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“We can only see a short distance ahead, but we can see plenty there that needs to be done.”

Alan Turing
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Abstract

In this dissertation, novel ideas regarding the usage of prior anatomical information
in fully automated image segmentation pipelines are presented and investigated. In
the context of traditional segmentation methods, primitive shape priors are used
to construct contour initialization methods, which complement traditional contour
based segmentation approaches towards full automation. In the scope of this thesis,
these initialization methods, namely Polar Appearance Models (PAMs) and Gradi-
ent based Expanding Spherical Appearance Models (GESAMs), are specifically de-
signed for the extraction of the femoral bone in MR volumes.

Regarding deep learning, full automation is already implied by the architectural
end-to-end design of fully convolutional segmentation networks. Their performance
can, however, be increased by sufficient incorporation of prior anatomical knowl-
edge. In regards to shape priors, a cascaded convolutional distance transform is
proposed, which directly integrates the distance transform, as a conventional repre-
sentation for shape, into arbitrary segmentation networks. Moreover, two imitating
encoder based architectures are introduced, in which the compressing property of
convolutional autoencoders is leveraged to infuse shape information during training.
Furthermore, their applicability in cross-modality and one-shot settings is demon-
strated. In case of zero-shot domain adaptation, three strategies, i.e. shape priors by
Oktay et al.’s ACNN [OF+18], contour infusion by edge enhancement, and feature
abstraction by color augmentation, are introduced in this specific setting, all enforc-
ing shape aware feature learning to gap the domain shift to unseen target domains.

Additionally, a novel deep learning segmentation approach is presented for small
structures with strong shape variations, which considers topographical priors by
means of multitask learning. A similar topography aware approach is shown in an
excursion to weakly supervised caries detection in smartphone images.

The insights from both shape and topology based deep learning architectures are
combined in an application pipeline for the projection of necrotic tissue from MR
volumes onto fluoroscopic x-ray images. In this scope, a procedure is presented to
extract landmarks of the femoral bone, which are used in an evolution strategy to
find a suitable projection.

The dissertation is concluded with a discussion about prospects and limitations of
the proposed approaches for future research.
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Kurzfassung

In der vorliegenden Dissertation werden neue Ideen bezüglich der Nutzung von
anatomischen Priors, d.h. anatomischem Vorwissen, vorgestellt, die in vollautomati-
sierten Bildsegmentierungspipelines Anwendung finden sollen. Im Zusammenhang
von traditionellen Segmentierungsverfahren werden primitive Shape Priors verwen-
det, um Methoden zur Konturinitialisierung zu entwickeln, die klassische konturba-
sierte Segmentierungsverfahren in Richtung Vollautomatisierung ergänzen. Im Rah-
men dieser Arbeit werden die Initialisierungsverfahren Polar Appearance Models
(PAMs) und Gradient based Expanding Spherical Appearance Models (GESAMs)
speziell für den Anwendungsfall der Femurextraktion aus MRT Volumen entwickelt.

Im Deep Learning Kontext sind Fully Convolutional Segmentierungsnetzwerke in
der Regel aufgrund ihrer End-to-End Architektur bereits vollautomatisiert. Eine
Segmentierungsvorhersage kann aus einem Eingabebild erzeugt werden, ohne dass
weitere Schritte zwingend erforderlich sind. Anatomische Priors sollen in diesem
Zuge zur Verbesserung der Segmentierungsqualität beitragen, indem sie sinnvoll in
die Netzwerkarchitektur oder den Trainingsprozess eingebettet werden. Bezüglich
Shape Priors wird eine kaskadierte, faltungsbasierte Distanztransformation zur Form-
repräsentation vorgestellt, die direkt in beliebige Segmentierungsnetze integriert
werden kann. Des Weiteren werden zwei Architekturen präsentiert, die auf imi-
tierenden Encodern basieren. Diese nutzen die komprimierende Eigenschaft von
Convolutional Autoencodern aus, um Forminformationen während des Trainings in
das Netzwerk zu injizieren. Ihre Eignung für die Anwendung in Cross-Modality
und One-Shot Szenarien wird zudem demonstriert.

Weiterhin werden im Rahmen der Zero-Shot Domain Adaptation drei Strategien ein-
geführt, die formbasiertes Feature Learning forcieren, um den Domain Shift zu noch
unbekannten Zieldomänen zu überwinden. Speziell werden Netzwerke durch Sha-
pe Priors nach Oktay et al.’s ACNN [OF+18] ergänzt, Konturinformationen durch
Kantenhervorhebung stärker berücksichtigt und eine Featureabstraktion durch die
Augmentierung von Farben erzwungen.

Zusätzlich wird eine neue Deep Learning Architektur vorgestellt, die kleine Struk-
turen mit starker Formvariabilität extrahiert, indem sie topographische Priors mit-
hilfe von Multitask-Learning berücksichtigt. Ein ähnliches Verfahren, das ebenfalls
topographisches Vorwissen nutzt, wird im Rahmen einer Exkursion zu schwach
überwachten Detektionsverfahren zur Kariesidentifikation in Smartphonebildern vor-
gestellt.

Die Erkenntnisse bezüglich form- und topographiebasierten Deep Learning Archi-
tekturen werden in einer Applikationspipeline zusammengeführt, die sich mit der



vi

Projektion von nekrotischem Gewebe aus 3D MRT Volumen auf 2D Röntgenbilder
befasst. In diesem Rahmen wird ein Verfahren zur Extraktion von Orientierungs-
punkten des Femurs vorgestellt, die in einer Evolution Strategy genutzt werden, um
eine geeignete Projektion zu finden.

Die Dissertation wird mit einer kurzen Diskussion über Perspektiven und Einschrän-
kungen der vorgestellten Verfahren für zukünftige Forschungsarbeiten abgeschlos-
sen.
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Chapter 1

Introduction

Medical imaging is an important technique in clinical diagnostics, which allows
medical professionals visual insight to structures within the human body without
any need for invasive intervention. With the rapid technological development and
the present computational capabilities, medical imaging has experienced an im-
mense evolution from analog two-dimensional x-ray projections towards digital mul-
ti-dimensional and high resolution images of various modalities, such as Computer
Tomography (CT) and Magnetic Resonance (MR) Imaging. These domain specific
medical images are used for further interpretation and analysis by domain experts.

One crucial task of medical image analysis is the segmentation of the image into se-
mantically coherent areas. The task often consists of segmenting the image into a
foreground and background area of a specific structure of interest in order to extract
it. This allows the generation of patient-specific models for simulations and further
diagnostics. Since manual segmentation is expensive and time consuming, research
on automated approaches has sustained in the last decades. Before the emergence of
popular deep learning based segmentation methods, traditional segmentation meth-
ods have been predominantly used. These are arguably still of practical relevance,
particularly when not enough suitable annotated training data is available. A ma-
jor limitation in these methods is often the missing initialization stage, as for many
traditional segmentation methods, a rough initial contour needs to be manually
positioned by the clinician. In some cases, this is difficult to accomplish or time-
consuming, e.g. in 3D segmentation methods. Automated initialization approaches
would complement these methods towards full automation.

Deep learning based segmentation methods, on the other hand, already provide
a complete segmentation pipeline, as most of them are designed in an end-to-end
manner. This means, that the clinician uses a medical image as input and the deep
learning based approach returns a segmentation proposal without the need for any
further intervention. Of course, the results could be post-processed to correct the
segmentation proposal, but this is not an indispensable step, which is required for
full automation. These kind of segmentation approaches are additionally very fast
during inference, i.e. after training them, and demonstrate state of the art perfor-
mance in many application domains. Although Isensee et al. [Ise+21] show that a
correctly configured commonly used neural network, i.e. Ronneberger et al.’s U-Net
[RFB15], is able to achieve impressive scores in many segmentation challenges, re-
search towards better segmentation architectures remains a relevant topic. It needs
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to be noted, that when using a comparably trained baseline under similar circum-
stances, ablation studies often give more insights to the performance improvements,
than comparisons to well performing models, for which the training environments
are unclear.
Furthermore, the applicability of so-called one-shot techniques, in which only one
sample is used for training, is still an important research question, since annotated
data, especially in the medical context, is scarce and difficult to acquire.
Moreover, strategies to adapt a trained deep learning method towards a different
domain, i.e. domain adaptation approaches, are also still active research areas in the
context of medical image segmentation, as these methods help in circumventing the
repeated acquisition of training data for different application domains.

1.1 Motivation

The main goal of this dissertation is to investigate, how the concept of prior ana-
tomical knowledge can aid in making advancements in the aforementioned research
areas. This thesis leverages the observation, that in many medical images various
anatomical properties stay consistent both across patients and imaging modalities.

The first considered anatomical property is the prior knowledge about the shape of
bones and organs. The possibility to reduce certain bones to primitive shapes, e.g.
circles or spheres, is beneficial for the construction of contour initialization methods,
that can be used to complement traditional fully automated segmentation pipelines.
Regarding deep learning methods, incorporating shape information into the train-
ing procedure, may improve the general segmentation performance. To accomplish
this, suitable shape infusion methods need to be developed, first. Shape incorpo-
ration may also be advantageous in the context of one-shot learning, as additional
constraints regarding shape may restrict outlier predictions. A further possible ap-
plication area for shape priors is the field of domain adaptation. Here, intensity
values can differ drastically between training and application domain, therefore an
abstraction from intensity or texture-based feature learning towards shape aware
features is desirable. Particularly the field of zero-shot domain adaptation or do-
main generalization, in which no information about the target application domain is
available, currently lacks research contributions.

The second considered anatomical property is the topographical location of spe-
cific structures. Some structures may show a very high variation in their shape,
e.g. necrotic areas. Therefore, shape aware methods may not be applicable for the
extraction of these structures. However, they are often restricted within a specific
topographical region. Incorporating this prior knowledge into the training process
of deep learning models, could also aid in avoiding outlier predictions, which are
not even close the desired structure of interest.

1.2 Contributions

The contributions of this dissertation are the following:

• Two novel contour initialization methods for the segmentation of the femoral
bone in MR images are presented [Pha+18; Pha+19c]. Both contribute to the
completion of traditional fully automated segmentation pipelines.
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• Regarding shape incorporation into deep learning networks, a novel deep learn-
ing component is introduced, using a cascaded convolutional distance trans-
form to incorporate shape information [PDP21a].

• Furthermore, a novel imitating encoder - enhanced decoder design is pre-
sented, which compresses shape information from ground truth segmentation
maps and enforces a similar compression for medical input images [Pha+19a].

• This architecture is extended with an existing shape infusing method and ap-
plied in a cross-modality learning setting, in which multiple imaging modali-
ties are used for training at the same time [Kav+21].

• Moreover, the performance of the proposed extensions is investigated in the
context of one-shot segmentation [PDP21b].

• In the context of domain generalization, strategies to enforce shape aware fea-
tures are presented [PDP20], which significantly improve the segmentation
performance on unseen application domains.

• A further contribution is made regarding the incorporation of topographical
priors by proposing a multi-task learning architecture on the example of avas-
cular necrosis extraction within the femoral head [Pha+20].

• Finally, a necrosis projection pipeline is suggested, which extracts necrotic tis-
sue from MR volumes and projects it to an x-ray image for surgical navigation.
The methods in this pipeline are partly based on the aforementioned contribu-
tions.

1.3 Outline

The remainder of this thesis is structured as follows:
In chapter 2, the fundamentals regarding the considered imaging modalities are
shortly presented. Furthermore, relevant traditional segmentation methods are briefly
described, and a short introduction to the development and functionality of neural
networks is given.
In chapter 3, two initialization methods for traditional segmentation approaches are
presented for the extraction of the femoral bone from MR volumes. Their perfor-
mance is compared to each other and to a suitable registration baseline approach.
Since both methods have multiple hyper parameters, these are analyzed in a retro-
spective manner. By the end of this chapter, all considered initialization methods are
incorporated into a Level Set based segmentation pipeline.
Chapter 4 deals with the proposals of multiple end-to-end deep learning segmenta-
tion strategies, that incorporate shape priors into the learning process. The applica-
bility of selected strategies additionally investigated in the context of cross-modality
learning and one-shot segmentation. One strategy is, however, specifically designed
for the application in domain generalization settings.
In chapter 5 an architecture design for topographical priors is presented. Further-
more, an excursion towards weakly supervised caries detection using topographical
priors is made.
Chapter 6 combines the concepts of chapters 4 and 5 to address the practical task of
necrosis projection from MR volumes to x-ray images using evolution strategies.
The dissertation finishes with chapter 7, in which a conclusion is drawn and possible
future research is discussed.
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Chapter 2

Fundamentals

Medical image analysis is a broad research field that generally deals with the ex-
traction of knowledge from analyzing biomedical images of different modalities. It
consists both of manual analysis, in which domain experts use images for staging or
for the extraction of clinically relevant measurements, and of automated processes,
in which image processing and machine learning methods are employed for tasks
such as classification, anomaly detection, object localization, and image segmenta-
tion.
This chapter provides fundamental information about the kind of medical image
modalities, which are considered in the scope of this thesis. Moreover, it intro-
duces image processing and deep learning approaches, which are used in subse-
quent chapters for the accomplishment of fully automated image segmentation pipe-
lines. In the scope of this thesis, image segmentation approaches are differentiated
between traditional and deep learning based methods. While deep learning based tech-
niques are relatively new and make use of deep artificial neural networks, strategies
that have been established outside the domain of deep artificial neural networks are
considered traditional.

2.1 Medical Images

In clinical examinations, various imaging techniques are used to facilitate the diag-
nosis of specific diseases. In this section, the considered image modalities are shortly
described and the general notation regarding image representation throughout the
remainder of this thesis is presented. The content regarding image modalities is
based on Aumüller et al.’s teaching book [Aum+14].

2.1.1 X-ray Images

One of the earliest medical imaging modalities are x-ray images. X-rays were discov-
ered at the end of the 19th century, making it possible for the first time to visualize
internal body structures without surgical intervention. In x-ray images, high-energy
electromagnetic waves, i.e. x-ray radiation, are directed towards the patient, such
that dense three-dimensional structures are projected onto a two-dimensional im-
age. The principle of this procedure is based on the absorption and scattering be-
havior of the atoms in human tissue, induced by x-ray radiation. Tissue composed
of elements of higher atomic order absorbs radiation better than tissue composed
mostly of elements of lower atomic order. For example, bone tissue, which is very
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rich in calcium (atomic order of 20), absorbs radiation better than lung tissue, which
is largely composed of hydrogen (atomic order of 1) and carbon (atomic order of 14).
As a result, bones appear very bright in analog x-ray images, whereas soft tissue is
depicted darker, since more x-ray radiation is able to pass through the tissue, black-
ening the hit image areas on the image carrier. The appearance is however depen-
dent on the used image carrier. For instance, in fluoroscopic x-ray imaging the same
technique is used, but a digital radiation detection plate is used instead of an ana-
log image carrier. In these kind of x-ray images, bone projections appear darker, as
in these areas fewer radiation is detected on the detection plate. This technique can
particularly be used for orientation and navigation during surgery, in which multiple
x-ray images are taken subsequently to track the position and orientation of invasive
surgery instruments. An comparison of the different intensity appearance is shown
in Fig. 2.1 on two exemplary x-ray images of the proximal femur. In the remainder
of this thesis, x-ray images will be simply referred to as X-rays, independent of the
used image carrier.

(a) (b)

FIGURE 2.1: Exemplary x-ray images of the proximal femur with dif-
ferent intensity appearance. (a) X-ray with bright bones [Ul]. (b) X-ray

with dark bones from inhouse data set.

2.1.2 CT

With the progressive development of more powerful computer systems, x-ray tech-
nology evolved into what is known as computed tomography (CT). In CT, fixed x-ray
emitters and detectors rotate around the vertical body axis of a lying patient. In the
process, the transmitted x-rays are detected by the detectors on the opposite side,
such that transverse sectional images can be generated with the measured signals. In
contrast to conventional x-ray imaging, this method allows three-dimensional detec-
tion of the patient’s internal structures. In CT volumes bones are depicted brighter,
soft tissue darker, and water or air are shown black, as can be seen in Fig. 2.2. Even
though a very high resolution can be achieved with CT, a major disadvantage lies in
the radiation exposure to which the patient is subjected during the examination.
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FIGURE 2.2: Exemplary CT slice of the abdomen, taken from the
CHAOS data set [Kav+21].

2.1.3 MRI

In magnetic resonance imaging (MRI), similar to CT, the internal structures are also
displayed in 3D. Compared to CT, the image acquisition takes a longer time, in which
the patient needs to hold the position to avoid moving artifacts. A significant advan-
tage of this procedure is however that the patient is not exposed to any harmful
radiation, as the operating principle of MRI is fundamentally different from that of
CT. In MRI, a strong magnetic field is generated that affects the so-called nuclear
magnetic resonance of hydrogen atoms in the patient’s tissue. The nucleus of the
hydrogen atoms, each consisting of a proton, aligns itself within the magnetic field
along the magnetic field lines, being in an energetically low state. If a high-frequency
radiation in the radio frequency range interacts briefly with this system as a pulse,
the energy level of the protons is raised for the period of the irradiation and the nu-
clear orientation is changed. When the pulse is terminated, the protons return to
the more favorable energy state and realign with the field lines. The return to the
lower energy level from the excited state is called relaxation and induces a voltage
that can be measured. The relaxation behavior of hydrogen nuclei depends on the
molecule in which they are embedded. Thus, each tissue has a specific voltage sig-
nal that can be measured upon relaxation. Relaxation can be roughly divided into
T1-weighted and T2-weighted relaxation, resulting in different appearances of the
generated volume. Different configurations, which affect the final appearance are
called sequences. In T1-weighted MRI volumes, water is shown dark and fat is shown
light, whereas in T2-weighted images, water is shown light and fat is shown gray.
Fig. 2.3 illustrates how weighting affects appearance using the example of an MRI
slice of the abdomen. In Fig. 2.3 (a) a T1-weighted image is shown, where fat tissue,
e.g. under the skin, is depicted bright and water, e.g. the cerebrospinal fluid within
the vertrebal canal is visualized in black. In the T2-weighted image in Fig. 2.3 (b),
the cerebrospinal fluid is shown light and the fat tissue is almost black.

In general, CT and MR volumes can be considered as a stack of two-dimensional
images, which will be denoted as slices. An important characteristic value of the
generated volume set is the Field of View (FOV). This describes the height and width
of the field that can be captured in a slice. Thus, with a large FOV, larger body
regions are covered, whereas with a small FOV, smaller regions with finer structures
can be assessed. Another quantity is the slice thickness, which indicates how much
distance there is from one slice to the next.
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(a) (b)

FIGURE 2.3: Exemplary T1 (a) and T2 (b) weighted slice of the ab-
domen, taken from the CHAOS data set [Kav+21].

2.1.4 General Image Representation

In the scope of this thesis, the terms image and volume will be used synonymously,
since a volume can be considered a 3-dimensional image. The same goes for the
terms pixel and voxel. An n-dimensional image is formalized as a mapping

I : Ω→ R

from the index space Ω ⊂ R to the space of real valued intensities. Thus, I(p) returns
an intensity value at the pixel position p ∈ Ω. In practice, n-dimensional images are
realized as tensors, in which an intensity value is stored for each index position
p ∈ Ω.

2.2 Image Segmentation

In medical image analysis, image segmentation is a crucial task for the extraction of
patient-specific structures for simulations and further diagnostics. Image segmenta-
tion describes the partitioning of an image into non-overlapping (often semantically
coherent) areas, each belonging to a specific class. Regarding of the extraction of a
certain structure, the image is said to be segmented into the foreground and back-
ground areas of the structure of interest. Here, the foreground area represents the
particular structure of interest, whereas the remainder of the image belongs to the
background. In the scope of this thesis, the terms extraction and segmentation of a
specific structure are therefore used synonymous.

In segmentation tasks, a desired ground truth is usually needed at least for evaluation.
In the context of this thesis, the ground truth is represented as a binary tensor. Its
size is extended by an additional channel dimension to account for the class assign-
ment of each pixel. Let C := 0, 1, . . . , C − 1 denote the set of C classes, a pixel can
be assigned to. With the ground truth tensor, it is then possible to check, whether a
pixel p belongs to class c ∈ C by means of the binary value at image position p and
channel position c, i.e. GT (p, c).
For a foreground/background segmentation task, the ground truth would thus be
realized as a tensor with 2 channels.
Formally, the ground truth is therefore represented as a mapping

GT : Ω×C → {0, 1}.
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For the remainder of this thesis, the notation GT (c)(p) is used equivalently to GT (p, c).
In the following subsections, two traditional segmentation approaches are presented,
that are utilized within this thesis, either as baseline or as a component of a further
strategy. Afterwards, the evolution of artificial neural networks is briefly presented,
leading to the description of deep learning based segmentation methods.

2.2.1 Atlas Registration

The first family of traditional segmentation methods are atlas registration methods.
Here, the general idea is to find a transformation from a moving image to a fixed im-
age, such that the transformed image is aligned to the fixed image. Let Im denote
a moving image with corresponding ground truth GTm and let If be the fixed im-
age to be segmented. Then, the tuple (Im, GTm) is called an atlas. The aim of atlas
registration methods is to find a suitable transformation between images

T : I → I,

where I denotes the space of all images. This transformation can then be used
on the ground truth of the moving image for an estimate of the segmentation of
If . The transformation T is acquired by minimizing a cost term L(If , T (Im|Θ)),
which considers the differences of the transformed moving image T (Im|Θ) to the
fixed image Im, given the transformation parameters Θ, i.e.

Θ∗ := argmin
Θ
{L(If , T (Im|Θ))}.

A simple cost term is e.g. the L2-norm, i.e.

L(If , T (Im|Θ)) := ||If − T (Im|Θ)||2.

The final segmentation map, acquired by a single atlas registration, would then be
calculated as T (GT

(c)
m |Θ∗) for all c ∈ C. Atlas registration methods can differ in the

type of applied transformations (rigid or non-rigid) and in the definition of the cost
term, which rates the similarity of transformed moving image and fixed image.
For instance, the transformation can be either applied on the the whole moving im-
age or only on fewer landmark points. Therefore, the cost term can utilize inten-
sity based similarity measures or landmark based distance measures. If multiple
atlases are available, a multi-atlas registration approach, which combines the results
of multiple atlas registrations, usually achieves more robust predictions. MATLAB
provides several different registration approaches and Elastix is a commonly used
toolbox, which offers a wide range of registration methods.

2.2.2 Level Set

The family of Level Set methods is based on Kass et al.’s snakes active contour models
[KWT88] and has been first described by Osher and Sethian [OS88]. The general idea
is to approximate the contour of the structure of interest by iteratively deforming
an initial contour. Kass et al. describe the contour by means of snakes, which are
represented by parameterized closed curves. The deformation is accomplished by
minimizing an energy functional, which is dependent on the current state of the
curve and comprises internal, external, and image dependent energy. Let

Γ : [0, 1]→ Rn
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be a parameterized curve in Rn with parameter s ∈ [0, 1]. Then the total energy
functional is

Etotal :=

∫ 1

0
Eint(Γ(s)) + Eext(Γ(s)) + Eimg(Γ(s))ds,

where Eint denotes the internal energy, Eext the external energy, and Eimg the im-
age dependent energy. The internal energy describes properties of the curve itself,
such as elasticity or curvature, whereas the external energy considers the influence
of a user. In case that user influence is not desired, except for the contour initializa-
tion, the term external energy is often used synonymous to image dependent energy,
which encourages the contour propagation towards specific image features, such as
edges.
In contrast to snakes, Level Set methods are parameter free, which comes with ma-
jor benefits. Level Sets allow a simple representation and implementation of higher
dimensional contours. Additionally, topological changes like the separation of one
contour to multiple contours, are canonically supported. Let

I : Ω ⊆ Rn → R

be an n-dimensional image, where Ω denotes the index space. In the following Γ̂ ⊂ Ω
denotes the set of any point in Ω belonging to the curve Γ and will be referred to as
contour for simplicity. In case of Level Set methods, a n-dimensional embedding
function

Φ : Ω→ R

is defined, such that the intersection of its graph and the zero-level hyperplane re-
sults in the contour, i.e.

{p ∈ Ω|Φ(p) = 0} = Γ̂,

where p ∈ Ω is an n-dimensional index point. Therefore, the following equality
holds for all points on the curve Γ:

Φ(Γ(s)) = 0 ,∀s ∈ [0, 1].

By means of the embedding function, the curve Γ can be implicitly defined without
the necessity for any parameters s ∈ [0, 1]. The embedding function is often defined
as the signed distance function from the current contour, i.e.:

Φ(p) :=


−min

q∈Γ̂
||p− q|| , if p is enclosed by Γ̂

min
q∈Γ̂
||p− q|| , if p is excluded by Γ̂

0 , else.

The initial contour must be however known, e.g. by a tensor representation of Γ̂ to
initialize Φ. Figure 2.4 illustrates that the intersection of the embedding function Φ
and the zero level results in the contour of interest. Any points outside the contour
have a value Φ(p) > 0, whereas any points within the contour yield Φ(p) < 0. For
points, which are exactly on the contour, the embedding function returns Φ(p) = 0.
Any contour deformation can be therefore accomplished by changing the appear-
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FIGURE 2.4: Illustration of intersection of zero level with embedding
function.

ance of the embedding function. Instead of defining the energy functional based
on the curve Γ, it can be defined based on the embedding function Φ instead. To
represent the state of Φ in time, it is denoted as Φt to indicate the additional time
component. Given an energy functional E, the embedding function is updated us-
ing gradient descent (see section 2.3.1 for more details)

Φt+1 := Φt −∇ΦtE,

where ∇ΦtE denotes the gradient of E with respect to Φt. Depending on the prob-
lem domain, various energy functionals can be defined, which are in general edge
or region dependent. In the scope of this dissertation, an energy functional based on
gradient vector flows (GVF), introduced by Xu et al. for snakes [XP97] and adapted
by Paragios et al. [PMGR01] to the Level Set framework, is used as traditional seg-
mentation method in chapter 3. Moreover, a simplification of Chan and Vese’s region
based energy functional [CV01] is utilized in the proposed method of chapter 3.3.

2.3 Artificial Neural Networks

Image segmentation is the process of assigning each image pixel a semantic class.
Therefore, machine learning approaches are suitable data driven methods to address
this pixel-wise classification task. In recent years, especially deep learning methods
have experienced a renaissance from the 80’s. With Krizhevsky et al.’s [KSH12] in-
troduction of AlexNet, yielding superior performance on the ImageNet [Den+09b]
large scale image classification challenge, the application domain of artificial neural
networks, particularly of convolutional neural networks, has expanded drastically
beyond mere image classification. In this section, the fundamental structure and
functionality of such artificial neural networks are explored, allowing a better un-
derstanding of more advanced artificial neural network architectures.

2.3.1 Evolution of Artificial Neural Networks

Initially, artificial neurons have been designed to simulate biological neurons in an
attempt to better understand the human brain. The information processing mech-
anism within a biological neuron is illustrated in Fig. 2.5 and can be simplified as
follows:
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• Multiple incoming signals from other neurons are received at the neuron’s den-
drites. Here, the incoming signals can be either of excitatory or inhibiting na-
ture.

• The received signals are then accumulated at the neuron’s axon hill.

• From here, a signal is forwarded along its axon to its synaptic endpoints if and
only if a certain threshold is reached by the incoming signals.

• In case of transmission, the fired signal does not contain information about the
intensity of incoming signals, which is referred to as the all or nothing principle.

• At the synaptic endpoints the signal is finally transferred to subsequent con-
nected neurons.

Dendrites

Axon Hill

Axon

Synap c Endpoints

Nucleus

Cell Body

FIGURE 2.5: Simplified sketch of a neuron.

McCulloch-Pitts Cell

One of the first artificial neurons was introduced by McCulloch and Pitts [MP43].
They present a technical neuron model which artificially simulates a simplified bi-
ological behavior. Let n ∈ N\{0} denote the number of incoming signals, then a
McCulloch-Pitts cell (MP-cell) receives binary incoming signals x1, x2, . . . , xn ∈ {0, 1},
which can be either excitatory or inhibiting, like their biological correspondents.
Without loss of generality, let the first 1 ≤ l ≤ n incoming signals be excitatory and
the remaining n− l signals be inhibiting. A MP-cell is defined to return 1 if and only
if the sum of activating incoming signals surpasses a predefined threshold ζ ∈ R
and if all inhibiting signals are zero. The condition represents the accumulation and
processing of incoming data from different neurons. This process is formally encap-
sulated by a propagating function fp, i.e.

fp(x1, x2, . . . , xn) :=

(
fp1(x1, x2, . . . , xn)
fp2(x1, x2, . . . , xn)

)
,



2.3. Artificial Neural Networks 13

where each component is defined as

fp1(x1, x2, . . . , xn) :=
l∑

i=1

xi

fp2(x1, x2, . . . , xn) :=
n∑

i=l+1

xi.

Let fa denote the activation function of the neuron, that returns whether a signal is
fired or not. Then the MP-cell can be represented as

fa(x1, x2, . . . , xn, ζ) :=

{
1 if fp1(x1, x2, . . . , xn) ≥ ζ and fp2(x1, x2, . . . , xn) = 0

0 else .

The activation function mimics the biological neuron’s all or nothing principle.
A MP-cell is depicted graphically by using edges for incoming signals, marking
whether they are activating or inhibiting by a small circle, and specifying the thresh-
old ζ, as illustrated in Fig. 2.6. Multiple MP-cells can be assembled to form a network

ζ

x1
...

xl

xl+1

...

xn

y

FIGURE 2.6: MP-cell with excitatory (x1, . . . , xl) and inhibiting
(xl+1, . . . , xn) incoming signals and threshold ζ.

of MP-cells, i.e. a McCulloch Pitts Network, which can represent any binary func-
tion.

Rosenblatt Perceptron

While these initial artificial neurons do not contain any learning mechanism, Rosen-
blatt [Ros57; Ros58] proposes a similar neuron model, capable of self adaptation.
The proposed Rosenblatt Perceptron (RP-cell) is able to process real valued inputs
x1, x2, . . . , xn ∈ R and returns a scalar value, which is dependent on the activation
function fa. Each incoming signal xi ∈ R is associated with a weight wi ∈ R for
i = 1, 2, . . . , n. In Rosenblatt’s formulation, the propagating function fp is defined as
the weighted sum of incoming signals, usually referred to as the linear associator, i.e.

fp(x1, x2, . . . , xn) :=

n∑
i=1

wixi.

The activation function fa is defined as the step function

fa(x1, x2, . . . , xn, ζ) :=

{
1 if fp(x1, x2, . . . , xn) ≥ ζ

0 else .
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In contrast to the MP-cell the RP-cell is designed for self adaptation by adjusting the
weights wi for i = 1, 2, . . . , n and ζ. Since ζ can be considered an additional weight,
that needs to be adapted, fp and fa can be equivalently reformulated to

fp(x0, x1, x2, . . . , xn) :=
n∑

i=0

wixi

and

fa(x0, x1, x2, . . . , xn) :=

{
1 if fp(x0, x1, x2, . . . , xn) ≥ 0

−1 else,

where x0 is set to 1 and w0 denotes the original threshold ζ, which is often referred
to as bias. Both propagating and activation function may vary, depending on the
application. For deviating definitions of fp and fa, the resulting artificial neuron
will be simply referred to as a Perceptron. Fig. 2.7 shows a visualization of a generic
Perceptron. Given a training set, consisting of N samples x(0), x(1), . . . , x(N−1) with

fafp

x01 =

x1

...

xn

y

w0

w1

wn

FIGURE 2.7: RP-cell with real valued incoming signals (x0, x1, . . . , xn),
where x0 = 1 and w0 = ζ.

binary class labels y(0), y(1), . . . , y(N−1) ∈ {−1, 1}, a Perceptron is capable to adjust
its weights, such that miss-classifications in the training are reduced if the classes are
linearly separable. After weight adaptation the Perceptron can be applied to unseen
data for classification. The weight adaptation process is often referred to as learn-
ing and can be accomplished by several learning strategies. A strategy, designed
specifically for the RP-cell, is the Perceptron Learning Algorithm [Ros61; MP69], which
requires absolute linear separability for termination. A more general method to ad-
just weights is the gradient descent approach, which is discussed in the following
subsection.

Gradient Descent

Gradient descent is a general optimization method, which can be applied to any opti-
mization problem, in which a differentiable cost function needs to be minimized by
adapting its parameters, i.e.

argmin
Θ

L(Θ),

where Θ is a parameter configuration, that effects the loss function outcome L(Θ).
One application example is shown in a previous section 2.2.2, where this optimiza-
tion strategy is used in the context of Level Set contour propagation.
The gradient descent approach is an iterative method, in which the current weight
configuration Θt at time t is adapted, such that the next configuration Θt+1 should
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be closer to the minimum of L. It follows the idea that the gradient direction points
to the next local maximum. Under the assumption that the global minimum is at the
opposite direction, the next configuration is set to be

Θt+1 := Θt − α∇L(Θt),

where the learning rate α > 0 determines the extend, in which the adaptation is
applied, and ∇L(Θt) denotes the gradient of L at position Θt. Some drawbacks of
this optimization approach are

• the possibility to get stuck in a local minimum, if the learning rate is too small

• the possibility to oversee the global minimum, if the learning rate is too large

• the limitation to differentiable loss functions

to name a few. The design of more sophisticated gradient-based and also gradient-
free optimization methods is a research area for itself and is not further discussed in
the scope of this dissertation.

Multi Layer Perceptron

A major drawback of using one single Perceptron is its limited capability to the clas-
sification of linearly separable tasks. Multiple Perceptrons, however, can be arranged
in a layer-wise manner to a network of Perceptrons, and with the application of
non-linear activation functions. These multi layer Perceptrons (MLPs) are also able
to address non-linear classification and even regression tasks. Fig. 2.8 illustrates the

x1

x2

x3

x4

Hidden
layer 1

y1

y2

1 1 1

Input
layer

Hidden
layer 2

Output
layer

FIGURE 2.8: Exemplary scheme of a MLP.

layer-wise arrangement of multiple single Perceptrons to a MLP. The input signals
are often denoted as input nodes, that do not have any associated propagation and
activation function. This first layer is usually referred to as the input layer. The out-
put layer returns the final activated output of the network, and the layers in between
are denoted as hidden layers. While there are no connections betweeen Perceptrons
within a layer, each Perceptron from a hidden or output layer receives weighted
incoming signals from every Perceptron of the previous layer, including the bias
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weight. Therefore, a MLP layer is often also referred to as a fully connected (FC) or a
dense layer in the context of deep learning. A MLP is considered deep, if it has mul-
tiple hidden layers. The number of required hidden layers to be considered deep
is, however, not specified in literature. As can be seen in Fig. 2.8, the number of
outputs is not limited to one dimension anymore. The choice of activation function
for the output layer additionally determines the task, that the designed MLP can
address. Common activation functions for classification are sigmoid, tanh, and soft-
max, whereas the identity is often used for regression tasks. In the context of deep
learning, a further commonly used activation function to enforce non-linearity is the
Rectified Linear Unit (ReLU) function, which maps any negative value to zero and re-
turns the identity for non-negative values. In the following, the term Perceptron and
neuron will be used synonymously.

Backpropagation

The learning process of the MLP is accomplished by adapting the weights in between
each layer by means of gradient descent. For this a differentiable loss function L

is defined that is minimized by adapting the network weights. Let wt
h,i,j denote

the weight connecting the i-th neuron of the h-th layer with the j-th neuron in the
(h + 1)-th layer at time t. Then, according to gradient descent, this weight needs to
be adapted by

wt+1
h,i,j := wt

h,i,j − α
∂L

∂wt
h,i,j

,

where α > 0 is the learning rate. The challenge in this formulation is the calculation
of the differential ∂L

∂wt
h,i,j

. Rumelhart et al. [RHW86] describe that for the computa-

tion of the differentials of the h-th layer, it is first necessary to get the differentials
for the subsequent h+1-th layer. Therefore, any input is first forwarded through the
MLP to achieve its output. After calculating the loss L, the differentials of the last
layer are computed, which can then be used in a backpropagation process to get the
differentials of previous layers. Finally, the calculated differentials are used to adapt
the MLP weights according to gradient descent.

2.3.2 Convolutional Neural Networks

One major drawback of MLPs is the large number of needed weights to process large
images. Given a 2D image of size M ×N , let the number of neurons in the first hid-
den layer be H . Then the first layer would require (M · N + 1) · H weights. For an
image with size 256 × 256, a MLP with only eight neurons in the first hidden layer
would already need 524, 296 incoming weights. A further limitation of MLPs is the
loss of positional information, as all pixels are connected to all hidden neurons. Con-
volutional neural networks (CNNs), presented by LeCun et al. [LeC+89b; LeC+89a],
are a more memory efficient type of feed forward neural networks, which can also
be trained by backpropagation. While MLPs consist only of Fully Connected layers,
CNNs additionally comprise at least convolutional and pooling layers, which will be
explained in the following paragraphs.

Convolutional Layer

The basis of a convolutional layer is the convolutional operator ∗. Given a kernel,
denoted as κ, of size K1 ×K2, the discrete 2D convolution with a 2D image I of size
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M ×N is defined in a point-wise manner as

I ∗ κ(i, j) :=
K1−1∑
k1=0

K2−1∑
k2=0

I(i− k1, j − k2) · κ(k1, k2)

for all index points (i, j) ∈ Ω with i = K1−1, . . . ,M−1 and j = K2−1, . . . , N−1. The
resulting feature map of the convolutional operation with kernel κ shows in which im-
age positions and to what extend the pattern, represented by the kernel κ, occurs.
Thus, high deviations from zero implicate a strong response.

While convolutions have desirable mathematical properties, such as commutativity,
and duality to the multiplication in the Fourier space, these traits are not relevant in
the context of CNNs in practice. Instead, the discrete 2D cross-correlation

I ⊙ κ(i, j) :=

K1−1∑
k1=0

K2−1∑
k2=0

I(i+ k1, j + k2) · κ(k1, k2),

for i = 0, . . . ,M − 1−K1 and j = 0, . . . , N − 1−K2 is used instead. Its resulting fea-
ture map I⊙κ is practically comparable to I ∗κ. Following the common terminology
in the deep learning community, these operations are going to be used synonymous,
although it should be kept in mind that they are actually mathematically different.

In simplified terms, the kernel is slided over the image, beginning from the top left
corner. For each position, the sum of point-wise product between kernel elements
and currently overlayed image components is calculated. The result is then stored in
a new array of smaller size (M −K1 + 1)× (N −K2 + 1) at the position, the kernel
is currently overlayed at. To avoid the reduction in size, the image can be padded to a
larger size of (M +K1 − 1)× (N +K2 − 1), either with zeros or with values, similar
to the closest image values.

In the current formulation the point of reference, in which the result would be stored,
is in the upper left corner of the kernel. Usually, the discrete 2D convolution is, how-
ever, defined, such that the point of reference is the center of the kernel. Figure 2.9
illustrates the 2D convolutional operation on a padded example. The stride deter-
mines, whether all pixels are considered (stride = 1) or if only every n-th pixel is
considered (stride = n) while sliding the kernel over the image.

