has
become the technology most often used, followed by support vector machines.

Figure 4 shows the word clouds from the most recent periods. Figure 4a contains
1197 articles published between 2015 and 2019. In the third period, machine learning is
obviously the most often used author keyword and the most popular group of technologies
for drug discovery within our sample. While support vector machines were still frequently
applied in the second period (Figure 3b), they lost a lot of attention from 2014 on. Further-
more, the third period is characterized by the rise of deep learning which is now appearing
among the keywords for the first time. In 2015, the first three articles were published that
suggested or investigated deep learning’s potential for drug discovery [52,81,82]. From
2015 on, research containing deep learning grew continuously. In 2016, 10 more articles
on deep learning for drug discovery were published, followed by 18 publications in 2017,
58 publications in 2018, and 138 publications in 2019.

Given that tremendous growth, it is not surprising that “deep learning” is among
the top keywords in the latest period (Figure 4b). In total, 644 publications containing
“deep learning” as an author keyword were published between 2020 and 2022. Together
with “machine learning” and the umbrella term “artificial intelligence”, “deep learning”
is thus the most frequently applied technology for drug discovery in the last few years.
Additionally, COVID-19 and SARS-CoV-2 are now frequently used author keywords. As
recent studies show, machine learning or AI can be used for several for the discovery and
development of drugs or antibodies against COVID-19 [83]. For example, [84] proposes
a deep learning model for screening effective inhibitors against SARS-CoV-2, while [85]
presents D3AI-CoV, which is a platform that consists of three deep learning models that aim
to support the discovery of drugs against COVID-19. These examples show that AI-based
technologies can help to quickly understand new diseases and to find countermeasures
against them.

Finally, Figure 5 shows a graphical representation of the keyword co-occurrences. The
underlying assumption of a co-word analysis is “that words that frequently appear together
have a thematic relationship with one another” [22] (p. 289). In Figure 5, only keywords
appear that were used at least 50 times in our sample. Similar to word clouds, terms that
occur more frequently are represented with a bigger font size and circle. Terms that appear
together are linked with lines. Following the same logic as the font and circle size, a line
between two terms is thicker the more often these two terms appeared together in one
publication. Additionally, words that are in the center of the network are linked to other
words in different clusters. Keywords that are less linked and do not have many relations
to other clusters are depicted at the edge of Figure 5.

When we look at Figure 5, we can see four different thematic clusters that are rep-
resented in different colors. First, the red cluster is the medical branch of the research
that deals with AI for drug discovery. Keywords such as “human”, “nonhuman”, or
“animal” indicate that the focus is on understanding drugs in relation to organisms. The
abovementioned works that deal with the use of AI for the development of drugs to fight
diseases such as COVID-19 [83–85] are typical examples. Keywords such as “personalized
medicine”, “precision medicine”, or “human cell” indicate that also the development of
tailored drugs is part of this cluster, for example, to better fight cancer [86,87].
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The green cluster consists of keywords such as “chemistry”, “drug design”, or “chem-
ical structure”. While the green cluster is also about drug design, a keyword such as
“chemical structure”, “molecular model”, or “molecular dynamics” indicates that the green
cluster is more concerned with topics that belong to chemistry. Examples that belong to this
cluster are the application of AI to understand molecular docking to discover and design
marine drugs [88] or the prediction of molecular properties [89]. In most cases, the ultimate
goal of these articles within the green cluster is still about developing drugs that can be
used for treatment. However, the method and approach that underlies the green cluster’s
articles are often different.

While the red and green clusters are driven by medicine and natural sciences, such as
biology and chemistry, the yellow cluster is more technology oriented. In this cluster, many
technologies, such as machine learning, learning systems, and deep neural networks, are
among the keywords. Articles within this cluster often do investigate the potential of AI for
drug discovery from a more technical point of view. Closely related to the yellow cluster
is also the blue group of terms. The blue cluster is located most centrally, and its terms
have several relationships to all the other thematic areas. It is therefore hard to identify
the thematic core of the blue cluster and to distinguish it from the from the other ones. In
essence, publications within the blue cluster investigate the topic of AI for drug discovery
more theoretically. Typical examples that fall within the blue cluster are review articles, for
example, on computational model development of drug–target interaction prediction [90],
molecular docking [91], or how AI applications can be combined with other approaches for
drug discovery [92]. Overall, the keyword “co-occurrence network” in Figure 5 underpins
the multidisciplinary nature of AI in the context of drug discovery.
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3. Discussion
3.1. Future Research Agenda

We presented the state of research in the previous section, and the following section
derives possible research questions that have not yet been addressed to further advance
AI-based research in drug discovery.

