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Abstract 1

Abstract

Classification and Analysis of Chinese and German Flour Samples: Handheld Near-Infrared

Spectroscopy in Combination with Chemometric Data Evaluation

1. Several major reference values of wheat flour were modeled using the near-infrared

(NIR) spectra of flour samples and the multivariate partial least squares (PLS) method.
The calibration models for crude protein, moisture and wet gluten of flour were
developed, and the root mean square errors of prediction (RMSEPs) were 0.3784%
(w/w), 0.2624% (w/w) and 1.4653 % (w/w), respectively. The correlation coefficients
squared for prediction (R3) were 0.7922 for the best crude protein model, 0.6096 for the
best moisture model, and 0.8346 for the best wet gluten model. The results showed that
the analysis of the main parameters of wheat flour by benchtop and handheld NIR
spectroscopy is feasible and good prediction models can be obtained.
Furthermore, the differences in origin of the investigated flour samples (German flour
and Chinese flour) can be discriminated by the analysis of their NIR spectra. This
discrimination is based on the fact, that the NIR region contains overtone and
combination absorption bands of CH, NH, and C=O functionalities which reveal the
chemical differences of wheat flour samples of different geographical origin. By using
principal component analysis (PCA) German and Chinese flour samples could be well
classified by their NIR spectra. However, by using the partial least squares discriminant
analysis (PLS-DA) method, the assignment of flour samples to a specific geographical
origin can be significantly and effectively improved.

2. In this PhD project, five NIR spectrometers (two benchtop and three handheld systems)
are used to measure the NIR spectra of a total of 50 German and 163 Chinese flour
samples. The signal-to-noise ratio, spectral resolution, and accuracy of absorbance values
of handheld spectrometers are generally lower than those of benchtop spectrometers.
According to the near-infrared spectral characteristics of the samples, a PCA model was

established, in which IAS 3100 and MicroNIR (VIAVI) achieved 100% correct
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3.

classification of German and Chinese flour. Furthermore, PLS calibration models for
protein, moisture and wet gluten were also established for samples from both countries.
Experimental results demonstrate that accurate calibration can be achieved using a
benchtop spectrometer with better instrument performance and a handheld spectrometer
with more flexible measurement operations. However, calibration models developed
using spectra measured with a benchtop spectrometer outperformed those acquired with a
handheld spectrometer.

In order to demonstrate the transfer of calibration models based on the NIR spectra of
different instruments, model transfer methods are discussed in this thesis. For this
purpose one spectrometer was defined as master and the others were defined as target
instruments and the effects of three spectral standardization methods, direct
standardization (DS), piecewise direct standardization (PDS) and simple linear
regression direct standardization (SLRDS) algorithms, regarding the sharing of
calibration models across instruments were investigated. Applying the three methods, the
variability of the spectral data between instruments was significantly reduced and the

prediction accuracy of the calibration models for wheat flour parameters was improved.

Keywords: Determination of wheat flour parameters in Chinese and German flour samples;

handheld NIR spectroscopy; application of qualitative and quantitative chemometric data

evaluation methods; spectral standardization and model transfer.



Contents 1

Contents
1 INEFOAUCTION ..o bbb 6
1.1 Background and SignifiCANCE ........ccueiieie i 6
LL2 FIOU .ottt 7
1.2.1 German FIour CharaCteriStiCS .........ccuuierriiriirieisesieie e 8
1.2.1.1 Types of Flour with low Mineral Content............cocovviiieiiiencieeeeees 10
1.2.1.2 Types of Flour with high Mineral Content .............ccocoiiiiiiinieees 10
1.2.2 Characteristics of Chinese FIOUT...........cooiiiiiiiiie s 11
1.3 Current Status of NIR Spectroscopy ReSEArCh ..........ccoovviiiiiiiiiiie e, 12
1.3.1 Current Status of Research on Cereals ..o 13
1.3.2 Current Status of Research on FIOUN...........cccoiiiiiiiiiiiceeee e 15
N I 0 1<To YOS 18
2.1 OVEIVIEW OF FIOUT.....c.tiiiiiitiicic e e 18
2.1.1 Flour Composition and Quality Parameters ...........ccocovrireiieiene s 19
2.1.1.1 Physical Parameters of FIOUI .........ccooiiiiiiiieee s 19
2.1.1.2 Chemical Composition Parameters of FIOUT............ccoviiiiiiiniieees 21
2.1.2 Composition Quality Analysis of FIOUN ..........cccooiiiiiiiiiiiicee e 25
2.1.2.1 Determination of Moisture Content of FIOUN............coeiiiieniiiiicccee, 25
2.1.2.2 Determination of Protein Content of FIOUT ..., 26
2.1.2.3 Determination of Ash Content of FIOUN ............cccooiiiiiiiiici e, 27
2.1.2.4 Determination of Wet Gluten Index and Dry Gluten Index of Flour.................. 27
2.2 OVverview Of NIR SPECIIOSCOPY ...c.veveiiriirieriieiieieie ettt 28
2.2.1 The Development Process 0f NIR SPECIIOSCOPY ........cvvvrireriieiienierienieniisiesieeeeneas 28
2.2.2 Basic Theory of IR/NIR Spectroscopy Technology .........cccoooeieniienininnnieienns 29
2.2.3 Principles of NIR Spectroscopy TeChnology ..........ccocviiiiiiiiiene i 33
2.2.4 Reflection SPECIIOSCOPY ...vveirreeiieiieeitie sttt et enee s 36

2.2.5 Interaction between Radiation and Matter in NIR Spectroscopy (Basic Principles of



Contents 2

Qualitative and Quantitative ANAIYSIS) .......ccooirieiieriiiie e 38
2.2.5.1 Qualitative Analysis of NIR Spectral...........c.ccociiiiiiiiii e 39
2.2.5.2 Quantitative Analysis of NIR Spectral...........cccccevviiiiiiiiicne e, 39
2.2.6 Technical Characteristics of NIR SPeCtrOSCOPY ......cccvvverveeveieeiieiie e sie e, 40

2.3 Instrumentation of NIR SPECIIOSCOPY ....cvvevveiieeieiie et 41
2.3.1 Benchtop NIR SPECIIOMELENS ......ecvveiiieiieiecieesie et 41
2.3.2 Handheld NIR SPeCtrOMELErS .........coiiiiiiieieieieesie e 42

2.4 Data PretreatMent .........coviiiiiiiie e 44

2.5 Chemometric Evaluation Methods ..o 46
2.5.1 Linear and Multiple Linear Regression (MLR).........ccocvoiiiiiiiniiinicseneees 46
2.5.2 FaCtorial MEtNOGS ..........coveieiiiiieiseee e 48
2.5.2.1 Principal Component Analysis (PCA) ......ccoiieiiiieiie e 48
2.5.2.2 Principal Component Regression (PCR) .......ccccveieiieieeicciese e 49
2.5.2.3 Partial Least Squares Regression (PLS) .......cccccoveveiieiiciecee e 50
2.5.2.4 Partial Least Squares Discriminant Analysis (PLS-DA) .......ccccccvoiniiiininiienn, 52

2.6 Model Transfer MENOGS. ..........oviiiiii e 53
2.6.1 Slope/Bias (S/B) AlGOItNM .........ccoiiiiiiiiiieie e 54
2.6.2 Direct Standardization (DS) AlGOrithm ..........cccooeiiiiiiiiiieeee e 54
2.6.3 Piecewise Direct Standardization (PDS) Algorithm...........c.cccoeeiviiiciiccccee, 55
2.6.4 Simple Linear Regression Direct Standardization (SLRDS) Algorithm................ 57

2.7 Validation and CaliDration .............ccoeoiiiiiiiiieee e 58

2.8 Performance Parameters ...........cooiiiiiiiiiieeee e 59

S EXPErIMENTAL.......ooiiiiiiee e 63

3.1 Preparation of Test Samples and Chemical Value Parameters..........ccccccovevevvicverniinnnnnnn 63

3.1.1 Overview of Wheat FIoUur SAMPIES.........cccoveiiiiiiiiiiiieee e 63

3.1.2 Comparison of the Analytical Methods used for the Determination of the
Characteristic Flour Parameters in China and EUrOPe ........cccccoveveeiie e 64

3.1.2.1 Determination of Crude Protein........oooeeee oo 64



Contents 3

3.1.2.2 Determination Of Wet GIULEN ..o 65
3.1.2.3 Determination Of IMOISTUIE. .........ciiiiiiieieeese s 66
3.1.2.4 Determination OF ASN ..o 66
3.2 Spectrometers used in the EXPEriMENTS........cvcveiieie i 67
3.2.1 Benchtop SPECLIOMELErS .......ccvveiecie et 67
3.2.1.1 IAS 3100 SPECITOMETLET......eiiiiiieiiiie ittt esbee e 67
3.2.1.2 NIR-FIBESPACE ..ottt 68
3.2.2 Handheld SPECIOMELELS........oviiiitiitiitieieee et 69
3.2.2.1 NEOSPECEIA MICIO ...t 69
3.2.2.2 NIRONE SENSOT'S 2.0 ..ottt 70
3. 2. 2.3 IMICTONIR ...ttt bbbt 71
3.2.2.4 Hamamatsu C15511-01 .....cccciiiiiiiiiiiiiii s 72
3.3 Experimental Measurement and Evaluation ProCess.............cccovveveiveiieneciieseese e 72
3.3.1 EXperimental StAge L.......ccoooviiieiiee e 74
3.3.2 EXperimental STage 1 ......cooviiiiiiiii s 75
3.3.3 Experimental Stage T ........cooooiiiiiiiee s 76
3.4 AcqUISItioN OF SPECTIAl DALA.........cciviiiiiiieiieieiee e 77
3.5 Spectrum Processing AnalysiS SOTEWAIE ........ccooviiiiiiiiiieieeee e 78
3.5.1 UNSCrambler™ 9.7 .. ....ui it 79
3.5.2 MATLAB R20L168 .....cciuvieiieiiiieiie sttt sttt 79
5.3 NIRSA B.8.8. s 79

3.6 Processing Steps after Spectra MeasuremMent ............cccoveieeieieese s 80
3.6.1 Selection of Pretreatment Methods for Raw Spectra............ccoceveieninininniicnennn, 80
3.6.2 Selection of Effective Spectral Range and Screening of Outliers ............cc.cccceeuee. 80
3.6.3 Separation of Available Samples in Calibration and Prediction Set...................... 80
3.6.4 Calibration and Prediction Model Development ..........ccocveieieneieneneseseeeees 81

4 ReSUILS aNd DISCUSSION ......c.viiiiiiiiiiiicsie sttt 82

4.1 Screening and Optimization Process for the Spectra.........ccccvvevieiiicie s, 82



Contents 4

4.1.1 Initial Screening Of SPECIIOMELEIS. ......ccvviiiieiieieee e 82
4.1.2 Selection of Pretreatment Methods for Raw Spectra............cccooevevininiiieicnenn, 85

4.1.3 Qutlier Screening and Analysis of the Number of Factors for Calibration

D CLY =] (o] o] 1= | A SST PR 86
4.1.4 Analysis of the Important Flour Parameters ............cccocevveieiienecve e 88
4.2 Analysis Results of the Benchtop Spectrometers IAS 3100 and NIR-Freespace............ 89
4.2.1 PCA Results Obtained with Spectra of the IAS 3100 Spectrometer ..................... 89

4.2.2 PLS Results Obtained with Spectra of the IAS 3100 and NIR-Freespace Instruments

........................................................................................................................................... 91
4.2.2.1 Calibration Models and their Prediction Results Obtained for the Spectra

Measured with the IAS 3100 Benchtop Spectrometer..........ccovevveieieeiecie e 92
4.2.2.2 Calibration Models and their Prediction Results Obtained for the Spectra

Measured with the NIR-Freespace Benchtop Spectrometer ..........c.ccovevveveveevecciesieeennen, 98

4.3 Analysis of Spectra Measured with the Handheld Spectrometers MicroNIR, Neospectra
Micro and Hamamatsu CL5511-01 ........ccuiiiiiiieieieiiesiesiese e 102
4.3.1 PCA Results for MicroNIR, Neospectra Micro and Hamamatsu C15511-01 ..... 102
4.3.2 PLS Results for MicroNIR, Neospectra Micro and Hamamatsu C15511-01...... 104
4.3.2.1 Calibration Model and Prediction Results Obtained with the Spectra of the
MICIONIR SPECITOMELET .....c.viiiieieieiee ettt e e e sreene s 106
4.3.2.2 Calibration Model and Prediction Results Obtained with the Spectra of the
NeoSpectra MICrO SPECITOMELET ..........cieeiieiie ittt sre e e e e 112

4.3.2.3 Calibration Model and Prediction Results Obtained with the Spectra Measured on

the Hamamatsu C15511-01 SPECLIOMELEN.......ccviirieieierieriesie s 118
4.4 Optimization of the PCA , PLS-DA and PLS Calibration Models...........ccccccovervenen. 124
4.4.1 PCA Calibration MOGEIS........cccoiiiiiiiieieie e 124
4.4.2 PLS-DA Calibration MOGEIS.........ccoooiiiiiiiiiei it 125
4.4.3 Optimization of PLS Modeling ReSUItS...........cccooiieiiiiiicce e 128

4.4.3 Influence of Spectrometer Conditions on Calibration Performance.................... 130



Contents 5

4.5 Chapter SUMMAIY ......ooiiiiiieiiee ettt st sttt e nbe e e saeenbe st e beenbe e 132

B IMOAEE TTANSTEE ...ttt 134
TN A [ (o Lo [0 Te3 (o] o VOO RRRTRR R 134
5.1.1 General Process of MOdel TranSTer .......oeeee oot 134

......................................................................................................................................... 136

5.2 Materials and MEthOUS ..........cooiiiiiiii e 138
5.2.1 SAMPIES ..o 138

5.2.2 Instruments and Test Methods ..o, 139

5.2.3 ANalYSIS METNOT .......ooviiiiiiiice e 140
5.2.3.1 Spectral Standardization Methods .............cccveviiieiieic e 140
5.2.3.2 Evaluation Methods of Spectral DIfferences..........cccccevevveiiiiciicce e, 141
5.2.3.3 Evaluation of Model Performance...........cccocoveieiiincinineese e 143
5.2.4 Data Processing and ANAIYSIS ........c.coiveviiieieiie et snes 143

5.3 RESUIES aNd DISCUSSION ......cviiiiiiiieieesie sttt bbbt 143
5.3.1 Model Development for the Master SPectrometer ...........ccccevvvenereneniniecienen, 143

5.3.2 Spectral Standardization ...........cccooeiiiiiiiieee s 145

5.3.3 Analysis of Spectral DIffEreNCES..........ccoiviieiirieiee e, 146

5.3.4 The Process of Model TranSfer ... 147

5.4 Chapter SUMMAIY ......ccvvoiiiieie ettt e sbeesbeasaesaeesteeneesneenaeens 148
B CONCIUSIONS ...t 150
6.1 How to Build the NIR Spectral Model for each Reference Value of the Flour ............ 150
6.2 How to Solve the Problem of Sharing Spectral Models across Spectrometers............. 151
6.3 FULUIE PrOSPECES. ... ittt bbbttt 152
RETEIENCES ...t e nes 154

ADDTEVIATIONS INAEX ..ottt ee e e e e e e e e e e ee e et eaaeaeeeeeeeeeennnes 176



1 Introduction 6

1 Introduction

1.1 Background and Significance

Wheat is a cereal plant, which is widely grown all over the world and is one of the three most
important cereal crops produced and consumed worldwide. It is an essential food crop for
human survival, reproduction, and daily living, with more than half of the world's population
eating it [1]. For example, China was one of the first countries in the world to cultivate wheat,
and its wheat production in 2018 totaled 256.7 billion kg, making it a vital component of
agricultural production. Wheat accounts for a substantial component of the Chinese grain
system, with the main production area in the north and a large proportion of all grain crops
cultivated. Wheat is in high demand in China, which outnumbers all other countries in terms
of production and planted area [2]. As a result, maintaining a balance between wheat supply
and demand, as well as a fair structure of wheat quality for the international market and food
production is critical for all countries [1]. Wheat can be used to make flour, bread, cookies,
noodles, and buns, as well as fermented items like beer, alcohol, and spirits (e.g. vodka or
biofuel).

The focus of this study is the rapid detection of several common quality indicators of wheat
flour using handheld near-infrared (NIR) spectrometers. The application of handheld NIR
spectroscopy equipment has been launched for the investigation of wheat flour in order to
explore the enhancement of quality consistency of wheat flour, because of its non-destructive,
rapid, and convenient detection approach in comparison to wet chemical analysis. It is hoped,
that the results of this study will contribute to the quality assurance of wheat flour in
processing, transportation, and sale. Furthermore, it is hoped to have an impact on quality
control of raw materials in general and the advancement of handheld NIR spectroscopy

instrument technology.
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1.2 Flour

Flour is the powder made from peeling and grinding wheat. Water, protein, carbohydrate, fat,
minerals, vitamins, and enzymes make up the majority of its composition [3]. Flour quality
mainly refers to the edible quality, processing quality, nutritional quality and storage quality
of flour, and all these qualities are closely related to the basic components of flour, such as
moisture content, ash content, protein content and gluten content [4]. Due to the differences in
wheat varieties and milling processes, the proportions of each component in various brands of
flour produced in different countries for different purposes are also different. The main
parameters, that reflect the nutritional and processing quality of flour are moisture, protein,
ash, starch, wet gluten, dry gluten, and gluten index [3, 5]. The moisture level of flour has an
impact on its water absorption and, as a result, the freshness of flour products. The water
absorption of flour and the tensile strength of dough, as well as the edible flavor of flour
products, are affected by the crude protein level of flour. The ash component of flour shows
its mineral content and is the most important component influencing the sensory evaluation of
flour products. The amount of starch in flour has an impact on its shine, viscosity, elasticity,
and soft palatability. The protein concentration of wet gluten is closely connected to the
protein content of dry gluten; the gluten index shows the quality of protein [6]. As a result, the
physical and chemical indexes of flour can be used to infer that flour produced by flour mills

meets the highest possible edible and processing quality parameters for residents.

Protein, carbohydrates, vitamins and minerals as well as trace elements such as vitamin A and
vitamin C, are all abundant in milled wheat flour [7]. As a result, flour is often used as a
carrier for iron, zinc, and fortification of citizens' micronutrient intake. High-gluten flour, in
particular, is high in protein and carbohydrates and has been shown to balance potassium and
salt, reduce edema, promote immunity, lower blood pressure, control fat metabolism, supply
dietary fiber, conserve protein, detoxify, and improve intestinal function [8, 9]. In terms of the
distinctions between German and Chinese flours, in addition to the basic variables that lead to

major disparities, such as the variety of wheat farmed, the region, and the environment, the
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two countries have separate flour classifications. In Germany, flour is classified into species
depending on mineral concentration, whereas in China, it is defined depending on its protein

content.

1.2.1 German Flour Characteristics

Wheat (including the subspecies spelt, two-grain wheat and single-grain wheat), rye, oats,
barley, millet, corn, and rice are used to make flour in Germany. Soft wheat, Durum wheat,
Spelt, and Rye flours (bread grains) are appropriate for making "European-style bread,” which
is baked in a steam oven to create water vapor and achieve a crispy crust and soft interior
[10].

Mineral content (or how many milligrams of minerals are included in 100 grams of flour), is
used to classify the different kinds of flour in Germany. Flour TYPE 405, for example,
contains 405 mg of minerals per 100 g of flour. As a result, the higher the number, the higher
the mineral content of the flour and the darker it is. On the contrary, if the mineral content is
relatively low, the color is brighter. The Tab. 1.1 depicts the main classification types of flour
in Germany, and the DIN standard 10355 has been in use in Germany since 1992 to represent
milled products made from common wheat, rye, and spelt [11,12]. To determine the mineral
content of flour, a small amount of flour is burnt in a muffle furnace at 900 <C to ascertain the
type. The remaining (non-combustible) components roughly correspond to the mineral
content of the flour. They have also been called "flour ash™ in the past [12]. Whole grain
foods (flour, semolina) are classified according to DIN 10355 without specifying their content,
and thus no type of number is provided. Whole grain products always contain young seedlings.
Baking flour differs from whole wheat flour in that it no longer contains any seedlings [12]

(Tab. 1.1).
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Tab. 1.1 Flour Types according to DIN 10355 [11]

Minimum mineral
content (%

Maximum mineral

Designation Types Baking characteristics : content (% (w/w) in
(w/w) in dry dry matter)
matter)
Wheat
preferred household flour, good
Wheat flour WM 405 — 0.50
baking properties
Powerful for fine-pored doughs and
Wheat flour WM 550 0.51 0.63
can be used as a multi-purpose flour
Wheat flour WM 812 for light mixed breads 0.64 0.90
for mixed breads or baked goods in
Wheat flour WM 1050 0.91 1.20
the household
Wheat flour WM 1600 for dark mixed breads 1.21 1.80
Durum wheat flour
1600 Durum wheat flour 1.55 1.85
DM
Wheat baked meal ) )
1700 without a seedlings —_— 2.10
WBS
Spelt (DinkelMehl)
In terms of baking technology, it
Spelt flour DM 630 can be used in a similar way to — 0.70
wheat flour type 550
Spelt flour DM 812 — 0.71 0.90
Spelt flour DM 1050 —_— 0.91 1.20
Rye (RoggenMehl)
only rarely used, mostly in southern
Rye flour RM 815 Germany, e 0.90
for light rye breads
for mixed breads, distributed
Rye flour RM 997 0.91 1.10
differently from region to region
for mixed breads, distributed
Rye flour RM 1150 1.11 1.30
differently from region to region
typical "bakery flour" for
Rye flour RM 1370 ) 131 1.60
Rye and mixed rye breads
typical "bakery flour" for
Rye flour RM 1740 ) 1.61 1.80
Rye and mixed rye breads
Baked rye meal ) )
1800 without seedlings —_ 2.20

RBS
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1.2.1.1 Types of Flour with low Mineral Content

TYPES 405/480/400 are the most popular flour species with a protein concentration of
9.0-9.82% (w/w) and good viscosity for doughs and batters, as well as the basic German cake
baking flour, for muffins, cakes, cookies, pies, toast, doughnuts, and other baked goods [13].

TYPE 550 is a multi-purpose flour that contains 11.0-11.5% (w/w) protein and is a medium
gluten flour with a higher viscosity. It is mostly used for home baking and it is an excellent
bread baking flour. It can also be used to make crusty white bread (similar in texture to French
baguette). Bleached or unbleached all-purpose flour is a blend of soft and durum wheat
(bleached flour is whiter than unbleached flour with less vitamin E) and has gluten
composition of 9.0-11.0% (w/w). Multipurpose flour is mostly used in home baking since it is
the most adaptable flour available; it may be used to bake bread as if it were a special bread

flour, but not for cakes or pastry [13].

1.2.1.2 Types of Flour with high Mineral Content

TYPE 812 is a firm, frosted flour for mixed bread (Mischbrot) with increased softness. It is
ideal for baking bread with a consistent form. The flour is derived from durum wheat and has
11.0-13.0% (w/w) gluten. When rubbed between the fingers, it has a light yellow color and a
slightly gritty texture. This is the best flour on the market. Its high gluten content improves
the bread's structure and makes it easier to keep its shape according to bread-making
requirements [14].

TYPE 1050 is a durum wheat flour with a high gluten content that is used to make whole
wheat bread (Vollkornbrot). It can be combined with other flours to increase the gluten
content of the flour, with the proper proportions blended according to the needs. High gluten
flour is created from white durum wheat flour that has at least 13.0-14.5% (w/w) gluten and
can be mixed with flour from other grains to add structure. It can be used to make bread and
pizza and the resultant bread has a high degree of elasticity and [13]. High gluten flours and

gluten-free flours can be used to modify the gluten content of other flours by admixture.
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TYPE 1060 is a whole-wheat flour with a brown hue comparable to rye, which is more
nutritious and fiber-rich than white flour and can be used to make bran or black bread. The
core kernel of whole wheat, which includes germ and bran, yields TYPE 1600 whole wheat
flour, which has a brown hue similar to rye. It has more minerals, fiber, and fat than white
flour and is more appetizing [14]. When baking bread, whole wheat flour is used because it
has a high texture and a nutty flavor, and because whole wheat flour bread is heavier and
more solid, it is frequently blended with white flour.

Rye Flour (RoggenMehl TYPE 1150) is the same as medium rye flour, which has more
vitamin B and E than wheat and flour. Rye flour is the most often used flour in bread
production, and it has a somewhat sour flavor. Rye flour bread has a longer shelf life and a
better taste. It is, however, frequently combined with other flours due to its low gluten content
[15]. There are two subcategories in the classification of rye flour. In southern Germany,
TYPE 815 is primarily converted rye flour, and it is less commonly used than light baking
[16]. Wheat and rye of TYPE 997 are grown in different parts of Germany [17].

Spelt white flour (Dinkel Mehl TYPE 630), also known as white flour in Germany, is a finely
ground flour, which is frequently substituted for flour TYPE 405 [18]. This is an excellent
flour for making bread, but it is usually combined with other flours due to its high gluten
content. It can be quickly kneaded into gluten, the finished product is slightly dry, and the
dough has a relatively low moisture content. TYPE 812 and TYPE 1050 spelt flours are also

equal to all-purpose wheat flour and have the same impact as TYPE 630.

1.2.2 Characteristics of Chinese Flour

China's wheat cultivation stretches across the country; the main regional divisions are
southwest wheat region, middle and lower regions are the Yangtze River wheat region, the
Yellow Huaihai wheat region and northwest wheat region (including northeast spring wheat,
northern spring wheat, northwest spring wheat, Xinjiang winter and spring wheat,
Qinghai-Tibet spring and winter wheat, northern winter wheat, Yellow Huaihai winter wheat,

middle and lower areas of the Yangtze River winter wheat, southwest winter wheat, southern
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China winter wheat, a total of 10 sub-regions). Yellow Huaihai wheat region includes Henan,
Shandong, Hebei, northern Jiangsu, northern Anhui, Shaanxi Provinces. The middle and
lower reaches of the Yangtze River wheat region including Sichuan, Hubei, southern Henan
and Anhui, Jiangsu's riverine areas. The southwest wheat region includes Yunnan, Guizhou,
Sichuan and Chongging Provinces [22].

In China the protein level is used to classify flour. It can be divided into several groups based
on the classification criteria used. According to the protein content of flour, flour can be
classified into three categories: high gluten flour with 10.5%-13.5% (w/w) protein content,
used for bread making), medium gluten flour with 8.0%-10.5% (w/w) protein content, used
for noodles and snacks), and low gluten flour with 6.5%-8.5% (w/w) protein content, used for
snacks and dishes [19]. Based on protein and mineral content, flour can be classified as prime,
first, or second grade, with prime flour containing 7.2% (w/w) and 0.32% (w/w) protein and
ash, respectively, first grade flour containing 12.7% (w/w) and 0.43% (w/w) protein and ash,
respectively, and second grade flour containing 13.5% (w/w) and 0.54% (w/w) protein and
ash, respectively [20]. According to processing precision and use, flour may be split into two
categories: grade flour and speciality flour, and grade flour can be divided into three
categories: special flour, standard flour, and common flour [21]. Speciality flours, such as
bread flour and cake flour, are manufactured by milling particular types of wheat or by
admixing edible whitening agents, edible bulking agents, edible flavors, and other substances

on the basis of the flour grade for the intended use [21, 22].

1.3 Current Status of NIR Spectroscopy Research

Compared with the current standard measurement methods, NIR spectroscopy has the
characteristics of high efficiency, speed and convenience. Thus, in the food field NIR
spectroscopy is gradually replacing the traditional methods for the determination of physical
and chemical indicators of food as a “rising star” in the history of rapid food quality testing,
which has greatly contributed to the rapid and vigorous development of the food industry and

is already developing into a very mature technology [23]. In 1987 Williams and Norris
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proposed the NIR technique for the analysis of wheat breeding, cereals, fruits and oilseeds
with reference to data analysis, instrumentation, commercial applications and factors affecting
spectral analysis [24]. NIR spectroscopy is currently being used to determine the quantity of
significant ingredients in cereals, fruits, seafood, meat products, tobacco, tea, and pasta
products [25-32]. The development of research on NIR approaches in cereals and flour will be

discussed in depth in the following sections 1.3.1 and 1.3.2.

