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2 Zussamenfasung 

Wegen ihrer Biokompatibilität, biologischen Abbaubarkeit und Selektivität sind Peptide 

wichtige therapeutische Moleküle. Aufgrund ihrer Biochemie eignen sich Peptide unter 

anderem zur Imitation der Bindungsstellen von Proteinen, zur Inhibition krankheitsrelevanter 

Protein-Protein-Interaktionen und um das Problem der Multiresistenz zu studieren. Deshalb 

wurde in den letzten Jahren der Entwicklung und Optimierung bioaktiver Peptide viel 

Aufmerksamkeit gewidmet. Die Entdeckung neuer Arzneimittel beginnt oft mit der Analyse 

großer Peptidbibliotheken. Das experimentelle Screening solcher Bibliotheken ist jedoch teuer 

und zeitaufwändig. In-silico-Methoden, die die Zahl der Kandidaten mit verbesserten 

Eigenschaften reduzieren können, sind für das moderne Drogendesign unerlässlich. 

In den letzten Jahrzehnten wurden mehrere Methoden für Protein-Protein-Interaktionen 

entwickelt, die auf machine learning (ML) basieren. Anhand der verfügbaren Informationen 

wurden diese Methoden trainiert, um beispielsweise Proteininteraktionen zu erkennen 

(Klassifizierungsproblem) oder um die Bindungsaffinität (BA) als Regressionsproblem 

vorherzusagen. Unabhängig von der vorhergesagten Variable leiden die meisten der bisher 

vorgestellten Methoden jedoch unter einer geringen Generalisierungsfähigkeit, da sie eine hohe 

Varianz bei der Vorhersage von neuen Daten aufweisen. Darüber hinaus werden Peptide im 

Bereich der Protein-Protein- und Protein-Ligand-Interaktionen von den meisten Methoden auf 

die gleiche Weise behandelt wie Proteine oder kleine organische Liganden. Diese Überlegung 

unterschätzt die Spezifität kurzer Peptidsequenzen und reduziert die Leistung bei der 

Vorhersage von Protein-Peptid-Interaktionen. Ähnlich wurden ML-basierende Methoden auch 

zur Identifizierung therapeutischer Moleküle, wie z. B. antimikrobieller Peptide (AMPs), 

eingeführt. Viele Methoden sind jedoch nicht darauf ausgelegt, eine bestimmte Funktion für 

mutmaßliche AMPs vorherzusagen, wie z. B. antibakterielle Aktivität. Bei der Suche nach 

bioaktiven Peptiden zur Bekämpfung der Multiresistenz von Bakterien zeigen die modernen 

Methoden eine eingeschränkte Genauigkeit bei der Vorhersage der antibakteriellen Aktivität 

und es fehlen häufig weitere Informationen über die Art der möglichen Ziele. Um das akkurate 

De-novo-Design bioaktiver Peptide zu ermöglichen, ist die Entwicklung neuartiger 

computergestützter Werkzeuge notwendig. Diese Dissertation beschreibt, wie ML-Techniken 

dazu beitragen können, Methoden zu erstellen, mit deren Hilfe komplexe Fragestellungen im 

Peptidesign gelöst werden können (Table 1). Schwerpunkte der Dissertation sind: 

(1) Ein sequenzbasiertes Werkzeug für Protein-Protein- und Protein-Peptid-Interaktionen, 

der zur Identifizierung von Leitstrukturen durch extensives in silico Screening von Protein-

Peptid-Wechselwirkungen eingesetzt werden kann. Das Werkzeug basiert auf einem ML-
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basierten Klassifikator, der die Wahrscheinlichkeit von Interaktion vorhersagt. Das 

Ausgabemodell wurde durch die Nutzung von Informationen aus mehreren öffentlich 

zugänglichen Datenbanken und durch die Verwendung von Support Vector Machines 

(SVM) erstellt. Die Methode wurde als Web-Werkzeug namens PPI-Detect implementiert. 

Die ML-Studie nutzte die gleichen molekularen Deskriptoren, die bereits in ProtDCal 

implementiert sind. ProtDCal ist ein Programm für die numerische Kodierung von 

Proteinen, das in mehreren Studien validiert wurde. ProtDCal wurde anfangs dazu 

entwickelt, einzelne Proteine zu kodieren. Daher erforderte die Modellierung des 

sequenzbasierten Modelles die Einführung eines neuartigen Verfahrens zur Kodierung 

zweier individueller Aminosäuresequenzen in eindeutigen numerischen Deskriptoren. 

Dieses Verfahren wurde in ProtDCal implementiert um künftigen datenbasierden Studien 

zur Analyse von Proteinpaaren zur Verfügung zu stehen. 

(2) Werkzeuge um die Bindungsaffinitäten (BA) von Protein-Protein- und Protein-Peptid-

Bindungen für 3D-Strukturen zu schätzen, mit Anwendung in Mutagenese-Experimenten 

und Protein-Engineering.  Die ML-Modelle verwendeten Informationen, die in 

öffentlichen Datenbanken gelistet sind. Beide Modellierungen wurden mit SVM 

durchgeführt, und die Ausgabemodelle wurden als Web-Werkzeug namens PPI-Affinity 

implementiert. Neben der BA-Schätzung ermöglicht die PPI-Affinity auch die 

Optimierung von Peptidsequenzen, für die 3D-Komplexstrukturen bestimmt wurden. Die 

implementierten Funktionalitäten ermöglichen die Erzeugung von Tausenden von 

Peptidderivaten durch Substitutionen und/oder Auslöschungen an den Aminosäureresten, 

die sich an der Kontaktfläche des Protein-Peptid-Komplexes befinden. 

(3) Ein Werkzeug zur Identifizierung antibakterieller Peptide (ABPs) und des Gram-

Färbungstyps der Zielbakterien, das zur Identifizierung von Leitpeptiden mit dem Potenzial 

zur Bekämpfung der Multidrogenresistenz dient. Die Methode für ABPs, genannt ABP-

Finder, wurde von mir als Webserver implementiert. Das Programm ermöglicht die 

Zerlegung von Proteinsequenzen in kurze Peptidfragmente vor der Modellvorhersage. 

Diese Funktionalität findet Anwendung bei der Suche nach Proteindomänen mit 

antibakterieller Aktivität. 

(4) Die in (1) – (3) erwähnten ML-Werkzeuge nutzten die molekularen Deskriptoren von 

ProtDCal. Dieses Programm wurde zuerst als Standalone-Program implementiert. Diese 

Arbeit zielt darauf ab, die Benutzerfreundlichkeit des Programms zu erweitern, und die 

Nutzung der entwickelten ML-Modelle, die mit dem ProtDCal-Kodieransatz erstellt 

wurden, zu erleichtern. Dieses Ziel wurde durch folgende Maßnahmen erreicht: 
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Implementierung einer Web-Plattform, die die Berechnung von ProtDCal-

Moleküldeskriptoren für Data-Mining-Studien und die Nutzung der ProtDCal-basierten 

Werkzeugen für das virtuelle Screening in den ersten Schritten der Peptidentdeckung 

ermöglicht. Der Webserver namens ProtDCal-Suite bietet Zugang zu den in dieser Arbeit 

vorgestellten ML-basierten Methoden und zu anderen veröffentlichten Werkzeugen, die 

die funktionelle Analyse von Proteinen und Peptiden erleichtern. Darüber hinaus enthält 

die Online-Schnittstelle von ProtDCal eine Zusatzfunktion, mit der die 

Moleküldeskriptoren nach den Shannon-Entropiewerten der eingegebenen Proteine 

geordnet und gefiltert werden können. Die entwickelten Werkzeuge bieten die Möglichkeit 

für das virtuelle Screening von Peptiden in den frühen Phasen des Drug-Designs-Prozesses 

von peptidbasierten Arzneimitteln. ProtDCal-Suite ist frei zugänglich unter 

https://protdcal.zmb.uni-due.de. 

Table 1. Liste der entwickelten Programme im Rahmen dieser Arbeit. 

 Zweck 

PPI-Detect Eine sequenzbasierte Methode zur Vorhersage von für Protein-Protein- und 

Protein-Peptid-Interaktionen. 

PPI-Affinity Werkzeuge zur Vorhersage der Protein-Protein- und Protein-Peptid- 

Bindungsaffinitäten für 3D-Strukturen. 

ABP-Finder Ein Werkzeug zur Identifizierung antibakterieller Peptide und des Gram-

Färbungstyps der Zielbakterien. 

ProtDCal-Suite Eine Web-Plattform, die (i) die Berechnung von ProtDCal-

Moleküldeskriptoren und (ii) die Nutzung der ProtDCal-basierten Methoden 

für das virtuelle Screening von Peptidebiblioteken ermöglicht. 

Die Generalisierungsfähigkeit der trainierten Modelle wurde an mehreren externen Testsets, 

die experimentelle Daten enthielten, validiert. PPI-Detect wurde verwendet, um Derivate von 

EPI-X4, einem endogenen Peptidinhibitor des Chemokinrezeptors CXCR4, zu untersuchen. 

Diese Analyse führte zur Identifizierung eines kürzeren und aktiveren Derivats von EPI-X4. 

PPI-Affinity wurde bei der Bewertung von EPI-X4-Mutanten, die an CXCR4 gekoppelt sind, 

und von Peptiden, die Komplexe mit den Serinproteasen HTRA1 und HTRA3 bilden, überprüft. 

Die Auswertung der PPI-Affinity in den diversen Testsets zeigte, dass die Protein-Protein-BA-

Methode zur Spitze der modernsten BA-Methoden gehört. Außerdem war die Protein-Peptid-

BA-Methode die erste, die auf Daten trainiert wurde, die aus diversen Protein-Peptid-Strukturen 

bestanden. ABP-Finder steht an der Spitze der modernsten ML-Methoden für ABPs, 

insbesondere im Bereich der Genauigkeit. ABP-Finder wurde für das Screening einer großen 

Peptidbibliothek aus dem Peptidom des menschlichen Urins verwendet. Auf der Basis dieser 

virtuelle Screening Studie wurde ein neuartiges antibakterielles Peptid experimentell 

identifiziert.

https://protdcal.zmb.uni-due.de/
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3 Summary 

Peptides are important therapeutic molecules due to their biocompatibility, biodegradability, 

and selectivity. Their biochemistry makes peptides suitable for mimicking the binding site of 

proteins, for the inhibition of disease-relevant protein-protein interactions, and to address the 

problem of multi-drug resistance, among other applications. Therefore, much attention has been 

devoted in recent years to the design and optimization of bioactive peptides. Frequently, the 

discovery of new drugs starts with the analysis of large peptide libraries. However, the 

experimental screening of such libraries is expensive and time-consuming. In silico approaches 

that potentially reduce the list of candidates for further improvement are essential for modern 

drug design.  

Several machine-learning-based predictors of protein-protein interactions have emerged in the 

last decades. Based on the available information, these predictors have been trained, for 

instance, to detect protein interactions or the lack of them (classification problem), or to predict 

binding affinity (BA) as a regression problem. However, regardless of the output variable, most 

models introduced so far suffer from low generalization capabilities, displaying high variance 

when predicting unseen data. Additionally, within the context of protein-protein and protein-

ligand interactions, most methods contemplate peptides in the same way as proteins or small 

organic ligands. This consideration underestimates the specificity of short peptide sequences 

and results in poor performance in predicting protein-peptide interactions. Similarly, machine-

learning-based methods aiming to identify therapeutic molecules, such as antimicrobial 

peptides (AMPs), have been introduced. However, many of these methods are not able to 

predict a specific function for putative AMPs, such as antibacterial activity. Consequently, in 

the search for bioactive peptides to address multi-drug resistance in bacteria, state-of-the-art 

tools display limited precision in predicting antibacterial activity and generally lack further 

information about the possible targets. Thus, novel computational methods to accurately aid the 

de novo design of bioactive peptides are needed. In this work, my aim was to leverage machine 

learning (ML) techniques to create tools to study bioactive peptides (Table 1). My work 

focused on:  

(1) A sequence-based predictor of protein-protein and protein-peptide interactions 

applicable to the identification of lead compounds from extensive in silico screening of 

protein-peptide interactions. The model is a classifier that predicts the likelihood of 

interaction. It was created by exploiting information annotated on various public 

databases and by using Support Vector Machines (SVM). The output model was 

implemented as a web tool named PPI-Detect. The ML study utilized the molecular 
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descriptors implemented in ProtDCal, a tool for the numerical codification of proteins, 

which was validated in diverse studies. ProtDCal was initially intended to encode 

individual proteins. Thus, the modeling of the sequence-based predictor required 

introducing a novel procedure to encode the information of two individual amino acid 

sequences into unique numerical descriptors. This procedure was implemented in 

ProtDCal and made available for future data-driven studies encompassing the analysis of 

protein pairs. 

(2) Predictors of protein-protein and protein-peptide binding affinities for 3D structures, 

with applications for mutagenesis experiments and protein engineering. The ML models 

utilized information annotated on various public databases. Both modeling processes 

were conducted using SVM and the output models were implemented as a web tool 

named PPI-Affinity. The web server allows, in addition to the BA estimation, the 

optimization of a putative peptide sequence for which a 3D complex structure has been 

resolved. In addition, the implemented functionalities permit the generation of thousands 

of peptide derivatives by performing substitutions and/or deletions on the peptide residues 

located at the interface of contact of the protein-peptide complex.  

(3) A tool to identify antibacterial peptides (ABPs) and the Gram-staining type of targeted 

bacteria, with applications for the identification of lead peptides with the potential to 

tackle multi-drug resistance. The predictor of ABPs, named ABP-Finder, was 

implemented by me as a web server. Before the step of prediction by the model takes 

place, the server permits the breakdown of protein sequences into short peptide fragments. 

Such functionality finds application in the discovery of protein domains with antibacterial 

activity. 

(4) The ML tools mentioned in (1) – (3) utilized the molecular descriptors implemented 

in ProtDCal. Originally, ProtDCal was implemented as a standalone application. In this 

work, I aimed to extend the applicability of ProtDCal and to facilitate the use of models 

created using the ProtDCal codification approach. To this end, my aims were: To 

implement a web platform to permit (i) the generation of ProtDCal molecular descriptors 

for data-mining purposes and (ii) the application of ProtDCal-based tools for virtual 

screening in the early steps of peptide discovery. The resulting web server, named 

ProtDCal-Suite, provides access to the ML-based methods introduced in this work and 

to other tools previously published, facilitating the functional analysis of proteins and 

peptides. Additionally, the online interface of the ProtDCal software includes a post-

processing optional functionality to rank and filter the molecular descriptors according to 
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the Shannon entropy values of the input set of proteins. The developed tools allow for the 

virtual screening of peptides at the early stages of the drug design process involving 

peptide-based pharmaceuticals. ProtDCal-Suite is freely accessible at 

https://protdcal.zmb.uni-due.de. 

Table 1. List of tools developed within this work. 