FIGURE 2.9: Discrete 2D correlation. Each component of the kernel is
multiplied with the corresponding image component from the over-
layed area. The sum of products is stored in a new array at the current
kernel position. In this illustration the point of reference for the ker-

nel position is in the center of the kernel.
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Drawing the relationship to MLPs, each pixel position can be considered an input
neuron, whereas each kernel component is considered the associated weight of the
incoming signal. A major difference is, however, that by sliding the kernel over the
image, the same weights are reused for multiple input nodes, whereas in MLPs each
incoming signal has its own weight. This specific property of CNNs is referred to as
parameter sharing, which drastically reduces the memory requirement for large im-
ages compared to MLPs. A further memory saving property is the sparse connectivity,
if the kernel is chosen much smaller than the input. In this case, only small patches
of the input are considered during the convolution operation. This puts every pixel
into the local context of its neighborhood, instead of the whole image. The resulting
feature maps indicate the location of where the feature of interest can be found in the
input. This demonstrates the translational equivariance property of the convolution.
This means, that if a particular feature is shifted in the input, the shift will become
imminent in the generated feature map as well.

A convolutional layer consists of multiple kernels, with which its input is convolved.
The idea is to have many different kernels to generate many different feature maps,
as depicted in Fig. 2.10. In practice, the resulting feature maps are stored in a tensor,

FIGURE 2.10: Convolutional layer.

where the number of feature maps determines the number of channels of the tensor.
Usually the kernels are initialized randomly and adapted by means of backpropaga-
tion to converge towards meaningful filters.

Pooling Layer

A pooling function reduces a rectangular pixel neighborhood, which is denoted as a
pool, to a statistical quantity. While in max-pooling, the maximum of the pool is re-
turned, min-pooling and average-pooling return the pool’s minimal or mean value,
respectively. A pooling layer simply applies the pooling function on its input. De-
pending on the pool size, the spatial size is significantly reduced by a pooling layer.
The goal of the pooling layer is to enforce translation invariance for classification
tasks, which comes with a partial loss of positional information of the detected fea-
tures. Often 2× 2 max-pooling is performed, which is illustrated by Fig. 2.11.

FIGURE 2.11: Max-Pooling.
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For classification CNNs, multiple convolutional and pooling layers are alternately
used for feature extraction purposes. While the more shallow layers learn to extract
low level features, features in deeper layers show more complexity . The resulting
tensor after the feature extraction process is called latent representation. Afterwards,
FC Layers are usually used for classification, as can be seen in Fig 2.12, which shows
a commonly used classification CNN, namely the VGG-16 architecture by Simonyan
and Zisserman [SZ15a]. In this case, convolutions are applied with size preserving
padding, and the number of feature maps for each convolutional layer is implied
by the number of channels in the resulting tensor. The pooling operation is visual-
ized by the decreasing height and width of the resulting tensors. In this particular
VGG 16-example, the numbering refers to the number of convolutional and fully
connected layers, excluding the pooling layers. The output values of CNNs are usu-
ally referred to as predictions.

FIGURE 2.12: VGG-16 illustration, taken from [Has].

Transposed Convolutional Layer

The transposed convolutional layer is a layer that is able to upsample its input to a
larger size by means of the transposed convolution. It is therefore contrary to the pool-
ing layer. In the transposed convolution, each input component is multiplied with
all kernel elements. This results in an intermediate matrix of the same size as the
kernel for each input component. These intermediate matrices are inserted into a
new final matrix, such that the upper left corner of the intermediate matrices are
positioned at the corresponding position of the input element. Overlapping parts
of the intermediate matrices are added up. The stride determines, whether the in-
termediate matrices are positioned at the exact corresponding position of the input
element (stride = 1) in the final matrix, or whether they are positioned with an offset
(stride > 1), as Fig. 2.13 illustrates.

Therefore, stride and kernel size determine the output of the transposed convolu-
tion. E.g., a transposed convolution with a kernel size of 2 × 2 and a stride of 2 can
be used to achieve an upsampling, such that the result has the same size as the input
of a pooling layer with pooling size 2 × 2. If the kernel additionally only consists
of ones as entries, the transposed convolution would implement a nearest-neighbor
upsampling approach, in which the additional intermediate rows and columns are
filled with the values of the non-intermediate nearest neighbor. In contrast to com-
mon upsampling strategies like linear or cubic interpolation, the kernel values are
adapted during training, resulting in a task specific upsampling method.
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FIGURE 2.13: Illustration of the transposed convolution for two differ-
ent strides. The intermediate matrices are depicted in the same color
as the input components they originate from. In the first case (center
row), an overlap occurs due to the small stride of 1. In case of a stride
of 2 (bottom row), there is no overlap. Both scenarios showcase the

influence of the stride on the output size.

2.3.3 Fully Convolutional Architectures

Originally, CNNs were designed to address classification tasks. However, the CNN
structure can be modified for segmentation tasks, as shown by Long et al. with the
introduction of Fully Convolutional Networks (FCN) [LSD15]. They use the output of
the last convolutional layer and upsample it to the input size, rendering an architec-
ture that does not make use of any FC layers, therefore being fully convolutional. For
the upsampling process, established methods as well as transposed convolutional
layers can be used. In additional variants, the feature maps from previous layers
with larger scales are combined with the accordingly upsampled output of the last
convolutional layer by means of skip connections. The fused maps are finally upsam-
pled to the original input size, as shown in Fig. 2.14. The skip connections ensure
the conservation of fine grained information of larger scale feature maps, that would
be otherwise be lost in the pooling layers.

One might notice that the convolutional layers are summarized in blocks, except for
the last two convolutional layers, which are depicted as conv6 and conv7 separately.
This is due to the fact, that the last convolutional layer (i.e. conv7) needs as many ker-
nels, as there are semantic classes, whereas the number of kernels for conv6 can be
arbitrary. A further peculiar naming convention may be the terms 2×, 4×, . . . , 32×,
which refer to the needed upsampling factor to match the corresponding feature
map size. For instance, the resulting feature maps of conv7 need an upsampling fac-
tor of 4 to match the size of the pooled feature maps after pool3, whereas the pooled
feature maps after pool4 only need a factor of 2 to match the same size. Matching
sizes are required for the information fusion by means of skip connections.
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FIGURE 2.14: Illustration of a FCN and its variants with skip connec-
tions, taken from [LSD15]. Here the terms 2×, 4×, . . . , 32× refer to

the needed upsampling factor for matching feature map sizes.

A similar CNN architecture, that has gained popularity in the medical context, is the
U-Net, proposed by Ronneberger et al. [RFB15]. The U-Net architecture can be di-
vided into a contracting path or encoder, which encodes the input image to a compact
latent representation, and an expanding path or decoder, which decodes the compact
representation to a segmentation output. In the contracting path, max pooling lay-
ers iteratively reduce the input size, rendering multiple scale levels. In the expanding
path, transposed convolutional layers are repetitively used to regain higher scale
levels. Skip connections from each scale level of the contracting path to the corre-
sponding scale level of the expanding path ensure the consideration of fine grained
information in the upsampling process. Fig. 2.15 shows the network architecture of
the U-Net. In this example, 64 kernels are learned in two consecutive convolutional
layers, respectively, in the first scale level. In the original publication, convolutions
are not padded, thus, resulting in a slightly decreased feature map size after each
convolutional layer. In the scope of this thesis, U-Nets are implemented with padded
convolutions, avoiding the necessity for cropping when using skip connections.

FIGURE 2.15: Illustration of the U-Net architecture, taken from
[RFB15].



22 Chapter 2. Fundamentals

2.4 Evaluation Metrics

Evaluation metrics are necessary to quantitatively and objectively rate the perfor-
mance of a segmentation algorithm. In accordance to the nomenclature in the deep
learning context, a segmentation generated by an algorithm will be referred to as
the algorithm’s segmentation prediction, independent of whether the algorithm is tra-
ditional or deep learning based. Evaluation metrics try to quantify the quality of a
segmentation prediction compared to the desired ground truth segmentation. If a
domain expert visually rates a segmentation prediction as "good", this should also
be reflected by the chosen evaluation metric. In the following, two evaluation met-
rics, that are commonly used in the context of medical image segmentation, are pre-
sented.

2.4.1 Dice Similarity Coefficient

As described in section 2.2, image segmentation is the process of assigning each im-
age point to a class. For each image point, the presence of any class is represented
by a binary value, i.e. by a positive or a negative value. For the segmentation predic-
tion, the points classified as positive may actually belong to the object. Then they are
called true positives (TPs). In case of a misclassification, they are called false positives
(FPs). The same reasoning can be made for true negatives (TNs) and false negatives
(FNs), which is illustrated in Fig. 2.16.

FIGURE 2.16: Illustration of TPs, FPs, TNs, and FNs.

The precision (prec) measures the ratio of the TPs to the total number of positive pre-
dictions, i.e.

prec =
TPs

TPs+ FPs
.

It therefore is a quantification of how reliable a positive prediction of the method is.
If it classifies everything as positive, the precision would expectedly be low.
However, high precision does not imply good segmentation. For example, a segmen-
tation prediction consisting of only one pixel, classified as positive, would achieve a
precision of 1, if this prediction is a true positive, since there aren’t any false posi-
tives. The problem with this measure is that the FNs are not considered.
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Another measure, that takes this into account, is the sensitivity or recall (rec), which
is defined as

rec =
TPs

TPs+ FNs
.

Recall expresses the ratio of the TPs to the total number of ground truth pixels be-
longing to the class of interest. Although the FNs are included in the metric, the
FPs are not considered instead. Thus, a segmentation prediction, which assigns all
pixels a positive value, would result in a high recall, even though the segmentation
prediction is probably poor.

A widely used similarity measure that combines precision and recall is the Dice Sim-
ilarity Coefficient (DSC), also referred to as dice score. The DSC forms the harmonic
mean between precision and recall. The harmonic mean of two values x1, x2 ∈ R is
defined as

xharm :=
2

1
x1

+ 1
x2

.

Thus, it follows for the DSC:

DSC :=
2

1
prec +

1
rec

=
2TPs

(TPs+ FPs) + (TPs+ FNs)
.

It should be noted, that TPs + FPs yields all points predicted as positive and
TPs + FNs is the number of actual positive points according to the ground truth.
In Fig. 2.16 this would resemble the ratio of twice the intersection area (TPs) and the
summation of both the whole blue ellipse (positive predictions) and the whole green
ellipse (positives according to the ground truth).

Let GT denote a ground truth tensor and c ∈ {0, 1, . . . , C−1} the class for which the
DSC needs to be calculated. Furthermore, let y denote the segmentation prediction,
which assigns each position and in each output channel an output score between 0
and 1. Then, the DSC for the particular class c can be calculated by

DSC(c) :=

2 ·
∑
p∈Ω

GT (p, c) · y(p, c) + ϵ∑
p∈Ω

GT (p, c) +
∑
p
y(p, c) + ϵ

, (2.1)

where ϵ > 0 is a small number to avoid dividing by zero. This results in a scalar
evaluation score, that ranges between 0 and 1. A common loss function for deep
segmentation networks is the mean dice loss over all classes, which is defined as:

Ldice(GT, y) :=
1

|C|
∑
c∈C

2 ·
∑
p∈Ω

GT (p, c) · y(p, c) + ϵ∑
p∈Ω

GT (p, c) +
∑
p
y(p, c) + ϵ

, (2.2)

where C denotes the set of possible classes.
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2.4.2 Symmetric Hausdorff Distance

While the dice score intuitively gives a good estimate of whether extracted structures
overlap with the desired ground truth, the distance of misclassifications to the de-
sired ground truth is not considered in this metric. The symmetric Hausdorff distance
(sHD) on the other hand is a further evaluation metric for segmentation tasks, that
is designed for this problem. Let A and B denote arbitrary sets, for which distances
between elements from one set to the other can be calculated by a distance function

dA,B : A×B → R+.

Then, the Hausdorff distance between these two sets is defined to be

HD(A,B) := sup
a∈A

[
inf
b∈B

[d(a, b)]

]
. (2.3)

The term inf
b∈B

[d(a, b)] is however not symmetric, which is illustrated in Fig. 2.17.

Given a point a0 ∈ A, its closest point b ∈ B may have another closest point a1 ∈ A,
which is not the same as a0. Therefore the distance defined in Eq. (2.3) is also not

FIGURE 2.17: Illustration of non-symmetry of inf
b∈B

[d(a, b)]. b is the

closest point in B to a0. The closest point in A to b0, however, is a1
and not a0.

symmetrical. To achieve this symmetry property, the symmetric Hausdorff distance
is defined as

sHD(A,B) := max (HD(A,B), HD(B,A)) . (2.4)

Since the maximum function is symmetric, sHD is also symmetric, i.e.

sHD(A,B) = sHD(B,A).

Fig. 2.18 shows the difference of HD(A,B) (left dotted line) and HD(B,A) (right
dotted line), which are both required to calculate the symmetric Hausdorff distance.
In case that either A or B is empty (but not both), the sHD is defined to be infinity.

In the context of evaluating segmentation methods, given a class c ∈ C (e.g. the
foreground class), all corresponding pixel positions assigned to c in the segmenta-
tion prediction form the first set. The second reference set is formed by all pixel
positions which actually belong to c according to the ground truth. Let y denote a
segmentation prediction and GT the desired ground truth, then the sHD for class
c ∈ C is denoted as sHD(y(c), GT (c)), although the sHD is actually defined for sets.
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B

A

FIGURE 2.18: For the calculation of the symmetric Hausdorff distance
between two sets A and B, both HD(A,B) (left) and HD(B,A) (right)

are necessary.
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Chapter 3

Primitive Shapes for Model Initialization
in Femur Segmentation Pipelines

Many traditional non-deep learning segmentation strategies require a feasible ini-
tialization for a sufficient segmentation process. Particularly in contour progres-
sion based approaches, it is crucial to position the initial contour close to the struc-
ture of interest, that needs to be extracted, in order to achieve satisfactory results.
These approaches comprise Level Set methods [CV01], Active Shape Models [CT92]
and Active Appearance Models [CET98], in which an initial contour is iteratively
adapted until it encapsulates the structure of interest. While these methods have
been extended for better segmentation results in numerous ways ([Kai+09], [SMT08],
[Yok+09], [Cha+14]), research regarding model initialization has been receiving rea-
sonably less attention. In this chapter, two initialization approaches for MR images
are presented to complement existing non-deep learning segmentation approaches
towards full automation. The proposed initialization methods are applicable for
anatomical structures that either have a mostly convex nature in the axial plane or
contain a near-spherical component, respectively. In particular, the task of contour
initialization for femur segmentation in three-dimensional MR images is addressed,
in which the femur’s shape is reduced to primitive shapes. The content of this chap-
ter is based on the following previous publications and has been revised and adapted
with permission for this chapter:

[Pha+18] Duc Duy Pham et al. “Polar appearance models: a fully automatic ap-
proach for femoral model initialization in MRI”. In: 2018 IEEE 15th International
Symposium on Biomedical Imaging (ISBI 2018). IEEE. 2018, pp. 1002–1005
Copyright ©2011 IEEE

[Pha+19c] Duc Duy Pham et al. “Gradient-Based Expanding Spherical Appear-
ance Models for Femoral Model Initialization in MRI”. In: Bildverarbeitung für
die Medizin 2019. Springer, 2019, pp. 43–48

3.1 Medical Background

In modern medicine, especially in the domain of orthopedics and trauma surgery, 3D
models are helpful tools to aid in preoperative planning and to design prosthetics,
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tailored specifically to the patient’s needs. Patient-specific models allow simulations
of joint movements and the detection of possible points of friction. For these kind of
simulations, first the 3D models need to be generated by segmenting the anatomical
structures of interest. The human hip joint, in particular, is a structure of interest,
as it carries a major portion of the body weight, therefore being naturally prone to
physical deterioration.
The hip joint is a ball joint, consisting of the femur, that is held by a socket counter-
part, the acetabulum. The femur can be divided into femur head, femur collum, and
femur shaft. Further landmarks are the minor trochanter on the medial front side and
the major trochanter on the lateral back side of the bone.
While CT is the predominant imaging method to visualize bones, since the acquisi-
tion process is fast and bone tissue can be clearly distinguished from the surround-
ing tissue, MRI has the advantage, that the patient does not need to be exposed to
radiation. Therefore, research on fully automatic femur extraction strategies is an
ongoing topic. This chapter especially focuses on initialization methods to comple-
ment existing traditional segmentation methods, that usually require manual model
initialization.

3.2 Related Work

Regarding automated femur segmentation, there have already been several contri-
butions. Most of these are, however, designed for X-ray images or CT volumes in
which bones are reasonably more distinguishable than in MR volumes. Linder et
al. [Lin+12] propose a sliding window approach utilizing Random Forest regression
voting to detect the proximal femur in X-rays in order to fully automatically seg-
ment the proximal femur. Chu et al. [Chu+15] present a fully automatic hip joint
segmentation approach for CT scans, that uses Random Forests for initial landmark
detection and multi-atlases and Articulated Statistical Shape Models for segmen-
tation. Kainmüller et al. [Kai+09] also present a fully automatic approach for CT
scans, extending the common definition of statistical shape models to Joint Statisti-
cal Shape Models by additionally modeling the rotational displacement of femur to
pelvis. For initialization, an extension of the generalized Hough transform is used to
detect 3D objects [Kho07]. Xia et al. [Xia+13] use a multi-atlas registration method
to fit the model into MRI volumes for their fully automated segmentation work flow.
Tang et al. [Tan+17] make a more general contribution in presenting a deep learning
approach for segmentation by integrating the Level Set model into a Fully Convolu-
tional Network architecture, allowing the use of unlabeled training data, and leaving
the need for localization of the object of interest obsolete.
Younes et al.’s approach [YNS14] first detects the structure of interest by primitive
shape recognition in 3D CT data and then applies deformable shape models after-
wards, which is similar to the proposed overall strategy in this section.
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3.3 PAMs: Polar Appearance Models

The first initialization approach of this chapter considers a 3D MR volume as a se-
quence of axial 2D slices and leverages the mostly convex nature of the femur in
these axial slices. It makes use of statistical appearance properties of the femur in
MR images, derived from training atlases, in which both MR volumes and the cor-
responding desired ground truth volumes are available. The procedure can be par-
titioned into four stages, as shown in Fig. 3.1. The first stage comprises training an
appearance model, namely the Polar Appearance Models (PAMs), using the training
atlases. The PAMs are used both in the second stage to estimate the femur location
in the MR volume and in the third stage in which the femur’s boundary is approx-
imated. In the last stage an Iterative Closest Point (ICP) algorithm [CM92; BM92]
is applied to fit an existing generic 3D femur contour model into the approximated
boundary points. Finally, the fitted model can be used as initial starting point for an
subsequent segmentation approach.

3.3.1 Model Definition

The aforementioned Polar Appearance Models (PAMs) consist of two components.
The first component models the intensity distribution within the femur area to rough-
ly approximate the location of the femur within the 3D volume. The second com-
ponent considers polar transformations of the axial slices, i.e. the Cartesian pixel
coordinates are represented as polar coordinates, rendering a transformed image, in
which the axes are defined by phase and amplitude. Here, profile lines, which are
perpendicular to the actual boundary points, are used to assess intensity changes in
the boundary region.

Modeling intensity distribution

Let (I0, GT0), . . . , (IN−1, GTN−1) denote N training atlases, with MR volume Ii and
its corresponding label volume GTi for i = 0, . . . , N − 1.
As mentioned before, a 3D volume is considered a sequence of axial 2D slices. Since
the femur usually does not go through all axial slices, it is necessary to determine, in
which slice the femur is present. This can be easily achieved since the ground truth
for any training MR volume is available.
Let Mi denote the amount of axial slices containing a fraction of the femur for the
i-th atlas for i ∈ {0, . . . , N − 1}. For the sake of simplicity the index pair (m, i) for
the m-th axial slice, m ∈ {0, . . . ,Mi − 1}, of the i-th atlas, i ∈ {0, . . . , N − 1}, will be
uniquely assigned to a scalar index k ∈ {0, . . . ,K − 1} by

k := m+

i−1∑
l=0

Ml (3.1)

for a total number of

K :=

N−1∑
i=0

Mi

slices, as illustrated by Fig. 3.2. For each axial slice, the normalized intensity dis-
tribution within the femur area is computed with a fixed amount of nbins ∈ N\{0}
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FIGURE 3.1: Overview of PAMs strategy.

intensity bins, yielding K feature vectors v0, . . . , vK−1 ∈ [0, 1]nbins . For the calcu-
lation of the normalized intensity distribution the whole intensity range is divided
into a total number of nbins intensity bins B0, . . . ,Bnbins−1. For fixed k let kI denote
the k-th axial slice in the whole set of axial slices, i.e. the m-th axial slice in the i-th
volume Ii with m ∈ {0, . . . ,Mi − 1} and i ∈ {0, . . . , N − 1}, such that m and i fulfill
Eq. (3.1). In the same way kGT is defined accordingly.
Let

χk : Ω× {0, nbins − 1} → {0, 1}
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FIGURE 3.2: Simplified slice indexing. Each slice can be uniquely ad-
dressed with (m, i), where m denotes the slice index and i the stack,
which contains the slice. The index pair (m, i) can be uniquely rep-
resented by a single index k, computed from (m, i) according to Eq.

(3.1).

denote the binary indicator function, which returns 1 if and only if a pixel’s intensity
value kI(p) ∈ R in the k-th slice belongs to the j-th intensity bin for j ∈ {0, . . . , nbins−
1}, i.e.

χk(p, j) :=

{
1, if kI(p) ∈Bj

0, else.

Then the normalized intensity histogram

hk : {0, . . . , nbins − 1} → [0, 1]

of the femur area within the k-th axial slice is calculated by

hk(j) :=

∑
p χk(p, j) · kGT (p)∑

p kGT (p)
.

The feature vectors are defined by means of these intensity histograms, representing
discrete intensity distributions, i.e.

vk := (hk(0), . . . , hk(nbins−1))
T ∈ [0, 1]nbins (3.2)

for k = 0, . . . ,K − 1. Therefore, each axial slice of the training set, containing any
femur area, yields a feature vector, representing the intensity distribution within the
femur area.
Dimensionality reduction by means of Principal Component Analysis (PCA) yields
a matrix

U := (u0, . . . , unPCA−1)

containing nPCA < nbins eigenvectors, and a set with the corresponding eigenvalues

E := {λ0, . . . , λnPCA−1}.
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Given the mean intensity distribution

v :=
1

K

K−1∑
k=0

vk,

the first part of the Polar Appearance Models is defined as

M := (U,E, v),

which models the intensity distribution

Modeling border transition in Polar Space

For the second part, the border transition from the femur to its surrounding is an-
alyzed in polar space for all axial training slices. Each axial slice, in which a femur
fraction is present, is transformed into polar space, where the centroid of the femur
fraction is used as the origin. In the following the x-axis describes the phase and
the y-axis the radius in polar space. For each phase position, an intensity profile of
length nPC > 1 along the y-axis is extracted at the border between the femur bound-
ary and its surrounding. The use of these profiles in polar space is closely related
to the Appearance Model of Active Shape Models [CT92] in euclidean space. Let K̃
denote the total number of intensity profiles ṽ0, . . . , ṽK̃−1, acquired in polar space.
The application of PCA again yields a matrix

Ũ := (ũ0, . . . , ũñPCA−1)

containing ñPCA < nPC eigenvectors, and a set with the corresponding eigenvalues
Ẽ := {λ̃0, . . . , λ̃ñPCA−1}. Given the mean intensity profile

ṽ :=
1

K̃

K̃−1∑
k=0

ṽk,

the second part of the Polar Appearance Model is defined as

M̃ := (Ũ,Ẽ, ṽ).

The final model comprises both parts, i.e.

P := (M, M̃).

3.3.2 Center Line Extraction

After training the PAMs as described in section 3.3.1, the subsequent stage deals with
the localization of the femur position within unseen MR volumes without using any
additional ground truth labels. For this purpose, the PAMs, which have been trained
from available training atlases, are utilized. The general idea is to locate the center
line of the femur, particularly employing the first intensity distribution model com-
ponent of the PAMs.
The center line is defined as the chain of femur centroids along the axial slices of a
volume. Since a convex femur shape in axial slices is assumed, a straight forward
approach is the use of the Hough Transform [Hou62] for the detection of circular
structures in each slice. The Hough Transform detects probable center points of
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FIGURE 3.3: Hough Transform on axial slices results in a large set of
center line point candidates. Some candidates even seem to form a
decent path, but are not within the femur, e.g. the marked candidate

path on the right. Copyright ©2018 IEEE [Pha+18].

circles and the corresponding radii. These candidate center points of the detected
circles can be used as proposals for the center line points.

Establishing a path of center points from bottom axial slice to top axial slice yields
an approximated path proposal of the actual femoral center line. A major challenge,
however, is the presence of many different candidates in each axial slice and even
more candidates in the whole volume. This renders the localization of a feasible
center line a difficult task. In Fig. 3.3 the detected center points from the Hough
Transforms are visualized. It also demonstrates that there are also feasible center
point paths that lie outside the actual femur area.

Because of the sequential nature of the stack of axial slices, the path finding problem
can be modeled as a multi-stage optimization problem. To make use of the PAMs’
first component M, the intensity distribution within the circular area of each candi-
date point p, that is detected by the Hough Transform, is represented by a discrete
histogram vector v(p) of length nbins, similar to Eq. (3.2). An intensity distribution
similarity distance s(p) of v(p) to the learned intensity distributions in M is defined
as the weighted distance of the distribution v(p) to its origin in eigenspace, i.e.

s(p) :=

nPCA−1∑
i=0

1

λi

(
ui

T · (v(p)− v)
)2

. (3.3)

Dividing by the corresponding eigenvalues results in punishing deviations in major
principal directions less than deviations in minor principal directions. This is equiv-
alent to the squared Mahalanobis distance [DMJRM00]. Let M̂ denote the total num-
ber of axial slices in the unseen MR volume and let Pi denote the set of detected can-
didate points from the Hough Transform in the i-th axial slice for i ∈ {0, . . . , M̂ −1}.
Then pi ∈ Pi denotes a candidate center point in slice i and pi−1 ∈ Pi−1 a candidate
point in slice i− 1. To find a suitable path as center line approximation, a cost is as-
signed to each connection between candidate points in adjacent axial slices. The cost
function is denoted as c(pi−1, pi) and may comprise several distinguishing aspects,
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which are further discussed in section 3.3.2. The center line detection is reduced to
the solution of the multi-stage optimization problem

argmin
p0,...,pM̂−1

M̂−1∑
i=1

c(pi, pi−1) + wss(pi), (3.4)

where pi ∈ Pi for i ∈ {0, . . . , M̂ − 1}, and ws > 0 is a weighting factor for the
similarity distance (Eq. (3.3)). Finding a suitable path can therefore be achieved by
means of dynamic programming. To address the optimization problem, a sequence
of cost functions

Fi : Pi → R

measuring the minimal path’s cost until the i-th axial slice for any candidate point
pi ∈ Pi is defined recursively by

F0(p0) := 0 ∀p0 ∈ P0

Fi+1(pi+1) := argmin
pi∈Pi

{Fi(pi) + c(pi+1, pi) + wss(pi+1)}. (3.5)

By means of iterative dynamic programming, the path leading to the candidate point
pM̂−1 ∈ PM̂−1 with least cost according to FM̂−1 is selected as estimated femur center
line. Although there are some non-circular sections within the femur, the shaft and
head slices mostly yield near-circular bone areas, such that the proposed optimiza-
tion procedure compensates possible erroneous center point candidates in the cor-
responding slices e.g. by penalizing large distances between adjacent center points.
To restrict the length of the center line, specifically for the femoral model initializa-
tion, positions in which a rapid change of center line radius occurs, can be used to
terminate the path.

Cost Function Design

The specific formulation of the cost function c(pi−1, pi) for the center line localization
is highly dependent on the application and therefore a design choice. In the context
of femur extraction in MR volumes, the following weighted aspects are considered:

• Center Point Shift
Since a path is expected with only small center point shifts between adjacent
slices, any shift in center point proposals is punished by it’s L2-norm, i.e.

wd||pi−1 − pi||2,

where wd > 0 denotes the weighting factor of this component.

• Mean Intensity Shift
A further indicator of whether the connection of the adjacent candidate points
pi−1 and pi may be feasible is the deviation of mean intensities within their
circular area. It is expected, that there is only a small shift in mean inten-
sity, thus large deviations may also be punished. Let µ(pi−1) and µ(pi) denote
the mean intensities within the circular area of the corresponding candidate
points. Then the weighted absolute difference

wµ|µ(pi−1)− µ(pi)|
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serves as an additional cost term, with wµ > 0.

• Variance Shift
Similarly the deviation in intensity variance within the circular areas can be
used to penalize their connection, i.e.

wvar|var(pi−1)− var(pi)|

for wvar > 0 and with var(·) referring to the intensity variance within the cir-
cular area.

• Radius Shift
Although the axial femur cross section changes from one slice to another, it
can be assumed that the cross section area does not undergo rapid changes.
Therefore strong radius deviations from one slice to the next of the circular
candidate points can also be used to determine the suitability of two adjacent
candidate points, i.e.

wr|r(pi−1)− r(pi)|

where wr > 0 serves as weighting factor and r(·) represents the radius of a
candidate point, proposed by the Hough Transform.

• Accumulated Mean Intensity Shift
Instead of measuring the mean intensity difference of circular areas of only
adjacent candidate points pi−1 and pi, an alternative approach is the calcula-
tion of the deviation of the next candidate point’s mean intensity µpi from the
accumulated mean intensity of all circular areas of already selected previous
candidate points p0, . . . , pi−1, which will be abbreviated as µ̃(pi−1), i.e.

wµ̃|µ̃(pi−1)− µ(pi)|

for wµ̃ > 0.

• Accumulated Center Point Shift
With the same argumentation, the deviation of the next candidate point’s cen-
ter position pi from the previously selected positions p0, . . . , pi−1, denoted as
pi−1, can be assessed by

wd̃||pi−1 − pi||2

with weight factor wd̃.

• Center Point Shift from first slice
The last component of the cost function, considered in the scope of this work,
is the center point shift from the first axial center point selection, i.e.

wd0 ||p0 − pi||2

with wd0 > 0. This idea is motivated by the assumption, that the femur shaft
lies almost perpendicular to the axial plane.

With these components in mind, a weighted cost function, determining the feasi-
bility of connecting candidate points pi−1 and pi from adjacent axial slices, can be
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formulated by

c(pi−1, pi) := wd||pi−1 − pi||2
+ wµ|µ(pi−1)− µ(pi)|
+ wvar|var(pi−1)− var(pi)|
+ wr|r(pi−1)− r(pi)|
+ wµ̃|µ̃(pi−1)− µ(pi)|
+ wd̃||d̃(pi−1)− pi||2
+ wd0 ||p0 − pi||2. (3.6)

A more detailed hyper parameter analysis for the weight selection and an investiga-
tion of the impact of the proposed cost function components is presented in section
3.3.5

3.3.3 Boundary Detection in Polar Space

In the third stage, the extracted femur center line and the corresponding radii from
the center points are used to apply a transformation of the axial slices from Eu-
clidean space into polar space. Given the center line and the corresponding radii
of the Hough Transform from the previous stage, it is possible to restrict the search
area for the femur in each axial slice to a circular area around the center line with a
radius approximately as large as the largest center line radius. Each axial MRI slice
can be transformed into a restricted polar space with the corresponding center line
point as origin (see Fig. 3.4 (a)).

For each column, i.e. phase, multiple profile vectors of length nPC along the y-axis,
i.e. the amplitude, can be generated, where the center position of these vectors yield
possible border point candidates. Let Hps ×Wps denote the size of the polar trans-
formed axial slice. Then for each column Hps − nPC candidate border points with
corresponding profile vectors can be determined. Let ṽ(p) denote the intensity pro-
file vector of a candidate boundary point p, where p is located in the center position
of the vector ṽ(p). The similarity of each candidate profile vector to the learned pro-
file s̃(p) can be measured in Eigenspace using M̃ in the same way as described in Eq.
(3.3), i.e.

s̃(p) :=

ñPCA−1∑
i=0

1

λ̃i

(
ũTi · (ṽ(p)− ṽ)

)2
. (3.7)

In each column the most likely borderline candidates are distinguished by means of
Eq. (3.7), as can be seen in Fig. 3.4 (b). Fig. 3.4 (c) shows the probability map of the
selected borderline points of (b) according to the similarity measure.

Let P̃i denote the set of possible boundary candidate points in the i-th column for i ∈
{0, . . . ,Wps − 1}. Then the problem of finding the femur boundary can be reduced
to finding a path of boundary points from P̃0 to P̃Wps−1. Assigning a cost to each
connection between boundary candidate points pi−1 ∈ P̃i−1 and pi ∈ P̃i in adjacent
columns for i ∈ {1, . . . ,Wps − 1}, aids in establishing a suitable boundary path. The
cost function is denoted as c̃(pi−1, pi) and is defined as

c̃(pi−1, pi) := ||pi−1 − pi||2,
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(a) Axial slice in polar space

(b) Extracted border candidates

(c) Probability map of border candidates

(d) Resulting borderline

FIGURE 3.4: Exemplary borderline extraction in polar space.
Copyright ©2018 IEEE [Pha+18].

only taking the Euclidean distance of adjacent boundary point candidates into ac-
count. With the same methodological approach as in Eq. (3.4), the boundary ap-
proximation is reduced to the solution of the multi-stage optimization problem

argmin
p0,...,pWps−1

Wps−1∑
i=1

c̃(pi, pi−1) + I(pi)s̃(pi), (3.8)

where pi ∈ P̃i for i ∈ {0, . . . ,Wps − 1}. A major difference in Eq. (3.8) to Eq. (3.4) is
that the similarity distance s̃(p) is weighted with the intensity I(p) at point p. This is
motivated by the fact, that the borderline is ordinarily located in dark regions of the
MR volume.

Formulating a recursion as in Eq. (3.5) for dynamic programming

F̃0(p0) := 0 ∀p0 ∈ P̃0

F̃i+1(pi+1) := argmin
pi∈P̃i

{F̃i(pi) + c̃(pi+1, pi) + I(pi+1)s̃(pi+1)}. (3.9)

leads to an optimal path from the left to the right column, representing the approx-
imated borderline in polar space. Transforming these approximations back to eu-
clidean space yields a coarse estimation of the femur’s contour (see Fig. 3.4 (d)). This
coarse estimation is finally used to apply an ICP approach to calculate a transforma-
tion of an arbitrary shape model to fit into the point cloud consisting of the border
estimates.
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3.3.4 Model Fitting

The last stage consists of fitting an arbitrary shape model into the boundary point
cloud. Rigid ICP [BM92] is particularly utilized to compute a rough transformation
estimate, that is applied on the shape model to achieve a reasonable initialization
point for a subsequent segmentation method. To speed up the registration process,
only a subset of the shape model’s boundary points is used for ICP by means of
equidistant subsampling.

(a) (b) (c)

(d) (e) (f)

FIGURE 3.5: (a) Overlay of unregistered shape model (red) and
ground truth (green). (b) Extracted center line from unseen volume
during stage 2. (c) Resulting femur border from stage 3. (d) Original
displacement of shape model (red) and femur border. (e) Fitted shape
model (blue) to femur border. (f) Overlay of transformed shape mo-
del (blue) and ground truth (green). Copyright ©2018 IEEE [Pha+18].

Fig. 3.5 shows exemplary snapshots of the proposed approach. To illustrate the
qualitative results of the procedure in each snapshot, the desired ground truth seg-
mentation is overlayed in green. It should be noted, that the displayed ground truth
of the unseen MR volume only serves as visual inspection and is not used for the
initialization process, neither during the training stage nor during the remaining
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stages. Fig. 3.5 (a) shows the initial position of the shape model (red) and its devi-
ation from a more suitable positioning close to the depicted ground truth (green).
The approximated femur center line with corresponding circle estimates from the
second stage is shown in Fig. 3.5 (b). It is observable that the proposed center line
has a feasible progression through the femur. Fig. 3.5 (c) shows the achieved bound-
ary points from the third stage. In Fig. 3.5 (d) the initial displacement of shape
model (red) and estimated boundary points is shown, whereas the registered shape
model (blue) via ICP during stage four is depicted in Fig. 3.5 (e). Fig. 3.5 (f) shows
the transformed shape model (blue) with an overlay of the ground truth (green). It
is noticeable that the transformed shape model serves as a better initialization for
subsequent segmentation methods than the original positioning in Fig. 3.5 (a).

3.3.5 Experiments

The following paragraph describes the experiments conducted with the proposed
PAMs approach for femoral model initialization. First, the data sets that are used
for the experiments are presented. There are several aspects that can be analyzed
regarding the proposed initialization method. The subsequent segment presents the
achieved initialization results in a leave-one-out cross validation setting. Because of
the 2D nature in the training stage, it is feasible to assume that one training volume
may be already sufficient for a satisfactory initialization. Therefore, the feasibility
of using only one training volume is additionally investigated in the subparagraph
following the next one. The last subsection particularly considers the aspect of retro-
spective hyper parameter analysis regarding the cost function (Eq. (3.6)), described
in section 3.3.2.

Data

For the experiments, eight T1-weighted MR volumes of the femur from six different
patients are utilized. Two of these patients were examined before and after surgi-
cal procedures. The MR images were recorded using a Siemens Magnetom Aera 1,5
Tesla MR tomograph during clinical routine and are provided by the Department of
Orthopaedics and Trauma Surgery at the University Hospital Essen. The patient vol-
umes are denoted as P1, . . . ,P6 and the post operative data sets are marked as P1PO
and P2PO, respectively. Table 3.1 shows the voxel spacing and the volume size of the
considered patient volumes.

Patient Volume Voxel Spacing Volume Size
P1 (0.89× 0.89× 2.4) (256× 256× 40)
P1PO (0.89× 0.89× 2.4) (256× 256× 48)
P2 (0.89× 0.89× 2.4) (256× 256× 40)
P2PO (0.89× 0.89× 2.4) (256× 256× 48)
P3 (0.89× 0.89× 2.4) (256× 256× 40)
P4 (0.89× 0.89× 2.4) (256× 256× 40)
P5 (0.89× 0.89× 2.4) (256× 256× 48)
P6 (0.89× 0.89× 2.4) (256× 256× 48)

TABLE 3.1: Resolution of femur MR data sets.
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Leave-One-Out Model Initialization

In a leave-one-out cross validation manner, each available patient volume P1, . . . ,P6
and P1PO, P2PO is considered as test volume once, whereas the remaining patient
volumes and their corresponding label volumes are considered training volumes
and used to form the PAMs in the training stage. It should be noted that only MR
volumes are used for training, which are not of the same patient as the test volume,
e.g. P1 was not used during training for the test volume P1PO. A multi-atlas 3D non-
rigid diffeomorphic demons registration [Ver+09] implementation in MATLAB is
used as a reference baseline (Multi-Atlas I). Additionally, Elastix is used for a second
multi-atlas approach with the parameter settings of Bron et al. [Bro+13] for knee
cartilage registration in MRI (Multi-Atlas II). The parameter settings are taken from
the Elastix Model Zoo1.

ws wd wµ wvar wr wµ̃ wd̃ wd0

10 5 0 0 1 0 0 0

TABLE 3.2: Weight configuration for experiments.

