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Kurzfassung

Durch die fortschreitende Automatisierung in der Industrie sinkt die Zahl der
Unfälle, jedoch steigt die Anteil der Unfälle, die auf den menschlichen Faktor zurück-
zuführen sind am Gesamtunfallgeschehen. Die Zuverlässigkeit des Menschen wird
zur Schlüsselfrage in Mensch-Maschine-Systemen, insbesondere bei sicherheitsrele-
vanten Aufgaben und Operationen.

Es wurden verschiedene Methoden der menschlichen Zuverlässigkeitsanalyse (Hu-
man Reliability Analysis, HRA) entwickelt, die systematisch zur Analyse, Vorher-
sage und Vorbeugung von menschlichen Fehlern eingesetzt werden können. Es lassen
sich drei grundlegende Lücken in den bestehenden HRA-Methoden feststellen: i)
das Fehlen von Möglichkeiten zur Erhebung relevanter Daten in der Human-in-
Loop-Branche, ii) die fehlende Berücksichtigung der dynamischen menschlichen Zu-
verlässigkeit im situierten Kontext und iii) die starke Abhängigkeit von Experten-
wissen im Bewertungsprozess. Die Zuverlässigkeit des menschlichen Fahrers im dy-
namischen Kontext steht im Mittelpunkt dieser Arbeit, daher werden ohne Einfluss
auf die Verallgemeinerbarkeit menschliche Fahrer in sich dynamisch verändernden
Situationen aufgrund der leichten Verständlichkeit als Beispiel verwendet. Mit der
Entwicklung der Überwachung des menschlichen Fahrerverhaltens im dynamischen
Fahrkontext werden Fahrverhaltensdaten generiert, die für die HRA genutzt werden
können.

In dieser Arbeit wird der modifizierte CREAM-Ansatz (Cognitive Reliability and
Error Analysis Method) zur Bewertung der menschlichen Fahrleistung angewen-
det. Um die Abhängigkeit von Expertenwissen zu verringern, werden die Leis-
tungsstufen im modifizierten CREAM-Ansatz durch automatisches Clustering der
Daten bestimmt. Drei Daten-Clustering-Ansätze, darunter FN-DBSCAN (Fuzzy
neighborhood density-based spatial clustering of application with noise), CLUS-
TERDB* und GMFPE (genetic-based membership function parameter estimation),
werden auf Fahrdaten angewandt, um die Parameter der Zugehörigkeitsfunktionen
zu definieren, die den Leistungsstufen im modifizierten CREAM-Ansatz entsprechen.
Als Ergebnis wird ein neuer Ansatz entwickelt, der die dynamischen Aspekte der
menschlichen Zuverlässigkeit berücksichtigt. Das Konzept und der Entwurf einer
neuen Bewertung als Human Performance Reliability Score (HPRS) als Funktion
der Zeit wird für die quantitative und dynamische Bewertung der individuellen
menschlichen Leistung vorgeschlagen. Die HPRS-Ergebnisse mit verschiedenen
Clustering-Ansätzen werden für denselben Zeitraum verglichen.

Um die kritischen Verhaltensweisen beim situierten Fahren zu erkennen und zu bew-
erten, muss eine Quantifizierung der menschlichen Verhaltensebenen vorgeschlagen
werden. Dies ist vor allem daher wichtig, da die Fahrzeugautomatisierung im Fall
der Übernahme der Fahrzeugführung sowohl auf untrainierte Personen trifft wie
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auch die Personen dann unter Zeitdruck handeln müssen. Das SRK-Modell (Skill-
Rule-Knowledge) von Rasmussen ist im Bereich der menschlichen Faktoren sehr
bekannt. Ebenso ist bekannt, dass auf Fähigkeiten basierende Verhaltensweisen
die höchste menschliche Zuverlässigkeit aufweisen, während wissensbasierte Verhal-
tensweisen mit den niedrigsten Zuverlässigkeitswerten verbunden sind. Zwar gibt
es zahlreiche Studien zur menschlichen Fehlerwahrscheinlichkeit (HEP), die in der
Regel direkt oder indirekt auf diese drei Verhaltensebenen zurückgeführt werden,
aber eine kohärente, konsistente Darstellung, insbesondere unter Verwendung von
Datenquellen, ist bisher nicht verfügbar. In dieser Arbeit wird die Quantifizierung
menschlicher Verhaltensebenen mit dem SRK-Modell von Rasmussen anhand von
drei Datenbanken vorgenommen. Die Auswirkungen von Zeitdruck und Training
auf die menschliche Zuverlässigkeitsvermittlung werden ebenfalls auf der Grundlage
einschlägiger Veröffentlichungen analysiert.

Zur Bestimmung des HEP dieser drei Ebenen werden drei Datenbanken, die Tech-
nik zur Vorhersage der menschlichen Fehlerrate (THERP), die Savannah River Site
Human Reliability Analysis (SRS-HRA) und die Nuclear Action Reliability As-
sessment (NARA), aus den Methoden der Human Reliability Analysis (HRA) ver-
wendet. Das Verfahren umfasst die Identifizierung der Aufgaben einschließlich des
beteiligten Bedieners und der von den Analysten getroffenen Annahmen sowie die
Einordnung der Aufgaben in den geeigneten kognitiven Verhaltensmodus (CBM).
In diesem Fall wird die Beziehung zwischen SRK-Niveau und menschlicher Fehler-
wahrscheinlichkeit (HEP) abgebildet. Die Auswirkungen der beiden im Automa-
tisierungskontext sehr relevanten Performance Shaping Factors (PSFs), Zeitdruck
und Trainings-/Wissensabbau, auf das menschliche Verhalten beim Schalten werden
analysiert und die Erklärungen für das SRK-Schalten vorgestellt. In diesem Fall wird
eine allgemeinere Struktur erstellt, um das dynamische Verhalten von Ebenen zu
veranschaulichen, die unter verschiedenen Bedingungen in sechs Richtungen schal-
ten. Aus den Ergebnissen schließen wir, dass die Ebenen der Fähigkeiten, Regeln
und des Wissensverhaltens in Bezug auf HEP kontinuierlich sind und daher einen
neuen Einblick in diesen Schlüsselaspekt der Quantifizierung menschlicher Faktoren
ermöglichen. Basierend auf dieser Analyse werden die Folgen der Alltagsautoma-
tisierung im Kontext autonomer Verkehrssysteme in Kombination mit menschlicher
Qualifikation und Zuverlässigkeitsverschlechterung aus dieser spezifischen und in der
aktuellen Automatisierungsdiskussion sehr intensiv diskutiert.

Der vorgeschlagene Ansatz wird es ermöglichen, künftige Automatisierungssysteme
mit Warnung, Unterstützung oder Umschaltung auf vollautomatische Steuerung
zu etablieren, um menschliche Fehler zu vermeiden. Die vorgestellte Diskussion
über die Verknüpfung von SRK-Ebenen und HEP bietet eine neue Perspektive auf
die absehbaren Folgen einer weiteren Automatisierung in Anwendungsbereichen mit
zunehmender Automatisierung alltäglicher Aufgaben (z. B. bei der Nutzung eines
hochautomatisierten Fahrzeugs).
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Abstract

Human factor-related accidents account for an increasing portion of the total acci-
dents through the advancing level of system automation. Human reliability becomes
the key issue in human-machine systems especially for safety-relevant tasks and op-
erations.

Various human reliability analysis (HRA) methods to systematically incorporate
for the analysis, prediction, and prevention of human errors have been developed.
Three fundamental gaps in the existing HRA methods can be stated: i) the lack
of possibilities of gathering relevant site data in human-in-loop related industry, ii)
the missing consideration of dynamic human reliability in situated context, and iii)
the deep reliance on expert knowledge in evaluation process. Human operator’s
reliability in dynamic context is the focus of this thesis, therefore without loss of
generality human drivers in dynamically changing situations are used as example
case due to easy comprehensibility. With the development of human driver behavior
monitoring in dynamic driving context, driving behavior data are generated and
could be used for HRA.

In this thesis, the modified CREAM (cognitive reliability and error analysis method)
approach is applied for the evaluation of human driver performance. To reduce
the reliance on expert knowledge, the performance levels in the modified CREAM
approach are determined by automated data clustering. Three data clustering ap-
proaches including FN-DBSCAN (fuzzy neighborhood density-based spatial cluster-
ing of application with noise), CLUSTERDB*, and GMFPE (genetic-based mem-
bership function parameter estimation) are applied to driving data defining the
membership function parameters which are corresponding to the performance levels
in the modified CREAM approach. As result a new approach addressing dynam-
ically aspects for human reliability is developed. The concept and the design of a
new evaluation of human performance reliability score (HPRS) as a function of time
is proposed for the quantitative and dynamic evaluation of individualized human
performance. The HPRS results with different clustering approaches for the same
time period are compared.

To detect and evaluate the critical behaviors in situated driving, the quantifica-
tion of human behavior levels needs to be proposed. Rasmussen’s SRK (skill-
rule-knowledge) model is well known in the field of human factors. Likewise, it
is well known that skill-based behaviors have the highest human reliability, while
knowledge-based behaviors are associated with the lowest reliability scores. Al-
though numerous studies exist on human error probability (HEP), correspondingly
typically attributed directly or indirectly to these three levels of behavior, a coher-
ent, consistent representation, especially using data sources, has not been available.
In this thesis, the quantification of human behavior levels with Rasmussen’s SRK
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model is given based on three databases. Effects of time pressure and training on
human reliability switching are also analyzed based on related publications.

To determine the HEP of these three levels, three databases, technique for hu-
man error rate prediction (THERP), Savannah river site human reliability analysis
(SRS-HRA) and nuclear action reliability assessment (NARA), from human relia-
bility analysis (HRA) methods are used. The procedure contains identifying the
tasks including the operator involved and the assumptions the analysts made and
classifying the tasks into suitable cognitive behavior mode (CBM). In this case, the
relationship between SRK levels and HEP is mapped. The effects of the two in au-
tomation context very relevant performance shaping factors (PSFs), time pressure
and training/knowledge degradation, on human behavior levels switching are ana-
lyzed and the explanations of the SRK switching are presented. In this case, a more
general structure is established to illustrate the dynamic behavior of levels switching
with six directions under different conditions. From the results we conclude that
skill, rule, and knowledge behavior levels are continuous in terms of HEP and there-
fore allow a new inside into this key aspect of human factor quantification. Based
on this analysis the consequences of daily automation in the context of autonomous
transport systems in combination with human qualification and reliability degrad-
ing is from this specific and in the current automation discussion very intensively
discussed.

The proposed approach will allow future automation systems including warning,
assistance, or situated switch over to fully automated control to be established for
the avoidance of human errors. Meanwhile, the presented discussion linking SRK
levels and HEP gives a new perspective on the foreseeable consequences of further
automation in application areas with increasing automation of everyday tasks (like
using a highly automated vehicle).
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d(x, y) Distance between any points x and y
ε Maximal threshold of the distance between points
k Parameter to depict neighborhood membership functions
FN(x; ε1) Fuzzy neighborhood set of point x ∈ X with parameter ε1
ε1 Minimal threshold of the neighborhood membership degree
cardFN(x; ε1, ε2) Fuzzy core point
ε Average distance between adjacent data
dmax Maximum distance between any points
DB ∗ (nc) Overall similarity of all cluster nc
dip Distance between the i-th and p-th centroid
Si Scatter distance
Ci The i-th cluster
diff Distance between adjacent data points
si Similarity value
N Parameter to decide the membership functions shape
σs Standard deviation of all diff
size Total size of chromosomes of all variables
mi Number of membership functions of variable i
xl, xr Trapezoidal core parameters
xa, xe Trapezoidal support parameters
HPRS Human performance reliability score
reduced Reduced effects on performance reliability
improved Improved effects on performance reliability
λ Weighting values
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ATHEANA A technique for human event analysis
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1 Introduction

With the development of automation, not only simple and repetitive actions are
replaced by machines, more and more decision-making tasks have also begun to
rely on the assistance of machines. Most safety-critical systems or fields such as
power plants in energy production [ZTC+17], guiding or flying aircrafts in aviation
[DBD17], or in transportation in general [WS18], automation is involved. Au-

tomation has profoundly influenced human behaviors in human-machine-systems,
as many repetitive, many mechanical tasks can now be left entirely to machines,
humans mainly are related to supervisory control tasks. While in safety critical
fields typical automation side-effects firstly very intensively discussed by [Bai83]
are considered and well-known this is not necessarily the case in other fields. At
the same time, higher levels of automation are increasingly capable of performing
tasks that were previously thought to be performed only by humans. Automation
has been varied to different levels, with higher levels representing increased machine
autonomy. In [SV78], the automation of decision and action selection is divided
into ten levels where level 1 indicates no assistance from the automation and level
10 presents that the automation decides everything and human is ignored. Humans
cannot be excluded except for the automation of level 10. The society of auto-
motive engineering (SAE) defines six levels of automation regarding driving from
level 0 of no automation to level 5 of full automation [Shu19]. It demonstrates
that the human driver is not able to be decoupled with driving activities even with
full automated vehicle as the driver still needs to monitor the driving situations
and possibly to takeover the vehicle. In high-risk environment such as air traffic
conflict prediction, decision automation should be set that allowing operator input
into the decision-making process. Meanwhile, the additional time required for hu-
mans to decide how to respond to an automated situation assessment may impose
unsafe events. For example, different takeover time are critical to the reliability
of automated vehicle drivers in dealing with emergencies [WS18]. Automation can
have both beneficial and negative effects on human performance [PSW00]. When
changes in environmental or system states are controlled by another agent, humans
tend to be less aware of them indicating the operator’s situation awareness of the
dynamic features of the working environment is reduced. If the system functions are
consistently performed by automation, humans will not be as skilled in performing
the functions which means skill degradation.

The role played by humans is gradually shifting from active control to passive mon-
itoring in human-machine systems [MSE+21]. Human supervisory control could be
explained as interaction with a computer/automation system to transform data or
to produce control actions [ST92]. From [She21], the roles played by human super-
visor include: i) planning offline what the task to do and how to do; ii) programming
the computer/automation what has to be executed; iii) monitoring the automatic
actions online to make sure all actions are going as planned and occurring failures
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are detected; iv) intervening to take over the control of the automation when the
desired goal has been reached or emergency situations happen; v) learning from
experience to perform better in the future. Therefore, humans are still vital in oper-
ation process in human-automation system. Human-related accidents accounts for
the highest proportion of total accidents in various fields. The proportion of human
error-related accidents in several industries and activities are collected in Table 1.1.

Table 1.1: Proportion of human error-related accidents

Accident Proportion (%) Year Reference

Nuclear power facilities 50 - 70 1985 [TJ85]
Maritime 80 2017 [ZWX+17]
Aviation 60 - 80 1996 [SDH+17]
Chemical industry 63 2006 [PP06]
Light vehicles 94 2015 [Sin15]
Heavy truck 80 2007 [Dhi07]

1.1 Motivation and objectives of the work

Human performance is the key to systems safety. Many technologies and measure-
ments are developed to monitor and assist human behaviors in different application
fields, such as the advanced driver assistance systems (ADAS) in driving context and
physiological metal states monitoring and evaluation including vigilance, fatigue,
distraction, etc. In [DHUM10], the mainly existing measurement methods for hu-
man driver inattention are summarized and categorized into five groups, which are
subjective report, biological measures, physical measures, performance measures,
and hybrid measures. In Table 1.2 the applied methods and their corresponding
advantages and disadvantages are presented. In aviation, the predictions of situa-
tion awareness of pilots are improved with human performance model [HGW+11].
In maritime, the impact of seafarers’ emotion on their performance is investigated
with EEG and self rating [FZBD+18].

In situated and dynamic context, the timing of the operator taking over the task as
the automation system is failed to complete the task or the automation intervening
into the operation process because of critical human performance is important. In
this case, a method to evaluate human performance in real time is needed and the cri-
teria to define the critical human performance is necessary to trigger the automation
or assisted system when emergencies occur. The quality of human performance also
needs to be taken into account when it comes to taking over an automated system
that has failed. Human performance, therefore, needs to be evaluated quantitatively
in real time in situated context.
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4 Chapter 1. Introduction

Human reliability analysis (HRA) provides a well-structured framework to evalu-
ate human performance qualitatively and quantitatively. Human error probability
(HEP) calculated with HRA methods could be the reference to determine whether
the takeover action is required. Human reliability analysis methods have been prop-
soed to systematically incorporate for the analysis, prediction, and prevention of
human errors. However, the existing HRA methods can not be realized in real time
in situated context as most of the existing HRA methods are established for static
tasks analysis as the progressions of event are not considered. In this case, a new
approach to evaluate human reliability quantitatively in real time in situated context
needs to be established.

In this thesis, a new and dynamic human reliability evaluation approach for situ-
ated context is established based on cognitive reliability and error analysis method
(CREAM) [Hol98], fuzzy theory, and three different data clustering approaches.
This new approach could evaluate individual human performance reliability in real
time. Most of the existing HRA methods could be considered as static HRA meth-
ods as events are analyzed for an assumed window of time and the event evolution is
not considered. Moreover, these methods are mainly applied to crews in industrial
factories and nuclear power plants, when considering human performance reliability
of the individual, the existing HRA methods cannot be adopted properly. With
the new concept of human performance reliability score (HPRS) proposed in this
approach, human performance reliability could be evaluated with time on second
timescales, indicating that human performance reliability is evaluated dynamically.
Meanwhile, individual reliability is evaluated with HPRS. Human performance data
are clustered with different data clustering approaches, the grouped data represent
operators’ operational characteristics, or more directly, the human experience re-
garding different situations. Operators prefer to respond to situations with familiar
operation behaviors/ stored rules/ skilled actions, while those rarely occurring be-
haviors indicate that operators’ experience with situations is insufficient, denoting
that the human performance reliability could be deduced from the grouped data.

When human performance reliability is calculated, how to detect and evaluate the
critical behavior needs to be determined. In this case, the levels of skill-, rule-,
and knowledge-based behavior (SRK) [Ras83] framework are quantified. With the
classification of levels in three HRA databases, the HEP intervals of SRK levels
are determined. In original CREAM approach, four control modes with different
HEP intervals are provided, but these HEP interval values are defined by expert
knowledge, the connection between CREAM approach and the SRK framework
needs to be established with the comparison of HEP values in these two methods,
therefore, the structure of HPRS with SRK levels could be defined. The HPRS
results could finally be evaluated and the critical behaviors could be detected with
SRK levels.

The contributions of this thesis could be summarized as following points.
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� A new human reliability evaluation method for situated context is established,
the individual human performance reliability is quantified with the new con-
cept of HPRS.

� The HEP intervals of three levels (skill-, rule-, and knowledge-based) in SRK
framework is quantified with HRA databases.

� The levels to evaluate HPRS results are defined with the comparison of control
modes in CREAM approach and the three levels in SRK framework. In this
case, the critical behaviors could be detected.

In addition, some research gaps of this thesis are discussed in chapter 2.3.

1.2 Outline of the thesis

Human reliability needs to be monitored and evaluated in situated context. The
goal of this work is to realize the monitoring and evaluation of human reliability
quantitatively in situated context online.

