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Abstract: Head and neck cancer has great regional anatomical complexity, as it can develop in
different structures, exhibiting diverse tumour manifestations and high intratumoural heterogeneity,
which is highly related to resistance to treatment, progression, the appearance of metastases, and
tumour recurrences. Radiomics has the potential to address these obstacles by extracting quantitative,
measurable, and extractable features from the region of interest in medical images. Medical imaging
is a common source of information in clinical practice, presenting a potential alternative to biopsy,
as it allows the extraction of a large number of features that, although not visible to the naked eye,
may be relevant for tumour characterisation. Taking advantage of machine learning techniques,
the set of features extracted when associated with biological parameters can be used for diagnosis,
prognosis, and predictive accuracy valuable for clinical decision-making. Therefore, the main goal of
this contribution was to determine to what extent the features extracted from Computed Tomography
(CT) are related to cancer prognosis, namely Locoregional Recurrences (LRs), the development of
Distant Metastases (DMs), and Overall Survival (OS). Through the set of tumour characteristics,
predictive models were developed using machine learning techniques. The tumour was described by
radiomic features, extracted from images, and by the clinical data of the patient. The performance
of the models demonstrated that the most successful algorithm was XGBoost, and the inclusion of
the patients’ clinical data was an asset for cancer prognosis. Under these conditions, models were
created that can reliably predict the LR, DM, and OS status, with the area under the ROC curve (AUC)
values equal to 0.74, 0.84, and 0.91, respectively. In summary, the promising results obtained show
the potential of radiomics, once the considered cancer prognosis can, in fact, be expressed through
CT scans.

Keywords: precision medicine; head and neck cancer; radiomics; locoregional recurrences; distant
metastases; overall survival; CT; multilayer perceptron; XGBoost

1. Introduction

More than 650,000 patients are diagnosed with head and neck cancer each year, and
330,000 die from it, making it one of the most-prevalent cancers. This type of cancer has the
sixth-highest incidence rate in all of Europe [1,2].

Epidemiological studies show the highest incident rates in central Europe and south-
west Asia [3]. This is a complex disease that occurs in different structures: pharynx,
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oral/nasal cavity, salivary glands, and larynx. The diagnosis and treatment are very chal-
lenging, including the variable manifestation of tumours (both primary and recurrent),
the complexity of regional anatomy, the minute scale of critical structures, the signifi-
cant anatomical changes related to tumour response to therapy, and high intratumoural
heterogeneity [4].

The standard therapy, depending on the localisation and stage, is surgery, radiation,
or radiochemotherapy. In inoperable, recurrent, or metastatic stages of the disease, im-
munotherapy plays an increasing role. In addition to the clinical examination and biopsy,
the preoperative acquisition of 3D medical imaging such as CT scans is indispensable for the
correct therapy path assignment [5]. In this context, medical imaging is very important to
inform and guide surgeons, radiotherapists, and oncologists, as it allows non-invasive visu-
alisation and assessment of human tissue characteristics and reveals the strong phenotypic
differences in cancers before, during, and after treatment [6–8].

There are a variety of presentations and clinical outcomes, depending on the location
of the cancer. Several strategies are available for treatment, including surgery, radiotherapy,
chemotherapy, or a combination of these [9,10]. Even in cancers of the same pathological
type (same primary site and same cancer stage), cancer heterogeneity can be observed,
the presence of which is strongly associated with a high risk of treatment resistance,
progression, metastases, and recurrence [10,11].

Precision medicine is the idea of providing health care, medical treatments, and
personalised decision-making tailored to each individual. This concept is not new to
medicine as, for example, blood transfusions have been guided by each patient’s blood
type for over a century. However, in recent years, precision medicine has been a much-
exploited concept and is gaining much popularity, mainly due to the great expansion of
biological databases, methods for characterising patients, and improvements in computer
tools [12,13]. In the field of oncology, precision medicine is applied as personalised cancer
therapy, which means it can determine the best treatment for each patient individually. Its
goal is to improve patient outcomes, such as response to treatment and survival without
progression of the disease [14,15].

The term “radiomics” refers to the process of quantitatively extracting large and
actionable data from medical imaging for further analysis and generation of prognostic
values, which is the most beneficial way to complement, facilitate, and accelerate progress
towards precision cancer therapy [4,11].

