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Preface

1 Preface

This thesis comprises four original publications. The work presented in this thesis was
performed between September 2018 and July 2022 under the supervision of Prof. Dr. Elsa
Sanchez Garcia at the Department of Computational Biochemistry, University of Duisburg-

Essen, Germany.



Zussamenfasung

2 Zussamenfasung
Wegen ihrer Biokompatibilitat, biologischen Abbaubarkeit und Selektivitat sind Peptide
wichtige therapeutische Molekdile. Aufgrund ihrer Biochemie eignen sich Peptide unter
anderem zur Imitation der Bindungsstellen von Proteinen, zur Inhibition krankheitsrelevanter
Protein-Protein-Interaktionen und um das Problem der Multiresistenz zu studieren. Deshalb
wurde in den letzten Jahren der Entwicklung und Optimierung bioaktiver Peptide viel
Aufmerksamkeit gewidmet. Die Entdeckung neuer Arzneimittel beginnt oft mit der Analyse
grolRer Peptidbibliotheken. Das experimentelle Screening solcher Bibliotheken ist jedoch teuer
und zeitaufwandig. In-silico-Methoden, die die Zahl der Kandidaten mit verbesserten
Eigenschaften reduzieren kdnnen, sind fiir das moderne Drogendesign unerl&sslich.
In den letzten Jahrzehnten wurden mehrere Methoden fir Protein-Protein-Interaktionen
entwickelt, die auf machine learning (ML) basieren. Anhand der verfugbaren Informationen
wurden diese Methoden trainiert, um beispielsweise Proteininteraktionen zu erkennen
(Klassifizierungsproblem) oder um die Bindungsaffinitdt (BA) als Regressionsproblem
vorherzusagen. Unabhéngig von der vorhergesagten Variable leiden die meisten der bisher
vorgestellten Methoden jedoch unter einer geringen Generalisierungsfahigkeit, da sie eine hohe
Varianz bei der Vorhersage von neuen Daten aufweisen. Daruber hinaus werden Peptide im
Bereich der Protein-Protein- und Protein-Ligand-Interaktionen von den meisten Methoden auf
die gleiche Weise behandelt wie Proteine oder kleine organische Liganden. Diese Uberlegung
unterschatzt die Spezifitdt kurzer Peptidsequenzen und reduziert die Leistung bei der
Vorhersage von Protein-Peptid-Interaktionen. Ahnlich wurden ML-basierende Methoden auch
zur ldentifizierung therapeutischer Molekiile, wie z. B. antimikrobieller Peptide (AMPs),
eingefihrt. Viele Methoden sind jedoch nicht darauf ausgelegt, eine bestimmte Funktion fir
mutmaliliche AMPs vorherzusagen, wie z. B. antibakterielle Aktivitat. Bei der Suche nach
bioaktiven Peptiden zur Bekdmpfung der Multiresistenz von Bakterien zeigen die modernen
Methoden eine eingeschrankte Genauigkeit bei der Vorhersage der antibakteriellen Aktivitat
und es fehlen haufig weitere Informationen tber die Art der moglichen Ziele. Um das akkurate
De-novo-Design bioaktiver Peptide zu ermdoglichen, ist die Entwicklung neuartiger
computergestitzter Werkzeuge notwendig. Diese Dissertation beschreibt, wie ML-Techniken
dazu beitragen kénnen, Methoden zu erstellen, mit deren Hilfe komplexe Fragestellungen im
Peptidesign geldst werden kénnen (Table 1). Schwerpunkte der Dissertation sind:

(1) Ein sequenzbasiertes Werkzeug fur Protein-Protein- und Protein-Peptid-Interaktionen,

der zur Identifizierung von Leitstrukturen durch extensives in silico Screening von Protein-

Peptid-Wechselwirkungen eingesetzt werden kann. Das Werkzeug basiert auf einem ML-
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basierten Klassifikator, der die Wahrscheinlichkeit von Interaktion vorhersagt. Das
Ausgabemodell wurde durch die Nutzung von Informationen aus mehreren 6ffentlich
zuganglichen Datenbanken und durch die Verwendung von Support Vector Machines
(SVM) erstellt. Die Methode wurde als Web-Werkzeug namens PP1-Detect implementiert.
Die ML-Studie nutzte die gleichen molekularen Deskriptoren, die bereits in ProtDCal
implementiert sind. ProtDCal ist ein Programm fir die numerische Kodierung von
Proteinen, das in mehreren Studien validiert wurde. ProtDCal wurde anfangs dazu
entwickelt, einzelne Proteine zu kodieren. Daher erforderte die Modellierung des
sequenzbasierten Modelles die Einfuhrung eines neuartigen Verfahrens zur Kodierung
zweier individueller Aminosdauresequenzen in eindeutigen numerischen Deskriptoren.
Dieses Verfahren wurde in ProtDCal implementiert um kiinftigen datenbasierden Studien
zur Analyse von Proteinpaaren zur Verfligung zu stehen.

(2) Werkzeuge um die Bindungsaffinitdten (BA) von Protein-Protein- und Protein-Peptid-
Bindungen flr 3D-Strukturen zu schatzen, mit Anwendung in Mutagenese-Experimenten
und Protein-Engineering.  Die ML-Modelle verwendeten Informationen, die in
Offentlichen Datenbanken gelistet sind. Beide Modellierungen wurden mit SVM
durchgefihrt, und die Ausgabemodelle wurden als Web-Werkzeug namens PPI-Affinity
implementiert. Neben der BA-Schatzung ermdglicht die PPI-Affinity auch die
Optimierung von Peptidsequenzen, flr die 3D-Komplexstrukturen bestimmt wurden. Die
implementierten Funktionalitdten ermoglichen die Erzeugung von Tausenden von
Peptidderivaten durch Substitutionen und/oder Ausléschungen an den Aminosaureresten,
die sich an der Kontaktflache des Protein-Peptid-Komplexes befinden.

(3) Ein Werkzeug zur ldentifizierung antibakterieller Peptide (ABPs) und des Gram-
Féarbungstyps der Zielbakterien, das zur Identifizierung von Leitpeptiden mit dem Potenzial
zur Bekampfung der Multidrogenresistenz dient. Die Methode fir ABPs, genannt ABP-
Finder, wurde von mir als Webserver implementiert. Das Programm ermdglicht die
Zerlegung von Proteinsequenzen in kurze Peptidfragmente vor der Modellvorhersage.
Diese Funktionalitat findet Anwendung bei der Suche nach Proteindomanen mit
antibakterieller Aktivitat.

(4) Die in (1) — (3) erwéhnten ML-Werkzeuge nutzten die molekularen Deskriptoren von
ProtDCal. Dieses Programm wurde zuerst als Standalone-Program implementiert. Diese
Arbeit zielt darauf ab, die Benutzerfreundlichkeit des Programms zu erweitern, und die
Nutzung der entwickelten ML-Modelle, die mit dem ProtDCal-Kodieransatz erstellt

wurden, zu erleichtern. Dieses Ziel wurde durch folgende Malinahmen erreicht:
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Implementierung einer Web-Plattform, die die Berechnung von ProtDCal-
Molekdildeskriptoren fur Data-Mining-Studien und die Nutzung der ProtDCal-basierten
Werkzeugen fiir das virtuelle Screening in den ersten Schritten der Peptidentdeckung
ermoglicht. Der Webserver namens ProtDCal-Suite bietet Zugang zu den in dieser Arbeit
vorgestellten ML-basierten Methoden und zu anderen veroffentlichten Werkzeugen, die
die funktionelle Analyse von Proteinen und Peptiden erleichtern. Darliber hinaus enthalt
die  Online-Schnittstelle  von ProtDCal eine Zusatzfunktion, mit der die
Molekdildeskriptoren nach den Shannon-Entropiewerten der eingegebenen Proteine
geordnet und gefiltert werden kdnnen. Die entwickelten Werkzeuge bieten die Mdglichkeit
flir das virtuelle Screening von Peptiden in den friihen Phasen des Drug-Designs-Prozesses
von peptidbasierten  Arzneimitteln. ProtDCal-Suite ist frei zuganglich unter

https://protdcal.zmb.uni-due.de.

Table 1. Liste der entwickelten Programme im Rahmen dieser Arbeit.

Zweck

PPI-Detect Eine sequenzbasierte Methode zur VVorhersage von flr Protein-Protein- und
Protein-Peptid-Interaktionen.

PPI-Affinity Werkzeuge zur Vorhersage der Protein-Protein- und Protein-Peptid-
Bindungsaffinitaten fur 3D-Strukturen.

ABP-Finder Ein Werkzeug zur Identifizierung antibakterieller Peptide und des Gram-
Féarbungstyps der Zielbakterien.

ProtDCal-Suite  Eine Web-Plattform, die (i) die Berechnung von ProtDCal-
Molekuldeskriptoren und (ii) die Nutzung der ProtDCal-basierten Methoden
fiir das virtuelle Screening von Peptidebiblioteken ermdglicht.

Die Generalisierungsfahigkeit der trainierten Modelle wurde an mehreren externen Testsets,
die experimentelle Daten enthielten, validiert. PP1-Detect wurde verwendet, um Derivate von
EPI-X4, einem endogenen Peptidinhibitor des Chemokinrezeptors CXCR4, zu untersuchen.
Diese Analyse fiuihrte zur Identifizierung eines kirzeren und aktiveren Derivats von EPI-X4.
PPI-Affinity wurde bei der Bewertung von EPI-X4-Mutanten, die an CXCR4 gekoppelt sind,
und von Peptiden, die Komplexe mit den Serinproteasen HTRA1 und HTRAS3 bilden, Gberprift.
Die Auswertung der PPI-Affinity in den diversen Testsets zeigte, dass die Protein-Protein-BA-
Methode zur Spitze der modernsten BA-Methoden gehdrt. AulRerdem war die Protein-Peptid-
BA-Methode die erste, die auf Daten trainiert wurde, die aus diversen Protein-Peptid-Strukturen
bestanden. ABP-Finder steht an der Spitze der modernsten ML-Methoden fiir ABPs,
insbesondere im Bereich der Genauigkeit. ABP-Finder wurde flr das Screening einer gro3en
Peptidbibliothek aus dem Peptidom des menschlichen Urins verwendet. Auf der Basis dieser
virtuelle Screening Studie wurde ein neuartiges antibakterielles Peptid experimentell

identifiziert.


https://protdcal.zmb.uni-due.de/

Summary

3 Summary

Peptides are important therapeutic molecules due to their biocompatibility, biodegradability,
and selectivity. Their biochemistry makes peptides suitable for mimicking the binding site of
proteins, for the inhibition of disease-relevant protein-protein interactions, and to address the
problem of multi-drug resistance, among other applications. Therefore, much attention has been
devoted in recent years to the design and optimization of bioactive peptides. Frequently, the
discovery of new drugs starts with the analysis of large peptide libraries. However, the
experimental screening of such libraries is expensive and time-consuming. In silico approaches
that potentially reduce the list of candidates for further improvement are essential for modern

drug design.

Several machine-learning-based predictors of protein-protein interactions have emerged in the
last decades. Based on the available information, these predictors have been trained, for
instance, to detect protein interactions or the lack of them (classification problem), or to predict
binding affinity (BA) as a regression problem. However, regardless of the output variable, most
models introduced so far suffer from low generalization capabilities, displaying high variance
when predicting unseen data. Additionally, within the context of protein-protein and protein-
ligand interactions, most methods contemplate peptides in the same way as proteins or small
organic ligands. This consideration underestimates the specificity of short peptide sequences
and results in poor performance in predicting protein-peptide interactions. Similarly, machine-
learning-based methods aiming to identify therapeutic molecules, such as antimicrobial
peptides (AMPs), have been introduced. However, many of these methods are not able to
predict a specific function for putative AMPs, such as antibacterial activity. Consequently, in
the search for bioactive peptides to address multi-drug resistance in bacteria, state-of-the-art
tools display limited precision in predicting antibacterial activity and generally lack further
information about the possible targets. Thus, novel computational methods to accurately aid the
de novo design of bioactive peptides are needed. In this work, my aim was to leverage machine
learning (ML) techniques to create tools to study bioactive peptides (Table 1). My work
focused on:

(1) A sequence-based predictor of protein-protein and protein-peptide interactions
applicable to the identification of lead compounds from extensive in silico screening of
protein-peptide interactions. The model is a classifier that predicts the likelihood of
interaction. It was created by exploiting information annotated on various public
databases and by using Support Vector Machines (SVM). The output model was

implemented as a web tool named PPI-Detect. The ML study utilized the molecular
9



Summary

descriptors implemented in ProtDCal, a tool for the numerical codification of proteins,
which was validated in diverse studies. ProtDCal was initially intended to encode
individual proteins. Thus, the modeling of the sequence-based predictor required
introducing a novel procedure to encode the information of two individual amino acid
sequences into unique numerical descriptors. This procedure was implemented in
ProtDCal and made available for future data-driven studies encompassing the analysis of

protein pairs.

(2) Predictors of protein-protein and protein-peptide binding affinities for 3D structures,
with applications for mutagenesis experiments and protein engineering. The ML models
utilized information annotated on various public databases. Both modeling processes
were conducted using SVM and the output models were implemented as a web tool
named PPI-Affinity. The web server allows, in addition to the BA estimation, the
optimization of a putative peptide sequence for which a 3D complex structure has been
resolved. In addition, the implemented functionalities permit the generation of thousands
of peptide derivatives by performing substitutions and/or deletions on the peptide residues

located at the interface of contact of the protein-peptide complex.

(3) A tool to identify antibacterial peptides (ABPs) and the Gram-staining type of targeted
bacteria, with applications for the identification of lead peptides with the potential to
tackle multi-drug resistance. The predictor of ABPs, named ABP-Finder, was
implemented by me as a web server. Before the step of prediction by the model takes
place, the server permits the breakdown of protein sequences into short peptide fragments.
Such functionality finds application in the discovery of protein domains with antibacterial

activity.

(4) The ML tools mentioned in (1) — (3) utilized the molecular descriptors implemented
in ProtDCal. Originally, ProtDCal was implemented as a standalone application. In this
work, | aimed to extend the applicability of ProtDCal and to facilitate the use of models
created using the ProtDCal codification approach. To this end, my aims were: To
implement a web platform to permit (i) the generation of ProtDCal molecular descriptors
for data-mining purposes and (ii) the application of ProtDCal-based tools for virtual
screening in the early steps of peptide discovery. The resulting web server, named
ProtDCal-Suite, provides access to the ML-based methods introduced in this work and
to other tools previously published, facilitating the functional analysis of proteins and
peptides. Additionally, the online interface of the ProtDCal software includes a post-

processing optional functionality to rank and filter the molecular descriptors according to
10
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the Shannon entropy values of the input set of proteins. The developed tools allow for the
virtual screening of peptides at the early stages of the drug design process involving
peptide-based  pharmaceuticals.  ProtDCal-Suite is  freely  accessible at

https://protdcal.zmb.uni-due.de.

Table 1. List of tools developed within this work.

Purpose

PPI-Detect A sequence-based predictor of protein-protein and protein-peptide
interactions.

PPI-Affinity A tool to predict and optimize the binding affinity of protein-protein and
protein-peptide complexes.

ABP-Finder A tool to identify antibacterial peptides and the Gram-staining type of targeted
bacteria.

ProtDCal-Suite A web platform to facilitate (i) the generation of ProtDCal molecular
descriptors and (ii) the application of ProtDCal-based tools for the virtual

screening of peptide libraries.

The generalization capability of the models trained by me was validated by assessing the
models’ performance on several external test sets that included experimental data. PPI-Detect
was used to study derivatives of EPI-X4, an endogenous peptide inhibitor of the chemokine
receptor CXCR4. This analysis resulted in the identification of a shorter and more active
derivative of EPI-X4. PPI-Affinity was evaluated in the ranking of mutants of EP1-X4 coupled
to CXCR4, and peptides forming complexes with the serine proteases HTRAL and HTRAS.
The evaluation for PPI-Affinity on the different test sets evidenced that the protein-protein BA
predictor ranks among the top state-of-the-art BA predictors to date. Moreover, to the best of
my knowledge, our protein-peptide BA predictor was the first tool trained on data comprised
exclusively of diverse protein-peptide structures. ABP-Finder, on the other hand, ranked on
top of the state-of-the-art predictors of antibacterial peptides, particularly in terms of precision.
ABP-Finder was used to screen a large peptide library from the human urine peptidome. Based

on this virtual screening study, a novel antibacterial peptide was experimentally established.

11



Introduction

4 Introduction

4.1 The drug discovery process

4.1.1 The stages of the drug development process

Drug discovery is an arduous process comprising several stages (Figure 1). Often, it begins
either with the discovery and validation or with the use of already known target biomolecules
that, in association with certain compounds, might have therapeutic purposes. Next, compounds
with activity against a validated target, as well as with suitable properties for further screening
are designed. The most promising hits are then optimized to improve their activity against the
target and their absorption, distribution, metabolism, excretion (ADME), and toxicity (T)
profiles are analyzed. Lastly, preclinical and clinical studies are conducted to determine the
efficacy and safety of the developed drug in patients, as well as to decide the method of
administration, and dosage, among other specificities'. Overall, the aforementioned pipeline is
a high-risk investment process whose cost generally fluctuates between $161 million and $4.54
billion (2019 US$), with the highest expenditures for anticancer drugs?. Such expense is mainly
due to the high failure rates associated with the identification of suitable candidates, which still
account for more than 90% of the failure of clinical trials®.

Target Hit-to-lead
discovery and and lead
validation optimization
>
ler:;z ﬁ:::lgn Preclinical and
T clinical studies

Figure 1. Stages of the drug design process®

4.1.2 Targeting protein-protein interactions

Proteins are biomolecules that can bind to other molecules and exert relevant biological
functions. For example, protein-protein interactions (PPIs) participate in almost all processes
occurring in living cells*®. Relevant PPIs functions include the modification of properties of
enzymes, activation or inhibition of other proteins, transport of molecules, immune recognition
to infections, and catalysis of metabolic reactions” & The loss of key interactions,
conformational changes of protein complexes, as well as anomalous aggregation, can alter the
normal functioning of PPIs®. Some disruptions might not cause significant damage, but others
are related to severe diseases®. For instance, the aggregation of certain proteins can be related

to the development of degenerative pathologies, such as Parkinson’s and Alzheimer’s?.

12
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Likewise, some host-pathogen protein associations can lead to bacterial infections®2. In cancer
cells, alterations of cell signaling and regulatory pathways are triggered by mutations occurring
in some proteins®.

Some ligands (small molecule or other macromolecules) bind specifically to a protein receptor
and compete with the original cognate partner of the protein, leading to an agonist or antagonist
interaction that interferes with the function of the PPI°. These molecules can interfere with PPIs
through either orthosteric (binding to the active site of the PPI) or allosteric (binding to other
parts of the non-interacting protein surface) mechanisms (Figure 2). Both binding modes can
lead to the modulation (inhibition or stabilization) of the PPI, and likewise, such modulation
can result in either the inhibition or activation of the biological function®*. Therefore, in the last
few decades, significant efforts have been aimed to understand and predict PPIs, and to discover

therapeutic ligands that can be used to modulate PPIs involved in disease®®.

+ Modulator

¢o C’
S e@®

Inhibition Stabilization

2119150410

2112150| |V

Figure 2. Mechanisms of action (orthosteric or allosteric) of modulators leading to the inhibition or
stabilization of PPIs (from Modell, A. E. et al.14)Noet

4.1.3 Development of drugs

Ligands can be either small molecules or larger macromolecules®. However, most compound
libraries comprise mainly small molecules (molecular weight < 900 Da), including fatty acids,
glucose, amino acids, cholesterol, lipids, glycosides, and alkaloids, among others.
Consequently, small molecules represent 90% of the pharmaceutical market'’. Small molecules
are more explored due to their ability to penetrate the cell membrane and attach to deep folding

! Reprinted with permission from Elsevier and Copyright Clearance Center. License Number: 5402960059011.
License date: Oct 06, 2022
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pockets of the target protein with sufficient strength to alter the biological function of the target.
However, small molecules-based strategies developed to interfere with intracellular PPIs face
some drawbacks. The binding surfaces involved in PPIs are generally large (1500-3000 A?),
driven by many polar and hydrophobic interactions, as well as flat and deprived of a well-
defined binding pocket for efficient drug-candidate binding® %°. Such limitations may be
tackled by peptides (molecular weight between 500 and 5000 Da), which are located at an
intermediate place between small molecules and short proteins, but with distinctive

characteristics?.

4.2 Peptides as therapeutic compounds

Peptides, like proteins, are amino acid sequences joined by peptide bonds. Peptide sequences
typically range from 2 to 50 amino acids, while proteins usually comprise more than 50 amino
acids?!. However, these boundaries are flexible, as some polypeptides might also be considered
proteins, e.g., the protein crambin containing 46 amino acids. Thus, according to the length of
the sequence, peptides can be broadly classified as oligopeptides (maximum 20 amino acids)
or polypeptides (between 20 and 50 amino acids). Nevertheless, while oligopeptides are
classified as peptides, some polypeptides can be identified as small proteins as well?? depending

on their functions.

4.2.1 Bioactive peptides

In nature, peptides are encrypted in native protein sequences. In vivo, short peptide fragments
can be released by digestive gastrointestinal enzymes (e.g., trypsin, pancreatin, peptidase,
pepsin, lipase) or by microbial enzymes. In vitro, peptides can be also produced by proteolytic
enzymes or by fermentation using microorganisms (e.g., Lactobacillus helveticus)?® 24, Inside
the parent protein, these peptides are inactive, however, once released from the protein, they
can display different properties. Such peptide fragments with the potential to affect biological
functions and influence health are known as bioactive peptides®.

Bioactive peptides are considered excellent therapeutic molecules. They can be classified
according to their therapeutic function as antimicrobial, anticancer, antidiabetic, antioxidant,
and immunomodulatory peptides®®2®. For instance, antimicrobial peptides (AMPs) are
oligopeptides with a broad spectrum of inhibitory effects against infections caused by several
organisms. In nature, AMPs can be found in various microorganisms, such as bacteria, as well
as in eukaryotic species such as fungi, plants, and animals. In animals, AMPs are considered
the first line of immune defense due to their ability to destroy viruses, bacteria, and fungi. Based

on specific activities, AMPs may also be sub-classified as antiparasitic, antifungal, antiviral,

14
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anticancer (antitumor), and antibacterial peptides. Antibacterial peptides account for about 60%
of AMPs?°,

4.2.2 Therapeutic potential of bioactive peptides

Peptides can bind to target protein receptors with high affinity and specificity®’. Moreover, due
to their amino acid composition, peptides are biodegradable and present low toxicity.
Additionally, they exhibit a low risk of drug-drug interactions. Thus, therapeutically, peptides
are usually safe, tolerable, and effective in humans. Such strengths are the main fundamentals
of why peptide discovery has become an increasing field of research in the last decades®!. As a
result, it was estimated that in the current pharmaceutical market, the success rate of peptide-
based drugs is twice the rate of small-molecule-based drugs with 60 approved peptides and
around 20 peptide-based drugs entering the clinical trials annually®.

Peptide drugs have been used in different areas such as cancer, diabetes, and human
immunodeficiency virus type | (HIV-1) treatment as well as in hormone therapy, among
others®. However, the development of bioactive peptides is a very challenging task. Among
other weaknesses, peptides have limited stability, short half-live, and poor oral bioavailability
(Figure 3). Usually, such limitations are addressed by using various strategies aimed at
improving the physicochemical properties of promising lead compounds. For instance, proteins
might be screened to find fragments with high affinity to a target receptor. Then, promising
leads are used as scaffolds in an optimization process in which other techniques, such as
sequence length, side chain, or peptide backbone modifications, as well as C-terminal amidation
and N-terminal acetylation, are applied?.

Peptide drug candidates are obtained through an intensive search and optimization process in
which large libraries of peptide compounds are exploited to find the most promising ones to
fulfill a desired therapeutic function®!. However, the combination of the 20 naturally occurring
amino acids to generate peptides of different lengths, together with the identification of peptide
leads result in almost an unlimited search. Initial leads can be detected through experimental
protein-peptide recognition techniques, but the processes involved are expensive and laborious.
Thereby, advances in science and technology are constantly exploited to create methods aiming
to assist scientists at all stages of the search for peptides modulating PPIs. These developments
respond to the paradigm of rational drug design, in which several interdisciplinary fields, such
as molecular biology, computational chemistry, and information technology, work together in
the design of pharmaceutical compounds for which a target of interest has been identified and
validated®®. Thus, in silico methods that aim to improve the tasks involved in the drug design

process are under constant development.
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S  Strengths
* Good efficacy, safety, and tolerability
* High selectivity and potency
* Predictable metabolism
e Shorter time to market
e Lower attrition rates
» Standard synthetic protocols

(o) Opportunities
* Discovery of new peptides,
including protein fragmentation
* Focused libaries and optimized
designed sequences
¢ Formulation development
* Alternative delivery routes besides
parental
* Multifunctional peptides and
conjugates

Drug Discovery Today

Figure 3. Analysis of the strengths, weaknesses, opportunities, and threats (SWOT) of peptides (from
Fosgerau and Hoffmann3t)Nete2

4.2.3 In silico development of bioactive peptides

Drug design, as discussed above, encompasses predicting whether a specific molecule is likely
to bind a target receptor and if so, the strength of such interaction®®. To this end, advancements
in computational technologies have favored the development of theoretical and computational
methods enabling what is known as computer-aided drug design (CADD)3" ®, The use of
CADD methods for virtual screening at the early stages of the drug design process can reduce

time and cost by focusing experimental efforts on only a short list of promising compounds.

4.2.3.1 Virtual screening

The identification of hits involves the screening of large libraries of compounds. For this,
traditional in vitro techniques such as High-Throughput Screening (HTS) may be used.
However, a valuable approach, complementary and alternative to HTS is virtual screening (VS),
consisting of the screening of large libraries using in silico approaches. The application of
CADD methods for VS can lead to the cost-effective identification of hit compounds, which

may also be derived from non-physical libraries!. Usually, VS techniques are classified as

2 published under the terms of the Creative Commons Attribution License (CC BY-NC-ND 3.0), which permits
the copy and redistribution of the material in any medium or format.
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ligand-based and structure-based. Ligand-based VS attempts to find new active compounds
based on molecular similarity, employing as scaffolds known active and inactive molecules. In
contrast, structure-based approaches assess the likelihood of a ligand binding a target receptor
for which a three-dimensional structure is known*®.

One approach followed in both ligand- and structure-based VS is the use of data-driven models.
Such is the case of Quantitative Structure-Activity Relationships (QSAR) models, whose utility
in drug design and optimization has been well established®. In QSAR development, the
structure and activity of compounds are correlated to create a model able to accurately predict
the activity profile of untested compounds®!. Introduced more than 50 years ago*?, QSAR has
evolved from simple regression analysis to the use of ML techniques, capable of analyzing large
datasets of biological systems*. Although initially used for single compounds, QSAR studies
can incorporate information about the target, for instance, by introducing the amino acids
sequence of the protein receptor. The developed models can be used in lead discovery and
optimization to identify peptides with high activity and selectivity against a target PPI, among

other applications®.

4.3 Machine learning

Machine learning (ML) is the discipline of computer science that allows computers to have the
ability to “learn” without being specifically programmed for the task*®. It belongs to the broader
field of artificial intelligence, which focuses on developing intelligent machines. In the early
1950s, Arthur Samuel popularized the “machine learning” term in the computer games
domain®. As a research field, ML is an area of continuous evolution, with significant growth
in the last three decades, reflected in the wide variety of services and software applications that
nowadays use ML models.

The basic premise of learning is to use a set of available observations to uncover an underlying
process®. Based on this, three criteria may motivate the application of ML techniques: the
existence of a pattern, the difficulty for humans to mathematically define it, and the presence
of data representative of the phenome. The outcome of the learning process is a mathematical

model (or rule system) that can make accurate predictions on unseen data*.

4.3.1 Types of learning

Machine learning involves three main learning paradigms: supervised, unsupervised, and

reinforcement learning. Supervised learning (SL) aims at finding relationships between a set of

input characteristics (independent variables) and an output variable (dependent variable). In

Unsupervised learning (UL), as opposed to SL, the output variable is not explicitly specified,

and the only available information is the input variables. The objective is to find relations
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between the variables that can lead to a higher representation level of the input data. Ideally,
the identified relations are sufficiently relevant to form clusters or categories in the analyzed
data. A third learning paradigm is Reinforcement learning, which is concerned with the problem
of learning intelligent behavior in complex dynamic situations®’. In this learning paradigm, the
classification of the samples (output variable) is initially missing. The learning task is to
discover the optimal outputs in a trial/error process with a reward/penalization system“®,

Additionally, there is a hybrid learning paradigm known as Semi-supervised learning, in which
the data has labeled and unlabeled samples. The learning task is to leverage both data sources
to train the model. Other approaches are recognized based on the strategy used to improve the
learning process. Multi-Task learning seeks to improve generalization performance by learning
several output variables measured on the same training samples. Active learning collects the
training samples used to build a model by actively querying a system for the label of new
instances. Transfer learning uses existing models as starting point to fit novel models. Ensemble
learning consists of the development of several models on the same data. For the prediction
step, a unique prediction value for an observation results from aggregating the outputs of
individual models. Deep learning groups algorithms that improve the supervised learning
technique Neural Networks to learn large and complex data representations with multiple levels
of abstraction. Deep learning is considered a subset of ML, currently very successful due to the
improvements achieved in highly complex tasks such as speech and visual object recognition®.
In this work, supervised, unsupervised, and ensemble learning are the types of learning
leveraged to create the ML models. Therefore, the following sections explain each of them in

more detail.

4.3.1.1 Supervised learning
Supervised learning aims to find relationships between an input set of characteristics, x =
{V,V,,...,V;} where d is the number of independent variables, and an output variable
(dependent variable). For this, a collection of N samples is used (x;,y;), ..., (xy,yy) from
R%x IR, in which the i*" instance is a pair consisting of an input x; object (d-dimensional vector)
and an output y; (e.g., class). Such sets of samples or observations are generally assumed as
generated from a probability distribution P on X.
Learning stems from the assumption that there is an unknown target function f: R¢ -» R (e.g.,
the ideal formula to estimate whether a protein-peptide pair interacts) such that y; = f(x;) for
i =1,..,N. The learning task is to find a function g: R* — R that approximates f based on
the training samples. The function g = f is a hypothesis selected by a learning algorithm from
a set of candidate formulas H (hypothesis set). An example of H may be the set of all linear
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equations. Then g € H may be the best linear fit to the data. The final goal is to use the inferred
function g to obtain the output variable of new independent data points (sample data).

SL tasks solve either classification or regression problems®. Classification tasks imply that the
target variable is discrete, while regression alludes to numerical (continuous) values.

Model selection is usually based on a compromise between the ability of a model to fit the data
and the complexity of the model needed to achieve this purpose®. Different levels of
complexity can be applied to each hypothesis set, e.g., the number of degrees of a polynomial
regressor. If the complexity is too low, all g in H may tend to underfit the training data (high
bias), resulting in large training and test errors. In contrast, if the complexity of H is too high,
all g in H may find spurious patterns and thus overfit the training data (high variance). This
leads to a large gap between training and test errors (Figure 4). This relation is known as the
bias-variance trade-off, used to control the complexity of H and balance underfitting/overfitting
effects on the training process®2. Thus, finding an intermediate spot between both concerns
usually guides the selection process aiming to find generalizable models.

Intermediate

High bias spot Low bias
Low variance High variance
underfitting overfitting

Error

~L training
~—

= —

Model complexity

Figure 4. The learning curve arising from bias-variance trade-off (adapted from Beyeler et al.>3)Note3

The predictor g is commonly chosen from the hypothesis set by minimizing a regularized
empirical risk function (ERM):

1
ERM =~ e(g(x), ) + A -7(9) (1)
where e: R X R — R is an error or loss function that accounts for the quality of the fit, and

r: L = R s aregularization function that penalizes the complexity of the function g to prevent

overfitting. The amount of penalization is balanced by the A parameter. Most ML methods

3 published under the terms of the Creative Commons Attribution License (CC BY), which permits the unrestricted
use and reproduction of the image, on condition that the original author and source are cited.
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apply different empirical risk function in terms of error and regularization functions, e.g., the
absolute error e(g(x;),y;) = lg(x;) —y;| in regression, or 0-1 loss e(g(x;),y;) =

sign(g(x;) ! = y;) in classification®?,

4.3.1.2 Unsupervised learning

There are datasets comprised of a set of independent variables that lack an explicit definition
of an outcome classification for the observations. Unsupervised learning corresponds to a group
of techniques used to extract knowledge from this data. The goal of this type of problem, as
described by Bishop (2006)°*, may be:

“to discover groups of similar examples within the data, where it is called clustering,

or to determine the distribution of data within the input space, known as density estimation, or
to project the data from a high-dimensional space down to two or three dimensions for the
purpose of visualization”.
UL techniques find applications to identify meaningful trends and structures in the data,
uncover groups of samples, extract valuable features, and understand the data via
visualization®. In this work, | used unsupervised learning for feature selection. | applied several
techniques to remove highly correlated features and reduce the dimensionality of the data (see
Section 4.3.2.4).

4.3.1.3 Ensemble learning

In Ensemble learning, several models are generated and aggregated in a unique final hypothesis
that outputs a prediction. This type of learning assumes that the combination of weak models
to deliver a consensus prediction improves the performance of a single model. Ensemble
learning involves deciding how to build the base models and which criteria to use to combine
the prediction of individual models on the final ensemble. Popular ensemble methods include
Bagging®®, Boosting®’, and Stacking®.

Bagging methods train several classifiers using different subsamples of the data. The
selection process, called bootstrapping, picks randomly the samples (with replacement) from
the complete dataset. For a test sample, each model outputs a prediction value. The outcomes
of the different models are then combined using an average or consensus criterion to output a
single final decision. Several rules are applied to combine the predictions of the base learners,
including majority vote in classification and average, minimum or maximum predictions in
regression.

Boosting methods create an ensemble model by training the base learners sequentially.
In this process, each model in the ensemble is built using the same dataset but giving preference

(weights) to the instances misclassified by the previously created model. For a test sample, each
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model outputs a prediction value. A weighted majority vote (or sum) of individual predictions
outputs the final prediction.

Stacking methods consist of training a model to combine the predictions of several other
models. For this, base models are built using typically different learning algorithms and the
same available data. Next, a final meta-model balances the predictions outputted by the base

models.

4.3.2 Components of the learning task
A ML task may not be a linear process. However, it generally consists of several stages
involving taking decisions and carrying out steps that define the final model.

4.3.2.1 Data collection and curation
The first stage in the creation of machine learning models is data collection. The continuous
advance of techniques and instruments for proteomics has led to a steady increase in the amount
of data generated®®. From experiments to publications, constant efforts aim to publish
experimental records in centralized online databases. Thus, the produced data is usable beyond
the specific project that initially generated it. As a result, several public databases relating
protein structures to biological activities or properties have been published, with information
determined by either human experts or experimental measurements.
Information on structurally resolved protein-protein/peptide interactions appears in diverse
databases. For instance, the databases 3did®°, iPfam®!, and Negatome®? collect thousands of
interaction profiles of pairs of domain sequences whose three-dimensional complexes are in the
Protein Data Bank (PDB)®. Likewise, the PDBbind database®* reports the experimental binding
affinities (BA) of protein-protein/ligand complexes stored in the PDB. Information on
mutagenesis experiments is also available. For instance, the SKEMPI®® database contains
thousands of BA upon mutation of 350 structurally resolved protein-protein complexes.
Repositories of bioactive peptides and their activity are also available. In this context, the
database starPep® provides access to around 45,000 peptides with reported antimicrobial
activity. These datasets are regularly updated to include new observations. For instance,
PDBbind is updated annually with ~10% growth between the last two releases®’. The PDBbind
database (v. 2020) reports information on the binding affinities of different biomolecular
systems, such as protein-ligand (19,443) and protein-protein (2,852) complexes. All these
databases offer the opportunity to conduct ML studies to leverage available information in the
analysis of peptides properties and functions.
Medicinal chemistry publications and bioactivity databases are known to contain high error
rates. Thus, regardless of the database, data points must navigate through a rigorous data
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curation process to remove or correct those with questionable characteristics. In this pre-
cleaning phase, samples with unreported activities or errors in the structure need to be detected
to avoid affecting the predictivity of the model due to erroneous data®®. This step may include
removing some data points. However, samples with structural problems may be corrected, i.e.,

by adding hydrogen or other missing atoms with the aid of available computational methods.

4.3.2.2 Features generation

The adequate representation of input samples is critical for pattern recognition®®. In ML, a
collection of features represents the samples. A feature can be a characteristic or attribute
describing the observation as a whole, or a part of it. Each feature represents a dimension of the
space in which the sample is represented. The sample is then a data point in this space, which
is associated with a specific vector. The feature vectors, corresponding to the multiple samples,
are used as input by a learning algorithm(s) to model an endpoint. Most ML algorithms work
on numerical values. Therefore, the transformation of input molecules into useful numerical
features has been a standard procedure in ML modeling™. Many successful applications have
addressed such transformations with the use of molecular descriptors®. Todeshini et al.™
defined a molecular descriptor as:

“the final result of a logic and mathematical procedure which transforms chemical
information encoded within a symbolic representation of a molecule into a useful number or
the result of some standardized experiment .

Based on this definition, molecular descriptors derive from (1) experimental measurements,
e.g., measured physicochemical properties, and (2) theoretical definitions involving, among
others, principles of information theory, graph theory, and computational chemistry’. In
proteomics, diverse aspects of protein structure are extracted to quantitatively describe
physicochemical properties of amino acids, as well as topological and structural features.

A wide variety of molecular descriptors has been gradually introduced*’. From them, three
families of descriptors are widely applied and validated in the analysis of protein function and
properties. They are: 1) sequence-composition-based descriptors (0D), representing different
physicochemical and structural aspects of the amino acid sequence, 2) linear-topology-based
descriptors (1D), reflecting sequence-order information and its effect on the properties of
individual residues, and 3) 3D-structure descriptors (3D), encoding information that
characterizes the conformational structure of proteins’. Several applications implement
information-rich molecular descriptors for proteins. Relevant examples are PseAAC”
(extended to PSe-in-one 2.07% "), PROFEAT"®, ProtDCal’®, and more recently PyBioMed'’,

Mordred™, and BioMedR™. Notably, when ProtDCal’s descriptors were introduced, it was
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shown how they captured, at that time, more data variance than the other tools available for

protein codification’®.

ProtDCal molecular descriptors

ProtDCal, the acronym for PROTein Descriptors’ CALculation, produces protein profiles based
on a large diversity of descriptive statistical parameters (e.g., variance, mean, kurtosis,
quantiles, and Shannon entropy) applied to different groups of residues extracted from the
protein. The methodology of ProtDCal allows the calculation of tens of thousands of molecular
descriptors per protein for both protein sequence (0D, 1D) and structure (3D). Ruiz-Blanco et

al.” assessed ProtDCal’s descriptors in a non-redundant dataset of 874 proteins. The evaluation

considered:
1. The redundancy of the information contained within ProtDCal descriptors.
2. The variability of the molecular descriptors implemented in ProtDCal and those

implemented in state-of-the-art generators of molecular descriptors’: &,
3. The diversity of ProtDCal’s features compared to the molecular descriptors
delivered by other programs’: &,

Comparisons with other packages leveraged only sequence-based features, as the assessed
applications lacked an encoding approach for 3D structures. The evaluation demonstrated that
ProtDCal generates a more extended and informative list of sequence-based features.
Furthermore, the introduced 3D-structure-based features provide additional and
complementary information to that offered for protein sequences, extending the protein
characterization to a broader range of available data. These analyses showed the potential of
the molecular descriptors implemented in ProtDCal to develop ML-based QSAR models.
The molecular descriptors implemented in ProtDCal have been employed in various studies.
Sequence-based descriptors were applied to the prediction of antibacterial peptides®®
antihypertensive activity and hemotoxicity of peptides®, the development of monoclonal
antibodies®* 8, the identification of N-glycosylation sites® and methylation sites®’, as well as
the prediction of protein stability® 8, residues critical for protein function®®, enzyme-substrate
scope®, and enzymatic function’?. Likewise, the 3D-based descriptors of ProtDCal have found
applications to model enzymatic function’? and enzyme-substrate scope®. Such a diverse list
of applications validates the suitability of ProtDCal descriptors to build data-driven models for
the analysis of proteins. However, as the originally implemented codification approach only
conceived the generation of molecular descriptors for individual proteins, other relevant
problems, such as the modeling of protein-protein and protein-peptide interactions, could not

be addressed using ProtDCal descriptors. Problems involving protein pairs require an encoding
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procedure that considers synergy between the two proteins and does not encode each one
individually. As part of the work presented here, | implemented a novel encoding approach for
protein pairs to extend the applicability of ProtDCal descriptors to a broader set of protein

studies.

4.3.2.3 Data pre-processing

Measurements can be obtained from both experiments and theoretical models®. Such
heterogeneous origin may cause a certain level of noise in the data. In broad terms, noise is
considered anything that prevents a learning algorithm from identifying a reliable model. Noise
also includes the different numerical scales that certain measures or molecular descriptors can
present. ML algorithms applied to noisy data can lead to wrong pattern recognition and poor
performance. In addition to the noise of available data, the feature generation step may calculate
a large set of molecular descriptors, where only a few may correlate with the endpoint. Thus,
data pre-processing is needed to enhance data quality for model development. General
techniques include the scaling and normalization of numerical values, the treatment of missing

values, and outlier detection.

Normalization

The descriptors are scaled up or down to transform them into a uniform range. This is done to
avoid that descriptors with larger magnitude have a greater influence on the model over those
with shorter range values. Several forms of normalization can be used:

Min-max normalization scales numerical features to the range (0,1) using the min and max
values of the descriptors column in the training dataset. The formula to apply the transformation
Is:

dscatea = (d = dmin) /(Amax = dmin) )

Where d is the original value of the descriptor, d,,,;,, and d,, 4, correspond to the minimum and
maximum descriptor values in the dimension, respectively.

Z-Score normalization scales the numerical features using the mean () and the standard
deviation (o) values of the descriptor column in the training dataset, according to the following
expression:

dscatea = (d = p)/o ©)
Handling missing values
A dataset may have missing values for some instances or features, e.g., ProtDCal assigns a
constant (-9999) to a descriptor which calculation is unviable for a certain protein. This output
constitutes a missing value for the ML algorithms. In classification technigques, some

occurrences of missing values may not damage the performance of the model. However, in
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regression, many algorithms cannot work on a dataset with missing data. Several approaches
are applied to treat missing values, such as manually filling in the missing values or replacing
those fields with the mean of the dimension. Besides, removing the instance or dimension is

often a suitable option depending on how this action affects the further analysis.

Outlier detection

An outlier can be generally considered as a data point that is notably different from the other
data points or that does not imitate the expected normal behavior of the other data points®.
Many situations can give rise to the appearance of outliers, i.e., the heterogeneity in the source
of the data.

Techniques for the detection of outliers can be categorized into statistical-, distance-, density-,
clustering-, graph-, ensemble-, and learning-based methods. Statistical-based methods identify
outliers by considering their relationship with the distribution model. Distance-based methods
compute the distance between data points to detect those distant from the closest neighbors.
Density-based techniques identify as outliers those points appearing in low-density regions.
Clustering-based methods use classical clustering algorithms to detect observations in small
clusters. Graph-based methods use graph techniques to analyze interdependencies in the data
point and thus flag outliers. Ensemble-based approaches can help to detect outliers as they
explore different models based on different subsets of data. Learning-based methods train
models to detect outliers. A survey of the different outlier detection methods can be found
elsewhere®,

The question of how to handle outliers is problem dependent. Some techniques such as
ensemble, allow to keep the outliers, while others require their removal in order to train accurate
models. Approaches can analyze data points in multivariate or univariate space. The univariate

technique identifies data points that contain extreme values on a single variable.

Data pre-processing also involves feature selection, explained in the next section.

4.3.2.4 Feature selection
The feature extraction problem was defined by Devijver and Kittler (1982) as®:

“... that of extracting from the raw data the information which is most relevant for
classification purposes, in the sense of minimizing the within-class pattern variability while
enhancing the between class pattern variability”.

Strategies for feature selection aim to identify the features relevant to uncover the pattern in the
dataset. Thus, with their application, the dimensionality of the data is usually reduced®®. This
step is almost always essential before modeling, especially for the case in which a large set of
molecular descriptors is initially available. A smaller set of features decreases the
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computational cost of the training phase and the complexity of the final model. Furthermore, it
improves the accuracy of the model and reduces the chances of overfitting. For a certain number
of training samples, for any classifier, including more dimensions to the feature space improves
model performance. However, after a certain threshold in the number of features, performance
only deteriorates®.

Several methodologies and techniques can be used for feature selection. In the work presented

here, the techniques applied are based on filter and wrapper methods.

Filter by correlation with the class

The selection of features involves evaluating the worth of each attribute according to its
correlation with the output variable. Correlation measures quantify the relationship between
two variables. Therefore, this filtering strategy applies statistical tests rather than machine
learning algorithms. In this work, as an initial step in feature selection, Pearson’s correlation
coefficient and Information Gain are used on regression and classification problems,
respectively, to select top correlating variables.

Pearson’s correlation coefficient (R) quantifies the linear dependence between two
continuous variables. The measure outputs a score for the relationship between the variables. R
indicates the strength and direction of such an association. The score varies from -1 to +1. The
value —1 indicates that changes in one variable trigger proportional changes in the other variable
but in the opposite direction. The value O reveals a lack of correlation between the variables. A
score of 1 indicates perfect correlation, showing that the two variables change in the same
direction. Given two variables x and y, and N samples, the equation to calculate Pearson’s
Correlation is as follows:

R = iD= (@)
[P o2 Sl 09y

Where x; and y; are the value of x and y for the i** sample in the dataset, and x and y are the
mean of variables x and y for the entire dataset, respectively. The ranking of the descriptors by
their correlation with the class permits to identify and select top-ranked descriptors. Such
selection implies using a threshold value. The identified descriptors can be fed to other feature
selection techniques for further analysis.

Information Gain (IG)¥ is an entropy-based method that measures the information
content provided by a variable Y to describe the information of a variable X. In other words,
IG calculates the difference between the entropy of the variable X and the conditional entropy
of X given a second variable Y. In feature selection algorithms, X corresponds to the outcome

variable (e.g., class) and Y to a feature (e.g., molecular descriptor). IG is calculated as follows:
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1G.(X|Y) = H(X) — H.(X|Y) ()
The term H(X) in eq. 5 measures the total information necessary to describe the distribution of
the variable X and it is formulated as:

H(X) = = %; P(x;) log,(P(x;)) i = 1,2 (6)
where P(x;) is the probability of the class i, calculated as the fraction of the number of instances
with value x; by the total number of samples of X.

The term H.(X|Y) in eq. 5 is the conditional entropy of variable X. It represents the amount of
uncertainty remaining in variable X after introducing variable Y. This term is formulated as
follows:

H.(XIY) = = X; P.(v;) Zi P-(x:1y;) loga (Pe (x;¥;)) (7)
Where P, (yj) corresponds to the probability of the set of cases ¢ with values y; for the variable
Y. This is obtained as the ratio between the number of cases in the selected subset and the
number of cases in the entire data set. P.(x;|y;) is the conditional probability of class x; given
the values y; of variable Y. This is obtained as the fraction of the number of cases of class x; in
the selected subset and the total numbers of cases in the same subset.
The 1G is always a value larger than or equal to zero. A value of zero indicates that the two
variables are independent. Then, the larger the IG value, the larger the dependence between the
variables. In the present work, I used the normalized Information Gain (NIG) calculated using
the information content (entropy) of the class variable. Since NIG is a relative measure of the
information provided by the feature to describe the dependent variable (eq. 8), it is a more

intuitive magnitude than the absolute IG value.

IG.(X|Y
NIG(x]Y) = 520 ®)

In this way, descriptors are selected whose IG values exceed a certain percentage of the total

information content of the class variable.

Filter by redundancy among features

The filters described above eliminate features with low or no correlation with the class.
However, filter-based methods do not analyze multicollinearity among descriptors. Redundant
descriptors do not provide novelty to the endpoint®®. Moreover, they may significantly increase
the computational cost of the learning process. A popular approach to remove redundant
dimensions is the use of clustering methods. Clustering is the process of forming groups of
features so that the distance between features in the same cluster is minimized, while the

distance of those in different clusters is maximized. Various clustering algorithms can be used
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to identify highly similar descriptors. In this work, single-linkage clustering was employed for
this purpose.

Single-linkage clustering is a technique that follows an agglomerative hierarchical

methodology. Hierarchical clustering orders the samples based on a notion of similarity, to
facilitate finding correlations in the data. The method starts by considering each observation as
a separate cluster. Then, the closest points (based on a measure of similarity) are clustered
together in each iteration. The algorithm ends when the data has formed a unique cluster.
This technique can be used as an unsupervised learning method for feature selection, to analyze
the redundancy among the features in the dataset. The criterion for forming clusters with this
algorithm is that members of different clusters cannot be found below a certain cut-off value
according to the measure of diversity used (the opposite applies if a similarity measure is used).
Different similarity measures can be used to define the relation between points. Here, the
Spearman’s rank correlation coefficient is employed for quantifying the association between
every two variables in order to detect and remove redundant dimensions.

The Spearman’s rank correlation coefficient is a nonparametric correlation coefficient
that, comparable to Pearson’s correlation coefficient, quantifies the strength and direction of
the association between two variables. However, Spearman’s correlation determines monotonic
relationships, while the Pearson’s correlation coefficient determines linear relationships
between the variables. In a monotonic relationship, the values of both variables increase in the
same direction, or as the value of one variable increases, the value of the other decreases.

To calculate the coefficient, each variable is ranked independently. Then, for each instance, the
differences between the rank values are calculated and subsequently squared. The Spearman's
rank correlation coefficient (R,) is calculated as follows:

Rs=1—<62d2) )

n3d—n

where d is the difference between the ranks of two observations and n is the number of
observations in the dataset. The value for R can change in the range from -1 to +1, indicating
negative or positive associations of ranks, respectively. A R, value of zero indicates no

association between the ranks.

Wrapper-based methods

The Wrapper method® evaluates different subsets of features by applying a learning scheme.
Such a scheme combines a specific learning algorithm, a search method, and an evaluation
criterion to assess each selected subset. It follows a greedy search approach to analyze all the
possible combinations of features. Cross-validation (see Section 4.3.2.7) is used as the test
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mode to avoid overfitting. The merit of subsets is determined using the evaluation measure of
interest to assess model performance, for instance, Pearson’s correlation coefficient for
regression or accuracy for classification (see Section 4.3.2.8). The method outputs the
combination of features that delivered the best performance for the specified learning algorithm.
The search problem is solved by using heuristic methods such as stepwise forward selection,
backward elimination, or a combination of both methods.

Forward selection is an iterative process that initiates from an empty subset of features.
Initially, the method evaluates the relevance of each feature (using the same evaluation measure
as for evaluating the subsets) and adds the one with the highest merit to the set. Then, at each
iteration, it evaluates each feature in combination with those already selected and adds to the
subset the feature that best improves model performance. The algorithm repeats the process
until adding additional features does not improve the performance of the model.

Backward elimination does the opposite to Forward selection. The algorithm starts with
the set of all features. Then, at each iteration, the least significant feature (evaluated using the
same evaluation measure as for evaluating the subsets) is removed. This process is repeated
until the removal of additional features does not improve model performance.

Bi-directional selection combines forward selection and backward elimination to find
the optimal subset of features. It applies forward selection to add a new feature to the subset.
However, once the method adds a new variable to the set, it checks the significance of the
already separated features. Then, in backward elimination, insignificant features are removed.
This process is repeated until the optimal subset of features is found.

Wrapper methods are computationally intensive, especially for a highly dimensional dataset.
However, the interaction with the classifier permits the identification of model features

dependencies and to improve model performance.

