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Abstract

In this dissertation, we investigate the requirements for situation awareness applications

and the selected existing situation awareness technologies, including pedestrians positioning,

pedestrians traffic detection, pedestrians walking direction detection, pedestrians number

counting, emergency detection, explosion detection, detection of calling for help, detection

of seeking rescue. And we innovatively proposed a situation awareness system with a set

of approaches and a mechanism that balances privacy protection and high-reliability detec-

tion. The system includes two layers which are the perception layer and the representation

layer. The perception layer handles the data from the multi-mode sensors and perceives the

situation of the environment. The representation layer receives the perception results from

the perception layers and visualizes this information. The system considers the privacy

protection requirement from the system architecture level, because the functions and the

data or devices used by each layer can be controlled according to the level of crisis and the

level of privacy.

In the perception layer, the low-cost piezoelectric sensors, audio sensors, and cameras

deployed in the environment are used according to the level of the crisis of the environment.

Our piezoelectric sensors-based approach can detect if an emergency happens in the smart

environment. The audio sensors or cameras are not allowed to turn on while there is no

emergency. Only with piezoelectric sensors data, emergency detection, pedestrians number

counting, pedestrian positioning, and pedestrians walking direction detection functions can

be completed. If an emergency event is detected, the audio sensors and camera will turn

on to confirm the credibility of the emergency. If indeed it is an emergency event, these

additional sensors will increase the reliability of each detection function to support actions

of responses to crises. In the representation layer, a 3D virtual environment is built to

visualize the results of the perception layer. According to the crisis and privacy levels,

the system can show pedestrians with anonymous synthetic images or real-time authentic

camera images.

The proposed system fulfills the requirements of both privacy protection and situation

awareness functions.





Zusammenfassung

In dieser Dissertation untersuchen wir die Anforderungen an Situational-Awareness-

Anwendungen und ausgewählte existierende Technologien, einschließlich der Erkennung

von Fußgängerverkehr, der Erkennung der Laufrichtung, Zählung und Positionierung von

Fußgängern, sowie der Erkennung von Notfällen, Explosionen, Hilferufen und Rettungs-

aktionen. Wir schlagen ein innovatives Situationserkennungssystem mit einer Reihe von

Ansätzen und einem Mechanismus vor, das den Schutz der Privatsphäre und eine hochzu-

verlässige Erkennung in Einklang bringt. Das System umfasst zwei Schichten: die Wahrneh-

mungsschicht und die Darstellungsschicht. Die Wahrnehmungsschicht verarbeitet die Daten

der Multimode-Sensoren und nimmt die Umgebungssituation wahr. Die Darstellungsschicht

empfängt die Ergebnisse der Wahrnehmungsschichten und visualisiert diese Informationen.

Das System berücksichtigt die Anforderungen an den Schutz der Privatsphäre bereits in

der Systemarchitektur, da die Funktionen und die Daten oder Geräte, die von den ein-

zelnen Schichten verwendet werden, dem Grad der Krise und dem Grad der Privatsphäre

angemessen gesteuert werden können.

In der Wahrnehmungseschicht werden kostengünstige piezoelektrische Sensoren, Audio-

sensoren und Kameras, die in der Umgebung vorhanden sind, entsprechend der Schwere

der Krise verwendet. Unser auf piezoelektrischen Sensoren basierender Ansatz kann er-

kennen, ob in der intelligenten Umgebung ein Notfall eintritt. Die Audiosensoren oder

Kameras dürfen sich nicht einschalten, wenn kein Notfall vorliegt. Bereits mit den Daten

der piezoelektrischen Sensoren können die Funktionen Notfallerkennung, Fußgängerzählung,

Fußgängerpositionierung und Erkennung der Laufrichtung von Fußgängern ausgeführt wer-

den. Wenn so ein Notfall erkannt wird, schalten sich die Audiosensoren und die Kame-

ra ein, um das Vorhandensein des Notfalls zu bestätigen. Wenn es sich tatsächlich um

einen Notfall handelt, erhöhen diese zusätzlichen Sensoren die Zuverlässigkeit der einzel-

nen Erkennungsfunktionen, um Maßnahmen zur Krisenbewältigung zu unterstützen. In der

Darstellungsschicht wird eine virtuelle 3D-Umgebung aufgebaut, um die Ergebnisse der

Wahrnehmungsebene zu visualisieren. Je nach Risiko und Datenschutzanforderungen kann

das System Fußgänger als anonyme synthetische Bilder oder authentische Kamerabilder in

Echtzeit zeigen.

Das vorgeschlagene System erfüllt sowohl die Anforderungen an den Schutz der Pri-

vatsphäre als auch an Situational Awareness.
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CHAPTER 1

Introduction

With the development of computing power of electronic computer hardware in the last

decade, the algorithms like neural networks, gradient descent, and backpropagation which

were considered difficult to complete tasks in a meaningful time in the 1900s that consume

numerous computing resources, have regained life today. The deep learning-based[1] ap-

proaches have made the breakthroughs of the solving of images classification problems[2], ob-

ject detection problems[3], target tracking problems[4], semantic segmentation problems[5],

natural language processing problems[6] and so on. Furthermore, the game of Go AI,

AlphaGo[7, 8], beat the human world champion in the most challenging of classic games for

artificial intelligence, and it further raises people’s expectations of the possibility of AI.

Society has entered an era of artificial intelligence. At the same time, it also stimulated

people’s demand for artificial intelligence technology to ease the work of human beings

and make functions automated and intelligent to increase productivity further. Security is

always a prerequisite for all activities, whether in social life or industrial production. In

the AI era, people require the situation in daily life environment or industrial production

environment can be perceived understood for security purposes. Moreover, the potential

security threats in the environment can be predicted. Thereby, this information can be

used to support decision-making and assist in protecting the safety of people’s lives and

property. The implementation of perception, prediction functions, and how the perception

information is organized and coordinated with decision making and the actions constitute a

decision model. The work of this dissertation refers to the concept of ”situation awareness”

and ”aircrew decision model”[9].

The concept ”situation awareness”[9, 10] firstly proposed in the 1980s by U.S. Air Force,

which was initially invented for military purposes, has been introduced into civilian fields

related to people’s daily works and lives. This dissertation proposes an AI-based situa-

tion awareness system for intelligent environments. It can cover the industrial production

environment and daily public living environment. This proposed system can perceive the
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situation while considering protecting people’s privacy in the monitored area.

The proposed situation awareness system includes a perception layer and a represen-

tation layer. The perception layer includes modules for pedestrian positioning, pedestri-

ans traffic detection, pedestrian walking direction detection, pedestrians number counting,

emergency detection, explosion detection, detection of calling for help, detection of seeking

rescue, and the visualization for this information. The perception is constructed with piezo-

electric sensors, audio sensors, and cameras. The use of these sensors is strictly organized

and moderated according to the privacy level and privacy level. The representation layer

visualizes the output of the perception layer for assisting decision-making and actions. Sim-

ilarly, the image that the representation layer can express is also controlled by the privacy

level. In this dissertation, a crisis-privacy status model is defined. This model is used to

measure the level of privacy and crisis and to moderate the function of privacy violation

sensors.

1.1 Motivation

People require that a system can detect and understand the situation in the specific area [11,

12]. With the help of sensors and AI algorithms, a system can sense the environment and

classifies according to patterns. Although, as a hot spot in the research field and popular

technology in the industry application, computer version-based approaches have achieved

satisfactory results in environmental perception. However, this kind of technology depends

on the camera’s use, which introduces a problem of privacy violation. This kind of tech-

nology is like a double-edged sword. On the one hand, it solves the problems that plague

people, but on the other hand, it poses a threat to people’s privacy. Is that possible for

a system to achieve both points that protect people’s privacy and reliably percept the en-

velopment situation? Are privacy protection and reliable detection functions irreconcilable

contradictions? Under what circumstances one of the conflicting factors can compromise

with the other? How does a system know that one factor should compromise the other if

the current circumstance matches the conditions?

We consider the following use case and application scenarios for the system described

in this paper. We considered two scenarios: chemical factory buildings and shopping mall

buildings. We considered three kinds of emergencies: hijack, fire, and explosion. The

system should detect if there is an emergency that happens regardless of what type of the

emergency is. We require that the safety of the people in the scenarios obtain protection

when an emergency happens. Therefore, rescue personnel should arrive promptly to people

(locations) who need help or are in danger when encountering an emergency. In order to

achieve this goal, we need a perception system that can perceive the event that a person

encounters danger. For example, when a person yells for help, falls and then knocks on
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the floor, or falls and becomes inactive, it means the person is in danger and urgent need

of help. Thus we require the system to detect these behavior or activity events, including

falls, knocking on the floor, and yelling for help. Meanwhile, it requires our system to

recognize the location of each person in the scene. Also, this monitoring system should

count the number of people in the scenario and record the location of each person. While

meeting the above conditions, we require people’s privacy in the scenario to be protected. It

requests that as long as the emergency does not occur, the use of the camera is prohibited.

The acquired data should be anonymous. For data collected by sensors involving personal

information, desensitization should be performed. Personal information is only permitted

to be disclosed in the event of an emergency and for the purpose of saving lives.

To sum up, we want to build a system that takes both privacy protection and the im-

plementation of the environmental situation perception function into consideration. Find a

reasonable approach to balance the conflict of these two factors, and under special condi-

tions, one factor could be compromising the other. We need to define this condition, and

the system should be able to detect if this condition is fulfilled.

1.2 Contribution

The contribution of this thesis can be summarised as follows:

• A crisis-privacy status model is designed and implemented.

The integrated situation awareness system will decide which sensors and function

modules can be used according to the crisis-privacy level output by the crisis-privacy

status model.

• We innovatively designed and implemented an approach that can detect the emergency

depending on vibration signal, which can be used in the high-privacy situation.

Our method can detect explosions, fires, and robbery emergencies. However, the

emergency event detection method is based on the characteristics of the emergency

event and thus is not limited to the above specific event types.

This approach can trigger the crisis-privacy status model from ”high-privacy” status

to ”high-crisis” status.

• We innovatively designed and implemented an approach to count the number of pedes-

trians based on vibration signals. This approach can be used on ”high-privacy” status.

• We innovatively designed and implemented an approach to detect the walking direc-

tion of the pedestrians only based on vibration signals.
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• We innovatively designed and implemented an approach to detect the position of the

pedestrians only based on vibration signals.

• We implement subsystems based on audio and video signals to detect the situation

and monitor the pedestrians that work on high-crisis status. We combined the vi-

bration signal-based approaches and the existing video and audio-based approaches

and designed an integrated system that considers both privacy-protecting and smart

environment situation awareness.

1.3 Thesis Organization

The first 2 chapters introduce this thesis’s background, motivation, and fundamentals. Then

the system architecture is explained. Chapter 4 to chapter 10 of this thesis describes

the design and implementation of each module of the situational awareness system. The

approaches described in Chapter 4 to Chapter 7 are based on piezoelectric sensors. Because

the vibration signal is a non-privacy violation, these approaches work on both high privacy

level conditions and high crisis level conditions.

In Chapter 4, we analyze the characteristics of emergencies and propose an approach

to detect if there is an emergency in a public place. This work uses piezoelectric sensors

to collect data that is privacy-protecting. In particular, the system introduced in this

section, serving as an emergency detecting module in the situation awareness system, will

decide the crisis level. The work in this chapter is presented on ACM International Joint

Conference on Pervasive and Ubiquitous Computing and ACM International Symposium

on Wearable Computers [12] in September 2020. The crisis-privacy status model will be

defined in Chapter 2.

In Chapter 5, we proposed a pedestrians number counting approach with piezoelectric

sensors. Without cameras or audio sensors, it can work in both high privacy level and high

crisis level conditions. The approach can detect the number of pedestrians in a 3 meters

by 3 meters zone. Its function is an essential precondition of pedestrians tracking function.

The work in this chapter is published in Applied Sciences [13] in January 2022.

In Chapter 6, we proposed a pedestrian walking direction detecting approach. The ap-

proach can detect if the pedestrian walks left or right. With the number counting approach,

the situation awareness system will be able to track the pedestrians’ traffic even at a high

privacy level without using a camera.

In Chapter 7, we proposed a personnel positioning system. This approach can locate

persons in an environment with piezoelectric sensors deployed. This work was published on

IEEE Access in November 2020.

In Chapter 8, we describe function modules which use audio sensor (microphone) to

detect explosion and distress. The explosion detection function works in high privacy level
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conditions, while distress detecting works in high crisis conditions. The explosion detecting

module can also trigger the awareness system into a high crisis level if an explosion is

detected. The distress detecting module only works under high crisis level conditions. The

work in this chapter relies on previous research, but its implementation is an important

component of the proposed system. I do not claim a scientific contribution to the work in

this chapter.

In Chapter 9, we describe an approach that uses a camera to track and locate pedestri-

ans, detect falls, and count pedestrians’ traffic. This approach only works under high-crisis

level conditions. When a crisis or emergency happens, the priority of using all methods

to ensure people’s life, health, and safety is higher than all relatively unimportant factors,

including privacy protection. The use of a camera in the SA system offers the most intuitive

information for rescue or evacuation. Nevertheless, the use of the camera is restricted by

the crisis-privacy status model. The work in this chapter relies on previous research, but

its implementation is an important component of the proposed system. I do not claim a

scientific contribution to the work in this chapter.

In Chapter 10, we describe a privacy-providing situation information visualization ap-

proach. This approach constitutes the representation layer for the situation awareness

system. It receives the output from the perception layer and presents the information to

related persons, such as the rescue team. This approach can output anonymous synthe-

sis images in high-privacy-level or real-time reality images in high-crisis conditions. The

work in this chapter is more about engineering implementation than scientific research, but

the implementation is an important component of the proposed system. I do not claim a

scientific contribution to the work in this chapter.

In Chapter 11, we conclude this work and provide an outlook for future development

based on this thesis’s findings.
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CHAPTER 2

Fundamentals

2.1 Situation Awareness

The works involved in this dissertation introduce the concept of ”Situation Awareness”.

Situation awareness(SA) is a term that initially emerged in aviation, which first introduced

by Endsley [9, 14]. According to Endsley’s definition, a SA system includes three key

aspects: ”perception, comprehension, and projection”, as shown in Fig. 2.1.

Nowadays, the SA has been widely referenced in a wide variety of domains, including

air traffic control, driving, military operations, cyber security, etc. [15, 16].

2.1.1 Definition of Situation Awareness

The earliest definition for SA is as ”the perception of the elements in the environment within

a volume of time and space, the comprehension of their meaning and the projection of their

status in the near future”[9, 14].

At the broadest level, ”Situation Awareness” involves an environment including dynamic

elements. When an intelligent object wants to recognize and understand the environment

and thus make good decisions for the actions, it includes three phases: 1, perceive the

basic facts in the environment; 2, understand the facts in the environment combined with

knowledge and experience; 3, forecast for the future. After the intelligent agent has com-

pleted the perception, understanding, and prediction regarding the environment, it will

make decisions and execute the decision, thus impacting the environment. In this way, the

perception-decision-practice cycle is formed, and the whole process is repeated.

The SA provides a perception-understanding-decision framework for using artificial in-

telligence to solve practical problems. Under the SA framework, the first step, ”perceiving

the basic facts in the environment,” is to perceive the physical signal in the experiment,

such as humidity, temperature, shock wave amplitude, and frequency. The wide variety of
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sensors presented in the market allows us to use engineering methods to perceive physical

signals of the surrounding environment. After the first step, the acquired information can

be used to support the following process. In the second step, the intelligent object will try

to understand the environmental situation subjectively, referring to knowledge and experi-

ence. In this process, an example of how a human makes a judgment regarding the weather

is given. When people feel the air pressure decreases, the humidity increases, and see the

heavy clouds(step 1), they will know that it will probably rain soon(step 2 understanding

and step 3 forecasting). Then he will bring an umbrella if he goes out(decision and actions).

Similarly, if an algorithm can make judgment depending on the current situation, and

help people to achieve some goals, then the perception phases of the SA is completed.

In 1995, Endsley picked up a model which describes the decision-making process with

a SA system [10]. As shown in Fig. 2.1, this model considers the objective factors of the

environment, the situation awareness, decision, action, and feedback to the environment. It

also considers the subjective factors as goals and expectations, ability or experience of the

relevant person. Meanwhile, how the different factors interact and their relationships are

described.

Figure 2.1: SA dynamic decision making model [10].

The output of the SA is actions. What kind of action to take is based on the understand-

ing of the environment. After the action is executed, it will eventually affect and change

the environment. At the same time, each process is cyclical and real-time. SA, serving as

a model, is used to make good decisions for specific goals. According to different purposes,

usage scenarios, and action execution subjects, SA has different manifestations in different

use cases.
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2.1.2 SA Related Works

The differences in the application of SA models in the different domains are reflected in the

different meanings of the SA’s three key aspects.

Initially, researchers used the SA model to analyze the aircraft pilots’ behavior. Its

purpose is to study what decision is optimal for a pilot in a complex real-time situation [17].

It describes the pilot’s understanding of the current environment. Thus he can make good

decisions or carry out appropriate actions to achieve specific goals. In this domain, the

”perception aspect” is that the pilot should perceive the basic elements, including the

situations of other aircraft, the terrain, the signal from the aircraft instrument, and the

commander’s order. These perceptions information are obtained by relying on the pilot’s

sense of sight, hearing, and touch. As for the ”comprehension aspect,” a trained pilot can

understand the current situation based on the signal he or she perceives. For example, when

the pilot notices the various signal on the aircraft instrument panel and combined with the

sound of the aircraft engines, he can know if a malfunction is happening. In contrast, a

person who does not know how to fly an aircraft can also see the signal on the instrument

panel and hear the engine’s sound, but it is difficult for this person to judge whether the

aircraft is malfunctioning. In the ”projection aspect,” a well-trained pilot can predict the

near future situation based on the current situation. For example, when a pilot discovers

an engine failure, he can project that if it is not properly handled, the failure will expand

and even cause a crash.

In around the 1990s, Endsley proposed the SA concept by studying the behavior of

humans. Later, the researchers hope that the machine, rather than a human, can automat-

ically complete some specific tasks according to the SA model. The SA system with various

algorithms as the core came into being.

In recent years, the situation in cyberspace has become increasingly complex, and various

types of threats and attacks flood cyberspace. People hope to monitor, capture and analyze

these threats and thus take actions to avoid disruption to systems in cyberspace. In order

to achieve this purpose, researchers introduced SA in the cyber security domain, which is

called cyber situation awareness. Cyber SA collects, analyzes, processes, and evaluates a

specific system’s data to understand the system’s environment in the cyber security domain.

Meanwhile, it predicts the current and future situation and tries to make decisions to take

action to respond to potential cyber threats [16]. In this domain, the ”perception aspect”

of SA is to recognize the attack occurrences, their types, attack source, and attack target.

The ”comprehension aspect” of SA is to know ”the attack’s objectives, action, tendency,

the impact on the current and future situation, and understand the rationale of the current

situation.” The ”projection aspect” of SA is to be aware of how the situation evolves and

the possible effects [16]. Thus cyber SA system provides necessary information support for

the deciders.
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In ubiquitous computing, heterogeneous devices constitute distributed IoT networks and

systems. Almeida proposed an SA-based system to process the IoT event logs, thus provid-

ing functions such as rapid detection and blocking of attacks, detection of whether the entire

system needs to add more nodes for scalability purposes, and autonomy demand [18, 19].

Similarly, as a SA system, the three key aspects of Almeida’s SA system are as follows.

The ”perception aspect” of this SA is to collect event logs and statistical status. This log

information is generated based on log systems on each distributed node, including ”File-

beat, Winlogbeat, Metricbeat, Logstash” [19]. The ”comprehension aspect” of Almeida’s

ubiquitous computing SA system implements the decision tree algorithms and rule-based

correlation algorithm to match the stream of incoming events against a pattern. Thus, the

SA system can propose corresponding processing strategies to respond to these events. The

”projection aspect” in this SA system is to avoid unwanted situations which already been

handled cases during the comprehension step.

2.1.3 The Proposed Situation Awareness for Smart Environment

In this thesis, the proposed SA system perceives and comprehensives human and scenario-

related information and events and provides privacy protection features. Our system’s

”perception aspect” uses vibration sensors, audio sensors, and cameras to collect floor vi-

bration signals, audio signals, and video signal data. Our system’s ”comprehension aspect”

uses AI-based algorithms to detect emergencies, pedestrians’ walking direction, the position

of the pedestrians, the behaviors of the pedestrians, the person in distress, and count the

number of pedestrians. Our system’s ”projection aspect” is to evaluate the threat to the

life of an individual or group of people in distress.

The proposed SA system controls the global situation of the monitoring area in real-

time. When an emergency happens, it can provide adequate information for the rescue staff

to support efficient and rapid rescue operations. Furthermore, as an ”AI-based Situation

Awareness for Smart Environments” with a privacy protection mechanism, this system

innovatively balances the contradiction between privacy protection and effective monitoring.

The vibration signal-based perception modules of the system fill the gap in the research field

in terms of function and performance. As a whole, the proposed SA system fits into the

state-of-the-art.