Table 3.2 shows the weight configuration, chosen for the center line extraction in
stage 2. These values focus on a high weighting of the similarity component. A
more detailed assessment on the hyper parameter selection is presented in section
3.3.5. For the last model fitting stage, the label image of P2PO is arbitrarily used to
be registered to the extracted boundary points. For the folds, in which P2 and P2PO
are the test volume, P1’s label volume is used as shape model to be registered.

DSC Multi-Atlas I Multi-Atlas II PAMs
P1 0.3082 0.6919 0.8646
P1PO 0.2925 0.4974 0.8170
P2 0.2851 0.7373 0.7031
P2PO 0.2613 0.6586 0.6602
P3 0.2418 0.5840 0.8242
P4 0.1229 0.1562 0.7999
P5 0.1109 0.6161 0.8081
P6 0.2729 0.3912 0.9132
∅ 0.2370 ± 0.0768 0.5416 ± 0.1450 0.7988 ± 0.0586

TABLE 3.3: Resulting DSCs from the proposed PAMs approach com-
pared to the multi-atlas baselines.

Table 3.3 shows the achieved initialization results of both multi-atlas registration ap-
proaches for each testing fold compared to the proposed PAMs pipeline. It is notice-
able that for most patient volumes the multi-atlas approaches performs poorly with
mean dice scores of 0.2370 and 0.5416 compared to the proposed PAMs’ approach
achieving 0.7988 on average. The multi-atlas methods’ poor performance may be
due to the different field of views (FOVs) of the MRI data sets. The inconsistency of
the FOV increases the difficulty of the registration problem, as a larger FOV shows
more anatomical structures, which cannot be matched to images with smaller FOVs.
This is circumvented in the PAMs approach, in which the registration is not applied

1https://elastix.lumc.nl/modelzoo/par0017/

https://elastix.lumc.nl/modelzoo/par0017/
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on gray scale volumes, but on point clouds of the particular structure of interest,
which is the proximal femur in this case. The different FOVs of the data set are illus-
trated in Fig. 3.6, where the ground truths of arbitrary volumes with very different
FOVs are shown in comparison.

FIGURE 3.6: Exemplary ground truths of volumes with different FOVs
compared.

Model Initialization with one Training Volume

As the presented PAMs pipeline leverages the 2D sequential nature of MR volumes,
it has access to a significantly increased number of training samples for the train-
ing stage compared to the mere number of patients (see section 3.3.1). Therefore,
in this subparagraph the feasibility of using only one patient training volume, i.e. a
single patient training approach, for a satisfactory femur model initialization is in-
vestigated.

Test
Atlas

P1 P1PO P2 P2PO P3 P4 P5 P6 ∅ std

P1 - 0.946 0.586 0.585 0.447 0.007 0.802 0.209 0.512 ± 0.249
P1PO 0.943 - 0.361 0.638 0.311 0.006 0.579 0.684 0.503 ± 0.237
P2 0.233 0.051 - 0.939 0.735 0.381 0.333 0.322 0.428 ± 0.234
P2PO 0.494 0.275 0.904 - 0.657 0.494 0.388 0.535 0.535 ± 0.140
P3 0.153 0.069 0.816 0.541 - 0.253 0.406 0.250 0.356 ± 0.199
P4 0.107 0.100 0.626 0.522 0.731 - 0.733 0.576 0.485 ± 0.218
P5 0.726 0.507 0.364 0.372 0.262 0.160 - 0.523 0.416 ± 0.145
P6 0.368 0.311 0.464 0.802 0.352 0.475 0.623 - 0.485 ± 0.130
∅ 0.432 0.323 0.589 0.628 0.499 0.254 0.552 0.443 0.465 ± 0.204
std ± 0.248 ± 0.231 ± 0.166 ± 0.141 ± 0.179 ± 0.168 ± 0.151 ± 0.156

TABLE 3.4: Resulting DSCs from Elastix approach with single patient
training. Columns denote the atlas data set, rows depict the test data

set.

For this, each train-test combination of the available volumes is assessed, such that
only one volume is used for training in the first stage, and its corresponding label
image is employed as shape model, which is registered to the extracted boundary
points in the final fitting stage. For the center line extraction stage, the same weight
configuration, depicted in Table 3.2 is used for all experiments.
Instead of a multi-atlas registration, a simple atlas registration by means of the Elastix
configuration of section 3.3.5 is applied for every possible train-test combination to
form a baseline. This deviation from the original publication [Pha+18] is presented,
since the Elastix implementation yields superior results compared to the originally
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used registration. The achieved dice scores of the registration approach for each
combination is shown in Table 3.4, whereas the resulting dice scores for the PAMs
pipeline is presented in Table 3.5.

Test
Train

P1 P1PO P2 P2PO P3 P4 P5 P6 ∅ std

P1 - 0.899 0.878 0.884 0.662 0.723 0.690 0.705 0.777 ±0.094
P1PO 0.888 - 0.783 0.847 0.680 0.670 0.316 0.158 0.620 ±0.192
P2 0.859 0.841 - 0.910 0.817 0.583 0.843 0.897 0.821 ±0.061
P2PO 0.836 0.797 0.897 - 0.509 0.509 0.521 0.000 0.581 ±0.197
P3 0.815 0.816 0.850 0.841 - 0.888 0.476 0.831 0.788 ±0.078
P4 0.572 0.782 0.854 0.833 0.888 - 0.001 0.839 0.681 ±0.197
P5 0.771 0.764 0.058 0.817 0.733 0.747 - 0.822 0.673 ±0.154
P6 0.826 0.862 0.880 0.758 0.786 0.821 0.814 - 0.821 ±0.026
∅ 0.795 0.823 0.743 0.841 0.725 0.706 0.523 0.607 0.720 ± 0.158
std ±0.071 ±0.038 ±0.196 ±0.033 ± 0.093 ± 0.102 ±0.222 ± 0.302

TABLE 3.5: Resulting DSCs from the proposed PAMs approach with
single patient training. Columns denotes the training data set, rows

depict the test data set. Copyright ©2018 IEEE [Pha+18].

The registration baseline achieves a mean Dice Similarity Coefficient (DSC) of 0.465
with a standard deviation of ±0.204, whereas the PAMs approach results in a signif-
icantly improved average dice score of 0.720 with a standard deviation of ±0.158. A
limitation of the PAMs approach is that the automatic detection of the center line is
crucial to the final initialization, since the subsequent steps do not offer any correc-
tion mechanism. This becomes especially imminent in very weak DSC cases, such as
the combination of P6 and P2PO, where the DSC is zero. In this case the wrong cen-
ter line is extracted, which is propagated to the subsequent stages, rendering a poor
performance. However, it needs to be emphasized, that only one training volume is
used to train the PAM model and that a larger training set, similar to a multi-atlas
approach, would result in an even more robust center line extraction, as the leave-
one-out experiments in section 3.3.5 demonstrate.

Retrospective Hyper Parameter Analysis

This section takes a closer look at the cost function (Eq. (3.6)) for the center line
estimation (stage 2), proposed in section 3.3.2. The aim of this paragraph is to inves-
tigate the impact of the individual components of the cost function and the necessity
of the similarity component (Eq. (3.3)). Therefore, this subsection also takes a look
at the feasibility of the PAMs’ training stage. For this purpose a grid search for the
best weight configuration is applied, where the achieved DSC after initialization is
used as a quantitative metric. To restrict the search space, only discrete weight con-
figurations are considered, which sum up to eight (since there are 8 components to
be assessed). The weights are only taken from a grid of natural numbers ranging
from {0, . . . , 8}. Using a leave-one-out cross validation strategy, as described in the
previous section 3.3.5, the mean DSC over all test volumes is calculated for every
allowed weight combination.

The results are illustrated in Fig. 3.7 by means of a color encoded parallel plot. The
proposed cost function components and the similarity function (Mahalanobis Dis-
tance) are denoted on the x-axis, whereas their weights are represented on the y-axis.
The last two pillars on the right denote the achieved mean DSC, visualizing their
color encoding. Each path from left to right represents one of the considered weight
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FIGURE 3.7: PAMs parallel plot.

combinations, where a color close to red indicates a good performance, while a color
close to blue represents a weak initialization result. Therefore, those cost function
components with pillars, which show rather blue than red incoming and outgoing
edges at the top, indicate a lower importance for a successful initialization, since a
high weighting only results in poor performance.
It is observable, that the center point shift and the similarity component appear to be
most relevant according to the color encoding at their pillar’s top region. In contrast,
the aspects of accumulated mean center point shift and center point shift from the
first axial slice seem to be neglectable. Furthermore, a more well-balanced weight
combination often results in favorable mean DSCs, as the red appearance of the
lower weight regions suggests.

DSC ws wd wµ wvar wr wµ̃ wd̃ wd0

P1 0.8966 2 4 0 0 1 1 0 0
P1PO 0.9007 2 1 0 0 5 0 0 0
P2 0.7294 0 7 1 0 0 0 0 0
P2PO 0.6928 2 0 1 0 3 2 0 0
P3 0.8606 1 1 0 4 2 0 0 0
P4 0.8475 3 4 0 0 0 0 0 1
P5 0.8300 6 1 0 0 0 0 0 1
P6 0.9194 1 4 0 2 0 0 0 1
∅ 0.8346 2.125 2.75 0.25 0.75 1.375 0.375 0 0.375
Best Overall 0.8074 2 5 0 1 0 0 0 0

TABLE 3.6: Best weight configuration for each patient. ∅ denotes the
mean over all patients. Best Overall denotes the specific configuration,

resulting in the best mean DSC.

Tab. 3.6 shows the best parameter configuration for each patient. It is noticeable,
that the accumulated mean center point shift, weighted by wd̃, does not contribute
to the best parameter configuration for any test patient. Furthermore, the weights
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are averaged along all patients for a rough estimate of their importance (second to
last row). Here, the previous observation from Fig. 3.7 is supported, as the center
point shift and the similarity component are weighted more heavily on average than
the remaining components. The best mean DSC of 0.8074, considering all test pa-
tients, is also achieved by strong weights on the center point shift and the similarity
component, as can be seen in the last row. In summary, a heavy emphasis on center
point shift and similarity component in the cost function is preferable, although the
weighting ratio of these two cost function components to each other is neglectable,
which is reflected in the similarly high mean DSC result of 0.7988 using the original
preliminary weight configuration of Tab. 3.2, which has a strong focus on both cen-
ter point shift and the similarity component, but weights the similarity component
more heavily.
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3.4 GESAM: Gradient based Expanding Spherical Appear-
ance Models

The second initialization approach of this chapter is a three stage localization method,
as visualized in Fig. 3.8, that finds a feasible contour initialization for a subsequent
contour based segmentation approach. A prerequisite is the presence of a near-
spherical component within the anatomical structure, that needs to be extracted.
In case of the proximal femur, its femur head represents said near spherical com-
ponent. The first stage consists of training the Gradient based Expanding Spherical
Appearance Models (GESAMs) to model the intensity distribution within the femur
head and its local environment in a Principal Component Analysis (PCA) manner.
In the second stage, the trained model is used to robustly localize the near-spherical
component, i.e. the femur head, of the proximal femur. It consists of a preprocessing,
a structured sampling, and a sphere selection step. In the final stage, the estimated
femur head location is used as an initial region to expand to the remaining bone
regions by a simplified Level Set approach, which is restricted by the MR volume’s
gradient information.

3.4.1 Model Definition

Like in the previous section, let

(I0, GT0), . . . , (IN−1, GTN−1)

denote N training atlases, with MR volume Ii and its corresponding label volume
GTi for i = 0, . . . , N−1. It is assumed that each volume has an isotropic voxel spacing
of (1 × 1 × 1)mm3. During the first stage, the GESAMs learn to model the intensity
distribution within and around the near-spherical component. For this reason, the
near-spherical components need to be identified within the label volumes. This is
achieved by fitting a sphere by Random Sampling Consensus (RANSAC) [FB81] into
the label volume of each atlas. Let ri be the radius of the fitted sphere in GTi for
i = 0, . . . , N − 1, then an encapsulating outer neighborhood of the sphere can be
extracted, such that the volume of the outer neighborhood is equal to the sphere
volume. This is achieved by defining the neighborhood bandwidth of

bwi :=
3
√
2ri − ri. (3.10)

Fig. 3.9 shows an example of the detected femur head (red) and its outer neigh-
borhood (gray). After the sphere fitting procedure, an inner and outer region with
the same volume can be therefore differentiated. For a fixed number nbins ∈ N\{0}
of intensity bins, the normalized intensity distributions of the inner and outer re-
gions are modeled by means of two vectors vini , vouti ∈ [0, 1]nbins , yielding N fea-
ture vectors vin0 , . . . , vinN−1 ∈ [0, 1]nbins for the inner region, and N feature vectors
vout0 , . . . , voutN−1 ∈ [0, 1]nbins for the outer region.
For the calculation of the normalized intensity distribution, the whole intensity range
is divided into the aforementioned nbins intensity bins, i.e. B0, . . . ,Bnbins−1. If e.g.
the maximally possible intensity value is 255 and the minimally possible value is 0,
then the bins would be defined as

B0 := [0, 128)

B1 := [128, 255]
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FIGURE 3.8: Overview of GESAMs strategy.

for nbins := 2. Let

χi : Ω× {0, nbins − 1} → {0, 1} (3.11)

denote the binary indicator function, which returns 1 if and only if a voxel’s intensity
value Ii(p) ∈ R in the i-th MR volume belongs to the j-th intensity bin for j ∈
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{0, . . . , nbins − 1}, i.e.

χi(p, j) :=

{
1, if Ii(p) ∈Bj

0, else.
(3.12)

Then the normalized intensity histogram

hini : {0, . . . , nbins − 1} → [0, 1] (3.13)

of the inner sphere region within the i-th volume is calculated by

hini (j) :=

∑
p χi(p, j) · Sin

i (p)∑
p S

in
i (p)

, (3.14)

where Sin
i : Ω→ {0, 1} denotes the indicator function of whether p ∈ Ω is within the

inner region of the fitted sphere in the i-th label volume. In the same fashion, the
normalized intensity histogram

houti : {0, . . . , nbins − 1} → [0, 1] (3.15)

of the outside region surrounding the fitted sphere within the i-th volume is estab-
lished by

houti (j) :=

∑
p χi(p, j) · Sout

i (p)∑
p S

out
i (p)

, (3.16)

where Sout
i : Ω → {0, 1} now represents the indicator function if p ∈ Ω is within the

outer region of the fitted sphere in the i-th label volume.
The feature vectors are defined by means of these intensity histograms, representing
discretized intensity distributions, i.e.

vini := (hini (0), . . . , hini (nbins−1))
T ∈ [0, 1]nbins (3.17)

and

vouti := (houti (0), . . . , houti (nbins−1))
T ∈ [0, 1]nbins , (3.18)

for i = 0, . . . , N − 1. A third type of feature vector can be constructed by concatenat-

FIGURE 3.9: Visualization of inner and outer region. The red sphere
is returned by a sphere detection algorithm (such as RANSAC) on
the ground truth data and approximates the femur head. The grey
spheres’s volume is twice as large as the red one’s. The intensity dis-
tribution within the outer neighborhood area between these spheres

is used to construct a feature vector.
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ing these vectors to a joint feature vector of length 2nbins, i.e.

vjointi := [vini , vouti ], (3.19)

where [·, ·] is the concatenation operator. To reduce the effects of global intensity
changes, the derivatives of the distributions are considered. Dimensionality reduc-
tion by means of Principal Component Analysis (PCA) yields a matrix for each fea-
ture vector type

Uin := (uin0 , . . . , uinnPCA−1) (3.20)

Uout := (uout0 , . . . , uoutnPCA−1) (3.21)

Ujoint := (ujoint0 , . . . , ujointnPCA−1) (3.22)

containing nPCA < nbins eigenvectors, respectively. For each variant a set of eigen-
values can be established by

Ein := {λin
0 , . . . , λin

nPCA−1}

Eout := {λout
0 , . . . , λout

nPCA−1}

Ejoint := {λjoint
0 , . . . , λjoint

nPCA−1}.

With the mean feature vectors of the aforementioned types

vin :=
1

N

N−1∑
i=0

vini ,

vout :=
1

N

N−1∑
i=0

vouti ,

vjoint :=
1

N

N−1∑
i=0

vjointi

a Spherical Appearance Model is defined for each feature variant. i.e.

Min := (Uin,Ein, vin)

Mout := (Uout,Eout, vout)

Mjoint := (Ujoint,Ejoint, vjoint).

Additionally taking the maximal and minimal radius rmax, rmin in mm of the fitted
spheres, and the standard deviation σr of the sphere radii into account, the complete
GESAMs model is defined as

G := (Min,Mout,Mjoint, rmax, rmin, σr).

Therefore, the training stage consists of computing the spherical appearance models
and the radius information from the training atlases.

3.4.2 Localization

In the next stage, the GESAMs model G is used to localize the spherical component
of the femur, i.e. the femur head, within a new unseen MR volume. The general
idea is to leverage the modeled appearance of the atlases’ femur heads and their
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surroundings to find similar spherical regions within the volume. This localization
stage can be subdivided into three steps, namely

• Preprocessing

• Structured Sampling

• Best Sphere Selection

In the preprocessing step, the unseen MR volume is reduced to a set of feasible
boundary points of the femur head. The subsequent structured sampling step is
a RANSAC like fitting scheme, i.e. a hypothesis-verification strategy, in which the
number of samples, which generate the hypothesis, is kept minimal. In this case the
hypothesis is a distinct sphere candidate, specified by a minimal sample set of four
voxel coordinates. In the last sphere selection step, the best sphere candidate out of
all candidates from the sampling step is selected based on a cost function.

Preprocessing

For computational efficiency the sample domain is constrained to those voxels with
a feasible gradient magnitude, after regularizing with a simple Gaussian filter. An
unseen 3D MR volume I is reduced to a constrained sample domain by the following
binarization process

I∇ :=

{
1, if |∇{I ∗ g}| ≥ µ{|∇{I∗g}|>0}

0, else,
(3.23)

where ∇ is the gradient operator, g denotes a Gaussian kernel, ∗ is the convolution
operation, and µ|∇{I∗g}|>0 represents the mean of all positive values in the smoothed
gradient magnitude volume |∇{I ∗ g}|. Fig. 3.10 (a) shows an exemplary axial
MRI slice, in which the spherical femoral head is visible. Fig. 3.10 (b) shows the
corresponding axial slice from I∇. Since anatomical structures that contain spherical
components are the objects of interest, it is possible to further restrict the sampling
domain, by only keeping those image points, that are most likely part of the femur
head.

As the intersection of a sphere with hyper planes of arbitrary orientation always re-
sults in a circle on that plane, a canonical strategy is the application of 2D Hough
transforms on axial, frontal, and sagital volume slices. For each slice in each di-
rection the ncircles > 0 most probable circles are considered, respectively. The in-
tersection of circles with different spatial orientation yields voxel coordinates that
presumably address spherical structures. The more orientations are involved in the
intersection, the higher is the probability of the intersection being part of an actual
spherical structure. Fig. 3.10 (c) shows a heat map of probable sphere points, where
the intensity reflects the number of circles of different orientation involved in this
intersection point. The number of intersections from circles of different spacial ori-
entation is stored in a voting volume, rendering the heat maps. For the 2D circle
detections the minimal and maximal radii, and the standard deviation rmin, rmax, σr
from the GESAMs modelG are used to limit the radius range of the 2D Hough trans-
forms to [rmin − σr

2 , rmax +
σr
2 ].
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(a) (b)

(c) (d)

FIGURE 3.10: Illustration of preprocessing steps. (a) Axial slice of MRI
data. (b) Corresponding binary slice of voxels with strong gradient,
taken from I∇. (c) Respective slice of voting volume of intersecting

circles with different spatial orientations. (d) Axial slice of I∇,◦.

Let I◦ denote the binary volume, containing the most probable aforementioned in-
tersections. Then the Hadamard product

I∇,◦ := I∇ · I◦

contains volume points that both have a strong gradient and also probably con-
tribute to a feasible sphere hypothesis. Any volume point p in I∇,◦ that has a value
of I∇,◦(p) = 1 will be referred to as a feasible sample point. Fig. 3.10 (d) depicts the
feasible sample points of the corresponding axial slice in I∇,◦, achieved by the pre-
processing procedure described in this section.

Structured Sampling

With the drastically reduced sample set in I∇,◦, a structured sampling approach is
proposed, to ensure the suggestion of promising sphere candidates. For each ksample-
th feasible sample point p, with ksample ≥ 1, a 3D sampling cube with width rmax+

σr
2

is spanned around p. From this restricted sampling cube three additional feasible
sample points are randomly chosen to propose a sphere candidate. This process is
repeated until at least a minimal number of sufficient sphere proposals nsp ≥ 1 with
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a radius within the range [rmin − σr
2 , rmax + σr

2 ] is proposed. If this is not possible,
a maximum number of subsequent non-sufficient proposals nnsp ≥ 1 ensures termi-
nation.
In Fig. 3.11 the proposed sampling strategy is visualized, where the current sample
point p is depicted in blue. The yellow points represent the additional feasible sam-
ple points, that are randomly selected from all sampling points (red) within the 3D
sampling cube. The selected points and the current sample point p uniquely define
a sphere candidate.

FIGURE 3.11: Illustration of structured sampling strategy. A cube is
spanned around the current sampling point (blue). Three additional
feasible sample points (yellow) are randomly selected to define a dis-

tinct sphere. Remaining feasible sample points are depicted red.

Best Sphere Selection

Based on the sphere candidates from the previous step, the most probable candidate
needs to be selected for the final localization of the near-spherical component, i.e. the
femur head, within the unseen MR volume I . For simplicity, only the center point
psc will be used to represent a sphere candidate in the following sections, although
a sphere candidate is actually characterized by both its center point position and
its radius. If the sphere candidate’s radius is of relevance it will be referred to as
r(psc). The sphere evaluation is based on a combination of various selection criteria.
In the context of femur head localization in MR volumes, the following criteria are
considered:

• Similarity of inner intensity distribution
Similar to Eqs. (3.14,3.17) the intensity distribution within the sphere candi-
date can be represented by a feature vector v(psc)

in, where psc denotes the
sphere candidate’s center point. With Min from the training stage, similarity
to the training atlases can be measured by the squared Mahalanobis distance
[DMJRM00]

sin(psc) :=

nPCA−1∑
i=0

1

λin
i

(
uini

T · (v(psc)in − vin)
)2

.

• Similarity of outer intensity distribution
Following the same intuition, the similarity between the intensity distribution
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of the outer boundary v(psc)
out to the distributions from the training data, en-

capsulated in Mout is measured by

sout(psc) :=

nPCA−1∑
i=0

1

λout
i

(
uouti

T · (v(psc)out − vout)
)2

.

• Similarity of inner and outer intensity distribution
The concatenation of inner and outer intensity feature vectors for a sphere can-
didate with center point psc yields a joint feature vectore v(psc)

joint. Its similar-
ity to the observations in the training data can be again measured by means of
the squared anobis distance, using Mjoint, i.e.

sjoint(psc) :=

nPCA−1∑
i=0

1

λjoint
i

(
ujointi

T · (v(psc)joint − vjoint)
)2

.

• Scaled Number of Inliers
Sample points that are within a small error margin, and can be modeled with
the fitted model, are called inliers. In case of sphere fitting, the inliers consist
of sample points that lie within a narrow band, surrounding the sphere candi-
date’s boundary. In the conventional RANSAC procedure, the number of these
inliers is used as an indicator of how suitable the current model is. Fig. 3.12 il-
lustrates different example sphere candidates with their corresponding inliers
within the narrow band.
Let ninlier(psc) denote the number of sample points within the narrow band of
width ε > 0 of a sphere candidate with center point psc. Since large sphere
candidates tend to have a larger absolute number of inliers, because the nar-
row band has a larger volume, the number of inliers needs to be scaled using
the sphere candidate’s radius r(psc), i.e.

ninlier,scaled(psc) :=
ninlier(psc)

4πr(psc)2
.

Since ε > 0 is assumed to be very small, the number of inliers correlates with
the sphere surface area. Therefore, a scaling factor of 4πr(psc)2 is utilized. With
ninlier,scaled(psc), sphere candidates of different volumes can be fairly compared
against each other.

• Center Point Distance to Mean of Inliers
Another considered criterion is the distance of the sphere candidate center
point to the mean of all inlier sample points within the narrow band. Since the
femur head is of near-spherical shape, the inlier sample points should mostly
be equally distributed around the sphere candidates boundary. If the inliers
are not equally distributed, their mean shows a deviation from the sphere
candidate’s center point psc. This is demonstrated in Figs. 3.12 (a)-(b). Let
µinliers(psc) denote the mean of all inlier sample points for a sphere candidate
with center point psc. Then the distance of psc to µinliers(psc) is calculated by
means of the Euclidean distance, i.e.

dinlier(psc) := ||psc − µinliers(psc)||2.
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• Homogeneity within Sphere Candidate
For the particular case of femur head localization via sphere fitting, the ho-
mogeneity of the sphere candidate’s encapsulated area can be used to assess,
whether the proposed candidate is feasible or not. The homogeneity of the
area is estimated using the mean gradient magnitude of the MR volume. Let
psc denote the sphere candidate’s center point and ∇I a volume representing
the intensity gradients of the MR volume I . Moreover, let

Sin
psc : Ω→ {0, 1}

be the indicator function, of whether an arbitrary point p ∈ Ω is encapsulated
by the sphere candidate with center point psc. Then the homogeneity η(psc) of
the sphere candidate with center point psc is estimated by

η(psc) := −
∑

p |∇I(p)| · Sin
psc(p)∑

p S
in
psc(p)

.

The higher the homogeneity, the more likely it should be that the sphere can-
didate is located at the femur head.

• Intensity Variance within Sphere Candidate Boundary
Similar to the homogeneity of the inner sphere candidate region, the intensity
variance of the outer boundary region may be used as an indicator of whether
the sphere candidate is feasible. The outer boundary region is estimated to
have the same volume as the inner sphere region, according to Eq. (3.10). Let
psc again denote the sphere candidate’s center point and I the MR volume.
Furthermore, let

Sout
psc : Ω→ {0, 1}

be the indicator function, of whether an arbitrary point p ∈ Ω belongs to the
outer boundary region of the sphere candidate with center point psc. Then
the intensity variance σ2(psc) of the sphere candidate with center point psc is
estimated by

σ2(psc) :=

∑
p(I(p)− µI(psc))

2 · Sout
psc (p)∑

p S
out
psc (p)

,

where

µI(psc) :=

∑
p I(p) · Sout

psc (p)∑
p S

out
psc (p)

depicts the mean intensity of the outer boundary region of the sphere candi-
date with center point psc in I . Since the femur head is surrounded by various
tissue types, e.g. bone, muscle, cartilage, it is assumed, that the intensity vari-
ance is rather high.

• Number of Dead Edge Points
The last criterion for sphere candidate selection, considered in the scope of
this work, is the number of dead edge points. An edge point that lies within the
sphere candidate is considered a dead edge point. While it is encapsulated by
the sphere candidate, it does not contribute in increasing the number of inliers.
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The number of dead edge points for a sphere candidate with center point psc
will be denoted as ndead(psc). For a feasible sphere candidate, there should
only be few dead edge pixels, as illustrated in Figs. 3.12(a) and (c). In fact, this
can be considered a more specific version of the homogeneity aspect.

(a) (b) (c)

FIGURE 3.12: Hypothetical sphere candidates with narrow band and
inliers. (a) The sphere candidate is correctly positioned at the femur
head. (b) A sphere candidate example, in which the inliers are not
equally distributed along the sphere boundary. (c) A sphere candi-
date with multiple dead edge sample points within the candidate’s

inner region.

Altogether, sphere candidates are evaluated based on a weighted combination of the
aforementioned criteria. To achieve better comparability between the criteria, each
criterion is scaled by its maximally achieved value by the proposed sphere candi-
dates from the structured sampling step. Let Psc denote the set of the center points
of all proposed sphere candidates from the structured sampling step. For a sphere
candidate with center point psc, its cost function is then defined as

c(psc) := wsin ·
sin(psc)

max
p′sc∈Psc

sin(p′sc)

+ wsout ·
sout(psc)

max
p′sc∈Psc

sout(p′sc)

+ wsjoint ·
sjoint(psc)

max
p′sc∈Psc

sjoint(p′sc)

− wninlier
·

ninlier,scaled(psc)

max
p′sc∈Psc

ninlier,scaled(p′sc)

+ wdinlier
· dinlier(psc)

max
p′sc∈Psc

dinlier(p′sc)

+ wη ·
η(psc)

min
p′sc∈Psc

η(p′sc)

− wσ2 ·
σ2(psc)

max
p′sc∈Psc

σ2(p′sc)

+ wndead
· ndead(psc)

max
p′sc∈Psc

ndead(p′sc)
. (3.24)



3.4. GESAM: Gradient based Expanding Spherical Appearance Models 55

A more detailed hyper parameter analysis for the weight configuration of the pro-
posed criteria and an investigation of their impact on a satisfactory sphere selection
is presented in section 3.4.4.

3.4.3 Expansion

As of now, the suggested near-spherical component only localizes the femur head.
Information about the femur shaft location in relation to its head is, however, still
missing. The third stage deals with the expansion of the detected near-spherical
component into the remaining femur to determine the shaft location and therefore
the femur’s spatial orientation. This is achieved by a simplified region based Level
Set approach (see chapter 2.2), in which gradient information of the volume is addi-
tionally used to heavily restrict the expansion to stay within the femur.
Chan and Vese [CV01] propose a global energy approach, where the inner and outer
regions of the contour are considered. Following the notation from chapter 2.2 and
given the Heaviside function

H(Φ(p)) =

{
1 , if Φ(p) > 0

0 , else

Chan and Vese propose a region based energy function

ECV (Φ) :=

∫
Ω
H(−Φ(p))|(I(p)− µin|2

+H(Φ(p))|I(p)− µout|2 dp,

in which deviations from the mean intensities µin, µout of inner and outer region are
punished for each inner and outer point, respectively. This yields a gradient descent
based update rule

∆Φt = −∇ΦtECV .

Nevertheless, the outer area can be large and often contains many different struc-
tures, potentially providing misleading information for the contour deformation.
Therefore, a restriction of the outer region to a band around the current contour
is suggested, which is loosely based on Jung and Jung’s work [JJ08].
Instead of applying the Level Set approach on the original MR volume, a dilated
version of I∇ from Eq. (3.23) is used. The idea is that strong gradients serve as
boundaries of the expansion, which are additionally strengthened by an additional
dilation operation. This simplification of the volume therefore helps in keeping the
expansion within the actual femur bounds. The located sphere from the localiza-
tion stage serves as initial contour of the Level Set approach. Reducing the initial
contour’s radius ensures initialization within the femur. To increase computational
efficiency, I∇ can be resized to a smaller size.

3.4.4 Experiments

The following paragraph describes the experiments conducted with the proposed
GESAMs approach for femoral model initialization. First, the data sets, used for
the experiments are presented. The subsequent segment presents the achieved ini-
tialization results in a leave-one-out cross validation setting compared to the Elastix
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multi-atlas 3D registration baseline, used in section 3.3.5 (Multi-Atlas II). The last
subsection presents a retrospective hyper parameter analysis regarding the cost func-
tion (see Eq. (3.24)), described in section 3.4.4.

Data

For the experiments, the same data sets were used as described in section 3.3.5. All
patient volumes were resized to have an isotropic voxel spacing of (1× 1× 1)mm3 to
meet the prerequisites of GESAMs.

Leave-One-Out Model Initialization

In a leave-one-out cross validation manner, each available patient volume P1, . . . ,P6
and P1PO, P2PO serves as a test volume once, whereas the remaining patient vol-
umes and their corresponding label volumes are considered training volumes and
are used to form the GESAMs in the training stage. Following the procedure of the
PAMs experiments (see section 3.3.5), only MR volumes are used for training, which
are not of the same patient as the test volume. For instance, P1 is not used during
training for the test volume P1PO.
In the training stage, the number of intensity bins, determining the feature length, is
set to nbins = 20. For preprocessing in the localization stage the number of proposed
circles per slice in each orientation by the Hough Transform is set to ncircles = 10.
For the proposed structured sampling method the step size ksample is determined,
such that about 500 feasible sample points remain in I∇,◦. Moreover, nsp = 10 and
nnsp = 10 have been empirically determined as sufficient termination parameters.
In the expansion stage, the volume size is reduced to a factor of 0.5 in each dimen-
sion for the Level Set approach, and is initialized with the located sphere reduced
to half of the detected radius from the localization stage. Table 3.7 shows the pre-
liminary weight configuration that is used for the published results in [Pha+19c]. A
more detailed retrospective analysis is presented in section 3.4.4. The DSC is used to

wsin wsout wsjoint wninlier
wdinlier

wη wσ2 wndead

2 10 5 0 1 0 0 0

TABLE 3.7: Weight configuration for experiments.

estimate and compare the localization quality. In the baseline multi-atlas approach,
majority voting is conducted on the weighted summation of the transformed label
images. Here, the optimization metric for the registration is used as weight. For
each data set, the binarization threshold ζ ∈ {0.1, 0.2, . . . , 1.0} resulting in the best
DSC for the multi-atlas segmentation, is chosen to compare to the GESAMs results.
Table 3.8 shows a detailed overview of the achieved DSCs for each data set, com-
paring the multi-atlas localization quality with the achieved results of the proposed
GESAMs approach before and after the expansion stage. An average DSC value of
0.5416 ± 0.1450 is achieved by the multi-atlas approach, which is surpassed by the
GESAMs with a mean DSC value of 0.7507±0.0108 after expansion. It is also notice-
able, that the GESAMs approach outperforms the registration method for every test
patient.
As discussed in section 3.3.5, the weaker multi-atlas performance may be due to
the different field of views (FOVs) of the MR volumes. The inconsistency of the
FOVs increases the difficulty of the registration problem. Although the GESAMs
approach requires the femur to have a near spherical component, i.e. its femur head,
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DSC Multi-Atlas II GESAMs before Exp. GESAMs after Exp.
P1 0.6919 0.4205 0.7334
P1PO 0.4974 0.4583 0.7476
P2 0.7373 0.4989 0.7687
P2PO 0.6586 0.4674 0.7510
P3 0.5840 0.4335 0.7634
P4 0.1562 0.4890 0.7626
P5 0.6161 0.4068 0.7282
P6 0.3912 0.3805 0.7510
∅ 0.5416 ± 0.1450 0.4444 ± 0.0340 0.7507 ± 0.0108

TABLE 3.8: Resulting DSCs from proposed GESAMs approach before
and after the expansion stage compared to the multi-atlas approach.

Revised from [Pha+19c].

it nevertheless poses a viable alternative to registration approaches, which are often
sensitive to varying FOVs.

Eligibility of GESAMs

In an additional experiment, the necessity of the training phase to generate the
GESAMs is investigated. Since the preprocessing phase in the localization stage may
already reduce the sampling domain to feasible sample points, that mostly lie on
the femur head’s boundary region, it is possible to argue that this information may
already be sufficient to approximate the femur head’s location without the need of
a prior training phase. It should be, however, noted that the preprocessing stage al-
ready requires information from the GESAMs, as the slice-by-slice 2D Hough trans-
forms are constrained by the radii acquired from the training data.

In the additional experiment, artificial feasible sample points, which form a perfect
sphere outside the femur head region, are induced into the drastically reduced sam-
pling domain I∇,◦. This simulates an anatomical structure with near spherical shape,
that is different from the femur head. The same weight configuration as in Table 3.7,
which will be denoted as GESAMs config, is compared to a weight configuration, in
which only the number of inliers ninlier is considered, thus neglecting any GESAMs
information for the best sphere selection step in the localization stage. This configu-
ration will be referred to as Naive config. In the same leave-one-out cross validation
manner as described in section 3.4.4, each available patient volume is considered as
a test volume once. Since the proposed structured sampling step yields a random-
ized component, the experiment is performed 100 times for each test patient. For
this experiment the feasible sphere proposal rate (FSPR) is calculated for both weight
configurations. The FSPR is the percentage of feasible sphere proposals, where a
sphere proposal is considered feasible, if the proposed sphere center lies within the
actual femur head.

Table 3.9 depicts detailed overview of the localization performances for each data
set in both configurations. It becomes apparent, that for the data sets P3 and P6
the naive configuration achieves better localization rates than for the other data sets.
This might however be due to the more spherical nature of these data set’s femur
head. For the naive inlier based configuration, about 22.13% of the time a feasible
sphere is proposed, whereas the GESAMs based configuration results in a FSPR of
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FSPR in % P1 P1PO P2 P2PO P3 P4 P5 P6 ∅
Naive config 0 0 0 7 68 5 31 66 22.13 ± 24.66
GESAMs config 94 84 96 94 90 100 100 100 94.75 ± 4.25

TABLE 3.9: Resulting FSPR for a naive configuration without any
GESAMs information compared to GESAMs configuration according

to Table 3.7.

about 94.75%.

Fig. 3.13 depicts the additional artificial feasible sample points, that form a perfect
sphere outside the femur head region. The resulting sphere localization before ex-
pansion by means of the GESAMs based configuration is visualized in yellow. It
becomes apparent, that the femur head is correctly detected in the sphere selection
stage, although a more spherical structure is present in the scene.
All in all, these observations indicate that the GESAMs based sphere proposal is
able to robustly locate the femur head by leveraging the learned appearances from
the training phase, even if other more spherical structures are present in the MR vol-
ume, whereas naive sphere detection algorithms canonically tend to locate the most
spherical structure.

FIGURE 3.13: Overlay of feasible sample points (red dots), every
ksample-th sample point in the structured sampling stage (blue stars),
GESAMs result before expansion (yellow), and ground truth (green).

Artificially added feasible sample points form a perfect sphere.
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Retrospective Hyper Parameter Analysis

In this subsection the weight configuration for the cost function in the sphere selec-
tion process (Eq. (3.24)) is investigated. Like in section 3.3.5, a grid search for the best
weight configuration is applied, where the achieved DSC before the expansion step
is used as quantitative metric. Again, there are 8 components to be assessed, so the
weights are taken from a grid of natural numbers ranging from {0, . . . , 8}, that sum
up to eight. Fig. 3.14 shows a color encoded parallel plot, representing the results of
the grid search. On the x-axis the proposed cost function components are depicted.
The considered weights are depicted on the y-axis. The last two pillars on the right
denote the achieved mean DSC over all test patients. Like in the previous section,
each path from left to right represents one of the considered weight combinations,
where a color close to red indicates a good overall performance. A color close to
blue represents overall weak initialization results. It becomes imminent, that for a
successful sphere detection stage, which is crucial for the subsequent stages, the cost
components regarding the similarity of inner, outer, and joint intensity features are
substantial, which is demonstrated in the parallel plot by the rather red incoming
and outgoing edges at the top of the corresponding pillars. The variance within the
sphere boundary on the other hand seems to be neglectable.
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FIGURE 3.14: GESAMs parallel plot.