4.3.2.5 Learning algorithms

Numerous ML algorithms exist, which may be grouped by similarity according to the mode of
operation (Figure 5). Algorithms successfully applied in drug discovery are Naive Bayes,
Support Vector Machines, the tree-based model Random Forest, and Artificial Neural
Networks'®. Deep learning revolutionized the field of drug discovery in recent years due to its
ability to solve complex problems. However, such a strength relies on the availability of large

volumes of data®.
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Regression

o Ordinary Least Squares Regression
o Linear Regression

o Logistic Regression

o Stepwise Regression

Instance-based

o k-Nearest Neighbor

o Learning Vector Quantization
o Self-Organizing Map

o Locally Weighted Learning

o Support Vector Machines

Regularization
o Ridge Regression

o Elastic Net
o Least-Angle Regression

Association rule learning
o Apriori algorithm
o Eclat algorithm

Decision tree

o Classification and Regression Tree
o Iterative Dichotomiser 3

o C4.5and C5.0

o Decision Stump
o M5
o Conditional Decision Trees

Ensemble
o Boosting

o AdaBoost

o Weighted Average (Blending)

o Stacked Generalization (Stacking)
o Gradient Boosting Machines

o Random Forest

o Multivariate Adaptive Regression Splines
o Locally Estimated Scatterplot Smoothing

o Least Absolute Shrinkage and Selection Operator

Machine learning o Hierarchical Clustering
algorithms

o Chi-squared Automatic Interaction Detection

o Bootstrapped Aggregation (Bagging)

o Gradient Boosted Regression Trees

Artificial Neural Network

o Perceptron

o Multilayer Perceptron

o Back-Propagation

o Stochastic Gradient Descent

o Hopfield Network

o Radial Basis Function Network

Deep learning

o Convolutional Neural Network

o Recurrent Neural Networks

o Long Short-Term Memory Networks
o Stacked Auto-Encoders

o Deep Boltzmann Machine

o Deep Belief Networks

Clustering

o k-Means

o k-Medians

o Expectation Maximization

Bayesian

o Naive Bayes

o Gaussian Naive Bayes

o Multinomial Naive Bayes

o Averaged One-Dependence Estimators
o Bayesian Belief Network

o Bayesian Network

Dimensionality Reduction

o Principal Component Analysis

o Principal Component Regression
o Partial Least Squares Regression
o Sammon Mapping

o Multidimensional Scaling

o Projection Pursuit

o Linear Discriminant Analysis

o Mixture Discriminant Analysis
o Quadratic Discriminant Analysis
o Flexible Discriminant Analysis

Figure 5. Machine learning algorithms

The ML models developed in this work leveraged Support Vector Machines and Random Forest

algorithms. Therefore, a description of these two algorithms appears next in this section.
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Support Vector Machines
Support Vector Machines (SVM)% is a supervised learning algorithm that has proven robust
in bioinformatics studies. Given a set of observations of the form (x;, y;), ..., (xy, yn) from
R%x R, where x € Ry, and y € {—1,1} for a binary classification problem, SVM aims to find
the optimal hyperplane separating the observations of the two classes. The hyperplane can be
represented as follows:

WIX+b=0 (10)
Where W is the normal vector of weights to the hyperplane, and b is the offset of the hyperplane.

If the training data is linearly separable, it is possible to select two parallel hyperplanes that
divide the data into two classes (Figure 6). The hyperplanes are selected by increasing the
distance (margin) between the classes as much as possible. The hyperplane with the maximum

margin is the one located halfway between both hyperplanes. The margin between the
2
lwll’

hyperplane and the classes is Thus, minimizing w converges to the maximum margin.

Optimal hyperplane

Support Vectors - N

Figure 6. Hyperplane with the maximum margin for a SVM trained on a data set with two classes

(adapted from Pino et al.102)Note4

The optimization is performed under the following two constraints to allow the separation of
the two classes to the corresponding side of the hyperplane:

Whx, +b) < —-1lify; = —1

9tx) = {(WTxn +b)=>1ify; =1 (11)

4 published under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits the
unrestricted use and reproduction of the image, on condition that the original author and source are cited.
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The resolution of w is solved as an optimization problem usually presented as a minimization:

.1
min-w’w

w, b (12)
such that y, (WTx, + b) = 1,forn=1,..,N

Equation 12 solves a “hard margin” classifier and is used when the data are linearly separable.
For slightly non-linearly separable data, the optimization is modified to penalize those points
violating the margin. Thus, a term to balance maximizing the margin and minimizing the error
is added to the optimization problem:

min %WTW +CYN_, &,

€ ER*,w,b (13)
such thaty, (Wix, + b) =21 —¢,,forn=1,..,Nand &, >0 forn=1,..,N

Where & measures the slack of the violation (distance of the data point to the margin) and C is
the degree to which the violations are allowed. Large C values imply higher complexity that
may lead to overfitting, as violating the margin will not be allowed. Small C values, on the
other hand, lead to lower complexity but allow violating the margin very frequently. The
classifier learned by solving this problem is called a “soft margin” support vector classifier.
Strong non-linearity relations are modeled using a kernel function K (x;, x; ), which transforms
the input space X into a higher-dimensional Z space where the data can be linearly separable.
The peculiarity of kernel functions is that they calculate high-dimensional relationships
between each pair of observations as dot products without computing the coordinates of the
data in the Z space. This operation is called the kernel trick, and it is computationally more
effective than explicitly computing the coordinates. Most SVM models are trained using a
combination of both, soft margin (tolerance to misclassifications) and kernel trick, to find the
best hypothesis in nonlinear data. The final model is found as an optimization problem using
the Lagrange multipliers and quadratic programming. The output of the optimization step is the
identification of some points called support vectors, which are those achieving the margin and
thus used to define the final hyperplane. SVM can be used for regression in addition to
classification. The regression method is called Support Vector Regression (SVR).
A simple methodology to train a model using SVM is as follows:

1. Normalize the attributes.

2. Select the most appropriate parameters.

a. Parameter C (cost, complexity).
b. Define the Kernel to be used. Popular Kernel functions are:

i. Linear: K(xi,xj) = XiTXj
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ii. Polynomial: K(x;, x;) = (x;" x; + ¢)¢, where d is the degree of the

polynomial.

iii. Radial Basis Function: K (x;, x;) = eCMIxi=xi1 where y is Gamma, a
parameter to define the influence of individual observations.

3. Build the model with the best parameters and the training set.
Random Forest
Random Forest (RF)!% is an ensemble technique that combines the output of several
independently trained models to provide a unique final prediction. Each model corresponds to
a decision tree, trained on a dataset extracted from the main dataset using the bootstrapping
(Bagging) technique. Bootstrapping selects randomly a set of features and instances (with
replacement) from the original data set. The learning model produces a different g using each
dataset and the output prediction is obtained as a consensus by applying majority voting rules.
Each model has a different perspective of the modeled dataset. Thus, the combination of weak
models is expected to improve the generalization capabilities of the ensemble model.
Given a data set of N instances and M attributes, a Random Forest classifier of k trees is built
according to the following algorithm:

1. A data set of N instances is randomly selected, keeping a similar class distribution. The

remaining instances are used as test cases.

2. A subset of m attributes is randomly selected from the total (M) in the initial dataset.

3. The best partition between the m attributes is identified and two new nodes are formed.

4. The tree is completed by repeating steps 2 and 3 until each node reaches the maximum

level of purity.

5. The steps from 1-4 are repeated k times.
For prediction, a new case is evaluated by applying the rules of each tree independently. The
case then obtains a classification per tree corresponding to the class of the reached terminal

node. The final classification is obtained by the majority vote of the constructed k trees.

4.3.2.6 Optimization of hyperparameters

Each algorithm has one or several parameters that control hypothesis generation, e.g., the cost
or complexity (C) in SVM. These parameters are known as hyperparameters as they differ from
other parameters, such as those learned, e.g., weights of linear function. Different
hyperparameter setups work differently on distinct datasets'%. Thus, several values are usually
assessed in a tuning process to find the most suitable configuration for the modeled endpoint.
This optimization approach generally improves model performance over the default setting of
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algorithms supplied in ML libraries®. Hyperparameter optimization or tuning follows feature
selection (if performed) and is part of the training process.

Hsu et al.1% described an approach for adjusting the hyperparameters of SVMs. This strategy
consists of a grid search that varies the hyperparameters’ values to cover different possible
values.

For instance, the parameter C may change from a small (e.g., 2°) to a larger quantity (e.g., 2°),
with an increase determined by a stepwise value (e.g., increasing the exponent by 0.5). Each
hyperparameter configuration generates a model. The generalization power of each model is
assessed and stored (e.g., using cross-validation and development sets) for further analysis.
Finally, the hyperparameter configuration that produced the best-performing model is selected.

This grid-search strategy was followed in this work to develop the different ML models.

4.3.2.7 Evaluation approaches

Internal and external validation approaches (Figure 7) may increase the chances of training a
robust and reliable model. In both schemes, instance selection and data partitioning are
conducted to create various subsets of the data that serve different purposes. Subsets formation
may include strategies such as stratified partitioning, repeatable random sampling, and over- or
under-sampling of the minority or majority class, respectively.

Internal validation: Popular approaches for internal validation are k-fold cross-
validation (k-fold CV) and the use of a development set. In k-fold CV, the dataset is distributed
randomly into k disjoint (relatively equal size) folds. Then, every fold is used once as a test set
to evaluate the performance of a model fitted on a training set formed by the other k-1 folds.
Finally, the average performance on the test sets of the k-generated models is calculated. The
variability of the accuracy estimations obtained from the random division of samples provides
an estimate of the generalization power of the model'®’. A development set is a separate set of
samples used as an external test set for the selection of the model during the training steps, e.g.,
in hyperparameters optimization.

External validation: One or more test sets can be separated from the initial data for
external validation. These sets aim to assess the generalization capabilities of the model by
predicting the output of unseen data'®®. External validation provides a way to estimate how close
the in-sample error is to the out-sample error, and it can be conducted retrospectively by using
validated test set(s). External validation can also be performed prospectively by predicting the

class of new compounds, to be later verified experimentally®.
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Internal validation

> training set
goodness-of-fit
robustness
— development set
A
Dataset [ | internal loops, cross-validation Final
model
ry
External validation
generalization
T

external test set

Figure 7. Internal and external validation.

4.3.2.8 Performance measures

Performance measures that evaluate the quality of a model are part of every ML pipeline. Their
objective is to numerically expose the success of the learning task and compare different
models. There are several performance measures to work with, and the first criterion for the
selection relies on whether the learning task corresponds to a classification or regression

problem. The performance measures used in this work are summarized below.

Classification measures

In classification, the error is measured as the binary difference between the predicted and true
output values. Then, true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) predictions are counted and introduced in a confusion matrix (Table 2).

Table 2. Confusion matrix for a binary classification problem.

Predicted
P N
P TP FN
(40}
=
&9 N FP TN

The confusion matrix permits to determine the overall quality of the model based on several

measures (Table 3).
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Table 3. List of performance measures used in the classification problems addressed in this work.

Measure / Formula

Description

Accuracy (Acc)
Acc = (TP+TN)/(P+N)

The ratio of correctly identified
predictions and the total number of
instances.

Sensitivity, aka Recall (Sn)
Sn =TP/(TP + FN)

The ratio of samples correctly identified
as positive and the total number of
positive samples.

Precision (Pr)
Pr=TP/(TP + FP)

The ratio of samples correctly identified
as positive and the total number of
samples predicted as positive.

Specificity (Sp)
Sp = TN/(TN + FP)

The ratio of samples correctly identified
as negative and the total number of
negative samples.

Matthews Correlation Coefficient (MCC)

TP «xTN — FP « FN

Association between two variables.
(Similar interpretation as the Pearson’s
correlation coefficient for regression).

MCC =
J(TP + FP)(TP + FN)(TN + FP)(TN + FN)
F1-Score
Sn * Pr TP
F1 =2

* =
Sn+Pr TP +1/,(FP +FN)

The harmonic mean of precision and
recall.

Prevalence-corrected precision (PCPr)

Sn

PCPr =
r Sn+r(1-Sp)

Precision  values normalized for
comparing different test sets, i.e. with
different sizes of positive and negative
samples in the data. The value r is the
new ratio of negative and positive data

samples.

Precision and Recall measures are valuable for evaluating the performance of a model aimed at
virtual screening. For instance, for predicting the likelihood of interaction between a list of
peptides and a protein receptor, it is relevant to avoid false positives when selecting top-ranked
peptide candidates for experimental validation. However, there is a trade-off between these two
measures, and model selection based purely on one of them usually limits the performance of
the other. The precision-recall curve (PRC) allows visualizing this trade-off for different
thresholds (score separating the classes) values. A high area under the generated curve indicates
high precision (low false positive rate) and high recall (low false negative rate) values. An
accurate classifier has a high precision value, while a classifier with a high value of recall
correctly identifies most positive instances. Thus, an ideal classifier balances both measure

values with relatively high scores.
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In regression, the error accounts for the numerical difference between the predicted and actual

outcome values. Then, several measures may determine the error rate for the model (Table 4).

Additionally, correlation measures (Pearson, Spearman, and Kendall) permit the calculation of

the overall relationship between the predicted and the actual output variables.

Table 4. List of performance measures used in the regression problems addressed in this work.

Measure - Formula

Description

Mean Absolute Error (MAE)

N
1
MAE = Nzllyi -3
=

Average of the difference between the actual ¥,
and predicted y; values. N is the total number of
instances in the set.

Pearson’s correlation coefficient (R)
T — D — )

R =

(B - D2 EL 01 - 9

Linear dependence between two continuous
variables x and y. x and y are the mean of
variables x and y for the entire dataset,
respectively.

Kendall’s tau correlation coefficient (7)

Nc_Nd

‘[:
VN + Ny + Np) * (N + Ny + N,)

N, and N, are the number of concordant and
discordant pairs, respectively. N, and N,, are the
number of ties in the order of each variable,
respectively.

Enrichment Factor (EF)
[Nt /1

EFI =

positives

[

Ny

ositives/Ntotal]

I is a number of top-ranked instances as

predicted by the model. N0t is the number

of positive predictions in the top I. Np,sitive 1S
the number of positive samples in the dataset,
and Ni,tq; 1S the total number of instances in the
dataset.

The evaluation of the model in regression usually relies on a measure of correlation (e.g.,

Pearson’s) and a measure of distance (e.g., MAE) between predicted and actual values. The

former estimates the dependence of both predicted and output variables. This can be of use, for

instance, to assess the ranking power of the model. The measure of distance calculates, on

average, how close the prediction is to the actual value. Furthermore, other metrics may be a

good choice according to the information available. For instance, T permits assessing the

ranking power of a model on a test set of few samples. Likewise, EF may be used to evaluate a

classifier on a test set when the predicted and the actual values have different magnitudes, i.e.,

a model predicts BA as binding free energy, but the test samples have BA indicated as ICso

values.
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4.3.2.9 Definition of the applicability domain

The definition of the applicability domain (AD) aims to deliver information on the coverage or
similarity of a query sample among the samples used to train the model. It is an informative
tool needed to express the scope and limitations of a predictor, which can help to judge the
reliability of the model’s predictions.

As Netzevall?

expressed, “this need is based on the fact that (Q)SARs are reductionist models,
which are inevitably associated with limitations in terms of the types of chemical structures,
physicochemical properties and mechanisms of action for which they can generate reliable
predictions ”.

Several approaches can be used in a multivariate space to estimate the AD of a model. Popular
methods use ranges, geometry, distances, and probability density distribution functions!*°. In
this work, the range approach estimates the projection of query samples into the AD of the
models. Range-based methods analyze the projection of a data point into the training data by
using the range values. That is, by checking that each descriptor value is within the range of
values of the same descriptor in the dataset used to train the model. If the value of a descriptor
exceeds the determined values range, a warning message indicates that the test sample is out of
the AD. This approach is straightforward, although it cannot detect holes in the training data,
namely regions with scarce data representation. However, range-based methods are easy to

apply and computationally efficient, and thus a suitable choice for virtual screening studies.

4.4 Machine learning in drug discovery

The field of ML has grown in the last decades, and it has proven successful in different areas,
such as image, video, finance, robotics, autonomous driving, and so forth. Such success, and
the need to apply hybrid techniques to cope with the high complexity of drug design and
development, have increased the interest in ML-based methods as tools to support drug
discovery in recent decades as well.

One of the applications of ML techniques in bioinformatics is QSAR development. Hansch et
al. published the first work of QSAR modeling in 196242, Since then, around 20,000 papers on
QSAR applications for computer-aided drug discovery have been published, as reported by
Muratov et al. in 20201, with the highest growth in the number of publications taking place in
recent years. From its first usage, QSAR development has evolved from applying simple
regression approaches to using ML techniques capable of analyzing nonlinear data®.
Consequently, ML-based QSAR models have gained relevance in CADD as methods to support

the process of drug design and optimization.
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4.4.1 The principles of the Organization for Economic Co-operation and Development for
the development of Quantitative Structure-Activity Relationships (QSAR) models
Almost two decades ago, the Organization for Economic Co-operation and Development
(OECD) established five principles'? to harmonize and safely guide the development of QSAR
models:

“To facilitate the consideration of a (Q)SAR model for regulatory purposes, it should
be associated with the following information:

1) a defined endpoint

2) an unambiguous algorithm

3) a defined domain of applicability

4) appropriate measures of goodness-of-fit, robustness and predictivity

5) a mechanistic interpretation, if possible”.
The OECD principles describe a decision-making process, and each choice will ultimately
determine the robustness and reliability of the developed model. The first principle refers to
having a well-defined endpoint and the information required to fit and use a model. An endpoint
may be any physicochemical, biological, or environmental effect that can be measured and
modeled. The second principle is related to the need for transparency in the description of the
modeling algorithm to be reproducible. The third principle refers to the importance of
establishing the model limitations through an AD definition. Thus, it is possible to specify for
which input samples the model produces reliable predictions. The fourth principle is concerned
with using different measures to evaluate the internal performance (as represented by goodness-
of-fit and robustness) and external performance (as determined by external validation) of the
model. Lastly, the fifth principle refers to the desire for mechanistic interpretations of the
association between descriptors and the modeled endpoint. Yet, the OECD recognizes that it is
not always possible to fulfill this principle, for what other considerations applied by principles

third and fourth may be sufficient to accept a production model.

4.4.2 Standard procedure to develop machine-learning-based QSAR models
Many ML-based QSAR models have been introduced in the last decades to address biological
problems. The standard methodology (Figure 8) used to build ML-based QSAR models

includes the following steps*3:

1. Pre-processing of the data, i.e., data curation or standardization.
2 Split the data into training, development (optional), and test sets.
3. Features generation (e.g., molecular descriptors).

4 Selection of the learning algorithm.
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5. Model training, including the application of internal validation approaches.
6. Evaluation of the performance of the model using appropriate metrics.
7. External validation of the selected model based on the internal validation step.

There are several aspects to contemplate when creating ML-based QSAR models. The
performance of a model will be as good as the data used to train it. Thus, data curation involves
strategies before and after feature generation, e.g., for outlier detection. The splitting of the data
into several subsets is usually random, but the cases in each set shall be as distant as possible
to each other. Descriptors used as features must be informative enough to capture the
characteristics of the data that correlates with the endpoint. Thus, feature generation involves
determining which encoding approach is suitable to represent the information to be modeled,
i.e., molecular descriptors for protein sequences or 3D structures. Feature selection techniques
may incorporate information from the class. Those techniques involving the outcome variable
and the interaction with the learning algorithm are part of model training. Furthermore, model
training usually includes the optimization of the hyperparameters. The learning algorithm may
be selected after assessing several techniques on the data set to identify the most appropriate
algorithm or by evidence of good performance for the modelled endpoint. The evaluation of the
model should include several validation strategies, e.g., performance in cross-validation or

development/tuning set. The final model must be performant on external test set(s).

INPUT SAMPLES DATASETS FEATURES GENERATION
f OR f;, dyr dyy o day G2
%
PEPTIDE  PROTEIN-PROTEIN/PEPTIDE
(FASTA) (FASTA/PDB) dn1 dmz dpn Cm

external test set

DATA PRE-PROCESSING

LEARNING PROCESS

FEATURES SELECTION
Cross validation dy|dy|dy|dy|ds)| ... |d,]|c
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CE L IIITITIL] Generate a subset
N O O A Ve ey
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[T T TTTT] - =
: : : : : l--| : : : Performance Learning algorithm PREDICTIVE
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Figure 8. Standard process to develop ML-based QSAR models
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Each time a model is assessed, the relation between the error in training (in-sample error) and
error in test (out-sample error) is analyzed to examine how the in-sample error tracks the out-
sample error. As shown in Figure 4, the more complex the model, the most likely the in-sample
error will be low, but the chances of overfitting increase (out-sample error). By contrast, if the
model is too simple, both errors will probably be close. Yet, with such high error values, the
model will lack practical utility. As a rule of thumb, the difference between the training and test
errors should be below 15% of the training error. The acceptance of the model is dictated by
how it compares with respect to other state-of-the-art models after assessment on external,
preferably benchmark, test set(s) using performance measures.

4.4.2.1 Implementation of web servers

Once a model is created and validated, its applicability will depend on its availability and ease
of use. Thus, any proposed ML model should be available as a web server or as at least as a
standalone application. Although several ML models are publicly available via a web server,
open-access tools increase the usability of the model in academic and industrial sceneries. Yet,
only a limited amount of publications in the field of drug development offer open-access

websites'®.

4.4.3 Applications and importance of machine learning in drug discovery
The applications of ML techniques to create predictive models for drug discovery can be
broadly grouped, according to the problem addressed, into drug mechanisms, drug properties,

and drug repurposing®.,

Drug mechanisms

ML models may be used to predict the likelihood of interaction (interaction/non-interaction)
between the drug and the target receptor, but also the binding affinities of such interaction.
Targets can be enzymes, ion channels, nuclear receptors, and G protein-coupled receptors,
being those protein-related the most studied targets. Likewise, several types of molecule can
interact with receptors, such as small organic molecules, peptides, and other proteins!4.

The identification of drug-target interactions is frequently the first step of the drug discovery
process, aiming to reduce the initial number of candidates. Thus, ML methods have been
developed to predict interactions between protein and prospective drugs and to screen new drug
candidates effectively and efficiently*'®122, Most state-of-the-art methods predict protein-
protein interactions or protein-ligand interactions, where ligands are small molecules or
peptides. Such studies can contribute to understanding the mechanism of action of the drug, the

pathology of the disease, and possible side effects of the drug. Moreover, the identification of

41



Introduction

PPIs allows detecting protein complexes, identifying domain interactions, identifying proteins

involved in disease pathways, and developing effective strategies in drug design'Z.

Drug properties

The pharmacokinetic properties of a compound are essential to regulate its usage. Thus, one of
the most relevant biological problems involves analyzing ADME, and toxicity properties.
Computational attempts have aimed to create predictive models for human oral and intestinal
absorption, Caco-2 permeability, carcinogenicity, clearance, identification of P-glycoprotein
substrates, phospholipidosis, blood-brain barrier permeability, cytochrome P450 activity
(CYP450), and mutagenicity. Priya et al.1?* published a review article that summarized ML-
based studies aiming to predict such properties. These studies leveraged random forest, artificial
neural networks, SVM, and deep-learning algorithms.

Antimicrobial compounds against bacteria, viruses, parasites, or fungi are well studied?> 1%,
Antibiotics are the main treatment against bacterial infections!?’. However, the overuse of
antibiotics has increased bacterial resistance to those antibiotics available on the market. Such
increase is, however, in notable disagreement with the low number of new antibiotics
introduced in recent years. Therefore, it is necessary to discover novel compounds tackling
multi-resistant organisms*?. Multi-drug resistance also involves parasites, such as the protozoan
parasite plasmodium falciparum producing malaria. Thus, antimicrobial ML models to study
parasites have also been developed®?. Furthermore, viruses causing severe diseases such as the
acquired immunodeficiency syndrome (AIDS), Ebola or COVID-19 have been studied using
ML techniques®°.

Many efforts aim to develop treatments for cancer, a public health problem causing the death
of millions of people annually. Several therapeutic targets are the focus of cancer treatments.
ML techniques find applications to create methods to predict the activity of drugs on known
cancer-related targets, such as G-protein-coupled receptors (GPCRs), which are involved in cell
signaling mechanisms and whose alteration may lead to cancer progression'®. Thus, ML

methods can be applied for the identification and development of anticancer agents*31-134,

Drug repurposing
The use of existing drugs for therapeutic purposes others than those already established is
known as drug repurposing. The aim of this strategy is to explore the possible usage of known
drugs as an alternative to overcome the expensive and time-consuming process of discovering
novel compounds. For this, data related to the drug, such as its chemical structure, target, and
side effects are leveraged, among others. ML techniques can be used to build models for drug
repurposing, for instance, to predict the class of therapeutic drugs, and for cancer cell line
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response to drug treatment. Park published a comprehensive review article on computational
methods for drug repurposing.

Drug repurposing is important to face epidemics®3®. In 2019, with the novel coronavirus variant
(SARS-CoV-2) outbreak, several approaches immediately aimed to find treatments to tackle
the disease. Because of the urgency for treatment and the lack of knowledge of the disease, drug
repurposing was one of them®®’. Beck et al.**® used a previously introduced ML model to screen
datasets of known antiviral drugs. The screening aimed to find compounds that potentially
disrupt molecular elements of SARS-CoV-2 (e.g., proteinase, RNA-dependent RNA
polymerase). Beck’s study exemplifies how predicting the interactions between target and drug
finds applications in drug repurposing. Drug repositioning with ML techniques also focused on
antimicrobial compounds to address COVID-19%°.

The complexity associated with human diseases requires methods able to explore a broader
chemical space to facilitate the identification of novel molecules to be synthesized. With the
increase of available data and the development of information and computational technologies,
the application of ML has become a valuable tool for drug design and development. The impact
of ML in drug discovery is directly associated with the speed that predictive models can offer
to accelerate the research process and decrease the cost and risk of clinical trials. QSAR is a
promising technique in drug development because it allows processing large compound datasets
fast and without losing much precision®®, QSAR models allow proposing drugs with specific
biological properties'®°. Estimates indicate that, by using ML, the introduction of novel drugs
requires less than 1/3 of the time and cost of traditional drug development!*!. Drug discovery
covers more than 35% of the Artificial Intelligence/Machine Learning market. With an annual
growth rate of 53%, the market was estimated to reach US$8 billion in 2022°. Overall, the use
of ML brings automation and sophistication to the drug development process. Nevertheless, the
definition of thresholds to select the best candidates is subjective. It is domain-specific, and it

requires the expertise of humans.

4.4.4 Machine learning for the identification and study of bioactive peptides

4.4.4.1 State-of-the-art methods

ML techniques have already found applications in the analysis of bioactive peptides. In 2019,
Basith et al.!*? published a review article citing a comprehensive list of ML models trained on
peptide databases. The described methods were used for screening function-specific therapeutic
peptides, such as anticancer’*%"  antihypertensive®®1° antitubercular'6-164  anti-

inflammatory*®> 165167 quorum-sensing*°® 168 16° and cell-penetrating peptides®®> 170180 Most
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of these approaches used publicly available datasets and various ML algorithms, mainly SVM
and RF.

A body of research also addressed predicting antimicrobial peptides!®8 and putative
functional peptides in this class, e.g., antibacterial peptides®*18® and to discriminate among
several function-related classifications such as anti-inflammatory, antiviral*®® ¥ and
antifungal'® peptides 8%-1%, Furthermore, ML models have found applications to study
antiangiogenic!®2% and immunosuppressive peptides®® 292, To fight the AIDS disease, anti-
HIV-1 peptides were investigated using ML techniques?%3-2%°,

These studies show how most state-of-the-art models predict function endpoints (drug
properties) and focus on exploring the structures of various peptide sequences. Interestingly,
the interactions between peptides and their potential targets have been less investigated by
means of ML2%, State-of-the-art work suggests that a next generation of ML-based methods is
needed to develop peptide-based pharmaceutics*2.

Currently, the study of protein-peptide interactions based on databases of only protein-peptide
pairs is mostly performed in specific contexts, for instance, to predict peptide binding to major
histocompatibility complexes (MHC) classes I, 112°7:2%8, Otherwise, protein-peptide interactions
are part of datasets used to train predictors of protein-protein or protein-ligand interactions, in
which ligands include mostly small molecules. In the context of the prediction of the BA of
protein-peptide complexes and to the best of my knowledge, prior our work there was no
publicly available ML model trained on only protein-peptide BA data. Due to the specific
characteristics of peptides, such as low systemic stability, poor membrane permeability, poor
oral bioavailability, low solubility, and fast clearance, ML methods trained on curated protein-

peptide datasets are necessary.

4.4.4.2 Challenges of state-of-the-art methods
ML-based QSAR models for proteins and peptides analysis is a field of ample research in
CADD. One approach is the prediction of PPIs as a classification problem (interaction/non-
interaction). This modeling strategy delivered several PPI classifiers. However, some
drawbacks were reported for those classifiers. For instance, Park?®® analyzed existing sequence-
based PPIs predictors and identified some issues affecting their robustness, as listed below:
1. The approach adopted for encoding the protein pairs.
2. The effectiveness of the features representation (for those ML-based methods).
3. The approach followed to assess performance, including the measures used for the
evaluation of the model and the lack of comparisons with previously introduced
methods.
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Moreover, the lack of verified non-PPIl samples is another factor affecting PPI classification.
The scarcity of negative samples requires strategies to create the negative class and improve

the performance of the model.

The prediction of the BA of protein-protein and protein-ligand complexes using regression to
calculate the strength of the interaction is another widely studied area!®122 210. 211 |n recent
years, the availability of structures increased, from X-ray, NMR, electron microscopy,
homology modeling, and ML methods*!. Thus, most ML models leverage structural (3D)
datasets for BA prediction. However, most models are based on protein-protein or protein-
ligand datasets and have low representation of protein-peptide interactions. For those methods,
the performance of models on protein-peptide complexes remains unstudied, and their
applicability to the investigation of protein-peptide interactions is thus limited. Therefore, ML-
based QSAR models specifically trained on protein-peptide BA databases are in demand.
Likewise, the creation of AMPs predictors receives much attention. However, most methods
deliver limited precision when predicting the specific function of putative AMPs, such as
antibacterial peptides.

Frequently, the protocols used to create many state-of-the-art ML-based methods for the
mentioned endpoints are insufficiently validated, one of the problems noted by Park?®. The
evaluation of the models on additional external test sets, including novel experimental data, is
encouraged to avoid high variance in future predictions. Moreover, most methods miss the
definition of an applicability domain to use the model. In the absence of an applicability
domain, it is difficult to discard unreliable predictions in VS. Additionally, several methods
lack a web server implementation for their usage. Sometimes, those tools with a web server do
not offer the possibility to perform VS for optimizing the primary structure of putative
peptides interacting with a target protein. Consequently, identifying and optimizing promising
peptides targeting PPIs in a cost-effective and time-efficient manner remains an area with room

for improvement.
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5 Objectives

Peptide development, although challenging, represents a promising opportunity for modern
drug design. In this endeavor, the application of in silico methods for the virtual screening of
peptide libraries can be an alternative to reduce the time and costs of this process. One approach
to conduct virtual screening is the use of ML-based QSAR predictors for various peptide-related
endpoints. In the scope of protein-peptide associations, several predictors of protein-protein and
protein-ligand interactions have emerged in the last decades. However, these models suffer
from low generalization capabilities, with high variance when predicting unseen data.
Moreover, most methods contemplate peptides the same way as proteins or small organic
ligands, underestimating the specificity of short peptide sequences.

Similarly, due to the urgent need of novel therapies to address multi-drug resistance, predictors
of AMPs have been introduced. However, most methods are not intended to predict specific
functions, such as antibacterial activity, and those that can consistently address this task have
limited precision and lack information on potential targets. Consequently, novel computational
methods aimed to accurately identify and optimize bioactive peptides are needed. The aims of
my work were to leverage machine learning techniques to develop novel tools for the analysis
of bioactive peptides by:

i. Developing a sequence-based predictor of protein-protein and protein-peptide
interactions applicable to the identification of lead compounds from extensive in silico
screening of protein-peptide and protein-protein interactions.

ii.  Developing predictors of protein-protein and protein-peptide binding free energies
based on 3D structures, with application to mutagenesis experiments and protein
engineering.

iii.  Contributing to the development of predictors of antibacterial peptides and the Gram-
staining type of targeted bacteria. This tool allows the identification of function-specific
lead peptides and derivatives thereof.

iv. Implementing a web platform permitting (i) the generation of ProtDCal molecular
descriptors for data-driven studies, and (ii) the application of the developed ML-based

tools for the virtual screening in the early steps of peptide discovery.
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PPI-Detect: A Support Vector Machine Model for Sequence-
Based Prediction of Protein-Protein Interactions

Sandra Romero-Molina,”® Yasser B. Ruiz-Blanco, @ Mirja Harms,™™ Jan Miinch,®<! and

*[al

Elsa Sanchez-Garcia

The prediction of peptide—protein or protein—protein interac-
tions (PPl) is a challenging task, especially if amino acid
sequences are the only information available. Machine learning
methods allow us to exploit the information content in PPI
datasets. However, the numerical codification of these datasets
often influences the performance of data mining approaches.
Here, we introduce a procedure for the general-purpose numer-
ical codification of polypeptides. This procedure transforms
pairs of amino acid sequences into a machine learning-friendly
vector, whose elements represent numerical descriptors of resi-
dues in proteins. We used this numerical encoding procedure
for the development of a support vector machine model (PPI-

Introduction

The effective representation of the information content in data-
sets is essential for the development of machine learning
approaches. Based on a novel numerical codification procedure
for polypeptide sequences, we created a computational tool for
the prediction of protein—protein interactions (PPI), with key
implications for drug design.

PPI are intrinsically related to protein function
cial aspect in pharmaceutical and biomedical applications.
The growing interest of the scientific community on PPI has
gradually transformed paradigms, from the elucidation of
genomes, to proteomes and to interactomes.®! With the con-
stantly increasing amount of PPl data,”®! improvements on the
ability of data mining methods to extract valuable insights from
the corresponding databases are necessary. Several computa-
tional studies modeling PPl-related functions from amino
acid sequences have been described.®'® These works evi-
dence the applicability of primary structure data to predict
complex proteomic properties. However, despite important
advances in this area, shortcomings in the precision of state-
of-the-art sequence-based PPl prediction methods """
have been highlighted!"® and robust benchmarking datasets
of PPl with reliable noninteracting data are needed.!"

As mentioned above, a key step of any learning scheme is an
adequate representation of the input data. Thus, our first aim is
to provide a general framework for the numerical encoding of
proteins. For small organic molecules, a large amount (~10°) of
numerical descriptors are defined.*® However, peptides and
proteins have not received the same attention. Noteworthy in
the area of numerical descriptors for proteins is the work of
Chou and collaborators, who introduced pseudo-amino acid

2 and a cru-

[31

Wiley Online Library

Detect), which allows predicting whether two proteins will inter-
act or not. PPI-Detect (https://ppi-detect.zmb.uni-due.de/) out-
performs state of the art sequence-based predictors of PPl. We
employed PPI-Detect for the analysis of derivatives of EPI-X4, an
endogenous peptide inhibitor of CXCR4, a G-protein-coupled
receptor. There, we identified with high accuracy those pep-
tides which bind better than EPI-X4 to the receptor. Also using
PPI-Detect, we designed a novel peptide and then experimen-
tally established its anti-CXCR4 activity. © 2019 Wiley Periodi-
cals, Inc.

DOI:10.1002/jcc.25780

composition descriptors for the first time.2"! Web servers such
as PROFEAT?? and Pse-in-one 2.0, containing Chou's
descriptors, were the only comprehensive tools for the general-
purpose codification of protein sequences. Broadly expressed,
the pseudo-amino acid composition concept encompass any
procedure that, starting from the primary structure, delivers a
numerical feature vector with information of the amino acid
composition and the sequence ordering.?” In this context,
Ruiz-Blanco et al. also presented numerical descriptors for indi-
vidual proteins (ProtDCal).?*! ProtDCal found applications in
several studies involving posttranslational modifications,
antibacterial peptides, and protein function.?>=32! Notably,
these descriptors showed low correlation with those in
PROFEAT, highlighting the need for further codification
approaches.?*!

Here, we tackle precision-related shortcomings of state of the
art sequence-based PPI prediction methods by introducing an
approach that allows ProtDCal to encode protein pairs. With

[a] S. Romero-Molina, Y. B. Ruiz-Blanco, E. Sanchez-Garcia
Center of Medical Biotechnology, University of Duisburg-Essen, Duisburg,
Germany
E-mail: yasser.ruizblanco@uni-due.de or elsa.sanchez-garcia@uni-due.de
[b] M. Harms, J. Miinch
Institute of Molecular Virology, Ulm University Medical Center, Ulm,
Germany
[c] J. Miinch
Core Facility Functional Peptidomics, UIm University Medical Center, Ulm,
Germany
S. Romero-Molina and Y. B. Ruiz-Blanco contributed equally to this work.
Contract Grant sponsor: Boehringer Ingelheim Stiftung; Contract Grant
number: Plus-3; Contract Grant sponsor: Deutsche Forschungsgemeinschaft;
Contract Grant numbers: SFB1279, EXC 2033

© 2019 Wiley Periodicals, Inc.

J. Comput. Chem. 2019, 40, 1233-1242



1234

SOFTWARE NEWS AND UPDATES

this pairwise codification scheme, we extend the applicability of
ProtDCal to the study of proteome properties associated with
more than one protein (which include PPl as well as protein
functional relations, identification of remote homology and co-
evolution events in proteins, among others). Subsequently,
based on this pairwise codification scheme, we created a novel
PPI sequence-based predictor, named PPI-Detect.

We found that our obtained model outranks the estimated
accuracy of state-of-the-art predictors such as PIPE!'*'®
SPPS,2 and Pred-PPL1"® thus highlighting the applicability of
the new pairwise codification strategy for modeling PPI data.
The performance of PPl-Detect was further evaluated in the
identification of active mutants from a dataset of EPI-X4 deriva-
tives which are inhibitors of the G-protein coupled receptor
CXCR4, a well-known drug target.*

Materials and Methods

Chou established a five-step rule® for the development of a
useful sequence-based statistical predictor for a biological
system>=*": (1) to select a valid benchmark dataset to train
and test the predictor; (2) to formulate the biological sequence
samples with a mathematical expression that reflects their
intrinsic correlation with the target application; (3) to introduce
a powerful algorithm or engine to operate the prediction; (4) to
properly perform cross-validation (CV) tests to evaluate the
accuracy of the predictor; and (5) to make the predictor accessi-
ble to the public via a web server. We follow these guidelines
in the present work.

Data collection and construction of the benchmarking set

First, we gathered a nonredundant benchmarking dataset of PPI
from three comprehensive, curated and publicly available data-
bases. These databases contain information about pairs of protein
domains with proven interactions (3did“*? and iPfam™), and
domain pairs with very little chances of being involved in an inter-
action (Negatome 2.0%4),
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Figure 1. High scoring pairs (HSP) coverage versus alignment identity for
all domains in the knowledge database. [Color figure can be viewed at
wileyonlinelibrary.com]
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Thus, the following amount of domains pairs was obtained:
9326 pairs (3did“?), 9516 pairs (iPFam*®) and 2666 pairs
(Negatome 2.0"%). We removed 261 pairs from the Negatome
input because they were also found in the dataset of interact-
ing domains. Negatome is built by regular application of filters
involving the crossing of its entries with known PPL™¥ Then,
the occurrence of some redundant pairs with 3did and iPFam is
probably related to an outdated cleaning of the database.

Domains exclusively found in the interacting (positive) or
noninteracting (negative) datasets can bias the performance of
a predictor. Therefore, we kept only those domain pairs whose
individual members were present in both positive and negative
data in the final dataset. This analysis resulted in 1922 interact-
ing pairs and 2405 noninteracting pairs of domains. The final
dataset (comprising 4327 pairs) thus exhibits high reliability for
the evaluation of the possibility of an interaction between pairs
(see Supporting Information file-1).

Protein domains are often expressed in several proteins, the
Pfam™*! database contains the multiple sequences associated with
a unique domain. Thus, upon collecting the interdomain interac-
tion data, the amino acid sequences of the individual domains
were obtained from the Pfam database. Then, the CD-HIT pro-
gram™ was used to eliminate redundant domain sequences
using a cut-off of 40% of identity. Next, the most representative
sequence was extracted for each domain based on the levels of
identity with respect to the remaining protein sequences.

BLASTp™” was used to run pairwise local alignments among
all the domains using a permissive e-value = 100, in order to
increase the number of hits between a given domain and the
rest of the data. The similarity between all the high scoring
pairs of domains (interacting and noninteracting) was repre-
sented by two parameters, the coverage index (fraction of the
whole sequence covered for the local alignment), and the align-
ment identity (fraction of identical residues in the aligned frag-
ment (Fig. 1). The first quadrant includes domain pairs with
high identity and coverage, the third quadrant includes domain
pairs with very little identity and coverage. Most of the domain
pairs (with some distinguishable similarity [e-value <100]), show
levels of alignment identity and coverage below 50% (Fig. 1).
The lack of alignment of domain pairs with both, identity and
coverage measures over 60%, evidences the low sequence simi-
larity among the individual domains in the data. Thus, even if
two pairs share a domain, that is A-B and A-C, the non-common
partners diverge enough for an effective differentiation of the
two pairs.

Subsequently, we split the dataset into training and test
sets. Importantly, all the test instances were excluded from
the training dataset. Here, we refer to the interacting domains
as the positive cases and the noninteracting domains as the
negative cases. We used 836 pairs of domains (309 positive
and 527 negative) for testing and 3491 pairs (1613 positive
and 1878 negative) for training. To estimate the performance
of the final model, we grouped the test data by degrees of
difficulty:

Very hard subset. It gathers pairs of individual domains
not present in the training data. If the pair A-B is included in this
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subset, neither A nor B are found in any pair of domains of the
training data. This subset contains 103 domain pairs (57 positive
and 46 negative).

Mid-hard subset. It comprises domain pairs where only one
of the domains is present in the training data. If the pair A-B is
part of this subset either A or B, but not both, is found in the
training data. This subset contains 307 domain pairs (102 positive
and 205 negative).

Easy subset. This subset comprises pairs where both domains
are present in the training data, and found only once in this test
subset. If a pair A-B is included in this subset, then both A and B
are part of other domain pairs in the training set. In addition, no
other pair containing A or B is found in the test subset. This subset
includes 426 domain pairs (150 positive and 276 negative).

ProtDCal: A tool for the general-purpose encoding of
proteins

A challenging issue lies, given the increasing amount of avail-
able protein data, on expressing an amino acid sequence with
a discrete model while preserving considerable sequence-order
information. This is because the majority of machine-learning
algorithms that have found applications in bioinformatics (such
as k-nearest neighbor,*® support vector machine,“® and random
forest™®™) mostly handle numerical features vectors>" A pioneer-
ing way to generate effective numerical vectors from primary
structures, without losing the sequence-pattern information, was
the pseudo amino acid composition®? or PseAAC.?"**! According
to Chou’s remarks on pseudo-amino acid composition, this con-
cept was extended to include all discrete set of features capable
of describing the amino acid content of proteins while also captur-
ing the sequence ordering information.2* Within this context, we
previously introduced a novel protein features generation algo-
rithm in the software ProtDCal?” The complementary nature of
both protein codification approaches was established given the
significant absence of correlation between the numerical fea-
tures produced by PseAAC and those generated with
ProtDCal.?>

The ProtDCal program is a flexible and potent tool for general-
purpose numerical encoding of individual protein sequences and
structures.>>?”) Here, we extended the protocol of ProtDCal to
also encode pairs of amino acid sequences. The algorithm of the
program follows a pipeline of five steps (Fig. 2):

Steps 1 to 4 (previously implemented in ProtDCal) permit to
encode individual proteins. Next, we briefly describe these four
steps of the program’s workflow, and in the section “Definition
of novel-pairwise descriptors for amino acid sequences” we pre-
sent the implementation introduced in this work, which corre-
sponds to step 5 in Figure 2.

Step 1: Numeric codification of residues. ProtDCal uses
a set of structural and chemical-physical properties of amino
acids (molar weight, hydrophobicity, isoelectric point, among
others), taken from the AAindex database.”* Using these prop-
erties, a residue features matrix is created. The rows of this
matrix correspond to the residues in the protein while the
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columns of the matrix correspond to the properties describing
the amino acids. The residue features matrix is then fed into
the second step of the pipeline (Fig. 2).

Step 2: Modification by vicinity. In this step, a vicinity-
modified residue features matrix is obtained by applying a
vicinity-modification operator to update the elements of the
matrix using information from the ordering of the residues in the
amino acid sequence. For encoding individual proteins, four local
vicinity operators are implemented in ProtDCal. One of them is
the Moreau-Broto autocorrelation (AC)®>>® function:

Daci=Dji(Dj+1+Di-y) (1)

where D; represents the value of an amino acid property D for
residue i, Dac; corresponds to the vicinity-modified property
after applying the AC operator with the neighbor residues (i + /
and i — I) separated by a topological distance / from the residue
i. This way, the use of the AC operator allows us to incorporate
in the description of each residue a contribution from neigh-
bors at a user-defined topological distance (/).

Global vicinity operators, like the electro-topological state
(E-State) operator,””! are also implemented. For each residue,
the E-State operator takes into account all other residues during
the calculation:

N

Di—D;

Desi=D;— Zj—zl (2)
A (=i

where D; represents the value of an amino acid index D for resi-
due i, and Dgs; corresponds to the vicinity-modified index after
applying the E-State operator. Currently, for the extension of
ProtDCal to pairwise descriptors (see next section), the E-State
is the only used vicinity operator.

Step 3: Grouping. ProtDCal follows a divide-and-conquer
approach based on splitting the sequence of a protein into
multiple groups of related residues, each of these groups is
then used to generate separate numeric descriptors. At this
stage, the vicinity-modified residue features matrix is split into
many group-based matrices composed by rows associated
to selected residues in the complete matrix. Grouping oper-
ators are defined as groups of residues sharing similar prop-
erties, for example, all aromatic, polar, nonpolar, acid, and
basic residues. These group-based matrices can be as large
as the entire matrix (i.e., a group formed by the whole pro-
tein), or as small as a single row (i.e., a group formed by just
one residue).

Step 4: Invariant aggregation. This step comprises des-
criptive statistics (variance, standard deviation, skewness, among
others) and Shannon entropy-related measures™® that are used
to transform the distribution of values for each of the properties
(steps 1 and 2) within a group of residues, into a single numeri-
cal value. The operators applied in this step are referred to as
invariant, given that the final descriptor values are independent
of the ordering of the residues within the group. These operators
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Figure 2. General workflow of the ProtDCal program from left to right, clockwise: is D represents an amino acid property (e.g. hydrophobicity, molar weight,
etc), G is the intermediate group-based descriptor and F represents the final pairwise descriptors. [Color figure can be viewed at wileyonlinelibrary.com]

act over the columns of the group-based matrices, transforming
each column into a final numerical feature that accounts for the
distribution of values of a given property within the group (note
that each column of the matrices corresponds to a single amino
acid property). Finally, the features obtained from all the intermedi-
ate sub-matrices are arranged into a single vector that character-
izes the entire input protein. Therefore, once all proteins are
processed, this step returns a protein features matrix with dimen-
sion | X m, where | is the number of proteins in the dataset and
m is the total number of features obtained from the aggregations
in all the sub-matrices. This number corresponds to m =P X G X A,
where P, G, and A are the number of selected amino acid proper-
ties, grouping criteria, and aggregation operators, respectively.

ProtDCal delivers a large features vector that encodes the input
protein, given its combinatorial algorithm and the available num-
ber of choices for amino acid properties, vicinity, grouping and
aggregation operators. All elements of this vector are univocally
defined by a specific combination of the mentioned choices. For
instance, an individual feature (Mw_ACk_PCR V) could be gener-
ated by the variance (V), among the positively charged residues
(PCR), of the modified molar weights (M,, of the PCR residues). M,,
values are in turn obtained using the autocorrelation operator of
order k (ACk) acting on the original molar weights of all residues in
the protein.

Modeling protocol

Our protocol for obtaining pairwise protein descriptors within
ProtDCal is presented in the section “Definition of novel-pairwise
descriptors for amino acid sequences.” This new codification
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allows generating up to 13248 features for each pair of proteins
in the dataset (Supporting Information Section SM1). We use this
set of features to initiate our modeling procedure. To reduce the
dimensionality of the features vector, we apply the following
attribute-selection steps:

1. The information gain®®® scoring method implemented in Weka

3.7.11%% s used to rank all features according to the informa-
tion content relevant to describe the class distribution. We set
a threshold value equivalent to 5% of information content
(Shannon entropy) of the class distribution. This allowed us to
eliminate those features without information relevant to distin-
guish interacting from noninteracting domains in the training
set. In this manner, the initial set was reduced to 326 features.

2. We further reduced the redundancy among the extracted sub-
set by using the DCluster tool of ProtDCal, especially designed
for this purpose. DCluster is a Perl script that, by implementing
a single-linkage clustering method, extracts the most representa-
tive element of each cluster of features to build a reduced and
nonredundant dataset. The algorithm uses the Spearman corre-
lation coefficient as similarity measure between two features.
We defined a threshold of 0.95 to add new members to a grow-
ing cluster. After redundancy screening, only four attributes
were removed leading to 322 features in the nonredundant
dataset. This fact evidences the low redundancy among the
numeric features introduced in the present study.

3. The third step of the selection process comprises a supervised
selection of the best subset of attributes to be used in the final
model. Here, the WrapperSubsetEval method, implemented in
Weka 3.7.11, was coupled to a genetic search algorithm™®" to
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select and evaluate multiple subsets of attributes. We used a
population of 20 individuals with mutation and crossover
probabilities of 0.033 and 0.6, respectively, and extended the
search for 100 generations. The evaluation of each
subset along the search was performed with fivefold cross
validations, by scoring each subset with the value of the
accuracy of the obtained classifier. The technique used for
building the models was a support vector machine (SVM)
with linear kernel. This selection step led to a final subset of
19 features (Supporting Information Table SM2) which are
the final variables included in our model.

Learning technique

Previous approaches for the prediction of PPl take advantage of
the strength of machine learning algorithms such as SVM.[16336263]
Given the robustness of SVM, and to test the value of our novel
descriptors within the same learning scheme of previous methods,
we also used SVM as the learning algorithm to train our predictor.

Once a suitable subset of attributes was extracted, the
models were trained using the SVM package SMO.** The
descriptors are normalized before the optimization of the
model and logistic regression is used to calibrate the outcome
of the SMO algorithm for a better estimation of the outcome
probabilities. The optimal setup for SMO and its kernel function
was estimated by means of a grid search along the parameters
space. We explored the RBF and polynomial kernels following
the grid-search approach described by Hsu et al.'* (Supporting
Information Section SM3 and Table SM4). The final model was
selected with a linear kernel and a cost (C) for misclassified
cases C=113.

Performance measures

Here, we use classical performance measures: precision (Pr) is
defined as the fraction of correctly predicted interactions (TP) out
of the total number of predicted interactions (TP + FP) where FP
is the number of false-positive predictions.

Pr =TP/(TP+FP) 3)

Our goal is to obtain a predictor that effectively balances pre-
cision and sensitivity (Sn). Sn is defined as the fraction of cor-
rectly predicted interactions out of the number of known
interactions (TP + FN) where FN is the number of false-negative
predictions.

Sn =TP/(TP+FN) (4)

Prevalence-corrected precision®® (PCPr) is used to unify the
precision values of the different test sets at a unique level of
prevalence, for a proper comparison between test sets. This
way, we avoid bias in the precision values because of the differ-
ent ratios of positive and negative data (i.e,, class imbalance) in
each test set.

Sn

PCPr:Sn+r(1—Sp) ®)

Wiley Online Library
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The prevalence value r represents the new ratio of negative
to positive protein pairs used to re-estimate the precision. Sn
and Sp are the sensitivity and specificity of the predictor,
respectively.

Sp=TN/(TN+FP) (6)

Accuracy (Acc) was used to evaluate the overall performance
of our model:

Acc=(TP+TN)/(TP+TN+FP+FN) 7)

The Mathew correlation coefficient (MCC) is also used to
assess the overall quality of the model distinguishing between
the two classes (interacting and noninteracting pairs).

TP x TN—FP X FN
MCC= X X )
/(TP + FP)(TN+ FN) (TP + FN) (TN + FP)

We note that, although the classical confusion matrix ele-
ments are traditionally used for formulating performance mea-
sures of classifiers,®” Chou’s terminology®® presents an
intuitive alternative to the classical terms. Here, for the sake of
consistency with previous work reported by Ruiz-Blanco et al.,
we employ the classical nomenclature.

Experimental details

Peptides were synthesized on a 0.10 mM scale using standard
Fmoc solid-phase peptide synthesis techniques with the micro-
wave synthesizer (Liberty blue; CEM). Afterwards peptides were
purified using reverse phase preparative high-performance liquid
chromatography. After lyophilization, the peptide mass was veri-
fied by liquid chromatography mass spectroscopy. In order to ver-
ify peptide binding to the CXCR4 receptor, a CXCR4-tropic HIV-1
inhibition assay was performed as previously described.** Briefly,
TZM-bl cells (@ HIV-1 reporter cell line harboring a p-galactosidase
construct under the control of the HIV-1 promoter) were seeded
in flat 96-well cell culture plates. The next day, growth medium
was replaced to DMEM containing 2.5% fetal calf serum and pep-
tides were added at increasing concentrations. After 10 min incu-
bation at 37°C, CXCR4-tropic NL4-3 HIV-1 was added. Three days
postinoculation, infection rates were determined by quantifying
cell-associated p-galactosidase activity in a luminescence-based
assay. Half-maximal inhibitory concentrations were calculated by
GraphPad Prism.