First, considering the word clouds in Figures 3 and 4, it becomes evident that the
focus of studies that use AI for drug discovery has changed significantly. While studies
in the 1990s generally associated AI with automating drug discovery, the focus gradually
concretized toward machine learning. It is noteworthy that most of the applied algorithms
in the studies belong to the field of supervised learning. Algorithms such as support vector
machines [93,94], random forests [95,96], and neural networks [97,98] are applied to already
known drug discovery problems in order to identify the most important influencing vari-
ables based on the given input data. However, the limitations of supervised learning are
that it can only be applied to classification problems that are already well known. For drug
discovery, this means that supervised learning models require a large amount of labeled
data from the past to identify patterns for an already known drug discovery problem.
These patterns can be extrapolated to similar problems but are not transferable to new,
completely unknown drug discovery problems. For this purpose, the use of unsupervised
learning algorithms, such as clustering methods, would be necessary. Examples of cluster-
ing methods are principal component analysis [99,100], k-nearest neighbors [101,102], or
autoencoder [61,103]. Therefore, we would like to encourage future researchers to increas-
ingly use and evaluate unsupervised learning algorithms to identify patterns in unlabeled
data to address unknown drug discovery problems.

Another important topic that future research needs to investigate is the explainability
of AI algorithms. Most of today’s best-performing machine learning models are not capable
of conveying information about how they came up with their results and predictions. To
human users, these machine learning algorithms, therefore, are black boxes [104]. Although
some AI researchers argue that explainable AI (XAI) might not be necessary or too difficult
to achieve, there are use cases where a certain degree of explainability might be necessary.
This is especially important for users to trust and understand AI systems in critical appli-
cations such as law, defense, and also medicine [105–107]. For drug discovery, XAI is of
high importance as well. The authors of [108] state that the explainability is important to
validate and understand the results and may have a great impact on the drug discovery
pipeline. Furthermore, [109] argues that medical decision-making without any reasoning
or justification may contravene the moral responsibilities of clinicians. Although the first
research exists on how XAI can be realized in drug discovery [108–110], the explainability
of many complex models is not yet realized to a satisfying extent. Sometimes, given the
challenges research is faced with to realize XAI, it is sometimes argued that more sim-
ple models with less predictive power but a higher degree of explainability should be
used [109,111]. Therefore, one can argue that there is a trade-off between the predictive
power and explainability of AI models. It is, therefore, necessary to investigate if predictive
power and accuracy or explainability are more important for AI in drug discovery.

Table 10 below provides an overview of our open research agenda to assist future
researchers to further contribute to AI-based drug discovery research. We consider both
qualitative and quantitative research methods to adequately address the research gaps. In
order to identify the current state of practice, surveys and interviews are suitable methods.
Analogously, the current state of research can be demonstrated through a systematic review
of the literature. In contrast, for identifying a more effective or efficient solution to existing
practical problems, design science research is more appropriate, as different approaches are
applied and evaluated until a sufficient practical solution is achieved [112,113]. Another
method that can be applied for the evaluation of new approaches involves experiments
that analyze existing and potential cause-effect relationships through an isolated perspec-
tive [114].
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Table 10. Open research agenda.

Focus Possible Research Questions Exemplary Research Methods

AI algorithms

Which AI algorithms have the best accuracy for certain tasks
in drug detection?

Systematic literature review,
design science research

How promising is the application of unsupervised learning
algorithms for drug discovery? design science research

Should the explainability or accuracy of AI algorithms be prioritized
in drug discovery? Interviews

Which prediction accuracy is required to classify the algorithm
as reliable for drug discovery? Experiments, interviews

How can the explainability of specific algorithms
be increased?

Experiments, design
science research

Acceptance by
pharmacists and
customers

What is the current level of acceptance of pharmacists to use AI
for drug detection? Surveys

Which tasks will be performed by pharmacists and which
by AI in the future? Conceptual, experiments

Do patients trust drugs developed by AI? Surveys, interviews
How can pharmacists be trained for using AI effectively? Conceptual, experiments

Data management
and security

How can AI algorithms for drug discovery be protected against
malicious manipulation?

Conceptual, experiments,
design science research

Is there a danger of adversarial attacks and how can
these be avoided?