1.3.1 Current Status of Research on Cereals

NIR spectroscopy was first used to determine cereal quality indicators, and it was a huge
success. For example, NIR spectroscopy detection of wheat began relatively late and was
hampered by the slow development of spectroscopic technology. In most countries around the
world, wheat quality assessment is based on subjective guesses, and the judging method has
no scientific basis. Chemical procedures for evaluating wheat are also extensively used in
scientific research institutions and food safety testing, which are time-consuming, expensive,
and necessitate professional instruments and testing staff. The chemical method usually uses
the Kjeldahl method to detect the protein content of the sample [33] and obtains a high testing
accuracy, but the long testing time required (about 2 days for proteins) and the large number
of testing reagents make the cost of testing higher; furthermore, the chemical method can only
do sampling and cannot test in real time. The drying method is commonly used to detect
water content in samples [34], but the procedure is time-consuming and labor-intensive, and
the results can alter depending on the sample's instability.

Yu [35] used NIR spectroscopy and Fourier-transform mid-infrared (FT-MIR) spectroscopy
for the determination of crude protein and water in wheat using different spectral pretreatment
methods and selection of characteristic wavelengths, and the results showed that the best NIR
model for crude protein was developed in the 1400-2500 nm spectral range using 1°
derivative and standard normal variate (SNV) pretreatment methods, showing excellent
predictive performance (R?=0.97); the best mid-infrared spectral model was developed using

the 1750-1100 cm™ region of SNV-corrected spectra, which yielded a good predictive model
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(R%=0.90). Regarding moisture determination, the best model obtained by NIR spectroscopy
(1100-2500 nm based on the original spectrum) showed good predictive performance (R?=
0.86), while the best model generated by the MIR technique using the full wavenumber range
and a 1% derivative-SNV pretreatment spectrum gave only approximate quantitative
predictions (R?=0.72).

The possibility of quantitative prediction of crude protein content of wheat seeds based on
selected short-wave NIR spectral variables was demonstrated by Lu [36]. 52 samples of wheat
seeds were collected and their spectra were obtained in the 900-1700 nm wavelength range,
which were then used to optimize the preprocessing method and to preferentially select
protein-sensitive variables for wheat seeds to establish a PLS calibration model for protein
prediction The results show that the combination of multiplicative scatter correction (MSC)
and wavelet transform (WT) is the optimal preprocessing method for predicting crude protein
content of wheat seeds; using the statistical results of 200 competitive adaptive reweighted
sampling (CARS) variable preferences, 12 variables were selected as wheat seed protein
sensitive variables, and the PLS was established by combining preprocessing optimization
and variable preferences. R; and RMSEP were 0.96 and 0.369 % (w/w), respectively.

Sun [37] developed a PLS prediction model for the determination of wheat protein content
using NIR transmission spectroscopy, and the results showed that the model was able to
predict wheat protein content more accurately, with prediction correlation coefficient,
prediction mean square error and mean relative error of 0.98, 0.113% (w/w) and 1.973%
(w/w), respectively. Barton [38] studied a total of 2203 wheat samples from various regions to
establish a complete database and used it as a "global" calibration. Zheng [39] used
short-wave near-infrared detection to obtain wheat proteins, and the calibration model was
developed by PLS to obtain the best detection wavelength for wheat protein composition.
Since the 1960s, near-infrared spectroscopic (NIRS) techniques have been used for the
quantitative analysis of some components in cereals [40], and the measurement range has
been gradually widened since then. In 2006 Zhu [41] used a filter-based NIRS instrument for

the determination of 7240 samples of 17 crops, including rice, wheat, corn, soybean, sorghum,
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grain, barley, and edible beans. The results showed that the filter NIRS could obtain
satisfactory results for the quantitative analysis of different crops and different nutritional
quality traits. For example, Sohn [42] applied this technique to correctly determine the
straight-chain starch content and protein content of rice during cooking and to predict its
structure. Sinelli [43] applied NIR spectroscopy to study the optimum cooking time and
recommended cooking time of rice and obtained good results. In addition, NIR spectroscopy
can be used to detect the degree of adulteration, storage time and pest infestation of grains.

Villareal [44] collected 250 rice samples and tested them for amylose content (AC). AC
selection in breeding programs was found to be sufficient using the NIR transmission
spectrum of unground brown rice or milled rice. Milled rice calibration is easier to transfer to

other units than brown rice calibration.

1.3.2 Current Status of Research on Flour

In the evaluation of flour quality, the solvent retention capacity (SRC) [45] and ultrasonic
method have been developed rapidly in recent years. By establishing a correlation between
the retention capacity of flour in flour solutions, namely water, sucrose, sodium bicarbonate,
and lactic acid, and the physical and chemical indexes of flour or the traits of flour products,
the SRC method can predict the physical and chemical indexes of flour or the traits of flour
products, but the correlation between the two is poor. The method, however, cannot achieve
accurate prediction of the physical and chemical indexes of flour and can only make a rough
judgment of the nature of the finished flour products due to the poor correlation between the
two. Thus, the method does not provide good guidance for the specific production process
[45]; the ultrasonic technique can only provide a qualitative assessment of the flour category,
not an exact forecast of the physical and chemical indexes of flour; therefore it is ineffective
for guiding the manufacturing process of flour and flour-processing businesses [46].

NIR spectroscopy has been effectively employed in grain storage companies to detect several
physical and chemical markers of wheat, the raw material for flour. NIR spectroscopy is now

frequently also used in flour mills and flour processing plants [48]. For single indicators such
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as flour moisture content, protein content, ash content, gluten index, wet gluten coefficient,
and sedimentation value, NIR spectroscopic calibration models have been established [47].
These models can be used to quickly determine physical and chemical parameters of flour,
providing a point of reference for evaluating flour's nutritional and processing quality. In
addition, in 2003, Mendoza [49] attempted to use NIR spectroscopy to detect insects in flour,
but the results showed that the accuracy of detection could not reach the level of 75 insects/50
g of flour as specified by the U.S. Food and Drug Administration (FDA) but could only
distinguish between two types of flour with insect counts greater than and less than 130
insects / 50 g of flour.

Hruskova & Faméra [50] detected the moisture and protein content and sedimentation values
in various commercial wheat samples by NIR spectroscopy, used modified partial least square
(MPLS) and PLS methods to calculate the spectral properties of wheat, and successfully
predicted the accuracy of the parameters of various commercial wheat samples almost the
same. Statistically significant correlations (P < 0.01 for probability) between predicted and
measured values of protein content and Zeleny sedimentation were determined in a variety of
commercial flour with cross and independent validation.

Cocchi [51] tried to develop the wavelet interface to linear modelling analysis (WILMA)
algorithm and used this algorithm to quantify the extent of adulteration of durum wheat flour
with ordinary bread wheat flour by analysis of NIR spectra.

Jiang [52] developed a new portable NIR spectroscopy software. First he corrected the spectra
by the standard normal variables (SNV) method, then used variable combined population
analysis (VCPA) to optimize the wavelength variables of the SNV-corrected spectra,
determined the characteristic wavelength variables that are highly correlated with fatty acid
values, and finally used an extreme learning machine (ELM) to construct a detection model
for fatty acid values.

Wesley [53] obtained samples directly from wheat breeders and compared the results of the
curve fitting method with the more commonly used partial least squares curve fitting of the

component protein spectra. The content of gliadin and glutenin was measured using
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size-exclusion high performance liquid chromatography (SE-HPLC) and used to develop
partial least squares calibration, with the results compared to curve fitting methods.

Yan [54] achieved a rapid detection of flour moisture by combining chemometric methods
and NIR-based spectral detection technology, developing efficient mathematical models (PCA,

PLS, and MPLS) and improving the model database.
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2 Theory

2.1 Overview of Flour

Wheat flour, as an easily digestible natural product, is rich in beneficial substances such as
carbohydrates, proteins, fibers, and minerals, and it plays an important role in the daily dietary
structure, being used in the preparation of a wide range of baked goods and pasta products [3].
According to the Food and Agriculture Organization of the United Nations (FAO), the world
wheat sown area amounts to 221.62 million hectares in 2014, with a total production of
728.97 million tons and an average yield of 3289 kg/ha (Tab. 2.1). Some countries in Asia,
Europe, and the Americas produce the majority of the world's wheat (Tab. 2.2). These three
continents and their regions account for 89.82 % of total sown area and 92.89 % of total
wheat production in the world. For example, China is the world's second largest wheat sown

area but the world's first in wheat production [55].

Tab. 2.1 Global wheat sown area and production (2009-2014) [55]
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Tab. 2.2 Wheat production in the top 10 (producing) wheat-growing countries worldwide in 2014 [55]
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Because wheat grows in different geographical areas, the surface shape and structure of the

wheat grain can vary. Wheat flour has a wide range of physical and chemical properties,

including protein, wet gluten, moisture, ash, and sediment content, all of which have a direct

impact on its application range.

2.1.1 Flour Composition and Quality Parameters

2.1.1.1 Physical Parameters of Flour

Color: The mill grinds wheat to make finely ground flour from its endosperm. The color of

the flour varies due to the different skin color and grain quality of wheat [3]. White wheat

flour is generally whiter than red wheat flour, and durum wheat flour is darker than soft wheat

flour. This is due to the fact that it is impossible to avoid incorporating bran into the flour

during the manufacturing process; the skin color of white wheat is less noticeable in the flour,

whereas red bran mixed into the flour causes the flour to be maroon in color [56]. The

endosperm of durum wheat is slightly creamy yellow, and the endosperm of silty wheat is

white; the raw material contains too much lime soil or there are more mustard seeds. Without

thorough cleaning and selection, the color of the flour is bluish gray or has extremely fine
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black spots; if the rolling distance of the grinding roller is too tight, this will cause the
grinding roller to be heated and the powder particles will be dark gray [57].

Coarseness and fineness: These physical properties are determined by the sieve specification.
The particle size requirements are not consistent due to differences in flour quality and usage.
The thickness of the flour reflects the precision with which wheat flour is processed. Wheat
flour particles can be ground into flour when they must have a specific standard particle size.
Flour is made up of three main components: endosperm pieces with a particle size of less than
15 um, large starch granules with a particle size of 15-40 um, and protein fragments with a

particle size of less than 15 um [53].

Water absorption: It refers to the amount of water added to the flour when it is made into
dough. Because the quality of flour varies, so does the water content, and so does the water
absorption. The water absorption of flour is closely related to its protein content; high protein
content equals large water absorption; low protein content equals low water absorption. Water
absorption is also linked to the amount of starch in flour. The water absorption rate of
damaged starch is approximately 5 times that of intact starch (the water absorption rate of
intact and damaged starch is 0.44 % (w/w) and 2.0 % (w/w), respectively); thus, the more
damaged starch is in the flour, the higher the water absorption rate of the flour [58]. However,
the water absorbed by damaged starch will seep from inside during dough fermentation,
affecting the quality of flour products. As a result, in some countries, the maximum

percentage of damaged starch is also listed as a flour quality indicator [59].

Sedimentation value: It is a comprehensive indicator of wheat quality and is measured by the
sedimentation test. The sedimentation test was first proposed by L. Zeleny in 1947, and the
basic method is that a certain amount of wheat flour absorbs water and swells when exposed
to a weak acid medium, forming flocs that settle slowly. The sedimentation volume within a
given time period is referred to as the sedimentation value, which is expressed in milliliters

(mL) [60]. The settling speed and volume reflect the gluten content and quality; the higher the
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measured value, the greater the gluten strength, indicating that the higher the gluten strength,
the better the baking quality of wheat flour. Furthermore, because its determination method is
relatively simple, it has been highly valued and widely used by breeders and grain chemistry
researchers both at home and abroad, and it has been standardized [61, 62].

Numerous studies have found that the sedimentation value very significantly correlated with
the quality of wheat flour food processing (baking, steaming, cooking, and so on), and that the
sedimentation value has a high genetic capacity and is effective in breeding early generation
selection [63-65]. Scholars in some European countries believe that combining sedimentation
value and protein content is the best way to assess wheat quality, replacing gluten quantity
analysis [66-68]. Seed hardness, protein content, and sedimentation value, according to Luo et
al., are measurements that respond well to selection for quality when seed quantity is limited
(e.g., in early breeding generations) [69]. In Germany, the sedimentation value has been

identified as a crude measure of processing quality [70].

2.1.1.2 Chemical Composition Parameters of Flour

The chemical composition of wheat flour greatly influences its quality. Wheat flour's main
components are protein (about 10-12 %) and starch (about 70-75 %), with polysaccharides
(about 2-3 %) and lipids as minor components (about 2 %) [71]. In Tab. 2.3 the chemical

composition ranges of wheat and flour are summarized.

Moisture: Moisture content of wheat flour ranges between 13.5% (w/w) and 14.0 % (w/w).
When the moisture level exceeds 14.0% (w/w), storage under high temperature and high
humidity conditions increases cellulose loss; when the moisture level exceeds 15.0% (w/w),
mildew can reproduce; and when the moisture level reaches 17.0% (w/w), not only molds, but

other bacteria can reproduce [72].



2 Theory 22

Tab. 2.3 Chemical composition of wheat flour (weight %c)

Ingredients Moisture Starch and Protein Fat Cellulose Minerals
Name Sugar
Wheat 13.84 68.74 9.42 1.47 4.43 2.07
High-precision flour 13.68 75.65 9.12 0.90 0.06 0.59
Ordinary flour 13.48 7257 10.37 1.70 0.79 1.09
Bran 11.00 56.00 13.00 4.20 10.50 5.30

As the moisture content rises, so does the activity of various enzymes, resulting in the
breakdown of nutrients and the generation of heat, as well as the proliferation of
microorganisms and insects, which eventually leads to flour spoilage. Furthermore, for every
1% (w/w) increase (or decrease) in moisture in wheat flour, the dry matter content decreases
(or increases) by about 0.86 % (w/w) [73]. Any consumer or manufacturer will suffer losses if
the moisture content is too high or too low. As a result, the moisture content of wheat flour
must be strictly controlled during the flour-making process.

Starch: Starch is a polysaccharide that is one of the main components of wheat flour. In the
human body, starch is hydrolyzed to produce glucose, which is then absorbed and utilized.
Starch is used by the human body at a rate of more than 90%. Starch provides approximately
70% of the energy required for various physiological activities and labor, making it one of the

most cost-effective and important nutrients for human beings [74].

Gluten: Gluten is a substance that has extension and elasticity when wheat flour is mixed
with water and formed into dough. Then, water is used to rinse off the starch, bran, and
water-soluble substances in it, and it is finally rendered insoluble in water [75]. The chemical

composition of gluten is represented in Tab. 2.4:

Tab. 2.4 Composition of gluten (weight %0)

Protein Sugar
Chemical - . Albumin
Composition Gliadin Glutenin Globulin Soluble Sugar Starch Fat Ash
43.10 39.10 4.40 2.13 6.45 2.80 2.10

Gluten is important in food quality, because the volume and shape of bread and buns (the ratio
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of height to bottom area diameter) are directly related to the quantity and quality of gluten.
Wheat flour with a high gluten capacity absorbs more water, has a high elasticity, a high gas
retention capacity, a large dough height after fermentation, a small bottom area diameter, a
loose and uniform internal structure, and is suitable for baking bread and other foods [76]. If
the gluten capacity of wheat flour is poor, with less dough absorption, weak elasticity, poor
gas retention capacity, large dough dispersion area after fermentation, and a small height, this
flour is suitable for baking cookies or pastries [77]. The amount of gluten content is
determined by the quality of the wheat variety. In general, durum wheat has a high protein
content as well as a high quality [76]. Wheat storage conditions also have an impact on gluten
quality. Gluten quantity and quality will be reduced in sprouted, heated, frostbitten,
insect-infested, or moldy wheat. In conclusion, gluten content is related to wheat variety and
quality; thus, wheat gluten content serves as the foundation for matching processing and

ensuring process quality.

Fat: Fat content of wheat ranges from 0.7 (w/w) to 1.9 % (w/w), with the majority of it being
unsaturated fatty acids found primarily in the embryo and paste flour layers (Aleurone layer).
The fat content of wheat flour varies after processing due to the different precision of wheat
flour; in general, high-precision wheat flour contains less fat, while low-precision wheat flour
contains slightly more fat [78]. If the fat content of wheat flour is low, it is usually necessary
to increase the fat content when making food to increase the nutrient content and improve and
enhance the taste. However, from the standpoint of storage and transportation, wheat flour,
such as high fat content, will cause acidification in certain hot and humid conditions, resulting

in wheat flour deterioration.

Cellulose: The cellulose in wheat flour is derived from finely ground wheat hulls and the
paste flour layer scraped off the hulls during the flour-making process. When the processing
precision of wheat flour is high, the flour yield is low and the crude fiber content is high

when the processing precision is low, the flour yield is high and the crude fiber content is
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lower [79]. Tab. 2.5 shows the cellulose content for various precisions of wheat flour.

Tab. 2.5 Cellulose content for various precisions of wheat flour [79]

Precision of wheat flour
(flour extraction rate)%

Crude fiber content % (w/w)  minimum 0.55 1.00 1.50 1.95

75 85 90 95 100

Although fiber is a sugar that cannot be digested or absorbed by the body, it can promote
gastrointestinal peristalsis, stimulate the digestive glands to secrete digestive juices, aid in the
digestion of other nutrients, and play an important role in the prevention of colon cancer,

among other things [80].

Minerals: Phosphorus, potassium, magnesium, calcium, sodium, iron, copper, and other
elements are found in wheat flour [81]. Wheat flour contains various elements in the form of
inorganic salts. Because of the role of phytic acid and cellulose in whole wheat flour and high
flour yield wheat flour, calcium is recovered by phytic acid, and the effective value of iron is
also reduced, whereas high-precision wheat flour contains significantly less iron and calcium;
thus the lack of these two minerals in wheat flour is an important addition to the fortification

of wheat flour [82].

Vitamins: Vitamins are a class of compounds that the body requires to maintain normal
physiological functions [83]. Wheat used to have more B vitamins, but the majority of these
vitamins are now concentrated in the germ, paste flour layer, and skin layer. After processing,
the vitamins in wheat flour are greatly reduced, and their content ranges from 10%-30% (w/w)
of the wheat grain [84]. The vitamin content of high-precision wheat flour is even lower. In
China, the standard flour yield of wheat is about 80%-82% (w/w), with a retention rate of
about 95% for vitamin B1 and E, 50% for vitamin B2, and 35% for nicotinic acid. Specially
made flour has a flour yield of about 70%, with a retention rate of about 10% for vitamin B1,
60% for vitamin E, 35% for vitamin B2, and 20% for nicotinic acid [85]. There is also a

significant loss of vitamins during the cooking process due to various methods.
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2.1.2 Composition Quality Analysis of Flour

In general, the variety of properties of the final products implies, that analytical techniques for
determining the parameters, which represent the property profile of a specific type of flour
must be available. Given the variability of grain components, producing flour with correct and
consistent quality parameters is a difficult task, which necessitates continuous monitoring of

flour parameters during the manufacturing process.

2.1.2.1 Determination of Moisture Content of Flour

The weight measurement method is the most commonly used method for determining
moisture content. It is divided into atmospheric drying method, decompression drying method,
high-temperature drying method, infrared drying method, microwave drying method, and
distillation method [86]. Because atmospheric pressure drying, reduced pressure drying, and
high temperature timing drying lose some volatile substances while removing moisture, the
measured moisture content is inaccurate and time-consuming [87]. When using infrared
technology to dry flour, decomposition and Merad reactions will occur inside the flour,
causing some moisture to affect the experimental results [88]. At the same time, the physical
state of the material influences measurement accuracy. The microwave method is sensitive,
fast, safe, does not damage the material, has moderate price, and can be applied as on-line
measurement [89]. The measurement signal can be used for online digitalization, and
visualization. The sampling device used in on-line measurement requires only low loading,
the measured result is the overall moisture and superior to the surface measurement
technology. But the lower detection limit is not low enough and the measured value is related
to the composition of the material; different varieties need to be calibrated separately. The
distillation method consists of heating the sample together with an organic solvent, so that the
moisture escapes by vaporization and volatilization, and the moisture collected by the
condensing device determines the moisture content of the sample. This method easily causes

the sample to blacken and scorch dehydration carbonization thus leading to higher
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measurement results due to the high boiling point of organic solvent [90]. The determination
of sample moisture content can also be accomplished using chemical methods, such as the
Karl Fischer method, which uses a chemical reaction between Karl Fischer reagent and water
to determine the moisture in the sample by titration, which is too expensive and requires
grinding, which loses some of the moisture, resulting in inaccurate measurement results that
frequently require calibration [91]. Furthermore, resistive, capacitive, NMR, and acoustic
methods can be used to quickly determine the moisture content of flour. The resistive and
capacitive methods are unsuitable for the moisture content range to be measured as well as the
measurement environment. Although NMR is fast, accurate, and has a wide application range,
it is influenced by uncontrollable factors such as material flow, stack density, and temperature
[92]. The acoustic method is highly accurate, reproducible, and can be used for on-line
detection, but it is expensive [93]. The moisture measurement method used for the parameter
values covered in this PhD thesis is: ICC 110/1 (mod., Brabender MT):1976 [201] (see
Section 3.1.2.3).

2.1.2.2 Determination of Protein Content of Flour

Protein is an important component of all cells and tissues in the human body, is involved in all
components of the organism, and serves as the material foundation and primary bearer of life
activities [94]. The use of physical properties such as refractive index method, ultraviolet (UV)
absorption, infrared spectroscopy, spectrophotometry are the most common protein
determination methods. Another method is to use its chemical properties, such as Kjeldahl
nitrogen method, Biuret reagent method, hydrogen peroxide method, dye binding method,
Folin-Phenol reagent method (Lowry method) and Dumas combustion method. The Kjeldahl
method has the best precision and accuracy, good reproducibility, and is suitable for
determining the protein content of various materials, but its determination process is long and
has low sensitivity, and the complex operation cannot be applied for on-line monitoring [95].
The Biuret reagent method is fast and easy to measure, but its accuracy is poor [96]. The

alkali-treatment method and colorimetric method have high detection limits for materials with
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high protein content [97]. The hydrogen peroxide method is faster and the results are not
significantly different from the national standard method, but its precision is slightly poor [98].
The Folin-Phenol reagent method is sensitive and suitable for determining low protein content
of materials, but it takes a long time and contains more interfering substances [99]. Although
the UV absorption method is simple, sensitive, fast, and does not consume the sample, its
accuracy is poor and there are more interfering substances [100]. The dye binding method is
simple and easy to use, but there are large deviations when used to determine different
proteins [101]. The protein measurement method used for the parameter values covered in this

Ph.D thesis is: ICC 167:2000 [197] (See Section 3.1.2.1).

2.1.2.3 Determination of Ash Content of Flour

Ash is the residue of high-temperature burning of flour, and it is composed of metal oxides.
The ash value reflects the amount of flour containing the skin layer, flour purity (whiteness)
or bran, wheat germ, endosperm separation of the thoroughness, and thus the quality of flour
[102]. The flour ash index has a special significance for flour production, and flour mills
measure the accuracy level of flour with the help of ash determination. The dry ashing method
[103], electrical conductivity method [104], mid-infrared spectroscopy technique [105], and
X-ray scattering technique [106] are the most commonly used methods for determining ash
content. The ash measurement method used for the parameter values covered in this article is:

ICC 104/1:1990 [203] (See Section 3.1.2.4).

2.1.2.4 Determination of Wet Gluten Index and Dry Gluten Index of Flour

Gluten has a high nutritional value as a high quality vegetable protein source [107]. Gluten
content is an important quality indicator and a factor influencing the quality of processed
foods. Because gluten content varies depending on the physical state of the flour, both the dry

gluten content and the wet gluten content are commonly used to indicate both. There are two
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methods for determining the above two values: hand-washing and machine-washing, both of
which work on the same principle but in different ways. The hand-washing method is
complex [108], time-consuming, and labor-intensive, whereas the machine-washing method
can speed up the measurement to a certain degree, but cannot be monitored on-line [109]. The
gluten index is used to evaluate gluten quality, and it is based on determining the wet gluten
content, but the measurement process is too long and heavily influenced by external factors.
Wieser [110] used a microscale combined extraction-HPLC procedure to determine the
amounts of the various gluten protein types in wheat flour. Czaja [111] made use of a method
for quantifying gluten in wheat flour based on PLS treatment of FT-Raman data. The
measurement method for wet gluten and gluten index used for the parameter values covered

in this thesis is: ICC 155:1994 [199] (See Section 3.1.2.2).

2.2 Overview of NIR Spectroscopy
2.2.1 The Development Process of NIR Spectroscopy

Astronomer William Herschel discovered electromagnetic waves in the wavelength range of
800-2500 nm [112]. Scientists were able to analyze some of the material information
contained in the NIR spectrum by the early nineteenth century, but the application of NIR
spectroscopy was limited due to its low intensity, complex spectral bands, and overlapping
characteristics, and the low level of theory and technology at that time could not fully extract
the information contained in the spectra. Scientists discovered that the particle size of the
sample has a significant impact on NIR spectra. Thus, methods to homogenize the test sample
before acquiring the spectrum can greatly improve the technique's accuracy and applicability.
With the development of applied mathematics, various mathematical algorithms and spectral
data processing methods have been developed to further eliminate the testing errors caused by
spectral overlap and broaden the application of the technique from the NIR diffuse reflectance
region (1100-2500 nm) to the NIR transmission region (700-1100 nm) where the absorption

signal is weaker but the penetration ability is stronger [113,114]. The advancement of NIR
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spectroscopy has resulted also in the further instrumental development of NIR spectrometers.
Kaye was the first to develop a transmission NIR spectrometer in the mid-1950s, and since
then, several manufacturers have begun to develop NIR spectrometers [115]. By the 1980s,
scientists have gradually started to apply multivariate calibration methods as well as modern
data processing techniques for NIR spectroscopy, which resulted in the evolution of a
valuable analytical technique. Various instrument manufacturers competed to develop special
NIR spectrometers at the same time, and high-resolution Fourier transform NIR spectrometers
emerged [115]. The widespread interest of scientists and instrument manufacturers in the
further development of NIR spectroscopy contributed to the successful convening of the First
International Conference on NIR Spectroscopy in Norway in 1987, and NIR spectroscopy has

become increasingly popular since then [116].

2.2.2 Basic Theory of IR/NIR Spectroscopy Technology

The measurement method used in the present work is based on vibrational spectroscopic
investigations in the infrared (near-infrared) range. IR spectroscopic applications make use of
the fact that organic molecules can be excited to vibrations and rotations by absorption of
electromagnetic radiation [117-121]. Only a small spectral range of wavelengths from 500 to
0.8 pm (corresponding to 20-12500 cm™) is assigned to IR spectroscopy, which is further
subdivided into NIR, MIR, and FIR ranges (Fig. 2.1).

