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Abstract

The reproducibility of earlier findings is fundamental to the empirical sciences. Even
though this circumstance is widely acknowledged, several systematic large-scale re-
producibility reviews showed that many earlier findings, e.g., in computer science,
psychology, or the biomedical sciences, are not reproducible. Information Retrieval
(IR) is rooted in experimentation, and empirical findings mainly drive the research
progress. Therefore, the IR community established several initiatives to understand
the reproducibility of earlier works better and provided solutions for better research
practices to enforce reproducible research. For instance, dedicated reproducibility
tracks at IR conferences report on the reproducibility of previous work, while other
works introduce solutions to prepare an experimental setup for reuse.

This thesis contributes perspectives on how reproducibility can be evaluated at
different levels of validity. The first part of the thesis deals with internal validity
covering the scope of system-oriented experimentation. We note that there is no
standard approach in IR when evaluating the quality of reimplementations as part
of a reproducibility attempt. To this end, this work proposes a more principled
approach to reproducibility analysis for system-oriented IR experiments. Building
upon an extended version of the PRIMAD taxonomy, we outline how a derived
metadata schema can be combined with reproducibility measures to determine the
degree and quality of reproduction in a principled way.

The second part of the thesis focuses on external validity by considering user
variability in an IR experiment. The user’s influence in an IR experiment is a key
component that allows us to conclude how well the system-oriented findings can
be reproduced in a different experimental context. As an alternative to experi-
ments with real users, simulations provide a more cost-efficient, reproducible, and
controllable solution to account for the variation of user behavior. Our simulation
experiments specifically focus on the variation of the query formulation and the click
behavior. In this regard, we analyze reproducibility by considering different query
variants as alternative system inputs and clicks as other forms of relevance signals to
the system outputs. Both user interactions are usually not part of system-oriented
IR experiments and simulations allow better conclusions about the external validity.

Finally, we provide an outlook of how the validity can be analyzed in real-world
user experiments run on a living lab platform. The underlying infrastructure embeds
the concept of containerization and allows the integration of technically reproducible
IR systems. The corresponding evaluations of online experiments show how the
infrastructure adds up to earlier online platforms and exemplify how system-oriented
experiments could be accompanied and validated by living lab experiments with real
users in the future.
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Zusammenfassung

Die Reproduzierbarkeit ist für die empirische Wissenschaft von grundlegender Be-
deutung und obwohl dies weithin anerkannt ist, haben mehrere Reproduzierbar-
keitsstudien gezeigt, dass viele Ergebnisse, z. B. in der Informatik, der Psychologie
oder den biomedizinischen Wissenschaften, nicht reproduzierbar sind. Da der Fort-
schritt im Information Retrieval (IR) hauptsächlich durch empirische Erkenntnisse
vorangetrieben wird, wurden mehrere Initiativen ins Leben gerufen, um die Repro-
duzierbarkeit früherer Arbeiten besser zu verstehen und Lösungen für bessere For-
schungspraktiken zur Durchsetzung reproduzierbarer Forschung zu finden. So bieten
beispielsweise IR-Konferenzen die Möglichkeit, über die Reproduzierbarkeit früherer
Arbeiten zu berichten, während in anderen Arbeiten Lösungen zur Vorbereitung ei-
nes Versuchsaufbaus für die Wiederverwendung vorgestellt werden.

Diese Arbeit leistet einen Beitrag zur Auswertung von Reproduzierbarkeitsstu-
dien auf verschiedenen Ebenen der Validität. Der erste Teil befasst sich mit der
internen Validität, die systemorientierte IR-Experimente abdeckt. Häufig wird kein
Standardansatz verfolgt, wenn Ergebnisse einer Reproduzierbarkeitsstudie evaluiert
werden. Zu diesem Zweck wird in dieser Arbeit ein systematischer Ansatz zur Repro-
duzierbarkeitsanalyse für systemorientierte IR-Experimente vorgestellt. Aufbauend
auf einer Erweiterung der PRIMAD-Taxonomie wird skizziert, wie diese in Form
eines Metadatenschemas mit Reproduzierbarkeitsmaßen zur Bestimmung der Re-
produktionsqualität verwendet werden kann.

Der zweite Teil der Arbeit befasst sich mit der externen Validität, indem er die
Nutzervariabilität in einem Experiment betrachtet. Der Benutzereinfluss in einem
IR-Experiment ist eine Schlüsselkomponente, die uns Rückschlüsse darauf erlaubt,
wie gut die Ergebnisse in einem geänderten experimentellen Kontext reproduziert
werden können. Als Alternative zu Experimenten mit realen Nutzern bieten Simu-
lationen eine kostengünstigere, reproduzierbare und kontrollierbare Lösung, um die
Variation des Nutzerverhaltens zu berücksichtigen. Unsere Simulationen konzentrie-
ren sich insbesondere auf die Variation der Anfrageformulierung und des Klickver-
haltens. In diesem Zusammenhang analysieren wir die Reproduzierbarkeit, indem
wir verschiedene Anfragevarianten als alternative Systemeingaben und Klicks als
andere Formen von Relevanzsignalen für die Systemausgaben betrachten.

Zuletzt geben wir einen Ausblick darauf, wie die Validität in realen Benutzerex-
perimenten analysiert werden kann. Die zugrundeliegende Living-Lab-Infrastruktur
beruht auf dem Konzept der Containerisierung und erlaubt die Integration tech-
nisch reproduzierbarer IR-Systeme. Die dazugehörigen Auswertungen von Online-
Experimenten veranschaulichen, wie die Infrastruktur eine Möglichkeit bietet, sys-
temorientierte Experimente in Zukunft durch Living-Lab-Experimente mit realen
Nutzern validieren zu können.
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Chapter 1

Introduction

Reproducibility is a key component of good scientific practice and fundamental to the
overall progress of a research field. However, several recent large-scale reproducibility
studies in different domains acknowledge that the reproducibility of empirical science
cannot be taken for granted, and a large proportion of previously published research
is not reproducible. This is critical as it not only puts current research practices
into question but also harms the public credibility and trust in science.

The progress in IR research is mainly driven by empirical evidence, which is prone
to reproducibility issues. During the last decade, the IR community has dealt with
some of these issues and implemented several countermeasures to make IR studies
more reproducible. However, evaluating the reproducibility of earlier IR experiments
is an ongoing challenge, as can be seen from the dedicated reproducibility tracks
inaugurated at major IR conferences like ECIR and SIGIR.

This dissertation project is about reproducible IR research and makes contribu-
tions of how it can be evaluated at different levels of validity. Related to the question
if an experiment is reproducible within the constraints of the original experimental
context, there is the question of to which extent the original findings are valid in
a different experimental context. As part of this thesis, we consider the scope of
the internal validity to be evaluated by system-oriented reproducibility evaluations.
With a particular focus on the user, we consider the external validity to be evaluated
under the variation of the user’s influence.

In the first part of the thesis, we review the state of the art in reproducible
IR research and make contributions that allow a more principled reproducibility
evaluation of system-oriented IR experiments. Based on an extension of the PRI-
MAD taxonomy, we provide a metadata schema that, combined with reproducibility
measures, can quantify the reproducibility of reimplementations in a principled way.

In the second part of the thesis, we lower the level of abstraction regarding the
user as part of the evaluation of IR experiments. As an alternative to experiments
with real users, the simulation of user interaction is a viable solution that allows us
to define user behavior in a controlled and reproducible manner. Finally, we present
how experiments with real users can be evaluated in a living lab environment that
embeds the concept of technical reproducibility.

In the following, we describe the motivation for this dissertation project and our
contributions. Afterward, we outline the structure of the thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

In the following, we motivate the dissertation’s contributions by giving a brief review
of reproducibility in the empirical sciences and by outlining how reproducibility
relates to in- and external validity.

1.1.1 Reproducibility in the Empirical Sciences

In the empirical sciences, the evidence is often based on experimental results. Re-
cently, concerns have been raised that claims and conclusions drawn from empirical
studies in medicine [122, 333], psychology [25, 313], economics [75], or computer
science [98, 99] do not hold as the underlying experiment is not reproducible. Ir-
reproducible studies not only slow scientific progress [13] but also negatively affect
the public trustworthiness of science in general and, last but not least, unnecessarily
increase the use of resources and the environmental impact of science [360].

In 2005, Ioannidis’ thought-provoking simulations [198] showed that it is likely
that most research claims are false due to influential factors like study power, effect
sizes, biases, and other works on the same research question. Recently, a survey with
over 1,500 scientists from different scientific disciplines revealed that the scientific
community acknowledges these reproducibility issues [26] and some go as far as to
say that there is a reproducibility crisis [194]. The survey’s results showed that more
than 70% of the interviewees failed to reproduce another scientist’s experiment, and
more than 50% even failed to reproduce their own work later in time.

All of these concerns are confirmed as part of large-scale reproducibility meta-
evaluations across various scientific fields. For instance, a large-scale reproducibility
analysis in psychology revalidated 100 studies published in high-impact journals.
Ninety-seven studies originally reported positive findings, but for only 36 studies,
significant effects could be reconfirmed [25,313]. By following a similar study design,
Camerer et al. [75] conducted a reproducibility analysis in economics and could only
confirm comparable effects for 11 out of 18 studies. Similarly, Camerer et al. [76]
revalidated 21 studies from the social sciences and found significant effects for only 13
studies. Other examples of meta-evaluations with rather disillusioning conclusions
include drug development [333] or cancer research [122].

With a particular focus on computer science, Collberg et al. [98, 99] conducted
a systematic reproducibility analysis of over 600 ACM publications but could only
successfully reproduce one-third of the analyzed publications when rerunning the
original code. Other meta-evaluations from the fields of Natural Language Process-
ing (NLP) [38] or Recommender Systems (RecSys) [108] research further confirm the
reproducibility issues in the computational sciences. Earlier work is often not repro-
ducible due to various reasons ranging from mundane aspects like fraud or missing
experimental artifacts to more complex circumstances like low statistical power and
conclusions that cannot be confirmed in a slightly modified context.

Even though reproducibility in IR research has always been implicitly considered
from the early beginnings of Cleverdon’s experiments [94, 95], which established
the Cranfield paradigm, the IR research community acknowledges these increasing
reproducibility concerns, as can be seen by the conference proceedings of ECIR [171]
and SIGIR [9] that inaugurated dedicated reproducibility tracks. Since the middle of
the previous decade, the IR community developed countermeasures and policies to



CHAPTER 1. INTRODUCTION 3

enforce reproducible research. To this end, this dissertation project reviews existing
solutions but also addresses open points of how reproducibility evaluations can be
improved by considering different levels of validity, as outlined in the following.

1.1.2 Internal and External Validity

Related to the reproducibility of an experiment, there is the question regarding the
degree of validity. Internal validity describes the extent to which the claims about
an experiment are supported by the data, whereas external validity describes the
extent to which the claims can be generalized, for instance, with another population
of users or different data in general [293]. In psychology, Brunswick [71] introduced
the concept of ecological validity as a sub-type of the external validity. It describes
to which extent findings from the laboratory hold in the real world. More recently,
Kieffer [225] has introduced a framework for human-computer interaction studies,
which outlines how ecological validity can be assessed by considering user experience.

The contributions of this dissertation project can be categorized into different
levels of validity. Throughout the progress of the chapters, we lower the abstraction
level of the user in an IR experiment, i.e., we shift the context of the experimental
setup towards ecological validity with regard to the user’s influence. Starting with re-
producibility evaluations of the internal validity in system-oriented IR experiments,
which imply a strong abstraction of the real-world user behavior, we can shift the
scope of the evaluations towards external validity in a controlled way by simulating
variations of the user behavior. As the conclusions drawn from simulations strongly
depend on the fidelity of the user model, real-world online experiments finally allow
us to evaluate the ecological validity of an IR experiment. The following section
outlines how these concepts are integrated into our contributions.

1.2 Contributions

As pointed out in the previous section, we address the topic of reproducibility and
the corresponding evaluations at different levels of validity and similarly align the
contributions to these levels. Beforehand, we review the state of the art about
reproducible IR research as part of:

C1 Literature review about the state of the art regarding reproducible research
in computer science and IR (cf. Chapter 2)

Specifically, we answer what kinds of general reproducibility problems exist in
computer science with a particular focus on IR research. In addition, we give an
overview of how these reproducibility problems have been addressed and how the
countermeasures are implemented. Finally, we highlight open points to motivate
our following contributions.

Besides the answers to these questions, two major outcomes of the literature
review are as follows. First (cf. Outcome 1 in Figure 1.1), we notice that the
PRIMAD taxonomy has not been put into practice yet, and it is described at a very
abstract level. In addition, it is outlined separately for system- and user-oriented
experiments, but we criticize that the users are not represented well enough as they
are only considered as part of the data component, and a more holistic view of the
IR experiment is required.
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Second (cf. Outcome 2 in Figure 1.1), we highlight that there is no consistency
among authors when evaluating the reproducibility of an IR experiment. Even
though specific experiments may require dedicated evaluation approaches, there is
no general idea about how to evaluate the reproducibility of an IR experiment in
a principled way. Likewise, many software tools exist, helping researchers prepare
a computational experiment for reproducibility in a proactive way. However, on
the other side, few software tools help researchers evaluate their reimplementations
as part of reactive reproducibility attempts. As an answer to the underspecifica-
tion and sometimes imprecise use of the reproducibility terminology, the first two
contributions at the level of internal validity are:

C2 Extension of the PRIMAD taxonomy by an additional user component
and additional specifications of the original taxonomy (cf. Chapter 3)

C3 Metadata annotation schema for run files of system-oriented IR experi-
ments (cf. Chapter 3 and also [63])

Building on these contributions, we outline the framework of a reactive repro-
ducibility attempt, including measures for determining the degree of reproducibility
and the corresponding software toolkit (cf. C4). Combined with our reimplemen-
tations (cf. C5), all of these contributions serve as the basis to demonstrate how
principled reproducibility evaluations (cf. C6) can be implemented. Regarding the
internal validity of an IR experiment, our additional contributions can be summa-
rized as follows:

C4 Reproducibility framework for reactive reproducibility experiments and a
corresponding software toolkit (cf. Chapter 4 and also [60,61])

C5 Reimplemenations of Cross-Collection Relevance Feedback (CCRF)
(cf. Chapter 5 and also [64,65,66])

C6 Principled reproducibility analysis of different CCRF reimplementations
(cf. Chapter 5 and also [63])

However, all of these contributions describe and evaluate the reproducibility
with a strong focus on system-oriented aspects at the level of internal validity. In
order to widen the reproducibility scope towards external validity, we consider user
variability as one of the most influential components that should be considered.
As an alternative to evaluating the IR systems directly in online experiments, we
prefer the user simulation as a more cost-efficient and controllable way to include
the user variability in the experimental evaluations. As part of this dissertation,
we focus on two user-related aspects that might influence the reproducibility of an
IR experiment: query formulation and click-based relevance feedback.

In system-oriented experiments, the query formulation is often limited to the
evaluation of a single query variant per topic (or information need). This approach
does not account for the variability that would result from users who formulate differ-
ent queries for the same underlying information need. We address this by analyzing
different query simulators based on TREC test collections. Besides introducing a
new query simulation method and comparing it with other conventional methods,
we also introduce a validation framework. The results show the range of variability



CHAPTER 1. INTRODUCTION 5

of the retrieval effectiveness that can result from different user models of the query
formulation and how a general searcher without prior knowledge about the topic
compares to a more proficient searcher who searches for a known-item. In addition,
we analyze how the simulated queries, specifically those of the introduced simulation
method, compare to real user queries, leading to the following contribution:

C7 Method for query simulations based on IR test collections and a corre-
sponding evaluation framework (cf. Chapter 6 and also [62])

Analogous to queries, which serve as an input to the IR system, there is also
variability in the relevance feedback, i.e., how the user perceives the relevance of the
returned system results. System-oriented evaluations are based on editorial relevance
judgments, which have high organizational costs and are usually only made possible
as part of large-scale community efforts. As an alternative, click signals from web
search experiments can serve as proxies or alternative relevance indicators. Different
types of click models can be parameterized from click logs. We outline how these
parameterized click models can be used to estimate the relevance of rankings and
analyze to which extent they can be used to evaluate the correct relative effectiveness
of IR systems. Click models embed different rules for the user behavior, and thus,
their use allows us to simulate different types of users, leading to the following
contribution:

C8 Click model-based evaluations of IR experiments (cf. Chapter 7)

Our click model-based evaluations address how click models, embedding satis-
faction and continuation probabilities, compare to the simpler model based on the
Click-Through Rate (CTR). By evaluating simulated interleaving experiments, we
bridge the gap to the living lab experiments by addressing how well click model-
based evaluations can reproduce the relative system ordering in living labs.

This dissertation project was funded by the DFG project “STELLA - Infras-
tructures for Living Labs” (project no. 407518790), which had the aim to develop
an open infrastructure (cf. C9) that can be used to evaluate IR and RecSys ex-
periments with user feedback data. The overall design of the infrastructure was
tailored for interleaving experiments with two competing systems from which the
results were shown to users and transferred the simulations of Chapter 7 into the
real world. The corresponding evaluations are based on a shared task (cf. C10).

By considering user variability as one of the key components towards evaluating
the external validity of IR experiments, the earlier contributions analyzed simulated
user behavior for IR evaluations, whereas the contributions C9 and C10 outline
how experiments in the real word can determine the ecological validity with the
help of living lab experiments. Regarding the external and ecological validity of an
IR experiment, our contributions can be summarized as follows:

C9 Living lab infrastructure for reproducible experimentation (cf. Chapter 8
and also [67])

C10 Evaluations of a shared task that served as a testbed for the infrastructure
(cf. Chapter 8 and also [362])

The following Section 1.3 provides more specific details about the structure of
this dissertation and the contributions of each particular chapter.
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1.3 Outline

As illustrated in Figure 1.1, the contributions of this work can be aligned to repro-
ducibility evaluations at different levels of validity. While the first chapters focus on
the evaluation of system-oriented IR experiments and cover the scope of internal va-
lidity, the later chapters evaluate the reproducibility of their external validity under
the consideration of (simulated) user variability. Different query variants or click
models simulate user behavior. Finally, we provide an outlook on how the ecological
validity of IR experiments can be validated by living lab experiments with real users.

Chapter 1 describes the motivations of this dissertation project. The initial pro-
posal of this dissertation was contributed to the doctoral consortium at ECIR’20 [59].

Chapter 2 gives answers to the first two research questions, and the literature
review shows that the PRIMAD taxonomy has not been put into practice yet and
is described at a very abstract level. Furthermore, there are few solutions to eval-
uate reimplementations as part of reactive reproducibility attempts. Both of these
shortcomings will be picked up in the following two chapters.

Chapter 3 provides a more detailed taxonomy of PRIMAD by extending each
component with several sub-components. Furthermore, we favor a holistic view on
the IR experiment by adding a user component, which makes the user’s contributions
and influences in an experiment more explicit. The corresponding metadata schema
was contributed to SIGIR’22 [63].

Chapter 4 addresses the lack of reproducibility measures and tools for a re-
active reproduction analysis. We put the reproducibility measures, introduced at
SIGIR’20 [60], into context and outline how different levels of rigor can be used to
evaluate the reproducibility. In addition, we provide the reproducibility measures
in a Python software library (cf. ECIR’21 [61]).

Chapter 5 combines the outcomes of the previous two chapters and outlines how
principled reproducibility experiments based on metadata annotations of the run
files can be conducted. For these experiments, we conducted several reproducibility
studies that have been published in different proceedings (cf. CENTRE’19 [66],
OSIRRC’19 [65], CLEF’21 [64]).

Chapter 6 analyzes different query simulators based on TREC test collections.
Besides introducing a new query simulation method and comparing it with other
conventional methods, we also introduce a validation framework. The results show
the range of variability of the retrieval effectiveness resulting from different query
formulations. These experiments were contributed to ECIR’22 [62].

Chapter 7 outlines how click models can be used to estimate the relevance
of rankings and analyze to which extent they can be used to evaluate the correct
relative effectiveness of IR systems. The analysis of simulated interleaving exper-
iments bridges the gap to the living lab experiments by addressing how well click
model-based evaluations can reproduce the relative system ordering in living labs.

Chapter 8 paves the way towards ecological validity of IR experiments by eval-
uating retrieval systems in the wild with real users. In the corresponding chapter,
we outline the infrastructure’s design (cf. ISI’21 [67]) that was evaluated in a shared
task (cf. CLEF’21 [361]).

Chapter 9 concludes and puts the results into context once again.
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Figure 1.1: Overview of this dissertation project.





Chapter 2

Related Work

This chapter reviews the related work and state of the art about reproducible com-
putational science in general and reproducible IR research in particular, i.e., it con-
tributes the literature review (C1). More specifically, the literature review fo-
cuses on the following aspects. First, we provide an overview of possible factors
and issues that may cause irreproducible science and how these issues impact IR
research. Second, building upon these intermediate results, we identify how these
problems have been addressed so far and what kinds of open questions about repro-
ducible IR research exist. More specifically, we address the following two research
questions in this chapter:

RQ1 What kinds of general reproducibility problems are there in computer science
and particularly in IR research?

RQ2 To what extent have reproducibility problems been addressed in IR research,
and how are the countermeasures implemented? What kinds of open points are
there?

In order to provide answers to these questions, we follow a systematic approach
to the literature research. We mainly focus on peer-reviewed publications of high-
impact conferences and journals, including SIGIR, ECIR, ICTIR, JCDL, CHIIR,
CIKM,WWW, KDD, WSDM, TOIS, IRJ, IPM, and JASIST, and we search dblp.org
with the ACM terminology [448], i.e., stemmed terms of repeatability, reproducibil-
ity, and replicability, resulting in structured queries like sigir repeat | repro |

replica (when browsing the proceedings of the SIGIR conference). In addition,
we include all publications of the ECIR and SIGIR reproducibility track from 2015
until 2022 and relevant references of core publications, for which we additionally
search the IR Anthology [330] and Google Scholar.

As a starting point for identifying irreproducible factors, we categorize the an-
swers given to Baker’s survey [26] in 2016 into five more abstract groups, to which we
align the related work in the computational sciences. Furthermore, we build upon
the reproducibility taxonomy by Potthast et al. [329] that groups attempts towards
reproducibility into supportive, pro- and reactive actions. This dissertation and,
likewise, this literature review are inspired mainly by the PRIMAD taxonomy [132].
It considers six components of computational experiments, possibly affecting repro-
ducibility. We review IR-related reproducibility problems and solutions by aligning
them to the PRIMAD taxonomy. For each of the six components, we discuss the

9
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factors of irreproducibility as derived by Baker’s survey. Finally, we include exist-
ing solutions by assigning them to the corresponding actions in the taxonomy by
Potthast et al. Our review results in the following main findings.

First, PRIMAD is comprehensive enough to describe system-oriented IR experi-
ments in a reproducible way. However, its components currently lack more detailed
specifications, preventing PRIMAD from being put into practice. Furthermore,
reproducibility attempts of user-oriented experiments are underrepresented in the
literature and deserve more attention. PRIMAD also requires a more integrated
user-oriented perspective since user- and system-oriented experiments are originally
discussed separately. More detailed specifications as part of an integrated taxon-
omy that likewise accounts for system- and user-oriented and practical applications
of PRIMAD are provided in Chapter 3.

Second, referring to the distinction between supportive, pro-, and reactive ac-
tions, we show that current solutions towards reproducible IR research are mainly
supportive and proactive. Even though most of the reproducibility efforts as part of
conference tracks at ECIR and SIGIR follow a reactive approach, no solutions exist
to measure the success of reproducibility for these experiments. This open point is
addressed as part of Chapter 4, in which we introduce a reproducibility framework
of the general reactive reproducibility study and the corresponding measures and a
software toolkit.

The remainder of this chapter is structured as follows. First, we review how
reproducibility is implicitly considered in system-oriented experiments according
to the Cranfield paradigm. Afterward, we address the terminology that is used
throughout this work. Next, we give a general introduction to the taxonomies by
Potthast et al. [329] and Ferro et al. [132] in order to align IR-related studies to
them. Afterward, we define groups of irreproducible factors in order to categorize
the literature from the computational sciences. The existing work and literature are
discussed separately for each of the components. Finally, we summarize the related
work by addressing the research questions outlined above.

2.1 The Cranfield Paradigm and Reproducibility

Even though this chapter and literature review has a strong focus on what kinds
of solutions towards reproducible research were proposed since the mid-2010s, we
note that IR research has been deeply rooted in experimentation since the early
beginning. IR research has always been based on the implicit assumption of build-
ing upon earlier work that is reproducible due to the experimental design that is
known as the Cranfield paradigm [95]. Cleverdon was one the first authors to pro-
pose systematic evaluations of IR systems on the basis of a document collection and
pre-defined search terms or queries for which the search process would be consid-
ered to be successful if a relevant document would be returned by the system (cf.
Cranfield 1). By building upon this design, the Cranfield 2 approach added graded
relevance labels for particular documents. Notably, there is an implicit question
about reproducibility as this experimental design evaluates if the system performs
similarly — in a reproducible way — if another query is used.

The Cranfield paradigm established the three constituting parts of an IR test
collection, which are (1) a collection of (text) documents, (2) a set of topics/queries
(resembling an information need) and (3) the corresponding relevance judgments for
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particular documents [355]. As the process of curating such a test collection is labor-
intensive and costly (especially the relevance annotations), the research community
was engaged in developing test collections as part of shared tasks starting with
the TREC conference in 1992 [172, 413]. Throughout the following years, several
“offshoot” conferences were inaugurated, such as CLEF for European languages [138,
322], NTCIR for Asian languages such as Japanese, Chinese, and Korean [215], and
FIRE for Indian languages [272].

For these shared task efforts, the pooling process is fundamental [355]. Multiple
different retrieval systems contribute rankings to a unified set of documents, the so-
called document pool, out of which the documents are given to annotation experts
in order to make relevance judgments. Overlapping documents in the rankings do
not have to be judged twice (reducing annotation costs), and based on the same
source of relevance judgments, multiple systems can be systematically evaluated
in a fair way. This procedure prevents the system developers from overfitting their
system to the gold labels, and thus, implicitly forces the experimenter to follow good
scientific practice by reasoning about effective retrieval approaches and to formulate
a research question or hypothesis.

Furthermore, a diverse set of different retrieval systems contributing to the doc-
ument pool allows us to reuse the test collection for the evaluation of new retrieval
approaches that did not participate in the original shared task, i.e., the test collection
is a reusable tool, which is essential for reproducibility. Most of the conferences host
experimental artifacts such as the submitted rankings (runs) and the resulting test
collections (including topics and relevance judgments) in archives. Nowadays, there
is a large variety of collections, which makes it possible to systematically evaluate
the reproducibility of a retrieval system with different document types in different
domains (e.g., newswire or medical), with different languages, and even for different
tasks. All of these resources provide an excellent basis for reproducible research.

However, as revealed by several systematic reviews for computational research
[99] and cross-domain surveys [26], there are increasing concerns about the repro-
ducibility of modern research, and some go as far as to say that there is a repro-
ducibility crisis. The IR community acknowledged these reproducibility concerns,
which are not least attributable to the increasing complexity and computational
requirements of modern retrieval approaches, by inaugurating a dedicated repro-
ducibility track at ECIR. By explicitly addressing reproducibility, some pitfalls, and
methodological flaws, which are an obstacle to reproducibility, were revealed in the
last years and will be reviewed in the following sections.

Beyond the Cranfield paradigm, it is of interest to analyze how a retrieval method
performs in a real-world context, i.e., to evaluate the ecological validity of the con-
clusions drawn from a Cranfield experiment. While using the same queries for the
topics allows the systematic evaluation of different retrieval systems, it is assumed
that the same query formulation always expresses the topic’s underlying informa-
tion need. This does not hold in a real-world setting, where users formulate different
queries for the same information needs, e.g., as exemplified by user query variants.
Vice versa, the same query might originate from different information needs. Like-
wise, the somewhat objectified notion of relevance does not consider the pertinence
of individual users. In this regard, Chapters 6, 7, and 8 propose solutions by user
simulations and evaluations in online experiments.
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Table 2.1: Terminology according to the ACM policy and Claerbout.

ACM policy [448] Claerbout [92,113,347]

Repeatability Same team,
same experimental setup

-

Reproducibility Different team,
same experimental setup

Providing the environment of the
experiment in order to recreate
the stated results

Replicability Different team,
different experimental setup

Reaching the same results with
an independently created exper-
imental environment

2.2 Reproducibility Terminology

In this work, we follow the terminology introduced by the ACM Policy on Arti-
fact and Review Badging [448] when writing about reproducibility in more general
terms. The policy specifies the terms repeatability, reproducibility, and replicability
by the definitions given in Table 2.1. The three terms are based on the International
Vocabulary of Metrology [28] and should be understood in succeeding order along an
increasing level of generalizability. Repeatability describes experimental outcomes
reconfirmed by the same team of researchers using the same (their own) original
experimental setup. Reproducibility describes experimental outcomes reconfirmed
by a different team of researchers using the same original experimental setup. Fi-
nally, replicability describes experimental outcomes reconfirmed by a different team
of researchers using a different experimental setup. Similarly, Ivie and Thain [199]
speak of verification to “see if it [the experiment] produces the claimed output”
and of validation, when it “is the task of evaluating a result to see if the author’s
conclusions are warranted”. In a wider sense, these definitions relate to the ACM
definitions of reproducibility and replicability, respectively.

However, it has to be noted that there is a discourse about the correct way of
using the terminology for reproducibility. There is no common sense about how the
terminology should be used in general, e.g., Feitelson [127] proposed a reproducibility
terminology for the SIGOPS community, which diverges from the previously outlined
ACM definitions. For a more in-depth discussion about this topic, we refer the
reader to Plesser [327], who reviewed the confusion about the two terms replicability
and reproducibility. In conclusion, Plesser favored the current ACM terminology
(v1.1) since it is in line with what Plesser referred to as the Claerbout terminology.1

The corresponding background of this terminology was started by Claerbout and
Karrenbach [92], who provided one of the earlier works discussing reproducibility
in the context of repeatable experiments with digital documents. This chain of
thoughts was adopted and extended by Donoho et al. [113] and Peng [347]; it is
summarized and aligned with the ACM terminology in Table 2.1. Heroux et al. [178]
also emphasized the inconsistent use of the two terms in the computational and
computing sciences, and they also concluded that the Claerbout terminology (and

1In this work, Plesser compares the ACM terminology to the Clearbout definitions and dis-
cusses them as alternatives, since an earlier version of the ACM terminology basically swapped the
definitions of reproducibility and replicability, see also [447].
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Figure 2.1: Reproducibility terminology according the to the NeurIPS definitions
(reproduced from [324,390]).

thus the ACM terminology v1.1) should be preferred since it received a broader
scientific adoption and has been used since the early 1990s. This opinion is also
supported by the National Academies of Sciences, Engineering, and Medicine [307].

Besides, the NeurIPS conference [324] adopted another terminology from The
Turing Way Community [390] for which a confusion matrix is illustrated in Fig-
ure 2.1. This terminology is based on the four adjectives “reproducible”, “replicable”,
“robust”, and “generalizable” depending on whether the data and the experimental
setup are the same as or different from those in the original experiment. Not least,
all of this confusion can be attributed to a plethora of terms. For instance, De
Roure [349] listed 21 “r-words” related to reproducible science. Simply applying the
ACM terminology makes it unclear what exactly has been changed in reference to
the original experiment. PRIMAD, which is discussed in the following section, can
be seen as an answer to this underspecification.

2.3 PRIMAD

As mentioned in the previous section, authors use the terminology of reproducibility
and related terms in different and sometimes inconsistent ways when reproducing
IR experiments and disseminating the results. Despite the ACM Policy on Artifact
Review and Badging, there is still enough freedom of interpretation of how these
definitions can be applied to the IR experiment in different ways. As an example, we
refer the reader to the ECIR reproducibility track [171], where the authors use terms
like reproducibility, replicability, robustness, and generalizability as they see fit. For
instance, the authors sometimes used the terminology of reproducibility in incon-
sistent ways: Müllner et al. [303] or Fröbe et al. [147] validated the reproducibility
by evaluating the reimplemented experiments with new datasets, while Ferro and
Silvello [142] referred to a reproducibility analysis when reusing the dataset of the
original experiment and they referred to a generalization when revalidating the reim-
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Table 2.2: PRIMAD according to its original definitions (given in [132]).

Component General System-oriented User-oriented

Resarch Goal Purpose of a study High-quality rank-
ing

Research question
accompanied by a
hypothesis

Method Approach of the
study

Mapping of query
to document order-
ing

Experimental set-
ting including
study type and
other aspects

Implementation Implementation of
a method

Retrieval system Environment, user
group, conditions

Platform Underlying hard-
and software

Retrieval system Environment, user
group, conditions

Data Input data and pa-
rameters

Test collection Testbed (including
document collec-
tion) and collected
user data (user =
data generator)

Actor Experimenter Agent undertaking
the experiment

Agent undertaking
the experiment
(might affect users)

plemented experiment with new datasets. In contrast, Yang et al. [431] referred to a
generalization when applying the reimplementations to another classification task.
Judging from the terminology alone, it is not clear what exactly has been changed
and under which circumstances the former experiments could be validated.

PRIMAD [132, 146] can be seen as an answer to this underspecification. The
acronym stems from the components of a typical experiment in the computational
sciences, including the Platform, Research Goal, Implementation, Method, Actor,
and theData. By defining which PRIMAD components were modified (“primed”), it
can be specified how the reproduced experiment “adds up” to the former experiment
it is compared to. As stated by Rauber et al. [146, p. 129] “reproducibility is
never a goal in itself”, but rather a means to an end. Successfully reproducing an
IR experiment verifies its internal validity, but does not provide new insights. By
modifying some components of the original experimental setup, we aim to assess the
external validity [149,293]. For instance, evaluating a retrieval method with another
test collection provides insights about the performance in a different context.

Originally, PRIMAD has been outlined in two different ways, covering system-
and user-oriented experiments separately. Table 2.3 provides an overview of the
definition by Ferro et al. [132]. In the following, we briefly summarize these defini-
tions. The platform comprises the hard- and software underlying the actual imple-
mentation in system-oriented experiments; but may also include the experimental
environment, the user groups, and the conditions in user-oriented experiments. The
research goal describes the purpose of the study. If the experiment is aligned with
the Cranfield paradigm, as often in system-oriented IR experiments, the research
goal is a high-quality ranking. Nevertheless, the study can focus on other aspects
based on research questions and the corresponding hypothesis, as is often the case
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Figure 2.2: Reproducibility taxonomy by Potthast et al. (reproduced from [329]).

for user-oriented experiments. The implementation is closely related to the method.
What is more formally described by the method is translated by the implementation
into operations that can be conducted in silico in the case of a system-oriented exper-
iment. In user-oriented experiments, it is not limited to the retrieval system but also
includes the previously mentioned experimental environment. In system-oriented IR
research, the study focuses on the actual retrieval approach covered by the method
in the PRIMAD model. From a technical point of view, it describes the mapping of
query-document pairs to a ranking score; but it also includes experimental setting,
i.e., the type of user study. The actor component represents the experimenter who
conducts the experiments. It is the one who operates the computer, implements
the experiments, types commands, et cetera in a system-oriented IR experiment. In
user-oriented experiments, special attention must be paid to how the actor might
influence the experiment by affecting user behavior. By its original definition, the
data component comprises the input data and the parameters required to run the
experiments; in user-oriented experiments, users are considered as data generators.

While PRIMAD considers most of the relevant components for reproducible ex-
periments, it is a rather abstract taxonomy leaving certain components underspec-
ified. Furthermore, the separate definitions do not allow a holistic approach to de-
scribing an experiment that includes both system- and user-oriented aspects. Both
shortcomings are addressed in Chapter 3 by extending the PRIMAD model with
an additional user component U and by outlining each subcomponent in detail. As
part of the related work, we structure the literature review by the PRIMAD model
in combination with the taxonomy by Potthast et al. [329], which is described in
the following section.

2.4 Reproducibility Taxonomy by Potthast et al.

The previous section introduced PRIMAD, which proposes a taxonomy based on
the experimental components that can affect reproducibility. A different taxonomy
is introduced by Potthast et al. [329], whose concept is based on actions towards
reproducibility. Figure 2.2 shows the corresponding hierarchy of concepts that is
based on proactive, reactive, and supportive actions.
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Unlike other scientific domains, the computational sciences benefit from the fact
that the experimental setup can be made available for future reuse “with no extra
costs” according to Potthast et al. [329]. Proactive actions include sharing the
(meta) data, the code, and the workflow, as well as the services for hosting these.
The original experimenters must mainly undertake these actions and prepare their
experimental setup for others, keeping reproducibility in mind.

On the other hand, reactive actions include artifact evaluation, reimplementation
studies, systematic reviews, and meta-analysis as part of shared tasks. Potthast et
al. see these actions realized by the scientific peer-review framework, as part of
which the reviewers could also be considered as other experimenters or reproducers.

Finally, supportive actions are mostly part of benchmarks and are realized as
part of constructing corpora, the measurement theory, the (software) library devel-
opment, and shared task events. Potthast et al. see these actions implemented by
experiment frameworks and Evaluation-as-a-Service (EaaS) platforms [190].

In the following sections, we use these three types of reproducibility actions
to categorize countermeasures, which can be made in answer to the problems of
irreproducibility related to the particular PRIMAD components.

2.5 Factors of Irreproducibility

As part of the large-scale survey [26], Baker’s questionnaire [474] listed causes for
irreproducible outcomes, from which we derive five more abstract (interrelated) fac-
tors of irreproducibility, including unethical actions (fraud, selective reporting),
issues of scholarly communication (pressure to publish, insufficient peer review),
statistical and experimental flaws (no robust results, low statistical power/poor
analysis, variability of standard reagents, insufficient oversight, poor experimental
design), unavailability of the experimental setup (unavailability of raw data,
methods and code), and missing expertise (mistakes or inadequate expertise in
reproduction efforts, particular technical expertise that is difficult for others to re-
produce, bad luck). We align selected references to these categories in the following,
highlighting related reproducibility issues.

2.5.1 Unethical Actions

Baker considered selective reporting and fraud as factors causing irreproducibil-
ity [26, 105]. Selecting positive research findings and intentionally withholding neg-
ative outcomes can also be seen as a concrete action of fraud [105]. Another action
that falls into this category is the falsification of data [125]. These actions are con-
sidered unethical and are often done with intention. However, solutions to these
problems are not within the scope of this work. Every individual should be obliged
to follow ethical guidelines, especially when conducting scientific experiments. But
also funding agencies can motivate researchers to follow guidelines of Good Research
Practice, for instance, those proposed by the German Research Foundation [459]. In
general, unethical actions should also be addressed on an organizational level, e.g.,
by journal editors or the scientific community as a whole [381].
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2.5.2 Issues of Scholarly Communication

Research findings are usually communicated to a broader audience in journals or
conference proceedings. Before publication, the journal or conference submissions
will undergo a peer review process. In her survey, Baker [26] included insufficient
peer reviewing as a factor for irreproducibility. Lee et al. [240] as well as Garćıa et
al. [153] highlighted that the peer review process could be biased. Furthermore, the
extent to which technical details in scientific writing can be reported is limited [156].
More concrete details about how the experiments were implemented can only be
found in logs or the source code of computational experiments. Similarly, Ivie and
Thain [199] considered the required compromises between concrete instructions for a
computer and the more abstract means of human communication as a major threat
to reproducibility. Finally, the success of an academic career and the scientific
impact is often measured in terms of the published output, leading to the pressure to
publish that may lead to insufficient oversight and a flawed research design [182,403].
Especially in performance-driven domains, Sculley et al. [368] pointed out that the
scientific rigor may suffer from the leaderboard chasing.

2.5.3 Statistical and Experimental Flaws

Ioannidis’ simulations [198] showed that most findings are likely to be false due to
low statistical power or poor analysis. Baker [26] included the variability of stan-
dard reagents in her survey as an irreproducible factor. Analogously, this complies
with uncertainties about why particular combinations of retrieval methods and test
collections perform well while others do not. According to Jones et al. [210] and
Fuhr [149], it is challenging and only sometimes possible to assess what characterizes
a test collection.

In general, a poor research design [26] can be caused by the following reasons,
including no pre-registration of hypotheses [255], leading to cherry-picking a hypoth-
esis with adequate p-values (a.k.a. “p-hacking” or “data dredging”) [198], multiple
comparisons problem [78], or simple holdout without cross-validations [339]. Espe-
cially when benchmarking different approaches, it is critical to use strong baseline
methods for comparison [13,247,430].

2.5.4 Unavailability of the Experimental Setup

For the sake of transparency and reusability, the experimental setup should be pre-
served for future studies. According to Potthast et al., the computational sciences
have the privilege to preserve the underlying setup of the experiments with little
or no costs [329] in contrast to other scientific fields like chemistry, geography, or
the material sciences. However, recent work has shown that, especially for compu-
tational studies, the reported experiments often need more documentation about
the methods or the source code is unavailable [26, 99]. Likewise, unreported details
about hyperparameters [101], as well as closed/paywalled data, can be an obstacle
to making the experimental setup fully reproducible.
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2.5.5 Missing Expertise

Finally, reproducibility cannot be guaranteed due to different levels of expertise
between the original experimenters and the reproducers [26]. While in some cases,
there is the need for particular technical expertise, or likewise, inadequate expertise
may lead to mistakes, in other cases, there is also the chance of bad luck. Especially
as part of user-oriented or online studies [186], it is critical to be aware of confounding
variables and (cognitive) biases that may influence the experimental results and the
conclusions drawn from them.

2.6 Reproducible Information Retrieval

This section reviews the reproducibility issues and countermeasures in IR research.
In order to provide the reader with a general overview, we start this section with
a timeline that covers substantial community-wide achievements. Afterward, we
review issues, proactive solutions, and reactive reproducibility studies for each PRI-
MAD component. Many of the conclusions and outcomes in this section are based
on the literature of the ECIR reproducibility track, which is also discussed in Sub-
section 2.6.1 and reviewed as part of a structured Table A.1 in the Appendix A.

The meta-evaluations by Armstrong et al. [13] questioned the reproducibility
of improvements over baselines due to inconsistent evaluation protocols that did
not consider state-of-the-art baselines. However, the IR community began only a
few years later to enforce countermeasures for reproducibility starting in the middle
of the last decade. Table 2.3 provides a timeline of reproducibility attempts and
achievements from 2015 until 2022.

Even though earlier work also highlighted the importance of reproducible ex-
perimentation [301, 394, 395, 433], the IR community started to enforce the repro-
ducibility efforts from 2015 with the inauguration of the ECIR reproducibility track
that invites researchers to report their experiences with reproducibility studies also
including negative results [171]. The corresponding body of literature mainly covers
reactive reproductions, and a more detailed analysis is provided in the following
sections. In the same year, the TREC conference promoted the idea of Open Runs,
according to which the submitted run files should be backed by an open-source code
repository that is, for instance, hosted on GitHub [414]. Approximately 25% of
the participants in 2015 made their run submissions open. However, the TREC
organizers concluded with moderate success by considering their initial attempts
too simplistic. In this regard, they highlighted technical underspecifications, data
dependencies, and underestimating the additional overhead required to prepare an
experiment for reproducibility. In the following years, these attempts were unfor-
tunately not actively promoted. Finally, SIGIR hosted the RIGOR workshop that
offered a venue for reports about repeatability, reproducibility, generalizability, and
inexplicability [11]. In addition, workshop participants were invited to contribute
open-source systems to a reproducibility challenge that became known as the Open-
Source Reproducibility Challenge (OSIRRC) in the later years.

In 2016, the results of OSIRRC were reported as part of the ECIR proceed-
ings by Lin et al. [249]. Motivated by the goal of building robust and reproducible
open-source baselines, efforts were made to standardize the evaluation environment
and protocol for different implementations of the same retrieval methods. They
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Table 2.3: Reproducibility attempts in IR research from 2015 to 2022.

2015 · · ·•
The TREC conference introduces the idea of Open Runs [414];
RIGOR workshop at SIGIR [11];
ECIR inaugurates reproducibility track with three studies [171].

2016 · · ·•

PRIMAD is introduced as a result of the Dagstuhl seminar
16041 [132,146];
Report of OSIRRC 2015 artifacts resulting from RIGOR [249];
Lucene4IR workshop [20];
ECIR proceedings include four reproducibility studies [131].

2017 · · ·• Anserini toolkit is introduced at SIGIR [427].

2018 · · ·•

Ferro and Kelly survey the community about the ACM Artifact Review
and Badging [134];
First iteration of the CENTRE workshop [136];
ECIR proceedings include four reproducibility studies [320].

2019 · · ·•

Meta-evaluation by Yang et al. [430] reconfirms the problem of weak
baselines as already pointed out by Armstrong et al. [13];
OSIRRC workshop at SIGIR [93];
Second iteration of the CENTRE workshop [133];
ECIR proceedings include nine reproducibility studies [21].

2020 · · ·•

ACM Artifact Review and Badging Version 1.1;
Pyterrier introduced at ICTIR [267];
Lin and Zhang revalidate the OSIRRC 2015 artifacts [254];
ECIR proceedings include eight reproducibility studies [212];
ACM RecSys inaugurates reproducibility track with 2 reproducibility
studies [358].

2021 · · ·•

SIGIR implements the ACM Artifact Review and Badging;
Pyserini toolkit is introduced at SIGIR [250];
Data catalog ir datasets is introduced at SIGIR [265];
ECIR proceedings include eleven reproducibility studies [183].

2022 · · ·•
SIGIR inaugurates reproducibility track with seven studies [9];
Reproducibility tutorial at SIGIR [260];
ECIR proceedings include eleven reproducibility studies [170].
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showed a large variability of retrieval performance between different systems even
when implementing the same method. In addition, they highlighted the challenges
like platform dependencies, unavailable scripts, or deviating parameterizations. As
part of the Dagstuhl seminar 16041 [132, 146], PRIMAD was introduced as a col-
laborative result. Even though it discussed relevant components of reproducible IR
experiments, it was not put into practice but rather outlined by anecdotal examples
for each PRIMAD component.

In 2017, Yang et al. [427] released the Anserini toolkit that has since served as
the de facto framework for reproducible baselines. It can be seen as a follow-up of
the previous open-source attempts [11, 20, 394, 433]. It provides a more research-
friendly interface to the Lucene library and also provides regression tests for many
standard test collections. It was used as part of many reactive reproducibility studies
[157,332,417,429,437].

In 2018, Ferro and Kelly [134] surveyed the community about the ACM Ar-
tifact and Review Badging that was already successfully implemented as part of
ACM SIGMOD. Overall there was a positive attitude towards assigning badges to
reproducible papers, as seen from the survey’s results. The ACM SIGIR Artifact
Badging [450] was inaugurated in 2021 and offered an additional review of accepted
submissions to TOIS, SIGIR, CHIIR, and ICTIR. Depending on the degree of re-
producibility, the publications are given a badge in the ACM Digital Library. The
review process focuses on transparency by using the OpenReview platform [476].

In the same year, the cross-venue workshop CENTRE was introduced at CLEF
[136], NTCIR [353], and TREC [375]. CENTRE invited the workshop’s participants
to reproduce previous submissions to the respective conferences. As part of these
conferences, several measures for reproducibility were introduced that will be later
on discussed in Chapter 4. Even though the previous years showed that there was
an increasing interest in the topic of reproducibility, the number of participants
could have been higher, with only one group participating at CLEF, two groups at
NTCIR, and one group at TREC. In the following year, the CLEF workshop had
one participating group, and TREC discontinued CENTRE altogether. NTCIR
continued with CENTRE but moderate participation. While it is out of the scope
of this work to reach any definitive conclusions, we assume that these efforts may
have competed with the ECIR reproducibility track. Regarding academic approval,
there is a higher reward when submitting the experimental results to a peer-reviewed
track, considering the laborious work required for a good reproducibility analysis.

In 2019, Yang et al. [430] reconfirmed the problem of weak baselines that were
already pointed out by Armstrong et al. [13] by conducting another longitudinal
analysis including a more recent time frame and then state-of-the-art Deep Learning
(DL) ranking methods. As a follow-up of OSIRRC, SIGIR hosted the workshop once
again. This time, participants prepared reproducible systems and experiments with
the help of the containerization technology based on Docker [93]. The workshop
resulted in a rich library of Docker images that can be used in combination with a
dedicated software toolkit in order to rerun the experiments on purpose.

In 2020, the ACM updated the Artifact Review and Badging to Version 1.1
by aligning the terms of reproducibility and replicability to the conventions in
other research domains. As part of another reactive reproducibility study, Lin and
Zhang [254] revalidated the OSIRRC artifacts from 2015. They showed that the
results could be reproduced for one of seven retrieval systems. While the four years
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between the original evaluations and the revalidations seem to be a long time in
terms of software release cycles, this highlights the importance that reproducibility
should also be guaranteed in the long term.