Experiments, design
science research

How should the data be stored to ensure efficient training of machine
learning algorithms? Survey, experiments

How can the data that is involved be protected against data theft? Survey, experiments

Law and regulation

How can data privacy regulations, such as HIPAA and GDPR,
be ensured? Conceptual

Does the drug approval process need to be adjusted in case of
an AI-based solution? Conceptual

Who is liable in case of a patient’s claims for damages? Conceptual
Is AI-assisted drug discovery compliant with the governance

principles of the pharmaceutical industry? Conceptual, interviews

How could quality assurance processes be ensured for a machine
learning algorithm? Conceptual

One method that might be particularly suitable to advance research is design science
research (DSR). DSR is a method that is commonly used in engineering and information
systems research. In general, DSR is concerned with the design of artifacts for an identified
problem [115,116]. Valuable results of DSR can be of different kinds and include both newly
designed sociotechnical artifacts and design knowledge that explains why certain artifacts
are valuable for a given context or application [112,113]. The design of an artifact can be
iterative and involve different steps, such as validity tests, evaluation, or experimenta-
tion [112]. Right now, DSR is a methodology that has not been applied within research
on AI applied for the discovery and development of drugs. This is surprising since AI
systems can be understood as technical artifacts. Given that, DSR might be a fitting research
paradigm that could guide researchers to conduct and present their research results on
AI-supported drug discovery. Although DSR might be uncommon to most researchers
outside of information systems and engineering, we, therefore, see a promising chance in
applying this method to that research field. This could also be realized by cooperating with
information systems or engineering scholars that are familiar with DSR.

3.2. Implications

By conducting a bibliometric analysis, we aimed to provide a holistic picture of
research dealing with the application of AI for drug discovery. To do so, we conducted
a performance analysis, showed the current development of key topics, and presented
promising future research avenues.
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Our results have several implications for both research and practice. First, our results
can help interested researchers and scholars to gain an initial understanding and overview
of the research dealing with AI methods in the context of drug discovery. This involves
the current development of this area, as well as the most investigated topics and tech-
nologies. Additionally, we pointed out several areas that might be addressed by future
researchers to help better understand the benefits, challenges, and implications of AI for
drug development. As the results and the future research area show, AI for drug discovery
is a research field characterized by a high degree of interdisciplinarity. There are still several
gaps that require interdisciplinary teams and contributions from many different disciplines.
Future research projects must therefore not be limited to scholars that belong to computer
science, medicine, or pharmacology. Instead, contributions can be made by researchers
from several disciplines.

Apart from researchers, practitioners in medicine or pharmacy can also use our find-
ings to get familiar with AI and its potentials. Not only the clinical practice can use our
findings, but also companies. AI not only can be used for existing processes and tasks
within companies, but it can also form the foundation for new business models or start-
ups [117]. Within the field of AI for drug discovery, too, start-ups emerged that aim to
develop new solutions. Entrepreneurs and companies that are interested in entering the
market of AI for drug discovery can use this article’s findings to gain an overview of
relevant topics and technologies used.

Our study might be subject to certain limitations. First, we used only Scopus as the
scientific database for our data collection. Although Scopus is among the most often used
databases and covers a large number of relevant outlets, it is likely that not all publications
that deal with AI for drug discovery are included in our sample. However, given the
large number of databases and outlets Scopus covers, we believe that this does not affect
the main findings of our study significantly. Nevertheless, it might be possible that the
usage of other databases might lead to slightly different results. Furthermore, AI is under
rapid development, and the number of articles investigating its use for drug discovery is
continually rising. Therefore, given the unpredictability of technological developments
in the future [118], the results of this article can only represent the current state of the
research. It is possible that new trends and technologies will appear that are not covered
by this analysis. Finally, we did not use all methods that belong to the methodological
toolbox of bibliometric studies. There are other techniques, such as citation analysis [119],
co-citation analysis [120], or bibliographic coupling [121,122], that are not part of this study.
The application of other methods might therefore lead to additional insights.

4. Materials and Methods

The following section describes the research method applied. The bibliometric ap-
proach we used can be divided into two parts. First, the bibliometric data were collected
from the database Scopus. This step is explained in the first subsection. After that, the
exported data were analyzed, as explained in the second subsection.

