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ABSTRACT In recent years, the development of advanced driving assistance systems (ADAS) has grown
significantly within the transportation industry to assist drivers for making safe maneuvers. A major
component in developing these assistance systems are driving behavior prediction and recognition models.
These models aim to infer driving behaviors based on different sources and parameters using complex
mathematical models. Machine learning algorithms are being used increasingly to develop these models.
In this contribution, two formerly developed trainable models, which are an improved HiddenMarkovModel
(HMM) and a state machine model, are combined for the recognition of three lane changing behaviors
(lane change to the right (LCR), lane keeping (LK), and lane change to the left (LCL). In the improved
HMM, a prefilter is implemented on two sets of observation variables (input variables of HMM): one
consisting of distances and velocity deviation, while the other consists of time to collision (TTC) variables.
To develop an optimal model, thresholds of the prefilter are optimized using a Non-Dominated Sorting
Genetic-Algorithm-II. The aim is to investigate if the proposed model is able to produce estimations with
high accuracy (ACC), detection rates (DR), and low false alarm rates (FAR). In addition, the performance
based on applying the prefilter on the two sets of variables are compared. Comparisons to an individual
improved HMM and an ANN-based state machine approach are also addressed. The obtained results show
that the application of prefilter on the TTC variables improves the estimation performance. Furthermore, the
proposed approach outperforms other approaches.

INDEX TERMS Advanced driving assistance systems, hidden Markov models, state machine model,
prefilter, lane changing behaviors recognition.

I. INTRODUCTION
Based on a recent preliminary report by the European
Commission related to road accidents in 2021, an estimate
of 19800 lives were lost due to traffic accidents in the
EU [1]. Focusing on Germany, road accidents have cost
around 2562 lives in 2021, according to the German Federal
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Statistical Office (Destatis) [2]. While, this is a decrease of
5.8 % from the previous year, it is still a critical problem
faced. Further research shows that majority of the deaths in
country roads and motorways involve the passenger vehicles,
while in built up areas, most victims are pedestrians [1].
A recent report by Destatis also shows that majority of these
accidents are caused by human driving behaviors accounting
for 71.8 % of the accidents in Germany in 2020 [2]. This is
due to the driver’s inability to predict the right action when
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driving in a complex or different environment [2]. The devel-
opment of Advanced Driving Assistance Systems (ADAS)
plays an important role to tackle this issue for improve-
ments to road and vehicle safety. The ADAS provide support
and assistance for drivers to maneuver safely in different
environments. Some of the well-known ADAS used are the
adaptive cruise control (controls speed of the vehicle while
maintaining safety distances) and the collision avoidance
systems (warn and alert drivers to avoid collision). Driving
behavior prediction and recognition models are important
elements of ADAS. The incorporation of driving behaviors
with ADAS allows early prediction of driving behaviors and
dangerous situations. Driving behaviors are considered as
individualized, thus classifying and predicting behaviors by
an assistance system enables the related drivers to get better
supervision while driving [3]. A system that is able to adapt
to individual behaviors of different drivers is considered to be
ideal not only for increasing safety, but for the improvement
of functionality (development of smart vehicles) as well [3].
Machine Learning (ML)-based approaches are increasingly
used for the development of prediction and recognition mod-
els as these approaches are able to learn from given behav-
iors to predict similar behaviors or the driver’s intentions.
Some of the well-known ML approaches used in research
contributions are Artificial Neural Network (ANN) [4], Sup-
port Vector Machine (SVM) [5], and Hidden Markov Model
(HMM) [6]. In [4], an ANN-based model is used to predict
lane changing maneuvers based on different situations, while
in [5], a SVM model is used to detect lane changing inten-
tions. A lane changing prediction model is developed in [6]
based on an improved HMM, which includes the use of a
prefilter. Most of these contributions analyze lane changing
behaviors because a significant proportion of accidents occur
during a lane change [2].

