
Faculty of Mathematics

University of Duisburg-Essen

Thea-Leymann-Straße 9, 45127 Essen, Germany

Gamma convergence and Cosserat
curvy shell models

M.Sc. Maryam Mohammadi Saem

Karaj, Persia

Dissertation

to attain the academic degree

Doctor of Natural Sciences (Dr. rer. nat.)

at the Faculty of Mathematics,

University of Duisburg-Essen



Day of defense: 02.12.2022

First reviewer: Prof. Dr. rer. nat. habil. Patrizio Neff
Faculty of Mathematics
University of Duisburg-Essen

Second reviewer: Prof. Dr. rer. nat. Ionel-Dumitrel Ghiba
Faculty of Mathematics
Alexandru Ioan Cuza University of lasi

Diese Dissertation wird via DuEPublico, dem Dokumenten- und Publikationsserver der
Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor.

DOI: 10.17185/duepublico/78204
URN: urn:nbn:de:hbz:465-20230419-083612-9

Alle Rechte vorbehalten.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/78204
https://nbn-resolving.org/urn:nbn:de:hbz:465-20230419-083612-9


iii

Acknowledgment

After four years study and research in the group of Nonlinear Analysis and Modeling, now it is the time
to thank people who supported me in all this long journey until I reached the goal. After the help of
God, it was my supervisor who helped me to come back to Germany and start another scientifically
exciting life. I would like to appreciate by heart, my supervisor Prof. Dr. Patrizio Neff who was not
only my supervisor in Mathematics but a patient supporter in my private life as well. He provided a
nice and friendly environment for our group which helped me to get familiar with the subject of Gamma
convergence and at the end we could have interesting results in this subject. Next, I would like to thank
Prof. Ionel-Dumitrel Ghiba for his kind patronage and the pleasant mathematical discussions with him.

I had a chance to work in a very skillful group with talented colleges. Thanks go to Dr. Peter Lewintan,
Dr. Jendrik Voss, Dr. Hassam Ahmed Khan and Dr. Robert J. Martin who always responded to my
requests. I appreciate the continuous support of a very kind lady, Frau Anja Schulte who is always patient
for help.

I am extremely thankful to my beloved parents whom I could not visit since several years. They always
gave me good mood to continue my study with motivation. I wish for both health and happy life. I
should not forget my kind sisters and their family. They also tolerated this distance between us with
patience and were encouraging their youngest sister. I kiss all my nephews and nieces who missed me
but tried not to show it to cheer me up.





v

Contents

Acknowledgment iii
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Preliminaries 5
0.1. Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

0.1.1. Some inequalities in vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.2. Matrices and related spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

0.2.1. Cofactor of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.2.2. Derivatives of functions on Rn×n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
0.2.3. Minimum problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
0.2.4. Convexity and local minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

I. Cosserat curvy shell model 15

1. Γ- limit and Γ-convergence 17
1.1. Lower semi-continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2. Gamma convergence and recovery sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3. Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2. Theory of elasticity 25
2.1. Strain tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2. Stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. Shell theory 35
3.1. Dimensional reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. Linear and nonlinear scaling 37

5. The three dimensional Cosserat model 39
5.1. The variational problem defined on the thin curved reference configuration . . . . . . . . . 40
5.2. Transformation of the problem from Ωξ to the fictitious flat configuration Ωh . . . . . . . 44
5.3. Construction of the family of functionals Ihj . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1. Nonlinear scaling for the gradient of the deformation and the microrotation . . . . 46
5.3.2. Transformation of the problem from Ωh to a fixed domain Ω1 . . . . . . . . . . . . 47

5.4. Equi-coercivity and compactness of the family of energy functionals . . . . . . . . . . . . 48
5.4.1. The set of admissible solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.2. Equi-coercivity and compactness of the family J \h . . . . . . . . . . . . . . . . . . 49

5.5. The construction of the Γ-limit J0 of the rescaled energies . . . . . . . . . . . . . . . . . . 52
5.5.1. Auxiliary optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.2. Homogenized membrane energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5.3. Homogenized curvature energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6. Γ-convergence of Jhj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6.1. Step 1 of the proof. The lim-inf condition . . . . . . . . . . . . . . . . . . . . . . . 59
5.6.2. Step 2 of the proof: The lim-sup condition - recovery sequence . . . . . . . . . . . 60

5.7. The Gamma-limit including loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.8. Consistency with related shell and plate models . . . . . . . . . . . . . . . . . . . . . . . . 65

5.8.1. A comparison to the Cosserat plate model derived using the Γ-convergence method 65
5.8.2. A comparison with the nonlinear Cosserat shell model obtained via the derivation

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.8.3. A comparison with the general 6-parameter shell model . . . . . . . . . . . . . . . 68



Contents vi

5.8.4. A comparison to another O(h5)-Cosserat shell model . . . . . . . . . . . . . . . . . 69
5.9. Linearisation of the Γ-limit Cosserat shell model . . . . . . . . . . . . . . . . . . . . . . . 70

5.9.1. The linearised model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.9.2. A comparison with the linear Reissner-Mindlin membrane-bending model . . . . . 71
5.9.3. Aganovic and Neff’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6. Homogenized curvature energy 73
6.1. Homogenized quadratic flat curvature energy . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2. Homogenized curvature energy for the curvy shell model . . . . . . . . . . . . . . . . . . . 74

6.2.1. Euler-Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.2. Calculations for the homogenized curvature energy . . . . . . . . . . . . . . . . . . 77
6.2.3. Consistency check: obtaining the flat model from the curvy one . . . . . . . . . . . 79

6.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

II. Drill rotations for Cosserat surfaces 81

7. Rotations and Cosserat surfaces 83

7.1. Engineering motivation: Cosserat shell models . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2. On the physical concept of in-plane drill-linear torsional spring . . . . . . . . . . . . . . . 86