In 2020 and 2021, several helpful software toolkits were introduced to prepare
an experiment proactively for reproducibility. Pyterrier [267] is a Python interface
for the established retrieval platform Terrier [266]. In addition to the ease of use
due to Python, it also introduced a declarative programming style allowing better
readability of the implemented retrieval method and reducing the gap between the
source code and the descriptions in the publication. Likewise, Pyserini [250] offers
an easy-to-use Python interface to the Anserini toolkit. Like Anserini, Pyserini
also found application in several reproducibility experiments [243,263,332]. Finally,
SIGIR inaugurated a reproducibility track in 2022 with seven studies [9].

2.6.1 ECIR Reproducibility Track

Success

48%

Partial success
40%

Failure
10%

Report2%

ECIR reproducibility track from 2015 to 2022

Figure 2.3: Our analysis (cf. Table A.1)
regarding the success of studies published
in the ECIR reproducibility track.

In the following, we provide an overview
of the ECIR reproducibility track based
on the structured Table A.1. The
selected publications cover all repro-
ducibility studies of ECIR from 2015 un-
til 2022. We consider these 50 papers
to represent how reactive reproducibil-
ity studies in IR research are usually
conducted. More specifically, we review
what topics have been addressed by re-
producibility studies so far and by which
methods and based on which criteria
the authors considered the reproduction
successful or failed.

In 2017, there were no reproducibil-
ity studies submitted. However, there
is an increasing trend in the number of
accepted papers, which underlines that
reproducibility has become an integral
part of the ECIR community over the
past years. Figure 2.3 shows the success rate of the 50 papers. While in 24 pa-
pers (48%), the authors considered their reproductions to be a success, in 20 papers
(40%), they concluded with partial success. In five papers (10%), they considered
their reproductions to be a failure.2 These statistics show that reproducibility issues
are also present in IR and that reproducibility cannot always be taken for granted.

In most cases, the authors reimplemented the original experiments, given the
descriptions in the corresponding publications of the original experiment. However,
in seven out of 50 papers (14%), the authors were able to reuse existing implemen-
tations and used them to evaluate the validity with different datasets or another
kind of experimental setup [54, 173, 237, 254, 302, 303, 417]. Some reproducibility
studies validated the state of the art of a particular research problem and do not

2Note that one paper provides anecdotes about how research outcomes find their way into the
industry and the paper does not contain empirical evaluations [157].
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focus on a single method but comprised benchmark experiments including multiple
methods. These studies compare the selected methods in a systematic and fair way
by providing a consistent experimental setup. Normally, the dataset and experi-
mental conditions were kept fixed for all methods. The authors aimed to answer
if there is overall progress in the effectiveness and if previous conclusions can be
reproduced in the common ground. Examples include sentiment classification in
tweets [169], ad-hoc retrieval methods [249, 254], author identification [328], statis-
tical stemmers [370], text summarization of legal texts [49], recommender system
bias [53, 54], index compression techniques [276], entity alignment [47], web page
segmentation [226], sentiment analysis [302], loss functions for image retrieval [51],
or methods for systematic literature reviews [237].

Typically, authors validated a successful reproduction by the Average Retrieval
Performance (ARP) (or more specifically, the system effectiveness) in 40 out of 50
papers (80%). For 24 out of these 40 papers (60%), the validation was limited to
only comparing averaged performance scores. In comparison, 16 out of these 40
papers (40%) provided additional statistical analysis based on significance testing,
often with the help of paired t-tests. In these cases, authors claimed their reproduc-
tion to be successful if their reimplemented approach significantly outperformed the
retrieval effectiveness of the original experiments. While this methodology complies
with the typical evaluation design in IR experiments, when a new system is com-
pared to a baseline, it lowers the rigor of determining a “successful” reproduction.
This evaluation approach may confirm that the reproduced experiment results in
comparable or even better retrieval effectiveness, but it neglects the exact similarity
between the original and reproduced results. In theory, computational experiments
would allow a bitwise similarity of the experimental artifacts [199]. However, com-
paring the ARP does not account for differences between topic score distributions
or rankings for particular topics that could result in similar average scores.

We note the overall lack of user-oriented reproducibility studies as part of ECIR
and emphasize that future research should focus on user-oriented aspects in reac-
tive reproducibility attempts. Some studies included additional user judgments or
simulated click behavior in the evaluations, but the user behavior was not the main
focus of these reproducibility studies. For instance, Mackie et al. [271] evaluated
their reproduced text summarization methods with additional crowdsourced user
judgments. Likewise, Bhattacharya et al. [49] evaluated summarization methods
for legal texts with a further qualitative analysis based on judgments by domain
experts. Oosterhuis and de Rijke [312] simulated user click behavior, which was also
adopted by Wang et al. [417], to validate their reproductions.

To our knowledge, the only reproducibility study involving users was recently
presented by Roy et al. [351]. They analyzed four different Search Engine Result
Page (SERP) layouts in user studies and validated if the conclusions from earlier
studies still hold almost a decade after the original studies were conducted. They
concluded by their results that both the SERP layout and the task complexity
impact the user interactions, and the earlier observations mainly hold over time.

The following subsections align the reactive reproducibility studies of ECIR to
the PRIMAD taxonomy. We review what kind of reproducibility issues can occur
and what can be learned from these studies in Subsection 2.6.2, and how counter-
measures in the form of proactive solutions are implemented in Subsection 2.6.3.
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2.6.2 Reactive Studies and Reproducibility Issues

In the following, we review common issues related to irreproducibility and align
them to the six PRIMAD components.

Platform

If the experimental outcomes depend on the computational environment in which
they have been conducted, it can impact the reproducibility. For instance, when re-
running the experiment on an updated platform, some of the underlying software
dependencies might have changed, leading to inaccuracies or even complete execu-
tion failures, which do not support the original conclusions. Lin and Zhang [254]
revalidated the artifacts of the OSIRRC workshop [249] four years after they were
made with relatively moderate success. They could reproduce the same results for
only one out of seven retrieval systems by rerunning the old experiments with newer
hardware and an updated operating system. The remaining attempts resulted in
exceptions, segmentation faults, and compilation errors or depended on external
resources that were not available anymore. Four years is a long time under consid-
eration of the pace of software release cycles. This reproducibility attempt shows
that providing long-term reproducibility of experimental results requires ongoing
software maintenance and revalidations in the form of regression tests.

With regard to DL approaches, it has been acknowledged in several studies that
the non-deterministic behavior of some GPU operations can cause differences
in the effectiveness of the outcomes [137, 306]. For the implementations of DL ap-
proaches, GPUs are used to parallelize the training process and the later inference.
With a particular focus on reinforcement learning, Nagarajan et. al [306] emphasized
that even if the algorithm considers countermeasures to non-deterministic behavior,
the non-deterministic influences of the hardware operations can impact the repro-
ducibility. As part of their OSIRRC contribution, Ferro et al. [137] reimplemented
the Neural Vector Space Model and showed how these non-deterministic effects influ-
ence ranking results. While there were only minor differences in the average system
effectiveness, the reproductions based on the GPU implementations led to entirely
different document rankings. Likewise, the GPU company NVIDIA acknowledges
that bitwise reproducibility is not guaranteed even if the same GPU architecture is
used due to truly random floating point rounding errors [475].

Furthermore, Hasibi et al. [173] showed that it could also be critical if the experi-
ment relies on resources retrieved from an external platform. They reimplemented
experiments with the help of an entity-linking system. They could only partially
reproduce the original outcomes due to an updated Application Programming Inter-
face (API) of a web service running on an external platform that was not explicitly
documented.

Research Goal

The research goal describes the purpose of the study [132,146]. If the experiment is
aligned with the Cranfield paradigm, as often in IR experiments, the research goal is
a high-quality ranking. In this regard, it is an essential question of how it is designed
and evaluated. Fuhr [149] emphasizes that it is crucial to formulate the hypotheses
or research questions before conducting the experiments. Especially, the low entry
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barrier of modern Machine Learning (ML) frameworks allows practitioners to start
experimenting without clearly formulated research questions or any hy-
pothesis about the outcomes [255], but with the intent to improve the effectiveness
leading to the earlier mentioned problem of leaderboard chasing [368].

Consequently, the experimenter might be inclined to “search for” experiments
that satisfy a post hoc formulated research question leading to issues like p-
hacking [78]. In this regard, it is crucial to apply correction methods to avoid the
multiple comparisons problem [150]. Likewise, underpowered statistics and
effect sizes can lead to overclaiming of findings and conclusions that are not
supported by empirical evidence [111,114,149,229,401]. The overall evaluation
criteria should give answers to the research questions [231], and more recently, Fer-
rante et al. [129] stressed that evaluation measures should be interval-scaled when
conducting significance tests.

Armstrong et al. [13] pointed out the lacking upwards trend of the overall retrieval
effectiveness from 1998 to 2008 and highlighted the importance of including strong
baselines in the experimental evaluations. Improvements over weak baselines
can be illusionary when the method is compared to strong and adequate state-of-
the-art baselines. Similar observations were made by Yang et al. [430] in a more
recent study by evaluating DL-based approaches for ad-hoc retrieval.

Rendle et al. [343] went as far as to state that findings should be questioned unless
they are obtained through extensively tuned baselines by the research community.
Many studies do not meet this requirement, as confirmed by several systematic re-
producibility benchmarks that follow a principled approach. Usually, the reviewing
authors try to include all state-of-the-art approaches that target a narrow research
problem (task) and that were accepted at major conferences and journals. After-
ward, they try to obtain and execute the corresponding source code or reimplement
the methods based on the descriptions in the publication. In this manner, it is pos-
sible to compare different approaches for the same research goal in a standardized
computational environment, i.e., all of the experiments have the same evaluation
setup, including the platform, the same dataset, and evaluation measures.

There exist several of these systematic reproducibility benchmarks in neighbor-
ing research disciplines. Dacrema et al. [108,109] showed that reproducibility issues
affect recommender systems. Only a minority of previous research was reproducible
(12 out of 26 papers), and most of the methods were still outperformed by less
complex baseline methods (11 out of 12 papers). Similar observations were made
by Ludewig and Jannach [262] for session-based recommender systems. Another
systematic evaluation of time series forecasting was made by Makridakis et al. [273],
who showed that ML approaches could be outperformed by simpler statistical meth-
ods. Comparable observations were made in systematic reproducibility studies of
computational linguistics [421] and NLP [38,39].

As part of the ECIR reproducibility track, several systematic reproducibility
benchmarks were conducted [47, 53, 54, 226, 233, 237, 276, 283, 300, 308]. Moreo and
Sebastiani [300] conducted a systematic analysis of methods for learning to quantify
and showed that it is critical to account for properly tuned hyperparame-
ters of the baseline methods and also carefully consider the evaluation protocol
when benchmarking them against novel methods. Otherwise, the reported improve-
ments over the baseline can be illusionary. Similarly, Maurera et al. [283] analyzed
generative adversarial networks for collaborative filtering and showed that the imple-
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mentations of the original paper could be successfully reused, but the improvements
of the analyzed framework were not replicable when compared to a broader range
of baselines, i.e., it was not competitive against conventional baselines.

Berrendorf et al. [47] conducted a systematic revalidation of entity alignment
methods and provided a more in-depth analysis regarding the influence of hyperpa-
rameters and training/test data splits. They highlighted the limitations of the
state-of-the-art approaches. In this regard, Lipton and Steinhardt [255] pointed out
the dangers of misinterpreting the sources of empirical gains. Kusa et al. [237]
conducted a systematic evaluation of two DL-based methods for systematic litera-
ture reviews across 23 datasets and showed that only one method was reproducible.
In addition, the authors introduced a simpler yet more effective method.

Boratto et al. [54] conducted a systematic analysis of recommender systems that
mitigate consumer unfairness, for which 8 out of 15 systems were usable for the ex-
periments. Likewise, they showed in another study [53] that selected recommender
systems could be reproduced when evaluated in the context of massive online open
courses but also highlighted that undesired effects, i.e., different forms of bias related
to the popularity of the recommended items, were reproduced as well. Similarly,
Kowald et al. [233] revalidated that the popularity bias in recommender systems is
not only present in the movie domain but also in the music domain, and Neophy-
tou et al. [308] reconfirmed that popularity and demographic biases influence the
effectiveness of recommender systems.

Other ECIR studies validated if the research goal still holds in a different con-
text. For instance, Bhattacharya et al. [49] analyzed the generalizability of domain-
independent summarization algorithms when applied to legal texts and also analyzed
domain-specific summarization algorithms for legal texts in different languages. Al-
thammer et al. [5] revalidated a BERT model based on paragraph-level interactions
in the legal and patent domain and could show that BM25 is still a strong baseline for
the document retrieval task. In contrast, the Transformer-based methods achieved
reasonable results in both domains for the paragraph retrieval task. Yang et al. [431]
reproduced retrieval methods based on linear transformations of word embeddings
and showed that it generalized well on datasets with other languages than in the
original experiment. Mukherjee et al. [302] revalidated methods of aspect-based sen-
timent analysis, and Berrendorf et al. [47] revalidated methods for entity alignment.
Both studies showed performance drops when the methods were reproduced in a
production-like evaluation or real-world setting.

Sometimes, the original study’s context changes over time. For instance, it was
shown by Shrestha and Spezzano [369] that a fake news detection method could not
be reproduced as the underlying writing style - in this particular case, the style of
(fake) news - changed over time. Another example is given by Fröbe et al. [148],
who revalidated anchor text as a ranking feature with substantially larger datasets.
They showed that anchor texts are still effective for navigational queries but found
differences between the term distributions of anchor texts and today’s queries.

Implementation

What is more formally described by the method is translated by the implementation
into operations that can be conducted in silico [132, 146]. By covering a broader
spectrum of different computer science fields, Collberg and Proebsting [99] con-
ducted a large-scale attempt to repeat over 600 experiments in ACM papers. Their
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analysis showed that in one-third of the cases, they could retrieve and run the source
code with reasonable effort. In other cases, the source code was not retrievable,
the authors did not reply, or it took excessive time to run the experiments.

Slightly better outcomes were observed by Raff [337], who successfully reimple-
mented 162 out of 255 ML papers from scratch and evaluated the reproducibility
with the help of 26 different features. If at least 75% of the original paper’s claim
could be successfully validated, the paper was considered as reproduced. The anal-
ysis showed that the following features impacted how well a paper could be reimple-
mented, including the rigor, readability, algorithm difficulty, pseudo code, primary
topic, specification of hyperparameters, computational requirements, author’s reply,
and the number of equations and tables.

Kriegel et al. [234] showed that implementations of even simple algorithms (like
k-nearest neighbors) could result in different orders of magnitude when evaluating
the efficiency. Lin et al. [249] analyzed the results of OSIRRC and showed some vari-
ability in the retrieval performance between different implementations of the same
method. As a follow-up study of Mühleisen et al. [301], Kamphuis et al. [213] com-
pared different implementations of the BM25 method and showed that there were
(no significant) differences between the effectiveness scores. While these differences
did not significantly impact the ARP, they still might lead to more substantial dif-
ferences for particular rankings, which can impact user behavior. To our knowledge,
this has not been evaluated yet.

Both Drummond [115] and Crane [101] pointed out that the availability of the
source code should not be overestimated. According to them, it only allows
rerunning experiments and does not provide any insights about reproducibility in
a different context or if it is even reproducible without the source code by the
original experimenters. This critique is in line with the idea of shifting the focus of
a reproducibility study from internal to external validity [149].

As part of the ECIR reproducibility track, Kusa et al. [237] pointed out that
more than providing the code alone is needed, and it can be critical not to
report the versions of the software libraries. Papariello et al. [319] provided
an example of a failed reproducibility study despite an in-depth reimplementation
study. Another example is given by Berrendorf et al. [46], who had no success
with the reproduction and concluded that the original implementation deviates
from the descriptions in the paper. On the other hand, several authors could
successfully reimplement and consequently reproduce earlier work [128,169,263,270].

Method

The method component in the PRIMADmodel describes the actual retrieval method,
for instance, the mapping of query-document pairs to a ranking score [132,146]. Very
often, it is the study’s main focus. Even though the common retrieval pipeline has
standardized processing steps, including the removal of stop words, lexical unit gen-
eration, and the final retrieval method, several methods exist for each particular
processing step.

Ferro and Silvello [143] showed that these different methods for standardized
processing steps impact the final ranking effectiveness to different extents. Further-
more, Silvello et al. [370] analyzed the reproducibility of language-agnostic statistical
stemmers over test collections with different languages. An underspecification of
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the retrieval pipeline in the final publication can lead to unwanted freedom of in-
terpretation when an experiment is reproduced. For instance, Yu et al. [437] pointed
out that the normalization of the tf-idf features had an impact on the retrieval per-
formance in their reproducibility experiment — a detail that was not pointed out
in the original study report. Likewise, Roy et al. [350] showed the impact on repro-
ducibility when removing markup artifacts from web documents as part of the data
preprocessing. Lin and Yang [253] showed that score ties have to be broken deter-
ministically; otherwise, they can affect the reproducibility of the document ranking.
As a solution, they favored external collection identifiers. Sometimes simplifica-
tions of the method result in a similar performance, and less complexity should be
generally favored [380].

As shown by Kamphuis et al. [213], even for the same method (in this case,
BM25), different implementations exist and can impact the final results. Thus, the
concrete method should be described or referenced more clearly. On the other hand,
too complex presentations, what Lipton and Steinhardt [255] refer to as unneces-
sary “mathiness”, can obfuscate clarity, making the method harder to reproduce.

At ECIR, several reproducibility studies exemplified the impact of changing the
underlying method of particular processing steps. Oosterhuis and de Rijke [312]
systematically validated the reproducibility of two different optimization algorithms
for the task of online learning to rank. They showed that Dueling Bandit Gradient
Descent did not reproduce well in noisy data environments or under the assump-
tion of a non-cascading user model, being inferior to the Pairwise Differentiable
Gradient Descent algorithm. Schliski et al. [364] reproduce node2vec - a graph em-
bedding method and conclude that they cannot achieve structural equivalence to
the skip-gram model as stated in the previous works. Li et al. [243] showed that
preprocessing could influence the effectiveness of dense retrievers as well. Pradeep et
al. [332] reproduced and improved in this context the effectiveness of a general cross-
encoder reranking pipeline by varying, for instance, the loss function or the first- and
second-stage ranking methods. Wang et al. [416] revalidated a method for system-
atic literature reviews with more recent datasets. They successfully reproduced the
methods but failed to replicate them, presumably, due to the effects of deviating
document preprocessing. Li et al. [243] studied the reproducibility of a pseudo-
relevance feedback ranking method combined with a language model and concluded
by the negative results that the method is not generalizable with a reranking method
based on another Large Language Model. Bleeker and de Rijke [51] compared al-
ternatives to loss functions in the context of image caption retrieval as part of a
reproducibility experiment and concluded with negative results.

Actor

In the PRIMAD taxonomy, the actor describes the experimenter who operates the
computer, implements the experiments, etc. [132,146], but in the broader sense, this
person also decides about the study design and authors the corresponding publica-
tion. In this regard, the actor is obliged to scientific rigor [149].

According to Ivie and Thain [199], most issues of reproducibility in the compu-
tational sciences stem from finding compromises between the concrete instructions
a computing machine requires and the more abstract means of human commu-
nication in computational research. Of course, a different actor does not have to
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be another researcher but can also be a future self of the original experimenter, for
whom the experimental setup should be properly documented.

As the actor component introduces human factors into the computational ex-
periment, it is important to consider different forms of cognitive bias. Before
publication, a study usually undergoes the peer-reviewing process. The reviewer
could also be considered as another actor who is asked to confirm the validity of
the claimed conclusions. For instance, as part of the review process, several forms
of bias towards prestige, affiliation, nationality, language, and gender can
occur [153, 240]. Even if the review process is blinded, it is not guaranteed that
the reviewers are not biased towards specific contents, against interdisciplinary re-
search, and towards positive outcomes. However, also the authors have to be aware
of possible pre-assumptions that could influence the experimental outcomes like
confirmation bias [152] or the Dunning-Kruger effect [235].

For many experiments, it is favorable to achieve actor-independence, i.e., the ex-
periments should be repeatable by anyone interested in rerunning them, for instance,
like it is implemented by EaaS platforms [190]. Nonetheless, the authors should feel
responsible for supporting follow-up research after publication and helping
others to reproduce it. However, authors often do not supply support upon re-
quest [99,337]. Potthast et al. [328] conducted a large-scale reproducibility analysis
of author identification methods with students. They systematically analyzed the
ease of reproducing the original target study regarding several criteria. This study
highlights that it is important to consider how the results are communicated and
documented and whether the experimental artifacts are reconstructible.

Data

PRIMAD defines data as the component comprising the input data and the param-
eters required to run the experiments [132, 146]. Jones et al. [210], Ferro [130], and
Fuhr [149] pointed out that it is not always assessable what characterizes a
test collection, how it compares to other collections, and why particular methods
perform well or not with different test collections. A recent analysis showed that test
collections may only be suitable for some system types. Evaluating neural retrieval
approaches based on document pools drawn from results of mostly keyword-based
retrieval methods may result in evaluation bias [435]. However, some methods per-
form equally well irrespective of the pool depth, as shown by Zhang et al. [442] who
successfully reproduced BERT-based passage score aggregation approach fine-tuned
with both “shallow” and “deep” judgments that resulted in similar performance.

Voorhees et al. emphasized that a test collection is not reusable if the topics have
too many relevant documents [412]. The collection cannot be reused as many un-
judged relevant documents remain once the judgment budget is depleted. Likewise,
precision-focused measures cannot be used to distinguish between retrieval systems
when there is a disproportion between relevant and non-relevant documents. In
their study, they validated the reusability of the test collections by leave-out-unique
tests. The technique involves the evaluation of the performance before and after
excluding a particular system and its contributions to the relevance pool. Evalu-
ating a system by excluding its contributions from the pooled relevance judgments
simulates a new system that did not participate in the original pooling procedures
but is evaluated later on with the help of the test collection. The test collection
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is considered reusable if there are no significant differences between the evaluation
scores before and after excluding a particular system’s contributions.

By the same technique, Tan et al. [386] analyzed the reusability of living lab test
collections with negative results. They found that for 14 out of 41 systems, there
are significant differences before and after excluding a system’s contribution to the
document pool. Furthermore, they showed that there are also time dependencies.
Especially in the period from 8 pm to 4 am, there were more significant differences.
They concluded that for this particular living lab, the test collection (consisting of
tweets and the corresponding user feedback) is not reusable.

Faggioli and Ferro [123] reproduced the evaluation approach by Voorhees et
al. [415] based on random partitions of the test collection and bootstrap ANOVA.
In this way, the influence of the topic-system interactions on the evaluation of rel-
ative system comparisons could be reduced, allowing a more precise analysis of the
system effects. In their reproducibility study, Faggioli and Ferro included the boot-
strap ANOVA and the traditional ANOVA, showing that bootstrap ANOVA is more
robust. Carterette [78] showed that test collections can be “overused”. Once a
test collection gains popularity and is more frequently used, there is a higher prob-
ability that extreme performance values could be observed by chance alone and not
due to the system’s effectiveness. Consequently, the system’s intrinsic effectiveness
might be lower than the observed performance with a particular test collection.

Berrendorf et al. [47], and likewise, Rao et al. [339] showed that different train-
ing and test data splits affect reproducibility [339]. In this regard, Kapoor
and Narayanan [216] reviewed the influence of data leakage on the reproducibility
in the broader context of ML-based research. They outlined a taxonomy covering
eight types of leakage that led to reproducibility issues across 17 different scientific
fields. For instance, they pointed out the problems when there is no separation
between training and test data, the illegitimate use of training features, or test sets
that do not represent the actual distribution giving answers to the research question.

MacAvaney et al. [264] validated the reproducibility of experiments made with
the AOL query logs, and they showed that it is critical to consider the snapshots
of documents if the data collection is made from scraped web page documents as
web content may change frequently. They illustrated that for certain web pages,
the scraped content substantially differs when scraped years after the corresponding
query was originally logged. As expected, scraping snapshots of websites at
different dates results in disjoint datasets, leading to different experimental
results. This circumstance can impact session-focused experiments, as the later
scraped documents of a logged query may lack a topical fit. MacAvaney et al.
proposed to scrape the documents’ snapshots when the queries were logged with
the help of the Internet Archive’s WaybackMachine. When data collections and
the corresponding indices are updated with new documents, it may impact the
reproducibility of the ranking results [56]. Due to the resulting updates of the term
statistics, probabilistic ranking methods could lead to different rankings. This is
problematic for dynamically changing document collections, for instance, in live
systems that receive frequent index updates.

On a more practical level, Ivie and Thain [199] criticized the separation of
code and data. Likewise, the use of private or sensitive [102, 148] as well
as pay-walled [133] data collections can hinder reproducers from reimplementing
the experiments. With an anecdote, we emphasize that we could not conduct a
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reproducibility experiment. A $3,000 paywall of the Gigaword corpus [458] kept
us back from reproducing submissions by Benham et al. [43] when participating in
CENTRE [133].

2.6.3 Proactive Solutions

In the following, we review possible solutions of preparing an experiment for repro-
ducibility in a proactive way and align them to the six PRIMAD components.

Platform

Recently, several proactive reproducibility solutions were introduced for the plat-
form. For instance, it is good practice to use virtual machines [329, 346] or con-
tainerization software [52,145] to bundle the experiments with the platform.

Opposed to the shared tasks organized by TREC, EaaS infrastructures make
it possible to submit the entire retrieval systems instead of submitting only the
ranking results [190]. TIRA [329] is a commonly used EaaS infrastructure in
shared tasks. It allows the submission of the entire retrieval system with the help
of a virtual machine. Having the entire system in a virtual machine makes them
reproducible and allows the task organizers to evaluate the systems in web-isolated
environments. As an additional benefit or side-effect, it is possible to organize tasks
with (sensitive) data that cannot be shared publicly and to prevent any leakage
of the test data into the training procedures. Similarly, participants of the TREC
Total Recall Track [346] were provided with virtual machines not only to submit
their experiments but also to be provided with baseline methods.

A more lightweight method to archive the platform is made possible by Docker.
Recently, a Docker-based toolkit was introduced at the OSIRRC workshop [93] in
2019. By defining interfaces and standardized commands for data ingestion, index-
ing, and ranking, the toolkit allows the integration of ad-hoc retrieval pipelines and
makes them reproducible by containerization.

While it is beyond this work to draw any conclusions about the long-term preserv-
ability, we note that there are differences between (Docker-based) containers and
virtual machines regarding the comprehensiveness of the underlying platform com-
ponents. Archiving an experiment by a Dockerfile, which can be a single text-based
file, does not guarantee that the required platform layers will still be available on
the web in the future [311]. This can be mitigated by providing the compiled Docker
image, including all the platform layers in public image libraries like the DockerHub.
However, virtual machines are still more comprehensive as they bundle the entire
operating system.

We note that there exist several other technical solutions to make the computa-
tional platforms reproducible. However, to our knowledge, these technologies have
not been used for any IR experiment until now. Srivastava et al. introduced an EaaS
platform based on Docker containers and a semantic workflow system [379], whereas
the Singularity-Hub [377] validates the similarity between Docker containers. Both
approaches have been used for biocomputational experiments. ROHub [318] is a
digital library system for research objects that supports their storage, lifecycle
management, and preservation.
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Research Goal

The IR community has a long tradition of collaboratively working on the same re-
search problem made possible by conducting shared tasks, for instance, as part of
TREC [413]. In this setting, the researcher is implicitly forced to conduct the exper-
iments according to several guidelines of good scientific practice. The researchers
cannot choose the baseline or select data arbitrarily. Instead, it is a benchmark
across the same dataset, and the submitted results are put into context and com-
pared with other submissions. Furthermore, evaluating the system performance
before formulating a hypothesis or research question is impossible, forcing the re-
searcher to reason about the chosen approach. Liberman [112, 246] reffered to this
setting as the common task framework .

One of the first calls for more rigor in the computational sciences was made by
Stodden, who introduced the Reproducible Research Standard [381] to encourage
the release of the entire research compendium, including the research paper, the
data, the experiment, the results of the experiment, and any auxiliary material.
Several other guidelines and manifestos have been published since then in order
to make researchers and practitioners aware of how to make the experimentation
reproducible [100,151,304,357].

Of course, not only are the researchers responsible for making research goals
reproducible, but it is also how publishing authorities promote it. According to
Stodden [382], journal policies can enforce reproducibility at submission time. Pre-
registration or results-blind reviewing [309] can enforce more scientific rigor
during the review. In clinical trials, studies must be preregistered before any exper-
iments are conducted. Even though preregistration has yet to be established as part
of any IR conference, it offers a perspective towards emphasizing a study’s research
questions and scientific design, reducing the sole focus on performance gains.

Recently, the SIGIR community inaugurated the ACM badging system, al-
lowing a paper to be evaluated for reproducibility after acceptance. Kelly and
Ferro [134] surveyed the community about badging and concluded with mostly pos-
itive opinions about the procedures. The database community also applies repro-
ducibility badging as part of SIGMOD [451] or PVLDB [479]. The ReScience initia-
tive [348] is an open-access journal [481] dedicated to reproducibility experiments,
which also explicitly invites to submit failed attempts. The web service Papers with
Code [478] tracks openly available information from the arXiv, ACL anthology, and
OpenReview and does not only link source code repositories to publications, but
it also includes pointers to available reproducibility studies. Furthermore, the ser-
vice hosts the Reproducibility Challenge [473] that is organized via the OpenReview
platform and publishes selected studies in the ReScience journal.

Besides the publications in which the research goal is conventionally reported,
the IR community developed several solutions in the form of services and platforms
facilitating resource management to put the research goal into context with other
findings and experimental outcomes. The DIRECT infrastructure [2, 3, 310] hosts
experimental artifacts and enriches them with metadata according to a conceptual
model. Armstrong et al. [12] introduced a solution for standardized evaluations by
a central web-based service as a countermeasure to the lacking upwards trend of
the overall retrieval performance as revealed by their meta-evaluations. The service
allowed the upload of run files, and after evaluating them, they are put into context
with other submissions for the same task or test collection. Yang and Fang [426] pro-
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posed another more recent attempt to benchmark retrieval systems in a reproducible
manner. They proposed a Docker-based service to evaluate a retrieval system over
multiple test collections systematically. The authors implemented several standard
retrieval methods into the system, which is extensible by encapsulating new retrieval
systems in Docker containers.

Implementation

Proactively preparing the implementation for reproducibility can be achieved by
integrating good software development practices into the implementation pro-
cess [163]. This involves but is not limited to managing the experiment by con-
figuration files [10, 423], logging [87], (release) versioning with version control soft-
ware [338], data management (tracking the data provenance similar to control ver-
sion software) [69,85], dependency management [237], open-source releases [50,126],
test-driven developments that allow more stable software releases [121], or good
documentation and communication including post-study support [337].

Configuration files provide a systematic way to manage (hyper-)parameters
and configurations of the implemented experimental setup. It not only facilitates
easier modifications of the experiments but also provides better access for external
researchers with a high-level perspective on what could influence the experimen-
tal outcomes. Some reproducibility studies showed that a proper specification
of hyperparameters is critical for reproducibility [47, 101, 300]. Hydra [423] is a
software toolkit for setting up more general data science experiments by configura-
tion files. A more task-specific example is the ELLIOT [10] framework allowing the
specification of recommender systems experiments by configuration files. Bakshy et
al. [27] developed a scripting language to systematically describe user experiments
and have them checked automatically for validity [392].

There also exist toolkits like ReproZip [87] or Whole Tale [69] that automatically
log system calls and track the data provenance throughout the execution of
an experimental pipeline. With special regard to the source code, version control
systems like Git [338] facilitate better transparency. Furthermore, reproducibility
can be supported by making the source code open. As mentioned earlier, Voorhees
et al. [414] introduced the idea of Open Runs, according to which run submissions
to TREC should be backed by a public code repository. Fortunately, there is an
increasing trend of publications accompanied by an open-source code repository
[126], and a study by Bhattarai et al. [50] indicated that providing open-source code
can have a positive effect on the citation rate. As pointed out by Kusa et al. [237],
it is important to explicitly refer to external and required dependencies.

When implementing standard processing steps of retrieval pipelines, it is reason-
able to use established retrieval toolkits that are commonly used by the com-
munity like Anserini [250,427,428], Terrier [266,267,314], Indri [383], or PISA [275].
In this manner, the corresponding implementations are less error-prone due to the
community-based development process, and it is less time-consuming when integrat-
ing standard operations into the experiments. Furthermore, it allows a better and
fairer comparison to other studies building upon the same toolkits.

Anserini is a Java-based retrieval toolkit built on the Lucene software library of-
ten used in industrial environments. In this regard, Anserini satisfies the IR commu-
nity’s request to prepare Lucene for academic experimentation [20]. The entire de-
velopment process of Anserini keeps reproducibility as a primary requirement. The
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corresponding GitHub project [461] contains several notebooks that support many
standard experiments for established test collections that allow “off-the-shelve” use
and continuous validation by regression tests. Pyserini [250] offers a Python-based
interface to Anserini and facilitates in combination with the PyGaggle toolkit [331]
the implementation of modern multi-stage retrieval pipelines covering sparse and
consecutive dense retrieval operations [248]. Both Anserini [157, 332, 417, 429, 437]
as well as Pyserini [243,263] have been used for several reproducibility studies.

Similarly, there is the Java-based Terrier retrieval toolkit [266, 314] for which
Python bindings are offered by Pyterrier [267]. Pyterrier follows a declarative pro-
gramming style that adds an abstraction layer above the source code, making the
experimental workflow more readable and easier to modify systematically. Like
Pyterrier, it also allows the implementation of multi-stage ranking pipelines with
deep language model-based rerankings by integrating specific packages and plugins.

Method

In order to avoid ambiguities between the (more abstract) method and the (more
concrete) implementation, there exist some solutions to integrate the method more
directly into the code execution environment as it is made possible by “executable
papers”, which allow a tighter connection between the scholarly communication
and the code implementations [58, 73]. For instance, PopperCI [205] is a continu-
ous integration service that facilitates writing an article and hosting the corre-
sponding experiments with a DevOps approach, making it possible to validate the
reproducibility automatically. This results in a more integrated way of reporting
the methodology and its implementation. CodaLab [455] is a similar platform for
executable papers. Recently, there has been an increasing trend of documenting and
implementing research with the help of Jupyter notebooks [228,323], which allow
the combination of executable code and detailed documentation by annotating the
code snippets. Following the same idea, Bar and Wang propose a software package
that allows running the experimental code directly from a LATEX environment [32].

noWorkflow [305] automatically tracks the data provenance of software scripts,
while YesWorkflow [291] introduces an annotation language for scripting lan-
guages in order to facilitate the experimental documentation with little overhead.
Miksa and Rauber [292] proposed an ontology to annotate workflow-based ex-
periments and provide solutions for system resource logging [341]. Snakemake [299]
is a configuration file-based workflow management framework that allows
defining reproducible pipelines with data in- and outputs combined with Python.

In publications, the technical details often do not contribute to a better under-
standing and may overstress the readers’ cognitive resources. However, these details
are essential for accurate reproductions. Recently, model cards were introduced by
Mitchell et al. [294]. The general idea is to provide additional documentation for ML
models in the form of metadata according to the proposed annotation framework.
Piwowarski [325] introduced a software tool that can be used to manage data and
experimentation pipelines in IR experiments by source code annotations.

Methodologically, sources of randomness need to be identified [199]. While
some methods include intentional non-deterministic behavior, other sources of ran-
domness are unintentionally part of the experiments, like issues related to concur-
rency or floating point operations [119]. If feasible, random seeds should be explicitly
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reported. Otherwise, there exist ways to identify other sources of randomness [84].
In document rankings, score ties should be broken deterministically [253].

Regarding the evaluation of a method, statistical significance testing should
be part of the analysis when comparing the method to a baseline. Recently, guide-
lines on significance testing with DL-based approaches were published by Ulmer et
al. [401] or Dror et al. [114]. They reminded their readers that it is critical to test for
statistical significance, especially if improvement may occur by chance alone without
any reasoning behind the modifications of a neural network’s architecture. When
conducting multiple significance tests, Fuhr [149] emphasized that it is critical to
apply corrections in order to avoid the multiple comparisons problem.

In a series of works, Ferro, Kim, and Sanderson [135, 139, 140, 141] proposed an
approach for improving the performance measurement accuracy. Similar to
Voorhees et al. [415], they split the document collection into shards or replicates
— random partitions of documents. By combining a general linear mixed model
with ANOVA testing, they showed that shards have a significant impact on the
system effectiveness [139] and this circumstance is present across different datasets,
highlighting the interactions between topics and shards [135,140].

Actor

While in most cases, actor-independence should be the ultimate goal, like it
can be made possible by EaaS platforms, it is not always possible to remove the
original actor’s influences entirely. As a way out, authors should feel responsible
for promoting their research after publication and help others reproduce it
[337]. Besides providing the corresponding author’s contact information in the
publication, it has now become good practice to include an ORCID [477] to avoid
any ambiguities. Likewise, Git (or any other version control software) can help
trace the author’s contributions to an experiment.

Likewise, several initiatives have started attempts to increase the awareness of
the reproducibility of younger researchers. Lucic et al. [261] successfully inte-
grated reproduction studies as part of a Master’s program. Based on speci-
fied learning outcomes, they let students reproduce state-of-the-art approaches from
major Artificial Intelligence (AI) conferences and made the reproduction reports part
of the earlier mentioned ReScience journal (cf. Subsection 2.6.3). TU Delft hosts a
dedicated online database for reproducibility studies [480] made by students [434].
Similarly, Potthast et al. [328] conducted a systematic reproduction study with
students. In other domains, reproducibility has also become part of teaching, for
instance, in computer networks [424], social sciences [184], or psychology [344].

In the same way, researchers should be sensitized to the different forms of
cognitive bias, which can occur for both the authors as well as reviewers [152,153,
235, 240]. In addition, the reviewing process could be made more diverse
by making it public and more transparent. The OpenReview platform [476]
makes the reviews public and allows to have insights about what has been criticized
and how it has been addressed even after the study is published.

Ultimately, reproducibility should be understood as a community project
(as it can require continuous auditing [254]) and should reduce the burden of indi-
vidual researchers [144]. The Anserini project exemplifies how this can be put into
practice. The corresponding developers maintain rerunnable notebooks for regres-
sion tests that different experimenters can continuously validate.
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Data

As the separation of code and data can cause one of the first reproducibility issues
[199], it is critical to make the data provenance as well as the processing steps as
transparent as possible. If feasible, open data should be used, and all of the data
resulting from the experiments should be made available for later requests by
others, or follow-up studies [96,196].

Especially for deep neural network-based approaches, the model’s checkpoints
(i.e., learned weights and parameters) should be made available in the aftermath of
an experiment. Not only to allow others to rerun the experiments but also to lower
computational costs by avoiding retraining the model. Ma et al. [263] could show
that it is feasible to reuse checkpoints and reproduce earlier outcomes. Similarly,
Wang et al. [418] analyzed the reproducibility and replicability of TCT-ColBERT
from a three-stage perspective, including the separate analyses of the training, in-
ference, and evaluation. They concluded that it is more challenging to exactly re-
produce the complete process, including the training, than building upon provided
experimental artifacts like pre-trained models. They had no success when replicating
the training with an independent reimplementation of the analyzed method. This
study highlights once more the importance of artifact sharing.

Bösch [56] addressed the problem of an updated index and the resulting changes
in the term statistics that could lead to irreproducible rankings, especially for prob-
abilistic ranking methods. Based on the method by Rauber et al. [340] for making
dynamic and changing data collections citable, Bösch proposed to assign persistent
identifiers and timestamps to queries and enhance them with hashed result sets.
When re-executing the query against the versioned database, the hashed result sets
can be checked for integrity. As the method by Rauber et al. [340] requires a column-
store database, Bösch reused the approach by Mühleisen et al. [301], translating the
BM25 retrieval method to an SQL query.

On the other hand, it has to be considered that rerunning the original source
code on the same dataset does not give any insights about how a method generalizes
with other data [115] and overused test collections [78] could lead to improvements
due to chance and not due to the method alone. As a compromise, it is good practice
to include more than one dataset in the experimental evaluations.

Documenting the data according to common standards is made possible by
datasheets [57,154]. Gebru et al. [154] addressed the lack of a documentation stan-
dard for datasets by compiling a catalog of guideline questions that should be
addressed by the curators when preparing the dataset for reproducibility. Besides
reproducibility, datasheets can also address issues related to ethical concerns, as
pointed out by Boyd [57].

There are different software tools and solutions that facilitate better data man-
agement. A non-extensive list includes the BEIR benchmarking toolkit [389] al-
lowing evaluations over different IR tasks and datasets, the datamaestro toolkit by
Piwowarski [325], or the data catalog and software package ir datasets [265]. Lin
et al. [251] proposed a common index format in order to make (Lucene-based)
indices compatible with a variety of different retrieval toolkits. This allows for bet-
ter and fairer comparisons of retrieval methods by benchmarking them based on a
shared and common preprocessing pipeline.
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2.7 Answers to the Research Questions

This section gives answers to the research question posed earlier. The existing body
of literature was reviewed for both questions, and the references were aligned to
the six components of the PRIMAD taxonomy. The following outlines how these
issues and solutions relate to the more general causes for irreproducibility mentioned
earlier in Section 2.5.

RQ1: What kinds of general reproducibility problems are there in
computer science and particularly in IR research? As a starting point to find
more general causes for irreproducibility, we grouped the answers given to Baker’s
questionnaire [474] into five different categories, including unethical actions (cf. Sub-
section 2.5.1), issues related to the scholarly communication (cf. Subsection 2.5.2),
statistical and experimental flaws (cf. Subsection 2.5.3), the unavailability of the
experimental setup (cf. Subsection 2.5.4), and the missing expertise (cf. Subsec-
tion 2.5.5). In order to provide an IR-specific review of the literature, we align known
issues and outcomes of reactive reproducibility studies to the PRIMAD taxonomy,
which covers the six components platform, research goal, implementation, method,
actor, and data that can affect the reproducibility of a computational experiment.

Generally, the reviewed body of IR-specific literature in this chapter has a focus
on problems and solutions related to statistical and experimental flaws, partly on
issues related to scholarly communication, and on the unavailability of the experi-
mental setup. The remaining two more general causes for irreproducibility (unethi-
cal actions and missing expertise) are mainly related to the actor component, which
introduces the human factor of the experimenter to the PRIMAD taxonomy.

From the available body of IR-specific literature, it is not possible to estimate
what kind of influence unethical actions like fraud [105], e.g., in the form of data
falsification, have on the overall reproducibility of the research field. However, we
note that the SIGIR community strictly discourages unethical and adheres to the
ACM Policy on Plagiarism, Misrepresentation, and Falsification [449] as it is also
underlined by Carterette’s blog post about plagiarism [483].

Likewise, it is not possible to have a more concrete idea to which extent the miss-
ing expertise of a reproducer influences reproducibility, as most of the failures due
to this cause presumably remain unpublished. However, the dedicated ECIR repro-
ducibility track also contains failed reproducibility studies with negative outcomes.
Furthermore, we also note that there is a current trend of making reproducibility
projects part of curricula in order to sensitize students to the topic of reproducibil-
ity [261,344,424,434].

One of the most striking issues of irreproducibility is the unavailability of the
experimental setup, as it may also reveal other issues related to scholarly communi-
cation when the reproducer is forced to reimplement the experiment on the basis of
what is described in a publication. The experimental setup usually covers the plat-
form, implementation, and data components in the PRIMAD taxonomy. Through
the literature review, we could identify the following platform-related issues that
can harm reproducibility:

• unavailability of the original hardware, kernel, and operating sys-
tem: for instance, an updated kernel or operating system in the reproduction
attempt can lead to failures, e.g., [254],
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• unavailability of external platforms and corresponding resources:
failures due to dependencies on external platforms/resources that are not avail-
able at the time of the reproduction attempt, e.g., [173,254],

• high computational requirements and costs: the reproducers cannot
meet the hardware requirements, e.g., [337],

• non-deterministic/random behavior of hardware components, e.g.,
[137,306].

The implementation describes how the method is translated into the source code,
which leads to the machine instructions for the computing device. The literature
review could identify the following issues:

• no public open-source code repository, e.g., [99],

• missing code documentation: even if the source code is available, it is not
documented enough to rerun the experiments or not adequately prepared for
rerunning the experiments, e.g., [99],

• ambiguities between implementations of the same methods: differ-
ent implementations of the same method can lead to differences between the
effectiveness scores, e.g., [213,234],

• overestimating the availability of source code: in the best case, the
source code allows rerunning experiments in the paper but does not pro-
vide any insights about the reproducibility in other contexts (cf. replicabil-
ity/generalizability), e.g., [101,115],

• missing / insufficient dependency management, e.g., [237].

The third PRIMAD component of the experimental setup is data, which often
covers the IR test collection but also training data, model parameters, and others.
We identified the following issues:

• separation between code and data, e.g, [199],

• private / closed datasets, e.g., [102,147],

• pay-walled datasets, e.g., [133],

• overused test collection, e.g., [78],

• data leakage, e.g., [216],

• training/test data splits, e.g., [47, 339],

• biased relevance judgments: relevance labels can be biased towards a spe-
cific type of retrieval system that was used as part of the pooling; likewise,
the distribution/proportion of positive and negative relevance labels has an
impact, e.g., [386,412,435],

• other data-related biases, e.g., [53, 233,308],
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• updated index statistics of dynamically changing data collections, e.g., [56].

The research goal, as well as the method, are conventionally disseminated in
publications. For both PRIMAD components, issues can occur related to the more
general issues of statistical and experimental flaws and shortcomings in scholarly
communication. For the research goal, we compiled the following list of issues:

• no research questions/hypothesis: the low entrance barrier of modern
ML frameworks allows us to start experimenting without clearly formulated
research questions or any hypothesis about the outcomes leading to post hoc
formulated “assumptions” about the results, e.g., [149,255],

• illusionary improvements over weak baseline: improvements over weak
baselines that diminish when compared to stronger state-of-the-art baselines as
shown by several systematic reproducibility benchmarks, e.g., [13,108,109,430],

• leaderboard chasing, e.g., [368],

• overall evaluation criterion does not give answers to the research
question, e.g., [231],

• missing statistical significance tests, e.g., [114],

• underpowered statistics and effect sizes, e.g., [114,149,229,401],

• outcomes with low statistical power, e.g., [229],

• no correction method applied: multiple comparisons problem, e.g., [150],

• evaluation measures should be intervalscaled when conducting signifi-
cance test, e.g, [129],

• change of context: some research goals do not hold in a different context,
e.g., in more real-world environments simulated by noise or due to temporal
changes of the context, e.g., [47, 148,369].

Besides the research goal and the corresponding evaluation, the evaluated method
itself can also be affected by several issues that cover methodological aspects but
also how the method is presented and communicated, including:

• poor readability and insufficient documentation, e.g., [337],

• unnecessary complexity, e.g., (“mathiness”) [255],

• deviations between methodological descriptions in the paper and the
corresponding implementations, e.g., [46],

• technical and methodological underspecifications: for instance, miss-
ing details about hyperparameter tuning or underspecifications of standard
retrieval components, e.g., [47, 143,350,370,437],

• deviations from the constraints of the original settings: changing
some (sub-)components of the method leads to non-reproducible (or non-
generalizable) outcomes [51,243,312,364],
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• score ties in the final ranking, e.g., [253].

Finally, the actor components can introduce additional obstacles to a successful
reproduction:

• compromises between concrete machine instructions and more ab-
stract means of the human language, e.g., [199],

• no support after publication, e.g., [99, 337],

• cognitive biases: “confirming” authors [152,235] vs. “prejudiced” reviewers,
e.g., [153,240].

The reproducibility taxonomy by Potthast et al. (cf. Section 2.4) categorizes
actions towards reproducibility into reactive, proactive, and supportive ones. Most
of the listed issues were revealed in reactive attempts to reproduce earlier works by
others. The second research question will be answered by reviewing how proactive
and supportive actions address most of the issues resulting from the answer to RQ1.

RQ2: To what extent have reproducibility problems been addressed
in IR research, and how are the countermeasures implemented? What
kinds of open points are there? As a follow-up to RQ1, we review the body of
IR-specific literature and, likewise, align the countermeasures, which can facilitate
reproducibility, to the PRIMAD components. In general, a large variety of tools
support researchers in making an experiment reproducible from the early beginning
of the conceptualization. On the other hand, several countermeasures can only
be realized at the methodological and organizational level and still require human
intellect, and technological solutions can solve only some reproducibility issues. Yet,
there exist some well-established software tools that mainly help to preserve the
platform for future reuse, including:

• virtualization or containerization, e.g., [93, 346],

• EaaS platforms: TIRA, EvaluatIR, RISE, e.g., [12, 329,426],

• resource management: hosting experimental artifacts and metadata like
DIRECT, e.g, [2,3,310], improved lifecycle management of research objects by
background logging software, e.g., [318].