2.2 Privacy

Privacy is a fundamental human right. Generally, Westin [20] in 1967 defined privacy as ”the

ability of an individual to control the terms under which personal information is acquired

and used.” According to Internet Security Glossary [21], privacy is defined as ”The right

of an entity (normally a person), acting in its own behalf, to determine the degree to which
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it will interact with its environment, including the degree to which the entity is willing to

share information about itself with others.” The EU General Data Protection Regulation

(GDPR) [22] as well as the OECD privacy framework [23] consider the information which

can be used to identify a natural person as ”personal information”. According to the law,

personal information can not be recorded or used without the authorization of its owner.

Meanwhile, the GDPR also classifies personal biometric information and personal location

information as the category of privacy that should be protected. In the scope of this thesis,

we will discuss the definition of privacy, the means of privacy protection and the methods we

use in accordance with the requirements of the GDPR. Generally, when personal information

is used in a non-permissible way, there is an invasion of privacy.

Privacy-enhancing technologies (PETs) provide privacy protection based on technology,

and it can be considered the implementation of the policy from the view of the technol-

ogy [24, 25] The privacy metrics [24] are used to measure the level of privacy in a system

quantitatively. Anonymity is an important indicator in various privacy metrics. In an

information system involving user data, information encryption [26] and necessary privi-

lege management are also means to protect privacy to ensure that users can control their

personal information.

”Privacy is also its own field of research in statistical databases where information about

a population are to be disclosed while at the same time the privacy of individuals should

be protected [27].” The privacy protection in such a scenario belongs to the differential

privacy [28], and it is also referred to as disclosure control. In this case, it is required

that by accessing such databases from statistical information, the personal information and

identities of the participants in the statistics cannot be obtained [29]. In other words, if

an adversary has acquired the data, he cannot determine whether an individual is included

in this dataset. In order to achieve differential privacy security, previous studies have

verified that this problem can be solved to a certain extent by introducing noise into the

dataset [28]. Meanwhile, in some specific use cases, some researchers use desensitization

methods to remove privacy-sensitive information while allowing the dataset to serve its

purpose [30, 31].

Whether the scientific research or market-oriented products, privacy-protecting will be

an issue that cannot be avoided when it comes to data collection. Considering the situational

awareness system perception requirements, deployments of various sensors are necessary.

The deployment of sensors in public areas must consider the protection of the privacy of

people in the monitoring area. Although video data can provide rich information support

for perception algorithms, It is straightforward for people to recognize a person’s identity

according to the face image in the data stream. Consequently, according to the laws, it

is not globally possible to deploy cameras in public places. In scenarios with adequate

reasons to deploy cameras, the deployment practice should be compliant and legal. Avoid
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introducing cameras in the products can be a direct and effective way.

The privacy protection method involved in this paper is mainly the anonymization of

personal information. This thesis’s proposed privacy protection approaches are based on

vibration data. The vibration sensor is a kind of low-profit sensor. By watching the ground

vibration signal caused by footsteps, humans cannot identify the person who caused the

signal data. Without the necessary support of identity-related data, even with the aid of

computers and algorithms, the identity of the observed pedestrian cannot be identified.

Thus the perception approaches based on vibration sensors provide sensor-level privacy

protection and differential privacy security. The vibration signal data can be considered a

sensor-level desensitization approach for privacy protection.

2.3 Machine Learning and Neural Network

2.3.1 Machine Learning

Machine Learning Definition

It is recognized in the academic that Arthur Lee Samuel first defined the term ”machine

learning” in 1959.

”Machine Learning: Field of study that gives computers the ability to learn without being

explicitly programmed.” [32].

Tom Mitchell gave out the definition for well-posed learning problem in 1997 [33] as

”Well Posed Learning Problem: A computer program is said to learn from experience E in

context to some task T and some performance measure P, if its performance on T, as was

measured by P, upgrades with experience E.”

Nowadays, the term ”machine learning” is widely used to describe scenarios involving

tasks such as classification, regression, clustering, perception, and pattern recognition.

Machine Learning Algorithms

Machine learning algorithms are generally been categorized into 3 classes according to the

learning approach:

• Supervised learning [34]

• Unsupervised learning [35]

• Reinforcement learning [36]

Supervised learning is an approach to making a machine or a model to learn the patterns

and relationships between the input data and the labeled output. Thus when new data are
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fetched into the model, the trained model can output accurate or correct results. Supervised

learning works well with classification problems and regression problems.

Supervised learning requires the training data to include labels. The so-called label

means that the data input to the model during the training process has the corresponding

correct output. Like a student solving a problem, the correct answer is known. The model’s

training is supervised by the correct answers (labeled data). Unsupervised learning is a

kind of algorithm that learns patterns from unlabeled data.

The work of this thesis involves the use of deep learning, random forests, principal

components analysis (PCA), Deep learning and random forests belong to the supervised

learning algorithms. PCA is an unsupervised learning algorithm.

2.3.2 Neural Network

Artificial neural networks are inspired by biomimicry. It originated when scientists wanted

to design an algorithm to mimic the working mechanism of the human brain. Although

the academic understanding of the working mechanism of the human brain is still at a

superficial level so far, some theories about the human brain are assumed to have been

successfully applied in engineering practice.

The ”one learning algorithm” hypothesis

As the basic unit of the brain, neurons play an essential role in the realization of brain

functions. The working mechanism of the neuron has been deeply studied by academia. In

brain science, there is evidence that the brain uses only one ”learning algorithm” to achieve.

Scientists hypothesize that the complex and rich functions implemented by the brain are

based on ”one same algorithm” to achieve various functions. Some of these studies support

this hypothesis from a certain angle. Roe’s research found that the auditory cortex is able

to learn to see [37]. Metin’s research found that the somatosensory cortex is able to learn

to see [38]. This feature is called ”neuroplasticity”. There are many more experiments

serving as evidence for it. Nagel et al.’s research [39] use an electronic compass and belt

with vibrators to train people to learn the sense of directions. Danilov et al.’s research [40]

shows that the visual information can be transmitted via tactile nerves to the cerebral

cortex, which is responsible for vision. Evidence shows that multiple neurons linked by

specific structures and transmitting signals by certain mechanisms can form units (neural

networks) that achieve specific functions.

Neural Model Logistic Unit

The currently widely used neuron model is the point-like model that treats each neuron as

a node and determines the output by calculating whether the sum of the inputs exceeds



14 CHAPTER 2. FUNDAMENTALS

a threshold, and it is named as perceptron [41]. Although the actual working mechanism

of human brain neurons is still in the stage of understanding in academia [42], the neural

network model based on perceptron has been widely used.

Later, researchers evolved logistic regression [43] by improving the perceptron’s activa-

tion function and optimization method. Accordingly, logistic regression has a probabilistic

explanation for the final classification result compared with the perceptron.

The composition of nerve cells includes dendrites and axons. The dendrites that receive

signals from other neurons can be considered ”input wires”. The axons output the signals

to other neurons serving as ”output wires”. According to the neuron model, when the

signal strength received by a neuron is more significant than a certain threshold, the neuron

will be activated and transmit the signal out to the connected neuron through the axon as

shown in Fig. 2.2 and equation 2.7. A logistic regression unit can be thought of as a neuron

in an artificial neural network.

Figure 2.2: Neural model logistic unit.

As shown in Fig. 2.2, the neuron model, which has 3 connected dendrites (3 input wires

and 1 bias), is represented. The neuron has 3 input: x1, x2, x3. The x0 is the bias unit,

which is a constant normally x0 = 1. θ is the weights of each inputs. θ0 is the weight of

the bias, normally θ0 = 1. Hθ is the output. Mathematically, it can be represented with

equations from 2.1 to 2.6. S(z) is the sigmoid function. Hθ(x) is the output.

x =
[
x0 x1 x2 x3

]T
(x0 = 1) (2.1)
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θ =
[
θ0 θ1 θ2 θ3

]T
(2.2)

S(z) =
1

1 + e−z
(2.3)

z = θTx (2.4)

= θ0x0 + θ1x1 + θ2x2 + θ3x3 (2.5)

Hθ(x) =
1

1 + e−θTx
(2.6)

Generally, a neuron with n inputs will be represented as equations 2.7. In the equations,

b stand for the bias.

x =




b

x1

x2
...

xn




θ =




θ0

θ1

θ2
...

θn




Hθ(x) =
1

1 + e−θTx
(2.7)

The Bias in the Neural Networks

In the logistic regression or the mathematical model of neurons, there is always a bias

parameter, which cannot be omitted. The mathematics of the logistic regression model is

essentially to use the function y = wx + b to draw the decision boundary. The w is the

model’s parameters, and the b is the intercept. Take the two-dimensional data classification

task as an example, as shown in Fig. 2.3. If there is no bias term in two-dimensional

space, we can only draw a straight line through the origin. For data that is not 0-centered

distributed, a straight line through the origin cannot be used for classification tasks. In

this case, the model will fail to converge during training. However, typically the data used

for training is always not 0-centered. Similarly, in a high-dimensional space, the decision

boundary will be a hyperplane.

In a neural network, the existence of the bias term enables the neurons in this layer to

fit the input data of which distribution is not 0-centered. In contrast, if the input of a layer

of the neural network is normalized, it can be fitted even without bias.

However, in the practical design of the neural network, we always keep this bias term. A

neural network with the bias term can fit the data faster. The bias term makes the neural

network with the bias term converge faster than the neural network without the bias term.
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Figure 2.3: 2D non-zero-centered distribution data.

Meanwhile, the bias term makes the neuron more flexible and improves the neuron’s fitting

ability. Furthermore, the bias can be understood as the control over the activation state

of neurons. Referring to the activation function Equation 2.3, when the bias is relatively

small, it shows the inhibition of a neuron. Conversely, the neuron will be easier to activate.

Model Representation of Neural Networks

The neural network comprises multiple neurons organized according to a particular struc-

ture. Information is passed between neurons according to specific rules. Multilayer feedfor-

ward neural network [44] is a typical neural network architecture. The feedforward neural

network groups neurons into groups according to the order in which they receive informa-

tion. Each group is considered a neural layer. The neurons in each layer receive the previous

layer’s output and output to the neurons in the next layer. Information in the entire network

is propagated in one direction, and there is no reverse information propagation.

Taking the three-layer feedforward neural network as an example, Fig. 2.4 is a 3 layers

feedforward neural network. Layer 1 is the input layer, layer 2 is the hidden layer, and layer

3 is the output layer. Layer 1 has 3 units, and layer 2 has 3 hidden units. x0 and a0 are

the ”bias units” which are constants.

As shown in Fig. 2.4 and equation 2.8, a
(j)
i is the ”action” of unit i in layer j. θ(j) is
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the matrix of weights from layer j to layer j + 1. When the neural network has sj units in

layer j, sj+1 units in layer j + 1, then θ(j) is of dimension sj+1 × (sj + 1). The information

is computed and forward propagation as shown in equation 2.8. Normally x0 = 1, a
(2)
0 = 1.

a21 = S(θ
(1)
10 x0 + θ

(1)
11 x1 + θ

(1)
12 x2 + θ

(1)
13 x3)

a22 = S(θ
(1)
20 x0 + θ

(1)
21 x1 + θ

(1)
22 x2 + θ

(1)
23 x3)

a23 = S(θ
(1)
30 x0 + θ

(1)
31 x1 + θ

(1)
32 x2 + θ

(1)
33 x3)

S(z) =
1

1 + e−z

Hθ(x) = a
(3)
1 = S(θ

(2)
10 a

(2)
0 + θ

(2)
11 a

(2)
1 + θ

(2)
12 a

(2)
2 + θ

(2)
13 a

(2)
3 )

(2.8)

In the equations 2.8, during the initialization of the forward propagation, the biases

x0 and a
(2)
0 are set to 1. The value of the elements of the weight matrix θ(j) is initialized

to random numbers. Typically, the weight matrix is marked as w, and the bias matrix is

marked as b. The parameters w and b will be updated in the training process.

Figure 2.4: 3 layers feedforward neural network.

Convolutional Neural Networks

Convolutional neural networks are also mentioned as convolutional networks[45] or CNNs.

”Convolutional networks are simply neural networks that use convolution in place of general
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matrix multiplication in at least one of their layers” [44].

f(x) ∗ g(x) =

∫ +∞

−∞
f(τ)g(x− τ)dτ (2.9)

As shown in equation 2.9, f(x) and g(x) are two integrable functions on R. The convo-

lution of f(x) and g(x) is witten f(x) ∗ g(x).

For discrete convolution operations, we can rewrite the discrete convolutional operation

as equation 2.10:

f(n) ∗ g(n) =

∞∑

m=−∞
f(m)g(n−m) (2.10)

In equation 2.10, f(n) and g(n) are complex-valued functions on integers set Z.

Signal theory shows that if a signal is finite in the time domain, it is infinite in the

frequency domain. A signal with an infinite time domain must be band-limited in the

frequency domain, and a signal with an infinite frequency domain is finite in the time

domain. Suppose a signal is a non-periodic signal in the time domain and a time-limited

signal. An approximation has been made in engineering. In that case, it is assumed by

default in engineering signal processing that the signal is a periodic signal with this signal

segment as a complete cycle. In the scenario of signal processing by the computer, the signal

saved by the computer is usually a digital signal obtained by sampling and quantizing an

analog signal according to the sampling theorem. In engineering, the processing of a signal,

whether in the time or frequency domain, is regarded as finite signal processing.

The convolutions can be used over more than one axis. When the input data I is a two-

dimensional matrix, the kernel K is also a two-dimensional matrix, and the convolutional

operation can be denoted as equation 2.11

S(i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(m,n)K(i−m, j − n)

=
∑

m

∑

n

I(i−m, j − n)K(m,n)
(2.11)

Many machine learning libraries use cross-correlation, as shown in equation 2.12, instead

of convolution but still call it convolution. The difference between cross-correlation (f ? g)

and convolution operation (f ∗ g) is that either f(x) or g(x) is reflected about the y-axis.

S(i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(i+m, j + n)K(m,n) (2.12)

The convolutional layer includes an input matrix and a kernel matrix. The output

of the convolutional layer is the convolutional operation between the input matrix and the

kernel matrix. The weight parameters in the kernel matrixes are learned during the training

process. Meanwhile, usually, a pooling layer is cascaded after the convolution layer. Then
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no matter cross-correlation operation or the convolutional operation will not influence the

final results [44].

Classic Deep Convolutional Neural Network Practices

Usually, convolutional neural networks are not used alone. Fig. 2.5 is the deep convolutional

neural network architecture used in the positionning task in this thesis.

Figure 2.5: Deep CNN architecture example.

A pooling layer [44] is typically cascaded after the convolution layer. The pooling layer

can decrease the size of the feature map [44] thus reducing computational volume. Mean-

while, it can increase the receptive field [46]. Also, as pooling is a nonlinear operation, it can

enhance the expressiveness of the network. In practice, a batch normalization layer[44, 47]

is cascaded after each convolution layer to maintain the mean output to 0 and output stan-

dard deviation to 1. This can solve the gradient dispersion problem and gradient explosion

problem. Because convolution is a linear operation, a ”ReLu” layer is cascaded after each

batch normalization layer. The ”Relu” layer has an activation function, enabling the neural

network to have nonlinear learning capabilities. Furthermore, ”Dropout” technology [48]

will be inevitably used in the deep neural network architecture. The ”Dropout” technology

makes a neuron’s activation function stop working with a certain probability in the forward

propagation. Dropout can suppress overfitting because it makes the entire neural network

less dependent on some local features. Meanwhile, it can reduce the computational costs of

neural network inference and training. Not only that, the deep neural network in Fig. 2.5 is

of residual architecture (Residual Network, ResNet). The ResNet use shortcut connections

to make the information can jump some layers of the neural network in the forward prop-

agation. The residual architecture solves the degradation problem [49] and the shattering

gradient problem [50]. Finally, the softmax layer typically used as the output layer can map

multiple scalars into a probability distribution, each of which outputs a value in the range

(0, 1). In multi-classification tasks, the neural network with softmax as the output layer

can output the prediction of each category in the form of probability.

Deep neural network architectures based on convolutional neural networks emerge in an
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endless stream, constantly breaking the performance limit. DNN-based technologies have

proliferated and continue to push the performance limits[2, 49, 51, 52, 53, 54]. Generally,

there is a trend for neural networks to become deeper and deeper. The deeper network

exhibits better feature extraction performance.

2.4 Feature Selection and Extraction

In machine learning tasks, machine learning algorithms learn patterns from input data.

However, the unprocessed data is redundant. Usually, the dimensionality of the raw data

is very high. For example, a human can recognize the identity of a person only base on the

face image rather than the image of the whole body. That is to say, for a face recognition

task, picture data other than faces is redundant. In order to improve the computational

efficiency of the machine learning algorithm, shorten the training time, improve the versatil-

ity, and suppress the overfitting problem, the data is usually processed for feature selection

and feature extraction before the machine learning algorithm is trained. Feature selection

returns a subset of the original features. Feature extraction extracts the parts useful for the

task by processing the original data. Feature extraction is to create new features from the

original features.

2.4.1 Principal Components Analysis

The principal component analysis is a classic feature extraction method, and it can reduce

the dimensionality of the data. It uses an orthogonal transformation to linearly transform

the observations of a series of potentially related variables, thereby projecting them into

a series of linearly uncorrelated variables [55]. These uncorrelated variables are called

principal components (Principal Components).

As shown in Fig. 2.6, the blue points are data points in the 2-dimensional space. The red

points are data points in the 1-dimensional space. The projecting blue points to red points

is dimensionality reduction. The purpose of PCA is to find a coordinate system with a lower

dimension than the original data dimensionality so that the loss of information is minimized

after the data is reduced in dimension. Reduce from n-dimension to k-dimension: Find k

vectors u(1), u(2), · · · , u(k) onto which to project the data, so as to minimize the projection

error [55].

The PCA algorithm to reduce the data of n-dimension to k-dimension is as follows.

Assume the data has m samples. Firstly, we calculate the mean normalization of the j

dimensional raw data as shown in equation 2.13. x′ij is the element of the raw data. xij is

the mean normalization data. µj is the mean, and sj is the standard deviation.

Then calculate the covariance matrix of the mean normalization data as shown in equa-

tion 2.14. The convariance matrix is presented with Σ.



2.4. FEATURE SELECTION AND EXTRACTION 21

Figure 2.6: 2 dimensinality data reduced to 1 dimensinality example.
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xij =
x′ij − µj
sj

(2.13)

Σ =
1

m

n∑

n−1
(x(i))(x(i))T (2.14)

[U, S, V ] = SV D(Σ) (2.15)

U = [u1, u2, u3, · · · , un] U ∈ Rn×n (2.16)

z(i) = U ′Tx(i)

= [u1, u2, u3, · · · , uk]Tx(i)

z ∈ Rk, U ′ ∈ Rn×k
(2.17)

Next, calculate the eigenvectors of the matrix Σ. As shown in equation 2.15, we use

singular value decomposition to calculate the eigenvectors of the covariance matrix. The

matrix U is the eigenvectors of matrix Σ as shown in equation 2.16. Finally, we can calculate

the k-dimension data z(i) as shown in equation 2.17. The U ′ is a matrix with the first k

columns of matrix U .

PCA can be thought of as a data compression algorithm. In general, PCA can speed up

machine learning algorithms and reduce the memory to store data. PCA is also a means

of visualizing high-dimensional data. When the high-dimensional data is reduced to three

dimensions and below by PCA, we can visualize the data.

2.4.2 Deep Neural Network Feature Extraction

In the field of image recognition, it is well known that deep convolutional networks can

automatically extract features[56, 57]. Not only that, the features learned through deep

learning performed exceptionally well in the classification task. The output data of each

convolution layer is called feature map [44]. When the neural network goes deeper, the

receptive field increases. Meanwhile, the feature extracted becomes more abstract.

The deep one-dimensional convolutional network can also automatically extract features

in the processing of vibration signals. In this thesis, deep convolutional neural networks are

also used as feature extraction methods.
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System Architecture

The architecture of the proposed system is presented as shown in Fig. 3.1. The SA system

includes a representation layer and a perception layer. Each layer has several modules. The

crisis-privacy status model controls the modules in both layers.

The motivation, the functions, and the constraints to be satisfied for these layers will

be explained. The functions of the modules included in each layer will be explained one

by one. How each module is coordinated with each other will be discussed. However, The

specific implementation details of each module will be discussed in Part 2 of the thesis.

Figure 3.1: System architecture.
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3.1 Crisis-Privacy Status Model

Most data of modality is not as rich and intuitive as image data collected by the camera.

At the same time, considering the outstanding progress in machine vision in recent years in

academia and industry, rather than completely discarding the use of cameras, it is better

to restrict them and formulate policies that meet both privacy protection and perception

requirements. To this end, the crisis-privacy status model is proposed as an engineering

implementation of this strategy.

Compared with the safety of people’s lives, the importance of privacy comes second. The

principle of this model is as follows. When there are no incidents that endanger people’s

lives (no crisis), prioritize protecting people’s privacy. On the contrary, once there is a crisis

in the environment, privacy protection is ignored, and the safety of people’s lives is given

priority.