Results and Discussion

Definition of novel-pairwise descriptors for amino acid
sequences

Originally, ProtDCal was only able to encode single amino acid
sequences or 3D structures. However, for modeling pairwise
protein data, such as PPIl, we need to define descriptors for
pairs of amino acid sequences. Here, we introduce an approach
to generate new pairwise descriptors intended to encode infor-
mation associated to forming pairs of sequences. We define the

J. Comput. Chem. 2019, 40, 1233-1242
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pairwise descriptor as a function of the single-chain descriptors
of products and reagents of a block co-dimerization reaction.
Given two amino acid sequences A and B and the reaction:

2A+2B= >AB+BA

AB and BA are block copolymers formed by the concatena-
tion of A and B.
The pairwise descriptor D(a_g) is calculated as:

Da8) =D(ag) + D(ga) = 2D(n) - 2D, 9)

where D, corresponds to the value of the single-chain descrip-
tor for a given sequence X (A, B, AB, or BA in this example). The
net value of D g is related to the augmented topology upon
the concatenation process, and thus it corresponds to a numeri-
cal representation of the relation between the independent
sequences and no to a simple sum of their individual features.
The electro-topological state™ (E-State) operator is then used
to leverage the topological information of the original and of
the combined sequences during the vicinity-modification step.
We added this step (step 5, Fig. 2) to the pipeline of ProtDCal.
As implemented here, the calculation of pairwise descriptors
with ProtDCal only requires an additional input file containing
the definition of the protein pairs. The program performs the
sequence concatenation and automatically computes the pair-
wise features.

Performance of PPI-Detect during training and prediction
tests

Here, we followed the modeling protocol described in the
Methods section. To start with, we used all descriptors (obtained
by the pairwise transformation discussed above) from the modi-
fied ProtDCal’s pipeline.

For analyzing our results, we used precision-recall curves
(PRCs) (see Supporting Information Table SM-4 for additional
data on other performance measures). The PRCs of the training
data show high precision values (~90%) with a sensitivity in the
range of 30%, even in the region of high decision threshold
(beginning of the curve in Fig. 3). At the mid points of the
performance measures, 50% of precision is obtained with ~90%

09
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07
0.6
05
04

Precision

03 ~4~10-fold CV
02 ~¥-Training

0.1

0 01 0.2 03 04 05 0.6 0.7
Sensitivity
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of sensitivity and 50% of sensitivity is reached with ~78% of
precision.

To assess the robustness of this fitting, we analyzed the PRC
curves of the 10-fold CV and of the training fitting. Large devia-
tions from the training performance due to the perturbations of
the CV would indicate that the fitted predictor is too depen-
dent of training instances and thus it is overfitted. Remarkably,
the PRC curve of the CV closely resembles the one obtained
during the training. We can thus confirm that our model is
robust and its performance is the result of the generalization of
relevant information in the training data.

Next, we tested the generalization of the model using three
test subsets (see section “Data collection and construction of
the benchmarking set”) with scaled levels of similarity with
the training data. In this way, potential users can estimate the
performance of our method by crossed similarity analysis
between their proteins of interest and those in our training data.
The PRCs for the entire test set and subsets (Fig. 4A) show the
levels of precision and sensitivity in each case. Figure 4B depicts
analogous PRCs including a prevalence (imbalance) correction to
the precision. Prevalence was fixed to r = 1, which transforms
the precision values to those expected if the number of negative
and positive data is the same. This procedure allows standardiz-
ing the prevalence among the three datasets, and thus an unbi-
ased comparison between the different tests is possible.

For the easy test, a precision of 90% is reached with a sensi-
tivity of ~70%, while the mid-hard test shows a precision of
90% for a sensitivity of ~45%. The decay in sensitivity between
these subsets is a consequence of the significantly lower simi-
larity of the mid-hard test set with the training data (half of the
individual domains are not present in the training data).
Remarkably, the very-hard test yields a precision of 90% with
also a sensitivity of 45%, which further validates the generaliza-
tion of the model.

Provided the low redundancy among domain sequences
in the entire knowledge base (Fig. 1), our results evidence,
not only the generalization, but also the prediction power of
the developed model. This predictor is implemented in a
user-friendly tool named PPI-Detect (Supporting Information
Section SM5). PPI-Detect is freely accessible via web interface
at: https://ppi-detect.zmb.uni-due.de/. Additionally, the com-
piled version is available upon request.

Figure 3. Precision-recall curves of 10-fold
cross-validation and training procedures. CV,
cross validation. [Color figure can be viewed
at wileyonlinelibrary.com]

0.8 0.9 1

WWW.CHEMISTRYVIEWS.COM Che}%istryvi;ws(
K o®



Journal of

CHEMISTRY

1

0.9 (a) y

08
0.7

06

Precision

05
0.4

0.3
0 0.1 0.2 03 04 05 06 0.7 08 0.9 1

5 (b

B 09

o

]

-

o o8

T

8 =+ Test set

g 0.7

8 ~¥-Test easy

s 06 Test mid-hard
s W
- T i

g 05 -+ Test very-hard
]

'

o

0.4
0 01 0.2 03 04 05 0.6 0.7 08 09 1

Sensitivity

Figure 4. Precision-recall curves (PRC) obtained for the complete test set and
the three subsets with varying levels of difficulty. Panel A (top) shows raw
values of precision and sensitivity along the threshold range. Panel B (bottom)
shows the plots using prevalence-corrected precision with a prevalence value
r = 1. [Color figure can be viewed at wileyonlinelibrary.com]

To define the applicability domain (AD) of the model we use
the range of the descriptors’ values in our training dataset
(Supporting Information Table SM6). This approach is based on
the intuitive definition of AD as the subspace delimited by the
range of the variables (descriptors) in the model.®” As part of
the PPI-Detect workflow, we implemented a tool named
ADcheck, which allows the users to map the descriptor values
of their new data into the AD. Specifically, the ranges imple-
mented in ADcheck are defined between the 5th and 95th per-
centiles of each descriptor. Any new case whose descriptors’
values are outside any of the ranges is considered as a potential
outlier. The input for ADcheck is the data with all the descrip-
tors’ values of the predicted protein pairs, which is one of the
outputs files of PPI-Detect. With this information, ADcheck iden-
tifies the cases that are outside the range of descriptors’ values
in the training data.
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Additionally, by inspecting the amino acid composition and
length of the new sequences, users can assess qualitatively
whether new data are within the AD. Only the 20 standard
amino acids are present in our training data, also no chemical
modification or d-type residues were used. Regarding the length
of the individual sequences, it varies from 16 amino acids (aa) to
544 aa. The average sequence length in the training data is
109 aa (standard deviation of 69 aa). For the pairs of sequences,
a minimum sum of 40 aa and a maximum of 1088 aa is desir-
able. The average sum of the sequence sizes of the pairs in the
training data is 198 aa (standard deviation of 87 aa).

Comparison of the performance of PPI-Detect with respect to
other predictors

A combined subset, containing the instances found in the mid-
hard and very-hard subsets, was used to compare the performance
of our method to that of other sequence-based predictors of PPI:
PIPE,"*18 pred-PPL,"® and SPPS.2! PIPE is a sequence alignment-
based predictor, which performs massive assessments of interac-
tion probability between pairs of fragments, considering all known
interactions of several species, for example, human, yeast, Escheri-
chia coli. Pred-PPl and SPPS are SVM predictors and their different
behavior with respect to ours can be partly associated to the attri-
butes used to represent the protein—protein pairs.

Remarkably, our model largely surpasses the performance of
the other state of the art predictors. For instance, at 50% of sen-
sitivity, the other methods yield about 50% of precision, while
our model reaches 80% (Fig. 5).

This way, the precision-recall curves, which show the perfor-
mance along the entire range of the outcome score, evidence
the superior performance of PPI-Detect for all the precision (or
sensitivity) values (Fig. 5). This is also indicated by the global met-
rics (such as accuracy and MCCQ) that display for PPI-Detect con-
comitant precision and sensitivity values above 50% (Table 1).

An important factor that contributes to the better perfor-
mance of our method is the number and curated nature of the
training data. We use the three largest repositories of curated
protein domain-domain interactions. This wealth of learning infor-
mation is relevant to achieve more generalization in a predictor.
PIPE predictions are also derived from large databases such as
DIP and MIPS.”7% However, PIPE does not use data of nonin-
teracting sequences in its prediction pipeline. By including
such data as negative control during the development of our

0.9

Precision

Figure 5. Precision-recall curves (PRC) of the
different predictors of PPl and of PPI-Detect 03
(mid-hard + very-hard subsets). [Color figure can

be viewed at wileyonlinelibrary.com]
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Table 1. Comparison of performance measures for PPI-Detect and other
methods in the hard test set (mid-hard + very-hard subsets)

Precision Sensitivity Accuracy McCC
PIPE 0.762 0.101 0.639 0.178
Pred-PPI 0.396 0.880 0435 0.049
SPPS 0514 0.239 0617 0.121
PPI-Detect™® 0.554 0.648 0.661 0310

[a] The threshold is fixed at an outcome probability of 0.5.

supervised classifier, we improve the final precision avoiding
over-producing positive predictions.

Application of PPIl-Detect to EPI-X4 derivatives

The CXC chemokine receptor 4 (CXCR4) is a G-protein-coupled
receptor that is expressed in multiple cells.2*”" Activation of
CXCR4 by its chemokine ligand, stromal-cell-derived factor-1
(SDF-1 or CXCL12)>”® governs important physiological pro-
cesses.”*”> Deregulation of CXCR4-CXCL12 signaling in humans is
involved in multiple disorders, such as cancers, inflammation, and
cardiovascular diseases. Zirafi et al. reported the discovery of a
novel endogenous antagonistic ligand of CXCR4 named EPI-X4,
which is an evolutionary conserved fragment of human serum
albumin.®¥ Binding of EPI-X4 to CXCR4 is highly specific and sup-
presses both, basal and CXCL12-induced signaling. Furthermore,
this endogenous CXCR4 antagonist blocked CXCL12-mediated
receptor internalization and suppressed the migration and inva-
sion of cancer cells toward a CXCL12 gradient, suggesting that
EPI-X4 may have anti-metastatic activity.**!

The amino acid sequence of EPI-X4 is LVRYTKKVPQVSTPTL.
Zirafi et al.®¥ evaluated a number of EPI-X4 derivatives in order
to enhance its activity. From such derivatives, we extracted a
total of 35 (monomeric and non-chemically modified) peptides
to assess the predictability of our method in terms of peptide
activity. First, we classified the set of 35 peptides (Supporting
Information Table SM7) in two groups (21 low-active and
14 highly active peptides) using the ICs, value of EPI-X4 in HIV-1
inhibition assays as the reference for this classification. The calcu-
lated precision (success rate) of the experimental study was 40%
(14 out of 35 variants were experimentally found to be more
active than EPI-X4).

Next, we divided the exposed region of the membrane pro-
tein CXCR4 into four fragments (Fig. 6).

Binding region

£ MJ
[
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o

Figure 6. CXCR4 three-dimensional structure (PDB entry 30EO”®). Fragment
A (residues 25-45, blue), fragment B (residues 87-121, red), fragment C
(residues 164-205, orange), and fragment D (residues 252-292, green) are
highlighted. [Color figure can be viewed at wileyonlinelibrary.com]
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Table 2. Summary of the success rate (precision and
accuracy) in identifying active EPI-X4 derivatives based on
the predicted interaction with CXCR4 fragments. The color
code is the same as in Figure 6

Precision Accuracy
FRAGMENT A | 0.522 0.629
FRAGMENT B | 0.700 0.714

0.500 0.600
FRAGMENT D | 0.200 0.514

We then predicted the interactions of each CXCR4 region with
the 35 peptides using PPI-Detect. The outcome for each pair was
classified as low-likely or high-likely interacting, if their predicted
scores were lower or higher than the scores for the interactions
between EPI-X4 and the four fragments (Supporting Information
Table SM7). We note that the outcome scores of the model are
not directly related to interaction strength, but to likelihood of
interaction. Thus, we are assuming that more likely interactions
imply more active candidates, which is not necessarily the case.
Table 2 shows the fragment-based performance of PPI-Detect for
the prediction of the activity class.

Interestingly, three of the fragment-based estimates lead to
precision values equal or higher than 50% when the calculated
precision (success rate) for the study was only 40%. In particu-
lar, the analysis of fragment B shows high precision (70%). This
suggests that the EPI-X4 derivatives may establish specific
interactions with CXCR4 that strongly influence the binding
affinity of the peptides. On the contrary, the interaction with
fragment D does not show any apparent relation with the
derivatives’ activity. Notably, fragments A, B, and C encompass
the minor pocket of this receptor, while C and D comprise the
major pocket. Thus, EPI-X4 may bind more favorably to the
minor pocket of CXCRA4.

Although several factors regulate the biological activity of a
given compound, PPl between receptor and ligand provide impor-
tant hints in the search of improved ligands. In this context, we
used PPI-Detect to design a shorter derivative of EPI-X4, based on
the previously reported sequence of WSC02 (IVRWSKKVPCVS), a
very active EPI-X4 derivative®* Ten thousand initial sequences
were generated by applying conservative mutations on randomly
selected residues of WSC02, residue deletions were implemented

Table 3. Sequences of the experimentally reported
and designed peptides

Sequence
EPI-X4 LVRYTKKVPQVSTPTL
WSC02 IVRWSKKVPCVS
JM130 IVRWSPPCVS
JM133 IVRWSKYVS
IM135 IVRSSRKVVS
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Figure 7. Inhibition of CXCR4-tropic HIV-1 infection by EPI-X4 and derivatives
thereof. TZM-bl reporter cells containing the indicated concentrations of
peptides were inoculated with CXCR4-tropic HIV-1. Infection rates were
determined 3 days later by the B-galactosidase assay. Shown are data from
three individual experiments performed in triplicates &+ SD. [Color figure can
be viewed at wileyonlinelibrary.com]

with a probability of 0.05. For each candidate the modification
process was stopped when the molar weight was below 1200 Da.

Then, the peptide library was virtually screened using PPI-
Detect to predict the interaction of each of the peptides with
the fragments A, B, and C of CXCR4 (Fig. 6). From this screening,
three candidates (JM130, JM133, and JM135, Table 3) were
identified with the highest possible prediction score (score = 3,
obtained as the sum of the interaction scores with the CXCR4
fragments A, B, and Q).

The anti-CXCR4 activity of the peptides was evaluated with the
HIV-1 inhibition assay. We found that, while JM130 and JM135
had no effect on HIV-1 infection, JM133 blocked viral infection in
a dose-dependent manner with a mean half-maximal inhibitory
concentration (ICsq) of ~1.6 M, which is approximately three times
more active than the endogenous peptide EPI-X4 (4.7 uM), albeit it
was less active than WSCO2 (Fig. 7). This behavior can be rationalized
by analyzing the nature of the modifications on these peptides. Zirafi
et al. reported that the introduction of lle in position 1, Trp in posi-
tion 4, and Ser in position 5 results in an increased activity of the
peptides¥ This explains why JM133 is more active than EPI-X4.
JM135 lacks the aromatic residue in position 4, which could lead to
its absence of activity. In JM130, the lysine residues in position
6 and 7 are removed. Since the CXCR4 binding pocket is rich in
negatively charged residues,”® the positively charged amino acids
of the ligand should play a key role in binding and their double
deletion abolishes the activity of JM130.24 The elimination of Lys7
in JM133 could also provide a rationale to the fact that this peptide
cannot reach the activity levels of WSC02.

On the contrary, we note that the short lengths (required for
experimental reasons) of JM130, JM133, and JM135 are below
the shortest sequences in the training dataset. This places these
derivatives outside the AD and limits the reliability of the predic-
tions. Further work will focus on extending the lower boundary
of the current AD for a more general training of the PPI-Detect
model. Atomistic simulations are also needed to provide a ratio-
nale to the relative accuracy estimates of CXCR4 fragments and
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the activity of the peptides. Even so, this study illustrates the
potential applicability of PPIl-Detect for the design of bioactive
peptides. PPI-Detect is a fast computational tool that allows,
without the need of structural data from the peptide or the tar-
get, the primary screening of peptide and protein libraries.

Conclusions

Here, we present a numeric codification approach for pairs of
amino acid sequences. This approach provides a platform for
many and diverse bioinformatics applications, such as the study
of PPI networks and functional relations. Other potential field of
application is the identification of remote evolutionary relations
among proteins using alignment-free algorithms. There, a suit-
able classification problem is to distinguish pairs of orthologues
from paralogues proteins between proteomes.

We also applied our new pairwise codification methodology
to the development and validation of PPI-Detect, a novel and
accurate PPl predictor. We employed PPI-Detect to study the
interactions between derivatives of EPI-X4 and its receptor
CXCR4, highlighting the potentialities of the predictor for tailored
peptide design. In this context, JM133, a shorter and more active
derivative of EPI-X4 was identified solely based on PPI-Detect
predictions. PPl-Detect relies, uniquely, on the primary structure
of proteins and it is thus applicable to the massive screening
of putative PPl on the entire proteome scale. In this manner,
our protein encoding approach and PPI-Detect are useful tools
for the discovery and extension of the interactomes of multiple
species.
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Section SM1. Annotated configuration file of ProtDCal to compute all pairwise protein
descriptors.

directory: # Mandatory line marking a section
Datasets/Fasta_Protein_Format # Path to directory with the input FASTA file
indices: # Mandatory line marking a section

Gw(U),Gs(U),W(U),Mw,HP,IP,ECI,L1-9,DHf,Z1,22,73,ISA, Xi,Ap,Pa,Pb,Pt, # List of used amino-acid properties
groups: # Mandatory line marking a section

ALA,ARG,ASN,ASP,CYS,GLU,GLN,GLY,HIS,ILE,LEU,LYS,MET,PHE,PRO,SER,THR,TRP,TYR,VAL,RTR,BSR,AHR,ALR,NPR,A
RM,PLR,PCR,NCR,UCR,UFR,PRT, # List of grouping operators

invariants: # Mandatory line marking a section
N1,N2,N3,Ar,P2,P3,M,G,V,CV,Q3,S,RA,MN,K,Q1,MX,DE,Q2,I50,SI,MI|,TI, # List of aggregation operators
parameters(t_cont,s_cont,A%,HydGroup,n,bins,K,SubG): # Mandatory line marking a section
4.0,8.0,5.0,9.4,3.0,50,5,3 # Fixed parameters for internal options of the program
options(decimals,harmonicMeanType,geometricMeanType,windexID,datasetType,outputOrder): # Mandatory line

3,0,0,4,fasta,true # Fixed parameters for internal options of the program

The command line options to calculate pairwise descriptors are described in the README file
distributed with ProtDCal-v4.



Table SM2. Summary of names and structural information associated with the 19 descriptors in
the model

DESCRIPTOR RELATED STRUCTURAL INFORMATION

GS(U)_ES_PRT_TIS0 | Global hydrophobicity

PA_ES_NPR_TI50 Presence of non-polar residues (NPR) weighted with their propensity to form alpha
helices (PA)

ISA_ES_NPR_TI50 Presence of non-polar residues (NPR) weighted with their isotropic surface area (ISA, a
measure of the non-polar area)

ECI_ES_PRT_TIS0 Global polarity

Z3_ES_BSR_TI50 Presence of residues promoting beta sheets (BSR)

GW(U)_ES_PRT_TIS0 | Global hydrophilicity

IP_ES_GLY_TIS0 Presence of glycine residues

MW_ES_ILE_TIS0 Presence of Isoleucine residues

W(U)_ES_ALA_TIS0 | Presence of Alanine residues

PT_ES_ARG_SIS0 Presence of Arginine residues weighted with their propensity to form beta turns (PT)

W(U)_ES_PHE_SIS0 Presence of phenylalanine residues

PA_ES PHE_SI50 Presence of phenylalanine residues weighted by their propensity to form alpha helices

PA

PT_ES_PCR_SI50 g’res)ence of basic residues (ARG, LYS, HIS) weighted with their propensity to form beta
turns (PT)

IP_ES_GLY_SI50 Presence of glycine residues

AP_ES_PCR_TI50 Presence of basic residues (ARG, LYS, HIS) weighted with their polar area (AP)

IP_ES_AHR_TIS0 Presence of residues promoting alpha helices (AHR)

W(U)_ES_CYS_SIS0 Presence of Cysteine residues
MW_ES_ALR_MI50 Presence of aliphatic resides (ALR)

PB_ES_MET_SIS0 Presence of Methionine residues weighted with their propensity to form beta sheet (PB)
Glossary:
Gs(U) An amino acid descriptor obtained as the product of the hydrophobicity and the surface area 2
Pa Propensity index to form alpha helices 3
Pb Propensity index to form beta sheets 2
Pt Propensity index to for beta turns 3
ISA isotropic surface area (non-polar area) 4
ECI Electronic charge index (sum of absolute values of the charges of all the residue atoms) 4
1P Isoelectric point

Mw Molar weight
W(U) Estimated number of water molecules that can coordinate the residue and its adjacent neighbors (a
measure of hydrophilicity)
73 Coefficients of the third principal component extracted from PCA of multiple physical-chemical
properties of amino acids.
TI50 Total information content with 50 bins (aggregation operator)
SI50 Standardized information content with 50 bins (aggregation operator)
ES Electro-topological state index adapted for amino acids (vicinity operator)
*Additional information on values of the amino acid properties and the mathematical formalism of the operator can
be found in the documentation of ProtDCal (http://bioinf.sce.carleton.ca/ProtDCal/) and in the Supplementary
Materials of !

1,4
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Section SM3. Details of the optimization process for parameters of the SVM method.

A grid search was performed along a search space defined by the following range of values for the
parameters of the SVM and its kernel function:

- Cost (C) parameter of the SVM: 275, 2745 24 235 23 2l 215 22 225 23 235 and 2*
- Exponent (Exp) degree of the polynomial function kernel: 1, 2 and 3
- Gamma (G) parameter of the radial basis function kernel: 2715, 2714 2-13 | 21 20 2! 22 and 2°

The gridding approach and the range of values for each parameter were set in accordance to
established guidelines . The evaluation of the intermediate models was carried out by means of
10-fold cross-validation. The performance was monitored by keeping record of the false positive
rate (FPR), precision (Pr), and sensitivity (Sn) for the positive class, i.e. the interacting proteins.
A combined score defined as: Score = Pr + Sn — FPR, was used to extract the optimum model.

After an exploration with both kernel functions, the optimum model was extracted based on the
combined score. This approach led to the identification of a model with C = 11.31371 and the
linear kernel (SMO PolyK C11.31371 Expl) as the optimum classifier for our training data.
Tables 4.1 and 4.2 summarize the values of the performance measures for each of the intermediate
models.

Table S3.1. List of intermediate models and performance measures using the polynomial function
kernel.

MODEL FPR PRECISION SENSITIVITY SCORE
SMO_POLYK_C0.03125_ EXP1 | 0,166 0,722 0,501 1,057
SMO_POLYK_C0.03125 EXP2 | 0,171 0,730 0,540 1,099
SMO_POLYK_(C0.03125 EXP3 | 0,185 0,717 0,544 1,076
SMO_POLYK_(C0.04419 EXP1 | 0,165 0,722 0,500 1,057
SMO_POLYK_C0.04419 EXP2 | 0,177 0,724 0,543 1,090
SMO_POLYK_C0.04419 EXP3 | 0,185 0,714 0,539 1,068
SMO_POLYK_C0.0625 EXP1 | 0,166 0,725 0,509 1,068
SMO_POLYK_C0.0625 EXP2 | 0,187 0,714 0,543 1,070
SMO_POLYK_C0.0625_EXP3 | 0,184 0,715 0,537 1,068
SMO_POLYK_C0.08839 EXP1 | 0,167 0,724 0,512 1,069
SMO_POLYK_C0.08839 EXP2 | 0,189 0,713 0,548 1,072
SMO_POLYK_C0.08839_ EXP3 | 0,183 0,715 0,536 1,068
SMO_POLYK_C0.125_EXP1 0,166 0,728 0,519 1,081
SMO_POLYK_C0.125_EXP2 0,190 0,712 0,545 1,067
SMO_POLYK_C0.125_EXP3 0,180 0,716 0,529 1,065
SMO_POLYK_C0.17678_EXP1 | 0,168 0,729 0,526 1,087
SMO_POLYK_C0.17678 EXP2 | 0,190 0,710 0,543 1,063
SMO_POLYK_C0.17678_EXP3 | 0,183 0,714 0,533 1,064
SMO_POLYK_C0.25_EXP1 0,174 0,724 0,532 1,082
SMO_POLYK_(C0.25_EXP2 0,190 0,711 0,544 1,065
SMO_POLYK_C0.25_EXP3 0,185 0,713 0,534 1,062
SMO_POLYK_C0.35355_EXP1 | 0,176 0,723 0,535 1,082
SMO_POLYK_C0.35355 EXP2 | 0,188 0,714 0,549 1,075
SMO_POLYK_C0.35355_EXP3 | 0,191 0,707 0,537 1,053



SMO_POLYK_C0.5_EXP1 0,175 0,725 0,537 1,087

SMO_POLYK_C0.5_EXP2 0,185 0,717 0,547 1,079
SMO_POLYK_C0.5_EXP3 0,192 0,706 0,538 1,052
SMO_POLYK_C0.70711_EXP1 | 0,171 0,731 0,542 1,102
SMO_POLYK_C0.70711_EXP2 | 0,182 0,721 0,547 1,086
SMO_POLYK_C0.70711_EXP3 | 0,196 0,704 0,543 1,051
SMO_POLYK_C1_EXP1 0,170 0,731 0,540 1,101
SMO_POLYK_C1_EXP2 0,182 0,72 0,543 1,081
SMO_POLYK_C1_EXP3 0,198 0,705 0,550 1,057
SMO_POLYK_C1.41421 EXP1 | 0,174 0,727 0,539 1,092
SMO_POLYK_C1.41421_ EXP2 | 0,182 0,719 0,540 1,077
SMO_POLYK_C1.41421_ EXP3 | 0,201 0,702 0,553 1,054
SMO_POLYK_C2_EXP1 0,173 0,729 0,542 1,098
SMO_POLYK_C2_EXP2 0,178 0,721 0,537 1,080
SMO_POLYK_C2_EXP3 0,209 0,696 0,556 1,043
SMO_POLYK_C2.82843 EXP1 | 0,173 0,729 0,542 1,098
SMO_POLYK_C2.82843 EXP2 | 0,175 0,726 0,539 1,090
SMO_POLYK_C2.82843 EXP3 | 0213 0,694 0,563 1,044
SMO_POLYK_C4_EXP1 0,172 0,730 0,542 1,100
SMO_POLYK_C4_EXP2 0,174 0,727 0,537 1,090
SMO_POLYK_C4_EXP3 0,224 0,687 0,572 1,035
SMO_POLYK_C5.65685 EXP1 | 0,173 0,730 0,542 1,099
SMO_POLYK_C5.65685 EXP2 | 0,171 0,728 0,536 1,093
SMO_POLYK_C5.65685 EXP3 | 0,228 0,683 0,572 1,027
SMO_POLYK_C8 _EXP1 0,172 0,731 0,544 1,103
SMO_POLYK_C8_EXP2 0,171 0,730 0,539 1,098
SMO_POLYK_C11.31371 EXP1 | 0,170 0733 0545 1,108
SMO_POLYK_C11.31371_EXP2 | 0,169 0,732 0,538 1,101
SMO_POLYK_C16_EXP1 0,171 0,732 0,545 1,106
SMO_POLYK_C16_EXP2 0,174 0,727 0,538 1,091

Table S3.2. List of intermediate models and performance measures using the RBF kernel.

MODEL FPR  PRECISION SENSITIVITY SCORE
SMO_RBF_C0.03125_G0.0001220703125 0,243 0,649 0,522 0,928
SMO_RBF_C0.03125_G0.000244140625 0,226 0,662 0,517 0,953
SMO_RBF_C0.03125_G0.00048828125 0,218 0,667 0,509 0,958
SMO_RBF_C0.03125_G0.0009765625 0,214 0,671 0,509 0,966
SMO_RBF_C0.03125_G0.001953125 0,214 0,671 0,509 0,966
SMO_RBF_C0.03125_G0.00390625 0,215 0,67 0,51 0,965
SMO_RBF_C0.03125_G0.0078125 0,217 0,669 0,509 0,961
SMO_RBF_C0.03125_G0.015625 0,218 0,667 0,509 0,958
SMO_RBF_C0.03125_G0.03125 0,22 0,666 0,512 0,958
SMO_RBF_C0.03125_G0.0625 0,224 0,662 0,512 0,95
SMO_RBF_C0.03125_G0.125 0,206 0,675 0,497 0,966
SMO_RBF_C0.03125_G0.25 0,206 0,674 0,496 0,964
SMO_RBF_C0.03125_G0.5 0,204 0,67 0,484 0,95
SMO_RBF_C0.03125_G1 0,188 0,679 0,464 0,955
SMO_RBF_C0.03125_G2 0,171 0,677 0,419 0,925

SMO_RBF_C0.03125_G3.0517578125E-05 | 0,248 0,639 0,51 0,901



SMO_RBF_C0.03125_G4
SMO_RBF_C0.03125_G6.103515625E-05
SMO_RBF_C0.03125_G8
SMO_RBF_C0.04419_G0.0001220703125
SMO_RBF_C0.04419_G0.000244140625
SMO_RBF_C0.04419_G0.00048828125
SMO_RBF_C0.04419_G0.0009765625
SMO_RBF_C0.04419_G0.001953125
SMO_RBF_C0.04419_G0.00390625
SMO_RBF_C0.04419_G0.0078125
SMO_RBF_C0.04419_G0.015625
SMO_RBF_C0.04419_G0.03125
SMO_RBF_C0.04419_G0.0625
SMO_RBF_C0.04419_G0.125
SMO_RBF_C0.04419_G0.25
SMO_RBF_C0.04419_G0.5
SMO_RBF_(0.04419_G1
SMO_RBF_C0.04419_G2
SMO_RBF_C0.04419_G3.0517578125E-05
SMO_RBF_(0.04419_G4
SMO_RBF_C0.04419_G6.103515625E-05
SMO_RBF_C0.04419_G8
SMO_RBF_C0.0625_G0.0001220703125
SMO_RBF_(C0.0625_G0.000244140625
SMO_RBF_C0.0625_G0.00048828125
SMO_RBF_C0.0625_G0.0009765625
SMO_RBF_C0.0625_G0.001953125
SMO_RBF_C0.0625_G0.00390625
SMO_RBF_C0.0625_G0.0078125
SMO_RBF_C0.0625_G0.015625
SMO_RBF_C0.0625_G0.03125
SMO_RBF_(C0.0625_G0.0625
SMO_RBF_C0.0625_G0.125
SMO_RBF_C0.0625_G0.25
SMO_RBF_C0.0625_G0.5
SMO_RBF_C0.0625_G1
SMO_RBF_C0.0625_G2
SMO_RBF_C0.0625_G3.0517578125E-05
SMO_RBF_C0.0625_G4
SMO_RBF_C0.0625_G6.103515625E-05
SMO_RBF_C0.0625_G8
SMO_RBF_C0.08839_G0.0001220703125
SMO_RBF_C0.08839_G0.000244140625
SMO_RBF_C0.08839_G0.00048828125
SMO_RBF_C0.08839_G0.0009765625
SMO_RBF_C0.08839_G0.001953125
SMO_RBF_C0.08839_G0.00390625
SMO_RBF_C0.08839_G0.0078125
SMO_RBF_C0.08839_G0.015625
SMO_RBF_C0.08839_G0.03125

0,161
0,243
0,188
0,237
0,221
0,216
0,214
0,214
0,215
0,217
0,218

0,22
0,207
0,184
0,207
0,198

0,19
0,176
0,248
0,163
0,242
0,186
0,226
0,219
0,214
0,214
0,214
0,216
0,217

0,22
0,219
0,182
0,189

0,19
0,183
0,188
0,177
0,243
0,164
0,243
0,184
0,221
0,214
0,214
0,214
0,214
0,215
0,216
0,219

0,19

0,692
0,644
0,698
0,653
0,666
0,669
0,671
0,671
0,671
0,668
0,667
0,665
0,673
0,694
0,675
0,681
0,678
0,679
0,639
0,697
0,648
0,699
0,662
0,667
0,672
0,671
0,671
0,669
0,669
0,666
0,667
0,692
0,69
0,693
0,698
0,685
0,687
0,644
0,705
0,649
0,7
0,666
0,672
0,67
0,671
0,671
0,671
0,67
0,667
0,686

0,423
0,512
0,506

0,52
0,512

0,51
0,507
0,509
0,509
0,509
0,509
0,511
0,495
0,484
0,502
0,491
0,467
0,435

0,51
0,438
0,519
0,504
0,517

0,51
0,509
0,509
0,508
0,509
0,509
0,512
0,512
0,475

0,49
0,498
0,491
0,475
0,452
0,512
0,457
0,522
0,502
0,512
0,509
0,507
0,509
0,507
0,509
0,511
0,512
0,484

0,954
0,913
1,016
0,936
0,957
0,963
0,964
0,966
0,965

0,96
0,958
0,956
0,961
0,994

0,97
0,974
0,955
0,938
0,901
0,972
0,925
1,017
0,953
0,958
0,967
0,966
0,965
0,962
0,961
0,958

0,96
0,985
0,991
1,001
1,006
0,972
0,962
0,913
0,998
0,928
1,018
0,957
0,967
0,963
0,966
0,964
0,965
0,965

0,96

0,98



SMO_RBF_C0.08839_G0.0625
SMO_RBF_(C0.08839_G0.125
SMO_RBF_C0.08839_G0.25
SMO_RBF_C0.08839_G0.5
SMO_RBF_(C0.08839_G1
SMO_RBF_C0.08839_G2
SMO_RBF_C0.08839_G3.0517578125E-05
SMO_RBF_C0.08839 G4
SMO_RBF_C0.08839_G6.103515625E-05
SMO_RBF_C0.08839_G8
SMO_RBF_C0.125_G0.0001220703125
SMO_RBF_C0.125_G0.000244140625
SMO_RBF_C0.125_G0.00048828125
SMO_RBF_C0.125_G0.0009765625
SMO_RBF_C0.125_G0.001953125
SMO_RBF_C0.125_G0.00390625
SMO_RBF_C0.125_G0.0078125
SMO_RBF_C0.125_G0.015625
SMO_RBF_C0.125_G0.03125
SMO_RBF_C0.125_G0.0625
SMO_RBF_C0.125_G0.125
SMO_RBF_C0.125_G0.25
SMO_RBF_C0.125_G0.5
SMO_RBF_C0.125_G1
SMO_RBF_C0.125 G2
SMO_RBF_C0.125_G3.0517578125E-05
SMO_RBF_C0.125_G4
SMO_RBF_C0.125_G6.103515625E-05
SMO_RBF_C0.125_G8
SMO_RBF_C0.17678_G0.0001220703125
SMO_RBF_C0.17678_G0.000244140625
SMO_RBF_(C0.17678_G0.00048828125
SMO_RBF_C0.17678_G0.0009765625
SMO_RBF_C0.17678_G0.001953125
SMO_RBF_C0.17678_G0.00390625
SMO_RBF_C0.17678_G0.0078125
SMO_RBF_C0.17678_G0.015625
SMO_RBF_C0.17678_G0.03125
SMO_RBF_C0.17678_G0.0625
SMO_RBF_C0.17678_G0.125
SMO_RBF_C0.17678_G0.25
SMO_RBF_C0.17678_G0.5
SMO_RBF_C0.17678_G1
SMO_RBF_C0.17678_G2
SMO_RBF_C0.17678_G3.0517578125E-05
SMO_RBF_C0.17678_G4
SMO_RBF_C0.17678_G6.103515625E-05
SMO_RBF_C0.17678_G8
SMO_RBF_C0.25_G0.0001220703125
SMO_RBF_C0.25_G0.000244140625

0,175
0,188
0,179
0,171
0,182
0,174
0,242
0,167
0,236
0,185
0,218
0,213
0,214
0,215
0,214
0,216
0,217
0,215
0,169
0,181
0,176
0,171

0,17
0,178
0,172
0,243
0,169
0,227

0,19
0,214
0,214
0,214
0,214
0,216
0,215
0,217
0,181
0,169
0,181

0,17
0,167
0,169
0,173
0,177
0,236
0,179
0,222
0,197
0,214
0,215

0,698
0,695
0,703
0,712
0,697
0,7
0,649
0,709
0,654
0,702
0,667
0,673
0,67
0,671
0,671
0,67
0,668
0,67
0,7
0,697
0,709
0,714
0,715
0,702
0,706
0,649
0,709
0,662
0,697
0,671
0,672
0,671
0,671
0,669
0,671
0,669
0,695
0,701
0,704
0,717
0,722
0,718
0,713
0,704
0,654
0,703
0,664
0,692
0,672
0,67

0,47
0,498
0,494
0,494
0,488
0,471

0,52
0,473

0,52
0,507
0,509

0,51
0,507

0,51
0,509
0,511
0,509

0,51
0,461
0,486
0,499
0,498
0,498

0,49
0,481
0,522
0,481
0,517
0,507
0,509
0,511
0,509
0,508
0,509
0,511
0,511

0,48
0,462
0,499
0,502
0,503
0,502
0,499
0,491

0,52
0,494
0,512
0,516
0,509
0,508

0,993
1,005
1,018
1,035
1,003
0,997
0,927
1,015
0,938
1,024
0,958

0,97
0,963
0,966
0,966
0,965

0,96
0,965
0,992
1,002
1,032
1,041
1,043
1,014
1,015
0,928
1,021
0,952
1,014
0,966
0,969
0,966
0,965
0,962
0,967
0,963
0,994
0,994
1,022
1,049
1,058
1,051
1,039
1,018
0,938
1,018
0,954
1,011
0,967
0,963



SMO_RBF_C0.25_G0.00048828125
SMO_RBF_C0.25_G0.0009765625
SMO_RBF_C0.25_G0.001953125
SMO_RBF_C0.25_G0.00390625
SMO_RBF_C0.25_G0.0078125
SMO_RBF_C0.25_G0.015625
SMO_RBF_C0.25_G0.03125
SMO_RBF_C0.25_G0.0625
SMO_RBF_C0.25_G0.125
SMO_RBF_C0.25_G0.25
SMO_RBF_C0.25_G0.5
SMO_RBF_C0.25_G1
SMO_RBF_C0.25_G2
SMO_RBF_C0.25_G3.0517578125E-05
SMO_RBF_C0.25_G4
SMO_RBF_C0.25_G6.103515625E-05
SMO_RBF_C0.25_G8
SMO_RBF_C0.35355_G0.0001220703125
SMO_RBF_C0.35355_G0.000244140625
SMO_RBF_(0.35355_G0.00048828125
SMO_RBF_(C0.35355_G0.0009765625
SMO_RBF_C0.35355_G0.001953125
SMO_RBF_(C0.35355_G0.00390625
SMO_RBF_(C0.35355_G0.0078125
SMO_RBF_(C0.35355_G0.015625
SMO_RBF_C0.35355_G0.03125
SMO_RBF_C0.35355_G0.0625
SMO_RBF_(C0.35355_G0.125
SMO_RBF_(C0.35355_G0.25
SMO_RBF_(C0.35355_G0.5
SMO_RBF_(C0.35355_G1
SMO_RBF_(C0.35355_G2
SMO_RBF_C0.35355_G3.0517578125E-05
SMO_RBF_(0.35355_G4
SMO_RBF_C0.35355_G6.103515625E-05
SMO_RBF_(0.35355_G8
SMO_RBF_C0.5_G0.0001220703125
SMO_RBF_C0.5_G0.000244140625
SMO_RBF_C0.5_G0.00048828125
SMO_RBF_C0.5_G0.0009765625
SMO_RBF_C0.5_G0.001953125
SMO_RBF_C0.5_G0.00390625
SMO_RBF_C0.5_G0.0078125
SMO_RBF_C0.5_G0.015625
SMO_RBF_C0.5_G0.03125
SMO_RBF_C0.5_G0.0625
SMO_RBF_C0.5_G0.125
SMO_RBF_C0.5_G0.25
SMO_RBF_C0.5_G0.5
SMO_RBF_C0.5_G1

0,214
0,215
0,214
0,215
0,213
0,166
0,175
0,173
0,166
0,163
0,161
0,168
0,178
0,226
0,187
0,218
0,208
0,214
0,215
0,214
0,215
0,218
0,217
0,179
0,167
0,177
0,168
0,163
0,158
0,159
0,167
0,183
0,222
0,202
0,215
0,211
0,214
0,214
0,215
0,215
0,214
0,211
0,164
0,175

0,17
0,167
0,158

0,16
0,165
0,168

0,671
0,669

0,67

0,67
0,672
0,702
0,703
0,712
0,723
0,728
0,728
0,721
0,707
0,663
0,699
0,667
0,687

0,67

0,67
0,671

0,67
0,667
0,669
0,694
0,704
0,709

0,72
0,729
0,735
0,734
0,723
0,705
0,665
0,691

0,67
0,688

0,67
0,671
0,671

0,67
0,671
0,672
0,703
0,705
0,718
0,726
0,737
0,733

0,73
0,724

0,509
0,507
0,507
0,509
0,507
0,456
0,483
0,499
0,506
0,509
0,502
0,504
0,5
0,517
0,505
0,51
0,53
0,507
0,509
0,509
0,51
0,508
0,511
0,475
0,461
0,502
0,504
0,512
0,511
0,509
0,508
0,507
0,512
0,525
0,509
0,543
0,507
0,508
0,509
0,509
0,509
0,504
0,452
0,485
0,504
0,514
0,514
0,514
0,517
0,516

0,966
0,961
0,963
0,964
0,966
0,992
1,011
1,038
1,063
1,074
1,069
1,057
1,029
0,954
1,017
0,959
1,009
0,963
0,964
0,966
0,965
0,957
0,963

0,99
0,998
1,034
1,056
1,078
1,088
1,084
1,064
1,029
0,955
1,014
0,964

1,02
0,963
0,965
0,965
0,964
0,966
0,965
0,991
1,015
1,052
1,073
1,093
1,087
1,082
1,072



SMO_RBF_C0.5_G2
SMO_RBF_C0.5_G3.0517578125E-05
SMO_RBF_C0.5_G4
SMO_RBF_C0.5_G6.103515625E-05
SMO_RBF_C0.5_G8
SMO_RBF_C0.70711_G0.0001220703125
SMO_RBF_C0.70711_G0.000244140625
SMO_RBF_C0.70711_G0.00048828125
SMO_RBF_C0.70711_G0.0009765625
SMO_RBF_C0.70711_G0.001953125
SMO_RBF_C0.70711_G0.00390625
SMO_RBF_C0.70711_G0.0078125
SMO_RBF_C0.70711_G0.015625
SMO_RBF_C0.70711_G0.03125
SMO_RBF_C0.70711_G0.0625
SMO_RBF_C0.70711_G0.125
SMO_RBF_C0.70711_G0.25
SMO_RBF_C0.70711_G0.5
SMO_RBF_C0.70711_G1
SMO_RBF_C0.70711_G2
SMO_RBF_C0.70711_G3.0517578125E-05
SMO_RBF_C0.70711_G4
SMO_RBF_C0.70711_G6.103515625E-05
SMO_RBF_C0.70711_G8
SMO_RBF_C1_G0.0001220703125
SMO_RBF_C1_G0.000244140625
SMO_RBF_C1_G0.00048828125
SMO_RBF_C1_G0.0009765625
SMO_RBF_C1_G0.001953125
SMO_RBF_C1_G0.00390625
SMO_RBF_C1_G0.0078125
SMO_RBF_C1_G0.015625
SMO_RBF_C1_G0.03125
SMO_RBF_C1_G0.0625
SMO_RBF_C1_G0.125
SMO_RBF_C1_G0.25
SMO_RBF_C1_G0.5

SMO_RBF_C1_Gl1

SMO_RBF_C1_G2
SMO_RBF_C1_G3.0517578125E-05
SMO_RBF_C1_G4
SMO_RBF_C1_G6.103515625E-05
SMO_RBF_C1_G8
SMO_RBF_C1.41421_G0.0001220703125
SMO_RBF_C1.41421_G0.000244140625
SMO_RBF_C1.41421_G0.00048828125
SMO_RBF_C1.41421_G0.0009765625
SMO_RBF_C1.41421_G0.001953125
SMO_RBF_C1.41421_G0.00390625
SMO_RBF_C1.41421_G0.0078125

0,183
0,219
0,203
0,214
0,218
0,215
0,214
0,215
0,216
0,215
0,178
0,164
0,171
0,172
0,163
0,159
0,158
0,166
0,174
0,191
0,215
0,207
0,214
0,234
0,215
0,215
0,215
0,214
0,212

0,16
0,173

0,17
0,169
0,164
0,157
0,159
0,168
0,182
0,194
0,214
0,214
0,214
0,249
0,215
0,215
0,217
0,217
0,178
0,163

0,17

0,707
0,666
0,693
0,671
0,686
0,671

0,67
0,671
0,669
0,671
0,696
0,706
0,715
0,715
0,731
0,737
0,739
0,728

0,72
0,703

0,67
0,691
0,671
0,672
0,671

0,67

0,67
0,672
0,671
0,707
0,706
0,717
0,722
0,731

0,74
0,738
0,728
0,713
0,702
0,671
0,686

0,67
0,659

0,67
0,671
0,668

0,67
0,696
0,708
0,716

0,514
0,509
0,535
0,509
0,555
0,509
0,507

0,51
0,509
0,511
0,475

0,46
0,501
0,503
0,516
0,517
0,519
0,519

0,52
0,528
0,509

0,54
0,507
0,558

0,51
0,509
0,509
0,509
0,504
0,451
0,485
0,503
0,512
0,519
0,519
0,522
0,525
0,525
0,533
0,509
0,545
0,507
0,561
0,508
0,511
0,509
0,512
0,473

0,46
0,501

1,038
0,956
1,025
0,966
1,023
0,965
0,963
0,966
0,962
0,967
0,993
1,002
1,045
1,046
1,084
1,095
1,1
1,081
1,066
1,04
0,964
1,024
0,964
0,996
0,966
0,964
0,964
0,967
0,963
0,998
1,018
1,05
1,065
1,086
1,102
1,101
1,085
1,056
1,041
0,966
1,017
0,963
0,971
0,963
0,967
0,96
0,965
0,991
1,005
1,047



SMO_RBF_C1.41421_G0.015625
SMO_RBF_C1.41421_G0.03125
SMO_RBF_C1.41421_G0.0625
SMO_RBF_C1.41421_G0.125
SMO_RBF_C1.41421_G0.25
SMO_RBF_C1.41421_G0.5
SMO_RBF_C1.41421_G1
SMO_RBF_C1.41421_G2
SMO_RBF_C1.41421_G3.0517578125E-05
SMO_RBF_C1.41421_G4
SMO_RBF_C1.41421_G6.103515625E-05
SMO_RBF_C1.41421_G8
SMO_RBF_C2_G0.0001220703125
SMO_RBF_C2_G0.000244140625
SMO_RBF_C2_G0.00048828125
SMO_RBF_C2_G0.0009765625
SMO_RBF_C2_G0.001953125
SMO_RBF_C2_G0.00390625
SMO_RBF_C2_G0.0078125
SMO_RBF_C2_G0.015625
SMO_RBF_C2_G0.03125
SMO_RBF_C2_G0.0625
SMO_RBF_C2_G0.125
SMO_RBF_C2_G0.25
SMO_RBF_C2_G0.5

SMO_RBF_C2_Gl1

SMO_RBF_C2_G2
SMO_RBF_C2_G3.0517578125E-05
SMO_RBF_C2_G4
SMO_RBF_C2_G6.103515625E-05
SMO_RBF_C2_G$
SMO_RBF_(C2.82843_G0.0001220703125
SMO_RBF_(2.82843_G0.000244140625
SMO_RBF_(2.82843_G0.00048828125
SMO_RBF_C2.82843_G0.0009765625
SMO_RBF_(C2.82843_G0.001953125
SMO_RBF_(C2.82843_G0.00390625
SMO_RBF_(C2.82843_G0.0078125
SMO_RBF_(2.82843_G0.015625
SMO_RBF_C2.82843_G0.03125
SMO_RBF_(C2.82843_G0.0625
SMO_RBF_C2.82843_G0.125
SMO_RBF_(2.82843_G0.25
SMO_RBF_C2.82843_G0.5
SMO_RBF_(C2.82843 G1
SMO_RBF_(2.82843 G2
SMO_RBF_(C2.82843_G3.0517578125E-05
SMO_RBF_(2.82843_G4
SMO_RBF_(2.82843_G6.103515625E-05
SMO_RBF_(2.82843_G8

0,168
0,169
0,163
0,158
0,165
0,177
0,187
0,198
0,214
0,225
0,215
0,261
0,215
0,215
0,215
0,211

0,16
0,173
0,168
0,167
0,167
0,162
0,164
0,175
0,183
0,194

0,21
0,214
0,238
0,214
0,274
0,215
0,216
0,216
0,178
0,163

0,17
0,168
0,168
0,168
0,159
0,167
0,179
0,184
0,196
0,218
0,215
0,248
0,214
0,281

0,719
0,724
0,733

0,74
0,735
0,721
0,711
0,699
0,671
0,677

0,67
0,652

0,67

0,67
0,669
0,672
0,707
0,707

0,72
0,723
0,728
0,734
0,734
0,723
0,715
0,704
0,691

0,67
0,666
0,671
0,645

0,67

0,67
0,669
0,695
0,708
0,717
0,719
0,726
0,728
0,739
0,732
0,719
0,714
0,701
0,685

0,67
0,659
0,671
0,641

0,5
0,517
0,522
0,523
0,532
0,533
0,535
0,537
0,507
0,551
0,508
0,571
0,509
0,509
0,507
0,503
0,451
0,485
0,502
0,507
0,521

0,52
0,526
0,532
0,535
0,537
0,546
0,507
0,554
0,509
0,581
0,509

0,51
0,509
0,471
0,461
0,502
0,502
0,517
0,524
0,524

0,53
0,534
0,533
0,538
0,553
0,509
0,559
0,508
0,586

1,051
1,072
1,092
1,105
1,102
1,077
1,059
1,038
0,964
1,003
0,963
0,962
0,964
0,964
0,961
0,964
0,998
1,019
1,054
1,063
1,082
1,092
1,096

1,08
1,067
1,047
1,027
0,963
0,982
0,966
0,952
0,964
0,964
0,962
0,988
1,006
1,049
1,053
1,075
1,084
1,104
1,095
1,074
1,063
1,043

1,02
0,964

0,97
0,965
0,946
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SMO_RBF_C4_G0.0001220703125
SMO_RBF_C4_G0.000244140625
SMO_RBF_C4_G0.00048828125
SMO_RBF_C4_G0.0009765625
SMO_RBF_C4_G0.001953125
SMO_RBF_C4_G0.00390625
SMO_RBF_C4_G0.0078125
SMO_RBF_C4_G0.015625
SMO_RBF_C4_G0.03125
SMO_RBF_C4_G0.0625
SMO_RBF_C4_G0.125
SMO_RBF_C4_G0.25
SMO_RBF_C4_G0.5
SMO_RBF_C4_G1

SMO_RBF_C4_G2
SMO_RBF_C4_G3.0517578125E-05
SMO_RBF_C4_G4
SMO_RBF_C4_G6.103515625E-05
SMO_RBF_C4_G$
SMO_RBF_C5.65685_G0.0001220703125
SMO_RBF_C5.65685_G0.000244140625
SMO_RBF_C5.65685_G0.00048828125
SMO_RBF_(C5.65685_G0.0009765625
SMO_RBF_(C5.65685_G0.001953125
SMO_RBF_C5.65685_G0.00390625
SMO_RBF_C5.65685_G0.0078125
SMO_RBF_C5.65685_G0.015625
SMO_RBF_C5.65685_G0.03125
SMO_RBF_C5.65685_G0.0625
SMO_RBF_C5.65685_G0.125
SMO_RBF_(C5.65685_G0.25
SMO_RBF_C5.65685_G0.5
SMO_RBF_C5.65685_G1
SMO_RBF_(C5.65685_G2
SMO_RBF_C5.65685_G3.0517578125E-05
SMO_RBF_C5.65685_G4
SMO_RBF_C5.65685_G6.103515625E-05
SMO_RBF_C5.65685_G8
SMO_RBF_C8_G0.0001220703125
SMO_RBF_C8_G0.000244140625
SMO_RBF_C8_G0.00048828125
SMO_RBF_C8_G0.0009765625
SMO_RBF_C8_G0.001953125
SMO_RBF_C8_G0.00390625
SMO_RBF_C8_G0.0078125
SMO_RBF_C8_G0.015625
SMO_RBF_C8_G0.03125
SMO_RBF_C8_G0.0625
SMO_RBF_C8_G0.125
SMO_RBF_C8_G90.25

0,216
0,214
0,211

0,16
0,173
0,168
0,167
0,171
0,163
0,163
0,171
0,178
0,184
0,196
0,223
0,214
0,257
0,215
0,296
0,216
0,214
0,178
0,163
0,169
0,166
0,167
0,168
0,165
0,169
0,174
0,179
0,187
0,204
0,237
0,215

0,27
0,215
0,312
0,214
0,211

0,16
0,172
0,167
0,166
0,172
0,169
0,164
0,173

0,18
0,177

0,669
0,671
0,672
0,708
0,706
0,719
0,724
0,724
0,735
0,737
0,729
0,721
0,713
0,703

0,68
0,671
0,655

0,67
0,633
0,669
0,671
0,695
0,707
0,719
0,721
0,726
0,729
0,733

0,73
0,727
0,717
0,709
0,696
0,668

0,67
0,647
0,671
0,625
0,671
0,672
0,708
0,707
0,721
0,726
0,723

0,73
0,736
0,726

0,72
0,721

0,507
0,509
0,502
0,451
0,483
0,502
0,509
0,524
0,525
0,531
0,535
0,537

0,53
0,539
0,551
0,508
0,568
0,509
0,596
0,509
0,509
0,471

0,46
0,502
0,501
0,515
0,528
0,528
0,533

0,54
0,529
0,532
0,543
0,556
0,507
0,578
0,509
0,606
0,509
0,503
0,451
0,483
0,502
0,511
0,524

0,53
0,533
0,533
0,538
0,533

0,96
0,966
0,963
0,999
1,016
1,053
1,066
1,077
1,097
1,105
1,093

1,08
1,059
1,046
1,008
0,965
0,966
0,964
0,933
0,962
0,966
0,988
1,004
1,052
1,056
1,074
1,089
1,096
1,094
1,093
1,067
1,054
1,035
0,987
0,962
0,955
0,965
0,919
0,966
0,964
0,999
1,018
1,056
1,071
1,075
1,091
1,105
1,086
1,078
1,077
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SMO_RBF_C8_G0.5
SMO_RBF_C8_G1

SMO_RBF_C8_G2
SMO_RBF_C8_G3.0517578125E-05
SMO_RBF_C8_G4
SMO_RBF_C8_G6.103515625E-05
SMO_RBF_C8_G8
SMO_RBF_C11.31371_G0.0001220703125
SMO_RBF_C11.31371_G0.000244140625
SMO_RBF_C11.31371_G0.00048828125
SMO_RBF_C11.31371_G0.0009765625
SMO_RBF_C11.31371_G0.001953125
SMO_RBF_C11.31371_G0.00390625
SMO_RBF_C11.31371_G0.0078125
SMO_RBF_C11.31371_G0.015625
SMO_RBF_C11.31371_G0.03125
SMO_RBF_C11.31371_G0.0625
SMO_RBF_C11.31371_G0.125
SMO_RBF_C11.31371_G0.25
SMO_RBF_C11.31371_G0.5
SMO_RBF_C11.31371_G1
SMO_RBF_C11.31371_G2
SMO_RBF_C11.31371_G3.0517578125E-05
SMO_RBF_C11.31371_G4
SMO_RBF_C11.31371_G6.103515625E-05
SMO_RBF_C11.31371_G8
SMO_RBF_C16_G0.0001220703125
SMO_RBF_C16_G0.000244140625
SMO_RBF_C16_G0.00048828125
SMO_RBF_C16_G0.0009765625
SMO_RBF_C16_G0.001953125
SMO_RBF_C16_G0.00390625
SMO_RBF_C16_G0.0078125
SMO_RBF_C16_G0.015625
SMO_RBF_C16_G0.03125
SMO_RBF_C16_G0.0625
SMO_RBF_C16_G0.125
SMO_RBF_C16_G0.25
SMO_RBF_C16_G0.5
SMO_RBF_C16_G1

SMO_RBF_C16_G2
SMO_RBF_C16_G3.0517578125E-05
SMO_RBF_C16_G4
SMO_RBF_C16_G6.103515625E-05
SMO_RBF_C16_G8

0,185
0,209
0,242
0,215
0,284
0,217
0,318
0,215
0,177
0,162
0,169
0,165
0,165
0,173
0,168
0,167
0,177
0,179
0,177
0,187
0,223
0,253
0,215
0,293
0,216
0,328
0,211

0,16
0,173
0,166
0,168
0,167
0,171
0,167

0,17
0,176
0,176
0,169
0,195
0,231
0,267
0,216
0,305
0,216
0,333

0,711
0,692
0,667

0,67
0,637
0,667
0,622

0,67
0,695
0,709
0,719
0,723
0,727
0,725
0,731
0,733
0,722
0,719

0,72
0,711

0,68
0,659

0,67
0,633
0,669
0,616
0,672
0,708
0,706
0,721
0,723
0,729
0,727
0,735

0,73
0,724
0,723

0,73
0,704
0,676
0,651
0,669
0,625
0,669
0,613

0,53
0,549
0,564
0,509
0,581
0,507
0,609
0,508
0,471

0,46
0,502

0,5
0,512

0,53
0,532
0,535
0,536
0,536
0,529
0,538
0,553
0,571
0,509
0,589
0,508
0,614
0,502
0,452
0,483
0,501

0,51
0,521
0,532
0,537
0,536
0,538
0,537
0,532
0,542

0,56

0,58
0,508
0,591
0,509
0,614

1,056
1,032
0,989
0,964
0,934
0,957
0,913
0,963
0,989
1,007
1,052
1,058
1,074
1,082
1,095
1,101
1,081
1,076
1,072
1,062

1,01
0,977
0,964
0,929
0,961
0,902
0,963

1,016
1,056
1,065
1,083
1,088
1,105
1,096
1,086
1,084
1,093
1,051
1,005
0,964
0,961
0,911
0,962
0,894
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Table SM4. Summary of performance measures of the model in the training and test sets, as well
as in the 10-fold cross validation.

