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Abstract
Deformation microstructure is studied for a 1D-shear problem in geometrically nonlinear Cosserat elasticity.
Microstructure solutions are described analytically and numerically for zero characteristic length scale.
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1. Introduction

This article studies the formation of microstructure due to simple shear boundary conditions within a
geometrically nonlinear Cosserat theory.

The Cosserat model is one of the best-known generalized continuum models [1]. It assumes that mate-
rial points can undergo translation, described by the standard deformation map u : O! R

3 and inde-
pendent rotations described by the orthogonal tensor field R : O! SO(3), where O � R

3 describes the
reference configuration of the material. Therefore, the geometrically nonlinear Cosserat model induces
immediately the Lie-group structure on the configuration space R3 × SO(3).

Both fields are coupled in the assumed elastic energy W = W (Du,R, DR) and the static Cosserat
model appears as a two-field minimization problem which is automatically geometrically nonlinear due
to the presence of the non-abelian rotation group SO(3). Material frame-indifference (objectivity) dic-
tates left-invariance of the Lagrangian W under the action of SO(3) and material symmetry (here iso-
tropy) implies right-invariance under action of SO(3).

In the early 20th century, the Cosserat brothers E. and F. Cosserat introduced this model in its full
geometrically nonlinear splendor [2] in a bold attempt to unify field theories embracing mechanics,
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optics and electrodynamics through a common principal of least action. They used the invariance of the
energy under Euclidean transformations [3,4] to deduce the correct form of the energy
W = W (RTDu,RT∂xR,RT∂yR,RT∂zR) and to derive the equations of balance of forces (variations w.r.t.
the deformation u, the force-stress tensor may loose symmetry)[5], and balance of angular momentum
(variations w.r.t. rotations R). The Cosserat brothers did not provide, however, any specific constitutive
form of the energy since they were not interested in specific applications.

1.1. Three-dimensional geometrically nonlinear isotropic Cosserat model

The underlying three-dimensional isotropic Cosserat model can be described in terms of the standard
deformation mapping u : O � R

3 ! R
3 and an additional orthogonal microrotation tensor

R : O � R
3 ! SO(3).

The goal here is to find a minimizer of the following isotropic energy (The volumetric term
( l

4
)(( detU � 1)2 + (( 1

detU
)� 1)2) is independent of the microrotation R and polyconvex in Du. Its

quadratic approximation is ( l
2

)tr2(U � 1).):

E(u,R) =

ð
O

m sym U � 13

� ��� ��2 + mc skew U � 13

� ��� ��2 +
l

4
detU � 1
� �2

+
1

detU
� 1

� �2
 !

+ m
L2

c

2
a1 dev sym RTCurlR
�� ��2 + a2 skewRTCurlR

�� ��2 +
a3

3
tr RTCurlR
� �2

� �
dx

=

ð
O

Wmp U
� �

+ Wdisloc RTCurlR
� �

dx! min w:r:t: (u,R) , U = RTDu :

ð1Þ

The problem will be supplemented by Dirichlet boundary conditions for the deformation u and the
microrotations R can either be left free or prescribed or connected to Du via the coupling condition
skew (U )jG = 0 with G = ∂O. Here, m . 0 is the standard elastic shear modulus, l the second elastic Lamé
parameter, and mc ø 0 is the so-called Cosserat couple modulus; a1, a2, a3 are non-dimensional non-neg-
ative weights and Lc . 0 is a characteristic length. The isotropic energy (1) is written in terms of the non-
symmetric Biot type stretch tensor U = RTDu (first Cosserat deformation tensor[2]) and the curvature
measure RTCurlR. We call a := RTCurlR the second order dislocation density tensor [6]. Due to the
orthogonality of dev sym, skew and tr(:)1, the curvature energy provides a complete control of

jaj2 = jRTCurlRj2 = jCurlRj2 provided a1, a2, a3 . 0 : ð2Þ

Using the result in Neff and Münch [7],

jCurlR j2
R

3× 3 ø c+jDR j2
R

3× 3× 3 , ð3Þ

shows that the energy (1) controls DR in L2(O,R3× 3× 3).
In this setting, the minimization problem is highly non-convex w.r.t. (u,R). Existence of minimizers

for (1) with mc . 0 has been shown first in Neff [8] see also [6,8–11], the partial regularity for minimizers
of a related problem is investigated in Li and Wang [12] and Gastel [13]. The Cosserat couple modulus
mc controls the deviation of the microrotation R from the continuum rotation polar(Du) in the polar

decomposition of Du = polar(Du) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DuTDu

p
, cf. Neff et al. [14].

For mc ! ‘, the constraint R = polar(Du) is generated and the model would turn into a Toupin cou-
ple stress model.

Here, we derive the three-dimensional Euler–Lagrange equations based on the curvature expressed in
the dislocation tensor a = RTCurlR. We can write the bulk elastic energy as

E(u,R) =

ð
O

Wmp(U) + Wdisloc(a) dx, U = RTDu , a = RTCurlR : ð4Þ
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Taking variations of Equation (4) w.r.t. the deformation u leads to

dE(u,R) � du =

ð
O

DWmp(U),RTDdu

 �

R
3× 3 dx= 0 , 8 du 2 C‘

0 (O,R3)

,
ð
O

RDWmp(U), Ddu

 �

R
3× 3 dx=

ð
O

Div R �DWmp(U)
� 


, du

 �

R
3 dx= 0 :

ð5Þ

Taking variation w.r.t. R 2 SO(3) results in (abbreviate F :=Du)

dE(u,R) � dR =

ð
O

DWmp(U), dRT F

 �

+ DWdisloc(a), dRTCurlR + RTCurldR

 �

dx

=

ð
O

DWmp(U), dRT R � RT F

 �

+ DWdisloc(a), dRT R � RTCurlR + RTCurldR

 �

dx

=

ð
O
hDWmp(U) � UT

, dRT Ri+ DWdisloc(a), dRT R � a + RTCurldR

 �

dx= 0 :

ð6Þ

Since RT R =1, it follows that dRT R + RT dR = 0 and dRT R = A 2 so(3) is arbitrary. Therefore, Equation
(6) can be written as

0 =

ð
O
hDWmp(U) � UT

,Ai+ DWdisloc(a) � aT ,A

 �

+ DWdisloc(a),RTCurl(RAT )

 �

dx ð7Þ

for all A 2 C‘
0 (O, so(3)). Using that Curl is a self-adjoint operator, this is equal to

0 =

ð
O
hDWmp(U) � UT

+ DWdisloc(a)aT ,Ai + Curl R DWdisloc(a)ð Þ,RAT

 �

dx

=

ð
O

DWmp(U) � U + DWdisloc(a)aT�RTCurl R DWdisloc(a)ð Þ,A

 �

dx 8A 2 C‘
0 O, so(3)ð Þ :

ð8Þ

Thus, the strong form of the Euler–Lagrange equations reads

Div R DWmp(U)
� 


= 0 , 00balance of forces00 ,

skew RT Curl R DWdisloc(a)ð Þ
� 


= skewðDWmp(U) � UT
+DWdisloc(a) � aTÞ ,

00balance of angular momentum00 :

ð9Þ

If DWdisloc(a) [ 0 (no moment stresses, zero characteristic length Lc = 0), then balance of angular
momentum turns into the symmetry constraint

DWmp(U) � UT 2 Sym(3) : ð10Þ

A complete discussion of the solutions [15] to this constraint and applications can be found in Neff
and others [4,16–18].