108 106 104 102 100 102 10+ 10-6
Wavelength, pm T T T T T T T T
Rndio Short Micro InfllarAed w| UV- X_ravs v -rays
waves waves waves Radiation [~ radiation - .
Far IR Mid IR Near IR
Wavelength, pm 500 25 2.5 0.8
Wavenumber, cm? 20 400 4000 12500

Fig. 2.1 The electromagnetic spectrum and its subdivision into different wavelength ranges
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Electromagnetic radiation consists of sinusoidally alternating fields that travel at the speed of
light in vacuum. If there is a molecule in the alternating field, it can absorb energy, causing
the radiation energy to be attenuated. Absorption of IR radiation leads to excitation of
vibrations. A molecule of N atoms has 3N degrees of freedom of motion; three of which are
translational and three rotational. From this fact, the number of vibrational degrees of freedom
iIs 3N-5 for linear molecules and 3N-6 for non-linear molecules. When a change in dipole
moment occurs during a vibration, a molecule absorbs IR radiation for vibrational excitation.
Harmonics (overtones) occur when the frequency of the fundamental is doubled (1% harmonic)
or tripled (2" harmonic). Combination oscillations are caused by the addition of two
fundamental frequencies of the same or very close neighboring functionalities. Depending on
whether bond distances or bond angles change, oscillations are referred to as stretching or
deformation vibrations.
The harmonic oscillator model, based on a linear, diatomic molecule, is used to explain the
oscillation process [117-121]. The harmonic oscillator is made up of two mass points, m; and
mj, connected by a spring. At the equilibrium nuclear distance ro, the spring represents the
bonding force, which opposes the deflection of the atoms involved in the bond. Hooke's law
describes the deflection of the molecular model from its equilibrium position by the distance
Ar:

F =—k-Ar Eq.1
F: Repulsive force [N]
k: Force constant [102N m™]

Ar : Deflection [m]

For the oscillation process of a diatomic molecule, the oscillation frequency v is as follows:

2r | K1
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where k is the force constant and a measure of the strength of the chemical bond between the
vibrating atoms and p is the reduced mass (see below). Thus, the smaller the masses of the
atomic oscillators and the stronger the bonds between them, the higher the frequency of
oscillation will become. A parabola and the following equation describe the change in

potential energy:

E pot =%kAr2 =27’ i Ar? Eq.3
Epot: Potential energy [J]
v : Vibration frequency [s™]

mams

U= : Reduced mass [kg]

mi+my )

A guantum mechanical treatment shows, that the vibrational energy may only have certain

discrete values called energy levels. For the harmonic oscillator these energy levels are given

E:hv(u+1):1\/g[u+1j Eq.4
2" 2r\| 2

where the oscillation quantum number can take the form v =0,1,2,.... .The vibration energy

by:

Is not zero at the lowest vibration level, but has the value E, =%hv . Equation 4 then yields

the equidistant oscillation terms:

E
h-c

= 17(0 + é} with Av = +1 Eq.5

The indication of the wave number v'is used in IR spectroscopy because the oscillation
frequency v of the absorbed radiation is directly proportional to the energy E. The following

relationship holds true:

AE=E, —E :h~v=%=h-c-17 Eq.7
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E, .,: Energy after the absorption of a photon [J]

v+l
E, : Energy before a photon is absorbed [J]

c: Speed of light 2.99793 10 [cm 5]
h: Planck's constant 6.62618 104 [J s]
v : Vibration frequency [s™]

7 : Wavenumber [cm™]

A: Wavelength [cm]

Only at small deflections (Ar) do real molecules behave like harmonic oscillators. The
anharmonicity increases as the amplitude of the oscillation increases. Excessive stretching of
the molecular bond can cause the molecule to dissociate. If the two atoms are too close
together, they repel each other. As a result, rather than a parabolic function, the Morse
function with the following equation better describes the dependence of a diatomic molecule's

potential energy on bond distance:

E:hwu+%)—ZDm4u+%y Eq.8

Y - Anharmonicity constant

The equation implies that the oscillation energy distances are not equidistant, but rather move
closer together as the oscillation quantum number v increases. The harmonic oscillator's
strict selection rule Av==1 no longer applies to the anharmonic oscillator. Transitions with
Av=+2 (1% harmonic) and Av=+3 (2" harmonic) are now permitted, but the intensity of
the associated absorption bands is reduced by a factor of 10-100 each time (Fig. 2.2). The
greater the term difference Av, the larger the required excitation energy and the shorter the
absorption band wavelength [117-121].

The main applications of IR spectroscopy are structure elucidation of unknown substances via
characteristic group frequencies and quantitative analysis by determination of band intensities

[122-125].
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Fig. 2.2 Potential energy representation of a harmonic (a) and an anharmonic oscillator (b)

as a function of the atomic distance r (D = dissociation energy) [123]

2.2.3 Principles of NIR Spectroscopy Technology

The near infrared wavelength range is 800 to 2500 nm (12500-4000 cm™). Overtones and
combination vibrations of OH, NH, and CH functionalities with large mechanical
anharmonicity (large mass difference of the vibrating atoms) can be observed in the NIR
spectral range [116, 127-130]. The fundamental vibrations of the aforementioned groups can
be found in the mid-infrared range, with wavenumbers ranging from 2500 to 4000 cm™.

With increasing order, the intensities of the harmonics of the corresponding fundamental
vibrations decrease very quickly. Combination oscillations occur at wavenumber sums of at
least two fundamental oscillations and result from the simultaneous excitation of multiple
oscillations [131-134]. In the following Tab. 2.6 the near-infrared absorption regions and their

assignment to vibrational motions of selected chemical functionalities are summarized.
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Tab. 2.6 Assignment of some absorption bands in the NIR wave number range for CH, OH and NH functionalities

[134]

Wavenumber [cm?] Wavelength [nm] Vibration type
4200-4400 2439-2273 C-H combination vibrations
4500-5200 2222-1923 N-H combination vibrations
4900-5400 2041-1852 O-H combination vibrations
5500-6300 1818-1587 C-H 1* overtone
6500-7000 1538-1429 N-H 1% overtone
6400-7500 1563-1333 O-H 1% overtone
6900-7700 1449-1299 C-H combination vibrations
7800-9100 1282-1099 C-H 2" overtone

Larger sample thicknesses can compensate for the much lower band intensities of the
near-infrared region compared to the mid-infrared fundamental vibration range. This, however,
places much lower demands on the specimens' sample preparation. Because many organic
compounds absorb in the near infrared, measurements in this range provide good conditions
for practical spectroscopy, allowing for the universal use of this spectroscopic measurement
method [131, 132].

The absorbance (A) log 1/T (for transmission measurements) or log 1/R (for diffuse
reflection measurements) versus wavelength or wavenumber is plotted for the representation
of NIR spectra. These intensity parameters are proportional to the concentration of the sample
under consideration. Various recording techniques (transmission, transflection, and diffuse
reflection (Fig. 2.3)) can be used depending on the type and physical state of the samples
[131]. For transmission measurements the Bouguer-Beer-Lambert law is used:

A=¢-c-d Eq.9

The wavelength-dependent molar extinction coefficient € (in L «+ mol™ « cm™) is a constant
property of each chemical compound in this equation, d is the layer thickness (in cm), and ¢
is the concentration (in mol « L™). As transmittance T and reflectance R, a relationship is
established between the radiation intensity I attenuated by the sample and the measured

reference intensity I,:
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A=log— =log—= Eq.10

For diffuse reflection measurements, the Lambert-Beer law is modified by the scattering
coefficient s (in cm™) to account for scattering between particles of different sizes:
&-C

Io%zT Eq.11

When compared to measurements in the mid-infrared, diffuse reflection measurements in the
near infrared do not require additional dilution with an inert matrix such as KCI, which is
regarded as a significant advantage of this method [131,135]. The three methods of

near-infrared spectroscopy measurement are shown in the Fig. 2.3 below.

Transmission diffuse Reflection Transflection

Fig. 2.3 Three methods of near infrared spectroscopy measurement techniques

For NIR spectroscopy, window materials such as glass and quartz are used, which are much
less sensitive to water than the window materials of the MIR measurement range (NaCl, KBr
and KRS5). Apart from its ease of use, short analysis times, and high signal-to-noise ratio
(>10000), NIR spectroscopy has primarily grown in popularity for chemical process control
due to the use of quartz light fibers [129, 131, 132, 135]. However, due to the comparatively
low selectivity of NIR spectroscopy, chemometric methods are usually required for the
qualitative and quantitative evaluation of NIR spectra with respect to the chemical and

physical properties of the investigated substances [131, 136-138].
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2.2.4 Reflection Spectroscopy

Reflection spectroscopy is a research technique that measures the intensity of reflected
electromagnetic radiation from a sample surface that has been illuminated [139-143]. There
are two types of limiting cases: regular or directional reflection and diffuse reflection. The
geometrical optics laws govern directional reflection at an optically smooth, reflecting surface
(metal, glass surface). Because of the behavior of light waves at interfaces, the angle of
incidence and angle of reflection coincide (law of reflection) [141]. Snellius' law of refraction

(Fig. 2.4) applies to the direction of the incident and refracted light beams:

n-sim=n,-sif with n,>n Eq. 12

When radiation from an optically denser material strikes an optically thinner material, total
reflection is observed above a certain limiting angle a4, indicating that the entire energy of
the incident radiation is found in the reflected radiation. This phenomenon is used in optical
fiber technology to transport radiation over long distances or in attenuated total reflection
(ATR) spectroscopy for analytical investigations thereby avoiding time-consuming sample

preparation.

Fig. 2.4 Reflection and refraction of radiation at an interface [141]
Regular reflection is a process that refers to macroscopic, plane phase boundaries. Diffuse
reflection, on the other hand, is obtained when there are centers on a rough surface that scatter
the incident radiation. Cracks and stipples, as well as particles, can act as scattering centers.

Fig. 2.5 depicts a schematic representation of diffuse reflection of radiation by a powder
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substance. Absorption, scattering, interference, diffraction, and refraction are all phenomena,
that can occur in this process [139-141].

Because neither the classical Rayleigh scattering (particles much smaller than the wavelength
of the radiation) nor the Mie theory (no interaction between the irradiated particles) apply to
the powdered samples studied by NIR spectroscopy in this work, simplified laws are used to

evaluate the NIR spectra measured in diffuse reflection [135, 139].

Fig. 2.5 Schematic representation of diffuse reflection in a powder substance

The function F (R, ) proposed by Kubelka and Munk in the early 1930s [142] has proven
useful for quantitative evaluation of the corresponding spectra for diffuse reflection

measurements in the MIR:

FRI= R T T

o0

— 2 .
A-R) _K_ec EqQ.13
S

R, denotes the sample's diffuse reflectivity at large - theoretically infinite - layer thickness,
which in practice is around 2 mm; K denotes the absorption coefficient, and ¢ and ¢
denote the sample's absorptivity (extinction coefficient) and concentration, respectively. The
scattering coefficient s is affected by the particle size distribution of the sample [139, 143].

Because of the high absorptivity of organic compounds in the MIR range, the sample must
usually be diluted with a non-absorbing material (e.g. KCI) to obtain suitable intensities in

diffuse reflection measurements. This is not required for NIR measurements, and diffusely
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scattering substances (powders, rough surfaces, etc.) can be investigated without sample
preparation [135, 140, 143].

For NIR measurements in diffuse reflection, the log 1/R function is used for quantitative
analysis analog to absorbance A, which provides better proportionality to concentration than
the Kubelka-Munk function [144, 145]:

A=|o%z5_'c Eq.14
S

In practice, the reflected radiation is measured using an integrating sphere with a gold-plated
inner layer (which also serves as a reference) or an optical accessory (e.g. light-fiber bundle),
that collects the diffusely reflected radiation as efficiently as possible [135, 143, 146]. In most
cases, however, a scatter correction is required as data pretreatment for the quantitative

evaluation of NIR spectra measured in diffuse reflection [137, 138].

2.2.5 Interaction between Radiation and Matter in NIR Spectroscopy (Basic Principles of

Qualitative and Quantitative Analysis)

Because the spectrum contains a wealth of information about the substance, NIR enables
qualitative and quantitative analysis [147]. The characteristics of the spectral pattern are
closely related to the composition and content of the substance itself. If a substance's structure
and composition vary, as do the spectral patterns collected, and vice versa. Organic
substances, that make up a multiplicity of materials contain different functional groups (such
as O-H, N-H, C-H/CH,/CH3;, C=0), which have specific vibrational frequencies in the
near-infrared [147]. When a functional group in a substance is exposed to NIR radiation, only
the incident wave with the intrinsic frequency of the specific molecular vibration of this
functional is absorbed, causing the group to resonate, and the NIR spectrum of the substance
can be obtained by measuring its absorption at this wavelength of the NIR spectrum.
Therefore, the measured spectrum reflects information about the composition of the measured

substance under investigation, laying the theoretical groundwork for qualitative and
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quantitative NIR spectral analysis. NIR spectra contain a multiplicity of absorption bands
related to hydrogen-containing groups (C-H, O-H, N-H) and because the main components of
food are organic substances composed of these hydrogen-containing groups, NIR

spectroscopy can be used for qualitative and quantitative analysis of food.

2.2.5.1 Qualitative Analysis of NIR Spectral

The purpose of qualitative NIR analysis is to determine the identity of an unknown sample by
comparing the absorption intensity, frequency, and peak shape of the absorption peaks in the
unknown sample's spectrum and the spectrum of a known reference sample set [148]. Because
the reliability of direct comparison by human eyes is very low due to the complexity and
variability of NIR spectra, it relies on computers and mathematical algorithms to separate and
extract the information in the spectra and then compare and identify them. Pattern recognition
is one of the most widely used methods for distinguishing and identifying spectral patterns
using mathematical algorithms such as PCA, discriminant analysis (DA) and soft independent
modeling of class analogies (SIMCA).

The practical application of NIR qualitative discriminant analysis can be subdivided into the
following steps:

(1) Acquisition of the spectra of a standard sample set;

(2) Calibration and preprocessing of specta;

(3) Extraction of spectral features;

(4) Development of qualitative discriminant analysis models;

(5) Realization of qualitative discrimination of unknown samples.

2.2.5.2 Quantitative Analysis of NIR Spectral

The quantitative analysis of NIR spectra is based on the principle that the absorption spectra

of samples with different content of each constituent are different. As a result of the selective
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absorption of different frequencies of NIR radiation by each component of a sample, the
content of each component can be determined by analyzing the optical density of the
transmitted or reflected radiation through a detector [149]. Sample set's spectra are collected,
and the sample set's chemical and physical parameters are determined by independent
reference methods. Using chemometric methods, a correlation between the spectra and these
parameters is established in a mathematical model and the content of each component of an
unknown sample can be predicted by subjecting the corresponding spectrum to the developed

calibration model.

2.2.6 Technical Characteristics of NIR Spectroscopy

When compared to traditional methods for determining physical and chemical properties of
various substances, methods based on NIR spectroscopy have the following advantages [150,
151]:

(1) A simple testing procedure that eliminates the need for time-consuming sample
preparation and chemical reaction steps.

(2) Fast testing speed, which can be completed in many cases within a few minutes.

(3) High testing efficiency; a single person can test multiple chemical indicators
simultaneously.

(4) A clean testing process, which does not necessitate the use of a large number of chemical
reagents, as well as low testing costs.

(5) Good accuracy and repeatability.

(6) Applicable for solid and liquid samples.

(7) The technique is non-destructive and can be applied in the chemical, pharmaceutical, food,
environmental and material analysis.

(8) NIR light has good transmission properties for optical (especially quartz) fibers, making it
useful for on-line analysis, remote monitoring of substance composition and in-vivo analysis.
However, NIR spectroscopy also has some disadvantages: the sensitivity is low due to the

weak absorption of substances in the NIR region, and substance content of interest should be
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greater than 0.1%, which means it cannot be used to determine trace substances; the
calibration modeling work necessitates specialists and model maintenance requires ongoing

work effort.

2.3 Instrumentation of NIR Spectroscopy

Prior to the 1850s, NIR spectroscopy was a forgotten spectral region due to its severe spectral
absorption band overlap and poor selectivity; however, in the late 1950s, Karl Norris was the
first to use short-wave NIR transmission to determine the moisture content of grains and
rapeseed, kicking off the development of NIR spectroscopic instrumentation and its
applications [152]. The group led by Karl Norris conducted a large number of spectroscopic
method demonstrations in the 1960s, including comparisons of transmission, reflection, and
transflection methods in the visible and near-infrared wavelength region. The availability of
reflectance spectra of plant leaves and grains was the most significant achievement in this
phase of work and the successful agricultural applications paved the way for further
development of new NIR spectroscopic applications [153].

Nowadays, NIR spectroscopic instruments are gradually progressing towards process
integration and miniaturization, which further advances the technology and also satisfies
market demand. At present, miniaturization for in-the-field and on-site testing are an
extremely important instrumentation trend and analytical application areas. Therefore, NIR
spectrometers are widely used in environmental monitoring, food testing, biomedical research

and other fields as an essential testing instrument in modern society.

2.3.1 Benchtop NIR Spectrometers

With the rise of computers, which made instrument control more precise and accurate, and the
rise of chemometric techniques, which made data analysis relatively simple and could be used
to process quantitative or qualitative information of complex systems, NIR spectroscopy

became widely studied and applied in the 1970s [152]. Norris developed the world's first NIR
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scanning spectrometer allowing data transfer to a microcomputer [154]. It was on this
scanning spectrometer that the benefits of multiple linear regression analysis in extracting
spectral information related to components were demonstrated, and this instrument became
the prototype for the further development of NIR spectroscopy.

The American Society for Testing and Materials (ASTM) formed the Working Group on Near
Infrared Spectroscopy in 1984, at Hirschfeld's initiative, to study the issue of standard
methods for NIR spectroscopy [148]. Simultaneously, some well-known instrument
manufacturers began to develop new NIR instruments, and the NIR spectrometer market
began to blossom. The main technical lines are divided into two categories: NIR
spectrometers developed from grating spectrometer principles commonly used in the visible
region [155], and NIR spectrometers developed from optical interference Fourier-transform
principles commonly used in the mid-infrared region [156]. The rise in demand for industrial
analysis has accelerated the development of NIR instrumentation, including
transmission-based systems for the analysis of liquids by immersion-probe systems, and
diffuse reflection-based instruments for solid-state analysis. Some companies, primarily
involved in the production of benchtop NIR instruments for laboratory use, have also begun
the development of NIR spectrometers for on-line applications.

Compared to other analytical instruments, a multiplicity of NIR spectrometer types are in
practical use. According to the spectroscopic principle, benchtop NIR spectrometers used in
laboratories can be subdivided into filter type, grating dispersive type, Fourier-transform type
and acousto-optic tuneable filter type. Fourier-transform type spectrometers have the largest
market share [157]. Generally, NIR spectrometers are made up of a light source, a

spectrometer system, a sample chamber, a detector, and a control and data processing system.

2.3.2 Handheld NIR Spectrometers

Since the late 20th century, the development of spectrometer instruments has gradually begun
to develop in the direction of miniaturization and portability. Research and development of

miniaturized spectroscopy instrumention has become the focus of attention of science and
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industry departments in various countries [158].

Traditional spectroscopy instruments are not only large in size, but also frequently require
pretreatment of specific samples before entering the analysis step, as well as strict working
environment requirements, necessitating the use of professional analysts to complete the
analysis. In comparison, miniaturized spectrometers have absolute advantages in terms of size,
portability, speed, convenience of use and mobile power, which are the basic requirements for
small spectrometers that do not take up much space [158, 159]. In addition, a handheld
spectrometer has the characteristics of fast detection speed and suitable for online monitoring.
Because of their small size, fast analysis speed, simple operation, lack of sample pretreatment,
and low price, some portable or handheld NIR spectrometers are gradually making their way
into various fields of production life [158].

The development of miniaturized NIR spectrometers is progressing and there are numerous
miniaturized NIR spectrometers based on various spectroscopic principles on the market. At
the moment, the most common types are grating micro spectrometers, microelectro-
mechanical systems (MEMS)-based Fourier-Transform Near-infrared (FT-NIR), linear
variable filter (LVF) type, Hadamard Transform type, Fabry-Perot tuneable filter type, array
light-emitting diode (LED) type and acousto-optic tuneable filter (AOTF) type [160-162].

The introduction of fiber optic probes has accelerated the use of small NIR spectrometers, and
the convenient optical path design is especially suited to various online inspection needs.
Manufacturers of handheld near-infrared spectrometers include Si-Ware Systems (Cairo,
Egypt), VIAVI Solutions Inc. (San Jose, California, USA), Spectral Engines Oy (Helsinki,
Finland), Hamamatsu Photonics (Hamamatsu City, Japan), OtO Photonics (Hsinchu, Taiwan
Province, China), Insion GmbH (Obersulm, Germany) and TrinamiX GmbH (Ludwigshafen,
Germany), to name just a few [163].

Rajendran et al. [164] Minotto et al. [165] investigated portable near-infrared devices based
on LEDs. Zeltex LLC (Hagerstown, Maryland, USA), manufactures the LED-based Zx-50

handheld grain analyser, which can be used to analyse wheat composition [166].
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With the rapid development of computer science, the control system of small NIR
spectrometer has been expanded from single PC control to microcontroller, Advanced
Reduced Instruction Set Computer (RISC) Machines (ARM) embedded microcontroller,
Raspberry Pi (RPi), smart phone and Industrial Personal Computer (IPC), making the NIR
spectrometer smaller and lighter while providing convenience for users [167].

In terms of software operating systems, small NIR spectrometers have spread from the
WINDOWS platform to the MacQOS, Linux, Android, and Apple platforms, among others
[167]. The richness of the possible software platform encourages the use of small NIR

spectrometers, and the sharing of spectral data is more convenient, safe, and fast.

2.4 Data Pretreatment

Apart from baseline correction and 1% or 2" derivative, scatter correction is frequently used
for data pretreatment of spectra measured of solid samples in diffuse reflectance, because they
exhibit scatter effects leading to different slope, band intensity, and baseline offset as a
consequence of sample morphology (particle size, distribution, packing, or layer density) [168,
169, 170-172]. The use of mathematical methods results in an emphasis on important spectral
properties and a reduction of difficult-to-model physical influences in the spectral data,
resulting in a better correlation between the spectral data and the investigated properties. In
this work, the scattering correction methods MSC, SNV, and Extended Multiplicative Scatter
Correction (EMSC) are used and explained with reference to the following literature

[170-179].

MSC: Geladi et al. [173] invented MSC correction in the 1980s. A mean spectrum x is first
calculated from the available spectral data in this method. Individual spectra are then fitted to
the calculated mean spectrum by multiplying each data point by a coefficient b; and adding a
constant a;:

Xi = q; + blf Eq15
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The original spectra can be converted into the corrected spectra (x; ysc) in three different
ways: either by subtracting the additive influence (offset a;) according to Eq.16, by taking
into account the multiplicative influence (slope b;) according to Eqg.17, or by full MSC

according to Eq.18.

Ximsct = Z_i Eq.17
Ximscwb = S Eq.18

b;

SNV: SNV scatter correction, which is similar to MSC, has been used to eliminate scatter
effects and particle size differences in spectral data since the late 1980s, following the

publication of Barnes et al [174].

(xi,j—%;)

xi,j,SNV = qug

Z;-nzl(xi,j—fi)z
(m-1)

where x; ; is a data point in the spectrum x;, X; is the spectrum’'s mean value, and m is the
number of data points on the spectrum.

The SNV calculation standardizes each spectrum by taking the mean and standard deviation
of each individual spectrum into account. Each spectrum is pretreated independently of the
others by first centering it on its mean value and dividing it by its standard deviation. The
scatter correction algorithms SNV, MSC, and EMSC are applied to spectra in log 1/R, log 1/T,
and Kubelka-Munk formats [171, 175, 180].

EMSC: Martens et al. [176-179] developed an evaluation algorithm known as EMSC. The
EMSC method is unique in that the chemical effects (light absorption) and physical effects
(light scattering) in the spectra of powders and turbid solutions can be separated, and the
scattering dependence on wavelength is taken into account in addition to compensating for the
multiplicative and additive effects. The previous MSC method is extended to include the

wavelength-dependent terms d;-A and e; - A2 for this purpose.
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The additive and wavelength-dependent effects, as well as the term b; multiplicative effects
(e.g. effective optical path length) in the measured spectrum x;, are taken into account by the
model parameters a; (baseline offset), d; (linear), and e; (quadratic coefficients). Then,

using Eq. 20, an EMSC-corrected spectrum (x; gysc) is obtained:

X, —a —dA-el’
X emsc = b Eq.20

All three scatter correction procedures (MSC, SNV, and EMSC) are implemented in the
Unscrambler® v.9.7 software [181] and were used to create chemometric evaluation

procedures in this work.

2.5 Chemometric Evaluation Methods

Chemometrics is a branch of chemistry that uses mathematical and statistical methods to
design optimal measurement procedures and experiments and to gain the most relevant
information from data analysis [182].

Due to the overlap of absorption bands of hydrogen-containing CH, OH, and NH groups that
occurs frequently in the NIR spectral region, univariate calibration is usually insufficient for
quantitative analysis of multicomponent systems in NIR spectroscopy. Instead, multivariate
evaluation methods are used, with absorbance values from larger wavelength ranges typically
used to establish a calibration. The individual chemometric evaluation methods are described

in greater detail below.

2.5.1 Linear and Multiple Linear Regression (MLR)

Calibration establishes a relationship between experimental system variables x (e.g.,
absorbance) and one or more target variables y (e.g., concentration) for the quantification of
a substance using chemometric methods. MLR, PCR, and PLS are suitable computational

algorithms for establishing a quantitative calibration [168, 169, 180, 182-187].
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The system properties of unknown samples can then be determined relatively quickly using a
robust calibration model that has been developed. Generally, the Bouguer-Beer-Lambert law,
which shows the linear relationship between absorbance (A) and concentration and sample
thickness, is used to perform the quantitative evaluation:

A=¢-c-d Eq.21

In this equation, d denotes the thickness of the sample layer, ¢ the molar extinction
coefficient, and ¢ the concentration of the substance to be determined. In the linear
calibration, the term (e-d)~! is expressed by the parameter b and then determined. The
linear model equation of the calibration function or regression coefficient b, respectively, is:

Here, x represents the spectral data and y the reference data of the sample under
consideration. Eq.22 is valid for univariate calibration where the component to be determined
has a disturbance-free absorption band. The regression coefficient b calculated from the
linear relationship of the system variable x and the target variables y then allows the target
variables y (e.g. concentration) of unknown samples to be determined from their
experimentally determined absorbance values. Due to the lack of isolated absorption bands,
guantitative evaluation of multicomponent systems is typically not possible in NIR
spectroscopy.

MLR is based on the linear regression with the Bouguer-Beer-Lambert law, whereby multiple
wavelengths are selected for calibration. Unlike univariate calibration, multiple linear
regression establishes the relationship between the dependent y-variable and multiple
independent uncorrelated x-variables by calculating regression coefficients during calibration.
The linear model equation system of EQ.23 is mathematically equivalent to univariate

regression [168, 180, 183-185]:

y =b, +bx, +b,x, +...+b_ X, +e Eq.23
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It consists of the parameter y to be determined, the absolute constant b,, the model
parameters b,,of the m™ wavelength, the absorbance values x,, of the m" independent

x —variables (wavelengths), and the error term e.

2.5.2 Factorial Methods

PCA, PCR, PLS-DA and PLS Regression are the most commonly used multivariate factorial
methods [169, 186, 187, 205]. These methods are used to reduce the information in the
calibration spectra's entire data matrix to a few key factors. As a result, the substance spectra

are replaced by newly calculated spectra while no important information is lost.

2.5.2.1 Principal Component Analysis (PCA)

Pearson's works contain the first description and application of this method [188]. In the
context of NIR spectroscopy PCA decomposes the original mean-centered data matrix X
with n spectra and m data points into a new score matrix T and a loadings matrix P (See
Fig. 2.6 and Eq.24) [168, 169, 180, 183, 184, 186]:

X=TP" +E Eq.24

The E matrix represents the differences between the original X matrix and the data matrix
generated by the loadings and score matrix. The transposed loadings matrix P, which consists
of p rows (number of principal components) and m columns (data points in the spectrum),
describes the relationship between the X —data and the corresponding principal components.
The score matrix T contains information about the object's location in relation to the
principal components, which is visualized in the score plot by object-projecting the data
matrix onto the new principal component space. T is a matrix with n rows (number of
calibration spectra) and p columns (number of factors). The residual matrix E contains the
information that was not taken into account in the score or loadings matrix. It is made up of n

rows and m columns.
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Fig. 2.6 Schematic matrix representation of the PCA algorithm

The uncorrelated variables are generated from the correlated variables by the coordinate
transformation of the original data matrix X, with the first main axis PC1 having the highest
variances. Following the criterion of maximum variance, the next PCs are determined by axis
rotation of the new coordinate system and the orthogonality principle. In this case, the
residual matrix E corresponds to the portion of the X —matrix that was not modeled by the
p —principal components and should ideally consist only of measurement errors (noise)
[189-191].

The relevant first principal components, which account for the majority of the total variance,
are distinguished from the less relevant principal components by a maximum in the curve in
the Unscramber® v.9.7 software's Explained Variance Plot [181]. PCA is widely used for

qualitative product differentiation (e.g. in incoming raw materials).