FPR PRECISION SENSITIVITY GLOBAL ACCURACY

TRAINING | 0.165 0741 0.548 0.703
10-FOLD 1, |54 0.733 0.544 0. 698
cv

TEST

ey 0268 0617 0.793 0. 754
TEST

MID- 0283 0528 0.637 0. 691
HARD

TEST

VERY- 0543 0.603 0.667 0.573
HARD

*Performance measures are calculated for the positive class (interacting proteins). FPR: false positive rate, FPR =1 —
specificity.
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Section SMS5. PPI-Detect: a simple and user-friendly tool

PPI-Detect is implemented in Java (JDK version 1.7). The compiled version is available upon

request. We also provide a user-friendly web application which requires the following input files:

File 1: A file with extension ".ppi" containing pairs of sequence labels separated by a semicolon
(;). Given four sequences labeled A, B, C, D and grouped in two pairs, this file should contain the
following information:

A;B

C.D

File 2: A FASTA file containing the sequences for proteins labeled A, B, C and D:
>A

SEQUENCE OF A...

>B

SEQUENCE OF B...

>C
SEQUENCE OF C...

>D
SEQUENCE OF D...

The outcome is provided in a text file with the instances listed in the same order as the list of pairs
in the file *.ppi. The program can be executed from a command line interface, which facilitates
the incorporation of the method within other codes implementing additional filters for the

prediction of PPL

14



Table SM6. Summary of values’ range for all descriptors used to train the model.

DESCRIPTOR

GS(U)_ES_PRT_TI50
PA_ES NPR_TI50
ISA_ES_NPR_TI50
ECI_ES_PRT_TI50
Z3_ES_BSR_TI50 *
GW(U)_ES_PRT_TI50
IP_ES_GLY_TI50 *
MW_ES_ILE_TI50 *
W(U)_ES_ALA_TI50 *
PT_ES_ARG_SI50 *
W(U)_ES_PHE_SI50 *
PA_ES PHE SIS0 *
PT_ES_PCR_SI50 *
IP_ES_GLY_SI50 *
AP_ES_PCR_TI50 *
IP_ES_AHR_TI50
W(U)_ES_CYS_SI50 *
MW _ES_ALR_MI50
PB_ES_MET _SI50 *

*The descriptor can contain missing values which are labeled as -9999 in the outcome file of ProtDCal. Missing
values indicate that certain descriptor can not be evaluated, for instance the descriptor Pa_ ES PHE SI50 requires

MINIMUM

-62.966
-58.474 .00
-53.282 .00
-55.647 .25

-38.07

-59.358

-9.659 .00

-5.51.00

-9.059 .00
-3.58
-3 .58
-3.58
-3
-3
-30.187
-83.319
-3
-10.476
-3

MAXIMUM

218.652
145.976
137.308
228.649
104.01
353.195
57.245
64.585
73.101
-0.931
-0.931
-0.931
-1.47
-1.333
98.169
135.287
-1.242
-2.95
-0.898

that both sequences in the pair contain phenylalanine (Phe) residues.

STH

PERCENTILE
13.01

8.47 .47
14.49 28
8.8
12.25
7.24
4.00
4.00
6.49
-2.37
-2.48
-2.46
-2.22
-2.37
8.98
4.05
-2.52
-9.20
-2.52

95TH

PERCENTILE

109.69
85.84
88.39
109.52
70.59
117.84
34.49
34.45
36.46
-1.75
-1.74
-1.83
-1.76
-1.76
55.97
72.52
-1.80
-5.62
-1.50
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Table SM7. Summary of EPI-X4 derivatives, their activities from the study of Zirafi ef al. and
predicted scores using PPI-Detect (score values higher than the one for EPI-X4 indicate higher
activity and vice versa)

Derivative Activity* Class F1 F1 Class F2 F2 Class F3 F3 Class F4 F4 Class
ID Score ID Score ID Score ID Score ID
‘1;:21>31-X4-4os- ; 0.273 : 0.36 ; 0.309 : 0.354 :
415-423 low 0 0.380 1 0.435 1 0.452 1 0.420 1
414-423 low 0 0.343 1 0.372 1 0.417 1 0.405 1
413-423 low 0 0.244 0 0.272 0 0.323 1 0.287 0
412-423 low 0 0.245 0 0.234 0 0.299 0 0.280 0
411-423 low 0 0.253 0 0.260 0 0.269 0 0.256 0
410-423 low 0 0.251 0 0.288 0 0.276 0 0.259 0
409-423 low 0 0.259 0 0.34 0 0.293 0 0.290 0
408-422 low 0 0.271 0 0.306 0 0.311 1 0.343 0
408-421 low 0 0.285 1 0.331 0 0.341 1 0.354 0
408-420 low 0 0.276 1 0.319 0 0.323 1 0.315 0
408-419 high 1 0.256 0 0.339 0 0.317 1 0.292 0
408-418 low 0 0.288 1 0.372 1 0316 1 0.364 1
408-417 low 0 0.296 1 0.327 0 0.258 0 0.331 0
408-415 low 0 0.236 0 0.273 0 0.305 0 0.307 0
408-414 low 0 0.223 0 0.246 0 0.237 0 0.258 0
408-413 low 0 0.218 0 0.29 0 0.279 0 0.285 0
4081-419 high 1 0.275 1 0.376 1 0.352 1 0.312 0
408F-419 low 0 0316 1 0.285 0 0.264 0 0.263 0
408A-419 low 0 0.223 0 0.297 0 0.228 0 0.209 0
408G-419 low 0 0.304 1 0.360 0 0315 1 0.330 0
j‘l’gk . low 0 0.361 1 0.359 0 0.381 1 0.359 1
PSS 10K [ 0 0.344 1 0.344 0 0.317 1 0.321 0
j‘l’gg F high 1 0.288 1 0.31 0 0.324 1 0311 0
:23{; 1S low 0 0.283 1 0.356 0 0.333 1 0.335 0
:‘3{; . high 1 0.299 1 0.384 1 0.373 1 0.351 0
j‘l’ng' 112s high 1 0.296 1 0.367 1 0.348 1 0.335 0
:‘l’g; 4c high 1 0.296 1 0.347 0 0.348 1 0.386 1

*The notation used in the first column is the same used by *. Numerical values of activity (IC50 values) are
found in the Supplementary materials of ®.
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Table SM7 (Cont.). Summary of EPI-X4 derivatives, their activities from the study of Zirafi et

al. and predicted scores using PPI-Detect (score values higher than the one of EPI-X4 indicate

higher activity and vice versa).

Derivative

408I-
419V418C
4081-418SC

408I-
419WC01
408I-
419WC02
408I-
419WC03
408I-
419WSCO01
408I-
419WSC02
408I-
419WSCO03

Activity

%
high
high
high
high
high
high
high

high

Class
1D

1
1
1

1

1

FI1
Score

0.271
0.300
0.305

0.299

0.296

0.295

0.310

0.282

F1 Class
D

0
1
1

1

1

F2
Score

0.349
0.389
0.412

0.342

0.361

0.357

0.378

0.342

F2 Class
D

0
1
1

1

0

F3
Score

0.273
0.330
0.386

0.326

0.364

0.298

0.350

0.274

F3 Class
ID

0
1
1

1

0

F4
Score

0.317
0.315
0.330

0.32

0.308

0.334

0.308

0.347

F4 Class

ID
0

0
0

0

0

*The notation used in the first column is the same used by 8. Numerical values of activity (IC50 values) are
found in the Supplementary materials of 5.

To compute the performance measures presented in Table 2 of the main manuscript, the elements

of the confusion matrix are defined according to Table S7.1.

Table S7.1. Definition of elements in the confusion matrix.

Element Definition
TP EPI-X4 derivatives with higher scores than the wild type EPI-X4, which also have
higher affinity for CXCR4
TN EPI-X4 derivatives with lower scores than the wild type EPI-X4, which also have
lower affinity for CXCR4
FP EPI-X4 derivatives with higher scores than the wild type EPI-X4, which have lower
affinity for CXCR4
FN EPI-X4 derivatives with lower scores than the wild type EPI-X4, which have higher
affinity for CXCR4
Precision = TP / (TP + FP); Sensitivity = TP / (TP + FN); Specificity = TN / (TN + FP); Accuracy = (TP + TN) / (TP
+FP +FN + TN).
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PPI-Affinity: A Web Tool for the Prediction and Optimization of
Protein—Peptide and Protein—Protein Binding Affinity
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ABSTRACT: Virtual screening of protein—protein and protein—peptide
interactions is a challenging task that directly impacts the processes of hit
identification and hit-to-lead optimization in drug design projects involving
peptide-based pharmaceuticals. Although several screening tools designed to
predict the binding affinity of protein—protein complexes have been proposed,
methods specifically developed to predict protein—peptide binding affinity are
comparatively scarce. Frequently, predictors trained to score the affinity of small
molecules are used for peptides indistinctively, despite the larger complexity and
heterogeneity of interactions rendered by peptide binders. To address this issue,
we introduce PPI-Affinity, a tool that leverages support vector machine (SVM)
predictors of binding affinity to screen datasets of protein—protein and protein—
peptide complexes, as well as to generate and rank mutants of a given structure.
The performance of the SVM models was assessed on four benchmark datasets,
which include protein—protein and protein—peptide binding affinity data. In addition, we evaluated our model on a set of mutants of
EPI-X4, an endogenous peptide inhibitor of the chemokine receptor CXCR4, and on complexes of the serine proteases HTRAI and
HTRA3 with peptides. PPI-Affinity is freely accessible at https://protdcal.zmb.uni-due.de/PPIAflinity.

KEYWORDS: machine learning, mutation, dissociation constant, peptide design, protein—protein interaction, binding free energy

B INTRODUCTION Examples of such scoring methods are RF-Score”® and
Kdeep,” which used a random forest algorithm® and a
convolutional neural network,’*” respectively, to train their
models. Supporting Information Table SI-1 summarizes the
above-mentioned BA predictors, as well as other state-of-the-
art methods that contribute to the broad field of PPI prediction
tools.

Noteworthy, to the best of our knowledge, there is no
publicly available web tool specifically designed to predict and
optimize the BA of diverse protein—peptide complexes, by
considering as a peptide an amino acid sequence with less than
30 residues. Several works have approached this aim
specifically for the identification of binders of the major
histocompatibility complexes MHC-I, IL.>>** However, given
that their training is restricted to MHC data, these models are
not applicable to predict the binding free energy of other
protein—peptide complexes. Besides, the available tools
typically do not leverage the possibility of optimizing the

Protein—protein interactions (PPIs) are fundamental to most
biological processes." Prominent disorders, such as cancer and
degenerative diseases, are related to aberrant PPIs.” In therapy,
optimized PPIs are also critical for the strong binding of
antibodies to their protein antigens.” Therefore, the character-
ization of PPIs in terms of their binding affinity (BA) is highly
relevant to the design of new biologics and therapeutic
compounds.” Notably, peptides are a promising class of
bioactive compounds, which often have higher specificity and
reduced side effects compared to small-molecule pharmaceut-
icals.” Currently, there are more than 60 approved peptide
drugs, and hundreds of peptidic compounds undergo clinical
or preclinical trials.” However, the design of peptide drugs
remains a challenging task due to their flexible structures and
diversity of binding sites.”

Virtual screening approaches, based on BA predictions,
reduce the time of the drug development pipelines.” Thus, over
the past decades, several screening tools based on the BA of
protein—protein complexes have been introduced.* " Rele- Received:  January 11, 2022
vant examples of these methods are DFIRE,” CP_PIE,'® Published: June 2, 2022
ISLAND,** and the web server PRODIGY,*"*’ (which tailored
and improved the original model introduced by Kastritis et
al.).”® Protein—peptide complexes are usually scored with
functions derived from binding affinity data of small molecules.

© 2022 The Authors. Published b
American Chemical Societ; https://doi.org/10.1021/acs.jproteome.2c00020

W ACS Publications 1829 J. Proteome Res. 2022, 21, 1829—1841
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primary structure of the peptide to improve the affinity of the
complex.

We evaluated the performance of the above-mentioned
screening tools for estimating the BA of protein—peptide
complexes by testing 100 randomly selected protein—peptide
complexes from the Biolip®® database. This test set contained
complexes with peptides ranging from 4 to 29 amino acids,
coupled to receptors with sizes between 51 and 496 amino
acids. The binding free energy of the complexes covered the
range between —12.6 and —4.6 kcal/mol. The highest
correlation was delivered by Kdeep (R = 0.32), while the
correlation with all of the other methods was in the range R =
[0.13, 0.24] (Supporting Information Table SI-2). This
comparison evidences the rather low dependability of state-
of-the-art screening tools for the prediction of the BA of
protein—peptide complexes.

Given the remarkable scaffold that peptides represent for
drug development, we addressed this issue by developing
machine-learning-based predictors of BA that are specific for
protein—peptide complexes. In addition, we present a
predictor of protein—protein BA that rivals the performance
of the state-of-the-art screening tools built for such systems.
Both predictors are integrated into a novel tool named PPI-
Affinity, which is a web server designed to score protein—
protein and protein—peptide complexes based on their
predicted BA, as well as to optimize the affinity of a complex
by mutating and screening selected residues. With such
functionalities, PPI-Affinity can be employed at early steps of
drug design processes, which are focused on the screening and
optimization of protein/peptide binders for a given protein
target.

B MATERIALS AND METHODS

In this section, we describe the dataset and the modeling
procedure used to develop both predictors. In both scenarios,
protein—protein and protein—peptide systems, the perform-
ance of the models is evaluated with cross-validation and hold-
out test sets.

Data Collection: Protein—Protein Complexes

We initially retrieved 2 852 protein—protein comg)lexes with
known BA data deposited in the PDBbind (v.2020)° database.
Subsequently, we curated these data by extracting only dimeric
complexes and removed those in common with the benchmark
used by Vangone and Bonvin®' to assess their model. We
excluded those cases in which the binding affinity values were
reported with measures other than Ky, K, or AGy,4. Likewise,
those instances with imprecise BA values (i.e., reporting ranges
of Ky values instead of precise values) were removed. Cases
with binding free energy values outside the range [—18.1,
—3.1] kcal/mol were also excluded, as these instances are
sparingly represented and the difference between their BA
value and the rest of the distribution was AG > 0.5. The
application of such filters rendered a dataset of 833 protein—
protein complexes (Supporting Information Figure SI-1
depicts the distribution of binding free energy values for this
dataset). All of the structures were preprocessed by adding
hydrogens and other missing atoms with MODELLER
v9.23°"~*" and PDB2PQR.*'

Features Generation
We employed the 3D-structure descriptors implemented in the

protein codification package ProtDCal.** This program is
accessible via the web server ProtDCal-Suite," which also
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provides access to other models developed by us using this
codification approach. ProtDCal has a workflow of four
automated steps, which are: (i) residue-wise codification, (ii)
modification based on the vicinity, (iii) residue grouping based
on amino acid types, and (iv) numerical aggregation using
descriptive statistics. The options selected at each step are used
in a combinatorial scheme to generate an array of numerical
descriptors that characterize the input structure. Each
descriptor in the array is the result of the combination of
one residue property (e.g., reside-wise contact order,
RWCO)," a vicinity operator (e.g,, autocorrelation, AC), a
grouping criterion (e.g, nonpolar residues, NPR), and an
aggregation operator (e.g., variance, V); thus, every element in
the array is identified by a unique label (e.g.,
RWCO_AC_NPR_V). In the Supporting Information Section
SI-1, we provide the configuration file used to compute the
descriptors employed in this study. This configuration
generates 23 040 descriptors for each protein—protein
complex. In ProtDCal, interchain residue contacts are
determined by a maximum spatial distance (d) measured
between the @ carbons of the residues. We set up the
calculation of such contacts with a spatial cutoff d = 10 A.
ProtDCal has been successfully applied by us and other
authors to model post-translational modifications,*>*>*
protein—protein interaction,”” enzyme-like amino acid sequen-
ces,”” critical residues for protein function,” and antibacterial
peptides.””’

Modeling Protocol for Protein—Protein Affinity Data

The learning process was carried out with Weka 3.8.4.”
Support Vector Machine (SVM) was selected as the learning
algorithm after performing a preliminary study that showed
that it is the simplest and best-performing solution for
developing the models (Supporting Information Section SI-
2). SVM is a successful approach widely validated in drug
discovery.”** This technique has delivered a worthy perform-
ance on small and mid-sized datasets,”” where deeper machine
learning (ML) approaches, such as various neural network
architectures, tend to overfit.”**” The implementation of SVM
for regression in the package SMOreg™® was employed to
develop the models. We randomly split the collected data into
three datasets: a training set with 653 complexes, a
development set with 90 complexes, and a test set with 90
complexes (Script SI-1). The purpose of the development set
was to monitor the generalization of multiple configurations of
the hyperparameters during the training process. The hold-out
test set was exclusively used to compare the final model with
external predictors.

Initially, every instance in the training set was represented as
a vector of 23 040 molecular descriptors generated with
ProtDCal. The steps of feature selection included the removal
of invariant descriptors and those carrying missing values.
Next, an optimal subset of attributes was searched with a
supervised exploration guided by the error in the prediction of
the binding affinity for cases in the training set. The resulting
optimal subset comprised 26 descriptors, which were used to
train the final models (Supporting Information Section SI-3).
Supporting Information File SI-1 provides a configuration file
for ProtDCal to compute this specific list of descriptors.

We adopted an ensemble learning approach by creating four
partially overlapping subsets of the training data with a
distribution of the output variable flatter than the complete
training set (Supporting Information Figure SI-2). Thus, we

https://doi.org/10.1021/acs.jproteome.2c00020
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Figure 1. Results of the optimization of hyperparameters. The selected model per training subset is marked with a red square and corresponds to
the combination of degree (D) and complexity (log, C) values that maximized the fitness-robustness score defined in eq 2.

trained independent models with each subset and combined
their outcomes using the Vote method implemented in Weka
3.8.4,°2°7%° with combination schemes based on the average,
maximum, and minimum predicted values among selected
models.

With each training subset, the hyperparameters of the SVM
were adjusted using a grid search.’’ The search space was
defined by the following range of hyperparameter values:

e Complexity (C): 275, 27%5 274 2735 273 2! 213 22
22'5, 23) 2335 and 24

e Degree (D) of the polynomial function kernel: 1, 2, and
3

The models generated during the search were assessed using
the Pearson’s correlation coefficient (R) (eq 1) of the
estimations in the training data via resubstitution and 10-fold
cross-validation (10-fold CV), as well as in the development
set.

R Z:;l (x _ )_})(yipred _ }_}pred)
\/Z:;l (Ji _ }_})2 Z:lzl (yipred _ )_,pred )2 (1)

The terms y; andy are the actual affinity values and their mean
in the datasets. Analogously, the terms yP™? and F°rd
correspond to the same type of values but as predicted by
the model.

To identify the optimum values of the hyperparameters, we
formulated an ad hoc fitness-robustness score (FRS) (eq 2) as
a function of the correlation coefficient, which combines in a
single measure the performance of a model in terms of
goodness of fit and robustness. The FRS function has an
optimum maximum value at FRS = 1; thus, we selected the
configuration that maximized the FRS function.

FRS = (R)’ = ((Rey — Ryg)” + (Rpgy — Ryg)®) (2)

The terms Ry, Ry, and Rpgy are the correlation coefficients
obtained on the training set, in 10-fold CV, and development
set, respectively. R is the arithmetic mean of the performance
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on these three tests. The first term of the function aims to
combine the performance on the training set (goodness of fit),
with the performance in cross-validation and development set
(generalization). The next two terms reduce the deviations
between the performance on the training set and the
performance when evaluating in cross-validation and develop-
ment set. These weighting terms improve the robustness of the
selected model by considering the generalization power of the
predictor in addition to the goodness of fit. Overall, such a
unified quantity is a highly informative measure to guide the
optimization of hyperparameters during the modeling. We
intend to continue challenging this formulation in further
studies and applications. Figure 1 summarizes the results of the
optimization of the hyperparameter values in each training
subset. A complete list of all of the intermediate models and
performance measures is provided in Supporting Information
Table SI-3.

All possible combinations with at least two models were
evaluated in the development set to determine the best
ensemble model. We summarized all of the performance
measures for the independent models and the distinct
ensembles in Supporting Information Table SI-4.

Data Collection: Protein—Peptide Complexes

The model was developed with data extracted from the Biolip
database, which also incorporates data from the PDBbind
Protein-Ligand®® database. We downloaded the nonredundant
dataset of Biolip, containing 105 152 entries. Only protein—
peptide complexes with less than 90% of identity between the
binding site’s residues and the full receptor sequence are
included in these data. We extracted the complexes containing
single-chain receptor only and a peptide formed by standard
residues with a minimum length of three residues. Instances
reported with post-translational modifications or fusion
constructs (peptide/nonpeptide) were discarded. Subse-
quently, we selected the cases for which their BA values are
reported in terms of the dissociation (K;) or inhibition (X;)
constants only. We excluded the complexes with ambiguous Ky
or K; values (ie., reporting a range of values), and those with

https://doi.org/10.1021/acs.jproteome.2c00020
J. Proteome Res. 2022, 21, 1829—1841
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Figure 2. Results of the optimization of hyperparameters. The selected model per training subset is marked with a red square and corresponds to
the combination of degree (D) and complexity (log, C) values that maximized the FRS.

binding free energies outside the range from —14.4 to —3.6
kcal/mol, as these instances were poorly represented and the
difference between their BA value and the rest of the
distribution was AG > 0.5. The curated dataset contained
1149 complexes, with peptides of length ranging between 3
and 29 amino acids and receptors of sizes between 31 and 957
amino acids (Supporting Information Figure SI-3). Hydrogen
atoms and other missing atoms were added to the structures
using MODELLER v9.23%*’ and PDB2PQR."'

Modeling Protocol for the Protein—Peptide BA Data

We used SVM, implemented in the package SMOreg™ in
Weka 3.8.4, following a protocol equivalent to that employed
for the protein-protein model described above. In summary, we
randomly divided the dataset into three subsets: training
dataset (949 instances), development dataset (100 instances),
and test dataset (100 instances) (Script SI-1). Subsequently,
we extracted numerical descriptors from the complexes’
structure using ProtDCal*** with the configuration file
summarized in Supporting Information Section SI-1. This
step generated 23 040 molecular descriptors for each instance
in the dataset. Next, we reduced this large multidimensional
space to 37 descriptors through a features selection process
(Supporting Information Section SI-4; a list of the extracted set
of descriptors can be found in the file SI-2).

The training scheme used to develop the final predictor
followed an ensemble approach. Four individual models were
built with partially overlapping subsets of the training set. The
subsets are random samples of the training data with a flatter
distribution of the BA values (Supporting Information Figure
SI-4) compared to the entire training set. This is achieved by
undersampling the region next to the mode value of the
distribution, while keeping the tails. Such transformation in the
distribution of the data allows a balanced error weight along
the entire range of the response variable. Subsequently, we
optimized the hyperparameters of each model independently
and combined their predictions with the Vote method
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implemented in Weka 3.8.4, according to the average,
maximum, and minimum ensemble rules.

To create the models, the hyperparameters of the estimator
were adjusted in a grid search following the same methodology
as for the protein—protein model. During the optimization of
the hyperparameters, the performance of the models was
monitored in the training data, in 10-fold CV, and the
development set. The optimum set of hyperparameter values
for each training dataset was selected according to the FRS
defined in eq 2. Figure 2 shows the results of the
hyperparameters tuning process for each training subset. A
complete list of all of the intermediate models and perform-
ance measures can be found in Supporting Information Table
SI-S.

Next, the best ensemble model was selected by evaluating all
possible combinations of models on the development set
(Supporting Information Table SI-6). The selected ensemble
model was evaluated on the hold-out test set of 100 complexes
and compared with other available state-of-the-art protein—
protein and protein—ligand BA predictors. Finally, the ranking
power of the model was assessed on a set of mutants of the
peptide EPI-X4, an endogenous inhibitor of CXCR4 whose
activity was experimentally determined and on a set of
complexes between peptides and the serine proteases
HTRA1 or HTRA3.

B RESULTS AND DISCUSSION

In this section, we analyze the performance of the developed
models and compare them with other state-of-the-art
predictors.

Performance of the Protein—Protein Model

The best ensemble model contains two out of the four training
subsets, whose individual correlations are R, = R; = 0.50. The
ensemble model improved the individual ones achieving a
correlation of R = 0.53 on the development set. The rule of
minimum predicted value was used to build the ensemble
predictor.

https://doi.org/10.1021/acs.jproteome.2c00020
J. Proteome Res. 2022, 21, 1829—1841
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Recently, Vangone and Bonvin’' developed a model that
predicts the BA based on two structural descriptors: the
network of inter-residue contacts (ICs) and the noninteracting
surface (NIS). The model, named ICs/NIS-based predictor
was implemented in the web server PRODIGY.”” This tool
delivered a much better performance (R = 0.74 and MAE =
1.4) than other state-of-the-art methods on a benchmark set of
79 protein—protein complexes. Thus, we employed this
benchmark set to evaluate our method (Table 1, Test set 1)

Table 1. Summary of the Evaluation of PPI-Affinity and
State-of-the-Art BA Predictors on Two Sets of Protein—
Protein Affinity Data®

test set 1 test set 2
method R MAE (kcal/mol) R MAE (kcal/mol)
PRODIGY 0.74 1.4 0.31 2.5
DFIRE 0.60 4.6 0.10 254
CP_PIE —-0.52 8.8 —-0.10 11.0
ISLAND 0.38 2.1 0.27 22
PPI—Aﬂinity 0.62 1.8 0.50 1.8

“The performance is expressed as the Pearson’s correlation coefficient
(R) between experimental and predicted BA. The test set 1
corresponds to the benchmark employed by Vangone and Bonvin,”’
while the test set 2 corresponds to the hold-out set of 90 data points
taken from PDBbind (v.2020). The performance for the other
methods on test set 1 was reported by Vangone and Bonvin.”' The
negative values of the correlation coeflicients indicate that the
corresponding method predicts unbinding free energy.

against the ICs/NIS-based model, the other two top-ranked
and currently available tools in that assessment, and the
ISLAND method. We estimated the performance of our
ensemble model on this benchmark set and obtained a
correlation coefficient R = 0.62 and MAE = 1.8 kcal/mol (Test
set 1) that ranks our method second, after PRODIGY.

Next, we challenged the predictors with a larger hold-out
test set of 90 complexes, which was initially extracted from the
data collected from the PDBbind (v.2020) protein—protein
dataset (Table 1, test set 2). In this test, our model renders a
correlation coefficient of R = 0.50, with an error MAE = 1.8
kecal/mol (Test set 2), performance which is only marginally
inferior to that obtained in the benchmark set of Vangone and
Bonvin*' (R = 0.62; MAE = 1.8 kcal/mol). The performance
of ISLAND was diminished with respect to our method.
Nevertheless, ISLAND delivered consistent results, in general
superior to those delivered by other methods, in both test sets.
The other predictors (PRODIGY, DFIRE, CP_PIE) show a
large decrease in their performance with respect to their results
in the test set 1 (Table 1, test set 1), with PRODIGY being the
second best with a correlation coefficient R = 0.31 and MAE =
2.5 kcal/mol. Such a dramatic decay in the predictions suggests
the presence of overfitting toward the previous benchmark set,
specifically in the case of PRODIGY. Nonetheless, the analysis
of the performance of the other predictors is hindered by the
lack of applicability domain (AD) definition for using the
methods. The absence of a defined AD limits the analysis of
the errors of the predictions, as it is not possible to examine
whether test samples are simply outside the scope of these
predictors or there is a specific structural issue that affects the
quality of the prediction.

In short, the data evidence the generalization achieved by
our predictor, which performs consistently well in different
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external test sets. Supporting Information Figure SI-S displays
plots of experimental versus predicted BA values for PPI-
Afhinity in both test sets.

Next, we evaluated the performance of PPI-Affinity on a set
of mutants taken from the SKEMPI v2.0°* dataset (Figure 3).

SKEMPI dataset: R=0.78 MAE=1.4(kcal/mol)
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Figure 3. Performance of PPI-Affinity on the test set of 26 wild-type
complexes and 151 mutants of protein—protein affinity data points
taken from the SKEMPI dataset. The performance is reported as the
Pearson’s correlation coefficient (R) between experimental and
predicted BA. The green points correspond to BA values of the
wild-type complexes, and the orange points correspond to the BA
values of the mutants.

This database reports the binding affinity changes of 7085
mutations of 345 protein—protein interactions for which the
structure of the complex has been resolved. We selected a
subset from this dataset by applying the following filtering
steps: (I) we extracted the dimeric complexes having at least
30 amino acids in each protein sequence; (II) we removed the
complexes overlapping between the selected data, the
PDBbind (v.2020) dataset, and the benchmark set of Vangone
and Bonvin;*' and (III) we removed the wild-type systems
with more than one binding affinity value reported, as well as
all mutants with ambiguous or unreported binding affinities.
The output of the filtering steps reduced the dataset to 34
wild-type complexes and 182 mutants. We fed the conformed
test set to PPI-Affinity. Eight wild-type complexes and their
related mutants were found outside the applicability domain of
the model. Thus, the final test set contained 26 wild-type
structures and 151 mutants. The assessed mutants featured
between one and six mutations per protein sequence, with 80%
of the structures accounting for only one mutation. The
binding free energy of all of the complexes was in the range of
—16.3 to —5.5 kcal/mol.

The performance of PPI-Affinity (R = 0.78 and MAE = 1.4
kcal/mol) on the SKEMPI dataset is suzperior to that obtained
in the Vangone and Bonvin benchmark ! (Table 1, Test set 1)
and in the 90 protein—protein complexes taken from the
PDBbind (v.2020) database (Table 1, Test set 2). When
considering only the wild-type complexes, PPI-Affinity
delivered a performance of R = 0.77 and MAE = 1.1 kcal/
mol. These results evidence the robustness of our protein—
protein model in a third external dataset, at the time that show
the ability of PPI-Affinity to characterize the changes upon
mutations of protein—protein complexes.

https://doi.org/10.1021/acs.jproteome.2c00020
J. Proteome Res. 2022, 21, 1829—1841
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Additionally, we assessed the performance of PPI-Affinity
against the LUPIA™ classifier. LUPIA uses a threshold value to
classify as “high” or “low” the binding affinity of protein—
protein complexes. This evaluation (Supporting Information
Section SI-S) evidenced the shortcomings of discretizing the
BA values to train classifiers rather than regressors models.
Taken together, the performance of our protein—protein
model on several tests ranks our ensemble model on the top of
state-of-the-art fast protein—protein BA predictors.

Performance of the Protein—Peptide Model

The best ensemble model was obtained by two out of the four
training subsets, improving their performances (R, = 0.53, R; =
0.54) to R = 0.56 on the development set. The rule of
maximum value was used to build the ensemble model. The
model was assessed on the test set of 100 protein—peptide
complexes initially hold-out from the data extracted from the
Biolip database (Supporting Information Figure SI-6). Here,
we compared the results of our method with state-of-the-art
protein—protein and protein—ligand BA predictors. The
considered tools include Kdeep and RF-Score for protein—
ligand complexes, as well as the above-presented PRODIGY,
DFIRE, and CP_PIE methods. ISLAND requires a minimum
size of 20 amino acids for each protein sequence. For this
reason, the tool was applied to the assessment of only the
protein—protein model.

Our protein—peptide affinity model outperformed all the
other tools, showing a correlation coefficient of R = 0.55 with
MAE = 1.1 kcal/mol (Table 2). The low correlations values

Table 2. Correlation Coefficient (R) of Protein—Protein
and Protein—Ligand BA Predictors on the Test Set of 100
Protein—Peptide Complexes”

method R MAE (kcal/mol)
PRODIGY 0.13 1.9
DFIRE 0.29 8.7
CP_PIE —-0.28 9.0
Kdeep* 0.32 10.7
RF-Score* 0.23 1.8
PPI-Affinity 0.55 1.1

“Protein—ligand methods are marked with a star. The negative values
of the correlation coefficients indicate that the corresponding method
predicts unbinding free energy.

delivered by other state-of-the-art tools can be related to the
fact that the functions of Kdeep and RF-Score are fitted
primarily using small organic ligands.®*** This suggests that
fitting with mostly small ligand data cannot capture the
differences imposed by the larger size of the peptides, as well as
the diversity of peptide interactions with the target and the
solvent.

Case Study I: Ranking the Affinity of Mutants of EPI-X4

EPI-X4 (Endogenous Peptide Inhibitor of CXCR4) is a
fragment of albumin identified as an endogenous antagonist of
the CXC chemokine receptor 4 (CXCR4) by Zirafi et al.%®
Given the implication of CXCR4 in viral (HIV) infection,
inflammation and cancer,”®®” this peptide represents a highly
promising scaffold to develop therapeutic drugs targeting the
CXCR4 receptor.

Recently, mutants of EPI-X4 have been screened to identify
derivatives with enhanced stability and affinity. For this, the
affinity values (in terms of ICs, nanomolar, nM) of EPI-X4 and
56 derivatives to CXCR4 were estimated using an antibody
competition assay.”” The scheme of this assay is based on the
competitive binding of a fluorescently labeled anti-CXCR4
antibody (clone 12GS) with CXCR4 ligands (Supporting
Information Section SI-6).°” These derivatives are peptides
with size in the range of 6—16 amino acids. From the
experiments, 26 mutants out of 30 active (ICso < 10 000nM)
derivatives were found to be more active compared to EPI-X4.
Here, we employed these data to evaluate the ranking power of
our protein—peptide afﬁnlty model. For doing this, we use the
enrichment factor (EF,),® defined as (eq 3):

[ top

= active / I]
[Nactive/ total] (3)

where I represents a fixed number of top-ranked instances
based on predicted values; Nik,. is the number of active
peptides, within the top I instances of the dataset; N, . is the
number of active peptides; and N, is the total number of
peptides in the whole dataset. Peptides with IC5, < 10 000 nM
were defined as active for an initial test. In a second and more
stringent evaluation, the active peptides were considered as
those more active than EPI-X4.

The structures of the complexes, formed by CXCR4 and
each peptide mutant, were generated via homology modeling
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Figure 4. Performance of protein—protein and protein—ligand BA predictors on the set of 56 derivatives of EPI-X4. The performance of the
methods is based on the enrichment factor (EF) obtained among the top S, 10, and 1S ranked candidates. Two results are shown per tool, one
corresponding to the activity test (AT), and the second corresponding to the peptides with an affinity higher than EPI-X4 (ATgp;.x4)-
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using as a template the structural model of the complex
CXCR4/EPI-X4, reported by Sokkar et al.””’® We estimated
the BA of each complex with different predictors, as well as the
associated enrichment factors.

Figure 4 shows the results of the tests corresponding to (1)
the conventional activity test using the activity threshold
determined by the competition assay (ICs, = 10 000 nM) and
(2) the peptides with an affinity higher than EPI-X4. PPI-
Afhinity achieved the maximum enrichment EFs = EF ; = EF|;
= 1.9 for this test, i.e., the 15 top-ranked instances according to
the PPI-Affinity estimation are active. In the case of the
stringent test, taking only those with higher affinity than EPI-
X4 as active, the maximum EF was obtained within the top 10
peptides, ie., EFs = EFy = 1.9, while the enrichment within
the top 15 derivatives also reached a high value EF 5 = 1.8. The
high enrichment factor within the top S, 10, and 15 peptides,
representing more than 25% of the dataset, evidenced the
remarkable ranking capabilities of PPI-Affinity. The other tools
show moderate to high enrichment values although below the
level reached by PPI-Affinity (Figure 4). Noteworthy are
CP_PIE and Kdeep, which deliver a steady high performance
in the different tests.

Case Study II: Ranking the Affinity of Peptides for the PDZ
Domains of HtrAs

High-temperature requirement serine proteases (HtrAs) are
involved in many physiological processes and neurodegener-
ative diseases such as Alzheimer’s disease and CARASIL.”'
These proteases are largely regulated by an allosteric
mechanism whose initial step is the interaction of polypeptide
chains with the peripheric PDZ domain. Here, we challenged
PPI-Afhinity with a series of peptides bound to PDZ domains
of two human HtrAs: HTRAI and HTRA3.

For these sets of protein—peptide interactions, we compared
the relative ranking based on the binding affinity predicted by
PPI-Affinity to the ranking based on the experimentally
determined ICs, values’> (Tables 3 and 4).

The prediction of PPI-Affinity suggests that three of the
peptides have more affinity for the PDZ domain of HTRA1

Table 3. Ranking of BA of Protein—Peptide Interactions in
HTRALI as Predicted by PPI-Affinity and Based on the
Experimental ICg, Values®

PPI-Affinity experimental
AG
ranking (kcal/mol) ranking (ICS0 (uM))“
(1) DSATWWV -88 (1) DSRIWWV 09 + 0.1
(2) GWKTWIL -85 (2) DARTWWV 13 + 0.1
(3) WDKIWHV -82 (3) DSAIWWV 25 + 04
(4) DSRIWWV -8.1 (4) WDKIWHV 2.8 + 03
(5) DARTWWVY -8.0 (5) ASRIWWV 2.8 + 03
(6) ASRIWWV -80 (6) DSRIWWA 35 £ 09
(7) DIETWLL -7.8 (7) DSRIWAV 6+1
(8) DSRIWWA 73 (8) GWKTWIL 7.7 + 0.6
(9) DSRAWWV -73 (9) DSRAWWV 131
(10) DSRIWAV 72 (10) DIGPVCEL 16+3
(11) DIGPVCEL? 7.1 (11) DIETWLL 23 +3
(12) EVKIMVV? 7.0 (12) EVKIMVV 24+ 8
(13) DSRIAWV —69 (13) DSRIAWV 40 + 5

“Values taken from ref 72. "Protein—peptide structures that are at the
border of the applicability domain of PPI-Affinity. “No protein—
peptide structure is outside the applicability domain.
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Table 4. Ranking of BA of Protein—Peptide Interactions in
HTRA3 as Predicted by PPI-Affinity and Based on the
Experimental ICy, Values

PPI-Affinity experimental
ranking AG (kcal/mol) ranking (IC50 (uM))*

(1) FGAWV® -77 (1) FGRWV 0.6 + 0.1
(2) FGRWV? -75 (2) RSWWV 0.6 + 0.1
(3) FGRWI* 75 (3) FGAWV" 0.9 + 0.1
(4) RSWWV —7.4 (4) FGRWI” 1.0+ 0.1
(5) FGRWE* -73 (5) GRWV 1.0 £ 0.1
(6) GRWV" —72 (6) FARWV? 1.1 +02
(7) FGRWA® —7.1 (7) RWvV 13 + 0.1
(8) FGRAV” —-69 (8) FGRWL 29 £ 03
(9) FGRWLY —6.6 (9) EGRWA 3.5+ 03
(10) Wv© —6.6 (10) wv® 47 + 0.4
(11) WA® —-6.5 (11) FGRWF”? 7.7 £ 0.8
(12) EARWV® —6.4 (12) WA® 14 + 1

(13) WG —62 (13) WG* 2+3

(14) Rwv? —52 (14) FGRAV 270 + 110

“Values from ref 72. "Protein—peptide structures are at the border of
the applicability domain of PPI-Affinity. “Protein—peptide structures
that are outside the applicability domain of PPI-Affinity.

than the experimentally determined best binder DSRIWWV
(in bold, Table 3). However, the calculated binding affinities of
those peptides differ from that of DSRIWWYV by only 0.1, 0.4,
and 0.7 kcal/mol (for WDKIWHV, GWKTWIL, and
DSAIWWYV, respectively). These differences are very small
and within the MAE of PPI-Affinity (Table 2).

The rest of the peptides are correctly predicted by the
method as weaker binders than DSRIWWV to the PDZ
domain of HTRAI. We note, however, that the binding energy
differences for most of these peptides also fall within the MAE
reported for our method based on the test set of protein—
peptide affinity (Table 3).

Interestingly, even the two peptides (DIGPVCFL and
EVKIMVV) at the border of the applicability domain of our
method are correctly predicted as weaker binders to the PDZ
domain of HTRAI compared to DSRIWWYV. Nevertheless, the
predicted values for peptides that are outside the applicability
domain of PPI-Affinity should be considered with care. The Ky4
of the complex between HTRAI and DSRIWWV is
experimentally reported as 1.3 + 0.2 uM, which corresponds
to AG = —8.2 + 0.1 kcal/mol at the experimental temperature
of 301.15 K. This value is in excellent agreement with the value
of —8.1 kcal/mol predicted by PPI-Affinity (Table 3).

We also tested our method on peptides binding to the PDZ
domain of HTRA3 (Table 4). In this set of protein—peptide
complexes, eight systems are outside the applicability domain
of PPI-Affinity.

As shown in Table 4, only one peptide (FGAWYV) is
incorrectly predicted to have better BA for HTRA3 than the
best experimental binder FGRWYV. We note that FGRWYV lies
outside the applicability domain of the model, and this
prediction should be taken with caution.

In addition, we measured the overall ranking power of PPI-
Affinity by calculating Kendall’s correlation coefficient” on
both test sets, HTRAl and HTRA3 protein—peptide
complexes (Table S). The results obtained with PRODIGY,
Kdeep, RF-Score, DFIRE, and CP_PIE are also shown for
comparison. The binding affinity values delivered by each tool
are listed in Supporting Information Section SI-7.

https://doi.org/10.1021/acs.jproteome.2c00020
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Table 5. Correlation of IC;, Values with the Estimations
from PPI-Affinity and Other State-of-the-Art BA Predictors
on the Sets of HTRA1’s and HTRA3’s PDZ Binders

R @
method HTRA1 HTRA3 HTRAIL HTRA3
PRODIGY 0.25 0.29 0.18 0.01
DFIRE 0.59 0.24 0.38 0.15
CP_PIE —0.11 —0.03 —0.25 —0.08
Kdeep* 0.38 0.11 0.16 0.41
RF-Score* 0.56 0.13 0.56 0.27
PPI-Affinity 0.63 0.02 0.59 0.42

Kendall’s tau coeflicient is a robust nonparametric measure
highly suitable to discriminate correlated from uncorrelated
variables. This measure involves two main magnitudes: the
number of concordant and discordant pairs. Two observations
(%, y;) and (x; y;) are classified as a concordant pair if x; > x;
and y; > y; or vice versa x; < x; and y; < y;. If none of these
conditions are true, the pair is known as discordant.

The Kendall’s tau correlation coefficient (7) is defined as (eq

4)
N, — Ny
\/(Nc + Ny + N)*(N, + Ny + N,) (4)

where N, and Ny are the number of concordant and discordant
pairs, respectively; N is the number of ties in the order of the
binding affinity determined by PPI-Affinity; and N, is the
number of ties in the experimental binding affinity. The
Kendall’s correlation coefficient is equal to 1 if the calculated
ranking of the peptides completely agrees with the ranking
determined experimentally.

Importantly, here we correlate ICs, values with predicted
binding free energy changes; these magnitudes are expected to
be linked by a nonlinear relation, which then violates the
linearity requirement for the proper interpretation of Pearson’s
correlation coefficient. Besides, the small size of the data

induces violations of the bivariate normality requisite of this
coeflicient. Consequently, the use of a robust nonparametric
measure such as Kendall’s tau coefficient is a requirement to
achieve a correct interpretation of the correlation tests.

The Pearson’s correlation coeflicient obtained by PPI-
Affinity (R = 0.02) in the HTRAS3 test set evidences the lack of
correlation with the experimentally measured ICg, values.
Beyond the previously noted shortcomings of Pearson’s
coefficient to assess these data, this result can be also a
consequence of half of the peptides in the test set being outside
the applicability domain of PPI-Affinity. For HTRAI binders,
where all cases are within the applicability domain, PPI-Affinity
delivers the highest correlation coefficient value (R = 0.63).

In terms of Kendall’s tau coefficient, PPI-Affinity produces
the highest values for both targets (z = 0.59 and 7 = 0.42 for
HTRA1 and HTRA3, respectively), evidencing its better
ranking power compared to other state-of-the-art predictors.
Interestingly, RE-Score gives the second-best performance on
the HTRA1 test set with 7 = 0.56, which is diminished by
about half on the HTRA3 test set (z = 0.27). Conversely,
Kdeep’s performance is close to PPI-Affinity’s on the HTRA3
test set (7 = 0.41), but Kdeep delivers the lowest positive
Kendall’s tau value on the HTRAL test set (z = 0.16). The
weak performance of PRODIGY on both test sets might be
related to the limitations of its protein—protein affinity
predictor to evaluate smaller protein—peptide complexes. An
important advantage of PPI-Affinity is that, thanks to two
tailored models for protein—protein and protein—peptide
complexes, PPI-Affinity can deliver comparable performance
levels for both types of biomolecular systems.

In short, the evaluation of BA predictors on different tests
and test sets evidenced that state-of-the-art BA predictors,
either intended for protein—protein or protein—ligand
complexes, deliver low accuracy in the prediction of the BA
of protein—peptide complexes. Although it improves the
accuracy of the state-of-the-art approaches only slightly, PPI-
Affinity is a solution to that issue since it delivers a significantly
better and robust performance among different tests. This fact
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w
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Figure S. Workflow of the three modules included in PPI-Affinity. For each module, the required input data and associated steps are indicated. The
main difference among them lies in the input data: the Binding Affinity predictor module receives as input a set of protein—protein/peptide
complexes (in PDB format); the Build & Predict module generates the complexes from a template file and a list of amino acid sequences (in FASTA
format) provided by the user; and the Protein Engineering module receives as input only a template model, generates a list of derivatives for one of
the protein/peptide contained in the PDB file, and calculates homology models for all created mutants. Regardless of the module, once the PDB
files have been prepared, PPI-Affinity computes the structural descriptors with ProtDCal, estimates the BA values with the machine learning
models, and returns the list of derivatives ranked by their BA values.
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tackles the inherent issues in generalization and overfitting that
apparently affect other predictors. The shortcomings in the
accuracy of predictions of absolute binding free energy values
are to a large extent a consequence of the inherent deviations
in the experimental data available for training, which arise from
uneven standards under the experimental conditions and
measurement procedures. Nonetheless, within such a noisy
scenario, the support vector machine models developed by us
allow making predictions that improve to some extent the state
of the art at the same time of showing steady performance in
both absolute binding affinity prediction and ranking assess-
ments.

Web Server Implementation

We implemented PPI-Affinity as a web server to facilitate the
use of our models. PPI-Affinity is a suite organized in three
modules, which are summarized below by order of increasing
complexity of their functionality.

Binding Affinity Predictor. This method is the direct
application of the prediction models in a set of PDB files with
protein—protein and protein—peptide complexes that should
be provided by the users. The module has the functionality to
characterize diverse complexes, whose structures were
obtained from external sources, based on their binding affinity.

Build & Predict. This module follows the same purpose as
the previous one. However, instead of receiving coordinate files
with the complexes of interest, it only requires a template file
(in PDB format) and a list of amino acid sequences (in FASTA
format). Then, the server builds five structural homology
models for each sequence in the list, using MODELLER, and
selects the structure with the lowest DOPE as the best
candidate to represent the complex. Subsequently, it scores all
the complexes using the predictor of binding affinity. The
Build & Predict module is particularly suitable for screening
structurally similar complexes for which no structure has been
elucidated.