Radiomics applies a number of innovative computational methods to medical image
data to convert them into quantitative tissue descriptors. In this context, radiomics, as op-
posed to biopsies, can help extract information from medical images in a non-invasive way
that provides information about the entire tumour. This process allows the characterisa-
tion of the phenotype of the tumour. Hundreds of features can be generated/extracted
simultaneously from a single lesion. The implementation of radiomics analysis in standard
cancer care to support treatment decisions involves the development of predictive models
that integrate clinical information, which can be used to assess the risk of specific tumour
outcomes [16,17].

This could optimise the therapeutic strategy on a patient-specific basis for head and
neck cancer patients. Specifically, therapy could be escalated or de-escalated, and the in-
tensity and frequency of follow-up could be enhanced and potentially lead to improved
outcomes in the future [5,18].

2. Objectives

The purpose of this research was to verify the effectiveness of translating the field of
radiomics into standard care for head and neck cancer, which allows a better characterisa-
tion of the cancer phenotype for the construction of predictive models of the head and neck.
Radiomics may be a concept for precision medicine, providing improvements in clinical
decision-making.
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The main objective is to extract features from routine medical images that allow the
identification of relevant prognostic factors in the evaluation of the aggressiveness and
irregularity of head and neck cancer. Through the construction and development of clinical
prediction models that use the learning capacities of Machine Learning (ML) techniques and
using both radiomic data and clinical information from patients, the goal was to analyse
the three highly relevant prognostic markers in patients with head and neck cancer: risk of
locoregional recurrences, evaluate the appearance of distant metastases, and estimate the
overall survival rate.

In Figure 1, we present the basic scheme of the workflow for the development of the
contribution of this research. Our study presents new insights into the postprocessing of
medical imaging data and the comparison of radiomics with the clinical data. We wanted to
investigate whether radiomics could play a key role in predicting locoregional recurrences,
distant metastases, and overall survival, in contrast to [19], which used image biomarkers
in combination with clinical parameters. This paper also contains parts that are written in a
more technical way for easier reproduction.

Figure 1. Basic scheme of the workflow for the development of the contribution. The clinical data
could include: gender, age, time between diagnosis and start of treatment, and TNM stage. Extraction
of radiomic features can be performed with many medical imaging modalities, such as CT.

3. Material and Methods
3.1. Data and Preprocessing

For this study, a public dataset was used, which is available on The Cancer Im-
age Archive (TCIA) website; the downloading was performed via the NBIA Data Re-
triever [14]. The information for patients with histologically proven head and neck cancer
came from four different institutions in Quebec: Centre Hospitalier de l’Université de Mon-
tréal (CHUM), Centre Hospitalier Universitaire de Sher-brooke (CHUS), Hôpital Général
Juif (HGJ), and Hôpital Maisonneuve-Rosemont (HMR). All cases were head and neck
squamous cell carcinoma (HNSCC).

This data collection contains FDG-PET/CT pre-treatment scans (Figure 2) with a
median of 18 days (range: 6–66) before treatment, clinical information (sex, age, primary
site, cancer stage, HPV status, among others), and the radiotherapy structure set, plan, and
dose, respectively, RTStruct, RTPlan, and RTDose. Part of the tumour segmentation was
performed directly on the CT scan of the hybrid PET/CT scanner by oncologists specialized
in radiotherapy and used for treatment planning. However, in most cases, the tumour was
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segmented in a separate CT scan for therapeutic planning and, through the software MIM
(MIM software Inc., Clevant, OH, USA), was projected on the FDG-PET/CT scan.

(a) (b) (c)

Figure 2. Example of a CT scan from the data collection with the corresponding segmentation of the
gross tumour volume, shown in all three planes: (a) coronal, (b) axial, and (c) sagittal.

Of the 298 cases available in the dataset, only 183 subjects were included in this
study. The reason for excluding cases was that, in 68 cases, we were not able to extract all
information and, in the other 47 cases, we had problems matching the intra-case data. The
downloaded data are available in the Digital Imaging and Communications in Medicine
(DICOM) format, a standard format that enables the development of Picture Archiving
and Communication Systems (PACSs) and allows the storage, manipulation, printing, and
transmission of medical images. This format supports a wide variety of modules, but for
this study, it was decided to use only the information from CT and radiotherapy (RT).
For the latter, it is still possible to find a set of “sub”-specific modules: RTImage, RTDose,
RTStruct, RTPlan, and RTTreatment [16].