7.2.1. Setting of the differential geometric problem . . . . . . . . . . . . . . . . . . . . . . 87
7.3. Preliminaries on rotations in SO(3) and the Euler-Rodrigues formula . . . . . . . . . . . . 89
7.4. Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.5. Family of minimal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.6. The small rotation case: A ∈ so(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.7. The large rotation case: Q ∈ SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.8. Compatibility condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A. Appendix for Part I 107
A.1. Calculations for the TBiot stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2. Calculations for the homogenized membrane energy . . . . . . . . . . . . . . . . . . . . . 107

B. Appendix for Part II 111
B.1. Regular surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.2. Principal curvatures and fundamental forms . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.3. Minimal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.4. Conformal surfaces and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



1 Contents

Introduction

The Encyclopedia Britannica describes elasticity as the “ability of a deformed material body to return
to its original shape and size when the forces causing the deformation are removed”. The theory of (non-
linear) elasticity provides a mathematical framework to model the response of different elastic materials
under given loads. The elastic body is generally modeled as a continuum, thus the theory is concerned
with the macroscopic effects rather than the underlying microscopic mechanism of atomic bonding that
causes the elastic behavior.

To this day, there exists no mathematical model which correctly describes the entirety of elastic behavior.
In fact, precise description of physical materials as ideally elastic is not even possible because of various
interfering effects like thermodynamics, plasticity, and microscopic structures. Thus in a real-world
scenario, there is no material response which is a purely elastic continuum behavior. Therefore, for
the concept of elasticity, it is crucial to find a reasonable simplification that is capable of expressing an
approximate description of the actual physical behavior. For an ideal theoretical elastic material, all other
mentioned effects are left out and the act of deforming a body is reduced to its resulting configuration to
omit time-dependency.

Shell theory is the basic of the first Part in this dissertation. Shells are formed from two curvy layers
with a common inner surface in between with a very small thickness. We note that the thickness in one
direction is much more smaller than the two other dimensions which are orthogonal to the direction of
the thickness. The theory of shells is similar to the theory of plates with more specification like curvature.
The thickness of the shell can play a role to effect the boundary and external loads.

In the first part of this dissertation we consider a three dimensional Cosserat model and derive a curvy
shell model with small thickness. By applying the nonlinear scaling for both deformation field ϕ and the
microrotation R, we obtain the homogenized membrane energy Wmp. The homogenized curvature energy
Wcurv is obtained separately in the second chapter of the first Part. A combination of these homogenized
energies and applying the concept of Γ-convergence will lead us to find a minimizer for the sequence of
energies as the thickness leads to zero.

In the second part, we discuss some properties of the scenes of minimal surfaces. Minimal surfaces are
defined as surfaces with zero mean curvature, which a parametrized minimal surface satisfies in Lagrane’s
equation. For many years the only known complete, embedded minimal surfaces of finite topology were
the catenoid and helicoid which we disscused about them in section 7.5. In this chapter we also assume
that an in-plane drill rotation is the deformation mapping from a smooth regular shell surface to another
which is parameterized on the same domain and we show that this is not possible unless all rotations at
a portion of the boundary are fixed.

Publications

This dissertaion is based on the following papers which respectively are published, submitted and in
preparation:

• M. Mohammadi Saem, P. Lewintan and P. Neff. On in-plane drill rotations for Cosserat surfaces.
The Royal Society Publishing (2021) [78].

• M. Mohammadi Saem, I.D. Ghiba and P. Neff. A geometrically nonlinear Cosserat (micropolar)
curvy shell model via Gamma convergence. arxive (2022) [102].

• I.D. Ghiba, M. Mohammadi Saem and P. Neff. On the choice of third order Cosserat curvature
tensors in the shell model. in preparation (2022) [55].
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Glossary

R+ = (0,∞) the set of positive real numbers

R = [−∞,∞] the set of all real numbers including −∞,+∞
Rn×n the set of all real n× n matrices

GL(n) = {X ∈ Rn×n | detX 6= 0} class of invertible matrices

O(3) = {X ∈ R3×3 |XTX = 13} class of orthogonal matrices

SO(3) = {X ∈ R3×3 |XTX = 13 ,det(X) = 1} class of special orthogonal matrices

so(3) = {X ∈ R3×3 |XT = −X} class of skew-symmetric matrices

Ω ⊂ Rn reference configuration

Ωh ⊂ Rn fictitious flat Cartesian configuration

ϕ : Ω→ Rn deformation mapping

F = ∇ϕ =
(
ϕi,xj

)
∈ GL+(n) deformation gradient

trX = 〈X,1〉 trace of X

〈X,Y 〉 = tr(XY T ) the standard Euclidean scalar product

‖X‖ = 〈X,X〉 12 the associated norm to the Euclidean scalar product

devX = X − 1
n tr(X)1 deviatoric (trace-free) part of X ∈ Rn×n

symX = 1
2

(
X +XT

)
symmetric part of X

skewX = 1
2

(
X −XT

)
skew-symmetric part of X

Cof F = detF · F−T cofactor of F ∈ GL+(n)

axlA canonical identification of A ∈ so(3) and axlA ∈ R3

Anti (v) the inverse of axl on the vector v

µ, λ elastic Lamé parameters, µ shear modulus

µc Cosserat couple modulus

Lc internal length

κ bulk modulus, κ = 3λ+2µ
3

h > 0 the thickness of a thin shell

H harmonic mean

R,Q rotation matrices

H mean curvature

K Gauss curvature

DX the Jacobian matrix of matrix X
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Preliminaries

This section contains some of the required definitions and concepts which are used in this dissertation.

