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Abstract 

Classification and Analysis of Chinese and German Flour Samples: Handheld Near-Infrared 

Spectroscopy in Combination with Chemometric Data Evaluation 

 

1. Several major reference values of wheat flour were modeled using the near-infrared 

(NIR) spectra of flour samples and the multivariate partial least squares (PLS) method. 

The calibration models for crude protein, moisture and wet gluten of flour were 

developed, and the root mean square errors of prediction (RMSEPs) were 0.3784% 

(w/w), 0.2624% (w/w) and 1.4653 % (w/w), respectively. The correlation coefficients 

squared for prediction (𝑅𝑝
2) were 0.7922 for the best crude protein model, 0.6096 for the 

best moisture model, and 0.8346 for the best wet gluten model. The results showed that 

the analysis of the main parameters of wheat flour by benchtop and handheld NIR 

spectroscopy is feasible and good prediction models can be obtained. 

Furthermore, the differences in origin of the investigated flour samples (German flour 

and Chinese flour) can be discriminated by the analysis of their NIR spectra. This 

discrimination is based on the fact, that the NIR region contains overtone and 

combination absorption bands of CH, NH, and C=O functionalities which reveal the 

chemical differences of wheat flour samples of different geographical origin. By using 

principal component analysis (PCA) German and Chinese flour samples could be well 

classified by their NIR spectra. However, by using the partial least squares discriminant 

analysis (PLS-DA) method, the assignment of flour samples to a specific geographical 

origin can be significantly and effectively improved. 

2. In this PhD project, five NIR spectrometers (two benchtop and three handheld systems) 

are used to measure the NIR spectra of a total of 50 German and 163 Chinese flour 

samples. The signal-to-noise ratio, spectral resolution, and accuracy of absorbance values 

of handheld spectrometers are generally lower than those of benchtop spectrometers.  

According to the near-infrared spectral characteristics of the samples, a PCA model was 

established, in which IAS 3100 and MicroNIR (VIAVI) achieved 100% correct 
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classification of German and Chinese flour. Furthermore, PLS calibration models for 

protein, moisture and wet gluten were also established for samples from both countries. 

Experimental results demonstrate that accurate calibration can be achieved using a 

benchtop spectrometer with better instrument performance and a handheld spectrometer 

with more flexible measurement operations. However, calibration models developed 

using spectra measured with a benchtop spectrometer outperformed those acquired with a 

handheld spectrometer. 

3. In order to demonstrate the transfer of calibration models based on the NIR spectra of 

different instruments, model transfer methods are discussed in this thesis. For this 

purpose one spectrometer was defined as master and the others were defined as target 

instruments and the effects of three spectral standardization methods, direct 

standardization (DS), piecewise direct standardization (PDS) and simple linear 

regression direct standardization (SLRDS) algorithms, regarding the sharing of 

calibration models across instruments were investigated. Applying the three methods, the 

variability of the spectral data between instruments was significantly reduced and the 

prediction accuracy of the calibration models for wheat flour parameters was improved.  

 

Keywords: Determination of wheat flour parameters in Chinese and German flour samples; 

handheld NIR spectroscopy; application of qualitative and quantitative chemometric data 

evaluation methods; spectral standardization and model transfer. 
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1 Introduction 

1.1 Background and Significance  

Wheat is a cereal plant, which is widely grown all over the world and is one of the three most 

important cereal crops produced and consumed worldwide. It is an essential food crop for 

human survival, reproduction, and daily living, with more than half of the world's population 

eating it [1]. For example, China was one of the first countries in the world to cultivate wheat, 

and its wheat production in 2018 totaled 256.7 billion kg, making it a vital component of 

agricultural production. Wheat accounts for a substantial component of the Chinese grain 

system, with the main production area in the north and a large proportion of all grain crops 

cultivated. Wheat is in high demand in China, which outnumbers all other countries in terms 

of production and planted area [2]. As a result, maintaining a balance between wheat supply 

and demand, as well as a fair structure of wheat quality for the international market and food 

production is critical for all countries [1]. Wheat can be used to make flour, bread, cookies, 

noodles, and buns, as well as fermented items like beer, alcohol, and spirits (e.g. vodka or 

biofuel). 

The focus of this study is the rapid detection of several common quality indicators of wheat 

flour using handheld near-infrared (NIR) spectrometers. The application of handheld NIR 

spectroscopy equipment has been launched for the investigation of wheat flour in order to 

explore the enhancement of quality consistency of wheat flour, because of its non-destructive, 

rapid, and convenient detection approach in comparison to wet chemical analysis. It is hoped, 

that the results of this study will contribute to the quality assurance of wheat flour in 

processing, transportation, and sale. Furthermore, it is hoped to have an impact on quality 

control of raw materials in general and the advancement of handheld NIR spectroscopy 

instrument technology.  

 



1 Introduction  7 

1.2 Flour 

Flour is the powder made from peeling and grinding wheat. Water, protein, carbohydrate, fat, 

minerals, vitamins, and enzymes make up the majority of its composition [3]. Flour quality 

mainly refers to the edible quality, processing quality, nutritional quality and storage quality 

of flour, and all these qualities are closely related to the basic components of flour, such as 

moisture content, ash content, protein content and gluten content [4]. Due to the differences in 

wheat varieties and milling processes, the proportions of each component in various brands of 

flour produced in different countries for different purposes are also different. The main 

parameters, that reflect the nutritional and processing quality of flour are moisture, protein, 

ash, starch, wet gluten, dry gluten, and gluten index [3, 5]. The moisture level of flour has an 

impact on its water absorption and, as a result, the freshness of flour products. The water 

absorption of flour and the tensile strength of dough, as well as the edible flavor of flour 

products, are affected by the crude protein level of flour. The ash component of flour shows 

its mineral content and is the most important component influencing the sensory evaluation of 

flour products. The amount of starch in flour has an impact on its shine, viscosity, elasticity, 

and soft palatability. The protein concentration of wet gluten is closely connected to the 

protein content of dry gluten; the gluten index shows the quality of protein [6]. As a result, the 

physical and chemical indexes of flour can be used to infer that flour produced by flour mills 

meets the highest possible edible and processing quality parameters for residents.  

 

Protein, carbohydrates, vitamins and minerals as well as trace elements such as vitamin A and 

vitamin C, are all abundant in milled wheat flour [7]. As a result, flour is often used as a 

carrier for iron, zinc, and fortification of citizens' micronutrient intake. High-gluten flour, in 

particular, is high in protein and carbohydrates and has been shown to balance potassium and 

salt, reduce edema, promote immunity, lower blood pressure, control fat metabolism, supply 

dietary fiber, conserve protein, detoxify, and improve intestinal function [8, 9]. In terms of the 

distinctions between German and Chinese flours, in addition to the basic variables that lead to 

major disparities, such as the variety of wheat farmed, the region, and the environment, the 
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two countries have separate flour classifications. In Germany, flour is classified into species 

depending on mineral concentration, whereas in China, it is defined depending on its protein 

content. 

1.2.1 German Flour Characteristics 

Wheat (including the subspecies spelt, two-grain wheat and single-grain wheat), rye, oats, 

barley, millet, corn, and rice are used to make flour in Germany. Soft wheat, Durum wheat, 

Spelt, and Rye flours (bread grains) are appropriate for making "European-style bread," which 

is baked in a steam oven to create water vapor and achieve a crispy crust and soft interior 

[10].  

Mineral content (or how many milligrams of minerals are included in 100 grams of flour), is 

used to classify the different kinds of flour in Germany. Flour TYPE 405, for example, 

contains 405 mg of minerals per 100 g of flour. As a result, the higher the number, the higher 

the mineral content of the flour and the darker it is. On the contrary, if the mineral content is 

relatively low, the color is brighter. The Tab. 1.1 depicts the main classification types of flour 

in Germany, and the DIN standard 10355 has been in use in Germany since 1992 to represent 

milled products made from common wheat, rye, and spelt [11,12]. To determine the mineral 

content of flour, a small amount of flour is burnt in a muffle furnace at 900°C to ascertain the 

type. The remaining (non-combustible) components roughly correspond to the mineral 

content of the flour. They have also been called "flour ash" in the past [12]. Whole grain 

foods (flour, semolina) are classified according to DIN 10355 without specifying their content, 

and thus no type of number is provided. Whole grain products always contain young seedlings. 

Baking flour differs from whole wheat flour in that it no longer contains any seedlings [12] 

(Tab. 1.1). 
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Tab. 1.1 Flour Types according to DIN 10355 [11] 

Designation Types Baking characteristics 

Minimum mineral 
content  (% 
(w/w) in dry 

matter) 

Maximum mineral 
content (% (w/w) in 

dry matter) 

Wheat 

Wheat flour WM 405 
preferred household flour, good 

baking properties 
—— 0.50 

Wheat flour WM 550 
Powerful for fine-pored doughs and 

can be used as a multi-purpose flour 
0.51 0.63 

Wheat flour WM 812 for light mixed breads 0.64 0.90 

Wheat flour WM 1050 
for mixed breads or baked goods in 

the household 
0.91 1.20 

Wheat flour WM 1600 for dark mixed breads 1.21 1.80 

Durum wheat flour 

DM 
1600 Durum wheat flour 1.55 1.85 

Wheat baked meal 

WBS 
1700 without a seedlings —— 2.10 

Spelt (DinkelMehl) 

Spelt flour DM 630 

In terms of baking technology, it 

can be used in a similar way to 

wheat flour type 550 

—— 0.70 

Spelt flour DM 812 —— 0.71 0.90 

Spelt flour DM 1050 —— 0.91 1.20 

Rye (RoggenMehl) 

Rye flour RM 815 

only rarely used, mostly in southern 

Germany, 

for light rye breads 

—— 0.90 

Rye flour RM 997 
for mixed breads, distributed 

differently from region to region 
0.91 1.10 

Rye flour RM 1150 
for mixed breads, distributed 

differently from region to region 
1.11 1.30 

Rye flour RM 1370 
typical "bakery flour" for 

Rye and mixed rye breads 
1.31 1.60 

Rye flour RM 1740 
typical "bakery flour" for 

Rye and mixed rye breads 
1.61 1.80 

Baked rye meal 

RBS 
1800 without seedlings —— 2.20 
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1.2.1.1 Types of Flour with low Mineral Content 

TYPES 405/480/400 are the most popular flour species with a protein concentration of 

9.0-9.82% (w/w) and good viscosity for doughs and batters, as well as the basic German cake 

baking flour, for muffins, cakes, cookies, pies, toast, doughnuts, and other baked goods [13].  

TYPE 550 is a multi-purpose flour that contains 11.0-11.5% (w/w) protein and is a medium 

gluten flour with a higher viscosity. It is mostly used for home baking and it is an excellent 

bread baking flour. It can also be used to make crusty white bread (similar in texture to French 

baguette). Bleached or unbleached all-purpose flour is a blend of soft and durum wheat 

(bleached flour is whiter than unbleached flour with less vitamin E) and has gluten 

composition of 9.0-11.0% (w/w). Multipurpose flour is mostly used in home baking since it is 

the most adaptable flour available; it may be used to bake bread as if it were a special bread 

flour, but not for cakes or pastry [13]. 

 

1.2.1.2 Types of Flour with high Mineral Content 

TYPE 812 is a firm, frosted flour for mixed bread (Mischbrot) with increased softness. It is 

ideal for baking bread with a consistent form. The flour is derived from durum wheat and has 

11.0-13.0% (w/w) gluten. When rubbed between the fingers, it has a light yellow color and a 

slightly gritty texture. This is the best flour on the market. Its high gluten content improves 

the bread's structure and makes it easier to keep its shape according to bread-making 

requirements [14]. 

TYPE 1050 is a durum wheat flour with a high gluten content that is used to make whole 

wheat bread (Vollkornbrot). It can be combined with other flours to increase the gluten 

content of the flour, with the proper proportions blended according to the needs. High gluten 

flour is created from white durum wheat flour that has at least 13.0-14.5% (w/w) gluten and 

can be mixed with flour from other grains to add structure. It can be used to make bread and 

pizza and the resultant bread has a high degree of elasticity and [13]. High gluten flours and 

gluten-free flours can be used to modify the gluten content of other flours by admixture. 
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TYPE 1060 is a whole-wheat flour with a brown hue comparable to rye, which is more 

nutritious and fiber-rich than white flour and can be used to make bran or black bread. The 

core kernel of whole wheat, which includes germ and bran, yields TYPE 1600 whole wheat 

flour, which has a brown hue similar to rye. It has more minerals, fiber, and fat than white 

flour and is more appetizing [14]. When baking bread, whole wheat flour is used because it 

has a high texture and a nutty flavor, and because whole wheat flour bread is heavier and 

more solid, it is frequently blended with white flour. 

Rye Flour (RoggenMehl TYPE 1150) is the same as medium rye flour, which has more 

vitamin B and E than wheat and flour. Rye flour is the most often used flour in bread 

production, and it has a somewhat sour flavor. Rye flour bread has a longer shelf life and a 

better taste. It is, however, frequently combined with other flours due to its low gluten content 

[15]. There are two subcategories in the classification of rye flour. In southern Germany, 

TYPE 815 is primarily converted rye flour, and it is less commonly used than light baking 

[16]. Wheat and rye of TYPE 997 are grown in different parts of Germany [17]. 

Spelt white flour (Dinkel Mehl TYPE 630), also known as white flour in Germany, is a finely 

ground flour, which is frequently substituted for flour TYPE 405 [18]. This is an excellent 

flour for making bread, but it is usually combined with other flours due to its high gluten 

content. It can be quickly kneaded into gluten, the finished product is slightly dry, and the 

dough has a relatively low moisture content. TYPE 812 and TYPE 1050 spelt flours are also 

equal to all-purpose wheat flour and have the same impact as TYPE 630. 

 

1.2.2 Characteristics of Chinese Flour 

China's wheat cultivation stretches across the country; the main regional divisions are 

southwest wheat region, middle and lower regions are the Yangtze River wheat region, the 

Yellow Huaihai wheat region and northwest wheat region (including northeast spring wheat, 

northern spring wheat, northwest spring wheat, Xinjiang winter and spring wheat, 

Qinghai-Tibet spring and winter wheat, northern winter wheat, Yellow Huaihai winter wheat, 

middle and lower areas of the Yangtze River winter wheat, southwest winter wheat, southern 
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China winter wheat, a total of 10 sub-regions). Yellow Huaihai wheat region includes Henan, 

Shandong, Hebei, northern Jiangsu, northern Anhui, Shaanxi Provinces. The middle and 

lower reaches of the Yangtze River wheat region including Sichuan, Hubei, southern Henan 

and Anhui, Jiangsu's riverine areas. The southwest wheat region includes Yunnan, Guizhou, 

Sichuan and Chongqing Provinces [22]. 

In China the protein level is used to classify flour. It can be divided into several groups based 

on the classification criteria used. According to the protein content of flour, flour can be 

classified into three categories: high gluten flour with 10.5%-13.5% (w/w) protein content, 

used for bread making), medium gluten flour with 8.0%-10.5% (w/w) protein content, used 

for noodles and snacks), and low gluten flour with 6.5%-8.5% (w/w) protein content, used for 

snacks and dishes [19]. Based on protein and mineral content, flour can be classified as prime, 

first, or second grade, with prime flour containing 7.2% (w/w) and 0.32% (w/w) protein and 

ash, respectively, first grade flour containing 12.7% (w/w) and 0.43% (w/w) protein and ash, 

respectively, and second grade flour containing 13.5% (w/w) and 0.54% (w/w) protein and 

ash, respectively [20]. According to processing precision and use, flour may be split into two 

categories: grade flour and speciality flour, and grade flour can be divided into three 

categories: special flour, standard flour, and common flour [21. Speciality flours, such as 

bread flour and cake flour, are manufactured by milling particular types of wheat or by 

admixing edible whitening agents, edible bulking agents, edible flavors, and other substances 

on the basis of the flour grade for the intended use [21, 22]. 

 

1.3 Current Status of NIR Spectroscopy Research 

Compared with the current standard measurement methods, NIR spectroscopy has the 

characteristics of high efficiency, speed and convenience. Thus, in the food field NIR 

spectroscopy is gradually replacing the traditional methods for the determination of physical 

and chemical indicators of food as a ―rising star‖ in the history of rapid food quality testing, 

which has greatly contributed to the rapid and vigorous development of the food industry and 

is already developing into a very mature technology [23]. In 1987 Williams and Norris 
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proposed the NIR technique for the analysis of wheat breeding, cereals, fruits and oilseeds 

with reference to data analysis, instrumentation, commercial applications and factors affecting 

spectral analysis [24]. NIR spectroscopy is currently being used to determine the quantity of 

significant ingredients in cereals, fruits, seafood, meat products, tobacco, tea, and pasta 

products [25-32]. The development of research on NIR approaches in cereals and flour will be 

discussed in depth in the following sections 1.3.1 and 1.3.2. 

 

1.3.1 Current Status of Research on Cereals 

NIR spectroscopy was first used to determine cereal quality indicators, and it was a huge 

success. For example, NIR spectroscopy detection of wheat began relatively late and was 

hampered by the slow development of spectroscopic technology. In most countries around the 

world, wheat quality assessment is based on subjective guesses, and the judging method has 

no scientific basis. Chemical procedures for evaluating wheat are also extensively used in 

scientific research institutions and food safety testing, which are time-consuming, expensive, 

and necessitate professional instruments and testing staff. The chemical method usually uses 

the Kjeldahl method to detect the protein content of the sample [33] and obtains a high testing 

accuracy, but the long testing time required (about 2 days for proteins) and the large number 

of testing reagents make the cost of testing higher; furthermore, the chemical method can only 

do sampling and cannot test in real time. The drying method is commonly used to detect 

water content in samples [34], but the procedure is time-consuming and labor-intensive, and 

the results can alter depending on the sample's instability. 

Yu [35] used NIR spectroscopy and Fourier-transform mid-infrared (FT-MIR) spectroscopy 

for the determination of crude protein and water in wheat using different spectral pretreatment 

methods and selection of characteristic wavelengths, and the results showed that the best NIR 

model for crude protein was developed in the 1400-2500 nm spectral range using 1
st
 

derivative and standard normal variate (SNV) pretreatment methods, showing excellent 

predictive performance (𝑅2=0.97); the best mid-infrared spectral model was developed using 

the 1750-1100 cm
-1 

region of SNV-corrected spectra, which yielded a good predictive model 
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(𝑅2=0.90). Regarding moisture determination, the best model obtained by NIR spectroscopy 

(1100-2500 nm based on the original spectrum) showed good predictive performance (𝑅2= 

0.86), while the best model generated by the MIR technique using the full wavenumber range 

and a 1
st
 derivative-SNV pretreatment spectrum gave only approximate quantitative 

predictions (𝑅2= 0.72).  

The possibility of quantitative prediction of crude protein content of wheat seeds based on 

selected short-wave NIR spectral variables was demonstrated by Lu [36]. 52 samples of wheat 

seeds were collected and their spectra were obtained in the 900-1700 nm wavelength range, 

which were then used to optimize the preprocessing method and to preferentially select 

protein-sensitive variables for wheat seeds to establish a PLS calibration model for protein 

prediction The results show that the combination of multiplicative scatter correction (MSC) 

and wavelet transform (WT) is the optimal preprocessing method for predicting crude protein 

content of wheat seeds; using the statistical results of 200 competitive adaptive reweighted 

sampling (CARS) variable preferences, 12 variables were selected as wheat seed protein 

sensitive variables, and the PLS was established by combining preprocessing optimization 

and variable preferences. 𝑅𝑝
2 and 𝑅 𝑆   were 0.96 and 0.369 % (w/w), respectively. 

Sun [37] developed a PLS prediction model for the determination of wheat protein content 

using NIR transmission spectroscopy, and the results showed that the model was able to 

predict wheat protein content more accurately, with prediction correlation coefficient, 

prediction mean square error and mean relative error of 0.98, 0.113% (w/w) and 1.973% 

(w/w), respectively. Barton [38] studied a total of 2203 wheat samples from various regions to 

establish a complete database and used it as a "global" calibration. Zheng [39] used 

short-wave near-infrared detection to obtain wheat proteins, and the calibration model was 

developed by PLS to obtain the best detection wavelength for wheat protein composition. 

Since the 1960s, near-infrared spectroscopic (NIRS) techniques have been used for the 

quantitative analysis of some components in cereals [40], and the measurement range has 

been gradually widened since then. In 2006 Zhu [41] used a filter-based NIRS instrument for 

the determination of 7240 samples of 17 crops, including rice, wheat, corn, soybean, sorghum, 
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grain, barley, and edible beans. The results showed that the filter NIRS could obtain 

satisfactory results for the quantitative analysis of different crops and different nutritional 

quality traits. For example, Sohn [42] applied this technique to correctly determine the 

straight-chain starch content and protein content of rice during cooking and to predict its 

structure. Sinelli [43] applied NIR spectroscopy to study the optimum cooking time and 

recommended cooking time of rice and obtained good results. In addition, NIR spectroscopy 

can be used to detect the degree of adulteration, storage time and pest infestation of grains. 

Villareal [44] collected 250 rice samples and tested them for amylose content (AC). AC 

selection in breeding programs was found to be sufficient using the NIR transmission 

spectrum of unground brown rice or milled rice. Milled rice calibration is easier to transfer to 

other units than brown rice calibration.  

 

1.3.2 Current Status of Research on Flour 

In the evaluation of flour quality, the solvent retention capacity (SRC) [45] and ultrasonic 

method have been developed rapidly in recent years. By establishing a correlation between 

the retention capacity of flour in flour solutions, namely water, sucrose, sodium bicarbonate, 

and lactic acid, and the physical and chemical indexes of flour or the traits of flour products, 

the SRC method can predict the physical and chemical indexes of flour or the traits of flour 

products, but the correlation between the two is poor. The method, however, cannot achieve 

accurate prediction of the physical and chemical indexes of flour and can only make a rough 

judgment of the nature of the finished flour products due to the poor correlation between the 

two. Thus, the method does not provide good guidance for the specific production process 

[45]; the ultrasonic technique can only provide a qualitative assessment of the flour category, 

not an exact forecast of the physical and chemical indexes of flour; therefore it is ineffective 

for guiding the manufacturing process of flour and flour-processing businesses [46]. 

NIR spectroscopy has been effectively employed in grain storage companies to detect several 

physical and chemical markers of wheat, the raw material for flour. NIR spectroscopy is now 

frequently also used in flour mills and flour processing plants [48]. For single indicators such 
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as flour moisture content, protein content, ash content, gluten index, wet gluten coefficient, 

and sedimentation value, NIR spectroscopic calibration models have been established [47]. 

These models can be used to quickly determine physical and chemical parameters of flour, 

providing a point of reference for evaluating flour's nutritional and processing quality. In 

addition, in 2003, Mendoza [49] attempted to use NIR spectroscopy to detect insects in flour, 

but the results showed that the accuracy of detection could not reach the level of 75 insects/50 

g of flour as specified by the U.S. Food and Drug Administration (FDA) but could only 

distinguish between two types of flour with insect counts greater than and less than 130 

insects / 50 g of flour. 

Hrušková & Faměra [50] detected the moisture and protein content and sedimentation values 

in various commercial wheat samples by NIR spectroscopy, used modified partial least square 

(MPLS) and PLS methods to calculate the spectral properties of wheat, and successfully 

predicted the accuracy of the parameters of various commercial wheat samples almost the 

same. Statistically significant correlations (  < 0.01 for probability) between predicted and 

measured values of protein content and Zeleny sedimentation were determined in a variety of 

commercial flour with cross and independent validation. 

Cocchi [51] tried to develop the wavelet interface to linear modelling analysis (WILMA) 

algorithm and used this algorithm to quantify the extent of adulteration of durum wheat flour 

with ordinary bread wheat flour by analysis of NIR spectra. 

Jiang [52] developed a new portable NIR spectroscopy software. First he corrected the spectra 

by the standard normal variables (SNV) method, then used variable combined population 

analysis (VCPA) to optimize the wavelength variables of the SNV-corrected spectra, 

determined the characteristic wavelength variables that are highly correlated with fatty acid 

values, and finally used an extreme learning machine (ELM) to construct a detection model 

for fatty acid values. 

Wesley [53] obtained samples directly from wheat breeders and compared the results of the 

curve fitting method with the more commonly used partial least squares curve fitting of the 

component protein spectra. The content of gliadin and glutenin was measured using 
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size-exclusion high performance liquid chromatography (SE-HPLC) and used to develop 

partial least squares calibration, with the results compared to curve fitting methods. 

Yan [54] achieved a rapid detection of flour moisture by combining chemometric methods 

and NIR-based spectral detection technology, developing efficient mathematical models (PCA, 

PLS, and MPLS) and improving the model database.  
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2 Theory 

2.1 Overview of Flour 

Wheat flour, as an easily digestible natural product, is rich in beneficial substances such as 

carbohydrates, proteins, fibers, and minerals, and it plays an important role in the daily dietary 

structure, being used in the preparation of a wide range of baked goods and pasta products [3]. 

According to the Food and Agriculture Organization of the United Nations (FAO), the world 

wheat sown area amounts to 221.62 million hectares in 2014, with a total production of 

728.97 million tons and an average yield of 3289 kg/ha (Tab. 2.1). Some countries in Asia, 

Europe, and the Americas produce the majority of the world's wheat (Tab. 2.2). These three 

continents and their regions account for 89.82 % of total sown area and 92.89 % of total 

wheat production in the world. For example, China is the world's second largest wheat sown 

area but the world's first in wheat production [55]. 

 

Tab. 2.1 Global wheat sown area and production (2009-2014) [55] 
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Tab. 2.2 Wheat production in the top 10 (producing) wheat-growing countries worldwide in 2014 [55] 

 

 

Because wheat grows in different geographical areas, the surface shape and structure of the 

wheat grain can vary. Wheat flour has a wide range of physical and chemical properties, 

including protein, wet gluten, moisture, ash, and sediment content, all of which have a direct 

impact on its application range. 

 

2.1.1 Flour Composition and Quality Parameters 

2.1.1.1 Physical Parameters of Flour 

Color: The mill grinds wheat to make finely ground flour from its endosperm. The color of 

the flour varies due to the different skin color and grain quality of wheat [3]. White wheat 

flour is generally whiter than red wheat flour, and durum wheat flour is darker than soft wheat 

flour. This is due to the fact that it is impossible to avoid incorporating bran into the flour 

during the manufacturing process; the skin color of white wheat is less noticeable in the flour, 

whereas red bran mixed into the flour causes the flour to be maroon in color [56]. The 

endosperm of durum wheat is slightly creamy yellow, and the endosperm of silty wheat is 

white; the raw material contains too much lime soil or there are more mustard seeds. Without 

thorough cleaning and selection, the color of the flour is bluish gray or has extremely fine 
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black spots; if the rolling distance of the grinding roller is too tight, this will cause the 

grinding roller to be heated and the powder particles will be dark gray [57].  

Coarseness and fineness: These physical properties are determined by the sieve specification. 

The particle size requirements are not consistent due to differences in flour quality and usage. 

The thickness of the flour reflects the precision with which wheat flour is processed. Wheat 

flour particles can be ground into flour when they must have a specific standard particle size. 

Flour is made up of three main components: endosperm pieces with a particle size of less than 

15 𝜇𝑚, large starch granules with a particle size of 15-40 𝜇𝑚, and protein fragments with a 

particle size of less than 15 𝜇𝑚 [53]. 

 

Water absorption: It refers to the amount of water added to the flour when it is made into 

dough. Because the quality of flour varies, so does the water content, and so does the water 

absorption. The water absorption of flour is closely related to its protein content; high protein 

content equals large water absorption; low protein content equals low water absorption. Water 

absorption is also linked to the amount of starch in flour. The water absorption rate of 

damaged starch is approximately 5 times that of intact starch (the water absorption rate of 

intact and damaged starch is 0.44 % (w/w) and 2.0 % (w/w), respectively); thus, the more 

damaged starch is in the flour, the higher the water absorption rate of the flour [58]. However, 

the water absorbed by damaged starch will seep from inside during dough fermentation, 

affecting the quality of flour products. As a result, in some countries, the maximum 

percentage of damaged starch is also listed as a flour quality indicator [59]. 