2. The Cosserat model in simple shear

To elucidate the proposed nonlinear theory, notably the impact of boundary and side conditions on the
microrotations, cf. figure 1, we consider the deformation of an infinite layer of material with unit height,
fixed at the bottom and sheared in e1-direction with amount g at the upper face. We impose the bound-
ary conditions u(x1, x2, 0) = (x1, x2, 0)T , u(x1, x2, 1) = (x1 + g, x2, x3)T , x1, x2 2 R. The parameter g ø 0 is
the amount of maximal shear at the upper face per unit length. The most general deformations are of the
form
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u(x1, x2, x3) = x1 + u(x1, x2), x2, x3 + y(x1, x3)ð ÞT ,

see Figure 2. Hence, we look for energy minimizing deformations in the form

u(x1, x2, x3) =
x1 + u(x1, x3)

x2

x3 + y(x1, x3)

0@ 1A , Du(x1, x2, x3) =
1 + ux1

(x1, x3) 0 ux3
(x1, x3)

0 1 0

yx1
(x1, x3) 0 1 + yx3

(x1, x3)

0@ 1A , ð11Þ

with u(x1, 0) = 0, u(x1, 1) = g. The infinite extension in e1-direction implies that ∂x1
must vanish and from

symmetry of the boundary conditions at the upper and lower face, there is no reason for a displacement
in e3-direction either. Hence, the reduced kinematics

u(x1, x2, x3) =
x1 + u(x3)

x2

x3

0@ 1A , F =Du(x1, x2, x3) =
1 0 u0(x3)
0 1 0

0 0 1

0@ 1A , ð12Þ

Figure 2. The deformed state exhibits a homogeneous region in the interior of the structure which motivates the kinematics of
simple shear.

Figure 1. A single crystal copper specimen in simple shear, showing glide planes and micro bands. Lattice rotations do not coincide
with continuum rotations. Courtesy of D. Raabe, MPI-Eisenforschung, Düsseldorf [19].
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with u(0) = 0, u(1) = g suffices. The considered problem is therefore the exact formulation of the simple
shear in e1-direction with amount g at the upper face of a layer of material with unit height, fixed at the
bottom.

Accordingly, we assume microrotations R 2 SO(3) in the form

R(x1, x2, x3) =
cosa(x3) 0 sina(x3)

0 1 0

� sina(x3) 0 cosa(x3)

0@ 1A , ð13Þ

having fixed axis of rotation e2. Therefore,

CurlR =
0 � sina(x3)a0(x3) 0

0 0 0

0 � cosa(x3)a0(x3) 0

0@ 1A : ð14Þ

In the following, we denote x3 by x. It holds jRT
CurlRj2 = jCurlRj2 = ja0j2.

Inserting the ansatz (11) and (13) leaves us with the energy

E(u,a) =

ð1

0

W (u0,a,a0)dx

:= m

ð1

0

2L2
c ja0j

2 + 2 cos(a)� 1ð Þ2 +
1 + sin2(a)

2
ju0j2 + 2 cos(a)� 1ð Þ sin(a)u0dx

+
mc

2

ð1

0

cos2(a) 2 tan(a)� u0ð Þ2dx:

ð15Þ

3. A one-dimensional simple shear problem

In this article, we are now concerned with minimizers of the mechanical energy functional

E(u,a) = m

ð1

0

2L2
cja0j

2 + 2 cos(a)� 1ð Þ2 +
1 + sin2(a)

2
ju0j2 + 2 cos(a)� 1ð Þ sin(a)u0dx

+
mc

2

ð1

0

cos2(a) 2 tan(a)� u0ð Þ2dx:
ð16Þ

Introducing the third-order expansion cos(a);1� ( a2

2
), sin(a);a� ( a3

6
) and dropping the higher

order terms leads to the reduced mechanical energy functional

Ered(u,a) := m

ð1

0

2L2
cja0j

2 +
1 + a2

2
ju0j2 +

a4

2
� a3u0

� �
dx

+ 2mc

ð1

0

u0

2
� a

� �
u0

2
� a� a2

6
(3u0 � 2a)

� �
dx:

ð17Þ

For the definitions (16) and (17), see also [20][Equation (3.11), Equation (3.22)]. We first provide
alternative representations of these two functionals as this allows to simplify the Euler–Lagrange equa-
tions and will give insights into the minimizers later.

Lemma 1. The functionals E, Ered defined in Equations (16) and (17) can alternatively be written as

E(u,a) =

ð1

0

W (u0,a,a0)dx ð18Þ
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=
m

2

ð1

0

4L2
cja0j

2 + ju0j2 + sin(a)u0 � 4 sin2 a

2

� �� �2

dx

+
mc

2

ð1

0

cos(a)u0 � 2 sin(a)ð Þ2dx,
ð19Þ

Ered(u,a) =
m

2

ð1

0

4L2
c ja0j

2 + ju0j2 + a(a�u0)½ �2dx

+
mc

2

ð1

0

(1� a2)ju0j2 +
8a2

3
� 4

� �
au0+ 4a2 � 4a4

3
dx:

ð20Þ

Proof. Both identities follow from straightforward elementary rearrangements. Trigonometric addition
formulas imply cos(2a) = cos2(a)� sin2(a) = 1� 2 sin2(a); hence,

cos(a)� 1 =� 2 sin2 a

2

� �
: ð21Þ

Plugging Equation (21) into Equation (16) yields

2(cos(a)� 1)2 +
1 + sin2(a)

2
ju0j2 + 2(cos(a)� 1) sin(a)u0

= 8 sin4 a

2

� �
+
ju0j2

2
+

sin2(a)ju0j2

2
� 4u0 sin2 a

2

� �
sin(a)

=
1

2
sin(a)u0 � 4 sin2 a

2

� �� �2

+
ju0j2

2
:

ð22Þ

Similarly, for the mc-integral in Equation (16),

cos2(a) 2 tan(a)� u0ð Þ2 = cos2(a)ð4 tan2(a)� 4 tan(a)u0+ ju0j2Þ
= 4 sin2(a)� 4 sin(a) cos(a)u0+ cos2(a)ju0j2 = cos(a)u0 � 2 sin(a)ð Þ2:

ð23Þ

This proves Equation (19). The proof of Equation (20) is immediate from

1 + a2

2
ju0j2 +

a4

2
� a3u0=

ju0j2

2
+

a2

2
(ju0j2 � 2au0+ a2) ,

and a re-ordering of the mc-integral.