However, several challenges exist related to the develop-
ment of such models, like defining optimal parameters for
optimal estimations. A reason for this is the lack of under-
standing on selecting relevant input variables and parameters
to be optimized due to the black box nature of the ML-based
approaches. Two methods are usually applied to solve this
problem. The first method combines two or more ML-based
approaches to develop the model as in [7], whereby ANN is
combined with SVM to predict lane changing behaviors on a
highway. The results based on this work show that the com-
bined model produced better estimation results than the indi-
vidual models. A combination of ANN and HMM to develop
a prediction model is realized in [8], whereby the HMM
is used to predict different driving behaviors such as emer-
gency steering, normal cornering (ability to handle bends),
and straight line driving. Based on the predictions, an ANN
model is used to obtain specific steering wheel angles for the
different behaviors. The second method is based on feature
selection techniques. Features used to describe a particular
driving situation play an important role in driving behavior
predictions. Thus, methods such as filter and wrapper meth-
ods are used in [9] to select the most appropriate features as

input variables in the prediction and recognition models. The
wrapper method considered in [9] employs the combination
of SVMwith a recursive feature eliminationmethod to extract
features [10], [11]. Different vehicle variables are combined
to develop features using a prefilter in [6], as part of HMM for
lane changing predictions. On the other hand, deep learning
methods have been applied in recent years as in [12], for auto-
matic extractions of temporal and spatial features, eliminating
the need for manual extraction.

In this contribution, a trainable model is proposed by com-
bining a state machine-based approach [13] and an improved
HMM [6] for the recognition of lane changing behaviors.
The lane changing behaviors considered are lane change
to the right (LCR), lane keeping (LK), and lane change
to the left (LCL). The state machine models the different
lane changing behaviors as states, such that it describes
the transition from one state to another based on specific
conditions. These conditions are defined by the estima-
tions of HMM. A state machine model as a new ML-based
model is considered as it is more interpretable than a HMM
model, while the HMM is known for its stochastic properties.
To improve the performance of HMM, previous works [6]
and [14] considered a prefilter application. The prefilter
process variables to generate input features. Thus, in this
work a prefilter is implemented to two sets of variables
as part of the HMM. One set comprises of distance and
velocity deviation variables, while the other set comprises
of time to collision (TTC) variables. Similar to [6], this
work also considers the optimization of the prefilter param-
eters using Non-Dominated Sorting Genetic-Algorithm-II
(NSGA-II). Different from previously mentioned literature,
a state machine-based model [13] is combined with HMM
to formulate a new ML model for lane changing behavior
recognition. The objective is to develop an effective model
with improved performance in accuracy (ACC), detection
rates (DR), and false alarm rates (FAR). Performance com-
parisons between the application of prefilter to the two sets of
variables are realized as well for evaluations. The aim is also
to test the generability of the model such that same parameter
values can also be used to obtain optimal estimations for
different drivers. In addition, comparisons between the pro-
posed model, an individual improved HMMmodel [6], and a
previously developed ANN-based state machine model [15]
are performed to evaluate the effectiveness of the new
model.

This paper is organized as follows: in Section II the
methodology of the state machine model, HMM, and
improved HMM are described. Thereafter, the HMM-based
state machine model is introduced in Section III. The feature
variables used and optimization process of design param-
eters are described in this section as well. In Section IV,
the application of the method is described, which includes
the experimental setup, data processing as well as train-
ing and test process. The experimental results are dis-
cussed in section V. Finally, a conclusion is summarized in
section VI.
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II. METHODOLOGY
A. STATE MACHINE MODEL
State machines are used to model behaviors using a dis-
crete number of states. A typical state machine model can
either remain in the same state or describe the transition to
another state based on a set of inputs and conditions. In this
contribution, the transition conditions and parameters of the
model are defined by the designers. One of the benefits of
using a state machine model is its easy designing process
and flexibility [16]. Another advantage includes its easy state
reachability as the states can be defined finitely [17]. Nev-
ertheless, a state machine-based model as a ML model for
behavior estimations has not been widely applied in research.
By far, only a few research works have applied this model
in various areas, such as in tribology experiments to develop
a lifetime model based on acoustic emission data [18] and
in driving behavior experiments to develop driving behavior
recognition models [13], [15]. Typical state machine models
are developed in [18] and [13] whereby, the conditions for
state transitions are based on threshold limits of certain vari-
ables. For an example, in [13] different threshold conditions
of driving variables (values of input variables are higher or
lower than the threshold values) define the state transitions.