In chapter 2, the background knowledge of HRA methods is reviewed, including the
basic concept involved in HRA methods and the development of HRA methods. The
research gaps of the existing HRA methods is summarized. In chapter 3, with the
introduction of cognition process in HRA methods and the well-known skill-rule-
knowledge (SRK) framework, the quantification of SRK levels is presented and the
effects of time pressure and training on the levels switching are discussed. In chap-
ter 4, a modified fuzzy-based CREAM approach is established for the evaluation of
human performance reliability in dynamic changing situations. A new list of com-
mon performance conditions (CPCs) depicting the main features of situated driving
context is defined. Three data clustering approaches to determine the membership
functions are explained. The new concept of human performance reliability score
(HPRS) to quantitatively evaluate human performance is established. In chapter 5,
situated driving context is taken as an example to explain the modified fuzzy-based
CREAM approch. The experiment results are analyzed including the unfuzzified
HPRS results and HPRS results from data clustering approaches. The monitoring
and evaluation of human driver reliability in situated context is explained. The
summary and outlook of this work is given in chapter 6.
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2 Human behaviors and reliability approaches

In this chapter, human reliability related terms are collected and explained. The
wildly used ’three generation’ of human reliability analysis approaches are reviewed.
The research gaps for the existing HRA methods are presented.

Part of the contents, figures, and tables presented in this chapter are modified after
previous publications [HS22][HLLS21][HLL21]. Part of the contents, figures, and
tables are prepared for publication of [He22b][He22a].

2.1 Human reliability-related concept

2.1.1 Human error definitions

Two views are distinguished between ’old view’ and ’new view’ of human error
[Dek17]. In the ’old view’, human error is the cause of trouble and it is a simple
problem, when all systems are working well, people just need to pay attention and
comply to avoid human errors. People can, and must, achieve zero errors, zero
injuries, and zero accidents. In the ’new view’, human error is a symptom of deeper
trouble and the complexity of generating human error is depending on the complexity
of the organization and environment. People can, and must, enhance the resilience of
the people and organization. It could be concluded that the understanding regarding
human errors gradually shifts from asking who is responsible for the outcomes to
finding out what is responsible for the outcomes.

In the process of understanding human error, different definitions and related glos-
sary of terms have been proposed. Swan and Guttman defined human error as an
error that is simply an action which is out of tolerance, where the limits of the
tolerance is defined by the system [SG83]. From Rasmussen’s point of view [Ras82],
human error can only be described with reference to human objectives or expec-
tations, it depends on the explicit situation. From Reason [Rea90], it is obtained
that human error is taken as a universal term to comprise all the occasions which
a planned sequence of mental or physical activities fails to generate the intended
outcome, and these failures cannot be associated to the intervention of some chance
agency. Hollnagel defined human error as an erroneous action which fails to gener-
ate the expected result and/or which produces an unwanted consequence [Hol98].
In Dhillon’s definition [Dhi17], human error is the failure to execute a stated task
that could result in interruption of scheduled operations or damage to property and
equipment.



2.1 Human reliability-related concept 7

2.1.2 Human error taxonomies

Various human error taxonomies have been proposed. Three dominated taxonomies
are reviewed in this chapter, which are Rasmussen’s skill, rule, and knowledge error
[Ras87a], Reason’s slips, lapses, mistakes and violations [Rea90], and Hollnagel’s
phenotypes and genotypes [Hol98].

In Rasmussen’s skill-,rule- and knowledge-based (SRK) behavior model, errors are
affected by skills, experience and familiarity with the situation encountered. The
generic error-modeling system (GEMS) is applied to classify these errors [Rea90].

� Skill-based behavior is developed without conscious control as smooth, auto-
mated, and highly integrated patterns. Skill-based error is typical detected in
routine repetitive work.

� In rule-based behavior, the actions are often controlled by a memory-based
stored rule or procedure.

� The performance which is goal-controlled during unfamiliar situations, which
no rules for control are available is knowledge-based behavior.

Reason classified human errors into slips, lapses, mistakes and violations. When
combining with Rasmussen’s SRK model, skill-based errors correspond to slips and
lapses, rule-based and knowledge-based errors are related to mistakes.

� Slips are errors which result from some failures in the execution of an action
sequence. Slips can be seen as externalized actions not conducting as planned.

� Lapses are errors which result from failures in the storage stage of an action
sequence. Lapses are generally used for more covert error forms, including
failures of memory.

� Mistakes are failures in the inferential and/or judgemental processes in the
selection of an objective. Mistakes are more subtle than slips and harder to
detect.

� Violations relate to actions habitual or isolated departure from rules and reg-
ulations.

In Hollnagel’s CREAM approach, it is stated that human actions/errors are all to
some extent cognitive, indicating that they are not able to be properly described
without consideration of human cognition. Human error can be identified as phe-
notypes and genotypes.
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� Phenotype concerns with the manifestation of an erroneous action. It can
be divided into action at wrong time, action of wrong type, action at wrong
object and action in wrong place/sequence.

� Genotype refers to the possible causes such as the functional characteristics of
the human cognitive system that are assumed to contribute to an erroneous
action. Human related genotypes can be further divided into observation,
planning, interpretation, temporary person related causes and permanent per-
son related causes.

2.1.3 Performance shaping factors (PSFs)

Human error in human reliability analysis (HRA) is not viewed as the product
of individual shortcomings but rather as the combined impact of contextual and
situational factors on human performance [Bor12]. These factors are denoted as
performance shaping factors. A PSF can be anything affecting the ability of an
individual to complete a task [Phi18]. It is important to understand PSFs so to
quantify human error probability as PSFs may lead to human errors.

In general, PSFs are classified into internal and external, corresponding to the in-
dividual and situational or environmental circumstances, respectively. In [BGJ07],
the new classification of direct and indirect for PSFs are trying to be established
based on the relationship between magnitude of the PSF and how the magnitude is
measured. But the listed PSFs are just examples to show how direct and indirect
PSFs are classified. In [Phi18], a detailed PSFs list including internal and exter-
nal PSFs are listed. For the further categorization, internal PSFs can be divided
into three groups: temporary physical and mental states, permanent physical and
mental states, and readiness for duty. There are 104 internal PSFs and 20 exter-
nal PSFs collected. With PSFs considered in human performance evaluation, the
quantification of human error probability becomes possible.

As the PSFs vary widely with the operation characteristics in different application
fields, when discussing the main PSFs, they are mainly discussed separately accord-
ing to different application fields. For example, in [KMO15], the most significant
performance shaping factors in railway operations are identified with the analysis
of 479 incidents and accidents in railway operations, which are safety culture, sys-
tem design, fatigue, communication, distraction, quality of procedures, perception,
training, expectation, quality of information, supervision, and workload. The num-
ber of PSFs necessary for human reliability analysis is not identical in different
HRA methods, ranging from single factor model such as time-reliability curves up
to 50 or more PSFs in some new developed HRA models [Bor10]. In different HRA
approaches, PSFs is called by other terminologies. For example, PSFs is called er-
ror producing conditions (EPCs) in human error assessment and reduction method
(HEART) [Wil88], and common performance conditions (CPCs) in cognitive relia-
bility and error analysis method (CREAM) [Hol98].
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2.1.4 Human error probability (HEP)

Human error probability (HEP) is a variable to characterize the probability of human
error occurrence or briefly: the reliability of humans [DPMIR15]. The definition of
HEP could be summarized as the mathematical ratio between the number of errors
occurring in a task and the number of tasks carried out with the opportunity for
errors. The number of opportunities for error is generally the same as the number of
times the task is carried out [Whi04]. The mathematical expression can be simply
expressed as

HEP =
number of observed errors

number of opportunities for errors
. (2.1)

The HEP is the indicator for the relative occurrence of errors and subsequently
faultless actions. In Table 2.1, how HEPs are calculated in some representative
HRA methods is shown. It can be obtained that the final HEP is deeply affected
by PSFs which are highlighting human error contributors and adjust basic human
error probabilities. In general, experience, complexity, stress, adequacy of procedure,
human-system interface, and workload are adopted as PSFs in HRA [PJK20].

In [BR16], the HEP with the consideration of PSFs evolution and progression of
events results in the dynamic HEP varying with time, which is compared with
the traditional or static HEP with non-effect of time on the error estimation. For
dynamic HEP, the equation could be expressed as

HEPdynamic = f(HEPnominal|PSF (t)), (2.2)

where t is time. The equation of static HEP can be represented as

HEPstatic = f(HEPnominal|PSF ). (2.3)

It could be detected that the difference between Equation 2.1 and Equation 2.2 is
the consideration of PSFs evolution with time. Figure 2.1 and Figure 2.2 draw the
dynamic HEP and static HEP with time, respectively. It is obtained that the values
of dynamic HEP vary with time while the values of static HEP are constant.

2.2 Human reliability analysis approaches

2.2.1 Overview of human reliability analysis

Human reliability analysis (HRA) is a structured methodology applying qualitative
and quantitative methods to assess human contributions to system risk, which con-
sists of the determination the effects of human errors to the system, prediction of
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Figure 2.1: Effect of time on the error estimation in dynamic HRA (adapted from
[BR16])

Figure 2.2: Non-effect of time on the error estimation in static HRA (adapted from
[BR16])

the probability of the error occurrences, and the identification of the potential con-
sequences [Phi18]. The HRA methods are initially developed for the evaluation of
human performance in nuclear power industry. With the development of technology,
reliability of hardware and software in systems are improving continuously, human
performance reliability is a growing concern as the proportion of human-factor re-
lated accidents is increasing. Therefore, HRA methods are applied to other safety
critical industries with well-developed procedures. The general steps for HRA is
presented in Figure 2.3.

In HRA process [Phi18], problem definition is to determine the scope and type of



12 Chapter 2. Human behaviors and reliability approaches

Figure 2.3: Basic steps in the HRA process (adapted from [Phi18])

analysis, the tasks that will be evaluated, and the human actions which need to
be assessed. Task analysis is also known as task decomposition, which includes the
identification and breaking down of each task into the steps and sub-steps system-
atically that constitute the human activities necessary to achieve the task goal. The
task can be decomposed into different levels depending on the purpose of the task
analysis and the information available. Human error identification is the most im-
portant step in HRA as failing to identify a human error may lead to the omission
of the contribution of the error to risk and eventually to the underestimation of the
whole system risk. In this step, not only the types of human error that could occur
need to be identified, but also the factors that contribute to the occurrence of error
should be determined. Human error representation or modeling is used for better
understanding the the causes, vulnerabilities, recoveries of human errors. The tools
could be used for human error representation contain master event trees, fault trees,
and event sequence diagrams, etc. Human error quantification is to assign probabil-
ities to human errors with the calculated human error probability (HEP). The final
step in HRA is human error management which includes the establishment of bar-
riers to prevent errors, providing means to detect and correct errors, and modifying
the performance shaping factors that negatively affect human performance.

To accomplish the HRA process, many structured methods are generated and with
the development, these methods can be briefly divided into three generations where
the ’first generation’ of HRA methods concern with the quantification of human
errors to calculate the HEP of tasks, the ’second generation’ of HRA methods more
focus on the human cognitive process during the task for the qualitative explana-
tion of human reliability, and the ’third generation’ of HRA methods consider the
dynamic features in human performance.

2.2.2 The ’first generation’ of HRA

For the so called ’first generation’ HRA methods, human is considered similar to
a mechanical component, so all aspects of dynamical interactions with the work-
ing environment, both physical and social environment are not fully considered
[DPIMR13]. The basic assumption which has been made in many of these methods
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such as technique for human error rate prediction (THERP) [KKTAL97], acci-
dent sequence evaluation program (ASEP) [Swa87] and human cognition reliability
(HCR) [HSL85] is that humans have natural weakness and logically fail to execute
tasks, similar to mechanical or electrical components. With this assumption, based
on the operator’s task characteristics, the HEP can be assigned by experts and can
be modified by performance shaping factors (PSFs). In the ’first generation’ of HRA
methods, the characteristics of the task are considered as main factors, which could
be represented by HEPs; the context, represented by PSFs, is regarded as the minor
factor in evaluating human performance reliability [KSH06]. The main features of
the ’first generation’ of HRA methods could be concluded as follows [Kim01]:

� Human reliability is similar with hardware/equipment reliability in conven-
tional reliability analysis.

� Human actions either succeed or fail to carry out a given task.

� Human errors are distinguished into two categories, one is failure to perform an
action known as an ’omission’ and the other one is an unintended or unplanned
action known as a ’commission’.

� The phenomenological aspects of human actions are focused on, which means
that an operator could either do something correctly, do it incorrectly (i.e.
commission), or not do it at all (i.e. omission).

� Cognitive aspects of human actions are less concerned in the so called ’first
generation’ HRA methods although some cognitive models are adopted in some
of these methods.

� The quantification of human errors is emphasized to calculate the human error
probabilities (HEPs).

� The context is indirectly treated. The influence of PSFs (i.e. context) on the
operator performance is simply taken into account by multiplying the nominal
HEPs with a weighted sum of PSFs.

Example: THERP

The most popular and effective method among the ’first generation’ techniques is
technique for human error rate prediction (THERP), which characterized by an
accurate mathematical treatment of the probability and error rates as well as well-
structured fault trees for the evaluation of human error. The framework of THERP is
event tree modeling with each limb representing a combination of human activities,
the effects and results of human activities [GM11], as shown in Figure 2.4. The
nodes in the tree indicate actions, the sequence of actions in the task is presented
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from top to bottom. Two branches are originated from each node, the branches
to the left, marked with lowercase letters, indicate action success; the branches to
the right, marked with capital letters, indicate action failure. The action failure
probability of each action are denoted as FA, FB, and FC .

Figure 2.4: Framework of THERP event tree (adapted from [DPIMR13])

The HEPs in THERP are calculated through three steps which are analyzing event,
quantifying effects of factors and interactions, and calculating human error contri-
bution to probability of system failure [CCM+06]. In the first step, the HEP search
scheme is applied for each branching point of the event tree to identify the possible
human errors and the related basic/nominal HEPs. Therefore, the factors and syn-
ergy which affect human performance are identified. In step two, the levels of task
dependencies are assessed based on the five-level dependency scale which is specified
by THERP. The possibilities of recovery from errors are accounted for, the possible
recovery branches in the event tree and success probabilities are assessed. In the
last step, the success and failure consequences are analyzed within the event tree,
the HEP is calculated and applied to the system model. The HEP can be expressed
as follows [RNR+20]

HEP = BHEP × PSF1 × PSF2 × · · · × PSFn, (2.4)

where BHEP indicates basic HEP given in the related THERP tables.

2.2.3 The ’second generation’ of HRA

With the criticism of absence of consideration on the dynamic aspects from the en-
vironment, researchers developed some new methods, such as a technique for human
event analysis (ATHEANA) [CRSWP96], and cognitive reliability and error analysis
method (CREAM) [Hol98]. These methods are so called ’second generation’ HRA
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methods. The methods in this generation aspire to lean toward conceptual methods
as cognitive models are proposed, while the so called ’first generation’ methods are
often behavioral approaches. The qualitative assessment of the operator’s behavior
and the research for models which describe the synergy with the production process
are the aim of the ’second generation’ HRA methods [DPIMR13]. The focus of
the ’second generation’ HRA methods shifted to the cognitive aspects of humans,
the causes of errors rather than their frequency. Cognitive models are developed
to explain the logical-rational process of the operator, the dependence on personal
human factors, and the interaction between humans and external environment. In
this case, operator should be a complicated and integrated system to collaborate to
achieve the task.

The ’second generation’ HRA methods are more appropriate to explain human be-
havior as these models are based on cognitive models. Cognitive models are an es-
sential tool for understanding human performance. The immediate solution to apply
human cognition in HRA methods is to introduce a new category of error, namely,
’cognitive error’. It defined not only as failure to accomplish an activity which is
mainly of a cognitive nature, but also as the cause of activity that fails [Hol98].

The main features of the ’second generation’ of HRA methods could be concluded
as follows:

� Human cognition models are used to identify why errors happen.

� Context is the most important factor affecting human reliability.

� The majority of the proposed approaches rely on implicit functions relating
PSFs to probabilities.

� The approaches have yet to be empirically validated.

� It is lack of empirical data for model development and validation.

� It is lack of inclusion of human cognition (i.e. The methods need for better
human behavior modelling).

� The variables in ’second generation’ HRA deeply depend on the methods used.

� The evaluation of human reliability with ’second generation’ heavily rely on
expert knowledge in selecting PSFs and use of these PSFs to obtain the HEP.
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Example: ATHEANA

The ATHEANA approach is a widely recognized ’second generation’ HRA method
to model human behaviors through a cognitive model of information processing,
including monitoring, diagnosis, planning, and execution [PMS15]. From [Kim01],
the approach started with the human failure events (HFEs) identification from the
accident scenarios of PSA model. Next, unsafe actions (UAs), indicating actions
inappropriately taken or not taken when needed in a degraded plant safety condition,
are introduced to represent the HFEs. Furthermore, the error forcing context (EFC)
is defined which is the combined effect of performance shaping factors (PSFs) and
plant conditions. At the end, all factors are are taken into account for the HFE
probabilities estimation. The framework of ATHEANA approach is presented in
Figure 2.5.

Figure 2.5: ATHEANA HRA approach (adapted from [Kim01])

The HFE probability in scenario S is the conjunction of probabilities of EFC (i
is the number of forced errors) and UA (j is the number of unsafe actions) in a
dependable form as [PMS15]

P (HFE|S) =
∑

j
∑

i(j)P (EFCi|S)× P (UAj|EFCi, S). (2.5)

The characteristics of ATHEANA approach could be concluded as follows [Kim01]:

� It offers very detailed instructions on how to determine the cause of the HFE-
related unsafe actions, i.e. the error-forcing context.
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� The ATHEANA method with HFEs from PSA model contains many draw-
backs that the consequences of human errors are limited by the pre-identified
PSA accident sequences.

� The theoretical background of ATHEANA seems weak for predictive analysis
as the cognitive model are useful for post accident human reliability analysis
and post accident human error actions are often cuased by cognitive error.

2.2.4 The ’third generation’ of HRA

The development and characteristics of the ’third generation’ of HRA are discussed.
A representative method is illustrated as an example.

Further improvements for existing methods are driven by the limitations and de-
ficiencies of the ’second generation’ HRA methods. There are also studies that
focused on the shortage of empirical data for the development and validation of an
HRA model and are intended to define the database HRA, which may provide the
methodological tools needed to more intensively use types of information in future
HRA methods and reduce uncertainties in the information used to conduct human
reliability assessments [DPIMR13]. With the increased development of computer
technology, several HRA methods are using artificial intelligence and simulation
techniques to predict human error based on cognitive models. The cognitive sim-
ulation model (COSIMO) [CDD+92] based methods are defined as so called ’third
generation’ HRA methods [PLH17]. From [GSM19], the requirements for the ’third
generation’ HRA methods must include: i) comprehensive (addressing a joint system
of humans and machine, providing explicit representations of the causal factors for
human-machine failures with cognitive science and system engineering, addressing
the full spectrum of contexts and causal factors related to HRA), ii) research-based
(connecting with multiple sources, types, and sizes of data, models, and informa-
tion), iii) adaptable and flexible (accommodating changes in database structures,
data sources, and methodologies), and iv) multi-purpose (quantitative and quali-
tative aspects of HRA). The nuclear action reliability assessment (NARA) is now
defined as ’third generation’ HRA method [DPIMR13].