0.1. Vectors

Definition 0.1.1. Let a, b ∈ Rn be two vectors. We denote the scalar product on Rn with

〈a, b〉Rn =

n∑
i=1

aibi , and ‖a‖2 = 〈a, a〉 . (0.1.1)

Assume that a = (a1, a2, a3) and b = (b1, b2, b3). The cross product of the two vectors a, b is expressed
by the following determinant

a× b = det

+ − +
a1 a2 a3

b1 b2 b3

 = (a2b3 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k , (0.1.2)

which is a perpendicular vector to the plane which contains the vectors a, b. If the vectors a, b are parallel,
then a× b = 0. Moreover, the cross product is anti-commutative, that is a× b = −(b× a). The following
properties hold for vectors a, b, c, d ∈ R3:

• 〈a, (b× c)〉 = 〈b, (c× a)〉 = 〈c, (a× b)〉 ,
• 〈(a× b), (c× d)〉 = 〈a, c〉〈b, d〉 − 〈a, d〉〈b, c〉 ,
• a× (b× c) = b〈a, c〉 − c〈a, b〉 , (0.1.3)

• (a× b)× (a× c) = 〈a, (b× c)〉a .

0.1.1. Some inequalities in vector spaces

Remark 1. (Young’s inequality) For every a, b ≥ 0, it holds

a b ≤ ap

p
+
bq

q
, (0.1.4)

for 1
p + 1

q = 1 with p, q > 1. Another version can be seen like

a b ≤ 1

2ε
a2 +

ε

2
b2 , ε > 0 . (0.1.5)

The generalized Young inequality is
n∏
i=1

ai ≤
n∑
i=1

1

pi
(ai)

pi ,

with pi > 1,
∑n
k=1

1
pk

= 1, for i = 1, · · · , n.

Remark 2. (Cauchy-Schwarz inequality) For vectors x, y ∈ Rn, it holds

|〈x, y〉| ≤ ‖x‖‖y‖ . (0.1.6)
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0.2. Matrices and related spaces

Definition 0.2.1. Assume that X ∈ R3×3 is a quadratic matrix. We denote the transpose matrix of X
by XT and it is defined as follows

X =

x11 x12 x13

x21 x22 x23

x31 x32 x33

 , XT =

x11 x21 x31

x12 x22 x32

x13 x23 x33

 , (0.2.1)

and XT ∈ Rn×n. It can be seen that, (XT )T = X. Regarding to the transpose matrix of any matrix X,
we have the two following definitions

symX :=
1

2
(X +XT ) , skewX :=

1

2
(X −XT ), (0.2.2)

where symX and skewX denote the symmetric and the skew symmetric part of X, respectively. Conse-
quently, one has the following orthogonal decomposition for any matrix X ∈ Rn×n

X = symX + skewX . (0.2.3)

The deviatoric part of X is defined by

devX := X − 1

n
tr(X) 1n , (0.2.4)

where 1n is the n × n identity matrix in Rn×n. By definition it holds tr(devX) = 0 and therefore the
deviatoric part is known as trace free part of X. We have the following orthogonal decomposition for any
matrix X ∈ Rn×n as well

X = dev symX + skewX +
1

n
tr(X) 1n . (0.2.5)

In the following we introduce some sets of matrices which will be used in this dissertation. The set of all
invertible matrices is denoted by GL(n) and is defined

GL(n) := {X ∈ Rn×n | detX 6= 0} . (0.2.6)

GL(n)+ denotes the set of all invertible matrices with positive determinant. The following sets are all
subsets of GL(n) and defined

O(n) := {X ∈ Rn×n |XTX = 1n} ,

the orthogonal group,

SO(n) := {X ∈ Rn×n |XTX = 1n ,det(X) = 1} , (0.2.7)

the special orthogonal group (where in linear transformation each element in this group acts as a rotation)
and

so(n) := {X ∈ Rn×n |XT = −X} , (0.2.8)

the set of skew symmetric matrices. A quadratic n × n matrix X is symmetric positive definite, if it is
symmetric and for all nonzero vectors ξ ∈ Rn, we have

〈Xξ, ξ〉 > 0 . (0.2.9)

Definition 0.2.2. For two n× n matrices X,Y , the standard Euclidean scalar product is given by

〈X,Y 〉Rn×n = tr(XY T ) , (0.2.10)

and the associated (squared) norm is

‖X‖2Rn×n = 〈X,X〉Rn×n . (0.2.11)

Therefore, for any matrix X ∈ Rn×n, tr(X) = 〈X,1n〉Rn×n . By using the fact that tr(X) = tr(XT ), we
see

〈X,Y 〉 = tr(XY T ) = 〈XY T ,1〉 = 〈1, XTY 〉 = tr(XTY ) = 〈XTY,1〉 = 〈Y,X〉 . (0.2.12)
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Definition 0.2.3. The canonical identification of so(3) and R3 is denoted by axl X : so(3) 7→ R3. By
using the standard vector product we define (axlX)× ξ = X.ξ for all vectors ξ ∈ R3, such that

axl

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 :=

x1

x2

x3

 , Anti

x1

x2

x3

 :=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 , (0.2.13)

where the inverse of axl is denoted by Anti : R3 → so(3).

0.2.1. Cofactor of a matrix

Definition 0.2.4. Let A be a n × n square matrix. The minor Aij of the i -th row and j -th column is
the determinant of the submatrix of A which is formed by deleting the i -th row and j -th column of the
original matrix A.
The (i, j) cofactor is obtained by Ãij = (−1)i+j det(Aij), i, j = 1, . . . , n. By the cofactor matrix of A we

mean the n× n matrix Cof A, in which the (i, j) entry is Ãij .
For example, in the case n = 3 we have

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =⇒ Cof A =

a22a33 − a23a32 a23a31 − a21a33 a21a32 − a22a31

a32a13 − a12a33 a11a33 − a13a31 a12a31 − a11a32

a12a23 − a13a22 a13a21 − a11a23 a11a22 − a12a21

 . (0.2.14)

Lemma 0.2.5. Assume that A ∈ Rn×n, then

A.(Cof A)T = detA · 13 . (0.2.15)

Corollary 0.2.6. Let A ∈ GL(n). Then

A.(Cof A)T = detA · 1 ⇐⇒ Cof A · AT = detA · 1 ⇐⇒ Cof A = detA · A−T . (0.2.16)

Lemma 0.2.7. (Nanson’s formula) Let A ∈ R3×3 and a, b ∈ R3. Then,

(Aa)× (Ab) = (Cof A)(a× b) , (0.2.17)

where a× b is the cross product between two vectors a, b.