We define two factors in the crisis-privacy status model. The first factor is the crisis

level, and the second is the privacy level. The crisis level is defined subject to the crisis

severity of the situation in the detected area. The crisis level determines the privacy level.

Figure 3.2: Crisis-privacy status model.

When an event in the environment may infringe on people’s life safety, the crisis level

is defined as a high level. Otherwise, it is a low crisis level.

The SA system presented in the thesis does not deprecate the cameras. The system only

prohibits the use of cameras at the low crisis level (high privacy protection level). Only

data collection methods that do not violate privacy protection can be used at this level.

When the crisis level is triggered to high, the privacy level will be adjusted to low.

A system constrained by the crisis-privacy status model should meet the following con-

ditions.
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1. The system needs to be able to adjust the level of privacy based on the level of crisis

in the environment.

2. The kinds of sensors that the system activates the usage status of being constrained

by the privacy level.

3. The system should be able to switch between high crisis status and low crisis status

autonomously.

The system should rely on sensors permitted only at high privacy levels to detect and

understand environmental information and identify crisis events. When the crisis is resolved

or confirmed that the crisis is a false alarm, it will automatically adjust back to the low

crisis-high privacy level.

3.2 Two Layer SA System

Considering perception and expression are two relatively independent functions, and consid-

ering the storage requirements for perception results, we layer the system into two functional

layers as shown in Fig. 3.1.

The perception layer depends on the perception modules of this layer to perceive the

environment and detects the target events. The perception layer will record the results in

a database. The representation layer expressions the perception results by querying the

result of the database.

The representation layer should be able to express the perception results in a human-

friendly manner.

3.2.1 Perception Layer

In order to accurately perceive events in the environment from multiple perspectives, the

perception functions should be implemented with sensors of different modalities. However,

according to privacy protection restrictions, there should be at least one sensor that does

not violate privacy. Meanwhile, algorithms should identify whether there is a crisis event

in the environment based on the data of this sensor alone.

Furthermore, the system solution is kept the low cost as much as possible, thus providing

advantages for engineering. Considering all of the requirments, the vibration sensor, audio

sensor, and cameras are selected to construct the perception layer.

The perception layer is divided into three parts based on the different types of sensors

used.

Four modules belong to the vibration signal-based perception part. These modules are

the emergency detecting module, pedestrian number counting module, walking direction
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Figure 3.3: Perception layer diagram.

detecting module, and pedestrians positioning module. These modules only depend on

the vibration signal, and they are privacy-protecting approaches. These modules can work

under both high privacy mode and low privacy mode.

The emergency detection module can detect if there is an emergency happening in the

environment based on the vibration data. When the crisis status is under the low crisis

level, if the emergency detection module detects an emergency event, it will set the crisis

status to high (low privacy mode).

The pedestrian number counting module can detect the number of pedestrians in a 3

meters by 3 meters zone. Usually, it is deployed near the entrance of an area.

The walking direction detecting module can detect if a pedestrian is walking left or right.

It is also commonly deployed near the entrance of an area and is typically used together

with the pedestrian number counting module. With this module, we can know a pedestrian

comes in through a door or go out through the door.

The pedestrian positioning module can detect the location of a pedestrian.

There are 2 modules in the audio signal-based perception part. These modules are the

explosion detecting module and distress detecting module. The explosion detection module

can work under both high and low privacy modes. The distress detecting module only works

on high crisis mode (low privacy mode).

The explosion detection module is able to detect if there is an explosion. When the

explosion is detected, it will set the crisis status to high no matter the current crisis status.

The distress detecting module can detect if someone is calling for help or knocking on

the floors. This module depends on the audio signal and only works under high crisis mode.

Three modules belong to the video signal-based perception part. These modules are

the pedestrians detecting, tracking, positioning module, the fall detection module, and the

pedestrians’ traffic counting module. The modules of this part depend on camera data and

only work under high crisis mode (low privacy mode).

The pedestrians detecting, tracking, and positioning module can detect persons accord-

ing to the input video data. It can identify whether the person’s identity appearing in the

image is the same. It can output the coordinates of the world coordinate system of the
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person appearing in the image screen and track the walking path of the pedestrians.

The fall detection module is able to detect if there is a person in the video falling.

The pedestrians’ traffic counting module is able to detect the pedestrian s throughput by

counting the number of pedestrians in a specified area.

3.2.2 Representation Layer

The presentation layer presents the perception results in a human-friendly way. The repre-

sentation layer involves two privacy model-constrained expression approaches with different

privacy properties. One approach is based on the Unity 3d-based anonymous synthesis

visualization module, and the other approach is reality camera video.

Figure 3.4: Representation layer diagram.

The Unity 3d-based anonymous synthesis visualization module will anonymously present

pedestrians’ position and status information in the constructed virtual 3D scenes based on

the information of the perception module. The images of pedestrians are represented by

virtual 3D human figures anonymously. The virtual 3D scene is constructed according to the

monitored area, which corresponds to the area of the real environment. This representation

approach can work under both high crisis and low crisis modes.

The reality camera video expression approach direct shows the video stream to the

relevant person in charge, such as the commander of firefighters, police, or rescue teams.

This expression approach only works under the high crisis level.

3.2.3 Model Constraints and State Transitions

The crisis-privacy status model constrains the active status of all the modules or approaches

in the system. The principle is that privacy protection is not compromised unless it is a

last resort. As shown in Fig. 3.5 and Fig. 3.6, when a crisis is detected, all technical means

will be activated and used to maximize the protection of people’s lives. In this case, privacy

protection is compromised.

As shown in Fig. 3.7 and Fig. 3.8, when the crisis is low, The system will prioritize privacy

protection, and some features will be disabled. Even in this case, the system still provides

a wealth of perception intelligence that can serve some potential intelligent applications.

Fig. 3.9 shows how the crisis status is shifted. There are two statuses: low crisis status

(high privacy level) and high crisis status (low privacy level). The explosion detection
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Figure 3.5: High crisis scene modules activation status of the perception layer.

Figure 3.6: High crisis scene modules activation status of the representation layer.

Figure 3.7: Low crisis scene modules activation status of the perception layer.

Figure 3.8: Low crisis scene modules activation status of the representation layer.
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Figure 3.9: Crisis status diagram.

module and the emergency detection module can trigger the shifting of the crisis status.

When an explosion is detected, or an emergency is detected, the system will shift the status

to high crisis status. When the relevant persons in charge confirmed that the crisis is

resolved or it was a false alarm, they can manually set the crisis status to low.
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CHAPTER 4

Emergency Monitoring

In this work we present an indoor emergency context monitoring system based on ground

vibration caused by persons in the target area. The system is designed for production plants

and large buildings to perceive the safety status of this area. Our approach is privacy-

protecting, because it requires neither video nor sound. Instead, piezo sensors on the floor

measure vibrations, which are analyzed with machine learning to compute the safety status

of the covered area. This way our system can determine whether an emergency occurred,

but it is not straight forward possible to attach names to the detected persons. We compare

the impact of different feature extraction methods and different types of classifiers on the

classification results. Our experiments show that we can determine an emergency event

with an average F1 score of 0.97 [12].

This part of the work constitutes the emergency detection module of the system de-

scribed in this dissertation. This module only depends on the vibration signal. Thus it can

run on the low crisis status. The crisis-privacy status is updated according to the result of

this module.

The research work described in this Chapter is addressed in the following refereed paper

that constitutes part of this cumulative dissertation:

• Yang Yu and Torben Weis, “A privacy-protecting indoor emergency monitoring sys-

tem based on floor vibration,” in Adjunct Proceedings of the 2020 ACM International

Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the

2020 ACM International Symposium on Wearable Computers, New York, NY, USA,

Sep. 2020, pp. 164–167. doi: 10.1145/3410530.3414423.

The content is included in Section 12.1.
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CHAPTER 5

Pedestrians Number Counting

Pedestrian counting has attracted much interest of academic and industry community for

its widespread application in many real-world scenarios. While many recent studies have

focused on computer vision-based solutions for the problem, the deployment of cameras

brings up concerns about privacy invasions. This chapter proposes a novel indoor pedestrian

counting approach, based on footstep-induced structural vibration signals with piezoelectric

sensors. The approach is privacy-protecting because no audio or video data is acquired.

Our approach analyzes the space-differential features from the vibration signals caused

by pedestrian footsteps and outputs the number of pedestrians. The proposed approach

supports multiple pedestrians walking together with signal mixture. Moreover, it makes

no requirement about the number of groups of walking people in the detection area. The

experimental results show that the averaged F1-score of our approach is over 0.98, which is

better than the vibration signal-based state-of-the-art methods [13].

This part of the work constitutes the pedestrians counting module of the system in the

perception layer described in this dissertation. This module only depends on the vibration

signal. Thus it can run on the low crisis status.

The research work described in this Chapter is addressed in the following refereed paper

that constitutes part of this cumulative dissertation:

• Yang Yu, Xiangju Qin, Shabir Hussain, Weiyan Hou, and Torben Weis, “Pedestrian

Counting Based on Piezoelectric Vibration Sensor,” Applied Sciences, vol. 12, no. 4,

Art. no. 4, Jan. 2022, doi: 10.3390/app12041920.

The content is included in Section 12.2.
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CHAPTER 6

Pedestrians Walking Direction

Detecting

We present an algorithm and measurement system to detect the walking direction of persons

based on ground vibrations. The approach is privacy-preserving, because it solely relies on

piezoelectric sensors built into the floor. Therefore, our system can be used in areas where

cameras are not allowed or cannot capture the entire area. To analyze the ground vibrations

caused by footsteps, we present a multi-peaks average algorithm (MPAA), which already

offers a robust detection. MPAA judges the walking direction of pedestrians by analyzing the

time-space relationship of at least two consecutive footstep vibration signals from multiple

sensors. In addition, we show that the multi-peak averaging feature used by the MPAA can

be used as an input feature to a deep neural network classifier. This multi-peaks averaged

feature with deep neural network-based classifier (MPAF-DNNC) approach further improves

the detection quality and especially reduces the number of footsteps necessary to determine

the walking direction.

This part of the work constitutes the pedestrians walking direction detecting module of

the system in the perception layer described in this dissertation. This module only depends

on the vibration signal. Thus it can run on the low crisis status.

The research work described in this Chapter is addressed in the following refereed paper

that constitutes part of this cumulative dissertation:

• Yang Yu, Oskar Carl, Shabir Hussain, Weiyan Hou, and Torben Weis, “A Privacy-

Protecting Step-Level Walking Direction Detection Algorithm based on Floor Vibra-

tion,” IEEE Sensors Journal, 2022, Accepted.

The content is included in the Section 12.3.
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CHAPTER 7

Pedestrians Positioning

In this work, we present a person localization system based on ground vibration caused by

walking persons. The system is designed for production plants and large buildings to track

the movement of workers. Position and movement in these settings are especially safety-

relevant in emergencies. Our approach is privacy-preserving, because it requires neither

video nor sound. Instead, piezo sensors on the floor measure vibrations, which are analyzed

with machine learning to derive a person’s position from the vibration signals. This way,

our system can determine where a person is moving, but it is not straightforward to attach

names to the detected persons. Due to the anisotropic characteristic of the ground vibration

wave, classical analysis methods are not applicable. We show that a deep learning-based

approach is feasible. Our experiments show that we can determine the position with an

average F1 score of 0.95 [11].

This part of the work constitutes the pedestrians positioning module of the system in the

perception layer described in this dissertation. This module only depends on the vibration

signal. Thus it can run on the low crisis status.

The research work described in this Chapter is addressed in the following refereed paper

that constitutes part of this cumulative dissertation:

• Yang Yu, Marian Waltereit, Viktor Matkovic, Weiyan Hou, and Torben Weis, “Deep

Learning-Based Vibration Signal Personnel Positioning System,” IEEE Access, vol.

8, pp. 226108–226118, 2020, doi: 10.1109/ACCESS.2020.3044497.

The content is included in the Section 12.4.
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CHAPTER 8

Audio signal-based Perception

system

In this chapter, two microphone-based modules are introduced. One module is the explo-

ration detecting module, and the other is the distress detecting module.

The work in this chapter relies on existing research, but its implementation is an im-

portant component of the proposed system. I do not claim the scientific contribution to the

work in this chapter.

8.1 Introduction

Hearing is an important way of perception for humans. Similarly, we use the acoustic

sensor for our situational awareness system to perceive audio events. The bomb blasts

and public shooting incidents are vicious incidents endangering people’s safety in public

places. Meanwhile, automated explosion detection technology can be helpful to improve

the response speed of police or rescue personnel to control the hazard [58]. Thus explosion

detection module is implemented in our SA system. When an explosion occurs, there is an

emergency happening in the place, and the proposed situation awareness system considers

the explosion event as a sign to trigger the high-crisis status.

Concerning the various sound events that may occur in public places, people’s cry for

help is an important event that requires rescuers’ attention. When people are in danger,

they call out ”help” for aid. However, in a fire or explosion, typically, there will be thick

smoke. In such an environment, people in distress will also tap the ground with their hands

to ask for help. Therefore, the proposed SA system also includes the call for help detecting

and knocking on the floor detecting module.
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8.2 Related Works

8.2.1 Explosion Detecting

Explosion detecting belongs to the Audio Event Detection (AED) tasks. As explosion

sounds are relatively rare in everyday life scenarios, the detection of explosion sound task,

more precisely, belongs to rare sound event detection [59].

By studying the existing Audio Event Detection research of recent years, it is founded

that the most approaches with competitive performance are data-driving approaches and

share the similar processing steps[59, 60, 61, 62, 63, 64, 65, 66, 67, 68]. These approaches

can be summarized in the following steps: dataset preparation, feature extraction, and

classifier training. Different feature extraction methods also have various performances in

specific sound event detection tasks. In terms of the choice of classifier, these papers show

that the deep learning-based method is superior to the classical Support Vector Machine

(SVM), nearest neighbor, and decision tree classifiers.

In particular, regarding the explosion detecting task, the performance of Shukla’s re-

search [58] is outstanding. This research has considered the characteristics of explosion

sounds and uses three methods to extract features from raw audio sample data. The first

feature is spectral contrast [69, 70]. The second feature is Log-mel spectrograms [61]. More-

over, the third feature is the 1D convolution feature extracted by a 1D convolutional neural

network from the raw data. The spectral contrast features and Log-mel spectrograms are

fetched into a ResNet [49] like residual neural network blocks individually. These two resid-

ual blocks and the 1D-convolutional feature-extracting network run parallel. Then a fully

connected neural network receives the output of the three parallel subnetworks to fusion the

data and make the classification. In other words, this research uses a three-input one-output

neural network to detect explosion audio.

The explosion detecting module of the SA system is implemented according to Shukla’s

paper [58].

8.2.2 Distress Detecting

The audio-based distress detecting module should implement two functions. Firstly, the

module should detect if someone is yelling ”Help”. Secondly, the module should detect if

someone is knocking on the floor. Considering the scenes the SA system is running, the

events that these two functions should detect are rare acoustic events.

Recently deep learning-based approach have presented promising performance in speech

recognition tasks [71, 72, 73]. Although both the speech recognition task and the distress

detecting task are pattern recognition tasks based on audio signals, there are apparent

differences between these two kinds of tasks.
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In the speech recognition task, there is a presupposition. The speech recognition ap-

proach supposes that the scene of the input audio is one person speaking in a quiet envi-

ronment. If this assumption is not satisfied, such as multiple people speaking alternately or

simultaneously in a quiet place or one person speaking in a noisy place, the speech recog-

nition system will not be able to show satisfactory recognition accuracy. Therefore, in the

proposed SA system, using the speech recognition approach to detect keywords like ”help”

thus to detect distress is not feasible.

After studying the working scenario of the situational awareness system, the rare sound

event detection methods [74, 75] are investigated. The above researches use the dataset

published in DCASE 2017 Challenge [59]. The dataset includes samples of 3 categories: a

baby crying, glass breaking, and gunshot, which belong to the rare sound event that may

happen in daily life.

Amiriparian’s approach [75] converts the audio data into mel-spectrogram as features.

Then fed the sliced mel-spectrogram frames into the 2D convolutional network to extract

high-level features. Afterward, the high-level features are fed into the Long Short-Term

Memory-based recurrent network (LSTM-RNN). Finally, the predictions are outputted by

the feed-forward network (FNN), cascaded after the LSTM-RNN. Amiriparian’s approach

achieved top performance, and the distress detecting module of the SA system is imple-

mented according to this approach.
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CHAPTER 9

Video signal-based Perception

System

In this chapter, the camera-based perception modules are intorduced. These modules are:

pedestrian detecting, tracking, positioning module, fall detecting module, and pedestrians

traffic counting module.

The work in this chapter relies on existing research, but its implementation is an im-

portant component of the proposed system. I do not claim the scientific contribution to the

work in this chapter.

9.1 Introduction

The video data collected by the camera can provide rich information. It can provide timely

assistance for the accurate judgment of the perception system and the rescue work of the

staff in the disaster. Although camera-based methods involve privacy violations, in order to

ensure the reliability and robustness of the SA system described in this thesis, video-based

perception modules are also introduced. Controlled by the crisis-privacy status model, the

perception module based on video data will only be enabled in high-crisis status.

By studying the crisis in the public places and the rescue scenarios, it is helpful for

the SA system to detect pedestrians, the position of the pedestrians, the behavior of the

pedestrians, and tracks their routine. Pedestrian falling is a hallmark behavior that should

be paid attention to by the perception system and the rescue staff. Meanwhile, the number

of people in an area is also essential information rescuers need to know in a crisis. Thus,

the proposed SA system implemented the pedestrians detecting, tracking, position module,

fall detecting module, and the pedestrian traffic counting module.

In recent years, deep neural networks presented impressive performance regarding com-

puter vision-related tasks. The practice has verified the advantages of deep learning-based
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methods in object detection, target recognition, and target tracking tasks based on video

data. Cao’s paper [76, 77] proposed a system, called ”OpenPose”, to detect the anatomical

keypoints of human basing on 2D images. This approach can detect the persons in images

and mark these persons’ anatomical key points. It can support multiple people in the input

images and output the key points of the persons in the input images in real-time. Our SA

system pedestrians detecting, positioning, and fall detecting functions are based on this ap-

proach. Wojke’s paper proposed approaches to re-identify person [78] and track person [79]

and implemented these approaches in a system called ”DeepSORT”. The DeepSort can

re-identify each person in the video stream and track each person. Our pedestrian tracking

function and traffic counting function are based on these approaches.

9.2 Implementation

Figure 9.1: Video perception module screen example

9.2.1 Pedestrians Detecting, Tracking, and Positioning Module

The OpenPose [76, 77] can recognize the human from the input images and output the

skeleton information of human body. DeepSort [78, 79] is able to recognize if the person in

the different video frames is the same, thus tracking the person in the video. The pedestri-

ans detecting, tracking, and positioning module combine the output of the OpenPose, the

DeepSort, and the physical position of the cameras to locate and track the pedestrians in

the surveillance area.
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As shown in Fig. 9.1, a person appeares in the surveillance area. This person is marked

with a green box and a skeleton. The person’s face area has been automatically cut out of

the image by the system for desensitization purposes. The system detects that the person

is in a normal state (walking state).

9.2.2 Fall Detection Module

(a) Falling example 1. (b) Falling example 2.

(c) Falling example 3. (d) Falling example 4.

Figure 9.2: Falling examples

In Chen’s paper [80], the posture of people in the act of falling has been studied, and an

approach to detect human falling based on OpenPose is proposed. This approach extracts

the skeleton information of the human body with OpenPose based on video images and

detects falling according to the following indexes: ”(1) The angle between the centerline of

the body and the floor; (2) The angle between the centerline of the human and the ground;

(3) The width to height ratio of the human body external rectangular [80].” Our fall detecting

module implemented this approach.

As shown in Fig. 9.2, the system detects that a person has fallen. There are various

postures when a person falls. No matter what the posture of the person who fell, our system

can recognize it. The system has issued a warning and marked the warning sign in the upper

left corner of the field of view.
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9.2.3 Pedestraits Traffic Counting

Figure 9.3: The pedestraits traffic counting method

The pedestrian traffic counting module receives data from cameras at the area’s entrance.

Then it combines the output data of DeepSort to count the number of persons entering and

exiting the specified scene to measure the traffic of people in the area. The system has

a pedestrian identification re-identification function. The identities of pedestrians in the

same frame are uniquely identified. As shown in Fig. 9.3, the field of view of the camera

is divided into three parts: left, middle and right. When the system detects a pedestrian

moving from the green area to the yellow area on the left side of the field of view, the left

counter is incremented by 1. Similarly, when a pedestrian moves from the green area to the

right yellow area, the right counter is incremented by 1.