Tab. 3.10 allows a closer look at the best weight configuration for each patient. It is
directly observable that for each patient a strong weight on sin results in the most
promising femur localization. The mean of the best weight configurations along
all patients (second to last row) illustrates the importance of this cost component
with a mean weight of 5.125 for sin. Interestingly, the best mean DSC (last row) is
accomplished by heavily weighting sout, i.e. the similarity of outer intensity distri-
butions. This is very similar to the originally considered configuration (see Tab. 3.7).
The second best mean DSC of 0.4677 is however achieved by heavily weighting both
similarities of inner and outer intensity distributions with weights of wsin = 3 and
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wsout = 4.
Altogether, the more detailed inspection of the best configurations for each patient
supports the observations made in the parallel plot, i.e. a strong focus on the learned
appearance model based features sin and sout is of crucial importance.

DSC wsin wsout wsjoint wninlier
wdinlier

wη wσ2 wndead

P1 0.5008 8 0 0 0 0 0 0 0
P1PO 0.5092 6 0 1 1 0 0 0 0
P2 0.4711 7 0 0 0 0 0 1 0
P2PO 0.4696 6 0 0 0 0 0 0 2
P3 0.4773 2 4 2 0 0 0 0 0
P4 0.5202 3 1 2 0 1 1 0 0
P5 0.4230 6 0 0 0 0 0 0 2
P6 0.4540 3 0 1 1 0 0 0 3
∅ 0.4782 5.125 0.625 0.75 0.25 0.125 0.125 0.125 0.875
Best Overall 0.4680 1 6 0 0 0 0 0 1

TABLE 3.10: Best weight configuration for each patient. ∅ denotes the
mean over all patients. Best Overall denotes the specific configuration,

resulting in the best mean DSC.

3.5 Integration of Initialization Methods into Segmentation
Pipelines

In this section, the previously presented femur initialization methods are integrated
into a fully automated segmentation pipeline. Although multi-atlas registration
methods can be considered fully automated end-to-end segmentation methods, their
initial registration results are used as a baseline initialization for the subsequent seg-
mentation approach. In the scope of this thesis, a Level Set approach is used as
traditional segmentation method. Particularly, Paragios et al.’s variant of gradient
vector flow (GVF) based Level Sets [PMGR01] is employed.

Multi-Atlas II PAMs
inital after LS inital after LS

P1 0.6919 0.7821 0.8646 0.8384
P1PO 0.4974 0.6126 0.8170 0.8176
P2 0.7373 0.7474 0.7031 0.8216
P2PO 0.6586 0.6604 0.6602 0.7969
P3 0.5840 0.5804 0.8242 0.8101
P4 0.1562 0.1295 0.7999 0.7805
P5 0.6161 0.6990 0.8081 0.8278
P6 0.3912 0.4415 0.9132 0.8463
∅ 0.5416 0.5816 0.7988 0.8174

± 0.1450 ± 0.1484 ± 0.0586 ± 0.0162

TABLE 3.11: Segmentation pipeline results using PAMs.

Tab. 3.11 shows the DSC improvements from the initial contour to the final seg-
mentation for both the Multi-Atlas based initialization and the PAMs based initial-
ization. Here, LS is an abbreviation for the Level Set segmentation method, which
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should not be confused with the simplified Level Set method in the expansion step
of the GESAMs approach. One can observe, that for both initialization methods the
overall DSCs improve after applying the Level Set segmentation method. The final
segmentation based on the atlas-based initialization, however, does not reach the
initial mean DSC of the PAMs.

Tab. 3.12, on the other hand, shows the DSC improvements from the initial con-
tour to the final segmentation for the multi-atlas based initialization compared to
the GESAMs based initialization. Since the GESAMs use an isotropic voxel spacing
of (1 × 1 × 1)mm3, the atlases are resized accordingly before registration. Again,
for both initialization methods, the overall DSCs improve after applying the Level
Set method. However in this case, the GESAMs’ performance improves by a lot
from 0.7507 to 0.8642, compared to the PAMs initialization’s increase from 0.7988 to
0.8174.

Multi-Atlas II isotropic GESAMs
inital after LS inital after LS

P1 0.6697 0.8136 0.7334 0.8629
P1PO 0.4757 0.5390 0.7476 0.8613
P2 0.7706 0.7584 0.7687 0.8887
P2PO 0.6909 0.6776 0.7510 0.8795
P3 0.4624 0.3890 0.7634 0.8543
P4 0.6466 0.7158 0.7626 0.8495
P5 0.6654 0.7670 0.7282 0.8554
P6 0.7207 0.6994 0.7510 0.8616
∅ 0.6378 0.6700 0.7507 0.8642

± 0.0844 ± 0.1030 ± 0.0108 ± 0.0010

TABLE 3.12: Segmentation pipeline results using GESAMs.

In direct comparison, the GESAMs start with an inferior initialization according to
the DSC, but yield significantly better final results than the PAMs. A possible expla-
nation lies in the heavily restricted expansion stage, in which gradient information
is used to ensure that the expansion stays within the femur. This seems to be a more
favorable initialization for the subsequent Level Set approach. However, both initial-
ization strategies, yield superior initial and final mean DSCs compared the revised
baseline multi-atlas registration approach.

3.6 Conclusion

In this chapter, two femur initialization strategies are presented, that make use of
prior knowledge about the primitive shape structure of the femur.
On the one hand, the four stage PAMs based initialization considers 3D volumes
as a sequence of 2D axial slices and leverages the near-circular shape of the femur
in these slices to extract possible femur region candidates. Its intensity distribution
model is incorporated into the femur’s center line extraction, which is used together
with the PAMs’ border transition model to estimate the femur’s boundary in polar
space. Both stages are modeled by a path finding problem, which is addressed by
means of dynamic programming. In the final fourth stage ICP is used to register an
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existing shape model into the border point cloud.

On the other hand, the three stage GESAMs based initialization works directly on the
3D MR volume. Based on its intensity distribution appearance model of the femur
head, first the femur head is located by means of a sphere selection process, in which
a RANSAC like structured sampling approach is employed on the preprocessed MR
volume. From the estimated femur head, a heavily restricted and region based Level
Set method is utilized to expand into the remaining femur area, determining its ori-
entation.

It is demonstrated that both proposed initialization approaches outperform the re-
fined Elastix baseline multi-atlas registration method, especially in the context of
strongly varying FOVs. Regarding PAMs, it is shown that a single labeled MR vol-
ume already yields reliable initializations in most cases.
For both methods, a retrospective hyper parameter analysis reveals that the most
important components of the cost functions are in fact the components making use
of the learned appearance models.

The feasibility of the initializations is validated on the example of a GVF based
Level Set method, as a representative for contour based traditional segmentation
approaches. The Level Set method shows favorable results, when the proposed ini-
tializations are used, compared the the multi-atlas registration initialization baseline.
All in all, the presented initialization methods are viable alternatives to conventional
registration approaches and contribute in complementing existing traditional femur
segmentation approaches towards full automation.
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Chapter 4

Shape Priors in Deep Learning
Architectures

In the previous chapter, primitive shape priors, particularly circles and spheres, are
utilized in contour initialization methods. These are a crucial component to com-
pleting fully automated segmentation pipelines for many traditional segmentation
methods. Recently, deep learning approaches have emerged to state of the art meth-
ods, that deliver end-to-end segmentation solutions. The final segmentation pre-
diction can therefore be obtained directly by feeding the neural network architecture
with an input image or volume without the necessity for any previous localization of
the structure of interest. Thus, full automation is already implied by the end-to-end
architecture design of these segmentation networks. In this chapter, the incorpora-
tion of anatomical priors therefore aims at improving the segmentation performance
of deep learning methods, instead of complementing them towards full automation
like in chapter 3.
Conventional deep learning architectures, as described in chapter 2.3.2, usually de-
pend on large data sets to cover different variants of sample appearances. Data aug-
mentation by means of image rotation, flipping, translation, etc. are needed to avoid
overfitting and to allow generalization.
Medical images, however, are often captured following a standardized protocol, es-
pecially in case of MR, CT and x-ray imaging. Therefore, medical images show a
lot more similarities in appearance than in natural images, even if the field of view
(FOV) may vary.

Especially bones and organs show relatively little variability in shape and topo-
graphical relationship to one another. The general idea is to build deep learning
architectures, that leverage this additional prior information about consistent shape
appearance across patients, and about possible topographical relationships. The
goal is to improve the general segmentation performance, also considering one-shot
and domain adaptation settings. The content of this chapter is based on the follow-
ing previous publications for which content reuse was permitted:

[PDP21a] Duc Duy Pham, Gurbandurdy Dovletov, and Josef Pauli. “A Differ-
entiable Convolutional Distance Transform Layer for Improved Image Segmen-
tation”. In: Pattern Recognition: 42nd DAGM German Conference, DAGM GCPR
2020, Tübingen, Germany, September 28–October 1, 2020, Proceedings 42. Springer.
2021, pp. 432–444
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[Pha+19a] Duc Duy Pham et al. “Deep learning with anatomical priors: im-
itating enhanced autoencoders in latent space for improved pelvic bone seg-
mentation in MRI”. In: 2019 IEEE 16th International Symposium on Biomedical
Imaging (ISBI 2019). IEEE. 2019, pp. 1166–1169
Copyright ©2011 IEEE

[Kav+21] A Emre Kavur et al. “CHAOS challenge-combined (CT-MR) healthy
abdominal organ segmentation”. In: Medical Image Analysis 69 (2021), p. 101950

[PDP21b] Duc Duy Pham, Gurbandurdy Dovletov, and Josef Pauli. “Using
Anatomical Priors for Deep 3D One-shot Segmentation.”. In: BIOIMAGING.
2021, pp. 174–181

[PDP20] Duc Duy Pham, Gurbandurdy Dovletov, and Josef Pauli. “Liver seg-
mentation in ct with mri data: Zero-shot domain adaptation by contour extrac-
tion and shape priors”. In: 2020 IEEE 17th International Symposium on Biomedical
Imaging (ISBI). IEEE. 2020, pp. 1538–1542
Copyright ©2011 IEEE

In this chapter, the findings of these publications are partially revised and put into
relation to each other. In the scope of using shape priors as anatomical priors, three
strategies are presented to enforce shape information into the training process of
deep learning architectures.

• A cascaded differential convolutional distance transform for the application in
deep learning architectures

• Imitating encoder based architectures to mimic latent representations of ground
truth segmentation maps

• Shape contour infusion and selected color augmentation to abstract from in-
tensity based features

The following chapter is structured as follows:
Section 4.2 presents an approach to incorporate shape information into deep learn-
ing architectures by means of a convolutional distance transform, which is by design
differentiable and therefore applicable in any generic deep learning setting.
Afterwards, section 4.3 introduces an Imitating Encoder - Enhanced Decoder architec-
ture, that aims at incorporating shape information into the learning process, making
use of the learned latent representation of ground truth segmentation maps.
This architecture is extended in section 4.4 to include Oktay et al.’s idea of shape reg-
ularization of the prediction [OF+18]. This redesign is used in the Combined Healthy
Abdominal Organs Segmentation (CHAOS) challenge competition [Kav+21], yielding
superior performance for a cross-modal segmentation setting. Furthermore, its ap-
plicability in the one-shot segmentation use case is investigated in additional exper-
iments. Finally, ablation studies are conducted on the extended architecture. This
is done in a general segmentation setting on the example of femur extraction from
x-ray images, in which enough training samples are available and no domain shift is
assumed.
In the next section 4.5, however, the feasibility of using shape information in a zero-
shot domain adaptation setting is analyzed. Since the imitating encoder design is
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not applicable to this specific task (for further elaboration see section 4.5), the im-
pact of Oktay et al.’s anatomically constrained CNN (ACNN)[OF+18] is investigated
and compared to the influence of additional contour information and color augmen-
tations.
Related work regarding shape priors, few-shot segmentation, and zero-shot domain
adaptation in medical image analysis is presented in the following first section 4.1.

4.1 Related Work

With the success of deep learning strategies on natural images, convolutional neural
networks (CNNs) have also been introduced in the medical image processing do-
main and show state of the art performance. Especially Ronneberger et al.’s U-Net
[RFB15], discussed in chapter 2.3.3, proposed specifically for semantic segmentation
tasks in medical images, has achieved a lot of attention, as this architecture yields
impressive segmentation results in many medical applications compared to tradi-
tional approaches. Therefore, its general architecture has been modified in numer-
ous ways in order to improve the segmentation quality even more, e.g. by extending
the applicability to 3D volumes [ÇA+16], modifying the loss function [KC+18], or
incorporating residuals [MNA16].

4.1.1 Shape Priors

As many anatomical structures usually show only small shape variations, recent re-
search naturally focuses on incorporating shape priors into the segmentation pro-
cess. Shape priors have already been used in traditional segmentation methods
before. Rousson et al. [RP02] leverage the idea of shape representation by means
of signed distance transforms, proposed by Paragios et al. [PRR02], to incorporate
shape priors into the level set framework. Cremers et al. [CSS03] also base their work
on the distance transform’s shape representation to enforce shape priors. Naturally,
incorporating the distance transform into deep neural networks is a plausible step to
model inter-pixel relationships, as also noted in Ma et al.’s work [Ma+20]. Dangi et
al. [DLY19] apply distance map regression in a multi-task learning setting for cardiac
MR image segmentation. They propose a regularization framework by formulating
an Euclidean distance map regression objective, that is pursued by a sub-network of
their segmentation architecture. Bui et al. [Bui+19] propose a similar multi-task ap-
proach, in which the geodesic distance is approximated as a learning task for neona-
tal brain segmentation. Similarly, Navarro et al. [Nav+19] also include the learning
task of distance transform approximation in their multi-task segmentation approach.
In these contributions, however, the distance transform needs to be learned, since the
implementation of the distance transform is often not differentiable. In this thesis,
Karam et al.’s [KSH19] derivation of a convolutional distance transform approxima-
tion is incorporated into the deep learning context. A thorough literature research
has not led to any similar attempt, in which an adhoc differentiable convolutional
distance transform layer is proposed for deep segmentation networks.

A different approach to incorporate shape priors is usage of deep encoder-decoder
architectures to refine the network prediction. Ravishankar et al. [RV+17] extend
the U-Net by means of a pretrained shape regularization autoencoder network, that
is applied on the output of the U-Net to correct its prediction to a segmentation
with feasible shape. Oktay et al. [OF+18] propose a similar supervised approach,
in which a pretrained autoencoder is used to incorporate shape priors into the deep
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learning architecture. However, instead of merely correcting the initial segmenta-
tion output, they make use of the autoencoder’s encoding component to regularize
the weight adaptation process of a generic segmentation network during training,
which is motivated by Girdhar et al.’s architecture for generating 3D representations
of objects from 2D images [GF+16].
In the scope of this thesis, an architecture similar to Girdhar et al.’s TL network is
proposed, which makes use of autoencoders’ compression capabilities.

4.1.2 One-Shot Segmentation

A limiting factor for most deep learning strategies is the amount of data needed to
sufficiently train deep learning models. Especially in the medical domain, labeled
training data is scarce and expensive to acquire. As a result, one-shot and few-shot
learning approaches have been developed for classification tasks in natural image
settings ([KZS15; SB+16; SSZ17; VB+16]). There is, however, little research towards
one-shot learning in segmentation tasks ([DX18; MBE18]), particularly for medical
images. Therefore, a short excursion into the applicability of shape priors in the
context of one-shot segmentation is made.

4.1.3 Zero-Shot Domain Adaptation

Regarding deep domain adaptation for medical semantic segmentation, a suitable
strategy would be to first pretrain a convolutional neural network (CNN) in the
source domain, and to fine-tune the network in the target domain with fewer exam-
ples in a supervised manner, afterwards. Ghafoorian et al. [Gha+17] demonstrate
the efficacy of such procedure on the example of brain lesion segmentation. They
show that employing transfer learning on deeper layers improves coping with the
domain shift between different MRI protocols, such as T1- and T2-weighted MRI.
In this strategy, annotated training samples are needed from both source and target
domain.

Another approach is the generation of synthetic but realistic training data for the
target domain. For this strategy, the source domain images are transformed into the
target domain. The synthetic target domain images are then paired with the corre-
sponding ground truth data from the source domain for supervised training. Jiang
et al. [Jia+18] use tumor aware generative adversarial networks (GANs) to generate
synthetic MR images from CT images. For supervised training of their segmentation
network, they mix the synthetic MRI data with a small set of real MR images.

In the context of image synthesis, Zhu et al. [Zhu+17] introduce cycleGANs, that are
capable of conducting image-to-image style transfer for unpaired source and target
images. This is of particular interest in the medical setting, as MR images may be
converted to pseudo CT images without the necessity of previous co-registration.
Kamnitsas et al. [Kam+17] apply a slightly different procedure by designing a do-
main discriminator which steers their segmentation network into learning domain-
invariant features by adversarial training. In their work they specifically focus on
the domain shift between different MRI protocols. These approaches usually do not
need to make use of any ground truth information of the target domain, although
they require (unlabeled) samples of the target domain for the adversarial training.
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There has, however, only been little research towards zero-shot domain adaptation
(or domain generalization), in which no information about the target domain is avail-
able. Zhang et al. [Zha+20a] propose heavy data augmentation to achieve domain
generalization to overcome the domain shift across data sets of the same modality
and sequence. Similarly, Hesse et al. [Hes+20] apply style and intensity augmen-
tation to bridge the domain shift between data sets of the same modality, but with
different sequences. A thorough literature research has, however, not led to any
domain adaptation attempt, in which the domain shift is addressed between differ-
ent modalities without any prior target domain information. The proposed strategies
in section 4.5 make use of prior knowledge about anatomical inter-patient similari-
ties in between most imaging modalities, such as similar contour progressions and
shapes. Motivated by Geirhos et al.’s findings [Gei+18], the segmentation network is
generally steered away from texture based and therefore modality specific features
to ensure generalization towards unseen modalities.
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4.2 Shape Constraint with a Convolutional Distance Trans-
form

Deep learning based supervised segmentation methods usually aim to minimize a
loss term during training, which is often defined on pixel level, e.g. the dice loss
(see Eq. (2.2) in chapter 2.4.1). This reduces the segmentation task to a pixel-wise
classification task. In these kind of loss terms, the error of one pixel is not reflected
in the error of another, as pixels are considered independent of each other.
In this section, the distance transform, a well-established form of shape representa-
tion, is presented as a possibility to incorporate shape information into deep learn-
ing architectures. Particularly, Karam et al.’s [KSH19] derivation of a convolutional
distance transform approximation is used to construct a differentiable convolutional
distance transform layer, that can be directly attached to any deep segmentation net-
work. The content of this section has been previously published in [PDP21a] and has
been revised for this section.

4.2.1 Methods

A distance map of a binary image yields the distance of each pixel to its closest
foreground boundary pixel. If the considered pixel is a foreground pixel itself, its
distance is therefore zero. Common applicable distances are the Manhatten and the
Euclidean distance. Let I denote a binary image. The distance between two pixel
positions pi, pj ∈ Ω in I is depicted as d(pi, pj). The distance transform

DI : Ω→ R+
0 (4.1)

for I can be defined in a pixel-wise manner as:

DI(pi) = min
pj :I(pj)=1

{d(pi − pj)} (4.2)

A major advantage of this type of image representation is the provision of informa-
tion about boundary, shape, and location of an object of interest. Comparing a binary
segmentation mask to its corresponding distance transform, the latter contains dis-
tance information about the closest object boundary in every pixel, whereas a binary
segmentation mask only holds information of whether the structure of interest is
present or not. In Fig. 4.1 the differences in binary images and in Manhatten dis-
tance transforms are illustrated on a simple toy example, in which two pixel values
are swapped. For the binary representation, one can notice that only the affected pix-
els yield a difference, whereas in the corresponding distance transforms, the simple
swap has a larger impact on the distance transform’s landscape.

Convolutional Distance Transform

The following derivation of the convolutional distance transform (CDT) can be found
in Karam et al.’s work regarding fast distance transforms [KSH19]. For the deriva-
tion, only translation invariant distances are considered, i.e.

d(pi, pj) = d(pi + pk, pj + pk) (4.3)

for any image positions pi, pj ∈ Ω and any translation pk ∈ R × R. To calculate
the distance transform of a binary image I , for each pixel position the distance to
its closest foreground pixel needs to be acquired. Thus, for a fixed pixel position



4.2. Shape Constraint with a Convolutional Distance Transform 69

1 1 1 1

0 0 0 1

0 0 0 1

0 0 0 0

(a)

1 1 1 1

0 0 0 1

0 0 1 0

0 0 0 0

(b)

0 0 0 0

1 1 1 0

2 2 1 0

3 2 1 13 2

(c)

0 0 0 0

1 1 1 0

2 1 0 1

2 1 1 13 2

(d)

FIGURE 4.1: Differences in binary images (a) and (b) are only visible
in the affected pixels, highlighted in (b). For the corresponding (Man-
hatten) distance transforms (c) and (d), differences propagate to fur-
ther pixels, emphasized in (d), as these change the foreground shape

and thus the distance landscape. Revised from [PDP21a].

the minimal distance to its closest foreground pixel is required. This can be accom-
plished by a minimum function over all possible distances from this position to any
other foreground pixel. The minimum function can be approximated by a log-sum-
exponential. Let d1, . . . , dn denote n distances, then the minimum function can be
realized by

min{d1, . . . , dn} = lim
λ→0
−λ ln

(
n∑

i=1

exp

(
−di

λ

))
. (4.4)

The idea is that the exponential yields very small values the larger the distances are,
as these are artificially increased by dividing by a very small λ > 0 and negated in
the argument. Therefore, larger distances have a significantly smaller impact on the
sum than small distances. In the extreme case, the exponential of large distances
seeks zero, leaving only the exponential of the smallest distance in the sum. The
subsequent natural logarithmic function ln(·) then reverts the exponential operation,
leaving an approximation of the minimum function, i.e.

−λ ln

(
n∑

i=1

exp

(
−di

λ

))
≈ −λ ln

(
exp

(
−d1

λ

))
= d1 (4.5)

for 1 > λ > 0 and assuming that d1 is the minimum. Here λ can be considered a
parameter to determine the accuracy of the minimum approximation. The closer λ
is to zero, the more accurate the minimum approximation becomes. With Eq. (4.4),
it is possible to reformulate the distance transform of Eq. (4.2) to

DI(pi) = lim
λ→0
−λ ln

 ∑
pj :I(pj)=1

exp

(
−d(pi, pj)

λ

) . (4.6)

Since a translation invariant distance is assumed, the distance between two points
can be rewritten to

d(pi, pj) = d(pi − pj , pj − pj)
= d(pi − pj , 0)
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rendering a formulation of the distance transform as

DI(pi) = lim
λ→0
−λ ln

(∑
pj

I(pj) exp
(
−d(pi−pj ,0)

λ

))
, (4.7)

which is the definition of a convolution. Thus, for a small λ > 0, the distance trans-
form can be approximated by means of a convolution of the binary image I with a
kernel exp

(
−d(·,0)

λ

)
, i.e.:

DI ≈ −λ ln

(
I ∗ exp

(
−d(·, 0)

λ

))
, (4.8)

where ∗ is the convolutional operator.
Fig. 4.2 shows a visualization of d(·, 0), −d(·,0)

λ and exp
(
−d(·,0)

λ

)
as discrete 2D ker-

nels for a kernel size of 100. Since all operations in exp
(
−d(·,0)

λ

)
are differentiable,

(a) d(·, 0) (b) −d(·,0)
λ

(c) exp
(
−d(·,0)

λ

)
FIGURE 4.2: Illustration of used kernel of size 100 for the convolu-

tional distance transform.

this approximation can be directly integrated as a differentiable convolutional dis-
tance transform layer into current deep learning frameworks.

Cascaded Convolutional Distance Transform for Large Images

A major drawback of the convolutional design of the distance transform is that the
kernel size theoretically needs to be twice as large as the the input image size. This
ensures that even very sparse binary images can be transformed into a distance map
by the proposed method. Otherwise background pixels that are not within the ker-
nel reach of a foreground pixel would be assigned a distance of zero. This circum-
stance, however, yields the following two issues:

• The large kernel size leads to an increased computational complexity for the
convolutional operation.

• For very large distances the exponential term for the kernel design in Eq. (4.8)
may approach zero, decreasing the numeric stability of the logarithmic expres-
sion within the CDT. This issue particularly arises for large images with only
few foreground pixels. Figure 4.3(c) shows the CDT of a toy example image
(Fig. 4.3 (a)). It is clearly visible, that the CDT was only capable to calculate the
distances for a specific range, before becoming unstable, in comparison with a
standard Manhatten distance transform implementation in Fig. 4.3 (b).
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.3: Limitations of the global CDT. (a) toy example of size
512×512, (b) standard Manhatten distance transform of (a), (c) global
CDT of (a), (d)-(f) resulting cascaded CDTs of (a) with k = 3, 5, 7,

respectively. Reused from [PDP21a].

A cascade of local distance transforms is presented to address the aforementioned is-
sues of computational complexity and numerical instability. Instead of directly com-
puting the distance transform with a large kernel, distance transforms with smaller
kernels are cascaded to approximate the actual transform. Since the kernel size de-
termines the maximal distance that can be measured, it is necessary to accumulate
the calculated distances to form the final distance transform approximation.

Par�al  

Distance Map
Binary Mask

Cascaded 

Convolu�onal 

Distance Map

Locally Restricted CDT

Update

Update
Binary Input 

Image

Ini��alize 

(once)

FIGURE 4.4: General concept of the cascaded convolutional distance
transform.

Let ksize denote the kernel size. Then the maximal distance to a foreground point
that can be captured by the CDT is limited to a range of ⌊ksize2 ⌋, considering the
Manhatten distance. For all background points that are further away than ⌊ksize2 ⌋
from a foreground point, Eq. (4.8) yields a distance of 0, as within the kernel range
there are only background points. The idea is to iteratively extend a binary mask by
the area, for which a distance calculation was possible by the locally restricted CDT.
This binary mask is initialized with the binary input image and serves the purpose
of keeping track of which image parts have already been processed by the cascaded
approach. The application of a locally restricted CDT on the binary mask results in
a partial distance map, which is used to both update the binary mask by the newly
covered area and to update the cascaded distance map result. Fig. 4.4 shows an
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overview of the general procedure.
The regions from the partial distance map yielding a distance greater than zero, are
used to update the binary mask by extending it by these non-zero regions. This ex-
tended binary mask can then be used to compute a new partial distance map. The
calculated distances of the partial distance maps are combined with the distances of
the previous iterations to form the final cascaded convolutional distance map.

For the i-th iteration, let I(i) denote the (updated) binary mask, and let D(i)
I denote

the partial distance map, when applying the local CDT on I(i). For the i-th itera-
tion, the original foreground area is assumed to have been widened by a margin of
i · ⌊ksize2 ⌋ in the updated binary mask from previous iterations. Therefore, this offset
is additionally added to the currently estimated distances to compensate the lower
kernel size. Thus, the cascaded distance map D∗

I is updated by the current distances
by i · ⌊ksize2 ⌋+D

(i)
I .

Without loss of generalization, let M denote the larger side of the input image I , i.e.
M ≥ N . Then at most ⌈ M

⌊ ksize
2

⌋
⌉ of such local distance transforms are necessary to

cover the whole image. Algorithm 1 summarizes this suggested procedure. Fig. 4.5

Algorithm 1 Cascaded Convolutional Distance Transform

1: function CASCADED_CDT(I,M, ksize)
2: s← ⌈ M

⌊ ksize
2

⌋
⌉ ▷ Calculate maximally necessary number of iterations

3: I(0) ← I
4: D∗

I ← I · 0 ▷ Initialize empty array for final cascaded distance map
5: for i=0 to s do
6: D

(i)
I ← CDT(I(i), ksize) ▷ Calculate partial distance map

7: I(i+1) ← I(i) ▷ Prepare update of binary mask
8: for all p : D

(i)
I (p) > 0 do

9: D∗
I (p)← D∗

I (p) + i · ⌊ksize2 ⌋+D
(i)
I (p) ▷ Update cascaded distance map

10: I(i+1)(p)← 1 ▷ Update binary mask
11: return D∗

I

illustrates the proposed algorithm on an easy toy example and shows the updates
of the binary masks, the corresponding partial distance maps, and the updated cas-
caded CDTs for the first three iterations i = 0, 1, 2.

The computational complexity of convolving an image of size M × N and a kernel
with kernel size of ksize is O(M ·N · k2size). For a global CDT the kernel size needs to
be set to ksize = 2 ·M , rendering a complexity of O(M3 ·N). The proposed procedure
can drastically reduce the number of operations to O(M2 ·N ·ksize), if the kernel size
is chosen much smaller than the image dimensions, i.e. ksize << M . Since the maxi-
mally possible measured distance of d(·, 0) in Eq. (4.8) is restricted by the kernel size,
a small kernel size additionally yields a more stable computation of the logarithmic
term as the exponential does not tend to approach zero.

Figures 4.3 (d)-(f) show the cascaded CDTs with kernel sizes of 3, 5, 7, respectively.
In comparison to the standard Manhatten distance transform in Fig. 4.3 (b), it be-
comes apparent that the offset assumption after each iteration yields an error that
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FIGURE 4.5: Illustration of the cascaded CDT Algorithm for the first
three iterations i = 0, 1, 2 for a simple toy example.

is propagated to points with further distances. It is also visible, that this error de-
creases with increasing kernel size, as Fig. 4.3 (d) shows brighter areas, i.e. larger
distances, than the reference in Fig. 4.3 (b), whereas Fig. 4.3 (f) shows less deviation
from Fig. 4.3 (b). Thus, with the proposed procedure there is a trade-off that needs to
be considered, namely between numerical stability by means of smaller kernel sizes
and accuracy through larger kernel sizes. However, for the purpose of considering
inter-pixel relationships in the weight optimization process of training CNNs, this
approximation of the distance transform arguably suffices.

The Convolutional Distance Transform in Deep Learning

The previous subsection describes an adhoc cascaded convolutional approximation
method of the distance transform for binary images. This approximation can be
used to extend common segmentation networks, such as Ronneberger et al.’s U-Net
[RFB15], in order to equip the segmentation loss with an additional regression loss,
which compares the distance transform of the network’s prediction with the distance
transform of the ground truth.

Fig. 4.6 shows the general idea of how to extend the U-Net segmentation network
with the proposed distance transform layer. In addition to the usual segmentation
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FIGURE 4.6: The convolutional distance transform layer can be at-
tached to arbitrary segmentation networks. In addition to the seg-
mentation loss, a regression loss of distance maps is calculated.

Reused from [PDP21a].

loss, e.g. the dice loss, the predicted segmentation and the ground truth segmenta-
tion are both passed through the cascaded CDT layer to achieve the distance trans-
forms of prediction and ground truth, respectively. These distance transforms con-
tribute to a regression loss, e.g. the mean squared error, that considers inter-pixel
relationships through the distance transforms. However, it needs to be noted that
the segmentation’s output is usually not binary. Assuming a final softmax or sig-
moid activation, the output values for each channel vary between 0 and 1. For the
restructuring of Eq. (4.6) to Eq. (4.7) it is however necessary to assume a binary im-
age. A major challenge when blindly applying this approach to gray scale images
lies in Eq. (4.7), as I(pi) may be a lot larger than the exponential for large distances,
even if I(pi) is already very small. Therefore, even small probabilities of the segmen-
tation output are considered in the sum and may be depicted as foreground pixels,
distorting the actual distance map, as can be seen in Fig. 4.7. Here, the toy example
from Fig. 4.3 is changed to a gray scale image (Fig. 4.7 (b)), in which the lower left
square is set to a very low intensity of 0.001. The computed CDT of the binary image
(Fig. 4.7 (c)) and the CDT of the grayscale image (Fig. 4.7 (d)) appear to be nearly
identical, as can be also observed in their difference image Fig. 4.7 (f). The only dif-
ferences of the computed distance transforms occur within the low intensity pixels,
whereas the remaining distance transform’s landscape does not show any changes.
This is particularly problematic, as in the segmentation prediction even pixels with
very low probabilities would then be considered as foreground pixels in the CDT.

This problem is addressed by proposing the following soft-threshold work around.
Let C denote the number of classes, and let y(c)(p) be the prediction for class c at
position p. Then a soft-threshold of the prediction can be achieved by

ỹ(c)(p) := ReLU

(
y(c)(p)− C − 1

C

)
(4.9)

if C is small. This soft-threshold sets any prediction score below C−1
C to zero. There-

fore, strong and correct predictions are encouraged, as weak correct prediction scores
are not registered for the distance transform and negatively impact the regression
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(a) (b)

(c) (d) (e)

(f) (g)

FIGURE 4.7: Limitations of CDT on gray scale images. (a) Binary
mask, (b) Gray scale image, in which the intensity within the lower
left gray square is set to 0.001, (c) Cascaded CDT of (a) as reference,
(d) Cascaded CDT of (b), (e) Cascaded CDT of (b) with soft threshold,
(f) Difference of (d) and (c), (g) Difference of (e) and (c). Reused from

[PDP21a].

loss. Figure4.7 (c) shows the resulting CDT after applying the proposed soft-threshold,
assuming two classes. Low intensity pixels are considered as background, so that a
significant change in the distance transform landscape compared to the reference
can be observed in Figure 4.7 (g).

4.2.2 Experiments

To investigate the impact of the proposed regression extension, ablation studies are
conducted on the example of thoracic segmentation from CT scans of the thorax.
For this a 2D slice-wise approach is utilized, in which the CT volumes are processed
slice by slice by 2D networks.

Data

The publicly available SegTHOR CT data set [Lam+19] is used for the experiments.
It consists of 40 CT volumes with corresponding ground truths of esophagus, heart,
trachea, and aorta for training, as well as 20 CT volumes without available labels for
testing. Since the goal of the ablation study is to investigate the influence of the pre-
sented cascaded CDT on the segmentation performance, outperforming optimized



76 Chapter 4. Shape Priors in Deep Learning Architectures

ensemble methods within the SegTHOR challenge is refrained from. Instead, a valid
comparison is achieved by training a U-Net architecture with and without the cas-
caded CDT on the same training and validation set to ensure fair comparability. In
a hold-out validation manner, both models are trained on the 40 available training
volumes, and the predictions are submitted for evaluation. Dice Similarity Coeffi-
cient (DSC) and symmetric Hausdorff Distance (sHD) are considered as evaluation
metrics, which are both provided by the challenge’s submission platform.

Implementation Details

A 2D U-Net and a variant including the cascaded CDT are implemented in Tensor-
flow 1.12. The CT volumes are fed slice-wise to the network and the slices are resized
to an input size of 256 × 256. The U-Net implementation yields 5 scale levels with
2 convolutional layers, batch normalization and a max-pooling layer in each scale
level. Starting with 32 kernels for each convolutional layer in the first size level of
each contracting path, the number of kernels for each scale level is doubled on the
contracting side and the number of kernels on the expansive side is halved for each
change in scale level. A kernel size of 3 × 3 for every convolutional layer and 2 × 2
max-pooling is used in each architecture. For the U-Net optimization the standard
dice loss Ldice (see Eq. (2.2) in chapter 2.4.1) is utilized as loss function. The mean
squared error is used as regression loss Ldist for the cascaded CDTs of prediction
and ground truth. The total loss function

Ltotal := Ldice + wdistLdist

with weight wdist := 0.5 to train the U-Net, which is equipped with the additional
cascaded CDT. The optimization is performed with an Adam Optimizer with an
initial learning rate of 0.001. The training slices are augmented by means of random
translation, rotation and zooming. With a batch size of 4, both models are trained for
200 epochs and the model with best validation loss is chosen for evaluation. For the
distance transform layer, λ := 0.35 is used, as suggested by Karam et al. [KSH19].
The experiments are conducted on a NVIDIA GTX 1080 TI GPU.

Results

Table 4.1 shows the achieved DSC scores of the trained models for esophagus, heart,
trachea, and aorta. It is observable, that with the extension of the CDT the scores
increase for all organs, except for the aorta. In this case the standard U-Net yields
marginally better results. While the DSC score improves by more than 1% for the

DSC Esophagus Heart Trachea Aorta
U-Net 0.726312 0.809626 0.770571 0.853953
U-Net with CDT 0.739028 0.822095 0.785847 0.853011

TABLE 4.1: Achieved DSCs for each organ. Reused from [PDP21a].

other organs, for the aorta the additional cascaded CDT regression does not seem to
be beneficial. Wilcoxon signed rank tests [Wil92] with a significance level of 5% are
applied on the achieved evaluation results to check, whether the improvements are
of any significance. The improvements in DSCs for trachea and esophagus are signif-
icant with p-values of 0.0169 and 0.0040, respectively. For the DSC improvement in
heart segmentation and the DSC difference in aorta segmentation, however, signifi-
cance could not be established. The improvements can also be noticed in Table 4.2,
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sHD Esophagus Heart Trachea Aorta
U-Net 1.511865 1.949374 2.137093 1.900747
U-Net with CDT 1.113825 1.533211 1.649077 2.004237

TABLE 4.2: Achieved symmetric Hausdorff Distances (sHD) for each
organ. Reused from [PDP21a].

in which the symmetric Hausdorff distances are depicted. For esophagus, heart, and
trachea the distances decrease with the proposed cascaded CDT regression, showing
an improvement by approximately 25− 30%. However, for the aorta a slightly worse
mean distance is observed. This may be due to the fact, that the aorta seems to be a
rather simple structure, that U-Net can already easily extract. The improvements in
sHD are especially noteworthy, as a distance based regularization technique is used
to improve the segmentation.
Regarding the Wilcoxon significance test, significant improvements for trachea, eso-
phagus and heart with p-values of 0.0072, 0.0008 and 0.0400, respectively, can be
observed. This underlines the assumption that the cascaded CDT regression adds
significant value to more complex shapes, whereas simple structures as the almost
circular aorta and heart slices are already well extracted by a standard U-Net. Fig. 4.8
shows exemplary segmentation predictions of both models on test data slices. The
top images indicate better performance for esophagus segmentation with the pro-
posed CDT, while the bottom images show superior segmentation results with the
additional regression for the trachea. In both top and bottom row, the segmentation
predictions of the aorta do not show noteworthy differences.