Protein Engineering. This third and most comprehensive
module allows for the automatic generation and scoring of
mutations at the interface of the complexes, which aims to
optimize the affinity of these complexes. Figure S depicts the
workflow of the module, which encompasses the next steps:

Step 1: Template Input. The user provides an input
structure of the complex (in PDB format) and optionally the
amino acid sequences of the chains in FASTA format. In
addition, the user must specify which chain will be optimized.

Step 2: Mutants Generation. Next, a maximum of 10 000
derivatives is constructed for the specified chain. The
generation of mutants is controlled by the following
parameters: the maximum number of modifications to the
reference sequence, deletion and mutation probabilities,
maximum molecular weight, type of mutations, and a
mutability vector whose elements take value O for residues
that remain unmodified and a value between 0 and 1
representing the probability of modifying each position. The
types of mutations are defined by groups of amino acids; the
types are “Conservative” formed by the groups Polar
(NCQHSTG), Acid (DE), Basic (KR), Non-polar (AILMPV),
and Aromatic (WYF) residues; “Conservative extended” for
Polar extended (NCQHSTGDEKR) and Non-polar extended
(AILMPVWYF) residues; and “Unrestrained” allows the
residues to be changed by any other type of residue.

Step 3: Homology Modeling. In this step, five structural
models per derivative are generated with MODELLER. Among
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them, the structure with the lowest DOPE value is selected as
the best model for the corresponding mutant.

Step 4: BA Estimation. The binding free energy is calculated
using either the protein—protein or the protein—peptide
affinity predictor. The selection of the estimator depends on
the lengths of the chains in the structure; if a chain contains
less than 30 residues, the protein—peptide predictor is used,
otherwise the protein—protein estimator is applied.

Step 5: Ranking of Mutants. Finally, the mutants will be
arranged in decreasing or increasing order of affinity, and either
all or a selection of top candidates are returned to the user.
The two sorting schemes allow the use of this module not only
as an optimizer of the complex but also to spot mutations that
can largely destabilize the complex of interest.

Applicability Domain

Defining the applicability domain (AD) of a model is an
important step before the deployment of a predictor as it
allows to provide insights into the reliability of the estimations
in new systems.”" Here, the AD is the subspace defined by the
value range of the variables of the models (structural
descriptors) in our training dataset (Supporting Information
Tables SI-7 and SI-8). Thus, the descriptors’ value of a new
complex is checked to determine whether this structure is
within the AD of the model. The result of this analysis is
provided to the users alongside the predicted binding affinity
value. Estimations associated with instances outside the AD
should be interpreted with special care and probably
corroborated by other methods. Additionally, Supporting
Information Table SI-9 summarizes the sizes of the peptides
and receptors used to train and test the protein—peptide
model. Supporting Information Tables SI-10 and SI-11 present
the descriptive statistics of the training, development, and test
sets used in the modeling.

Implementation Details

The frontend of PPI-Affinity was implemented with the
Python Framework Django v3.1.1 for uploading and validating
the user data. The backend, which constitutes the core of the
program, was programmed in Python 3. Internally, PPI-Affinity
uses MODELLER? ™" to create the new homology structures.
ProtDCal* is used to calculate the structural descriptors
required by the SVM models, and Weka 3.8.4°% is the
interpreter of these predictors to predict the binding free
energy of the generated structures. Finally, a queuing system is
employed for the management of the jobs sent by the users.

B CONCLUSIONS

We developed PPI-Affinity, a binding free energy predictor
targeting protein—protein and protein—peptide complexes
specifically. This fast-screening tool moderately outperformed
the predictions and ranking power of similar empirical
predictors. The performance of the models was evaluated on
various test sets, which include a largely used benchmark set
for empirical binding free energy predictors and scoring
functions, as well as new augmented datasets gathered in this
work from BioLip and PDBbind. We also evaluated the ranking
power of the protein—peptide model on a set of EPI-X4
derivatives and HtrAs peptide binders. Altogether, these tests
highlight PPI-Affinity, not only as a top-ranked predictor but
also as the most robust tool with respect to performance in
different tests.

Furthermore, we implemented our models in a freely
available web server that incorporates diverse functionalities

https://doi.org/10.1021/acs.jproteome.2c00020
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that allow the screening of protein complexes as well as the
engineering of the amino acid composition at the interface of
the complex, to enhance the binding affinity or to spotlight
critical mutants that may destabilize the interaction. The PPI-
Affinity web server is thus a versatile tool with a direct impact
on the design of peptide binders as well as in protein
engineering and design.

B ASSOCIATED CONTENT
® Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00020.

Setup of parameters used for the calculation of the
structural descriptors (Supporting Information Section
SI-1); preliminary study of Machine Learning (ML)
techniques (Supporting Information Section SI-2);
feature selection process for the protein—protein BA
modeling (Supporting Information Section SI-3);
feature selection process for the protein—peptide BA
modeling (Supporting Information Section SI-4);
evaluation of PPI-Affinity and a state-of-the-art classifier
(Supporting Information Section SI-5); assays used to
determine the BA of EPI-X4 derivatives against the
CRCX4 receptor (Supporting Information Section SI-
6); generation and ranking of peptide binders to the
PDZ domains of HTRAl and HTRA3 (Supporting
Information Section SI-7); tabular description of PPI-
Afhinity and other state-of-the-art PPI prediction tools
(Supporting Information Table SI-1); correlation
coefficient (R) of BA predictors on the test set of 100
protein—peptide complexes (Supporting Information
Table SI-2); performance of intermediate models for
the protein—protein BA modeling during the hyper-
parameters tuning process (Supporting Information
Table SI-3); performance of individual and ensemble
models for the protein—protein complexes (Supporting
Information Table SI-4); performance of the inter-
mediate models for the protein—peptide modeling
during the hyperparameters tuning process (Supporting
Information Table SI-5); performance of individual and
ensemble models for the protein—peptide complexes
(Supporting Information Table SI-6); applicability
domain of the protein—protein model (Supporting
Information Table SI-7); applicability domain of the
protein—peptide model (Supporting Information Table
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descriptive statistics of the protein—peptide data sets
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AG bind values in the dataset of protein—protein
complexes (Supporting Information Figure SI-1);
distribution of AG bind values in the datasets of the
protein—protein ensemble model (Supporting Informa-
tion Figure SI-2); characterization of the dataset of
protein—peptide complexes (Supporting Information
Figure SI-3); distribution of AG bind values in the
datasets of the protein—peptide ensemble model
(Supporting Information Figure SI-4); plots of exper-
imental vs predicted on the test sets of protein—protein
BA data (Supporting Information Figure SI-S); plot of
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experimental vs predicted on the test set of protein—
peptide BA data (Supporting Information Figure SI-6)
(PDF)

Python script used to randomly split the datasets into
training, development, and test subsets (Script SI-1);
configuration file for ProtDCal to compute the
descriptors of the protein—protein model (File SI-1);
configuration file for ProtDCal to compute the
descriptors of the protein—peptide model (File SI-2);
binding affinity predictions of PPI-Affinity and state-of-
the-art tools on the benchmark of 79 protein—protein
complexes employed by Vangone and Bonvin®' (File SI-
3); binding affinity predictions of PPI-Affinity and state-
of-the-art tools on the hold-out set of 90 protein—
protein complexes taken from PDBbind (v.2020) (File
SI-4); binding affinity predictions of PPI-Affinity and
state-of-the-art tools on the hold-out set of 177 (26 wild-
type and 151 mutants) protein—protein complexes taken
from the SKEMPI v2.0 dataset (File SI-S); binding
affinity predictions of PPI-Affinity and state-of-the-art
tools on the hold-out set of 100 protein—peptide
complexes taken from the Biolip database (File SI-6);
binding affinity predictions of PPI-Affinity and other
state-of-the-art tools on the test set of protein—peptide
complexes containing EPI-X4 and 56 derivatives coupled
to the CXCR4 receptor (File SI-7); and summary of the
protein—protein and protein—peptide complexes used in
the training, validation, and test of the PPI-Affinity
models (File SI-8) (ZIP)
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Table SI-2. Correlation coefficient (R) of protein-protein and protein-ligand BA predictors on the

test set of 100 protein-peptide complexes.

Method R MAE (kcal/mol)
Prodigy"*®  0.13 1.9
DFIRE? 0.29 8.7
PIE* -0.28 9.0
Kdeep*’ 0.32 10.7
RF-Score**®  0.23 1.8

Protein-ligand methods are marked with *
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Figure SI-1. Distribution of AGp;,4 values in the dataset of 833 protein-protein complexes.
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Section SI-1. Parameter setup for the calculation of the structural descriptors in ProtDCa

Sections

directory:

Datasets/PDB_Protein_Format

indices:

wNc, wFLC, wNLC, wCO, wLCO, wRWCO,
wCTP, wCLQ

wCO:

ECL IP, ISA, Z1,72,73

wRWCO:

ECIL IP, ISA, Z1,72,73

wNc:

ECL IP, ISA, Z1,72,73

wCLQ:

ECI, IP, ISA, Z1, 72,73

wNLC:

ECL IP, ISA, Z1, 72,73

wLCO:

ECL IP, ISA, Z1, 72,73

wCTP:

ECL IP, ISA, Z1, 722,73

wFLC:

ECIL, IP, ISA, Z1, 72,73

groups:

ALA, ARG, ASN, ASP, CYS, GLU, GLN,
GLY, HIS, ILE, LEU, LYS, MET, PHE, PRO,
SER, THR, TRP, TYR, VAL, RTR, BSR,
AHR, ALR, NPR, ARM, PLR, PCR, NCR,
UCR, UFR, PRT

invariants:

N1, N2, Ar, P2, G, V, CV, S, RA, K, DE, 150,
SI, MI, TI
parameters(t_cont,s_cont,A%,HydGroup,n,bi
ns,K,SubG):

4000.0, 10.0, 5.0,9.4, 3.0, 30, 5, 3

options(decimals,harmonicMeanType,geomet
ricMeanType,windexID,datasetType,outputOr
der):

3,0,0, -1, pdb, true

140,41

Description
Path to directory with the input PDB files

List of used Topographic Indices of Folded
Protein States

List of used weighting coefficients for each
Topographic Indices of Folded Protein States

List of grouping operators

List of vicinity operators

Parameters values for internal options of the
program

Parameters values for internal options of the
program
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Section SI-2 Preliminary study conducted to the identify the Machine Learning (ML) technique
to use in the development of the models.

First, we randomly divided the 833 protein-protein complexes into datasets of 743 and 90
structures to train and test the models respectively. Initially, ProtDCal generated 23 040 molecular
descriptors for each protein-protein complex. We reduced this high number of dimensions through
an attribute selection process. First, we applied a filter to remove descriptors with non or little
variation in the training set (RemoveUseless filter of Weka). A descriptor that cannot be calculated
for an instance represents a missing value in the final vector. For a regression problem, this means
that missing values need to be replaced by a number (mean, median, ...). Since this could add more
noise to the dataset, we handled this issue by deleting all the attributes that contained at least one
instance with a missing value. These steps reduced the dataset to 1 477 attributes. Next, we ordered
the attributes by their Pearson’s correlation coefficient with the class (CorrelationAttributeEval
implementation of Weka). The highest correlation of an attribute with the class was 0.24, while
the minimum was -0.32. We selected those with correlation values between 0.1 <= R <= -0.1,
reducing the data to 476 descriptors.

Next, we applied the WrapperSubsetEval technique implemented in Weka for obtaining the best
subset of attributes to predict the class value. This is a supervised technique that evaluates subsets
of features by training and evaluating, directly employing the classifier. The selection of the
subsets is held by a search method. Here, we employed a genetic algorithm with a population of
20 individuals, crossover and mutation probabilities of 0.6 and 0.033 respectively and 20
generations maximum. Each subset was evaluated in 5-fold cross-validation, and the selection of
the best subset was carried out attending to the correlation coefficient achieved by the classifier.
This process was performed by each method individually (Table SI-2.1). We employed the Weka
implementations of Linear Regression, Multilayer Perceptron: with zero (Linear Neural Network,
LNN), one (ANN-1H) and two (ANN-2H) hidden layers, Random Forest, SVM for regression
with the polynomial of degree one (SVM-PK-D1), degree two (SVM-PK-D2), and radial basis
function (SVM-RBF) kernels. All the classifiers were executed with the default parameters values
provided by Weka. In the case of Neural Networks, the amount of nodes (a) per hidden layer is
defined by default in Weka as: a = (d + ¢) / 2, where d is the number of descriptors and c is the
number of classes (c=1 for regression). For SVM-PK-D2, the Wrapper method was not applied,
and the evaluation was performed on the attributes selected by SVM-PK-D1.

Table SI-2.1. Summary of the performance of different classifiers after the application of feature selection
steps on the protein-protein BA data. The column “Descriptors” contains the number of attributes selected
by each method with the Wrapper technique. The performance is expressed as the Pearson’s Correlation
coefficient (R) between experimental and predicted BA. Each model was evaluated on the training set, in
10-fold cross-validation (10-fold CV), and on the test set of 90 data points taken from PDBbind (v.2020).8
The methods tested were Linear Regression, Multilayer Perceptron with zero (Linear Neural Network,
LNN), one (ANN-1H) and two (ANN-2H) hidden layers, Random Forest, Support Vector Machine for
regression with the polynomial (SVM-PK-D1, SVM-PK-D2) and the Radial Basis Function (SVM-RBF)
kernels.
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Descriptors ~ Training set 10-fold CV Test set

R MAE R MAE R MAE

Linear Regression 74 0.68 1.4 0.60 1.6 0.39 2.0
LNN 12 -0.05 34 020 23 -0.01 3.1
ANN-1H 11 0.58 1.6 040 19 041 1.8
ANN-2H 10 0.55 1.7 039 1.9 040 1.9
Random Forest 27 098 0.6 0.67 1.5 0.61 1.6
SVM-PK-D1 36 0.57 1.5 054 1.6 040 1.9
SVM-PK-D2 36 0.77 1.0 042 2.0 038 2.0
SVM-RBF 171 0.63 1.4 058 1.6 045 1.8

The smallest subset of descriptors was obtained by the Neural Networks methods. However, under
these architectures the models suffered from both: under-fitting in the case of LNN, with non or
small correlation values among the model evaluations, as well as over-fitting in the case of ANN-
1H and ANN-2H, with a difference greater than the 20% between the correlation on the training
set, and 10-fold CV, and test set. In the case of Random Forest, the results on the training set (R =
0.98, MAE = 0.6), along with the performance in CV (R =0.67, MAE = 1.5) and on the test set (R
=0.61, MAE = 1.6) clearly denoted high over-fitting.

Linear Regression showed close performance on the training set (R = 0.68, MAE = 1.4) and in 10-
fold CV (R = 0.6, MAE = 1.6). However, the number of descriptors equal to 74 could harm the
generalization power of the model, which may explain the fall in performance on the test set.
SVM exhibited slightly better results with the RBF kernel than with the polynomial kernel of
degree one (SVM-PK-D1). However, this performance was achieved with almost five times more
descriptors. In addition, we must consider that the polynomial kernel of first order is a linear
equation. Thus, we can conclude that SVM with the polynomial kernel of first order provides the
simplest and best-performing solutions. Therefore, we selected this framework to develop our
models.
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Section SI-3. Description of the feature selection process for the protein-protein BA modeling.

Initially, each instance in the dataset was represented as a vector of 23 040 molecular descriptors
generated with ProtDCal, creating an initial matrix of 653 instances x 23.040 descriptors. For
identifying the subset of attributes that best approximates the binding free energy value, we applied
unsupervised and supervised features selection techniques.

First, we reduced the matrix dimensionality to 9 004 descriptors by applying the RemoveUseless
filter that eliminates the attributes with none or too much variation for all the instances in the
training set. A descriptor that cannot be calculated for an instance represents a missing value in
the final vector. For a regression problem, this means that missing values need to be replaced by a
number (mean, median, ...). Since this could add more noise to the dataset, we handled this issue
by deleting all the attributes that contained at least one instance with a missing value, reducing the
dataset to 1 477 attributes.

Then, we made use of the supervised method CorrelationAttributeEval, which orders all the
attributes by their Pearson’s correlation coefficient with the class. The highest correlation of an
attribute with the class was 0.25, while the minimum was -0.32. We selected those attributes with
correlation values between 0.1 <= R <= -0.1, which were 447 attributes.

Next, we applied the filter InterquartileRange implemented in Weka to identify instances with
extreme values. This method flags a descriptor of an instance as extreme if its value is greater than
the 75th quartile or if it is minor than the 25th quartile, by the product of an extreme value factor
and the interquartile range. We kept the default value of the filter, extremeValuesFactor = 6, and
we removed those instances with more than the 5% of the amount of attributes flagged as extreme
cases. This way we reduced the training set to 648 instances with 447 attributes.

Finally, for obtaining the best subset of attributes to train the final model, we applied the
WrapperSubsetEval technique for the selection of attributes. This supervised method evaluates
subsets of attributes by training a classifier and assessing its performance in cross-validation. The
classifier we used was Support Vector Machine for regression, SMOreg package of Weka, with
the polynomial kernel. The selection of the subsets is held by a search method. Here, we employed
a genetic algorithm with a population of 20 individuals, crossover and mutation probabilities of
0.6 and 0.033 respectively and 20 generations maximum. Each subset was evaluated in 5-folds
cross-validation, and the selection of the best one was carried out attending to the correlation
coefficient achieved by the classifier. This step reduced the dataset to 26 structural features to train
and test our model. The list of final descriptors can be found in the Supporting Information
ppro_project.idl file. The file can be directly uploaded in ProtDCal-Suite*' to calculate the
descriptors of protein-protein complexes.

Table SI-3.1. Descriptors of the protein-protein model.

The evaluation measures are the Pearson’s correlation coefficient (R), the Spearman’s rank
correlation coefficient (Rs), and the Kendall’s (Rx) rank correlation coefficient between each
descriptor and the binding affinity values.

Descriptor Description R Rs Rk
wNc(ECI) NO AHR G Geometric mean (G) of the weighted number of -0.20 -0.18 -0.12
contacts (WNc¢) of the common residues in Alfa
Helix structure (AHR)

S15



wNc(ECI) NO_ALR G
wNc(Z2) NO_PLR_V

wNc(Z2) NO PCR G

wNc(Z3) NO_GLU_V

wN¢(Z3) NO PLR P2
wNc(Z3) NO _PRT P2

wFLC(ECI) NO_ILE_P2

wFLC(IP) NO_PCR_Ar

wFLC(IP) NO PCR_V

wFLC(ISA) NO PLR_Ar

wNLC(ECI) NO AHR V

wNLC(ECI) NO_NPR N1

Geometric mean (G) of the weighted number of
contacts (WNc) of the aliphatic residues (ALR)
Variance (V) of the weighted number of
contacts (wWNc) of the polar residues (PLR)
Geometric mean (G) of the weighted number of
contacts (WNc) of the positive charged residues
(PCR)

Variance (V) of the weighted number of
contacts (WNc) of the glutamic acid residues
(GLU)

Potential mean (P2) of the weighted number of
contacts (wWNc) of the polar residues (PLR)
Potential mean (P2) of the weighted number of
contacts (WNc) of the whole protein (PRT)
Potential mean (P2) of the weighted fraction of
local contacts (WFLC) of the isoleucine residues
(ILE)

Arithmetic mean (Ar) of the weighted fraction
of local contacts (wWFLC) of the positive charged
residues (PCR)

Variance (V) of the weighted fraction of local
contacts (WFLC) of the positive charged
residues (PCR)

Arithmetic mean (Ar) of the weighted fraction
of local contacts (WFLC) of the polar residues
(PLR)

Variance (V) of the weighted number of local
contacts (WNLC) of the common residues in
Alfa Helix structure (AHR)

Manhattan distance (N1) of the weighted
number of local contacts (WNLC) of the
nonpolar residues (NPR)

wNLC(ECI) NO_NPR _DE Standard deviation (DE) of the weighted

wNLC(IP) NO BSR NI

wNLC(IP) NO_PLR NI

wNLC(ISA) NO BSR N2

wNLC(ISA) NO_PLR_G

wNLC(Z1) NO_AHR_DE

number of local contacts (WNLC) of the
nonpolar residues (NPR)

Manhattan distance (N1) of the weighted
number of local contacts (WNLC) of the
common residues in Beta Sheet structure (BSR)
Manhattan distance (N1) of the weighted
number of local contacts (WNLC) of the polar
residues (PLR)

Euclidean distance (N2) of the weighted
number of local contacts (WNLC) of the
common residues in Beta Sheet structure (BSR)
Geometric mean (G) of the weighted number of
local contacts (WNLC) of the polar residues
(PLR)

Standard deviation (DE) of the weighted
number of local contacts (WNLC) of the
common residues in Alfa Helix structure (AHR)

-0.17

-0.11

-0.11

0.12

0.15

0.16

0.16

0.18

0.12

0.18

0.15

-0.15

-0.15

-0.14

-0.12

-0.13

0.15

0.13

-0.16

-0.05

-0.11

0.13

0.19

0.20

0.19

0.22

0.14

0.22

0.16

-0.20

-0.16

-0.20

-0.18

-0.15

0.16

0.15

-0.11

-0.03

-0.07

0.09

0.13

0.14

0.14

0.15

0.11

0.17

0.11

-0.13

-0.10

-0.13

-0.12

-0.10

0.11

0.10
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wNLC(Z1) NO_ALR N2

wNLC(Z1) NO NCR P2

wNLC(Z1) NO_PRT_Ar

wNLC(Z2) NO BSR_G

wNLC(Z2) NO ALR NI

wNLC(Z3) NO_AHR_Ar

wNLC(Z3) NO ALR Ar

Euclidean distance (N2) of the weighted
number of local contacts (WNLC) of the
aliphatic residues (ALR)

Potential mean (P2) of the weighted number of
local contacts (WNLC) of the negative charged
residues (NCR)

Arithmetic mean (Ar) of the weighted number
of local contacts (WNLC) of the whole protein
(PRT)

Geometric mean (G) of the weighted number of
local contacts (WNLC) of the common residues
in Beta Sheet structure (BSR)

Manhattan distance (N1) of the weighted
number of local contacts (WNLC) of the
aliphatic residues (ALR)

Arithmetic mean (Ar) of the weighted number
of local contacts (WNLC) of the common
residues in Alfa Helix structure (AHR)
Arithmetic mean (Ar) of the weighted number
of local contacts (WNLC) of the aliphatic
residues (ALR)

-0.13

-0.17

-0.16

-0.13

-0.32

0.25

0.14

-0.13

-0.15

-0.15

-0.12

-0.29

0.25

0.13

-0.09

-0.10

-0.10

-0.08

-0.20

0.16

0.09

The weights of the descriptors are:

- IP: Isoelectric Point

- ECI: Electronic Charge Index

- ISA: Isotropic Surface Area

- Z1: Combined measure of hydrophobicity related properties
- Z2: Combined measure of bulkiness related properties

- Z3: Combined measure of electron related properties

File SI-1 (separated). Configuration file for ProtDCal to compute the 26 structural descriptors.
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Figure SI-2. Distribution of AGp;,4 values in the four subsets of the training data for the protein-

protein ensemble learning protocol.
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We defined 15 intervals in the scale of AGying values, according to the range in the entire data. We
filled the intervals with a maximum of 50 instances by sampling (without replacement) the entire
dataset. We iterated this procedure to create four subsets, each one containing 445 complexes
distributed along the complete range of affinity values. The white bars denote the intervals that
were repeated among the four datasets, while the stripped bars denote those intervals where the

sampling was performed.
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Table SI-4. Summary of the performance of the individual and the ensemble models for protein-
protein models.

The models M1, M2, M3 and M4 correspond to the best predictors obtained from the training
subsets 1, 2, 3 and 4 respectively. Then, the correlation coefficients (R) of the estimations in the
development set were calculated for each model (R_IND), as well as all possible combinations of
the models. The combination rules were the average (V_AVG), maximum (V_MAX), and
minimum, (V_MIN) predictions. The optimal ensemble model corresponds to the model that
outputs the binding affinity based on the minimum predicted value between the models obtained
from the training subsets 2 and 3.

Ensemble  Model R_IND V_AVG V_MAX V_MIN

1 M1 0,488 0,501 0,508 0,489
M2 0,500
2 M1 0,488 0,505 0,479 0,520
M3 0,495
3 M1 0,488 0,491 0,482 0,497
M4 0,482
4 M2 0,500 0,508 0,480 0,526
M3 0,495
5 M2 0,500 0,496 0,496 0,493
M4 0,482
6 M3 0,495 0,500 0,483 0,508
M4 0,482
7 M1 0,488 0,508 0,482 0,517
M2 0,500
M3 0,495
8 M1 0,488 0,498 0,496 0,492
M2 0,500
M4 0,482
9 M1 0,488 0,502 0,479
M3 0,495
M4 0,482
10 M2 0,500 0,505 0,473 0,507
M3 0,495
M4 0,482
11 M1 0,488 0,505 0,479 0,508
M2 0,500
M3 0,495
M4 0,482
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Figure SI-3. Characterization of the dataset of protein-peptide complexes used in this work.
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The distribution of the peptide lengths (number of residues) in the dataset is presented in panel A,
while panel B shows the distribution of AG values across all the protein-peptide complexes
contained in the dataset.
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Section SI-4. Description of the process of feature selection for creating the protein-peptide model.

Here, we followed the pipeline described in section SI-2 for selecting the attributes of the final
model. Starting with a matrix of 949 instances x 23 040 descriptors generated with ProtDCal, we
reduced the matrix dimensionality to 8 999 attributes by applying the filter RemoveUseless. Then,
we deleted all the attributes that contained at least one instance with a missing value, reducing the
dataset to 2 358 attributes. In a third step, we made use of the supervised method
CorrelationAttributeEval, for correlating each attribute with the class. The highest correlation
obtained was 0.24 and the minimum -0.23. We selected those attributes with correlation values
between 0.1 <= R <=-0.1 that were 631 attributes.

At this point, after decreasing the dimensionality of the problem by more than 95%, we applied
the filter InterquartileRange implemented in Weka to identify instances with extreme values. We
kept the default value of the filter, which is the extremeValuesFactor = 6 and we removed those
instances with more than the 5% of number of attributes flagged as extreme cases. This way we
reduced the training set to 922 instances with 631 attributes.

Finally, for obtaining the best subset of attributes to train the final model we applied the
WrapperSubsetEval attribute selection technique. The classifier we used was support vector
machine for regression with the lineal kernel and the search method a genetic algorithm with a
population of 20 individuals, crossover and mutation probabilities of 0.6 and 0.033 respectively
and 20 generations maximum. Each subset was evaluated in 5-folds cross-validation, and the
selection of the best subset was attending to the correlation coefficient achieved by the classifier.
This step reduced the dataset to 37 structural features to train and test the models.

Table SI-4.1. Descriptors of the protein-peptide model.
The evaluation measures are the Pearson’s correlation coefficient (R), the Spearman’s rank

correlation coefficient (Rs), and the Kendall’s (Rx) rank correlation coefficient between each
descriptor and the binding affinity values.

Descriptor Description R Rs Rx

wNc(ECI) NO AHR N1 Manbhattan distance (N1) of the weighted -0.20 -0.17 -0.11
number of contacts (WNc) of the common
residues in Alfa Helix structure (AHR)

wNc(ECI) NO_ALR N1 Manhattan distance (N1) of the weighted -0.13  -0.05 -0.04
number of contacts (WNc) of the aliphatic
residues (ALR)

wNc(IP) NO PLR NI Manhattan distance (N1) of the weighted -0.13  -0.12 -0.08
number of contacts (wWNc) of the polar
residues (PLR)

wNc(ISA) NO PLR V Variance (V) of the weighted number of 0.10 0.10 0.06
contacts (WNc) of the polar residues (PLR)

wNc(Z1) NO NPR N2 Euclidean distance (N2) of the weighted -0.19  -0.17 -0.12
number of contacts (wWNc) of the nonpolar
residues (NPR)
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wNe(Z1) NO_ARM V

wNc(Z1) NO_PRT N1

wNc(Z3) NO_AHR N1

wNc(Z3) NO_UCR_ N1

wFLC(ECI) NO AHR SI30

wFLC(ECI) NO_PCR_V

wFLC(IP) NO RTR_MI30

wFLC(IP) NO_BSR_Ar

wFLC(IP) NO_UCR_RA

wFLC(IP) NO_UCR_K

wFLC(IP) NO PRT TI30

wFLC(ISA) NO NPR P2

wFLC(ISA) NO _NPR_DE

wFLC(ISA) NO PRT TI30

wFLC(Z1) NO_BSR_SI30

wFLC(Z2) NO_PLR K

wNLC(ECI) NO BSR 150

Variance (V) of the weighted number of
contacts (WNc) of the aromatic residues
(ARM)

Manbhattan distance (N1) of the weighted
number of contacts (WNc) of the whole
protein (PRT)

Manhattan distance (N1) of the weighted
number of contacts (WNc¢) of the common
residues in Alfa Helix structure (AHR)
Manhattan distance (N1) of the weighted
number of contacts (WNc) of the uncharged
residues (UCR)

Standardized Information Content (SI30) of
the weighted fraction of local contacts
(WFLC) of the common residues in Alfa Helix
structure (AHR)

Variance (V) of the weighted fraction of local
contacts (WFLC) of the positive charged
residues (PCR)

Mean Information Content (MI30) of the
weighted fraction of local contacts (WFLC) of
the common residues in reverse turn (RTR)
Arithmetic mean (Ar) of the weighted fraction
of local contacts (WFLC) of the common
residues in Beta Sheet structure (BSR)

Range (RA) of the weighted fraction of local
contacts (WFLC) of the uncharged residues
(UCR)

Kurtosis (K) of the weighted fraction of local
contacts (WFLC) of the uncharged residues
(UCR)

Total content (TI30) of the weighted fraction
of local contacts (WFLC) of the whole protein
(PRT)

Potential mean (P2) of the weighted fraction
of'local contacts (WFLC) of the nonpolar
residues (NPR)

Standard deviation (DE) of the weighted
fraction of local contacts (WFLC) of the
nonpolar residues (NPR)

Total content (TI30) of the weighted fraction
of'local contacts (WFLC) of the whole protein
(PRT)

Standardized Information Content (SI30) of
the weighted fraction of local contacts
(WFLC) of the common residues in Beta Sheet
structure (BSR)

Kurtosis (K) of the weighted fraction of local
contacts (WFLC) of the polar residues (PLR)
Interquartile range (I150) of the weighted
number of local contacts (WNLC) of the
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common residues in Beta Sheet structure
(BSR)

wNLC(ECI) NO PLR K  Kaurtosis (K) of the weighted number of local -0.12  -0.17 -0.11
contacts (WNLC) of the polar residues (PLR)

WwNLC(ECI) NO UCR S  Skewness (S) of the weighted number of local -0.14 -0.13 -0.09
contacts (WNLC) of the uncharged residues
(UCR)

wNLC(IP) NO RTR V Variance (V) of the weighted number of local 0.11  0.09  0.06
contacts (WNLC) of the common residues in
reverse turn (RTR)

wNLC(IP) NO UCR 150 Interquartile range (I50) of the weighted -0.12 -0.09 -0.06
number of local contacts (WNLC) of the
uncharged residues (UCR)

wNLC(ISA) NO UCR S  Skewness (S) of the weighted number of local -0.20 -0.22 -0.14
contacts (WNLC) of the uncharged residues
(UCR)

wNLC(Z1) NO_RTR_SI30 Standardized Information Content (SI30) of 0.12  0.13 0.09
the weighted number of local contacts
(WNLC) of the common residues in reverse
turn (RTR)

wNLC(Z1) NO BSR K Kurtosis (K) of the weighted number of local -0.10 -0.17 -0.11
contacts (WNLC) of the common residues in
Beta Sheet structure (BSR)

wNLC(Z1) NO UCR_K Kurtosis (K) of the weighted number of local -0.13  -0.17 -0.11
contacts (WNLC) of the uncharged residues
(UCR)

wNLC(Z2) NO AHR P2  Potential mean (P2) of the weighted number  -0.17 -0.19 -0.13
of local contacts (WNLC) of the common
residues in Alfa Helix structure (AHR)

wNLC(Z2) NO_PCR N2  Euclidean distance (N2) of the weighted -0.15  -0.15 -0.10
number of local contacts (WNLC) of the
positive charged residues (PCR)

wWNLC(Z2) NO NCR P2  Potential mean (P2) of the weighted number  -0.11  -0.09 -0.06
of local contacts (WNLC) of the negative
charged residues (NCR)

wNLC(Z2) NO UCR K Kurtosis (K) of the weighted number of local -0.11 -0.17 -0.12
contacts (WNLC) of the uncharged residues
(UCR)

wNLC(Z3) NO_PLR SI30 Standardized Information Content (SI30) of 0.12  0.13 0.08
the weighted number of local contacts
(WNLC) of the polar residues (PLR)

wNLC(Z3) NO NCR_RA Range (RA) of the weighted number of local  -0.13  -0.15 -0.10
contacts (WNLC) of the negative charged
residues (NCR)

wNLC(Z3) NO_UCR_TI30 Total content (TI) of the weighted number of -0.19 -0.20 -0.14
local contacts (WNLC) of the uncharged
residues (UCR)

File SI-2 (separated). Configuration file for ProtDCal to compute the 37 structural descriptors.
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Figure SI-4. Distribution of AGp;,4 values in the four subsets of the training data for the protein-
peptide ensemble learning protocol.
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We defined 15 intervals in the scale of AGuind Values, according to the rage in the entire data. Then,
we filled the intervals with a maximum of 50 instances by sampling (without replacement) the
entire dataset. We iterated this procedure to create four subsets, each one containing 520 complexes
distributed along the complete range of affinity values. The white bars denote the intervals that
were repeated among the four datasets, while the stripped bars denote those intervals where the
sampling was performed.
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Table SI-6. Summary of the performance of the individual and the ensemble models for protein-

peptide models.

The models M1, M2, M3 and M4 correspond to the best predictors obtained from the training
subsets 1, 2, 3 and 4 respectively. Then, the correlation coefficients (R) of the estimations in the
development set were estimated for each model (R_IND), as well as for each possible combination
of models. The combination rules were average (V_AVG), maximum (V_MAX), and minimum,
(V_MIN) probabilities. The optimal ensemble model corresponds, from the group of ensembles
two, to the model that outputs the binding affinity based on the maximum predicted value between
the models obtained from the training subsets 1 and 3.

Ensembles
1

2

10

11

Model R_IND
M1 0,527
M2 0,539
M1 0,527
M3 0,543
M1 0,527
M4 0,532
M2 0,539
M3 0,543
M2 0,539
M4 0,532
M3 0,543
M4

M1 0,527
M2 0,539
M3 0,543
M1 0,527
M2 0,539
M4 0,532
M1 0,527
M3 0,543
M4 0,532
M2 0,539
M3 0,543
M4 0,532
M1 0,527
M2 0,539
M3 0,543
M4 0,532

V_AVG
0,537

0,540

0,536

0,545

0,542

0,544

0,542

0,540

0,542

0,545

0,543

V_MAX
0,552

0,556

0,532

0,548

0,532

0,543

0,559

0,538

0,548

0,546

0,553

V_MIN
0,519

0,519

0,533

0,539

0,546

0,540

0,520

0,530

0,530

0,547

0,529
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Figure SI-5. Plots of experimental vs. predicted BA values of PPI-Affinity on the test sets of
protein — protein affinity data.

Test set 1: R=0.62 MAE=1.8(kcal/mol) Test set 2: R=0.50 MAE=1.8(kcal/mol)
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The performance is reported as the Pearson’s Correlation coefficient (R) and the Mean Absolute
Error (MAE) between experimental and predicted BA. Test set 1 corresponds to the benchmark of
79 complexes taken from Vangone and Bonvin.! Test set 2 corresponds to the hold-out set of 90

data points extracted from PDBbind (v.2020).%
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Section SI-5. Performance of PPI-Affinity vs. a state-of-the-art biding affinity classifier.

Recently, Abbasi, W. A. et al.** developed a method using Learning Using Privileged Information
(LUPI) paradigm and Support Vector Machines, that classifies as “high” or “low” the binding
affinity of protein-protein complexes. The predictor, called LUPIA,*? was trained using sequence
and structure information. Nevertheless, in production, only the sequence information of protein
pairs is required. To build the model, the authors discretized the BA values into two classes. For
this, they used as threshold -10.86, which is the median value of the BA of the training dataset.
Here we used this value to discretize the output of PPI-Affinity and compare our protein-protein
model with LUPIA.?? The assessment was performed in two test sets (Table SI-5.1). Test set 1
corresponds to the hold-out set of 90 data points taken from PDBbind (v.2020).2 We removed four
cases that are in common with the training set of LUPIA,*? and the evaluation was performed on
the remaining 86 data points. The test set has protein-protein complexes with BA values between
-18.1 and -3.3 kcal/mol. After discretizing such values, 15 and 71 data points were classified as
“high” and “low” BA, respectively.

The Test set 2 corresponds to 26 wild-type and 151 mutants of protein-protein complexes taken
from the SKEMPI v2.0*® database. This data was employed to assess the performance of PPI-
Affinity (R = 0.78 and MAE = 1.4 kcal/mol). When only considering the wild-types, the
performance of the model was R = 0.77 and MAE = 1.1 kcal/mol.

Here, we employed the 26 wild-type complexes to compare our method to the LUPIA®? classifier.
The experimental binding affinity values of the protein pairs ranged between -16.3 and -7.0
kcal/mol. We used as reference the threshold value -10.86 and divided the data into 14 cases
classified as “high” and 12 classified as complexes with “low” binding affinity.

The benchmark of 79 protein-protein complexes employed by Vangone and Bonvin' was not used
in this comparison, as most of the cases were found in to be common with the training set of the
LUPIA*? predictor.

The performance measures used to evaluate the models were Sensitivity (Sn) and Specificity (Sp),
formulated as:

Sn=TP /(TP + FN)

Sp=TN/(TN + FP)

where:

TP: number of protein-protein complexes correctly predicted as presenting “high” BA,

TN: number of protein-protein complexes correctly predicted as presenting “low” BA,

FP: number of protein-protein complexes incorrectly predicted as presenting “high” BA,

FN: number of protein-protein complexes incorrectly predicted as presenting “low” BA,
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Table SI-5.1. Summary of the evaluation of PPI-Affinity and the LUPIA®? classifier on two sets
of protein — protein affinity data.

Test set 1 Test set 2

LUPIA® PPL-Affinity LUPIA’® PPI-Affinity

Sn 0.87 0.47 1.0 0.86

Sp  0.32 0.86 0.17 0.67

The performance measures are Sensitivity (Sn) and Specificity (Sp). Test set 1 corresponds to a test set of
86 data points taken from PDBbind (v.2020),® while Test set 2 corresponds to 26 wild-type structures taken
from the SKEMPI 2.0 dataset.”®

The sensitivity of PPI-Affinity in Test set 1 decreased (Sn = 0.47). Nevertheless, of the 15 cases
labeled as “High” in this data set, the eight misclassified differ by less than 1.7 kcal/mol from the
threshold used, which is within the margin of error of the PPI-Affinity model (MAE = 1.8
kcal/mol). From them, six BA values differ by less than 1 kcal/mol. This reflects the downside of
using a threshold to classify BA values. Furthermore, in both test sets, it can be seen that LUPIA3?
suffered from been too optimistic, as the method ranked most of the cases as with “High” affinity.

S33



Figure SI-6. Plot of experimental vs. predicted by PPI-Affinity BA values on the test set of

protein — peptide affinity data.

Test set 1: R=0.55 MAE=1.1(kcal/mol)
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The performance is reported as the Pearson’s Correlation coefficient (R) and the Mean Absolute
Error (MAE) between experimental and predicted BA. The test set 1 corresponds to the hold-out

set of 100 data points extracted from Biolip.*’
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Section SI-6. Description of the assays used to determine the binding affinities of EPI-X4
derivatives against the CRCX4 receptor.

To determine the affinity of the peptides for CXCR4, an antibody competition assay was used. The
assay is based on the competitive binding of a fluorescently labelled anti-CXCR4 antibody (clone
12G5) with CXCR4 ligands.*? For this 50,000 SupT1 cells/well were seeded in 96-well V-bottom
microtiter plates in PBS supplemented with 1% FCS. The buffer was removed by centrifugation
and cells precooled at 4°C for 15 min. The compound was serially diluted in PBS and added to the
cells together with a 12GS5 antibody at a constant concentration. Cells were incubated at 4°C for 2
hours before the unbound antibody and compounds were removed by 2 washing steps followed by
fixation in 2% PFA. Mean fluorescence (MFI) of cells was determined by flow cytometry using
FACS CytoFLEX. The isotype control was subtracted and values normalized to the 12G5-APC
stained PBS control. ICs¢ values were determined by non-linear regression using GraphPad Prism.

Table SI-6.1 Summary of the binding affinities of EPI-X4 derivatives against CRCX4.

Derivative Sequence ICs0(nM)
IM#21 ILRWSRKLPCVS 77
IM#122 ILRWSRKLPSVS 130
IM#151 IVRWSKKVPSVS 131
IM#23 ILRWSRKVPSVS 173
IM#19 ILRWSRKMPCFS 262
WSC02 IVRWSKKVPCVS 268
IM#13 ILRWSRKMPCVS 271
IM#20 ILRWSRKMPCMS 272,5
IM#10 IFRWSRKVPCVS 315
IM#18 ILRWSRKMPCLS 385
408-414 LVRYTKK 482
IM#4 IVRWSHKVPCVS 535
408-415 LVRYTKKV 562
IM#146 IYRWSRKMPCLS 584
IM#9 ILRWSHKVPCVS 615
IM#1 ILRWSKKVPCVS 732
408-421 LVRYTKKVPQVSTP 825
IM#105 ITIRWSKKVPCVS 966
IM#113 IMRWSRKLPCVS 1099
408-420 LVRYTKKVPQVST 1102
408-417 LVRYTKKVPQ 1103
408-418 LVRYTKKVPQV 1364
408-422 LVRYTKKVPQVSTPT 1407
IM#133 IVRWSKYVS 1584
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IM#111
IM#112
EPI-X4
IM#94

IM#103
408-413
JM#123
IM#125
IM#126
IM#127
IM#128
IM#129
IM#130
IM#131
IM#132
IM#134
IM#135
IM#136
IM#137
IM#138
IM#152
IM#153
IM#154
IM#155
IM#156
IM#157
JM#158
IM#159
IM#160
IM#161
IM#162
IM#92

JM#93

FLRWSRKLPCVS
PLRWSRKLPCVS
LVRYTKKVPQVSTPTL
LIRYTKKVPQVSTPTL
FVRWSKKVPCVS
LVRYTK
ILKSSKLPCLS
ILRHSRGPS
IPKWSRGVS
ILKQSRKAPL
ILRTSRFISS
IVRSRKGGTVS
IVRWSPPCVS
IVKSKKAPCVS
IVRKKVPCPS
IVKSHKAPCVS
IVRSSRKVVS
TARSKRGPCAN
IVKNQRKVPV
VVRNSKAAFH
CLKLPGGSCM
CLRLPGGSC
NIRVGGTGMF
QKVVAGVANAL
SRVLNLGPI
MRRAPAFLSA
AGRGKLIAV
NEKRFYLK
SRDKALLRL
GKHVPRAVFV
SKSGRLLLAGY
FVRYTKKVPQVSTPTL
PVRYTKKVPQVSTPTL

3353

3371

3709

6623

8748

9295
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
>10000
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Section SI-7. Description of the models used for the generation of the data related to peptide
binders to the PDZ domain of HTRA1 or HTRA3 (Tables 3 and 4).

The template used for the predictions of the binding affinity of peptides with HTRA1 was based
on the high-resolution structure corresponding to the PDB code 2JOA.* The first model of the
ensemble was used for the predictions. In the case of the HTRA3 protein-peptide complexes, the
structure with the PDB code 2PW3 was employed as template.* Chain A from the protein dimeric
structure was used since it lacks only two residues in contrast to chain B which lacks 8 residues.
Conformer A of Ser 446 was used in our model. Residues missing in the model were given to the
server by using the sequence option.
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Table SI-7. Summary of values that define the applicability domain of the protein-protein model.

MODEL 2

DESCRIPTOR MINIMUM MAXIMUM 1% PERCENTILE 99™ PERCENTILE
WNC(ECI) NO_AHR_G 0 1 0,13 1
WNC(ECI) NO_ALR_G 0 1 0,05 1
WNC(Z2) NO_PLR_V 0 46,59 0 27,418
WNC(Z2) NO_PCR_G -3,128 2,512 2,237 1,857
WNC(Z3) NO_GLU_V 0 6,545 0 5,892
WNC(Z3) NO_PLR_P2 0 5,317 0 5,195
WNC(Z3)_NO_PRT_P2 0 4,133 0 3,833
WFLC(ECI)_NO_ILE_P2 0 0,014 0 0,006
WFLC(IP) NO_PCR_AR 0 0,035 0 0,027
WFLC(IP) NO_PCR_V 0 0,002 0 0,001
WFLC(ISA) NO_PLR_AR 0 0,011 0 0,008
WNLC(ECI) NO_AHR_V 0 2,31 0,005 2,15
WNLC(ECI)_NO_NPR N1 0 81,424 0,407 67,557
WNLC(ECI) NO_NPR_DE 0 0,599 0,016 0,568
WNLC(IP) NO_BSR_N1 0  28896,816 304,609 25512,865
WNLC(IP) NO_PLR N1 0 56383,04 695,219 51326,103
WNLC(ISA) NO_BSR_N2 0  607045,942 46153,136 568135,465
WNLC(ISA) NO PLR_G 1 10458877 1,671 9535,444
WNLC(Z1) NO_AHR_DE 0 12,626 1,257 12,044
WNLC(Z1) NO_ALR_N2 0 269,091 17,584 212,189
WNLC(Z1)_NO_NCR_P2 0 15,07 1,402 12,439
WNLC(Z1) NO_PRT AR 2,423 3,379 2,075 2,05
WNLC(Z2) NO_BSR_G -4,237 4,778 -4,157 4315
WNLC(Z2) NO_ALR_N1 -112,241 2145,601 -51,79 1292,54
WNLC(Z3)_NO_AHR_AR -0,777 3,884 -0,666 2,621
WNLC(Z3) NO_ALR_AR -0,581 1,985 0,318 1,324
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MODEL 3
DESCRIPTOR

WNC(ECI) NO_AHR_G
WNC(ECI) NO_ALR_G
WNC(Z2) NO_PLR_V
WNC(Z2) NO_PCR_G
WNC(Z3)_NO_GLU_V
WNC(Z3)_NO_PLR_P2
WNC(Z3)_NO_PRT_P2
WFLC(ECI) NO_ILE_P2
WFLC(IP) NO_PCR_AR
WFLC(IP) NO_PCR_V
WFLC(ISA) NO_PLR_AR
WNLC(ECI) NO_AHR_V
WNLC(ECI) NO_NPR_N1
WNLC(ECI) NO_NPR_DE
WNLC(IP) NO_BSR_N1
WNLC(IP) NO_PLR N1
WNLC(ISA) NO_BSR_N2
WNLC(ISA) NO_PLR_G
WNLC(Z1) NO_AHR_DE
WNLC(Z1) NO_ALR_N2
WNLC(Z1) NO_NCR_P2
WNLC(Z1) NO_PRT_AR
WNLC(Z2) NO_BSR_G
WNLC(Z2) NO_ALR N1
WNLC(Z3) NO_AHR_AR
WNLC(Z3) NO_ALR_AR

MINIMUM MAXIMUM

0 1

0 1

0 46,59
-2,014 2,512
6,457
5,413
4,133
0,014
0,035
0,002
0,009

2,31
75,842
0,599
25889,035
52027,76
569128,79
10502,058
12,628
269,091
12,857
2,927
4,778
2145,601
2,876

1,65

(= = S = == e e R e e e R e R - = i e A =

-4,954
-4,237
-112,241
-1,035
-0,581

1 PERCENTILE

0,175
0,05

0
-1,888

0,142
3,807
0,064
458,054
790,424
77888,907
4,237
3,082
27,865
3,593
-2,312
-4,157
-51,79
-0,706
-0,385

99™ PERCENTILE

1
1

27,418
1,615
5,216

5,28

3,904
0,007

0,02

0,001
0,008
2,177
66,742
0,582
22440,66
47683,177
497878,815
9636,287
12,373
186,411
11,926
2,048
4315
1292,54
2,59

1,288
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Table SI-8. Summary of values that define the applicability domain of the protein-peptide model.

MODEL 1
DESCRIPTOR MINIMUM MAXIMUM 1% PERCENTILE 99™ PERCENTILE
WNC(ECT) NO_AHR N1 0 44,171 0,086 28,189
WNC(ECI) NO_ALR N1 0 6,367 0,037 4,032
WNC(IP) NO_PLR NI 0 5391,296 96,607 3672,786
WNC(ISA) NO_PLR_V 0 3188538298 543962,387 250318617,3
WNC(Z1) NO_NPR_N2 0 132,965 4,695 111,105
WNC(Z1) NO_ARM_V 0 692,98 0 323,717
WNC(Z1) NO_PRT N1 241,412 418,803 -169,452 331,683
WNC(Z3) NO_AHR N1 -57,396 149,198 37,179 58,761
WNC(Z3)_NO_UCR_N1 34,347 33,82 -32,638 25,764
WFLC(ECI)_ NO_AHR_SI30 0,007 1 0,011 0,764
WFLC(ECI) NO_PCR_V 0 0,026 0 0,015
WFLC(IP) NO_RTR_MI30 0,062 4,74 0,074 4,523
WFLC(IP)_ NO_BSR_AR 0,001 0,037 0,001 0,024
WFLC(IP) NO_UCR_RA 0,001 0.5 0,001 0,314
WFLC(IP) NO_UCR_K 46,226  12840,122 70,881 11654,217
WFLC(IP) NO_PRT_TI30 14,202 573,443 18,237 454,996
WFLC(ISA)_NO_NPR_P2 0,006 0,094 0,007 0,082
WFLC(ISA) NO_NPR_DE 0,005 0,089 0,007 0,071
WFLC(ISA)_NO_PRT _TI30 14,202 582,373 18,237 461,122
WFLC(Z1)_NO_BSR_SI30 0,009 1 0,02 0,914
WFLC(Z2) NO_PLR_K 113,123 49106,737 364,597 40834,695
WNLC(ECI)_NO_BSR_I50 0,124 1,531 0,13 1,323
WNLC(ECT)_ NO_PLR K 110,951  25195,103 240,618 18518,305
WNLC(ECI) NO_UCR S -0,109 2,746 0,071 2,166
WNLC(IP) NO_RTR_V 339,368 1437317 375,712 1305,349
WNLC(IP)_ NO_UCR_I50 11,749 62,265 18,864 56,295
WNLC(ISA)_NO_UCR_S -0,009 4,109 0.53 3,201
WNLC(Z1)_NO_RTR_SI30 0,547 1 0,562 0,95
WNLC(Z1)_NO_BSR_K 80,492  12661,731 113,741 10133441
WNLC(Z1)_NO_UCR_K 38,097 8637,703 57.65 7834,548
WNLC(Z2) NO_AHR_P2 1,46 4,799 1,647 4391
WNLC(Z2) NO_PCR N2 4,845 56,314 6,671 54,94
WNLC(Z2)_NO_NCR_P2 0,714 4,332 0,905 3,913
WNLC(Z2) NO_UCR_K 56,544 7155,916 69.33 6747,321
WNLC(Z3)_NO_PLR_SI30 0,419 0,827 0,423 0,775
WNLC(Z3) NO_NCR_RA 4361 27,671 5,534 22,597
WNLC(Z3)_NO_UCR_TI30 20,529 504,745 29,219 462,806
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MODEL 3
DESCRIPTOR

WNC(ECI) NO_AHR_N1
WNC(ECI) NO_ALR N1
WNC(@IP) NO_PLR N1
WNC(ISA) NO_PLR_V
WNC(Z1)_ NO_NPR_N2
WNC(Z1) NO_ARM_V
WNC(Z1) NO_PRT N1
WNC(Z3) NO_AHR N1
WNC(Z3)_NO_UCR N1
WFLC(ECI) NO_AHR_SI30
WFLC(ECI) NO_PCR_V
WFLC(IP) NO_RTR_MI30
WFLC(IP) NO_BSR_AR
WFLC(IP) NO_UCR_RA
WFLC(IP) NO_UCR_K
WFLC(IP) NO_PRT_TI30
WFLC(ISA) NO_NPR_P2
WFLC(ISA) NO_NPR_DE
WFLC(ISA) NO_PRT_TI30
WFLC(Z1)_ NO_BSR_SI30
WFLC(Z2) NO_PLR K
WNLC(ECI) NO_BSR_I50
WNLC(ECI)_NO_PLR_K
WNLC(ECI) NO_UCR_S
WNLC(IP) NO_RTR_V
WNLC(IP) NO_UCR_I50
WNLC(ISA) NO_UCR_S
WNLC(Z1)_ NO_RTR_SI30
WNLC(Z1) NO_BSR_K
WNLC(Z1) NO_UCR_K
WNLC(Z2) NO_AHR_P2
WNLC(Z2) NO_PCR_N2
WNLC(Z2) NO_NCR_P2
WNLC(Z2) NO_UCR_K
WNLC(Z3) NO_PLR_SI30
WNLC(Z3) NO_NCR_RA
WNLC(Z3) NO_UCR_TI30

MINIMUM MAXIMUM

0

S O O O O

241,412
-63,649
35,227

0,01

0

0,071
0,001
0,001
23,224
13,456
0,006
0,004
13,456
0,009
113,123
0,118
110,951
-0,109
305,401
13,728
0,398
0,552
83,132
38,097
1,575
4,845
0,714
58,983
0,419
4,361
16

44,171
6,367
5554,6
290472538,7
132,965
692,98
418,803
149,198
33,82

1

0,026
4,657
0,035

0,5
20147,154
566,217
0,094
0,089
577,568
0,969
47098,384
1,396
22599,466
2,746
1463,52
62,265
4,109

1
12260,904
10241,145
4,856
56,314
4332
7155,916
0,833
27,671
504,745

1 PERCENTILE

0,056
0,023
66,773
543962,387
4,695

0
-167,234
-40,292
-32,638
0,013

0

0,079
0,001
0,001
79,781
17,456
0,007
0,005
17,456
0,02
407,834
0,129
244,172
0,106
375,712
19,17
0,64
0,569
113,637
63,865
1,723
6,671
0,905
72,516
0,423
5,36
31,299

99™ PERCENTILE

27,473
4239
4292,97
2368576924
115,217
323,717
331,683
58,582
25,745
0,764
0,014
4,501
0,024
0,322
11654,217
453,162
0,081
0,071
456,221
0,906
35890,325
1,253
18485,829
2,346
1200,763
57,883
2,989
0,932
10124,995
7305,526
4,396
54,92
3,968
6550,209
0,76
22,538
462,593
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Table SI-9. Summary of the minimum and maximum values of the sequences’ length of the

peptides and proteins in each dataset.