In this contribution, the state machine-based ML model
structure developed in [13] for the recognition of lane chang-
ing behaviors is adapted. The three lane changing behaviors
estimated are represented by three states. In the developed
model, the states are the output of the model at a particular
time point. Based on Fig. 1, if the current estimated state
is LK, the next possible estimations are either switching
to states LCR, LCL (estimating the driver performs a lane
change maneuver) or remaining in the same state (estimating
the driver remains in the same lane) depending on the tran-
sition conditions. On the other hand, if the current estimated
state is LCR or LCL, the next possible estimations are remain-
ing in the same state (driver performs further lane changes in
the respective direction) or to switch to state LK (the lane
change is over).

B. HIDDEN MARKOV MODEL
The HMM is a probabilistic graphical model used to rep-
resent behavioral changes. As shown in Fig. 2, Hidden
Markov Models (HMMs) are sequential models describing
the relationship between the observation sequence (inputs,
V = {V1,V2, . . . ,VM }) and hidden state sequence (out-
puts, S = {S1, S2, . . . , SN }), whereby M and N are the
number of observations and hidden states respectively. The
hidden states are the lane changing behaviors in the driving
behavior recognition model, hence, N = 3. The observation
sequence is used to realize the hidden state sequence based
on expectation maximization (EM) and maximum likelihood
estimation (MLE). The HMMmodel used for the recognition
of the lane changing behaviors is based on [6] (Fig. 2). The
model consists of interconnected nodes describing the proba-
bilistic relationship between the nodes. Parameters of HMM

FIGURE 1. State machine model.

include transition probabilities, observation likelihoods, and
an initial probability distribution. The transition probability
(A = aij, i, j ∈ [1,N ]) is the probability of switching
from one hidden state, Si to another, Sj. The observation
likelihood (B = bki, k ∈ [1,M ]) is the probability of an
observation, Vk generated from a particular hidden state, Si.
The initial probability distribution, πi defines the probability
of the Markov chain starting in state Si. Thus, the HMM
model can be defined by the maximum likelihood parameter,
λ = (A,B, π).

To apply the HMM-based model for the recognition of the
lane changing behaviors, the model is first trained with the
Baum-Welch algorithm (a special case of EM) to estimate λ.
Given an observation sequence and the possible hidden states
sequence, λ is estimated through learning to best fit both
sequences. Then, using the Viterbi algorithm the most prob-
able lane changing behaviors sequence is estimated based on
the saved parameters.

The transition probability of switching from Si to Sj
(a switch from one behavior to another) can be formulated
as

aij =
Expected number of transitions from Si to Sj
Expected number of transitions from Si

. (1)

The probability of being at Si at time t and changing to Sj at
time t + 1, given the observation sequence is defined as

ηt (i, j) = P(qt = i, qt+1 = j|V , λ), (2)

whereby, qt is the state at time t . Hence, the expected number
of transition from Si to Sj is the the sum of ηt for all time
steps, while the expected number of transitions from Si is the
sum of all transitions from Si . Thus, the aij is formulated as

aij =

∑T−1
t=1 ηt (i, j)∑T−1

t=1
∑N

h=1 ηt (i, h)ηt
, (3)

whereby, T is the time length of the full drive.
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FIGURE 2. Hidden markov model for driving behavior estimations.

The observation likelihood of observation Vk generated by
Si is given by

bki =
Expected number of times in Si and observationVk

Expected number of times in Si
.

(4)

Here, χt (i) is the probability of Si at time t formulated as

χt (i) = P(qt = i|V , λ). (5)

Thus, bki can be finally defined as

bki =

∑T
t=1 s.tOt=Vk χt (i)∑T
t=1

∑N
h=1 χt (i)

, (6)

such that the sum ofχt (i) for the entire time length of the drive
for a given observation is divided by the sum of χt (i) for all
time steps. Here,

∑T
t=1 s.t.Ot=Vk is the sum for all t when Ot

is Vk .
Based on the defined a and b, the HMM parameter is

generated using the Baum-Welch algorithm. The next driving
state is determined based on the saved HMM parameter and
the given observation sequence by employing the Viterbi
algorithm. Here, the maximum probability of all previous
state sequences leading to the next state (qt (j)) is considered
to denote the most probable path at time t . So, qt (j) is formu-
lated as

qt (j) =
N

max
i=1

qt−1(i)aijbj(Ot ). (7)

The HMM posses certain benefits such as its ability to
analyze time series data and its stochastic characteristics [19],
[20]. Since upcoming behaviors are stochastic and only
depend on the present state, the HMM is a suitable choice

for driving behavior estimation. The HMM can also handle
temporal pattern recognition [20].