Remark 1. The mc-part of Ered cannot be written as a complete quadratic form since some higher order

terms have been dropped. However, by keeping the terms mc

2
a4

4
ju0j2 � 1

3
a5u0+ 1

9
a6

� �
of the Taylor

expansion of W , we find

Ered(u,a) =

ð1

0

Wred(u0,a,a0)dx ð24Þ

=
m

2

ð1

0

4L2
c ja0j

2 + ju0j2 + a(a�u0)½ �2dx+
mc

2

ð1

0

2� a2

2
u0 � 6a� a3

3

� �2

dx: ð25Þ

From now on we will use this representation (25) instead of (20).
We consider the minimization problem

E(u,a)! min ð26Þ
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subject either to the consistent coupling conditions [21] (derived from skew(RT F)jf0, 1g= 0)

u(0) = 0, u(1) = g, u0(0) = 2 tan a(0)ð Þ, u0(1) = 2 tan a(1)ð Þ ð27Þ

or subject to the Dirichlet boundary conditions (for prescribed microrotation angle aD 2 R at the upper
and lower faces)

u(0) = 0, u(1) = g, a(0) = a(1) = aD: ð28Þ

To single out solutions, we may impose the further symmetry constraint

u0(1) = u0(0): ð29Þ

The Euler–Lagrange equations related to Equation (26), replacing [20][Equation (3.14)], read

2m + (mc � m) cos2(a)
� 


u00 = 2(mc � m) sin(a) cos(a)u0+ cos2(a)�sin2(a)
� �

a0 + 2m cos(a)a0, ð30Þ

4mL2
ca00 = cos(a)u0 � 2 sin(a)ð Þ (m� mc) sin(a)u0 � 4 sin2 a

2

� �� �
� 2mc

h i
ð31Þ

for x = x3 2 O := (0, 1) subject to either Equations (27), (29) or (28), (29). The Equations (30) and (31)
constitute balance of force and angular momentum, respectively. Equation (31) is the form that
Equation (10) takes for the ansatz made here.

Equation (30) is equivalent to (d=dx)t(u,a) = 0 in O for the force stress tensor t = t(u,a) defined by

t :=Du0W (u0,a,a0) = m u0+ sin(a) sin(a)u0 � 4 sin2 a

2

� �� �h i
+ mc cos(a) cos(a)u0 � 2 sin(a)½ �: ð32Þ

The Euler–Lagrange equations related to Ered(u,a)! min lead to the reduced system

� m(1 + a2) + mc 1�a2 +
1

4
a4

� �� �
u00 = (4mc�3m)a2a0+ 2(m�mc)aa0u0 � 2mca0

+ mca3 u0 � 5

6
a

� �
a0,

ð33Þ

m �L2
ca00+

1

2
a3 � 3

4
a2u0+

1

4
aju0j2

� �
+ mc � 1

4
aju0j2 + a2u0 � 2

3
a3 + a� 1

2
u0

� �
+ mc

1

8
a3ju0j2 � 5

24
a4u0+

1

12
a5

� �
= 0

ð34Þ

for x = x3 2 O := (0, 1) subject either to the reduced consistent coupling boundary conditions

u(0) = 0, u(1) = g, 2a(0) = u0(0), 2a(1) = u0(1) ð35Þ

and Equation (29) or subject to Equations (28) and (29). Underlined in Equations (33) and (34) are those
higher order terms that are only present if Ered is defined by Equation (25) instead of Equation (17) or
(20).

Equation (33) is equivalent to (d=dx)tred(u,a) = 0 in O for the reduced force stress tensor
tred = tred(u,a) defined by

tred :=Du0W (u0,a,a0) = m u0 � a2(a�u0)
� 


+ mc

2� a2

2

� �
2� a2

2
u0 � 6a� a3

3

� �
: ð36Þ
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We point out that Equation (34) can equally be written as

mL2
ca00= m∂aFu(a) + mc ∂aQu(a) ð37Þ

with the potentials

Fu(a) :=
1

8
a2(a� u0)2, Qu(a) :=

1

8

2� a2

2
u0 � 6a� a3

3

� �2

: ð38Þ

For small values mc ø 0, the double-well potential Fu (see Figure 3) is dominant and Equation (37) cor-
responds to a stationary Allen–Cahn equation (Allen–Cahn equation: ∂tu = eDu� c0(u) with a double-
well potential c). The larger the Cosserat couple modulus mc, the stronger the influence of the quadratic
potential Qu. There is a bifurcation and a critical value mcrit

c , such that for mc ø mcrit
c , the right-hand side

of Equation (37) has only one minimizer (see Figure 4).
Related to different boundary conditions, we introduce the reflexive Banach spaces

XD := (u,a) 2 W 1, 2(O; R)
� �2 ju(0) = 0, u(1) = g, a(0) = a(1) = aD

n o
,

X D := (u,a) 2 W 1, 2(O; R) × L4(O; R) ju(0) = 0, u(1) = g, a(0) = a(1) = aD

on ð39Þ

and correspondingly for the consistent coupling conditions

Figure 3. The double-well potential mFu(a) for a 2 ½�0:2, 1�, u0= 0:8 and m = 1.

Figure 4. The potential mFu(a) + mc Qu(a) (in red) compared with the double-well potential mFu(a) (in blue) for a 2 ½�0:2, 1�,
u0= 0:8 and m = 1. Left: mc = 0:02. Center: mc = 0:05. Right: mc = 0:3.
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XC
red := (u,a) 2 W 1, 2(O; R)ð Þ2 ju(0) = 0, u(1) = g, 2a(0) = u0(0), 2a(1) = u0(1)

n o
,

XC := (u,a) 2 W 1, 2(O; R)ð Þ2 ju(0) = 0, u(1) = g, 2 tana(0) = u0(0), 2 tana(1) = u0(1)
n o

,

X C
red :=

n
(u,a) 2 W 1, 2(O; R)×L4(O; R) ju(0) = 0, u(1) = g, 2a(0) = u0(0), 2a(1) = u0(1)

o
,

X C :=
n

(u,a) 2 W 1, 2(O; R)×L4(O; R) ju(0) = 0, u(1) = g, 2 tana(0) = u0(0), 2 tana(1) = u0(1)
o
:

ð40Þ

Lemma 2 Let Lc . 0. Then, for any m . 0, mc ø 0, Ered defined by Equation (25) possesses a minimizer
(u,a) in XC

red, XD and E possesses a minimizer in XC, XD. For Lc = 0, Ered has minimizers in X C
red, X D

and E has minimizers in X C, X D.

