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Abstract
This thesis aims to contribute to a more thorough understanding of the analysis, numerics and opti-
mization of Maxwell-structured variational inequalities. Motivated by applications that require a certain
shielding of electric or magnetic fields, we investigate the evolutionary Maxwell obstacle problem first
introduced by Duvaut and Lions and certain variants thereof. To begin with, we analyze the mathemat-
ical modeling of the famous eddy current approximation in the Maxwell obstacle problem. Through the
usage of an implicit Euler scheme in time and its rigorous convergence analysis, we are able to prove a
well-posedness result for the eddy current model. We present uniform a priori estimates that provide
information on the quantitative precision of the eddy current approximation. The numerical experiments
corresponding to the Maxwell obstacle problem suggest that a combination of the implicit Euler method
with a mixed finite element method is too computationally costly. Based on this observation, we introduce
an alternative time-discretization by the so called leapfrog stepping. The resulting fully discrete scheme
turns out to be indeed way more efficient since it completely eliminates the variational inequality charac-
ter. We prove the stability and convergence of the fully discrete scheme, which requires us to construct a
novel constraint preserving mollification operator for vector fields that admit a weak curl. Thereafter, we
study a quasilinear first kind variational inequality with a bilateral differential constraint. We propose a
tailored regularization approach by the use of which we examine both the well-posedness and the optimal
control of our problem. In particular, invoking curl-projection and cut-off type arguments, we are able
to derive a set of necessary optimality conditions for the optimal control problem. Finally, we turn our
attention to the construction of an efficient solver for a quasi-variational inequality with applications in
superconductivity. Here, we utilize once again a time-discretization by the leapfrog stepping with the aim
of eliminating the present quasi-variational character. Exploiting the explicit choice of our nonlinearity,
we are able to prove the stability and convergence of the scheme for source and temperature data of
merely bounded variation in time. The thesis is concluded with an outlook on the modeling of magnetic
levitation phenomena accompanied by numerical experiments.

Zusammenfassung
Ziel dieser Arbeit ist es, zu einem tieferen Verständnis der Analysis, Numerik und Optimierung von Vari-
ationsungleichungen mit einer Maxwell-Struktur beizutragen. Motiviert durch Anwendungen, die eine
gewisse Abschirmung von elektrischen und magnetischen Feldern erfordern, untersuchen wir das, zuerst
durch Duvaut und Lions eingeführte, Maxwell-Hindernisproblem. Zunächst analysieren wir die mathe-
matische Modellierung der Wirbelstrom-Approximation für das Maxwell-Hindernisproblem. Durch die
Verwendung eines impliziten Euler-Verfahrens in der Zeit und dessen rigorose Konvergenzanalyse sind wir
in der Lage die Wohlgestelltheit des Wirbelstrom-Problems zu zeigen. Wir stellen A-priori-Abschätzungen
vor, die Aufschluss über die Genauigkeit der Wirbelstrom-Approximation geben. Die numerischen Experi-
mente zum Maxwell-Hindernisproblem legen nahe, dass eine Kombination des impliziten Euler-Verfahrens
mit einer gemischten Finite-Elemente-Methode zu rechenaufwändig ist. Basierend auf dieser Beobach-
tung führen wir eine alternative Zeitdiskretisierung durch das so genannte Leapfrog-Verfahren ein. Das
daraus resultierende volldiskrete Verfahren erweist sich in der Tat als wesentlich effizienter, da es den
Charakter der Variationsungleichung vollständig eliminiert. Wir beweisen die Stabilität und Konver-
genz des volldiskreten Schemas und konstruieren dafür einen neuartigen, schrankeneinhaltenden Glät-
tungsoperators für Vektorfelder, die eine schwache Rotation besitzen. Danach untersuchen wir eine
quasilineare Variationsungleichung erster Art mit einer bilateralen Beschränkung für die Rotation. Wir
schlagen einen Regularisierungsansatz vor, mit dem wir sowohl die Wohlgestelltheit als auch die opti-
male Steuerung unseres Problems untersuchen. Insbesondere sind wir in der Lage, unter Verwendung
von Projektions- und Abschneideargumenten eine Reihe von notwendigen Optimalitätsbedingungen für
das optimale Steuerungsproblem abzuleiten. Schließlich widmen wir uns der Konstruktion eines effizien-
ten Lösungsalgorithmus für eine Quasi-Variationsungleichung mit Anwendungen in der Supraleitung.
Hier verwenden wir erneut eine Zeitdiskretisierung durch das Leapfrog-Verfahrem mit dem Ziel, den
Quasi-Variationsungleichungs-Charakter zu eliminieren. Unter Ausnutzung der expliziten Wahl unserer
Nichtlinearität sind wir in der Lage, die Stabilität und Konvergenz des Schemas für Quell- und Temper-
aturdaten von lediglich beschränkter Variation zu beweisen. Die Arbeit schließt mit einem Ausblick auf
die Modellierung von Phänomenen im Bereich der magnetischen Levitation, begleitet von numerischen
Experimenten.
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CHAPTER 1

INTRODUCTION

From a long view of the history of
mankind, seen from, say, ten thousand
years from now, there can be little doubt
that the most significant event of the
19th century will be judged as Maxwell’s
discovery of the laws of electrodynamics.

Richard Feynman, 1964

It is uncertain whether Richard Feynman’s statement is accurate, but certainly James Clerk
Maxwell is considered one of the most important physicists in history. In the middle of the
19th century, precisely in 1861, Maxwell’s paper On Physical Lines of Force [96] was published.
It includes a set of twenty equations that explain the behavior and interaction of electric and
magnetic fields. In the form of partial differential equations (PDEs), these twenty equations first
appeared in their fully developed form in the book A Treatise on Electricity and Magnetism [97]
in 1873. They were later unified by Oliver Heaviside into four PDEs, up to today known as
Maxwell’s equations, which unify the previously separate theories of electricity, magnetism, and
light. In their classical formulation, Maxwell’s equations have a long history in the modeling
of phenomena related to electromagnetism. Specifically, they are used to describe the time
evolution of electromagnetic waves in a given medium.
In this thesis, we are particularly interested in the dynamics and propagation of electromag-

netic fields under the influence of constraints. Here, one may think of the case where certain
magnetic or conducting materials serve as a barrier to redirect or block electromagnetic fields
in a specific domain of interest (cf. [124]). Mathematically speaking, this leads to variational
inequalities with a Maxwell structure.
The notion of variational inequalities goes back to Antonio Signorini. It was 1959 when

Signorini posed the problem (cf. [126] and the previous foundational note [125]) of determining
the displacement in a heavy, linearly elastic body on a rigid and frictionless horizontal plane. The
model that was presented (nowadays called Signorini problem) seems to be the first appearance
of a problem carrying the structure of what is up to today known as a variational inequality. The
main difficulty of this problem is that the contact set between the elastic body and the plane
can be very complicated and the existence and uniqueness of solutions to the Signorini problem
were therefore unknown for several years. Roughly four years later, Gaetano Fichera, a student
of Signorini, was able to present a full proof (cf. [54]) showing the existence and uniqueness of
a solution. His techniques relied on characterizing the position field for the Signorini problem
as the minimizer of a certain potential energy over a convex set (cf. [15]). In 1965, the french
mathematician Georges Duvaut was part of the audience when Fichera presented his results at
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a conference in Italy. After Duvaut’s return to France, he had several graduate students work
on this particular topic which led to a strong french activity in this area. After all, this period
of time could be considered the birth of the field of variational inequalities.

The very first contribution to variational inequalities (VIs) in electromagnetism was made by
Duvaut and Lions [48], who explored and analyzed the electromagnetic wave propagation in a
polarizable medium through a Maxwell obstacle problem: In the free region, electromagnetic
fields satisfy Maxwell’s equations, while in the shielded area (unilateral or bilateral) constraints
are imposed on the fields. In their seminal work, Duvaut and Lions considered a bilateral electric
constraint of the type

|E(t, x)| ≤ d(x) a.e. in (0, T )× Ω

for some obstacle d : Ω → [0,∞], where E denotes the electric field. More recently, building
on [143], Yousept [144] refined the developed theory by Duvaut and Lions to allow a more general
constraint structure, namely that the variational inequality character is also present in Faraday’s
law, leading to a very general problem with simultaneous shielding in both electric and magnetic
field (see the problem formulation (2.40)). From a mathematical perspective, such a problem
comes with a number of issues. First of all, if there is no additional structural assumption
on the electromagnetic obstacle set, uniqueness of a solution is not available. Moreover, the
spatial regularity for solutions of (2.40) is generally very low (see Theorem 2.13). For this
reasons, throughout this thesis, we will focus on the individual presence of an electric or magnetic
obstacle.

1.1 Contribution
The main goal of this dissertation is to make advances within the research area of obstacle prob-
lems with applications in both electric and magnetic shielding. The present study addresses four
individual topics that are interconnected through their focus on Maxwell-structured variational
inequalities.

(a) In Chapter 3 we analyze the mathematical modeling of the famous eddy current approxi-
mation in the Maxwell obstacle problem. Here, the medium is assumed to be solely open,
containing conducting and non-conducting materials with certain properties of anisotropy
and non-smoothness. The proposed evolutionary PDE-model (Pec) preserves the Faraday
law and excludes the displacement current from the governing Ampère-Maxwell variational
inequality in (P). Our study strives to justify this model and delivers two main results:
global well-posedness (Theorem 3.6) of the model and its quantitative precision by uni-
form a priori estimates (Theorem 3.17). Here, the proof of the well-posedness result is
non-standard due to the low regularity assumption on the initial value (see (3.5)). We
overcome this issue by introducing certain correction terms (see (3.10)) which need to
be handled in the underlying stability analysis. The uniform a priori estimates yield an
explicit bound for the smallness condition on the ratio between the electric permittivity
and the electric conductivity in the region where the displacement current is disregarded.
Below this threshold, the eddy current solution provides the desired reasonable approxima-
tion and justifies the proposed model. We also carry out a numerical test which confirms
the convergence rate (3.72) as the electric permittivity ε decreases.

(b) The employed Rothe method used for the well-posedness result of the eddy current problem
(Pec) (in particular the problem (P)) suggests its combination with a mixed finite element
method in space (as briefly carried out in Section 3.4). However, to numerically solve the
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involved elliptic curl-curl variational inequality in (PN ), an iterative solver such as the
semi-smooth Newton method or the primal dual active set strategy would be required. In
order not to rely on the mentioned iterative solver, in Chapter 4 we propose and examine
a different finite element method (FEM) for the Maxwell obstacle problem (P). Based
on the leapfrog time-stepping and the Nédélec edge elements, we set up a fully discrete
FEM (PN,h) where the obstacle is discretized in such a way that no additional nonlinear
solver is required for the computation of the discrete VI. Our construction allows us to
find the explicit unique analytical solution to our discrete VI (see Theorem 4.3). While the
L2-stability is achieved for the discrete solutions and the associated difference quotients,
the scheme only guarantees the L1-stability for the discrete magnetic curl-field in the
obstacle region (see Proposition 4.9). The lack of the global L2-stability for the magnetic
rotational field is justified by the low regularity issue in Maxwell obstacle problems (see
Theorem 2.13) and turns out to be the main challenge in the convergence analysis. Our
convergence proof consists of two main stages. First, exploiting the L1-stability in the
obstacle region, we derive a convergence result towards a weaker system involving smooth
feasible test functions. In the second step, we recover the original system by enlarging the
feasible test function set through a specific constraint preserving mollification process in
the spirit of Ern and Guermond [50]. Here, using techniques from geometrical analysis, we
construct a mollification operator for H(curl)-fields (see Theorem 4.14) which is able to
preserve certain constraints that appear in the obstacle set of the variational inequality. We
present 3D numerical results of the proposed FEM confirming the theoretical convergence
result and in particular the Faraday shielding effect.

(c) Having covered both the eddy current approximation and numerical analysis of the electric
shielding problem (P), in Chapter 5 we turn our attention to the shielding of magnetic
fields by ferromagnetic materials. The resulting model is given by an H(curl)-quasilinear
first kind variational inequality with a bilateral vector curl-constraint. For this (time-
independent) VI, we examine both the well-posedness and the optimal control. We propose
a tailored regularization approach based on the Helmholtz decomposition and a reduction
of the first-order constraint to the zeroth-order one in combination with a smoothed Yosida
penalization. In this way, a suitable family of approximating quasilinear variational equal-
ities is obtained. The corresponding limiting analysis not only leads to a well-posedness
result for the VI but also reveals its dual formulation (see Theorem 5.5). The last part
is devoted to the analysis of the corresponding optimal control problem, which is mainly
complicated by the involvement of the H(curl)-quasilinearity, the bilateral vector curl-
constraint, and the non-smoothness. On the basis of the proposed regularization, as the
final novelty, we derive necessary optimality conditions, including a characterization of the
limiting dual multiplier through curl-projection and cut-off type arguments (see Theo-
rem 5.11).

(d) Differently from Chapters 3 to 5, in Chapter 6 we are concerned with the derivation and nu-
merical analysis of an efficient solver for a quasi-variational inequality (QVI) of the second
kind with applications in superconductivity. To obtain a fully discrete scheme, we employ
again a time-discretization by the leapfrog stepping in combination with a mixed finite
element method in a way such that we are able to completely eliminate the QVI character
and replace it with an L2-structured VI for which an explicit analytical solution is available
(Theorem 6.6). Compared with known numerical algorithms for QVIs, no fixed-point type
iteration is needed, leading to exceptionally low computational effort. The convergence
analysis of the discrete scheme (QVIN,h) involves similar ideas to the convergence analysis
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in Chapter 4 but requires a careful stability analysis as we work with general source and
temperature data of merely bounded variation in time (Assumption 6.2 and Lemma 6.9).
We close the chapter by presenting numerical tests for different configurations of a specific
nonlinearity known from the physics literature.

Motivated by the numerical experiments in Chapter 6, the thesis is concluded with an outlook
on the modeling of magnetic levitation phenomena. In Chapter 6 we tackle the dependence of
the nonlinearity on the magnetic field strength to obtain a more realistic model. As proposed
in the physics literature [35, 130], the interaction force between a permanent magnet and a
superconductor is given by a term that involves both the current density and the magnetic
field (see (7.1)). We invoke this force term to compute the displacement of the superconductor
at any given time step, resulting in the model (QVIlev) given by a quasi-variational inequality
involving a complicated nonlinearity. In particular, to the best of the authors knowledge, many
numerical experiments using the force term (7.1) have been carried out by approximating the
QVI-character by a certain power law, but a full QVI model has not yet been approached. The
(numerical) analysis of (QVIlev) appears to be very challenging, however, Chapter 7 offers first
numerical results, justifying a future investigation of the model.
The remainder of this dissertation is organized as follows. We use the upcoming chapter

to give a background on Maxwell’s equations, variational inequalities and their combination.
Thereafter following, Chapters 3 to 6 directly relate to the descriptions from (a)-(d) and in
particular they are in large parts similar to one of the following publications, listed in the exact
same order. Consequently, we will not explicitly highlight any quotations from these papers
individually.

Publications

[64] M. Hensel and I. Yousept. Eddy Current Approximation in Maxwell Obstacle Problems. Inter-
faces and Free Boundaries, 10.4171/ifb/486, 2022

[65] M. Hensel and I. Yousept. Numerical Analysis for Maxwell Obstacle Problems in Electric Shield-
ing. SIAM J. Numer. Anal., 60(3):1083-1110, 2022

[38] G. Caselli, M. Hensel and I. Yousept. Quasilinear Variational Inequalities in Ferromagnetic
Shielding: Well-posedness, Regularity, and Optimal Control. To be published, SIAM J. Control
Optim., 2023

[66] M. Hensel, M. Winckler and I. Yousept. Numerical Analysis for Maxwell Quasi-variational In-
equalities in Superconductivity. Preprint, 2023



CHAPTER 2

BACKGROUND

Let us use this chapter to provide a background on the topics that are relevant to any of the
chapters following later: Maxwell’s equations and variational inequalities. After giving a brief
historical background on the basic equations of electromagnetism, we introduce the underlying
Sobolev-type function spaces H(curl) and H(div) which are pivotal for a treatment by means
of a modern functional analytic approach. We state the key properties of these spaces and
particularly discuss their missing compactness properties. Afterwards, we turn our attention to
the basic concepts of variational inequalities. In this context, we look into the basic Poisson-
type obstacle problem and discuss differentiability properties of its solution mapping. We close
the chapter by combining the two mentioned topics, resulting in variational inequalities in
electromagnetism. We recall the classical result by Duvaut and Lions [48] and present recent
results obtained in [143,144] and how they relate to the content of this thesis.

2.1 Maxwell’s Equations
The first part of this section is concerned with a historical introduction of Maxwell’s equations, as
those are, together with the variational inequality character, at the very heart of every problem
formulation in this thesis. For a more in-depth perspective on the topic, we refer the reader
to [48, Chapter 7, Section 2], [7, Section 1.1], as well as the classical works [62, 77]. To begin
with, let us introduce the two physical quantities

q : [0, T ]× R3 → R (the electric charge)
J : [0, T ]× R3 → R3 (the current density).

For the sake of simplicity and since we are primarily interested in a formal derivation of Maxwell’s
equations, let us assume that both q,J and all following physical quantities are smooth in space
and time. Now, let a physical medium be represented by a compact set D ⊂ R3 with smooth
boundary ∂D. The first part of the derivation of Maxwell’s equations is based on a fundamental
observation by the two scientists William Watson and Benjamin Franklin in the middle of the
17th century, namely that electric charge is conserved (cf. [55]). More precisely, their discovery
entailed that, as long as there is no external addition of charges, the change in time of the total
electric charge contained in the interior of the medium D equals the flux of charges through the
boundary ∂D. In mathematical terms, this conservation law is known in the integral form

d
dt

∫
D
q dx = −

∫
∂D
J · ndS, (2.1)

where n : ∂D → R3 denotes the outer unit normal of D. Now, (2.1) may also be rewritten in
a differential form. To obtain such differential form we apply the famous divergence theorem
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by Gauss and gain advantage upon the fact that the integration in (2.1) is carried out on an
arbitrary compact set D ⊂ R3 with smooth boundary so that we obtain

d
dtq + divJ = 0. (2.2)

Now, we introduce a new vector field

D : [0, T ]× R3 → R3 (the electric induction),

as the potential of charge, so that
q = divD. (2.3)

Then, applying (2.3) to (2.2) entails

div
( d

dtD + J
)

= 0,

which is why, by the classical Helmholtz theorem, there must exist another vector field

H : [0, T ]× R3 → R3 (the magnetic field),

with the property
d
dtD + J − curlH = 0. (2.4)

The latter equation is called the differential form of the Ampère-Maxwell equation, an extension
of the original circuital law by Ampère in which conservation of charge was not yet considered.
Of course, (2.4) may also be accompanied by some contribution of an external source f : [0, T ]×
R3 → R3, so that a generalized form of the Ampère-Maxwell equation reads

d
dtD − curlH + J = f . (2.5)

The next relation was found by Faraday, who by means of physical experiments observed around
the year 1830 that a change of a magnetic field in time induces an electric field (cf. [53]). More
precisely, he stated that the derivative with respect to time of the flux of

B : [0, T ]× R3 → R3 (the magnetic induction)

through some (smooth and orientable) surface S ⊂ ∂D ⊂ R3 equals the opposite of the circula-
tion of

E : [0, T ]× R3 → R3 (the electric field)

along its contour ∂S ⊂ R3. In mathematical terms, the Faraday law may be written in the
integral form

d
dt

∫
S
B · ndS = −

∫
∂S
E · τ ds, (2.6)

where τ : ∂S → R3 denotes the tangent vector on the curve ∂S oriented counterclockwise to the
normal n|S . Now, applying the Stokes theorem allows us to rewrite the right-hand side of the
previous equation as

−
∫
∂S
E · τ ds = −

∫
S

curlE · ndS, (2.7)
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and since the surface S and the medium D was arbitrary, it follows from (2.6) and (2.7) that

d
dtB = − curlE, (2.8)

the differential form of the Faraday Law. Collecting (2.3), (2.5) and (2.8), this results in the
basic laws of electromagnetism, later coined Maxwell’s equations:

d
dtD − curlH + J = f in (0, T )× R3

d
dtB + curlE = 0 in (0, T )× R3

divD = q in (0, T )× R3

divB = 0 in (0, T )× R3.

(2.9)

Here, the property divB = 0 is based on the second equation in (2.9) and the assumption that
divB(t) = 0 for at least one time instant t ∈ (0, T ).
The system (2.9) includes both the electric (resp. magnetic) induction and field as unknown

vector-valued variables. At a microscopic level the electric (resp. magnetic) induction and field
coincide up to a constant. At the macroscopic level, i.e., on the whole spatial domain, it is
therefore reasonable to assume that they also coincide up to some (potentially matrix-valued)
material parameter. We say that the electric (resp. magnetic) induction and field are related
through constitutive equations. To be more specific, the electric permittivity ε : R3 → R3×3

relates the electric induction and the electric field by

D = εE. (2.10)

In a similar way, the magnetic permeability µ : R3 → R3×3 relates the magnetic induction and
the magnetic field by

B = µH. (2.11)

We want to mention that we made a serious simplification here, namely that the dependence
between the quantities in (2.10) and (2.11) is linear. There also exist materials for which it is
necessary to work with nonlinear constitutive relations. An application where such materials
arise is investigated in Chapter 5. Assuming that the medium is sufficiently stable in the sense
that it possesses an electric resistivity ρ not depending on electromagnetic quantities, Ohm’s
law holds true. In this case, the conductivity σ = 1/ρ : R3 → R3×3 relates the current density
and the electric field by

J = σE. (2.12)

Now, applying the constitutive relations (2.10), (2.11) and (2.12) to (2.9), we obtain the reduced
Maxwell system 

ε
d
dtE − curlH + σE = f in (0, T )× R3

µ
d
dtH + curlE = 0 in (0, T )× R3

div εE = q in (0, T )× R3

divµH = 0 in (0, T )× R3.

(2.13)

Of course, one could for instance also add a source term for the Faraday law in (2.13). Finally, in
view of rigorous mathematical analysis, the system (2.13) should be accompanied by appropriate
boundary and initial conditions which will be introduced at a later point.
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2.1.1 The Underlying Function Spaces

Let us use this section to introduce the required functional analytic framework for the treatment
of Maxwell’s equations. In what follows, given a real Banach space V , we denote its topological
dual space with V ∗ and we indicate its norm with ‖ · ‖V . In the case that V is a real Hilbert
space, we represent with (·, ·)V the associated scalar product. If V = Rd for some d ∈ N, we
simply write a dot and | · | for the Euclidean scalar product and norm. Discussing problems of
Maxwell-type, there naturally arise function spaces of R3-valued functions. We will therefore
use a bold typeface to indicate them.
As we have already seen in the previous section, Maxwell’s equations involve the differential

operators curl and div. In a natural way, these operators can be defined on Hilbert spaces
involving fewer regularity than the well-known Sobolev space H1. To begin with, let O ⊂ R3

be an open set. We denote by L2(O) (resp. L2(O)) the space of all (equivalence classes of)
R-valued (resp. R3-valued) Lebesgue square-integrable functions. Moreover, we write C∞0 (O)
(resp. C∞0 (O)) for the space of infinitely differentiable R-valued (resp. R3-valued) functions
with compact support in O. For convenience, let us recall the definition of a weak gradient. Let
u ∈ L2(O) and v ∈ L2(O) be given. Then, v is called the weak gradient of u if and only if∫

O
udivφdx = −

∫
O
v · φdx ∀φ ∈ C∞0 (O).

One usually writes ∇u := v. Along the same principle, we can now introduce the notions of a
weak curl and a weak divergence. To this aim, let u,v ∈ L2(O) be given. Then, v is called the
weak curl of u (we write curlu := v) if and only if∫

O
u · curlφdx =

∫
O
v · φdx ∀φ ∈ C∞0 (O). (2.14)

In a similar way, if u ∈ L2(O) and v ∈ L2(O), the function v is called the weak divergence of u
(we write divu := v) if and only if∫

O
u · ∇φ dx = −

∫
O
vφdx ∀φ ∈ C∞0 (O). (2.15)

In contrast to the weak gradient, the existence of the weak curl or the weak divergence is not
equivalent to the existence of the occurring weak partial derivatives in the classical definition
of curl or div. This makes these two concepts indeed more general. Similar to the classical
definition in the H1-case, that is,

H1(O) := {u ∈ L2(O) | ∇u ∈ L2(O)},

we are interested in the spaces of vector fields where the weak curl (resp. the weak divergence)
exists. Therefore, we introduce the Hilbert spaces

H(curl,O) := {u ∈ L2(O) | curlu ∈ L2(O)}
H(div,O) := {u ∈ L2(O) | divu ∈ L2(O)},

endowed with their natural graph norms

‖ · ‖H(curl,O) :=
(
‖ · ‖2L2(O) + ‖ curl ·‖2L2(O)

) 1
2

‖ · ‖H(div,O) :=
(
‖ · ‖2L2(O) + ‖ div ·‖2L2(O)

) 1
2 .
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Here the curl and div operators are to be understood in the sense of (2.14) and (2.15). We
define the subspaces H0(curl,O) and H0(div,O) as the closure of C∞0 (O) with respect to the
corresponding topology, i.e.,

H0(curl,O) := C∞0 (O)‖·‖H(curl,O) and H0(div,O) := C∞0 (O)‖·‖H(div,O) . (2.16)

Assuming that O is a bounded Lipschitz domain, the spaces in (2.16) can be written (similarly
to the H1-case) as the kernel of appropriate trace mappings. To expand on this, let τ : H1(O)→
L2(∂O) indicate the standard trace mapping. Then, we denote by

H1/2(∂O) := τ(H1(O))

the fractional Sobolev space to the exponent 1/2 endowed with the quotient norm

‖g‖H1/2(∂O) := inf
v∈H1(O)
τ(v)=g

‖v‖H1(O) ∀g ∈ H1/2(∂O). (2.17)

There are several other representations for the fractional Sobolev space H1/2(∂O), as can be
found in [47] or [60]. Now, denoting with n : ∂O → R3 the outward unit normal of O and under
the mentioned assumptions on O, there exist tangential and normal trace maps (cf. [107])

τt : H(curl,O)→H−1/2(∂O) and τn : H(div,O)→ H−1/2(∂O),

generalizing the boundary evaluations u×n|∂O and u·n|∂O defined for continuous fields u : O →
R3, so that

H0(curl,O) = {u ∈H(curl,O) | τt(u) = 0}
H0(div,O) = {u ∈H(div,O) | τn(u) = 0}.

(2.18)

Here, H−1/2(∂O) (resp. H−1/2(∂O)) stands for the topological dual space of H1/2(∂O) (resp.
H1/2(∂O)). For further information on trace spaces, we refer the reader to [5] and [36]. As
pointed out, the characterization in (2.18) relies on additional regularity assumptions on the
domain. For this reason, we try to solely depend on another type of representation not requiring
additional regularity. For the convenience of the reader, we provide an elementary proof for the
following result

Lemma 2.1. Let O ⊂ R3 be open. Then, it holds that

H0(curl,O) = {z ∈H(curl,O) | (z, curlv)L2(O) = (curl z,v)L2(O) ∀v ∈H(curl,O)}
H0(div,O) = {z ∈H(div,O) | (z,∇v)L2(O) = − (div z, v)L2(O) ∀v ∈ H

1(O)}. (2.19)

Proof. We show the characterization for H0(div,O). The other case follows an analogous argu-
mentation. For simplicity, we denote

Z := {z ∈H(div,O) | (z,∇v)L2(O) = − (div z, v)L2(O) ∀v ∈ H
1(O)}.

By definition, the adjoint of the (unbounded) operator ∇ : H1(O) ⊂ L2(O)→ L2(O) is charac-
terized by

∀z ∈ D(∇∗) : (∇v, z)L2(O) = (v,∇∗z)L2(O) ∀v ∈ H1(O).
Thus, by the definition of Z, this shows that

∇∗ = −div|Z : Z ⊂ L2(O)→ L2(O).
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On the other hand, comparing with (2.15), it holds that(
−div|H0(div,O)

)∗
= ∇ : H1(O) ⊂ L2(O)→ L2(O).

We conclude that

−div|H0(div,O) = −div|H0(div,O) =
(
−div|H0(div,O)

)∗∗
= ∇∗ = −div|Z ,

which ultimately yields H0(div,O) = Z.

Let us now introduce the kernels of the divergence and the curl in their respective spaces,
i.e.,

H(div=0,O) := {z ∈H(div,O) | div z = 0}
H0(div=0,O) := {z ∈H0(div,O) | div z = 0}
H(curl=0,O) := {z ∈H(curl,O) | curl z = 0}
H0(curl=0,O) := {z ∈H0(curl,O) | curl z = 0}

which are henceforth endowed with the L2(O)-topology. In the case that given from the context
it is clear which domain we are talking about, we skip indicating the domain, for example,
we solely write H(curl) or H(div). By the constitutive relations (2.10), (2.11) and (2.12)
we have seen that certain (possibly matrix-valued) material parameters are involved in the
Maxwell system (2.13). A rigorous treatment of this Maxwell system requires certain regularity
assumptions on the material parameters. In that context, we denote by L∞sym(O)3×3 the space of
all (equivalence classes of) symmetric R3×3-valued Lebesgue measurable and essentially bounded
functions with respect to the spectral norm, i.e.,

‖α‖L∞(O)3×3 := ess sup
x∈O

max
|ξ|≤1

|α(x)ξ| <∞ ∀α ∈ L∞sym(O)3×3. (2.20)

For a given uniformly positive definite matrix-valued function α ∈ L∞sym(O)3×3, that is, there
exists a constant α > 0 such that

α(x)ξ · ξ ≥ α|ξ|2 for a.e. x ∈ O and all ξ ∈ R3,

we denote by L2
α(O) the space L2(O) equipped with the weighted scalar product (α·, ·)L2(O).

In the case that the weight function α is scalar-valued, i.e., α ∈ L∞(O) such that there exists a
constant α > 0 with

α(x) ≥ α for a.e. x ∈ O,

we identify α with its product with the identity matrix in R3×3, so that our notation of L2
α(O)

withstands. Note that the weighted space L2
α(O) is merely for convenience since, under the

assumptions on the weight function α, we have the equality L2
α(O) = L2(O) as sets and an

isomorphism L2
α(O) ∼= L2(O) as vector spaces.

2.1.2 A Lack of Compactness

The previous functional analytic framework, building upon the Hilbert spaces H(curl,O)
and H(div,O), allows us to formulate the arguably biggest challenge within the treatment of
Maxwell-structured problems: the omnipresent lack of compactness. In the famous H1-setting,
it is the well-known Rellich-Kondrachov theorem which states (under reasonable assumptions
on the domain O) that the embedding H1(O) ↪→ L2(O) is compact. Contrary, the embeddings
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H(curl,O) ↪→ L2(O) and H(div,O) ↪→ L2(O) are not compact. Even restricting to the sub-
spaces H0(curl,O), H0(div,O) or H(curl,O) ∩H(div,O), the corresponding embeddings fail
to be compact. Loosely speaking, this is due to the fact that the kernel of both (unbounded)
operators

curl : H0(curl,O) ⊂ L2(O)→ L2(O) and div : H0(div,O) ⊂ L2(O)→ L2(O) (2.21)

is too large, namely, we have the inclusions

N(curl) ⊃ ∇H1
0 (O) and N(div) ⊃ curlH0(curl).

Here, N(curl) and N(div) denote the kernels of the operators in (2.21). The situation for
the unbounded operator ∇ : H1

0 (O) ⊂ L2(O) → L2(O) is different, since here it holds that
N(∇) = {0}. These observations are formalized within the following Proposition. The first
statement and its proof can also be found in [14, Proposition 2.7].

Proposition 2.2. Let O ⊂ R3 be a bounded Lipschitz domain. Then, the following two asser-
tions hold true.

(i) The inclusion H(curl,O) ∩H(div,O) ↪→ L2(O) fails to be compact.

(ii) Both the inclusions H0(curl,O) ↪→ L2(O) and H0(div,O) ↪→ L2(O) are not compact.

Proof. Ad (i): First, H1/2(∂O) endowed with the norm in (2.17) is a separable Hilbert space
(cf. [60, Theorem 1.5]). For this reason, there exists an orthonormal basis {gk}∞k=1 ⊂ H1/2(∂O).
Now, for k ∈ N, we consider the inhomogeneous Dirichlet problems{

−∆uk = 0 in O
uk = gk in ∂O.

(2.22)

By the solution theory for inhomogeneous Dirichlet problems (cf. [60, Proposition 1.1]), it follows
that there exists a unique solution uk ∈ H1(O) to (2.22) which depends continuously on the
boundary data. In particular, this implies the boundedness of the sequence {uk}∞k=1 in H1(O).
For k ∈ N, we define vk := ∇uk. Then, since by construction it holds that

curlvk = 0 and div vk = 0 a.e. in O,

the sequence {vk}∞k=1 is bounded in H(curl,O) ∩H(div,O). It remains to show that there
exists no subsequence of {vk}∞k=1 which converges strongly in L2(O). To this aim, let us assume
that indeed there exists some v ∈ L2(O) and a subsequence, not denoted any different, such
that vk → v strongly in L2(O) as k → ∞. Since {uk}∞k=1 is bounded in H1(O), the Rellich-
Kondrachov theorem (see [1, Theorem 6.3]) implies that there exists u ∈ L2(O) such that, up
to another subsequence, it holds that uk → u strongly in L2(O) as k → ∞. We conclude that
v = ∇u so that up to our particular choice of a subsequence, {uk}∞k=1 converges strongly to u
in H1(O). By the construction of the norm in (2.17), the trace map with image in H1/2(∂O),
i.e., τ : H1(O)→ H1/2(∂O), is bounded. Consequently, it follows that

gk = τ(uk)→ τ(u) strongly in H1/2(∂O) as k →∞.

Since {gk}∞k=1 is an orthonormal basis for H1/2(∂O), it converges weakly to 0 in H1/2(∂O),
so that τ(u) = 0. Finally, this implies that the sequence {gk}∞k=1 converges strongly to 0 in
H1/2(∂O), which cannot happen due to ‖gk‖H1/2(∂O) = 1 for every k ∈ N. This completes the
proof.
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Ad (ii): We show that the embedding H0(curl,O) ↪→ L2(O) fails to be compact. First of all,
by the Rellich-Kondrachov theorem (implying the standard Poincaré inequality for H1

0 (O)), the
space ∇H1

0 (O) ⊂ L2(O) is closed and it is, therefore, a separable Hilbert space when endowed
with the L2(O)-norm. Now, for k ∈ N, we choose uk ∈ H1

0 (O) such that the elements vk := ∇uk
form an orthonormal basis of ∇H1

0 (O). Since, for every k ∈ N, the function uk satisfies the
Dirichlet boundary condition and since curlvk = curl∇uk = 0, it follows that the sequence
{vk}∞k=1 = {∇uk}∞k=1 is contained in H0(curl=0,O). Thus, the sequence {vk}∞k=1 converges
weakly to 0 in H0(curl,O) but not strongly to 0 in L2(O), again due to orthonormality. The
arguments for the non-compactness of the inclusion H0(div,O) ↪→ L2(O) are similar. Here,
one uses the fact that curlH0(curl,O) is a separable Hilbert space when endowed with the
L2(O)-norm satisfying curlH0(curl,O) ⊂H0(div=0,O). This concludes the proof.

As a remedy for Proposition 2.2, a compact embedding can be obtained when adding a
boundary condition to one of the spaces within the intersection H(curl,O) ∩H(div,O). For
the following result we refer to [20,114,134,135]:

Theorem 2.3. Let O ⊂ R3 be a bounded Lipschitz domain. Then, both inclusions

XN (O) := H0(curl,O) ∩H(div,O) ↪→ L2(O)
XT (O) := H(curl,O) ∩H0(div,O) ↪→ L2(O)

are compact.

In particular, the respective kernels, also called the spaces of magnetic and electric harmonic
fields,

H(e,O) := H0(curl=0,O) ∩H(div=0,O) = {v ∈XN (O) | curlv = 0 and div v = 0}
H(m,O) := H(curl=0,O) ∩H0(div=0,O) = {v ∈XT (O) | curlv = 0 and div v = 0} (2.23)

are finite-dimensional. If we assume that the domain O has a connected boundary, the space
H(e,O) is trivial. On the other hand, if we assume that O is simply connected, the space
H(m,O) is trivial. We refer to [7, Appendix A.4] or [14] for a more detailed description of
the spaces of magnetic and electric harmonic fields. From the compactness in Theorem 2.3 we
obtain the following Poincaré-Friedrichs-type inequality.

Corollary 2.4. Let O ⊂ R3 be a bounded Lipschitz domain with connected boundary. Then,
there exists a constant Cp > 0 such that

‖v‖L2(O) ≤ Cp
(
‖ curlv‖L2(O) + ‖ div v‖L2(O)

)
∀v ∈XN (O). (2.24)

The inequality in (2.24) is of particular relevance to us within the space

XN,0(O) := {v ∈XN (O) | div v = 0} = XN (O) ∩H(div=0,O).

Then, (2.24) simplifies to

‖v‖L2(O) ≤ Cp‖ curlv‖L2(O) ∀v ∈XN,0(O). (2.25)

We end this section by recalling some orthogonal decomposition results for which we provide an
elementary proof.
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Lemma 2.5. Let O ⊂ R3 be a bounded Lipschitz domain. Then, we have the basic orthogonal
decompositions

L2(O) = ∇H1(O)⊕H0(div=0,O) (2.26)
L2(O) = ∇H1

0 (O)⊕H(div=0,O). (2.27)

If O is additionally simply connected, it holds that

L2(O) = ∇H1(O)⊕ curl (H0(curl,O) ∩H(div=0,O)) . (2.28)

If the boundary ∂O is connected, it holds that

L2(O) = ∇H1
0 (O)⊕ curl (H(curl,O) ∩H0(div=0,O)) . (2.29)

Proof. Using the projection theorem in Hilbert spaces, we obtain a decomposition of the form

H2 = R(A)⊕R(A)⊥ = R(A)⊕N(A∗), (2.30)

where A : D(A) ⊂ H1 → H2 denotes some (unbounded) linear operator with range R(A) ⊂ H2.
Now, the decomposition in (2.30) may be applied to the operator ∇ : H1(O) ⊂ L2(O)→ L2(O)
to obtain

L2(O) = ∇H1(O)⊕H0(div=0,O).

Using the regularity assumption on O we can use the compact embedding H1(O) ↪→ L2(O)
to see that ∇H1(O) is already closed (cf. [113, Corollary 2.6] or alternatively [87, Theorem
12.23]). This shows the decomposition (2.26). The second decomposition (2.27) is shown in
the same way. Towards the refined decomposition in (2.28), we apply (2.30) to the operator
curl : H0(curl,O) ⊂ L2(O)→ L2(O) to obtain

L2(O) = curlH0(curl,O)⊕H(curl=0,O). (2.31)

Considering the decomposition (2.27), we intersect both sides in (2.27) withH0(curl,O) to find

H0(curl,O) = ∇H1
0 (O)⊕ (H0(curl,O) ∩H(div=0,O)) . (2.32)

Applying (2.32) to (2.31) yields

L2(O) = curl
(
∇H1

0 (O)⊕ (H0(curl,O) ∩H(div=0,O))
)
⊕H(curl=0,O)

= curl (H0(curl,O) ∩H(div=0,O))⊕H(curl=0,O)
= curl (H0(curl,O) ∩H(div=0,O))⊕H(curl=0,O),

(2.33)

where we used the compact embedding from Theorem 2.3 to obtain that curl(H0(curl,O) ∩
H(div=0,O)) ⊂ L2(O) is closed (cf. [113, Corollary 2.6]). Now, taking another intersection
with the space H0(div=0,O) in (2.33) implies

H0(div=0,O) = curl (H0(curl,O) ∩H(div=0,O))⊕H(m,O). (2.34)

Finally, applying (2.34) to the decomposition (2.26) and using that O is simply connected,
we conclude (2.28). The decomposition in (2.29) is shown analogously. This completes the
proof.
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2.2 Elliptic Variational Inequalities
This section is devoted to the very basic concepts from the theory of elliptic variational inequal-
ities accompanied by the standard example given by the Poisson-type obstacle problem in the
classical Sobolev space H1. In particular, we introduce known techniques to study the sensitivity
analysis of the Poisson-type obstacle problem and discuss the application of these techniques to
electromagnetic obstacle problems.
Let H be a Hilbert space and let a : H ×H → R be a bounded and coercive bilinear form, so

that there exist constants c, c > 0, such that the bilinear form a satisfies

|a(u, v)| ≤ c‖u‖H‖v‖H ∀u, v ∈ H
a(u, u) ≥ c‖u‖2H ∀u ∈ H.

Further, let L : H → R be a linear and bounded form on H, i.e., L ∈ H∗. Now, given a convex,
sequentially lower semi-continuous and proper functional j : H → R ∪ {∞}, the problem{

Find u ∈ H, s.t.
a(u, v − u) + j(v)− j(u) ≥ L(v − u) ∀v ∈ H

(EVI)

is called a variational inequality. Historically, it has been convenient to distinguish two cases.
In the case of j being equal to the indicator function of a non-empty, closed and convex set
K ⊂ H, i.e.,

j = IK : H → R ∪ {∞}, v 7→
{

0, if v ∈ K
∞, if v /∈ K,

the problem (EVI) is called a variational inequality of the first kind. Otherwise, (EVI) is called
a variational inequality of the second kind. Given the mentioned properties of the set K ⊂ H, it
is easily shown that the functional IK is indeed convex, sequentially lower semi-continuous and
proper. Moreover, for j = IK , (EVI) can be rewritten as{

Find u ∈ K, s.t.
a(u, v − u) ≥ L(v − u) ∀v ∈ K.