We need to notice that for three column vectors a, b, c ∈ R3 we have

det(a|b|c) =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = c1(a2b3 − b2a3)− c2(a1b3 − a3b1) + c3(a1b2 − a2b1)

= (a2b3 − b2a3)c1 − (a1b3 − a3b1)c2 + (a1b2 − a2b1)c3

= 〈a× b, c〉 .

Lemma 0.2.8. Assume that X,Y ∈ Rn×n and F ∈ GL(n). Then

1. (Cof F )−1 = Cof(F−1) ,

2. (Cof X)T = Cof(XT ) ,

3. Cof(XY ) = Cof X Cof Y .

Theorem 0.2.9. (Piola-identity) Let Ω ⊂ R3 be an open subset of R3 and let ϕ : Ω → Ω′ ⊂ R3 be a
diffeomorphism. Then

Div Cof∇ϕ = 0 . (0.2.18)

Proof. We have

∇ϕ =

ϕ1,x1
ϕ1,x2

ϕ1,x3

ϕ2,x1
ϕ2,x2

ϕ2,x3

ϕ3,x1
ϕ3,x2

ϕ3,x3

 . (0.2.19)
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Each element of Cof∇ϕ is written like

(Cof∇ϕ)ij = ∂j+1ϕi+1 · ∂j+2ϕi+2 − ∂j+2ϕi+1 · ∂i+1ϕi+2 , (0.2.20)

where all indices are counted modulo 3. Now we have

(Div Cof∇ϕ)ij =

3∑
j=1

d

dxj
(Cof∇ϕ)ij

=

3∑
j=1

(∂j,j+1ϕi+1 · ∂j+2ϕi+2︸ ︷︷ ︸
=:aj

+ ∂j+1ϕi+1 · ∂j,j+2ϕi+2︸ ︷︷ ︸
:=bj

)

−
3∑
j=1

(∂j,j+2ϕi+1 · ∂j+1ϕi+2︸ ︷︷ ︸
:=cj

+ ∂j+2ϕi+1 · ∂j,j+1ϕi+2︸ ︷︷ ︸
:=dj

) = 0 , ∀i, j ∈ {1, 2, 3} , (0.2.21)

because aj − cj+1 = 0 and bj − dj+2 = 0. �

Assume A is a n×n matrix with the eigenvalues λ1, . . . , λn. The principal matrix invariants are defined
by

Ik(A) =
∑

1≤j1<...<jk≤n

n∏
i=1

λji , for 0 ≤ k ≤ n . (0.2.22)

We have

Lemma 0.2.10. For A ∈ R3×3,

1. I1(A) = tr(A) ,

2. I2(A) = tr(Cof A) ,

3. I3(A) = detA .

From the definition and for n = 3 we have

I1(A) = tr(A) = λ1 + λ2 + λ3 , I2(A) = tr(Cof A) = λ1λ2 + λ2λ3 + λ3λ1 ,

I3(A) = detA = λ1λ2λ3 . (0.2.23)

For any matrix A ∈ Rn×n the characteristic polynomial of A is defined by

det(A− λ1) = (−1)n(λn + cn−1λ
n−1 + . . .+ c1λ+ c0) . (0.2.24)

The following theorem (Cayley-Hamilton) will state that every matrix with nonzero determinant is a root
of its characteristic polynomial.

Theorem 0.2.11. For any matrix A ∈ Rn×n

An + cn−1A
n−1 + . . .+ c1A+ (−1)n detA.1 = 0 . (0.2.25)

The Cayley-Hamilton theorem can be rewritten by using the principal invariants as following

Theorem 0.2.12. For any matrix A ∈ Rn×n,

An − I1(A)An−1 + . . .+ (−1)n−1In−1(A)A+ (−1)nIn(A)1 = 0 . (0.2.26)

Proof. From the following characteristic polynomial

det(A− λ1) = (−1)nλn + (−1)n−1I1(A)λn−1 ± · · · − In−1(A)λ+ In(A) = 0 , (0.2.27)

and eq. (0.2.16) we obtain

det(A− λ1)1 = (A− λ1) Cof(A− λ1)T = (A− λ1) adj(A− λ1) , (0.2.28)



9 0.2. Matrices and related spaces

where have adj(A−λ1) =
∑∞
i=0 Y

iλi, with Y i ∈ Rn×n are unknown coefficients. The entries in adj(1−λA)
are polynomials in λ up to the maximal power on n − 1. Therefore, for k ≥ n, Y k = 0, we have the
following calculations

(A− λ1) adj(A− λ1) = det(A− λ1)⇐⇒ (A− λ 1)

n−1∑
i=0

Y iλi =
( n−1∑
i=0

In−1(A)λi + (−1)nλn
)

1 ,

(0.2.29)

and it is true if and only if

AY 0 +

n−1∑
i=1

λi(AY i − Y i−1)− Y n−1λn = In(A)1 +

n−1∑
i=1

(−1)iIn−1(A)λi1 + (−1)nλn1 , ∀λ ∈ R .