Proof. (i) Let Lc . 0. We first consider the case of Dirichlet boundary conditions for u and a. Rewriting
Equation (25) as a functional defined on X 0 := (W 1, 2

0 ((0, 1); R)2, we find with Young’s inequality for
(u,a) 2 X0

Ered(u + g,a + aD) =
m

2

ð1

0

4L2
cja0j

2 + (u0+ g)2 + (a + aD) a + aD � (u0+ g)ð Þ½ �2dx

+
mc

2

ð1

0

2� (a + aD)2

2
(u0 + g)� 6(a + aD)� (a + aD)3

3

� �2

dx

ø
m

2

ð1

0

4L2
cja0j

2 + (u0 + g)2dx

= m

ð1

0

2L2
cja0j

2 +
1

2
ju0j2 +

u0

2

� �
(2g) +

g2

2
dx

ø m

ð1

0

2L2
c ja0j

2 +
1

2
ju0j2 � 1

4
ju0j2 � 4g2 +

g2

2
dx

= m

ð1

0

2Lcja0j2 +
1

4
ju0j2 � 7g2

2
dx:

ð41Þ

With the Poincaré inequality valid on X0 and the Banach–Alaoglu theorem, this demonstrates that the
level sets

(u,a) 2 XD j Ered(u,a) ł C
� �

for constants C . 0 are sequentially weakly precompact proving the coercivity of Ered, see, for example,
Struwe [22].

We observe that the integrand Wred(u0,a,a0) as defined in Equation (24) is a Carathéodory function
and strictly convex both in u0 and a0. Despite the dependence of Wred on a, the proof of weak lower semi-
continuity of Ered in XD can thus be carried out in the spirit of the well-known Tonelli–Serrin theorem,
see Dacorogna [23, Section 3.2.6] for details. Alternatively, the weak lower semicontinuity can be derived
from the more general result in Acerbi and Fusco [24] based on gradient Young measures. By the direct
method in the calculus of variations, the coercivity and weak lower semicontinuity of Ered yield the exis-
tence of a minimizer (u,a) 2 XD. The proof of minimizers of Ered in XC

red is similar.
Now let us consider the case of Dirichlet boundary conditions for E. Proceeding as above and estimat-

ing the quadratic terms from below by 0, we find for (u,a) 2 X 0

E(u + g,a + aD) ø
m

2

ð1

0

4L2
cja0j

2 + (u0+ g)2dx:
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This coincides with Equation (41). From there, with the Poincaré inequality the coercivity of E in XD

can be shown as above. The lower semicontinuity of E is again a consequence of strict convexity and the
Tonelli–Serrin theorem. The proof of minimizers of E in XC is similar.

ii. Let Lc = 0. The coercivity of Ered w.r.t. weak-convergence can be shown similar to (i). In contrast,
E is 2p-periodic in a which replaces the coercivity in a. Equations (25) and (19) imply the lower
semicontinuity of Ered and E. With the direct method, the existence of minimizers of Ered in X D,
X C
red and of E in X D, X C for any m . 0, mc ø 0 follows. h

For the detailed discussion of the Euler–Lagrange equations related to problem (26), we introduce the
function

h(a) :=
4 sin2 a

2

� �
sin(a)

: ð42Þ

It holds lima!0 h(a) = 0 and h(a) is invertible, monotone increasing and close to a linear function (cf.
Figure 5).

In the following discussion, we first ignore the boundary conditions on u and a and study sufficiently
regular solutions u 2 W 2, 2(O) and a 2 W 1, 2(O). Clearly, not every solution is in this class (cf. Section 4).

Lemma 3. Let Lc = 0 and m . 0, mc ø 0. Then every solution

(u,a) 2 W 2, 2(O)×W 1, 2(O)

of the Euler–Lagrange Equations (30) and (31) is continuous in O and satisfies

u00(x) = a0(x) = 0 for a:e: x 2 O: ð43Þ

Proof. Due to the Sobolev embedding W 1, 2(O) ,! C0(O), both a and u are continuous.

i. For m = mc, the Euler–Lagrange Equations (30) and (31) simplify to

u00= cos(a)a0, ð44Þ

0 = cos(a)u0 � 2 sin(a) ð45Þ

Figure 5. Plot of the function h(a) =
4 sin2 (a

2)

sin (a) for a 2 0, p
2

� 

.
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to be satisfied pointwise for x 2 O.
Equation (45) is equivalent to u0= 2 tan(a) and taking the derivative yields u00= 2a0

cos2(a). With Equation
(44), we find

2a0

cos2(a)
= cos(a)a0: ð46Þ

Since 2 = cos3(a) has no solution, Equation (46) implies a0= 0, and so with Equation (44) u00= 0.

ii. Let m . 0, mc ø 0 with m 6¼ mc. Considering the Euler–Lagrange Equation (31) with Lc = 0, two
cases may occur.

Case 1: a = arctan (u0=2).

This implies u0= 2 tan(a) such that u00= 2a0

cos2(a). Inserting this identity in Equation (30) yields

(mc�m)
sin(a) cos(a)u0 + cos2(a)�sin2(a)
� 


a0

2m + (mc�m) cos2(a)
+

m cos(a)a0

2m + (mc�m) cos2(a)
=

a0

cos2(a)
: ð47Þ

(The denominator in Equation (47) is positive, for example, 2m + (mc�m) cos2(a) ø 2m . 0 for mc ø m
and 2m + (mc�m) cos2(a) ø 2m� (mc�m) . 0 for mc\m.)

Using u0= 2 tan(a) on the right gives after simplifications

mc � m + m cos(a)½ �a0
2m + (mc�m) cos2(a)

=
a0

cos2(a)
ð48Þ

which is equivalent to

m cos3(a)a0= 2ma0:

Since m . 0, this proves as in (i) that a0= 0 which with Equation (30) results in u00= 0.

Case 2: sin(a)u0= 4 sin2 a
2

� �
+ 2mc

m�mc
.