 Purpose 

PPI-Detect A sequence-based predictor of protein-protein and protein-peptide 

interactions. 

PPI-Affinity A tool to predict and optimize the binding affinity of protein-protein and 

protein-peptide complexes. 

ABP-Finder A tool to identify antibacterial peptides and the Gram-staining type of targeted 

bacteria. 

ProtDCal-Suite A web platform to facilitate (i) the generation of ProtDCal molecular 

descriptors and (ii) the application of ProtDCal-based tools for the virtual 

screening of peptide libraries. 

The generalization capability of the models trained by me was validated by assessing the 

models’ performance on several external test sets that included experimental data. PPI-Detect 

was used to study derivatives of EPI-X4, an endogenous peptide inhibitor of the chemokine 

receptor CXCR4. This analysis resulted in the identification of a shorter and more active 

derivative of EPI-X4. PPI-Affinity was evaluated in the ranking of mutants of EPI-X4 coupled 

to CXCR4, and peptides forming complexes with the serine proteases HTRA1 and HTRA3. 

The evaluation for PPI-Affinity on the different test sets evidenced that the protein-protein BA 

predictor ranks among the top state-of-the-art BA predictors to date. Moreover, to the best of 

my knowledge, our protein-peptide BA predictor was the first tool trained on data comprised 

exclusively of diverse protein-peptide structures. ABP-Finder, on the other hand, ranked on 

top of the state-of-the-art predictors of antibacterial peptides, particularly in terms of precision. 

ABP-Finder was used to screen a large peptide library from the human urine peptidome. Based 

on this virtual screening study, a novel antibacterial peptide was experimentally established. 
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4 Introduction 

4.1 The drug discovery process 

4.1.1 The stages of the drug development process 

Drug discovery is an arduous process comprising several stages (Figure 1). Often, it begins 

either with the discovery and validation or with the use of already known target biomolecules 

that, in association with certain compounds, might have therapeutic purposes. Next, compounds 

with activity against a validated target, as well as with suitable properties for further screening 

are designed. The most promising hits are then optimized to improve their activity against the 

target and their absorption, distribution, metabolism, excretion (ADME), and toxicity (T) 

profiles are analyzed. Lastly, preclinical and clinical studies are conducted to determine the 

efficacy and safety of the developed drug in patients, as well as to decide the method of 

administration, and dosage, among other specificities1. Overall, the aforementioned pipeline is 

a high-risk investment process whose cost generally fluctuates between $161 million and $4.54 

billion (2019 US$), with the highest expenditures for anticancer drugs2. Such expense is mainly 

due to the high failure rates associated with the identification of suitable candidates, which still 

account for more than 90% of the failure of clinical trials3. 

 

Figure 1. Stages of the drug design process1  

4.1.2 Targeting protein-protein interactions 

Proteins are biomolecules that can bind to other molecules and exert relevant biological 

functions. For example, protein-protein interactions (PPIs) participate in almost all processes 

occurring in living cells4-6. Relevant PPIs functions include the modification of properties of 

enzymes, activation or inhibition of other proteins, transport of molecules, immune recognition 

to infections, and catalysis of metabolic reactions7, 8. The loss of key interactions, 

conformational changes of protein complexes, as well as anomalous aggregation, can alter the 

normal functioning of PPIs9. Some disruptions might not cause significant damage, but others 

are related to severe diseases10. For instance, the aggregation of certain proteins can be related 

to the development of degenerative pathologies, such as Parkinson’s and Alzheimer’s11. 
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Likewise, some host-pathogen protein associations can lead to bacterial infections12. In cancer 

cells, alterations of cell signaling and regulatory pathways are triggered by mutations occurring 

in some proteins13. 

Some ligands (small molecule or other macromolecules) bind specifically to a protein receptor 

and compete with the original cognate partner of the protein, leading to an agonist or antagonist 

interaction that interferes with the function of the PPI9. These molecules can interfere with PPIs 

through either orthosteric (binding to the active site of the PPI) or allosteric (binding to other 

parts of the non-interacting protein surface) mechanisms (Figure 2). Both binding modes can 

lead to the modulation (inhibition or stabilization) of the PPI, and likewise, such modulation 

can result in either the inhibition or activation of the biological function14. Therefore, in the last 

few decades, significant efforts have been aimed to understand and predict PPIs, and to discover 

therapeutic ligands that can be used to modulate PPIs involved in disease15. 

 

Figure 2. Mechanisms of action (orthosteric or allosteric) of modulators leading to the inhibition or 

stabilization of PPIs (from Modell, A. E. et al.14)Note1 

4.1.3 Development of drugs 

Ligands can be either small molecules or larger macromolecules16. However, most compound 

libraries comprise mainly small molecules (molecular weight < 900 Da), including fatty acids, 

glucose, amino acids, cholesterol, lipids, glycosides, and alkaloids, among others. 

Consequently, small molecules represent 90% of the pharmaceutical market17. Small molecules 

are more explored due to their ability to penetrate the cell membrane and attach to deep folding 

                                                 
1 Reprinted with permission from Elsevier and Copyright Clearance Center. License Number: 5402960059011. 

License date: Oct 06, 2022 
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pockets of the target protein with sufficient strength to alter the biological function of the target. 

However, small molecules-based strategies developed to interfere with intracellular PPIs face 

some drawbacks. The binding surfaces involved in PPIs are generally large (1500-3000 Å2), 

driven by many polar and hydrophobic interactions, as well as flat and deprived of a well-

defined binding pocket for efficient drug-candidate binding18, 19. Such limitations may be 

tackled by peptides (molecular weight between 500 and 5000 Da), which are located at an 

intermediate place between small molecules and short proteins, but with distinctive 

characteristics20. 

4.2 Peptides as therapeutic compounds 

Peptides, like proteins, are amino acid sequences joined by peptide bonds. Peptide sequences 

typically range from 2 to 50 amino acids, while proteins usually comprise more than 50 amino 

acids21. However, these boundaries are flexible, as some polypeptides might also be considered 

proteins, e.g., the protein crambin containing 46 amino acids. Thus, according to the length of 

the sequence, peptides can be broadly classified as oligopeptides (maximum 20 amino acids) 

or polypeptides (between 20 and 50 amino acids). Nevertheless, while oligopeptides are 

classified as peptides, some polypeptides can be identified as small proteins as well22 depending 

on their functions. 

4.2.1 Bioactive peptides 

In nature, peptides are encrypted in native protein sequences. In vivo, short peptide fragments 

can be released by digestive gastrointestinal enzymes (e.g., trypsin, pancreatin, peptidase, 

pepsin, lipase) or by microbial enzymes. In vitro, peptides can be also produced by proteolytic 

enzymes or by fermentation using microorganisms (e.g., Lactobacillus helveticus)23, 24. Inside 

the parent protein, these peptides are inactive, however, once released from the protein, they 

can display different properties. Such peptide fragments with the potential to affect biological 

functions and influence health are known as bioactive peptides25. 

Bioactive peptides are considered excellent therapeutic molecules. They can be classified 

according to their therapeutic function as antimicrobial, anticancer, antidiabetic, antioxidant, 

and immunomodulatory peptides26-28. For instance, antimicrobial peptides (AMPs) are 

oligopeptides with a broad spectrum of inhibitory effects against infections caused by several 

organisms. In nature, AMPs can be found in various microorganisms, such as bacteria, as well 

as in eukaryotic species such as fungi, plants, and animals. In animals, AMPs are considered 

the first line of immune defense due to their ability to destroy viruses, bacteria, and fungi. Based 

on specific activities, AMPs may also be sub-classified as antiparasitic, antifungal, antiviral, 
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anticancer (antitumor), and antibacterial peptides. Antibacterial peptides account for about 60% 

of AMPs29.  

4.2.2 Therapeutic potential of bioactive peptides 

Peptides can bind to target protein receptors with high affinity and specificity30. Moreover, due 

to their amino acid composition, peptides are biodegradable and present low toxicity. 

Additionally, they exhibit a low risk of drug-drug interactions. Thus, therapeutically, peptides 

are usually safe, tolerable, and effective in humans. Such strengths are the main fundamentals 

of why peptide discovery has become an increasing field of research in the last decades31. As a 

result, it was estimated that in the current pharmaceutical market, the success rate of peptide-

based drugs is twice the rate of small-molecule-based drugs with 60 approved peptides and 

around 20 peptide-based drugs entering the clinical trials annually32. 

Peptide drugs have been used in different areas such as cancer, diabetes, and human 

immunodeficiency virus type I (HIV-1) treatment as well as in hormone therapy, among 

others33. However, the development of bioactive peptides is a very challenging task. Among 

other weaknesses, peptides have limited stability, short half-live, and poor oral bioavailability 

(Figure 3). Usually, such limitations are addressed by using various strategies aimed at 

improving the physicochemical properties of promising lead compounds. For instance, proteins 

might be screened to find fragments with high affinity to a target receptor. Then, promising 

leads are used as scaffolds in an optimization process in which other techniques, such as 

sequence length, side chain, or peptide backbone modifications, as well as C-terminal amidation 

and N-terminal acetylation, are applied22. 

Peptide drug candidates are obtained through an intensive search and optimization process in 

which large libraries of peptide compounds are exploited to find the most promising ones to 

fulfill a desired therapeutic function34. However, the combination of the 20 naturally occurring 

amino acids to generate peptides of different lengths, together with the identification of peptide 

leads result in almost an unlimited search. Initial leads can be detected through experimental 

protein-peptide recognition techniques, but the processes involved are expensive and laborious. 

Thereby, advances in science and technology are constantly exploited to create methods aiming 

to assist scientists at all stages of the search for peptides modulating PPIs. These developments 

respond to the paradigm of rational drug design, in which several interdisciplinary fields, such 

as molecular biology, computational chemistry, and information technology, work together in 

the design of pharmaceutical compounds for which a target of interest has been identified and 

validated35. Thus, in silico methods that aim to improve the tasks involved in the drug design 

process are under constant development. 
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Figure 3. Analysis of the strengths, weaknesses, opportunities, and threats (SWOT) of peptides (from 

Fosgerau and Hoffmann31)Note2  

4.2.3 In silico development of bioactive peptides 

Drug design, as discussed above, encompasses predicting whether a specific molecule is likely 

to bind a target receptor and if so, the strength of such interaction36. To this end, advancements 

in computational technologies have favored the development of theoretical and computational 

methods enabling what is known as computer-aided drug design (CADD)37, 38. The use of 

CADD methods for virtual screening at the early stages of the drug design process can reduce 

time and cost by focusing experimental efforts on only a short list of promising compounds. 

4.2.3.1 Virtual screening 

The identification of hits involves the screening of large libraries of compounds. For this, 

traditional in vitro techniques such as High-Throughput Screening (HTS) may be used. 

However, a valuable approach, complementary and alternative to HTS is virtual screening (VS), 

consisting of the screening of large libraries using in silico approaches. The application of 

CADD methods for VS can lead to the cost-effective identification of hit compounds, which 

may also be derived from non-physical libraries1. Usually, VS techniques are classified as 
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ligand-based and structure-based. Ligand-based VS attempts to find new active compounds 

based on molecular similarity, employing as scaffolds known active and inactive molecules. In 

contrast, structure-based approaches assess the likelihood of a ligand binding a target receptor 

for which a three-dimensional structure is known39. 

One approach followed in both ligand- and structure-based VS is the use of data-driven models. 

Such is the case of Quantitative Structure-Activity Relationships (QSAR) models, whose utility 

in drug design and optimization has been well established40. In QSAR development, the 

structure and activity of compounds are correlated to create a model able to accurately predict 

the activity profile of untested compounds41. Introduced more than 50 years ago42, QSAR has 

evolved from simple regression analysis to the use of ML techniques, capable of analyzing large 

datasets of biological systems40. Although initially used for single compounds, QSAR studies 

can incorporate information about the target, for instance, by introducing the amino acids 

sequence of the protein receptor. The developed models can be used in lead discovery and 

optimization to identify peptides with high activity and selectivity against a target PPI, among 

other applications35. 

4.3 Machine learning  

Machine learning (ML) is the discipline of computer science that allows computers to have the 

ability to “learn” without being specifically programmed for the task43. It belongs to the broader 

field of artificial intelligence, which focuses on developing intelligent machines. In the early 

1950s, Arthur Samuel popularized the “machine learning” term in the computer games 

domain44. As a research field, ML is an area of continuous evolution, with significant growth 

in the last three decades, reflected in the wide variety of services and software applications that 

nowadays use ML models. 

The basic premise of learning is to use a set of available observations to uncover an underlying 

process45. Based on this, three criteria may motivate the application of ML techniques: the 

existence of a pattern, the difficulty for humans to mathematically define it, and the presence 

of data representative of the phenome. The outcome of the learning process is a mathematical 

model (or rule system) that can make accurate predictions on unseen data46. 

4.3.1 Types of learning 

Machine learning involves three main learning paradigms: supervised, unsupervised, and 

reinforcement learning. Supervised learning (SL) aims at finding relationships between a set of 

input characteristics (independent variables) and an output variable (dependent variable). In 

Unsupervised learning (UL), as opposed to SL, the output variable is not explicitly specified, 

and the only available information is the input variables. The objective is to find relations 
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between the variables that can lead to a higher representation level of the input data. Ideally, 

the identified relations are sufficiently relevant to form clusters or categories in the analyzed 

data. A third learning paradigm is Reinforcement learning, which is concerned with the problem 

of learning intelligent behavior in complex dynamic situations47. In this learning paradigm, the 

classification of the samples (output variable) is initially missing. The learning task is to 

discover the optimal outputs in a trial/error process with a reward/penalization system48. 

Additionally, there is a hybrid learning paradigm known as Semi-supervised learning, in which 

the data has labeled and unlabeled samples. The learning task is to leverage both data sources 

to train the model. Other approaches are recognized based on the strategy used to improve the 

learning process. Multi-Task learning seeks to improve generalization performance by learning 

several output variables measured on the same training samples. Active learning collects the 

training samples used to build a model by actively querying a system for the label of new 

instances. Transfer learning uses existing models as starting point to fit novel models. Ensemble 

learning consists of the development of several models on the same data. For the prediction 

step, a unique prediction value for an observation results from aggregating the outputs of 

individual models. Deep learning groups algorithms that improve the supervised learning 

technique Neural Networks to learn large and complex data representations with multiple levels 

of abstraction. Deep learning is considered a subset of ML, currently very successful due to the 

improvements achieved in highly complex tasks such as speech and visual object recognition49. 

In this work, supervised, unsupervised, and ensemble learning are the types of learning 

leveraged to create the ML models. Therefore, the following sections explain each of them in 

more detail. 