(2.35)

It goes almost without saying that if the nonlinear character of (EVI) is not present, that is
j = 0, the problem (EVI) reduces to the standard variational problem of finding u ∈ H such
that

a(u, v) = L(v) ∀v ∈ H.
The following result summarizes the well-posedness theory for both first and second kind elliptic
variational inequalities and is known for many decades. It goes back to Lions and Stampacchia
[91, Theorem 2.1 & Theorem 2.2] and can alternatively be found in [61, Theorem 3.1 & Theorem
4.1].

Theorem 2.6. Let H be a Hilbert space. Further, let a : H × H → R be a bounded and
coercive bilinear form and let L ∈ H∗ be given. Moreover, let j : H → R ∪ {∞} be convex,
sequentially lower semi-continuous and proper. Then, there exists a unique solution u ∈ H to
(EVI). Moreover, if K ⊂ H is a closed, convex, non-empty set and j = IK (i.e., we are in the
setting of (2.35)), then it additionally holds that u ∈ K.

In the case that the bilinear form is additionally symmetric, the solution to (EVI) is charac-
terized as the unique minimizer of a certain energy functional. We quickly recall the result for
variational inequalities of the first kind.
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Proposition 2.7. In the setting of Theorem 2.6 assume that the bilinear form a is additionally
symmetric. Then, there is a unique minimizer u ∈ K to

min
v∈K

1
2a(v, v)− L(v). (2.36)

Moreover, u ∈ K is the minimizer of (2.36) if and only if u ∈ K is the unique solution to (2.35).

2.2.1 The Obstacle Problem

In this section, we want to discuss the issue that comes with the non-smooth character of
problems such as (2.35). In particular, we want to present the main ideas regarding the sensitivity
analysis of (2.35) by considering the puristic H1-obstacle problem, which serves as one of the
prime examples for variational inequalities of the first kind. In this way, we hope to give the
reader a better understanding on why the variational inequality in Chapter 5 needs a particular
treatment in opposition to using the known results presented in this section.
Given a natural number n ∈ N, let Ω ⊂ Rn denote an open and bounded subset. Further, let

f ∈ L2(Ω) be given. The problem of focus reads
Find u ∈ K, s.t.∫

Ω
∇u · ∇(v − u) dx ≥

∫
Ω
f(v − u) dx ∀v ∈ K,

(2.37)

where the obstacle set is given by

K := {v ∈ H1
0 (Ω) | ψ− ≤ v ≤ ψ+ a.e. in Ω}

with obstacles ψ−, ψ+ : Ω → [−∞,∞] so that K is non-empty . Here, the right-hand side may
more generally be replaced by a linear functional L ∈ H−1(Ω) = H1

0 (Ω)∗. Now, well-posedness
of the problem in (2.37) is guaranteed by the general result in Theorem 2.6, so that for every
f ∈ L2(Ω) there exists a unique solution u ∈ K to (2.37) which gives rise to the solution mapping

S : L2(Ω)→ H1
0 (Ω), f 7→ u.

For what concerns the differentiability of the solution mapping S, the situation is rather poor:
even in the present case of (2.37), only Hadamard-directional (Gâteaux) differentiability can be
achieved. In the seminal work by Mignot [99], the sensitivity analysis hinges on the notions of
regular Dirichlet spaces and polyhedricity as the main ingredients. We also refer to [41] for a
more in-depth presentation of the general sensitivity analysis for both first and second kind VIs.
The following definition can also be found in [42].

Definition 2.8 (Regular L2-Dirichlet space). Let M denote a locally compact and separable
metric space. Denoting by B(M) the Borel σ-algebra of M , we assume that µ : B(M)→ [0,∞]
is a measure that is strictly positive on non-empty open sets and finite on compact sets. Then,
we call (V, b) a regular L2-Dirichlet space when V is a subspace of L2(M,µ) and b : V × V → R
is a symmetric, positive semi-definite bilinear form such that (V, b) satisfies

(i) V is dense in L2(M,µ) w.r.t. the norm ‖ · ‖L2(M,µ),

(ii) V is a Hilbert space equipped with the scalar product (·, ·)V := (·, ·)L2(M,µ) + b(·, ·),

(iii) for every v ∈ V , it holds that u := min(1,max(0, v)) ∈ V and b(u, u) ≤ b(v, v),
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(iv) the intersection V ∩ C0(M) is dense in V w.r.t. the norm ‖ · ‖V ,

(v) the intersection V ∩ C0(M) is dense in C0(M) w.r.t. the norm ‖ · ‖L∞(M,µ).

Here, C0(M) denotes the space of continuous functions on M with compact support in M .

For a rather abstract introduction to Dirichlet spaces we refer to [26, 27] and [57]. As a
result of Stampacchia’s lemma (cf. [82, Chapter II, Theorem A.1]), given some v ∈ H1

0 (Ω), the
required cut-off type mapping in condition (iii) of Definition 2.8 for V = H1

0 (Ω) is again an
element of H1

0 (Ω). For this reason, the Sobolev space H1
0 (Ω) is a standard example for a regular

L2-Dirichlet space when endowed with the form

b : H1
0 (Ω)×H1

0 (Ω)→ R, (v, w) 7→
∫

Ω
∇v · ∇w dx. (2.38)

The upcoming notion of polyhedricity requires basic concepts from convex analysis. For
this reason, let us recall certain types of cones in Banach spaces. These concepts and more
information on the topic can be found in [29, Section 2.2.4].

Definition 2.9. Let X be a Banach space and let K ⊂ X be a convex and non-empty subset.
Then, for x ∈ K, we define

T rad
K (x) := R+(K − x), the radial cone at x ∈ K,
TK(x) := T rad

K (x), the tangent cone at x ∈ K,
NK(x) := {x∗ ∈ X∗ | x∗(y) ≤ 0 ∀y ∈ TK(x)}, the normal cone at x ∈ K.

Based on these different concepts of cones in Banach spaces we can introduce the concept
of polyhedricity in Banach spaces. Proposition 2.7 shows that (2.37) can be interpreted as an
optimization problem. Already from finite-dimensional optimization, it is known that poly-
hedric sets play an important role. As for example discussed in [63], polyhedricity in a general
Hilbert space provides a notion of curvature which can be very beneficial when investigating
differentiability properties of projections onto non-empty, closed and convex sets.

Definition 2.10. Let X be a Banach space and let K ⊂ X be a closed, convex and non-empty
subset. Then, K is said to be polyhedric at x ∈ K for x∗ ∈ NK(x) if

TK(x) ∩N(x∗) = T rad
K (x) ∩N(x∗).

In the case that K is polyhedric at x ∈ K for every x∗ ∈ NK(x), we say that K is polyhedric at
x ∈ K.

There is actually a distinction to be made between polyhedric sets in the sense of the last
definition and sets which are the intersection of finitely many half-spaces. Those two notions
only coincide in finite dimensions. We refer the reader to [132] for a thorough overview of the
topic of polyhedricity in infinite dimensions and to [42, 131] for limitations of the concept of
polyhedricity in regular L2-Dirichlet spaces. The following result is central to the sensitivity
analysis of variational inequalities and was first proven by Mignot in [99].

Theorem 2.11. Assume that (V, b) is a regular L2-Dirichlet space on the underlying locally
compact and separable metric space M . Let ψ−, ψ+ : M → [−∞,∞] be Borel-measurable func-
tions such that the set

K := {v ∈ V | ψ− ≤ v ≤ ψ+ µ-a.e. in M}

is non-empty. Then, K is polyhedric at every point.
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With the polyhedricity at hand, let us state the key result regarding the differentiability of
the solution mapping associated with (2.37). As mentioned, the result was already a part of the
seminal work [99]. The developed techniques and certain extensions can, for instance, be found
in [41, Chapter 2]. In particular, the following result is a special case of [41, Corollary 3.4.3]
and is obtained by combining [41, Theorem 3.3.5] with Theorem 2.11 and the fact that H1

0 (Ω)
endowed with the form in (2.38) is a regular L2-Dirichlet space.

Corollary 2.12. Let n ∈ N and Ω ⊂ Rn be non-empty and open. Then, the solution map-
ping S : L2(Ω) → H1

0 (Ω), f 7→ u associated with the obstacle problem in (2.37) is Hadamard-
directionally (in particular Gâteaux) differentiable. The directional derivative d := S′(f, g) in
f ∈ L2(Ω) into a direction g ∈ L2(Ω) is uniquely characterized by the variational inequality

Find d ∈ TK(u) ∩N(f + ∆u), s.t.∫
Ω
∇d · ∇(z − d) dx ≥

∫
Ω
g(z − d) dx ∀z ∈ TK(u) ∩N(f + ∆u).

Here, the element f + ∆u is to be interpreted as an element of H−1(Ω).

We want to underline that the employed techniques for Corollary 2.12, i.e., polyhedricity in
regular L2-Dirichlet spaces, very specifically use

1. the structure of the Sobolev space H1
0 (Ω) in the sense of Stampacchia’s lemma

2. the structure of the underlying obstacle set K ⊂ H1
0 (Ω).

In this thesis, we are primarily concerned with Maxwell-structured problems based on the space
H(curl) containing vector-valued functions. Here, it is not clear how the concept of regular
L2-Dirichlet spaces generalizes to the vector context. In particular, the minimum or maximum
operation as in condition (iii) of Definition 2.8 would have to be replaced. Besides difficulties
within the notion of L2-Dirichlet spaces in this case, problems also arise in terms of polyhedricity
in the vector-valued case, even more so when combined with an obstacle set featuring a first-
order differential constraint. As shown in [41, Theorem 3.47], if n ≥ 3 and if Ω ⊂ Rn is a
bounded Lipschitz domain, the set

K∇ := {v ∈ H1
0 (Ω) | |∇v(x)|∞ ≤ 1 a.e. on Ω}

is not polyhedric inH1
0 (Ω). In fact, using that∇ : H1

0 (Ω)→ ∇H1
0 (Ω) defines an isomorphism, the

non-polyhedricity ofK∇ in H1
0 (Ω) is equivalent (see [41, Theorem 3.48]) to the non-polyhedricity

of
∇K∇ = {w ∈ ∇H1

0 (Ω) | |w(x)|∞ ≤ 1 a.e. on Ω}

in L2(Ω)n. We may conclude that, in the vector-valued case, even when considering a constraint
with respect to the maximums norm | · |∞, polyhedricity can in general not be expected.

2.3 Variational Inequalities in Electromagnetism
The focus of this section is to combine the previously introduced variational inequality charac-
ter with Maxwell’s equations. As a result, one obtains a class of variational inequalities with
applications in electromagnetism.
Years after the first investigation of Maxwell variational inequalities (MVIs), the study of MVIs

has gained more and more attention due to their paramount applications in superconductivity
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(see [19, 31, 78, 86, 120, 121, 141]). Miranda et al. [105] established a general framework for
the well-posedness of parabolic MVIs and Maxwell quasi-variational inequalities. While the
aforementioned contributions are primarily devoted to the well-posedness analysis, numerical
methods for MVIs were proposed and analyzed in [49,136,137].

Due to the involved complexity in MVIs, a unified treatment of both first and second kind
VIs seems to have its limits (cf. [143]), so that it is worth studying the two cases separately.
Since, throughout this thesis, we will mostly address VIs of the first kind with an obstacle-type
structure, let us use this section to give a basic introduction to the topic and recall some of the
important results that are available.

2.3.1 Maxwell VIs of the First Kind

The main application of MVIs of the first kind lies in the shielding of electromagnetic (EM) fields.
Electromagnetic shielding is a physical process of redirecting or reducing electromagnetic fields
by conductive or magnetic materials. For instance, obstacles made out of conductive materials
can be used to block or redirect electric fields. This physical phenomenon was discovered in 1836
by Michael Faraday, who experimentally verified that a conductive enclosure is able to eliminate
the effect of an external electric field by charge cancelation on the boundary and leaving a zero
field inside. Such an effect is also known under the term Faraday cage. Faraday cage effects can
also be treated by homogenization techniques (see [39,95] for electrostatic Faraday cage models),
which are however not the focus here. Further, ferromagnetic materials with high magnetic
permeability (cobalt, nickel, etc.) can realize magnetic shielding by diverting the magnetic flux
to another path. The mentioned examples belong either to electric or magnetic shielding but not
to both at the same time. We shall address later that, mathematically speaking, the problem of
blocking or redirecting both electric and magnetic field at the same time is rather delicate.
Nowadays, EM shielding is indispensable in many technological and daily applications, in-

cluding microwave ovens, mobile phones, aircraft, magnetic resonance imaging, circuits, semi-
conductor chips, and many other electronic devices. In fact, EM shielding is utterly required in
every application demanding the reduction of undesired electromagnetic interference.
The main focus of this thesis is on Maxwell VIs of the first kind. Here, the PDE-models under

consideration are:

1. The evolutionary obstacle problem, that is, we arrive at a hyperbolic variational inequality
of the first kind with a general electric obstacle set. This case particularly includes bilateral
constraints on the electric field.

2. An H(curl)-quasilinear first kind variational inequality with a bilateral differential curl-
constraint.

As pointed out in the introduction, the very first contribution to this research direction was
made by Duvaut and Lions, who explored and analyzed the electromagnetic wave propagation
in a polarizable medium through a Maxwell obstacle problem involving an electric constraint of
the type

|E(x, t)| ≤ d(x) a.e. in Ω× (0, T )

for some obstacle d : Ω→ [0,∞]. This leads to the very specific underlying (electric) feasible set

K = {v ∈ L2(Ω) | |v(x)| ≤ d(x) for a.e. x ∈ Ω}.

To formulate the hyperbolic Maxwell obstacle problem introduced by Duvaut and Lions, suppose
that Ω ⊂ R3 is an open set representing an anisotropic medium in which the electric field
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E : (0, T ) × Ω → R3 and the magnetic field H : (0, T ) × Ω → R3 are acting in a finite time
interval (0, T ). Given initial data (E0,H0) ∈ (K ∩H0(curl))×H(curl) and an applied current
source f ∈W 1,∞((0, T ),L2(Ω)), find a unique solution

(E,H) ∈W 1,∞((0, T ),L2(Ω)×L2(Ω)) ∩ L∞((0, T ),H0(curl)×L2(Ω))

such that

∫
Ω
ε

d
dtE(t) · (v −E(t)) + σE(t) · (v −E(t))−H(t) · curl(v −E(t)) dx

≥
∫

Ω
f(t) · (v −E(t)) dx ∀v ∈K ∩H0(curl) for a.e. t ∈ (0, T )

µ
d
dtH(t) + curlE(t) = 0 for a.e. t ∈ (0, T )

E(t) ∈K for a.e. t ∈ (0, T )
(E,H)(0) = (E0,H0).

(2.39)

Here, ε, µ, σ : Ω→ R3×3 denote, respectively, the electric permittivity, the magnetic permeability,
and the electric conductivity. All these coefficients are allowed to be non-smooth. Moreover,
as the medium Ω may contain different conducting and non-conducting materials, the electric
conductivity σ is assumed to be merely positive semi-definite.

Note that (2.39) preserves the Faraday law but modifies the Ampère-Maxwell equation into
a variational inequality of the first kind. Based on the method of vanishing curl-curl-viscosity
and constraint penalization and under rather strong assumptions on the initial value, Duvaut
and Lions proved a well-posedness result [48, Chapter 7, Theorem 8.1] which was modified some
years later by Milani [101, 102] to the case of a time dependent obstacle d = d(x, t). For the
problem (2.39) under the weaker assumptions from Assumption 3.1, a well-posedness result is
available in [144, Theorems 1 and 2].1 As we shall see later, the well-posedness of (2.39) is also
a special case of one of our results from the next chapter (see Theorem 3.6). More recently,
building on [143], Yousept [144] generalized the result by Duvaut and Lions [48] to allow a more
general constraint structure K ⊂ L2(Ω)×L2(Ω), that is, the variational inequality character is
also present in Faraday’s law, leading to the problem

∫ T

0

∫
Ω
ε

d
dtE(t) · (v −E(t)) + µ

d
dtH(t) · (w −H(t))−H(t) · curlv +E(t) · curlw dx dt

≥
∫ T

0

∫
Ω
f(t) · (v −E(t)) + g(t) · (w −H(t)) dx dt

for all (v,w) ∈ L2((0, T ),H0(curl)×H(curl)) with (v,w)(t) ∈K for a.e. t ∈ (0, T )
(E,H)(t) ∈K for a.e. t ∈ (0, T )
(E,H)(0) = (E0,H0).

(2.40)
Note that this VI formulation is weaker as it involves time dependent test functions and an
averaging of the involved inequality in time. In particular, as we will see in the next theorem, this
generalized structure, possibly assuming a simultaneous obstacle for both electric and magnetic
field, leads to a severe loss of regularity. Nevertheless, assuming that the domain contains free
electric and magnetic regions, partial regularity can be recovered. In this context, open subsets

1At least for the case σ = 0. However, the extension to the case of a non-vanishing conductivity σ which is
positive semi-definite is not an issue.
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ΩE ,ΩH ⊂ Ω are electric (resp. magnetic) free regions, if it holds that

(v,w) ∈K ⇒ (ṽ, w̃) ∈K ∀ṽ =
{
vE in ΩE

v in Ω \ ΩE

∀w̃ =
{
wH in ΩH

w in Ω \ ΩH

(2.41)

for any (vE ,vH) ∈ L2(ΩE)×L2(ΩH). For the next theorem we refer to [144, Theorem 1].

Theorem 2.13. Let Ω ⊂ R3 be an open set and let K ⊂ L2(Ω)×L2(Ω) be a closed and convex
set containing (0, 0). Moreover, let the material parameters ε, µ ∈ L∞sym(O)3×3 be uniformly
positive definite. Then, for every right-hand side (f , g) ∈ W 1,∞((0, T ),L2(Ω) × L2(Ω)) and
every initial value (E0,H0) ∈ (H0(curl)×H(curl))∩K, the general Maxwell obstacle problem
(2.40) admits a (not necessarily unique) solution (E,H) ∈ W 1,∞((0, T ),L2(Ω) × L2(Ω)). If
the obstacle set K ⊂ L2(Ω) × L2(Ω) satisfies (2.41) for open subsets ΩE ,ΩH ⊂ Ω, then every
solution to (2.40) satisfies

E|ΩH ∈ L
∞((0, T ),H(curl,ΩH)) and H|ΩE ∈ L

∞((0, T ),H(curl,ΩE))

and is a solution to the classical Ampère-Maxwell equation in ΩE and the Faraday equation in
ΩH , that is, 

ε
d
dtE − curlH = f a.e. in (0, T )× ΩE

µ
d
dtH + curlE = g a.e. in (0, T )× ΩH .

If additionally no obstacle is present for the magnetic field H, i.e., it holds that ΩH = Ω, then
E ∈ L∞((0, T ),H0(curl)).

Note that the previous theorem generalizes the well-known result by Duvaut and Lions in
the sense that (2.40) coincides with (2.39) when there is no obstacle for the magnetic field
H. In this circumstance, the identical regularity for the electric field is achieved, namely that
E ∈ L∞((0, T ),H0(curl)). As it is pointed out in [144], the general case leads to a loss of both
the electric boundary condition and any additional spatial regularity. In particular, classical
energy arguments as typically used to show uniqueness are not applicable here. As a remedy,
hinging on a specific splitting assumption on the respective free regions ΩE and ΩH , the author
in [144] shows that a uniqueness result can be achieved. Especially, uniqueness holds in the
simpler setting ΩH = Ω or ΩE = Ω.

For the issues mentioned, throughout this thesis, the remainder of this thesis will be concerned
with problems in electric or magnetic shielding. We will see in Chapter 4 that already for the
case of shielding in the electric field, that is ΩH = Ω, the loss of H(curl)-regularity of the
magnetic field makes the required techniques for the numerical analysis genuinely non-standard.



CHAPTER 3

EDDY CURRENT APPROXIMATION IN
MAXWELL OBSTACLE PROBLEMS

In this chapter, we aim to explore the eddy current (magneto-quasistatic) approximation and
its justification for the hyperbolic Maxwell obstacle problem with shielding for the electric field.
For the convenience of the reader, let us recall the problem formulation of the Maxwell obstacle
problem. It reads to find a unique solution

(E,H) ∈W 1,∞((0, T ),L2(Ω)×L2(Ω)) ∩ L∞((0, T ),H0(curl)×L2(Ω))

to the system

∫
Ω
ε

d
dtE(t) · (v −E(t)) + σE(t) · (v −E(t))−H(t) · curl(v −E(t)) dx

≥
∫

Ω
f(t) · (v −E(t)) dx ∀v ∈K ∩H0(curl) for a.e. t ∈ (0, T )

µ
d
dtH(t) + curlE(t) = 0 for a.e. t ∈ (0, T )

E(t) ∈K for a.e. t ∈ (0, T )
(E,H)(0) = (E0,H0).

(P)

Here, K ⊂ L2(Ω) represents a general obstacle set, which does not necessarily depend on
a specific obstacle function d : Ω → [0,∞]. The precise mathematical assumptions for all data
involved in (P) (and more generally its upcoming eddy current approximation (Pec)) are specified
in Assumption 3.1.
Our analysis is mainly motivated by the profound role of eddy current modeling in electrical

engineering applications and low-frequency physics. Generally speaking, the eddy current model
approximates the full Maxwell system by excluding the displacement current ε d

dtE but still
preserving the Faraday law. Such approximations are widely used in the engineering community
and particularly reasonable if the electric permittivity is significantly smaller than the electric
conductivity, and the corresponding wavelength is much larger than the diameter of Ω. From
among many other contributions to the eddy current model, we refer to the monographs by
Alonso and Valli [7], Bossavit [30,32], and the papers [3,4,13,16,46,71,73,103,110,128,129,139].
While the mathematical and numerical analysis for the eddy current equations seems to have
reached an advanced stage of development, so far, we are not aware of any previous study
regarding the justification of eddy current modeling for (P).
We focus on an eddy current model allowing the displacement current to be disregarded in

an open conducting subregion Ωσ ⊂ Ω. More precisely, we look for a unique solution

(E,H) ∈W 1,∞((0, T ),L2(Ω \ Ωσ)×L2(Ω)) ∩ L∞((0, T ),H0(curl)×L2(Ω))
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to 

∫
Ω\Ωσ

ε
d
dtE(t) · (v −E(t)) dx+

∫
Ω
σE(t) · (v −E(t))−H(t) · curl(v −E(t)) dx

≥
∫

Ω
f(t) · (v −E(t)) dx ∀v ∈K ∩H0(curl) for a.e. t ∈ (0, T )

µ
d
dtH(t) + curlE(t) = 0 for a.e. t ∈ (0, T )

E(t) ∈K for a.e. t ∈ (0, T )
(E,H)(0) = (E0,H0) a.e. in (Ω \ Ωσ)× Ω.

(Pec)

To justify the eddy current model (Pec), there are two open mathematical questions to be
rigorously addressed and answered. First, the model itself (Pec) has to be reasonable in the
sense that there exists a unique solution to (Pec). Second, under a suitable condition, its
solution must provide a good estimation for the original problem (P). In particular, inspired
from the time-harmonic case [7], (Pec) should serve as a reasonable approximation if the quantity
σ−1 ‖ε‖L∞(Ωσ)3×3 is small enough with σ > 0 denoting a uniform lower bound for the lowest
eigenvalues of σ(x) for almost all x ∈ Ωσ.
We develop three novelties delivering positive answers to the issues mentioned above. The first

novelty concerns the a priori analysis for the time-discrete approximation (PN ) of (Pec) based
on the Rothe method. Here, our analysis hinges on the mild compatibility assumption (3.5)
for the initial data (E0,H0) in the subset Ωσ. With the compatibility condition, we prove the
stability of (PN ) (see Theorem 3.5) through the use of special correction terms developed using
the variational inequality structure of (Pec). Then, the analysis for the time-discrete scheme
(PN ) allows us to establish a well-posedness result for (Pec) as the second novelty (Theorem 3.6).
To be more precise, applying the stability result to a specific interpolation of (PN ) and passing
to the limit in the time-discretization, the weak-star limit of the interpolation turns out to satisfy
(Pec) leading to an existence result for (Pec). We note that the standard technique of passing to
the weak-star limit of the piecewise linear interpolations fails to work, as (PN ) does not admit
sufficient stability of its solutions in Ωσ. This difficulty is overcome by considering the weak-star
limit of the piecewise constant interpolations. Let us point out that (Pec) does not exclude the
displacement current ε d

dtE in Ω \ Ωσ. In Section 3.2.1, we address the case (P0
ec) where the

displacement current is entirely neglected both in the conducting and nonconducting regions
(Ωσ and Ω \Ωσ). It turns out that the proposed techniques for (Pec) can be extended to (P0

ec),
leading to a well-posedness result for (P0

ec) (see Theorem 3.12) under additional assumptions
(Assumption 3.8). Our final result is the justification for (Pec) (see Theorem 3.17): If |Ω\Ωσ| 6= 0,
then the solution (Eec,Hec) of (Pec) approximates the solution (E,H) to (P) through the
following uniform a priori estimate:

‖(E,H)− (Eec,Hec)‖C([0,T ],L2
ε (Ω\Ωσ)×L2

µ(Ω)) + ‖E −Eec‖L2((0,T ),L2
σ(Ωσ))

≤ 2
(
L(Ωσ)2T

σ
+ 2L(Ω \ Ωσ)T√

ε(Ω \ Ωσ)

√
4L(Ω \ Ωσ)2T 2

ε(Ω \ Ωσ) + 2L(Ωσ)2T

σ

)1/2 ∥∥∥∥ εσ
∥∥∥∥
L∞(Ωσ)3×3

, (3.1)

where L(Ωσ) > 0 (resp. L(Ω \Ωσ) > 0) stands for the Lipschitz constant of f|Ωσ (resp. f|Ω\Ωσ),
and ε(Ω\Ωσ) > 0 denotes a uniform lower bound for the lowest eigenvalues of ε(x) for almost all
x ∈ Ω \Ωσ. If Ωσ = Ω, i.e., if the displacement current is completely removed in the conducting
medium Ω, then the following precision is obtained for the eddy current approximation:

‖H −Hec‖C([0,T ],L2
µ(Ω)) + ‖E −Eec‖L2((0,T ),L2

σ(Ω)) ≤
2L(Ω)

√
T

√
σ

∥∥∥∥ εσ
∥∥∥∥
L∞(Ω)3×3

. (3.2)
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We emphasize that in many electromagnetic applications (cf. [7, 93]), the ratio ‖ε/σ‖L∞(Ωσ)3×3

is often negligibly small. For instance, stainless steel and copper admits, respectively, the value
6.14 ·10−18 and 1.56 ·10−19 for the corresponding ratio. This property is in particular satisfied by
every good conductor Ωσ (see [93]) as the electric permittivity ε is in this case very close to the
one in vacuum ≈ 8.85·10−12, and the electric conductivity σ is in the order of 106-107. Therefore,
the achieved estimation reveals the desired approximation by the eddy current solution with a
specific bound for the smallness condition on the quantity ‖ε/σ‖L∞(Ωσ)3×3 . At the same time, it
guarantees the strong convergence of (Pec) towards (P) with a linear convergence rate in terms of
‖ε‖L∞(Ωσ)3×3 . Last but not least, all theoretical results, in particular the uniform estimates (3.1)
and (3.2), apply as well to the classical Maxwell equations by simply considering K = L2(Ω).

Another important application of the eddy current model arises in the context of type-II
superconductivity. The corresponding model leads to parabolic obstacle problems with first-
order gradient or curl-constraints. We refer to [31, 49, 104, 120, 136, 141, 142] for contributions
in this research direction. More recently, a unified analysis for nonlinear parabolic obstacle
problems, including those with curl-type constraints, has been recently developed by Miranda
et al. [105].

The remainder of this chapter is organized as follows. After presenting the required assump-
tions for our analysis, we introduce the formulation of the time-discrete scheme together with
its associated a priori stability analysis. Section 3.2 is devoted to the existence and uniqueness
analysis for (Pec). Thereafter, in Section 3.3, we prove Theorem 3.17 for the justification of the
eddy current model, and the final section features a numerical test verifying the a priori estimate
and the predicted convergence rate from Theorem 3.17.

Let us now present the mathematical assumptions for our analysis.

Assumption 3.1.

(A3.1) Suppose that Ω ⊂ R3 is open and contains a given (possibly empty) open subset Ωσ ⊂ Ω.

(A3.2) The electric permittivity ε : Ω→ R3×3 and the magnetic permeability µ : Ω→ R3×3 are
of class L∞sym(Ω)3×3 and uniformly positive definite, i.e., there exist constants ε, µ > 0
such that

ε(x)ξ · ξ ≥ ε|ξ|2 and µ(x)ξ · ξ ≥ µ|ξ|2 for a.e. x ∈ Ω and all ξ ∈ R3. (3.3)

The electric conductivity σ : Ω→ R3×3 is of class L∞sym(Ω)3×3 and positive semi-definite.
Furthermore, it is uniformly positive definite on Ωσ, i.e., there exists a constant σ > 0
such that

σ(x)ξ · ξ ≥ σ|ξ|2 for a.e. x ∈ Ωσ and all ξ ∈ R3. (3.4)

(A3.3) The obstacle set K ⊂ L2(Ω) is assumed to be closed and convex containing 0.

(A3.4) The applied current source fulfills f ∈ W 1,∞((0, T ),L2(Ω)) with Lipschitz constant
L ≥ 0.

(A3.5) The initial value satisfies (E0,H0) ∈ (K ∩H0(curl))×H(curl) and∫
Ωσ

(σE0− curlH0) · (v−E0) dx ≥
∫

Ωσ
f(0) · (v−E0) dx ∀v ∈K ∩H0(curl). (3.5)

Remark 3.2. The condition (3.5) is obviously satisfied if

σE0 − curlH0 = f(0) a.e. in Ωσ. (3.6)
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If (3.6) fails to hold, then (3.5) may still be valid. For instance, if the feasible set K fulfills

e ∈K ⇒ e(x) = 0 for a.e. x ∈ Ωσ, (3.7)

then the condition (3.5) is satisfied for all f(0) ∈ L2(Ω) and all (E0,H0) ∈ (K ∩H0(curl)) ×
H(curl). Note that (3.7) is highly relevant to the physical phenomenon of electric shielding such
as the Faraday cage to block the effects of external electric fields in the material Ωσ. Another
example is the case where K only permits a certain feasible direction of the electric field in Ωσ

such as
e ∈K ⇒ e1(x) ≥ 0 and e2(x) = e3(x) = 0 for a.e. x ∈ Ωσ. (3.8)

IfE0(x) = 0 holds for a.e. x ∈ Ωσ, and the first components of curlH0 and f(0) are non-positive
a.e. in Ωσ, then the condition (3.5) is satisfied in the case of (3.8).
Lastly, we note that in the case (P), that is to say Ωσ = ∅, (3.5) is always satisfied since all

integrals over Ωσ vanish. In particular, for (P) there is no restriction on the initial value other
than (E0,H0) ∈ (K ∩H0(curl))×H(curl).

3.1 Analysis of the Time-discrete Approximation to (Pec)
This section is devoted to the analysis of the time-discrete approximation to (Pec) based on the
Rothe method. Let us begin by introducing an equidistant partition of the time interval [0, T ]
as follows: Given N ∈ N, we set

τ := T

N
, 0 = t0 < t1 < . . . < tN = T with tn := nτ, n ∈ {0, . . . , N}.

Furthermore, we introduce the backward Euler difference quotients

δEn := En −En−1
τ

, δHn := Hn −Hn−1
τ

∀n ∈ {1, . . . , N} (3.9)

and set fn := f(tn) ∈ L2(Ω) for all n ∈ {0, . . . , N}. Invoking these quantities, the time-discrete
(Euler) approximation to (Pec) reads as follows: Find {(En,Hn)}Nn=1 ⊂ (K ∩H0(curl)) ×
H(curl) such that

∫
Ω\Ωσ

εδEn · (v −En) dx+
∫

Ω
σEn · (v −En)−Hn · curl(v −En) dx

≥
∫

Ω
fn · (v −En) dx ∀v ∈K ∩H0(curl) ∀n ∈ {1, . . . , N}

µδHn + curlEn = 0 ∀n ∈ {1, . . . , N}.

(PN )

To derive an existence and uniqueness result for (PN ), let us consider a bounded and coercive
bilinear form

a : H0(curl)×H0(curl)→ R, (E,v) 7→
∫

Ω\Ωσ
εE ·v dx+

∫
Ω
τσE ·v+τ2µ−1 curlE ·curlv dx

and bounded linear forms

Fn : H0(curl)→ R, v 7→
∫

Ω
τfn ·v+τHn−1 ·curlv dx+

∫
Ω\Ωσ

εEn−1 ·v dx ∀n ∈ {1, . . . , N}.

In view of (3.9), (PN ) is equivalent to the problem of successively finding elements

(E1,H1), . . . , (EN ,HN ) ∈ (K ∩H0(curl))×H(curl)
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such that

a(En,v −En) ≥ Fn(v −En) ∀v ∈K ∩H0(curl) and Hn = −τµ−1 curlEn +Hn−1.

The well-posedness of (PN ) therefore follows Theorem 2.6, which we summarize in the following
lemma:
Lemma 3.3. Let Assumption 3.1 hold. Then, for every N ∈ N, the time-discrete problem (PN )
admits a unique solution {(En,Hn)}Nn=1 ⊂ (K ∩H0(curl))×H(curl).

In the upcoming theorem, we prove our first main result on the stability for (PN ). For the
convenience of the reader, we recall Gronwall’s lemma in its discrete version in the following
auxiliary lemma (see [44, p. 280]).
Lemma 3.4. Let {ak}∞k=0 and {bk}∞k=0 be sequences of nonnegative real numbers satisfying

an ≤ c+
n−1∑
k=0

akbk ∀n ∈ N

for some constant c > 0. Then, it holds that

an ≤ c exp
(
n−1∑
k=0

bk

)
∀n ∈ N.

As pointed out in the introduction, our upcoming stability proof is based on the use of certain
correction terms for the initial data z ∈ L2(Ω \ Ωσ) and w ∈ L2(Ω) as follows:

z := εE0 +σE0−curlH0−f0 a.e. on Ω \ Ωσ and w := µH0 +curlE0 a.e. on Ω. (3.10)

Theorem 3.5. Let Assumption 3.1 hold. Then, there exists a positive real constant C, depending
only on T, ε, µ, σ,f ,E0,H0, such that, for every N ∈ N the unique solution {(En,Hn)}Nn=1 ⊂
(K ∩H0(curl))×H(curl) of (PN ) satisfies

max
1≤n≤N

[
‖En‖L2(Ω) + ‖Hn‖L2(Ω) (3.11)

+ ‖δEn‖L2(Ω\Ωσ) + ‖δHn‖L2(Ω) + ‖curlEn‖L2(Ω)

]
≤ C.

Proof. Let N ∈ N be arbitrarily fixed, and let {(En,Hn)}Nn=1 ⊂ (K ∩H0(curl)) ×H(curl)
denote the unique solution to (PN ). Let now v ∈K∩H0(curl) be arbitrarily fixed. Multiplying
the above equation for z with v − E0 and integrating the resulting equality over Ω \ Ωσ, we
obtain that∫

Ω\Ωσ
εE0 · (v −E0) dx+

∫
Ω\Ωσ

(σE0 − curlH0) · (v −E0) dx =
∫

Ω\Ωσ
(f0 + z) · (v −E0) dx.

Then, combining the above equality with (3.5), it follows that∫
Ω\Ωσ

εE0·(v−E0) dx+
∫

Ω
(σE0−curlH0)·(v−E0) dx ≥

∫
Ω
f0·(v−E0) dx+

∫
Ω\Ωσ

z·(v−E0) dx,

and consequently applying the characterization from Lemma 2.1, it follows that the initial data
(E0,H0) ∈ (K ∩H0(curl))×H(curl) satisfy

∫
Ω\Ωσ

εE0 · (v −E0) dx+
∫

Ω
σE0 · (v −E0)−H0 · curl(v −E0) dx

≥
∫

Ω
f0 · (v −E0) dx+

∫
Ω\Ωσ

z · (v −E0) dx ∀v ∈K ∩H0(curl)

µH0 + curlE0 = w.

(3.12)
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Now, the underlying system (3.12) allows us to incorporate the initial data (E0,H0) to the time-
discrete scheme (PN ) and preserve its pivotal structure for our stability analysis. To realize this,
we employ the quantities

δE0 := E0, δH0 := H0, (3.13)

zNn :=
{
z if n = 0
0 if n ∈ {1, . . . , N},

wN
n :=

{
w if n = 0
0 if n ∈ {1, . . . , N},

and deduce from (3.12) that the unique solution to (PN ) fulfills

∫
Ω\Ωσ

εδEn · (v −En) dx+
∫

Ω
σEn · (v −En)−Hn · curl(v −En) dx

≥
∫

Ω
fn · (v −En) dx+

∫
Ω\Ωσ

zNn · (v −En) dx ∀v ∈K ∩H0(curl)

∀n ∈ {0, . . . , N}
µδHn + curlEn = wN

n ∀n ∈ {0, . . . , N}.

(3.14)

For every n ∈ {1, . . . , N}, setting v = En−1 (resp. v = En) in the n-th inequality of (3.14)
(resp. the (n− 1)-th inequality of (3.14)) and then dividing the resulting inequalities by −τ , we
obtain∫

Ω\Ωσ
εδEn·δEn dx+

∫
Ω
σEn·δEn−Hn·curl δEn dx ≤

∫
Ω
fn·δEn dx+

∫
Ω\Ωσ

zNn ·δEn dx (3.15)

and

−
∫

Ω\Ωσ
εδEn−1 · δEn dx−

∫
Ω
σEn−1 · δEn −Hn−1 · curl δEn dx

≤ −
∫

Ω
fn−1 · δEn dx−

∫
Ω\Ωσ

zNn−1 · δEn dx. (3.16)

On the other hand, the second equation in (3.14) yields that

curl δEn = −τ−1µ(δHn − δHn−1) + τ−1(wN
n −wN

n−1) ∀n ∈ {1, . . . , N}. (3.17)

Adding (3.15) and (3.16) together and utilizing (3.17) as well as the positive semi-definiteness
of σ, we get∫

Ω\Ωσ
ε(δEn − δEn−1) · δEn dx+

∫
Ωσ
σ(En −En−1) · δEn dx+

∫
Ω
µ(δHn − δHn−1) · δHn dx

≤
∫

Ω
(fn − fn−1) · δEn dx+

∫
Ω\Ωσ

(zNn − zNn−1) · δEn dx+
∫

Ω
(wN

n −wN
n−1) · δHn dx (3.18)

for all n ∈ {1, . . . , N}. Note that given a Hilbert space H and a0, . . . , an0 ∈ H for n0 ∈ N, the
binomial type formula

n0∑
n=1

(an − an−1, an)H = 1
2

(
‖an0‖2H − ‖a0‖2H +

n0∑
n=1
‖an − an−1‖2H

)
(3.19)

holds true. Let now n0 ∈ {1, . . . , N} be arbitrarily fixed, and we sum up the inequality (3.18)
over {1, . . . , n0}. Then, applying the binomial formula (3.19) along with Hölder’s inequality and
(3.4), it follows that

1
2

(
‖δEn0‖

2
L2
ε (Ω\Ωσ) − ‖δE0‖2L2

ε (Ω\Ωσ) +
n0∑
n=1
‖δEn − δEn−1‖2L2

ε (Ω\Ωσ)

)
(3.20)
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+ 1
2

(
‖δHn0‖

2
L2
µ(Ω) − ‖δH0‖2L2

µ(Ω) +
n0∑
n=1
‖δHn − δHn−1‖2L2

µ(Ω)

)
+

n0∑
n=1

τσ ‖δEn‖2L2(Ωσ)

≤
n0∑
n=1
‖fn − fn−1‖L2(Ω\Ωσ) ‖δEn‖L2(Ω\Ωσ) +

n0∑
n=1
‖fn − fn−1‖L2(Ωσ) ‖δEn‖L2(Ωσ)

+
n0∑
n=1

∥∥∥zNn − zNn−1

∥∥∥
L2(Ω\Ωσ)

‖δEn‖L2(Ω\Ωσ) +
n0∑
n=1

∥∥∥wN
n −wN

n−1

∥∥∥
L2(Ω)

‖δHn‖L2(Ω) .

Using Young’s inequality together with an estimate of the type α‖ · ‖2L2(Ω) ≤ ‖ · ‖
2
L2
α(Ω) and

the Lipschitz property of f , the first and second terms in the right-hand side of (3.20) can be
estimated by

n0∑
n=1
‖fn − fn−1‖L2(Ω\Ωσ) ‖δEn‖L2(Ω\Ωσ) (3.21)

≤
n0∑
n=1

(
N

ε
‖fn − fn−1‖2L2(Ω\Ωσ) + 1

4N ‖δEn‖
2
L2
ε (Ω\Ωσ)

)

≤
n0∑
n=1

(
N

ε
L2τ2 + 1

4N ‖δEn‖
2
L2
ε (Ω\Ωσ)

)

≤︸︷︷︸
τ= T

N

L2T 2

ε
+ 1

4 ‖δEn0‖
2
L2
ε (Ω\Ωσ) +

n0−1∑
n=1

1
4N ‖δEn‖

2
L2
ε (Ω\Ωσ)

and
n0∑
n=1
‖fn − fn−1‖L2(Ωσ) ‖δEn‖L2(Ωσ) ≤

n0∑
n=1

( 1
4τσ ‖fn − fn−1‖2L2(Ωσ) + τσ ‖δEn‖2L2(Ωσ)

)
(3.22)

≤L
2T

4σ +
n0∑
n=1

τσ ‖δEn‖2L2(Ωσ) .