For mc = 0, one solution is a [ 2pk for some k 2 Z. Then a0= 0 and Equation (30) shows u00= 0.
Alternatively, for a 6[ 2pk, we have sin(a) 6¼ 0 such that

u0=
2mc

(m� mc) sin(a)
+

4 sin2 a
2

� �
sin(a)

: ð49Þ

Taking the derivative yields

u00=� 2mc cos(a)a0

(m� mc) sin2(a)
+

4 sin a
2

� �
cos a

2

� �
sin(a)� 4 sin2 a

2

� �
cos(a)

� 

a0

sin2(a)
:

We use 4 sin( a
2

) cos( a
2

) = 2 sin(a) and �4 sin2 ( a
2

) =� 2 + 2 cos(a). With the Euler–Lagrange equation
(30), this leads to

� 2mc cos(a)a0

(m�mc) sin2(a)
+

2 sin2(a)� cos(a) + cos2(a)
� 


a0

sin2(a)

=
2(mc�m) sin(a) cos(a)u0+ cos2(a)� sin2(a)

� �
+ 2m cos(a)

� 

a0

2m + (mc�m) cos2(a)
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and simplifies to

mc cos(a)a0

(mc�m) 1� cos2(a)ð Þ +
½1� cos(a)�a0
1� cos2(a)

=
(mc�m) sin(a) cos(a)u0+ cos2(a)� sin2(a)

� �
+ m cos(a)

� 

a0

2m + (mc�m) cos2(a)
:

On the right, we plug in the expression (49) for u0. So we obtain,

(mc�m) 1� cos(a)ð Þ+ mc cos(a)½ �a0
(mc�m)(1� cos2(a))

=
�2mc cos(a) + m cos(a) + (mc�m) 2 cos(a)� 2 cos2(a) + cos2(a)� sin2(a)

� �� 

a0

2m + (mc�m) cos2(a)
:

After simplifications, this is equivalent to

(mc�m) + m cos(a)½ �a0
(mc�m) 1� cos2(a)ð Þ =

�m cos(a)� (mc�m)½ �a0
2m + (mc�m) cos2(a)

: ð50Þ

Expanding this, we find

2m(mc�m) + 2m2 cos(a) + (mc�m)2 cos2(a) + m(mc�m) cos3 (a)
� 


a0

= �m(mc�m) cos(a)� (mc�m)2 + m(mc�m) cos3 (a) + (mc�m)2 cos2(a)
� 


a0:
ð51Þ

This simplifies further to

2m2 + m(mc�m)
� 


cos(a)a0= 2m(m�mc)� (mc�m)2
� 


a0 ð52Þ

and eventually

m(m + mc) cos(a)a0= (m + mc)(m�mc)a0:

Hence, either a0= 0 or

a [ a4 := arccos
m� mc

m

� �
ð53Þ

provided j (m�mc)
m
jł 1. In both cases, we have a0= 0 which shows with (30) that u00= 0. h

Remark 2. The consistent coupling condition is made such that the homogeneous deformation
u(x) = gx remains a solution of the boundary value problem.

For given g . 0 and fixed k 2 Z, we introduce the constants

a1 := 2kp, a2 := arctan
g

2

� �
, a3 := h�1(g):

Corollary 1. Any solution u 2 X := fW 2, 2(O) j u(0) = 0, u(1) = gg to (26) is monotonically increasing.
The homogeneous function u(x) := g x solves the Euler–Lagrange Equations (30) and (31). Depending
on the values of m and mc, the corresponding solution a to Equations (30) and (31) is given by

(i) m = mc : a(x) [ a2:

(u,a2) is a local minimizer of E:
ð54Þ
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(ii) mc = 0 : a(x) [ a1, a(x) [ a2, a(x) [ a3:

(u,a1) and (u,a3) are local minimizers of E:
ð55Þ

(iii) mc . 0, m 6¼ mc : a(x) [ a2: If ð56Þ

2m + (mc�m)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 + 4

p
. 0,

then (u,a2) is a local minimizer of E:
ð57Þ

Proof. Due to Lemma 3, any minimizer u 2 W 2, 2(O) to Equation (26) must be piecewise linear.
Choosing a function u with u(0) = 0, u(1) = g which is not monotonically increasing enlarges the com-
ponent ( m

2
)ju0j2 in W (cf. Equation (19)). With Equation (43), this demonstrates the optimality of u(x) in

the class X of regular solutions. It remains to find the optimal values of a, and the strict positivity of
the second variation D2

a(u,a) is sufficient for that, see (66) below.
For fixed u 2 X and a test function da 2 C‘((0, 1); R), the second variation of E with respect to a is

D2
aE(u,a)(da, da) =

ð1

0

Waa(u0,a,a0)� d

dx
Waa0(u

0,a,a0)

� �
da(x)2 + Wa0a0(u

0,a,a0)da0(x)2dx ð58Þ

where subscripts denote partial derivatives. Here, we have (cf. Equation (19)),

W (u0,a,a0) =
m

2
ju0j2 +

m

2
sin(a)u0 � 4 sin2 a

2

� �� �2

+
mc

2
cos(a)u0 � 2 sin(a)ð Þ2

such that Waa0(u
0,a,a0) = Wa0a0(u

0,a,a0) = 0. So the second variation (58) w.r.t. a simplifies to

D2
aE(u,a)(da, da) =

ð1

0

Waa(u0,a)da(x)2dx: ð59Þ

Here and below, we simply write W (u0,a) instead of W (u0,a,a0) due to Lc = 0.
Direct computations reveal

Wa(u0,a) = m sin(a)u0 � 4 sin2 a
2

� �� �
cos(a)u0 � 2 sin(a)ð Þ

�mc cos(a)u0 � 2 sin(a)ð Þ sin(a)u0+ 2 cos(a)ð Þ,
Waa(u0,a) = (m� mc) cos(a)u0 � 2 sin(a)ð Þ2 + mc sin(a)u0+ 2 cos(a)ð Þ2

�m sin(a)u0 � 4 sin2 a
2

� �� �
sin(a)u0+ 2 cos(a)ð Þ:

ð60Þ

i. For m = mc, by direct investigation of Equations (44) and (45), we can verify that (u,a2) solves the
Euler–Lagrange equations. With Equation (60), we find

Waa(u0,a2) = m sin(a2)g + 2 cos(a2)ð Þ2 � m sin(a2)g � 4 sin2 a2

2

� �� �
sin(a2)g + 2 cos(a2)ð Þ

= m sin(a2)g + 2 cos(a2)ð Þ
�
sin(a2)g + 2 cos(a2)� sin(a2)g + 4 sin2 a2

2

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
= 2�2 cos a2ð Þ

�

= 2m sin(a2)g + 2 cos(a2)ð Þ
= (g2 + 4)m cos(a2):

ð61Þ

Next, we observe the identities

cos(arctan (t)) =
1ffiffiffiffiffiffiffiffiffiffiffiffi

t2 + 1
p , t 2 R, ð62Þ
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sin arctan (t)ð Þ =
tffiffiffiffiffiffiffiffiffiffiffiffi

t2 + 1
p , t 2 R: ð63Þ

Consequently,

cos(a2) = cos arctan
g

2

� �� �
=

2

(g2 + 4)1=2
, ð64Þ

sin(a2) = sin arctan
g

2

� �� �
=

g

(g2 + 4)1=2
ð65Þ

such that

Waa(u0,a2) = (g2 + 4)m cos(a2) = 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 + 4

p
:

With Equation (59), this implies the strict positivity of the second variation w.r.t. a, that is, there is a
constant K . 0 such that

D2
aE(u,a2)(da, da) ø K k dak2 ð66Þ

for any test function da, proving that (u,a2) is indeed a local minimizer of E, see, for example,
Giaquinta and Hildebrandt [25].

ii. For mc = 0, the Euler–Lagrange equations read

1� cos2(a)

2

� �
u00 = cos(a)� sin(a) cos(a)u0+ sin2(a)� cos2(a)

� 

a0, ð67Þ

0 = cos(a)u0 � 2 sin(a)ð Þ sin(a)u0 � 4 sin2 a

2

� �� �
: ð68Þ

Direct investigation of Equations (67) and (68) shows that (u,a1), (u,a2), and (u,a3) are solutions of the
Euler–Lagrange equations. With Equation (60), we find

Waa(u0,a1) = mg2 . 0,

Waa(u0,a3) = m cos(a3)g � 2 sin(a3)ð Þ2:

Hence, Waa(u0,a3) = 0 only if cos(a3)g = 2 sin(a3) or equivalently a3 := h�1(g) = arctan ( g

2
), that is,

only if g = h(arctan (g=2)), that is, only if

g =
4 sin2 arctan (g=2)

2

� �
sin arctan (g=2)ð Þ =

2� 2 cos arctan (g=2)ð Þ
sin arctan (g=2)ð Þ ð69Þ

where Equation (21) was used. With Equations (62) and (63), Equation (69) becomes

g =

2� 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + g2=4
p
g=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + g2=4
p

=
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + g2

4

q
� 2

g=2
, g2 = 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

g2

4

r
� 4 , g2 + 4 = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 + g2

p
:

The last equality is only satisfied for g = 0, proving Waa(u0,a3) . 0 for g 6¼ 0 which yields as in (i) the
strict positivity (66) of the second variation w.r.t. a such that (u,a1) and (u,a3) are local minimizers of E.

iii. For m . 0, mc . 0, m 6¼ mc, Lemma 3, Case 1 in (ii) shows that (u,a2) solves the Euler–Lagrange
Equations (30) and (31).
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To verify that (u,a2) is a local minimizer of E, we once more investigate the second variation (59) of E
w.r.t. a. Starting from Equation (60), we find

Waa(u0,a2) = (m� mc)
�
cos(a2)g � 2 sin(a2)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= 0

Þ2 + mc sin(a2)g + 2 cos(a2)ð Þ2

� m
�
sin(a2)g�4 sin2 a2

2

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
= 2 cos a2ð Þ�2

�
sin(a2)g + 2 cos(a2)ð Þ

= (mc � m) sin(a2)g + 2 cos(a2)ð Þ2 + 2m
�
sin(a2)g + 2 cos(a2)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= g2 + 4
2

cos a2ð Þ

�

=
g2 + 4

2
cos(a2) 2m + (mc � m) sin(a2)g + 2 cos(a2)ð Þ½ �:

ð70Þ

Using the formulas (64) and (65) in (70), this yields

Waa(u0,a2) =
g2 + 4

2

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 + 4

p 2m + (mc�m)
g2ffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 + 4
p +

4ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 + 4

p !" #
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 + 4

p
2m + (mc � m)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 + 4

ph i
:

This shows the strict positivity (66) of D2
aE(u,a2)(da, da), provided the condition (57) holds. h

Remark 3. We point out that the solution (u,a4) of the Euler–Lagrange equations found in Lemma 3,

(ii) is not an independent case. The solution (u,a4) requires j (m�mc)
m
jł 1, cf. Equation (53), and then, by

the very definition of Case 2 in Lemma 3,

sin(a4)g = 4 sin2 a4

2

� �
+

2mc

m�mc

= 2� 2 cos(a4) +
2mc

m�mc

= 2� 2(m�mc)

m
+

2mc

m�mc

=
2mc

m
+

2mc

m�mc

=
2mc(2m�mc)

m(m�mc)
:

ð71Þ

Due to the relationship

sin(arccos (t)) =
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

for t 2 ½�1, + 1�, ð72Þ

this yields

sin(a4) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (m� mc)2

m2

s
=

1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc(2m� mc)

p
: ð73Þ

With Equation (71), we obtain

g =
2mc(2m� mc)

m(m� mc) sin(a4)
=

2mc(2m� mc)

m(m� mc)

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc(2m� mc)

p =
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc(2m� mc)

p
m� mc

: ð74Þ
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For g given by Equation (74), we have

g cos(a4)� 2 sin(a4) = g
m� mc

m
� 2

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc(2m� mc)

p
=

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc(2m� mc)

p
m� mc

m� mc

m
� 2

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc(2m� mc)

p
= 0,

leading to g cos(a4) = 2 sin(a4) or equivalently ( g

2
) = tan(a4). This shows

a4 = arctan
g

2

� �
= a2 ð75Þ

for g given by Equation (74).
To have g . 0 in Equation (74), it must hold 0\mc\m, and the condition j (m�mc)

m
jł 1 is automati-

cally satisfied.

Remark 4. The following table lists the mechanical energies corresponding to the local minimizers of
Corollary 1.

(i) m = mc : E(u,a2) = m g2 + 4� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 + 4

ph i
: ð76Þ

(ii) mc = 0 : E(u,a1) = E(u,a3) =
m

2
g2: ð77Þ

(iii) mc . 0, m 6¼ mc : E(u,a2) = m g2 + 4� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 + 4

ph i
if 2m + (mc � m)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 + 4

p
. 0: ð78Þ

Remarkably, in all cases, the minimal energy level is independent of the Cosserat couple modulus mc.

