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Zusammenfassung

In dieser Arbeit untersuche ich die quantenmechanische Rotationbewegung von sym-

metrischen Nanorotoren und insbesondere wie die Nichtlinearität der Dynamik für

Quantenexperimente in den Orientierungsfreiheitsgraden verwendet werden kann.

In Abwesenheit äußerer Drehmomente führt die Quantisierung des Drehimpulses

zu bestimmten Zeiten, ganzzahligen Vielfachen einer Quantenrevivalzeit, zu einer

vollständigen Wiederkehr des Anfangszustandes. Im ersten Teil der Arbeit schlage

ich ein experimentelles Schema vor, mit dem diese Revivals für Nanoteilchen beobach-

tet werden können. Am Beispiel von Kohlenstoffnanoröhren und Silikonstäbchen

diskutiere ich die Realisierbarkeit eines solchen Experiments und das erwartete

Revivalsignal an Hand von numerischen und semiklassischen Methoden. Im An-

schluss wird die Auswirkung eines permanenten Drehmoments auf das Revivalsig-

nal für planare und lineare Rotoren mit Hilfe von Störungstheorie und semiklas-

sischen Näherungen untersucht, da eine exakte numerische Berechnung der Rota-

tionsdynamik hier an ihre Grenzen stößt. Im letzen Teil stehen Interferenzeffekte zu

Bruchteilen der Revivalzeit im Fokus. Das kurzzeitige Auftauchen von lokalisierten

Superpositionszuständen ermöglicht eine interferometrische Kontrolle des Rotation-

szustandes durch kurze schwache Laserpulse.

Abstract

In this work, I study the quantum rotational motion of symmetric nanorotors and

in particular how the non-linearity of the dynamics can be exploited for quantum

experiments with orientational degrees of freedom. In absence of external torques

the quantization of the angular momentum leads to a complete reappearance of the

initial state at integer multiples of a quantum revival time. In the first part of the

thesis, I propose an experimental scheme to observe these revivals for nanoparti-

cles. Taking carbon nanotubes and silicone nanorods as examples, I discuss the

experimental requirements for this set up and use numerical as well as semiclassical

methods to simulate the expected revival signal. Subsequently, the effect of a per-

manent torque on the revival signal is investigated for planar and linear rotors using

perturbation theory and semiclassical approximations, since an exact numerical cal-

culation of the rotational dynamics becomes intractable. The last part focuses on

interference effects at fractions of the revival time. The brief emergence of well-

localized superposition states allows for an interferometric control of the rotational

state by short weak laser pulses.

iii





Publications

1. B. Papendell, B. A. Stickler, and K. Hornberger, Quantum Angular Momentum

Diffusion of Rigid Bodies, New. J. Phys. 20, 122001 (2017)

2. B. A. Stickler, B. Papendell, S. Kuhn, B. Schrinski, J. Millen, M. Arndt, and K.

Hornberger, Probing Macroscopic Quantum Superpositions with Nanorotors,

New J. Phys. 20, 122001 (2018)

3. B. Schrinski, B. A. Stickler, and K. Hornberger, Interferometric Control of

Nanorotor Alignment, Phys. Rev. A 105, L021502 (2022)

4. B. Schrinski, Y. J. Chan, and B. Schrinski, Thermalization of the Quantum

Planar Rotor with external potential, arXiv preprint arXiv:2207.04810

v





Contents

1. Introduction 1

2. Theory of the Rigid Rotor 5

2.1. The Classical Rigid Rotor . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. The Quantum Rigid Rotor . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3. Wigner-Weyl Formalism for Planar Rotations . . . . . . . . . . . . . 14

2.4. Semiclassical Description of Rotation Dynamics . . . . . . . . . . . . 15

2.4.1. Bohr-Sommerfeld-Quantization . . . . . . . . . . . . . . . . . 16

2.4.2. WKB Approximation Method for Planar Rotations . . . . . . 18

2.4.3. EBK Approximation Method for Linear Rotations . . . . . . . 19

2.4.4. Semiclassical Matrix Elements . . . . . . . . . . . . . . . . . . 20

3. Orientational Decoherence 23

3.1. Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2. Orientational Decoherence Master Equation . . . . . . . . . . . . . . 28

3.2.1. Monitoring Master Equation . . . . . . . . . . . . . . . . . . . 28

3.2.2. Angular Momentum Diffusion Master Equation . . . . . . . . 30

4. Orientational Quantum Revivals of Nanoscale Particles 41

4.1. The Revival Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1. Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2. Free Fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.3. Measuring the Alignment . . . . . . . . . . . . . . . . . . . . 52

4.1.4. Recapture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2. Implementation with Nanorotors . . . . . . . . . . . . . . . . . . . . 55

4.2.1. Silicon Nanorods and Double-Walled Carbon Nanotubes . . . 55

4.2.2. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5. Rotation Dynamics in the Presence of a Static Potential 61

5.1. Semiclassical Approximations . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1. Planar Rigid Rotor: WKB Approximation . . . . . . . . . . . 62

vii



Contents

5.1.2. Linear Rigid Rotor: EBK Approximation . . . . . . . . . . . . 66

5.2. Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6. Interferometric Control of Nanorotor Alignment 73

6.1. Interference Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2. Implementation of the Phase Operator . . . . . . . . . . . . . . . . . 81

6.3. Discussion of the Interference Signal . . . . . . . . . . . . . . . . . . . 83

6.3.1. Asymmetric Rotors . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.2. Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4. Implementation with Silicon Nanorods . . . . . . . . . . . . . . . . . 91

6.4.1. Initial State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.2. Imprinting the Phase . . . . . . . . . . . . . . . . . . . . . . . 96

6.4.3. Discussion of the Interference Signal . . . . . . . . . . . . . . 96

7. Conclusion and Outlook 103

A. WKB-Approximation of the Time Evolution Operator 105

B. Semiclassical Approximation of Wigner d-matrix 107

Literatur 109

viii



1. Introduction

While quantum theory is fundamental for our understanding of microscopic sys-

tems like atoms or molecules, its predictions and consequences differ from classical

mechanics and observations in our macroscopic everyday life. One of these conse-

quences is the wave nature of matter and with this the superposition principle, which

follows directly from the linear nature of Schrödinger’s equation, i~∂t|ψ〉 = H|ψ〉. As

time progresses a quantum state, represented by the wave function |ψ〉, accumulates

an energy depending complex phase. In a superposition of coherent wave func-

tions this accumulated phase leads to constructive or destructive interference. This

phenomenon is well known in classical physics for electromagnetic and mechanical

waves.

Since the birth of quantum mechanics in the 1920s the superposition principle is

the focus of numerous experiments for the validation of quantum theory on more and

more macroscopic scales. The wave nature of matter particles was experimentally

confirmed by the observation of interference pattern due to diffraction of electrons

[1,2] and neutrons [3] at the surface of crystals in the 1920s until 1930s. In 1960 an

analogue to Young’s double slit experiment for light was implemented successfully

for electrons. From this time onward interferometric matter-wave experiments were

done with objects much larger than microscopic electrons and neutrons, starting

with single atoms [4–6] large molecules like fullerenes [7, 8], organic molecules with

a mass up to 104 amu [9] and a current record with molecules with masses beyond

2.5× 105 amu including up to 2000 atoms [10].

All these experiments address the question whether quantum mechanics is valid

on all scales or whether it breaks down at a certain boundary between quantum

mechanical and macroscopic world for example beyond a certain mass, length or

time scale [11] as it is predicted by models of wave-function collapse [12]. There

are different proposals for interference experiments with massive nanometer-sized

particles with masses beyond 106 amu [13,14] to push this boundary forward to and

test the superposition principle on more macroscopic scales.

For such high masses the preparation of quantum states and in particular quantum

superposition states is challenging due to decoherence effects. This refers to the loss

or destruction of quantum coherence, which is indispensable for interferences, due
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1. Introduction

to the interaction with the environment. Thus, the experimental set up in both

proposals mentionend above [13,14] is based on techniques from levitated quantum

optomechanics to reduce the interaction with the environment. The nanospheres

are optically trapped and laser cooled using feedback [15] or cavity cooling [16].

Then the trapping laser is turned off and after a period of free fall an optical grating

prepares the spatial superposition. Subsequent to a second period of free fall the

measurement of the center of mass leads to an interference pattern. While in [13] the

spatial superposition is created by postselection after a homodyne measurement of

the squared position operator in Ref. [14] the superposition is prepared by diffraction

off a standing laser wave.

All these experiments for testing spatial superpositions have in common that they

need gratings and with this nonlinear interactions to prepare superposition states. In

contrast to that, the non-linearity and anharmonicity of the free rotational dynamics

provides quantum effects [17, 18] that have no analogue in the free center of mass

motion. Additionally, there are quantum effects of the rotational quantum dynamics

like the Einsten-de Haas [19] or the Barnett [20] effect, which are based on the

relation between the mechanical angular momentum and magnetization or intrinsic

spin.

The quantum persistent tennis racket effect [18] is a quantum effect of the free

rotational dynamics of asymmetric rotors. For linear rigid rotors one observes ro-

tational quantum revivals [17]. An arbitrary initial linear rigid rotor state evolves

freely and at integer multiples of a revival time Trev the collective interference of all

occupied angular momentum states leads to a periodic reappearance of the initial

state. This effect is a direct consequence of the quantization of angular momentum.

At the revival time the dynamically accumulated phase is an integer multiple of

2π for every single occupied angular momentum state. Thus, an initially tightly

aligned rotor disperses and at the revival time the initial alignment recurs. Ori-

entational revivals have been successfully observed in the rotational dynamics of

molecules [21–24]. These quantum effects of the free rotational dynamics make

the orientational degrees of freedom interesting for quantum tests with massive

nanoscale particles.

In the recent years there was strong progress in levitated optomechanics with

aspherical and anisotropic particles. One can optically control the alignment of

a nanoparticle and manipulate its rotational motion [25–29]. The prospect of ro-

translational cavity cooling [30], feedback-cooling [31], and 6D-cooling of nanorotors

by elliptic coherent scattering [32, 33] as well as first experimental demonstrations

of rotational cooling [34–36] and groundstate cooling of the center of mass mo-

tion [37–39] make levitated optomechanics with aspherical particles promising for

2



rotational quantum tests.

Further, in the last years there was a large progress in describing the effect of

the environment on the classical [40] and quantum rotational dynamics of nanoscale

particles. The interaction with the environment leads to orientational decoherence

[41, 42], angular momentum diffusion [43] and friction [44]. Accounting for these

effects is crucial for the understanding and interpretation of experimental results.

The main focus of the present thesis are interference schemes for probing rotational

quantum effects based on angular momentum quantization of massive nanoscale

particles and their applications. For the quantitative description and discussion of

these schemes exact numerical methods becomes intractable because of the large

number of involved angular momentum eigenstates. Thus, a second focus is the

development and application of semiclassical methods which preserve the quantum

effect under investigation.

I propose to test the superposition principle by probing orientational quantum

revivals of nanoscale rigid rotors [45]. My numerical simulations show that these

revivals can be observed for sub-Kelvin temperatures and under realistic experi-

mental conditions taking all relevant sources of environmental orientational deco-

herence [41–43] into account. This set up is independent of the center of mass

temperature but requires cavity- or feedback-cooling of the rotational motion. The

proposed experiment provides a new kind of superposition test with massive par-

ticles, and the observation of orientational quantum revivals would be the first ex-

perimental evidence of angular momentum quantization of massive particles. This

interference scheme does not need a diffraction grating and requires only a single

recyclable nanorotor. The orientational quantum revivals of nanoscale particles are

very sensitive to external torques and are therefore promising candidates for ultra-

sensitive gyroscopic torque sensors.

The existence of orientational quantum revivals, and in particular the emergence

of orientational superpositions states at fractional revival times, open the door for

an interferometric control of the nanorotor alignment. The coherent control of ro-

tational dynamics has been proposed for planar rotations of trapped Bose-Einstein

condensates [46] and planar and linear rotations of molecules [47]. Here, in my the-

sis I propose a Mach-Zehnder-type interference scheme to control the 3D-nanorotor

alignment of symmetric rotors at certain times, for example at the revival time.

The scheme exploits the emergence of a superposition of four orientational states

at an eighth of the revival time. At this point in time, one can steer the align-

ment by imprinting a relative phase between these well-localized wave packets with

a weak, short laser pulse. I show that the control is feasible for realistic symmetric

nanorotors in a realistic experimental environment.
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1. Introduction

The thesis is structured as follows. In chapter 2 I give a short summary of

the most important concepts of classical and quantum mechanical rigid rotor dy-

namics, on which I rely subsequently. I start by introducing the Euler angles as a

parametrization for the orientation of a rigid body. This is followed by a descrip-

tion of the rotational motion with Lagrange’s and Hamilton’s formalism. Based

on these classical concepts and on the quantization of Euler angles and the corre-

sponding canonical momenta, I present the rotational quantum dynamics in Hilbert

space. The Hamiltonian can be expressed in terms of the angular momentum oper-

ator whose eigenbasis which will be frequently used in the main part of this thesis.

In the end, I give a short introduction into the Wigner-Weyl formalism for planar

rotations.

Chapter 3 gives the background for the description of decoherence. It begins

with a brief introduction of open quantum systems and Lindbald master equations

in general, followed by the description of orientational decoherence and angular mo-

mentum diffusion. The derivation of an orientational decoherence Lindblad master

equation [41, 42] is presented and the diffusion limit [43] is drawn. We encounter

the angular momentum diffusion master equation for asymmetric, linear and planar

rotations. The diffusion master equation for a linear rigid rotor is the basis for esti-

mating orientational decoherence in the proposed experiment in chapter 6. Finally,

I illustrate angular momentum diffusion with the example of planar rotations.

After these two chapters providing mainly theoretical background I present in

chapter 4 an experimentally viable scheme for testing rotational quantum revivals

with nanoparticles. I discuss the important steps of the interference scheme and

introduce semiclassical methods for the calculation of the initial state. The feasibility

of the set up is shown and discussed for realistic nanoparticles based on numerical

simulations. In chapter 5 the focus is on the effect of a constant external torque

on the rotational dynamics. Starting with planar rotations I use the WKB method

for the calculations, while for linear rotations I employ the EBK method for two

dimensional motions. Finally, I use perturbation theory to estimate the effect of

external torques on the experimental set up from chapter 4.

In chapter 6 I show how to control the alignment of a nanoparticle by applying

a short lase pulse at the fractional revival time Trev/8. For the explanation of the

interference scheme I start with a semiclassical description of the free rotational

dynamics, which gives a better understanding of the quantum states at fractional

revival times and motivates a simplified eight state model. Later on, deviations

from a perfect initial state and the ideal time evolution are discussed, including

environmental decoherence and slight asymmetries of the nanorotor. In the end, I

propose a realistic experimental set up for steering symmetric rotors.
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2. Theory of the Rigid Rotor

Examining rotational quantum effects of aspherical nanoscale particles and how to

exploit them for interferometric experiments we may neglect the vibrational degrees

of freedom. Then we can treat the particle as a rigid rotor with three translational

degrees of freedom for the center of mass motion and three rotational degrees of

freedom for parametrizing rotations around the center of mass.

In the following, I give a short review of the rotational dynamics of rigid rotors.

I start with the classical description, where I introduce the basic concepts of the

rotational motion, which includes the Euler angle parametrization for rotations and

Lagrange’s and Hamilton’s formalism for rotational dynamics.

Based on the classical theory of the rotational motion, I introduce a quantum

description in Hilbert space by quantizing the Euler angles and the corresponding

canonical momenta. After formulating the Hamiltonian in terms of the angular

momentum operator I present the angular momentum eigenbasis. In the end, we

see how to handle the one-dimensional rotational quantum motion of planar rotors

in phase space by using the Wigner-Weyl formalism.

2.1. The Classical Rigid Rotor

In the following, I will give a short description of the classical rigid rotor as far as

needed subsequently. The presentation is mainly based on the textbooks [48, 49]

and the monograph [50].

Euler Angles

The direction of the body-fixed system {n1,n2,n3} of orthonormal basis vectors of

a rigid rotor in relation to a space-fixed system {e1, e2, e3} defines the orientation

of the rotor. We can parametrize a rotation around the center of mass, and with

this the orientation of a body in space, unambiguously by means of Euler angles

Ω = (α, β, γ) with the range α, γ ∈ [0, 2π) and β ∈ [0, π] which serve to decompose

the rotation into a sequence of three consecutive rotations (see Fig. 2.1).

Here, and throughout this thesis, I use the z-y′-z′′ convention: We begin with

a rotation by the angle α about the space-fixed e3-axis, followed by a rotation

5



2. Theory of the Rigid Rotor

Figure 2.1.: Illustration of the Euler angles in the z-y′-z′′ convention. The green
axes belong to the space-fixed frame and the blue axes to the body-
fixed system. The black axis is the nodal line.

by the angle β about the temporarily y′-axis. This axis points along the inter-

section of the space- and body-fixed (x, y)-plane which is called the nodal line

eξ = e3 × n3/|e3 × n3| = (− sinα, cosα, 0). We finish with a rotation about the

new z′′-axis, the body-fixed n3-axis. We thus obtain the rotation tensor R(Ω) for

the total rotation

R(Ω) = Rn3(γ)Reξ(β)Re3(α). (2.1)

We can express the rotation about the body-fixed n3-axis through rotations around

the space-fixed e3-axis and the nodal line eξ, and similarly the rotation about the

eξ-axis through rotations about only space-fixed axes. With this the rotation matrix

(2.1) can be rewritten in terms of rotations only about space-fixed axes [51],

R(Ω) = Re3(α)Re2(β)Re3(γ)

=

cosα − sinα 0

sinα cosα 0

0 0 1


 cos β 0 sin β

0 1 0

− sin β 0 cos β


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 . (2.2)

Hamilton’s Formalism for the Rigid Rotor

Based on the definition of the orientation of a rigid rotor, and in particular on the

parametrization by Euler angles Ω = (α, β, γ), we want to describe the rotational

dynamics of the rotor by using the Hamilton formalism. The Euler angles act

6



2.1. The Classical Rigid Rotor

as our canonical coordinates, they form together with the corresponding canonical

conjugate momenta pΩ = (pα, pβ, pγ) the classical phase space of the rigid rotor.

For the derivation of the canonically conjugate momenta we go one step back

and start with the Lagrangian formalism for the rotational motion. For the free

rotational dynamics of a rigid rotor the Lagrangian contains only the rotational

energy

Trot =
1

2

3∑
i=1

Iiω̃
2
i , (2.3)

with principle moments of inertia Ii and ω̃i the angular velocity components in the

body-fixed frame. Here and in the following, the tilde denotes quantities in relation

to the body-fixed frame. The angular velocities can be expressed in terms of the

Euler angles and their time derivatives [50]

ω̃1 = β̇ sin γ − α̇ sin β cos γ, (2.4a)

ω̃2 = β̇ cos γ + α̇ sin β sin γ, (2.4b)

ω̃3 = α̇ cos β + γ̇. (2.4c)

Inserting (2.4) in the expression (2.3) leads to the Lagrangian L
(

Ω, Ω̇
)

with

Ω̇ =
(
α̇, β̇, γ̇

)
,

L(Ω, Ω̇) =
1

2

[
α̇2
(
I1 sin2 β cos2 γ + I2 sin2 β sin2 γ + I3 cos2 β

)
+ γ̇2I3

+ β̇2
(
I1 sin2 γ + I2 cos2 γ

)
+ 2α̇γ̇I3 cos β

+ 2α̇β̇(I2 − I1) sin β sin γ cos γ
]
. (2.5)

With the Lagrangian (2.5) we can calculate the canonical momenta pα = ∂α̇L(Ω, Ω̇)

pα =α̇
(
I1 sin2 β cos2 γ + I2 sin2 β sin2 γ + I3 cos2 β

)
+ γ̇I3 cos β

+ β̇(I2 − I1) sin β sin γ cos γ = J · e3, (2.6a)

pβ =α̇(I2 − I1) sin β sin γ cos γ + β̇(I1 sin2 γ + I2 cos2 γ) = J · eξ, (2.6b)

pγ =I3(α̇ cos β + γ̇) = J · n3. (2.6c)

As shown by the second equalities the canonical momenta are projections of the

angular momentum vector J on the corresponding rotation axis. From the equations

(2.6), combined with the equations (2.4), following expressions for the components of

7



2. Theory of the Rigid Rotor

the angular momentum vector in the space-fixed frame (J1, J2, J3) are obtained [48]

J1 =− cosα cot β pα − sinαpβ +
cosα

sin β
pγ, (2.7a)

J2 =− sinα cot β pα + cosαpβ +
sinα

sin β
pγ, (2.7b)

J3 =pα, (2.7c)

while the components (J̃1, J̃2, J̃3) in the body-fixed frame read

J̃1 = −cos γ

sin β
pα + sin γ pβ + cot β cos γ pγ, (2.8a)

J̃2 =
sin γ

sin β
pα + cos γ pβ − cot β sin γ pγ, (2.8b)

J̃3 = pγ. (2.8c)

We can express the rotational energy in terms of the components in the body-fixed

system [48], T = (J̃2
1/2I1 + J̃2

2/2I2 + J̃2
3/2I3), and thus obtain the Hamiltonian

function

H(Ω, pΩ) =
1

2I1 sin2 β
[(pα − pγ cos β) cos γ − pβ sin β sin γ]2

+
1

2I2 sin2 β
[(pα − pγ cos β) sin γ + pβ sin β cos γ]2

+
p2
γ

2I3

. (2.9)

This Hamiltonian function simplifies for a symmetric rigid rotor with moments of

inertia I1 = I2 = I and I3 to

HS(Ω, pΩ) =
1

2I

[
p2
α

sin2 β
+ p2

β +

(
cot2 β +

I

I3

)
p2
γ −

2 cot β

sin β
pαpγ

]
. (2.10)

For a linear rigid rotor the moment of inertia I3 vanishes. Rotations about the

symmetry axis n3 are prohibited and γ is not a dynamic variable anymore. The

Hamiltonian function HL(Ω, pΩ) of the linear rigid rotor follows from the one of a

symmetric top (2.10), by setting γ = 0 and pγ = 0,

HL(Ω, pΩ) =
1

2I

(
p2
α

sin2 β
+ p2

β

)
. (2.11)

The Hamiltonian function determines the time evolution of the system via Hamil-

ton’s equations. Further, the classical Hamilton formalism serves as a starting point

8



2.2. The Quantum Rigid Rotor

for a quantum mechanical treatment.

2.2. The Quantum Rigid Rotor

In the following section, I give a short review of the quantum rotational dynamics

of the rigid rotor on the basis of the monographs [50,52].

Based on the classical description of the rotational dynamics with Euler angles

and canonical momenta we introduce corresponding angle and canonical momentum

operators in the quantum mechanical case. Throughout this thesis, I use sans-serif

latin or bold greek letters to denote operators. We will see that one difficulty in

quantizing the Euler angles and canonical momenta lies in the curved configuration

space. Following De Witt’s quantization rules [53,54], I begin with an introduction

of the angle operators and their eigenstates and later introduce the canonical mo-

mentum operators.

The angle operators (α,β,γ) have a continuous spectrum of eigenvalues and the

improper eigenstates |Ω〉 ≡ |α, β, γ〉. These eigenstates form a complete basis [50]∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ |α, β, γ〉〈α, β, γ| = 1. (2.12)

This way every quantum state |ψ〉 can be expanded in the angle eigenstates

|ψ〉 =

∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ |α, β, γ〉〈α, β, γ|ψ〉. (2.13)

The factor sin β is here the square root of the determinant of the metric tensor [53,54]

g(Ω) = sin2 β (2.14)

of the curved coordinate system. Further, these eigenstates satisfy the orthogonal

relation [53,54]

〈Ω| Ω′〉 =
δ2π(α− α′)δπ(β − β′)δ2π(γ − γ′)

sin β
, (2.15)

with the ϕ-periodic delta-distributions δϕ(α) = δ(α mod ϕ).
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2. Theory of the Rigid Rotor

Canonical Momentum Operators

To quantize the canonical momenta we use the formula of DeWitt involving the

determinant of the metric tensor g(Ω) [53,54]

pλ → pλ = −i~
(
∂

∂λ
+

1

4

∂ ln g(Ω)

∂λ

)
, (2.16)

with λ = {α, β, γ}. By inserting the determinant of the metric tensor (2.14) in the

quantization (2.16) we obtain the conjugate canonical momentum operators to the

Euler angles in the Euler angle representation

pα = −i~ ∂

∂α
, (2.17a)

pβ = −i~
(
∂

∂β
+

1

2
cotβ

)
, (2.17b)

pγ = −i~ ∂

∂γ
. (2.17c)

The eigenfunctions of the canonical momentum operators (2.17) are given by [50]

〈Ω|mΩ〉 =
eimαα√

2π

ei2mββ√
π sin β

eimγγ√
2π

. (2.18)

The corresponding eigenvalues mΩ = (mα,mβ,mγ) ∈ Z3 with [50]

pα|mΩ〉 = ~mα|mΩ〉, (2.19a)

pβ|mΩ〉 = 2~mβ|mΩ〉, (2.19b)

pγ|mΩ〉 = ~mγ|mΩ〉, (2.19c)

are discrete due to the single-valuedness of the wave function in the compact con-

figuration space.

Angular Momentum Operator

In the following, the angular momentum representation of operators will be fre-

quently used. I therefore introduce now the angular momentum operator in terms

of its components in the body- and space-fixed frame, and the eigenstates of the

free-flight Hamiltonian.

To obtain components of the angular momentum operator one inserts the angle

operators (α,β,γ) and the canonical momentum operators (pα, pβ, pγ) into the ex-

pressions of the classical angular momentum components in (2.8) and (2.7) and takes

the Weyl-ordering for angular and momentum operators [52] into account. From this

10



2.2. The Quantum Rigid Rotor

follow the components of the angular momentum operator in the space-fixed system

(J1, J2, J3) [52]

J1 = −
(

cotβ

2
{pα, cosα}+ sinα pβ −

cosα

sinβ
pγ

)
, (2.20a)

J2 = −
(

cotβ

2
{pα, sinα} − cosα pβ −

sinα

sinβ
pγ

)
, (2.20b)

J3 = pα. (2.20c)

We see that the J3-component is identical to the pα operator, which we can expect

from the classical equations, where we have seen that the canonical momentum

pα is the projection onto the space-fixed e3-axis. The components J̃1, J̃2, J̃3 in the

body-fixed frame read [52]

J̃1 = i~
(

cos γ

sin β

∂

∂α
− sin γ

∂

∂β
− cos γ cot β

∂

∂γ

)
, (2.21a)

J̃2 = i~
(
− sin γ

sin β

∂

∂α
− cos γ

∂

∂β
+ sin γ cot β

∂

∂γ

)
, (2.21b)

J̃3 = −i~ ∂

∂γ
. (2.21c)

Similar to the space-fixed components, the body-fixed J̃3 component is the pγ oper-

ator, as one may expect since it describes rotations around the body-fixed n3-axis.