4.3.1.1 Supervised learning 

Supervised learning aims to find relationships between an input set of characteristics, 𝑥 =

{𝑉1, 𝑉2, … , 𝑉𝑑}  where 𝑑  is the number of independent variables, and an output variable 

(dependent variable). For this, a collection of N samples is used (𝑥𝑖, 𝑦𝑖), … , (𝑥𝑁 , 𝑦𝑁) from 

ℝ𝑑x ℝ, in which the 𝑖𝑡ℎ instance is a pair consisting of an input 𝑥𝑖  object (d-dimensional vector) 

and an output 𝑦𝑖 (e.g., class). Such sets of samples or observations are generally assumed as 

generated from a probability distribution P on X. 

Learning stems from the assumption that there is an unknown target function 𝑓: ℝ𝑑 →  ℝ (e.g., 

the ideal formula to estimate whether a protein-peptide pair interacts) such that 𝑦𝑖 = 𝑓(𝑥𝑖) for 

𝑖 = 1, … , 𝑁. The learning task is to find a function 𝑔: ℝ𝑑 →  ℝ that approximates 𝑓 based on 

the training samples. The function 𝑔 ≈ 𝑓 is a hypothesis selected by a learning algorithm from 

a set of candidate formulas 𝐻 (hypothesis set). An example of H may be the set of all linear 
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equations. Then 𝑔 ∈ 𝐻 may be the best linear fit to the data. The final goal is to use the inferred 

function g to obtain the output variable of new independent data points (sample data). 

SL tasks solve either classification or regression problems50. Classification tasks imply that the 

target variable is discrete, while regression alludes to numerical (continuous) values. 

Model selection is usually based on a compromise between the ability of a model to fit the data 

and the complexity of the model needed to achieve this purpose51. Different levels of 

complexity can be applied to each hypothesis set, e.g., the number of degrees of a polynomial 

regressor. If the complexity is too low, all g in H may tend to underfit the training data (high 

bias), resulting in large training and test errors. In contrast, if the complexity of H is too high, 

all g in H may find spurious patterns and thus overfit the training data (high variance). This 

leads to a large gap between training and test errors (Figure 4). This relation is known as the 

bias-variance trade-off, used to control the complexity of H and balance underfitting/overfitting 

effects on the training process52. Thus, finding an intermediate spot between both concerns 

usually guides the selection process aiming to find generalizable models. 

 

Figure 4. The learning curve arising from bias-variance trade-off (adapted from Beyeler et al.53)Note3  

The predictor g is commonly chosen from the hypothesis set by minimizing a regularized 

empirical risk function (ERM):  

ERM = 
1

𝑁
∑ 𝑒(𝑔(𝑥𝑖), 𝑦𝑖)𝑁

𝑖=1 +  𝜆 ⋅ 𝑟(𝑔)                                          (1) 

where 𝑒: ℝ × ℝ →  ℝ is an error or loss function that accounts for the quality of the fit, and 

𝑟: L →  ℝ is a regularization function that penalizes the complexity of the function g to prevent 

overfitting. The amount of penalization is balanced by the 𝜆 parameter. Most ML methods 
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apply different empirical risk function in terms of error and regularization functions, e.g., the 

absolute error 𝑒(𝑔(𝑥𝑖), 𝑦𝑖) = |𝑔(𝑥𝑖) − 𝑦𝑖|  in regression, or 0-1 loss 𝑒(𝑔(𝑥𝑖), 𝑦𝑖) =

𝑠𝑖𝑔𝑛(𝑔(𝑥𝑖) ! = 𝑦𝑖) in classification52. 

4.3.1.2 Unsupervised learning 

There are datasets comprised of a set of independent variables that lack an explicit definition 

of an outcome classification for the observations. Unsupervised learning corresponds to a group 

of techniques used to extract knowledge from this data. The goal of this type of problem, as 

described by Bishop (2006)54, may be: 

“to discover groups of similar examples within the data, where it is called clustering, 

or to determine the distribution of data within the input space, known as density estimation, or 

to project the data from a high-dimensional space down to two or three dimensions for the 

purpose of visualization”. 

UL techniques find applications to identify meaningful trends and structures in the data, 

uncover groups of samples, extract valuable features, and understand the data via 

visualization55. In this work, I used unsupervised learning for feature selection. I applied several 

techniques to remove highly correlated features and reduce the dimensionality of the data (see 

Section 4.3.2.4). 

4.3.1.3 Ensemble learning  

In Ensemble learning, several models are generated and aggregated in a unique final hypothesis 

that outputs a prediction. This type of learning assumes that the combination of weak models 

to deliver a consensus prediction improves the performance of a single model. Ensemble 

learning involves deciding how to build the base models and which criteria to use to combine 

the prediction of individual models on the final ensemble. Popular ensemble methods include 

Bagging56, Boosting57, and Stacking58. 

Bagging methods train several classifiers using different subsamples of the data. The 

selection process, called bootstrapping, picks randomly the samples (with replacement) from 

the complete dataset. For a test sample, each model outputs a prediction value. The outcomes 

of the different models are then combined using an average or consensus criterion to output a 

single final decision. Several rules are applied to combine the predictions of the base learners, 

including majority vote in classification and average, minimum or maximum predictions in 

regression. 

Boosting methods create an ensemble model by training the base learners sequentially. 

In this process, each model in the ensemble is built using the same dataset but giving preference 

(weights) to the instances misclassified by the previously created model. For a test sample, each 
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model outputs a prediction value. A weighted majority vote (or sum) of individual predictions 

outputs the final prediction.  

Stacking methods consist of training a model to combine the predictions of several other 

models. For this, base models are built using typically different learning algorithms and the 

same available data. Next, a final meta-model balances the predictions outputted by the base 

models.  

4.3.2 Components of the learning task 

A ML task may not be a linear process. However, it generally consists of several stages 

involving taking decisions and carrying out steps that define the final model. 

4.3.2.1 Data collection and curation 

The first stage in the creation of machine learning models is data collection. The continuous 

advance of techniques and instruments for proteomics has led to a steady increase in the amount 

of data generated59. From experiments to publications, constant efforts aim to publish 

experimental records in centralized online databases. Thus, the produced data is usable beyond 

the specific project that initially generated it. As a result, several public databases relating 

protein structures to biological activities or properties have been published, with information 

determined by either human experts or experimental measurements. 

Information on structurally resolved protein-protein/peptide interactions appears in diverse 

databases. For instance, the databases 3did60, iPfam61, and Negatome62 collect thousands of 

interaction profiles of pairs of domain sequences whose three-dimensional complexes are in the 

Protein Data Bank (PDB)63. Likewise, the PDBbind database64 reports the experimental binding 

affinities (BA) of protein-protein/ligand complexes stored in the PDB. Information on 

mutagenesis experiments is also available. For instance, the SKEMPI65 database contains 

thousands of BA upon mutation of 350 structurally resolved protein-protein complexes. 

Repositories of bioactive peptides and their activity are also available. In this context, the 

database starPep66 provides access to around 45,000 peptides with reported antimicrobial 

activity. These datasets are regularly updated to include new observations. For instance, 

PDBbind is updated annually with ~10% growth between the last two releases67. The PDBbind 

database (v. 2020) reports information on the binding affinities of different biomolecular 

systems, such as protein-ligand (19,443) and protein-protein (2,852) complexes. All these 

databases offer the opportunity to conduct ML studies to leverage available information in the 

analysis of peptides properties and functions. 

Medicinal chemistry publications and bioactivity databases are known to contain high error 

rates. Thus, regardless of the database, data points must navigate through a rigorous data 
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curation process to remove or correct those with questionable characteristics. In this pre-

cleaning phase, samples with unreported activities or errors in the structure need to be detected 

to avoid affecting the predictivity of the model due to erroneous data68. This step may include 

removing some data points. However, samples with structural problems may be corrected, i.e., 

by adding hydrogen or other missing atoms with the aid of available computational methods. 

4.3.2.2 Features generation  

The adequate representation of input samples is critical for pattern recognition69. In ML, a 

collection of features represents the samples. A feature can be a characteristic or attribute 

describing the observation as a whole, or a part of it. Each feature represents a dimension of the 

space in which the sample is represented. The sample is then a data point in this space, which 

is associated with a specific vector. The feature vectors, corresponding to the multiple samples, 

are used as input by a learning algorithm(s) to model an endpoint. Most ML algorithms work 

on numerical values. Therefore, the transformation of input molecules into useful numerical 

features has been a standard procedure in ML modeling70. Many successful applications have 

addressed such transformations with the use of molecular descriptors69. Todeshini et al.71 

defined a molecular descriptor as: 

“the final result of a logic and mathematical procedure which transforms chemical 

information encoded within a symbolic representation of a molecule into a useful number or 

the result of some standardized experiment”. 

Based on this definition, molecular descriptors derive from (1) experimental measurements, 

e.g., measured physicochemical properties, and (2) theoretical definitions involving, among 

others, principles of information theory, graph theory, and computational chemistry71. In 

proteomics, diverse aspects of protein structure are extracted to quantitatively describe 

physicochemical properties of amino acids, as well as topological and structural features. 

A wide variety of molecular descriptors has been gradually introduced40. From them, three 

families of descriptors are widely applied and validated in the analysis of protein function and 

properties. They are: 1) sequence-composition-based descriptors (0D), representing different 

physicochemical and structural aspects of the amino acid sequence, 2) linear-topology-based 

descriptors (1D), reflecting sequence-order information and its effect on the properties of 

individual residues, and 3) 3D-structure descriptors (3D), encoding information that 

characterizes the conformational structure of proteins72. Several applications implement 

information-rich molecular descriptors for proteins. Relevant examples are PseAAC73 

(extended to PSe-in-one 2.070, 74), PROFEAT75, ProtDCal76, and more recently PyBioMed77, 

Mordred78, and BioMedR79. Notably, when ProtDCal’s descriptors were introduced, it was 



Introduction 

 

23 

 

shown how they captured, at that time, more data variance than the other tools available for 

protein codification76. 

ProtDCal molecular descriptors 

ProtDCal, the acronym for PROTein Descriptors’ CALculation, produces protein profiles based 

on a large diversity of descriptive statistical parameters (e.g., variance, mean, kurtosis, 

quantiles, and Shannon entropy) applied to different groups of residues extracted from the 

protein. The methodology of ProtDCal allows the calculation of tens of thousands of molecular 

descriptors per protein for both protein sequence (0D, 1D) and structure (3D). Ruiz-Blanco et 

al.76 assessed ProtDCal’s descriptors in a non-redundant dataset of 874 proteins. The evaluation 

considered: 

1. The redundancy of the information contained within ProtDCal descriptors. 

2. The variability of the molecular descriptors implemented in ProtDCal and those 

implemented in state-of-the-art generators of molecular descriptors75, 80.  

3. The diversity of ProtDCal’s features compared to the molecular descriptors 

delivered by other programs75, 80. 

Comparisons with other packages leveraged only sequence-based features, as the assessed 

applications lacked an encoding approach for 3D structures. The evaluation demonstrated that 

ProtDCal generates a more extended and informative list of sequence-based features. 

Furthermore, the introduced 3D-structure-based features provide additional and 

complementary information to that offered for protein sequences, extending the protein 

characterization to a broader range of available data. These analyses showed the potential of 

the molecular descriptors implemented in ProtDCal to develop ML-based QSAR models. 

The molecular descriptors implemented in ProtDCal have been employed in various studies. 

Sequence-based descriptors were applied to the prediction of antibacterial peptides81, 82, 

antihypertensive activity and hemotoxicity of peptides83, the development of monoclonal 

antibodies84, 85, the identification of N-glycosylation sites86 and methylation sites87, as well as 

the prediction of protein stability88, 89, residues critical for protein function90, enzyme-substrate 

scope91, and enzymatic function72. Likewise, the 3D-based descriptors of ProtDCal have found 

applications to model enzymatic function72 and enzyme-substrate scope91. Such a diverse list 

of applications validates the suitability of ProtDCal descriptors to build data-driven models for 

the analysis of proteins. However, as the originally implemented codification approach only 

conceived the generation of molecular descriptors for individual proteins, other relevant 

problems, such as the modeling of protein-protein and protein-peptide interactions, could not 

be addressed using ProtDCal descriptors. Problems involving protein pairs require an encoding 
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procedure that considers synergy between the two proteins and does not encode each one 

individually. As part of the work presented here, I implemented a novel encoding approach for 

protein pairs to extend the applicability of ProtDCal descriptors to a broader set of protein 

studies. 

4.3.2.3 Data pre-processing 

Measurements can be obtained from both experiments and theoretical models92. Such 

heterogeneous origin may cause a certain level of noise in the data. In broad terms, noise is 

considered anything that prevents a learning algorithm from identifying a reliable model. Noise 

also includes the different numerical scales that certain measures or molecular descriptors can 

present. ML algorithms applied to noisy data can lead to wrong pattern recognition and poor 

performance. In addition to the noise of available data, the feature generation step may calculate 

a large set of molecular descriptors, where only a few may correlate with the endpoint. Thus, 

data pre-processing is needed to enhance data quality for model development. General 

techniques include the scaling and normalization of numerical values, the treatment of missing 

values, and outlier detection. 

Normalization 

The descriptors are scaled up or down to transform them into a uniform range. This is done to 

avoid that descriptors with larger magnitude have a greater influence on the model over those 

with shorter range values. Several forms of normalization can be used: 

Min-max normalization scales numerical features to the range (0,1) using the min and max 

values of the descriptors column in the training dataset. The formula to apply the transformation 

is: 

𝑑𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑑 −  𝑑𝑚𝑖𝑛)/(𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛)                 (2) 

Where 𝑑 is the original value of the descriptor, 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 correspond to the minimum and 

maximum descriptor values in the dimension, respectively. 

Z-Score normalization scales the numerical features using the mean (μ) and the standard 

deviation (σ) values of the descriptor column in the training dataset, according to the following 

expression: 

𝑑𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑑 −  𝜇)/𝜎                      (3) 

Handling missing values 

A dataset may have missing values for some instances or features, e.g., ProtDCal assigns a 

constant (-9999) to a descriptor which calculation is unviable for a certain protein. This output 

constitutes a missing value for the ML algorithms. In classification techniques, some 

occurrences of missing values may not damage the performance of the model. However, in 
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regression, many algorithms cannot work on a dataset with missing data. Several approaches 

are applied to treat missing values, such as manually filling in the missing values or replacing 

those fields with the mean of the dimension. Besides, removing the instance or dimension is 

often a suitable option depending on how this action affects the further analysis. 

Outlier detection 

An outlier can be generally considered as a data point that is notably different from the other 

data points or that does not imitate the expected normal behavior of the other data points93. 

Many situations can give rise to the appearance of outliers, i.e., the heterogeneity in the source 

of the data.  

Techniques for the detection of outliers can be categorized into statistical-, distance-, density-, 

clustering-, graph-, ensemble-, and learning-based methods. Statistical-based methods identify 

outliers by considering their relationship with the distribution model. Distance-based methods 

compute the distance between data points to detect those distant from the closest neighbors. 

Density-based techniques identify as outliers those points appearing in low-density regions. 