Fig. 9.4a shows a pedestrian moving to the right of the field of view. Fig. 9.4b shows

that the pedestrian has moved out of the right side of the field of view. The upper left

corner of the image shows the number of people disappearing to the right of the field of

view. Similarly, Fig. 9.4c and Fig. 9.4d showns the pedestrian moves to the left of the field

ov view and disappears. The lower-left corner of the figure shows the number of pedestrians

in the current field of view. We assume that the camera is deployed at the entrance of the

building. Moreover, the entrance is to the right of the camera’s field of view. Whenever the

record moves a pedestrian to the right, we know that a person walked out of the building.

Whenever the record moves a pedestrian to the left, we know that a person has entered the

building. Assuming cameras are deployed at all entrances, the system can count the number

of people in the building by summing up the pedestrians’ throughput of all entrances.
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(a) Move to the right before disappearing to the
right edge of the field of view.

(b) Move to the right after disappearing to the
right edge of the field of view.

(c) Move to the left before disappearing to the left
edge of the field of view.

(d) Move to the left after disappearing to the left
edge of the field of view.

Figure 9.4: Pedestraits Traffic Counting
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CHAPTER 10

Representation Layer

In this chapter, the representation layer is discussed. The representation layer of the pro-

posed SA system includes the Unity 3D-based anonymous synthesis visualization represen-

tation methods and the reality camera video representation methods. Because the latter

method simply transmitted the camera signal to the relevant staff, which does not involve

scientific innovation, this chapter will only explain the Unity 3D-based anonymous synthesis

visualization representation methods.

The work in this chapter relies on existing research or engineering practice, but its

implementation is an important component of the proposed system. I do not claim a

scientific contribution to the work in this chapter.

10.1 Introduction

The representation layer of the SA proposed system delivers the perception results to the

related personnel like mall security and rescue workers intuitively. The representation layer

includes two methods to represent the perceived results. The first method is the Unity 3D-

based anonymous synthesis visualization representation method. This method is anonymous

because it uses avatars to represent the pedestrians in the monitoring area that works under

the low crisis status. The monitoring places are represented using Unity 3D-based game

engine-based 3D virtual scene. With this method, the viewer can only see the anonymous

avatar moving in the specified virtual scene. The location of the pedestrians will be displayed

on the screen with an avatar so that the rescue staff will know the exact number of people

in the area who need to evacuate when a crisis happens.

Unity 3D [81] is a game engine. People can build interactive real-time 3D content with

Unity 3D. Unity 3D game engine can render and display controlled instances of the 3D

model. Our SA perception layer records the perception results in a database. The Unity

3D-based anonymous synthesis visualization module queries the database, including the
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(a) Example 1. (b) Example 2.

(c) Example 3. (d) Example 4.

Figure 10.1: Anonymous avatars in synthetic scenes.

number and location of pedestrians in the monitoring area, through an HTTP request. It

renders them in the virtual 3D scene. This module can work both on the high-privacy

status and the high-crisis status.

The ”reality camera video representation method” will be enabled when the SA system

sets the crisis level to high. Related personnel can acquire visualized information both from

real-time video streams of the cameras and the virtual 3D scene.

10.2 Unity 3D-based Anonymous Synthesis Visualization

With the help of the Unity 3D engine, we can visualize the scene of the smart environment

and the moving pedestrians in the scene. Fig. 10.1 is an example of a smart virtual envi-

ronment we have implemented. As we can see from the figure, the person in the scene is a

virtual character and is not binding to the identity of any actual pedestrian in the scene.

This method anonymizes the characters acting in the scene.

The number of pedestrians in the virtual scene and the real-time location of pedestrians

are updated in real-time by querying the database. The number and location information

of these pedestrians are acquired by the system perception layer and stored in the database.

Our virtual scene system will ask for configuration server information during the startup

phase, as shown in the Fig. 10.2

The virtual scene in Fig.10.1 includes furniture such as tables and chairs. These virtual
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Figure 10.2: Server configuration.

objects’ 3D modeling and placement require manual design and implementation. However,

considering the practical requirements for situational awareness in a smart environment,

visualization of this furniture is not necessary. We are more concerned with the number

and location of pedestrians in the monitored area. So in actual use, we will use automatically

generated simple scenes to represent the environment, as shown in Fig. 10.3.

The area size of the virtual scene can be automatically generated according to the

specified size. This saves the work of manual modeling. Fig. 10.4 shows an example when

there is one person and four people in the scene. Whenever a pedestrian appears in the

monitoring area of the real world, a virtual character corresponding to it will appear in the

virtual scene. Our unity3d visualization system periodically pulls the updated perception

data from the database and displays it in the virtual scene.

10.3 Camera Video with Privacy Protection

In high crisis status (low privacy status), the video representation unit based on camera data

will be activated. Usually, at this time, the system perception module senses the emergency

and adjusts the privacy status to high crisis and low privacy. Video from cameras in the

smart environment will be shown to security personnel.

As shown in Fig. 10.5, the video representation module of the system will detect the

people’s faces and erase the faces from each frame of the video stream. Fig. 10.5 shows

examples of the erasure effect when the pedestrian is at different distances from the camera
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Figure 10.3: Automatically generate simplified scenarios.

and the pedestrian is facing different directions.

The recognition of the face area is realized based on the pedestrian body recognition

function rather than face recognition. Even if the pedestrian is facing away from the camera,

the system will still erase the image area above the person’s shoulder.

Usually, simply erasing the facial image will satisfy the requirements for anonymization

of personal image data. However, to avoid identifying human identity through video in-

formation of clothing, shoes, and hats, our system also supports erasing the entire human

body area, as shown in Fig. 10.6.
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(a) 1 Person in the scene.

(b) 5 Persons in the scene.

Figure 10.4: Pedestrians visualization in the automatically generated scene.
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(a) Face erasing example 1. (b) Face erasing example 2.

(c) Face erasing example 3. (d) Face erasing example 4.

Figure 10.5: Video frames without face.
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(a) Body image before erasing.

(b) Body image after erasing.

Figure 10.6: Video frames without body.
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CHAPTER 11

Conclusion and Outlook

11.1 Conclusions

This dissertation proposed a situational awareness system that provides privacy-protecting

features. The situational awareness system perceives the crisis status of the monitored area,

pedestrians’ behaviors, traffic, and pedestrians’ position. The system receives the data from

vibration sensors, audio sensors, and cameras and perceives the situation according to the

input data. The emergency detecting modules adjust the crisis status. The crisis-privacy

status model restricts the usability of the above sensors. When the monitored area is under

high crisis status, audio and camera will be enabled, and the real-time video stream will be

enabled. In contrast, only the vibration sensors-based perception module and the audio-

based exploration detecting module are enabled under low emergency status. The proposed

system offers two representation methods for the perception results. Similarly controlled

by the crisis-privacy status model, the Unity 3D-based anonymous synthesis visualization

representation method works on both high crisis and high privacy statuses. In contrast, the

reality camera video representation method only works on the high-crisis model.

We innovatively proposed a set of approaches and algorithms that perceive the moni-

tored area situation from several critical perspectives in a privacy-protecting manner. These

approaches and algorithms are only based on vibration sensor data, thus providing the

privacy-protecting feature. The implementation of these approaches is able to detect the

emergency, count the number of the pedestrians, locate and track the pedestrians, and

detect the walking direction of the pedestrians. These vibration sensor-based approaches

can fulfill the perception tasks and protect the people’s privacy in the monitored area,

which reached the state-of-the-art. In addition to our vibration sensors-based approach,

we also implemented the audio-based exploration detection module, audio-based distress

detection module, the video signal-based pedestrians detecting, tracking, positioning mod-

ule, fall detecting module, and the pedestrians’ traffic counting module. These perception
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modules using a variety of modal sensors input signals, serving as essential components

of the SA system, provide the system with higher reliability and robustness. Meanwhile,

we implemented a Unity 3D-based 3D scene for the anonymous synthesis visualization of

the perception results. To sum up, the proposed solution in this dissertation solved the

perception and representation problems when privacy-protecting is concerned.

Moreover, the perception modules in the proposed SA system depend on the infras-

tructures needed to implement additional sensors in the monitoring area. Recently, some

researchers have used WiFi devices as radar to solve perception problems. As in the cur-

rent society, WiFi devices belong to the infrastructures that most buildings will deploy.

The WiFi devices-based pedestrian positioning, tracking, and walking direction detecting

approaches will be studied in future works. Finnaly, we have integrated all the vibration

signal-based functional modules [11, 12, 13] into one system, which includes situational

awareness and visualization. This system simultaneously accomplishes two tasks of situa-

tional awareness and privacy protection while reconciling the conflict between protecting

privacy and perception algorithms relying on identity-sensitive data.

To sum up, the scitics contributions can be summarized as follows.

• This thesis innovatively contributed a smart environment situation perception and

visualization solutions that support privacy protection.

• This thesis innovatively contributes an approach for emergency detection in public

areas. This emergency detection approach is privacy-preserving. Because it only

relies on the floor vibration signal, which is identity desensitized.

• This thesis contributes a privacy-preserving pedestrian counting approach. This

pedestrian counting method only relies on ground vibration signals. Compared with

the similar existing methods, it has smaller usage restrictions and higher precision.

• This thesis innovatively contributes a step-level pedestrian walking direction detec-

tion approach. With competitive accuracy, this approach can derive the movement

direction in only three steps.

• This thesis innovatively contributes a pedestrian localization method based on vibra-

tion signals.

• This thesis innovatively proposes a situational awareness and visualization framework

controlled by a privacy crisis state model while considering the actual requirements

of privacy protection and perception. This framework reconciles the conflict between

protecting privacy and perception algorithms relying on identity-sensitive data.
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11.2 Outlook

In order to narrow the individual-to-individual differences of each sensor, improve signal

quality, and reduce deployment costs, we will customize the floor tiles embedded with piezo-

electric sensors. In the current system, the vibration sensor-based perception modules used

piezoelectric sensors, which are fixed on the floor’s surface. This affects the everyday use of

the area by people. We can build bricks with embedded piezoelectric sensors in the future,

thus allowing our approach to better transition to the final product. Meanwhile, the noise

of the vibration signal sensor is reduced, and the consistency of signal characteristics be-

tween different sensors is improved. Furthermore, the versatility of the related deep learning

models is increased. Additionally, we will introduce the domain adaptation [82] technology

into our vibration signal-based perception module to further improve the adaptability of

the neural network.

The emergency detecting module setup is deployed in a 3-meter by 3-meter area. In the

future, we will extend the setup to a larger area using significantly more sensors. When

sensor node networks are deployed on a large scale, cooperative communication between

different sensor units and cooperative prediction can be a new exploration direction. At

the same time, the solution for low-cost and high-precision time synchronization between

sensors in distributed sensor networks is also an exciting research topic. In the future, we

will explore the possibility of synergy between the output data of the perception layer and

the metaverse [83, 84], thus towards constructing a privacy-protecting smart city.
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ABSTRACT
In this work we present an indoor emergency context moni-
toring system based on ground vibration caused by persons
in the target area. The system is designed for production
plants and large buildings to perceive the safety status of
this area. Our approach is privacy-protecting, because it re-
quires neither video nor sound. Instead, piezo sensors on the
floor measure vibrations, which are analyzed with machine
learning to compute the safety status of the covered area.
This way our system can determine whether an emergency
occurred, but it is not straight forward possible to attach
names to the detected persons. We compare the impact of
different feature extraction methods and different types of
classifiers on the classification results. Our experiments show
that we can determine an emergency event with an average
F1 score of 0.97.
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1 INTRODUCTION
This work wants to lay a foundation stone for a new in-
telligent indoor context perception system, which mainly
focuses on emergency detection.

Many emergency systems in buildings rely on the people
inside to recognize an emergency situation and report it, for
example by pressing an alarm button or calling the police or
fire brigade. The problem is that not everyone immediately
calls for help and reports such a situation, maybe because
he forgets or is unable to do so, and just leaves the danger
zone first. This behavior delays the time until an emergency
is reported, bringing other people in danger by preventing a
fast intervention. Although there are often sensors installed
that can detect smoke or gas, there are numerous other emer-
gencies caused by failing machines or building constructions,
fighting or the appearance of a gunman that cannot be de-
tected by these sensors. Our system focuses on measuring
human behavior to detect an emergency, and at the same
time.

During an emergency, people try to escape either running
ormovingwith fast and small steps. Then the vibration signal
is generated by the pressure people put on the ground when
walking. The state of mind of the people in this environment
is reflected by the vibration signal. By analyzing the vibration
signal and recognizing the pattern, we can infer the context
situation in a specific area.
The advantage of our approach is that we do not rely

on persons wearing any senders or receivers. In addition,
our approach uses very cheap piezo sensors rather than
expensive geophones[7]. From a cost perspective, this allows
for large-scale commercial deployment. Furthermore, our
system is less privacy-invasive than cameras and it does not
detect who is walking. In addition, our system can work in
smoked areas where cameras do not work anymore.

The key contribution of this paper is as follows.We present
a novel machine learning-based indoor emergency monitor-
ing system that relies on the reaction of people rather than
trying to detect the cause of the emergency. Thus, our ap-
proach is more general than special purpose gas or smoke
detectors. Furthermore, our system relies on cheap vibration
sensors only. Being a passive approach, it does not require
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people to carry a device. We evaluated and validated the clas-
sification performance of our system with lab experiments.

2 RELATEDWORKS
Researchers before have used acceleration sensors of smart-
phones to recognize activity[1, 3], or used Bluetooth Low
energy beacons[2] to detect occupant movement patterns.
These approaches could be used to deduce the situation in an
indoor environment. However, this kind of method requires
people to carry a mobile device and to install special soft-
ware. This renders these approaches impractical. Also some
research use video-based methods[5, 8], to detect the move-
ment of persons. However, an environment with ubiquitous
video surveillance is very privacy invasive.

In contrast, our approach uses cheap piezo sensors de-
ployed in the area that, and it does not require anybody to
carry a special device. In addition, our system does not rely
on audio or video recordings and thus our system design
respects people’s privacy.

3 APPROACH
Our emergency monitoring function is based on human be-
havior, because this allows for sensing a wide range of emer-
gency situations independently from the cause of the emer-
gency. The proposed approach considers four kinds of situa-
tions: "none", "walking normally", "walking fast", and "panic".
When persons are walking normally or even a bit faster,
we classify it as the normal walking class or fast walking
class. We consider both classes to indicate a normal situa-
tion. When persons are moving in panic, we classify it as
an emergency situation. The "none" state means there is no
person in this area. In our lab experiments, we tested 1 to
4 people moving in the 9m2 area covered by four sensors.
Larger areas can be covered by deploying more sensors in a
grid.

Figure 1: Emergency Detector Processing Flow.

As shown in Figure 1, our emergency monitoring includes
the steps data collection, event detection, data segmenta-
tion, feature extraction, feature selection, and classification.
The experiment shows that a deep learning-based [4] end to
end emergency detection system has the best performance.
In several comparative experiments we combined principal
components analysis-based (PCA) automatic feature extrac-
tion methods and manual feature selection methods with a
random forest classifier. In addition, we compared the classi-
fication performance to that of a deep neural network. The

performance analysis for each scheme is discussed in section
4. In this section, the design details of each procedure are
discussed in depth.

Figure 2: Experiment setup.

Data Collection
The floor vibration signal is sensed with a sensor matrix
of four EPZ-27MS44W piezoelectric sensors as shown in
Figure 2. This sensor can detect a frequency band ranging
from 0 Hz to 4400 Hz. The signal was amplified, sampled,
quantized, and recorded with a R&S-RTB2000 oscilloscope.
The sampling rate is 10000Sam/s, which is more than double
the maximum bandwidth of the sensor.

Event Detection and Data Segmentation
To detect an event, we split the vibration sensor input data
into windows using a sliding window algorithm. In each
step, the window is sliding forward by one value. If a certain
amount of values in this window is greater than the mean of
the amplitude of the peaks multiplied by an arbitrary factor,
the current window is further analyzed, because it might con-
tain a significant event. All other windows are dismissed as
being non-significant. When a significant window has been
found and processed by the classifier, the window slides for-
ward a given overlap percentage and the continuous sliding

Figure 3: Deep neural network architecture.



A Privacy-Protecting Indoor Emergency Monitoring System. . . UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico

forward value by value. This way, we reduce the number
of windows that have to be passed through the classifier.
Equation (1) shows the maximum number of windows that
have to be passed through the classifier for a given number
of input values.

windows =
number o f values

window size −window size × overlap percentaдe

100
(1)

Based on the results of our experiments, we choose 16384
as the window size, with a time length of 1.638 seconds and
an overlap of 50%.

Feature Extraction and Selection
The first three schemes designed in this paper use a random
forest as a classifier combined with one of three feature
extraction methods. The fourth scheme uses an end to end
deep learning based approach, which conducts the feature
extraction and classification process completely inside the
deep neural network.
In the first two schemes we use principal components

analysis(PCA) as an automatic feature extraction method.
We used PCA 512 and PCA 64, which reduce the sample
dimension from 16384 to 512 and 64 respectively.
In addition, we implemented manual feature extraction.

We have chosen the maximum value, the "range", the 90%
quantile, the mean, the "bin18" value and the amplitude and
frequency of the first 3 peaks in the frequency domain from
each sample as features. The results in 44 features for 4 sen-
sors and has proven to yield good performance. The "range"
value is computed as the maximum value minus the mini-
mum value. The "bin18" means the 18th bin probability value
of the distribution, where the sampling point values are nor-
malized to -1 to 1 and the space between -1 and 1 is divided
into 20 equally-sized bins.

Classification
In the first three schemes, we use a random forest[6] as the
classifier. Based on the repeated experiments, the number of
estimators of the random forest is set to 91 and 30 maximum
depth. The input of this classifier are PCA feature values or
manually selected features values.
In the fourth scheme, we use a convolutional neural net-

work with residual structure as an end to end approach to
analyze the data sample and conduct classification. In this
scheme, the deep neural network receives raw event data
set as input and outputs one of the four classes "walking",
"fast walking", "panic", and "none". The deep neural network
architecture is shown in Figure 3.

Table 1: Classification Performance of the Emergency Detec-
tion Classifiers

Method Class Precision Recall F1-score
PCA64 + RF Walk Normal 0.7670 0.9333 0.8420

Walk Fast 0.6358 0.5399 0.5839
Panic Moving 0.7261 0.7351 0.7306
None 0.9937 0.6318 0.7724
Weighted Avg. 0.7543 0.7482 0.7420

PCA512 + RF Walk Normal 0.8120 0.9242 0.8645
Walk Fast 0.6460 0.4935 0.5596
Panic Moving 0.7174 0.7914 0.7526
None 0.9976 0.8431 0.9138
Weighted Avg. 0.7719 0.7753 0.7685

MF + RF Walk Normal 0.9031 0.9544 0.9280
Walk Fast 0.8339 0.8168 0.8253
Panic Moving 0.9356 0.8790 0.9065
None 1.0000 0.9920 0.9960
Weighted Avg. 0.9071 0.9068 0.9064

DNN Walk Normal 0.9690 0.9874 0.9781
Walk Fast 0.9357 0.9407 0.9382
Panic Moving 0.9849 0.9510 0.9676
None 0.9980 1.0000 0.9990
Weighted Avg. 0.9687 0.9685 0.9685

4 EVALUATION
In this section, the classification performance of the emer-
gency detection system is discussed. The classifier can detect
the classes "none", "walking", "fast walking", and "panic".
When the system detects a "panic", we conclude that persons
are behaving as expected due to an emergency situation. We
analyze the classification performance of our four schemes
in this section.

Data organization
The data sets include measurements of persons walking, fast
walking, running in panic, and measurements of an empty
room. In the experiment for "panic moving" data collection,
the experimenters imitated themovement as during the emer-
gency, running fast, or moving with fast pace and small steps.
The data set for each class include measurements with one,
two, three and four persons. We totally recorded 19048 data
samples including the four classes and one to four persons
moving in the same area. We labeled each class of data sam-
ples and then mixed them randomly. We divided the data
samples into a training set, a verification set, and a test set
according to a 60% : 20% : 20% ratio. The training set is used
to train the classifier models, the verification set is used to
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(a) PCA64 + RF. (b) PCA512 + RF. (c) MF + RF. (d) DNN.

Figure 4: Figure 4(a) to Figure 4(d) are the confusion matrixes of the four schemes.

test and optimize the parameters of the classifiers and the
test set is used for evaluation.
The performance results shown in this section are based

on the test set, in which the data had never been used in the
research and exploration stage. For the evaluation purpose, a
total of 3809 samples of the test set were used, which included
497 none class samples, 1425 walking normal class samples,
928 walking fast class samples, and 959 panic moving class
samples.

Classification Performance
The Table 1 shows the classification performance. In the
table, PCA64 means the PCA is used to extract 64 feature
values from each sample. PCA 512 means the PCA is used
to extract 512 values from each sample. MF means manual
feature extraction. RF means random forest, which is always
combined with a feature extraction method. DNN means the
end to end deep learning-based scheme.

The average F-measures are 0.75 for "PCA64 + RF" , 0.77 for
"PCA512 + RF", 0.91 for "MF + RF" and 0.97 for "DNN".We can
see that for the PCA feature extraction method, more feature
values slightly improved the classification performance. For
manual features, the random forest classification algorithm
has the least number of input features and obtains better
classification performance than PCA based methods. The
end to end deep learning based method obtains the best
classification performance among all the methods.