 

Sedimentation value: It is a comprehensive indicator of wheat quality and is measured by the 

sedimentation test. The sedimentation test was first proposed by L. Zeleny in 1947, and the 

basic method is that a certain amount of wheat flour absorbs water and swells when exposed 

to a weak acid medium, forming flocs that settle slowly. The sedimentation volume within a 

given time period is referred to as the sedimentation value, which is expressed in milliliters 

(mL) [60]. The settling speed and volume reflect the gluten content and quality; the higher the 
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measured value, the greater the gluten strength, indicating that the higher the gluten strength, 

the better the baking quality of wheat flour. Furthermore, because its determination method is 

relatively simple, it has been highly valued and widely used by breeders and grain chemistry 

researchers both at home and abroad, and it has been standardized [61, 62]. 

Numerous studies have found that the sedimentation value very significantly correlated with 

the quality of wheat flour food processing (baking, steaming, cooking, and so on), and that the 

sedimentation value has a high genetic capacity and is effective in breeding early generation 

selection [63-65]. Scholars in some European countries believe that combining sedimentation 

value and protein content is the best way to assess wheat quality, replacing gluten quantity 

analysis [66-68]. Seed hardness, protein content, and sedimentation value, according to Luo et 

al., are measurements that respond well to selection for quality when seed quantity is limited 

(e.g., in early breeding generations) [69]. In Germany, the sedimentation value has been 

identified as a crude measure of processing quality [70]. 

 

2.1.1.2 Chemical Composition Parameters of Flour 

The chemical composition of wheat flour greatly influences its quality. Wheat flour's main 

components are protein (about 10-12 %) and starch (about 70-75 %), with polysaccharides 

(about 2-3 %) and lipids as minor components (about 2 %) [71]. In Tab. 2.3 the chemical 

composition ranges of wheat and flour are summarized. 

 

Moisture: Moisture content of wheat flour ranges between 13.5% (w/w) and 14.0 % (w/w). 

When the moisture level exceeds 14.0% (w/w), storage under high temperature and high 

humidity conditions increases cellulose loss; when the moisture level exceeds 15.0% (w/w), 

mildew can reproduce; and when the moisture level reaches 17.0% (w/w), not only molds, but 

other bacteria can reproduce [72].  
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Tab. 2.3 Chemical composition of wheat flour (weight %) 

Ingredients 

Name 
Moisture  

Starch and 

Sugar  
Protein  Fat  Cellulose  Minerals  

Wheat 13.84 68.74 9.42 1.47 4.43 2.07 

High-precision flour 13.68 75.65 9.12 0.90 0.06 0.59 

Ordinary flour 13.48 72.57 10.37 1.70 0.79 1.09 

Bran 11.00 56.00 13.00 4.20 10.50 5.30 

 

As the moisture content rises, so does the activity of various enzymes, resulting in the 

breakdown of nutrients and the generation of heat, as well as the proliferation of 

microorganisms and insects, which eventually leads to flour spoilage. Furthermore, for every 

1% (w/w) increase (or decrease) in moisture in wheat flour, the dry matter content decreases 

(or increases) by about 0.86 % (w/w) [73]. Any consumer or manufacturer will suffer losses if 

the moisture content is too high or too low. As a result, the moisture content of wheat flour 

must be strictly controlled during the flour-making process. 

Starch: Starch is a polysaccharide that is one of the main components of wheat flour. In the 

human body, starch is hydrolyzed to produce glucose, which is then absorbed and utilized. 

Starch is used by the human body at a rate of more than 90%. Starch provides approximately 

70% of the energy required for various physiological activities and labor, making it one of the 

most cost-effective and important nutrients for human beings [74]. 

 

Gluten: Gluten is a substance that has extension and elasticity when wheat flour is mixed 

with water and formed into dough. Then, water is used to rinse off the starch, bran, and 

water-soluble substances in it, and it is finally rendered insoluble in water [75]. The chemical 

composition of gluten is represented in Tab. 2.4: 

 

Tab. 2.4 Composition of gluten (weight %) 

 

Chemical 
Composition 

Protein  Sugar 
 

Fat 

 

Ash Gliadin Glutenin 
Albumin 

Globulin 

 
Soluble Sugar Starch 

 43.10 39.10 4.40  2.13 6.45 2.80 2.10 

 

Gluten is important in food quality, because the volume and shape of bread and buns (the ratio 
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of height to bottom area diameter) are directly related to the quantity and quality of gluten. 

Wheat flour with a high gluten capacity absorbs more water, has a high elasticity, a high gas 

retention capacity, a large dough height after fermentation, a small bottom area diameter, a 

loose and uniform internal structure, and is suitable for baking bread and other foods [76]. If 

the gluten capacity of wheat flour is poor, with less dough absorption, weak elasticity, poor 

gas retention capacity, large dough dispersion area after fermentation, and a small height, this 

flour is suitable for baking cookies or pastries [77]. The amount of gluten content is 

determined by the quality of the wheat variety. In general, durum wheat has a high protein 

content as well as a high quality [76]. Wheat storage conditions also have an impact on gluten 

quality. Gluten quantity and quality will be reduced in sprouted, heated, frostbitten, 

insect-infested, or moldy wheat. In conclusion, gluten content is related to wheat variety and 

quality; thus, wheat gluten content serves as the foundation for matching processing and 

ensuring process quality. 

 

Fat: Fat content of wheat ranges from 0.7 (w/w) to 1.9 % (w/w), with the majority of it being 

unsaturated fatty acids found primarily in the embryo and paste flour layers (Aleurone layer). 

The fat content of wheat flour varies after processing due to the different precision of wheat 

flour; in general, high-precision wheat flour contains less fat, while low-precision wheat flour 

contains slightly more fat [78]. If the fat content of wheat flour is low, it is usually necessary 

to increase the fat content when making food to increase the nutrient content and improve and 

enhance the taste. However, from the standpoint of storage and transportation, wheat flour, 

such as high fat content, will cause acidification in certain hot and humid conditions, resulting 

in wheat flour deterioration. 

 

 

Cellulose:  The  cellulose  in  wheat  flour  is  derived  from  finely  ground  wheat  hulls  and  the

paste flour layer scraped off the hulls during the flour-making process.  When the processing

precision  of  wheat  flour  is  high,  the  flour  yield  is  low  and  the  crude  fiber  content  is high

when  the  processing  precision  is  low,  the  flour  yield  is  high  and  the  crude  fiber  content  is
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Tab. 2.5 Cellulose content for various precisions of wheat flour [79] 

Precision of wheat flour 

(flour extraction rate)% 
75 85 90 95 100 

Crude fiber content % (w/w) minimum 0.55 1.00 1.50 1.95 

 

Although fiber is a sugar that cannot be digested or absorbed by the body, it can promote 

gastrointestinal peristalsis, stimulate the digestive glands to secrete digestive juices, aid in the 

digestion of other nutrients, and play an important role in the prevention of colon cancer, 

among other things [80]. 

 

Minerals: Phosphorus, potassium, magnesium, calcium, sodium, iron, copper, and other 

elements are found in wheat flour [81]. Wheat flour contains various elements in the form of 

inorganic salts. Because of the role of phytic acid and cellulose in whole wheat flour and high 

flour yield wheat flour, calcium is recovered by phytic acid, and the effective value of iron is 

also reduced, whereas high-precision wheat flour contains significantly less iron and calcium; 

thus the lack of these two minerals in wheat flour is an important addition to the fortification 

of wheat flour [82]. 

 

Vitamins: Vitamins are a class of compounds that the body requires to maintain normal 

physiological functions [83]. Wheat used to have more B vitamins, but the majority of these 

vitamins are now concentrated in the germ, paste flour layer, and skin layer. After processing, 

the vitamins in wheat flour are greatly reduced, and their content ranges from 10%-30% (w/w) 

of the wheat grain [84]. The vitamin content of high-precision wheat flour is even lower. In 

China, the standard flour yield of wheat is about 80%-82% (w/w), with a retention rate of 

about 95% for vitamin B1 and E, 50% for vitamin B2, and 35% for nicotinic acid. Specially 

made flour has a flour yield of about 70%, with a retention rate of about 10% for vitamin B1, 

60% for vitamin E, 35% for vitamin B2, and 20% for nicotinic acid [85]. There is also a 

significant loss of vitamins during the cooking process due to various methods. 

 lower [79]. Tab. 2.5 shows the cellulose content  for  various precisions of wheat flour.
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2.1.2 Composition Quality Analysis of Flour 

In general, the variety of properties of the final products implies, that analytical techniques for 

determining the parameters, which represent the property profile of a specific type of flour 

must be available. Given the variability of grain components, producing flour with correct and 

consistent quality parameters is a difficult task, which necessitates continuous monitoring of 

flour parameters during the manufacturing process. 

 

2.1.2.1 Determination of Moisture Content of Flour 

The weight measurement method is the most commonly used method for determining 

moisture content. It is divided into atmospheric drying method, decompression drying method, 

high-temperature drying method, infrared drying method, microwave drying method, and 

distillation method [86]. Because atmospheric pressure drying, reduced pressure drying, and 

high temperature timing drying lose some volatile substances while removing moisture, the 

measured moisture content is inaccurate and time-consuming [87]. When using infrared 

technology to dry flour, decomposition and Merad reactions will occur inside the flour, 

causing some moisture to affect the experimental results [88]. At the same time, the physical 

state of the material influences measurement accuracy. The microwave method is sensitive, 

fast, safe, does not damage the material, has moderate price, and can be applied as on-line 

measurement [89]. The measurement signal can be used for online digitalization, and 

visualization. The sampling device used in on-line measurement requires only low loading, 

the measured result is the overall moisture and superior to the surface measurement 

technology. But the lower detection limit is not low enough and the measured value is related 

to the composition of the material; different varieties need to be calibrated separately. The 

distillation method consists of heating the sample together with an organic solvent, so that the 

moisture escapes by vaporization and volatilization, and the moisture collected by the 

condensing device determines the moisture content of the sample. This method easily causes 

the sample to blacken and scorch dehydration carbonization thus leading to higher 
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measurement results due to the high boiling point of organic solvent [90]. The determination 

of sample moisture content can also be accomplished using chemical methods, such as the 

Karl Fischer method, which uses a chemical reaction between Karl Fischer reagent and water 

to determine the moisture in the sample by titration, which is too expensive and requires 

grinding, which loses some of the moisture, resulting in inaccurate measurement results that 

frequently require calibration [91]. Furthermore, resistive, capacitive, NMR, and acoustic 

methods can be used to quickly determine the moisture content of flour. The resistive and 

capacitive methods are unsuitable for the moisture content range to be measured as well as the 

measurement environment. Although NMR is fast, accurate, and has a wide application range, 

it is influenced by uncontrollable factors such as material flow, stack density, and temperature 

[92]. The acoustic method is highly accurate, reproducible, and can be used for on-line 

detection, but it is expensive [93]. The moisture measurement method used for the parameter 

values covered in this PhD thesis is: ICC 110/1 (mod., Brabender MT):1976 [201] (see 

Section 3.1.2.3). 

 

2.1.2.2 Determination of Protein Content of Flour 

Protein is an important component of all cells and tissues in the human body, is involved in all 

components of the organism, and serves as the material foundation and primary bearer of life 

activities [94]. The use of physical properties such as refractive index method, ultraviolet (UV) 

absorption, infrared spectroscopy, spectrophotometry are the most common protein 

determination methods. Another method is to use its chemical properties, such as Kjeldahl 

nitrogen method, Biuret reagent method, hydrogen peroxide method, dye binding method, 

Folin-Phenol reagent method (Lowry method) and Dumas combustion method. The Kjeldahl 

method has the best precision and accuracy, good reproducibility, and is suitable for 

determining the protein content of various materials, but its determination process is long and 

has low sensitivity, and the complex operation cannot be applied for on-line monitoring [95]. 

The Biuret reagent method is fast and easy to measure, but its accuracy is poor [96]. The 

alkali-treatment method and colorimetric method have high detection limits for materials with 
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high protein content [97]. The hydrogen peroxide method is faster and the results are not 

significantly different from the national standard method, but its precision is slightly poor [98]. 

The Folin-Phenol reagent method is sensitive and suitable for determining low protein content 

of materials, but it takes a long time and contains more interfering substances [99]. Although 

the UV absorption method is simple, sensitive, fast, and does not consume the sample, its 

accuracy is poor and there are more interfering substances [100]. The dye binding method is 

simple and easy to use, but there are large deviations when used to determine different 

proteins [101]. The protein measurement method used for the parameter values covered in this 

Ph.D thesis is: ICC 167:2000 [197] (See Section 3.1.2.1). 

 

2.1.2.3 Determination of Ash Content of Flour 

Ash is the residue of high-temperature burning of flour, and it is composed of metal oxides. 

The ash value reflects the amount of flour containing the skin layer, flour purity (whiteness) 

or bran, wheat germ, endosperm separation of the thoroughness, and thus the quality of flour 

[102]. The flour ash index has a special significance for flour production, and flour mills 

measure the accuracy level of flour with the help of ash determination. The dry ashing method 

[103], electrical conductivity method [104], mid-infrared spectroscopy technique [105], and 

X-ray scattering technique [106] are the most commonly used methods for determining ash 

content. The ash measurement method used for the parameter values covered in this article is: 

ICC 104/1:1990 [203] (See Section 3.1.2.4). 

 

2.1.2.4 Determination of Wet Gluten Index and Dry Gluten Index of Flour 

Gluten has a high nutritional value as a high quality vegetable protein source [107]. Gluten 

content is an important quality indicator and a factor influencing the quality of processed 

foods. Because gluten content varies depending on the physical state of the flour, both the dry 

gluten content and the wet gluten content are commonly used to indicate both. There are two 
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methods for determining the above two values: hand-washing and machine-washing, both of 

which work on the same principle but in different ways. The hand-washing method is 

complex [108], time-consuming, and labor-intensive, whereas the machine-washing method 

can speed up the measurement to a certain degree, but cannot be monitored on-line [109]. The 

gluten index is used to evaluate gluten quality, and it is based on determining the wet gluten 

content, but the measurement process is too long and heavily influenced by external factors. 

Wieser [110] used a microscale combined extraction-HPLC procedure to determine the 

amounts of the various gluten protein types in wheat flour. Czaja [111] made use of a method 

for quantifying gluten in wheat flour based on PLS treatment of FT-Raman data. The 

measurement method for wet gluten and gluten index used for the parameter values covered 

in this thesis is: ICC 155:1994 [199] (See Section 3.1.2.2). 

 

2.2 Overview of NIR Spectroscopy 

2.2.1 The Development Process of NIR Spectroscopy 

Astronomer William Herschel discovered electromagnetic waves in the wavelength range of 

800-2500 nm [112]. Scientists were able to analyze some of the material information 

contained in the NIR spectrum by the early nineteenth century, but the application of NIR 

spectroscopy was limited due to its low intensity, complex spectral bands, and overlapping 

characteristics, and the low level of theory and technology at that time could not fully extract 

the information contained in the spectra. Scientists discovered that the particle size of the 

sample has a significant impact on NIR spectra. Thus, methods to homogenize the test sample 

before acquiring the spectrum can greatly improve the technique's accuracy and applicability. 

With the development of applied mathematics, various mathematical algorithms and spectral 

data processing methods have been developed to further eliminate the testing errors caused by 

spectral overlap and broaden the application of the technique from the NIR diffuse reflectance 

region (1100-2500 nm) to the NIR transmission region (700-1100 nm) where the absorption 

signal is weaker but the penetration ability is stronger [113,114]. The advancement of NIR 
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spectroscopy has resulted also in the further instrumental development of NIR spectrometers. 

Kaye was the first to develop a transmission NIR spectrometer in the mid-1950s, and since 

then, several manufacturers have begun to develop NIR spectrometers [115]. By the 1980s, 

scientists have gradually started to apply multivariate calibration methods as well as modern 

data processing techniques for NIR spectroscopy, which resulted in the evolution of a 

valuable analytical technique. Various instrument manufacturers competed to develop special 

NIR spectrometers at the same time, and high-resolution Fourier transform NIR spectrometers 

emerged [115]. The widespread interest of scientists and instrument manufacturers in the 

further development of NIR spectroscopy contributed to the successful convening of the First 

International Conference on NIR Spectroscopy in Norway in 1987, and NIR spectroscopy has 

become increasingly popular since then [116]. 

 

2.2.2 Basic Theory of IR/NIR Spectroscopy Technology 

The measurement method used in the present work is based on vibrational spectroscopic 

investigations in the infrared (near-infrared) range. IR spectroscopic applications make use of 

the fact that organic molecules can be excited to vibrations and rotations by absorption of 

electromagnetic radiation [117-121]. Only a small spectral range of wavelengths from 500 to 

0.8 µm (corresponding to 20-12500 cm
-1

) is assigned to IR spectroscopy, which is further 

subdivided into NIR, MIR, and FIR ranges (Fig. 2.1). 

 

Fig. 2.1 The electromagnetic spectrum and its subdivision into different wavelength ranges 
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Electromagnetic radiation consists of sinusoidally alternating fields that travel at the speed of 

light in vacuum. If there is a molecule in the alternating field, it can absorb energy, causing 

the radiation energy to be attenuated. Absorption of IR radiation leads to excitation of 

vibrations. A molecule of N atoms has 3N degrees of freedom of motion; three of which are 

translational and three rotational. From this fact, the number of vibrational degrees of freedom 

is 3N-5 for linear molecules and 3N-6 for non-linear molecules. When a change in dipole 

moment occurs during a vibration, a molecule absorbs IR radiation for vibrational excitation. 

Harmonics (overtones) occur when the frequency of the fundamental is doubled (1
st
 harmonic) 

or tripled (2
nd

 harmonic). Combination oscillations are caused by the addition of two 

fundamental frequencies of the same or very close neighboring functionalities. Depending on 

whether bond distances or bond angles change, oscillations are referred to as stretching or 

deformation vibrations. 

The harmonic oscillator model, based on a linear, diatomic molecule, is used to explain the 

oscillation process [117-121]. The harmonic oscillator is made up of two mass points, m1 and 

m2, connected by a spring. At the equilibrium nuclear distance r0, the spring represents the 

bonding force, which opposes the deflection of the atoms involved in the bond. Hooke's law 

describes the deflection of the molecular model from its equilibrium position by the distance 

r : 

                        rkF                            Eq.1 

𝐹: Repulsive force [N] 

𝑘: Force constant [10²·N·m
-1

]  

r : Deflection [m] 

 

For the oscillation process of a diatomic molecule, the oscillation frequency 𝑣 is as follows: 
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                             Eq.2 
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where 𝑘 is the force constant and a measure of the strength of the chemical bond between the 

vibrating atoms and  is the reduced mass (see below). Thus, the smaller the masses of the 

atomic oscillators and the stronger the bonds between them, the higher the frequency of 

oscillation will become. A parabola and the following equation describe the change in 

potential energy:
     

 

                   

2222 2
2

1
rµrkE pot                        Eq.3 

 𝑝𝑜𝑡:  Potential energy [J] 

 : Vibration frequency [s
-1

] 

𝜇 =
𝑚1∙𝑚2

𝑚1+𝑚2
: Reduced mass [kg] 

 

A quantum mechanical treatment shows, that the vibrational energy may only have certain 

discrete values called energy levels. For the harmonic oscillator these energy levels are given 

by: 
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where the oscillation quantum number can take the form 0,1,2,...υ  . .The vibration energy 

is not zero at the lowest vibration level, but has the value hE
2

1
0  . Equation 4 then yields 

the equidistant oscillation terms: 

                 










 2

1
~ v

ch

E
 with Δυ = 1                  Eq.5 

 

The indication of the wave number v~ is used in IR spectroscopy because the oscillation 

frequency 𝑣 of the absorbed radiation is directly proportional to the energy  . The following 

relationship holds true: 
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1E : Energy after the absorption of a photon [J] 

E : Energy before a photon is absorbed [J] 

c : Speed of light 2.99793·10
10

 [cm·s
-1

] 

𝑕: Planck's constant 6.62618·10
-34

 [J·s] 

 : Vibration frequency [s
-1

] 

~ : Wavenumber [cm
-1

] 

λ: Wavelength [cm] 

 

Only at small deflections (Δ𝑟) do real molecules behave like harmonic oscillators. The 

anharmonicity increases as the amplitude of the oscillation increases. Excessive stretching of 

the molecular bond can cause the molecule to dissociate. If the two atoms are too close 

together, they repel each other. As a result, rather than a parabolic function, the Morse 

function with the following equation better describes the dependence of a diatomic molecule's 

potential energy on bond distance: 

                 

2)
2

1
()

2

1
(   hhvE D

                   Eq.8 

Dχ : Anharmonicity constant 

 

The equation implies that the oscillation energy distances are not equidistant, but rather move 

closer together as the oscillation quantum number   increases. The harmonic oscillator's 

strict selection rule 1Δυ   no longer applies to the anharmonic oscillator. Transitions with 

2Δυ   (1
st
 harmonic) and 3Δυ   (2

nd
 harmonic) are now permitted, but the intensity of 

the associated absorption bands is reduced by a factor of 10-100 each time (Fig. 2.2). The 

greater the term difference Δ𝑣, the larger the required excitation energy and the shorter the 

absorption band wavelength [117-121]. 

The main applications of IR spectroscopy are structure elucidation of unknown substances via 

characteristic group frequencies and quantitative analysis by determination of band intensities 

[122-125]. 
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Fig. 2.2 Potential energy representation of a harmonic (a) and an anharmonic oscillator (b)  

as a function of the atomic distance r (D = dissociation energy) [123] 

 

2.2.3 Principles of NIR Spectroscopy Technology 

The near infrared wavelength range is 800 to 2500 nm (12500-4000 cm
-1

). Overtones and 

combination vibrations of OH, NH, and CH functionalities with large mechanical 

anharmonicity (large mass difference of the vibrating atoms) can be observed in the NIR 

spectral range [116, 127-130]. The fundamental vibrations of the aforementioned groups can 

be found in the mid-infrared range, with wavenumbers ranging from 2500 to 4000 cm
-1

. 

With increasing order, the intensities of the harmonics of the corresponding fundamental 

vibrations decrease very quickly. Combination oscillations occur at wavenumber sums of at 

least two fundamental oscillations and result from the simultaneous excitation of multiple 

oscillations [131-134]. In the following Tab. 2.6 the near-infrared absorption regions and their 

assignment to vibrational motions of selected chemical functionalities are summarized. 
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Tab. 2.6 Assignment of some absorption bands in the NIR wave number range for CH, OH and NH functionalities 

[134] 

 

Larger sample thicknesses can compensate for the much lower band intensities of the 

near-infrared region compared to the mid-infrared fundamental vibration range. This, however, 

places much lower demands on the specimens' sample preparation. Because many organic 

compounds absorb in the near infrared, measurements in this range provide good conditions 

for practical spectroscopy, allowing for the universal use of this spectroscopic measurement 

method [131, 132]. 

The absorbance (A) 𝑙𝑜𝑔   𝑇  (for transmission measurements) or 𝑙𝑜𝑔   𝑅  (for diffuse 

reflection measurements) versus wavelength or wavenumber is plotted for the representation 

of NIR spectra. These intensity parameters are proportional to the concentration of the sample 

under consideration. Various recording techniques (transmission, transflection, and diffuse 

reflection (Fig. 2.3)) can be used depending on the type and physical state of the samples 

[131]. For transmission measurements the Bouguer-Beer-Lambert law is used: 

                         dcA                           Eq.9 

 

The wavelength-dependent molar extinction coefficient  (in L· mol
-1· cm

-1
) is a constant 

property of each chemical compound in this equation, 𝑑 is the layer thickness (in cm), and 𝑐 

is the concentration (in mol·L
-1

). As transmittance 𝑇 and reflectance 𝑅, a relationship is 

established between the radiation intensity 𝐼 attenuated by the sample and the measured 

reference intensity 𝐼0: 

Wavenumber [cm-1] Wavelength [nm] Vibration type 

4200-4400 2439-2273 C-H combination vibrations 

4500-5200 2222-1923 N-H combination vibrations 

4900-5400 2041-1852 O-H combination vibrations 

5500-6300 1818-1587 C-H 1st overtone 

6500-7000 1538-1429 N-H 1st overtone 

6400-7500 1563-1333 O-H 1st overtone 

6900-7700 1449-1299 C-H combination vibrations 

7800-9100 1282-1099 C-H 2nd overtone 
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                     TI

I
A

1
loglog 0                         Eq.10 

 

For diffuse reflection measurements, the Lambert-Beer law is modified by the scattering 

coefficient s (in cm
-1

) to account for scattering between particles of different sizes: 

                       s

c

R



1

l o g                       Eq.11 

 

When compared to measurements in the mid-infrared, diffuse reflection measurements in the 

near infrared do not require additional dilution with an inert matrix such as KCl, which is 

regarded as a significant advantage of this method [131,135]. The three methods of 

near-infrared spectroscopy measurement are shown in the Fig. 2.3 below. 

 

 

Fig. 2.3 Three methods of near infrared spectroscopy measurement techniques 

 

For NIR spectroscopy, window materials such as glass and quartz are used, which are much 

less sensitive to water than the window materials of the MIR measurement range (NaCl, KBr 

and KRS5). Apart from its ease of use, short analysis times, and high signal-to-noise ratio    

(>10000), NIR spectroscopy has primarily grown in popularity for chemical process control 

due to the use of quartz light fibers [129, 131, 132, 135]. However, due to the comparatively 

low selectivity of NIR spectroscopy, chemometric methods are usually required for the 

qualitative and quantitative evaluation of NIR spectra with respect to the chemical and 

physical properties of the investigated substances [131, 136-138]. 
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2.2.4 Reflection Spectroscopy 

Reflection spectroscopy is a research technique that measures the intensity of reflected 

electromagnetic radiation from a sample surface that has been illuminated [139-143]. There 

are two types of limiting cases: regular or directional reflection and diffuse reflection. The 

geometrical optics laws govern directional reflection at an optically smooth, reflecting surface 

(metal, glass surface). Because of the behavior of light waves at interfaces, the angle of 

incidence and angle of reflection coincide (law of reflection) [141]. Snellius' law of refraction 

(Fig. 2.4) applies to the direction of the incident and refracted light beams: 

                   s i ns i n 21  nn  with 2n > 1n              Eq. 12 

 

When radiation from an optically denser material strikes an optically thinner material, total 

reflection is observed above a certain limiting angle 𝛼𝑔, indicating that the entire energy of 

the incident radiation is found in the reflected radiation. This phenomenon is used in optical 

fiber technology to transport radiation over long distances or in attenuated total reflection 

(ATR) spectroscopy for analytical investigations thereby avoiding time-consuming sample 

preparation. 

 

Fig. 2.4 Reflection and refraction of radiation at an interface [141] 

Regular reflection is a process that refers to macroscopic, plane phase boundaries. Diffuse 

reflection, on the other hand, is obtained when there are centers on a rough surface that scatter 

the incident radiation. Cracks and stipples, as well as particles, can act as scattering centers.  

Fig. 2.5 depicts a schematic representation of diffuse reflection of radiation by a powder 
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substance. Absorption, scattering, interference, diffraction, and refraction are all phenomena, 

that can occur in this process [139-141]. 

Because neither the classical Rayleigh scattering (particles much smaller than the wavelength 

of the radiation) nor the Mie theory (no interaction between the irradiated particles) apply to 

the powdered samples studied by NIR spectroscopy in this work, simplified laws are used to 

evaluate the NIR spectra measured in diffuse reflection [135, 139]. 

 

 

Fig. 2.5 Schematic representation of diffuse reflection in a powder substance 

 

The function 𝐹 (𝑅∞) proposed by Kubelka and Munk in the early 1930s [142] has proven 

useful for quantitative evaluation of the corresponding spectra for diffuse reflection 

measurements in the MIR: 
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𝑅∞ denotes the sample's diffuse reflectivity at large - theoretically infinite - layer thickness, 

which in practice is around 2 mm; 𝐾 denotes the absorption coefficient, and 𝜀 and 𝑐 

denote the sample's absorptivity (extinction coefficient) and concentration, respectively. The 

scattering coefficient 𝑠 is affected by the particle size distribution of the sample [139, 143]. 

Because of the high absorptivity of organic compounds in the MIR range, the sample must 

usually be diluted with a non-absorbing material (e.g. KCl) to obtain suitable intensities in 

diffuse reflection measurements. This is not required for NIR measurements, and diffusely 
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scattering substances (powders, rough surfaces, etc.) can be investigated without sample 

preparation [135, 140, 143]. 

