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Kurzfassung

Maschinelles Lernen (ML) bietet Maschinen die Fähigkeit, automatisch aus Daten und
vergangenen Erfahrungen zu lernen, um Muster zu erkennen und mit minimalem men-
schlichem Eingreifen Vorhersagen für neue Daten zu treffen. Im Vergleich zu anderen
statistischen Technologien kann ML die Berechnung kontinuierlich verbessern, Entschei-
dungen automatisch treffen und Trends und Muster automatisch erkennen. Basierend auf
der Tatsache, dass mehr Datensätze für die Öffentlichkeit zugänglich sind, verbesserte
Computerberechnungsfähigkeiten und eine Beschleunigung der Internetgeschwindigkeit,
haben sich maschinelle Lernalgorithmen in den letzten Jahrzehnten schnell entwickelt. In
den letzten Jahren wurden zahlreiche neue ML-Ansätze entwickelt und aktualisiert. Die
meisten dieser entworfenen Ansätze zielen jedoch auf einen bestimmten Datensatz ab,
daher ist die Verallgemeinerung dieser Ansätze nicht verifiziert. Neben dem spezifisch
entworfenen Ansatz für einen Datensatz sind viele vortrainierte Modelle (die durch eine
große Anzahl von Daten vorgeschlagen werden) öffentlich zugänglich. Die meisten dieser
vortrainierten ML-Modelle betreffen jedoch auch ein spezielles Gebiet, und ihre Leistung ist
nicht ideal, wenn sie auf Datensätze in anderen Gebieten angewendet werden. Folglich sind
verbesserte ML-Ansätze erforderlich, die in verschiedenen Bereichen angewendet werden
können.

Um ML-Ansätze zu entwerfen, die in verschiedenen Bereichen verfügbar sind, werden
vier Datensätze aus drei Anwendungsbereichen verwendet, um die in dieser Studie entwor-
fenen Ansätze zu verifizieren. Der Datensatz zur inneren Sprache (IS) gehört zum Bereich
Biologie. Die Frequenzbänder des IS-Datensatzes sind sehr niedrig (von 0,5 Hz bis 100 Hz).
In diesem Datensatz werden während des Experiments verschiedene Zeichen durch innere
Sprache ausgelöst. Elektroenzephalogramm (EEG)-Signale, die während des IS-Verfahrens
erfasst werden, und Daten werden analysiert und klassifiziert. Der Lagerdatensatz der
Case Western Reserve University (CWRU) wird von der mechanischen Schule in CWRU
durchgeführt. Es wird häufig zur Verifizierung von Lagerdiagnoseansätzen verwendet.
Vibrationssignale werden erhalten, wenn während des Experiments verschiedene fehlerhafte
Lager verwendet werden. Vibrationssignale haben ein breites Frequenzband von Dutzenden
Hz bis Tausend Hz. Ein weiteres Anwendungsgebiet, das in dieser Studie untersucht
wird, sind Metallbearbeitungsflüssigkeiten (KSS). Akustische Emission (AE)-Signale, wenn
eine Vielzahl von MWF während des Gewindeformprozesses angewendet werden, werden
analysiert. Schallemissionssignale sind transiente Spannungswellen, die durch die schnelle
Freisetzung von Energie aus festen Quellen mit Frequenzbändern bis zu Millionen Hz
erzeugt werden. Je nach MWF-Typ werden zwei Experimente durchgeführt und relevante
AE-Signale erfasst. Im ersten Versuch (Datensatz MWF19) werden nur Kühlschmierstoff
(KSS) auf Emulsionsbasis eingesetzt. Im zweiten Experiment (Datensatz MWF16) werden
sowohl emulsionsbasierte als auch ölbasierte KSS verwendet.

Entsprechend den verschiedenen Highlights und Schritten im maschinellen Lernen wer-
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Kurzfassung

den in dieser Studie drei Kategorien mit 5 Unteransätzen entworfen. Ansatz 1 enthält einige
Schritte zur Datenverarbeitung - Datenauswahl, Segmentierung und Klassifizierung. Bei
diesem Ansatz werden Signale im Zeitbereich analysiert. Die Konzentration von Ansatz 1
liegt auf der Struktur des Klassifikators (Convolution Neural Network (CNN)) und Hyperpa-
rametern, die sich auf das Design und die Abstimmung von Trainingsalgorithmen beziehen.
Das neuronale Faltungsnetzwerk wird entsprechend der Probenlänge und Funktionalität
jeder Schicht entworfen. Neben der CNN-Struktur und Hyperparametern in CNN wird ein
neues Datenverarbeitungsverfahren für die Differenzierung verschiedener Phasen in einer
Messung entwickelt. Da die Grenzen zwischen verschiedenen Phasen in MWF-Datensätzen
im Zeitbereich nicht klar sind, wird die kontinuierliche Wavelet-Transformation (CWT) als
Werkzeug angewendet, um Grenzen zwischen verschiedenen Teilen in einer Messung zu
finden. Darüber hinaus wird die Länge des Segments durch die Rotationsgeschwindigkeit
des Werkzeugs im Datensegmentierungsschritt definiert.

Im Vergleich zu Ansatz 1 sind in Ansatz 2 mehr Datenverarbeitungsmethoden enthal-
ten. Obwohl in diesem Ansatz dieselbe Datenauswahlmethode wie in Ansatz 1 verwendet
wird, werden neben der Datenauswahl und -segmentierung in Ansatz 1 Daten vom Zeit-
bereich in den Zeitfrequenzbereich transformiert durch Kurzzeit-Fourier-Transformation
und Spektrogramme erhalten. Segmente und Spektrogramme werden normalisiert, bevor
sie in den Klassifikator eingegeben werden. Anders als die Messung in Segmente fester
Größe gemäß der Werkzeuggeschwindigkeit segmentiert wird, ist die Segmentlänge bei
diesem Ansatz nicht identisch, sie werden als ein einstellbarer Parameter betrachtet. Außer-
dem sind Überschneidungen zwischen verschiedenen Klassen nicht identisch, wenn die
Probennummern in jeder Klasse nicht gleich sind. Zusätzlich werden Parameter in der
Datenverarbeitung und Hyperparameter in CNN zusammen und automatisch in einem
Schritt optimiert. Darüber hinaus wird, basierend auf Ansatz 2, ein Transfer Learning
(TL)-Ansatz (Ansatz 2.0) zwischen MWF19 und MWF16 erhoben. Parameter in der Daten-
verarbeitung und Hyperparameter in CNN, die von MWF19 trainiert wurden, werden in
Ansatz 2.0 in MWF16 transformiert.

Anders als in Ansatz 1 und 2 eine Methode oder ein Algorithmus in einem Schritt
angewendet wird, werden in Ansatz 3 verschiedene Datenverarbeitungsmethoden und
ML-Algorithmen in jedem Schritt ausprobiert. Aus dieser Sicht ist Ansatz 3 eine In-
tegration verschiedener Ansätze anstelle eines einzelnen Ansatzes . Bei Ansatz 1 und
Ansatz 2 werden feste Daten verwendet, im Gegensatz dazu werden bei diesem Ansatz
verschiedene Teildaten ausprobiert. Außerdem werden in jedem Schritt viele ähnliche, aber
nicht identische Funktionsdatenverarbeitungsverfahren und ML-Algorithmen verwendet.
Ansatz 3 wird anhand der Destinationsdifferenz in Supervised Learning (Ansatz 3.1) und
Unsupervised Learning (Ansatz 3.2) unterteilt. Obwohl der Prozess von Ansatz 3.1 und
3.2 derselbe ist, unterscheiden sich die Methoden, die in jedem Schritt von Ansatz 3.1
und 3.2 verwendet werden. In Ansatz 3.1 werden verschiedene Methoden zur Aufteilung
von Training-Testdaten diskutiert. Außerdem werden im Datenverarbeitungsschritt eine
Rohmessung, ein Savitzky-Golay (SG)-Filter und eine empirische Modenzerlegung (EMD)
angewendet. Als Klassifikator werden lineare, polynomiale und gaußsche Kernel SVM
verwendet. In Ansatz 3.2 werden STFT, CWT und Hilbert-Huang-Transformation (HHT)
für die Signaltransformation vom Zeitbereich in den Zeit-Frequenz-Bereich verwendet. Als
Merkmalsextraktionsverfahren wird alternativ Autoencoder eingesetzt. K-Mittelwert und
Gaußsches Mischungsmodell (GMM) werden für das Feature-Clustering verwendet.

Ansatz 1, 2 und 3.2 werden auf CWRU- und MWF-Datensätze angewendet. Da sich

IV



Kurzfassung

der IS-Datensatz stark von anderen Datensätzen unterscheidet, ist Ansatz 3.1 spezifisch
für ihn. Außerdem wird in Anbetracht der Ähnlichkeit zwischen MWF19 und MWF16 der
Ansatz 2.0 zwischen ihnen angewendet. Es wird die Abhängigkeit der Wahl von Trainings-
und Testdaten auf das Ergebnis diskutiert, die im Fall des IS-Datensatzes erheblich sind.
Die besten Ergebnisse des CWRU-Lagerdatensatzes aus dem überwachten Lernansatz
(Ansatz 2) sind der F-Score und die Genauigkeit beträgt 100 % für 29 Lagerzustände, was
bedeutet, dass alle Lagerzustände im CWRU-Lagerdatensatz perfekt klassifiziert werden
können. Die besten Ergebnisse des CWRU-Lagerdatensatzes aus dem unüberwachten
Lernansatz (Ansatz 3.2) sind, dass alle Metriken 1,0 bei der Unterscheidung zwischen
fehlerfreien und fehlerhaften Lagern sind. Für den MWF19-Datensatz stammen die besten
Klassifizierungsergebnisse aus Ansatz 2 – F-Score und Genauigkeit sind 98,61 % und 98,58 %.
Außerdem werden Referenz- und andere Fluide vollständig durch Ansatz 3.2 unterschieden.
Für den MWF16-Datensatz erreichen die besten Klassifikationsergebnisse eine Genauigkeit
von 98,11 % von Ansatz 1. Obwohl die Clustering-Ergebnisse für MWF16 noch offen sind,
können noch einige Schlussfolgerungen aus dem Berechnungsprozess gezogen werden.
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Abstract

Machine learning (ML) provides machines the ability to automatically learn from data and
past experience to identify patterns and make predictions for new data with minimal human
intervention. Comparing with other statistical technologies, ML can improve calculation
continuously, making decisions automatically, and identifying trends and patterns auto-
matically. Based on the fact more datasets open to public, improved computer calculation
capability, and internet speed acceleration, machine learning algorithms develop fast in
the past decades. Large number of new ML approaches are raised and updated in the last
years. However, most of these designed approaches target on one specific dataset, there-
fore, generalization of these approaches are not verified. Besides on the specific-designed
approach to one dataset, a great deal of pre-trained models (which are proposed by a large
number of data) are open to public. However, most of these pre-trained ML models are
also concerning to one special field and their performance is not ideal when applied to
datasets in other fields. Consequently, improved ML approaches that can be applied in
various fields are required.

To design ML approaches available in various fields, four datasets from three application
fields are employed to verify approaches designed in this study. Inner speech (IS) dataset
belongs to biology field. The frequency bands of IS dataset are very low (from 0.5 Hz to
100 Hz). In this dataset, various signs are acted by inner speech during the experiment.
Electroencephalogram (EEG) signals acquired during IS procedure and data are analyzed
and classified. Case Western Reserve University (CWRU) bearing dataset is conducted
by the mechanical school in CWRU. It is often used for bearing diagnosis approaches
verification. Vibration signals are obtained when various faulty bearings are employed
during the experiment. Vibration signals has a wide frequency bands from dozen Hz to
thousand Hz. Another application field employed in this study is metalworking fluids
(MWF). Acoustic Emission (AE) signals when a variety of MWF are applied during
thread forming process are analyzed. Acoustic Emission signals are transient stress waves
generated by the rapid release of energy from solid sources with frequency bands up to
million Hz. According to the MWF types, two experiments are conducted and relevant AE
signals are acquired. In the first experiment (dataset MWF19) only emulsion-based MWF
are applied. Both emulsion-based and oil-based MWF are used in the second experiment
(dataset MWF16).

According to the different highlights and steps in machine learning, three categories
with 5 sub approaches are designed in this study. Approach 1 contains few steps on data
processing - data selection, segmentation, and classification. In this approach, signals are
analyzed in time domain. Concentration of approach 1 is on classifier (convolution neural
network (CNN)) structure and hyperparameters referring to training algorithms designing
and tuning. Convolution neural network is designed according to samples length and
functionality of each layer. Beside the CNN structure and hyperparameters in CNN, a new
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data processing method is designed for various phases differentiation in one measurement.
As the boundaries among different phases are not clear in time domain in MWF datasets,
continuous wavelet transform (CWT) is applied as a tool to find boundaries among different
parts in one measurement. Furthermore, segment’s length is defined by rotating tool speed
in the data segmentation step.

Comparing with approach 1, more data processing methods are included in approach 2.
Although the same data selection method is used in this approach as approach 1, besides
data selection and segmentation in approach 1, data are transformed from time domain to
time-frequency domain by Short-time Fourier Transform (STFT) and spectrograms are
obtained. Segments and spectrograms are normalized before they are put into the classifier.
Unlike measurement are segmented into fixed size segments according to tool speed, segment
length is not identical in this approach, they are considered as one adjustable parameter.
Besides, overlap among different class are not identical when samples numbers in each
class are not the same. Additionally, parameters in data processing and hyperparameters
in CNN are optimized together and automatically in one step. Furthermore, based on
approach 2, a transfer learning (TL) approach (approach 2.0) is raised between MWF19
and MWF16. Parameters in data processing and hyperparameters in CNN trained from
MWF19 are transformed to MWF16 in approach 2.0.

Unlike one method or algorithm is applied in one step in approach 1 and 2, varied data
processing methods and ML algorithms in each step are tried in approach 3. From this
point of view, approach 3 is a integration of various approaches instead of single approach.
Fixed data are used in approach 1 and approach 2, on the contrary, various parts data are
tried in this approach. Besides, many similar but not identical function data processing
methods and ML algorithms are employed in each step. Based on the destination difference,
approach 3 is divided into supervised learning (approach 3.1) and unsupervised learning
(approach 3.2). Although the process of approach 3.1 and 3.2 is the same, methods used in
each step in approach 3.1 and 3.2 are varied. In approach 3.1, different training-test data
split ways are tried. Besides, raw measurement, Savitzky–Golay (SG) filter, and empirical
mode decomposition (EMD) are applied in data processing step. Linear, polynomial, and
Gaussian kernels SVM are employed as classifier. In approach 3.2, STFT, CWT, and
Hilbert–Huang transform (HHT) are used for signals transformation from time domain to
time-frequency domain. Autoencoder as an alternative is employed as feature extraction
method. K-mean and Gaussian mixture model (GMM) are used for features clustering.

Approach 1, 2, and 3.2 are applied to CWRU and MWF datasets. As the IS dataset is
very different from other datasets, so approach 3.1 is specific to it. Besides, considering the
similarity between MWF19 and MWF16, the approach 2.0 is applied between them. For
IS dataset, when training-test data are split in different ways, the results are significantly
different. Best results of CWRU beaing dataset from supervised learning approach (ap-
proach 2) are F-score and accuracy is 100% for 29 bearing states, which denotes that all
bearing states in CWRU bearing dataset can be classified perfectly. Best results of CWRU
bearing dataset from unsupervised learning approach (approach 3.2) is all metrics are 1.0 in
fault-free and faulty bearing distinction. For MWF19 dataset, the best classification results
are from approach 2 - F-score and accuracy are 98.61 % and 98.58 %. Beside, reference
and other fluid are totally distinguished by approach 3.2. For MWF16 dataset, the best
classification results arrive to accuracy is 98.11 % from approach 1. Although clustering
results are still open for MWF16, some conclusions can still be drawn from calculation
process.
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1 Introduction

Artificial intelligence (AI) which imitate human abilities brings a promise of genuine
human-to-machine interaction. As a subset of AI, machine learning (ML) allows machines
to learn from data without being explicitly programmed [JK20]. Machine learning enables
a computer system to make predictions or take some decisions using historical data without
being explicitly programmed [OCBR18]. A large amount of structured and semi-structured
data are applied so that a machine learning model can generate accurate result or give
predictions [GSA+18]. Machine learning has a large number of advantages. Firstly, ML is
capable of improvement continuously, when new data are provided, model’s accuracy and
efficiency improve with subsequent training [DSD+21]. Secondly, ML can fulfill various
decision-making tasks automatically such as data classification, regression, and clustering
[LIS16]. Lastly, ML has the ability of identifying trends and patterns. Because of the
advantages, ML has wide application in the fields of image and speech recognition, traffic
prediction, product recommendation, self-driving cars, e-mail spam and malware filtering,
virtual personal assistant, stock market trading, medical diagnosis, fault diagnosis and
prognosis, and automatic language translation.

According to different ways in data processing, ML can be divided into conventional
machine learning (CML) and deep learning (DL). Conventional machine learning techniques
have limited capability of processing data in their original form [CS18]. These methods
required considerable understanding and expertise for data features [LSSG17]. In other
words, before original data are put into the CML, data need to be processed and features
should be extracted. A large number of data processing methods are available such as: data
selection, normalization, segmentation, time-frequency transformation, and augmentation.
On the contrary, DL eliminates some data pre-processing steps that is typically involved in
CML and it can ingest and process unstructured data. No matter CML or DL, machine
learning algorithms generate models on training data. When new input data are introduced
to the trained model, ML uses the developed model to make a prediction for new input
data. The performance of the models are evaluated by metrics. Based on the task, a large
number of metrics are available. The models are either deployed or trained repeatedly
until the desired metrics values are achieved. According to [ELM20], the process of ML is
divided into 3 steps: decision process (based on some input data labeled or unlabeled, the
algorithm produce a model from the input data); error function (evaluate the performance
of trained models); model optimization (update weights autonomously until a metric
threshold acquired).

Machine learning algorithms are categorized into three types: supervised learning,
unsupervised learning, and reinforcement learning according to research destination [SK17].
Supervised learning and unsupervised learning approaches are used in most cases. Su-
pervised learning algorithms are trained on data with labels and usually for the task of
classification and regression [MJJL08]. The commonly used supervised learning methods
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Ch. 1. Introduction

are: Naive Bayes (NB), linear regression, logistic regression, support vector machine (SVM),
K-nearest neighbor (K-NN), random forest (RF), decision trees (DT), Gaussian process
regression (GPR), convolutional neural network (CNN), generative adversarial networks
(GAN), and self-organization maps (SOM). Unsupervised learning are able to work with
data without labels [WLZ+16]. The commonly used unsupervised learning methods are: K-
means, hierarchical cluster, Gaussian mixture model (GMM), fuzzy C-means, autoencoder,
and deep belief network (DBN).

1.1 Motivation and problem statement

Data are the base stone for ML, models can not be trained without data. To facilitate the
training of ML model, many databases are open to the public such as IRIS, MINIST, Boston
Housing, Fake News Detection, and SOCR datasets. These benchmark datasets are used
for training new models and compare trained models to other approaches. However, most
of these datasets are specific to one field, for exaple, IRIS dataset is used for iris plants dis-
tinction while MINIST dataset is applied for handwriting distinguish. In addition to public
datasets, a large number of pre-trained models are open to public to reduce time consum-
ing in model training processes, such as LeNet,AlexNet,GoogLeNet, V GGNet,ResNet.
However, these pre-trained DL models performance are not ideal when they are used for
datasets from other fields. As a results, a large number of new approaches are designed
and proposed. Most of these designed approaches target on one specific dataset, therefore,
generalization of these approaches are not verified. In this study, different approaches that
could be used for more datasets are designed and proposed. The performance of these
proposed approaches are validated on datasets from different fields. Four datasets in three
fields from brainwaves, vibration, and Acoustic Emission (AE) signals are applied to verify
proposed approaches.

Brainwaves are electrical impulses and they appear when individual’s behavior, emo-
tions, and thoughts are communicated between neurons [SLS17]. Brainwaves occur at
various frequency bands from 0.5 Hz to more than 100 Hz. Inner speech (IS) is the silent
expression of conscious thought to oneself in a coherent linguistic [VPB13]. When people
suffer certain brain disorders, they cannot communicate normally. In this case, the best
solution for them is inferring IS directly form brainwaves. Electroencephalogram (EEG) is
one typical non-invasive methods to capture brainwaves [SI15]. In case that EEG signals
during IS can be well identified, it will bring great convenience to individuals with brain
disorders. Nowadays many contributions focus on the relationship between IS and EEG
signals and some of them achieved good results from physical point of view, however, there
are still many issues worthy of further research, especially classification of the EEG signals
from different symbols, words, and signs are still not clearly. The disadvantages of these
approaches are: firstly, most contributions apply their approach distinguishing EEG signals
to the datasets from their own experiments, so their approaches generalization cannot
be validated. Secondly, results from these approaches are improvable - most distinction
accuracy among different words or vowels are under 50 % and stand deviation (SD) among
different subjects are very high.

Rotating machinery plays an important role in industry from the last two centuries.
Several surveys regarding the likelihood of induction machine failures conducted by the
IEEE Industry Application Society (IEEE-IAS) and the Japan Electrical Manufacturers’
Association (JEMA) reveal that bearing faults are the most common fault type and are
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responsible for 30 to 40 % of all the machine failures [ZZWH20]. Consequently, bearing
fault diagnosis and prognosis is of increasing interest and several benchmark datasets has
been developed. Among these datasets, Case Western Reserve University (CWRU) bearing
dataset is well accepted as benchmark used for bearing diagnosis and allows to compare
approaches using statistical measures. Large number of new diagnosis and prognosis
approaches are designed for rotating machinery in the past years. Although results from
these approaches are good - most contributions arrive accuracy over 90 % and some even
arrive 100 %, inadequacy of these approaches are still need to be explored. Firstly, selected
data that used in relevant approaches are not clear in some contributions. While data are
the most critical part in machine learning, results are not convincing when data used are
not pointed out. Then, for some contributions, only part of the data are selected - data
from drive side faulty bearing and baseline are used. Data from drive end faulty bearing
and baseline are easier to differentiate, good results from easily distinguishable data can
not demonstrate the robustness of these approaches. Furthermore, most study classify
selected data into 4 or 10 classes. Four classes denoted as fault-free, fault at inner race,
ball, and out race while ten classes denoted as fault-free, fault location in different parts
(inner race, ball, out race) combing with fault size (7, 14, 21 mils). Fault size of 28 mils and
different fault locations in out race can not be distinguished in four or ten classes. Besdies,
in some publications only a small amount of information is referred on data processing,
parameters, and hyperparameters optimization. If only parts of well-performed samples
are taken into calculation, results are unconvincing. Lastly, accuracy is mostly applied to
evaluate the performance of these approaches. When sample numbers in each class are
not equal, accuracy is not suitable to evaluate approaches and other metrics are needed to
judge approaches performance like F-score.