The space-fixed components Ji obey the commutator relations [Ji, Jj] = i~εijkJk
[50], which are identical with the commutator relations for the orbital angular mo-

mentum operator of a point-like particle. In contrast, the body-fixed components

fulfill the relations
[
J̃i, J̃j

]
= −i~εijkJ̃k. Further, all components commute with

the squared angular momentum vector [52], [J2, Ji] = 0 and
[
J̃2, J̃i

]
= 0. Note

that the squared angular momentum J2 is invariant under rotations of the reference

frame and J2 = J̃2. Choosing J2, J3 and J̃3, we have a complete set of mutually

commuting operators with simultaneous eigenstates |jmk〉. Here, j ∈ N0 is the

corresponding quantum number to the squared angular momentum operator J2,

m ∈ {−j,−j + 1, ..., j} the quantum number to the projection onto the space-fixed

e3-axis J3 and k ∈ {−j,−j + 1, ..., j} the one corresponding the projection onto the

body-fixed n3-axis J̃3. The eigenvalue equations read [50,52]

J2|jmk〉 = ~2j(j + 1)|jmk〉, (2.22a)

J3|jmk〉 = ~m|jmk〉, (2.22b)

J̃3|jmk〉 = ~k|jmk〉. (2.22c)

11



2. Theory of the Rigid Rotor

The eigenstates |jmk〉 fulfill the orthogonal relation and are complete

〈jmk|j′m′k′〉 = δjj′δmm′δkk′ , (2.23a)∑
j∈N0

j∑
m=−j

j∑
k=−j

|jmk〉〈jmk| = 1. (2.23b)

They provide an orthogonal basis of the rigid rotor Hilbert space.

The Hamiltonian

Analogous to the classical Hamiltonian, we insert the body-fixed components of the

angular momentum operator to obtain the free flight Hamiltonian,

H =
J̃2

1

2I1

+
J̃2

2

2I2

+
J̃2

3

2I3

. (2.24)

In the general case of an asymmetric rotor with I1 6= I2 6= I3 it is not possible to

derive a simple analytical expression for the energy eigenvalues. But in special cases

we can give the eigenstates and eigenvalues.

First, we look at a symmetric rotor, with I1 = I2 = I 6= I3. In this case the

Hamiltonian (2.24) reduces to [55]

H =
J2

2I
+

1

2

(
1

I3

− 1

I

)
J̃2

3. (2.25)

Depending only on the squared angular momentum operator and its component J̃3

in the body-fixed frame the states (2.22) are eigenstates of the Hamiltonian. The

corresponding eigenenergies read

Ejk =
~2

2I
j(j + 1) +

~2

2

(
1

I3

− 1

I

)
k2. (2.26)

They are independent of the projection on the space-fixed e3-axis, therefore 2j + 1-

fold degenerate in the quantum numberm. In k they are two-fold degenerate because

of the dependence on k2. So in total we obtain a degeneracy of 2(2j + 1).

For later calculations with orientation-dependent operators we need the eigen-

states |jmk〉 in the Euler angle representation. This is given by Wigner D-matrices

[50],

〈Ω|jmk〉 =

√
2j + 1

8π2
Dj∗
mk(Ω) =

√
2j + 1

8π2
eimαdjmk(β)eikγ. (2.27)

The Wigner D-matrices, Dj
mk(Ω) = 〈jm|R(Ω)|jk〉, are the matrix elements of the

12



2.2. The Quantum Rigid Rotor

rotation operator R(Ω). In the second equality I used (2.2) and introduced Wigner’s

small d-matrices, given by the matrix elements of the rotation induced by the J2

operator 〈jm|e−iβJy |jk〉 = djkm(β).

As discussed in section 2.1 for the classical top, the limit I3 → 0 turns the symmet-

ric rotor into the linear rigid rotor. In this limit no rotations around the symmetry

axis n3 occur and γ is no longer a dynamic variable. From this it follows that the

quantum number k vanishes and only k = 0 is occupied. The state of the linear rotor

can thus be described only by two quantum numbers j and m, and the Hamiltonian

simplifies to

HL =
1

2I
J2. (2.28)

The eigenstates of the linear rigid rotor Hamiltonian HL are then given by |jm〉 =

|jm0〉 with the corresponding energy eigenvalues

Ej =
~2

2I
j(j + 1). (2.29)

Since the energy eigenvalues (2.29) are independent of m they are 2j + 1-fold de-

generate.

By setting k = 0 in the equation (2.27) and using the relation

Dj
m0 =

√
4π/(2j + 1)Y m∗

j (β, α) [52] we can write the eigenstates |jm〉 of the Hamil-

tonian (2.28) in the Euler angle representation in terms of spherical harmonics

Y m
j (α, β),

〈α, β|jm〉 =
1√
2π
Y m
j (β, α). (2.30)

In a third step we can confine the motion to a plane around the space-fixed e3-

axis. This leads to a planar rotor with J1 = J2 = 0 and J2 = J2
3 and the free flight

Hamiltonian,

Hp =
J2

3

2I
=

p2
α

2I
. (2.31)

Here, we inserted (2.20c) for J3. The eigenstates |m〉 of pα and Hp are two-fold

degenerate with energy eigenvalues and the Euler angle representation

Em =
~2m2

2I
, (2.32a)

〈α|m〉 =
1√
2π
eimα. (2.32b)
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2. Theory of the Rigid Rotor

2.3. Wigner-Weyl Formalism for Planar Rotations

In the previous section, we have seen how to work with quantum rotation states in

Hilbert space. While this Hilbert space representation is the most common choice

to work with in quantum mechanics, we can also present a quantum state as a

distribution function in phase space, similar to the classical Hamilton formalism.

This representation has some advantages. On the one hand, one works with a

formalism well known from classical mechanics and benefits from the intuition in

classical terms, but on the other hand it emphasizes the quantum nature of the

state.

In the following, I present one possibility to map quantum states and observables

to phase space functions. This Wigner-Weyl formalism [56,57], which was originally

formulated in flat space, was extended to curved configuration spaces [58, 59] and

also to planar rotations [60]. Here, the state operator ρ is mapped to a real quasi

probability distribution, the Wigner function w(α, pα) and operators are represented

by Weyl symbols. In contrast to the classical probability distributions, the Wigner

function can have negative values. The configuration space of the planar rotor is

parametrized by a single angle α ∈ [0, 2π). This angle α forms the phase space

together with the corresponding canonical momentum pα, parametrized by the dis-

crete eigenvalues m ∈ Z. The Wigner function for a planar rotor state ρ reads in

the angular representation [60]

W (α,m) =
1

π

∫ π/2

−π/2
dα′ e−2imα′〈α + α′|ρ|α− α′〉. (2.33)

The Wigner function (2.33) is 2π-periodic in the angle α and obeys the following

requirements of a quasi probability distribution [60]

∑
m∈Z

∫ π

−π
dαW (α,m) = 1, (2.34a)∑

m∈Z

W (α,m) = 〈α|ρ|α〉, (2.34b)∫ π

−π
dαW (α,m) = 〈m|ρ|m〉. (2.34c)

Here, in (2.34a) we see the normalization of the Wigner function and in (2.34b) and

(2.34c) the marginal distribution for angle and angular momentum of the Wigner

function, which are probability density functions and a discrete probability distri-

bution, respectively.

For a complete formulation of quantum mechanics in phase space we have to
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2.4. Semiclassical Description of Rotation Dynamics

map an arbitrary operator A on a phase space function, the so-called Weyl symbol

WA(α,m) [60],

WA(α,m) =

∫ π/2

−π/2
dα′ e−2imα′〈α + α′|A|α− α′〉. (2.35)

The transformation of an operator in its Weyl symbol is identical to that of the

Wigner function apart from the normalization factor.

A Fourier transformation of (2.33) leads to the Wigner function in the momentum

representation,

W (α,m) =
1

2π

∑
m1∈Z

∑
m2∈Z

sinc

[(
m− m1 +m2

2

)
π

]
× ei(m1−m2)α〈m1|ρ|m2〉.

(2.36)

This equation can be written in a different form by decomposing the Wigner func-

tion into integer and half-integer distributions. This representation has later great

advantages when we come to equations of motions for the Wigner function and

reads [60,61]

W (α,m) = wm(α) +
∑
m′

sinc

[(
m−m′ − 1

2

)
π

]
wm+1/2(α), (2.37)

with an auxiliary function definend by

wm+µ/2(α) =
1

2π

∫ π

−π
dα′ e−2iα′(m+µ/2)〈α + α′|ρ|α− α′〉 (2.38)

for µ ∈ {0, 1}. The function with integer indices are π-periodic, while the half-integer

distributions are 2π-periodic. For this auxiliary function the angular momentum

representation reads [60,61]

wm+µ/2(α) =
1

2π

∑
m′∈Z

e−2i(m′+µ/2)α〈m−m′|ρ|m+m′ + µ〉. (2.39)

It is much easier to handle than the momentum representation (2.36) of the complete

Wigner function.

2.4. Semiclassical Description of Rotation Dynamics

The focus of this thesis is the description and examination of rotational quantum

dynamics of macroscopic particles with thousands of angular momentum states in-
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2. Theory of the Rigid Rotor

volved. In this case exact quantum dynamics is not expedient and numerical sim-

ulations based on the exact dynamics become intractable while in this limit semi-

classical approximation methods are promising. The here presented approximation

methods are based on Bohr-Sommerfeld quantized action-angle variables. Thus, I

start with an introduction of action-angle variables for the free rotation of linear

rotors followed by the WKB approximation for planar and the EBK approximation

for linear rotors. In the end, the semiclassical approximation of matrix elements is

shown. This section is based on the textbooks [62,63].

2.4.1. Bohr-Sommerfeld-Quantization

For the here presented approximation methods the classical action integral along a

closed path, I = 1/(2π)
∮

dq p(q), with the canonical variables p and q, plays an

important role. Thus, we start with an introduction of the action-angle variables

for angular momentum and the quantization of action.

Action-Angle Variables for Angular Momentum

We know from Hamilton-Jacobi mechanics that the canonical transformation into

action-angle variable simplifies the resulting Hamiltonian. The new action variables,

Ik = 1/2π
∮

dqk pk are constants of motion while the corresponding angles αk vary

linear in time. The generating function for the transformation of the ”old” coor-

dinates qk and canonical momenta pk into the action-angle variables Ik, αk is the

function S(q, I) with

pk(qk, Ik) = ∂S(qk, Ik)/∂qk, αk(qk, Ik) = ∂S(qk, Ik)/∂Ik. (2.40)

For the transformation onto action-angle variable we start with the effective

Hamiltonian (2.11), HL(α, β, pα, pβ) = J2/2I, and its connection with the angu-

lar momentum J. From this follows the corresponding Hamilton-Jacobi equation

for the generating function S(α, β, Iα, Iβ)

J2 =

(
∂S

∂β

)2

+
1

sin β

(
∂S

∂α

)2

. (2.41)

The generating function separates in the form S(α, β, Iα, Iβ) = Sα(α, Iα, Iβ) +

Sβ(β, Iα, Iβ) and with this the Hamilton-Jacobi equation (2.41) separates into [62]

pα =
∂S

∂α
= M, (2.42a)
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2.4. Semiclassical Description of Rotation Dynamics

pβ =
∂S

∂β
=

(
J2 − M2

sin2 β

)1/2

, (2.42b)

with the constant of motion M . The motion in α has no turning points and thus

the action Iα reads

Iα =
1

2π

∫ 2π

0

dα pα = M. (2.43)

The β-motion hast two turning points, βmin = arcsin(M/J) and βmax = π − βmin.

With this the we obtain [62]

Iβ =
1

π

∫ π−βmin

βmin

dβ

(
J2 − M2

sin2 β

)1/2

= J − |M |. (2.44)

We take the constants of motion J and M as the action variables and from equations

(2.40) and (2.42b) follow for the conjugate angulars

αJ =

∫ β

βmin

dβ′
J sin β′

(J2 sin2 β′ −M2)1/2
= arccos

(
J cos β

(J2 −M2)1/2

)
, (2.45a)

αM =

∫ α

−π
dα′ +

∫ β

βmin

dβ′
M

sin β′(J2 sin2 β −M2)1/2

= α + π − arctan

(√
J2 sin2 β −M2

M cos β

) . (2.45b)

Bohr-Sommerfeld-Quantisation of angular momentum

A semiclassical method for the quantization of the system is the quantization of the

classical actions Ik via the Bohr-Sommerfeld quantization rule

Ik =
1

2π

∮
dqk pk = ~(n+ δ), (2.46)

with the quantum number n ∈ Z and the Maslov index δ. The Maslov index depends

on the number and kind of turning points of the motion, δ = νh/2 + νs/4. Here, νh

is the number of ”hard” turning points xi with|V ′(xi)| = ∞ and νs the number of

soft turning points xi with |V ′(xi)| <∞.

Thus, the quantized values of Iα and Iβ read

Iα = ~m, (2.47a)

Iβ = ~
(
n+

1

2

)
. (2.47b)
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2. Theory of the Rigid Rotor

Together with (2.44) we obtain

J = ~
(
n+ |m|+ 1

2

)
= ~

(
j +

1

2

)
(2.48)

for the quantization of the angular momentum J , with m ∈ Z and j ∈ N0. A

comparison with the exact eigenvalues ~2j(j+1) of the angular momentum operator

J2 shows a difference of ~2/4 which is negligible for j � 0.

2.4.2. WKB Approximation Method for Planar Rotations

The WKB approximation method is named after Gregor Wentzel, Hendrik Anthony

Kramers, and Léon Brillouin, who developed this method in 1926. In general it can

be applied to any kind of one dimensional linear differential equations where the

highest derivative is multiplied with a small coefficient. In case of Schrödinger’s

equation this is equivalent to the estimation that a potential varies only slowly in

space compared to the de Broglie wavelength.

For planar rotations with a single degree of freedom α ∈ [0, 2π) and a potential

V (α) the Schrödinger equation reads

~2 d2ψEm(α)

dα2
+ p2

α(α)ψEm(α) = 0, (2.49)

with the local momentum pα(α) =
√

2I[Em − V (α)]. For an orientation indepen-

dent potential V (α) = V equation (2.49) is solved by a plane wave

ψEm(α) = Ae±imα. (2.50)

For a potential varying slowly in α we extend the ansatz (2.50) to [62]

ψEm(α) = A exp

[
± i
~
S(α)

]
, (2.51)

and expand the function S(α) in powers of ~,

S(α) = S0(α) + ~S1(α) + ~2S2(α) +O(~3). (2.52)

Inserting ansatz (2.51) into the Schrödinger equation (2.49) yields[
−[S ′0(α)]2 + p2

α(α)
]

+ ~[−2S ′0(α)S ′1(α) + iS ′′0 (α)]

+ ~2
[
−2S ′0(α)S ′2(α)− [S ′1(α)]2 + iS ′′1 (α)

]
+O(~3) = 0.

(2.53)
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From the terms in zero and first order in ~ it follows that

S0(α) = ±
∫ α

α0

dα′ pα(α′), (2.54a)

S1(α) =
i

2
ln [pα(α)] . (2.54b)

Here, the first expression represents the classical action integral. With both expres-

sions we obtain

ψEm(α) ≈ A√
pα(α)

exp

(
± i
~

∫ α

α0

dα′pα(α′)

)
. (2.55)

The probability, |ψEm(α)|2 = |A|2/pα(α), for finding a particle in the orientation α

is as expected anti proportional to the classical orientation depending momentum

pα(α). The smaller the momentum the longer the particle remains in this area.

The WKB approximation is valid for [62]

~S ′1(α)� S ′0(α). (2.56)

Around turning points, where pα(α) = 0 applies, the WKB wave function diverges

and the WKB approximation breaks down.

In the case of free flight without any potential and pα(α) =
√

2IEm the eigenstate

simplifies to

ψEm(α) ∝ 1
4
√

2IEm
exp

[
±
√

2IEm(α− α0)
]
. (2.57)

The periodic boundary condition ψEm(α) = ψEm(α + 2π) leads to the quantized

energy eigenvalues,

2π

√
2IEm
~

= 2πm⇒ Em =
~2m2

2I
, (2.58)

which are identical with the exact energy eigenvalues for the free flight. We see that

from the periodic boundary condition follows the Bohr-Sommerfeld quantization

rule for the action.

2.4.3. EBK Approximation Method for Linear Rotations

For integrable systems the WKB approximation can be extended to several dimen-

sions. Analogue to the WKB method the energy eigenvalues are approximated by

the quantization of the classical actions as in the Bohr-Sommerfeld quantization.

This method is called EBK approximation, named after Einstein, Brillouin and
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Keller.

In the following we consider the motion of a linear rigid rotor in the presence of

a potential depending on β which results in the Hamilton function

H(α, β, pα, pβ) =
1

2I

(
p2
α

sin2 β
+ p2

β

)
+ V (β). (2.59)

Here, the canonical momentum pα and the total energy E = H(α, β, pα, pβ) are

constants of motion. The action Iα is the same as the one for the free flight and we

obtain

Iα = pα = ~m. (2.60)

For the action of the β-motion we have to take the external potential V (β) into

account yielding an effective β-depending potential

Veff(β) =
p2
α

sin2 β
+ V (β). (2.61)

This potential diverges at β = 0 and β = π and thus the β-motion has two turning

points with cot β = 0 which obey the equation

2

I
[E − V (βmin,max)]− p2

α

I2 sin2 β
= 0. (2.62)

With help of the turning points the quantization of Iβ can be written as

Iβ =
1

π

∫ βmax(E,pα)

βmin(E,pα)

dβ

√
2I[E − V (β)]− ~2m2

sin2 β
= ~(n+ 1/2), (2.63)

where two Maslov indices νs = 1/4 for the two turning points are taken into account.

With Iβ = J − |M |, see Eq. (2.44), and the quantization rules (2.47a), (2.48) for J

and M we obtain

Iβ = ~(j − |m|+ 1/2). (2.64)

2.4.4. Semiclassical Matrix Elements

For a semiclassical approximation of the matrix elements of an arbitrary operator

we start with classical action-angle variables (I, α) and associate the classical action

I with a semiclassical action operator I given by

I = −i~ ∂

∂α
+ δ~, (2.65)
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with the Maslov index δ. The eigenfunctions and eigenvalue equation of this operator

are [62]

φn(α) = (2π)−1/2einα, (2.66a)

Iφn(α) = (n+ δ)~φn(α). (2.66b)

To obtain the matrix elements of an operator A we have to approximate it in action-

angle variables. According to the correspondence principle one may associate the

classical function A(I, α) with a semiclassical equivalent A(I, α) depending on the

action operator I. The eigenfunctions of this semiclassical function are the action-

angle wave functions with

A(I, α)φn(α) = A[(n+ δ)~, α]φn(α). (2.67)

The matrix elements of the operator A are then approximated by [62]

〈n′|A(I, α)|n〉 =

∫ 2π

0

dαφ∗n′(α)A(I, α)φn(α)

≈ 1

2π

∫ 2π

0

dαA[(n̄+ δ)~, α]ei(n−n
′)α.

(2.68)

Here, n̄ = (n′ + n)/2 is introduced to ensure that the matrix elements describe a

hermitian operator.

In the Hilbert space of the linear rigid rotor we are often confronted with op-

erators A(α,β, pα, pβ) depending on the Euler angle operators α and β and the

corresponding canonical momentum operators. We replace these operators with the

action-angle variables (J,M, αJ , αM) via [62]

α =αM + arctan(ζ tanαJ)− π, (2.69a)

cos β = cosαJ
√

1− ζ2, (2.69b)

sin β =

√
sin2 αJ + ζ2 cos2 αJ , (2.69c)

pβ =J
sinαJ

√
1− ζ2√

sin2 αJ + ζ2 cos2 αJ
, (2.69d)

pα =M, (2.69e)

with ζ = M/J and associate the actions M and J with semiclassical operators M

and J yielding A(J,M, αJ , αM). The eigenfunction of this operator is the product of
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the eigenfunctions of the action operators M and J

ψjm(αj, αm) =
1

2π
ei(jαj+mαm), (2.70)

and the eigenvalue equation reads

A(J,M, αj, αm)ψjm(αj, αm) = A[(j + 1/2)~,m~, αj, αm]ψjm(αj, αm). (2.71)

Thus, the matrix elements are given by

〈jm|A|j′m′〉 =
1

4π2

∫ 2π

0

dαj

∫ 2π

0

dαm eiαj(j−j
′)eiαm(m−m′)A (αm, αj, m̄, j̄) , (2.72)

with m̄ = (m+m′)/2 and j̄ = (j+j′)/2. Note that this semiclassical approximation

ignores the operator order.
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3. Orientational Decoherence

A large part of my thesis is concerned with quantum experiments like superposi-

tion tests which exploit quantum effects in the rotational dynamics of aspherical

nanoparticles. In chapter 2 I introduced the classical and quantum description of

the rotational dynamics of a freely unitary evolving particle. But for the estima-

tion of the viability of such experiments it is crucial to take interactions with the

environment into account which may lead to orientational decoherence and could

destroy the quantum behaviour.

The rotational dynamics of a nanoparticle in the presence of pure environmental

decoherence is described by an orientational decoherence master equation [42]. In

the diffusion limit, this equation turns into a simplified but general angular mo-

mentum diffusion master equation [43], which I will use later in this thesis. Both

equations were derived during my master thesis, and here I briefly summarize the

most important steps to gain an understanding of orientational decoherence and

quantum angular momentum diffusion.

In the first part of this chapter, I give a short review about open quantum systems

in general, mainly based on the works [64] and [65], followed by the master equation

for orientational decoherence [42]. In the last part of this chapter I draw the diffusion

limit [43] and discuss exemplary the time evolution for the planar rotor.

3.1. Open Quantum Systems

An open quantum system is a system S which interacts with a large, uncontrolled

environment E. This interaction with the environment has a critical effect on the

dynamics of our state operator ρ describing the state of the system S, in particular

it leads to decoherence of the state: a decay of the coherences and localization of the

state, meaning that the state operator ρ turns into a classical mixture and contains

no longer superpositions.

In the following, the state of the system of interest, for example a nanorotor, is

denoted ρ and the state of the environment ρE. The state of the total system is ρtot.

The Hilbert space of the total system Htot is the tensor product of the Hilbert space

HS and the Hilbert space of the environment HE, Htot = HS ⊗HE. The complete
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3. Orientational Decoherence

environment  

system S

,

,

total system ,

Figure 3.1.: Sketch of an open system S described by the state operator ρ interacting
with an environment E with state operator ρE. The total system is
described by the state operator ρtot. The Hilbert space of this total
system is the tensor product of the system Hilbert space HS and the
environmental Hilbert space HE, Htot = HE ⊗ HS. Figure taken from
[66].

system, however, is once again a closed, unitary system.

Time Evolution

The time evolution of the complete system is unitary and can be described by the

von-Neumann equation

∂tρtot = − i
~

[Htot, ρtot] , (3.1)

where we use the total Hamiltonian

Htot = HS ⊗ 1E + 1S ⊗ HE + Hint. (3.2)

It is the sum of Hamiltonian HS acting on the Hilbert space HS of the system, the

Hamiltonian HE acting on HE and the interaction Hamiltonian Hint acting on the

total Hilbert space.

We are interested in the time evolution of our system. By tracing out the en-

vironmental degrees of freedom we obtain the density operator ρ = trE(ρtot) from

the density operator ρtot of the complete closed system. This partial trace of an

operator ASE acting on the Hilbert space Htot is defined as

trE(ASE) =
∑
i

= 〈ki|ASE|ki〉, (3.3)

with |ki〉 the orthogonal basis vectors of HE. With this partial trace we can describe
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3.1. Open Quantum Systems

the time evolution of the density operator ρ by

∂tρ = − i
~

trE ([Htot, ρtot]) , (3.4)

which is not a closed time evolution. In the following, I show how to derive a closed

equation for ρ with the Markov approximation.

Markov Master Equation in Lindblad Form

We assume that the initial state of the system is uncorrelated with the environment.

Thus, we can write the initial total state ρtot(0) as a product state of the initial state

of the system and the environment, ρtot(0) = ρ(0) ⊗ ρE. Due to the interaction of

the system with the environment the states become correlated for t > 0. From the

correlations follow that the change of a state at each time depends not only on the

actual state at this point in time, but on the complete time evolution up until this

instant. The time evolution of the system depends on the history of the whole state,

one can say that the environment has a memory.

In the Markov approximation we assume that we can neglect these memory effects

on time scales much greater than the correlation time scale. In this case the change

of ρ depends only on the current state of the system and can be described by a

Liouville superoperator L̃ [65],

∂tρ = L̃ρ. (3.5)

This type of master equation is called a Markovian master equation.

The Liouville superoperator is a generator of a dynamical map Wt = exp(L̃t) for

times t > 0. It maps the initial state ρ(0) onto states ρ(t) at later points in time

t [65]

Wt : ρ(0)→ ρ(t) t > 0. (3.6)

To preserve the properties of a quantum state the dynamical map has to obey three

requirements. It has to be trace-preserving, convex linear and completely positive.

Preserving of the trace ensures the normalization of the state ρ(t) for each time,

tr[ρ(t)] = 1. The convex linearity is given by

Wt[λρ1 + (1− λ)ρ2] = λWt(ρ1) + (1− λ)Wt(ρ2) 0 ≤ λ ≤ 1. (3.7)

25



3. Orientational Decoherence

And finally the complete positivity

Wt ⊗ 1ext > 0 (3.8)

guarantees that the map Wt itself and further all tensor product extensions of Wt

to higher dimensions are positive.

If the Wt fulfil the additional requirement

Wt2(Wt1(.)) =Wt1+t2(.) for all t1, t2 > 0 (3.9)

the Wt form a dynamical semigroup [65]. This property is corresponding to the

Markov assumption that the change of a state depends only on the actual state and

not on the interaction history.

A general generator of such a dynamical semigroup is given by a master equation

in Lindblad form [64,65]

∂tρ = − i
~

[
H̃, ρ

]
+
∑
k

γk

(
LkρL

†
k −

1

2

{
L†kLk, ρ

})
, (3.10)

with the rates γk > 0 and the dimensionless Lindblad operators Lk. The first part

of equation (3.10) describes the unitary part of the time evolution. Note that the

operator H̃ is hermitian but is not necessarily the Hamiltonian of the system. The

second part of equation (3.10) describes the incoherent part of the time evolution.

One method to derive this master equation microscopically is to assume only a

weak interaction Hamiltonian Hint. In the following, I use the Monitoring Approach

[65, 67], a non-perturbative method, to derive the master equation of orientational

decoherence.

Monitoring Approach

In the Monitoring Approach the interaction with the environment is imagined as

consisting of single scattering processes of environmental particles with our parti-

cle of interest. Additionally, we assume that the correlation between system and

environment induced by the scattering event disperses quickly on a timescale much

smaller than the scattering timescale. Thus, the total density operator prior to each

collision can be written as a product state, ρtot = ρ⊗ ρE.