Considering the emergency detection purpose of our sys-
tem, the classification performance metric for panic moving
is the most important. The four schemes have the capability
of classification of panic moving class, with F1-score 0.73,
0.75, 0.91, 0.97 for "PCA64 + RF", "PCA512 + RF", "MF + RF"
and "DNN" schemes.

5 CONCLUSION
In this paper, we presented a system for identifying an envi-
ronment by analyzing the movement of persons. Our system
can detect an emergency using piezoelectric sensors only,

which is protected people’s privacy. Furthermore, our sys-
tem is not limited by the cause of the emergency, since we
measure people’s reaction rather than the cause.

Our classifier distinguishes between normal walking, fast
walking, panic moving and an empty area. We compared dif-
ferent feature extracting method and classifiers. In the end,
the deep neural network yielded the best results. As an addi-
tional advantage, this scheme does not require handpicked
features.
In the future, we will extend the setup to a larger area

using significantly more sensors.
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Abstract: Pedestrian counting has attracted much interest of the academic and industry communities
for its widespread application in many real-world scenarios. While many recent studies have
focused on computer vision-based solutions for the problem, the deployment of cameras brings up
concerns about privacy invasion. This paper proposes a novel indoor pedestrian counting approach,
based on footstep-induced structural vibration signals with piezoelectric sensors. The approach is
privacy-protecting because no audio or video data is acquired. Our approach analyzes the space-
differential features from the vibration signals caused by pedestrian footsteps and outputs the number
of pedestrians. The proposed approach supports multiple pedestrians walking together with signal
mixture. Moreover, it makes no requirement about the number of groups of walking people in the
detection area. The experimental results show that the averaged F1-score of our approach is over
0.98, which is better than the vibration signal-based state-of-the-art methods.

Keywords: vibration signal; pedestrian counting; pattern recognition; deep learning; privacy
protection; piezoelectric sensor

1. Introduction

Detecting the number of people in a specific area is of great importance in many real-
world scenarios. It can support intelligent building and security monitoring applications,
such as search and rescue after disasters, pedestrian traffic monitoring, energy-consuming
optimization, indoor space management, marketing, and infection spread control for epi-
demic scenarios [1]. Meanwhile, people are very concerned about protecting their privacy
when an intelligent monitoring system is deployed. Based on how the data is sensed,
the existing approaches are categorized as device-based and device-free approaches (e.g.,
infrastructure-based approaches). The device-based approaches [2–4] require individuals
in the monitored area to carry a special device or a smartphone. The infrastructure-based
approaches [5–16] deploy sensors such as cameras, infrared sensors, and piezoelectric
sensors where no requirement to carry any devices is needed.

However, previous studies have the following limitations. Firstly, the application
scenarios of the device-based approaches are restricted, and such approaches are not
appropriate to deploy in public places, such as shopping malls. As it is unrealistic to hand
out a device to every individual in an open space or require everyone who enters the area
to install a smartphone app. Secondly, although recently many studies have focused on
camera-based crowd counting approaches (e.g., [17–21]), such approaches do not protect
privacy and the deployed devices are easy to be destroyed. Besides that, the camera or
infrared sensor-based approach will not work well in an extreme environment, such as
areas with heavy smoke or low visibility. This greatly limits the deployment of the approach
in certain real-life situations, such as rescue after disasters and security monitoring in a
restricted area.

Appl. Sci. 2022, 12, 1920. https://doi.org/10.3390/app12041920 https://www.mdpi.com/journal/applsci
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In this paper, we present a novel infrastructure-based approach based on piezoelectric
sensors. The piezoelectric sensor is much cheaper than the geophone sensor [22] used in
previous studies [14,15,23], which is advantageous from a cost perspective. Meanwhile,
our approach does not require high-density sensor deployment [24]. Furthermore, different
from the existing studies, our approach can be applied to many real-life scenarios where
multiple people are in the same room.

While the identity authentication-based approaches [23,25,26] requires that the signals
should not mix or there is only one person in the area, our approach can handle scenarios
where signals from different people are mixed together. Our approach does not require
that only one group of people should be in the monitored area [15]. Our system can detect
the number of pedestrians in many possible cases where groups of people may walk with
different walking speed, frequency, and directions. In this work, we consider the cases
from 0 person to 4 persons in a 3 m by 3 m area. Our system can be treated as a minimal
functional unit and be scaled out to support more people in a larger area. In future products,
sensors can be embedded in floor tiles to unify the physical transmission characteristics of
vibration signal.

The major contributions of our work are as follows:

• We propose a novel approach that can count the number of people with vibration
signals from the piezoelectric sensors while protecting privacy.

• Our approach supports the situations where multiple people walk together with the
signals mixed.

• Our approach does not require that only one group of people should be in the detection
area.

• Different from the room-level approach [14], our approach is a step-level pedestrian
counting approach, making it more appropriate for many real-world applications.

• Our approach uses piezoelectric sensors, which are much cheaper than geophone
sensors, making our solution economically viable.

• Experimental evaluation shows that our approach outperforms the vibration signal
based state-of-the-art methods in accuracy for similar pedestrian counting task.

This paper is structured as follows. In Section 2, we discuss previous works regarding
infrastructure-based pedestrian counting approaches from different perspectives, which
motivates our approach. In Sections 3 and 4, we introduce and present our systematic
approach and methodology. In Section 5, we present the experimental evaluation of our
system. We conclude the work in Section 6 and discuss potential future directions.

2. Related Work

The vibration signal not only contains rich environmental information but also causes
no invasion of privacy. Vibration signal-based device-free situation awareness detecting
approaches have attracted much attention from the academic and industry community,
which shows great potential in pervasive computing applications [27–29].

2.1. Sensor Selection

In general, recent studies regarding vibration signal-based ubiquitous computing ap-
plications mainly use geophones (triaxial seismic sensor) [14,15,23,29,30] and piezoelectric
sensors [27,28,31,32].

A geophone [33] is deployed on the floor. It detects the velocity of movement of the
floor and outputs a voltage signal. In contrast, the piezoelectric sensor measures changes in
the pressure it bears. Although geophones can detect signals from three orthogonal axes in
space, they are significantly larger than piezoelectric sensors in physical size. Furthermore,
the price of a geophone [22] is 100 times higher than that of piezoelectric sensor [34].
In addition, the piezoelectric sensor has a simpler structure, higher sensitivity, wider
frequency band, and larger dynamic range [35]. However, when it is used to detect floor
vibration signals caused by pedestrian walking, there are issues with poor signal quality
and low signal-to-noise ratio (SNR) [28]. The characteristics and physical parameters of
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different piezoelectric sensors are not strictly consistent and usually present significant
individual-to-individual differences. The measurement error between different sensors is
varied, and the SNR is not uniform. Furthermore, piezoelectric can only detect the signals
perpendicular to the floor. Previous research [23] showed that using a triaxial seismometer
can achieve an increased accuracy in a localization task by introducing signal arrive angle
to a TDOA (time-difference-of-arrival) system. However, piezoelectric sensors provide less
information than triaxial geophones sensors. Thus it is more challenging to achieve good
results only with the signals perpendicular to the floor.

To summarize, from a cost perspective the piezoelectric sensors are advantageous,
especially in scenarios that require large-scale sensor deployment. However, there are more
considerable challenges to get good results with the piezoelectric sensor-based approach.
Our approach uses the piezoelectric sensors with a novel system design to overcome the
limitations of this kind of sensors.

2.2. Vibration Signal-Based Approaches

Although the approaches based on the vibration signal present the advantage of pro-
tecting privacy compared with camera-based approaches [18,19,21,36], there are significant
challenges to detect the number of pedestrians.

The vibration signal pedestrian identification-based approaches for pedestrian count-
ing [23,25,26] require that the step event (SE) signals must not be mixed. This means that
the system can only work when a maximum of one person is walking at the same time. In
indoor multi-person scenarios, it is quite common for multiple people to move together
at the same time. Such approaches cannot handle the use cases of normal daily life and
only work in a well-defined environment such as a lab experiment. This dramatically limits
their practical applications.

The room-level pedestrian counting approach [14] requires that there is a maximum
of one person in the detection area. When the person leaves the detected area and enters
a room, the counter will increase by one. This kind of approach can count the number
of pedestrians when people go into and leave the detection area one by one. This works
well in experimental scenarios, but is not suitable for practical use cases such as pedestrian
counting in a large shopping mall.

The studies [15,16] support multiple people walking simultaneously in the same area
where the signals between people can be mixed. Nevertheless, these studies require that
there is only one group of pedestrians in the detected area, and this group of people should
walk close together. In addition, the distance between each individual in the group should
not be too far. In Pan et al.’s work [15], the signal of interest (SoI) is defined as the ambient
vibration signal induced by occupant footsteps. In other words, a SoI is a piece of signal
from the sensor when someone passes the sensor. The four features used in [15] are given
in Table 1.

Table 1. Feature selection of previous work [15]. The features capture the information in vibration
signals for footstep events from different perspectives.

Features for Pedestrian Counting

(1) Space-differential: Cross-correlation between SoIs from different sensors for
the same footsteps.

(2) Time-differential: Cross-correlation between SoIs for consecutive footsteps
from the same sensor.

(3) SoI duration.
(4) Energy-specific: SoI signal entropy.

However, in real-world scenarios such as shopping malls, it is more likely that more
than one group of pedestrians walk with different walking patterns in the same area.
Because the method proposed in [15] deployed the sensors sparsely in a room, the problem
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cannot be solved by deploying sensors with a different grid. Furthermore, when there
is more than one group of people in the area, features (2) and (3) in Table 1 will not
be available.

2.3. Overview of Our Approach

In this work, we propose a novel pedestrian counting approach based on footstep-
induced structural vibration signals with piezoelectric sensors, which overcomes the limita-
tions of previous approaches [16,23,26]. Specifically:

• Our approach can detect the number of pedestrians in an area while making no strict
requirement about the number of groups of walking people in the detected area.

• Our approach supports the use cases where multiple people walk together with their
signals mixed.

• Our approach uses the piezoelectric sensor, which is much cheaper than the geophone
sensor used in previous approaches, making our approach economically viable.

Overall, our approach shows better performance than the existing work. Table 2
compares the capabilities of our approach with previous approaches.

Table 2. Capabilities of different approaches.

Approaches
Support
Extreme
Environment

Support More
than One Person
in the Detected
Area

Support More
than One
Group of
People

Device-Free Privacy
Protection

Resilient to
Destruction

Camera-based [21,36] - X X X - -
Device-based [2–4] - X X - - -
Li et al. [23] X - - X X X
Pan et al. [14,25,26] X - - X X X
Pan et al. [15,16] X X - X X X
Our approach X X X X X X

3. Problem Formulation

In this section, we first define the problem, then discuss the possible solution based
on the observations made by Pan et al. [15], which further motivates our solution to the
problem.

3.1. Problem Definition

This paper focuses on counting the number of people based on floor vibration signals
from piezoelectric sensors. Our system is designed to detect up to four pedestrians in an
area of 3 m by 3 m, which can cover most indoor scenarios where multiple pedestrians walk
in parallel with different stepping patterns, frequency, and directions. The piezoelectric
sensors are deployed in the area of 3 m by 3 m as shown in Figure 1. The layout of the
sensor deployment should guarantee that the signal from any vibration source in this
area could be detected by any of the sensors. Previous studies showed that this particular
layout works with good performance [27,28]. Overall, our system can detect the number
of walking pedestrians who step in this area. The system supports the real-life scenarios
where multiple persons are walking together at the same time and different people may
walk in different directions. Our system is designed to handle the following stepping
patterns [15]:

1. Footsteps from different pedestrians are fully synchronized in terms of striking timing.
2. Footsteps from different pedestrians are off-sync, but induced vibration signals

presents temporal overlapping.
3. Footsteps are temporally staggered.
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Figure 1. Data acquisition devices and experiment setup.

3.2. Problem Analysis

Figure 2 visualizes the original signals before denoising for the cases from 0 to 4
persons. These figures show the characteristics of time-specific signals captured by sensors.
Intuitively, when the number of pedestrians is increased from 0 to 2, or from 3 to 4,
the waveforms look different. However, it is not easy to differentiate whether the vibration
signals are generated by 2 or 3 persons with only time domain information.

As discussed in Section 2.2, previous work [15] investigated the validation of the
vibration features in Table 1 for counting the number of walking people. Figure 3 presents
the results of the impulse load test experiment conducted in [15], where Figure 3a–d show
the predictive capability of the vibration features in Table 1, respectively. Figure 3a shows
the cross-correlation of the same SE from different sensors, representing the predictive
capability of space-differential features. Figure 3b shows the cross-correlation of the same
trace from the same sensor, representing the predictive capability of time-differential
features. Figure 3c shows the step event duration. Figure 3d shows the step event signal
entropy, representing the predictive capability of energy-specific features. Pan et al. [15]
showed in Figure 3b,c that features (2) and (3) are only appropriate if the detection task
is to distinguish whether the number of the pedestrians is 1 or more than 1, but they are
uninformative to determine the exact number of pedestrians if there are 2 or more than
2 people. Similarly, feature (4) is only useful in the cases where there is more than one
individual, making it difficult to distinguish the number of people when there are less
than 2. Furthermore, the generation of features (2) and (3) required that there should be
a maximum of one group of pedestrians in the detected area. Intuitively, when there are
two groups of people, the signal from the first group of people may be mixed with the
signal from the second group. The detected signal from the sensor is a mixture of both
groups of people. As a result, it is challenging to differentiate whether the “SoI" is from
the footsteps of the first or the second group of pedestrians. Similarly, the “SoI duration"
is meaningless when the signals from two groups of pedestrians are mixed. Meanwhile,
different groups of people may move at different speeds, where some groups may run while
others walk at an average speed. These different moving events may occur simultaneously
and the corresponding signals may be mixed up. On the other hand, when pedestrians
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walk in the monitored area, the spatial difference of the floor vibration signal source from
each individual is clear, which can be captured and detected with multiple sensors. This
information is encoded in the space-differential feature (1) in Table 1. To summarize, only
feature (1) can be effectively used to predict the number of walking people in a more
practical scenario.

(a) 0 person case. (b) 1 person in the detected area.

(c) 2 persons in the detected area. (d) 3 persons in the detected area.

(e) 4 persons in the detected area.

Figure 2. (a–e) present the vibration signal in the time domain. The figures show samples of
time-specific signal fragments from one of the sensors.
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(a) (b) (c) (d)

Figure 3. (a–d) are the results of the impulse load test experiment done in Pan et al.’s work [15]. This
small ball hitting experiment treats ball hit impulse, an analogy to footstep event, as vibration source
to study the predictive ability of each feature for pedestrian counting task. The x-axis represents the
number of impulses. These figures only consider the 3 vibration source case, and can be interpreted
in this way: the larger the difference among the height of the three bars, the more informative the
corresponding feature. (a) Cross Correlation from Different Sensors. (b) Cross Correlation from The
Same Trace. (c) Step Event Duration. (d) Step Event Signal Entropy.

Similar to cross correlation computing in [15], convolutional computation shares a
similar symbolic calculation form. We assume that the convolutional computation of the
same walking step event signal among different sensors will extract useful spatial features
for pedestrian counting tasks. Our approach uses a deep neural network with convolutional
layers to extract features from step event data and detect the number of pedestrians. The
experimental results are presented in Section 5.

4. System Design

In this section, technical details about our approach are presented. The pedestrian
counting architecture is shown in Figure 4. We regard the pedestrian counting task as a
classification task. The vibration signal data with either none or up to four persons has
been recorded and labeled. We used a deep neural network to extract features and perform
the classification. Figure 5 shows the different steps our approach uses to determine the
number of pedestrians.

Figure 4. System architecture. The footstep event validation is as shown in Figure 5.
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Figure 5. The logic about making prediction for the system. If the system predicts that there is
more than one person in the area due to a vibration event detected, it will further check that the
signal/vibration event is caused by footsteps. If it is, the system outputs the results. Otherwise,
the system outputs 0 person as a result.

4.1. Data Acquisition

The previous works [27,28] showed that if four piezoelectric sensors (marked as S1,
S2, S3, S4) are deployed spatially as shown in Figures 1 and 6, the vibration event in this
3 m by 3 m area can be detected.

Figure 6. Data acquisition devices and experiment setup.

Although the piezoelectric sensors are not able to measure the signals statically over
a long period of time, this feature will not have a real impact on the performance of the
proposed approach. Intuitively, the proposed approach makes use of the space-differential
and time-differential relationship features but not each sensor’s absolute signal ampli-
tude value, to detect the number of people. Similarly, the poor signal quality from the
piezoelectric sensor will not affect the approach’s feasibility.

Figure 6 shows the data acquisition devices and the experimental setup. Four EPZ-
27MS44W piezoelectric sensors are deployed in the detected area to sense the vibration
signals on the floor. The bandwidth of the sensor ranges from 0 Hz to 4400 Hz. The signal
is amplified, sampled, quantize, and recorded with an R&S-RTB2000 oscilloscope. Time
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synchronization of the signals is handled by the oscilloscope. The sampling rate is set to
10 kHz. The maximum value of the sampling point amplitude is 0.1 V. Thus, the waveforms
higher than 0.1 V or lower than −0.1 V will be cut off.

4.2. Preprocessing

Traditional signal-based pattern recognition tasks need to filter the signals and denoise
them during preprocessing and extract features manually. However, we do not filter or
denoise the signals manually. Intuitively, the number of walking people is related to the
signal’s energy. Thus, filtering can lead to the loss of valuable information. Furthermore,
we used an end-to-end deep learning-based approach in which feature extraction can be
learned. Previous studies have shown that deep neural networks can tolerate modest
amounts of noise in the training data [28,37]. Processing raw vibration data without
denoising will not only avoid downgrading the accuracy of the deep neural network,
but also increase its prediction performance, because valuable information in the data
is preserved.

Overall, the preprocessing workflow of the system includes value normalization,
event detection, event signal segmentation, and data shaping and packaging, as shown in
Figure 4.

4.2.1. Normalization and Downsampling

Our approach is based on a deep neural network. The training procedure of deep
neural network requires the values of training samples to range from −1 to +1. The ranges
of the values of raw data are [−0.1, 0.1]. To make the data fitted into deep neural network,
we divide the raw values by 0.1.

The signal data is downsampled to 2000 samples per second. The experiment shows
that the informative signal is distributed in the frequency range of 0 to 1000 Hz. Thus, it is
sufficient to provide data sampled at 2000 as the input of the neural network.

4.2.2. Signal Selection and Event Detection

A sliding window selects signal samples from the signal stream. The window size is
2048 samples. The sliding window shifts 64 samples each time. The data of the four sensors
share the same sliding window.

We used the first-order second-moment method [38] to detect the beginning of a
vibration event. By analyzing the change of Gaussianity, this method can be used to
differentiate the vibration event from Gaussian noise. The first-order second-moment is
defined in Equation (1), where N is the window length of the first-order second-moment
method, µ is the mean of the values in this window, xi is each value in the window.
Empirically we determined a window size of 64 samples, which equals 32 milliseconds of
sampling. We set the variance of ambient background noise as the threshold. When the m2
values are larger than the threshold, the system detected a vibration event. If a vibration
event is detected, the window will shift 2048 samples. If the number of data values in the
shift window is less than 2048, all the data in the window will be dropped.

m2 =
1
N

N

∑
i=1

(xi − µ)2 (1)

We used the signal of Sensor 1 to detect vibration events. The layout of sensor
deployment in Figure 1 guarantees that any sensor can detect even the weakest signal
generated in its area. Regarding the isolation of step events, the choice of the reference
sensor does not make any difference regarding the detection of vibration events. When a
vibration event is detected, the data of four sensors in the sliding window will be recorded.

Figure 7 shows an example of vibration event segmentation from the signal stream.
The data values between each solid black line and red line will be extracted and packaged
as input samples. The solid black lines denote the beginnings of an input sample, and the
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red lines the corresponding ends. After each shift of the window, all the data in the shift
window will be packaged as an input sample to the neural network for pedestrian counting.

Figure 7. An example of signal selection and event detection from the signal stream. The black solid
lines denote the beginning of each input sample and red lines the end.

4.3. Data Set Collection and Deep Learning Model

We used a deep learning model to extract features and detect the number of walking
pedestrians. In Section 3, we discussed and analyzed the effectiveness of convolutional
computing of data samples between different sensors for feature extraction. The extracted
features are used as input for the deep learning model to predict the number of walking
pedestrians. In this subsection, the data set collection and model architecture for training
are presented.

4.3.1. Data Collection

We generated a vibration signal data set ranging from 0 to 4 persons in the experiment.
Two males and two females participated in the data collection process. When there is no
one in the area, the data acquired by our devices are labeled as “0 Person" or “P0". In each
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turn of the experiment, there is a known and fixed number of participants in the monitored
area. The number of participants is marked as the label of each data sample, which is
further used as class label for deep learning model. The data set includes cases that cover
most practical scenarios, in which the participants may walk, walk fast, and run. After
preprocessing, we collected a total of 20,955 data samples. The statistics about each class is
presented in Table 3.