Metalworking fluid (MWF) plays a significant role in manufacturing processes as it
cool and lubricate the contact zone between tool and workpiece to prevent tool wear
and to ensure manufacturing of required geometries and surface qualities [BMHCH15].
Metalworking fluid and its additives mainly affect tool wear and workpiece surface roughness
or make higher machining speeds possible to decrease manufacturing time and increase
the output [LCN12]. Transient stress waves generated by the rapid release of energy
from localized sources which is also name as AE during metalworking process [SW83].
Acoustic Emission can be detected by sensors attached to or embedded in the structure
being monitored and it can be linked to the onset of new damage or to the progression of
existing anomalies. To verify the relations between MWF and AE on tool and workpiece
during thread forming, two experiments are conducted by the collaboration between the
Chair of Dynamics and Control, University of Duisburg-Essen and Rhenus Lub GmbH
& Co KG Mönchengladbach. Consequently, two datasets (MWF19 and MWF16) are
acquired. Although less contributions employ them as benchmark as these two datasets
are still not open to public, Mr. Wirtz and Miss Dermmerling apply them in their research.
Approach applied by Mr. Wirtz and Miss Dermmerling is identical to these two datasets
- data in both two datasets are distinguished by the combination of continuous wavelet
transform (CWT) and K-means. Besides, parts of data are applied by these two authors.
Results from their approach is not ideal and can be improved. Furthermore, performance
of relevant approaches are just shown in photos, no detailed values are presented. So
these approach cannot be evaluated comprehensively. More metrics are needed to evaluate
proposed models.
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1.2 Thesis organization

This thesis is organized as follows:
In the second Chapter, theoretical background are introduced briefly. Data need to

be processed and their features should be extracted before ML. Various data processing
methods are applied in this study, such as selection, segmentation, Savitzky-Golay (SG)
filter. In addition to data filter, signals are often analyzed by time-frequency analysis
(TFA) technology such as: short-time Fourier transform (STFT), wavelet transform (WT),
empirical mode decomposition (EMD), and Hilbert-Huang transform (HHT). Furthermore,
data are normalized by Z-score normalization and Min-Max normalization technology.
Besides data processing methods, ML algorithms are also described. Machine learning
algorithms employed in this study involve: convolution neural network (CNN), support
vector machine (SVM), autoencoder, K-means, Gaussian mixture models, and transfer
learning (TL). To optimize parameters in data processing and hyperparamters in ML,
both exhaustive sweep and Bayesian optimization are used. Various metrics used for
supervised learning and unsupervised learning separately in this study. Accuracy, F-score,
and SD are applied for supervised learning. Purity, rand index (RI), adjusted rand index
(RAI), normalized mutual information (NMI), and F-measure are applied for unsupervised
learning.

In chapter 3, datasets applied in this study and their experiments are presented. To
verify the proposed approaches, three kinds signals are employed: EEG signals from IS,
vibration signals from CWRU bearing dataset, and AE signals from various MWF during
thread forming process. Electroencephalogram signals are brainwaves which have low
frequency (from 0 to hundred Hz), vibration signals belong to middle frequency rang (from
dozen to thousand Hz), and AE signals have very high frequency (from thousand to million
Hz). Besides, these three kinds of signals belong to different application fields: EEG signals
belong to biology field, CWRU bearing dataset belongs to mechanical engineering field,
and AE signals from varied MWF belong to cross disciplinary. The way acquiring data
in these datasets are extremely differential. Test rig and experimental procedure of these
three kind of signals are explained in detail in this chapter.

Basic information on ML and state-of-art approaches applied in these three kind
of datasets are summarized in chapter 4. The results relevant to these approaches are
exhibited. In the first section, general information on ML are presented. Experiments and
signals referring to IS, approaches applied in IS distinction are summed up and their results
are reviewed in the second section. As CWRU bearing is a benchmark, a large numbers
of approaches are verified by it. These approaches are summarized and their results are
compared in the third section. Lastly, approaches applied to the MWF datasets and their
results are presented in this chapter.

In chapter 5, the proposed approaches are presented. The first approach is mainly
focus on CNN hyperparameters optimization - structure and hyperparameters referring
to training algorithms are tuned according to each datasets. Besides, a new method is
raised for data selection in approach 1. More data processing methods (data selection,
segmentation, transformation, and normalization) are applied in the second approach.
Besides, parameters in data processing steps and hyperparameters in CNN are optimized
in one step and a loop is established among data segmentation and classification. Based
on the approach 2, TL (approach 2.0) is applied between two MWF datasets. The
approach 3 is a combination of different data selection, data processing and ML methods.
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Both supervised (approach 3.1) and unsupervised learning approaches (approach 3.2) are
designed. Flowchart, highlight, and innovation of each approach are presented in this
chapter.

When proposed approaches are validated by four datasets, their results are shown in
chapter 6. As five sub approaches are designed, numbers combination can be gotten when
they are applied to these four datasets. To express the results clearer, results are shown
according to dataset. For IS dataset, results from approach 3.1 are presented. For CWRU
dataset, results from approach 1, 2, and 3.2 are shown. For MWF19 datasets, results from
approach 1, 2, and 3.2 are presented. Results from approach 1, 2.0, and 3.2 to MWF16
dataset are also shown in this chapter. In addition, results from proposed approaches are
also compared with other literature. By results comparison, the advantages of proposed
approaches are emphasized.

Summary, conclusions, and outlook are parts of the last chapter. Contents of this
study are summarized in the first section. Conclusions from calculation process, results
and results comparison are drawn in the second section. Expectations and ideas for the
future work are referred in the third section of this chapter.
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2 Theoretical background

Artificial intelligence is a big concept to create intelligent machines that can simulate human
thinking capability and behavior [AN21]. Nowadays it has become an all-encompassing
term and has wide applications for complex tasks that used to require human input such
as communicating with customers online or playing chess. As a subset of AI, ML allows
machines to learn form data without being programmed explicitly [Mah20]. Machine
learning is also a branch of computer sciences which focus on the use of data and algorithms
to imitate the way that humans learn, gradually improving accuracy [AI22]. Machine
learning could be divided into CML, DL, and TL depending on how the data is processed.
Conventional machine learning techniques have limited in capability of processing the data
in their original form. These methods require considerable understanding and expertise
for representation i.e. selection of features is required carefully [CS18]. Conventional
machine learning refers to a set of algorithms that permits a system to be input with
dataset and it automatically realizes the representations required for decision making i.e.
detection or classification [MBD+90]. On the contrary, DL has the ability to automatically
extract, analyze, and understand the useful information from the raw data [KAF+08].
Transfer learning is an advanced machine learning method that a model developed for a
task is reused as the starting point for a model on a second task [TS09]. According to the
task difference, ML could be classified into supervised learning which is for the task of
classification and regression and unsupervised learning which is for the task of clustering.
With the development of computer technology and statistical methods, various kinds of
ML algorithms and methods are available. Only those ML algorithms that relevant to this
study will be introduced here.

Data processing has significant influence on CML, as it is usually treated as classi-
fier without feature extraction function. Although DL has the functionality of features
extracting, data processing are also needed to prompt data distinguishing results. Broadly
speaking, data processing includes data collection, preparation, input, mining, interpre-
tation, and storage [BF00]. However, in this study, as data have been collected during
experiments, prepared and stored in electrical equipment, here data processing is specific
to data mining and interpretation. A large number of data processing methods are on the
list, only those methods that referring to this study are introduced here.

The contents, figures, and tables presented in this chapter are modified after previous
publications [WS20] and [WJDS22]. Parts of the contents are prepared and submitted for
publications of [WJS22], [WSS22], and [WLS22].

2.1 Data processing methods

Data selection, filter, transformation, and normalization methods are often employed in data
processing. While there are often some irrelevant data (noise) in datasets from experiments
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and manufacturing process. Data selection is of great significance as it remove irrelevant
part data and keep the most useful parts data. Data filter has a significant impact on data
processing as it remove outliers in signals [Lee21]. Data segmentation divide signals into
more characteristic segments and helps to add sample number. Time-frequency analysis
(TFA) help to draw signals time-frequency information from time domain. Normalization
technologies remove the outliers and adjust data into a stable range for the convenience of
calculation.

2.1.1 Data selection

Unlike benchmark datasets that only contains concerned data, most original datasets often
contain a lot of irrelevant data in datasets from experiments and manufacturing process.
Data selection aims at choosing proper data that should be archived in calculation. A
number of issues should be considered of during data selection [Joc21]. These issues include:

i) Appropriate phases and sources of data which permit investigators to adequately
answer the stated research questions,

ii) Suitable procedures in order to obtain a representative sample.
Generally, data applied or discarded should be defined by researchers under certain

circumstances. While data selection procedures affect result greatly, they need to be
considered thoroughly. Determining appropriate data is discipline-specific and is primarily
driven by the goal of the investigation, existing literature, and accessibility to data sources.
Before data selection, destination of research, scope of investigation, literature review, and
data type should be in consideration. Data selection approaches and models are reviewed
in [OC03].

2.1.2 Date filter

Measurement Segmentation

Measurement segmentation denote as divide whole measurement into various segments.
Measurement segmentation has three functionalities according to [Joc21]. First of all, the
complete measurement will be subtracted by irrelevant data segments. For example, this
helps to find sections of a measurement that contains useful data. The second function
is to multiply the number of data samples by dividing one measurement into multiple
segments. The third functionality is to make sure that each sample which will be used for
training and validation of the model has the same length. Segment length also named as
segment size, it depends on measurement physical situation. In the process of segmentation,
to maximize the number of samples, the segment size will be set to the lowest possible
size that covers the smallest periodical event which contains all measurement information.
For example, for rotating machinery, one segment should contains at least data in one
round. Additionally, overlapping among segments is also used to multiply samples number.
Besides, overlap among segments help to keep the important information than happens
in-between segments.

Savitzky-Golay filter

Since it’s introduction more than half a century ago, Savitzky-Golay (SG) filter has been
popular in many fields of data processing: ranging from spectra in analytical chemistry,
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via geography sciences to medicine [SRD22]. Both Savitzky and Golay pointed that fitting
a polynomial to a set of input samples, then evaluate the resulting polynomial at a single
point within the approximation interval which is equivalent to discrete convolution with a
fixed impulse response [Sch11]. The low pass filter obtained by this method are SG filter.
Savitzky-Golay smoothing filter is typically used to ’smooth out’ a noisy signal whose
frequency span (without noise) is large. It is also called digital smoothing polynomial filter
or least-squares smoothing filter [RM13].

According to [Sch11], basic idea of least-squares polynomial smoothing is as following:
x[n] are samples of a signal as solid dots, considering to the moment the group of 2M+1
samples centered at n = 0, the coefficient of a polynomial p(n) could be calculated by

p(n) =
N∑
k=0

akn
k, (2.1)

that minimize the mean-squared approximation error for the group of input samples
centered on n = 0

ξN =
M∑

n=−M
(p(n)− x[n])2 =

M∑
n=−M

(
N∑
k=0

akn
k − x[n])2. (2.2)

Analysis is the same for any other group of 2M + 1 input samples. M is referred as ’half
width’ of the approximation interval. When N = 2 and M = 2, the solid curve is shown on
the left in Figure 2.1 and the polynomial p(n) evaluated on a fine grid between -2 and +2,
and the smoothed output value is obtained by evaluating p(n) at the central point n = 0.
The output at n = 0 is

y[0] = p(0) = a0. (2.3)

The output value is just equal to the 0th polynomial coefficient.

Figure 2.1: Illustration of least-squares smoothing [ZKM+18]

• : as input samples,
◦ : as least-squares output sample,
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× : as effective impulse response samples (weighting constants).

Originally, SG filter is showed at each position [SG64]. The smoothed output value obtained
by sampling the fitted polynomial is identical to a fixed linear combination of the local set
of input samples: i.e., the set of 2M + 1 input samples within the approximation interval
are effectively combined by a fixed set of weighting coefficient that can be computed once
for a given polynomial order N and approximation interval of length 2M + 1. The output
samples is calculated by discrete convolution from

y[n] =
M∑

n=−M
h[m]x[n−m] =

n+M∑
m=n−M

h[n−m]x[m]. (2.4)

To find a single finite duration impulse response which is equivalent to least-square
polynomial smoothing for all shifts of the 2M +1 sample interval, coefficients of polynomial
in equation (2.1) by different ξN in equation (2.2) with respect to each of the N + 1
unknown coefficient and setting the corresponding derivative equal to zero.

αξN
αai

=
M∑

n=−M
2ni(

N∑
k=0

akn
k − x[n]) = 0, (2.5)

by interchanging the order of the summations, becomes the set of N+1 equations in N + 1
unknowns

N∑
k=0

(
M∑

n=−m
ni+k)ak =

M∑
n=−M

nix[n], i = 0, 1, ..., N. (2.6)

Frame length and polynomial order which must be smaller than frame length are very
important parameters in SG filter. In addition, parameters of weighting array and dimension
to filter along are also have influence on the smoothing linear [WSS22].

2.1.3 Time-frequency analysis

Usually, brainwaves, vibration, and AE signals are oscillating motion, so most signals
analysis approaches are used to determine the rate of that oscillation (frequency) [GP16].
Fourier transform (FT) is a common used mathematical technique that allows signal to
be decomposed into a sum of sine waves of different frequencies, phases, and amplitudes.
Frequency domain analysis helps to determine frequency band of the signals. Besides, it
can often used for analyzing and designing nonlinear control systems. Although many
advantages of domain analysis, disadvantages of frequency domain analysis are also very
obvious: it struggles with nonlinear phenomena and lose the time information.

Time-frequency analysis (TFA) summarizes analysis techniques that quantify the
temporal evolution of spectral properties of signals [Lee21]. These techniques provide
powerful means to study the dynamics of rhythmic signals. Signals underlying changes in
both time and frequency domain could be detected by time-frequency analysis, which can not
be easily done within just the time domain or frequency domain. Time-frequency analysis
methods applied in this study are Short-time Fourier Transform (STFT), Continuous
Wavelet Transform (CWT), and Hilbert-Huang transform (HHT).
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Short-time Fourier Transform

Short-Time Fourier transform (STFT) is a sequence of Fourier Transform (FT) and provides
the time-localized frequency information for situations in which frequency components of a
signal vary over time [GC11]. The procedure of computing STFT is dividing a longer time
signal into shorter segments of equal length and then compute the FT separately on all
segments. According to [GC11], the STFT of a function f(t) with respect to the window
function φ(t) evaluated at the location (b, ξ) is defined as

Gφf(b, ξ) =
∫ ∞
−∞

f(t)φbξ dt, (2.7)

with
φbξ(t) = φ(t− b)ejξt, (2.8)

using

f(t) : as signal,
φ(t− b) : as window function,
b : as desired location on time scale, and
ξ : as desired location on frequency scale.

The window functions, denoted as sliding windows, are functions in which the amplitude
tapers gradually and smoothly towards zero at the edges [LZM12]. The window function
φ(t−b) keeps the desired portion of the signal by multiplication with the original signal f(t).
Outside of the desired interval, the window function is zero. By changing the parameter b,
the window moves along the time axis. As a result, the local behavior of the signal can
be analyzed. The most important parameters of the window related to center and width:
in time domain, the center t∗ and the root mean square radius ∆φ while in frequency
domain the center ω∗ and the root mean square radius ∆φ̂. When its root mean square
radius in time domain ∆φ and in frequency-domain ∆φ̂ is finite, signal’s time-frequency
information is obtained. The time-frequency information of STFT is defined as the product
of the time resolution and the frequency resolution [LT06]. The type of window affects
the time-frequency resolutions of the STFT. Beside the window type, window length also
affects the time and the frequency resolution of the STFT. According to [BYF+08], a
narrow window results in a fine time resolution but a coarse frequency resolution as narrow
windows have a short time duration but a wide bandwidth. A wide window results in
a fine frequency resolution but a coarse time resolution as wide windows have a long
time duration but a narrow frequency bandwidth. This phenomenon is called the window
effect. Therefore, window type and parameters selection has a strong impact on signal’s
time-frequency resolution [WJS22].

Continuous Wavelet Transform

As stated by [GC11], the fixed time-frequency resolution of the STFT leads to serious
constraints in many applications. For Instance, if a chirp signal with linear changing
frequency over time should be transformed with the STFT, then depending on the chosen
window, it could resolve either the lower frequencies but has a poor resolution on the higher
frequencies or could resolve the higher frequencies but has a poor resolution on the lower
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frequencies. A transformation that solves this problem is the Wavelet Transform (WT).
The WT provides a window function whose radius increases in time (reduces in frequency)
while resolving the low - frequency contents and decreases in time (increases in frequency)
while resolving the high - frequency contents of a signal. This behavior is provided by a
wavelet function Ψ(t).

As stated by [GC11], The WT of a function f(t) with the analyzing wavelet Ψ(t) is
defined as

WΨf(b, a) :=
∫ ∞
−∞

f(t)Ψb,a(t) dt, (2.9)

where
Ψb,a(t) := 1√

a
Ψ( t− b

a
); a > 0, (2.10)

with
f(t) : signal,
Ψ(t) : analyzing wavelet function,
b : translation parameter on time scale, and
a : dilation parameter on time and frequency scale.

Referring to [GC11], by reducing a, the support of Ψa,b reduces in time and hence
covers a larger frequency range and vice-versa. Therefore, 1/a is a measure of frequency.
The parameter b indicates the location of the wavelet window along the time axis. Thus,
by changing (b, a), WΨf can be computed on the entire time-frequency range. Hence the
wavelet behaves like a window function.

In time domain, the center t∗ and the root mean square radius ∆Ψ are defined similar
as STFT with φ(t) replaced by Ψ(t) [GC11].

t∗ = 1
||Ψ||2

∫ ∞
−∞

t|Ψ(t)|2 dt, (2.11)

∆Ψ = 1
||Ψ||2

[∫ ∞
−∞

(t− t∗)2|Ψ(t)|2, dt
]1/2

. (2.12)

Process of WT is similar to STFT, however, the window functions are different. Wavelet
function increases its length and width when it shifts through the original signal while
window function in STFT are stable. Window function difference between STFT and
CWT are shown in Figure 2.2 Wavelet transform is usually divided into continuous wavelet
transform (CWT) and discrete wavelet transform (DWT). As DWT is not applied in this
study, so the emphasis is focus on CWT. Continuous wavelet transform is defined as

CWT (a, b) =
∫ ∞
−∞

x(t)ψ∗a,b(t)dt. (2.13)

In this formula, x(t) refers to the impulse, a is scale parameter, b is shifting parameters,
ψ(t) refers to wavelet function. All variables and functions are determined in the realm of
real number

ψa,b(t) = 1√
|a|
ψ( t− b

a
). (2.14)

The most noticeable characteristic change in wavelet from this formula is that the scale
factor a was used to increase or decrease wavelet ψ(t) and the translation factor b was used
to move the wavelet [LZT95].
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Figure 2.2: Window function of STFT and WT [YPZM19]

Hilbert-Huang transform

Hilbert-Huang transform is suitable on performing time-frequency analysis on nonstationary
and nonlinear data [Bar11]. Two main steps are concluded in HHT: empirical mode
decomposition and Hilbert spectral analysis. In the first step, the original signal is
decomposed into a finite set functions which is known as intrinsic mode functions (IMFs)
through an iterative process. The steps are:

1) Determine the local extreme of the signal;
2) Connect the maxima and minima with and interpolation function, generating an

upper and a lower envelope about the signal;
3) Calculate the local mean as half the difference between the upper and lower envelopes.

Subtract the local mean from the signal;
4) Iterate calculations on the residual.
Iterative process is repeated until the signal meets the definition of an IMF which is

defined as signal with zero-mean, and its number of extreme and zero-crossing differ by at
most one [WSS22].

Second step of HHI is transforming IMFs from time domain to time-frequency domain
by Hilbert transform. According to [Joh99], the following equation is known for Hilbert
transform

H[g(t)] = g(t) ∗ 1
πt

= 1
π

∫ +∞

−∞

g(τ)
t− τ

dτ = 1
π

∫ +∞

−∞

g(t− τ)
τ

dτ , (2.15)

with

H[g(t)] : Hilbert transform,
g(t) : original signal.

Iterative process is repeated until the signal meets the definition of an IMF which is defined
as signal with zero-mean, and its number of extreme and zero-crossing differ by at most
one.

2.1.4 Data normalization

Data normalization is used to flatten value differences or predictors inside same classes.
One advantage of data normalization is that data get rid of anomalies. Besides, data

13



Ch. 2. Theoretical background

Figure 2.3: Iterative sifting process [LHCT18]

normalization reduces database space requirements. In the proposed approach, Z-Score
and Min-Max techniques are applied for data normalization [WJS22].

Z-Score normalization

Z-Score normalization uses the mean and the standard deviation of the given data. As
result the data has a mean of 0 and a standard deviation of 1. As stated by [JNR05], The
normalized scores (S′k) are given by

S′k := (Sk − µ)
σ

, (2.16)

where Sk is the raw data, µ is the arithmetic mean, and σ is the standard deviation of
the given data. According to [JNR05], if the input scores are not Gaussian distributed,
Z-Score normalization does not retain the input distribution at the output. This is due to
the fact that mean and standard deviation are the optimal location and scale parameters
only for a Gaussian distribution.

Min-Max Normalization

The Min-Max Normalization is a linear transformation, that rescales the data to defined
boundaries [SS20]. Common boundaries for rescaling are [0-1]. As stated by [SS20], the
Min-Max Normalization for a value set A with the rescale boundaries [Bmin, Bmax] is
defined as

A′ := A−Amin
Amax −Amin

∗ (Bmax −Bmin) +Bmin, (2.17)

with

A : as original value set,
Amin : as minimum value of A,
Amax : as maximum value of A,
A′ : as rescaled value set of A,
Bmin : as minimum value of A′, and
Bmax : as maximum value of A′.
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2.2 Machine learning

Both supervised and unsupervised learning approaches are employed in this study. The
difference between supervised learning and unsupervised learning approaches is: supervised
learning used labeled data to help predict outcomes while the unsupervised learning
employed unlabeled data. Supervised learning models are defined by labeled datasets.
These datasets designed to train or ’supervise’ algorithms into classifying data or predicting
outcomes accurately [Mah20]. Supervised learning can be categorized into two types in
the process of data mining: classification and regression. Unsupervised learning algorithms
are used to analyze and cluster unlabeled datasets and discover hidden patterns in data
without human intervention [SS18]. Unsupervised learning models are used for the tasks of
clustering, association, and data dimension reduction. Transfer learning (TL) is machine
learning method where a model developed for a task is reused as the starting point for a
model on a second task [ADC21]. Supervised learning, unsupervised learning approaches,
and transfer learning relevant to this study are introduced in this section.