(0.2.30)

One may have

AY 0 = In(A)1 , AY i − Y i−1 = (−1)iIn−1(A)1 , ∀1 ≤ i ≤ n− 1 , −Y n−1 = (−1)n1 . (0.2.31)

Multiplication above equations from the left side by Ai, we obtain

AY 0 +

n−1∑
i=1

(Ai+ 1Y i −AiY i−1)−AnY n−1 = In(A)1− In−1(A)A+ · · ·+ (−1)nAn . (0.2.32)

By noticing the telescoping sum in the left hand side, which is zero, we will obtain the conclusion. �

So, for n = 3, the statement of the theorem reads

−A3 + I1(A)A2 − I2(A)A+ I3(A) = 0 ⇐⇒ −A3 + tr(A)A2 − tr(Cof A)A+ detA · 1 = 0 .
(0.2.33)

Next we introduce the right and left Cauchy-Green stretch tensors with C = FTF = 1+2E and B = FFT

respectively, where E = 1
2 (FTF −1) is the Green-St Venant strain tensor, for F ∈ GL+(3). More details

about strain tensors are available in Section 2.1. We have the following properties for the principal
invariant of the strain tensors as follow

Lemma 0.2.13. The following properties hold

I1(C) = ‖F‖2 = 3 + tr(FTF − 1) ,

= tr(1 + FTF − 1) = tr(1) + tr(FTF − 1) = 3 + tr(FTF − 1) ,

I2(C) = ‖Cof F‖2 = 3 + 2 tr(FTF − 1) + h.o.t(F ) ,

I3(C) = 1 + tr(FTF − 1) + h.o.t(F ) ,

where h.o.t(F ) denotes the higher order terms dependent on F . The same hold for B = FFT .

Proof. We have

I1(C) = tr(C) = 〈C, 1〉 = 〈FTF,1〉 = 〈F, F 〉 = ‖F‖2
= tr(1 + 2E) = tr(1) + 2 tr(E) = 3 + 2 tr(E) , (0.2.34)

and

I2(C) = tr(Cof C) = 〈detC.C−T ,1〉 = det(FTF )〈(FTF )−T ,1〉 = (detF )2〈F−T , F−T 〉
= 〈Cof F,Cof F 〉 = ‖Cof F‖2
= tr(Cof(1 + 2E)) = 3 + 4 trE + h.o.t(E) , (0.2.35)

and finally,

I3(C) = det(FTF ) = (detF )2 = det(1 + 2E) = 1 + 2 trE + h.o.t(E) . �
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0.2.2. Derivatives of functions on Rn×n

In the subject of dimensional reduction (direct approach) we will do some derivatives of some scalar
valued functions on the set of matrices. The Taylor series expression will be used to reach this goal. So
assume that f : Rn×n → R is a smooth scalar valued function. For every H ∈ Rn×n, the Taylor expression
of f at point (matrix) X ∈ Rn×n is as following

f(X +H) = f(X) + 〈Df(X), H〉+O(H2) . (0.2.36)

If g : Rn×n → Rn×n is a matrix valued function, then for X,H ∈ Rn×n we have

g(X +H) = g(X) + Dg(X).H +O(H2) . (0.2.37)

For some matrix valued functions we may have the following Lemma.

Lemma 0.2.14. For matrices X,H ∈ Rn×n we have:

1. D [XTX].H = XTH +HTX ,

2. D [devX].H = devH ,

3. D [symX].H = symH ,

4. D [skewX].H = skewH ,

5. D [Cof X].H = −〈Cof X,H〉X−THTX−T ,

6. D [detX].H = 〈Cof X,H〉 .

Proof. Let us call g1(X) := XTX. For the matrix (X +H) we have

g1(X +H) = (X +H)T (X +H) = (XT +HT )(X +H) = XTX︸ ︷︷ ︸
=g1(X)

+XTH +HTX + HTH︸ ︷︷ ︸
h.o.t(H)

. (0.2.38)

By comparing the right side of this relation and the Taylor expression of g1, we obtain that D[g1(X)].H =
XTH +HTX. Now assume that g2(X) := devX. Similarly, we have

g2(X +H) = dev(X +H) = (X +H)− 1

n
tr(X +H)1

= X − 1

n
tr(X)1︸ ︷︷ ︸

=g2(X)

+H − 1

n
tr(H)1 , (0.2.39)

and therefore, D[g2(X)] ·H = H − 1
n tr(H)1 = dev(H). We call g3(X) = sym(X). Hence

g3(X +H) = sym(X +H) =
1

2

(
(X +H) + (X +H)T

)
=

1

2

(
(X +XT ) + (H +HT )

)
=

1

2
(X +XT )︸ ︷︷ ︸

=g3(X)

+
1

2
(H +HT ) , (0.2.40)

and finally D[g3(X)].H = symH. The last function is g4(X) := skewX. We have

g4(X +H) = skew(X +H) =
1

2

(
(X +H)− (X +H)T

)
=

1

2
(X −XT )︸ ︷︷ ︸

=g4(X)

+
1

2
(H −HT ) ,

and hence D[g4(X)].H = skewH.
Denote g5(X) = Cof X. The, we have

Cof(X +H) = det(X +H)(X +H)−T = (detX + 〈Cof X,H〉+ h.o.t (H)2)(X−T −X−THTX−T + h.o.t (H))

= detX ·X−T − detX ·X−THTX−T + 〈Cof X,H〉X−T − 〈Cof X,H〉X−THTX−T + h.o.t (H)

= Cof X − 〈Cof X,H〉X−T + 〈Cof X,H〉X−T − 〈Cof X,H〉X−THTX−T + h.o.t (H)

= Cof X − 〈Cof X,H〉X−THTX−T + h.o.t (H) .
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Hence,

D[g5(X)].H = −〈Cof X,H〉X−THTX−T . (0.2.41)

Denoting g6(X) = detX. Then, we have

det(X +H) = det(X(1 +HX−1H)) = detX det(1 +X−1H) = detX[1 + 〈1, X−1H〉,h.o.t(H)]