Clustering-based methods use classical clustering algorithms to detect observations in small 

clusters. Graph-based methods use graph techniques to analyze interdependencies in the data 

point and thus flag outliers. Ensemble-based approaches can help to detect outliers as they 

explore different models based on different subsets of data. Learning-based methods train 

models to detect outliers. A survey of the different outlier detection methods can be found 

elsewhere93. 

The question of how to handle outliers is problem dependent. Some techniques such as 

ensemble, allow to keep the outliers, while others require their removal in order to train accurate 

models. Approaches can analyze data points in multivariate or univariate space. The univariate 

technique identifies data points that contain extreme values on a single variable. 

Data pre-processing also involves feature selection, explained in the next section. 

4.3.2.4 Feature selection 

The feature extraction problem was defined by Devijver and Kittler (1982) as94: 

“... that of extracting from the raw data the information which is most relevant for 

classification purposes, in the sense of minimizing the within-class pattern variability while 

enhancing the between class pattern variability”. 

Strategies for feature selection aim to identify the features relevant to uncover the pattern in the 

dataset. Thus, with their application, the dimensionality of the data is usually reduced95. This 

step is almost always essential before modeling, especially for the case in which a large set of 

molecular descriptors is initially available. A smaller set of features decreases the 



Introduction 

 

26 

 

computational cost of the training phase and the complexity of the final model. Furthermore, it 

improves the accuracy of the model and reduces the chances of overfitting. For a certain number 

of training samples, for any classifier, including more dimensions to the feature space improves 

model performance. However, after a certain threshold in the number of features, performance 

only deteriorates96. 

Several methodologies and techniques can be used for feature selection. In the work presented 

here, the techniques applied are based on filter and wrapper methods. 

Filter by correlation with the class 

The selection of features involves evaluating the worth of each attribute according to its 

correlation with the output variable. Correlation measures quantify the relationship between 

two variables. Therefore, this filtering strategy applies statistical tests rather than machine 

learning algorithms. In this work, as an initial step in feature selection, Pearson’s correlation 

coefficient and Information Gain are used on regression and classification problems, 

respectively, to select top correlating variables. 

Pearson’s correlation coefficient (R) quantifies the linear dependence between two 

continuous variables. The measure outputs a score for the relationship between the variables. R 

indicates the strength and direction of such an association. The score varies from -1 to +1. The 

value –1 indicates that changes in one variable trigger proportional changes in the other variable 

but in the opposite direction. The value 0 reveals a lack of correlation between the variables. A 

score of 1 indicates perfect correlation, showing that the two variables change in the same 

direction. Given two variables 𝑥 and 𝑦, and 𝑁 samples, the equation to calculate Pearson’s 

Correlation is as follows: 

𝑅 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑁

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2 ∑ (𝑦𝑖−𝑦̅)2𝑁
𝑖=1

𝑁
𝑖=1

                                                         (4) 

Where 𝑥𝑖 and 𝑦𝑖 are the value of 𝑥 and 𝑦 for the 𝑖𝑡ℎ sample in the dataset, and 𝑥̅ and 𝑦̅ are the 

mean of variables 𝑥 and 𝑦 for the entire dataset, respectively. The ranking of the descriptors by 

their correlation with the class permits to identify and select top-ranked descriptors. Such 

selection implies using a threshold value. The identified descriptors can be fed to other feature 

selection techniques for further analysis. 

Information Gain (IG)97 is an entropy-based method that measures the information 

content provided by a variable 𝑌 to describe the information of a variable 𝑋. In other words,  

IG calculates the difference between the entropy of the variable 𝑋 and the conditional entropy 

of 𝑋 given a second variable 𝑌. In feature selection algorithms, 𝑋 corresponds to the outcome 

variable (e.g., class) and 𝑌 to a feature (e.g., molecular descriptor). IG is calculated as follows: 
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𝐼𝐺𝑐(𝑋|𝑌) = 𝐻(𝑋) − 𝐻𝑐(𝑋|𝑌)                                                  (5) 

The term H(X) in eq. 5 measures the total information necessary to describe the distribution of 

the variable 𝑋 and it is formulated as: 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖) log2(𝑃(𝑥𝑖)𝑖 )  𝑖 = 1,2                                       (6) 

where 𝑃(𝑥𝑖) is the probability of the class 𝑖, calculated as the fraction of the number of instances 

with value 𝑥𝑖  by the total number of samples of 𝑋. 

The term Hc(X|Y) in eq. 5 is the conditional entropy of variable 𝑋. It represents the amount of 

uncertainty remaining in variable 𝑋 after introducing variable 𝑌. This term is formulated as 

follows: 

𝐻𝑐(𝑋|𝑌) = − ∑ 𝑃𝑐(𝑦𝑗)𝑗 ∑ 𝑃𝑐(𝑥𝑖|𝑦𝑗) log2(𝑃𝑐(𝑥𝑖|𝑦𝑗)𝑖 )                              (7) 

Where 𝑃𝑐(𝑦𝑗) corresponds to the probability of the set of cases c with values 𝑦𝑗 for the variable 

𝑌. This is obtained as the ratio between the number of cases in the selected subset and the 

number of cases in the entire data set. 𝑃𝑐(𝑥𝑖|𝑦𝑗) is the conditional probability of class 𝑥𝑖  given 

the values 𝑦𝑗 of variable 𝑌. This is obtained as the fraction of the number of cases of class 𝑥𝑖 in 

the selected subset and the total numbers of cases in the same subset. 

The IG is always a value larger than or equal to zero. A value of zero indicates that the two 

variables are independent. Then, the larger the IG value, the larger the dependence between the 

variables. In the present work, I used the normalized Information Gain (NIG) calculated using 

the information content (entropy) of the class variable. Since NIG is a relative measure of the 

information provided by the feature to describe the dependent variable (eq. 8), it is a more 

intuitive magnitude than the absolute IG value.  

𝑁𝐼𝐺𝑐(𝑋|𝑌) =
𝐼𝐺𝑐(𝑋|𝑌)

𝐻(𝑋)
                                                       (8) 

In this way, descriptors are selected whose IG values exceed a certain percentage of the total 

information content of the class variable. 

Filter by redundancy among features 

The filters described above eliminate features with low or no correlation with the class. 

However, filter-based methods do not analyze multicollinearity among descriptors. Redundant 

descriptors do not provide novelty to the endpoint98. Moreover, they may significantly increase 

the computational cost of the learning process. A popular approach to remove redundant 

dimensions is the use of clustering methods. Clustering is the process of forming groups of 

features so that the distance between features in the same cluster is minimized, while the 

distance of those in different clusters is maximized. Various clustering algorithms can be used 



Introduction 

 

28 

 

to identify highly similar descriptors. In this work, single-linkage clustering was employed for 

this purpose. 

Single-linkage clustering is a technique that follows an agglomerative hierarchical 

methodology. Hierarchical clustering orders the samples based on a notion of similarity, to 

facilitate finding correlations in the data. The method starts by considering each observation as 

a separate cluster. Then, the closest points (based on a measure of similarity) are clustered 

together in each iteration. The algorithm ends when the data has formed a unique cluster. 

This technique can be used as an unsupervised learning method for feature selection, to analyze 

the redundancy among the features in the dataset. The criterion for forming clusters with this 

algorithm is that members of different clusters cannot be found below a certain cut-off value 

according to the measure of diversity used (the opposite applies if a similarity measure is used). 

Different similarity measures can be used to define the relation between points. Here, the 

Spearman’s rank correlation coefficient is employed for quantifying the association between 

every two variables in order to detect and remove redundant dimensions. 

The Spearman’s rank correlation coefficient is a nonparametric correlation coefficient 

that, comparable to Pearson’s correlation coefficient, quantifies the strength and direction of 

the association between two variables. However, Spearman’s correlation determines monotonic 

relationships, while the Pearson’s correlation coefficient determines linear relationships 

between the variables. In a monotonic relationship, the values of both variables increase in the 

same direction, or as the value of one variable increases, the value of the other decreases. 

To calculate the coefficient, each variable is ranked independently. Then, for each instance, the 

differences between the rank values are calculated and subsequently squared. The Spearman's 

rank correlation coefficient (𝑅𝑠) is calculated as follows: 

𝑅𝑠 = 1 − (
6 ∑ 𝑑2

𝑛3 − 𝑛
)                                                                  (9) 

where 𝑑  is the difference between the ranks of two observations and 𝑛  is the number of 

observations in the dataset. The value for 𝑅𝑠 can change in the range from -1 to +1, indicating 

negative or positive associations of ranks, respectively. A 𝑅𝑠 value of zero indicates no 

association between the ranks. 

Wrapper-based methods  

The Wrapper method99 evaluates different subsets of features by applying a learning scheme. 

Such a scheme combines a specific learning algorithm, a search method, and an evaluation 

criterion to assess each selected subset. It follows a greedy search approach to analyze all the 

possible combinations of features. Cross-validation (see Section 4.3.2.7) is used as the test 
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mode to avoid overfitting. The merit of subsets is determined using the evaluation measure of 

interest to assess model performance, for instance, Pearson’s correlation coefficient for 

regression or accuracy for classification (see Section 4.3.2.8). The method outputs the 

combination of features that delivered the best performance for the specified learning algorithm. 

The search problem is solved by using heuristic methods such as stepwise forward selection, 

backward elimination, or a combination of both methods. 

Forward selection is an iterative process that initiates from an empty subset of features. 

Initially, the method evaluates the relevance of each feature (using the same evaluation measure 

as for evaluating the subsets) and adds the one with the highest merit to the set. Then, at each 

iteration, it evaluates each feature in combination with those already selected and adds to the 

subset the feature that best improves model performance. The algorithm repeats the process 

until adding additional features does not improve the performance of the model. 

Backward elimination does the opposite to Forward selection. The algorithm starts with 

the set of all features. Then, at each iteration, the least significant feature (evaluated using the 

same evaluation measure as for evaluating the subsets) is removed. This process is repeated 

until the removal of additional features does not improve model performance. 

Bi-directional selection combines forward selection and backward elimination to find 

the optimal subset of features. It applies forward selection to add a new feature to the subset. 

However, once the method adds a new variable to the set, it checks the significance of the 

already separated features. Then, in backward elimination, insignificant features are removed. 

This process is repeated until the optimal subset of features is found. 

Wrapper methods are computationally intensive, especially for a highly dimensional dataset. 

However, the interaction with the classifier permits the identification of model features 

dependencies and to improve model performance. 

4.3.2.5 Learning algorithms 

Numerous ML algorithms exist, which may be grouped by similarity according to the mode of 

operation (Figure 5). Algorithms successfully applied in drug discovery are Naive Bayes, 

Support Vector Machines, the tree-based model Random Forest, and Artificial Neural 

Networks100. Deep learning revolutionized the field of drug discovery in recent years due to its 

ability to solve complex problems. However, such a strength relies on the availability of large 

volumes of data92.  
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Figure 5. Machine learning algorithms 

The ML models developed in this work leveraged Support Vector Machines and Random Forest 

algorithms. Therefore, a description of these two algorithms appears next in this section. 
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Support Vector Machines 

Support Vector Machines (SVM)101 is a supervised learning algorithm that has proven robust 

in bioinformatics studies. Given a set of observations of the form (𝑥𝑖, 𝑦𝑖), … , (𝑥𝑁 , 𝑦𝑁) from 

ℝ𝑑x ℝ, where 𝑥 ∈ ℝ𝑑, and 𝑦 ∈ {−1,1} for a binary classification problem, SVM aims to find 

the optimal hyperplane separating the observations of the two classes. The hyperplane can be 

represented as follows: 

𝑊𝑇𝑋 + 𝑏 = 0                                                       (10) 

Where W is the normal vector of weights to the hyperplane, and b is the offset of the hyperplane.  

If the training data is linearly separable, it is possible to select two parallel hyperplanes that 

divide the data into two classes (Figure 6). The hyperplanes are selected by increasing the 

distance (margin) between the classes as much as possible. The hyperplane with the maximum 

margin is the one located halfway between both hyperplanes. The margin between the 

hyperplane and the classes is 
2

‖𝑤‖
. Thus, minimizing 𝑤 converges to the maximum margin.  

 

Figure 6. Hyperplane with the maximum margin for a SVM trained on a data set with two classes 

(adapted from Pino et al.102)Note4 

The optimization is performed under the following two constraints to allow the separation of 

the two classes to the corresponding side of the hyperplane: 

𝑔(𝑥𝑖) = {
(𝑤𝑇𝑥𝑛 + 𝑏) ≤ −1 𝑖𝑓 𝑦𝑖 =  −1

(𝑤𝑇𝑥𝑛 + 𝑏) ≥ 1 𝑖𝑓 𝑦𝑖 = 1
                                            (11) 

                                                 
4 Published under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits the 

unrestricted use and reproduction of the image, on condition that the original author and source are cited. 
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The resolution of w is solved as an optimization problem usually presented as a minimization: 

{
min
w, b

1

2
𝑤𝑇𝑤

such that 𝑦𝑛(𝑤𝑇𝑥𝑛 + 𝑏) ≥ 1, 𝑓𝑜𝑟 𝑛 = 1, … , 𝑁

                                                                  (12) 

Equation 12 solves a “hard margin” classifier and is used when the data are linearly separable. 

For slightly non-linearly separable data, the optimization is modified to penalize those points 

violating the margin. Thus, a term to balance maximizing the margin and minimizing the error 

is added to the optimization problem:  

{
min

ξ
n

∈R+,w, b

1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑛

𝑁
𝑛=1

such that 𝑦𝑛(𝑤𝑇𝑥𝑛 + 𝑏) ≥ 1 − 𝜉𝑛, 𝑓𝑜𝑟 𝑛 = 1, … , 𝑁 𝑎𝑛𝑑 𝜉𝑛  ≥ 0 𝑓𝑜𝑟 𝑛 = 1, … , 𝑁

           (13) 

Where 𝜉 measures the slack of the violation (distance of the data point to the margin) and 𝐶 is 

the degree to which the violations are allowed. Large C values imply higher complexity that 

may lead to overfitting, as violating the margin will not be allowed. Small C values, on the 

other hand, lead to lower complexity but allow violating the margin very frequently. The 

classifier learned by solving this problem is called a “soft margin” support vector classifier. 

Strong non-linearity relations are modeled using a kernel function 𝐾(𝑥𝑖 , 𝑥𝑗), which transforms 

the input space X into a higher-dimensional Z space where the data can be linearly separable. 

The peculiarity of kernel functions is that they calculate high-dimensional relationships 

between each pair of observations as dot products without computing the coordinates of the 

data in the Z space. This operation is called the kernel trick, and it is computationally more 

effective than explicitly computing the coordinates. Most SVM models are trained using a 

combination of both, soft margin (tolerance to misclassifications) and kernel trick, to find the 

best hypothesis in nonlinear data. The final model is found as an optimization problem using 

the Lagrange multipliers and quadratic programming. The output of the optimization step is the 

identification of some points called support vectors, which are those achieving the margin and 

thus used to define the final hyperplane. SVM can be used for regression in addition to 

classification. The regression method is called Support Vector Regression (SVR). 