Among other information, RTStruct provides a set of labelled regions of interest (in
this dataset, it identifies, for example, the brain, eyes, and neck, among other organs). This
module is extremely important for the project as it is where the analysed tumour segmenta-
tion is located. Initially, the data were visualised thought the 3D Slicer platform, a software
for the analysis and visualisation of medical images, which allows the development of
scientific research [20]. The platform was used to understand the structure of the dataset
and to analyse both the CT and RT structures.

However, the open-source PyRadiomics package, which was used to extract the ra-
diomic features, does not support this file format. Subsequently, the data were converted to
Nifti. The conversion was accomplished simultaneously through different tools: the CT and
RTStruct images were converted via dicom2nifti [21] and dcmrtstruct2nii [22], respectively.
It is important to note that, despite the data conversion, the meta-information of each image
(date and time of acquisition, echo time, repetition time, effective echo spacing, coding
direction, etc.) was also stored in the Nifti files [23]. The result of applying these two tools
was a set of Nifti files: one for each mask/labelled region of interest available in RTStruct
and one file for the converted CT scan.

3.2. Extraction of Radiomic Features

The extraction of radiomic features was implemented in Python using the open-source
package PyRadiomics [24]. As represented in Figure 3, this process, when performed through
PyRadiomics, has four fundamental steps: (I) loading the scans of the medical images and the
respective masks with the tumour segmentation (RTStructs), (II) customising the extraction
by applying filters, (III) extraction of the radiomic features using the different classes,
and (IV) returned features.

The first step was crucial for the rest of the process because, although the dataset
contains a segmentation of the gross volume of the lymph nodes and the primary tumour,
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it was decided to only use the primary tumours’ information. The lymph nodes were not
always present, and they were not always metastases.

Afterwards, radiomic feature extraction was performed on the original images, and
after, we applied two filters, Laplacian of Gaussian (LoG) and wavelet, to perform the
multiscale texture feature analysis of the tumour [25,26].

The LoG filter consists of the junction of the Gaussian filter, whose function is to soften
the noise, with the Laplacian operator, which detects the edges and ridges. In this study,
five filters with different standard deviations were used (σ = 1.0, 2.0, 3.0, 4.0, and 5.0 mm),
corresponding to five filtered images for every input dataset [27,28].

The wavelet filter was used to further study the texture characteristics that best
describe the homogeneity of the lesions, leading to the distinction between benign and ma-
lignant tumours [26]. The wavelet employs a set of special filters called quadrature mirror
filters to recursively decompose the original image into low- and high-frequency sub-bands
along the x-, y- and z-axes. In total, from a single image, it is possible to obtain eight
new images of the same size as the original. The low-pass filter and high-pass filter being
represented by L and H, respectively, from the original image (i), the following wavelet
decompositions were obtained: iLLL, iLLH, iLHL, iLHH, iHLL, iHLH, iHHL, iHHH [25,26,29].
Figure 4 presents a representation of the wavelet 3D decomposition applied to each CT
scan performed in this work, in which the z-axis analysis allows the study of the proba-
bilities of articulation between slices over an image volume composed of multiple slices,
i.e., the spatial transitions between voxel values. Through this method, it was expected
to increase the sensitivity and specificity of the tumour characterisation, consequently
identifying suspicious areas of tumour boundaries that could appear as normal [30,31].

Figure 3. Summary scheme representing the 4 fundamental steps for the extraction of radiomic
features. Initially, on the acquired medical images, a segmentation of the ROI is performed, followed
by the customisation of the feature extraction from the segmented region by applying filters. Later,
the extracted features (e.g., features based on tumour intensity, shape, and texture) are analysed in
terms of their ability to predict valuable information for treatment planning.

The third step consisted of the extraction of the radiomic features using the different
classes. The PyRadiomics package comprises a variety of seven classes with different
numbers of associated features: 14 shape-based, 18 first-order, 22 Gray-Level Co-occurrence
Matrix (GLCM), 16 Gray-Level Run-Length Matrix (GLRLM), 16 Gray-Level Size-Zone
Matrix (GLSZM), 14 Gray-Level Dependence Matrix (GLDM), and 5 Neighbouring Gray-
Tone Difference Matrix (NGTDM) features. The shape descriptors only characterise the
mask; however, the remaining features were taken from the original image: the five LoG
filters and the eight wavelet decompositions. In conclusion, a set of 1288 radiomic features
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was extracted, as represented in the summary scheme of Figure 3. The list of extracted
features is presented in Part A in the Supplementary Material.