C. IMPROVED HMM WITH PREFILTER
Using a conventional HMM may have an impoverished per-
formance if the features used are not accurate enough. There-
fore for performance improvement, various approaches have
been established such as a combination of HMM with other
methods and HMM-derived methods [21]. The combination
of HMM with other methods includes ANN-HMM [22],
Fuzzy Logic (FL)-HMM [22], and Gaussian Mixture Model
(GMM)-HMM [23]. These methods use results from one
method as input to the other to determine the final behav-
ior estimation. The other method is also used for determin-
ing the parameters and classifying different driving styles,
behaviors, or situations. Thus, the combined methods con-
sider the advantages from both the HMM and other meth-
ods to determine the final outcome. On the other hand,
the HMM-derived methods such as Hierarchical HMM [24]
and Bayesian Nonparametric HMM consider the time series
property of HMM [25]. The general idea of HMM-derived
methods include partitioning behaviors into several task lay-
ers. In these methods, the initial layer is used for determin-
ing different driving variables like acceleration, while the
higher layer uses the results from the initial layer to estimate
the corresponding driving behavior. A new and improved
HMM-derived method developed in [6], which includes the
application of a prefilter is utilized in this work. The prefilter
is applied to the observation variables of HMM.

In the HMMmodel, the observations variables are dynamic
which changes with time. Changes in the observation param-
eters changes the observation vector. To simplify the model,
a prefilter is applied on the data of the observation variables
to quantize the variables with a feature vector. The feature
vector is used to determine different driving situations [6].
The prefilter divides the driving variables into segments with
thresholds, such that each segment represents an observation.
Thresholds are defined using optimization to develop the
observations and ultimately the observation sequence.

III. HMM-BASED STATE MACHINE MODEL
A new HMM-based state machine model is introduced in
this section. Here, two trainable systems, a state machine and
an improved HMM are combined to develop a model that
recognizes lane changing behaviors. The statemachinemodel
describes the transition between the states, while the estima-
tions of an improved HMM define the transition conditions.
The transition conditions differ from [13] which uses thresh-
old conditions instead. The structure of this model is similar
to the ANN-based state machine model [15], which uses the
ANN estimations instead as the transition or remaining con-
ditions. Driving decisions depend on environmental variables
as well as individual driving behaviors. Hence, environmental
variables describing the relationship between the ego vehicle
and surrounding vehicles are selected as inputs.
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TABLE 1. Transition conditions.

FIGURE 3. HMM-based state machine model.

A. HMM-BASED STATE MACHINE APPROACH
Based on Fig. 3, for a transition from LCR or LCL to
LK to occur, the estimation of HMM should also be LK.
On the other hand, for a transition from LK to LCR or LCL,
the HMM estimation should be LCR or LCL respectively.
If the HMM estimation is same as the current state or the
conditions are not met, the model remains in the same state.
The conditions for state changes are based on the aforemen-
tionedHMMmathematical process. The transition conditions
are summarized in Table 1.

1) DATA SELECTION
As mentioned previously, only environmental variables are
used as inputs for the model as these variables provide
information that mainly affect the human driving decisions.
Environmental variables are distinguished into two types:
state of ego/surrounding vehicles and driver’s operational
information. Accordingly, two models are developed using
two sets of input variables. Model I uses distances, velocity
deviation, and current lane as inputs, while model II uses
TTC and current lane as inputs. The selected variables based
on both models best describe the current driving situation,
thus affecting the driving behaviors (given in Table 2 and 3).
The variables are selected as they have a higher influence on
the driver’s decision to make a lane change as well as the
ability to describe the relationship between the ego vehicle
and surrounding vehicles [3], [6].