For NIR measurements in diffuse reflection, the log 1/R function is used for quantitative 

analysis analog to absorbance 𝐴, which provides better proportionality to concentration than 

the Kubelka-Munk function [144, 145]: 

                               s

c

R
A


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1

l o g                     Eq.14 

 

In practice, the reflected radiation is measured using an integrating sphere with a gold-plated 

inner layer (which also serves as a reference) or an optical accessory (e.g. light-fiber bundle), 

that collects the diffusely reflected radiation as efficiently as possible [135, 143, 146]. In most 

cases, however, a scatter correction is required as data pretreatment for the quantitative 

evaluation of NIR spectra measured in diffuse reflection [137, 138]. 

 

2.2.5 Interaction between Radiation and Matter in NIR Spectroscopy (Basic Principles of 

Qualitative and Quantitative Analysis) 

Because the spectrum contains a wealth of information about the substance, NIR enables 

qualitative and quantitative analysis [147]. The characteristics of the spectral pattern are 

closely related to the composition and content of the substance itself. If a substance's structure 

and composition vary, as do the spectral patterns collected, and vice versa. Organic 

substances, that make up a multiplicity of materials contain different functional groups (such 

as O-H, N-H, C-H/CH2/CH3, C=O), which have specific vibrational frequencies in the 

near-infrared [147]. When a functional group in a substance is exposed to NIR radiation, only 

the incident wave with the intrinsic frequency of the specific molecular vibration of this 

functional is absorbed, causing the group to resonate, and the NIR spectrum of the substance 

can be obtained by measuring its absorption at this wavelength of the NIR spectrum. 

Therefore, the measured spectrum reflects information about the composition of the measured 

substance under investigation, laying the theoretical groundwork for qualitative and 
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quantitative NIR spectral analysis. NIR spectra contain a multiplicity of absorption bands 

related to hydrogen-containing groups (C-H, O-H, N-H) and because the main components of 

food are organic substances composed of these hydrogen-containing groups, NIR 

spectroscopy can be used for qualitative and quantitative analysis of food. 

 

2.2.5.1 Qualitative Analysis of NIR Spectral 

The purpose of qualitative NIR analysis is to determine the identity of an unknown sample by 

comparing the absorption intensity, frequency, and peak shape of the absorption peaks in the 

unknown sample's spectrum and the spectrum of a known reference sample set [148]. Because 

the reliability of direct comparison by human eyes is very low due to the complexity and 

variability of NIR spectra, it relies on computers and mathematical algorithms to separate and 

extract the information in the spectra and then compare and identify them. Pattern recognition 

is one of the most widely used methods for distinguishing and identifying spectral patterns 

using mathematical algorithms such as PCA, discriminant analysis (DA) and soft independent 

modeling of class analogies (SIMCA). 

The practical application of NIR qualitative discriminant analysis can be subdivided into the 

following steps: 

(1) Acquisition of the spectra of a standard sample set; 

(2) Calibration and preprocessing of specta; 

(3) Extraction of spectral features; 

(4) Development of qualitative discriminant analysis models; 

(5) Realization of qualitative discrimination of unknown samples. 

 

2.2.5.2 Quantitative Analysis of NIR Spectral 

The quantitative analysis of NIR spectra is based on the principle that the absorption spectra 

of samples with different content of each constituent are different. As a result of the selective 
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absorption of different frequencies of NIR radiation by each component of a sample, the 

content of each component can be determined by analyzing the optical density of the 

transmitted or reflected radiation through a detector [149]. Sample set's spectra are collected, 

and the sample set's chemical and physical parameters are determined by independent 

reference methods. Using chemometric methods, a correlation between the spectra and these 

parameters is established in a mathematical model and the content of each component of an 

unknown sample can be predicted by subjecting the corresponding spectrum to the developed 

calibration model. 

 

2.2.6 Technical Characteristics of NIR Spectroscopy 

When compared to traditional methods for determining physical and chemical properties of 

various substances, methods based on NIR spectroscopy have the following advantages [150, 

151]: 

(1) A simple testing procedure that eliminates the need for time-consuming sample 

preparation and chemical reaction steps. 

(2) Fast testing speed, which can be completed in many cases within a few minutes. 

(3) High testing efficiency; a single person can test multiple chemical indicators 

simultaneously. 

(4) A clean testing process, which does not necessitate the use of a large number of chemical 

reagents, as well as low testing costs. 

(5) Good accuracy and repeatability. 

(6) Applicable for solid and liquid samples. 

(7) The technique is non-destructive and can be applied in the chemical, pharmaceutical, food, 

environmental and material analysis. 

(8) NIR light has good transmission properties for optical (especially quartz) fibers, making it 

useful for on-line analysis, remote monitoring of substance composition and in-vivo analysis. 

However, NIR spectroscopy also has some disadvantages: the sensitivity is low due to the 

weak absorption of substances in the NIR region, and substance content of interest should be 
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greater than 0.1%, which means it cannot be used to determine trace substances; the 

calibration modeling work necessitates specialists and model maintenance requires ongoing 

work effort. 

 

2.3 Instrumentation of NIR Spectroscopy 

Prior to the 1850s, NIR spectroscopy was a forgotten spectral region due to its severe spectral 

absorption band overlap and poor selectivity; however, in the late 1950s, Karl Norris was the 

first to use short-wave NIR transmission to determine the moisture content of grains and 

rapeseed, kicking off the development of NIR spectroscopic instrumentation and its 

applications [152]. The group led by Karl Norris conducted a large number of spectroscopic 

method demonstrations in the 1960s, including comparisons of transmission, reflection, and 

transflection methods in the visible and near-infrared wavelength region. The availability of 

reflectance spectra of plant leaves and grains was the most significant achievement in this 

phase of work and the successful agricultural applications paved the way for further 

development of new NIR spectroscopic applications [153]. 

Nowadays, NIR spectroscopic instruments are gradually progressing towards process 

integration and miniaturization, which further advances the technology and also satisfies 

market demand. At present, miniaturization for in-the-field and on-site testing are an 

extremely important instrumentation trend and analytical application areas. Therefore, NIR 

spectrometers are widely used in environmental monitoring, food testing, biomedical research 

and other fields as an essential testing instrument in modern society. 

 

2.3.1 Benchtop NIR Spectrometers 

With the rise of computers, which made instrument control more precise and accurate, and the 

rise of chemometric techniques, which made data analysis relatively simple and could be used 

to process quantitative or qualitative information of complex systems, NIR spectroscopy 

became widely studied and applied in the 1970s [152]. Norris developed the world's first NIR 
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scanning spectrometer allowing data transfer to a microcomputer [154]. It was on this 

scanning spectrometer that the benefits of multiple linear regression analysis in extracting 

spectral information related to components were demonstrated, and this instrument became 

the prototype for the further development of NIR spectroscopy. 

The American Society for Testing and Materials (ASTM) formed the Working Group on Near 

Infrared Spectroscopy in 1984, at Hirschfeld's initiative, to study the issue of standard 

methods for NIR spectroscopy [148]. Simultaneously, some well-known instrument 

manufacturers began to develop new NIR instruments, and the NIR spectrometer market 

began to blossom. The main technical lines are divided into two categories: NIR 

spectrometers developed from grating spectrometer principles commonly used in the visible 

region [155], and NIR spectrometers developed from optical interference Fourier-transform 

principles commonly used in the mid-infrared region [156]. The rise in demand for industrial 

analysis has accelerated the development of NIR instrumentation, including 

transmission-based systems for the analysis of liquids by immersion-probe systems, and 

diffuse reflection-based instruments for solid-state analysis. Some companies, primarily 

involved in the production of benchtop NIR instruments for laboratory use, have also begun 

the development of NIR spectrometers for on-line applications. 

Compared to other analytical instruments, a multiplicity of NIR spectrometer types are in 

practical use. According to the spectroscopic principle, benchtop NIR spectrometers used in 

laboratories can be subdivided into filter type, grating dispersive type, Fourier-transform type 

and acousto-optic tuneable filter type. Fourier-transform type spectrometers have the largest 

market share [157]. Generally, NIR spectrometers are made up of a light source, a 

spectrometer system, a sample chamber, a detector, and a control and data processing system.  

2.3.2 Handheld NIR Spectrometers 

Since the late 20th century, the development of spectrometer instruments has gradually begun 

to develop in the direction of miniaturization and portability. Research and development of 

miniaturized spectroscopy instrumention has become the focus of attention of science and 
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industry departments in various countries [158]. 

Traditional spectroscopy instruments are not only large in size, but also frequently require 

pretreatment of specific samples before entering the analysis step, as well as strict working 

environment requirements, necessitating the use of professional analysts to complete the 

analysis. In comparison, miniaturized spectrometers have absolute advantages in terms of size, 

portability, speed, convenience of use and mobile power, which are the basic requirements for 

small spectrometers that do not take up much space [158, 159]. In addition, a handheld 

spectrometer has the characteristics of fast detection speed and suitable for online monitoring. 

Because of their small size, fast analysis speed, simple operation, lack of sample pretreatment, 

and low price, some portable or handheld NIR spectrometers are gradually making their way 

into various fields of production life [158]. 

The development of miniaturized NIR spectrometers is progressing and there are numerous 

miniaturized NIR spectrometers based on various spectroscopic principles on the market. At 

the moment, the most common types are grating micro spectrometers, microelectro- 

mechanical systems (MEMS)-based Fourier-Transform Near-infrared  (FT-NIR), linear 

variable filter (LVF) type, Hadamard Transform type, Fabry-Perot tuneable filter type, array 

light-emitting diode (LED) type and acousto-optic tuneable filter (AOTF) type [160-162]. 

The introduction of fiber optic probes has accelerated the use of small NIR spectrometers, and 

the convenient optical path design is especially suited to various online inspection needs. 

Manufacturers of handheld near-infrared spectrometers include Si-Ware Systems (Cairo, 

Egypt), VIAVI Solutions Inc. (San Jose, California, USA), Spectral Engines Oy (Helsinki, 

Finland), Hamamatsu Photonics (Hamamatsu City, Japan), OtO Photonics (Hsinchu, Taiwan 

Province, China), Insion GmbH (Obersulm, Germany) and TrinamiX GmbH (Ludwigshafen, 

Germany), to name just a few [163]. 

Rajendran et al. [164] Minotto et al. [165] investigated portable near-infrared devices based 

on LEDs. Zeltex LLC (Hagerstown, Maryland, USA), manufactures the LED-based Zx-50 

handheld grain analyser, which can be used to analyse wheat composition [166]. 

 

https://en.wikipedia.org/wiki/California
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With the rapid development of computer science, the control system of small NIR 

spectrometer has been expanded from single PC control to microcontroller, Advanced 

Reduced Instruction Set Computer (RISC) Machines (ARM) embedded microcontroller, 

Raspberry Pi (RPi), smart phone and Industrial Personal Computer (IPC), making the NIR 

spectrometer smaller and lighter while providing convenience for users [167]. 

In terms of software operating systems, small NIR spectrometers have spread from the 

WINDOWS platform to the MacOS, Linux, Android, and Apple platforms, among others 

[167]. The richness of the possible software platform encourages the use of small NIR 

spectrometers, and the sharing of spectral data is more convenient, safe, and fast. 

 

2.4 Data Pretreatment 

Apart from baseline correction and 1
st
 or 2

nd
 derivative, scatter correction is frequently used 

for data pretreatment of spectra measured of solid samples in diffuse reflectance, because they 

exhibit scatter effects leading to different slope, band intensity, and baseline offset as a 

consequence of sample morphology (particle size, distribution, packing, or layer density) [168, 

169, 170-172]. The use of mathematical methods results in an emphasis on important spectral 

properties and a reduction of difficult-to-model physical influences in the spectral data, 

resulting in a better correlation between the spectral data and the investigated properties. In 

this work, the scattering correction methods MSC, SNV, and Extended Multiplicative Scatter 

Correction (EMSC) are used and explained with reference to the following literature 

[170-179]. 

 

MSC: Geladi et al. [173] invented MSC correction in the 1980s. A mean spectrum 𝑥̅ is first 

calculated from the available spectral data in this method. Individual spectra are then fitted to 

the calculated mean spectrum by multiplying each data point by a coefficient 𝑏𝑖  and adding a 

constant 𝑎𝑖: 

                            𝑥𝑖 = 𝑎𝑖 + 𝑏𝑖𝑥̅                         Eq.15 
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The original spectra can be converted into the corrected spectra (𝑥𝑖 𝑀𝑆𝐶) in three different 

ways: either by subtracting the additive influence (offset 𝑎𝑖) according to Eq.16, by taking 

into account the multiplicative influence (slope 𝑏𝑖) according to Eq.17, or by full MSC 

according to Eq.18. 

                          𝑥𝑖,𝑀𝑆𝐶𝑎 = 𝑥𝑖 − 𝑎𝑖                       Eq.16 

                           𝑥𝑖,𝑀𝑆𝐶𝑏 =
𝑥𝑖

𝑏𝑖
                           Eq.17 

                          𝑥𝑖,𝑀𝑆𝐶𝑎,𝑏 =
(𝑥𝑖−𝑎𝑖)

𝑏𝑖
                        Eq.18 

 

SNV: SNV scatter correction, which is similar to MSC, has been used to eliminate scatter 

effects and particle size differences in spectral data since the late 1980s, following the 

publication of Barnes et al [174]. 

                      𝑥𝑖,𝑗,𝑆𝑁𝑉 =
(𝑥𝑖,𝑗−𝑥̅𝑖)

√
∑ ( 𝑖,𝑗  ̅𝑖)

2 
𝑗 1

(  1)

                        Eq.19 

 

where 𝑥𝑖,𝑗 is a data point in the spectrum 𝑥𝑖, 𝑥̅𝑖 is the spectrum's mean value, and 𝑚 is the 

number of data points on the spectrum. 

The SNV calculation standardizes each spectrum by taking the mean and standard deviation 

of each individual spectrum into account. Each spectrum is pretreated independently of the 

others by first centering it on its mean value and dividing it by its standard deviation. The 

scatter correction algorithms SNV, MSC, and EMSC are applied to spectra in log 1/R, log 1/T, 

and Kubelka-Munk formats [171, 175, 180]. 

 

EMSC: Martens et al. [176-179] developed an evaluation algorithm known as EMSC. The 

EMSC method is unique in that the chemical effects (light absorption) and physical effects 

(light scattering) in the spectra of powders and turbid solutions can be separated, and the 

scattering dependence on wavelength is taken into account in addition to compensating for the 

multiplicative and additive effects. The previous MSC method is extended to include the 

wavelength-dependent terms 𝑑𝑖∙λ and 𝑒𝑖 ∙ 𝜆
2 for this purpose. 
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The additive and wavelength-dependent effects, as well as the term 𝑏𝑖 multiplicative effects 

(e.g. effective optical path length) in the measured spectrum 𝑥𝑖, are taken into account by the 

model parameters 𝑎𝑖 (baseline offset), 𝑑𝑖  (linear), and 𝑒𝑖  (quadratic coefficients). Then, 

using Eq. 20, an EMSC-corrected spectrum (𝑥𝑖,𝐸𝑀𝑆𝐶) is obtained: 

                   i

iiii

EMSCi
b

edax
x

2

,

 
                    Eq.20 

 

All three scatter correction procedures (MSC, SNV, and EMSC) are implemented in the 

Unscrambler® v.9.7 software [181] and were used to create chemometric evaluation 

procedures in this work. 

 

2.5 Chemometric Evaluation Methods 

Chemometrics is a branch of chemistry that uses mathematical and statistical methods to 

design optimal measurement procedures and experiments and to gain the most relevant 

information from data analysis [182]. 

Due to the overlap of absorption bands of hydrogen-containing CH, OH, and NH groups that 

occurs frequently in the NIR spectral region, univariate calibration is usually insufficient for 

quantitative analysis of multicomponent systems in NIR spectroscopy. Instead, multivariate 

evaluation methods are used, with absorbance values from larger wavelength ranges typically 

used to establish a calibration. The individual chemometric evaluation methods are described 

in greater detail below. 

 

2.5.1 Linear and Multiple Linear Regression (MLR) 

Calibration establishes a relationship between experimental system variables 𝑥  (e.g., 

absorbance) and one or more target variables 𝑦 (e.g., concentration) for the quantification of 

a substance using chemometric methods. MLR, PCR, and PLS are suitable computational 

algorithms for establishing a quantitative calibration [168, 169, 180, 182-187]. 
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The system properties of unknown samples can then be determined relatively quickly using a 

robust calibration model that has been developed. Generally, the Bouguer-Beer-Lambert law, 

which shows the linear relationship between absorbance (𝐴) and concentration and sample 

thickness, is used to perform the quantitative evaluation: 

                         dcA                            Eq.21 

 

In this equation, 𝑑  denotes the thickness of the sample layer, 𝜀  the molar extinction 

coefficient, and 𝑐  the concentration of the substance to be determined. In the linear 

calibration, the term (𝜀 ∙ 𝑑)−1 is expressed by the parameter 𝑏 and then determined. The 

linear model equation of the calibration function or regression coefficient 𝑏, respectively, is: 

                          xby                               Eq.22 

 

Here, 𝑥  represents the spectral data and y the reference data of the sample under 

consideration. Eq.22 is valid for univariate calibration where the component to be determined 

has a disturbance-free absorption band. The regression coefficient 𝑏 calculated from the 

linear relationship of the system variable 𝑥 and the target variables 𝑦 then allows the target 

variables 𝑦  (e.g. concentration) of unknown samples to be determined from their 

experimentally determined absorbance values. Due to the lack of isolated absorption bands, 

quantitative evaluation of multicomponent systems is typically not possible in NIR 

spectroscopy. 

MLR is based on the linear regression with the Bouguer-Beer-Lambert law, whereby multiple 

wavelengths are selected for calibration. Unlike univariate calibration, multiple linear 

regression establishes the relationship between the dependent 𝑦 -variable and multiple 

independent uncorrelated 𝑥-variables by calculating regression coefficients during calibration. 

The linear model equation system of Eq.23 is mathematically equivalent to univariate 

regression [168, 180, 183-185]: 

                  
exbxbxbby mm  ...22110                  Eq.23 
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It consists of the parameter 𝑦  to be determined, the absolute constant 𝑏0 , the model 

parameters 𝑏𝑚of the m
th

 wavelength, the absorbance values 𝑥𝑚 of the m
th

 independent 

𝑥 −variables (wavelengths), and the error term 𝑒. 

 

2.5.2 Factorial Methods 

PCA, PCR, PLS-DA and PLS Regression are the most commonly used multivariate factorial 

methods [169, 186, 187, 205]. These methods are used to reduce the information in the 

calibration spectra's entire data matrix to a few key factors. As a result, the substance spectra 

are replaced by newly calculated spectra while no important information is lost. 

 

2.5.2.1 Principal Component Analysis (PCA) 

Pearson's works contain the first description and application of this method [188]. In the 

context of NIR spectroscopy PCA decomposes the original mean-centered data matrix   

with 𝑛 spectra and 𝑚 data points into a new score matrix 𝑇 and a loadings matrix   (see 

Fig. 2.6 and Eq.24) [168, 169, 180, 183, 184, 186]: 

                          ETPX T                      Eq.24 

 

The   matrix represents the differences between the original   matrix and the data matrix 

generated by the loadings and score matrix. The transposed loadings matrix  , which consists 

of 𝑝 rows (number of principal components) and 𝑚 columns (data points in the spectrum), 

describes the relationship between the  −data and the corresponding principal components. 

The score matrix 𝑇  contains information about the object's location in relation to the 

principal components, which is visualized in the score plot by object-projecting the data 

matrix onto the new principal component space. 𝑇 is a matrix with 𝑛 rows (number of 

calibration spectra) and 𝑝 columns (number of factors). The residual matrix   contains the 

information that was not taken into account in the score or loadings matrix. It is made up of 𝑛 

rows and 𝑚 columns. 
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Fig. 2.6 Schematic matrix representation of the PCA algorithm 

 

The uncorrelated variables are generated from the correlated variables by the coordinate 

transformation of the original data matrix  , with the first main axis PC1 having the highest 

variances. Following the criterion of maximum variance, the next PCs are determined by axis 

rotation of the new coordinate system and the orthogonality principle. In this case, the 

residual matrix   corresponds to the portion of the  −matrix that was not modeled by the 

𝑝 −principal components and should ideally consist only of measurement errors (noise) 

[189-191]. 

The relevant first principal components, which account for the majority of the total variance, 

are distinguished from the less relevant principal components by a maximum in the curve in 

the Unscramber® v.9.7 software's Explained Variance Plot [181]. PCA is widely used for 

qualitative product differentiation (e.g. in incoming raw materials). 

 

2.5.2.2 Principal Component Regression (PCR) 

The PCR is a procedure that connects PCA with multiple linear regression to compute a 

regression model for a target variable 𝑦 based on the  -data [168, 169, 180, 183-185, 190]. 

As with PCA, a mean-centered data set   is first decomposed into the score matrix 𝑇 and 

the loadings matrix  . After that, the regression model is used to calculate the regression 

model: 

                        ETPX T                           Eq.25 
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The calculated mean spectrum is subtracted from each calibration spectrum when centering. 

By transforming Eq.26, the score values 𝑇 are given as projections of the  -data onto the 

loadings  , with all elements of the residual matrix   having the value zero: 

                          XPT                            Eq.26 

 

The most important main components are used to develop a calibration model. The loadings 

𝑄 of the 𝑌 matrix are obtained through multiple regression of scores and target variables: 

                        FTQY T                        Eq.27 

 

The regression coefficient 𝐵, which describes the correlation between 𝑌 and   data, is 

contained in the loading matrix 𝑄: 

                        FXBY                        Eq.28 

and corresponds the product of the loadings matrices   and 𝑄: 

                         PQB                     Eq.29 

 

The number of principal components required to describe the data set is critical for predicting 

unknown samples. If a principal component number is chosen that is too large, it can result in 

the "overfitting" effect, in which interfering noise components are included in the model. If 

the number of principal components is too low, the available spectral information is not fully 

captured, indicating "underfitting" [180, 183, 184]. 

 

2.5.2.3 Partial Least Squares Regression (PLS) 

H. Wold created it in the mid-1970s, S. Wold and H. Martens refined it in the 1980s into the 

simpler PLS representation with   and 𝑌 data sets [168]. PLS regression, which is also 

used in this work, is the most commonly used method for quantitative evaluation in NIR 

spectroscopy. In this method, the scores (𝑇) are calculated using both the spectral data ( ) and 

the target variables (𝑌) [169, 186, 187, 192]. As a result, the first PLS principal components 
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have the most variance in the spectral data ( ) and the greatest correlation to the target 

variables ( 𝑌 ). The PCR/PCA algorithms, on the other hand, account for variance 

maximization solely by using the  -matrix data to calculate the score matrix 𝑇 [191]. 

The   and 𝑌 matrices are decomposed into scores and loadings in the same way as the PCR 

calculation (Fig. 2.7) and the Eqs.33, 34: 

                          EPTX T                            Eq.33 

                          FQTY T                            Eq.34 

 

The score matrix is 𝑇, the loadings matrices are   and 𝑄, and the residual matrices of the 

two data sets are   and 𝐹. The residual matrices describe the unexplained variance or 

calibration error between the measured and reconstructed spectra [193]. 

In contrast to the PCR, an additional loadings matrix is required for the calculation of the 

𝐵-regression coefficients according to Eq.35: 

                        TT QWPWB 1)(                          Eq.35 

 

In PLS analysis, the 𝑊-loadingsweight matrix describes the relationship between the  - and 

𝑌-data. When predicting unknown samples from spectral data, the loadingsweights are used to 

calculate the corresponding scores. The 𝑊 and 𝑇 matrices are orthogonal to one another. 

For both 𝐵-coefficient calculation and sample prediction, the  -and 𝑄-loadings matrices, as 

well as the 𝑊-loadingsweight matrix, are used: 

                     XQWPWY TT ))(( 1                       Eq.36 

The Nonlinear-Iterative Partial Least Squares (NIPALS) algorithm is used to perform the PLS 

calculation iteratively [168, 180, 184]. 
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Fig. 2.7 Scheme of the X and Y matrix decomposition in the PLS regression 

 

The optimal number of principal components is critical for robust calibrations. For calibration 

of the same data set, it was discovered that the PLS method requires fewer principal 

components than the PCR method [184]. According to Esbensen [180], the PLS method 

produces better results in terms of data reduction than the MLR and PCR methods. 

When calibrating multiple 𝑌-variables at the same time, the PLS2 algorithm is used, which 

determines the principal components for all variables at the same time. Due to the better 

prediction results, however, the PLS1 regression is preferred for calibration in quantitative 

NIR spectroscopy. Because the PLS1 regression determines only one target variable (i.e. one 

vector 𝑦), the 𝑄-loadings matrix and the residual matrix 𝐹 are also reduced to one column, 

i.e. to vectors [168, 183]. 

2.5.2.4 Partial Least Squares Discriminant Analysis (PLS-DA) 

PLS-DA is a statistical method related to principal components, which reduces the 

dimensionality of the data to establish a regression model and performs discriminant analysis 

on the results. It is similar to PCA, except that PCA is unsupervised but PLS-DA is supervised 

[205]. 



2 Theory  53 

When the differences between sample groups are large and the differences within each sample 

group are small, unsupervised analysis methods can be very good at distinguishing the 

different groups. Conversely, if the differences between groups are small, and the differences 

within each group are large, then the unsupervised analysis method will be very poor. Under 

this condition, the group that has a larger sample size will dominate the evaluation criteria of 

the model. Using the discriminant analysis method (PLS-DA) can solve these problems very 

well [229]. 

True samples are attributed to Class 1 and false samples are attributed to Class 0. If the real 

sample is recognized as a true sample, it is recorded as 𝑇  (True Positive); if the real sample 

is recognized as a false sample, it is recorded as 𝐹𝑁 (False Negative); if a fake sample is 

identified as a false sample it is recorded as 𝑇𝑁 (True Negative); if a fake sample is 

identified as a true sample it is recorded as 𝐹  (False Positive). Based on the above, three 

important parameters can be calculated according to the following equations [230]: 

                   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
×  00%                    Eq.30 

                   𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
×  00%                    Eq.31 

         𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
×  00%  𝑜𝑟  

(𝑆𝑒𝑛𝑠. +𝑆𝑝𝑒𝑐. )
2⁄       Eq.32 

 

2.6 Model Transfer Methods 

In practical applications of NIR spectroscopy, frequently a calibration model built with the 

spectra measured on one specific (master) instrument, is not applicable for the data measured 

on another (target) instrument. The main causes of this model mismatch are the changes in 

hardware between a master and a target instrument or instrument aging in the case of the same 

type of instrument. The current main research methods for model transfer include S/B, DS, 

PDS and SLRDS algorithms. 
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2.6.1 Slope/Bias (S/B) Algorithm 

To standardize the prediction results, the slope/bias correction method is used. The basic idea 

is to establish a linear relationship between the master and target spectrometers' spectral 

predictions. Let 𝐵 be the model's regression coefficient, 𝑆𝑚 be the standardized sample's 

master spectrum, and 𝑆𝑠 be the standardized sample's target spectrum [194]. 

The predicted values of the master spectra are: 

                         𝑌𝑚,𝑗 = 𝑆𝑚,𝑖 × 𝐵                          Eq.37 

 

The predicted values for the target spectra are: 

                          𝑌𝑠,𝑗 = 𝑆𝑠,𝑖 × 𝐵                          Eq.38 

  

A one-dimensional linear fit is performed to obtain its least-squares solution as: 

                      𝑠𝑙𝑜𝑝𝑒 =
∑(𝑌𝑠,𝑗−𝑌̅𝑠)(𝑌 ,𝑗−𝑌̅ )

∑(𝑌𝑠,𝑗−𝑌̅𝑠)
2                     Eq.39 

                       𝑏𝑖𝑎𝑠 = 𝑌̅𝑚 − 𝑠𝑙𝑜𝑝𝑒 × 𝑌̅𝑠                     Eq.40 

 

Then the predicted value of the concentration of the unknown sample after correction of the 

target spectrum is: 

                 𝑌𝑢𝑛 = 𝑠𝑙𝑜𝑝𝑒 × (𝑆𝑢𝑛 × 𝐵) + 𝑏𝑖𝑎𝑠                    Eq.41 

𝑆𝑢𝑛: Spectrum of the unknown sample measured with the target spectrometer 

𝑌𝑢𝑛: Predicted results after correction 

 

2.6.2 Direct Standardization (DS) Algorithm 

The DS algorithm mainly establishes a spectral normalized transition matrix 𝐹 through the 

mathematical relationship between the master spectrometer and target spectrometer standard 

sample set spectra, and uses 𝐹 to correct the spectrum on the target. The specific steps are as 

follows:  

① Select the standard set from the calibration set samples of the Master and Target, and then 



2 Theory  55 

establish the mathematical relationship between the standard set spectral matrices  𝑚 

and  𝑡 collected on the Master and Target, and establish the transfer matrix 𝐹 [195]: 

                             𝑚 =  𝑡𝐹                           Eq.42 

                            𝐹 =  𝑡
+ 𝑚                           Eq.43 

 𝑚: Centered spectral matrix of the standard set measured on the master spectrometer 

 𝑡: Centered spectral matrix of the standard set measured on the target spectrometer 

𝐹: Transfer matrix 

 𝑡
+: Generalized inverse matrix of  𝑡 

 

② With the help of the transfer matrix 𝐹, the spectrum measured on the target spectrometer 

is transformed, thereby reducing the difference in the spectral data of the same sample 

measured between different spectrometers, so as to achieve the purpose of transferring the 

model. 