2.2.1 Supervised learning

Supervised learning algorithms are the most common type of machine learning algorithms.
It uses a known dataset (called the training dataset) to train an model and to make
predictions [SK18]. The training dataset includes labeled input data that pair with desired
outputs or response values. Supervised learning algorithm seeks to create a model by
discovering relationships between the features and output data, then makes predictions of
the response values for a new dataset [Lan19].

Convolution Neural Network

Convolution neural network is the most famous and commonly used algorithm in field of
DL. It has the ability to automatically learn a large number of filters in parallel specific to a
training dataset under the constraints of a specific predictive modeling problem [AZH+21].
As stated in [AZH+21], the CNN algorithm extracts features from input data and classifies
them into predefined classes based on trained and extracted features. A CNN model
generally consists of three parts. The first part is the image input with the image input
layer. The second part is related to feature extraction, consisting of numerous convolution
layers with preceding sub sampling (pooling) layer and subsequent non-linearity activation
functions [APG15]. In addition, batch normalization and dropout layers are used to prevent
overfitting and other issues. The third part classifies the input image based on trained and
extracted features. It consists at least one fully connected (FC) layer followed by a loss
function layer.

The convolution layer is the most important layer of the CNN architecture. It consists
of convolution filters named kernels [PSJL17]. Kernels which are used to extract the
features from input data are low in size and often have the same dimensions as the input.
The input data are convolved with these kernels and outputs denoted as feature maps
[BS16]. Feature maps represent the automatically extracted features of the input data.
To get precise and detailed features, numerous convolution layers are used in hierarchical
order. The basic principle of the construct convolution layer is shown in Figure 2. When
input elements imn which belong to part of the input data matrix [I] (i11, i12, ..., imn) dot
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product with kernel [K] (k11, k12, ..., kmn), output matrix [O] (o11, o12, ..., omn), which has
the same size as kernel is gotten.

Figure 2.4: Convolution process [Wu17]

The convolution process is the following form:

O = I ·K =

i11 i12 i13
i21 i22 i23
i31 i32 i33

 ·
k11 k12 k13
k21 k22 k23
k31 k32 k33

 =

0 25 75
0 75 80
0 75 80

 ·
−1 0 1
−2 0 2
−1 0 1

 =

0 0 75
0 0 80
0 0 80

 ,
which is shown in the Figure 2.4. The number is then transformed to the next layer when
all elements of [O] (o11, o12, ..., omn) in output matrix are summed [WJS22].

Batch normalization layer make neural networks faster and more stable. It performs
the standardizing and normalizing operations on the input of a layer coming from a previous
layer [HZZ+19]. Advantages of batch normalization are as follows:

i) Prevention from vanishing gradient problem,
ii) Effective control of poor initialized weights,
iii) Significantly reduction of the time required for network convergence,
iv) Decreasing of training dependency across hyerparameters, and
v) Reduction of overfitting through regularization.
Activation function layer is non-linear activation layer which are employed after each

convolutional layer [AZH+21]. These layers map their input to their output with a non-
linear function. Goal of this layer is to give CNN the ability to learn complicated structures
and to differentiate which is an extremely significant feature. The most common used
activation functions are sigmoid, tanh, and ReLU functions.

Pooling layer is used to sub-sample the feature maps produced by convolutional layer
[AFAS+20]. Large-size feature map is shrinked to smaller feature map by pooling operation.
Majority of the dominant information are maintained while overall memory usage are
reduced. Most common used pooling techniques are: max pooling, average pooling, global
average pooling.

Dropout is a common technique for generalization as stated by [AFAS+20]. In each
epoch, randomly chosen neurons are dropped. Dropped neurons are not considered for
forward- or backward- propagation. With dropping randomly chosen neurons, the feature
selection power is equally distributed over all neurons and the model is forced to learn
different independent features. Dropout layer also prevents model from overfitting.

Fully connected layer located at the end of CNN consists of neurons that are connected
to all neurons to all neurons of the previous layer [AZH+21]. The last FC layer has as
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many neurons as the class number that need to be classified. To fit the N-dimensional
feature maps from the feature extraction part of the CNN to the FC layer, the feature
maps have to be flattened. Flattening layer which maps all values into one vector and by
global pooling layer are employed to flatten feature maps.

Cross entropy or softmax loss function is usually applied for multi-class classification
in the output layer [AZH+21]. It outputs the probability p ∈ {0, 1} for each class i ∈ [1, N ].
The softmax output class probability is defined as

pi = eai

N∑
k=1

eak

, (2.18)

with
eai : Non-normalized output from the preceding layer,
N : Number of neurons in the output layer (number of classes).

The cross entropy loss function is defined as

H (p, y) = −
∑
i

yi log (pi) , (2.19)

with
pi : Predicted output,
yi : Desired output.

Support vector machine

Support vector machine is one of the most popular supervised learning algorithms primarily
used for classification problems. Goal of SVM is to generate the best line or decision
boundary that can segregate n-dimension space into classes so that new data can be
easily sorted in the correct category [TW04]. The best decision boundary is named as
hyperplane. Support vector machine chooses the extreme points/vectors which are called
support vectors to help in generating the hyperplane.

Support vector machine can be categorized into two types: linear and non-linear
[GDS19]. Mapping from the input space into the feature space is explained as well as the
’kernel trick’ in SVM. A kernel function can be interpreted as a kind of similarity measure
between input objects [GD05]. Various kernels can be used such as: linear, polynomial,
and Gaussian kernels. In the proposed approach, linear kernel, different order polynomial
kernel, and varied Gaussian kernels are tried.

The linear kernel function is

k(xi, xj) = 1 + x
′
ixj . (2.20)

The polynomial kernel function is

k(xi, xj) = (1 + x
′
ixj)p. (2.21)

The Gaussian kernel function is

k(xi, xj) = exp(−‖xi − xj‖
2

2δ2 ). (2.22)

The denotation of parameters in the above three equations are
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xi, xj : features or data points,
p : polynomial order,
δ : kernel scale.

According to the δ calculation formula, Gaussian SVM can be divided into fine Gaussian,
medium Gaussian and coarse Gaussian.

2.2.2 Unsupervised learning

Unsupervised learning algorithms perform more complex processing tasks compared with
supervised learning. It finds all kind of unknown patterns in data and features which can
be useful for categorization.In addition, all input data can be analyzed and labeled in the
presence of learners by unsupervised learning. Unsupervised learning problems further
grouped into clustering and association problems.

Autoencoder

Autoencoder is a type of neural network used to learn data encodings in an unsupervised
manner [Lee21]. The aim of autoencoder is to learn a lower-dimension representation for a
higher-dimensional data, typically for dimensionality reduction by training the network to
capture the most important parts of the input image [VBR20]. Architecture of autoencoder
consists three parts as shown in Figure 2.5:

i) Encoder: compress input data into an encoded representation which is typically
several orders of magnitude smaller than the input data.

ii) Bottleneck: a module that contains the compressed knowledge representations and
is the most important part of the network.

iii) Decoder: decompress the knowledge representations and reconstructs the data back
from its encoded form. The output is then compared with a ground truth. According to
[BAR20], advantages of autoencoder are as follows:

i) Encoding part of the architecture is helpful to reduce the complexity of input data.
By reducing number of input values,the model is less likely to be overfitting by tiny details.

ii) When data are not labeled, autoencoder find the new classes. This is especially
useful for unsupervised learning or clustering.

iii) Autoencoder is very powerful for detecting anomalies.

K-means

K-means clustering is one of the typical and popular unsupervised machine learning
algorithms. This algorithm is an iterative algorithm that tries to partition the dataset into
K pre-defined distinct non-overlapping subgroups (clusters) where each data point belongs
to only one group [VS20]. It tries to groups objects which are close together into the same
cluster while the objects that are further apart into different clusters [ECS11]. Data are
signed to a cluster in this way: the sum of the squared distance between data points and
the cluster’s centroid is at the minimum. As shown in Figure 2.6, the process of K-means
can be divided into following steps:

i) Initial cluster centers which known as centroids are placed randomly.
ii) Compute the sum of the squared distance between data points and all centroids.
iii) Assign each data point to the closest cluster.
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Figure 2.5: Architecture of autoencoder [SK19]

iv) Compute the centroids for the clusters by taking the average of all data points that
belong to each cluster.

v) Repeat the previous steps until cluster assignment is constant or maximum number
of iterations is reached. The approach K-means follows to solve the problem is called

Figure 2.6: Process of K-means [ECS11]

Expectation-Maximization [BFR+98]. E-step assigns data points to the closest cluster
while M-step compute the centroid of each cluster. The objective function is

J =
m∑
i=1

K∑
k=1

wik‖xi − µk‖2, (2.23)

with

xi : as input data point,
µk : as the centroid.

Data point xi belong to the cluster K, when wik=1. Otherwise, wik=0. Expectation-
Maximization algorithm addresses problem in two steps. Firstly, wik is minimized and µk
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is fixed and then µk is minimized and wik is fixed. These steps are done in E-step and
M-step separately. In E-step, data point xi are assigned to the closest cluster judged by its
sum of squared distance from cluster’s centroid. Equation of E-step is as follows

αJ

αwik
=

m∑
i=1

K∑
k=1
‖xi − µk‖2

⇒ wik =

 1, if k = argminj‖xi − µk‖2

0, otherwise.

(2.24)

In M-step, centroid of each cluster is recomputed to reflect the new assignments. Equation
of M-step is

αJ

αµk
= 2

m∑
i=1

wik(xi − µk) = 0

⇒ wik =
∑m
i=1wik(xi∑m
i=1wik

.

(2.25)

After iterative calculation, stop conditions for K-means could be as follows [GT14]:
i) Data points assigned to specific cluster remain the same;
ii) Centroids remain the same;
iii) The distance of data points from their centroid is minimum;
iv) Fixed number of iterations have reached.

Gaussian mixture models

Gaussian mixture models are a probabilistic model that assumes all the data points are
generated from a mix of Gaussian distribution with unknown parameters. As stated in
[LZMZ18], GMMs can be applied to find clusters in datasets where the clusters may not
be clearly defined. In addition, GMMs can also be used to estimate the probability of new
data point belongs to each cluster. Furthermore, GMMs are relatively robust to outliers,
this means that they can output accurate results even if some data points unfit for nearly
any of the clusters.

According to [Rey09], a GMM is a weighted sum of M component Gaussian densities
as given by the equation,

p(X|λ) =
M∑
i=1

ωig(X|µ, σi). (2.26)

Each component density is a D-variate Gaussian function of the form,

g(X|µi, σi) = 1

(2π) D
2 |σi|

1
2
exp{−1

2(X − µi)
′
σ−1
i (X − µi)}. (2.27)

The parameters signification in the above two equations are

X : as D-dimensional continuous-valued data vector,
ωi : as mixture weights,
µi : as mean vector,
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σi : as covariance matrix,
g(X|µ, σi) : as component Gaussian densities.

The mixture weights satisfy the constraint of

M∑
i=1

ωi = 1. (2.28)

The complete GMM is parameterized by the mean vectors, covariance matrices, and mixture
weights from all component densities. These parameters are collectively represented by

λ = {ωi, µi, σi} i = 1, 2, ...,M. (2.29)

In [NRBZ15], GMMs are also assumed that there are a certain number of Gaussian
distribution and each of these distribution represent a cluster. therefore, a GMM tends
to group data points belonging to a single distribution together. Given three Gaussian
distributions (GD) - GD1, GD2, and GD3. These have a certain mean (µ1, µ2, µ3) and
variance (σ1, σ2, σ3) value respectively. For a given set of data point, GMM assigns
Gaussian distribution to each cluster as shown in Figure 2.7. The bell curve represents
a GD of a cluster and the dots are data points. Unlike K-means, GMMs can perform
both hard and soft clustering. In hard clustering, each data point is assigned to only one
cluster while soft clustering data point can be assigned to multiple clusters based on the
probabilities.

Figure 2.7: Gaussian distribution [NRBZ15]

2.2.3 Transfer learning

Transfer Learning is a machine learning technique where a model trained on source domain
is repurposed on target domain. According to [WKW16], some notations and definitions
used in TL are introduced. The definition of ‘domain’ and ‘task’ is defined in the following.
According to [SKS16], a domain D consists of two components: a feature space Ω and a
marginal probability distribution P (Ω), where Ω = {x1, x2, . . . , xn} ∈ Ω. Given a specific
domain, D = (Ω, P (Ω)), a task consists of two components: a label space y and an objective
predictive function f(.) (denoted by T = (y, f(.))), which is not observed but can be learned
from training data, which consists of pairs {xi, yi},where xi ∈ Ω and yi ∈ y. the function
f(.) can be used to predict the corresponding label f(x) of a new instance x. Given a
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source domain DS and learning task TS , a target domain DT and learning task TT , transfer
learning aims to improve the learning of the target predictive function fT (.) in DT using
the knowledge in DS and TS , where DS 6= DT , or TS 6= TT [SKS16]. The process of TL
is shown in Figure 2.8. Based on different situations between source and target domains

Figure 2.8: Transfer learning [Rud19]

and tasks, TL can be categorized in three subsettings: inductive TL, transductive TL, and
unsupervised TL [WKW16]. The inductive Transfer Learning setting, the target task is
different from the source task, when the source and target domains are the same. In the
transductive TL setting, the source and target tasks are the same, while the source and
target domains are different [WJDS22]. In the unsupervised TL setting, similar to inductive
TL setting, the target task is different from but related to the source task [ZHWL14].
However, the unsupervised TL focuses on solving unsupervised learning tasks in the target
domain, such as clustering, dimensionality reduction, and density estimation. Based on
‘what to transfer’, approaches to TL in the above three different settings can be summarized
into four cases: instance-transfer, feature-representation-transfer, parameter-transfer, and
relational-knowledge-transfer.

2.3 Parameter and hyperparameter optimization algorithms

A large amount of different hyperparameters and corresponding values are need to optimized
during machine learning approaches. To automatically train a model with various initial
conditions, Experiment Manager is applied in this study. The Experiment Manager is used
in this thesis to find optimal options for segmentation, transformation, and hyperparameters
in machine learning [Joc21]. To find these optimal options, both exhaustive sweep and
Bayesian optimization are applied in this study.
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2.3.1 Exhaustive sweep

The exhaustive sweep algorithm is used to sweep to all possible combinations of parameter
values that need to be settled. For example the initial learning rate need to be optimized
in CNN. The values for that parameter the algorithm should sweep through could be
[0.0001, 0.001, 0.01]. Besides the initial learning rate, variety of hyperparameters need to
optimize. The more differently parameter and corresponding values are set, the more
combinations of all parameter values are possible. In this context and considering the
computational speed of training, the algorithm should only be applied to a greater amount
of parameters with few values or a small amount of parameters with larger value sets.
Otherwise the number of experiments gets to large to be computed in a reasonable amount
of time [Joc21]. Although this algorithm is a good option to get a rough overview of good
parameter ranges, it is not suitable to determine the optimal parameter values precisely.
To precisely determine the optimal parameter values from a set of roughly determined
good parameter ranges, the Bayesian Optimization algorithm is needed.

2.3.2 Bayesian optimization

The Bayesian optimization algorithm minimizes a scalar objective function [ISN+18]. This
function is represented in the context of parameter optimization by one of the evaluation
metrics of the trained models. This could be for example the validation accuracy or the
training loss. The Bayesian optimization algorithm minimizes the distance of the evaluation
metric from its optimal value by changing the initial parameter values in a given range.
The probabilistic model for the scalar objective function is a Gaussian process prior with
added Gaussian noise.

Different from the Exhaustive Sweep algorithm, no concrete parameter values but a
value range for each parameter is set in Bayesian optimization. The Bayesian optimization
algorithm has no trials on each combination of the given parameter values, but it finds the
values that optimize the evaluation metric in a given time or number of experiments. For
large value ranges and a larger amount of parameters this algorithm needs lot amount of
experiments to optimize the evaluation metrics. Therefore this algorithm should be used
to fine tune roughly determined good parameter ranges of a small number of parameters
[Joc21].

2.4 Evaluation metrics

Models performance should be evaluated after they are trained. Evaluation metrics ae
used to measure the quality of the statistical or machine learning models. A large number
of evaluation metrics are available to test a model. According to ML tasks, evaluation
metrics could be divided into metrics for supervised learning approaches and metrics for
unsupervised learning approaches.

2.4.1 Metrics for supervised learning

Following [AZH+21], to achieve an optimized classifier, diverse metrics play a crucial role
for evaluation of ML approaches. Evaluation metrics are utilized through the two main
stages of the generation of a usual ML classifier: training and test. The optimized solution
of the training stage is discriminated and selected using the evaluation metric. Therefore,

23



Ch. 2. Theoretical background

evaluation metrics are utilized to measure the efficiency of the generated class-related
model. For test, the selected classifier gets evaluated considering the evaluation metric.
Then results for test stage and the efficiency on training stage are compared to show the
classifier performance on untrained data.

To evaluate a trained model performance, the classified data have to be categorized
into true positive (TP), true negative (TN), false positive (FP), and false negative (FN).
Numbers of TP and TN are the samples number that are correctly classified [AZH+21].
Numbers of FP and FN are the samples number that have been misclassified [AZH+21].
The most common metrics for classification are accuracy, recall, precision, and F-score.
Accuracy calculates the ratio of correct predicted cases to the overall number of evaluated
samples. Recall or Sensitivity calculates the ratio of TP over the total number of TP
and FN. Precision calculates the ratio of TP over the total number of TP and FP. F-
Score] calculates the harmonic average between recall and precision [WS20]. Every metric
has its specific pros and cons: accuracy assesses the overall effectiveness of algorithms,
precision assesses the predictive power of algorithms, sensitivity and specificity access the
effectiveness of the algorithm on a single class; F-score benefits algorithms with higher
sensitivity and challenges algorithms with higher specificity.

To evaluate the proposed approach comprehensively, models are tested in two schemes:
individual scheme and all subjects scheme. In individual model, both training and test
data come from the same subject. In all subject scheme, training data come from all
subjects and test data come from part of each subject [Sur22]. To measure the distribution
of models trained by each subject, standard deviations (SD) is applied as

SD =

√
|x− x̂|2

n
. (2.30)

In statistics, SD is the degree of dispersion or the scatter of the data points relative to its
mean. It illustrates the values are spread across the data sample and it is the measure of
the variation of the data points from the mean [DL05].

2.4.2 Metrics for unsupervised learning

Two types of metrics (internal and external metrics) can be employed for unsupervised
learning models (especially clustering models). Internal metrics define the quality of a
clustering without external labels by using the idea of cohesion and separation. External
metrics are understood as an equivalent the evaluation metrics of supervised algorithms.
Data labels must be available for external metrics. As the AE data are labeled in this
study, external metrics are applied [Lee21]. To evaluate the approach comprehensively,
five metrics – purity, rand index (RI), adjusted rand index (ARI), normalized mutual
information (MNI), and F-measure – are employed.

Among external metrics, purity is a simple and transparent evaluation measure. It
is the percent of the total number of objects that were classified correctly [MGB+11].
Rand index computes a similarity measure between two clustering by considering all pairs
of samples and counting pairs that are assigned in the same or different clusters in the
predicted and true clustering [BRK+18]. The drawback of RI is yielding a high value
for pairs of random partitions of a given set of examples. Adjustment rand index is
employed to the calculation by taking into consideration grouping by chance to counter RI
drawback. Normalized mutual information measure the similarities between two labels of
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the same data and balance the cluster quality and cluster numbers [SG02]. The advantage
of NMI is that it can be applied to compare different cluster models that have different
number of clusters. F-measure is a balanced mean between precision and recall and it
benefits algorithms with higher sensitivity and challenges algorithms with higher specificity
[NBP09].
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3 Application fields and related datasets

Three kinds typical signals: EEG, vibration, and AE signals which belong to various
application fields are analyzed in this study. Electroencephalogram signals belong to
biological field. They are one kind of brainwaves with low frequency (from 0 to hundred
Hz). Vibration is a mechanical event in which oscillations occur about an equilibrium
point. The time series that carries the information of those oscillations is called vibration
signal [RS16]. Vibration signals have a wide range of applications and can be used in
almost every industry, such as paper, coal and construction industries. Vibrations can be
described both in intensity by amplitude and in periodicity by frequency. Frequency bands
of vibration signals are very wide (from dozen to thousand Hz). Acoustic emission or stress
wave emission is the phenomenon of transient elastic wave generation due to a rapid release
of strain energy caused by a structural alteration in a solid material [Gre80].It is a very
efficient and effective technology used for fracture behavior and fatigue detection in metals,
fiberglass, wood, composites, ceramics, concrete and plastics [GLB15]. Depending on the
source mechanism, acoustic emission signals may occur with frequencies ranging from
several hertz up to tens of megahertz. While these three kind of signals characteristics are
varied and they have wide application in different fields, they are employed in this study.
Signals and corresponding datasets applied will be introduced briefly in this chapter.

The contents, figures, and tables presented in this chapter are modified after previous
publications [WS20], [WJDS22], and [WDS21]. Part of the contents, figures, and tables
are prepared for publications [WSS22], [WLS22] and [WJS22].