A prefilter using two thresholds is applied on the distance
and velocity variables for model I and on the TTC variables

TABLE 2. Environmental variables of model I.

TABLE 3. Environmental variables of model II.

for model II. Each variable is divided by the prefilter into
three segments [6]. As for the current lane number, the values
are fixed indicating the specific lane of the ego vehicle.

B. OPTIMIZATION
The prefilter thresholds are design parameters of the
model that needs to be optimized to generate an optimal
λ = (A,B, π) for performance improvements. Here, the
Non-Dominated Sorting Genetic-Algorithm-II (NSGA-II) is
chosen to optimize these parameters. This technique is used
due to its ability to handle Multi-objective optimization prob-
lems (MOPs) [26] and its fast convergence [26], [27]. The
parameters are defined using this approach, such that the
objective functions are minimized.

To evaluate the model’s performance, ACC, DR, and
FAR [28], [29] metrics are used by comparing the actual and
estimated behaviors. The metric values are defined based on
the True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN) values. Using LCR as an
example to illustrate these values, TP is the number of events
when the actual and estimated maneuvers are positive (LCR),
while FP is the number of events when the estimated maneu-
ver is positive, but the actual maneuver is not. Similar concept
applies to TN and FN. The formulations for the metrics are
given as

ACC =
TP+ TN

TP+ TN + FP+ FN
, (8)
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FIGURE 4. Optimal prefilter development.

DR =
TP

TP+ FN
, and (9)

FAR =
FP

TN + FP
. (10)

Therefore, the parameters are determined such that the
model achieves in parallel high ACC, DR, and low FAR.
Similar objective functions as in [13] and [15] are chosen for
the NSGA-II. As objective functions

f1 = (1− DRright )+ FARright , (11)

f2 = (1− DRkeep)+ FARkeep, and (12)

f3 = (1− DRleft )+ FARleft (13)

are used, whereby each function corresponds to a specific
lane changing behavior. In Fig. 4, the optimization process
of the prefilter thresholds is shown.

IV. APPLICATION OF THE METHOD
The application of the HMM-based state machine approach is
realized in this section. The experimental setup for data col-
lection is first described followed by the process of labeling
lane changing behaviors. Next, the training and test processes
are explained. The training is done using the driving data
from each individual driver for defining the optimal design
parameter values. Then, the test is done based on the trained
model using different data by the same driver and other
drivers.

A. DESIGN OF THE EXPERIMENT
The driving experiments are conducted using a driving simu-
lator, SCANeRTM in a laboratory environment (Fig. 5). The
simulator has a base-fixed seat equipped with a steering
wheel, pedals, and a gear. Five screens are used to simulate a
real driving experience and environment. The left, right, and
rear view mirrors are placed in the corresponding positions
of the screens, which are essential when performing a lane
change maneuver. The scenarios in the experiment are based
on a four lane highway in two directions. A traffic environ-
ment with other vehicles to simulate an actual driving envi-
ronment is utilized. Different maneuvers such as overtaking
the vehicle ahead are performed by the drivers. Based on the
rules in Germany, overtaking can only take place from the
left lane. In the experiment, 9 drivers are considered such
that each driver performed a 25 minutes drive to generate
data. The split ratio for training and test data of each driver
is 70:30. Hence, 70 % of the data is used for training, while
the remaining 30 % is used for test. All participants provided
their consent to take part in the experiment.

B. DATA PROCESSING
To determine the current lane l of the ego vehicle, the vehi-
cle’s centre point position is taken into account [6]. By com-
paring the values of l at different time points, the driving
states are determined. A change in the value of l indicates
that a lane change has occurred at a time point denoted by
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FIGURE 5. Driving simulator, chair of dynamics and control (SRS,
Uni-DuE).

TABLE 4. Average performance based on different lane changing
duration.

FIGURE 6. Lane changing description.

tlane (Fig. 6). A LCL is defined by an increase in l, while
a LCR is defined by a decrease. When l is the same as the
previous time point, a LK is denoted.