The two important operators describing the interaction with the environment are

the rate operator Γ and the scattering operator S, both acting on the total Hilbert

space Htot. The expectation values of the rate operator as well as of the scattering

operator depend on the total state ρ ⊗ ρE. In order to derive the master equation
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3.1. Open Quantum Systems

detector

Figure 3.2.: The system interacts with environmental gas particles. In the moni-
toring approach we assume an imaginary detector which detects a gas
particle before the scattering event to include the state-dependent scat-
tering operator into the dynamical description.

we assume an imaginary transit detector which monitors the system and detects,

whether an environmental particle is passing it and will be scattered at the system.

The rate operator yields the probability for a collision in the time interval ∆t [65]

Prob (C∆t|ρ⊗ ρE) = ∆t tr(Γρtot). (3.11)

Both the information of the detector that there will be a collision and the collision

itself affects the state, yielding the state after the collision

M(ρtot|C∆t) =
SΓ 1/2ρtotΓ

1/2S†

tr(Γρtot)
. (3.12)

The total state ρtot after a time interval ∆t is then given by the state after the colli-

sion (3.12) multiplied with the probability Prob(C∆t) that there is a collision in the

time interval plus the state ρtot without any changes multiplied with the probability

Prob(C∆t) = 1− Prob(C∆t) of no collision. After tracing out the environment and

drawing the limit ∆t→ 0 of a continuous monitoring we obtain the master equation

∂tρ = − i
~

[H, ρ] +Rρ+ Lρ, (3.13)

with the two superoperators R and L.

The first term Rρ is unitary and reads [65]

Rρ = itrE

([
Re(T), Γ 1/2(ρ⊗ ρE)Γ 1/2

])
, (3.14)

where I introduced the operator T connected to the scattering operator via S =

1 + iT. It describes a renormalization of the energy due to the interaction with

the environment. The second term Lρ describes the incoherent part of the time
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3. Orientational Decoherence

evolution with [65]

Lρ = + trE

(
TΓ 1/2[ρ⊗ ρE]Γ 1/2T†

)
− 1

2
trE

(
Γ 1/2T†TΓ 1/2[ρ⊗ ρE]

)
− 1

2
trE

(
[ρ⊗ ρE]Γ 1/2T†TΓ 1/2

)
.

(3.15)

The Monitoring Approach was for example used for a non-perturbative derivation of

the quantum linear Boltzmann equation [68]. In a similar way the master equation

for orientational decoherence can be derived [42].

3.2. Orientational Decoherence Master Equation

With the general knowledge about open quantum systems and in particular the Mon-

itoring Approach we can now derive a master equation which describes decoherence

of the orientational degrees of freedom of an aspherical nanoparticle interacting with

a gaseous environment.

3.2.1. Monitoring Master Equation

In order to derive the master equation we have to specify the rate and scattering

operators used in the Monitoring Approach. With this we can write down the master

equation (3.15). The master equation shall describe the dynamics of an aspherical

anisotropic nanoparticle with mass M and state ρN, interacting with a homogeneous

gaseous environment with gas particle mass mg � M and particle density ng. The

high mass of the nanoparticle in comparison to the mass of the gas particles implies

that typreally its rotation period is long in comparison to the interaction timescale.

Thus, we can assume that the orientation does not change during one scattering

event and that the rate and scattering operators are diagonal in the orientational

degress of freedom Ω [42].

Since the orientation Ω of the particle enters the scattering amplitudes f(pf ,pi,Ω)

only in a parametric fashion the superoperators Rρ and Lρ can be derived in a same

way as for the quantum linear Boltzmann equation [68]. Therefore, I will give only

the main idea of the derivation with important steps and assumptions to obtain

the equations relevant for this thesis. A derivation of the ro-translational master

equation describing orientational decoherence can be found in Ref. [42].

We can write the total Hilbert space Htot as a tensor product of the Hilbert space

of the center of mass coordinates Hcm and the Hilbert space Hrel of the relative

coordinates, Htot = Hcm ⊗ Hrel. The scattering operator T as well as the rate
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3.2. Orientational Decoherence Master Equation

operator Γ act only on the Hilbert space Hrel of the relative coordinates. So, we

introduce the relative momentum vector pr(p,P) = mrp/m−mrP/M , depending

on the momentum p of the gas particle and P of the nanoparticle. Here, mr denotes

the reduced mass mr = mM/(m+M). We can now write the scattering and the rate

operator in terms of a scattering amplitude f(pf ,pi; Ω) which describes a scattering

event with incoming relative momentum pi and outgoing relative momentum pf for

a fixed orientation Ω.

The rate operator Γ is the product of the particle flux

j(p,P) = ng|pr(p,P)|/mr and the total scattering cross section

σtot(pi; Ω) =
∫
S2

d2 |f(pin,pi; Ω)|

Γ = 1cm ⊗
ng
mr

|pr(p,P)|
∫
S2

d2n |f(pi(p,P)n,pi(p,P);Ω)|. (3.16)

Note that the momentum P and the orientation Ω of the nanoparticle enter here

as operator valued quantities. The non-trivial part T0 of the scattering operator

T = 1cm ⊗ T0 reads

〈pf |T0|pi〉 =
1

2π~
δ

(
p2
f − p2

i

2

)
f(pf ,pi;Ω). (3.17)

Since the environmental gas is homogeneous and stationary, its state operator ρE

is diagonal in the momentum operator p with the matrix elements 〈p|ρE|p〉 = µ(p).

The Renormalization of the Energy

The superoperator RρN leads to a momentum and orientation dependent energy

shift Hg, RρN = −i[Hg, ρN]/~. In the limit m � M the relative momentum pr is

approximately given by the momentum p of the gas particle. When we additionaly

assume an isotropic gas with µ(p) = µ(p) the matrix elements of Rρ vanish, so that

the energy shift is constant and does not affect the time evolution [42].

The Incoherent Time Evolution

The superoperator LρN describes the incoherent time evolution. Calculating it in

the limit m�M one obtains [42]

LρN =
ng

m

∫
d3p

∫
d2n′ pµ(p)

[
Lpn′ρNL

†
pn′ −

1

2

{
ρN, L

†
pn′Lpn′

}]
, (3.18)
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3. Orientational Decoherence

with the initial momentum p = pn and the final momentum p′ = pn′. The Lindblad

operators can be written in terms of the scattering amplitude,

Lpn′ = eR·(p−pn′)/~f(pn′,p;Ω). (3.19)

The Lindblad operator (3.19) depends on the operator-valued orientation Ω and the

center of mass position R of the nanoparticle.

The total ro-translational master equation,

∂tρN = − i
~

[H + Hg, ρN] + LρN, (3.20)

describes the ro-translation motion of the particle including the interaction with the

environment. The incoherent part LρN leads to decoherence both in the center of

mass and in the orientational degrees of freedom of the nanoparticle.

In order to obtain the master equation for only the rotational state ρrot = trCM(ρN),

in the following denoted by ρ, we have to trace out the center of mass degrees of

freedom, yielding [42]

∂tρ =− i

~
[Hrot + Hg, ρ] +

∫ ∞
0

dp p3

∫
S2

dn

∫
S2

dn′ µ(p)

×
[
f(pn′, pn;Ω)ρf ∗(pn′, pn;Ω)− 1

2

{
ρ, |f(pn′, pn;Ω)|2

}]
.

(3.21)

We can now calculate the orientational localization rate F (Ω,Ω′) = 〈Ω|Lρ|Ω′〉
and see that the superoperator L indeed leads to a decay of the coherences in the

orientation representation, i.e. a localization of the orientation [42]

F (Ω,Ω′) =
ng
2m

∫ ∞
0

dp p3µ(p)

∫
S2

d2n′
∫
S2

d2n |f(pn′, pn; Ω)− f(pn′, pn; Ω′)|2.

(3.22)

The localization rate is always positive and vanishes for a completely localized par-

ticle with Ω = Ω′.

3.2.2. Angular Momentum Diffusion Master Equation

We have seen that the collisional interaction with the environment leads to deco-

herence in the orientation. From the decoherence master equations for the center of

mass degrees of freedom we know that they describe diffusion in the momentum for

small momentum transfers during the scattering event [64,68–70], so one can assume

that the orientational decoherence master equation gives rise to angular momentum
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3.2. Orientational Decoherence Master Equation

Figure 3.3.: Illustration of the orientation of an arbitrarily shaped asymmetric parti-
cle. The black axes {e1, e2, e3} define the space-fixed frame. In blue we
see the orientation dependent vector a(Ω) and in orange the orientation
dependent eigenvectors bi of the tensor B(Ω).(Figure taken from [66])

diffusion in the limit of small anisotropies [43].

Later in this thesis, I will use the angular momentum diffusion equation for sym-

metric particles. In the following, I give a short idea of the concepts [43] to derive

this equation and discuss and illustrate the result for planar rotations using the

Wigner-Weyl formalism.

In order to derive the angular momentum diffusion master equation we start with

the orientational decoherence master equation (3.21) and approximate the scat-

tering amplitudes f(pn′, pn; Ω) for small anisotropies by the sum of a scattering

amplitude fsph(pn′, pn) for an isotropic potential and a second part g(pn′, pn,Ω)

which takes the anisotropy in leading order into account. This is equivalent to an

interaction potential which depends only weakly on the orientation. The isotropic

potential does not affect the incoherent rotational dynamics so that we focus on

the anisotropic part of the the scattering amplitude. We first exploit the isotropy

of the momentum distribution and rotate the coordinate system so that we have

g(pn′, pn; Ω) = g(pRTn′, pRTn; 0). Then we expand the momentum dependencies of

the scattering amplitude g(pRTn′, pRTn; 0) in spherical harmonics until ` = `′ = 2,

g(pRT (Ω)n′, pRT (Ω)n; 0) =
2∑

`,`′=0

∑̀
m=−`

`′∑
m′=−`′

fmm
′

``′ Y m
` [RT (Ω)n]Y m′

`′ [RT (Ω)n′]. (3.23)

This way we ensure to take only the lowest order which accounts for the anistropy

into account. From the time-reversal invariance of the scattering amplitude [71],
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3. Orientational Decoherence

f(pn′, pn; Ω) = f(−pn,−pn′; Ω), follows for the expansion coefficients

fmm
′

``′ (p) = (−1)`+`
′
fmm

′

``′ . (3.24)

With this we obtain a scattering amplitude approximated for small anisotropies in

the potential [43]

f(pn′, pn; Ω) ≈fsph(pn′, pn) + f 00
00 (p) + A(p,Ω) · (n− n′) + n · B(p,Ω)n

+ n′ · B(p,Ω)n′ + n · C(p,Ω)n′.
(3.25)

The expansion coefficients fmm
′

``′ are included in the complex vector A(p,Ω) =

R(Ω)A0(p) and the symmetric tensors B(p,Ω) = R(Ω)B0(p)RT (Ω) and C(p,Ω) =

R(Ω)C0(p)RT (Ω). For inversion symmetric scattering amplitudes, f(−pn′,−pn; Ω) =

f(pn′, pn; Ω), the vector A(p; Ω) must vanish.

Now I insert this expression (3.25) in the orientational decoherence master equa-

tion (3.21). The term f 00
00 (p) does not depend on the orientation of the particle

and vanishes as well as the spherical part fsph(pn′, pn). The mixed terms between

B(p,Ω) and C(p,Ω) are linear in either the unit vector n or n′ and thus the cor-

responding integration vanishes. The mixed terms between A(p,Ω) and B(p,Ω)

respectively C(p,Ω) vanish partly as well because of the linearity in n or n′. The

other parts cancel each other because of the factors n and −n′. And even the mixed

term involving the tensor B(p,Ω) with primed and unprimed unit vector n cancel.

From this follows that the superoperator Lρ splits into two terms, one linear in the

orientation and another one which depends quadratically on the orientation Ω [43],

∂tρ = − i
~

[Hrot, ρ] + L1ρ+ L2ρ, (3.26)

with

L1ρ =
4πng
m

∫ ∞
0

dp p3µ(p)

∫
S2

d2n

[
[n ·A(p,Ω)]ρ[n ·A∗(p;Ω)]

− 1

2

{
|n ·A(p;Ω)|2, ρ

} ]
, (3.27a)

L2ρ =
8πng
m

∫ ∞
0

dp p3µ(p)

∫
S2

d2n

[
[n · B(p;Ω)n]ρ[n · B∗(p;Ω)n]

− 1

2

{
|n · B(p;Ω)n|2, ρ

} ]
+
ng
m

∫ ∞
0

dp p3µ(p)

∫
S2

d2n

∫
S2

d2n′
[
[n · C(p;Ω)n′]ρ[n · C∗(p;Ω)n′]

− 1

2

{
n · C(p;Ω)n′|2, ρ

} ]
. (3.27b)
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3.2. Orientational Decoherence Master Equation

For the simplest possible version of an angular momentum diffusion master equa-

tion we reduce the expressions (3.27a) and (3.27b) to the most elementary form. In

a first step, we omit the integral over the momentum p, because the equation (3.21)

describes decoherence even for a sharp momentum distribution µ(p). Further, we

assume that the vector A and the tensors B and C are real. These assumptions do

not have an effect on the decoherence rate because the imaginary part only gives rise

to an additional phase oscillation [42]. And in a last step we reduce the two terms

in (3.27b) to a single term, because the matrix elements of the two terms differ only

by a constant factor. Thus, there cannot be any additional information from the

tensor C(p; Ω) which is not contained in B(p; Ω). After all simplifications we obtain

the expressions

L1ρ = γ1

∫
S2

d2n

4π

[
[n ·A(Ω)]ρ[n ·A(Ω)]− 1

2

{
|n ·A(Ω)|2, ρ

}]
, (3.28a)

L2ρ = γ2

∫
S2

d2n

4π

[
[n · B(Ω)n]ρ[n · B(Ω)n]− 1

2

{
|n · B(Ω)n|2, ρ

}]
, (3.28b)

with the vector A(Ω) = Aa(Ω), a(Ω) = R(Ω)a0 and the tensor B(Ω) =
∑3

i=1Bibi(Ω)⊗
bi(Ω).

The corresponding localization rates F1(Ω,Ω′) and F2(Ω,Ω′) read

F1(Ω,Ω′) =
2D(1)

~2
[1− a(Ω) · a(Ω′)] , (3.29a)

F2(Ω,Ω′) =
1

2~2

3∑
i=1

(
3∑
j=1

D
(2)
j − 2D

(2)
i

)
|bi(Ω)× bi(Ω

′)|2, (3.29b)

with the diffusion coefficients

D(1) =
γ1~2

6
A2, (3.30a)

D
(2)
i =

2γ2~2

15
(Bj −Bk)

2. (3.30b)

It can be shown [43] that the sum of localization rates (3.29a) and (3.29b) vanish only

when Ω = Ω′. From this follows that the superoperators (3.28a) and (3.28b) lead to a

complete localization of the state. For an inversion symmetric particle the Liouvillian

(3.28a) vanishes and with this the localization rate is zero for bi(Ω) = ±bi(Ω′). Thus,

the Liouvillian (3.28b) does not effect superpositions of orientations bi(Ω) and−bi(Ω)

which is not surprising because of the indistinguishability of these orientations for

inversion symmetric particles.

The master equation (3.26) describes quantum angular moment diffusion. To
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demonstrate this I calculate the time evolution of the expectation value of the angu-

lar momentum operator J and of its tensor of second moments J⊗J. For a diffusive

process we expect that the first moment is constant in time and that the tensor of

second moments increases linearly with time

∂t〈J〉 = 0, ∂t〈J⊗ J〉 = 2〈D(Ω)〉, (3.31)

with the diffusion tensor D(Ω). We start with the expectation value ∂t〈J〉 = tr(J∂tρ)

and insert the master equation (3.26) for ∂tρ. The angular momentum operator is a

constant of motion and thus commutes with the rotational Hamiltonian Hrot. From

this it follows that we only have to calculate the incoherent part tr(JLρ). A cyclic

permutation within the trace leads to ∂t〈J〉 = 〈LJ〉. For the further calculation we

use the expression (2.20c) for the components of the angular momentum operator

related to the space-fixed frame. With this we obtain ∂t〈J〉 = 0 and in a similar

way [43]

∂t〈J⊗ J〉 = 2〈D(1)(Ω) + D(2)(Ω)〉, (3.32)

with the diffusion tensors

D(1)(Ω) =D(1)[1− a(Ω)⊗ a(Ω)], (3.33a)

D(2)(Ω) =
3∑
i=1

D
(2)
i bi(Ω)⊗ bi(Ω). (3.33b)

From this it follows that the superoperators (3.28a) and (3.28b) induce angular

moment diffusion in a way that the second moments of the angular moment operator

increases linearly in time.

Angular Momentum Diffusion of the Symmetric Rotor

So far, I discussed the general case of an arbitrarily shaped asymmetric rigid rotor.

Throughout my thesis we will often assume the particle to be a symmetric rotor or

even a linear rigid rotor. In the following, I discuss these two cases.

The interaction of an azimuthally symmetric particle with the environment de-

pends only on the orientation of its symmetry axis m(Ω) = R(Ω)e3. With this only

two orientational degrees of freedom can be localized, the α- and the β-rotation,

while the rotation around the body-fixed n3-axis, the symmetry axis, cannot be

localized. The superoperators (3.28a) and (3.28b) turn in the limit of a symmetric

rotor into the same expression as in the limit of a linear rigid rotor. The master

equation then only differs in the rotational Hamiltonian.
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For the calculation of the Liouvillian L1 and L2 we assume the vector a(Ω) in

(3.28a) to point along the symmetry axis m(Ω) and write also the tensor B(Ω) in

terms of the vector m(Ω),

B(Ω) = 1B⊥ + (B‖ −B⊥)m(Ω)⊗m(Ω). (3.34)

With this expressions the Liouvillian read

L1ρ =
6D(1)

~2

∫
S2

d2n

4π

[
[n ·m(Ω)]ρ[n ·m(Ω)]− 1

2

{
|n ·m(Ω)|2, ρ

} ]
, (3.35a)

L2ρ =
15D(2)

~2

∫
S2

d2n

4π

[
[n ·m(Ω)]2ρ[n ·m(Ω)]2 − 1

2

{
|n ·m(Ω)|4, ρ

}]
, (3.35b)

with the diffusion coefficients

D(1) =
γ1~A2

6
and D(2) =

2γ~2

15
(B⊥ −B‖)2. (3.36)

Carrying out the integration, we obtain a more compact form for the superoperators

L1 =
2D(1)

~2
[m(Ω) · ρm(Ω)− ρ], (3.37a)

L2 =
D(2)

~
tr

[
m(Ω)⊗m(Ω)ρm(Ω)⊗m(Ω)− 1

2
{(m(Ω)⊗m(Ω))2, ρ}

]
. (3.37b)

The corresponding localization rates F1(Ω,Ω′) and F2(Ω,Ω′) read

F1(Ω,Ω′) =
2D(1)

~2
[1−m(Ω) ·m(Ω′)] , (3.38a)

F2(Ω,Ω′) =
D(2)

~
|m(Ω)×m(Ω′)|2. (3.38b)

The localization rate (3.38a) increases with increasing angle between the two ori-

entations m(Ω) and m(Ω′) and obtains its maximum at an angle of π between the

two vectors, while the localization rate (3.38b) increases with the squared sinus of

the angle between the two orientation vectors with a maximum at π/2.

Angular Momentum Diffusion of Planar Rotations

An even simpler rotor than the linear rigid rotor is the planar rotor. Its motion

is restricted to a motion in a plane and so it has only one orientational degree

of freedom α. The orientation of the rotor in then characterized by the vector

eρ(α) = (cosα, sinα, 0)T .

In order to obtain the superoperators L1ρ and L2ρ we replace the vector m(Ω) in
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3. Orientational Decoherence

the expressions (3.35a) and (3.35b) with the vector eρ and integrate over the polar

angle ϕ,

L1ρ =
2D(1)

π~2

∫ 2π

0

dϕ

[
cos(α− ϕ)ρ cos(α− ϕ)− 1

2

{
cos2(α− ϕ), ρ

}]
, (3.39a)

L2ρ =
2D(2)

π~2

∫ 2π

0

dϕ

[
cos2(α− ϕ)ρ cos2(α− ϕ)− 1

2

{
cos4(α− ϕ), ρ

} ]
. (3.39b)

The corresponding localization rates read

F1(α, α′) =
4D(1)

~2
sin2

(
α− α′

2

)
, (3.40a)

F2(α, α′) =
D(2)

~2
sin2(α− α′). (3.40b)

For an illustration of the rotational quantum dynamics of planar rotors I use the

Wigner-Weyl formalism. In the following, I assume D(2) = 0 and consider only the

superoperator L1ρ with D(1) ≡ D. Thus, the rotational dynamics is described by

∂tρ =
1

i~

[
p2
α

2I
, ρ

]
+ L1ρ. (3.41)

We transform this equation with the Wigner-Weyl formalism in phase space starting

with the unitary time evolution. Inserting the unitary part of equation (3.41) into

the equation for the auxiliary function (2.39) leads to [61]

∂u
t wν(α, t) =

1

2π

1

2i~I

∞∑
m′=−∞

e−2i(m′+µ/2)α

〈ν − (m′ + µ/2)|[p2
α, ρ]|ν +m′ + µ/2〉,

(3.42)

where I replaced m+ µ/2 = ν. Due to the commutator the pα operator acts on the

momentum states 〈ν − (m′ + µ/2)| and 〈ν +m′ + µ/2| and we obtain [61]

∂u
t wν =− 2

2π

~
iI

∞∑
m′=−∞

ν(m′ + µ/2)e−2i(m′+µ/2)α

× 〈ν − (m′ + µ/2)|ρ|ν +m′ + µ/2〉.

(3.43)

The term (m′ + µ/2) can be expressed in terms of an α-derivative so that we can

identify the auxiliary function wν(α, t)

∂u
t wν(α, t) =

~
I
ν∂αwν(α, t). (3.44)
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3.2. Orientational Decoherence Master Equation

For the transformation of the incoherent part we use the angle representation of the

auxiliary function (2.38) and the expression (3.40a)

∂i
twν(α, t) = − 2D

~2π

∫ π

−π
dα′ e−2iα′ν sin2(α− α)〈α + α′|ρ|α− α′〉. (3.45)

After expressing the sine-function in terms of exponential functions we can identify

the equation [61]

∂i
twν(α, t) =

D

~2
[wν+1(α, t)− 2wν(α, t) + wν−1(α, t)]. (3.46)

The superoperator L1 has the form of a discrete second-order angular momentum

derivative in phase space. Combining the equations (3.44) for the unitary time

evolution and (3.46) for the incoherent part of the time evolution we obtain an

equation of motion for the auxiliary function

∂twν(α, t) = −ν~
I
∂αwν(α, t) +

D

~
[wν+1(α, t)− 2wν(α, t) + wν−1(α, t)] . (3.47)

We can find an analytical solution for this equation. We start with the ansatz

wm+µ/2(α, t) =
1

2π

∑
k∈Z

∫
dγf(k, γ, t) exp

[
i

(
α− ~(m+ µ/2)t

I

)
k − imγ

]
. (3.48)

Setting t = 0 we see that the function wm+µ/2(α, 0) is the Fourier transformation of

the function f(k, γ, 0). Inserting the ansatz (3.48) in the equation of motion (3.47)

leads to an ordinary differential equation for f(k, γ, t)

∂tf(k, γ, t) = −4D

~2
sin2

(
γ

2
+

~kt
2

)
f(k, γ, t), (3.49)

with the solution

f(k, γ, t) = f(k, γ, 0) exp

[
−4D

~

∫ t

0

dt′ sin2

(
γ

2
+

~kt
2

)]
. (3.50)

Now we have to express the function f(k, γ, 0) in terms of the initial auxiliary

functions wm+µ/2(α, 0) by using the inverse Fourier transformation

f(k, γ, 0) =
1

2π

∑
m∈Z

∫ π

−π
dα wm+µ/2(α, 0)eimγ−iαk. (3.51)

Inserting this into (3.50) carrying out the integration over in the exponential function
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3. Orientational Decoherence

I obtain the solution wm+µ/2(α, t) of the equation of motion (3.47)

wm+µ/2(α, t) =

∫ π

−π
dα′

∑
m′∈Z

wm′+µ/2(α′, 0)T (α− α′;m,m′; t), (3.52)

with the propagator

T (α− α′;m,m′; t) =
1

4π2
e−2Dt/~2

∑
k∈Z

eik(α−α′)e−i~(m+µ/2)tk/I

∫
dγe−iγ(m−m′)

× exp

[
4DI

k~3
sin

(
~kt
2I

)
cos

(
γ +

~kt
2I

)]
.

(3.53)

This propagator depends only on the difference between the initial and final angle,

and on the intial and final momentum. After the substitution γ′ = γ + ~kt/(2I) we

can carry out the γ-integration and obtain

T (α− α′;m,m′; t) =
1

2π
e−2Dt/~

∑
k∈Z

exp

[
ik

(
α− α′ − ~t

I

m+m′ + µ

2

)]
× Im−m′

[
2Dt

~2
sinc

(
~kt
2I

)]
.

(3.54)

Substituting ` = m −m′ and α′′ = α − α′ − ~t(m + µ/2)/I results in the compact

solution

wm+µ/2(α, t) =
∑
`∈Z

∫ π

−π
dα′′ wm+µ/2−`

(
α− α′′ − (m+ µ/2)

~t
I
, 0

)
T̃ (α′′, `; t)

(3.55)

with the propagator

T̃ (α′′, `; t) =
1

2π
e−2Dt/~

∑
k∈Z

eik(α′′−~t`/2)I`

[
2Dt

~2
sinc

(
~kt
2I

)]
(3.56)

Equation (3.52) together with the propagator (3.54) give us a compact solution of

the equation of motion (3.47). In the following, I will discuss this solution in more

detail and use it to evolve an exemplary initial state. At first let us verify that the

propagator preserves the normalization of the Wigner function. For that one must

show that the relation ∫ π

−π
dα′′

∑
`∈Z

T̃ (α′′, `; t) = 1 (3.57)

is fulfilled. The integration over α′′ results in a Kronecker delta δk0. After using the

38



3.2. Orientational Decoherence Master Equation

relation
∑∞

`=−∞ I`(z) = ez [72] we see that the propagator (3.56) indeed obeys the

relation (3.57).

In case of vanishing diffusion, D = 0, the modified Bessel function turns into a

Kronecker delta I`(0) = δ`0. With this the equation (3.55) simplifies so that we can

carry out the sum over k and ` and the α′′-integration with the result

wm+µ/2(α, t) = wm+µ/2[α− ~t(m+ µ/2)/I, 0]. (3.58)

This equation describes a shearing of the initial state similar to the classical dynam-

ics. Due to the 2π-periodicity of the auxiliary functions and the discrete values of

m the initial state reappears at integer multiples of the revival time Trev = 4πI/~.