Protein size (aa)

Peptide Receptor

Datasize Min Max Min Max

Training 922 3 29 31 957

Development 100 4 29 51 559

Test 100 4 29 51 496
EPI-X4 57 6 16 319 319
HTRA1 13 7 & 105 105
HTRA3 14 2 5 105 105

The described subsets are the training, development and test sets with data points taken from the
Biolip*” database, as well as those used to test the protein-peptide model on experimentally

measured BA data: EPI-X4, HTRA1 and HTRA3.
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Table SI-10. Descriptive statistics of the different data sets used in the modeling and test of the
protein-protein BA predictor.

Binding Affinity (AG)

Datasize Min Max Mean StdDev

Training set 648 -18.1 -3.1  -9.7 2.5

Development set 90 -18.1 43 95 2.6

Test set 1! 79 -18.6 -43 -10.1 2.8
Test set 2 90 -18.1 -33 93 2.6
Test set 328 177 -16.3 -5.5 -10.4 2.6

The reported statistics are the minimum (Min), maximum (Max), mean and standard deviation
(StdDev) of the binding free energy (AG) values in each dataset. The described subsets are: the
training, development, and test (Test set 2) sets with data taken from the PDBbind (v.2020)8
dataset, Test set 1 corresponding to the benchmark employed by Vangone and Bonvin,' and Test
set 3 corresponding to the set of 26 wild-types and 151 mutants taken from the SKEMPI?® dataset.
All the training protein-protein complexes contained two protein sequences with individual
sequence length ranging from 20 to 958 amino acids.
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Table SI-11. Descriptive statistics of the training, development and test sets used in the modeling
of the protein-peptide BA predictor.

Binding Affinity (AG)

Data size Min Max Mean StdDev

Training set 922 -144 -3.6 -82 2.1
Development set 100 -13.6 48 -85 2.0

Test set 100 -12.6 -46 -8.1 1.7

The reported statistics are the minimum (Min), maximum (Max), mean and standard deviation
(StdDev) of the binding free energy (AG) values in each dataset.
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Abstract: Multi-drug resistance in bacteria is a major health problem worldwide. To overcome
this issue, new approaches allowing for the identification and development of antibacterial agents
are urgently needed. Peptides, due to their binding specificity and low expected side effects, are
promising candidates for a new generation of antibiotics. For over two decades, a large diversity of
antimicrobial peptides (AMPs) has been discovered and annotated in public databases. The AMP
family encompasses nearly 20 biological functions, thus representing a potentially valuable resource
for data mining analyses. Nonetheless, despite the availability of machine learning-based approaches
focused on AMPs, these tools lack evidence of successful application for AMPs’ discovery, and
many are not designed to predict a specific function for putative AMPs, such as antibacterial activity.
Consequently, among the apparent variety of data mining methods to screen peptide sequences
for antibacterial activity, only few tools can deal with such task consistently, although with limited
precision and generally no information about the possible targets. Here, we addressed this gap by
introducing a tool specifically designed to identify antibacterial peptides (ABPs) with an estimation
of which type of bacteria is susceptible to the action of these peptides, according to their response
to the Gram-staining assay. Our tool is freely available via a web server named ABP-Finder. This
new method ranks within the top state-of-the-art ABP predictors, particularly in terms of precision.
Importantly, we showed the successful application of ABP-Finder for the screening of a large peptide
library from the human urine peptidome and the identification of an antibacterial peptide.

Keywords: antibacterial peptide; machine learning; AMPs database; StarPep; Gram staining-based
target; peptide library screening; human peptidome

1. Introduction

Antibiotic resistance is a life-threatening health problem worldwide, and one of the
main causes of death in developing countries [1,2]. The potential capability of peptides
to overcome resistance [3] has motivated the development of new antibiotics from an-
timicrobial peptides (AMPs) to combat multi-drug resistant pathogens and the threats of
Gram-negative infections [4,5].

AMPs are oligopeptides produced by a great variety of organisms, from prokaryotes to
eukaryotes, including humans. Due to their various functions, AMPs are considered a part
of the innate immune system of higher eukaryotes. The structural diversity of AMPs allows
them to display a broad range of antimicrobial activity against pathogenic agents, including
viruses, Gram-positive and Gram-negative bacteria, as well as fungi. Besides, the bacterial
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selectivity of AMPs over eukaryotic cells and their different action modes make peptides
excellent antibiotic candidates [3,4,6]. A widespread mechanism of antibacterial peptides
(ABPs) is the destabilization and destruction of bacterial membranes. However, these
peptides can also interfere with intracellular processes such as nucleic acid and protein
synthesis, enzymatic modulation, and protein degradation [7-9], which is an advantage
over traditional antibiotics [3,10].

Most AMPs are naturally occurring peptides that represent promising candidates for
optimization in advanced steps of the drug design process [11]. AMP-based drugs have
been clinically approved to treat both topical and systemic infections. For instance, polymyx-
ins and gramicidin S were formulated for the prevention of topical infections caused by
Pseudomonas aeruginosa and Acinetobacter baumannii. Colistin, a polymyxin derivative, is
currently used for the systemic treatment of lung infections, especially those caused by
Pseudomonas aeruginosa [12]. Due to its problematic resistance profile, Pseudomonas aerugi-
nosa is often difficult to treat by antibiotics [13]. However, it can be targeted by a variety of
different AMPs [13-15] that may be further developed into innovative therapeutics.

The specificity of peptides toward certain targets is usually highlighted as an im-
portant benefit for therapeutic intervention. Nonetheless, a downside of this feature is
the associated challenge for the drug design process, given that small structural modi-
fications can significantly influence both the activity and pharmacokinetic properties of
the peptides. Consequently, optimizing the precision of tools for the screening of large
datasets of peptides is of utmost relevance to improve efficiency at the early steps of drug
design processes.

For over a decade, growth in the publicly available data of AMPs has been witnessed,
with the subsequent development of several machine learning (ML)-based predictors in-
tegrated with AMP databases such as DAMP [16], APD3 [17], CAMP [18], CAMPg3 [19],
LAMP [20], DRAMP [21], ADAM [22], and DBAASP [23]. However, most of these predic-
tion tools only discriminate between AMPs and non-AMPs. This is a highly ambiguous
outcome given the broad scope of antimicrobial activity, which typically refers to more than
20 biological functions, such as the annotations in APD3 [17].

A group of predictors addressed this issue by applying a hierarchical classification
scheme where first the peptides are classified as AMPs or not, and the positive cases are
then sub-divided into a couple of classes based on selected AMP functions (e.g., antibac-
terial, antiviral, and antifungal peptides). Examples of such predictors, which include
the antibacterial function are AntiBP2 [24], ClassAMP [25], MLAMP [26], iAMPpred [27],
AMAP [28], AMP Scanner [29,30], and AMPDiscover [31]. However, of them, only AMP
Scanner vr.1 predicts a type of bacterial target (E. coli or S. aureus) for the identified ABP [29].

In this context, we implemented a two-level predictor focused on antibacterial pep-
tides (ABPs), named ABP-Finder, whose inner classifier estimates the Gram staining type
of the putative targets. This tool leverages random forest (RF) classifiers trained with
peptide data extracted from StarPep, the largest up to date public database of AMPs [32].
ABP-Finder categorizes ABPs and non-ABPs in the first classification level. Subsequently,
the peptides identified as ABPs are sub-classified according to the Gram staining type of
the potential targets i.e., exclusively Gram-positive, exclusively Gram-negative bacteria, or
broad-spectrum peptides with expected activity against both types of bacteria. The ABPs
used to develop this predictor show activity against at least one of nine representative
bacterial targets (see Dataset section), among which are species with known multi-drug
resistance such as Acinetobacter baumannii, Enterococcus faecium, Klebsiella pneumonia, Pseu-
domonas aeruginosa, and Staphylococcus aureus. With ABP-Finder, we weigh precision as
the main performance feature of the prediction. In this way, we boost the efficiency of the
screening step at the early stages of the drug design process aiming at the development
of peptide-based antibiotics. Remarkably, we prove the efficacy of ABP-Finder for such
screenings with the identification of a peptide from the human urine peptidome, displaying
antimicrobial activity against Pseudomonas aeruginosa.
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2. Materials and Methods
2.1. Data Collection and Pre-Processing

The models developed in this study were derived from the StarPep database [32,33].
This resource, as described by the authors, is a non-redundant compendium from 40
publicly available data sources, which encompasses annotations of more than 20 functions
in approximately 45,000 AMPs, with nearly 8000 entries labelled as antibacterial peptides.

Before describing the construction of our training and test sets, we point out a short-
coming of several AMP-based predictors found in the literature [16-22], whose models
do not obey the first principle dictated by the Organisation for Economic Co-operation
and Development (OECD) to build reliable Quantitative Structure—Activity Relationship
(QSAR)/ML-based models [34] (https:/ /doi.org/10.1787/9789264085442-en (accessed on
16 November 2022)). This principle is stated as “a defined endpoint”. Commonly, AMPs are
annotated as such regardless of the target, mechanism, source, the method used to study
the activity, to name some characteristics. The lack of such detailed information makes
the discrimination between AMPs and non-AMPs a largely ambiguous endpoint for data
analysis. In consequence, several criteria must be introduced to better define the modelled
data and thus bring reliability to the predicted outcome. Notably, the most recent AMP
predictors [24-29,31] have designed their modeling approaches to break down the AMP
annotation into three classes (typically antibacterial, antifungal, and antiviral peptides).
This strategy is a suitable approach to fulfil the need for a defined endpoint.

Our work focused on the identification of ABPs. To this end, we extracted peptides
from the StarPep database ranging between 5 and 50 residues, and whose composition
contains only the 20 standard amino acids. To further refine the selection of ABPs, we
only extracted those peptides annotated as active against at least one of the following
targets: Acinetobacter baumannii, Bacillus subtilis, Enterococcus faecium, Escherichia coli, Kleb-
siella pneumonia, Listeria monocytogenes, Pseudomonas aeruginosa, Streptococcus agalactiae, and
Staphylococcus aureus. In this way, we discarded entries that are annotated as ABPs without
information of their targets, and those exclusively reported with activity against underrepre-
sented targets in the entire database. The selected species cover a set of both Gram-positive
and Gram-negative bacteria and are examples of relevant targets for therapeutic appli-
cations. The peptides labeled as non-ABP for our learning process are not annotated as
antibacterial, against any target, in StarPep, but with a different function such as antifungal
or anticancer, among others. This approach clearly carries the risk of mislabeling non-ABP
in our dataset, due to insufficient annotation of the peptide in the original source. The
pseudo-negative cases in the training data lead to a more stringent prediction of positive
cases, and consequently lower false-positive rate and higher precision. The downside is
the expected lower recall as the true positives can be also diminished. Nonetheless, the
favourable precision is aligned with our stated goal of boosting the precision of the classifier
instead of its recall or a combined metric such as accuracy or AUC.

Hence, we extracted a total of 22,707 peptides to design our training and testing
schemes. This collection was partitioned into four datasets: training, development, vali-
dation, and test sets. The two first are intended for the learning process, while the others
are meant for testing the models with hold-out data. The development (Dev) set was used
to monitor the generalization of the models built during the optimization of the hyper-
parameters in the learning algorithm. Usually, the terms development and validation set
are applied indistinctively to a dataset used for the above-mentioned purpose. In this work,
we made a distinction between these nomenclatures and reserved the term validation for
a hold-out set, i.e., peptides that are not used in any step of the learning process. The
difference between the validation and the strict test set is that we built the validation set in
a way that its peptides share high similarity (>90% identity) with at least one peptide in
the training set (excluding identical matches). In turn, the test set was built in a way that its
peptides share less than 90% identity among them, and with any peptide in the training
data. Consequently, the test set comprises non-redundant peptides that are also not closely
represented in our training. Challenging a peptide predictor in both scenarios, one that
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closely resembles the training conditions (without strict superposition), and another more
distant setup, is important to assess the biasing effect on the generalization of the model
due to the characteristics of the training data.

Finally, a production dataset was generated by combining the training and the devel-
opment sets. The purpose of this set is to perform a final re-training of the model with
an augmented dataset, while keeping the selection of descriptors and configuration of
hyper-parameters as optimized with the training and development sets. Figure 1 depicts
the workflow followed to obtain the four datasets.

Filters: FSEIHugg Algorithr: ™
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Figure 1. Workflow for the preparation of the datasets. The peptides extracted from StarPep were
clustered with CD-Hit and subsequently distributed among the four sets used for training and testing
the predictor. The final panel of the pipeline contains information about the number of peptides in
every subset as well as their classification according to StarPep.

Together with the peptide sequences and their classification as ABP or non-ABP, we
also extracted, from StarPep, the information about the Gram staining type of their known
targets. Accordingly, we further categorized the ABPs into three activity classes: exclusively
against Gram-positive targets (Gram+), exclusively against Gram-negative targets (Gram-),
and broad-spectrum peptides. The four datasets resulting from the previous splitting were
also used to train and assess the secondary classifier based on the Gram staining type of the
targets. For this purpose, the non-ABP peptides were removed from such datasets. Table 1
summarizes the number of peptides per type of Gram staining class in the four datasets.

Table 1. Number of peptides per type of Gram staining class in the training, development, validation,
and test datasets.

Gram+ Gram— Broad Spectrum
Training 351 478 4983
Development 52 105 911
Validation 37 82 546
Test 27 38 315

2.2. Performance Measures

In this section, we summarize the formulations of the performance measures used to
assess the different models described here. The measures are sensitivity (Sn), precision (Pr),
accuracy (Acc), F1 score, and the Mathew Correlation Coefficient (MCC) [35]. All of them
are formulated in terms of the elements of a binary confusion matrix: true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN).
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Besides, we define an ad-hoc measure named Fitness—Robustness Score (FRS) that is
specifically used as a scoring function to tune the values of the hyper-parameters of the
learning technique.

MCC =

Rt +Rev +Rp

FRS = ( 3

2

) ~ (Rr — Rey)® = (Rr — Rp)®

The FRS is a quality measure that provides a consolidated value for the performance of
a particular model considering its goodness-of-fit, generalization, and robustness. The first
term corresponds to the average performance in the following assessments: re-substitution
(RT, fitting the training data), 10-fold cross-validation (RCV, within the training data),
and generalization (RD, using the development set). The other two terms weigh the
robustness of the model by measuring the deviations from the performance in training
samples when the model is evaluated in hold-out data (cross-validation and development
set). We formulated this ad-hoc measure as a function of another base quality measure,
labelled as R, which should be evaluated in the different assessment schemes. For this
study, we selected the MCC as the base measure to evaluate our fitness-robustness score. In
the case of the multi-classifier trained to distinguish between the Gram staining classes, the
average MCC value among the three classes was used as the base measure. The average
was weighted according to the number of peptides in each class.

The FRS, when computed as a function of the MCC, has an optimum maximum value
of one. We leveraged this score to identify optimum values for the hyper-parameters of the
random forest [36] algorithm used to develop our models.

2.3. Machine Learning Approach and Software

The classifiers developed in this work were random forest (RF) [36] predictors, based
on the implementation of this technique in the WEKA environment [37]. RF belongs to the
family of ensemble methods [38] with base classifiers formed by decision trees. Recently, RF
has been compared with deep learning approaches showing comparable performance for
modeling AMP datasets [39]. There, the authors conclude that no definitive evidence was
found to support using deep-learning approaches for this problem, knowing the increased
algorithmic complexity and computational cost of these methods.

Within RF, all the trees provide a prediction for every instance entering the forest,
and the unified outcome is obtained as the majority vote among all the predictions. The
hyper-parameters optimized during the learning process were the number of trees, the
maximum number of descriptors used to build a tree (these descriptors are taken at the
beginning of the training process from the global pool of attributes), and the maximum
depth of the trees. In addition, the minimum number of instances in the final leaves of the
trees was fixed to 10 in the case of the main classifier (ABPnon-ABP), and to five for the
multi-classifier (Gram+/Gram— /broad spectrum).

The peptide descriptors fed to the learning algorithm were computed with the ProtDCal-
Suite [40] using the configuration files enclosed in the Supplementary Material. The Prot-



Antibiotics 2022, 11, 1708

6 of 18

DCal module [41] is intended for the calculation of general-purpose and alignment-free
descriptors of amino acid sequences and protein structures. These features are descriptive
statistics (such as the variance, average, maximum, minimum, percentiles, etc.) of the
distribution of amino acid properties (such as hydrophobicity, isoelectric point, molar
weight, among others), in multiple groups of residues extracted from a given protein or
peptide. The program possesses additional procedures that modify the intrinsic properties
of a residue according to its vicinity in the sequence, thus adding connectivity informa-
tion in the descriptors. The features derived from ProtDCal have been used by us and
other authors to develop machine-learning-based predictors of posttranslational modifi-
cations [42,43], protein—protein interaction [44], enzyme-like amino acid sequences [45],
residues critical for protein functions [46], and antibacterial peptides [47,48], although with
smaller databases. The project files enclosed in the Supplementary Material contain the
setup used to compute all the descriptors employed in this work.

2.4. Web Servers Available for ABPs Predictions

In this section, we briefly describe the most relevant state-of-the-art ABP predictors
that are available via web server tools. ClassAMP was among the first methods that broke
down the AMP family thus allowing the prediction of ABPs specifically [25]. This tool
was trained with peptides from the CAMP database [18] and used RF and support vector
machine (SVM) [49] algorithms to identify antibacterial, antifungal, and antiviral peptides.

MLAMP, a multi-label classifier of AMPs was developed using a variant of Chou’s
pseudo amino acid composition (PseACC) features [50] to build an RF-based classifier that
firstly distinguishes AMP from non-AMPs, and then subdivides the biological activity into
antibacterial, anticancer, antifungal, antiviral, and anti-HIV [26].

Similarly, the iAMPpred predictor combines compositional, physicochemical, and
structural features into Chou’s general PseACC as input variables for an SVM multi-
classifier [27]. This work reunited peptides from the databases CAMPR3 [19], APD3 [17],
and AntiBP2 [24]. The multi-classifier uses three categories in the outcome variable: an-
tibacterial, antifungal, and antiviral peptides [27].

The Antimicrobial Activity Predictor (AMAP) [28], with a hierarchical multi-label
classification scheme, was trained with AMPs annotated with 14 biological activities in
the APD3 database and a designed subset of non-AMP. The models used amino acid
composition features to feed SVM and XGboost tree [51] algorithms.

The introduction of the AMP-Scanner webserver represented a significant improve-
ment with respect to other predictors. AMP-Scanner vr.1 consists of two RF classifiers,
trained with peptides selected from multiple sources [18,52,53]. The first output of the
classifier is the identification of ABPs. The second is a classifier trained to distinguish
between peptides with Gram-positive or Gram-negative targets, using data of S. aureus and
E. coli as reference targets. The authors refer that peptides predicted with scores within the
range [0.4-0.6] for both classes should be considered as active against both types of targets
(broad-spectrum peptides) [29]. On the other hand, AMP-Scanner vr.2 is based on a Deep
Neural Networks (DNN) classifier fed with ABP data only, obtained from the updated
version of the ADP3 database [19,30].

Very recently, AMPDiscover [31] was developed by mining AMP data from StarPep [33].
AMPDiscover encompasses several binary (active/non-active) predictors of functions such
as antibacterial, antiviral, antifungal, and antiparasitic peptides. The authors analyzed the
performance of RF to model the antibacterial peptides data, which agrees with our choice
of this learning scheme for our models.

2.5. Experimental Determination of Antibacterial Activity

Two batches of chemically synthetized peptides from different providers (KE Biochem
and the U-PEP facility at Ulm University) were used to assess antimicrobial effects. An-
tibacterial activity was evaluated by agar diffusion as previously described [54]. Bacteria
were cultured in liquid broth at 37 °C overnight, pelleted by centrifugation, and washed in
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10 mM sodium phosphate buffer. Following resuspension, optical density was determined
at 600 nm and 2 x 107 bacteria were seeded into a Petri dish in 1% agarose. After cooling
at 4 °C for 30 min, 3-5 mm holes were placed into the 1% agarose. Peptides adjusted to
the desired concentration in 10 pL of buffer were filled into the agar-holes. Following
incubation at 37 °C in ambient air for 3 h, plates were overlaid with 1% agarose, tryptic soy
solved in 10 mM phosphate buffer. Inhibition zones in cm were determined after 16-18 h in-
cubation time at 37 °C in 5% CO;. LL37 at a concentration of 100 ug/mL served as positive
control. Antimicrobial activity was tested on the following bacterial strains: Bacillus subtilis,
Streptococcus agalactine ATCC 12403, Staphylococcus aureus MRSA ATCC 43300, Klebsiella
pneumoniae Extended Spectrum (3-Lactamase (ESBL) ATCC 700603, Pseudomonas aeruginosa
(ATCC 27853) and Listeria monocytogenes (ATCC BAA-679/EGD-e).

3. Results and Discussion

Below, we summarize the characteristics of the ML-based models developed in this
work, as well as their performance relative to the available state-of-the-art ABP predictors.
We also introduce a web server, ABP-Finder, which permits the free and user-friendly
screening of large peptide libraries. Finally, we present the application of ABP-Finder for
the screening of peptides obtained from the human urine peptide. Notably, ABP-Finder
permitted to screen and propose a reduced set of eight ABP candidates out of an initial
pool of 4696 peptides. From them, one active hit was experimentally validated with activity
against Pseudomonas aeruginosa.

3.1. Modeling Antibacterial Peptide Data

Feature selection: The feature selection process comprises three steps. (i) First, the
Information Gain (IG) [55,56] of all the descriptors was calculated with WEKA, retaining
only those descriptors whose IG is >5% of the information content of the class variable. This
procedure reduced an initial set of 11,298 descriptors to 2746, whose information contents
are the most closely related to our end point variable. (ii) Secondly, the redundancy in this
subset of features was removed, by clustering the descriptors using a quality-threshold-
based [57] clustering algorithm, which employs the Spearman correlation coefficient [58]
as the similarity measure to group the descriptors. A correlation cut-off of 0.9 was used
to form the clusters. The outcome of these steps is thus a non-redundant and smaller
dataset that contains only the central attributes of the formed clusters. This step rendered
1242 attributes. (i) Given the still large set of features, a last selection step was used by
employing the Wrapper Evaluator and the Classifier Subset Evaluators of WEKA coupled
with a genetic search algorithm [59]. The Wrapper Evaluator used five-fold cross-validation
on the training data to assess the models obtained from diverse subsets of descriptors.
Such models were built with an RF whose number of trees was limited to 15. Next, the
Classifier Subset Evaluator used the performance with the development set to identify the
most suitable pool of descriptors to train the RE. For both evaluators, the F1 measure was
used to score all the assessed subsets of attributes. The genetic search employed to explore
the space of all possible combinations of attributes was configured with 20 chromosomes
(subsets of attributes) per population, 500 generations, and probabilities of cross-over and
mutation of 0.6 and 0.1 respectively. The optimal subset resulting from these selection
steps comprised 281 descriptors. A project file type IDL (Individual Descriptor Labels)
is enclosed in the Supplementary Material; this project file can be uploaded directly to
ProtDCal-Suite to compute the selected 281 descriptors in new peptide datasets.

Tuning hyperparameters: The hyperparameters of the RF were explored using a grid
search according to ranges and binning schemes summarized in the top-left panel of
Figure 2. The ad hoc FRS function was used to determine the optimum combination of
hyperparameters’ values, which was obtained with 75 trees each one built from a pool of
40 descriptors and a maximum depth of 14 splits. Such combinations of values rendered
the maximum FRS at 0.517.
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Figure 2. Tuning scheme of the RF’s hyperparameters. The top-left panel summarizes the boundaries
and binning of the grid search with the three hyper-parameters. This panel also shows the optimum
value found for the FRS function and the values of the hyper-parameters in the corresponding
solution. The remaining panels show surfaces plotted as heat maps keeping one of the hyper-
parameters fixed at its optimum value. The dark regions indicate the best solutions. The optimum
regions are highlighted with a dashed circle. The plots highlight that the most critical parameter is
the depth of the trees, while high-scored models can be obtained with almost any value of the other
hyper-parameters; solutions with a depth below 10 are poorly scored.

3.2. Modeling Data of Gram-Staining Types

This model was trained with the same set of 281 descriptors obtained from the feature
selection procedure to discriminate between ABPs and non-ABPs. The training, devel-
opment, validation, and test sets used for this model were obtained from the splitting
described in the Methods section, by removing the non-ABP present in these datasets. The
ABPs were then subdivided according to the Gram-staining type of their known targets.

Due to the imbalance in the number of instances from each class, the cost-sensitive RF
multi-classifier was trained by applying a cost matrix in the training process with distinct
weights for the different types of misclassified cases. The cost matrix takes the form shown
in Figure 3.

Prediction

BS G- G+
1
0 1 1 BS =
Q
10.425 0 1 G- o
Q
14.197 | 1.362 0 G+ a

Figure 3. Cost matrix applied during the training process of the multi-classifier based on the Gram-
staining types of the targets.

The multi-class classifier was built with a cost-sensitive learning scheme, which aims
to balance the effective error between pairs of classes considering their different prevalence
in the training data. The costs were defined as the inverse ratio of the imbalance between
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the two classes involved in the matrix element, i.e., given the imbalance between Gram+
and broad-spectrum (BS) peptides in the training data is [1:14.197], then the cost of a Gram+
peptide classified as BS was fixed at 14.197 and the cost of a BS peptide classified as Gram+
remained at 1. This approach diminishes the trend towards BS predictions that originates
due to the highest representation of this class in the training data.

The costs affect the training process by re-weighting the training samples in the
calculation of the different misclassification errors during the training. No re-weighting is
applied to the instances in the test datasets.

Tuning hyperparameters: Analogous to the previous model, the hyper-parameters of the
RF were explored using a grid search with the ranges and binning schemes summarized in
the top-left panel of Figure 4. The FRS function rendered a maximum value for a solution
with 35 trees, 20 descriptors per tree, and a maximum depth of 7 splits. Such combinations
of values rendered the maximum FRS at 0.185. The lower value of the optimum FRS value,
compared with the ABP/non-ABP model, indicates the larger difficulty of discriminating
between the three classes of Gram-staining types. Such difficulty is a natural consequence
of the overlap between the classes, given that the peptides in the broad-spectrum category
should gather intrinsic features of the other two classes.

Grid search of hyper-parameters: 0.18
Hyper-parameter =[min. : max. : step] P 0 %
- No.of Trees (1) =[5 :100: 5] =35 _—
o
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Figure 4. Tuning scheme of the RF’s hyper-parameters. The top-left panel summarizes the boundaries
and binning of the grid search with the three hyper-parameters. This panel also shows the optimum
value found for the FRS function and the hyper-parameters’ values of the corresponding solution.
The remaining panels show surfaces plotted as heat maps keeping one of the hyper-parameters
fixed at its optimum value. The dark regions indicate the best solutions. The optimum regions are
highlighted with a dashed circle. As in the exploration for the model ABPs/non-ABPs, the plots show
that the most critical parameter is the depth of the trees. Nonetheless, the opposite trend is observed
because high-scored models are only obtained with low (<8) depth values. The smaller size of the
dataset for this model, as compared with the previous one, leads to the occurrence of overfitting
when deep trees are trained.

3.3. Applicability Domain

Following the regulatory principles for QSAR models established by the OECD, we
discuss the applicability domain (AD) of our models. Both of our models were built using
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peptides with lengths between 5 and 50 residues and containing exclusively the 20 standard
amino acids. Thus, these length and composition boundaries constitute soft limits of our
applicability domain. A quantitative approach for the AD is provided via the range of the
descriptors’ values in the training or production dataset. In the Supplementary Material,
we provide the minimum and maximum values of the descriptors in these datasets. As
part of the implementation of these predictors, we automatically evaluate whether any new
peptide is found within these ranges or not. If any of the descriptor values of a new peptide
falls outside the training ranges, this peptide is labelled as an outlier and the corresponding
information is given in the outcome of the program.

3.4. Performance of ABP-Finder in the Context of the State-of-the-Art

Predictors of antibacterial peptides: We compare the performance of our models to five
ML-based ABP predictors by employing the hold-out validation and test sets, respectively
(Tables 2 and 3). In addition, we employ an external test set originally used by Veltri
et al. [30] to assess the performance of AMP-Scanner vr2 (Table 4). We present the perfor-
mance of our models obtained with the training data only, and with the production dataset.
Additionally, we show the performance of our tool considering only those instances that
are within the AD of our models.

Table 2. Comparison with external predictors in the validation set. The values in bold denote the
best performance for a given measure.

Webserver Algorithm Pr. Sn. Acc.
ClassAMP SVM 0.46 0.33 0.59
MLAMP RF 0.48 0.82 0.59
iAMPred SVM 0.48 0.90 0.58
AMPScanner_v1 # RF 0.50 0.98 0.61
AMPScanner_v2 * DNN 0.48 0.97 0.58
AMPDiscover RF 0.50 0.99 0.61
ABP-Finder (Training) RF 0.72 0.95 0.84
ABP-Finder (Training, AD) RF 0.70 0.95 0.83
ABP-Finder (Production) RF 0.75 0.95 0.85
ABP-Finder (Production, AD) RF 0.75 0.95 0.85

AD: only instances within our applicability domain are considered as valid predictions. # AMPScanner_v1 only
considers peptides > 10 AA for the predictions. * The method was updated on 20.02.2020.

Table 3. Comparison with external predictors in the test set. The values in bold denote the best
performance for a given measure.

Webserver Algorithm Pr. Sn. Acc.
ClassAMP SVM 0.34 0.41 0.61
MLAMP RF 0.38 0.77 0.59
iAMPred SVM 0.36 0.81 0.56
AMPScanner vr.1 # RF 0.50 0.80 0.68
AMPScanner vr.2 * DNN 0.37 0.84 0.57
AMPDiscover RF 0.42 0.94 0.62
ABP-Finder (Training) RF 0.77 0.68 0.86
ABP-Finder (Training, AD) RF 0.78 0.67 0.86
ABP-Finder (Production) RF 0.80 0.71 0.87
ABP-Finder (Production, AD) RF 0.80 0.70 0.87

AD: only instances within our applicability domain are considered valid predictions. # AMPScanner_v1 only
considers peptides > 10 AA for the predictions. * The method was updated on 20 February 2020.



Antibiotics 2022, 11, 1708

110f18

Table 4. Comparison with external predictors in the test set built by Veltri et al. [30]. Redundant
instances with our training set were removed. The values in bold denote the best performance for a
given measure.

Webserver Algorithm Pr. Sn. Acc.
ClassAMP SVM 0.36 0.27 0.66
MLAMP RF 0.51 0.65 0.72
iAMPred SVM 0.74 0.90 0.88
AMPScanner vr.1 # RF 0.64 0.77 0.81
AMPScanner vr.2 * DNN 0.82 0.89 0.91
AMPDiscover RF 0.83 0.84 0.91
ABP-Finder (Training) RF 0.83 0.43 0.81
ABP-Finder (Training, AD) RF 0.83 0.51 0.86
ABP-Finder (Production) RFE 0.84 0.48 0.83
ABP-Finder (Production, AD) RF 0.84 0.57 0.86

AD: only instances within our applicability domain are considered valid predictions. # AMPScanner_v1 only
considers peptides > 10 AA for the prediction. * Performance based on the model from the original training in
Veltri et al. [30], where the cases in this test set are held out of the training process.

Tables 2 and 3 show that our models achieved the best precision and global accuracy
in the test and validation sets. Particularly, the precision was significantly higher with
ABP-Finder with respect to the other methods. This is a key feature to be leveraged when
filtering large peptide libraries because the main aim during the screenings for new hits is
to avoid false-positive predictions.

We also challenged our models with an external test set designed by Veltri et al. [30]
(Table 4) to further assess the robustness of our predictions. This dataset is qualitatively
different from our test set since it is not derived from the StarPep database as all our data,
and therefore it was not subjected to any of the curation procedures carried out by the
StarPep’s developers.

These comparisons confirm that our RF-based models render the most precise pre-
dictions, although the sensitivity (and consequently the global accuracy) decays in this
case compared with other ABP predictors. Nevertheless, we note the importance of a low
false-positive rate in virtual screening analyses, which highlights the higher practical value
of our predictors.

Predictors of Gram-staining types: Our antibacterial predictor was designed to provide
an estimation of against which type of bacteria are the peptides active. Therefore, we tested
how our multi-classifier performs for the Gram+, Gram—, and Broad-Spectrum classes
compared to AMP-Scanner vr.1. Tables 5 and 6 summarize the comparison with respect to
precision and sensitivity of our models and AMP-Scanner vr.1 on the validation and test
sets, respectively. The performance measures were computed for the three classes (Gram+,
Gram—, and Broad Spectrum).

Table 5. Comparison of ABP-Finder with AMP-Scanner_v1 in the discrimination between Gram-staining
classes within the validation set. The values in bold denote the best performance for a given measure.

Method Gram+ Gram— Broad Spectrum

Pr Sn Pr Sn Pr Sn
AMPScanner vr.1 # 0.04 0.19 0.16 0.42 0.81 0.27
ABP-Finder (Training *) 0.63 0.73 0.91 0.38 0.90 0.97
ABP-Finder (Production *) 0.62 0.70 0.85 0.48 0.91 0.96

AD: only instances within our applicability domain are considered valid predictions. # AMPScanner_v1 only
considers peptides > 10 AA for the predictions. * There are no instances outside the AD of the model.
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Table 6. Comparison of ABP-Finder with AMP-Scanner_v1 in the discrimination between Gram-
staining classes within the test set. The values in bold denote the best performance for a given

measure.

Method Gram+ Gram— Broad Spectrum
Pr Sn Pr Sn Pr Sn
AMPScanner vr.1 # 0.08 0.42 0.13 0.33 0.88 0.23
ABP-Finder (Training) 0.44 0.41 0.90 0.24 0.87 0.96
ABP-Finder (Training, AD) 0.44 0.39 0.90 0.24 0.87 0.96
ABP-Finder (Production) 0.44 041 0.82 0.24 0.88 0.96
ABP-Finder (Production, AD) 0.44 0.39 0.82 0.24 0.88 0.96

# AMPScanner_v1 only considers peptides > 10 AA for the predictions.

Our models largely outperformed AMP-Scanner vr.1, particularly in terms of precision
when detecting the specific types of Gram-staining types (Gram+ and Gram—). Regarding
the prediction of broad-spectrum peptides, both methodologies delivered the same pre-
cision. However, in this case we greatly surpassed the sensitivity of AMP-Scanner vr.1,
thus making more accurate predictions overall. Notably, our multi-classifier showed the
best performance for the three classes of Gram-staining types, thus providing a valuable
complement to the identification of antibacterial peptides.

The comparison with the state-of-the-art tools showed that, together with ABP-Finder,
the top-ranked methods in our tests were iAMPred, AMP-Scanner vr2, and AMPDiscover.
These approaches were thus confirmed as suitable tools for ABP identification. Nonetheless,
ABP-Finder outperformed these predictors, particularly in terms of precision. Importantly,
as a distinctive feature, we complement our outcome with an estimation of the Gram-
staining type of the putative targets, which can be further pinned down to specific bacterial
species by considering that our models were trained with data from nine representative
targets (see Dataset section). Furthermore, unlike previously published tools [24-30],
we provide an estimation of our applicability domain, which delivers reliability to the
predicted outcome.

3.5. ABP-Finder Web Server

Our emphasis in the application of regulatory principles to the development of ML-
based predictors relies on our commitment to offer a freely accessible and well-maintained
tool to reliably screen peptide libraries. To this end, we implemented our models in a user-
friendly web server named ABP-Finder (https:/ /protdcal.zmb.uni-due.de/ABP-Finder/
(accessed on 16 November 2022)). This tool allows screening seamlessly thousands of
peptides with a single submission job. The ABP-Finder server delivers for each entry
a prediction of the antibacterial function, as well as whether each specific peptide is or
not within the AD of our models. ABP predictions are also accompanied by a Gram-
staining-based estimation of the putative targets of the antibacterial peptides. Furthermore,
the web server offers the functionality of screening regions within a long amino acid
sequence to identify promising antibacterial fragments. This application of ABP-Finder’s
models was recently leveraged by us for the identification of antibacterial motifs within
[32-microglobulin [60].

3.6. Virtual Screening of the Human Urine Peptidome

In this section, we describe the successful application of ABP-Finder to screen a peptide
library obtained from the human urine peptidome. The library contains 4696 endogenous
peptide fragments, detected in the Core Facility Functional Peptidomics at the University
Hospital in Ulm, Germany. The peptide library was screened for antibacterial activity
following the workflow depicted in Figure 5.
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Figure 5. Schematic representation of the virtual screening process carried out on a library of peptides
from the human urine peptidome.

ABP-Finder was used to score the original 4696 peptides of the library, obtaining
43 candidates with a probability score larger than 0.6, and within the applicability domain
of the model. Subsequently, Blastp [61] was used to cross-align these peptides with known
ABPs of our training samples. From there, we excluded two hits that showed 100%
identity and coverage in the alignment with previously reported ABPs and therefore
did not have value as newly identified peptides. Afterward, we clustered the peptide
sequences using CD-Hit [62] with a cut-off of 90% of identity, and minimum coverage of
the shortest sequence in the alignment of 90%. From this analysis, eleven clusters were
obtained, from which we extracted the shortest sequence as representative of each cluster.
Three polyproline peptides, containing none or only one residue other than proline were
finally discarded because we considered them unsuitable as candidates for possible lead
compounds due to synthetic unfeasibility and the highly homogenous character of their
sequences. The final eight candidates (Table 7) were experimentally evaluated using an
agar diffusion assay, leading to one active hit, Urine-3462, against Pseudomonas aeruginosa.

Table 7. The resulting eight ABP candidates from the virtual human urine peptidome screening and
some of its global sequence descriptors. Global peptide descriptors were calculated using the Peptide
Design and Analysis Under Galaxy (PDAUG) package [63].

Peptide Sequence Length pl Total Charge * Hy dr(();plﬁzljlicity " GRAVY Index &
U2162 KKVLGAFSDGLAHLDNLKGT 20 10.42 1.09 0.08 -0.12
U687 DKTNVKAAWGKVGAHAGEYGAE 22 9.53 0.10 0.01 -0.73
U4507 WLKEGVLGLVHEF 13 7.70 -0.90 0.39 0.52
U3462 RVDPVNFKLLSHCLLVT 17 10.03 1.03 0.18 0.67
U2125 KAVGKVIPELNGKLTGM 17 10.99 1.99 0.15 0.12
U1930 IAGVGAEILNVAKGIRSF 18 11.40 0.99 0.35 0.92
U1982 IFVKTLTGKTI 11 13.0 1.99 0.32 0.86
U2273 KVVAGVANALAHK 13 13.0 2.09 0.24 0.67

# Total Molecular Charge given at pH = 7. * Eisenberg scale. ¥ GRAVY (Grand Average of Hydropathy) is
calculated as the sum of hydropathy values of all the amino acids, divided by the number of residues in the
sequence [64]. Positive GRAVY values indicate hydrophobic; negative values mean hydrophilic.
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3.7. Experimental Evaluation of the Reduced Set of Peptides from the Human Urine Peptidome

To test the antimicrobial potential of the eight candidate peptides identified with
ABP-Finder, a radial diffusion assay was carried out, allowing the sensitive detection of
antibacterial activity. Activity was determined against various Gram-positive and Gram-
negative bacteria species, including Bacillus subtilis, Streptococcus agalactiae, Staphylococcus
aureus (MRSA), Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae (ESBL). While
the peptide Urine-3462 was active against Pseudomonas aeruginosa, no relevant antibacte-
rial activity could be detected at concentrations of 100 ug/mL and 1 mg/mL of the other
peptides. Urine-3462 exhibited a dose-dependent growth of inhibition of Pseudomonas aerug-
inosa, comparable to the inhibitory activity observed for the well described antimicrobial
peptide LL37 [54,65], which served as a positive control (Figure 6).

14
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Figure 6. A radial diffusion assay indicated that the peptide Urine-3462 is active against the Pseu-
domonas aeruginosa strain ATCC 27853. Inhibition zones are quantified in cm. The mean values and
standard deviations of six independent experiments are shown. LL37 at 100 ug/mL was used as
positive control (see Table S3 for exact values).

4. Conclusions

Antibacterial peptides are promising candidates for a new generation of antibiotics
designed to address the challenging problem of drug resistance in bacteria. With ABP-
Finder we provide a tool that delivers top-ranked predictions as established by several
comparisons with prominent examples of the state-of-the-art ABP predictors. Remarkably,
ABP-Finder produces the most precise predictions in validation tests with known data.
Furthermore, unlike other tools of the state-of-the-art that were used for comparison in this
work, we present a successful application of the method in a real-life scenario dealing with
the massive screening of unlabeled peptides from the human urine peptidome.

We implemented this RF-based predictor in the user-friendly and freely accessible
web server ABP-Finder, which was also leveraged in the identification of the new ABP hit
from a large library of peptides derived from the human peptidome.

In this way, the combination of in silico screening and experiments confirmed the
applicability of ABP-Finder as a screening tool for the early steps of the design of peptide-
based antibiotics. To the best of our knowledge, no other publicly available ABP predictor
has delivered a similar study leading to the successful identification of an active hit from
tens of thousands of unlabeled peptides. Further developments of our predictor will include
its combination with target-specific models. This will allow improving the design of broad-
spectrum candidates, as well as to orient the selection of targets in massive screenings of
bioactive peptides.
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Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/antibiotics11121708 /51, The Supporting Information is available
free of charge and includes the project files containing the setup used to compute all the descriptors
employed in this work, and the AD of the datasets.
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Table S1. Number of peptides per type of Gram staining class in the training, development,
validation and test datasets.

Gram~+ Gram- Broad Spectrum

Training 351 478 4983
Development | 52 105 911
Validation 37 82 546
Test 27 38 315



Section S1. ProtDCal’s configuration for vicinity operator Autocorrelation of grade 1 (AC1).

directory:

Datasets/Fasta Protein Format

indices:

Gs(U),Gw(U),W(U),Mw,HP,Z1,IP,Z2 ECLISA,Z3

groups:
AHR,PCR,ARM,NPR,BSR,NCR,ALR,PLR,RTR,UCR,UFR,PRT
invariants:
N1,N2,N3,Ar,P2,P3,K,CV,Q1,RA,DE,Q2,S,MN,Q3,V.MX,I50,SLMLTI
parameters(t_cont,s_cont,A%,HydGroup,n,bins,K,SubG):
4.0,8.0,5.0,9.4,3.0,5,1,3
options(decimals,harmonicMeanType,geometricMeanType,windexID,datasetType,outputOrd
er):

2,0,0,0,fasta,true



Section S2. ProtDCal’s configuration for vicinity operator Autocorrelation of grade 2 (AC2).

directory:

Datasets/Fasta Protein Format

indices:

Gs(U),Gw(U),W(U),Mw,HP,Z1,IP,Z2, ECLISA,Z3

groups:
AHR,PCR,ARM,NPR,BSR,NCR,ALR,PLR,RTR,UCR,UFR,PRT
invariants:
N1,N2,N3,Ar,P2,P3,K,CV,Q1,RA,DE,Q2,S,MN,Q3,V.MX,I50,SLMLTI
parameters(t_cont,s_cont,A%,HydGroup,n,bins,K,SubG):
4.0,8.0,5.0,9.4,3.0,5,2,3
options(decimals,harmonicMeanType,geometricMeanType,windexID,datasetType,outputOrd
er):

2,0,0,0,fasta,true



Section S3. ProtDCal’s configuration for vicinity operator Electrotopological State (EC).

directory:

Datasets/Fasta Protein Format

indices:

Gs(U),Gw(U),W(U),Mw,HP,Z1,IP,Z2,ECLISA,Z3

groups:
AHR,PCR,ARM,NPR,BSR,NCR,ALR,PLR,RTR,UCR,UFR,PRT
invariants:
N1,N2,N3,Ar,P2,P3,K,CV,Q1,RA,DE,Q2,S,MN,Q3,V.MX,I50,SLMLTI
parameters(t_cont,s_cont,A%,HydGroup,n,bins,K,SubG):
4.0,8.0,5.0,9.4,3.0,5,5,3
options(decimals,harmonicMeanType,geometricMeanType,windexID,datasetType,outputOrd
er):

2,0,0,4, fasta,true



Section S4. ProtDCal’s configuration for no vicinity operator

directory:

Datasets/Fasta Protein Format

indices:

Gs(U),Gw(U),W(U),Mw,HP,Z1,IP,Z2 ECLISA,Z3

groups:
AHR,PCR,ARM,NPR,BSR,NCR,ALR,PLR,RTR,UCR,UFR,PRT
invariants:
N1,N2,N3,Ar,P2,P3,K,CV,Q1,RA,DE,Q2,S,MN,Q3,V.MX,I50,SLMLTI
parameters(t_cont,s_cont,A%,HydGroup,n,bins,K,SubG):
4.0,8.0,5.0,9.4,3.0,5,5,3
options(decimals,harmonicMeanType,geometricMeanType,windexID,datasetType,outputOrd
er):

2,0,0,-1,fasta,true



Section SS. List (FASTA format) of all the peptides in the training dataset.
Data available on the online version of the Supporting Information:

https://doi.org/10.3390/antibiotics11121708

Section S6. List (FASTA format) of all the peptides in the development dataset.
Data available on the online version of the Supporting Information:

https://doi.org/10.3390/antibiotics11121708

Section S7. List (FASTA format) of all the peptides in the validation dataset.
Data available on the online version of the Supporting Information:

https://doi.org/10.3390/antibiotics11121708

Section S8. List (FASTA format) of all the peptides in the test dataset.
Data available on the online version of the Supporting Information:

https://doi.org/10.3390/antibiotics11121708




SL'SS
009
110
s9
I
LTL
9¢°1
91°CEl
66°L
Ly'E
7

9
[+d78196°1
19%
9L°01
S9°9%
VL6
6€TE6LI
9L°01
Ts9
681°8¢¢l
LS'L
€VO°TIS
XBIN

78°06-
[cL'e-
0

0

0
AN
0
L8LT
0
€LT-
vic-
9
[+dSTP19°¢

60°C

LLT

Tsell-

0

0

LLT

0

60L°S101~

44%

86°CS
urjn

(up.r)) :c.am%c.gm

SL'SS
$9
11°0
759
I
LT'L
9¢°1
91°CET
66°L
L€
€I’y

9
[+d770SY°6
19°v
9L°0T
12US
VL6
vT'E6L1
9L°0T
66°L
61°8¢€€l
LS'L
118
XBN

96°001-
TLe-

0

0

0

AN

0

L8LT

0

€LT-
rhie-

9
[+d9¥€8€°9

60°C

LLT

81911~

0

0

LLT

0

[L°ST101-

4%

86°CS
UIN

(dgV) uoyonpo.q

SLSS 78°06-
009 1cL'e-
I1°0 0
759 0
I 0
LT'L 14¥%
9¢‘1 0
91°C¢El LYLI
66°L 0
L€ €LT-
€Iy 4%

9
9 [+HSTH19°E
[+d278196°1 -
19°% 60°C-
9L°01 LLT
S99F TSELT-
vL6 0
6€TE6LI 0
9L01 LLT
759 0
681°8¢El 60L°S101-
LS'L 4%
€V0°11S 86°CS

XeN LA
(w.1)) Suruin.Lj

GLSS 96°001-
9 TLe-
11°0 0
759 0
I 0
LTL AN
9¢‘T 0
91°CEl L8LT
66°L 0
LY'€ €LT-
€I’y vc-

9
9 [+39¥€8€°9
[+dv+0st'6 -
19 60°C
9L°01 LLT
¥S°0S 81°911-
vL6 0
YTE6LI 0
9L°01 LLT
66°L 0
61°8€€1 IL°STOT-
LSL vre-
I+°18S 86°CS

Xe LI
(dqV) sutuipi]

IN ¥dN ON [Z
SN ¥TV ON €Z
A ¥D2d ON 1Z
V¥ ¥HV ON dI
SIS ¥Dd ON ()MD
0SI ¥HV ON §Z
0SI ¥HV ON IDA
€O ¥1d ON VSI
V¥ I¥d ON dI
0SI ¥HV ON Z
70 ¥1d ON €7

AD I¥d ON §Z
0ST ¥1d ON tZ
[0 I¥d ON dI
IN I¥d ON £Z
0SI ¥HV ON dI
0SI I¥d ON (1)sD
70 ¥1d ON dI
0SI 1¥d ON dI
0SI ¥1d ON (1)$D
0sI ¥1d ON €Z
IN ¥Dd ON VSI
A03dL1>sa(]

‘(we1n) eL91deq JO sadK) yoq -nue 1o -wein-nue ‘tweln)-nue se sopndad [eLojoeqnuUe

S9Z1103918d [opow puodas Ay} pue (dgVv) sepndad [eudjoeqnue-uou woyj sapndad [errojoeqnue soysm3unsip [opow 1siy Y [, “s1osejep uononpoad

oy} pue 3urures; 9Y) WOIJ PIALIOP S[opow d J0J paurjap surewop Afiqesrjdde oy Jo soLrepunoq (XejA) wnwixew pue (UIp) WNWIUIA 7S d[qe.L



¥9°¢
8ILT-
1€°T

€1

66

18°9
€9T°1
Ts'e
10°6
900°€TS
195°C
69°1
SIT

I

SP'1
€91
€6991LY1
6v9°818
19
69°1
T16°8C
I

vL'6
8€€6L
69°1
LE1
LEO'TE
681
LTL

8ILT-

9¢°¢-
L8
EEVTLY T
LG8l
0

€50
65€°8T-
0

e

0

S1°0

0

LLT
L8L1

0

SIEpe-

79°¢
8IL'T-
1€°1
ST
SIIT
189
2d
Ts'e
10°6
1°18S
85T
69°1
SIIT

!

SPl
€91
69°91LY1
$9°818
19°v
69°1
98°0¢
I

VL6
8EC°6L
69°1
LET
8€°€e
681
LT'L

8ILT-

61"
LL°LE-
0

Sy

0
9¢°G-
0
6C°1-
0
L8LT
0

ST°0
LS

0
9¢°6-
L8
S9°TSOP-
vL°S81
0

€50
16°8C-
0

e

0

SI°0

0

LLT
L8L1
0

TLOSE-

79°¢
8IL'T-
1€°1

€1

66

189
€9T°1
Ts'e
10°6
900°€1S
SST
69°1

SIT

!

Pl

€91
€69°91LY1
6¥9°818
19°v
69°1
T16'8T
I

VL6
8617L
69°1
LET
LEO'TE
681
LT'L

8ILT-

61
LLELE-
0

Sy

0
9¢°G-
0
6C°1-
0
LSLT
0

€50
LS

0
9¢°G-
L8
CEVTLY T
vL°681
0

€50
65€°8T-
0

e

0

SI°0

0

LLT
LSL1
0

SIEpe-

79°¢
TLT-
1€°1
4
SIT
189
2d
Ts'e
10°6
17°18S
86T
69°1
SIT

!