For the remaining terms on the right-hand side of (3.20), we find by Young’s inequality and the
triangle inequality that

n0∑
n=1

∥∥∥zNn − zNn−1

∥∥∥
L2(Ω\Ωσ)

‖δEn‖L2(Ω\Ωσ) =︸︷︷︸
(3.13)

‖z‖L2(Ω\Ωσ) ‖δE1‖L2(Ω\Ωσ) (3.23)

≤‖z‖L2(Ω\Ωσ) ‖δE1 − δE0‖L2(Ω\Ωσ) + ‖z‖L2(Ω\Ωσ) ‖δE0‖L2(Ω\Ωσ)

≤2
ε
‖z‖2L2(Ω\Ωσ) + 1

4 ‖δE1 − δE0‖2L2
ε (Ω\Ωσ) + 1

4 ‖δE0‖2L2
ε (Ω\Ωσ) ,

and analogously
n0∑
n=1

∥∥∥wN
n −wN

n−1

∥∥∥
L2(Ω)

‖δHn‖L2(Ω) (3.24)

≤ 2
µ
‖w‖2L2(Ω) + 1

4 ‖δH1 − δH0‖2L2
µ(Ω) + 1

4 ‖δH0‖2L2
µ(Ω) .

Applying (3.21)-(3.24) to (3.20) along with δE0 = E0 and δH0 = H0, it follows after some
rearrangement that

1
4 ‖δEn0‖

2
L2
ε (Ω\Ωσ)+ 1

2 ‖δHn0‖
2
L2
µ(Ω) ≤

L2T 2

ε
+ L2T

4σ + 3
4 ‖E0‖2L2

ε (Ω\Ωσ) + 3
4 ‖H0‖2L2

µ(Ω)
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+ 2
ε
‖z‖2L2(Ω\Ωσ) + 2

µ
‖w‖2L2(Ω) +

n0−1∑
n=1

1
4N ‖δEn‖

2
L2
ε (Ω\Ωσ) .

By virtue of Lemma 3.4, we eventually deduce that

‖δEn0‖
2
L2
ε (Ω\Ωσ) + ‖δHn0‖

2
L2
µ(Ω) ≤ C exp

(
n0−1∑
n=1

1
N

)
≤ C exp(1),

with a generic constant C > 0, depending only on T, L, ε, µ, σ,E0,H0. In particular, it holds
that

‖δEn0‖L2(Ω\Ωσ) + ‖δHn0‖L2(Ω) ≤ C. (3.25)

From (3.25) and the reversed triangle inequality, it follows by the definition of the difference
quotients (3.9) that

‖En0‖L2(Ω\Ωσ) + ‖Hn0‖L2(Ω) ≤τC + ‖En0−1‖L2(Ω\Ωσ) + ‖Hn0−1‖L2(Ω) (3.26)
≤ · · · ≤ n0τC + ‖E0‖L2(Ω\Ωσ) + ‖H0‖L2(Ω)

≤TC + ‖E0‖L2(Ω\Ωσ) + ‖H0‖L2(Ω) .

Furthermore, the estimate
‖curlEn0‖L2(Ω) ≤ C (3.27)

immediately results from (3.25) along with the discrete Faraday law in (PN ). We are left with
showing the estimate for En0 in L2(Ωσ). To do so, we test with v = 0 in (PN ) and use the
positive semi-definiteness of σ to obtain∫

Ω\Ωσ
εδEn0 ·En0 dx+

∫
Ωσ
σEn0 ·En0 dx−

∫
Ω
Hn0 · curlEn0 dx (3.28)

≤
∫

Ω\Ωσ
fn0 ·En0 dx+

∫
Ωσ
fn0 ·En0 dx.

Applying the estimate∫
Ωσ
fn0 ·En0 dx ≤ 1

2σ ‖fn0‖
2
L2(Ωσ) + σ

2 ‖En0‖
2
L2(Ωσ)

to (3.28) together with (3.4) and Hölder’s inequality, we end up with

σ

2 ‖En0‖
2
L2(Ωσ) ≤‖fn0‖L2(Ω\Ωσ) ‖En0‖L2(Ω\Ωσ) + 1

2σ ‖fn0‖
2
L2(Ωσ) (3.29)

+ ‖δEn0‖L2
ε (Ω\Ωσ) ‖En0‖L2

ε (Ω\Ωσ) + ‖Hn0‖L2(Ω) ‖curlEn0‖L2(Ω) ,

where all the terms on the right-hand side are bounded due to the stability shown before. Since
n0 ∈ {1, . . . , N} was chosen arbitrarily, (3.25), (3.26), (3.27) and (3.29) imply that the a priori
estimate (3.11) is valid.

3.2 Well-posedness
This section is devoted to the well-posedness analysis for the eddy current obstacle problem
(Pec) based on the time-discrete approximation (PN ). As a preparation, for every N ∈ N,
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we set up piecewise linear and piecewise constant (in time) interpolations out of the solution
{(En,Hn)}Nn=1 ⊂ (K ∩H0(curl))×H(curl) of (PN ) as follows:

EN : [0, T ]→K ∩H0(curl), t 7→
{
E0 if t = 0
En−1 + (t− tn−1)δEn if t ∈ (tn−1, tn]

(3.30)

HN : [0, T ]→ L2(Ω), t 7→
{
H0 if t = 0
Hn−1 + (t− tn−1)δHn if t ∈ (tn−1, tn],

and

EN : [0, T ]→K ∩H0(curl), t 7→
{
E0 if t = 0
En if t ∈ (tn−1, tn]

(3.31)

HN : [0, T ]→ L2(Ω), t 7→
{
H0 if t = 0
Hn if t ∈ (tn−1, tn]

fN : [0, T ]→ L2(Ω), t 7→
{
f0 if t = 0
fn if t ∈ (tn−1, tn].

In view of (PN ), it follows immediately that the above interpolations satisfy

∫
Ω\Ωσ

ε
d
dtEN (t) · (v −EN (t)) dx

+
∫

Ω
σEN (t) · (v −EN (t))−HN (t) · curl(v −EN (t)) dx

≥
∫

Ω
fN (t) · (v −EN (t)) dx ∀v ∈K ∩H0(curl) for all t ∈ (0, T ]

µ
d
dtHN (t) + curlEN (t) = 0 for all t ∈ (0, T ]

EN (t) ∈K ∩H0(curl) for all t ∈ [0, T ].

(P̃N )

Theorem 3.6. Let Assumption 3.1 hold. Then, the eddy current obstacle problem (Pec) admits
a unique solution (E,H) ∈W 1,∞((0, T ),L2(Ω \Ωσ)×L2(Ω))∩L∞((0, T ),H0(curl)×L2(Ω)).

Proof. Existence of a solution. By our construction (3.30) and (3.31), Theorem 3.5 yields the
existence of a subsequence of {(EN ,HN )}∞N=1, denoted again by the same symbol, such that

(EN ,HN ) ∗⇀ (E,H) weakly-* in L∞((0, T ),H0(curl)×L2(Ω)) as N →∞ (3.32)
(EN ,HN ) ∗⇀ (E,H) weakly-* in L∞((0, T ),H0(curl)×L2(Ω)) as N →∞
d
dt(EN ,HN ) ∗⇀ (ξ, ζ) weakly-* in L∞((0, T ),L2(Ω \ Ωσ)×L2(Ω)) as N →∞

for some (E,H), (E,H) ∈ L∞((0, T ),H0(curl)×L2(Ω)) and (ξ, ζ) ∈ L∞((0, T ),L2(Ω \Ωσ)×
L2(Ω)). Furthermore, (3.30) and (3.31) also imply∥∥∥EN (t)−EN (t)

∥∥∥
L2(Ω\Ωσ)

≤ τ max
1≤n≤N

‖δEn‖L2(Ω\Ωσ) ≤︸︷︷︸
(3.11)

TC

N
∀t ∈ [0, T ] (3.33)

∥∥∥HN (t)−HN (t)
∥∥∥
L2(Ω)

≤ τ max
1≤n≤N

‖δHn‖L2(Ω) ≤︸︷︷︸
(3.11)

TC

N
∀t ∈ [0, T ],



30 Chapter 3 - EC Approximation in Maxwell Obstacle Problems

and consequently

lim
N→∞

∥∥∥EN −EN

∥∥∥
L∞((0,T ),L2(Ω\Ωσ))

= lim
N→∞

∥∥∥HN −HN

∥∥∥
L∞((0,T ),L2(Ω))

= 0. (3.34)

By the above convergence properties together with (3.32), we obtain that

E = E a.e. in (0, T )× (Ω \ Ωσ) and H = H a.e. in (0, T )× Ω. (3.35)

Let us now verify that
d
dtE = ξ and d

dtH = ζ. (3.36)

Indeed, the definition of the weak time derivative implies that∫ T

0
(ξ(t),φ(t))L2(Ω\Ωσ) dt =︸︷︷︸

(3.32)

lim
N→∞

∫ T

0

( d
dtEN (t),φ(t)

)
L2(Ω\Ωσ)

dt

= lim
N→∞

−
∫ T

0

(
EN (t), d

dtφ(t)
)
L2(Ω\Ωσ)

dt =︸︷︷︸
(3.32)&(3.35)

−
∫ T

0

(
E(t), d

dtφ(t)
)
L2(Ω\Ωσ)

dt

∀φ ∈ C∞0 ((0, T ),L2(Ω \ Ωσ)),

and hence d
dtE = ξ. Analogous arguments are also valid for H which concludes (3.36). Alto-

gether, the weak star limit (E,H) enjoys the regularity property

(E,H) ∈W 1,∞((0, T ),L2(Ω \ Ωσ)×L2(Ω)) ∩ L∞((0, T ),H0(curl)×L2(Ω)). (3.37)

As the next step, we verify Faraday’s law for (E,H). According to (P̃N ), it holds that

µ
d
dtHN (t) + curlEN (t) = 0 ∀t ∈ (0, T ],

from which it follows that∫ T

0

(
µ

d
dtH(t) + curlE(t),φ(t)

)
L2(Ω)

dt

=︸︷︷︸
(3.32)&(3.36)

lim
N→∞

∫ T

0

(
µ

d
dtHN (t) + curlEN (t),φ(t)

)
L2(Ω)

dt = 0

for all φ ∈ C∞0 ((0, T ),L2(Ω)). As a consequence, by the fundamental theorem of variational
calculus, we obtain

µ
d
dtH(t) + curlE(t) = 0 for a.e. t ∈ (0, T ). (3.38)

Let us now prove the pointwise weak convergence

(EN ,HN )(t) ⇀ (E,H)(t) weakly in L2(Ω \Ωσ)×L2(Ω) as N →∞ for all t ∈ [0, T ]. (3.39)

To this aim, let t ∈ (0, T ],w ∈ L2(Ω \ Ωσ), and φ ∈ C1([0, t]) be arbitrarily fixed. Integration
by parts yields (

E(t),w
)
L2(Ω\Ωσ)

φ(t)−
(
E(0),w

)
L2(Ω\Ωσ)

φ(0) (3.40)

=
∫ t

0

( d
dsE(s),w

)
L2(Ω\Ωσ)

φ(s) +
(
E(s),w

)
L2(Ω\Ωσ)

d
dsφ(s) ds
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=︸︷︷︸
(3.32),(3.35),(3.36)

lim
N→∞

(∫ t

0

( d
dsEN (s),w

)
L2(Ω\Ωσ)

φ(s) + (EN (s),w)L2(Ω\Ωσ)
d
dsφ(s) ds

)

= lim
N→∞

(
(EN (t),w)L2(Ω\Ωσ) φ(t)− (EN (0),w)L2(Ω\Ωσ) φ(0)

)
.

Choosing φ(t) 6= 0 and φ(0) = 0 (resp. φ(t) = 0 and φ(0) 6= 0) yields EN (t) ⇀ E(t) weakly in
L2(Ω \ Ωσ) as N → ∞ for all t ∈ [0, T ]. By the same argumentation, we derive the pointwise
weak convergence for {HN}∞N=1. In conclusion, (3.39) is valid. As a direct consequence of (3.39)
and (EN ,HN )(0) = (E0,H0) for all N ∈ N, we have

E(0) = E0 a.e. in Ω \ Ωσ (3.41)
H(0) = H0 a.e. in Ω,

which is exactly the initial value condition in (Pec). Let us now introduce the subset

K̂ := {w ∈ L2((0, T ),L2(Ω)) | w(t) ∈K for a.e. t ∈ (0, T )}.

By definition, sinceK is a closed and convex subset of L2(Ω), the subset K̂ ⊂ L2((0, T ),L2(Ω))
is closed and convex. Therefore, since EN ∈ K̂ for all N ∈ N, the convergence property (3.32)
implies that

E ∈ K̂ ⇒ E(t) ∈K for a.e. t ∈ (0, T ). (3.42)

By virtue of (3.37), (3.38), (3.41), and (3.42), the weak limit (E,H) is a solution to (Pec) once
we are able to show that it satisfies the variational inequality in (Pec). In view of (3.31) and the
Lipschitz regularity f ∈W 1,∞((0, T ),L2(Ω)), it holds that

lim
N→∞

fN = f in L2((0, T ),L2(Ω)). (3.43)

Let now v ∈ L2((0, T ),H0(curl)) be arbitrarily fixed and satisfy v(t) ∈ K for a.e. t ∈ (0, T ).
By standard properties of the limit superior, we deduce that∫ T

0

(
f(t),v(t)−E(t)

)
L2(Ω)

dt =︸︷︷︸
(3.43)

lim
N→∞

∫ T

0

(
fN (t),v(t)−EN (t)

)
L2(Ω)

dt (3.44)

≤︸︷︷︸
(P̃N )

lim sup
N→∞

∫ T

0

( d
dtEN (t),v(t)−EN (t)

)
L2
ε (Ω\Ωσ)

+
(
σEN (t),v(t)−EN (t)

)
L2(Ω)

−
(
HN (t), curl(v(t)−EN (t))

)
L2(Ω)

dt

≤︸︷︷︸
(3.32)&(3.36)

∫ T

0

( d
dtE(t),v(t)

)
L2
ε (Ω\Ωσ)

dt− lim inf
N→∞

∫ T

0

( d
dtEN (t),EN (t)

)
L2
ε (Ω\Ωσ)

dt

+
∫ T

0

(
σE(t),v(t)

)
L2(Ω)

dt− lim inf
N→∞

∫ T

0

(
σEN (t),EN (t)

)
L2(Ω)

dt

−
∫ T

0

(
H(t), curlv(t)

)
L2(Ω)

dt+ lim sup
N→∞

∫ T

0

(
HN (t), curlEN (t)

)
L2(Ω)

dt.

Our next step is to estimate the remaining terms on the right-hand side of (3.44). First of all,
by the weak sequential lower semi-continuity of the squared norm, we infer that
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lim inf
N→∞

∫ T

0

( d
dtEN (t),EN (t)

)
L2
ε (Ω\Ωσ)

dt = lim inf
N→∞

1
2
(
‖EN (T )‖2L2

ε (Ω\Ωσ) − ‖E0‖2L2
ε (Ω\Ωσ)

)
≥︸︷︷︸

(3.39)

1
2

(∥∥∥E(T )
∥∥∥2

L2
ε (Ω\Ωσ)

− ‖E0‖2L2
ε (Ω\Ωσ)

)
=︸︷︷︸

(3.41)

∫ T

0

( d
dtE(t),E(t)

)
L2
ε (Ω\Ωσ)

dt, (3.45)

and consequently

lim inf
N→∞

∫ T

0

( d
dtEN (t),EN (t)

)
L2
ε (Ω\Ωσ)

dt ≥ lim inf
N→∞

∫ T

0

( d
dtEN (t),EN (t)−EN (t)

)
L2
ε (Ω\Ωσ)

dt

+ lim inf
N→∞

∫ T

0

( d
dtEN (t),EN (t)

)
L2
ε (Ω\Ωσ)

dt ≥︸︷︷︸
(3.34)&(3.45)

∫ T

0

( d
dtE(t),E(t)

)
L2
ε (Ω\Ωσ)

dt. (3.46)

Furthermore, the positive semi-definiteness of σ implies

lim inf
N→∞

∫ T

0

(
σEN (t),EN (t)

)
L2(Ω)

dt (3.47)

= lim inf
N→∞

∫ T

0

(
σ(EN (t)−E(t)),EN (t)−E(t)

)
L2(Ω)

+
(
σ(EN (t)−E(t)),E(t)

)
L2(Ω)

+
(
σE(t),EN (t)

)
L2(Ω)

dt

≥ lim inf
N→∞

∫ T

0

(
σ(EN (t)−E(t)),E(t)

)
L2(Ω)

+
(
σE(t),EN (t)

)
L2(Ω)

dt

=︸︷︷︸
(3.32)

∫ T

0

(
σE(t),E(t)

)
L2(Ω)

dt.

Using once again the weak sequential lower semi-continuity of the squared norm, we find that

lim sup
N→∞

−
∫ T

0

(
HN (t), d

dtHN (t)
)
L2
µ(Ω)

dt = lim sup
N→∞

1
2
(
‖H0‖2L2

µ(Ω) − ‖HN (T )‖2L2
µ(Ω)

)
(3.48)

≤︸︷︷︸
(3.39)

1
2

(
‖H0‖2L2

µ(Ω) −
∥∥∥H(T )

∥∥∥2

L2
µ(Ω)

)
=︸︷︷︸

(3.41)

−
∫ T

0

(
H(t), d

dtH(t)
)
L2
µ(Ω)

dt

=︸︷︷︸
(3.38)

∫ T

0

(
H(t), curlE(t)

)
L2(Ω)

dt,

and therefore

lim sup
N→∞

∫ T

0

(
HN (t), curlEN (t)

)
L2(Ω)

dt (3.49)

=︸︷︷︸
(P̃N )

lim sup
N→∞

−
∫ T

0

(
HN (t), d

dtHN (t)
)
L2
µ(Ω)

dt

≤ lim sup
N→∞

−
∫ T

0

(
HN (t)−HN (t), d

dtHN (t)
)
L2
µ(Ω)

dt

+ lim sup
N→∞

−
∫ T

0

(
HN (t), d

dtHN (t)
)
L2
µ(Ω)

dt
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≤︸︷︷︸
(3.34)&(3.48)

∫ T

0

(
H(t), curlE(t)

)
L2(Ω)

dt.

Applying (3.46), (3.47), and (3.49) to (3.44) results in∫ T

0

∫
Ω\Ωσ

ε
d
dtE(t) · (v(t)−E(t)) dx (3.50)

+
∫

Ω
σE(t) · (v(t)−E(t))−H(t) · curl(v(t)−E(t)) dx dt

≥
∫ T

0

∫
Ω
f(t) · (v(t)−E(t)) dx dt

∀v ∈ L2((0, T ),H0(curl)) with v(t) ∈K for a.e. t ∈ (0, T ).

Finally, to show that the variational inequality in (Pec) holds, let us assume the contrary, i.e.,

∃q ∈K ∩H0(curl) ∃M ⊂ (0, T ) with |M | > 0 s.t.
∫

Ω\Ωσ
ε

d
dtE(t) · (q −E(t)) dx

+
∫

Ω
σE(t) · (q −E(t))−H(t) · curl(q −E(t)) dx <

∫
Ω
f(t) · (q −E(t)) dx for a.e. t ∈M,

which implies∫
M

∫
Ω\Ωσ

ε
d
dtE(t) · (q −E(t)) dx+

∫
Ω
σE(t) · (q −E(t))−H(t) · curl(q −E(t)) dx dt

<

∫
M

∫
Ω
f(t) · (q −E(t)) dx dt. (3.51)

Inserting v := χMq + χ(0,T )\ME into (3.50) immediately contradicts (3.51). In conclusion,
(E,H) satisfies the variational inequality in (Pec). This completes the existence proof.
Uniqueness and Lipschitz stability. Let (E1,H1) and (E2,H2) denote, respectively, solutions
to (Pec) associated with the initial data (E1

0 ,H
1
0 ), (E2

0 ,H
2
0 ) and the right-hand sides f1,f2

satisfying Assumption 3.1. Setting v = E2(s) in (Pec) for E = E1 (resp. v = E1(s) in (Pec) for
E = E2) and multiplying with −1, we have∫

Ω\Ωσ
ε

d
dsE1(s)·(E1(s)−E2(s)) dx+

∫
Ω
σE1(s)·(E1(s)−E2(s))−H1(s)·curl(E1(s)−E2(s)) dx

≤
∫

Ω
f1(s) · (E1(s)−E2(s)) dx for a.e. s ∈ (0, T ) (3.52)

and

−
∫

Ω\Ωσ
ε

d
dsE2(s) · (E1(s)−E2(s)) dx (3.53)

−
∫

Ω
σE2(s) · (E1(s)−E2(s))−H2(s) · curl(E1(s)−E2(s)) dx

≤−
∫

Ω
f2(s) · (E1(s)−E2(s)) dx for a.e. s ∈ (0, T ).

In addition, by the Faraday law for (E1,H1) and (E2,H2), it holds that

curl(E1(s)−E2(s)) = −µ d
ds(H1(s)−H2(s)) for a.e. s ∈ (0, T ). (3.54)
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Adding (3.52) and (3.53) together and then applying (3.54) to the resulting inequality, we obtain
by using the properties of σ as well as Hölder’s and Young’s inequalities that

1
2

d
ds ‖E1(s)−E2(s)‖2L2

ε (Ω\Ωσ) + σ ‖E1(s)−E2(s)‖2L2(Ωσ) + 1
2

d
ds ‖H1(s)−H2(s)‖2L2

µ(Ω)

≤‖f1(s)− f2(s)‖L2(Ω\Ωσ) ‖E1(s)−E2(s)‖L2(Ω\Ωσ)

+ ‖f1(s)− f2(s)‖L2(Ωσ) ‖E1(s)−E2(s)‖L2(Ωσ)

≤
( 1

2ε + 1
2σ

)
‖f1 − f2‖2C([0,T ],L2(Ω)) + 1

2 ‖E1(s)−E2(s)‖2L2
ε (Ω\Ωσ) + σ

2 ‖E1(s)−E2(s)‖2L2(Ωσ)

for a.e. s ∈ (0, T ). By integration over the time interval (0, t) and rearrangement, it follows that

‖E1(t)−E2(t)‖2L2
ε (Ω\Ωσ) + σ

∫ t

0
‖E1(s)−E2(s)‖2L2(Ωσ) ds+ ‖H1(t)−H2(t)‖2L2

µ(Ω)

≤
∥∥∥E1

0 −E2
0

∥∥∥2

L2
ε (Ω\Ωσ)

+
∥∥∥H1

0 −H2
0

∥∥∥2

L2
µ(Ω)

+
(
t

ε
+ t

σ

)
‖f1 − f2‖2C([0,T ],L2(Ω))

+
∫ t

0
‖E1(s)−E2(s)‖2L2

ε (Ω\Ωσ) ds

≤max
{

1, t
ε

+ t

σ

}(∥∥∥(E1
0 ,H

1
0 )− (E2

0 ,H
2
0 )
∥∥∥2

L2
ε (Ω\Ωσ)×L2

µ(Ω)
+ ‖f1 − f2‖2C([0,T ],L2(Ω))

)
+
∫ t

0
‖E1(s)−E2(s)‖2L2

ε (Ω\Ωσ) ds ∀t ∈ [0, T ].

Employing the Gronwall lemma, we then arrive at

‖(E1,H1)(t)− (E2,H2)(t)‖2L2
ε (Ω\Ωσ)×L2

µ(Ω) + σ

∫ t

0
‖E1(s)−E2(s)‖2L2(Ωσ) ds (3.55)

≤ et max
{

1, t
ε

+ t

σ

}(∥∥∥(E1
0 ,H

1
0 )− (E2

0 ,H
2
0 )
∥∥∥2

L2
ε (Ω\Ωσ)×L2

µ(Ω)
+ ‖f1 − f2‖2C([0,T ],L2(Ω))

)
for all t ∈ [0, T ]. In view of (3.55), we conclude that (Pec) admits at most one solution.

Remark 3.7. Introducing the subset

U :=
{

(f ,E0,H0) ∈W 1,∞((0, T ),L2(Ω))× (K ∩H0(curl))×H(curl)
∣∣∫

Ωσ
(σE0 − curlH0) · (v −E0) dx ≥

∫
Ωσ
f(0) · (v −E0) dx ∀v ∈K ∩H0(curl)

}
of C([0, T ],L2(Ω))×L2(Ω)×L2(Ω), the solution operator associated to (Pec),

Φ: U → C([0, T ],L2(Ω \ Ωσ)×L2(Ω)) ∩ L2((0, T ),L2(Ωσ)×L2(Ω)), (f ,E0,H0) 7→ (E,H),

is Lipschitz continuous as a consequence of (3.55).

3.2.1 The Full Eddy Current Case in the Presence of a Nonconducting Region

Up to this point, the displacement current d
dtE was only neglected in the region where σ is

uniformly positive definite. In this section, we suppose that Ω \ Ωσ is of nonzero Lebesgue
measure and represents an insulating region, i.e.,

σ = 0 a.e. in Ω \ Ωσ.

Our focus lies on the full eddy current case where the displacement current is completely removed
in the whole domain containing the insulating region Ω \ Ωσ. Here, the previously developed
analysis serves as the foundation to cover this case with some additional assumptions as follows:
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Assumption 3.8.

(B3.1) It holds that |Ω \ Ωσ| 6= 0 and

σ = 0 a.e. in Ω \ Ωσ (3.56)
f = 0 a.e. in (0, T )× (Ω \ Ωσ)

curlH0 = 0 a.e. in Ω \ Ωσ.

(B3.2) The obstacle set K satisfies one of the following conditions:

(i) ∃C > 0 ∀v ∈K : ‖v‖L2(Ω\Ωσ) ≤ C. (3.57a)
(ii) K ⊂Xε(Ω) and Ω is a bounded Lipschitz domain with (3.57b)

a connected boundary,

where Xε(Ω) := {v ∈ L2(Ω) | (εv,∇φ)L2(Ω) = 0 ∀φ ∈ H1
0 (Ω)}.

Remark 3.9.
(i) As Ω \Ωσ represents an insulating region such as air, it is physically reasonable to assume

that no current source is present in the insulator. The assumption (3.56) on the vanishing
source and vanishing initial rotational magnetic field in the insulator is indeed common in
the study of the eddy current problems (see, e.g., [129, p. 42] or [7, p. 239]).

(ii) The condition (3.57a) is obviously satisfied if the obstacle set K is bounded in L2(Ω).
A prominent example is the set K = {v ∈ L2(Ω) | |v(x)| ≤ d(x) for a.e. x ∈ Ω} for
some electric obstacle d ∈ L2(Ω). On the other hand, the condition (3.57b) describes
a physical medium with vanishing charge density, i.e., the case where the electric field
satisfies div(εE) ≡ 0.

Let us now state the full eddy current problem we focus on in this section:

∫
Ωσ
σE(t) · (v −E(t)) dx−

∫
Ω
H(t) · curl(v −E(t)) dx

≥
∫

Ωσ
f(t) · (v −E(t)) dx ∀v ∈K ∩H0(curl) for a.e. t ∈ (0, T )

µ
d
dtH(t) + curlE(t) = 0 for a.e. t ∈ (0, T )

E(t) ∈K for a.e. t ∈ (0, T ), H(0) = H0 a.e. in Ω.

(P0
ec)

Note that in contrast to (Pec), the problem (P0
ec) comprises an elliptic VI for the electric field

E and an evolutionary equation for the magnetic field H which is why we do not impose any
initial condition for E (cf. [103] for the case of the full eddy current equations with a constant
and scalar conductivity σ > 0). The time-discrete approximation for (P0

ec) reads as finding
{(En,Hn)}Nn=1 ⊂ (K ∩H0(curl))×H(curl) such that

∫
Ωσ
σEn · (v −En) dx−

∫
Ω
Hn · curl(v −En) dx

≥
∫

Ωσ
fn · (v −En) dx ∀v ∈K ∩H0(curl) ∀n ∈ {1, . . . , N}

µδHn + curlEn = 0 ∀n ∈ {1, . . . , N}.

(P0
N )

To prove the well-posedness of (P0
N ), we reformulate it as a minimization problem in a Hilbert

space as follows:
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Lemma 3.10. Let Assumption 3.1 and Assumption 3.8 be satisfied. Then, the time-discrete
problem (P0

N ) admits a solution {(En,Hn)}Nn=1 ⊂ (K ∩H0(curl))×H(curl). If (3.57b) holds
true, then the solution to (P0

N ) is unique.

Proof. First, using the discrete Faraday law, we rewrite the problem (P0
N ) as∫

Ωσ
σEn · (v −En) dx+ τ

∫
Ω
µ−1 curlEn · curl(v −En) dx

≥
∫

Ωσ
fn · (v −En) dx+

∫
Ω
Hn−1 · curl(v −En) dx ∀v ∈K ∩H0(curl) ∀n ∈ {1, . . . , N},

which is equivalent to the minimization problem

min
v∈K∩H0(curl)

(1
2‖v‖

2
L2
σ(Ωσ) + τ

2‖ curlv‖2L2
µ−1 (Ω) (3.58)

−
∫

Ωσ
fn · v dx−

∫
Ω
Hn−1 · curlv dx

)
∀n ∈ {1, . . . , N}.

Next, let n ∈ {1, . . . , N} be arbitrarily fixed. For any v ∈H0(curl), it holds that

1
2‖v‖

2
L2
σ(Ωσ) + τ

2‖ curlv‖2L2
µ−1 (Ω) −

∫
Ωσ
fn · v dx−

∫
Ω
Hn−1 · curlv dx (3.59)

≥1
4‖v‖

2
L2
σ(Ωσ) + τ

4‖ curlv‖2L2
µ−1 (Ω) −

1
σ
‖fn‖2L2(Ωσ) −

µ

τ
‖Hn−1‖2L2(Ω)

≥− 1
σ
‖fn‖2L2(Ωσ) −

µ

τ
‖Hn−1‖2L2(Ω).

This shows that the objective functional associated with (3.58) is bounded from below. There-
fore, sinceK∩H0(curl) is non-empty, there exists an infimal sequence {vnk}∞k=1 ⊂K∩H0(curl)
for the minimization problem (3.58). Thanks to (3.59), the infimal sequence {vnk}∞k=1 ⊂ K ∩
H0(curl) satisfies

‖vnk‖L2(Ωσ) + ‖ curlvnk‖L2(Ω) ≤ C, k ∈ N, (3.60)

for some constant C > 0, independent of k. Now, if (3.57a) is satisfied, then in view of (3.60) it
follows that the infimal sequence {vnk}∞k=1 is bounded inH0(curl). On the other hand, if (3.57b)
is satisfied, then it implies the Poincaré-Friedrichs-type inequality [6, Lemma 3.1] (compare also
with Corollary 2.4 for the version without ε)

∃Cp > 0 ∀v ∈Xε(Ω) ∩H0(curl) : ‖v‖L2(Ω) ≤ Cp‖ curlv‖L2(Ω), (3.61)

which yields due to (3.60) the boundedness of {vnk}∞k=1 in H0(curl). In conclusion, for every
n ∈ {1, . . . , N}, the existence of a minimizer to (3.58) follows by standard arguments as in the
proof of the direct method of variational calculus. Finally, if (3.57b) holds true, then due to
(3.61) the objective functional associated with (3.58) is strictly convex, and so the minimization
problem (3.58) admits a unique solution.

Lemma 3.11. Let Assumption 3.1 and Assumption 3.8 hold. Then, there exists a positive
real constant C, depending only on T, µ, σ,f ,H0 such that, for every N ∈ N, every solution
{(En,Hn)}Nn=1 ⊂ (K ∩H0(curl))×H(curl) of (P0

N ) satisfies

max
1≤n≤N

[
‖En‖L2(Ω) + ‖Hn‖L2(Ω) + ‖δHn‖L2(Ω) + ‖curlEn‖L2(Ω)

]
≤ C. (3.62)
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Proof. Let N ∈ N be arbitrarily fixed and let {(En,Hn)}Nn=1 ⊂ (K ∩H0(curl)) ×H(curl)
denote a solution to (P0

N ). Further, let v ∈ K ∩H0(curl) and n0 ∈ {1, . . . , N} be arbitrarily
fixed. The lines of argumentation are similar to Theorem 3.5 where we simply set z to be zero
thanks to (3.56) and since ε does not appear in (P0

N ). Then, together with the fact that f = 0
a.e. in (0, T )× (Ω \Ωσ), by an analogous argumentation to the proof of Theorem 3.5, it follows
that

1
2

(
‖δHn0‖

2
L2
µ(Ω) − ‖δH0‖2L2

µ(Ω) +
n0∑
n=1
‖δHn − δHn−1‖2L2

µ(Ω)

)
+

n0∑
n=1

τσ ‖δEn‖2L2(Ωσ) (3.63)

≤
n0∑
n=1
‖fn − fn−1‖L2(Ωσ) ‖δEn‖L2(Ωσ) +

n0∑
n=1

∥∥∥wN
n −wN

n−1

∥∥∥
L2(Ω)

‖δHn‖L2(Ω) .

In turn, this implies the estimate

1
2 ‖δHn0‖

2
L2
µ(Ω) ≤

L2T

4σ + 3
4 ‖H0‖2L2

µ(Ω) + 2
µ
‖w‖2L2(Ω) .

In view of the above estimate we obtain ‖Hn0‖
2
L2
µ(Ω) ≤ C and ‖curlEn0‖L2(Ω) ≤ C for a

constant C > 0 due to (3.26) and the discrete Faraday law in (P0
N ). The bound on ‖En0‖L2(Ωσ)

is obtained by testing with v = 0 in (P0
N ) and proceeding as in (3.28) and (3.29). The bound on

‖En0‖L2(Ω\Ωσ) is an immediate result of (3.57a) or (3.57b) along with the Poincaré-Friedrichs-
type inequality (3.61) and the estimate ‖curlEn0‖L2(Ω) ≤ C.

In view of (P0
N ), invoking again the constructions (3.30) and (3.31) it follows that the inter-

polations satisfy

∫
Ωσ
σEN (t) · (v −EN (t)) dx−

∫
Ω
HN (t) · curl(v −EN (t)) dx

≥
∫

Ωσ
fN (t) · (v −EN (t)) dx ∀v ∈K ∩H0(curl) for all t ∈ (0, T ]

µ
d
dtHN (t) + curlEN (t) = 0 for all t ∈ (0, T ]

EN (t) ∈K ∩H0(curl) for all t ∈ [0, T ].

(P̃0
N )

Theorem 3.12. Let Assumption 3.1 and Assumption 3.8 hold. Then, the eddy current obsta-
cle problem (P0

ec) admits a solution (E,H) ∈ L∞((0, T ),H0(curl)) ×W 1,∞((0, T ),L2(Ω)). If
(3.57b) holds true, then the solution to (P0

ec) is unique.

Proof. First, as in the proof of Theorem 3.6, the a priori estimate from Lemma 3.11 yields the
existence of a subsequence of {(EN ,HN )}∞N=1, denoted again by the same symbol, such that

(EN ,HN ,HN ,
d
dtHN ) ∗⇀ (E,H,H,

d
dtH)

weakly-* in L∞((0, T ),H0(curl)×L2(Ω)×L2(Ω)×L2(Ω))

as N →∞ for some (E,H) ∈ L∞((0, T ),H0(curl))×W 1,∞((0, T ),L2(Ω)). Passing to the limit
in the discrete Faraday law as in (3.38), we then obtain

µ
d
dtH(t) + curlE(t) = 0 for a.e. t ∈ (0, T ).
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Analogously to (3.40), we obtain the pointwise weak convergence

HN (t) ⇀H(t) weakly in L2(Ω) as N →∞ for all t ∈ [0, T ],

which implies the initial conditionH(0) = H0 a.e. in Ω. Also, as in the proof of Theorem 3.6, the
previous weak-star convergence yields the feasibility E(t) ∈ K for a.e. t ∈ (0, T ). Ultimately,
the final passage to the limit in (P̃0

N ) follows again the same arguments as in the proof of
Theorem 3.6. In conclusion, the weak-star limit (E,H) satisfies (P0

ec). Let us now assume that
(3.57b) is valid and let (E1,H1), and (E2,H2) denote, respectively, solutions to (P0

ec). Setting
v = E2(s) in (P0

ec) for E = E1 (resp. v = E1(s) in (P0
ec) for E = E2) we can proceed as in

(3.52), (3.53) and (3.54) to obtain the estimate

‖E1(s)−E2(s)‖2L2
σ(Ωσ) + 1

2
d
ds ‖H1(s)−H2(s)‖2L2

µ(Ω) ≤ 0 for a.e. s ∈ (0, T ).

As H1(0) = H0 = H2(0), the above inequality implies that H1 = H2, which yields due to
the Faraday law in (P0

ec) that curl(E1 − E2) = 0. As a result of the Poincaré-Friedrichs-type
inequality (3.61) it then follows that E1 = E2. This completes the proof.

Remark 3.13. We want to mention that even in the case of the eddy current equations, without
assuming something similar to (3.57b), uniqueness of the solution can in general not be expected.

Remark 3.14. The analysis in this section with respect to (3.57b) reveals that a local Poincaré-
Friedrichs-type inequality in the insulator Ω \Ωσ is sufficient to obtain an existence and unique-
ness result for (P0

ec). This allows us to work with another obstacle set K as follows: Suppose
again that Ω is a bounded Lipschitz domain such that Ωσ ⊂ Ω and Ω \ Ωσ is connected. Then,
for the obstacle set K, an alternative assumption to (3.57b) reads

K ⊂ X̃ε(Ω) :=
{
v ∈ L2(Ω) | (εv,∇φ)L2(Ω\Ωσ) = 0 ∀φ ∈ H1(Ω \ Ωσ),

(εv,h)L2(Ω\Ωσ) = 0 ∀h ∈H
}
,

where H denotes the finite-dimensional vector space of Neumann fields related to topological
quantities of the physical domain Ω and the insulating region Ω \ Ωσ (see [7, Page 13] for its
definition and the simplified version in (2.23)). As proven in [7, Lemma 2.2], the following
Poincaré-Friedrichs-type inequality holds true:

∃Cp > 0 ∀v ∈ X̃ε(Ω) ∩H0(curl) : ‖v‖L2(Ω\Ωσ) ≤ Cp
(
‖ curlv‖L2(Ω) + ‖v‖L2(Ωσ)

)
. (3.64)

With (3.64) at hand, the existence of a unique solution to (P0
ec) is obtained under minor changes

of this section.

3.3 Justification of the Eddy Current Model
Theorem 3.6 implies that both the Maxwell obstacle problem (P) (by choosing Ωσ = ∅) and the
eddy current model (Pec) admit unique solutions, which we denote in the following, respectively,
by

(E,H) ∈W 1,∞((0, T ),L2(Ω \ Ωσ)×L2(Ω)) ∩ L∞((0, T ),H0(curl)×L2(Ω)) (3.65)

and

(Eec,Hec) ∈W 1,∞((0, T ),L2(Ω \ Ωσ)×L2(Ω)) ∩ L∞((0, T ),H0(curl)×L2(Ω)). (3.66)
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Our goal now is to justify the eddy current model (Pec) in the sense that its unique solution
(Eec,Hec) is close to (E,H) under a reasonable smallness condition on ‖ε/σ‖L∞(Ωσ)3×3 . By
proposing an additional assumption on the initial data (see Assumption 3.15), we are able to
not only justify the eddy current model but also prove an a priori error estimate for the eddy
current approximation with a linear convergence rate in terms of ‖ε‖L∞(Ωσ)3×3 .

Assumption 3.15. The initial value (E0,H0) satisfies∫
Ω\Ωσ

(σE0 − curlH0) · (v −E0) dx ≥
∫

Ω\Ωσ
f(0) · (v −E0) dx ∀v ∈K ∩H0(curl) (3.67)

and
curlE0 = 0 a.e. on Ω. (3.68)

Remark 3.16. Assumptions (3.67) is of technical importance and is trivially satisfied if σE0−
curlH0 = f(0) a.e. in Ω \ Ωσ. Note that in real applications Ω \ Ωσ typically represents a
nonconducting medium such that the conductivity σ|Ω\Ωσ is zero. In this case (3.67) is satisfied
if − curlH0 = f(0) a.e. in Ω \ Ωσ.

In the following, if |Ω \Ωσ| 6= 0, the constant ε(Ω \Ωσ) denotes a uniform lower bound for the
lowest eigenvalues of ε in Ω \ Ωσ, i.e., it satisfies

ε(x)ξ · ξ ≥ ε(Ω \ Ωσ)|ξ|2 for a.e. x ∈ Ω \ Ωσ and all ξ ∈ R3. (3.69)

Furthermore, let L(Ωσ) and L(Ω \ Ωσ) denote, respectively, the Lipschitz constants of f in Ωσ

and Ω \ Ωσ, i.e.,

‖f(t1)− f(t2)‖L2(Ωσ) ≤ L(Ωσ)|t1 − t2| ∀t1, t2 ∈ [0, T ] (3.70)
‖f(t1)− f(t2)‖L2(Ω\Ωσ) ≤ L(Ω \ Ωσ)|t1 − t2| ∀t1, t2 ∈ [0, T ].