Figure 4. Representation of the wavelet 3D decomposition applied to each CT scan performed in this
work. The original image (i) is decomposed into 8 images by applying a directional Low-pass filter
(L) and a High-pass (H) filter.

3.3. Data Processing

Once the radiomic features have been extracted, it is extremely important to process the
data in order to build the clinical prediction models. The data are presented in table format,
so that, the first concern was to remove the columns that contained unrelated data for the
analysis, such as the software versions (PyRadiomics, Numpy, SimpleITK, PyWavelet, and
Python), the hash, and the columns containing invariable data. For the radiomic features,
a unity-based normalisation by columns was performed, setting all values in the range from
0 to 1. Some changes/adaptations were also made to the data on clinical variables. These
data contain both categorical and numerical variables and were, therefore, processed in
different manners. Starting with the categorical variables, the first step was to standardise
the terms since the information was written differently, for example through uppercase
and lowercase or different spacing, and the program understood them as being different
variables. The categorical variables already standardised were subsequently converted into
dummy/indicator variables. In the implementation of this step, the get_dummies function
available in the Pandas library was employed [32]. It is important to note that cases with
missing values were treated as another category.

Concerning the numerical variables of the clinical data, the first change was in the
content of the columns. The original file contained one column with the time (in days) from
diagnosis to the start of treatment and another with the time (in days) from diagnosis to
the end of treatment; this second column was changed to the time (in days) of treatment
by subtracting the mentioned columns. This modification was applied simply to make the
analysis more perceptible. Another particularity of these data is that they contain negative
values in columns, whose meaning is supposed to include only positive values, for instance
the time (in days) from diagnosis to the start of treatment. The most appropriate method
would be to eliminate the patients in which this occurs; however, they are a significant
number of cases in relation to the total number of patients. Therefore, it was decided
to replace them with the general average over the entire dataset. Finally, the numerical
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variables were again normalised. Once the data had been properly processed, the last step
before the construction and development of the LR, DM, and OS predictive models was to
divide the dataset into the test and training cases.

4. Head and Neck Cancer Outcome Predictions
4.1. Experimental Process and Global Results

This section describes the experimental process to train and evaluate the final models
for predicting the risk of locoregional recurrences, assessing the appearance of distant
metastases, and determining the overall survival rate of head and neck cancer patients.
The public dataset available on the TCIA website used for this study was utilised for
similar studies performed by [10,11]. To enable a fair comparative study between the
results obtained in this work and in the studies already published, we used the same
division into the test and training cases and evaluation metrics. Therefore, the patients from
the institutions CHUM and HMR were used for testing and CHUS and HGJ for training.
In order to evaluate and understand the results, confusion matrices were constructed,
and the evaluation metric applied was the area under the ROC curve (AUC); more detail is
given in Section 4.2.2.

In the course of this study, several experiments were carried out to supplement and
reinforce the results presented in the current work. Initial studies consisted of developing
the predictive models by applying all nine filters available in the PyRadiomics open-source
package. However, this approach was not very successful, as the models suffered from
overfitting and the AUC values were very low. For this reason, it was decided to analyse
the interference of each filter, and the conclusion was that the selection of the wavelet
and LoG filters led to the best results. In the predictive models of the XGBoost algorithm,
this was corroborated by the bar charts containing the 20 features that most positively
influenced the construction of the decision trees. Most of these features were the ones that
were extracted after applying the selected filters (as will be seen in the following section).

Furthermore, the influence of clinical variables on the predictions was examined.
Initially, the models were constructed using only the radiomics features (imaging features)
extracted from the CT scans through the open-source package PyRadiomics. Afterwards,
the clinical data of the patients were added. As explained in Section 3.3, the clinical data
contained implausible treatment time information. Therefore, the addition of the clinical
variables was performed in two phases: Experiment 1 contained only the clinical data of the
patients such as age, gender, and primary site of the tumour, among others, and Experiment
2 additionally contained information about the time, in days, from diagnosis to the start of
the treatment and to the last follow-up and the treatment time. As a consequence, three
experiments were conducted for each prediction. The list of clinical variables added and
their distribution per institution can be found in Part B in the Supplementary Material
(Table S1).