The so-called ’third generation’ HRA methods concern with the reliability dynamics
and simulation and modeling of human performance are adopted. The use of sim-
ulation and modeling in HRA to capture and generate data is presented in Figure
2.6.

Example: NARA

The NARA approach, as a data-based HRA tool, is developed to concentrate on the
nuclear context as the widely used human error assessment and reduction technique
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Figure 2.6: Uses of simulation and modeling in HRA (adapted from [Bor07])

(HEART) did not always fit very well with the nuclear power plant tasks [GKK+17].
Generic task types and corresponding human error probabilities are employed as one
part of the quantification process. The key elements of NARA are [GKK+17] listed
below.

� Generic task types (GTTs). A task needs to be quantified is assigned a nominal
human reliability by classifying it into the generic task types.

� Error producing conditions (EPCs). The factors negatively affect human per-
formance are identified based on a set of EPCs with comparing to the ’ideal’
conditions associated with GTTs.

� Assessed proportion of affect (APOA). The analyst judges the strength of the
affect that the EPC has on the task performance.

The new features in NARA comparing with HEART in this specific case are [BH09]:

� Quantifying operator reliability for long time-scale events.

� A prototype concept to error of commission quantification.

� More instructions have been developed for use of APOA process.

2.3 Research gaps

The first gap in the existing HRA methods is the lack of data for model development
and validation. In the existing ’first generation’ and ’second generation’ of HRA
methods, the empirical data from HRA experts are used to define human reliability
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as a scalar value. In the so called ’third generation’ HRA methods that are still
in development, the gap of shortage of empirical data is being tried to be covered
[DPIMR13]. Some methods are established with artificial intelligence and simulation
techniques to predict human error by computer-based modeling and simulations
[PLH17]. However, these methods are mainly applied to crews in industrial factories
and nuclear power plants. When considering the human reliability of the individual,
the existing HRA methods cannot be adopted properly.

The second gap within the existing HRA methods is the missing consideration of
human reliability in situated and therefore dynamic context. The existing ’first
generation’ and ’second generation’ HRA methods are considered as ’static’ HRA
methods as events are analyzed for an assumed window of time [BR16]. The window
of time ranges therefore from different failure event and allows a rough specification
of relations. The human error probability for ’static’ HRA is not changing as a
function of time or the event progression as the PSFs are not considered to evolve
over time. For the dynamic human reliability, the evolution of PSFs with time and
their consequences to the outcome of events should be accounted for. Although
the so called ’third generation’ of HRA methods consider the dynamic progression
of human behavior, this progression is measured on event-based level, rather than
on action-based level [BR16]. As a result, the HEP results of dynamic HRA on
event-based level may bounce between discrete values, while the HEP results on
action/scene-based level fluctuate in continuous values as the time of action/scene-
based HEP is measured in second scale and the time of event-based HEP is measured
in minute or hour scale depending on the number of sub-tasks or actions containing
in the event. As a conclusion about the actual state-of-the-art in this field, it can
be stated that the existing HRA methods are not suitable for the evaluation of
individual human reliability in situated and dynamic context.

The third gap in the existing HRA methods is the heavily reliance on expert knowl-
edge in selecting the PSFs, determining the behavior levels, and calculating the HEP.
For example, in the often used ’first generation’ HRA method of THERP (technique
for human error rate prediction), the effects of human errors on the system failure
events should be estimated by expert knowledge to determine which HEP should be
selected considering the predefined nominal HEP and error factors [SG83]. In the
well-known ’second generation’ HRA method of CREAM (cognitive reliability and
error analysis method), the common performance conditions need to be assessed by
expert knowledge to define the behavior levels which correspond to the effects on
performance reliability [Hol98].
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3 Quantification of human behavior levels

In this chapter, the cognition models is reviewed, the SRK model is the focus and
explained, how to quantify human behavior levels in SRK model is presented. The
relationship between human behavior levels and HEP are determined, and the effects
of time pressure and training on SRK levels switching are analyzed. Based on this, a
more general framework on the SRK levels switching are proposed and the expected
applications are discussed.

Part of the contents, figures, and tables are prepared for publication of [He22b].

3.1 Cognition model

3.1.1 Cognition concept

Cognition is related to human behaviors of knowing, perceiving, and thinking.
In [Hol98], it is argued that for technically minded people, cognition could be ex-
plained in loose term as which went on in the head. Cognition models are developed
to explain human information processing. The information obtained from sensory
systems is put into the mind or ’black box’ of the human to process and a response
is generated [Wha16]. The ’black box’ is used as the cognitive processing is not
able to be seen. In this case, many mechanisms are development to explain the
process of human cognition, the well-known models are the IDAC (Information de-
cision and action crew) [MC04], human information-processing model [WHHB21],
SRK (skill, rule, and knowledge) framework [Ras83], and situation awareness mech-
anisms [End17].

Despite various cognition models are developed and different terms are adopted, the
fundamental functions used in these models are more or less similar, which include
detecting, understanding, decision making, and action. In [Wha16], these terms are
explained.

� Detecting. Detecting is the process of perceiving information from context
and focusing selectively on information that is relevant to present activities.
The cognitive processes related to detecting are sensation, perception, and
attention.

� Understanding. Understanding is to understand the meaning of the informa-
tion that has been detected. The cognitive processes included in understanding
are sense making, situation awareness (SA), interpretation of the information,
and integration of information together for diagnosis.
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� Decision making. The function of decision making contains goal selection,
planning, re-planning and adapting, evaluation options, and selection.

� Action. The definition of action is related to the implementation of an action
on the level of a single manual action (for example operating a valve) or a
predetermined sequence of manual action. The action contains the alteration
of plant status as a result of manipulating hardware and/or software.

3.1.2 Cognitive process

The HRA methods use different cognitive explanatory models of the human behav-
ioral process to explain the mechanisms by which human errors occur. The cognition
is mainly related to judgment from memory, interpretation, concept formation, deci-
sion making, and other mental activities before action execution in the environment.
A cognitive model is generated to describe human cognitive process and explain hu-
man thinking and behavioral modes. With the development on psychology, behav-
ioral science, ergonomics, and other interdisciplinary, the understanding on human
cognition becomes more detailed. At the same time, these cognitive models inspire
HRA researchers to develop more comprehensive HRA methods on different human
cognitive activities. The HRA methods with their adopted cognitive processes are
listed in Table 3.1.

Among the listed cognition models, skill-rule-knowledge (SRK) model proposed by
Rasmussen is well-known and wildly used. This model has been applied in many
application fields in human-machine system [She17]. In 1979, Rasmussen was able
to distinguish human behavior into three levels including skill-based behavior, rule-
based behavior, and knowledge-based behavior [Woo09]. It is known that skill-based
behavior corresponds to highest human reliability and knowledge-based behavior has
the lowest human reliability from the consideration of cognition process, but this is
only considered qualitatively [LC15]. Although human error probability (HEP) in-
tervals of SRK model are estimated in [GB93], and modified in [SXSL09], the data
are only taken within a THERP context. No quantitative results on the human
reliability of these three different levels of behaviors using data from different gen-
eration of HRA methods exists in existing research. However, this is of increasing
importance as automation in human-machine systems is becoming increasingly im-
portant. Human skills are changing from a fundamentally technical understanding
of devices to abstract process management skills. The question arises whether hu-
mans can control automation in certain challenging situations (takeover situations
or when the driving state abruptly changes), whether autonomous driving vehicles
make human qualification for vehicle guidance superfluous? In addition to issues
of disqualification [VD20] and training [DDWN09], the question arises in practice
about the right time for the warning [TS19] or for suitable interfaces [WS18].
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To answer these questions, the human reliability must be quantitatively evaluated to
generate knowledge about the quantitative knowledge about the human reliability
within the context of new relations between human and machine. The goals of this
chapter include:

1) Quantification of human behavior levels in SRK model;

2) Analysis of the effects of time pressure and training on SRK levels switching;

3) Establishment of a general framework to map the relation between HEP and
SRK levels.

To determine HEP of these three levels, three databases (technique for human error
rate prediction [KKTAL97], Savannah river site human reliability analysis (SRS-
HRA) [BHO+94], and nuclear action reliability assessment [KGK+04]) as HRA
methods are used.

3.2 Skill-rule-knowledge (SRK) framework

3.2.1 The SRK level behaviors

According to Rasmussen’s study [Ras82], human behavior can be differentiated into
categories according to different ways of representing the restrains in the behavior
of a deterministic environment or system, three different kind of interaction with
respect to the integration of human cognitive abilities can be distinguished with
related different performance results: skill-, rule-, knowledge-based performance.
Whether or not the operator is involved in problem solving at the time an error
occurred is the key distinction based on SRK levels [Rea90]. These levels and a
brief illustration of their relations are shown in Figure. 3.1

Skill-based behaviors

According to [WHLS14] the sensory-motor performance along with a statement of
intentional acts or activities, development with noncognitive control as smooth,
automated, and highly integrated patterns of behavior is an indication of skill-based
behavior. Those actions have been rehearsed in a more or less training process and
then go by in a steady flow. Such well-established skills are the most effective forms
of human behavior in terms of time and strain. Skill-based behavior is typical for
routine repetitive work, even leaving room for secondary activities that may not
necessarily be task-related.
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Figure 3.1: Rasmussen’s SRK (skill-rule-knowledge) model (adapted from [Ras82])

Rule-based behaviors

In the rule-based behaviors, the sequence architecture of subroutines in a well-known
work situation is consciously controlled by a memory-based stored rule or procedure
which may have been derived empirically during previous experience, communicated
from other individuals’ know-how as an instruction or a handbook.

From [Ras87b], the border between skill-based and rule-based behaviors is ambigu-
ous, and depends on the level of training and on individual attention. In general,
the skill-based behaviors perform without conscious attention. The individual will
be unable to explain how to control the performance and is unable to explain the
information based on for the performance. Explicit know-how is referred to in a
higher level of rule-based coordination. The rules used can be reported.

Knowledge-based behaviors

The performance which is goal-controlled during unfamiliar situations, which no
know-how or rules for control are available from previous encounters, is known as
knowledge-based level. This type of behavior can be described as a mental process in
which the operator searches for problem-solving action options based on knowledge
that is already known or that has still to be learned. In doing so, the operator
checks whether the thought-out action routines are suitable for the goal-oriented
management of the situation and finally applies the solution that seems to be the
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most effective. The process is thus highly individual and is always based on the
existing knowledge and cognitive abilities [Söf01b]. Otherwise, there will be no
action usually because there is not enough time [WHLS14]. Successful solutions
may be stored as rules for future challenges.

From the description of these three behavior levels, it can be found that these
three levels could be interacted in between. The interaction is useful when a task
performance needs to be analyzed, because the cognitive activities are not always
at the same level, but will shift to another. When a disturbance occurs acting on
the skilled performance from the environment, the attentive cognitive apparatus
searches for suitable rules to adjust the performance. At knowledge-based domain,
the attention is usually planning for future activities or improvement of rules from
previous successful applications.

3.2.2 Interaction between levels

In this thesis, a dynamic system is defined as the outside world of the interacting
human in which the relevant variables are dynamic and therefore enforce a dynamic
human interaction. The dynamic environment will result in the dynamic interaction,
which will further include that the time variant changes are perceived by human
cognition. It is known that human cognition is not only strictly linear or serial,
but also involves parallel and cyclic processing [Wha16]. Cognitive functions occur
in a continuous loop and overlap. Operators in the realistic context often need to
accomplish most or all of these functions at the same time [KRM+03]. Therefore,
task performance normally require a simultaneous consideration of all three cognitive
control levels in SRK model. Each level of cognitive control may be focused on
different aspects of the task at a given time, and several activities may be ongoing
at the same time [RV89]. The interaction of human behaviors between different
levels in SRK framework is shown in Figure 3.2.

From Figure 3.2, the conscious attention is free to deal with other activities on a
time sharing activities during skill-based routines execution, which is shown as syn-
chronous activities. The rule-based domain is involved in retrieving an appropriate
rule-set from the memory if the next task requires an activity sequence which are
not integrated into an automated pattern. Interruptions may occur during the task
performance when choices are needed to be made or adjustments of the current
activities are needed, which is presented as synchronic activities. Offline planning
consideration may be neither happened in the same time frame, nor in the same part
of problem space. Attention may be switched to the evaluation of past activities and
planning for the further activities when skilled activities are processing smoothly,
which needs knowledge-based analysis and planning, shown as achronic activities, or
the recall and evaluation of the success rules from previous performance, presented
as diachronic activities.
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Figure 3.2: Interaction of human behaviors between different levels (adapted from
[RV89])

3.3 Quantification of human behavior levels with SRK
model

3.3.1 Databases

Three databases, including technique for human error rate prediction (THERP) from
so called ”first generation”, Savannah river site HRA (SRS-HRA) and nuclear action
reliability assessment (NARA) from so called ”third generation”, are selected to
obtain operation tasks and corresponding HEPs. These three databases are mainly
applied in the nuclear power plant (NPP) field. The data are generated from surveys
on skilled operators, advice from HRA experts, and site visits. In recent years,
SACADA (scenario authoring, characterization, and debriefing application) [ZSG17]
and HuREX (human reliability data extraction) [JPK+20] are often referred within
the NPP field. In this study, the three databases are selected which are based on a
broad and widely representation of application fields.

The database of THERP is based on studies and observation from various kind
of plants in the world. Besides that, it also obtained support and guidance from
program managers at nuclear regulatory commission [SG83]. In THERP, 44 tasks
are analyzed. For each task operation, a basic HEP and corresponding error factor
(EF) exist, where the basic HEP denotes the probability of human error without
considering the conditional influence of other tasks [SG83]. The error factor is
integrated for the variation in estimated HEP due to different operation conditions
and modeling uncertainty. For operation at different conditions or environments,
HEP will be various. The upper bound of the estimated HEP is the product of
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basic HEP and EF, while the lower bound of the estimated HEP is the result of
dividing HEP by EF.

The SRS-HRA database is developed from generic models and SRS-specific data,
surveys from department of energy sites, THERP, human cognitive reliability
(HCR), and actual national or regional data for transportation accidents and expert
judgment [BHO+94]. In this database, 35 human error events with 3 different fail-
ure probabilities: low, nominal and high are considered. The nominal or low HEP
is chosen for a situation with normal operation, planned process transients, and
frequent minor abnormal occurrences. Nominal or high HEP is selected when the
situation is less frequent, more significant abnormal occurrence. High HEP is applied
when the effects are directed on personnel (e.g., personal well-being threatened).

The database from NARA comes from computerized operator reliability and error
data (COREDATA) which are supported by a wide range of information, thus un-
derstanding of HEP in its practical and methodological context becomes possible
[KGK+04]. The generic task types in NARA are divided into four sections includ-

ing task execution, ensuring correct plant status and availability of plant resources,
alarm or indication response, and communication.

With the HEP data collected in these three databases, human behavior levels in
SRK framework could be quantified when the potential human errors described in
these databases are reasonably identified and classified.

3.3.2 Identification and classification of human errors

The identification of human errors is an important phase in HRA. It breaks down the
human activities into a more detailed level by task analysis, so that the identification
of human errors become possible. It could be either a quantitative or qualitative
analysis. The quantitative task analysis requires sufficient data to quantify the
probability of errors. The qualitative task analysis could assist in understanding
potential human errors.

In [Rea90], the SRK framework combining with human error theory distinguishes
human errors into skill-based errors (slips and lapses), rule-based mistakes as well
as knowledge-based mistakes. Eight dimensions are discussed to distinguish these
three level errors. The distinctions are summarized in Table 3.2 providing suitable
references. Operation errors can be classified from the eight dimensions listed in
Table 3.2. These eight dimensions of errors contribute to the establishment of the
generic error modeling system (GEMS), which is a structured map for detailed
examination of the types of errors applicable to the task [Str19].

Furthermore, Hanaman decision tree could be adopted as the joint approach to
classify human operation errors into SRK levels [JSXG10]. In the Hanaman deci-
sion tree, six influence factors (operation type, crew’s understanding of situation,
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requirement of procedure, availability of procedure, crew’s understanding of proce-
dure, crew’s familiarity of procedure) are selected to determine human operation
error levels. The structure of Hanaman decision tree is shown as Figure 3.3. From
Figure 3.3, it is clear that Hanaman decision tree collects the relationship between
influence factors and SRK framework. The meaning of the branches in Hanaman
decision tree is explained in Table 3.3. In this case, with Hanaman decision tree,
the human error levels could be determined when the states of influence factors are
known.

As a short summary, the steps to classify human errors from the three databases
into SRK levels are as follows:

1) Understanding the environment of the operation scenario and the characteris-
tics of the operation behavior, identification of the operation tasks including
the specific operation steps, working conditions, the time budget for the task,
and number of simultaneous actions, etc.

2) Matching the operation behavior characteristics with the listed dimensions in
Table 3.2 and the influence factors in Table 3.3

3) Determination of the behavior level of the analyzed task

4) Calculation of the HEP of operation behavior with the consideration of oper-
ating environment and working conditions

5) Summarizing the HEP intervals of SRK levels of each database

6) Based on the HEP intervals of SRK levels obtained from the databases, a final
HEP intervals table is obtained by calculating the mean HEP of the same level
behaviors from the three databases.

The summarized HEP intervals of each task from three databases are listed in Table
3.4, Table 3.5, and Table 3.6. With these three tables, the HEP intervals for skill-
based, rule-based, and knowledge-based behaviors can be summarized as Table 3.7.
Therefore, the behavior levels in SRK framework can be characterized quantitatively.
To visually represent the relationship of HEP between different behavior levels, the
principal relations based on numerical values from literature based on the HEP
(Table 3.7) is illustrated as shown in Figure 3.4 where x-axis is indicating HEP
values and y-axis is presenting cognitive behavior mode (CBM).