Theorem 3.17. Let Assumption 3.1 and Assumption 3.15 be satisfied. If |Ω \ Ωσ| 6= 0, then it
holds that

‖(E,H)− (Eec,Hec)‖C([0,T ],L2
ε (Ω\Ωσ)×L2

µ(Ω)) + ‖E −Eec‖L2((0,T ),L2
σ(Ωσ))

≤ 2
(
L(Ωσ)2T

σ
+ 2L(Ω \ Ωσ)T√

ε(Ω \ Ωσ)

√
4L(Ω \ Ωσ)2T 2

ε(Ω \ Ωσ) + 2L(Ωσ)2T

σ

)1/2 ∥∥∥∥ εσ
∥∥∥∥
L∞(Ωσ)3×3

. (3.71)

If Ωσ = Ω, then

‖H −Hec‖C([0,T ],L2
µ(Ω)) + ‖E −Eec‖L2((0,T ),L2

σ(Ω)) ≤ 2L
√
T

√
σ

∥∥∥∥ εσ
∥∥∥∥
L∞(Ω)3×3

. (3.72)

Remark 3.18. If the applied current source f is only acting in the conducting region Ωσ, we
have L(Ω \Ωσ) = 0 so that the upper bound for (3.71) precisely coincides with the one in (3.72)
given by 2L

√
T/
√
σ ‖ε/σ‖L∞(Ω)3×3 .

Proof. We split the proof into three parts.
Step 1: Boundedness of t 7→

∫ t
0

∥∥∥ d
dsE(s)

∥∥∥2

L2(Ωσ)
ds with an upper bound being independent of

ε|Ωσ . Setting v = E(s + h) (resp. v = E(s)) in (P) for t = s (resp. t = s + h) and then
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adding the resulting inequalities, we obtain (similarly to the uniqueness proof for Theorem 3.6)
by employing the Faraday law, the properties of σ, and Hölder’s inequality that

1
2

d
ds ‖E(s+ h)−E(s)‖2L2

ε (Ω\Ωσ) + 1
2

d
ds ‖E(s+ h)−E(s)‖2L2

ε (Ωσ)

+ σ ‖E(s+ h)−E(s)‖2L2(Ωσ) + 1
2

d
ds ‖H(s+ h)−H(s)‖2L2

µ(Ω)

≤‖f(s+ h)− f(s)‖L2(Ω\Ωσ) ‖E(s+ h)−E(s)‖L2(Ω\Ωσ)

+ ‖f(s+ h)− f(s)‖L2(Ωσ) ‖E(s+ h)−E(s)‖L2(Ωσ)

for a.e. s ∈ (0, T ) and a.e. h ∈ (0, T − s). Integrating the above inequality over (0, t) and
dividing by h2, we obtain that

1
2

∥∥∥∥E(t+ h)−E(t)
h

∥∥∥∥2

L2
ε (Ω\Ωσ)

− 1
2

∥∥∥∥E(h)−E0
h

∥∥∥∥2

L2
ε (Ω\Ωσ)

+ 1
2

∥∥∥∥E(t+ h)−E(t)
h

∥∥∥∥2

L2
ε (Ωσ)

− 1
2

∥∥∥∥E(h)−E0
h

∥∥∥∥2

L2
ε (Ωσ)

+ σ

∫ t

0

∥∥∥∥E(s+ h)−E(s)
h

∥∥∥∥2

L2(Ωσ)
ds (3.73)

+ 1
2

∥∥∥∥H(t+ h)−H(t)
h

∥∥∥∥2

L2
µ(Ω)
− 1

2

∥∥∥∥H(h)−H0
h

∥∥∥∥2

L2
µ(Ω)

≤
∫ t

0

∥∥∥∥f(s+ h)− f(s)
h

∥∥∥∥
L2(Ω\Ωσ)

∥∥∥∥E(s+ h)−E(s)
h

∥∥∥∥
L2(Ω\Ωσ)

ds

+
∫ t

0

∥∥∥∥f(s+ h)− f(s)
h

∥∥∥∥
L2(Ωσ)

∥∥∥∥E(s+ h)−E(s)
h

∥∥∥∥
L2(Ωσ)

ds

≤︸︷︷︸
(3.69)

1√
ε(Ω \ Ωσ)

∫ t

0

∥∥∥∥f(s+ h)− f(s)
h

∥∥∥∥
L2(Ω\Ωσ)

∥∥∥∥E(s+ h)−E(s)
h

∥∥∥∥
L2
ε (Ω\Ωσ)

ds

+
∫ t

0

1
2σ

∥∥∥∥f(s+ h)− f(s)
h

∥∥∥∥2

L2(Ωσ)
ds+

∫ t

0

σ

2

∥∥∥∥E(s+ h)−E(s)
h

∥∥∥∥2

L2(Ωσ)
ds

∀t ∈ (0, T ), h ∈ (0, T − t).

Note that if |Ω\Ωσ| = 0 then all integrals over Ω\Ωσ vanish, and we may simply set ε(Ω\Ωσ) = 1
in the case of |Ω \ Ωσ| = 0. Now, by the Lipschitz property (3.70) and the regularity property
E ∈W 1,∞((0, T ),L2(Ω)), it follows that∥∥∥∥E(t+ h)−E(t)

h

∥∥∥∥2

L2
ε (Ω\Ωσ)

+ σ

∫ t

0

∥∥∥∥E(s+ h)−E(s)
h

∥∥∥∥2

L2(Ωσ)
ds (3.74)

≤
∥∥∥∥E(h)−E0

h

∥∥∥∥2

L2
ε (Ω\Ωσ)

+
∥∥∥∥E(h)−E0

h

∥∥∥∥2

L2
ε (Ωσ)

+
∥∥∥∥H(h)−H0

h

∥∥∥∥2

L2
µ(Ω)

+ 2L(Ω \ Ωσ)t√
ε(Ω \ Ωσ)

∥∥∥∥ d
dtE

∥∥∥∥
L∞((0,t),L2

ε (Ω\Ωσ))
+ L(Ωσ)2t

σ
∀t ∈ (0, T ), h ∈ (0, T − t).

Our goal now is to show the boundedness of the difference quotients at the point 0 appearing
on the right-hand side of (3.74). Setting v = E0 in (P) yields∫

Ω
ε

d
dsE(s) · (E(s)−E0) + σE(s) · (E(s)−E0)−H(s) · curl(E(s)−E0) dx

≤
∫

Ω
f(s) · (E(s)−E0) dx (3.75)



3.3 Justification of the Eddy Current Model 41

for a.e. s ∈ (0, T ). On the other hand, since E(s) ∈ K ∩H0(curl) holds for a.e. s ∈ (0, T ), a
combination of (3.5) and (3.67) ensures that∫

Ω
−ε d

dsE0︸ ︷︷ ︸
=0

·(E(s)−E0)− σE0 · (E(s)−E0) +H0 · curl(E(s)−E0) dx

≤
∫

Ω
−f(0) · (E(s)−E0) dx for a.e. s ∈ (0, T ). (3.76)

Therefore, adding (3.75) and (3.76) together results in∫
Ω
ε

d
ds(E(s)−E0)·(E(s)−E0)+σ(E(s)−E0)·(E(s)−E0)−(H(s)−H0)·curl(E(s)−E0) dx

≤
∫

Ω
(f(s)− f(0)) · (E(s)−E0) dx for a.e. s ∈ (0, T ). (3.77)

In addition, the Faraday law in (P) along with (3.68) yields

curl(E(s)−E0) = −µ d
ds(H(s)−H0) for a.e. s ∈ (0, T ). (3.78)

Applying (3.78) to (3.77), integrating the resulting inequality over (0, h) and dividing by h2, we
follow the same argumentation as before to deduce by Hölder’s and Young’s inequalities as well
as the properties of σ that

1
2

∥∥∥∥E(h)−E0
h

∥∥∥∥2

L2
ε (Ω\Ωσ)

+ 1
2

∥∥∥∥E(h)−E0
h

∥∥∥∥2

L2
ε (Ωσ)

+ σ

∫ h

0

∥∥∥∥E(s)−E0
h

∥∥∥∥2

L2(Ωσ)
ds

+ 1
2

∥∥∥∥H(h)−H0
h

∥∥∥∥2

L2
µ(Ω)

≤
∫ h

0

∥∥∥∥f(s)− f(0)
h

∥∥∥∥
L2(Ω\Ωσ)

∥∥∥∥E(s)−E0
h

∥∥∥∥
L2(Ω\Ωσ)

ds

+
∫ h

0

∥∥∥∥f(s)− f(0)
h

∥∥∥∥
L2(Ωσ)

∥∥∥∥E(s)−E0
h

∥∥∥∥
L2(Ωσ)

ds

≤
∫ h

0

( 1
2ε(Ω \ Ωσ) + 1

2σ

)∥∥∥∥f(s)− f(0)
h

∥∥∥∥2

L2(Ω)
ds+ 1

2

∫ h

0

∥∥∥∥E(s)−E0
h

∥∥∥∥2

L2
ε (Ω\Ωσ)

ds

+ σ

2

∫ h

0

∥∥∥∥E(s)−E0
h

∥∥∥∥2

L2(Ωσ)
ds ∀h ∈ (0, T ),

and consequently, by the Lipschitz continuity of f as well as rearrangement, we arrive at
∥∥∥∥E(h)−E0

h

∥∥∥∥2

L2
ε (Ω\Ωσ)

+
∥∥∥∥E(h)−E0

h

∥∥∥∥2

L2
ε (Ωσ)

+
∥∥∥∥H(h)−H0

h

∥∥∥∥2

L2
µ(Ω)

≤ 1
3hL

2
( 1
ε(Ω \ Ωσ) + 1

σ

)
+
∫ h

0

∥∥∥∥E(s)−E0
h

∥∥∥∥2

L2
ε (Ω\Ωσ)

ds ∀h ∈ (0, T ).

In conclusion, Gronwall’s lemma delivers
∥∥∥∥E(h)−E0

h

∥∥∥∥2

L2
ε (Ω\Ωσ)

+
∥∥∥∥E(h)−E0

h

∥∥∥∥2

L2
ε (Ωσ)

+
∥∥∥∥H(h)−H0

h

∥∥∥∥2

L2
µ(Ω)
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≤ 1
3hL

2
( 1
ε(Ω \ Ωσ) + 1

σ

)
eh (3.79)

for all h ∈ (0, T ). Going back to (3.74) and on account of (3.79), we attain

∥∥∥∥E(t+ h)−E(t)
h

∥∥∥∥2

L2
ε (Ω\Ωσ)

+ σ

∫ t

0

∥∥∥∥E(s+ h)−E(s)
h

∥∥∥∥2

L2(Ωσ)
ds ≤ 1

3hL
2
( 1
ε(Ω \ Ωσ) + 1

σ

)
eh

+ 2L(Ω \ Ωσ)t√
ε(Ω \ Ωσ)

∥∥∥∥ d
dtE

∥∥∥∥
L∞((0,t),L2

ε (Ω\Ωσ))
+ L(Ωσ)2t

σ
∀t ∈ (0, T ), h ∈ (0, T − t). (3.80)

By passing to the limit h→ 0 in the first term of the left-hand side of (3.80), we obtain that∥∥∥∥ d
dtE(t)

∥∥∥∥2

L2
ε (Ω\Ωσ)

≤ 2L(Ω \ Ωσ)T√
ε(Ω \ Ωσ)

∥∥∥∥ d
dtE

∥∥∥∥
L∞((0,T ),L2

ε (Ω\Ωσ))
+ L(Ωσ)2T

σ

≤ 2L(Ω \ Ωσ)2T 2

ε(Ω \ Ωσ) + 1
2

∥∥∥∥ d
dtE

∥∥∥∥2

L∞((0,T ),L2
ε (Ω\Ωσ))

+ L(Ωσ)2T

σ

for a.e. t ∈ (0, T ), from which it follows that∥∥∥∥ d
dtE

∥∥∥∥2

L∞((0,T ),L2
ε (Ω\Ωσ))

≤ 4L(Ω \ Ωσ)2T 2

ε(Ω \ Ωσ) + 2L(Ωσ)2T

σ
. (3.81)

Finally, using again the regularity property E ∈W 1,∞((0, T ),L2(Ω)), Fatou’s lemma yields

∫ t

0

∥∥∥∥ d
dsE(s)

∥∥∥∥2

L2(Ωσ)
ds ≤ lim inf

h→0

∫ t

0

∥∥∥∥E(s+ h)−E(s)
h

∥∥∥∥2

L2(Ωσ)
ds

≤︸︷︷︸
(3.80)&(3.81)

L(Ωσ)2T

σ2 + 2L(Ω \ Ωσ)T
σ
√
ε(Ω \ Ωσ)

√
4L(Ω \ Ωσ)2T 2

ε(Ω \ Ωσ) + 2L(Ωσ)2T

σ
∀t ∈ (0, T ). (3.82)

Step 2: The proof of (3.71) for |Ω \ Ωσ| 6= 0. We start by inserting v = E(s) in (Pec) and
v = Eec(s) in (P) to obtain that∫

Ω\Ωσ
ε

d
dsEec(s) · (Eec(s)−E(s)) dx (3.83)

+
∫

Ω
σEec(s) · (Eec(s)−E(s))−Hec(s) · curl(Eec(s)−E(s)) dx

≤
∫

Ω
f(s) · (Eec(s)−E(s)) dx for a.e. s ∈ (0, T )

and

−
∫

Ω
ε

d
dsE(s) · (Eec(s)−E(s)) dx−

∫
Ω
σE(s) · (Eec(s)−E(s))−H(s) ·curl(Eec(s)−E(s)) dx

≤ −
∫

Ω
f(s) · (Eec(s)−E(s)) dx for a.e. s ∈ (0, T ). (3.84)

Adding the inequalities (3.83) and (3.84) together results in∫
Ω\Ωσ

ε
d
ds(Eec(s)−E(s)) · (Eec(s)−E(s)) dx−

∫
Ωσ
ε

d
dsE(s) · (Eec(s)−E(s)) dx (3.85)
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+
∫

Ω
σ(Eec(s)−E(s)) · (Eec(s)−E(s))− (Hec(s)−H(s)) · curl(Eec(s)−E(s)) dx ≤ 0

for a.e. s ∈ (0, T ). By the Faraday law for the solutions of (Pec) and (P), we have that

curl(Eec(s)−E(s)) = −µ d
ds(Hec(s)−H(s)) for a.e. s ∈ (0, T ), (3.86)

and thus applying (3.86) to (3.85) leads to∫
Ω\Ωσ

ε
d
ds(Eec(s)−E(s)) · (Eec(s)−E(s)) dx (3.87)

+
∫

Ω
µ

d
ds(Hec(s)−H(s)) · (Hec(s)−H(s)) dx

+
∫

Ω
σ(Eec(s)−E(s)) · (Eec(s)−E(s)) dx ≤

∫
Ωσ
ε

d
dsE(s) · (Eec(s)−E(s)) dx

for a.e. s ∈ (0, T ). Since E(0) = Eec(0) = E0 in Ω \Ωσ and H(0) = Hec(0) = H0 in Ω, we find
after integrating (3.87) over (0, t) that

1
2 ‖E(t)−Eec(t)‖2L2

ε (Ω\Ωσ) + 1
2 ‖H(t)−Hec(t)‖2L2

µ(Ω) +
∫ t

0
‖E(s)−Eec(s)‖2L2

σ(Ωσ) ds (3.88)

≤
∫ t

0

∥∥∥∥ε d
dsE(s)

∥∥∥∥
L2(Ωσ)

‖E(s)−Eec(s)‖L2(Ωσ) ds

≤ 1
2σ

∫ t

0

∥∥∥∥ε d
dsE(s)

∥∥∥∥2

L2(Ωσ)
ds+ 1

2

∫ t

0
‖E(s)−Eec(s)‖2L2

σ(Ωσ) ds ∀t ∈ (0, T ),

and consequently

‖E(t)−Eec(t)‖2L2
ε (Ω\Ωσ) + ‖H(t)−Hec(t)‖2L2

µ(Ω) +
∫ t

0
‖E(s)−Eec(s)‖2L2

σ(Ωσ) ds

≤ 1
σ

∫ t

0

∥∥∥∥ε d
dsE(s)

∥∥∥∥2

L2(Ωσ)
ds ≤︸︷︷︸

(2.20)

1
σ
‖ε‖2L∞(Ωσ)3×3

∫ t

0

∥∥∥∥ d
dsE(s)

∥∥∥∥2

L2(Ωσ)
ds ∀t ∈ (0, T ). (3.89)

Eventually, applying (3.82) to (3.89) yields

‖E(t)−Eec(t)‖2L2
ε (Ω\Ωσ) + ‖H(t)−Hec(t)‖2L2

µ(Ω) + ‖E −Eec‖2L2((0,t),L2
σ(Ωσ))

≤
(
L(Ωσ)2T

σ
+ 2L(Ω \ Ωσ)T√

ε(Ω \ Ωσ)

√
4L(Ω \ Ωσ)2T 2

ε(Ω \ Ωσ) + 2L(Ωσ)2T

σ

)∥∥∥∥ εσ
∥∥∥∥2

L∞(Ωσ)3×3
∀t ∈ (0, T ).

In view of the regularity properties (3.65) and (3.66), the above pointwise estimate leads imme-
diately to the uniform estimate (3.71).
Step 3: The proof of (3.72) for Ωσ = Ω. In this case, the inequality (3.80) turns out to be

σ

∫ t

0

∥∥∥∥E(s+ h)−E(s)
h

∥∥∥∥2

L2(Ω)
ds ≤ 1

3hL
2
( 1
ε(Ω \ Ωσ) + 1

σ

)
eh +L2t

σ
,

and so by Fatou’s lemma∫ t

0

∥∥∥∥ d
dsE(s)

∥∥∥∥2

L2(Ω)
ds ≤ lim inf

h→0

∫ t

0

∥∥∥∥E(s+ h)−E(s)
h

∥∥∥∥2

L2(Ω)
ds ≤ L2t

σ2 ∀t ∈ (0, T ). (3.90)
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Now, in the case of Ωσ = Ω, the inequality (3.89) reads as

‖H(t)−Hec(t)‖2L2
µ(Ω) + ‖E −Eec‖2L2((0,t),L2

σ(Ω))

≤ 1
σ
‖ε‖2L∞(Ω)3×3

∫ t

0

∥∥∥∥ d
dsE(s)

∥∥∥∥2

L2(Ω)
ds ∀t ∈ (0, T ). (3.91)

The final claim (3.72) follows therefore by applying (3.90) to (3.91).

3.4 Numerical Verification
We close this chapter with a brief numerical verification of our theoretical findings. In particular,
our numerical test confirms the linear convergence rate with respect to ε|Ωσ for the eddy current
approximation (Theorem 3.17). Note that the following example is of merely academic nature as
the conducting domain is chosen to be equal to the whole domain. So, for the test, we consider
Ω = (−1, 1)3, T = 1, µ ≡ 1, σ ≡ 1, Ωσ = Ω and (0, 0) as an initial value. For the applied current
source, we choose

f : [0, 1]× Ω→ R3, f(t, x1, x2, x3) :=


0, −tx3√

x2
2 + x2

3

,
tx2√
x2

2 + x2
3

 if (x1, x2, x3) ∈ P

0 if (x1, x2, x3) /∈ P,

where P = {(x1, x2, x3) ∈ R3 | 0 ≤ x1 ≤ 0.5, 0.3 ≤
√
x2

2 + x2
3 ≤ 0.5} models a cylindrical pipe

coil. Furthermore, the feasible set is set to be

K = {v ∈ L2(Ω) | |v(x)|∞ ≤ 5 · 10−4 for a.e. x ∈ ω},

with the obstacle region

ω := {(x1, x2, x3) ∈ Ω | −0.25 ≤ x1 ≤ −0.125, |x2| ≤ 0.5, |x3| ≤ 0.5}.

Note that the choice of the bound 5 · 10−4 in the obstacle set K is of no particular importance.
With the choice of our bound, we strive to model the effects of electric shielding. Our numerical
computation is based on the time-discrete (implicit Euler) scheme (PN ) along with the space
discretization consisting of Nédélec’s edge elements (cf. [108] or (4.5)) for E and piecewise
constant elements for H (cf. (4.6)). The corresponding finite element approximations of the
time-discrete problems in (PN ) (with roughly 829.000 degrees of freedom) were solved by the
primal dual active set algorithm (see [75,76]) implemented on the open-source platform FEniCS
[92]. The visualizations were done with ParaView. We note that the primal dual method
approximates the elliptic variational inequalities in (PN ) by equalities on the corresponding
active and inactive sets that are iteratively updated. To verify the convergence of the eddy
current approximation, we use the quantity

Errork = ‖(E,H)k − (Eec,Hec)‖L2((0,T ),L2(Ω))×C([0,T ],L2(Ω))

with (E,H)k being the numerical solution to (P) for ε = 1
2k and (Eec,Hec) being the numerical

solution to the eddy current model (Pec). Furthermore, to check the experimental order of
convergence with respect to ε, we make use of the following quantity:

EOCk = log(Errork+1)− log(Errork)
log(2−(k+1))− log(2−k)

.
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Table 3.1 depicts the computed error and experimental order of convergence for k = 4, . . . , 14.
In agreement with our theoretical finding (Theorem 3.17), we observe that the eddy current
approximation (Pec) becomes closer and closer to (P) as ε decreases. More importantly, the
experimental order of convergence is readily very close to 1, which exactly confirms the linear
convergence rate in the a priori error estimate (3.72).

Table 3.1: Convergence behavior of the eddy current approximation.
ε
σ

1
24

1
25

1
26

1
27

1
28

1
29

1
210

1
211

1
212

1
213

1
214

Errork 1.9 · 10−3 9.9 · 10−4 5.1 · 10−4 2.6 · 10−4 1.3 · 10−4 6.7 · 10−5 3.4 · 10−5 1.7 · 10−5 8.5 · 10−6 4.2 · 10−6 2.1 · 10−6

EOCk 0.9487 0.9512 0.9547 0.9749 0.9866 0.9933 0.9972 0.9984 0.9985 0.9991 0.9999

Figure 3.1: Computed magnetic field from two different views at the last time step together with
the applied circular current and the outlined obstacle.

Figure 3.2: Evolution of the magnetic field at the time steps tn = n
4 with n ∈ {1, 2, 3, 4}.





CHAPTER 4

NUMERICAL ANALYSIS FOR MAXWELL
OBSTACLE PROBLEMS IN ELECTRIC

SHIELDING

The previous chapter established a well-posedness result for the eddy current problem (Pec)
and in particular the problem (P) which was mainly based on the Rothe method, i.e., a dis-
cretization in time. In view of obtaining a fully discrete scheme for (P), it would now be natural
to combine the time-discrete problems (PN ) with a mixed finite element methods in space. In
fact, as described in Section 3.4, we have done precisely that for our numerical test. However,
choosing the time-discrete problems (PN ) as a baseline for further spatial discretization is prob-
lematic since the numerical resolution of the involved elliptic curl-curl variational inequality
requires the use of an iterative solver such as the semi-smooth Newton method or the primal
dual active set strategy. Since the usage of such an iterative solver in every time step leads to
extremely high computational costs, we use this chapter to propose and examine a different fully
discrete approximation for the Maxwell obstacle problem (P).
Let Ω ⊂ R3 be a bounded polyhedral Lipschitz domain representing the hold-all domain. For

our upcoming numerical analysis, we consider a slightly simplified and more specific structure
for the electric obstacle set than in Chapter 3. Namely, we consider a polyhedral Lipschitz
domain ω satisfying ω ⊂ Ω. The subset ω stands for the obstacle region representing the area
shielded by a closed conductive enclosure. Thus, a pointwise constraint is applied to the electric
field in ω leading to the following feasible electric set:

K := {e ∈ L2(Ω) | |e(x)| ≤ d for a.e. x ∈ ω} (4.1)

for some fixed upper bound d ∈ [0,∞). Then, given initial data (E0,H0) ∈ (K ∩H0(curl))×
H(curl) and a source field f ∈ W 1,∞((0, T ),L2(Ω)), the electric obstacle problem is the same
as in Chapter 3 with the specific choice of (4.1) for the obstacle set, i.e.,

∫
Ω
ε

d
dtE(t) · (v −E(t)) + σE(t) · (v −E(t))−H(t) · curl(v −E(t)) dx

≥
∫

Ω
f(t) · (v −E(t)) dx ∀v ∈K ∩H0(curl) for a.e. t ∈ (0, T )

µ
d
dtH(t) + curlE(t) = 0 for a.e. t ∈ (0, T )

(E,H) ∈W 1,∞((0, T ),L2(Ω)×L2(Ω)) ∩ L∞((0, T ),H0(curl)×L2(Ω))
E(t) ∈K for all t ∈ [0, T ] and (E,H)(0) = (E0,H0).

(P)

The existence of a unique solution (E,H) to (P) follows from our previous result Theorem 3.6
by considering the case Ωσ = ∅. As apparent from Theorem 2.13, in the free region Ω \ ω,
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the unique solution of (P) satisfies the Ampère-Maxwell equation and the local magnetic L2-
regularity property curlH ∈ L∞((0, T ),L2(Ω \ ω)). However, in the obstacle region ω, the
L2-regularity of curlH is not a priori guaranteed.
In the following, we aim to construct and analyze an efficient finite element method for (P).

We are not aware of any previous work on the numerical analysis of (P). In particular, our
discretization does not employ the implicit Euler method used in Chapter 3. To describe our
method, let us begin by introducing a partition of the time interval [0, T ] as follows: Given
N ∈ N, we set

τ := T

N
, 0 = t0 < t 1

2
< t1 < . . . < tN− 1

2
< tN = T with tn := nτ ∀n ∈ {0, . . . , N}

and intermediate time steps

tn− 1
2

:= tn + tn−1
2 = tn −

τ

2 ∀n ∈ {1, . . . , N}.

Motivated by the leapfrog (Yee) time-stepping [138] (cf. Li et al. [88,90] and Monk et al. [45,106]),
we consider

- the Ampère-Maxwell variational inequality in (P) at the intermediate time steps tn− 1
2

- the Faraday equation in (P) at the time steps tn
and make use of the following central difference approximations

d
dtE(tn− 1

2
) ≈ E(tn)−E(tn−1)

τ
,

d
dtH(tn) ≈

H(tn+ 1
2
)−H(tn− 1

2
)

τ
,

and mean value approximations

E(tn− 1
2
) ≈ E(tn) +E(tn−1)

2 .

Then, invoking the piecewise constant finite element space DGh (see (4.6)) and the lowest-order
Nédélec finite element space NDh (see (4.5)) for the spatial discretization of the electric and
magnetic fields, respectively, we arrive at

∫
Ω
εδEn

h · (vh −E
n− 1

2
h ) + σE

n− 1
2

h · (vh −E
n− 1

2
h )− curlHn− 1

2
h · (vh −E

n− 1
2

h ) dx

≥
∫

Ω
f
n− 1

2
h · (vh −E

n− 1
2

h ) dx ∀vh ∈K ∩DGh ∀n ∈ {1, . . . , N}∫
Ω
µδH

n+ 1
2

h ·wh +En
h · curlwh dx = 0 ∀wh ∈ NDh ∀n ∈ {1, . . . , N},

(LFN,h)

where

δEn
h := En

h −E
n−1
h

τ
, δH

n+ 1
2

h := H
n+ 1

2
h −Hn− 1

2
h

τ
, E

n− 1
2

h := En
h +En−1

h

2 (4.2)

for all n ∈ {1, . . . , N}. Furthermore, E0
h ∈ DGh, H

1
2
h ∈ NDh, and f

n− 1
2

h ∈ DGh are given
proper finite element approximations specified as in (4.12). Now, to complete the discrete
scheme, we have to properly include the obstacle structure K in the discrete system. We
propose to apply the pointwise electric constraint at the intermediate time steps tn− 1

2
(instead

of at the time steps tn), i.e.,

E
n− 1

2
h ∈K ∩DGh ∀n ∈ {1, . . . , N}. (4.3)
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(E0,H0)

E0
h E1

h E2
h

H
1
2
h H

3
2
h H

5
2
h

Figure 4.1: Schematic drawing of the leapfrog stepping.

The choice (4.3) is of paramount importance to obtain an efficiently computable explicit formula
for the discrete electric field (Theorem 4.3). Thus, differently from the implicit Euler method,
the numerical realization of our discretization does not require an additional nonlinear solver
for solving the underlying VI. Altogether, utilizing

δEn
h = 2

τ

(
E
n− 1

2
h −En−1

h

)
∀n ∈ {1, . . . , N} (4.4)

and (4.2)-(4.3) in (LFN,h), we finally end up with the following fully discrete FEM:

Find {(En− 1
2

h ,H
n+ 1

2
h )}Nn=1 ⊂ (K ∩DGh)×NDh such that∫

Ω

(2ε
τ

+ σ

)
E
n− 1

2
h · (vh −E

n− 1
2

h ) dx

≥
∫

Ω

(
f
n− 1

2
h + curlHn− 1

2
h + 2ε

τ
En−1
h

)
· (vh −E

n− 1
2

h ) dx

∀vh ∈K ∩DGh ∀n ∈ {1, . . . , N}

En
h = 2En− 1

2
h −En−1

h∫
Ω

µ

τ
H

n+ 1
2

h ·wh +En
h · curlwh dx =

∫
Ω

µ

τ
H

n− 1
2

h ·wh dx

∀wh ∈ NDh ∀n ∈ {1, . . . , N}.

(PN,h)

The basic idea of the time-discretization by leapfrog stepping is visualized in Figure 4.1. We
emphasize that, in contrast to the finite element approximation carried out in Section 3.4 where
we used the Nédélec finite elements for the electric field and the piecewise constant finite elements
for the magnetic field, we now use the Nédélec finite elements for the magnetic field and the
piecewise constant finite elements for the electric field.
In the upcoming sections, we analyze the proposed FEM (PN,h) and deliver three main nov-

elties: Well-posedness, stability, and convergence. The well-posedness of (PN,h) is obtained by
Theorem 2.6 due to our particular choice (4.3), which leads to a computable explicit formula for
the (exact) discrete electric field (see Theorem 4.3). The stability analysis relies on an additional
H1(Ω)-regularity assumption for the initial electric field E0. Along with a linear CFL-condition
(4.19), it allows us to prove L2-stability for the discrete solutions and the associated difference
quotients (4.2) (see Proposition 4.6 and Corollary 4.8). Based on Proposition 4.6, our analysis
reveals local L2-stability for {curlHn+1/2

h } in the free region Ω \ ω, while only L1-stability for
{curlHn+1/2

h } is achieved in the obstacle region ω (see Proposition 4.9). This result is some-
how justified by the low regularity issue in (P) pointed out earlier: In the free region Ω \ ω, we
have curlH ∈ L∞((0, T ),L2(Ω \ ω)), but there is no a priori knowledge on the L2-regularity
of curlH in the obstacle region ω (cf. Theorem 2.13). The lack of the global L2-stability for
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the rotational field makes the convergence analysis of (PN,h) rather challenging. Our strategy
to prove a convergence result (Theorem 4.15) comprises two main stages. First, exploiting the
L2-stability estimates (Proposition 4.6 and Corollary 4.8) and the L1-stability result (Proposi-
tion 4.9), we derive a convergence result for (PN,h) towards a weaker system (4.77) involving
smooth test functions v ∈ K ∩ C∞0 (Ω). The second step is to recover the original system (P)
from (4.77) by enlarging the feasible smooth test function set to K ∩H0(curl).
We realize this part through a mollification process, which requires us to construct a molli-

fication operator for H(curl)-fields (see Theorem 4.14) which is able to preserve the specific
constraint appearing in the obstacle set (4.1). The existence of a mollification operator for
H(curl)-fields is ensured by a recent result from Ern and Guermond [50]. The generalization
to constraint preserving mollification, carried out in Section 4.3.1, uses tools from geometrical
analysis and calls for a modification of the techniques presented in [50].
Let us now present the basic assumption for our analysis.

Assumption 4.1. There exist a family of Lipschitz polyhedral domains {Ωj}j0j=1 in Ω and a
subfamily {Ωω

j }
l0
j=1 ⊂ {Ωj}j0j=1 such that

Ωi ∩ Ωj = ∅ ∀i 6= j ∈ {1, . . . , j0}, Ω =
j0⋃
j=1

Ωj , ω =
l0⋃
j=1

Ωω
j .

All material parameters are assumed to be piecewise constants, i.e., there exist real constants
cεj , c

µ
j > 0 and cσj ≥ 0 such that

ε(x) = cεj , µ(x) = cµj , σ(x) = cσj for a.e. x ∈ Ωj and every j ∈ {1, . . . , j0}.

Furthermore, we denote the lower bounds for ε and µ, respectively, by ε, µ ∈ (0,∞), i.e., ε(x) ≥ ε
and µ(x) ≥ µ hold for a.e. x ∈ Ω.

4.1 Well-posedness
In all what follows, let Assumption 4.1 be satisfied. Let {Th}h>0 denote a quasi-uniform family
of triangulations of Ω with h > 0 standing for the largest diameter of T ∈ Th. In particular, it
holds that

Ω =
⋃
T∈Th

T ∀h > 0.

The triangulation is chosen such that, for every h > 0, there exists a subfamily T ωh of Th with
the property

ω =
⋃

T∈T ω
h

T,

and that ε, µ and σ are constant in every T ∈ Th. We denote the Nédélec finite element space
of the first family [108] (cf. [32]) by

NDh := {vh ∈H(curl) | vh|T = aT + bT × · for some aT , bT ∈ R3 ∀T ∈ Th}, (4.5)

and the piecewise constant finite element space by

DGh := {wh ∈ L2(Ω) | wh|T = aT for some aT ∈ R3 ∀T ∈ Th}. (4.6)
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Let us now introduce the standard L2(Ω)-orthogonal projector onto DGh byQh : L2(Ω)→ DGh

defined by
Qhv =

∑
T∈Th

χT
1
|T |

∫
T
v dx ∀v ∈ L2(Ω), (4.7)

where χT : R3 → {0, 1} denotes the characteristic function of T . For every v ∈ L2(Ω), it is
well-known that Qhv → v in L2(Ω) as h→ 0. Especially, if v ∈H1(Ω), we obtain convergence
with a linear rate, i.e., there exists a constant C > 0, s.t.

‖Qhv − v‖L2(Ω) ≤ Ch‖v‖H1(Ω) ∀h > 0 ∀v ∈H1(Ω). (4.8)

Further important properties of Qh : L2(Ω)→ DGh are summarized in the following lemma:

Lemma 4.2. Let Assumption 4.1 hold. Then, Qh : L2(Ω)→ DGh satisfies

v ∈ L2(Ω) ⇒ ‖Qhv‖L2(Ω) ≤ ‖v‖L2(Ω) ∀h > 0 (4.9)
v ∈K ⇒ Qhv ∈K ∩DGh ∀h > 0 (4.10)

v ∈ C0,1(Ω) ⇒ ‖Qhv − v‖L∞(Ω) ≤ Lip(v)h ∀h > 0, (4.11)

where Lip(v) > 0 denotes the Lipschitz constant of v ∈ C0,1(Ω).

Proof. The first property (4.9) is an immediate consequence of the definition. Suppose that
v ∈ L2(Ω) satisfies |v(x)| ≤ d for a.e. x ∈ ω. Then, for almost every y ∈ ω, it follows that

|Qhv(y)| =

∣∣∣∣∣∣
∑
T∈Th

χT (y) 1
|T |

∫
T
v dx

∣∣∣∣∣∣ ≤
∑
T∈T ω

h

χT (y) 1
|T |

∫
T
|v|dx ≤ d

∑
T∈T ω

h

χT (y) = d.

In conclusion, (4.10) is valid. Now, suppose that v ∈ C0,1(Ω). Then,

‖Qhv − v‖L∞(Ω) = ess sup
y∈Ω

∣∣∣∣∣∣
∑
T∈Th

χT (y) 1
|T |

∫
T
v(x) dx− v(y)

∣∣∣∣∣∣
≤ ess sup

y∈Ω

∑
T∈Th

χT (y) 1
|T |

∫
T
|v(x)− v(y)| dx ≤ Lip(v)h.

This completes the proof.

Let us now state the initial discrete values and right-hand side data involved in (PN,h):

f
n− 1

2
h := Qhf(tn− 1

2
), E0

h = QhE0, H
1
2
h = ΠhH0 ∀n ∈ {1, . . . , N} ∀h > 0, (4.12)

where Πh : H(curl)→ NDh denotes the classical Hilbert projection.

Theorem 4.3. Let Assumption 4.1 hold. Then, for every N ∈ N and h > 0, the fully dis-
crete problem (PN,h) admits a unique solution {(En− 1

2
h ,H

n+ 1
2

h )}Nn=1 ⊂ (K ∩DGh) ×NDh. In
particular, En− 1

2
h explicitly comes as

E
n− 1

2
h =


dg

n− 1
2

h

|gn−
1
2

h |
onMn− 1

2
h

(2ε
τ

+ σ

)−1
g
n− 1

2
h on Ω \Mn− 1

2
h ,

(4.13)
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with right-hand sides and strict superlevel sets

g
n− 1

2
h := f

n− 1
2

h + curlHn− 1
2

h + 2ε
τ
En−1
h and Mn− 1

2
h :=

{
x ∈ ω

∣∣∣∣ (2ε
τ

+ σ

)−1
|gn−

1
2

h (x)| > d

}
.

Proof. Let n ∈ {1, . . . , N} be arbitrarily fixed. We assume that (En−1
h ,H

n− 1
2

h ) is already com-
puted in agreement with (PN,h). By virtue of Theorem 2.6, we obtain the existence of a unique
solution En− 1

2
h ∈K ∩DGh to the L2(Ω)-elliptic variational inequality∫

Ω

(2ε
τ

+ σ

)
E
n− 1

2
h · (vh −E

n− 1
2

h ) dx ≥
∫

Ω
g
n− 1

2
h · (vh −E

n− 1
2

h ) dx ∀vh ∈K ∩DGh . (4.14)

The discrete magnetic field Hn+ 1
2

h ∈ NDh is then obtained by the Lax-Milgram lemma since
‖ · ‖L2(Ω) and ‖ · ‖H(curl) are equivalent norms in the finite-dimensional space NDh. Let us now
verify the explicit formula (4.13). Let vh ∈K ∩DGh. First, it holds that

∫
M

n− 1
2

h

∣∣∣∣∣∣
d
(

2ε
τ + σ

)
|gn−

1
2

h |
− 1

∣∣∣∣∣∣ gn−
1
2

h ·

vh − dg
n− 1

2
h

|gn−
1
2

h |

 dx (4.15)

=
∫
M

n− 1
2

h

∣∣∣∣∣∣
d
(

2ε
τ + σ

)
|gn−

1
2

h |
− 1

∣∣∣∣∣∣ gn−
1
2

h · vh︸ ︷︷ ︸
≤d|g

n− 1
2

h
|

dx−
∫
M

n− 1
2

h

∣∣∣∣∣∣
d
(

2ε
τ + σ

)
|gn−

1
2

h |
− 1

∣∣∣∣∣∣ d|gn−
1
2

h |dx ≤ 0.

Since
d
(

2ε
τ + σ

)
|gn−

1
2

h |
− 1 = d(

2ε
τ + σ

)−1
|gn−

1
2

h |
− 1 < 0 onMn− 1

2
h ,

multiplying (4.15) by a sign implies

∫
M

n− 1
2

h

d
(

2ε
τ + σ

)
|gn−

1
2

h |
− 1

 gn− 1
2

h ·

vh − dg
n− 1

2
h

|gn−
1
2

h |

 dx ≥ 0. (4.16)

Now, rearrangement in (4.16) yields

∫
M

n− 1
2

h

(2ε
τ

+ σ

)
dg

n− 1
2

h

|gn−
1
2

h |
·

vh − dg
n− 1

2
h

|gn−
1
2

h |

 dx ≥
∫
M

n− 1
2

h

g
n− 1

2
h ·

vh − dg
n− 1

2
h

|gn−
1
2

h |

 dx. (4.17)

By construction, for the set Ω \ Mn− 1
2

h there is nothing to show. As a conclusion, En− 1
2

h as
stated in (4.13), is the unique solution to (4.14).

4.2 Stability
From the classical inverse estimate for finite-dimensional subspaces of H1(Ω) (see [2, Theorem
1.3]) and the continuous embedding H1(Ω) ↪→ H(curl), we obtain an inverse estimate for the
space NDh. To be specific, there exists a constant Cinv > 0 such that

‖ curlv‖L2(Ω) ≤
Cinv
h
‖v‖L2(Ω) ∀v ∈ NDh . (4.18)



4.2 Stability 53

Assumption 4.4. We require the following growth condition on the time-discretization param-
eter and regularity of the initial data .
(i) The linear CFL-condition

τ ≤ 1
2cνCinv

h (4.19)

holds true. Here, cν := 1/√εµ denotes the uniform lower bound for the wave propagation
speed in Ω.

(ii) The initial electromagnetic field (E0,H0) ∈ (K ∩H0(curl)) × H(curl) is assumed to
additionally satisfy E0 ∈H1(Ω).

Both the CFL-condition (4.19) (see also [115]) and E0 ∈ H1(Ω) serve as the fundaments for
our stability analysis. In view of (4.8), the corresponding discrete initial value E0

h = QhE0
satisfies

‖E0
h −E0‖L2(Ω) ≤ Ch‖E0‖H1(Ω) ∀h > 0. (4.20)

In the sequel, we mainly take advantage of the structure (LFN,h), which is by the construction
automatically satisfied by the unique solution to (PN,h).