2.5.2.2 Principal Component Regression (PCR)

The PCR is a procedure that connects PCA with multiple linear regression to compute a
regression model for a target variable y based on the X-data [168, 169, 180, 183-185, 190].
As with PCA, a mean-centered data set X is first decomposed into the score matrix T and
the loadings matrix P. After that, the regression model is used to calculate the regression

model:

X =TP" +E Eq.25
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The calculated mean spectrum is subtracted from each calibration spectrum when centering.
By transforming EQ.26, the score values T are given as projections of the X-data onto the
loadings P, with all elements of the residual matrix E having the value zero:

T=XP Eq.26

The most important main components are used to develop a calibration model. The loadings

Q ofthe Y matrix are obtained through multiple regression of scores and target variables:

Y=TQ" +F Eq.27

The regression coefficient B, which describes the correlation between Y and X data, is
contained in the loading matrix Q:

Y=XB+F Eq.28
and corresponds the product of the loadings matrices P and Q:

B =PQ Eq.29

The number of principal components required to describe the data set is critical for predicting
unknown samples. If a principal component number is chosen that is too large, it can result in
the "overfitting" effect, in which interfering noise components are included in the model. If
the number of principal components is too low, the available spectral information is not fully

captured, indicating "underfitting™ [180, 183, 184].

2.5.2.3 Partial Least Squares Regression (PLS)

H. Wold created it in the mid-1970s, S. Wold and H. Martens refined it in the 1980s into the
simpler PLS representation with X and Y data sets [168]. PLS regression, which is also
used in this work, is the most commonly used method for quantitative evaluation in NIR
spectroscopy. In this method, the scores (T) are calculated using both the spectral data (X) and

the target variables (Y) [169, 186, 187, 192]. As a result, the first PLS principal components
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have the most variance in the spectral data (X) and the greatest correlation to the target
variables (Y). The PCR/PCA algorithms, on the other hand, account for variance
maximization solely by using the X-matrix data to calculate the score matrix T [191].
The X and Y matrices are decomposed into scores and loadings in the same way as the PCR
calculation (Fig. 2.7) and the Egs.33, 34:

X=T-P"+E Eq.33

Y=T-Q"+F Eq.34

The score matrix is T, the loadings matrices are P and @, and the residual matrices of the
two data sets are E and F. The residual matrices describe the unexplained variance or
calibration error between the measured and reconstructed spectra [193].

In contrast to the PCR, an additional loadings matrix is required for the calculation of the

B-regression coefficients according to Eq.35:

B=W(P'W)'Q’ Eq.35

In PLS analysis, the W-loadingsweight matrix describes the relationship between the X- and
Y-data. When predicting unknown samples from spectral data, the loadingsweights are used to
calculate the corresponding scores. The W and T matrices are orthogonal to one another.
For both B-coefficient calculation and sample prediction, the P-and Q-loadings matrices, as

well as the W-loadingsweight matrix, are used:
Y=W(P'W)'Q")X Eq.36
The Nonlinear-Iterative Partial Least Squares (NIPALS) algorithm is used to perform the PLS

calculation iteratively [168, 180, 184].
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Fig. 2.7 Scheme of the X and Y matrix decomposition in the PLS regression

The optimal number of principal components is critical for robust calibrations. For calibration
of the same data set, it was discovered that the PLS method requires fewer principal
components than the PCR method [184]. According to Esbensen [180], the PLS method
produces better results in terms of data reduction than the MLR and PCR methods.

When calibrating multiple Y-variables at the same time, the PLS2 algorithm is used, which
determines the principal components for all variables at the same time. Due to the better
prediction results, however, the PLS1 regression is preferred for calibration in quantitative
NIR spectroscopy. Because the PLS1 regression determines only one target variable (i.e. one
vector y), the Q-loadings matrix and the residual matrix F are also reduced to one column,

i.e. to vectors [168, 183].

2.5.2.4 Partial Least Squares Discriminant Analysis (PLS-DA)

PLS-DA is a statistical method related to principal components, which reduces the
dimensionality of the data to establish a regression model and performs discriminant analysis
on the results. It is similar to PCA, except that PCA is unsupervised but PLS-DA is supervised

[205].
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When the differences between sample groups are large and the differences within each sample
group are small, unsupervised analysis methods can be very good at distinguishing the
different groups. Conversely, if the differences between groups are small, and the differences
within each group are large, then the unsupervised analysis method will be very poor. Under
this condition, the group that has a larger sample size will dominate the evaluation criteria of
the model. Using the discriminant analysis method (PLS-DA) can solve these problems very
well [229].

True samples are attributed to Class 1 and false samples are attributed to Class 0. If the real
sample is recognized as a true sample, it is recorded as TP (True Positive); if the real sample
is recognized as a false sample, it is recorded as FN (False Negative); if a fake sample is
identified as a false sample it is recorded as TN (True Negative); if a fake sample is
identified as a true sample it is recorded as FP (False Positive). Based on the above, three

important parameters can be calculated according to the following equations [230]:

Sensitivity = TPT+PFN X 100% Eq.30
Specificity = TszJIrVFp X 100% Eq.31
_ TN+TP (Sens. +Spec.)

Accuracy = P 100% or /2 Eq.32

2.6 Model Transfer Methods

In practical applications of NIR spectroscopy, frequently a calibration model built with the
spectra measured on one specific (master) instrument, is not applicable for the data measured
on another (target) instrument. The main causes of this model mismatch are the changes in
hardware between a master and a target instrument or instrument aging in the case of the same
type of instrument. The current main research methods for model transfer include S/B, DS,

PDS and SLRDS algorithms.
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2.6.1 Slope/Bias (S/B) Algorithm

To standardize the prediction results, the slope/bias correction method is used. The basic idea
Is to establish a linear relationship between the master and target spectrometers' spectral
predictions. Let B be the model's regression coefficient, S,, be the standardized sample's
master spectrum, and S, be the standardized sample's target spectrum [194].

The predicted values of the master spectra are:

Ym,j ES Sm,i X B Eq37

The predicted values for the target spectra are:

YS,]‘ = SS,L' X B Eq38

A one-dimensional linear fit is performed to obtain its least-squares solution as:

Z(Ys,j_ys)(ym,j_ym)
Z(YS,]-—YS)Z

slope = Eq.39

bias = Y,, — slope x Y Eq.40

Then the predicted value of the concentration of the unknown sample after correction of the
target spectrum is:

Yun = slope X (S, X B) + bias Eq.41
Sun: Spectrum of the unknown sample measured with the target spectrometer

Y.n: Predicted results after correction

2.6.2 Direct Standardization (DS) Algorithm

The DS algorithm mainly establishes a spectral normalized transition matrix F through the
mathematical relationship between the master spectrometer and target spectrometer standard
sample set spectra, and uses F to correct the spectrum on the target. The specific steps are as
follows:

(D Select the standard set from the calibration set samples of the Master and Target, and then
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establish the mathematical relationship between the standard set spectral matrices X,,
and X, collected on the Master and Target, and establish the transfer matrix F [195]:
Xm = X:F Eq.42
F=X}'X, Eq.43
X, Centered spectral matrix of the standard set measured on the master spectrometer
X,: Centered spectral matrix of the standard set measured on the target spectrometer
F: Transfer matrix

X{: Generalized inverse matrix of X,

2 With the help of the transfer matrix F, the spectrum measured on the target spectrometer
is transformed, thereby reducing the difference in the spectral data of the same sample
measured between different spectrometers, so as to achieve the purpose of transferring the
model.

Xsta = XunknowF Eq.44
Xunknow- Unknown sample spectral matrix measured on the target spectrometer

Xtq: Spectral matrix after normalizing Xynxnow

3 Bring the calculated X, into the master model to directly obtain the final predicted
value of the spectrum, so as to realize the standardization of the near-infrared spectrum based

on DS.

2.6.3 Piecewise Direct Standardization (PDS) Algorithm

The PDS algorithm operates on the same principles as the DS algorithm, with the only
difference that PDS separates continuous bands from the spectrum, calculates the
transformation coefficient in each window, establishes a spectral standardization matrix based
on this coefficient, and uses the transfer matrix to correct the spectrum measured on the target
instrument (the difference between DS and PDS algorithms is shown in Fig. 5.4). The

coefficient b; can be calculated from the MLR, PCA, PLS [195]. The specific steps are as
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follows:
@ Select the absorbance vector X,,; at the i wavelength point on the master spectrometer
standard sample set arbitrarily, and also select the i wavelength point in the spectrum of the
target spectrometer standard sample set, and select a window width as the (2w + 1) of the
spectral bands form a matrix X.;, correlate X,,; with X,;, then obtain the conversion
coefficient b; atthe i wavelength point,

Xmi = Xeib; Eq.45
Xmi: The spectral matrix of the standard set of the master spectrometer at wavelength i
X ;: Spectral matrix of the (2w + 1) band range of the i wavelength of the standard sample
set spectrum of the target spectrometer

b;: Conversion coefficient at wavelength i

@ Loop i tofindall b;, i=123...... k,

k: Wavelength points

(® A transition matrix F is established according to the transform coefficients of each band
window,
F =diag(bT,bI,..b], ..., bL) Eq.46

F: Transfer matrix

@ Transform the unknown spectrum measured from the instrument by means of the transfer
matrix F,

Xsta = XunknowF Eq.47
Xunknow- Unknown sample spectral matrix measured on the target spectrometer

Xseq: Spectral matrix after normalizing Xy,xnow

® The final predicted value of the spectrum can be directly obtained by bringing the

calculated X, into the master model, thereby realizing the standardization of the spectrum
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based on PDS.

2.6.4 Simple Linear Regression Direct Standardization (SLRDS) Algorithm

The SLRDS algorithm assumes that the absorbance between different wavelength points is
independent of each other, and uses simple linear regression to correct the spectrum from the
target spectrometer [196]. Specific steps are as follows:

(D Let the absorbances of the i sample measured on the master spectrometer and the target
spectrometer at the j wavelength point be x,,(i,j) and x.(i,j), respectively, and satisfy the

following one linear regression equation:

i) = bo) + B ) = 11 x@pl-[[20]  Eads
xm(i,): The absorbance of the i sample at the j wavelength point measured on the master
spectrometer
x:(i,j): The absorbance of the i sample at the j wavelength point measured on the target
spectrometer

by(j)/b(j): Regression coefficient corresponding to any wavelength point j(j € 1...p)

2 The above EQq.48 is further written in matrix form, and the regression coefficients are

obtained by least squares calculation:

i) = [ 2001 [05)] £q.49
PO = . %1 2 £q.50

1nx1: (nx 1) column vector of all elements are 1

[1,x1  x:(i,))]*: The generalized inverse of [1,x1 x:(i,))]

@ Calculate the unknown spectrum measured on the target spectrometer :

Xsta = [Inx1  Xunknow (@ )] [120((]]))] Eq.51

Xunknow (1, j): The absorbance of the unknown i sample at the j wavelength point measured
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on the target spectrometer

Xstq (0, )): Spectral matrix after normalizing xynxnow (6, J)

@ The final predicted value of the spectrum can be directly obtained by bringing the
calculated X, into the master model, so as to realize the standardization result of the

near-infrared spectrum based on SLRDS.

2.7 VValidation and Calibration

Calibration is performed during the development of an NIR spectroscopic analysis method
with chemometric evaluation using the reference values and the spectral data of the measured
calibration samples. Using linear regression, a statistical correlation is determined in the form
of a calibration function. Validation is the process of determining whether an analytical
method produces reproducible and reliable results that are accurate enough for the intended
application [168, 182, 187].

The calibration models are validated by predicting the target quantities of "unknown" samples
(with known reference values) that were not included in the calibration. The suitability of the
chosen data pretreatment, wavelength range, and number of principal components of the
multivariate calibration are all evaluated. The selection of reference analytics is critical for
obtaining reliable calibration results. There are two types of validation: test set or external
validation and cross or internal validation [169, 184].

External validation is carried out with the help of an independent test sample set, which does
not have to be the same size as the calibration sample set. In this case, the target variables to
be determined for both data sets are known (calibration as well as validation). This method
necessitates the analysis of relatively large sample sets using a reference method, which is
often regarded as a disadvantage due to the higher cost and time involved. For the
cross-validation the model is created in the same way as in the test set method, with the
exception that the test spectra are taken from the calibration set. When there are few

calibration samples available, cross validation is the approach of choice. The samples
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analyzed using the reference procedure are used for both calibration and validation of the
model in this case by taking one sample at a time from the calibration set and using it as a test
object for the variance calculation for calibration and validation. After calibration and
prediction, this sample is returned to the calibration set, and another sample is chosen and
removed. This process is repeated until each sample has been removed and predicted once
from the calibration set. As calibration evaluation criteria, a mean method error RMSEP and a
correlation coefficient r are calculated and reported. The number of principal components
used for calibration is critical for accurate prediction and model robustness [169, 180,
184-185].

Over-prediction and under-prediction (too many or too few factors) are represented by larger
and smaller prediction errors in the calibration data set, respectively, and result in a larger
error in the validation or test set. Only the first factors are required to decompose a spectral
data set's systematic properties; the following factors describe the calibration spectra's
non-systematic properties (e.g., noise, random measurement errors) [180, 184]. The
performance parameters listed below are used to assess the robustness of calibration as well as

the certainty of future predictions [169, 180, 183, 184].

2.8 Performance Parameters

R (correlation coefficient) is a statistical measure of the strength of the relationship between
the relative changes of two variables. It quantifies the relationship between the reference and
predicted values. The closer the correlation coefficient is to one, the closer the measured
values are to the regression line [131].

Standard deviation:

Eq.52

Covariation between x and y:
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n p—

(x, - %) (7, — 7)

cov(x, y) = L= Eq.53
n—1
Correlation between x and y (correlation coefficient) is:
g = vy Eq.54
S.S,

RMSEC (Root Mean Square Error of Calibration) is defined as the calibration's root mean

square error. The mean model error is interpreted using this parameter [131].

RUSEC = Eq.55

v;: Predicted value
y;. Reference value
i: Sample number

n: Total number of samples in the calibration set

RMSECV (Root Mean Square Error of Cross Validation) is an internal method to 'test' a
calibration to make sure it isn't badly skewed by a data point or if the model is over fitted, or

if there are any outliers [131].

RUSECY = Eq.56

n: Total number of samples in the internal validation set

RMSEP (Root Mean Square Error of Prediction) is a measure of the average prediction error
in the quantitative prediction of an unknown sample. This value is an important statistical
parameter for assessing the accuracy of future predictions, and it can be calculated using the

formula [131]:
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i(ﬁ, -y,
=1

n

RUSEP =

Eq.57

n: Total number of samples in the external validation set

The RMSEC, RMSECV and RMSEP prediction errors are given in the same units as the
target variable y. According to Eq.58, the RMSEP can be used to detect data outliers with
high SEP (Eq.60) as well as systematic errors in model construction and data structure due to

high bias (Eq.61). Low RMSEP values are indicative of good models.

RMSEP® = SEP® + Bias® Eq.58

SEC (Standard Error of Calibration) is the regression's standard error. The SEC is used in the
calibration set to calculate the difference between the predicted and reference values of the
target variable and to make a statement about how well the calibration equation fits the data.

The SEC value should be slightly less than the SEP value [131].

Eq.59

p: Number of principal components

n: Total number of samples in the calibration set

SEP (Standard Error of Prediction) is a model inaccuracy measure defined as the error spread

or standard deviation of the predicted values of the validation set [126, 131].

> (7, — y; — Bias)
SEP = =, 1 Eq.60
n p—

According to Eq. 61, the SEP is made up of a random error (SEC) and a systematic error

(bias). When the bias in Eq. 58 approaches 0, the SEP is ideally equal to the RMSEP. The unit



2 Theory 62

of the SEC and SEP values is the same as that of the reference method data.

Bias represents the systematic error and indicates the extent to which the actual and predicted
values of all samples in the validation set differ [126, 131].
z (.f}l - .,Vl)

Bias = =L Eq.61
n

RPD (Relative Prediction Deviation) is defined as the standard deviation of observed values
divided by the Root Mean Square Error or Prediction (RMSEP). The RPD takes both the
prediction error and the variation of observed values into account, providing a metric of
model validity that is more objective than the RMSEP and more easily comparable across

model validation studies [231].

Rep = L Eq.62

V1 = R?

Slope and Offset. The ordinate intercept (offset) and slope of the straight line from the
calculated linear regression between the reference target values and the predicted values are
denoted by these parameters. They are provided for both the calibration and test sets. In an

ideal case, offset is 0 and slope is 1.
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3 Experimental

The quality of flour directly affects the processing of the final flour products, their quality,
and the taste or flavor of these products when they are eaten. The content of moisture, ash,
starch, protein, and wet/dry gluten are important indicators that reflect the quality of flour.
This chapter introduces the use of near-infrared spectroscopy to establish a rapid
determination method for the content of moisture, protein, and wet gluten in flour. The
purpose is to quickly evaluate flour quality and provide theoretical data for improving the

processing quality and flavor characteristics of flour products.

3.1 Preparation of Test Samples and Chemical Value Parameters

3.1.1 Overview of Wheat Flour Samples

For the experiments and investigations described in this thesis, 50 wheat flour samples were
acquired in Germany and 163 wheat flour samples were gathered from all over China. The
wheat flour samples from Germany were purchased from DIGeFa GmbH (Detmolder Institut
fUr Getreide- und Fettanalytik GmbH ), and the reference values of the relevant parameters
were also provided by DIGeFa GmbH; most of the Chinese wheat flour raw materials came
from the three growing regions in China (as shown in Fig. 3.1). ), and only two wheat flours

were sourced from other countries (one sample from Kazakhstan and one from Russia).
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Fig. 3.1 Distribution of wheat producing areas in China
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The Chinese wheat flour samples come from different brands sold in various regions,
including 4 types of low-/medium-/high-gluten wheat flour, and whole wheat flour. All 213
Chinese and German flour samples were tested by laboratories in China, and subsequently
sealed and refrigerated for later use. The classification of all wheat flour samples is

summarized in Tab. 3.1.

Tab.3.1 Classification of flour samples under investigation

. Number of o
Countries Classification of Samples
Samples

Spring wheat region 37

CHN 163 Northern winter wheat region 81
Southern winter wheat region 45
Weizenmehl Type 550 30
Weizenvollkornmehl 10

GER 50 _
Weizenmehl Type 405 6
Weizenmehl Type 1050 4

3.1.2 Comparison of the Analytical Methods used for the Determination of the

Characteristic Flour Parameters in China and Europe

The determination of the contents of crude protein, wet gluten, moisture, ash and other
indicators in wheat flour is an important step in the quality control of wheat flour by NIR
spectroscopy. However, Europe and China have partly different analytical methods for the
determination of the reference values which are the basis for the development of calibration

models with NIR spectra.

3.1.2.1 Determination of Crude Protein

The determination method of crude protein is generally consistent internationally. Both the
European standard (ICC 167:2000) [197] and the Chinese standard (GB/T 5009.5-2016) use

the Dumas combustion method to determine the crude protein content of flour [198]. The only
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difference is that different testing instruments are used for the two standards. The testing
instrument used in the European standard is Dumatec™ 8000 (FOSS Analytical A/S, Foss A/S,
Hillerad, Denmark), and the Chinese testing agency uses a D500 Dumas nitrogen analyzer

(Hanon Future Technology Co., Ltd., Jinan, Shandong Province, China ).

The principle of the Dumas combustion method for the determination of crude protein content
is as follows:

The sample is heated and burned in the combustion tube and then converted into gas.
Nitrogen-containing substances are converted into molecular nitrogen, and the interfering gas
is absorbed and removed by a series of absorbents, and finally detected by a thermal
conductivity detector. To obtain the crude protein content, the nitrogen content of the sample

is multiplied by 6.25 [197].

3.1.2.2 Determination of Wet Gluten

The content of wet gluten is an important quality indicator of flour. Wet gluten is a
viscoelastic substance that is mainly composed of the two protein components of wheat
(glutenin and prolamin). Of the traditional methods for detecting wet gluten, hand washing is
the most primitive. The European Standard (ICC 155:1994) from 1994 developed new
methods for the detection of wet gluten using professional gluten instruments [199]. However,
it was not until 2008, that China officially added the method of measuring wet gluten by a
gluten instrument to the national standard (GB/T 5506.2-2008) [200].

Both standards use the same detection method but use different gluten instruments. The
Glutomatic 2200 Gluten Instrument (Perten Instruments, Perkin Elmer, Waltham,
Massachusetts, U.S.A.) was used in the European Standard, and the PG-2850 Gluten
Measuring Instrument (Perkone Scientific Co., Ltd., Hangzhou, Zhejiang Province, China)
was used in the Chinese Standard. Wet gluten is tested by adding a sample to a sodium
chloride solution to make a dough, and subsequently letting it sit for a period of time. The

purpose of this step is to form a network of gluten. The dough is then washed with a sodium
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chloride solution to remove unwanted substances such as starch and excess water from the
dough. After the gluten is separated, the wet gluten content is generally regarded as the

percentage of the separated wet gluten mass in the wheat flour sample mass [199].

3.1.2.3 Determination of Moisture

The determination of moisture commonly uses a drying method. The basic principle is to
measure the dry weight of the sample after drying at high temperature, including hygroscopic
water, part of crystal water and substances that are volatile under this condition. Finally, the
moisture content is calculated by weighing the values before and after drying.

However, there are two differences in the European Standard (ICC 110/1:1976) [201] and the
Chinese Standard (GB/T 5009.3-2010) [202]. First, the two standards use different testing
instruments, the Moisture Tester MT-CA (Brabender Messtechnik GmbH & Co. KG,
Duisburg, NRW, Germany) is used in the European standard. In the Chinese standard, the
RSD-252Z precision vacuum drying oven (Kunshan Rongshida Electronic Equipment Co.,
Ltd., Suzhou, Jiangsu Province, China) is used as testing instrument. Second, the settings of
the instrument parameters in the two standards are different. The European standard sets the
temperature conditions between 130 and 133<C, while the Chinese standard sets the

temperature conditions between 101 and 105<C [201].

3.1.2.4 Determination of Ash

The inorganic residues remaining after the flour is burned are called ash. Regarding the
determination of ash, the European standard (ICC 104/1:1990) [203] and the Chinese standard
(GB/T 5009.4-2016) [204] are consistent. According to the standard detection process, firstly,
an appropriate amount of wheat flour sample needs to be weighed, and then 1 mL of
magnesium acetate solution (240 g / L) is added to completely wet the sample. After standing

for 10 minutes, the moisture of the wetted sample was evaporated to dryness. Heat the sample



3 Experimental 67

on a hot plate with low heat to fully carbonize the sample until it is smoke-free. Immediately
place the crucibles in a muffle furnace and raise the temperature to 900 C 25 <C. Keep this
temperature until the carbon disappears, then reduce the temperature to about 200 <C, and

then place the sample in a desiccator for cooling before weighing [203].

3.2 Spectrometers used in the Experiments

3.2.1 Benchtop Spectrometers

Two benchtop spectrometers were selected for the measurement of the flour samples, and

their basic parameters are shown in Tab. 3.2.

Tab. 3.2 Basic parameters of the two benchtop spectrometers used for the present work

Spectrometer Compan Monochromator Wavelength Spectral Signal/Noise
Name pany Range (hm)  Resolution Ratio
Intelligent Analysis .
IAS 3100 Service,Wuxi,China MEMS + Grating Scan ~ 950-1650 16 nm 8000:1
Shanghai Space-OE ;
NIR Technology Acousto omie Tunable 491002300 210 nm 8000:1
Freespace Co.Ltd,Shanghai,China

3.2.1.1 IAS 3100 Spectrometer

The 1AS 3100 NIR spectrometer is an instrument for rapid analysis of small particles,
powders, pastes and other solids by using a MEMS + grating scanning method. MEMS +
grating as the core component of the instrument, uses the micro-mirror scanning method to
achieve wavelength selection output, and requires only a single point detector to obtain the
complete spectrum. The instrument measures solid samples by diffuse reflection, and
introduces an automatic reference material (gold-plated reflector) and automatic wavelength
calibration system, which can quickly self-test and calibrate the system.

The wavelength range of the spectrometer is 950-1650 nm, the resolution of the instrument is

less than 16 nm, the wavelength interval is 1 nm, the signal-to-noise ratio is more than 8000:1.
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The instrument has a built-in industrial control ARM processor, an embedded Linux system

and self-developed spectral analysis software. The instrument is shown in Fig. 3.2.

Fig 3.2 IAS 3100 NIR Spectrometer

3.2.1.2 NIR-Freespace

The NIR-Freespace spectrometer uses an AOTF technology as measurement principle and has
two InGaAs detectors to ensure the stability and synchronization of test data. In addition, the
instrument has a built-in reference making it unnecessary to measure a separate reference
spectrum before testing the sample. For each measurement, the spectrometer collects both the
reference and sample spectra, and then uses an algorithm to obtain the reflectance/absorbance
of the sample relative to the standard reference. The spectrometer is equipped with two
rotating motors. The wavelength range of the NIR-Freespace is 1100-2300 nm, the resolution
of the spectrometer is 2-10 nm, and the datapoint wavelength interval is 1 nm. The
wavelength scan speed is > 4000 wavelength points/sec, and the S/N ratio is > 8000:1.

A photo of the instrument is shown in Fig. 3.3.

Fig 3.3 The NIR-Freespace AOTF Spectrometer
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3.2.2 Handheld Spectrometers

Four handheld spectrometers were selected for this project, and their basic parameters are

summarized in Tab. 3.3.

Tab. 3.3 Instrumental parameters of the four handheld NIR spectrometers used for the present work

Spectrometer Compan Monochromator Wavelength Spectral Signal/Noise
Name pany Range (nm)  Resolution Ratio
. VIAVI Solutions . . .
MicroNIR Inc.San Jose USA  inear Variable Filter - 90g-1676 <12.5 nm 5324:1
NIRONE Spectral Engines Fabry Perot Tunable
Sensor$2.0  Oy,Helsinki,Finland Filter 1550-1950 <18 nm 9600:1
Neospectra ¢ Sten?;‘é’!?:g Eavo MEMS FTNIR 1298-2606 8 nm/1550 2820:1
Micro Y ' =ayP nm (self-test)
Hamamatsu
Photonics,Hamamatsu MEMS FTNIR 1100-2500 5.7 nm/1533 1888:1
C15511-01 .
City,Japan nm (self-test)

3.2.2.1 NeoSpectra Micro

The NeoSpectra Micro, a single-chip FT-IR spectrometer, uses its unique platform-Silicon
Integrated Micro-Optics System Technology (SiMOST™), which allows the creation of
multiple optical components on silicon. As a miniature, low-cost spectral sensor and scanner,
the NeoSpectra Micro can be used to detect a wide range of materials and substances. The
NeoSpectra Micro handheld spectrometer offers similar instrument performance parameters to
those of benchtop laboratory NIR spectrometers, but the NeoSpectra Micro is much smaller
and less costly. Fig. 3.4 shows a photo of the experimental set-up for flour measurements
using the NeoSpectra Micro scanner in tandem with the IAS 3100 spectrometer. The
NeoSpectra scanner is based on the MEMS technology with a wavelength range from
1298-2606 nm, a spectral resolution of 8 nm / 1550 nm, a wavelength datapoint interval of 9
nm, and a signal-to-noise ratio of 2820:1 (result of an in-house test). The optical head serves

as the light source for sample illumination and collects radiation diffusely reflected by the
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sample. A proprietary performance-optimized design with Application-Specific Integrated
Circuits (ASICs) for system control and data processing aims to reduce the number of
external components. The optical core module of the spectrometer uses a MEMS Michelson

interferometer and a single InGaAs detector.

Fig 3.4 Photo of the experimental set-up of a flour measurement with the NeoSpectra Micro scanner in tandem

with the 1AS 3100 NIR spectrometer measurement

3.2.2.2 NIRONE Sensor S 2.0

The NIRONE Sensor series is manufactured by Spectral Engines oy (Finland). The NIRONE
Sensor S 2.0 uses the patented MEMS of a Fabry-Perot interferometer, which is a fully
programmable optical filter. The sensor can be driven over the entire wavelength range or can
operate at a specific set wavelength range. Fig. 3.5 shows a photo of the experimental set-up
used to measure flour simultaneously by the NIRONE Sensor S 2.0 and the IAS 3100
benchtop instrument. The NIRONE Sensor S 2.0 has a single point detector rather than a
linear array, making it an economical and affordable solution for all applications. The use of a
single detector and the Fabry-Perot interferometer technique allows the use of a larger
detector area than a linear array. Its wavelength range is 1550 nm to 1950 nm, the instrument
resolution is 18 nm, the wavelength data point interval is 5 nm, and the signal-to-noise ratio is

9600:1.
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Fig 3.5 Photo of the experimental set-up of a flour measurement with the NIRONE Sensor S 2.0 in combination

with the IAS 3100 NIR spectrometer

3.2.2.3 MicroNIR

The MicroNIR uses a LVF as the core dispersive element, and it also uses advanced thin-film
coating design and manufacturing techniques. With its compact form factor and superior
performance advantages, the MicroNIR spectrometer is a simple and practical spectrometer,
which allows for wider adoption and greater flexibility in installation and scalability of NIR
spectroscopy solutions. The spectrometer has a sapphire window, Anti-Reflection
(AR)-coated on one side for maximum light throughput. Fig. 3.6 shows a photo of the
experimental set-up using the MicroNIR and the IAS 3100 spectrometers in combination. The
MicroNIR has a wavelength range from 908 nm to 1676 nm, its spectral resolution is 12.5 nm,

the wavelength datapoint interval is 6 nm, and the signal-to-noise ratio is 5324:1(self-test

result ).