A simple methodology to train a model using SVM is as follows:  

1. Normalize the attributes. 

2. Select the most appropriate parameters. 

a. Parameter C (cost, complexity).  

b. Define the Kernel to be used. Popular Kernel functions are: 

i. Linear: 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 
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ii. Polynomial: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 𝑐)𝑑, where d is the degree of the 

polynomial. 

iii. Radial Basis Function: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒(−𝛾‖𝑥𝑖−𝑥𝑗‖
2

), where 𝛾 is Gamma, a 

parameter to define the influence of individual observations. 

3. Build the model with the best parameters and the training set. 

Random Forest 

Random Forest (RF)103 is an ensemble technique that combines the output of several 

independently trained models to provide a unique final prediction. Each model corresponds to 

a decision tree, trained on a dataset extracted from the main dataset using the bootstrapping 

(Bagging) technique. Bootstrapping selects randomly a set of features and instances (with 

replacement) from the original data set. The learning model produces a different g using each 

dataset and the output prediction is obtained as a consensus by applying majority voting rules. 

Each model has a different perspective of the modeled dataset. Thus, the combination of weak 

models is expected to improve the generalization capabilities of the ensemble model.  

Given a data set of N instances and M attributes, a Random Forest classifier of k trees is built 

according to the following algorithm: 

1. A data set of N instances is randomly selected, keeping a similar class distribution. The 

remaining instances are used as test cases. 

2. A subset of m attributes is randomly selected from the total (M) in the initial dataset. 

3. The best partition between the m attributes is identified and two new nodes are formed. 

4. The tree is completed by repeating steps 2 and 3 until each node reaches the maximum 

level of purity. 

5. The steps from 1-4 are repeated k times. 

For prediction, a new case is evaluated by applying the rules of each tree independently. The 

case then obtains a classification per tree corresponding to the class of the reached terminal 

node. The final classification is obtained by the majority vote of the constructed k trees. 

4.3.2.6 Optimization of hyperparameters 

Each algorithm has one or several parameters that control hypothesis generation, e.g., the cost 

or complexity (C) in SVM. These parameters are known as hyperparameters as they differ from 

other parameters, such as those learned, e.g., weights of linear function. Different 

hyperparameter setups work differently on distinct datasets104. Thus, several values are usually 

assessed in a tuning process to find the most suitable configuration for the modeled endpoint. 

This optimization approach generally improves model performance over the default setting of 
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algorithms supplied in ML libraries105. Hyperparameter optimization or tuning follows feature 

selection (if performed) and is part of the training process. 

Hsu et al.106 described an approach for adjusting the hyperparameters of SVMs. This strategy 

consists of a grid search that varies the hyperparameters’ values to cover different possible 

values.  

For instance, the parameter C may change from a small (e.g., 2-5) to a larger quantity (e.g., 25), 

with an increase determined by a stepwise value (e.g., increasing the exponent by 0.5). Each 

hyperparameter configuration generates a model. The generalization power of each model is 

assessed and stored (e.g., using cross-validation and development sets) for further analysis. 

Finally, the hyperparameter configuration that produced the best-performing model is selected. 

This grid-search strategy was followed in this work to develop the different ML models. 

4.3.2.7 Evaluation approaches 

Internal and external validation approaches (Figure 7) may increase the chances of training a 

robust and reliable model. In both schemes, instance selection and data partitioning are 

conducted to create various subsets of the data that serve different purposes. Subsets formation 

may include strategies such as stratified partitioning, repeatable random sampling, and over- or 

under-sampling of the minority or majority class, respectively. 

Internal validation: Popular approaches for internal validation are k-fold cross-

validation (k-fold CV) and the use of a development set. In k-fold CV, the dataset is distributed 

randomly into k disjoint (relatively equal size) folds. Then, every fold is used once as a test set 

to evaluate the performance of a model fitted on a training set formed by the other k-1 folds. 

Finally, the average performance on the test sets of the k-generated models is calculated. The 

variability of the accuracy estimations obtained from the random division of samples provides 

an estimate of the generalization power of the model107. A development set is a separate set of 

samples used as an external test set for the selection of the model during the training steps, e.g., 

in hyperparameters optimization. 

External validation: One or more test sets can be separated from the initial data for 

external validation. These sets aim to assess the generalization capabilities of the model by 

predicting the output of unseen data108. External validation provides a way to estimate how close 

the in-sample error is to the out-sample error, and it can be conducted retrospectively by using 

validated test set(s). External validation can also be performed prospectively by predicting the 

class of new compounds, to be later verified experimentally109.  

 



Introduction 

 

35 

 

 

Figure 7. Internal and external validation. 

4.3.2.8 Performance measures 

Performance measures that evaluate the quality of a model are part of every ML pipeline. Their 

objective is to numerically expose the success of the learning task and compare different 

models. There are several performance measures to work with, and the first criterion for the 

selection relies on whether the learning task corresponds to a classification or regression 

problem. The performance measures used in this work are summarized below. 

Classification measures 

In classification, the error is measured as the binary difference between the predicted and true 

output values. Then, true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) predictions are counted and introduced in a confusion matrix (Table 2).  

Table 2. Confusion matrix for a binary classification problem. 

 
Predicted 

P N 

A
ct

u
al

 P TP FN 

N FP TN 

The confusion matrix permits to determine the overall quality of the model based on several 

measures (Table 3).  
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Table 3. List of performance measures used in the classification problems addressed in this work. 

Measure / Formula Description 

Accuracy (Acc) 

𝐴𝑐𝑐 = (𝑇𝑃 + 𝑇𝑁)/(𝑃 + 𝑁) 

 

The ratio of correctly identified 

predictions and the total number of 

instances. 

Sensitivity, aka Recall (Sn) 

𝑆𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

 

The ratio of samples correctly identified 

as positive and the total number of 

positive samples. 

Precision (Pr) 

𝑃𝑟 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

 

The ratio of samples correctly identified 

as positive and the total number of 

samples predicted as positive. 

Specificity (Sp) 

𝑆𝑝 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) 

 

The ratio of samples correctly identified 

as negative and the total number of 

negative samples. 

Matthews Correlation Coefficient (MCC) 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

Association between two variables. 

(Similar interpretation as the Pearson’s 

correlation coefficient for regression). 

F1-Score 

F1 = 2 ∗
𝑆𝑛 ∗ 𝑃𝑟

𝑆𝑛 + 𝑃𝑟
=

𝑇𝑃

𝑇𝑃 + 1
2⁄ (𝐹𝑃 + 𝐹𝑁)

 

The harmonic mean of precision and 

recall. 

Prevalence-corrected precision (PCPr) 

𝑃𝐶𝑃𝑟 =
𝑆𝑛

𝑆𝑛 + 𝑟(1 − 𝑆𝑝)
 

Precision values normalized for 

comparing different test sets, i.e. with 

different sizes of positive and negative 

samples in the data. The value r is the 

new ratio of negative and positive data 

samples. 

Precision and Recall measures are valuable for evaluating the performance of a model aimed at 

virtual screening. For instance, for predicting the likelihood of interaction between a list of 

peptides and a protein receptor, it is relevant to avoid false positives when selecting top-ranked 

peptide candidates for experimental validation. However, there is a trade-off between these two 

measures, and model selection based purely on one of them usually limits the performance of 

the other. The precision-recall curve (PRC) allows visualizing this trade-off for different 

thresholds (score separating the classes) values. A high area under the generated curve indicates 

high precision (low false positive rate) and high recall (low false negative rate) values. An 

accurate classifier has a high precision value, while a classifier with a high value of recall 

correctly identifies most positive instances. Thus, an ideal classifier balances both measure 

values with relatively high scores. 
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Regression metrics 

In regression, the error accounts for the numerical difference between the predicted and actual 

outcome values. Then, several measures may determine the error rate for the model (Table 4). 

Additionally, correlation measures (Pearson, Spearman, and Kendall) permit the calculation of 

the overall relationship between the predicted and the actual output variables. 

Table 4. List of performance measures used in the regression problems addressed in this work. 

Measure - Formula Description 

Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑁

𝑖=1

 

Average of the difference between the actual 𝑦𝑖̂ 

and predicted 𝑦𝑖 values. N is the total number of 

instances in the set.  

Pearson’s correlation coefficient (R) 

𝑅 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑁

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2 ∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

𝑁
𝑖=1

 

Linear dependence between two continuous 

variables 𝑥  and 𝑦 . 𝑥̅  and 𝑦̅  are the mean of 

variables 𝑥  and 𝑦  for the entire dataset, 

respectively. 

Kendall’s tau correlation coefficient (τ) 

τ =
𝑁𝑐 − 𝑁𝑑

√(𝑁𝑐 + 𝑁𝑑 + 𝑁𝑡) ∗ (𝑁𝑐 + 𝑁𝑑 + 𝑁𝑢) 
 

𝑁𝑐  and 𝑁𝑑  are the number of concordant and 

discordant pairs, respectively. 𝑁𝑡 and 𝑁𝑢 are the 

number of ties in the order of each variable, 

respectively. 

Enrichment Factor (EF) 

𝐸𝐹𝐼 =
[𝑁𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑝𝑖  / 𝐼]

[𝑁𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/𝑁𝑡𝑜𝑡𝑎𝑙]
 

I is a number of top-ranked instances as 

predicted by the model. 𝑁𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑡𝑜𝑝𝑖  is the number 

of positive predictions in the top I. 𝑁𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 is 

the number of positive samples in the dataset, 

and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of instances in the 

dataset. 

The evaluation of the model in regression usually relies on a measure of correlation (e.g., 

Pearson’s) and a measure of distance (e.g., MAE) between predicted and actual values. The 

former estimates the dependence of both predicted and output variables. This can be of use, for 

instance, to assess the ranking power of the model. The measure of distance calculates, on 

average, how close the prediction is to the actual value. Furthermore, other metrics may be a 

good choice according to the information available. For instance, τ  permits assessing the 

ranking power of a model on a test set of few samples. Likewise, EF may be used to evaluate a 

classifier on a test set when the predicted and the actual values have different magnitudes, i.e., 

a model predicts BA as binding free energy, but the test samples have BA indicated as IC50 

values.  
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4.3.2.9 Definition of the applicability domain 

The definition of the applicability domain (AD) aims to deliver information on the coverage or 

similarity of a query sample among the samples used to train the model. It is an informative 

tool needed to express the scope and limitations of a predictor, which can help to judge the 

reliability of the model’s predictions. 

As Netzeva110 expressed, “this need is based on the fact that (Q)SARs are reductionist models, 

which are inevitably associated with limitations in terms of the types of chemical structures, 

physicochemical properties and mechanisms of action for which they can generate reliable 

predictions”. 

Several approaches can be used in a multivariate space to estimate the AD of a model. Popular 

methods use ranges, geometry, distances, and probability density distribution functions110. In 

this work, the range approach estimates the projection of query samples into the AD of the 

models. Range-based methods analyze the projection of a data point into the training data by 

using the range values. That is, by checking that each descriptor value is within the range of 

values of the same descriptor in the dataset used to train the model. If the value of a descriptor 

exceeds the determined values range, a warning message indicates that the test sample is out of 

the AD. This approach is straightforward, although it cannot detect holes in the training data, 

namely regions with scarce data representation. However, range-based methods are easy to 

apply and computationally efficient, and thus a suitable choice for virtual screening studies. 

4.4 Machine learning in drug discovery 

The field of ML has grown in the last decades, and it has proven successful in different areas, 

such as image, video, finance, robotics, autonomous driving, and so forth. Such success, and 

the need to apply hybrid techniques to cope with the high complexity of drug design and 

development, have increased the interest in ML-based methods as tools to support drug 

discovery in recent decades as well. 

One of the applications of ML techniques in bioinformatics is QSAR development. Hansch et 

al. published the first work of QSAR modeling in 196242. Since then, around 20,000 papers on 

QSAR applications for computer-aided drug discovery have been published, as reported by 

Muratov et al. in 2020111, with the highest growth in the number of publications taking place in 

recent years. From its first usage, QSAR development has evolved from applying simple 

regression approaches to using ML techniques capable of analyzing nonlinear data68. 

Consequently, ML-based QSAR models have gained relevance in CADD as methods to support 

the process of drug design and optimization.  
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4.4.1 The principles of the Organization for Economic Co-operation and Development for 

the development of Quantitative Structure-Activity Relationships (QSAR) models 

Almost two decades ago, the Organization for Economic Co-operation and Development 

(OECD) established five principles112 to harmonize and safely guide the development of QSAR 

models: 

  “To facilitate the consideration of a (Q)SAR model for regulatory purposes, it should 

be associated with the following information: 

1) a defined endpoint 

2) an unambiguous algorithm 

3) a defined domain of applicability 

4) appropriate measures of goodness-of-fit, robustness and predictivity 

5) a mechanistic interpretation, if possible”. 

The OECD principles describe a decision-making process, and each choice will ultimately 

determine the robustness and reliability of the developed model. The first principle refers to 

having a well-defined endpoint and the information required to fit and use a model. An endpoint 

may be any physicochemical, biological, or environmental effect that can be measured and 

modeled. The second principle is related to the need for transparency in the description of the 

modeling algorithm to be reproducible. The third principle refers to the importance of 

establishing the model limitations through an AD definition. Thus, it is possible to specify for 

which input samples the model produces reliable predictions. The fourth principle is concerned 

with using different measures to evaluate the internal performance (as represented by goodness-

of-fit and robustness) and external performance (as determined by external validation) of the 

model. Lastly, the fifth principle refers to the desire for mechanistic interpretations of the 

association between descriptors and the modeled endpoint. Yet, the OECD recognizes that it is 

not always possible to fulfill this principle, for what other considerations applied by principles 

third and fourth may be sufficient to accept a production model. 

4.4.2 Standard procedure to develop machine-learning-based QSAR models 

Many ML-based QSAR models have been introduced in the last decades to address biological 

problems. The standard methodology (Figure 8) used to build ML-based QSAR models 

includes the following steps113: 

1. Pre-processing of the data, i.e., data curation or standardization. 

2. Split the data into training, development (optional), and test sets. 

3. Features generation (e.g., molecular descriptors). 

4. Selection of the learning algorithm. 
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5. Model training, including the application of internal validation approaches. 

6. Evaluation of the performance of the model using appropriate metrics.  

7. External validation of the selected model based on the internal validation step. 

There are several aspects to contemplate when creating ML-based QSAR models. The 

performance of a model will be as good as the data used to train it. Thus, data curation involves 

strategies before and after feature generation, e.g., for outlier detection. The splitting of the data 

into several subsets is usually random, but the cases in each set shall be as distant as possible 

to each other. Descriptors used as features must be informative enough to capture the 

characteristics of the data that correlates with the endpoint. Thus, feature generation involves 

determining which encoding approach is suitable to represent the information to be modeled, 

i.e., molecular descriptors for protein sequences or 3D structures. Feature selection techniques 

may incorporate information from the class. Those techniques involving the outcome variable 

and the interaction with the learning algorithm are part of model training. Furthermore, model 

training usually includes the optimization of the hyperparameters. The learning algorithm may 

be selected after assessing several techniques on the data set to identify the most appropriate 

algorithm or by evidence of good performance for the modelled endpoint. The evaluation of the 

model should include several validation strategies, e.g., performance in cross-validation or 

development/tuning set. The final model must be performant on external test set(s). 