The research goal of a study is conventionally reported in a publication. The
peer-review process can be seen as an additional validation by the reviewers (who
can also be seen as another instantiation of the actor component). In this sense,
many of the actions towards reproducibility still require human reasoning and can
be generally considered methodological and organizational:

• shared tasks (common task framework): collaborative efforts to work on
the same problem, e.g., [112,246,413],

• research standards and guidelines of good scientific and reproducible prac-
tice, e.g., [100,151,304,357,381],

• journal policies [382],



40 CHAPTER 2. RELATED WORK

• preregistration / results-blind reviewing, e.g., [309],

• systematic reproducibility analysis: benchmarks that follow the same
principled evaluation, e.g., [38, 99,108,109,249,254,337,421],

• badging system and artifact evaluations, e.g., [134],

• conference tracks, journals, community challenges, and student pro-
grams for reactive reproducibility studies, e.g., [9, 171,348],

• strong and tuned baselines, e.g., [13, 300,430],

• methodological and scientific rigor: for instance, formulating a hypothesis
before starting the experiment, e.g., [149,255].

As the implementation is mainly about how the method of an IR experiment is
translated into software code, it benefits from good software development practices.
Thus, many of the solutions that help to make the experiment more reproducible
are not innovative but rather address how good practices can be enforced in com-
putational research and include:

• integration of good software development practices in research projects,
e.g., [163]

• sharing open-source code: a positive trend is observable, and sharing
source code is correlated to the citation count, e.g., [50, 126]

• configuration files: making hyperparameters more explicit, e.g., [10, 423],

• logging, e.g, [87],

• version control software, e.g, [338],

• data management, e.g, [69,85],

• dependency management, e.g, [237],

• open-source releases, e.g, [50,126],

• test-driven developments, e.g, [121],

• code documentation, e.g, [337],

• retrieval toolkits: for standard retrieval operations, established toolkits
should be used, e.g., [275,314,383,428].

There exist some technical solutions for making a method more reproducible,
but not least, the validation of a method also requires statistical evaluations, for
which human interpretation and understanding are necessary (cf. [199]):

• executable papers, e.g., [32, 205,228],

• workflow description and logging, e.g., [291,292,299,305],

• model cards, e.g., [294],
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• identify sources of randomness and non-deterministic behavior and
report random seeds, e.g., [119,199],

• statistical evaluations and corresponding corrections, e.g., [114,149,401],

• improving performance measurement accuracy by replicates, e.g.,
[135,139,140,141,415].

Suppose the actor is not essential for the outcome of a computational experiment.
In that case, the actor’s influence can be seen as noise, and this influence should be
minimized, whereas actor-independence can be considered as the ultimate goal. On
the other hand, it is not always feasible to remove the actor’s influence, and every
author and researcher should feel obliged to provide support even after work on a
research subject is finished, resulting in the following solutions:

• actor-independence if feasible, e.g., [190],

• support after publication, e.g, [337],

• explicit contributions by ORCID or version control software, e.g., [338],

• reproducibility project as part of the curricula can help to sensitize
students and future researchers for the topic, e.g., [184,261,328,434],

• open and transparent peer reviews, e.g., [476],

• sensitize authors/reviewers for cognitive biases, e.g., [152,153,235,240],

• community involvement in order to relieve individual researchers and un-
derstand reproducibility as something that needs to be continuously main-
tained, e.g., [254].

Finally, there are some proactive ways to prepare the data for future reuse.
Generally, open data should be preferred. However, beyond using public data, also
the data provenance and other data sources besides the actual test collection play
an essential role:

• archive data, e.g., experimental artifacts [96,196],

• providing trained models, e.g., [263,418],

• logging the data provenance, e.g., [69],

• using more than one test collection, e.g., [149,210],

• no overuse of test collections, e.g., [78],

• datasheets, e.g., [154],

• data management software, e.g., [265,325,389],

• shared index, e.g., [251],

• data citation principles for dynamically changing data collections, e.g.,
[56, 340].
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Even though previous work has addressed reproducibility issues in many regards,
there are still some open points left, and some of them will be addressed as part
of this work. First, the analysis of the ECIR proceedings showed no agreement
on how it can be quantified to which extent a reproduction is successful. In many
experimental evaluations of reproduction studies, the authors consider reproduction
as successful if the original is outperformed with statistical significance or if there are
no statistical differences between the effectiveness scores. As a solution, Chapter 4
reviews reproducibility measures that can be used to quantify the degree to which
an IR experiment has been reproduced.

Meta-evaluations reveal the reproducibility of particular retrieval methods by
putting them into context with other approaches and systematically benchmark-
ing them. Metadata can facilitate these meta-evaluations. While several more
general solutions exist, like model cards or datasheets, there is no domain-specific
“datasheet” or metadata schema for IR research. This gap is addressed in Chapter 3,
which extends the PRIMAD taxonomy and shows how it can be used to annotate
experiments to make them more transparent and reproducible. Similarly, there is
no systematic way to conduct a reproducibility attempt under the consideration of
how it relates to the original experiments. In this regard, Chapter 5 exemplifies how
a reproducibility experiment can be classified in terms of the PRIMAD taxonomy
and evaluated depending on which components have changed.

To our knowledge, there are very few user-oriented reproducibility studies, and
most of the reactive reproducibility attempts focus on system-oriented aspects. We
emphasize that the influence of the user is underrepresented when analyzing the re-
producibility, and we propose to include user interactions as part of the evaluations,
either by simulations or online experiments as outlined in Chapters 6, 7, and 8.

2.8 Conclusion

Through the literature review in this chapter, we provide an overview of the state of
the art of reproducible IR research. Building upon the Cranfield paradigm, exper-
imentation in IR has always been concerned with reproducibility. However, it had
a more implicit nature for many years and recently got more attention. According
to the Cranfield paradigm, the internal validity of a retrieval method is evaluated
over different queries. Shared task conferences like TREC, CLEF, NTCIR, or FIRE
made it possible to evaluate the external validity of a retrieval method over multiple
reusable test collections with different contents, document types, or tasks. However,
the IR community acknowledged the increasing reproducibility concerns in science
and has developed several countermeasures in the last years.

In general, there is inconsistent use of the terminology around reproducibility
and related concepts. In this chapter, we have included the ACM, NeurIPS, and
Claerbout terminologies that partly overlap in their definitions. Throughout the rest
of this work, we follow the ACM terminology when writing about reproducibility
in more general terms, as it is the most commonly adopted terminology by the IR
community. However, we note that PRIMAD answers the inconsistent and imprecise
use of the terminology. Expressing the reproducibility in terms of PRIMAD gives
a more precise description of what kinds of components with regard to the original
experiments have been changed.
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Furthermore, we addressed two research questions. In this context, we have
adopted Potthast et al.’s taxonomy that distinguishes between reactive, proactive,
and supportive actions towards reproducibility. By giving answers to RQ1, we re-
viewed reactive IR reproducibility studies and identified what kinds of issues and
obstacles towards reproducibility can occur. Reactive reproducibility studies have
been inaugurated as part of dedicated paper tracks by ECIR and, more recently,
also by SIGIR. As our review of the ECIR reproducibility track shows, authors con-
sider their reproductions to be (un)successful based on different criteria but also
different levels of rigor. The comparisons to the original methods are often done by
comparing average scores and determining p-values of paired t-tests. In this con-
text, the significance testing is conducted to verify that the reimplemented systems
outperform the original baseline method and thus confirm reproducibility.

All reproducibility issues can be aligned to PRIMAD, which confirms that the
taxonomy is comprehensive enough to consider all essential components for the
reproducibility of a system-oriented IR experiment. However, we note that even
though there is a user-oriented interpretation of PRIMAD in the original reports, it
does not contain an explicit user component, and instead, the user is subsumed by
its data trace as part of the data component. Similarly, there are few user-oriented
reproducibility studies. In general, user-related aspects are underrepresented in
the evaluations. Even though some studies include additional evaluations like user
judgments [49,271] or simulating noisy user click behavior [312,417], there is, to the
best of our knowledge, only one very recent study by Roy et al. [351] that made the
original user study the central objective of the reproducibility attempts.

The second research question adds up to the first one by giving answers to which
extent and how the reproducibility issues have been addressed so far. Generally,
different software tools exist that help the researcher conceptualize and implement
reproducible computational experiments. Some tools partially relieve the experi-
menters from the documentation by automatically logging information about the
experiment. However, several aspects can only be addressed at the methodological
and organizational level and still require human reasoning and retrospection. In the
IR community, there is an increasing interest in reproducibility, as can be seen from
the steadily increasing amount of reproducibility studies in the ECIR proceedings.
Likewise, the trend of integrating reproducibility projects into the curricula leads to
more awareness of the topic of next-generation researchers.

Besides what has already been addressed, the answers to RQ2 also highlighted
how this dissertation project addresses some of the open points. First, we will outline
how reproducibility can be systematically analyzed and quantified in Chapters 3, 4,
and 5. Second, we give ideas and directions towards reproducible experimentation,
which also involves user-oriented aspects in Chapters 6, 7, and 8.





Chapter 3

PRIMAD-U

This chapter introduces PRIMAD-U as an extended version of the PRIMAD tax-
onomy [132, 146]. From the results of the literature review, we conclude that re-
producibility research has mainly dealt with system-oriented IR experiments, and a
shift towards more user-oriented evaluations is needed. With a special focus on the
PRIMAD taxonomy, we conclude that the taxonomy is well-grounded and considers
the key components that might affect the reproducibility of experimental outcomes.
However, it is still a rather theoretical concept leaving the particular components
underspecified without any practical application yet.

Given the outcomes of our literature review, we extend the taxonomy based on
the answers to the research questions RQ1 and RQ2 and motivate these by the issues
related to reproducibility and the corresponding solutions from the previous chapter.
Besides extending the six conventional PRIMAD components with subcomponents
and related concepts, we introduce an additional user component in this chapter.
According to the original report of PRIMAD, there are separate definitions for the
system- and user-oriented experiments, underlining its applicability to user-focused
experiments. However, we favor a more holistic view of the IR experiment, which is
illustrated in Figure 3.1.

Ac
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Implementation Platform

User

Method Data

Research goal

Figure 3.1: Conceptual view on the IR experiment based on PRIMAD-U.
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In this figure, we see all the PRIMAD-U components put into context. At oppos-
ing ends are the actor, the experimenter who controls and designs the experiment,
and the user, the recipient of the system outputs or rankings. The actor designs
the experimental setup and hereby defines the research goal, which is often ex-
pressed by a research question that addresses the retrieval effectiveness in terms of
a measure or the user behavior (dependent variable) in response to the system out-
puts based on the retrieval method (independent variable). The actor has complete
control over the method and the retrieval system that comprises the implementa-
tion and the underlying platform. The data is a task-specific document collection,
which is ingested by the retrieval system. Some research goals or questions can be
data-specific, and generally, it can be seen as a control variable that remains static
during experimentation.

In system-oriented IR experiments, the retrieval method (or system) is the eval-
uation focus and is considered the only source of variation. Its effectiveness is de-
termined by several retrieval measures specific to the task or research goal. These
evaluations and, likewise, the measures imply an abstract and static representation
of the user. There are some measures that imply certain aspects of user behavior,
like the effort of browsing through a ranking list. However, these evaluations remain
limited to the interaction with a single result list for a pre-defined “static” query.

Contrary to the system-oriented approach, user-oriented experiments are the
focus of Interactive Information Retrieval (IIR) experiments. In small-scale studies,
the actor has more control and knowledge about the user, but these experiments
are costly and generally considered irreproducible. Besides the different forms of
how interactive retrieval experiments can be realized, for instance, as large-scale
A/B experiments, user simulations are a viable solution to account for a more user-
oriented evaluation in a cost-efficient way.

To this end, the user component and related concepts are motivated by earlier
studies from these fields, including the implicit user model of retrieval measures,
findings from small-scale IIR experiments but also other forms of user-oriented ex-
periments (like large-scale A/B experiments), and user simulations. In sum, the
contributions of this chapter include:

C2 Extension of the PRIMAD taxonomy: We extend the PRIMAD com-
ponents based on the results of the literature review of the previous chapter.
Instead of using two separate definitions for the system- and user-oriented ex-
periment, we add an additional user component to the taxonomy in order to
provide a more holistic view of the general IR experiment.

C3 Metadata annotation schema: Based on the extended components of the
conventional six-dimensional PRIMAD taxonomy, we derive a metadata an-
notation schema for TREC run files, which was contributed to SIGIR [63].

The remainder is structured as follows. First, we introduce the PRIMAD-U tax-
onomy by describing the taxonomy trees for each of the components in Section 3.1.
Afterward, we motivate and describe the metadata schema in Section 3.2.
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Figure 3.2: Extended platform taxonomy: the gray concepts were also (implic-
itly) mentioned by Ferro et al. [132], while the others were added by us.

3.1 Taxonomy

This section presents the PRIMAD-U taxonomy and the extended concepts for each
component. At first, the taxonomies of the original PRIMAD components are in-
troduced. Most of the extended concepts are inspired by the common pitfalls and
solutions for reproducibility of the previous chapter. In addition, we extend the
taxonomy by a user component. In this case, we include an additional literature
review that spans findings from interactive studies and user simulation experiments
to complement the user with related concepts.

3.1.1 Platform

Figure 3.2 illustrates the three subcomponents of the platform, including the hard-
ware, the operating system, and the underlying software of the computational ex-
periment. As it was outlined in Subsections 2.6.2 and 2.6.3, it can be critical if
the underlying hardware of the original experiment is not available when rerunning
the experiment. It is one of the most obvious solutions to make the physical com-
putation device available for reuse purposes and to run experiments on the same
machine. However, this is often impractical due to logistical inefficiencies [199].

Since the hardware is the least practical to share for future reuse and to have
an idea about the requirements for rerunning the experiment, the hardware compo-
nents should be documented as detailed as possible, for instance, by documenting
the central processing unit (CPU) by its name, the architecture, the number of cores,
the operation mode, and others. Of course, these can be limited to a single machine
but could also cover multiple physical machines in the case of distributed comput-
ing. However, essential hardware components in IR experiments are the CPU, the
graphics processing unit (GPU) (for modern DL methods), the (size of the) random-
access memory (RAM), and the storage size (i.e., required disk space), which mainly
depends on the data components (cf. Subsection 3.1.6). With special regard to ex-
ternal platforms, the networking type and bandwidth can be critical. Especially in
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user experiments, latencies caused by the delay of the system response can affect
the outcomes of an experiment.

An updated operating system can affect the reproducibility [254], and to this end,
the distribution and the kernel (version) must be considered. Research questions
often do not deal with details of the hardware or the underlying infrastructure,
and one of the primary goals should be the independency of the platform, which
is the purpose of EaaS infrastructures that were introduced in Subsection 2.6.3.
One of the prime examples of an EaaS infrastructure is TIRA [329], facilitating the
submission of retrieval experiments in virtual machines. Thus, the EaaS solution
makes it possible to provide the operating system, including its subcomponents —
the distribution and the kernel — in a reproducible way.

With special regard to the software, the implementation’s underlying dependen-
cies should be considered, including software libraries and packages, which should
be made explicit by their version numbers. We distinguish between the software
subcomponent and the actual implementation (cf. Subsection 3.1.3) since the plat-
form describes all layers below the implementation, including the software libraries
upon which it builds. If domain-specific software libraries are used, they should be
explicitly identified as retrieval toolkits. On the one hand, the software subcompo-
nent could also be packaged within a virtual machine. On the other hand, a more
lightweight alternative is made possible by containerization, as exemplified in the
OSIRRC workshop [93].

3.1.2 Research Goal

The overall research goal (cf. Figure 3.3) of an IR experiment is usually commu-
nicated by the publication. Depending on the study’s objective, the description of
the research goal can be quite complex. Expressing it by a taxonomy may not be
comprehensive enough as it may fail to put individual aspects into context. For this
reason, the research goal should include a pointer to the publication. Thus, the tax-
onomy comprises several subcomponents related to metadata information about the
publication, such as the name and the year of the study’s publication venue, the
digital object identifier (DOI), the arXiv -ID, or any other unambiguous identifier
that should be reported. If feasible, the abstract, full text, and references could be
added as well, e.g., by the corresponding LATEX code.

Nonetheless, some conventional information about the experimental design can
be reported, such as the task, which is not limited to ad-hoc retrieval experiments
but also includes other objectives such as question answering, multimedia, or cross-
language retrieval, to name a few examples. An overview of what kinds of tasks have
been conducted at CLEF is provided by Ferro and Peters [138]. Likewise, the study
is sometimes accompanied by one or more explicit research questions to which the
experiments provide answers. In this regard, the underlying null hypothesis, as well
as the (in-)dependent and possible confounding variables, have to be made explicit.

Finally, the evaluation of the experiments provides the basis for answering the re-
search questions. In IR experiments, the independent variables are often the chosen
measures. Usually, the research questions define what kinds of measures are reason-
able. However, over the years, the IR community has developed several evaluation
measures [355], and there is a plethora of measures available, which sometimes leads
to unreasonable use for the particular research question [445].
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Figure 3.3: Extended research goal taxonomy: the gray concepts were also
(implicitly) mentioned by Ferro et al. [132], while the others were added by us.

In a typical IR experiment, the retrieval method is compared to a baseline method
that should be outperformed. In such a case, the null hypothesis assumes no sig-
nificant difference exists between the retrieval effectiveness of the two compared
methods. In order to reject the null hypotheses, a statistical significance test has to
be conducted. Depending on the evaluation scenario, different types of tests and re-
lated to this different test statistics have to be considered, whereby the paired t-test
is the most popular if the same test collection compares two methods [402]. In this
context, we refer the reader to Ferrante et al. [129], who emphasize that measures
should be interval-scaled for meaningful significance tests.

In order to make the statistical significance testing more transparent, the result-
ing p-values, as well as the significance level, should be documented. Furthermore,
particular attention should be paid to the multiple comparisons problem. For in-
stance, if multiple “versions” resulting from different parameterizations of the re-
trieval method are compared to the baseline. In such a case, a correction method
has to be applied to rectify the alpha level. Likewise, including effect sizes and
confidence intervals allows better conclusions about the research goal.
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Figure 3.4: Extended implementation taxonomy: the gray concepts were also
(implicitly) mentioned by Ferro et al. [132], while the others were added by us.

3.1.3 Implementation

The source code is a different means to communicate the experiments (cf. Fig-
ure 3.4). The actor implementing them should write clean and understandable code
and annotate it with meaningful comments where necessary. Besides the actual
source code, build files and an elaborated project structure can make the software
project more assessable for others. Likewise, metadata information about the pro-
gramming language can help to know what kind of proficiency is required to rerun
the experiments. In general, reproducibility can be supported to a great extent if
the actor follows good software development practices (cf. Subsection 2.6.3).

As already pointed out, Git, or version control software in general, helps make
the development process more transparent [338]. In order to support reproducibility,
it should be documented where the source code repository can be found, i.e., the
location is favorably an open-access repository hosted on the web (example services
include GitLab [471], GitHub [460], or Bitbucket [452]). In some cases, it may not be
enough to have a pointer to the source code location if the software implementations
are still under active development. As some of the critical implementations may
change over time, the software versioning should be documented if there are release
candidates or official releases. Otherwise, the commit hash can serve as a substitute.

However, an open-source implementation is not a hard requirement for repro-
ducibility as results could also be reproduced with closed-source software that is
available to the reproducers as a pre-compiled binary file. Furthermore, even if the
code is hosted in a public repository, it does not mean that the experimental re-
sults are reproducible per se. A well-documented reproducibility protocol should
also feature instructions on running the code. Besides setup instructions, it should
be documented how the software has to be executed, for instance, by reporting the
command line string that contains the parameters and arguments.



CHAPTER 3. PRIMAD-U 51

Method

Indexing

Preprocessing

Tokenization

Stopword
removal

Stemming,
lemmatization

Others

Index structure

Inverted index

Others

Text compression

Statistical

Dictionary

Query

Automatic

Topic-based

Others

Manual

Expansion

(Pseudo)
relevance
feedback

Local / global
analysis

Query parsing
& processing

Retrieval

Automatic / manual

Model

Set-based

Algebraic

Probabilistic

Learning to rank

Language models

Ranking stage

Initial ranking

Reranking

Ensemble

Interpolation

Tie breaking

Figure 3.5: Extended method taxonomy: the gray concepts were also (implic-
itly) mentioned by Ferro et al. [132], while the others were added by us.

3.1.4 Method

The method describes the mapping of query-document pairs to a retrieval score,
which is commonly made possible by a retrieval model. In the broader sense, the
method does comprise not only the actual model but also the indexing and the query
processing, all of which are included as subcomponents of the method in Figure 3.5.

The preprocessing pipeline as part of the indexing is usually composed of several
standardized and established processing steps, including the tokenization, stemming
or lemmatization, the removal of stopwords, and others, for which different algo-
rithms or methodologies exist, but which are the primary focus of modern IR re-
search. Nonetheless, it was shown by Ferro and Silvello [143] that it is not insignif-
icant which methodology is used for the particular operations since they lead to
different, sometimes significant, differences in retrieval effectiveness. Roy et al. [350]
also analyzed the influence of markup artifacts on reproducibility. For this reason,
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it is recommended to make them explicit and to use established retrieval toolkits
and software libraries, as they facilitate reproducibility and comparability [250].

Besides the preprocessing of the index terms, different index structures exist,
like those based on inverted files [446] or suffix arrays [22]. Related to the index
structure, different techniques for compressing the index and texts can be classified
into statistical and dictionary-based methodologies. We note that few reproducibil-
ity studies analyze index structures or related aspects [270]. However, proactive
solutions exist to make the index files reusable [251].

The query is the user’s conception and representation of the underlying informa-
tion need and serves as the input to the method. In system-oriented experiments
with test collections [355], it is often automatically extracted from the text of the
topic file and thus represented as a keyword-based string. However, there are also
more natural queries, for instance, as part of question-answering tasks [410]. Be-
sides automatic runs, TREC also evaluates results from human queries, which are
considered as manual runs [413]. Even though such an experiment can be repeated
if the human-formulated queries are logged and provided for future reuse. However,
it may not be easy to reproduce such an experiment with a different group of users
as they might formulate other queries for the same topics.

Query expansions can result from a user’s reformulation of an earlier query after
having seen the first ranking or from query suggestions. The relevance feedback
that is required can generally be classified into explicit [352] and implicit [15, 335]
types. For instance, explicit relevance feedback [352] can be based on user judg-
ments and implicit feedback can be based on interactive feedback data like clicks.
Automatic retrieval methods model relevance feedback by local analysis [15] based
on the contents of earlier retrieved documents, whereas global analysis [335] makes
use of external resources like thesauri that are used for the query refinement. Sim-
ilar to the preprocessing of indexed documents, the user’s query should undergo a
parsing with the same operations to derive a system’s representation of the query
that can be used for matches against index terms.

The actual retrieval is based on a model. Following the taxonomy by Baeza-
Yates and Ribeiro-Neto [22], retrieval models can be classified into set-based, e.g.,
Boolean models, algebraic, e.g., the vector-space model [208, 354], or probabilistic,
e.g., the BM25 model [345]. More modern, learning to rank approaches are either
based on conventional ML methods [258] or neural networks [295]. More recently,
Transformer-based approaches led to significant leaps in retrieval performance [252].

Since these effectiveness gains in the retrieval performance come at the cost
of computational efficiency, multi-stage pipelines are composed of several low-cost
lexical-based methods like the probabilistic BM25 model from which the initial result
lists are reranked by more costly rerankers based on dense vector representations of
the queries and documents. Consequently, multiple retrieval methods can be com-
bined, but their stage in reranking pipelines should be made explicit, for instance,
as rerankings, interpolations, or ensembles. Lastly, it is critical to break score ties
once the rankings are retrieved to support better reproducibility. Lin and Yang [253]
recommend breaking them with the help of external collections.



CHAPTER 3. PRIMAD-U 53

Actor

Personal

Name

ORCID

Facility

Research group

Correspondence

Expertise

Research fields

Academic degree

Bibliometrics,
research impact

Role

Original researcher

Reproducer

Co-author

Reviewer

Figure 3.6: Extended actor taxonomy: the gray concepts were also (implicitly)
mentioned by Ferro et al. [132], while the others were added by us.

3.1.5 Actor

The actor’s attributes (cf. Figure 3.6) can be divided into personal information, the
level of expertise, and the role in the experiment. First, the personal information
should refer to the actors by their names. In addition, the Open Researcher &
Contributor ID (ORCID) [168] should be used in publications as a unique identifier
that avoids name ambiguities. Likewise, the research facility, e.g., the university,
research department, or corporation, adds additional information about the actor’s
context. Very often, the corresponding research group has a name and an acronym
used for tagging the TREC run files, for example.

Even though the actor’s influence on the experiment should be minimized and,
at best, eliminated [190], the original actor’s support during a reproduction attempt
by others is still a deciding key factor, as shown by Raff [337]. For this reason,
the actor’s correspondence should be given an e-mail address or other social media
contacts, for example.

When evaluating the reproducibility of an earlier experiment, the reproducer’s
expertise must meet the required domain knowledge. While the publications should
be written in a formal and understandable way and can be targeted at a general sci-
entific audience, it cannot be expected that every reader will be able to reimplement
the entire experiment. Specific reproductions require a certain level of expertise or
familiarity with the technology, and it could help during a reproducibility study to
know about the original actor’s research fields.

Even though it is not often made explicit, certain reproducibility efforts make
implicit assumptions about who should be able to reproduce the experiment as
exemplified by larger-scale reproducibility attempts in student projects [261,328] or
as part of the SIGIR Artifact Badging where the junior and senior members evaluate
the software and methodology, respectively. Even though bibliometric indicators are
only a weak proxy for the level of expertise in a research field, they can be used in
combination with other attributes to estimate the actor’s expertise better.
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Figure 3.7: Extended data taxonomy: the gray concepts were also (implicitly)
mentioned by Ferro et al. [132], while the others were added by us.

Lastly, the actor’s roles in an experiment can be distinguished into the original
researcher and the reproducer. However, the actor’s scope is not limited to the
original researcher who runs the software. Often the research design and the software
implementations are a collaborative product, and they involve the work of multiple
experimenters, and the co-authors should be considered as a special type of actor.
Similarly, a different actor A′ can also be a future “version” of the original researcher
who tries to rerun an earlier experimental setup. During the review process, the
scientific work undergoes an additional validation by the reviewer, who can also be
seen as a subtype of an actor.

3.1.6 Data

We distinguish the data subcomponents of Figure 3.7 into pre-retrieval, intermedi-
ary, and post-retrieval data. It should be considered that the data comprises not
only the test collection in a retrieval experiment but also intermediary data outputs
such as index files, the data artifacts, and experimental results after the experiment
has been conducted.

Nonetheless, one of the most constituting data components is the IR test collec-
tion, which usually consists of a document collection, a set of topics, which express
information needs usually by title, description, and narrative fields, and the
corresponding editorial relevance judgments (qrels) made by domain experts.
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Sometimes, the document collection — hosted separately from the topics and
relevance judgments — may be hidden behind a paywall. For instance, the test
collection of the TREC Common Core 2017 track [4] used the The New York Times
Annotated Corpus made available by the Linguistic Data Consortium [486] after the
payment of a license fee. In such a case, it should be explicitly documented where
the single resources of the test collection can be found.

As mentioned in Subsection 2.6.3, ir datasets [265] is a comprehensive data
catalog that unifies the resources of IR test collections in a standardized way. It
is an excellent resource to make sure that researchers build up their experimental
pipelines on standardized data inputs. Each collection is associated with a unique
identifier that could be used to document which collection is used in the experiments.

Besides the test collection, other external data resources can serve as additional
input for an experiment. These include but are not limited to external training data
resources, stopword lists, thesauri, or word embeddings.

Intermediary data outputs are those that emerge during the conduction of an
experiment. Here, we distinguish between those data outputs by the system and
those resulting from users. On the system side, there are the index files, but also
parameter weights of the learned and adapted retrieval model, for instance, in the
form of model checkpoints resulting from the training of DL methods for downstream
ranking tasks. On the other hand, data outputs also emerge from the user’s side as
interaction logs or interview protocols.

The post-retrieval data includes the rankings in the run files, which are con-
ventionally written to the disk as text files following the TREC format, which is
composed of six columns (cf. Subsection 4.2.1). Even though they are not specific
to IR research, post-retrieval data also includes results from experimental evalua-
tions such as figures and tables for which the corresponding scripts or instructions
should be provided as well [32].

3.1.7 User

By its original definitions, PRIMAD considers users to be part of the data compo-
nent, represented by their data trace resulting from the interactions with the search
system. The general motivation behind introducing an additional user component
to the PRIMAD taxonomy is based on our critique that the user’s influence is not
sufficiently represented as a subcomponent of the data but requires a more explicit
representation. Only by shifting the focus of the experimental evaluations towards
more user-oriented aspects is it possible to assess the real-world impact and draw
conclusions about the external validity of the system-oriented experiment.

The ultimate goal should be to answer whether the system-oriented effects and
observations can be reproduced in user-oriented experiments, i.e., real-world environ-
ments. On the one hand, user-oriented IIR experiments allow us to answer research
questions with real human subjects. In this case, compromises have to be found
between small-scale user studies that give the experimenters more control over the
human subjects and large-scale experiments in the form of A/B experiments with
larger subject groups and a more substantial basis for statistical analysis [218,232].
However, small-scale studies are generally considered to be not reproducible [386],
and large-scale experiments can only be conducted at the cost of the control over
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the users’ context. Most strikingly, both types of user-oriented experiments can be
costly to conduct and implement.

As a compromise, user simulations are generally considered a cost-efficient way
to answer what-if questions when it is not feasible to conduct a user study. Of
course, the generalizability of the conclusions drawn from simulated experiments
strongly depends on the fidelity of the simulated user model. However, simulation
experiments are generally considered reproducible as there is a more explicit under-
standing of user behavior. Thus, we see simulations as a way to analyze the external
validity of an IR experiment, as it will be picked up in the later chapters.

To this end, we aim to provide an overview of what kinds of user attributes or
aspects could be considered variables in user simulations that complement system-
oriented IR experiments. The corresponding taxonomy tree of the user in Figure 3.8
is motivated by the cognitive models of information seeking and findings from user-
oriented IIR experiments. In the following, we review how these concepts and studies
contribute to the taxonomy tree, which comprises three subcomponents: the context
of the user, the interface, and the interactions. Afterward, we outline how the
taxonomy could complement user simulations in system-oriented IR experiments.

Cognitive Models of the Information Seeking Process

In system-oriented IR experiments, the information need usually has a well-defined
scope as it is described in the topic files of a test collection. However, the general
assumption in the information sciences is that the users themselves cannot always
formulate or specify their information needs [97]. Taylor’s four-layer model [388] con-
siders the actual information need as visceral and inexpressible. Similarly, Belkin [37]
pointed out that the information need is intangible and considered the users to be
in an Anomalous State of Knowledge when beginning an information-seeking task.

In order to satisfy the information need and to dispose of the Anomalous State of
Knowledge, the user is part of an information search process, which several cognitive
models describe. In general, there exist more comprehensive cognitive models that
try to describe the information search process as a whole by embedding the search
activities into a larger context [120, 197, 236], and other more specific cognitive
models mainly focusing on the interactions with the information system and objects
during the search process [35,72,422].

All cognitive models treat the understanding and conception of the information
need and the derived work and search tasks as dynamic as they evolve and may
change during the user’s search progress. For instance, Bates’s model [35] uses the
analogy to berrypicking, where the user selects fitting information objects and uses
the extracted information, e.g., keywords, for the following queries. Depending on
what has been found, the user’s understanding of the information need is redefined,
and the search progresses towards fulfilling the overall task.

Based on the analysis of the information-seeking behavior of social scientists,
Ellis [120] proposed a behavioral model covering six stages, including 1) starting to
search for information, 2) chaining by following chains of citations, 3) browsing as a
form of semi-directed search, 4) differentiating the examined sources, 5) monitoring
as an ongoing process to stay informed about state-of-the-art findings in a particular
research field, and finally 6) extracting material of interest in a particular source.
Wilson [422] embedded Ellis’ model [120] into a more general model for information-
seeking behavior. More specifically, it adds the user’s context and related barriers.



CHAPTER 3. PRIMAD-U 57

User

Context

Information need
[37,388]

Work / search task
[72,378]

State of knowledge
[197,236]

Search stage
[120]

Search strategy
[279]

Environment &
social network
[197,422]

Recruitment
[186]

Interface

Device [407]

Display size
[110,443]

SERP [219]

Snippet
[400]

Layout
[351]

Navigation [230]

Mouse movement
[374]

Touch gestures
[227]

Eye gaze patterns
[158]

Interaction

Query

Formulation
[23]

Modality
[269]

Relevance feedback

Explicit

Relevance labels
[95]

Others
[218]

Implicit

Clicks
[365]

Dwell times
[373]

Others
[186,227]

Figure 3.8: User taxonomy: an extension to PRIMAD [132].

Before the users can engage in the information-seeking process outlined by Ellis, they
must overcome certain barriers that depend on the user’s context, which comprises
the role within a (work) environment.

Similarly, Kuhlthau’s Information Search Process Model [236] includes different
stages of thoughts and feelings that evolve during searching and result in different
forms of how the user interacts with the systems and the provided information. In
this regard, Marchionini [279] proposed a taxonomy of different search activities,
which defines the user’s interaction with the search results depending on the inter-
face features and the chosen search strategy. Ingwersen’s cognitive model provides
a holistic view of the users and their interactions with the search system by consid-
ering the search interface and the social context [197]. Byström and Järvelin [72]
highlighted that information seeking is influenced by task complexity and related
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problems. They categorized task complexity into five levels and distinguished dif-
ferent information types based on empirical evidence.

In sum, all of these cognitive models consider that the user’s context, including
the understanding of the information need and the corresponding work or search
tasks, as well as the acquired knowledge regarding the informational gap, throughout
the search process, changes and leads to different kinds of interactions with the
system and the provided information. Opposed to the system-oriented experiments
where the information need is rather static, and only a single query is used, it should
be pointed out that the real user’s search behavior is an iterative and multi-staged
process. It comprises multiple query formulations and interactions in response to
the provided information objects that, in turn, strongly depend on how the results
are presented by the interface and the individual user’s preferences.

Finally, it should be considered that in many IIR experiments, the users are
recruited [186], which superimposes an artificial context on the subjects. Once users
know the experimental context, it may influence their behavior and, thus, the overall
outcomes (cf. Hawthorne effect [268]). Furthermore, since there is no intrinsic
motivation when simulating work tasks in small-scale user studies, participation
rewards can also influence data quality.

In conclusion, the user’s context is motivated by cognitive models that describe
the search process. We note that specifying or assessing the context and related
concepts in a user-oriented experiment is not always feasible. As such, these con-
textually “hidden variables” should be carefully considered as they can affect the
reproducibility as confounders [232].

User-oriented IIR Experiments

In system-oriented IR benchmarks like those of TREC, the retrieval system is the
target of the evaluations and very often the only variable of the experimental eval-
uations. At the same time, other components like the data collection and relevance
judgments are kept fixed [23]. In this sense, Zobel [445] considered the numeric
scores of system-oriented evaluations as proxies, which at best approximate the
qualitative objective, and Zobel highlights that there is a gap between the measured
effectiveness gains and the real-world impact on the user effectiveness. He pointed
out that there is no guarantee that improving the system’s effectiveness translates
into benefits for the user experience. As a solution, IIR experiments involving users
can complement system-oriented evaluations [218].

In this regard, several user studies compared system-oriented evaluations to out-
comes of user studies [179,180,181,396], i.e., in the studies it was analyzed how the
user effectiveness (dependent variable) behaves in response to systematic changes
of the system effectiveness (independent variable). For instance, Turpin and Hersh
showed that statistically significant improvements over a baseline system in terms of
Average Precision (AP) do not translate into comparable significant improvements of
user effectiveness. Their experiments suggest that users can compensate for inferior
results by browsing the ranking list, and they further assume that the improvements
over the baseline system also depend on the exact query formulation as provided by
the topic file of a test collection, which the users might not choose [396].

Another study by Turpin and Scholer [399] showed that the relationship between
user effectiveness in web search tasks and system-oriented outcomes is limited. In
a precision-oriented experiment, they compared users’ time frames to find the first
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relevant document in a ranking. The results did not indicate a significant rela-
tionship with the underlying system-oriented performance in terms of AP. Their
recall-oriented experiments, where users were asked to gather as many relevant doc-
uments as possible within a set time frame, resulted in a weak relationship between
the user and system performance. Similarly, Smith et al. [372] observed that users
adapt their search behavior when they use a less effective search system, leading to
overall similar search results as if a more effective system would have been used.

Besides these rather small-scale user studies, there are different implementations
of how users can be involved in experimental evaluations. We refer the reader to
Kelly’s continuum [218] that spans different types of IR studies ranging from TREC-
style studies with a strong system focus towards strongly human-focused studies.

Overall, it is still an open research question how the measured improvements over
a baseline of system-oriented evaluations translate into benefits for user effectiveness.
However, it has to be pointed out that the system effectiveness, and the underlying
retrieval method, are not the only variables that possibly affect the outcomes of a
user study. The previously introduced contextual aspects of the user also have to be
considered as influencing factors, and cognitive and interaction-focused models help
to define relevance from an individual user’s perspective.

Another influential component in a user-oriented experiment is the search inter-
face. Even though it cannot be considered a user property, it is an experimental
component tailored for human interaction and reception, which is often only im-
plicitly considered or fully neglected in system-oriented experiments. It basically
constitutes what kinds of user interactions are possible. For example, web search
results are presented to the user as a SERP, in which the snippet texts preview
the document’s content and strongly influence which search results users draw their
attention to and subsequently consider relevant. Turpin et al. [400] let users make
relevance judgments based on summaries of documents similar to snippet texts and
used the newly generated relevance labels for system benchmarks. Their experiments
revealed differences between the system evaluations based on judgments made either
with the full text or the summary. While click decisions have to be seen in the con-
text of their ranking position in the SERP, relevance annotators make judgments
for every document in the pool, which means that it is not part of the annotation
process to select the particular document from a SERP. Furthermore, clicks are of-
ten based on the attractiveness of the snippets, while annotators decide about the
relevance after having screened the entire document. Likewise, the search device and
the corresponding screen size impact how many results can be displayed per page.
We note that this selection process in web search tasks is very different compared
to the process of making editorial relevance judgments, where the domain experts
decide about the relevance after having screened entire documents presented one by
one and often in random order.

Our taxonomy distinguishes between explicit and implicit forms of relevance
feedback. The editorial relevance judgments of test collections are an explicit and
objective type of relevance feedback. However, explicit feedback can also be col-
lected from IIR experiments in different forms like “think aloud” protocols, user
interviews, or questionnaires. Recently, Gäde et al. [151] introduced a manifesto on
how resources of interactive user studies can be prepared for future reuse, and they
additionally propose the User Study Exchange Format, which is a specification of
the corresponding data format.
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User Simulations

The most prominent user model in system-oriented evaluations implies that the user
formulates a single query for a given information need, scans the entire result list
until a fixed rank, and judges the relevance of each item independent of any context
knowledge, e.g., from previously seen results [31, 284]. However, depending on the
IR measure, additional assumptions about the underlying user model are made
as part of the evaluations. For instance, Normalized Discounted Cumulative Gain
(nDCG) [202] discounts later items in the ranking by log-harmonic weights and, thus,
simulates the user’s persistence. Similarly, the Rank-Biased Precision (RBP) [298]
also allows defining the user’s persistence. In comparison, RBP’s discount follows
a geometric sequence and is a recall-independent measure. nDCG’s normalization
requires knowledge about the recall, which is a failing in modeling user satisfaction
as the recall is unknown to real users according to Moffat et al. [298]. In this regard,
RBP only measures the quality of search results as perceived by the user and does
not require knowledge about all relevant documents, i.e., the recall.

Carterette introduced a coherent framework for model-based measures [77]. Ac-
cording to this framework, measures are composed of three underlying conceptual
models: a browsing model, a model for document utility, and a utility accumulation
model. Similarly, Moffat et al. [296] introduced the C/W/L framework to describe
a family of parameterizable evaluation measures that account for the user browsing
behavior by formalizing the conditional continuation probability of examining items
in the ranking list. Both of these frameworks are able to describe conventional mea-
sures like nDCG, AP, or RBP but also allow for the analysis of derived variants.
While these model-based measures allow for a principled system-oriented evaluation
over different topics with certain assumptions about the user behavior, they are still
a strong abstraction of how the user interacts with the search system, and the user
behavior has a somewhat static notion.

By building upon the idea of extending the underlying user model of system-
oriented experiments, simulations make it feasible to evaluate retrieval systems with
regard to more dynamic user interactions. For instance, earlier seen retrieval results
can be exploited for more diverse query formulations over multiple result pages,
situational clicks, relevance decisions, and diverging browsing depths [78]. Simulated
IR experiment date back to the early 1980s [384, 385], but more recently, several
frameworks and user models were introduced [34,79,285,286,317,391,443]. Inspired
by the user models of Baskaya et al. [34] and Thomas et al. [391], Maxwell and
Azzopardi [285, 286] introduced the Complex Searcher Model. Carterette et al. [79]
proposed the idea of Dynamic Test Collections, and Pääkönen et al. [317] introduced
the Common Interaction Model. Besides, Zhang et al. [443] introduced another
search simulation framework.

While these user models were used to answer different research questions, they all
share several elements of the typical session-based search process that is illustrated
in Figure 3.9. More specifically, it depicts nine stages of the simulated search process
and shows how the subcomponent of the taxonomy in Figure 3.8 (the user’s context
and interactions with the interface) could be considered in the simulation stages.

The overall search process of the user can be described by different states or
stages and the corresponding transition probabilities. At the beginning of a session,
the simulated user is induced with an information need, for which the topic file
of a test collection can be used (cf. ➊). However, beyond extracting pre-defined
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Figure 3.9: User simulation model abstracted and reproduced from [34,79,286,317,
391,443] and extended by the taxonomy components given in Figure 3.8.

title or description fields from the topic file, it could also be considered that
the user’s context influences the information need. For instance, the user might
have wording problems as the information need is not always as explicit as in a
topic’s description, or the user might have prior knowledge about specific topics. In
Chapter 6, we model user simulators with different knowledge states and analyze
how the resulting queries influence the retrieval effectiveness.

The query formulation process results in a query string that serves as the in-
put to a retrieval system (cf. ➋). It has been acknowledged in several studies that
the implicit system-oriented user model does not adequately reflect the query for-
mulation behavior of real users [23, 222]. Most apparently, users tend to formulate
more than one query in a search task [23], and different users probably formulate
different queries for the same information need [222]. Several principled rule-based
methods for the query generation were introduced by Baskaya et al. [34] but also
more sophisticated approaches based on language models exist [19,211].

Upon the return of a ranking, the user starts examining the search results by
scanning the snippets (cf. ➌). Depending on the attractiveness of a snippet text,
the user may click (cf. ➍) and decide to examine the document text (cf. ➎), and
finally decide upon the relevance of the document (cf. ➏).

Click decisions can be modeled by probabilities biased towards the level of the
editorial relevance judgment [34, 185]. If session logs are available, click models are
a more elaborated way to simulate click interactions. Most click models are based
on pre-defined rules of how the underlying user iterates over the result list. The
parameters of observable and hidden variables are estimated from session logs [88].
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Most click models assume a simple layout of the SERP, i.e., ten blue links, or
do not make it explicit, but it might be reasonable to account for the interface
properties in the simulations. For instance, by including the effort that is required
to search or navigate through the results with a particular device [407], how the
display size may introduce bias [110,443], or how the snippet texts might affect the
click decisions and later query reformulations [400]. Chapter 7 picks up the idea of
evaluating the system performance with the help of click feedback. We then analyze
to what extent the relative system performance can be reproduced when editorial
relevance judgments are unavailable.

Eventually, the user returns to the ranking list (cf. ➐) and either continues
traversing the snippets, reformulates the query (cf. ➑), or abandons the session
(cf. ➒). Stopping rules and decisions have been extensively studied by Maxwell
and Azzopardi [284, 285, 286, 287, 288], while Pääkkönen et al. [316, 317] analyzed
the overall effectiveness gains in simulated sessions for different user behaviors. The
cognitive models outlined the characteristics of the search stages that emerge during
the entire search process. As such, the user’s knowledge state changes, which could
also be modeled as part of user simulation, e.g., by the previously seen documents.

According to Carterette et al. [79], a (user) simulation model does not have to
be an exact replica of the physical, real-world entity in every regard but instead can
only deliver answers in the abstraction level for which it is modeled, and as such,
it should be able to deliver answers at the abstraction level of the research goal.
In this regard, several approaches can be used to validate the fidelity of the user
simulations and to which degree they comply with real user interactions.

Labishetty and Zhai [238,239] introduced the Tester-based approach to evaluate
the fidelity of a user simulator. A Tester is based on heuristics or high-confidence
assumptions about the relative performance of two or more retrieval methods. For
instance, it has been shown in several studies that the BM25 ranking method is more
effective than ranking solely based on the term frequency. Therefore, a user simulator
should be able to identify the better-performing system, i.e., in the example, the
simulations should decide on BM25 as the better-performing ranking method.

With a particular focus on query evaluation, Günther and Hagen [164] analyzed
to which extent query suggestions can be used as query reformulations in simulated
sessions and conclude with overall positive outcomes. However, they conclude that
topical drifts can be problematic as more query suggestions are used. With a particu-
lar focus on conversational recommender systems, Zhang and Balog [441] introduced
a simulation model based on natural language generation and understanding that
shows a high correlation with human-based evaluations.

Maxwell and Azzopardi [286] developed a toolkit called SIMIIR that allows man-
aging the user behavior with regard to the interactions outlined above by config-
uration files in a principled way. It was reused and extended in recent works by
Câmara et al. [74], which decomposed more complex search tasks, while Zerhoudi et
al. [438] introduced an updated version, which extends the framework by several fea-
tures like Markov model-based interactions with the result list and more elaborated
query reformulations. With a particular focus on reinforcement learning for recom-
mendations, Huang et al. [192] emphasized that the presentation or popularity bias
can negatively affect the simulation process when the training is based on logged
user interactions. As a countermeasure, they introduced a debiasing method that
is realized as an intermediate processing step before training the model. Another
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recent research trend focuses not only on the simulation of the user but also on the
simulation of IR test collections. Simulating a test collection is a feasible solution
when it is critical to preserve the user’s privacy or when the data collection cannot
be shared due to business interest [174].

3.2 Metadata Annotations of TREC Run Files

This section describes the metadata annotation schema for TREC run files, which
we introduce as ir metadata [63]. Before describing it in Subsection 3.2.2, we
shortly review recent trends regarding annotation frameworks in ML research. More
examples and details about the metadata schema can also be found in Appendix B.

3.2.1 Recent Metadata Trends in ML Research

Recent trends in ML suggest that metadata information or protocols about the
computational experiments are considered as a solution to make the experimental
data more transparent and likewise easily reproducible. A non-exhaustive list of de-
scription frameworks includes ML reproducibility checklists [324], model cards [294],
datasheets for datasets [57], data statements [40], FactSheets [14], and dataset nu-
trition labels [189].

As part of the NeurIPS conference, Pineau et al. [324] introduced ML repro-
ducibility checklists that are presented twice in the form of a questionnaire to au-
thors when submitting their papers to the peer-review and as a camera-ready version
upon acceptance. The questionnaire covers more general aspects, such as the math-
ematical formalization in the paper, but also more detailed questions regarding the
specification of hyperparameters and adequate statistical evaluations. In conclu-
sion, Pineau et al. highlighted that these checklists could help the reviewers in their
decision-making regarding the acceptance of the papers.

Model cards [294] are a reporting framework for ML models. Motivated by the
issues related to systematic biases in ML models, Mitchell et al. aimed to address the
need for a standardized description framework that defines the scope or application
context of ML models. A model card should contain general details about the model,
such as the intended use case, evaluation metrics, and ethical considerations. The
authors proposed nine categories that may require individual descriptions for the
particular ML model. The authors provided two examples of model cards for image
and text classifiers, and they consider it a supplement to the datasheets [154].