(a) U-Net (b) U-Net with CDT

(c) U-Net (d) U-Net with CDT

FIGURE 4.8: Exemplary segmentation predictions on the test set from
both models, overlayed on considered image. The heart is depicted
in green, the trachea in blue, the esophagus in red and the aorta in
yellow. Top images indicate better performance for esophagus seg-

mentation, bottom images for trachea. Reused from [PDP21a].
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4.2.3 Summary

In this section, a novel cascaded convolutional distance transform is presented, which
is differentiable and can therefore be used adhoc for any deep segmentation network
without the necessity for prior training any distance transform component. The cas-
caded procedure reduces the computational complexity and overcomes numerical
instability issues for large images. Additionally, a soft-threshold work around to
address the demonstrated issue regarding non-binary segmentation outputs is pre-
sented. Ablation studies on the example of the segmentation of thoracic organs are
conducted, in which the SegTHOR data set is used for training and evaluation. The
experiments show promising results compared to an equally trained U-Net. Al-
though marginal, the extension by the cascaded CDT yields significant improve-
ments for most organs, particularly regarding sHD. These observations indicate, that
a combination of proven non-deep learning concepts, such as the distance transform,
and deep learning methods may yield great potential for future research.
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4.3 Imitating Encoder - Enhanced Decoder Network

The previous section demonstrates the concept of incorporating shape prior infor-
mation into the segmentation process by means of additional regularization that
uses higher order information, represented by a distance transform. In the follow-
ing section (and also its subsequent sections) convolutional autoencoders (CAEs)
are employed as a possible alternative option to infer shape information by means
of a learned latent representation of the ground truth segmentation. The general
intuition is that ground truth information already implicitly contains anatomical in-
formation, which could be leveraged for the training process. The main idea is to
compress that information by means of an autoencoder during training, to be able to
incorporate this information for an increased segmentation performance. Instead of
using pretrained networks to do so, a deep learning architecture is suggested, that
is end-to-end trainable. Additionally, a decoder enhancement strategy for improved
localization is introduced. The following content has been previously published in
[Pha+19a] and has been revised for this section.

4.3.1 Methods

The general aim is to leverage ground truth information for a good segmentation
prediction. This is usually already accomplished by comparing the network output
with the ground truth by means of a loss function, that is minimized during the
training phase. The key idea of this chapter is to distill relevant information about
the structure of interest’s shape from the ground truth information and incorporate
this explicit information into the learning process of the neural network. Although
the network is capable of learning shape aware features by using ground truth infor-
mation by itself during training, it is not guaranteed that these features are actually
learned for the segmentation task, as Geirhos et al.’s [Gei+18] demonstrate for image
classification tasks. The explicit infusion of shape information can be considered as
an additional emphasis to learn shape aware features.
For segmentation tasks, the ground truth is usually depicted as a simple label map,
assigning each pixel the desired class label. Therefore, the information is sparsely
distributed over a large tensor, i.e. a high dimensional data structure. For the
compression of this unnecessary sparsity to a compact vector, convolutional autoen-
coders (CAEs) can be used as canonical deep learning methods.

Imitating the Encoder Component of the CAE

An interesting property of the CAE is that its decoder component is able to recon-
struct the input with only little information loss from a compact representation of
the input in latent space. When trained with ground truth maps, the decoder is
therefore able to estimate the desired ground truth segmentation from a latent rep-
resentation of the ground truth. Thus, if an image input can be compressed in a
way, such that its representation is very similar to its corresponding ground truth
compression, a robust decoder should be able to compute a segmentation prediction
that is close to the desired ground truth segmentation. Motivated by Girdhar et al.’s
TL-embedding network [GF+16], this generative property is used to obtain a feasible
segmentation, given an arbitrary feature vector in latent space. Similar to Oktay et
al.’s work [OF+18], the CAE is used to find an embedding in latent space, that en-
codes the anatomical priors, given by the ground truth.
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For this purpose, an imitating encoder is proposed, that has the main goal of com-
pressing an input image in a similar fashion as the CAE’s encoder compresses the
corresponding ground truth. This new encoder mimics or imitates the CAE’s en-
coder. While the CAE’s input and the desired output are the same, i.e. the ground
truth map, the imitating encoder’s input is the corresponding medical gray scale im-
age or volume. Therefore, the imitating encoder basically reduces the input image
to the important anatomical priors in latent space, in order to be reconstructed to a
segmentation by the CAE’s decoder component. In the following, an input image
will be denoted as I and the segmentation ground truth as GT . Θ(·) represents the
trainable weights of the architecture, where the subscript (·) specifies, which parts of
the architecture are considered. The CAE’s encoder serves the purpose of encoding
anatomical shape priors, therefore it will be referred to as a prior encoder, denoted as
fencp , whereas the generative decoder is referred to as gdec. The mapping of GT into
latent space is formalized as

ẑ = fencp(GT,Θencp),

whereas reconstruction from ẑ to the CAE’s output yCAE is computed as

yCAE := gdec(ẑ,Θdec) = gdec(fencp(GT,Θencp),Θdec).

The imitating encoder will be denoted as fenci , therefore the imitation of ẑ in latent
space from I is

ẑ ≈ z̃ = fenci(I,Θenci).

The formulation of an imitation loss

Limit(Θenci |Θencp) := ||ẑ − z̃||1, (4.10)

where Θenci is adaptable and Θencp is fixed, enforces fenci to encode the input in a
similar fashion to fencp during training. The idea is to utilize the CAE’s decoder gdec
to achieve a segmentation from the input x, i.e.

ỹie2d =: gdec(z̃,Θdec) = gdec(fenci(I,Θenci),Θdec).

Enhancing the Localization Capability of the CAE’s Decoder

A major disadvantage of this kind of encoder-decoder architecture for segmenta-
tion tasks is the loss of local information in the compressing encoder component, as
pooling operations decrease the spatial size with the expense of positional informa-
tion. Ronneberger et al. [RFB15] address this problem by using skip connections,
introduced in Long et al.’s Fully Convolutional Networks [LSD15], from encoder to
decoder, where the local information is preserved before any pooling operation. The
decoder component gdec of the CAE, however, cannot be equipped with skip con-
nections from its own prior encoder fencp , as these would be used to bypass the
compression in latent space. A further counter argument against the usage of skip
connections from fencp to gdec is that during inference ground truth information is
not available, rendering fencp obsolete. In order to use positional information for gdec
nonetheless, this information can be extracted from the input image. One possibility
is to use the extracted features from the imitating encoder fenci and pass them to
gdec. However, since the sole purpose of fenci is to imitate fencp only in latent space,
it is not ensured that the learned features of fenci are suitable for the main objective



4.3. Imitating Encoder - Enhanced Decoder Network 81

fenc p
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Posi onal
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FIGURE 4.9: Schematic overview of IE2D-Net. Shape information is
compressed by the CAE, comprising fencp and gdec. Given a gray scale
image, the imitating encoder fenci tries to mimic fencp in latent space.
The U-Net module hunet learns to provide hierarchical features for an

enhanced decoding by gdec.

of segmenting the input image. Alternatively, a U-Net module hunet can be trained
specifically for this purpose, as its contracting path learns to extract positional fea-
tures, that are specifically relevant for segmentation tasks. Therefore, the decoder
gdec is enhanced by these additional learned hierarchical features from the U-Net
module hunet for an improved localization capability, altogether resulting in an Im-
itating Encoder - Enhanced Decoder Network (IE2D-Net). A simplified overview of the
architecture components is depicted in Fig. 4.9.

Training

The proposed architecture requires the ground truth information as input for its
CAE component to learn a feasible latent representation, from which its decoder can
reconstruct a segmentation prediction. This ground truth information is, however,
usually not available during inference. Therefore, some components are omitted
for inference. During training, however, all network components are considered.
Moreover, multiple loss functions are defined, which are motivated as follows:

• The CAE component aims at learning a compact representation of the ground
truth by minimizing a CAE loss term, comparing CAE’s output yCAE with the
ground truth GT . This minimization process is restricted to only adapting a
subset of all available network parameters, particularly Θencp and Θdec.

• Since the decoder component is enhanced with the hierarchical features from
the U-Net component, these features are simultaneously learned by minimiz-
ing a U-Net output loss term, comparing the U-Net output, with the same
ground truth, which is also fed into the CAE. This optimization is conducted
by a separate optimizer, only focusing on Θunet, not inferring with the learning
process of any other modules.
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• At the same time the imitation property of the imitating encoder fenci is en-
forced by using the imitation loss, described in Eq. (4.10). The optimization is
again limited to the adaptation of the imitating encoder’s weights Θenci , as its
sole purpose is to encourage the encoder to mimic the feature representation
in the CAE’s latent space.

• To ensure a feasible prediction from the cascade of imitating encoder fenci and
generative decoder gdec, a fourth IE2D-Net output loss term is introduced, com-
paring the prediction from this cascade and the desired ground truth. Here,
only the weights Θenci and Θdec are adapted.

• For gdec the incoming skip connections are considered as constants.

A detailed overview of the architecture and its loss terms is depicted in Fig.4.10.
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FIGURE 4.10: Detailed network architecture of IE2D-Net. The archi-
tecture basically consists of three modules: the CAE module (top), the
imitating encoder module (middle) and the U-Net module (bottom).
For inference the prior encoder part of the CAE is omitted. Adapted

from [Pha+19a], copyright ©2019 IEEE.

The network weights are adapted in every batch iteration by minimizing the afore-
mentioned loss functions in the following order:

• First, the U-Net output loss is considered. The adaptation restriction to the U-
Net weights ensures generation of hierarchical features in the contracting path,
which are suitable for segmentation.
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• Then, the CAE output loss is optimized. Again, the restriction ensures the CAE
to find a meaningful prior representation in latent space, instead of depending
on the features generated in the other modules.

• The third loss function to be minimized is the imitation loss.

• The last loss function consists of the IE2D-Net output loss, i.e. a loss func-
tion that quantifies the segmentation quality of the combination of imitating
encoder fenci and the CAE’s enhanced decoder gdec.

Since the CAE module and the IE2D-Net module share the same decoder compo-
nent, the corresponding loss functions need to be minimized successively. The suc-
cessive optimization is also applied for the IE2D-Net output loss and the imitation
loss, since both are dependent on the imitating encoder weights Θenci . A combina-
tion of imitation loss and IE2D output loss is avoided to circumvent the necessity for
an additional weighting scheme, which would also need to take into consideration
that both losses are not in the same value range.
A major difference to related work lies in the end-to-end training approach in this
proposal, in which both CAE and imitating encoder are trained at the same time,
whereas the CAEs in Girdhar et al.’s and Oktay et al.’s approaches are pretrained.

Inference

During inference the encoding component of the CAE fencp is replaced with the
imitating encoder fenci . Therefore, the U-Net module hunet extracts relevant features
in each scale level in its contracting path. At the same time the imitating encoder fenci
projects the input into a compact representation z̃ in latent space. This representation
is then decoded by the decoder component gdec, enhanced by the extracted U-Net
features, resulting in the final segmentation prediction.

4.3.2 Experiments

The following experiments have been previously published in [Pha+19a] and show
initial results of the designed architecture. Additionally, revised results are pre-
sented in this subsection. Any revisions and deviations from the original publication
will be marked accordingly.

Data

For the experiments the same eight T1-weighted MR volumes of the pelvic regions
are used as in chapter 3.3.5. In this case, hip bone annotations are used instead
of femur annotations. Again, the data sets are denoted as P1, . . . ,P6 and the post
operative data sets as P1PO and P2PO. The experiments are conducted in a leave-
one-out cross validation manner, in which one data set is kept for testing, and the
remaining data sets are used for training. In case of P1, P1PO, P2 and P2PO only
those data sets are used for training, which do not correspond to the same patient.
In the original publication P6 is used as an arbitrary validation patient to monitor
the training process and is excluded from evaluation. For completeness P6 is also
considered as a testing fold in this revised version.

Implementation Details

As baseline reference a variant of Ronneberger et al.’s 2D U-Net is implemented like
in chapter 4.2.2. Again, two convolutional layers are used in each scale level and the
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number of kernels doubles after each max pooling layer and halves after every trans-
posed convolutional layer. The IE2D-Net is designed in a similar fashion, following
the blueprint of Fig. 4.10. The configuration details of the original publication and
this revised version can be found in Table 4.3. For the imitation loss the euclidean
distance is used and for the remaining loss functions the dice loss is employed. An
Adam optimizer with an initial learning rate of 0.001 is applied for all experiments,
which are conducted on a NVIDIA GTX 1080 ti GPU.

original publication revision
Framework Tensorflow 1.12 PyTorch 1.10
Input size 128× 128 256× 256

Kernel size 10× 10 3× 3

Pooling size 2× 2 2× 2

Batch size 4 4
Epochs 40 100
U-Net levels 5 5
Augmentations translation, rotation translation, rotation, zoom

TABLE 4.3: Implementation details.

Results

Table 4.4 shows the achieved DSC values from the U-Net and the proposed IE2D-Net
in comparison for both the original publication and also the revision.

original publication revision
U-Net IE2D-Net U-Net IE2D-Net

P1 0.6342 0.6632 0.8789 0.8834
P1PO 0.5719 0.6715 0.880 0.9060
P2 0.6784 0.7466 0.8212 0.8377
P2PO 0.7685 0.8456 0.9464 0.9456
P3 0.8034 0.7650 0.8006 0.8606
P4 0.7885 0.7886 0.8838 0.9172
P5 0.6525 0.6613 0.7439 0.7650
P6 - - 0.8898 0.9087
∅ 0.6994±0.0744 0.7345±0.0592 0.8556±0.0635 0.8780±0.0531

TABLE 4.4: Left part: resulting average DSCs of the U-Net and IE2D-
Net for each patient from [Pha+19a], copyright ©2019 IEEE. Right

part: average DSCs of revised experiments, including P6.

In both experimentation series, the proposed IE2D architecture yields superior re-
sults, compared to the U-Net predictions. For all cases in which the U-Net shows
better performance, the IE2D approach yields at least close DSC values, which is not
observable for the reversed case.
In [Pha+19a] an average DSC of 0.7345 ± 0.0593 compared to an average DSC of
0.6994 ± 0.0744 for the U-Net is achieved. In this revision, the overall results im-
prove, presumable because of the increased number of epochs and augmentations,
and the larger input size, allowing the extraction of more detailed structures. Here
the obtained average DSC of IE2D-net is 0.8780±0.0531 compared to an average DSC
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of 0.8556± 0.0635 for the U-Net baseline.

sHD U-Net IE2D-Net
P1 48.867168 41.412560
P1PO 61.131008 46.400433
P2 84.952927 61.619801
P2PO 88.300621 149.17104
P3 56.044624 54.046276
P4 25.337719 41.617306
P5 63.198101 64.288414
P6 9.4339809 53.037724
∅ 54.6583±25.2606 63.9492±33.1663

TABLE 4.5: sHDs of revised experiments including P6.

Table 4.5 shows the measured symmetric Hausdorff distances (sHD) of the resulting
predictions for each test patient. Interestingly, the sHD does not reflect the achieved
DSC in Table 4.4. Here, U-Net’s segmentation predictions yield an average sHD
of 54.6583 compared to IE2D-Net’s sHD of 63.9492. A possible explanation for the
poorer performance regarding sHD may be the changing shape of the pelvic bone
along the axial slices. This may lead to outlier predictions for shapes, that the imi-
tating encoder is not able to handle because of a limited representative capacity.

Fig. 4.11 depicts exemplary MR slices from four different patients, in which IE2D-
Net performs well. The desired ground truth segmentation is drawn in green, the
U-Net output in red, and the IE2D-Net results in blue. While the U-Net apparently
has difficulties to encapsulate the bone contour, the proposed IE2D-Net approach
shows superior results in these examples. Especially in the bottom two samples,
IE2D-Net shows its shape preserving property (at least for the shape in this slice).

Fig. 4.12 on the other hand shows exemplary MR slices from four patients, in which
the limitations of IE2D-Net are illustrated. In the first row, both U-Net and IE2D-
Net confuse the femoral bone as a pelvic bone. Furthermore, an outlier prediction
of IE2D-Net is noticeable, that indicates the high sHD. In the second and third row,
both architectures fail to encapsulate the whole pelvic bone. The last row shows an
example, in which the shape preserving property is again disadvantageous for this
setting, as the IE2D-Net fails to follow the hole of the hip joint, which the U-Net is
capable of. As mentioned before, the changing shape of the pelvic bone along the
axial slices seems to be disadvantageous, if the model does not have enough repre-
sentative capacity to store all shape information.

4.3.3 Summary

In this section, the IE2D-Net is introduced as an end-to-end deep learning architec-
ture, that realizes the infusion of shape priors by means of mimicking a CAE’s en-
coder. The evaluation on the example of pelvic bone segmentation shows promising
results, compared to the U-Net in both original publication and revised experiments
regarding DSC. Although the IE2D-Net results are significantly better (with a signif-
icance level of p = 0.0156, using Wilcoxon’s signed rank test [Wil92]), the number
of samples is, nevertheless, very small. The improvement’s significance would be
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Input Ground Truth U-Net IE2D-Net

FIGURE 4.11: Exemplary good results. The first column shows the
exemplary axial MRI slice. The ground truth (green) is depicted in
the second column, the U-Net output (red) in the third, and the IE2D-

Net output (blue) in the last column.

more convincing for a larger test set. Furthermore, the application on volumes in a
slice-wise manner may limit the architectures potential, as shapes of the same struc-
ture show too much variation along the slices. This is reflected in the poorer sHD
performance compared to the U-Net baseline, even if the differences are not signifi-
cant (significance level of p = 0.8438). Nevertheless, the performance on structures
with less shape variation needs to be additionally investigated. This is done on the
example of 2D femur extraction from fluoroscopic x-ray images in section 4.4.5 in the
context of ablation studies of the extension IRE3D-Net, proposed in the next section.
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Input Ground Truth U-Net IE2D-Net

FIGURE 4.12: Exemplary bad results. The first column shows the ex-
emplary axial MRI slice. The ground truth (green) is depicted in the
second column, the U-Net output (red) in the third, and the IE2D-Net

output (blue) in the last column.
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4.4 Imitating and Regularizing Encoders - Enhanced Decoder
Network

Oktay et al.’s work [OF+18] motivates to extend the IE2D-Net from the previous
section 4.3 to reuse the already trained components for an additional enforcement
of shape preservation. In this section, an Imitating and Regularizing Encoders and
Enhanced Decoder Network (IRE3D-Net) is presented, that is derived from the IE2D-
Net, additionally leveraging Oktay et al.’s enforcement of stronger shape regulariza-
tion. The design and experiments have been previously published in [Kav+21] and
[PDP21b]. In the first publication, the contribution mainly consists of the architec-
ture description, implementation, and submission.

4.4.1 Methods

Analogously to the IE2D-Net, described in section 4.3.1, the IRE3D-Net consists of
two convolutional encoders fencp , fenci , one decoder gdec and one U-Net component
hunet. While fencp and gdec form a convolutional autoencoder (CAE), fenci and gdec
constitute a segmentation hourglass network. The U-Net module hunet is used to
enhance gdec for an image guided decoding process to increase the decoder’s local-
ization capabilities. However, the extended architecture design shows the following
differences to the IE2D-Net:

1. The CAE’s prior encoder fencp additionally serves as a regularization module,
that measures the output’s shape consistency in latent space during training,
following Oktay et al.’s proposition [OF+18].

2. The prediction of the U-Net module hunet is fused with the decoder prediction
gdec(fenci(I)) from an input image I , by averaging their pixel-wise predictions,
as depicted in Fig. 4.13 by a plus symbol.

3. Regularization terms to ensure shape consistency are added to the segmenta-
tion loss functions of the U-Net and IRE3D outputs. The shape consistency
regularization terms for the corresponding modules are defined as

LSCire3d
:= ||fencp(gdec(fenci(I)))− fencp(ŷ)||1,

LSCunet := ||fencp(hunet(I)))− fencp(ŷ)||1,

for an input image I and the desired target segmentation ground truth ŷ. The
regularization terms are further scaled with a weighting factor λreg > 0.

The overall architecture is depicted in Fig. 4.13. Otherwise the network is trained
and used in the same manner as the IE2D-Net.
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FIGURE 4.13: IRE3D-Net architecture. The architecture consists of
four modules: the U-Net module (brown), the imitating encoder (pur-
ple), the prior encoder (yellow), and the joint decoder (blue). The
prior encoder is additionally used for shape consistency of the output
segmentation and the ground truth, as described in point 1. Also, the
U-Net module output is fused with the IRE3D-Net output, as men-
tioned in point 2. The consideration of the shape consistency term
in the segmentation losses (point 3) is, however, not visualized in
this figure. For inference the prior encoder is omitted. Reused from

[PDP21b].

4.4.2 Experimental Overview

The IRE3-Net is applied in three different experimental settings. The first experi-
ments deal with cross-modality organ segmentation, in which IRE3D-Net is trained
for abdominal organ segmentation with both MR and CT in different combinations,
which will be shortly elaborated in the next but one subsection. This experimental
setting is determined by the Combined Healthy Abdominal Organ Segmentation (CHAOS)
challenge [Kav+21], held at the International Symposium on Biomedical Imaging
(ISBI) 2019 in Venice, Italy. The evaluation is conducted in a hold-out validation
manner, i.e. the labeled training data is available for training, whereas the test data
labels are kept hidden by the organizers. In this subsection, the challenge design
is only shortly outlined and the performance of the IRE3D-Net is presented in this
context. Further details can be found in Kavur et al.’s publication [Kav+21].

The second series of experiments investigates the applicability of the IRE3D-Net in a
one-shot segmentation setting. In this scenario, comparisons to IE2D-Net and Oktay
et al.’s Anatomically Constrained Neural Network (ACNN) [OF+18] are drawn on
the example of liver segmentation in CT volumes. Here, a leave-one-out cross vali-
dation design is chosen to evaluate the network performances.

In the last series of experiments, ablation studies on the IRE3D architecture are con-
ducted in a regular segmentation setting, without any one-shot or cross-modality
learning conditions. The experiments are performed on the example of single sided
femur extraction in fluoroscopic x-ray images.
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Implementation Details

For the first two experimental settings, the networks are designed to process 3D vol-
umes. Therefore, a variant of Çiçek et al.’s 3D U-Net [ÇA+16] is implemented in a
similar manner as the 2D U-Net design in sections 4.2.2 and 4.3.2. Two convolutional
layers are used in each scale level and the number of kernels doubles after each max-
pooling layer and halves after every transposed convolutional layer. The IRE3D-Net
is implemented accordingly as depicted in Fig. 4.13, as well as IE2D-Net and ACNN.
For the last setting, 2D architectures are implemented in the same manner. The net-

Cross-modality organ segmentation One-shot segmentation 2D femur extraction
Framework Tensorflow 1.12 Tensorflow 1.12 PyTorch 1.10
Input size 128× 128× 96 128× 128× 96 256× 256

Kernel size 3× 3× 3 3× 3× 3 3× 3

Pooling size 2× 2× 2 2× 2× 2 2× 2

Batch size 1 1 10
Epochs 40 2400 60
Pooling layers 5 5 5
Augmentations translation, rotation translation, rotation translation, rotation, zoom

TABLE 4.6: Implementation details.

work configuration details for all experimental settings can be found in Tab. 4.6. An
Adam optimizer with an initial learning rate of 0.001 is applied for all experiments.
The weight of the regularization term in both the ACNN and the IRE3D is set to
λreg = 0.001, as suggested by Oktay et al. [OF+18]. All experiments are conducted
on a NVIDIA GTX 1080 ti GPU.

4.4.3 Experiments 1: Cross-Modality Organ Segmentation

The CHAOS challenge aims at comparing different strategies for the segmentation
of healthy abdominal organs, i.e. liver, spleen, and both kidneys. In particular, it
comprises five sub-tasks to investigate the performance on various cross-modality
settings:

1. Liver Segmentation (CT+MR)
The training and testing sets comprise CT and MR data. Both training sets have
the corresponding liver segmentation ground truths.

2. Liver Segmentation (CT only)
The training and testing sets only contain CT data. The training set includes
the corresponding liver segmentation ground truths.

3. Liver Segmentation (MR only)
The training and testing sets only contain MR data. The training set includes
the corresponding liver segmentation ground truths.

4. Segmentation of abdominal organs (CT+MR)
The training and testing sets comprise both CT and MR data. The MR set
includes the corresponding segmentation ground truths for all abdominal or-
gans, whereas the CT set only has the segmentation ground truth for the liver.

5. Segmentation of abdominal organs (MR only)
The training and testing sets only contain MR data. The training set includes
the corresponding segmentation ground truth for all abdominal organs.

While tasks 2, 3 and 5 are single modality problems, tasks 1 and 4 address the con-
cept of cross-modality learning.
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Data

The CT data set consists of 40 volumes, from which 20 are provided with liver an-
notations for training. The remaining 20 volumes are used for evaluation, where the
annotations are kept by the competition organizers. The MR data set on the other
hand consists of 120 volumes from 40 patients, which are different from the patients
of the CT data set. Here, each patient is scanned with two pulse sequences (T1 and
T2), resulting in 40 T1-DUAL scans, and 40 T2-SPIR scans. The T1-DUAL scans com-
prise in-phase and out-of-phase representations, accumulating in a total number of
120 MR volumes including the T2 scans. From these 120 volumes only 60 are pro-
vided for training with corresponding labels, whereas the remaining ground truths
are kept by the organizers.

Results

In the scope of this challenge, a scoring system is used, considering the DSC, the
symmetric Hausdorff distance, both as described in section 2.4, the relative abso-
lute volume difference (RAVD), and additionally the average symmetric surface dis-
tance, i.e. the average over all minimal distances from prediction boundary points
to ground truth boundary and vice versa. The RAVD for a segmentation prediction
volume y(c) and its corresponding desired ground truth volume GT (c) for any class
c ∈ C is defined as

RAVD(y(c), GT (c)) :=
||y(c)| − |GT (c)||
|GT (c)|

· 100,

where | · |measures the magnitude of a volume, i.e. the number of all non-zero ele-
ments. To combine these four metrics, they are mapped to a range of [0, 100], where
a higher score represents better performance.

FIGURE 4.14: CHAOS results for each task. The proposed IRE3D ar-
chitecture is denoted as ISDUE. White diamonds represent the mean
values of the scores and solid horizontal lines inside of the boxes rep-
resent the medians. Separate dots show scores of each individual test
volume. This figure is taken from [Kav+21] with permission from
both the publisher and Kavur, who evaluated the submissions and

created this diagram.
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Fig. 4.14 shows the performance results of the submitted designs, which are ranked
from best to worst performance from left to right for each task, respectively. The
proposed IRE3D architecture is denoted as ISDUE, representing the submission of
the Intelligent Systems group of the University of Duisburg-Essen.
It is noticeable, that in the single modality tasks 3 and 5, using only MR data, the
proposed IRE3D architecture is outperformed by nnU-net, PKDIA, and mountain.
While Isensee et al.’s nnU-net [IK+18; Ise+21] is a self-configuring U-Net pipeline,
which adapts its configuration based on the underlying task, Conze et al.’s PKDIA
submission [Con+21] uses an additional discriminator to critic their generator’s seg-
mentation prediction. Here, the generator is represented by a 2D U-Net implementa-
tion. The mountain team makes use of a cascade of U-Net variants, in which residual
blocks are incorporated in the contracting path. Furthermore, strided convolutions
are used instead of max poolings.

A similar observation can be made for the single modality task 2, using only CT data,
as PKDIA, MedianCHAOS6, and OvGUMEMoRIAL yield better results than the pro-
posed IRE3D-Net. MedianCHAOS6 is the 6-th submission of an ensemble method,
using multiple U-Net variants, and OvGUMEMoRIAL makes use of a U-Net variant.
It stands out, that Ronneberger et al.’s U-Net is the base architecture, that all well
performing submissions in these single modality tasks build on.

In the cross-modality tasks 1 and 4, the proposed IRE3D-net achieves favorable scores,
also showing only little variance in performance across the test set. Therefore, the
inclusion of shape information appears to be advantageous in cross-modality set-
tings, particularly when the same structure needs to be extracted from both modal-
ities as in task 1. For task 4, the imitation strategy may be beneficial, as this mecha-
nism allows the differentiation between multi-organ and single-organ segmentation.
Since ground truth maps for a single organ are more sparse than ground truth maps
for multiple organs, their latent representations in the CAE module certainly differ
significantly from the latent multi-organ representations. Because of the imitation
mechanism, CT scans are projected towards single-organ representations, whereas
MR volumes are mapped to multi-organ representations, from which the CAE’s de-
coder constructs the prediction.

Nevertheless, it needs to be kept in mind, that different training capacities and the
absence of architectural restrictions renders direct comparison more difficult. For
instance, nnU-net and MedianCHAOS6 make use of ensemble methods, which of-
ten lead to better predictions. However, nnU-net is only submitted once, whereas
MedianCHAOS6 is tuned towards task 2 in multiple submissions. Regarding train-
ing capacity, mountain is able to train on volumes of size (384 × 384 × 64), whereas
PKDIA circumvent the GPU size limitation by using a 2D slice-wise approach to
leverage the higher resolution in 2D. Since shapes may vary significantly in a slice-
wise approach (see section 4.3.2), the proposed IRE3D-Net is trained on volumes of
size (128× 128× 96).
Altogether, the challenge shows, that IRE3D-Net yields competitive results, espe-
cially for cross-domain learning tasks, although it is trained on resized volumes of
smaller size.
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4.4.4 Experiments 2: One-Shot Image Segmentation

The second series of experiments investigates the applicability of IRE3D-Net in the
context of one-shot segmentation, in which the network architecture only has access
to one sample during training, trying to generalize to unseen samples (of the same
modality). This part particularly analyses the effects of additional shape priors in the
generalization performance, compared to a 3D U-Net. As reference architectures,
that also consider shape information, Oktay et al.’s anatomically constrained neural
network (ACNN) and the IE2D-Net are considered. In this scope, the ACNN uses
a 3D U-Net as its base segmentation network and the IE2D-Net is implemented to
handle 3D inputs. The performance is measured by means of the Dice Similarity
Coefficient (DSC) and the symmetric Hausdorff distance (sHD).

Data

The one-shot experiments are conducted on the example of liver segmentation from
abdominal CT volumes. For this, data from the Cancer Imaging Archive [CV+13;
RF+16; RL+15] (TCIA) and from the Beyond the Cranial Vault (BTCV) segmentation
challenge [LX+15; XL+16] is used. The supplementary ground truth segmentations
are published by Gibson et al. [GG+18]. In total 90 abdominal CT volumes with
corresponding ground truths are used.

In a leave-one-out cross validation manner, every architecture is trained 90 times,
using each patient data set as one-shot training set once. Patients 40 and 90 are arbi-
trarily used as validation data sets. When training with patient 40, patients 39 and
90 are used for validation. When training with patient 90, patients 40 and 89 are
used for validation. The remaining patient volumes, that have not been involved in
training or validation, are then used for testing.

As a reference (Ref) the DSC, which is achieved by just regarding the ground truth
segmentation of the training data set as segmentation prediction for each test vol-
ume, is additionally calculated. Furthermore, a situs inversus case is simulated, in
which the organs are flipped. This is motivated by the intention to investigate how
the trained networks react to cases that topographically differ from physiological
images. The situs inversus case is simulated by inverting the stack ordering in lon-
gitudinal axis for validation and all test data sets, while keeping the ordering for the
training set.

Results

Since the complete data set is taken from two different sources, one can differentiate
between 4 cases regarding evaluation results:

• Q11: Trained on TCIA and tested on TCIA

• Q12: Trained on TCIA and tested on BTCV

• Q21: Trained on BTCV and tested on TCIA

• Q22: Trained on BTCV and tested on BTCV

These four cases are especially noticeable for the reference DSC measures in Fig.4.15,
where the achieved DSCs for each train/test patient combination is depicted as a
heat map. Rows indicate the patient data set used for training, whereas columns



94 Chapter 4. Shape Priors in Deep Learning Architectures

FIGURE 4.15: DSC Heatmap of reference for ordinary setting. Rows
indicate patient used for training, columns represent test data set.

Reused from [PDP21b].

represent the patient test data set. A strong DSC change is visible from column 43
to 44 and row 43 to 44, dividing the heat map into the four quarters Q11, Q12, Q21,
and Q22. In particular, the DSCs get worse, when ground truths come from different
data sources, i.e. in the upper right quarter Q12 and the lower left Q21. This indi-
cates that there already is a strong overlap between ground truths within each data
source. The segmentation problem might therefore be easier when train and test pa-
tients come from the same data source.

This hypothesis is supported by the segmentation results of the considered architec-
tures. Table 4.7 shows the resulting mean DSCs for each architecture in each quarter
and the overall DSCs. For all considered architectures, the best DSCs are achieved in

DSC Q11 Q12 Q21 Q22 ∅
Ref 0.537± 0.12 0.317± 0.13 0.317± 0.13 0.407± 0.20 0.382±0.18
U-Net 0.829 ±0.06 0.673± 0.11 0.784± 0.09 0.803 ±0.07 0.771 ±0.10
ACNN 0.825± 0.06 0.696± 0.10 0.790 ±0.08 0.797± 0.08 0.776 ±0.10
IE2D 0.821± 0.07 0.702± 0.11 0.784± 0.10 0.803± 0.07 0.777 ±0.10
IRE3D 0.818± 0.07 0.705 ±0.11 0.776± 0.10 0.801± 0.08 0.774 ±0.10

TABLE 4.7: Achieved mean DSCs in each case. Reused from [PDP21b].

Q11 and Q22. The standard U-Net yields the best results regarding DSC in Q11 and
Q22, while architectures with anatomical priors show slightly better results in Q12

and Q21, i.e. when data sources for training and testing are different. This section’s
IRE3D architecture achieves the best DSC result in Q12, whereas for Q21 Oktay et al.’s
ACNN surpasses the remaining models. Regarding mean DSC over all test cases, all
architectures with anatomical priors show slightly better results than U-Net.
Since the improvements are only marginal, significance tests are conducted. As there
are 8100 test cases, two-sample t-tests, introduced by Gosser under the pseudonym
Student [Stu08], are more suitable than Wilcoxon’s signed rank test [Wil92]. The
t-tests yield that only ACNN and IE2D-Net significantly improve the overall DSC
compared to U-Net with p-values of 0.0025 and 8.6814e − 04, respectively. As can
be seen in Q11 and Q22, U-Net outperforms the proposed models when training
and testing data come from the same source. Therefore a possible explanation for
IRE3D-Net’s poorer overall segmentation results compared to ACNN and IE2D-Net
regarding DSC lies in the aggregation of limitations of ACNN and IE2D-Net in these
scenarios. This is because IRE3D-Net can be considered a combination of ACNN
and IE2D-Net. However, it needs to be emphasized that these observations are still
marginal and can only be seen in the context of DSC in one-shot segmentation set-
tings.



4.4. Imitating and Regularizing Encoders - Enhanced Decoder Network 95

(a) U-Net (b) ACNN (c) IE2D-Net (d) IRE3D-Net

FIGURE 4.16: DSC heatmaps for each train/test combination of U-
Net, ACNN, IE2D-Net, IRE3D-Net. Rows indicate patients used for
training, columns for testing. Red indicates high scores, blue implies

low values. Reused from [PDP21b].

Fig.4.16 depicts the DSC heatmaps of all trained models. Here it becomes visually
apparent, that the transition from TCIA to BTCV (Q12), seems to be especially diffi-
cult for all models, as the upper right quadrant shows lower DSCs than the remain-
ing quadrants for all models.

sHD Q11 Q12 Q21 Q22 ∅
U-Net 50.8± 12.9 40.4±11.1 48.6± 14.2 48.2±12.7 50.3 ±15.4
ACNN 60.1± 19.1 45.6± 13.3 55.7± 23.5 54.8± 14.1 58.3 ±20.5
IE2D 48.1± 13.4 40.5± 10.5 45.9± 13.1 51.7± 12.4 48.6 ±14.1
IRE3D 47.8±12.8 40.4± 10.7 45.1±12.8 51.1± 12.8 48.5 ±14.5

TABLE 4.8: Mean sHDs in each case. Reused from [PDP21b].

The observation that models with shape priors perform better when source and tar-
get domain are different is, however, only partly reflected by the Hausdorff distances
in Table 4.8. Surprisingly, the regularization in the ACNN results in higher sHDs
than for the standard U-Net in all cases. The IRE3D-Net shows the best results re-
garding sHD in Q11 and Q21, whereas in the challenging Q12 case it performs equally
well as the U-Net.
The IRE3D-Net shows the best mean sHD performance over all test cases, followed
by IE2D-Net. Both architectures significantly improve the mean sHD with p-values
of 1.0431e − 13 and 5.1020e − 14, respectively. A significant difference between
achieved mean DSC and sHD of IE2D-Net and IRE3D-Net could, however, not be
shown, at least not for one-shot segmentation settings.

(a) U-Net (b) ACNN (c) IE2D-Net (d) IRE3D-Net

FIGURE 4.17: Hausdorff distance heatmaps for each train/test combi-
nation of U-Net, ACNN, IE2D, and IRE3D (from left to right). Rows
indicate patients used for training, columns for testing. Red indicates

high distances, blue implies low values. Reused from [PDP21b].

Fig. 4.17 shows the heat maps of measured sHDs for each train/test scenario in
each model. Here the surprising observation is visualized, as it can be seen that the
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ACNN architecture seems to have difficulties especially in Q11 and Q21. While the
models with shape prior information show promising results for one-shot settings,
in which source and target domain are different, it is still surprising that a standard
U-Net is also capable of achieving similarly good DSC and sHD scores and even
better scores in Q11 and Q22, when only trained with one patient volume.
The next paragraph will investigate if this observation still holds, when train and test
data show a stronger deviation, such as in the simulated situs inversus setting.

Situs Inversus Simulation

Situs inversus is a very rare condition, in which the inner organ positions are mir-
rored along the vertical axis. Therefore the positions are inverse to the physiological
position (situs solitus). The situs inversus case is simulated by inverting the stack
ordering in longitudinal axis for validation and all test data sets, while keeping the
ordering for the training set.

FIGURE 4.18: DSC heatmap of reference for situs inversus setting .
Rows indicate patients used for training, columns represent test data.

Reused from [PDP21b].

The reference DSC heat map in Fig. 4.18 shows that Q22 yields the most challenging
case, whereas Q11 seems to be the easiest scenario. This may be due to the fact, that in
BTCV the liver is not centered along the longitudinal axis, because of the wider field
of view. Thus, when inverting the stack order, the overlap of liver regions between
training and testing data set is smaller than in the other cases. In TCIA, particularly,
the liver is more centered, such that even when inverting the order, the overlap of
liver regions is still rather large. This circumstance can be seen in Fig. 4.19, where
the original CT volumes and the re-ordered volumes are depicted next to each other
in a frontal view for TCIA and BTCV, respectively.