3.1 Inner Speech (IS) dataset

Inner speech (IS) (silent-, covert-, speech, verbal thought) are some of the terms used to
refer to the silent production of words in one’s mind, or the activity of talking to oneself
silence [ADF15]. It is defined as the silent expression of conscious thought to oneself in a
coherent linguistic form [PBRL+14]. Though much difficult in studying inner speech, the
role it plays in different cognitive abilities, including memory and executive functioning is
well established. It is linked to the development of language abilities and the advanced
mental abilities to which language is linked [ESS05]. Another skill that appears linked
to inner speech is silent reading. In addition, inner speech helps certain brain disorders
resulting from brain stem infarcts, traumatic brain injury, cerebral palsy, stroke, and
amyotrophic lateral sclerosis, limit verbal communication despite the patient being fully
aware [JG14]. People that cannot communicate due to neurological disorder would benefit
from systems that can infer internal speech directly from brain signals. People with speech
deficits would benefit from a communication system that can directly infer inner speech
from brain signals – allowing them to interact more naturally with the world [MIM+18].
Therefore, inner speech recognition has been proposed as an alternative communication

27



Ch. 3. Application fields and related datasets

paradigm for brain-computer interface (BCI) [PR21].
Brain-computer interface is a collaboration between brain and device that enables

signals from the brain to direct some external activity. The interface enables a direct
communication pathway between the brain and the object to be controlled [CGGX02].
In addition to its application in medical and health field, BCI technology has potential
applications in military, education, and recreation fields. According to [AAM15], BCI
system consists of four basic components: signal acquisition, signals preprocessing, feature
extraction, and classification. Discriminative characteristics of the improved signals are
extracted in features extraction stage. Lastly, classifiers distinguish features and allow
finally the guidance of device commands [WSS22].

Signal acquisition is measuring brain oscillating electrical voltages which is also named
brain waves [AGM16]. Brain waves reflects the voluntary neural actions generated by
user’s current activity. Methods capturing brain waves can be divided into invasive and
non-invasive. Invasive recording methods implant electrodes under the scalp and measure
the neural activity of the brain either intracortically from within the motor cortex or on
the cortical surface (electrocorticography (ECoG)) [AAM15]. The most relevant advantage
of invasive recording is providing high temporal and spatial resolution, increasing the
quality of the obtained signal, and a good signal to noise ration [AAM15]. Main downside
is the utilization of invasive surgery, and the potential for scar tissue to form around
the site, which may lead to potential side effects such as seizures [MMM+16]. The
invasive systems are mostly used in BCI systems experiment that use monkeys according
to [BAB14]. Instead of the surgical procedure and permanent device attachment, non-
invasive recording methods record brain activity from electrodes placed on the skin and
scalp. In general, non-invasive are considered the safest and low-cost type of devices.
Functional magnetic resonance imaging (fMRI), functional near infrared spectroscopy
(fNIRS), magnetoencephalography (MEG), electroencephalogram (EEG), and stereotactic
electroencephalography (sEEG) belong to the non-invasive methods [HBS+17]. Among
these non-invasive recording methods, EEG is one of the most common used methods
in BCI system. It is a physiological method of choice to record the electrical activity
generated by the brain via electrodes placed on the scalp surface [T+02]. These electrodes
can only capture ‘weaker’ human brain signals due to the obstruction of the skull.

A large number of research focuses on EEG-based BCI system [ZTS+18, LCL+07,
ANHAOAW17, LBC+18, HKCI13]. Common BCI paradigms, the signal processing, and
feature extraction methods are introduced in [ZTS+18]. In [LCL+07, LBC+18], commonly
employed algorithms used to design BCI systems based on EEG are presented and rel-
evant critical properties are described. The state-of-art as well as trends in EEG-based
emotion recognition system research are summarized by AI-Nafjan et al. [ANHAOAW17]
focusing on emotion detection, recognition, and classification. Brain-computer interface
paradigms, EEG feature types, classification algorithms, and target applications from 2007
to 2011 are revealed in [HKCI13]. In other words, data processing and distinguishing
approaches are summarized and reviewed in these contributions. Channel selection, time
window setting, and artifacts removal are employed in data preprocessing component. For
feature extraction component, motor imagery (MI)-based EEG, steady state visual evoked
potentials (SSVEPs), steady-state somatosensory evoked potentials (SSSEPs), and P300
are applied. Finally, features can be distinguished by linear discriminant analysis (LDA),
support vector machine (SVM), k-nearest neighbors (k-NN), and artificial neural networks
(ANNs) [WSS22]. The current review evaluates EEG-based BCI paradigms regarding their
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advantages and disadvantages from a variety of perspectives. For each paradigm, various
EEG decoding algorithms and classification methods are evaluated and their application
[ABS+19].

Owing to lack of publicly available electroencephalography datasets restricts the
development of new techniques for inner speech recognition, Nieto et al. [NPR+22]
conducted an experiment to provide an open-access multiclass electroencephalography
database of inner speech commands to the scientific community. In the experiment,
ten healthy right-handed subjects – four females and six males with mean age ± std
= 34 ± 10 years – without any hearing or speech loss, participated in the experiment.
Electroencephalography headcap with 128 electrode were placed on each subject before the
experiment. Besides headcap electrode, two computers and one computer screen graphic
user interface (GUI) are included in the test as shown in Figure 3.1.

Figure 3.1: Test rig [WSS22]

Each subject participated in one single recording day comprising three consecutive
sessions. Within each session, five stimulation runs were presented. Four trial classes
(words) – ‘Arriba (up)’, ‘Abajo (down)’, ‘Derecha (right)’, and ‘Izquierda (left)’ – are
selected and presented in the screen. The trial’s class (word) is selected randomly. The
occurrence frequency of each word is the same, 559 times for each word. In total, 2236
trials are held for inner speech. The detailed trial number of each subject is shown in Table
3.1.

According to [NPR+22], the procedure of each trial is as follows. Each trial begin at
time t = 0 s with a concentration interval of 0.5 s. A white circle appears in the middle of
the screen and participant should fix his/her gaze on it. Participants should not blink until
the white circle disappear. At time t = 0.5 s the sign interval started. A white triangle
pointing to different direction is presented. The pointing direction of the sign corresponds
to each class. At t = 1 s, the triangle disappears from the screen and only the white circle
remains. At the same time, the action interval started. After the visual cues disappeared,
participants are instructed to imagine his/her own voice as if he/she was giving a direct
order to the computer, repeating the corresponding word. After 2.5 s of action interval, i.e.
at t = 3.5 s, the white circle turned blue and relax interval began. At t = 4.5 s the blue
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Table 3.1: Inner speech trials [Sur22]

Subjects Up Down Right Left
sub-01 50 50 50 50
sub-02 60 60 60 60
sub-03 45 45 45 45
sub-04 60 60 60 60
sub-05 60 60 60 60
sub-06 54 54 54 54
sub-07 60 60 60 60
sub-08 50 50 50 50
sub-09 60 60 60 60
sub-10 60 60 60 60

Sub total 559 559 559 559
Total 2236

circle vanished and one trial ended. The workflow of each trial is shown in Figure 3.2.

Figure 3.2: Trial workflow [WSS22]

3.2 Case Western Reserve University (CWRU) bearing dataset

Within the last decades, rotating machinery equipment plays an irreplaceable role in
modern industry [ZLW+20]. As one of the most common components of rotary machinery,
bearing is a mechanical component used to reduce friction among other moving parts.
Once a bearing fails (or components in it), other adjacent components and machines
are effected up to failure. Several surveys regarding the likelihood of induction machine
failure conducted by the IEEE Industry Application Society (IEEE-IAS) and the Japan
Electrical Manufactures’ Association (JEMA) reveal that bearing fault is the most common
fault type and is responding for 30 to 40 % of all machine failures [ZZWH20]. Therefore,
condition monitoring and fault diagnosis of bearings is of increasing interest [BMDA16].
Several benchmark datasets are developed to evaluate development in bearings health state
(diagnosis) and remaining useful lifetime (prognosis). Among these datasets, Case Western
Reserve University (CWRU) dataset is one of the most cited ones used to validate the
performance of different approaches on bearing diagnosis [WS20].
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Case Western Reserve University bearing dataset is generated by Prof. Kenneth
Loparo’s research group and provides access to ball bearing test results for fault-free and
faulty bearings [WS20]. As shown in Figure 1, the test rig consists of a 2 Hp motor on
the left side, a torque transducer in the center, a dynamometer on the right side, and
control electronics (not shown) [WS20]. The test bearings support the motor shaft and
vibration data were recorded for different motor loads (labeled as 0, 1, 2, 3, corresponding
motor speed is 1797, 1772, 1750, 1720 rpm). A single point fault is introduced to the
test bearings at drive end (DE) and fan end (FE) using electro-discharge machining with
fault diameters of 007, 014, 021, and 028 mils (1 mil = 0.001 inch) [WS20]. Faults are
introduced separately at the inner raceway (IR), ball (B), and outer raceway (OR). Outer
raceway faults are located at 3 o’clock (directly in the load zone), 6 o’clock (orthogonal to
the load zone), and at 12 o’clock [WS20]. Vibration data are collected using accelerometers.
Accelerometers are placed at the 12 o’clock position at both the drive end and fan end of
the motor housing. During some experiments, an accelerometer is attached to the motor
supporting base plate (BA) as well. Digital data are collected at samples rate of 12,000
samples/second. Data are also collected at 48,000 samples per second for faulty bearings
at drive end. Four sub-databases are included in CWRU bearing dataset: normal baseline

Figure 3.3: Test rig of CWRU bearing dataset [WS20]

(fault-free) data, 12k and 48k drive end bearing fault data, and fan-end baring fault data.
For drive end bearing states, same bearing states are recorded in both 12k and 48k drive
end bearing sub-databases, the differences between them are related to the sampling rate.
Depending on the located position of faulty bearing, fault size, and fault location in outer
raceway, 28 faulty bearing state and one fault-free state (data from different loads are
denoted as one class) are contained in CWRU bearing dataset as shown in Table 3.2. While
not every measurement contains data from three accelerometers - some measurements only
have data from one acceleromter - the sample number in each bearing state is not equal.

3.3 Metalworking Fluid (MWF) datasets

Metalworking fluids (MWF) represent a range of oils or other liquids that can be used
to cool, lubricate, and reduce friction during grounding, machining, and cutting process
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Table 3.2: Case Western Reserve University bearing dataset [WJS22]

Bearing position Bearing faulty part Fault size Motor load Accelerometer position
DE B 007 0, 1, 2, 3 BA, DE, FE
DE B 014 0, 1, 2, 3 BA, DE, FE
DE B 021 0, 1, 2, 3 BA, DE, FE
DE B 028 0, 1, 2, 3 DE
DE IR 007 0, 1, 2, 3 BA, DE, FE
DE IR 014 0, 1, 2, 3 BA, DE, FE
DE IR 021 0, 1, 2, 3 BA, DE, FE
DE IR 028 0, 1, 2, 3 DE
DE OR 007@3 0, 1, 2, 3 BA, DE, FE
DE OR 007@6 0, 1, 2, 3 BA, DE, FE
DE OR 007@12 0, 1, 2, 3 BA, DE, FE
DE OR 014@6 0, 1, 2, 3 BA, DE, FE
DE OR 021@3 0, 1, 2, 3 BA, DE, FE
DE OR 021@6 0, 1, 2, 3 BA, DE, FE
DE OR 021@12 0, 1, 2, 3 BA, DE, FE
FE B 007 0, 1, 2, 3 BA, DE, FE
FE B 014 0, 1, 2, 3 BA, DE, FE
FE B 021 0, 1, 2, 3 BA, DE, FE
FE IR 007 0, 1, 2, 3 BA, DE, FE
FE IR 014 0, 1, 2, 3 BA, DE, FE
FE IR 021 0, 1, 2, 3 BA, DE, FE
FE OR 007@3 0, 1, 2, 3 BA, DE, FE
FE OR 007@6 0, 1, 2, 3 BA, DE, FE
FE OR 007@12 0, 1, 2, 3 BA, DE, FE
FE OR 014@3 0, 1, 2, 3 BA, DE, FE
FE OR 014@6 0 BA, DE, FE
FE OR 021@3 1, 2, 3 BA, DE, FE
FE OR 021@6 0 BA, DE, FE

Normal baseline 0, 1, 2, 3 DE, FE

32



Sec. 3.3. Metalworking Fluid (MWF) datasets

[OJJ+22]. They play a significant role in metalworking processes. Firstly, MWF provide a
layer of lubricant which acts as a cushion between workpiece and tool to reduce friction
[McC94]. In addition, MWF reduce the heat and friction between tool and workpiece,
and help to prevent burning and smoking [BKS+11]. Furthermore, MWF remove fines,
chips, and swarfs from tool and workpiece surface [MJ08]. Therefore, they help to improve
the quality of workpiece continuously. Finally, MWF protects workpiece and tool from
corrosion when they are attacked by moisture, oxygen, acid substance, and dust [Smi08].
The MWFs are used in various metalworking processes such as grinding, cutting, drilling,
and threading.

Generally, MWFs are categorized into water-based and oil-based fluids based on their
basic substance [WBH12]. On the basis of water and oil, additives are added for MWF. The
chemical additives of MWF affect their performance strongly. Even small changes of MWF
additives can influence the performance of MWF in manufacturing processes significantly
[WJDS22]. Over decades, more and more contributions focus on MWF additives and their
performance in different metalworking processes. Most of these contributions evaluate MWF
performance by measuring their pH value, acid split, bacteria, viscosity, sulphur, copper
corrosion, residue, conductivity, foam, and surface tension [WPH17, Tra13, AP06]. Effect
of MWF to workpiece and tool are measured by wear [HCMBS14], temperature [Can11],
and taping torque test (TTT) [DS20]. However, only a few contributions concentrate on
the MWF influence on workpiece and tool Acoustic Emission (AE) events.

Acoustic Emission is a passive non-destructive test (NDT) technique that makes use
of the high-frequency acoustic energy emitted by an object undergoing stress [Lig21]. The
cause of AE are attributed to the redistribution of the localized strain energy that is
generated by the microscopic changes in a structure under different loading conditions
[TA01]. Crack nucleation and growth, dislocation slips, grain boundary sliding, and
phase transformation in structure lead to energy-releasing event [WJX+21]. According to
[PLB+18], this energy-releasing event leads to a transient elastic wave, which will propagate
in its medium and eventually reach to surface. The interaction of the transient elastic
wave with a surface will cause surface motion. Special sensors which mounted on surface
can pick the faintest surface motions and convert them into electrical signals, namely AE
signals. Therefore, the characteristics of AE signal are: they reveal object energy naturally
and manifest the dynamic processes in material [LBB+14]. As a consequence, AE signals
are widely used to detect the presence of dangerous flaws and to locate the position of such
flaws in various structure.

Thread forming is a manufacturing process that involves the generation of internal
threading. According to [BFM+08], the formation of the thread is obtained by the successive
action of the tap lobes. Each lobe causes a three-dimensional plastic flow. This plastic
flow leads to an important strain hardening of the work material. Thread forming pushes
bushing material in the flanks and cause a compaction of the micro structure by a chipless
cold process [WDS21]. Because no chips affect the AE signals, the thread forming process
maximizes the preservation of the original AE signal.

To obtain AE signals from different MWF in the process of thread forming, two
laboratory experiments are conducted. These experiments are results from collaboration
between the Chair of Dynamics and Control, University of Duisburg-Essen and Rhenus Lub
GmbH & Co KG Mönchengladbach. Furthermore, measurements and data pre-processing
are related to this cooperation.

The experimental test rig is shown in Figure 3.4 left. It consists of a tribometer of
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type Tauro®120 (Taurox e. K., Germany), a test platform made of C45E (1.1191), a
thread forming tool of the type Emuge M6-6HX InnoForm1-Z HSSE-TiN-T1 (as shown in
Figure 3.5), different test and reference fluids, and a cleaning station with brushes and
air blow system to remove chips and fluid residues. To avoid the influence of debris and
chips on AE signals during these experiments, before testing, the test platform and the
new tap are cleaned in an ultrasonic bath, dried in an oven at 50 °C, and cooled down to
room temperature afterwards. Among different fluids, the tap is manually cleaned with a
cleaning solvent. After each thread forming process, the tap is automatically cleaned in a
cleaning station [WDS21].

Test platform has 368 (5.6H7 mm) pre-drilled holes of 28 mm in depth, arranged in 23
columns and 16 rows (from the back to front, the holes in the first column is named hole 1
to hole 16, the holes number in the second column are 17 to 32, the third column holes are
named 33 to 48, etc.) [DS20]. For convenience, each thread forming process is named as
one measurement and measurements in one column is named as one series [WLS22]. Test
series are shown in Figure 3.4 right. The active tool length is 8 mm with a cutting lead of
approximately 2-3 mm and a thread pitch of 1 mm.

Figure 3.4: Test rig of MWF dataset [DS20]

A custom FPGA-based AE measurement system is used for the recording of the AE
signals. At the front of the test platform, a disc-shaped broadband piezoelectric transducer
is attached. The transducer is mounted using cyanoacrylic glue, has a diameter of 10 mm,
a thickness of 0.55 mm, and a corresponding resonant frequency of 3.6 MHz. The AE
measurements are acquired continuously at a sampling rate of 4 MHz [WDS21].

3.3.1 Dataset MWF19

In this experiment, eleven emulsion-based (reference fluid and other ten fluids) MWF are
filled in pre-drilled holes. Before each test fluid, the reference fluid is applied to set same
initial test conditions for each fluid. This means that the first column pre-drilled holes
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Figure 3.5: Thread forming tool of MWF dataset [DS20]

are filled with reference fluid, the second column pre-drilled holes are filled with fluid 1,
the third column holes are with reference fluid again, the fourth column holes are filled
with fluid 2, . . . etc. In short, holes in the odd-numbered column are filled with reference
fluid and holes in the even-numbered column are filled with the other ten liquids (series
m01, m03, m05, . . . are reference measurements while series m02, m04, m06, . . . are
test measurements) as shown in Table 3.3. As AE data from the last two columns are
contaminated, so they are not considered in the calculation. Fluid and their additives that
are applied in this experiment are listed in Table 3.4. Acoustic Emission signals taken from
this experiment are stored in dataset MWF19 while this experiment is conducted in the
year of 2019.

3.3.2 Dataset MWF16

In the second experiment, 112 threads of 28 mm in depth are formed at a speed of 1000
rpm using five different MWF. Besides the run-in of the tap at the beginning of the test
procedure (32 threads with reference fluid), eight threads are tapped with each test fluid
[WDS21]. Test series are shown in Table 3.5. In this experiment, both water-based (fluid 1
and fluid 2) and oil-based (fluid 3 and fluid 4) MWF are applied. The reference fluid is
different from the reference fluid in the first experiment. Basis and additives of these five
fluids are listed in Table 3.6. Acoustic Emission signals taken from this experiment are
stored in dataset MWF16 as this experiment is conducted in the year of 2016.
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Table 3.3: Test series in MWF19 [WJDS22]

Series Threads MWF typs
m01 1-16 Reference
m02 17-32 Fluid 1
m03 33-48 Reference
m04 49-64 Fluid 2
m05 65-80 Reference
m06 81-96 Fluid 3
m07 97-112 Reference
m08 113-128 Fluid 4
m09 129-144 Reference
m10 145-160 Fluid 5
m11 161-176 Reference
m12 177-192 Fluid 6
m13 193-208 Reference
m14 209-224 Fluid 7
m15 225-240 Reference
m16 241-256 Fluid 8
m17 257-272 Reference
m18 273-288 Fluid 9
m19 289-304 Reference
m20 305-320 Fluid 10
m21 321-336 Reference

Table 3.4: Metalworking fluid additives in MWF19 [WJDS22]

MWF Additives Additive substance
Reference - -
Fluid 1 Sodium sulfonate 4800 ppm
Fluid 2 Polysulfid, AS: Sulfur 1600 ppm
Fluid 3 Polysulfid, AS: Sulfur 2400 ppm
Fluid 4 Lauryl ethylene oxide phosphate 160 ppm
Fluid 5 Oleyl ethylene oxide phosphate 160 ppm
Fluid 6 Stearyl propylene oxide phosphate 86 ppm
Fluid 7 2-ethylhexylcocoate 8000 ppm
Fluid 8 Synthetic polymeric ester 8000 ppm
Fluid 9 Diethylene glycol 8000 ppm
Fluid 10 Polypropylene glycol 8000 ppm
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Table 3.5: Test series in MWF16 [WJDS22]

Series Threads MWF typs
m01 1-32 Reference
m02 33-40 Emulsion 1
m03 33-48 Emulsion 2
m04 49-56 Oil 1
m05 57-64 Oil 2
m06 65-72 Reference
m07 73-80 Oil 2
m08 81-88 Oil 1
m09 89-96 Emulsion 2
m10 97-104 Emulsion 1
m11 105-112 Reference

Table 3.6: Metalworking fluid additives in MWF16 [WJDS22]

MWF Basis Water Oil Ester Phosphorus
Reference Water 95 % 0 % 1.25 % 50 ppm
Fluid 1 Water 95 % 1.4 % 0 % 3163 ppm
Fluid 2 Water 95 % 1.4 % 0 % 48 ppm
Fluid 3 Oil 0 % 85 % 6.5 % 80 ppm
Fluid 4 Oil 0 % 85 % 6.5 % 1600 ppm
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4 State of art approaches

Machine learning is an area related to both cybernetics and computer science (or control
science and computer science), attracting an overwhelming interest both of professional
and of the general public [Fra20]. In the last few years due to successes of computer
science (the emergence of GPUs, leading to significant improvements in the performance
of computers and development of special software, allowing to work with big data), ML
algorithms rise public interest significantly. Nowadays, ML has been applied widely in
various fields. Overview of machine learning approaches is introduced in the first section.

Since the last century, IS has been researched for more than 70 years. A large number
of experiments and questionnaire are conducted. Besides, considerable signals referring to
IS and variety approaches are employed. Experiments, signals processing and classifiers are
reviewed in the second section. The CWRU bearing dataset was open to public from 2012.
As a benchmark, it is employed for validation of new designed approaches. Consequently,
a large number of contributions are summarized and their results are compared. Although
MWF datasets are not open to public, some approaches are still applied on them to
discriminate MWF and their additives. Stat-of-art approaches that applied in IS, CWRU,
MWF datasets will be summarized and reviewed in this chapter. In addition, results from
these approaches will be shown and disadvantages with these approaches are summed up.

Parts of the contents, figures, and tables are prepared for publications of [WSS22],
[WLS22] and [WJS22].

4.1 Overview of machine learning

Machine learning is a type of artificial intelligence that provides machines with the ability
to automatically learn from data and past experience while identifying patterns to make
predictions with minimal human intervention [DDPR15]. It derives insightful information
from large volumes of data by leveraging algorithms to identify patterns and learn in an
iterative process [Sun13]. In other words, ML algorithms use computation methods to
learn directly from data instead of relying on any predetermined equation that may serve
as a model.