Inspired by the documentation practices in the electronics industry, Gebru et
al. [154] criticized that datasets for ML research lack comparable practices and
that there is currently no standard for documenting ML datasets. They introduced
datasheets for datasets and outlined a catalog with 57 questions that dataset cu-
rators should address to make the dataset characteristics more transparent to the
consumers. They emphasized that the annotation workflow is not intended to be
automated since the annotation quality would benefit from careful reflection during
the maintenance process. By documenting datasets with datasheets, Boyd [57] envi-
sioned mitigating potential biases, better conditions for reproducibility, and a more
straightforward decision process when searching for the right dataset. In addition,
Boyd emphasized that datasheet for datasets also increases the awareness of biases
in the training data that could lead to ethical concerns.
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Data statements [40] is a proposal for a documentation scheme of NLP datasets.
The corresponding authors defined a vocabulary for data statements that does not
only include annotators but also other actors involved in the creation process of the
dataset, such as speakers (creators of the text contents), curators, and stakehold-
ers. Furthermore, they proposed to document NLP datasets by different categories
related to the properties of the text-based contents and the demographics of the
actors to account for potential biases.

Inspired by documentation procedures from the industry, FactSheets by Arnold
et al. [14] is a proposal for documenting AI services. It describes relevant charac-
teristics of an AI service like use case, performance, security, and safety. In the
corresponding publication, the authors provide motivating questions that can be
used to describe some of these characteristics. The dataset nutrition label [189] is
another proposal for documenting datasets by different labels, including metadata
information, data provenance, and some statistical attributes.

Leipzig et al. [241] reviewed existing metadata formats for the computational
sciences. As part of their evaluations, they had a particular focus on how metadata
supports reproducibility and outlined five categories for metadata levels, including
the (1) input, (2) tools, (3) statistical reports and notebooks, (4) pipelines, preser-
vations, and binding, and (5) publication. We refer the reader to this work for a
general overview of metadata formats for the computational sciences.

3.2.2 The ir metadata Annotation Schema

In the following, we introduce ir metadata — an annotation schema based on the
conventional PRIMAD taxonomy that can be used to annotate experimental ar-
tifacts of IR experiments, i.e., TREC run files. To our knowledge, the PRIMAD
taxonomy has not been put into practice, which could be partly explained by the
rather abstract definitions. Yet, we think these abstract definitions allow enough
flexibility to report details as they are required for reproducible experimentation. It
is not reasonable to follow a strict annotation schema as some details do undeniably
not affect the reproducibility, e.g., reporting a GPU model when it is not used in the
experiments. On the other hand, it is simply not feasible to think of all subcompo-
nents, which will be crucial for reproducible experimentation in the future. For this
reason, the introduced metadata schema proposes a set of essential subcomponents
that should be reported if feasible but also keeps extensibility in mind.

According to ISO 23081-1, a metadata schema requires a “logical plan showing
the relationships between metadata elements”. Similar to other metadata standards
and protocols in IR research like those of the DIRECT platform [3], the USEF
standard for user protocols of IIR experiments [151], or other more general standards
from the computational sciences [241], we introduce a lightweight and extensible
metadata schema for system-oriented IR experiments based on related conceptual
components. More specifically, we define the metadata schema by the components
of the extended PRIMAD model from the previous Section 3.1.

From a practical point of view, we propose to add the resulting metadata anno-
tations to the beginning of run files — similar to a file header. Hereby, we avoid
the separation of metadata annotations and run files, and no additional storage ca-
pacities or external databases for the metadata are required. Technically, these file
annotations are compatible with the already existing evaluation infrastructure since
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the trec eval toolkit recently introduced the support of comments in the run and
qrels files as it can be seen in the corresponding code repository [485]. Figure 3.10
shows an example of such an annotated run file.

We propose adding the metadata annotations as comments with YAML syn-
tax for easy readability and extensibility. Using YAML, the annotations remain
free of markup artifacts like those from XML-formatted data, making the anno-
tations more human-readable. In addition, YAML is a recent and well-supported
data-serialization language for which many well-curated parsing libraries exist. Its
minimalistic syntax facilitates metadata extensions while being both human- and
machine-readable. We did not explicitly decide against any existing metadata stan-
dard but preferred YAML because of its simplicity. In the future, it is worthwhile
to implement the support of other existing standards by developing parsers for ir -

metadata to other metadata formats or standards like the DCAT-US Schema [456],
which would also contribute to a more sustainable use of annotated resources.

For more specific details about the YAML formatting and the encodings that
are required by ISO 23081-1, we refer the reader to Appendix B that includes
definitions for metadata annotations including descriptions, encodings, and YAML
types for each metadata field. These definitions can also be found on the official
project website of ir metadata [484], where they are documented as checklists that
IR practitioners can use as an annotation help. The website’s source code is easy
to maintain, and we aim to develop it collaboratively with the community in the
future. Its source code is publicly hosted on GitHub [469]. It can be easily extended
by pull requests, for instance, when the checklists need updates or if it is required
to adapt the terminology for specific descriptors.

To lower the manual annotation effort for IR practitioners, we envisage the au-
tomatic annotations of run files. In this regard, we already implemented some first
annotation features, which are described in the following Chapter 4. Likewise, it
makes sense to automatically check the validity and integrity of the annotations to
ease better consistency and validate the absence of errors. This feature could use
the already implemented automatic annotation features and give feedback on crucial
missing metadata fields. Similarly, the single metadata fields should be prioritized
regarding their importance for reproducibility. For this purpose, RFC2119 [482]
can be used to assign requirement levels. To promote the outreach of the schema,
it makes sense to extend the existing retrieval toolkits like Pyterrier [267] or Py-
serini [250] with compatibility features. In addition, the collaboration with shared
task organizers can help to promote the schema as organizers can encourage par-
ticipants to annotate their runs at submission time. For instance, as part of the
TREC Deep Learning track, participants were already asked to provide some meta-
information about the submitted run files [103].

Finally, it must be pointed out that the metadata annotations are not bound
to run files but can be used versatilely. While the primary use-case outlined the
annotation of TREC run files, the annotations can also be used to document IR
experiments if no run files are generated in the experiments. In that case, the meta-
data information could be added as YAML files to the code repository or appended
to the LATEX code of the publication, to name a few other annotatable resources.
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# ir_metadata.start

# schema-version: 0.1

# run-version: 1.0

# tag: bm25

# platform:

# hardware:

# cpu:

# model: 'Intel Xeon Gold 6144 CPU @ 3.50GHz'

# ram: '64 GB'

# operating system:

# distribution: 'Ubuntu 20.04.3 LTS'

# software:

# retrieval toolkit:

# - 'anserini==0.3.0'

# research goal:

# venue:

# name: 'ECIR'

# publication:

# doi: 'https://doi.org/10.1007/978-3-030-15712-8_26'

# evaluation:

# significance test:

# - name: 't-test'

# correction method: 'bonferroni'

# implementation:

# source:

# lang:

# - 'python'

# - 'c'

# repository: 'github.com/castorini/anserini'

# commit: '9548cd6'

# method:

# automatic: 'true'

# indexing:

# stemmer: 'lucene.PorterStemFilter'

# stopwords: 'lucene.StandardAnalyzer'

# retrieval:

# - name: 'bm25'

# method: 'lucene.BM25Similarity'

# b: 0.4

# k1: 0.9

# actor:

# name: 'Jimmy Lin'

# team: 'h2oloo'

# role: 'experimenter'

# data:

# test_collection:

# name: 'The New York Times Annotated Corpus'

# source: 'catalog.ldc.upenn.edu/LDC2008T19'

# qrels: 'trec.nist.gov/data/core/qrels.txt'

# topics: 'trec.nist.gov/data/core/core_nist.txt'

# ir_metadata.end

307 Q0 497476 1 0.9931 bm25

307 Q0 469928 2 0.9674 bm25

307 Q0 125806 3 0.9623 bm25

307 Q0 504815 4 0.9453 bm25

307 Q0 392547 5 0.9223 bm25

...

Figure 3.10: Annotation example of a run file.
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3.3 Conclusion

This chapter introduced an extension to the existing PRIMAD taxonomy. Besides
complementing the conventional six components with subcomponents and related
aspects, we have introduced an additional user component to provide a more holistic
view of the IR experiment. Given the extended six conventional PRIMAD com-
ponents, we have outlined a metadata annotation schema, which can be used to
annotate TREC run files. We do not claim to introduce a complete taxonomy but
one comprehensive enough to allow for a more principled analysis of system-oriented
reproducibility studies. Chapter 5 exclusively focuses on evaluating the reproducibil-
ity of system-oriented experiments and exploits the metadata schema for principled
reproducibility analysis.

By introducing the user component, we outlined what user-related aspects could
influence the outcome and the reproducibility of an IR experiment. While it is
often not feasible to acquire knowledge about all user-related aspects, they should
generally be considered as possible confounders in online experiments and controlled
modifications in a user simulation experiment. In the future, it should be defined how
metadata about the user can extend the schema. In the case of user simulations, the
user behavior usually follows a user model that could be translated into descriptions
that fit our metadata schema. Within the scope of this dissertation project, we
consider user simulations as a tool to analyze the external validity of an experimental
outcome. To this end, both Chapters 6 and 7 focus on two central aspects of the user
interaction with the search system that are the query formulation and the relevance
feedback given by the user in the form of clicks on search results.





Chapter 4

Reproducibility Measures

In this chapter, we review the general approach of a reactive reproducibility study
and how the reproduction quality can be measured in system-oriented IR experi-
ments. The proposed measures were developed throughout a series of cross-venue
workshops [133, 136, 353, 375] and finally put into context as part of an evaluation
framework that quantifies the reproducibility and replicability with different levels
of specificity ranging from fine-grained comparisons of document rankings to more
general comparisons of topic score distributions [60]. In this framework, the experi-
mental setup is aligned with the ACM Policy on Artifact Review and Badging (cf.
Chapter 2 and [448]), i.e., we consider an experiment to be reproduced if the results
can be validated with a reimplementation and the same test collection and to be
replicated if the results are validated with another test collection. The resulting
contribution can be described as follows:

C4 Reproducibility framework for reactive reproducibility experiments and a
corresponding software toolkit (cf. [60, 61])

The remainder is structured as follows. At first, we outline the general design
of a reactive reproducibility attempt in an IR experiment. Second, we describe
the different levels of reproducibility and the corresponding measures starting from
the most specific level towards more general statistical comparisons. Finally, we
describe repro eval, which is an open-source software library [61] that implements
the measures at the end of this chapter.

4.1 Setup of Reactive Reproducibility Studies

In our experimental setup, the target artifact of the reproducibility attempt is a run
r that contains rankings for nD topics derived from a test collection D that has also
been used in the original experiment. If another test collection D′ is used, we con-
sider the revalidation as a replicability experiment. The corresponding reproduced
or replicated run is denoted as r′.

Figure 4.1 illustrates the general procedure. We assume that the group of re-
producers is provided with the original run r and the corresponding publication,
which describes some or possibly all of the details required to rerun the experiment.
However, the original experimental setup, i.e., the software implementation, is miss-
ing. Based on the descriptions in the publication, the reproducers reimplement the
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Figure 4.1: General approach of a reactive reproducibility study.

experimental setup as well as possible. However, some details, for instance, about
hyperparameters, may be missing, and they try out variations leading to different
versions of the reproduced run r′. How do they know which reproduction resembles
the original reference the most? In this case, the degree of reproduction can be quan-
tified by comparing r to r′. As the run files contain rankings for multiple queries, it
is possible to compare the artifacts in several regards, which we consider as differ-
ent levels of specificity. These different levels and the corresponding measures are
described in the following section.

4.2 Levels of Reproducibility

Our proposed measures quantify the degree of reproducibility and replicability at
increasing levels of specificity (cf. Figure 4.2). At the most specific level, it would be
possible to determine the bitwise reproducibility of computational artifacts. How-
ever, as outlined in Subsection 4.2.1, this level of rigor may be too strict for most IR
experiments. It is more reasonable to compare the correlation between the original
and reproduced document rankings. Thus, we exploit Kendall’s τ Union (KTU),
which determines Kendall’s τ with lists of ranks (cf. Subsection 4.2.2). In addition,
the Rank-Biased Overlap (RBO) can be used to evaluate rankings with different
sets of documents in both rankings and infinite lengths (cf. Subsection 4.2.2). The
second level evaluates the effectiveness by the Root Mean Square Error (RMSE) be-
tween the topic scores of the original and reproduced run. We choose this measure
since larger deviations are penalized more strongly due to the squaring of errors (cf.
Subsection 4.2.3). The third level evaluates the overall effects. The Effect Ratio
(ER) and Delta Relative Improvement (DRI) require a baseline and an advanced
retrieval method. Since the measures evaluate relative effects, they can also be used
for replicated experiments with a test collection that contains possibly different top-
ics and documents (cf. Subsection 4.2.4). Finally, at the most general level, we
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Figure 4.2: Reproducibility measures arranged regarding their level of specificity.

can compare the topic score distributions of the original and reproduced/replicated
runs by (un-)paired t-tests. In this case, low p-values indicate a failed reproduc-
tion or replication (cf. Subsection 4.2.5). Sometimes, the reproducibility of an IR
experiment involving multiple systems can be assessed by the relative ordering of
two or more retrieval systems regarding their effectiveness. These system rankings
(sometimes also referred to as ranking of systems) from the original and reproduced
experiments are usually compared with the help of Kendall’s τ (cf. Subsection 4.2.6).

4.2.1 Bitwise Reproducibility

In the computational sciences, researchers and experimenters are privileged to work
with most digital entities, which come with certain merits and benefits. For instance,
Potthast et al. [329] emphasize that the digital experimental setup can be made
available for future reuse with little costs and without much overhead. Furthermore,
it is easy to check if two digital entities, i.e., experimental artifacts, are identical.

At the most rigorous level, it is possible to verify a successful reproduction
bit-by-bit. The verification of a bitwise reproduction can be easily implemented
by determining hashes or checksums, for instance, by MD5 or SHA-based meth-
ods [199]. These kinds of validations also allow the automation of reproducibility
checks through regression or unit tests like they are done according to the princi-
ples of test-driven software development. Considering the typical output of an IR
experiment, a so-called run file, the premises for evaluating bitwise reproductions
are fairly good as a commonly used data format provides a solid basis. Figure 4.3
illustrates a single line of the TREC run file format, which describes rankings for
particular queries and is defined by six columns containing a topic number (<qid>),
a wildcard entry (<Q0>), the document identifier (<docid>), the ranking position
(<rank>), the ranking score (<score>), and a file-specific tag (<tag>) [413].

<qid> <Q0> <docid> <rank> <score> <tag>

Figure 4.3: TREC format
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An identical relative ranking of documents could be reproduced with different
scores that differ by their ranges or intervals. Determining and comparing checksums
of the hashed run file would indicate a failed reproduction attempt. However, this
level of rigor may be too strict. Depending on the use case, e.g., in a user experiment
where the users do not care about document scores, the document ranking with
different scores could be used as a completely valid reproduction of the system’s
outputs. In this regard, the requirement for “perfect” reproducibility in an IR
experiment could be met by results without bitwise equality.

Drummond [115] goes as far as to question the importance of perfect reproduction
as it can support internal validity at most but does not ensure any directions towards
replicability or generalizability. Ivie and Thain [199] separate automatic verifications
of the bits and data from the validation of reproduced statistics and phenomena that
require domain-specific statistical tools and human interpretations. In this regard,
the following measures fall into the category of the latter by proposing solutions for
quantifying reproducibility beyond the very strict assessment of a bitwise identity.

4.2.2 Document Rankings

Kendall’s τ [221] is a rank correlation coefficient that can be used to measure the
similarity between two ranking lists with the same set of ranked items. For the j-th
topic of a test collection, it is determined as:

τj(r, r
′) =

P −Q√(
P +Q+ U

)(
P +Q+ V

) . (4.1)

P is the total number of concordant pairs, Q the total number of discordant
pairs, whereas concordant and discordant refer to item pairs ranked in the same
or different order, respectively; and U and V are the numbers of ties in r and r′,
respectively. When comparing two document rankings, both must be permutations
of the same set of documents. It ranges between −1 and 1, whereas a value of 1
corresponds to a perfect reproduction, 0 indicates no correlation, and −1 indicates
a perfect inverse correlation between the rankings.

As pointed out by Ferro et al. [133,136] as part of CENTRE, it is very challenging
to reimplement a perfectly reproduced document ranking with exactly the same set
of documents. Thus, it may be too strict to determine Kendall’s τ based on the
rankings of documents. Instead, it can be determined in a slightly modified way by
comparing lists of ranking positions made from a union set of both rankings.

Making lists with rank orders from a union set without duplicates makes it pos-
sible to determine the correlation of the relative ordering between two rankings,
even with deviating sets of documents in both rankings. For a better illustration
consider the following two rankings r = [d1, d2, d3, d4, d5] and r′ = [d1, d2, d3, d4, d6],
which result in a unified set of ranking positions as [1, 2, 3, 4, 5, 6], whereas the cor-
responding single rank position lists are rp = [1, 2, 3, 4, 5] and r′p = [1, 2, 3, 4, 6] and
τj(rp, r

′
p) = 1. In this case, the second document ranking reproduced the first one

with a different document at the last rank that is not in the first ranking or possibly
at a lower rank than the cut-off. Consider another reproduced document ranking
r′′ = [d2, d5, d7, d6, d4], which has a partial overlap of documents with r but has a
different order of those documents also contained in r. In that case, the union set of
rank positions is [1, 2, 3, 4, 5, 6, 7], and the reproduction yields τj(rp, r

′′
p) = 0.2. This
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measure is referred to as Kendall’s τ Union (KTU), and it is averaged over all topics
nD in a test collection D as follows:

τ̄(r, r′) =
1

nD

nD∑
j=1

τj(rp, r
′
p). (4.2)

An alternative rank correlation measure was introduced by Webber et al. [419]
as the RBO. It can be used to compare ranking lists of infinite lengths with partial
overlaps. It is based on a simple probabilistic user model and is defined as follows
for the j-th topic:

RBOj(r, r
′) = (1− ϕ)

∞∑
i=1

ϕi−1 · Ai. (4.3)

RBO is the weighted sum of the overlap Ai over increasing rank positions denoted
by i. ϕ parameterizes the top-heaviness and, hereby, models the underlying user
behavior — the higher ϕ, the higher the continuation probability and, thus, the
user’s persistence. Note that 1 − ϕ models the probability of a stopping decision.
RBO ranges between 0 and 1 and higher values indicate stronger correlations. Like
KTU, it is averaged over all topics nD in a test collection D as follows:

RBO(r, r′) =
1

nD

nD∑
j=1

RBOj(r, r
′). (4.4)

4.2.3 System Effectiveness

The reproduction quality of the system effectiveness is determined by comparing
the topic score distributions of r and r′ resulting from an IR evaluation measure
MD, e.g., P@10, nDCG, or AP, for (usually 50) different queries of a test collection.
As part of the CENTRE workshop [133], the RMSE was proposed as a means to
measure the closeness between the distributions represented by the vectors MD(r)
and MD(r′) both of length nD:

RMSE
(
MD(r),MD(r′)

)
=

√√√√ 1

nD

nD∑
j=1

(
MD

j (r)−MD
j (r′)

)2
. (4.5)

Due to the squared difference between MD(r) and MD(r′), the RMSE penalizes
larger errors more severely. Compared to the similarity analysis of document rank-
ings, the system effectiveness is evaluated at a more abstract level, i.e., with lower
specificity. The system-oriented IR evaluation measures are usually determined by
the relevance labels, meaning that equal scores can also be reproduced with different
documents with the same relevance labels as those in the original ranking. Conse-
quently, it is possible to have an RMSE of 0, while there are deviations between the
document rankings.

4.2.4 Overall Effects

We note that both the comparison of the document rankings and the system ef-
fectiveness can only be determined for the reproduced experiment as they require
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rankings derived from the same corpus and for the same topics. In contrast, reim-
plementations at the level of the overall effects can be determined for both repro-
ducibility and replicability. This is made possible by evaluating the reproduction
and replication of relative effects between the system effectiveness of a baseline run b
and an outperforming method resulting in an advanced run a that were both used in
the original experimental setup. At NTCIR-CENTRE, Sakai et al. [353] introduced
the Effect Ratio (ER), for which the per-topic-improvements need to be determined
and are defined for the j-th topic as:

∆MD
j = MD

j (a)−MD
j (b) , ∆′MD

j = MD
j (a′)−MD

j (b′) (4.6)

where ∆′MD
j denotes the per-topic-improvement for topic j in the reproduced

experiment. In contrast, another test collection D′ is used in the replicated experi-
ment, and the corresponding per-topic-improvement is denoted as ∆′MD′

j . The ER
is determined by the ratio between both per-topic improvements averaged over the
topics of the test collections. For the reproduced experiment, it is defined as:

ER
(
∆′MD,∆MD

)
=

∆′MD

∆MD
=

1
nD

∑nD

j=1 ∆
′MD

j

1
nD

∑nD

j=1∆MD
j

. (4.7)

We note that in a replicated experiment, it is unnecessary to have the same
topics in D and D′ as it depends on the ratio between the relative improvements of
the outperforming method over the baseline — a perfect reproduction or replication
results in an ER score of 1. Lower scores indicate a weaker improvement over
the baseline. Vice versa, higher values indicate a greater improvement over the
baseline than in the original experiment. It has to be pointed out that it can become
critical to optimize a reimplementation with regard to the ER as it evaluates the
relative improvements. ER does not take the reproduction of absolute scores into
account, and it is theoretically feasible to optimize a reimplementation for a perfect
score of 1 with possibly lower absolute scores of the baseline and the outperforming
methods as long as the relative performance gains are the same as in the original
experiment. As a solution, the difference between the baseline b and the advanced
run a can be normalized by the baseline b. For the reproduced experiment, the
Relative Improvement (RI) is defined as:

RI =
MD(a)−MD(b)

MD(b)
, RI′ =

MD(a′)−MD(b′)

MD(b′)
. (4.8)

Finally, the Delta Relative Improvement (DRI) is determined by the difference
between the RI of the original and reproduced/replicated experiment:

DRI(RI,RI′) = RI− RI′. (4.9)

A perfect reproduction or replication yields a DRI score of 0 as there should
not be any difference between the original and reimplemented RI. Negative DRI
scores result from higher absolute scores of the reimplemented experiment, which
could be considered a partial success since the reimplementations outperform the
original results despite deviations. On the other hand, positive DRI scores indicate
less effective reimplementations, which should rather be seen as an indication of a
failed reproduction or replication.
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4.2.5 Statistical Properties

At the most general level, the topic score distributions of the original run r and r′

are compared by two-tailed t-tests. In this case, the general idea is to gain insights
into the success of a reimplementation from the p-values. These comparisons are
based on the assumption that a smaller p-value gives stronger evidence that the
reimplementation has failed, while larger p-values should result from better reim-
plementations. In the reproduced experiment, a two-tailed paired t-test is preferred
since the same test collection is used, i.e., the results are drawn from the same dis-
tribution as in the original experiment. If the experiment is replicated with another
test collection, i.e., the runs are made from a different distribution and an unpaired
t-test should be used. These statistical properties add another abstraction layer to
the reproducibility levels since the low p-values indicate a deviation between the
topic scores but do not show if the reimplementation performs better or worse.

4.2.6 System Rankings

According to Ferro [130], one of the major challenges of reproducible IR is the val-
idation of meta-evaluation experiments like they are conducted as part of shared
task efforts. Besides evaluating the reproducibility of the single system runs, it is
of interest to evaluate the reproducibility of the relative system performance of all
systems participating in a shared task. Similar to the validation of document rank-
ings, Kendall’s τ can be used to measure the correlation between system rankings as
proposed by Voorhees [409]. In this context, she considers correlations above 0.9 as
acceptable. Conventionally, system rankings are evaluated by leave-out-unique tests
and Kendall’s τ [386,412] in order to validate the reusability of a test collection. The
general idea is to simulate the evaluation of a new system that did not participate
in the pooling process by removing its contribution of unique documents from the
pool. The system rankings are determined before and after excluding unique docu-
ments contributed by a single system and are finally evaluated by Kendall’s τ . If the
system ranking does not considerably change, i.e., τ > 0.9, the test collection can be
considered reusable. Consequently, the test collection qualifies as an evaluation tool
to analyze how well a particular retrieval method or system rankings with multiple
systems can be generalized with different data.

4.3 Software Toolkit

All of the measures depicted in Figure 4.2 and described in Subsections 4.2.2 to 4.2.5
have been implemented in an open-source software toolkit titled repro eval [61].
It is a Python package that is integrated into the GitHub ecosystem [470], including
automated unit tests and distribution through the Python Package Index.

It builds upon other open-source software packages like numpy [404], scipy [408],
and Pytrec eval [166] providing Python bindings to the commonly used evaluation
toolkit trec eval. Once downloaded and installed, it can be used with command
line calls or via the API. The interface design is aligned to the two experimental
types, reproducibility and replicability. Assuming that the reference run, the reim-
plemented files, as well as the corresponding relevance judgments are available, the
Evaluator classes can determine the reproducibility and replicability measures.
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The metadata schema introduced in the previous Chapter 3 is supported by
repro eval==0.4.0 in different ways. On the one hand, we have implemented
a MetadataHandler that reads the metadata from annotated run files and semi-
automatically annotates run files if provided with a minimal set of the required
information. On the other hand, we implemented the analysis of annotated run files
by the MetadataAnalyzer and the PrimadExperiment that analyze the metadata
information and align the reproducibility evaluations to PRIMAD. Depending on
the deviating PRIMAD components, different reproducibility measures are part of
the evaluations, and the MetadataAnalyzer identifies reasonable evaluations.

4.3.1 Automatic Annotations

In order to lower the manual annotation effort, the MetadataHandler can be used to
annotate runs. Given a run file, it automatically compiles the available information
and appends it to the metadata header of a run file. Figure 4.4 exemplifies how the
metadata can be added to the run file in Python. When writing metadata to run
files, the MetadataHandler fetches information regarding the platform. Likewise,
if not specified otherwise, it assumes the run file to be in the root directory of a
Git repository from which some of the information regarding the implementation
can be extracted. Currently, it is possible to fetch information about the hardware,
including the CPU model, the size of the random-access memory, information about
the operating system and kernel, including the UNIX distribution and the version,
respectively, and finally, information about the software project, including the lo-
cation of the Git repository, the current commit, and the programming language
determined by the source code files.

Nevertheless, it is impossible to determine the required information about some
PRIMAD components automatically. Therefore, the MetadataHandler has to be
provided with a template YAML file, in which the corresponding metadata should
be added manually. Some information, specifically about the research goal, the
method, or the actor, cannot be retrieved automatically and must be added by
hand. Even though the entire metadata cannot be extracted automatically, the
MetadataHandler reduces the manual annotation effort and avoids possible errors,
contributing to a community-wide adoption.

1 from repro_eval.metadata import MetadataHandler

2

3 run_path ='./run.txt',

4 metadata_path ='./metadata.yaml'

5 metadata_handler = MetadataHandler(run_path, metadata_path)

6 metadata_handler.write_metadata()

Figure 4.4: Annotating runs with the MetadataHandler.

4.3.2 Analysis of Annotations

Given two or more run files with metadata annotations, the MetadataAnalyzer

identifies similar PRIMAD components in the metadata and proposes several rea-
sonable reproducibility evaluations. The code snippet in Figure 4.5 illustrates how
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the MetadataAnalyzer can be used to scan an entire directory with annotated run
files and automatically validates the type of reproducibility experiments. After it
has been initialized with a reference run, the metadata of all annotated runs in
the directory is compared to that of the reference metadata, and as a result, a list
containing PRIMAD experiments and the corresponding run candidates is returned.

In our implementations, we distinguish the different experiment types by lower-
and uppercase letters, e.g., parameter sweeps would result in ‘‘priMad’’ with the
uppercase letter M that signifies the changes of the method. Provided with the
experiment type and the reproduced runs, the PrimadExperiment evaluates the
experiments and the corresponding runs with the help of the repro eval measures.
The reproducibility toolkit repro eval follows the naming conventions introduced
by the ACM Policy on Artifact Review and Badging [448], i.e., in the software
library can be used to evaluate the reproducibility with the same test collection and
the replicability with another test collection than in the original experiments.

Specific reproducibility measures can be determined depending on what kind of
test collection is used to evaluate the reimplementations. For instance, if another
collection than in the original experiment is used, only some of the measures can
be determined. Consequently, the evaluations depend on the type of PRIMAD
experiment from which the reproduced runs originate. Suppose the test collection is
the same as in the original experiment. In that case, all reproducibility measures can
be determined, e.g., as is the case of reproduced runs based on parameter sweeps.

1 from repro_eval.metadata import MetadataAnalyzer, PrimadExperiment

2

3 run_path ='./run.txt'

4 dir_path ='./runs/'

5 metadata_analyzer = MetadataAnalyzer(run_path)

6 experiments = metadata_analyzer.analyze_directory(dir_path)

7 run_candidates = experiments.get('priMad')

8 primad_experiment = PrimadExperiment(primad='priMad',

9 rep_base=run_candidates,,...)

10 primad_experiment.evaluate()

Figure 4.5: Analyzing runs with the MetadataAnalyzer.

4.4 Conclusion

This chapter outlined the general procedure of a reactive reproducibility attempt
and how the differences between the original results and those of reimplementations
can be quantified. The corresponding measures can be used to quantify the degree of
reproducibility at different levels of specificity, i.e., some measures are more sensitive
to changes in the reimplemented rankings than others at more general levels. The
measures can be used to compare different reimplemented run files and determine
which is closer to the original reference. Additionally, we contributed the evaluation
toolkit repro eval as open-source software and reusable artifact to the community.
The toolkit supports the metadata schema outlined in the previous chapter and can
be extended by other reproducibility measures in the future.





Chapter 5

Reproducibility Evaluations

This chapter is about how reactive reproducibility studies of system-oriented IR ex-
periments can be conducted in a principled way. The introduced approach builds
upon the metadata annotation schema (cf. Chapter 3), the reproducibility measures,
and the corresponding software toolkit repro eval (cf. Chapter 4). The overall sce-
nario follows that of reactive reproducibility attempts, where no software artifact of
the original experiment is available but the system outputs, i.e., the TREC run files.
For this purpose, we reimplemented the CCRF method by Grossman and Cormack
(GC) based on the descriptions in the corresponding TREC notebooks [159, 160].
Our reimplementations and reproducibility protocols were originally submitted to
the CENTRE workshop [66] and also as a dockerized version to the OSIRRC work-
shop [65]. These contributions were later on analyzed in a contribution to SIGIR [60].
In another later submission, we analyzed the web search-enhanced CCRF and con-
tributed the results to CLEF [64].

The reimplementations are used to compile a dataset of runs with multiple repro-
duction candidates of the original run files, which, as a whole, simulate the results
by a group of reproducers who try to reimplement the original experiments by trying
out different configurations and parameterizations of the retrieval method. To make
the dataset more diverse, i.e., to include results from another group of researchers,
we also include regression experiments by Yu et al. (YXL) in the dataset.

Before introducing the principled evaluations based on the metadata annota-
tions, we analyze our reimplementations as part of preliminary evaluations. In the
corresponding section, we have a detailed look at the reimplementations of GC’s sub-
mission to TREC Common Core 2017 and illustrate how comparisons of averaged
retrieval measures can “hide” differences between the actual document rankings or
topic score distributions of the reproduced and original runs. In addition, we look
at the reproductions and replications of the web content-enhanced experiments that
were originally contributed to TREC Common Core 2018 by GC. First, we analyze
the robustness of the general workflow, and afterward, we have a closer look at the
effect of the query formulation and the influence of the underlying web search engine.

Finally, we analyze the runs in the dataset by principled reproducibility evalua-
tions. Based on the metadata annotations, the differences between the experiments
from which the annotated run files originate can be expressed in terms of PRIMAD.
The evaluations outline three selected variations regarding the original experiments
and conclude with what can be learned about the CCRF method from the repro-
ducibility experiments. In sum, our contributions are as follows:

79
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C5 Reimplemenations of CCRF and, related to that, a curated dataset of
reimplemented and annotated run files (cf. [63, 64,65,66])

C6 Principled reproducibility analysis of CCRF reimplementations based on
how they relate to the original experiment in terms of PRIMAD (cf. [63]).

The remainder is structured as follows. First, we describe the target study of
the reimplementations, which is based on CCRF. Afterward, we analyze the quality
of our reimplementations that are also included in the dataset in a preliminary
evaluation. Finally, in the experimental evaluations, we analyze the reproducibility
and replicability at different levels as outlined in Chapter 4. In the end, we conclude
by outlining the limitations of the entirely system-oriented focus of this chapter,
which motivates the contributions of the following chapters.

5.1 Cross-Collection Relevance Feedback

The CCRF method recently gained interest in the IR community, especially as part
of TREC Common Core, where existing topics were reused for building a new test
collection [4]. The general workflow is illustrated in Figure 5.1. Dating back to 2017,
GC’s approach [159] inspired several follow-up studies. Reasons for the increased
interest in this retrieval method are its simplicity and effectiveness, being the most
effective automatic submission as part of TREC Common Core 2017 [4].

YXL [437] reproduced the approach by embedding it into a multi-stage ranking
pipeline and documenting it in the Anserini toolkit. We (BFFMSSS [66]) reimple-
mented the approach as part of a dedicated reproducibility analysis. We used the
reimplemented runs to simulate a researcher trying to reproduce the relevance trans-
fer method [60]. As part of the TREC Common Core reiteration in 2018, YXL [436]
reused the same method with another dataset, whereas GC [160] themselves also
applied a modified version of the method in TREC Common Core 2018 that was
also revalidated by us (BPS [64]).

The general workflow of CCRF is illustrated in Figure 5.1. The underlying
retrieval method follows a point-wise learning-to-rank approach where each docu-
ment is assigned a probability of being relevant [258]. CCRF is only possible if
there is an overlap of topics in the target and source collections. For each topic, a
relevance classifier is trained with the help of the relevance labels (qrels) and tf-
idf features of relevant and non-relevant documents derived from a term-document
matrix based on the source collection’s vocabulary. The documents of the target
collection are represented as tf-idf features that are also derived from the source
collection’s term-document matrix. The topic-specific relevance classifier assigns a
relevance probability to each tf-idf feature of the target collection’s documents that
are ordered by decreasing probabilities in the final ranking.

GC introduced the outlined approach at TREC Common Core 2017 [159] either
using the TREC Disks 4 & 5 (denoted as Robust04) or a combination of both
Robust04 and the AQUAINT test collection (denoted as Robust05) as the source
collection(s) to rank documents of the Annotated New York Times Corpus (denoted
as Core17). Even though the approach is straightforward, it was the most effective
automatic run submission at TREC Common Core 2017, ranking third behind two
manual runs that were slightly more effective. Depending on the source corpora
combination, the runs are either referred to as WCrobust04 or WCrobust0405.
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Figure 5.1: Cross-Collection Relevance Feedback [159].

YXL [437] reproduced the approach by introducing a first-stage ranker with
a keyword-based method. Instead of ranking each document of the entire target
collection with the topic-specific classifier, only a list of the first 10,000 documents
retrieved by the keyword-based method is reranked. We reproduced the workflow as
accurately as possible based on the description in the TREC notebook by GC [66].

As part of TREC Common Core 2018, YXL reused their reimplementation and
submitted runs derived from the Washington Post Corpus v2 (denoted as Core18).
GC also submitted the runs uwmrg and uwmrgx to TREC Common Core 2018 with a
slightly modified workflow. Instead of using TREC test collections as the source col-
lections, they scraped results from SERPs to train topic-specific relevance classifiers.
This approach is robust, as shown in our regression experiments [64].
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5.2 Reimplementation Details

In the following, we outline the details of our reimplementations. At first, we de-
scribe how the runs WCrobust04 and WCrobust0405 were reimplemented. After-
ward, we describe how the reimplementations of the uwmrg and uwmrgx runs were
made. As both methods share a fair amount of the same principles, the second
reimplementation mainly builds upon the former, and we outline the adaptions.

5.2.1 WCrobust04 and WCrobust0405 Runs

Our reimplementation is based on the Python programming language. As the land-
scape of available Python packages offers a wide variety of different open and free
software libraries, we had no problems finding the required software tools to reim-
plement the workflow. Besides the Python packages described below, we used the
GNU tools tar and gzip to extract the document files out of the compressed data
archives. For the markup removal and parsing of the raw text from the formatted
document files, we relied on the BeautifulSoup package in combination with lxml.
The raw text was normalized by excluding the punctuation, stop word removal, and
stemming, which are implemented in the respective order with the nltk package.

According to the protocol by GC [159], the vocabularies of the source and target
corpora have to be merged to determine the term-document matrix based on a
unified vocabulary. This results in training samples that are augmented by the
vocabulary of the corpus to be ranked. However, our reimplementations deviate
from this approach. The term-document matrix, and consequently also the tf-idf
weights of the training samples, are derived solely based on the source corpora. In
their reproducibility study, YXL consider this augmentation step to be insignificant.
In our experimental evaluation [66], we compared the resulting runs of augmented
and non-augmented training samples and could confirm these assumptions. It is
feasible to derive the tf-idf samples without merging the vocabularies of the source,
and target corpora, as the differences in retrieval effectiveness are negligible.

Our implementation of the ML classifier builds upon the scikit-learn package
[321]. More specifically, we make use of the TfidfVectorizer and the Logistic-

Regression classifier. YXL [437] pay special attention to the importance of the
L2-normalization (of the tf-idf feature vectors). Even though the original report
does not address this aspect, we had no issues concerning the normalization as the
TfidfVectorizer uses the L2-norm as a default setting. Another detail about the
tf-idf features, which caused performance drops in our initial reimplementations, was
specifically related to the term frequency. As the original report remains unclear
about how the term frequency is determined, we used the default settings of the
TfidfVectorizer, which simply includes the raw term frequency tf. However, we
achieved better performance scores and also a better reproduction when including
the term frequency as 1 + log(tf).

Depending on the combinations of the source and target corpora, there are differ-
ent overlaps between the topics in the corpora. For instance, Robust04 and Core17
have an overlap of 50 topics, i.e., all of the topics of Core17 are also judged for
Robust04, whereas between Robust05 and Core17, only 33 topics overlap. This led
to initial confusion on our side as the original protocol remained unclear about how
to train the classifier when both Robust04 and Robust05 are used as source collec-
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Table 5.1: Overview of the run dataset, including the original runs by Grossman
and Cormack (GC), the reimplementations by Yu et al. (YXL), and our reimple-
mentations as part of CENTRE and SIGIR (BFFMSSS), as well as CLEF (BPS).

Researchers Method Target collections Runs

GC [159]
GC [159]

Core17 2
YXL [436,437] Robust04/05, Core17/18 327
BFFMSSS [60,66] Core17 100
GC [160]

GC [160]
Core18 2

BPS [64] Robust04/05, Core17/18 32

tions. However, after clarification with the authors (GC) via mail correspondence,
we learned that the tf-idf features are derived from both corpora were feasible and
otherwise only from one source corpus, which means that for some topics of WCro-
bust0405 only Robust04 was used for generating training samples.

The training features were stored in the SVMlight format to ensure compati-
bility with other ML frameworks. For each topic, a ranking with 10, 000 entries
was determined and written into a run file. The first implementation that was con-
tributed to the CENTRE workshop is available on Bitbucket [453]. This version was
also submitted to the OSIRRC workshop as a dockerized and easier-to-reproduce
version [65]. As explained earlier, the workshop’s organizers developed a software
toolkit that allows for easy integration of custom ad-hoc retrieval pipelines in Docker
containers. In cooperation with the community, these efforts resulted in a library of
different Docker images that can be rerun on purpose [93]. An updated version of the
reimplementations that fixes the issues outlined above is available on GitHub [467].

5.2.2 uwmrg and uwmrgx Runs

Our reimplementation of GC’s submission to TREC Common Core 2018 mainly
builds upon the source code described above. The main difference between these runs
and those submitted to TREC Common Core 2017 is the composition of the training
data. Each classifier is based on training data retrieved from texts of scraped SERPs,
which, in turn, depend on the query of the related topic. In order to derive the first
run variant uwmrg, the entire content of web pages corresponding to the URLs of
the SERP was scraped, whereas the second run uwmrgx used only the snippets
from SERPs instead of scraping complete web pages. During training, the class
assignments of positive and negative features were based on a one-vs-rest principle.
Depending on the topic, positive samples were retrieved with the corresponding
title (and description), while scraped results of other topics served as negative
samples. More details are provided in the publication [64] and in the corresponding
GitHub repository [464].

5.3 Annotated Run Dataset

To demonstrate the potential of the reproducibility measures in combination with
the metadata schema, we demonstrate the applicability by annotating and evaluat-
ing a run file dataset based on CCRF. Table 5.1 provides an overview of the run
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Figure 5.2: Average retrieval performance of the reproduced baseline run WCro-

bust04 (left) and the advanced run WCrobust0405 (right) with different tf-based
threshold values (tf1-tf5) of the tf-idf features. The dashed lines correspond to the
effectiveness of the original experiment by Grossman and Cormack (GC).

files and their underlying combinations (of retrieval methods and test collections)
included in our dataset. While some of the runs were available from existing data
archives, i.e., those runs submitted by GC to TREC Common Core in 2017/18,
others were derived by us with Anserini’s runbook [463] that belongs to the im-
plementations of the reproducibility analysis by YXL [437]. More specifically, we
used Java v8, Lucene v7.6, and Anserini v0.3.0 at commit 9548cd6b, which were
also reported in the corresponding paper, to rerun the instructions of the runbook
successfully on all four test collections. All of the runs were annotated by us as
far as the respective information was publicly available. The annotated run data is
hosted in an open-access data archive on Zenodo [489]. The corresponding metadata
information is also provided in separate YAML files to demonstrate how run files
can be annotated with the help of repro eval.

5.4 Preliminary Reproducibility Evaluations

Before outlining how the metadata annotations can be used to conduct system-
atic reproducibility evaluations in a principled way, we focus on the quality of our
reimplementations in this section. At first, we analyze the reproducibility of the
WCrobust04 and WCrobust0405 runs based on the Core17 test collection. After-
ward, we analyze some particular aspects of the reimplemented uwmrg and uwmrgx

runs based on the Core18 test collection regarding the robustness and how the over-
all effect measures can be used as a visual analytics tool. Overall, we conclude from
this analysis that our reimplementations are successful in terms of reproducing and
replicating the retrieval effectiveness, i.e., the ARP over the 50 topics of the test
collections. However, as some of the evaluations show, it is harder to reproduce the
original results with a higher degree of rigor. For instance, the reimplementations
mostly fail to reproduce the exact order of documents in the rankings, which can
be critical in precision-oriented tasks, for instance, as part of experiments with real
users. These outcomes show that depending on the use case, different levels of rigor
regarding reproduction quality have to be considered.
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Figure 5.3: RMSE instantiated with nDCG between our reimplementations and
the original runs. The error at different cut-off levels is shown for the reproduced
baseline run WCrobust04 (left) and the advanced run WCrobust0405 (right) with
different tf-based threshold values tf1-tf5.

5.4.1 Retrieval Effectiveness

From the literature review of the ECIR reproducibility track, we already concluded
that it is common practice to compare reimplementations to the original results by
the retrieval effectiveness, i.e., the performance expressed by a retrieval measure
averaged over the topics of a test collection, to which we refer as the ARP in the
following. Figure 5.2 compares the ARP of different reproduction candidates to the
original results by four retrieval measures, including P@10, nDCG, Bpref, and AP.
The bar plots correspond to the ARP scores of reimplementations with different
tf-idf features in the training data, whereas the dashed line corresponds to the ARP
scores from the original experiment. More specifically, we artificially shrink the size
of the vocabulary by capping it with threshold values based on tf-weights. As we
build up on the scikit-learn implementation of the tf-idf features [321], we use the
max features parameter that considers the top tf-idf features ordered by the term
frequency across the corpus. We lower the parameter max features from tf1 to
tf5, i.e., decreasing max features leads to fewer tf-idf features being considered for
building the vocabulary.

First of all, we see that for both the baseline (WCrobust04 on the left) and
the advanced run (WCrobust0405 on the right), the retrieval performance could be
reproduced fairly well. While most of the reproduced ARP scores come close to
the originals, the P@10 scores even outperform the original scores for some topics.
Second, we see a drop in the performance as the vocabulary size shrinks, which allows
us to modify the retrieval performance in a principled way. Overall, we consider our
reimplementations to be a good basis for any further analysis.

In the following analysis, we have a look at how the effectiveness of the topic score
distributions could be reproduced in terms of the RMSE measure (cf. Equation 4.5).
Figure 5.3 shows the RMSE between the reimplemented and the original topic score
distributions for the different tf-variants that were already compared in Figure 5.2.
In this case, the RMSE is instantiated with nDCG and plotted over different cut-
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Figure 5.4: Kendall’s τ Union of our reimplementations with regard to the document
rankings of the original runs. The rank correlation at different cut-off levels is
shown for the reproduced baseline run WCrobust04 (left) and the advanced run
WCrobust0405 (right) with different tf-based threshold values tf1-tf5.

off levels. We see similar effects for both types of runs and draw the following
conclusions. First, we see a higher error as the retrieval performance decreases. As
expected, the RMSE increases with a larger “distance” between the topic scores
related to the decrease of the retrieval performance. Second, we see that the RMSE
decreases with higher cut-off levels, which can be explained by larger numbers of
relevant documents in the ranking as more documents are considered. It means
that low RMSE can also be achieved with different documents that comply with
the relevance labels in the original ranking. Thus, the RMSE can be considered
as a document-independent reproducibility measure. A comparison of the actual
document rankings is presented in the next part.

5.4.2 Document Rankings

As outlined in Chapter 4, the most rigorous and (also reasonable) level for evaluating
the reproducibility of IR experiments is the comparison of the actual document
rankings. For this purpose, two rank correlation measures were introduced (cf.
Equation 4.1 and 4.3). Figure 5.4 evaluates KTU over different cut-off values. These
experiments show no correlation between the original and reimplemented rankings,
neither for the baseline nor for the advanced run. Overall, the KTU tends to converge
towards correlation scores of 0.0. Kendall’s τ does not account for the rank-position
of the overlaps in the rankings of the original and reproduced run, i.e., it is not
top-heavy like RBO. Instead, it accounts for similarities or differences equally over
all rank positions. As the number of compared documents in the rankings increases,
there are more dissimilarities between the original and reimplemented rankings.
Thus, we conclude that our reimplementations are quite dissimilar from the original
results when comparing them by the document rankings.

Similar but slightly better results can be seen for the evaluations based on the
RBO in Figure 5.5. The RBO is a “more forgiving” or less strict measure due to
the parameterization of the underlying user model. In our experiments, we used
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Figure 5.5: Rank-biased Overlap of our reimplementations with regard to the doc-
ument rankings of the original runs. The rank correlation at different cut-off levels
is shown for the reproduced baseline run WCrobust04 (left) and the advanced run
WCrobust0405 (right) with different tf-based threshold values tf1-tf5.

p = 0.8, which puts more weight on the top-ranked document results. For this
reason, Figure 5.5 only shows the scores of rankings with up to 20 documents as
the RBO for higher cut-off levels does not change. For the baseline run, there
is consistency between the RBO and the ARP scores. More effective runs also
have a higher correlation in terms of the RBO. Likewise, most of the RBO scores
of the advanced runs agree with the relative ordering according to the retrieval
performance. In comparison, the RBO scores of the baseline are also higher than
those of the advanced run.

5.4.3 Robustness of Web Search-Enhanced Classifiers

In the following, we focus on our reimplementations of GC’s web content-enhanced
run submissions to TREC Common Core 2018 [64]. By enriching the topic-specific
training samples with text data from SERPs of web search engines and the linked
web pages, we train topic-specific and cost-efficient classifiers that can be used to
search test collections for relevant documents. We compare our reimplementations
to the original results that were derived approximately two years before.

However, web content and especially SERPs are subject to several influences, and
like the web content itself, they change frequently. Thus, it is worth investigating
the robustness of the reimplementations on a more granular level. For this purpose,
we retrieved training data from both web search engines for 12 days, starting on
June 7th, 2020. Furthermore, we compare the influence of retrieving the web search
results and, thus, the training data from the two different web search engines, Google
and DuckDuckGo. In our experimental setup, we consider the inferior run uwmrgx

as the baseline and the better-performing run uwmrg as the advanced version. More
details about the two runs were outlined in Subsection 5.2.2. For all web search
queries, concatenations of the topic’s title and description were used.

Figure 5.6 shows the RBO and the intersections between the URLs scraped every
second day compared to those scraped at the beginning of June 7th, 2020. As the
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Figure 5.6: Robustness analysis over a period of twelve days. The bars plot the
retrieval effectiveness in terms of nDCG, whereas the greenish plots show the cor-
responding error between the scores over the topics. The reddish plots show the
rank correlation and the intersection between the entries of SERPs that were used
to train the relevance classifiers at different dates.