= detX + detX〈X−T , H〉+ h.o.t(H) = detX + 〈Cof X,H〉+ h.o.t(H) , (0.2.42)

which leads to

D[g6(X)].H = 〈Cof X,H〉 . �

Lemma 0.2.15. For every X,H ∈ Rn×n,

1. D[‖X‖].H = 1
‖X‖ 〈X,H〉 ,

2. D[‖X‖2].H = 2〈X,H〉 .

Proof. Assume that k(X) = ‖X‖. The Taylor expression for k is

k(X +H) = k(X) + 〈D[k(X)], H〉+ h.o.t(H) . (0.2.43)

From that we obtain

‖X +H‖2 =
(
‖X‖+ 〈D[‖X‖], H〉+ h.o.t(H)

)2
, (0.2.44)

this implies that

‖X‖2 + 〈X,H〉+ 〈H,X〉+ ‖H‖2︸ ︷︷ ︸
h.o.t

= ‖X‖2 + 2‖X‖〈D[‖X‖], H〉+ (〈D[‖X‖], H〉)2 + h.o.t(H) . (0.2.45)

Therefore,

D[‖X‖].H =
1

2‖X‖
(
〈X,H〉+ 〈H,X〉

)
=

1

‖X‖〈X,H〉 . (0.2.46)

Similarly, assume that t(X) = ‖X‖2. Hence,

‖X‖2 + 〈X,H〉+ 〈H,X〉+ ‖H‖2 = ‖X +H‖2 = ‖X‖2 +D[‖X‖2].H + h.o.t(H) , (0.2.47)

and then

D[‖X‖2].H = 〈X,H〉+ 〈H,X〉 = tr(XHT +HXT ) = 2〈X,H〉. (0.2.48)

�

0.2.3. Minimum problems

In mathematical analysis that uses variations, the calculus of variations can be used in order to find the
maxima and minima of functionals, which can be done by applying some small changes in functions and
functionals. To this aim, the Euler-Lagrange equations is a system of second order ordinary differential
equations whose solutions are stationary points of the given action functional. Actually this equation
is useful for solving optimization problems, where we are looking for minimizing or maximizing the
function. For example, we are searching to find the curve in the plane of the shortest length connecting
two points. The solution is just the straight line between two points. Otherwise, the solution will not be
so clear and it is possible we have more than one solution. For example, assume the disturbed curve y(x)
which varies between two fixed points a, b ∈ R2 in a plane. Assume that l denotes the length between
(a,A), (b, B) ∈ R2. One can see that l can take the following form

l[y] =

∫ b

a

√
1 + y′(x)2 dx , y(a) = A , y(b) = B . (0.2.49)
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For finding the shortest path between a and b, we should minimize the functional l, but regarding to the
function y(x). Assume that h(x) is another differentiable function that satisfies h(a) = h(b) = 0. Then
we can define a new path by

ŷ(x, t) = y(x) + th(x) , for t ∈ R . (0.2.50)

Because ŷ(a, t) = y(a) + th(a) = A and ŷ(b, t) = y(b) + th(b) = B, we can consider ŷ as a path between
the points (a,A) and (b, B). The length of the new path can be defined like

`[y + th] =

∫ b

a

√
1 + ((y + th)′)2 dx =

∫ b

a

√
1 + (y′ + th′)2 dx .

We notice that `[y + th] is a real valued function. Indeed, `[y + th], for fixed y and h, takes real number
t and gives the length of y + t h as a real number. On the other hand, we assumed that y is the minimal
path, which means `[y + th] must take the minimum at t = 0 for every direction h. This means,

d

dt
`[y + th]

∣∣∣
t=0

= 0 , (0.2.51)

which is equivalent to

d

dt
`[y + th]

∣∣∣
t=0

=
( d
dt

∫ b

a

√
1 + (y′ + th′)2dx

)∣∣∣
t=0

. (0.2.52)

Obviously, a, b are independent from t. By applying Leibniz’s integral rule, we obtain

d

dt
`[y + th]

∣∣∣
t=0

=

∫ b

a

d

dt

√
1 + (y′ + th′)2

∣∣∣
t=0

dx

=

∫ b

a

(y′ + th′)h′√
1 + (y′ + th′)2

∣∣∣
t=0

dx

=

∫ b

a

y′h′√
1 + (y′)2

dx . (0.2.53)

We obtain ∫ b

a

y′√
1 + (y′)2

h′dx = 0 . (0.2.54)

After integration by parts, we arrive at∫ b

a

( y′√
1 + (y′)2

)′
hdx = 0 . (0.2.55)

We already assumed that h is an arbitrary function with zero boundary rules, therefore,( y′√
1 + (y′)2

)′
= 0 , (0.2.56)

and by integrating both sides we have

y′√
1 + (y′)2

= α, for some constant α . (0.2.57)

Generally, assume that W : Rn × Rm × Rm×n → R and assume that u ∈ C1(Ω,Rm). Now the question
is: find a u that minimizes the following function

I(u) =

∫
Ω

W (x, u(x),∇u(x)) dx . (0.2.58)

There is a necessary condition for existence of an extermum for solving the above problem.

Theorem 0.2.16. Let I be a function of the form

I(u) =

∫
Ω

W (x, u(x),∇u(x)) dx , (0.2.59)

such that u ∈ C1(Ω,Rm). Then the Euler-Lagrange equation (in the strong form) reads

DuW (x, u(x),∇u(x))−Div
(

D∇uW (x, u(x),∇u(x))
)

= 0 . (0.2.60)
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0.2.4. Convexity and local minima

Assume that X,Y are two normed vector spaces, L(X,Y ) is the vector space of all continuous linear
mappings from X to Y and f : Ω ⊂ X → Y , with Ω as an open subset of X.