                         𝑠𝑡𝑑 =  𝑢𝑛𝑘𝑛𝑜𝑤𝐹                         Eq.44 

 𝑢𝑛𝑘𝑛𝑜𝑤: Unknown sample spectral matrix measured on the target spectrometer 

 𝑠𝑡𝑑: Spectral matrix after normalizing  𝑢𝑛𝑘𝑛𝑜𝑤 

 

③ Bring the calculated  𝑠𝑡𝑑 into the master model to directly obtain the final predicted 

value of the spectrum, so as to realize the standardization of the near-infrared spectrum based 

on DS. 

 

2.6.3 Piecewise Direct Standardization (PDS) Algorithm 

The PDS algorithm operates on the same principles as the DS algorithm, with the only 

difference that PDS separates continuous bands from the spectrum, calculates the 

transformation coefficient in each window, establishes a spectral standardization matrix based 

on this coefficient, and uses the transfer matrix to correct the spectrum measured on the target 

instrument (the difference between DS and PDS algorithms is shown in Fig. 5.4). The 

coefficient 𝑏𝑖 can be calculated from the MLR, PCA, PLS [195]. The specific steps are as 
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follows: 

① Select the absorbance vector  𝑚,𝑖 at the 𝑖 wavelength point on the master spectrometer  

standard sample set arbitrarily, and also select the 𝑖 wavelength point in the spectrum of the 

target spectrometer standard sample set, and select a window width as the (2𝜔 +  ) of the 

spectral bands form a matrix  𝑡,𝑖 , correlate  𝑚,𝑖  with  𝑡,𝑖 , then obtain the conversion 

coefficient 𝑏𝑖 at the 𝑖 wavelength point,  

                               𝑚,𝑖 =  𝑡,𝑖𝑏𝑖                        Eq.45 

 𝑚,𝑖: The spectral matrix of the standard set of the master spectrometer at wavelength 𝑖 

 𝑡,𝑖: Spectral matrix of the (2𝜔 +  ) band range of the 𝑖 wavelength of the standard sample 

set spectrum of the target spectrometer 

𝑏𝑖: Conversion coefficient at wavelength 𝑖 

 

② Loop 𝑖 to find all 𝑏𝑖, 𝑖 =   2 3 . . . . . . 𝑘, 

𝑘: Wavelength points 

 

③ A transition matrix 𝐹 is established according to the transform coefficients of each band 

window, 

                   𝐹 = 𝑑𝑖𝑎𝑔(𝑏1
𝑇 , 𝑏2

𝑇 , … 𝑏𝑖
𝑇 , … , 𝑏𝑘

𝑇)                    Eq.46 

𝐹: Transfer matrix 

 

④ Transform the unknown spectrum measured from the instrument by means of the transfer 

matrix 𝐹, 

                         𝑠𝑡𝑑 =  𝑢𝑛𝑘𝑛𝑜𝑤𝐹                          Eq.47 

 𝑢𝑛𝑘𝑛𝑜𝑤: Unknown sample spectral matrix measured on the target spectrometer 

 𝑠𝑡𝑑: Spectral matrix after normalizing  𝑢𝑛𝑘𝑛𝑜𝑤 

 

⑤ The final predicted value of the spectrum can be directly obtained by bringing the 

calculated  𝑠𝑡𝑑 into the master model, thereby realizing the standardization of the spectrum 
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based on PDS. 

 

2.6.4 Simple Linear Regression Direct Standardization (SLRDS) Algorithm 

The SLRDS algorithm assumes that the absorbance between different wavelength points is 

independent of each other, and uses simple linear regression to correct the spectrum from the 

target spectrometer [196]. Specific steps are as follows: 

① Let the absorbances of the 𝑖 sample measured on the master spectrometer and the target 

spectrometer at the 𝑗 wavelength point be 𝑥𝑚(𝑖, 𝑗) and 𝑥𝑡(𝑖, 𝑗), respectively, and satisfy the 

following one linear regression equation: 

            𝑥𝑚(𝑖, 𝑗) = 𝑏0(𝑗) + 𝑏(𝑗)𝑥𝑡(𝑖, 𝑗) = [ 𝑥𝑡(𝑖, 𝑗)] ∙ [
𝑏0(𝑗)

𝑏(𝑗)
]       Eq.48 

𝑥𝑚(𝑖, 𝑗): The absorbance of the 𝑖 sample at the 𝑗 wavelength point measured on the master 

spectrometer 

𝑥𝑡(𝑖, 𝑗): The absorbance of the 𝑖 sample at the 𝑗 wavelength point measured on the target 

spectrometer 

𝑏0(𝑗) 𝑏(𝑗): Regression coefficient corresponding to any wavelength point 𝑗(𝑗 ∈  …𝑝) 

 

② The above Eq.48 is further written in matrix form, and the regression coefficients are 

obtained by least squares calculation: 

                  𝑥𝑚(𝑖, 𝑗) = [ 𝑛×1 𝑥𝑡(𝑖, 𝑗)] ∙ [
𝑏0(𝑗)
𝑏(𝑗)

]                 Eq.49 

                  [
𝑏0(𝑗)
𝑏(𝑗)

] = [ 𝑛×1 𝑥𝑡(𝑖, 𝑗)]
+ ∙ 𝑥𝑚(𝑖, 𝑗)                Eq.50 

 𝑛×1: (𝑛 ×  ) column vector of all elements are 1 

[ 𝑛×1 𝑥𝑡(𝑖, 𝑗)]
+: The generalized inverse of  [ 𝑛×1 𝑥𝑡(𝑖, 𝑗)] 

 

③ Calculate the unknown spectrum measured on the target spectrometer : 

                  𝑠𝑡𝑑 = [ 𝑛×1 𝑥𝑢𝑛𝑘𝑛𝑜𝑤(𝑖, 𝑗)] ∙ [
𝑏0(𝑗)
𝑏(𝑗)

]                Eq.51 

𝑥𝑢𝑛𝑘𝑛𝑜𝑤(𝑖, 𝑗): The absorbance of the unknown 𝑖 sample at the 𝑗 wavelength point measured 
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on the target spectrometer 

 𝑠𝑡𝑑(𝑖, 𝑗): Spectral matrix after normalizing 𝑥𝑢𝑛𝑘𝑛𝑜𝑤(𝑖, 𝑗) 

 

④ The final predicted value of the spectrum can be directly obtained by bringing the 

calculated  𝑠𝑡𝑑 into the master model, so as to realize the standardization result of the 

near-infrared spectrum based on SLRDS. 

 

2.7 Validation and Calibration 

Calibration is performed during the development of an NIR spectroscopic analysis method 

with chemometric evaluation using the reference values and the spectral data of the measured 

calibration samples. Using linear regression, a statistical correlation is determined in the form 

of a calibration function. Validation is the process of determining whether an analytical 

method produces reproducible and reliable results that are accurate enough for the intended 

application [168, 182, 187]. 

The calibration models are validated by predicting the target quantities of "unknown" samples 

(with known reference values) that were not included in the calibration. The suitability of the 

chosen data pretreatment, wavelength range, and number of principal components of the 

multivariate calibration are all evaluated. The selection of reference analytics is critical for 

obtaining reliable calibration results. There are two types of validation: test set or external 

validation and cross or internal validation [169, 184]. 

External validation is carried out with the help of an independent test sample set, which does 

not have to be the same size as the calibration sample set. In this case, the target variables to 

be determined for both data sets are known (calibration as well as validation). This method 

necessitates the analysis of relatively large sample sets using a reference method, which is 

often regarded as a disadvantage due to the higher cost and time involved. For the 

cross-validation the model is created in the same way as in the test set method, with the 

exception that the test spectra are taken from the calibration set. When there are few 

calibration samples available, cross validation is the approach of choice. The samples 
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analyzed using the reference procedure are used for both calibration and validation of the 

model in this case by taking one sample at a time from the calibration set and using it as a test 

object for the variance calculation for calibration and validation. After calibration and 

prediction, this sample is returned to the calibration set, and another sample is chosen and 

removed. This process is repeated until each sample has been removed and predicted once 

from the calibration set. As calibration evaluation criteria, a mean method error RMSEP and a 

correlation coefficient r are calculated and reported. The number of principal components 

used for calibration is critical for accurate prediction and model robustness [169, 180, 

184-185]. 

Over-prediction and under-prediction (too many or too few factors) are represented by larger 

and smaller prediction errors in the calibration data set, respectively, and result in a larger 

error in the validation or test set. Only the first factors are required to decompose a spectral 

data set's systematic properties; the following factors describe the calibration spectra's 

non-systematic properties (e.g., noise, random measurement errors) [180, 184]. The 

performance parameters listed below are used to assess the robustness of calibration as well as 

the certainty of future predictions [169, 180, 183, 184]. 

 

2.8 Performance Parameters 

R (correlation coefficient) is a statistical measure of the strength of the relationship between 

the relative changes of two variables. It quantifies the relationship between the reference and 

predicted values. The closer the correlation coefficient is to one, the closer the measured 

values are to the regression line [131]. 

Standard deviation: 
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Covariation between x and y: 
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Correlation between x and y (correlation coefficient) is: 
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RMSEC (Root Mean Square Error of Calibration) is defined as the calibration's root mean 

square error. The mean model error is interpreted using this parameter [131]. 
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𝑦̂𝑖: Predicted value 

𝑦𝑖: Reference value 

𝑖: Sample number 

𝑛: Total number of samples in the calibration set 

 

RMSECV (Root Mean Square Error of Cross Validation) is an internal method to 'test' a 

calibration to make sure it isn't badly skewed by a data point or if the model is over fitted, or 

if there are any outliers [131]. 
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𝑛: Total number of samples in the internal validation set 

 

RMSEP (Root Mean Square Error of Prediction) is a measure of the average prediction error 

in the quantitative prediction of an unknown sample. This value is an important statistical 

parameter for assessing the accuracy of future predictions, and it can be calculated using the 

formula [131]: 
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𝑛: Total number of samples in the external validation set 

 

The RMSEC, RMSECV and RMSEP prediction errors are given in the same units as the 

target variable 𝑦. According to Eq.58, the RMSEP can be used to detect data outliers with 

high SEP (Eq.60) as well as systematic errors in model construction and data structure due to 

high bias (Eq.61). Low RMSEP values are indicative of good models. 

                             
222 BiasSEPRMSEP                         Eq.58 

 

SEC (Standard Error of Calibration) is the regression's standard error. The SEC is used in the 

calibration set to calculate the difference between the predicted and reference values of the 

target variable and to make a statement about how well the calibration equation fits the data. 

The SEC value should be slightly less than the SEP value [131]. 
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𝑝: Number of principal components 

𝑛: Total number of samples in the calibration set 

 

SEP (Standard Error of Prediction) is a model inaccuracy measure defined as the error spread 

or standard deviation of the predicted values of the validation set [126, 131]. 
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According to Eq. 61, the SEP is made up of a random error (SEC) and a systematic error 

(bias). When the bias in Eq. 58 approaches 0, the SEP is ideally equal to the RMSEP. The unit 
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of the SEC and SEP values is the same as that of the reference method data. 

 

Bias represents the systematic error and indicates the extent to which the actual and predicted 

values of all samples in the validation set differ [126, 131]. 
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RPD (Relative Prediction Deviation) is defined as the standard deviation of observed values 

divided by the Root Mean Square Error or Prediction (RMSEP). The RPD takes both the 

prediction error and the variation of observed values into account, providing a metric of 

model validity that is more objective than the RMSEP and more easily comparable across 

model validation studies [231]. 
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Slope and Offset. The ordinate intercept (offset) and slope of the straight line from the 

calculated linear regression between the reference target values and the predicted values are 

denoted by these parameters. They are provided for both the calibration and test sets. In an 

ideal case, offset is 0 and slope is 1. 
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3 Experimental 

The quality of flour directly affects the processing of the final flour products, their quality, 

and the taste or flavor of these products when they are eaten. The content of moisture, ash, 

starch, protein, and wet/dry gluten are important indicators that reflect the quality of flour. 

This chapter introduces the use of near-infrared spectroscopy to establish a rapid 

determination method for the content of moisture, protein, and wet gluten in flour. The 

purpose is to quickly evaluate flour quality and provide theoretical data for improving the 

processing quality and flavor characteristics of flour products. 

 

3.1 Preparation of Test Samples and Chemical Value Parameters 

3.1.1 Overview of Wheat Flour Samples 

For the experiments and investigations described in this thesis, 50 wheat flour samples were 

acquired in Germany and 163 wheat flour samples were gathered from all over China. The 

wheat flour samples from Germany were purchased from DIGeFa GmbH (Detmolder Institut 

für Getreide- und Fettanalytik GmbH ), and the reference values of the relevant parameters 

were also provided by DIGeFa GmbH; most of the Chinese wheat flour raw materials came 

from the three growing regions in China (as shown in Fig. 3.1). ), and only two wheat flours 

were sourced from other countries (one sample from Kazakhstan and one from Russia). 

 

Fig. 3.1 Distribution of wheat producing areas in China 
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The Chinese wheat flour samples come from different brands sold in various regions, 

including 4 types of low-/medium-/high-gluten wheat flour, and whole wheat flour. All 213 

Chinese and German flour samples were tested by laboratories in China, and subsequently 

sealed and refrigerated for later use. The classification of all wheat flour samples is 

summarized in Tab. 3.1. 

 

Tab.3.1 Classification of flour samples under investigation 

Countries 
Number of 

Samples 
Classification of Samples 

CHN 163 

Spring wheat region         37 

Northern winter wheat region  81 

Southern winter wheat region  45 

GER 50 

Weizenmehl Type 550        30 

Weizenvollkornmehl         10 

Weizenmehl Type 405        6 

Weizenmehl Type 1050       4 

 

3.1.2 Comparison of the Analytical Methods used for the Determination of the 

Characteristic Flour Parameters in China and Europe 

The determination of the contents of crude protein, wet gluten, moisture, ash and other 

indicators in wheat flour is an important step in the quality control of wheat flour by NIR 

spectroscopy. However, Europe and China have partly different analytical methods for the 

determination of the reference values which are the basis for the development of calibration 

models with NIR spectra. 

 

3.1.2.1 Determination of Crude Protein 

The determination method of crude protein is generally consistent internationally. Both the 

European standard (ICC 167:2000) [197] and the Chinese standard (GB/T 5009.5-2016) use 

the Dumas combustion method to determine the crude protein content of flour [198]. The only 



3 Experimental  65 

difference is that different testing instruments are used for the two standards. The testing 

instrument used in the European standard is Dumatec™ 8000 (FOSS Analytical A/S, Foss A/S, 

Hillerød, Denmark), and the Chinese testing agency uses a D500 Dumas nitrogen analyzer 

(Hanon Future Technology Co., Ltd., Jinan, Shandong Province, China ). 

The principle of the Dumas combustion method for the determination of crude protein content 

is as follows: 

The sample is heated and burned in the combustion tube and then converted into gas. 

Nitrogen-containing substances are converted into molecular nitrogen, and the interfering gas 

is absorbed and removed by a series of absorbents, and finally detected by a thermal 

conductivity detector. To obtain the crude protein content, the nitrogen content of the sample 

is multiplied by 6.25 [197].  

 

3.1.2.2 Determination of Wet Gluten 

The content of wet gluten is an important quality indicator of flour. Wet gluten is a 

viscoelastic substance that is mainly composed of the two protein components of wheat 

(glutenin and prolamin). Of the traditional methods for detecting wet gluten, hand washing is 

the most primitive. The European Standard (ICC 155:1994) from 1994 developed new 

methods for the detection of wet gluten using professional gluten instruments [199]. However, 

it was not until 2008, that China officially added the method of measuring wet gluten by a 

gluten instrument to the national standard (GB/T 5506.2-2008) [200]. 

Both standards use the same detection method but use different gluten instruments. The 

Glutomatic 2200 Gluten Instrument (Perten Instruments, Perkin Elmer, Waltham, 

Massachusetts, U.S.A.) was used in the European Standard, and the PG-2850 Gluten 

Measuring Instrument (Perkone Scientific Co., Ltd., Hangzhou, Zhejiang Province, China) 

was used in the Chinese Standard. Wet gluten is tested by adding a sample to a sodium 

chloride solution to make a dough, and subsequently letting it sit for a period of time. The 

purpose of this step is to form a network of gluten. The dough is then washed with a sodium 

https://en.wikipedia.org/wiki/Hiller%C3%B8d
https://en.wikipedia.org/wiki/Denmark
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chloride solution to remove unwanted substances such as starch and excess water from the 

dough. After the gluten is separated, the wet gluten content is generally regarded as the 

percentage of the separated wet gluten mass in the wheat flour sample mass [199].  

 

3.1.2.3 Determination of Moisture 

The determination of moisture commonly uses a drying method. The basic principle is to 

measure the dry weight of the sample after drying at high temperature, including hygroscopic 

water, part of crystal water and substances that are volatile under this condition. Finally, the 

moisture content is calculated by weighing the values before and after drying. 

However, there are two differences in the European Standard (ICC 110/1:1976) [201] and the 

Chinese Standard (GB/T 5009.3-2010) [202]. First, the two standards use different testing 

instruments, the Moisture Tester MT-CA (Brabender Messtechnik GmbH & Co. KG, 

Duisburg, NRW, Germany) is used in the European standard. In the Chinese standard, the 

RSD-252Z precision vacuum drying oven (Kunshan Rongshida Electronic Equipment Co., 

Ltd., Suzhou, Jiangsu Province, China) is used as testing instrument. Second, the settings of 

the instrument parameters in the two standards are different. The European standard sets the 

temperature conditions between 130 and 133°C, while the Chinese standard sets the 

temperature conditions between 101 and 105°C [201].  

 

3.1.2.4 Determination of Ash 

The inorganic residues remaining after the flour is burned are called ash. Regarding the 

determination of ash, the European standard (ICC 104/1:1990) [203] and the Chinese standard 

(GB/T 5009.4-2016) [204] are consistent. According to the standard detection process, firstly, 

an appropriate amount of wheat flour sample needs to be weighed, and then 1 mL of 

magnesium acetate solution (240 g / L) is added to completely wet the sample. After standing 

for 10 minutes, the moisture of the wetted sample was evaporated to dryness. Heat the sample 
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on a hot plate with low heat to fully carbonize the sample until it is smoke-free. Immediately 

place the crucibles in a muffle furnace and raise the temperature to 900 °C ± 25 °C. Keep this 

temperature until the carbon disappears, then reduce the temperature to about 200 °C, and 

then place the sample in a desiccator for cooling before weighing [203].  

 

3.2 Spectrometers used in the Experiments 

3.2.1 Benchtop Spectrometers 

Two benchtop spectrometers were selected for the measurement of the flour samples, and 

their basic parameters are shown in Tab. 3.2. 

 

Tab. 3.2 Basic parameters of the two benchtop spectrometers used for the present work 

Spectrometer 

Name 
Company Monochromator 

Wavelength 

Range (nm) 

Spectral 

Resolution 

Signal/Noise 

Ratio 

 

IAS 3100 

 

Intelligent Analysis 

Service,Wuxi,China 

 

MEMS + Grating Scan 

 

950-1650 

 

16 nm 

 

8000:1 

 

NIR 

Freespace 

 

Shanghai Space-OE 

Technology 

Co.Ltd,Shanghai,China 

 

Acousto Optic Tunable 

Filter 
1100-2300  2-10 nm 8000:1 

 

3.2.1.1 IAS 3100 Spectrometer 

The IAS 3100 NIR spectrometer is an instrument for rapid analysis of small particles, 

powders, pastes and other solids by using a MEMS + grating scanning method. MEMS + 

grating as the core component of the instrument, uses the micro-mirror scanning method to 

achieve wavelength selection output, and requires only a single point detector to obtain the 

complete spectrum. The instrument measures solid samples by diffuse reflection, and 

introduces an automatic reference material (gold-plated reflector) and automatic wavelength 

calibration system, which can quickly self-test and calibrate the system.  

The wavelength range of the spectrometer is 950-1650 nm, the resolution of the instrument is 

less than 16 nm, the wavelength interval is 1 nm, the signal-to-noise ratio is more than 8000:1. 
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The instrument has a built-in industrial control ARM processor, an embedded Linux system 

and self-developed spectral analysis software. The instrument is shown in Fig. 3.2. 

 

 

Fig 3.2 IAS 3100 NIR Spectrometer 

 

3.2.1.2 NIR-Freespace 

The NIR-Freespace spectrometer uses an AOTF technology as measurement principle and has 

two InGaAs detectors to ensure the stability and synchronization of test data. In addition, the 

instrument has a built-in reference making it unnecessary to measure a separate reference 

spectrum before testing the sample. For each measurement, the spectrometer collects both the 

reference and sample spectra, and then uses an algorithm to obtain the reflectance/absorbance 

of the sample relative to the standard reference. The spectrometer is equipped with two 

rotating motors. The wavelength range of the NIR-Freespace is 1100-2300 nm, the resolution 

of the spectrometer is 2-10 nm, and the datapoint wavelength interval is 1 nm. The 

wavelength scan speed is > 4000 wavelength points/sec, and the S/N ratio is > 8000:1.      

A photo of the instrument is shown in Fig. 3.3. 

 

Fig 3.3 The NIR-Freespace AOTF Spectrometer 
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3.2.2 Handheld Spectrometers 

Four handheld spectrometers were selected for this project, and their basic parameters are 

summarized in Tab. 3.3. 

 

Tab. 3.3 Instrumental parameters of the four handheld NIR spectrometers used for the present work 

Spectrometer 

Name 
Company Monochromator 

Wavelength 

Range (nm) 

Spectral 

Resolution 

Signal/Noise 

Ratio 

 

MicroNIR 

 

VIAVI Solutions 

Inc.,San Jose,USA 

 

Linear Variable Filter 

 

908-1676 

 

<12.5 nm 

 

5324:1 

 

NIRONE 

Sensor S 2.0 

 

Spectral Engines 

Oy,Helsinki,Finland 

 

Fabry Perot Tunable 

Filter 

 

1550-1950 

 

<18 nm 

 

9600:1 

 

 
Neospectra 

Micro 

 

Si-Ware 

Systems,Cairo,Egypt 

 

MEMS FTNIR 

 

1298-2606 

 

 

8 nm/1550 

nm 

 

 

2820:1 

（self-test） 

 

C15511-01 

 

Hamamatsu 

Photonics,Hamamatsu 

City,Japan 

 

 

MEMS FTNIR 

 

 

1100-2500 

 

 

 

5.7 nm/1533 

nm 

 

 

 

1888:1 

（self-test） 

 

 

3.2.2.1 NeoSpectra Micro 

The NeoSpectra Micro, a single-chip FT-IR spectrometer, uses its unique platform-Silicon 

Integrated Micro-Optics System Technology (SiMOST™), which allows the creation of 

multiple optical components on silicon. As a miniature, low-cost spectral sensor and scanner, 

the NeoSpectra Micro can be used to detect a wide range of materials and substances. The 

NeoSpectra Micro handheld spectrometer offers similar instrument performance parameters to 

those of benchtop laboratory NIR spectrometers, but the NeoSpectra Micro is much smaller 

and less costly. Fig. 3.4 shows a photo of the experimental set-up for flour measurements 

using the NeoSpectra Micro scanner in tandem with the IAS 3100 spectrometer. The 

NeoSpectra scanner is based on the MEMS technology with a wavelength range from 

1298-2606 nm, a spectral resolution of 8 nm / 1550 nm, a wavelength datapoint interval of 9 

nm, and a signal-to-noise ratio of 2820:1 (result of an in-house test). The optical head serves 

as the light source for sample illumination and collects radiation diffusely reflected by the 
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sample. A proprietary performance-optimized design with Application-Specific Integrated 

Circuits (ASICs) for system control and data processing aims to reduce the number of 

external components. The optical core module of the spectrometer uses a MEMS Michelson 

interferometer and a single InGaAs detector. 

 

 

 
Fig 3.4 Photo of the experimental set-up of a flour measurement with the NeoSpectra Micro scanner in tandem  

with the IAS 3100 NIR spectrometer measurement 

 

3.2.2.2 NIRONE Sensor S 2.0 

The NIRONE Sensor series is manufactured by Spectral Engines oy (Finland). The NIRONE 

Sensor S 2.0 uses the patented MEMS of a Fabry-Perot interferometer, which is a fully 

programmable optical filter. The sensor can be driven over the entire wavelength range or can 

operate at a specific set wavelength range. Fig. 3.5 shows a photo of the experimental set-up 

used to measure flour simultaneously by the NIRONE Sensor S 2.0 and the IAS 3100 

benchtop instrument. The NIRONE Sensor S 2.0 has a single point detector rather than a 

linear array, making it an economical and affordable solution for all applications. The use of a 

single detector and the Fabry-Perot interferometer technique allows the use of a larger 

detector area than a linear array. Its wavelength range is 1550 nm to 1950 nm, the instrument 

resolution is 18 nm, the wavelength data point interval is 5 nm, and the signal-to-noise ratio is 

9600:1.  
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Fig 3.5 Photo of the experimental set-up of a flour measurement with the NIRONE Sensor S 2.0 in combination 

 with the IAS 3100 NIR spectrometer 

 

3.2.2.3 MicroNIR 

The MicroNIR uses a LVF as the core dispersive element, and it also uses advanced thin-film 

coating design and manufacturing techniques. With its compact form factor and superior 

performance advantages, the MicroNIR spectrometer is a simple and practical spectrometer, 

which allows for wider adoption and greater flexibility in installation and scalability of NIR 

spectroscopy solutions. The spectrometer has a sapphire window, Anti-Reflection 

(AR)-coated on one side for maximum light throughput. Fig. 3.6 shows a photo of the 

experimental set-up using the MicroNIR and the IAS 3100 spectrometers in combination. The 

MicroNIR has a wavelength range from 908 nm to 1676 nm, its spectral resolution is 12.5 nm, 

the wavelength datapoint interval is 6 nm, and the signal-to-noise ratio is 5324:1(self-test 

result ). 

 

  

Fig 3.6 Photo of the experimental set-up of a flour measurement with the MicroNIR in combination 

 with the IAS 3100 NIR spectrometer 
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3.2.2.4 Hamamatsu C15511-01 

The Hamamatsu C15511-01 is a miniature FT-NIR spectrometer processed by using the 

MEMS technology with a Michelson optical interferometer as the core element. The optical 

interferometer has a built-in optical input section, a beam splitter, a fixed reflector, a movable 

reflector (Φ 3 mm), and a photodetector. The photodetector acquires the light intensity signals 

(interference information) that vary with the position of the movable reflector, and then 

processes (Fourier transforms) these light intensity signals to obtain the spectral signals. A 

semiconductor laser, Vertical Cavity Surface Emitting Laser (VCSEL), is built into the 

instrument to monitor the position of the movable reflector, enabling spectral measurements 

with high wavelength accuracy. The Hamamatsu C15511-01, like the NeoSpectra Micro, has 

a MEMS FT-NIR as the core of its spectrometer. It has a wavelength range from 1100 to 2500 

nm, the instrument resolution is 5.7 nm/1533 nm, the datapoint interval is 10 nm, and the 

signal-to-noise ratio is 1888:1(self-test result). The individual components of the spectrometer 

are shown in Fig. 3.8. 