3.3.3 Case illustration

For better illustration how human errors are identified and classified into SRK frame-
work and how HEPs of tasks in databases are determined, case illustration from
THERP [SG83] is presented.
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Figure 3.3: Hanaman decision tree (adapted from [JSXG10])
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Table 3.4: Summary of skill-based errors and corresponding HEP[He22b]

Databases Skill-based errors HEP

THERP

Preparation of written material 3× 10−3

Initiate scheduled shift checking in administrative control 1× 10−3

Using written operation steps in administrative control 5× 10−3 - 5× 10−2

Omission of item when procedure with
checkoff provision use correctly

1× 10−3 - 3× 10−3

Recalling oral instruction items ont written down 1× 10−3

Selection of unannunciated displays for
quantitative or qualitative readings

5× 10−4 - 3× 10−3

Reading and recording from various numerical indicators 1× 10−3 - 6× 10−3

Check-reading from various types of displays 1× 10−3 - 6× 10−3

Inadvertent activation of a control 3× 10−2

Turn a rotary control or two-position switch with
common stereotype in wrong direction

1× 10−4 - 5× 10−4

Set rotary control to an incorrect setting 1× 10−3

Fail to complete change of state of a component
which must be held until change is complete

3× 10−3

Improperly mate a connector 3× 10−3

Selection in changing or restoring a locally operated
valve from a group of unambiguously labeled valves
which are set apart from similar looking valves

1× 10−3 - 3× 10−3

Detect stuck locally operated valves with
indications are available

1× 10−3 - 5× 10−3

Resume attention to a legend light within
1 minute after an interruption

1× 10−3

SRS-HRA

Communication error 5× 10−2

Incorrect labeling or tagging 5× 10−3

Failure to lock out 5× 10−4

Chemical addition or elution error 3× 10−3

Transfer error 3× 10−6/tank − h
Overfilling of a tank 5× 10−6/tank − h
Laboratory analysis error 3× 10−4

Random actuation/shutdown of system 5× 10−6/h
Vehicle collision with stationary object 1× 10−6/miles
Single vehicle accident 1× 10−6/miles
Vehicle collision with another moving vehicle 1× 10−6/miles
Dropping of load when using forklift 5× 10−5

Puncturing of load when using forklift 3× 10−5

Dropping of load when using crane/hoist 1× 10−4

Crane/hoist strikes stationary object 3× 10−4

NARA

Carry out simple single manual action with feedback 5× 10−3

Perform completely familiar, well designed,
highly practiced, routine task

1× 10−4

Set system status as part of operations using
strict administratively controlled procedures

7× 10−4

Calibrate plant equipment using procedure 3× 10−3

Simple response to a range of alarms or indication
providing clear indication of situation

4× 10−4

Verbal communication of safety-critical data 6× 10−3
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Table 3.5: Summary of rule-based errors and corresponding HEP [He22b]

Databases Rule-based errors HEP

THERP

Rule-based actions by control room personnel
after diagnosis of an abnormal event

2.5× 10−2 - 5× 10−2

Carry out a plant policy or scheduled task 1× 10−2

Use a valve change or restoration list in
administrative control

1× 10−2

Use a written test or calibration procedure in
administrative control

5× 10−2

Omission per item when procedure without
provision are used or incorrectly used

3× 10−3 - 1× 10−2

Arithmetic calculation errors 1× 10−2 - 5× 10−2

Selection of control on a panel from an array of
similar-appearing controls

5× 10−4 - 3× 10−3

Turn rotary control or two-position switch with
unusual stereotype in wrong direction

1× 10−2 - 5× 10−1

Select wrong circuit breaker in a group of circuit breaker 3× 10−3 - 5× 10−3

Selection in changing or restoring a locally
operated valve from group of ambiguously labeled
and similar appearance of valves

5× 10−3 - 1× 10−2

Checker checks non-routine task or involve
active participation

1× 10−2 - 5× 10−2

Checking the status of equipment if that status
affects one’s safety either by checker or maintainer

5× 10−4 - 1× 10−3

Response to multiple annunciators alarming
closely in time

1× 10−4 - 5× 10−2

SRS-HRA

Failure of administrative control 5× 10−3

Failure to verify within control room 1× 10−2

Failure to verify outside control room 3× 10−2

Error in selecting control within control room 1× 10−2

Error in selecting control outside control room 1× 10−2

Incorrect reading or recording of data 1× 10−2

Miscalibration 5× 10−3

Failure to restore following test 1× 10−2

Failure to restore following maintenance 5× 10−3

Failure to verify parameter with calculation 3× 10−2

Excavation error 1× 10−2

Failure of long-term accident recovery 3× 10−3

NARA

Start or reconfigure a system from the main control room
following procedures, with feedback

1× 10−3

Start or reconfigure a system from a local control panel
following procedures, with feedback

2× 10−3

Routine check of plant status 2× 10−2

Restore a single train of system to correct operational
status after a test, following procedures

4× 10−3
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Table 3.6: Summary of knowledge-based errors and corresponding HEP [He22b]

THERP

Knowledge-based errors HEP

Diagnosis of the abnormal events within
certain time

5× 10−1

Rule-based actions by control room personnel
after diagnosis of an abnormal event

1.0

Perform the task without using written
maintenance procedures or checklist

3× 10−1 - 5× 10−1

Written procedures are available and
should be used but not used

5× 10−1

Reading and recording from various large
number of parameters recorder and graphs

1× 10−2 - 5× 10−2

Recognize that an instrument being read is
jammed without indicators to alert the user

1× 10−1

Detect stuck locally operated valves when
indications are not available

1× 10−2

Checker checks routine tasks with or
without written materials

1× 10−1 - 2× 10−1

Checker notices the locally operated valve
is not completely opened or
closed after the valve is checked

1× 10−1 - 9× 10−1

Checking the task in a two-man team 5× 10−1

Respond to a legend light if more than
1 minute elapses after an interruption

9.5× 10−1

Respond to a steady-on legend light at
initial audit or hourly scans

9× 10−1 - 9.5× 10−1

Fail to detect unannunciated deviant display 9.5× 10−1 - 9.9× 10−1

Fail to detect multiple unannunciated
deviant displays

1× 10−3 - 9.9× 10−1

Daily walk-around inspection 5.2× 10−1

SRS-HRA

Failure to respond to compelling signal 1× 10−2

Checker verification error 1× 10−1

Supervisor verification error 3× 10−1

Diagnosis error 1× 10−2

Failure of visual inspection 1× 10−1

Failure of manual fire detection 1× 10−1

Failure of manual fire suppression by occupant 3× 10−1

Failure of manual fire suppression
by non-occupant

3× 10−1

Failure of long-term accident recovery 3× 10−3

NARA

Judgment needed for appropriate procedure to be
followed based on interpretation of a situation

6× 10−3

Carry out analysis 3× 10−2

Identification of situation requiring interpretation
of complex patter of alarms or indications

2× 10−1
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Table 3.7: HEP intervals for three level errors [He22b]

Databases Skill-based error Rule-based error Knowledge-based error

THERP 1× 10−4 - 5× 10−3 1× 10−4 - 5× 10−2 1× 10−3 - 1.0
SRS-HRA 3× 10−5 - 5× 10−3 3× 10−3 - 3× 10−2 3× 10−3 - 3× 10−1

NARA 1× 10−4 - 6× 10−3 1× 10−3 - 2× 10−2 6× 10−3 - 2× 10−1

Mean 7× 10−5 - 5.3× 10−3 1× 10−3 - 3.3× 10−2 3× 10−3 - 5× 10−1

Figure 3.4: Relationship between human behavior levels and HEP [He22b]

For demonstration, the selected task is chosen as administrative plant control. It
refers to the extent the plant is run in conformance to the guidelines by which it was
designed to operate, reflects the type of structure inherent in a plant, and reinforces
the lines of responsibility. The human operators involved are responsible for the
performance of certain tasks necessary to reliable and safe plant operation in both
normal and abnormal situations. The possible failures in administrative control with
the estimated HEPs are listed in Table 3.8.

For item (1), plant policy refers to a set of operating requirements that plant manage-
ment generally expects to be followed. These structured requirements are described
in a formal set of written instructions that are available to all operation staffs in
relevant positions. The estimated HEP is assigned to be 0.01 (EF = 5). In this case,
the upper bound of HEP of task item (1) is 0.05, while the lower bound of which
is 0.002. Therefore, the HEP of task item (1) can vary within the range between
0.002 to 0.05. With the description of tasks item (1), the error level of this item
could be classified by the joint approaches of eight dimensions in Table 3.2, and the
information from the Hanaman decision tree. The determination of error level with
eight dimensions for item (1) and its explanation is presented in Table 3.9. Next the
Hanaman decision tree is applied for the double check. The operation type is ’rou-
tine’, so it is the upper branch; the requirement of procedure is ’required’, so it goes
to the lower branch; the availability of procedure is ’unavailable’ because operators
did not follow the procedures, so it is the lower branch. In this case, the item (1) is



36 Chapter 3. Quantification of human behavior levels

’rule-based error’ from the Hanaman decision tree. So the HEP of item (1) belongs
to ’rule-based level’. In this study, the effect of EF on HEP is not considered as EF
represents the upper and lower bound of HEP for special cases, and the nominal
HEP is for most of the common cases.

The results from the eight dimensions approach and Hanaman are almost identical
but has to be adapted in detail in some cases when the results are different. In this
case the results from eight dimensions will be mainly adopted because this approach
has more degrees of freedom to be adapted.

Table 3.8: Estimated HEPs related to failure of administrative control (adapted
from [SG83])

Item Task HEP EF

(1)
Carry out a plant policy or scheduled tasks such as periodic tests or
maintenance performed weekly, monthly, or at longer intervals

1× 10−2 5

(2) Initiate a scheduled shiftly checking or inspection function 1× 10−3 3

Use written operation procedures under

(3) Normal operating conditions 1× 10−2 3
(4) Abnormal operating conditions 5× 10−3 10
(5) Use a valve change or restoration list 1× 10−2 3
(6) Use written test or calibration procedures 5× 10−2 5
(7) Use written maintenance procedures 3× 10−1 5
(8) Use a checklist properly 5× 10−1 5

As a final result, the new introduced Figure 3.4 illustrates the relationship between
cognitive behavior modes and HEP values. For the first time here the SRK levels are
mapped with HEP values. This builds now the base for consideration of additional
effects related to time pressure and training levels which is discussed in chapter 3.4.

3.4 Analysis and application

In [Vic99], the effect of switching behavioral levels was investigated. Knowledge-
based activities can be executed ’online’ and synchronously, which means that the
whole process is realized ’online’ using skills or rules (or as a tool). For example,
a pilot manually controls an aircraft using skill-based behaviors while simultane-
ously applying knowledge-based behaviors to decide whether the target inclination
is appropriate [FP16].

It should be recognized that the switching between SRK levels can be identified as
short or long time scaled. Switching between SRK levels can be realized in short
time (some activities mainly refer to the ’online’ activities which require real-time
feedback). The time scale could be seconds, minutes, or hours, depending on the



3.4 Analysis and application 37
T

ab
le

3.
9:

D
et

er
m

in
at

io
n

of
er

ro
r

le
ve

l
w

it
h

ei
gh

t
d
im

en
si

on
s

fo
r

it
em

(1
)

an
d

it
s

ex
p
la

n
at

io
n

[H
e2

2b
]

D
im

en
si

on
It

em
(1

)
E

x
p

la
n

a
ti

o
n

T
y
p

e
of

ac
ti

on
R

ou
ti

n
e

ac
ti

on
s

P
la

n
t

p
o
li

cy
is

d
es

cr
ib

ed
fu

ll
y

in
a

fo
rm

a
l

se
t

o
f

w
ri

tt
en

in
st

ru
ct

io
n

s
th

a
t

o
p

er
a
to

rs
n

ee
d

to
fo

ll
ow

in
th

e
o
p

er
a
ti

o
n

p
ro

ce
d

u
re

s.

F
o
cu

s
of

at
te

n
ti

on
O

n
so

m
et

h
in

g
ot

h
er

th
a
n

th
e

ta
sk

in
h

an
d

T
h

e
re

la
te

d
er

ro
rs

in
it

em
(1

)
a
s

d
es

cr
ib

ed
in

cl
u
d

e
th

e
o
p

er
a
to

r’
s

a
tt

en
ti

o
n

m
ay

b
e

d
ra

w
n

aw
ay

fr
o
m

th
e

ta
sk

s
a
t

h
a
n

d
b
y

a
n

o
th

er
,

m
o
re

co
m

p
el

li
n
g

d
em

a
n

d
fo

r
a
ct

io
n

.

C
on

tr
ol

m
o
d

e
M

ai
n

ly
b
y

au
to

m
a
ti

c
p

ro
ce

ss
or

s
(s

to
re

d
ru

le
s)

O
p

er
a
to

rs
n

ee
d

to
fo

ll
ow

th
e

ru
le

s
fo

r
o
p

er
a
ti

o
n

.
T

h
ey

a
re

n
o
t

a
lw

ay
s

ch
ec

k
th

e
st

ep
s

w
it

h
th

e
ch

ec
k
li

st
,

m
o
st

o
f

th
e

st
ep

s
a
re

m
em

o
ri

ze
d

.

P
re

d
ic

ta
b

il
it

y
of

er
ro

r
ty

p
es

L
ar

ge
ly

p
re

d
ic

ta
b

le
”s

tr
on

g-
b

u
t-

w
ro

n
g
”

er
ro

rs
(r

u
le

s)

T
h

e
er

ro
rs

o
f

p
la

n
t

p
o
li

cy
o
r

sc
h

ed
u

le
d

ta
sk

s
a
re

p
re

d
ic

ta
b

le
a
s

th
e

o
p

er
a
ti

o
n

s
a
re

fo
ll

ow
ed

b
y

co
n
tr

o
ll

ed
ru

le
s

a
n

d
th

e
st

ep
s

a
re

cl
ea

r.

R
at

io
of

er
ro

r
to

op
p

or
tu

n
it

y
fo

r
er

ro
r

A
b

so
lu

te
n
u

m
b

er
s

m
ay

b
e

h
ig

h
,

b
u

t
co

n
st

it
u

te
a

sm
al

l
p

ro
p

o
rt

io
n

o
f

to
ta

l
n
u

m
b

er
of

op
p

or
tu

n
it

ie
s

fo
r

er
ro

rs

T
h

e
a
b

so
lu

te
n
u

m
b

er
s

m
ay

b
e

h
ig

h
b

ec
a
u

se
th

ey
a
re

d
a
il

y,
w

ee
k
ly

o
p

er
a
ti

o
n

s,
w

h
en

co
n

si
d

er
in

g
th

e
er

ro
r

ra
te

,
it

is
lo

w
a
s

th
e

o
p

er
a
ti

o
n

fr
eq

u
en

cy
is

h
ig

h
in

d
a
il

y,
w

ee
k
ly

w
o
rk

in
g
.

In
fl

u
en

ce
of

si
tu

at
io

n
al

fa
ct

or
s

L
ow

to
m

o
d

er
at

e;
in

tr
in

si
c

fa
ct

o
rs

li
ke

ly
to

ex
er

t
th

e
d
o
m

in
a
n
t

in
fl

u
en

ce

N
o
t

fo
ll

ow
in

g
th

e
p

la
n
t

p
o
li

cy
o
r

d
id

n
o
t

h
av

e
th

e
p

er
io

d
ic

te
st

s
m

ay
h

av
e

lo
w

eff
ec

t
o
n

th
e

sa
fe

ty
p

ro
d

u
ct

io
n

o
f

p
la

n
t,

b
u

t
w

h
en

th
e

er
ro

r
a
t

so
m

e
p

a
rt

is
n

o
t

d
et

ec
te

d
b

ec
a
u

se
la

ck
o
f

p
er

io
d

ic
te

st
s,

w
h

ic
h

le
a
d

s
to

la
rg

e
fa

il
u

re
s

o
r

a
cc

id
en

ts
,

it
w

il
l

ex
er

t
th

e
d

o
m

in
a
n
t

in
fl

u
en

ce
.

E
as

e
of

d
et

ec
ti

on
D

et
ec

ti
on

u
su

al
ly

fa
ir

ly
ra

p
id

a
n

d
eff

ec
ti

ve

T
h

e
er

ro
rs

ca
n

b
e

d
et

ec
te

d
w

h
en

ch
ec

k
in

g
th

e
ta

g
g
in

g
s

a
n

d
ch

ec
k
li

st
s,

o
r

d
is

cu
ss

w
it

h
th

e
re

sp
o
n

si
b

le
o
p

er
a
to

rs
to

k
n

ow
h

is
fa

m
il

ia
ri

ty
o
n

th
e

d
u

ti
es

.

R
el

at
io

n
sh

ip
to

st
at

u
s

ch
an

ge
W

h
en

an
d

h
ow

an
ti

ci
p

a
te

d
ch

a
n

g
e

w
il

l
o
cc

u
r

u
n

k
n

ow
n

D
u

e
to

th
e

la
ck

o
f

p
er

io
d

ic
te

st
s,

it
is

k
n

ow
n

th
a
t

st
a
tu

s
ch

a
n

g
e

w
il

l
h

a
p

p
en

,
b

u
t

w
h

en
a
n

d
h

ow
it

w
il

l
h

a
p

p
en

is
u

n
k
n

ow
n
.

R
u

le
-b

a
se

d
er

ro
rs



38 Chapter 3. Quantification of human behavior levels

situations. The skill-based behaviors related to highly routine activities in famil-
iar environment. Rule-based behaviors are involved when attention checks upon
progress and detects a deviation from the planned-for conditions. When opera-
tors realize that their rule-based solutions are not able to cope with the problem,
knowledge-based performance is engaged. The activities of knowledge-based levels
can be stopped when adequate plans for problem are acquired, which leads to the
rule-/skill-based behaviors again.

When the time is stretched to weeks, months or years, the SRK level of operator
behaviors could be switched depending on their experience regarding the situations
they encountered. Operators who have continuous training on specific situations will
increase their experience, which lead to behavior level switch from knowledge-based
to skill-/rule-based. Meanwhile, after a long period of no training, the experience
that operators previously occupied may be lost, thereby changing their behaviors
from skill-/rule-based to knowledge-based.

3.4.1 Effects of time pressure and training on SRK levels switching

Two performance shaping factors (PSFs) namely time pressure and training are
selected for the analysis of SRK level switching as these two PSFs affect SRK level
switching and human reliability of operators significantly from short time scale and
long time scale, respectively.

Time pressure

Time pressure has strong effects on human judgment and decision making as the
strategies of coping with situations under time pressure are changed comparing with
non-time pressure situations [ME97]. For example, the strategy of acceleration may
be adopted with a faster rate of information processing and/or reducing pause and
other interruptions in task-related activities. Filtering (processing some parts of
the information more, and others less), acceleration, and omission (ignore particular
parts of the information) are mostly employed strategies by human operators to deal
with time pressure situations [SM93]. The relationship between time pressure and
human performance is in inverted U-shape (increasing time pressure could induce
to better human performance up to a certain point). After this point, human per-
formance is decreasing with more time pressure [Hwa94]. In different application
fields, time pressure is a key factor affecting human reliability, which often cause
premature decision making, increased risk tolerance, and impaired cognitive perfor-
mance and health [HMB+09]. In transportation, time pressure is regarded as the
most hazardous task characteristics of emergency vehicle driving [HCS18]. In avia-
tion maintenance, time pressure is the most frequently mentioned factor leading to
incidents from a survey as maintenance operators tempt to take shortcuts to get an
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aircraft back into service more quickly [RH17]. Air traffic control (ATC) is char-
acterized by time pressure, multiple tasks and goals, and high error consequences
because continuous increasing in the volume of air traffic imposes more demands on
air traffic controller [KM13].

Training

Training helps to enhance human operator performance, so to reduce human er-
rors. Whenever a human operator’s ability to perform a task is limited by lack of
knowledge or skill, it is making sense to bridge the gap by training [SB15]. Training
is one of the essential constituents of a quality system process, delivering qualified
operators to meet the demands of exacting roles. Ineffective or negative training is a
major latent failure in the overall accident causation chain [SMC10]. From [BC10],
it can be identified that sub-optimal training is one of the two most critical flight
hazards in aviation, with the other one being a shortage of experienced operators.
Training of control room operating crews in nuclear power plant consists of two
stages: one is a lengthy process of initial training in which acquiring knowledge on
appropriately carrying out the tasks to be performed in the control room, the other
is a continuous training aimed maintaining and improving the knowledge and skills
on operation [Dia11]. Training standards need to be established for partially auto-
mated vehicles as driver assistance systems (ADAS) become standard equipment for
lower-priced vehicles [CH19]. Hence, the effects of training on operator performance
should be monitored and measured to identify the effectiveness on human reliability
enhancement.