History of ML goes back to the 1943 with the first mathematical model of neural
networks presented in the scientific paper ’A logical calculus of the ideas immanent in
nervous activity’ by [MP43]. In 1949, the book ’The Organization of Behavior’ based the
theories on how behavior relates to neural networks and brain activity and become one of
the monumental pillar of ML development [Do49] . Psychologist Frank Rosenblatt also
created a group that built a machine for recognizing the letters of the alphabet [Ros58] in
1950s. The first boom of ML happens at 1960s by deterministic approaches [Wid64, VL63]
and stochastic approaches [MP69]. Machine learning development stagnation is in 1970s
and 1980s. In the 1990s, machine learning work shifted from knowledge-driven approach to
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data-driven approach [BM98, Man96, Mar91]. From the beginning of this century, it is ML
rapid development time as the boost of big data, reducing cost of parallel computing and
memory, and new algorithms of DL [WMZ09, Ayo10, Mit06, BN06, BB01]. In 2006, the
term ’deep learning’ was introduced by Hinton to explain new algorithms letting computer
distinguish objects and text in images and videos [HOT06].

Learning process of ML algorithms can be divided into three parts according to [Chu18]:
i) Decision process: based on some input data (labeled or unlabeled), the algorithm

produce a model from the input data.
ii) Error function: evaluate the performance of trained model.
iii) Model optimization: update weights autonomously until a metric threshold acquired.
Machine learning algorithms are molded on training data to create a model. when new

input data are introduced to the trained model, the model uses the developed model to
make a prediction. The performance of prediction is evaluated by metrics. Based on the
metrics, the algorithm is either deployed or trained repeatedly until the desired metric value
is achieved. Process of ML is shown in Figure 4.1. According to the development history

Figure 4.1: Machine learning workflow [Chu18]

and data processing difference, ML algorithms are divided into CML and DL. Conventional
machine learning techniques are limited in capability of processing the data in their original
form. These methods required considerable understanding and expertise for representation
i.e. selection of features required professional knowledge strongly [Ong17]. In other words,
CML is more dependent on human intervention to learn. Human experts determine the set
of features to understand the differences between inputs, usually requiring more structured
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data to learn [T+95]. On the contrary, DL eliminates some of data pre-processing steps
that is typically involved in conventional machine learning. These algorithms can ingest
and process unstructured data [KT18]. Deep learning algorithms determine which features
are most important to distinguish by itself. Difference between CML and DL are shown in
Figure 4.2. Based on whether input data are labeled or not, machine learning algorithms

Figure 4.2: Difference procedure between CML and DL [KT18]

are divided into three primary categories: supervised learning, unsupervised learning,
and reinforcement learning. Supervised learning algorithms are trained on labeled data
and usually for the task of classification and regression. The commonly used supervised
learning methods are: Naive Bayes (NB), linear regression, logistic regression, support
vector machine, K-nearest neighbor (K-NN), random forest (RF), decision trees (DT),
Gaussian process regression (GPR), convolutional neural network (CNN), generative
adversarial networks (GAN), self-organization maps (SOM). Unsupervised learning holds
the advantage of being able to work with unlabeled data. The commonly used unsupervised
learning methods are: K-means, hierarchical cluster, Gaussian mixture model (GMM),
hidden mixture model (HMM), fuzzy C-means, autoencoder, deep belief network (DBN).
Reinforcement learning directly takes inspiration from how human beings learn from data
in their lives. Reinforcement learning algorithms improve upon itself and learns from new
situation using a trial-and-error method [QZ11].

Among various ML algorithms, neural networks are the heart DL algorithms. It is
a series of algorithms that endeavors to recognize underlying relationships in a set of
data through a process that mimics the way the human brain operation [Mah20]. Neural
networks architecture is made of individual units called neurons that mimic the biological
behavior of the brain. Nowadays, many NN architecture have been validated and can be
directly applied such as: LeNet-5, SqueezeNet, ENet, Dan Ciresan Net, VGG, AlexNet,
Overfeat, and ResNet.

Due to its powerful functions, ML has been used in many fields such as: agriculture,
image and speech recognition, traffic prediction, product recommendation, self driving cars,
Email spam and malware filtering, virtual personal assistant, online fraud detection, stock
market trading, medical diagnosis, and automatic language translation. To understand
the principals ML apply on divergent field, review literature are summarized in this study.
Large number of review contributions are available. [LBM+18] present a comprehensive
review of research dedicated to applications of machine learning in agricultural production
systems. An overview of past history, current developments, and emerging opportunities
of ML for fluid mechanics are presented in [BNK20]. In [GKMJ22], authors provide
readers with a gentle introduction to a few key machine learning techniques biological data.
Maxwell et al. review the implementation of machine learning classification in remote
sensing [MWF18]. Padarian et al. provide a comprehensive review of the application of ML
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techniques in soil science aided by a ML algorithm to find patterns in a large collection of
text corpora [PMM20]. Weichert et al. covers the majority of relevant literature from 2008
to 2018 dealing with machine learning and optimization approaches for product quality or
process improvement in the manufacturing industry [WLS+19]. Qu et al. summarize the
application of ML in microbiology [QGL+19].

4.2 State-of-art approaches on validating datasets

Inner speech has be studies for more than 70 years, many contributions relevant to IS
are published. In this section, contributions that referring to IS study will be presented.
Besides, the CWRU bearing dataset becomes a benchmark to verify diagnosis approaches
since it was open to public in 2012. Approaches and their results referring to CWRU
bearing dataset are also shown here. Although MWF datasets are not open to public by
far, some contributions are still be involved. In this section, state-of-art approaches and
relevant results of these three kinds of datasets are introduced.

4.2.1 State-of-art approaches on IS dataset

Since the second half of the 20th century, inner speech has been a research topic in
philosophy and psychology [LHV18]. Varieties of Inner Speech Questionnaire (VISQ) has
been used to link everyday phenomenology of inner speech – such as inner dialogue – to
various psychopathological traits [ADMW+18]. Apart from questionnaire, a large number
of experiments are conducted by meaning of inner speech to express phonemes, words,
vowels, and phrases. Eight chronic post-stroke aphasic patients and thirteen cognitively
healthy adults are underwent testing on a range of evaluative tests and four experiments
designed to check whether chronic post-stroke patients has the ability to use inner speech
[KGL+17]. Referring to the effect of overt speech on children’s use of inner speech in
short-term memory, three experiments are implemented in [HHSH91], meanwhile, the role
of private speech and inner speech in planning during middle childhood is tested in [LMF10].
Inner speech impairment in children with autism is associated with greater nonverbal than
verbal skills is tested by in experiments in [LFMW09]. Direct evidence that inner speech
sustains predictable task switching in adult are validated by experiment in [LMA+16].
University students are asked to listen to instrumental music and refer inner thoughts in a
retrospective video-assisted interview to explore functions of inner speech and its expression
in gesture [Fos20]. Neural correlates of inner speech and auditory verbal hallucinations
experiments are held by Jones et.al [JF07]. In [WJP+17], two experiments are designed
to compare electrophysiological signals between inner speech and overt speech. Lexical
bias and the phonemic similarity effect in inner speech is validated by [BC09, Noo05]. To
investigate the qualitative influence of inner speech on high and low measures of executive
function, two experiments are conducted by [AB18]. Three experiments are carried out to
examine the role of inner speech in task switching [EM03].

Patterns capturing brain waves relevant to inner speech can be divided into invasive
and non-invasive. Since invasive data acquisition requires surgery operation, typically,
this pattern is not popular for human. However, Stephanie et.al [MIM+18] acquire ECoG
signals regarding inner speech from electrode grids, strips or depth electrodes that are
temporarily implanted onto the cortical surface, either above or below the dura mater.
Comparing with invasive pattern, non-invasive pattern is more friendly for subjects who
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attend experiments. Through non-invasive experiments, MEG, fMRI, fNIRS, EEG, and
sEEG signals are accessible. Magnetoencephalography signals with high magnetometers
and gradiometers on inner speech are obtained by Dash et.al [DFBW21]. Neural activity
during inner speech of meaningless syllable sequences was measured with MEG and fMIR
from eight right-handed subject in [FHMO04]. Functional near infrared spectroscopy make
use of electromagnetic rediation in near-infrared region in order to measure functional
activation in cortical areas 1-3 cm beneath the scalp. Kamavuako et.al obtain fNIRS
signals that referring to inner speech [KSG+18]. Comparing with ECoG, MEG, fMRI, and
fNIRS signals, EEG signals are most widely used for inner speech analysis. Experiments
gotten EEG data concerning inner speech data are conducted by [ZR15, CFC19, CGR17,
NKA17, BDA21, CKFC20, GCTGRGVP17, SS14, HAMI17]. Both fNIRS and EEG data
are obtained within eleven participants performing multiple iterations of three tasks by
Rezazadeh et.al [RSYW+19]. Both EEG and fMRI data are recorded from ten healthy
participants during covert speech in [YNB+16]. In addition, Angrick et.al record intracanial
neural activity during speech processes using stereotactic electroencephalography (sEEG)
electrodes [AOD+21].

Vowels, syllables, words, sentences, and states are performed by subjects and corre-
sponding brain wave signals are acquired. To distinguish these signs, various traditional
machine learning and deep learning approaches are applied. As the most classical machine
learning method, SVM are utilized by [KSG+18, CKFC20, ZR15, CGR17, GCTGRGVP17]
to distinguish inner speech data. Nguyen et.al [NKA17] use the variant of relevance vector
machine (RVM) - variant of SVM - to distinguish signs in experiment. Random forest
(RF) which establishes outcome based on the decision trees predictions is utilized by
[CKFC20, CGR17, GCTGRGVP17] for inner speech distinction. As a classification and
dimensionality reduction technique, linear discriminant analysis (LDA) is also used in
[RSYW+19, AOD+21, CKFC20, SS14]. Because of its simplicity and efficiency, Naive
Bayes (NB) is also applied for inner speech distinction [GCTGRGVP17]. K-Nearest Neigh-
bor which is a non-parametric supervised learning classifier is also used for EEG data
separation [HAMI17]. Another traditional machine learning method applied on fMRI and
EEG data distinction is sparse logistic regression (SLR) [YNB+16]. Among deep learning,
bidirectional long short-term memory recurrent neural network (BLSTM-RNN) which
combine BLSTM and RNN are applied in [DFBW21]. Convolutional neural networks which
is powerful for image distinction is used for inner speech classification by [CKFC20, CFC19].
Deep Belief Networks invented as a solution for the problems encountered when using
traditional neural networks training in deep layered networks is also applied for inner
speech discriminating [ZR15].

Following approaches designing in contribution above, performance of these approach
should be accessed. Metrics for evaluating the performance of these approaches and
classifiers are usually accuracy, stand deviation (SD), and F-score. Accuracy are most
applied in the literature mentioned above. Besides, standard deviation is also employed to
evaluate the results inequality among different subjects.For the imbalance classes, F-score
can access the trained models unprejudiced. Results from part of contributions mentioned
above are shown in Table 4.1.

Results from IS can be summarized as follows:
i) Most contributions apply their designed approach to the data from their own

experiments;
ii) Words and vowels are the most applied signs in these experiments;
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iii) Most results accuracy are under 50 % and accuracy which reach up to 90 % only
come from a few contributions;

iv) Standard deviation of some approaches are very high;
v) Only one contribution ([BDA21]) apply the same dataset as in this study. Accuracy

from it is very low: only 29.67 %.

4.2.2 State-of-art approaches on CWRU dataset

Large number of new diagnosis approaches are designed for rotating machinery as its
importance in industry in the past years. Many contributions verify their approaches
performance with CWRU bearing dataset. A large number of CML are applied to CWRU
bearing dataset. K- nearest neighbors are employed as a classifier to differentiate bearing
states in [WWW+21, LWSH19, RABV14, VSP+22]. As a traditional classifier, SVM is
also applied on CWRU bearing dataset [SAF15, YP19, WCJ17, ZPC17]. [SA18, PBMT21]
employ Naive Bayes to differentiate CWRU bearing states. Decision trees is employed for
classify CWRU bearing states by [ZYZ21]. [KMC+21, VGK17, WP19, RDC20, LLL18]
put random forest into use for CWRU data classification. Besides these supervised
learning methods, numerous unsupervised learning approaches are also utilized. K-means is
applied for differentiating CWRU bearing states in [ZNZ+16, ZZL+17, WZLL21, ZLT+20].
Gaussian mixture model are also employed to differentiate bearing states in CWRU bearing
dataset by [Yu11, ARMH20, AAL+21, LZLL15]. In [WHW21, PWC+21, FLXL16], fuzzy
C-means is employed to discriminate bearing patterns.

In addition to CML, numerous DL approaches are referred to CWRU bearing dataset.
As a sophisticated generative model that employs a deep architecture, deep belief network is
applied for bearing states discrimination in [WLR+15, LWDZ18, YH17, PCZ18, SJWW17].
Convolutional neural network which has become dominant in various computer vision
tasks is also widely applied for CWRU bearing dataset classification [WLGZ17, QWW+19,
LLT+17, XLX+17, LVD21]. To learn a lower dimensional representation for a higher
dimensional data, autoencoder is applied to capture the most important characters of
vibration signals in [YFCZ18, WLGZ17, SJLL18, DW+18, XT19, DTS+19, YWLZ19].
Generative adversarial networks use two neural networks, pitting one against the other
in order to generate new, synthetic instances of data that can pass for the real data.
Besides its widely application in image, video, and voice generation, it is also applied
for bearing distinction [Hua19, JHZ+19, ZCL+20], As a special type of artificial neural
network adapted to work for time series data or data that involves sequences, recurrent
neural networks is also applied for CWRU bearing states distinction in [ZZH+21].

Compared with CML and DL, TL offers greater flexibility in extracting high-level
features transferred from the source to the target problem. Contributions [ZLLN18,
ZLC+19, CLZG20] prove that TL is a powerful algorithm for CWRU bearing states
analysis. Review of these CML, DL, and TL approaches and their results are shown in
Table 4.2.

From Table 4.2, the following can be concluded: The results from other contributions
can be summarized as:

i) Results from these contributions are good. All accuracies are higher than 90 %;
ii) Accuracies from some contributions are very good. Results from some contributions

[ZLLN18, WLGZ17, WLR+15, XLX+17, WLGZ17, DTS+19, YWLZ19, PCZ18, YFCZ18,
ZYZ21, ZCL+20] are over 99 % ;
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iii) Some approaches get perfect results for data they selected via corresponding
approaches. Accuracies from contributions [YH17, WP19, RDC20, PWC+21] reach values
up to 100 %.

However, inadequacy of these approaches are also obvious:
i) Selected data that used in relevant approaches are not clear in some contributions

[SJLL18, WLGZ17, LWDZ18, PCZ18, ZNZ+16, ZZL+17, WZLL21, WHW21, PWC+21].
While data are the most critical part in machine learning, results are not convincing when
data used are not pointed out [WJS22].

ii) For some contributions, only part of the data are selected - data from drive side faulty
bearing and baseline are used in [ZLLN18, YP19, WLR+15, SJWW17, YH17, YFCZ18,
LLL18, LZLL15, ZCL+20]. Data from drive end faulty bearing and baseline are easier
to differentiate, good results from easily distinguishable data can not demonstrate the
robustness of these approaches.

iii) Most study classify selected data into 4 or 10 classes. Four classes denoted as
fault-free, fault at inner race, ball, and out race while ten classes denoted as fault-free,
fault location in different parts (inner race, ball, out race) combing with fault size (7, 14, 21
mils). Fault size of 28 mils and different fault locations in out race can not be distinguished
in four or ten classes [WJS22].

iv) In some publications only a small amount of information is referred on data
processing, parameters, and hyperparameters optimization. If only parts of well-performed
samples are taken into calculation, results are unconvincing [WJS22].

v) Accuracy is mostly applied to evaluate the performance of these approaches. When
sample numbers in each class are not equal, accuracy is not suitable to evaluate approaches
and other metrics are needed to judge approaches performance like F-score [WJS22].

4.2.3 State-of-art approaches on MWF datasets

Metalworking fluid experiments were conducted by the collaboration between the Chair
of Dynamics and Control, University of Duisburg-Essen and Rhenus Lub GmbH & Co
KG Mönchengladbach. Datasets from these two experiments (MWF19 and MWF16) are
still not open to public. However, Mr. Wirtz and Miss Demmerling applied an approach
which combining with CWT and K-means to them [WLS22]. In their approach, AE signals
are transformed from time domain to time-frequency domain by CWT firstly. Different
process phases - forward and reverse - can be distinguished according to peak frequencies
of AE signals. Furthermore, K-means clustering is employed to differentiate the scalogram.

Results for MWF19 from the approach is shown in Figure 4.4 [DWS22] .
Results for MWF16 from the approach is shown in Figure 4.5 [WDS17]. From results

of both datasets, such conclusion can be drawn:
i) Approaches applied in these two datasets are monotonous. Data in both two datasets

are distinguished by the approach combining CWT and K-means [WLS22].
ii) Data distinguish just come from partly series: In MWF2016, data from series 2 and

3; data from series 9 and 10; data from series 4 and 5; data from series 2, 4 and 11 are
compared. In MWF2019, data from series that used similar MWF (series 4 and 6; series 8,
10, and 12; series 14 and 16; series 18 and 20) are distinguished.

iii) Clustering results are not ideal, especially in MWF2019, results from series 7 and 8
are only 40 %; results from series 4, 5 and 6 are only 41 %.
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Figure 4.3: Results for dataset MWF19 [DWS22]

iv) No approach is used for differentiate all MWF from one dataset in [DWS22],
[WDS17], just part series are distinguished in one dataset.

v) Although both datasets store AE signals from MWF, it is still ambiguous whether
TL can be applied to these two datasets.
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Figure 4.4: Results for dataset MWF16 [WDS17]
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5 Proposed approaches

Except for some public databases that have been processed by the designer, most practical
data and datasets contain some kind heterogenity or contamination, which called ’outliers’
[Kay04]. Outliers have a disproportionate effect on statistical results which result in
misleading interpretations. Isolated outlier has positive impact on the results of data
analysis and data mining. Furthermore, to obtain accurate data in many experiments, a
lot of foreshadowing or extension steps are also required in experiments. However, data
from these foreshadowing or extension steps are not required and they need to be removed.
In addition, large databases computation requires very powerful computer configuration
and there are time consuming. These computer configurations are not available in every
laboratory. To reduce computer configuration requirements and computing time, data
selection is also necessary.

Conventional machine learning techniques have restricted ability on processing data
from their original form and they require considerable understanding and expertise for
features selection. Although DL algorithms can ingest and process unstructured data and
determine which features are most important to distinguish, however, for most new DL
approaches data processing are also needed to improve models ability in data distinguishing.
In the step of data processing, many techniques can be applied such as: data augmentation,
segmentation, transformation, and normalization. There is no unified standard on which
data processing method is more suitable for all datasets. Appropriate data processing
methods can only be selected based on experience or professional knowledge. In proposed
approaches, except for data processing methods that selected based on experience, other
data processing methods are also employed.

According to the destination of data distinguish, various ML methods can be applied.
SVM, NB, CNN, K-NN are employed for the task of classification; linear regression, SVR,
GPR are applied for the task of data regression; GMM, k-mean, hierarchy cluster, hidden
mixture models are useful for the goal of data clustering. For a certain task, no conclusion
to the most acceptable algorithms currently. Among some contributions, different ML
approaches are compared when specific to one dataset. In proposed approaches, besides
ML approaches that selected by experience and literature review, other ML approaches
are also tried out.

For machine learning algorithms, hyperparameters are parameters whose values control
the learning process and determine the values of model parameters that a learning algorithm
ends up [DSW+18]. Values of hyperparameters have a significant impact on results
of ML. Parameters in data processing methods also effect ML results. Consequently,
hyperparameters in machine learning and parameters in data processing need to be tuned
or optimized. Less information on how parameters and hyperparameters are tuned in most
contributions, in this study, parameters and hyperparameters optimizing process will be
presented in detail.
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Usually, data selection, data processing, features differentiating, and parameters and
hyperparameters optimization are included for most ML algorithms. For a few basic
datasets and benchmark like MINIST, CIFAR 10, CIFAR 100, ImageNet, as they have
been processed by designers, no more data processing steps are needed. Flowchart of ML
is shown in Figure 5.1.

Figure 5.1: Flowchart of machine learning

Based on the flowchart of ML, according to the focus difference in each step, three big
categories approaches which can be divided into five sub categories are proposed in this
study. The first approach is a supervised learning algorithm focus on ML hyperparameters
optimization and data selection, less other data processing methods are applied in this
approach. Approach 2 is also supervised learning. In approach 2, more data processing
methods, parameters and hyperparameters optimization algorithms are applied. Based on
the approach designed in approach 2, a transfer learning (approach 2.0) is raised between
MWF19 and MWF16. In the third approach, diversity data are chosen, various data
processing methods, and features distinguish algorithms are integrated. Both supervised
learning (approach 3.1) and unsupervised learning (approach 3.2) methods are applied on
the approach 3. Detail of these approaches will be introduced in the following section.

The contents, figures, and tables presented in this chapter are modified after previous
publications [WDS21], [WS22], and [WJDS22]. Part of the contents, figures, and tables
are prepared for publications of [WSS22], [WJS22], [WLS22], and [DWS22].

5.1 Approach 1: Focus on ML hyperparameters tuning

A model is defined by the model hyperparameters in ML. Hyperparameters chosen has
significant impact in ML training process as they map input features to the targets. The
process of training a model involves choosing the optimal hyperparameter [WDS21]. For
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different ML algorithms, various hyperparameters should be tuned. Train-test split ratio,
learning rate in optimization algorithm, choice of activation function, choice of cost or loss
function, number of iterations, layers structure in neural network, batch size, etc... are
hyperparameters need to be tuned. Approach 1 focus on ML hyperparameters tuning and
a few steps on data processing. Classifier employed in this approach is CNN, therefore,
hyperparameters referring to CNN structure and hyperparamters relevant to training
algorithms will be tuned according to each dataset. For data processing, a new data
selection method is proposed in this approach. After proper data are selected, only data
segmentation is applied in the step of data processing. Workflow of this approach is shown
in Figure 5.2.

Figure 5.2: Workflow of approach 1

This approach is applied to CWRU bearing dataset and MWF datasets. Since CWRU
bearing dataset is a benchmark and data has been preliminary processed by CWRU
school of engineering, consequently, it is not complicated for data selection - data with
12k sampling rate are all chose. Most measurements contain data from three channels
while some measurements contain data only from one channel from Table 3.2. Channels
difference among measurements is shown in Figure 5.3. In the process of classifying faulty
free and fault bearings from drive end into ten classes, both three channels data and single
channel (DE) are employed. To distinguish all 29 bearing states, only DE channel data are
employed as all bearing states measurements contain DE channel data. Fan end channel
data and baseline data are not concluded in all measurements.