I apply equation (3.55) now on the initial state ψ0(α) ∝ exp[− cos2 α/(4σ2)] which

is a spatial superposition of two wave packets loclized at α = ±π/2. Insert-

ing this into equation (2.38) and using the relations cos(2α) = 2 cos2 α − 1 and

exp(z cos θ) =
∑

k∈Z Ik(z) exp(ikθ) leads to the respective auxiliary function

wm+µ/2(α, 0) =
1

Nπ

∞∑
k=−∞

(−1)kIk

[
cos(2α)

4σ2

] ∫ π

−π
dα′e−2i(m+µ/2−k)α′ . (3.59)

The integration over α′ yields a Kronecker delta δm+µ/2,k. Here, we see that only

the auxiliary function with µ = 0 contributes because m and k are integers. The

initial auxiliary function reads

wm(α, 0) =
2(−1)m

N
Im

[
cos(2α)

4σ2

]
, (3.60)

with the constant N = 2πI0(1/(4σ2)). Note that the auxiliary function itself is

not normalized to one but the Wigner function is. The numerical evolution of the

time evolution via the equation (3.55) is illustrated in Fig. 3.4. We can see the

two initially localized wave packets at α = ±π/2 and the interference pattern in

between. The angular momentum distribution shows that initially only even m

are occupied. The unitary time evolution leads to shearing while the interaction

with the environment quickly turns the superposition into a classical mixture once

the interference pattern has vanished. On longer timescales the interaction leads

to a broadening of the angular momentum distribution, i.e. to angular momentum

diffusion.
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Figure 3.4.: Time evolution of a planar rotor under angular momentum diffu-
sion, as described by equation (3.41). The initial state ψ(α) ∝
exp(− cos2 α/(4σ2)) with σ = 0.06 is a superposition of two wave packets
located at α = ±π/2. Panels a) show density plots of the Wigner func-
tion W (α,m, t) for the times t = 0, t = 5π×10−3I~ and t = 5π×10−2I~.
In b) we see the respective angular moment distributions. Note that ini-
tially only even angular momentum states are occupied. For the times
t1 and t2 we observe the shearing of the initial state, a decreasing of
the interference pattern around α = 0 and a occupation of odd angular
momentum states.
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4. Orientational Quantum Revivals

of Nanoscale Particles

Observing quantum phenomena on macroscopic scales is still a challenging task.

While there are several proposals for macroscopic quantum tests with spherical

nanoparticles [13, 14] in Ref. [45] we propose a new way for testing the superposi-

tion principle involving the orientational degrees of freedom of nanoscale aspherical

particles. This superposition test exploits the quantized angular momentum of free

evolving rigid rotors. We assume a nanorod thin enough to be approximated as

a linear rigid rotor characterized by the moment of inertia I. Then the Hamilto-

nian takes the form (2.28) and the unitary time evolution operator U(t) for the free

orientational dynamics can be expanded as

U(t) = e−iHt/~ =
∑
j∈N0

j∑
m=−j

e−i~j(j+1)t/(2I)|jm〉〈jm|. (4.1)

Since the term j(j+1) is always an even integer, this time evolution operator reduces

to the unity operator for all integer multiples of the revival time

Trev = 2πI/~. (4.2)

At this revival time the angular momentum state with the smallest angular mo-

mentum, j = 1, performs one complete rotation and all higher angular momenta

perform full rotations as well. Thus, at this time the phase between different an-

gular momentum states vanishes and as a consequence the collective interference of

all occupied angular momentum states leads to a reappearance of the initial state.

This is an effect of the free time evolution and it is based on the discrete angular

momenta. It has no analogue in classical or center of mass physics.

For an initial state with a specific orientation for a tightly aligned rod these ori-

entational quantum revivals can be exploited for testing the superposition principle.

They have already been discussed and observed for molecules [17, 22] and in this

chapter I propose an experimental set up for observing the revivals with nanoscale

particles on much larger mass, length and time scales. This set up makes use of
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4. Orientational Quantum Revivals of Nanoscale Particles

the great progress in the field of levitated optomechanics with aspherical particles.

It does not require any diffraction grating and uses only a single dielectric nanorod

and differs crucially from quantum experiments with center of mass motion.

At first, I introduce the revival scheme and explain the single steps. Later, I

discuss the feasibility of the set up with silicon nanorods and nanoscale carbon

nanotubes, and show simulations of the time evolution under realistic environmental

conditions. The results of this chapter are published in Ref. [45].

4.1. The Revival Scheme

The here proposed revival scheme consists of cycles with four main steps which are

illustrated in figure 4.2 :

• alignment

In the first step the nanorotor is trapped in a linearly polarized optical tweezer

and the rotor’s librations are cooled. So the symmetry axis m(Ω) of the rotor

aligns with a space-fixed direction, the polarization ε of the laser beam. Thus,

an initial state with a specific orientation and a superposition of several angular

momentum states is created. The initial state is characterized by its alignment,

〈[m(Ω) · ε]2〉

• free fall

After the optical tweezer is switched off the center of mass of the particle drops

and the orientation state disperses quickly into a uniform distribution. There

it remains the most of the time except for multiple integers of the revival time.

• revival

At the revival time the initial state and with this the initial alignment reap-

pears briefly on a timescale much smaller than the revival time. The alignment

can be measured by collecting the scattered light of a probe beam with the

same polarization direction as the tweezer laser. The intensity of scattered

light is proportional to the relative orientation between the symmetry axis

m(Ω) and the polarization ε.

• recapture

After measuring the alignment the tweezer laser is switched on and recap-

tures the nanorotor. With this the particle is recycled and can be used for

another run of the experiment. By running the experiment thousands of times

and measuring the alignment at the same time one obtains a statistical distri-

bution of the alignment. For most points in time we should obtain an evenly
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4.1. The Revival Scheme

Figure 4.1.: Illustration of the four steps of the here proposed revival scheme: a)
the rotor is trapped in an optical tweezer and cavity or feedback cooling
the orientational degrees of freedom to subkelvin temperatures leads to
a tight alignment with the polarization direction of the trapping laser.
b) After the trapping laser is turned off the particle drops in the grav-
itational field and the orientational state evolves freely. The quantum
state quickly disperses in a superposition of all possible orientations.
c) At multiple integers of the revival time Trev = 2πI~ the collective
interference of all occupied rotation states leads to a brief reappearance
of the initial state. d) The rotor is recaptured by the trapping laser
and recycled to repeat this measurement several times with the same
particle. Figure taken from [45].

distributed alignment, but at the revival time one should observe a much more

narrow distribution of the alignment. Thus the interference signal is charac-

terized by the width of the alignment distribution. It can be represented by

the expectation value 〈[m(Ω) · ε]2〉.

For the following discussion I consider a dielectric linear rigid rotor of length `, mass

M , moment of inertia I = M`2/12 and the polarizability tensor α0 = diag(α⊥, α⊥, α‖)

in the body-fixed system. Here, α⊥ and α‖ denotes the polarizability perpendicular

and parallel to the symmetry axis of the rotor. Thus, the particle has an anisotropy

in the polarizability of ∆α = α‖−α⊥. The rotor is optically levitated by an optical

tweezer, consisting of two counter-propagating linear polarized laser beams of power

P and polarization direction ε. They form a standing laser wave of waist w. The

tweezer is aligned with the gravitational field. When the tweezer is turned off the

particle drops along the tweezer axis. The space-fixed e3-axis is aligned with the

polarization direction ε of the tweezer.

43



4. Orientational Quantum Revivals of Nanoscale Particles

4.1.1. Alignment

Optical potential

Due to the anisotropic polarizability of the dielectric particle a standing laser wave

creates an orientation dependent optical potential. For the calculation of this po-

tential we start with the electric field Esw of the standing laser wave

Esw(r, t) = E0e
−iωtf(y, z) cos(kx)e3, (4.3)

with f(y, z) the transverse mode profile and the wave number k. In the following we

assume a symmetric Gaussian transverse mode profile f(y, z) = exp[−(x2 +y2)/w2].

The optical potential of a dielectric particle evolving in an electric field is given

by [73]

V (r,Ω) = −1

4
Esw(r)α(Ω)Esw(r), (4.4)

with the orientation dependent polarizability tensor α(Ω) = R(Ω)α0R(Ω) = α⊥1 +

(α‖ − α⊥)m(Ω) ⊗m(Ω). Inserting the electric field (4.3) into the optical potential

(4.4) we obtain

V (r,Ω) = −1

4
|E0|2f 2(y, z) cos2(kx)

[
∆α[m(Ω) · e3]2 + α⊥

]
. (4.5)

In the following we are interested in the orientation dependence of the optical po-

tential and thus, we assume the particle to be in the minimum of the potential for

the three center of mass degrees of freedom, x = y = z = 0. The relation between

intensity I(x = 0, y = 0, z = 0) = εc|E0|2 and laser power P is I(0, 0, 0) = 8P/A

with the spot area A = πw2/2 for a Gaussian beam. With m(Ω) · e3 = cos β the

azimuthal symmetric orientation dependent part of the optical potential 4.5 reads

V (β) = −V0 cos2 β (4.6)

with V0 = 4∆αP/πcε0w
2.

Initial state

Feedback [31] or cavity cooling [30] of the orientational degrees of freedom of the

trapped particle leads to a tight alignment along the polarization direction of the

tweezer. We can quantify the initial alignment by

〈cos2 β〉0 = tr
{
ρ0 cos2 β

}
. (4.7)
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Here, ρ0 is the initial state, which is the thermal state characterized by its librational

temperature T , and takes the form

ρ0 =
1

Z
e−H/kBT , (4.8)

with the Hamiltonian

H = J2/(2I)− V0 cos2 β, (4.9)

and the partition function Z. For calculating the initial alignment we represent

both, the initial state and the cosine of the β-operator, in the angular momentum

representation, i.e. in the eigenbasis of the free flight Hamiltonian of the linear rigid

rotor.

Numerical Implementation

In a first step, we calculate the matrix elements 〈jm| cos2 β|j′m′〉 by inserting two

unity operators in the Euler angle basis (2.12). With the Euler angle representation

of the eigenstates |jm〉 (2.30) and the orthogonal relation of the angle states we get

〈jm| cos2 β|j′m′〉 =

∫ 2π

0

dα

∫ π

0

dβ sin β Y m∗
j (β, α)Y m′

j′ (β, α) cos2 β. (4.10)

We can express the squared cosine-function by spherical harmonics as cos2 β = 1/3+

4
√
π/5Y 0

2 (β, α)/3. The integral of the product of three spherical harmonics over the

whole sphere can be expressed in terms of Wigner 3-j symbols

(
j1 j2 j3

m1 m2 m3

)
and

we obtain [72]

〈jm| cos2 β|j′m′〉 =
1

3
δjj′δmm′ + (−1)m

2

3

√
(2j + 1)(2j′ + 1)

×

(
j′ 2 j

0 0 0

)(
j′ 2 j

m′ 0 −m

)
.

(4.11)

Since Wigner 3-j symbols are directly linked to Clebsch Gordan coefficients [72] they

obey certain selection rules implying that the expression (4.11) vanishes except for

m = m′ and j = j′ or j = j′ ± 2.

Adding the matrix elements 〈jm|J2/2I|j′m′〉 = ~2j(j + 1)/2Iδjj′δmm
′ to equa-

tion (4.11) we obtain the matrix elements of the Hamiltonian H. By a numerical

diagonalization of this Hamiltonian we get its eigenvalues En and eigenstates |ψn〉
in the angular momentum representation.
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The initial state ρ0 can be written as

ρ0 =
∑
n

e−En/kbT
∑
j∈N0

j∑
m=−j

∑
j′∈N0

j′∑
m′=−j′

c
(n)∗
jm c

(n)
j′m′|jm〉〈j

′m′|, (4.12)

with c
(n)
jm = 〈jm|ψn〉.

For the numerical diagonalization the subscripts j and m are mapped onto a joint

index i of a one dimensional array of length (jmax +1)2 with i(j,m) = (j+1)2−j+m

and jmax the highest contributing quantum number j. This way the Hamiltonian

Hjmj′m′ is implemented as a (jmax + 1)2× (jmax + 1)2 matrix with elements Hii′ . We

have to truncate the matrix at a certain jmax for the simulations and ensure that the

results do not depend on this cutoff-parameter. In this way I proceed throughout

this thesis.

This exact diagonlization becomes more and more intractable for increasing quan-

tum numbers j, because the number of required matrix elements increases with

(j + 1)4. Since millions of angular momentum states are occupied for realistic par-

ticles, we must resort to semiclassical methods shown in section 2.4.4 to calculate

the matrix elements of ρ0 in the |jm〉 basis.

Semiclassical Matrix Elements

To calculate the matrix elements of the initial state semiclassically one writes the

initial state ρ0 (4.8) in terms of the action-angle variables (2.69) yielding the semi-

classical operator

ρ0(J,M, αJ , αM) = exp

[
J2

2I
− V0 cos2 αJ

(
1− M2

(J + 1/2)2

)]
. (4.13)

Inserting this semiclasscial operator for the initial state ρ0 into the formula (2.72)

and carrying out the integrations over αj and αm leads to

〈jm|ρ0|j′m′〉 ≈
1

Z
exp

[
−~2 (j̄ + 1/2)2

2IkBT

]
exp

[
V0

2kBT

(
1− m2

(j̄ + 1/2)2

)]
× I(j−j′)/2

[
V0

2kBT

(
1− m2

(j̄ + 1/2)2

)]
δmm′ ,

(4.14)
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for j− j′ even and 0 for j− j′ odd. Here, In(.) denotes the modified Bessel function

of order n. The partition function Z is given by the trace over the operator e−H/kBT

Z = eV0/(2kBT )
∑
j∈N0

j∑
m=−j

e−~
2(j+1/2)2/(2IkBT ) exp

[
− V0

kBT

m2

(j + 1/2)2

]
× I0

[
V0

2kBT

(
1− m2

(j + 1/2)2

)]
.

(4.15)

To evaluate this approximately we replace the modified Bessel function by its asymp-

totic expansion [72] I0(z) ≈ ez/
√

2πz for large arguments z and replace the sum over

j by an integral over j from 0 to ∞ and the sum over m by an integral over m from

−j to j

Z ≈ eV0/(kBT )

∫ ∞
0

dj e−~
2(j+1/2)2/(2kBTI)

∫ j

−j
dm exp

[
− V0

kBT

m2

(j + 1/2)2

]
×
[
πV0

kBT

(
1− m2

(j + 1/2)2

)]−1/2

.

(4.16)

First one can solve the integration over m with help of the substitution ξ = m/(j +

1/2) where we approximate the resulting integration borders with −1 and 1, which

is well allowed for large j. The resulting modified Bessel function is again approxi-

mated by its asymptotic expression I0(z) ≈ ez/
√

2πz. For the integration over j we

substitute u = j + 1/2, yielding

Z ≈kBT exp(V0/kBT )

V0

∫ ∞
0

duu e~
2u2/(2IkBT ) =

exp(V0/kBT )k2
BT

2I

V0~2
. (4.17)

Inserting the expression (4.17) for the partition function Z in equation (4.14)

leads to resulting matrix elements of the initial state (4.8) in the Bohr-Sommerfeld

approximation

〈jm|ρ0|j′m′〉 ≈
V0~2

k2
BT

2I
e−~

2(j̄+1/2)2/(2IkBT ) exp

[
− V0

kBT

m2

(j̄ + 1/2)2

]
× exp

[
− kBT

V0(1−m2/(j + 1/2)2

(
j − j′

2

)2
]

×
[
πV0

kBT

(
1− m2

(j + 1/2)2

)]−1/2

(4.18)

where I use the approximation [72]

In(z) ≈ ez√
2πz

e−n
2/(2z), (4.19)
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for modified Bessel function of order n and z � 1 and thus it is valid for deeply

trapped initial states with kBT/V0 � 1.

Properties of the Initial State

With the semiclassical matrix elements of the initial state (4.18) we can calculate

the time evolution of the alignment numerically even when millions of angular mo-

mentum states are occupied. Crucial for a good visibility of the revival signal is

a high initial alignment. Even though we can calculate the initial alignment for a

certain potential depth, moment of inertia and temperature numerically it is helpful

to have available analytically approximated formula showing the dependence on this

three quantities.

To this end we express the initial alignment tr(ρ0 cos2 β) of a rotor in the potential

V (β) = −V0 cos2 β in terms of the partition function Z (4.17)

〈cos2 β〉0 = kBT
∂

∂V0

lnZ. (4.20)

With the expression (4.17) for the partition function Z one obtains

〈cos2 β〉 ≈ 1− kBT

V0

, (4.21)

which is valid in the deep trapping regime kBT/V0 � 1. Here, it is obvious that the

initial alignment increases with decreasing librational temperatur T and increasing

potential depth V0. In the following I compare this result for the initial alignment

with the result for a classical probability distribution function

f0(α, β, pα, pβ) =
1

Z ′
e−H(α,β,pα,pβ)/(kBT ). (4.22)

After carrying out the integrals over the canonical momenta pα and pβ and the

azimuthal angle α, the probability distribution function for the polar angle β reads

f(β) = sin β exp[V0 cos2 β/(kBT )]/Z ′′, yielding the classical initial alignment

〈cos2 β〉0 =

∫ π

0

dβ cos2 βf(β) ≈ 1− kBT

V0

, (4.23)

in the limit kBT/V0 � 1. We see that this result is identical to our semiclassical

result for the alignment (4.21)

The initial state is characterized not only by its initial alignment but also by

the expectation value of the total angular momentum quantum number 〈j〉0 =∑
j∈N0

jp(j). It determines mainly the free rotational time evolution. In addition, it
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4.1. The Revival Scheme

influences the duration of the numerical simulations, the larger the expectation value

the more angular momentum states we have to consider in the calculation and the

longer the calculation time. We obtain the distribution p(j) from the semiclassical

matrix elements of the initial state by a summation over m. Multiplying it with j

and integrating over j with the approximation j + 1/2 ≈ j for large j leads to

〈j〉0 ≈
1

Z ′

∫ ∞
0

j2e−~
2j2/(2IkBT ) =

√
πIkBT

2~2
. (4.24)

The expectation value of the total angular momentum quantum number increases

with the square root of the temperature T and the moment of inertia I as is consis-

tent with ~2j2
0/2I ∝ kBT

4.1.2. Free Fall

After the trapping laser is turned off, the center of mass of the particle drops in the

gravitational field along the tweezer axis while the orientation of the particle evolves

freely. This quickly leads to a dispersion of the initially tightly aligned orientational

wave packet, a delocalization of the state. In addition to this unitary process, we

have to consider orientational decoherence processes which can suppress the revivals.

In a first step, we examine the dispersion and later we discuss decoherence effects.

Unitary Time Evolution

Considering only the unitary (decoherence-free) time evolution the matrix elements

of the time dependent state operator read in the angular momentum representation

〈jm|ρu(t)|j′m′〉 =
∑
j,j′∈N0

j∑
m=−j

j′∑
m′=−j′

〈jm|ρ0|j′m′〉

× exp

[
− i~

2I
[j(j + 1)− j′(j′ + 1)]t

]
,

(4.25)

where the subscript u denotes the unitary time evolution. With this state operator

we can calculate the decoherence-free time evolution of the alignment 〈cos2 β〉u =

tr[ρu(t) cos2 β].

The dispersion of the initial state leads to a rapid decay of alignment. This

dispersion timescale determines also the length of the time period in which the

revival occurs and thus the required accuracy for the measurement of the alignment.

We can estimate this timescale by calculating the time dependence of the classical

alignment of a Gaussian initial state in a flat configuration space. The classical
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4. Orientational Quantum Revivals of Nanoscale Particles

initial state g(β, pβ) in a potential V = −V0 cos2 β is given by

g(β, pβ) =
1

N
sin β exp

(
−

p2
β

2IkBT
+ V0

cos2 β

kBT

)
, (4.26)

with a normalization constantN . In a flat configuration space the free time evolution

leads to a simple shearing in the angle β(t) = β0 + pβt/I, known also from the free

center of mass time evolution. With this approximation one obtains

〈cos2 β〉u ≈
∫ β

0

dβ

∫ ∞
−∞

dpβ cos2
(
β +

pβ
I
t
)
g(β, pβ)

= 〈cos2 β〉0e−κ
2t2 +

1

2

(
1− e−κ2t

) (4.27)

with the dispersion timescale κ =
√

2kBT/I. This shows that the higher the temper-

ature the faster the alignment decreases. Remembering that the expectation value

of the angular momentum increases with the temperature T for a given moment of

inertia I we see that a higher number of occupied angular momentum states j leads

to faster decay of the alignment.

Further, (4.27) shows that the alignment decays to a value of 〈cos2 β〉 = 1/2. For

the classical rotational dynamics it stays there for the rest of the time. In contrast

to that, a quantum state stays there for most of the time but at integer multiples of

the revival time Trev the value of the initial state alignment (4.21) recurs as follows

from equation (4.25).

If we had a uniform distribution of the orientation over the whole surface of a

sphere one would expect a substantially lower alignment of 〈cos2 β〉 =
∫ 2π

0
dα
∫ π

0
dβ

sin β cos2 β/(4π) = 1/3. So why does the dispersion of our initial state not lead to an

equally distributed state? In the classical approximation (4.27) we assumed shearing

in the polar angle β. This shearing of β leads to a state uniformly distributed on

the corresponding great circle. The alignment for such a state is 1/2 and after

averaging it over all azimuth angles α it remains at this value. This is still valid

for the quantum description. For initial states with increasingly high values of the

quantum number m we observe a decreasing of the constant alignment between

two revivals from a value of around 1/2 to values of 1/3. Thus, a high angular

momentum in e3-direction leads to a state uniformly distributed on the surface of a

sphere due to dispersion.

Decoherence

Having discussed the free unitary rotational dynamics of the rotor, let us now ex-

amine the effect of environmental decoherence [41, 42] on the rotor’s orientational
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4.1. The Revival Scheme

dynamics. The dominant sources of decoherence are collisions with residual gas par-

ticles and thermal emission of photons, as already discussed for other matter wave

experiments [13,14,67,74,75].

In section 3.2 I discussed the Markovian orientational decoherence master equa-

tion and below, in section 6.3.2, I solve this master equation numerically. For the

present purpose it suffices to obtain a short estimate of the effect of environmental

decoherence on the revival signal. I therefore make a very conservative assumption

that a single decoherence event, for example a single collision with a gas particle,

completely destroys the revival signal by producing a uniformly distributed state ρi

on the surface of a sphere with 〈α, β|ρi|α, β〉 = 1
4π

. In this case the dynamics of the

orientational state can be described by the master equation

∂tρ = − i
~

[H0, ρ] + Γ(ρi − ρ), (4.28)

with the free Hamiltonian (2.28) and the rate of decoherence events Γ. This equation

is solved by ρ(t) = ρu(t) exp(−Γt) + ρi[1 − exp(−Γt)], with ρu(t) the evolved state

operator (4.25) without decoherence. From this follows the alignment

〈cos2 β〉t = 〈cos2 β〉ue−Γt +
1

3

(
1− e−Γt

)
(4.29)

with 〈cos2 β〉u = tr(ρu(t) cos2 β). The decoherence leads to a decay of the alignment

to a value of 1/3, in accordance to a uniform distribution over the spherical surface.

This means that the alignment between the revivals decreases but we also see a

decay of the revival signal until the revivals are fully destroyed after a characteristic

time, determined by the rate Γ.

If environmental decoherence is included we have three important time scales in

the quantum mechanical rotational dynamics. On the timescale 1/κ the dispersion

leads to a rapid decay of the alignment to a value of 1/2, see Eq. (4.27), after

the much longer revival time Trev the collective interference of the orientational

states lead to a brief reappearance of the initial alignment and on the timescale of

decoherence 1/Γ we observe a decay of the revival signal and the alignment between

the revivals to the value 1/3.

In the classical rotational dynamics the collisions with residual gas particles lead

to a decay of the alignment from 1/2 to 1/3 as in the quantum mechanical case. In

this case there are two significant time scales, 1/κ and 1/Γ.
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4. Orientational Quantum Revivals of Nanoscale Particles

Figure 4.2.: Illustration of the unit vectors discussed in the main text. The light of
the probe laser with propagation direction n and polarization vector εn
is scattered at a dielectric rod with symmetry axis m(Ω). The scattered
field propagates in direction n′ with polarization vector εn′ .

4.1.3. Measuring the Alignment

We have seen how the orientational state of the rotor evolves during the free fall

and particularly we discussed the alignment dynamics. But how can one measure

the alignment in an experiment?

One can observe the alignment of a dielectric linear rotor at a certain time by il-

luminating it with a plane laser wave pulse of nanoseconds duration, and collecting

the scattered light, as demonstrated in Ref. [25]. The dielectric nanorod is charac-

terized by an anisotropic suszeptibility tensor χ0 = diag(χ⊥, χ⊥, χ‖) and thus, the

intensity of the scattered light depends on the angle between the symmetry axis of

the rotor and the polarization of the probe beam. Thus, we choose a plane running

laser wave E(r) = E0e
ikn·rεn with direction of propagation n = e2 and polarization

direction εn = e3 ⊥ n. Here, the polarization direction is in the same direction as

the trapping laser polarization, so that the measured alignment is comparable to

the initial alignment. We calculate the scattered field Esc(r) in the limit of a small

particle in comparison to the laser wavelength. In this approximation the light wave

cannot resolve the shape of the particle and the field is approximately constant

inside of the particle, so that the internal polarization field u(Ω) has the same posi-
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tion dependence as the laser field [76]. This approximation is called Rayleigh-Gans

approximation. With this the scattered field Esc(r) reads [76]

Esc(r) = −E0

V k2χ‖
4π

eikr

r
n′ × (n′ × u(Ω)) (4.30)

with r = rn′, the wave number k, the volume of the rod V = `πd2/4. For a thin

rod with a suszeptibility tensor χ(Ω) = R(Ω)diag(χ⊥, χ⊥, χ‖)R
T (Ω) the internal

polarization field is given by

u(Ω) =
χ⊥
χ‖

e3 +
∆χ

χ‖
[m(Ω) · e3]m(Ω) (4.31)

with an anisotropy in the suszeptibility ∆χ and the symmetry axis m(Ω) = R(Ω)e3

of the nanorod. From the scattered field (4.30) follows the intensity I(rn′) of the

scattered light

I(rn′) =
cε0

2

(
V k2E0χ‖

4πr

)2

|n′ × u(Ω)|2. (4.32)

Integrating the intensity over the whole sphere yields the power of the total scattered

light. For the integration I parametrize

n′ = cos θm(Ω) + α sin θ cosφ+ β sin θ sinφ (4.33)

with

α = m(Ω)× e3/|m(Ω)× e3|, (4.34a)

β = m(Ω)×α. (4.34b)

With this we obtain

P (r; Ω) =
cε0

2

(
V k2E0χ‖

4

)2 ∫ 2π

0

dφ

∫ π

0

dθ sin θ

(
2

∆χχ⊥
χ2
‖

+
∆χ2

χ2
‖

)

× (m(Ω) · e3)2 +
χ2
⊥
χ2
‖
−
[
cos θ

(
χ⊥
χ‖

+
∆χ

χ‖

)
m(Ω) · e3

− sin θ cosφ
χ⊥
χ‖
|m(Ω)× e3|

]2

.