Finally, a comparative study among several machine learning algorithms is presented
for each cancer outcome prediction. The models were developed using the following
algorithms: multilayer perceptron, extreme gradient boosting, logistic regression, random
forest, and decision trees. The AUC values obtained for all predictions in the different
algorithms are presented in Tables 1–3. These results were from the test data, i.e., the data
that were not used in the training phase.

Through the analysis of the tables, it is possible to conclude that the overall advantage of
the XGBoost algorithm is evident because it presently dominated the applied machine learning
techniques. This algorithm allowed making predictions with the most adequate confidence;
its classification was not random, as it was when using some of the other algorithms.

This study reached results supporting the hypothesis that head and neck cancer
outcomes can be manifested by extracting radiomics from CT scans. Although the models
containing only the imaging features did not present the desirable AUC values, when
predicting DMs and OS, they are promising.
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Table 1. Global results (AUC values) of Locoregional Recurrence (LR), Distant Metastasis (DM) and
Overall Survival (OS) predictions for the imaging features’ models.

Imaging Features

MLP XGBoost Log.R RF DT

Locoregional Recurrences 0.5261 0.5765 0.4911 0.4911 0.4286

Distant Metastasis 0.6201 0.8273 0.7463 0.6275 0.5013

Overall Survival 0.7379 0.8462 0.7337 0.5857 0.5759
MLP: MultiLayer Perceptron, XGBoost: eXtreme Gradient Boosting, Log.R: Logistic Regression, RF: Random
Forest, DT: Decision Tree.

Table 2. Global results (AUC values) of LR, DM, and OS predictions for the imaging features +
clinical data (Experiment 1) models.

Imaging Features + Clinical Data (Experiment 1)

MLP XGBoost Log.R RF DT

Locoregional Recurrences 0.5472 0.7181 0.5089 0.5000 0.5268

Distant Metastasis 0.6318 0.8246 0.6991 0.5803 0.6518

Overall Survival 0.7157 0.8369 0.6811 0.5428 0.5862

Table 3. Global results (AUC values) of LR, DM, and OS predictions for the imaging features +
clinical data (Experiment 2) models.

Imaging Features + Clinical Data (Experiment 2)

MLP XGBoost Log.R RF DT

Locoregional Recurrences 0.5626 0.7411 0.5536 0.4911 0.5357

Distant Metastasis 0.6678 0.8367 0.7024 0.6188 0.6134

Overall Survival 0.7529 0.9051 0.7172 0.5330 0.5857

Additionally, this work allowed assessing the influence of the patients’ clinical vari-
ables on the predictions. Regarding Experiment 1, the addition of clinical data was an asset
for LR prediction, as the AUC value increased from 0.5765 to 0.7181. On the other hand,
for the prediction of DMs and OS, the addition of clinical data showed no added value,
since the predictive power of the models slightly decreased (AUC values decreased from
0.8273 to 0.8246 and from 0.8462 to 0.8369 for DMs and OS, respectively). This means that
the clinical data were crucial for improving the LR results, as using only radiomics gave
an AUC value close to 0.5. However, in predicting DMs and OS, the clinical data were not
advantageous and even slightly detrimental, so using only radiometric features was better
for the first experiment.

Experiment 2 obtained the best results for all predictions. The greatest AUC increase
in this experiment was observed in OS prediction, and the times, in days, from diagnosis to
the start of the treatment and to the last follow-up were the most important clinical features.
The presence of distant metastases and the primary tumour site were also very important
for this prediction.

The dataset has a problem in the distribution of the labels, as can be seen in Part C in
the Supplementary Material (Figures S1–S3): in all cases, the number of positive instances
is always much lower than the number of negative instances. This notwithstanding, our
results suggest that there is a chance to predict the presence of locoregional recurrences,
distant metastases, and the overall survival rate using radiomic features from the clinical
data of the patients.
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4.2. Deeper Analysis of XGBoost in Experiment 2
4.2.1. Hyperparameters

XGBoost, when implemented through the scikit-learn library, has essentially four
classes: XGBClassifier, XGBRanker, XGBFRegressor, and XGBRFClassifier, which are used
to solve the classification, ranking, regression, and random forest regression problems,
respectively. Given the problem presented in this project, the most appropriate class was
XGBClassifier [33]. Concerning XGBoost’s hyperparameters, it is possible to apply a va-
riety of tuning parameters to tree-based learners (learning rate, max_depth, subsample,
colsample_bytree, and n_estimators, among others), as well as regularisation parame-
ters to penalise models as they become more complex and reduce them to simple models
(gamma, lambda, and alpha) [34]. The “objective” hyperparameter that determines the loss
function used was “binary:logistic”, since it is the most suitable for classification problems
with probability. After several experiments, the XGBoost hyperparameters and the respec-
tive values that gave rise to the highest AUC values in LR, DM, and OS predictions are
presented in Part D in the Supplementary Material (Table S2).