Unlike CWRU bearing dataset, only one accelerometer is attached into the work piece,
therefore, only all measurements contains data from one channel. Although more test
series on reference fluid than other fluids in both experiments, part of reference test series
are applied to ensure all classes contain same number of samples. In the experiment of
MWF19, data from the last two series are damaged, so they cannot be employed. Besides,
eleven series measurements are from reference fluid while one series measurements for each
test fluid. To reduce the influence of data imbalance on the results, measurements number
for all kind of MWF should be the same. Therefore, although eleven series measurements
comes from reference fluid, data in series m01 are selected [WDS21]. In addition, as each
measurement is around 5 seconds with sample rate of 4 MHz, as a result, about 20 million
data are included in one measurement. Consequently, it is impossible to calculate data

53



Ch. 5. Proposed approaches

Figure 5.3: Measurements of CWRU with various channels

from all measurements in each series. From physical point of view, when measurements
locations are far away from the piezoelectric transducer, the AE signals are weak. When
measurements locations are very near to the piezoelectric transducer, the AE signals
could contain much noise. Consequently, although 16 measurements are in each series, 4
measurements which have almost the same distance to piezoelectric transducer in each
series are chosen. Considering measurements locations influence on AE signals, data from
measurement 7 to measurement 10 in each series are selected [WDS21]. In the experiment
of MWF16, 32 measurement are tested in run-in procedure. Besides the run-in of the tap
at the beginning of the test procedure, eight threads are tapped with each test fluid. From
series m02 to series m11, each series contains eight threads, in order to reduce the impact
of hole location, the middle four threading AE signals are used. For example in series m02,
the position of the threads is from measurements 33 to 40. For data processing, only the
data from measurements 35 to 38 are taken into account. In order to balance the samples
number in every class, different number of threads are applied in m01, all these threads
are chosen from the middle of series m01.

Another side in data selection should be considered is the different phases in thread
forming. Thread forming process is divided into forward and reverse phases theoretically.
However, thread forming process in this experiment are conducted manually, air phases
are unavoidable included in each measurement. From physical point of view, no usable AE
data in air part as the tap has no contact with the platform [WJDS22]. For this reason,
data in this part should be removed. Threads are mainly formed in the forward part of
one measurement, therefore the relevant AE events mainly occur in this part. As a results,
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data in this part should be analyzed. However, no clear boundary among air, forward and
reverse part in the experiments of MWF16 as shown in Figure 5.4.

To find the boundary among different part in one measurement and pick up the
forward part data, a new method to distinguish different parts are suggested. Firstly, whole
measurements are transformed into time-frequency domain by CWT and scalogram are
gotten. As shown in Figure 5.5, boundary among different parts are clear in scalogram,
forward part can be isolated. While the forward part of each measurement is clear in
scalogram in time axis, the forward data in time domain can be simply selected. As the
sampling rate of AE signals is 4 MHz, start time multiply with 4,000,000 is the start point
of forward data [WS22]. Meanwhile, end time multiply with 4,000,000 is the last data point
of forward part. Data in between start point and end point are forward part data. Despite
the start time of each threading is different, forward part duration time are the same for
all threading. Comparing with dataset MWF16, as shown in Figure 5.4, boundaries among
different parts in raw AE signals in MWF2019 are very clear.

Figure 5.4: Raw AE signals. up: signal in MWF2016; down: signal in MWF2019

Since samples are at the core of machine learning, a large amount of training samples
plays a critical role in making the machine learning models successful. To train a machine
learning model, the sample number must be pretty large. Nevertheless, there are 308
measurements in CWRU bearing dataset, 112 measurements in MWF16 dataset, and 336
measurements in MWF19 dataset in total. Such small measurements number definitely
cause deviations in the calculation results. So data augmentation is necessary. Measurement
segmentation is an efficient technique for increasing samples number. While data used in
these datasets are all from rotating machinery, data within one rotation cycle is important
for rotating machinery, segment length can be decided according to rotating speed. Data
in one rotation cycle can be determined by sampling rate fs and rotating speed rpm.
Calculation of data in each rotation can be calculated by the following equation:

Nspr = fs
rpm

∗ 60 (5.1)
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Figure 5.5: Scalogram of AE singal [WS22]

with

Nspr : number of samples per round,
fs : sample rate, and
rpm : rounds per minute.

For the CWRU bearing dataset, as the motor speed variate from 1720 to 1797 rpm, the
number of samples per round is not fixed under different load. Considering Equation 5.1
and a sample rate fs with 12 kHz, the number of samples per round differ from about
419 to 400. Average of data in each rotation is 408. To diminish important data loss
during measurements segmentation, adjacent segments are overlapped. The overlap among
neighboring segments are 0.5. After segmentation, samples can be seen in Figure 5.6
Rotating speed is singular for MWF datasets, therefore, segments length is unify. In the
experiment of MWF19, the speed is 1061 rpm, 226200 data in each rotation correspondingly.
In the experiment MWF16, speed of tool is 1000 rpm, correspondingly, 2400000 data in
each rotation. Like the segment process in CWRU bearing dataset, adjacent segments
are also overlapped with 0.5 overlap rate. Segments are shown in Figure 5.7. After
measurements are segmented into samples, the samples number increasing so greatly that
they can be put into CNN for classification. Structure of CNN and hyperparameters
referring to training algorithms are designed according to each dataset. Besides, the
CNN structure is also designed according to the functionalities of different layers and
activation functions (as introduced in chapter 2). Based on these two points, as less data
in each sample for CWRU dataset, less convolution layers are applied. On the contrary,
complicated structure are applied for MWF dataset as more data in each sample. Structure
of CNN for each dataset are presented in Figure 5.8. Besides hyperparameters relevant to
CNN structure, hyperparameters relevant to training algorithms like initial learning rate,
batch size, maximal number of epochs, and drop probability are also tuned separately and
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Figure 5.6: Segment of CWRU bearing dataset

manually. In the process of hyperparameters referring to training algorithms, a method
called ’cross validation’ is applied. ’Cross validation’ means that each hyperparameter
are tuned separately and then combination of best performed values are applied to the
model. For example, various values are pointed to initial learning rate, the best value
of this hyperparameter can be settled down according to the results. Afterwards, best
drop probability value is also determined by the same way. Lastly, all the best values are
combined together to get the final results.

Comparing with approaches from other literature, highlight of this approach is as
follows:

i) More data are applied in this approach comparing with other contributions in CWRU
bearing dataset.

ii) A new method is proposed for searching for bonds among different phases in MWF16
dataset. Continuous wavelet transform is used to find boundaries of different parts in data
selection step for MWF datasets. As CWT is often used for time-frequency analysis in the
past, applying it for bounds distinction is also a new point in this approach.

iii) Segments length is decided according to the rotating speed. Comparing with
other contributions, this is also innovation. As although some other contributions also
used the data segmentation technique, there is less information on the way they segment
measurements and reasons they segment measurements.

iv) Few data processing methods are applied for feature extraction, only measurement
segmentation is employed in data processing after data selection.

v) Convolution neural network structure are designed pinpoint to each dataset.
vi) Hyperparameters relevant to training algorithms on CNN are tuned by ’cross

validation’. In other contributions, there is few information on how the hyerparameters in
ML are tuned.
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Figure 5.7: Segment of MWF datasets [WDS21]

5.2 Approach 2: Emphasis on data processing,
parameters, and hyperparameters optimization

As introduced in previous section, segment length is fixed, less steps in data processing and
hyperparameters are tuned manually in approach 1. Unlike approach 1, segment size is settle
into various values and more data processing steps are included in approach 2. Besides,
parameters in data processing and hyperparameters in CNN are tuned automatically.
Furthermore, parameters and hyperparameters are optimized in one step as one objective
function. Moreover, as the results from MWF19 are very good, MWF16 dataset and
MWF19 dataset are very similar with each other, a transfer learning is proposed between
two MWF datasets. Parameters and hyperparameters are transferred from MWF19 to
MWF16.

5.2.1 Overview of approach 2

Approach 2 applied for CWRU and MWF datasets is more complicated than approach
1. Besides data selection and segmentation, segments are transformed, data and spec-
trogram are normalized before samples are classified by CNN. In addition, parameters
in data processing and hyperparameters in CNN are optimized together. A loop from
data segmentation to CNN is build [WJS22]. Details information is as follows: firstly,
data are selected as in approach 1. Afterwards, selected measurements are segmented into
different segments to increase sample number and balance sample number of each class.
Furthermore, segments are transformed from time domain to time-frequency domain by
STFT and spectrogram are gotten. To reduce bad results caused by outliers, both segments
and spectrogram are normalized. Lastly, normalized spectrogram features are extracted
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Figure 5.8: Convolution neural network structure of approach 1 [WDS21]

and classified by CNN. Additionally, parameters and hyperparamters are optimized auto-
matically in one step [WJS22]. Flowchart of proposed approach is shown in Figure 5.9.
Besides the data selection method in approach 1, highlight of approach 2 is as follows:

i) More data processing steps are included to help search data features.
ii) Instead of identical segments length, various segments length are tried.
iii) To balance sample number in each class for CWRU bearing dataset, overlap among

segments in each class is various.
iv) Segments and spectrograms are normalized to remove the outliers.
iv) Parameters in data processing and hyperparameters in CNN are optimized together

as one objective function.
v) A loop is formed among data segmentation, transform, normalization, and classifi-

cation.
Since classification results are very good for 10 classes by approach 1. All 29 bearing

states in CWRU bearing dataset are classified in this approach which means that all data
with 12 kHz sampling rate are applied in this approach. In the step of measurements
segmentation, segment length is not identical. For CWRU bearing dataset, for different
bearing fault size and location, The measurement numbers are not identical as shown in
Figure 5.10. In most measurements, data come from 3 channels (BA, DE, and FE) and
under 4 motor loads (0, 1, 2, and 3), that is 12 measurements. But in some cases data
acquisition are only taken from one channel or one motor load, in other words, in this class
only 3 or 4 measurements data could be used.

Test time for each measurement is different in CWRU bearing dataset. With all data
and classes from Figure 5.10 and a fixed segment size, this leads to the segments in each
class are not identical. To balance the distribution, segments in each class is divided with
an individual percentage of overlapping. The individual overlap percentage is chosen so
that an equal number of segments per class Ns is achieved. The individual overlap percent
of each class Oi is calculated by

Oi = 1− Ni ∗ Ti ∗ fs
Nsps ∗Ns

(5.2)
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Figure 5.9: Workflow of approach 2 [WJS22]

with

Ni : number of measurements per class,
Ti : mean of the measurement time per class,
fs : sample rate,
Nsps : number of samples per segment, and
Ns : number of segments to be extracted per class.

After segmentation, samples of class are almost identical which is shown in Figure 5.11
For MWF datasets, as only one accelerometer is glued in the work piece and thread

forming number for each MWF are the same, so measurement number are the same which
are shown in Figure 5.12 and Figure 5.13. Data selection method are the same as in
the approach 1. In the step of segmentation, both MWF16 and MWF19 datasets are
segmented based on tap speed and its geometrical polygon form. The tap contains five
polygons. According to the equation 4.1, the sample rate fs of 4 MHz and the different
rotational speeds in MWF16 (1000 rpm) and MWF19 (1061 rpm), the segment sizes and
period duration’s for five rounds, one round, and one polygon are shown in Table 4.1. The
segment sizes and region duration within the dataset MWF19 and MWF16 are constant,
and the number of considered measurements per class is balance. Therefore, the number of
segments per class Ns is also balanced if the overlap percentage of all classes is constant.
To keep the dataset balanced while multiplying the data, a constant overlap percent over
all classes will be used to train and test the most promising classification approaches. The
value of the overlap percent depends on the segment size. For non-stationary vibration
signals, features in time-frequency domain would be much easier to analyze than just
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Figure 5.10: Measurements of each class for CWRU bearing dataset [WJS22]

Table 5.1: MWF - segment size and period duration [Joc21]

Segment
Size (samples) Duration (ms)
2016 2019 2016 2019

FiveRounds 1200000 1131008 300 282,752
OneRound 240000 226202 60 56,5505
OnePolygon 48000 45240 12 11,31

analyzing feature in time domain. Therefore, segments are transformed from time domain
to time-frequency domain. As introduced in chapter 2, STFT is a suitable way for segment
transformation. After segments are transformed by STFT, corresponding spectrograms
are obtained. All considered measurements have a sampling rate of 12 kHz for CWRU
bearing dataset, considering the Nyquist rate - the nyquist sampling rate is two times
the highest frequency of the input signal, the detectable frequency maximum is less than
6 kHz. Examples of spectrograms for CWRU segments are shown in Figure 5.14. For
MWF datasets, allmeasurements have a sampling rate of 4M Hz, correspondingly, the
detectable frequency maximum is less than 2M Hz. Examples of spectrograms for CWRU
segments are shown in Figure 5.15. Parameters in STFT are needed to optimized as
they have great impact on spectrograms. The details of parameters are shown in Table
4.2. Data normalization is used to flatten value differences inside same classes caused
by different distances of sensory or other circumstances like wear which lead to outlier
values in a measurement. Normalization makes the input of a classification model better
comparable and can also reduce the computational load [WJS22]. Three options for
applying normalization technologies in the proposed approach are known:

i) In the process of segmentation, normalization methods are employed when some
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Figure 5.11: Measurements balance of CWRU bearing dataset

segments’ value is much larger or smaller than others. While only part of segments are
normalized instead of all signals in this step, normalization in this step is denoted as Norm
Individual Signal here. Z-Score normalization method is applied in this step. Segments
have a mean of 0 and standard deviation of 1 after this normalization step [WJS22].

ii) After measurements are segmented, data in each segment are transformed from
time domain to time-frequency domain by STFT. A transformed segment is named as
a predictor in this study. Even though segments are normalized in the previous step,
corresponding predictors are still vary. Considering differences among predictors, second
normalization including Z-Score and Min-Max normalization technology are employed.
Data normalization in this step is denoted as Norm Individual Predictor [WJS22].

iii) To reduce the computational load, all predictors can be normalized with Min-
Max normalization before predictor features are extracted and classified using CNN.
Normalization in this step is denoted as Norm Overall Predictors.

Motivated by known powerful image classification functionalities, CNN is applied to
extract features of normalized spectrogram and differentiate them. Hyperparamters in
CNN are divided into variables determining a network structure and variables determining
a training algorithm. Neural network structure model needs professional design which is
time-consuming, labor-intensive, and the efficiency is low. To reduce computation time
and improve efficiency, the Basic6 algorithm which is inspired by the speech recognition
example [Sch99] is applied in this study. Structure and layers of the Basic6 network are
shown in Figure 5.16. Beside the input layer, features are extracted by six convolution
(con) layers which are individually followed by batch normalization (norm), ReLU (relu)
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Figure 5.12: Measurements balance of MWF19

activiation function, and max pooling (pool) layers. Three dropout layers are applied
between convolutional layers 2 to 5 to prevent the model from over fitting. Classification
task is done by a fully connected (fc) layer which has as many neurons as class numbers,
followed by a softmax and classification output layer. Hyperparameters related to the
training algorithm will be introduced in the next subsection as they can be optimized with
parameters together.

Parameters in data processing such as: measurement segmentation, segment trans-
formation, data normalization has a great significance for feature extraction. Meanwhile,
hyperparameters in CNN also has great impact on classification results. Parameters in
data processing and hyperparameters in CNN can be tuned step by step like in approach
1, however, best combination of them can not be checked when parameters and hyperpa-
rameters are optimized separately. In this approach, parameters in data processing and
hyperparameters in CNN are optimized in one step as one objective function. Detailed
parameters/hyperparameters type are shown in Table 5.2. According to authors infor-
mation, this is the first time that all parameters and hyperparameters tuning together
in one step. In parameters and hyperparameters optimization step, firstly, a set of value
with a relatively large span interval is assigned to each Parameter and hyperparameter.
Exhaustive sweep optimization are applied to find the good combination of them according
to results. In addition, good value interval for a single parameter can also be settled
down by the results. Furthermore, Bayesian optimization technology is applied to single
parameter and hyperparameter to find best value of them. In this way, best combination
of parameters in data processing and hyperparameters in CNN are defined.
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Table 5.2: Parameter and hyperparameter option for optimization [WJS22]

No. Stage Parameter/hyperparameter type
1

Segmentation
SegmentSize

2 SegmentOverlap
3

STFT

FrequencyLimitMin
4 FrequencyLimitMax
5 PowerScale
6 TimeResolution
7 MinThreshold
8 WindowSize
9 WindowType

10 FrequencyResolution
11 OutputType
12

Normalization
NormIndividualSignal

13 NormIndividualPredictor
14 NormOverAllPredictors
15

CNN

Optimizer
16 MiniBatchSize
17 MaxEpochs
18 ValidationFrequency
19 ValidationPatience
20 InitialLearnRate
21 LearnRateDropPeriod
22 LearnRateDropFactor
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Figure 5.13: Measurements balance of MWF16

5.2.2 Approach 2.0: Transfer learning from MWF19 to MWF16

Steps in approach 2 for all CWRU, MWF19, and MWF16 datasets are the same. Since data
in CWRU bearing dataset are very different form MWF19 and MWF16, so most parameters
and hyperparameters are also various between CWRU and MWF datasets. However, as
data in MWF19 and MWF16 are very similar, parameters and hyperparameters used for
MWF19 can be transferred to MWF16 [WJDS22]. The transfer learning approach between
MWF19 and MWF16 is named as approach 2.0 as it is based on approach 2. Workflow of
approach 2.0 is shown in Figure 5.17. Tool speed is different between these two experiment:
tool speed is 1061 rpm in MWF19 while it is 1000 rpm in MWF16. So, data in each
segments are not identical in these two datasets. In addition, 11 kinds MWF are applied
in experiment 2019 while 5 kinds MWF are used in experiment 2016, therefore, the classes
number are different. Except segment length and classes number, other parameters and
hyperparameters are the same between these two datasets [WJDS22]. Therefore, based on
those optimized parameters and hyperparameters in MWF19, only two parameters need to
changed for MWF16: speed and classes number.

5.3 Approach 3: Integrate various data selection,
data processing, and machine learning methods

Data are selected from physic point of view in both approach 1 and approach 2, however,
whether other data are suitable for data distinguish is not verified. In addition, methods
for data transformation and algorithms for data classification are homogeneous in previous
two approaches. Unlike approach 1 and 2, different parts data are selected, various data
processing in one step, and machine learning methods are experimented in approach 3.
Outline of approach is shown in Figure 5.18. Furthermore, according to the destination,
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Figure 5.14: Spectrogram of CWRU segments

approach 3 is divided into supervised learning (approach 3.1) and unsupervised learning
(approach 3.2). Therefore, instead of a single approach, approach 3 is an integration of
various approaches.

Comparing with approaches from other literature, approach 1, and approach 2, highlight
of approach 3 is as follows:

i) Data are not selected from physical point of view, various parts data are use to
check which part data are more suitable for distinguish.

ii) Various methods are compared in one step in data processing to verify which method
is better.

iii) A diversity of ML algorithms are used for feature distinction to search for the best
suitable one.

iv) Both supervised learning and unsupervised learning approaches are employed.

5.3.1 Approach 3.1: Supervised learning for IS dataset

Structure health monitoring (SHM) is the original task at the beginning of this project,
so CWRU and MWF datasets relevant to SHM are calculated at the beginning. Inner
speech dataset was open to public at 2020, it is the last calculated dataset. As inner speech
belongs to biology field and it is very new for the author, so this dataset is calculated
separately. The approach 3.1 is pinpoint to IS dataset.

In IS dataset, each trial contains data from 128 channel. A few information is relevant
to the relations of these 128 channels. Two ways are tried to separate the 128 channels
data. The first way separating 128 channels data of each trial into 128 samples and then
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Figure 5.15: Spectrogram of MWF segments [Joc21]

Figure 5.16: Structure of Basic 6 [Sch99]

mix the samples together. Afterwards, the samples are divided into training and test parts.
The second way is spliting trails into training-test parts and then separate each trial into
128 channels. Besides, as not all data are referring to IS activity according to literature
review. Correspondingly, data should be selected and data from electrodes irrelevant to
IS should be dropped. Furthermore, inner speech activity is focus on 1 s - 3.5 s in each
trial, whether data in this periods are more suitable for classification is not checked. So in
the step of data selection, diverse data are trialed. In addition, both SG filter and EMD
method are examined in data processing. Furthermore, various SVM kernels are applied to
validate which kernel is more suitable for IS data distinction. This approach is named as
approach 3.1 and it’s workflow is shown in Figure 5.19.

Data selection

When data from each electrode are used to differentiate the EEG signals, results are poor
and scattered as shown in Figure 5.20. The best results for single electrode is less than
32 %. At the same time, it is really time consuming and unnecessary to calculate data
form all electrodes as speech related neurons do not cover the whole cranial. Consequently,
data selection is necessary for data calculation. According to [CK10], the ability to decode
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Figure 5.17: Transfer learning from MWF19 to MWF16 [WJDS22]

Figure 5.18: Workflow of approach 3

speech in a meaning manner is a complex task that involves multiple stages of neural
processing. Around 90 % of humans prefer their right hand for unimanual actions and are
left-hemisphere dominant for language functions [PP11]. In the past, it was supposed that
language was associated with the activity of three areas in the left hemisphere: the posterior
frontal lobe, the upper segment of the temporal lobe, and the insula. Nowadays, most
researchers tend that the cortical regions of the brain associated with the comprehension
of language are Wernicke’s area and the Broca’s area [DWVVJ+04]. Wernicke’s area
controls all language comprehension while Broca’s area all language production and that
the transmission of information between these areas is facilitated by the arcuate fasciculus
[Dro00]. Besides, it is rational to consider that the primary motor cortex may also show
similar hemispheric specialization for speech production [TFS+06]. Representation of
continuous speech in the primary auditory cortex neurons is measured and how individual
phonemes modulate activity across the population of auditory is examined in [MDS07].
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Figure 5.19: Workflow of approach 3.1

Figure 5.20: Results from each channel in IS dataset [WSS22]
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Furthermore, the supramarginal gyrus seems to be involved in phonological and articulatory
processing of words, whereas the angular gyrus seems more involved in semantic processing
[DCR+92]. Combination of different part in cortex in head that relevant to speech is shown
in Figure 5.21 left. Correspondingly, this area is from channel D5 to D32 (electrodes inside
of red circle) in headcap which is shown in Figure 5.21 right. Subjects action interval for

Figure 5.21: Electrodes selection (left: relevant district; right: corresponding electrodes)
[Sur22]

IS is only 2.5 s while the first 1 s and the last 1 s are for concentration and relax according
to Figure 3.2. Based on the assumption that data activation interval is more involved for
IS, data in this part are also applied. Results comparison will verify if activation interval
is more suitable for IS distinction.