(4.35)
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Carrying out the integrations yields

P (r; Ω) =
4πcε0

3

(
V k2E0χ‖

4

)2
[
χ2
⊥
χ2
‖

+

(
2

∆χχ⊥
χ2
‖

+
∆χ2

χ2
‖

)
[m(Ω) · e3]2

]
. (4.36)

We see that the resulting power is directly connected and in the limit χ⊥ � χ‖ even

proportional to [m(Ω) · e3]2 = cos2 β. Repeating the measurement a hundreds of

times for different points in time give us a statistical distribution of the alignment

〈cos2 β〉 for these points in time.

Note that the illumination of the dielectric particle leads to complete decoherence

of the orientational state. So one can only measure the alignment once before it is

trapped and cooled again.

4.1.4. Recapture

To get the alignment signal one has to repeat the measurement of the alignment at

the same time after turning off the trapping laser. The moment of inertia of a rod

I = π%r2`3/12 (with π%r2` = M) depends on the second power of the radius r of the

rod and the third power of rod’s length `. Thus, a slight deviation in length or radius

leads to high variation in the revival time Trev = 2πI~. To prevent this variations

in the revival time I suggest to recycle the particle for the repeating measurements.

After the alignment measurement the rotor is recaptured by switching on the

trapping laser when the particle traverses an antinode of the resulting standing laser

wave, so that it is captured in the laser potential. One can estimate the necessary

laser power by estimating the kinetic energy of the falling particle directly after the

revival.

We start with the momentum distribution f0(px) = exp (−p2
x/2mkBT ) /Z of the

initial state at x = x0, with the mass m and translational temperature T . Then

the x-depending momentum distribution of the nanorotor after a falling distance of

s = x− x0 reads

f(px, x) =
1

Z
e
−
[
p−
√

2(x−x0)gm
]2
/(2mkBT )

. (4.37)

With the recapture condition Ekin + V (x) < 0 we obtain the limits of the allowed

momenta p
min/max
x (x;P ) = ±

√
2mV (x;P ), depending on the position x and the

laser power P . For a conservative estimation of the probability of recapture we

insert the minimum polarizability α = α⊥ in the optical x-depending potential

V (x;P ) = −4Pα⊥ cos2(kx)/πε0cw
2
0. By integrating the momentum distribution
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(4.37) over all allowed momenta we obtain the recapture probability

W (x;P ) =

∫ pmax
x (x;P )

pmin
x (x;P )

dpx f(px;x). (4.38)

4.2. Implementation with Nanorotors

In the following, I discuss the proposed scheme using the example of two different

nanoparticles. As we have seen in the discussion of the revival scheme, certain re-

quirements on material and dimension of the particle must be met. For the initial

trapping in an optical tweezer, the recapture, and the measurement of the alignment

with a running plane laser wave we need a dielectric particle with an anisotropic

polarizability. Further, we need a sufficiently stiff material, so that we can neglect

vibrational effects by treating the particle as a rigid rotor and to avoid deforma-

tions during the recapture process. The mass and the dimensions of the particle

are limited by the falling hight and the kinetic energy at times greater than the

revival time. To demonstrate the viability of the scheme I discuss the experimental

realization for semiconducting double-walled carbon nanotubes on the one hand and

silicon nanorods on the other hand.

4.2.1. Silicon Nanorods and Double-Walled Carbon Nanotubes

A double-walled carbon nanotube (DWCNT) with a length of ` = 50 nm, an outer

diameter of 1.5 nm and an inner diameter of 1.1 nm has a mass of M = 1.9×105 amu.

From this follows a revival time of Trev = 3.8 ms. During this time the particle falls

over 72µm.

The anisotropy in the polarizability ∆α can be taken from [77] and depends on

the type of the carbon nanotube. Here, I assume zigzag carbon nanotubes of the

type (19,0) for the outer tube and (14,0) for the inner tube with ∆α = 3, 7 ×
10−35 A2s4/kg.

A silicon nanorod of length ` = 50 nm can be fabricated with a diameter of

d = 5 nm and has then a mass of M = 1.4×106 amu. The revival time is Trev = 28 ms

and it falls about 4 mm until the first revival.

Initial state

The nanorotor is initially trapped in an optical tweezer with a laser waist of w =

30µm and a laser power of P = 5 W. To prepare a tightly aligned initial state,

see the initial alignment in figure 4.4 for the DWCNT and figure 4.6 for silicon

nanorods, one has to reach subkelvin temperatures. In our scenario a temperature
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of T = 100 µK implies that only the ground state is occupied. There are several

works which show that feedback [25] or cavity cooling [30] of the rotational motion

to subkelvin temperatures is feasible.

Environmental Orientational Decoherence

As discussed before, I expect two dominant sources of decoherence, the thermal

emission of photons and scattering with residual gas particles. The total rate of

decoherence events Γ = Γth + Γgas is the sum of the rate Γth of thermal emissions of

photons and the collision rate Γgas for collisions with residual gas particles.

There are several processes we have to consider when we think about thermal

emission of photons. They are discussed in Ref. [14] and I will briefly summarize

them in the following. The emission rate of photons with frequency ω increases

with the internal temperature Tint and depends on a material specific absorption

cross-section σabs(ω) [14].

γem(ω) =
( ω
πc

)2

σabs(ω) exp

(
− ~ω
kBTint

)
. (4.39)

Integrating this spectral rate over all frequencies yields the total emission rate

Γth(Tint) =
∫∞

0
dω γth(ω, Tint). The internal temperature of the particle increases

due to absorption of photons and decreases due to emission.

In Ref. [14] it is demonstrated that the trapping laser with a wavelength of λ =

1.55µm leads to a linear heating of a silicon nanoparticle but once the trapping

laser is turned off the internal temperature remains almost constant and we do not

expect relevant decoherence effects due to thermal emission of photons.

For semiconducting carbon nanotubes excitonic excitations play no role for wave-

lengths well above 2.5µm [78], while the position and width of vibrational excita-

tions depend on the exact structure of the carbon nanotube [79]. Thus, the optimal

trapping wavelength for the nanorotor used in the experiment which minimizes the

heating of the DWCNT and with this the decoherence due to thermal emission can

be determined experimentally. Thermal emissions of photons can be neglected for

carbon nanotubes at room temperature. I propose to use an infrared laser with a

wavelength between the vibrational excitations to minimize heating of the carbon

nanotube. For my simulations I can then neglect the emission of thermal photons

because there will always be a wavelength for which it is negligible in comparison

to the decoherence process due to collisions with residual gas particles.

To estimate the collision rate Γgas of a cylindrical particle with a length ` and an

effective diameter deff in a gas with atoms of mass mg, pressure pg and temperature

Tg we integrate the particle flux into the surface of the rotors shape. The average
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particle flux is obtained by integrating the number of atoms hitting an area dA in

a time interval dt with velocity v and angle θ to the normal vector on the surface

over the velocity distribution, the Maxwell-Boltzmann distribution f(v) [80]

J =

∫ ∞
0

dv v2

∫ π/2

0

dθ sin θ

∫ 2π

0

dφ v cos θf(v) =
pg√

2πkBTgmg

. (4.40)

Multiplying the average flux with the surface of the rod yields

Γgas =
πpg`deff√
2πkBTgmg

(
1 +

deff

2`

)
. (4.41)

Recapture

To estimate the laser power of the trapping lasers for a sufficient high recapture

probability of the DWCNTs we assume a trapping laser wavelength of λ = 20µm

and a falling distance of the rotor of around scap = 80µm > srev = 72µm. Assuming

that the trapping laser is turned on in the perfect moment when the nanorotor

traverses the potential minimum near 100 percentage for laser powers above P = 25

mW (see Fig. 4.3 (a)). But since it is impossible to hit this exact time we further

examine in Fig. 4.3 (b) the probability as a function of the falling distance and

the distance to the potential minimum at x = 80µm. We see that the probability

decreases with increasing distance to the minimum and vanishes around the nodes

of the standing wave. For a laser power of 50 mW there is a range of δx = ±2.5µm

around the potential minimum for a successful recapture of the particle while this

range for a laser power of 100 mW is δx = ±3.5µm. The particle needs 12.6µs for

the 5µm distance and 17.6µs for the distance of 7µm, which give us as an estimation

for the required precision in time for switching on the trapping laser.

4.2.2. Numerical Results

In a first step, we examine the alignment without including decoherence effects. In

this case the initial alignment drops sharply to a value of 〈cos2 β〉 = 1/2 and recurs

perfectly a the revival time Trev, as it is shown in figure 4.4 (a). At one half of the

revival time the particle is briefly located in the equatorial plane and thus we see

a minimum of the alignment. Figure 4.4 (b) shows for three different temperatures

the rapid decay of the initial alignment and the time around the first half revival and

around the first revival. The initial states with temperatures of 100µK and 1 mK

are calculated by exact numerical diagonalization. Since this is no longer feasible

for a temperature of 1 K I use the semiclassical matrix elements (4.18) calculated

with Bohr-Sommerfeld quantized action-angle variables.
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a) b)

Figure 4.3.: a)Probability of recapture in dependence of the laser power P , assuming
that the trapping lasers are turned on exactly in the moment the particle
traverses the minimum of the b) Recapture probability for a fixed laser
power P = 50 mW (blue line) and P = 100 mW (orange line) as a
function of the falling distance and with this the location in the optical
potential. In the minimum of the potential the probability is the highest
and vanishes at the nodes of the standing laser wave.

The librational temperature affects the initial alignment but it affects the disper-

sion timescale even more. Although the initial alignment of the 100 µK and the

1 mK case is hard to distinguish we see a big difference as time progresses. The

temperature is not the limiting factor for an experimental realization because of the

decreasing initial alignment with increasing temperatures but because of the much

faster dispersion process. This fast dispersion means that one has to measure the

alignment very precisely in time.

Figure 4.5 shows the numerically calculated alignment signal for the carbon nan-

otubes as a function of time delay after the release of the trap. Here, the alignment

signal is shown for an initial state with a temperature of T = 100 µK over a time

of 60Trev, including environmental decoherence due to collision with residual gas

particles with a gas pressure of pg = 5 × 10−9 mbar. Assuming nitrogen molecules

and room temperature T = 300 K for the surrounding gas this leads to a time scale

1/Γ ≈ 145 ms of alignment decay from 1/2 to 1/3. Further, the decoherence de-

stroys the interference effects, the reapperence of the initial state at integer multiples

of the revival time and the brief local minima of the alignment at half integers of

the revival time. Both values approach also the value of 1/3 with increasing time.

In comparison we see in figure 4.6 the expected alignment signal for the silicon

nanorods as function of time delay after the release. Due to the longer revival time

Trev = 28 ms we have to reduce the gas pressure to a value of pg = 5 × 10−10mbar

to observe multiple revivals.
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Figure 4.4.: a)Orientational alignment signal 〈cos2 β〉 (blue solid line) for double-
walled carbon nanotubes with a length of ` = 50 nm and mass of M =
1.9 × 105 amu at a temperature of 100 µK as a function of time. The
initial state is tightly aligned and decays rapidly to a value of 1/2 with
rate κ, where it remains most of the time. But at integer multiples of
the revival time Trev = 3.8 ms the initial alignment reappears and it has
a minimum at half integer multiples of Trev. b) Initial alignment decay,
half revival and first revival for three different temperatures.

4.3. Conclusion

I presented an experimentally viable scheme to observe orientational quantum re-

vivals of nanoscale particles and to testify orientational superpositions of quantum

rotors. The scheme needs no diffraction grating and is realizable with state-of-the

art and upcoming techniques.

The orientational revivals are an effect of the free time evolution. Further ques-

tions are how external potentials affect the revival signal. I discuss this in the next

chapters.
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Figure 4.5.: Orientational alignment signal 〈cos2 β〉 in for double-walled carbon
nanontubes with a length of ` = 50 nm and mass of M = 1.9 × 105

amu at a temperature of 100 µK as a function of time. The surround-
ing gas has a pressure of pg = 5 × 10−9mbar. Most of the time the
signal is indistinguishable from the classical behaviour (red dashed line)
where the alignment decays from 1/2 to 1/3 with the rate Γ, but at
integer multiples of the revival time Trev = 3.8 ms the initial alignment
reappears and it has a minimum at half integer multiples of Trev.

Figure 4.6.: Orientational alignment signal 〈cos2 β〉 (blue solid line) for silicon
nanorods with a length of ` = 50 nm, a diameter of d = 5 nm, and
mass of M = 1.6×106 amu at a temperature of 100 µK as a function of
time. The surrounding gas has a pressure of pg = 5× 10−10mbar. The
initial state is tightly aligned and decays rapidly to a value of 1/2 with
rate κ. Then the mean alignment decays from 1/2 to 1/3 with the rate
Γ where it stays the most of the time. However, at integer multiples
of the revival time Trev = 28 ms the initial alignment reappears and at
half integer multiples of Trev it reaches a local minimum.
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5. Rotation Dynamics in the

Presence of a Static Potential

In the previous chapter, I discussed quantum revivals of the free rotation dynamics

and how the interaction with the environment affects these quantum effects. Here, I

focus on a new aspect and discuss the rotational quantum dynamics in the presence

of an external torque. The torque has a strong influence on the quantum rotation

dynamics and in particular the revival signal is sensitive to the torque. This may

open the door for quantum enhanced torque sensing applications.

The external torque can be expected to have the highest influence on the revival

signal, when it acts orthogonal to the polarization e3 of the trapping laser of the

initial state. Therefore, I assume a Hamiltonian of the form

H =
J2

2I
−N0[m(Ω) · e1]2 (5.1)

=
J2

2I
−N0 cos2 α sin2 β, (5.2)

with the symmetry axis of the rotor m(Ω).

Since the Hamiltonian (5.1) is no longer diagonal in the angular momentum rep-

resentation, the numerical calculation of the time evolution is much more compu-

tationally intensive than for the free time evolution. Analogously to the numerical

implementation of the initial thermalized state in 4.1.1 we can diagonalize the Hamil-

tonian in the angular momentum representation to obtain the eigenvalues En and

corresponding eigenstates |φn〉 in the angular momentum eigenbasis. This leads to

U =
∑
n

e−iEnt/~
∑
jm

∑
j′m′

a
(n)
jma

∗(n)
j′m′ |jm〉〈j

′m′|. (5.3)

Depending on the required cut-off value jmax it may be possible to carry out the

numerical diagonalization of the Hamiltonian in a reasonable time and to store the

eigenvectors temporarily. However, when combining the time evolution operator
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5. Rotation Dynamics in the Presence of a Static Potential

(5.3) and the initial state (4.12) one obtains

ρ(t) =
∑
n

∑
n′

∑
N

e−i(En−En′ )t/~e−EN/(kbT )
∑
j∈N0

j∑
m=−j

∑
j′∈N0

∑
J∈N0

min(j′,J)∑
m′=−min(j′,J)

∑
J ′∈N0

J ′∑
M ′=−J ′

× a(n)
jma

∗(n)
j′m′c

(N)
j′m′c

∗(N)
Jm′ a

(n′)
Jm′a

∗(n′)
J ′M ′ |jm〉〈J

′M ′|.
(5.4)

A lot of summations have to be carried out numerically and in particular the sum-

mations over the quantum numbers j and m make the numerical calculation highly

unattractive for large jmax, since the calculation time increases as j7
max.

Instead of decomposing the Hamiltonian spectrally, we also could use matrix

multiplication. But this method comes even earlier to its limits because of the

large number of matrix elements and the finite size of the main memory. So, we

need other methods than exact numerical calculations.

The difficulties here lie in sufficiently simplifying the calculation while preserving

the crucial quantum properties of the rotational dynamics. In the following, we will

see that here the rotational quantum dynamics can be based on the semiclassical

WKB method [62] for planar rotations and later the EBK method [63] for linear

rotations. In the end of this chapter, I use perturbation theory to discuss the effect

of an external torque on the quantum revivals for the set up in chapter 4 with the

double-walled carbon nanotube.

5.1. Semiclassical Approximations

In the following I apply the WKB method (see section 2.4.2) to calculate the time

evolution of planar rotors in the presence of an external torque. After that, it is

discussed to what extend the EBK method (see section 2.4.3) can be used to examine

the effect of an external torque on the quantum rotational dynamics of a linear rigid

rotor.

5.1.1. Planar Rigid Rotor: WKB Approximation

For the discussion of the planar rotational dynamics of a rotor with moment of

inertia I I start with an initial state of the form

ψ0(α) =
1

N
exp

(
cos2 α

2σ2
α

)
eiαm0 , (5.5)

with the mean angular momentum m0. The initial state is well-localized at α = 0

and α = π with the angular spread σα.

62



5.1. Semiclassical Approximations

The external potential V (α) = −N0 sin2 α exhibits its minima at α = π/2 and

α = 3π/2. The Schrödinger equation then reads

~2 dψEm(α)

dα2
+ p2

α(α)ψEm(α) = 0, (5.6)

with pα(α) =
√

2I
[
Em +N0 sin2 α

]
. According to (2.55) the WKB eigenstates

ψEm(α) corresponding to the eigenenergies Em are

ψEm(α) ∝ 1

4

√
2I
[
Em +N0 sin2 α

] exp

(
± i
~
√

2IEmE(α,−N0/Em)

)
, (5.7)

with the incomplete elliptic integral of the second kind E(., .).

The wave function of a planar rotor has to be 2π-periodic, ψEm(α+2πm) = ψEm(α)

with m ∈ Z. This boundary condition leads to a quantization relation for the

eigenenergies

√
2IEm
~

4E(−N0/Em) = 2πm, (5.8)

with E(.) the complete elliptical integral of the second kind. We see here that

the periodicity condition of the WKB eigenstates leads to the Bohr-Sommerfeld

quantization rule of the action [62]. The complete elliptical integral of the second

kind can only be inverted numerically. So there is no exact analytical expression

for the semiclassical eigenenergies, but we can find an approximated solution. For

the following calculation I use the dimensionless quantities Ẽm = 2IEm/~2 and

Ñ0 = 2IN0/~2. Further, I assume that the potential depth N0 is small in compari-

son to the eigenenergies Em (high energy approximation) and expand the function

E(−N0/Em) for small arguments. With this I obtain a first approximation for the

energy eigenvalues

Ẽ(0)
m = −1

4
Ñ0 +

1

2
m2 +

1

2
m

√
m2 − Ñ0. (5.9)

This analytical expression is a first approach for the eigenenergies. To obtain a better

approximation one may use Newton’s method to solve equation (5.8) by finding the

roots of the function

f(Ẽm) = 4

√
ẼmE

(
− Ñ0

Ẽm

)
− 2πm. (5.10)

It turns out that it is sufficient for our purpose to carry out only the first step of
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5. Rotation Dynamics in the Presence of a Static Potential

Newton’s method

Ẽ(1)
m =Ẽ(0)

m −
f ′(Ẽ

(0)
m )

f(Ẽ
(0)
m )

=Ẽ(0)
m −

2Ẽ
(0)
m E(−Ñ0/Ẽ

(0)
m )−

√
Ẽ

(0)
m mπ

K(−Ñ0/Ẽ
(0)
m )

,

(5.11)

with the starting point Ẽ
(0)
m given in (5.9) and K(.) the complete elliptic integral of

the first kind.

Using the approximated eigenenergies (5.11) and eigenstates (5.7) the time evo-

lution of the alignment 〈cos2 α〉 reads

〈cos2 α〉t =
∑
m∈Z

∑
m′∈Z

〈ψEm|ψ0〉〈ψ0|ψEm′ 〉e
−i(Em−Em′ )t/~

×
∫ 2π

0

dα 〈α|ψEm〉〈ψEm′ |α〉 cos2 α.

(5.12)

The α-integration can only be carried out numerically. For an analytical approxi-

mation I assume again that the eigenenergies Em � N0 are much greater than the

potential depth N0. In this limit we can expand the forth root in the demoninator

and the incomplete ellipitic integral in expression becomes (5.7)

1
4
√

2I(Em +N0 sin2 α)
≈ 1

4
√

2IEm

(
1− N0

4Em
sin2 α

)
, (5.13a)

E

(
α,−N0

Em

)
≈ α +

N0

Em

α

4
. (5.13b)

With this approximation follow the approximated eigenstates

ψEm(α) = C
1

4
√

2IEm

(
1− N0

4Em
sin2 α

)
exp

[
i
√

2IEm

(
α + α

N0

4Em

)
/~
]
, (5.14)
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5.1. Semiclassical Approximations

a) b)

Figure 5.1.: Alignment signal of a planar rotor with the initial state 〈m|ψ〉 ∝
exp [−(m−m0)2/(2σ2

m)] centered around m0 = 300 with a width of
σm = 5. The numerically exact signal (black) is compared to (5.12) as
obtained with WKB approximated eigenstates (5.14) and eigenvalues
(5.11) (blue). For the red graphs I use WKB approximated eigenvalues
and in addition approximate the time evolution operator as diagonal in
the m basis. In a) we see the alignment signal as a function of integer
multiples of the revival time for a fixed value of Ñ0 = 5000 and in b)
the alignment signal at the fifth revival as a function of the torque Ñ0.

with the normalization constant C. With this the α integration leads to∫ 2π

0

dα 〈α|ψEm〉〈ψEm′ |α〉 cos2 α

= C2
(
1− ei2πA

) [ i
2

(
1

A
+

1

2

1

A+ 2
+

1

2

1

A− 2

)
− i

32

(
N0

Em
+

N0

Em′

)
×
(

1

A
+

1

2

1

A+ 4
+

1

2

1

A− 4

)
+

i

64

N2
0

EmEm′

×
(

1

4

1

A− 6
− 1

2

1

A− 4
− 1

2

1

A+ 4
− 1

4

1

A+ 2
− 1

4

1

A− 2
+

1

A
+

1

4

1

A+ 6

)]
,

(5.15)

with

A =

[√
2IEm

(
1 +

N0

4Em

)
−
√

2IEm′

(
1 +

N0

4Em′

)]
/~. (5.16)

We could even go one step further in approximating the eigenstates of the Hamilto-

nian by simply using the eigenstates of the potential-free Hamiltonian. The Hamil-

tonian is then diagonal in m which leads to a strongly simplified calculation.

Figure 5.1 shows that this quite strong approximation is permissible. We see

almost no difference between the graphs calculated with WKB eigenstates and the

ones with the eigenstates of the free Hamiltonian. The effect of the external torque
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5. Rotation Dynamics in the Presence of a Static Potential

on the revival signal is mainly determined by the difference in the energy eigenvalues.

To discuss the influence of the external torque on the revival signal, I examine the

alignment signal for increasing integer multiples of the revival time and the revival

signal at the fifth revival as a function of the torque N0 (see Fig. 5.1).

The state of a freely revolving particle reappears at multiple integers of the revival

time, whereas we see high influence of the potential to this behaviour. The external

torque leads to a decreasing of the revival signal for the first integer multiples of the

revival time. However, at a certain integer multiple of the revival time the alignment

signal goes through a local minimum and increases after that followed by a periodic

de- and increasing of the alignment signal.

We can observe a similar behaviour for the alignment signal as a function of the

external torque. Here, at first the alignment signal decreases with increasing torque,

but then it increases again.

5.1.2. Linear Rigid Rotor: EBK Approximation

After we have seen how to describe the quantum rotation dynamics of a planar

rotor semiclassically we apply a similar method for the linear rigid rotor in the

presence of an external torque. In the introductory part of this chapter we have

seen how strongly the potential and especially the dependence on both, the polar

and the azimuthal angle complicates the calculation of the rotational dynamics.

Therefore I rotate the coordinate system such that now the trapping laser polar-

ization points along the space-fixed e1- axis. This results in a thermal initial state

ρ = exp[−H/(kBT )] with the Hamiltonian

H =
J2

2I
− V0[e1 ·m(Ω)]2

=
J2

2I
− V0 cos2 α sin2 β.

(5.17)

The torque perpendicular to the trapping laser polarization is then given by N(Ω) =

N0[e3·m(Ω)]2. Thus, the Hamiltonian Ht for the time after switching off the trapping

laser reads

Ht =
J2

2I
−N0[e3 ·m(Ω)]2

=
J2

2I
−N0 cos2 β.

(5.18)

Now the torque depends only on the polar angle β and the time evolution operator is

then diagonal in the quantum number m. This simplifies the calculation of the time

evolution. But note that the initial state characterized by the Hamiltonian (5.17)
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5.1. Semiclassical Approximations

is no longer diagonal in m and the alignment 〈cos2 α sin2 β〉 is more complicated to

calculate.

For the discussion of rotational dynamics of a linear rigid rotor we may use the

insights gained from the treatment of the planar rotor. In particular, we focus on

the semiclassical calculation of the energy eigenvalues and approximate right from

the start the Hamiltonian (5.18) to be diagonal in j and m. Since we have to degrees

of freedom, the angles α and β, I use the EBK approximation [63] for the calculation

of the energy eigenvalues .

The classical Lagrangian reads

L(α, β, α̇, β̇) =
I

2

(
α̇2 sin2 β + β̇

)
+N0 cos2 β. (5.19)

Identifying the canonical momenta pα = Iα̇ sin2 β and pβ = Iβ̇ we obtain the

classical Hamiltonian function corresponding to (5.18)

H(α, β, pα, pβ) =
1

2I

(
p2
α

sin2 β
+ p2

β

)
−N0 cos2 β. (5.20)

The canonical momentum pα and the total energy E = H(α, β, pα, pβ) are indepen-

dent constants of motion and so the system is integrable. From the quantization of

the action Iα = ~m for the α-motion follows

Iα =
1

2π

∮
dα pα =

1

2π

∫ 2π

0

pα = pα = ~m. (5.21)

When we look at the β-motion, we see that the particle evolves in an effective

pα-dependent potential

Veff(β) =
p2
α

2I sin2 β
−N0 cos2 β. (5.22)

This potential diverges for β = 0 and β = π and so the β motion has two turning

points βmin and βmax. At the turning points we have β̇ = 0 yielding the equation

2I(E +N0 cos2 βmin,max) sin2 βmin,max − p2
α = 0. (5.23)

From this follow the turning points expressed in terms of the constants of motion

βmin(E, pα) = arccos

1

2
− E

2N0

+

√(
1

2
− E

2N0

)2

+
E

N0

− p2
α

2IN0

 , (5.24a)

βmax(E, pα) =π − βmin(E, pα). (5.24b)
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5. Rotation Dynamics in the Presence of a Static Potential

We have to consider these turning points for the quantization of the action Iβ =

~(n+ 1/2) by adding a Maslov index of 1/4 for each of them and get

Iβ =
1

π

∫ βmax(E,pα)

βmin(E,pα)

dβ

√
2I(E +N0 cos2 β)− ~2m2

sin2 β
= ~(n+ 1/2). (5.25)

As discussed in section 2.4.3 we replace n = j − |m|. Equation (5.25) implies

a relation for the energy eigenvalues. We can find these energy eigenvalues Ejm

corresponding to the quantum numbers j and m again by calculating the root of

the function

f(Ejm) =
1

π

∫ βmax(Ejm,pα)

βmin(Ejm,pα)

dβ

(√
2I(Ejm +N0 cos2 β)− ~2m2

sin2 β

)
− ~(j − |m|+ 1/2) = 0

(5.26)

for each j and m by Newton’s method. In contrast to the planar rotor, it is not

sufficient to carry out only the first iteration step, so that the energy eigenvalues

must be calculated numerically.