Pl
€91
69°91LY1
S9°8I8
19°v
69°1
98°0¢
I

vL6
98°GL
69°1
LET
8€°€E
681
LT'L

TLT-

9¢°6-
L8
S9°TSOv-
vL°681
0

€50
16°8C-
0

e

0

SI°0

0

LLT
L8L1
0

LOS€E-

XW 1¥d ON 7
§d ¥0d ON (W)MD
0ST ¥IY¥ ON 1D
Ay ¥1d ON dH
0ST L¥d ON MW
0ST 1Y ON tZ
AD ¥1d ON IDA
0SI ¥dN ON €Z
V¥ I¥d ON 7
IN ¥1d ON VSI
SIW ¥1d ON TZ
€0 ¥1d ON IDA
§d Y1 ON M
SIS ¥dN ON ¢Z
§d ¥I¥ ON tZ

70 ¥1d ON M
IN ¥S9 ON (1)sH
Zd ¥HV ON (1)sD
qd YHV ON dI

N ¥Dd ON IDF
0SI ¥HY ON ()MD
SIS ¥1d ON €Z
XW ¥HV ON dI
SIL ¥1d ON IDH
NW ¥1d ON IDA
0SI ¥HV ON M
EN ¥1d ON dI
[0 1¥d ON VSI
Yy ¥HV ON §£Z

X

W ¥0d ON ()MD



0]

SP6€T
12T9L9T
686°C
S1¢
TIL'S
rSE6l
LSL61
$09°60¢
SSSI€T
I

¥9°¢
80°¢
681
¥6°861S
st

8¢

I

¥€0
vLT01
06y
SI°L

I

9¢°C
75891
80C°1
781 €8S-
6L8°¢
981
T€€°S6
621
vLT

0 v1
6LLSSTE
0

S0y~
S00°0
6€€°8T-
9%6°LT-
89¢°01
9pESI
0

6
611"

10°0

0
60L°G101~
10°0

LS

0

0

LT0

S 6€l
LT LYY
686°C
9¢
TIL'S
L6°0T
L6°0T
9°60C
96°1¢T
I

¥9°¢
80°¢
681
1°T€S9
st
8¢

I

¥€0
88801
06y
ST1°L

I

9¢°C
961
vl
81°€8S-
€Iy
981
T€€°S6
621
YL

YOy 1
18€°0¥9C¢-
0
s‘ov-
S00°0
vE€°8C-
vE'8CT-
6168
SESI
0
6"
61"

10°0

0
IL°S101-
10°0

LS

0

0

LT0

SY6€l
128°88¥C
G8S°T
S1¢
TIL'S
rSE61
LSL°61
$09°60C
SSSIET
I

79°¢
80°¢

T 681
76°861S
TS

8¢

I

€0
TO0°L6
6’y
SI°L

I

9€°C
75891
80T°1
781" €86~
698°¢
981
TEES6
6CI
VLT

0yl
L8E9E6T
0

Sor-
S00°0
6€€ 8T
9Y6°LT-
89¢€°01
4y
0

61
61~

10°0

0
60L°S101~
10°0

LS

0

0

LT0

SH6ET
LT LYY
86°C
9¢
IL°S
L6°0T
L6°0T
9°60C
96°T€T
I

¥9°¢
80°¢
Tr681
1°T€S9
44
8¢

I

¥€0
88801
067
ST1°L

I

9¢°C
961
YTl
81°€8S-
€Iy
981
€€°66
621
vL1

YOVl
€6'7619-
0
Sop-
10°0
v€°8C-
V€8T
T6°8
SeSI
0
61"
61"

10°0

0
IL°S101-
10°0

LS

0

0

LT0

€O I 1DV dI
AD ¥Dd 1DV 1Z
SIW ¥Dd DV 27
NI ¥Dd 1DV dH
€0 ¥Od DV ID4
NW ¥Dd DV 17
€0 ¥Od 1DV 1Z
[0 ¥HV [DV dI
70 I¥d IDV dI
SIS ¥TV ON MW
[0 I¥d ON I1Z
70 ¥HV ON [Z
0ST ¥dN ON ¥SI
A YT1d ON VSI
€0 ¥D0d ON 7
VY 41 ON M
SIS 4dN ON VSI
§d 4TV ON IDH
IN ¥1d ON 1Z
Zd I1¥d ON 1Z
0SI ¥dN ON [Z
SIS 1¥d ON 1Z
0sI ¥1Y¥ ON €Z
IN ¥1d ON €Z
AD ¥1d ON VSI
10 ¥Dd ON (1J)sD
Zd ¥1d ON €7
70 1¥d ON M
Ad ¥HV ON VSI
V¥ Idd ON MW
td ¥HY ON tZ



T

96¢81
6SY°LS

SL'L66
LL6TT
186°0678
69°¢Y

14
99°0£€€90¢
658°96C
LYL'6
LEETEIT
VETEISSS

14
99°0£€€90C
SLI'LE6SE
vS6°ELYSS

69€°00L£68
96€°81
96¢°81
I
Sv'6¢l
088
!
Sv6cl
Sv6el
6169
¢t08¢S

€88°61-
8T1°6¢-
91+dTS8IY
vIv'8C-
T1€°89% -
€TeiTe-

4
69°L8Y6LST

8L9°CI
LETIT-
8I°CI
LST'TIS

[4
69°L8Y6LST

6691€01
806°L9€

4
69°L8Y6LST

v10°LT
v10°LT
0

LES 91
96¢L

0
0yl
0yl
ILTL
96¢L

¥'81

LS

S
[+d€91VLY
61°CC
se'6sTEe
69°ch

14
99°0£€£90C
SIT°00€
69°11
rE€91
€TEI8SS

14
99°0£€£90C
81°LE6SE
¥S6°€LYSS

6
6€°80TEET T
781
781

!
SY6€l
¢e08¢S
I
SP6€l
SP6€l
6169
¢E08S

10°LC-
c1'6¢-
9I+dTS8I Y

11°8C-
1€°89%1-
TeTE-

C
69°L8Y6LST

81°GT
Y91~
81°G1
LY OLY

69°L8Y6LS T~
SL9Y6
SI°9s¢

@
69°L8Y6LST

10°LT-
v10°LT-
0
¥S91
96CL

0
P01
Y0¥ 1
6S6Y
96CL

96¢°81
6SY°LS

SL°L66
LL6'TT
1860618
69°ct

14
99°0£€€90C
658967
LYL°6

LEE EIT
VETE18SS

14
99°0£€€90C
SLI'LE6SE
¥S6°€LYSS

69€°00L£68
96€°81
96€°81
!
SP6€l
¢e08¢S
I
Sy6¢l
Sy6€l
6169
¢t08S

€88°61-
8T1°6¢-
91+dTS81Y
v1v'8C-
T1E°899 -
€TeiTe-

4
69°L8Y6LST

8L9°C1
LETII-
8I°GI
LST'TIS

(4
69°L8Y6LST

6691€01
806°L9¢

@
69°L8Y6LST

v10°LT-
v10°LT
0
LES91
96¢L

0
0yl
0yl
ILTL
96CL

]

LS

S
[+dE€91VL Y
61°CC
se'6sTEe
69°ch

99°0£€£90C
98967
69°11
rE€91
€TEI8SS

99°0£€£90C
8I°LE6SE
S6°ELY8S

6L°TIELSOT
781
781

!
SP6€l
¢e08¢S
I
Sy6€l
Sy6¢l
6169
¢t08S

10°LC-
c1'6¢-
9T+dCS8IY

11°8C-
1€°89%1-
TeTe-

69°L8Y6LST-
81°GT

Y91~

81°G1

LY OLY

69°L8Y6LST-
SL9Y6
S1°95¢

69°L8Y6LST-
10°LC-
10°LT-
0
¥S91
96TL
0
Y01
Oy 1
656t
96TL

XW ¥Dd 1DV TZ
70 ¥AN 1DV 7Z

AD ¥Od DV TZ

Ay 40d 1DV €Z

AD ¥0d 1DV (1)$D
NW TV IDV 1Z

10 ¥Od [DV (1)sH
EN ¥4Sq DV dI
NW 1Y [DV §Z
10 WYV DV dI

W LIdd DV VSI

20 ¥1d 1DV ()$H
§d 40d 1DV VSI
XW YTV 1DV VSI

N
W ¥Sq 1DV ()sD
70 ¥0d 1DV 7
N ¥Dd 1DV Z
SIS ¥0d DV VSI
20 TV IDV dI
10 ¥Dd IOV MW
SIS ¥Dd 1DV M
70 Y1y 1DV dI
XW ¥4I IDV dI
XW ¥dN [DV MW
70 ¥0d 1DV M



4"

9091881
LEE €T
TeT6

vy Te
TsTe
6169
VLY L]
816°179¢
€16°9T159
8
Sse6v6CTl

L66°LLST
v6%°L900S
TIL'S
v6€°LOYIL
VL0 1SE9Y
€L8'6SLIL
9605
LT6TT
609°98
SY6El
44!

86£ VS
10T°¢
6S¥°LS
SS'6zl
I's¢
SS'6zl

0
81°¢1
Trest-
STE e
8CTI'6¢-
608L
L8YT

0
1811951

60001788~

6SS°6LY-
819°€6€
2000
[L8S
6171°95¢
666°1€CC
LYOy
SIL'6T-
7200
LESII
vyl-
1S 11
V85T
LOS €T~
8I°CI
I'se-
8I°CI

L0°9TTT
vE eIl
69°11
99°¢eE
€L'8T
6169
v'CC
T6°1T9¢
1691159

96°€6v6TC1

9S€°€0918
6%°L900S
TIL'S
7'L86T8
vLO'TSE9Y
LY6SLIL
79605
€6°TC
€8°601
SP6El
44!

A7

T'e

9t°LS
$s'6tl
['s¢
Sy6€l

0

81°61
TreSI-
80°91-
€r'ee-
608L
L8YT
0

8Y° 1961

10'701T88-
9
[+H989¢1°1

88°6C¢
0

6561
61°95¢
61°7901
LYOY
L8°S¢-
10°0
LESOT
a4k
vS 19
89°¢-
1S°€l-
8I°GI
1°6¢-
81°G1

909881
LEE EIT
TET6
vSPTe
TsTe
6169
VLY L1
816°179¢
€16°91159
8
gse6v6ctl

L66°LLST
v61°L900S
TIL'S
v6€°LOYIL
vLO'1SE9Y
€L8'6SLIL
9605
LT6TT
609°98
SP6El
44!

86€ 1S
10T°¢
6SY°LS
Ss'6tl
['s¢
Ss'6Tl

0

81°61
TreSI-
STEEr
8Tl6¢"
608L
L8YT

0
1811951

60001788~

6SS‘6LY-
819°¢6€
2000
1L8S
61°95¢
666°1€TT
LYOY
996°6T-
7200
LESOT
6°Cl-
7S 1~
¥85°C-
LOS‘ET-
8I°GI
1°6¢-
81°G1

L0°9TTT
vEE9l
69°11
99°c€
€L'ST
6169
v'CC
T6°129¢
1691159

96°€6v6TCI

80°€TYLL
6%°L900S
IL'S
7'L86T8
LO1SE9Y
LY6SLIL
9605
€6°TC
€8°601
SP6El
44!

A7

T'e

9P°LS
Ss'6zl
['s¢
Sy6€l

0

8I°SI
vESI-
80°91-
creg-
608L
L8VT
0

8¥° 1951

10°701T88-
9
[+H989¢1°1

88°6C¢
0
656t
S1°96¢
61°7901
LYOY
L8°S¢-
10°0
¥S91
adk
vS 1
89°¢-
1S°¢I-
81°C1
1°6¢-
81°G1

N
W ¥Od DV ()MD
€O WYV 1DV dI
NW TV IDV §Z
EN ¥Dd 1DV TZ
NW ¥dN DV 2Z
€O WYV IDV MW
10 ¥0N 1DV TZ

D ¥Ood DV (N)MD
10 WYV IDV VSI

€0 ¥ON 1DV (N)SD

AD LY IDV §Z
XW 40N DV VSI
XW Ldd DV 104
EN YTV IDV MW
€0 ¥AN DV ¥SI
70 4S9 DV VSI
70 YHV DV MW
EN ¥4N 1DV €7
IN ¥Dd DV €7
N ¥AN IOV dI
€0 AN 1DV dH
SN ¥0N 1DV €Z
S ¥0d 1DV ()mH
XW LI¥4d IDV Z
NI 4S9 1DV dI
N ¥HV DV dH
NI ¥dN DV dI



€T

13
60°610£991
$09°60T
T8¥°61
69°8C1
TsTe
€Iv'Sy
A4
088
9L9°T¢
1LS°GSELY

088

886LY
667°8L
96¢°81
€L8'6SLIL

6ST9TET
€16'cCl
L1S0¥
9€909
L6S Y
LSO°L1

6

S8 IT1666T
S0y

08y
€Iv'sy

I
Tr'86118El

1S9°GT
6€€°8T-
€L9°L
8TI'6¢-
1€°8C-
79S 11~
LSLS
[L60V-
819°¢6€

0

§SS9
661°0
v10°LT
SET'LSL

0

0

9T°6T
656

0

v1¥°8C-

L
SO°EVE08Y 1

S0
[L8S
1€°8C-

60°610£991
$09°60C
L6°0T
9S°1€T
Tsce

CIy 8y
€96

7€08S
8t°6¢
61°L900S

YOI
886LY

9L Y11
v'CC
L86SLIL

9T°9TET
€16°CCl
€Iy
9¢€909
9y
LT9T

98111666
Soy

CEL8Y
181

I
Tr'86118¢1

S9°S1
vE'8CT-
LY°L
er'6g-
90°¢ce-
795 11~
656
L6V~
88°6C¢

0

9%93Y
LT°0
10°LT-
79°€6€

0

0

so¢-

6561

0

V18T

(4
69°L8Y6LS 1

Sor-
656
90°¢ce-

€
60°610£991
$09°60C
€18°91
69°8C1
Tsce

€Iy 8y
216
7€08S
€8T°C¢
1LS'SSELY

088

886LY
667°8L
96€°81
€L8°6SLIL

6ST9TET
€16°CCl
LIS
9¢909
L6S Y
LSO°L1

6

S8 111666T
soy

<08y
cIv'sy

I
T 86118¢1

1S9°C1
6€€ 8T
€LY°L
8TI'6¢-
1€°8C-
795 11~
LSLS
1,60V~
819°¢6¢

0

6Ss9
661°0
v10°LT
SET'LSL

0

0

9T°6T-
6561

0

V18T

L
SO°ErE08Y 1

Sor-
IL8S
1€°8C-

60°610£991
9°60¢
L6°0T
96°1¢€T
Tsce
1+'8¥

€96

T€08S
8t°6¢
61°L900S

YOILT
886LY

9L Y11
v'CC
L86SLIL

9T°9TET
16°CC1
€Ty
9€909
9y
LT9T

98111666
Soy

CEL8Y
181

TH'86118E1-
S9°S1

v€°8C-

LY°L

er'6¢-
90°ce-

9¢ 11~

656

L60V-
88°6T¢

0

§Ss9
LT°0
10°LT-
79°¢€6¢

0

0
so¢-
656
0
1°8C-

69°L8Y6LS1-
Sor-

656

90°ce-

N
W YHY 2OV ()sD
XW YHY 2OV dI
NW ¥Dd 2OV 1Z
10 1¥d 2OV dI
10 WYV DV TZ
XW 4S9 1DV 17
10 ¥S9 1DV €Z
70 ¥1d 1DV M
EN ¥0N DV 1Z
€0 ¥oN 1DV VSI
N

W 40N 1DV ()M
NI dON IOV M
IN ¥Dd DV [Z
£O ¥1d 1DV tZ
€0 ¥dN 1DV VSI
X

W YHY DV ()MD
Y 4TV [DV dI
€O ¥HV DV 1Z
€0 ¥DN 1DV M
€O ¥HV [DV 1D
10 ¥0N 1DV €Z

0
SI ¥0d DV (1)sH
20 TV IDV dH
€O ATV IDV MW
€0 YS9 1DV 1Z



14"

S
ST°LY68T8I1
140873
TTe9Tl
S90°L91€
1¥0°C

8
96°STTIEE
!

861
SP6El
$8S°T
SP6El
996°0C
SP6¢l

[
[T°CIY9%91
SP'6¢l
SEL'681
807 8¢
S0y

69°8C1
$T°0T
L99°€T

6
68°TLEOVET
¥SS 8L

rr1vEry
9¢6°ST-
vELST
6€°509¢C-
SLY'C-

8
91°LL8O6LT

0

6€€°8T
LESIT

0

€L9°L
6€€°8T-
€L9°L

4
69°L8Y6LST

LES9I
vT0°1¢
LESII
S0
LES91
S0
v1¥°8C-

4
69°L8Y6LS 1

691°0

€1° 1986581
140873
TTE9T
SP'SISS
89°¢

L8 9YOVY I
I

L6°0T
SP6El
$8S°C
SP6El
L6°0T
SY6¢l

99°0€€££90C
SY6¢l
96°1€T
[°81€

S0y

TT9el
SeIT
L9°€T

99°0€€£90C
8°86

6'9C8C
v6°'ST
68
STIYOPTI-
60°¢-

['PSTEETE-
0

vE€'8CT-

6°S1

0

LY°L

vE'8CT-

LY°L

@
69°L8Y6LST

6°S1

T0°1¢
8I°G1

S0

81°G1

Sor-
v1v°8T-

@
69°L8Y6LS T

LT°0

S
ST°LY68T81
PITvE
TTE9T
S90°L91€
1¥0°C

8
96°STIEE
!

v10°L1
SY6€l
$8S°C
SY6El
996°0C
Sy6¢l

I
[1°C1¥9%91
Sy6¢l
SEL'68IT
807 8¢
soy

69°8C1
ST°0T
L99°€T

6
68°TLEOVET
7SS 8L

A8 %43%4%
9¢6°ST-
YEL'ST
61€°S09¢-
SLYT-

8
91°LL8O6LT

0

6€¢°8T-
LES9T

0

€L9°L
6€€°8T-
€L9°L

@
69°L8Y6LST

LESIT
¥20°1C
LES 9T
S0
LES 91
Sor-
v1v°8C-

@
69°L8Y6LS T

691°0

€1° 1986581
[1v€
Te9Tl
SP'SISS
89°¢

L8 9YOVY 11
!

L6°0T
SY6El

85T

SP6El
L6°0T
Sy6¢l

99°0€€££90C
Sy6¢l

96 1€T
[°81€

Soy

TToel
SeIT
L9°€T

99°0€€£90C
886

6°9T8C
v6°'ST-
68
STIYOVTI-
60°¢-

['pSTEETE-
0

v€°8C-

6°S1

0

LY°L

vE'8C-

LY°L

69°L8Y6LST-
6°S1

T0°1C

8I°CI

S0

8I°GI

Sor-

1°8C-

69°L8Y6LST-
LT°0

d I8d 7OV ()sH
XW ¥oN OV §Z
70 ¥DN 2OV dI
AD ¥Dd 7OV ()sD
S ¥0d OV €Z

SN ¥HV 7OV ()SD
SIS ¥0d 2OV 104
§d ¥Dd 7OV 17

70 TV 7OV dI
SIN ¥Dd 2OV €7
70 YLy 7OV dI

€0 ¥Dd OV 17
NW YL 2OV dI

10 ¥D0d 2OV (1)sD
§d dTV 2OV dI

10 ¥Od 2OV dI
EN ¥dN 2OV dI
XW ¥1d 2OV dH
£d ¥dN 7OV dI
NW ¥1d 7OV dH
€0 ¥Dd OV §Z

10 ¥1d 2OV (V$D
IN ¥Dd 2OV 1Z



ST

€0€911
SP6ET
81
¥6¥°L900S
SP6ET
08LTY
vLOTSE9Y
S1¢
S08°6¢
968°667 11
8
SS'e6v6TTl
7€08S
€LY SS06S
1°6¢

YLV 8T
S1¢
90T¥C

SET0ST86E
166°9C1
TELTLSY
€L°8T
$09°60¢
€SL°9T1
S0y

96€°81
LEEEII

14
99°0£€€90C

0
9pESI
TheST-
LEE'6IE
LESII
(1443
100°67€
S1e-
96T
LEE6IE

9TI°T8I 16"
656

18%° 1951
1's¢-

8I°CI

S1e-
8I8°S¢-

T9S S8LYOE-
987°0

0

8TI'6¢-
6168
LES 91
S0
v10°LT
8I°GI

[4
69°L8Y6LST

Sset
SP6€l
T8l
6%°L900S
SP6€l
08LCY
VLOTSE9Y
S1€

€Iy
LO1SE9Y

96°€6v6TC1
088
LY6SLIL
['s¢

Ss'6zl

SI¢g

1T%C

vT0S186€
6C°€81
€8°6SYL
LY'LE
9°60C
Ss6tl
Soy

781
vE€91

14
99°0£€£90C

0

LY°L
rEST-
LEE'6IE
LES9T
443
vE6IE
S1e-
8L°6T
LEE6IE

€IT8I1v6
656

8 1961
['s¢-

8I°GI

S1e-
T8°se-

TS S8LYOE-
620

0

erog-
6168

81°G1

SO
v10°LT
81°G1

69°L8Y6LST-

€0E9T11
SP6El
T8l
¥6¥°L900S
SP6El
08LCY
VLOTSE9Y
¢1¢€
S08°6¢
968 66711
8
gse6v6cTl
088
660°1£68S
['s¢

YL 8T
¢1¢
90T¥T

SET0ST86E
166°9C1
TELTLSY
€L°8T
$09°60C
€5L°9C1
Soy

96€°81
LEEEI]

14
99°0£€€90C

0
9p¢Cl
TheSI-
LEE'6IE
LES 9T
443
100°67€
S1e-
9T°6T-
LEE6IE

9TIT8I 16"
656
1841961
['s¢-

8I°GI

S1e-
8I8°Ge-

T9S°S8LY0E-
987°0

0

8TI‘6¢-
6168
LES91
Sor-
v10°LT
81°G1

C
69°L8Y6LST

gset

S 6El
T8I
61°L900S
S 6El
08LTY
LO‘TSE9Y
SI¢
€Ty
LO‘TSE9Y

96°€6v6TC1
¢e08¢S
LY6SLIL
['s¢

Ss'6zl

SI¢g

1T¥C

vT0S186€
6C°€81
€8°6SYL
LY'LE
9°60¢
Ss6tl
Soy

781
rE€91

99°0£€£90C

0

LY°L
rESI-
ve6le
7S91
743
ve6le
S1e-
8L°6T
vE61E

CIT8IIv6
656

8¥° 1951
['s¢-

8I°CI

S1e-
T8°s¢e-

95 G8LY0E-
620

0

cregc-
76°8

8I°GI

Sor-
10°LT-
8I°GI

69°L8Y6LST-

v 4TV 2OV dI
XW I 2OV dI
€0 AN OV €Z
NI ¥DN 2OV VSI
NI 84N 2OV dI
NI ¥IY 2OV M
€O ¥1I¥ OV VSI
70 ¥0N 2OV dH
20 ¥HV IOV 1Z
[0 ¥IY 2OV VSI

€0 ¥DN 2OV (1)sDH
70 ¥1d 7OV M
10 WYV OV VSI
[0 ¥HV 7OV dH
[0 4S9 2OV dI
€0 ¥DN OV dH
N LY¥d 2OV 1Z
X

W 4N 7OV ()$DH
IN 1¥d 2OV 1Z

A ¥0d 2OV dI

N ATV 2OV 7
NI YHY 2OV dI
§d 4S9 2OV dI
€0 ¥0d OV dH
10 ¥Dd IOV TZ
20 WYV 2OV dI

€0 Y1d 2OV ()SH



9T

$9°¢
LTV
L8S€T
¥8TH8
LYS 81
9€909
vTTos
9605
606°66
14
68°L6TLILT
TIL'S

9
78°LE0SOET
S1€
209°59
€Ty
294!
(Y
TIL'S
SOT'ST
S1€
S9°€
€Iv'Sy
vS9vT
987°0C
T8l
15689
€5L°9T1

100°0

0
8Spe-
165°29-
TTLoe-
6S6¥
10°0
LYOY
€10°0

9TI°T8I 16"
S00°0

9
80°80€1001

S1e-
€EVL6
9T°6T
V61T
S0
S00°0
v1¥°8C
0

100°0
8I8°S¢-
8yI°I¢-
v1¥°8C-
TreSI-
TIzo
8I°CI

S9°¢
vy
$9T
9°ITI
66°0C
9¢909
€Tes
9605
6T €81

80°SOTLSLI
TIL'S

S8°L£080€T
SI¢
€T°18
€Ty
€791
88°8C
TIL'S
ST
SI¢
$9°¢
1¥'8¥
€9°6T
s1e
w8l
$6°89
§s6Tl

0

0

A%
SL°LY-
TTL0E-
6561
10°0
LyO¥
10°0

€IT8IIv6
0

60°80€1001-
S1e-
VL6
8L°6T-
€v6°'1¢C-
SO

0
v1v°8C
0

0

4 5%
SI1€-
v1¥°8T-
TheSl-
LTT0
8I°GI

S9°¢
LTV
L8S°€T
V8Tv8
LYS'ST
9¢909
¥TT0S
9605
60666
c
68°L6TLILT
TIL'S

9
¥8°L€080€ 1
SI¢
209°S9
€Ty
2%
st
TIL'S
SOT'SI
SI¢
$9°¢
€Iy 8%
¥S94C
987°0C
w8l
156°89
€5L°9T1

100°0

0
8Spe-
165°9-
TTLioE-
6S6Y
10°0
LYOY
€100

9TIT8I 16"
S00°0

9
80°80€1001

S1e-
CEV'L6
9T°6T-
€v6°'1¢C-
S0
S00°0
v1¥°8T
0

100°0
818°Ge-
8y1°1¢-
v1¥°8C-
TheSl-
TIzo
8I°GI

S9°¢
vy
$9T
9I11
66°0C
9¢909
€T'es
9605
6T €81

80°SOTLSLI
IL'S

S8°L£080€T
SI¢
€T°18
€Ty
€791
88°8C
LS
TSI
SI¢
$9°¢
1¥'8¥
€9°6T
Ts1e
w8l
$689
Ss6TI

0

0
A%
SL°LY-
TLog-
6567
10°0
LyO¥
10°0

€IT8IIv6
0

60°80€T001-
S1¢-
€v'L6"
8L°6C-
v6°1C-
s‘op-
0
1+°8C-
0

0
78°s¢-
SIr¢-
1+°8¢C-
reSI-
€1
81°G1

XW 4S9 2OV 1D
vy NI¥ OV 104
70 ¥1I¥ 7OV 1Z
EN ¥dN 2OV 1Z
Ay ¥ON IOV 1Z
XW ¥DN OV M
IN ¥HV 7OV TZ
€O YHV IOV M
IN ¥HV 7OV IZ
0

ST ¥ON 2OV (1)sH
€O ¥1d 7OV IDH

7
O ¥0N 7OV (1J)sH
10 ¥1¥ 2OV dH
EN YTV 2OV dH
€O ¥HV IOV 1Z
NI ¥4N 2OV 1Z
[0 YTV 2OV dH
70 ¥1d OV 104
NW ¥1d 2OV §Z
Zd ¥ON 7OV dH
XW WYV 2OV 104
70 WYV 2OV 1Z
EN ¥1¥ 20V €Z
1y 40d OV §£Z
10 ¥4N OV £Z
IN ¥0d IOV TZ
NI 4S9 2OV dI



LT

LT9°8601
9LT’L
LLSTT
LYTY0T
LLS 0
€61°01
6vEL
6vE’L
YOT'LI

[

1LTC

[

966°C

I

8€TT
S687SE
0
1L6°0681
LEE
61
STPE

vor°E
680°ST
628’1

[4
96°00€SST1

€
6LTIELSOT

999V LY T
195°C-
SeTe-
9LTYII-
0

LST°6
LYS0
SS°l
10¥°8

0

10°CI-

0

LO9E-

0

90%°C-
T91°8€801-
L19°0"
966°S61
90¥°C-

0
8TI'6¢-

0

TIeIe-
961°0

!
0S°S698€11

[4
69°L8Y6LST

£9°8601
IL°L
LLSTT
LYTY0T
$€9°0
61°01
I16°L
LY°L
6L°L1

I

90y

I

Te'e

I

cee
61S€E

0
6°600C
98°¢
$°69
STYE
9p'¢
€0°9¢
L8°1

[4
96°00€SS11

6LTIELSOT

999y LyT-
e
68°¢-
8TYII-
0
£0°01-
650
91
10°8

0
v1°CI-
0

19°¢-

0

89°C-
91°8¢801-
L0-
¥°59
90°¢-

0
€r'e6¢-

0

[€1¢-
61°0

!
05°S698€11

C
69°L8Y6LST

LT9°8601
9LI’L
vSIT
T01°%0T
LLS 0
€61°01
6vE'L
6vE’L
YOT'L1

I

[LTC

I

966°C

I

8€TT
S68vSE
0
1L6°0681
LEE
6T
€L'8T

v9r'e
680°ST
6T8°1

[4
96°00€SS11

13
6LTIELSOT

S0S°€sTT-
9LET-
SeT'e-
9LTYII-
0

6£8°8-
LSO
Sl
10t°8

0

10°CI-

0

L09°¢-

0

90t°C-
791°8€801-
L19°0-
966°S61
90t°C-

0
8T1°6¢-

0

TIE1E-
961°0

!
05°S698€11

C
69°L8Y6LST

€9°8601
IL°L
vSIT
10T
79°0
61°01
16°L
LY°L
6L°L1
I
90t
I
Te'e
I
(43
61S€E
0
6600
98°¢
$69
€6°¢E

91°¢
€0°9C
L81

96°00€SS11

6LTIELSOT

99V 1€
V-
68°¢-
8TYII-
0
70°01-
()
91
10°8

0
v1°CI-
0

19°¢-

0

89°C
91°8€801~
L0-
AS
90°¢c-

0
creg-

0
[€1¢-
61°0

S°S698€11-

69°L8Y6LST-

€0 ¥1d SH (1)$H
€0 ¥2N SA dI
XW ¥0N SH €Z
70 ¥IY¥ ST VSI
AD ¥Dd SH 1Z
NW YHV SH §Z
NI 4S9 SA dI
Ay YSq SH dI

§d dDd SH dI
SIS ¥0d Sq 7
10 ¥1d ST dH
SIS ¥Od S dH
S ¥0d SH VSI
SIS ¥Od ST dI

S ¥0d S dH

AD ¥Dd ST VSI
AD ¥Dd ST (1)sH
d 1¥d ST (1)sH
S ¥0d SH £Z

SIL ¥Dd SH £Z
N ¥LY 2OV 7
A

D ¥Dd OV ()MD
EN YTV 2OV €Z
AD Ldd ZOV VSI

£
O WYY 2oV (1J)sH

10 ¥S9 2OV (N)SH



8T

1€T9V1T
910°01
178
LLTTL]
vL6TE
68°6
€Iv'se6l
6€°L
L1T°T861
20¥°01
LLTTL]
60S°L
9LL®9
S8LT
6v'L
8¥I°E
806
61S°L

TPL9TS-
111°0
LST'E-
€LE'6S"
129t
STIT
911°CEl-
8061
659101~
1L0°1
785°09-
T
¢80°¢-
vE -
656 1T
ST1-
8TTT-
618°0-

vv0ST
7801
8T8

6T 181
LET9
68°6
1661
69°L
¥6°€T0T
I'T1

6T 181
69°L
SI°L
8LT
6¥'L
6C°€
19°S
69°L

90°199-
10°0
104~
LE6S-
16°9-
¥0°C
Treeel-
161~
$9°TSOI-
LO'T
85°09-
T
1S~
vE1-
6°0€-
Tl-
96°C-
TTel-

[€T91PT
996°6
178
8LOTLI
vL6TE
68°6
cIv'sel
6€°L
LTT°T861
T0¥°01
8LOTLI
60S°L
9LL'9
G8LT
6¥'L
8rI°€E
806t
61S°L

TPLITS-
[11°0
LST'E-
€LE'6S"
129t~
STIT
911°CEl-
806t
675 9r01-
[LO°T
785°09-
T
$80°¢-
vE1-
LY6'vT-
STI-
8TTT-
618°0-

05T
7801
8T8

6T 181
LET9
68°6
1661
69°L
¥6°€T0T
I'T1

6T 181
69°L
SI°L
8LT
6%'L
6T°€
19°S
69°L

90°199-
10°0
101~
LE6S-
16°9-
¥0°C
Treeer-
161~
$9°TS01-
LO'T
85°09-
T
1S~
vEl-
6°0€-
Tl-
96°C-
€1-

X YTV S4 ()SD
zd ¥HY SA 17
Ay YTd ST 7

10 ¥D0d SA VSI
IN WYV SH §Z
10 ¥0d S 1Z
NW ¥1¥ ST VSI
§O YTV S9 €Z
€0 I¥d ST (1)sH
20 WYV SH dI
NI ¥Dd ST VSI
10 ¥1¥ SH §Z
§d 40N SH dI
XW 1Y S4 IDA
EN ¥dN ST 17
0SI ¥HV SH 104
Ay WYV ST €Z
70 ¥1¥ S9 €Z



Table S3. Values resulting from the radial diffusion assay applied to the peptide Urine-3462
against the Pseudomonas aeruginosa strain ATCC 27853.

EXPERIMENTS 1000 500

SN AN -
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1.2
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1
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125 62.5 31.25 15.6 7.8 LL37
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1 | INTRODUCTION

| James R. Green> I

Abstract

Computational tools for the analysis of protein data and the prediction of biological
properties are essential in life sciences and biomedical research. Here, we introduce
ProtDCal-Suite, a web server comprising a set of machine learning-based methods
for studying proteins. The main module of ProtDCal-Suite is the ProtDCal software.
ProtDCal translates the structural information of proteins into numerical descriptors
that serve as input to machine-learning techniques. The ProtDCal-Suite server also
incorporates a post-processing optional stage that allows ranking and filtering the
obtained descriptors by computing their Shannon entropy values across the input set
of proteins. ProtDCal's codification was used in the development of models for the
prediction of specific protein properties. Thus, the other modules of ProtDCal-Suite
are protein analysis tools implemented using ProtDCal's descriptors. Among them
are PPI-Detect, for predicting the interaction likelihood of protein—protein and
protein—peptide pairs, Enzyme Identifier, for identifying enzymes from amino acid
sequences or 3D structures, and Pred-NGlyco, for predicting N-glycosylation sites.
ProtDCal-Suite is freely accessible at https://protdcal.zmb.uni-due.de.

KEYWORDS

descriptor, enzymes, machine-learning, N-glycosylation, protein—protein interactions, web server

In this context, ProtDCal is a software package that trans-
forms protein sequences or 3D-structures into general-purpose

The analysis of protein data and the prediction of protein
properties are of fundamental importance in modern Molec-
ular Biology. Subjects such as the elucidation of protein—
protein interaction networks, protein function prediction,
and computational drug design, all benefit from massive
computational analysis of the known protein data to extrapo-
late new knowledge of biological function.'™ The numerical
encoding of raw protein sequences or structural data plays
an important role for the development of robust prediction
tools based on machine-learning techniques.

numerical descriptors, accounting for both global and local
information.” Due to its complementary performance with
respect to other well-established tools in the field like PROF-
EAT® and PseAcc’ (later extended to Pse-in—oneg), ProtDCal
has been used in a number of studies.’”"* Notable among them
are the modeling of posttranslational modifications,'* the pre-
diction of protein enzymatic function,' the prediction of anti-
microbial activity in peptides,'® the determination of residues
critical for protein function,'” and the prediction of stability

changes upon mutations.'® Very recently, ProtDCal was

1734 I © 2019 The Protein Society

wileyonlinelibrary.com/journal/pro

Protein Science. 2019;28:1734—-1743.
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enhanced with a procedure for encoding protein pairs, which
allows targeting the protein—protein interaction identification
problem."”

Here, we present ProtDCal-Suite, a versatile platform for
granting web access to the wealth of encoding approaches
implemented within ProtDCal, as well as to several protein
analysis tools developed using ProtDCal's descriptors.
Currently, ProtDCal-Suite allows predicting the enzyme-
like character of proteins (Enzyme Identifier)'” and N-
glycosylation (Pred-NGlyco) sites™'* as well as evaluating
the likelihood of protein—protein interactions (PPI-Detect)."®
Recently, a tool for the prediction of methylation sites
(MethylSight)*® was also incorporated by us in ProtDCal-
Suite. These applications of ProtDCal are useful on their own
right, but also illustrate the capabilities of ProtDCal-derived
features for novel and diverse protein analysis tasks.

2 | RESULTS

ProtDCal-Suite consists of a main module (ProtDCal) and a
set of secondary modules that provide access to machine
learning-based tools. These applications are used to predict
specific protein functions and were created using ProtDCal
descriptors. Next, we describe the generalities of the suite
and the available tools.

2.1 | The ProtDCal-Suite

The graphical design of ProtDCal-Suite is highly intuitive
(Figure 1). Each tool has its own interface but shares a simi-
lar layout for quick familiarization by users. We documented
all individual tools with help content and usage examples.
Extended documentation and a tutorial, explaining the
protein-encoding features of ProtDCal, are also available.
Template python scripts allow remotely accessing the web
services and parsing the output data. This way, users can
also submit jobs without using the web interface. This fea-
ture is valuable for remotely invoking the server services or
for integrating the calculation of descriptors into custom
third-party workflows.

2.1.1 | ProtDCal-Suite input

All the predictive tools implemented in ProtDCal-Suite accept
input files containing the sequence information of proteins in
FASTA format (Enzyme Identifier, PPI-Detect, MethylSight
and Pred-NGlyco) and/or structural information in PDB for-
mat (Enzyme Identifier). In the main module (ProtDCal), the
user can also specify options for the calculation of protein
descriptors via the web interface. In the documentation of the
interfaces for the different tools within ProtDCal-Suite we
provide information about the input formats and offer

examples for the submission of jobs. Besides the input data,
the user enters a job name and (optionally) an email address
to receive information about the progress of the job. Using
the identification code (ID) assigned to the job, the user can
follow its status in the computing queue and subsequently
retrieve the results of the calculations.

2.1.2 | ProtDCal-Suite output

Once a job is completed, there are two main output inter-
faces depending on whether the used tool was (1) ProtDCal
or (2) any of the ProtDCal-based applications. In the first
case, the output is a download link to access the file con-
taining the complete descriptor matrix. In addition, the out-
put interface permits the user to post-process the computed
descriptors using an unsupervised feature selection approach
based on Shannon Entropy (see section Analysis of
ProtDCal’s outcome). The use of Shannon Entropy allows
for a preliminary reduction of the dimensionality of the
descriptor matrix. For ProtDCal-based applications, the pre-
dictions are visualized directly in the web, using a tabular
form. All the results can be downloaded in CSV format.

2.2 | ProtDCal

ProtDCal is a computational package® for encoding the
sequences and structures of proteins into numerical descrip-
tors. These descriptors are the input to machine-learning tech-
niques (artificial neural networks,?' support vector machine,?
and random forest,”> among others) used for the develop-
ment of novel predictors of protein functions and proper-
ties. ProtDCal splits the protein into different residue
groups. Then, the contributions of the residues in each group
are aggregated using diverse descriptive statistics (such as
averages, variance, minimum or maximum values). This
aggregation gives rise to a large variety of scalar descriptors,
each of which represents local or global properties of the pro-
tein. The resulting vector is applicable to data mining prob-
lems such as protein classification, similarity analysis, and
function prediction.

2.2.1 | ProtDCal steps for calculating a
protein descriptor

Figure 2 illustrates the process of obtaining the descriptor
FD_AC2_GLY_Ar for the human prion protein fragment
described by the PDB entry 10EH?’ with sequence:
HGGGTGQP. The notation used in ProtDCal to label the
final descriptors directly refers to the options chosen by the
user in the input step. A combinatorial algorithm composed
of four steps (Figure 2, top), each with several options (that
can be defined by the user) is implemented in ProtDCal.
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ProtDCal-Suite

Protein codification and applications
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Generates machine-learning-friendly vectors from sequences or structural information of proteins

FIGURE 1 Main interface
of ProtDCal-Suite

Protein analysis tools
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protein and protein-peptide pairs
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The program computes all the combinations of defined
options, thus producing one individual descriptor from
each combination. The combination of the selected indices
(In), vicinity operators (VO), groups (Gp), and aggregation
operators (AO) results in a large set of descriptors for each
protein. All these descriptors are univocally identified fol-
lowing the convention: In_VO_Gp_AO. In the example
shown in Figure 2, the options selected to generate the
descriptor are highlighted in red.

Next, we briefly describe, step by step, the general pro-
cess of calculating the protein descriptors using ProtDCal,
for the human prion protein fragment shown in Figure 2.

Step 1: Residue codification (indices). ProtDCal has
implemented a list of indices (Tables S1-S4), mostly extracted
from the AAindex database®® that represent several structural
and chemical physical properties of amino acids. For each resi-
due in the protein, according to the indices selected by the user,
an array of numerical values is created. This list of indices is

0d ‘6 ‘610T X968691T

] woxy papeoy
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FIGURE 2 ProtDCal steps for calculating a protein descriptor. The fragment of a human prion protein (upper panel, far left) with Protein Data

Bank?*2 identification code 10EH?’ is used as an example of protein under codification

then used to encode the residues in the protein in order to
obtain sequence-based and 3D-structure protein descriptors.

In the example shown in Figure 2, we use the folding
degree (FD) as residue index. FD is a geometrical parame-

29
ter,
constant and the average of the logarithm of the folding
degree (InFD) along all the residues in the protein.

which significantly correlates with the folding rate

N

> li=il/d;
InFD, = _Bsli=il>1

N—x

where d is the spatial Euclidian distance, N the length of the
protein, and x a parameter that takes value 2 for terminal res-
idues and 3 for all the others. In the example, FD is selected
as index to provide an initial numerical characterization of
all residues in the protein. In addition to the folding degree,
more than 30 geometrical and chemical-physical indices
(e.g., hydrophobicity, number of contacts, molar weight, sol-
vent accessible surface area) are implemented in ProtDCal,
which results in a great variability of the information cap-
tured by different descriptors.

Step 2: Modification by vicinity. Here, the numeric
values in each array of index values are modified according
to the values of neighboring residues within the sequence.
Different definitions of “neighborhood” result in several
potential vicinity operators (Table S5). The application of
vicinity-modification operators to the values of a specific
index array allows to include information in the final
descriptor that reflects the ordering of the amino acids
within the protein.

In the example of Figure 2, the autocorrelation operator
of order 2 (AC2) is used to modify the initial FD values of
each residue. This is achieved by incorporating information
of the values from residues separated by two amino acids
along the sequence. The operator is formulated as:

FD_AC2;=FD{*FD;_i + FD*FD; , ,

where i represents the i-th residue in a protein and
k corresponds to the order of the autocorrelation.

Step 3: Grouping. Subarrays of groups of residues are
formed, according to a set of grouping criteria implemented
in ProtDCal® (Tables S6-S8). Among them, the entire pro-
tein forms the largest group, while the shortest group could
contain a single type of residue. Such splitting of informa-
tion in the amino acid sequence results in highly specific
descriptors applicable to various protein analysis-related
problems. In the example shown in Figure 2, the group is
formed by all glycine residues (GLY) in the protein.

Step 4: Aggregation operators. Finally, an aggregation
operator is applied to the columns of each matrix obtained
after grouping, to transform such matrix into a final numeric
descriptor. Available aggregation operators include the p-norms
of orders p = 1 to p = 3,°° central-tendency measures (geo-
metric, average, and harmonic means, among others), disper-
sion and distribution parameters (kurtosis, variance, quartiles,
skewness), and information-theoretic measures based on
Shannon entropy>! (Tables S9-S12). The different aggrega-
tion operators deliver distinct information about the property
and the group used to generate the descriptors. In this way,
descriptors derived from norms are most appropriate for
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modeling protein functions and classes that are dependent on
protein size. On the contrary, for classes that are not related to
the number of residues, descriptors obtained with dispersion
and central tendency (means) aggregation operators may be
preferable. In Figure 2, the arithmetic mean (Ar) is used to
aggregate the values in the group into a single scalar value.

After following these four steps, the final descriptor
resulting from the selected options (Figure 2, highlighted in
red) is: FD_AC2_GLY_Ar. Hence, the structural informa-
tion in this descriptor can be read as the average value
(Ar) for all glycine amino acids (GLY), of the modified fold-
ing degree (FD) property, according to the autocorrelation
(AC2) operator between neighboring residues.

2.2.2 | Analysis of ProtDCal's outcome

PROFEAT,® PROTEIN RECON,” and PseAAC”® are
among the most notable available tools for calculating large
numbers of sequence-based physicochemical protein fea-
tures. We used principal component analysis (PCA) to com-
pare these methods to ProtDCal® (Figure 3). PCA was
applied on the matrix of all computed descriptors. Then, the
contribution of each program was measured using the load-
ing values to evaluate the correlation between the original
descriptors and the principal components. A given compo-
nent is said to be loaded by a descriptor arising from one
program when the correlation between the descriptor and a
component is higher than 0.7.

The application of PCA resulted in 191 principal compo-
nents, explaining 95% of the total variance in the descriptor
data. Notably, while PROFEAT explains 45% of the variance
(90 components loaded), ProtDCal descriptors are able to
explain 52% of the variance (103 components loaded, Figure 3
top). Of the 20 top-ranked components (Figure 3, bottom),
16 have high loadings uniquely from ProtDCal. This analysis
indicates that the components of ProtDCal capture most of the

= ProtDCal

= PROFEAT

= Combined

data variance. Importantly, ProtDCal captures information that
it is not contained in other descriptors such as those of PROF-
EAT and PROTEIN RECON.

The information content of the structural descriptors gener-
ated by ProtDCal makes them suitable for modeling various
functions and properties of proteins. However, given the large
number of descriptors that ProtDCal delivers, the application
of feature selection methods is required as an intermediate
step between generating a raw feature matrix and training the
final model. Machine-learning platforms, such as Weka™
offer several methods to perform feature selection based on
both unsupervised and supervised approaches. Depending of
the size of the data set and the number of initial features,
this step can be computationally demanding. Importantly, the
resulting subset of features can determine the quality of the
final model. Thus, to offer users an initial processing of
the feature matrix, our web server characterizes each descrip-
tor using standardized Shannon Entropy (sSE).

N
- > p;ilogp;

SE=—=1—
5 logN

where p; is the probability that a randomly selected instance
(protein) belongs to the interval i and N is the number of
intervals over which the range of descriptor values is split.
We use uniform splitting to obtain all the intervals. The
number of instances in the data set determines the number of
bins. In this way, the range of the sSE values for each
descriptor is within (0,1), ranging from zero, corresponding
to a total absence of variability, to one, corresponding to a
uniformly distributed data set along the descriptor range.
Accordingly, plots of the frequency histogram per interval of
sSE and of the cumulative frequency along the data set are
provided to the user (Figure 4). Then, users can perform an
initial reduction of the feature matrix by requesting a subset

FIGURE 3 PCA test. Top:
Pie chart showing all 191 principal
components. Bottom: Bar diagram
of the 20 top-ranked composed
components of the test. The
descriptors from the RECON
program were highly redundant,

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 ‘

thus they are found only within
the first two “combined
components.”
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of descriptors within a custom interval of sSE. This
preprocessing step presents, in a user-friendly manner, the
dispersion of the obtained descriptors along the data set of
input proteins. In addition, it enables the elimination of
invariant descriptors that do not provide useful information.
This step also allows discarding highly variable features that
may not be as effective to model discrete properties, such as
in a binary classification problem (e.g., active vs. inactive
peptide drugs), where we generally seek descriptors follow-
ing a bimodal distribution.

Independent tools, such as the IMMAN program,**
for the advanced use of SE and several other information the-

allow

oretic measures for applying both unsupervised and super-
vised feature selection to a set of descriptors. Information
gain®>>® is another widely used measure for supervised fea-
ture selection in machine-learning approaches. In future
developments of our web server, we intend to implement
these and other feature-selection analysis tools, for post-

processing the descriptors generated by the ProtDCal server.

0.8 0.9

~I

02 03 04 05 06 O
SSE

2.3 | Protein analysis tools

ProtDCal's features have been used to develop predictors for
protein analysis.”'*'71%2% In ProtDCal-Suite we provide,
for the first time, web access to some of these tools.

2.3.1 | Performance measures

Next, we summarize the set of measures used to evaluate the
predictors implemented in the different protein analysis tools.

Precision (Pr) =TP/(TP + FP)

Sensitivity(Sn) = TP/(TP + FN)

Specificity (Sp) = TN/(TN + FP)

Accuracy (Acc) = (TP +TN)/(TP+ TN + FP + FN)

where TP means true positive predictions, TN corresponds
to true negative predictions, FP represents false positives,
and FN indicates false negative predictions.
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2.3.2 | PPI-detect

PPI-Detect'? is a support vector machine (SVM) model that
allows predicting the likelihood of interactions between two
proteins based on their sequence information. The method is
based on a new formalism that transforms pairs of amino
acid sequences into general-purpose-numerical descriptors,
which are used as input to an SVM classifier.

The benchmark employed for PPI-Detect was created
using the publicly available databases of protein domains
interaction data: 3did®’ and IPfam,*® containing pairs of
domains reported as interacting, and Negatome 2.0,* con-
taining pairs of domains with no reported interactions. For
each domain, the corresponding sequences were obtained
from Pfam, a database with a large collection of protein fami-
lies.** The final dataset comprises 1,922 interacting pairs and
2,405 noninteracting pairs of domains. Then, the data set was
split into training (3,491 pairs: 1,613 positive and 1,878 nega-
tives) and test (836 pairs: 309 positives and 527 negatives).

The theoretical background of PPI-Detect is described
elsewhere.'® Shortly, we defined new pairwise protein
descriptors as follows: Provided two amino acid sequences
A and B, and the reaction:

2A+2B=>AB+BA

where AB and BA are block copolymers formed by the
sequences of A and B.

The pairwise descriptor D(A-B) is calculated as: D(A-B) =D
(AB) + D(BA) — 2D(A) — 2D(B), where D(X) corresponds to
the value of the single-chain descriptor for a given sequence X
(A, B, AB, or BA in this example). The value of D(A-B) is related
to the change in the topological information upon the dimerization
process. We note that the contribution of the unaltered partners is
removed, thus the descriptors are a numerical representation of the
relation between the independent sequences. We obtained the
individual descriptors using the electro-topological state (E-State)
vicinity operator, which allows capturing the topological informa-
tion of both the original and combined sequences.

The training was performed with the SVM package
SMO**" and the final model was selected with a linear
kernel and a cost (C) for misclassified cases, C = 11.3. The
results of an external test for PPI-Detect and the tools
PIPE,* Pred-PPL*> and SPPS* indicate that PPI-Detect
outperforms, in terms of accuracy, the other tools (Table 1).

PPI-Detect was successfully used to identify improved
derivatives of EPI-X4,*>%¢ an endogenous peptide inhibitor
of the G-protein-coupled receptor CXCR4."

2.3.3 | Enzyme identifier

Enzyme Identifier is a SVM predictor for identifying
enzyme-like proteins'® from sequence or structural data.

TABLE 1 Comparison of the accuracy values for PPI-detect and
other PPI predictors'?
PIPE Pred-PPI SPPS PPI-detect
Accuracy (%) 63.9 43.5 61.7 66.1

Abbreviation: PPI, protein—protein interaction.

TABLE 2 Comparison of performance measures in 10-fold
cross-validation for ProtDCal-based models (enzyme identifier) and
other methods"

Reference Accuracy (%)

Enzyme identifier (3D structures) > 82.0+0.3
Shervashidze*® 815+ 15
Senelle® 80.3
Dobson et al.*’ 802+ 1.2
Shervashidze et al.* 79.8 + 0.4
Neumann et al.>' 79.0 £ 0.2
Enzyme identifier (amino acid sequences)” 78.8 £0.2
Lietal>” 78.3
Bai and Hancock>® 71.6
Orsini et al.>* 76.6 + 0.6
Kilhamn® 75.9
Johansson et al.>® 754 + 0.6

“Sequence-based model. Notice that all other models are based on 3D structural
information.

Accordingly, two models are implemented in Enzyme Iden-
tifier: sequence-based (using FASTA Files) and structure-
based (using PDB files).

The data set employed for training both models was
taken from Dobson and Doig (D&D),*” comprising a total of
1178 structurally diverse proteins (691 enzymes and
487 nonenzymes), extracted from the PDB and Medline
Abstracts databases. The Enzyme Identifier SVM models
were generated and validated using 10 X 10-fold CV. The
accuracy values reported in Table 2 illustrate how this
structure-based model outperforms structure-based predic-
tors developed by other authors using the same data set.