4.2.2. Confusion Matrices and ROC Curves

Various measures can be used to evaluate the predictive performance of a rating
model. The most important classification metrics are based on the so-called confusion
matrix, which shows for a set of objects how many of them were correctly classified and how
many were misclassified. In a confusion matrix, the two columns represent the predicted
classes, while the two rows represent the corrected classes. The main diagonal contains the
correct predictions, i.e., True Negatives (TNs) and True Positives (TPs), while the incorrect
predictions are contained in the secondary diagonal, i.e., False Positives (FPs) and False
Negatives (FNs). Most of these measures were developed for binary classification tasks,
but they can easily be adapted to multi-class tasks [35].

The AUC is a good estimator of the predictive performance of a classifier, since, for
most classifiers, different decision thresholds for determining the class of a new object
lead to different performances, and the AUC takes into account the performance of the
classifier at different thresholds by calculating the area under the ROC curve, which makes
it possible to study the effects of different decision thresholds on the TP and FP rates [35].

Figure 5 presents the confusion matrices and graphs of the ROC curves obtained in
the predictions of LRs, DMs, and OS, respectively, A, B, and C.

4.2.3. Relevant Features

One advantage of using ensembles of decision trees methods such as gradient boosting
and XGBoost is that they can automatically provide estimates of feature importance from
a pre-trained model. The importance is defined by a normalised score given to each
feature/attribute in order to indicate how useful or valuable that feature was in building
the optimal decision trees within the model. The more a particular attribute is used in
the decision-making of the tree, the more valuable that attribute will be and, therefore,
the greater its importance. The amounts of the different attributes are calculated for each
attribute individually; however, they are classified and compared to each other [36]. It is
possible to automatically calculate the importance of features in the predictive modelling
problem of a trained XGBoost model using the “feature_importances” variable of the
trained model. Therefore, an analysis was performed in order to find the most-valuable
predictors among the set of features used. For each XGBoost prediction, a bar chart with
the score of importance given to each feature, presenting only the 20 most-relevant ones,
is presented in Figure 6. The metric used for the analysis of the characteristics was the
F-score, which is very appropriate for class imbalance problems. The F-score is the balance
between precision, also known as positive predictive value, and recall, also known as
sensitivity. Note that precision indicates the percentage of objects classified as positive
among all objects that are indeed positive, and recall indicates the percentage of objects
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correctly classified as positive by the model among all objects classified as positive, also
referred to as the TP rate [35].

Figure 5. Confusion matrices and ROC curves of the project using imaging features, clinical variables,
and the time information—Experiment 2. (A) For LR prediction, the AUC is 0.7411; (B) the AUC for
DM prediction is 0.8367; (C) the AUC for OS prediction is 0.9051.

In this figure, it is not only noteworthy that the features with the most influence for
LR and DM predictions were, respectively, age and time (in days) from diagnosis to the
last follow-up, but also the fact that their F-scores were very high compared to the other
features. Regarding the OS prediction, the presence of distant metastases, the primary site
of the tumour, more specifically, when it was oropharynx, and the time (in days) from
diagnosis to the last follow-up and to the start of treatment were crucial factors.

Furthermore, from the analysis of the bar chart presented, it is evident that, for the
construction of the optimal decision trees, the features that most positively influenced the
models were, mainly, the features extracted after the application of the two filters (wavelet
and LoG), which performed a texture analysis on multiple tumour scales.
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Figure 6. Bar charts with the importance score given to the 20 most-relevant features of the best results.
(A) For the LR prediction, it is not only noteworthy that the feature with the most influence is age,
but also the fact that its F-score is very high, compared to the other features. (B) For the construction
of the decision trees of the model of DMs, predominantly, features extracted after the application of
the wavelet filter were used, demonstrating that the multiscale texture feature analysis of the tumour
performed with the application of this filter was decisive in predicting DMs. In addition, the variable
with the highest decision weight was the time from diagnosis to the last follow-up. (C) Regarding
the OS prediction, it can be seen that the presence of distant metastases was a crucial factor for the
prediction of OS. Another relevant feature was the primary site of the tumour, more specifically when
it was oropharynx. It can also be concluded that the time, in days, from diagnosis to the last follow-up
and to the start of treatment were also features with great influence on the construction of the model
decision trees.
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5. Discussion

For this study, a public dataset already used for similar studies was used. Hence,
in order to evaluate the results obtained in the present work, a comparison of the different
projects was made, highlighting the main similarities and differences.