When we approximate the energy eigenvalues of the free Hamiltonian (N0 = 0)

in this way we obtain Ej = ~2(j + 1/2)2/(2I). For large j the difference between

(j + 1/2)2 and j(j + 1) might seem negligible but looking at the revivals it makes a

crucial difference because the semiclassical eigenvalues are no longer integer multiples

of ~2/(2I) and one wouldn’t observe revivals in simulations using these eigenvalues.

Thus, we subtract a value of 1/4 from eigenvalues resulting from equation (5.26).

We can now apply the EBK approximation of the eigenvalues and the assumption

of the time evolution operator to be diagonal in the angular momentum basis to

examine the effect of an external torque onto the revival signal and compare it to

exact numerical results, see Fig. 5.2. As an initial state I use a thermal state

ρ = exp(−V0 sin2 α cos2 β) which can be diagonalized numerically. We see that an

increasing external torque N0 leads to a decrease of the revival signal.

The approximation shows the same behaviour of the alignment signal as the exact

calculations but deviates more from the exact result than we have seen for the

WKB approximations for planar rotors. Additionally, we are limited to initial states

which can be diagonalized numerically because we do not know a suitable method

to approximate thermal states depending on the azimuthal angle α and the polar

angle β. Thus, in the next section we examine an alternative method to consider

external torques.
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5.2. Perturbation Theory

Figure 5.2.: Alignment signal at the second revival as a function of the torque N0 of
a linear rotor with the thermal initial state ρ ∝ exp(−V0 cos2 α sin2 β)
with V0 = 1.8 × 105 2I/~2 and I = 10−43 kgm2. The numerically ex-
act signal (blue) is compared to the one (red) obtained by using EBK
eigenvalues and approximating the time evolution operator as diagonal
in the angular momentum basis |jm〉.

5.2. Perturbation Theory

In section 5.1.2 we have chosen an potential depending on the Euler angles α and

β for the preparation of the initial state and a β-dependent torque during the time

evolution. Since the dependence on α leads to difficulties in the exact numerical

calculation and also in the approximation of the initial state, we now choose a β-

dependent potential for the initial state as in chapter 4 and the Hamiltonian 5.1 for

the time evolution after the release of the trapping potential.

Next to semiclassical methods the perturbation theory is a very common method

to describe the time evolution approximately. Here, we assume that the orienta-

tion dependent potential N(α, β) = −N0 cos2 α sin2 β is only weak compared to the

kinetic energy Erot = 〈J2/2I〉 of the particle. Thus, we can write the complete

Hamiltonian (5.1) of the system,

H = H(0) + λÑ, (5.27)

in terms of the unperturbated Hamiltonian H(0) and the small parameter λ =

N0/Erot and the potential Ñ = −Erot cos2 α sin2 β. If the perturbation is sufficiently
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5. Rotation Dynamics in the Presence of a Static Potential

small the energy eigenvalues En and the corresponding eigenstate |n〉 can be written

as a power series in the small parameter λ

En = E(0)
n + λE(1)

n + λ2E(2)
n + .... (5.28a)

|n〉 = |n(0)〉+ λ|n(1)〉+ .... (5.28b)

In the following, I will only calculate the first-order change. If the eigenvalues

E
(0)
n of the unperturbated Hamiltonian are non-degenerate the first-order energy

correction is given by the expectation value of the perturbation with respect to the

unperturbated state |n(0)〉

E(1)
n = 〈n(0)|Ñ|n(0)〉. (5.29)

The first-order correction of |n(1)〉 of the eigenstates is then given by

|n(1)〉 =
∑
k 6=n

〈k(0)|Ñ|n(0)〉
E

(0)
n − E(0)

k

|k(0)〉. (5.30)

However, we have already seen that the free-flight Hamiltonian with the eigen-

states |jm〉 has eigenvalues Ej with (2j + 1)-fold degeneracy. The eigenstates for

degenerate eigenvalues are not unambiguous. But the choice of the eigenbasis cru-

cially determines the outcome of the first-order change of the eigenvalues. Thus,

we have to make the right choice for the eigenbasis. In equation (5.30) we see that

the degeneracy of the eigenstates leads to a possible value of zero in the denomi-

nator and we choose the eigenbasis in a way that leads to a finite correction of the

eigenstates [81].

To this end we solve the eigenvalue problem in the degenerated subspace ex-

actly and use the basis in which the orientation-dependent perturbation opera-

tor sin2 β cos2 α is diagonal in the subspace of fixed j. For the calculation the
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(2j + 1)× (2j + 1) matrix with the elements

〈jm| sin2β cos2 α|jm′〉 =√
1

6
(−1)m(2j + 1)

(
j j 2

0 0 0

)(
j j 2

−m m′ −2

)
δmm′−2

+

√
1

6
(−1)m(2j + 1)

(
j j 2

0 0 0

)(
j j 2

−m m′ 2

)
δmm′+2

+
1

3

[
]1− (−1)m(2j + 1)

(
j j 2

0 0 0

)(
j j 2

−m m′ 0

)]
δmm′

(5.31)

is diagonalized for each value of j. With numerical diagonalization we obtain un-

perturbated eigenstates |ψkj 〉 in terms of the linear combination of the eigenstates

|jm〉

|ψkj 〉 =

j∑
m=−j

c(k)
m |jm〉. (5.32)

Now these eigenstates can be used for the calculation of the first order change of the

eigenvalues and eigenstates as described in (5.29) and (5.30) and we obtain

E
(1)
jk = 〈ψjk|Ñ|ψjk〉, (5.33a)

|ψ(1)
jk 〉 =

∑
j′ 6=j

2j+1∑
k=1

|ψj′k′〉
〈ψj′k′ |Ñ|ψjk〉
E

(0)
j′ − E

(0)
j

+
∑
k′ 6=k

|ψjk′〉
〈ψjk′ |Ñ|ψjk〉
E

(0)
j − E

(0)
j

, (5.33b)

where the second summation vanishes due to the diagonality of the perturbation

operator Ñ.

With the perturbation theory we can calculate approximate eigenstates and eigen-

values without the numerical diagonalization of the complete Hamiltonian but only

with diagonalization of the potential operator in the subspace of a fixed j. But

carrying out the time evolution with these approximate eigenstates is still numerical

expensive as seen in equation (5.4).

For a further simplification I assume that the dominant effect of the external po-

tential on the time evolution and especially on the revival signal is due to the change

of the energy eigenvalues. The α-dependence of the potential reduces the multi-state

degeneracy, involving all states with the same angular momentum quantum number

j, to a two-state degeneracy, consisting of the two states with same j and |m|. Thus,

in the following, I consider the first-order correction of the eigenvalues, but use the

unperturbated eigenstates ψ
(0)
jk . The resulting time evolution operator is diagonal

in the quantum number j, but not in the quantum number m. With this we can
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5. Rotation Dynamics in the Presence of a Static Potential

Figure 5.3.: The decay of the tenth revival signal of a CNT (T = 100µK) in presence
of an external torque N0 can be used for ultra-precise sensing, surpassing
the sensitivity of state-of-the-art systems by many orders of magnitude.
The inset shows the alignment signal as a function of time for N0 =
7× 10−31 Nm.

introduce the time evolution operator Uj = exp(−itHj/~) acting on the subspace of

fixed j with

Hj =
~2

2I
1j + 〈jm|Next|jm′〉, (5.34)

with 1j a (2j + 1) × (2j + 1) identity matrix. For the calculation of the time evo-

lution of the alignment 〈cos2 β〉 the initial state ρ0 =
∑

k pk|Φk〉〈Φk| is diagonalized

and we define the vectors (Φkj)m. The alignment signal can now be expressed by

summations over matrix multiplications in the subspace of fixed j and j′

〈cos2 β〉 =
∑
n

∞∑
j=0

∞∑
j′=0

pnΦnj · UjCjj′U
†
j′Φnj′ , (5.35)

with Cjj′ a (2j+ 1)× (2j+ 1) matrix with elements (Cjj′) = 〈jm| cos2 β|j′m〉. With

this we can calculate the alignment signal for a realistic particle in the presence of

an external torque. In figure 5.3 we see the revival signal for the tenth revival of

the carbon nanotube discussed in chapter 4 at a temperature of T = 100µK. With

increasing torque the revival signal decreases and for torques larger than 2×10−30 Nm

it is completely suppressed. This implies that torques on the order of 10−30 Nm

are observable with this set up. This is eight orders of magnitude smaller than

levitated [26,28] or solid-state-integrated [82] set ups considered so far and with this

promising for ultra sensitive torque sensing.
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Nanorotor Alignment

In chapter 4 I discussed orientational quantum revivals, a quantum effect in the free

rotational dynamics of symmetric rotors. It has already been proposed to control

the planar rotational quantum dynamics of trapped Bose-Einstein condensates [46]

and planar and linear rotations of molecules [47]. Here, I present an interferometric

scheme, a rotational analogue of Mach-Zehnder interferometry, which allows steering

the 3D alignment of symmetric nanorotors with weak, pulsed torques.

We will see that the free rotational dynamics of a linear rigid rotor exhibit a

particular phenomenon: an initially tightly aligned state emerges briefly in a su-

perposition of well-localized wave packets after integer fractions of the revival time.

We can exploit this superposition to imprint a relative phase between the individ-

ual wave packets by applying a short pulsed torque and thus control the nanorotor

alignment interferometrically. The results of this chapter are published in Ref. [83].

In the first part of this chapter, I introduce the interference scheme and start with

a description of the time evolution of a freely rotating linear rigid rotor with help of

a semiclassically approximated time evolution operator. We will find that the state

at one eighth of the revival time t = Trev/8 offers a good possibility for imprinting

the required relative phase. By introducing a semiclassical eight-state model I then

demonstrate that this enables tuning the alignment at the revival time from fully

aligned to completely anti-aligned. After that, I focus on the experimental realiza-

tion and numerical implementation of the phase pulse. In the second part, I treat

the alignment control of realistic particles by accounting for symmetric rigid rotors

with a finite occupation of the intrinsic angular momentum component, a slightly

asymmetry of the nanorotor, and orientational decoherence due to the interaction

with the environment. I discuss how these effects degrade the interference signal at

the example of silicon nanorods, thus demonstrating that steering the alignment is

viable for realistic particles in a realistic environment.
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6. Interferometric Control of Nanorotor Alignment

6.1. Interference Scheme

The exact time evolution operator for the free time evolution of a symmetric rotor

is given by U = exp(−itHrot/~), with the Hamiltonian (2.25) for symmetric rotors.

In the angular momentum eigen basis it takes the form

U =
∑
jkm

e−iπ[j(j+1)+(I/Ic−1)k2]t/Trev |jmk〉〈jmk|, (6.1)

where I introduced the revival time Trev = 2πI/~. With this time evolution operator

we evolve a state which is initially aligned in direction of the space-fixed e3-axis. This

implies that the initial state is diagonal in the quantum numbers m and k. According

to (6.1) initial states of a symmetric rotor, diagonal in k, fully recur at the revival

time U(Trev)ρ0U
†(Trev) = ρ0 even for finite k. What is more, expectation values of

observables, which are diagonal in the quantum number k, such as the alignment

〈cos2 β〉, reappear at t = Trev, even for arbitrary initial states of symmetric rotors

since in this case only the coherences in k play a role.

For the following calculation we assume a pure state of a massive prolate top

(Ic � I) which is well-aligned with the space-fixed e3-axis (β ≈ 0). In this limit of

a small polar angle β the body- and space-fixed angular momentum component J̃3

and J3 coincidence. We may therefore choose the exemplary initial state

〈αβγ|Ψ0〉 = 〈β|ψ0〉eik0(α+γ) (6.2)

with fixed k0 and an azimuthally symmetric part 〈β|ψ0〉. With the time evolution

operator (6.1) we evolve the initial state (6.2) freely in time and obtain

〈αβγ|U(t)|Ψ0〉 =

∫ 2π

0

dα0

∫ π

0

dβ0 sin β0

∫ 2π

0

dγ0 〈αβγ|U(t)|α0β0γ0〉〈α0β0γ0|Ψ0〉

(6.3)

with the exact propagator

〈αβγ|U(t)|α0β0γ0〉 =
∑
j∈Z

j∑
m=−j

j∑
k=−j

2j + 1

8π2
djmk(β)djmk(β0)eim(α−α0)

×eik(γ−γ0)e−iπ[j(j+1)+(I/Ic−1)k2]t/Trev .

(6.4)

Here, djmk(β) denote small Wigner d-matrices, see Eq. (2.27).
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6.1. Interference Scheme

Semiclassical Time Evolution Operator

Due to the tight alignment of the initial state (6.2) the total angular momentum

quantum number j is distributed over a wide range, while the fixed k0 is small

compared to j. Thus, we can approximate the Wigner d-matrices djmk(β) in the

propagator (6.4) for small values of |m| and |k| in comparison to j, i.e. |m|, |k| � j

[84]

djmk(β) ≈
cos
[(
j + 1

2

)
β + (m− k)π

2
− π

4

]√
π
2

(
j + 1

2

)
sin β

. (6.5)

In a first step, I focus on the time evolution for initial states (6.2) with k0 = 0. The

effect of finite k and m is discussed later on. The initial state is then independent

of α and γ and with (6.5) we obtain the semiclassical propagator for the β-motion

〈β|Uβ(t)|β0〉 ≈
uc(β − β0; t) + us(β + β0; t)√

sin β sin β0

(6.6)

with

uc(∆β; t) =
1

π

∑
j∈N0

e−iπj(j+1)t/Trev cos

[(
j +

1

2

)
∆β

]
, (6.7a)

us(β̄; t) =
1

π

∑
j∈N0

e−iπj(j+1)t/Trev sin

[(
j +

1

2

)
2β̄

]
. (6.7b)

Here, and throughout this chapter I use the abbreviations ∆β = β − β0 and β̄ =

(β + β0)/2. Note that one gets the same result by calculating the semiclassical

eigenstates of the time evolution operator (6.1) in WKB approximation, as explained

in the appendix A.

For the evaluation of the semiclassical propagator at integer fractions of the revival

time we can use the expressions

∑
j∈N0

cos(jθ) = π
∑
n∈Z

δ(θ − 2πn) +
1

2
, (6.8a)

∑
j∈N0

sin(jθ) =
1

2
P cot

(
θ

2

)
, (6.8b)

based on the Poisson summation formula to resum the summands (6.7). Here, P
denotes the Cauchy principal value.

For t = 0 we use the angle sum identity cos[(j + 1/2)β] = cos(β/2) cos(jβ) −
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6. Interferometric Control of Nanorotor Alignment

sin(β/2) sin(jβ) and apply (6.8). Thus, we obtain uc(β − β0; 0) = δ(β − β0). The

finite value of us(β̄; 0) is an artifact of the semiclassical approximation and has to

be neglected to obtain the the expected behaviour U(0) = 1.

For fractions of the revival time the calculation is more lengthy and I show the

whole calculation for t = Trev/8 in detail. In a first step, we rewrite the contributions

(6.7) of the propagator

uc(∆β; t) =
1

2π
ei∆β/2

∑
k∈Z

eiπk(k+1)t/Treveik∆β, (6.9a)

us(β̄; t) =
1

π
sin β̄ +

1

π

∞∑
j=1

eiπj(j+1)t/Trev sin

[(
j +

1

2

)
β̄

]
. (6.9b)

For t = Trev/8 the time depending exponential function within the sum (6.9) eval-

uates to values exp(ilπ/4) with l ∈ Z grouped into eight sets of equal phase, see

table 6.1.

k eiπk(k+1)/8

16n 16n− 1 1
16n− 2 16n+ 1 e−iπ/4

16n− 3 16n+ 2 e−i3π/4

16n− 4 16n+ 3 i
16n− 5 16n+ 4 −i
16n− 6 16n+ 5 eiπ/4

16n− 7 16n+ 6 ei3π/4

16n− 8 16n+ 7 −1

Table 6.1.: Overview over the possible results for the time depending exponential
function within the summation (6.9) depending on the summation index
k with n ∈ Z respectively on the summation index j with n ∈ N.

After grouping the contribution (6.9a) into these eight sets of equal phase one

can extract the term
∑

n∈Z exp(i16n∆β)/(2π) which can be transformed by the ex-

pression (6.8a) to a summation over delta-distributions
∑

n∈Z exp(i16n∆β)/(2π) =∑
l∈Z δ(∆β− lπ/8)/16. We see that the part (6.9a) of the propagator has only finite

values for ∆β = nπ/8 with n ∈ Z. After calculating the prefactors for the different

n ∈ Z we obtain

uc(∆β;Trev/8) =

√
2

4

3∑
n=0

e−i(3+2n(n+1))π/16

×
[
δ
(

∆β − (2n+ 1)
π

8

)
+ δ

(
∆β + (2n+ 1)

π

8

)]
.

(6.10)
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6.1. Interference Scheme

Analogous to that we calculate the part us(β̄;Trev/8) and obtain

us(β̄;Trev/8) =
1

π
sin β̄ +

2

π

3∑
n=0

e−in(n+1)π/8

× P
[
cos
(
(2n+ 1)2β̄

)
− cos

(
2(15− 2n)β̄

)]
cot 16β̄.

(6.11)

This term has Cauchy-integrable singularities for 2β̄ = (2n + 1)π/8 with n ∈ Z.

Together with the locations of the delta distributions this implies that a state initially

tightly aligned around β = 0 and β = π is at t = Trev/8 in a superposition of four

well-localized states, localized at β = π/8, β = 3π/8, β = 5π/8 and β = 7π/8

(as is seen in Fig. 6.1 where the β-probability distribution for different fractions

of the revival time is illustrated) due to the interference of the angular momentum

states. For odd integer multiples of t = Trev/8 we can proceed analogously and get

the same result, a superposition of four narrow wave packets located at β = π/8,

β = 3π/8, β = 5π/8 and β = 7π/8. Similarly, we obtain the state for t = Trev/4

by splitting the summation index set in (6.7) residue classes modulo four instead of

eight resulting in four groups of equal phase. Alternatively one can apply the result

(6.10) and (6.11) twice on the initial state. Thus, after one quarter of the revival

time the initial state evolves into a superposition of two well-localized wave packets

at β = π/4 and β = 3π/4. After a half of the revival time the state is localized in

the equatorial plane β = π/2 and amounting to the perfect anti-aligned state with

〈cos2 β〉 = 0.

This shows that the points in time t = Trev/8 and t = Trev/4 are suitable for

imprinting a relative phase between the wave packets with a β-depending potential

to steer the alignment. While the two wave packets at t = Trev/4 have the same

alignment and only different orientations the wave packets at t = Trev/8 differ in

the alignment. From this follows that we need a not inversion-symmetric potential

for steering the alignment at t = Trev/4. For example one could use a potential

of the form V (β) = V0 cos β created by an static electric field pulse acting on a

particle with permanent electric dipole moment. At t = Trev/8 one could use a

potential which depends on the polar angle β in the form of the squared cosine,

V (β) = V0 cos2 β, and so does not differentiate between different orientations. We

have seen in chapter 4 that such kind of potential applies if an anisotropic dielectric

particle is illuminated by a linear polarized plane wave. In the following, I will focus

on an interference scheme for a phase imprinted at t = Trev/8.
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6. Interferometric Control of Nanorotor Alignment

Figure 6.1.: Probability distribution p(β) = sin(β)|〈β|ψ〉|2 at fractional revival times
t for a initially tightly aligned state. At t = 0 the state is in superposi-
tion of two wave packets well-localized near β = 0 and β = π (orange).
After one half of the revival time t = Trev/2 the is well-localized in β at
β = π/2 (light blue). The red line represents the state at t = Trev/4 in
a superposition of two wave packets localized at β = π/4 and β = 3π/4.
And at the smallest fraction of the revival, t = Trev/8, the state is
in a superposition of four localized wave packets at β = nπ/8 with
n ∈ {1, 3, 5, 7} (blue).

8-state Model

To discuss the state at multiples of an eigth of the revival time I introduce the op-

erator W` = Uβ(`Trev/8). The states |ψ`〉 = W`|ψ0〉 (` = 1, ..., 7) can be represented

as superpositions of eight wave packets |ξn〉 centered at β = nπ/8. With this we can

write |ψ`〉 = eiν`
∑7

n=1 M`n|ξn〉 with the coefficients

M =
1

2



1 0 1 0 1 0 1

0
√

2 0 0 0
√

2 0

1 0 i 0 −i 0 −1

0 0 0 2 0 0 0

1 0 −1 0 −1 0 1

0
√

2 0 0 0 −
√

2 0

1 0 −i 0 i 0 −1


(6.12)

and

ν1 = ν2 = ν4 = 0, ν3 = −π
8
,

ν5 =
π

2
, ν6 =

π

4
, ν7 = 3

π

8
.

(6.13)
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(a)

(b)

torque

pulse

release

torque

pulse

controlled

alignment

torque

pulse

(c)

Figure 6.2.: (a) Density plots of the orientational distribution of the rotor’s sym-
metry axis for different times t. In the first row on the left hand side
is a Mollweide projection of the initial state (t = 0) well-localized at
β = 0. After a time t = Trev the state is in superposition of wave
packets localized at β = nπ/8, n ∈ {1, 3, 5, 7} (middle: Mollweide pro-
jection, right: probability density function dependent on the polar angle
β. In the second row we see the resulting states at t = Trev for differ-
ent relative phase ϕ which are induced between the wave packets at
t = Trev/8. Without phase the initial state recurs (left), a phase of
π/2 (middle) leads to a superposition of β = 0 and β = π/2 and a
phase of π (right) leads to a state in the equator plane. (b) The time
evolution of the alignment 〈cos2 β〉t is shown for three different relative
phases, ϕ = 0 (gray), ϕ = π/2 (green) and ϕ = π (orange) for an initial
state 〈j00|ψ〉 = exp(−j2/(2σj)) and σj = 20. (c) Here, we see the ideal
revival signal 〈cos2 β〉Trev as a function of ϕ. Figure taken from [83].
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6. Interferometric Control of Nanorotor Alignment

To specify the coefficients M`n and ν` we start with setting |ψ1〉 = 1
2
(|ξ1〉+|ξ3〉+|ξ5〉+

|ξ7〉). By calculating uc(∆β; 3Trev/8) and us(β̄; 3Trev/8) analogous to uc(∆β;Trev/8)

and us(β̄;Trev/8) and comparing the result to (6.10) and (6.11) we obtainM3n and ν3.

In a similar way one gets M5n,M7n,ν5, and ν7. For the remaining coefficients we fix

M4n, M2n, and ν2 and compare uc(∆β; 3Trev/4), us(β̄; 3Trev/4) with uc(∆β;Trev/4),

us(β̄;Trev/4) to calculate M6n and ν6.

By writing the states |ξn〉 in terms of the states |ψl〉 we know how the operator

W acts on the states |ξn〉, for example

W|ξ1〉 =
1

2

[
e−iν7|ψ0〉+ e−iν3|ξ4〉+

1√
2

(
1 + e−iν4

)
|ξ2〉+

1√
2

(
1− e−iν4

)
|ξ6〉
]
.

(6.14)

Note that this simplified system of eight states works for an arbitrary initial state.

It does not matter where the initial state is localized and it does not even have to

be localized. Now I introduce a phase operator

φ = exp
(
i
√

2ϕ cos2 β
)

(6.15)

which adds an β-dependent phase to localized states. We assume that the initial

state is perfectly localized around β = 0 (initial alignment 〈cos2 β〉 = 1). This

entails that the states |ξn〉 are well-localized at β = nπ/8 and the operator φ acts

as follows on the |ξn〉

φ|ψ0〉 = ei
√

2ϕ|ψ0〉 φ|ξ4〉 = |ξ4〉
φ|ξ2〉 = eiϕ/

√
2|ξ2〉 φ|ξ6〉 = eiϕ/

√
2|ξ6〉

φ|ξ1〉 = ei(
√

2+1)ϕ/2|ξ1〉 φ|ξ3〉 = ei(
√

2−1)ϕ/2|ξ3〉
φ|ξ7〉 = ei(

√
2+1)ϕ/2|ξ7〉 φ|ξ5〉 = ei(

√
2−1)ϕ/2|ξ5〉.

(6.16)

As discussed before and illustrated in Fig. 6.1 the particle is in a superposition of

different well-localized orientational states at both t = Trev/4 and t = Trev/8. At

t = Trev/4 the state is in a superposition of the states |ξ2〉 and |ξ6〉 localized at

β = π/4 and β = 3π/4 and thus the phase operator (6.15) cannot apply a relative

phase between these two wave packets. But we see in (6.16) that it induces the

relative phase ϕ between the states |ξ1〉,|ξ7〉 and |ξ3〉, |ξ5〉

φW|ψ0〉 =
ei
√

2

2

[
eiϕ/2(|ξ1〉+ |ξ7〉) + e−iϕ/2(|ξ3〉+ |ξ5〉)

]
. (6.17)

Thus, the time t = Trev/8 seems to be ideal for imprinting the phase and with this

to control the further time evolution. Especially the state at the revival time is in
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6.2. Implementation of the Phase Operator

general no longer the initial state but a superposition of wave packets at β = 0 and

β = π/2

W7φW|ψ0〉 = eiϕ/
√

2 [cos(ϕ/2)|ψ0〉+ sin(ϕ/2)|ξ4〉] . (6.18)

Thus, one can control the state and the alignment at the revival time by imprinting

the phase difference (see Fig. 6.2) by applying a torque depending on the squared

cosin of β for a brief duration. For a perfectly aligned initial state the alignment at

the revival time depends with 〈cos2 β〉 = cos2(ϕ/2) on the induced phase difference.

For a relative phase of ϕ = n2π with the integer n the initial state reappears, for

a relative phase of (2n + 1)π the state is localized at β = π/2 and for all other

imprinted relative phases ϕ the state at t = Trev is in a superposition of a wave

packet localized at the pole of a sphere and a wave packet in the equatorial plane.

Note that the phase operator φ is in general not 2π-periodic. For realistic initial

states we will see deviations from the cosine-dependence on the relative phase for

the alignment signal at t = Trev, which I will discuss later in this chapter.