Table 3. Statistics about the dataset.

P0 P1 P2 P3 P4

#Samples 1954 3440 4752 5181 5628

4.3.2. Deep Learning Model

As shown in Figure 8, our deep learning model has 13 one-dimensional convolutional
layers with residual structure [39–42]. The dropout rate is 0.3. The learning rate is 0.001.
The batch size is set to 32. The input size is 2048 rows and 4 columns.

Figure 8. Architecture of deep learning network.

4.4. Prediction Output Judgment Logic

Sometimes a non-footstep vibration event [23] may trigger the model to output a result
which makes no sense. Once the prediction result of deep learning model is not “0 Person",
our system further validates whether the vibration event is a footstep event or not. Existing
research regarding footstep detection [14,43] presents methods to judge whether a vibration
event is caused by a footstep or some other events, for example a door closing or a bus
driving outside the building. The entire detection logic including the mentioned footstep
detection is shown in Figure 5.

If the input signal is a superposition of step vibrations and non-footsteps vibration,
and if the non-footsteps signal is not too strong or does not persist too long, the system will
treat the non-footsteps signal as noise. If the non-footsteps signal is very strong or persists
for a long time, the risk will increase a lot that the footstep detecting module will block the
proposed system. The current approach can only guarantee that the system will work in
the most common scenarios, such as in an office building where the interference is not that
strong or persist for a long time.

5. Evaluation

In this section, we present the performance of our system for the prediction task. We
conducted a 5-fold cross-validation (CV) [44,45]. For our results we computed the average
of all cross-validation folds.

5.1. Data Preparation for K-Fold Cross-Validation

The data is divided evenly and randomly into five folds exclusively as shown in
Figure 9. For each fold, we train the deep learning model with the training set and evaluate
the performance of the model with the test set. We repeat this training and evaluation
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process five times for a 5-fold cross-validation. The deep neural network classifies the
number of pedestrians according to the input samples.

Figure 9. Diagram of K-fold cross-validation with K=5. We split the whole dataset into 5 non-
overlapping subsets. For the i-th fold, the i-th subset is used as test set and the remaining subsets as
training set.

5.2. Performance

Precision, recall, and F1-score are used as performance metrics. Intuitively, the preci-
sion quantifies the ability of the classifier not to label a sample as positive that is actually
negative. The recall represents the ability of the classifier to retrieve all positive samples.
The F1-score can be interpreted as a weighted harmonic mean of the precision and recall,
which is useful to balance the trade-off between the two quantities and tends to give more
weight to lower values [46]. An F1-score reaches its best value at 1 and the worst score at 0.
The calculation of macro and micro average can refer to [28]. The larger the metric values,
the better the classification of the system.

The averaged classification performance over the 5-fold cross-validation is presented
in Table 4. The confusion matrix in Figure 10 is calculated and normalized according to
the prediction for each test sample in the 5-fold cross-validation experiment. We observe
from Table 4 that: (i) the averaged precision, recall, and F1-score for each of the 5 classes
are over 0.95; (ii) the averaged macro and micro for the three metrics are over 0.98 for the
5-class classification task; (iii) except for the standard deviation of the precision for the 0
Person class, the standard deviation for all performance metrics are relatively low (less
than 0.1). These observations suggest that our classifier presents outstanding performance
for the prediction task. Moreover, the high values of macro and micro F1-score (over 0.98)
indicate that the classifier shows excellent performance on all classes over the entire data
set. Meanwhile, it can be observed from Figure 10 that most of the off-diagonal values in the
confusion matrix are close to 0 and all the diagonal values are larger than 0.96, suggesting
that our approach can predict the number of walking pedestrians with high accuracy. On
the other hand, Pan et al. [15,16] performed a similar classification task, but only achieved
an averaged accuracy of 0.6875 for a 4-class classification task. The averaged accuracy is
obtained by calculating the arithmetic mean of the accuracy for the four classes from Table 1
in [15], i.e., (0.8333 + 0.6667 + 0.3333 + 0.9167)/4 = 0.6875. This suggests that our approach
is significantly better than Pan et al.’s method [15,16].
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Table 4. Classification performance of the DNN. The average and standard deviation (stdev) for each
metric are calculated using results from the 5-fold cross-validation.

Precision Recall F1-Score

0 Person 0.9508 ± 0.1042 0.9990 ± 0.0014 0.9717 ± 0.0589
1 Person 0.9988 ± 0.0019 0.9632 ± 0.0806 0.9793 ± 0.0440
2 Persons 0.9966 ± 0.0060 0.9977 ± 0.0018 0.9971 ± 0.0038
3 Persons 0.9900 ± 0.0178 0.9685 ± 0.0476 0.9785 ± 0.0247
4 Persons 0.9732 ± 0.0393 0.9898 ± 0.0175 0.9810 ± 0.0206
Accuracy 0.9827 ± 0.0253
Micro Average 0.9819 ± 0.0293 0.9836 ± 0.0256 0.9815 ± 0.0301
Macro Average 0.9847 ± 0.0212 0.9827 ± 0.0253 0.9828 ± 0.0252

Figure 10. Confusion matrix normalized over the 5-fold cross-validation evaluation results.

6. Conclusions and Future Work

In this paper we presented a novel device-free walking pedestrian counting approach
based on piezoelectric sensors. Our approach can protect the privacy of the pedestrians,
because only vibration signals are acquired. The sensors used in our work are much
cheaper than the geophone sensors used in previous studies, making our approach more
economically viable. Furthermore, our approach does not require a high-density sensor
deployment. This means that our system can be easily expanded to cover large areas. Our
approach supports that multiple people are walking at the same time with the signals
mixed together. Unlike previous approaches [15,16], it makes no strict requirement about
the number of groups of walking people in the detection area. Our approach can detect the



Appl. Sci. 2022, 12, 1920 14 of 16

number of walking people (up to a maximum of four persons within a 3 m by 3 m area)
with an averaged F1-score of over 0.98.

In the future, we will integrate all the vibration signal-based functional modules [27,28]
into one system. As a whole, the vibration-based system, together with the audio and
video-based system, will serve as a perception layer for a privacy-protecting smart city.
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A Privacy-Protecting Step-Level Walking
Direction Detection Algorithm based on Floor

Vibration
Yang Yu, Oskar Carl, Shabir Hussain, Weiyan Hou, and Torben Weis

Abstract— We present an algorithm and measurement system to
detect the walking direction of persons based on ground vibrations.
The approach is privacy-preserving because it solely relies on
piezoelectric sensors built into the floor. Therefore, our system can
be used in areas where cameras are not allowed or cannot capture
the entire area. We present and compare our two innovative meth-
ods to analyze the ground vibrations caused by footsteps: the multi-
peaks average algorithm (MPAA) and the multi-peaks averaged
feature with a deep neural network-based classifier (MPAF-DNNC).
MPAA judges the walking direction of pedestrians by analyzing
the time-space relationship of at least two consecutive footstep vi-
bration signals from multiple sensors. MPAF-DNNC receives multi-
peaks averaged feature as input and uses a deep neural network-based classifier to judge walking direction. Our
experiments and evaluation show that our system can correctly determine the walking direction based on only 3 input
step events and provides an average F1 score of 0.97. When more than 5 step events are inputted, the proposed system
can correctly determine the walking direction with an average F1 score of 1.00.

Index Terms— Walking direction detection, vibration signal, piezoelectric sensor, privacy protection, algorithm, pattern
recognition, data fusion.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

In recent years, industries and consumers put forward re-
quirements for intelligent monitoring and situational awareness
of the environment [1], [2]. Specifically, operators of malls
or chemical plants want to monitor human traffic to know
where people are headed in case of an emergency. Emergencies
like hostage-taking in malls or explosions in chemical plants
demonstrate the need to send security staff to the appropriate
areas quickly. Ideally, a fully automatic system can guide
security and rescue staff to reduce the response time.

Pedestrian moving direction detecting is an essential tech-
nology for a situational perception system. Pedestrian walking
direction detecting technology can be used to observe the
human traffic in a building when working together with the
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pedestrian number counting technology (as shown in pa-
per [3]–[6]). Suppose we record the number of the pedestrians
who pass by each entrance of a building and the moving
direction of the pedestrians(enter the entrance or exit the
entrance). In that case, we can calculate the traffic of the
pedestrians. Not only that, detecting a single pedestrian’s loca-
tion and the moving direction can support many services, such
as monitoring a person’s activities, predicting the tendencies
of the residents, and supporting the intelligent control of
appliances [7].

Deploying sensors is required for all the implementation.
However, the deployment of sensors in public areas must
consider the protection of the privacy of people in the mon-
itoring area. It must not violate the laws of local regions on
privacy protection. The EU Geral Data Protection Regulation
(GDPR) [8] as well as the OECD privacy framework [9]
consider the information which can be used to identify a
natural person as ”personal information”. Personal information
can not be recorded or used without the authorization of
its owner. Meanwhile, the GDPR also classifies personal
biometric information and personal location information as
the category of privacy that should be protected. Therefore, a
privacy-preserving approach to pedestrian movement direction
detection is needed.

This paper contributes a privacy-protecting approach for
pedestrians walking direction detection task based on vibration
sensors. The system based on ground vibrations can trace the
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Fig. 1. Schematic diagram of the existing technical solution [10]–[12].

Fig. 2. Schematic diagram of the our proposed approach.

whereabouts of walking people by detecting the vibrations
caused by footsteps. Our system uses a sensor matrix consist-
ing of 4 sensors to collect vibration signal data. The algorithm
presented in this paper relies on the data of multiple sensors
in the sensor matrix as the data source. It uses data fusion
technology based on multiple data sources to improve the
signal’s measurement accuracy and information quality. The
proposed data fusion method reduces the required minimum
deployment distance between sensors, improving the system’s
usability and feasibility in practical application scenarios.
However, the sensors are less privacy-invasive because neither
video nor audio is being captured. The proposed approach
can be scaled out to support more areas Our approach does
not require people to carry any wearable devices as a passive
detection method. The proposed approach can tolerate the
interference of smoke. In detail, the main innovation and
contribution of this paper are as follows.

• Our research is a privacy protection approach because it
uses sensors to measure ground vibrations to compute
the direction of persons walking. Without the help of
other technologies and data, it is impossible to intuitively
identify the pedestrian’s identity only based on the ground
vibration signal caused by the pedestrian’s walking.

• Our approach is step level. The prediction procedure only
depends on the step events to make a walking direction
judgment. Thus, it has no constraints on pedestrians’
relative walking position to the sensors.

• Our system uses data fusion technology based on multiple
data sources, which overcomes the disadvantages brought
by the anisotropy of the vibration signal propagation
medium. The approach reduces the deployment distance

between sensor units, thus making it possible to deploy
multi-sensor arrays in adjacent areas. Therefore, it can
support the detection of the moving direction of multi-
ple people in an adjacent area, improving the system’s
feasibility.

• Our approach uses cheap sensors and data fusion tech-
nology to achieve performance that rivals solutions using
expensive sensors.

• We compared the proposed two innovative methods,
Multi-Peaks Average Algorithm (MPAA) and multi-peaks
averaged feature with the deep neural network-based
classifier (MPAF-DNNC). We reduce the required SEs
to 3 with an F1 score of 0.97.

II. RELATED WORK

In recent years, machine learning has achieved impressive
results in various fields [13]–[15], especially useful in situ-
ational awareness tasks in intelligent environments [1], [16].
Additionally, the application of data fusion technology [17],
[18] allows the environmental monitoring tasks to be better
solved [19]. The above studies demonstrate that the combina-
tion of artificial intelligence and data fusion technology pro-
motes effective information extraction, providing more room
for improvement in the performance of data-based perception
tasks.

On the other hand, the problem of walking direction de-
tection is not sufficiently solved by existing research for
deploying it in our use cases.

Camera-based methods [20], [21] do not protect people’s
privacy because the use of cameras often means more than
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necessary information is collected which can be used to
identify a nature person.

Wu et al. [22] propose an approach based on Channel State
Information (CSI) data from WIFI devices. This approach
infers walking direction by analyzing the difference in the
phase change of different sub-carriers of orthogonal frequency-
division multiplexing (OFDM) channels between receivers and
transmitters. However, considering the phase difference of
two waveforms changes periodically between 0 to 2π, and
if the phase difference is bigger than π, we cannot know
which waveform comes first. Thus, their approach limits the
maximum allowable phase delay of the reflected waveform
to π/2 and does not work in a big room or an open scene
with complex obstacles. Meanwhile, limited by the number of
OFDM subcarriers of the WIFI card, this approach can not
scale-out without limitations.

There are approaches based on floor vibration with geo-
phones [11], [12]. As shown in Fig. 1, in these approaches,
sensors are deployed sparsely in a room, and they are limited
to at most one person in the room. This limits these approaches
can only work in limited scenarios or experimental settings.
However, multiple people may walk in the same room in
typical scenarios simultaneously. Thus this approach shows
low feasibility.

There is work based on floor vibration with piezoelectric
sensors [10]. However, the approach presented is not precise
on an individual step level. Similarly, as shown in Fig. 1, it
can only work when the pedestrian walks from one end of the
line segment formed by the connection of the two sensors to
the other end. Their approach limits the relative position of
the pedestrian to the sensors. The versatility and applicability
in actual use scenarios are thus limited.

The existing piezoelectric sensor-based approaches [10] or
geophone-based (seismic sensor) approaches [11], [12] do
not support the step-level resolution, or their prerequisites
are challenging to meet in real-life scenarios because it has
constraints on pedestrians’ relative walking position to the
sensors. The above vibration sensor-based approaches require
that a person walks in the same direction for several meters,
because it does not analyze individual footsteps. Additionally,
the price of a geophone is more than 100 times that of a
piezoelectric sensor.

All the above mentioned vibration sensor-based approaches
deploy different sensors with a far distance between each
other. This is technically simpler to implement [10]–[12].
However, in doing so, there are many restrictions on usage
scenarios. For example, the sensor monitoring area can only
have one person. When multiple people appear, the results will
be meaningless. Undoubtedly this limits the feasibility of the
method in practical use.

In comparison, the sensors are deployed closer together in
our method, as shown in Fig. 2. The deployment distance
between sensors is 1 meter. In this way, multi-sensor units
can be deployed in an area, supporting practical scenarios of
multiple people walking simultaneously.

However, the more significant challenge arises for our
detection purposes when the sensors are placed closer together.
Our previous research showed that vibration signals propagate

anisotropically on the ground [16]. The closer the different
sensors are deployed, the more difficult it is to identify a
signaling event. This challenge is even more formidable when
inexpensive piezoelectric sensors are used, because the signal
quality of such inexpensive sensors varies significantly from
individual to individual. To this end, the approach proposed
in this paper innovatively uses data fusion to overcome the
challenge while achieving performance that rivals expensive
sensors deployed over longer distances in our sensor place-
ment scheme. At the same time, our method provides higher
feasibility in practical scenarios.

Wearable-based approaches [23]–[26] require each person
to carry a device hence this solution is not applicable in many
scenarios. Consider a use case scenario of a shopping mall
in an open building or a restricted zone: It is impractical to
distribute a special device to each pedestrian or force all people
to install some special apps on the smartphone.

The papers [27], [28] propose approaches to detect the
position based on audio data from wearable devices. Similarly,
these approaches are also wearable-based. The audio signal-
based approaches are easily disturbed by environmental noise
and can easily be interfered with maliciously. Also, large-scale
deployments will be impossible because the audio signals of
different units will interfere with each other. Thus, it is difficult
to use in potential adversarial scenarios, like bank security
monitoring systems, military restricted area monitoring use
cases, or open scenarios.

In contrast to some approaches described above, our ap-
proach is privacy-protecting because it is only based on floor
vibration signal data. It does not require people to carry
any wearable devices. Our approach has broader applicability
that does not limit the size and shape of the room com-
pared with the WiFi signal-based approach. We used data
fusion techniques to overcome the signal quality degrading
of inexpensive sensors when deployed close to each other.
Obstacles in the zone have no negative impact on the system’s
effectiveness. When the density of sensors for an area is
increased, sensor units will not interfere with each other. As a
step-level approach, it does not require that pedestrians walk
along the specified route as Akiyanma’s research [10]. It is
more difficult to destroy than cameras, and its performance
is unaffected by visibility impairments. Hence, our approach
works even in smoky areas impacted by a fire.

III. APPROACH AND SYSTEM

In this section, we first define the problem to be solved,
followed by a presentation of our approach. Then we explain
and analyze the implementation.

A. Problem definition and analysis
The aim of this paper is bidirectional walking detection of

pedestrians based on floor vibration. In this paper, we use
”Move Right” and ”Move Left” to define the 2 directions that
persons move, as shown in Fig. 8.

To detect the walking direction, at least two piezoelectric
sensors are needed, because piezoelectric sensors can only
perceive the amplitude of a ground vibration. When a step
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event occurs closer to a sensor, it causes the signal received
from this sensor to be larger. Inversely, if the distance where
a step event occurs is further away from the sensor, the
amplitude of the signal received from sensor will be smaller.
Unfortunately, we cannot simply compute the position based
on signal strength comparable to triangulation of radio signals,
because the ratio between distance and signal strength is not
proportional and not even isotropic. The reason for this is that
the ground floor is not homogeneous [16].

Fig. 3. System architecture.

Fig. 4. Detecting area and sensors setup.

As shown in Fig. 3, the proposed approach includes ac-
quiring data from the sensor, active area judgment, data
preprocessing, footstep recognition and segmentation, feature
extraction, and walking direction classification.

B. Data acquisition

Fig. 4 shows the detecting area and sensors setup. In
the system prototype implementation, four EPZ-27MS44W
piezoelectric sensors are used to detect the vibration signal,
deployed on the position of S1 to S4 as shown in Fig. 4.
Previous researches [1], [16] shows that in this way, a 3-meter
by 3-meter square area can be well monitored. This kind of
sensor can detect a frequency band ranging from 0 Hz to 4400

Hz. The signal is amplified, sampled, quantized, and recorded
with a R&S-RTB2000 oscilloscope. Time synchronization of
the signals from all four sensors is done by the oscilloscope.
Sampling of the signals is done at a rate of 10 kHz. The
maximum value of the sampling point is 0.1 V, and any
waveforms higher than 0.1 V are cut off. The oscilloscope
is controlled, programmed, and configured by a connected
laptop using SCPI (Standard Commands for Programmable
Instruments) [29] commands.

C. Area active judgment

In the proposed system, the incoming signal will first be
recorded in a buffer, which stores 10000 points (1 second).
Meanwhile, a sliding window mechanism [30] is used. To
prevent missing interesting events, the sliding window size
has been empirically determined to be set to 400 points and
an overlap of 50%. We define the active index as the number
of values in the window bigger than the mean of the amplitude
of the peaks multiplied by an arbitrary factor (empirically 4
here). If the active index is greater than 10, the area will
be considered active and data in the current buffer will be
further processed. Thus, when the area is active, the data will
be fetched to the signal prepossessing module and processed
further. If no vibration event is detected (no activity), the
system will keep on checking the active status until an activity
is detected. This module guarantee that computing resources
are not wasted.

D. Signal preprocessing

Wavelet denoising can sufficiently suppress non-stationary
noises present in the surroundings [31]. Additionally, the
characteristics of the circuit introduce high-frequency noise
interference to the signal [32]. Additionally, the characteristics
of the circuit introduce high-frequency noise interference to
the signal. Our system uses both wavelet denoising techniques
and a high-pass filter to enhance the signal. As shown in Fig. 5,
after denoising, the signal becomes much clearer.

Afterwards, normalization is used. The range of values of
the original data is [−0.1, 0.1]. Thus we normalize the signal
to [−1, 1] by multiplying all signal values by 10.

E. Step event detection and segmentation

To detect the pedestrian walking direction, we firstly rec-
ognize the step events from the vibration events. We used
a probabilistic-based first-order second-moment method [33],
[34] to isolate the beginning and the end of each vibration
event:

m2 =
1

N

N∑

i=1

(Xi − µ)2 (1)

In equation 1, N is the size of the window to be processed,
µ is the mean of the values in the window, and xi are the
values in the window. Empirically we determined to set the
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Fig. 5. Signal before and after denoise in time domain. The blue curve
shows the original signal before denoising and the black curve describes
the signal after denoising.

window size to 30 milliseconds.1 When the m2 values become
greater than the variance of the ambient background noise,
as a threshold, the moment where a SE sample occurred is
determined as the beginning of the vibration event. Also,
we empirically determined that when the vibration event is
longer than 30ms and the m2 becomes less than 0.3 times the
threshold (the variance of the ambient background noise), this
moment is considered the end of the event. We use the signal
from one of the four sensors to compute the event start and
end time. Then the signal of the four sensors in between is the
entire SE. If a vibration event is no longer than 30 milliseconds
and the gap between it and the next vibration event is less than
10 milliseconds, the two vibration events will be merged and
considered as one vibration event.

The event is selected by a sliding window recorded as a
event sample. After we get the segmented vibration events,
we detect footstep events [11], [35]. Each footstep event is
recorded as a SE sample. Fig. 6 shows an example for this SE
segmentation.