The division into training and test cases was made according to the reference works
to allow a more rigorous comparison. However, Vallières et al. [11] included the entire
tumour volume, i.e., lymph nodes, as well as the gross volume of the primary tumour,
while Diamant et al. [10] only used the central slide of the tumour, i.e., the slide with
the greatest number of tumour pixels; in the present study, only the gross volume of the
primary tumour was considered. It was decided not to include lymph nodes as the patterns
of growth, ingrowth, and necrosis are similar for all types of carcinomas regardless of
tumour diversity (as in head and neck cancer). Furthermore, lymph nodes may only be
reactively enlarged and not contain any tumour.

Furthermore, the whole process for building the predictive models was different.
In Vallières et al.’s study, three radiomic feature sets were considered: features extracted
from PET, CT, and a combined set containing both modalities. For each set, an “initial
feature” was defined, and all possible logistic regression models of order two were created.
Bootstrap resampling was then performed for each of these models to calculate the AUC
0.632 + bootstrap. The remaining feature that maximised this value when combined with
the initial feature was selected. Thereafter, to find the best model, the process was repeated
cyclically. Finally, the prediction models were combined the imaging scans and clinical
variables of the patients through random forest classifiers.

The study by Diamant et al. was specifically benchmarked against Vallières et al.’s
study, acting as a complement to that mentioned reference. In this new approach, only CT
scans were analysed, and an end-to-end Convolutional Neural Network (CNN) designed
de novo was used to predict DMs, LRs, and OS. However, it was only the model for DMs
that was found to be significantly better than the benchmark study, so the resulting outcome
of the DM CNN model was combined with the benchmark model.

In this work, we proposed a different strategy. The extraction of the radiomic features
from the CT scans was carried out on the original images and after the application of the
LoG and wavelet filters to perform a multiscale texture feature analysis of the tumour.
The final models for each cancer outcome prediction were employed through several
machine learning algorithms, with emphasis on MLP and XGBoost.

In addition to the different methodologies, the present study also introduced a major
change when clinical variables were added, as it analysed the influence of the time informa-
tion (time from diagnosis to the start the treatment, treatment time, and time from diagnosis
to the last follow-up). The results revealed that this association was an improvement for
the success of the study. However, in the reference studies, these variables were excluded.

In order to conduct a more detailed and correct comparison, the analysis of the results
of the study by Vallières et al. was divided into two stages: using only the information
relative to CT scans and the final results containing PET and CT. The following Table 4
presents the best AUC values obtained in the present study, in the study by Vallières et al. in
both stages, and finally, in Diamant et al.’s study of the LR, DM, and OS predictive models.

Our work was based on a public dataset collection, for which we were not able to
extract all information for every case. Among the 298 cases available in the dataset, only
183 were included in the construction of the predictive models in this study. The lack of
information for certain variables was worsened by this fact, since there were variables
studied with zero cases (see the example in Part B regarding the clinical variables). This
limited the conclusion of our results, which, however, other researchers would also face
with these datasets.
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Table 4. Comparison of the performances of the predictive models of LRs, DMs, and OS developed
in the present study and in the studies of Vallières et al. (only with information of CT scans and
complete work) and Diamant et al. The results presented refer to the best AUC values obtained.
The present study identified with an asterisk (*) presents a more reduced dataset.

Present
Study *

Vallières et al. [11]
(Only CT Scans)

Vallières
et al. [11]

Diamant
et al. [10]

Locoregional Recurrences 0.74 0.62 0.69 -

Distant Metastasis 0.84 0.86 0.86 0.92

Overall Survival 0.91 0.72 0.74 -

Therefore, it would be expected that the AUC values would be lower compared to the
other studies that used the original dataset with all the information. Nevertheless, as shown
in the table, the results achieved with our approach were comparable at worst, or better
in many cases. The LR and OS predictions showed better results than Vallières et al., not
only when compared under the same conditions (using only information from CT scans),
but also compared to their overall results with information from the PET and PET/CT
scans. In fact, only the prediction of DMs did not present as much success, as its AUC
values were slightly smaller. This could be caused by eliminating some patients from the
dataset, which might be the most significant/most prominent cases for this prediction.