It is mentioned that time pressure and training as two PSFs deeply affect human re-
liability. When SRK framework is considered in the effects analysis of time pressure
and training on SRK levels switching, the map (Figure 3.4) generated in this work
could be applied to visualize the effects. In Figure 3.5 (a), the effects of time pressure
on SRK levels switching are indicated. The detailed explanation of the switching
behaviors is presented in Table 3.10. The effects of training on SRK level switching
is presented in Figure 3.5 (b). The detailed explanation of switching behaviors is
shown in Table 3.11. It is obtained from Figure 3.5 that human performance could
be switched not only among the same level, but also between levels with different
extent of training.

3.4.2 Framework of the SRK levels switching

Although autonomous and semi-autonomous systems are applied to different ap-
plication fields, human operators are still the center for human-machine systems
regarding safety issues. Even the most advanced automated systems still need hu-
mans to monitor the situations and takeover or stop the system when emergencies
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Figure 3.5: Effects of time pressure (a) and training (b) on levels switching (in
combination with the numerical values for Ti and Pi) [He22b]

occur. At the same time, high automation may increase boredom and decrease vig-
ilance which affects the ability to takeover control of the system [MSJ+15]. There-
fore, quality of human performance is critical to the reliability of human-machine
systems. Many measures have been developed to monitor human performance in
human-automation systems, especially human-driving system. In [DHUM10], five
types (subjective report measures, driver biological measures, driver physical mea-
sures, driving performance measures, and hybrid measures) of driver inattention
monitoring measures are summarized. In [FHLR20], human factors regarding au-
tomated vehicles, such as the workload, distraction, situation awareness (SA) and
driver trust, are discussed. The ultimate question to be answered by these studies
of human factors is the monitoring and evaluation of human reliability. The quan-
titative study of human behavior reliability of different levels in SRK framework
discussed in this thesis provides possibilities for the evaluation of human errors and
human reliability. Meanwhile, the study of the effects of time pressure and training
on the levels switching demonstrates the dynamic changes of SRK framework for
environment. Hence, a more general structure to illustrate the dynamic behavior of
levels switching could be established which is illustrated in Figure 3.6.

Figure 3.6: Analysis of the dynamic behavior of SRK levels switching [He22b]

From Figure 3.6, it can be obtained that six directions are used to indicate the
relationship between HEP and human behaviors.
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Directions I/II mean that the quality of the tasks is different but HEP is identical.
The typical example for this case is that a very experienced operator is in process of
tasks in familiar environment, although some rules are available or situations need
to be diagnosed and new plan should be generated, human reliability is identical as
the solutions could be found easily.

Directions III/IV indicate that the quality of tasks is identical, while human oper-
ators’ experience level is varying. As the experience levels of human operators on
situations are different, their human performance ability regarding the same task is
also different, which induces the HEP varying.

Directions V/VI present loosing experience (V) and typical learning process (VI).
As learning continues, operators become more familiar with the situations and more
proficient in the process, so the behavior level switches from knowledge-based level
and eventually to skill-based level. Meanwhile, after long time of decoupling from the
operation loop (due to automation) or specific tasks (due to tasks changing), human
operators will loose abilities for the tasks, so their experience on tasks is gradually
fading away (knowledge degradation) and the behaviors finally reach knowledge-
based level.

Many approaches and techniques have been developed for human performance assis-
tance to reduce risks in application fields. In [NNAV21], the technologies for driver
assistance system (ADAS) driven solutions are summarized, the eye-gaze and head
pose estimation in vision intelligence are reviewed and the development of learning
algorithms makes it possible to develop a real-time recommendation system for au-
tonomous vehicle. In aviation, the human performance model is used to improve
predictions of situation awareness of pilots [HGW+11]. In [FZBD+18], the impact of
seafarers’ emotion on their performance is investigated with electroencephalogram
(EEG) and self rating. In the previous work of the authors, human driver reliability
is evaluated using a modified fuzzy-based CREAM approach with the data collected
from driving simulator [HLLS21]. The approach of estimation of human reliability
could be developed into a real-time monitoring system for human driver. When
the driver displays low human reliability in some situations, the system could issue
alerts to bring the driver’s attention and ability back to the driving operation. In
some critical situation, when human driver reliability is extremely low, and the ve-
hicle cannot be controlled at all, the system could directly takeover the vehicle from
the driver. Hence, the work of quantification of human behavior levels regarding
SRK model lays the foundation of evaluation between automation and operator’s
takeover.

The framework of SRK levels switching considering the effects of time pressure
and training provides the idea for evaluation of simulator training for daily tasks for
individuals. When simulator training data are collected, human operators’ reliability
could be estimated based on the approach proposed in [HLLS21], which could be
quantified into points mapping into Figure 3.6. In this case, the actual training
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status of individuals could be recognized and training suggestions for further steps
could be made. Meanwhile, the error types could be also identified by the map,
which helps to analyze and improve human performance during training.

3.5 Summary

Humans are always somewhere integrated in the loops although the automation
level in human-machine systems is getting higher with the development of tech-
nology. Human error is causing an increasing proportion of total accidents. With
the research on human error mechanisms and failure modes, the study of human
reliability analysis (HRA) has been formed. Many cognitive process models have
been established to explain human performance. Among these models, skill-, rule-,
knoledge-based behavior (SRK) model is wildly used. In this chapter, human be-
havior levels of SRK framework are quantified and the effects of two performance
shaping factors, time pressure and training, on levels switching are analyzed. Based
on the analysis a new graphical summary is developed to illustrate the effects. The
main work could be summarized as follows:

1. The HRA methods, including the so called ’first generation’, ’second gener-
ation’ and ’third generation’, are briefly discussed, the cognition process in
these HRA methods are summarized, and SRK model is selected in this thesis
to characterize human behavior.

2. Three level behaviors in SRK model are illustrated. With the description
of three levels, it could be concluded that skill-based behaviors relate to the
higher human performance reliability and knowledge-based behaviors corre-
spond to the lowest, but the defining of HEP values of each level need human
reliability data research.

3. Human error probability (HEP) from three databases (THERP, SRS-HRA and
NARA) are collected to quantify human behavior levels in SRK model. The
detailed procedures for the identification and classification of human errors
are illustrated. A case study regarding classifying the task of administrative
control in plants into SRK levels is presented to explain how the procedure
works. Finally, the HEP intervals of SRK levels are summarized and a graphi-
cal framework presenting the relationship between human behaviors and HEP
is generated.

4. The effects of time pressure and training on SRK levels switching are analyzed
and the switching behaviors are explained. Human behavior levels in SRK
model can switch in several ways. The switching behaviors could be identified
as short time scale and long time scale. Short time scale switching mainly
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refers to the ’online’ activities where real-time feedback is required. Human
behavior levels of the SRK framework can be switched depending on experience
regarding the tasks and environment for the long time scale. Two performance
shaping factors including time pressure and training are selected for analysis
of SRK levels switching. It is obtained that human behaviors can be switched
between levels with time pressure and training. It can be stated that the
established visual connections show the effects with respect to time pressure
and additional training. Furthermore, it becomes clear that from the HPE
point of view, the SRK levels roughly correlate but in detail overlap.

5. A general map describing SRK levels switching with six different directions is
generated, the explanation of each direction is presented. The new graphical
illustration allows: i) a human performance reliability monitoring system to
be established combining with the fuzzy-based modified CREAM approach
in this thesis; ii) the individual recognition and evaluation system of training
status to be generated with collected operator training data.
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4 Human reliability estimation in dynamic con-

text

In this chapter, the methods adopted in modified fuzzy-based CREAM approach
approach including CREAM approach, fuzzy theory, data clustering approach (FN-
DBSCAN, CLUSTERDB, GMFPE algorithms) are explained and applied to driving
data for data clustering. The human driver evaluation concept HPRS (Human
performance reliability score) is introduced. To depict the dynamic driving context,
the new list of CPCs is established.

Part of the contents, figures, and tables presented in this chapter are modified after
previous publications [HS22][HBS22][HLLS21][HLL21][HS20][HTS20][He19]. Part
of the contents, figures, and tables are prepared for publication of [He22a].

4.1 CREAM approach

Human reliability analysis (HRA) is a systematic evaluation method focusing on
the analysis, prediction, and prevention of human errors. After years of develop-
ment, two generations of HRA methods have been established. The so-called ’first
generation’ of HRA methods is developed based on the idea that human naturally
fails to perform tasks because of inherent deficiencies, just like mechanical or electri-
cal components. So human reliability is characterized by the characteristics of the
performed tasks [ZWX+17].

For the so-called ’second generation’ of HRA approaches, however, the core as-
sumption is that environment or context is considered as the most important factor
affecting human reliability. The widely used methods are a technique human er-
ror analysis (ATHEANA) [CRSWP96], and cognitive reliability and error analysis
method (CREAM) [Hol98].

The CREAM approach, developed by Erik Hollnagel in 1998, offers a practical
approach for performance analysis as well as attendant prediction. This approach
is able to conduct a retrospective analysis of events and a prospective analysis for
the design of high-risk systems or process.

Contextual control mode

Human cognitive model used in CREAM methodology to model human behaviors
is denoted as contextual control mode (COCOM). It is assumed that the degree of
control that human operators have on the situation or context is the most important
index to estimate human performance and human reliability. Meanwhile, the degree
of control can be determined by the context under which human operators perform
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their tasks. Finally, the degree of control is the core mechanism to determine the
relations between context and human reliability.

In CREAM approach, four control modes are established [Hol98]:

� Strategic control
The human operator considers the global context, thus using a wider time
horizon. So human operator can have a more efficient and robust performance,
which may have a higher reliability.

� Tactical control
The performance is based on planning, hence more or less follows a known
procedure or rule. However, the planning is sometimes limited and too many
tasks need to be considered, and may therefore affect reliability more or less.

� Opportunistic control
The human operator does very little planning or anticipation, perhaps because
the context is not clearly understood or because time is too constrained, thus
may induce reliability decrease at some extent.

� Scrambled control
Scrambled control characterizes a situation where there is little or no thinking
involved in choosing what to do. In this case, there is a complete loss of
situation awareness, and human reliability is very low.

Each control mode corresponds to different human reliability, scrambled control
represents the lowest human performance reliability, while strategic control is related
to highest human performance reliability. The corresponding HEP interval of each
control mode is shown in Table4.1. The reliability intervals (probability of action
failure) of control modes come from statistical data in industries.

Table 4.1: CPC control modes and their probability interval (adapted from [Hol98])

Control modes HEP interval

Strategic mode (0.00005, 0.01)
Tactical mode (0.001, 0.1)
Opportunistic mode (0.01, 0.5)
Scrambled mode (0.1, 1.0)

Common performance conditions

Nine common performance conditions (CPCs) are defined as the most significant
factors describing the context. These nine CPCs are adequacy of organization,
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working conditions, adequacy of MMI and operational support, availability of pro-
cedures/plans, number of simultaneous goals, available time, time of day (circadian
rhythm), adequacy of training and experience, and crew collaboration quality. Each
CPC has several different levels, and corresponding expected effect on performance
reliability. For example, the CPC of crew collaboration quality has four different
levels, which are, very efficient, efficient, inefficient, and deficient, with the corre-
sponding expected effects on performance reliability as improved, not significant,
and reduced, respectively. When the effect on performance reliability of each CPC
is identified, CPC score could be determined as [

∑
reduced,

∑
improved] where∑

reduced represents the sum of reduced effects on performance reliability while∑
improved means the sum of improved effects on performance reliability. The

effects when CPCs have not significant effects on performance reliability are not
considered. The control mode is then identified with a relation map between CPC
score and control modes which is shown as Figure 4.1. For example, if CPC score
is [3, 2], it means that 3 reduced and 2 improved effects on performance reliability
are identified, respectively. The control mode is then identified as tactical mode.

Figure 4.1: Relations between CPC score and control modes (adapted from [Hol98])

4.2 Fuzzy theory

Fuzzy logic is to model the imprecise modes of reasoning that are fundamental for
the capacity of rational decision-making in an environment of uncertainty and im-
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precision [Háj13]. Fuzzy logic is based on the degree of truth of a logically compound
proposition which can obtain the value between 0 an 1 rather than the value of truth
(1) or false (0) in standard Boolean logic. Fuzzy logic is established by Lotfi Zadeh
based on his earlier work on fuzzy set theory [Zad78]. In [Zad78], a fuzzy set A in
the universe of discourse X, is defined by a membership function µA, which corre-
lates each element x in X to a real number in the interval [0,1], where the degree of
membership of x in A is denoted by the value of µA.

The main features of a membership function are the height, core, and support pa-
rameters. The height of a fuzzy set A can be represented with the mathematical
function

height (A) = max{µA(x)|x ∈ X}, (4.1)

which indicates the highest value of the membership function. The domain of height
can be any value in the range of 0 to 1. The core of the membership function can
be defined mathematically by

core (A) = max{x|x ∈ X,µA=1}, (4.2)

where the core contains all elements x which are characterized by full membership
in the set, in this case with a value of 1. The support of a membership function of
a fuzzy set A can be expressed by

supp (A) = max{x|x ∈ X,µA(x) > 0}, (4.3)

where the support contains all elements x which are characterized by a nonzero
membership in the set.

Trapezoidal membership function is selected to describe the membership degree
of CPCs. The advantages of its simplicity and popularity make the trapezoidal
membership function mainly used [DHO08].

4.3 Data clustering approaches

Clustering is a method to group similar objects in the same group and separate
dissimilar objects into different groups [SSBD14]. With fuzzy theory, data clustering
approaches are used to find the core points and support points of the data. In this
case, the membership functions could be defined by data rather than by expert
knowledge. In this thesis, three data clustering approaches are adopted to define
the membership functions.
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4.3.1 FN-DBSCAN

In the standard DBSCAN approach, classical neighborhood density analysis is ap-
plied to determine the core points of clusters. A core point is defined if the number
of points in a specific radius is larger than a certain threshold [NU09]. The FN-
DBSCAN algorithm implements fuzzy neighborhood cardinality to generate core
points [UN08]. To define the membership functions, the cores and supports of a
trapezoidal membership function are determined using the core and support points
based on the fuzzy density-neighborhood of the centroid of clusters.

The fuzzy neighborhood membership function could be defined as

Nx(y) =

{
1− d(x,y)

dmax if d(x, y) ≤ ε,

0 otherwise,
(4.4)

where d(x, y) represents the distance between any points x and y, whereas ε deter-
mines the maximal threshold of the distance between points.

To further improve the sensitivity of the points with different distances to the neigh-
bor points, the neighborhood membership functions dependent on the parameter k
is expressed as

Nx(y) = max{1− kd(x, y)

dmax
}. (4.5)

The fuzzy neighborhood set of point x ∈ X with parameters ε1 is expressed as

FN(x; ε1) = {< y,Nx(y) > | y ∈ X,Nx(y) ≥ ε1}, (4.6)

where ε1 defines the minimal threshold of the neighborhood membership degree, Nx

refers to any membership function that describes the neighborhood relation between
points.

A point x is defined as a fuzzy core point with parameters ε1 and ε2 if it fulfills the
requirement of

cardFN(x; ε1, ε2) ≡
∑

y∈N(x;ε1)

Nx(y) ≥ ε2, (4.7)

Nonetheless, the parameters ε1, ε2, and k must still be defined using expert knowl-
edge. Further details regarding ε1 and ε2 are given in [UN08]. To decrease the
dependency of parameters on expert knowledge, it is suggested a way to reduce the
pre-defined parameters from 3 to 1. ε is defined as the average distance between
adjacent data

ε =

∑m−1
i=1 d(xi, xi+1)

m− 1
, (4.8)
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where d(xi, xi+1) represents the distance between the i-th data point and its adjacent
neighboring data point while m is the total number of data points. Therefore, if a
data point y is closer to a data point x than the average distance between adjacent
data, data point y then has a neighborhood degree of Nx(y) > 0.

The relation of parameter k with respect to ε can be represented by

k =
dmax

ε
. (4.9)

Furthermore, parameter ε1 defines the radius of the membership threshold of data
points to be included in the fuzzy cardinality is given the value of 0. As a result of
ε in Eq. 4.8, a neighborhood consisting of relatively close points is considered and
therefore these data points could also be included in the fuzzy cardinality. Given
that ε1 > 0, the density requirement towards the center of the neighborhood could
be increased. Thus, only fuzzy cardinality threshold ε2 needs to be determined.

To get the optimal value of ε2, the genetic algorithm as explained in [Gre86] is ap-
plied. To implement the genetic algorithm to find the optimal ε2 value, the opera-
tions of roulette wheel selection, mutation and crossover are used. The chromosomes
are comprised of the ε2 values for each variable of the dataset. In order to define
the fitness of a chromosome, the data set is fuzzified by the membership functions
resulting from the chromosome. The fuzzified data is used to train and test the
classification algorithm of KNN (K-nearest neighbors). The classification accuracy
of the test data is used as fitness value of the chromosome.

4.3.2 CLUSTERDB*

The CLUSTERDB* algorithm is a density-based approach which extends the CLUS-
TER algorithm by the validity index DB∗ to avoid the generation of small and not
well separated clusters [HO07].

The DB∗ describes the overall similarity of all cluster nc and is defined as

DB∗(nc) =
1

nc

nc∑
i=1

{
maxk=1,...nc,k 6=i(Si + Sk)

minp=1,...nc,p 6=idip
)

}
, (4.10)

where dip is the distance between the i-th and p-th centroid. Si is the scatter distance

Si =
1

|Ci|
∑
x∈Ci

‖x− ci‖ , (4.11)

of the i-th cluster Ci with the centroid ci.
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A similarity value of s needs to be predefined for the number of membership func-
tions. The data is first sorted in ascending order and the distance diff between
adjacent data points are calculated. The similarity values between adjacent data
can be determined as

si =

{
1− diffi

N ·σs if diffi ≤ N · σs,
0 otherwise,

(4.12)

where si denotes the similarity and diffi is the distance between data points of xi
and xi+1. The predefined parameter N decides the shape of membership functions
and σs denotes the standard deviation of all diff . With the resulting similarity val-
ues, the data set can be partitioned by the use of the predefined similarity threshold
α. Adjacent data with similarity values larger than α are considered as among the
same cluster.

To automatically generate membership functions, the value of the parameter (α)
needs to be optimally defined. The parameter of N does not have to be optimally
defined. A change in N changes the similarity value si with the same magnitude.
In this case, the same genetic algorithm and fitness evaluation method used in FN-
DBSCAN is applied to define the optimal value of α and to calculate the fitness.

4.3.3 GMFPE

The GMFPE algorithm is a genetic-based algorithm estimating the optimal trape-
zoidal membership function parameters with a predefined number of membership
functions. The chromosomes contain the trapezoidal core parameters xl and xr and
the support parameters xa and xe of all membership functions. In this case, the
total size of chromosomes of all variables is as

size =
k∑
i=1

4×mi, (4.13)

where k is the total number of variables, mi is the number of membership functions
of variable i.

A chromosome is comprised of multiple sections containing the membership function
parameters in each variable. The genes within each section are organized so that
every first and fourth gene represents xa and xe and every second and third gene
represents xl and xr of a membership function. The genes of each section in a
chromosome are generated randomly to generate an initial population. The ranges
of gens are between the minimum and maximum of each variable value in data set.