URLs of the first date are used as the reference ranking, both plots of the RBO
and the relative intersection start at 1.0 on the first date. Additionally, the figure
includes the absolute nDCG scores and the RMSE scores of the reproduced baseline
runs. While the RBO scores decrease over time, the nDCG and RMSE scores are
robust with only slight variations. In combination, nDCG and RMSE show that the
ARP can be reproduced at different dates and that it is possible to make estimates
about the expected error between the score distributions.

We find a strong correlation between the RBO scores and the number of inter-
secting URLs in the search result lists (Pearson’s r = 0.9747 and p = 0.0002), the
lower the RBO, the fewer URLs are in both SERP lists from different days. While
it is out of scope to reach any definitive conclusions, we see that the SERP’s actual
search results (and their URL orders) do not have to be the same as in the origi-
nal experiment to reproduce the system performance and effectiveness. Under the
consideration of this “bag of words” approach, we assume that the results can be
reproduced with different web search results, having a similar vocabulary or tf-idf
features that resemble those used to train the classifiers in the original experiments.
In conclusion, the ARP can be reproduced independently of the actual web search
results and dates. It is sufficient to have topical relatedness in the web search results
to generate suitable tf-idf features that will yield the same effectiveness as in the
original experiment.

5.4.4 Overall Effects

In the following, we evaluate the reimplementations by replacing the target collection
and varying the query composition sent to the web search engines to retrieve the
text-based training data. We evaluate the reimplementations over all four newswire
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Figure 5.7: Comparison of the overall effects with training data either scraped from
DuckDuckGo (left) or Google (right). Both plots show the Delta Relative Improve-
ment over the Effect Ratio with different types of queries sent to the web search
engines to retrieve the training data. The blue plots show the results of queries
made from the topic’s title, whereas the green plots correspond to results based
on queries made from the topic’s title and description.

test collections, including Robust04/05 and Core17/18. Furthermore, we include
shorter queries solely based on the topic’s title as well as longer queries composed
of the topic’s title and description.

When replacing the target collection, it is impossible to compare KTU, RBO,
and RMSE since the runs contain different documents for possibly different topics.
In this case, the experiment can be evaluated at the level of overall effects. Here, the
ER and the DRI measure the effects between the baseline and advanced runs. As also
pointed out in Chapter 4, perfectly replicated effects are equal to ER=1, whereas
lower and higher scores than 1 indicate weaker or stronger effects, respectively,
than in the original experiment. The DRI complements the ER by considering
the absolute scores of the effects. In this case, perfect replication equals DRI=0.
Likewise, lower and higher scores indicate weaker or stronger effects, respectively.

When combining both measures in the evaluations, it is helpful to illustrate the
overall effects by plotting the DRI against ER. In general, it can be said that the
closer a point to (ER=1, DRI=0), the better the replication. Figure 5.7 shows this
visualization technique for runs based on training data from DuckDuckGo (left) or
Google (right), whereas both measures are instantiated with nDCG.

The colors distinct runs with title queries (blue) from title+description

queries (green). Comparing both search engines, the reproduced and replicated
overall effects tend to be higher for training data retrieved with Google, as can
be seen by the data points distributed over the second and fourth quadrants. In
contrast, for DuckDuckGo, all data points are in the second quadrant. Especially
the training data from Google retrieved with the title queries results in ER > 1
across all test collections, and thus all title data points are in the fourth quadrant.
In general, training data from Google with title queries results in stronger overall
effects than in the original experiment.
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Our additional analysis (cf. [64]) shows that this can be explained by lower
replicability scores for the baseline runs. In contrast, the advanced runs resemble
the original scores fairly well. For instance, the replicated advanced run uwmrg

based on Google with title queries derived from Robust05 achieves a score of
nDCGuwmrg’=0.5865, while the corresponding replicated baseline run uwmrgx results
in nDCGuwmrgx’=0.5003. In reference to the original scores of nDCGuwmrgx=0.5306
and nDCGuwmrg=0.5822, ER=1.6712 indicates larger effects between the baseline and
advanced version than in the original experiment.

Regarding the results based on training data from DuckDuckGo, there are weaker
overall effects with ER < 1 for each combination of test collection and query type.
In most cases, the baseline scores are higher than the corresponding counterparts
based on Google results, whereas the advanced scores are lower than those from
Google or the original experiments. For instance, replicated results derived from
Core18 with title+description queries results in ERnDCG=−0.1985. In this case,
the baseline scores are higher than those of the advanced versions.

5.5 Principled Evaluations Based on PRIMAD

In the following, we analyze the annotated run files of the dataset introduced in
Section 5.3. Having identified our reimplementations as reasonable candidates for a
reproducibility analysis, we put them into context by comparing them to the results
by YXL. Given the metadata annotations, we align the experiments to PRIMAD.
While certain components are fixed, others are modified to gain new insights. In to-
tal, we analyze three different use cases that incrementally diverge from the original
experimental setup by modifying the PRIMAD components. In the first experiment
(cf. Subsection 5.5.1), only the method component is varied by principled parameter
changes — a setting that complies with parameter sweeps as they are usually done
in computational experiments (PRIM’AD). In the second experiment (cf. Subsec-
tion 5.5.2), we evaluate the reproducibility of the CCRF method in reference to the
original submission made by GC and the corresponding reimplementations, which
translate into keeping the data fixed, while other PRIMAD components are varied
(P’R’I’M’A’D). Finally, we evaluate the replicability and generalizability in the third
experiment (cf. Subsection 5.5.3) by varying all of the components (P’R’I’M’A’D’).

5.5.1 PRIM’AD: Parameter Sweeps of the Method

After implementing a retrieval method, the actors usually improve the retrieval
performance by finding optimal parameterizations. For instance, this can be realized
with a systematic parameter analysis by tuning the implementations with grid search
techniques. However, the following experiments only vary a single parameter. To
this end, all of the PRIMAD components stay fixed except for the method (M’).

In this experiment, we use the reimplementations by YXL [437]. In contrast
to the original experiments, they introduced a multi-stage ranking pipeline to the
CCRF method by retrieving the first ranking with BM25 and expanded methods (in-
cluding RM3 and axiomatic reranking). The initially retrieved list is then reranked
by a ML classifier. The first-stage ranking and the ML-based reranking are interpo-
lated with parameterizable weights. YXL reimplemented the runs with different ML
classifiers such as support vector machines, logistic regression, or gradient boosting
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Figure 5.8: Parameter sweeps (of interpolation weights) evaluated by Average Preci-
sion (AP) and the corresponding error RMSEAP and rank correlation RBOAP based
on reimplementations by Yu et al. (YXL) [437].

trees. Figure 5.8 evaluates the rerankings with different interpolation weights by the
AP as well as the corresponding RMSEAP and RBOAP.

The evaluated runs are either made with only one source collection (Robust04) as
training data and derived from two different target collections (Core17 and Core18),
denoted as 04.17 and 04.18 or with two source collections as training data (Ro-
bust04 and Robust05), denoted as 0405.17 and 0405.18. As the retrieval effective-
ness in terms of AP shows, there is a sweet spot around an interpolation weight of
0.6, indicating that the runs of our regression tests reproduce those of YXL [437].

The RMSE quantifies the error between the topic score distributions of two runs
[60]. This particular experiment determines the distributions of topic scores from
the reranked runs with the lowest interpolation weight (0.1) and the other reranked
runs. While the absolute retrieval performance decreases after it peaks around an
interpolation weight of 0.6, the RMSEAP monotonically increases, meaning that the
topic score distributions more and more diverge from that of the reference (with an
interpolation weight of 0.1), which can be attributed to the increasing influence of
the ML-based reranker.

It can clearly be seen that the absolute AP scores, as well as the RMSEAP scores,
differ depending on the dataset (e.g., 04.17 vs. 04.18), which indicates that the
effectiveness of CCRF has a data dependency with regard to the combination of the
source and target collections.

5.5.2 P’R’I’M’A’D: Reproducing the Experiments

Reactive actions towards reproducibility can be realized in the form of a reimple-
mentation study where the original experiment is repeated based on the descriptions
in the corresponding publication. Suppose the outputs or artifacts of the original
experiments are available. In that case, as is the case for TREC runs, we can use
these artifacts as points of reference to which we compare the reimplementations’
outputs as it was outlined in the previous Chapter 4.

In the following experiment, we evaluate the reproducibility of the CCRF method
by comparing the reimplementations of YXL and BFFMSSS to the original results by
GC. We consider all of the PRIMAD components to be changed except for the data
component D since the reimplementations are evaluated on the same test collection
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Table 5.2: Reproducibility evaluation of Grossman and Cormack (GC) [159] com-
pared to Yu et al. (YXL) [437] and Breuer et al. (BFFMSSS) [60].

Researchers GC [159] YXL [437] BFFMSSS [60]

Baseline

Average Precision 0.3711 0.4018 0.3612
Kendall’s τ Union 1.0000 0.0086 0.0051
Rank-Biased Overlap 1.0000 0.1630 0.5747
Root Mean Square Error 0.0000 0.1911 0.1071
p-value 1.0000 0.1009 0.7885

Advanced

Average Precision 0.4278 0.4487 0.4208
Kendall’s τ Union 1.0000 0.0069 0.0111
Rank-Biased Overlap 1.0000 0.2231 0.6706
Root Mean Square Error 0.0000 0.2088 0.0712
p-value 1.0000 0.2785 0.8249

Overall effects

Effect Ratio 1.0000 0.8267 1.0514
Delta Relative Improvement 0.0000 0.0362 -0.0123

(Core17) as in the original experiment. Please note that this aligns with the ACM
terminology when treating the test collection as the original experimental setup.

Obviously, the reimplemented runs originate from three different groups of actors
(A’) who used different implementations (I’) on different platforms (P’). In general,
it is debatable if the other two components — the research goal and the method —
also changed since, from a general point of view, all of the runs are made to rank
documents of Core17 with the help of CCRF. However, as part of these evaluations,
we differentiate between the research goals of the three reimplementations. Opposed
to GC’s participation in TREC Common Core, the reimplementations by YXL and
us did not participate in a shared task but had the objective of reproducing the
original experiment. Thus, they have a different research goal (R’). Similarly, we see
differences in the method (M’) because of YXL’s reinterpretations of the workflow
that make a two-stage ranking procedure out of the original approach by introducing
BM25 as a first-stage retrieval method, followed by the actual CCRF, which, in turn,
is also implemented by other ML approaches than logistic regression.

Table 5.2 shows an evaluation of the reproduction quality based on the measures
that were introduced in Chapter 4. As the AP scores show, for both run types (base-
line and advanced), the retrieval performance of the BFFMSSS reimplementations
is slightly below the original results, while the YXL reimplementations outperform
the results by GC. We assume that the additional first-stage-ranker based on BM25
already provides a good baseline with acceptable recall rates, which is of benefit for
the ML-based reranker.

Regarding reproducibility, KTU shows that both reimplementations fail to repro-
duce the exact ordering of the documents in the rankings. Optimally, these scores
should be close to 1.0, while the reported values show almost no correlation between
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Figure 5.9: Evaluation of the overall effects based on Delta Relative Improvement
(DRI) and Effect Ratio (ER) of AP. To evaluate how well the overall effects repro-
duce in a different setting, we used the relative differences by GC based on Core17
for the YXL runs (blue) as the reference, whereas the relative differences of the BPS
runs (orange) were compared in reference to those by GC based on Core18.

the document rankings. However, in this regard, there is a higher similarity between
the GC and reimplemented runs, especially for the BFFMSSS runs, in terms of the
RBO, which can be partly explained by the measure’s discount for lower ranks [419].

Likewise, the RMSE and the p-values indicate that, in comparison, the topic
score distributions of the BFFMSSS runs are closer to the GC runs than the reimple-
mentations by YXL. Both measures are determined by the topic score distributions
of the AP scores. While low p-values would result from different distributions, higher
p-values indicate more similar distributions. As mentioned earlier, the YXL runs al-
ready result in strong baseline scores that outperform the original AP scores, and as
a result, the p-value is lower. Regarding the advanced run, both reimplementations
achieve slightly higher p-values.

If a baseline and advanced run are available, it is possible to determine the ER
and the DRI. Both measures quantify how well the reimplementations preserve the
improvements of the advanced run over the baseline. As shown by the ER, the
BFFMSSS runs are closer to the optimal value of 1.0, which again can be explained
by the already strong baseline of YXL runs. As a result, the improvements of the
advanced YXL runs are not as high as in the original experiments. Similarly, the
DRI score, which also accounts for the absolute scores of the baseline runs, is closer
to the optimal value.

5.5.3 P’R’I’M’A’D’: Generalization with Other Data

Finally, we provide an outlook on how well CCRF generalizes with other data and
with a method based on training data from web-search results. This setup translates
into a setting where every PRIMAD component is changed regarding the original
experiment. Similar to the evaluations in the previous Subsection 5.5.2, the first
five PRIMAD components are different than in the original experiment. Especially,
the method (M’) differs as some runs do not rely on tf-idf features derived from a
test collection but instead use scraped web search results as the “source collection”.
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Regarding the data (D’), we used all four test collections, i.e., Robust04, Robust05,
Core17, and Core18, as target collections.

From both reimplementations of YXL and BPS, we evaluate runs derived from
four target collections, including Core17/18 and Robust04/05. The YXL runs are
evaluated in reference to the GC runs from Core17 [159], while the BPS runs are eval-
uated in reference to the GC runs from Core18 [160]. When reproducing a retrieval
experiment on new data, it is impossible to evaluate some of the reproducibility
measures since they depend on runs derived for the same topics or from the same
pool of documents. Similar to the evaluations in Subsection 5.4.4, ER and DRI are
used as proxies to quantify how well relative improvements can be reproduced or
replicated. For both run types, Figure 5.9 illustrates these measures.

Both measures show that the reimplementations deviate from the original exper-
iment except for the BPS runs of Core17 with a nearly optimal DRI value. Likewise,
the corresponding ER score is below but close to 1.0. The YXL runs of Core18 have
the largest DRI deviation and also the lowest ER score. This complies with the
results of Subsection 5.5.2, which already showed that CCRF does not generalize
well with this particular combination of the Robust corpora and Core18. The exper-
iments with Robust04 also show that CCRF does not generalize with this particular
dataset. The positive DRI and low ER scores show that the baseline scores are
higher than in the original experiment, while the reimplemented advanced runs do
not provide a similar improvement. Both experiments on Robust05 have comparable
ER scores above 1.0, which shows that the generalization was more successful than
the experiments with the other test collections. However, it has to be considered
that there are lower absolute scores, as shown by the negative DRI scores.

Overall, the reproducibility of CCRF strongly depends on the combinations of
the datasets. While it is out of this study’s scope to draw any conclusions about this
circumstance, we assume this can be attributed to a higher overlap of vocabulary
terms in documents with relevance assessments in the respective corpora.

5.6 Conclusion

This chapter has introduced principled reproducibility (and replicability) evalua-
tions for system-oriented IR experiments. Based on the reimplementations of the
CCRF method by GC introduced in Sections 5.1 and 5.2, we have compiled an
annotated dataset of runs (cf. Section 5.3). Our preliminary reproducibility evalua-
tions in Section 5.4 analyzed the quality of our reimplementations before using the
corresponding run files for the principled reproducibility evaluations based on PRI-
MAD in Section 5.5. The outlined setups incrementally diverge from the original
experiment and cover three typical scenarios described in terms of PRIMAD.

It has to be pointed out that the contributions of this chapter have an entirely
system-oriented focus. Referring back to the experimental results from Subsec-
tion 5.4.2, we note that even though the retrieval effectiveness was reproduced fairly
well, there were tremendous differences between the document rankings with KTU
scores that did not indicate any correlation between the document rankings at all.

In order to provide an anecdotal example of what these results might imply for
the user experience, we have picked them up in a reproducibility experiment based
on the lexical retrieval method BM25. In Figure 5.10, we have determined the
P@10 scores as well as differences in terms of KTU and RMSE between runs with
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Figure 5.10: P@10, Kendall’s τ Union, and RMSE scores of rankings based on
BM25 and the TREC-COVID collection. All of the scores have been averaged over
50 queries and the reproducibility measures were determined in reference to the
center of the heatmaps, i.e., the run with parameters b = 0.5; k1 = 0.8.

variations of the parameters b and k1. All of the runs were determined based on the
TREC-COVID test collection [411] and contain ten documents for each query. The
P@10, KTU, and RMSE scores have been averaged over 50 title queries, whereas
the reproducibility measures were determined in reference to the parameter setting
of b = 0.5; k1 = 0.8 that is in the center of the heatmaps.

Even though these parameter variations result in negligible differences in the
retrieval performance, as seen from the P@10 scores, there are low correlations
between the document rankings regarding KTU with only subtle changes in the
parameterization. Although the retrieval performance might be nearly the same as
indicated by the low RMSE scores, the list of top-ranked documents is completely
different for some topics.

It is still an open research question what kinds of implications these deviations
would have in a user-oriented experiment. While it is fair to say that a reproduced
ranking with a completely different document order is a serious problem when re-
peating a user experiment, it was shown, on the other hand, that users compensate
for worse ranking results [396]. In this sense, the P@10 scores show that the rank-
ing still contains documents with the same average relevance and possibly the same
information, which means that users could possibly gain the same knowledge as in
the original experiment and still close their information gap when adapting their
browsing behavior or reading documents in a different order.

These examples highlight once more the importance of considering the user as
part of the experiment and the corresponding evaluations. In general, little attention
is paid regarding the implications for users in reproducibility experiments, as could
also be seen from our literature review of the ECIR reproducibility track. To this
end, the following Chapters 6, 7, and 8 shift the focus towards more user-focused
evaluations, either by simulation or real-world experimentation.





Chapter 6

Simulated User Query Variants

In this chapter, we validate simulations of User Query Variants (UQV) with the help
of TREC test collections. Besides, we introduce a simple yet effective method with
better reproductions of real queries than the conventional simulation methods. Our
evaluation framework validates the simulations in reference to real UQV regard-
ing the retrieval effectiveness, reproducibility of topic score distributions, shared
task utility, effort and effect, and query term similarity. In sum, our contribution
C7 covers a method for query simulations based on IR test collections and a
corresponding evaluation framework.

Our experiments include more general query simulators making query formula-
tions based on topic texts, and opposed to that, simulations of known-item searchers
who are familiar with the vocabulary of relevant documents in the document col-
lection. As a compromise between these two types of simulators, we introduce a
simulation method that allows parameterizing the query reformulation behavior and
thus better reproduces the outcomes of real queries. More specifically, our research
questions are as follows:

RQ3 How do real user queries relate to simulated queries made from topic texts and
known-items in terms of retrieval effectiveness?

RQ4 To which degree do simulated queries reproduce real queries provided that only
resources of the test collection are considered for the query simulation?

RQ5 How well does the introduced query simulation method generalize in a cross-
collection setting where the query simulations are based on a source collection
and used to rank documents of a target collection?

Overall, we conclude that the general query simulators based on the topic text’s
vocabulary are suitable estimates for lower-bound effectiveness. At the same time,
the simulated know-item searchers are upper-bound effectiveness estimates within
the range of the analyzed queries. Whereas the retrieval effectiveness and statistical
properties of the topic score distributions and economic aspects are close to that of
real queries, it is still challenging to simulate exact term matches and later query
reformulations. Our cross-collection experiments show that most of the findings can
be replicated if the query simulations are based on the test collection of Core17 and
used to rank the test collection of Robust04. Most of the contents in this chapter
are based on our results that were contributed to ECIR [62].

97
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The remainder of this chapter is structured as follows. The next Section 6.1
puts our contributions into context with other existing work. In Section 6.2, we
review the existing methods for simulating queries from test collections and present
our simulation approach. Section 6.3 introduces the validation framework, which is
used in Section 6.4 for the experimental evaluations, followed by the replicability
analysis with another test collection in Section 6.5. Finally, we give answers to our
research questions in Section 6.6 and conclude in Section 6.7.

6.1 Query Simulations and User Query Variants

As pointed out in Chapter 3, more specifically in Subsection 3.1.7, system-oriented
IR evaluations are limited to a rather abstract understanding of how the real user
behaves. Under the Cranfield paradigm, the simplified understanding of users is
limited to a single query and the examination of the result list in its entirety [31].
However, real search behavior is more complex: searching is normally an iterative
process with query reformulations. Furthermore, not every search result is examined
but rather picked out after judging its snippet text.

In order to compensate for this shortcoming, it is common practice to include
(logged) user interactions in the evaluation process. Industrial research is often sup-
ported by large datasets of user interactions that, unfortunately, cannot be shared
publicly, e.g., due to privacy concerns [102]. As a solution, simulating user inter-
actions provides a cost-efficient and reproducible way to support system-oriented
experiments with more realistic directives when no interaction logs are available or
when it is simply not feasible to conduct a user-oriented study [31].

Carterette et al. [79] addressed the lack of user interaction data available to
academic research by introducing the concept of Dynamic Test Collections. Their
framework expands test collections with simulated interactions comprising the entire
sequence of interactions, including the simulation of queries, clicks, dwell times,
and session abandonment. More recently, similar frameworks were introduced by
Maxwell and Azzopardi [286] as Complex Searcher Model, by Pääkkönen et al. [317]
as Common Interaction Model, or by Zhang et al. [443]. Our work can be seen in
the light of Dynamic Test Collections and the related simulation frameworks, but
with a special focus on simulating UQV.

Whereas previous work on simulating interactions either sought to cover com-
plete interaction sequences [79,285,443], click interactions [88] (that are in the focus
of the next Chapter 7), or stopping rules [285,317], work on simulating queries is un-
derrepresented as also pointed out by Günther and Hagen [164]. Very few attempts
have been made towards query simulations, and it has not been investigated if these
can reproduce properties of real queries. Especially, it has not been validated yet to
which degree query simulators reproduce real user queries when they are based on
the resources of TREC test collections.

As opposed to previous work in this regard, it is not our primary goal to generate
the most effective queries but rather to validate simulated queries since the query
formulation is one of the first user interactions with the search system, and as such,
it is a critical component for any subsequent simulated interactions like clicks and
others. This study aims to answer how queries can be simulated and evaluated by
using TREC test collections and the corresponding resources. Most of the current
methods for query simulations follow a two-stage approach, including the term can-
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didate generation and the query modification strategy. Usually, the term candidates
are derived from a language model. Jordan et al. [211] introduced Controlled Query
Generation (CQG) that exploited the relative entropy of a language model for query
term generation. Azzopardi et al. [18,19] applied CQG when generating queries for
known-item search. Similarly, Berendsen et al. [45] used annotations to group docu-
ments, and Huurnik et al. [195] simulated queries for purchased items. When query
term candidates are available, there exist some commonly used query modification
strategies [16,33,211,222], which were also applied in follow-up studies [285,286,405],
following principled query reformulation patterns (cf. Table 6.1).

If large-scale user logs are available, different approaches proposed learning to
rewrite queries [176], model syntactic and semantic changes between query refor-
mulations [177], or replace old query terms with new phrases with the help of the
point-wise mutual information [209]. In contrast to these examples, the query sim-
ulations analyzed in this study do not rely on large-scale user logs but use test
collections and related resources, i.e., topics and relevance judgments.

As part of follow-up studies related to the TREC Session Track, Guan et al. [162,
425] improved session search results by introducing the Query Change Model (QCM)
according to which the session search is modeled as a Markov Decision Process that
considers transitions between states, i.e., queries and other interactions, to improve
search results for query reformulations. Van Gysel et al. [167] found that QCM is
especially effective for longer sessions while being on par with term-frequency-based
approaches for shorter sessions. Our query simulation method is inspired by QCM
but generates queries instead of improving retrieval results throughout a session.

Simulated UQV contribute to more diverse and more realistic user-oriented di-
rectives as part of the system evaluations. Besides the actual simulation of session
search, applications for simulated queries are manifold when real user queries are un-
available. For instance, Bailey et al. [23] claim that a larger variance of the retrieval
effectiveness can be expected from query variations than from system variations, and
they highlight that system evaluations can be improved when multiple query vari-
ants for the same information need are considered. Besides, UQV can enhance the
pooling process [297], make rank fusion approaches possible [44], are used for query
performance prediction [124], or assist users with query suggestions that improve
the recall [406].

6.2 Query Generation Techniques

In the following, we recapture the conventional query generation techniques that
rely on a two-stage process, including the generation of term candidates (cf. Sub-
section 6.2.1) and the modification strategy (cf. Subsection 6.2.2). Afterward, we
describe our new approach, giving control over the query reformulation behavior (cf.
Subsection 6.2.3).

6.2.1 Term Candidate Generation

Simulating queries based on topics of test collections most likely complies with ex-
ploitation search tasks [257], where users normally have a very concrete under-
standing of their information needs but are not necessarily familiar with the doc-
uments in the collection. After real users have read the topic, they will likely in-



100 CHAPTER 6. SIMULATED USER QUERY VARIANTS

Table 6.1: Query modification strategies by Baskaya et al. [33]. The corresponding
terms are either taken from the concatenated topic text or based on a language
model made from relevant documents.

Strategy Query modifications

S1 q1 = {t1}; q2 = {t2}; q3 = {t3}; ...
S2 q1 = {t1, t2}; q2 = {t1, t3}; q3 = {t1, t4}; ...
S2’ q1 = {t1, t2, t3}; q2 = {t1, t2, t4}; q3 = {t1, t2, t5}; ...
S3 q1 = {t1}; q2 = {t1, t2}; q3 = {t1, t2, t3}; ...
S3’ q1 = {t1, t2, t3}; q2 = {t1, t2, t3, t4}; q3 = {t1, t2, t3, t4, t5}; ...

clude key terms of the topic texts when formulating queries. As a simplified imple-
mentation, the TREC Topic Searcher (TTS) considers only terms of the sequence
Ttopic = {t1, ..., tntopic

}, composed of the topic’s title, description, and narrative,
where t1, ..., tntopic

is the term sequence in the concatenated text with ntopic terms.

Opposed to the TTS, we simulate a Known-Item Searcher (KIS) for upper bound
effectiveness estimates. Here, we assume the simulated users to be familiar with the
document collection. When reading the topics, they recall key terms of the relevant
documents in the collection and use these as their query terms. In this case, the
sequence with nrel term candidates Trel = {t1, ..., tnrel

} is derived with the help of a
language model based on CQG by Jordan et al. [211] according to:

P (t|Drel) = (1− λ)Ptopic(t|Drel) + λPbackground(t) (6.1)

where the topic model Ptopic(t|Drel) is made from the relevant documents Drel

for a given topic, while the background model Pbackground(t) is derived from the
vocabulary of the entire corpus. λ is used to model the influence of the background
model, and it is set to 0.4 to be consistent with previous work [107,211]. In this case,
t1, ..., tnrel

are ordered by the decreasing term probabilities of the language model.

6.2.2 Query Modification Strategy

We make use of the query modification strategies proposed by Baskaya et al. [33],
that were also used in previous simulation studies [211,285,286,317,405]. Table 6.1
shows these query modification strategies, which are used in combination with the
term candidates of Ttopic and Trel: the strategy S1 outputs single term queries fol-
lowing the ordering of term candidates; S2 keeps the first candidate term fixed and
composes query strings by replacing the second term for reformulations; S2′ is similar
to S2, but keeps two candidate terms fixed; S3 starts with a single term query and
incrementally adds query terms for reformulations; S3′ is similar to S3, but starts
with two candidate terms. In total, we analyze ten different query simulators that
result from the two-term candidate generators that are combined with five query
modification strategies, denoted as TTSS1-S3′ and KISS1-S3′ , respectively.
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Table 6.2: Controlled query reformulation strategies and corresponding weights ac-
cording to Equation 6.3. The chosen weights are based on optimal parameters
determined by Yang et al. [425] and were adapted to comply with the described
reformulation behaviors.

Strategy α β ϵ δ The user simulator . . .

S4 2.2 0.2 0.05 0.6 . . . prefers title and topic terms,
and keeps previous query terms;

S4’ 2.2 0.2 0.25 0.1 . . .mainly keeps previous query terms,
and tends to include other terms;

S4” 0.2 0.2 0.025 0.5 . . . sticks to topic terms, with more
variations between reformulations.

6.2.3 Controlled Query Reformulations

Compared to the previous query simulators, this approach adds a scoring stage for
the generated query string candidates. These candidates are generated by consid-
ering every possible combination of n-grams from a term set. The corresponding
terms are either taken from Trel or Ttopic+rel = (Ttopic ∩ Trel) ∪ (Trel \ Ttopic)k, where
(Ttopic ∩ Trel) contains topic terms in Trel and (Trel \ Ttopic)k denotes the top k terms
of Trel that are not in the topic text. In this regard, k models the user’s vocabulary
and domain knowledge. Having a set of different query string candidates, we rank
the queries by:

score(q) =

∑
t∈q Θ(t)

|q|
(6.2)

where |q| denotes the query length and Θ(t) is a term-dependent score inspired
by QCM [162,425] and is defined as follows:

Θ(t) =


α(1− P (t|Drel)), t ∈ qtitle

1− βP (t|Drel), t ∈ +∆q ∧ t ∈ Ttopic

ϵ idf(t), t ∈ +∆q ∧ t /∈ Ttopic

−δP (t|Drel), t ∈ −∆q

(6.3)

where qtitle is the set of topic title terms, and +/−∆q denotes added or removed
terms of a query reformulation that is made in reference to the previously simulated
query. α gives weight to query terms in the query string candidate that are also
contained in the query based on the topic title qtitle. β controls how much weight
is given to terms (in the query reformulation candidate) that were added to the
previous query (+∆q) and that are also contained in the concatenated topic text
Ttopic. Similarly, ϵ controls how much weight is given to added query terms. In
contrast, these terms are not contained in Ttopic. Finally, δ controls how much
weight is given to terms that were removed from the previous query formulation.

To generate the first query of a simulator q1, we use the topic title as the ref-
erence for which the first formulation is determined with the help of Equation 6.2.
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Subsequent reformulations are determined with regard to the previously generated
query. To find the parameters of S4-S4′′, we initially set them to the optimal pa-
rameters reported by Yang et al. [425]. Afterward, we adapted single parameters to
reflect the query reformulation behavior described in the following.

In our experiments, we analyze 3-, 4-, and 5-gram query candidates and three
different parameterizations of the simulators, defined in Table 6.2 and described as
follows. First, we analyze strategy S4, which tends to prefer topic terms and mainly
keeps terms of previous queries. Second, we analyze the strategy S4′, which mainly
keeps terms of previous queries, but tends to include terms that are not in the topic
text. Finally, we analyze the strategy S4′′, which tends to stick to the topic terms
but does not necessarily keep terms of previous query formulations. In sum, we
analyze six different instantiations of these simulators, which are either based on
Trel (denoted as KISS4-S4′′) or based on Ttopic+rel with k = 4 (denoted as TTSS4-S4′′).

The reasoning behind choosing these three parameterizations can be described
as follows. The first strategy S4 represents a user who formulates queries close to
the topic text and who varies little of the previously formulated query to try out
modifications of the initial query in a principled way. Similarly, the underlying
user of strategy S4′ also varies the query strings more principled and incrementally.
However, in contrast to the simulated user of strategy S4, the S4′ user prefers terms
not mentioned in the topic text, corresponding to a user who tries to include previous
knowledge about the topic in the query formulations. Finally, the third strategy S4′′

corresponds to a user whose vocabulary is mainly based on the topic text, like the
user of S4. However, the user of S4′′ tries to explore the information space by a
stronger variation between query reformulations.

6.3 Validation Framework

In the following, we outline our evaluation framework used to validate the simu-
lations in reference to real queries in different aspects. It includes evaluating the
retrieval effectiveness, shared task utility, effort and effect, and query term similarity
between simulated and real queries.

6.3.1 Retrieval Effectiveness

As shown by Tague and Nelson, simulated queries fall behind real queries in terms of
retrieval effectiveness [384]. For this reason, we evaluate the retrieval effectiveness as
it is common practice in system-oriented IR experiments. The retrieval effectiveness
is determined by the average of a measure over all topics in a test collection. Be-
yond comparing the averaged means of different queries, we propose a more in-depth
analysis of the topic score distributions for which we use some of the reproducibil-
ity measures that were introduced in Chapter 4. More specifically, we use RMSE
(cf. Equation 4.5) to measure the closeness between the topic score distributions,
with low errors indicating similar distributions of the retrieval effectiveness over the
topics. Additionally, low p-values of paired t-tests (cf. Subsection 4.2.5) indicate a
higher probability of different retrieval effectiveness.
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6.3.2 Shared Task Utility

According to Huurnik et al. [195], the ARP of the simulated queries alone is not
an appropriate indicator of how well the simulations resemble the real queries since
useful query simulators should identify the best system. As proposed by them, we
analyze how well the simulated queries reproduce system rankings, i.e., systems or-
dered by their relative retrieval effectiveness, by comparing them with the help of
Kendall’s τ — an approach that is common practice in meta-evaluations of shared
tasks [409] (cf. Subsection 4.2.6) and that will also be picked up in the following
Chapter 7. We compare the simulated and real queries by determining how well sim-
ulated queries can reproduce the system rankings with different parameterizations
(and different retrieval effectiveness). More specifically, we determine Kendall’s τ
for the i-th query formulation of nD topics in a test collection D as:

τi =

∑nD

j=1 τ(si,j, s
′
i,j)

nD

(6.4)

where si,j denotes the reference system ranking for the i-th query formulation
of the j-th topic, s′i,j the corresponding reproduced system ranking, and τ(si,j, s

′
i,j)

denotes the rank correlation between the two system rankings according to Kendall’s
τ . In our experiments, we determine si,j as the reference by the query formulations
of real users and compare it to s′i,j resulting from the query formulations generated
by our simulators.

6.3.3 Effort and Effect

In order to account for a more user-oriented evaluation, we simulate sessions and
evaluate them with regard to the effort (number of queries) that has to be made
and the resulting effects (cumulated gain). First, we simulate sessions using ten
simulated queries and an increasing number of documents per query and evaluate
the results by the Session-Based Discounted Cumulated Gain (sDCG), which dis-
counts the cumulated gain document- and also query-wise by the logarithm and the
corresponding base bq as well as by the query position i in a session [203]:

sDCG =
∑

i∈{1,...,nj}

DCGqi

1 + logbq(i)
(6.5)

where nj denotes the number of available queries for a topic j. In our experi-
ments, we evaluate sDCG at different ranks, i.e., the simulated users browse a fixed
depth of ranks before reformulating a query. Furthermore, we simulate memoryless
users, i.e., the users also take previously seen documents into account.

In addition, we evaluate the simulation quality from another, more economical
point of view. Azzopardi [16] applied economic theory to the retrieval process and
demonstrated that for a pre-defined level of cumulated gain, query reformulations
could be compensated by browsing depth (or vice versa browsing depth by more
query reformulations). Furthermore, he illustrates this relationship with isoquants,
a visualization technique used in microeconomics. Thus, we evaluate the closeness
between isoquants of the simulated and real queries with the help of the Mean
Squared Logarithmic Error (MSLE) as follows:



104 CHAPTER 6. SIMULATED USER QUERY VARIANTS

MSLE(B̄, B̄′) =
1

nj

nj∑
i=1

(log(B̄i + 1)− log(B̄i
′
+ 1))2 (6.6)

where B̄i denotes the average browsing depth, i.e., the number of documents
that have to be sighted, in order to achieve a pre-defined level of gain with i queries
for each topic in a test collection. B̄ is a vector that contains nj entries with the
corresponding average browsing depths, and nj is the total number of available
queries for each topic. B̄′ is the corresponding vector of the simulated queries.

6.3.4 Query Term Similarity

This study’s primary goal is not to simulate query strings with exact term matches.
Instead, simulated UQV should result in diverse query strings for a given informa-
tion need. Nonetheless, it is worth analyzing the term overlap between the simulated
and real queries. As Liu et al. [256] or Mackenzie and Moffat [269] propose, we deter-
mine the Jaccard similarity between the sets of unique terms made from the query
reformulations. When compared with the other evaluations, the term similarities
add more insights about the simulated UQV. For instance, if it is possible to sim-
ulate query reformulations that adequately relate to the properties of real queries
but with other terms. We determine the Jaccard similarity over nD topics by:

Jj(Q,Q′) =
|Q ∩Q′|
|Q ∪Q′|

J̄(Q,Q′) =
1

nD

nD∑
j=1

Jj(Q,Q′)
(6.7)

where Jj(Q,Q′) denotes the Jaccard similarity for the j-th topic between the
query term sets Q and Q′ resulting from the unique query terms of all available
query formulations for the corresponding topic. If there are different numbers of
query formulations available for a particular topic, we restrict both term sets to
the number of query formulations available from both query generators in order
to avoid a biased Jaccard similarity that would result from one query set having
substantially more query terms. With our query simulators, we can generate an
arbitrary number of query reformulations. However, some users (of the dataset
described in the following subsection) formulated just a few queries for some topics
or a different number of queries per topic in general; thus, we compare the sets with
unique query terms resulting from an equal number of real and simulated queries.
As an alternative, the similarity can be determined by comparing an equal number
of terms instead of an equal number of queries. However, in our evaluations, we want
to account for the differences that can occur when simulated users tend to generate
longer query strings over query reformulations (cf. S3 and S3′ in Table 6.1).

6.3.5 Datasets and Implementation Details

In our experimental setup, we use the UQV dataset [487] provided by Benham and
Culpepper [41]. Given the topic texts, eight users formulated up to ten query vari-
ants for each topic. As can be seen in Figure 6.1, each of the eight users formulated
at least one query for each topic, and the fifth user (denoted as UQV5) formulated
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Figure 6.1: Query distribution in the dataset by Benham and Culpepper [41] over
the topics of the Core17 test collection. The bar plots show for how many topics
queries were made for the i-th formulation. There is a single user, to which we refer
as UQV5, who consistently formulated ten queries for each topic.

ten queries for each topic. More details about the query collection process are pro-
vided by Benham et al. [42]. Accordingly, we evaluate the system runs with The New
York Times Annotated Corpus and the topics of TREC Common Core 2017 [4]. As
part of our experiments, we exploit the interactive search possibilities of the Pyserini
toolkit [250]. We index the Core17 test collection with the help of Anserini [428]
and the default indexing options as provided in the regression guide [462]. Unless
stated otherwise, all results are retrieved with the BM25 method and Anserini’s
default parameters (b = 0.4, k = 0.9). We evaluate the results with the repro eval

toolkit [61] featuring bindings to trec eval measures, which was already introduced
in Chapter 4. We made the source code of the experiments and the simulated queries
publicly available in a GitHub repository [465].

6.4 Experimental Validation

The following section presents the experimental results that are validated according
to the framework introduced in the previous section, including the retrieval effec-
tiveness (cf. Subsection 6.4.1), the shared task utility (cf. Subsection 6.4.2), tradeoffs
between effort and effect (cf. Subsection 6.4.3), and the query term similarities (cf.
Subsection 6.4.4).

6.4.1 Retrieval Effectiveness

Regarding RQ3, we validate the retrieval effectiveness of real (UQV) and simulated
(TTS/KIS) queries. Table 6.3 shows the ARP, including nDCG and AP scores that
are determined by averaging results with 1000 documents per topic and P@10 scores
over all queries, the first, or the best query of a topic.1 First of all, our assumptions
are confirmed. The retrieval effectiveness of real queries ranges between that of
the TTSS1-S3′ and KISS1-S3′ simulators. Especially, the effectiveness of the TTSS1-S3′

1S1 and S3, as well as S2 and S3′, do not differ when averaging over the first queries.
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Table 6.3: Retrieval effectiveness over q queries. Besides averaging the retrieval
effectiveness over all available queries, we also evaluated the effectiveness of the first
and the most effective queries for each topic.

All queries First queries Best queries

q nDCG P@10 AP q nDCG P@10 AP q nDCG P@10 AP

UQV1 150 .3787 .4507 .1581 50 .4293 .5040 .2003 50 .4969 .6320 .2429

UQV2 52 .4221 .5058 .2020 50 .4096 .4880 .1894 50 .4103 .4900 .1896

UQV3 68 .3922 .4353 .1780 50 .3979 .4560 .1813 50 .4117 .4800 .1878

UQV4 123 .4126 .4894 .1888 50 .4469 .5220 .2099 50 .5146 .6300 .2644

UQV5 500 .3922 .4330 .1649 50 .4447 .4920 .2043 50 .5353 .7240 .2807

UQV6 136 .4030 .4713 .1843 50 .4488 .5080 .2197 50 .4980 .5980 .2515

UQV7 50 .4980 .5720 .2418 50 .4980 .5720 .2418 50 .4980 .5720 .2418

UQV8 156 .3814 .4545 .1645 50 .4046 .4500 .1799 50 .4556 .5620 .2193

TTSS1 500 .0479 .0306 .0127 50 .1705 .1280 .0541 50 .3066 .2360 .0971

TTSS2 500 .1964 .1716 .0688 50 .3592 .3900 .1604 50 .4391 .5100 .2097

TTSS2′ 500 .3387 .3426 .1413 50 .3895 .4020 .1821 50 .4639 .5940 .2283

TTSS3 500 .3323 .3632 .1388 50 .1705 .1280 .0541 50 .4776 .6080 .2383

TTSS3′ 500 .3499 .3874 .1474 50 .3592 .3900 .1604 50 .4709 .6060 .2311

TTSS4 500 .4493 .5168 .2088 50 .4409 .4920 .2072 50 .5945 .7620 .3282

TTSS4′ 500 .4788 .5626 .2288 50 .4976 .5940 .2429 50 .6207 .8040 .3554

TTSS4′′ 500 .3780 .4224 .1644 50 .4393 .4860 .2065 50 .5812 .7680 .3222

KISS1 500 .1334 .1044 .0314 50 .2836 .2040 .0813 50 .4087 .4400 .1492

KISS2 500 .3969 .3972 .1615 50 .5096 .5400 .2535 50 .5988 .7460 .3429

KISS2′ 500 .5114 .5666 .2507 50 .5474 .6220 .2870 50 .6336 .7980 .3762

KISS3 500 .5598 .6336 .3009 50 .2836 .2040 .0813 50 .6907 .8620 .4299

KISS3′ 500 .5941 .6882 .3285 50 .5096 .5400 .2535 50 .6922 .8620 .4337

KISS4 500 .5216 .5976 .2604 50 .5146 .5960 .2630 50 .6461 .8200 .3902

KISS4′ 500 .5008 .5888 .2416 50 .5033 .5980 .2400 50 .6269 .8080 .3703

KISS4′′ 500 .4859 .5584 .2293 50 .5191 .6020 .2644 50 .6401 .8360 .3781

queries stays below that of real queries. For instance, the average nDCG scores of the
UQV queries range between 0.3787 and 0.4980, whereas the maximum score of the
TTSS1-S3′ queries is 0.3499 and the nDCG scores of KISS2′-S3′ lie above those of the
UQV. Similarly, the nDCG scores averaged over the first UQV queries reach 0.3979
at a minimum, whereas the maximum score of the TTSS1-S3′ queries is 0.3895. When
averaging over the best queries, most nDCG scores of TTS fall into the range of real
queries, but there is also a higher probability of finding a good-performing query
since more TTS than UQV queries are available. Except for single-term queries (S1),
all KIS scores outperform the UQV queries when averaging over the best queries.
With regard to the simulated queries based on the TTSS4-S4′′ approach, most of the
nDCG, P@10, and AP scores fall into the range of the real queries, while KISS4-S4′′

queries outperform UQV queries. Thus, we have a specific focus on TTSS4-S4′′ .

Figure 6.2 shows the RMSEnDCG between queries with conventional query mod-
ification strategies (TTSS1-S3′/KISS1-S3′) and the real queries (UQV). Especially for
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the TTS queries, the strategy S2′ has the lowest RMSE scores and acceptable scores
for the KIS queries. In the following experiments, we primarily use the strategy S2′

for both the TTS and KIS queries since their term length complies with the typical
length of real queries [201] and they serve as estimates of lower and upper bound
retrieval effectiveness.

Additionally, we evaluate the TTSS4-S4′′ queries with the help of the RMSE and
simulations in reference to the ten queries per topic of UQV5. For each query
reformulation, 100 documents are retrieved and contribute to the final ranking list
of a topic if a previous query has not retrieved them. Suppose the second query
reformulation retrieves 80 previously unseen documents. In that case, the queries
would be appended to the first 100 results and placed a rank 101 to 180 in the final
ranking list. Figure 6.3 shows the RMSE instantiated with P@1000, nDCG, and AP,
along with an increasing number of documents retrieved with ten queries. For all
measures, the error increases when more documents per query are retrieved. With
regard to P@1000 and nDCG, the TTSS2′ and KISS2′ queries have the largest error,
while KISS2′ has a lower RMSEAP than TTSS4′ . For all measures, the TTSS4-S4′′

queries have the lowest error, which means they are the best approximation of
UQV5 among all analyzed query simulations.

Finally, we compare the topic score distributions of the simulated queries and
all UQV queries by paired t-tests.2 Since some users formulated no more than one
query per topic, we limit our evaluations to the first query of each simulator. It
means that each of the p-values shown in Figure 6.4 is determined by t-tests with
nDCG score distributions that result from 50 UQV and 50 simulated queries. The
TTSS2′ queries have the highest p-values when compared with UQV{2,3,8}. These
results align with the ARP scores reported in Table 6.3. The nDCG scores of
UQV2 (0.4096), UQV3 (0.3979), and UQV8 (0.4046) are the most similar to the
nDCG score of TTSS3 (0.3895) in comparison to other simulators. In contrast,
the p-values of KISS2′ queries are low for all UQV queries, which complies with
the ARP scores in Table 6.3. The KISS2′ scores averaged over the first queries
are substantially higher compared to the UQV scores (e.g., nDCG(KISS2′)=0.5474
compared to the best UQV query with nDCG(UQV7)=0.4980). The UQV{1,4,5,6,8}
queries have comparably higher p-values with the TTS{S4,S4′′} queries which align
with similar ARP scores. Interestingly, the t-test with UQV7 and TTSS4′ results
in the highest overall p-value of 0.9901 and similarly high p-values with KISS4-S4′′ .
This circumstance lets us assume that the corresponding user of the UQV7 queries
diverged from the terms in the topic texts and had some prior knowledge about
adequate queries for at least some of the topics. In sum, not only can the ARP be
reproduced with the simulated TTSS4-S4′′ and KISS4-S4′′ queries, but also statistical
properties of the topic score distributions.

6.4.2 Shared Task Utility

Regarding RQ4, we validate to what degree the simulated queries reproduce proper-
ties of the real queries in several ways. First, we evaluate if the simulated queries can
preserve the relative system orderings. To be consistent with Huurnik et al., we eval-
uate five systems with the same parameterizations (µ = 50, 250, 500, 1250, 2500, 5000)

2Applying the Bonferroni correction adjusts the alpha level to α = 0.05
64 ≈ 0.0008 (considering

eight users and eight query simulators for an alpha level of 0.05).
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Figure 6.2: RMSE between the topic scores resulting from the simulated and real
UQV queries. The left plot shows the error of the TTSS1-S3′ queries, and the right
plot shows the error of the KISS1-S3′ queries regarding queries made by eight users.

0 200 400 600 800 1000
Number of documents

0.01

0.02

0.03

0.04

RM
SE

 (P
@

10
00

)

RMSE (P@1000) between 
 UQV5 and query simulations

TTSS2
KISS2
TTSS4
TTSS4
TTSS4

0 200 400 600 800 1000
Number of documents

0.10

0.15

0.20

0.25

0.30

RM
SE

 (n
DC

G)

RMSE (nDCG) between 
 UQV5 and query simulations

TTSS2
KISS2
TTSS4
TTSS4
TTSS4

0 200 400 600 800 1000
Number of documents

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

RM
SE

 (A
P)

RMSE (AP) between 
 UQV5 and query simulations

TTSS2
KISS2
TTSS4
TTSS4
TTSS4

Figure 6.3: RMSE instantiated with P@1000, nDCG, and AP over an increasing
number of documents per query w.r.t. the fifth user in the dataset (UQV5).
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Figure 6.4: p-values of paired t-tests between UQV and simulated queries. The
corresponding topic scores are based on nDCG for the first query of each topic that
was generated by a simulator or formulated by one of the eight users.

of the Query Likelihood Model with Dirichlet Smoothing (QLD) [439]. However,
other retrieval methods and variations could also be reasonable, e.g., different in-
terpolation weights between a reasonable and inferior ranking. For each query for-
mulation qi, we determine the correlation by Kendall’s τ averaged over all topics
(cf. Figure 6.5) in comparison to the UQV5 queries. The TTSS2′ queries do not
preserve the relative system ordering. Especially for the first five query reformula-
tions, there is a low correlation with the relative system orderings of the real queries.
Interestingly, the KISS2′ queries result in acceptable Kendall’s τ scores [409], while
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Figure 6.5: Kendall’s τ between the system rankings resulting from the i-th query
of the simulators in reference to the system ranking of the real user (UQV5).

the scores beyond the sixth query formulation show low correlations. Similarly, the
TTSS4-S4′′ queries correlate with the system orderings of UQV5 queries fairly well,
even reaching the maximum score of 1.0. Beyond the sixth query reformulation,
the correlation falls off. While it is out of this study’s scope to reach any definitive
conclusions, we assume that this is related to query drifts - an issue that is also
known from term expansions as part of pseudo-relevance feedback [106,352].