Q11 Q12 Q21 Q22 ∅
Ref 0.260± 0.10 0.083± 0.08 0.083± 0.08 0.014± 0.05 0.102± 0.12
U-Net 0.762±0.07 0.593± 0.11 0.604± 0.17 0.450± 0.18 0.595± 0.18
ACNN 0.760± 0.07 0.611± 0.11 0.597± 0.19 0.459± 0.18 0.599± 0.18
IE2D 0.754± 0.08 0.618± 0.11 0.637±0.16 0.524±0.16 0.628 ±0.15
IRE3D 0.758± 0.08 0.630±0.10 0.619± 0.16 0.512± 0.16 0.624± 0.16

TABLE 4.9: DSCs for situs inversus setting. Taken from [PDP21b].

Table 4.9 reveals, that both the IE2D architecture and the IRE3D-Net outperform the
standard U-Net in all cases except for Q11, where the standard U-Net yields best DSC
results. The best mean DSC over all test cases is achieved by IE2D-Net, followed by
IRE3D-Net and then ACNN. The improvements for ACNN could not be established
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FIGURE 4.19: Comparison of liver regions for situs inversus case.
The top row shows an example from the TCIA data set, which is re-
ordered, and the bottom row an example from the BTCV data set. It
is directly visible, that the liver region overlap for TCIA is larger than

for BTCV, where the field of view is larger.

as significant. However, IE2D-Net and IRE3D-Net yield significant improvements
compared to U-Net with p-values of 3.2423e− 35 and 1.3575e− 26, respectively.

(a) U-Net (b) ACNN (c) IE2D-Net (d) IRE3D-Net

FIGURE 4.20: DSC heatmaps for each train/test combination of U-Net,
ACNN, IE2D, and IRE3D for the situs inversus setting. Rows indicate
patients used for training, columns represent the test volume. Reused

from [PDP21b].

Figure 4.20 shows the DSC heatmaps of the trained models for each train/test com-
bination. It is directly noticeable that for Q11 all models perform very well, whereas
the most problematic case is Q22, i.e. when there is only little liver region overlap
between training and testing image.

sHD Q11 Q12 Q21 Q22 ∅
U-Net 55.7 ±12.1 42.0 ±11.3 60.5 ±17.8 42.0 ±11.2 46.3 ±13.5
ACNN 64.4 ±18.0 46.9 ±14.0 71.9 ±24.4 51.6 ±18.0 54.0 ±19.7
IE2D 52.3 ±12.8 40.1 ±10.6 54.2±15.5 39.6 ±10.6 44.3 ±12.8
IRE3D 51.4 ±12.3 39.8 ±10.4 55. 2±16.6 39.2±10.3 43.7 ±12.4

TABLE 4.10: sHDs in situs inversus setting. Taken from [PDP21b].
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Considering the Hausdorff distances in Table 4.10, IE2D and IRE3D also show better
results than the U-Net in all cases. It is, however, surprising that the shape regu-
larization in ACNN, again, results in considerably worse Hausdorff distances in all
cases.
Regarding overall sHD, IRE3D-Net achieves the best results, followed by IE2D-Net
and U-Net. The improvements of IRE3D-Net and IE2D-Net are significant with p-
values of 1.4702e − 22 and 2.7155e − 35, respectively. The difference of IRE3D-Net
and IE2D-Net could also be established as significant with a p-value of 0.0096.

(a) U-Net (b) ACNN (c) IE2D-Net (d) IRE3D-Net

FIGURE 4.21: Hausdorff distance heatmaps for each train/test combi-
nation of U-Net, ACNN, IE2D, and IRE3D (from left to right) for situs
inversus setting. Rows indicate patients used for training, columns

represent test volume. Reused from [PDP21b].

These observations are visualized in Fig.4.21, in which the worse Hausdorff dis-
tances of the ACNN are noticeable in the larger amount of red heat map positions.
It is surprising that U-Net seems to be superior to ACNN in most cases regarding
Hausdorff distance. For IE2D and IRE3D, however, Fig.4.21 underlines that in most
cases U-net achieves inferior distances.

Figure 4.22 depicts exemplary segmentation results for the situs inversus setting.
In the first six examples, the worse sHD of ACNN become immediately appar-
ent, as there seem to be outliers, following a specific pattern. If these outliers are
overlooked, the examples particularly show, that the incorporation of Oktay et al.’s
regularization scheme in general yields smoother surfaces on both the ACNN and
IRE3D-Net results, which is reflected by the measured DSC scores. The IRE3D-Net
also produces the least amount of outliers, which is also implied by the significantly
lower sHDs.

Altogether, these experiments demonstrate, that the incorporation of shape priors
yields improved segmentation results, especially in cases where the organ of interest
does not strongly overlap between training and test volume, as can be particularly
seen in the situs inversus setting.
On the other hand, U-net surprisingly already performs well in one-shot segmen-
tation settings, if the organ location strongly overlaps in training and test volume.
Moreover, IE2D- and IRE3D-Net show improved but also very similar results. In
the one-shot situs inversus setting, the extension of IE2D-Net to IRE3D-Net is able
to significantly improve the overall sHD. It is however questionable, whether this
observation also holds in regular segmentation settings without any one-shot or
cross-modality learning conditions. This is investigated in the following series of
experiments of the next subsection.
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Ground Truth U-Net ACNN IE2D-Net IRE3D-Net

FIGURE 4.22: Exemplary one-shot segmentations from each architec-
ture.
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4.4.5 Experiments 3: Ablation Studies

The third series of experiments conducts ablation studies on the proposed IRE3D
architecture on the example of femur extraction in fluoroscopic x-ray images. While
the IRE3D design shows promising results in the cases of cross-modality training
and one-shot segmentation, the necessity of the additional modules in the context of
regular image segmentation still needs to be investigated.
Therefore, each component is removed from the proposed architecture, to possibly
achieve a slimmer network design. Removing the additional regularizing encoder
from the IRE3D-Net results in the IE2D-Net. Dismissing the U-Net module from the
IE2D-Net, results in an architecture denoted as IED-Net, where positional informa-
tion for the skip connections is tried to be directly acquired by the imitating encoder
instead of the contracting path of the U-Net module. Additionally, Ronneberger et
al.’s U-Net [RFB15] and Oktay et al.’s ACNN [OF+18] are used as further baseline
architectures. Each architecture is trained in a leave-one-out manner, such that any
image, that is not the test image can be used for training and validation.

Data

For this series of experiments, 38 fluoroscopic x-ray images of the femur from 38
different patients are used. The x-ray images were recorded during clinical routine
for necrosis treatment and are provided by the Department of Orthopaedics and
Trauma Surgery at the University Hospital Essen. The images are heterogeneous,
as they vary in size and spacing, resulting in very different FOVs. The image size
ranges from (2140 × 1760) to (4248 × 4200) pixels, and the spacing varies between
(0.1× 0.1)mm2 and (1× 1)mm2.
Furthermore, in all images only the femur side is labeled which is supposed to re-
ceive necrosis treatment. Therefore, in some images, the right femur is annotated,
whereas in others the left femur is labeled. Fig. 4.23 illustrates the range in field
of view and the mix of right and left femur labels. To simplify the segmentation

FIGURE 4.23: Variation of labeled fluoroscopic x-ray images.

problem, all images, that have labels for the left femur, are flipped for training, vali-
dation and testing, reducing the task to the extraction of the right femur. Otherwise,
most neural networks would not be able to determine which femur side to extract,
as in some images both femur bones are visible, but only one of them needs to be
extracted.

Results

Table 4.11 shows the achieved mean DSCs of the considered architectures. It is no-
ticeable that the achieved scores of IED-Net, IE2D-Net, IRE3D-Net, and U-Net are
close to each other, each yielding a wide standard deviation. To establish, whether
the differences are significant, the Wilcoxon signed rank test [Wil92] is conducted
to every possible architecture combination. The estimated p-values, for which the
differences are significant, are depicted in Tab. 4.12. Following the convention that
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DSC U-Net ACNN IED IE2D IRE3D
∅ 0.913 ± 0.11 0.768 ± 0.25 0.918 ± 0.15 0.928 ± 0.17 0.923 ± 0.16

TABLE 4.11: Resulting mean DSCs.

a p-value smaller than 0.05 yields a significant difference, one can observe that in
four cases, a significant difference could not be measured. Both IED-Net and IRE3D

p-value U-Net ACNN IED IE2D IRE3D
U-Net - 6.7015e-06 0.2736 5.4260e-04 0.0756
ACNN 6.7015e-06 - 1.1416e-06 7.8917e-07 5.8521e-07
IED 0.2736 1.1416e-06 - 4.8701e-04 0.1845
IE2D 5.4260e-04 7.8917e-07 4.8701e-04 - 0.0100
IRE3D 0.0756 5.8521e-07 0.1845 0.0100 -

TABLE 4.12: p-values of every possible architecture combination for
DSC difference.

do not perform significantly better than the baseline U-Net. Furthermore, there is
not any significant difference between IED-Net and IRE3D-Net. However, IE2D-Net
yields significantly better results than all remaining architectures.

sHD U-Net ACNN IED IE2D IRE3D
∅ 259.44 ± 345.18 1462.01 ± 1056.64 317.27 ± 402.74 203.29 ± 330.54 1470.69 ± 963.86

TABLE 4.13: Resulting mean symmetric Hausdorff distances.

Table 4.13 depicts the mean symmetric Hausdorff distances over all test images. Sur-
prisingly ACNN and IRE3D-Net yield significantly larger mean Hausdorff distances
than the remaining architectures (see Table 4.14). Apparently, ACNN has difficul-
ties in handling the different FOVs, which is propagated to IRE3D-Net, which partly
consists of the ACNN.
Although achieving a better mean DSC, IED-Net’s mean sHD is larger than U-Net’s.
As shown in Table 4.14, the difference is however only marginal and not significant.
The IE2D-Net on the other hand is able to significantly outperform the remaining
architectures, also regarding sHD.

p-value U-Net ACNN IED IE2D IRE3D
U-Net - 4.009e-07 0.7918 0.0013 8.5000e-07
ACNN 4.009e-07 - 7.3256e-07 1.250e-07 0.9218
IED 0.7918 7.3256e-07 - 0.0026 5.4555e-06
IE2D 0.0013 1.250e-07 0.0026 - 4.3255e-07
IRE3D 8.5000e-07 0.9218 5.4555e-06 4.3255e-07 -

TABLE 4.14: p-values of every possible architecture combination for
sHD difference.

For a qualitative illustration of the considered architectures, Fig. 4.24 shows exem-
plary segmentation predictions of these architectures. The high Hausdorff distances
is clearly reflected in the ACNN predictions and partly in the IRE3D-Net results.
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Moreover, U-Net appears to have difficulties in capturing details of the femur, al-
though most of the area is correctly estimated. Similar to IED-Net, the femur bound-
aries appear not as smooth as it should be. For the IE2D-Net architecture, however,
the femur contours are a lot smoother for these exemplary predictions. It therefore
seems to be able to handle the different FOVs in the data set better than the remain-
ing architectures.

4.4.6 Summary

In this section, the IRE3D architecture is presented, combining on the IE2D de-
sign and Oktay et al.’s ACNN. Its performance on cross-modality learning tasks is
demonstrated in scope of the CHAOS challenge, and its applicability in one-shot
segmentation settings is evaluated on the example of liver segmentation in CT. Here
the network design leads to significant improvements compared to U-Net, however,
significant differences to IE2D-Net can only be observed for the situs inversus case
regarding symmetric Hausdorff distance. Ablation studies on the example of 2D fe-
mur extraction from fluoroscopic x-ray images indicate, that in a more general seg-
mentation setting without one-shot or cross-modality learning conditions IE2D-Net
should be preferably utilized, as its segmentation predictions are significantly bet-
ter than IRE3D-Net’s predictions. Furthermore, the U-Net module for hierarchical
features in the IE2D-Net seems to be a crucial component for general segmentation
settings with varying FOVs, as it significantly improves the segmentation predic-
tions compared to IED-Net.
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FIGURE 4.24: Qualitative illustration of the results of the considered
architectures.
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4.5 Shape and Contour Priors for Zero-Shot Domain Adap-
tation

This section discusses strategies to enforce shape aware learning, specifically in the
domain adaptation setting. The notion of infusing shape and low level contour infor-
mation into the training process is investigated. Furthermore, the idea of augment-
ing the training data by color map transformations is proposed, to abstract from
intensity based towards shape aware features. A major part of its content has been
previously published in [PDP20].

The concept of domain adaptation is usually necessary when deep learning archi-
tectures are trained in a particular domain, the source domain, but are applied in a
similar but different target domain during inference. This scenario is of crucial prac-
tical importance, especially in the medical context, as different hospital departments
tend to use different imaging modalities and protocols in their clinical routine. Thus,
training a model with source data from one department may not be sufficient for
application in another institution with different target data. Acquiring new labeled
training data to train models for each target domain and retraining existing models
with this new data, is however a repetitive and expensive task, that can be avoided
using domain adaptation strategies. The difference between source and target do-
main can be marginal, e.g. when different patients are considered or when different
machines are used to acquire the images for the same modality, e.g. CT. This so
called domain shift can, however, be more drastic, e.g in case of cross-modality do-
main adaptation cases, in which a network, which is trained on one modality, is
supposed to be applied in a different modality. Fig. 4.25 shows exemplary imaging
protocols, that are used in clinical routine. It is noticeable, that different MRI pro-
tocols yield different intensity distributions and different texture properties of the
organs. Another challenge is the field of view property, as illustrated between the
first three examples and the last image, where the ratios between patient body area
and background can be very different.

The case of zero-shot domain adaptation or domain generalization, in which the target
domain is unknown during training, is of particular interest. The main idea of this
section is that shape information may help in bridging the gap of occurring domain
shifts from source training to target application domains, independent of the ac-
tual target domain. A particular focus of this section is the domain generalization
from MR to CT volumes on the example of 3D liver segmentation. Most adaptation
strategies make use of target domain samples and often additionally incorporate the
corresponding ground truths from the target domain during the training process. In
contrast to these approaches, the feasibility of training a deep learning model solely
on source domain data is investigated.
To compensate the missing target domain data, prior knowledge about similarities in
imaging modalities is used to steer the model towards more general features during
the training process. Similarities regarding contour progression and shape informa-
tion across imaging modalities (see Fig. 4.25) is of particular interest. The presented
strategy makes use of fixed Sobel kernels to enhance contour information and it ap-
plies anatomical shape priors, learned separately by a convolutional autoencoder.
Furthermore, a color map augmentation strategy is proposed to abstract from tex-
ture based features towards shape aware features.
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FIGURE 4.25: Comparison of different imaging protocols. Different
hospitals prefer different imaging protocols and modalities. From left
to right: T1 weighted in-phase MRI, T1 weighted out-of-phase MRI,

T2 weighted SPIR MRI, CT image.

4.5.1 Methods

As Ronneberger et al.’s U-Net [RFB15] yields competitive results in various medical
image segmentation applications, the proposed method is based on this architec-
ture. The main idea is to make use of shape information both by providing low-level
contour information to the base segmentation network and also by regularizing the
learning process by means of more abstract and learned shape priors. The proposed
IE2D and IRE3D architectures from sections 4.3 and 4.4 are however not applicable
to this zero-shot domain adaptation setting. The imitating encoder tries to project
the input image to a latent representation that is similar to the latent representation
of the corresponding ground truth map. Therefore, this encoder is fed with images
from the source domain during training and can therefore only handle source do-
main inputs instead of target domain images.

Base Segmentation Network

Çiçek et al.’s [ÇA+16] 3D extension of Ronneberger et al.’s U-Net [RFB15] is used as
the base segmentation architecture, since it is a fully convolutional network (FCN)
[LSD15] designed specifically for segmentation tasks in medical image computing,
and has achieved impressive results in various segmentation tasks [Ise+21]. Two ad-
ditional modifications to the base architecture are investigated. On the one hand,
an edge enhancement (EE) module is introduced to provide low-level contour in-
formation to the segmentation network. On the other hand, following Oktay et al.’s
suggestion [OF+18], a convolutional autoencoder is trained beforehand to generate
a data driven compact high-level shape representation, in order to add a regulariza-
tion term to the segmentation loss function. This method has also been utilized in
the context of the previous sections regarding IE2D- and IRE3D-Net.

Low-Level Contour Information

The aim is to train the segmentation network on a source domain, such that the
same trained architecture can be reused on a different target domain without any
modifications. Therefore, the network is steered into learning more general features,
which are applicable in an inter-domain manner. Considering Geirhos et al.’s find-
ings [Gei+18], one major objective is to make sure that the network does not learn
texture based features, as soft tissue texture varies significantly depending on the
modality and on the protocol. Fig. 4.25 shows the difference in intensity appearance
across modalities and even acquisition protocols within the same modality. Instead,
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FIGURE 4.26: The network architecture consists of two separate net-
works. The first autoencoder network learns a latent representation of
the ground truth, that includes information about anatomical priors,
and is trained separately from (and previous to) the second network.
The second network is trained for segmentation and is regularized
by a shape loss term, that is computed by means of the trained au-
toencoder’s encoder component. For this regularization, the trained
autoencoder’s encoder is reused. The segmentation network is ex-
tended by an edge enhancement component, comprising fixed Sobel

kernels. Adapted from [PDP20], copyright ©2020 IEEE.

the aim is to make use of the observation, that in medical images structures usu-
ally show lower variation in perspective, shape and topographic composition than
in natural images. Particularly contour progression and shape information should
be of special interest. Therefore, an edge enhancement component is introduced to
the contracting path, consisting of 3D Sobel kernels in each direction, as can be seen
in Fig. 4.26 on the lower left side. Let I denote the input volume, and Sx, Sy, Sz the
aforementioned Sobel kernels. Then the edge enhancement is achieved by calculat-
ing the gradient magnitude volume

|∇I| :=
√

(I ∗ Sx)2 + (I ∗ Sy)2 + (I ∗ Sz)2, (4.11)

where ∗ is the convolution operator. The resulting gradient magnitude volume is
concatenated to the original input volume and passed on to the segmentation net-
work, as can be seen in Fig.4.26 at the bottom. The idea is that this additional low
level contour information may steer the network towards more texture independent,
but more shape relevant features. Because of the different modality and protocol
specific appearance of anatomical organs, the resulting gradient magnitude will
also differ between modality and protocol. However, the information about organ
contour progression is similar between all domains and highlighted in the gradient
magnitude volume, as illustrated in Fig. 4.27, where exemplary gradient magnitude
slices from different protocols and modalities are shown. These images are depicted
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on a logarithmic scale to make available contour information more visible.

FIGURE 4.27: Although gradient magnitudes may differ between pro-
tocols and modalities, a similar contour progression is highlighted at
the organ boundaries for the gradient magnitude volumes of the ex-
emplary T1 weighted in-phase MRI, T1 weighted out-of-phase MRI,

T2 weighted SPIR MRI, CT image (from left to right).

High-Level Shape Representation

As a second modification, an additional convolutional autoencoder (CAE) is trained,
following Oktay et al.’s [OF+18] suggestion to incorporate more abstract shape priors
into the segmentation network. This CAE is trained by optimizing its loss function
Lauto. The CAE consists of a prior encoder fencp and a decoder component. A suffi-
ciently trained encoder fencp is capable of compressing relevant anatomical informa-
tion, implicitly encoded in the ground truth, into a compact representation in latent
space. The decoder component on the other hand is able to reconstruct the ground
truth from this compressed representation. Crucial anatomical information about
shape and topographical relationships is embedded in this high-level representa-
tion. This compressing property is leveraged to compare the embedded informa-
tion in the segmentation output with the ground truth’s compressed representation.
Thus, fencp is reused to project both the ground truth and the segmentation output
into latent space, as shown in Fig. 4.26 on the right. The L1 norm is used to measure
the difference in latent representation and add this term to the segmentation loss
Lunet for shape regularization, weighted by a factor λreg > 0, i.e.:

Ltotal(y,GT ) := Lunet(y,GT ) + λreg||fencp(y)− fencp(GT )||1. (4.12)

All in all, the proposed method consists of 2 training stages. In the first stage the
CAE is trained by minimizing Lauto, and in the second stage the segmentation net-
work is trained by optimizing Ltotal. In the second stage, only weights from the
segmentation network are adapted, whereas the weights from fencp and the Sobel
kernels are kept fixed.
In contrast to related work regarding domain adaptation (see section 4.1), no prior
target domain information is used during training. Instead, this method solely relies
on the data material of the source domain. A thorough search of the relevant litera-
ture yielded that this is the first attempt at using contour and shape information in
the context of zero-shot domain adaptation for medical segmentation tasks.

Enforcing Shape Awareness through Color Augmentation

Besides directly infusing shape aware Sobel features, a more implicit method lies in
the enforcement of shape aware feature learning by means of appearance augmen-
tations of the training data. Geirhos et al. [Gei+18] show that by means of style
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augmentation, classification CNNs abstract from intensity and texture based fea-
tures towards shape aware features. Style augmentation is the process of injecting
random styles into an input image, such that the image style appearance is devi-
ated, whereas the overall composition and content stays the same. In the context
of medical image segmentation, Hesse et al. [Hes+20] use the same idea of apply-
ing style (and intensity) augmentation to bridge the domain shift between data sets
of the same modality, but with different sequences. In scope of this thesis, a novel
color augmentation procedure is proposed, in which existing color maps are used
to augment the appearance of the source domain input volumes. A color map is a
mapping

CMAP : Igray → Icolor

from the space of gray scale images Igray to the space of color images Icolor. Each
gray scale value is mapped to a specific color, depending on the chosen color map.
Therefore, a one dimensional gray value is mapped to a three dimensional RGB vec-
tor. Color augmentation (CA) is realized by randomly applying a color map on the
intensity image. One major advantage of using color augmentations instead of style
augmentations is the adhoc applicability on 3D volumes. Moreover, color augmen-
tations can be achieved in constant time for each pixel, since the intensity value is
directly mapped to a color by the color map. A further benefit lies in the reduction
of required GPU memory compared to style augmentation, which makes use of pre-
trained CNNs for style infusion.
Similar to the concept of filter banks, in which selected filters are designed for feature
extraction in images, only 31 selected color maps are used for color augmentation,
which are taken from all available color maps, provided by matplotlib’s Python pack-
age [Hun07]. The selection has been applied manually based on visual suitability.

(a) original image (b) jet (c) nipy_spectral (d) prism

FIGURE 4.28: Suitability of color maps. Some color maps are more
suited (b) and (c) than other (d) for color augmentation of the original

input image (a).

Figure 4.28 demonstrates that a selection of available color maps is a necessary step,
as some color maps seem to be more suitable for augmentation than others. All
selected color maps and their color range are depicted in Fig. 4.29.
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FIGURE 4.29: Selected color maps for color augmentation.
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4.5.2 Experiments

The proposed modifications are investigated on the example of 3D liver segmenta-
tion. In the scope of this thesis, the source domain consists of T1 and T2 weighted
MR volumes, whereas the target domain comprises CT scans.
To investigate the impact of the changes to the base architecture, ablation studies are
conducted on the effects of

• adding the low-level edge enhancement (EE) for the extraction of contour in-
formation

• adding the more abstract shape priors (SP) to the base segmentation network

• random color augmentation during training

As an upper baseline, the segmentation results of the proposed method are com-
pared to a fine-tuning strategy, in which the base segmentation network is pretrained
with MR images and fine-tuned with a fraction of the target domain CT data.
An U-Net trained on synthesized CT volumes, which are generated from MR vol-
umes, serves as a second baseline, since this strategy is commonly used for domain
adaptation settings (see section 4.1.3). These pseudo CT (pCT) volumes are created
using Zhu, Isola et al.’s [Zhu+17; Iso+17] cycleGAN implementation in PyTorch.
These last two baselines are, however, not zero-shot domain adaptation methods,
as they incorporate prior target domain knowledge into their training process. As
evaluation metric for the segmentation predictions, the Dice Similarity Coefficient
(DSC) is used for all experiments.

Data

For training and validation, the labeled MR data sets from the Combined Healthy
Abdominal Organ Segmentation (CHAOS) challenge [SK+19; Kav+21] (see section
4.4.3) are used. They comprise two different MRI sequences, i.e T1 weighted in-
phase and out-of-phase volumes and also T2 weighted SPIR data sets, resulting in
60 labeled data sets in total. The MR data sets have been acquired by a 1.5 Tesla
Philips MR scanner. Each volume consists of 26 to 50 axial slices with a slice size of
256 × 256. The trained models are tested on the 20 provided CT scans of the same
challenge. Furthermore, 43 CT volumes from the Cancer Imaging Archive [CV+13;
RF+16; RL+15] (TCIA) and 47 CT volumes of the Beyond the Cranial Vault (BTCV)
segmentation challenge [LX+15; XL+16] (see section 4.4.4) are used as additional
CT target domain data to test the architectures. The supplementary ground truth
segmentation for both data sets, provided by Gibson et al. [GG+18], are used to
evaluate the network predictions.
For the fine-tuning baseline strategy, 10 CT volumes from the CHAOS challenge are
used during training, which are excluded from the testing set. This needs to be
considered when comparing the achieved DSC results for the CHAOS data sets.

Implementation Details

To fit the 3D architecture into memory, the MR and CT volumes are resized to an
input size of 128 × 128 × 96. The network is implemented in Tensorflow 1.12. In all
experiments, the training volumes are augmented by means of random translation
and rotation. Starting with 32 kernels for each convolutional layer in the first scale
level of each encoder/contracting path, the number of kernels for each scale level
on the encoding/contracting side is doubled, whereas the number of kernels on the
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expansive/decoding side for both segmentation network and autoencoder is halved.
A kernel size of 3 × 3 × 3 for every convolutional layer and 2 × 2 × 2 max-pooling
is chosen. The optimization is performed with an Adam Optimizer with an initial
learning rate of 0.001. With a batch size of 1, the networks are trained for 200 epochs.
The model with best validation loss is chosen for evaluation on the test sets. The
weight of the regularization term is set to λreg = 0.001, as suggested by Oktay et al.
[OF+18]. Since

||fencp(y)− fencp(GT )||1

and Lunet from Eq. (4.12) may not be in the same range, it needs to be noted, that
λreg is not only a weighting factor, but also includes a normalization component.
The training is performed subsequently, i.e. the autoencoder is trained first for 200
epochs, followed by the segmentation network, also for 200 epochs.
In case of the fine-tuning baseline implementation, first the U-net is trained for 200
epochs on the source domain. The model with least validation loss is then fine-tuned
for an additional 200 epochs on the CT target domain. If used, the color augmenta-
tions are applied on 50% of the training volumes on the fly.
For the GAN based baseline, pseudo CT scans are generated from the available
source MR volumes by means of Zhu, Isola et al.’s [Zhu+17; Iso+17] cycleGAN im-
plementation in PyTorch. Since the original cycleGAN was designed for 2D images,
the 2D slices of the MR volumes are used to generate pseudo CT slices. These are
stacked to 3D volumes and used to train a 3D U-Net implementation for 200 epochs.
All experiments are conducted on a NVIDIA GTX 1080 TI GPU.

Ablation Studies

For the ablation studies, the U-net implementation is equipped with each proposed
modification, i.e. shape priors (SP), edge enhancement (EE), and color augmenta-
tion (CA), individually and in various combinations. Table 4.15 shows the achieved
DSCs for each experiment and each target domain. As expected, the stand-alone
U-Net performs worst, as the MR source distribution is significantly different from
the CT target distribution. Surprisingly, the fine-tuning strategy is outperformed by
the combination of edge enhancement and color augmentation in two of three target
domains, although CT volumes are incorporated into the fine-tuning process dur-
ing training. It is noteworthy, that adding low level contour information by means
of simple edge enhancement (EE) significantly increases the DSC for all three target
domains and improves the segmentation results reasonably more than adding ab-
stract shape constraints in terms of shape regularization, at least for the 3D case. A
similar improvement can be observed for the sole integration of color augmentation.
The best overall results are achieved by combining edge enhancement with shape

constraints and color augmentation, outperforming all other combinations and base-
lines with a mean DSC of 0.798± 0.14.
Unexpectedly, the U-Net trained with pseudo CTs by Zhu, Isola et al.’s [Zhu+17;
Iso+17] cycleGAN implementation yields worst segmentation results in all target
domains. This may be due to the fact, that the generated pseudo CTs might be of
inferior quality, as the source data needed to be converted to .png format and resized
to a low input size of 128× 128× 96, which is more prone to blurring effects. Addi-
tionally, the pseudo CT slices do not seem to be able to represent the target domain
sufficiently, also revealing artificial artifacts, as shown in Fig. 4.30. Here, it can be
observed that the generated pseudo CTs are representative in the overall intensity
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CHAOS TCIA BTCV ∅
U-Net 0.496 ±0.17 0.582± 0.12 0.301± 0.18 0.446± 0.20
U-Net+SP 0.594 ±0.16 0.604± 0.10 0.335± 0.23 0.487± 0.22
U-Net+EE 0.720 ±0.19 0.762± 0.08 0.519±0.13 0.650± 0.17
U-Net+CA 0.754 ±0.17 0.764± 0.12 0.397±0.29 0.605± 0.28
U-Net+EE+SP 0.753 ±0.13 0.817 ±0.13 0.551±0.29 0.692 ±0.25
U-Net+EE+CA 0.820 ±0.16 0.861 ±0.06 0.669±0.13 0.772± 0.14
U-Net+EE+CA+SP 0.814 ±0.19 0.862 ±0.07 0.730±0.12 0.798 ±0.14
U-Net+CT Fine-tuning 0.916 ±0.06∗ 0.828 ±0.07 0.662 ±0.15 0.766 ±0.15∗
U-Net on pseudo CT 0.359 ±0.18 0.527±0.17 0.273 ±0.19 0.391 ±0.21

TABLE 4.15: Achieved mean DSCs in each CT test data set and the
average DSC over all test sets. The upper table shows the results from
the ablation study with shape priors (SP), edge enhancement (EE),
and color augmentation (CA), whereas the bottom part shows the
achieved DSCs from the baseline implementations. ∗10 CT data sets
from the test set are used for fine-tuning, thus, only the remaining 10
CHAOS data sets are considered for evaluation. Based on [PDP20],

copyright ©2020 IEEE.

appearance, however, structure boundaries are either blurry (Fig. 4.30 (b)) or even
incorrect (Fig. 4.30 (d)). This may be due to the fact that the abdominal image-to-
image translation task seems to be very different to e.g. cranial pseudo CT generation
because of the larger variation in present organs and their appearance in CT slices.

Figure 4.31 depicts exemplary segmentation results from the evaluated test cases.
The first three columns show one example from each data set, whereas for the last
column an example is chosen, in which the best combination does not perform well.
In this figure, it is clearly visible that incorporating low level contour information
and color augmentation lead to a considerable segmentation improvement. It is
particularly noteworthy, that the addition of edge enhancement yields a more pre-
cise contour progression, especially in the area of the portal vein (first and second
columns), where the incision of the liver is correctly followed. In combination with
Oktay et al.’s [OF+18] anatomical shape constraints this yields a promising strategy
for domain adaptation in medical image computing without even having to consider
the target domain in the training process.

(a) T1 MRI (b) pCT (c) T2 MRI (d) pCT

FIGURE 4.30: Exemplary pseudo CTs. (a) and (c) show the original
images and (b) and (d) the corresponding pseudo CTs, generated by

cycleGAN [Zhu+17; Iso+17].
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4.5.3 Summary

In this section, three concepts to consider shape information for domain generaliza-
tion are presented. The first concept uses edge information to directly infuse low
level shape aware features into the segmentation network. As a second idea, Ok-
tay et al.’s ACNN [OF+18] is applied for shape regularization. The final suggestion
consists of using color maps for fast color augmentations to indirectly enforce the
abstraction of texture and intensity based to shape aware features.
In ablation experiments, it is demonstrated that a combination of all proposed strate-
gies even outperforms the upper baseline fine-tuning approach. This is especially
noteworthy, as no target domain data is considered in any way during training.
Surprisingly, the adversarial cycleGAN baseline results in the worst DSCs in the
comparison.
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FIGURE 4.31: Exemplary slices from the three target domains CHAOS,
TCIA, BCTV and one exemplary difficult slice (from left to right col-

umn).
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4.6 Conclusion

This chapter presents multiple strategies to incorporate prior shape information into
deep learning architectures.

• The cascaded convolutional distance transform is an adhoc method to real-
ize distance transforms in deep learning architectures. The conducted studies
show significant improvements compared to the reference U-Net on the exam-
ple of the segmentation of thoracic organs, particularly regarding Hausdorff
distance.

• A further approach lies in the imitation of the compression operation in a con-
volutional autoencoder. This general idea yields two architectures, namely the
IE2D-Net and IRE3D-Net.

– The IE2D-Net shows promising but marginal improvements to U-Net in a
slice-wise approach for volumetric image segmentation.

– In the ablation studies for IRE3D-Net, IE2D-Net shows clearer improve-
ments for 2D segmentation settings, in which shape appearance shows
consistency, but the structure of interest’s (e.g. the femur’s) FOV may
strongly vary.

– Therefore, it is recommended to use IE2D-Net for segmentation tasks,
in which the shape of the structure of interest generally stays consistent
across input samples, such as direct 3D segmentation or 2D segmenta-
tion tasks, where a decomposition of the input to slices or patches is not
required.

– For a slice-wise volumetric approach, e.g. for high resolution extractions
with limited GPU memory, a well configured U-Net approach suffices,
especially because of its more straight forward training procedure.

– Furthermore, IRE3D-Net shows superior performance in cross-modality
learning in an unrestricted competition environment. Moreover, it shows
significant improvements to U-Net in one-shot segmentation settings, es-
pecially in cases where training and test sample show only little overlap.

• Finally, three shape infusing strategies for domain generalization are proposed
and evaluated, all showing superior results to a baseline U-Net in ablation
studies. A combination of these strategies is even able to outperform the upper
fine-tuning baseline.
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Chapter 5

Topographical Priors in Deep Learning
Architectures

Chapters 3 and 4 pay particular attention to the concept of shape as an instance of
anatomical priors, since the shape of many structures of interest within the human
body show only little variation across patients and imaging modalities. There are,
however, also structures of irregular shape, for which the presented methods of pre-
vious sections do not apply. For these kind of structures, another form of anatomical
prior may be beneficial for a better extraction performance. This chapter particularly
focuses on the usage of topographical information of the structures of interest in deep
learning architectures. In contrast to shape priors, the key information of topograph-
ical priors lies in the prior knowledge about the position of its occurrence within the
human body instead of its shape and contour. In this chapter, section 5.1 demon-
strates the incorporation of topographical priors into a deep learning architecture
on the clinical example of the extraction of avascular necrosis of the femoral head.
Then, section 5.2 makes an excursion to a semi-supervised caries detection approach,
in which the concept of topographical priors aids in a better detection performance.
The content of this section is based on the following publications, for which content
reuse is permitted:

[Pha+20] Duc Duy Pham et al. “Multitask-Learning for the Extraction of Avas-
cular Necrosis of the Femoral Head in MRI”. In: Bildverarbeitung für die Medizin
2020. Springer, 2020, pp. 150–155

[Pha+21] Duc Duy Pham et al. “Fully vs. Weakly Supervised Caries Local-
ization in Smartphone Images with CNNs”. In: Pattern Recognition. ICPR In-
ternational Workshops and Challenges. Springer International Publishing, 2021,
pp. 321–336
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5.1 Extraction of Avascular Necrosis of the Femoral Head in
MR Images by Multitask Learning

In this section, a 2D deep multitask learning approach is presented, which addresses
the task of extracting small structures with irregular shape, leveraging prior knowl-
edge about the probable place of occurrence. This is done on the example of avascu-
lar necrosis of the femoral head (AVNFH) in MR volumes.

5.1.1 Motivation

Necrosis is a disease process of non-programmed premature cell death. In case of the
hip joint, various causes can lead to avascular necrosis of the femoral head (AVNFH),
such as a disruption of the blood supply by means of traumatic injuries, physical ob-
structions or metabolic issues. A collapse of the femoral head can lead to functional
damage of the hip joint. A precise assessment of the necrotic area helps in operative
planning and may prevent unnecessary total endo-prosthesis (TEP). Since manual
segmentation is expensive and time consuming, there is a high demand for com-
puterized fully automated methods. AVNFH presents large variability in its shape
and appearance, which makes the segmentation a challenging problem. Therefore it
cannot be addressed by the previously presented methods of this thesis.

5.1.2 Related Work

Zoroofi et al. [Zor+01] present a semi-automated necrosis segmentation pipeline of
traditional image processing methods, using histogram based thresholding in a re-
gion of interest (ROI) and ellipse fitting in oblique slices, which are set to be perpen-
dicular to the femoral collum. Similar approaches, that also estimate the ROI before-
hand, can be observed for other segmentation tasks, which deal with the extraction
on small structures. For the segmentation of brain lesions Song et al. [Son+16] use
a two-stage strategy in first approximating the ROI by means of thresholding and
GrowCut, in order to use a random forest classifier afterwards for pixelwise classifi-
cation.

In the scope of deep learning, the usage of these kind of multi-stage approaches
can also be observed for the extraction of small and irregular structures. For the
extraction of liver lesions both Christ et al. [Chr+16] and Vorontsov et al.[Vor+18] es-
sentially segment the liver first, in order to find the lesions afterwards. Hatamizadeh
et al. [Hat+19] combine the output of a Convolutional Neural Network with an ex-
tended Level Set method for the refinement of the initial lesion segmentation.

In this section, it is investigated, how well a variant of Ronneberger et al.’s U-Net
[RFB15] deals in segmenting rather small structures in large MR images. Addition-
ally, an alternative deep 3-branch multitask fully convolutional architecture is pro-
posed, which combines the tasks of image reconstruction, necrosis extraction, and
putting the necrosis into topographical context. Here the task of necrosis extraction
is the main objective, which is aided by the remaining two auxiliary tasks.
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5.1.3 Methods

Deep 3-Branch Multitask Fully Convolutional Architecture

In multitask learning, several tasks are addressed simultaneously in order to facili-
tate common properties across related tasks. In this particular deep learning setting,
a joint convolutional encoder is proposed, followed by three task-specific convolu-
tional decoder branches. The main objective is represented by a segmentor branch
that aims at segmenting the femoral necrotic area.

Let yseg denote the output of the segmentor branch. Then, an auxiliary task of recon-
structing the input from a latent representation by means of an autoencoder branch
can be defined. The objective of the autoencoder is, however, restricted to a partial
image reconstruction in the neighborhood of the necrotic area. The idea is to partic-
ularly enforce a compact latent representation, from which the autoencoder branch
can mainly reconstruct the necrotic area. The result of this branch is depicted as yauto.
Furthermore, an additional task of approximating the location of the topographical
neighborhood of the femoral necrosis is introduced. The intention is to learn fea-
tures that are activated by inter-patient consistent anatomical structures within that
location. In this scenario, the femoral head would be such anatomical structure, that
usually constrains the topographical location of AVNFH and that can be consistently
found across patients.
The output of this topographical branch is denoted as ytopo, for which the pixel values
range between 0 and 1.

FIGURE 5.1: Multitask architecture consisting of joint encoder and 3
different decoder branches. Main objective is the segmentation, auxil-
iary tasks are image reconstruction and topographical neighborhood
localization. For the final segmentation the segmentor branch is fused
with the topographical branch (side B). The autoencoder output is

omitted for inference (side A). Modified from [Pha+20].