 

3.3 Experimental Measurement and Evaluation Process 

The process of spectra measurements and calibration model development for the analysis of 

the flour parameters is summarized in Fig. 3.7. The individual steps of collection and grinding 

of the raw material wheat to the NIR spectroscopic measurement of the flour samples, and 

finally the processing and analysis of spectra to develop calibration models are shown in the 

flow chart (See Fig. 3.7). 
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Fig. 3.7 Flow chart of the NIR spectroscopic measurement and calibration model development for the analysis of flour 

parameters 

 

The whole experimental process was divided into three temporal stages: stage I was from July 

2019 to September 2019 at the Department of Chemistry (University of Duisburg-Essen, 

Germany ) and comprised the operation of 3 handheld spectrometers: NeoSpectra, NIRONE 

Sensor S 2.0, and MicroNIR and the IAS 3100 benchtop spectrometer for the measurement of 

50 German flour samples. During stage II (September 2020), the NIR spectra of 50 German 

flour samples were measured with the Hamamatsu C15511-01 miniature FT-NIR 

spectrometer and the IAS 3100 benchtop spectrometer in the same location. In stage III a 

measurement campaign was run from October 2020 to December 2020 at the School of Food 

and Biological Engineering (Jiangsu University, China) by using four handheld spectrometers 

(NeoSpectra, NIRONE Sensor S 2.0, MicroNIR, and Hamamatsu C15511-01) for the 50 

German and 163 Chinese flour samples, and the benchtop spectrometer (NIR-Freespace) for a 

total of 163 Chinese flour samples only.  
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3.3.1 Experimental Stage I 

The stage I experiments were conducted using an IAS 3100 benchtop spectrometer as the 

basic operating station, in parallel with 3 handheld spectrometers (MicroNIR, NeoSpectra, 

NIRONE Sensor S 2.0), respectively, and additionally providing a rotation of the sample tray,.  

The experimental site was in the basement corridor of the Department of Chemistry, in order 

to maintain a relatively stable temperature and humidity environment for the NIR 

spectroscopic measurements, as it was very hot during the July summer month. Thereby, the 

experimental temperature environment was maintained between 22°C and 23°C. The stage I 

experiment was divided into 3 parts, and a total of 3 measurement series (IAS 3100 and 

Neospectra Micro, IAS 3100 and MicroNIR, IAS 3100 and NIRONE Sensor S 2.0) were 

performed by using the IAS 3100 benchtop spectrometer simultaneously with the 3 handheld 

spectrometers, respectively. The flour samples were poured into the sample tray of the IAS 

3100 spectrometer, and spread evenly in order to keep the surface as smooth as possible. 

Afterwards, the same sample was measured simultaneously with two spectrometers (the IAS 

3100 benchtop spectrometer (bottom up) and the handheld spectrometer (top down)). The 

handheld spectrometer detection is started 30s after the IAS 3100 spectrometer detection 

process. Since the sample dish is rotated, the handheld spectrometer detects a moving sample 

area instead of a fixed point. Testing the same sample 3 times requires moving the sample tray 

two additional times, each time with a rotation angle of 120°. This allows three sets of 

spectral data to be tested for each flour sample with subsequent storage for data classification, 

calibration and validation. 

A total of 50 flour samples were tested. The Neospectra and MicroNIR sensors were mounted 

approximately 1 cm above the surface of the flour samples, while the NIRONE Sensor S 2.0 

sensor was approximately 5 mm from the surface of the flour samples. In addition, the 

reference material used for the 3 handheld spectrometers was the reference plate included 

with the NeoSpectra NIR scanner. Since the IAS 3100 spectrometer has a circular rotating 

tray with a glass bottom above an instrument window facing upwards, the fitting of the 

handheld spectrometers with their sensor face down above the rotating sample surface 
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allowed to measure the same sample simultaneously with two spectrometers. The 

measurements of the 50 German flour samples were performed in three stages by combining 

the benchtop instrument successively with one of the three handheld instruments (NeoSpectra 

Scanner, MicroNIR and NIRONE Sensor S 2.0), respectively. 

The IAS 3100 has a programmed measurement time of 1 min (with a preparation time of 30s 

and a scan time of 30s). To keep up with the IAS 3100 scan time, two handheld NIR 

spectrometers (Neospectra and MicroNIR) were set to a scan time of 30s and the NIRONE 

Sensor S 2.0 spectrometer was set to a scan time of 29s). Thus, after the 30s preparation time 

of the IAS 3100 spectrometer, the scan time of the three handheld spectrometers was started 

simultaneously with the scan time of the IAS 3100 spectrometer to measure the NIR spectra 

of the flour sample under investigation. The warm-up time before measurement start was 1h 

for the IAS 3100 spectrometer and 0.5h for the 3 handheld spectrometers. 

Figs. 3.4-3.6 show the experimental set-up for the measurements of stage I.  

 

3.3.2 Experimental Stage II 

The IAS 3100 benchtop spectrometer was used as the basic operating station for this stage of 

the experiments. As described above, this spectrometer provides a rotating sample tray, and 

the Hamamatsu C15511-01 handheld spectrometer was mounted above the sample surface for 

simultaneous testing. 

The difference between the Hamamatsu C15511-01 spectrometer and the previous three 

handheld spectrometers is that the Hamamatsu C15511-01 spectrometer currently provides 

only its spectrometer module. The module needs to be connected to an external light source, 

and the external light source has to be combined with one side of a Y-shaped optical fiber, and 

the other side of this optical fiber needs to be connected to the spectrometer module so that 

the optical signal of the sample can be transmitted to the spectrometer module. In comparison, 

the light source and spectrometer module of the other three handheld spectrometers have been 

integrated into one device. The experiments were conducted under similar temperature 
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conditions as for experimental stage I between 20-22°C. The measurement procedure was also 

the same as in section 3.3.1, and the reference material used for the Hamamatsu C15511-01 

handheld spectrometer was the same reflection standard as used for the Neospectra scanner. 

The warm-up time was 1h for the IAS 3100 spectrometer and 0.5h for the Hamamatsu 

C15511-01 handheld spectrometer. Fig. 3.8 shows the experimental set-up of the combined 

measurements with the IAS 3100 benchtop and Hamamatsu C15511-01 handheld 

spectrometers. 

 

 

Fig 3.8 Photo of the experimental set-up of the combined measurements with the IAS 3100 benchtop  

and the Hamamatsu C15511-01 handheld spectrometers. 

 

3.3.3 Experimental Stage III 

In these experiments two benchtop spectrometers (IAS 3100 and NIR-Freespace) were used 

in combination with four handheld spectrometers to measure the Chinese flour samples in the 

third stage of this work. In 163 Chinese flour samples (only 154 Chinese flour samples were 

selected by NIR-Freespace because the sample volume of the other 9 samples was too small 

to meet the minimum measurement standard for sample volume in the detection tray) the 

three parameters protein, moisture and ash were analyzed. For wet gluten the reference values 

were only available for 159 samples. 

The experimental work for stage III was conducted in the School of Food and Biological 

Engineering (Jiangsu University, Zhenjiang, Jiangsu Province, China). The environmental 

temperature was stabilized by air condition at about 22°C in order to be consistent with the 

Light source 

(Hamamatsu) 

C15511-01 

IAS 3100 
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previous measurement conditions in Germany. 

In order to rationalize the measurements, the experimental part of stage III was divided into 

two parts. One benchtop/handheld spectrometer combination consisted of the IAS 3100 

spectrometer and the two handheld instruments MicroNIR and NeoSpectra， the other 

combination comprised  the NIR-Freespace spectrometer and the Hamamatsu C15511-01 

and NIRONE Sensor S 2.0 handheld instruments. The handheld spectrometers were 

positioned top down over the sample trays of the benchtop spectrometers. The operating and 

sample presentation conditions in these experiments were analogous to the experimental 

conditions of stage I. For the four handheld spectrometers a poly(tetrafluoroethylene) (PTFE) 

diffuse reflection standard of the Hanon Company (Jinan, Shandong Province, China) was 

used. 

For the NIR-Freespace benchtop instrument the operating time was set to 45s, (15s 

preparation time and 30s scan time). To match the NIR-Freespace`s scan time, both handheld 

NIR spectrometers (Hamamatsu C15511-01 and NIRONE Sensor S 2.0) were set to 29s 

measurement time. After the NIR-Freespace spectrometer's preparation time, both handheld 

spectrometers were started simultaneously to the NIR-Freespace spectrometer's scan time. Fig. 

3.9 shows the experimental set-up of these measurements.  

 

 

Fig 3.9 Photo of the experimental set-up of the combined measurements with the IAS 3100 benchtop  

and the MicroNIR and the NIRONE Sensor S 2.0 handheld spectrometers. 

 

3.4 Acquisition of Spectral Data 

Since the format of the spectral data obtained from the acquisition software of the different 
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IAS 3100 

Sample 

NIRONE 
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instruments is not consistent, the format of the respective spectral data needs to be 

standardized before subsequent spectral data processing and calibration model development. 

Each spectrometer has its own spectral acquisition software to complete the workflow of the 

spectra measurement. The first step is to acquire a background spectrum of the reflection 

standard, and then the spectrum of the sample is measured. From these data either a percent 

reflectance (%R) or absorbance (log 1/R) spectrum is calculated and stored in the computer. 

The spectral data collected by the benchtop spectrometers IAS 3100 and NIR-Freespace are 

automatically stored on a disk inside the instrument, and can be exported via USB or mobile 

flash drive for import into a computer. 

The handheld spectrometers used in this work have different internal structures and due to 

their small size some of them do not have the ability to store data and the spectra collected by 

the instrument need to be transferred to a computer for storage and further processing. The 

common working situation is to install the software for the handheld spectrometer on a 

computer, tablet or cell phone and connect these with a data cable or via Bluetooth with the 

spectrometer. 

 

3.5 Spectrum Processing Analysis Software 

NIR spectroscopy is a so-called secondary analysis technique and therefore requires 

qualitative or quantitative calibration models to relate the NIR spectra of the samples to the 

chemical or physical reference values. The raw spectra measured by the spectrometers contain 

not only the physicochemical information of the sample, but also a large amount of interfering 

information, that is not related to the reference values of the sample under investigation. The 

data processing of NIR spectra requires software for spectral pretreatment and development of 

chemometric calibration models. Thereby the lack of ―fingerprint character‖ of mid-IR 

spectra can be overcome and the purpose of qualitative and quantitative analysis of the sample 

is finally achieved. 

The main spectral processing analysis software used in this project is the Unscrambler™ 

(Version 9.7, Camo Analytics AS, Aspen Technology, Inc., Bedford, Massachusetts, USA), 

http://www.aspentech.com/
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MATLAB (2016a, The MathWorks, Natick, Massachusetts, USA) and NIRSA (Version 5.8.8, 

NIR Research Laboratory of Jiangsu University/Automation Department of the School of 

Light Science and Engineering of Nanjing Forestry University, Zhenjiang/Nanjing, Jiangsu 

Province, China). 

 

3.5.1 Unscrambler™ 9.7 

The Unscrambler™ 9.7 is a multivariate data analysis software released by Camo Analytics 

AS, Inc. and provides users with a tool that meets the needs for qualitative and quantitative 

data analysis, thereby enhancing the ability to handle process data and providing the 

possibility for spectral calibration. 

 

3.5.2 MATLAB R2016a 

The MATLAB R2016a software allows visualization, numerical computation and 

programming to be centralized in a simple open environment with dimensionless matrices as 

its basic data unit. For NIR spectroscopy the MATLAB software can be used for 

chemometric-related algorithm writing and analysis of spectral data as well as their 

visualization.  

 

3.5.3 NIRSA 5.8.8 

The NIRSA 5.8.8 software integrates a variety of data processing algorithms and is mainly 

applied to the qualitative and quantitative analysis of NIR spectroscopic data. Since its 

development in 2004, this software has been improved and matured.  
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3.6 Processing Steps after Spectra Measurement 

3.6.1 Selection of Pretreatment Methods for Raw Spectra 

Since the acquired raw spectra are often accompanied by scatter effects, random noise, band 

overlap and baseline drifts, spectral pretreatment is an indispensable step in the calibration 

modeling process in order to eliminate external interferences. A reasonable pretreatment 

method can effectively filter out the noise information in the spectral signal and retain the 

effective information, thus solving the complexity problem of the calibration model. To 

optimize the prediction accuracy of the developed calibration models, this work used 

pretreatment methods like SNV, EMSC, Savitzky-Golay Smoothing Algorithm (SGSA) and 

First-Order Derivative (1
st
 Der.) to pretreat the original spectra. 

 

3.6.2 Selection of Effective Spectral Range and Screening of Outliers 

Since the raw spectral data contain a lot of interfering information, direct analysis using raw 

spectra can increase the calculation complexity and take a lot of time, and may contain 

redundant information that is not relevant to the chemical reference values. Therefore, in 

order to build fast and accurate calibration and prediction models, it is necessary to extract the 

valid spectral ranges related to the chemical reference values and to reject the outliers. In this 

work mainly the plot of leverage versus residuals (―influence plot‖) of the Unscrambler™ 9.7 

software was used to detect outliers. Specific examples of analysis results are described in 

Sections 4.1.3 and 4.1.4. 

3.6.3 Separation of Available Samples in Calibration and Prediction Set 

The separation of the available samples into a calibration and a prediction set has an 

important impact on the quality of the calibration model. The basic requirement for selecting 

the calibration and prediction set samples is to ensure a representative distribution of the 

reference values in both sets. In this work, Sample Set Partitioning based on the joint X-Y 

distance (SPXY) algorithm of the NIRSA software is used to select 10% of the total number 
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of samples as the prediction set and the remaining 90% as the calibration set. 

 

3.6.4 Calibration and Prediction Model Development 

After completing the three steps described in Sections 3.6.1-3.6.3, the corresponding 

calibration models were built and the prediction sample sets were predicted by these models. 

For qualitative and quantitative analysis primarily two multivariate methods, PCA and PLS 

regression, respectively, were used in the present work. 
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4 Results and Discussion 

After completing the experiments according to the test steps and procedures described in 

Chapter 3, this section presents the data analysis and discussion of the raw spectra obtained 

from the flour tests with all the spectrometers. The first step is the basic screening of the raw 

spectra with reference to the spectrometer hardware and performance followed by 

optimization of the spectra. 

 

4.1 Screening and Optimization Process for the Spectra 

4.1.1 Initial Screening of Spectrometers 

The quality of the spectra is related to many factors, such as the different optical principles of 

the spectrometers, their different performance parameters (e.g., high or low signal-to-noise 

ratio, high or low spectral resolution, different spectral detection range, etc.), and changes of 

the investigated samples (e.g., high or low concentration range, changes in sample 

composition, etc.). All these factors have an impact on the NIR spectra, and even the changes 

in the measurement environment can lead to changes of the measured spectra. Thus, choosing 

the right spectrometer for flour testing is important to ensure the quality of the spectrum. 

The signal-to-noise ratio, spectral resolution, and accuracy of absorbance values of handheld 

spectrometers are generally lower than those of benchtop spectrometers. The spectrum of a 

flour sample recorded over the whole NIR wavenumber range (800-2500 nm/12500-4000 cm
-1

) 

is used as standard spectrum. The Chinese national standard for flour NIR spectra, for example, 

uses the full spectral range of the Lengguang S450 benchtop spectrometer (800-2500 

nm/12500-4000 cm
-1

) and is the basis of the comparison of the 2 benchtop spectrometers (IAS 

3100, NIR Freespace) and the four handheld spectrometers (MicroNIR, Neospectra Micro, 

Hamamatsu C15511-01, NIRONE Sensor S 2.0) used in the present work. In Fig. 4.1 the NIR 

spectra measured of the same flour sample with the different spectrometers are shown. In this 

comparison it is clearly demonstrated, for example, that the NIRONE Sensor S 2.0 
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spectrometer has the narrowest spectral range of all instruments (spectrum marked in red). This 

narrow spectral range makes it difficult to ensure, that the most effective spectral information 

will definitely fall in that wavelength range, which can lead to a smaller amount of information 

obtained from the flour test object for effective qualitative and quantitative analysis. 

 

 

Fig. 4.1  Comparison of the NIR spectra of the same flour sample measured with the full NIR spectral range of the 

Lengguang S450 benchtop spectrometer ( Grey spectrum ), the IAS 3100 and NIR Freespace ( AOTF ) benchtop 

spectrometers and the four handheld spectrometers ( MicroNIR , Neospectra Micro , Hamamatsu C15511-01, 

NIRONE Sensor S 2.0 ) 

 

For the measurements in Germany (Stage 1) and China (Stage 3) different spectrometers of 

the same instrument type (benchtop and handheld) were used, because the instruments could 

not be exchanged due to customs restrictions. Furthermore, while German flour samples could 

be sent to China for test purposes, the Chinese flour samples could not be sent to Germany. To 

prove the low-quality of the NIR spectral data acquired with the NIRONE Sensor S 2.0 

instruments, a comparison of calibrations was performed on the 50 German flour samples 

(which were available in both countries) using the different handheld spectrometers (NIRONE 

Sensor S 2.0 and MicroNIR ) used in Germany and China, respectively. The PLS calibration 

results obtained for protein with the NIR spectra of both instruments after the same spectral 

pretreatment method (EMSC) are summarized in Fig. 4.2. To exclude errors due to sample 

presentation, both instruments were fixed above the same sample and the spectra were 

measured simultaneously (as shown in Fig. 3.9).  
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Fig. 4.2 reflects, that despite small differences the PLS results for protein derived from the 

MicroNIR spectra measured during Stage 3 are similar to those of Stage 1 (in terms of the 

number of factors and the RMSE and R
2
 values), while the results achieved with the data of 

the NIRONE Sensor S 2.0 spectrometer during Stage 3 measurements are extremely different 

from Stage 1 results and of comparatively low quality for both measurement procedures. 

These discrepancies can be explained by the fact, that many spectroscopic footprints of 

proteins occur primarily in the wavenumber range 5000-4000 cm
-1

, which is not available for 

the detection range of the NIRONE Sensor S 2.0 instrument (6452-5128 cm
-1

).Therefore, it 

has been decided to exclude the NIRONE Sensor S 2.0 spectrometers from the further 

analysis process.  

 

 

(a) Protein calibration results achieved during Stage 1 measurements of the German flour samples (measured in 

Germany) with the German NIRONE Sensor S 2.0 instrument. 

 

(b)  Protein calibration results achieved during Stage 3 measurements of the German flour samples (measured in 

China) with the Chinese NIRONE Sensor S 2.0 instrument. 
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Fig. 4.2 Comparison of the PLS protein calibration results for the NIRONE Sensor S 2.0 and MicroNIR spectrometers 

of the same 50 German flour samples measured during Stage 1 (measurements in Germany) and Stage 3 

(measurements in China) 

 

4.1.2 Selection of Pretreatment Methods for Raw Spectra 

Before calibration all spectra were divided into a calibration set (192) and a prediction set (21) 

at a ratio of 9:1 by the SPXY algorithm. For the development of protein calibration models 

with the spectra measured on the IAS 3100 benchtop instrument, the NIR spectra of 213 flour 

samples were collected and a PLS model with 191 calibration samples (removing one outlier) 

and 21 test set samples for external validation was developed. In order to fully exploit the 

available information in the spectra and to reduce unwanted interferences, the raw spectra of 

the samples were pretreated by different methods to minimize or eliminate irrelevant 

(c)  Protein calibration results achieved during Stage 1 measurements of the German flour samples (measured in 

Germany) with the German MicroNIR instrument. 

(d)  Protein calibration results achieved during Stage 3 measurements of the German flour samples (measured in China) 

with the Chinese MicroNIR instrument. 
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information and noise. The best pretreatment method (EMSC) was selected on the basis of the 

PLS calibration and cross-validation parameters (number of factors, RMSE and R
2
 values) 

and is highlighted in red in Tab. 4.1. 

 

Tab. 4.1 Comparison of the protein PLS calibration results for different pretreatment methods applied to the spectra 

measured with the IAS 3100 benchtop spectrometer. 

Method Factor 

Calibration Cross Validation 

𝑅𝑐
2 RMSEC 𝑅𝑐

2 RMSECV 

None 7 0.9550 0.4003 0.9638 0.3631 

SNV 6 0.9801 0.3745 0.9648 0.3582 

EMSC 5 0.9571 0.3907 0.9665 0.3493 

1st Derivative 8 0.8613 0.7023 0.8458 0.7498 

Savitzky-Golay 7 0.9556 0.3974 0.9651 0.3563 

 

4.1.3 Outlier Screening and Analysis of the Number of Factors for Calibration 

Development 

An outlier is an error that clearly exceeds the expected statistical parameters, mainly due to 

some anomalies, and the source may be measurement error, spectral noise, or extreme sample 

properties. During the development of a calibration model, attention has to be paid to such 

outliers, which decrease the performance of the calibration. An outlier is a sample that 

deviates from the other calibration samples and may not belong to the same population, 

thereby negatively influencing the calibration model. For a PLS calibration, outliers can be 

detected by using score plots, plots of residuals, or the parameters of leverage and influence. 

When outliers are judged by the values of leverage and residuals, the larger the leverage and 

the smaller the residuals, the more important are the data for the corresponding calibration. By 

this control procedure, the outliers of the individual calibration sets for the different 

parameters have been identified and are eliminated before calibration model development. Fig. 

4.3 shows all the spectra of an arbitrarily selected instrument for outlier screening. As can be 
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seen in the figure, the two samples marked as red circles outside the magenta threshold line 

belong to classical outlier spectra and need to be removed. 

 

 

Fig.4.3 The influence plot of leverage and variance for the identification of outliers (red circles are marked as outliers) 

 

Another parameter that has a significant effect on the performance of calibration is the 

number of chosen factors or principal components. Fewer factors lead to lower accuracy, 

though to more robust calibrations. Too many factors frequently induce overfitting with only 

an apparent improvement of predictive ability. In the present work, the optimal number of 

factors has been determined from the plot of the RMSE ś versus the number of factors when 

the graphs reach a minimum or a plateau. Furthermore, in Tab. 4.24, the effect of the number 

of factors on the RMSEC and the RMSECV is demonstrated exemplarily for three flour 

parameters (wet gluten, moisture, and protein) calibrated with the spectra recorded on four 

different instruments. For example, for Neospectra Micro's principal component selection, 

although five factors are selected for protein, only two factors are selected for water. The 

number of factors selected for all parameters and instruments are summarized in Tab. 4.24. 

Apart from the optimal number of factors for the individual calibration models, the 

calibration/test set sample ratios, the RMSE ś and the R
2
 (split up in values for calibration (C), 

cross-validation (CV), and prediction (P)) are included. 
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4.1.4 Analysis of the Important Flour Parameters 

The reference values of six parameters representing important quality indicators of flour were 

available for the flour samples of this project, namely protein, moisture, ash, wet gluten, 

sedimentation value and gluten index. These six parameters were determined using standard 

reference methods (see Chapter 3, Section 3.3). However, only the values of three parameters, 

protein, moisture and wet gluten, have been selected for spectroscopic data analysis and 

modeling and the other values were excluded, because the number of samples with reference 

values of sedimentation and gluten index was too small, accounting for only 18.8% of the 

total 213 samples. There are several reasons for not using the ash values for calibration 

development. First, because of the inconsistency between the national standards for ash 

testing in China and the ash testing standards in Germany, the different testing methods also 

lead to larger errors in the ash values; second, the accuracy of the ash values of Chinese flour 

samples tested in China is not high due to the imperfect testing technology of Chinese testing 

institutions for ash values.  

For all samples parameter values of protein and moisture were available, and the coverage of 

wet gluten also reached 93.4%; thus, these three parameter values are more representative of 

the general applicability of the NIR analysis. In Tab. 4.2 the descriptive statistics of all 

parameter values for the investigated flours samples have been summarized. 

 

Tab. 4.2 Descriptive statistical analysis of reference values of the flour samples measured in Germany and China 

 

Reference Number of Samples Mean%(w/w) Max%(w/w) Min%(w/w) Range%(w/w) Std. %(w/w) 

Protein 213 10.76 14.83 3.24 11.59 1.95 

Moisture 213 13.06 19.35 7.07 12.28 1.13 

Ash 213 0.65 1.75 0.37 1.38 0.24 

Wet Gluten 199 29.38 42.79 18.70 24.09 4.29 

Sedimentation 40 36.85 46 12 34 7.90 

Gluten Index 40 90.35 96 74 22 4.02 
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4.2 Analysis Results of the Benchtop Spectrometers IAS 3100 and 

NIR-Freespace 

4.2.1 PCA Results Obtained with Spectra of the IAS 3100 Spectrometer 

The PCA method (see Chapter 2, Section 2.5.2.1) is applied here to highlight discriminative 

features in the spectral data of all 213 samples, and indeed some very interesting issues have 

been detected. Due to the larger wavelength ranges of the spectra measured on the benchtop 

spectrometers (the IAS 3100 spectral range is 11111-5970 cm
-1

 with 776 data points, and the 

NIR-Freespace spectral range is 9091-4348 cm
-1

 with 1201 data points), they contain 

information from several overtones and combination bands (see Fig. 4.28). Therefore, PCA 

can help to distinguish also materials with minor chemical differences. Not only can PCA 

determine the categories to which the samples belong by their scores in each factor space, but 

also the new variables can characterize the quality differences of the original samples in a 

more visual way. 

As shown in Fig. 4.4(a), all samples are analyzed by a PCA model using the spectral data 

measured with the IAS 3100 instrument for the distribution of scores on the second and third 

principal components. In this graph the flours produced in China and Germany are clearly 

clustered and separated allowing an identification of the two species. The two outliers of 

Chinese flour samples can readily be identified and do not reduce the accuracy of sample 

classification. As shown in Fig. 4.4(b), due to the large distance between the two clusters, an 

approximate boundary line can be used to determine the clusters of Chinese and German flour. 

The boundary formula for this clustering discrimination is: 

 

               𝑦 = − .66𝑥 + 0.05 (𝑥 = PC2, 𝑦 = PC )                Eq.63 
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Fig. 4.4 PCA analysis results of 213 flour spectra measured with the IAS 3100 spectrometer ((a) two-dimensional score 

plot (b) boundary result) 

 

In Fig. 4.5 the PCA 2D-score plot of the first and second principal components using the 

spectra of the 154 Chinese flour samples measured with the NIR-Freespace instrument is 

shown. Although two clusters are observable in the PCA score plot (Fig. 4.5), they are not 

based on the high and low gluten content required by the Chinese Flour Quality Classification 

Standard. They can also not be assigned to differences in origin, moisture, protein, ash and 

wet gluten. The outlier observed in Fig. 4.6 is not an ordinary flour sample, but a flour sample 

with admixed baking powder. The addition of a non-flour substance significantly affects the 

PCA classification result of this flour sample. 

 

 

Fig. 4.5 PCA score plot of 154 Chinese flour spectra measured with the NIR-Freespace instrument 

 

The above exemplary PCA analyses demonstrate that flours of different origin can be 

distinguished by PCA analysis. 

CHN 

GER 

Outlier

(a)  
(b)  

Outlier 
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4.2.2 PLS Results Obtained with Spectra of the IAS 3100 and NIR-Freespace Instruments 

Due to the overlap of spectral information at various wavelength positions and the broad 

spectral peaks in the NIR spectra of flour, the qualitative and quantitative analysis of flour 

NIR spectra requires chemometric evaluation methods. For quantitative analysis PLS has 

proved an extremely versatile tool to build calibration models for various flour parameters. 

The spectra of flour samples from different batches measured with the IAS 3100 benchtop 

spectrometer were divided into a calibration set and a test set. A calibration model developed 

for practical use has to include samples with the whole range of content value variations in 

order to provide good prediction values of unknown samples not included in the calibration 

model. For the PLS calibrations developed in this work, 10 % of all spectra (after removal of 

outliers) were selected as test set and the remaining 90 % of samples were used to build the 

calibration model. The results of the descriptive statistical analysis of the flour parameters 

protein, moisture and wet gluten are summarized in Tab. 4.3. 

 

Tab. 4.3 Descriptive statistical analysis of the investigated flour parameters of the German and Chinese flour samples 

measured with the IAS 3100 benchtop spectrometer. 