Definition 0.2.17. The mapping f is differentiable at a point x ∈ Ω if there exists an element Df(x)
of the space L(X,Y ) such that

f(x+ h) = f(x) + Df(x)h+ o(h) , (0.2.61)

where o(h) denotes the higher order therms of h.

One of the applications of differentiability of functions, is the famous Taylor series formula. The ex-
pression of the Taylor formula for any function depends on the order of differentiability of the function.
Therefore, we have the following theorem

Theorem 0.2.18. Let X,Y be two normed vector spaces, Ω be an open subset of X, [x, x+h] be a closed
segment contained in Ω, f : Ω ⊂ X → Y be a given mapping and let m be an integer such that m ≥ 1. If
f is (m− 1) times differentiable in Ω and m times differentiable at the point x, then

f(x+ h) = f(x) + Df(x)h+ · · ·+ 1

m!
D(m)f(x)hm + o(hm+1) . (0.2.62)

For a Proof we refer to [33, Theorem 1.3-3].

Existence of a local minimizer and convexity of a function like f , are some other utilization of differentiable
mappings.

Theorem 0.2.19. Let Ω be an open subset of a normed space X and let f : Ω ⊂ X → R be a differentiable
function in Ω. Assume that a ∈ Ω and Df(a) = 0. If the function f is twice differentiable in Ω and if
there exists an open neighborhood V ⊂ Ω of the point a such that

D2f(x)(h, h) ≥ 0 , for all x ∈ V , h ∈ X , (0.2.63)

then the point a is a local minimum of the function f .

Definition 0.2.20. Let f : Ω ⊂ X → R be a function. The function f is called convex if for all 0 ≤ t ≤ 1
and all x1, x2 ∈ X,

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) . (0.2.64)

In the following, we can see the relation between convexity and derivatives

Theorem 0.2.21. (convexity and first derivative) Assume f : Ω ⊂ X → R is a differentiable function
in Ω. The function f is convex on Ω if and only if

f(x+ h) ≥ f(x) + Df(x).h , for all x, h ∈ X . (0.2.65)

Theorem 0.2.22. (convexity and second derivative) Assume f : Ω ⊂ X → R is a twice differentiable
function in Ω. The function f is convex if and only if

D2f(x)(h, h) ≥ 0 , for all x, h ∈ X . (0.2.66)

The next theorem will show the property of the minimum of a convex function,

Theorem 0.2.23. [33, Theorem 4.7-8] Let f : Ω ⊂ X → R be a convex function defined on a convex
subset Ω of a normed space X.

• Any local minimum of f on Ω is a minimum.

• If f is strictly convex, it has at most one minimum on Ω, and it is a strict minimum.

• Let g be differentiable at a point x ∈ Ω. a point x is a minimium pf g on Ω if and only if

Dg(x)(h) ≥ 0 , for all x, h ∈ Ω. (0.2.67)

• If the set Ω is open, a point x is a minimum of g if and only if Dg(x) = 0.
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Part I.

Cosserat curvy shell model
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1. Γ- limit and Γ-convergence

1.1. Lower semi-continuity

One of the questions which always may arise is how to determine sufficient conditions to ensure the
convergence of sequences of minimum problems and their related minimizers. Γ-convergence is one the
important tools for answering this question. In fact, Γ-convergence is able to answer the following family
of minimum problems

min{Ij(u)
∣∣u ∈ Xj} . (1.1.1)

A way to describe the behavior of the solutions of above problem can be provided by replacing such a
family by following problem

min{I(u)
∣∣u ∈ X} , (1.1.2)

which takes the related behavior of minimizers and for which a solution can be more easily obtained [25].
The most important feature of Γ-convergence is about the possibility of obtaining converging sequences
(or subsequences) from minimizers of (1.1.1). One of the basic requirements is compactness:

”the idea of convergence of functions uε should be in a way that ensures the existence of a limit of mini-
mizers of (1.1.1). The convergence of functions may give a negative answer just because the minimizers
will not converge. Hence, a candidate space like X, can be one which is equipped with the compactness
property for solving the limit problems”.
We notice that the argument of Γ-convergence depends on compactness, therefore, it is more convenient
to have a space with weaker topologies which guarantee the existence of a convergence sequence (or
subsequence) [25].
Later on, we will see that the compactness property can be replaced with coerciveness property. Of course
in the case that the functionals Fε are energy functionals, by considering the existence of a minimizer for
the homogenized energy, we may answer the compactness. The fundamental theorem of Γ-convergence
can be summarized as

Γ-convergence + equi-coerciveness (compactness) =⇒ convergence of minimum problems. (1.1.3)

Of course, beside the study of asymptotic properties of minimum problems, Γ-convergence has some other
kind of uses. One is the construction of suitable Γ-convergence functionals Ij to a given I0. Moreover,
Γ-convergence is also used in the ”justification” of physical theories through a limit procedure. One
example is the derivation of low-dimensional theories from three-dimensional elasticity, another one is
the deduction of properties in Continuum Mechanics from atomistic potentials.

Definition 1.1.1. Assume that f : X → R. The lower limit of f at point x is

lim inf
y→x

f(y) = inf{lim inf
j

f(xj)
∣∣xj ∈ X ,xj → x} (1.1.4)

= inf{lim
j
f(xj)

∣∣xj ∈ X ,xj → x ,∃ lim
j
f(xj)} .

The upper limit of f at point x is

lim sup
y→x

f(y) = sup{lim sup
j

f(xj)
∣∣xj ∈ X ,xj → x} (1.1.5)

= sup{lim
j
f(xj)

∣∣xj ∈ X ,xj → x ,∃ lim
j
f(xj)} .