6. Conclusions

Head and neck cancer comprises a large and diverse range of tumours with a complex
aetiology and pathogenesis. This cancer presents a great treatment challenge as it has
different behaviours and prognoses, requiring different treatment approaches. When
diagnosed in advanced stages, it presents great resistance to therapies, with the overall
survival ranging below 50–80%.

As a result, the need for precision medicine arises, aiming to adapt the whole spectrum
of health care to each patient, namely in terms of the customisation or penalisation of
the prevention, screening, risk stratification, therapy, and evaluation of the response to
treatment. Radiomics is considered a new approach in precision medicine, which has
been studied more and more in recent years. By extracting quantitative, measurable, and
degradable features from medical images of interest, more information can be gained about
a disease. Medical imaging is a non-invasive technique that can present a complete view
of the tumour phenotype and its environment at a macroscopic level. The ambition is to
link radiomics-based data with biological and clinical endpoints to enable clinical decision-
making, improve diagnostic, prognostic, and predictive accuracy, and consequently, enable
personalised therapy and response assessment.

Hundreds of radiomic features are generated, so a proper feature selection/extraction
strategy should be adopted to reduce the dimensionality and overfitting of the predictive
models. Most of these strategies are within the machine learning field, since their goal
is to improve the performance of different computational models using past experiences,
creating a model capable of the classification, prediction, and estimation of a situation from
a selected known feature set.

In this work, different models were created in which a tumour was described by
radiomic features (imaging features extracted using the PyRadiomics open-source package)
and by clinical features. The association between tumour characteristics and cancer out-
comes, namely locoregional recurrences (LRs), development of distant metastases (DMs),
and overall survival (OS), was assessed, and predictive models were created.

This study allowed conducting a brief comparison between different machine learning
algorithms, namely MLP and XGBoost, and analysing the influence of variables for the
construction of the models, in particular the clinical variables.

The examined clinical variables were gender, age, location of the primary tumour,
T-Stage, N-Stage, TNM-Stage, HPV status, surgery, and treatment, as well as information
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about the times, in days, from diagnosis to the start of treatment and to the last follow-up
and the time, in days, of treatment. The results obtained by applying the MLP and XGBoost
algorithms demonstrated that adding the aforementioned clinical variables and times to
the radiomic features extracted from the medical images was an important step towards
the success of the predictive models. This was corroborated by the fact that the best results
for LR, DM, and OS predictions were obtained with these variables, especially when the
XGBoost algorithm was applied. For LR prediction, the AUC value increased from 56
to 74 using XGBoost, with age being a determining factor. In the prediction of DMs and
OS, the AUC values increased from 67 to 84 and 75 to 91, respectively. The fundamental
feature for the prediction of DMs was the time, in days, from diagnosis to the last follow-up.
Finally, for the construction of the decision trees of the OS prediction model, the most
significant clinical variables were the presence of distant metastases, the location of the
primary tumour, and the time, in days, from diagnosis to the start of treatment and to the
last follow-up.

Although the created models achieved promising results and their performance was
better than the benchmark studies, the sample size was not sufficiently large to reach solid
conclusions. The main conclusion of this study was that the studied cancer outcomes can
indeed be expressed through CT scans. Thereby, in the future, the proposed methodology
should be repeated using a larger sample size. A crucial issue that should be enhanced is
the tumour segmentation [37], since the more accurate it is, the more reliable the results are.
On the other hand, a key point to be investigated in the future is applying the models created
using deep learning techniques [38], since they may exceed the results presented in the
present study. For future studies, the split should be randomised into two groups instead
of splitting them by hospital group. This should lead to a further objective validation and
verification process compared to the identical data origin. It would also be valuable to
statistically verify the relationship between each feature and the target variable, in order
to understand which features are stronger predictors and verify if they correspond to the
results achieved in this study. Additionally, it would be interesting to also apply all the
mentioned strategies to PET scans. Finally, even when the AUC value of the cohort is
acceptable, it could perhaps be improved if the hyperparameters were determined with a
nested cross-validation methodology putting together all the patients with an inner loop
to select the model hyperparameters and an outer loop to assess the model performance
(randomly splitting, for example, the outer loop into 10 equal folds and the inner loop into
five folds).
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