 

Figure 8. Standard process to develop ML-based QSAR models 
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Each time a model is assessed, the relation between the error in training (in-sample error) and 

error in test (out-sample error) is analyzed to examine how the in-sample error tracks the out-

sample error. As shown in Figure 4, the more complex the model, the most likely the in-sample 

error will be low, but the chances of overfitting increase (out-sample error). By contrast, if the 

model is too simple, both errors will probably be close. Yet, with such high error values, the 

model will lack practical utility. As a rule of thumb, the difference between the training and test 

errors should be below 15% of the training error. The acceptance of the model is dictated by 

how it compares with respect to other state-of-the-art models after assessment on external, 

preferably benchmark, test set(s) using performance measures. 

4.4.2.1 Implementation of web servers 

Once a model is created and validated, its applicability will depend on its availability and ease 

of use. Thus, any proposed ML model should be available as a web server or as at least as a 

standalone application. Although several ML models are publicly available via a web server, 

open-access tools increase the usability of the model in academic and industrial sceneries. Yet, 

only a limited amount of publications in the field of drug development offer open-access 

websites100.  

4.4.3 Applications and importance of machine learning in drug discovery 

The applications of ML techniques to create predictive models for drug discovery can be 

broadly grouped, according to the problem addressed, into drug mechanisms, drug properties, 

and drug repurposing92. 

Drug mechanisms 

ML models may be used to predict the likelihood of interaction (interaction/non-interaction) 

between the drug and the target receptor, but also the binding affinities of such interaction. 

Targets can be enzymes, ion channels, nuclear receptors, and G protein-coupled receptors, 

being those protein-related the most studied targets. Likewise, several types of molecule can 

interact with receptors, such as small organic molecules, peptides, and other proteins114.  

The identification of drug-target interactions is frequently the first step of the drug discovery 

process, aiming to reduce the initial number of candidates. Thus, ML methods have been 

developed to predict interactions between protein and prospective drugs and to screen new drug 

candidates effectively and efficiently115-122. Most state-of-the-art methods predict protein-

protein interactions or protein-ligand interactions, where ligands are small molecules or 

peptides. Such studies can contribute to understanding the mechanism of action of the drug, the 

pathology of the disease, and possible side effects of the drug. Moreover, the identification of 
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PPIs allows detecting protein complexes, identifying domain interactions, identifying proteins 

involved in disease pathways, and developing effective strategies in drug design123. 

Drug properties 

The pharmacokinetic properties of a compound are essential to regulate its usage. Thus, one of 

the most relevant biological problems involves analyzing ADME, and toxicity properties. 

Computational attempts have aimed to create predictive models for human oral and intestinal 

absorption, Caco-2 permeability, carcinogenicity, clearance, identification of P-glycoprotein 

substrates, phospholipidosis, blood-brain barrier permeability, cytochrome P450 activity 

(CYP450), and mutagenicity. Priya et al.124 published a review article that summarized ML-

based studies aiming to predict such properties. These studies leveraged random forest, artificial 

neural networks, SVM, and deep-learning algorithms. 

Antimicrobial compounds against bacteria, viruses, parasites, or fungi are well studied125, 126. 

Antibiotics are the main treatment against bacterial infections127. However, the overuse of 

antibiotics has increased bacterial resistance to those antibiotics available on the market. Such 

increase is, however, in notable disagreement with the low number of new antibiotics 

introduced in recent years. Therefore, it is necessary to discover novel compounds tackling 

multi-resistant organisms128. Multi-drug resistance also involves parasites, such as the protozoan 

parasite plasmodium falciparum producing malaria. Thus, antimicrobial ML models to study 

parasites have also been developed129. Furthermore, viruses causing severe diseases such as the 

acquired immunodeficiency syndrome (AIDS), Ebola or COVID-19 have been studied using 

ML techniques130. 

Many efforts aim to develop treatments for cancer, a public health problem causing the death 

of millions of people annually. Several therapeutic targets are the focus of cancer treatments. 

ML techniques find applications to create methods to predict the activity of drugs on known 

cancer-related targets, such as G-protein-coupled receptors (GPCRs), which are involved in cell 

signaling mechanisms and whose alteration may lead to cancer progression100. Thus, ML 

methods can be applied for the identification and development of anticancer agents131-134. 

Drug repurposing 

The use of existing drugs for therapeutic purposes others than those already established is 

known as drug repurposing. The aim of this strategy is to explore the possible usage of known 

drugs as an alternative to overcome the expensive and time-consuming process of discovering 

novel compounds. For this, data related to the drug, such as its chemical structure, target, and 

side effects are leveraged, among others. ML techniques can be used to build models for drug 

repurposing, for instance, to predict the class of therapeutic drugs, and for cancer cell line 



Introduction 

 

43 

 

response to drug treatment. Park published a comprehensive review article on computational 

methods for drug repurposing135. 

Drug repurposing is important to face epidemics136. In 2019, with the novel coronavirus variant 

(SARS-CoV-2) outbreak, several approaches immediately aimed to find treatments to tackle 

the disease. Because of the urgency for treatment and the lack of knowledge of the disease, drug 

repurposing was one of them137. Beck et al.138 used a previously introduced ML model to screen 

datasets of known antiviral drugs. The screening aimed to find compounds that potentially 

disrupt molecular elements of SARS-CoV-2 (e.g., proteinase, RNA-dependent RNA 

polymerase). Beck’s study exemplifies how predicting the interactions between target and drug 

finds applications in drug repurposing. Drug repositioning with ML techniques also focused on 

antimicrobial compounds to address  COVID-19139. 

The complexity associated with human diseases requires methods able to explore a broader 

chemical space to facilitate the identification of novel molecules to be synthesized. With the 

increase of available data and the development of information and computational technologies, 

the application of ML has become a valuable tool for drug design and development. The impact 

of ML in drug discovery is directly associated with the speed that predictive models can offer 

to accelerate the research process and decrease the cost and risk of clinical trials. QSAR is a 

promising technique in drug development because it allows processing large compound datasets 

fast and without losing much precision40. QSAR models allow proposing drugs with specific 

biological properties140. Estimates indicate that, by using ML, the introduction of novel drugs 

requires less than 1/3 of the time and cost of traditional drug development141. Drug discovery 

covers more than 35% of the Artificial Intelligence/Machine Learning market. With an annual 

growth rate of 53%, the market was estimated to reach US$8 billion in 202240. Overall, the use 

of ML brings automation and sophistication to the drug development process. Nevertheless, the 

definition of thresholds to select the best candidates is subjective. It is domain-specific, and it 

requires the expertise of humans.  

4.4.4 Machine learning for the identification and study of bioactive peptides 

4.4.4.1 State-of-the-art methods 

ML techniques have already found applications in the analysis of bioactive peptides. In 2019, 

Basith et al.142 published a review article citing a comprehensive list of ML models trained on 

peptide databases. The described methods were used for screening function-specific therapeutic 

peptides, such as anticancer143-157, antihypertensive158-160, antitubercular161-164, anti-

inflammatory155, 165-167, quorum-sensing155, 168, 169, and cell-penetrating peptides155, 170-180. Most 
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of these approaches used publicly available datasets and various ML algorithms, mainly SVM 

and RF. 

A body of research also addressed predicting antimicrobial peptides181-183 and putative 

functional peptides in this class, e.g., antibacterial peptides184-186, and to discriminate among 

several function-related classifications such as anti-inflammatory, antiviral130, 187, and 

antifungal188 peptides 189-196. Furthermore, ML models have found applications to study 

antiangiogenic197-200 and immunosuppressive peptides201, 202. To fight the AIDS disease, anti-

HIV-1 peptides were investigated using ML techniques203-205.  

These studies show how most state-of-the-art models predict function endpoints (drug 

properties) and focus on exploring the structures of various peptide sequences. Interestingly, 

the interactions between peptides and their potential targets have been less investigated by 

means of ML206. State-of-the-art work suggests that a next generation of ML-based methods is 

needed to develop peptide-based pharmaceutics142. 

Currently, the study of protein-peptide interactions based on databases of only protein-peptide 

pairs is mostly performed in specific contexts, for instance, to predict peptide binding to major 

histocompatibility complexes (MHC) classes I, II207, 208. Otherwise, protein-peptide interactions 

are part of datasets used to train predictors of protein-protein or protein-ligand interactions, in 

which ligands include mostly small molecules. In the context of the prediction of the BA of 

protein-peptide complexes and to the best of my knowledge, prior our work there was no 

publicly available ML model trained on only protein-peptide BA data. Due to the specific 

characteristics of peptides, such as low systemic stability, poor membrane permeability, poor 

oral bioavailability, low solubility, and fast clearance, ML methods trained on curated protein-

peptide datasets are necessary. 

4.4.4.2 Challenges of state-of-the-art methods 

ML-based QSAR models for proteins and peptides analysis is a field of ample research in 

CADD. One approach is the prediction of PPIs as a classification problem (interaction/non-

interaction). This modeling strategy delivered several PPI classifiers. However, some 

drawbacks were reported for those classifiers. For instance, Park209 analyzed existing sequence-

based PPIs predictors and identified some issues affecting their robustness, as listed below: 

1. The approach adopted for encoding the protein pairs. 

2. The effectiveness of the features representation (for those ML-based methods). 

3. The approach followed to assess performance, including the measures used for the 

evaluation of the model and the lack of comparisons with previously introduced 

methods. 
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Moreover, the lack of verified non-PPI samples is another factor affecting PPI classification. 

The scarcity of negative samples requires strategies to create the negative class and improve 

the performance of the model.  

The prediction of the BA of protein-protein and protein-ligand complexes using regression to 

calculate the strength of the interaction is another widely studied area118-122, 210, 211. In recent 

years, the availability of structures increased, from X-ray, NMR, electron microscopy, 

homology modeling, and ML methods141. Thus, most ML models leverage structural (3D) 

datasets for BA prediction. However, most models are based on protein-protein or protein-

ligand datasets and have low representation of protein-peptide interactions. For those methods, 

the performance of models on protein-peptide complexes remains unstudied, and their 

applicability to the investigation of protein-peptide interactions is thus limited. Therefore, ML-

based QSAR models specifically trained on protein-peptide BA databases are in demand. 

Likewise, the creation of AMPs predictors receives much attention. However, most methods 

deliver limited precision when predicting the specific function of putative AMPs, such as 

antibacterial peptides. 

Frequently, the protocols used to create many state-of-the-art ML-based methods for the 

mentioned endpoints are insufficiently validated, one of the problems noted by Park209. The 

evaluation of the models on additional external test sets, including novel experimental data, is 

encouraged to avoid high variance in future predictions. Moreover, most methods miss the 

definition of an applicability domain to use the model. In the absence of an applicability 

domain, it is difficult to discard unreliable predictions in VS. Additionally, several methods 

lack a web server implementation for their usage. Sometimes, those tools with a web server do 

not offer the possibility to perform VS for optimizing the primary structure of putative 

peptides interacting with a target protein. Consequently, identifying and optimizing promising 

peptides targeting PPIs in a cost-effective and time-efficient manner remains an area with room 

for improvement.  
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5 Objectives 

Peptide development, although challenging, represents a promising opportunity for modern 

drug design. In this endeavor, the application of in silico methods for the virtual screening of 

peptide libraries can be an alternative to reduce the time and costs of this process. One approach 

to conduct virtual screening is the use of ML-based QSAR predictors for various peptide-related 

endpoints. In the scope of protein-peptide associations, several predictors of protein-protein and 

protein-ligand interactions have emerged in the last decades. However, these models suffer 

from low generalization capabilities, with high variance when predicting unseen data. 

Moreover, most methods contemplate peptides the same way as proteins or small organic 

ligands, underestimating the specificity of short peptide sequences.  

Similarly, due to the urgent need of novel therapies to address multi-drug resistance, predictors 

of AMPs have been introduced. However, most methods are not intended to predict specific 

functions, such as antibacterial activity, and those that can consistently address this task have 

limited precision and lack information on potential targets. Consequently, novel computational 

methods aimed to accurately identify and optimize bioactive peptides are needed. The aims of 

my work were to leverage machine learning techniques to develop novel tools for the analysis 

of bioactive peptides by: 

i. Developing a sequence-based predictor of protein-protein and protein-peptide 

interactions applicable to the identification of lead compounds from extensive in silico 

screening of protein-peptide and protein-protein interactions. 

ii. Developing predictors of protein-protein and protein-peptide binding free energies 

based on 3D structures, with application to mutagenesis experiments and protein 

engineering. 

iii. Contributing to the development of predictors of antibacterial peptides and the Gram-

staining type of targeted bacteria. This tool allows the identification of function-specific 

lead peptides and derivatives thereof. 

iv. Implementing a web platform permitting (i) the generation of ProtDCal molecular 

descriptors for data-driven studies, and (ii) the application of the developed ML-based 

tools for the virtual screening in the early steps of peptide discovery. 
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Model validation: 85% 
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Web(tool) validation and deployment: 100% 

Web(tool) maintenance: 100% 
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7 Discussion 

In this work, I developed several ML-based tools for the design and optimization of bioactive 

peptides. To this end, I focused on different early-stage tasks of the drug design process. These 

tasks comprise the identification of protein-peptide and protein-protein interactions, the 

estimation of the binding affinity of protein-peptide and protein-protein complexes, and the 

identification of antibacterial peptides. Furthermore, I implemented several web applications to 

facilitate the use of the developed models. In this way, the predictors can be employed for (1) 

the massive in silico screening of peptide libraries to study protein-peptide interactions, (2) to 

identify and design peptides and protein derivatives with tuned binding affinity against a protein 

receptor, and (3) to identify protein fragments with antibacterial activity. In addition, I 

developed a web platform, ProtDCal-Suite, that provides access to these tools and to other 

ProtDCal-based applications. ProtDCal-Suite facilitates the functional analysis of proteins and 

peptides72, 76, 86, 87, 212-214. 

7.1 The models 

First, I developed PPI-Detect, a sequence-based predictor of protein-protein and protein-peptide 

interactions (Publication 1). PPI-Detect receives as input the individual amino acid sequences 

of a protein-peptide or protein-protein pair and outputs the likelihood of the pair being involved 

in an interaction. I developed the ML model using as features the molecular descriptors 

implemented in the ProtDCal software76, whose suitability in proteins-related QSAR 

development has been demonstrated in several studies72, 76, 81, 86, 87, 90, 215. To this end, and since 

the codification approach of ProtDCal was initially intended only for individual proteins, I 

defined a novel procedure to encode protein pairs and implemented a new functionality in 

ProtDCal to enable their future computation (Publication 1, Figure 2). Subsequently, I trained 

the ML model using a combination approach for protein pairs introduced and validated its 

effectiveness in the study of protein-protein and protein-peptide interactions. PPI-Detect can be 

applied to the identification of lead compounds from extensive in silico screening of protein-

peptide interactions, especially in those cases where the primary structure of protein-peptide 

pairs is the only available information. 