Remark 5. We want to investigate whether (u,a2) is a minimizer of E in the situation of Remark 3, that
is, if

0\mc\m and (m� mc)g = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc(2m� mc)

p
: ð79Þ

As u0(x) [ g and assuming that a(x) [ a for constant a 2 R and x 2 (0, 1), it is enough to investigate the
real function

f (a) := W (u, a) =
m

2
g2 +

m

2
g sin(a)� 4 sin2 a

2

� �� �2

+
mc

2
g cos(a)� 2 sin(a)ð Þ2,

cf. the definition of W in Equation (19). Straightforward computations yield

f 0(a) = g cos(a)� 2 sin(a)ð Þ (m� mc) g sin(a) + 2 cos(a)ð Þ � 2m½ �,

f 00(a) = (m� mc) g cos(a)� 2 sin(a)ð Þ2 � g sin(a) + 2 cos(a)ð Þ2
h i

+ 2m g sin(a) + 2 cos(a)ð Þ,

f 000(a) = g cos(a)� 2 sin(a)ð Þ 2m� 4(m� mc) g sin(a) + 2 cos(a)ð Þ½ �,

f (4)(a) = 4(m� mc) g sin(a) + 2 cos(a)ð Þ2 � g cos(a)� 2 sin(a)ð Þ2
h i

� 2m g sin(a) + 2 cos(a)ð Þ:

Remarkably, f 0(a2) = f 00(a2) = f 000(a2) = 0, but

f (4)(a2) =
12m2

m� mc

. 0,

showing that a2 is a minimizer of f and indicating that (u,a2) is a local minimizer of E for constant
a(x) [ a2 under the choice of parameters (79). The minimal energy coincides with Equation (78) for g

Blesgen and Neff 1591



given by Equation (74). Due to f 0(a2) = f 00(a2) = f 000(a2) = 0, the function f is extremely flat near a2,
making it very difficult to numerically compute the correct minimizer (see Figure 6).

Remark 6. Let m . 0 and g . 0 be given. Then in the limit mc & 0, Equation (57) is not satisfied, as
Equation (57) for mc = 0 leads to the contradiction

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 + 4

p
. 0:

So, for small mc . 0, the necessary Legendre condition D2
aE(u,a2)(da, da) ø 0 is violated and (u,a2) is

no local minimizer of E, especially in Corollary 1, (ii). Contrary, for mc . 0 large enough, (57) clearly
holds. In conclusion, for

mc . mcrit
c := m 1� 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 + 4
p" #

, ð80Þ

Equation (57) is valid and (u,a2) is a minimizer of E. This result is also confirmed by our numerical
simulations (cf. Figure 12).

Remark 7. It is instructive to compare Corollary 1 and Remark 4 with the results in Fischle and Neff
[26], stating that

For mc ø m . 0 : Wm,mc
(R; F);W1, 1(R; F), ð81Þ

For m . mc ø 0 : Wm,mc
(R; F);W1, 0(R; eFm,mc

): ð82Þ

Here, F = Du 2 R
n× n is a given deformation gradient, eFm,mc

:= ((m� mc)=m)F,

f ;g :, argmin
R2SO(n)

f (R) = argmin
R2SO(n)

g(R)

for two functions f and g, and

Wm,mc
(R; F) := m sym(RT F � 13)

�� ��2 + mc skew(RT F � 13)
�� ��2 ð83Þ

which coincides with Equation (19) for Lc = 0, F given by Equation (12), and R 2 SO(3) defined by
Equation (13).

Replacing Wm,mc
(R; F) by W1, 0(R; eFm,mc

) corresponds to rescaling the parameters of E in Equation
(19) by

em :=
(m�mc)2

m2
, emc := 0

Figure 6. Left and center: Plot of f (a), f 0(a) near a2 for m = 1, mc = 0:3 and g given by Equation (74). Right: Close-up of f (a) near
a2. The tiny oscillations of the graph near a2 in the close-up are numerical rendering artifacts generated by MATLAB.
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while leaving g unchanged. Indeed this rescaling does not affect neither the constant minimizer a1 nor
a2 and a3 which are independent of m, mc and are functions of g, only. In conclusion, Corollary 1 and
Remark 4 confirm the results in Fischle and Neff [26].

4. Numerical simulations for vanishing internal length scale

For Lc . 0, various advanced numerical tools such as multigrid methods are available [27]. We will not
discuss this here. In contrast, the case Lc = 0 is numerically challenging as the regularizing term 2mL2

c ja0j
2

in E and Ered disappears in the limit. We investigate the problem in two different ways and compare the
solution strategies. We begin with the situation of non-regular solutions with a 2 L4(O).

1. Newton-GMRES algorithm
For Lc = mc = 0 and a 2 L4(O), the solutions (u,a) to Ered(u,a)! min satisfy pointwise for
x 2 O= (0, 1) the two purely algebraic equations (see Neff and Münch [20, Equation (3.30)] for a
derivation),

a(a� u0) a� u0

2

� �
= 0, ð84Þ

(u0 � z) u0+
1

8
(u0)

3 � z

� �
= 0 ð85Þ

subject to the boundary conditions

u(0) = 0, u(1) = g, u0(0) = u0(1), a(0) = a(1) = aD ð86Þ

for a constant aD 2 R and with z := (1 + a2
D)u0(0)� a3

D.
In general, there is a multitude of solutions to (84)–(86). To specify a solution, one may prescribe
a volume fraction u 2 ½0, 1� such that

L1 x 2 O j a(x) = 0f gð Þ= u, ð87Þ

where L1 denotes the one-dimensional Lebesgue measure.
To compute solutions to Equations (84)–(86), the derivative u0 is approximated by central differ-
ence quotients leading to a discrete problem in the standard form

Find x 2 R
2N�3 : G(x) = 0 ð88Þ

for a differentiable function G : R2N�3 7!R
2N�3 and with N 2 N denoting the number of discretiza-

tion points in O. The solutions to Equation (88) are computed using a Newton-GMRES method
where the Fréchet derivative DG of G is approximated by

DG(x)d;
G(x + dd)� G(x)

d
ð89Þ

for suitable small d . 0 and GMRES is used to solve the linearized equations. While the algo-
rithm computes DG automatically thanks to Equation (89), its practicability is limited by the huge
memory requirements.
The implementation details related to the definition of G are left out here.
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2. BFGS Quasi-Newton method
As in the first method, the values of a, a0, and u0 are discretized along N 2 N points zi 2 O. Letting
fi := W (u0(zi),a(zi),a0(zi)) be the integrand either in (18) or in (24), the repeated Trapezoidal rule

1

2
f1 +

XN�1

i = 2

fi +
1

2
fN

 !

is used for the approximate integration. The minimization of the functional is carried out by a Quasi-
Newton method where the approximate Hessian is computed by the Broyden-Fletcher-Goldfarb-
Shanno update formula [28]. Again, we leave out the implementation details, but refer to Blesgen
[29–31], where the limited-memory variant of the algorithm is applied to Cosserat plasticity and
recrystallization.

In comparison, both algorithms compute the same solutions. However, the BFGS Quasi-Newton
method is capable of handling larger values of N due to the tremendous memory needs of the Newton-
GMRES scheme.

Figure 7 displays three minimizers of Ered in XD for different values of N and prescribed slope u0(0) at
the boundary. The deformation uN forms a sawtooth pattern with alternating, constant slopes, while the
values of randomly concentrate at 0 and g. The computations of Figure 7 suggest further that uN con-
verges to the homogeneous deformation u(x) := g x as N ! ‘.