Lemma 4.5. Let Assumption 4.1 and Assumption 4.4 hold. Then, there exists a constant C > 0
such that for all h > 0 and N ∈ N the unique solution to (PN,h) satisfies

‖δE1
h‖L2(Ω) + ‖δH

3
2
h ‖L2(Ω) ≤ C. (4.21)

Proof. Let h > 0 and N ∈ N be arbitrarily fixed. We start by setting vh = 0 in (LFN,h) to
obtain that ∫

Ω
εδE1

h ·E
1
2
h + σE

1
2
h ·E

1
2
h − curlH

1
2
h ·E

1
2
h dx ≤

∫
Ω
f

1
2
h ·E

1
2
h dx. (4.22)

Multiplying the above inequality by τ , applying (4.4), and using that σ is nonnegative implies,∫
Ω

2ε(E
1
2
h −E

0
h) ·E

1
2
h − τ curlH

1
2
h ·E

1
2
h dx ≤

∫
Ω
τf

1
2
h ·E

1
2
h dx,

from which we deduce that

2ε‖E
1
2
h ‖

2
L2(Ω) ≤ ‖τf

1
2
h + 2εE0

h + τ curlH
1
2
h ‖L2(Ω)‖E

1
2
h ‖L2(Ω). (4.23)

Now, by construction of f
1
2
h ,H

1
2
h and E0

h, the first norm on the right-hand side of (4.23) is
uniformly bounded. As a consequence, it follows

‖E
1
2
h ‖L2(Ω) ≤ C (4.24)

with C > 0, independent of N and h. Let us mention that according to Assumption 4.4 along
with (4.10) and (4.12), the field E0

h is admissible, i.e., E0
h ∈ K ∩ DGh. Thus, we may set

vh = E0
h in (LFN,h) to conclude that δE1

h admits a uniform bound in L2(Ω). This way we
receive after multiplication with − 2

τ together with applying (4.4) that∫
Ω
εδE1

h · δE1
h + σE

1
2
h · δE

1
h − curlH

1
2
h · δE

1
h dx ≤

∫
Ω
f

1
2
h · δE

1
h dx

and therefore

ε‖δE1
h‖2L2(Ω) ≤ ‖f

1
2
h − σE

1
2
h + curlH

1
2
h ‖L2(Ω)‖δE1

h‖L2(Ω).
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Utilizing (4.24) then leads to
‖δE1

h‖2L2(Ω) ≤ C (4.25)

with C > 0, independent of N and h. Let us now prove that δH
3
2
h admits a uniform bound in

L2(Ω). We start by setting wh = δH
3
2
h in (LFN,h) to derive∫

Ω
µδH

3
2
h · δH

3
2
h +E1

h · curl δH
3
2
h dx = 0. (4.26)

To complete the proof, we employ (4.26) to estimate

µ‖δH
3
2
h ‖

2
L2(Ω) ≤

∣∣∣∣∫
Ω
E1
h · curl δH

3
2
h dx

∣∣∣∣
≤︸︷︷︸

(2.19)

∣∣∣∣∫
Ω

(E1
h −E0

h) · curl δH
3
2
h dx

∣∣∣∣+ ∣∣∣∣∫
Ω

(E0
h −E0) · curl δH

3
2
h dx

∣∣∣∣+ ∣∣∣∣∫
Ω

curlE0 · δH
3
2
h dx

∣∣∣∣
≤ τ‖δE1

h‖L2(Ω)‖ curl δH
3
2
h ‖L2(Ω) + ‖E0

h −E0‖L2(Ω)‖ curl δH
3
2
h ‖L2(Ω)

+ ‖ curlE0‖L2(Ω)‖δH
3
2
h ‖L2(Ω)

≤︸︷︷︸
(4.18)

(
τ‖δE1

h‖L2(Ω)
Cinv
h

+ ‖E0
h −E0‖L2(Ω)

Cinv
h

+ ‖ curlE0‖L2(Ω)

)
‖δH

3
2
h ‖L2(Ω)

≤︸︷︷︸
(4.19),(4.20)

(√
ε
√
µ

2 ‖δE1
h‖L2(Ω) + CCinv‖E0‖H1(Ω) + ‖ curlE0‖L2(Ω)

)
‖δH

3
2
h ‖L2(Ω)

≤︸︷︷︸
(4.25)

C‖δH
3
2
h ‖L2(Ω)

with a constant C > 0, independent of N and h.

Proposition 4.6. Let Assumption 4.1 and Assumption 4.4 be satisfied. Then, there exists a
constant C > 0 such that for every N ∈ N with N ≥ 2 and h > 0 the unique solution to (PN,h)
satisfies

max
n∈{2,...,N}

[
‖δEn

h‖L2(Ω) + ‖δHn− 1
2

h ‖L2(Ω)

]
≤ C. (4.27)

Proof. Let N ∈ N with N ≥ 2 and h > 0 be arbitrarily fixed. We choose n0 ∈ {2, . . . , N} and
n ∈ {2, . . . , n0}. Let us first note that it holds

E
n− 3

2
h −En− 1

2
h = En−1

h +En−2
h

2 −
En
h +En−1

h

2 = −τ2 (δEn
h + δEn−1

h ). (4.28)

By construction, both the fields En− 1
2

h and En− 3
2

h are admissible, i.e., they belong to K ∩DGh.
Hence, we are able to test with En− 3

2
h (resp. with En− 1

2
h ) in the n-th inequality of (LFN,h) (resp.

the (n− 1)-th inequality of (LFN,h)) and thus obtain by multiplication with − 2
τ together with

(4.28) that∫
Ω
εδEn

h · (δEn
h + δEn−1

h ) + σE
n− 1

2
h · (δEn

h + δEn−1
h )− curlHn− 1

2
h · (δEn

h + δEn−1
h ) dx

≤
∫

Ω
f
n− 1

2
h · (δEn

h + δEn−1
h ) dx (4.29)
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and

−
∫

Ω
εδEn−1

h · (δEn
h + δEn−1

h ) + σE
n− 3

2
h · (δEn

h + δEn−1
h )− curlHn− 3

2
h · (δEn

h + δEn−1
h ) dx

≤ −
∫

Ω
f
n− 3

2
h · (δEn

h + δEn−1
h ) dx. (4.30)

Adding together (4.29) and (4.30) as well as using σ being nonnegative yields∫
Ω
ε(δEn

h − δEn−1
h ) · (δEn

h + δEn−1
h )− curl(Hn− 1

2
h −Hn− 3

2
h ) · (δEn

h + δEn−1
h ) dx

≤
∫

Ω
(fn−

1
2

h − fn−
3
2

h ) · (δEn
h + δEn−1

h ) dx. (4.31)

We sum up the inequality (4.31) over {2, . . . , n0}:

n0∑
n=2

∫
Ω
ε(δEn

h − δEn−1
h ) · (δEn

h + δEn−1
h ) dx−

n0∑
n=2

∫
Ω

curl(Hn− 1
2

h −Hn− 3
2

h ) · (δEn
h + δEn−1

h ) dx

≤
n0∑
n=2

∫
Ω

(fn−
1
2

h − fn−
3
2

h ) · (δEn
h + δEn−1

h ) dx. (4.32)

For the left-hand side of (4.32), we have
n0∑
n=2

∫
Ω
ε(δEn

h − δEn−1
h ) · (δEn

h + δEn−1
h ) dx =

n0∑
n=2
‖δEn

h‖2L2
ε (Ω) − ‖δE

n−1
h ‖2L2

ε (Ω) (4.33)

= ‖δEn0
h ‖

2
L2
ε (Ω) − ‖δE

1
h‖2L2

ε (Ω)

and

−
n0∑
n=2

∫
Ω

curl(Hn− 1
2

h −Hn− 3
2

h ) · (δEn
h + δEn−1

h ) dx (4.34)

=− τ
n0∑
n=2

∫
Ω

curl δHn− 1
2

h · (δEn
h + δEn−1

h ) dx

=− τ
n0−1∑
n=2

∫
Ω

curl δHn− 1
2

h · δEn
h dx− τ

∫
Ω

curl δHn0− 1
2

h · δEn0
h dx

− τ
n0∑
n=3

∫
Ω

curl δHn− 1
2

h · δEn−1
h dx− τ

∫
Ω

curl δH
3
2
h · δE

1
h dx

=− τ
n0−1∑
n=2

∫
Ω

curl(δHn+ 1
2

h + δH
n− 1

2
h ) · δEn

h dx− τ
∫

Ω
curl δHn0− 1

2
h · δEn0

h dx

− τ
∫

Ω
curl δH

3
2
h · δE

1
h dx.

For the first summand on the right-hand side of (4.34),

− τ
n0−1∑
n=2

∫
Ω

curl(δHn+ 1
2

h + δH
n− 1

2
h ) · δEn

h dx (4.35)

=−
n0−1∑
n=2

∫
Ω

curl(δHn+ 1
2

h + δH
n− 1

2
h ) ·En

h dx+
n0−1∑
n=2

∫
Ω

curl(δHn+ 1
2

h + δH
n− 1

2
h ) ·En−1

h dx =: R.
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Testing with wh = δH
n+ 1

2
h + δH

n− 1
2

h in the n-th (resp. the (n− 1)-th) equality of (LFN,h), we
continue with

R =
n0−1∑
n=2

∫
Ω
µδH

n+ 1
2

h · (δHn+ 1
2

h + δH
n− 1

2
h ) dx−

n0−1∑
n=2

∫
Ω
µδH

n− 1
2

h · (δHn+ 1
2

h + δH
n− 1

2
h ) dx

=
n0−1∑
n=2

∫
Ω
µ(δHn+ 1

2
h − δHn− 1

2
h ) · (δHn+ 1

2
h + δH

n− 1
2

h ) dx (4.36)

=
n0−1∑
n=2
‖δHn+ 1

2
h ‖2L2

µ(Ω) − ‖δH
n− 1

2
h ‖2L2

µ(Ω) = ‖δHn0− 1
2

h ‖2L2
µ(Ω) − ‖δH

3
2
h ‖

2
L2
µ(Ω).

Let us now consider the inverse estimate (4.18) and the imposed CFL-condition (4.19) to obtain
that

τ

∫
Ω

curl δHn0− 1
2

h · δEn0
h dx ≤ τ‖ curl δHn0− 1

2
h ‖L2(Ω)‖δEn0

h ‖L2(Ω) (4.37)

≤τ
h

Cinv√
ε
√
µ
‖δHn0− 1

2
h ‖L2

µ(Ω)‖δEn0
h ‖L2

ε (Ω) ≤
1
2‖δH

n0− 1
2

h ‖L2
µ(Ω)‖δEn0

h ‖L2
ε (Ω)

≤1
4‖δH

n0− 1
2

h ‖2L2
µ(Ω) + 1

4‖δE
n0
h ‖

2
L2
ε (Ω).

By an analogous argumentation, we infer that

τ

∫
Ω

curl δH
3
2
h · δE

1
h dx ≤ 1

4‖δH
3
2
h ‖

2
L2
µ(Ω) + 1

4‖δE
1
h‖2L2

ε (Ω). (4.38)

Finally let us estimate the right-hand side of (4.32) as follows:
n0∑
n=2

∫
Ω

(fn−
1
2

h − fn−
3
2

h ) · (δEn
h + δEn−1

h ) dx ≤
n0∑
n=2
‖fn−

1
2

h − fn−
3
2

h ‖L2(Ω)‖δEn
h + δEn−1

h ‖L2(Ω)

≤
n0∑
n=2

4N
ε
‖fn−

1
2

h − fn−
3
2

h ‖2L2(Ω) +
n0∑
n=2

ε

16N
(
‖δEn

h‖L2(Ω) + ‖δEn−1
h ‖L2(Ω)

)2
(4.39)

≤︸︷︷︸
(4.9)

4L2T 2

ε
+

n0∑
n=2

ε

8N
(
‖δEn

h‖2L2(Ω) + ‖δEn−1
h ‖2L2(Ω)

)

≤ 4L2T 2

ε
+

n0∑
n=1

1
4N ‖δE

n
h‖2L2

ε (Ω) ≤
4L2T 2

ε
+ 1

4‖δE
n0
h ‖

2
L2
ε (Ω) +

n0−1∑
n=1

1
4N ‖δE

n
h‖2L2

ε (Ω),

where L > 0 denotes the Lipschitz constant of f ∈W 1,∞((0, T ),L2(Ω)). Applying (4.33)-(4.39)
to (4.32) now yields

1
2‖δE

n0
h ‖

2
L2
ε (Ω) + 3

4‖δH
n0− 1

2
h ‖2L2

µ(Ω)

≤4L2T 2

ε
+ 5

4‖δE
1
h‖2L2

ε (Ω) + 5
4‖δH

3
2
h ‖

2
L2
µ(Ω) +

n0−1∑
n=1

1
4N ‖δE

n
h‖2L2

ε (Ω).

The discrete version of the Gronwall lemma (see Lemma 3.4) together with Lemma 4.5 then
leads to

‖δEn0
h ‖

2
L2
ε (Ω) + ‖δHn0− 1

2
h ‖2L2

µ(Ω) ≤ C exp
(
n0−1∑
n=1

1
N

)
≤ C exp(1),
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or equivalently

‖δEn0
h ‖L2(Ω) + ‖δHn0− 1

2
h ‖L2(Ω) ≤ C

with a generic constant C > 0, independent of N and h. This completes the proof.

Remark 4.7. We underline that (4.27) does not guarantee the stability of ‖δHN+ 1
2

h ‖L2(Ω). The
stability of this term can be obtained by performing one additional step N + 1 in (LFN,h) under
an appropriate choice for fN+ 1

2
h . However, as we shall see in the upcoming section, the estimate

(4.27) is readily sufficient for proving the convergence of the proposed scheme (LFN,h), i.e.,
without performing one additional step N + 1 in (LFN,h).

Corollary 4.8. Let Assumption 4.1 and Assumption 4.4 be satisfied. Then, there exists a
constant C > 0 such that for every N ∈ N with N ≥ 2 and h > 0 the unique solution to (PN,h)
satisfies

max
n∈{1,...,N}

[
‖En

h‖L2(Ω) + ‖Hn− 1
2

h ‖L2(Ω)

]
≤ C. (4.40)

Proof. Using the reversed triangle inequality, it follows by the definition of the difference quo-
tients (4.2) together with Proposition 4.6 and Lemma 4.5 that

1
τ

(
‖En

h‖L2(Ω) − ‖En−1
h ‖L2(Ω)

)
≤ ‖δEn

h‖L2(Ω) ≤ C ∀n ∈ {1, . . . , N},

which implies
‖En

h‖L2(Ω) ≤ τC + ‖En−1
h ‖L2(Ω) ∀n ∈ {1, . . . , N}.

Using the same argumentation for ‖Hn− 1
2

h ‖L2(Ω), we derive iteratively that

‖En
h‖L2(Ω) + ‖Hn− 1

2
h ‖L2(Ω) ≤nτC + ‖E0

h‖L2(Ω) + (n− 1)τC + ‖H
1
2
h ‖L2(Ω) (4.41)

≤2TC + ‖E0
h‖L2(Ω) + ‖H

1
2
h ‖L2(Ω) ≤ C ∀n ∈ {1, . . . , N}

with a generic constant C > 0, independent of N and h.

Proposition 4.9. Let Assumption 4.1 and Assumption 4.4 be satisfied. Then, there exists a
constant C > 0 such that for every N ∈ N with N ≥ 2 and h > 0 the unique solution to (PN,h)
satisfies

max
n∈{1,...,N−1}

[
‖ curlHn− 1

2
h ‖L1(ω) + ‖ curlHn− 1

2
h ‖L2(Ω\ω)

]
≤ C. (4.42)

Proof. Let n ∈ {1, . . . , N − 1} be arbitrarily fixed. We define

z
n− 1

2
h (x) :=


d curlHn− 1

2
h (x)

| curlHn− 1
2

h (x)|
if curlHn− 1

2
h (x) 6= 0

0 if curlHn− 1
2

h (x) = 0,

(4.43)

z
n− 1

2
h,ω :=

 z
n− 1

2
h on ω

E
n− 1

2
h on Ω \ ω.
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Obviously, zn−
1
2

h,ω is an element of the set K ∩ DGh, and we can therefore set vh = z
n− 1

2
h,ω in

(LFN,h) to obtain
∫
ω
εδEn

h · (z
n− 1

2
h −En− 1

2
h ) + σE

n− 1
2

h · (zn−
1
2

h −En− 1
2

h )− curlHn− 1
2

h · (zn−
1
2

h −En− 1
2

h ) dx

≥
∫
ω
f
n− 1

2
h · (zn−

1
2

h −En− 1
2

h ) dx. (4.44)

Altogether, in view of Proposition 4.6 and Corollary 4.8 as well as for a generic constant C > 0,
independent of N and h, we obtain that

d‖ curlHn− 1
2

h ‖L1(ω) =︸︷︷︸
(4.43)

∫
ω

curlHn− 1
2

h · zn−
1
2

h dx

≤︸︷︷︸
(4.44)

∫
ω

(
εδEn

h + σE
n− 1

2
h − fn−

1
2

h

)
· (zn−

1
2

h −En− 1
2

h ) dx+
∫
ω

curlHn− 1
2

h ·En− 1
2

h dx

≤ C +
∫
ω

curlHn− 1
2

h ·En− 1
2

h dx

= C + 1
2

∫
ω

curlHn− 1
2

h ·En
h dx+ 1

2

∫
ω

curlHn− 1
2

h ·En−1
h dx

=︸︷︷︸
(LFN,h)

C − 1
2

∫
ω
µδH

n+ 1
2

h ·Hn− 1
2

h dx− 1
2

∫
ω
µδH

n− 1
2

h ·Hn− 1
2

h dx ≤ C.

Now, to obtain a bound for the term ‖ curlHn− 1
2

h ‖L2(Ω\ω), we define

z
n− 1

2
h,Ω\ω :=

 E
n− 1

2
h on ω

curlHn− 1
2

h +En− 1
2

h on Ω \ ω.

Then, zn−
1
2

h,Ω\ω is also an element of the setK∩DGh, and so using it as a test function in (LFN,h)
leads to

‖ curlHn− 1
2

h ‖2L2(Ω\ω) ≤
∫

Ω\ω

(
εδEn

h + σE
n− 1

2
h − fn−

1
2

h

)
· curlHn− 1

2
h dx

≤ C‖ curlHn− 1
2

h ‖L2(Ω\ω),

again for a constant C > 0, independent of N and h, where we have used Proposition 4.6 and
Corollary 4.8 for the last inequality. This completes the proof.

4.3 Convergence

Given N ∈ N with N ≥ 2 and h > 0, we consider the solution {(En− 1
2

h ,H
n+ 1

2
h )}Nn=1 to (PN,h).

Invoking those finite element solutions, we set up linear and piecewise constant interpolations

EN,h,EN,h, f̂N,h : [0, T ]→ DGh

ÊN,h : [0, T ]→K ∩DGh

HN,h, ĤN,h : [0, T ]→ NDh,
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which, for t ∈ [0, T ], are defined by

EN,h(t) =
{
E0
h if t = 0

En−1
h + (t− tn−1)δEn

h if t ∈ (tn−1, tn],
(4.45)

HN,h(t) =


H

1
2
h if t = 0

H
n− 1

2
h + (t− tn−1)δHn+ 1

2
h if t ∈ (tn−1, tn] for n ∈ {1, . . . , N − 1}

H
N− 1

2
h if t ∈ (tn−1, tn] for n = N,

and

ÊN,h(t) =

E
0
h if t = 0

E
n− 1

2
h if t ∈ (tn−1, tn],

(4.46)

ĤN,h(t) =


H

1
2
h if t = 0

H
n− 1

2
h if t ∈ (tn−1, tn] for n ∈ {1, . . . , N − 1}

H
N− 3

2
h if t ∈ (tn−1, tn] for n = N,

EN,h(t) =
{
E0
h if t = 0

En
h if t ∈ (tn−1, tn],

f̂N,h(t) =

f
1
2
h if t = 0
f
n− 1

2
h if t ∈ (tn−1, tn].

Note that, since the pointwise electric constraint is applied at the intermediate time steps tn− 1
2

instead of at the time steps tn, only the range of the piecewise constant interpolation ÊN,h is
contained in the obstacle set K. By the above construction and in view of (LFN,h) as well as
(4.3), it then follows that

∫
Ω
ε

d
dtEN,h(t) · (vh − ÊN,h(t)) + σÊN,h(t) · (vh − ÊN,h(t))

− curl ĤN,h(t) · (vh − ÊN,h(t)) dx

≥
∫

Ω
f̂N,h(t) · (vh − ÊN,h(t)) dx ∀vh ∈K ∩DGh ∀t ∈

(
0, T − T

N

]
∫

Ω
µ

d
dtHN,h(t) ·wh +EN,h(t) · curlwh dx = 0 ∀wh ∈ NDh ∀t ∈

(
0, T − T

N

]
ÊN,h(t) ∈K ∩DGh ∀t ∈ [0, T ].

(P̃N,h)

The convergence analysis of the scheme (P̃N,h) turns out to be challenging due to the lack
of L∞((0, T ),L2(ω))-boundedness of curl ĤN,h. Provided the weaker boundedness in the space
L∞((0, T ),L1(ω)) (see Proposition 4.9), our first step consists of bypassing the missing bounded-
ness by exploitingQhv for functions v ∈ C∞0 (Ω). In this way, we are able to derive a convergence
result towards a solution of a time integrated version of the variational inequality in (P) with
test functions v ∈K∩C∞0 (Ω). The final step is to enlarge the test function set toK∩H0(curl),
which requires the construction of a constraint preserving mollification operator.

4.3.1 Constraint Preserving Mollification

Recently, Ern and Guermond [50] established novel mollification operators with pivotal com-
muting and convergence properties (cf. also [40] and [51]). Their construction is based on the
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ω

Ω

Figure 4.2: Schematic drawing of O (gray) and its inwardly transversal vector field.

use of a transversal vector field [72] along with a cut-off strategy in a careful combination with
mollification techniques. Our goal is to extend [50] to constraint preserving mollification oper-
ators in the sense that the mollification of a function in K lies as well in K. The extension is
mainly complicated due to the fact that there is no a priori knowledge of how the obstacle region
ω behaves under the expansion as in [50]. We tackle this issue by modifying the mollification
operator in [50] with a certain scaling and by choosing the transversal vector field in a way that
the obstacle set boundary ∂ω is transported inwardly (cf. Figure 4.2). Given v ∈ L1(Ω) we
denote its zero-extension to the whole space R3 by ṽ ∈ L1(R3). Furthermore, let

ρ : R3 → R, ρ(x) =

η exp
(
− 1

1− |x|2
)

if |x| < 1

0 if |x| ≥ 1,

where η > 0 is chosen such that∫
R3
ρ(x) dx =

∫
B(0,1)

ρ(x) dx = 1. (4.47)

At first, since Ω is bounded, there exist some xΩ ∈ R3 and a radius rΩ > 0 such that
Ω ⊂ B(xΩ, rΩ). Then

O := B(xΩ, rΩ) \
(
Ω \ ω

)
=
(
B(xΩ, rΩ) \ Ω

)
∪ ω

represents a bounded and open set with Lipschitz boundary. Let us now introduce the notion
of a transversal vector field. Here, we present the definition in its full generality, in particular,
we do not restrict to Lipschitz domains but use sets of locally finite perimeter instead. A
Lebesgue-measurable set U ⊂ Rd, d ∈ N, is said to have locally finite perimeter, if

χU ∈ BVloc(Rd). (4.48)

From the theory of functions with bounded variation (cf. [52, Chapter 5]), specifically the Gauss-
Green Theorem [52, Theorem 5.16 and Theorem 5.23], we can characterize (4.48) equivalently
as

|∂?U ∩K| <∞ for every compact set K ⊂ Rd,
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U U

Figure 4.3: Part of a domain U with its discontinuous outward unit normal field (left) and with
an example of a (normalized and smooth) outwardly transversal vector field (right).

where the measure-theoretic boundary ∂?U of U is defined by

∂?U :=
{
x ∈ ∂U | lim sup

r→0+
r−d min {|U ∩B(x, r)| , |Uc ∩B(x, r)|} > 0

}
.

Definition 4.10. Let d ∈ N be given and let U ⊂ Rd be an open set of locally finite perimeter,
with outward unit normal n and surface measure σ.

(i) Given r > 0 and x0 ∈ ∂U , we say that a continuous vector field v : B(x0, r) ∩ ∂U → Rd is
(outwardly) transversal to ∂U near x0, if there exists κ > 0 such that

n(x) · v(x) ≥ κ for σ-a.e. x ∈ B(x0, r) ∩ ∂U . (4.49)

(ii) We say that U has continuous (outwardly) transversal vector fields provided that for every
x0 ∈ U there exists a radius r > 0 and a continuous vector field v : B(x0, r) ∩ ∂U → Rd
which is (outwardly) transversal to ∂U near x0.

(iii) The set U is said to have a continuous (outwardly) globally transversal vector field, if
there exist a continuous vector field V : ∂U → Rd and a constant κ > 0, the transversality
constant of V , such that

n(x) · V (x) ≥ κ for σ-a.e. x ∈ ∂U . (4.50)

The notion of inward transversality is obtained by replacing the outward unit normal n by the
inward unit normal −n, so that (4.49) and (4.50) are, respectively, replaced by

n(x) · v(x) ≤ −κ for σ-a.e. x ∈ B(x0, r) ∩ ∂U
n(x) · V (x) ≤ −κ for σ-a.e. x ∈ ∂U .

We will soon see that it is relevant for us to obtain existence of globally transversal fields
which are already defined on the whole space. The following result (cf. [72, Proposition 2.3
(iv)]) gives a sufficient condition for the existence of such fields.

Proposition 4.11. Let d ∈ N be given and let U ⊂ Rd be an open set of locally finite perimeter
with compact boundary. We assume further that U has locally transversal vector fields and that

|∂?U ∩B(x, r)| > 0 ∀x ∈ ∂U ∀r > 0. (4.51)

Then, there exists X ∈ C∞(Rd) whose restriction to ∂U is globally transversal to ∂U with the
property |X(y)| = 1 for every y ∈ ∂U .
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We refer to Figure 4.3 for a geometric comparison of the outward unit normal and a specific
choice of a (normalized and smooth) outwardly transversal vector field.
In particular, as stated in [72, Corollary 2.13], Lipschitz regularity ensures the existence of a

continuous globally transversal vector field:

Proposition 4.12. Let d ∈ N be given and let U ⊂ Rd be non-empty, open, and bounded. Then,
if the boundary ∂U is Lipschitz, it holds that U is of finite perimeter and U has continuous
outwardly (resp. inwardly) globally transversal vector fields ±V : ∂U → Rd.

Therefore, as a result of Proposition 4.12, the set O admits a continuous inwardly globally
transversal vector field, i.e., there exist a vector field k̂ ∈ C(∂O) and a transversality constant
κ > 0 with the property k̂(x) · n(x) ≤ −κ for a.e. x ∈ ∂O. Here, n denotes the unit normal
vector field pointing outward on O. Now, by the piecewise smoothness of ∂O in combination
with [146, Lemma 5.9.5] and [94, Remark 15.1], the measure-theoretic boundary ∂?O coincides
with ∂O up to a set of (surface-)measure zero, as a result of which we can deduce that

|∂?O ∩B(x, r)| = |∂O ∩B(x, r)| > 0 ∀x ∈ ∂O ∀r > 0, (4.52)

that is, the condition in (4.51) is satisfied. Together with the boundary ∂O being compact, we
are able to apply Proposition 4.11 which implies that there exists a vector field k ∈ C∞(R3)
whose restriction to ∂O is inwardly globally transversal to ∂O with |k(y)| = 1 for every y ∈ ∂O.
By the use of this special vector field, for every δ > 0, we introduce the mapping

θδ : R3 → R3, y 7→ y + δk(y). (4.53)

Lemma 4.13. There exist δ0 > 0 and ζ > 0 such that

θδ(O) +B(0, δζ) ⊂ O ∀δ ∈ (0, δ0).

Proof. As shown in the proof of [72, Proposition 4.15], there exists some δ0,1 > 0 such that

∂θδ(O) = {y + δk(y) | y ∈ ∂O} ∀δ ∈ (0, δ0,1).

As obtained from the proof of Lemma 4.16 in [72], there exists some δ0,2 > 0 such that

H : ∂O × (−δ0,2, δ0,2)→ R3, (x, δ) 7→ y + δk(y)

is a bi-Lipschitz mapping. In particular, with LH denoting the Lipschitz constant of H, it holds
that

|H(y, δ)−H(z, ρ)| ≥ 1
LH
|(y, δ)− (z, ρ)| ∀(y, δ), (z, ρ) ∈ ∂O × (−δ0,2, δ0,2).

Let now δ0 := min{δ0,1, δ0,2} and δ ∈ (0, δ0) be arbitrarily fixed. Given y ∈ ∂O, y + δk(y) ∈
∂θδ(O), and z ∈ ∂O, we have

|y + δk(y)− z| = |H(y, δ)−H(z, 0)| ≥ 1
LH
|(y, δ)− (z, 0)| = 1

LH

√
|y − z|2 + δ2 ≥ 1

LH
δ.

Therefore, dist(∂θδ(O), ∂O) ≥ 1
LH
δ holds for every δ ∈ (0, δ0). Now, [72, Proposition 4.15] yields

that θδ(O) ⊂ O, and therefore the claim follows for ζ := 1
LH

and δ0 as above.
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By Kδ we denote the Jacobian mapping Dθδ : R3 → R3×3. It is known (see [50, p. 59-60])
that there exists a constant cθ > 0 such that for δ > 0 it holds

sup
y∈Ω
‖Kδ(y)− I‖R3×3 ≤ cθδ. (4.54)

We now introduce the following mollification operator:

Kδ : L1(Ω)→ L1(Ω), v 7→ 1
1 + cθδ

∫
B(0,1)

ρ(x)KT
δ (·)ṽ(θδ(·) + δζx) dx, (4.55)

where ṽ ∈ L1(R3) is the zero-extension of v ∈ L1(Ω). In the following theorem, we prove the
main constraint preserving property of the mollification (4.55) relying on the use of the following
positive constants:

ck := max
p∈ω
|k(p)| and λ := dist(ω,R3 \ Ω).

Note that λ > 0 holds true due to ω ⊂ Ω.

Theorem 4.14. For δ ∈ (0, δ0), it holds that

v ∈ L1(Ω) ⇒ Kδv ∈ C∞0 (Ω) and v ∈H0(curl) ⇒ lim
δ→0
‖Kδv − v‖H(curl) = 0. (4.56)

If 0 < δ < min
{
δ0,

λ
ck+ζ

}
, then Kδ satisfies

v ∈K ⇒ Kδv ∈K. (4.57)

Proof. The vector field k is particularly inwardly (globally) transversal for ∂(B(xΩ, rΩ)\Ω). The
proof for (4.56) therefore follows the same arguments as in [50, Lemma 4.1] and [50, Theorem
4.4] together with the fact that 1

1+cθδ → 1 for δ → 0. Let now 0 < δ < min
{
δ0,

λ
ck+ζ

}
. Due to

Lemma 4.13 we know that

θδ(ω) +B(0, δζ) ⊂ O =
(
B(xΩ, rΩ) \ Ω

)
∪ ω. (4.58)

Let us now prove that (4.58) can be refined as

θδ(ω) +B(0, δζ) ⊂ ω. (4.59)

To this aim, we assume the contrary: There exist y ∈ ω and x ∈ B(0, δζ) such that

θδ(y) + x ∈ B(xΩ, rΩ) \ Ω. (4.60)

Then, (4.60) leads to a contradiction as follows:

λ = dist(ω,R3 \ Ω) ≤ dist(ω,θδ(y) + x) = inf
z∈ω
|θδ(y) + x− z| ≤ |θδ(y) + x− y| =︸︷︷︸

(4.53)

|δk(y) + x|

≤ δmax
p∈ω
|k(p)|+ δζ = δ(ck + ζ) < λ,

where the last inequality follows from our particular choice of δ. This concludes (4.59). Let now
v ∈K be given. In view of (4.55) and (4.59), it holds for a.e. y ∈ ω that

|Kδv(y)| =
∣∣∣∣∣ 1
1 + cθδ

∫
B(0,1)

ρ(x)KT
δ (y)ṽ(θδ(y) + δζx) dx

∣∣∣∣∣
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≤ 1
1 + cθδ

∫
B(0,1)

∣∣∣ρ(x)
(
KT
δ (y)− I

)
ṽ(θδ(y) + δζx)

∣∣∣ dx

+ 1
1 + cθδ

∫
B(0,1)

|ρ(x)ṽ(θδ(y) + δζx)| dx

=︸︷︷︸
(4.59)

1
1 + cθδ

∫
B(0,1)

∣∣∣∣ρ(x)
(
KT
δ (y)− I

)
v(θδ(y) + δζx)︸ ︷︷ ︸

∈ω

∣∣∣∣ dx
+ 1

1 + cθδ

∫
B(0,1)

∣∣∣∣ρ(x)v(θδ(y) + δζx)︸ ︷︷ ︸
∈ω

∣∣∣∣ dx
≤︸︷︷︸

v∈K

d

1 + cθδ

∫
B(0,1)

ρ(x)
∥∥∥KT

δ (y)− I
∥∥∥
R3×3

dx+ d

1 + cθδ

∫
B(0,1)

ρ(x) dx

≤︸︷︷︸
(4.47),(4.54)

d

(
cθδ

1 + cθδ
+ 1

1 + cθδ

)
= d.

In conclusion, (4.57) is valid.

4.3.2 Convergence Result

In the following, let N = N(h) ∈ N denote a natural number depending on h > 0 with the
property N(h)→∞ as h→ 0 maintaining the linear CFL-condition (4.19).

Theorem 4.15. Let Assumption 4.1 and Assumption 4.4 hold. Then

(EN,h,HN,h) ∗⇀ (E,H) weakly-* in L∞((0, T ),L2(Ω)×L2(Ω)) as h→ 0
d
dt(EN,h,HN,h) ∗⇀ d

dt(E,H) weakly-* in L∞((0, T ),L2(Ω)×L2(Ω)) as h→ 0,

where (E,H) is the unique solution to (P). If additionally

H ∈ L1((0, T ),H(curl)) and {curl ĤN,h}h>0 is bounded in Lp((0, T ),L2(ω)) (4.61)

for some p > 1, then

(EN,h,HN,h)→ (E,H) in C([0, T ],L2(Ω)×L2(Ω)) as h→ 0.

Proof. The proof is divided into four parts:
Step 1: Preparation. Proposition 4.6, Corollary 4.8, and Proposition 4.9 yield the existence of
subsequences, denoted w.l.o.g. by the same symbol, such that

(EN,h,HN,h) ∗⇀ (E,H) weakly-* in L∞((0, T ),L2(Ω)×L2(Ω)) as h→ 0 (4.62)
(ÊN,h, ĤN,h) ∗⇀ (Ê, Ĥ) weakly-* in L∞((0, T ),L2(Ω)×L2(Ω)) as h→ 0

EN,h
∗
⇀ E weakly-* in L∞((0, T ),L2(Ω)) as h→ 0

d
dt(EN,h,HN,h) ∗⇀ d

dt(E,H) weakly-* in L∞((0, T ),L2(Ω)×L2(Ω)) as h→ 0.

Similarly to the proof of Theorem 3.6, the constructions (4.45) and (4.46) imply

‖EN,h(t)−EN,h(t)‖L2(Ω) ≤ max
n∈{1,...,N}

τ‖δEn
h‖L2(Ω) ≤

TC

N
∀t ∈ [0, T ] (4.63)
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‖EN,h(t)− ÊN,h(t)‖L2(Ω) ≤ max
n∈{1,...,N}

τ

2‖δE
n
h‖L2(Ω) ≤

TC

2N ∀t ∈ [0, T ]

‖HN,h(t)− ĤN,h(t)‖L2(Ω) ≤ max
n∈{1,...,N−1}

τ‖δHn+ 1
2

h ‖L2(Ω) ≤
TC

N
∀t ∈ [0, T ]

from which we conclude that E = Ê = E and H = Ĥ. By standard arguments (cf. again the
proof of Theorem 3.6), the first and last convergence properties in (4.62) lead to the following
pointwise weak convergence:

(EN,h,HN,h)(t) ⇀ (E,H)(t) weakly in L2(Ω)×L2(Ω) as h→ 0 ∀t ∈ [0, T ]. (4.64)

Let us now verify the Faraday law for the weak limit (E,H). Given w ∈H(curl), there exists
a sequence {wh}h>0 ⊂ H(curl) with wh ∈ NDh for all h > 0 such that wh → w in H(curl)
as h→ 0. Using this converging sequence and (4.62), we deduce that

∫ T

0

((
µ

d
dtH(t),w

)
L2(Ω)

+ (E(t), curlw)L2(Ω)

)
φ(t) dt

=︸︷︷︸
(4.62)

lim
h→0

∫ T

0

((
µ

d
dtHN,h(t),wh

)
L2(Ω)

+
(
EN,h(t), curlwh

)
L2(Ω)

)
φ(t) dt

=︸︷︷︸
(P̃N,h)

lim
h→0

∫ T

T− T
N

((
µ

d
dtHN,h(t),wh

)
L2(Ω)

+
(
EN,h(t), curlwh

)
L2(Ω)

)
φ(t) dt

= 0 ∀φ ∈ C∞0 (0, T ),

where the last equality holds true since the integrand is uniformly bounded in time (Proposi-
tion 4.6 and Corollary 4.8). Thus, by the fundamental theorem of variational calculus and since
w ∈H(curl) was chosen arbitrarily, it follows from the above identity and Lemma 2.1 that

E(t) ∈H0(curl) with curlE(t) = −µ d
dtH(t) for a.e. t ∈ (0, T ), (4.65)

which particularly implies that

E ∈W 1,∞((0, T ),L2(Ω)) ∩ L∞((0, T ),H0(curl)). (4.66)

Since (EN,h,HN,h)(0) = (E0
h,H

1
2
h )→ (E0,H0) holds, we obtain, thanks to (4.64), that

(E,H)(0) = (E0,H0). (4.67)

By the construction (4.46), it holds that ÊN,h(t) ∈ K ∩DGh for all t ∈ [0, T ], and so (4.63)
and (4.64) imply that

E(t) ∈K ∀t ∈ [0, T ] (4.68)

since K is weakly closed in L2(Ω).
Step 2: Derivation of the weak system (4.77) for (E,H). Let v ∈ K ∩ C∞0 (Ω) be arbitrarily
fixed. In view of (4.10), Qhv ∈ K ∩ DGh such that we may insert vh = Qhv in (P̃N,h) to
deduce that ∫ T

0
(f(t),v −E(t))L2(Ω) dt (4.69)
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=︸︷︷︸
(4.9),(4.11),(4.62)

lim sup
h→0

∫ T− T
N

0
(f̂N,h(t),Qhv − ÊN,h(t))L2(Ω) dt

≤︸︷︷︸
(P̃N,h),(4.62)

∫ T

0

( d
dtE(t),v

)
L2
ε (Ω)

dt− lim inf
h→0

∫ T− T
N

0

( d
dtEN,h(t), ÊN,h(t)

)
L2
ε (Ω)

dt

+
∫ T

0
(σE(t),v)L2(Ω) dt− lim inf

h→0

∫ T− T
N

0

(
σÊN,h(t), ÊN,h(t)

)
L2(Ω)

dt

− lim inf
h→0

∫ T− T
N

0

(
curl ĤN,h(t),Qhv

)
L2(Ω)

dt

+ lim sup
h→0

∫ T− T
N

0

(
curl ĤN,h(t), ÊN,h(t)

)
L2(Ω)

dt.

Let us now proceed by estimating the individual parts appearing on the right-hand side of (4.69).
At first, for w ∈ L2(Ω), we estimate(

EN,h

(
T − T

N

)
−E(T ),w

)
L2(Ω)

=
(
EN,h

(
T − T

N

)
−EN,h(T ),w

)
L2(Ω)

+ (EN,h(T )−E(T ),w)
L2(Ω)

=−
∫ T

T− T
N

( d
dtEN,h(t),w

)
L2(Ω)

dt+ (EN,h(T )−E(T ),w)
L2(Ω)

→ 0 as h→ 0,

where we have used the boundedness of { d
dtEN,h}h>0 and (4.64) for the above convergence.