In addition, the accuracy of the predictions of the 3D
structure-based model was assessed in an external set of 52 pro-
teins, which was structurally unrelated to the training data set.
The accuracy obtained was 80.8%, while with the method of
Dobson and Doig the reported accuracy is 79.0%.*”

2.3.4 | Pred-NGlyco

Pred-NGlyco is a sequence based Random Forest (RF) model
for predicting N-glycosylation sites in peptides and proteins.
This model illustrated, for the first time, the applicability of
ProtDCal's descriptors to model relevant protein structural
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TABLE 3 Comparison of performance measures for Pred-NGlyco
and other predictors in 10-fold cross validation test®

Accuracy (%) Sensitivity (%) Specificity (%)

Pred-NGlyco  91.6 93.2 914
GPP 92.8 96.6 91.8
NetNGlyc 76.7 439 95.7
EnsembleGly® 95.0 98.0 77.0
ScanSite 79.8 72.7 81.9

“Evaluated in five-fold cross validation. The specificity value originally reported
for EnsembleGly>® actually corresponds to precision.

TABLE 4 Performance measures in external test set for
Pred-NGlyco and GPP®

Accuracy Sensitivity Specificity Precision

(%) (%) (%) (%)
GPP 66.2 97.2 62.7 22.7
Pred-NGlyco  87.1 935 86.4 43.6

data.’ To build the model, 3,508 sequence-unique windows,
with 15 amino acids of length, were extracted from an initial
data set of 241 proteins in the OGLYCBASE®’ data set. Each
window was centered on an asparagine residue and classified
in glycosylated (positive) or nonglycosylated (negative).
Then, ProtDCal sequence-based descriptors were computed
for each position of these chains.

Feature selection was performed using a Wrapper approach,
with a genetic algorithm as implemented in Weka.* The
resulting model was compared via cross-validation to contem-
porary N-glycosylation predictors, such as GPP,”® NetNglyc,™®
EnsembleGly,59 and ScanSite.® The results (Table 3) indicated
that, in general, Pred-NGlyco, EnsembleGly, and GPP out-
perform the methods NetNGlyc and ScanSite.

In addition, the Pred-NGlyco model was compared using
an external test set to the predictor GPP>® (Table 4, the web
server associated with EnsembleGly is no longer available).
The comparison shows higher performance for the Pred-
NGlyco model with superior values of accuracy, specificity,
and precision than those of GPP, while GPP showed slightly
better sensitivity.

Like PPI-Detect and Enzyme Identifier, Pred-NGlyco is
an example of the value of ProtDCal descriptors to model
various biological data.

3 | SERVER DETAILS

The server is hosted in an Apache2 webserver and it was
implemented in a two-layer architecture, divided into front-end
and back-end. The front-end, written in PHP and JavaScript, is
responsible for exchanging information with users. This layer

is visualized with HTMLS and Bootstrap framework. All tools
were implemented in the Java language using third-party
libraries. The back-end is formed by a set of Perl scripts that
manage job execution on a computer cluster system.

4 | CONCLUSIONS

ProtDCal-Suite is a valuable platform for the machine
learning-based study of protein structure—function relation-
ships. The principal module, ProtDCal, provides scientists
with information-rich features datasets that describe key
structural characteristics of proteins. These descriptors are
highly suited for the training and evaluation of machine
learning models used in the prediction of protein function.
The information-theoretic post-processing of the generated
protein descriptors enables rapid unsupervised feature selec-
tion, prior to the creation of the model.

The capability of ProtDCal to generate useful features
was assessed in several studies developing novel machine
learning-based tools.”™'? Here, we present web interfaces for
predicting the interaction likelihood of protein—protein and
protein—peptide pairs (PPI-Detect), for identifying enzymes
from amino acid sequences or 3D structures (Enzyme Identi-
fier), and for predicting N-glycosylation sites in peptides and
proteins (Pred-NGlyco).

In future, we will continue incorporating new applica-
tions based on ProtDCal features into ProtDCal-Suite to
bring more functionalities to users. A next development will
include a tool for the design of antibacterial peptides.
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Table SM-1. Compendium of structural and chemical-physical amino acid properties.*

Mw | HP | IP ECI | L19 | 71 72 73 ISA Xi Pa |Pb | Pt AHf Ap

ALA | 71 | 1.8 | 6.01 | 0.05] 19.2 0.07 | -1.73 | 0.09 | 62.9 -77.85 | 1.29 [ 0.9 | 0.78 | -433.66 | 202.42

ARG | 156 | 4.5 | 10.76 | 1.69 | 17.8 | 2.88 | 2.52 | -3.44 | 52.98 | 108.86 | 0.96 | 0.99 | 0.88 | -403.21 | 557.81

ASN | 114 | -35| 541|131 |21.72| 322 | 145 | 0.84 | 1787 | -5542 |09 | 0.76 | 1.28 | -466.91 | 377.84

ASP | 115 |-35| 2771251714 | 3.64 | 1.13 | 236 | 1846 | 47.89 | 1.04 | 0.72 | 1.41 | -518.1 | 360.26

CYS | 103 | 25| 507 | 0.15| 1883 | 0.71 | -0.97 | 4.13 | 7851 | 160.13 | 1.11 | 0.74 | 0.8 | -425.69 | 236.80

GLN | 128 | -35| 322|131 | 1855 | 3.08| 0.39|-0.07 | 19.53 | 134.68 | 1.44 | 0.75 | 1 -479.54 | 439.85

GLU | 129 | -3.5| 565|136 | 1731 | 218 | 0.53 | -1.14 | 30.19 | 53.27 | 1.27 | 0.8 | 0.97 | -531.69 | 417.46

GLY | 57 |-04| 597]0.02| 1948 | 223 |-536| 03 19.93 | -148.03 | 0.56 | 0.92 | 1.64 | -420.86 | 172.08

HIS 137 | -32 | 759|056 | 1397 | 241 | 1.74 | 1.11 | 87.38 -4.57 1 1.22 ] 1.08 | 0.69 | -378.92 | 417.33

ILE 113 | 45| 6.02|0.09 | 20.76 | -4.44 | -1.68 | -1.03 | 149.77 | -104.8 | 0.97 | 1.45 | 0.51 | -449.27 | 309.12

LEU | 113 | 3.8 | 598 |0.01 | 17.65 | -4.19 | -1.03 | -0.98 | 154.35 | -1485 | 1.3 | 1.02 | 0.59 | -448.27 | 318.85

LYS | 128 | -39 | 9.74 | 053 | 17.05 | 2.84 | 1.41 | -3.14 | 102.78 | 47.61 | 1.23 | 0.77 | 0.96 | -446.97 | 409.91

MET | 131 | 1.9 | 574|034 | 17.88 | -2.49 | -0.27 | -0.41 | 132.22 | 46.37 | 1.47 | 0.97 | 0.39 | -435.34 | 332.93

PHE | 147 | 2.8 | 548 | 0.14 | 16.81 | -4.92 13| 045 |189.42 | 47.67 | 1.07 | 1.32 | 0.58 | -376.77 | 414.12

PRO 971-16| 648 |0.16 | 1855 | -1.22 | 0.88 | 2.23 | 12235 | 169.73 | 0.52 | 0.64 | 1.91 | -422.17 | 261.24

SER 871-0.8 ] 5.68 0561891 | 1.96 | -1.63 | 0.57 19.75 30.24 | 0.82 | 0.95 | 1.33 | -479.75 | 265.01

THR | 101 | -0.7 | 5.87 | 0.65 | 17.15 | 092 | -2.09 | -1.4 59.44 46.04 | 0.82 | 1.21 | 1.03 | -483.37 | 292.47

TRP | 186 | -09 | 5.89 | 1.08 | 2094 | -4.75 | 3.65| 0.85| 179.16 | 178.69 | 0.99 | 1.14 | 0.75 | -365.49 | 530.87

TYR | 163 | -1.3 | 566 | 0.72 | 16.86 | -1.39 | 2.32| 0.01 | 132.16 | 49.11 | 0.72 | 1.25 | 1.05 | -446.32 | 472.98

VAL 99| 42| 597 |0.07 | 17.88 | -2.69 | -2.53 | -1.29 | 12091 | -106.5 | 0.91 | 1.49 | 0.47 | -434.3 | 276.26

Mw Molar Weight 2 ISA Isotropic Surface Area *

HP Kyte-Doolitle's Hydrophobicity Scale * Xi Compatibility parameter 3

IP Isoelectric Point 2 Pa Levitt's Probability of adopting alpha helix conformation ©
ECI Electronic Charge Index? Pb Levitt's Probability of adopting beta sheet conformation ¢
L1-9 Compatibility parameter 3 Pt Levitt's Probability of adopting beta turn conformation ¢

Z1 Composed parameter related with hydrophilicity 7 AHf(X) enthalpy of formation of the peptide: AAAAXAAAA. 3
7.2 Composed parameter related with steric features ’ Ap Molecular area of non-carbon atoms in the sidechain

7.3 Composed parameter related with electronic features ’

*This table was taken from the Supplementary Information of the ProtDCal manuscript.!



Table SM-2. Formulae and description of 3D-thermodynamics indices. *

Acronym

Formula

Description

Gee

G.(F), = RT(N~p,Inp,

3 3/2 3r;
p; = ' - e 2(i-1)3.8
272G —1)3.8

Configurational free energy
of a folded state. Index
based on a “random-flight”
model of the protein chain.
Where r; represents the
distance to the first residue
in the chain.

N
F n S ATW
W'=Y 5ESN,

J=1

Number of water molecules
close to a residue in a folded
state.” 10

Where 6" takes value 1 if
the pair of residues are
neighbours, using a cutoff
for the spatial distance (9.4
A), or 0 otherwise. In the
same way o° takes value 1 if
the residue is superficial,
using a cutoff for the solvent
accessible surface area, or 0
otherwise. The parameters
N represents the number of
associated water molecules

to the sidechain of a residue
11

Gwr)

£
G, (F), =-TRS,, In i

=N

Free energy contribution of
the entropy of the first shell
of water molecules in a
folded state !0 Spya takes
value 1 if the residue has
non-zero N, or zero
otherwise.

Gse)

G,(F), = H A"

Interfacial  free  energy
contribution of a folded
state.

Where H; is hydrophobicity
in Kyte-Doolittle scale * and
AF is the solvent accessible
surface area of a residue in a
folded state.

AGg

AG,; =G (F), - G,U),

Interfacial  free  energy
variation.

HBd

N
AHbd, =0.5) (5} +6))

J=1

Geometric definition of a H-bond:

Number of backbone’s
hydrogen bonds.

Where 517 takes value 1 if

the Nitrogen atom of residue
i is H-bonded with the
Oxygen atom of residue j
and 0 otherwise. In the same

way 5: takes value one if

the Oxygen atom of residue

3



_g_CHR /a—\\}—%— d<2.54

a=120°-- 180°

\

C—=QunnH——N

HN CHR
J'U'l\f\f‘ '-’VIVV‘

i is H-bonded with the
Nitrogen atom of residue j
and zero otherwise.

ACic:l

Free energy contribution of
the charge distribution
within the protein. The
parameters g are the
Electronic Charge Indices of
each residue 3. Parameter
ke=7.608.

AGy

AG,,; =k, (G, (F), -G, U),)

Folding free energy
contribution of the entropy
of the first shell of water
molecules.

AGry

2

6
3.965

Tij

T

1
N
AG,, =K 3| [3:963
2 j=1

[j—ij>1

Residue-level Lennard-
Jones interactions.
Parameter k= 63.981.

ACitor

AG,

tori

=k,,[(cos® 2¢, —1) +0.256(cos’ 2y, — 1)]

Free energy contribution of
backbone torsion angles.
Parameter ki, = 1.219.

*This table was taken from the Supplementary Information of the ProtDCal manuscript.'




Table SM-3. Formulae and description of thermodynamics indices for protein
sequences. *

Acronym Formula Description
i+2 . .
WU — N Number of water molecules close to a residue in an

W) ! jg_lz T unfolded state 1°.

w9 Free energy contribution from the entropy of the
GwU) | G, (U),=-TRS,,,In -+ | first shell of water molecules in an unfolded state

(- =N |n
Gs(U) G (U), =H, AiU Interfacial free energy contribution of an unfolded
state

*This table was taken from the Supplementary Information of the ProtDCal manuscript.!



Table SM-4. Formulae and description of topographic indices. *

Acronym

Formula

Description

Ar

Solvent accessible surface area

AA

AA = AF- AU

Buried area. Where Ay is the fully exposed surface area
of each residue and Ar is the area in the folded state.

AA™

AA™ = A"g- APy

Buried non-polar area. Here nitrogen atoms and oxygen
atoms are excluded.

wlp; = o, * é‘z's

Weighted index of the solvent accessibility.

Where o represents any weighting property and the delta
takes value 1 or 0 if the residue is considered superficial
or internal respectively.

InFD

N
ZU_” d@i
In FD. — _ =il
' N—x

Logarithm of the Folding Degree. Where d is the spatial
distance, N the length of the protein and x a parameter
which takes value 2 for terminal residues and 3 for the
others.

wR?

2
_w,*d;

- N
2w
i=1

WRG?

1

Weighted Squared Radius. Where o represents any
weighting property and d is the spatial distance.

wAHBd

AHbd, = @, * (5, + 3,,)

Geometric definition of a H-bond:

Ny
_g_CQR m/o—g— d<?:A

C—=—0QmH—N

HN ¢ CHR

NN aVAvvy

a=120"- 180°

Weighted deficit or excess of the H-bond between the
backbone atoms. Where 5;\’ takes value 1 if the nitrogen

atom of residue i is buried (Aqy < 0.01A) and is not H-
bonded with any oxygen atom or 0 otherwise. In the

same way é?takes value 1 if the oxygen atom of

residue 7 is buried (A < 0.01A) and is not H-bonded
with any nitrogen atom and 0 otherwise.

wNc¢

wNc, = O.Sia}..é',"

/]
J#i

Weighted Number of Contact. Where J;, takes value 1
when the contact conditions are fulfilled and 0
otherwise. A contacts is defined for pair of residues with
spatial distances shorter than a cutoff d and topological
distances longer than a cutoff . The parameter w;
represents a weighting coefficient for each pair of
residues. This parameter is computed as the product,
wiwj, of the values, for each residue, of any property
within a pool of 12 amino acid properties covering
structural, physical-chemical features.

wFLC

Weighted Fraction of Local Contacts. The parameters J;;
and w; means the same as previous but here the
topological cutoff value is fixed in 7= 1.

wNLC

Weighted Number of Local Contact The parameters J;;
and ; means the same as in wNc but here the
topological cutoff value is fixed in £ = 1.

wCO

Weighted Relative Contact Order !2. Where Nc
represents the number of contacts in the protein.




N
C
Z 0,0

Weighted Local Contact Order. As difference with

_ J#i previous, the weighted contacts are divided by the same
wLCO wLCO, = L un-weighted local contact instead of all the contact in the
N z 5; protein.
J#i
N
wRWCO Z; 40 Weighted Residue-Wise Contact Order 3.
WRWCO, ="
N
1 N
wCTP wCIP = z a)2 O0° | Weighted Chain Topology Parameter !4,
2 c ] #1 v
Z 51‘]‘ Oy 51]‘ ;0,0
wCLQ wCLQ, =~ < Weighted Cliquishness or Clustering Coefficient '°.
z 60,0,
j<l
Psi H =8"*¢p Weighted Helix-like Psi angle.
wPsi H - ' The delta takes value 1 if the angle is in the range [-77;-
17] or 0 otherwise.
WPsi S Psi S = 5;//5 * @, Weighted Sheet-like Psi angle. The delta takes value 1 if
- the angle is in the range [94;154] or 0 otherwise.
Psi I =8"*w Weighted Irregular Psi angle. The delta takes value 1 if
wPsi 1 - ! the angle is in one of the following ranges: [-180,-77), (-
17;94), (154;180] or 0 otherwise.

WPhi H Phi H, = é‘i¢H * @, Weighted Helix like Phi angle. The delta takes value 1
- if the angle is in the range [-87;-27] or 0 otherwise.
WPhi S Phi_ S, =6"*w, Weighted Sheet like Phi angle. The delta takes value 1
- if the angle is in the range [-159;-99] or 0 otherwise.

Phi I =8"*w Weighted Irregular Phi angle. The delta takes value 1 if
wPhi_I - ' ' the angle is in one of the following ranges: [-180,-159),
(-99;-87), (-27;180] or 0 otherwise.
Phi - Phi dihedral angle
Psi - Psi dihedral angle
1 :
TCD wlCD ;= 5 Z col..5 ‘ Total Contact Distance '6.
N i S

*This table was taken from the Supplementary Information of the ProtDCal manuscript.!




Table SM-5. Weighting procedures (Vicinity modifiers) implemented in ProtDCal. *

Acronym

Formula

Description

AC{

ZLL 5(d;, k)

Jj=1

Condition:(d; =k)?6=1:6=0

Autocorrelation.

Where, L, are the index values of residues i and j
and £ is a topological distance cutoff and N is the
total number of residues.

GV

C 1 & LL,S(dyk)
k-1 et Sl E A
v, NZ

J=lj#i ij

Gravitational

1

Kier-Hall’s connectivity-based operator.

Where, A4 is the number of segments containing
the residue i, with a maximum length of m
residues, n, is the number of residues in a sub-
segment, Lj, is the index value of the residue j in
the segment a.

ES;

Yo L-L,
ES, =L, +AL =L+ ).

J=1j#i (dzj +1)

Electro-topological state (E-state index).

Where, L; is the intrinsic state (index) of the i”
residue and AL; is the field effect on the ith
residue calculated as perturbation of the index
value (L;) of i residue by all other residues in the
protein, dj; is the topological distance between the
i and the j” residue, and N is the total number of
residues.

1B

B =(N-1D3a,(55,)"

J#i

S, =L, +Zau i

J#EL

Ivanciuc-Balaban.

Where, a; represents th elements of the adjacency
matrix, and N is the number of residues. The
exponent 2 dues to the use of the exponent -1/2.
Here the factor (N-1) represents the numbers of
virtual bonds among residues.

*This table was taken from the Supplementary Information of the ProtDCal manuscript. !




Table SM-6. Summary of the definitions of residue-based groups. *

Acronym Description

ALA Represents all alanine residues contained in the protein

ARG Represents all arginine residues contained in the protein.

ASN Represents the all asparagine residues contained in the protein.
ASP Represents the all aspartic residues contained in the protein.
CYS Represents the all cysteine residues in the protein.

GLN Represents the all glutamine residues in the protein.

GLU Represents the all glutamic residues in the protein.

GLY Represents the all glycine residues contained in the protein.
HIS Represents the all histidine residues contained in the protein.
ILE Represents the all isoleucine residues in the protein.

LEU Represents the all leucine residues contained in the protein.
LYS Represents the all lysine residues contained in the protein.
MET Represents the all methionine residues contained in the protein.
PHE Represents the all phenylalanine residues contained in the protein.
PRO Represents the all proline residues contained in the protein.
SER Represents the all Serine residues contained in the protein.
THR Represents the all threonine residues contained in the protein.
TRP Represents the all tryptophan residues contained in the protein.
TYR Represents the all tyrosine residues contained in the protein.
VAL Represents the all valine residues contained in the protein.

*This table was taken from the Supplementary Information of the ProtDCal manuscript.'



Table SM-7. Summary of the definitions of property-based groups. *

Acronym Included Residues Description

AHR ALA, CYS, GLN, GLU, HIS, LEU, LYS, MET Common residues in alpha helix
motifs.

BSR ILE, PHE, THR, TRP, TYR, VAL Common residues in beta sheet motifs.

RTR ASN, ASP, GLY, PRO, SER Common residues in reverse turn
motifs.

PCR ARG, HIS, LYS Positive-electric-charged residues.

NCR ASP, GLU Negative-electric-charged residues.

UCR ASN, CYS, GLN, SER, THR, TYR Uncharged residues.

ARM HIS, PHE, TRP, TYR Aromatic residues.

ALR ALA, GLY, ILE, LEU, MET, PRO, VAL Aliphatic residues.

UFR GLY, PRO Common residues promoting unfolding
or distorted regions.

NPR ALA, GLY, ILE, LEU, MET, PHE, PRO, TRP, Non-polar residues.

VAL
PLR ARG, ASN, ASP, CYS, GLN, GLU, HIS, LYS, Polar residues.

SER, THR, TYR

*This table was taken from the Supplementary Information of the ProtDCal manuscript.'
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Table SM-8. Summary of the definitions of topographic-based groups. *

Acronym | Description

HEX All residues in alpha helix conformation

SHT All residues in beta sheet conformation

TRN All residues in reverse turn conformation

RCL All residues in loops regions (Residues in TRN are excluded)
INT Represents the all internal residues in the protein.

SUP Represents all superficial residues contained in the protein.
PRT The whole protein

*This table was taken from the Supplementary Information of the ProtDCal manuscript.!



Table SM-9. Aggregation operators: Distance invariants.™*

of indices and N the number of indices in the group.

Acronym | Formula Description

N1 Nl= i| L Minkowski’s norms (p = 1) Manhattan norm. Where L; represents each
pn i index of the group of indices and N the number of indices in the group.

N2 N2 = ﬁ] I 2| Minkowski’s norms (p = 2) Euclidean norm. Where L; represents each

N ~ i index of the group of indices and N the number of indices in the group.

N . . _ _ .

N3 N3 =3 z L 3| Minkowski’s norms (p = 3). Where L; represents each index of the group
i=1

*This table was taken from the Supplementary Information of the ProtDCal manuscript.!
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Table SM-10. Aggregation operators: Means (first statistical moment) invariants.*

Acronym Formula Description

[N
Geometric Mean.
G G=x H Ll' Where N is the number of indices in the group.
i=1

Arithmetic Mean

Ar (potential with o = 1)

P2 v o " 1 Pote'ntial’Mean
Ly+Ly+..+Ly @ (potential with a.=2)

P My = T Potential Mean
(potential with o = 3)

M Harmonic Mean

(potential with a = -1)

*This table was taken from the Supplementary Information of the ProtDCal manuscript.'
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Table SM-11. Aggregation operators: Statistical (highest statistical moments)
invariants.*

Acronym Formula Description
N —\2
v ;1 (L,- - L) Variance.
V= Z_T Where N is the number of indices in the group.
N(X
S = ( 3) 3 Skewness.
S (N-D(N -2)(DE) Where N is the number of indices in the group and
N _, (DE)’ is the standard deviation raised to the 3™
Xy = a§1 (Lg—-1L) power
k_N(N+1)X4—3(X2)(X2)(N—l) Kurtos
= 4 urtosis.
K (V= DN = 2)(NV = 3)(DE) Where (DE)* is the standard deviation raised to the
N _ .
X.= % (La—L)] fourth power
S a=l
DE DE = M Standard Deviation
N-1
cv c, = % Variation Coefficient
RA RA = Lmax - Lmin Range
Q1 P25 Z[E+l} Percentile 25. o
4 2 Where N is the number of indices in the group.
N 1 Percentile 50.
P5S0=| —+—
Q2 [ 2 * 2} Where N is the number of indices in the group.
3N 1 Percentile 75.
P75=|= 4+
Q3 { s 2} Where N is the number of indices in the group.
150 150 = P75 - P25 Inter-quartile Range
MX L; maximum Maximum value of the group of indices.
MN L; minimum Minimum value of the group of indices.

*This table was taken from the Supplementary Information of the ProtDCal manuscript.!

14



Table SM-12. Aggregation operators: Information-Theory-based invariants. *

Acronym Formula (Equation) Description
Mean Information Content.
K N N Where Ny is the number of indices in the same bin, K
— k k . .
MI MI = —Z:—log2 — is the number of bins defined to compute the operator
o N N and
N is the total number of indices in the group.
K .
I TI = N10g2 N — Z N, 10g2 N, Total Information Content.
k=1
11
SI S = ——— Standarized Infomation Content
Nlog, N

*This table was taken from the Supplementary Information of the ProtDCal manuscript.!
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7 Discussion

In this work, I developed several ML-based tools for the design and optimization of bioactive
peptides. To this end, | focused on different early-stage tasks of the drug design process. These
tasks comprise the identification of protein-peptide and protein-protein interactions, the
estimation of the binding affinity of protein-peptide and protein-protein complexes, and the
identification of antibacterial peptides. Furthermore, | implemented several web applications to
facilitate the use of the developed models. In this way, the predictors can be employed for (1)
the massive in silico screening of peptide libraries to study protein-peptide interactions, (2) to
identify and design peptides and protein derivatives with tuned binding affinity against a protein
receptor, and (3) to identify protein fragments with antibacterial activity. In addition, |
developed a web platform, ProtDCal-Suite, that provides access to these tools and to other

ProtDCal-based applications. ProtDCal-Suite facilitates the functional analysis of proteins and
peptides72, 76, 86, 87, 212-214_

7.1 The models

First, 1 developed PPI-Detect, a sequence-based predictor of protein-protein and protein-peptide
interactions (Publication 1). PPI-Detect receives as input the individual amino acid sequences
of a protein-peptide or protein-protein pair and outputs the likelihood of the pair being involved
in an interaction. | developed the ML model using as features the molecular descriptors
implemented in the ProtDCal software’®, whose suitability in proteins-related QSAR
development has been demonstrated in several studies’? 7681 8.87.90.215 Tq thijs end, and since
the codification approach of ProtDCal was initially intended only for individual proteins, |
defined a novel procedure to encode protein pairs and implemented a new functionality in
ProtDCal to enable their future computation (Publication 1, Figure 2). Subsequently, I trained
the ML model using a combination approach for protein pairs introduced and validated its
effectiveness in the study of protein-protein and protein-peptide interactions. PP1-Detect can be
applied to the identification of lead compounds from extensive in silico screening of protein-
peptide interactions, especially in those cases where the primary structure of protein-peptide
pairs is the only available information.

| further studied protein-peptide interactions by exploring the structural information of protein-
peptide complexes (Publication 2). For this, the response variable modeled was the binding
affinity (binding free energy, AGyind) Of protein-peptide complexes. The model delivers the
strength of the interaction rather than identifying interacting/non-interacting binders, as was the
case with PPI-Detect (Publication 1). Unlike PPI-Detect, the predictor of protein-peptide
binding free energies is based on 3D structures. To facilitate the use of the created model, |
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developed a web tool named PPI-Affinity that allows, in addition to the estimation of BA, the
optimization of a putative peptide sequence for which a 3D complex structure has been
resolved. The implemented functionalities permit the generation of thousands of peptide
derivatives by performing substitutions and/or deletions on the peptide residues located at the
interface of contact of the protein-peptide complex. PPI-Affinity can find application in
mutagenesis experiments and protein engineering. To my knowledge, without considering the
study of peptides targeting MHC classes | and 11297 2% this was the first protein-peptide BA
predictor trained on data formed exclusively of protein-peptide structures. Additionally, as part
of the study, | also modeled the BA of protein-protein complexes. Consequently, all the
functionalities of PPI-Affinity can be exploited separately for both protein-peptide and protein-
protein complexes.

Furthermore, | contributed to the development of ABP-Finder, a tool to identify antibacterial
peptides and the Gram-staining type of the targeted bacteria (Publication 3). This study
involved the development of two ML classifiers. The first model predicts the likelihood of a
peptide exhibiting antibacterial activity. Putative antibacterial peptides are then fed to the
second model, which classifies the activity according to the target bacteria. The classifications
are exclusively Gram-positive (Gram+), exclusively Gram-negative (Gram-), or both types
(broad-spectrum). My contribution to this project was mainly computational, by implementing
the web server that enables the use of the developed models in the screening of large peptide
libraries. The server permits the breakdown of protein sequences into short peptide fragments
before the prediction. This facility paves the way for the discovery of protein domains with

antibacterial activity.

7.2 Modelling process

| applied both classification (Publication 1) and regression (Publication 2) modeling
approaches to effectively exploit the available data. | used regression as the primary strategy to
create the BA predictors, given the numerical (continuous) nature of AGuind Values. However,
modeling the BA of PPIs was a major challenge given the susceptibility of regression to noise
which, due to different experimental conditions and measurement errors, is a common factor
limiting the quality of reported data®®. Previously, other authors have addressed the analysis of
PPIs as a classification problem by introducing an artificial threshold value to define discrete
classes?'’. Yet, for this option to be feasible, the values separating the classes must be very well
defined, i.e., the distribution of binding free energies should be multimodal, or an unambiguous
physically justified threshold should exist. That is not the case for the modeled data
(Publication 2, Figures SlI-1 and SI-3 B). To assess this, | evaluated PPI-Affinity and the
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LUPIAZ classifier in predicting the BA of protein-protein complexes as a classification rather
than as a regression problem (Publication 2, Table SI-5.1). The evaluation on two test sets
reflected the downside of using a threshold to discretize BA values. In both evaluations, LUPIA
was overly optimistic by ranking most of the cases as with “high” affinity. Moreover, with the
constant increase of available BA-related data (Kq, Kj, and 1Csp), several ML models have been
developed with a regression approach.
Since available datasets can be found for both endpoints, | studied both response variables. |
created a binary classifier to discriminate between interacting and non-interacting protein-
peptide and protein-protein sequence pairs (Publication 1), and regressors to calculate the
AGying OF protein-protein and protein-peptide complexes (Publication 2).
All modeling processes involved the definition of training and test sets. For PPI-Affinity and
ABP-Finder, development sets were also defined. Development sets allow monitoring the
generalization power of the models during the training steps. Although no development set was
defined for the modeling of PPI-Detect, the lack of sequence identity in the analyzed data
(Publication 1, Figure 1), as well as the size of the training set and the rigorous definition of
three test sets (easy, mid-hard and very hard subsets), served likewise to ensure the robustness
of the model. Among the three ML studies, ProtDCal features for protein structures (sequence-
based and structure-based) were exploited to a large extent. The main difference between the
calculated descriptors was the choice of indices and vicinity operators, the first two steps of the
four comprising the ProtDCal pipeline to calculate the descriptors (Publication 4, Figure 2).
The molecular descriptors modeled in PPI-Affinity accounted for structural information
without vicinity modifications and aimed to encode contact information of residues at the PPI
interface at a determined spatial distance. Indices and vicinity operators used in the modeling
of PPI-Detect represented properties of the primary structure of proteins. In PPI-Detect, the
application of the Electro-topological state (E-State) vicinity operator allowed to measure the
total topological information of the PPI. The descriptors of the individual and aggregated
sequence pairs were combined according to the following formulation (Publication 1,
Equation 9):

Dy—p = Deapy + Dgay — 2D(a) — 2D (g, (14)
Where D), D(g), D(agy, and D4y correspond to the molecular descriptors of the sequences A
and B, and that of the sequences AB and BA (formed by the concatenation of A and B),
respectively.
This, accompanied by a large set of grouping and aggregation criteria (which are the last two

configurable parameters of ProtDCal) produced a large set of molecular descriptors for each

207



Discussion

instance in the different data sets. The sets comprised 13248 and 23040 descriptors for PPI-
Detect and PPI-Affinity, respectively. Such high multidimensional spaces aimed to explore all
possible scope-related information to produce features correlating with the response variable.
Next, | extracted the most informative descriptors by applying several unsupervised and
supervised techniques. Among them, the Information Gain for classification tasks (Publication
1, Publication 3) and the correlation coefficient for regression (Publication 2) served to
identify top-ranked features by evaluating the worth of each descriptor to predict the class.
Additionally, unsupervised clustering allowed the removal of redundant dimensions based on
the mutual correlation among features (Publication 1, Publication 3). In all studies, the final
steps of the feature selection process involved the use of a supervised technique coupled with
the classifier to explore relationships between different subsets of descriptors and the response
variable. This strategy facilitated the detection of dependencies between the models’ features.

In the case of PPI-Affinity, as the AGpind Values of most of the complexes in both datasets were
in the center of the distribution (Publication 2, Figures S1-1, SI-3-B), once the final descriptors
were fixed, I divided the training set into four subsets by subsampling the most populated AGping
regions (Publication 2, Figures SI-2 and Sl-4). This approach aimed to reduce large prediction
errors in the least sampled BA ranges. Next, | modeled AGuing On each dataset and followed an
ensemble approach, based on vote selection, to create the final predictors. Ensemble-based
predictions can reduce the dispersion of the estimates produced by single learners and thus
achieve better performance?'®. Two ensemble-based tools (PPI-Affinity and ABP-Finder) are
presented in this work, with robustness validated by their performance on several independent
test sets.

In the modeling protocols, feature selection was followed by the optimization of the
hyperparameters of the technique. In this step, the followed grid-search strategy allowed to
explore a discrete set of hyperparameters to select those values producing the model that most
approximates the objective function. Such selection involved the definition of different ad-hoc
functions to evaluate the models using different test options and thus enhance the robustness of
the final predictors. In PPI-Detect, | evaluated the models in 10-fold CV and selected the
hyperparameters that maximized precision and recall values while reducing their deviation from
the false positive rate (Publication 1, Section SM-3). In PPI-Affinity, | evaluated the
performance of each model on the training set, in 10-fold CV, and on the development set.
Then, | selected the best model by combining the three output correlations in a function that
consolidated in a single measure the goodness-of-fit, generalization, and robustness of the

model (Publication 2, Figure 1-2). In the training of SVM models, the polynomial and radial
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basis kernels were explored to determine the most suitable kernel function to predict the class.
From them, the polynomial kernel was selected to train the models in both studies (Publication
1, Publication 2). The complexity hyperparameter (log,C) of the technique took values in the
range between -5 and 4 (with step=0.5) for all the models. However, | extended the minimum
value to log,C = —7 in the modeling of the BA of protein-peptide complexes, as optimal
models initially fell in the lower limit of the defined range. As a result, two of the models had
log,C = —6, while the other two remained with log,C = —5 (Publication 2, Figure 2).
Another hyperparameter was the degree (D) of the polynomial kernel, with values ranging
between one and three. Interestingly, the final PPI-Detect predictor is a linear model (D=1),
while the ensembles of PPI-Affinity contain models trained with either D=1 or D=2. Such
results indicate the presence of more complex nonlinear relationships in the structural data, and
show how the followed modeling strategy complies with the principle of parsimony of always
opting for the simplest solution.

7.3 Evaluation of the models

A proper evaluation of the models is paramount to ensure an accurate, robust, and stable
production environment. As mentioned above, all models were evaluated in 10-fold cross-
validation. This validation strategy provided an unbiased estimate of the generalization error
with lower variance than that produced by a single split into training and test sets. However, we
note that, to a lesser extent, CV involves the use of test samples in the fitting process. Therefore,
validation on independent test sets, and comparisons with state-of-the-art methods, are crucial
to ensure the generalization power and improvement of the models. Likewise, the use of
appropriate metrics for the evaluation of the model is essential. The selection of the evaluation
measures shall involve not only data types (classification or regression problems) but also their
practical utility to solve the biological problem being addressed. Park®® discussed the
limitations of available sequence-based PPI predictors and highlighted the need for novel
methods that consistently outperform those of the state-of-the-art in terms of area under the
receiver operating characteristic curve (AUC) and precision-recall. AUC measures the
performance of a binary classifier by comparing the true positive rate to the false positive rate
obtained as the decision threshold varies. In this regard, Park?® debated the superiority of
precision-recall compared to AUC, as AUC underestimates the effect of absolute false
positives, which might lead to overestimating the model’s performance in drug discovery
scenarios.

For the development of PPI-Detect, | used precision-recall curves (PRC) to evaluate the model,

as it is highly relevant for biologists to avoid false positives when performing costly and time-
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consuming experiments. In a first evaluation using the entire training set and in 10-fold CV,
PRC showed very low differences between these two testing approaches, evidencing the
robustness of the fitting process (Publication 1, Figure 3). Subsequently, | plotted PRC to
evaluate the model on the three initially defined test sets. Remarkably, models with more than
75% precision were obtained at a sensitivity of 50% for all test sets (Publication 1, Figure 4).
The combination of mid-hard and very-hard subsets was used to compare PPI-Detect with three
state-of-the-art methods. This evaluation evidenced the superior performance of PPI-Detect, as
at 50% sensitivity, PPI-Detect achieved a precision of 80%, while all the other methods
delivered precision values below 60% (Publication 1, Figure 5). Notably, despite the previous
success of the PIPE method™® 2%, this tool did not benefit from the application of ML
techniques and it lacks pairs of non-interacting (negative) data. Park?® also emphasized the
importance of using reliable non-interacting data to enhance model performance and mentioned
the random sample of protein pairs with unproved interaction as a valid approach to generate
such data. In this work, | used the negative PP pairs reported in the Negatome database® to
build the classifier. PPI-Detect delivered the best precision-recall balance (Pr=0.554, Sn=0.648)
when compared to other state-of-the-art methods (Publication 1, Table 1). There, either higher
precision or sensitivity values were achieved by PIPE (Pr=0.762, Sn=0.101) and Pred-PPI
(Pr=0.396, Sn=0.88), yet with notable unbalance among these metrics. Such results evidenced
the robustness of PPI-Detect and the effectiveness of our novel pair-wise codification approach
to extend ProtDCal descriptors to a broader set of protein studies.

Likewise, | evaluated the performance of PPI-Affinity and other state-of-the-art BA predictors
on several independent test sets. The protein-protein model was first assessed on two sets of
protein-protein complexes. There, PPI-Affinity ranked second on the test set 1 (R=0.62,
MAE=1.8 kcal/mol) and first on the test set 2 (R=0.50, MAE=1.8 kcal/mol) (Publication 2,
Table 1). Overall, the performance of PPI-Affinity in both test sets was moderate but consistent,
while the other methods exhibited low or notably fluctuating performance in both test sets.
Finally, the ranking power of the protein-protein model was also assessed by predicting the
binding free energies of 26 wild-type and 151 mutant protein-protein complexes taken from the
SKEMPI v2.0 database® (Publication 2, Figure 3). The performance of PPI-Affinity on this
set (R=0.78 and MAE=1.4 kcal/mol) was superior to the performance on the previously
assessed test sets. Notably, such performance was just marginally inferior to that obtained when
evaluating only on the 26 wild-type protein-protein complexes (R=0.77, MAE=1.1 kcal/mol).
The evaluation on this third test set showed the potential of the model to characterize changes

upon mutation, a functionality provided in the web server implementation (Publication 2,
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Figure 5). Until the introduction of PPI-Affinity, BA predictors were trained on either protein-
protein or protein-ligand datasets, with ligands accounting for small organic molecules (except
for the MHC-I and MHC-II studies??”- 2%8), In both modeling processes, protein-peptide
complexes were poorly represented. Thus, the unsuitability of the other methods for the
prediction of the BA of protein-peptide complexes was evidenced by assessing their
performance on a set of 100 protein-peptide instances taken from the Biolip dataset?'®
(Publication 2, Table 2). There, the protein-peptide ensemble model of PPI-Affinity outranked
all the assessed methods (R=0.55 and MAE=1.1 kcal/mol). Notably, below PPI-Affinity, the
methods with the highest correlations delivered MAE values ranging between 8 and 10
kcal/mol, while methods with low MAE values (MAE < 2 kcal/mol) delivered the lowest

correlation values (R < 0.24).

7.4 Evaluation on other experimental data

Finally, all the models were challenged to either replicate or predict the results of experimental
measurements in collaboration with biologists. Mutants of EPI-X4, an endogenous inhibitor of
the chemokine receptor CXCR4, were employed to assess the performance of PPI-Detect and
PPI-Affinity. Two different datasets of EPI1-X4 were leveraged, with activities measured in
inhibition (Publication 1) and competition assays (Publication 2). In PPI-Detect, the model
was used to study regions of CXCR4 interacting with 35 derivatives of CXCR4’s endogenous
ligand EPI-X4 (Publication 1, Figure 6). There, the precision values delivered by the model
were between 50% and 70% on three of the four studied fragments of EPI-X4 (Publication 1,
Table 2). Such results evidenced that EPI-X4 derivatives are potential binders of CXCR4. In
addition, since these three EPI-X4 regions comprise the minor pocket of CXCR4, binding to
the minor pocket is probably enhanced in those regions of the receptor. Subsequent studies
involved the active participation of PPI-Detect in the study of EPI-X4 derivatives. To this end,
ten thousand mutants were generated taking as template WSCO02, a derivative of EPI-X4. From
this screening, three of the generated derivatives were experimentally tested (Publication 1,
Table 3). From them, a peptide (JM133) was found to be more active than EP1-X4 (Publication
1, Figure 7), which evidenced the capabilities of PPI-Detect for the virtual screening of PPIs.
In PPI-Affinity, | assessed the performance of the protein-peptide model in predicting the BA
of 56 derivatives of EPI1-X4 coupled to the CXCRA4 receptor. For this, | evaluated the model for
the identification of active peptides in two test modes: (1) defining as active peptides those with
ICso below the value of EPI-X4, and (2) defining as active those peptides with 1Cso < 10,000
nM. To evaluate the screening performance, | calculated the Enrichment Factor on the top 5,
10, and 15 ranked peptides. This metric is useful in a scenario such as this, where the affinity

211



Discussion

of derivatives was measured up to ICso = 10,000 nM in the experimental assays, denoting those
with higher values as weak binders. In this analysis, PPI-Affinity predicted only one false
positive in the top 15 when using the affinity of EPI-X4 as the cut-off value. For all the other
calculated EF values, the model delivered the highest performance (EF=1.9) (Publication 2,
Figure 4). The protein-peptide model of PPI-Affinity was also assessed on two sets of peptides
bound to PDZ domains of the human high-temperature requirement serine proteases (HtrAs)
HTRAL and HTRA3 (Publication 2, Tables 3-4). In this assessment, most of the BA values
calculated with PPI-Affinity had an error within the MAE of the model (Publication 2, Table
2).

Furthermore, | evaluated the ranking power of PPI-Affinity and other state-of-the-art BA
predictors on these sets of derivatives by measuring the Kendall correlation coefficient between
experimental and predicted binding affinities. This non-parametric measure is well-suited to
address the small sizes of these datasets, containing each less than 15 peptides. In this
evaluation, PPI-Affinity outranked the other methods with 1=0.59 (HTRA1) and t=0.42
(HTRAS3) (Publication 2, Table 5). Notably, PPI-Affinity showed the lowest variance among
all the methods compared. RF-Score, the second-best method for predicting the BA of HTRA1
(t=0.56) suffered a fall in the performance for HTRA3 (t=0.27).

All the conducted evaluations evidenced the potential of the developed models in VS
experiments and showed, with several examples, their practical utility in drug design. In
addition to the methodological improvements achieved by the novel models, the evaluation on
different and independent datasets unveiled a notable variance in the predictions of other state-

of-the-art methods, especially in the case of BA predictors (Publication 2).

7.5 Implementation of web servers

As mentioned, in addition to the PPI-Detect and PPI-Affinity models, | implemented all the
introduced tools as web servers to facilitate the screening of large libraries of compounds
without installation requirements for the scientific community. All web interfaces implement
validation functionalities to avoid data entry errors. For instance, the Protein Engineering
module of PPI-Affinity (Publication 2) provides a four-steps form to customize mutant
generation. There, information related to the structure provided by the user is interactively
displayed and requested in a way that greatly minimizes errors related to user management. The
aforementioned ML models were all created using the descriptors implemented in ProtDCal.
This software was originally deployed as a stand-alone program written in the Java programing
language. In this work, I also implemented a web platform, named ProtDCal-Suite, that allows

calculating the vast variety of ProtDCal descriptors, as well as to provide access to the tools
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introduced in this thesis and to others that leveraged the protein codification of ProtDCal
(Publication 4). ProtDCal-Suite provides a general framework for the study of proteins and
peptides, permitting both (1) the generation of molecular descriptors for data-mining purposes,

and (2) the application of our tools in the early steps of the peptide discovery process.

7.6 General considerations concerning the models

Several factors might be considered when analyzing the high variance presented by some state-
of-the-art methods. For instance, many methods lack the definition of the applicability domain
of the model, which is the 3" principle defined by the OECD for the regulation of QSAR
models!2. Many ML models assume that new instances will come from an identical distribution
to that of the training set!, without considering that this accounts for a small portion of the
chemical space. Consequently, if a tool lacks the definition of the AD, it is not possible to
analyze whether test samples are simply outside the scope of these predictors or whether it may
be a specific situation of some structure that causes an error in the prediction. This makes it
difficult to analyze the errors obtained in the predictions and reflects the importance of
specifying, for each predicted case, its projection into the AD of the model as part of the output
of the tools. In this work, | defined the AD as the subspace specified by the value range of the
variables of the models (molecular descriptors) in the training datasets (Publication 1: Table
SMBG, Publication 2: Table SI-7, Table SI-8, Publication 3: Supplementary File 2). By doing
this, my aim was to release robust models providing reliable predictions. Nonetheless, there are
other important considerations regarding the practical use of our tools:

1) The models can be applied only to linear sequences comprising natural and unmodified
amino acids. Although this could appear as a limitation, it should be noted that the
chemical space encompassing all possible combinations of the 20 standard amino acids
is enormous and that the initial exploration of peptides libraries is aimed at finding hits
to be further improved by techniques such as cyclization, N-methylation, and
modifications of the amino acids, among others®3.

2) PPI-Detect was built using a training set where peptides have a minimum length of 16
amino acids, which hinders the applicability of the method to shorter peptides, generally
preferred as therapeutics. However, this limitation is imposed by the available data and
smaller peptides might be studied using PPI-Affinity, whose protein-peptide model was
trained on peptides with sizes ranging between 3 and 30 amino acids.

3) It is known the concern of drug developers regarding the understanding of model
features to be able to explain the success of ML modelst. This was acknowledged by

the 5" OECD principle!?, and in the widely accepted definition of molecular descriptor
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given by Todeschini et. al.”t. The codification approach implemented in ProtDCal
significantly sacrifices the rigorous interpretation of the features. Nevertheless, the
models introduced by us and other authors’? 76 81, 86, 87, 90, 212, 213, 215, 220 eyjdence the
suitability of ProtDCal descriptors to train robust and generalizable models and their
applicability to diverse types of studies. Tables summarizing the descriptors for each
model are provided in the corresponding publications (Publication 1: Table SM2,
Publication 2: Tables SI-3.1 and SI-4.1). Additionally, the formulations for all
molecular descriptors are available in the section “Theory and Algorithms” of the
ProtDCal-Suite paper (Publication 4).

4) As explained above, it should be noted that data-driven models are limited to some
extent to the available information, which accounts for a reduced size of the chemical
space. This might limit the AD of the models and thus the novelty of some predicted
leads.

5) PPI-Detect and PPI-Affinity attempt to predict the on-target interactions of putative
peptides, which does not directly imply bioactivity. For this, other factors such as
metabolic activity, polypharmacological implications, and alternative binding modes,
among others, must be considered?.

Among all, it should be noted that in silico methods are approximate and thus the models can
produce errors. Nevertheless, this does not hamper the application of the models. For instance,
PPI-Detect was used for the screening of a peptide library to identify peptide inhibitors of
Escherichia coli ATP synthase (high binding likelihood) which also display low binding
likelihood to human ATP synthase??!. In that work, the inhibitory activity of two of the top-
ranked peptides identified by PPI-Detect was experimentally validated. Such results evidence
the potential of PPI-Detect as a virtual screening tool. The authors conducted protein
engineering computational experiments to generate fragments (peptides ranging between 20
and 40 residues) from FoF:1-ATP synthase interfaces. As protein engineering tasks require
algorithms capable of generating thousands of derivatives for a putative compound, the authors
used the evolutionary algorithm implemented in ROSE??? to generate mutants of the ATP
synthase interfaces. Currently, this can be achieved by the functionalities implemented by me
to allow the generation of mutants as part of the pipeline of PPI-Affinity (Publication 2, Figure
5).

7.7 Conclusions

The design of novel peptides requires the selection of putative hits compounds in the early
stages of the process. In this search, in silico methods exploring the peptidome can reduce the
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cost of other techniques such as HTS, as well as extend the search to non-physical libraries.
The amount of data collected in the fields of Proteomics and Peptidomics is continuously
increasing, which opens the possibility of applying ML techniques to create predictive models
that leverage the information content of available data. Several ML-based methods that analyze
protein(peptide)-related endpoints exist. However, the value of any ML model resides in how
well the model performs out-of-sample, and state-of-the-art methods so far left us room for
improvement in terms of generalization on unseen data. Moreover, there was a niche in the
state-of-the-art methods to predict the binding affinity of protein-peptide complexes.

| applied several computational techniques to develop novel methods contributing to the de
novo design of bioactive peptides. The purpose of the tools is to detect promising peptide
candidates in the early stages of drug discovery by providing high-value predictions. In this
regard, the introduced methods improved state-of-the-art ML-based methods, which represents
a scientific advance in the in silico study of bioactive peptides. Moreover, the development of
a predictor of BA uniquely trained on protein-peptide complexes opened space for new
research. The predictions made by using the server can generate important insights into the
structural information of active compounds. Even if this knowledge must be validated
experimentally, it reduces the time and costs associated with performing those experiments.
The developed ML-based tools can be leveraged in peptide discovery and optimization. In
addition to complementing each other, the introduced methods may be used in a pipeline for
the massive screening of protein-peptide associations. For instance, ABP-Finder can be used
first to search peptide domains within a protein sequence with antibacterial activity. Then, those
fragments identified as active peptides can be fed to PPI-Detect to predict the likelihood of
interaction with a protein receptor. Next, the sequences detected as interacting can be delivered
to other in silico approaches for building putative protein-peptide complexes. Subsequently,
PPI-Affinity can be applied to the optimization of the peptide sequence or to rank interacting
protein-peptide pairs according to their values of binding free energy.

The implementation of PPI-Detect, PPI-Affinity, ABP-Finder, and ProtDCal-Suite as web
servers offers the opportunity of using the methods worldwide without the need to allocate large
computational resources to the task. To date (November 26", 2022), with an average of 18 jobs
per day, 26134 jobs have been submitted from 57 countries to ProtDCal-Suite (published on
July 4™ 2019) (Figure 9). Of them, 43% are from PPI-Detect (published on February 15",
2019) and 19% from PPI-Affinity (published on June 2"¢, 2022). Despite the recent introduction
of ABP-Finder (published on November 26, 2022), the tool has already completed 92 jobs sent

from eight countries.
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Figure 9. Worldwide usage of the tools developed within this work (stand November 26™, 2022)

Future work involves retraining the models to leverage the availability of novel data. In
addition, we will introduce the BA predictor as a scoring function in docking algorithms.
Forthcoming work also involves developing ML-based tools to predict ADME(T)-related
properties to monitor the pharmaceutical profiles of putative peptides and optimize activity and
stability. PP1-Detect, PPI-Affinity, and ABP-Finder can be used for the virtual screening of the
peptidome to discover and optimize bioactive peptides against disorders such as cancer and

infection, with implications for human health and societal well-being.
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9 Appendix

9.1 List of Abbreviations

A

AA
ABPs
Acc
ACKk
AIDS
AD
ADME
Ar
AMPs
AT
AUC
BA
BS

CADD
Ccv
CXCR4

Dev
EF
EPI-X4
ERM
E-State
F1

FN

FD

FP
FRS
Gram-
Gram+
GLY
HSP

Appendix

amino acids

antibacterial peptides

accuracy

autocorrelation operator of order k
acquired immunodeficiency syndrome
applicability domain

absorption, distribution, metabolism, excretion
arithmetic mean

antimicrobial peptides

activity test

area under the ROC curve

binding affinity

broad-spectrum

cost, complexity of the polynomial kernel
computer-aided drug design

cross validation

CXC chemokine receptor 4

degree of the polynomial kernel
development set

enrichment factor

endogenous peptide inhibitor of CXCR4
empirical risk minimization
electro-topological state

F1-Score

false negatives

folding degree

false positives

fitness-robustness score

gram negative staining type

gram positive staining type

glycine amino acids

High scoring pairs
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InFD
MAE
MCC
MHC
ML
Mw
NIG
NIS
NPR
OECD
PCA
PCPr
PCR
PDB
PPI
PPIs
Pr
PRC
PseACC
QSAR
R

RF

Rs

Appendix

human immunodeficiency virus type |
high-temperature requirement serine proteases
high-throughput screening

topological distance

half-maximal inhibitory concentration
network of inter-residue contacts
identification code

individual descriptor labels

information gain

dissociation constant

inhibition constant

Logarithm of the folding degree

mean absolute error

mathew correlation coefficient

major histocompatibility complexes
machine learning

molar weights

normalized information gain
non-interacting surface

nonpolar residues

organization for economic co-operation and development
principal component analysis
prevalence-corrected precision
positively charged residues

protein data bank

protein-protein interactions
protein-protein interactions

precision

precision-recall curves

pseudo amino acid composition features
guantitative structure-activity relationship
pearson’s correlation coefficient
random forest

spearman’s rank correlation coefficient

230



c

ROC
RWCO
SDF-1 or CXCL1
SL

Sn

SSE

St

Sp
SVM
SVR
SWOT

Tau
TN
TP
UL

VS
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receiver operating characteristic
reside-wise contact order
stromal-cell-derived factor-1
supervised learning

sensitivity or recall

standardized Shannon entropy
sensitivity or recall

specificity

support vector machines

support vector regression

strengths, weaknesses, opportunities, and threats
toxicity

Kendall’s tau correlation coefficient
true negatives

true positives

unsupervised learning

variance

virtual screening
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