I further studied protein-peptide interactions by exploring the structural information of protein-

peptide complexes (Publication 2). For this, the response variable modeled was the binding 

affinity (binding free energy, ∆Gbind) of protein-peptide complexes. The model delivers the 

strength of the interaction rather than identifying interacting/non-interacting binders, as was the 

case with PPI-Detect (Publication 1). Unlike PPI-Detect, the predictor of protein-peptide 

binding free energies is based on 3D structures. To facilitate the use of the created model, I 
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developed a web tool named PPI-Affinity that allows, in addition to the estimation of BA, the 

optimization of a putative peptide sequence for which a 3D complex structure has been 

resolved. The implemented functionalities permit the generation of thousands of peptide 

derivatives by performing substitutions and/or deletions on the peptide residues located at the 

interface of contact of the protein-peptide complex. PPI-Affinity can find application in 

mutagenesis experiments and protein engineering. To my knowledge, without considering the 

study of peptides targeting MHC classes I and II207, 208, this was the first protein-peptide BA 

predictor trained on data formed exclusively of protein-peptide structures. Additionally, as part 

of the study, I also modeled the BA of protein-protein complexes. Consequently, all the 

functionalities of PPI-Affinity can be exploited separately for both protein-peptide and protein-

protein complexes. 

Furthermore, I contributed to the development of ABP-Finder, a tool to identify antibacterial 

peptides and the Gram-staining type of the targeted bacteria (Publication 3). This study 

involved the development of two ML classifiers. The first model predicts the likelihood of a 

peptide exhibiting antibacterial activity. Putative antibacterial peptides are then fed to the 

second model, which classifies the activity according to the target bacteria. The classifications 

are exclusively Gram-positive (Gram+), exclusively Gram-negative (Gram-), or both types 

(broad-spectrum). My contribution to this project was mainly computational, by implementing 

the web server that enables the use of the developed models in the screening of large peptide 

libraries. The server permits the breakdown of protein sequences into short peptide fragments 

before the prediction. This facility paves the way for the discovery of protein domains with 

antibacterial activity. 

7.2 Modelling process 

I applied both classification (Publication 1) and regression (Publication 2) modeling 

approaches to effectively exploit the available data. I used regression as the primary strategy to 

create the BA predictors, given the numerical (continuous) nature of ∆Gbind values. However, 

modeling the BA of PPIs was a major challenge given the susceptibility of regression to noise 

which, due to different experimental conditions and measurement errors, is a common factor 

limiting the quality of reported data216. Previously, other authors have addressed the analysis of 

PPIs as a classification problem by introducing an artificial threshold value to define discrete 

classes217. Yet, for this option to be feasible, the values separating the classes must be very well 

defined, i.e., the distribution of binding free energies should be multimodal, or an unambiguous 

physically justified threshold should exist. That is not the case for the modeled data 

(Publication 2, Figures SI-1 and SI-3 B). To assess this, I evaluated PPI-Affinity and the 
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LUPIA217 classifier in predicting the BA of protein-protein complexes as a classification rather 

than as a regression problem (Publication 2, Table SI-5.1). The evaluation on two test sets 

reflected the downside of using a threshold to discretize BA values. In both evaluations, LUPIA 

was overly optimistic by ranking most of the cases as with “high” affinity. Moreover, with the 

constant increase of available BA-related data (Kd, Ki, and IC50), several ML models have been 

developed with a regression approach. 

Since available datasets can be found for both endpoints, I studied both response variables. I 

created a binary classifier to discriminate between interacting and non-interacting protein-

peptide and protein-protein sequence pairs (Publication 1), and regressors to calculate the 

∆Gbind of protein-protein and protein-peptide complexes (Publication 2). 

All modeling processes involved the definition of training and test sets. For PPI-Affinity and 

ABP-Finder, development sets were also defined. Development sets allow monitoring the 

generalization power of the models during the training steps. Although no development set was 

defined for the modeling of PPI-Detect, the lack of sequence identity in the analyzed data 

(Publication 1, Figure 1), as well as the size of the training set and the rigorous definition of 

three test sets (easy, mid-hard and very hard subsets), served likewise to ensure the robustness 

of the model. Among the three ML studies, ProtDCal features for protein structures (sequence-

based and structure-based) were exploited to a large extent. The main difference between the 

calculated descriptors was the choice of indices and vicinity operators, the first two steps of the 

four comprising the ProtDCal pipeline to calculate the descriptors (Publication 4, Figure 2). 

The molecular descriptors modeled in PPI-Affinity accounted for structural information 

without vicinity modifications and aimed to encode contact information of residues at the PPI 

interface at a determined spatial distance. Indices and vicinity operators used in the modeling 

of PPI-Detect represented properties of the primary structure of proteins. In PPI-Detect, the 

application of the Electro-topological state (E-State) vicinity operator allowed to measure the 

total topological information of the PPI. The descriptors of the individual and aggregated 

sequence pairs were combined according to the following formulation (Publication 1, 

Equation 9): 

𝐷𝐴−𝐵 = 𝐷(𝐴𝐵) + 𝐷(𝐵𝐴) − 2𝐷(𝐴) − 2𝐷(𝐵)                                        (14) 

Where 𝐷(𝐴), 𝐷(𝐵), 𝐷(𝐴𝐵), and 𝐷(𝐵𝐴) correspond to the molecular descriptors of the sequences A 

and B, and that of the sequences AB and BA (formed by the concatenation of A and B), 

respectively.  

This, accompanied by a large set of grouping and aggregation criteria (which are the last two 

configurable parameters of ProtDCal) produced a large set of molecular descriptors for each 
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instance in the different data sets. The sets comprised 13248 and 23040 descriptors for PPI-

Detect and PPI-Affinity, respectively. Such high multidimensional spaces aimed to explore all 

possible scope-related information to produce features correlating with the response variable. 

Next, I extracted the most informative descriptors by applying several unsupervised and 

supervised techniques. Among them, the Information Gain for classification tasks (Publication 

1, Publication 3) and the correlation coefficient for regression (Publication 2) served to 

identify top-ranked features by evaluating the worth of each descriptor to predict the class. 

Additionally, unsupervised clustering allowed the removal of redundant dimensions based on 

the mutual correlation among features (Publication 1, Publication 3). In all studies, the final 

steps of the feature selection process involved the use of a supervised technique coupled with 

the classifier to explore relationships between different subsets of descriptors and the response 

variable. This strategy facilitated the detection of dependencies between the models’ features.  

In the case of PPI-Affinity, as the ∆Gbind values of most of the complexes in both datasets were 

in the center of the distribution (Publication 2, Figures SI-1, SI-3-B), once the final descriptors 

were fixed, I divided the training set into four subsets by subsampling the most populated ∆Gbind 

regions (Publication 2, Figures SI-2 and SI-4). This approach aimed to reduce large prediction 

errors in the least sampled BA ranges. Next, I modeled ∆Gbind on each dataset and followed an 

ensemble approach, based on vote selection, to create the final predictors. Ensemble-based 

predictions can reduce the dispersion of the estimates produced by single learners and thus 

achieve better performance218. Two ensemble-based tools (PPI-Affinity and ABP-Finder) are 

presented in this work, with robustness validated by their performance on several independent 

test sets. 

In the modeling protocols, feature selection was followed by the optimization of the 

hyperparameters of the technique. In this step, the followed grid-search strategy allowed to 

explore a discrete set of hyperparameters to select those values producing the model that most 

approximates the objective function. Such selection involved the definition of different ad-hoc 

functions to evaluate the models using different test options and thus enhance the robustness of 

the final predictors. In PPI-Detect, I evaluated the models in 10-fold CV and selected the 

hyperparameters that maximized precision and recall values while reducing their deviation from 

the false positive rate (Publication 1, Section SM-3). In PPI-Affinity, I evaluated the 

performance of each model on the training set, in 10-fold CV, and on the development set. 

Then, I selected the best model by combining the three output correlations in a function that 

consolidated in a single measure the goodness-of-fit, generalization, and robustness of the 

model (Publication 2, Figure 1-2). In the training of SVM models, the polynomial and radial 
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basis kernels were explored to determine the most suitable kernel function to predict the class. 

From them, the polynomial kernel was selected to train the models in both studies (Publication 

1, Publication 2). The complexity hyperparameter (𝑙𝑜𝑔2𝐶) of the technique took values in the 

range between -5 and 4 (with step=0.5) for all the models. However, I extended the minimum 

value to 𝑙𝑜𝑔2𝐶 = −7 in the modeling of the BA of protein-peptide complexes, as optimal 

models initially fell in the lower limit of the defined range. As a result, two of the models had 

𝑙𝑜𝑔2𝐶 = −6 , while the other two remained with 𝑙𝑜𝑔2𝐶 = −5  (Publication 2, Figure 2). 

Another hyperparameter was the degree (D) of the polynomial kernel, with values ranging 

between one and three. Interestingly, the final PPI-Detect predictor is a linear model (D=1), 

while the ensembles of PPI-Affinity contain models trained with either D=1 or D=2. Such 

results indicate the presence of more complex nonlinear relationships in the structural data, and 

show how the followed modeling strategy complies with the principle of parsimony of always 

opting for the simplest solution. 

7.3 Evaluation of the models 

A proper evaluation of the models is paramount to ensure an accurate, robust, and stable 

production environment. As mentioned above, all models were evaluated in 10-fold cross-

validation. This validation strategy provided an unbiased estimate of the generalization error 

with lower variance than that produced by a single split into training and test sets. However, we 

note that, to a lesser extent, CV involves the use of test samples in the fitting process. Therefore, 

validation on independent test sets, and comparisons with state-of-the-art methods, are crucial 

to ensure the generalization power and improvement of the models. Likewise, the use of 

appropriate metrics for the evaluation of the model is essential. The selection of the evaluation 

measures shall involve not only data types (classification or regression problems) but also their 

practical utility to solve the biological problem being addressed. Park209 discussed the 

limitations of available sequence-based PPI predictors and highlighted the need for novel 

methods that consistently outperform those of the state-of-the-art in terms of area under the 

receiver operating characteristic curve (AUC) and precision-recall. AUC measures the 

performance of a binary classifier by comparing the true positive rate to the false positive rate 

obtained as the decision threshold varies. In this regard, Park209 debated the superiority of 

precision-recall compared to AUC, as AUC underestimates the effect of absolute false 

positives, which might lead to overestimating the model’s performance in drug discovery 

scenarios.  

For the development of PPI-Detect, I used precision-recall curves (PRC) to evaluate the model, 

as it is highly relevant for biologists to avoid false positives when performing costly and time-
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consuming experiments. In a first evaluation using the entire training set and in 10-fold CV, 

PRC showed very low differences between these two testing approaches, evidencing the 

robustness of the fitting process (Publication 1, Figure 3). Subsequently, I plotted PRC to 

evaluate the model on the three initially defined test sets. Remarkably, models with more than 

75% precision were obtained at a sensitivity of 50% for all test sets (Publication 1, Figure 4). 

The combination of mid-hard and very-hard subsets was used to compare PPI-Detect with three 

state-of-the-art methods. This evaluation evidenced the superior performance of PPI-Detect, as 

at 50% sensitivity, PPI-Detect achieved a precision of 80%, while all the other methods 

delivered precision values below 60% (Publication 1, Figure 5). Notably, despite the previous 

success of the PIPE method115, 209, this tool did not benefit from the application of ML 

techniques and it lacks pairs of non-interacting (negative) data. Park209 also emphasized the 

importance of using reliable non-interacting data to enhance model performance and mentioned 

the random sample of protein pairs with unproved interaction as a valid approach to generate 

such data. In this work, I used the negative PPI pairs reported in the Negatome database62 to 

build the classifier. PPI-Detect delivered the best precision-recall balance (Pr=0.554, Sn=0.648) 

when compared to other state-of-the-art methods (Publication 1, Table 1). There, either higher 

precision or sensitivity values were achieved by PIPE (Pr=0.762, Sn=0.101) and Pred-PPI 

(Pr=0.396, Sn=0.88), yet with notable unbalance among these metrics. Such results evidenced 

the robustness of PPI-Detect and the effectiveness of our novel pair-wise codification approach 

to extend ProtDCal descriptors to a broader set of protein studies. 

Likewise, I evaluated the performance of PPI-Affinity and other state-of-the-art BA predictors 

on several independent test sets. The protein-protein model was first assessed on two sets of 

protein-protein complexes. There, PPI-Affinity ranked second on the test set 1 (R=0.62, 

MAE=1.8 kcal/mol) and first on the test set 2 (R=0.50, MAE=1.8 kcal/mol) (Publication 2, 

Table 1). Overall, the performance of PPI-Affinity in both test sets was moderate but consistent, 

while the other methods exhibited low or notably fluctuating performance in both test sets. 

Finally, the ranking power of the protein-protein model was also assessed by predicting the 

binding free energies of 26 wild-type and 151 mutant protein-protein complexes taken from the 

SKEMPI v2.0 database65 (Publication 2, Figure 3). The performance of PPI-Affinity on this 

set (R=0.78 and MAE=1.4 kcal/mol) was superior to the performance on the previously 

assessed test sets. Notably, such performance was just marginally inferior to that obtained when 

evaluating only on the 26 wild-type protein-protein complexes (R=0.77, MAE=1.1 kcal/mol). 

The evaluation on this third test set showed the potential of the model to characterize changes 

upon mutation, a functionality provided in the web server implementation (Publication 2, 
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Figure 5). Until the introduction of PPI-Affinity, BA predictors were trained on either protein-

protein or protein-ligand datasets, with ligands accounting for small organic molecules (except 

for the MHC-I and MHC-II studies207, 208). In both modeling processes, protein-peptide 

complexes were poorly represented. Thus, the unsuitability of the other methods for the 

prediction of the BA of protein-peptide complexes was evidenced by assessing their 

performance on a set of 100 protein-peptide instances taken from the Biolip dataset219 

(Publication 2, Table 2). There, the protein-peptide ensemble model of PPI-Affinity outranked 

all the assessed methods (R=0.55 and MAE=1.1 kcal/mol). Notably, below PPI-Affinity, the 

methods with the highest correlations delivered MAE values ranging between 8 and 10 

kcal/mol, while methods with low MAE values (MAE < 2 kcal/mol) delivered the lowest 

correlation values (R < 0.24). 