Fig. 6. An example of vibration event segmentation from the signal
stream. The black solid lines denote the beginnings of vibration events
and red lines the ends.

F. Multi-Peaks Average Walking Direction Detection
Algorithm

The sensor 1 and sensor 2 are marked as a ”Group A”, and
sensor 3 and sensor 4 are marked as ”Group B”, as shown in
Fig. 8. We mark the averaged absolute value of the biggest 8
signal peaks from the sensor as MPAF (multi-peak averaging
feature). We denote the averaged signal with the group A as
MPAFA and group B as MPAFB . The MPAF represents
the energy of a SE. Two consecutive MPAFs are defined as a
Multi Step Event (MSE).

If we only consider the move right case as shown in Fig. 8,
when the A group signal detects that the signals of several
adjacent steps are gradually weakening and the B signal
detects that the signals of several adjacent steps are gradually
increasing, we can assume that the person is located between
the sensors, moving away from the A sensor and approaching
the B sensor. We label this as the person going right. If both the
A signal and B signal detect that several adjacent SE signals
are gradually increasing or decreasing, we assume that the
person is approaching or moving away from the A and B
sensors. In this case, after we compare the magnitude of the
signals of the same SE detected by the A and B sensor groups,
we determine that the person is on the side with a stronger
signal, thus acquiring the walking direction. This is described

1This window has no relationship with the window in the active area
detecting module. If the area is active, the active judgment module will
continuously forward the data stream. If the area is not active, the signal
will not be forwarded to the prepossessing module to reduce meaningless
computing costs.
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Fig. 7. Multi-peak averaging algorithm. The input of this algorithm is footstep events, and the output results are represented with ”left” and ”right”,
referring to the two detected directions.

Fig. 8. Walking people in the monitoring area. When people are
walking in the monitoring area, the vibration signal will be recorded by
the oscilloscope and transmitted to the computer with a USB cable or
ethernet directly after the recording procedure.

in Fig. 7.
1) Multi-peak averaging feature: The multi-peak averaging

feature is obtained by the following method: We use sij to
present the normalized signal (ranging from −1 to 1) of a
SE. Here i represents the sensor. i is an integer ranging from
1 to 4. The j represents the order of the sampling point. The
range of j can vary according to the time length of a SE. Then
the multi-peak averaging feature from sensor i is represented
by MPAFi. We use the symbol ”getPeaks()” to represent
the function to get all the peak values of an input signal.
”Max()” denotes the function computing an array sorted from
the largest values to the smallest.

To calculate the MPAFi, we first calculate the absolute
value of the normalized SE signal data from sensor i. Then we
extract the biggest 8 peak values and calculate the mean value

Fig. 9. Multi Steps Events (MSEs) are setten from continuous Step
Events. The Multi-peak average algorithm makes a judgment every
other MSE, as the MSEs shown in the blue and red colors.

of the 8 peaks. This mean value is the multi-peak averaging
feature of sensor i, marked as MPAFi shown in equation 2.

MPAFi =
1

8

8∑

p=1

{Max [getPeaks(|sij |)]}p (2)

MPAFA =
1

2
(MPAF1 +MPAF2) (3)

MPAFB =
1

2
(MPAF3 +MPAF4) (4)

2) Multi-peak averaging algorithm design: The next step in
tackling the issues found in reality is the multi-peak averaging
algorithm. It uses the MPAF to represent each SE and
compute the walking direction as discussed in section III-A
and Fig. 7.

Fig. 10. MPAA with 6 SEs makes a judgment based on every 3
consecutive ”predictions”. The predictions are made with the same
methods as MPAA with 4 SEs.
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Fig. 11. Deep neural network classifier used in this paper. ”SE Quantity” means the quantity of SE features used. In the implementation, we have
trained 6 models with different SEs and different response times. The experiments show that the model with more input SEs has higher classification
accuracy but with a longer response time. The model with fewer input SEs has lower classification accuracy but with shorter response time.

We merge 2 consecutive SE into a Multi Steps Event
(MSE). As shown in Fig. 9, the algorithm makes judgments
based on every other MSE, as the MSEs shown in blue
and red colors. For example, the first judgment is based on
MSE1 and MSE3, and the second judgment on MSE2 and
MSE4. We implemented two versions of the algorithm: One
is based on 4 SEs, the other one uses 6 SEs. We mark these 2
versions as MPAASE4 and MPAASE6, respectively. The
difference between these 2 versions is that the MPAASE6
introduces a majority voting mechanism. After 6 SEs are
fetched, MPAASE6 outputs 3 predictions, and the majority
prediction will be the final judgment for the detection.

There is a window shifting one SE each time. When there
are enough SEs in the window (either 4 or 6), they are fed
to the algorithm. Then the algorithm will output a single
judgment. For each time the window shifts, the algorithm will
always output a judgement.

3) Deep learning and Multi-peak averaged feature-based
classifier: The multi-peak averaging algorithm has verified our
hypothesis’s correctness that by analyzing the spatiotemporal
relationship of the SEs signal, it is feasible to determine the
walking direction.

Besides the Multi-peak averaging algorithm approach, we
implement another approach which is based on a multi-
peak averaged feature of each SE and deep neural network.
Moreover, this method further reduces the response time while
improving the prediction accuracy. We use the multi-peak
averaged feature (MPAF ), as discussed in section III-F.1,
as the input of the neural network. A Softmax is used in the
last layer of the neural network serving as a classifier. The
architecture of this neural network is as shown in Fig. 11. The
proposed neural network includes a residual constructure [36].
There are a total 5 convolutional layers in the architecture.
The batch normalization and dropout are introduced [36]–
[39]. We use the Relu functions as the activation function in
the neural network. There are 32 convolution filters in each
convolutional layer, with dropout rates of each at 0.3. The
learning rate is set to 0.001, and the batch size 32. The size of
the input data sample is 4 rows and ”SEQuantity” columns
(4, SEQuantity). The ”SEQuantity” means the number of
SEs to use when one pedestrian passes by the sensors.

We fully trained 6 models with input SEs from 2 to 7. The
more input SEs are used, the higher the classification accuracy
becomes at the cost of longer response times. Fewer SEs

inputted to the classifier achieve lower classification accuracy
but shorter response times. The more footsteps needed to
make a judgment, the longer a person has to move constantly
in one direction, which limits applicability. Thus, the fewer
footsteps needed, the better, which is also a key feature of our
approach. We implemented 3 to 7 SEs as input and compared
the performance in the evaluation section IV.

G. Discussion

Using our data processing scheme, sensors can be deployed
at a distance of 1m from each other. Such deployment density
allows the system to track multiple persons moving in a room.

The signal of each sensor is preprocessed by signal denois-
ing and filtering. These measures are all conducive to ensuring
reliable and stable signal quality. At the same time, our
algorithm adopts a data fusion design based on multiple data
sources, which further improves the system’s measurement
accuracy.

Fig. 12. For each SE2 to SE7 model, the samples are randomly shuffled
and evenly split into 5 subset of the data. In the 5-fold cross-validation,
each time we pick out one subset as test set and the rest subsets bind
together as training set.

IV. EXPERIMENT AND EVALUATION

In this section statistical methods are used to evaluate the
results. As shown in Table. I, Table. II, Table. III, the statistical
methods metrics including accuracy, recall, f1-score are used
to evaluate the performance of our classification algorithms.
As shown in Fig. 13, the statistical method confusion matrix
is used to present the DNN-based classifier evaluation results.
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(a) 5-Folds Confusion Matrix of DNN-based classifier with 2
SEs.

(b) 5-Folds Confusion Matrix of DNN-based classifier with 3
SEs.

(c) 5-Folds Confusion Matrix of DNN-based classifier with 4
SEs.

(d) 5-Folds Confusion Matrix of DNN-based classifier with 5
SEs.

(e) 5-Folds Confusion Matrix of DNN-based classifier with 6
SEs.

(f) 5-Folds Confusion Matrix of DNN-based classifier with 7
SEs.

Fig. 13. 4 sensors-based 5-Folds cross-validation confusion matrix of DNN-based classifier with 2 SEs to 7 SEs.
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Precision Recall F1-score

2 sensors
Left 0.81 0.87 0.84
Right 0.87 0.82 0.84
Accuracy 0.84
Micro Average 0.84 0.84 0.84
Macro Average 0.84 0.84 0.84

4 sensors
Left 0.91 0.93 0.92
Right 0.94 0.91 0.93
Accuracy 0.92
Micro Average 0.92 0.92 0.92
Macro Average 0.92 0.92 0.92

TABLE I
CLASSIFICATION PERFORMANCE OF THE MPAA WITH 4 SES.

Precision Recall F1-score

2 sensors
Left 0.89 0.95 0.92
Right 0.95 0.89 0.92
Accuracy 0.92
Micro Average 0.92 0.92 0.92
Macro Average 0.92 0.92 0.92

4 sensors
Left 0.98 0.99 0.98
Right 0.99 0.98 0.98
Accuracy 0.98
Micro Average 0.98 0.98 0.98
Macro Average 0.98 0.98 0.98

TABLE II
CLASSIFICATION PERFORMANCE OF THE MPAA WITH 6 SES WITH

MAJORITY VOTING.

A. Data collection

We totally collected 1080 pieces of Left walking data and
1175 Right walking data. The sampling rate is 10000KHz.
The data set was generated by 2 experiment participants with
2 pairs of shoes for each person.

During the walking direction data collection experiment, the
participant was instructed to walk normally, as in daily life.
The experiment devices recorded the signal from the floor
vibration. For each round of walking, the person walks in the
experimental room from one end to the other. Each walking
round takes less than 6 seconds.

B. Algorithm performance of MPAA

Table I shows the classification performance by the MPAA
with 4 SEs. Table II is the performance of the MPAA with 6
SEs with majority voting. Both tables contain the experiment
results when 2 sensors and 4 sensors are used. For the ”2 sen-
sors” data in the table, the averaged value of the experimental
data is presented when only 2 sensors are used (sensor 1 and
sensor 3, or sensor 2 and sensor 4). The tables show that the 4
sensors approach is better than the 2 sensors approach under
the same input SEs. When 4 SEs are inputted, the F1-score
achieved 0.92. The prevision of our MPAA 4SEs approach has
already greatly exceeded the best performance of Akiyama’s
research (0.756) [10]. Considering that with average human
walking speed four steps take about 3 seconds and six steps

4.5 seconds, our system features a faster response time. Our
6 SEs approach obtains a F1-score as high as 0.98.

Furthermore, our approach is a step event-based step level
approach, different from Akiyama’s research, that does not
limit the relative location of the people to the sensor. This
makes the system more practical in high-traffic scenarios.

C. MPAF-DNNC approach performance
We conducted 5-fold cross-validation [40], [41] to evaluate

the performance of our model. We used the Left and Right
walking recording data totally 2255 pieces to generated 17585
samples for 2 SEs, 13530 samples for 3 SEs, 11275 samples
for 4 SEs, 9020 samples for 5 SEs, 6765 samples for 6 SEs
and 4510 sampels for 7 SEs. As shown in Fig. 12, for each
2 SEs model to 7SEs model, we randomly shuffled the data
samples and evenly split them into 5 subsets. For each fold of
the validation, we use one subset as test set and the rest subsets
binding together as training set. We train the model 5 times and
evaluate it 5 times. As shown in TABLE III, the performance
with data only from 2 sensors and 4 sensors are compared. The
experiment shows that with 4 sensors, the system can output
satisfied judgment only with 3 SEs. In contrast, if only with
2 sensors we can get satisfied judgment at least 4 SEs. The
4 sensors-based method can offer faster response and better
results than the 2 sensors-based method.

As shown in the TABLE III and Fig. 13, the deep nerual
network-based classifier 5-folds cross-validation averaged per-
formance metrics are presented. In the TABLE III, values
accurate to 2 decimal places. Our DNN-based classifier has
shown very good performance when 3 SEs are used. Compar-
ing with Akiyama’s research [10], even our 2 SEs based clas-
sifier is beyond their best k-fold cross-validation performance.
The MPAF-DNNC approach only requires 3 SEs while having
a 0.97 F1 score.

Our approachs further reduces the number of the required
footstep events while significantly improving the judgment
accuracy. Since the proposed system is step-level, thus this
approach dramatically improves the usability of this technol-
ogy in practical application scenarios.

Compared with existing researches [10], [11], [11], [12],
Our method achieves 100% accuracy in the highest-accuracy
configuration, numerically outperforming or matching existing
methods. However, our method overcomes many impractical
limitations of existing methods on usage scenarios, making it
more feasible for practical use.

V. CONCLUSION

This paper presents a floor vibration signal-based bi-
directional walking direction detection approach. The pro-
posed approach uses the piezoelectric sensor to detect the floor
vibration signal, which is a privacy-protecting approach. The
contribution of our approach is that we reduce the number of
required step events to 3 SEs regarding the vibration signal-
based walking direction detection solution. At the same time,
keep the F1 score better than 0.97. Our approach achieved
an advantage in performance and usability as a step-level
solution over existing research. Moreover, the characteristic of
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TABLE III
5-FOLDS CLASSIFICATION PERFORMANCE OF THE DNN-BASED CLASSIFIER WITH 2 SENSORS AND 4 SENSORS.

Number of Step
Event

Expected
Response time

4 sensors 2 sensors
Precision Recall F1-score Precision Recall F1-score

2 SEs 1.5 second

Left 0.87 0.89 0.88 0.72 0.78 0.74
Right 0.91 0.89 0.89 0.79 0.73 0.76
Accuracy 0.89 0.75
Micro Average 0.88 0.88 0.88 0.75 0.75 0.75
Macro Average 0.88 0.88 0.88 0.75 0.75 0.75

3 SEs 2.25 second

Left 0.97 0.97 0.97 0.88 0.88 0.88
Right 0.97 0.97 0.97 0.89 0.88 0.88
Accuracy 0.97 0.88
Micro Average 0.97 0.97 0.97 0.88 0.88 0.88
Macro Average 0.97 0.97 0.97 0.88 0.88 0.88

4 SEs 3 second

Left 0.99 0.99 0.99 0.95 0.95 0.95
Right 0.99 0.99 0.99 0.95 0.95 0.95
Accuracy 0.99 0.95
Micro Average 0.99 0.99 0.99 0.95 0.95 0.95
Macro Average 0.99 0.99 0.99 0.95 0.95 0.95

5 SEs 3.75 second

Left 0.99 1.00 1.00 0.99 0.97 0.98
Right 1.00 1.00 1.00 0.97 0.99 0.98
Accuracy 1.00 0.98
Micro Average 1.00 1.00 1.00 0.98 0.98 0.98
Macro Average 1.00 1.00 1.00 0.98 0.98 0.98

6 SEs 4.5 second

Left 1.00 1.00 1.00 0.99 0.99 0.99
Right 1.00 1.00 1.00 0.99 0.99 0.99
Accuracy 1.00 0.99
Micro Average 1.00 1.00 1.00 0.99 0.99 0.99
Macro Average 1.00 1.00 1.00 0.99 0.99 0.99

7 SEs 5.25 second

Left 1.00 1.00 1.00 1.00 0.99 1.00
Right 1.00 1.00 1.00 0.99 1.00 1.00
Accuracy 1.00 1.00
Micro Average 1.00 1.00 1.00 1.00 1.00 1.00
Macro Average 1.00 1.00 1.00 1.00 1.00 1.00

our approach makes it feasible for the vibration signal-based
walking direction detection technology to come from the lab
to daily life.

Because the proposed approach is step-level and the sys-
tem’s input only regards step events, it is able to support
multiple pedestrians walking use cases when combined with
the people re-identify technology. Moreover, it is a wearable-
free approach that does not need pedestrians to carry any
wearable devices. Furthermore, it does not limit the relative
position of the pedestrian to the sensors and is easy to scale
out. Our approach does not limit the size or shape of the room
where it is deployed.

The oscilloscope used in the experiment can be replaced
with a custom integrated circuit in products, thereby further
reducing costs in the future.
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ABSTRACT In this work, we present a person localization system based on ground vibration caused by
walking persons. The system is designed for production plants and large buildings to track the movement of
workers. Position andmovement in these settings are especially safety-relevant in emergencies. Our approach
is privacy-preserving, because it requires neither video nor sound. Instead, piezo sensors on the floor measure
vibrations, which are analyzed with machine learning to derive a person’s position from the vibration signals.
This way, our system can determine where a person is moving, but it is not straightforward to attach names
to the detected persons. Due to the anisotropic characteristic of the ground vibration wave, classical analysis
methods are not applicable. We show that a deep learning-based approach is feasible. Our experiments show
that we can determine the position with an average F1 score of 0.95.

INDEX TERMS Vibration signal, localization, pattern recognition, deep learning, privacy protection,
robustness, piezo sensor.

I. INTRODUCTION
Localization technology has attracted attention from industry
and academics [1]. It is the cornerstone for a large number of
person localization services [2]–[6]. Person localization data
can be used in scenarios like post-disaster rescue, situational
awareness, security defense, and intrusion detection. At the
same time, people also hope that the data applied while
obtaining location information does not violate their privacy.

However, there are many studies on surveillance and situ-
ation awareness, but rarely the issue of privacy is considered.
In some countries or regions, such as Europe, privacy is
extremely important due to legal restrictions. At the same
time, people’s need for intelligent situational awareness is
growing. The motivation of our research is to balance these
two contradictory points in order to enable intelligent situa-
tion awareness while preserving privacy.

In this paper, we introduce an approach that is based on
the analysis of structural vibration waves caused by footsteps,
measured with cheap piezo sensors on the floor. The main
research challenge is to determine the position of individual
footsteps on the floor. This information can be used to deter-

The associate editor coordinating the review of this manuscript and

approving it for publication was Lefei Zhang .

mine a higher-level context, such as the walking direction or
the walking path of a person.

The advantage of our approach is that we do not rely on
persons wearing any senders or receivers. Meanwhile, our
approach uses very cheap piezo sensors rather than expen-
sive geophones [7], which makes a large-scale commer-
cial deployment possible. Furthermore, our system is less
privacy-invasive than cameras, and it does not detect who is
walking. Especially for rescue scenarios in large production
plants, it is imperative to know the location of people and their
direction of movement. Besides, our system works in smoked
areas where cameras do not work anymore.

Our approach is based on the observation that the steps of
a walking person cause a mechanical vibration of the ground.
At this time, the position of the person is the position of
the vibration source. Nevertheless, the time difference and
amplitude of the recorded vibration signals are related to
the vibration source position. Thus, we assumed that the
vibration source could be determined by an analysis of the
vibration signals’ characteristics.

However, due to the non-uniform nature of the ground
structurematerials and factors caused by the ground construc-
tion process, the ground substances’ property is anisotropic.
Also, ground waves showmultipath effects caused by various
obstacles like walls, etc. in the indoor space. Furthermore,
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the recorded vibration signal has the characteristics of
low signal-to-noise ratio (SNR) [7], which leads to an
inevitable large measurement error in signal processing.
Due to these characteristics, person localization based on
mechanical ground waves is challenging. The traditional
time differences of arrival (TDOA), time-of-arrival (TOA),
angle-of-arrival (AOA), Doppler shift frequency-difference-
of-arrival (FDOA) as well as received signal strength (RSS)
based methods are widely used in wireless radio-based
localization approaches with sensor arrays [7]–[10]. Due to
mechanical wave propagation characteristics on the indoor
floor, these methods cannot achieve good performance in our
scenario.

Meanwhile, there are methods based on time difference
distribution models [11] to recognize the ball impact local-
ization on table tennis rackets using piezo-electric sensors.
In this research, the sensors are distributed relatively close
to each other, and the vibration is spreading on wood. The
starting point of the wave signal can be identified relatively
clearly with low measurement errors. In contrast, as men-
tioned above, in our scenario the quality of the signal propa-
gation on the concrete floor is much worse than on the wood
floor, and the measurement error of the waveform arrival
time is immense. So we need to find a different method to
overcome this problem.

Neural networks are capable of learning complex nonlinear
relationships [12]. Convolutional neural networks show good
performance in feature extraction from data [13]. Meanwhile,
residual connections make deep networks easier to train with-
out increasing the complexity of the network [14]. There
is existing research that uses deep residual convolutional
networks to analyze time serial data with good performance
[15]. Therefore, in this paper, we show that the analysis of
ground vibration signals is feasible with deep residual neural
networks.

Our approach’s starting point is a customized positioning
application in a specific area of a chemical plant with the
feature of privacy protection. In the future, our approach
can be used on vibration-based positioning applications in
general scenarios. The cost of one set of the sensor matrix is
lower than 2 Euro.With custom circuits and mass production,
the hardware cost involved in our approach can be greatly
reduced.

Meanwhile, our sensor deployment requires one unit every
9m2. The function of each unit is relatively independent.
When there is a larger area, more units can be deployed.When
pedestrians walk across different units, the entire integrated
system can give global positioning information to pedestri-
ans.