Two-point crossover with two chosen points indicating sections of the chromosome
is adopted in GMFPE algorithm [Shi19]. The boundary of mutation of a gene is
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depending on the parameter type of the gene. The mutations x′aj, x
′
ej, x

′
lj, and x′rj

of the j-th membership function parameters xaj, xej, xlj, and xrj are defined as

xr(j−1) ≤ x′aj ≤ xe(j−1), (4.14)

xe(j−1) ≤ x′lj ≤ xrj, (4.15)

xlj ≤ x′rj ≤ xa(j+1), and (4.16)

xa(j+1) ≤ x′ej ≤ xl(j+1). (4.17)

To evaluate the chromosomes fitness, the same genetic method as described in FN-
DBSCAN is applied. The new generation is formed when children with fitness values
higher than the lowest fitness values in the current population are exchanged with
the respective chromosomes [McC05].

4.4 Human performance reliability score (HPRS)

The traditional HRA methods capture human performance at a particular point in
time which could be considered as static HRA methods, so the changes of perfor-
mance shaping factors (PSFs) affecting each other and the event progression are
not discussed [Bor07]. When it comes to the dynamic HRA methods, not only the
continuous time-sliced human error probability (HEP) calculation is afforded, but
also the modifications of PSFs are available. Table 4.2 presents the modification
of PSFs from static conditions to dynamic progression, which indicates that static
HRA methods could be modified into dynamic HRA methods when the PSFs evo-
lution with time are defined. Actually, in [Bor07] it is stated that the utilization of
cognitive modeling and simulation to produce a framework of data to quantify the
likelihood of human error rather than the development of specific HRA methods is
the key to dynamic HRA.

As the likelihood of human error occurrences and the possibilities of gathering rele-
vant data are much more promising in road traffic than other human-in-loop related
industry, driving data could be used for HRA [HLLS21]. The driving context is dy-
namically changing in real time. Human driver’s ability to perform correctly in the
different context requiring different experiences etc. is also fluctuating in real time.
In this case, human driver reliability should be evaluated dynamically. When dy-
namic changing context and the event progression are taken into account, adaptions
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Table 4.2: Modification of PSFs (adapted from [Bor07])

Static condition Dynamic progression Dynamic initiator

PSFs remain
constant across
events in a
scenario.

PSFs evolve across
events in a scenario.

A sudden change in
the scenario causes
changes in the PSFs.

-
Levels of CPCs
change continuously in
driving process.

Driving maneuvers including
braking, steering wheel
operation, acceleration, indicator
lights operation.

need to be generated to integrate dynamic features into these methods. Therefore
in dynamic context, the static CREAM approach needs to be modified to evaluate
human reliability.

In dynamic driving context, situations are continuously changing. As the context
is assumed as the most important factor affecting human reliability in CREAM ap-
proach and the assumption of COCOM in CREAM that the control degree of human
operators on context effects human performance [Hol98], dynamical human driver
performance could be evaluated with new defined CPCs describing the dynamic
features of situated driving context. As described in Table 4.2, with continuously
changing levels of CPCs in driving process, the dynamic progression can be mod-
eled. The dynamic initiator in driving maneuver are mainly braking, steering wheel
operations, acceleration and deceleration, and the use of indicator lights operation
as actions to express lane changing wishes and therefore affect the environment with
stated intentions. So the new list of CPCs describing the dynamic driving context
could be established.

4.4.1 New list of CPCs

In [HLLS21], the author established a list of CPCs to characterize the main elements
affecting human drivers reliability in situated driving context. They are number
of surrounding vehicles, time to collision (TTC), longitudinal acceleration, lateral
acceleration, traffic density, ego-vihicle speed, number of available lanes, actual lane,
and general visibility conditions. These CPCs are described by different levels which
can be used to assess the expected effect on performance reliability of human drivers.
These levels are defined by literature research and expert knowledge and could be
used for unfuzzified HPRS calculation. The complete list of CPCs is shown in Table
4.3.
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Table 4.3: New CPCs and related performance reliability for dynamic driving con-
text [HS20]

CPC name Level/Description
Expected effect on
performance reliability

Number of
surrounding
vehicles (N)

N = 0 Improved
1 ≤ N ≤ 3 Not significant
N ≥ 4 Reduced

Time to
collision (TTC)

TTC > 5.5 s Improved
2.5 ≤ TTC ≤ 5.5 s Not significant
TTC < 2.5 s Reduced

Ego-vehicle
speed (V)

V ≤ 22 m/s Improved
22 < V ≤ 30 m/s Not significant
V > 30 m/s Reduced

Longitudinal
acceleration

V ≤ 22 m/s
a ≤ 1.6 m/s2 Improved
1.60 < a ≤ 2.32 m/s2 Not significant
a > 2.32 m/s2 Reduced

22 < V ≤ 30 m/s
a ≤ 1.13 m/s2 Improved
1.13 < a ≤ 1.60 m/s2 Not significant
a > 1.60 m/s2 Reduced

V > 30 m/s
a ≤ 1.13 m/s2 Not significant
a > 1.13 m/s2 Reduced

Lateral
acceleration

V ≤ 22 m/s
a ≤ 1.48 m/s2 Improved
1.48 < a ≤ 2.15 m/s2 Not significant
a > 2.15 m/s2 Reduced

22 < V ≤ 30 m/s
a ≤ 1.05 m/s2 Improved
1.05 < a ≤ 1.48 m/s2 Not significant
a > 1.48 m/s2 Reduced

V > 30 m/s
a ≤ 1.05 m/s2 Not significant
a > 1.05 m/s2 Reduced

Traffic density
Low (≤ 7) Improved
Medium (8 - 14) Not significant
High (≥ 15) Reduced

General
visibility
conditions

Daytime with sunny weather Improved
Early morning or
nightfall with sunny weather

Not significant

Evening or foggy or
rainy or snowy

Reduced
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� Number of surrounding vehicles
The behavior of ego-vehicle is affected by surrounding vehicles as driving con-
text could be more complex when more vehicles are surrounded. Based on
literature [BR11], surrounding vehicles can be defined as vehicles that the time
to collision (TTC) of front/rear vehicle, and vehicles in the adjacent lanes to
ego-vehicle is less than 1.5 s. If ego-vehicle is not surrounded by any vehicles,
human drivers are not distracted by surrounding vehicles. In this case, the
expected effect on performance reliability is improved. When ego-vehicle is
surrounded by 1-3 vehicles, the abilities of human drivers are just right for
this situation. When more than 3 surrounding vehicles exist, it seems to have
a reduced effect on performance reliability.

� Time to collision (TTC)
Time to collision (TTC) is an important parameter indicating the time it
would take a following vehicle to collide with a leading vehicle [BB08]. This
parameter can be used to characterize the safety of vehicle following and lane
changing. When TTC ≥ 5.5 s, human drivers have enough time to complete
different operations, like lane changing or braking, so the effect on performance
reliability is improved. Evidence from [VDHH93] has presented that TTC
of 2.5 s could be regarded as a minimum value that should be avoided in
normal traffic conditions. When TTC ≤ 2.5 s, abilities of drivers to handle
the situation are insufficient, so a reduced effect is generated.

� Ego-vehicle speed
Ego-vehicle speed, as an important index to characterize driving behavior,
is closely related to driving safety. Some physiological properties of human
drivers, like visual ability and reaction time, are easily affected by vehicle
speed, and the performance reliability of human drivers is then influenced
by physiological properties. In this thesis, three levels of speed are identified,
speed faster than 110 km/h, speed between 80 km/h and 110 km/h, and speed
less than 80 km/h, and their corresponding effects on performance reliability
are reduced, not significant, and improved.

� Longitudinal acceleration
Acceleration is fundamental to define the behavior of drivers as it describes
the motion of vehicles. Acceleration, which can be used to classify drivers’
behaviors as safe or unsafe [EMP16], can be divided into longitudinal and
lateral acceleration. Acceleration is closely related to driving speed for safety
driving issues, acceleration should decrease when vehicle is in high speed. The
relationship between longitudinal acceleration and vehicle speed is concluded
in [EMP16], [ZB13]. So the longitudinal acceleration corresponding to different
driving speed is also obtained.

� Lateral acceleration
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The relationship between longitudinal acceleration and lateral acceleration is
explained in [EMP16], as the longitudinal acceleration is 0.925 times the lateral
acceleration.

� Traffic density
Traffic density expresses the average number of vehicles that occupy one kilo-
meter of traffic lane. Driving behavior of human driver is affected by traffic
density. When traffic density is low, traffic context is relatively simple, drivers
have more operating options for situations encountered, therefore, relatively
high performance reliability of human drivers is reached. On the contrary,
available options for human drivers are limited and uncertainty situations will
also increase when traffic density is high. Meanwhile, higher traffic (approxi-
mately 15 vehicles per kilometer) could result in higher workload and demand
compared to low traffic density situations (approximately 7 vehicles per kilo-
meter) [GKLB16], [SY05]. Considering identified TTC and ego-vehicle speed
in this thesis, traffic density can be classified into three levels, namely, low traf-
fic density (less than 7 vehicles per kilometer), medium traffic density (between
8 to 14 vehicles per kilometer), and high traffic density (more than 15 vehicles
per kilometer), which corresponds to the effects to performance reliability as
improved, not significant, and reduced.

� General visibility conditions
General visibility conditions affect perception level of human drivers on sur-
rounding context. With low level of conditions, many context information
could not be perceived by human drivers, which may have high risk on vehicle
driving. General visibility conditions are mainly influenced by the time of the
day and weather conditions.

A new list of CPCs based on Table 4.3 is generated to better describe driving sit-
uations, including ego-vehicle states (longitudinal speed, lateral speed, longitudinal
acceleration, and lateral acceleration) and surrounding environment states (TTC
front, TTC front left, TTC front right, TTC behind, TTC behind left, and TTC
behind right). Here, totally 10 new CPCs are defined to illustrate the dynamic
features of situated driving context and evaluate human performance reliability. It
should be noted that the new CPCs (ego-vehicle speed and acceleration and the
TTCs) are ego-vehicle centered.

4.4.2 Calculation of HPRS

The data clustering methods of FN-DBSCAN, CLUSTERDB*, and GMFPE as
explained in chapter 4.3 are applied to automatic generation of the membership
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functions. The corresponding optimal parameters are defined with genetic algo-
rithm. Therefore, the reliance of HRA methods is reduced and the results are just
related to the data.

In the original CREAM approach, the CPC score is [
∑

reduced,
∑

improved], which
denotes that the sum of reduced effects and sum of improved effects on performance
reliability are considered as two features. Then the control mode can be defined
with Figure. 4.1.

In this thesis, genetic algorithms and data clustering approaches are used as tools
for ordering and classifying behaviors and situations, the membership functions will
be assigned to different levels. The connection between the membership functions
and assigned performance reliability is human driver’s driving skills and experience.
With the understanding that different group of clustered data indicates different
driving behavior characteristics, the membership functions can be used to present
the driving skills and experience as which directly reflect different driving behavior
characteristics.

The membership function with improved effects can be assigned to the value of 1,
with not significant effects to 0, and with reduced effects to -1. Then each CPC
score can be calculated.

In original CREAM, after the identification of levels of CPCs, CPC score could
be determined as [

∑
reduced,

∑
improved]. The control mode and related HEP

could be, therefore, identified. This method is valid for the assessment of operation
as a whole, or major segments of the operation, when is for human operation in
situated context, it becomes invalid. Human performance reliability is constantly
changing with time as situated context is encountered, a new evaluation system for
the reliability of human operators considering the time of operation, therefore, needs
to be proposed.

A new concept of human performance reliability score (HPRS) is introduced to define
the continuously calculated performance reliability of human operators in dynamic
context. The equation is

HPRS = λ1 ·
∑

reduced+ λ2 ·
∑

improved, (4.18)

where λ denoting related weights. Here λ = 1, denotes improving effects, which λ
= -1 reducing effects.

The CPC score could be used to build the relations between HPRS and control
modes. From Figure 4.1, control modes of human operations could be identified by
CPC score of [

∑
reduced,

∑
improved] as the measurement method. At the same

time, HPRS is also closely related to CPC score. Therefore, when CPC score is
determined, relations between HPRS and control modes are also obtained. Some
examples can be provided to illustrate how to build the relations. If CPC score is
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identified as [1,6] which is related to control mode of strategic, HPRS can be obtained
as 5 which is also determined as strategic control; when CPC score changes to [2,3], it
means that control mode can be determined as tactical, and HPRS is then obtained
as 1 which can be also determined as tactical control. According to this process, each
CPC score in Figure 4.1 can be converted into HPRS which has the same control
mode with the corresponding CPC score. CPC scores of [7,1] and [8,1] are excepted
as their corresponding HPRS are classified as scrambled level, although their CPC
scores are in opportunistic mode.

The HPRS can be therefore identified into four levels based on control mode. They
are strategic level (4≤HPRS≤9), tactical level (-1≤HPRS≤3), opportunistic level
(-5≤HPRS≤-2), and scrambled level (HPRS≤-6), in which strategic level has the
highest reliability, and scrambled level has the lowest reliability. In the same levels,
larger HRS means higher reliability. In this case, the performance reliability of
human operators in every time spot could be identified, so performance reliability of
human operators could be evaluated continuously with time. The relations between
HPRS and control modes over time is shown as Figure 4.2.

Figure 4.2: Relations between HPRS and control modes [HS20]
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In general, the steps to obtain HPRS is shown in Figure 4.3. Firstly, the CPCs
are defined to characterize the main factors describing the context. Next, the FN-
DBSCAN, CLUSTERDB*, and GMFPE with genetic algorithm are executed to
generate the membership functions. Furthermore, the obtained membership func-
tions are assigned to different CPC levels to calculate each CPC score. Finally, all
these ten CPCs scores are added up to obtain the HPRS.

Figure 4.3: Flowchart to obtain HPRS

4.5 Summary

In this chapter, the modified fuzzy-based CREAM approach is established for the
evaluation of human performance reliability in dynamic changing situations. This
new approach can be applied for human reliability performance evaluation for dy-
namically changing complex situations in which continuously decisions and actions
are realized within safety relevant context. The situated driving context is taken as
an example for the application of this new and dynamic approach. In this case, the
new CPC lists for unfuzzified HPRS and fuzzified HPRS depicting the main features
of situated driving context are generated. Three data clustering approaches includ-
ing FN-DBSCAN, CLUSTERDB*, and GMFPE are introduced for data clustering
to define the cores and supports of membership functions, so the fuzzified and HPRS
could be obtained, meanwhile, the reliance on expert knowledge in determining the
CPC levels could be reduced.
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5 Experimental results and analysis

In this chapter, driving simulator is introduced, membership functions with different
data clustering approaches are presented. The final results with different member-
ship functions are shown, and the HPRS results are compared and analyzed. The
Swiss chess model is introduced to explain the critical behaviors detected by HPRS.
An example is given to explain HPRS for situated and personalized monitoring of
human driver behaviors.

Part of the contents, figures, and tables presented in this chapter are modified after
previous publications [HS22][HBS22][HLLS21][HLL21][HS20][HTS20][He19]. Part
of the contents, figures, and tables are prepared for publication of [He22a].

5.1 Data generation platform

A professional driving simulator SCANeRTM studio as shown in Figure 5.1 is used
to collect data. The simulator realize a 270◦ view of the driving environment, a
rear view mirror, and two side mirrors. For controlling ego-vehicle, there is a base-
fixed driver seat, steering wheel, and pedals are used. Data describing ego-vehicle

Figure 5.1: Driving simulator laboratory, Chair of Dynamics and Control, U DuE

dynamics (e.g. speed, steering angles, etc.) and surrounding interacting vehicle
status (e.g. lateral shift, TTC, etc.) relative to ego-vehicle are collected allowing
evaluation driver interaction behaviors also to be used for reliability analysis.
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Driving scenarios are set on a three-lane dual carriage highway. Fog, curves, and
undulations are introduced to generate the real driving environment. In addition to
ego-vehicle, interacting vehicles are introduced to generate situated driving context
which can continually stimulate ego-vehicle driver to perform various maneuvers.
Driver may change lanes, decelerate, maintain relative speed as deemed appropriate
in accordance with Germany’s driving rules. Therefore, participants are required to
drive on right lane unless overtaking or moving at approximately the same speed as
other vehicles present in other lanes. With dynamically changing driving context
and corresponding to change driving maneuvers, driver’s reliability varies over time.

Roads in highway scenario have their own characteristics differing from other roads,
like urban roads. Highway roads are usually in closed road design, wide, flat, and
less changed road conditions. These features could induce some driving issues that
differ from other roads. For example, the braking distance will be extended with
high speed driving. It is also easy to be fatigue with the monotonous road conditions.
So the levels for the assessment of highway features are different from other driving
scenarios. For instance, vehicle speed with 120 km/h is allowed in highway scenario,
but it is not allowed in urban roads. To increase the complexity during manual
driving process, drivers are asked to exist the highway and then return back. With
the dynamically changing situations in driving, drivers’ reliability will also fluctuate,
which can be evaluated online by the proposed method.

5.2 Unfuzzified HPRS results

5.2.1 Case analysis

In driving process, HPRS may change with time when different driving operations
have been performed to cope with the situated context. HPRS may be at strategic
level for a long time, or occasionally at tactical level if drivers’ competence is suffi-
cient for the situations. On the contrary, HPRS may be lastingly at opportunistic
level, even scrambled level if drivers are lack of experiences and cannot cope with
driving situations. To fully describe the four different levels of HPRS in driving
process, an artificial case is introduced as Figure 5.2.

From Figure 5.2, it becomes obvious that HPRS changes in four different control
levels over time. When HPRS is in strategic and tactical levels, which means the
performance of human drivers is efficient and robust, so human drivers have high
reliability on the situations. It can be considered that human drivers are lack of un-
derstanding of the situations because of negative physiological mental states, or the
time is constrained when HPRS is in opportunistic mode. In this case, some actions
should be taken to get human drivers back to the loop, for instance, steering wheel
vibration, or audio warning. Takeover operation should be taken by assisted system
as which has higher reliability than human drivers when HPRS is in scrambled level.
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Figure 5.2: Case study of artificial HPRS [HTS20]

5.2.2 Experimental results

The actual data collected by driving simulator are processed and the expected effect
on performance reliability of each new generated CPC is evaluated. The experimen-
tal results of HPRS with the example scenario is shown as Figure 5.3. It could be
obtained that the unfuzzified HPRS values jumps between discrete numbers and all
HPRS values are all above the tactical level.