Fig 3.6 Photo of the experimental set-up of a flour measurement with the MicroNIR in combination
with the 1AS 3100 NIR spectrometer
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3.2.2.4 Hamamatsu C15511-01

The Hamamatsu C15511-01 is a miniature FT-NIR spectrometer processed by using the
MEMS technology with a Michelson optical interferometer as the core element. The optical
interferometer has a built-in optical input section, a beam splitter, a fixed reflector, a movable
reflector (® 3 mm), and a photodetector. The photodetector acquires the light intensity signals
(interference information) that vary with the position of the movable reflector, and then
processes (Fourier transforms) these light intensity signals to obtain the spectral signals. A
semiconductor laser, Vertical Cavity Surface Emitting Laser (VCSEL), is built into the
instrument to monitor the position of the movable reflector, enabling spectral measurements
with high wavelength accuracy. The Hamamatsu C15511-01, like the NeoSpectra Micro, has
a MEMS FT-NIR as the core of its spectrometer. It has a wavelength range from 1100 to 2500
nm, the instrument resolution is 5.7 nm/1533 nm, the datapoint interval is 10 nm, and the
signal-to-noise ratio is 1888:1(self-test result). The individual components of the spectrometer

are shown in Fig. 3.8.

3.3 Experimental Measurement and Evaluation Process

The process of spectra measurements and calibration model development for the analysis of
the flour parameters is summarized in Fig. 3.7. The individual steps of collection and grinding
of the raw material wheat to the NIR spectroscopic measurement of the flour samples, and
finally the processing and analysis of spectra to develop calibration models are shown in the

flow chart (See Fig. 3.7).
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Wheat Flour
Grinding
NIR spectroscopic measurement of flour samples
Pretreating of Spectra
Prediction quality Geographical distinction
v v v Choose wheat from
Protein Moisture Wet Gluten different origins
| . | ¥
Detect and differentiate
Choose the best predictive model .
between different wheats
v v
Complete the research on the rapid detection of wheat quality by NIR technology

Fig. 3.7 Flow chart of the NIR spectroscopic measurement and calibration model development for the analysis of flour

parameters

The whole experimental process was divided into three temporal stages: stage | was from July
2019 to September 2019 at the Department of Chemistry (University of Duisburg-Essen,
Germany ) and comprised the operation of 3 handheld spectrometers: NeoSpectra, NIRONE
Sensor S 2.0, and MicroNIR and the 1AS 3100 benchtop spectrometer for the measurement of
50 German flour samples. During stage 1l (September 2020), the NIR spectra of 50 German
flour samples were measured with the Hamamatsu C15511-01 miniature FT-NIR
spectrometer and the 1AS 3100 benchtop spectrometer in the same location. In stage Il a
measurement campaign was run from October 2020 to December 2020 at the School of Food
and Biological Engineering (Jiangsu University, China) by using four handheld spectrometers
(NeoSpectra, NIRONE Sensor S 2.0, MicroNIR, and Hamamatsu C15511-01) for the 50
German and 163 Chinese flour samples, and the benchtop spectrometer (NIR-Freespace) for a

total of 163 Chinese flour samples only.
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3.3.1 Experimental Stage |

The stage | experiments were conducted using an IAS 3100 benchtop spectrometer as the
basic operating station, in parallel with 3 handheld spectrometers (MicroNIR, NeoSpectra,
NIRONE Sensor S 2.0), respectively, and additionally providing a rotation of the sample tray,.
The experimental site was in the basement corridor of the Department of Chemistry, in order
to maintain a relatively stable temperature and humidity environment for the NIR
spectroscopic measurements, as it was very hot during the July summer month. Thereby, the
experimental temperature environment was maintained between 22<C and 23<C. The stage |
experiment was divided into 3 parts, and a total of 3 measurement series (IAS 3100 and
Neospectra Micro, 1AS 3100 and MicroNIR, IAS 3100 and NIRONE Sensor S 2.0) were
performed by using the IAS 3100 benchtop spectrometer simultaneously with the 3 handheld
spectrometers, respectively. The flour samples were poured into the sample tray of the 1AS
3100 spectrometer, and spread evenly in order to keep the surface as smooth as possible.
Afterwards, the same sample was measured simultaneously with two spectrometers (the IAS
3100 benchtop spectrometer (bottom up) and the handheld spectrometer (top down)). The
handheld spectrometer detection is started 30s after the IAS 3100 spectrometer detection
process. Since the sample dish is rotated, the handheld spectrometer detects a moving sample
area instead of a fixed point. Testing the same sample 3 times requires moving the sample tray
two additional times, each time with a rotation angle of 120< This allows three sets of
spectral data to be tested for each flour sample with subsequent storage for data classification,
calibration and validation.

A total of 50 flour samples were tested. The Neospectra and MicroNIR sensors were mounted
approximately 1 cm above the surface of the flour samples, while the NIRONE Sensor S 2.0
sensor was approximately 5 mm from the surface of the flour samples. In addition, the
reference material used for the 3 handheld spectrometers was the reference plate included
with the NeoSpectra NIR scanner. Since the IAS 3100 spectrometer has a circular rotating
tray with a glass bottom above an instrument window facing upwards, the fitting of the

handheld spectrometers with their sensor face down above the rotating sample surface
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allowed to measure the same sample simultaneously with two spectrometers. The
measurements of the 50 German flour samples were performed in three stages by combining
the benchtop instrument successively with one of the three handheld instruments (NeoSpectra
Scanner, MicroNIR and NIRONE Sensor S 2.0), respectively.

The IAS 3100 has a programmed measurement time of 1 min (with a preparation time of 30s
and a scan time of 30s). To keep up with the IAS 3100 scan time, two handheld NIR
spectrometers (Neospectra and MicroNIR) were set to a scan time of 30s and the NIRONE
Sensor S 2.0 spectrometer was set to a scan time of 29s). Thus, after the 30s preparation time
of the IAS 3100 spectrometer, the scan time of the three handheld spectrometers was started
simultaneously with the scan time of the IAS 3100 spectrometer to measure the NIR spectra
of the flour sample under investigation. The warm-up time before measurement start was 1h
for the 1AS 3100 spectrometer and 0.5h for the 3 handheld spectrometers.

Figs. 3.4-3.6 show the experimental set-up for the measurements of stage I.

3.3.2 Experimental Stage Il

The IAS 3100 benchtop spectrometer was used as the basic operating station for this stage of
the experiments. As described above, this spectrometer provides a rotating sample tray, and
the Hamamatsu C15511-01 handheld spectrometer was mounted above the sample surface for
simultaneous testing.

The difference between the Hamamatsu C15511-01 spectrometer and the previous three
handheld spectrometers is that the Hamamatsu C15511-01 spectrometer currently provides
only its spectrometer module. The module needs to be connected to an external light source,
and the external light source has to be combined with one side of a Y-shaped optical fiber, and
the other side of this optical fiber needs to be connected to the spectrometer module so that
the optical signal of the sample can be transmitted to the spectrometer module. In comparison,
the light source and spectrometer module of the other three handheld spectrometers have been

integrated into one device. The experiments were conducted under similar temperature
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conditions as for experimental stage | between 20-22<C. The measurement procedure was also
the same as in section 3.3.1, and the reference material used for the Hamamatsu C15511-01
handheld spectrometer was the same reflection standard as used for the Neospectra scanner.
The warm-up time was 1h for the IAS 3100 spectrometer and 0.5h for the Hamamatsu
C15511-01 handheld spectrometer. Fig. 3.8 shows the experimental set-up of the combined
measurements with the IAS 3100 benchtop and Hamamatsu C15511-01 handheld

spectrometers.

Light source
(Hamamatsu)

N IAS 3100

Fig 3.8 Photo of the experimental set-up of the combined measurements with the 1AS 3100 benchtop
and the Hamamatsu C15511-01 handheld spectrometers.

3.3.3 Experimental Stage 111

In these experiments two benchtop spectrometers (IAS 3100 and NIR-Freespace) were used
in combination with four handheld spectrometers to measure the Chinese flour samples in the
third stage of this work. In 163 Chinese flour samples (only 154 Chinese flour samples were
selected by NIR-Freespace because the sample volume of the other 9 samples was too small
to meet the minimum measurement standard for sample volume in the detection tray) the
three parameters protein, moisture and ash were analyzed. For wet gluten the reference values
were only available for 159 samples.

The experimental work for stage Il was conducted in the School of Food and Biological
Engineering (Jiangsu University, Zhenjiang, Jiangsu Province, China). The environmental

temperature was stabilized by air condition at about 22<C in order to be consistent with the



3 Experimental 77

previous measurement conditions in Germany.

In order to rationalize the measurements, the experimental part of stage 111 was divided into
two parts. One benchtop/handheld spectrometer combination consisted of the IAS 3100
spectrometer and the two handheld instruments MicroNIR and NeoSpectra, the other
combination comprised the NIR-Freespace spectrometer and the Hamamatsu C15511-01
and NIRONE Sensor S 2.0 handheld instruments. The handheld spectrometers were
positioned top down over the sample trays of the benchtop spectrometers. The operating and
sample presentation conditions in these experiments were analogous to the experimental
conditions of stage I. For the four handheld spectrometers a poly(tetrafluoroethylene) (PTFE)
diffuse reflection standard of the Hanon Company (Jinan, Shandong Province, China) was
used.

For the NIR-Freespace benchtop instrument the operating time was set to 45s, (15s
preparation time and 30s scan time). To match the NIR-Freespace's scan time, both handheld
NIR spectrometers (Hamamatsu C15511-01 and NIRONE Sensor S 2.0) were set to 29s
measurement time. After the NIR-Freespace spectrometer's preparation time, both handheld
spectrometers were started simultaneously to the NIR-Freespace spectrometer’s scan time. Fig.

3.9 shows the experimental set-up of these measurements.

NIRONE
Sensor S 2.0

Fig 3.9 Photo of the experimental set-up of the combined measurements with the IAS 3100 benchtop
and the MicroNIR and the NIRONE Sensor S 2.0 handheld spectrometers.

3.4 Acquisition of Spectral Data

Since the format of the spectral data obtained from the acquisition software of the different
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instruments is not consistent, the format of the respective spectral data needs to be
standardized before subsequent spectral data processing and calibration model development.
Each spectrometer has its own spectral acquisition software to complete the workflow of the
spectra measurement. The first step is to acquire a background spectrum of the reflection
standard, and then the spectrum of the sample is measured. From these data either a percent
reflectance (%R) or absorbance (log 1/R) spectrum is calculated and stored in the computer.
The spectral data collected by the benchtop spectrometers IAS 3100 and NIR-Freespace are
automatically stored on a disk inside the instrument, and can be exported via USB or mobile
flash drive for import into a computer.

The handheld spectrometers used in this work have different internal structures and due to
their small size some of them do not have the ability to store data and the spectra collected by
the instrument need to be transferred to a computer for storage and further processing. The
common working situation is to install the software for the handheld spectrometer on a
computer, tablet or cell phone and connect these with a data cable or via Bluetooth with the

spectrometer.

3.5 Spectrum Processing Analysis Software

NIR spectroscopy is a so-called secondary analysis technique and therefore requires
qualitative or quantitative calibration models to relate the NIR spectra of the samples to the
chemical or physical reference values. The raw spectra measured by the spectrometers contain
not only the physicochemical information of the sample, but also a large amount of interfering
information, that is not related to the reference values of the sample under investigation. The
data processing of NIR spectra requires software for spectral pretreatment and development of
chemometric calibration models. Thereby the lack of “fingerprint character” of mid-IR
spectra can be overcome and the purpose of qualitative and quantitative analysis of the sample
is finally achieved.

The main spectral processing analysis software used in this project is the Unscrambler™

(Version 9.7, Camo Analytics AS, Aspen Technology, Inc., Bedford, Massachusetts, USA),


http://www.aspentech.com/
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MATLAB (2016a, The MathWorks, Natick, Massachusetts, USA) and NIRSA (\Version 5.8.8,
NIR Research Laboratory of Jiangsu University/Automation Department of the School of
Light Science and Engineering of Nanjing Forestry University, Zhenjiang/Nanjing, Jiangsu

Province, China).

3.5.1 Unscrambler™ 9.7

The Unscrambler™ 9.7 is a multivariate data analysis software released by Camo Analytics
AS, Inc. and provides users with a tool that meets the needs for qualitative and quantitative
data analysis, thereby enhancing the ability to handle process data and providing the

possibility for spectral calibration.

3.5.2 MATLAB R2016a

The MATLAB R2016a software allows visualization, numerical computation and
programming to be centralized in a simple open environment with dimensionless matrices as
its basic data unit. For NIR spectroscopy the MATLAB software can be used for
chemometric-related algorithm writing and analysis of spectral data as well as their

visualization.

3.5.3NIRSA 5.8.8

The NIRSA 5.8.8 software integrates a variety of data processing algorithms and is mainly
applied to the qualitative and quantitative analysis of NIR spectroscopic data. Since its

development in 2004, this software has been improved and matured.
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3.6 Processing Steps after Spectra Measurement

3.6.1 Selection of Pretreatment Methods for Raw Spectra

Since the acquired raw spectra are often accompanied by scatter effects, random noise, band
overlap and baseline drifts, spectral pretreatment is an indispensable step in the calibration
modeling process in order to eliminate external interferences. A reasonable pretreatment
method can effectively filter out the noise information in the spectral signal and retain the
effective information, thus solving the complexity problem of the calibration model. To
optimize the prediction accuracy of the developed calibration models, this work used
pretreatment methods like SNV, EMSC, Savitzky-Golay Smoothing Algorithm (SGSA) and

First-Order Derivative (1% Der.) to pretreat the original spectra.

3.6.2 Selection of Effective Spectral Range and Screening of Outliers

Since the raw spectral data contain a lot of interfering information, direct analysis using raw
spectra can increase the calculation complexity and take a lot of time, and may contain
redundant information that is not relevant to the chemical reference values. Therefore, in
order to build fast and accurate calibration and prediction models, it is necessary to extract the
valid spectral ranges related to the chemical reference values and to reject the outliers. In this
work mainly the plot of leverage versus residuals (“influence plot”) of the Unscrambler™ 9.7
software was used to detect outliers. Specific examples of analysis results are described in

Sections 4.1.3 and 4.1.4.
3.6.3 Separation of Available Samples in Calibration and Prediction Set

The separation of the available samples into a calibration and a prediction set has an
important impact on the quality of the calibration model. The basic requirement for selecting
the calibration and prediction set samples is to ensure a representative distribution of the
reference values in both sets. In this work, Sample Set Partitioning based on the joint X-Y

distance (SPXY) algorithm of the NIRSA software is used to select 10% of the total number
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of samples as the prediction set and the remaining 90% as the calibration set.

3.6.4 Calibration and Prediction Model Development

After completing the three steps described in Sections 3.6.1-3.6.3, the corresponding
calibration models were built and the prediction sample sets were predicted by these models.
For qualitative and quantitative analysis primarily two multivariate methods, PCA and PLS

regression, respectively, were used in the present work.
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4 Results and Discussion

After completing the experiments according to the test steps and procedures described in
Chapter 3, this section presents the data analysis and discussion of the raw spectra obtained
from the flour tests with all the spectrometers. The first step is the basic screening of the raw
spectra with reference to the spectrometer hardware and performance followed by

optimization of the spectra.

4.1 Screening and Optimization Process for the Spectra

4.1.1 Initial Screening of Spectrometers

The quality of the spectra is related to many factors, such as the different optical principles of
the spectrometers, their different performance parameters (e.g., high or low signal-to-noise
ratio, high or low spectral resolution, different spectral detection range, etc.), and changes of
the investigated samples (e.g., high or low concentration range, changes in sample
composition, etc.). All these factors have an impact on the NIR spectra, and even the changes
in the measurement environment can lead to changes of the measured spectra. Thus, choosing
the right spectrometer for flour testing is important to ensure the quality of the spectrum.

The signal-to-noise ratio, spectral resolution, and accuracy of absorbance values of handheld
spectrometers are generally lower than those of benchtop spectrometers. The spectrum of a
flour sample recorded over the whole NIR wavenumber range (800-2500 nm/12500-4000 cm™)
is used as standard spectrum. The Chinese national standard for flour NIR spectra, for example,
uses the full spectral range of the Lengguang S450 benchtop spectrometer (800-2500
nm/12500-4000 cm™) and is the basis of the comparison of the 2 benchtop spectrometers (1AS
3100, NIR Freespace) and the four handheld spectrometers (MicroNIR, Neospectra Micro,
Hamamatsu C15511-01, NIRONE Sensor S 2.0) used in the present work. In Fig. 4.1 the NIR
spectra measured of the same flour sample with the different spectrometers are shown. In this

comparison it is clearly demonstrated, for example, that the NIRONE Sensor S 2.0
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spectrometer has the narrowest spectral range of all instruments (spectrum marked in red). This
narrow spectral range makes it difficult to ensure, that the most effective spectral information
will definitely fall in that wavelength range, which can lead to a smaller amount of information

obtained from the flour test object for effective qualitative and quantitative analysis.

S450
=—Hamamatsu

- AOTF 7

—Si-ware

| —I1AS 3100 i
Viavi

—Spectral Engines

Log (1/R)
o o o o
N S (o)) [e2)

o
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Fig. 4.1 Comparison of the NIR spectra of the same flour sample measured with the full NIR spectral range of the
Lengguang S450 benchtop spectrometer ( Grey spectrum ), the IAS 3100 and NIR Freespace (AOTF ) benchtop
spectrometers and the four handheld spectrometers ( MicroNIR , Neospectra Micro , Hamamatsu C15511-01,
NIRONE Sensor S 2.0)

For the measurements in Germany (Stage 1) and China (Stage 3) different spectrometers of
the same instrument type (benchtop and handheld) were used, because the instruments could
not be exchanged due to customs restrictions. Furthermore, while German flour samples could
be sent to China for test purposes, the Chinese flour samples could not be sent to Germany. To
prove the low-quality of the NIR spectral data acquired with the NIRONE Sensor S 2.0
instruments, a comparison of calibrations was performed on the 50 German flour samples
(which were available in both countries) using the different handheld spectrometers (NIRONE
Sensor S 2.0 and MicroNIR ) used in Germany and China, respectively. The PLS calibration
results obtained for protein with the NIR spectra of both instruments after the same spectral
pretreatment method (EMSC) are summarized in Fig. 4.2. To exclude errors due to sample
presentation, both instruments were fixed above the same sample and the spectra were

measured simultaneously (as shown in Fig. 3.9).
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Fig. 4.2 reflects, that despite small differences the PLS results for protein derived from the
MicroNIR spectra measured during Stage 3 are similar to those of Stage 1 (in terms of the
number of factors and the RMSE and R? values), while the results achieved with the data of
the NIRONE Sensor S 2.0 spectrometer during Stage 3 measurements are extremely different
from Stage 1 results and of comparatively low quality for both measurement procedures.
These discrepancies can be explained by the fact, that many spectroscopic footprints of
proteins occur primarily in the wavenumber range 5000-4000 cm™, which is not available for
the detection range of the NIRONE Sensor S 2.0 instrument (6452-5128 cm™).Therefore, it
has been decided to exclude the NIRONE Sensor S 2.0 spectrometers from the further

analysis process.
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(a) Protein calibration results achieved during Stage 1 measurements of the German flour samples (measured in

Germany) with the German NIRONE Sensor S 2.0 instrument.
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(b) Protein calibration results achieved during Stage 3 measurements of the German flour samples (measured in
China) with the Chinese NIRONE Sensor S 2.0 instrument.
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(c) Protein calibration results achieved during Stage 1 measurements of the German flour samples (measured in

Germany) with the German MicroNIR instrument.
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(d) Protein calibration results achieved during Stage 3 measurements of the German flour samples (measured in China)

with the Chinese MicroNIR instrument.

Fig. 4.2 Comparison of the PLS protein calibration results for the NIRONE Sensor S 2.0 and MicroNIR spectrometers
of the same 50 German flour samples measured during Stage 1 (measurements in Germany) and Stage 3

(measurements in China)

4.1.2 Selection of Pretreatment Methods for Raw Spectra

Before calibration all spectra were divided into a calibration set (192) and a prediction set (21)
at a ratio of 9:1 by the SPXY algorithm. For the development of protein calibration models
with the spectra measured on the IAS 3100 benchtop instrument, the NIR spectra of 213 flour
samples were collected and a PLS model with 191 calibration samples (removing one outlier)
and 21 test set samples for external validation was developed. In order to fully exploit the
available information in the spectra and to reduce unwanted interferences, the raw spectra of

the samples were pretreated by different methods to minimize or eliminate irrelevant
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information and noise. The best pretreatment method (EMSC) was selected on the basis of the
PLS calibration and cross-validation parameters (number of factors, RMSE and R? values)

and is highlighted in red in Tab. 4.1.

Tab. 4.1 Comparison of the protein PLS calibration results for different pretreatment methods applied to the spectra

measured with the 1AS 3100 benchtop spectrometer.

Calibration Cross Validation
Method Factor
R? RMSEC R? RMSECV
None 7 0.9550 0.4003 0.9638 0.3631
SNV 6 0.9801 0.3745 0.9648 0.3582
EMSC 5 0.9571 0.3907 0.9665 0.3493
1% Derivative 8 0.8613 0.7023 0.8458 0.7498
Savitzky-Golay 7 0.9556 0.3974 0.9651 0.3563

4.1.3 Outlier Screening and Analysis of the Number of Factors for Calibration

Development

An outlier is an error that clearly exceeds the expected statistical parameters, mainly due to
some anomalies, and the source may be measurement error, spectral noise, or extreme sample
properties. During the development of a calibration model, attention has to be paid to such
outliers, which decrease the performance of the calibration. An outlier is a sample that
deviates from the other calibration samples and may not belong to the same population,
thereby negatively influencing the calibration model. For a PLS calibration, outliers can be
detected by using score plots, plots of residuals, or the parameters of leverage and influence.
When outliers are judged by the values of leverage and residuals, the larger the leverage and
the smaller the residuals, the more important are the data for the corresponding calibration. By
this control procedure, the outliers of the individual calibration sets for the different
parameters have been identified and are eliminated before calibration model development. Fig.

4.3 shows all the spectra of an arbitrarily selected instrument for outlier screening. As can be



4 Results and Discussion 87

seen in the figure, the two samples marked as red circles outside the magenta threshold line

belong to classical outlier spectra and need to be removed.
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Fig.4.3 The influence plot of leverage and variance for the identification of outliers (red circles are marked as outliers)

Another parameter that has a significant effect on the performance of calibration is the
number of chosen factors or principal components. Fewer factors lead to lower accuracy,
though to more robust calibrations. Too many factors frequently induce overfitting with only
an apparent improvement of predictive ability. In the present work, the optimal number of
factors has been determined from the plot of the RMSE’s versus the number of factors when
the graphs reach a minimum or a plateau. Furthermore, in Tab. 4.24, the effect of the number
of factors on the RMSEC and the RMSECV is demonstrated exemplarily for three flour
parameters (wet gluten, moisture, and protein) calibrated with the spectra recorded on four
different instruments. For example, for Neospectra Micro's principal component selection,
although five factors are selected for protein, only two factors are selected for water. The
number of factors selected for all parameters and instruments are summarized in Tab. 4.24.
Apart from the optimal number of factors for the individual calibration models, the
calibration/test set sample ratios, the RMSE S and the R? (split up in values for calibration (C),

cross-validation (CV), and prediction (P)) are included.
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4.1.4 Analysis of the Important Flour Parameters

The reference values of six parameters representing important quality indicators of flour were
available for the flour samples of this project, namely protein, moisture, ash, wet gluten,
sedimentation value and gluten index. These six parameters were determined using standard
reference methods (see Chapter 3, Section 3.3). However, only the values of three parameters,
protein, moisture and wet gluten, have been selected for spectroscopic data analysis and
modeling and the other values were excluded, because the number of samples with reference
values of sedimentation and gluten index was too small, accounting for only 18.8% of the
total 213 samples. There are several reasons for not using the ash values for calibration
development. First, because of the inconsistency between the national standards for ash
testing in China and the ash testing standards in Germany, the different testing methods also
lead to larger errors in the ash values; second, the accuracy of the ash values of Chinese flour
samples tested in China is not high due to the imperfect testing technology of Chinese testing
institutions for ash values.

For all samples parameter values of protein and moisture were available, and the coverage of
wet gluten also reached 93.4%; thus, these three parameter values are more representative of
the general applicability of the NIR analysis. In Tab. 4.2 the descriptive statistics of all

parameter values for the investigated flours samples have been summarized.

Tab. 4.2 Descriptive statistical analysis of reference values of the flour samples measured in Germany and China

Reference Number of Samples Mean%(w/w) Max%(w/w) Min%(w/w) Range%(w/w) Std. %(w/w)
Protein 213 10.76 14.83 3.24 11.59 1.95
Moisture 213 13.06 19.35 7.07 12.28 113
Ash 213 0.65 1.75 0.37 1.38 0.24
Wet Gluten 199 29.38 42.79 18.70 24.09 4.29
Sedimentation 40 36.85 46 12 34 7.90

Gluten Index 40 90.35 96 74 22 4.02




4 Results and Discussion 89

4.2 Analysis Results of the Benchtop Spectrometers IAS 3100 and
NIR-Freespace

4.2.1 PCA Results Obtained with Spectra of the IAS 3100 Spectrometer

The PCA method (see Chapter 2, Section 2.5.2.1) is applied here to highlight discriminative
features in the spectral data of all 213 samples, and indeed some very interesting issues have
been detected. Due to the larger wavelength ranges of the spectra measured on the benchtop
spectrometers (the IAS 3100 spectral range is 11111-5970 cm™ with 776 data points, and the
NIR-Freespace spectral range is 9091-4348 cm™ with 1201 data points), they contain
information from several overtones and combination bands (see Fig. 4.28). Therefore, PCA
can help to distinguish also materials with minor chemical differences. Not only can PCA
determine the categories to which the samples belong by their scores in each factor space, but
also the new variables can characterize the quality differences of the original samples in a
more visual way.

As shown in Fig. 4.4(a), all samples are analyzed by a PCA model using the spectral data
measured with the IAS 3100 instrument for the distribution of scores on the second and third
principal components. In this graph the flours produced in China and Germany are clearly
clustered and separated allowing an identification of the two species. The two outliers of
Chinese flour samples can readily be identified and do not reduce the accuracy of sample
classification. As shown in Fig. 4.4(b), due to the large distance between the two clusters, an
approximate boundary line can be used to determine the clusters of Chinese and German flour.

The boundary formula for this clustering discrimination is:

y = —1.66x + 0.05 (x = PC2,y = PC1) Eq.63
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Fig. 4.4 PCA analysis results of 213 flour spectra measured with the 1AS 3100 spectrometer ((a) two-dimensional score

plot (b) boundary result)

In Fig. 4.5 the PCA 2D-score plot of the first and second principal components using the
spectra of the 154 Chinese flour samples measured with the NIR-Freespace instrument is
shown. Although two clusters are observable in the PCA score plot (Fig. 4.5), they are not
based on the high and low gluten content required by the Chinese Flour Quality Classification
Standard. They can also not be assigned to differences in origin, moisture, protein, ash and
wet gluten. The outlier observed in Fig. 4.6 is not an ordinary flour sample, but a flour sample
with admixed baking powder. The addition of a non-flour substance significantly affects the

PCA classification result of this flour sample.