6.4.3 Effort and Effect

Since most of the experiments validate single queries only, we simulate search ses-
sions and evaluate these by sDCG (instantiated with b=2, bq=4). We compare
sessions with 3, 5, or 10 queries and an increasing number of documents per query.
Figure 6.6 compares the queries of UQV5 (made by a single user [42]) to ten simu-
lated queries of TTSS2′ , KISS2′ , and TTSS4-S4′′ .

As expected, the cumulative gain increases faster when more queries per session
are used. For instance, when using five instead of three queries, the results of two
additional queries are included in the session, i.e., the first three queries are the
same, and additional queries can potentially contribute more relevant information.
Thus, users can either formulate more queries or look at more documents to increase
their information and knowledge gain.

Likewise, the TTSS2′ and KISS2′ queries deliver lower and upper bound limits,
respectively. In between, there are the cumulative gains by the UQV5 and TTSS4-S4′′

queries. These results show that it is possible to fine-tune and reproduce the cumu-
lative gain close to that of real queries, in this particular case with TTSS4′′ .
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Figure 6.6: Simulations with 3, 5, or 10 queries per session over an increasing number
of documents per query evaluated by sDCG (instantiated with b = 2 and bq = 4).
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Figure 6.7: Number of queries vs. browsing depth: the plots show isoquants with
fixed nDCG levels of 0.3, 0.4, and 0.5.

Table 6.4: MSLE between the isoquants for pre-defined nDCG levels (cf. Figure 6.7).

nDCG 0.3 0.4 0.5

TTSS2′ 0.3371 0.4279 0.6568

KISS2′ 0.0949 0.1837 0.3987

TTSS4 0.0059 0.0323 0.0444

TTSS4′ 0.0509 0.0758 0.1550

TTSS4′′ 0.0713 0.0807 0.0791

Figure 6.7 shows the isoquants and illustrates how many documents have to be
examined by a simulated user to reach pre-defined levels of nDCG (0.3, 0.4, 0.5).
More queries compensate browsing depth, and as expected, the least documents
have to be examined with KISS2′ queries and the most with TTSS2′ queries. The
TTSS2′ isoquants lie above the others, which the poorer retrieval effectiveness can
explain (cf. Subsection 6.4.1). As also shown by the MSLE in Table 6.4, the TTSS4

isoquants have the lowest error for all values of nDCG. Overall, the results show a
better approximation of the UQV5 isoquants with the TTSS4-S4′′ strategies and that
it is possible to reproduce economic properties of the real queries by parameterizing
the query reformulation behavior.
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Figure 6.8: Jaccard similarity between the unique terms resulting from an equal
number of query reformulations for both of the compared query generators.

6.4.4 Query Term Similarities

Figure 6.8 shows the Jaccard similarities between the sets of unique terms resulting
from the query strings and is determined according to Equation 6.7. More specif-
ically, only normalized unique terms are compared. Depending on the number of
available queries for a specific topic, we include an equal number of simulated queries
to avoid low Jaccard similarities when fewer than ten UQV are available. As the
results show, the highest similarities are between the simulated queries. While the
similarities between conventional strategies S1 to S3′ and the strategies S4 to S4′′

are rather low for the TTS queries, there are higher similarities for the KIS queries.
Compared to UQV and TTS queries, the KIS queries have the lowest similarities,
which indicates that descriptive terms of relevant documents are very different from
those used in real queries and the topic texts. Interestingly, the UQV{2,3,8} queries
do not have a remarkably high Jaccard similarity with TTSS2′ queries, despite the
high p-values that are shown in Figure 6.4. This shows that it is possible to simu-
late UQV with different query terms than in the real queries but with comparable
statistical properties as indicated by the p-values even with the rather naive ap-
proach of TTSS2′ . There are slightly higher similarities between KIS queries and the
TTSS4-S4′′ queries. In particular, there is a higher similarity between TTSS4′ and the
KIS queries since the simulator is parameterized to diverge from the topic terms.
Overall, we conclude that the analyzed simulation methods do not result in query
strings that exactly match the terms of real queries in the UQV dataset by Benham
and Culpepper [41].
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6.5 Replicability Experiments

This section addresses the question of how well the introduced approaches for the
UQV simulations generalize with another dataset. As the simulated queries in the
earlier experiments are derived from the same test collection that was also used to
determine the rankings, it is fair to criticize that the evaluations do not provide
any insights about the generalizability of the introduced approach. To this end, we
analyze if the experimental results hold if they are based on another test collection.

As the simulated queries are made for the Core17 topics, they can only be eval-
uated if the other test collection also has relevance judgments for these topics. As
already pointed out in Chapter 5, the Robust04 and Core17 test collection have an
overlap of 50 topics as for Core17 existing topics were reused. It means that we
can evaluate 50 out of the 249 topics of Robust04 for our simulated queries and can
apply a cross-collection query simulation approach that simulates queries based on
a source collection to rank documents of the target collection.

In Appendix C, Tables C.1 and C.2, as well as the Figures C.1 to C.5, replicate
the experimental outcomes of the previous sections. Overall, we consider most of the
experiments to be successfully replicated, which indicates that the query simulations
seem to be viable UQV that can be reused in other contexts, for instance, as part of
rank fusion approaches or as part of the pooling process to make the document pool
more diverse when existing topics are reused for constructing a new test collection.

Table C.1 replicates Table 6.3 and confirms that the approach introduced in
Subsection 6.2.3 delivers better approximations of the retrieval effectiveness of real
UQV indeed. Similarly, Figure C.1, which replicates Figure 6.2, shows an overall
lower RMSE for the S2 strategy and confirms the outcomes made in Subsection 6.4.1.
Figure C.2 replicates Figure 6.3 and similarly shows that the queries of TTSS4 and
TTSS4′′ also result in lower RMSE scores over an increasing amount of documents
per query. Likewise, the experiment based on the p-values of paired t-tests between
UQV and the simulated queries is successfully replicated in Figure C.3, confirming
that the S4 strategies have a higher similarity with real UQV as in Figure 6.4.

The economic aspects of Subsection 6.4.3 are also successfully replicated. For
the sDCG measure shown in Figure 6.6 and replicated by Figure C.4, the TTS
and KIS with the conventional S2′ modification strategy can be used as lower- and
upper-bound effectiveness estimates, respectively. Figure C.6 replicates Figure 6.7
as bar plots. In order to keep the resource use low and reduce the computation
time, we excluded the evaluation of single queries as they require substantially more
documents to reach a pre-defined level of cumulative gain. In addition, Table C.2
shows lower errors for the TTSS4 and TTSS4′ strategies by replicating Table 6.4.

Finally, the system rankings replicated in C.5 slightly differ from those outcomes
in Figure 6.5. While there is an overall higher correlation between all of the simulated
and the real queries, there is no obvious preference for a simulator that better
replicates the system rankings resulting from the real UQV. There are positive and
sometimes strong correlations up to the sixth query formulation for the KISS2′ ,
TTSS4, and TTSS4′ , while the TTSS2′ and TTSS4′′ queries already result in negative
correlations before the sixth reformulation. However, the evaluation approach itself
could also be improved by considering different types of systems in the ranking, i.e.,
comparing system rankings beyond different parameterizations of the QLD method.
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6.6 Answers to the Research Questions

In the following, we summarize our main findings of the previous sections and give
answers to our three research questions.

RQ3: How do real user queries relate to simulated queries made from
topic texts and known-items in terms of retrieval effectiveness? It is possi-
ble to use the TTSS1-S3′ and KISS1-S3′ queries, which follow conventional simulation
methods, as lower and upper bound estimates between which the retrieval effective-
ness of real user query variants (UQV1-8) ranges. Simulations based on our new
method (TTSS4′′) provide better approximations of real query effectiveness, and the
parameterization allows the simulation of different query formulation behaviors and
retrieval effectiveness better resembling real queries.

RQ4: To which degree do simulated queries reproduce real queries
provided that only resources of the test collection are considered for the
query simulation? Our experiments show that the simulated TTSS4-S4′′ queries
reproduce the real UQV reasonably well in several regards. Beyond a similar ARP,
they also reproduce statistical properties of the topic score distributions as shown
by the RMSE and p-values. In addition, it is shown that the simulated queries
also reproduce economic aspects of the real queries as evaluated with the sDCG
experiments and the isoquants that compare tradeoffs between the number of query
reformulations and the browsing depth for a fixed level of gain. Furthermore, when
evaluating the shared task utility, the queries of our new parameterized simulation
approach preserve the relative system orderings up to the fifth reformulation, while
the correlations fall off for later reformulations. We assume that this is related to
topic drifts, and further analysis in this direction is required. Finally, even though
it is not the primary goal to simulate exact term matches with UQV, the analysis of
the query term similarity shows that there is only a slight overlap between terms of
simulated and real queries and a more dedicated approach is required to reproduce
exact term matches.

RQ5: How well does the introduced query simulation method gener-
alize in a cross-collection setting where the query simulations are based
on a source collection and used to rank documents of a target collection?
Our replication analysis on another test collection shows that the introduced sim-
ulation approach results in UQV simulations that have similar properties of real
UQV even when the runs are based on a different test collection. In essence, we
can apply a cross-collection query simulation approach for which we use Core17 as
the source collection to simulate queries and rank documents of the target collection
Robust04. This approach is a promising method of simulating viable UQV that can,
for instance, be used as part of a pooling process when existing topics are used to
compile a new IR test collection. This would make the document pool more diverse,
as it was already highlighted in earlier works [269,297].

6.7 Conclusion

This chapter presented an evaluation framework and a new method for simulated
UQV. Our experiments showed that the retrieval effectiveness of real queries ranges
between that of simulated queries from conventional methods based on topic texts
and known-items. To better approximate user queries, we introduced a simulation
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method that allows parameterizing the query reformulation behavior and thus better
reproduces real queries from specific users. The UQV dataset with real user queries
allowed us to validate simulated sessions to the querying behavior of real users.
Unfortunately, the dataset contains only a single user who formulated ten queries
for all 50 topics of the test collection. However, some evaluations did not require
ten queries per topic and could be evaluated for all eight users in the dataset. While
there is enough data to demonstrate the potential of our simulations, the generated
queries should be validated with a larger dataset in the future. For instance, the
query logs of the TREC Session track [81] or the UQV dataset by Bailey et al. [24]
are suitable candidates for large-scale evaluations. Nevertheless, our replicability
analysis based on another target collection showed that the query simulation method
could be generalized if the test collections share the same topics.

Similar to earlier experiments in the previous chapter, the experimental setup of
this chapter can also be aligned to the taxonomy introduced in Chapter 3. However,
in contrast to the earlier system-oriented experiments, the focus of this chapter
was different variants of the users’ queries. Obviously, the conventional PRIMAD
components are insufficient to describe the experimental setup in its entirety, and a
user component is required to describe the experiments sufficiently. In this regard,
most of the evaluations can be denoted by PRIMAD-U’, where the system-oriented
components mainly stay fixed, and the variation of the user behavior is analyzed. In
addition, the replicability experiments can be denoted by PRIMAD’-U’, i.e., there
was a change in the underlying test collection.

Simulating users with domain knowledge required a test collection with editorial
relevance labels in our setting. Consequently, the setup was still closely aligned to
Cranfield-style experiments, which gave us complete control over the six conventional
PRIMAD components, i.e., all these components were defined and implemented by
us, and they are fully transparent and reproducible. Similarly, it was possible to
define different user profiles in a controlled manner. On the one hand, the user
variation (U’) was based on the strategy of how reformulations were made. On the
other hand, different states of knowledge could be defined by controlling the un-
derlying vocabulary of the simulated users. For example, better domain knowledge
was based on key terms of relevant documents. The other categories of the user
taxonomy (cf. Subsection 3.1.7) were not analyzed or implicitly included in the
experiments. For instance, it was assumed that every search result was clicked. Fur-
thermore, only some evaluations implied that the simulated users did not click on
earlier seen documents or stopped after a certain number of documents were seen.

One important limitation of the experimental setup is the evaluation of un-
judged documents in the rankings. As some UQV were not part of the original
pooling process, they might bring up many unjudged documents that were treated
as non-relevant in our evaluations. Future work should analyze to which extent this
circumstance has an influence on the experimental results and how it affects our
overall conclusions. Another limitation, which is specific to the overall simulation
approach, is the exclusion of relevance feedback from search results. Users nor-
mally include terms of documents or snippets they consider relevant in their query
reformulations [118, 371]. We leave it for future work to complement and analyze
simulations in this regard. Likewise, the experiments neglect click simulations that
are analyzed in the following chapter.



Chapter 7

Click-Based System Evaluations

In the previous chapter, we looked at simulated user interactions in the form of
queries, which express the user’s information need and serve as the text-based input
to the retrieval system. In this chapter, we look at another kind of simulated user
behavior: the perception of relevance and the interaction with system outputs, i.e.,
retrieved result lists. Particularly, we analyze how click models can be used to
reproduce system rankings based on the relative effectiveness, and we contribute
click model-based evaluations (C8) of IR experiments.

As an alternative to explicit editorial relevance labels, click signals are a more
implicit type of feedback, providing a cost-efficient but different and sometimes
biased perspective on relevance. Having enough user interaction data available,
click models, which embed implicit user models based on pre-defined rules, can be
parameterized from historical sessions to simulate click interactions. However, it is
still little studied how click models can be validated for reliable user simulations
when click data is available in moderate amounts.

To this end, our experiments compare different click models and their reliability
as more session log data becomes available. We ground our methodology on the click
model’s estimates about a system ranking compared to a reference ranking for which
the relative effectiveness is known. Specifically, we compare two types of different
system rankings, one including lexical-based systems and another based on interpo-
lated systems with different weights. In addition, we compare the Document-Based
Click-Through Rate Model (DCTR) to the Dependent Click Model (DCM) and Sim-
plified Dynamic Bayesian Network Model (SDBN), which embed the continuation
probability and the notion of satisfying clicks.

The retrieval effectiveness of the systems is either determined by log-likelihood
or the outcomes of simulated interleaving experiments. In both cases, we determine
the correlation of the click model’s estimates to a reference ranking by Kendall’s τ .
More precisely, we give answers to the following research questions:

RQ6 Can click models reproduce system rankings?

RQ7 Do continuation and satisfaction probabilities in click models improve the sim-
ulation quality?

RQ8 How does the type of system ranking impact the outcomes of simulated inter-
leaving experiments?

115
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Our results show that simple click models (based on the attractiveness assump-
tion, as is the case for DCTR) can reliably determine the relative system effec-
tiveness with already 20 logged sessions for 50 queries. In contrast, more complex
click models like DCM and SDBN require more session data for reliable estimates of
the effectiveness, but they are a better choice in simulated interleaving experiments
when enough session data is available. While it is easier for click models to distin-
guish between more diverse systems, it is harder to reproduce the system ranking
based on the same retrieval algorithm with different interpolation weights.

The remainder of this chapter is structured as follows. Section 7.1 motivates our
analysis and covers the related work. Section 7.2 outlines the methodology and the
experimental setup, whereas Section 7.3 presents the experimental evaluations, and
Section 7.4 gives answers to our research questions. Finally, Section 7.5 concludes
this chapter.

7.1 Motivation

One of the primary goals in IR evaluation is to find the best-performing system,
i.e., to identify the ranking of retrieval systems based on effectiveness, to which
we refer as the system ranking in the following. As already outlined in Chapter 2,
the corresponding evaluation benchmarks are conducted according to the Cranfield
paradigm [95], for which the creation of the underlying test collections comes at a
high cost and is usually only feasible as part of larger community efforts like shared
tasks at CENTRE, NTCIR, or TREC [355].

A completely different approach to collecting relevance feedback for IR systems
is made possible by online experimentation [186, 232]. In this case, user interaction
feedback is used to estimate the relevance of the search results. Large-scale web
search companies can rely on an abundance of such data but cannot share it due to
privacy concerns and business interests [102]. For this reason, few datasets covering
the document collection, user interaction data, and the corresponding SERP exist.

In order to make experimental evaluations in small- to mid-scale user data envi-
ronments possible, the living lab paradigm, which is the focus of Chapter 8, offers a
viable solution. As part of this paradigm, small and domain-specific search services
open their infrastructures for researchers who are able to evaluate their IR systems
in online experiments with user interaction data.

Usually, living lab experiments are based on interleavings. The general idea is to
combine ranking lists of two or more retrieval systems, show the interleaved ranking
to users, and let them decide on the better-performing system by their click decision
based on their relative preference. While there is a need to validate system-oriented
experiments in the real world, the corresponding experiments risk harming the user
experience. Thus, it is a desideratum to keep the online time of experimental systems
short while having insights into the systems’ usefulness.

User interactions like clicks are alternative relevance signals that could be used for
estimating the system performance from a different perspective. With enough click
logs available, click models can be parameterized and used afterward to simulate user
interactions. When evaluating highly experimental systems, these click models can
potentially replace real users in living labs. For this reason, it is highly interesting
to know how much log data is required to use the click model in a reliable way.
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We propose an evaluation approach in which the click model has to decide about
the relative system effectiveness, i.e., the system ranking. According to this method,
the click models are provided with a reference system ranking, for which the relative
system performance is known in advance with high confidence. Based on its click
decisions and the simulated click data, the model produces a click model system
ranking, which can be compared to the reference system ranking. If the click model
returns the correct system ranking, it can be considered a suitable user simulator
that generates meaningful click data.

In contrast to explicit editorial relevance judgments of test collections, click sig-
nals, or user interactions in general, are a more implicit form of relevance feed-
back [206], which is often used to improve the quality of search results [1]. In
general, it is controversially discussed how user interactions like clicks can reflect
topical relevance. While several studies suggest that improvements in the measured
system effectiveness do not directly translate into better user effectiveness [179,214,
396,397,398,399], some works showed that user and system metrics correlate under
certain constraints [86, 204,206,356,444].

We see our contributions aside from these discussions. We acknowledge that
the decisions behind clicking on a search result and annotating a document with a
positive relevance label are fundamentally different. While click decisions have to
be seen in the context of their ranking position in the SERP, relevance annotators
make judgments for every document in the pool, which means that it is not part of
the annotation process to select a particular document from a SERP. Furthermore,
clicks are often based on the attractiveness of the snippets, while annotators decide
about the relevance after having screened the entire document. Judging the doc-
ument’s relevance by the snippet impacts the relevance, e.g., as shown by Turpin
et al. [400], who included summaries of documents into the judgments process and
show deviations of system rankings.

Chen et al. [86] investigated the correlation between user satisfaction either based
on offline metrics or interaction signals (including clicks) and showed that both re-
flect user satisfaction but from different perspectives. Similarly, we think that it is
beyond our contributions’ scope to draw conclusions about how clicks correlate with
topical relevance judgments. Instead, we see click-based evaluations as an alterna-
tive to the conventional Cranfield paradigm or as a proxy when topical relevance
judgments are unavailable or it is not feasible to make them. Especially domain-
specific search services, unlike large web search engine providers, cannot afford to
create dedicated test collections with editorial relevance labels but also have lower
user traffic rates. From an economical business perspective, it is, furthermore, of
interest to reduce the online time of user experiments in order to increase the rate
at which new experiments can be conducted [116,224].

It is common practice to reuse historical session logs to evaluate new ranking
methods before exposing them to real users [244], either to avoid harming the user
experience or to reduce online time in order to increase the rate at which new ex-
periments can be conducted [116,224]. Once candidate systems are identified, they
can be deployed in interleaving experiments like it is often done in living lab envi-
ronments [155, 200, 361, 366] and as an alternative to A/B experiments, which only
deliver meaningful results with large amounts of user data and which are in the focus
of the next Chapter 8. The general idea is to combine ranking lists of two or more re-
trieval systems and let users decide on the better-performing system by their click de-
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cisions based on relative preference. There exist different interleaving strategies like
probabilistic interleaving [187], multileaving [367], preference-based balanced [175],
or temporal interleaving [334] but the Team Draft Interleaving (TDI) [336] is one of
the more common methods that is also studied in our experiments.

While earlier click models mainly differ by the pre-defined rules that make as-
sumptions about the underlying user behavior [88, 161], several improved models
were introduced, accounting for clicks on multiple result pages, and aggregated
search [89,90], embedding time awareness by accounting for dwell times and times-
tamps between click sequences [259], or omitting pre-defined rules by replacing them
with neural vector states learned from user logs [55], or embedding global and local
click models into a framework for better personalization [440]. Click models can be
distinguished by the parameter estimation wich is either done by the maximum like-
lihood estimation (MLE) or the expectation-maximization (EM) algorithm, which
has been improved for more efficiency [223] and online retraining [280]. Suppose
both clicks and editorial relevance judgments are available. In that case, it is pos-
sible to turn click models into information retrieval metrics [91] or to make new
relevance labels for previously unjudged documents [82, 315].

The quality of click models is often evaluated by the log-likelihood and perplex-
ity [274], but also other reliability measures exist [278]. In previous work, click
models have mainly been evaluated on private web search datasets, e.g., from Ya-
hoo! [80,245,315,326] or Yandex [89,161], in which the SERPs were anonymized, and
the underlying web corpus was not provided or under closure. To our knowledge, we
are the first to evaluate simulated interleaving experiments with a completely open
and transparent experimental setup.

7.2 Methodology and Evaluation Setup

In this section, we describe the system rankings (and the constituting systems) that
have to be estimated by the click models (cf. Subsection 7.2.1). Second, we recapture
and compare the three click models(cf. Subsection 7.2.2). Third, we describe our
experimental setup, including the dataset (cf. Subsection 7.2.3) and the evaluation
measures (cf. Subsection 7.2.4). Finally, we provide implementation and hardware
details (cf. Subsection 7.2.5).

7.2.1 Experimental Systems

In our experiments, we include two types of system rankings, and selecting them
is motivated by the Tester-based approach by Labhishetty and Zhai [238, 239]. Ac-
cording to them, a user simulator, or the click model in our case, can be validated
by how well it can distinguish the retrieval effectiveness of methods for which we
know the relative system effectiveness with high confidence or based on heuristics.
For instance, by experience, we know that BM25 is more effective than ranking doc-
uments by the term frequency. In this regard, the first system ranking is based on
Lexical Retrieval Methods (LRM) and is defined by:

DFRχ2 ≻ BM25 ≻ Tf ≻ Dl ≻ Null.

More precisely, the LRM system ranking comprises the following five methods (in
decreasing order of hypothesized effectiveness), including (1) the DFR χ2 model [7],
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Figure 7.1: Jaccard similarity between the first 20 documents of the systems in the
LRM (left) and IRM (right) rankings averaged over the top 50 queries in TripClick.

which is a (free from parameters) DFR method based on Pearson’s χ2 divergence,
(2) the BM25 [345] method, (3) the term frequency (Tf) of the query terms in the
document, (4) the query-agnostic method based on the document length (Dl), and
(5) a method that assigns score values of zero (Null).

In contrast, the second system ranking is composed of Interpolated Retrieval
Methods (IRM) based on combinations of a reasonable and a less effective retrieval
method, giving more control over the effectiveness by weighting the influence of the
less effective retrieval method. In our experiments, we combine the DFR ranking
method with the ranking criterion based on the document length (Dl) as follows:

score(d, q) = ρ · scoreDl(d, q) + (1− ρ) · scoreDFR(d, q). (7.1)

We set ρ = {0.4, 0.45, ..., 1.0} and exclude interpolations with ρ < 0.4 to cover a
similar score range of the Jaccard similarity for the LRM and IRM rankings as shown
in Figure 7.1. By increasing ρ, we deteriorate the ranking results systematically but
more subtly, which better simulates incremental and less invasive changes to an
existing search platform in an online experiment. In total, the IRM ranking covers
13 different systems and is defined by:

IRMρ=0.4 ≻ IRMρ=0.45 ≻ · · · ≻ IRMρ=1.0.

When comparing the LRM and IRM rankings, the LRM ranking has more diverse
document rankings, as shown in Figure 7.1. The heatmaps compare the first 20
results of the document rankings for the 50 most frequent queries of the dataset
described in Subsection 7.2.3 between the combinations of the different systems
by the Jaccard similarity. Except for the comparison of DFR and BM25, most of
the LRM combinations are quite dissimilar. In comparison, the IRM systems with
different interpolation weights cover a similar score range. However, they have a
more gradual transition of the Jaccard similarity over the different combinations of
weight pairs. The LRM ranking includes fewer but has more distinct systems. In
contrast, the IRM ranking is based on more similar document rankings but also more
systems, which means that changing the rank position of a single system would result
in less severe changes in Kendall’s τ as compared to changes in the LRM ranking.
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7.2.2 Click Models

All of the analyzed click models are based on probabilistic modeling of the underlying
user behavior [88]. All of them can only estimate the click probability of query-
document pairs that were available during the parameter optimization. For all
three click models, the parameters are derived from observable variables, e.g., via the
MLE algorithm. Given a document ranking, a click model estimates the probability
P (Cd = 1 | C<r) of a click Cd on the document d considering earlier clicks C<r

before the rank r by:

P (Cd = 1 | C<r) = P (Cd = 1 | Er = 1) · P (Er = 1) = αdqεr (7.2)

where the probability P (Cd = 1 | Er = 1) depends on the probability P (Er)
that the document is examined. Thus, the click probability of a document d can be
decomposed into the attractiveness αdq of the query-document pair (d, q) and the
examination probability εr. For all click models, the attractiveness is given by:

αdq =
1

|Sdq|
∑
s∈Sdq

c
(s)
d . (7.3)

DCTR [104] determines the click probability by the ratio of clicks on a document
d and how often it has been shown to users for a query q, i.e., αdq is determined over
all available sessions where q and d occur. The examination probability of DCTR
for the document at the next rank (r + 1) is defined as:

εr+1 = 1. (7.4)

Consequently, DCTR does not consider the context of previously seen docu-
ments. In comparison, both click models DCM [165] and SDBN [83] extend the
cascade model [104] and determine the attractiveness by considering sessions with
documents before the last-clicked document at rank l in a particular session, assum-
ing that the user continued the search after having clicked unsatisfying results and
documents beyond l were not observed by the user. The set of sessions is defined
as:

Sdq = {sq : d ∈ sq, r ≤ l} . (7.5)

In order to account for the satisfaction of clicks, the DCM [165] introduces the
continuation probability λr determined by the ratio between the total number of
sessions with clicks at rank r that were not the last clicks in a session (denoted as
I(r ̸= l)) and the total number of sessions in which rank r was logged |Sr|. The
continuation probability λr is defined as:

λr =
1

|Sr|
∑
s∈Sr

I(r ̸= l). (7.6)

The examination probability εr+1 of DCM is then defined as:

εr+1 = c(s)r λr +
(
1− c(s)r

) (1− αdq) εr
1− αdqεr

(7.7)

where c
(s)
r denotes the probability of a click being observed at rank r in a sess-

sion s. Similarly, the SDBN [83] model embeds the satisfaction probability by the
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parameter σdq but instead, it accounts for the total number of sessions with the last

clicks (denoted as I
(
r
(s)
d = l

)
) in reference to the total number of sessions S ′

dq in

which the document d is clicked at a rank before or equal to l. The satisfaction
probability σdq is defined as:

σdq =
1∣∣S ′
dq

∣∣ ∑
s∈S′

dq

I
(
r(s) = l

)
(7.8)

where the corresponding set of sessions S ′
dq is defined by:

S ′
dq =

{
sq : d ∈ sq, r ≤ l, c

(s)
d = 1

}
. (7.9)

The examination probability εr+1 of SDBN is then defined as:

εr+1 = c(s)r (1− σdq) +
(
1− c(s)r

) (1− αdq) εr
1− αdqεr

. (7.10)

Table 7.1 provides a toy example with five sessions, for which we assume that the
same ranking was logged for a single query q. The following illustrates how the con-
tinuation and satisfaction probabilities can be determined by the clicks represented
by the filled circles. For instance, we can determine the continuation probability of
the second rank λ2 by the sessions s1, s3, and s4 at which the rank r2 was clicked. For
two of these three sessions, the click at the second rank was followed by additional
clicks at the lower ranks, indicating that the users continue to browse through the
ranking after seeing the document at rank r2. Accordingly, the continuation proba-
bility is determined by this ratio, i.e., λ2 =

2
3
.

Similarly, we can determine the satisfaction probability at the second rank σd2q.
For one out of the three sessions (s4), it was also the last click in the session.
Accordingly, the satisfaction probability is determined by this ratio, i.e., σd2q = 1

3
.

Note that the continuation and satisfaction probabilities are complementary when
comparing them for a single query, i.e., λr = 1 − σdq. The two click models DCM
and SDBN differ if they are compared over multiple queries as the continuation
probability of DCM depends only on the rank r and is determined over all queries.
In contrast, σdq of SDBN is specific to the query-document pair.

Suppose no clicks at a rank have been logged. In that case, it is impossible to de-
termine the continuation and satisfaction probabilities (cf. r4), and as a workaround,
default probabilities can be used, or it is likewise possible to estimate values from
the probability distribution.

7.2.3 Dataset

For our experiments, it is a fundamental requirement to have open data. Nowadays,
several datasets are available for the general research community, but a large fraction
of them is not suitable for our experiments. As pointed out before, previous work
about click models was done in cooperation with large web search companies like
Yahoo! [80,245,315,326] or Yandex [89,161] and used entirely private or semi-public
datasets. For example, a popular dataset for the training of click models was made
publicly available by Yandex as part of the Personalized Web Search Challenge [472].
A similar dataset is publicly provided by Yahoo! as the L18 - Anonymized Yahoo!
Search Logs with Relevance Judgments [488]. However, the web search results in
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Table 7.1: Toy example of the continuation λr and satisfaction σdq probabilities for
five logged sessions. The filled circles correspond to clicks.

ri

si
s1 s2 s3 s4 s5 λr σdq

r1 # # #  # 1
1
= 1.0 0

1
= 0.00

r2  #   # 2
3
= 0.6 1

3
= 0.3

r3 #   #  1
3
= 0.3 2

3
= 0.6

r4 # # # # # - -

r5  # # #  0
2
= 0.0 2

2
= 1.0

both datasets are anonymized, and no document collection of the entire corpus is
provided, which is critical for our experiments as we want to build a custom index
and retrieval pipelines as defined above.

ORCAS [102] is a companion dataset to MSMARCO that provides click-document
pairs, and both the query, as well as the document are available in a clear text
version. However, the DCM and SDBN click models do not only require triples con-
taining the query, the documents, and the corresponding clicks but also the context
of other documents in the SERP that were seen but not clicked. For this reason,
ORCAS is unusable for our experiments.

Instead, our experiments use the recently introduced TripClick [342] dataset
of the biomedical search engine Trip. The dataset contains documents and user
interaction logs covering a period of seven years, from 2013 to 2020. It was shown
that the annotation coverage for the top results is low [188], and additional topical
relevance judgments called TripJudge were provided [6]. As the DCM and SDBN
click models also require the context of other documents in the SERP that were seen
but not clicked, we can only use data logs with information about the entire SERP,
which are available from 13th August 2016. Furthermore, we restrict the sessions
to the 50 most frequent queries to make sure that at least 100 logged sessions are
available for each query. We note that the Trip database has professional and non-
professional users alike, and head queries are a very particular query type.

7.2.4 Evaluation Measures

In the following, we introduce the measures of our experimental evaluations, in-
cluding the log-likelihood, the outcome of interleaving experiments, and the rank
correlation measure Kendall’s τ .

Log-Likelihood

Log-likelihood is a common evaluation measure of click models, and it was shown
that better scores correlate with a higher fidelity of simulated clicks [274]. We
determine it over a run R with |Q| queries and ranking length n as follows:
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LL(R) =
∑
q∈Q

n∑
r=1

logP (Cd = cd | C<r) (7.11)

where P (Cd = cd | C<r) denotes the click probability of a particular click model
for a document d at rank r given the ranking of a retrieval method for a query q
and the list of previous clicks C<r before rank r of the examined document. In our
experiments, we use the TripClick data logs that contain SERPs with 20 entries
(n = 20) and |Q| ∈ [1, 50]. Unlike previous work, we do not use log-likelihood
to evaluate the click model itself but to distinguish between the ranking quality
of retrieval systems. Assuming that a well-performing retrieval method delivers
attractive rankings that result in clicks, the system maximizes the click probabilities,
and thus log-likelihood, over every result in a ranking list.

Outcome of Interleaving Experiments

When simulating the interleaving experiments, we compare two systems with the
help of the TDI method as introduced by Radlinski et al. [336]. The underlying
idea of the interleaving algorithm is inspired by the team selection in a team-sports
match. In this analogy, the systems can be seen as team captains and documents
as players. Based on random selection, one of the systems goes first and contributes
its top-ranked document to the interleaved ranking. Afterwards, the systems take
turns contributing their next highest-ranked documents that are not part of inter-
leaved ranking yet. Consequently, the TDI algorithm produces ranking lists that
can be decomposed into two sets containing those documents Dexp contributed by
the experimental system and those documents Dbase of the competing baseline. An
experimental system wins if it contributes the document with the highest click prob-
ability to the interleaved ranking, i.e., we determine the rank of the document with
the highest click probability by:

r = argmax
k∈{1,...,n}

P (Ck | C<k) . (7.12)

A win is assigned to the experimental system if dr ∈ Dexp. Otherwise, the
experimental system looses, i.e., dr ∈ Dbase, and a loss is assigned. Suppose the
click probabilities of the interleaving are indifferent from those of a ranking with
unknown documents. In that case, the click model cannot decide on a better system,
and a tie is assigned. Finally, the outcome is determined over multiple queries Q
and is defined as:

Outcome =
Wins

Wins + Losses
. (7.13)

A clear winner achieves an outcome of 1.0, whereas 0.5 means that the experi-
mental system is on par with the baseline, and any outcome below 0.5 indicates an
inferior experimental system.

Rank Correlation

As is common practice when comparing relative system rankings, we use Kendall’s
τ . As a rule of thumb, Voorhees considers correlations with τ > 0.9 acceptable [409].
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Figure 7.2: LRM (left) & IRM (right) system rankings evaluated by editorial rele-
vance judgments. The dashed lines correspond to the baseline system.

We evaluate the system rankings resulting from the click model-based evaluations
in reference to the LRM & IRM rankings, for which the relative orderings are mo-
tivated by the Tester-based approach (cf. Subsection 7.2.1). In order to strengthen
the reasoning behind the hypothesized system rankings, we evaluate them with
the help of editorial relevance judgments. For this purpose, we use the previously
mentioned TripJudge relevance labels [6]. The results in Figure 7.2 show that the
system-oriented experiment gives evidence to the hypothesized relative orderings of
the system effectiveness. We can control the retrieval effectiveness for both types of
system constellations by choosing an entirely different ranking method or increasing
the interpolation weight towards the inferior ranking criterion. We consider these
system-oriented experiments as another perspective of the system effectiveness as
a form of additional validation, strengthening the reasoning behind the chosen ref-
erence system rankings. For consistency, we keep the baseline system for the in-
terleaving experiments fixed for both types of rankings, i.e., the IRM system with
α = 0.7 that is indicated by the dashed line in the plots.

7.2.5 Implementation Details

We implement the experiments with the help of the Pyterrier retrieval toolkit [267]
(the Python interface to the Java-based retrieval toolkit Terrier [314]) and the
dataset library ir datasets [265], which features bindings to the TripClick dataset.
We filter and select the session logs with the help of the NoSQL database MongoDB.
When implementing the click models, we rely on the PyClick [466] library. In ad-
dition, we provide the required parsers to ingest the session logs from our database
into the PyClick framework. All experiments are run on moderate hardware, i.e.,
with an Intel Xeon Gold 6144 CPU and 64 GB of RAM on Ubuntu 18.04 LTS.

7.3 Experimental Evaluations

In the following, we present the experimental evaluations. In order to determine the
performance of click models over an increasing amount of click data and queries,
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we randomly sample an increasing number of logged sessions, which are used to
parameterize the click model. For each query q ∈ Q, we randomly sample s sessions
ten times, i.e., we let the click model adapt to the given data sample (with s sessions
for |Q| queries) and evaluate the system rankings over ten trials.

In the first experiment in Subsection 7.3.1, the system rankings are determined
by log-likelihood based on the click probabilities, whereas in the second experiment
in Subsection 7.3.2, the living labs are simulated, and the system rankings are based
on the outcome of the corresponding interleaving experiments. Finally, each sys-
tem ranking that results from either the log-likelihood or the outcome measure is
compared to the reference system rankings with the help of Kendall’s τ .

7.3.1 Log-Likelihood Evaluations

We determine the log-likelihood for all combinations resulting from the two system
rankings and the three click models and evaluate them over an increasing amount
of click log data that is used for parameterizing the click models. Figure 7.3 shows
the log-likelihood over the number of sessions with either 5 or 50 queries. Unsur-
prisingly, the log-likelihood increases as more sessions are used to parameterize the
click models. As more click logs are available, the click models becomes familiar
with relevant documents, and consequently, there is a higher click probability.

There are apparent differences between DCTR and the other two click models.
In the case of the DCTR-based log-likelihood, the ranking order of documents is
irrelevant as the click model does not account for the ranking position. Consequently,
there is no rank-biased discount of the documents’ attractiveness, leading to an
overall higher log-likelihood of DCTR. In contrast, the document order affects the
click probabilities of the DCM and SDBN click models, leading to an overall lower
log-likelihood, which can be explained by the examination probabilities of these click
models that are a rank-biased discount of the documents’ attractiveness.

As can be seen from the LRM ranking (in the upper half of Figure 7.3), the Null
system has a constant log-likelihood and is an estimate for lower bound performance.
For the other systems, the log-likelihood increases as more sessions are considered,
whereas the DFR and BM25 methods are quite distinct from the simple ranking
criteria based on the term frequency (Tf) and document length (Dl). In the lower
half of Figure 7.3, the IRM system rankings based on the log-likelihood align with
the earlier system-oriented evaluations, i.e., the overall log-likelihood is lower (the
retrieval system performs worse) when the interpolation parameter ρ gives more
weight to the inferior ranking criterion.

By evaluating the log-likelihood with 50 queries, we see a steeper increase in
the log-likelihood as more (possibly earlier clicked) documents are retrieved. Once
enough click data is available, there are consistent click probabilities, as seen by the
plateau-like shape of the log-likelihood plots with 50 queries. Any additional sessions
with new click data only provide redundant relevance information and only affect the
click probabilities to a negligible extent. In comparison, the log-likelihood averaged
over fewer queries is noisier, as can be seen by the larger confidence intervals but
increases over the sessions. By the example of the DCTR model, we see that the
log-likelihood also increases as more queries are considered.

Overall, these preliminary evaluations suggest that either more queries or more
sessions are required to distinguish between the single ranking systems. To this
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Figure 7.3: Log-likelihood of the system rankings (LRM in the first and IRM in the
second row) evaluated by the three click models and compared by 5 and 50 queries.

end, we conduct a more extensive analysis with an increasing number of queries
and sessions. Figure 7.4 compares Kendall’s τ scores over different combinations
of queries and log sessions for all three click models and the two system rankings.
The heatmaps show the rank correlation in terms of Kendall’s τ for the different
combinations of queries (ranging from 3 to 50) and sessions (ranging from 1 to
20). The greener the corresponding patch, the higher the correlation between the
reference and the click model system ranking.

The first heatmap based on DCTR and the LRM ranking shows a diagonal
transition from the upper left corner to the lower right corner — the heatmap gets
more greenish as more queries and sessions are used to evaluate the click model. In
comparison, the IRM heatmap of the DCTRmodel has an overall darker appearance,
which means that in comparison to the LRM ranking, less log data and queries are
required to determine the correct system ranking.

Evaluating 50 queries with a DCTR model based on 20 session logs for each query
is already enough to reproduce the LRM system ranking with a perfect correlation of
τ = 1.0. In contrast, the DCM and SDBN click models require more session logs to
reliably reproduce the correct system orderings, resulting in lower correlation scores
of τDCM = 0.4267 and τSDBN = 0.5867 on average with the same amount of queries
and corresponding sessions. This can also be seen by the overall lighter heatmaps,
which indicate low correlations between the system rankings.

In general, the IRM system ranking also results in higher Kendall’s τ scores with
fewer queries and sessions for DCM and SDBN, which suggests that it is easier for the
click models to distinguish between systems that rely on the same retrieval method
by the log-likelihood. We assume that the smaller document pool can explain this
(cf. Figure 6.8), i.e., there are fewer document candidates by which the method can
be compared, and less click data is required for meaningful parameterization.
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Figure 7.4: Kendall’s τ of the LRM and IRM rankings for different numbers of
queries and logged sessions, compared for the click models DCTR, DCM, and SDBN.

We conclude that evaluating the relative system performance by the log-likelihood
is a viable solution under the assumption that good-performing systems maximize
the click-through rate only by the attractiveness of the ranking list. In comparison,
DCTR is more robust and results in more reliable estimations when less log data
is available. For instance, the LRM system rankings result in Kendall’s τ scores of
1.0 with 50 queries and click data from 20 sessions for each query, while the log-
likelihood based on DCM and SDBN scores is below 0.6 when evaluated with the
same amount of queries and click data. Overall, log-likelihood is lower when eval-
uated with the DCM and SDBN click models due to the examination probability
discounting the attractiveness.

7.3.2 Simulated Interleaving Experiments

In the interleaving experiments, we determine the system ordering by the outcome
measure (cf. Equation 7.13) for which the highest click probability is used as the
winning criterion (cf. Equation 7.12). For each interleaving, the experimental rank-
ing is interleaved with the baseline, which is consistent for both types of system
rankings for the sake of better comparability and is set to IRMα=0.7.

Figure 7.5 compares the outcomes for 50 queries with 100 session logs over ten
trials for each experiment. Most strikingly, all of the click models can reproduce
the correct orderings of the LRM system ranking, whereas, for the IRM system
rankings, the relative ordering cannot be reproduced. However, all click models can
differentiate between systems that out- or underperform the baseline. Our analysis
showed that often the winning queries, i.e., those queries for which the experimental
system wins, directly turn into losing queries as soon as the bad ranking criterion is
assigned a higher weight than that of the baseline system.

For better illustration, an in-depth analysis of the winning and losing queries is
given in Figure 7.6. More specifically, the Jaccard similarity is shown for the win-
ning (lower triangle) and for the losing (upper) queries over different interpolation
weights, whereas winning and losing queries are those for which the experimental
system is either assigned a win or a loss, respectively.

There are higher query similarities between those systems with an interpolation
weight, either below or above the baseline system. However, there is a low overall
similarity when comparing the winning/losing queries of system combinations with
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Figure 7.6: Jaccard similarity between the winning (lower triangle) and losing
queries (upper triangle) of the simulated interleaving experiments.

lower and higher interpolation weights (compare the light green areas in the lower
left and upper right of the heatmap). This circumstance is independent of the click
model, as the three heatmaps show similar results.

Regarding the IRM system ranking, the winning queries, i.e., those queries for
which the experimental system wins, turn into losing queries as soon as the bad rank-
ing criterion is assigned a higher weight than that of the baseline system. Queries
resulting in ties (in that case, no or an equal number of clicks are made for both
interleaved systems) barely change as the click models cannot decide on a better
system with unseen documents. These experimental results show that it can be
problematic to compare systems with a small document pool with fewer document
candidates and low click-through rates.

Finally, Figure 7.7 shows Kendall’s τ of the system rankings derived from the
interleaving experiments resulting from click models parameterized over an increas-
ing number of sessions. As can be seen by the light stripes in the heatmap, it is
not possible to reproduce the correct ordering of IRM systems for any of the click
models. Most of the rank correlations of the IRM rankings stay below 0.6, which
aligns with our earlier observations.
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When comparing the click models with the LRM system rankings, we see that
the DCTR model results in comparably higher correlations when less log data is
available. For instance, the patches in the heatmap have a darker green when us-
ing ten or fewer session logs per query for the DCTR model. However, the DCTR
experiments show that the correlation scores do not stabilize even if more sessions
are used for the parameterization, and once a certain amount of log data is used for
the parameterization of the click models, DCM and SDBN deliver more robust cor-
relation scores. For a better understanding and analysis, we determine the relative
error between the cumulated and the ideal Kendall’s τ score as

δτ =
∆τ

τideal
=

τideal − τsum
τideal

= 1− τsum
τideal

= 1−
∑|S|

s=1 τs∑|S|
s=1 1

= 1−
∑|S|

s=1 τs
|S|

(7.14)

where τideal is considered as the sum of the ideal rank correlation up to the
amount of considered sessions |S|, and ideal refers to a perfect rank correlation of 1.
Accordingly, ∆τ describes the difference between the actual sum of rank correlations
and the ideal sum. A good performing user simulator or click model gives a low δτ
score or minimizes it as it gets more session data for an adequate parameterization.

Figure 7.8 shows δτ for the click models in combination with both types of system
rankings over an increasing amount of session logs. These results confirm that
once enough session data is available, the DCM and SDBN click models can better
distinguish between the relative system performance in these particular simulated
interleaving experiments.

Regarding the LRM system ranking, there are higher errors for DCM and SDBN
when only a few sessions are available, and the DCTR is a better choice when con-
sidering the lower error rates. However, it can be that with an increasing amount of
click data, the error for both DCM and SDBN decreases while the error of the DCTR
model evens out and does not decrease as more sessions are used for parameterizing
the click models.

In comparison, it is generally more challenging for the click models to distinguish
between the IRM system ranking based on interpolations. The experiments with
100 sessions result in considerably higher errors (higher δτ scores), but still, the
DCM and SDBN give slightly better estimates than the DCTR. In this case, the
δτ scores even out, while the scores of the DCTR still increase as more session logs
become available. Similar to the earlier results, it is better to use DCTR when
less log data is available. However, once enough logged clicks are available for the
parameterization, the DCM and SDBN are less error-prone and more reliable.

7.4 Answers to the Research Questions

In the following, we summarize our main findings of the previous Section 7.3 and
give answers to our three research questions.

RQ6: Can click models reproduce system rankings? All click models can
reproduce the system rankings if enough click logs are available, which is fundamen-
tal to our proposed methodology. We defined the simulation quality by how well
the click model’s click probabilities can reproduce the correct system ranking that is
known in advance. The simulation quality improves depending on how much session
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data is available to parameterize the click model. In this regard, our evaluations
showed that DCTR could distinguish reliably between the LRM systems by the
log-likelihood with already 20 logged sessions if 50 queries are used. In comparison,
the IRM ranking can be reproduced with fewer data, which can be explained by a
smaller pool of documents for which interaction data has to be logged.

RQ7: Do continuation and satisfaction probabilities in click models
improve the simulation quality? Our experiments showed that using the DCM
and SDBN for the log-likelihood in an interactive data-sparse setting is not recom-
mended. Our evaluations showed that the DCM and SDBN result in overall lower
scores in comparison to the DCTR model, which can be explained by the rank-biased
discount of the attractiveness due to the examination probability. However, this is
not critical when many session logs are available. For instance, if we can use 100 ses-
sions per query, it is enough for adequate parameterization. However, compared to
the DCTR, more than 20 sessions per query are needed to let the DCM and SDBN
reproduce the correct system ranking. On the other hand, the DCM and SDBN
system rankings are a better choice when simulating the interleaving like they are
implemented in living labs. In this case, our experiments showed that the estimates
of the LRM system ranking are more robust, and the continuation and satisfaction
probabilities of DCM and SDBN can indeed improve the simulation quality.
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RQ8: How does the type of system ranking impact the outcomes of
simulated interleaving experiments? While all models can determine the cor-
rect ordering of the LRM system ranking reasonably well in the simulated interleav-
ing experiments, it is impossible to reproduce the correct IRM ranking. However,
one can still distinguish between better and worse-performing IRM systems and
separate them from the baseline. Our analysis showed that it is generally harder to
reproduce the IRM ranking as there are deciding queries that either let the IRM sys-
tem win or lose against the baseline system, depending on the interpolation weight.
Once the interpolation parameter gives a higher weight to the bad ranking criterion,
most of the queries, which formerly let the system win against the baseline, are the
deciding queries that let the system lose against the baseline. This finding is critical
for search platform operators, as different parameterizations of the same retrieval
method may result in measurable differences in system-oriented experiments, while
they are not reproducible in click model-based simulations.