Our approach’s sensor can be embedded into floor tiles
to unify the distribution characteristics of training data and
data from actual application scene, thereby improving the
feasibility of our approach in practical applications. Mean-
while, there is ongoing research about domain adaptation
[16], [17]. The domain adaptation technique makes the deep
learning-based approach work on the target domain data,

which has different distribution characteristics than the train-
ing data. Furthermore, the dimensionality reduction technol-
ogy can further reduce the dimensionality of the input data,
thereby reducing the computing cost [18], [19]. The intro-
duction of domain adaptation methods and dimensionality
reduction methods to our system will be further studied in
future work.

The contribution of this paper is as follows. We present
a novel fine-grained deep learning [20] based localization
technique using cheap vibration sensors, which is a passive
detection that does not need the pedestrian to carry a device.
The proposed technique can well tolerate noise in the indoor
environment. We evaluated and validated the accuracy and
robustness of the approach with experiments in a real sce-
nario.

II. RELATED WORK
Localization systems for outdoor scenarios are often real-
ized with GPS. However, GPS does not work indoor
[21]. Pedestrian Dead Reckoning-based methods use iner-
tial sensors, and they cannot avoid the error accumulation
problem [22]–[24].

The radiofrequency or WiFi fingerprint-based positioning
methods [25], [26] calculate the location with the signal
from the transmitter carried by the pedestrian. All the above
methods require each person to carry a device, not the passive
localization method, without carrying equipment that our
target scenario pursues.

Video-based localization techniques do not support pri-
vacy protection for people in the given scenario. In extreme
environments, such as explosions, fires, etc., where visibility
is reduced, the location functionality of video-based tech-
niques and visible light communication-based positioning
techniques [27] will no longer be available.

There are floor vibration-based indoor localization meth-
ods which introduced TDOA [7], [28]. The TDOA method
assumed that the speed of wave propagation is constant.
Due to the ground’s anisotropy, the ground substances do
not satisfy this condition when a mechanical wave is con-
ducted. In other words, the propagation velocity on the
indoor floor is not constant. So if the TDOA method is
used, the constant speed assumption should be eliminated.
However, even if the speed is constant, the simple TDOA
method cannot obtain satisfactory positioning performance.
To improve the positioning accuracy, researchers introduced
anATDOA [29]method that combines the TDOAmethod and
the AOA method by the weighted average method. Although
this ATDOAmethod reduces the positioning error to a certain
extent, the authors had to use a triaxial seismic sensor, which
increases deployment costs, creating obstacles to commer-
cial deployment from cost considerations. Furthermore, this
method’s localization performance on the concrete floor is far
from satisfactory compared to the wooden floor.

Meanwhile, because the TDOA algorithm’s essence is to
find the coordinate of the intersection of more than three
hyperbolae, this algorithm has the well known ‘‘no solu-
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FIGURE 1. The system includes data acquisition, data preprocessing, deep learning model training, positioning classification, and post-processing.

tion’’ and ‘‘multiple solutions’’ problems. This has led to
restrictions on where sensors can be deployed. To avoid these
problems, all the above TDOA-based research deploys the
sensors on the four vertices of the rectangle, and the area
inside the rectangle is the positionable area. However, this
is very unfavorable for large-scale deployment, especially in
large areas, because the signal decays and thus the size of the
supported area is strictly limited.

As a comparison, there is research using the cheap piezo
sensor to conduct indoor localization [30]. Nevertheless, this
method requires reference positioning objects with a known
position, which can hardly be recognized as a real positioning
system. The positioning accuracy depends on the density of
the reference position objects. This method’s limitations are
significant, and it can hardly be used in the most indoor
localization scenario.

In contrast to the existing localization systems, our
approach is a passive localization method that does not
require persons to carry any device. This feature is an added
benefit in chemical plants where, by default, mobile elec-
tronic devices are not allowed unless they are certified not to
cause explosions in combination with potentially explosive
gas. Furthermore, our approach does not require a clear line
of sight and therefore works in heavily smoked rooms. Our
approach uses cheap piezo sensors, which has a cost advan-
tage, and there is no restriction on the relative position of the
sensor position and the located area like the TDOA-based
method. This makes it more feasible in large-scale deploy-
ments, especially in large areas. Our method still has good
accuracy and robustness on the concrete floor.

III. METHODOLOGY AND SYSTEM
As shown in Fig. 1, the proposed system is a deep
learning-based indoor and outdoor passive pedestrian
localization system. In this section, the procedure is
discussed.

A. PROBLEM FORMULATION AND ANALYSIS
In our system, four piezo sensors on the floor can detect
footsteps in a square of 9m2. In our experiments, we want to
determine the position of individual footsteps in this square.
This three meters by three meters square is divided into nine
zones, each one meter by one meter in size (see Fig. 2).

FIGURE 2. System model. A space of 3 meters by 3 meters is divided into
nine grids named G1 to G9. Four sensors, S1 to S4, are deployed in the
position points, as shown in this figure. When the sensor-matrix detects a
vibration source in the observed zone, the zone name should be output.

For each footstep, we want to determine the zone in which
the footstep occurred. These zones are labeled as G1 to G9.
As the signal decays quickly in thick concrete floors, we can
test by amplitudewhich arrangement of four sensors is closest
to the pedestrian. Thus, we investigate how to detect a person
inside these nine zones and the approach scales to arbitrarily
larger floors nevertheless.

Concerning our machine learning approach, each zone is
represented by a class. Thus, we designed a classifier that
can determine the zone based on four channels of vibration
signals. The sensors producing these signals are labeled as
S1 to S4. In order to cover larger areas, the same arrangement
of zones and sensors can be repeated in both directions.

The location information of the vibration source has a
relationship with the maximum amplitude of the four chan-
nels and the relative peak position in time. The waveform
of the signal of the channel nearest to the vibration source
will start to rise first. Meanwhile, because the amplitude of
the wave decays with the distance in the direction of the
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wave propagation, the waveform of the sensor nearest to the
vibration source will have the maximum amplitude among
all four signals. To achieve localization, we used a deep
residual convolutional neural network to learn the nonlinear
relationship between the point location and the signal of the
four sensors.

B. METHODOLOGY DESCRIPTION
In this research, the aim is to detect persons walking across
the floors of large scale buildings, for example in a chemical
plant.

Our methodology is to deploy an array of four sensors
every 9m2. When a person is stepping inside such a 9m2 area
the four sensors will sense the vibration signal and we can
such determine the 9 m2 area in which a footstep occurred.
Using an AI-approach we can then determine the position of
each footstep inside the 9 m2 area to get a precision of 1m
in both directions. This way we can sense and track footsteps
across the entire factory store.

An advantage of our approach is that we can concentrate
on solving the positioning problem for the 9 m2 area and our
AI has to process 4 sensor signals only. However, our system
can then be scaled out to larger areas.

Our methodology is privacy-friendly in contrast to video
surveillance. Furthermore, our approach works in dark or
heavily smoked areas, too. Thus, our approach is ideal to
track the movements of persons especially in the case of an
emergency.

C. DATA ACQUISITION
Fig. 4 shows our data acquisition devices setup. We used four
EPZ-27MS44W piezoelectric sensors to detect the vibration
signal. This sensor can detect a frequency band ranging from
0 Hz to 4400 Hz. As shown in Fig. 2, we established a
plane rectangular coordinate system on the ground. The four
sensors S1, S2, S3, S4 were deployed according to Fig.2. and
the corresponding signals recorded are labeled as s1(t), s2(t),
s3(t), s4(t).

A square steel plate of 10 cm by 10 cm is pressed onto
each sensor to guarantee that ground waves cause pressure
on the sensor from below due to the steel plate’s inertia
above. In the user’s actual application environment, the sen-
sor can be embedded in the floor tiles to ensure that the
sensing device will not affect normal walking. The signal
was amplified, sampled, quantized, and recorded with a
R&S-RTB2000 oscilloscope. The sampling rate is 23.8 kHz,
which is more than double the sensor’s maximum bandwidth.
Hence, a higher sampling rate would not improve the results
anymore. Each sampling point’s possible maximum value is
manually set to 0.1 V, and waveforms higher than 0.1 V are
cut off.

The same person with the same shoes generated the ground
vibration by walking on points evenly distributed in each
zone.We repeated this procedure for all nine zones. This way,
we can easily label the data since we know how samples and
zones are related. The recorded data includes four columns,

which refer to the S1, S2, S3, S4 signals, and the values in
each row are the sampled data values of which the sampling
period is 0.042 ms. Our approach is time-based, and there-
fore all signals must be synchronized. We achieved this by
sampling all four signals with one oscilloscope.

D. PREPROCESSING
It is necessary to detect the starting point of the effective
signal when there is vibration. After analyzing the existing
threshold-based method [31], [32], a customized shift win-
dow with a grouped frame threshold-based method is used in
this research. The sampling points are grouped into windows
of 32 points, which means that each window covers 1.344 ms.
When the maximum of the absolute value of the median of
any channel in a group becomes bigger than the threshold,
the first sampling point in the group before this group will
be considered as the starting point of the signal segment. The
group with the starting point is named the activated group.We
chose the previous group of the activated group to guarantee
all the relevant signal sampling points are taken into consid-
eration by the system. The trigger threshold is Vt = 25mv.
Starting from the activated group, four consecutive groups are
grouped as a big group, which serves as a valid data frame.
Furthermore, a valid data frame, totally with 128 sampling
points, is served as one sample to the neural network.

One sample includes the waveform of 5.376 ms, which
contains all the valid information for a one-time localization
task for one shock. Considering that the step frequency time
of elite professional sprinters is always longer than 200 ms
[33], and the fact that the signal collected by the piezoelectric
sensor will decay after 80ms, the data frame contains all
the necessary information for one-time foot shock without
any signal caused by adjacent steps. Meanwhile, after one
data frame is detected, the next frame will be detected after
224 groups of about 300ms. There are no coincident points
between the adjacent data frames.

After we got the data samples for an event, the valid data
frame should be normalized before training the deep neural
network. As the maximum value of the signal envelope is
0.1V, we scaled all the points from the four channels by divid-
ing the values by 0.1 to guarantee all the values are between
−1 and 1. After scaling, we got the training samples. We
do not conduct the denoising in the preprocessing procedure
and still got good results, as shown in the experiment and
evaluation section. Deep neural networks can, to some extent,
tolerate noise. This result is consistent with the literature [15].

E. CLASSIFIER DESIGN AND DEEP LEARNING MODEL
TRAINING
Considering that existing works [15], [34], [35] suggest that
deep learning is more suitable to analyze time-series of sensor
data, our approach is based on CNNs as well. The works [34]
compared CNN, LSTM, perceptron, and random forest and
conclude that CNN provides the best results. The existing
works [35] use the same sensors on a pattern recognition task
and compare a deep learning approach with random forest
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FIGURE 3. Deep neural network architecture. Our DNN model comprises 29 convolution layers, followed by a linear output layer that ended with a
softmax. The network accepts packaged vibration signal as input(sampled at 23800Hz, or 23800 samples per second). The output of the DNN is a
probability vector, which is the prediction of one of 9 possible location-related classes every consequent 128 points. The residual structure is utilized to
gain accuracy from the increasing depth of the neural network.

classifiers in the experiment. The results also show that the
deep learning approach works better than the classical classi-
fier random forest. Also, deep residual networks show good
performance in the fixed-length series pattern recognition
task [15]. Therefore, we excluded classic classifiers and used
a CNN-based deep learning approach instead.

We collected a data set, marked with ‘‘Data Part 1’’, and
split it into a training set for training model and valida-
tion set for model hyperparameters optimization. We finally
determined the best model architecture and hyperparameters,
as shown in this paper.

Fig. 3 shows the architecture of the deep neural network
designed in this experiment, which presents a good perfor-
mance in the classification task, which we discuss in the next
section.

Our deep neural network consists of 29-dimensional con-
volution layers followed by a linear output layer into a soft-
max layer. The network accepts packaged effective vibration
signal data as input and outputs a prediction of one out of 9
possible location-related classes every one input sample.

The first convolution layer in the deep neural network
contains 48 filters, and the number of filters used in the
convolution layer increases according to the increasing of the
order of the layer. From the 2nd convolution layer, the filter
number doubles every eight convolution layers, and finally,
in the last convolution layer, 384 filters have been used. Due
to the convolution operations and the max pooling opera-
tions, the data frame’s length becomes the half after the 3rd
convolution layer. From the 4th convolution layer, the data
frame length becomes half of the output length of the previous
layer. Finally, the size of the data frame becomes 1 row and
384 columns. The dropout rate was set to 0.5, learning rate
0.0005, and batch size 32. The 1D convolution kernel size is
16 [36]. The initial stopping criteria are introduced to restrain
the over-fitting issues, which are based on performance vali-
dation. After eight consequent training epochs have been con-
ducted without improvement in the performance validation
result, the training procedure has been stopped.

To objectively reflect the performance of our approach,
four-fold cross-validation has been conducted on totally new

FIGURE 4. Experiment setup.

data, marked as data part 2, as shown in Fig. 5(a). We discuss
this in detail in the next section.

IV. EXPERIMENT AND EVALUATION
In this section, firstly, we discuss how we organized the data
for the evaluation. Secondly, we show the location-related
classification performance. The ROC figure and the AUC
index are used to represent the classification performance.
Then the error analysis was conducted, and the results are
shown as in Table. 2. In the error analysis part, Euler distance
and Manhattan distance are introduced. We calculate the
error distance with each fold, and the average values for the
four folds evaluation procedures were calculated, as shown
in Table. 2.

A. DATA ORGANIZATION
To evaluate our approach, model architecture, and hyperpa-
rameters, we conducted four experiments to get four data sets,
marked as ‘‘Data Part 2’’, as shown in Fig. 5(a). The ‘‘Data
part 2’’, including data set A, data set B, data set C, and
data set D, a total of 30576 samples, are from four indepen-
dent experiments A, B, C, and D. This ‘‘Data Part 2’’ has
never been used in the model hyperparameter optimization
procedure.
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FIGURE 5. As shown in Fig. 5, we totally collected two parts of data sets. For data set part 1, we randomly shuffle the data samples and split them into
a training set and a validation set according to a rate of 4:1. We developed our model with the data set part 1, finally fixing the architecture and the
hyperparameters. We evaluate our approach, including the developed model architecture and hyperparameters with data set part 2. We conducted four
independent experiments: experiment A, experiment B, experiment C, experiment D, and collected the data set A, data set B, data set C, data set D
individually. We conducted a ‘‘4-folds cross-validation’’ evaluation, as shown in Fig. 5(b). The evaluation results are shown in Chapter IV.

In the evaluation, all data samples of ‘‘Data Part 2’’ were
used for four-fold cross-validation. The typical k-folds cross-
validation method [37], [38] splits the entire data set into k
mutually exclusive subsets as folds with approximately equal
size. Every time, one set of data is used as the test set and
the rest as the training set. Our evaluation procedure made
minor adjustments to the typical cross-validation method and
implemented it as a variant. We independently collected four
sets of data in four times. We did not merge all the 4 data sets
or randomly split it into folds. Each test set in each fold can
be considered as online data, and the training set as offline
training data. In this way, it is even more challenging for our
system to make good classification results, because no data
point of the measurement session has been used for training.
In comparison, imagine that we shuffled all data of ‘‘Data
Part 2’’ and imagine we performed four-fold cross-validation
on this shuffled data (which is the default procedure for
cross-validation). In this case, each training set contains data
points from all four measurement sessions. Thus, CNN is
trained with data from all measurement sessions and would
have an easier time to classify the test set, which contains
data from all measurement sessions. In our paper, however,
CNN is trained with three measurement sessions and must
classify data from another measurement session that it has
not seen during training. Thus, our cross-validation is even
more rigorous than the default approach, and the evaluation
experiments can better simulate the system’s situation in
actual use, that it can objectively show that our approach
works.

As shown in Fig. 5(b), for evaluating purpose, we trained
the model four times and then tested each model instance.
The ‘‘Data Part 2’’ has never been used in the model creation
procedure. In the ‘‘four-fold evaluation’’, all the data samples
have been used for training and testing. The values of each
evaluation metric were summed up, and the average values of
themwere calculated. Precision, recall, F1-score were used as
evaluation metrics, as shown in Table. 1.

B. CLASSIFICATION PERFORMANCE ANALYSIS
Table. 1, Fig. 6 and Fig. 7 show the classification perfor-
mance presented by our DNN model. Precision, recall, and

TABLE 1. Classification performance of the DNN.

FIGURE 6. Confusion matrix. Fig. 6 is the confusion matrix for the
location-related class prediction of the classifier versus the sample
labels. As part of the four-fold cross-validation, this confusion matrix’s
values are the average of the corresponding values from the four tests.

F1-score [40] are used as metrics for the evaluation and
analysis approach. Intuitively, the precision represents the
classifier’s ability not to label as positive a sample that is
negative. The recall shows the ability of the classifier to find
all the positive samples. The F1 score can be interpreted as
a weighted harmonic mean of the precision and recall, where
an F1 score reaches its best value at 1 and the worst score at 0.
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FIGURE 7. Fig. 7(a) to Fig. 7(k) are the ROC curves for deep neural network predictions on nine location-related classes. The macro-average ROC curve
and micro-average ROC curve [39] reflect the multi-class classifier performance.
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FIGURE 7. (Continued) Fig. 7(a) to Fig. 7(k) are the ROC curves for deep neural network predictions on nine location-related classes. The macro-average
ROC curve and micro-average ROC curve [39] reflect the multi-class classifier performance.
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The F1 score in our evaluation considered recall and precision
as equally important.

Micro− average Precision =

∑
c TPc∑

c TPc +
∑

c FPc
(1)

Micro− average Recall =

∑
c TPc∑

c TPc +
∑

c FNc
(2)

The metrics used in Table. 1 include the macro average of
the metrics and the micro average of the metrics. Table. 1
shows the metrics precision, recall, and F1-score. The macro
average precision and the macro average recall are the arith-
metic average of each class’s precision and recall. The macro
average F1-score is the harmonic mean of macro average
precision and macro average recall. Micro average precision
and micro average recall are as described in the formulas
(1) and (2). In formula (1) and formula (2), TP means true
positive; FP means false positive; FN means false negative; c
is the class label. The micro average F1-score is the harmonic
mean of micro-average of precision and micro-average of
recall, which means averaging the unweighted mean per label
[41], [42]. Themicro andmacro average performancemetrics
reflect the system’s average level of performance concerning
each class. In our evaluation setting, the number of instances
in each class is similar. So the micro average figures are
similar to the macro average figures.

Fig. 7 shows the ROC curves of the classifier. A ROC curve
is a visual indicator of the trade-off between true-positive and
false-positive cases. The area under the ROC curve (AUC)
will always be between 0 and 1. According to the
ROC curves in Fig. 7, our classifier shows outstanding
performance.

Fig. 6 shows that most of the evaluation samples were
correctly classified. Considering the practical walking people
location scenario, the positioning-related grid can be pre-
dicted correctly in most cases. 5% of G3 samples have been
classified as G2, which is the highest classification error.
Meanwhile, 3% G1 were predicted as G2; 3% G2 samples
were predicted as G3; 3% G6 samples are predicted as G3;
3% G3 samples were predicted as G6; 3% G6 samples were
predicted as G9. However, all the above mentioned misclassi-
fied samples are location-adjacent. As G8 is next to G5, G3 is
next to G2. That is to say, although some samples are wrongly
classified, in most cases, the wrongly classified results are
still with practical meaning. The remaining misclassified
samples are less than 2% of the total sample number of its
class.

C. ERROR DISTANCE ANALYSIS
From the perspective of walking people positioning, the error
distance analysis has been conducted, as shown in Table. 2.
For error distance analysis, Euler distance and Manhattan
distance [43] were counted.

In Table. 2, the error Euler distance and the errorManhattan
distance of a sample, which wrongly classified Gx as Gy,
is the Euler distance andManhattan distance of the geometric
center point of Gx to the Euler distance and the Manhattan

TABLE 2. Error distance description of misclassified samples.

distance of the geometric center point ofGy respectively. The
unit is meter. The average error Euler distance and the average
error Manhattan distance are 0.0560 0.0596, respectively,
and the medians of that respectively are 0 and 0. The error
distance evaluation results show that the proposed system can
implement localization function with good performance and
low error.

V. CONCLUSION
We presented a novel approach to determine the walking per-
sons’ position by analyzing ground vibrations caused by indi-
vidual footsteps. Due to the anisotropic nature of the ground
waves, we used a machine learning approach to determine a
footstep position. We divided a 9m2 area into nine squares of
1m2 size. The learned classifier can assign a ground vibration
signal to one of these nine areas. The mean Euler error of our
approach, as defined in our paper, is 0.059m.

Our approach can identify the position of an individual
step. Therefore, for a walking person, we can identify their
position and the direction of their movement. This is espe-
cially useful in production plants, where safety demands
that firefighters know where people are and in which direc-
tion they are running. In contrast to video surveillance, our
approach works in smoked areas. Furthermore, our approach
is less privacy-invasive than cameras. Since many companies
are not allowed to install always-on cameras for privacy rea-
sons, our approach can deliver more safety without invading
workers’ privacy.
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