The beginning of a lane change is defined by the time of
the indicator activation, tindicator . Here, the interval between
tindicator and tlane is defined as the lane change duration
denoted by tchange [3], [6]. From the experiments, this dura-
tion is between 2 to 3 seconds, whereby the driver acti-
vates the indicator 2 to 3 seconds before performing a lane
change. Different preset tchange values of 2 s, 2.5 s, and 3 s
are therefore tested for labeling behaviors to evaluate the
impact of tchange on the lane change recognition abilities.
To do so, the HMM developed in [6] is used to estimate the
lane changing behaviors based on the variables of models I
and II. Previously mentioned metrics are used to evaluate the
estimations. The training and test split ratio is also 70:30.
In Table 4, the average performance values based on all
drivers using the different tchange values are given. Using 2.5 s

to label the behaviors, generates results closest to the actual
behavior for both models as most metrics have the highest
values. Hence, tchange of 2.5 s is used to define a lane changing
behavior in this research. Inaccurate data are removed as part
of the labeling processing. For an example, when the driver
does not intend to change lanes, but drives over the white
lines or slightly overlaps the lines to the next lane due to
driving errors. A lane change is detected consequently, when
it does not reflect the actual driver’s behavior. Hence, these
inaccuracies are removed [6].

C. TRAINING AND TEST
The training and test process are explained here.

Training phase: The purpose of the training is to develop
a model with optimal parameters. The training process is
described in the following manner,

1) Data (input variables) and the actual lane changing
behaviors are loaded into the model.

2) The design parameters (prefilter thresholds) are devel-
oped using NSGA-II, which are then used to define
the observation sequence in the HMM. Based on the
defined observation sequence and actual driving behav-
iors, the HMM model is trained by optimization to
define the optimal HMM parameters.

3) Next, the hidden states are estimated using the HMM
parameters.

4) The state machine defines the final estimations using
the estimations of HMM from the previous step.

5) The actual and estimated behaviors are compared to
evaluate the ACC, DR, and FAR values. Using these
values, the objective functions are calculated.

6) Steps (1) to (5) are repeated until convergence, such
that optimal parameters are defined minimizing the
objective functions. For the number of iterations, a gen-
eration size of 200 and population size of 90 is used in
NSGA-II.

Test phase: The test is performed using data not used in
training as mentioned previously. Thus, based on the trained
models for each driver, the lane changing behaviors are esti-
mated using test data of the corresponding driver. Estimation
performances are then evaluated using thementionedmetrics.
To analyze the generability of the model, the trained param-
eters based on a specific driver are not only tested using the
corresponding driver’s test data, but also using test data of
other drivers.

V. RESULTS
The performance based on the proposed method is presented
in this section. Here, the performance based on models I
and II are given and compared to analyze the effects of the
prefilter on the different variable sets. The results presented
are based on using 2.5 s for the lane changing duration, as it
generated the best performance values when tested with the
proposed approach for both models. This shows that the
estimations are closest to the actual behaviors. Performance
comparisons between the proposed approach and other
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FIGURE 7. Test results of model I and II.

TABLE 5. Average performance values based on test data.

approaches (HMM and ANN-based state machine model) are
presented as well to assess the capabilities of the approach.

A. EVALUATION OF RESULTS
The average values of ACC, DR, and FAR based on the
test data for both models are given in Table 5 and Fig. 7.
In the table, the average values (test data) are the average
metric values when each trained model is tested with the
corresponding driver’s test data.

As an example, the actual and estimated lane changing
states corresponding to test data set of driver 2 (based on
trained model of driver 2) from both models are plotted in
Fig. 8 and Fig. 9. The red dotted lines represent the actual
driving states, while the blue lines are the estimated states.
The different driving states are represented in the vertical
axis, whereby 1 is LCR, 2 is LK, and 3 is LCL, while the
horizontal axis represents the time length of the drive in
seconds,s. The data are recorded every 0.05 s. The figures
show the proximity between the actual and estimated states.

As mentioned, a generability test is performed as well
in which the results are presented in Table 6 and Fig. 10.
In this test, the trained model of a specific driver is tested
with test data of other drivers with the aim to analyze if
the performance values are close to the values obtained in
Table 5. The average values (other test data) are the average

FIGURE 8. Test data of driver 2 (model I).