Parameter Data Set Number of Samples Mean%(w/w) Max%(w/w) Min%(w/w) Range%(w/w) 

       

Protein 

Total 212 10.80 14.80 6.30 8.50 

Calibration  191 10.77 14.80 6.30 8.50 

Test  21 11.03 14.40 7.20 7.20 

  
 

    

Moisture 

Total 208 13.07 15.30 9.90 5.40 

Calibration 187 13.08 15.10 10.10 5.00 

Test  21 12.98 15.30 9.90 5.40 

  
 

    

Wet Gluten 

Total 198 29.38 42.80 18.70 24.10 

Calibration  178 29.28 42.20 18.70 23.50 

Test  20 30.30 42.80 20.60 22.20 

         

 

Since with the NIR-Freespace benchtop spectrometer only 152 Chinese flour samples were 

tested, the total number of spectra in the calibration and test sets are lower than for the IAS 
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3100 instrument. The results of the descriptive statistical analysis of the three parameters are 

summarized in Tab. 4.4. 

 

Tab. 4.4 Descriptive statistical analysis of the investigated flour parameters of the Chinese flour samples measured 

with the NIR-Freespace benchtop spectrometer 

Parameter Data Set Number of Samples Mean%(w/w) Max%(w/w) Min%(w/w) Range%(w/w) 

       

Protein 

Total 152 10.24 14.80 6.70 8.10 

Calibration  137 10.25 14.80 6.70 8.10 

Test  15 10.01 12.20 7.30 4.90 

  
 

    

Moisture 

Total 150 12.97 14.3 10.20 4.10 

Calibration 135 12.96 14.3 10.20 4.10 

Test  15 13.11 14.2 12.40 1.80 

  
 

    

Wet Gluten 

Total 149 29.27 42.80 18.70 24.10 

Calibration  134 29.20 40.20 18.70 23.50 

Test  15 29.90 42.80 21.00 21.80 

         

 

4.2.2.1 Calibration Models and their Prediction Results Obtained for the Spectra 

Measured with the IAS 3100 Benchtop Spectrometer 

The spectral data measured on the IAS 3100 spectrometer have been analyzed quantitatively 

by developing PLS calibration models. Before the PLS modeling, the original spectra had to 

be pretreated in order to eliminate outliers according to the method described in Section 4.1.3, 

and remove noise (the specific spectral pretreatment process was according to section 4.1.2). 

Raw spectra and pretreated spectra are shown in Fig. 4.6. 
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The calibration results obtained for the three parameter values (protein, moisture, and wet gluten) are 

shown in the Figs. 4.7 to 4.9, respectively. The calibrations were performed in three steps: (a) modeling of 

German flour samples only, (b) modeling of Chinese flour samples only, and (c) developing a calibration 

model after merging the flour samples from both countries. In Fig. 4.7(c) to 4.9(c) the calibration set of the 

German flour samples is marked with black circles. From Fig. 4.7(c) it can be seen that the protein content 

interval of the German flours is limited to the region of high protein levels. In Tabs. 4.5 to 4.7, the 

predictions of the test sets corresponding to the calibrations shown in Figs. 4.7(c) to 4.9(c) are summarized. 

 

 

(b) (a) 

Fig. 4.6 Spectra of 50 German (red) and 163 Chinese (blue) flour samples measured with the IAS 3100 

benchtop spectrometer. (a) raw spectra (11111-5970 cm-1) and (b) EMSC pretreated and truncated spectra 

(10101-6238 cm-1) after removal of one Chinese flour outlier sample. 

 

(a)  
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Tab. 4.5 Comparison of Protein reference and prediction values for five German (a) and 16 Chinese (b) test samples 

based on the calibration of Fig. 4.7(c) (AE: absolute prediction error, MAE: mean absolute prediction error) 

 

(a) 

Samples 

#(GER) 
11 16 37 38 49 

Ref. 11.9 12.8 12.3 14.4 13.5 

Pred. 12.10 12.30 12.44 15.01 14.14 

AE 

(Ref.-Pred.) 
0.20 0.50 0.14 0.61 0.64 

MAE  0.42 

(b)  

(c)  

Fig. 4.7 Comparison of the protein calibrations obtained with the spectra of the individual and merged sample sets 

measured on the IAS 3100 benchtop spectrometer. (a) Calibration of 50 German samples (measured in Germany 

with German reference values); (b) calibration of 162 Chinese samples (measured in China with Chinese reference 

values); (c) calibration of merged samples (45 German and 146 Chinese calibration samples with respective 

reference values). 



4 Results and Discussion   95 

(b) 

Samples 

#(CHN) 
17 22 24 39 55 57 59 78 

Ref. 9.7 10.3 10.2 9.9 10.4 11.1 14. 2 10.1 

Pred. 9.12 10.55 10.12 9.87 10.10 11.19 14.58 9.63 

AE 

(Ref.-Pred.) 
0.58 0.25 0.08 0.03 0.30 0.09 0.38 0.47 

Samples 

#(CHN) 
81 87 93 97 109 127 129 135 

Ref. 9.4 7.2 7.9 11.7 9.0 12.1 12.9 10.6 

Pred. 9.88 7.61 8.20 12.50 9.28 11.79 12.71 10.82 

AE 

(Ref.-Pred.) 
0.48 0.41 0.30 0.80 0.28 0.31 0.19 0.22 

MAE  0.38 

 

From the absolute difference of the reference and predicted protein values of the test samples, 

the lowest and highest Absolute Errors (AE) are 0.03 and 0.80, respectively. Mean Absolute 

Errors (MAE) of 0.42 and 0.38 are calculated for Germany and China, respectively. 

 

 

(a)  

(b)  
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Tab. 4.6 Comparison of Moisture reference and prediction values for 5 German (a) and 16 Chinese (b) test samples 

based on the calibration of Fig. 4.8(c). 

 

(a) 

Samples 

#(GER) 
1 16 32 40 49 

Ref. 13.5 14 15.3 14.1 12.4 

Pred. 13.37 14.77 14.73 14.46 12.16 

AE (Ref.-Pred.) 0.13 0.77 0.57 0.36 0.24 

MAE  0.41 

(b) 

Samples 

#(CHN) 
9 12 19 22 30 35 77 88 

Ref. 12.9 13.3 13.2 13.2 13.4 13.7 13.2 10.0 

Pred. 12.83 13.47 13.72 13.13 13.4 13.8 13.04 10.35 

AE (Ref.-Pred.) 0.07 0.17 0.52 0.07 0.00 0.10 0.16 0.35 

Samples 

#(CHN) 
94 102 129 136 145 148 155 156 

Ref. 13.1 13.0 12. 6 12.7 12.8 12.1 13.5 10.2 

Pred. 13.09 13.12 12.50 12.71 12.77 12.18 13.30 9.76 

AE (Ref.-Pred.) 0.01 0.12 0.10 0.01 0.03 0.08 0.20 0.44 

MAE  0.15 

 

From the absolute difference of the reference and predicted moisture values of the test 

(c)   

Fig. 4.8 Comparison of the moisture calibrations obtained with the spectra of the individual and merged sample 

sets measured on the IAS 3100 benchtop spectrometer. (a) Calibration of 50 German samples (measured in 

Germany with German reference values); (b) calibration of 158 Chinese samples (measured in China with 

Chinese reference values); (c) calibration of merged samples (45 German and 152 Chinese calibration samples) 

with respective reference values). 
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samples, the lowest and highest AE are 0.00 and 0.77, respectively. MAE of 0.41 and 0.15 are 

calculated for Germany and China, respectively. 

 

 

 

 

 

 

(a)  

(b)  

(c)  

Fig. 4.9 Comparison of the wet gluten calibrations obtained with the spectra of the individual and merged sample 

sets measured on the IAS 3100 benchtop spectrometer. (a) Calibration of 40 German samples (measured in 

Germany with German reference values); (b) calibration of 158 Chinese samples (measured in China with Chinese 

reference values); (c) calibration of merged samples (36 German and 142 Chinese calibration samples with 

respective reference values). 
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Tab. 4.7 Comparison of Wet Gluten reference and prediction values for 4 German (a) and 16 Chinese (b) test samples 

based on the calibration of Fig. 4.9 (c). 

 

(a) 

Samples 

#(GER) 
1 6 41 46 

Ref. 29.8 30.8 35.1 27.4 

Pred. 29.50 27.70 33.30 29.40 

AE 

(Ref.-Pred.) 
0.3 3.1 1.8 2.0 

MAE 1.80 

 

(b) 

Samples 

#(CHN) 
2 16 23 24 37 38 39 47 

Ref. 26.7 36.2 22.3 28.3 42.8 30.3 30.5 20.6 

Pred. 27.30 40.30 25.50 30.40 41.90 29.30 29.40 22.00 

AE (Ref.-Pred.) 0.6 4.1 3.2 2.1 0.9 1.0 1.1 1.4 

Samples 

#(CHN) 
53 57 78 81 90 142 158 164 

Ref. 31.7 33.7 28.9 27.7 31.3 29.6 32.6 29.9 

Pred. 29.50 31.60 27.00 27.80 30.00 27.70 33.40 28.50 

AE (Ref.-Pred.) 2.2 2.1 1.9 0.1 1.3 1.9 0.8 1.4 

MAE 1.63 

 

From the absolute difference of the reference and predicted Wet Gluten values of the test 

samples, the lowest and highest AE are 0.1 and 4.1, respectively. MAE of 1.80 and 1.63 are 

calculated for Germany and China, respectively. 

 

4.2.2.2 Calibration Models and their Prediction Results Obtained for the Spectra 

Measured with the NIR-Freespace Benchtop Spectrometer 

The spectra measured on the NIR-Freespace benchtop instrument were also used to build PLS 

calibration models for the different flour parameters. Here too, before PLS model 

development, the original spectra had to be preprocessed and outliers had to be removed 

according to the method described in Section 4.1.3. It was found, that the noise in the spectra 
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is very low and therefore the entire wavelength range was used for further processing as 

shown in Fig. 4.10. 

 

 

 

With the NIR-Freespace benchtop spectrometer only Chinese flour samples have been 

measured. Thus, no comparison with the calibration results obtained with German flour 

samples was possible. The PLS calibration results achieved for the three flour parameters 

under investigation are shown in the Figs. 4.11 to 4.13, and the test set prediction results are 

summarized in the Tabs. 4.8 to 4.10. 

 

 

 

 

 

(b) (a) 

Fig. 4.10 Spectra of 154 Chinese flour samples measured with the NIR-Freespace benchtop spectrometer. (a) 

Raw spectra (9091-4348 cm-1) and (b) EMSC pretreated spectra (9091-4348 cm-1) after removal of 1 Chinese 

outlier sample 

Fig. 4.11 Protein calibration results achieved with the spectra of 137 Chinese flour samples measured in China on 

the NIR-Freespace benchtop spectrometer by using the Chinese reference values. 
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Tab. 4.8 Comparison of protein reference and prediction values for 15 Chinese test samples based on the calibration of 

Fig. 4.11 

 

Samples 

#(CHN) 
5 8 14 19 35 41 54 59 

Ref. 7.3 9.2 7.9 10.8 9.9 12.9 10.2 14. 2 

Pred. 6.89 10.02 7.59 10.80 9.66 12.84 10.11 12.27 

AE 

(Ref.-Pred.) 
0.41 0.82 0.31 0.00 0.24 0.06 0.09 1.93 

Samples 

#(CHN) 
99 110 117 118 120 145 150 

Ref. 10.3 10.5 9.5 10.1 12.0 11.5 9.7 

Pred. 11.66 10.27 9.51 10.56 11.91 11.60 9.60 

AE 

(Ref.-Pred.) 
1.36 0.23 0.01 0.46 0.09 0.10 0.10 

MAE  0.34 

 

From the absolute difference of the reference and predicted protein values of the test samples, 

the lowest and highest AE are 0.00 and 1.93, respectively, and a MAE of 0.34 is calculated. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12 Moisture calibration results achieved with the spectra of 135 Chinese flour samples measured in China on 

the NIR-Freespace benchtop spectrometer by using the Chinese reference values. 
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Tab. 4.9 Comparison of moisture reference and prediction values for 15 Chinese test samples based on the calibration 

of Fig. 4.12 

 

Samples 

#(CHN) 
4 6 24 28 34 42 51 55 

Ref. 12.4 13.7 13.5 14.2 13.4 12.6 13.0 13.2 

Pred. 12.45 13.63 13.30 13.70 13.25 12.52 13.21 13.16 

AE 

(Ref.-Pred.) 
0.05 0.07 0.20 0.50 0.15 0.08 0.21 0.04 

Samples 

#(CHN) 
104 106 122 123 139 140 141 

Ref. 12.9 13.3 13.6 13.2 13.1 12.8 11.8 

Pred. 13.08 13.19 13.61 13.40 13.07 12.31 12.40 

AE 

(Ref.-Pred.) 
0.18 0.11 0.01 0.20 0.03 0.49 0.60 

MAE  0.19 

 

From the absolute difference of the reference and predicted moisture values of the test 

samples, the lowest and highest AE are 0.01 and 0.60, respectively, and a MAE of 0.19 is 

calculated. 

 

 

 

 

 

 

Fig. 4.13 Wet gluten calibration results achieved with the spectra of 134 Chinese flour samples measured in China 

on the NIR-Freespace benchtop spectrometer by using the Chinese reference values. 
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Tab. 4.10 Comparison of wet gluten reference and prediction values for 15 Chinese test samples based on the 

calibration of Fig. 4.13. 

Samples 

#(CHN) 
3 9 14 26 31 37 41 55 

Ref. 21.0 33.2 22.8 29.1 29.6 42.8 30.0 32.2 

Pred. 21.70 33.00 22.20 30.30 29.70 40.90 35.90 28.80 

AE 

(Ref.-Pred.) 
0.7 0.2 0.6 1.2 0.1 1.9 5.9 3.4 

Samples 

#(CHN) 
58 67 104 133 136 139 144 

Ref. 27.9 28.5 31.6 30.9 26.9 35.5 30.4 

Pred. 31.00 25.20 32.00 29.90 29.70 35.90 30.00 

AE 

(Ref.-Pred.) 
3.1 3.3 0.4 1.0 2.8 0.4 0.4 

MAE  1.69 

 

From the absolute difference of the reference and predicted Wet Gluten values of the test 

samples, the lowest and highest AE are 0.1 and 5.9, respectively, and a MAE of 1.69 is 

calculated. 

  

4.3 Analysis of Spectra Measured with the Handheld Spectrometers 

MicroNIR, Neospectra Micro and Hamamatsu C15511-01 

4.3.1 PCA Results for MicroNIR, Neospectra Micro and Hamamatsu C15511-01 

With the spectra of the 213 samples measured with the handheld spectrometers PCA models 

were developed in analogy to the data of the benchtop spectrometers (see Section 4.2.1.). The 

amount of raw spectral information (in terms of data points) of the handheld spectrometers 

was much lower than that of the benchtop spectrometers; only 125 data points for the 

wavenumber range 11012-5966 cm
-1

 of the MicroNIR instrument, 257 data points for the 

wavenumber range 7407-3922 cm
-1

 of the Neospectra Micro spectrometer, and 359 data 

points for the 9991-3856 cm
-1

 wavenumber range of the Hamamatsu C15511-01 instrument. 

Since the performance of the three handheld spectrometers is lower than that of the benchtop 
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spectrometers, the results can be considered only as a preliminary comparison with the results 

of the benchtop spectrometers to verify whether PCA can effectively classify the flours of 

different origins and different gluten contents and characterize the flours with the same 

clustering effect as the PCA analysis of the benchtop spectrometers. 

As shown in Fig. 4.14, in the 2D-score plot of the PCA analysis for the MicroNIR spectra, the 

flours from Germany and China are clearly clustered and can be separated in the score plot of 

the first and second principal components. However, the PCA results for the Neospectra 

Micro (first versus fourth principal component score plot) and Hamamatsu C15511-01 

(second principal versus third principal component score plot), could not reach the same 

discrimination. Since the distance between the two clusters in Fig. 4.14 (b) is similar to the 

PCA result of the IAS 3100 instrument in Fig. 4.4 (b), an approximate boundary line can be 

defined to determine the separation of the China and Germany clusters. The equation for the 

boundary line of the clusters is: 

 

                 𝑦 = 0. 𝑥 − 0.2 (𝑥 = PC , 𝑦 = PC2)                  Eq.64 

 

  

Fig. 4.14 PCA analysis results for the 213 flour spectra measured on the three handheld spectrometers ((a) MicroNIR, 

(b) MicroNIR PCA boundary (c) Neospectra Micro, (d) Hamamatsu C15511-01). 

(b)  MicroNIR PCA Boundary (a) MicroNIR 

(c)  Neospectra Micro (d)  Hamamatsu C15511-01) 

CHN 

GER 
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4.3.2 PLS Results for MicroNIR, Neospectra Micro and Hamamatsu C15511-01 

With reference to Section 4.2.2, the spectral data obtained with the three handheld 

spectrometers were also analyzed by developing PLS calibration models for the different flour 

parameters. The spectra of the flour samples measured with the same type but different 

production batches of handheld spectrometers (MicroNIR, Neospectra Micro, Hamamatsu 

C15511-01) during different time periods of the experiment were combined and subsequently 

divided into calibration and test sets. After removing the outliers, 10% of all samples were 

selected as test set and 90% of the samples were used as calibration set to build the calibration 

model. The results of the descriptive statistical analysis of the investigated parameter values 

for the calibration set and test set are summarized in Tabs. 4.11 to 4.13. 

 

 

Tab. 4.11 Descriptive statistical analysis of the investigated flour parameters for the sample sets measured with the 

MicroNIR spectrometer. 

Parameter Data Set Number of Samples Mean%(w/w) Max%(w/w) Min%(w/w) Range%(w/w) 

       

Protein 

Total 210 10.78 14.80 6.30 8.50 

Calibration  189 10.75 14.40 6.30 8.10 

Test  21 11.07 14.80 7.20 7.60 

  
 

    

Moisture 

Total 206 13.07 15.3 9.90 5.40 

Calibration 186 13.05 15.1 9.90 5.20 

Test  20 13.25 15.3 11.60 3.70 

  
 

    

Wet Gluten 

Total 197 29.37 42.80 18.70 24.10 

Calibration  177 29.26 42.20 18.70 23.50 

Test  20 30.37 42.80 20.60 22.20 
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Tab. 4.12 Descriptive statistical analysis of the investigated flour parameters for the sample sets measured with the 

Neospectra Micro spectrometer. 

Parameter Data Set Number of Samples Mean%(w/w) Max%(w/w) Min%(w/w) Range%(w/w) 

       

Protein 

Total 206 10.81 14.40 6.30 8.10 

Calibration 185 10.78 14.30 6.30 8.00 

Test 21 11.07 14.40 7.20 7.20 

  
 

    

Moisture 

Total 207 13.07 15.3 9.90 5.40 

Calibration 186 13.04 15.1 9.90 5.20 

Test 21 13.31 15.3 11.60 3.70 

  
 

    

Wet Gluten 

Total 195 29.38 42.80 18.70 24.10 

Calibration 175 29.27 42.20 18.70 23.50 

Test 20 30.42 42.80 20.60 22.20 

         

 

 

Tab. 4.13 Descriptive statistical analysis of the investigated flour parameters for the sample sets measured with the 

Hamamatsu C15511-01 spectrometer. 

Parameter Data Set Number of Samples Mean%(w/w) Max%(w/w) Min%(w/w) Range%(w/w) 

       

Protein 

Total 211 10.82 14.80 6.60 8.20 

Calibration 190 10.79 14.80 6.60 8.20 

Test 21 11.06 14.40 7.30 7.10 

  
 

    

Moisture 

Total 204 13.06 15.3 9.90 5.40 

Calibration 183 13.03 14.5 9.90 4.60 

Test 21 13.30 15.3 11.60 3.70 

  
 

    

Wet Gluten 

Total 198 29.43 42.80 18.70 24.10 

Calibration 178 29.32 42.20 18.70 23.50 

Test 20 30.38 42.80 20.80 22.00 
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4.3.2.1 Calibration Model and Prediction Results Obtained with the Spectra of the 

MicroNIR Spectrometer 

Before building PLS calibration models for the parameter values based on the MicroNIR 

spectra, the outliers were removed according to the method described in Section 4.1.3. Then 

the noise in the spectra was removed by smoothing and scatter effects were eliminated by 

EMSC (Fig. 4.15) 

 

 

 

Figs. 4.16-4.18 summarize the results of the PLS calibration models for protein, moisture, and 

wet gluten, respectively, based on the spectra measured with the MicroNIR instrument. A total 

of three operations are performed for the calibration set modeling: (a) modeling of German 

flour samples only, (b) modeling of Chinese flour samples only, and (c) modeling after 

merging the flour samples of both countries. In Figs. 4.16(c) to 4.18(c) the calibration results 

for the German flour samples are marked with black circles and in Tabs. 4.14 to 4.16 the 

prediction results of the test sets for the investigated parameters are summarized. 

 

(b) (a) 

Fig. 4.15 Spectra of 50 German (red) and 163 Chinese (blue) flour samples measured with the MicroNIR handheld 

spectrometer. (a) Raw spectra (11012-5966 cm-1) and (b) EMSC pretreated and truncated spectra (10510-6171 

cm-1) after removal of 3 Chinese outlier samples 
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(b) 

(a)  

(c)  

Fig. 4.16 Comparison of country-individual and merged protein calibrations achieved with the spectra measured 

on the MicroNIR spectrometer; (a) calibration of 50 German samples measured in Germany with German 

reference values, (b) calibration of 160 Chinese samples measured in China with Chinese reference values, and (c) 

calibration of merged samples (45 German and 144 Chinese samples) with respective reference values. 
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Tab. 4.14 Comparison of Protein reference and prediction values for 5 German (a) and 16 Chinese (b) test samples 

based on the calibration of Fig. 4.16(c). 

 

(a) 

Samples 

#(GER) 
11 16 37 38 49 

Ref. 11.9 12.8 12.3 14.4 13.5 

Pred. 12.15 12.65 12.54 14.55 12.91 

AE 

(Ref.-Pred.) 
0.25 0.15 0.24 0.15 0.59 

MAE  0.28 

(b) 

Samples 

#(CHN) 
16 17 22 24 39 55 57 78 

Ref. 14.8 9.7 10.3 10.2 9.9 10.4 11.1 10.1 

Pred. 14.89 9.26 9.50 9.84 9.86 10.32 10.46 10.07 

AE 

(Ref.-Pred.) 
0.09 0.44 0.80 0.36 0.04 0.08 0.64 0.03 

Samples 

#(CHN) 
81 87 93 108 109 135 153 154 

Ref. 9.4 7.2 7.9 11.7 9.0 10.6 11.8 12.3 

Pred. 10.10 7.83 8.28 13.05 9.15 10.84 11.58 12.10 

AE 

(Ref.-Pred.) 
0.70 0.63 0.38 1.35 0.15 0.24 0.22 0.20 

MAE  0.40 

 

From the absolute difference of the reference and predicted Protein values of the test samples, 

the lowest and highest AE are 0.03 and 0.80, respectively. MAE of 0.28 and 0.40 are 

calculated for Germany and China, respectively. 

 

 

 

(a)  
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Tab.4.15 Comparison of Moisture reference and prediction values for 5 German (a) and 15 Chinese (b) test samples 

based on the calibration of Fig. 4.17(c). 

 

(a) 

Samples 

#(GER) 
1 18 32 40 49 

Ref. 13.5 14 15.3 14.1 12.4 

Pred. 13.42 13.75 14.86 14.09 12.65 

AE (Ref.-Pred.) 0.08 0.25 0.44 0.01 0.25 

MAE  0.21 

 

 

(b) 

(c)  

Fig. 4.17 Comparison of country-individual and merged moisture calibrations achieved with the spectra measured on 

the MicroNIR spectrometer; (a) calibration of 50 German samples measured in Germany with German reference 

values, (b) calibration of 156 Chinese samples measured in China with Chinese reference values, and (c) calibration 

of merged samples (45 German and 141 Chinese samples) with respective reference values. 
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(b) 

Samples 

#(CHN) 
4 29 39 50 57 63 67 97 

Ref. 12.4 12.9 13.5 13.6 13.2 12.8 13.6 11.6 

Pred. 12.39 13.07 13.31 13.67 13.22 12.54 13.15 11.46 

AE 

(Ref.-Pred.) 
0.01 0.17 0.19 0.07 0.02 0.26 0.45 0.14 

Samples 

#(CHN) 
98 109 118 124 135 144 160 

Ref. 12.6 13.0 13.4 13.1 13.8 13.3 12.8 

Pred. 12.71 12.99 13.23 13.23 13.88 13.19 13.67 

AE 

(Ref.-Pred.) 
0.11 0.01 0.17 0.13 0.08 0.11 0.87 

MAE  0.19 

 

From the absolute difference of the reference and predicted Moisture values of the test 

samples, the lowest and highest AE are 0.01 and 0.87, respectively. MAE of 0.21 and 0.19 are 

calculated for Germany and China, respectively. 

 

 

 

(a) 

(b)  
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Tab.4.16 Comparison of Wet Gluten reference and prediction values for 5 German (a) and 15 Chinese (b) test samples 

based on the calibration of Fig. 4.18(c). 

 

(a) 

Samples 

#(GER) 
6 15 25 41 

Ref. 30.8 29.8 27.4 35.1 

Pred. 28.60 30.10 27.30 32.00 

AE (Ref.-Pred.) 2.2 0.3 0.1 3.1 

MAE  1.43 

(b) 

Samples 

#(CHN) 
2 21 23 24 37 47 62 78 

Ref. 26.7 30.5 22.3 28.3 42.8 20.6 31.4 28.9 

Pred. 26.60 30.60 25.20 29.60 42.20 22.70 29.30 29.10 

AE 

(Ref.-Pred.) 
0.1 0.1 2.9 1.3 0.6 2.1 21 0.2 

Samples 

#(CHN) 
81 102 130 142 148 152 154 164 

Ref. 27.7 36.3 34.4 29.6 30.3 32.8 31.9 29.9 

Pred. 28.30 36.90 32.50 29.50 28.90 34.10 33.10 28.70 

AE 

(Ref.-Pred.) 
0.6 0.6 1.9 0.1 1.4 1.3 1.2 1.2 

MAE  1.11 

 

(c)  

Fig. 4.18 Comparison of country-individual and merged wet gluten calibrations achieved with the spectra measured 

on the MicroNIR spectrometer; (a) calibration of 40 German samples measured in Germany with German reference 

values, (b) calibration of 157 Chinese samples measured in China with Chinese reference values, and (c) calibration 

of merged samples (36 German and 141 Chinese samples) with respective reference values. 
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From the absolute difference of the reference and predicted Wet Gluten values of the test 

samples, the lowest and highest AE are 0.1 and 3.1, respectively. MAE of 1.43 and 1.11 are 

calculated for Germany and China, respectively. 

 

4.3.2.2 Calibration Model and Prediction Results Obtained with the Spectra of the 

Neospectra Micro Spectrometer 

Prior to PLS calibration model development of the spectra measured with the Neospectra 

Micro instrument, outliers were removed according to the method described in Section 4.1.3 

and then the spectra were smoothed and scatter effects were eliminated by EMSC (Fig. 4.19). 

 

 

 

In the Fig. 4.20-4.22 the results of the PLS calibration models for protein, moisture, and wet 

gluten, respectively, are shown. The data were modeled in three steps: (a) modeling of 

German samples only, (b) modeling of Chinese samples only, and (c) calibration development 

after merging the samples from both countries. In Fig. 4.20(c)-4.22(c) the calibration set of 

the German samples is accentuated by black circles and in the Tab. 4.17-4.19 the prediction 

results of the test sets are summarized for the three different flour parameters. 

 

(b) (a) 

Fig. 4.19 Spectra of 50 German (red) and 163 Chinese (blue) flour samples measured with the Neospectra Micro 

handheld spectrometer.  (a) Raw spectra (7407-3922 cm-1) and (b) EMSC pretreated and truncated spectra 

(7258-3922 cm-1) after removal of 2 Chinese outlier samples. 
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(a)  

(b) 

(c)  

Fig. 4.20 Comparison of country-specific and merged protein calibrations achieved with the spectra measured on 

the Neospectra Micro spectrometer; (a) calibration of 50 German samples measured in China with German 

reference values, (b) calibration of 156 Chinese samples measured in China with Chinese reference values, and (c) 

calibration of merged samples (45 German and 140 Chinese samples) with respective reference values. 
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Tab. 4.17 Comparison of protein reference and prediction values for five German (a) and 16 Chinese (b) test samples 

based on the calibration of Fig. 4.20 (c). 