Data processing

Acharya et al. [ARAS16] conclude that SG filter is a good method for EEG data analysis.
Therefore, SG filter is also applied for EEG feature extraction besides to raw measurements.
Two variables: the order of polynomial k and the frame length f should be set in the
process of SG filter. According to [Sch11], the number of frame length f should be higher
than the number of polynomial order k + 1 to smooth signals by SG filter. Based on these
rules, various setting of k and f are experimented. Difference or raw data and after SG
filter is presented in Figure 5.22. Global brain activity is conventionally measured using
electroencephalograms comprised in oscillations in several functionally-relevant frequency
bands [MOM+17]. The bands are identified as δ (0.5-4 Hz), θ (4-8 Hz), α (8-12 Hz),
β (12-35 Hz), γ (35- Hz) waves [GBK+13]. According to [KCJ09], at the end of the
arousal spectrum individual is basically disassociated from external world and exhibits a
predominance of the δ band. With a predominance of the θ band, the individual focus is
on the internal world. A predominance of β waves signal a state encompassing the thinking
process with its accompanying ego reactions. The brain waves of α may be considered a
bridge from the external world to the internal world. The brain wave band of γ is measured
between (35-44 Hz) is the only frequency group found in every part of the brain. Based
on the characteristics, selected measurements are decomposed into five IMFs. Raw data
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Figure 5.22: Szvitzky-Golay filter application (up: raw data; down: data after SG filter)

and its IMFs are shown in Figure 5.23. Transferring each IMF using Hilbert transform
corresponding brain waves bands become visible, they are corresponding to the brain waves
bands. That is: γ band results from spectrum of IMF1; β band results from spectrum
of IMF2; α band results from spectrum of IMF3; θ band results from spectrum of IMF4;
and δ band results from spectrum of IMF5. An example is IMF1 and the corresponding
spectrum as shown in Figure 5.24.

Kernels of SVM

Since SVM is a kernel tricky algorithm, kernels have significantly effect on soft margin
building. Linear, 2nd, 3rd, 4th polynomial kernels and medium, fine, coarse Gaussian
kernels are tried to verify which kernel is more proper for EEG signals in this study.

Training-test ration

To evaluate the performance of a model, observations used in the training process are
needed. Otherwise, the evaluation of the model would be biased. The simplest method is
to divide the whole dataset into two sets. One is used for training and the other for test
(model evaluation). Training set is employed to update model parameters during learning
phase and the test set is used to test the ML model after the training phase is complete.
Training and test datasets should follow the same distribution. For the IS dataset, various
training-test ration - 90:10, 85:15, 80:20, and 70:30 - are trialed to verify models robustness
[Sur22].

5.3.2 Approach 3.2: Unsupervised learning for CWRU and MWF datasets

Approach 1 and 2 applied to CWRU bearing dataset and MWF datasets are both super-
vised learning. In this section, unsupervised learning will be applied to these datasets.
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Figure 5.23: Data and corresponding IMFs (a: raw data; b-f: IMFs) [WSS22]

Furthermore, different parts data are selected to verify which data are more suitable for
clustering [WLS22]. Moreover, CWT and HHT are also employed for data transform in the
step of data transformation. Autoencoder is used as an alternative for features extraction in
some trials besides raw segments. Finally, both k-mean and GMM are applied for features
clustering. Flowchart of this approach is shown in Figure 5.25.

Data selection

In the approach 1 and approach 2, data are selected based on physical point of view. In
approach 3.2, different phases data are compared to check which parts data are more
suitable for clustering. Three accelerometers (sensors) are located in basement, nearby
driven and fan end in CWRU bearing dataset. Data from one sensor or all data from
three sensors are applied in approach 1 and approach 2. However, useful data from nearby
sensors or from far away sensors are not verified. Therefore, both data from nearby sensor
and far sensors are applied to check which data are more sensitivity. For MWF datasets,
in approach 1 and 2, data from forward part are selected for classification from physical
point of view. However, whether reverse part data are also available for clustering is still
questionable. Both forward and reverse parts data are employed for clustering in this
approach. For the bounds among different phases in MWF measurements, the method
applied in approach 1 is also used here.
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Figure 5.24: IMF and corresponding spectrum [WSS22]

Data processing

For measurements segmentation, one segment contains at least data from one rotation
according to tool speed. Unlike segment length is integer multiple of a circle in approach 2,
other segment length are trialed in this approach.

Continuous wavelet transform is applied in approach 2 just for searching the boundaries
among different parts in time domain [WS22]. However, CWT is also extremely useful
in revealing non-linear and non-stationary signals. Since width and height of wavelet are
changeable in CWT, as a consequence, time and frequency resolution are very precise.
Besides STFT applied in approach 2, CWT is also applied for transforming signals from
time domain to time-frequency domain. In approach 3.1, HHT is used for searching
brainwaves frequency bands. Hilbert-Huang transform is employed to get spectrum of
signals in this approach. Samples of spectrogram and scalogram have been shown in
previous section, one sample of spectrum is shown in Figure 5.26. Spectrogram from STFT,
scalogram from CWT, and spectrum from HHT are gotten after transformation. These
photos can be distinguished directly by clustering algorithms. In case their pixels are very
large, to compress the image size and get the main features, autoencoder is applied for
data compression as a alternative.
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Figure 5.25: Workflow of approach 3.2

Feature clustering

Two kind of clustering methods are applied for feature distinguish. Firstly the classical
cluster algorithm K-means are trialed. In addition to K-means, GMM is also applied
for features clustering because it has some advantages than K-means. Firstly, Gaussian
mixture models do not assume clusters to be any geometry and they work well with
non-linear geometric distributions. Besides, GMM has no bias on the cluster sizes. Own to
the advantages of GMM, it is also employed in this approach.
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Figure 5.26: Sample of spectrum [Lee21]
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6 Results from proposed approaches to relevant datasets

Inner speech dataset is a new dataset as it was open to public at 2020. Since brainwaves
are different from vibration and AE signals, supervised learning approach (approach 3.1)
is used to distinguish the EEG signals. Comparing with IS dataset, CWRU bearing
dataset and MWF datasets have been around for longer years, so both supervised learning
approaches (approach 1 and 2) and unsupervised learning approach (approach 3.2) are
applied on CWRU and MWF datasets. Furthermore, transfer learning (approach 2.0) is
applied between MWF19 and MWF16. As a summary, three approaches (approaches 1, 2,
and 3.2) applied on CWRU bearing dataset, three approaches (approaches 1, 2, and 3.2)
are applied on MWF19, three approaches (approaches 1, 2.0, and 3.2) applied on MWF16,
and one approach (approach 3.1) is applied on IS dataset. Results of these datasets from
proposed approaches will be shown in detail.

The contents, figures, and tables presented in this chapter are modified after previous
publications [DWS21], [WLS23], and [WS22]. Part of the contents, figures, and tables are
prepared for publications of [WSS22], [WLS22], and [WJS22].

6.1 Results for IS dataset

A few publications are relevant to IS dataset as the dataset is very new, therefore, a few
information on the way of training-test data split. Two ways of training-test split are
tried. The first way is to separate each trial data into 128 channels, mixed the data of each
channels together and then divide them into training-test parts. Another way is dividing
trials into training-test firstly and then separate each trial into 128 channels.

6.1.1 Results from first data split way

As the headcap contains 128 sensors in the IS dataset experiment, there are 128 channels
data for each trial. In the calculation process, data from each channel is treated as
one sample firstly, this means that each trial contains 128 samples. Before the trials
are separated into training-test parts, each trial is split into 128 samples. Afterwards,
the samples from different trials are divided into training and test parts. In this step,
different channels data, various data processing methods, varied kernels SVM, and different
training-test ratio are tried.

To evaluate the models comprehensively, the results are tested in two schemes: indi-
vidual scheme and all subjects scheme. In individual model, both training and test data
come from the same subject. In all subject scheme, training data come from all subjects
and test data come from part of each subject. In addition, both accuracy and F-score
are employed to measure trained models comprehensively. Furthermore, to evaluate the
deviation of models of each subject, standard deviations is also applied [WSS22].

77



Ch. 6. Results from proposed approaches to relevant datasets

Results from varied data selection

Linear kernel SVM is the basic SVM, linear SVM is applied for the trials in the beginning.
When linear SVM applied to single channel measurements within all subjects scheme,
results that shown in Figure 5.20 are not good. After data from channels D5 to D32 are
selected, under the training-test data ration with 85-15, results from data within selected
28 channels are shown in Table 6.1. From physical point of view, activity interval of each

Table 6.1: Results from selected electrodes data [WSS22]

Subjects Individual scheme All subjects scheme
Accuracy F-score Accuracy F-score

Sub-01 91.55 91.55 49.52 49.44
Sub-02 85.52 85.47 51.73 51.73
Sub-03 97.62 97.63 51.83 51.93
Sub-04 97.12 97.09 53.47 53.33
Sub-05 90.67 90.63 50.10 50.05
Sub-06 87.87 87.83 53.93 53.94
Sub-07 93.45 93.42 50.00 49.89
Sub-08 92.86 92.82 52.85 52.65
Sub-09 96.13 96.08 51.20 51.13
Sub-10 98.41 98.40 51.13 51.12
Average 93.12 93.09 51.58 51.52

SD 4.09 4.10 1.42 1.42

measurement should be more relevant to IS. So data in activity part are picked out to verify
this assumption. When only data from the activity part (from 1 s to 3.5 s) are applied to
for calculation, the results are shown in Table 6.2. Compare with values in Table 6.1 and

Table 6.2: Results from selected electrodes data and activity part [Sur22]

Subjects Individual scheme All subjects scheme
Accuracy F-score Accuracy F-score

Sub-01 85.48 85.51 43.23 43.23
Sub-02 81.75 81.74 44.03 44.00
Sub-03 93.25 93.20 44.24 44.25
Sub-04 92.36 92.35 45.55 45.47
Sub-05 85.52 85.48 43.74 43.66
Sub-06 81.48 81.43 48.99 48.93
Sub-07 81.25 81.22 44.40 44.37
Sub-08 91.43 91.41 46.67 46.35
Sub-09 92.46 92.37 43.91 43.71
Sub-10 96.92 96.91 46.71 46.59
Average 88.19 88.16 45.15 45.06

SD 5.45 5.45 1.72 1.69

Table 6.2, results from activity part data are not as good as the whole measurements. So
the assumption that activity parts data are more relevant to IS is not confirmed.
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Results from different data processing

To search for the best features extraction methods, SG filter, and EMD are employed to
extract features from raw signals. After features are extracted from these two methods,
they are employed as SVM as samples which has been introduced in section 5.3.1. Results
for raw signals has been shown in Table 6.1 and 6.2. Results from features after SG filter
are shown in Table 6.3. Comparing results in Table 6.1 and 6.3, results from samples after
SG filter are not as good as raw signals. Another data processing method is EMD. After

Table 6.3: Results from SG filter [Sur22]

Subjects Individual scheme All subjects scheme
Accuracy F-score Accuracy F-score

Sub-01 88.58 88.59 46.30 46.19
Sub-02 84.42 84.39 48.17 48.15
Sub-03 97.62 97.65 48.82 48.92
Sub-04 95.83 95.85 50.54 50.39
Sub-05 90.18 90.18 46.34 46.25
Sub-06 88.42 88.42 51.80 51.72
Sub-07 90.58 90.60 46.16 45.93
Sub-08 93.45 93.47 48.22 47.91
Sub-09 95.14 95.13 48.20 48.14
Sub-10 97.82 97.81 48.18 48.15
Average 92.20 92.21 48.27 48.18

SD 4.23 4.10 1.73 1.75

signals are decomposed by EMD, five IMFs are gotten. When these IMFs samples are put
into SVM, F-score values from single IMF and combination of IMFs in individual scheme
are shown in Table 6.4.

Table 6.4: Results from different IMFs [WSS22]

Subjects Single IMF Combination of IMFs
1st 2nd 3rd 4th 1st and 2nd 1st to 3rd 1st to 4th

Sub-01 92.02 73.62 50.61 42.61 94.14 94.03 93.09
Sub-02 88.77 65.86 47.15 36.83 88.62 88.99 89.29
Sub-03 97.07 84.82 53.52 45.40 99.09 99.22 99.48
Sub-04 98.82 82.86 58.06 45.26 98.54 98.45 97.73
Sub-05 90.36 74.01 54.77 38.78 91.09 92.37 92.19
Sub-06 89.44 71.88 54.80 40.09 91.76 93.40 92.52
Sub-07 87.88 63.49 45.17 36.20 91.44 93.19 94.40
Sub-08 96.41 82.16 61.43 42.34 96.27 96.88 97.49
Sub-09 95.21 84.64 57.24 45.22 96.28 97.51 96.62
Sub-10 97.40 81.23 57.39 46.13 98.21 99.02 98.63
Average 93.34 76.46 54.01 41.89 94.54 95.13 95.04

SD 3.87 7.41 4.81 3.53 3.47 3.23 3.20
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Results from various SVM kernels

All previous calculation are based on the linear kernel SVM. Since SVM is a king of ML
that has kernel tricky, different kinds of kernels could be applied. In the step of features
classification, various SVM kernels are trialed for the same data. Under the setting of using
selected channels data and individual scheme, accuracy value are shown in Table 6.5.

Table 6.5: Results from different SVM kernels [WSS22]

Subjects Linear kernel Polynomial kernel Gaussian kernel
Linear 2nd 3rd 4th Coarse Medium Fine

Sub-01 91.55 97.74 98.57 97.86 73.93 98.45 92.90
Sub-02 85.52 92.16 93.25 93.95 64.68 92.26 78.47
Sub-03 97.62 99.34 99.74 100.00 75.40 99.87 98.81
Sub-04 97.12 99.80 99.60 99.60 78.47 99.50 94.51
Sub-05 90.67 97.12 97.82 99.92 78.37 96.03 94.35
Sub-06 87.87 95.59 94.49 94.38 66.92 93.61 66.92
Sub-07 93.45 98.71 99.01 99.31 74.21 98.21 93.25
Sub-08 92.86 98.57 98.69 98.45 74.05 97.98 96.07
Sub-09 96.13 99.80 98.71 99.40 79.66 99.21 97.82
Sub-10 98.41 99.70 99.40 99.11 87.30 98.81 94.44
Average 93.12 97.85 97.93 97.90 75.30 97.39 90.63

SD 4.09 2.29 2.12 2.06 6.08 2.46 9.53

Results from various training-test ration

Whole dataset should be divided into training-test parts: training data are used to train
models while test data are applied for testing models. When ration between training and
test data are different, classification results are also various. Under the setting: raw whole
measurements, 4th polynomial SVM, and all subjects scheme, comparison of F-score from
various training-test ration are shown in Table 6.6. The results from various training-test
ratio is not significant different.

Best results for the first split way

For IS dataset, data are selected and processed in various ways. In addition, different
kernels are applied in features classification. Furthermore, different training-test ratio are
also trialed. Therefore, a large number combination of them can be calculated, details
results of these combination will not be shown here. From previous calculation, best
results come from whole measurements on 28 electrodes, the features that combine IMF1,
IME2, and IMF3 in data decomposition step, 4th polynomial kernel in SVM, and 90:10
training-test ratio [WSS22]. Detail value of best results are shown in Table 6.7.

6.1.2 Results from second data split way

The previous calculation steps, firstly the channels of each trial are separated and then
data from each channel are mixed together. After that, the whole data are separated into
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Table 6.6: Results from different training-test ration [Sur22]

Subjects Training-test ration
90:10 85:15 80:20 70:30

Sub-01 96.63 96.86 96.64 95.62
Sub-02 99.42 99.51 98.67 97.83
Sub-03 99.19 99.33 99.30 98.31
Sub-04 99.70 99.32 98.96 97.75
Sub-05 99.16 99.04 98.47 97.54
Sub-06 99.48 99.32 98.42 98.74
Sub-07 99.21 99.16 98.02 97.74
Sub-08 99.44 99.29 99.30 98.69
Sub-09 99.53 99.51 98.51 97.38
Sub-10 99.40 99.21 98.89 97.84
Average 99.12 99.06 98.75 97.75

Table 6.7: Best results for IS dataset [WSS22]

Subjects Individual scheme All subject scheme
Accuracy F-score Accuracy F-score

Sub-01 99.64 99.63 99.11 99.09
Sub-02 96.83 96.83 99.85 99.86
Sub-03 100.00 100.00 99.81 99.80
Sub-04 100.00 100.00 99.71 99.71
Sub-05 98.61 98.61 99.58 99.57
Sub-06 98.57 98.57 99.83 99.83
Sub-07 99.90 99.91 99.53 99.54
Sub-08 99.29 99.27 100.00 100.00
Sub-09 99.80 99.81 99.85 99.84
Sub-10 99.80 99.80 99.40 99.40
Average 99.24 99.24 99.67 99.66

SD 0.95 0.95 0.27 0.27
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training and test parts. Another way to split data is firstly split trials into training and
test parts and then channels data of each trial are separated. When the raw data and data
after EMD are split in this way, the results of each subject and results of all subjects from
4 polynomial SVM are shown in Table 6.8.

Table 6.8: Results of second data split way

Subjects Raw data IMF1-3
Accuracy F-score Accuracy F-score

Sub-01 38.26 32.74 20.12 20.23
Sub-02 19.64 19.67 21.92 21.62
Sub-03 13.23 12.76 16.53 16.43
Sub-04 16.96 17.13 18.25 18.00
Sub-05 25.60 24.57 24.01 23.84
Sub-06 28.13 27.77 22.21 21.99
Sub-07 18.25 18.32 18.85 18.57
Sub-08 27.62 27.19 16.90 17.08
Sub-09 34.13 34.48 39.38 39.41
Sub-10 27.38 27.39 25.20 23.64

Sub 1-10 26.25 26.25 25.65 25.63

The results of each subject for raw data are differ strongly: The accuracy is from 13.23
% to 38.26 % and average F-score is from 12.76 % to 34.48 %. When the raw data are
used for classification, the accuracy of all 10 subjects is 26.25 % and the average F-score
is 26.25 %. After the raw data are processed by the EMD, the accuracy is from 17.08
% to 39.41 % and the average F-score is from 16.53 % to 39.38 % for each subject. The
accuracy of all 10 subjects is 25.65 % and the average F-score is 25.63 %. Comparing the
values in different columns, when the whole dataset is split in the second way, there is
no improvement comparing with the results from data after EMD and results from raw
data. Furthermore, compared with the individual scheme results which also use the raw
data in Table 6.1 and the results of EMD data in Table 6.8, the results differ significantly.
Therefore, the dataset split way effect the results greatly.

6.2 Results for CWRU dataset

Both supervised and unsupervised learning are applied to CWRU bearing dataset. To
compare their results, results from supervised learning are put together and results from
unsupervised learning are put together. Detail results are shown in the following sections.

6.2.1 Results from supervised learning

Most approaches applied on CWRU bearing dataset choose the baseline and fault states
from driven end and divide these data into 10 classes. While all these ten classes contains
data from three channels. To compare with results from other contribution, these three
channels data are also employed to distinguish these ten states in approach 1. Besides
applying data from three channels, data just from DE channel are also applied to distinct
these states. For all 29 states in CWRU bearing dataset, as only DE channel data are
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included in all classes, so the DE data are also used for all states differentiation. To reduce
the randomness of the results from a single run, data are calculated 5 times and for each
time the training data and test data are randomly selected. Detail values of each time and
average values of these five times are shown in Table 6.9. Besides accuracy is applied to

Table 6.9: Results from approach 1 for CWRU dataset

Classes Data used Channels Test accuracy (%)
1st 2nd 3rd 4th 5th average

10 DE, normal 3 channels 100 100 100 100 100 100
10 DE, normal DE 99.82 99.87 99.82 99.87 99.84 99.84
29 all DE 94.62 94.48 94.88 93.52 93.37 94.17

evaluate trained models, F-score is also applied as metrics in approach 2. Furthermore,
5-fold cross validation are employed to check the trained models robustness. As accuracy
value in approach 1 for 10 classes achieve to 100%, it is no need to differentiate these ten
classes again by approach 2. All twenty-nine states in CWRU bearing states are classified
by approach 2 [WJS22]. Detail results are shown in Table 6.10. From Table 6.9 and 6.10,

Table 6.10: Results from approach 2 for CWRU dataset [WJS22]

Classes Data used F-score (%) Accuracy
1st 2nd 3rd 4th 5th average

29 all 100 100 100 100 100 100 100

the following conclusions can be drawn:
i) Results from each time calculation have subtle difference no matter on approach 1

or approach 2, this denotes the robustness of trained models.
ii) When ten classes are differentiated, results from approach 1 arrived at 100 % when

using data from three channels while 99.84 % when using data from DE channel. These
results are better than most other contributions, this denotes that approach 1 outperform
than most other contributions. Besides, from results comparison inside approach 1, data
from three channels are easier to distinguish than data from one channel.

iii) No matter F-score and accuracy values are 100 % when twenty-nine bearing states
are distinguished from approach 2. This means that approach 2 can distinguish all bearing
states perfectly. Comparing with results in Table 4.2, approach 2 is the best approach
among all contributions.