FIGURE 9. Test data of driver 2 (model II ).

values when the test data of other drivers are used for testing
the trained model of each specific driver.

Using drivers 1 and 2 as examples for the generability test,
the estimated and actual lane changing states based on test
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FIGURE 10. Generability test results of models I and II.

TABLE 6. Average performance based on generability test.

FIGURE 11. Generability test based on driver 2 (model I).

data of driver 2 (trained model of driver 1 tested) are plotted
in Fig. 11 and Fig. 12.

Based on the results in Table 5, both models generate high
ACC,DR, and low FAR,with the exception ofFARkeep. Based
on the obtained results, it can be stated that model II has a
higher performance than model I in most metrics. From this
observation, it can be concluded that the prefilter application

FIGURE 12. Generability test based on driver 2 (model II).

on TTC variables tends to have a positive effect on the per-
formance. The generability test results (Table 6) show that the
model II also outperforms model I here except for ACCright ,
FARright , and FARkeep. However, the metric values based on
Table 5 are higher.

B. COMPARISONS WITH OTHER APPROACHES
Comparisons between the proposed approach with an
improved HMM approach and an ANN-based state machine
approach are also part of the evaluation process. The
ANN-based state machine approach is developed in [15],
while the HMM is based on [6]. The prefilter thresholds
are optimized as well in the improved HMM, while the
ANN-based state machine use biases and weights (as ANN
parameters) defined by optimization to develop estimations.
Model II is used for comparisons as it has a better perfor-
mance than model I. All other approaches also uses the same
input variables as model II.
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TABLE 7. Comparisons between different approaches.

FIGURE 13. LCR ROC curve.

FIGURE 14. LK ROC curve.

In Table 7, the average metric values based on each driver’s
test data are shown. In addition, the receiver operating char-
acteristic (ROC) curves for the three approaches based on
the different lane changing behaviors are given in Fig. 13 to
Fig. 15. The area under curve (AUC) values of each method
based on the different behaviors are also presented in Table 8.

From the results, the HMM-based state machine approach
has a better performance than the other two approaches
in most metrics. On the other hand, the individual HMM
approach outperforms the ANN-based approach, except for

FIGURE 15. LCL ROC curve.

TABLE 8. AUC values of different approaches.

ACCright , FARright , ACCkeep, and DRkeep. An observation
based on the results are the FARkeep values tend to be high in
all approaches. The ANN-based state machine approach also
produces a lowerDRleft value compared to other HMM-based
approaches. Based on the ROC curves, the HMM-based
state machine model has the best performance in LCR and
LCL, as the model generates the highest true positive rate
corresponding to a related low false alarm rate. The AUC
values of the the proposed approach are also the highest in
LCR and LCL (Table 8), while the AUC of the individual
improved HMM approach is the highest fin LK. In general,
it can be concluded that the proposed approach improves
the performance of the individual improved HMM approach
and the ANN-based state machine approach showing its
effectiveness.

VI. SUMMARY AND CONCLUSION
Driving behavior prediction accuracy often rely on the struc-
ture of ML approaches or the input features used. In this
contribution, a new approach combining a previously devel-
oped state machine model and an improved HMM for the
recognition of lane changing behaviors is introduced. The
state machine models the lane changing behaviors using three
states, such that the model can express the transition between
states or remain in the same state for estimations of the final
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lane changing behaviors. The modeling of the transition is
realized based on specific conditions defined by the HMM
estimations. Here, the HMM estimates lane changing behav-
iors as well. The HMM differs from a conventional HMM as
a prefilter with unknown thresholds values is applied to the
features used with it. Two feature sets consisting of distance
as well as velocity deviation variables (model I) and TTC
variables (model II) are considered for the application of
this method.

Based on the results obtained, model II produces better
ACC, DR, and FAR than model I. Nevertheless, both models
generates acceptable results. In general, it can be concluded
that using TTC variables improves the recognition perfor-
mance in both experiments. A generality test is performed
as part of this work, which shows that model II has a bet-
ter generalization ability than model I. For further evalua-
tions, the developed approach is compared to an individual
HMM approach and an ANN-based state machine approach
using model II. The results show that the HMM-based state
machine model outperforms the other two methods.
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