Using the same argumentation for the discrete magnetic fields, we obtain that

(EN,h,HN,h)
(
T − T

N

)
⇀ (E(T ),H(T )) weakly in L2(Ω)×L2(Ω) as h→ 0. (4.70)

Now, by the weak sequential lower semi-continuity of the squared norm, we infer

lim inf
h→0

∫ T− T
N

0

( d
dtEN,h(t),EN,h(t)

)
L2
ε (Ω)

dt (4.71)

= lim inf
h→0

1
2

(∥∥∥∥EN,h (T − T

N

)∥∥∥∥2

L2
ε (Ω)
− ‖E0

h‖2L2
ε (Ω)

)

≥︸︷︷︸
(4.70)

1
2
(
‖E(T )‖2L2

ε (Ω) − ‖E0‖2L2
ε (Ω)

)
=
∫ T

0

( d
dtE(t),E(t)

)
L2
ε (Ω)

dt,

and therefore

lim inf
h→0

∫ T− T
N

0

( d
dtEN,h(t), ÊN,h(t)

)
L2
ε (Ω)

dt (4.72)

= lim inf
h→0

∫ T− T
N

0

( d
dtEN,h(t), ÊN,h(t)−EN,h(t)

)
L2
ε (Ω)

dt

+ lim inf
h→0

∫ T− T
N

0

( d
dtEN,h(t),EN,h(t)

)
L2
ε (Ω)

dt

≥︸︷︷︸
(4.63),(4.71)

∫ T

0

( d
dtE(t),E(t)

)
L2
ε (Ω)

dt.
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Furthermore,

lim inf
h→0

∫ T− T
N

0

(
σÊN,h(t), ÊN,h(t)

)
L2(Ω)

dt (4.73)

= lim inf
h→0

∫ T− T
N

0

(
σ(ÊN,h(t)−E(t)), ÊN,h(t)−E(t)

)
L2(Ω)

+
(
σ(ÊN,h(t)−E(t)),E(t)

)
L2(Ω)

+
(
σE(t), ÊN,h(t)

)
L2(Ω)

dt

≥ lim inf
h→0

∫ T− T
N

0

(
σ(ÊN,h(t)−E(t)),E(t)

)
L2(Ω)

+
(
σE(t), ÊN,h(t)

)
L2(Ω)

dt

=︸︷︷︸
(4.62)

∫ T

0
(σE(t),E(t))L2(Ω) dt.

By the same argumentation as in (4.71) and (4.72), we infer that

lim inf
h→0

∫ T− T
N

0

( d
dtHN,h(t), ĤN,h(t)

)
L2
µ(Ω)

dt ≥
∫ T

0

( d
dtH(t),H(t)

)
L2
µ(Ω)

dt,

from which it follows that

lim sup
h→0

∫ T− T
N

0

(
curl ĤN,h(t), ÊN,h(t)

)
L2(Ω)

dt (4.74)

=︸︷︷︸
(4.63)

lim sup
h→0

∫ T− T
N

0

(
curl ĤN,h(t),EN,h(t)

)
L2(Ω)

dt

=︸︷︷︸
(P̃N,h)

− lim inf
h→0

∫ T− T
N

0

( d
dtHN,h(t), ĤN,h(t)

)
L2
µ(Ω)

dt (4.75)

≤ −
∫ T

0

( d
dtH(t),H(t)

)
L2
µ(Ω)

dt

=︸︷︷︸
(4.65)

∫ T

0
(curlE(t),H(t))L2(Ω) dt.

Due to Proposition 4.9 and (4.11), it holds that∣∣∣∣∣
∫ T− T

N

0

(
curl ĤN,h(t),Qhv − v

)
L2(Ω)

dt
∣∣∣∣∣ ≤ ‖ curl ĤN,h‖L1((0,T ),L1(Ω))‖Qhv − v‖L∞(Ω) → 0,

and consequently

lim inf
h→0

∫ T− T
N

0

(
curl ĤN,h(t),Qhv

)
L2(Ω)

dt (4.76)

≥ lim inf
h→0

∫ T− T
N

0

(
curl ĤN,h(t),Qhv − v

)
L2(Ω)

dt+
∫ T− T

N

0

(
curl ĤN,h(t),v

)
L2(Ω)

dt

= lim inf
h→0

∫ T− T
N

0

(
ĤN,h(t), curlv

)
L2(Ω)

dt =︸︷︷︸
(4.62)

∫ T

0
(H(t), curlv)L2(Ω) dt.
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Applying (4.72)-(4.76) to (4.69) and taking (4.65)-(4.68) into account, we conclude that the
weak-star limit (E,H) satisfies

∫ T

0

( d
dtE(t),v −E(t)

)
L2
ε (Ω)

+ (σE(t),v −E(t))L2(Ω)

− (H(t), curl(v −E(t)))L2(Ω) dt

≥
∫ T

0
(f(t),v −E(t))L2(Ω) dt ∀v ∈K ∩ C∞0 (Ω)

µ
d
dtH(t) + curlE(t) = 0 for a.e. t ∈ (0, T )

(E,H) ∈W 1,∞((0, T ),L2(Ω)×L2(Ω)) ∩ L∞((0, T ),H0(curl)×L2(Ω))
E(t) ∈K for all t ∈ [0, T ] and (E,H)(0) = (E0,H0).

(4.77)

Step 3: (4.77) ⇒ (P) through a mollification process. Let v ∈ K ∩H0(curl) and 0 < δ <

min
{
δ0,

λ
ck+ζ

}
. In view of Theorem 4.14, Kδv ∈ K ∩ C∞0 (Ω) is a feasible test function for

(4.77). For this reason,∫ T

0
(f(t),v −E(t))L2(Ω) dt =︸︷︷︸

(4.56)

lim
δ→0

∫ T

0
(f(t),Kδv −E(t))L2(Ω) dt (4.78)

≤︸︷︷︸
(4.77)

lim
δ→0

∫ T

0

( d
dtE(t),Kδv −E(t)

)
L2
ε (Ω)

+ (σE(t),Kδv −E(t))L2(Ω)

− (H(t), curl(Kδv −E(t)))L2(Ω) dt

=︸︷︷︸
(4.56)

∫ T

0

( d
dtE(t),v −E(t)

)
L2
ε (Ω)

+ (σE(t),v −E(t))L2(Ω) − (H(t), curl(v −E(t)))L2(Ω) dt.

Since simple (in time) functions with values in H0(curl) are dense in L2((0, T ),H0(curl)), it
follows that ∫ T

0

( d
dtE(t),v(t)−E(t)

)
L2
ε (Ω)

+ (σE(t),v(t)−E(t))L2(Ω) (4.79)

− (H(t), curl(v(t)−E(t)))L2(Ω) dt

≥
∫ T

0
(f(t),v(t)−E(t))L2(Ω) dt

∀v ∈ L2((0, T ),H0(curl)) with v(t) ∈K for a.e. t ∈ (0, T ).

Finally, to prove that the Ampère-Maxwell VI in (P) is satisfied, we follow the same argumen-
tation as in the proof of Theorem 3.6 by assuming the contrary:

∃z ∈K ∩H0(curl) ∃M ⊂ (0, T ) with |M | > 0 s.t.
∫

Ω
ε

d
dtE(t) · (z −E(t)) dx

+
∫

Ω
σE(t) · (z −E(t))−H(t) · curl(z −E(t)) dx <

∫
Ω
f(t) · (z −E(t)) dx for a.e. t ∈M,

which implies∫
M

∫
Ω
ε

d
dtE(t) · (z −E(t)) dx+

∫
Ω
σE(t) · (z −E(t))−H(t) · curl(z −E(t)) dx dt
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<

∫
M

∫
Ω
f(t) · (z −E(t)) dx dt. (4.80)

Inserting v := χMz + χ(0,T )\ME into (4.79) immediately contradicts (4.80). In conclusion, we
have shown that (E,H) is the unique solution to (P).
Step 4: Uniform convergence. Suppose that H ∈ L1((0, T ),H(curl)) and {curl ĤN,h}h>0 is
bounded in Lp((0, T ),L2(ω)) for some p > 1. Let v ∈ K. As shown in Theorem 4.14, it holds
that Kδv ∈ K. Now, [50, Theorem 4.4] additionally reveals that v ∈ L2(Ω) is sufficient to
obtain ‖Kδv − v‖L2(Ω) → 0 as δ → 0. Thus, together with H ∈ L1((0, T ),H(curl)), we obtain∫

Ω

(
ε

d
dtE(t) + σE(t)− curlH(t)

)
· (v −E(t)) dx

≥
∫

Ω
f(t) · (v −E(t)) dx ∀v ∈K for a.e. t ∈ (0, T ). (4.81)

Now, (P̃N,h) implies that∫
Ω

(
ε

d
dtEN,h(t) + σÊN,h(t)− curl ĤN,h(t)

)
· (vh − ÊN,h(t)) dx

≥
∫

Ω
f̂N,h(t) · (vh − ÊN,h(t)) dx ∀vh ∈K ∩DGh ∀t ∈

(
0, T − T

N

]
. (4.82)

For a.e. t ∈ (0, T − T/N ], the inequalities (4.81) and (4.82) allow for testing with v = ÊN,h(t)
and vh = QhE(t). Let ρ ∈ (0, T ) be arbitrarily fixed. Adding the resulting inequalities and
integrating over the time interval (0, ρ) then yields∫ ρ

0

∫
Ω
ε

d
dt(EN,h(t)−E(t)) · (ÊN,h(t)−E(t)) dx dt (4.83)

+
∫ ρ

0

∫
Ω
ε

d
dtEN,h(t) · (E(t)−QhE(t)) dx dt

+
∫ ρ

0

∫
Ω
σ(ÊN,h(t)−E(t)) · (ÊN,h(t)−E(t)) dx dt+

∫ ρ

0

∫
Ω
σÊN,h(t) · (E(t)−QhE(t)) dx dt

−
∫ ρ

0

∫
Ω

curl(ĤN,h(t)−H(t)) · (ÊN,h(t)−E(t)) dx dt

−
∫ ρ

0

∫
Ω

curl ĤN,h(t) · (E(t)−QhE(t)) dx dt

≤
∫ ρ

0

∫
Ω

(f̂N,h(t)− f(t)) · (ÊN,h(t)−E(t)) dx dt+
∫ ρ

0

∫
Ω
f̂N,h(t) · (E(t)−QhE(t)) dx dt

for sufficiently small h > 0. The first term on the left-hand side of the last inequality satisfies

lim sup
h→0

∫ ρ

0

∫
Ω
ε

d
dt(EN,h(t)−E(t)) · (ÊN,h(t)−E(t)) dx dt (4.84)

= lim sup
h→0

∫ ρ

0

∫
Ω
ε

d
dt(EN,h(t)−E(t)) · (ÊN,h(t)−EN,h(t)) dx dt

+ 1
2‖EN,h(ρ)−E(ρ)‖2L2

ε (Ω) −
1
2‖E

0
h −E0‖2L2

ε (Ω)

=︸︷︷︸
(4.63)

lim sup
h→0

‖EN,h(ρ)−E(ρ)‖2L2
ε (Ω).

The remaining pointwise norm can be extracted as follows:

lim sup
h→0

−
∫ ρ

0

∫
Ω

curl(ĤN,h(t)−H(t)) · (ÊN,h(t)−E(t)) dx dt (4.85)
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=︸︷︷︸
(4.61),(4.63)

lim sup
h→0

−
∫ ρ

0

∫
Ω

curl(ĤN,h(t)−H(t)) · (EN,h(t)−E(t)) dx dt

= lim sup
h→0

−
∫ ρ

0

∫
Ω

curl(ĤN,h(t)−ΠhH(t)) · (EN,h(t)−E(t)) dx dt

=︸︷︷︸
(2.19),(P),(P̃N,h)

lim sup
h→0

∫ ρ

0

∫
Ω
µ

d
dt(HN,h(t)−H(t)) · (ĤN,h(t)−ΠhH(t)) dx dt

= lim sup
h→0

∫ ρ

0

∫
Ω
µ

d
dt(HN,h(t)−H(t)) · (ĤN,h(t)−H(t)) dx dt

= lim sup
h→0

‖HN,h(ρ)−H(ρ)‖2L2
µ(Ω),

where the same argument as in (4.84) was used for the last equality. Let us recall that, due to
Lemma 4.5, Proposition 4.6, and Corollary 4.8, there exists a constant C > 0, independent of
h, such that

‖(EN,h,HN,h)‖W 1,∞((0,T ),L2(Ω)×L2(Ω)) + ‖ÊN,h‖L∞((0,T ),L2(Ω)) ≤ C ∀h > 0. (4.86)

On the other hand, by the convergence property of Qh along with E ∈ L∞((0, T ),L2(Ω)) and
(4.9), the Lebesgue dominated convergence theorem implies that

‖E −QhE‖Ls((0,T ),L2(Ω)) → 0 as h→ 0 ∀1 ≤ s <∞. (4.87)

Indeed, given any 1 ≤ s < ∞, the necessary bound for the Lebesgue dominated convergence
theorem is obtained as follows:

‖E(t)−QhE(t)‖sL2(Ω) ≤
(
‖E(t)‖L2(Ω) + ‖QhE(t)‖L2(Ω)

)s
≤︸︷︷︸

(4.9)

2s‖E(t)‖sL2(Ω) for a.e. t ∈ (0, T )

for the right-hand side being of class L∞(0, T ) ↪→ L1(0, T ). Thus, by (4.86) and the posi-
tive semi-definiteness of σ, applying (4.84)–(4.87) to (4.83), using the assumed boundedness
of {curl ĤN,h}h>0 in Lp((0, T ),L2(ω)) with p > 1 together with the shown boundedness in
L∞((0, T ),L2(Ω \ ω)) from Proposition 4.9, we find that

lim
h→0
‖(EN,h,HN,h)(ρ)− (E,H)(ρ)‖L2(Ω)×L2(Ω) → 0 as h→ 0 ∀ρ ∈ (0, T ).

Finally, utilizing once again the boundedness in (4.86), the proof is finished by the use of Arzelà-
Ascoli’s theorem for Banach space-valued functions (see [85, Chapter III, Theorem 3.1]).

4.4 Numerical Tests
To close this chapter, we carry out numerical tests of the proposed FEM (PN,h). We consider a
numerical simulation with Ω = (−1, 1)3, T = 1, ε, µ = 1, σ = 0, (E0,H0) = (0, 0), and

f : [0, 1]× Ω→ R3, f(t, ·) = (0, 2 + 10t, 0).

The obstacle set is defined by

K = {v ∈ L2(Ω) | |v(x)| ≤ 0.05 for a.e. x ∈ ω}, ω = (−0.25, 0.25)× (−0.5, 0.5)2. (4.88)
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Note that d = 0.05 for the electric obstacle in K is just an arbitrary choice. We may as well set
d = 0 or any nonnegative real number for the upper bound d.
As stated in the introduction, thanks to Theorem 4.3, there is no need to invoke an additional

nonlinear solver for the computation of the VI in (PN,h). Its exact solution is given by (4.13),
which makes the numerical realization of (PN,h) particularly efficient and superior to the implicit
Euler time-stepping. As to numerical precision, we went with 320 time steps and roughly
1.800.000 degrees of freedom (DoF) for NDh as well as roughly 4.700.000 degrees of freedom
for DGh. Figure 4.4 depicts two computed electric fields at the final time step t = T . The left
figure depicts the computed electric field of the classical Maxwell equations in the absence of
an electric obstacle, i.e, K = L2(Ω), whereas the second one is the computed solution based on
(PN,h) with the given obstacle (4.88). See also Figure 4.5 for the evolution of the electric field
at t = 1/4, 1/2, 3/4, 1. Evidently, our numerical method is able to confirm the Faraday shielding
effect in the obstacle region ω.

Finally, to test the convergence behavior of (PN,h), we fix the above-mentioned computed
solution as a reference solution (Eref ,Href) since the true solution is unknown. Thereafter, we
consider four different numerical solutions at coarser grids (maintaining a linear CFL-condition)
and compute their error to the reference solution based on

ErrN,h(E) := max
n∈{0,...,N}

‖EN,h(tn)−Eref(tn)‖L2(Ω)

ErrN,h(H) := max
n∈{0,...,N}

‖HN,h(tn)−Href(tn)‖L2(Ω).

We should point out that, based on our numerical tests, the error quantities ErrN,h(E) and
ErrN,h(H) coincide with the corresponding errors at the final time tN = T , i.e., ErrN,h(E) =
‖EN,h(T ) − Eref(T )‖L2(Ω) and ErrN,h(H) = ‖HN,h(T ) −Href(T )‖L2(Ω). From Table 4.1, we
can clearly monitor a convergence behavior as the discretization becomes finer and finer, which
serves as well as numerical evidence of our convergence result (Theorem 4.15).

Table 4.1: Convergence behavior of the scheme.
N 5 · 22 5 · 23 5 · 24 5 · 25 5 · 26

h 1/22 1/23 1/24 1/25 1/26

DoF(DGh) 1.152 9.216 31.024 589.824 4.718.592
DoF(NDh) 604 4.184 73.728 238.688 1.872.064
ErrN,h(E) 3.2415 1.2647 0.9207 0.5267 −
ErrN,h(H) 3.1408 1.4920 0.8186 0.4352 −
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Figure 4.4: Electric field without obstacle (left) and with obstacle (right).

Figure 4.5: Evolution of the shielded electric field (2D slice) at t = 1/4, 1/2, 3/4, 1.



CHAPTER 5

QUASILINEAR VARIATIONAL
INEQUALITIES IN FERROMAGNETIC

SHIELDING: WELL-POSEDNESS,
REGULARITY, AND OPTIMAL CONTROL

Having covered both the eddy current approximation and the numerical analysis of the hy-
perbolic electric shielding problem (P), in this chapter, we turn our attention to the shielding
of magnetic fields by ferromagnetic materials in the static regime through the magnetic vector
potential formulation. The resulting model is given by an H(curl)-quasilinear first kind varia-
tional inequality with a bilateral vector curl-constraint. To begin with, let us recall that, in the
free region, as a particular case of Maxwell’s equations, magnetostatic equations read as

curl(ν(·, | curlA|) curlA) +∇φ = J in Ω
divA = 0 in Ω
A× n = 0 on ∂Ω.

(5.1)

Here, Ω ⊂ R3 represents a bounded Lipschitz domain with a connected boundary, A : Ω → R3

denotes the magnetic vector potential, J : Ω→ R3 the current density, φ : Ω→ R the Lagrange
multiplier, and n the unit outward normal to ∂Ω. Furthermore, ν : Ω × R+

0 → R describes
the nonlinear magnetic reluctivity modeling the physical dependency of ferromagnetic materials
on the magnetic induction curlA . From among many works on (5.1), we refer the reader
to [17, 79, 140]. In the present chapter, we consider a variational inequality of the first kind
for (5.1), in which the magnetic induction strength | curlA| is constrained to lie underneath a
certain level leading to the following feasible set:

K := {v ∈H0(curl) | | curlv| ≤ d a.e. in Ω} for a given nonnegative d ∈ L2(Ω). (5.2)

Following the theory of variational inequalities (cf. Section 2.2 and [119]), we formulate the first
kind variational inequality for the quasilinear magnetostatic field equations (5.1) and (5.2) as
follows:

Find (A, φ) ∈K ×H1
0 (Ω), s.t.∫

Ω
ν(·, | curlA|) curlA · curl(v −A) dx+

∫
Ω
∇φ · v dx ≥

∫
Ω
J · (v −A) dx ∀v ∈K∫

Ω
A · ∇ψ dx = 0 ∀ψ ∈ H1

0 (Ω).

(VI)

Motivated by the technological applications of ferromagnetic shielding, we make the first at-
tempt to analyze (VI) and the corresponding optimal control problem (5.3). Due to the involved
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H(curl)-quasilinearity and the non-smooth character in (VI), the analysis is genuinely nonstan-
dard and challenging. In particular, it requires a substantial extension of developed techniques
from the existing literature. First, we develop a regularization approach (VEγ) for (VI) by
means of the Helmholtz decomposition and a reformulation of the first-order constraint (5.2)
through the zeroth-order one (5.7) in combination with a smoothed Yosida penalization. By
the limiting analysis of (VEγ), we establish the well-posedness of (VI) and its dual formulation
(Theorem 5.5).
After analyzing both the well-posedness for (VI), the second part of this chapter is devoted to

the optimal control problem. Our aim is to find an optimal current source in the ferromagnetic
shielding process (VI) which minimizes the L2-distance between the induced magnetic induction
and the desired one. This leads to the following minimization problem:min

∫
Ω
| curlA−Bd|2 dx+ λ

2

∫
Ω
|J |2 dx

s.t. (VI).
(5.3)

In the setting of (5.3), the vector field Bd ∈ L2(Ω) denotes the desired magnetic induction, and
λ > 0 the control cost parameter. Let us emphasize that the primary difficulty of (5.3) lies not
only in the H(curl)-quasilinearity and the bilateral vector curl-constraint (5.2) but also in the
lack of differentiability. Even for the simpler H1-case, the directional differentiability of the solu-
tion mapping of the corresponding variational inequality in the presence of bilateral or gradient
constraints cannot be expected (see the considerations in Section 2.2.1). All these aspects to-
gether make the analysis of (5.3) particularly delicate. While the mathematical analysis for the
optimal control of H1(Ω)-type variational inequalities seems to have reached an advanced stage
of development (cf. [18, 24, 28, 56, 69, 70, 74, 75, 99, 100]), the present work is the first to address
(5.3). In fact, we are not aware of any previous contributions towards optimal control of Maxwell
variational inequalities. The final novelty is therefore the derivation of necessary optimality con-
ditions for the non-smooth optimal control problem (5.3) (see Theorem 5.11). In particular, our
proof extends established Maxwell techniques for optimal control [111, 128, 129, 140, 142] and
develops new ideas to cope with the aforementioned complexity involved in (5.3). We note that
the results of this chapter are not restricted to the objective functional (5.3) involving only the
first-order term curlA. Following [140, Theorem 3.8 and Remark 3.9], we obtain comparable
results for objective functionals involving the zeroth-order term ‖A − Ad‖2L2(Ω) with a given
Ad ∈ L2(Ω).
Let us now present the basic (physical) assumptions for our analysis. We assume the magnetic

reluctivity ν : Ω×R+
0 → R to be a Carathéodory function: For every s ∈ R+

0 , the function ν(·, s)
is measurable, and, for almost every x ∈ Ω, the function ν(x, ·) is continuous. By ν0 > 0 we
denote the magnetic reluctivity in a vacuum. Further conditions on the nonlinearity (cf. [17,79])
are collected in the following assumption which we assume to be valid throughout the whole
document.

Assumption 5.1. There exist constants ν, ν ∈ (0, ν0) such that

ν ≤ ν(x, s) ≤ ν0 for a.e. x ∈ Ω and every s ∈ R+
0

(ν(x, s)s− ν(x, ŝ)ŝ)(s− ŝ) ≥ ν(s− ŝ)2 ∀s, ŝ ∈ R+
0

|ν(x, s)s− ν(x, ŝ)ŝ| ≤ ν|s− ŝ| ∀s, ŝ ∈ R+
0

holds true.
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Under Assumption 5.1, it holds for a.e. x ∈ Ω that

(ν(x, |s|)s− ν(x, |ŝ|)ŝ) · (s− ŝ) ≥ ν|s− ŝ|2 ∀s, ŝ ∈ R3

|ν(x, |s|)s− ν(x, |ŝ|)ŝ| ≤ L|s− ŝ| ∀s, ŝ ∈ R3,
(5.4)

where L = 2ν0 + ν. A proof for (5.4) can be found in [140, Lemma 2.2].

5.1 Regularization of (VI)
We propose a regularization approach for (VI) based on three main steps:

1. Reduction of (VI) to the lower level problem (VIsol) with a divergence-free source term.
2. Reformulation of the first-order constraint (5.2) by the zeroth-order one (5.7) and the

application of the Yosida regularization to the subdifferential of the indicator function for
the zeroth-order obstacle set.

3. Smoothing of the maximum function (5.8).

For the first step, let us consider a solenoidal source term Jsol ∈ H(div=0) and test functions
v ∈K ∩H(div=0) in (VI). In this particular case, since∫

Ω
v · ∇ψ dx = 0 ∀v ∈H(div=0) ∀ψ ∈ H1

0 (Ω), (5.5)

(VI) leads to the following problem
Find A ∈K ∩H(div=0), s.t.∫

Ω
ν(·, | curlA|) curlA · curl(v −A) dx ≥

∫
Ω
Jsol · (v −A) dx ∀v ∈K ∩H(div=0).

(VIsol)
Let us remark that the auxiliary problem (VIsol) is indeed helpful for our investigation and
serves as a basis for our well-posedness result for (VI). More precisely, applying the Helmholtz
decomposition (2.27) to the source term

L2(Ω) 3 J = Jsol +∇φJ ∈H(div=0)⊕∇H1
0 (Ω), (5.6)

we show in Theorem 5.5 that the solution A to (VIsol) for Jsol as in (5.6) turns out to be the
unique solution to (VI) with the corresponding (unique) multiplier given by φJ from (5.6). For
the second step, we introduce the zeroth-order obstacle set

KL2(Ω) := {v ∈ L2(Ω) | |v| ≤ d a.e. on Ω},

with which we can reformulate our first-order constraint as

A ∈K ⇔ curlA ∈KL2(Ω). (5.7)

Based on the proposed reformulation, we invoke the Yosida regularization of the subdifferential
of the indicator function IKL2(Ω)

which is given by γ(Id − PKL2(Ω)
) (cf. [122, pp. 137] and [21,

Corollary 12.30]) with γ > 0 being the regularization parameter. Here, PKL2(Ω)
denotes the

Hilbert projection onto the non-empty, closed, and convex set KL2(Ω) ⊂ L2(Ω). The simplified
L2(Ω) structure of KL2(Ω) now allows us to find an explicit expression (cf. [68, Example 4.2])
for the associated Yosida approximation as follows:

γ(Id− PKL2(Ω)
)(v) = γθ(·,v(·)),
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−1 1

θ

d(·) ≡ 1
n = 1

θγ=2

−1 1

d(·) ≡ 1
n = 1

Figure 5.1: Illustration of θ and θγ for γ = 2 in the one-dimensional case n = 1 with the obstacle
choice d(·) ≡ 1.

with

θ : Ω× R3 → R3, θ(x, s) :=


max(|s| − d(x), 0) s

|s|
if s 6= 0

0 if s = 0.
(5.8)

Note that for a.e. x ∈ Ω, the function θ(x, ·) is continuous but not differentiable. For our final
step, we therefore regularize the non-smooth function θ by

θγ : Ω× R3 → R3, (x, s) 7→


maxγ(|s| − d(x), 0) s

|s|
if s 6= 0

0 if s = 0,

where

maxγ(·, 0) : R→ R, x 7→


x− γ−1 if x ≥ 2γ−1

γ

4x
2 if x ∈ (0, 2γ−1)

0 if x ≤ 0.

Geometrically speaking, the function maxγ(·, 0) is a continuously differentiable regularization of
max(·, 0), which approximates the kink at 0 by a quadratic function in the interval (0, 2γ−1).
We also refer to Figure 5.1 for an illustration of θ and its regularization θγ .
Altogether, for every γ > 0, we consider the following regularized problem:



Find Aγ ∈XN,0, s.t.∫
Ω
ν(·, | curlAγ |) curlAγ · curlv dx+ γ

∫
Ω
θγ(·, curlAγ) · curlv dx

=
∫

Ω
Jsol · v dx ∀v ∈XN,0.

(VEγ)

We shall see later in Section 5.3 that (VEγ) serves as the state equation for the regularized
optimal control problem (Pγ).

Lemma 5.2. Let γ > 0. Then, the mapping θγ is continuously differentiable with respect to the
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second variable, with derivative Dsθγ : Ω× R3 → R3×3 given by

(x, s) 7→



s⊗ s
|s|2

+ |s| − d(x)− γ−1

|s|

(
Id− s⊗ s

|s|2
)

if |s| ≥ d(x) + 2γ−1

γ

2 (|s| − d(x))s⊗ s
|s|2

+ γ(|s| − d(x))2

4|s|

(
Id− s⊗ s

|s|2
)

if |s| ∈ (d(x), d(x) + 2γ−1)

0 if |s| ≤ d(x).
(5.9)

For all s ∈ R3 and almost every x ∈ Ω, the matrix Dsθγ(x, s) ∈ R3×3 is symmetric and positive
semi-definite. Moreover, Dsθγ : Ω×R3 → R3×3 is uniformly bounded. Finally, for almost every
x ∈ Ω, θγ(x, ·) : R3 → R3×3 is monotone, Lipschitz-continuous, and it holds that

|θγ(x, s)− θ(x, s)| ≤ 3
γ

for a.e. x ∈ Ω and all s ∈ R3. (5.10)

Proof. It is apparent that θγ is continuously differentiable at s 6= 0 since it is the product and
composition of C1-mappings and the same is true if s = 0 and d(x) > 0. If s and d(x) are both
zero, it suffices to check that s 7→ s|s| is continuously differentiable at the origin, which is easily
verified. A direct computation shows that the Jacobian is given by (5.9). Note that for each
s ∈ R3, the matrices

s⊗ s
|s|2

and Id− s⊗ s
|s|2

are (symmetric) projection matrices. Thus, they have spectrum {0, 1} so that Dsθγ(x, s) is
positive semi-definite for each s ∈ R3 and almost every x ∈ Ω. Now, we can apply [118, Theorem
12.3] to conclude that θγ is monotone w.r.t. the second variable. For the uniform boundedness
of Dsθγ , we observe that

|s⊗ s|R3×3

|s|2
= 1 and |s| − d(x)− γ−1

|s|
≤ 1,

where | · |R3×3 denotes the spectral norm. Therefore, there exists a constant C > 0 such that
|Dsθγ(x, s)| ≤ C for almost all x ∈ Ω and all s ∈ R3. Combining [118, Theorem 9.2] and [118,
Theorem 9.7], this also implies the Lipschitz continuity of θγ . To finish the proof we calculate

|θγ(x, s)− θ(x, s)| ≤


∣∣∣|s| − d(x)− γ−1 − (|s| − d(x))

∣∣∣ if |s| ≥ d(x) + 2γ−1∣∣∣γ4 (|s| − d(x))2 − (|s| − d(x))
∣∣∣ if |s| ∈ (d(x), d(x) + 2γ−1),

which yields the desired estimate (5.10).

Lemma 5.3. For every Jsol ∈H(div=0), the regularized problem (VEγ) admits a unique solu-
tion Aγ ∈XN,0.

Proof. In view of the Browder-Minty theorem, we define an operatorMγ : XN,0 →X∗N,0 by

〈MγA,v〉X∗N,0,XN,0
:=
∫

Ω
ν(·, | curlA|) curlA · curlv dx

+ γ

∫
Ω
θγ(·, curlA) · curlv dx ∀A,v ∈XN,0,

where 〈·, ·〉X∗N,0,XN,0 denotes the duality pairing between XN,0 and X∗N,0. A combination of
Assumption 5.1, the Poincaré-Friedrichs inequality (2.25), and Lemma 5.2 (the monotonicity
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and continuity of θγ) implies that Mγ is strongly monotone and hemicontinuous. Indeed, for
any A1,A2 ∈XN,0, it holds that

〈MγA1 −MγA2,A1 −A2〉X∗N,0,XN,0
(5.11)

=
∫

Ω
(ν(·, | curlA1|) curlA1 − ν(·, | curlA2|) curlA2) · curl(A1 −A2) dx

+ γ

∫
Ω

(θγ(·, curlA1)− θγ(·, curlA2)) · curl(A1 −A2) dx

≥
∫

Ω
(ν(·, | curlA1|) curlA1 − ν(·, | curlA2|) curlA2) · curl(A1 −A2) dx

≥︸︷︷︸
(5.4)

ν‖ curl(A1 −A2)‖2L2(Ω) ≥︸︷︷︸
(2.25)

νmin{1, C−2
p }

2 ‖A1 −A2‖2XN,0 ,

which implies the strong monotonicity ofMγ . The hemicontinuity ofMγ follows immediately
from the continuity properties of the nonlinearities ν and θγ in combination with Lebesgue’s
dominated convergence theorem. Since the right-hand side in (VEγ) induces a functional in
X∗N,0, the usage of the Browder-Minty theorem completes the proof.

Lemma 5.4. For every Jsol ∈ H(div=0), the problem (VIsol) admits a unique solution A ∈
K ∩H(div=0). Furthermore, the unique solution Aγ ∈ XN,0 of (VEγ) converges strongly in
XN,0 to the unique solution A of (VIsol) as γ →∞.

Proof. Let γ > 0 be given. Testing (VEγ) with v = Aγ leads to∫
Ω
ν(·, | curlAγ |) curlAγ ·curlAγ dx+γ

∫
Ω
θγ(·, curlAγ)·curlAγ dx =

∫
Ω
Jsol ·Aγ dx. (5.12)

Utilizing Assumption 5.1, the Poincaré-Friedrichs inequality (2.25), and Lemma 5.2 (the mono-
tonicity of θγ), a straightforward computation in the fashion of (5.11) in combination with
Hölder’s and Young’s inequalities shows that the sequence {Aγ}γ>0 ⊂ XN,0 is bounded, and
consequently there exists a subsequence, still denoted in the same way, and A ∈XN,0, such that

Aγ ⇀ A weakly in XN,0 as γ →∞. (5.13)

By the compactness of the embedding Theorem 2.3, we also obtain that Aγ → A strongly in
L2(Ω) as γ → ∞. Next we shall prove that A ∈ K, i.e., | curlA| ≤ d a.e. in Ω. Dividing
the equation in (5.12) by γ and due to the boundedness of {Aγ}γ>0 in XN,0 implying the
boundedness of {curlAγ}γ>0 in L2(Ω), we get∫

Ω
θγ(·, curlAγ) · curlAγ dx→ 0 as γ →∞, (5.14)

while from (VEγ) it also follows that∫
Ω
θγ(·, curlAγ) · curlv dx→ 0 as γ →∞ ∀v ∈XN,0. (5.15)

As θγ is monotone in the second variable, it holds for all v ∈XN,0 that

0 ≤
∫

Ω
(θγ(·, curlAγ)− θγ(·, curlv)) · curl(Aγ − v) dx

=
∫

Ω
θγ(·, curlAγ) · curl(Aγ − v) dx+

∫
Ω

(θ(·, curlv)− θγ(·, curlv)) · curl(Aγ − v) dx

−
∫

Ω
θ(·, curlv) · curl(Aγ − v) dx.
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Thanks to (5.14), (5.15), and the strong L2(Ω)-convergence of θγ(·, curlv) towards θ(·, curlv)
(see (5.10)), we obtain after passing to the limit γ →∞ in the previous inequality that∫

Ω
θ(·, curlv) · curl(A− v) dx ≤ 0 ∀v ∈XN,0. (5.16)

Now we take s ∈ (0, 1), ṽ ∈ XN,0 arbitrarily fixed and set v = A + sṽ ∈ XN,0 in (5.16) to
deduce that ∫

Ω
θ(·, curl(A+ sṽ)) · curl ṽ dx ≥ 0 ∀ṽ ∈XN,0. (5.17)

By the continuity of θ with respect to the second variable, it follows that θ(·, curl(A+ sṽ))→
θ(·, curlA) a.e. in Ω as s→ 0. Moreover, we have

|θ(·, curl(A+ sṽ))| =︸︷︷︸
(5.8)

|max(|curl(A+ sṽ)| − d, 0)|

≤ ||curl(A+ sṽ)| − d| ≤ | curlA|+ | curl ṽ|+ d for all s ∈ (0, 1) and a.e. in Ω,

and therefore we apply Lebesgue’s dominated convergence theorem to pass to the limit s → 0
in (5.17). This implies∫

Ω
θ(·, curlA) · curl ṽ dx ≥ 0 ∀ṽ ∈XN,0 ⇒

∫
Ω
θ(·, curlA) · curl ṽ dx = 0 ∀ṽ ∈XN,0,

and setting ṽ = A in the last equation finally yields

0 =
∫

Ω
θ(·, curlA) · curlAdx =

∫
Ω

max(| curlA| − d, 0)| curlA|︸ ︷︷ ︸
≥0

dx,

which implies

max(| curlA(x)| − d(x), 0)| curlA(x)| = 0 for a.e. x ∈ Ω ⇒ A ∈K.

Let us now show that the weak convergence (5.13) is strong. To this end, first we test (VEγ)
with v = Aγ −A ∈XN,0 to obtain∫

Ω
ν(·, | curlAγ |) curlAγ · curl(Aγ −A) dx+ γ

∫
Ω
θγ(·, curlAγ) · curl(Aγ −A) dx

=
∫

Ω
Jsol · (Aγ −A) dx. (5.18)

In view of Assumption 5.1 and (2.25), there exists a constant Cν > 0 such that∫
Ω
ν(·, | curlAγ |) curlAγ · curl(Aγ −A) dx

≥ Cν‖Aγ −A‖2XN,0 +
∫

Ω
ν(·, | curlA|) curlA · curl(Aγ −A) dx (5.19)

and∫
Ω
θγ(·, curlAγ) · curl(Aγ −A) dx

=
∫

Ω
(θγ(·, curlAγ)− θγ(·, curlA)) · curl(Aγ −A) dx ≥ 0, (5.20)
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where for the latter equality we used θγ(·, curlA) = 0 since | curlA(x)| ≤ d(x) for a.e. x ∈ Ω.
Applying (5.19) and (5.20) to (5.18) leads to

Cν‖Aγ −A‖2XN,0 ≤
∫

Ω
Jsol · (Aγ −A) dx−

∫
Ω
ν(·, | curlA|) curlA · curl(Aγ −A) dx.

Since, by the convergence (5.13), the right-hand side of the above inequality tends to 0 as γ →∞,
it follows that

Aγ → A strongly in XN,0 as γ →∞. (5.21)
We are left to show that A is a solution to (VIsol). To this end, let v ∈K. Testing (VEγ) with
v −Aγ yields that∫

Ω
Jsol · (v −Aγ) dx (5.22)

=
∫

Ω
ν(·, | curlAγ |) curlAγ · curl(v −Aγ) dx+ γ

∫
Ω
θγ(·, curlAγ) · curl(v −Aγ) dx

=
∫

Ω
ν(·, | curlAγ |) curlAγ · curl(v −Aγ) dx

+ γ

∫
Ω

(θγ(·, curlAγ)− θγ(·, curlv)︸ ︷︷ ︸
=0

) · curl(v −Aγ) dx

≤
∫

Ω
ν(·, | curlAγ |) curlAγ · curl(v −Aγ) dx,

where we exploited the fact that v ∈K and that θγ is monotone. In view of (5.21), after passing
to the limit γ →∞ in (5.22), we obtain that A is a solution to (VIsol). Uniqueness is obtained
by a standard energy argument exploiting once again the monotonicity of θγ . This concludes
the proof.

5.2 Well-posedness
Theorem 5.5. Let J ∈ L2(Ω) be given with the associated Helmholtz decomposition

J = Jsol +∇φJ ∈H(div=0)⊕∇H1
0 (Ω). (5.23)

Furthermore, let A ∈K ∩H(div=0) denote the unique solution to (VIsol) for Jsol ∈H(div=0)
given by (5.23). Then, (A, φJ ) is the unique solution to (VI), and there exists a unique m ∈
XN,0, the so called dual multiplier, such that

∫
Ω
ν(·, | curlA|) curlA · curlv dx+ curlm · curlv +∇φJ · v dx

=
∫

Ω
J · v dx ∀v ∈H0(curl)∫

Ω
A · ∇ψ dx = 0 ∀ψ ∈ H1

0 (Ω)∫
Ω

curlm · curl(v −A) ≤ 0 ∀v ∈K.

(5.24)

Proof. First, the unique solution A ∈K ∩H(div=0) of (VIsol) satisfies∫
Ω
ν(·, | curlA|) curlA · curl(vsol −A) dx ≥

∫
Ω
Jsol · (vsol −A) dx ∀vsol ∈K ∩H(div=0).

(5.25)
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Recalling from the Helmholtz decomposition (2.27), it holds that

∀v ∈ L2(Ω) ∃(vsol, φv) ∈H(div=0)×H1
0 (Ω) : v = vsol +∇φv.

If v ∈ K (see (5.2) for its definition), then we obtain from the above decomposition that
vsol ∈ K ∩H(div=0) since | curlvsol| = | curl(vsol +∇φv)| = | curlv| ≤ d a.e. in Ω. For this
reason,

∀v ∈K ∃(vsol, φv) ∈ (K ∩H(div=0))×H1
0 (Ω) : v = vsol +∇φv. (5.26)

As Jsol ∈H(div=0) and curl∇ ≡ 0, it follows by applying (5.26) to (5.25) that∫
Ω
ν(·, | curlA|) curlA · curl(v −A) dx ≥

∫
Ω
Jsol · (v −A) dx ∀v ∈K. (5.27)

Applying the decomposition (5.23) to (5.27) and taking A ∈H(div=0) into account, we obtain
that∫

Ω
ν(·, | curlA|) curlA · curl(v −A) dx+

∫
Ω
∇φJ · v dx ≥

∫
Ω
J · (v −A) dx ∀v ∈K.

Hence, (A, φJ ) ∈ (K ∩ H(div=0)) × H1
0 (Ω) is a solution to (VI). Towards uniqueness, let

(Ã, φ̃) ∈ (K ∩H(div=0))×H1
0 (Ω) be another solution to (VI). Considering only test functions

v ∈ K ∩H(div=0) in (VI), we obtain due to (5.23) and (5.5) that Ã is a solution to (VIsol),
which by the uniqueness of the solution to (VIsol) implies that Ã = A. Next, for any ϕ ∈ H1

0 (Ω),
we have that A +∇ϕ ∈ K since | curl(A +∇ϕ)| = | curlA| ≤ d a.e. in Ω. Thus, testing the
variational inequality for the solution (A, φ̃) to (VI) with v = A +∇ϕ ∈ K, we obtain due to
curl∇ ≡ 0 that ∫

Ω
∇φ̃ · ∇ϕdx =

∫
Ω
J · ∇ϕdx ∀ϕ ∈ H1

0 (Ω). (5.28)

Applying (5.23) to (5.28), we end up with∫
Ω
∇(φ̃− φJ ) · ∇ϕdx = 0 ∀ϕ ∈ H1

0 (Ω) ⇒ φ̃ = φJ .