7.5 Conclusion

Instead of risking exposing poor results to real users, it is possible to evaluate exper-
imental systems with simulated click interactions in pre-assessments. However, it is
often unclear when a click model can be reliably used to simulate real user behavior
by generating meaningful clicks. To this end, we introduced an evaluation approach
for validating a click model’s simulation quality in this chapter. Our evaluation
methodology aims at letting the click model decide about the relative system per-
formance that is known with high confidence or based on some reasonable heuristics.
The click model’s system ranking is compared to the reference system ranking, and
the rank correlation based on Kendall’s τ is an indicator of the simulation quality.

In our experiments, we compared two different types of system rankings. The
first ranking was composed of different lexical retrieval methods. In contrast, the
second ranking was composed of a single ranking approach with different interpola-
tions between a reasonable and less effective retrieval method. While these retrieval
methods are rather simple compared to other state-of-the-art approaches, they are
reasonable candidates to validate the general plausibility of our approach.

Our experimental results have shown how the DCTR, DCM, and SDBN click
models can be used in combination with the log-likelihood and the outcomes of
simulated interleaving experiments for the assessments of retrieval methods and
how much session data is required for reliable performance estimates. Overall, it is
possible to reproduce the system rankings in simulations, confirming our method-
ology’s general plausibility. Regarding the evaluations based on the log-likelihood,
the DCTR click model is a better choice if only a few sessions are logged. For exam-
ple, our experiments showed that the DCTR could perfectly reproduce the system
ranking with 20 logged sessions for 50 queries, while the DCM and SDBN could not.
However, as more session logs become available, the DCM and SDBN click models
are equally well-suited for this type of evaluation.

This leaves the question of how the interpretation of the examination probabil-
ities of the DCM and SDBN models is of benefit for the user simulations. For a
better understanding, we simulated living lab experiments and let the click mod-
els decide about the preference for one of two competing systems in interleavings.
The corresponding system rankings were based on the outcome measure and showed
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that, once again, DCTR is a better choice when only a small amount of session data
is available. However, as more session logs are available, the DCM and SDBN gave
better, i.e., more robust, estimates about the system rankings. DCM and SDBN
not only better approximate real user behavior, but they are also more reliable click
models in simulated interleaving experiments.

When comparing the DCM to the SDBN model, no substantial differences in
our experiments were observable. The rank-biased discount of the DCM model
is determined by a rank-dependent continuation probability, which is determined
over all available sessions, while the SDBN introduces an additional satisfaction
probability specific to the query-document pair. We conclude that for the underlying
TripClick dataset the consideration of the satisfaction probability did not make that
much of a difference in comparison to the continuation probability.

Conceptually, the experiments of this chapter can be aligned with the PRIMAD-
U taxonomy. More specifically, the experimental setup can be denoted by PRIM’AD-
U’. Different methods (M’) were used to compose system rankings evaluated by
different types of user interaction behavior (U’) based on click models. The queries
did not define the user variation compared to the previous chapter. Instead, the
query strings stayed fixed, and a more interaction-focused type of relevance was
implied in the experiments. In contrast to editorial relevance judgments, the click-
based relevance indicators are less explicit but better simulate how relevance would
be signaled in real search sessions.

We think that click signal-based evaluations are a promising alternative when
a curated test collection is unavailable. Instead, click models can evaluate the
relative system performance when editorial relevance judgments are missing. For
instance, click models could be used in a pre-assessment, similar to the idea of
pseudo-relevance judgments [376], to identify more promising systems for online ex-
periments. Especially for small- and mid-scale search platforms that often partnered
with living labs in the past, it would be a viable solution to use click signals instead
of curating a costly test collection.

Lastly, click data is biased [420]. To a certain extent, the click models address
the bias that would emerge from using single clicks as relevance indicators, i.e.,
the probabilistic models grasp the behavior and preferences of the average user.
However, there are other biases related to the click signals. For instance, there is
the position or system bias introduced by the unknown production system of the
Trip database that we could not remove from the session logs.

As part of the future work, it needs to be re-evaluated how the introduced evalu-
ation approach applies to system rankings, including retrieval methods with a higher
retrieval performance, i.e., methods based on Large Language Models [188], and it
may be necessary to address the bias by counterfactual methods and propensity
estimation [80,193,207]. Likewise, it should be analyzed to which extent these kinds
of evaluations are insightful pre-assessments of the real system performance by de-
ploying them in living labs [155,361,366], which are the focus of the next chapter.



Chapter 8

Living Lab Experiments

This chapter introduces the living lab infrastructure STELLA, which offers a plat-
form for user-oriented experimentation. Within the scope of this dissertation project,
we see it as a way to analyze the ecological validity of IR experiments in real-world
environments. The platform design keeps the principles of technical reproducibil-
ity and transparency in mind. It facilitates the transition of a system-oriented
experiment into the living lab environment, as outlined in the following. The in-
frastructure was tailored explicitly for shared task collaborations and served as the
backbone of the Living Labs for Academic Search (LiLAS) at CLEF in 2021. To
this end, the lab was the first testbed for evaluating the infrastructure. One of the
substantial improvements over earlier living lab attempts is the possibility of sub-
mitting the entire experimental system instead of submitting precomputed results
only, which addresses several of the earlier shortcomings. Furthermore, we summa-
rize the findings from the experimental evaluations of the lab and conclude with
their implications for reproducible experimentation with the STELLA platform in
the future. The contributions of this chapter are as follows:

C9 Living lab infrastructure for reproducible experimentation (cf. [67])

C10 Evaluations of the shared task that was organized as part of CLEF and
served as a testbed for the infrastructure (cf. [362])

The chapter’s contents are mainly based on the contributions to the ISI con-
ference [67], which describe the infrastructure from a technological point of view,
and the experimental evaluations have been published in the overview report of the
CLEF lab [361, 362]. Besides, other aspects mentioned throughout the following
sections also can be found in [68,363].

The remainder is structured as follows. First, in Section 8.1, we recapture the
living lab paradigm for user-oriented IR experiments. Then, in Section 8.2, we intro-
duce our living lab platform, the STELLA infrastructure. Afterward, we summarize
the shared task at CLEF and give a brief overview of its organization in Section 8.3,
which is followed by Section 8.4 that provides the corresponding evaluations of the
experimental ranking and recommender systems. Finally, we outline future direc-
tions in Section 8.5.

133
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Figure 8.1: An illustration of the living lab paradigm for shared task experiments.

8.1 Living Labs for Real-World Experimentation

Figure 8.1, which can be seen as a simplified version of Figure 3.1, illustrates the
principle behind the living lab paradigm. Within the scope of shared tasks, the
participants contribute their experimental systems or sometimes only the precom-
puted outputs to the living lab platform, which can be considered a broker between
participants on the one side and the connected search services on the other side.
Users can then be provided with the experimental results upon request, and their
interactions will be logged in order to evaluate or improve the experimental systems.

One of the earlier works that mentioned the idea of a “living laboratory” was
made by Kelly et al. [220] and dates back to 2009. The idea was picked up by
Azzopardi and Balog [17], who made the first proposal for a living lab architecture
in 2011. In 2013, a workshop dedicated to living labs discussed several requirements
and extensions of the living lab paradigm [29] followed by the first implementation
of the living lab architecture for ad-hoc IR experiments in 2014 [30]. Finally, the
first living lab for ad-hoc retrieval was held at CLEF in 2015 and was continued in a
second iteration in 2016 [366]. The same organizers were also involved in the Open
Search track at TREC in 2016 and 2017 [200]. NEWSREEL was the first living lab
for real-time news recommendations and ran from 2014 until 2017 [70,191].

More recent living lab implementations are not specifically tailored for shared
tasks but have a domain-specific focus. Some recent examples include APONE [281,
282] and arXivDigest [155]. APONE is a living lab platform designed for A/B tests
focusing on evaluating user interfaces. As it builds upon the PlanOut language [27],
it allows designing the experiments by scripting them. arXivDigest is a recommen-
dation service for research articles based on personalized email updates on recent
publications from arXiv’s computer science repositories. After registration, an inter-
est profile helps to find adequate recommendations, and feedback is provided with
the help of clicked URLs in the personalized mail. Besides arXivDigest, Beel et
al. [36] also provide a living lab platform for scholarly recommendations.

8.2 The Living Lab Infrastructure STELLA

Figure 8.2 provides an overview of the infrastructure’s design principles. The fol-
lowing describes this figure from left to right so that it can be “read” alongside the
descriptions in the text. Participants of the shared task (experimenters) provide
systems with retrieval and recommendation algorithms in the form of micro-services
that can be deployed on purpose in a reproducible way. The infrastructure builds
upon Docker and containerization to make this possible. An additional central
component is Git and the integration of the web service GitHub, facilitating the
experimental components’ software versioning, transparency, and reproducibility.
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Figure 8.2: Overview of STELLA based on the paradigm illustrated in Figure 8.1.

Once the systems are implemented, the experimenters prepare them with Docker
containers. More specifically, they prepare a dockerizable source code repository
that builds upon a provided template provided by us (the organizers). After having
registered at a central administration server (STELLA server), each dockerized sys-
tem can be integrated into the STELLA app that is referred to as a Multi-Container
Application (MCA). Multiple systems from possibly different experimenters are com-
bined into the MCA, which means that the administrators at the search services do
not have to set up individual systems but rather can rely on complete replicas of all
submitted systems once the MCA is running.

Search service providers are referred to as sites. They provide access to data col-
lections and, most importantly, user interaction data. Each site deploys an instance
of the MCA on its backend servers. Queries from users will then be conducted from
the search interfaces to the MCA. As the REST-API provides access to all features,
the MCA can easily be integrated into existing services with the only requirement
of redirecting the user traffic and making the corresponding API calls for retriev-
ing experimental results and sending back the user feedback data. Upon request,
experimental rankings and recommendations are returned by the MCA, and with
the help of the corresponding session identifiers, the sites can send back the logged
user interactions. Eventually, the MCA sends the user interaction data to the cen-
tral server, where it is stored and can be used for further analysis, training, and
optimization of the experimental systems.

In the following, we outline how experimenters can contribute their systems for
participation either as dockerized micro-services or simply by their ranking outputs
(run files). Afterward, we describe the MCA and its interaction with the central
STELLA server.
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8.2.1 The Micro-Services

In earlier living labs, participants did not contribute the entire system for partici-
pation, but only its precomputed results for particular head queries [30, 366]. The
precomputed results were stored on a central server that could be queried whenever
users entered one of the head queries into the search interface. While lightweight,
this approach suffered from three major drawbacks.

First, as the central server was hosted on the web and not on the site’s servers,
network latencies possibly occurred and impacted the user experience, causing frus-
tration and early session abandonments. Second, results could only be retrieved for
the selected head queries, which per definition, occur more often but which are also
a particular type of query. To this end, the experiments were restricted to these
queries, and sessions with query reformulations without head queries could not be
logged. Third, outdated precomputed results led to biased evaluations. Especially
in environments with frequent index updates like e-commerce platforms, outdated
ranking results can be critical as they are an obstacle to the final purchase decision.

In order to address these shortcomings, we integrated Docker, or more generally
the containerization technology, into the infrastructure to make the submission of
the entire retrieval system possible. However, our infrastructure makes it possible
to submit precomputed results for selected head queries for better comparability to
the older implementations. In the following, we outline both ways of submitting a
system for participation, either in its entirety as a dockerized container or by its
precomputed outputs for selected queries and target items.

Precomputed Results

As described above, the contribution of precomputed results to the STELLA plat-
form is inspired by how contributions were made to former living lab attempts [200].
Primarily, we integrated this submission feature to evaluate our new infrastructure
design for two reasons. First, experiments based on precomputed results serve as
the baseline for evaluating our new infrastructure design proposal. Second, it makes
participation possible for those experimenters unfamiliar with Docker. Instead of
submitting the entire retrieval or recommendation service, only its results are con-
tributed for experimentation, as illustrated in Figure 8.3.

The precomputed results are restricted to a specific set of queries extracted from
the query logs’ top k results. In cooperation with the sites, we reused existing logs
and determined the most frequent queries, which were provided to the participants
after registration. In order to make sure that the submitted results are compatible
with our infrastructure, we asked the participants to submit them in the TREC run
file syntax already shown in Figure 4.3. It means that each line in the submitted
file contains the numeric query identifier (<qid>), a string identifying the document
(<docid>), an increasing rank number (<rank>), the corresponding score (<score>)
and the tag chosen by the experimenters (<tag>).

The files must be uploaded to the central server either with the help of HTTP
requests and the REST-API or in a more convenient way by the user interface.
Then, the infrastructure service will automatically prepare the uploaded files for
integration into the MCA after the submissions have been checked for validity and
consistency. In this regard, the infrastructure service reduces the experimenters’
technical workload and lowers participation barriers. Hence, the experimenters only
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Figure 8.3: Sequence of submitting precomputed results to the infrastructure.

have to upload their precomputed results, and the STELLA service prepares them
for experimentation. More specifically, a new micro-service is automatically set up
and integrated into the MCA (cf. to the red boxes in Figure 8.3).

Container Systems

Alternatively, experimenters can submit the entire IR or RecSys application as a
countermeasure to the drawbacks of the precomputed results. Compared to pre-
computed results, these micro-services are more comprehensive, i.e., their responses
are not limited to preselected queries (or target items) when rankings or recommen-
dations can be provided for arbitrary requests. In this case, the applications are
contributed as individual micro-services packaged in Docker containers. Compared
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Figure 8.4: Sequence of submitting containerized systems to the infrastructure.

to the outlined sequence of Figure 8.3, submitting Docker containers to STELLA re-
quires interaction with the STELLA server and the GitHub web service. Figure 8.4
gives a sequence diagram of the submission process.

After registration and downloading the sites’ data collection, the experimenters
can start developing the experimental systems. To ease participation and compati-
bility between experimental systems and the MCA, a project template in the form
of a minimal Docker application is provided to the experimenters by us (the or-
ganizers). Of course, these project templates must be adapted, i.e., experimenters
integrate their applications. As a starting point, the project template provides a
minimal Python application based on the Flask web framework. However, it is not a
hard requirement for experimenters to use Python at all. They can modify the tem-
plate as they see fit, with the only requirement that is Docker containers responding
to defined REST endpoints, which are used by the MCA to index documents and
retrieve rankings or recommendations.

Having finished the developments, the experimenters upload the source code
and the Dockerfiles into the public GitHub repository and register the correspond-
ing URL at the STELLA server. Once the system is validated, i.e., it has passed
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several unit tests, it can be integrated into the MCA, which is deployed at the sites.
Once enough data is available, experimenters can start the feedback loops that are
illustrated as blue boxes in Figure 8.3 and 8.4. Clicks and other interactions can
be used as points of reference for improving the ranking and recommender systems.
The modified system (outputs) can then be re-submitted and re-evaluated, and the
resulting interactions can be compared to those of the previous evaluation phase.

8.2.2 The MCA and the Central Server

Once the experimental systems have passed technical unit tests and sanity checks
for selected queries and target items, they are ready to be deployed and evaluated.
In order to reduce the deployment efforts for the site administrators, the single
experimental systems are bundled into an MCA, which serves as the gateway to
the infrastructure for the sites. Using Docker as a packaging tool ensures that all
systems are set up as intended, i.e., Docker makes the systems more reproducible.

The MCA handles the query distribution among the experimental systems on a
least-served basis and sends user feedback data to the central server at scheduled
intervals. After the REST-API of the MCA is connected to the search interface, the
user traffic can be redirected to the MCA, returning the experimental results.

The results of single experimental systems are interleaved with those from the
baseline system based on the TDI algorithm, which has already been used as part
of the experiments in Chapter 7, leading to the following two benefits. First, we
prevent users from subpar retrieval results that, in the worst case, affect the site’s
reputation. Second, interleaved results can be used to infer statistically significant
results with fewer user data as compared to conventional A/B tests [336].

The sites can implement logging tools for the user interactions, for which several
solutions were recently introduced [48, 242, 289, 359]. STELLA expects a minimal
set of JSON-formatted feedback data, but the sites can freely add any additional
feedback information and interactions to the data payload, for instance, logged clicks
on site-specific SERP elements.

Technically, the MCA is built with docker-compose [457] – a build automation
tool for multi-container Docker applications. With the help of a YAML file, it is
possible to define multiple micro-services and combine them into one application.
Since each micro-service is defined by a separate text-based entry in the YAML file,
the infrastructure service can automatically add them once the individual systems
pass the validation based on unit tests.

At the center of the infrastructure is the STELLA server, which handles the
authentication of users, validates submissions by experimenters, and automates the
build process of the MCA. Furthermore, it offers a RESTful API used by the MCA
to post feedback data. Likewise, the experimenters can use this API to retrieve feed-
back data and the corresponding rankings and recommendations from the database.

After having registered, users can log in and submit new systems by adding
pointers to the corresponding GitHub URL or by uploading their precomputed sys-
tem results. Once systems’ outputs have been exposed to site users, experimenters
can visit the dashboard service and are provided with visual analytics tools to have
first impressions of how the system performs compared to the baseline.

The dashboard shows the number of impressions (counter how often system
results have been shown to the user) and the total click numbers. In addition, we
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provided experimenters with derived measures like wins, losses, and ties [366] as
STELLA interleaves the systems’ outputs by the TDI algorithm. The open-source
implementation of the STELLA infrastructure is available on GitHub [468].

8.3 Shared Task Organization

In 2021, we organized a shared task at CLEF [361], which served as the first testbed
for the STELLA infrastructure described above. In the following, we give a short
overview of how LiLAS was organized before we analyze the lab’s experimental
results in Section 8.4. The shared task was divided into two rounds. The first round
took place in March, and the second round ran from mid-April until the end of May.
In between, participants optimized their systems based on the feedback data.

In cooperation with our project partners at GESIS - Leibniz Institute for the
Social Sciences and ZB MED - Information Centre for Life Sciences, we were able
to deploy the infrastructure on their backend servers and connect the infrastruc-
ture to their search services called GESIS Search and LIVIVO, respectively. GESIS
Search serves different types of information from the social sciences, most notably,
literature in different languages and research data, questions and variables, and
others. LIVIVO serves literature and other resources in multiple languages cover-
ing medicine, health, environment, agriculture, and nutrition. Combining the two
broader scientific fields gave us an optimal setting for cross-domain validations.

LiLAS offered the possibility to participate in two different tasks. The first task
was dedicated to ad-hoc ranking experiments that were exclusively deployed on the
LIVIVO platform. Given a query by the platform users, the experimental system
should return a ranked list with the most relevant documents. The second task was
dedicated to research dataset recommendations that were exclusively deployed on
the GESIS Search platform, i.e., given a target item, which was a text-based pub-
lication, the experimental RecSys had to return recommendations for appropriate
research datasets. For both tasks, the participants could choose to submit their
contributions either as precomputed results or as a dockerized container.

Both institutes provided datasets and the corresponding top k queries or target
items to the LiLAS participants. For LIVIVO, the most frequent queries were pro-
vided with candidate documents of the productive system that could have been used
for a reranking task. Due to license restrictions, only a subset of LIVIVO’s entire
document collection could be provided to the participants, which was sufficient for
developing dockerized container system as the indexing of the entire document col-
lection could be conducted on LIVIVO’s servers later on. However, the precomputed
results were restricted to this subset of documents, which could result in a biased
comparison during interleaving with the productive system.

For GESIS Search, a selection of target items for the recommendations, which
are the equivalence to the most frequent queries, were provided to the participants.
However, as research dataset recommendations were introduced as a new feature to
the search platform as part of LiLAS, there was no productive system that could
provide candidates for recommendations, but the platform organizers determined
them by matching documents with the datasets’ abstracts via cosine similarity be-
tween the tf-idf representations of the texts. More details about the organization
can also be found in the corresponding overview reports [361,362].
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Figure 8.5: Cumulative sum of logged session data (including clicks (blue), sessions
(orange), and impressions (orange)) at LIVIVO before (left blue area) and after
(right green area) the first fully dockerized system went online in the first round.

8.4 Experimental Evaluations

In the following, we compare precomputed results with containerized systems and
describe the evaluations, covering general statistics and the system benchmark.

8.4.1 Precomputed Results vs. Containerized Systems

As pointed out earlier, a major difference between STELLA and earlier living lab
implementations is the possibility of submitting the entire experimental system. In
the following, we compare the volume of logged data at LIVIVO during the first
round, which can be seen in Figure 8.5. Only precomputed results were submitted
for experimentation during the first two weeks (blue region). Consequently, the
amount of logged user feedback data at LIVIVO was comparatively low due to
systems with precomputed results for preselected head queries. However, once the
first containerized systems were deployed, substantially more user traffic data could
be redirected to our infrastructure. For the latter half of March (green region), the
cumulative sums of logged sessions, impressions, and clicks steeply increased. This
can be explained by a larger number of queries for which rankings could be retrieved;
likewise, more user interactions could be logged. It can be seen that the number of
impressions was higher than the number of sessions. It means that multiple results
of an experimental system were shown in a single session since our infrastructure can
provide experimental rankings throughout a user session with query reformulations.
However, not every impression received clicks, as the number of clicks stayed below
the number of impressions. Overall, we consider integrating entire experimental
systems into the STELLA infrastructure as successful.
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Table 8.1: Number of sessions, impressions, clicks and CTR.

Round Site Sessions Impressions Clicks CTR

1
LIVIVO 2852 4658 2452 0.5264

GESIS 4568 8390 152 0.0181

2
LIVIVO 12962 25830 11562 0.4476

GESIS 6576 12068 250 0.0207

8.4.2 Evaluation of the Shared Task

This subsection covers the evaluation of the shared task. First, we provide some
general statistics about the volume of logged data and the distribution of the click
data. Afterward, we introduce the evaluation measures for the system analysis,
presented at the end of this part.

General Statistics

As mentioned before, the lab was split into two rounds. Table 8.1 provides an
overview of the traffic logged in both rounds. In sum, substantially more sessions,
impressions, and clicks were logged in the second round, not only due to a slightly
longer period but also because more systems were contributed as containerized sub-
missions. In the first round, the deployed experiments at LIVIVO were mainly based
on precomputed results, meaning their responses were restricted to the preselected
head queries. LIVIVO started the second round with dockerized systems, which
delivered results for arbitrary queries, and thus, more session data was logged.

GESIS started both rounds with most experiments based on entire systems in
Docker containers. In comparison to LIVIVO, more sessions and impressions were
logged in the first round, but fewer recommendations were clicked. Similarly, there
are fewer clicks in the second round compared to LIVIVO, which is also reflected
by the CTR that is determined by the ratio between clicks and impressions. As
mentioned before, GESIS introduced the recommendations of research datasets as
a new service, and presumably, users needed to be made aware of this new feature.
During the first two weeks of the first round, the amount of logged data at LIVIVO
is comparatively low due to systems with precomputed results for preselected head
queries. After that, the first type B systems were deployed, and increasingly more
user traffic could be redirected to our infrastructure.

In general, we observed many skewed data distributions in our experiments.
For instance, the logged impressions follow a power-law-like distribution for both
rankings and recommendations, as shown in Figure D.1. Most of the impressions
could be attributed to a few top k queries for the rankings or target items for
the recommendations. Note that unbalanced query distributions can lead to unfair
comparisons if a system is evaluated more often with a hard query, for which the
system returns poor retrieval results. At the same time, it may perform better with
less frequent queries.

Another critical aspect to be considered as part of the system evaluations is the
position bias inherent in the logged data. Click decisions were biased towards the top
ranks of the result lists, as shown in Figure D.2. The rankings and recommendations
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were displayed to users as vertical lists for both use cases. Note that GESIS restricted
the recommendations to the first six recommended datasets, and no pagination over
the following recommended items was possible. LIVIVO showed its users ten results
per page; as can be seen from the logged data, users rarely clicked results beyond
the fifth page.

In addition to “simple” clicks on ranked items, we logged specific SERP elements
that were clicked at LIVIVO. Table 8.3 provides an overview of which elements were
logged, and Figure D.3 shows the CTR of these elements also follows a power-law-
like distribution. The number of clicks was the highest for the details button, and
the title and full text click options followed it. In comparison, the other four logged
elements received substantially fewer clicks.

As LIVIVO offers a search service for life sciences, the COVID-19 pandemic influ-
enced the query distributions: the most frequent and the fifth most frequent queries
were “covid19” and “covid”, respectively. Likewise, multilingualism had to be con-
sidered as LIVIVO offers results in multiple languages. Three of the ten queries were
German queries (“demenz”, “pflege”, “schlaganfall”); others were domain-specific
or could be interpreted as English queries. In both rounds, interaction data was
logged for 11,822 unique queries with an average length of 2.9840 terms (which is
also typical for web search queries), and each session had 1.9340 queries on average.

Evaluation Measures

Our logging infrastructure allowed us to track search sessions and the corresponding
interactions made by users. Each session comprised a specific site user, multiple
queries (or target items), and the corresponding results and feedback data in the
form of user interactions, primarily logged as clicks with timestamps. Given this
session log data, we could determine several measures and evaluation criteria listed
in Table 8.2. Like previous living lab initiatives, we designed our user-oriented
experiments with interleaved result lists based on TDI. As explained in Chapter 7,
it is inspired by the team selection in a team-sports match and combines ranking lists
of two competing retrieval systems. Compared to other interleaving methods, TDI
is less biased [336]. Consequently, we could also determine the wins, losses, ties, as
well as derived outcomes for relative comparisons of the experimental and baseline
systems [366]. We refactored the same implementation for the highest degree of
comparability [454].

In addition, to the “conventional” living lab evaluations by Schuth et al. [366], we
adapt the proposal by Gingstad et al. [155] and evaluate the Reward as a weighted
sum of clicks on different elements in a SERP. Figure 8.6 shows the corresponding
elements (highlighted by red boxes) for a search result as it would have been dis-
played to the LIVIVO users. While the outcome measure treats all clicks equally,
we argue that it is reasonable to weigh the different elements as they have differ-
ent implications throughout the search session. For instance, ordering an item can
be considered equivalent to a purchase decision in an e-commerce setting, whereas
clicking the details button can be a weaker indicator of relevance. Table 8.3 shows
the weights we assigned intellectually to the seven SERP elements logged in the
LIVIVO experiments. Alternatively, the weights can also be determined by existing
click logs in the future.
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Table 8.2: Measures and evaluation criteria in the living lab.

Measure Description

Win [366] If the results of experimental system in the interleaved ranking
received more clicks than those of the baseline system, a win is
assigned to it.

Loss [366] In case the experimental system received less clicks than the base-
line system it is assigned a loss.

Tie [366] If both the experimental system and the baseline receive an equal
number of clicks or no clicks at all, a tie is assigned to the exper-
imental system.

Outcome [366] Wins
Wins+Losses

; Ratio between the total number of wins and the sum
of wins and losses.

Sessions Number of sessions in which the system participated.

Impressions [366] Number of times results of the system have been shown in exper-
iments.

Clicks Number of total clicks a system has received.

Click-through rate Clicks
Impressions

; The click-through rate (CTR) is the ratio between the
total number of clicks and the total number of impressions.

Reward [155]
∑

sϵS wscs; Weighted sum of the clicks on SERP elements: S
denotes the set of all elements on a SERP, ws denotes the corre-
sponding weight of the SERP element s that was clicked, and cs
denotes the total number of clicks on the SERP element s.

nReward [155] Rewardexp
Rewardexp+Rewardbase

; sum of all weighted clicks on experimental

results (Rewardexp) normalized by the total Reward given by
Rewardexp + Rewardbase.

System Analysis

In our living lab experiments, we evaluated a total of eleven different systems, out of
which nine were experimental systems primarily based on lexical retrieval methods
that differ by their configurations and preprocessing pipelines. Table 8.4 provides
an overview of the systems that participated in both rounds.

Tran et al. [393] contributed precomputed rankings from two systems. Their first
system (LJMRank

Precom [393]) was based on Elasticsearch and used a language model with
Jelinek-Mercer smoothing [439] as a ranking method. Similarly, their second pre-
computed submission (BM25Rank

Precom [393]) was based on Elasticsearch and uses the
default BM25 ranking method but has a modified preprocessing pipeline, which tried
to address the multilingualism of the LIVIVO platform. Another submission of pre-
computed rankings was made by Keller and Munz [217]. As part of their submission
(BM25Rank

Precom [217]), they precomputed the results with the BM25 implementation
of Solr, which is similar to other BM25 submissions as both Solr and Elasticsearch
build upon the Lucene library.
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Table 8.3: Weights assigned to the SERP elements that are shown in Figure 8.6.

SERP element Bookmark Order Full Text In Stock More Links Title Details

Weight ws 10 10 8 8 2 1 1

Figure 8.6: Example with highlighted elements of LIVIVO’s SERP including ➊ title,
➋ bookmark, ➌ more links, ➍ details, ➎ full text, ➏ in stock, and ➐ order.

In the second round, Tran et al. reused their implementations for a dockerized
submission (DFRRank

Docker [393]) but changed the ranking method to DFR [8]. Like-
wise, they combined it with the modified preprocessing (DFR†Rank

Docker [393]), which is
denoted by the dagger symbol in Table 8.4. In both rounds, we integrated a Docker
container (BM25Rank

Docker [361]) based on Pyserini’s BM25 implementation (also based
on Lucene) and let it participate for a few weeks in both rounds. All experimental
rankings were interleaved with the productive baseline system LIVIVOBaseline.

We evaluated a total of four different recommender systems for research datasets.
All of the systems were based on the lexical ranking methods and matched the tar-
get item’s title against the abstracts of the research datasets. Keller and Munz
reused their BM25-based approach for the recommendation task (BM25Rec

Precom [217])
and Tavakolpoursaleh and Schaible [387] contributed a dockerized tf-idf-based sub-
mission (TFIDFRec

Docker [387]). We also evaluated the tf-idf-based candidates that were
precompiled for the participants (TFIDFRec

Precom [361]). Compared to TFIDFRec
Docker [387],

the tf-idf matching was not based on Pyterrier but uses a custom implementa-
tion. All experimental recommendations were interleaved with the baseline system
GESISBaseline, based on Pyserini’s BM25 implementation.

Table 8.5 compares the system effectiveness, and the corresponding logged in-
teractions and sessions during both rounds. At LIVIVO, none of the experimen-
tal systems could outperform the baseline systems regarding the outcome measure.
Note that the baseline systems’ reported outcomes result from comparisons against
all experimental systems. The systems with precomputed rankings received a total
number of 32 clicks for four weeks at LIVIVO. Since interaction data was sparse in
the first round, we only received enough data for our dockerized BM25-based system
(BM25Rank

Docker [361]) to conduct meaningful significance tests. The reported p-value
results from a Wilcoxon signed-rank test shows a significant difference between the
experimental and baseline system.

The lower half of Table 8.5 shows the results of the second round. As part of
their BM25-based submission (BM25Rec

Precom [217]), Keller and Munz precomputed



146 CHAPTER 8. LIVING LAB EXPERIMENTS

Table 8.4: System overview of LiLAS.

Task Type Method Round 1Round 2

Ranking

Precomputed

LJMRank
Precom [393]   

BM25Rank
Precom [393]   

BM25Rank
Precom [217]   

Docker

DFRRank
Docker [393] #  

DFR†Rank
Docker [393] #  

BM25Rank
Docker [361] H# H#

LIVIVOBaseline   

Recommendation

Precomputed
BM25Rec

Precom [217] #  

TFIDFRec
Precom [361]  #

Docker
TFIDFRec

Docker [387]   

GESISBaseline   

recommendations for the entire volume of publications at GESIS. Their submission
replaced the system with the precompiled candidates (TFIDFRec

Precom [361]) in the sec-
ond round and achieved a higher CTR compared to the other recommender systems.
Likewise, it achieved an outcome of 0.62, which indicates that it might outperform
the baseline recommendations by the GESISBaseline system. Unfortunately, we could
not conduct any meaningful significance test due to the low volume of click data.

At LIVIVO, the systems with precomputed rankings received a comparable
amount of clicks similar to the first round. In sum, all three systems received a
total number of 35 clicks for five weeks, slightly more than in the first round, but it
has to be considered that the experimental sessions had to be distributed over more
systems. Even though click data was sparse and interpretations have to be made
carefully, the relative effectiveness order of these three systems was preserved in the
second round (e.g., in terms of the outcome, the total number of clicks, or CTR).

No experimental dockerized system could outperform the LIVIVOBaseline system
in the second round. Both systems DFRRank

Docker [393] and DFR†Rank
Docker [393] achieved

significantly lower outcome scores as the baseline. However, the second system had
substantially lower outcome and CTR scores. Both systems shared a fair amount of
the same methodological approach and only differed in processing the input text. In
this case, the system effectiveness did not benefit from the modified preprocessing.

Our dockerized system BM25Rank
Docker [361] did not participate in the entire second

round since we took it offline as soon as the other two systems were available to let
them participate in more sessions by reducing the number of experimental systems
from three to two. Despite having participated in comparatively fewer experiments
than in the first round (1260 sessions vs. 243 sessions), our system BM25Rank

Docker [361]
achieved comparable outcome and CTR scores in both rounds. This circumstance
raises the question of how long systems must be online to deliver reliable estimates
of effectiveness (cf. Chapter 7).

Figure 8.7 provides an overview of how the outcome score evolves over aggregated
sessions for different systems and rounds. As the results show, the outcome tends to
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Figure 8.7: Outcome (red), wins (blue), losses (orange), and ties (green) over an
increasing number of sessions in round 1 (left) and 2 (right). The top row corre-
sponds to the LIVIVOBaseline system competing against all experimental systems.
The bottom row corresponds to BM25Rank

Docker [361] competing against LIVIVOBaseline.

stabilize after a certain number of sessions. Putting these results into context with
the findings of Chapter 7, we conclude that it is indeed possible to determine the
relative system effectiveness once a substantial amount of click data is logged. In
the future, it should be analyzed what factors impact how many clicks and sessions
have to be logged to make reliable estimates about the system effectiveness and the
benefits for users.

One of the primary differences between these evaluations and those of Chapter 7
is the query type included in the experiments. While the click model-based evalua-
tions focused on the top k queries (to have enough data available for parameterizing
the click models), the living lab experiments included the entire query distribution.
It means that also less frequent queries were included for determining the outcome.
Future work should analyze how the query type affects the reliability of the effec-
tiveness estimates. For instance, a system could result in good effectiveness over
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Table 8.5: Outcomes of rounds 1 and 2. Significant differences based on Wilcoxon
signed-rank tests are denoted by an asterisk symbol (∗).

System W
in

L
os
s

T
ie

O
u
tc
om

e

S
es
si
on

s

Im
p
re
ss
io
n
s

C
li
ck
s

C
T
R

Round 1

GESISBaseline 36 36 1 0.50 2284 4195 37 0.0088

TFIDFRec
Docker [387] 26 28 1 0.48 1968 3675 28 0.0076

TFIDFRec
Precom [361] 10 8 0 0.56 316 520 11 0.0212

LIVIVOBaseline 332 234 67 0.59 1426 2329 677 0.2907

BM25Rank
Docker [361] 215 302 64 0.42∗ 1260 2135 517 0.2422

LJMRank
Precom [393] 4 8 1 0.33 45 55 10 0.1818

BM25Rank
Precom [217] 6 10 1 0.38 64 77 8 0.1039

BM25Rank
Precom [393] 9 12 1 0.43 57 62 14 0.2258

Round 2

GESISBaseline 51 68 2 0.43 3288 6034 53 0.0088

TFIDFRec
Docker [387] 26 25 1 0.51 1529 2937 27 0.0092

BM25Rec
Precom [217] 42 26 1 0.62 1759 3097 45 0.0145

LIVIVOBaseline 2447 1063 372 0.70 6481 12915 3791 0.2935

BM25Rank
Docker [361] 48 71 15 0.40 243 434 112 0.2581

DFRRank
Docker [393] 707 1042 218 0.40∗ 3131 6274 1273 0.2029

DFR†Rank
Docker [393] 291 1308 135 0.18∗ 2948 6026 570 0.0946

LJMRank
Precom [393] 6 13 0 0.32 61 69 10 0.1449

BM25Rank
Precom [217] 4 7 1 0.36 36 42 5 0.1190

BM25Rank
Precom [393] 7 6 3 0.54 62 70 20 0.2857

a uniform query distribution while failing to deliver good results for more frequent
queries. Consequently, it would not be a good candidate for industrial use.

Previous studies showed that a system is more likely to win if its documents
are ranked at higher positions [200]. As part of our experimental evaluations, we
also could confirm this circumstance. We also determined the Spearman correlation
between an interleaving outcome (1: win, -1: loss, 0: tie) and the highest-ranked
position of a document contributed by an experimental system. At both sites, we
see a weak but significant correlation (LIVIVO: ρ = −0.0883, p = 1.3535e − 09;
GESIS: ρ = −0.3480, p = 4.7422e− 07).

One area for improvement of the previous measures derived from interleaving ex-
periments was the simplified interpretation of click interactions. As outlined earlier,
weighting clicks makes it possible to account for the meaning of the corresponding
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Table 8.6: Experimental systems of round 2 and the corresponding number of clicks
on SERP elements, total number of clicks, and the Reward score.

System B
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ok
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T
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T
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C
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n
R
ew

ar
d

BM25Rank
Docker [361] 182 341 176 55 62 28 263 1107 0.4367

LIVIVOBaseline 180 443 228 154 57 29 329 1420 0.5633

DFRRank
Docker [393] 63 832 481 107 105 54 638 2280 0.4045

LIVIVOBaseline 56 1066 646 295 129 85 858 3135 0.5955

DFR†Rank
Docker [393] 23 355 257 23 28 21 285 992 0.2143

LIVIVOBaseline 69 1190 762 301 119 82 934 3457 0.7857

LJMRank
Precom [393] 1 13 16 0 2 0 10 42 0.4242

LIVIVOBaseline 1 24 7 14 1 0 20 67 0.5758

BM25Rank
Precom [217] 2 11 2 2 1 0 6 24 0.3430

LIVIVOBaseline 0 13 6 7 0 1 9 36 0.6570

BM25Rank
Precom [393] 11 21 9 3 1 1 16 62 0.5496

LIVIVOBaseline 8 13 7 5 2 1 6 42 0.4504

All experimental systems 282 1573 941 190 199 104 1218 4507 0.3485

LIVIVOBaseline 314 2749 1656 776 308 198 2156 8157 0.6515

SERP elements. Table 8.6 shows each system’s total number of clicks on SERP
elements and the nReward resulting from the weighting scheme given in Figure 8.3.
We compare the total number of clicks of those experiments in which the experimen-
tal and baseline systems delivered results. As can be seen, comparing systems by
clicks on different SERP elements provides a more diverse analysis. Some systems
achieve higher numbers of clicks (and CTRs) for some SERP elements compared
to the baseline system. For instance, BM25Rank

Docker [361] or DFR
Rank
Docker [393] got more

clicks on the bookmark element than the baseline system, while both systems achieve
lower numbers of total clicks.

Similar to the previous evaluations, none of the systems could outperform the
baseline system by the nReward measure. However, compared to the outcome scores,
there is a more balanced ratio between the nReward scores that also accounts for the
meaning of specific clicks. Likewise, it accounts for clicks even if the experimental
system did not win in the interleaving experiment. Table 8.6 compares the total
number of clicks over multiple sessions. While the win, loss, tie, and outcome only
measure if there have been more clicks in a single experiment, the nReward also
considers those clicks that were made in experiments in which the experimental
system did not necessarily win.
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8.5 Conclusion

This chapter introduced our living lab platform STELLA and the corresponding IR
and RecSys experiments of LiLAS. Within the scope of this dissertation project,
we consider living lab experiments as a solution for analyzing the ecological validity
of findings from system-oriented experiments in real-world user environments. A
key component of the underlying infrastructure is the integration of experimental
ranking and recommendation systems as micro-services that are implemented with
the help of Docker. LiLAS was the first testbed to use this evaluation service, and it
exemplified some of the benefits of the new infrastructure design. First, completely
dockerized systems can overcome the restrictions of results limited to filtered (top k)
queries or target items. Significantly more data and click interactions can be logged
if the experimental systems can return results on purpose for arbitrary requests of
rankings and recommendations. Consequently, this allows more data aggregation in
a shorter time, providing a solid basis for statistical significance tests.

Furthermore, the deployment effort for site providers and organizers is consid-
erably reduced. Once the systems are properly described with the corresponding
Dockerfile, they can be rebuilt on purpose, precisely as intended by the participants
and developers. Likewise, the entire infrastructure service can be migrated with
minimal costs due to the use of Docker. We note that even though dockerizing a
system requires additional development time, the effort will pay off. If the systems
are properly adapted to the required interface and the source code is available in a
public repository, the research community can rely on these artifacts that make the
experiments transparent and reproducible.

In this regard, we address the reproducibility of these living lab experiments
mainly from a technological point of view. It is possible to repeat the experiments
in the future with reduced efforts since the participating systems are openly available
and should be reconstructible with the help of the corresponding Dockerfiles and the
STELLA infrastructure. Future work should investigate how feasible it is to rely on
the Dockerfiles for long-term preservation. Since experimental systems are rebuilt
each time with the help of the Dockerfile, updates of the underlying dependencies
might be a threat to reproducibility. An intuitive solution is integrating pre-built
Docker images that allow longer reproducibility.

Apart from the technical questions, the reproducibility of the actual experimental
results has to be investigated. Our experimental setup allowed us to answer ques-
tions regarding the reproducibility of the experimental results over time and across
different domains (e.g., life vs. social sciences). However, some limitations of our
experiment have to be considered. No test collection with editorial relevance labels
was available to test any of the systems in a typical system-oriented experiment.
In the future, it should be analyzed how such an editorial labeling process could
be integrated into living lab experiments. Then it is possible to compare system-
oriented and living lab experiments. Similarly, it is reasonable to keep several pairs
of systems fixed throughout the experimental round (evaluation phases) for better
and more systematic comparisons, e.g., a baseline and an improved method that is
known to outperform the baseline in terms of system-oriented measures like P@10
or AP. With the help of STELLA, it can be analyzed if these effectiveness gains also
transfer over to the real world, similar to the experiments by Turpin and Hersh [396].
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Most of the evaluation measures were made for interleaving experiments that
also depend on the results of the baseline system and not solely on those of an
experimental system. We have not investigated yet if the experimental results follow
a transitive relation: if the experimental system A outperforms the baseline system
B, denoted as A ≻ B, and the baseline system B outperforms another experimental
system C (B ≻ C), can we conclude that system A would also outperform system C
(A ≻ C)? The evaluations showed that click results are heavily biased towards the
first ranks. In the future, the click position bias should be addressed by weighting
clicks on top-ranked documents differently, e.g., with the help of existing search
session logs like the Sowiport User Search Sessions Data Set [290].

Likewise, clicks were context-dependent, i.e., depending on the entire result list,
and single-click decisions must be interpreted concerning other results of the SERP.
Previously seen results and further evaluations in these directions would require
counterfactual reasoning. Nonetheless, the second round illustrated how our infras-
tructure service could be used for incremental developments and component-wise
analysis of experimental systems. The two experimental systems by Tran et al.
DFRRank

Docker [393] and DFR†Rank
Docker [393] followed a similar approach and only differ by

the preprocessing component that was not of any benefit.

In addition to established outcome measures of interleaving experiments (win,
loss, tie, outcome), we also accounted for the meaning of clicks on different SERP
elements. In this context, we implemented the Reward measure as the weighted sum
of clicks on different elements corresponding to a specific result. Even though most
of the experimental systems could not outperform the baseline systems in terms of
the overall scores, we saw some differences in the system effectiveness, which allowed
us to assess a system’s merits more thoroughly when the evaluations were based on
different SERP elements. Overall, our lab is a successful advancement over previous
living labs as we were able to exemplify the benefits of fully dockerized systems,
delivering results for arbitrary queries and also confirming previous findings.

As the evaluations showed, there were many skewed distributions in the logged
data, like, e.g., the power law-like distribution of clicks that could be attributed to
the position bias. In the future, these biases must be considered in the evaluations,
but also when reusing the logged session data for new evaluations as they might be
biased towards the systems that participated in the original experiments. In order to
make participation in the shared task more attractive, it might be helpful to provide
participants with open and more transparent baseline systems they can build upon.
Some of the precomputed experimental rankings and recommendations seemed to
deliver promising results; however, the evaluations needed to be interpreted with
care due to the sparsity of the available click data, which could be addressed by
continuous evaluations freed from the time limits of rounds.

Finally, the living lab experiments can be conceptually aligned with the PRIMAD-
U taxonomy. The experimental setups implied variation for each of the taxonomy’s
components. More generally, the experimentation platform stayed fixed as it was
the STELLA infrastructure. On a more granular level, the participants could choose
the platform (P’) that could be reproduced by containerization. The research goal
(R’) was twofold. On the one hand, ranking systems were analyzed in the life
sciences. On the other hand, recommender systems were analyzed in the social
sciences. Of course, there were different implementations when a method changed
(M’). Nevertheless, implementation details (I’) also varied even if the same groups
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contributed systems with the same retrieval methods. The evaluations were made
as part of a shared task, so the participants implied actor variance (A’). As two
different academic search engine providers were involved in the experiments, there
were consequently different datasets (D’). Finally, user variation (U’) was naturally
given as the user base of academic search engine providers is diverse.

In the future, it should be analyzed if the logged data is usable for the simulation
approaches outlined in the earlier chapters. In order to implement the controlled
query reformulations of Chapter 6, relevance labels are required. We did not curate
a test collection with editorial labels. However, it could be a possible solution to
derive pseudo-relevance labels with the help of click models, as outlined in Chap-
ter 7. Overall, the contributions of the three chapters lay the foundation for dynamic
evaluation environments, where the fidelity of simulations can be validated by align-
ing them to real user behavior, and reasonable simulation models help to identify
promising systems for online experiments.



Chapter 9

Discussion and Conclusion

This chapter summarizes and discusses the contributions of this dissertation project.
Afterward, we outline ideas for future work, building upon the outlined contribu-
tions. Finally, we conclude at the end of this chapter.

9.1 Discussion

In the following section, we discuss the contributions of the previous chapters and
put them into context. The section is aligned with the different levels of validity to
which our contributions were made. Related to the reproducibility analysis, there is
also the question of validity. Reproducing an experimental outcome under the same
conditions as in the original experiment gives evidence of internal validity. If former
findings also generalize under the condition of a different experimental setup, there
is strong evidence for external validity.

At the level of internal validity, we review the results of the Chapters 2, 3, 4, 5
that primarily dealt with the evaluation of system-oriented IR experiments. With
a particular focus on the influence of the user, we have lowered the abstraction of
user interactions to validate the external validity of an IR experiment beyond the
Cranfield approach that implies a strong simplification of the user for the sake of
reproducibility. As an alternative to IR experiments with real users like they are
known from small-scale IIR or large-scale online experiments, we have considered
user simulations as a more reproducible way to validate the external validity. In
Chapters 6 and 7, we had a particular focus on the simulation of query variants and
click interactions, respectively. Finally, we outlined how the ecological validity — a
subtype of the external validity — can be evaluated in living lab experiments with
real users in Chapter 8. With a focus on the key findings, we discuss the limitations
of the results and the contributions to reproducible IR research.

9.1.1 Internal Validity

Our literature review in Chapter 2 answered the research question about factors
possibly affecting reproducibility and what kinds of countermeasures have already
been implemented. Furthermore, we highlighted open points that motivated the
dissertation’s contributions. Reasons for failed reproducibility attempts range from
mundane reasons like a missing experimental setup to more profound reasons when
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the original findings cannot be reproduced in a slightly different experimental con-
text. We have reviewed the existing problems and solutions regarding reproducible
IR research and aligned these to the PRIMAD taxonomy, which defines six influen-
tial components of an IR experiment that could affect reproducibility. In addition,
we put these results into a broader context by referring to the more general causes of
irreproducibility, also pointed out in a Nature survey across different research fields.

Besides the answers to our research questions, we concluded that the PRIMAD
taxonomy basically considers nearly all relevant components a reproducible exper-
iment requires. However, it is still outlined at a very abstract level. Furthermore,
it has separate definitions for system- and user-oriented IR experiments, which con-
firms its applicability but undervalues the role of users as they are mainly considered
by their data-trace in the taxonomy. To this end, we favor a more holistic view on the
IR experiment by extending the taxonomy and introducing PRIMAD-U in Chap-
ter 3. Our taxonomy extends the original taxonomy by an additional user component
but also makes it more specific by adding subcomponents. Based on the outcomes
of the literature survey, we have extended each PRIMAD-U component with several
subcomponents and related aspects that could affect the reproducibility of an IR
experiment. By the examples of earlier studies that, on the one hand, pointed out
factors that cause reproducibility issues but, on the other hand, also solutions to
prepare an experiment for reproducibility in advance, we have aligned these findings
to the components of the PRIMAD-U taxonomy. Regarding the introduced user
component, we have outlined how the related subcomponents can be considered as
part of user simulations, as earlier studies gave evidence for their influence on the
experimental outcomes.