As shown in Fig. 5.1, skip connections between the joint encoder and the segmentor



120 Chapter 5. Topographical Priors in Deep Learning Architectures

branch are used to improve the fine pixel localization capabilities of this decoder, ba-
sically rendering this cascade a U-Net variant. Skip connections to the topographical
branch are not used, since the rough topographical approximation of the surround-
ings does not need any fine-resolution information. The autoencoder branch does
not receive any skip connections, either, as these would allow the decoder to copy
the relevant information for the image reconstruction task from the shallow encoder
layers. In both cases the necessity to compress the input image into a compact repre-
sentation in latent space is therefore enforced.

For the final segmentation, the foreground output of the topographical branch is
multiplied with the segmentor branch output to emphasize on this topographical
neighborhood, i.e.

y
(fg)
final := y

(fg)
topo ⊗ y(fg)seg , (5.1)

where⊗ denotes the Hadamard product and y
(fg)
(·) the foreground necrosis channels

of the output y(·). The background channel of the final output is adjusted to

y
(bg)
final := 1− y

(fg)
final,

such that y
(fg)
final, y

(bg)
final ∈ [0, 1] . In the remainder of this section, leaving out any

superscript annotation denotes using all channels.

Training

To train the topographical branch, a ground truth for the desired neighborhood is
required. For this, the original ground truth necrosis segmentation GTseg is re-
laxed to squared environments around the necrotic area (Fig. 5.2). Since a necrosis-
independent localization is desired, each box is mirrored along the vertical axis, as
can be seen in Fig. 5.2 (b). The overlay of ground truths from both sides is partic-
ularly visible in the stepped upper and lower bounding lines. This relaxed ground
truth GTtopo is used to train the topographical branch by means of the dice loss (see
Eq.(2.2) in chapter 2.4.1). Using this relaxed ground truth, the topographical branch
learns to locate the neighborhood of the femur head. It is, however, not able to dis-
tinguish between necrotic and non-necrotic femur heads, as the this information is
not provided by the relaxed ground truth information.

(a) (b)

FIGURE 5.2: Construction of topographical ground truth: (a) Necrosis
ground truth, (b) relaxed topographical ground truth.
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Since the necrotic area only consists of a small fraction of the whole image, only
the foreground pixels of the segmentation output for the dice loss of the segmentor
branch are considered, i.e.:

Lseg := 1−
2 ·
∑

pGT fg
seg(p) · yfgseg(p) + ϵ∑

pGT fg
seg(p) +

∑
p y

fg
seg(p) + ϵ

, (5.2)

where ϵ > 0 is a small number to avoid zero in the denominator and p depicts a point
in the output/ground truth image.

For the autoencoder branch, the mean squared error over the topographical region
of interest is calculated, as an enforcement of a strong reconstruction capability is
desired, particularly in the probable area of necrosis, i.e.:

Lauto :=

∑
pGT fg

topo(p) · (I(p)− yauto(p))
2∑

pGT fg
topo(p) + ϵ

. (5.3)

The autoencoder and segmentor branches’ loss functions are combined to a reconstruction-
dependent loss function

Lseg,auto := αLauto + (1− α)Lseg, (5.4)

where α ∈ [0, 1] is a dynamic weighting factor, set to α := Lauto, similar to the
proposition in a previous publication [Pha+19b], where a refinement network loss
is dynamically weighted by the segmentation performance of a preceding U-Net
component. To guarantee α ∈ [0, 1], the input images are normalized to a range
between zero and one. It should be noted, that when taking into account the gra-
dient of Lseg,auto during training, α is considered a constant, although it is actually
dependent on the autoencoder branch. The dynamic weighting scheme encourages
the joint encoder to pre-generate features and a latent representation for image re-
construction, before focusing on the segmentation task. Only when Lauto is small
enough, the focus shifts from reconstruction towards segmentation.
Similar to the procedure of the IE2D-Net in chapter 4.3 and the IRE3D-Net in chapter
4.4, the topographical branch is trained separately by a different optimizer. The op-
timizers are used in an alternating fashion, starting with the topographical branch.
It should be noted that the autoencoder branch is only needed for training, being ne-
glected during inference, as indicated in Fig.5.1 by the separation line between side
A and B.

5.1.4 Experiments

In the following experiments the proposed architecture is compared to a U-Net base-
line, that is trained in a similar and therefore comparable fashion. Dice Similarity Co-
efficient (DSC) and symmetric Hausdorff distance (sHD) serve as evaluation metrics
for the segmentation of the necrotic tissue. Because of the small size of the struc-
ture of interest, precision and recall are also depicted for further insights into the
segmentation performance.

Data

The evaluation is conducted on twelve coronal T1-weighted MR volumes, each com-
prising 19 to 30 slices, which are denoted as P1, . . . ,P12. The MR volumes were
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acquired by a Siemens Magnetom Aera 1,5 Tesla MR tomograph during clinical rou-
tine and are provided by the Department of Orthopaedics and Trauma Surgery at
the University Hospital Essen. In contrast to the MR data in chapter 3.3.5, this data
set consists of coronal slices and shows a lot more variability in its resolution. Table
5.1 shows the voxel spacing and the volume size of the available patient volumes. It
is noteworthy that the original volume sizes are much larger than in chapter 3.3.5,
while the depth resolution is much coarser than before.

Patient Volume Voxel Spacing Volume Size
P1 (0.84× 0.84× 4.8) (512× 512× 19)
P2 (0.85× 0.85× 6.6) (448× 448× 20)
P3 (1.12× 1.12× 5.2) (350× 448× 20)
P4 (0.78× 0.78× 4.4) (512× 512× 30)
P5 (1.19× 1.19× 5.2) (320× 320× 25)
P6 (0.67× 0.67× 5.9) (560× 560× 17)
P7 (0.73× 0.73× 4.6) (512× 512× 23)
P8 (0.43× 0.43× 4.4) (512× 512× 20)
P9 (0.82× 0.82× 4.8) (512× 512× 21)
P10 (0.74× 0.74× 4.2) (512× 432× 25)
P11 (0.79× 0.79× 5.5) (480× 480× 30)
P12 (1.04× 1.04× 6.3) (384× 384× 30)

TABLE 5.1: Resolution of AVNFH data set.

Implementation Details

As before, a variant of Ronneberger et al.’s 2D U-Net is implemented like in chapter
4.3.2. The presented three branch multitask fully convolutional network (MTL-Net)
is implemented accordingly, following the design depicted in Fig. 5.1. For training
and inference the MR volumes are processed slice-wise. The coronal slices are re-
sized to an input size of 512× 512 and normalized to intensity values between 0 and
1. In a leave-one-out cross validation manner, one patient volume is kept for test-
ing while the networks are trained and validated on the remaining patient volumes.
Flipping, rotation and translation are used for data augmentation. For all minimiza-
tion purposes an Adam optimizer with initial learning rate of 10−3 is used, respec-
tively. Tensorflow 1.12 serves as deep learning framework and the experiments are
conducted on a NVIDIA GTX 1080ti GPU.

Results

For the evaluation, the 2D predictions are stacked to 3D segmentation maps and
compared to the desired 3D ground truths. The achieved mean DSC, precision and
recall values for both architectures are depicted in table 5.2 for AVNFH of the right
and left femur.

The baseline U-Net achieves a mean DSC of 0.341 on the left and 0.325 on the right
femur. The proposed MTL-Net on the other hand results in higher mean DSCs of
0.389 and 0.371, respectively. This is reflected in the average precision values, i.e.
0.214 and 0.474 by the U-Net compared to 0.214 and 0.568, achieved by MTL-Net.
Regarding mean recall, the U-Net implementation yields slightly higher values than
the proposed MTL-Net. Considering the higher mean precision of MTL-Net, this is
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Left femur Right femur
U-Net MTL-Net U-Net MTL-Net

DSC 0.341 ± 0.396 0.389 ± 0.442 0.325 ± 0.253 0.371 ± 0.268
Precision 0.214 ± 0.309 0.214 ± 0.330 0.474 ± 0.337 0.568 ± 0.375
Recall 0.151 ± 0.234 0.119 ± 0.230 0.347 ± 0.282 0.335 ± 0.237

TABLE 5.2: Mean DSC, precision, and recall from a standard U-Net
compared to the proposed architecture. Adapted from [Pha+20].

an indicator for fewer pixel-wise false positive predictions by MTL-Net. Therefore,
U-Net appears to be more prone to segmentations with more false positives.
For both architectures, it is striking that the achieved DSC values are very small. This
is due to the fact, that necrotic tissue is often very small and does not always occur
on both sides. If a network oversees a complete necrotic area or predicts necrosis in
an image slice, where is none, the DSC value is drastically reduced to zero. Further-
more, overseeing fractions of the necrotic area has a larger impact on the DSC than it
would have on larger organs. Overseeing fractions is, however, more probable since
the necrotic areas are very small compared to the whole volume.

Patient Volume
DSC sHD

AVNFH?
U-Net MTL-Net U-Net MTL-Net

P1 0.714 0.740 213.97 15.81 ✓

P2 0.350 0.332 189.28 18.47 ✓

P3 0.088 0.040 65.80 12.21 ✓

P4 0.341 0.559 18.03 14.35 ✓

P5 0 0 332.96 Inf ✓

P6 0 0 Inf Inf ✗

P7 1 1 0 0 ✗

P8 0 1 Inf 0 ✗

P9 0.603 0 208.90 Inf ✓

P10 1 1 0 0 ✗

P11 0 0 Inf Inf ✗

P12 0 0 Inf Inf ✗

∅∗ 0.299± 0.20 0.279± 0.19

TABLE 5.3: Achieved DSCs and sHDs on left femur for each test pa-
tient. ∅∗ depicts the mean over all patients, that actually have avascu-

lare necrosis on this side.

Table 5.3 shows the achieved DSCs and sHDs of both architectures on the left femur
for all test patient volumes in the leave-one-out evaluation. The last column depicts,
whether there is any AVNFH on this femur side. For the left side, it is directly ob-
servable, that half of the patients do not have any AVNFH on their left femur. These
patients are particularly susceptible to very weak DSC scores, which could effect the
mean DSC drastically. One example is patient P8, for which MTL-Net correctly pre-
dicts zero necrosis pixels, resulting in a very high DSC value of 1, whereas U-Net
yields a DSC of zero, since at least one pixel is predicted to be necrotic. On the other
hand, patient P9 is an example, for which MTL-Net misses out on a high DSC, since
it overlooks the necrotic area. Only considering the patients with AVNFH on their
left femur, U-Net’s mean DSC would then be 0.299 compared to MTL-Net’s mean
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DSC of 0.279, which is depicted in Table 5.3 as ∅∗. Taking a look at the achieved
sHDs, however, showcases drastic improvements of MTL-Net compared to U-Net
for most patients. It is noticeable that entries show a sHD of infinity (Inf). This is
either because the prediction is empty (no necrotic area found at all), although there
is necrotic tissue, or vice versa. This would yield the Hausdorff distance of empty
to non-empty sets, which is defined a infinity (see chapter 2.4.1). Therefore, mean
sHDs cannot be considered in this evaluation.

Patient Volume
DSC sHD

AVNFH?
U-Net MTL-Net U-Net MTL-Net

P1 0.732 0.738 202.78 104.81 ✓

P2 0.575 0.697 370.95 99.58 ✓

P3 0 0 Inf Inf ✗

P4 0.207 0.196 177.33 26.19 ✓

P5 0.306 0.224 30.74 33.36 ✓

P6 0.146 0.435 240.55 63.71 ✓

P7 0 0.070 289.73 131.62 ✓

P8 0.007 0 54.360 195.17 ✓

P9 0.597 0.550 302.81 9.64 ✓

P10 0.433 0.659 181.74 63.81 ✓

P11 0.416 0.442 355.98 43.87 ✓

P12 0.480 0.445 233.78 16.03 ✓

∅∗ 0.350± 0.18 0.410± 0.27

TABLE 5.4: Achieved DSCs and sHDs on right femur for each test
patient. ∅∗ depicts the mean over all patients, that actually have avas-

cular necrosis on this side.

Table 5.4 shows the achieved DSCs and sHDs of both architectures on the right fe-
mur for all test patient volumes. In this case, all patients except for P3 have AVNFH
on their right side. Removing P3 from the mean calculation ∅∗, the mean DSC values
change to 0.350 for U-Net and 0.410 for the MTL-Net from the initial observations in
Table 5.2. Like on the left side, it is visible, that the sHD improves drastically in the
MTL-Net results compared to U-Net for most cases.

From the initial observations in Table 5.2 and the more differentiated inspections by
means of Tables 5.3 and 5.4, it can be concluded that the proposed MTL-Net gener-
ally yields better extraction results for AVNFH than the U-Net baseline. This can also
be observed in the exemplary comparison of segmentation outputs in Fig. 5.3 (b) and
(d). It is noticeable that the segmentor branch output (Fig. 5.3 (c)) yields contours
that are closer to the boundaries of the necrotic area. It, however, also contains some
outlier predictions, especially at the bottom. This may be due to the spatial restric-
tion of the reconstruction loss to the surrounding neighborhood in Eq.5.3. This term
only punishes reconstruction errors, which occur within the topographical neigh-
borhood. Therefore, deviations outside this area are not corrected, which can be
seen in Fig.5.3 (g) at the bottom, where very high intensity values occur. Since the
architecture has a joint encoder, this behavior may propagate towards the segmentor
branch, resulting in the observed outliers. This is corrected in the final segmentation
output (Fig. 5.3 (d)) by the multiplicative foreground emphasis by means of the to-
pographical branch’s output (Fig. 5.3 (f)). This yields a segmentation result for small
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(a) (b) (c) (d)

(e) (f) (g)

FIGURE 5.3: Exemplary coronal MRI slice with overlayed (a) ground
truth, (b) U-Net output, (c) segmentor branch output, (d) final output,
(e) relaxed ground truth, and (f) topographical branch output. The

autoencoder output is depicted in (g). Based on [Pha+20].

structures, that is less prone to outlier predictions than a standard U-Net implemen-
tation.

5.1.5 Summary

In summary, a 2D multitask deep learning architecture for the segmentation of small
structures is presented in this section on the example of AVNFH extraction. The re-
construction property of autoencoders is leveraged and a topographical localization
objective is defined to improve the main task of segmenting AVNFH. Furthermore, a
reconstruction-dependent adaptation scheme is applied during training. In the eval-
uation, promising improvements compared to U-Net can be observed, although the
dice score needs to be regarded with care for these small structures.
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5.2 Excursion: Topographical Priors for Deep Weakly Super-
vised Caries Localization in Smartphone Images

In this section, a related excursion to the application of topographical priors in a
weakly supervised caries localization method is made, based on [Pha+21]. First,
both medical and technical motivations are outlined in section 5.2.1, followed by a
short literature review about related work in section 5.2.2. Then, a brief introduction
to region-based convolutional neural networks (R-CNN) for fully supervised object
detection is given in section 5.2.3. Afterwards, a weakly supervised approach is
presented in section 5.2.3, that makes use of additional topographical priors during
training for a better localization capability. In section 5.2.4 the conducted experi-
ments are presented.

5.2.1 Motivation

Medical Motivation

While in developed countries routine dental consultations are often covered by in-
surance, access to prophylactic dental examinations is often expensive in developing
countries. Therefore, sufficient oral health prevention, particularly early caries detec-
tion, is not accessible to many people in these countries, yet. Dental caries is a global
oral health problem which can be effectively prevented and controlled through a
combination of individual, community and professional efforts. Computer aided
tools not only assist the dentists in accelerating the caries detection and diagnosis
process, but may also be helpful in reducing human errors. Existing technical sys-
tems for the detection of tooth decay are based on standardized imaging techniques,
such as x-ray. While access to this kind of technology is not always guaranteed in
developing countries, smartphones have become available and affordable in most
countries [May+16]. This circumstance can be utilized for affordable initial caries in-
spection to determine the necessity for a subsequent dental examination. Therefore,
this section investigates the possibility of caries localization in smartphone images
with both fully supervised and weakly supervised object detection methods.

Technical Motivation

Fully supervised object detection methods usually require the exact locations of the
object of interest’s bounding box for training. Therefore, a bounding box annotation
is needed for each caries occurrence. Establishing these fully informative annota-
tions (FIA) is often tedious and costly, particularly for large data sets, in which the
target object may appear multiple times within one image. Weak supervision poses
a more time-efficient but more challenging option to address object detection with
less informative annotations. In context of this thesis, image-level annotations (ILA),
in which only the image label but no information about the caries location is avail-
able, are considered as weak labels. Furthermore, mouth region annotations (MRA),
in which a bounding box of the mouth region is given, is considered as additional
topographical information. These are represented as binary rectangular masks.

Ren et al.’s Faster R-CNN [Ren+15] is used for the fully supervised upper baseline
with FIAs. For the weakly supervised case, a CNN classifier is trained with the ILAs,
where the activation maps within the CNN are utilized to locate possible caries oc-
currences. This is a challenging task as the caries regions may appear at multiple and
different locations, varying scales, and under a variety of camera perspectives. The
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initial weakly supervised strategy is compared to an extension with a topographi-
cally aware MRA based training approach.

5.2.2 Related Work

Primarily, the detection of dental caries has been a visual process, principally based
on visual-tactile examination and radiographic examination [Sri+20]. Using these
methods, caries can only be diagnosed by a dental health professional. Due to the
asymptomatic initiation and progression of the dental caries, patients often fail to
consult a dentist in time, resulting in dental caries progression to an irreversible loss
of the dental hard tissue [Hum+19]. Ali et al. [AEZ16] and Choi et al. [CEK18]
make use of neural networks to automatically detect caries areas within x-ray im-
ages. Casalegno et al. [Cas+19] make use of near-infrared transillumination imag-
ing instead of x-ray to extract caries regions by means of a U-Net like [RFB15] deep
learning architecture. Kositbowornchai et al. [Kos+06] also train a neural network
to detect artificial dental caries using images from a charged coupled device (CCD)
camera and intra-oral digital radiography. For their evaluation only teeth with ar-
tificial caries are considered, which usually have different properties than naturally
affected ones. Similar to this contribution, Datta et al. [DC15] use RGB images to de-
tect caries regions, however, by means of traditional image processing methods, i.e.
image enhancement, transforming the images into a different color space and clus-
tering in this color space. In contrast to the following use case. their images were
captured with a specialized camera for the oral cavity, which allows similar lighting
conditions and viewpoints across the data set. Saravanan et al. [SRG14] propose a
strategy to detect dental caries in its early stage using histogram and power spectral
analysis. In this method, the detection of tooth cavities is done based on the region
of concentration of pixels with regard to the histogram and based on the magnitude
values with regard to the spectrum. Zhang et al. [Zha+20b] and Liang et al. [Lia+20]
propose deep learning-based localization systems for cavity detection and integrate
their systems into smartphone applications. Liu et al. [Liu+19] explore the applica-
bility of in-home dental healthcare by presenting a complete IoT system, in which
deep learning is used for object localization. Most of these contributions have in
common that either full supervision or traditional unsupervised image processing
is applied to detect the caries region.

Regarding weakly supervised methods, related work can be generally categorized
into multiple instance learning (MIL) based methods [BPT14; Wan+19], CNN based
approaches [Oqu+15], and a combination of both [Li+16]. In MIL based approaches,
an image is usually considered to be a bag of instances, where the object locations rep-
resent the instances. The aim is to learn a discriminative representation by means
of the image-level annotations, which is then used to detect positive object instances
in positive images. In this thesis, however, the focus is on a solely CNN based ap-
proach for weakly supervised object detection, utilizing additional prior topograph-
ical knowledge.

5.2.3 Methods

Fully Supervised Object Detection

For the fully supervised scenario with fully informative annotations (FIAs) of the
caries’ bounding boxes within each image, a variant of region based convolutional
neural networks (R-CNNs), as introduced by Girshick et al. in 2014 [Gir+14] is used.
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FIGURE 5.4: Scheme of the Faster R-CNN architecture, as proposed
by Ren et al. [Ren+15]. Reused from [Pha+21].

The basic idea is to propose regions of interest (ROIs), i.e. possible object regions
within the input image (e.g. by a selective search), which are then classified by a
CNN to predict the class labels (including background) for the proposed ROIs. The
concept of R-CNNs builds the foundation of various subsequent object detection
algorithms.

Faster R-CNN

For the use case of caries detection in smartphone images, Ren et al.’s Faster R-CNN
approach [Ren+15] is a suitable architecture. It is based on Girshick’s work on Fast
R-CNNs [Gir15], an improvement of the initial R-CNN proposal [Gir+14]. In con-
trast to these initial R-CNN iterations, Ren et al. formulate an end-to-end strategy,
in which the region proposal is carried out by a CNN. The general pipeline is de-
picted in Fig. 5.4. First the input image is processed by a pretrained CNN, e.g. by
Simonyan and Zisserman’s VGG-16 [SZ15b] or He et al.’s ResNet-50 [He+16], to ex-
tract the image’s latent features with their last convolutional layer. Then, a region
proposal network (RPN) processes the feature map stack to propose possible ROIs.
For this, the RPN learns to classify whether so called anchors, i.e. bounding boxes
with specific size and aspect ratio for each image position, are possible object re-
gions or not. Additionally, the RPN learns to refine the anchor boundaries. Since
the proposed regions of the RPN may be of different size, a ROI pooling layer trans-
forms the proposed regions to a uniform size. A ROI pooling layer is able to reduce
a region of arbitrary size to a predefined size by using as many pools on the input
region as the predefined size suggests. The uniformly sized ROIs are then passed to
the R-CNN to be classified. A particular advantage of the Faster R-CNN approach
is the end-to-end trainable architecture and the network’s capability to locate even
small objects, such as caries cavities.
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Weakly Supervised Localization

For the weakly supervised case, only image-level annotations (ILAs) are utilized for
training. The main idea is to train classification CNNs, which only require ILAs, and
apply a variant of Zhou et al.’s class activation mappings (CAMs) [Zho+16]. While
these are originally introduced to visually explain the decision processes of specif-
ically designed classification CNNs, they are utilized to localize the image regions,
which are responsible for the classification as caries. The underlying assumption is
that specifically caries regions should be used by the CNN for its classification.
The general idea of CAMs is to inspect the influence of each feature map and their
activations after the CNN’s last convolutional layer. A limitation to Zhou et al.’s
CAM is a restriction on the design of the CNN, as it needs to implement a global
average pooling (GAP) layer after the last convolutional layer, followed by one fully
connected (FC) layer. This is, however, a major restriction, as this CAM approach
is not applicable to many classification networks, which do not use GAP. The im-
portance of each feature map (after the CNN’s last convolutional layer) is estimated
according to the weights of the FC layer. The weighted sum of these feature maps
results in a CAM for each class, visualizing which regions of the image are respon-
sible for the class assignment.
For the caries localization task, the activated regions of the CAMs are treated as pos-
sible caries locations.

Gradient-weighted Class Activation Mapping

Due to the CNN design limitation of Zhou et al.’s CAMs, a more general extension
of CAMs, presented in Selvaraju et al.’s work on gradient-weighted class activation map-
pings (Grad-CAMs) [Sel+17], is used instead.
Let Fk denote the k-th feature map of a feature map stack with k ∈ {0, 1, . . . ,K},
where K + 1 denotes the number of feature maps in that stack. The general idea is
that the partial derivative of the model output y(c) for a class c ∈ C with respect to a
feature map’s pixel position (i, j), i.e.

∂y(c)

∂Fk(i, j)

corresponds to the local influence for the class assignment to c. Therefore, the global
average over the partial derivatives of y(c) with respect to all pixel positions of a
feature map Fk determines the approximated influence of Fk on the class assignment
of class c to the input image, i.e.:

α
(c)
k :=

1

MkNk

∑
i

∑
j

∂y(c)

∂Fk(i, j)
, (5.5)

where (Mk ×Nk) is the size of the feature map Fk. Selvaraju et al. [Sel+17] propose
computing the Grad-CAM for a class c by means of the weighted sum over all feature
maps, where the weights are determined by the influence in Eq. (5.5), followed by a
ReLU activation, i.e.:

A
(c)
Grad−CAM := ReLU

(∑
k

α
(c)
k Fk

)
. (5.6)
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Grad-CAM
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FIGURE 5.5: Proposed caries detection pipeline. Grad-CAM is only
used for inference.

The ReLU activation helps to only consider regions, which have a positive impact on
the assignment to the class c.

Proposed Caries Detection Pipeline

As mentioned before, the generated Grad-CAMs are used to extract possible caries
areas, as they locate image regions which are responsible for the class prediction.
First, a classification CNN, such as ResNet-50 [He+16], which is pretrained on Im-
ageNet[Den+09a], is trained to differentiate between caries and non-caries images.
For inference, the class activation map Acaries

Grad−CAM for the caries class is generated
by means of the gradients of the desired class output (in this case caries). Bound-
ing boxes of possible caries locations are derived from the Grad-CAM. The overall
pipeline is depicted in Fig. 5.5.

Fig. 5.6 elaborates on the generation of bounding boxes, based on the Grad-CAM
pipeline. Otsu thresholding [Ots79] is applied on Acaries

Grad−CAM to generate a binary
mask, that only keeps relevant activation positions. By point-wise multiplication rel-
evant activation locations are isolated. Afterwards, Gaussian blurring is applied to

FIGURE 5.6: Bounding box extraction process from Grad-CAM. (1)
Grad-CAM, (2) mask after Otsu thresholding, (3) Hadamard prod-
uct, (4) smoothed by Gaussian blur, (5) extraction of local maxima,
(6) random walk segmentation, (7) extracted bounding boxes. Reused

from [Pha+21].
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smooth the activation landscape for a subsequent extraction of local maxima. These
are used as seed points for a random walk algorithm to segment the remaining image
[Gra06]. Based on these segmentation results, the bounding box limits for predicted
caries locations are finally estimated.

Extension with Topographical Constraints

To further improve the localization capabilities of the proposed pipeline, additional
annotations of the mouth region (MRAs) are considered. These auxiliary location
constraints are injected into the classification network only during training by ex-
tending the classification loss by a topographical localization constraint term Lconstraint.
Let χmouth denote a binary mask, indicating the mouth region. Then the topograph-
ical loss for class c ∈ C is defined as

Lconstraint :=
∑
(i,j)

Ac
Grad−CAM (i, j) · (1− χmouth(i, j)), (5.7)

punishing any activation outside the mouth area. The pipeline is depicted in Fig. 5.7.
In the previous proposal, the Grad-CAM is only computed during inference. In this
topography aware procedure, however, the Grad-CAM and the location constraints
are taken into account during training.

Grad-CAM
Bounding Box 

Extrac on

CNN
Classi ca on 

Loss

Image label

Gradient wrt

Class Output

Desired class for Grad-CAM

Topographical

Loss

FIGURE 5.7: Proposed caries detection pipeline with topographical
constraints. The topographical loss is combined with the classifica-
tion loss to train the classification CNN. Here, Grad-CAM is also used

during training to backpropagate from the topographical loss.

Implementation

For the Faster R-CNN implementation, as an upper baseline, the Tensorflow Object
Detection API1 is utilized. For feature extraction, ResNet-50 [He+16], pre-trained on
ImageNet[Den+09a] with an input size of 1024 × 1024, is used as the base network.
The RPN is empirically configured for anchors with scales of 0.25, 0.5, 1.0, 2.0 and

1https://github.com/tensorflow/models/tree/master/research/object_
detection

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
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aspect ratios of 0.5, 1.0, 2.0, resulting in 12 different anchor variations per location.
For training a batch size of 16 is used. A momentum optimizer with cosine learning
rate decay, initialized with a base rate of 0.1, is employed for weight adaptation. Due
to the given implementation, a maximal number of training iteration steps of 15000
is set, instead of setting a maximal number of epochs. For the proposed weakly
supervised strategies, ResNet-50 is also used as the base classifier network for com-
parability to Faster R-CNN. The methods are implemented in Tensorflow 2.0. The
model is trained with a batch size of 8 for maximally 100 epochs, employing the
RMSprop optimizer with a learning rate of 0.001.

5.2.4 Experiments

Data

For the experiments, a data set with annotations is provided by the Department of
Paedodontics and Preventive Dentistry of UCMS and GTB Hospital, Delhi, India. It
consists of 387 smartphone images of the oral cavity, from which 220 are of patients
with caries and 167 images show healthy teeth. From the 220 caries images, for 93
images the exact caries locations are annotated with bounding boxes (FIAs), whereas
the remaining images only have image-level annotations (ILAs). The mouth region
annotations (MRAs) are created for all 387 images. For image collection, a OnePlus
7 pro smartphone composite camera2 system was used, consisting of three different
(48, 16, 8) mega pixels cameras. All images were taken while considering the normal
picture taking behavior of a user. For example, the camera is focused on the tooth
cavities (if apparent) and pictures are taken in zoom out mode. For both patients
with healthy and patients with caries affected teeth, the camera focus was set on the
oral cavity. The patients were asked to keep still to avoid blurry images. Depending
on the exposure of the patient to natural light, artificial light of the smartphone has
been used to increase visibility if necessary. The field of view and the perspective of
the images varies, depending on the position of the carious lesions.

The evaluation is conducted in a hold-out manner, in which the data set is divided
into non-overlapping training, validation and testing sets with a ratio of approxi-
mately 60 : 20 : 20. The training set is used for training, the validation set for moni-
toring, and the testing set for the evaluation. First, the classification performance of
the base classifiers for the classification task is evaluated. Then, the caries localiza-
tion performance is investigated. It needs to be noted that only caries images with
FIAs (and all non-caries images without location information) can be used for train-
ing the Faster R-CNN approach. These are divided according to the aforementioned
ratio.
Therefore, all testing images are used for the classification evaluation, whereas only
testing images with FIAs (and all non-caries testing images) are considered for the
object detection evaluation. The Faster R-CNN system is used as a baseline to es-
timate the upper bound for the localization task, as it is to be expected that a fully
supervised system yields better results than weakly supervised approaches. In the
following, the weakly supervised caries detection method is denoted as WSCDM
and its extension with local constraints as WSCDM-LC. Both systems are trained
with ILAs and WSCDM-LC additionally with MRAs.

2https://oneplus.com/de/7pro#/specs

https://oneplus.com/de/7pro#/specs
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Classification Performance

Since the weakly supervised strategy is based on a base classificaton CNN, it is cru-
cial to analyze whether the base classifier yields reasonable results. To evaluate the
classification performance of the Faster R-CNN, images for which caries locations
are predicted are considered caries image classifications. Precision, recall, and DSC
serve as evaluation metrics (see chapter 2.4).

Metric Faster R-CNN WSCDM WSCDM-LC

Precision 0.61 1.00 1.00
Recall 0.90 0.76 0.86
DSC 0.73 0.86 0.92

TABLE 5.5: Classification results regarding precision, recall, and DSC
of fully and weakly supervised systems on test set. From [Pha+21].

Table 5.5 shows the achieved results of the three systems on the unseen testing set
in comparison. It is noticeable that both WSCDMs achieve a precision of 1, which
means that both systems have predicted zero false positives on the test data set. This
implies a generally low false positive rate for the base classifiers of the weakly super-
vised systems. However, Faster R-CNN yields the highest recall, which is favorable
in terms of clinical applicability, as this implicates the lowest false negative rates,
thus this system is less prone to oversee caries images. Regarding DSC it is observ-
able that WSCDM-LC obtains the best results, at least for classification.

Localization Performance

For a comparison of the localization capabilities, the mean average precision (mAP) is
used as the performance metric. To describe the mAP, first the computation of the
precision-recall curve is elaborated.

Any bounding box prediction that has an intersection over union (IoU) with any
ground truth annotation over a threshold is assumed to be a true positive (TP). Any
prediction, for which an IoU over this threshold cannot be achieved with any avail-
able ground truth bounding box, is considered a false positive (FP).
For the evaluation, first all test samples are passed through the trained model to
achieve bounding box predictions. An initially empty set is then iteratively filled by
one of the bounding box predictions. The order, in which the set is filled, is deter-
mined by the prediction confidence, beginning with the highest confidence score.
Here, the prediction confidence refers to the output score, that the model calculates
for the class of the corresponding bounding box. In every iteration, precision and
recall are calculated. For precision only the predictions within the set are consid-
ered, however, for recall all actual positives, also those outset the set, are taken into
account.
For the first iteration, a very low recall value is expected, as the number of true pos-
itives in the set yields a small fraction of all actual positives. However, the precision
is either 1 or 0, as all of the predictions within the set so far (i.e. the first and highest
ranked prediction) are either correct or not. While the recall value can only rise or
stay the same with each additionally inserted prediction, the precision value rises
with correct and decreases with false additional prediction insertion.
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For each network prediction a precision-recall pair is obtained by the above men-
tioned procedure, which can be visualized in a precision-recall curve. Usually the
precision value of each recall is adapted, such that the resulting curve is monotoni-
cally decreasing with ascending recall. This is accomplished by using the maximally
achieved precision of all higher recall scores. This is denoted as the interpolated pre-
cision. Selecting the maximally achieved precision of all higher recalls follows the
intuition, that the higher the recall, the more difficult it is to achieve a high preci-
sion. If many actual positives are correctly classified as positive, the classifier could
tend to classify actual negatives as false positives, which would result in a high re-
call, but a low precision. Thus, if for a high recall, a high precision is achieved, it can
be assumed, that at least this precision score can be also achieved for lower recall
values.

FIGURE 5.8: Precision-Recall curves for IoU level of 0.5.
Reused from [Pha+21].

The resulting precision-recall curves of the experiments are shown in Fig. 5.8. The
average precision (AP) approximates the area under the curve (AUC). Since this pro-
cedure can be done for multiple classes, the mAP is often defined to be the mean AP
over all classes. In this particular caries detection case, AP and mAP are the same,
as the number of classes to detect is one.

The precise definition of AP, however, varies depending on the context. For exam-
ple, in the Pascal Visual Object Classes (VOC) challenge of 2007 [Eve+07; Eve+10b;
Eve+15] the AUC, is approximated by averaging over eleven equidistantly selected
precision values of the interpolated precision-recall curve, following Salton and Mc-
Gill’s suggestion [SM83]. In the Pascal VOC challenges from 2010 onward, on the
other hand, the AP is calculated by integration, i.e. by a more precise calculation of
the AUC [Eve+10a; Eve+15]. While in the Pascal VOC challenges an IoU threshold
of 0.5 is used to distinguish between TP and FP, in the Common Objects in Context
(COCO) challenges [Lin+14] a series of IoU thresholds is used to generate different
precision-recall curves. The average over all resulting AUCs (calculated as in Pascal
VOC 2010 by integration) is then considered the AP.
For all three variants, the mAP denotes the mean over all considered classes. In this
thesis, the mAP definitions of the Pascal VOC [Eve+07; Eve+10a] and COCO chal-
lenges [Lin+14] are considered. Tab. 5.6 shows the various achieved mAP values for
each system. For the COCO variant, the values after @ denote the considered IoU
threshold(s). The formulation @[0.5 : 0.05 : 0.95] refers to the usage of IoU thresh-
olds in the range of 0.5 to 0.95 with a step size of 0.05. For a threshold of @0.5 the
COCO mAP definition is identical to the Pascal VOC 2010 definition.
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Faster R-CNN WSCDM WSCDM-LC

Pascal VOC
2007 0.55 0.43 0.43
2010 0.53 0.41 0.45

COCO
@[0.5 : 0.05 : 0.95] 0.46 0.29 0.34
@0.75 0.51 0.38 0.45

TABLE 5.6: Detection results of caries locations on test set regarding
Pascal VOC 2007 & 2012 and COCO mAP. Reused from [Pha+21].

The results in table 5.6 show that the fully supervised Faster R-CNN baseline ap-
proach yields the best caries localization results on the test data set across all con-
sidered mAP definitions. This outcome was to be expected, as the annotations con-
tain more complex information than the image-level and mouth region annotations.
However, the proposed weakly supervised strategies also achieve promising detec-
tion results, nevertheless. Except for the Pascal VOC 2007 case, the topography aware
extension yields better results than the initial WSCDM for the remaining mAP defi-
nitions. The gap to the fully supervised Faster R-CNN upper baseline can be there-
fore reduced by the additional location constraints.

Fig. 5.9 shows the location predictions of each strategy on exemplary test images.
The predicted bounding boxes are depicted as white, whereas the ground truth
bounding boxes are shown in green. The activation maps of the weakly supervised
systems are overlayed and the confidence score of the base classifier of the weakly
supervised systems is depicted in the upper left corner. In the first row, it is observ-
able that surprisingly the location prior, which is only used during training, seems
to help in differentiating different instances, which WSCDM fails to achieve. The ad-
ditional coarse location information possibly fosters some reallocation of available
network resources.

Rows 2-4 depict example images, in which WSCDM-LC shows more intuitive activa-
tion maps focused within the mouth region, whereas in these cases WSCDM shows
multiple activations in non-caries regions. This indicates a superior detection per-
formance of WSCDM-LC compared to WSCDM, underlined by most mAP results in
Table 5.6. In particular, row 3 shows an image, for which the base classifier of the
WSCDM predicts a false negative (as the low prediction score of 0.1% for caries in-
dicates), whereas the semantically more meaningful activation map of WSCDM-LC
seems to help in an improved classification (prediction score of 96.44% for caries),
which is also suggested in the overall superior classification results in Table 5.5.

Although row 1 suggests that the location constraint helps in differentiating adjacent
instances, row 4 shows a drawback of the additional location constraint. For strong
activations, the bounding box extraction strategy captures a larger area, as the neigh-
borhood of a strong activation usually also shows strong activations. In this case the
strong activation results in a bounding box prediction that is larger than the desired
ground truth.

Row 5 shows an example test image, in which all systems, including Faster R-CNN,
yield a false positive prediction in the bottom left area. A closer inspection shows,
that all 3 systems have detected a caries region, which was not annotated in the
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caries: 100.00% caries: 100.00%

caries: 99.89% caries: 100.00%

caries: 0.10% caries: 96.44%

caries: 100.00% caries: 100.00%

caries: 50.20% caries: 100.00%

caries: 6.04% caries: 0.05%

Faster R-CNN

caries: 0.00%

WSCDM

caries: 0.00%

WSCDM-LC

FIGURE 5.9: Exemplary predictions on test set. Ground truth bound-
ing box in green, predictions in white. First row image was cropped

to keep patient’s anonymity. Reused from [Pha+21].
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ground truth data, as the predicted region is labeled as caries in the dentist’s mirror,
but not on the actual tooth.

The last two rows show difficult examples, in which the base classifiers of the weakly
supervised systems both predict false negatives. Therefore, no bounding boxes are
generated. However, when inspecting the activation maps, it is still noteworthy, that
WSCDM-LC shows more intuitive activation locations than WSCDM. Furthermore,
it is noteworthy regarding the last row, that WSCDM-LC shows clear activations in
very difficult caries areas, which even Faster R-CNN fails to detect.