PCT Scores
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T T T T T T T
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Fig. 4.5 PCA score plot of 154 Chinese flour spectra measured with the NIR-Freespace instrument

The above exemplary PCA analyses demonstrate that flours of different origin can be

distinguished by PCA analysis.
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4.2.2 PLS Results Obtained with Spectra of the IAS 3100 and NIR-Freespace Instruments

Due to the overlap of spectral information at various wavelength positions and the broad
spectral peaks in the NIR spectra of flour, the qualitative and quantitative analysis of flour
NIR spectra requires chemometric evaluation methods. For quantitative analysis PLS has
proved an extremely versatile tool to build calibration models for various flour parameters.
The spectra of flour samples from different batches measured with the 1AS 3100 benchtop
spectrometer were divided into a calibration set and a test set. A calibration model developed
for practical use has to include samples with the whole range of content value variations in
order to provide good prediction values of unknown samples not included in the calibration
model. For the PLS calibrations developed in this work, 10 % of all spectra (after removal of
outliers) were selected as test set and the remaining 90 % of samples were used to build the
calibration model. The results of the descriptive statistical analysis of the flour parameters

protein, moisture and wet gluten are summarized in Tab. 4.3.

Tab. 4.3 Descriptive statistical analysis of the investigated flour parameters of the German and Chinese flour samples

measured with the 1AS 3100 benchtop spectrometer.

Parameter ~ DataSet  Number of Samples Mean%(w/w) Max%(w/w) Min%(w/w) Range%o(w/w)

Total 212 10.80 14.80 6.30 8.50
Protein Calibration 191 10.77 14.80 6.30 8.50
Test 21 11.03 14.40 7.20 7.20
Total 208 13.07 15.30 9.90 5.40
Moisture Calibration 187 13.08 15.10 10.10 5.00
Test 21 12.98 15.30 9.90 5.40
Total 198 29.38 42.80 18.70 24.10
Wet Gluten  Calibration 178 29.28 42.20 18.70 23.50
Test 20 30.30 42.80 20.60 22.20

Since with the NIR-Freespace benchtop spectrometer only 152 Chinese flour samples were

tested, the total number of spectra in the calibration and test sets are lower than for the IAS
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3100 instrument. The results of the descriptive statistical analysis of the three parameters are

summarized in Tab. 4.4.

Tab. 4.4 Descriptive statistical analysis of the investigated flour parameters of the Chinese flour samples measured

with the NIR-Freespace benchtop spectrometer

Parameter ~ Data Set  Number of Samples Mean%(w/w) Max%(w/w) Min%(w/w) Range%o(w/w)

Total 152 10.24 14.80 6.70 8.10
Protein Calibration 137 10.25 14.80 6.70 8.10
Test 15 10.01 12.20 7.30 4.90
Total 150 12.97 14.3 10.20 4.10
Moisture Calibration 135 12.96 14.3 10.20 4.10
Test 15 13.11 14.2 12.40 1.80
Total 149 29.27 42.80 18.70 24.10
Wet Gluten  Calibration 134 29.20 40.20 18.70 23.50
Test 15 29.90 42.80 21.00 21.80

4.2.2.1 Calibration Models and their Prediction Results Obtained for the Spectra

Measured with the IAS 3100 Benchtop Spectrometer

The spectral data measured on the IAS 3100 spectrometer have been analyzed quantitatively
by developing PLS calibration models. Before the PLS modeling, the original spectra had to
be pretreated in order to eliminate outliers according to the method described in Section 4.1.3,
and remove noise (the specific spectral pretreatment process was according to section 4.1.2).

Raw spectra and pretreated spectra are shown in Fig. 4.6.
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Fig. 4.6 Spectra of 50 German (red) and 163 Chinese (blue) flour samples measured with the 1AS 3100
benchtop spectrometer. (a) raw spectra (11111-5970 cm™) and (b) EMSC pretreated and truncated spectra

(10101-6238 cm'™) after removal of one Chinese flour outlier sample.

The calibration results obtained for the three parameter values (protein, moisture, and wet gluten) are

shown in the Figs. 4.7 to 4.9, respectively. The calibrations were performed in three steps: (a) modeling of

German flour samples only, (b) modeling of Chinese flour samples only, and (c) developing a calibration

model after merging the flour samples from both countries. In Fig. 4.7(c) to 4.9(c) the calibration set of the

German flour samples is marked with black circles. From Fig. 4.7(c) it can be seen that the protein content

interval of the German flours is limited to the region of high protein levels. In Tabs. 4.5 to 4.7, the

predictions of the test sets corresponding to the calibrations shown in Figs. 4.7(c) to 4.9(c) are summarized.

@ 5 | Predicted ¥
4 Y-vanance Residual Vanance | Slope Offset RMSE  R-Square
1 0951481 0614063 0211101 0851481
0.938563 0775373 0263784 0.927241 -
i +
" P
08 ' -
L) H
13—
08 LI ]
e
AT,
4 . .
04— " iy
1 s
(PR //.
0 E— 10
Pee T T T r
PC_00 PC_03 PC_06 PC_08 PC_12 PC_15 PC_10 ALE] 1no 1n5 120 125 13.0 135 140 14.5

RESULT!, Vaniable: c Tofal v Tofal pro ger, (Y-var, PC): (Protein(Ger) B) (Protein(Ger),E)



4 Results and Discussion

94

| | Predicted ¥
34 Y-variance Residual Variance fi Slope Offser RMSE  R-Square
08964247 D 365561 0325925 0 B64247
T 0861523 0384898 0358414 0 857051 .
14— T
| L
1, oAt
24 \ 1 ) St
\ 12 e
\ 1 ST
| ] Wi 4o
1 10 W ‘w h
| A M
1 1 ' et
4 -
P
[] 1 ) e
P e Y
L R oCs 7 Measured ¥
Pc_oo Pe Pe_ 06 PC 09 pe_ 12 Pe_ts PC_10 ' (] ] 10 12 14 16
RESULT3, Variable: c Tolal v Tofal RESULT3, (Y-var, PC): (pratein §) (protein B)
(©
o Y-variance Residual Variance 18 Predicted Y
b | Slope Offset RMSE  R-Square
0852981 0506509 0408194 0952981
\ 0951601 0521114 0431867 0947818
! \R 14— e
e '9 ®
\ 1 @ i
] \ 12—
4 ]
] \ i
] \ 10—
| .
14 4
8- P oy
’ ] T
— H
1 T i 6 —|
PCs Measured Y
T T T T T T
PC_00 PC 03 PC_DB PC 09 PC_12 PC_15 PC_18 10 12 4 16

RESULTY, Variablle: ¢ Tofal v Tolal

B 8
RESULT1, (Y-var, PC): (protein,5) (protein 5)

Fig. 4.7 Comparison of the protein calibrations obtained with the spectra of the individual and merged sample sets

measured on the IAS 3100 benchtop spectrometer. (a) Calibration of 50 German samples (measured in Germany

with German reference values); (b) calibration of 162 Chinese samples (measured in China with Chinese reference

values); (c) calibration of merged samples (45 German and 146 Chinese calibration samples with respective

reference values).

Tab. 4.5 Comparison of Protein reference and prediction values for five German (a) and 16 Chinese (b) test samples

based on the calibration of Fig. 4.7(c) (AE: absolute prediction error, MAE: mean absolute prediction error)

(@)
Samples
11 16 37 38 49
#(GER)
Ref. 11.9 12.8 12.3 14.4 135
Pred. 1210 | 12.30 | 1244 | 15.01 | 14.14
AE
0.20 0.50 0.14 0.61 0.64
(Ref.-Pred.)
MAE 0.42
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(b)
Samples
17 22 24 39 55 57 59 78
#(CHN)
Ref. 9.7 10.3 10.2 9.9 10.4 11.1 14.2 10.1
Pred. 9.12 10.55 | 10.12 9.87 10.10 | 11.19 | 14.58 9.63
AE
0.58 0.25 0.08 0.03 0.30 0.09 0.38 0.47
(Ref.-Pred.)
Samples
81 87 93 97 109 127 129 135
#(CHN)
Ref. 9.4 7.2 7.9 11.7 9.0 12.1 12.9 10.6
Pred. 9.88 7.61 8.20 12.50 9.28 11.79 | 12.71 | 10.82
AE
0.48 0.41 0.30 0.80 0.28 0.31 0.19 0.22
(Ref.-Pred.)
MAE 0.38

From the absolute difference of the reference and predicted protein values of the test samples,

the lowest and highest Absolute Errors (AE) are 0.03 and 0.80, respectively. Mean Absolute

Errors (MAE) of 0.42 and 0.38 are calculated for Germany and China, respectively.
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Fig. 4.8 Comparison of the moisture calibrations obtained with the spectra of the individual and merged sample

sets measured on the 1AS 3100 benchtop spectrometer. (a) Calibration of 50 German samples (measured in

Germany with German reference values); (b) calibration of 158 Chinese samples (measured in China with

Chinese reference values); (c) calibration of merged samples (45 German and 152 Chinese calibration samples)

with respective reference values).

Tab. 4.6 Comparison of Moisture reference and prediction values for 5 German (a) and 16 Chinese (b) test samples

based on the calibration of Fig. 4.8(c).
(@)
Samples
16 32 40 49
#(GER)
Ref. 135 14 15.3 14.1 12.4
Pred. 13.37 | 1477 | 1473 | 1446 | 12.16
AE (Ref.-Pred.) 0.77 0.57 0.36 0.24
MAE 0.41
(b)
Samples
9 12 19 22 30 35 77 88
#(CHN)
Ref. 12.9 13.3 13.2 13.2 134 13.7 13.2 10.0
Pred. 12.83 | 13.47 | 13.72 | 13.13 134 138 13.04 | 10.35
AE (Ref.-Pred.) | 0.07 0.17 0.52 0.07 0.00 0.10 0.16 0.35
Samples
94 102 129 136 145 148 155 156
#(CHN)
Ref. 13.1 13.0 12.6 12.7 12.8 12.1 135 10.2
Pred. 13.09 | 1312 | 1250 | 1271 | 1277 | 12.18 | 13.30 9.76
AE (Ref.-Pred.) | 0.01 0.12 0.10 0.01 0.03 0.08 0.20 0.44
MAE 0.15

From the absolute difference of the reference and predicted moisture values of the test
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samples, the lowest and highest AE are 0.00 and 0.77, respectively. MAE of 0.41 and 0.15 are

calculated for Germany and China, respectively.
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Fig. 4.9 Comparison of the wet gluten calibrations obtained with the spectra of the individual and merged sample
sets measured on the 1AS 3100 benchtop spectrometer. (a) Calibration of 40 German samples (measured in
Germany with German reference values); (b) calibration of 158 Chinese samples (measured in China with Chinese
reference values); (c) calibration of merged samples (36 German and 142 Chinese calibration samples with

respective reference values).
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Tab. 4.7 Comparison of Wet Gluten reference and prediction values for 4 German (a) and 16 Chinese (b) test samples

based on the calibration of Fig. 4.9 (c).

(@)
Samples
1 6 41 46
#(GER)
Ref. 29.8 30.8 35.1 27.4
Pred. 29.50 27.70 | 33.30 | 29.40
AE
0.3 3.1 1.8 2.0
(Ref.-Pred.)
MAE 1.80
(b)
Samples
2 16 23 24 37 38 39 47
#(CHN)
Ref. 26.7 36.2 223 28.3 42.8 30.3 30.5 20.6
Pred. 27.30 | 40.30 | 25,50 | 30.40 | 4190 | 29.30 | 29.40 | 22.00

AE (Ref.-Pred.) 0.6 4.1 3.2 2.1 0.9 1.0 11 1.4

Samples
53 57 78 81 90 142 158 164
#(CHN)
Ref. 317 33.7 28.9 27.7 313 29.6 32.6 29.9
Pred. 29.50 | 31.60 | 27.00 | 27.80 | 30.00 | 27.70 | 33.40 | 28.50
AE (Ref.-Pred.) 2.2 2.1 1.9 0.1 13 1.9 0.8 14
MAE 1.63

From the absolute difference of the reference and predicted Wet Gluten values of the test
samples, the lowest and highest AE are 0.1 and 4.1, respectively. MAE of 1.80 and 1.63 are

calculated for Germany and China, respectively.

4.2.2.2 Calibration Models and their Prediction Results Obtained for the Spectra

Measured with the NIR-Freespace Benchtop Spectrometer

The spectra measured on the NIR-Freespace benchtop instrument were also used to build PLS
calibration models for the different flour parameters. Here too, before PLS model
development, the original spectra had to be preprocessed and outliers had to be removed

according to the method described in Section 4.1.3. It was found, that the noise in the spectra
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is very low and therefore the entire wavelength range was used for further processing as

shown in Fig. 4.10.
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Fig. 4.10 Spectra of 154 Chinese flour samples measured with the NIR-Freespace benchtop spectrometer. (a)
Raw spectra (9091-4348 cm®) and (b) EMSC pretreated spectra (9091-4348 cm™) after removal of 1 Chinese

outlier samole

With the NIR-Freespace benchtop spectrometer only Chinese flour samples have been
measured. Thus, no comparison with the calibration results obtained with German flour
samples was possible. The PLS calibration results achieved for the three flour parameters
under investigation are shown in the Figs. 4.11 to 4.13, and the test set prediction results are

summarized in the Tabs. 4.8 to 4.10.
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Fig. 4.11 Protein calibration results achieved with the spectra of 137 Chinese flour samples measured in China on

the NIR-Freespace benchtop spectrometer by using the Chinese reference values.
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Tab. 4.8 Comparison of protein reference and prediction values for 15 Chinese test samples based on the calibration of

Fig. 4.11
Samples
5 8 14 19 35 41 54 59
#(CHN)
Ref. 7.3 9.2 7.9 10.8 9.9 12.9 10.2 14.2
Pred. 6.89 10.02 7.59 10.80 9.66 12.84 | 1011 | 12.27
AE
0.41 0.82 0.31 0.00 0.24 0.06 0.09 1.93
(Ref.-Pred.)
Samples
99 110 117 118 120 145 150
#(CHN)
Ref. 10.3 10.5 9.5 10.1 12.0 11.5 9.7
Pred. 11.66 | 10.27 9.51 1056 | 1191 | 11.60 9.60
AE
1.36 0.23 0.01 0.46 0.09 0.10 0.10
(Ref.-Pred.)
MAE 0.34

From the absolute difference of the reference and predicted protein values of the test samples,

the lowest and highest AE are 0.00 and 1.93, respectively, and a MAE of 0.34 is calculated.
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Fig. 4.12 Moisture calibration results achieved with the spectra of 135 Chinese flour samples measured in China on

the NIR-Freespace benchtop spectrometer by using the Chinese reference values.
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Tab. 4.9 Comparison of moisture reference and prediction values for 15 Chinese test samples based on the calibration

of Fig. 4.12
Samples
4 6 24 28 34 42 51 55
#(CHN)
Ref. 12.4 13.7 135 14.2 134 12.6 13.0 13.2
Pred. 1245 | 13.63 | 13.30 | 13.70 | 13.25 | 1252 | 13.21 | 13.16
AE
0.05 0.07 0.20 0.50 0.15 0.08 0.21 0.04
(Ref.-Pred.)
Samples
104 106 122 123 139 140 141
#(CHN)
Ref. 12.9 13.3 13.6 13.2 13.1 12.8 11.8
Pred. 13.08 | 13.19 | 13.61 | 13.40 | 13.07 | 12.31 | 12.40
AE
0.18 0.11 0.01 0.20 0.03 0.49 0.60
(Ref.-Pred.)
MAE 0.19

From the absolute difference of the reference and predicted moisture values of the test

samples, the lowest and highest AE are 0.01 and 0.60, respectively, and a MAE of 0.19 is

calculated.
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Fig. 4.13 Wet gluten calibration results achieved with the spectra of 134 Chinese flour samples measured in China
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on the NIR-Freespace benchtop spectrometer by using the Chinese reference values.
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Tab. 4.10 Comparison of wet gluten reference and prediction values for 15 Chinese test samples based on the

calibration of Fig. 4.13.

Samples
3 9 14 26 31 37 41 55
#(CHN)
Ref. 21.0 33.2 228 29.1 29.6 42.8 30.0 32.2
Pred. 21.70 | 33.00 | 22.20 | 30.30 | 29.70 | 40.90 | 35.90 | 28.80
AE
0.7 0.2 0.6 1.2 0.1 1.9 5.9 34
(Ref.-Pred.)
Samples
58 67 104 133 136 139 144
#(CHN)
Ref. 27.9 28.5 31.6 30.9 26.9 355 30.4
Pred. 31.00 | 2520 | 32.00 | 29.90 | 29.70 | 35.90 | 30.00
AE
31 33 0.4 1.0 2.8 0.4 0.4
(Ref.-Pred.)
MAE 1.69

From the absolute difference of the reference and predicted Wet Gluten values of the test
samples, the lowest and highest AE are 0.1 and 5.9, respectively, and a MAE of 1.69 is

calculated.

4.3 Analysis of Spectra Measured with the Handheld Spectrometers
MicroNIR, Neospectra Micro and Hamamatsu C15511-01

4.3.1 PCA Results for MicroNIR, Neospectra Micro and Hamamatsu C15511-01

With the spectra of the 213 samples measured with the handheld spectrometers PCA models
were developed in analogy to the data of the benchtop spectrometers (see Section 4.2.1.). The
amount of raw spectral information (in terms of data points) of the handheld spectrometers
was much lower than that of the benchtop spectrometers; only 125 data points for the
wavenumber range 11012-5966 cm™ of the MicroNIR instrument, 257 data points for the
wavenumber range 7407-3922 cm™ of the Neospectra Micro spectrometer, and 359 data
points for the 9991-3856 cm™ wavenumber range of the Hamamatsu C15511-01 instrument.

Since the performance of the three handheld spectrometers is lower than that of the benchtop
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spectrometers, the results can be considered only as a preliminary comparison with the results
of the benchtop spectrometers to verify whether PCA can effectively classify the flours of
different origins and different gluten contents and characterize the flours with the same
clustering effect as the PCA analysis of the benchtop spectrometers.

As shown in Fig. 4.14, in the 2D-score plot of the PCA analysis for the MicroNIR spectra, the
flours from Germany and China are clearly clustered and can be separated in the score plot of
the first and second principal components. However, the PCA results for the Neospectra
Micro (first versus fourth principal component score plot) and Hamamatsu C15511-01
(second principal versus third principal component score plot), could not reach the same
discrimination. Since the distance between the two clusters in Fig. 4.14 (b) is similar to the
PCA result of the IAS 3100 instrument in Fig. 4.4 (b), an approximate boundary line can be
defined to determine the separation of the China and Germany clusters. The equation for the

boundary line of the clusters is:

y =0.1x — 0.2 (x = PC1,y = PC2) Eq.64

Po2 Scores 06

(@ MicroNIR (b) MicroNIR PCA Boundary

110 —

4 207
015 PCT pPCZ

05 0 05 10 15

B 5 1.0
xpl. 100% 0% RESULTI, X-expl: 4% 7%

(c) Neospectra Micro (d) Hamamatsu C15511-01)

Fig. 4.14 PCA analysis results for the 213 flour spectra measured on the three handheld spectrometers ((a) MicroNIR,
(b) MicroNIR PCA boundary (c) Neospectra Micro, (d) Hamamatsu C15511-01).
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4.3.2 PLS Results for MicroNIR, Neospectra Micro and Hamamatsu C15511-01

With reference to Section 4.2.2, the spectral data obtained with the three handheld
spectrometers were also analyzed by developing PLS calibration models for the different flour
parameters. The spectra of the flour samples measured with the same type but different
production batches of handheld spectrometers (MicroNIR, Neospectra Micro, Hamamatsu
C15511-01) during different time periods of the experiment were combined and subsequently
divided into calibration and test sets. After removing the outliers, 10% of all samples were
selected as test set and 90% of the samples were used as calibration set to build the calibration
model. The results of the descriptive statistical analysis of the investigated parameter values

for the calibration set and test set are summarized in Tabs. 4.11 to 4.13.

Tab. 4.11 Descriptive statistical analysis of the investigated flour parameters for the sample sets measured with the

MicroNIR spectrometer.

Parameter = DataSet  Number of Samples Mean%(w/w) Max%(w/w) Min%(w/w) Range%o(w/w)

Total 210 10.78 14.80 6.30 8.50
Protein Calibration 189 10.75 14.40 6.30 8.10
Test 21 11.07 14.80 7.20 7.60
Total 206 13.07 15.3 9.90 5.40
Moisture Calibration 186 13.05 15.1 9.90 5.20
Test 20 13.25 15.3 11.60 3.70
Total 197 29.37 42.80 18.70 24.10
Wet Gluten Calibration 177 29.26 42.20 18.70 23.50

Test 20 30.37 42.80 20.60 22.20
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Tab. 4.12 Descriptive statistical analysis of the investigated flour parameters for the sample sets measured with the

Neospectra Micro spectrometer.

Parameter  DataSet  Number of Samples Mean%(w/w) Max%(w/w) Min%(w/w) Range%(w/w)

Total 206 10.81 14.40 6.30 8.10

Protein Calibration 185 10.78 14.30 6.30 8.00
Test 21 11.07 14.40 7.20 7.20

Total 207 13.07 15.3 9.90 5.40

Moisture Calibration 186 13.04 15.1 9.90 5.20
Test 21 13.31 15.3 11.60 3.70

Total 195 29.38 42.80 18.70 24.10

Wet Gluten  Calibration 175 29.27 42.20 18.70 23.50
Test 20 30.42 42.80 20.60 22.20

Tab. 4.13 Descriptive statistical analysis of the investigated flour parameters for the sample sets measured with the

Hamamatsu C15511-01 spectrometer.

Parameter  DataSet = Number of Samples Mean%(w/w) Max%(w/w) Min%(w/w) Range%(w/w)

Total 211 10.82 14.80 6.60 8.20

Protein Calibration 190 10.79 14.80 6.60 8.20
Test 21 11.06 14.40 7.30 7.10

Total 204 13.06 15.3 9.90 5.40

Moisture Calibration 183 13.03 145 9.90 4.60
Test 21 13.30 15.3 11.60 3.70

Total 198 29.43 42.80 18.70 24.10

Wet Gluten Calibration 178 29.32 42.20 18.70 23.50

Test 20 30.38 42.80 20.80 22.00
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4.3.2.1 Calibration Model and Prediction Results Obtained with the Spectra of the

MicroNIR Spectrometer

Before building PLS calibration models for the parameter values based on the MicroNIR
spectra, the outliers were removed according to the method described in Section 4.1.3. Then
the noise in the spectra was removed by smoothing and scatter effects were eliminated by

EMSC (Fig. 4.15)

(@) (b)

Log {1/R)

-06
11000 10500 10000 9500 9000 8500 8000 7500 7000 6500 6000 O30 o000 eso0 om0 ssto sooo 7soo qooo esoo

Waver\umber(cm") Wavenumber {cn ')

Fig. 4.15 Spectra of 50 German (red) and 163 Chinese (blue) flour samples measured with the MicroNIR handheld
spectrometer. (a) Raw spectra (11012-5966 cm™) and (b) EMSC pretreated and truncated spectra (10510-6171

cm?) after removal of 3 Chinese outlier samples

Figs. 4.16-4.18 summarize the results of the PLS calibration models for protein, moisture, and
wet gluten, respectively, based on the spectra measured with the MicroNIR instrument. A total
of three operations are performed for the calibration set modeling: (a) modeling of German
flour samples only, (b) modeling of Chinese flour samples only, and (c) modeling after
merging the flour samples of both countries. In Figs. 4.16(c) to 4.18(c) the calibration results
for the German flour samples are marked with black circles and in Tabs. 4.14 to 4.16 the

prediction results of the test sets for the investigated parameters are summarized.
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Fig. 4.16 Comparison of country-individual and merged protein calibrations achieved with the spectra measured
on the MicroNIR spectrometer; (a) calibration of 50 German samples measured in Germany with German
reference values, (b) calibration of 160 Chinese samples measured in China with Chinese reference values, and (c)

calibration of merged samples (45 German and 144 Chinese samples) with respective reference values.
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Tab. 4.14 Comparison of Protein reference and prediction values for 5 German (a) and 16 Chinese (b) test samples

based on the calibration of Fig. 4.16(c).

(@)
Samples
11 16 37 38 49

#(GER)

Ref. 11.9 12.8 12.3 14.4 135

Pred. 12.15 | 12.65 | 1254 | 1455 | 12.91

AE

025 | 0.15 0.24 0.15 0.59
(Ref.-Pred.)
MAE 0.28
(b)

Samples

16 17 22 24 39 55 57 78
#(CHN)
Ref. 14.8 9.7 10.3 10.2 9.9 10.4 11.1 10.1
Pred. 14.89 9.26 9.50 9.84 9.86 10.32 | 10.46 | 10.07
AE

0.09 0.44 0.80 0.36 0.04 0.08 0.64 0.03
(Ref.-Pred.)
Samples

81 87 93 108 109 135 153 154
#(CHN)
Ref. 9.4 7.2 7.9 11.7 9.0 10.6 11.8 12.3
Pred. 10.10 7.83 8.28 13.05 9.15 10.84 | 1158 | 12.10
AE

0.70 0.63 0.38 1.35 0.15 0.24 0.22 0.20
(Ref.-Pred.)
MAE 0.40

From the absolute difference of the reference and predicted Protein values of the test samples,
the lowest and highest AE are 0.03 and 0.80, respectively. MAE of 0.28 and 0.40 are

calculated for Germany and China, respectively.
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Fig. 4.17 Comparison of country-individual and merged moisture calibrations achieved with the spectra measured on

the MicroNIR spectrometer; (a) calibration of 50 German samples measured in Germany with German reference

values, (b) calibration of 156 Chinese samples measured in China with Chinese reference values, and (c) calibration

of merged samples (45 German and 141 Chinese samples) with respective reference values.

Tab.4.15 Comparison of Moisture reference and prediction values for 5 German (a) and 15 Chinese (b) test samples

based on the calibration of Fig. 4.17(c).

(@)
Samples
1 18 32 40 49
#(GER)
Ref. 135 14 15.3 14.1 12.4
Pred. 1342 | 1375 | 14.86 | 14.09 | 12.65
AE (Ref.-Pred.) | 0.08 0.25 0.44 0.01 0.25
MAE 0.21
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(b)

Samples
4 29 39 50 57 63 67 97
#(CHN)
Ref. 12.4 12.9 13.5 13.6 13.2 12.8 13.6 11.6
Pred. 1239 | 13.07 | 1331 | 13.67 | 13.22 | 1254 | 13.15 | 11.46
AE
0.01 0.17 0.19 0.07 0.02 0.26 0.45 0.14
(Ref.-Pred.)
Samples
98 109 118 124 135 144 160
#(CHN)
Ref. 12.6 13.0 13.4 13.1 13.8 13.3 12.8
Pred. 1271 | 1299 | 13.23 | 13.23 | 13.88 | 13.19 | 13.67
AE
0.11 0.01 0.17 0.13 0.08 0.11 0.87
(Ref.-Pred.)
MAE 0.19

From the absolute difference of the reference and predicted Moisture values of the test

samples, the lowest and highest AE are 0.01 and 0.87, respectively. MAE of 0.21 and 0.19 are

calculated for Germany and China, respectively.
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Fig. 4.18 Comparison of country-individual and merged wet gluten calibrations achieved with the spectra measured

on the MicroNIR spectrometer; (a) calibration of 40 German samples measured in Germany with German reference

values, (b) calibration of 157 Chinese samples measured in China with Chinese reference values, and (c) calibration

of merged samples (36 German and 141 Chinese samples) with respective reference values.

Tab.4.16 Comparison of Wet Gluten reference and prediction values for 5 German (a) and 15 Chinese (b) test samples
based on the calibration of Fig. 4.18(c).