 

(a) 

Samples 

#(GER) 
11 16 37 38 49 

Ref. 11.9 12.8 12.3 14.4 13.5 

Pred. 12.66 11.70 12.15 13.97 14.19 

AE (Ref.-Pred.) 0.76 1.10 0.15 0.43 0.69 

MAE  0.63 

(b) 

Samples 

#(CHN) 
1 3 6 37 62 64 85 87 

Ref. 9.1 7.9 9.7 14.4 10.1 9.9 10.7 7.2 

Pred. 7.22 8.38 11.14 14.79 10.32 10.38 11.25 7.52 

AE 

(Ref.-Pred.) 
1.88 0.48 1.44 0.39 0.22 0.48 0.55 0.32 

Samples 

#(CHN) 
89 100 101 108 131 133 148 149 

Ref. 10.3 12.4 11.8 13.0 9.4 11.1 10.4 10.2 

Pred. 10.58 12.82 11.26 12.63 9.56 10.89 10.65 10.13 

AE 

(Ref.-Pred.) 
0.28 0.42 0.54 0.37 0.16 0.21 0.25 0.07 

MAE  0.50 

 

From the absolute difference of the reference and predicted protein values of the test samples, 

the lowest and highest AE are 0.07 and 1.88, respectively. MAE of 0.63 and 0.50 are 

calculated for Germany and China, respectively. 

 

 

(a)  
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Tab. 4.18 Comparison of moisture reference and prediction values for five German (a) and 16 Chinese (b) test samples 

based on the calibration of Fig. 4.21(c). 

 

(a) 

Samples 

#(GER) 
1 18 32 40 49 

Ref. 13.5 14 15.3 14.1 12.4 

Pred. 13.61 13.72 14.58 13.66 12.58 

AE (Ref.-Pred.) 0.11 0.28 0.72 0.44 0.18 

MAE  0.35 

 

 

 

(b)  

(c)  

Fig. 4.21 Comparison of country-individual and merged moisture calibrations obtained with the spectra 

measured on the Neospectra Micro spectrometer; (a) calibration of 50 German samples measured in China 

with German reference values, (b) calibration of 156 Chinese samples measured in China with Chinese 

reference values, and (c) calibration of merged samples (45 German and 141 Chinese samples) with respective 

reference values. 
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(b) 

Samples 

#(CHN) 
17 29 57 62 63 64 92 97 

Ref. 12.6 12.94 13.2 13.8 12.8 14.5 12.4 11.6 

Pred. 13.88 13.03 13.27 13.88 12.79 15.12 12.43 11.30 

AE 

(Ref.-Pred.) 
1.28 0.09 0.07 0.08 0.01 0.62 0.03 0.30 

Samples 

#(CHN) 
109 118 124 137 144 147 158 160 

Ref. 13.0 13.4 13.1 13.6 13.3 13.6 13.4 12.8 

Pred. 13.22 13.63 13.30 14.09 13.39 13.73 13.37 13.24 

AE 

(Ref.-Pred.) 
0.22 0.23 0.20 0.49 0.09 0.13 0.03 0.44 

MAE  0.27 

 

From the absolute difference of the reference and predicted Moisture values of the test 

samples, the lowest and highest AE are 0.01 and 1.28, respectively. MAE of 0.35 and 0.27 are 

calculated for Germany and China, respectively. 

 

 

 

(a)  

(b)  
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Tab. 4.19 Comparison of wet gluten reference and prediction values for four German (a) and 16 Chinese (b) test 

samples based on the calibration of Fig. 4.22(c). 

 

(a) 

Samples 

#(GER) 
6 15 25 41 

Ref. 30.8 29.8 27.4 35.1 

Pred. 28.70 29.70 26.20 34.10 

AE (Ref.-Pred.) 2.1 0.1 1.2 1.0 

MAE  1.10 

(b) 

Samples 

#(CHN) 
31 35 37 47 56 60 62 65 

Ref. 29.6 29.1 42.8 20.6 27.7 22.6 31.4 28.3 

Pred. 29.60 27.80 39.30 22.00 26.60 21.50 29.90 28.00 

AE 

(Ref.-Pred.) 
0.0 1.3 3.5 1.4 1.1 1.1 1.5 0.3 

Samples 

#(CHN) 
70 84 106 112 130 149 152 154 

Ref. 36.4 30.0 26.8 30.3 34.4 30.6 32.8 31.9 

Pred. 36.30 27.10 25.40 29.30 34.40 29.20 24.80 33.90 

AE 

(Ref.-Pred.) 
0.1 2.9 1.4 1.0 0.0 1.4 8.0 2.0 

MAE  1.69 

(c)  

Fig. 4.22 Comparison of country-specific and combined wet gluten calibrations achieved with the spectra 

measured on the Neospectra Micro spectrometer; (a) calibration of 40 German samples measured in Germany 

with German reference values, (b) calibration of 156 Chinese samples measured in China with Chinese 

reference values, and (c) calibration of merged samples (36 German and 139 Chinese samples) with respective 

reference values. 
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From the absolute difference of the reference and predicted wet gluten values of the test 

samples, the lowest and highest AE are 0.0 and 8.0, respectively. MAE of 1.10 and 1.69 are 

calculated for Germany and China, respectively. 

 

4.3.2.3 Calibration Model and Prediction Results Obtained with the Spectra Measured on 

the Hamamatsu C15511-01 Spectrometer 

To develop PLS calibration models with the Hamamatsu C15511-01 spectra, in a first step 

outliers in the original raw spectra were eliminated (see Section 4.1.3), followed by 

smoothing, EMSC scatter correction and truncation (Fig. 4.23). 

 

 

 

The results of the PLS calibration models based on Hamamatsu C15511-01 spectra for protein, 

moisture, and wet gluten are shown in Figs. 4.24-4.26, respectively. Calibration model 

development is performed in three steps: (a) modeling for German samples only, (b) modeling 

of Chinese samples only, and (c) calibration model development after merging the samples of 

both countries. In Figs. 4.24(c)-4.26(c) the German calibration samples are marked with black 

circles. The predictions of the test set samples for the different flour parameters are 

summarized in Tab. 4.20-4.22. 

 

(b) (a) 

Fig. 4.23 Spectra of 50 German (red) and 163 Chinese (blue) flour samples measured with the Hamamatsu 

C15511-01 spectrometer. (a) Raw spectra (9460-4000 cm-1) and (b) EMSC pretreated and truncated spectra  

(8757-4096 cm-1) after removal of two Chinese outlier samples 
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(a)  

(b)  

(c)  

Fig. 4.24 Comparison of country-specific and merged protein calibrations achieved with the spectra measured 

on the Hamamatsu C15511-01 spectrometer; (a) calibration of 50 German samples measured in Germany 

with German reference values, (b) calibration of 161 Chinese samples measured in China with Chinese 

reference values, and (c) calibration of merged samples (45 German and 144 Chinese samples) with respective 

reference values. 
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Tab. 4.20 Comparison of protein reference and prediction values for five German (a) and 16 Chinese (b) test samples 

based on the calibration of Fig. 4.24(c). 

 

(a) 

Samples 

#(GER) 
11 16 37 38 49 

Ref. 11.9 12.8 12.3 14.4 13.5 

Pred. 11.84 11.28 12.19 14.25 14.01 

AE (Ref.-Pred.) 0.06 1.52 0.11 0.15 0.51 

MAE  0.47 

(b) 

Samples 

#(CHN) 
1 3 5 6 29 37 38 42 

Ref. 9.1 7.9 7.3 9.7 13.0 14.4 10.1 10.2 

Pred. 6.88 7.07 7.63 8.89 12.75 14.01 9.68 10.21 

AE 

(Ref.-Pred.) 
2.22 0.83 0.33 0.81 0.25 0.39 0.42 0.01 

Samples 

#(CHN) 
53 63 64 111 131 153 154 156 

Ref. 10.7 10.4 9.9 11.1 9.4 11.8 12.3 10.3 

Pred. 10.03 10.74 8.82 11.52 10.12 12.71 12.48 12.25 

AE 

(Ref.-Pred.) 
0.67 0.34 1.08 0.42 0.72 0.91 0.18 1.95 

MAE  0.72 

 

From the absolute difference of the reference and predicted protein values of the test samples, 

the lowest and highest AE are 0.01 and 2.22, respectively. MAE of 0.47 and 0.72 are 

calculated for Germany and China, respectively. 

 

 

(a)  



4 Results and Discussion   121 

 

 

 

 

 

Tab. 4.21 Comparison of moisture reference and prediction values for five German (a) and 16 Chinese (b) test samples 

based on the calibration of Fig. 4.25(c). 

 

(a) 

Samples 

#(GER) 
1 18 32 40 49 

Ref. 13.5 14 15.3 14.1 12.4 

Pred. 13.21 13.30 14.79 12.26 12.15 

AE (Ref.-Pred.) 0.29 0.70 0.51 1.84 0.25 

MAE  0.72 

 

 

(b)  

(c)  

Fig. 4.25 Comparison of country-individual and merged moisture calibrations achieved with the spectra measured on 

the Hamamatsu C15511-01 instrument; (a) calibration of 50 German samples measured in Germany with German 

reference values, (b) calibration of 161 Chinese samples measured in China with Chinese reference values, and (c) 

calibration of merged samples (43 German and 140 Chinese samples) with respective reference values. 
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(b) 

Samples 

#(CHN) 
1 17 20 32 35 41 45 49 

Ref. 13.1 12.6 13.20 13.355 13.7 13.4 12.8 13.3 

Pred. 12.82 12.70 13.41 13.54 13.71 13.00 13.23 13.52 

AE 

(Ref.-Pred.) 
0.28 0.10 0.21 0.185 0.01 0.40 0.43 0.22 

Samples 

#(CHN) 
52 64 73 83 92 97 108 143 

Ref. 13.6 14.5 12.8 13.0 12.4 11.6 13.6 12.9 

Pred. 13.69 14.90 13.14 13.06 12.06 11.37 13.24 13.00 

AE 

(Ref.-Pred.) 
0.09 0.40 0.34 0.06 0.34 0.23 0.36 0.10 

MAE  0.23 

 

From the absolute difference of the reference and predicted moisture values of the test 

samples, the lowest and highest AE are 0.01 and 1.84, respectively. MAE of 0.72 and 0.23 are 

calculated for Germany and China, respectively. 

 

 

 

 

(a)  

(b)  
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Tab. 4.22 Comparison of wet gluten reference and prediction values for four German (a) and 16 Chinese (b) test 

samples based on the calibration of Fig. 4.26(c). 

 

(a) 

Samples 

#(GER) 
6 15 25 41 

Ref. 30.8 29.8 27.4 35.1 

Pred. 28.70 29.10 24.70 34.00 

AE (Ref.-Pred.) 2.1 0.7 2.7 1.1 

MAE  1.65 

(b) 

Samples 

#(CHN) 
20 21 22 35 37 56 60 65 

Ref. 36.2 30.5 30.0 29.1 42.8 27.7 22.6 28.3 

Pred. 36.40 27.40 30.80 27.40 39.70 27.30 25.00 31.20 

AE 

(Ref.-Pred.) 
0.2 3.1 0.8 1.7 3.1 0.4 2.4 2.9 

Samples 

#(CHN) 
106 111 118 119 120 148 157 160 

Ref. 26.8 31.9 29.6 31.4 32.7 30.3 20.8 33.8 

Pred. 25.60 32.30 30.10 32.70 34.30 29.90 17.30 32.70 

AE 

(Ref.-Pred.) 
1.2 0.4 0.5 1.3 1.6 0.4 3.5 1.1 

MAE  1.54 

 

(c)  

Fig. 4.26 Comparison of country-specific and merged wet gluten calibrations achieved with the spectra 

measured on the Hamamatsu C15511-01 spectrometer; (a) calibration of 40 German samples measured in 

Germany with German reference values. (b) Calibration of 159 Chinese samples measured in China with 

Chinese reference values, and (c) calibration of merged samples (36 German and 143 Chinese samples) with 

respective reference values. 
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From the absolute difference of the reference and predicted wet gluten values of the test 

samples, the lowest and highest AE are 0.2 and 3.5, respectively. MAE of 1.65 and 1.54 are 

calculated for Germany and China, respectively. 

 

4.4 Optimization of the PCA , PLS-DA and PLS Calibration Models 

4.4.1 PCA Calibration Models 

(1) According to the classification results represented in Figs. 4.5 and 4.15 (a) and (b), it can 

be derived, that the PCA score-plot classification effects observed for the benchtop IAS 3100 

and the handheld MicroNIR spectrometer for wheat flour samples from different countries are 

excellent. The reason can be primarily assigned to the fact that China and Germany are 

geographically far apart, and there are large differences in both wheat varieties due to natural 

conditions, cultivation methods, field management patterns, and flour processing techniques 

and technologies. These distinctive features lead to characteristic differences in their 

vibrational spectra (mid- and near-infrared), that may not be obvious from visual inspection, 

but are accentuated by the multivariate, chemometric evaluation techniques. Thus, NIR 

spectroscopy with handheld instrumentation provides a rapid, non-invasive detection method 

to trace the origin of different flour species. 

(2) From Figs. 4.15 (c) and (d), it is found that PCA has a poor identification effect for the 

two FT-NIR handheld spectrometers (NeoSpectra Micro and Hamamatsu C15511-01). In the 

2D score plot the spectra of the flour samples from China and Germany are mixed together, 

and no clustering can be observed. Thus, it is necessary to find another discriminant analysis 

method to try to solve the problem of FT-NIR spectral classification. 

(3) Comparing the PCA score plots used for the identification of geographical origin, it is 

recognized that the principal components used for the respective score plots are different for 

different instruments. Thus, PC2 and PC3 provided the best separation for the data measured 

with the IAS 3100 instrument, whereas PC1 and PC2 performed best for the MicroNIR data. 

Other choices of principal components for the score plots are possible, but are often 
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accompanied by a decrease of discrimination and identification performance. The example of 

the IAS 3100 instrument (PC2 and PC3) shows, that the first principal components of the 

PCA analysis is not necessarily the best choice for a score plot, because higher factors may 

contain more important information for the discrimination. In conclusion, the optimum 

combination of principal components for a PCA score plot will have to be adjusted from case 

to case to the specific analytical discrimination problem.  

 

4.4.2 PLS-DA Calibration Models 

Since the origin of flour cannot be well discriminated by the FT-NIR spectrometer 

(NeoSpectra Micro and Hamamatsu C15511-01) using PCA, the PLS-DA discriminant 

analysis method was applied to verify sections 4.2.1 and 4.3.1 and these results were 

compared with the PCA results (since only Chinese flour samples were measured with the 

NIR-freespace spectrometer, the PLS-DA method was not used to analyze these spectra). 

 

Tab. 4.23 Number of different latent variables selected for the PLS-DA models of the four spectrometers 

NIR spectrometers Number of different latent variables 

Hamamatsu C15511-01 4 LVs 

NeoSpectra Micro 5 LVs 

MicroNIR 2 LVs 

IAS 3100 1 LVs 

 

In fact, in NIR spectroscopy applications, PLS-DA is designed to predict sample class 

membership via the Y-axis from spectral data contained in the X-axis. The X-axis represents 

the number of samples, and the Y-axis is the predicted result of data cross-validation. 

First, the 213 flour spectra from all spectrometers were preprocessed using the EMSC method, 

after which the amount of latent variables (LVs) was determined by leave-one-out 

cross-validation, as shown in Tab. 4.23. In PLS-DA, the dimensionality reduction 

transformation results in LV, which is a linear combination of spectral variables trying to 

explain the maximum covariance between X and Y. The smaller the number of latent variables 
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selected after cross-validation, the better the classification effect of PLS-DA is. The next step 

is to draw a mean-centered line for all data classes (Fig. 4.27). 

 

 

 

(a) Hamamatsu C15511-01 

(b) NeoSpectra Micro 

(c) MicroNIR 
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Fig. 4.27 PLS-DA scatter plot and discrimination parameters for the spectra of the German (red) and Chinese (green) 

samples measured with the four spectrometers under investigation  

(a) Hamamatsu C15511-01; (b) NeoSpectra Micro; (c) MicroNIR; (d) IAS 3100  

 

  

In the tables included in Fig. 4.27, the second column (Class 1) and the third column (Class 2) 

represent the sample set of German flour and the sample set of Chinese flour, respectively. 

As shown in Figure 4.27 (c) and (d), after selecting two LVs and one LV, respectively, the 

spectral data of the MicroNIR instrument and the spectral data of the IAS 3100 spectrometer 

can be clearly divided into Class 1 and Class 2. The accuracy of both spectrometers is 100%, 

which is expected and consistent with the results of the MicroNIR and IAS 3100 

spectrometers obtained by PCA (see Section 4.2.1 and 4.3.1). However, for the results of the 

two FT-NIR spectrometers (Hamamatsu C15511-01 and Neospectra Micro), as shown in 

Figure 4.27 (a) and (b), their prediction results are not as accurate as those of the other two 

spectrometers (MicroNIR and IAS 3100). Compared with the previous classification results of 

PCA (see Section 4.3.1), the prediction accuracy of Neospectra Micro (Si-Ware) and 

Hamamatsu C15511-01 using PLS-DA is greatly improved, and the prediction accuracy of 

their cross-validation is 84.3% and 98.8%, respectively. The prediction results of Neospectra 

Micro (Si-Ware) are slightly better than Hamamatsu C15511-01, which is also consistent with 

the previous trend of the corresponding PCA classification results. 

 

 

 

(d) IAS 3100 
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4.4.3 Optimization of PLS Modeling Results 

According to Tab. 4.24, it is possible to compare and classify the calibration results for each 

parameter, thereby ranking the calibration performance for the benchtop instrument (IAS 

3100) and the three handheld spectrometers (Neospectra Micro (Si-Ware), MicroNIR (VIAVI), 

C15511-01 (Hamamatsu)). 

 

Tab. 4.24 PLS calibration results for the three flour parameters under investigation obtained with the merged spectra 

sets (213 spectra) for the German and Chinese samples and recorded with the four different NIR instruments. 

 

Calibration parameters 

Flour parameters 
Calibration 

parameters 

Flour parameters 

Protein Moisture Wet Gluten Protein Moisture 
Wet 

Gluten 

 

Outliers 

(Cal.Set/ 

Test.Set) 

IAS 3100 1/0 5/0 1/0 

R
2
P 

IAS 3100 0.9554 0.9430 0.8346 

Neospectra  7/0 6/0 4/0 Neospectra 0.8761 0.6434 0.9062 

MicroNIR 3/0 7/0 2/0 MicroNIR 0.9638 0.8846 0.8759 

C15511-01 2/0 9/0 1/0 C15511-01 0.7922 0.6096 0.8420 

 

Number 

of Factors 

IAS 3100 5 6 6 

R
2

C 

IAS 3100 0.9530 0.9290 0.8784 

Neospectra 5 2 6 Neospectra 0.9345 0.7711 0.8836 

MicroNIR 6 6 6 MicroNIR 0.9302 0.9271 0.8290 

C15511-01 9 9 8 C15511-01 0.8938 0.7713 0.8581 

 

RMSEC 

(% (w/w)) 

IAS 3100 0.4082 0.2196 1.4796 

R
2
CV 

IAS 3100 0.9479 0.9201 0.8622 

Neospectra 0.4775 0.4172 1.4352 Neospectra 0.9128 0.7608 0.8452 

MicroNIR 0.4958 0.2358 1.7558 MicroNIR 0.9158 0.9130 0.7949 

C15511-01 0.6053 0.4093 1.5788 C15511-01 0.8670 0.7066 0.8247 

 

RMSECV 

(% (w/w)) 

IAS 3100 0.4319 0.2342 1.5841 

RPD 

IAS 3100 3.3862 3.0049 1.8154 

Neospectra 0.5539 0.4288 1.6644 Neospectra 2.0741 1.3063 2.3649 

MicroNIR 0.5475 0.2590 1.9335 MicroNIR 3.7506 2.1443 2.0726 

C15511-01 0.6809 0.4662 1.7649 C15511-01 1.6386 1.2615 1.8536 

          

 IAS 3100 0.4032 0.2778 1.9225      

RMSEP 

(% (w/w)) 

Neospectra 0.6820 0.4894 1.4653      

MicroNIR 0.3784 0.2624 1.6864      

 C15511-01 0.8785 0.5120 1.8691      
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 (1) The comparison of the calibration results for the three flour parameters presented in Tab. 

4.24 shows, that protein produced the best results among all four instruments, followed by 

moisture and wet gluten. Proteins are polymers with amino acid repetition units and include 

CH, NH, OH, and amide (CONH) functionalities, that lead to strong absorption bands in the 

NIR spectra. The availability of these characteristic spectroscopic signatures certainly 

contributes to the superior protein calibration models. Tab. 4.24 contains the important RMSE 

parameters for calibration/cross-validation and test-set prediction of the PLS calibrations for 

protein, moisture and wet gluten obtained with the spectra measured on the four instruments 

under investigation. The PLS calibrations developed with the spectra measured on the IAS 

3100 instrument had very similar RMSECV and RMSEP values for the protein and moisture 

parameters, but the corresponding RMSE values for wet gluten showed similar differences of 

up to 0.35 %(w/w) as the RMSECV and RMSEP values for the other three handheld 

spectrometers for all three parameters. 

(2) Wet gluten is an index that is characteristic of the adhesion of dough after the addition of 

water to the flour. For the determination of wet gluten, the dough is prepared from the wheat 

sample with sodium chloride buffer. In the next step, starch, sugar, cellulose, and soluble 

protein are isolated from the dough by washing with sodium chloride buffer, and after 

removal of the excess washing solution, the remaining gelatinous material is representative of 

wet gluten. Therefore, the content of wet gluten correlates with the protein content, viz. the 

higher the protein content, the higher the wet gluten value. Water has strong OH-specific 

absorption bands at 5167 cm
-1

 and 6855 cm
-1

, however, the absorption bands of the 

OH-functionalities of starch and proteins can interfere with the determination of water and 

lead to a lower calibration performance of the moisture parameter. Another source of error is 

the dependence of moisture content on the time and storage conditions between reference and 

NIR measurements.  

(3) Theoretically, the calibration results for moisture should be better than those for wet gluten, 

because water has very strong and characteristic absorption bands (Fig. 4.28). The result of 

the moisture calibration actually depends on the time interval between the determination of 
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the moisture reference values and the acquisition of the NIR spectra of the corresponding 

flour sample: the shorter the time interval, the lower the calibration error and the higher the 

accuracy of the modeling. However, the actual calibration results are only slightly better than 

those for wet gluten (refer to sections 4.2 and 4.3 for a comparison of the PLS calibration 

results for moisture and wet gluten). The main reason for this is that the total time span of the 

three stages of the project was very long: the time interval between the determination of the 

German flour moisture parameter values and the completion of the 2nd stage of the test being 

more than 15 months. The time interval between the acquisition of the Chinese flour moisture 

parameter values and the completion of the 3rd stage of testing is also more than one year, so 

that the moisture calibration results are not optimal. 

 

  

Fig. 4.28 Band assignments of functional groups in the NIR spectrum. 

 

4.4.3 Influence of Spectrometer Conditions on Calibration Performance 

(1) The influence of and competition between available wavenumber range and signal/noise 

(S/N) ratio for instrument performance becomes relevant in the comparison of the four 

spectrometers used for this project. Although in the 4000-6000 cm
-1

 wavenumber range the 
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Neospectra Micro instrument contains several additional intense combination and overtone 

absorption bands of the above-mentioned functionalities compared to the wavenumber range 

of the MicroNIR (see also Figs. 4.19 and 4.15), surprisingly, the calibration performance of 

the Neospectra Micro spectrometer is at best equivalent. Actually, the calibration for protein is 

slightly better for the Neospectra Micro spectrometer compared to the MicroNIR instrument 

(RMSEC values of 0.4775 and 0.4958 for Neospectra Micro and MicroNIR spectrometers, 

respectively, but RMSEP values of 0.6820 and 0.3784, respectively). For moisture, on the 

other hand, the MicroNIR spectrometer has much better calibration parameters. Thus, for 

these parameters, the higher S/N ratio obviously compensates the disadvantage of the 

narrower wavenumber range. 

(2) The best calibration models for the three flour parameters are achieved with the IAS 3100 

instrument. This is mainly due to the fact, that the instrument uses the monochromator 

principle of Texas Instrument ś digital mirror device (DMD™), which leads to a high 

signal-to-noise ratio. Furthermore, because it is a benchtop instrument with more internal 

space which dissipates heat better, high-power light sources can be used, thereby improving 

the intensity of the signals and the stability of the instrument. 

(3) Although both, Neospectra Micro and Hamamatsu C15511-01 instruments, are 

Fourier-Transform NIR instruments, use MEMS technology, and operate almost over the 

entire NIR spectral range thereby covering more spectroscopic information on organic 

compounds, the performance of their calibration models is not as good as that of the 

MicroNIR instrument with LVF technology. Additionally, the Hamamatsu C15511-01 

spectrometer is built with an external light source (see photo of Hamamatsu C15511-01 

instrument in Chapter 3, Fig. 3.7), the measurement procedure is subject to more influencing 

factors and the spectral stability obtained is not as good as that of the Neospectra Micro 

spectrometer, which has been realized as an integrated monolithic spectrometer (see photo of 

Neospectra Micro spectrometer in Chapter 3, Fig. 3.6). The positions of the light source, 

interferometer and detector of the Neospectra Micro instrument are fixed, thereby leading to a 

higher spectral stability. With the progress of MEMS technology, it is believed that this kind 
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of FT-NIR technology will be widely used in various industries in the near future. 

(4) Miniaturization of the spectrometer leads to a better portability which is the basis for its 

application as in-the-field and on-site measurement system. Among the three handheld NIR 

spectrometers used in this project, the MicroNIR and Neospectra Micro instruments have the 

better handiness and are therefore easier to use. Nevertheless, of these two handheld 

spectrometers, the MicroNIR instrument has the higher S/N ratio and is therefore more widely 

used despite the disadvantage of a higher price. 

 

4.5 Chapter Summary 

(1) In this PhD project, five NIR spectrometers (two benchtop and three handheld systems) 

are used to measure the NIR spectra of 50 German and 163 Chinese flour samples. Based on 

the near-infrared spectral characteristics of the samples, PCA models (Figs. 4.4 and Fig. 4.14) 

were established, in which IAS 3100 and MicroNIR (VIAVI) achieved 100% correct 

classification of German and Chinese flour. 

(2) PLS calibration models were developed for protein, moisture and wet gluten for the 

samples of both countries, and the number of samples used for the calibrations of these three 

parameters are summarized in Tab. 4.24. The calibration models for the three flour parameters 

were developed with the spectra measured on two benchtop spectrometers and three portable 

instruments. The described experimental results prove that accurate calibrations can be 

achieved with the benchtop spectrometers with better instrument performance as well as with 

the handheld spectrometers with more flexible measurement operation. In comparison, the 

calibration models developed with spectra measured on the benchtop spectrometers are 

superior to those of spectra acquired with the handheld spectrometers. Within the handheld 

spectrometer systems the LVF-type MicroNIR instrument performed best. Notwithstanding 

some deficiencies, all instruments are able to satisfy the accuracy requirements for industrial 

flour quality and process control. 

(3) Because handheld FT-NIR instruments based on the MEMS technology cover almost the 

whole NIR spectral range, the spectra of these instruments contain a large amount of 
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structural information of organic substances. However, due to the small size of the FT-NIR 

handheld instruments they suffer of poor heat dissipation and their signal-to-noise ratio still 

needs to be improved for further optimization of qualitative and quantitative calibration 

models.
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5 Model Transfer 

5.1 Introduction 

5.1.1 General Process of Model Transfer 

Modern near-infrared spectroscopy analysis is an indirect analysis technology, which 

combines spectroscopic measurement technology with multivariate evaluation techniques 

[206-209]. It has the advantages of being nondestructive and fast and can simultaneously 

detect multi-components. Furthermore, it can be applied for online detection in industrial 

processes [210-214]. At present, NIR spectroscopy is widely used in food, medicine, 

agriculture, petrochemical industry and other fields. However, in the application process of 

NIR spectroscopy, due to differences in spectroscopic systems (e.g. light source, detector and 

other components), or their assembly process, the same sample may exhibit different spectral 

features when analyzed by different instruments. Thus, when a calibration model developed 

for one instrument is applied to the spectra of test samples measured on another instrument, 

the test results may exhibit large deviations or the model may be nonfunctional. Because it 

takes a lot of manpower and material resources to develop a calibration model, the realization 

of model transfer between different instruments is of great significance for practical 

application and for the promotion of the NIR spectroscopy analysis technology [215-220]. 