5.2.5 Summary

In this section, an excursion to the task of weakly supervised caries detection using
topographical priors is made. Both fully supervised and weakly supervised deep
learning strategies are implemented to detect caries regions in smartphone camera
images. For the weakly supervised case, a Grad-CAM based approach is proposed,
in which the activation maps are used to locate the caries areas. This strategy is ex-
tended by incorporating topographical priors in terms of additional mouth region
annotations during training.
It is demonstrated that both fully supervised and weakly supervised methods show
promising detection results, although the gap between these approaches can only
be partly reduced by means of mouth region annotations. Interestingly, the addi-
tional topographical priors not only concentrate the activations within the mouth re-
gion, but they also help the base network of the weakly supervised system towards
better classifications. They also seem to improve differentiation between adjacent
instances. Since CAMs have been mostly used for visually inspecting classification
networks, that are often trained on images containing only one object, it is a promis-
ing observation, that multiple instances of the same class can be located, neverthe-
less. Additionally, the incorporation of topographical priors helps in differentiating
adjacent instances.

5.3 Conclusion

In this chapter, a multitask learning approach is presented, using topographical pri-
ors to improve the extraction of small structures, such as avascular necrosis of the
femoral head in MR volumes. Topographical constraints are introduced to the train-
ing process, in order to limit the range of feasible locations. The approach shows
major improvements, particularly in the reduction of false positive outlier predic-
tions.
Furthermore, a similar strategy is proposed in an excursion to the task of weakly
supervised caries detection in smartphones, in which the additional topographical
information during training generally helps in improving the detection quality.
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Chapter 6

Application: Automated Necrosis
Projection from MRI to X-ray

In this chapter, the proposed methods regarding shape priors (chapter 4) and topo-
graphical priors (chapter 5) are combined to address the practical task of necrosis
projection from MR volumes to x-ray images.

6.1 Motivation

As described in chapter 5, avascular necrosis of the femoral head (AVNFH) can lead
to functional damage of the hip joint. As a result, the hip joint may be irreversibly
corrupted, if left untreated. When detected and treated in early stages, a complete
hip joint replacement can often be prevented. Core decompression surgery is an in-
dicated surgical procedure in early stages to reduce pressure, promote blood flow,
and therefore encourage the healing process in affected regions, as mentioned by
Wang et al. [Wan+17]. Here, a tunnel to the affected area is drilled and the necrotic
bone tissue is then removed. In preoperative planning, MR images are often used
for stage assessment, as necrotic tissue can be easily distinguished from healthy bone
tissue. In surgery, on the other hand, (live) fluoroscopic x-ray images are used for
navigation. However, necrotic tissue is not represented as well in x-ray images, par-
ticularly in early stages. Therefore, the surgeon often needs to manually project the
necrotic area, found in the MR scan, to the x-ray images. In this chapter, a strategy
is proposed, to automatically find necrotic area of the femoral head in MR volumes
and project it onto a corresponding x-ray image.

6.2 Related Work

For a more precise assessment of the necrotic area, Li et al. [Li+18] describe a method
which utilizes 3D prints of the femur and a patient specific guide plate, that is de-
signed to aid in a more stable navigation of the drilling tools. For this, the femur and
the necrotic area are extracted from CT scans during preoperative planning. Based
on these extractions, a guide plate is modeled, such that it steers a drilling needle
towards the necrotic area, when aligned correctly to the femur shaft during surgery.
Cheng et al. [Che+20] on the other hand describe a procedure, in which the 3D
printed guide plate is positioned on the patient’s skin instead of directly on the bone
surface.
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In contrast to these methods, the following strategy does not require any additional
3D printers. Instead, the acquired MR volumes for preoperative planning and the
initial fluoroscopic x-ray images, on which the necrotic area needs to be projected
onto, suffice. A thorough search of the relevant literature did not yield any similar
approach to improve the accuracy in positioning the drilling needle during surgery.

6.3 Methods

For the projection of necrotic area from MR volumes to x-ray images, a 3D to 2D
registration strategy, based on evolution strategies, is proposed. First the femur is ex-
tracted from the fluoroscopic x-ray images, using a deep learning model. As the
femur is a structure with only little variance in shape, especially in 2D images, the
IE2D-Net, presented in chapter 4.3 is a feasible architecture, leveraging this prop-
erty. Then, femur and necrotic area need to be extracted from coronal MR volumes,
rendering a 3D model for both structures. For this task, the multitask learning ap-
proach, using topographical information about the necrotic tissue’s whereabouts,
presented in chapter 5.1, is a predestined candidate for necrosis extraction. The fe-
mur extraction from the MR volumes is conducted in a slice-wise manner by U-Net,
as concluded in chapter 4.6. Using the 2D and 3D extractions of the femur, a trans-
formation needs to be found, that projects the 3D femur model to a 2D plane, such
that the projection is aligned to the 2D femur segmentation from the fluoroscopic
x-ray image. This transformation can finally be used to project the 3D model of the
necrotic area onto the fluoroscopic x-ray image. Fig. 6.1 depicts the overall strategy.

Femur Extrac on

in MR

Femur Extrac on

in X-ray

Necrosis Extrac on

in MR

Find 3D to 2D

Transforma on for

Femur Extrac ons

3D to 2D 

Transforma on

on Necrosis

FIGURE 6.1: Overall strategy for necrosis projection from MRI to X-
ray. In this approach the femur extractions in 3D and 2D are used
to estimate a feasible transformation for the 3D extraction of necrotic

tissue.

Since the extraction approaches have already been discussed, the estimation of a 3D
to 2D projection remains an open topic to be addressed within this chapter. Basically,
this is a registration task, in which the 3D femur model can be considered a moving
image Im and the 2D extraction a fixed image If . In accordance to chapter 2.2.1, a
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transformation

T : I3D → I2D,

needs to be found, where I3D denotes the space of all 3D images and I2D that
of all 2D images. The transformation T is acquired by minimizing a cost term
L(If , T (Im|Θ)), which considers the differences of the transformed 3D femur ex-
traction T (Im|Θ) to the fixed 2D femur extraction Im, given the transformation pa-
rameters Θ, i.e.

Θ∗ := argmin
Θ
{L(If , T (Im|Θ))}

For the minimization of the loss term, evolution strategies, a specialization of evolu-
tionary algorithms, are employed.

6.3.1 Evolutionary Algorithm

Evolutionary algorithms are a family of optimization heuristics, that follow Darwin’s
evolution theory of the survival of the fittest. The idea of implementing nature’s
selection mechanism dates back to the 1940’s [ES+03] to Alan Turing’s [Tur48] men-
tioning of "genetical or evolutionary search" in the context of achieving machine in-
telligence [Teu12]. Over time, practical implementations based on the same principal
idea followed partly independent of each other [Teu12] by Bremermann [Bre62], Fo-
gel et al.[FOW66; Fog98], Holland [Hol73; Hol92], Rechenberg [Rec65; Rec73; Rec78],
Schwefel [Sch77; Sch93], and Koza [Koz94]. For a more detailed introduction into
the field of evolutionary algorithms and its subareas, coined by the aforementioned
authors, the reader is referred to Eiben and Smith’s Introduction to Evolutionary Com-
puting [ES+03].

Following the terminology of evolutionary algorithms, any parameter configuration
is represented by an individual. A set of configurations is represented by a population,
consisting of multiple individuals. The general idea is to start with a random popu-
lation that evolves to a strong population, measured by a selection criterion. The vari-
ation of the gene pool, i.e. the exploration of new configurations, is accomplished by
means of reproduction and mutation. The adaptation towards an environment, i.e.
the exploitation of existing good configurations according to the defined selection
criterion, is realized by the selection of the fittest. Therefore, a quantitative fitness
measure needs to be defined to assess the suitability of each individual.

Fig. 6.2 shows the general evolutionary algorithm cycle. Here, each individual is
represented by a colored line of different length, depicting the different adaptable
properties an individual may have. After each cycle a new generation of individuals
is generated, in which the best individuals from previous generations may be con-
served. The production of new individuals is accomplished by means of selection,
reproduction, and mutation. Note that the preservation of surviving individuals of
previous generations and the exact behavior of recombination and mutation may
be adapted depending on the use case. In the scope of the underlying task, evolu-
tion strategies, introduced by Rechenberg [Rec65; Rec73; Rec78] and Schwefel [Sch77;
Sch93], are used, which are a specialization of evolutionary algorithms. They par-
ticularly allow the parameters, that need to be adapted, to be real valued, which is a
necessary condition for this task.
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FIGURE 6.2: General concept of Evolutionary Algorithms. The adapt-
able parameters in this visual example are length and color. Although
in this example mutation only affects the child generation in one pa-
rameter (length or color), the exact definition of mutation may be var-

ied, depending on the use case.

Representation of Individuals

The transformation T is assumed to be rigid, comprising 3D rotation, translation,
scaling, and parallel projection. The rotation can be realized by a rotation matrix R
in the Yaw-Pitch-Roll [CK11] representation

R :=

 cos(ry) cos(rz) sin(rx) sin(ry) cos(rz)− cos(rx) sin(rz) cos(rx) sin(ry) cos(rz) + sin(rx) sin(rz)
cos(ry) sin(rz) sin(rx) sin(ry) sin(rz) + cos(rx) cos(rz) cos(rx) sin(ry) sin(rz)− sin(rx) cos(rz)
− sin(ry) sin(rx) cos(ry) cos(rx) sin(ry)

 ,

where rx, ry, rz denote the rotation angles along the x-,y-, and z-axis, respectively.
Scaling can be accomplished by the scaling matrix

S :=

 sx 0 0
0 sy 0
0 0 sz

 ,

where sx, sy, sz denote the scaling factors along the x-,y-, and z-axis, respectively.
The translation is realized by means of a translation vector

t⃗ :=

 tx
ty
tz

 ,

where tx, ty, tz represent the translation along the x-,y-, and z-axis, respectively. The
transformations R, S, and t⃗ operate on the index space of the 3D femur segmentation
map. After application of these transformations, the parallel projection is simply
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accomplished by summing up of the binary values of the transformed segmentation
map along the z-axis. Thus, further projection parameters are not required. All in
all, the parameters that need to be adapted can be summarized as

Θ := (rx, ry, rz, sx, sy, sz, tx, ty, tz),

which yields the representation of an individual.

Selection

The goal of the selection process is to reduce the number of individuals within a
population, making space for new individuals and therefore more parameter con-
figuration variants. Each individual is rated according to a fitness function and only
the fittest individuals survive, while the remaining individuals are removed from
the population. By keeping the fittest individuals, they are conserved across gen-
erations. Regarding the underlying task, the fitness function needs to measure the
alignment between the projection of the transformed 3D femur extraction to the fixed
2D extraction, given the parameters, that an individual represents. One possibility is
using the dice score (see chapter 2.4.1) between the projection and the 2D extraction
as fitness function. As mentioned before, the projection of the transform is accom-
plished, by summing up the tensor values of the transformed 3D segmentation along
the z-axis. Any position with a value greater than zero is considered a projected fe-
mur point. However, for this variant the whole 3D femur needs to be transformed
for each individual in each evolution cycle, which is computationally expensive and
time consuming, particularly because many individuals may not represent promis-
ing parameter configurations.
Alternatively, the distance of key features of the femur to each other in the projection
and the 2D segmentation can be measured, e.g. by the L2 norm. For this, however,
the key features need to be designed and extracted first, which is discussed in the
subsequent subsection 6.3.2. Once the key features are set, they only need to be ex-
tracted once for the initial 3D and 2D femur segmentations. The transformation is
then applied on the 3D key features instead of the whole 3D segmentation, which
significantly reduces the computational workload. To measure the distance of the
transformed 3D key points to the 2D key points, the z-coordinate of the transformed
3D points is neglected.

Recombination

To replace the eliminated individuals, new child individuals are generated from ran-
dom pairs of surviving parent individuals. Let Θ(0)

i and Θ
(1)
i denote the i-th com-

ponent of arbitrary parents Θ(0) and Θ(1), respectively. Then the child configuration
Θ(c) is generated by means of the component-wise recombination

Θ
(c)
i := αΘ

(0)
i + (1− α)Θ

(1)
i

for 0 < α < 1. Additionally, the population can be replenished with new random
individuals.
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Mutation

In the proposed evolution strategy, mutation only takes place on newly generated
child individuals, to preserve the fittest individuals in the population. For the mu-
tation process, Gaussian noise is added to each component of the individual. The
mutation rate is steered by the chosen standard deviation for the Gaussian offset.

Termination

To terminate the algorithm, a maximal number of cycles can be defined. Addition-
ally, termination can be enforced, as soon as an individual has achieved a minimally
required fitness score or if the best individual does not improve for a certain number
of cycles.

6.3.2 Key Feature Extraction

1

2

3

4

5

6

medial sha margin

lower sha margin

lateralsha margin

top head margin greater trochanter

refined top head

margin point

(a) (b)

FIGURE 6.3: Illustration of key feature point extraction. In (a) the ex-
traction steps are depicted with the used nomenclature, also showing
the aiding connection lines. In (b) the extracted key points are de-

picted on an exemplary segmentation result from IE2D-Net.

For a fast fitness estimation of an individual, a feature based fitness function is pro-
posed. This reduces the computational workload of having to transform every 3D
point of the 3D femur extraction to only a few key feature points. In particular, a
six step strategy to extract 3 key feature points is presented, that makes use of the
femur’s shape properties. The following procedure, which is also illustrated by Fig.
6.3 (a) with the used nomenclature, is applicable for both 3D femur extraction as well
as 2D femur extractions in an anterior-posterior view.

1. First, the centroid is calculated by averaging over all points that have been clas-
sified as femur. Because the distal femur mainly consists of the shaft, whereas
the proximal femur comprises the larger femur head and collum, the centroid
is expectedly closer to the proximal femur.

2. The lower shaft margin point plow−shaft of the femur segmentation is estimated
as the furthest margin point from the centroid.
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3. Consequently, the top femur head margin ptop−head can be assumed to be the
furthest point from the lower shaft margin plow−shaft.

4. The greater trochanter ptroch−maj is the first key point to be extracted. It can
be estimated by using the furthest margin point from a line, drawn between
the top femur head margin point ptop−head and the lower femur shaft margin
point plow−shaft.

5. The distance between the greater trochanter ptroch−maj and the top head mar-
gin ptop−head, denoted as dt−h is used as a size indicator, which is independent
of the shaft length. This is particularly important, since the shaft length may
drastically vary depending on the field of view of the considered x-ray image.
The second key point is achieved by selecting the margin point that both has
a distance of 1.2 · dt−h from the connecting line between the top head mar-
gin ptop−head and the greater trochanter ptrochmaj and is additionally closest to
ptop−head. The second condition ensures that the margin point is on the medial
shaft margin, instead of the lateral one. This key point is denoted as the medial
shaft point pmed−shaft. The factor 1.2 is estimated experimentally.

6. The third key point is a refined femur head margin point pref−head. This
point is achieved by taking the furthest margin point from the line connect-
ing pmed−shaft and ptroch−maj , and which is closest to ptop−head. The second
condition ensures that the third key point is in fact on the femur head margin,
instead of the femur shaft margin.

In Fig. 6.3 (b) the three extracted key feature points are shown on an example 2D
segmentation map.
Phan and Ko [PK15] focus on similar landmarks of the proximal femur, specifically
the greater trochanter (step 3) and the fovea of the femoral head, which is located
close to the proposed femur head margin point (step 6). The greater trochanter is
also mentioned by Fischer et al. [Fis+20] and Gharenazifam and Arbabi [GA14] as a
landmark of interest regarding the proximal femur. However, instead of extracting
landmarks for subsequent registration, the aim in these publications is to achieve the
aforementioned key points and further landmarks for femur specific measurements.

6.4 Experiments

6.4.1 Data

For the evaluation, the MR data from chapter 5.1 is used for 3D femur and necrosis
extraction, and the x-ray data from the ablation studies from chapter 4.4.5 is used for
2D femur extraction. From all available data sets, there are eleven patients that have
both X-ray and MRI scans, that can be used for this projection task. As concluded in
chapter 4.6, U-Net is a suitable architecture for a slice-wise femur extraction from the
MR volumes. For the 2D femur extractions, the predictions of an IE2D implemen-
tation, presented in chapter 4.3, are used, as it appears to yield the most promising
results in a standard segmentation setting, where the shape of the structure of inter-
est shows only little variance and where the aspects of domain adaptation, few shot
segmentation, and multi modal training can be neglected. For the extraction of the
necrotic area, the predictions from the multi-task learning model from chapter 5.1
are used. For every prediction, may it be 3D or 2D, a leave-one-out strategy is used,
i.e. the test patient image is held out, while the remaining available images are used
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for training and validation. This yields eleven held out test patients, which are used
for the subsequent registration method.

For a more meaningful investigation of the proposed projection strategy, the number
of registrations can be artificially increased from 11 to 121 projections by pairing up
each 3D segmentation of the eleven available patients with every 2D segmentation
prediction, instead of only considering 3D/2D segmentation pairs which belong to
the same test patient. This is a feasible procedure, since it can be assumed that the
field of view may drastically diverge for 3D and 2D images of the same patient, one
showing the whole lower body and the other one only the proximal femur. To esti-
mate the projection quality, the dice score of the projection and the x-ray segmenta-
tion ground truth are used. The Hausdorff distance is not applicable in this scenario,
since the field of view of the MR image may be different to the field of view in the
x-ray image, which would lead to larger Hausdorff distances, even if the alignment
is feasible. While the 3D predictions yield left and right structures, the predictions
for the 2D x-ray images only contain the femur side which is considered for surgery.
Therefore, only the corresponding side of the 3D extraction is considered for regis-
tration, which is also available in the 2D prediction.

6.4.2 Results

Since the 3D segmentation is used as is, no further information of the orientation of
the coordinate system in the real world is utilized. This makes the registration task
more challenging.

(a) (b) (c)

FIGURE 6.4: Visual projection comparison of initial femur position
and after transformation. (a) shows the the initial femur projection
onto the 2D coordinate system. (b) shows the projection after apply-
ing the estimated transformation. (c) shows the predicted 2D seg-
mentation, that is used as fixed image. In (b) and (c) the extracted key

feature points are also depicted.

In Fig. 6.4 (a) the initial projection of the 3D femur segmentation map onto the co-
ordinate system of the 2D segmentation map is illustrated. The projection is accom-
plished by summing up the tensor values along the z-axis. The brightness therefore
represents the thickness of the femur. It can be observed that the image coordinate
systems of moving and fixed images are not aligned. Therefore, the projection of
the left 3D femur appears on the left side (from the viewers perspective), whereas
the left 2D femur extraction is on the right side. Fig. 6.4 (b) shows the projection of
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the 3D femur segmentation, after applying the estimated transformation by means
of the key point based evolutionary registration method. Additionally, the extracted
key feature points of the 2D femur segmentation (triangles) and the transformed key
feature points of the 3D segmentation (circles) are depicted to illustrate their dis-
tances after applying the proposed evolution strategy. Fig. 6.4 (c) shows the fixed 2D
femur segmentation and the key feature points as a reference.

The resulting dice scores (DSCs) of the evolutionary registration method, using the
proposed three key feature points, are shown in Tab. 6.1 in detail. An average DSC

2D
3D

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 ∅ std

P1 0.734 0.766 0.641 0.635 0.723 0.680 0.630 0.741 0.694 0.676 0.779 0.707 0.044
P2 0.816 0.841 0.850 0.770 0.688 0.739 0.672 0.668 0.784 0.740 0.779 0.768 0.052
P3 0.718 0.690 0.787 0.752 0.869 0.716 0.775 0.898 0.834 0.843 0.932 0.804 0.067
P4 0.888 0.880 0.890 0.845 0.919 0.927 0.812 0.900 0.912 0.831 0.832 0.882 0.034
P5 0.769 0.851 0.863 0.867 0.887 0.784 0.762 0.677 0.812 0.761 0.873 0.814 0.054
P6 0.743 0.863 0.876 0.796 0.892 0.927 0.809 0.926 0.794 0.886 0.947 0.865 0.054
P7 0.788 0.880 0.819 0.810 0.853 0.861 0.716 0.903 0.816 0.773 0.852 0.836 0.041
P8 0.765 0.864 0.830 0.854 0.882 0.791 0.784 0.762 0.820 0.834 0.882 0.828 0.036
P9 0.848 0.671 0.725 0.905 0.862 0.832 0.811 0.762 0.639 0.885 0.795 0.792 0.069
P10 0.828 0.901 0.776 0.758 0.662 0.815 0.669 0.855 0.825 0.741 0.810 0.797 0.058
P11 0.658 0.871 0.727 0.753 0.641 0.735 0.631 0.648 0.783 0.654 0.727 0.720 0.059
∅ 0.778 0.825 0.799 0.795 0.807 0.801 0.734 0.795 0.792 0.784 0.837 0.801 0.068
std 0.051 0.063 0.061 0.056 0.093 0.065 0.064 0.093 0.049 0.065 0.055

TABLE 6.1: Resulting DSCs from registration using the proposed key
feature points. Columns denote the patient, from which the 3D femur
extraction is used as moving image. Rows depict the patient, from

which the 2D femur extraction is used as fixed image.

of 0.801± 0.068 over all registration combinations is achieved, which is a promising
result. Especially the x-ray image of patient P4 yields a very good mean DSC of
0.882 ± 0.034, implying that it is particularly suitable for this registration method,
as it shows robustness against the used 3D moving images. Interestingly, the best
DSC scores are not always achieved along the diagonal of table 6.1, which one might
assume, since here 3D and 2D images are from the same patient. As mentioned
before, a possible explanation is a difference in field of view between 3D and 2D
images, which renders the registration a more challenging problem for these cases.
It also needs to be considered that DSC only reflects the overlap of the projected
transformed segmentation with the 2D extraction of the femur, which only partly
reflects the projection quality of the the necrotic area. Additionally, the DSC can
only encapsulate the transformation quality to a certain extent. For example, a good
alignment of a moving image with short femur shaft to a fixed image with long fe-
mur shaft would result in a worse DSC because of the missing femur shaft in the
moving image. Nevertheless, the good overall DSC performance implies clinically
usable necrosis projections.
Fig. 6.5 shows examples, in which the 3D to 2D femur registration succeeds in find-
ing a feasible necrosis projection. The first row shows the femur projections, over-
layed on the targeted x-ray images. The projections are depicted with a jet color map
which indicates the thickness of the femur. Therefore, the red areas should not be
confused with necrotic tissue. The second row accordingly shows the necrosis pro-
jections on the target x-ray images.

Fig. 6.6 illustrates the limitations of the proposed strategy. The first row shows the



148 Chapter 6. Application: Automated Necrosis Projection from MRI to X-ray

FIGURE 6.5: Exemplary good qualitative results of the proposed
necrosis projection strategy. A jet colormap is used to visualize the
thickness of the projected 3D structures, blue representing a thin and
red a thicker region. Particularly for the femur projections, red areas

should not be confused with necrotic tissue.

femur projections, while the second row depicts the necrosis projections. Although
the femur projections are at the correct positions and show a feasible orientation,
some shortcomings become apparent, nevertheless. The first image shows a case, in
which the proximal femur is well aligned, whereas the femur shaft is not. The second
and third images show examples, in which the femur head of the transformation is
too large, rendering a necrosis projection outside the actual femur head in the x-ray
image. The fourth example depicts a problematic scenario, in which the field of view
of the moving 3D image is much smaller than the field of view of the fixed 2D image,
which is visible in the large difference in femur shaft length.

FIGURE 6.6: Exemplary bad qualitative results of the proposed necro-
sis projection strategy. A jet colormap is used to visualize the thick-
ness of the projected 3D structures. Particularly for the femur projec-

tions, red areas should not be confused with necrotic tissue.
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6.5 Conclusion

In this chapter, the task of necrosis projection from MR volumes to x-ray images
is addressed. The concepts and conclusions of chapters 4 and 5 are combined for
the extraction of necrotic tissue from MR volumes, and the segmentation of the fe-
mur in both 2D x-ray images and 3D MR volumes. To estimate the final projection
transformation, an evolution strategy is proposed, that aims at projecting the 3D
femur extraction onto the 2D femur extraction in its image coordinate system. For
this, a key feature point extraction procedure is presented, to speed up the evolution
process. The projection pipeline yields both promising quantitative and qualitative
results. A limiting factor is, however, the small amount of key feature points, which
are all located at the proximal femur due to the strong variance in FOV. This renders
the correct positioning of the femur shaft difficult for some instances. Altogether,
the proposed pipeline nevertheless represents an important contribution towards
computer assisted intervention, incorporating the insights of the previous chapters.
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Chapter 7

Summary and Outlook

This final chapter concludes this dissertation with a summarizing discussion of the
presented approaches, which incorporate anatomical priors for fully automated seg-
mentation pipelines, and gives suggestions for future research directions.

7.1 Traditional Image Segmentation

The presented initialization methods of chapter 3, namely Polar Appearance Models
(PAMs) and Gradient based Expanding Spherical Appearance Models (GESAMs),
demonstrate a sufficient initial contour estimation for subsequent contour based seg-
mentation methods. Therefore, they are crucial components to complement tradi-
tional segmentation pipelines towards full automation. The retrospective hyper pa-
rameter analyses show for both suggested approaches that the learning based com-
ponent is of crucial importance. However, they also reveal that some of the proposed
cost function components could be neglected. Furthermore, the application of these
methods is limited to single sided femur segmentation pipelines. In future research,
a more general meta-framework would be desirable, which is capable of automat-
ically weighting task relevant cost function components. A reduction of arbitrary
structures with consistent shape appearance to suitable primitive shapes is a further
aspect to be considered for more general initialization methods.

7.2 Deep Learning based Image Segmentation

In the context of deep learning, full automation is already implied by the end-to-end
architecture design of fully convolutional segmentation networks. Therefore, the
incorporation of anatomical priors is intended to improve the segmentation perfor-
mance, instead of complementing deep learning methods towards full automation.

The proposed cascaded convolutional distance transform (CDT) from chapter 4.2
shows promising improvements in general segmentation settings, particularly re-
garding the symmetric Hausdorff distance, as shown in the example of thoracic or-
gan segmentation. However, the transform is currently limited to two-dimensional
distance transforms. Assuming a sufficient GPU memory capacity, an extension to
a three-dimensional CDT could improve these initial results. While in scope of this
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dissertation, the distance transform is used for shape characterization by the distance
from the organ’s own boundaries, an alternative strategy could be the characteriza-
tion of an organ by the estimated distance to its neighboring organs. Furthermore,
these initial results using a well established form of shape representation motivate
for further combinations of deep learning methods with proven non-deep learning
concepts, just like the distance transform.

The ablations studies of IRE3D-Net, introduced in chapter 4.4, reveal that the IE2D-
Net from chapter 4.3 shows most promising and significant improvements compared
to U-Net in a general segmentation setting. The application of IE2D-Net (and shape
prior based architectures in general) is particularly reasonable in segmentation set-
tings where the structure of interest shows consistent shape appearance across all
samples, even for varying FOVs.
In scope of the CHAOS challenge [Kav+21], the submitted IRE3D-Net shows promis-
ing results, especially in cross-modality learning tasks, in which the network shows
only little variation in the achieved scores across all test volumes. Because of the
challenge character of the evaluation, it is however difficult to asses whether su-
periority is achieved through architecture design, hyper parameter tuning, or even
advantageous computing resources. Therefore a direct comparison of the submitted
architectures needs to be conducted with caution, although it is noteworthy, that the
submitted IRE3D-Net achieves superior results in the cross-modality learning tasks,
even when trained on smaller scales to fit GPU memory.

In the one-shot setting, discussed in chapter 4.4.4, both IE2D-Net and IRE3D-Net
show significantly improved results compared to a U-Net, which is trained in a com-
parable manner. One surprising observation is that U-Net already performs well, if
training and testing volume have a large overlap in the ground truth mappings. The
extension to one-shot multi-organ segmentation has not been explored in the scope
of this dissertation and is certainly an important task for further research.
In general, the extension of imitating encoder based architectures towards more
imaging modalities, as demonstrated by Liebgott et al. [Lie+21], or even further ap-
plication domains outside medical image segmentation, e.g. image to image transla-
tion, are possible future research topics.

The proposed domain generalization strategies in chapter 4.5, comprising the us-
age of Oktay et al.’s shape priors [OF+18], the infusion of contour information by
edge enhancement, and the enforcement of shape aware feature learning by means
of color augmentation, all result in improved segmentation results on an unseen CT
target domain, although merely trained on a MR source domain. It is demonstrated,
that the combination of all three strategies even outperforms the upper baseline, con-
sisting of a U-Net, trained on the source domain and additionally fine-tuned on the
target domain with additional target domain data. In the scope of this dissertation,
only liver segmentation is considered. Therefore, for future research the extension
to multi-organ segmentation should be considered. Furthermore, the MR source do-
main consists of both T1- and T2-weighted MR volumes, which could be additionally
advantageous in the abstraction from intensity based features towards shape aware
ones. For further research, the applicability of these methods for single source do-
main generalization towards unseen target domains should be investigated. Further-
more, the color maps have been manually selected, following a feature engineering
approach for filter banks. The abstraction towards automated color map selection or
even learned color maps, similar to learned features in CNNs, is also an open task to
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be addressed in the future.

In chapter 5.1, topographical priors are incorporated by means of multitask learning
for the extraction of small structures, such as necrotic tissue in large MR volumes.
The results show major individual improvements regarding Hausdorff distance and
in overall DSC. The DSC, however, shows large variation for both U-Net and the
proposed method. This is due to the large effect a falsely classified pixel has on
the overall DSC in case of small structures. Therefore, the question arises, whether
the DSC is a suitable metric for segmentation tasks of small structures. This is also
reflected by only considering the foreground dice loss during training (for both ar-
chitectures), instead of using the mean of fore- and background loss.

With the ablations insights from chapter 4.4, a necrosis projection pipeline from 3D
MR data to 2D x-ray images is proposed in chapter 6, combining the developed shape
aware IE2D-Net from chapter 4.3 and the topography aware multitask learning ar-
chitecture from chapter 5.1 with a landmark based evolutionary registration strategy.
Although the evaluation shows qualitative and quantitative good overall results, the
used DSC score needs to be assessed with caution, since large differences in the field
of view of the moving and fixed image may lead to aggravated DSC scores, although
the visual alignment is satisfactory.
For future research, further combinations of shape and topography aware methods
may be of interest to extract structures, that are restricted to a specific topographical
location, which possesses inter-patient shape consistency. One example would be
the extraction of liver lesions, which are restricted to the liver area, which again is
consistent in shape across both patients and even modalities. The application of the
proposed domain generalization approach from chapter 4.5 is a suitable strategy, if
the images, in which liver and lesions are displayed, are of different modality.

Altogether, this last chapter and this thesis can be concluded by stating that although
multiple new approaches and architecture designs regarding anatomical priors have
been presented within this dissertation, Alan Turing’s quote from the 1950’s [Tur09]
still holds in present time:

“We can only see a short distance ahead, but we can see plenty there that needs to be done.”
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List of Abbreviations

CT Computer Tomography
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
X-ray X-ray image
MP McCulloch Pitts
RP Rosenblatt Perceptron
MLP Multi Layer Perceptron
MLP Multi Layer Perceptron
FC Fully Connected
CNN Convolutional Neural Network
FCN Fully Convolutional Network
TPs True Positives
FPs False Positives
TNs True Negatives
FNs False Negatives
DSC Dice Similarity Coefficient
HD Hausdorff Distance
sHD symmetric Hausdorff Distance
PAMs Polar Appearance Models
ICP Iterative Closest Point
PCA Principal Component Analysis
FOV Field Of View
GESAMs Gradient based Expanding Spherical Appearance Models
RANSAC Random Sampling Consensus
LS Level Set
FSPR Feasible Sphere Proposal Rate
GVF Gradient Vector Flow
GAN Generative Adversarial Network
CDT Convolutional Distance Transform
CAE Convolutional AutoEncoder
IED Imitating Encoder - Decoder
IE2D Imitating Encoder - Enhanced Decoder
IRE3D Imitating and Regularizing Encoders - Enhanced Decoder
ACNN Anatomically Constrained Neural Network
CHAOS Combined Healthy Abdominal Organ Segmentation
RAVD Relative Absolute Volume Difference
ISDUE Intelligent Systems group of the University of Duisburg-Essen
TCIA The Cancer Imaging Archive
BTCV Beyond The Cranial Vault
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pCT pseudo CT
AVNFH Avascular Necrosis of the Femoral Head
TEP Total Endo-Prosthesis
ROI Region Of Interest
MTL-Net Multi-Task Learning Net
FIA Fully Informative Annotation
ILA Image-Level Annotation
MRA Mouth Region Annotation
MIL Multiple Instance Learning
R-CNN Region based Convolutional Neural Network
RPN Region Proposal Network
CAM Class Activation Mapping
GAP Global Average Pooling
Grad-CAM Gradient-weighted Class Activation Mapping
WSCDM Weakly Supervised Caries Detection Method
WSCDM-LC Weakly Supervised Caries Detection Method with Location Constraints
mAP mean Average Precision
IoU Intersection over Union
AP Average Precision
AUC AUnder the Curve
VOC Visual Object Classes
COCO Common Objects in Context
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List of Symbols

Ω arbitrary index space of an image or a volume
Ω2D index space of a 2D image
Ω3D index space of a 3D image
R real number set
Rn n-dimensional real number set
I : Ω→ R image representation as a mapping
GT : Ω→ {0, 1}C ground truth representation as a mapping
C number of classes
C set of all possible classes
Im moving image
If fixed image
GTm ground truth of moving image
GTf ground truth of fixed image
I set of all images
I2D set of all 2D images
I3D set of all 3D images
T : I → I image transform
Θ set of parameters
L loss function

Γ : [0, 1]→ Rn parameterized curve in n-dimensional space
E energy functional
Φ : Ω→ R embedding function
∇ gradient operator

N\{0} natural number set without zero
ζ threshold
fp propagation function
fa activation function
x arbitrary incoming signal
wt
h,i,j weight between layers h and h+ 1

from i-th neuron to j-th neuron at time t
κ kernel for convolution
∗ convolutional operator
⊙ cross-correlation operator

nbins number of intensity bins
B0, . . . ,Bnbins−1 intensity bins
kI k-th slice from image stack
kGT k-th slice from ground truth stack
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χk(p, j) indicator function for k-th slice
if intensity kI(p) is in j-th intensity bin

hk normalized intensity histogram for k-th slice
vk feature vector of k-th slice
v mean feature vector
nPCA number of eigenvectors
U := (u0, . . . , unPCA−1) eigenvectors
E := {λ0, . . . , λnPCA−1} eigenvalues
M := (U,E, v) first part of the Polar Appearance Models

nPC intensity profile length in polar space
K̃ number of intensity profiles in polar space
ṽ0, . . . , ṽK̃−1 intensity profiles in polar space
ṽ mean intensity profile
ñPCA number of eigenvectors
Ũ := (ũ0, . . . , ũñPCA−1) eigenvectors
Ẽ := {λ̃0, . . . , λ̃ñPCA−1} eigenvalues
M̃ := (Ũ,Ẽ, ṽ) second part of the Polar Appearance Models
P := (M, M̃) complete Polar Appearance Models

s(p) similarity of intensity distribution within Hough circle
of center point p to learned distribution in M

M̂ total number of axial slices in unseen MR volume
Pi set of detected candidate points

from Hough Transform of i-th axial slice
c(pi−1, pi) cost of connecting point pi−1 to pi
w(·) weight
Fi(pi) cost function of minimal costs for path until pi ∈ Pi

µ(pi) mean intensity within Hough circle of center point pi ∈ Pi

var(pi) intensity variance within Hough circle of center point pi ∈ Pi

r(pi) radius of Hough circle of center point pi ∈ Pi

µ̃(pi−1) mean intensity within Hough circles
of all (considered) center points until pi−1 ∈ Pi−1

pi−1 mean center point position
of all (considered) Hough center points until pi−1 ∈ Pi−1

∅ mean score

ri radius of fitted sphere in GTi for GESAMs approach
bwi bandwidth of outer neighborhood region in GESAMs approach
vini , vouti ∈ [0, 1]nbins intensity distribution feature vectors for the inner and outer region
U(·) matrix of eigenvectors from feature variant (·) for GESAMs
v(·) mean feature vector of variant (·) for GESAMs
M(·) spherical appearance model of feature variant (·) for GESAMs
rmax maximal radius of the fitted spheres
rmin minimal radius of the fitted spheres
σr standard deviation of the detected spheres’ radii
G GESAMs model
g Gaussian kernel
|∇{I ∗g}| smoothed gradient magnitude volume
µ|∇{I∗g}|>0 mean of all positive values

in the smoothed gradient magnitude volume
I∇ binary volume of constrained sample domain by threshold
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ncircles number of considered circles
for domain restriction by Hough Transform

I◦ binary volume containing most circle intersections
from different 3D orientations

I∇,◦ Hadamard product of I◦ and I◦
nsp ≥ 1 minimal number of sufficient sphere proposals
nnsp ≥ 1 maximum number of subsequent non-sufficient proposals
psc sphere candidate
r(psc) radius of sphere candidate psc
v(psc)

(·) feature vector of variant (·)
depending on sphere candidate psc

s(·)(psc) squared Mahalanobis distance to learned mean feature vector
of variant (·) depending on sphere candidate psc

ninlier(psc) number of sample points within a narrow band
depending on sphere candidate psc

ε > 0 width of narrow band
ninlier,scaled(psc) scaled number of sample points within a narrow band

depending on sphere candidate psc
µinliers(psc) mean of all inliers for a sphere candidate psc
dinlier(psc) Euclidean distance of psc to µinliers(psc)
Sin
psc : Ω→ {0, 1} indicator function of whether a point p ∈ Ω

is within inner region of sphere candidate psc
Sout
psc : Ω→ {0, 1} indicator function of whether a point p ∈ Ω

is within outer boundary of sphere candidate psc
η(psc) homogeneity of sphere candidate psc
σ2(psc) intensity variance in outer boundary of sphere candidate psc
ndead(psc) number of dead edge points for a sphere candidate psc
Psc set of all proposed sphere candidate center points

from the structured sampling step
c(psc) cost function of selecting sphere candidate psc
ECV (Φ) energy functional by Chan and Vese

depending on embedding function Φ
µin, µout mean intensities of inner and outer contour region

d(·, ·) distance function
DI : Ω→ R+

0 distance transform of binary image I
d1, . . . , dn n scalar distances
mathcalL(·) loss function for training CNNs

Θ(·) trainable weight configuration
fencp prior encoder
fenci imitating encoder
gdec generative decoder
hunet U-Net module

Igray space of gray scale images
Icolor space of color images
CMAP : Igray → Icolor color map

Fk k-th feature map
α
(c)
k influence of k-th feature map on class assignment of class c

A
(c)
Grad−CAM Grad-CAM for class c
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R rotation matrix
S scaling matrix
t⃗ translation vector
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