(@)
Samples
6 15 25 41
#(GER)
Ref. 30.8 29.8 274 35.1
Pred. 28.60 | 30.10 | 27.30 | 32.00
AE (Ref.-Pred.) 2.2 0.3 0.1 3.1
MAE 1.43
(b)
Samples
2 21 23 24 37 47 62 78
#(CHN)
Ref. 26.7 30.5 223 28.3 42.8 20.6 314 28.9
Pred. 26.60 | 30.60 | 25.20 | 29.60 | 42.20 | 22.70 | 29.30 | 29.10
AE
0.1 0.1 2.9 1.3 0.6 2.1 21 0.2
(Ref.-Pred.)
Samples
81 102 130 142 148 152 154 164
#(CHN)
Ref. 27.7 36.3 34.4 29.6 30.3 328 31.9 29.9
Pred. 28.30 | 36.90 | 3250 | 2950 | 28.90 | 34.10 | 33.10 | 28.70
AE
0.6 0.6 1.9 0.1 1.4 1.3 1.2 1.2
(Ref.-Pred.)
MAE 1.11
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From the absolute difference of the reference and predicted Wet Gluten values of the test
samples, the lowest and highest AE are 0.1 and 3.1, respectively. MAE of 1.43 and 1.11 are

calculated for Germany and China, respectively.

4.3.2.2 Calibration Model and Prediction Results Obtained with the Spectra of the

Neospectra Micro Spectrometer

Prior to PLS calibration model development of the spectra measured with the Neospectra
Micro instrument, outliers were removed according to the method described in Section 4.1.3

and then the spectra were smoothed and scatter effects were eliminated by EMSC (Fig. 4.19).

@ (b)

Log (1/R)

05! F L .
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Fig. 4.19 Spectra of 50 German (red) and 163 Chinese (blue) flour samples measured with the Neospectra Micro
handheld spectrometer. (a) Raw spectra (7407-3922 cm'™®) and (b) EMSC pretreated and truncated spectra

(7258-3922 cm™) after removal of 2 Chinese outlier samples.

In the Fig. 4.20-4.22 the results of the PLS calibration models for protein, moisture, and wet
gluten, respectively, are shown. The data were modeled in three steps: (a) modeling of
German samples only, (b) modeling of Chinese samples only, and (c) calibration development
after merging the samples from both countries. In Fig. 4.20(c)-4.22(c) the calibration set of
the German samples is accentuated by black circles and in the Tab. 4.17-4.19 the prediction

results of the test sets are summarized for the three different flour parameters.
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Fig. 4.20 Comparison of country-specific and merged protein calibrations achieved with the spectra measured on

the Neospectra Micro spectrometer; (a) calibration of 50 German samples measured in China with German

reference values, (b) calibration of 156 Chinese samples measured in China with Chinese reference values, and (c)

calibration of merged samples (45 German and 140 Chinese samples) with respective reference values.
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Tab. 4.17 Comparison of protein reference and prediction values for five German (a) and 16 Chinese (b) test samples

based on the calibration of Fig. 4.20 (c).

(@)
Samples
11 16 37 38 49
#(GER)
Ref. 11.9 12.8 12.3 14.4 135
Pred. 12.66 | 11.70 | 12.15 | 13.97 | 14.19
AE (Ref.-Pred.) | 0.76 1.10 0.15 0.43 0.69
MAE 0.63
(b)
Samples
1 3 6 37 62 64 85 87
#(CHN)
Ref. 9.1 7.9 9.7 14.4 10.1 9.9 10.7 7.2
Pred. 7.22 8.38 11.14 | 1479 | 10.32 | 10.38 | 11.25 7.52
AE
1.88 0.48 1.44 0.39 0.22 0.48 0.55 0.32
(Ref.-Pred.)
Samples
89 100 101 108 131 133 148 149
#(CHN)
Ref. 10.3 124 11.8 13.0 9.4 11.1 10.4 10.2
Pred. 1058 | 12.82 | 11.26 | 12.63 9.56 10.89 | 10.65 | 10.13
AE
0.28 0.42 0.54 0.37 0.16 0.21 0.25 0.07
(Ref.-Pred.)
MAE 0.50

From the absolute difference of the reference and predicted protein values of the test samples,

the lowest and highest AE are 0.07 and 1.88, respectively. MAE of 0.63 and 0.50 are

calculated for Germany and China, respectively.
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Fig. 4.21 Comparison of country-individual and merged moisture calibrations obtained with the spectra

measured on the Neospectra Micro spectrometer; (a) calibration of 50 German samples measured in China

with German reference values, (b) calibration of 156 Chinese samples measured in China with Chinese

reference values, and (c) calibration of merged samples (45 German and 141 Chinese samples) with respective

reference values.

Tab. 4.18 Comparison of moisture reference and prediction values for five German (a) and 16 Chinese (b) test samples

based on the calibration of Fig. 4.21(c).

(@)
Samples
1 18 32 40 49
#(GER)
Ref. 135 14 15.3 14.1 12.4
Pred. 13.61 | 13.72 | 1458 | 13.66 | 1258
AE (Ref.-Pred.) | 0.11 0.28 0.72 0.44 0.18
MAE 0.35
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(b)

Samples

17 29 57 62 63 64 92 97
#(CHN)
Ref. 12.6 12.94 13.2 13.8 12.8 145 12.4 11.6
Pred. 13.88 | 13.03 | 13.27 | 13.88 | 12.79 | 1512 | 1243 | 11.30
AE

1.28 0.09 0.07 0.08 0.01 0.62 0.03 0.30
(Ref.-Pred.)
Samples

109 118 124 137 144 147 158 160
#(CHN)
Ref. 13.0 134 13.1 13.6 13.3 13.6 134 12.8
Pred. 1322 | 13.63 | 13.30 | 14.09 | 13.39 | 13.73 | 13.37 | 13.24
AE

0.22 0.23 0.20 0.49 0.09 0.13 0.03 0.44
(Ref.-Pred.)
MAE 0.27

From the absolute difference of the reference and predicted Moisture values of the test

samples, the lowest and highest AE are 0.01 and 1.28, respectively. MAE of 0.35 and 0.27 are

calculated for Germany and China, respectively.
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Fig. 4.22 Comparison of country-specific and combined wet gluten calibrations achieved with the spectra
measured on the Neospectra Micro spectrometer; (a) calibration of 40 German samples measured in Germany

with German reference values, (b) calibration of 156 Chinese samples measured in China with Chinese

reference values, and (c) calibration of merged samples (36 German and 139 Chinese samples) with respective

reference values.

Tab. 4.19 Comparison of wet gluten reference and prediction values for four German (a) and 16 Chinese (b) test
samples based on the calibration of Fig. 4.22(c).

(@)
Samples
6 15 25 41
#(GER)
Ref. 30.8 29.8 274 35.1
Pred. 28.70 | 29.70 | 26.20 | 34.10
AE (Ref.-Pred.) 2.1 0.1 1.2 1.0
MAE 1.10
(b)
Samples
31 35 37 47 56 60 62 65
#(CHN)
Ref. 29.6 29.1 428 20.6 277 22.6 314 283
Pred. 29.60 | 27.80 | 39.30 | 22.00 | 26.60 | 21.50 | 29.90 | 28.00
AE
0.0 1.3 35 1.4 11 1.1 15 0.3
(Ref.-Pred.)
Samples
70 84 106 112 130 149 152 154
#(CHN)
Ref. 36.4 30.0 26.8 30.3 344 30.6 328 319
Pred. 36.30 | 27.10 | 2540 | 29.30 | 34.40 | 29.20 | 24.80 | 33.90
AE
0.1 2.9 14 1.0 0.0 14 8.0 2.0
(Ref.-Pred.)
MAE 1.69
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From the absolute difference of the reference and predicted wet gluten values of the test
samples, the lowest and highest AE are 0.0 and 8.0, respectively. MAE of 1.10 and 1.69 are

calculated for Germany and China, respectively.

4.3.2.3 Calibration Model and Prediction Results Obtained with the Spectra Measured on

the Hamamatsu C15511-01 Spectrometer

To develop PLS calibration models with the Hamamatsu C15511-01 spectra, in a first step
outliers in the original raw spectra were eliminated (see Section 4.1.3), followed by

smoothing, EMSC scatter correction and truncation (Fig. 4.23).

@ (b)

04!
9500 9000 8500 8000 7500 7000 6500 6000 5500 5000 4500 4000 O1° 8500
Wavenumber (cm™) Wavenumber (om')

8000 7500 7000 8500 8000 5500 5000 4500

Fig. 4.23 Spectra of 50 German (red) and 163 Chinese (blue) flour samples measured with the Hamamatsu
C15511-01 spectrometer. (a) Raw spectra (9460-4000 cm™) and (b) EMSC pretreated and truncated spectra

(8757-4096 cm™) after removal of two Chinese outlier samples

The results of the PLS calibration models based on Hamamatsu C15511-01 spectra for protein,
moisture, and wet gluten are shown in Figs. 4.24-4.26, respectively. Calibration model
development is performed in three steps: (a) modeling for German samples only, (b) modeling
of Chinese samples only, and (c) calibration model development after merging the samples of
both countries. In Figs. 4.24(c)-4.26(c) the German calibration samples are marked with black
circles. The predictions of the test set samples for the different flour parameters are

summarized in Tab. 4.20-4.22.
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Fig. 4.24 Comparison of country-specific and merged protein calibrations achieved with the spectra measured
on the Hamamatsu C15511-01 spectrometer; (a) calibration of 50 German samples measured in Germany
with German reference values, (b) calibration of 161 Chinese samples measured in China with Chinese
reference values, and (c) calibration of merged samples (45 German and 144 Chinese samples) with respective

reference values.
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Tab. 4.20 Comparison of protein reference and prediction values for five German (a) and 16 Chinese (b) test samples
based on the calibration of Fig. 4.24(c).

(@)
Samples
11 16 37 38 49
#(GER)
Ref. 11.9 12.8 12.3 14.4 135
Pred. 11.84 | 11.28 | 12.19 | 14.25 | 14.01
AE (Ref.-Pred.) | 0.06 1.52 0.11 0.15 0.51
MAE 0.47
(b)
Samples
1 3 5 6 29 37 38 42
#(CHN)
Ref. 9.1 7.9 7.3 9.7 13.0 14.4 10.1 10.2
Pred. 6.88 7.07 7.63 8.89 12.75 | 14.01 9.68 10.21
AE
222 0.83 0.33 0.81 0.25 0.39 0.42 0.01
(Ref.-Pred.)
Samples
53 63 64 111 131 153 154 156
#(CHN)
Ref. 10.7 10.4 9.9 11.1 9.4 11.8 12.3 10.3
Pred. 10.03 | 10.74 8.82 1152 | 10412 | 12.71 | 1248 | 12.25
AE
0.67 0.34 1.08 0.42 0.72 0.91 0.18 1.95
(Ref.-Pred.)
MAE 0.72

From the absolute difference of the reference and predicted protein values of the test samples,
the lowest and highest AE are 0.01 and 2.22, respectively. MAE of 0.47 and 0.72 are

calculated for Germany and China, respectively.
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Fig. 4.25 Comparison of country-individual and merged moisture calibrations achieved with the spectra measured on

the Hamamatsu C15511-01 instrument; (a) calibration of 50 German samples measured in Germany with German

reference values, (b) calibration of 161 Chinese samples measured in China with Chinese reference values, and (c)

calibration of merged samples (43 German and 140 Chinese samples) with respective reference values.

Tab. 4.21 Comparison of moisture reference and prediction values for five German (a) and 16 Chinese (b) test samples

based on the calibration of Fig. 4.25(c).

(@)
Samples
1 18 32 40 49
#(GER)
Ref. 135 14 15.3 14.1 12.4
Pred. 1321 | 1330 | 14.79 | 12.26 | 12.15
AE (Ref.-Pred.) | 0.29 0.70 0.51 1.84 0.25
MAE 0.72
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(b)

Samples

1 17 20 32 35 41 45 49
#(CHN)
Ref. 13.1 12.6 13.20 | 13.355 13.7 13.4 12.8 13.3
Pred. 12.82 | 12.70 | 1341 13.54 13.71 | 13.00 | 13.23 | 13.52
AE

0.28 0.10 0.21 0.185 0.01 0.40 0.43 0.22
(Ref.-Pred.)
Samples

52 64 73 83 92 97 108 143
#(CHN)
Ref. 13.6 145 12.8 13.0 12.4 11.6 13.6 12.9
Pred. 13.69 | 1490 | 13.14 13.06 12.06 | 11.37 | 13.24 | 13.00
AE

0.09 0.40 0.34 0.06 0.34 0.23 0.36 0.10
(Ref.-Pred.)
MAE 0.23

From the absolute difference of the reference and predicted moisture values of the test

samples, the lowest and highest AE are 0.01 and 1.84, respectively. MAE of 0.72 and 0.23 are

calculated for Germany and China, respectively.
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Fig. 4.26 Comparison of country-specific and merged wet gluten calibrations achieved with the spectra
measured on the Hamamatsu C15511-01 spectrometer; (a) calibration of 40 German samples measured in
Germany with German reference values. (b) Calibration of 159 Chinese samples measured in China with

Chinese reference values, and (c) calibration of merged samples (36 German and 143 Chinese samples) with

respective reference values.

Tab. 4.22 Comparison of wet gluten reference and prediction values for four German (a) and 16 Chinese (b) test
samples based on the calibration of Fig. 4.26(c).

@)
Samples
6 15 25 41
#(GER)
Ref. 30.8 29.8 274 35.1
Pred. 28.70 29.10 24.70 34.00
AE (Ref.-Pred.) 2.1 0.7 2.7 1.1
MAE 1.65
(b)
Samples
20 21 22 35 37 56 60 65
#(CHN)
Ref. 36.2 30.5 30.0 29.1 42.8 277 22.6 28.3
Pred. 36.40 | 27.40 | 30.80 | 27.40 | 39.70 | 27.30 | 25.00 | 31.20
AE
0.2 31 0.8 1.7 31 0.4 24 29
(Ref.-Pred.)
Samples
106 111 118 119 120 148 157 160
#(CHN)
Ref. 26.8 31.9 29.6 314 327 30.3 20.8 338
Pred. 25.60 | 32.30 | 30.10 | 32.70 | 34.30 | 29.90 | 17.30 | 32.70
AE
1.2 0.4 0.5 1.3 1.6 0.4 35 1.1
(Ref.-Pred.)
MAE 1.54
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From the absolute difference of the reference and predicted wet gluten values of the test
samples, the lowest and highest AE are 0.2 and 3.5, respectively. MAE of 1.65 and 1.54 are

calculated for Germany and China, respectively.

4.4 Optimization of the PCA , PLS-DA and PLS Calibration Models

4.4.1 PCA Calibration Models

(1) According to the classification results represented in Figs. 4.5 and 4.15 (a) and (b), it can
be derived, that the PCA score-plot classification effects observed for the benchtop 1AS 3100
and the handheld MicroNIR spectrometer for wheat flour samples from different countries are
excellent. The reason can be primarily assigned to the fact that China and Germany are
geographically far apart, and there are large differences in both wheat varieties due to natural
conditions, cultivation methods, field management patterns, and flour processing techniques
and technologies. These distinctive features lead to characteristic differences in their
vibrational spectra (mid- and near-infrared), that may not be obvious from visual inspection,
but are accentuated by the multivariate, chemometric evaluation techniques. Thus, NIR
spectroscopy with handheld instrumentation provides a rapid, non-invasive detection method
to trace the origin of different flour species.

(2) From Figs. 4.15 (c) and (d), it is found that PCA has a poor identification effect for the
two FT-NIR handheld spectrometers (NeoSpectra Micro and Hamamatsu C15511-01). In the
2D score plot the spectra of the flour samples from China and Germany are mixed together,
and no clustering can be observed. Thus, it is necessary to find another discriminant analysis
method to try to solve the problem of FT-NIR spectral classification.

(3) Comparing the PCA score plots used for the identification of geographical origin, it is
recognized that the principal components used for the respective score plots are different for
different instruments. Thus, PC2 and PC3 provided the best separation for the data measured
with the IAS 3100 instrument, whereas PC1 and PC2 performed best for the MicroNIR data.

Other choices of principal components for the score plots are possible, but are often
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accompanied by a decrease of discrimination and identification performance. The example of
the IAS 3100 instrument (PC2 and PC3) shows, that the first principal components of the
PCA analysis is not necessarily the best choice for a score plot, because higher factors may
contain more important information for the discrimination. In conclusion, the optimum
combination of principal components for a PCA score plot will have to be adjusted from case

to case to the specific analytical discrimination problem.

4.4.2 PLS-DA Calibration Models

Since the origin of flour cannot be well discriminated by the FT-NIR spectrometer
(NeoSpectra Micro and Hamamatsu C15511-01) using PCA, the PLS-DA discriminant
analysis method was applied to verify sections 4.2.1 and 4.3.1 and these results were
compared with the PCA results (since only Chinese flour samples were measured with the

NIR-freespace spectrometer, the PLS-DA method was not used to analyze these spectra).

Tab. 4.23 Number of different latent variables selected for the PLS-DA models of the four spectrometers

NIR spectrometers Number of different latent variables
Hamamatsu C15511-01 4 LVs
NeoSpectra Micro 5LVs
MicroNIR 2LVs
IAS 3100 1LVs

In fact, in NIR spectroscopy applications, PLS-DA is designed to predict sample class
membership via the Y-axis from spectral data contained in the X-axis. The X-axis represents
the number of samples, and the Y-axis is the predicted result of data cross-validation.

First, the 213 flour spectra from all spectrometers were preprocessed using the EMSC method,
after which the amount of latent variables (LVs) was determined by leave-one-out
cross-validation, as shown in Tab. 4.23. In PLS-DA, the dimensionality reduction
transformation results in LV, which is a linear combination of spectral variables trying to

explain the maximum covariance between X and Y. The smaller the number of latent variables
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selected after cross-validation, the better the classification effect of PLS-DA is. The next step

Is to draw a mean-centered line for all data classes (Fig. 4.27).
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Fig. 4.27 PLS-DA scatter plot and discrimination parameters for the spectra of the German (red) and Chinese (green)
samples measured with the four spectrometers under investigation
(a) Hamamatsu C15511-01; (b) NeoSpectra Micro; (c) MicroNIR; (d) IAS 3100

In the tables included in Fig. 4.27, the second column (Class 1) and the third column (Class 2)
represent the sample set of German flour and the sample set of Chinese flour, respectively.

As shown in Figure 4.27 (c) and (d), after selecting two LVs and one LV, respectively, the
spectral data of the MicroNIR instrument and the spectral data of the IAS 3100 spectrometer
can be clearly divided into Class 1 and Class 2. The accuracy of both spectrometers is 100%,
which is expected and consistent with the results of the MicroNIR and IAS 3100
spectrometers obtained by PCA (see Section 4.2.1 and 4.3.1). However, for the results of the
two FT-NIR spectrometers (Hamamatsu C15511-01 and Neospectra Micro), as shown in
Figure 4.27 (a) and (b), their prediction results are not as accurate as those of the other two
spectrometers (MicroNIR and IAS 3100). Compared with the previous classification results of
PCA (see Section 4.3.1), the prediction accuracy of Neospectra Micro (Si-Ware) and
Hamamatsu C15511-01 using PLS-DA is greatly improved, and the prediction accuracy of
their cross-validation is 84.3% and 98.8%, respectively. The prediction results of Neospectra
Micro (Si-Ware) are slightly better than Hamamatsu C15511-01, which is also consistent with

the previous trend of the corresponding PCA classification results.
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4.4.3 Optimization of PLS Modeling Results

According to Tab. 4.24, it is possible to compare and classify the calibration results for each
parameter, thereby ranking the calibration performance for the benchtop instrument (IAS
3100) and the three handheld spectrometers (Neospectra Micro (Si-Ware), MicroNIR (VIAVI),
C15511-01 (Hamamatsu)).

Tab. 4.24 PLS calibration results for the three flour parameters under investigation obtained with the merged spectra

sets (213 spectra) for the German and Chinese samples and recorded with the four different NIR instruments.

Flour parameters ) ) Flour parameters
Calibration parameters Calioration Wet
Protein  Moisture  Wet Gluten parameters Protein Moisture

Gluten

_ IAS 3100 1/0 5/0 1/0 IAS 3100 0.9554  0.9430  0.8346

(ZutII:r:/ Neospectra 7/0 6/0 4/0 2 Neospectra 0.8761 0.6434 0.9062
al.Sel P

MicroNIR 3/0 7/0 2/0 MicroNIR 0.9638 0.8846 0.8759

Testse C15511-01 2/0 9/0 1/0 C18611-01  0.7922 0.6096  0.8420

IAS 3100 5 6 6 IAS 3100 0.9530 0.9290 0.8784

Number Neospectra 5 2 6 . Neospectra 0.9345 0.7711 0.8836
c

of Factors  MicroNIR 6 6 6 MicroNIR 0.9302 0.9271 0.8290

C15511-01 9 9 8 C15511-01 0.8938 0.7713 0.8581

IAS 3100 0.4082 0.2196 1.4796 IAS 3100 0.9479 0.9201 0.8622

RMSEC Neospectra 0.4775 0.4172 1.4352 2 Neospectra 0.9128 0.7608 0.8452
cv

(% (w/w))  MicroNIR 0.4958 0.2358 1.7558 MicroNIR 0.9158 0.9130 0.7949

C15511-01 0.6053 0.4093 1.5788 C15511-01 0.8670 0.7066 0.8247

IAS 3100 0.4319  0.2342 1.5841 IAS 3100 3.3862 3.0049 1.8154

RMSECV  Neospectra 0.5539  0.4288 1.6644 Neospectra 2.0741 1.3063 2.3649

(% (w/w))  MicroNIR 0.5475  0.2590 1.9335 R MicroNIR 3.7506 2.1443 2.0726

C15511-01 0.6809  0.4662 1.7649 C15511-01 1.6386 1.2615 1.8536

IAS 3100 0.4032  0.2778 1.9225

RMSEP Neospectra 0.6820 0.4894 1.4653
(% (wiw))  MicroNIR 0.3784  0.2624 1.6864
C15511-01  0.8785  0.5120 1.8691
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(1) The comparison of the calibration results for the three flour parameters presented in Tab.
4.24 shows, that protein produced the best results among all four instruments, followed by
moisture and wet gluten. Proteins are polymers with amino acid repetition units and include
CH, NH, OH, and amide (CONH) functionalities, that lead to strong absorption bands in the
NIR spectra. The availability of these characteristic spectroscopic signatures certainly
contributes to the superior protein calibration models. Tab. 4.24 contains the important RMSE
parameters for calibration/cross-validation and test-set prediction of the PLS calibrations for
protein, moisture and wet gluten obtained with the spectra measured on the four instruments
under investigation. The PLS calibrations developed with the spectra measured on the IAS
3100 instrument had very similar RMSECV and RMSEP values for the protein and moisture
parameters, but the corresponding RMSE values for wet gluten showed similar differences of
up to 0.35 %(w/w) as the RMSECV and RMSEP values for the other three handheld
spectrometers for all three parameters.

(2) Wet gluten is an index that is characteristic of the adhesion of dough after the addition of
water to the flour. For the determination of wet gluten, the dough is prepared from the wheat
sample with sodium chloride buffer. In the next step, starch, sugar, cellulose, and soluble
protein are isolated from the dough by washing with sodium chloride buffer, and after
removal of the excess washing solution, the remaining gelatinous material is representative of
wet gluten. Therefore, the content of wet gluten correlates with the protein content, viz. the
higher the protein content, the higher the wet gluten value. Water has strong OH-specific
absorption bands at 5167 cm™ and 6855 cm™, however, the absorption bands of the
OH-functionalities of starch and proteins can interfere with the determination of water and
lead to a lower calibration performance of the moisture parameter. Another source of error is
the dependence of moisture content on the time and storage conditions between reference and
NIR measurements.

(3) Theoretically, the calibration results for moisture should be better than those for wet gluten,
because water has very strong and characteristic absorption bands (Fig. 4.28). The result of

the moisture calibration actually depends on the time interval between the determination of
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the moisture reference values and the acquisition of the NIR spectra of the corresponding
flour sample: the shorter the time interval, the lower the calibration error and the higher the
accuracy of the modeling. However, the actual calibration results are only slightly better than
those for wet gluten (refer to sections 4.2 and 4.3 for a comparison of the PLS calibration
results for moisture and wet gluten). The main reason for this is that the total time span of the
three stages of the project was very long: the time interval between the determination of the
German flour moisture parameter values and the completion of the 2nd stage of the test being
more than 15 months. The time interval between the acquisition of the Chinese flour moisture
parameter values and the completion of the 3rd stage of testing is also more than one year, so

that the moisture calibration results are not optimal.
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Fig. 4.28 Band assignments of functional groups in the NIR spectrum.

4.4.3 Influence of Spectrometer Conditions on Calibration Performance

(1) The influence of and competition between available wavenumber range and signal/noise
(S/N) ratio for instrument performance becomes relevant in the comparison of the four

spectrometers used for this project. Although in the 4000-6000 cm™ wavenumber range the
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Neospectra Micro instrument contains several additional intense combination and overtone
absorption bands of the above-mentioned functionalities compared to the wavenumber range
of the MicroNIR (see also Figs. 4.19 and 4.15), surprisingly, the calibration performance of
the Neospectra Micro spectrometer is at best equivalent. Actually, the calibration for protein is
slightly better for the Neospectra Micro spectrometer compared to the MicroNIR instrument
(RMSEC values of 0.4775 and 0.4958 for Neospectra Micro and MicroNIR spectrometers,
respectively, but RMSEP values of 0.6820 and 0.3784, respectively). For moisture, on the
other hand, the MicroNIR spectrometer has much better calibration parameters. Thus, for
these parameters, the higher S/N ratio obviously compensates the disadvantage of the
narrower wavenumber range.

(2) The best calibration models for the three flour parameters are achieved with the 1AS 3100
instrument. This is mainly due to the fact, that the instrument uses the monochromator
principle of Texas Instrument’s digital mirror device (DMD™), which leads to a high
signal-to-noise ratio. Furthermore, because it is a benchtop instrument with more internal
space which dissipates heat better, high-power light sources can be used, thereby improving
the intensity of the signals and the stability of the instrument.

(3) Although both, Neospectra Micro and Hamamatsu C15511-01 instruments, are
Fourier-Transform NIR instruments, use MEMS technology, and operate almost over the
entire NIR spectral range thereby covering more spectroscopic information on organic
compounds, the performance of their calibration models is not as good as that of the
MicroNIR instrument with LVF technology. Additionally, the Hamamatsu C15511-01
spectrometer is built with an external light source (see photo of Hamamatsu C15511-01
instrument in Chapter 3, Fig. 3.7), the measurement procedure is subject to more influencing
factors and the spectral stability obtained is not as good as that of the Neospectra Micro
spectrometer, which has been realized as an integrated monolithic spectrometer (see photo of
Neospectra Micro spectrometer in Chapter 3, Fig. 3.6). The positions of the light source,
interferometer and detector of the Neospectra Micro instrument are fixed, thereby leading to a

higher spectral stability. With the progress of MEMS technology, it is believed that this kind
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of FT-NIR technology will be widely used in various industries in the near future.

(4) Miniaturization of the spectrometer leads to a better portability which is the basis for its
application as in-the-field and on-site measurement system. Among the three handheld NIR
spectrometers used in this project, the MicroNIR and Neospectra Micro instruments have the
better handiness and are therefore easier to use. Nevertheless, of these two handheld
spectrometers, the MicroNIR instrument has the higher S/N ratio and is therefore more widely

used despite the disadvantage of a higher price.

4.5 Chapter Summary

(1) In this PhD project, five NIR spectrometers (two benchtop and three handheld systems)
are used to measure the NIR spectra of 50 German and 163 Chinese flour samples. Based on
the near-infrared spectral characteristics of the samples, PCA models (Figs. 4.4 and Fig. 4.14)
were established, in which IAS 3100 and MicroNIR (VIAVI) achieved 100% correct
classification of German and Chinese flour.

(2) PLS calibration models were developed for protein, moisture and wet gluten for the
samples of both countries, and the number of samples used for the calibrations of these three
parameters are summarized in Tab. 4.24. The calibration models for the three flour parameters
were developed with the spectra measured on two benchtop spectrometers and three portable
instruments. The described experimental results prove that accurate calibrations can be
achieved with the benchtop spectrometers with better instrument performance as well as with
the handheld spectrometers with more flexible measurement operation. In comparison, the
calibration models developed with spectra measured on the benchtop spectrometers are
superior to those of spectra acquired with the handheld spectrometers. Within the handheld
spectrometer systems the LVF-type MicroNIR instrument performed best. Notwithstanding
some deficiencies, all instruments are able to satisfy the accuracy requirements for industrial
flour quality and process control.