7.4 Evaluation on other experimental data 

Finally, all the models were challenged to either replicate or predict the results of experimental 

measurements in collaboration with biologists. Mutants of EPI-X4, an endogenous inhibitor of 

the chemokine receptor CXCR4, were employed to assess the performance of PPI-Detect and 

PPI-Affinity. Two different datasets of EPI-X4 were leveraged, with activities measured in 

inhibition (Publication 1) and competition assays (Publication 2). In PPI-Detect, the model 

was used to study regions of CXCR4 interacting with 35 derivatives of CXCR4’s endogenous 

ligand EPI-X4 (Publication 1, Figure 6). There, the precision values delivered by the model 

were between 50% and 70% on three of the four studied fragments of EPI-X4 (Publication 1, 

Table 2). Such results evidenced that EPI-X4 derivatives are potential binders of CXCR4. In 

addition, since these three EPI-X4 regions comprise the minor pocket of CXCR4, binding to 

the minor pocket is probably enhanced in those regions of the receptor. Subsequent studies 

involved the active participation of PPI-Detect in the study of EPI-X4 derivatives. To this end, 

ten thousand mutants were generated taking as template WSC02, a derivative of EPI-X4. From 

this screening, three of the generated derivatives were experimentally tested (Publication 1, 

Table 3). From them, a peptide (JM133) was found to be more active than EPI-X4 (Publication 

1, Figure 7), which evidenced the capabilities of PPI-Detect for the virtual screening of PPIs.  

In PPI-Affinity, I assessed the performance of the protein-peptide model in predicting the BA 

of 56 derivatives of EPI-X4 coupled to the CXCR4 receptor. For this, I evaluated the model for 

the identification of active peptides in two test modes: (1) defining as active peptides those with 

IC50 below the value of EPI-X4, and (2) defining as active those peptides with IC50 < 10,000 

nM. To evaluate the screening performance, I calculated the Enrichment Factor on the top 5, 

10, and 15 ranked peptides. This metric is useful in a scenario such as this, where the affinity 
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of derivatives was measured up to IC50 = 10,000 nM in the experimental assays, denoting those 

with higher values as weak binders. In this analysis, PPI-Affinity predicted only one false 

positive in the top 15 when using the affinity of EPI-X4 as the cut-off value. For all the other 

calculated EF values, the model delivered the highest performance (EF=1.9) (Publication 2, 

Figure 4). The protein-peptide model of PPI-Affinity was also assessed on two sets of peptides 

bound to PDZ domains of the human high-temperature requirement serine proteases (HtrAs) 

HTRA1 and HTRA3 (Publication 2, Tables 3-4). In this assessment, most of the BA values 

calculated with PPI-Affinity had an error within the MAE of the model (Publication 2, Table 

2).  

Furthermore, I evaluated the ranking power of PPI-Affinity and other state-of-the-art BA 

predictors on these sets of derivatives by measuring the Kendall correlation coefficient between 

experimental and predicted binding affinities. This non-parametric measure is well-suited to 

address the small sizes of these datasets, containing each less than 15 peptides. In this 

evaluation, PPI-Affinity outranked the other methods with τ=0.59 (HTRA1) and τ=0.42 

(HTRA3) (Publication 2, Table 5). Notably, PPI-Affinity showed the lowest variance among 

all the methods compared. RF-Score, the second-best method for predicting the BA of HTRA1 

(t=0.56) suffered a fall in the performance for HTRA3 (t=0.27).  

All the conducted evaluations evidenced the potential of the developed models in VS 

experiments and showed, with several examples, their practical utility in drug design. In 

addition to the methodological improvements achieved by the novel models, the evaluation on 

different and independent datasets unveiled a notable variance in the predictions of other state-

of-the-art methods, especially in the case of BA predictors (Publication 2).  

7.5 Implementation of web servers 

As mentioned, in addition to the PPI-Detect and PPI-Affinity models, I implemented all the 

introduced tools as web servers to facilitate the screening of large libraries of compounds 

without installation requirements for the scientific community. All web interfaces implement 

validation functionalities to avoid data entry errors. For instance, the Protein Engineering 

module of PPI-Affinity (Publication 2) provides a four-steps form to customize mutant 

generation. There, information related to the structure provided by the user is interactively 

displayed and requested in a way that greatly minimizes errors related to user management. The 

aforementioned ML models were all created using the descriptors implemented in ProtDCal. 

This software was originally deployed as a stand-alone program written in the Java programing 

language. In this work, I also implemented a web platform, named ProtDCal-Suite, that allows 

calculating the vast variety of ProtDCal descriptors, as well as to provide access to the tools 
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introduced in this thesis and to others that leveraged the protein codification of ProtDCal 

(Publication 4). ProtDCal-Suite provides a general framework for the study of proteins and 

peptides, permitting both (1) the generation of molecular descriptors for data-mining purposes, 

and (2) the application of our tools in the early steps of the peptide discovery process. 

7.6 General considerations concerning the models 

Several factors might be considered when analyzing the high variance presented by some state-

of-the-art methods. For instance, many methods lack the definition of the applicability domain 

of the model, which is the 3rd principle defined by the OECD for the regulation of QSAR 

models112. Many ML models assume that new instances will come from an identical distribution 

to that of the training set1, without considering that this accounts for a small portion of the 

chemical space. Consequently, if a tool lacks the definition of the AD, it is not possible to 

analyze whether test samples are simply outside the scope of these predictors or whether it may 

be a specific situation of some structure that causes an error in the prediction. This makes it 

difficult to analyze the errors obtained in the predictions and reflects the importance of 

specifying, for each predicted case, its projection into the AD of the model as part of the output 

of the tools. In this work, I defined the AD as the subspace specified by the value range of the 

variables of the models (molecular descriptors) in the training datasets (Publication 1: Table 

SM6, Publication 2: Table SI-7, Table SI-8, Publication 3: Supplementary File 2). By doing 

this, my aim was to release robust models providing reliable predictions. Nonetheless, there are 

other important considerations regarding the practical use of our tools: 

1) The models can be applied only to linear sequences comprising natural and unmodified 

amino acids. Although this could appear as a limitation, it should be noted that the 

chemical space encompassing all possible combinations of the 20 standard amino acids 

is enormous and that the initial exploration of peptides libraries is aimed at finding hits 

to be further improved by techniques such as cyclization, N-methylation, and 

modifications of the amino acids, among others33. 

2) PPI-Detect was built using a training set where peptides have a minimum length of 16 

amino acids, which hinders the applicability of the method to shorter peptides, generally 

preferred as therapeutics. However, this limitation is imposed by the available data and 

smaller peptides might be studied using PPI-Affinity, whose protein-peptide model was 

trained on peptides with sizes ranging between 3 and 30 amino acids. 

3) It is known the concern of drug developers regarding the understanding of model 

features to be able to explain the success of ML models1. This was acknowledged by 

the 5th OECD principle112, and in the widely accepted definition of molecular descriptor 
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given by Todeschini et. al.71. The codification approach implemented in ProtDCal 

significantly sacrifices the rigorous interpretation of the features. Nevertheless, the 

models introduced by us and other authors72, 76, 81, 86, 87, 90, 212, 213, 215, 220 evidence the 

suitability of ProtDCal descriptors to train robust and generalizable models and their 

applicability to diverse types of studies. Tables summarizing the descriptors for each 

model are provided in the corresponding publications (Publication 1: Table SM2, 

Publication 2: Tables SI-3.1 and SI-4.1). Additionally, the formulations for all 

molecular descriptors are available in the section “Theory and Algorithms” of the 

ProtDCal-Suite paper (Publication 4). 

4) As explained above, it should be noted that data-driven models are limited to some 

extent to the available information, which accounts for a reduced size of the chemical 

space. This might limit the AD of the models and thus the novelty of some predicted 

leads.  

5) PPI-Detect and PPI-Affinity attempt to predict the on-target interactions of putative 

peptides, which does not directly imply bioactivity. For this, other factors such as 

metabolic activity, polypharmacological implications, and alternative binding modes, 

among others, must be considered1. 

Among all, it should be noted that in silico methods are approximate and thus the models can 

produce errors. Nevertheless, this does not hamper the application of the models. For instance, 

PPI-Detect was used for the screening of a peptide library to identify peptide inhibitors of 

Escherichia coli ATP synthase (high binding likelihood) which also display low binding 

likelihood to human ATP synthase221. In that work, the inhibitory activity of two of the top-

ranked peptides identified by PPI-Detect was experimentally validated. Such results evidence 

the potential of PPI-Detect as a virtual screening tool. The authors conducted protein 

engineering computational experiments to generate fragments (peptides ranging between 20 

and 40 residues) from FOF1-ATP synthase interfaces. As protein engineering tasks require 

algorithms capable of generating thousands of derivatives for a putative compound, the authors 

used the evolutionary algorithm implemented in ROSE222 to generate mutants of the ATP 

synthase interfaces. Currently, this can be achieved by the functionalities implemented by me 

to allow the generation of mutants as part of the pipeline of PPI-Affinity (Publication 2, Figure 

5). 

7.7 Conclusions 

The design of novel peptides requires the selection of putative hits compounds in the early 

stages of the process. In this search, in silico methods exploring the peptidome can reduce the 
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cost of other techniques such as HTS, as well as extend the search to non-physical libraries. 

The amount of data collected in the fields of Proteomics and Peptidomics is continuously 

increasing, which opens the possibility of applying ML techniques to create predictive models 

that leverage the information content of available data. Several ML-based methods that analyze 

protein(peptide)-related endpoints exist. However, the value of any ML model resides in how 

well the model performs out-of-sample, and state-of-the-art methods so far left us room for 

improvement in terms of generalization on unseen data. Moreover, there was a niche in the 

state-of-the-art methods to predict the binding affinity of protein-peptide complexes. 

I applied several computational techniques to develop novel methods contributing to the de 

novo design of bioactive peptides. The purpose of the tools is to detect promising peptide 

candidates in the early stages of drug discovery by providing high-value predictions. In this 

regard, the introduced methods improved state-of-the-art ML-based methods, which represents 

a scientific advance in the in silico study of bioactive peptides. Moreover, the development of 

a predictor of BA uniquely trained on protein-peptide complexes opened space for new 

research. The predictions made by using the server can generate important insights into the 

structural information of active compounds. Even if this knowledge must be validated 

experimentally, it reduces the time and costs associated with performing those experiments. 

The developed ML-based tools can be leveraged in peptide discovery and optimization. In 

addition to complementing each other, the introduced methods may be used in a pipeline for 

the massive screening of protein-peptide associations. For instance, ABP-Finder can be used 

first to search peptide domains within a protein sequence with antibacterial activity. Then, those 

fragments identified as active peptides can be fed to PPI-Detect to predict the likelihood of 

interaction with a protein receptor. Next, the sequences detected as interacting can be delivered 

to other in silico approaches for building putative protein-peptide complexes. Subsequently, 

PPI-Affinity can be applied to the optimization of the peptide sequence or to rank interacting 

protein-peptide pairs according to their values of binding free energy.  

The implementation of PPI-Detect, PPI-Affinity, ABP-Finder, and ProtDCal-Suite as web 

servers offers the opportunity of using the methods worldwide without the need to allocate large 

computational resources to the task. To date (November 26th, 2022), with an average of 18 jobs 

per day, 26134 jobs have been submitted from 57 countries to ProtDCal-Suite (published on 

July 4th, 2019) (Figure 9). Of them, 43% are from PPI-Detect (published on February 15th, 

2019) and 19% from PPI-Affinity (published on June 2nd, 2022). Despite the recent introduction 

of ABP-Finder (published on November 26, 2022), the tool has already completed 92 jobs sent 

from eight countries. 
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Figure 9.  Worldwide usage of the tools developed within this work (stand November 26th, 2022) 

Future work involves retraining the models to leverage the availability of novel data. In 

addition, we will introduce the BA predictor as a scoring function in docking algorithms. 

Forthcoming work also involves developing ML-based tools to predict ADME(T)-related 

properties to monitor the pharmaceutical profiles of putative peptides and optimize activity and 

stability. PPI-Detect, PPI-Affinity, and ABP-Finder can be used for the virtual screening of the 

peptidome to discover and optimize bioactive peptides against disorders such as cancer and 

infection, with implications for human health and societal well-being. 
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9 Appendix 

9.1 List of Abbreviations 

A AA  amino acids 

 ABPs antibacterial peptides  

 Acc  accuracy 

 ACk autocorrelation operator of order k 

 AIDS acquired immunodeficiency syndrome 

 AD applicability domain  

 ADME absorption, distribution, metabolism, excretion 

 Ar arithmetic mean 

 AMPs antimicrobial peptides 

 AT activity test 

 AUC area under the ROC curve 

B BA binding affinity 

 BS broad-spectrum  

C C cost, complexity of the polynomial kernel 

 CADD computer-aided drug design 

 CV cross validation 

 CXCR4 CXC chemokine receptor 4  

D D degree of the polynomial kernel 

 Dev development set 

E EF enrichment factor  

 EPI-X4 endogenous peptide inhibitor of CXCR4  

 ERM empirical risk minimization  

 E-State electro-topological state  

F F1 F1-Score 

 FN false negatives  

 FD folding degree 

 FP false positives  

 FRS fitness-robustness score  

G Gram- gram negative staining type 

 Gram+ gram positive staining type 

 GLY glycine amino acids 

H HSP High scoring pairs 

https://www.scribbr.com/category/dissertation/#lift-of-abbreviations
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 HIV-1 human immunodeficiency virus type I 

 HtrAs high-temperature requirement serine proteases  

 HTS high-throughput screening 

I I topological distance 

 IC50 half-maximal inhibitory concentration 

 ICs network of inter-residue contacts  

 ID identification code 

 IDL individual descriptor labels 

 IG information gain 

K Kd dissociation constant 

 Ki inhibition constant 

L lnFD Logarithm of the folding degree 

M MAE mean absolute error 

 MCC mathew correlation coefficient  

 MHC major histocompatibility complexes 

 ML machine learning 

 Mw molar weights 

N NIG normalized information gain 

 NIS non-interacting surface  

 NPR nonpolar residues 

O OECD organization for economic co-operation and development 

P PCA principal component analysis  

 PCPr prevalence-corrected precision 

 PCR positively charged residues 

 PDB protein data bank 

 PPI protein-protein interactions 

 PPIs protein-protein interactions 

 Pr precision 

 PRC precision-recall curves 

 PseACC pseudo amino acid composition features 

Q QSAR quantitative structure-activity relationship  

R R pearson’s correlation coefficient 

 RF random forest  

 Rs spearman's rank correlation coefficient  
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 ROC receiver operating characteristic 

 RWCO reside-wise contact order 

S SDF-1 or CXCL1 stromal-cell-derived factor-1 

 SL supervised learning 

 Sn sensitivity or recall 

 sSE standardized Shannon entropy 

 St sensitivity or recall 

 Sp specificity 

 SVM support vector machines  

 SVR support vector regression  

 SWOT strengths, weaknesses, opportunities, and threats  

T T toxicity 

 Tau Kendall’s tau correlation coefficient  

 TN true negatives  

 TP true positives 

U UL unsupervised learning 

V V variance 

 VS virtual screening 
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