6.2.2 Results from unsupervised learning

Before samples are put into machine learning, data are analyzed preliminary in unsuper-
vised learning approach 3.2. Signals in time domain are transformed to spectrogram by
STFT, scalogram by CWT, and spectrum by HHT. From comparison, near measurements
spectrogram and scalogram are more distinguishable than remote measurements. The
amplitude range for the near measurements are larger and wider than remote measurements.
This phenomena is observed across all TFAs which matches view from physical point (the
further a signal travels, the weaker it becomes). Therefore, measurements from near
accelerometer are used for bearing states clustering.
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Three TFA methods are employed in data transformation step: STFT, CWT, and HHT
and correspondingly spectrogram, scalogram, and spectrum are acquired. Compare with
other photos, signals time-frequency information are more distinguishable by spectrogram
when they are analyzed in the preliminary step. Continuous wavelet transform exhibits
higher resolution at the lower frequency rang which resulting bright line near the bottom of
the images. Spectrum after HHT exhibits similar frequency resolution compare with spec-
trogram, but the line are not as well defined as spectrogram. When different combination
of TFAs and machine learning methods are applied to differentiate faulty-free and faulty
states, the good results are shown in Table 6.11. Aside from two clusters (fault-free and

Table 6.11: Two clusters results from approach 3.2 for CWRU dataset [Lee21]

TFAs Cluster methods No. Results
Purity RI ARI NMI F-m Average

STFT K-mean 2 1 1 1 1 1 1
CWT K-mean 2 0.993 0.994 0.986 0.963 0.995 0.986
HHT K-mean 2 0.443 0.613 0.000 0.051 0.730 0.362
STFT GMM 2 0.678 0.762 0.400 0.432 0.845 0.623
CWT GMM 2 0.995 0.984 0.964 0.923 0.988 0.971
HHT GMM 2 0.443 0.613 0.000 0.036 0.754 0.369

faulty) distinction, more clusters are also tried. As results come from many combination of
TFAs and ML algorithms, it is unnecessary to show all results. Only methods that get
good results are presented here. Best results for three, four, and five clusters are shown in
Table 6.12. From Table 6.11 and 6.12, the following conclusions can be drawn:

Table 6.12: More clusters results from approach 3.2 for CWRU dataset [Lee21]

TFAs Cluster methods No. Results
Purity RI ARI NMI F-m Average

CWT GMM 3 0.900 0.842 0.656 0.690 0.779 0.773
CWT K-mean 4 0.867 0.643 0.333 0.554 0.578 0.595
STFT GMM 5 0.673 0.779 0.418 0.594 0.560 0.605

i) When data are divided into two cluster, all result values from method of STFT+K-
means are 1. This means that combination of STFT and K-mean methods can distinguish
fault-free and faulty bearings totally [WLS23].

ii) When data are differentiated into two, three, four and five groups, results from
HHT combining with ML algorithms are not good as CWT and STFT. From this point,
HHT is not suitable for features extraction in CWRU bearing dataset.

iii) Result from two clusters are higher than results from more clusters. This imply
that faulty and fault-free states are more easier to differentiated than more bearing states.

6.3 Results for MWF datasets

To distinguish AE data in two MWF datasets, both supervised learning and unsupervised
learning approaches are employed on them. Supervised learning approaches 1 and 2 are
applied on MWF19 while supervised learning approaches 1 and 2.0 are applied on MWF16
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for data classification. Unsupervised learning approach 3.2 is used for data clustering in
both datasets.

When supervised learning approach 1 is applied to MWF datasets, some basic cal-
culation are conducted to avoid that training and test segments are mixed before the
final results are gotten. Firstly, various measurements are employed. When various mea-
surements are employed for calculation, the test data are also varied. For example, in
the process of fluid 2 and fluid 3 classification process, different threading holes in each
series are employed. The results from various measurements are shown in Table 6.13. Test

Table 6.13: Results of fluid 2 and fluid 3 when different measurements are chosen

Measurements Test accuracy (%)
1st 2nd 3rd average

8-12 84.36 87.65 87.65 86.55
4-12 84.07 82.06 80.65 82.26
4-16 80.05 80.95 84.22 81.74

accuracy from measurements 8-12 are from 84.36 % to 87.65 %, the difference among the
results in each time is not great. The average accuracy from measurements 8-12 is 86.55
%, the average accuracy is 82.26 % when measurements 4-12 are selected, and the average
accuracy is 81.74 % when measurements 4-16 are chosen. The results are not significant
different when various measurements of each series are choose. Although the results are
slightly higher than other two ways when measurements 8-12 are chosen, the reason can be
explained from pyhsical point of view. As measurements 8-12 are not close or far to the
sensor, so less noise are included in these measurements compare with other measurements.

Secondly, to verify the influence of training:test segments partition methods on results,
segments are split in two ways: firstly, training and test segments are choose randomly,
70 % are employed for training, 15 % are employed for validation, and the rest 15 % are
employed for test. The second way is: the whole dataset is calculated by 10-fold cross
validation. Then, the results from training:test data are choose randomly are compared
with results from K-fold cross validation. For example, when fluid 2 and fluid 3 in MWF19
are classified, the results from training:test randomly are shown in Table 6.14 (to verify
if results are stable, data are calculated 5 times, each time the data are shuffled). The
test accuracy are from 95.59 % to 100 %, there are no significant difference among each
time calculation. When the whole data are split into ten folds, nine folds are employed as

Table 6.14: Results of fluid 2 and fluid 3 when training-test data split randomly

MWF Test accuracy (%)
1st 2nd 3rd 4th 5th average

f2/f3 98.53 98.53 95.59 95.59 100 97.65

training and the rest one fold segments are applied as test segments. The test and training
segments are totally differentiated. The test results of each fold are shown in Table 6.15.
When data are split into training:test randomly, the results are from 95.59 % to 100 % and
the average is 97.65 %. Results difference of each time is not significant. When data are
split into 10-fold cross validation, the accuracy is from 91.11 % to 97.83 % and average
is 95.61 %. Small difference are among results of each fold. No matter how segments are
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Table 6.15: Results of fluid 2 and fluid 3 when training:test data split by 10-fold cross
validation

Test accuracy (%)
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th average

91.11 97.83 97.83 93.48 95.65 93.48 97.83 97.78 93.33 97.78 95.61

split, no significant difference are among results from these two ways. This means that
when various segments are applied for test, the results are not influenced significantly.

6.3.1 Results for MWF19

Results from supervised learning approaches

Eleven kinds of MWF are employed in experiments MWF19. When approach 1 is applied
to MWF19 dataset, these 11 MWF are classified into two ways. The first way is divided
11 MWF into 11 classes - each class stands for one type MWF. In the second way, these
11 types of MWF are divided into 6 big categories according to their additives similarity
[DWS22]. Based on Table 3.4, fluid 2 and 3 belong to one group; fluid 4, 5, and 6 belong to
one group; fluid 7 and 8 belong to one group; fluid 9 and 10 belong to one group; reference
and fluid 1 belong to two groups separately. Then each big category is further classified
[DWS22]. To verify the models’ robustness each classification step is calculated 5 times
and the average value is also calculated. Detail results are shown in Table 6.16. When

Table 6.16: Results for MWF19 dataset from approach 1 [DWS22]

Classes MWF Test accuracy (%)
1st 2nd 3rd 4th 5th average

11 Ref./f1/f2/f3/f4/
f5/f6/f7/f8/f9/f10 95.77 93.65 97.88 97.88 97.88 96.61

6 Ref./f1/f2,3/f4,5,6/f7,8/f9,10 96.44 97.33 96.44 97.78 96.00 96.80
2 f2/f3 98.53 98.53 95.59 95.59 100 97.65
3 f4/f5/f6 96.15 94.23 98.08 94.23 93.27 95.19
2 f7/f8 100 100 100 100 100 100
2 f9/f10 98.59 98.59 100 100 100 99.44

approach 2 is employed to the dataset, 11 MWF is divided into 11 classes directly to reduce
the calculation time. Besides accuracy, F-score is also applied to evaluate trained models.
Detail results are shown in Table 6.17. Based on the results from approach 1 and approach

Table 6.17: Results for MWF19 dataset from approach 2 [WJDS22]

Classes MWF F-score (%) Accuracy (%)
1st 2nd 3rd 4th average

11 Ref./f1/f2/f3/f4/
f5/f6/f7/f8/f9/f10 98.58 98.80 98.15 98.92 98.61 98.58

2, the following conclusion can be drawn:
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i) All results values are over 95 % no matter from approach 1 and approach 2. This
imply that both approaches can classify AE signals in MWF19 dataset well.

ii) No big difference among values from each calculating time, this entail the robustness
of trained models.

iii) When approach 1 is applied on MWF19, no matter these eleven MWF are divided
in the first way or second way, the average accuracy are high. This verify the robustness of
this approach.

iv) When fluid 7 and fluid 8 are distinguished by approach 1, all results value are 100
%. This indicates that approach 1 can differentiate fluid 7 and fluid 8 perfectly.

v) Compare approach 2 and approach 1, approach 2 can distinguish these eleven MWF
better when all MWF are divided into 11 classes.

Results from unsupervised learning approach

Since diversity data, various segments length, varied data transform methods, and different
feature extraction algorithms are applied in approach 3.2. Combination of these ingredients
lead to a large number of results. It is impossible to present all results here. Only some good
and typical results with specified settings are shown here. Under these setting: K-mean
as cluster, segment length is 1000000, STFT is settled as TFA, good results are shown
in Table 6.18. Based on the calculation process and results in Table 6.18, the following

Table 6.18: Results for MWF19 dataset from approach 3.2 [Lee21]

Phase Encoded Clustering mode Test average
reverse no ref vs fluid 1 0.29
reverse no ref vs fluid 2 - 10 1.00

last second of forward part yes ref vs other fluids 1.00
forward no ref vs fluid 4 1.00
forward no ref vs fluid 5 0.94
forward no ref vs fluid 9 0.94
forward no ref vs fluid 6 0.91

conclusion can be drawn:
i) Best results come from given setting for this dataset - segment length is 1000000,

K-means as cluster, STFT as TFAs.
ii) When reverse part data are analyzed, all metrics values are 1.0 from reference fluid

and fluid 2-10. This suggest that the approach 3.2 can distinguish reference fluid and fluid
2-10 totally [WLS22].

iii) When spectrogram are applied directly instead of compressed by encoded, results
are better. This imply that feature compression is not suitable for data extraction in this
dataset.

At present, MWF distinction using AE signals is not a common topic, only a few
papers focus on differentiating AE signals from various MWF. Wirtz et al. [WDS17]
analyze the AE signals from two kinds of MWF using continuous wavelet transform (CWT)
and K-means. The accuracy value ranges from 75 % to 87 %. Demmerling et al. [DWS22]
distinguish the AE signals from two or three kinds of MWF applying CWT and K-means.
The accuracy values is about 40-88 %. Compared with these two contributions, the
advantages of the approach 3.2 are:
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i) More metrics are applied in this study. Five different metrics are employed to
evaluate the approach in this study while there are only cluster photos in other contributions
[WLS22].

ii) Reference fluid and fluids 2-10 are distinguished perfectly.
All metrics values from reference fluid to fluid 2-10 clustering are perfect. This

indicates that AE signals from reference fluid and fluid 2-10 can be differentiated totally.
One exception comes from clustering results of reference fluid and fluid 1. Metrics values
from reference fluid and fluid 1 clustering are not ideal. For the reasons of these non-ideal
results, the following assumptions from physical point of view are supposed.

i) Measurements locations that filled with reference fluid and fluid 1 are close with
each other. Therefore, in the process of thread forming in series m01, the micro changes in
these holes affect AE signals in series m02 or vise versa. In other words, AE signals from
series m01 and m02 are influenced mutually, so they are not easy to distinguish [WLS22].

ii) Distance from measurements in series m01 to sensor and distance from measurements
in series m02 to sensor are very similar. A possibility is that in the process of acquiring
AE signals, sensor is not so sensitive that it measures AE events in both series [WLS22].

iii) Additives in fluid 1 (sodium sulfonate) has tiny influence comparing with reference
fluid in thread forming process. Effect of additives in fluid 1 are not as strong as additives
in fluids 2-10 for the AE signals. Therefore, it is not easy to detect the AE signals difference
[WLS22].

6.3.2 Results for MWF16

Results from supervised learning approaches

Similar with MWF19 calculating process, five type of MWF are categorized into two ways
when approach 1 is applied to MWF16 dataset. Firstly, 5 MWF is categorized into 5
classes directly. The second way is to divided these 5 MWF into 3 big groups: reference,
oil-based, emulsion-based MWF. Then oil-based MWF is sub divided into oil 1 and oil 2;
emulsion-based MWF is sub divided into emulsion 1 and emulsion 2 [WS22]. As the same
way for calculating MWF19, to verify the models’ robustness each classification step is
calculated 5 times and the average value is also calculated. Detail results are shown in Table
6.19. Unlike approach 2 which are designed to MWF19 directly, transfer learning approach

Table 6.19: Results for MWF16 dataset from approach 1 [WS22]

Classes MWF Test accuracy (%)
1st 2nd 3rd 4th 5th average

5 Ref./emul.1/emul.2
oil 1/oil 2 97.70 98.28 98.85 99.43 96.65 98.11

3 Ref./emul.1,2/oil 1,2 99.04 99.04 99.04 99.04 98.56 98.94
2 emul.1 /emul.2 98.56 96.40 97.84 94.96 100 97.55
2 oil 1/ oil 2 99.28 98.65 97.12 97.84 98.56 98.29

(approach 2.0) is applied to MWF16. It denotes that parameters in data processing and
hyperparameters in CNN are not optimized according to this dataset, all parameters and
hyperparameters are from approach 2 which are trained from MWF19. Therefore, results
for this dataset is not as high as MWF19. Detail value are shown in Table 6.20. The
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Table 6.20: Results for MWF16 dataset from approach 2.0 [WJDS22]

Classes MWF F-score (%) Accuracy (%)
1st 2nd 3rd 4th average

5 Ref./emul.1/emul.2
oil 1/oil 2 70.30 91.30 94.51 91.30 86.85 86.20

following conclusion can be drawn when combining results from Table 6.19 and Table 6.20:
i) All results value are over 97 % when approach 1 is applied to this dataset. This

imply that approach 1 is suitable for both MWF19 and MWF16. Metalworking fluids are
distinguished well using approach 1.

ii) No matter five MWF are classified in the first way or second way from approach 1,
the average accuracy are high. This verify the robustness of approach 1.

iii) Comparing results value from approach 2, results from transfer learning are not good
as approach that specific to one dataset. This denotes that parameters and hyperparameters
optimization for one dataset has significantly influence.

Results from unsupervised learning approach

As explained in the previous subsection, while a large number of combination in each step,
it is impossible to present all results from approach 3.2. Only relatively good and some
typical results with specified settings are shown here. Under these setting: K-mean as
cluster, segment length is 226200, autoencoder as feature extraction algorithm, part of
relatively good and typical results are shown in Table 6.21. The following conclusion can

Table 6.21: Part results for MWF16 dataset from approach 3.2 [Lee21]

Phase TFAs Clustering mode Test average
reverse CWT ref vs emul. 1 0.62
reverse CWT ref vs emul. 2 0.67
reverse CWT ref vs oil 1 0.65
reverse CWT ref vs oil 2 0.61
forward CWT ref vs emul.1 0.55
forward CWT ref vs emul.2 0.48
forward CWT ref vs oil 1 0.42
forward CWT ref vs oil 2 0.47
reverse STFT ref vs emul. 1 0.38
reverse STFT ref vs emul. 2 0.37
reverse STFT ref vs oil 1 0.43
reverse STFT ref vs oil 2 0.36
forward STFT ref vs emul. 1 0.41
forward STFT ref vs emul. 2 0.42
forward STFT ref vs oil 1 0.31
forward STFT ref vs oil 2 0.32

be drawn from Table 6.21:
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i) Relatively good results come from given setting for this dataset - segment length is
226200, K-means as cluster, encoder as feature extraction.

ii) Continuous wavelet transform is more suitable for feature extraction than STFT
and HHT when specify to MWF16 dataset.

iii) Data from reverse part are easier to cluster than data from forward part.
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7.1 Summary

As machine learning is able to improve calculation continuously, fulfill various decision-
making tasks automatically, and identify trends and patterns, it has been widely applied
in various fields. Many new designed and pre-trained models are available nowadays.
The main problem for most ML approaches is that they are specify to one dataset, their
generalization can not be verified. Based on the stat-of-art ML approaches, several improved
ML approaches are proposed and their performance are verified by datasets from different
fields.

Before proposed approaches are presented, theoretical background relevant to this study
is introduced briefly. Data processing methods like data selection, SG filter, segmentation,
STFT, CWT, EMD, HHT, and data normalization technology are presented. In addition
to data processing methods, ML algorithms like CNN, SVM, autoencoder, K-means, GMM,
and TL are introduced. Furthermore, parameters and hyperparameters optimization
technology and metrics evaluating machine learning approaches are also presented.

Four datasets from various fields - EEG signals from IS dataset, vibration signals from
CWRU bearing dataset, and AE signals from two MWF datasets - are used for validating
proposed approaches. Related test rig and experiments procedure are varied greatly. So
these datasets and their experiments are introduced in chapter 3. Before approaches
are proposed, state-of-art approaches applied in these four datasets are reviewed and
their results are exhibited. In addition, problems and disadvantages of these state-of-art
approaches are uncovered.

Based on the drawbacks of approaches in literature review, three big categories
approaches are proposed. These three categories approaches are further divided into five
sub approaches. Flowchart, highlight, and innovation of these five approaches are explained
in detail.

i) The approach 1 is mainly focus on CNN hyperparameters optimization. Less data
processing technology are used. A new data processing method is trialed - CWT is
used to find boundaries among different phase in MWF signals. Besides, measurements
are partitioned according to tool speed. Convolutional neural network structure and
hyperparameters referring to training algorithms are optimized specific to each dataset.

ii) More data processing methods are applied in approach 2 comparing with approach
1. Data selection method is the same as in approach 1. Segments length and overlap
among segments are not fixed in this approach. Segments length is one parameter that can
be optimized together with other parameters in data processing. Furthermore, segments
are transformed from time domain to time-frequency domain by STFT and spectrograms
are acquired. Data normalization methods are applied to segments and spectrograms to
remove the outliers. Additionally, unlike hyperparameters are tuned manually in approach
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1, parameters and hyperparameters are optimized automatically in one step in approach
2 and a loop among each step is build. To evaluate the approach performance more
comprehensively, besides accuracy, F-score is applied as metrics. Based on the approach
2, as MWF 19 and MWF16 are similar with each other, a transfer learning approach
(approach 2.0) is raised between two MWF datasets.

iii) Only one method is applied in data processing and distinguishing in each step in
approach 1 and 2. On the contrary, several methods are trialed in each step in approach 3.
Based on the different destination, approach 3 is sub divided into approaches 3.1 and 3.2.
Approach 3.1 belongs to supervised learning while approach 3.2 is unsupervised learning.
In approach 3.1, Firstly, training:test data are split into different ways. Besides, whole
measurement and activity part of each measurement data are trialed to find the most
suitable data. Raw measurement, SG filter, and EMD are employed on data processing to
check which is more useful for feature extraction. Various kernels such as linear, Gaussian,
and polynomial kernels are also trailed. Besides, various training-test ration are also trialed
in approach 3.1. For approach 3.2, near and remote data in CWRU bearing dataset, forward
and reverse phase data in MWF datasets are picked out separately in data selection step.
Diverse transform technology like STFT, CWT, and HHT are used for acquiring signals
frequency bands information. Besides, autoencoder is employed for features extraction as
an alternative. Lastly, K-means and GMM are employed to cluster features in approach
3.2.

Five sub approaches are designed and they are validated by four datasets. Consequently,
a large number of results are obtained. To state results unambiguously, results are shown
based on each single dataset. As IS dataset is new and it is open to public in last two
years, so approach 3.1 is applied to it. The results of IS dataset has significant difference
when training:test data are split in different ways. For CWRU bearing dataset, the best
classification results is 100 % for twenty nine classes by approach 2. All clustering results
are 1.0 when faulty and fault-free bearings are clustered. For MWF19 dataset, best
classification results are F-score is 98.61 % and accuracy is 98.58 % from approach 2.
When approach 3.2 is applied to distinguish features in MWF19, reference fluid and test
fluids 2-10 are differentiated totally. For dataset MWF16, the best classification results
are accuracy is 98.11 % from approach 1. Although results from approach3.2 for MWF16
is not ideal, some conclusions can also be drawn from calculation process. In addition
to results from proposed approaches are presented, results from other literature are also
reviewed. By results comparison with other literature, advantages of proposed approaches
are obvious.

7.2 Conclusions

Some conclusions can be drawn from single dataset and some general conclusions can be
drawn from these four datasets. Conclusions for each database and conclusions from all
datasets are presented here.

According to the results comparison with two data split way for IS dataset, when data
are splitted in the first way, results are much better than the second way.

From results and results comparison with other literature on CWRU bearing dataset,
such conclusions could be drawn: First of all, although approach 1 performs not as good as
approach 2 when differentiating all bearing states, it outperform than most other approach
when ten bearing states are classified. Then, from results comparison inside approach 1,
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data from three channels are easier to distinguish than data from one channel. In addition,
approach 2 distinguish all bearing states perfectly. It is the best approach applied to
CWRU bearing dataset. Furthermore, when unsupervised learning is applied to CWRU
bearing dataset, combination of STFT and K-means can distinguish fault-free and faulty
bearings totally. This denotes that comparing with other unsupervised learning, approach
3.2 performs better.

From results and results comparison with other literature on MWF19 dataset, the
following conclusions could be drawn: First and foremost, no matter which options these
eleven kinds of MWF are classified, approach 1 can distinguish them well. Then, when
these eleven MWF is classified into 11 classes, approach 2 performs better than approach
1. Thirdly, specify to this dataset, reverse part data are most useful for data clustering.
Furthermore, Under assigned settings, approach 3.2 distinguish reference fluid and test
fluid 2-10 perfectly. Lastly, reasons for the non-ideal results from reference and fluid 1 are
assumed from physical point of view.

From results of approach 1, 2.0, 3.2 and results comparison with other literature on
MWF16 dataset, such conclusions could be drawn: Firstly, no matter how five kinds of
MWF are classified, approach 1 can distinguish them well. Then, when these five kinds
of MWF is classified into 5 classes, approach 2.0 performs not good as approach 1. This
denotes that parameters and hyperparameters optimization has great influence on results.
In addition, continuous wavelet transform is more suitable for feature extraction than
STFT and HHT when specify to MWF16 dataset. Finally, data from reverse part are
easier to cluster than data from forward part.

Based on results of these four datasets from proposed approaches, the following
assumption can be drawn: First of all, data selection has significant impact on results.
Secondly, for varied signals, suitable data processing are also different. Then, parameters
in data processing and hyperparameters in ML algorithm has great significance on data
distinction. In addition, besides time-frequency information analysis in scalogram, CWT
can also be applied for boundaries searching in time domain. Finally, comparing with
supervised learning, unsupervised learning approaches is harder to get good results.

7.3 Outlook

For the IS dataset, as the results from different data split way are different significantly,
other data processing method and ML should be tried to find the best suitable option
for EEG data classification. Besides, although the approaches 1 and 2 get good results
on the selected datasets, they are not verified by datasets in other fields. For the future
work, other datasets can be applied for validating the proposed approaches performance.
Besides, at present approach 3.2 is just a framework, other data processing methods and ML
algorithms can ge integrated into it. As time limitation, parameters and hyperparameters
are not optimized in approach 3.2. For future work, parameters and hyperparameters can
be optimized.
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