4.1. Data Collection

The first step of a bibliometric study is the collection of metadata that serve as the
foundation of the analysis [123]. Many bibliometric databases exist that differ in terms
of their functionalities and characteristics (for an overview, see [124]). Following the
recommendation of [22], we decided to rely on only one single database. The reason
for this decision is that every database has its own format of bibliometric data efforts to
combine different formats from different databases, and this can easily lead to errors [22].
Although many bibliometric databases do exist, Scopus and the Web of Science (WoS) are
among the most relevant ones [69,73]. Compared to the WoS, however, Scopus covers more
scientific journals [21]. Like the authors of other recent studies (see, e.g., [23,24,125,126]),
we, therefore, chose Scopus as the database for our data collection.
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Regarding the terms for our search string, we used [6] as a reference. Apart from
general terms such as “artificial intelligence” or “machine learn*”, we also searched for
more specific technologies, such as “fuzzy expert system” or “evolutionary computation”.
The search string’s second part consisted of the application we searched for, namely drug
detection. Apart from “detection”, we used “discovery” as a synonym. However, it
should be noted that studies dealing with the identification of illicit drugs are not part of
the final sample, as there is no intersection with drug discovery research. This resulted
in the following search string that was applied in Scopus to search the title, abstract,
and keywords:

((“Artificial intelligence” OR “Machine intelligence” OR “artificial neural network*”
OR “Machine learn*” OR “Deep learn*” OR “robotic” OR “thinking computer system”
OR “fuzzy expert system*” OR “evolutionary computation” OR “hybrid intelligent
system*”) AND (“drug detection” OR “drug discovery”))

We received 4398 documents as the first result. After the initial search, documents were
excluded based on different criteria. First, only English articles were further considered.
This led to the elimination of 39 documents. After that, 25 articles with undefined authors
were removed from the sample. Finally, we excluded documents based on their type. In
this step, only documents that were reviews, journal articles, or conference submissions
remained. These steps led to a final sample of 3884 documents that were further considered.
The overall process is depicted in Figure 6.
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Finally, the remaining sample of 3884 articles was imported in the CSV format for
further analysis. This process of data analysis is explained and outlined in the follow-
ing subsection.

4.2. Data Analysis

A broad variety of different tools exist that can help us analyze bibliometric data. For
our bibliometric analysis, we followed [69] and used two different tools in combination:
VOSviewer and Bibliometrix/Biblioshiny.

VOSviewer is a tool that was developed by the Centre for Science and Technology
Studies at Leiden University in the Netherlands [124,127]. VOSviewer is a widely known
application that has been applied in numerous bibliometric studies. It supports the construc-
tion of bibliometric networks consisting of publications, journals, or researchers. Further-
more, it allows for co-citation, bibliographic coupling, and co-authorship analysis [124,127].
Given these advantages, we decided that VOSviewer is a useful tool for our study. Next
to VOSviewer, we used the open-source R package Bibliometrix, which was developed
by [128]. Additionally, we complemented Bibliometrix with Biblioshiny. Biblioshiny is a tool
for the creation of bibliometric visualizations and analyses [124]. We used Bibliometrix and
Biblioshiny since these enable many different types and forms of analysis [124]. Although
Biblioshiny offers many different functionalities for the statistical analysis of bibliometric
data, we decided to complement it with VOSviewer since, as outlined above, this tool is
highly suitable for visualization purposes [69].
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5. Conclusions

AI is a group of technologies that are nowadays used and investigated for several use
cases. In the context of drug discovery, the usage of AI technologies is a topic of rising
interest. Due to its growth in the last years, AI for drug discovery is a research field that
consists of many different topics and articles. These contributions stem from researchers
from several countries and institutions. Due to the high number of contributions, the
research field on AI for drug discovery became increasingly complex and difficult to oversee.
With this article, we aimed to address this increasing complexity by giving an overview
of research on AI for drug discovery as a whole. To do so, our first research goal was to
investigate the present status of research on using AI for drug discovery and what topics
have been investigated in previous research. To do so, we conducted a bibliometric analysis
that consisted of 3884 articles published between 1991 and 2022. We applied a performance
analysis to identify the most productive institutions, countries, and funding sponsors.
Additionally, we used science mapping and thematic analysis to identify the core topics
and thematic areas.

Furthermore, it was our second goal to identify promising future research avenues
that can help to advance the field of AI for drug discovery. Based on the results of the
bibliometric study and content analysis, we outlined different directions, research questions,
and exemplary methods that can be applied by future scholars. Both the findings and the
future research opportunities indicate the multidisciplinary nature of AI and its applications
for understanding and discovering drugs. We hope that, with our findings and overview,
we have succeeded in providing a good foundation for interested researchers and scholars
from all disciplines to investigate this interesting and exciting topic.
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