Regarding the conventional six PRIMAD components, we have developed the
metadata annotation schema ir metadata, which can be used to annotate the ex-
perimental artifacts of IR experiments, e.g., in the form of TREC run files. By
no means do we claim to provide a complete taxonomy, but we emphasize its ex-
tensibility and point out that it considers essential components that influenced the
reproducibility of earlier works. Given that there is currently no metadata standard
for run files, we think it contributes to better reproducibility practices that also help
make an experiment more transparent and comparable in the aftermath. In the fu-
ture, a community-wide adoption should be enforced as the annotations reveal their
full potential as more experimental results — run files — are annotated. Having a
large amount of annotated run files, the effort of systematic meta-evaluations could
be reduced to a minimum. Instead of conducting tedious literature research to find
baseline methods or candidates for benchmark studies, it would be feasible to for-
mulate a structured query that expresses the properties of the particular PRIMAD
components that should be the same or different. Likewise, such a metadata service
could be used to find adequate baselines for experimentation. However, the annota-
tion itself requires effort. While some annotations could be automated in the future,
some metadata fields will still require manual labeling. As a solution, it makes sense
to cooperate with shared task organizers who can enforce the annotations at submis-
sion time. In this regard, the TREC Deep Learning track successfully demonstrated
how participants could be motivated to provide more metadata than conventional
information, like the name of the approach.

In Chapter 4, we framed the typical approach of a reactive reproducibility at-
tempt and how reproducibility measures can help to quantify the degree of system-



CHAPTER 9. DISCUSSION AND CONCLUSION 155

oriented IR experiments. As another practical contribution, the evaluation toolkit
repro eval compiles all of these measures and provides them to the research com-
munity as an open-source software library. It is still an open question when we
consider an experiment successfully reproduced, i.e., when a reimplementation is
“good enough” to be considered a reasonable reproduction of the original reference.
At the current state, the reproducibility measures provide feedback about the re-
production quality by relative comparisons to other reimplementations. They can
be used to evaluate which reimplementation delivers results more similar to those of
the original software implementations. However, it is still part of the future work to
give an answer when something can be considered as successfully reproduced solely
based on the score of a reproducibility measure.

From a practical point of view, this dissertation contributed resources in the form
of reimplementations based on the principle of CCRF, which were used to compile
a dataset of annotated run files. Building upon the reproducibility measures and
the annotated dataset, we have demonstrated how principled reproducibility eval-
uations can be conducted based on similar or different PRIMAD components of
experimental setup components. Identifying suitable evaluation protocols based on
the metadata annotations is a challenging task, and it was included in our eval-
uations by prototypical implementations. For instance, we assumed that the run
files in the same directory implicitly provided reasonable comparisons. However,
identifying combinations of runs, which result in reasonable comparisons, can be
challenging when having a large variety of metadata indexed in a database. Future
work should explore how such run combinations for meaningful comparisons can be
automatically identified.

Overall, our contributions to evaluating the reproducibility at the level of inter-
nal validity are made available in a distilled form by the reusable artifacts for the
reactive evaluations and proactive annotations of IR experiments. repro eval is an
evaluation toolkit for measuring the degree of reproducibility as part of reactive re-
productions, being extensible by implementations of other reproducibility measures.
ir metadata allows IR practitioners to describe and annotate the artifacts of IR
experiments in a proactive way, which supports the reuse in reactive reproducibility
studies or as part of meta-evaluations.

9.1.2 External Validity

Within the scope of this dissertation, we focused on the influence of the user when
evaluating reproducibility at the level of external validity. Other work considers a
retrieval experiment to be generalized when observing similar effects to the original
experiment with another test collection. However, we mainly focused on the question
of to which extent the results of system-oriented experiments can be successfully
validated under the variation of user behavior.

While user experiments provide answers to the question of how the outcomes
of system-oriented experiments translate into the real world, they are generally not
considered reproducible as little is known about the users, and their interactions
depend on individual preferences. As an alternative to experiments with real users,
we consider the simulation of their interactions as a viable solution to account for
their influence in the experiments without sacrificing control over the behavior. As
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part of Chapters 6 and 7, we analyze the simulated user behavior in the form of
clicks and queries and their implications for reproducibility.

In Chapter 6, we analyzed the differences in the retrieval performance that re-
sults from UQV, i.e., how different query formulations for the same underlying in-
formation need affect the experimental outcomes. We have compared different user
models for the query simulations covering naive approaches based on the topic texts
of the test collections, proficient searchers with background knowledge of the topics
and the documents in the collections, as well as a parameterizable query simulation
approach that gives better estimates of real user querying behavior.

The experimental outcomes have shown clear differences between the user mod-
els, which also impact the reproducibility and the external validity of an IR ex-
periment. There are different ways to formulate a query for a given information
need, depending on the knowledge and familiarity with the topic. As a result, users
formulate different queries that likewise result in different retrieval outcomes. Our
query simulation method is parameterizable and allows us to define different query-
ing strategies, which had a higher similarity with real UQV than other conventional
query simulation approaches. The replicability study showed that most of the find-
ings could be successfully revalidated with another test collection, implying that the
approach could also be considered a way to simulate UQV when topics are reused
for another test collection.

In Chapter 7, we have analyzed how feasible it is to reproduce the relative ranking
of systems with the help of click signals collected from search sessions of a medical
database, which is similar to the search platform that took part in our living lab
experiments. In our analysis, we have included click models based on different user
models. Compared to a simple CTR-based click model that solely considers the
attractiveness of the search results, we evaluated two more complex click models,
which also embed satisfaction and continuation probabilities. Our experiments have
shown that click signals can be used to determine the relative performance ordering
of systems if enough click data is available.

While user simulations give complete control of how a user should behave in an IR
experiment, the conclusions drawn heavily depend on the fidelity of the user models.
Therefore, it may suffice to focus on simulating the aspects that are the focus of the
analysis. However, the simplifications a user model implies should be considered,
and the generalizability of the conclusions drawn from the simulations should not be
overestimated. For instance, some of our session simulations in Chapter 6 focused
on the query aspects and did not consider any simulated interaction with the result
list, i.e., the simulated user scanned the entire result list similar to the implicit user
of Cranfield-style evaluations.

In Chapter 7, the click models allow a more elaborated simulation of the inter-
action with the result lists. However, it has to be considered that the analyzed click
models can only be used for known queries. To have enough click data available,
we focused on the most frequent queries sent by the search service users. However,
provided only with the query and the corresponding clicks, we do not know if the
queries originate from the same information need. While some queries are easily
identifiable, like know-item queries, others are more ambiguous. In this regard, the
click models imply the same underlying information need for the logged queries.

Future work should analyze other user interactions but also consider their in-
terplay. For instance, the click decisions often depend on the attractiveness of the
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results, that in turn depends on the presentation of the SERP. Besides the layout,
snippet generation is a key component influencing how the single results attract
the user’s attention. Future simulation experiments should analyze how simulated
users interact with the results (make their click decisions) under the consideration
of different snippet generation algorithms. The corresponding user models could be
based on a language model that depending on their comprehensiveness, represent
different knowledge states of the user. Throughout the progress of the search ses-
sions, these user models could be extended by the already-seen terms of the snippet
texts. Furthermore, the interplay of different simulation stages requires more in-
depth investigations. For instance, the query simulation method could be combined
with parameterized click models for more realistic interactions with result lists.

Overall, our contributions to evaluating the reproducibility at the level of exter-
nal validity include simulations of UQV and the analysis of how the query variants
impact retrieval effectiveness. The retrieval results were analyzed regarding differ-
ent aspects, and most outcomes could be generalized with another test collection.
In addition to the simulation of queries, we have analyzed how click models that
simulate a different user behavior can be used to reproduce the ranking of systems.
Our results showed that clicks could be used as alternative relevance signals but also
pointed out limitations. The next subsection describes another contribution of how
external validity can be evaluated. More specifically, it summarizes our contribu-
tions to evaluating ecological validity, which can be seen as a subtype of external
validity based on the validation in a real-world environment.

9.1.3 Ecological Validity

In Chapter 8, we have described how living lab experiments provide a solution for an-
alyzing the ecological validity of IR experiments. Besides outlining the architecture
of the living lab platform STELLA, we also included the corresponding evaluations
of the shared task at the CLEF conference that served as the first testbed for the
infrastructure. In contrast to IIR studies, the living lab experiments offer access to
a substantially larger user base at the cost of knowledge and control over the users.

By using Docker — or, more generally, the concept of containerization — as a
core technology, our infrastructure STELLA implements technical reproducibility
by making the contributed experimental systems reusable. Besides, it reduces the
deployment effort and ensures the systems run as intended when deployed on the
search services’ backend servers.

Our experimental evaluations showed that containerizing experimental systems
are a key technology to collecting larger amounts of user feedback data. Compared
to earlier living lab implementations, we did not restrict the experimental rankings
to the most frequent queries but let the systems participate in tremendously more
experiments as they could deliver experimental results for arbitrary queries.

Unfortunately, the retrieval methods of our living lab experiments were not di-
verse and did not outperform the baseline system. In our experiments, we deployed
traditional lexical retrieval methods. In the future, evaluating more effective re-
trieval methods based on Large Language Models and Transformers would be inter-
esting. However, more demanding retrieval and recommender approaches come at
a cost, as they require hardware resources only some platform providers can afford.
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In the future, it is reasonable to implement comprehensive evaluation life cycles
that analyze the system-oriented results with test collections, afterward, estimate the
experimental results of online experiments by simulated user interactions, and finally
evaluate them in real-world online experiments. In order to draw better conclusions
about how system-oriented outcomes relate to user-oriented outcomes, a domain-
specific test collection with editorial relevance judgments should be curated as it is
a key resource to compare outcomes of system- and user-oriented experiments.

Having access to both system- and user-oriented experimentation environments,
the simulations can be improved by comparing the user models to the real-world
outcomes. In addition, a higher fidelity of the user model regarding the real-world
reference allows better estimates that help to identify low-performing retrieval ap-
proaches that could harm the user experience and, likewise, help to reduce the time
of online experiments and avoid ethical considerations related to user experiments.

Overall, our contributions to evaluating the reproducibility at the level of eco-
logical validity include the introduction of a living lab infrastructure based on the
concept of containerization and micro-services and the corresponding evaluations of
the shared task that served as the first testbed for the infrastructure.

9.2 Future Work

In the following, we recap the ideas for future work mentioned earlier in the text by
making them explicit and describing how they could be implemented.

• Dissemination and extension of the metadata schema: The metadata
schema ir metadata can be used as a pro- and reactive resource supporting
the reproducibility of IR experiments. On the one hand, it can be used to pre-
pare an experiment for reproducibility by making the underlying experimental
setup of the run file more transparent when annotating it. On the other, it
helps to analyze run files as part of meta-evaluations or reactive reproducibil-
ity studies, as outlined in our experiments. However, the usefulness of the
metadata annotations for meta-evaluations heavily depends on the amount of
annotated experimental data. In this regard, the adoption by the commu-
nity should be enforced, and IR practitioners should be motivated to annotate
their experimental data. In the future, collaboration with shared task orga-
nizers could help inform participants of annotated runs’ benefits. Likewise,
it would be possible to host an additional web service that provides public
access to the metadata, which could be consolidated when conducting meta-
evaluations or searching for an adequate baseline. In addition, the schema and
taxonomy should be extended depending on the use cases.

• Evaluation and extension of the reproducibility measures: The repro-
ducibility measures provide a starting point for evaluating a system-oriented
IR experiment at different levels of specificity. Right now, it is possible to
conclude the reproduction quality concerning other reimplementations, i.e., it
is possible to say which reimplementation is closer to the original. However, it
remains an open question when an experiment can be considered sufficiently
reproduced. As our experiments showed, the reproducibility measures at the
document level are quite “sensitive” to only slight modifications of the retrieval
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method. It implies that users are exposed to different documents when using
the reimplemented ranking as part of a reproduced user experiment. In this
sense, it is an open question if such a user experiment has to be considered a
failed reproduction per se or if other aspects of the user experience can still
be reproduced. For example, earlier studies showed that users compensate
for poorer retrieval results with different search behavior, and it is possible to
gain the same knowledge about a topic with different search results containing
the same information as the original experiment. Likewise, it makes sense to
extend the framework of measures. For instance, in addition to the p-values
at the most general level, it makes sense to consider effect sizes. We con-
tribute the implementations of the measures as part of the evaluation toolkit
repro eval, which is provided as open-source software and extensible with
new implementations of other reproducibility measures.

• Simulation and validation of other user interactions: Besides query
variants and clicks, other forms of simulated user interactions and user-related
aspects should be considered. For instance, the analyzed click models only
implicitly consider the user interface. However, earlier user experiments have
shown that the SERP layout also influences the search process. Therefore, in
addition to the layout of the SERP elements, the content of the snippets and
documents could be analyzed. For example, the reading time or the level of
expertise required to understand the contents of a search item would result in
cognitive strains that could be modeled as costs. Likewise, the knowledge gain
could be modeled by the document’s relevance or the terms shown to users.

• Validation of comprehensive user interaction sequences: In the ear-
lier chapters, the simulated user interactions were analyzed in isolation. For
instance, the query simulations were not combined with click interactions,
whereas the analysis of click models did not vary the query formulations of
single topics. In the future, the individual stages of the search process should
be integrated into more comprehensive and connected interaction sequences.
Furthermore, the interplay and dependencies between individual user interac-
tions motivate future research. For instance, how does the query formulation
impact the click decisions, or how do previously seen search results influence
the query reformulations? As a starting point, existing frameworks and toolk-
its can be reused. However, also new approaches should be considered, like
a UQV-aware click model. In our experiments, we used click models param-
eterized for a single query formulation. However, it should be investigated if
a click model could be adapted to an underlying information need for which
different query formulations can be made.

• Development of a domain-specific test collection: A key resource to
compare system- with user-oriented experiments is a domain- and platform-
specific test collection with editorial relevance labels. The search platforms,
integrated into the living lab infrastructure, have domain-specific users and
data. For instance, in our experiments, search platforms from the social and
life sciences took part in the living lab experiments. As a starting point,
existing test collections like the TREC Precision Medicine datasets or the
TripClick dataset could be reused as they also contain medical documents
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with relevance labels. However, there may be a mismatch between the topics
of the judged documents and those queries sent by the users in our living lab
experiments, and a dedicated test collection should be favored for the sake of
better comparability. First of all, combining click data and editorial relevance
labels for a single test collection would be a valuable and reusable contribution
to the community. Second, some simulations of this thesis could be integrated
into the evaluations, like the method for the query simulations, which requires
relevance labels to generate query variants.

• Integrated evaluation life cycle of IR experiments from system- to
user-oriented evaluations: Ultimately, the evaluation of an IR experiment
should cover all stages from the Cranfield-style system-oriented evaluations,
the validation by simulated user interactions, and finally, the living lab ex-
periments with real users. On the one hand, the user simulations could be
improved by evaluating and optimizing their fidelity regarding the outcomes
of the living lab experiments. On the other hand, system-oriented evalua-
tions combined with user simulations can be done offline and serve as a pre-
assessment of the retrieval methods that will be deployed later in an online
experiment. Depending on the fidelity of the user simulation, the online time
of an experiment can be reduced. However, it is likewise possible to identify
low-performing retrieval methods that could harm the user experience and
exclude them from real-world experiments in advance. Furthermore, such an
integrated evaluation life cycle lays the foundation for drawing better con-
clusions about how changing a retrieval method and observing differences in
the system effectiveness carries over to the user experience, i.e., how the user
effectiveness reproduces these effects.

Some of these ideas for future work will be addressed in two DFG-funded projects.
The STELLA project is continued in a follow-up, which will continue developing and
extending the living lab infrastructure. Furthermore, the RESIRE project envisages
the reproduction and simulation of IIR experiments and directly takes up some of
the outlined ideas.

9.3 Conclusion

This thesis dealt with reproducible IR research and made contributions to how re-
producibility can be evaluated at different levels of validity. For the evaluation of
the internal validity, we provided a solution for principled reproducibility evalua-
tions of system-oriented IR experiments based on the PRIMAD model. Beyond the
scope of the original context, we considered the reproducibility under the variation
of the user’s influence as a way to draw conclusions about the external validity. As
an alternative to online experiments, we considered user simulations a more control-
lable and reproducible way to validate an IR experiment by accounting for the user
variability. Finally, our living lab experiments showed how technically reproducible
retrieval systems could be deployed in online experiments to analyze the ecological
validity — a subtype of external validity — with real users.

In conclusion, the reproducibility of computational and IR experiments cannot
be taken for granted, and ensuring the reproducibility of earlier experiments is an
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ongoing challenge. Even if the experimental setup is made available for future reuse,
the reproducibility of earlier findings requires constant revalidation, considering the
pace of technological advances. However, it is possible to establish a culture of
reproducibility, raise awareness to avoid common pitfalls, and prepare experiments
proactively to make IR research more reproducible.

In this regard, we have contributed reusable artifacts to the community. First,
the evaluation toolkit repro eval provides help for measuring the degree of repro-
ducibility as part of reactive reimplementation attempts. The toolkit is also exten-
sible and provides a starting point for implementing other reproducibility measures.
Second, our metadata schema ir metadata allows IR practitioners to describe and
annotate the artifacts of IR experiments in a proactive way, which supports the reuse
in reactive reproducibility studies or as part of meta-evaluations. The underlying
schema is based on our extended version of the PRIMAD taxonomy. Similar to the
evaluation toolkit, it is extensible and can be expanded with new subcomponents.

Beyond technical preservations of the experimental setup that ensure rerunning
the experiments in a reproducible way, a different experimental setting questions
the validity beyond the scope of the original context. Future work should not only
consider the system-oriented reproducibility and focus on preparing the experimental
setup for possible reuse but also analyze which results are valid under different
conditions, i.e., answer whether the original findings can be reproduced in a different
experimental context. With special regards to IR experiments, such an influential
component of an experiment is the user.

We consider the user’s influence in an IR experiment as one of the most influential
components that could lead to different conclusions from those drawn from the
original experiments, i.e., it questions if the measured system improvements can be
reproduced in a user experiment and if they lead to similar improvements of the user
effectiveness. In our opinion, every system-oriented experiment with implications for
the user should ideally be validated by a real-world user experiment. In the end, the
user is the recipient of the retrieved results. However, due to the large effort required
to run user experiments alongside system-oriented evaluations with test collections,
we think that user simulations allow us to consider the user behavior in a more
cost-efficient way and as a more realistic directive compared to the abstract user
model of Cranfield-style experiments. Our simulation experiments provided some
first ideas of how user simulations can accompany system-oriented experiments. In
addition, we outlined how the living lab experiments can support the validation
of experiments with real users. In the future, a stronger connection between the
evaluation stages should be pursued, and their interrelationship should be analyzed.
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Ludäscher, B. YesWorkflow: A User-Oriented, Language-Independent Tool
for Recovering Workflow Information from Scripts. CoRR abs/1502.02403
(2015).

[292] Miksa, T., and Rauber, A. Using Ontologies for Verification and Valida-
tion of Workflow-Based Experiments. Journal of Web Semantics 43 (2017),
25–45.

[293] Mitchell, M., and Jolley, J. Research Design Explained. Wadsworth
Cengage Learning, 2010.

[294] Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L.,
Hutchinson, B., Spitzer, E., Raji, I. D., and Gebru, T. Model Cards
for Model Reporting. In FAT (2019), ACM, pp. 220–229.

[295] Mitra, B., and Craswell, N. An Introduction to Neural Information
Retrieval. Found. Trends Inf. Retr. 13, 1 (2018), 1–126.

[296] Moffat, A., Bailey, P., Scholer, F., and Thomas, P. Incorporating
User Expectations and Behavior into the Measurement of Search Effectiveness.
ACM Trans. Inf. Syst. 35, 3 (2017), 24:1–24:38.

[297] Moffat, A., Scholer, F., Thomas, P., and Bailey, P. Pooled Eval-
uation over Query Variations: Users Are as Diverse as Systems. In CIKM
(2015), ACM, pp. 1759–1762.

[298] Moffat, A., and Zobel, J. Rank-Biased Precision for Measurement of
Retrieval Effectiveness. ACM Trans. Inf. Syst. 27, 1 (2008), 2:1–2:27.
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Table A.1: Overview of the reactive reproducibility studies at ECIR from 2015 to 2022. The columns are defined as follows. Topic:
summary of the reproducibility topic and target problem. PRIMAD & Outcome: PRIMAD components that changed w.r.t. the original
experiment; the colored component is the main focus of the study; the outcome is the authors’ opinion about the success of reproducibility
and is categorized into success ( ), partial success (G#), and failure (#). Evaluation: method for evaluating the success of reproducibility.

Year Ref. Topic
PRIMAD &
Outcome

Evaluation

2015
[142] Generalization of RBP

P’RI’MA’D’
 

Revalidation on more datasets; comparing Kendall’s τ of system
rankings and the number of significant differences between systems

[169] Reproduction of classfication methods for
sentiment detection in tweets

P’RI’M’A’D
 

Comparison of F1 scores; error analysis of true/false posi-
tives/negatives

[339] Reproduction of lexical and temporal feed-
back techniques for tweet search

P’RI’M’A’D’
G#

Comparison of ARP including Fisher’s two-sided, paired random-
ization test and one-sided paired t-test; revalidation on more
datasets; different training/test data splits

2016

[173] Reproduction of entity linkings based on the
TAGME system

PR’IMA’D’
G#

Comparison of ARP

[249] Open-Source IR Reproducibility Challenge
PRI’M’A’D

G#
Comparison of ARP (effectiveness) and query latency (efficiency)

[271] Reproduction of multi-document summa-
rization methods in the newswire domain

P’RI’M’A’D’
 

Comparison of system performance including paired t-test and ad-
ditional comparison to crowdsourced user judgements

[328] Systematic reproducibility study of author
identification methods by students

P’RI’MA’D’
 

Assessments of the provided resources regarding their usefulness for
reimplementations, including the clarity of the approach, availabil-
ity of data, reconstructability, and the overall reproducibility

2018

[117] Reproduction of a DL-based method for
question answering tasks

P’RI’MA’D
#

Comparison of ARP
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[370] Systematic reproducibility study of statisti-
cal and language-independent stemmers

P’RI’MA’D’
 

Comparison of ARP

[380] Reproduction of classifying semantic orienta-
tions in economic texts

P’RI’M’A’D
 

Comparison of lexical statistics (number of entities and sentiment
direction), means of the label distributions, and accuracy

[431] Reproduction and generalization of the linear
transformation of word embeddings

P’R’I’MA’D’
 

Comparison of ARP and statistical significance testing with McNe-
mar’s test

2019

[49] Systematic reproducibility study of general
summarization algorithms applied to legal
texts in different languages

P’RI’M’A’D’
G#

Comparison of ROUGE scores and additional qualitative assess-
ments by legal experts

[53] Systematic reproducibility study of recom-
mender systems in another context (massive
open online courses) and bias analysis

P’R’I’MA’D’
G#

Comparison of ARP including paired t-tests and additional analysis
of popularity bias

[270] Reproduction and generalization of a doc-
ument reordering algorithm for index com-
pression

P’RI’MA’D’
 

Comparison of compression ratio and query efficiency; generaliza-
tion on different datasets

[276] Systematic reproducibility study of different
index compression and document-at-a-time
query processing algorithms

P’RI’M’A’D
 

Comparison of compression ratio and query efficiency by system-
atic evaluation with a fixed retrieval method (BM25) on the same
datasets

[277] Reproduction and extension of cross-domain
recommendation approaches for venues

P’RI’M’A’D’
G#

Comparison of ARP including paired t-tests

[312] Reproduction of two optimization algorithms
for online learning to rank

P’RI’MA’D’
G#

Comparison of ARP including paired t-tests; evaluations on three
learning to rank datasets; lower- and upper-bound performance es-
timates by simulating different levels of noise in user click signals
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[429] Reproduction and generalization of ax-
iomatic retrieval methods (and integration
into Anserini)

P’RI’M’A’D’
 

Comparison of ARP; revalidation on more datasets (from different
domains) using different first-stage retrieval methods

[432] Reproduction of synonym discovery and
ranking methods including the application to
another domain

P’R’I’MA’D’
G#

Comparison of ARP

[437] Reproduction and generalization of CCRF
P’RI’M’A’D’

 
Comparison of ARP including paired t-tests; different combinations
of training and test datasets

2020

[46] Revalidation and ablation study of entity
alignment in knowledge graphs based on
graph convolutional network

P’RI’M’A’D’
G#

Comparison of Hits@1 scores

[147] Revalidation of the influence of near-
duplicates removal on the reproducibility of
shared task evaluations

P’RI’MA’D’
 

Comparison of ARP and relative system orderings by Kendall’s τ

[157] Review of how research findings got inte-
grated into Lucene

- This paper reports anecdotes of how a block-max index feature got
integrated into the Lucene software library.

[213] Reproducibility analysis of different BM25
implementations

P’RI’MA’D
 

Comparison of ARP (by ANOVA and Tukey’s HSD) and query
efficiency

[233] Revalidation of popularity bias of recom-
mender systems in the music domain

P’R’I’MA’D’
 

There is no direct comparison to the original results, but the paper
reconfirms the overall biased trends and findings as reported in the
original work.

[254] Reproduction of a community benchmark
(OSIRRC artifacts from 2015 [249]) and the
corresponding artifacts

P’RIMA’D
G#

Comparison of ARP
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[319] Reproduction of a method based on word em-
beddings that in combination with the mix-
ture model of von Mises-Fisher is used for
classification, clustering, and retrieval

P’RI’M’A’D’
#

Comparison of ARP

[364] Reproduction of a graph embedding method
(node2vec)

P’RI’MA’D
#

Comparison of structural similarity between graph networks

2021

[5] Revalidation of a model based on paragraph-
level-interactions and BERT in the legal and
patent domain

P’R’I’MA’D’
G#

Comparison of ARP and paired t-tests

[47] Systematic revalidation of entity alignment
methods

P’RI’MA’D’
G#

Comparison of Hits@1 scores

[123] Reproduction of an evaluation approach
based random partitions of the test collec-
tion and bootstrap ANOVA

P’RI’M’A’D’
 

Comparison of bootstrap/traditional ANOVA evaluated by the
comparison of confidence intervals and agreements between statis-
tically significant differences

[128] Revalidation of reliability predictions for
health-related content

P’RI’MA’D’
 

Comparison of system performance (weighted accuracy); revalida-
tion on two new datasets

[226] Systematic reproducibility study of five dif-
ferent web page segmentation methods

P’RI’MA’D’
 

Comparison of ARP

[300] Reproduction of a learning to quantify study
P’RI’MA’D’

G#
Comparison of (relative) absolute errors including two-sided paired
t-tests; revalidation on three datasets

[302] Systematic reproducibility study of aspect-
based sentiment analysis in a production-like
evaluation setting

P’R’IMA’D’
#

Comparison of ARP; evaluation of transferability to other domains
by systematically varing the in-domain training instances
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[303] Revalidation of a privacy-preserving recom-
mender system based on meta matrix factor-
ization (meta-learning)

P’RIMA’D’
 

Comparison of system effectiveness; reuse of the original open-
source implementation on other datasets

[369] Revalidation of a fake news detection method
P’RI’MA’D’

 
Comparison of ARP including significance tests; revalidation on
fake news datasets from different sources covering political and gos-
sip news

[417] Revalidation of federated online learning to
rank

P’RIMA’D’
G#

Comparison of ARP; the original implementation is reused and eval-
uated on more datasets and different types of simulated user click
signals

[442] Reproduction of passage score aggregation
methods based on BERT for document re-
trieval

P’RI’M’A’D’
 

Comparison of ARP including paired t-tests; additional evaluation
on a different dataset

2022

[51] Systematic reproducibility study of loss func-
tions in the context of image retrieval

P’RI’M’A’D’
G#

Comparison of ARP and further analysis by counting contributing
samples

[54] Systematic reproducibility study of recom-
mender systems that mitigate consumer un-
fairness

P’RIMA’D’
G#

Comparison of ARP and fairness measures; evaluations based on
two datasets

[148] Revalidation of using anchor text (in web-
pages) as ranking feature

P’RI’M’A’D’
G#

Comparison of ARP; additional comparison of anchor text by the
number of distinct terms, most frequent terms, homogenenity of the
search results (Jensen-Shannon distances); revalidation on a sub-
stantially larger dataset (MS MARCO); inclusion of Transformer-
based retrieval methods

[237] Systematic reproducibility study of two deep
learning-based methods for systematic liter-
ature reviews across 23 datasets

P’RIMA’D’
#

Comparison of work saved over sampling (WSS@95%Recall) and
Precision@95%Recall metrics
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[243] Reproduction of dense retrieval-based
pseudo-relevance feedback

P’RI’M’A’D
G#

Comparison of ARP; variation of hyperparameters and different
dense retrieval methods

[263] Reproduction of a dense passage retrieval
method for question answering

P’RI’M’A’D
 

Comparison of system effectiveness and exact match scores includ-
ing paired t-tests

[264] Reproduction of session-based experiments
based on the AOL logs

P’RI’MA’D’
 

Comparison of ARP including paired t-tests; the reproduced results
are based on a rescraped document (webpage) collection

[283] Analysis of generative adversarial networks
for collaborative filtering

P’RI’M’A’D
G#

Comparison of ARP

[308] Revalidation of popularity and demographic
biases in recommender systems

P’RI’M’A’D’
 

Kruskall-Wallis significance tests between different demographic
groups reconfirm the original findings about biased recommenda-
tions

[332] Reproduction and improvement of the gen-
eral cross-encoder reranking pipeline

P’RI’M’A’D’
 

Comparison of ARP including paired t-tests

[416] Revalidating a method for systematic litera-
ture reviews with more recent datasets

P’RI’M’A’D’
G#

Comparison of ARP including paired t-tests
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ir metadata Schema

Platform

• platform → hardware → cpu → model

Description: Name of the CPU model.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• platform → hardware → cpu → architecture

Description: Identifier of the CPU architecture.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• platform → hardware → cpu → operation mode

Description: Operation mode of the CPU.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• platform → hardware → cpu → number of cores

Description: Number of CPU cores.
Type: Scalar
Encoding: A decimal integer number; !!int.

• platform → hardware → gpu → architecture

Description: Name of the GPU architecture.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• platform → hardware → gpu → number of cores

Description: Number of GPU cores.
Type: Scalar
Encoding: A decimal integer number; !!int.

• platform → hardware → gpu → memory

Description: Amount of available memory of the GPU; string with numbers
followed by GB.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
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• platform → hardware → ram

Description: Amount of available RAM; string with numbers followed by
GB.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• platform → operating system → kernel

Description: The kernel version of the operating system.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• platform → operating system → distribution

Description: The name of the operating system’s distribution.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• platform → software → libraries

Description: Names and versions of the software libraries and packages un-
derlying the experiment’s implementation with the following syntax
<library-name>==<version>. If possible, libraries and packages of different
programming languages should be in separate nodes.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• platform → software → retrieval toolkit

Description: Names and versions of the retrieval toolkits underlying the ex-
periment’s implementation with the following syntax <toolkit-name>==<version>.
Type: Sequence of scalars; !!seq.
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
Naming convention: indri, terrier, anserini, pyserini, pyterrier,
solr, elasticsearch

Research Goal

• research goal → venue → name

Description: Acronym (if available) or name of the venue (e.g., journal or
conference) at which is the study is published. A non-exhaustive list is given
by the naming conventions.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
Naming convention: CHIIR, CIKM, ECIR, ICTIR, IPM, IRJ, JASIST, JCDL,
KDD, SIGIR, TOIS, WSDM, WWW, CLEF, NTCIR, TREC

• research goal → venue → year

Description: Year in which the study was published (syntax: YYYY).
Type: Scalar
Encoding: A decimal integer number; !!int.
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• research goal → publication → dblp

Description: URL of the publication in the dblp - computer science bibliog-
raphy.
Type: Scalar
Encoding: URI according to RFC2396; !!str.

• research goal → publication → doi

Description: DOI of the publication.
Type: Scalar
Encoding: URI according to RFC2396; !!str.

• research goal → publication → arxiv

Description: URL to the arXiv publication.
Type: Scalar
Encoding: URI according to RFC2396; !!str.

• research goal → publication → url

Description: Custom URL where is the publication is hosted.
Type: Scalar
Encoding: URI according to RFC2396; !!str.

• research goal → publication → abstract

Description: Abstract of the publication.
Type: Scalar
Encoding: URI according to RFC2396; !!str.

• research goal → evaluation → reported measures

Description: A list of measures that were evaluated. We propose to follow
trec eval’s naming convention of the measures (see naming convention).
Type: Sequence of scalars; !!seq.
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
Naming convention: map, P 10, ndcg, bpref

• research goal → evaluation → baseline

Description: The run tag of the baseline that is used in the experiments. If
the actor is the original experimenter, the baseline should be adequate and
state-of-the-art. If the actor is a reproducer, the baseline refers to the run
that is reproduced.
Type: Sequence of scalars; !!seq.
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• research goal → evaluation → significance test

Description: Significance tests that were used as part of the experimental
evaluations. If required, the corresponding correction method should be re-
ported as well.
Type: Sequence of mappings; !!seq [!!map, !!map, ...].

• research goal → evaluation → significance test → name

Description: Name of the significance test.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
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Naming convention: t-test (Student’s t-test), wilcoxon (Wilcoxon signed
rank test), sign (sign test), permutation (permutation test), bootstrap

(bootstrap test – shift method)

• research goal→ evaluation→ significance test→ correction method

Description: Name of the correction method.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
Naming convention: bonferroni (Bonferroni correction), holm-bonferroni
(Holm–Bonferroni method), HMP (harmonic mean p-value), MRT (Duncan’s new
multiple range test)

Implementation

• implementation → executable → cmd

Description: The software command that was used to conduct the experi-
ments, more specifically, to make the run.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• implementation → source → lang

Description: All programming languages that were used for the experiments.
A non-exhaustive list is given by the naming conventions. If the source code is
in a git repository, the MetadataHandler of the metadata module in repro -

eval can be used to extract the programming languages automatically.
Type: Sequence of scalars; !!seq.
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
Naming convention: Java, Python R, C, C++, Ruby, Go, Matlab, Shell

• implementation → source → repository

Description: The URL of the corresponding software repository.
Type: Scalar
Encoding: URI according to RFC2396; !!str.

• implementation → source → commit

Description: The commit at which the repository was used for the experi-
ments. Both long and short versions are valid.
Type: Scalar
Encoding: String of characters generated by SHA-1 (RFC3174) or SHA-256
(RFC6234).

Method

• method → automatic

Description: Boolean value indicating if it is a automatic (true) or manual
(false) run.
Type: Scalar
Encoding: Boolean; !!bool.
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• method → score ties

Description: Name or description of the method used to break score ties in
the ranking.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
Naming convention: (reverse) alphabetical order, external collec-

tion

• method → indexing → tokenizer

Description: Name of the tokenizer. If available, it can be reported by the
class in the software package (see example below).
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• method → indexing → stemmer

Description: Name of the stemmer. If possible, the stemmer should be
reported by the class name in the software package (see example below). If
this is not possible, it should meet the naming conventions below.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
Naming convention: Porter, Krovetz, Lovins, Snowball, n-grams

• method → indexing → stopwords

Description: Name of the stopword list. If possible, the stopword list should
be reported by the resource name in the software package or by an URI (see
example below). If this is not possible, it should meet the naming conventions
below, e.g., by naming the corresponding retrieval toolkit.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
Naming convention: Indri, Lucene, Smart, Terrier

• method → retrieval

Description: The retrieval approach is documented by a sequence of map-
pings, where each mapping represents one component of a ranking pipeline,
i.e., it is also possible to report multi-stage ranking pipelines by referring to
previous ranking stages.
Type: Sequence of mappings; !!seq [!!map, !!map, ...].

• method → retrieval → name

Description: Name of the ranking stage component.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
Naming convention: bm25, rm3, ax (axiomatic reranking), piv (pivoted
normalization method), dir (Dirichlet prior method), monobert

• method → retrieval → method

Description: Class name of the retrieval method.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
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• method → retrieval → params

Description: Parameter(s) of the retrieval method. Depending on the pa-
rameter, a single mapping is defined by the parameter name and a decimal
integer or floating number.
Type: Scalar
Encoding: A decimal integer or floating point number; !!int or !!float.

• method → retrieval → reranks

Description: Name of the component whose output will be reranked.
Type: Scalar.
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• method → retrieval → interpolates

Description: Name of the components whose output will be interpolated.
Type: Sequence of scalars; !!seq.
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• method → retrieval → weight

Description: Interpolation weight.
Type: Scalar
Encoding: A decimal integer or floating point number; !!int or !!float.

Actor

• actor → name

Description: Name of the actor.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• actor → orcid

Description: ORCID of the actor.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• actor → team

Description: The actor’s research team name.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• actor → fields

Description: List of the actor’s research fields.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
Naming convention: nlp/natural language processing, ir/information
retrieval, databases, data analytics, machine/deep learning, statis-
tics, bibliometrics, information systems

• actor → mail

Description: Mail address of the actor.
Type: Sequence of scalars; !!seq.
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
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• actor → role

Description: Role of the actor. Can be experimenter if is an original ex-
periment, or reproducer if it is a reproduced experiment.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• actor → degree

Description: The academic degree of the actor. Should be reported by the
conventional abbreviations (see examples for the naming convention below).
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.
Naming convention: experimenter, reproducer

• actor → github

Description: URL with the GitHub handle of the actor.
Type: Scalar
Encoding: URI according to RFC2396; !!str.
Naming convention: B.Sc., M.Sc., Ph.D.

• actor → twitter

Description: URL with the Twitter handle of the actor.
Type: Scalar
Encoding: URI according to RFC2396; !!str.

Data

• data → test collection

Description: A test collection includes but is not limited to a name, source,
qrels, topics, and an ir datasets identifier.
Type: Collection of scalars

• data → test collection → name

Description: Name of the test collection.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• data → test collection → source

Description: Official source of the collection.
Type: Scalar
Encoding: URI according to RFC2396; !!str.

• data → test collection → qrels

Description: Source of the qrels.
Type: Scalar
Encoding: URI according to RFC2396; !!str.

• data → test collection → topics

Description: Source of the topic file.
Type: Scalar
Encoding: URI according to RFC2396; !!str.
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• data → test collection → ir datasets

Description: Identifier in ir datasets.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• data → training data

Description: List of different training data sources that are used in the
experiments represented as mappings, a single mapping usually has a name

and a source.
Type: Sequence of mappings; !!seq [!!map, !!map, ...].

• data → training data → name

Description: Name of the training data resource.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• data → training data → source

Description: Name of the data resource.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• data → other

Description: List of other data sources that are used in the experiments,
for instance, external stopword lists, thesauri, or word embeddings. These
resources are represented as mappings, a single mapping usually has a name

and a source.
Type: Sequence of mappings; !!seq [!!map, !!map, ...].

• data → other → name

Description: Name of the data resource.
Type: Scalar
Encoding: UTF-8 encoded string of characters (RFC3629); !!str.

• data → other → source

Description: Source location of the data resource.
Type: Scalar
Encoding: URI according to RFC2396; !!str.
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platform:

hardware:

cpu:

model: 'Intel Xeon Gold 6144 CPU @ 3.50GHz'

architecture: 'x86_64'

operation mode: '64-bit'

number of cores: 16

ram: '64 GB'

operating system:

kernel: '5.4.0-90-generic'

distribution: 'Ubuntu 20.04.3 LTS'

software:

libraries:

python:

- 'scikit-learn==0.20.1'

- 'numpy==1.15.4'

java:

- 'lucene==7.6'

retrieval toolkit:

- 'anserini==0.3.0'

Figure B.1: Platform metadata example

research goal:

venue:

name: 'SIGIR'

year: '2020'

publication:

dblp: 'https://dblp.org/rec/conf/sigir/author'

arxiv: 'https://arxiv.org/abs/2010.13447'

doi: 'https://doi.org/10.1145/3397271.3401036'

abstract: 'In this work, we analyze ...'

evaluation:

reported measures:

- 'ndcg'

- 'map'

- 'P_10'

baseline:

- 'tfidf.terrier'

- 'qld.indri'

significance test:

- name: 't-test'

correction method: 'bonferroni'

Figure B.2: Research goal metadata example
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implementation:

executable:

cmd: './bin/search arg01 arg02 input output'

source:

lang:

- 'python'

- 'c'

repository: 'github.com/castorini/anserini'

commit: '9548cd6'

Figure B.3: Implementation metadata example

method:

automatic: 'true'

score ties: 'reverse alphabetical order'

indexing:

tokenizer: 'lucene.StandardTokenizer'

stemmer: 'lucene.PorterStemFilter'

stopwords: 'lucene.StandardAnalyzer'

retrieval:

- name: 'bm25'

method: 'lucene.BM25Similarity'

b: 0.4

k1: 0.9

- name: 'lr reranker'

method: 'sklearn.LogisticRegression'

reranks: 'bm25'

- name: 'interpolation'

weight: 0.6

interpolates:

- 'lr reranker'

- 'bm25'

Figure B.4: Method metadata example
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actor:

name: 'Jimmy Lin'

orcid: '0000-0002-0661-7189'

team: 'h2oloo'

fields:

- 'nlp'

- 'ir'

- 'databases'

- 'large-scale distributed algorithms'

- 'data analytics'

mail: 'jimmylin@uwaterloo.ca'

role: 'experimenter' # or 'reproducer'

degree: 'Ph.D.'

github: 'https://github.com/lintool'

twitter: 'https://twitter.com/lintool'

Figure B.5: Actor metadata example

data:

test_collection:

name: 'The New York Times Annotated Corpus'

source: 'catalog.ldc.upenn.edu/LDC2008T19'

qrels: 'trec.nist.gov/data/core/qrels.txt'

topics: 'trec.nist.gov/data/core/core_nist.txt'

ir_datasets: 'nyt/trec-core-2017'

training_data:

- name: 'TREC Robust 2004'

folds:

- 'disks45/nocr/trec-robust-2004/fold1'

- 'disks45/nocr/trec-robust-2004/fold2'

other:

- name: 'GloVe embeddings'

source: 'https://nlp.stanford.edu/projects/glove/'

Figure B.6: Data metadata example
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Replicability of UQV Simulations

Table C.1: Retrieval effectiveness over q queries. Besides averaging the retrieval ef-
fectiveness over all available queries, we also evaluated the effectiveness over the first
and the most effective queries for each topic (evaluated with Robust04, replicates
Table 6.3).

All queries First queries Best queries

q nDCG P@10 AP q nDCG P@10 AP q nDCG P@10 AP

UQV1 150 .3704 .3307 .1263 50 .4069 .3500 .1582 50 .4595 .4480 .1858

UQV2 52 .4254 .3519 .1812 50 .4130 .3420 .1716 50 .4150 .3420 .1734

UQV3 68 .3748 .3279 .1371 50 .3558 .3000 .1278 50 .3815 .3300 .1430

UQV4 123 .3848 .3415 .1514 50 .4003 .3640 .1598 50 .4593 .4240 .1981

UQV5 500 .3719 .3078 .1387 50 .4107 .3580 .1638 50 .5118 .5320 .2331

UQV6 136 .3915 .3463 .1509 50 .4122 .3660 .1671 50 .4661 .4480 .2024

UQV7 50 .4732 .4340 .2039 50 .4732 .4340 .2039 50 .4732 .4340 .2039

UQV8 156 .3610 .3115 .1328 50 .3810 .3060 .1431 50 .4445 .4420 .1868

TTSS1 500 .0473 .0246 .0100 50 .1542 .0920 .0373 50 .3030 .1880 .0798

TTSS2 500 .1846 .1266 .0513 50 .3197 .2640 .1113 50 .4227 .3880 .1655

TTSS2′ 500 .3107 .2420 .1046 50 .3434 .2520 .1210 50 .4478 .4320 .1765

TTSS3 500 .2916 .2156 .0996 50 .1542 .0920 .0373 50 .4311 .4080 .1739

TTSS3′ 500 .3056 .2272 .1061 50 .3197 .2640 .1113 50 .4303 .4120 .1741

TTSS4 500 .4139 .3540 .1606 50 .3992 .3440 .1527 50 .5688 .5900 .2795

TTSS4′ 500 .4216 .3620 .1581 50 .4200 .3500 .1477 50 .5774 .5860 .2776

TTSS4′′ 500 .3417 .2862 .1264 50 .3987 .3360 .1519 50 .5580 .5880 .2706

KISS1 500 .1154 .0680 .0234 50 .2498 .1480 .0545 50 .3872 .3520 .1339

KISS2 500 .3311 .2664 .1045 50 .4208 .3440 .1639 50 .5569 .5920 .2778

KISS2′ 500 .4305 .3864 .1664 50 .4722 .4580 .1975 50 .5729 .6140 .2800

KISS3 500 .4856 .4228 .2080 50 .2498 .1480 .0545 50 .6199 .6260 .3153

KISS3′ 500 .5146 .4552 .2266 50 .4208 .3440 .1639 50 .6189 .6160 .3137

KISS4 500 .4482 .4044 .1818 50 .4551 .4380 .1822 50 .6018 .6420 .3107

KISS4′ 500 .4177 .3728 .1584 50 .4090 .3500 .1414 50 .5777 .6080 .2939

KISS4′′ 500 .4101 .3622 .1565 50 .4542 .4360 .1816 50 .5978 .6360 .3039
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Figure C.1: RMSE between the topic scores resulting from the simulated and real
UQV queries. The left plot shows the error of the TTSS1-S3′ queries, and the right
plot shows the error of the KISS1-S3′ queries and the UQV queries regarding queries
made by eight users (evaluated with Robust04, replicates Figure 6.2).
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Figure C.2: RMSE instantiated with P@1000, nDCG, and AP over an increasing
number of documents per query w.r.t. the fifth user in the dataset (UQV5) (evalu-
ated with Robust04, replicates Figure 6.3).
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Figure C.3: p-values of paired t-tests between UQV and simulated queries. The
corresponding topic scores are based on nDCG for the first query of each topic that
was generated by a simulator or formulated by one of the eight users (evaluated with
Robust04, replicates Figure 6.4).
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Figure C.4: Simulations with 3, 5, or 10 queries per session evaluated by sDCG
(replicates Figure 6.6).
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Figure C.5: Kendall’s τ between the system rankings resulting from the i-th query of
the simulators in reference to the system ranking of the real user (UQV5) (evaluated
with Robust04, replicates Figure 6.5).

Table C.2: MSLE between the isoquants for pre-defined nDCG levels (evaluated
with Robust04, replicates Table 6.4).

nDCG 0.3 0.4 0.5

TTSS2′ 0.3804 0.5282 0.6510

KISS2′ 0.0346 0.0661 0.0950

TTSS4 0.0000 0.0417 0.0248

TTSS4′ 0.0000 0.0194 0.0308

TTSS4′′ 0.1147 0.1778 0.1939
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Figure C.6: Number of queries vs. browsing depth: isoquants and query simulations
and UQV5 with fixed nDCG levels of 0.3, 0.4, and 0.5 (evaluated with Robust04,
replicates Figure 6.7 as bar plots). To lower the resource use and computation time,
we excluded the evaluation of single queries.
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Living Lab Evaluations

Query0

10

20

30

40

Im
pr

es
sio

ns

LIVIVO

Document0

5

10

15

20

25

30

35

Im
pr

es
sio

ns

GESIS

Figure D.1: Impresssions vs. queries (LIVIVO) and target documents (GESIS)
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Acronyms

AI Artificial Intelligence.

AP Average Precision.

API Application Programming Interface.

ARP Average Retrieval Performance.

CCRF Cross-Collection Relevance Feedback.

CQG Controlled Query Generation.

CTR Click-Through Rate.

DCM Dependent Click Model.

DCTR Document-Based Click-Through Rate Model.

DL Deep Learning.

DRI Delta Relative Improvement.

EaaS Evaluation-as-a-Service.

ER Effect Ratio.

IIR Interactive Information Retrieval.

IR Information Retrieval.

IRM Interpolated Retrieval Methods.

KIS Known-Item Searcher.

KTU Kendall’s τ Union.

LiLAS Living Labs for Academic Search.

LRM Lexical Retrieval Methods.

MCA Multi-Container Application.

ML Machine Learning.
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MSLE Mean Squared Logarithmic Error.

nDCG Normalized Discounted Cumulative Gain.

NLP Natural Language Processing.

ORCID Open Researcher & Contributor ID.

QCM Query Change Model.

QLD Query Likelihood Model with Dirichlet Smoothing.

RBO Rank-Biased Overlap.

RBP Rank-Biased Precision.

RecSys Recommender Systems.

RI Relative Improvement.

RMSE Root Mean Square Error.

SDBN Simplified Dynamic Bayesian Network Model.

sDCG Session-Based Discounted Cumulated Gain.

SERP Search Engine Result Page.

TDI Team Draft Interleaving.

TTS TREC Topic Searcher.

UQV User Query Variants.
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