5.3 Membership function results with different approaches

Two participants with driving license for more than 10 years are involved in the
experiment with the same scenario. Driving scenario are set on a three-lane dual
carriage highway. In addition to ego-vehicle, interacting vehicles are introduced to
generate situated driving context which can continually stimulate ego-vehicle driver
to execute various maneuvers. As the driver possess different levels of skills and
experience on different situations, the human performance reliability of the driver
on situations is also varying. The driving data with 120 s for each participant are
selected to generate the membership functions and HPRS.
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Figure 5.3: Unfuzzified HPRS of example scenario [HTS20]

The membership functions of ten CPCs are determined with the three described
data clustering approach for each participant. The CPCs of the surrounding en-
vironment states (e.g. six TTC related CPCs) are grouped to be applied for data
clustering as the nature of characteristics in TTC-related crisp data are the same.
In these case, the membership functions of TTC are generated. The membership
functions of participant 1 with different data clustering approaches are shown in
Figure 5.4, Figure 5.5, and Figure 5.6. The membership functions of participant 2
with different data clustering approaches are shown in Figure 5.7, Figure 5.8, and
Figure 5.9. It could be detected that different number of membership functions are
obtained for each CPCs with different clustering approach. The GMFPE obtains
three membership functions for each CPC as the predefined number of membership
functions is set to be three to match the performance reliability levels in CREAM
approach. The obtained number of membership functions from FN-DBSCAN and
CLUSTERDB* is varying from 1 to 3. In this case, membership functions should be
assigned to the expected effect levels logically and considering the actual situation.
For example, membership function with low speed should be assigned with improved
effect on performance reliability and high speed with reduced effect. For TTC, it
is opposite as small TTC should be assigned with reduced effect and large TTC
with improved effect. When only one membership function is obtained (member-
ship function of lateral speed with FN-DBSCAN of participant 1), three segments
in this membership function should be assigned to different effect levels. Here the
segment with membership degree of 1 is assigned to not significant effect, other
segments are assigned to reduced effect.
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Figure 5.4: Membership functions of participant 1 with FN-DBSCAN approach
[He22a]
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Figure 5.5: Membership functions of participant 1 with CLUSTERDB* approach
[He22a]
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Figure 5.6: Membership functions of participant 1 with GMFPE approach [He22a]
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Figure 5.7: Membership functions of participant 2 with FN-DBSCAN approach
[He22a]
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Figure 5.8: Membership functions of participant 2 with CLUSTERDB* approach
[He22a]
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Figure 5.9: Membership functions of participant 2 with GMFPE approach [He22a]
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5.4 Human performance reliability score (HPRS) with dif-
ferent approaches

When all membership functions are assigned to different effect levels, the CPC score
for each CPC could be calculated. The CPC score results for participant 1 are
shown in Figure 5.10, Figure 5.11, and Figure 5.12. The CPC score results for
participant 2 are presented in Figure 5.13, Figure 5.14, and Figure 5.15. It could be
concluded that the results for different clustering approaches are different, especially
the CPC scores obtained by FN-DBSCAN and CLUSTERDB* are varying from -1
to 0 except the CPC score of longitudinal speed, but the CPC scores obtained by
GMFPE are varying from -1 to 1.

When all CPC scores are calculated, the final HPRS of two participants with differ-
ent clustering approach could be determined, which is the sum of each CPC score
with respect to time, as shown in Figure 5.16 and Figure 5.17. It could be observed
that HPRS fluctuate with time continuously which indicates the performance relia-
bility of the participants varies with different situations, as well as different effects
affecting the values.

For participant 1, HPRS from three clustering methods are above opportunistic
level, and HPRS from GMFPE are above tactical level. In general, the HPRS values
from FN-DBSCAN and CLUSTERDB* methods do not differ much and fluctuate
around the tactical level. The HPRS from GMFPE results fluctuate largely above
the strategic level, and only for some periods of time do the values fluctuate below
the strategic level. The reason for the difference between HPRS values from GMFPE
and values from other two methods is mainly due to the difference in assigning effect
levels to membership functions. In membership functions obtained by FN-DBSCAN
and CLUSTERDB*, the effect levels are assigned with not significant effects and
reduced effects when only one or two membership functions obtained for each CPC,
so the CPC scores are varying between -1 and 0. However, the effect levels of
membership functions obtained by GMFPE could be assigned with improved, not
significant and reduced effects as the obtained number of membership functions in
GMFPE is predefined as three, so the CPC scores are varying between -1 and 1.
Especially for the membership functions of TTC as which affects the CPC scores
of six TTC related CPCs. For example, only one membership function is obtained
with FN-DBSCAN method, so the sloping segment is assigned with reduced effect
and the horizontal segment with not significant effect. In this case, the CPC scores
of TTC with FN-DBSCAN are varying from -1 to 0. The TTC data obtain three
membership functions using GMFPE, so they could be assigned to three different
effect levels, which result in the CPC scores varying between -1 and 1.

The HPRS results with three clustering methods from participant 2 are above tac-
tical level and fluctuating near strategic level, while only for a few times, the results
fall below the strategic level. It could be concluded that unlike the HPRS results of
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Figure 5.10: CPC score of participant 1 with FN-DBSCAN data clustering approach
[He22a]
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Figure 5.11: CPC score of participant 1 with CLUSTERDB* data clustering ap-
proach [He22a]
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Figure 5.12: CPC score of participant 1 with GMFPE data clustering approach
[He22a]
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Figure 5.13: CPC score of participant 2 with FN-DBSCAN data clustering approach
[He22a]



76 Chapter 5. Experimental results and analysis

Figure 5.14: CPC score of participant 2 with CLUSTERDB* data clustering ap-
proach [He22a]
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Figure 5.15: CPC score of participant 2 with GMFPE data clustering approach
[He22a]
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GMFPE for participant 1, which differ significantly from the remaining two meth-
ods, the HPRS results of three methods for participant 2 are more or less similar,
although the results of GMFPE are still above the results from other two methods.

Therefore, membership functions obtained from FN-DBSCAN and CLUSTERDB*
could more detailed/realistically characterize the personal driving behaviors as driv-
ing data are clustered based on the characteristics of the data themselves. So in this
case, the HPRS results from FN-DBSCAN and CLUSTERDB* give a more accurate
picture of human performance in situated driving process.

Figure 5.16: HPRS results of participant 1 with different data clustering approach
[He22a]

5.5 HEP intervals transforming between CREAM and SRK
model

The connection between CREAM approach and SRK model can be established with
the comparison of HEP values in Table 4.1 and Table 3.7. It could be obtained that
the HEP intervals of the control modes in CREAM overlap with the HEP intervals
of the behavior levels in SRK mode, which could be intuitively detected from Figure
5.18. With the HEP intervals and overlapping of CREAM and SRK model, the
new HEP intervals of SRK model for the connection with HPRS can be generated.
For example, the minimum HEP values of strategic mode and skill-based level are
0.00005 and 0.00007 respectively, so the new minimum HEP value for skill-based
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Figure 5.17: HPRS results of participant 2 with different data clustering approach
[He22a]

level could be 0.00007. The maximum values of strategic mode and skill-based level
are 0.01 and 0.0053 respectively, so the new maximum HEP value for skill-based level
could be defined as 0.005. The new HEP intervals for SRK model are presented in
Figure 5.19.

Figure 5.18: The HEP intervals transition between CREAM and SRK model

When the connection between control modes and behavior levels are defined, the
structure of HPRS with control modes in Figure 4.2 can be converted into the
structure of HPRS with behavior levels, shown in Figure 5.20. From Figure 5.18,
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Figure 5.19: The HEP intervals of behavior levels for the connection with HPRS

the left boundary of opportunistic mode is 0.01, which is consisted with the left
boundary of knowledge level, so the HPRS value of knowledge-based level can be
defined as the same with HPRS of opportunistic mode. The HPRS value of skill-
based level is determined as 3 with the consideration of the right boundary of skill-
based level of HEP value is slightly less than the right boundary of tactical mode of
HEP value. With the SRK related HPRS framework, the HPRS results obtained by
the modified fuzzy-based CREAM approach could be evaluated, which are shown
in Figure 5.21 and Figure 5.22. For participant 1, the HPRS results calculated with
FN-DBSCAN and CLUSTERDB* are fluctuating around the rule-based level and
some of the results are continuously in knowledge-based level, indicating human
driver performance reliability is not optimal and human experience is not enough
for the situations. However, the HPRS results obtained with GMFPE are almost
above skill-based level. The reason for the significant differences between GMFPE
result and other two results has been explained in chapter 5.4. For participant 2, all
HPRS results are above rule-based level and most of the results are in skill-based
level, indicating human performance reliability is optimal.

Figure 5.20: Transition of CREAM related HPRS to SRK related HPRS
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Figure 5.21: HPRS results of participant 1 with the evaluation of SRK levels

Figure 5.22: HPRS results of participant 2 with the evaluation of SRK levels



82 Chapter 5. Experimental results and analysis

5.6 Discussion

Human-machine interaction and human performance reliability in dynamic context
can be related to each other. Further the different human operators experiences
and skills in general and for specific situations can be considered in this mapping.
changing continuously as human operators possess different experience and skills
on different situations. The traditional HRA approaches are considered as static,
here the states of the PSFs and the influence of the PSFs are not changing over
time. When the evolution of PSFs with time are accounted for, it becomes to the
dynamic human reliability which needs to be evaluated with a new and dynamic
HRA method capable of capturing the main features of dynamic context. To realize
such a dynamic approach in this thesis the well-known CREAM approach is modified
so that a dynamic fuzzy-based CREAM approach is established for the evaluation of
human performance reliability. Situated driving context is taken as an example to
demonstrate the evaluation process. A new concept of HPRS is proposed to define
the human performance reliability quantitatively.

5.6.1 The features of the new approach

The new approach is established with the idea that human performance reliability
is assumed as dynamic in situated context. In this case, the CREAM approach is
modified to characterize the dynamic context and situated driving context is taken
as an example to explain how this method works. In Figure 5.3, the unfuzzified
HPRS results are obtained with CPC levels defining by literature research and expert
knowledge. Comparing with the fuzzified HPRS result, it is obtained that unfuzzified
HPRS results are non-smooth and therefore jumping between discrete integers, while
the fuzzified HPRS numbers fluctuate continuously and more smoothly indicating
that fuzzified results present more realistic changes in human performance reliability.

Different data clustering approaches are applied to driving data to determine the
cores and supports values of fuzzy membership functions of CPCs. Therefore, the
reliance on expert knowledge to determine the parameter values of membership
function is reduced. At the same time, the reliance on expert knowledge to define
the CPC levels in CREAM approach is also reduced as the CPC levels in Table 4.3
are determined with literature research and expert knowledge. With the clustering
approaches, the CPC levels are determined by characteristics of the driving data
itself.

Human drivers possess different driving habits and experience and skills with sit-
uations. When their driving data are analyzed and evaluated with clustering ap-
proaches individually, their individualized performance could be characterized with
the obtained membership functions. The calculated HPRS is finally used for the
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quantitatively evaluation of human performance reliability in dynamic context in
real time.

Briefly formatted, the main feature of the modified fuzzy-based CREAM approach
compared with the existing HRA methods are:

� Fuzzified HPRS results indicating more realistic fluctuation of human perfor-
mance reliability in situated driving context.

� Reduction of the reliance on expert knowledge to determine the CPC levels in
CREAM approach and parameter values in membership functions of CPCs.

� Characterization of individualized performance with data clustering ap-
proaches.

� Establishing of a new concept to model the changing human reliability perfor-
mance related to changing situated tasks and complexity.

� Quantitatively evaluation of human performance reliability in dynamic context
in real time.

5.6.2 Explanation of HPRS results

It could be detected from Figure 5.16 and Figure 5.17 that HPRS values fluctuate
(between different control modes), which indicates that the human reliability varies
with time! Especially for the HPRS results from FN-DBSCAN and CLUSTERDB*
of participant 1 comparing with the HPRS results from participant 2, the results
from participant 1 are fluctuating near the tactical level, while the results from par-
ticipant 2 are mainly above the strategic level, representing the human performance
reliability of participant 1 during the analyzed period of time is worse than the
performance of participant 2.

Human critical behaviors are always the concern of HRA as which weaken the safety
and resilience of the whole human-machine system. Therefore, the identification of
human critical behaviors or human errors from a more fundamental perspective,
is essential for the evaluation of the influences and consequences of errors leading
and the reduction of the occurrence frequency of errors [Phi18]. Many human error
models have been developed in the process of increasing the understanding of human
error. The wildly used model is Swiss chess model.

The Swiss chess model established by [Rea00] is a graphical method to concep-
tualize organizational accidents with different barriers on the one hand or with
the understanding of a rare combination of circumstances for accidents on the
other hand in many productive systems [LLC20]. This method consists of de-
fenses/barriers/safeguards and weaknesses on the defensive layers. It is similar with
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the Swiss chess when the barriers in a system are represented by slices of chess,
and the weaknesses are explained by holes. The presence of holes in slices does not
normally lead to a critical outcome. However, when the holes in many slices mo-
mentarily line up to permit a trajectory of accident opportunity, critical outcomes
will happen [Rea00]. In [Rea00], the holes are induced by two reasons: active fail-
ures and latent conditions. The active failures are the unsafe acts committed by
operators including slips, lapses, mistakes, and violations. The latent conditions
are indirect state that negatively affect the system, which can translate into error
provoking conditions such as time pressure, fatigue, and inexperience and they can
generate long-term holes like untrustworthy alarms and unworkable procedures.

As the Swiss chess model is applied to organization and system and slices are defined
with factors such as organization, environment, and individuals, when it is used for
the analysis of human driver critical behaviors, the Swiss chess model could be
modified with two analysis directions: one is the typical latent and active failures
structure, the other one only extracts the slice-hole framework from Swiss chess
model, meanwhile, defines slices as CPCs in modified fuzzy-based CREAM approach
and holes as experience and skills human driver owned.

For the first direction, two layers containing latent conditions and active behaviors
could be determined for the analysis of human driver behaviors in situated driv-
ing context. In the latent conditions layer, human factors affecting human driving
performance should be considered, such as time pressure, experience, fatigue, vigi-
lance, etc. The active behaviors layer contains the error types based on driver error
taxonomies. In this thesis, a generic driving error taxonomy is used, including ac-
tion errors, cognitive and decision making errors, observation errors, information
retrieval errors and violations [SS09]. In this previously introduced example, the
HPRS results in the time range from 870 s to 880 s with FN-DBSCAN of partic-
ipant 1 are selected as an example to demonstrate the analysis of human driver
critical behaviors with Swiss chess model. This part of HPRS is selected because of
its frequently fluctuation under tactical level. The situations could be detailed as
follows:

� At time 870 s - 873 s, the ego-vehicle is braked (longitudinal speed ≈ 127
km/h, longitudinal acceleration ≤ 0.78 m/s2) and changed to the left lane
(lateral acceleration ≤ 2.23 m/s2 to left direction, lateral speed ≤ 0.36 m/s)
as there are a vehicle in front (TTC front ≥ 1.69 s) and a vehicle in front right
(TTC front right ≥ 1.32 s).

� At time 873 s - 875 s, the ego-vehicle has been changed to left lane (lat-
eral acceleration ≤ 1.79 m/s2 to right direction, lateral speed ≤ 0.24 m/s),
the gas pedal is slightly pressed (longitudinal speed ≈ 128 km/h, longitu-
dinal acceleration ≤ 0.21 m/s2) and the ego-vehicle is passing right vehicle
(TTC front right≤ 3.49 s, TTC behind right≤ 12 s).
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� At time 875 s - 880 s, the ego-vehicle is roughly maintained the speed (longitu-
dinal speed ≈ 129 km/h, longitudinal acceleration ≤ 0.42 m/s2), the steering
wheel is frequently turned left and right (lateral acceleration ≤ 2.42 m/s2, lat-
eral speed ≤ 0.5 m/s). Vehicle on the right lane still exists (TTC front right≤
6.84 s, TTC behind right≤ 3.8 s).

It could be obtained from the description of the critical situations that the reason
for the HPRS fluctuation in this period of time is the lane changing maneuver with
high speed and the steering wheel frequently turning left and right which indicates
that the driver’s ability to control these situations is erratic. The driver detected
the front vehicle and decided to change to left lane. Therefore, the driver braked
to try to decrease the speed, but the braking time was too short and the brake was
not applied with sufficient force, the ego-vehicle speed was not actually reduced.
The driver completed the lane changing at high vehicle speed environment without
enough experience and skills. With the driver error taxonomy in [SS09], the critical
behavior of the driver is identified based on Swiss chess model, as shown in Table
5.1

Table 5.1: Analysis of human driver critical behaviors with Swiss chess model
[He22a]

Critical behaviors
Active behaviors

Latent conditions
External
error mode

Underlying
psychological
mechanism

Fail to press
the brake enough

Action too little
Action execution
of action error

Time pressure, unfamiliar with
driving simulator (inexperience)

Misjudge
ego-vehicle speed

Misjudgment
Situation assessment
of cognitive and
decision-making error

The latent conditions of the critical behaviors are identified as time pressure and
unfamiliar with driving simulator. The TTC front is decreasing to the lowest as
1.69 s indicates the driver has less time redundancy to complete actions related
to driving safety, such as reading the dashboard to avoid misjudge the ego-vehicle
speed. Moreover, although participant 1 is experienced in real driving context, his
experience on driving simulator is zero, especially unfamiliar with the steering wheel,
gas pedal, and braking force needed to control the simulator. For example, the
steering wheel of the simulator is more sensitive than real vehicles, and the braking
needs to be pressed harder to slow down the vehicle. This unfamiliar with driving
simulator induces the critical behaviors like failing to press the brake enough.

The other direction is slice-hole framework with the slices indicating the CPCs and
the holes presenting human drivers’ experience and skills on situations. In this case,
10 CPCs generated in the modified fuzzy-based CREAM approach are assigned to
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10 slices in the modified Swiss chess model and the holes in each slice are related
to the membership functions with different effects on performance reliability. When
the holes in the slices momentarily line up to a trajectory to the final slice, a HPRS
result is obtained. With the continuously generation of HPRS, the HPRS results
with time is achieved. It should be noted that the outcomes (e.g. HPRS) from
the modified Swiss chess model are not necessarily critical results since holes that
are passed through may also correspond to membership functions with positive or
not significant effects. Only when more holes with negative effects on performance
reliability are passed through, the final outcomes (e.g. HPRS) are indicating critical
situations which could be evaluated by control modes in CREAM approach. There-
fore, maintaining safe driving behaviors mean keeping driving behavior trajectory
through as many holes with positive or not significant effects as possible. Meanwhile,
driving behaviors always pass through the holes in slides, so the final HPRS results
could be obtained. The traversal of the holes to obtain the final HPRS explains why
the HPRS is the summation of different CPC scores.

5.7 Example: HPRS for situated and personalized monitor-
ing of human behaviors

With the increased proportion of human-related accidents in industry and traffic
fields, the interest in using assistance systems for supervision of human operators is
increasing [SHS18]. Supervision of human behaviors often focuses on the detection
of operating errors, unauthorized actions, or implicitly on the violation of protection
goals [FDJR19]. Many assistance systems are developed to monitor human operator
behaviors and states in different application fields. In [FTAW20], an architecture for
human supervision of automation in aviation is proposed which includes the actions
of both a human pilot and an autopilot to ensure resilient tracking performance when
anomalies occur. In maritime surveillance, a user study conceptualizing knowledge
is implemented to support operators’ situation awareness for enabling the possibility
to detect anomalous behaviors [NVLZE08].