In conclusion, (A, φJ ) is the unique solution to (VI).
Let us now prove that (A, φJ ) satisfies the dual characterization (5.24). In view of Lemma 5.4,

{Aγ}γ>0 ⊂ H0(curl) is bounded, and hence it follows from (VEγ) that {γθγ(·, curlAγ)}γ>0
is bounded in [curlXN,0]∗. Therefore, we find Ψ ∈ [curlXN,0]∗ such that after selecting a
subsequence

γθγ(·, curlAγ) ⇀ Ψ weakly in [curlXN,0]∗ as γ →∞. (5.29)
At the same time, since curlXN,0 ⊂ L2(Ω) is closed (cf. (2.25)), Riesz’s representation theorem
implies the existence of m ∈XN,0 such that

Ψ(curlv) =
∫

Ω
curlm · curlv dx ∀v ∈XN,0. (5.30)

Combining (5.29) with (5.30), it follows that

γ

∫
Ω
θγ(·, curlAγ) · curlv dx→

∫
Ω

curlm · curlv dx ∀v ∈XN,0 as γ →∞. (5.31)

Due to (5.31) and the strong convergence Aγ → A in XN,0 as γ → ∞ (see Lemma 5.4), we
obtain after passing to the limit γ →∞ in (VEγ) that∫

Ω
ν(·, | curlA|) curlA · curlv dx+

∫
Ω

curlm · curlv dx =
∫

Ω
Jsol · v dx ∀v ∈XN,0. (5.32)
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As a result of (2.25), (5.32) implies thatm ∈XN,0 is unique. Indeed, assuming that there exist
m1,m2 ∈XN,0 satisfying (5.32), it follows that∫

Ω
curl(m1 −m2) · curlv dx = 0 ∀v ∈XN,0.

Then, inserting v = m1−m2 ∈XN,0 and taking into account (2.25), we obtain thatm1 = m2.
Now, since curl∇ ≡ 0 and Jsol ∈ H(div=0), it follows from the Helmholtz decomposition
H0(curl) = XN,0⊕∇H1

0 (Ω) that the variational equality (5.32) is valid for all test functions in
H0(curl), i.e., it holds for all v ∈H0(curl) that∫

Ω
ν(·, | curlA|) curlA·curlv dx+

∫
Ω

curlm·curlv dx =
∫

Ω
Jsol ·v dx =︸︷︷︸

(5.23)

∫
Ω

(J−∇φJ )·v dx.

(5.33)
For the last part in (5.24) we take v ∈ K ⊂ H0(curl) and test equation (5.33) with v −A to
deduce that∫

Ω
curlm · curl(v −A) dx

=
∫

Ω
(J −∇φJ ) · (v −A) dx−

∫
Ω
ν(·, | curlA|) curlA · curl(v −A) dx ≤︸︷︷︸

(VI)

0.

To summarize, we have proven that there is a unique m ∈ XN,0 such that the unique solution
(A, φJ ) of (VI) satisfies the dual characterization (5.24). This completes the proof.

5.3 Optimal Control
In what follows, we denote the control-to-state mapping for (VI) by

G : L2(Ω)→XN,0, J 7→ A.

In view of Theorem 5.5, the restriction of G onto the subspaceH(div=0), i.e., G : H(div=0)→
XN,0 serves as the control-to-state mapping for (VIsol). Invoking G, we reformulate the optimal
control problem (5.3) as

min
J∈L2(Ω)

F (J) := 1
2‖ curlG(J)−Bd‖2L2(Ω) + λ

2 ‖J‖
2
L2(Ω). (P)

Lemma 5.6. The optimal control problem (P) admits an optimal solution. Every optimal
solution to (P) enjoys a higher regularity property in H(div=0).

Proof. By an application of standard techniques (cf. [140, Proposition 3.2] or [37, Lemma 2.1.7]
for details), the control-to-state mapping G : L2(Ω) → XN,0 is weak-strong continuous. Thus,
the existence of an optimal solution to (P) follows from classical arguments (cf. [127]). Let
J? ∈ L2(Ω) be an optimal solution to (P). Our goal now is to prove the higher regularity
property J? ∈H(div=0). In view of (2.27), J? admits the following orthogonal decomposition

J? = J?sol +∇φJ? ∈H(div=0)⊕∇H1
0 (Ω)
⇒ ‖J?‖2L2(Ω) = ‖J?sol‖2L2(Ω) + ‖∇φJ?‖2L2(Ω). (5.34)
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Let us now consider the optimal control problem

min
J∈H(div=0)

F (J). (5.35)

Since G|H(div=0) is as well weak-strong continuous, there exists a minimizer J̃?sol ∈ H(div=0)
for (5.35), i.e.,

F (J̃?sol) ≤ F (J) ∀J ∈H(div=0).

It then follows that

F (J̃?sol) ≤ F (J?sol) = 1
2‖ curlG(J?sol)−Bd‖2L2(Ω) + λ

2 ‖J
?
sol‖2L2(Ω)

=︸︷︷︸
(5.34)

1
2‖ curlG(J?sol)−Bd‖2L2(Ω) + λ

2 ‖J
?‖2L2(Ω) −

λ

2 ‖∇φJ
?‖2L2(Ω)

= F (J?)− λ

2 ‖∇φJ
?‖2L2(Ω) ≤ F (J̃?sol)−

λ

2 ‖∇φJ
?‖2L2(Ω),

where for the last inequality we used the fact that J? is optimal for (P). The above inequalities
yield that ∇φJ? = 0, which in turn implies φJ? = 0 due to φJ? ∈ H1

0 (Ω). Thus, by the
decomposition in (5.34), we come to the conclusion that J? = J?sol ∈H(div=0). This completes
the proof.

Remark 5.7. Lemma 5.6 implies that any optimal solution J? ∈ L2(Ω) of (P) is also an optimal
solution of the H(div=0)-reduced problem

min
J∈H(div=0)

1
2‖ curlG(J)−Bd‖2L2(Ω) + λ

2 ‖J‖
2
L2(Ω). (5.36)

On the other hand, given an optimal solution J?sol ∈H(div=0) for (5.36), it is straightforward to
verify that J?sol is as well an optimal solution of (P). In that sense, both problems (P) and (5.36)
are equivalent, and it is, therefore, sufficient to focus on the derivation of optimality conditions
for (5.36).

5.3.1 Necessary Optimality Conditions for (P)

This section is devoted to the establishment of an optimality system for (P). To overcome the un-
derlying non-smoothness, we consider a smoothed version of (5.36) built upon the approximation
(VEγ) in the spirit of Barbu [18]: Given an arbitrarily fixed optimal solution J? ∈ H(div=0)
to (P), we consider

min
Jγ∈H(div=0)

Fγ(Jγ) := 1
2‖ curlGγ(Jγ)−Bd‖2L2(Ω) + λ

2 ‖Jγ‖
2
L2(Ω) + λ

2 ‖Jγ − J
?‖2L2(Ω), (Pγ)

where Gγ : H(div=0) → XN,0 denotes the reduced control-to-state mapping for (VEγ) based
on Lemma 5.3. Note that, as a consequence of Lemma 5.4, standard arguments yield that

Jγ ⇀ J weakly in H(div=0) as γ →∞
⇒ Gγ(Jγ)→ G(J) strongly in XN,0 as γ →∞. (5.37)

Lemma 5.8. Let γ > 0. Then, there exists an optimal solution J?γ ∈H(div=0) to the problem
(Pγ).
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Proof. As before, by well-known techniques, the mapping Gγ : H(div=0) → XN,0 is weak-
strong continuous. Therefore, the existence of an optimal solution J?γ ∈ H(div=0) of (Pγ) is
guaranteed.

We note that in general the uniqueness of optimal solutions to (Pγ) cannot be guaranteed
since Gγ is nonlinear.

Next, for ease of notation, we introduce a vector version of the nonlinearity ν by means of the
mapping

F : Ω× R3 → R3, (x, s) 7→ ν(x, |s|)s,

for which we require the following regularity assumption to hold:

Assumption 5.9. For almost every x ∈ Ω, both the mappings ν(x, ·) : (0,∞) → R and
F(x, ·) : R3 → R3 are continuously differentiable. Moreover, there is a constant C > 0, such
that ∣∣∣∣∣∂F i

∂sj
(x, s)

∣∣∣∣∣ ≤ C for a.e. x ∈ Ω and all s ∈ R3

for all i, j ∈ {1, 2, 3}.

Assumption 5.9 is obviously satisfied for ν ≡ 1, i.e., for the case where the quasilinearity
is not present. A non-trivial example for a choice of ν satisfying both Assumption 5.1 and
Assumption 5.9 can be found in [140, Example 3.5].
Now, let γ > 0 be arbitrarily fixed. Further let J ,J ∈ H(div=0) and let Aγ = Gγ(J) be

the corresponding state. To obtain differentiability properties of Gγ , we introduce an auxiliary
linear problem, it reads

Find Aγ ∈XN,0, s.t.∫
Ω

DsF(·, curlAγ) curlAγ · curlv dx+ γ

∫
Ω

Dsθγ(·, curlAγ) curlAγ · curlv dx

=
∫

Ω
J · v dx ∀v ∈XN,0.

(5.38)

Now, [140, Proposition 3.7] provides us with

DsF(x, s)y · y ≥ ν|y| for a.e. x ∈ Ω and all s, y ∈ R3. (5.39)

Furthermore, as a consequence of Lemma 5.2, it holds that

Dsθγ(x, s)y · y ≥ 0 for a.e. x ∈ Ω and all s, y ∈ R3. (5.40)

SinceAγ is fixed, the left-hand side of (5.38) induces a bilinear form. According to the properties
(5.39) and (5.40), this bilinear form is coercive. Thanks to the uniform boundedness of DsF
from Assumption 5.9 and the uniform boundedness of Dsθγ from Lemma 5.2, the resulting
bilinear form is also bounded. Hence, by the Lax-Milgram theorem, (5.38) admits a unique
solution Aγ ∈XN,0. Taking into account Assumption 5.9, it is readily straightforward to verify
the weak Gâteaux differentiability of Gγ : L2(Ω)→XN,0 (see the proof of [140, Proposition 3.7]
or [37, Lemma 2.2.7]). The Gâteaux derivative G′γ(J)J is given by the unique solution Aγ to
(5.38).
As a consequence of the weak Gâteaux differentiability, standard adjoint techniques (cf. [127]

or [37, Theorem 2.2.8]) imply necessary optimality conditions for (Pγ) which are collected in the
following lemma:
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Lemma 5.10. Let γ > 0 and let J?γ ∈ H(div=0) be an optimal control for (Pγ). Then, there
exists a tuple (A?

γ ,Q
?
γ) ∈XN,0 ×XN,0 such that

∫
Ω
ν(·, | curlA?

γ |) curlA?
γ · curlv dx+ γ

∫
Ω
θγ(·, curlA?

γ) · curlv dx =
∫

Ω
J?γ · v dx

∀v ∈XN,0
∫

Ω
DsF(·, curlA?

γ)T curlQ?
γ · curlv dx+ γ

∫
Ω

Dsθγ(·, curlA?
γ) curlQ?

γ · curlv dx

=
∫

Ω
(curlA?

γ −Bd) · curlv dx ∀v ∈XN,0

J?γ = −1
2λ
−1Q?

γ + 1
2J

?. (5.41)

In all what follows, for every γ > 0, let J?γ ∈ H(div=0) denote an optimal solution to (Pγ)
with the associated state and adjoint state (A?

γ ,Q
?
γ) ∈XN,0×XN,0 satisfying (5.41). Our final

goal is to establish necessary optimality conditions for (P) by means of a limit passage in the
necessary optimality systems (5.41). Generally speaking, as part of necessary optimality condi-
tions, one would expect a certain orthogonal relation between the dual multiplier and the optimal
state (cf. [98, 100]). In the case of (P), difficulties arise due to the involved quasilinearity and
especially the first-order bilateral vector curl-constraint in the underlying H(curl)-structured
variational inequality. Consequently, we can only prove the boundedness of {γθγ(·, curlA?

γ)}γ>0
and {Dsθγ(·, curlA?

γ) curlQ?
γ}γ>0 in [curlXN,0]∗ and not in L2(Ω). We tackle this difficulty

by employing the Hilbert projector into the space curlXN,0 given by

Pcurl := PcurlXN,0 : L2(Ω)→ curlXN,0, (5.42)

taking into account that curlXN,0 ⊂ L2(Ω) is closed, and the following tailored cut-off type
function:

% : Ω× R3 → R3, %(x, s) := smin
(

1, d(x)
|s|

)
=


s if |s| ≤ d(x)

d(x) s
|s|

if |s| > d(x).

Theorem 5.11. Let J? ∈H(div=0) be an optimal solution of (P). Then, there exist an optimal
state A? ∈ K ∩H(div=0), an adjoint state Q? ∈ XN,0, a state multiplier m? ∈ XN,0, and a
triple of adjoint multipliers (n?,σ?d+

,σ?d−) ∈XN,0 ×L2(Ω)×L2(Ω) such that∫
Ω
ν(·, | curlA?|) curlA? · curlv dx+

∫
Ω

curlm? · curlv dx (5.43)

=
∫

Ω
J? · v dx ∀v ∈XN,0∫

Ω
curlm? · curl(v −A?) dx ≤ 0 ∀v ∈K (5.44)∫

Ω
DsF(·, curlA?)T curlQ? · curlv dx+

∫
Ω

curln? · curlv dx (5.45)

=
∫

Ω
(curlA? −Bd) · curlv dx ∀v ∈XN,0

J? = −λ−1Q? (5.46)∫
Ω

curln? · curlQ? dx ≥ 0 (5.47)
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∫
Ω
σ?d+ ·

(
d

curlA?

| curlA?|
− curlA?

)
dx = 0, curln? = σ?d+ + σ?d− . (5.48)

Moreover, after selection of a subsequence, the triplet of adjoint multipliers (n?,σ?d+
,σ?d−) is

characterized by

γPcurl
(
Dsθγ(·, curlA?

γ) curlQ?
γ

)
⇀ curln? weakly in L2(Ω) as γ →∞

γPcurl
(
Dsθγ(·, curlA?

γ) curlQ?
γ

)
χ{| curlA?

γ |>d} ⇀ σ?d+ weakly in L2(Ω) as γ →∞

γPcurl
(
Dsθγ(·, curlA?

γ) curlQ?
γ

)
χ{| curlA?

γ |≤d} ⇀ σ?d− weakly in L2(Ω) as γ →∞.

Proof. The proof is divided into three steps.
Step 1 (Limiting process). Let J? ∈ H(div=0) be an optimal solution of (5.36). Combining

Lemma 5.4 with standard arguments from [18] taking into account the penalty term λ
2‖Jγ −

J?‖2L2(Ω) in (Pγ), there exists a sequence {J?γ}γ>0 ⊂ H(div=0) of optimal solutions to (Pγ)
such that

J?γ → J? strongly in H(div=0) as γ →∞.
Combining Lemma 5.4 with Theorem 5.5 and (5.37) implies that

A?
γ → A? strongly in XN,0 as γ →∞

γθγ(·, curlA?
γ) ⇀ curlm? weakly in [curlXN,0]∗ as γ →∞,

(5.49)

where (A?,m?) ∈ (K ∩H(div=0))×XN,0 is the unique solution to the dual formulation (5.24)
with right-hand side J? ∈ H(div=0) and φ = 0, i.e., (5.43) and (5.44). Let us now invoke
the necessary optimality conditions (5.41) for the optimal control J?γ of the regularized problem
(Pγ). Inserting v = Q?

γ in (5.41) and taking (5.39) as well as the adjoint equation in (5.40)
into account, we obtain the boundedness of {Q?

γ}γ>0 in XN,0. Furthermore, in view of (5.41),
the boundedness of {Q?

γ}γ>0 and {Aγ}γ>0 as well as Assumption 5.9 yield the boundedness of
{γDsθγ(·, curlA?

γ) curlQ?
γ}γ>0 in the dual space [curlXN,0]∗. Altogether, there exist Q? ∈

XN,0 and n?0 ∈XN,0 such that, after selection of a subsequence, we obtain

Q?
γ ⇀ Q? weakly in XN,0 as γ →∞

γDsθγ(·, curlA?
γ) curlQ?

γ ⇀ curln?0 weakly in [curlXN,0]∗ as γ →∞.
(5.50)

Taking into account (5.49) and Assumption 5.9, we apply Lebesgue’s dominated convergence
theorem to deduce

DsF(·, curlA?
γ) curlv → DsF(·, curlA?) curlv strongly in L2(Ω) as γ →∞ (5.51)

for every v ∈ XN,0. It now follows from (5.49), (5.50), and (5.51) that (Q?,n?0) satisfies the
adjoint equation (5.45). Moreover, passing to the limit γ → ∞ in the representation for the
optimal control in (5.41), we conclude that (5.46) is valid.
Step 2 (Orthogonality condition). For every γ > 0, employing (5.42), we decompose the field

Dsθγ(·, curlA?
γ) curlQ?

γ as

Dsθγ(·, curlA?
γ) curlQ?

γ = Pcurl(Dsθγ(·, curlA?
γ) curlQ?

γ) + zγ , (5.52)
with zγ := (I − Pcurl)(Dsθγ(·, curlA?

γ) curlQ?
γ) ∈ (curlXN,0)⊥ .

By definition, for every γ > 0, there exists gγ ∈XN,0, so that Pcurl(Dsθγ(·, curlA?
γ) curlQ?

γ) =
curl gγ . Inserting v = gγ in the adjoint equation in (5.41) yields∫

Ω
DsF(·, curlA?

γ)T curlQ?
γ · curl gγ dx+ γ

∫
Ω

(curl gγ + zγ) · curl gγ dx
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=
∫

Ω
(curlA?

γ −Bd) · curl gγ dx.

Since zγ ∈ (curlXN,0)⊥, the L2(Ω)-inner product between zγ and curl gγ vanishes such that∫
Ω

DsF(·, curlA?
γ)T curlQ?

γ · γ curl gγ dx+ γ2‖ curl gγ‖2L2(Ω)

=
∫

Ω
(curlA?

γ −Bd) · γ curl gγ dx.

In view of Assumption 5.9, the sequences {curlA?
γ}γ>0 and {curlQ?

γ}γ>0 are bounded in L2(Ω).
Thus, an application of the Hölder and Young inequalities implies that {γ curl gγ}γ>0 ⊂ L2(Ω)
is bounded. As a consequence, there exists n? ∈XN,0, such that, after selecting a subsequence,
it holds that

γPcurl(Dsθγ(·, curlA?
γ) curlQ?

γ) = γ curl gγ ⇀ curln? weakly in L2(Ω) as γ →∞, (5.53)

where we used the fact that curlXN,0 ⊂ L2(Ω) is closed. Since, according to (5.50) and (5.52),
it also holds that∫

Ω
γ curl gγ · curlv dx→

∫
Ω

curln?0 · curlv dx as γ →∞ ∀v ∈XN,0,

we infer that ∫
Ω

curln? · curlv dx =
∫

Ω
curln?0 · curlv dx ∀v ∈XN,0.

Next, for every γ > 0, we set

σγ,d+ := γPcurl(Dsθγ(·, curlA?
γ) curlQ?

γ)χ{| curlA?
γ |>d} = γ curl gγχ{| curlA?

γ |>d}

σγ,d− := γPcurl(Dsθγ(·, curlA?
γ) curlQ?

γ)χ{| curlA?
γ |≤d} = γ curl gγχ{| curlA?

γ |≤d}.

By definition, it holds that
|σγ,d+ | ≤ |γ curl gγ | a.e. in Ω
|σγ,d− | ≤ |γ curl gγ | a.e. in Ω.

Consequently, as {γ curl gγ}γ>0 ⊂ L2(Ω) is bounded, the sequences {σγ,d+}γ>0 and {σγ,d−}γ>0
are also bounded in L2(Ω). For this reason, there exist σ?d+

,σ?d+
∈ L2(Ω) such that, after

extracting a subsequence, we obtain that

σγ,d+ ⇀ σ?d+ weakly in L2(Ω) as γ →∞ (5.54)
σγ,d− ⇀ σ?d− weakly in L2(Ω) as γ →∞.

Finally, due to
σγ,d+ + σγ,d− = γ curl gγ ∀γ > 0

and the weak convergence (5.53), we come to the conclusion that curln? = σ?d+
+ σ?d− . Let us

now make use of the cut-off type function

(curlA?
γ)≤d(x) := %(x, curlA?

γ) =


curlA?

γ(x) if | curlA?
γ(x)| ≤ d(x)

d(x)
curlA?

γ(x)
| curlA?

γ(x)| if | curlA?
γ(x)| > d(x)
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for a.e. x ∈ Ω. Since, for a.e. x ∈ Ω, the mapping %(x, ·) is Lipschitz continuous with Lipschitz
constant 1 (cf. [52, Theorem 4.5]), we obtain that∫

Ω
|(curlA?

γ)≤d − curlA?|2 dx =︸︷︷︸
| curlA?|≤d

∫
Ω
|(curlA?

γ)≤d − (curlA?)≤d|2 dx

=
∫

Ω
|%(·, curlA?

γ)− %(·, curlA?)|2 dx ≤
∫

Ω
| curlA?

γ − curlA?|2 dx →︸︷︷︸
(5.49)

0 as γ →∞.

Therefore, it holds that

(curlA?
γ)≤d → curlA? strongly in L2(Ω) as γ →∞. (5.55)

Combining (5.55) with (5.53) and the fact that curln? = σ?d+
+ σ?d− holds, we obtain

∫
Ω
γPcurl(Dsθγ(·, curlA?

γ) curlQ?
γ) · (curlA?

γ)≤ddx

→
∫

Ω
σ?d+ · curlA? dx+

∫
Ω
σ?d− · curlA? dx (5.56)

as γ →∞. On the other hand, in view of the definition of the cut-off mapping %, the left-hand
side of the latter equation can be rewritten as∫

Ω
γPcurl(Dsθγ(·, curlA?

γ) curlQ?
γ) · (curlA?

γ)≤d dx (5.57)

=
∫

Ω
γPcurl(Dsθγ(·, curlA?

γ) curlQ?
γ)χ{| curlA?

γ |>d} · d
curlA?

γ

| curlA?
γ |

dx

+
∫

Ω
γPcurl(Dsθγ(·, curlA?

γ) curlQ?
γ)χ{| curlA?

γ |≤d} · curlA?
γ dx

=
∫

Ω
σγ,d+ · d

curlA?
γ

| curlA?
γ |

dx+
∫

Ω
σγ,d− · curlA?

γ dx

→
∫

Ω
σ?d+ · d

curlA?

| curlA?|
dx+

∫
Ω
σ?d− · curlA? dx as γ →∞,

where the last convergence follows again from (5.49) and (5.54). Comparing (5.57) and (5.56)
concludes the proof for the orthogonality condition (5.48).
Step 3 (Sign condition). Finally, let us prove the sign condition (5.47). For this last step, we

test the adjoint equation in (5.41) with v = Q?
γ to obtain∫

Ω
DsF(·, curlA?

γ)T curlQ?
γ · curlQ?

γ dx−
∫

Ω
(curlA?

γ −Bd) · curlQ?
γ dx

= −γ
∫

Ω
Dsθγ(·, curlA?

γ) curlQ?
γ · curlQ?

γ dx ≤ 0. (5.58)

Next, let us estimate

lim inf
γ→∞

∫
Ω

DsF(·, curlA?
γ)T curlQ?

γ · curlQ?
γ dx (5.59)

= lim inf
γ→∞

[ ∫
Ω

DsF(·, curlA?
γ)T curl(Q?

γ −Q?) · curl(Q?
γ −Q?) dx

+ 2
∫

Ω
DsF(·, curlA?

γ)T curlQ?
γ · curlQ? dx
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−
∫

Ω
DsF(·, curlA?

γ)T curlQ? · curlQ? dx
]

≥︸︷︷︸
(5.39)

2 lim inf
γ→∞

∫
Ω

DsF(·, curlA?
γ)T curlQ?

γ · curlQ? dx

− lim sup
γ→∞

∫
Ω

DsF(·, curlA?
γ)T curlQ? · curlQ? dx.

≥︸︷︷︸
(5.51)

∫
Ω

DsF(·, curlA?)T curlQ? · curlQ? dx.

Using the limiting adjoint equation (5.45), we ultimately find that

−
∫

Ω
curln? · curlQ? dx

=︸︷︷︸
(5.45)

∫
Ω

DsF(·, curlA?)T curlQ? · curlQ? dx−
∫

Ω
(curlA? −Bd) · curlQ? dx

≤︸︷︷︸
(5.59)

lim inf
γ→∞

(∫
Ω

DsF(·, curlA?
γ)T curlQ?

γ · curlQ?
γ dx−

∫
Ω
(curlA?

γ −Bd) · curlQ?
γ dx

)

≤︸︷︷︸
(5.58)

0.

This completes the proof.





CHAPTER 6

NUMERICAL ANALYSIS FOR MAXWELL
QUASI-VARIATIONAL INEQUALITIES IN

SUPERCONDUCTIVITY

Depending on the properties of the given medium, different configurations and variations of
Maxwell’s equations need to be considered. For instance, as briefly reported in Section 2.1, if
the medium is isotropic with good conducting properties, it is well-known that Ohm’s law holds
true. In that case, the current density can be related with a multiple of the electric field.
Nowadays, many modern technologies make use of some sort of superconducting material.

Generally speaking, superconductivity comprises physical properties of certain materials which
cause it to lose its electrical resistance. By the Meissner effect, the loss of electrical resistance
causes any magnetic field to be expelled. In this chapter, we are particularly interested in
high-temperature type-II superconductors. Those being superconductors in which

- the superconducting state occurs below −195.8◦C, the boiling point of liquid nitrogen
(high-temperature),

- the transition between the superconducting and non-superconducting state is not abrupt
(type-II).

See Figure 6.1 for a visualization of the non-abrupt transition of type-II superconductors. In the
presence of a superconductor, Ohm’s law needs to be replaced by a nonlinear and non-smooth
constitutive relation between the electric field E and the current density J . A prominent model
was proposed by Bean (cf. [22, 23]), his critical state model postulates that

(B1) the current density strength |J | cannot exceed some critical value jc ∈ R+,

(B2) the electric field E vanishes if |J | < jc,

(B3) the electric field E is parallel to J .

Including (B1)-(B3) into the classical evolutionary Maxwell’s equations, one ends up with a
hyperbolic variational inequality of the second kind without temperature and magnetic field
dependence. The resulting model was studied for the first time in [141] and later generalized
in [143]. Dependence on the temperature, i.e., the handling of a nonlinearity jc = jc(·, θ), was
first analyzed in [136]. Neglecting the dependence on the magnetic field is physically reasonable
as long as the magnetic field strength is not so strong. However, with the strength of the
magnetic field exceeding a certain level, as found by Kim et al. in [81], an accurate model needs
to account for the dependence not only on the temperature θ but also on the magnetic field H.
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θ
θc

|H|

Hc1

Hc2

Figure 6.1: Expulsion of magnetic field lines by type-II superconductors depending on critical
values of both temperature and magnetic field.

For this reason, we consider a nonnegative function

jc : Ω× R× R3 → R,

allowing for the more general dependence jc = jc(·, θ,H). Here, Ω ⊂ R3 represents our compu-
tational medium, which we assume to be a bounded polyhedral Lipschitz domain. Given a time
horizon T ∈ R+, we are able to include the Bean-Kim model into Maxwell’s equations so that
we end up with the nonlinear and non-smooth system



ε
d
dtE − curlH + J = f in (0, T )× Ω

µ
d
dtH + curlE = 0 in (0, T )× Ω

J(x, t) ·E(x, t) = jc(x, θ(x, t),H(x, t))|E(x, t)| in (0, T )× Ω
|J(x, t)| ≤ jc(x, θ(x, t),H(x, t)) in (0, T )× Ω
E × n = 0 in (0, T )× ∂Ω

(E,H)(0) = (E0,H0) in Ω.

(6.1)

Assumptions on the data involved in (6.1) can be found in Assumption 6.1. In particular, we
rely on a local boundedness and local Lipschitz assumption of the nonlinearity jc with respect to
the temperature and a global boundedness and global Lipschitz assumption of jc with respect to
the magnetic field. We refer to [43] for a physical justification of these assumptions. As it turns
out, a corresponding weak formulation of (6.1) does not lead to a hyperbolic VI but rather to a
hyperbolic quasi-variational inequality, namely finding

(E,H) ∈W 1,∞((0, T ),L2(Ω)×L2(Ω)) ∩ L∞((0, T ),H0(curl)×H(curl) ∩ µ−1H0(div=0)),
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such that 

∫
Ω
ε

d
dtE(t) · (v −E(t))− curlH(t) · (v −E(t)) dx

+ j(θ(t),H(t),v)− j(θ(t),H(t),E(t)) ≥
∫

Ω
f(t) · (v −E(t)) dx

for a.e. t ∈ (0, T ) and all v ∈ L2(Ω)

µ
d
dtH(t) + curlE(t) = 0 for a.e. t ∈ (0, T )

(E,H)(0) = (E0,H0).

(QVI)

Here, the L1-type nonlinearity j : L2(Ω)×L2(Ω)×L2(Ω)→ R is defined by

j(η,h,v) :=
∫

Ω
jc(·, η,h)|v|dx ∀(η,h,v) ∈ L2(Ω)×L2(Ω)×L2(Ω).

Lately, there has been an increasing interest in QVIs of both first and second kind, in par-
ticular, their sensitivity analysis (cf. [8–11]). We also mention the publications [19, 84, 120]
dealing with QVIs in the context of superconductivity. In contrast to the mentioned papers,
our model involves no simplified W 1,p-structure but rather includes the natural spaces from the
theory of Maxwell’s equations. The well-posedness for our formulation (QVI) goes back to [145]
and appears to be the first contribution towards quasi-variational inequalities with a Maxwell
structure.
The present chapter is mainly concerned with the development of an efficient solver for (QVI)

and its numerical analysis. Our novelties include the stability and strong convergence of the
scheme in (QVIN,h) towards the unique solution of (QVI). In particular, as a result of our
tailored stability analysis and by making use of the specific structure of the nonlinearity, we are
able to strengthen the well-posedness result from [145] in the sense of allowing for source and
temperature data to be merely of bounded variation instead of H1 in time.

While there are several contributions towards the numerical analysis of QVIs (cf. [109,112]), to
the best of the authors knowledge, this work is the first one to deal with the numerical resolution
of a QVI with a hyperbolic character. The main difficulty in the discretization of the present
problem (QVI) lies in the fact that there is no general well-posedness theory for elliptic QVIs.
This problem especially comes to light when employing standard discretization methods such as
the implicit Euler method. Here, the nonlinearity jc in the resulting elliptic QVI formulation for
the electric field would even depend on its rotational field, making the existence and uniqueness
of solutions especially delicate.
We overcome this complexity by employing a discretization by the leapfrog stepping in com-

bination with a discontinuous Galerkin discretization for the electric field similar to Chap-
ter 4. In this way, we are able to completely eliminate the QVI character in our fully discrete
scheme (QVIN,h) and replace it with an L2-structured VI for which we can explicitly compute
its analytical solution in terms of the given data (see Theorem 6.6). Compared with other
types of discretizations in possible combination with fixed-point type iterations, this leads to a
highly efficient solve for the unique solution of (QVI). Supplementary to the references on the
leapfrog stepping in Chapter 4, let us mention the contributions from the mathematical com-
munity [33, 34, 89, 117], but also from the engineering community [58, 59, 67, 83] in the context
of wave equations, in particular electromagnetic problems. However, we are only aware of the
previous contribution towards leapfrog discretization for variational inequalities in Chapter 4.
Let us now introduce the pivotal Hilbert space for this chapter by

X(µ)(Ω) := H(curl) ∩ µ−1H0(div=0) =
{
v ∈H(curl) : (v,∇φ)L2

µ(Ω) = 0 ∀φ ∈ H1(Ω)
}
.
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As we will work with source term and temperature of bounded variation, let us denote by P the
set of all partitions of the interval [0, T ], i.e.,

P = {P = {s0, . . . , snP } ⊂ [0, T ] : nP ∈ N and si ≤ si+1 for every 0 ≤ i ≤ nP − 1}.

For a given Banach space V , we then denote

BV([0, T ], V ) := {g : [0, T ]→ V : TV(g) <∞},

where, for g : [0, T ]→ V , the total variation is defined by

TV(g) := sup
P∈P

nP−1∑
n=0
‖g(sn+1)− g(sn)‖V . (6.2)

Note that any g ∈ BV([0, T ], V ) is already contained in L∞((0, T ), V ). In the stability analysis
following later, we will use the following equation which holds for {an}i0n=1 ⊂ Rd and {bn}i0n=0 ⊂
Rd with d, i0 ∈ N,

i0∑
n=1

an · (bn + bn−1) =
i0−1∑
n=1

(an+1 + an) · bn + a1 · b0 + ai0 · bi0 . (6.3)

We now summarize the mathematical assumptions for (QVI).

Assumption 6.1 (Regularity assumptions on the material parameters).

(A6.1) The material parameters ε, µ ∈ L∞(Ω) are strictly positive, i.e., there exist positive
constants ε, ε, µ, µ > 0 such that

ε ≤ ε(x) ≤ ε and µ ≤ µ(x) ≤ µ for a.e. x ∈ Ω.

(A6.2) For every (y,z) ∈ R× R3, jc(·, y,z) : Ω→ R is Lebesgue-measurable and nonnegative.

(A6.3) For every M > 0, there exists a constant C(M) > 0 such that

0 ≤ jc(x, y,z) ≤ C(M)

for a.e. x ∈ Ω, every y ∈ [−M,M ], and every z ∈ R3 satisfying |z| ≤M .

(A6.4) For every M > 0, there exists a constant L(M) > 0 such that

|jc(x, y1, z1)− jc(x, y2, z2)| ≤ L(M) (|y1 − y2|+ |z1 − z2|)

for a.e. x ∈ Ω, every y1, y2 ∈ [−M,M ] and z1, z2 ∈ R3.

Moreover, we employ the following assumptions for the given data.

Assumption 6.2 (Regularity assumptions on the given data).

(A6.5) Suppose that

f ∈ BV([0, T ],L2(Ω)) and θ ∈ BV([0, T ], L2(Ω)) ∩ C([0, T ], L∞(Ω)).

(A6.6) The initial data fulfills the regularity property

(E0,H0) ∈
(
H1(Ω) ∩H0(curl)

)
×X(µ)(Ω).

Remark 6.3. The assumptions (A6.1)–(A6.4) are physically reasonable and for instance re-
ported in [43].
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6.1 Leapfrog Scheme
In this section, we want to introduce a fully discrete scheme to (QVI) in a similar fashion as
in Chapter 4. Therefore, we choose again a family of quasi-uniform triangulations {Th}h>0 of
Ω with h > 0 standing for the largest diameter of T ∈ Th. Our mixed finite element method
is based on the Nédélec finite element space NDh and the finite element space of piecewise
constant functions DGh. For their definition we refer to Chapter 4. In addition to these spaces,
we introduce the space of continuous piecewise linear elements by

Θh := {ψh ∈ H1(Ω) : ψh|T = aT · x+ bT with aT ∈ R3, bT ∈ R ∀T ∈ Th}.

By means of the above space, the subspace X(µ)
h ⊂ NDh is defined by

X
(µ)
h := {wh ∈ NDh : (wh,∇ψh)L2

µ(Ω) = 0 ∀ψh ∈ Θh},

i.e., it consists of all discrete µ-divergence-free edge element functions. The space X(µ)
h satisfies

the following well-known discrete compactness result (cf. [80] for the original result with µ ≡ 1).

Lemma 6.4. Let {zh}h>0 ⊂H(curl) be bounded and satisfy zh ∈X
(µ)
h for every h > 0. Then,

there exists a subsequence {zhn}∞n=1 ⊂ {zh}h>0 with hn → 0 as n→∞ such that

zhn → z strongly in L2
µ(Ω) as n→∞

curl zhn ⇀ curl z weakly in L2(Ω) as n→∞

for some z ∈X(µ)(Ω).

Let us now introduce the operators that link the original function spaces with their respective
finite element discretizations. At first, let us recall the L2(Ω)-orthogonal projector onto DGh

(see Chapter 4) satisfying

Qhu := arg min
vh∈DGh

‖u− vh‖L2(Ω) ⇔
∫

Ω

(
Qhu− u) · vh dx = 0 ∀vh ∈ DGh . (6.4)

Thanks to the best approximation property, it satisfies

‖Qhv − v‖L2(Ω) → 0 as h→ 0 ∀v ∈ L2(Ω) (6.5)
‖Qhv − v‖L2(Ω) ≤ Ch ∀v ∈H1(Ω) ∀h > 0,

where the constant C > 0 is independent of v and h. Moreover, the following solution operator
linksH(curl) to NDh and preserves the divergence properties for the discrete function (cf. [136,
Definition 3.2] for the case µ = 1).

Definition 6.5. For every h > 0 and y ∈ H(curl), we denote the solution operator of the
discrete variational mixed problem{(curlyh, curlvh)L2(Ω) = (curly, curlvh)L2(Ω) ∀vh ∈ NDh

(yh,∇ψh)L2
µ(Ω) = (y,∇ψh)L2

µ(Ω) ∀ψh ∈ Θh
(6.6)

by Φh : H(curl)→ NDh with Φhy := yh.
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Note that, Φh satisfies

‖Φhy‖H(curl) ≤ C‖y‖H(curl) ∀h > 0, ∀y ∈H(curl) (6.7)
lim
h→0
‖Φhy − y‖H(curl) = 0 ∀y ∈H(curl),

where the constant C > 0 is independent of h and y. Let us also recall the pivotal inverse
estimate (cf. (4.18)) for finite-element functions in NDh: There exists a constant Cinv > 0 that
is independent of h such that

‖ curlvh‖L2(Ω) ≤
Cinv
h
‖vh‖L2(Ω) ∀vh ∈ NDh . (6.8)

Following the construction in Chapter 4, we propose a time-discretization by the leapfrog
scheme. To this aim, let us fix N ∈ N. We define again an equidistant partition of [0, T ] as
follows:

τ := T

N
, 0 = t0 < t1 < · · · < tN = T with tn := nτ

for all n ∈ {0, . . . , N}. Moreover, we employ a growth restriction on τ . For some 0 < α < 1 it
holds that

τ

h
≤
√

εµ

2Cinv
(1− α) ⇔ α ≤ 1− 2C2

invτ
2

εµh2 . (6.9)

Moreover, we introduce the source and temperature time-discretizations

fn−
1
2 := f(tn− 1

2
) and θn−

1
2 := θ(tn− 1

2
) ∀n ∈ {1, . . . , N}.

Let us now propose the fully discrete scheme for (QVI):

For every n ∈ {1, . . . , N} find En
h ∈ DGh such that∫

Ω
εδEn

h ·
(
vh −E

n− 1
2

h

)
− curlHn− 1

2
h ·

(
vh −E

n− 1
2

h

)
dx+ j(θn−

1
2 ,H

n− 1
2

h ,vh)

− j(θn−
1
2 ,H

n− 1
2

h ,E
n− 1

2
h ) ≥

∫
Ω
fn−

1
2 ·
(
vh −E

n− 1
2

h

)
dx ∀vh ∈ DGh

and for every n ∈ {1, . . . , N − 1} find Hn+ 1
2

h ∈ NDh such that∫
Ω
µδH

n+ 1
2

h ·wh dx+
∫

Ω
En
h · curlwh dx = 0 ∀wh ∈ NDh

E0
h := QhE0 ∈ DGh, H

1
2
h := ΦhH0 ∈X(µ)

h ,

(QVIN,h)

where we use the same notation as in Chapter 4, namely,

δEn
h := En

h −E
n−1
h

τ
and E

n− 1
2

h := En
h +En−1

h

2 (6.10)

for all n ∈ {1, . . . , N} as well as

δH
n+ 1

2
h := H

n+ 1
2

h −Hn− 1
2

h

τ

for every n ∈ {1, . . . , N − 1}. Furthermore, for the sake of a simpler notation, for every n ∈
{1, . . . , N}, we define the nonlinear function ϕn−

1
2

h : L2(Ω)→ R by

ϕ
n− 1

2
h (v) := j(θn−

1
2 ,H

n− 1
2

h ,v) =
∫

Ω
j
n− 1

2
c,h |v| dx with j

n− 1
2

c,h := jc(·, θn−
1
2 ,H

n− 1
2

h ). (6.11)
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The initial discrete magnetic field satisfies the discrete regularity H
1
2
h ∈X

(µ)
h as H0 ∈X(µ)(Ω)

(see (A6.6)) and the construction of Φh in (6.6). Following Chapter 4, an important error
estimate for the discrete initial electric field follows immediately from (A6.6) and (6.5). There
exists a constant C > 0, independent of h > 0, such that

‖E0
h −E0‖L2

ε (Ω) ≤ Ch ∀h > 0. (6.12)

The following theorem provides the well-posedness of (QVIN, h) and its proof is the foundation
for our numerical computations.

Theorem 6.6. Let Assumption 6.1 and Assumption 6.2 be satisfied. Then, for every h > 0 and
N ∈ N, the system (QVIN, h) admits a unique solution (ENh ,HN−1

h ), where ENh = {En
h}Nn=1 and

HN−1
h = {Hn+ 1

2
h }N−1

n=1 . Moreover, Hn+ 1
2

h ∈ X(µ)
h for every n ∈ {1, . . . , N − 1}. If in addition

the functions ε, jn−
1
2

c,h , and fn−
1
2 are piecewise constant for some n ∈ {1, . . . , N} in accordance

with Th, then E
n− 1

2
h ∈ DGh is explicitly given by

E
n− 1

2
h = τε−1

2

(
ωnh − P

∂ϕ
n− 1

2
h

(0)
ωnh

)
, ωnh := fn−

1
2 + curlHn− 1

2
h + 2ε

τ
En−1
h . (6.13)

Here, P
∂ϕ

n− 1
2

h
(0)

: DGh → DGh denotes the Hilbert projector onto the subdifferential ∂ϕn−
1
2

h (0)⊂

DGh satisfying

P
∂ϕ

n− 1
2

h
(0)
vh =

j
n− 1

2
c,h vh

max
(
|vh|, j

n− 1
2

c,h

) ∀vh ∈ DGh .