(3) Because handheld FT-NIR instruments based on the MEMS technology cover almost the

whole NIR spectral range, the spectra of these instruments contain a large amount of
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structural information of organic substances. However, due to the small size of the FT-NIR
handheld instruments they suffer of poor heat dissipation and their signal-to-noise ratio still
needs to be improved for further optimization of qualitative and quantitative calibration

models.
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5 Model Transfer

5.1 Introduction

5.1.1 General Process of Model Transfer

Modern near-infrared spectroscopy analysis is an indirect analysis technology, which
combines spectroscopic measurement technology with multivariate evaluation techniques
[206-209]. It has the advantages of being nondestructive and fast and can simultaneously
detect multi-components. Furthermore, it can be applied for online detection in industrial
processes [210-214]. At present, NIR spectroscopy is widely used in food, medicine,
agriculture, petrochemical industry and other fields. However, in the application process of
NIR spectroscopy, due to differences in spectroscopic systems (e.g. light source, detector and
other components), or their assembly process, the same sample may exhibit different spectral
features when analyzed by different instruments. Thus, when a calibration model developed
for one instrument is applied to the spectra of test samples measured on another instrument,
the test results may exhibit large deviations or the model may be nonfunctional. Because it
takes a lot of manpower and material resources to develop a calibration model, the realization
of model transfer between different instruments is of great significance for practical
application and for the promotion of the NIR spectroscopy analysis technology [215-220].

In recent years, many researchers in China and other countries have made in-depth studies on
model transfer for NIR spectroscopy and achieved great progress [221-224]. The general
process of model transfer is shown in Fig. 5.1. The methods to realize model transfer can be
divided into three categories: The first is to correct parameters of the prediction model, such
as two-step partial least squares method. The second is to correct prediction results of the
model, such as slope/deviation algorithm. The third is to correct spectral data, such as the
direct standardization algorithm [225]. To correct parameters of the prediction model is to
enhance the predictive effect of the model by adding a series of sample spectra measured

under the new environmental conditions and/or with new instruments, so that the model can
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adapt to the sample spectra collected under these new testing conditions. To correct the
predicted results of the model assumes, that the predicted results of the master spectrometer
and the target spectrometer are linearly related, and the model transfer is realized by reducing
the systematic error of the prediction results. However, the above assumption is not valid in
most cases. Therefore, this approach has a poor effect in model transfer and is only applicable
under special conditions. To correct spectral data is to standardize spectra, which makes
spectra of the same sample collected by different instruments and under different testing
conditions as consistent as possible [226, 227]. Thus, the differences between spectra are
reduced, so that the established model can be shared between different instruments. The first
two methods are generally called transfer of calibration model, and the latter realizes the

sharing of a calibration model.
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In this experiment, crude protein content of wheat flour was taken as detection index, and two
NIR spectrometers with different spectroscopic principles, namely Grating Scanning type
(IAS 3100) and LVF type (MicroNIR), were used to collect NIR spectral data of wheat flour
samples. DS, PDS and SLRDS algorithms were employed to standardize sample spectra.
After analyzing the error rate of spectral standardization, the error rate of principal component
score was put forward to quantitatively describe spectra differences between master and target
spectrometers of the same sample before and after standardization. The smaller the error rate,
the smaller the spectra difference of samples. Therefore, the prediction error of the calibration

model shared among different instruments can be minimized.

5.1.2 Model Transfer Method based on Principal Component Score Difference

Correction

In NIR calibration models established by the PLS method, principal component
decomposition of the spectral data matrix and variable matrix is required. After obtaining the
loading and score matrices, the number of selected principal components is determined
according to the principle of minimum predictive residual error sum of squares (PRESS)
cross-verified by the leave-one-out method, based on which the calibration model is
established [228]. Therefore, the effect of spectral standardization can be evaluated by the
difference in principal components for the same group of samples after standardization
treatment to spectra collected by master and target spectrometers. Specifically, the
standardized spectra of the target spectrometers are put into the principal component matrix of
the calibration model for calculating the scores of each principal component. Then, the
obtained principal component scores are compared with those of the master spectrometer. The
smaller the difference, the better the effect of spectral standardization to the target
spectrometer (or vice versa). On this basis, the principal component score error rate (PCSER)
(described in 5.2.3.2) was proposed to quantitatively evaluate the difference of principal
components, so as to realize the sharing of a wheat flour protein model among different
instruments. The main algorithm flow is shown in Fig. 5.2.

(1) On the basis of a proper spectral pretreatment, PLS is used to establish the master model
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and determine the principal component number, loading and score matrices.

(2) Representative samples are selected from the master and target sample calibration sets as
standard sample sets for elaboration of spectral standardization methods (DS, PDS, SLRDS
algorithms, etc.). The optimal standard sample number is decided according to SSERgye
minimum principle of master and target sample calibration sets.

(3) A variety of spectral standardization methods are used to standardize the target spectral
data by using the master spectra of calibration sample sets not involved in spectral
standardization as standard.

(4) The standardized spectra of the target spectrometer are put into the principal component
matrix of the established calibration model, and the principal component scores are calculated.
The differences of principal component scores between the corrected target spectra and the
master spectra are evaluated. The similarity of the spectral score matrix of the master and
target spectra is quantitatively evaluated by using the principal component score error rate as
evaluation index. If the error is fairly large, the standard sample set should be re-selected and
the spectral data re-corrected to enable selection of the optimal standardization method with
minimum error for correcting the spectra of target prediction set.

Finally, the standardized target spectra are put into the master model for prediction and
evaluation, in order to demonstrate the sharing of the calibration model established on the

master spectrometer with other different instruments.
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5.2 Materials and Methods

5.2.1 Samples

The samples were divided into a calibration set (153) and a prediction set (51) in a ratio of 3:1

by SPXY (sample set partitioning based on joint X-Y distance) algorithm. The test results of

crude protein content in wheat flour of each set are shown in Tab. 5.1.
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Tab.5.1 Distribution of crude protein content in wheat flour of the different sample sets

Average/% Standard Coefficient of
Sample Set Number Range/% (w/w) L .
(w/w) Deviation Variation
Total set 211 6.34~14.83 10.79 1.89 0.18
Calibration set 153 6.34~14.83 10.77 2.04 0.19
Prediction set 51 7.84~14.00 10.75 1.30 0.12

5.2.2 Instruments and Test Methods

Absorbance measurements were performed using an IAS 3100 NIR spectrometer as master
instrument (denoted as M) and a MicroNIR (VIAVI) spectrometer as target instrument
(denoted as T). The wavelength range and sampling interval of the NIR spectrometers are

shown in Tab. 5.2.

Tab. 5.2 Spectral wavelength range and sampling interval of NIR spectrometers

NIR
Wavelength/nm
spectrometers
IAS 3100 900 - 1675 nm
MicroNIR 908 - 1676 nm

In order to ensure the consistency of wavelength range in subsequent tests, the spectral data
for the 908-1670 nm wavelength range of the IAS 3100 spectrometer were selected for future
studies of spectral standardization methods. The average spectra of samples collected by the

master and the target spectrometers are shown in Fig. 5.3.
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Fig. 5.3 Average spectra of all samples collected by the master and target spectrometers
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5.2.3 Analysis Method

5.2.3.1 Spectral Standardization Methods

DS, PDS and SLRDS algorithms were used to standardize spectra for realizing model transfer
among different NIR spectrometers. The DS algorithm is based on the mathematical
relationship between the spectra of the master standard sample set and the spectra of the target
standard sample set to establish the spectral standardization transfer matrix, which is then
used to correct the spectra collected from the target spectrometers and reduce spectral
differences of the same sample measured by different instruments. The principle of PDS
algorithm is similar to DS as shown in Fig. 5.4.

Yet, PDS separates continuous wavelengths from spectra, calculates transformation
coefficients in each wavelength window, establishes a spectral standardization transfer matrix
according to transformation coefficients of each wavelength window, and uses the transfer
matrix to correct spectra of the target spectrometers to achieve maximum similarity between
master and target spectra. The width of the left and right wavelength window region () was
set to 3 in the test. The SLRDS algorithm assumes that the absorbance of different wavelength
points is independent of each other, and uses linear regression to correct spectra measured on

the target spectrometers.
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5.2.3.2 Evaluation Methods of Spectral Differences

(1) Euclidean Distance
The spectral differences between instruments were quantitatively evaluated by the Euclidean
Distance (D) between spectra. The larger the value D, the more obvious the spectral

difference between instruments. The formula for calculating D is:

D = \/211:=1(Aik — Ay)? Eq.65

In this formula, k is the wavelength point; A;, is the absorbance of the spectrum collected

on the target instrument at the k wavelength point and the i spectrum, and A, is the

absorbance of the standard spectrum (master instrument) at the k wavelength point.

(2) Difference of Spectral Data

The spectral standardization error rate (SSER) was used to characterize the accuracy of
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spectra standardization between different instruments, and to quantitatively describe spectral
differences between the target spectra after standardization and the master spectra of the same
sample.

The spectral standardization error rate for a sample is defined as:

-7
SSER,=YK LT
=2 T | v+ 751

x100% Eq.66

in which {Mj;,i=1,...,N, j=1,...,K} is the sample spectral matrix of the master spectrometer;
{Ti;,i=1,...,N, j=1,...,K} is the sample spectral matrix of the target spectrometer after
standardization; N is the number of samples; K is the data point in the spectra.

For all sample sets, the average error rate SSER,,e and maximum error rate SSERp.« are

defined as:
1
SSER =7 N | SSER; Eq.67

SSER,,,,=max(SSER;) Eq.68

(3) Error of Principal Component Scores
The principal component score error rate (PCSER) was used to characterize the similarity of
principal component score matrices. A lower PCSER means that the principal component
score matrix of master and target spectra is more similar and the spectral difference is smaller.
The calibration model based on principal component analysis or partial least square method
has then a better sharing effect.
The PCSER formula of the first n principal component scores between master and target

spectra of a sample is as follows:
2
PCSER=>3, W, /T, T Eq.69

in which T,,; is the score rate of the i*" principal component of the master spectrum; T,
is the score rate of the i*" principal component of the target spectrum after standardization of
the corresponding spectrum; W; is the contribution rate of the it principal component.

For all sample sets, the average error rate PCSER,,. and maximum error rate PCSER .« are

defined as:
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PCSER .=+ .| PCSER, Eq.70

PCSER,,,=max(PCSER;) Eq.71

5.2.3.3 Evaluation of Model Performance

In the process of model establishment, the correlation coefficient of calibration (R.), RMSEC
and RMSECV were used to evaluate the performance of the model, and the optimal
calibration model was developed. After establishment of the model, the prediction
performance of the model is evaluated comprehensively using indicators such as correlation
coefficient of prediction (R,), RMSEP and RPD. The smaller RMSEC, RMSECV and
RMSEP are and the closer R, and R, are to 1, the better the stability and prediction
performance of the established model are. RPD is used to evaluate the accuracy of the model.
When RPD < 1.75, the prediction accuracy of the model is too low and this means, that the
model is not applicable. For RPD > 3, the prediction accuracy is high enough to use the

model.
5.2.4 Data Processing and Analysis

The NIRSA 5.8.8 system (computer software copyright registration number of 2007SR06801),
IBM SPSS Statistics 25 and Excel 2016 was adopted for data analysis.

5.3 Results and Discussion

5.3.1 Model Development for the Master Spectrometer

The PLS method was used to establish a calibration model for the correlation between crude
protein content of 153 calibration samples and their NIR spectra collected on the master
spectrometer. In order to fully extract effective information from the spectra, various
pretreatment methods were employed to process the original spectra for the elimination of

irrelevant and interference information such as noise in the spectral data. The optimal
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pretreatment method was selected based on the predictive effect of the established PLS
analysis model. Evaluation results of the calibration model under different pretreatment

methods are shown in Tab. 5.3.

Tab 5.3 Evaluation of the PLS calibration models for protein under different pretreatment methods

Number of Calibration set Prediction set
Pretreatment oo
principal RPD
method R2 RMSEC Rf, RMSEP
components
None 7 0.9594 0.3653 0.9661 0.3802 5.4312
SNV 6 0.9615 0.3559 0.9712 0.3507 5.8928
Normalization 6 0.9567 0.3833 0.9684 0.3792 5.6306
MSC 6 0.9612 0.3719 0.9695 0.3610 5.7260
Normalization
6 0.9614 0.3720 0.9698 0.3613 5.7544
+MSC
1% derivative 13 0.9548 0.3857 0.9739 0.3340 6.1900

It can be clearly seen from Tab. 5.3 that, after comparing the modeling effects of different
pretreatment methods, when the number of principal components is 6, the crude protein

calibration model after SNV pretreatment has the best effect. At this condition, the PLS model

has an RZ of 0.9615, an RMSEC of 0.3559, an R of 0.9712, an RMSEP of 0.3507, and an

RPD of 5.8928, meaning that the model has a high prediction accuracy. The prediction effect

of master crude protein model is shown in the Fig. 5.5.
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Fig. 5.5 Scatter plot of IAS 3100 master calibration (SNV) and prediction for protein content
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5.3.2 Spectral Standardization

DS, PDS and SLRDS algorithms belong to supervised algorithms. Hence, a standard sample
set needs to be selected first, and the selection of the number of samples in the standard
sample set has an important impact on the effect of spectral standardization. Too few samples
will lead to insufficient information, while too many samples will increase difficulty of data
processing, resulting in illusion of over-fitting. Using the Kennard-Stone (K-S) algorithm, 10,
20, 30, 40, 50, 60, 70 and 80 samples were selected from the master and target calibration sets
respectively as the standard sample set for spectral standardization, and the standardized
transfer matrix was established. The three spectral standardization methods were used to
calibrate spectra from the target calibration sets, and the SSER,,. of the master and target
spectral data after calibration were calculated. Under the three algorithms, the relationship
between the number of standard samples and the SSER,,. value is shown in Fig. 5.6 for the

three algorithms.
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Fig. 5.6 Variation of the SSER,,. of the target spectrometer with the number of standard samples for the three spectral

standardization methods.

With the increase of the number of standard samples, the effective information contained in
the standard sample set increases as well. As can be seen from Fig. 5.6, the SSER, value
decreases, for the PDS and DS algorithms meaning that spectral difference between master
and target decreases as well.

For the DS algorithm, SSER,. reaches a minimum when the number of standard samples is
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60. For the PDS algorithm, SSER,,. reaches a plateau when the standard sample number is
less than 30. Similarly, when the SLRDS algorithm is used, SSER,. changes very little with
the increase of the standard sample number, and reaches the minimum when the standard

sample number is 40.

5.3.3 Analysis of Spectral Differences

Fifty samples were selected as optimum alternative to constitute the standard sample set for
all three algorithms (DS, PDS and SLRDS) and were used to establish a transfer matrix
between the spectra of the standard sample set collected by the master and the target
spectrometers. With the help of the transfer matrix, spectra of the calibration sample set
measured on the target spectrometer were standardized. SSER and PCSER of the master and
target spectra before and after standardization were calculated, and the average and maximum

error rate SSER and PCSER, respectively, were compared (Tab. 5.4).

Tab. 5.4 Difference between the target and master spectra before and after standardization

. SSER PCSER
Algorithm
SSER e SSERmax PCSER4e PCSERpax
None 72.0133 83.7803 218.1008 323.3647
DS 0.3973 3.5975 1.3583 5.3757
PDS 0.5203 1.0622 2.0735 6.0494
SLRDS 1.0812 2.0744 4.6754 13.0615

As can be seen from Tab. 5.4, SSER and PCSER values of untreated target spectra are high,
indicating that the master and target spectra have great differences. This is due to the different
NIR spectrometers selected for the test, which leads to significantly different spectra from the
same sample. After standardization with DS, PDS and SLRDS algorithms, SSER and PCSER
of the target and master spectra are largely reduced, however to different degrees. For the

target spectrometer, the standardization effect of the DS algorithm is the best.
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5.3.4 The Process of Model Transfer

Using the spectral standardization methods and parameters identified in section 3.2, the
spectra of the target prediction set samples (51) were calibrated. The spectra before and after
standardization were put into the established optimal master model of crude protein (Section
3.1) for prediction. Fig. 5.7 shows the process of model normalization after using the
calibration set (153) of the target instrument as the prediction set of the master instrument.
The predictive scatter diagram of each method is shown in Fig. 5.7(b), and the predictive
effect of model transfer is shown in Tab. 5.5.

It can be clearly seen from Fig. 5.7(a) that, compared with Y=X, there is a big difference in
the intercept of the original spectra predicted by the master model for the target spectra,
which means that there is a large systematic error in the predictive result. As can be seen from
Fig. 5.7(b), the predictive effect of the model is improved after the standardized (DS and PDS)

target spectra are input to the master model.
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Fig. 5.7 Predictive scatter plot of crude protein calibration model

(a) before standardization; (b) after standardization

Tab. 5.5 Effect of Model Transfer for target MicroNIR spectrometer

Model transfer

Algorithm
Rp RMSEP RPD
None 0.0925 119.764 1.0043
DS 0.9426 0.643 2.9947
PDS 0.8299 1.2631 1.7924
SLRDS 0.7567 1.1729 1.2558
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As shown in Tab. 5.5, when target spectra without standardization are put into the master
model, the RMSEP is high and RPD < 1.75, which indicates that the master model has a poor
predictive effect on original target spectra and cannot be directly applied for prediction of
target spectra. Instead, when target spectra after standardization by DS and PDS algorithms
are subjected to the master model, the prediction correlation coefficients increase (both above
0.8). However, from the parameter values it can be derived that the standardization of the
SLRDS algorithm does not work, RMSEPs decrease sharply, and RPDs also have a certain
improvement. This shows that the spectral standardization algorithm greatly reduces the
spectral difference between the master and target spectrometers. Among the three algorithms,
the predictive effect of the target spectra after standardization by DS algorithm is the best,
being consistent with the conclusion from section 3.2. The predicted scatter plot of crude
protein content of target prediction based on the DS algorithm is shown in the Fig. 5.8. These
results demonstrate that the proposed two evaluation indexes (i.e. SSER and PCSER) can
effectively analyze spectral differences, accurately evaluate performance of various spectral
standardization methods, and greatly facilitate model transfer between different

spectrometers.
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Fig. 3.8 Scatter plot of target protein content prediction crude protein content based on DS algorithm

5.4 Chapter Summary

Taking wheat flour as sample and the NIR spectral calibration model of crude protein as

example, this study explores spectral standardization methods between different NIR
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spectrometers, seeks the best spectral standardization method, and aims to realize the sharing
of calibration models among different instruments. The main conclusions are as follows:

(1) Spectral standardization and principal component score error rate were proposed for
evaluating the effect of spectral standardization, and enabled the quantitative assessment of
spectral differences and the improvement of accuracy in spectral standardization.

(2) DS, PDS and SLRDS algorithms all belong to supervised spectral standardization
algorithms. With the increase of sample number, the effective information contained in the
standard sample set increases, and the SSER,. values of two algorithms (DS and PDS) show
a downward trend. Yet, too many samples could lead to over-fitting.

(3) The SLRDS algorithm is ineffective as standardization method, but by the other two
algorithms (DS and PDS), the spectral differences between the target and the master
spectrometers are significantly reduced. After standardization by the DS algorithm, the error
rate of the target spectrometers was the lowest, and the master model had the best effect. Its

prediction accuracy was greatly improved compared with that before standardization.
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6 Conclusions

Near-infrared spectroscopy is a technology that integrates analytical chemistry, applied optics,
applied mathematics and computer science. Because this technology is fast, efficient,
non-destructive, and practical in on-line detection, it has been chosen by many industries.

In this project, five NIR spectrometers (2 benchtop and 3 handheld) were selected to measure
the NIR spectra of 50 flour samples from Germany and 163 flour samples from China. The
objective of the project is to analyze the indicators of flour, such as crude protein, moisture
and wet gluten, in order to solve two problems: 1. how to develop calibration models based on
the NIR spectra of these samples for each reference value of flour; 2. how to solve the transfer

of spectral models across different spectrometers.

6.1 How to Build the NIR Spectral Model for each Reference Value of the

Flour

In the process of modeling the NIR spectra for each reference value of flour, the number of
outliers rejected varies from one spectral sample to another. Although there are various
algorithms for judging outliers, in the actual operation of spectral analysis, outliers are not
only related to spectra, but also to the accuracy of reference values. Therefore, when
analyzing sample data, two factors need to be considered separately, and then the selection
criteria for outliers in the sample data will be set.

At the stage of determining the pretreatment method for the data, the first step is to find the
best spectra pretreatment method for calibration development of all flour reference values.
The selected pretreatment method in this thesis is EMSC, which aims to balance the best
results of the pretreatment by scatter correction of the raw flour spectra obtained by NIR
spectrometers with different optical principles. Finding the best pretreatment method requires
further analysis and optimization steps by trial and error.

After pretreatment of the data, several major reference values of wheat flour were

quantitatively modeled by using PLS regression. The NIR spectral models for crude protein,
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moisture and wet gluten of flour were developed, and the RMSEPs of the best flour models
were 0.3784% (MicroNIR), 0.2624% (MicroNIR) and 1.4653% (Neospectra Micro),
respectively. The Rj were 0.7922 (Hamamatsu C15511-01) for the best crude protein model,
0.6096 (Hamamatsu C15511-01) for the best moisture model, and 0.8346 (IAS 3100) for the
best wet gluten model, which showed that of the proposed calibration models the most
accurate was for the prediction of moisture which was superior to protein and wet gluten.
Generally, the results showed that the analysis of the main reference values of wheat flour by
NIR spectroscopy was feasible and good prediction models were obtained.

The identification of wheat flour origin was studied by developing different identification
models from the measured spectra: PCA, PLS-DA, and significance of difference analysis of
reference values, respectively. Through the analysis of NIR spectra, it was clearly observed
that there were differences in the spectra between wheat varieties of different origins. The
differences in the spectral regions of 1900-2200 nm (5263-4545 cm™) is more obvious,
because there is a large amount of N-H and C-O bond information of proteins in this region,
which can more accurately reveal the differences in chemical information between wheat
flour of different origins. Using the PCA method, German and Chinese flours could be well
identified and classified with the raw flour spectra of spectrometers other than FT-NIR
spectrometers (NeoSpectra Micro and Hamamatsu C15511-01). However, using the PLS-DA
analysis method, the assignment of the origin of the flour models from FT-NIR spectrometers
can be significantly and effectively improved. The experimental results also demonstrate that
NIR spectroscopy can be effectively used for the rapid quantification of the investigated
wheat flour parameters. However, the next stage of cross-spectrometer sharing of calibration
models can be achieved only, when the problem of spectral standardization and spectral

differences between different instruments is solved.

6.2 How to Solve the Problem of Sharing Spectral Models across

Spectrometers

Firstly, two problems need to be solved: optimization of the spectral standardization method
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and evaluation of the spectral standardization effect. For this purpose, in Section 5.2.3.2 the
goodness-of-fit evaluation indexes, SSER and PCSER have been proposed after spectral
standardization.

In order to achieve the purpose of model transfer for the most important reference value crude
protein, 163 flour samples from China and 50 flour samples from Germany were collected.
After comparing various methods of spectral pretreatment and calibration models, the IAS
3100 spectrometer was selected as the master and the MicroNIR spectrometer as the target.
The standard sample set for spectral standardization was optimized using the fit of the spectra
as the final evaluation index. The different effects of three spectral standardization methods,
DS, PDS and SLRDS, on the sharing of calibration models across instruments are
investigated. After the three standardization methods were tested, the DS and PDS methods
significantly reduced the inter-instrument spectral data variability and improved the prediction
accuracy of the calibration model for wheat flour reference value proteins, while the result of
the SLRDS method was invalid. Among them, the DS algorithm for crude protein prediction
was the best, with R,, improved to 0.9426 and RMSEP of 0.643. The results showed, that the
PLS regression model with SNV pretreatment in the wavelength range of 1750-2150 nm
worked best.

This experiment basically achieved the cross-spectrometer sharing of the crude protein
correction model. The results demonstrate that the spectral standardization error rate can
effectively describe the differences between spectra quantitatively, and the principal
component score error rate can characterize the similarity between the principal component
score matrices. Traditionally, the error of the cross-spectrometer prediction of the correction
model is solved in order to evaluate the effectiveness of spectral standardization, which

ultimately improves the efficiency of model transfer.

6.3 Future Prospects

This thesis investigates and discusses the application of near-infrared spectroscopy for the

development of calibration models for the quantitative determination of flour parameters and
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discrimination of geographical origin of different flours, and applies the spectral
standardization method to the calibration model transfer for flour parameters. However, there
are still some aspects that need further improvement and refinement.

1. The investigations only established three reference value models for moisture, wet gluten,
and crude protein of wheat flour samples, and the study of model transfer was only applied to
the reference value of crude protein. In fact, other reference values such as starch, fat, ash and
sedimentation value of flour samples were not investigated in depth. Future studies should be
extended to other reference values of wheat flour to establish further calibration models so
that the purpose of the complete parameter profile for wheat flour can be achieved.

2. Although the most popular spectral pretreatment method for scatter correction - EMSC -
and the most frequently used calibration methods for qualitative and quantitative purposes -
PCA and PLS, respectively - have been applied in the present thesis, additional approaches
could be tested.

3. The main factors affecting the sharing of calibration models across spectrometers are the
differences in working principles and performance indexes of the master and target
instruments. Follow-up research can further expand the types of spectrometers beyond the
scope of this thesis, thereby generalizing the approach of calibration model transfer across

instruments.
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Abbreviations index

Symbol Description

% (w/w) - % (weight by weight)

1% Der. - first-order derivative

AC - amylose content

AE - absolute error

AOTF - acousto-optic tuneable filter

ASICs - application-specific integrated circuits
ASTM - American Society for Testing and Materials
AR - anti-reflection

ARM - advanced RISC machines

ATR - attenuated total reflection

C - calibration

CARS - competitive adaptive reweighted sampling
cm - centimeter

Ccv - cross validation

D - euclidean distance

DA - discriminant analysis

DIGeFa GmbH - Detmolder Institut fUr Getreide-und Fettanalytik GmbH
DMD™ - digital mirror device

DS - direct standardization

ELM - extreme learning machine

EMSC - extended multiplicative scatter correction
FAO - food and agriculture organization

FDA - food and drug administration

FT-MIR - fourier-transform mid-infrared

FT-NIR - fourier-transform near-infrared

g - gram

GBIT - HEFEMEE ZF b “Recommended Chinese National Standard”
ICC - International Association for Cereal Chemistry
IPC - industrial personal computer

IR - infrared

K-S - Kennard-Stone

L - liter

LED - light-emitting diode

log - logarithm

LVF - linear variable filter

LVs - latent variables

MAE - mean absolute error

MEMS - micro-electro-mechanical systems

MIR - mid-infrared
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mL
MLR
mol
MPLS
MSC
NIPALS
NIR
NIRS
nm

RMSECV
RMSEP
RPD

RPi

S/B

SEC
SE-HPLC
SEP
SGSA
SIMCA
SIMOST™
SLRDS
S/N

SNV
SPXY
SRC
SSER

uv
VCPA

- milliliters

- multiple linear regression

- mole

- modified partial least square
- multiplicative scatter correction
- nonlinear-iterative partial least squares

- near-infrared

- near-infrared spectroscopic

- nanometer
- prediction

- principal component analysis

- principal component regression

- principal component score error rate

- piecewise direct standardization

- partial least squares

- partial least squares discriminant analysis
- predictive residual error sum of squares
- Poly(tetrafluoroethylene)

- correlation coefficient

- correlation coefficient of calibration

- correlation coefficient of cross validation
- correlation coefficient of prediction

- R squared

- reduced instruction set computer

- root mean square error of calibration

- root mean square error of cross validation
- root mean square error of prediction

- relative prediction deviation

- raspberry Pi
- slope/bias

- standard error of calibration

- size-exclusion high performance liquid chromatography
- standard error of prediction

- Savitzky-Golay smoothing algorithm

- soft independent modeling of class analogies

- Silicon Integrated Micro-Optics System Technology

- simple linear regression direct standardization

- signal/noise

- standard normal variate

- sample set partitioning based on the joint X-Y distance
- solvent retention capacity

- spectral standardization error rate

- ultraviolet

- variable combined population analysis
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VCSEL - vertical cavity surface emitting laser
WILMA - wavelet interface to linear modelling analysis
WT - wavelet transform
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