In recent years, many researchers in China and other countries have made in-depth studies on 

model transfer for NIR spectroscopy and achieved great progress [221-224]. The general 

process of model transfer is shown in Fig. 5.1. The methods to realize model transfer can be 

divided into three categories: The first is to correct parameters of the prediction model, such 

as two-step partial least squares method. The second is to correct prediction results of the 

model, such as slope/deviation algorithm. The third is to correct spectral data, such as the 

direct standardization algorithm [225]. To correct parameters of the prediction model is to 

enhance the predictive effect of the model by adding a series of sample spectra measured 

under the new environmental conditions and/or with new instruments, so that the model can 
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adapt to the sample spectra collected under these new testing conditions. To correct the 

predicted results of the model assumes, that the predicted results of the master spectrometer 

and the target spectrometer are linearly related, and the model transfer is realized by reducing 

the systematic error of the prediction results. However, the above assumption is not valid in 

most cases. Therefore, this approach has a poor effect in model transfer and is only applicable 

under special conditions. To correct spectral data is to standardize spectra, which makes 

spectra of the same sample collected by different instruments and under different testing 

conditions as consistent as possible [226, 227]. Thus, the differences between spectra are 

reduced, so that the established model can be shared between different instruments. The first 

two methods are generally called transfer of calibration model, and the latter realizes the 

sharing of a calibration model. 

 

Master spectra Target spectra
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master model

Input to the master 

model

Prediction results

Model effect evaluation
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To correct model parameters
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Fig. 5.1 Flow chart of the discussed model transfer methods 
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In this experiment, crude protein content of wheat flour was taken as detection index, and two 

NIR spectrometers with different spectroscopic principles, namely Grating Scanning type 

(IAS 3100) and LVF type (MicroNIR), were used to collect NIR spectral data of wheat flour 

samples. DS, PDS and SLRDS algorithms were employed to standardize sample spectra. 

After analyzing the error rate of spectral standardization, the error rate of principal component 

score was put forward to quantitatively describe spectra differences between master and target 

spectrometers of the same sample before and after standardization. The smaller the error rate, 

the smaller the spectra difference of samples. Therefore, the prediction error of the calibration 

model shared among different instruments can be minimized.  

 

5.1.2 Model Transfer Method based on Principal Component Score Difference 

Correction 

In NIR calibration models established by the PLS method, principal component 

decomposition of the spectral data matrix and variable matrix is required. After obtaining the 

loading and score matrices, the number of selected principal components is determined 

according to the principle of minimum predictive residual error sum of squares (PRESS) 

cross-verified by the leave-one-out method, based on which the calibration model is 

established [228]. Therefore, the effect of spectral standardization can be evaluated by the 

difference in principal components for the same group of samples after standardization 

treatment to spectra collected by master and target spectrometers. Specifically, the 

standardized spectra of the target spectrometers are put into the principal component matrix of 

the calibration model for calculating the scores of each principal component. Then, the 

obtained principal component scores are compared with those of the master spectrometer. The 

smaller the difference, the better the effect of spectral standardization to the target 

spectrometer (or vice versa). On this basis, the principal component score error rate (PCSER) 

(described in 5.2.3.2) was proposed to quantitatively evaluate the difference of principal 

components, so as to realize the sharing of a wheat flour protein model among different 

instruments. The main algorithm flow is shown in Fig. 5.2.  

(1) On the basis of a proper spectral pretreatment, PLS is used to establish the master model 



5 Model Transfer  137 

and determine the principal component number, loading and score matrices. 

(2) Representative samples are selected from the master and target sample calibration sets as 

standard sample sets for elaboration of spectral standardization methods (DS, PDS, SLRDS 

algorithms, etc.). The optimal standard sample number is decided according to SSERave 

minimum principle of master and target sample calibration sets.  

(3) A variety of spectral standardization methods are used to standardize the target spectral 

data by using the master spectra of calibration sample sets not involved in spectral 

standardization as standard. 

(4) The standardized spectra of the target spectrometer are put into the principal component 

matrix of the established calibration model, and the principal component scores are calculated. 

The differences of principal component scores between the corrected target spectra and the 

master spectra are evaluated. The similarity of the spectral score matrix of the master and 

target spectra is quantitatively evaluated by using the principal component score error rate as 

evaluation index. If the error is fairly large, the standard sample set should be re-selected and 

the spectral data re-corrected to enable selection of the optimal standardization method with 

minimum error for correcting the spectra of target prediction set. 

Finally, the standardized target spectra are put into the master model for prediction and 

evaluation, in order to demonstrate the sharing of the calibration model established on the 

master spectrometer with other different instruments. 
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Fig. 5.2 The flow chart of model transfer based on principal component score evaluation 

 

5.2 Materials and Methods  

5.2.1 Samples 

The samples were divided into a calibration set (153) and a prediction set (51) in a ratio of 3:1 

by SPXY (sample set partitioning based on joint X-Y distance) algorithm. The test results of 

crude protein content in wheat flour of each set are shown in Tab. 5.1. 
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Tab.5.1 Distribution of crude protein content in wheat flour of the different sample sets 

Sample Set Number Range/% (w/w) 
Average/% 

(w/w) 

Standard 

Deviation 

Coefficient of 

Variation 

Total set 211 6.34~14.83 10.79 1.89 0.18 

Calibration set 153 6.34~14.83 10.77 2.04 0.19 

Prediction set 51 7.84~14.00 10.75 1.30 0.12 

 

5.2.2 Instruments and Test Methods 

Absorbance measurements were performed using an IAS 3100 NIR spectrometer as master 

instrument (denoted as M) and a MicroNIR (VIAVI) spectrometer as target instrument 

(denoted as T). The wavelength range and sampling interval of the NIR spectrometers are 

shown in Tab. 5.2. 

 

Tab. 5.2 Spectral wavelength range and sampling interval of NIR spectrometers 

NIR 

spectrometers 
Wavelength/nm 

IAS 3100 900 - 1675 nm 

MicroNIR 908 - 1676 nm 

 

In order to ensure the consistency of wavelength range in subsequent tests, the spectral data 

for the 908-1670 nm wavelength range of the IAS 3100 spectrometer were selected for future 

studies of spectral standardization methods. The average spectra of samples collected by the 

master and the target spectrometers are shown in Fig. 5.3. 

 

Fig. 5.3 Average spectra of all samples collected by the master and target spectrometers 
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5.2.3 Analysis Method  

5.2.3.1 Spectral Standardization Methods 

DS, PDS and SLRDS algorithms were used to standardize spectra for realizing model transfer 

among different NIR spectrometers. The DS algorithm is based on the mathematical 

relationship between the spectra of the master standard sample set and the spectra of the target 

standard sample set to establish the spectral standardization transfer matrix, which is then 

used to correct the spectra collected from the target spectrometers and reduce spectral 

differences of the same sample measured by different instruments. The principle of PDS 

algorithm is similar to DS as shown in Fig. 5.4. 

Yet, PDS separates continuous wavelengths from spectra, calculates transformation 

coefficients in each wavelength window, establishes a spectral standardization transfer matrix 

according to transformation coefficients of each wavelength window, and uses the transfer 

matrix to correct spectra of the target spectrometers to achieve maximum similarity between 

master and target spectra. The width of the left and right wavelength window region (ω) was 

set to 3 in the test. The SLRDS algorithm assumes that the absorbance of different wavelength 

points is independent of each other, and uses linear regression to correct spectra measured on 

the target spectrometers. 
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 Fig. 5.4 Difference between DS and PDS algorithms 

5.2.3.2 Evaluation Methods of Spectral Differences 

（1）Euclidean Distance 

The spectral differences between instruments were quantitatively evaluated by the Euclidean 

Distance (D) between spectra. The larger the value 𝐷 , the more obvious the spectral 

difference between instruments. The formula for calculating 𝐷 is: 

                        𝐷 = √∑ (𝐴𝑖𝑘 − 𝐴𝑘)2
𝑛
𝑘=1                      Eq.65 

 

In this formula, 𝑘 is the wavelength point; 𝐴𝑖𝑘 is the absorbance of the spectrum collected 

on the target instrument at the 𝑘 wavelength point and the 𝑖 spectrum, and 𝐴𝑘  is the 

absorbance of the standard spectrum (master instrument) at the 𝑘 wavelength point. 

 

（2）Difference of Spectral Data 

The spectral standardization error rate (SSER) was used to characterize the accuracy of 
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spectra standardization between different instruments, and to quantitatively describe spectral 

differences between the target spectra after standardization and the master spectra of the same 

sample. 

The spectral standardization error rate for a sample is defined as: 

                    SSERi=∑
|Mij-Tij|

|Mij+Tij|
K
j=1 ×100%                   Eq.66 

 

in which {Mij,i=1,…,N，j=1,…,K} is the sample spectral matrix of the master spectrometer; 

{Tij,i=1,…,N，j=1,…,K} is the sample spectral matrix of the target spectrometer after 

standardization; 𝑁 is the number of samples; 𝐾 is the data point in the spectra.  

For all sample sets, the average error rate SSERave and maximum error rate SSERmax are 

defined as:  

                    SSERave=
1

N
∑ SSERi
N
i=1                        Eq.67 

                        SSERmax=max(SSERi)                       Eq.68 

 

（3） Error of Principal Component Scores 

The principal component score error rate (PCSER) was used to characterize the similarity of 

principal component score matrices. A lower PCSER means that the principal component 

score matrix of master and target spectra is more similar and the spectral difference is smaller. 

The calibration model based on principal component analysis or partial least square method 

has then a better sharing effect. 

The PCSER formula of the first n principal component scores between master and target 

spectra of a sample is as follows: 

                  PCSER=
1

n
∑ Wi

√(Tm,i-T𝑡,i)
2n

i=1                    Eq.69 

 

in which 𝑇𝑚,𝑖 is the score rate of the 𝑖𝑡ℎ principal component of the master spectrum; 𝑇𝑡,𝑖 

is the score rate of the 𝑖𝑡ℎ principal component of the target spectrum after standardization of 

the corresponding spectrum; 𝑊𝑖 is the contribution rate of the 𝑖𝑡ℎ principal component.  

For all sample sets, the average error rate PCSERave and maximum error rate PCSERmax are 

defined as: 
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                   PCSERave=
1

N
∑ PCSERi
N
i=1                     Eq.70 

                   PCSERmax=max(PCSERi)                     Eq.71 

 

5.2.3.3 Evaluation of Model Performance 

In the process of model establishment, the correlation coefficient of calibration (𝑅𝑐), RMSEC 

and RMSECV were used to evaluate the performance of the model, and the optimal 

calibration model was developed. After establishment of the model, the prediction 

performance of the model is evaluated comprehensively using indicators such as correlation 

coefficient of prediction (𝑅𝑝), RMSEP and RPD. The smaller RMSEC, RMSECV and 

RMSEP are and the closer 𝑅𝑐  and 𝑅𝑝  are to 1, the better the stability and prediction 

performance of the established model are. RPD is used to evaluate the accuracy of the model. 

When RPD < 1.75, the prediction accuracy of the model is too low and this means, that the 

model is not applicable. For RPD ＞ 3, the prediction accuracy is high enough to use the 

model. 

5.2.4 Data Processing and Analysis 

The NIRSA 5.8.8 system (computer software copyright registration number of 2007SR06801), 

IBM SPSS Statistics 25 and Excel 2016 was adopted for data analysis.  

 

5.3 Results and Discussion 

5.3.1 Model Development for the Master Spectrometer 

The PLS method was used to establish a calibration model for the correlation between crude 

protein content of 153 calibration samples and their NIR spectra collected on the master 

spectrometer. In order to fully extract effective information from the spectra, various 

pretreatment methods were employed to process the original spectra for the elimination of 

irrelevant and interference information such as noise in the spectral data. The optimal 
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pretreatment method was selected based on the predictive effect of the established PLS 

analysis model. Evaluation results of the calibration model under different pretreatment 

methods are shown in Tab. 5.3.  

 

Tab 5.3 Evaluation of the PLS calibration models for protein under different pretreatment methods 

Pretreatment 

method 

Number of 

principal 

components 

Calibration set Prediction set 

RPD 
Rc
2 RMSEC Rp

2  RMSEP 

None 7 0.9594 0.3653 0.9661 0.3802 5.4312 

SNV 6 0.9615 0.3559 0.9712 0.3507 5.8928 

Normalization 6 0.9567 0.3833 0.9684 0.3792 5.6306 

MSC 6 0.9612 0.3719 0.9695 0.3610 5.7260 

Normalization 

+MSC 
6 0.9614 0.3720 0.9698 0.3613 5.7544 

1st derivative 13 0.9548 0.3857 0.9739 0.3340 6.1900 

 

It can be clearly seen from Tab. 5.3 that, after comparing the modeling effects of different 

pretreatment methods, when the number of principal components is 6, the crude protein 

calibration model after SNV pretreatment has the best effect. At this condition, the PLS model 

has an Rc
2 of 0.9615, an RMSEC of 0.3559, an Rp

2  of 0.9712, an RMSEP of 0.3507, and an 

RPD of 5.8928, meaning that the model has a high prediction accuracy. The prediction effect 

of master crude protein model is shown in the Fig. 5.5. 

 

 

          (a) Calibration (153)              (b) Prediction (51) 

           Fig. 5.5 Scatter plot of IAS 3100 master calibration (SNV) and prediction for protein content 
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5.3.2 Spectral Standardization 

DS, PDS and SLRDS algorithms belong to supervised algorithms. Hence, a standard sample 

set needs to be selected first, and the selection of the number of samples in the standard 

sample set has an important impact on the effect of spectral standardization. Too few samples 

will lead to insufficient information, while too many samples will increase difficulty of data 

processing, resulting in illusion of over-fitting. Using the Kennard-Stone (K-S) algorithm, 10, 

20, 30, 40, 50, 60, 70 and 80 samples were selected from the master and target calibration sets 

respectively as the standard sample set for spectral standardization, and the standardized 

transfer matrix was established. The three spectral standardization methods were used to 

calibrate spectra from the target calibration sets, and the SSERave of the master and target 

spectral data after calibration were calculated. Under the three algorithms, the relationship 

between the number of standard samples and the SSERave value is shown in Fig. 5.6 for the 

three algorithms. 

 

 

Fig. 5.6 Variation of the SSERave of the target spectrometer with the number of standard samples for the three spectral 

standardization methods. 

 

 

With the increase of the number of standard samples, the effective information contained in 

the standard sample set increases as well. As can be seen from Fig. 5.6, the SSERave value 
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60. For the PDS algorithm, SSERave reaches a plateau when the standard sample number is 

less than 30. Similarly, when the SLRDS algorithm is used, SSERave changes very little with 

the increase of the standard sample number, and reaches the minimum when the standard 

sample number is 40. 

 

5.3.3 Analysis of Spectral Differences 

Fifty samples were selected as optimum alternative to constitute the standard sample set for 

all three algorithms (DS, PDS and SLRDS) and were used to establish a transfer matrix 

between the spectra of the standard sample set collected by the master and the target 

spectrometers. With the help of the transfer matrix, spectra of the calibration sample set 

measured on the target spectrometer were standardized. SSER and PCSER of the master and 

target spectra before and after standardization were calculated, and the average and maximum 

error rate SSER and PCSER, respectively, were compared (Tab. 5.4). 

 

Tab. 5.4 Difference between the target and master spectra before and after standardization 

Algorithm 
SSER PCSER 

SSERave SSERmax PCSERave PCSERmax 

None 72.0133  83.7803  218.1008 323.3647 

DS 0.3973  3.5975  1.3583 5.3757 

PDS 0.5203  1.0622  2.0735 6.0494 

SLRDS 1.0812  2.0744  4.6754 13.0615 

 

As can be seen from Tab. 5.4, SSER and PCSER values of untreated target spectra are high, 

indicating that the master and target spectra have great differences. This is due to the different 

NIR spectrometers selected for the test, which leads to significantly different spectra from the 

same sample. After standardization with DS, PDS and SLRDS algorithms, SSER and PCSER 

of the target and master spectra are largely reduced, however to different degrees. For the 

target spectrometer, the standardization effect of the DS algorithm is the best. 
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5.3.4 The Process of Model Transfer 

Using the spectral standardization methods and parameters identified in section 3.2, the 

spectra of the target prediction set samples (51) were calibrated. The spectra before and after 

standardization were put into the established optimal master model of crude protein (Section 

3.1) for prediction. Fig. 5.7 shows the process of model normalization after using the 

calibration set (153) of the target instrument as the prediction set of the master instrument. 

The predictive scatter diagram of each method is shown in Fig. 5.7(b), and the predictive 

effect of model transfer is shown in Tab. 5.5. 

It can be clearly seen from Fig. 5.7(a) that, compared with Y=X, there is a big difference in 

the intercept of the original spectra predicted by the master model for the target spectra,  

which means that there is a large systematic error in the predictive result. As can be seen from 

Fig. 5.7(b), the predictive effect of the model is improved after the standardized (DS and PDS) 

target spectra are input to the master model. 

  

Fig. 5.7 Predictive scatter plot of crude protein calibration model 

(a) before standardization；(b) after standardization 

 

 

Tab. 5.5 Effect of Model Transfer for target MicroNIR spectrometer 

Algorithm 
Model transfer 

Rp RMSEP RPD 

None 0.0925 119.764 1.0043 

DS 0.9426 0.643 2.9947 

PDS 0.8299 1.2631 1.7924 

SLRDS 0.7567 1.1729 1.2558 
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As shown in Tab. 5.5, when target spectra without standardization are put into the master 

model, the RMSEP is high and RPD < 1.75, which indicates that the master model has a poor 

predictive effect on original target spectra and cannot be directly applied for prediction of 

target spectra. Instead, when target spectra after standardization by DS and PDS algorithms 

are subjected to the master model, the prediction correlation coefficients increase (both above 

0.8). However, from the parameter values it can be derived that the standardization of the 

SLRDS algorithm does not work, RMSEPs decrease sharply, and RPDs also have a certain 

improvement. This shows that the spectral standardization algorithm greatly reduces the 

spectral difference between the master and target spectrometers. Among the three algorithms, 

the predictive effect of the target spectra after standardization by DS algorithm is the best, 

being consistent with the conclusion from section 3.2. The predicted scatter plot of crude 

protein content of target prediction based on the DS algorithm is shown in the Fig. 5.8. These 

results demonstrate that the proposed two evaluation indexes (i.e. SSER and PCSER) can 

effectively analyze spectral differences, accurately evaluate performance of various spectral 

standardization methods, and greatly facilitate model transfer between different 

spectrometers. 

 

Fig. 3.8 Scatter plot of target protein content prediction crude protein content based on DS algorithm 

5.4 Chapter Summary 

Taking wheat flour as sample and the NIR spectral calibration model of crude protein as 

example, this study explores spectral standardization methods between different NIR 
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spectrometers, seeks the best spectral standardization method, and aims to realize the sharing 

of calibration models among different instruments. The main conclusions are as follows: 

(1) Spectral standardization and principal component score error rate were proposed for 

evaluating the effect of spectral standardization, and enabled the quantitative assessment of 

spectral differences and the improvement of accuracy in spectral standardization. 

(2) DS, PDS and SLRDS algorithms all belong to supervised spectral standardization 

algorithms. With the increase of sample number, the effective information contained in the 

standard sample set increases, and the SSERave values of two algorithms (DS and PDS) show 

a downward trend. Yet, too many samples could lead to over-fitting.  

(3) The SLRDS algorithm is ineffective as standardization method, but by the other two 

algorithms (DS and PDS), the spectral differences between the target and the master 

spectrometers are significantly reduced. After standardization by the DS algorithm, the error 

rate of the target spectrometers was the lowest, and the master model had the best effect. Its 

prediction accuracy was greatly improved compared with that before standardization.
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6 Conclusions 

Near-infrared spectroscopy is a technology that integrates analytical chemistry, applied optics, 

applied mathematics and computer science. Because this technology is fast, efficient, 

non-destructive, and practical in on-line detection, it has been chosen by many industries. 

In this project, five NIR spectrometers (2 benchtop and 3 handheld) were selected to measure 

the NIR spectra of 50 flour samples from Germany and 163 flour samples from China. The 

objective of the project is to analyze the indicators of flour, such as crude protein, moisture 

and wet gluten, in order to solve two problems: 1. how to develop calibration models based on 

the NIR spectra of these samples for each reference value of flour; 2. how to solve the transfer 

of spectral models across different spectrometers. 

6.1 How to Build the NIR Spectral Model for each Reference Value of the 

Flour 

In the process of modeling the NIR spectra for each reference value of flour, the number of 

outliers rejected varies from one spectral sample to another. Although there are various 

algorithms for judging outliers, in the actual operation of spectral analysis, outliers are not 

only related to spectra, but also to the accuracy of reference values. Therefore, when 

analyzing sample data, two factors need to be considered separately, and then the selection 

criteria for outliers in the sample data will be set. 

At the stage of determining the pretreatment method for the data, the first step is to find the 

best spectra pretreatment method for calibration development of all flour reference values. 

The selected pretreatment method in this thesis is EMSC, which aims to balance the best 

results of the pretreatment by scatter correction of the raw flour spectra obtained by NIR 

spectrometers with different optical principles. Finding the best pretreatment method requires 

further analysis and optimization steps by trial and error. 

After pretreatment of the data, several major reference values of wheat flour were 

quantitatively modeled by using PLS regression. The NIR spectral models for crude protein, 
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moisture and wet gluten of flour were developed, and the RMSEPs of the best flour models 

were 0.3784% (MicroNIR), 0.2624% (MicroNIR) and 1.4653% (Neospectra Micro), 

respectively. The 𝑅𝑝
2 were 0.7922 (Hamamatsu C15511-01) for the best crude protein model, 

0.6096 (Hamamatsu C15511-01) for the best moisture model, and 0.8346 (IAS 3100) for the 

best wet gluten model, which showed that of the proposed calibration models the most 

accurate was for the prediction of moisture which was superior to protein and wet gluten. 

Generally, the results showed that the analysis of the main reference values of wheat flour by 

NIR spectroscopy was feasible and good prediction models were obtained. 

The identification of wheat flour origin was studied by developing different identification 

models from the measured spectra: PCA, PLS-DA, and significance of difference analysis of 

reference values, respectively. Through the analysis of NIR spectra, it was clearly observed 

that there were differences in the spectra between wheat varieties of different origins. The 

differences in the spectral regions of 1900-2200 nm（5263-4545 cm
-1）is more obvious, 

because there is a large amount of N-H and C-O bond information of proteins in this region, 

which can more accurately reveal the differences in chemical information between wheat 

flour of different origins. Using the PCA method, German and Chinese flours could be well 

identified and classified with the raw flour spectra of spectrometers other than FT-NIR 

spectrometers (NeoSpectra Micro and Hamamatsu C15511-01). However, using the PLS-DA 

analysis method, the assignment of the origin of the flour models from FT-NIR spectrometers 

can be significantly and effectively improved. The experimental results also demonstrate that 

NIR spectroscopy can be effectively used for the rapid quantification of the investigated 

wheat flour parameters. However, the next stage of cross-spectrometer sharing of calibration 

models can be achieved only, when the problem of spectral standardization and spectral 

differences between different instruments is solved. 

 

6.2 How to Solve the Problem of Sharing Spectral Models across 

Spectrometers  

Firstly, two problems need to be solved: optimization of the spectral standardization method 
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and evaluation of the spectral standardization effect. For this purpose, in Section 5.2.3.2 the 

goodness-of-fit evaluation indexes, SSER and PCSER have been proposed after spectral 

standardization. 

In order to achieve the purpose of model transfer for the most important reference value crude 

protein, 163 flour samples from China and 50 flour samples from Germany were collected. 

After comparing various methods of spectral pretreatment and calibration models, the IAS 

3100 spectrometer was selected as the master and the MicroNIR spectrometer as the target. 

The standard sample set for spectral standardization was optimized using the fit of the spectra 

as the final evaluation index. The different effects of three spectral standardization methods, 

DS, PDS and SLRDS, on the sharing of calibration models across instruments are 

investigated. After the three standardization methods were tested, the DS and PDS methods 

significantly reduced the inter-instrument spectral data variability and improved the prediction 

accuracy of the calibration model for wheat flour reference value proteins, while the result of 

the SLRDS method was invalid. Among them, the DS algorithm for crude protein prediction 

was the best, with 𝑅𝑝 improved to 0.9426 and RMSEP of 0.643. The results showed, that the 

PLS regression model with SNV pretreatment in the wavelength range of 1750-2150 nm 

worked best. 

This experiment basically achieved the cross-spectrometer sharing of the crude protein 

correction model. The results demonstrate that the spectral standardization error rate can 

effectively describe the differences between spectra quantitatively, and the principal 

component score error rate can characterize the similarity between the principal component 

score matrices. Traditionally, the error of the cross-spectrometer prediction of the correction 

model is solved in order to evaluate the effectiveness of spectral standardization, which 

ultimately improves the efficiency of model transfer. 

 

6.3 Future Prospects 

This thesis investigates and discusses the application of near-infrared spectroscopy for the 

development of calibration models for the quantitative determination of flour parameters and 
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discrimination of geographical origin of different flours, and applies the spectral 

standardization method to the calibration model transfer for flour parameters. However, there 

are still some aspects that need further improvement and refinement. 

1. The investigations only established three reference value models for moisture, wet gluten, 

and crude protein of wheat flour samples, and the study of model transfer was only applied to 

the reference value of crude protein. In fact, other reference values such as starch, fat, ash and 

sedimentation value of flour samples were not investigated in depth. Future studies should be 

extended to other reference values of wheat flour to establish further calibration models so 

that the purpose of the complete parameter profile for wheat flour can be achieved. 

2. Although the most popular spectral pretreatment method for scatter correction - EMSC - 

and the most frequently used calibration methods for qualitative and quantitative purposes - 

PCA and PLS, respectively - have been applied in the present thesis, additional approaches 

could be tested. 

3. The main factors affecting the sharing of calibration models across spectrometers are the 

differences in working principles and performance indexes of the master and target 

instruments. Follow-up research can further expand the types of spectrometers beyond the 

scope of this thesis, thereby generalizing the approach of calibration model transfer across 

instruments.   
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% (w/w) 

1
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 Der. 

AC 

AE 

AOTF 

ASICs 

ASTM 

AR 

ARM 

ATR 

C 

CARS 

cm 

CV 

D 

DA 

DIGeFa GmbH 

DMD™ 

DS 

ELM 

EMSC 

FAO 

FDA 

FT-MIR 

FT-NIR 

g 

GB/T 

ICC 

IPC 

IR 

K-S 

L 

LED 

log 

LVF 

LVs 

MAE 

MEMS 

MIR 

- % (weight by weight) 

- first-order derivative 

- amylose content 

- absolute error 

- acousto-optic tuneable filter 

- application-specific integrated circuits 

- American Society for Testing and Materials 

- anti-reflection 

- advanced RISC machines 

- attenuated total reflection 

- calibration 

- competitive adaptive reweighted sampling 

- centimeter 

- cross validation 

- euclidean distance 

- discriminant analysis 

- Detmolder Institut für Getreide-und Fettanalytik GmbH 

- digital mirror device 

- direct standardization 

- extreme learning machine 

- extended multiplicative scatter correction 

- food and agriculture organization 

- food and drug administration 

- fourier-transform mid-infrared 

- fourier-transform near-infrared 

- gram 

- 推荐性国家标准 ―Recommended Chinese National Standard‖ 

- International Association for Cereal Chemistry 

- industrial personal computer 

- infrared 

- Kennard-Stone 

- liter 

- light-emitting diode 

- logarithm 

- linear variable filter 

- latent variables 

- mean absolute error 

- micro-electro-mechanical systems 

- mid-infrared 
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2
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SEC 
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S/N 
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SPXY 

SRC 

SSER 

UV 
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- milliliters 

- multiple linear regression 

- mole 

- modified partial least square 

- multiplicative scatter correction 

- nonlinear-iterative partial least squares 

- near-infrared 

- near-infrared spectroscopic 

- nanometer 

- prediction 
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- vertical cavity surface emitting laser 

- wavelet interface to linear modelling analysis 

- wavelet transform 
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