6.2. Implementation of the Phase Operator

In the previous section, we have seen how a β-dependent torque imprints a phase

difference on the wave packets emerging at fractional revival times t = Trev/8. In

this section, the focus is on the implementation of the phase, both experimentally

and numerically as required for the following simulations of the interference signal.

As mentioned before and discussed in detail in chapter 4, a dielectric particle

with an anisotropic polarizability illuminated by a linear polarized experiences a

β-dependent potential of the form V (β) = −V0 cos2 β. Thus, a linear polarized laser

pulse of duration ∆t is suitable to imprint the relative phase. The time evolution

until t = Trev is then given by

ρ(tTrev) = U(t1)Uϕ(∆t)U(t2)ρ0U
†(t2)U†ϕ(∆t)U†(t1) (6.19)

with U(t) the free time evolution operator propagating for the periods t1 = Trev/8−
∆t/2 and t2 = Trev − (Trev/8 + ∆t/2). In the time interval ∆t around t = Trev/8

the time evolution operator reads Uϕ = exp(−itHϕ/~) with the Hamiltonian Hϕ =

Hrot − V0 cos2 β.

However, in the limit that the pulse duration ∆t is much smaller than the dis-

persion time scale 1/κ we can assume a constant orientation during the pulse and

we can use the phase operator φ (6.15) with the relative phase ϕ = V0∆t. The free

time evolution operator acts then in the time durations t1 = Trev/8 and t2 = 7Trev/8.
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6. Interferometric Control of Nanorotor Alignment

Thus, U(t1) becomes the operator W of the eight-state system and U(t2) is W7.

Numerical Implementation

For the numerical simulation of the interference signal I prefer again the angular

momentum eigenbasis |jmk〉 of a symmetric rigid rotor. The free time evolution

operator is diagonal in this basis so that only the calculation of the matrix elements

of the phase operator φ in angular momentum representation is challenging. The

technique of exact numerical diagonalization is here intractable because of the high

number of occupied angular momentum states. We use again semiclassical matrix

elements based on Bohr-Sommerfeld quantized action-angle variables as in chapter

4, now for the symmetric rigid rotor rather than for the linear top. The Euler angles

α, β, γ and the corresponding conjugate momenta are related to the action-angle

variables αJ , αM , αK and J , M , K via [62]

αJ = arccos

[
J2 cos β −MK

[(J2 −K2)(J2 −M2)]1/2

]
, (6.20a)

αM =α + π − arccos

[
M cos β −K

sin β(J2 −M2)1/2

]
, (6.20b)

αK =γ + π − arccos

[
K cos β −M

sin β(J2 −K2)1/2

]
, (6.20c)

J2 =p2
β +

1

sin2 β

(
p2
α + p2

γ − 2pαpγ cos β
)
, (6.20d)

M =pα, (6.20e)

K =pγ, (6.20f)

with the quantization rules M = ~m, K = ~k and J = ~(j+ 1/2). Extending equa-

tion (2.72) for the calculation of semiclassical matrix elements to a third degree of

freedom, from (6.20) follow the semiclassical matrix elements for the phase operator

φ

〈jmk|φ|j′m′k′〉 =
1

8π3

∫ 2π

0

dαj

∫ 2π

0

dαm

∫ 2π

0

dαk e
i[(j′−j)αj+(m′−m)αm+(k′−k)αk]

× exp

{
−i
√

2ϕ

[
cosαj

√
Am̄k̄j+j′+1 +

m̄k̄

(j̄ + 1/2)2

]2
}
,

(6.21)

with Amkj = (1 − 4k2/j2)(1 − 4m2/j2)/2 and m̄ = (m + m′)/2, k̄ = (k + k′)/2,

j̄ = (j + j′)/2. The αm and αk integral can be easily carried out resulting in

Kronecker deltas δmm′ and δkk′ . For the αj integral I express the second exponential
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function in (6.21) in a Fourier integral

〈jmk|φ|j′m′k′〉 =
1

4π2

√
π

i
√

2ϕ

∫ ∞
−∞

dχ e−χ
2/(4
√

2iϕ)eiχkm/(j̄+1/2)2

∫ 2π

0

dαj e
i(j′−j)αj

× eiχ(Amk
j+j′+1

)1/2 cosαjδmm′δkk′ .

(6.22)

Carrying out the αj integration yields a Bessel function Jn(.) [85]∫ 2π

0

dαj e
i(j′−j)αje

iχ(Amk
j+j′+1

)1/2 cosαj = 2πi|j−j
′|J|j−j′|

(
χ
√
Akmj+j′+1

)
. (6.23)

For the integration over χ we have to approximate the integrand for k,m � j.

This approximation is valid for all the initial states I will look at later. We then can

expand the exponential exp[iχkm/(j̄+1/2)2] ≈ 1+iχkm/(j̄+1/2)2−χ2k2m2/[2(j̄+

1/2)4]. The integration over the linear part in χ vanishes because of the symmetry

of the integrand and we obtain

〈jmk|φ|j′m′k′〉 ≈ 1

2π

√
π

i
√

2ϕ
i|j−j

′|
∫ ∞
−∞

dχ

(
1− χ2 k2m2

2(j + 1/2)4

)
e−χ

2/(4
√

2iϕ)

× J|j′−j|
[
χ(Amkj+j′+1)(1/2)

]
δmm′δkk′

(6.24)

After writing the term proportional to χ2 as a 1/ϕ derivative we can carry out the

χ integration with the result

〈jmk|φ|j′m′k′〉 =δmm′δkk′e
−iπ|j−j′|/4

[
1 + i

√
2ξ

32k2m2

(j + j′ + 1)4

d

dξ

1√
ξ

]
× e−i

√
2Akm

j+j′+1
/ξ
J |j−j′|

2

(√
2Akmj+j′+1

ξ

)∣∣∣∣
ξ=1/ϕ

δmm′δkk′

(6.25)

for j− j′ an even integer. If j− j′ is odd the corresponding matrix element vanishes.

This approximation works better the more angular momentum states are occupied,

see Fig. 6.3.

6.3. Discussion of the Interference Signal

In section 6.1 I discussed the interference signal for an ideal, perfectly aligned sym-

metric rotor with m = 0 and k = 0. For this case we have seen that the interference

signal, i.e. the alignment in dependence on the relative phase ϕ at the revival time

Trev, is a perfect squared cosine, 〈cos2 β〉ϕTrev
= cos2(ϕ/2). A realistic particle differs
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6. Interferometric Control of Nanorotor Alignment

Figure 6.3.: Comparison of the alignment signal at Trev for relative phases of ϕ = π
(dashed lines) and ϕ = 2π (solid line) calculated numerically exactly
(blue lines) with the one calculated with help of semiclassical matrix

elements (6.25) for initial states ψ(β) ∝ e− cos2 β/(2σ2
β). The most strongly

aligned initial state (σβ = 0.04) has an expectation value of 〈j〉 = 21, 6
for the occupied angular momentum states |00j〉 and for the least aligned
one (σβ = 0.1) this expectation value is much smaller, 〈j〉 = 8.3.

Figure 6.4.: Interference signal as a function of the relative phase ϕ for different

initial states of the form ψ ∝ e−j
2/(2σ2

j ) with σj = 30 (blue), σj = 20
(purple), σj = 15 (orange) and σj = 5 (yellow).The smaller the σj the
broader is the β-distribution of the initial state. This implies that the
initial alignment decreases with decreasing σj.
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6.3. Discussion of the Interference Signal

in several aspects from this idealized case which leads to deviations from this ideal

signal.

In a first step, we still assume a symmetric rotor with m = 0 and k = 0, which

is however not perfectly aligned. The phase operator φ = exp(i
√

2ϕ cos2 β) acts

then no longer in a 2π-periodic way in ϕ. The four wave packets at t = Trev/8 have

now a finite width and the average relative phase imprinted between the packets is

the larger the broader the wave packets. On the one hand this leads to a shift of

the local maximum of the alignment as a function of the phase ϕ to smaller phases

and, on the other hand, the initial state does not reappear completely except for

ϕ = 0. One therefore observes a decrease of the maximum alignment and with this

a decrease of the contrast of the interference signal (see Fig. 6.4).

In a next step, we allow finite quantum numbers k 6= 0, implying rotations

around the symmetry axis of the rigid rotor. Note that in the limit of a tightly

aligned initial states this implies m 6= 0 as well, because of the near identity of

the body-fixed n3-axis and the space-fixed e3-axis. Finite occupations of k might

have an effect on different contributions to the interference signal. At first, it

may affect the initial alignment. The classical thermal state fL(α, β, pα, pβ) =

exp[−(HL(α, β, pα, pβ) + V (β))/(kBT )]/Z with the free Hamiltonian (2.11) of the

linear rigid rotor shows the same initial alignment as the state fS(α, β, γ,pα, pβ, pγ) =

exp[−(HS(α, β, γ, pα, pβ, pγ) + V (β))/(kBT )]/Z ′ with the free Hamiltonian (2.10) of

a symmetric top. Numerical simulations indicate that the same holds true for quan-

tum mechanicals states, so that the initial alignment is not affected by the finite

value for k.

But let us again have a look at the free quantum Hamiltonian of the symmetric

top (2.25) and the corresponding time evolution operator

U =
∑
j∈N

m=j∑
m=−j

∑
k=−j

exp

{
−i~t

[
1

2I
j(j + 1) +

1

2

(
1

I3

− 1

I

)
k2

]}
|jmk〉〈jmk| (6.26)

Unlike the free time evolution operator of the linear rigid rotor, the one for symmetric

rotors (6.26) does not reduce to the unity operator for integer multiples of the revival

time Trev = 2πI/~. But if the initial state ρ0 is diagonal in k the k-dependent parts

of the time evolution operators in ρ(t) = U(t)ρ0U
†(t) cancel so that the initial state

reappears for integer multiples of Trev. What is more, even if the initial state is

not diagonal in k all expectation values of operators diagonal in k show revivals,

although the state itself does not recur.

The critical part is imprinting the phase. The phase operator φ depends on

the quantum numbers k and m and therefore has an effect on the interference sig-
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nal. I observe numerically that the broader the state is in k the broader is the

β-distribution at fractional revival times. This again leads to a decreasing contrast.

6.3.1. Asymmetric Rotors

Since any realistic particle will never be perfectly symmetric, we have to consider

the effect of deviations of the azimuthal symmetry on the interference signal. In

general, the eigenstates and eigenvalues of the free Hamiltonian of an arbitrarily

shaped asymmetric rotor cannot be stated analytically. But for such arbitrarily

shaped particles no revival signal is expected anyhow, so that only small deviations

in the symmetry of the rotor are discussed in the following.

Here, I consider a slightly asymmetric prolate particle with moments of inertia I1,

I2 and I3 with I1 > I2 > I3 and I1 ≈ I2. The free Hamiltonian can then be written

in the form [86]

H = H0 + bH1 (6.27)

with the asymmetry parameter

b =

(
1

I1

− 1

I2

)(
2

I3

− 1

I1

− 1

I2

)−1

, (6.28)

and the Hamiltonians

H0 =
1

I1 + I2

J2 +

(
1

2I3

− I1 + I2

2I1I2

)
J̃2

3 (6.29a)

H1 =

(
1

2I3

− I1 + I2

2I1I2

)(
J2

1 − J2
2

)
. (6.29b)

The asymmetry parameter b is zero for a perfect symmetric rotor with I1 = I2 and

increases with increasing asymmetry. For a slightly asymmetric rotor we assume

that the time evolution is dominated by the energy eigenvalues of the asymmetric

rotor and we can approximately use the energy eigenstates of the Hamiltonian for

the symmetric rotor. The energy eigenvalues can be calculated with perturbation

theory [86]

Ejk = E
(0)
jk + b2E

(2)
jk . (6.30)

Here, the E
(0)
jk are the unperturbated eigenvalues of the symmetric rotor and the

E
(2)
jk are given in Ref. [86] for all j and k. I only use them for simulations with initial
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states where only k = 0 is occupied. In this case the E
(2)
j0 read [86]

E
(2)
j0 = −~2

16
(I3 − I1)j(j + 1)(j − 1)(j + 1) (6.31)

The new energy eigenvalues leads to a decrease of the revival signal and to a shift

of the revival time. For the implementation of the interference scheme one should

consider this new revival time for applying the phase imprinting torque at an eighth

of it and measuring the alignment at the full shifted revival time.

6.3.2. Decoherence

Another aspect we have to take into account is the interaction with the environment,

which leads to environmental decoherence and so to a reduction of the interference

signal.

As for the proposed revival experiment discussed in chapter 4, thermal emission

of photons and collisions with residual gas particles are dominant sources of en-

vironmental decoherence. But here we have to examine also a third source: the

interaction with the phase imprinting laser pulse.

Regardless of the type of interaction the rotational dynamics of a symmetric rotor

due to a weak interaction with the environment may be described by the angular

momentum diffusion master equation (3.26). Since such master equations act on

the statistical operator ρ any numerical calculation operates on the dimension of the

Hilbert space squared. One way to circumvent this increasing numerical requirement

is the so called unraveling of the master equation on the level of pure states where

the non-hermitian behaviour is implemented via stochastic quantum jumps. In the

following, I introduce this method for general master equations of Lindblad form

and then apply it on the angular momentum diffusion master equation.

Monte Carlo Unraveling of the Master Equation

Any initial state ρ can be written as a convex sum of pure states ρ =
∑

k pk|ψk〉〈ψk|.
The time evolution of these pure states |ψk〉 is described by a quantum stochastic

differential equation

d|ψk(t)〉 =
1

i~
H|ψk(t)〉dt−

1

2

∑
i

γi

(
L†iLi − 〈L

†
iLi〉
)
|ψk(t)〉dt

+
∑
i

(
Li|ψk(t)〉
||Li|ψk(t)〉||

− |ψk(t)〉
)

dNi(t).

(6.32)
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With this stochastic differential equation one can create samples of single quantum

trajectories |ψ(n)
k 〉. The time dependence of the pure state is then given by the

ensemble average over all these trajectories and thus the density operator ρt reads

ρt =
∑
k

pkE
[
|ψ(n)
k (t)〉〈ψ(n)

k (t)|
]
. (6.33)

The stochastic differential equation (6.32) describes a piecewise deterministic pro-

cess. This means that we have a deterministic time evolution described by the first

two terms of expression (6.32) interrupted by random quantum jumps described by

the stochastic third term.

The stochastic term is determined by the Poisson increment dNi(t), defined as

dNi(t) = Ni(t + dt) − Ni(t). The Ni(t) are the number of events induced by the

Lindblad operator Li that have occurred up to the time t. Thus, the expecta-

tion value of the Poisson increment is determined by the rate ri(t) of the process,

E[dNi(t)] = ri(t)dt [64]. Further, the total rate Γ(t) =
∑

i ri(t) is defined as the

sum of the rates ri(t). In general, the rates ri(t) depend on the present state |ψk(t)〉
and so on the time t. The stochastic differential equation given in (6.32) is a special

kind of piecewise deterministic unraveling, the Monte Carlo unraveling. In this case

the ensemble average of the Poisson increment reads [50,64]

E[dNi(t)] =γi〈L†iLi〉ψ(t)dt

=ri(t)dt
(6.34)

Here, 〈.〉 is to understand as the expectation value for the current state |ψk(t)〉.
I use this Monte Carlo unraveling to solve the angular momentum master equation

(3.26) with the superoperator (3.35a), which is linear in the orientation. We have

then three different Lindblad operators, which are given by the operator-valued

components of the orientation vector m(Ω)

m1 = cosα sinβ, m2 = sinα sinβ, m3 = cosβ (6.35)

with

3∑
i=1

m†imi = 1. (6.36)

The rate γi is characterized by the diffusion constant γi = 2D/~2 for all i ∈ {1, 2, 3}.
Inserting the Lindblad operators (6.35) and γi = 2D/~2 in the stochastic differential

equation (6.32) and using the identity (6.36) leads to the Monte Carlo unraveling
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of the orientational master equation (3.35a)

d|ψ(t)〉 =− i

~
H|ψ(t)〉dt+

3∑
i=1

(
mi|ψ(t)〉
||mi|ψ(t)〉||

− |ψ(t)〉
)

dNi(t). (6.37)

From (6.33) it follows that dρ(t) = dE[|ψ(t)〉〈|ψ(t)|]. Inserting the stochastic differ-

ential equation (6.37) for d|ψ(t)〉 and using dNidNj = δijdNi one retains the master

equation (3.35a).

Using the stochastic differential equation (6.37) one can calculate random trajec-

tories numerically and by building the ensemble average the density operator ρ(t)

can be obtained.

I start with the deterministic time evolution for the random time τ between two

quantum jumps. It is given by

|ψ̃(t+ τ)〉 =
exp (−iτHeff/~)

|| exp (−iτHeff/~) |ψt〉||
|ψt〉 (6.38)

with the effective Hamiltonian Heff ,

Heff = H− i~
2

2D

~2

3∑
i=1

m2
i = H− iD

~
. (6.39)

Note that Heff is not hermitian and we need the renormalization factor in (6.38).

After a random time τ we jump to a new normalized state

|ψ(t+ τ)〉 =
mi

||mi|ψ̃(t+ τ)〉||
|ψ̃(t+ τ)〉. (6.40)

We still have to clarify how to calculate the random time steps τ between the

jumps and how to choose which one of the three jump operators mi acts. From

(6.34) it follows that ri(t) = 2D〈m†imi〉ψ̃(t) determines the rate for a quantum jump

with jump operator mi. This rate depends on the current state |ψ(t)〉, but with

(6.36) the total rate Γ(t) reads

Γ =
2D

~
. (6.41)

This rate is independent of the current state and with this independent of the time.

The jump operators are now selected with a probability P (mi) = ri(t)/Γ leading

to

P (mi) = 〈m†imi〉ψ̃(t+τ), (6.42)
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with
∑3

i=1 P (mi) = 1. Thus, this probability depends on the state |ψ(t + τ)〉 just

before the jump. The time period τ for the deterministic time evolution is deter-

mined by the total rate Γ via the cumulative probability F (τ |t) for a quantum jump

in the time interval [t, t + τ ]. This is given by one minus the probability that no

jump occurred yet

F (τ |t) =1− exp

[
−
∫ t+τ

t

dt′Γ(t′)

]
=1− e−2Dτ/~.

(6.43)

This probability function (6.43) only depends on τ and not on the time t, F (τ) ≡
F (τ |t). The jump times τ are now drawn randomly corresponding to the distribution

of the jump times f(τ) = dF (τ)/dτ .

For this I use the inverse transformation method [87]. There one draws x ∈ [0, 1]

with the uniform probability distribution p(x) = 1 for x ∈ [0, 1] and a vanishing

probability outside of this interval. We are now looking for a transformation from

x→ τ(x) with the associated distribution function

f(τ) =

∫ 1

0

dx p(x)δ[τ(x)− τ ]. (6.44)

With the assumption that this transformation is unambiguous we obtain

f(τ) =
1

τ ′[x(τ)]
, (6.45)

with x(τ) = τ−1(τ). With the inverse function theorem it follows that τ ′[x(τ)] =

1/x′(τ) and so f(τ) = x′(τ). After an integration over τ we obtain

F (τ) =

∫ τ

0

dτ ′ f(τ) = x. (6.46)

Inserting the cumulative probability (6.43) and solving for τ leads to

τ = − ~2

2D
ln (1− x) . (6.47)

Having discussed the different steps of the Monte Carlo unraveling in detail, I now

summarize these steps and give a short algorithm for the numerical implementation.

1) draw x ∈ [0, 1] from a uniform distribution

2) calculate the time until the next jump τ = − ~
2D

ln(1− x)

3) deterministic time evolution until τ : |ψ̃(t+ τ)〉 = exp(−iτHeff/~)
|| exp(−iτHeff/~)|ψt〉|| |ψt〉
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4) Choose jump operator mi with probability 〈m2
i 〉ψ̃(t)

5) Jump to a new state |ψ(t+ τ)〉 = mi|ψ̃(t+τ)〉
||mi|ψ̃(t+τ)〉||

6) Repeat the steps 1)-6) until tfinal

This protocol has to be repeated for a large number N of trajectories. After that

the ensemble average can be calculated

ρ(t) =
1

N

∑
k

pk

N∑
n=1

|ψ(n)
k (t)〉〈ψ(n)

k (t)|. (6.48)

The larger the number N of trajectories the smaller is the error.

The effect of the individual sources of environmental decoherence is discussed with

help of Monte Carlo unraveling for a specific particle in the following section.

6.4. Implementation with Silicon Nanorods

In the previous sections we have seen how to control the orientation of dielectric

aspherical particles and how to describe their time evolution. Further, I discussed

possible deviations from the ideal conditions and how they affect the interference

signal.

Here, I examine the feasibility of alignment control of nanosized particles with the

example of a concrete ellipsoidally shaped silicon nanoparticle with principle di-

ameters `a = 5 nm, `b = 5.5 nm and `c = 50 nm. The particle has a volume of

V = π`a`b`c/6 = 720 nm3 and a mass of 1.1×106 amu. With the moments of inertia

Ia = m(`2
b + `2

c)/20, Ib = m(`2
a + `2

c)/20, Ic = m(`2
b + `2

a)/20 we obtain a revival time

of 2πIb/~ = Trev = 13.8 ms. Due to the aspherical shape of the particle the suscepti-

bility tensor χ(Ω) = R(Ω)χ0R
T (Ω),χ0 = diag(χa, χb, χc) depends on the orientation

Ω of the particle, as described by the rotation matrix R(Ω) (2.2).

The experimental set up is similar to the set up for the observation of rotational

quantum revivals discussed in chapter 4.1. We start with the preparation of the ini-

tial state in an optical trapping potential. Then the tweezer laser is turned off and

the particle evolves freely. But in contrast to the revival experiment, one needs an

additional laser for imprinting the relative phase in order to control the nanorotor’s

alignment. After the phase shift, the particle evolves freely again and the alignment

is measured as described in section 4.1.3 at t = Trev and is recaptured and recycled

directly after the measurement.
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Figure 6.5.: Illustration of the particle in the tweezer. It aligns with the e3-axis of
the unprimed (green) frame and the e1-axis of the primed (black) frame.
Both frames differ through a rotation around the mutual e2-axis. On
the right hand side the Euler angles are represented.

In the following, I focus on the differences to the set up for the quantum revivals,

starting with the preparation of the initial state. In contrast to the initial state for

observations of revivals, we have to take the rotation around the body-fixed n3-axis

into account. I introduce the modified trapping potential and propose to cool all

rotational degrees of freedom of the particle by elliptic coherent scattering [32, 33].

And we need an additional laser for imprinting the relative phase at t = Trev/8.

In the end, I discuss the main effects for reducing the interference signal for this

specific particle and experimental set up.

6.4.1. Initial State

For the alignment control it is important to not only align the particle with the space-

fixed e3-axis, but also to reduce the rotation around the body-fixed n3-axis. Thus,

we have to cool all three rotational degrees of freedom, the α-, β- and γ-motion.

For a perfectly symmetric dielectric particle the optical dipole potential does not

depend on γ and so we have to use a slightly asymmetric particle, the aforementioned

ellipsoide. This asymmetric particle is initially trapped in an elliptically polarized

optical tweezer with et = cosψe′1 + i sinψe′2 characterized by the ellipticity ψ = π/8,

propagation direction e′3, laser Power Pt = 0.1 W and the tweezer waists wx′ =

1.6µm and wy′ = 1.3 µm. Here, I introduced a primed reference system, which we

will use for the derivation of the initial state. In the end, I will write the initial state

in the space-fixed unprimed system see Fig. 6.5. The electric field E(r)eiωt of the

tweezer laser is given by [32,33]

E(r) =

√
2~ω
ε0Vc

εetft(r
′), (6.49)

92



6.4. Implementation with Silicon Nanorods

with the cavity mode volume Vc, the mode variable ε =
√

2PtkVc/(π~ω2w′xw
′
y) and

the mode function [32,33]

ft(r
′) =

1

r(z′)
exp

(
− x′2

w′2x r
2(z′)− (y′/wy′)2

)
ei[kz

′−φt(r′). (6.50)

Here, r(z′) '
√

1 + z′2/z2
R with zR ' kwxwy/2 is a dimensionless broadening func-

tion and φt(r) is the Gouy phase,

φt(r) ' arctan

(
z

zR

)
− kz

2

x2 + y2

z2 + z2
R

, (6.51)

of the tweezer. The Hamiltonian H = H0 + Vt depends on the free Hamiltonian H0

of the asymmetric rotor (2.24) and the tweezer potential [33]

Vt(r
′,Ω′) = −ε0V

4
E∗(r′) · χ(Ω′)E(r′). (6.52)

The potential energy is minimal for α′ = γ′ = 0 and β′ = π/2. The particle in

the tweezer potential is cooled into the ground state by elliptic coherent scattering

[32, 33, 88]. In the deep trapping regime we can expand the potential harmonically

around the minimum with frequencies

ωα′ =
√

2V Pt(χ3 − χ2) cos(2ψ)/(πcwx′wy′Ia), (6.53a)

ωβ′ =
√

2V Pt(χ3 − χ1) cos2(ψ)/(πcwx′wy′Ib), (6.53b)

ωγ′ =
√

2V Pt(χ2 − χ1) sin2(ψ)/(πcwx′wy′Ic). (6.53c)

The corresponding ground state reads

〈α′β′γ′|ψ̃000〉 ∝ e−α
′2/(2σ̃2

α′ )e
−(β′−π/2)2/(2σ̃2

β′ )e
−γ′2/(2σ̃2

γ′ ), (6.54)

with σ̃α′ =
√
~/(Iaωα′) = 3.5 × 10−3 rad, σ̃β′ =

√
~/(Ibωβ′) = 3.4 × 10−3 rad and

σ̃γ′ =
√
~/(Iaωγ′) = 3.3× 10−2 rad.

Here, we see the advantage of the primed coordinate system especially introduced

for the derivation of the initial state. In this system we can expand the potential

harmonically and thus write down the initial state.

The particle in the state (6.54) aligns with the e′1-axis of the primed system.