Proof. Let N ∈ N, h > 0, n ∈ {1, . . . , N} and assume that (En−1
h ,H

n− 1
2

h ) ∈ DGh×NDh is
already computed. First of all, we note that

δEn
h = En

h −E
n−1
h

τ
=︸︷︷︸

(6.10)

2
τ

(
E
n− 1

2
h −En−1

h

)
. (6.14)

Therefore, we insert (6.14) into (QVIN, h) and obtain the discrete variational inequality to com-
pute En− 1

2
h ∈ DGh:∫

Ω

2ε
τ
E
n− 1

2
h · (vh −E

n− 1
2

h ) dx+ ϕ
n− 1

2
h (vh)− ϕn−

1
2

h (En− 1
2

h )

≥
∫

Ω
(fn−

1
2 + curlHn− 1

2
h + 2ε

τ
En−1
h ) · (vh −E

n− 1
2

h ) ∀vh ∈ DGh . (6.15)

Thanks to its L2-structure, (6.15) admits a unique solution En− 1
2

h ∈ DGh (see Theorem 2.6).
In view of (6.14), it follows that En

h = 2En− 1
2

h − En−1
h ∈ DGh solves the discrete variational

inequality in (QVIN,h). With En
h at hand, and if n < N , we compute Hn+ 1

2
h ∈ NDh as the

unique solution to the discrete linear equation∫
Ω
µH

n+ 1
2

h ·wh dx =
∫

Ω
µH

n− 1
2

h ·wh dx− τ
∫

Ω
En
h · curlwh dx ∀wh ∈ NDh . (6.16)
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In this way we have shown that (QVIN, h) admits a unique solution (ENh ,HN−1
h ). Finally, the

fact that curl∇ ≡ 0 in combination with H
1
2
h ∈ X

(µ)
h and (6.16), yields the desired regularity

property Hn+ 1
2

h ∈X(µ)
h for every n ∈ {1, . . . , N − 1} by inductive reasoning.

Let now n ∈ {1, . . . , N} such that ε, jn−
1
2

c,h , and fn− 1
2 are piecewise constant in accordance

with Th. Then, first of all, according to the definition of the subdifferential, it holds that

∂ϕ
n− 1

2
h (0) =

{
vh ∈ DGh : (vh,ph)L2(Ω) ≤ ϕ

n− 1
2

h (ph)− ϕn−
1
2

h (0) ∀ph ∈ DGh

}
(6.17)

=︸︷︷︸
(6.11)

{
vh ∈ DGh : (vh,ph)L2(Ω) ≤ (jn−

1
2

c,h , |ph|)L2(Ω) ∀ph ∈ DGh

}
.

By the piecewise constant structure of DGh, setting

ph =
{
vh on T
0 on Ω \ T

for T ∈ Th in (6.17) yields

∂ϕ
n− 1

2
h (0) = {vh ∈ DGh : |vh|T | ≤ j

n− 1
2

c,h |T for all T ∈ Th}. (6.18)

Further, by definition of the Hilbert projector together with the piecewise constant structure of
DGh, for every vh ∈ DGh, P

∂ϕ
n− 1

2
h

(0)
vh is given by the unique minimizer to

min
wh∈∂ϕ

n− 1
2

h
(0)
‖vh −wh‖2L2(Ω) = min

wh∈∂ϕ
n− 1

2
h

(0)

∑
T∈Th

∫
T
|vh −wh|2 dx (6.19)

= min
wh∈∂ϕ

n− 1
2

h
(0)

∑
T∈Th

|T ||vh|T −wh|T |2.

In view of (6.18), it follows that, for every T ∈ Th, (P
∂ϕ

n− 1
2

h
(0)
vh)|T ∈ R3 minimizes the problem

min
x∈R3

∣∣∣vh|T − x∣∣∣2 s.t. |x| ≤ jn−
1
2

c,h |T . (6.20)

The solution to the three-dimensional minimization problem (6.20) is exactly given by the pro-
jection of the vector vh|T ∈ R3 onto the euclidean ball with radius jn−

1
2

c,h |T . In conclusion,

P
∂ϕ

n− 1
2

h
(0)
vh =

j
n− 1

2
c,h vh

max
(
|vh|, j

n− 1
2

c,h

) ∀vh ∈ DGh .

Now, let us verify that En− 1
2

h given by (6.13) solves (6.15). To this aim, we recall from the
classical Hilbert projection theorem that P

∂ϕ
n− 1

2
h

(0)
ωnh is characterized by the solution to the

variational inequality(
ωnh − P

∂ϕ
n− 1

2
h

(0)
ωnh ,vh − P

∂ϕ
n− 1

2
h

(0)
ωnh

)
L2(Ω)

≤ 0 ∀vh ∈ ∂ϕ
n− 1

2
h (0). (6.21)
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Using once again the piecewise constant structure, we set

ṽh =

 vh on T
P
∂ϕ

n− 1
2

h
(0)
ωnh on Ω \ T

 ∈ ∂ϕn−
1
2

h (0)

in (6.21) to obtain its equivalence to(
ωnh − P

∂ϕ
n− 1

2
h

(0)
ωnh ,vh − P

∂ϕ
n− 1

2
h

(0)
ωnh

)
L2(T )

≤ 0 ∀vh ∈ ∂ϕ
n− 1

2
h (0) ∀T ∈ Th. (6.22)

Using that ε is both positive and piecewise constant, we multiply the inequality in (6.22) with
τε−1/2, which yields(

τε−1

2 (ωnh − P
∂ϕ

n− 1
2

h
(0)
ωnh),vh − P

∂ϕ
n− 1

2
h

(0)
ωnh

)
L2(T )

≤ 0 ∀vh ∈ ∂ϕ
n− 1

2
h (0) ∀T ∈ Th. (6.23)

Utilizing (6.23), it follows that

(
E
n− 1

2
h ,vh − P

∂ϕ
n− 1

2
h

(0)
ωnh
)
L2(Ω)

=︸︷︷︸
(6.13)

(
τε−1

2 (ωnh − P
∂ϕ

n− 1
2

h
(0)
ωnh),vh − P

∂ϕ
n− 1

2
h

(0)
ωnh

)
L2(Ω)

≤ 0 ∀vh ∈ ∂ϕ
n− 1

2
h (0),

which implies

(
E
n− 1

2
h ,vh

)
L2(Ω) ≤

(
E
n− 1

2
h ,P

∂ϕ
n− 1

2
h

(0)
ωnh
)
L2(Ω) ∀vh ∈ ∂ϕ

n− 1
2

h (0)

⇒ max
vh∈∂ϕ

n− 1
2

h
(0)

(
E
n− 1

2
h ,vh

)
L2(Ω) =

(
E
n− 1

2
h ,P

∂ϕ
n− 1

2
h

(0)
ωnh
)
L2(Ω), (6.24)

since P
∂ϕ

n− 1
2

h
(0)
ωnh ∈ ∂ϕ

n− 1
2

h (0). On the other hand, by setting ph = E
n− 1

2
h in (6.17) we obtain

max
vh∈∂ϕ

n− 1
2

h
(0)

(
E
n− 1

2
h ,vh

)
L2(Ω) ≤ ϕ

n− 1
2

h (En− 1
2

h ) =
∫

Ω
j
n− 1

2
c,h |E

n− 1
2

h |dx. (6.25)

Introducing

qnh(x) =


j
n− 1

2
c,h (x)En− 1

2
h (x)

|En− 1
2

h (x)|
if En− 1

2
h (x) 6= 0

0 else,

we have ∫
Ω
j
n− 1

2
c,h |E

n− 1
2

h |dx =
(
qnh ,E

n− 1
2

h

)
L2(Ω) ≤ max

vh∈∂ϕ
n− 1

2
h

(0)

(
E
n− 1

2
h ,vh

)
L2(Ω), (6.26)

since qnh ∈ ∂ϕ
n− 1

2
h (0) according to (6.18). Hence, combining (6.24) with (6.25) and (6.26) yields

ϕ
n− 1

2
h (En− 1

2
h ) = (P

∂ϕ
n− 1

2
h

(0)
ωnh ,E

n− 1
2

h )L2(Ω), (6.27)
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from which it follows that(2ε
τ
E
n− 1

2
h ,vh −E

n− 1
2

h

)
L2(Ω)

+ ϕ
n− 1

2
h (vh)− ϕn−

1
2

h (En− 1
2

h )

=︸︷︷︸
(6.13)

(ωnh − P
∂ϕ

n− 1
2

h
(0)
ωnh ,vh −E

n− 1
2

h )L2(Ω) + ϕ
n− 1

2
h (vh)− ϕn−

1
2

h (En− 1
2

h )

= (ωnh ,vh −E
n− 1

2
h )L2(Ω) + (P

∂ϕ
n− 1

2
h

(0)
ωnh ,E

n− 1
2

h )L2(Ω)

− (P
∂ϕ

n− 1
2

h
(0)
ωnh ,vh)L2(Ω) + ϕ

n− 1
2

h (vh)− ϕn−
1
2

h (En− 1
2

h )

≥︸︷︷︸
(6.17)

(ωnh ,vh −E
n− 1

2
h )L2(Ω) + (P

∂ϕ
n− 1

2
h

(0)
ωnh ,E

n− 1
2

h )L2(Ω) − ϕ
n− 1

2
h (En− 1

2
h )

=︸︷︷︸
(6.27)

(ωnh ,vh −E
n− 1

2
h )L2(Ω) ∀vh ∈ DGh .

This finishes the proof.

Remark 6.7. Although the explicit formula (6.13) is not necessary for the well-posedness
analysis, in the same way as in Theorem 4.3, it is crucial for the numerical computation of
the solution. By means of this explicit formula, the computation of the solution for one step in
the iterative scheme (QVIN, h) is reduced to setting En− 1

2
h according to (6.13) and solving the

linear problem (6.16). In comparison with fully implicit schemes (e.g. the implicit Euler) and
particularly fixed-point iterations that are commonly used in the context of QVIs, this should
result in a significant decrease in computational costs.

In order to prove the zero- and first-order stability of our fully discrete scheme (QVIN, h), as
in Chapter 4, we have to establish a first-order stability result for the initial leapfrog time step.

Lemma 6.8. Under Assumption 6.1, Assumption 6.2 and (6.9) there exists a constant C > 0,
independent of N and h, such that

‖δE1
h‖L2(Ω) + ‖δH

3
2
h ‖L2(Ω) ≤ C.

Proof. We begin by testing (QVIN,h) for n = 1 with vh = E
1
2
h − δE1

h ∈ DGh such that we
obtain

‖δE1
h‖2L2

ε (Ω) ≤
∫

Ω
(f

1
2 + curlH

1
2
h ) · δE1

h dx+
∫

Ω
jc(·, θ

1
2 ,H

1
2
h )(|E

1
2
h − δE

1
h| − |E

1
2
h |) dx.

Thanks to the uniform boundedness of H
1
2
h with respect to ‖ · ‖H(curl) (see (6.7)), (A6.3), and

(A6.6), we obtain

‖δE1
h‖L2

ε (Ω) ≤ ε−
1
2
(
‖f

1
2 ‖L2(Ω) + ‖ curlH

1
2
h ‖L2(Ω) + ‖jc(·, θ

1
2 ,H

1
2
h )‖L2(Ω)

)
≤ C (6.28)

for a constant C > 0, independent of N and h. Additionally, (QVIN,h) for n = 1 tested with
wh = δH

3
2
h gives us after some rearrangements and integration by parts

‖δH
3
2
h ‖

2
L2
µ(Ω) =

∫
Ω
µδH

3
2
h · δH

3
2
h dx =︸︷︷︸

(QVIN, h)

−
∫

Ω
E1
h · curl δH

3
2
h dx
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= −
∫

Ω
(τδE1

h +E0
h −E0) · curl δH

3
2
h dx−

∫
Ω

curlE0 · δH
3
2
h dx

≤︸︷︷︸
(6.8)

Cinv√
εµ

(
τ

h
‖δE1

h‖L2
ε (Ω) +

‖E0
h −E0‖L2

ε (Ω)
h

+ ‖ curlE0‖L2
ε (Ω)

)
‖δH

3
2
h ‖L2

µ(Ω).

Finally, the assertion follows from (6.9), (6.28), and (6.12).

In the following two lemmas, we prove zero- and first-order stability estimates for the fully
discrete solution to (QVIN,h).

Lemma 6.9. Under Assumption 6.1, Assumption 6.2 and (6.9), there exists a constant C > 0,
independent of N and h, such that

max
1≤n≤N

‖δEn
h‖L2(Ω) + max

1≤n≤N−1
‖δHn+ 1

2
h ‖L2(Ω) ≤ C.

Proof. First, fix n ∈ {2, . . . , N} and test the n-th inequality in (QVIN,h) with vh = E
n− 3

2
h and

the (n − 1)-th inequality with vh = E
n− 1

2
h . Then, adding the resulting inequalities and using

(4.28) implies∫
Ω
ε(δEn

h − δEn−1
h ) · (δEn

h + δEn−1
h )− τ curl δHn− 1

2
h · (δEn

h + δEn−1
h ) dx (6.29)

− 2
τ

(
ϕ
n− 1

2
h (En− 3

2
h )− ϕn−

1
2

h (En− 1
2

h ) + ϕn−
3
2 (En− 1

2
h )− ϕn−

3
2 (En− 3

2
h )

)
≤
∫

Ω
(fn−

1
2 − fn−

3
2 ) · (δEn

h + δEn−1
h ) dx.

After summing (6.29) up over {2, . . . , i0} for a fixed i0 ∈ {2, . . . , N}, we obtain

‖δEi0
h ‖

2
L2
ε (Ω) − τ

i0∑
n=2

∫
Ω

curl δHn− 1
2

h · (δEn
h + δEn−1

h ) dx (6.30)

≤‖δE1
h‖2L2

ε (Ω) +
i0∑
n=2

∫
Ω

(fn−
1
2 − fn−

3
2 ) · (δEn

h + δEn−1
h ) dx

+ 2
τ

i0∑
n=2

(
ϕ
n− 1

2
h (En− 3

2
h )− ϕn−

1
2

h (En− 1
2

h ) + ϕn−
3
2 (En− 1

2
h )− ϕn−

3
2 (En− 3

2
h )

)
.

Let us now estimate the terms in (6.30) separately. For the first sum on the right-hand side of
(6.30) it holds that

i0∑
n=2

∫
Ω

(fn−
1
2 − fn−

3
2 ) · (δEn

h + δEn−1
h ) dx (6.31)

≤ 1
√
ε

i0∑
n=2
‖fn−

1
2 − fn−

3
2 ‖L2(Ω)‖δEn

h‖L2
ε (Ω) + 1

√
ε

i0∑
n=2
‖fn−

1
2 − fn−

3
2 ‖L2(Ω)‖δEn−1

h ‖L2
ε (Ω)

≤ 1
√
ε

i0−1∑
n=2
‖fn−

1
2 − fn−

3
2 ‖L2(Ω)‖δEn

h‖L2
ε (Ω) + 1

√
ε

i0−1∑
n=1
‖fn+ 1

2 − fn−
1
2 ‖L2(Ω)‖δEn

h‖L2
ε (Ω)

+ 2
ε
‖f i0−

1
2 − f i0−

3
2 ‖2L2(Ω) + 1

8‖δE
i0
h ‖

2
L2
ε (Ω).
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Now, introducing the set

Ii0 := {n ∈ {1, . . . , i0 − 1} : ‖δEn
h‖L2

ε (Ω) ≤ 1}

and recalling the definition (6.2) with V = L2(Ω), it holds that

i0−1∑
n=2
‖fn−

1
2 − fn−

3
2 ‖L2(Ω)‖δEn

h‖L2
ε (Ω) (6.32)

≤
∑

n∈Ii0\{1}
‖fn−

1
2 − fn−

3
2 ‖L2(Ω) +

∑
n∈Ic

i0
\{1}
‖fn−

1
2 − fn−

3
2 ‖L2(Ω)‖δEn

h‖2L2
ε (Ω)

≤TV(f) +
∑

n∈Ic
i0
\{1}
‖fn−

1
2 − fn−

3
2 ‖L2(Ω)‖δEn

h‖2L2
ε (Ω).

In an analogous way, we calculate

i0−1∑
n=1
‖fn+ 1

2 − fn−
1
2 ‖L2(Ω)‖δEn

h‖L2
ε (Ω)

≤ TV(f) +
∑
n∈Ic

i0

‖fn+ 1
2 − fn−

1
2 ‖L2(Ω)‖δEn

h‖2L2
ε (Ω). (6.33)

Then, applying (6.32) and (6.33) to (6.31) leads to

i0∑
n=2

∫
Ω

(fn−
1
2 − fn−

3
2 ) · (δEn

h + δEn−1
h ) dx (6.34)

≤1
8‖δE

i0
h ‖

2
L2
ε (Ω) + 2

ε
TV(f)2 + 2

√
ε
TV(f) + 1

√
ε

∑
n∈Ic

i0
\{1}
‖fn−

1
2 − fn−

3
2 ‖L2(Ω)‖δEn

h‖2L2
ε (Ω)

+ 1
√
ε

∑
n∈Ic

i0

‖fn+ 1
2 − fn−

1
2 ‖L2(Ω)‖δEn

h‖2L2
ε (Ω).

Moreover, thanks to (A6.6), we make use of the local Lipschitz-properties of jc (cf. (A6.4) and
(A6.5)) in order to estimate the second sum on the right-hand side of (6.30)

2
τ

i0∑
n=2

(
ϕ
n− 1

2
h (En− 3

2
h )− ϕn−

1
2

h (En− 1
2

h ) + ϕn−
3
2 (En− 1

2
h )− ϕn−

3
2 (En− 3

2
h )

)
(6.35)

=︸︷︷︸
(6.11)

2
i0∑
n=2

∫
Ω

(
jc(·, θn−

3
2 ,H

n− 3
2

h )− jc(·, θn−
1
2 ,H

n− 1
2

h )
) |En− 1

2
h | − |En− 3

2
h |

τ

 dx

≤︸︷︷︸
(A6.3)–(A6.5)

L(‖θ‖C([0,T ],L∞(Ω)))√
ε

i0∑
n=2
‖θn−

1
2 − θn−

3
2 ‖L2(Ω)‖δEn

h‖L2
ε (Ω)

+
τL(‖θ‖C([0,T ],L∞(Ω)))

√
εµ

i0∑
n=2
‖δHn− 1

2
h ‖L2

µ(Ω)‖δEn
h‖L2

ε (Ω)

≤
L(‖θ‖C([0,T ],L∞(Ω)))√

ε

i0−1∑
n=2
‖θn−

1
2 − θn−

3
2 ‖L2(Ω)‖δEn

h‖L2
ε (Ω)
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+
2L(‖θ‖C([0,T ],L∞(Ω)))2

ε
‖θi0−

1
2 − θi0−

3
2 ‖2L2(Ω) + 1

8‖δE
i0
h ‖

2
L2
ε (Ω)

+
2τTL(‖θ‖C([0,T ],L∞(Ω)))2

εµ

i0∑
n=2
‖δHn− 1

2
h ‖2L2

µ(Ω) + τ

8T

i0∑
n=2
‖δEn

h‖2L2
ε (Ω).

Now, using again the definition (6.2) this time with V = L2(Ω) and following the same argu-
mentation as in (6.32), we obtain

i0−1∑
n=2
‖θn−

1
2 − θn−

3
2 ‖L2(Ω)‖δEn

h‖L2
ε (Ω) (6.36)

≤TV(θ) +
∑

n∈Ic
i0
\{1}
‖θn−

1
2 − θn−

3
2 ‖L2(Ω)‖δEn

h‖2L2
ε (Ω)

and hence applying (6.36) to (6.35) results in

2
τ

i0∑
n=2

(
ϕ
n− 1

2
h (En− 3

2
h )− ϕn−

1
2

h (En− 1
2

h ) + ϕn−
3
2 (En− 1

2
h )− ϕn−

3
2 (En− 3

2
h )

)
(6.37)

≤
L(‖θ‖C([0,T ],L∞(Ω)))√

ε

(
TV(θ) +

∑
n∈Ic

i0
\{1}
‖θn−

1
2 − θn−

3
2 ‖L2(Ω)‖δEn

h‖2L2
ε (Ω)

)

+
2L(‖θ‖C([0,T ],L∞(Ω)))2

ε
TV(θ)2 + 1

4‖δE
i0
h ‖

2
L2
ε (Ω)

+
2τTL(‖θ‖C([0,T ],L∞(Ω)))2

εµ

i0∑
n=2
‖δHn− 1

2
h ‖2L2

µ(Ω) + τ

8T

i0−1∑
n=2
‖δEn

h‖2L2
ε (Ω).

The estimation of the second term on the left-hand side of (6.30) requires the following
formula: for every n ∈ {2, . . . , N − 1} it holds that

− τ
∫

Ω
curl(δHn+ 1

2
h + δH

n− 1
2

h ) · δEn
h dx = ‖δHn+ 1

2
h ‖2L2

µ(Ω) − ‖δH
n− 1

2
h ‖2L2

µ(Ω). (6.38)

In fact, substracting the n-th and (n− 1)-th equations of (QVIN,h) results in

−
∫

Ω
(En

h −En−1
h ) · curlwh dx =

∫
Ω
µ(δHn+ 1

2
h − δHn− 1

2
h ) ·wh dx ∀wh ∈ NDh .

Hence, choosing wh = δH
n+ 1

2
h + δH

n− 1
2

h ∈ NDh implies (6.38). Now, utilizing (6.3) and (6.8)
we obtain an estimate for the second term on the left-hand side of (6.30)

τ
i0∑
n=2

∫
Ω

curl δHn− 1
2

h ·
(
δEn

h + δEn−1
h

)
dx (6.39)

=︸︷︷︸
(6.3)

τ
i0−1∑
n=2

∫
Ω

curl(δHn+ 1
2

h + δH
n− 1

2
h ) · δEn

h + curl δH i0− 1
2

h · δEi0
h + curl δH

3
2
h · δE

1
h dx

≤︸︷︷︸
(6.38)

− ‖δH i0− 1
2

h ‖2L2
µ(Ω) + ‖δH

3
2
h ‖

2
L2
µ(Ω) + 2C2

invτ
2

εµh2 ‖δH
i0− 1

2
h ‖2L2

µ(Ω)

+ 1
8‖δE

i0
h ‖

2
L2
ε (Ω) + 2C2

invτ
2

εµh2 ‖δH
3
2
h ‖

2
L2
µ(Ω) + 1

8‖δE
1
h‖L2

ε (Ω),
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where in the final step of the estimation we have also used the Hölder and Young inequalities as
well as (6.8) to obtain the estimates

τ

∫
Ω

curl δH i0− 1
2

h · δEi0
h dx ≤ 2C2

invτ
2

εµh2 ‖δH
i0− 1

2
h ‖2L2

µ(Ω) + 1
8‖δE

i0
h ‖

2
L2
ε (Ω)

and
τ

∫
Ω

curl δH
3
2
h · δE

1
h dx ≤ 2C2

invτ
2

εµh2 ‖δH
3
2
h ‖

2
L2
µ(Ω) + 1

8‖δE
1
h‖2L2

ε (Ω).

In conclusion, we insert (6.34), (6.37) and (6.39) into (6.30) to obtain

1
2‖δE

i0
h ‖

2
L2
ε (Ω) +

(
1− 2C2

invτ
2

εµh2 −
2τTL(‖θ‖C([0,T ],L∞(Ω)))2

εµ

)
‖δH i0− 1

2
h ‖2L2

µ(Ω) (6.40)

≤9
8‖δE

1
h‖L2

ε (Ω) +
(

1 + 2C2
invτ

2

εµh2

)
‖δH

3
2
h ‖

2
L2
µ(Ω) + 2

√
ε
TV(f) +

L(‖θ‖C([0,T ],L∞(Ω)))√
ε

TV(θ)

+ 2
ε

TV(f)2 +
2L(‖θ‖C([0,T ],L∞(Ω)))2

ε
TV(θ)2 + 1

√
ε

∑
n∈Ic

i0
\{1}
‖fn−

1
2 − fn−

3
2 ‖L2(Ω)‖δEn

h‖2L2
ε (Ω)

+ 1
√
ε

∑
n∈Ic

i0

‖fn+ 1
2 − fn−

1
2 ‖L2(Ω)‖δEn

h‖2L2
ε (Ω)

+
L(‖θ‖C([0,T ],L∞(Ω)))√

ε

∑
n∈Ic

i0
\{1}
‖θn−

1
2 − θn−

3
2 ‖L2(Ω)‖δEn

h‖2L2
ε (Ω)

+ τ

8T

i0−1∑
n=2
‖δEn

h‖2L2
ε (Ω) +

2τTL(‖θ‖C([0,T ],L∞(Ω)))2

εµ

i0−1∑
n=2
‖δHn− 1

2
h ‖2L2

µ(Ω).

Thanks to the growth condition (6.9), there exists a fixed N0 ∈ N such that for τ = T/N it
holds that

1− 2C2
invτ

2

εµh2 −
2τTL(‖θ‖C([0,T ],L∞(Ω)))2

εµ
≥ α−

2τTL(‖θ‖C([0,T ],L∞(Ω)))2

εµ
≥ α

2 ∀N ≥ N0. (6.41)

Now, by means of (6.9) and Lemma 6.8, the first two terms on the right-hand side of (6.40) are
bounded independently of N and h, so that we can define

β := max
(N,h)∈N×(0,∞)

(9
8‖δE

1
h‖L2

ε (Ω) +
(

1 + 2C2
invτ

2

εµh2

)
‖δH

3
2
h ‖

2
L2
µ(Ω)

)
+ 2
√
ε
TV(f) (6.42)

+
L(‖θ‖C([0,T ],L∞(Ω)))√

ε
TV(θ) + 2

ε
TV(f)2 +

2L(‖θ‖C([0,T ],L∞(Ω)))2

ε
TV(θ)2.

To simplify the estimate (6.40), for n ∈ {1, . . . , i0 − 1}, let us introduce the coefficient

hn :=



1
√
ε
‖f

3
2 − f

1
2 ‖L2(Ω) if n = 1

max
{ 1
√
ε
‖fn−

1
2 − fn−

3
2 ‖L2(Ω) + 1

√
ε
‖fn+ 1

2 − fn−
1
2 ‖L2(Ω)

+
L(‖θ‖C([0,T ],L∞(Ω)))√

ε
‖θn−

1
2 − θn−

3
2 ‖L2(Ω) + τ

8T ,

2τTL(‖θ‖C([0,T ],L∞(Ω)))2

εµ

}
if n ∈ {2, . . . , i0 − 1},
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by the use which, in combination with (6.41) and (6.42), it follows that

α

2
(
‖δEi0

h ‖
2
L2
ε (Ω) + ‖δH i0− 1

2
h ‖2L2

µ(Ω)

)
≤ β +

i0−1∑
n=1

hn
(
‖δEn

h‖2L2
ε (Ω) + ‖δHn− 1

2
h ‖2L2

µ(Ω)

)
.

Invoking the discrete version of Gronwall’s inequality, this implies

‖δEi0
h ‖

2
L2
ε (Ω) + ‖δH i0− 1

2
h ‖2L2

µ(Ω) ≤ β exp
(
i0−1∑
n=1

hn

)
.

It remains to show that the term ∑i0−1
n=1 hn is bounded. Indeed, it holds that

i0−1∑
n=1

hn ≤ max
{ 2
√
ε
TV(f) +

L(‖θ‖C([0,T ],L∞(Ω)))√
ε

TV(θ) + 1
8 ,

2T 2L(‖θ‖C([0,T ],L∞(Ω)))2

εµ

}
.

As N0 was fixed and i0 ∈ {2, . . . , N} chosen arbitrarily, we deduce with Lemma 6.8 that

max
1≤n≤N

‖δEn
h‖L2(Ω) + max

1≤n≤N−1
‖δHn+ 1

2
h ‖L2(Ω) ≤ C ∀N ∈ N (6.43)

for a constant C > 0, independent of N and h. This completes the proof.

Lemma 6.10. Let Assumption 6.1, Assumption 6.2 and (6.9) be satisfied. Then, there exists a
constant C > 0 which is independent of N and h such that

max
1≤n≤N

‖En
h‖L2(Ω) + max

1≤n≤N−1
‖Hn+ 1

2
h ‖L2(Ω) + max

1≤n≤N−1
‖ curlHn+ 1

2
h ‖L2(Ω) ≤ C.

Proof. Using the reversed triangle inequality, it follows by definition of the difference quotients
together with Lemma 6.9 that

‖En
h‖L2

ε (Ω) ≤ τC + ‖En−1
h ‖L2

ε (Ω) ≤ · · · ≤ nτC + ‖E0
h‖L2

ε (Ω) ≤ TC + ‖E0
h‖L2

ε (Ω) ≤ C

for any n ∈ {1, . . . , N}. Using the same argumentation for the discrete magnetic fields, it follows
that

max
1≤n≤N

‖En
h‖L2(Ω) + max

1≤n≤N−1
‖Hn+ 1

2
h ‖L2(Ω) ≤ C. (6.44)

Now, we insert vh = curlHn− 1
2

h + E
n− 1

2
h ∈ DGh for n ∈ {1, . . . , N} into (QVIN, h) such that

we obtain

‖ curlHn− 1
2

h ‖2L2(Ω)

≤
∫

Ω

(
εδEn

h − fn−
1
2
)
· curlHn− 1

2
h dx+ ϕ

n− 1
2

h (curlHn− 1
2

h +En− 1
2

h )− ϕn−
1
2

h (En− 1
2

h )

≤
(
‖δEn

h‖L2(Ω) + ‖fn−
1
2 ‖L2(Ω) + ‖jc(·, θn−

1
2 ,H

n− 1
2

h )‖L2(Ω)
)
‖ curlHn− 1

2
h ‖L2(Ω).

Ultimately, using (6.43), (6.44), and (A6.3), the assertion follows.
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6.2 Convergence
The previous stability estimates enable the establishment of a convergence result for (QVIN, h),
which yields the well-posedness of (QVI) as a direct consequence. We will not present any
details on the convergence here, as it is in large parts similar to Section 4.3. Invoking similar
interpolation techniques, in particular, using the piecewise continuous and piecewise constant
interpolations for the discrete electric and magnetic fields as in (4.45) and (4.46), the resulting
convergence result reads as follows.

Theorem 6.11. Let Assumption 6.1, Assumption 6.2 and (6.9) be satisfied. Then, there exists

(E,H) ∈W 1,∞((0, T ),L2(Ω)×L2(Ω))× L∞((0, T ),H0(curl)×X(µ)(Ω))

such that for N = N(h) with N(h)→∞ as h→ 0 it holds that

lim
h→0
‖EN,h −E‖C([0,T ],L2(Ω)) = lim

h→0
‖EN,h −E‖L∞((0,T ),L2(Ω)) = 0

lim
h→0
‖HN,h −H‖C([0,T ],L2(Ω)) = lim

h→0
‖HN,h −H‖L∞((0,T ),L2(Ω)) = 0.

Moreover, (E,H) is the unique solution to (QVI).

Comparing with the proof of Theorem 4.15, the constraint preserving mollification process
presented in Section 4.3.1 is not needed. However, the convergence proof involves the usage
of the compactness property in Lemma 6.4 to pass to the limit in the nonlinearity. Moreover,
to be able to pass to the limit in the piecewise constant interpolation of the source term f ,
one uses the fact that f is of bounded variation, and therefore continuous almost everywhere
(cf. [12, Corollary 3.33]). A complete proof can be found in the corresponding preprint [66].

6.3 Numerical Experiments
In this final section, we present a numerical test for (QVI) based on the proposed discrete scheme
(QVIN, h). As mentioned in the introduction, experiments in the physics literature report the
dependence of the critical current density jc not only on the temperature but also on the magnetic
field H. With our numerical test we strive to show the impact of the magnetic field dependence
on the simulation. In particular, we replicate the findings in [43,81,133], where the authors agree
upon the fact that for certain types of superconductors the critical current density jc = jc(θ,H)
should vanish for high values of |H|. Based on physical experiments, the findings in [43] suggest
the Kim-like critical-state model in its power form, that is, the choice

jc(·, θ,H) := c(1− θ)2

1 + |H|β χΩsc(·), where c > 0 and β ≥ 0, (6.45)

to model the magnetic field dependence for materials covered in specifically designed silver-
sheathed tapes. Here, Ωsc ⊂ Ω denotes a high temperature superconductor. For our numerical
test we consider the computational domain Ω = (−1, 1)3, the time horizon T = 1, the material
parameters ε, µ ≡ 1, and (E0,H0) = (0, 0) as an initial value. For our superconductor Ωsc, we
use

Ωsc = {(x1, x2, x3) ∈ R3 |
√
x2

1 + x2
2 + x2

3 ≤ 0.2},

and along with the choice c = 4 · 103 and the temperature distribution θ(x, t) = t, we consider
three different configurations for the parameter β:
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(i) β = 0: the case of no magnetic field dependence.

(ii) β = 1 and β = 3: the case of the magnetic field strength entering to the exponents 1 and
3.

Finally, for the applied current source, we choose f : [0, 1]× Ω→ R3, defined by

f(t, x1, x2, x3) :=


10(1 + 4t2)

0, −x3√
x2

2 + x2
3

,
x2√

x2
2 + x2

3

 if (x1, x2, x3) ∈ P

0 if (x1, x2, x3) /∈ P,

where P = {(x1, x2, x3) ∈ R3 | |x1| ≤ 0.5, 0.3 ≤
√
x2

2 + x2
3 ≤ 0.5} models a cylindrical pipe

coil. The mentioned setup and the resulting magnetic field at one time instant are visualized in
Figure 6.2. To realize the proposed numerical resolution of (QVI), we implemented (QVIN, h)
with time steps according to the CFL-condition (6.9) and roughly 3 million DoFs in the mixed
finite element space, where we have in particular refined the underlying mesh around the su-
perconductor Ωsc. As observable in Figure 6.3, in the beginning, the superconducting effect is
fully present for every configuration of β. This is in line with the choice of the initial value.
With the evolution of time, the strength of the magnetic field enhances, which leads to Ωsc
gradually leaving its superconducting state. Specifically, we see that the breakdown of the su-
perconducting state is hugely accelerated with the choice β = 3, whereas for β = 1, the solution
is comparable to the solution for β = 0, i.e., the case of no magnetic field dependence. At the
final time, the superconducting state is fully broken down independent of the configuration of
β. We conclude that including the quasi-variational character is particularly important to the
modeling of superconductors when strong magnetic fields are considered.

Figure 6.2: Clipped pipe coil with the superconductor in its center (left) and 3D visualization
at a fixed time step (right).
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Figure 6.3: Time-evolution of the magnetic field for the three different configurations of β (2D
slice). The first line shows the case β = 0, while the second and third line show the
cases β = 1 and β = 3.



CHAPTER 7

OUTLOOK

In this thesis, we have covered a variety of problem statements within the realm of Maxwell
variational inequalities. Motivated by the eddy current approximation of the hyperbolic Maxwell
obstacle problem, we moved on to the construction of an efficient solver and its numerical
analysis. Then, inspired by applications in ferromagnetic shielding, we covered the analysis and
optimal control of a quasilinear variational inequality. Finally, with the help of the previous
techniques, we investigated the numerical analysis of a second kind Maxwell quasi-variational
inequality with applications in superconductivity.
Certainly, every single of these topics has its own interesting and challenging continuations.

However, rather than going into detail in this direction, let us use this final chapter for a small
preview on a very recent work in progress that is related to the last chapter.

7.1 Towards Modeling of Magnetic Levitation Phenomena

In the classic physical experiment of placing a superconductor over a permanent magnet, levi-
tation of the superconductor can be observed assuming the superconductor is in its supercon-
ducting state. As described in [35, 130], this levitation is related to the Meissner effect and
stable levitation mainly occurs due to hysterical forces resulting from the interaction of flux
lines with defects in the material. The literature concerned with a macroscopical description of
this phenomenon is quite rich. In particular, we refer to the paper [25] for a topical overview.
Given a superconductor Ωsc ⊂ Ω, physical experiments suggest that the interaction force

between the permanent magnet and the superconductor Ωsc can be described by the term

F (Ωsc,J ,H) :=
∫

Ωsc
J(t, x)×H(t, x) dx, (7.1)

where J denotes the current density. Many numerical experiments using such quantity have
already been realized by approximating the present QVI-character by a certain power law for
the current density (cf. [116, 123]). However, to the best of the authors knowledge, a full QVI
model in the context of magnetic levitation has not yet been considered.
In this last part, building upon (QVI), we strive to present a reasonable model that does

not rely on a simplification by a power law for the current density. In particular, based on the
interaction force term (7.1), we construct a specific nonlinearity jc to model the displacement
of the superconductor Ωsc under the influence of a magnetic field. As a baseline, we modify
the model from the previous chapter, resulting in another hyperbolic Maxwell quasi-variational
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inequality of the second kind with an L1-type nonlinearity:

∫
Ω
ε

d
dtE(t) · (v −E(t))− curlH(t) · (v −E(t)) dx

+
∫

Ω
jc(·, t,H,J)|v| dx−

∫
Ω
jc(·, t,H,J)|E(t)|dx ≥

∫
Ω
f(t) · (v −E(t)) dx

for a.e. t ∈ (0, T ) and all v ∈ L2(Ω)

µ
d
dtH(t) + curlE(t) = 0 for a.e. t ∈ (0, T )

(E,H)(0) = (E0,H0).

(QVIlev)

Note that, compared to (QVI), the critical current in (QVIlev) not only depends on the magnetic
field H, but also on the current density J and t ∈ (0, T ). For our specific choice of jc, we start
with an initial configuration of the superconductor Ωsc(0) ⊂ Ω having mass m ∈ (0,∞). Then,
we define

jc : Ω× (0, T )× L∞((0, T ),X(µ)(Ω))× L∞((0, T ),L2(Ω))→ R (7.2)
(x, t,H,J) 7→ cχΩsc(t)(x),

where c > 0 is a chosen constant and

Ωsc(t) = Ωsc(0) +
∫ t

0

∫ s

0
m−1F (Ωsc(τ),J|(0,t),H|(0,t)) dτ ds ∈ R3 (7.3)

J = curlH − ε d
dtE.

Here, based on Newton’s second law of motion, the term m−1F (Ωsc(τ),J ,H) describes the
acceleration of the superconductor Ωsc(τ) at time τ and its displacement is therefore obtained
by double integration as performed in (7.3). For simplicity, we assume that the mass m is large
enough so that the superconductor stays within the physical domain, i.e., Ωsc(t) ⊂ Ω for all
times t ∈ [0, T ].
Since the critical current in (7.2) depends on the current density and therefore implicitly on

curlH and the time derivative of E, the model (QVIlev) becomes highly complicated and does
not fit into the previous framework of (QVI). As a remedy, at least the dependence on the time
derivative can be disregarded when considering the eddy current case, i.e., ε being negligibly
small.
To numerically solve the system (QVIlev) we choose once again the leapfrog stepping in the

same way as in Chapter 4. The time integration in (7.3) is handled by the usage of a basic
quadrature rule.
For our provisional computational results, we chose a similar applied current source as before,

namely

f : Ω→ R3, f(x1, x2, x3) :=


0, −x3√

x2
2 + x2

3

,
x2√

x2
2 + x2

3

 if (x1, x2, x3) ∈ P

0 if (x1, x2, x3) /∈ P,

where P = {(x1, x2, x3) ∈ R3 | −0.8 ≤ x1 ≤ 0, 0.3 ≤
√
x2

2 + x2
3 ≤ 0.5} models a cylindrical pipe

coil. For our setup, we further went with the disk-shaped initial superconductor

Ωsc(0) = {(x1, x2, x3) ∈ R3 | −0.3 ≤ x1 ≤ −0.1,
√
x2

2 + x2
3 ≤ 0.25}.
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The superconductor is assumed to have mass m = 5 · 10−3. Further, we opt for the constant
c = 1000 in (7.2) and ε = 1, hence we do not consider the eddy current case. Figure 7.1 shows
the pipe coil and the superconductor at the initial time as well as a two-dimensional slice of the
magnetic field at a given time step in which we observe full expulsion of the magnetic field from
the superconductor. In Figure 7.2 we can observe the time evolution of the magnetic field and
the change in position of the superconductor. Starting from the initial position at time zero,
the superconductor experiences an upward force, resulting in an acceleration in the upward
direction, leading to an increase in height as the magnetic field gets stronger. Figure 7.3 shows
that the speed of the superconductor increases steadily over time. With the superconductor
leaving the strongest area of the magnetic field, as observable in Figure 7.3, its speed tends to
be constant which means that there is no further acceleration. Note that the given model does
not account for any gravitational effects, which is why we cannot expect that the position of the
superconductor becomes stationary.
The computational results appear to be promising and justify a future investigation of the

proposed model.

Figure 7.1: The pipe coil P in grey and the initial superconductor in black (left). A 2D slice of
the magnetic field at a given time step (right).

Figure 7.2: Evolution of the magnetic field and displacement of the superconductor.
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Figure 7.3: Graph of the superconductors speed over 800 time steps.
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