The architecture of situation-operation-modeling (SOM) for interaction of intelli-
gent and autonomous systems is developed to realize the automated supervision of
human-machine-interaction [AS08]. In the past this approach has been applied to
dynamic driving context. In [FS12], the lane changing maneuver is supervised with
SOM approach by interpreting the driving scene and driver action with ’situation’
and ’operator’. The main result of this paper is defining individualizable criteria for
the decision moment when individuals as deciding to pass (start overtaking maneu-
ver), so initializing a new action changing the upcoming action options. In [SHS18],
a fuzzy SOM approach is developed for modeling interaction-based knowledge struc-
tures to handle event-discrete situations in a simulated driving environment and to
automatically generate a full and individualized knowledge space of sets of situations
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and actions and related individualized conditions. Using the SOM approach, action
space could be generated with possible actions the operator could make considering
available options [EGVS10]. The research gap in the existing SOM-based monitor-
ing approach is to automatically integrate individualized criteria for the evaluation
of action sequences into the situationally generated action space. In this way, it
would be possible to automatically evaluate whether specific action sequences are
safe or rather unsafe for this person, e.g., because the action sequence is particularly
familiar to this person or because actions/constellations foreseeably occur in the in-
tended action or in the action space that are unsafe or with which the person is not
familiar or which he or she demonstrably cannot master. Such an additional option
would improve assistance in human-machine interaction and lead to more reliable
human-machine systems.

5.7.1 SOM-based human performance reliability evaluation

Situation-operator-modeling

A situation-operator-modeling approach is developed in [Söf01a] allowing the mod-
eling of human-machine-interaction and to map the changes and scenes from the
real world to a graph-based-model. Changes are modeled as sequences consisting
of items scenes and items actions. A scene is modeled as a situation and an ac-
tion as an operator. In Figure 5.23 a SOM-based sequence is shown consisting of
an actual situation Si, a current operator Oi and the following situation Si+1. An
operator is represented as a white ellipse. A situation is described as a situation
vector represented as gray ellipse.

Figure 5.23: Situation-operator-situation sequence [Söf01a]
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Table 5.2: List of characteristics including in the situation vector [HBS22]

Characteristic Unit

C1 : Longitudinal speed [km/h]
C2 : Lateral speed [km/h]
C3 : Longitudinal acceleration [m/s2]
C4 : Lateral acceleration [m/s2]
C5 : Yaw angle [°]
C6 : Steering wheel angle [°]
C7 : Direction indicator to the left [-]
C8 : Direction indicator to the right [-]
C9 : Lane number [-]
C10: TTC to front vehicle [s]
C11: Driving area in the left lane [-]
C12: Driving area in the right lane [-]
C13: Distance to front vehicle [m]

A situation Si includes a set of characteristics Cj,i, can be physical, logical, func-
tional, or informational terms and is expressed by its related values. A situation is
related to a fix problem configuration.

Using the SOM-approach actions in the real world are modeled as operators. An
operator is related to its functionality F, which depends of explicit and implicit
assumptions. The assumptions are described by suitable mathematical, logical, or
textual expressions. A current situation Si and the following situation Si+1 are
connected by an operator, so that an operator can effect the structure and the
values related to the characteristics in the following situation.

Operators and characteristics

In the Table 5.2 the characteristics included in a situation vector are shown.

The characteristics C7 and C8 provide the statement about the direction indicator
and have a Boolean type. If the direction indicator to any direction (left or right) is
on, the value of the related characteristic (C7 or C8) changes from ’False’ to ’True’.
The characteristic C9 gives the number, in which lane the ego-vehicle is driving in
the current moment. The characteristics C11 and C12 provide a statement about the
availability of the driving area in the left and right lanes close to the ego-vehicle,
which are Boolean.

A sequence consisting of items operators and situations, which describes a sequence
of actions, can be replaced as a meta-operator. An example of a meta-operator is
’changing to the left lane’ shown in the Fig. 5.24. This meta-operator consists of
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Table 5.3: List of characteristics of the situation vector [HBS22]

Operator Description

O1 Acceleration
O2 Deceleration
O3 Keeping the actual speed
O4 Turn on the left direction indicator
O5 Turn off left direction indicator
O6 Turn on right direction indicator
O7 Turn off the right direction indicator
O8 Steering to the left
O9 Steering to the right

the basic operators ’Turn on the left direction indicator’ O4, ’Operate steering wheel
to the left’ O8 ,’Turn off left direction indicator’ O5, ’Steering to the right’ O9 ,and
’Turn off left direction indicator’ O5 (cf. Table 5.3), so describes the ’Changing to
left lane’ sequence (cf. Figure 5.24).

Figure 5.24: Meta-operator ’Changing to the left lane’ [HBS22]

The operators describing the actions of the driver are shown in the Table 5.3.

In this example an overtaking maneuver is considered (cf. Figure 5.25). The ego-
vehicle is the red vehicle and the vehicle, which has to be overtaken, is the blue
vehicle. Possible vehicles driving in the left lane are represented with white color.
The final desired situation is, that the ego-vehicle overtakes the blue vehicle con-
sidering the environment, and so other vehicles. More than one possibility lead to
the final desired situation. Using the situation-operator-modeling an action space
consisting of possible driver’s behaviors allowing to reach the final desired situation
of overtaking the blue vehicle is proposed in the following part.

Action space

For every action taking or decision making moment in time a SOM-based action can
be established to map the individual and situated action options for this moment in
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Figure 5.25: Overtaking maneuver on a highway (2 lanes for one direction): Ego-
vehicle (red) [HBS22]

time. The intended safety evaluation is based on this continuously changing discrete
events. Beside the continuous evaluation of realized actions also the options in spe-
cific moments in time can be evaluated establishing a new safety-related performance
measure or decision making.

A SOM-based action space consisting of permissible operator sequences, which lead
to the desired final situation of overtaking the blue vehicle, is developed and shown
in Figure 5.26. In the concrete example, four possible paths lead to the desired final
situation and are explained as follows:

Path I: In this case the driver keeps the current speed and waits of the passing
of vehicle(s) in the left lane (C11 = ’False’). After the left lane is free, the driver
changes to the left lane (cf. meta-operator ’Changing to the left lane’ in Figure
5.24). The vehicle, which has to be overtaken, accelerates (C12 = ’False’), so that
the driver of the ego-vehicle has to decelerate and then to keep the current speed.
After the vehicle in the right lane do not accelerate and vehicles in the front keep
the speed, the driver of the ego-vehicle can overtake by accelerating.

Path II: In this case the driver keeps the current speed and waits of the passing
of vehicle(s) in the left lane (C11 = ’False’). After the left lane is free, the driver
changes to the left lane (cf. meta-operator ’Changing to the left lane’ in Figure
5.24). The vehicle in the right lane do not accelerate and vehicles in the front keep
the speed, the driver of the ego-vehicle can overtake by accelerating.

Path III: This case is the optimal driving behavior to reach the final desired situ-
ation of overtaking the blue vehicle. The left lane is free (C12 = ’True’), the driver
changes to the left lane (cf. meta-operator ’Changing to the left lane’ in Figure
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5.24). The vehicle in the right lane do not accelerate and vehicles in the front keep
the speed, the driver of the ego-vehicle can overtake by accelerating.

Path IV: The left lane is free (C12 = ’True’), the driver changes to the left lane
(cf. meta-operator ’Changing to the left lane’ in Figure 5.24). The vehicle, which
has to be overtaken, accelerates (C12 = ’False’), so the driver of the ego-Vehicle has
to decelerate and then to keep the current speed. After the vehicle in the right lane
do not accelerate and vehicles in the front keep the speed, driver of the ego-vehicle
can overtake by accelerating.

Figure 5.26: SOM-based action space for overtaking [HBS22]

Evaluation options by summarizing safety-related performance scores

To quantitatively evaluate different options and define the optimal action sequence
in action space, the group of artificial values of characteristics for the situations
in Figure 5.24 and 5.26 are defined. It is assumed that the vehicle speed in front
(vehicles in blue and white in front) maintains the fixed speed of 80 km/h, the ego-
vehicle speed is varying between 80 and 140 km/h. The distance between the front
vehicles and ego-vehicle is from 30 to 60 m considering the traffic rules. In this
case, the TTC of front vehicle and ego-vehicle is defined. When the time for lane
changing and acceleration is artificially defined as 10 s, the lateral and longitudinal
accelerations could be calculated with the relationship of speed and time. With
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Table 5.4: HPRS of situations in meta-operator [HBS22]

Operators HPRS

O4 3.83
O8 3.42
O9 3.42

Table 5.5: HPRS of situations in action space [HBS22]

Path Operators HPRS

Path I

O3 2.88
M1 3.31
O2 3.43
O3 3.63
O1 2.63

Path II
O3 2.88
M1 3.31
O1 2.83

Path III
M1 3.00
O1 2.83

Path IV

M1 3.00
O2 3.32
O3 3.63
O1 2.63

the artificial defined values of characteristics in action space for the driving task of
overtaking maneuver described in Figure 5.24 and 5.26, the HPRS of each situation
could be calculated with the membership functions generated from real driving data.
The results is presented in Table 5.4 and Table 5.5.

Different operators result in the changes of CPCs values in the modified CREAM,
leading to the HPRS values fluctuation. From Table 5.4, it can be detected that
HPRS is decreasing during lane change maneuver as the lateral acceleration is fluc-
tuating. It can be observed in Table 5.5 that path III is the optimal action sequence
as it has less action sequences which indicating less cognition requirement and the
values of action related HPRS (O1) is larger than the same action in path I and
path IV. Path I dominates most action sequences presenting human driver has more
information processing and action implementation, and the action HPRS (O1) is
less than the same action in path II and path III.
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Figure 5.27: Synchronization of SOM-based action sequence and HPRS in lane
changing maneuver [HBS22]
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Figure 5.28: Meta-operator of lane changing to left and right in simulated driving
[HBS22]

5.7.2 Real-time applicable SOM-based HPRS for real time driver safety
evaluation

The SOM approach applying to real driving data in lane changing maneuver is
considered. Totally seven lane changing maneuvers including changing to left lane
and changing to right lane in the selected data are considered. The changes of
lateral acceleration can indicate the time of lane changing as the lateral acceleration
is maintaining around 0 m/s2 when it is lane keeping. The lane changing is a
continuous process which start when the lateral acceleration begins to change and
ends with the lateral acceleration returning to around 0 m/s2 and in between the lane
number is changed. In this thesis, the top and bottom points in lateral acceleration
near the lane number changing are selected as the time of starting and ending
of the lane changing maneuver to present the HPRS varying. In this case, the
synchronization map of SOM based action sequence and HPRS in lane changing
maneuver is presented in Figure 5.27.

In Figure 5.27, the HPRS in the selected time synchronizing with the action sequence
of lane changing is presented. With the meta-operator of lane changing to left and
lane changing to right and the related situations as shown in Figure 5.28, the action
sequence of lane changing is illustrated. Meanwhile, the corresponding HPRS during
the lane changing period is presented synchronously. In this case, the driver’s lane
changing behavior is monitored and evaluated with the SOM-based HPRS approach
in real time.
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5.8 Summary

In this chapter, the driving data are collected from professional driving simula-
tor. Three data clustering approaches including FN-DBSCAN, CLUSTERDB*,
and GMFPE are applied to driving data to automatically determine the member-
ship functions which are assigned to different effects (improved, not significant, and
reduced) on performance reliability, so the CPC scores of each CPC is determined
and the final HPRS results are calculated with the sum of all CPC score. The
HPRS results from three data clustering approach are compared and discussed. It
is concluded that the HPRS results with FN-DBSCAN and CLUSTERDB* could
more accurately characterize the individualized driving performance as driving data
are clustered based on the characteristics of the data themselves and the number of
membership functions from GMFPE needs to be predefined. Therefore, the data-
driven-based human reliability analysis for human driver performance is realized.
The features of the new and dynamic approach are summarized. Swiss chess model
could be modified with two directions for the analysis of human driver critical be-
haviors in dynamic changing situations. One is the typical active behavior and
latent conditions structure. The frequently fluctuating HPRS results are selected
for the active-latent structure analysis. The critical behaviors are identified with de-
tailed explanation of critical behaviors. In this case, the active behaviors and latent
conditions are defined. The other direction only extracts the slices-hole framework
from Swiss chess model with defining slices as CPCs and holes as different levels
of experience and skills drivers occupied. When holes in the slices are momentarily
lining up to a trajectory, the HPRS results are obtained. This framework explains
the philosophy that HPRS is the summation of different CPC scores. The example
of SOM-based HPRS for situated and personalized monitoring of human driver be-
haviors are explained. The HEP intervals transition between CREAM approach and
SRK model is established and a new SRK related HEP intervals for the evaluation of
HPRS results are determined. The HPRS results are evaluated with SRK behavior
levels.
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6 Summary, conclusion, and outlook

6.1 Summary

Humans are always somewhere integrated in the loops although the continuously
development of automation levels in human-machine systems. Human performance
reliability is crucial for human-machine systems especially for safety-relevant tasks
and operations. In this thesis, the main contents could be summarized as following
points.

� A modified fuzzy-based CREAM approach is established for quantitatively cal-
culation of human performance reliability. A new concept to evaluate human
performance reliability defined as human performance reliability score (HPRS)
is proposed for the quantitative and dynamic evaluation of individualized hu-
man performance with time in situated context.

� The situated driving context is taken as an example for the application of the
new proposed approach. A new common performance conditions (CPCs) list is
generated to describe the main features of situated driving context. With three
data clustering approaches (FN-DBSCAN, CLUSTERDB*, and GMFPE), the
driving data are clustered to define the parameters of membership functions.
The HPRS is finally calculated with the sum of all CPC scores. The HPRS
results from three clustering approaches are compared.

� Human error probability (HEP) from three databases (THERP, SRS-HRA,
and NARA) are collected to quantify human behavior levels in SRK model. A
graphical framework presenting the relationship between human behaviors and
HEP is generated. With the analysis of effects of time pressure and training
on SRK levels switching, a more general map describing SRK levels switching
is proposed and the possible applications are discussed. The detection and
evaluation of critical human driver performance are realized with the quantified
SRK levels.

� Taken as an example for the monitoring of situated and personalized human
performance, the situation-operator-modeling (SOM) combing with HPRS is
presented. With different action options to reach the goal, the action space is
generated and the optimal option is determined with HPRS.

6.2 Conclusion

In this thesis, a modified fuzzy-based CREAM appraoch is established for the evalua-
tion of human performance reliability in dynamic changing situations. To determine
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the critical performance in situated driving, human behavior levels in SRK model
are defined. The HEP intervals of each behavior level (skill-, rule-, knowledge-based)
are determined with HRA databases. The main work is concluded as follows:

� The development of HRA methods with ’three generations’ are explained.
Three mainly gaps in the existing HRA methods are discussed, including the
lack of data for model development and validation, missing consideration of
dynamic human reliability in situated context, and heavily reliance on expert
knowledge in human reliability evaluation process.

� The detailed steps to establish the modified fuzzy-based CREAM approach for
evaluation of dynamic changing situations include: i) the definition of CPCs
to describe the main factors of the context; ii) data clustering approaches
are executed to generate membership functions; iii) membership functions are
assigned to different CPC levels to calculate CPC scores; iv) all ten CPCs
scores are added up to obtain the final HPRS. The static HRA and dynamic
HRA are discussed to explain that a new and dynamic approach needs to be
established because the event evolution is building dynamically as a result of
ongoing action and time is considered in dynamic HRA. In this case, situated
driving context is selected as the example to indicate the dynamic context as
driving behavior data are easily collected in driving simulator. The new list
of CPCs describing the main features of situated driving context is defined,
which contains ego-vehicle states (longitudinal speed, lateral speed, longitudi-
nal acceleration, and lateral acceleration) and surrounding environment states
(TTC front, TTC front left, TTC front right, TTC behind, TTC behind left,
and TTC behind right).

� The driving data from two participants are analyzed and the membership
functions, CPC scores, and HPRS results with three clustering approaches are
obtained. The HPRS results with FN-DBSCAN and CLUSTERDB* could
more accurately characterize the individualized driving performance as driving
data are clustered based on the characteristics of the data themselves and
the number of membership functions from GMFPE needs to be predefined.
Therefore, the data driven-based human reliability analysis for human driver
performance is realized.

� To detect the critical behavior, the HEP intervals related to skill-, rule-, and
knowledge-based levels in SRK model are quantified with three HRA databases
(THERP, SRS-HRA, and NARA), as shown in Table 3.7. It could be obtained
that the behavior levels are overlapping which denotes the interaction between
levels. A graphical framework presenting the relationship between human
behaviors and HEP is generated, as presented in Figure 3.6. With the analysis
of the effects of two PSFs, time pressure and training, on levels switching, six
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directions are concluded to indicate the relationship between HEP and typical
human behaviors. Direction I/II mean that the quality of the tasks is different
but HEP is identical. Directions III/IV indicate that the quality of tasks
is identical, while human operators’ experience level is varying. Directions
V/VI present loosing experience (V) and typical learning process (VI). Based
the quantified SRK levels, the CREAM related HPRS is transformed into the
SRK related HPRS, which is shown in Figure 5.20. In this case, the critical
performance in situated driving is detected.

� Swiss Cheese model could be modified with two directions for the analysis
of human driver critical behaviors in dynamic changing situations. One is
the typical active behavior and latent conditions structure. The frequently
fluctuating HPRS results are selected for the active-latent structure analysis.
The critical behaviors are identified with detailed explanation of critical be-
haviors. In this case, the active behaviors and latent conditions are defined.
The other direction only extracts the slices-hole framework from Swiss Cheese
model with defining slices as CPCs and holes as different levels of experience
and skills drivers occupied. When holes in the slices are momentarily lining
up to a trajectory, the HPRS results are obtained. This framework explains
the philosophy that HPRS is the summation of different CPC scores.

� As an example to explain the situated and personalized monitoring of human
performance with HPRS, a SOM-based human reliability evaluation approach
is presented. An action space of overtaking maneuver is generated to de-
scribe different possible action sequences and options human driver available,
as shown in Figure 5.26. With the calculation of HPRS of each path, it is
obtained that option III denotes the optimal action sequence as it has less
action sequences which indicating less cognition requirement and the values
of situation related HPRS is lower than other paths. The SOM-based action
sequence of lane changing maneuver is presented with HPRS synchronously
to realize the evaluation of human driver’s lane changing performance in real
time, which is presented in Figure 5.27.

6.3 Outlook

In the next steps, with the SRK level switching map, a human performance reliability
monitoring system can be established combing with modified fuzzy-based CREAM
approach, and a individual recognition and evaluation system of training status can
be generated with collected operator training data.

Moreover, larger timescale of driving data from human drivers could be adopted
to define the membership functions of CPCs to better characterize human driving
behaviors. For principal demonstration in this thesis, 120 s of driving data are
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clustered and analyzed, so the membership functions of CPCs are defined by the
driving features of 120 s of driving data, driving behavior characteristics that do
not fall within this data range are not discussed. With more data available, more
comprehensive driving behavior could be characterized in membership functions.
As a result, HPRS results that better indicate human driver performance reliability
can be calculated. Moreover, this new established approach could be applied in
other human-in-loop fileds, such as the captain performance reliability (sailing task)
evaluation.
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[HLLS21] He, C.; Lum, Y.; Lee, K.; Söffker, D.: Human reliability estima-
tion based on fuzzy logic-modified CREAM approach. 2021 IEEE
Conference on Cognitive and Computational Aspects of Situation
Management (CogSIMA), Tallinn, Estonia, 2021, pp. 45-50
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