For convenience we now choose the unprimed space-fixed frame in a way that the

initial state of the particle is aligned with the new e3-axis as it has been for the

observation of rotational quantum revivals. It is then localized at β = 0 and I can

later use approximations which require small β � 1. For expressing the initial state
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(6.54) in the unprimed system we have to find the relation between the primed

and unprimed Euler angles. We expand the body-fixed axes n′i(Ω
′) = R(α′, β′, γ′)ei

around the minimum of the potential energy yielding

n′1(Ω′) ≈n′1(0, π/2, 0) + α′∂α′n
′
1(Ω′)|(0,π/2,0)

+ β′∂β′n
′
1(Ω′)|(0,π/2,0) + γ′∂γ′n

′
1(Ω′)|(0,π/2,0)

≈− e3 − (β′ − π/2)e1 + γ′e2,

(6.55a)

n′2(Ω′) ≈e2 − α′e1 + γ′e3. (6.55b)

n′3(Ω′) ≈e1 + α′e2 − (β′ − π/2)e3. (6.55c)

Analogously we obtain the expansion around β = 0 for the axes ni(Ω) = R(α, β, γ),

n1(Ω) ≈ −β cos γe1 + sin(α + γ)e2 − cos(α + γ)e3, (6.56a)

n2(Ω) ≈ β sin γe1 + cos(α + γ)e2 + sin(α + γ)e3, (6.56b)

n3(Ω) ≈ e1 + β sinαe2 − β cosαe3. (6.56c)

By equating ni(Ω) = n′i(Ω
′) and using the expressions (6.55) and (6.56) one gets the

following relation between primed and unprimed Euler angles

α′ = β sinα, β′ = β cosα +
π

2
, γ′ = sin(α + γ). (6.57)

With this we obtain the initial state in the Euler angle representation

〈αβγ|ψ̃000〉 ∝ e−β
2 cos2 α/(2σ̃2

α′ )e
−β2 sin2 α/(2σ̃2

β′ )e
− sin2(α+γ)2/(2σ̃2

γ′ ) (6.58)

This state is localized around β = 0 and (γ+α)� 1. However, we have seen before

that we get the highest contrast of the interference signal for states with only k = 0

occupied. So after cooling the state into the ground state we switch the tweezer

laser adiabatically from an ellipsoidally to a linearly polarized laser (ψ → 0). For

ψ = 0 the tweezer potential does not depend on the angle γ anymore and in the

ground state of the new potential only k = 0 is occupied. The initial state after

adiabatical changing is given by

〈αβγ|ψ000〉 ∝ e−β
2 cos2 α/(2σ2

α′ )e
−β2 sin2 α/(2σ2

β′ ) (6.59)

with the new σα′ = 3.24 × 10−3 rad and σβ′ = 3.22 × 10−3 rad. Note that for

σα′ = σβ′ this state becomes α-independent and takes the form of the exemplary

initial state (6.2) with m = k = 0.

94



6.4. Implementation with Silicon Nanorods

The free time evolution operator of the symmetric rotor is diagonal in the an-

gular momentum basis and we have already calculated the matrix elements of the

phase operator in the angular momentum representation. For the numerical simu-

lation of the interference signal the angular momentum basis is therefore the first

choice. Thus, we have to expand the initial state (6.59) in the angular momentum

representation of

〈jmk|ψ000〉 =
1√
N

√
2j + 1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ e−imαdjmk(β)e−ikγ

× e−β2 cos2 α/(2σ2
α′ )e

−β2 sin2 α/(2σ2
β′ ).

(6.60)

Here, I used Wigner d-matrices for the angular representation of the eigenstates of

the symmetric rotor 〈αβγ|jmk〉 = eimαdjmk(β)eikγ. The γ-integration is carried out

easily yielding the expected Kronecker δk0. In a next step, I approximate the small

Wigner d-matrix djmk(β) for small β � 1 by using Bohr-Sommerfeld quantization

action-angle variables (see Appendix B)

djmk(β) ≈ Jm−k

β
√(

j +
1

2

)2

−
(
m+ k

2

)2
 . (6.61)

Further, our assumption that k = 0 also implies m = 0 because when the symmetry

axis of the particle is tightly aligned with the space-fixed e3-axis, as is here the case,

the body-fixed n3-axis is approximately identical to the e3-axis. This means that

there cannot be any rotations around the space-fixed e3-axis when there are not any

around the symmetry axis. Further we see that σα′ ≈ σβ′ , which means that the

initial state depends only weakly on α and is to first order not α-dependent. Also

this results in m = 0. So (6.60) simplifies to

〈jmk|ψ000〉 =
1√
N

√
2j + 1

8π2
4π2δm0δk0

∫ ∞
0

dβ βe−β
2/(2σ2

α′ )J0

[
β

(
j +

1

2

)]
. (6.62)

After carrying out the β-integration [85] I obtain

〈jmk|ψ000〉 =
1√
N

√
2j + 1

8
4πσ2

α′δm0δk0 exp

[
−σ

2
α′(j + 1/2)2

2

]
. (6.63)

With this angular momentum representation of the initial state we can discuss the

time evolution of the rotor.

95



6. Interferometric Control of Nanorotor Alignment

6.4.2. Imprinting the Phase

As mentioned before, I propose to use a linearly polarized laser pulse to imprint the

phase. Since the induced relative phase

ϕ = ∆α|E0|2∆t/4
√

2~ (6.64)

with |E0|2 = 4P/(πw2
0ε0c) depends on the pulse duration ∆t and the laser power P .

I propose to vary the relative phase by the choice of the laser power P and use a

fixed pulse duration.

For imprinting the relative phase I propose to use a laser pulse with a duration

of 100 ns, a wavelength of 1550 nm, and laser waist of 30µm. Note that the suitable

pulse duration is limited by the dispersion time scale of the initial state. The pulse

duration has to be small in comparison to dispersion so that the orientation of the

rotor can be assumed to be constant during the illumination. For the ground state

discussed above the dispersion time 1/κ is of the order of microseconds and a pulse

duration of 100 ns seems to be suitable.

6.4.3. Discussion of the Interference Signal

I now discuss the time evolution considering different scenarios. We start with the

initial state (6.63) and use the time evolution operator for the symmetric rotor

(2.25). Since there are only angular momentum eigenstates with m = 0 and k = 0

occupied and since the Hamiltonian is diagonal in k and m only the matrix elements

〈j00|φ|j′00〉 of the phase operator are required

〈j00|φ|j′00〉 = e−iπ|j−j
′|/4e−iϕ/

√
2J |j−j′|

2

(
ϕ√
2

)
, (6.65)

for j−j′ even and zero for j−j′ odd. which reduces the dimension of the matrices to

jmax×jmax. The resulting interference signal is shown in Fig. 6.7(a) as a dash-dotted

line. The initial state is so tightly aligned (〈cos2 β〉 = 0.9998) that the interference

signal shows an optimal contrast.

Asymmetry of the Rotor

Now let us consider the asymmetry of the rotor in the way discussed in Sec. 6.3.1.

That is only the energy eigenvalues of the symmetric rotor are replaced by the ones

for the asymmetric rotor (6.30) while the eigenvectors remain unchanged. In Fig.

6.6 we see the effect of the asymmetry on the interference signal.
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6.4. Implementation with Silicon Nanorods

Figure 6.6.: Illustration of the effect of the asymmetry on the time evolution. In
orange we see the relative shift of the revival time as a function of the
asymmetry parameter b. The blue lines shows the alignment at t = Trev

for a relative phase of ϕ = 2π (upper line) and ϕ = π (bottom line).

Firstly, we observe a slight shift of the revival time. And second, I illustrate the

alignment 〈cos2 β〉 in dependence of the asymmetry parameter b for the two cases ϕ =

0 and ϕ = π at the shifted revival time. Note that we have to account for the shift of

the revival time for choosing the time for inducing the phase. We see a decrease of

the alignment even without an imprinted relative phase. Perfect quantum revivals

can therefore only be expected for symmetric rotors. The asymmetry destroys the

revivals. For a relative phase of ϕ = π we expect an alignment close to zero at the

revival time. Here, we observe an increase of the alignment. Thus, the contrast of

the interference signal decreases with increasing asymmetry. For the silicon particle

introduced in the beginning of this section the asymmetry parameter is |b| = 2.3×
10−5 with a revival signal for ϕ = 0 of 〈cos2 β〉 = 0.87.

Decoherence

In the following, I will take environmental orientational decoherence into account.

The dominant sources are thermal emission of photons, scattering of photons of the

phase imprinting laser, and collisions with residual gas particles.

In section 4.2.1 I already discussed the emission of photons of silicon nanorods.

We have seen that it can be neglected if the trapping laser and in this case also the
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6. Interferometric Control of Nanorotor Alignment

phase laser has a wavelength of λ = 1550 nm.

The influence of the phase imprinting laser depends on the pulse duration and the

laser power. I propose a duration of ∆t = 100 ns for the pulse, a laser wavelength of

λ = 1550 nm and a laser waist of w = 30 µm. With equation (6.64) we can estimate

the required laser power to imprint phases up to ϕ = 2π and obtain P = 1.3 mW.

The rate of scattered photons at a particle of volume V as a function of the laser

power is given by the Rayleigh scattering rate [30]

ΓRayleigh =
Pχ2

cV
2k3

3π2w0c~
. (6.66)

The number of photons scattered due to the pulse laser is given by the product of

interaction time ∆t and the scattering rate ΓRayleigh and for the highest considered

laser power we obtain a number of 1.7 × 10−13 photons. This number is so small

that we can neglect the interaction with the pulse laser as a source for environmental

decoherence.

The scattering rate Γgas for collisions with residual gas particles can again be

estimated by using (4.41) by replacing the surface of a cylinder by the surface of the

ellipsoid. For a gas pressure of pg = 5× 10−9 mbar the scattering rate is Γgas = 20.7

Hz. The rate is related to the diffusion constant via Γgas = 2D/~. With this we can

run the protocol for Monte Carlo unraveling described in Sec. 6.3.2 with the resulting

simulated interference signal represented in Fig. 6.7(a). As we have already seen for

the observation of orientational quantum revivals, the collisions with residual gas

particles results in a decreasing alignment at the revival time. This is also the main

effect we observe for the interference signal. Further, it leads to a greater reduction

of the alignment for ϕ = 2π compared to the alignment at ϕ = 0 than observed

without environmental decoherence. But this effect is negligible in comparison to

the general reduction at ϕ = 0.

Imperfections of the Initial State

So far, we presumed an initial state of the rotor that shows no rotations around its

body-fixed n3-axis, as expressed by the quantum numbers k = m = 0. To reach

such an initial state one has to first cool the rotational motion of the nanoparticle

into the ground state of a 3D orientation dependent potential, and then reduce the

ellipticity of the tweezer laser adiabatically to a linear polarization, as described in

section 6.4.1. Both are very strong experimental requirements and in the following

I discuss the limits of the preparation of the initial state.

For a finite temperature there will always be a residual possibility to be in an

excited state and not only in the ground state. The density operator is then given
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(a) (b)

Figure 6.7.: Panel (a) shows the interference signal for the initial state (6.63) without
considering environmental decoherence (dashed-dotted line) compared
with the interference signal including environmental decoherence due to
collisions with residual gas pressure with pg = 5×10−9mbar (blue line).
(b) Shows the alignment associated with three exemplary Monte-Carlo
trajectories.

by

ρ =
1

Z

∑
n

e−En/(kBT )|φn〉〈φn|. (6.67)

For a sufficient small temperature we are still in the deep trapping regime and can

still approximate the potential by the product of its harmonically expansions in α′,

β′ and γ′. In addition to the ground state |φ0〉 = |ψ̃000〉 we consider the next excited

states |φ1〉 = |ψ̃001〉,|φ2〉 = |ψ̃010〉 and |φ3〉 = |ψ̃100〉, which are the product states

of ground states in two of the dimensions and the first excited state in the third

dimension in the primed system {α′, β′, γ′}. In the rotated system α, β, γ the states

before the adiabatical changing read

〈αβγ|φ1〉 =

√
1

N1

sin(α + γ)〈αβγ|ψ̃000〉, (6.68a)

〈αβγ|φ2〉 =

√
1

N2

β cosα〈αβγ|ψ̃000〉, (6.68b)

〈αβγ|φ3〉 =

√
1

N3

β sinα〈αβγ|ψ̃000〉, (6.68c)

with the eigenenergies

E1 =
~
2

(ωα + ωβ + ωγ) + ~ωγ (6.69a)

E2 =
~
2

(ωα + ωβ + ωγ) + ~ωβ (6.69b)

99



6. Interferometric Control of Nanorotor Alignment

E3 =
~
2

(ωα + ωβ + ωγ) + ~ωα (6.69c)

and the ground state 〈αβγ|ψ̃000〉 given by Eq. (6.58). After adiabatical changing

the ellipticity to ψ = 0, which implies the ground state, and the factor 〈αβγ|ψ̃000〉
turns into the γ-independent state 〈αβγ|ψ000〉 given by (6.59). But the excited state

in γ′, |ψ001〉, is γ-dependent and all three of the excited states depend on α even

for σα′ = σβ′ . This implies that a finite number of angular momentum states with

k 6= 0 and m 6= 0 will be occupied. The calculation of their representation in the

angular momentum basis is similar to the one of the ground state, see Eq. (6.63).

It results in

〈jmk|ψ001〉 = −i
√

2j + 1

2N1

πσ2
α′e
−σ2

α′ [(j+1/2)2−1]/2(δm1δk1 − δm−1δk−1), (6.70a)

〈jmk|ψ010〉 =

√
2j + 1

2N2

πσ4
α′

√(
j +

1

2

)2

+
m2

4
e−σ

2
α′ [(j+1/2)2−m2/4]/2 (δm1 − δm−1) ,

(6.70b)

〈jmk|ψ100〉 = −i
√

2j + 1

2N3

πσ4
α′

√(
j +

1

2

)2

+
m2

4
e−σ

2
α′ [(j+1/2)2−m2/4]/2 (δm1 + δm−1) .

(6.70c)

With this we can calculate the interference signal fora state with an exemplary

temperature of 100µK. At this temperature the occupation probability of the ground

is around 80%. The interference signal for the corresponding density operator is

shown in Fig. 6.8 along with this one of the ground state. We see that it is almost

impossible to distinguish both signals. Thus, occupations of the first excited states

do not affect the interference signal in a significant way.

But what happens when we cannot change the ellipticity of the tweezer laser

adiabatically all the way to ψ = 0? Whether a process is adiabetic or not depends

on the timescale τ on which the Hamiltonian changes. For an ideal adiabatic process

we require τ →∞ but in practice it depends on the energy separation of the initial

state and the adjacent energy states. The timescale has to be large enough to

prevent transitions to other energy states. Thus, to stay in the ground the condition

τ > 2π~/(E0−E1) must be fulfilled. The smaller the energy gap between the states

the larger must the timescale be.

Optimally, the state stays in the ground state with energy E0. The state with the

next larger eigenenergy is the state ψ001 and the energy gap between the two states

is E0 − E1 = ~ωγ′ . Equation (6.53) connects ωγ′ with the ellipticity ψ and we see

that ψ = 0 implies ωγ′ = 0. Thus, reaching a γ-independent potential adiabatically
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(a) (b)

Figure 6.8.: Illustrated in panel (a) is the interference signal for the ground state
(6.59) (blue solid line) as the initial state and for an initial density op-
erator (6.67) for a temperature of T = 100 µK (red dashed line). (b)
shows the anti-alignment at ϕ = π for three different angular spreads
σβ′ = 0.1 (yellow), σβ′ = 0.03 (orange) and σβ′ = 0.003 (blue) as func-
tion of the width σk in k.

is in practice impossible. But where is the limit? It is not possible to carry out

the switching arbitrarily slowly because the tweezer laser interacts with the particle

which leads to recoil heating with the heating rate [33]

ξrec
q = γscε

2~/(2Iωq)∆χ2
q

(
1− sin2 ψδqβ − cos2 ψδqγ

)
, (6.71)

with q ∈ {α, β, γ} and the photon scattering rate γsc = ωk3V 2/6πVc. Here, ω is

the tweezer frequency, k the wave number, V the volume of the particle and Vc the

mode volume of the tweezer. Further, it depends on the susceptibility anisotropy

∆χα = |χβ − χγ| (∆χβ and ∆χγ are given by cyclic permutations) and the laser

power Pt via ε2 = 2PtkVc/π~ωwxwy. For further discussion of the initial state we

have to keep this heating rate in mind.

Looking at the state (6.59) before switching off the ellipticity adiabatically we

see that a finite value for σγ′ leads to a γ-dependent initial state, where angular

momenta k 6= 0 are occupied and the state exhibits coherences in k. Since the

coherences in k have only a negligible effect on the interference signal we assume a

mixture in k with the probability for each k given by

pk =
1

Z
e−k

2/σ2
k . (6.72)

Figure 6.8 illustrates the alignment for ϕ = π at t = Trev in dependence of σk

for initial states with different angular spreads σβ′ . For σk = 0 the alignment for

ϕ = π is increasing with increasing angular spread σβ′ . This is expected because
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6. Interferometric Control of Nanorotor Alignment

the initial alignment decreases with increasing σβ′ . The experimental set up with

the parameters given in section 6.4.1, in particular with a tweezer laser power of

Pt = 0.1 W, has a angular spread of σβ′ ≈ 0.003. A lower laser power leads to larger

angular spread and with this to a lower contrast of the interference signal on the

one hand, but on the other hand it reduces the recoil heating.

With increasing σk the alignment at t = Trev for ϕ = π increases. Especially for

an angular spread of σβ′ = 0.1 the alignment rises even for small σk. For σβ′ = 0.03

values for σk up to σk = 2 promise a sufficiently high contrast of the interference

signal. For σβ′ = 0.003 a spread in k with σk = 2 has almost no effect on the inter-

ference signal and for values of σk up to σk = 6 the contrast is still high enough.

We therefore know which σk have to be reached to control the alignment by inducing

relative phases. To estimate how the recoil heating affects the initial state we need

the timescale for the adiabatic process. The frequency ωγ′ is directly connected with

σk =
√
Icωγ′/2~. From σk = 2 it follows that τ � 3.4 × 10−5s. For σk = 5 one

obtains τ � 5.5 × 10−6. For σk = 2 and Pt = 0.1 which leads to σβ′ = 0.003 the

heating rate is ξ = 603.8 Hz. For an angular spread of σβ′ = 0.03 one needs a laser

power of only Pt = 10−5 W and with this the heating rate reduces to ξ = 6.1× 10−2

Hz. During the time of the adiabatic process the recoil heating has no significant

influence on the initial state and does not lead to excitement of the state to higher k.

To summarize, the ground state with only k = m = 0 as I introduced in section

6.4.1 as the initial state is still idealistic and in practice not feasible. But the occu-

pation of the first excited states has no noticeable effect on the interference signal

and even with finite values of k with a spread of σk = 2 the interferometric control

of a nanorotor’s alignment is possible.

Further, I discussed the asymmetry of the nanorparticle and environmental deco-

herence. Both lead to a decrease of visibility but within an acceptable range. Thus,

the experimental observation of the here shown interference signal should be feasible

with state-of-the-art techniques.
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In the focus of my thesis were novel superposition tests with massive aspherical

nanoparticles exploiting the non-linearity of the rotational dynamics. Further, I

used and developed semiclassical methods for the description of rotational quantum

mechanics whith thousands angular momentum quanta involved.

In the first part, I presented an experimental interference scheme for probing rota-

tional quantum revivals with aspherical and anisotropic nanoparticles. This scheme

contains four important steps. In the first step, the initial state is prepared by

trapping and levitating the particle in an optical tweezer and cooling the orientional

degrees of freedom by cavity or feedback cooling. In the second phase of the experi-

ment the tweezer laser is turned off, the particle drops and the orientational degrees

of freedom evolve freely. At the revival time Trev = 2πI/~ or an integer multiple

thereof the alignment of the nanorotor is measured by recording the light scattered

due to a running laser wave. The revival time is very sensitive to the length of

the object. Thus, in the last step the particle is recycled by trapping it again in a

standing linearly polarized laser wave and moving it to the original position.

I discussed and demonstrated the feasibility of this experimental scheme at the

example of double-walled carbon nanotubes with a length of 50 nm and a mass of

1.9 × 105 amu and silicon nanorods with a length of 50 nm as mass of 1.4 × 106

amu. Numerical calculations of the rotational dynamics show that this interfer-

ence scheme is realizable with state-of-the-art and upcoming techniques of levitated

optomechanics. The quantum revivals are observable for temperatures of the orien-

tational motion of below 1 K and in the presence of environmental decoherence due

to collisions with residual gas particles at a realistic gas pressure of 5 × 10−9 mbar

(5×10−10 mbar for silicon nanorods). This experimental scheme represents a macro-

scopic test of the superposition principle and the quantization of angular momenta.

Further, it can test objective collapse models, like for example continuous sponta-

neous localization [12], which predicts the loss of orientational coherences [89, 90].

Especially for initial states for temperatures beyond 1 mK the numerical diagonal-

ization of the Hamiltonian becomes intractable due to the high number of occupied

angular momentum states. However, this problem is solved by a semiclassical ap-

proximation of the initial state matrix elements in the angular momentum eigenbasis
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which allows the free rotational dynamics to be calculated exactly.

The revival signal is very sensitive to static external torques and so this set up

opens the door for quantum enhanced ultra-sensitive torque sensing. In the here

presented set up external torques on the order of 10−30 Nm are observable, which is

many magnitudes smaller than in state-of-the art set ups [28,82].

For discussing the effect of an external torque on the revival signal it is necessary

to not only approximate the initial state semiclassically but also the time evolution

operator. Here, I used the semiclassical WKB method for planar rotations and

the EBK method for linear rotations for an approximation of the rotational time

evolution which preserve the revival structure. While for planar rotations the WKB

method is expedient, for linear rotations a perturbative method seems to be the

suitable solution.

In the last part of this thesis, I presented a Mach-Zender type interferometric

scheme for the steering of a nanorotor alignment based on applying a pulsed optical

dipole potential during the free time evolution. This scheme is based on rotational

quantum revivals and the emergence of superpositions of well-localized orientational

wave packets at fractional revival times. The effect is described in an effective

eight-dimensional subspace, which is derived by a semiclassical approximation of the

free rotational time evolution operator. I discussed deviations of an ideal perfectly

aligned linear rigid rotor and their effect on the interference signal. The interference

effect is observable even for realistic initial states of a slightly asymmetric particle

interacting with its environment.

This interferometric scheme can not only be used for testing orientational super-

positions but also to control the field-free alignment of single nanoscale particles.

The scheme can be extended by applying several laser pulses at different integer

multiples of Trev/8 at smaller fractions of the revival time. It can be used for the

preparation of specific orientational superpositions. The control of the alignment

enables tests of quantum physics, orientation resolved spectroscopy, and rotation

state-resolved collision studies [91, 92] and it may even be applied for processing

quantum information [93,94].

This suggests that there are a lot of interesting applications of rotational quantum

dynamics which are challenging on the experimental and the theoretical side.
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A. WKB-Approximation of the Time

Evolution Operator

We start with the Hamiltonian of a linear rigid rotor and assume additionally pα = 0

H =
p2
β

2I
− ~2

8I

(
1 +

1

sin2 β

)
=− ~2

2I

1

sin β
∂β(sin β∂β),

(A.1)

where I use the angle representation (2.17) of the canonical momentum operator

pβ, and the second term in the first line is the quantum potential. To find the

eigenstates |φ〉 of the stationary Schrödinger equation

H|φ = E|φ〉 (A.2)

we make the ansatz [62]

φ(α) = eiS(β)/~, (A.3)

and expand S(β) in orders of ~, S(β) = S0(β) + ~S1(β)/i+O(~2). Inserting (A.3)

into (A.2) and sorting in orders of ~ leads to

1

2I
(∂βS0(β))2 = E (A.4a)

− i~
2I

[
∂2
βS0(β) + 2[∂βS0(β))(∂βS1(β)]− cot β∂βS0(β)

]
= 0. (A.4b)

With the classical canonical momentum pβ(β) = ±
√

2IE we obtain from (A.4)

expressions for S0(β) and S1(β)

S0(β) =

∫ β

0

dβ′ pβ(β′) =
√

2IEβ (A.5a)

S1(β) = −1

2
ln(pβ(β))− 1

2
ln(| sin β|) + c. (A.5b)
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Inserting (A.5a) in (A.3) and using the Bohr- Sommerfeld quantization for the energy

E = ~2(j + 1/2)/(2I) we obtain

φWKB(β) =
c1√

~(j + 1/2) sin β
exp

[
i

~
(~(j + 1/2)β + c̃1)

]
+

c2√
~(j + 1/2) sin β

exp

[
− i
~

(~(j + 1/2)β + c̃2)

]
.

(A.6)

To determine the integration constants we compare the WKB eigenstates with

the exakt eigenstates of the free Hamiltonian with m = 0

〈αβ|j0〉 =
√

(2j + 1)/(4π)Pj(cos β). (A.7)

These exact eigenfunctions are real and so we set c1 = c2 and c̃1 = c̃2. Further

we look at the exact eigenfunction for β = π/2 because we expect the semiclassical

eigenfunction matches here best with the exact ones. The Legendre polynomials are

zero at β = π/2 for all odd j. For even values of j the eigenfunction at β = π/2

switches between a local maximum for j = 4n with n ∈ N0 and a local minimum

for j = 2(2n + 1) with n ∈ N0. To obtain the same behaviour for the WKB

eigenfunctions we have to choose c̃1 = π/4. The last remaining constant c1 is now

determined by the normalization of the eigenfuncion. With this we get the result

for the WKB eigenfunctions

φWKB(β) =
2√

2π sin β
cos

[(
j +

1

2

)
β − π

4

]
(A.8)

and with this the semiclassical propagator reads

〈β|U(t)|β0〉 =
1√

sin β sin β0

[uc(β − β0; t) + us(β + β0; t)] (A.9)

with

uc(∆β; t) =
1

π

∑
j∈N0

e−ij(j+1)πt/Trev cos

[(
j +

1

2

)
∆β

]

=
ei∆β/2

2π

∑
k∈Z

e−iπk(k+1)πt/Treveik∆β (A.10a)

us(β̄; t) =
1

π

∑
j∈N0

e−ij(j+1)πt/Trev sin

[(
j +

1

2

)
2β̄

]
(A.10b)

with ∆β = β − β0 and β̄ = (β + β0)/2. Note that one gets the same result by

asymptotic expansion of the Legendre polynomials Pj(·) for large j [72].
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B. Semiclassical Approximation of

Wigner d-matrix

The Wigner d-matrices dkjm(β) are defined by the matrix elements of the rotation

operator describing a rotation around the e2-axis

djmk(β) = 〈jm|e−iβJ2|jk〉 (B.1)

In the limit of β � 1 and j � 1 we can use Bohr-Sommerfeld approximation

method [62] for the semiclassical calculation of the matrix elements. For that we

express the space-fixed J2-component in terms of action-angle variables [62]

J2 =
√
J2 −M2 sinαM , (B.2)

and use the quantization rules M = ~m and J2 = ~2(j + 1/2)2. Inserting this into

(2.72) for the calculation of semiclassical matrix elements yields

〈jm|e−iβJ2|jk〉 =
1

2π

∫ 2π

0

dαm ei(m−k)αme−iβ
√

(j+1/2)2−(m+k)2/4 sinαm . (B.3)

By carrying out the αm-integration we obtain the resulting semiclasscial expression

for the Wigner d-matrices

djmk(β) = Jm−k

√(j +
1

2

)2

−
(
m+ k

2

)2

β

 . (B.4)

107





Danksagung
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[32] H. Rudolph, J. Schäfer, B. A. Stickler, and K. Hornberger, Theory of nanopar-

ticle cooling by elliptic coherent scattering, Phys. Rev. A 103, 043514 (2021).
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