Figures 8 and 9 compare the minimizers of Ered in XC and XD for three different values of N . Again,
a randomly concentrates at 0 and g while the deformation uN forms a sawtooth pattern with alternating,
constant slopes. The computed deformation u is extremely close to u but energetically beats the homoge-
neous solution.

We will adopt the following notation in the set M+(R) of finite positive Radon measures. For a
sequence (yj)j2N and a Carathéodory function f such that

f (x, yj) * x 7!
ð
R

f (x,A)dnx(A)

0@ 1A in L1(R)

for a parameterized measure n = (nx)x2R, we use the shorthand notation vj!
Y

n.

Remark 8. The numerical computations in Figures 7–9 indicate the following result regarding non-
regular solutions.

Let Lc = 0 and (uN ,aN )N2N be a minimizing sequence of Ered in W 1, 2(O)× L4(O) with uN (x) * u(x),
aN * a for N ! ‘. Then, there is a (not relabelled) subsequence and a constant u 2 ½0, 1� such that

Wred(uN ,aN )!Y ud0 + (1� u)dg: ð90Þ

The existence of a limiting Young measure generated by the subsequence (uN ,aN ) can be made rigorous
by applying the fundamental theorem of Young measures, see, for example, Müller [32]. We observe
that the family (Wred(uN ,aN ))N2N is uniformly bounded in L1 and equi-integrable by the Dunford-Pettis
theorem.

Figure 10 displays minimizers of E in XC. Except near ∂O= f0, 1g, the minimizing rotation a takes
constant values with either a [ a1 := 0 or a [ a3 := h�1(g) in accordance with Corollary 1 (ii).
Depending on the initial values at start of the optimization, the BFGS-algorithm computes one of two
different minimizers u which both converge in O to u(x) as N ! ‘. The first, u1 with a [ a1, is a straight
line except near ∂O. The second, u2 with a [ a3, leads to a scaled function
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Figure 7. Minimizers of Ered in XC for N = 23, N = 59, and N = 149 for m = 1, mc = 0, g = 0:8, prescribed u0(0) = u0(1) (blue line)
and aD = u(0) = u(1) = 0:1. The blue balls are the computed values of a randomly concentrating at 0 and g. The green line displays
the homogeneous deformation u(x) = g x. The deformation u is rendered in red forming a microstructure with a sawtooth pattern.
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Figure 8. Minimizers of Ered in XC
red for N = 23, N = 59, and N = 149 for m = 1, mc = 0, g = 0:8. The blue balls are the computed

values of a randomly concentrating at 0 and g. The deformation u is rendered in red and forms a microstructure with a sawtooth
pattern which is extremely close to the homogeneous deformation u(x) = g x rendered in green. The differences between u and u
are amplified by the blue line rendering the rescaled deformation uscale(x) := g x + N(u(x)� gx). The value a(0) is strictly smaller
than g=2 and indicates by which amount the sawtooth solution u energetically beats the homogeneous solution.
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Figure 9. Minimizers of Ered in XD for N = 24, N = 60, and N = 150 for m = 1, mc = 0, g = 0:8. The blue balls are the computed
values of a randomly concentrating at 0 and g. The deformation u is rendered in red and forms a microstructure with a sawtooth
pattern which is extremely close to the homogeneous deformation u(x) = g x rendered in green. The blue line is the rescaled
deformation uscale(x) := g x + N(u(x)� g x) amplifying the differences between u and u. As can be seen, the oscillation of u is largest
near ∂O and smallest at x = 0:5.
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Figure 10. Minimizers of E in XC for m = 1, mc = 0, g = 0:8 and N = 49, N = 149, N = 500, N = 700. The blue balls are the
computed values of a with either a [ a1 = 0 or a [ a3 = h�1(g) = 0:760053. In cyan the computed stress tensor t which is
constant in O. The deformation u is rendered in red, extremely close to u(x) = g x rendered in green. The blue line is the rescaled
deformation uscale : = g x + N(u(x)� g x).
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Figure 11. Minimizers of E in XC for m = mc = 1 and N = 300 (left), N = 600 (right) and g = 0:3 top line, g = 0:8 center, and
g = 2:0 bottom line. The blue balls are the computed values of a with either a [ 0:14868 ; a2 = arctan (0:15) = 0:14889 (top),
a [ 0:3804 ; a2 = arctan (0:4) = 0:380506(center), and a [ 0:7852 ; a2 = arctan (1) = 0:785398 (bottom) as predicted by
Corollary 1 (i). In cyan the computed stress tensor t. The deformation u is rendered in red, extremely close to u(x) = g x rendered
in green. The blue line is the rescaled deformation uscale := g x + N(u(x)� g x).
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uscale(x) := g x + N(u2(x)� g x) which is a bended curve (see Figure 10). The energy levels of both com-
puted local minimizers are extremely close with

E(u1,a1) = 0:32001744, E(u2,a3) = 0:320018, ð91Þ

confirming Equation (77). Yet, numerical optimization favors (u,a1) over (u,a3), underlining that the
energy landscape for geometrically nonlinear Cosserat materials is extremely complicated and emphasiz-
ing why it is so hard to numerically compute the correct global minimizers. In comparison with
Equation (91), the theoretical infimal energy is E(u,a1) = m

2
g2 = 0:32, but (u,a1) violates the consistent

coupling condition (27).
Figure 11 studies minimizers in XC related to Corollary 1, (i). Again, uN ! u in O for N ! ‘. The

minimizing microrotation angle a is constant (except near ∂O) and takes the values predicted by
Corollary 1.

Figure 12 confirms the validity of Corollary 1, (iii) and of Condition (80). The numerical results indi-
cate that for mc . 0 large enough, a2 = arctan (g=2) is a local minimizer of E(u, � ) while for mc close to
0, this is no longer true.

Figure 12. Minimizers of E in XC for m = 1, g = 0:8, and N = 500. Top left: mc = 0:5 with a [ 0:3801 ’ a2 = arctan (g=2). Top
right: mc = 0:1 with a [ 0:3804 ’ a2. Bottom left: mc = 0:02 with a [ 0:0548 6¼ a2. Bottom right: mc = 0:01 with a [ 0:026 6¼ a2.
The results underline the validity of Corollary 1 (iii) and demonstrate that for mc small enough, a2 is no longer a minimizer of E (cf.
Remark 6). The critical value of mc predicted by (80) is mcrit

c ’ 0:0715. In cyan the computed stress tensor t. The deformation u is
rendered in red, extremely close to u(x) = g x rendered in green. The blue line is the rescaled deformation
uscale := g x + N(u(x)� g x).
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