The lower limit is written like ” lim inf ” and the upper limit like ” lim sup ”.
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It can be seen that [25]

lim inf
y→x

(f(y) + g(y)) ≥ lim inf
y→x

f(y) + lim inf
y→x

g(y) , (1.1.6)

lim inf
y→x

(f(y) + g(y)) ≤ lim sup
y→x

f(y) + lim inf
y→x

g(y) , (1.1.7)

lim inf
y→x

(−f(y)) = − lim sup
y→x

(f(y)) . (1.1.8)

Lemma 1.1.2. (Fatou’s Lemma) Let (X,Σ, ν) be a measure space and {fj : X → [0,∞]} be a sequence
of nonnegative measurable functions. Then the function lim infj→∞ fj is measurable and∫

X

lim inf
j→∞

fj dν ≤ lim inf
j→∞

∫
X

fj dν . (1.1.9)

Definition 1.1.3. Assume that X is a metric space. The function I : X → R is said to be lower
semi-continuous (l.s.c) at the point x ∈ X, if for every sequence xj converging to x we have

I(x) ≤ lim inf
j

I(xj) , (1.1.10)

or,

I(x) = min{lim inf
j

I(xj) : xj → x} . (1.1.11)

If I is lower semi-continuous at all point x ∈ X, then I is lower semi-continuous on X.

Example 1.1.4. Assume the space X = R with the metric d(x, y) = |x−y| for all x, y ∈ R. Let g ∈ C(R)
and a ∈ R. We define

f(x) :=

{
g(x) x 6= 0

a x = 0
(1.1.12)

The function f is lower semi-continuous at x = 0 if and only if a ≤ g(0). �

Proof. Assume that a ≤ g(0). Then, according to the definition of semi-continuity we have

a ≤ g(0) =⇒ f(0) = a ≤ g(0) = g( lim
xj→0

xj) = lim
xj→0

g(xj) = lim
06=xj→0

f(xj) , (1.1.13)

which for x = 0 gives

f(x) ≤ lim
06=xj→0

f(xj) , (1.1.14)

and shows that f is lower semi-continuous at x = 0. Now assume that f is lower semi-continuous at x.
Then, for every sequence (xj) with xj → x, we have

f(x) ≤ lim
xj→x

f(xj) . (1.1.15)

One may use the opposite direction of the relation (1.1.13). Since l.s.c happened for every xj → x, we
may assume that xj → 0. Then, we obtain a ≤ g(0). �

Remark 3. The following conditions are equivalent:

1. I : X → R is lower semi-continuous,

2. for all x ∈ X, I(x) = lim infy→x I(y),

3. for all α ∈ R, the sublevel set {I ≤ α} := {x ∈ X : I(x) ≤ α} is closed.

Remark 4. (i) If I and J are lower semi-continuous, then I + J is as well. The proof can be seen by
using the property of lim inf.
(ii) If {Ii : i ∈ N} is a family of lower semi-continuous functions, then the function J(x) = supi Ii(x) is
lower semi-continuous too.
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1.2. Gamma convergence and recovery sequence

Definition 1.2.1. Let us assume that X be a metric space. We call the sequence Ij : X → R, Γ-
convergent to I0 : X → R in X, if for all x ∈ X we have the two following conditions

1. (liminf inequality) for every convergent sequence xj → x

I0(x) ≤ lim inf
j

Ij(xj) , (lim inf inequality) . (1.2.1)

2. (limsup inequality) there exists a convergent sequence xj → x such that

I0(x) ≥ lim sup
j

Ij(xj) , (lim sup inequality) . (1.2.2)

In other words, I0 is a lower bound for the sequence Ij , in the sense that I0(x) ≤ Ij(xj) + o(1) whenever
xj → x.

Regarding to lim sup inequality, we should notice that I0, actually, is an upper bound for the sequence
Ij and computing that, is related to an ansatz which is dependent on the construction of the sequence
(xj). Now the critical matter is selecting the right concept of convergence xj → x. It is remarkable that
the sequence is not already chosen and should be selected in a way that can help the equi-coerciveness
(Definition 1.2.5) of the family Ij .
The function I0 is called Γ- limit of (Ij) and one can write I0 = Γ- limj Ij .

According to the definition of Γ-limit, we can obtain

I0(x) ≤ lim inf
j

Ij(xj) ≤ lim sup
j

Ij(xj) ≤ I0(x) , (1.2.3)

which means I0(x) = limj Ij(xj). Therefore, for the second condition, we can have the following alterna-
tive condition,

• (existence of a suitable recovery sequence) there exists a sequence (xj) converging to x such
that

I0(x) = lim
j
Ij(xj) . (1.2.4)

As before mentioned, for solving the convergence problem, we may work on the spaces with weaker
topology which always will guarantee the existence of a convergence subsequence. But this is not the
only point which should be noticed through the subject of Γ-convergence. Another important issue is
selecting the right energy scaling. As a matter of fact, there is a possibility that the given sequence (Ij)
will not act properly to reach the equi-coercivity, even with the convergence sequence. But choosing the
right scaling of the variables will be one of the important steps for solving the minimization problem.
From the Γ-convergence of functionals Ij to I0, we do not immediatly deduce the convergence of minimum
problems with Dirichlet boundary conditions. In fact, to do so we must prove the compatibility of the
condition u = ϕ on ∂Ω; i.e., that the functionals

Iϕj (u) =

{
Ij(u) =

∫
Ω
fj(x,Du) dx if u = ϕ on ∂Ω

+∞ otherwise ,
(1.2.5)

Γ-convergence to Iϕ0 analogously defined.

Remark 5. The Γ-convergence has the following properties:

• Γ-limit and continuous functions: If the family Ij, Γ-converges to I0 and J : X → [−∞,+∞] is a
continuous function, then (Ij + J) Γ-converges to I0 + J . Indeed, for all x ∈ X, with xj → x we
have

Ij(x) + J(x) ≤ lim inf
j

Ij(xj) + lim
j
J(xj) = lim inf

j
(Ij + J)(xj) . (1.2.6)

Since the lim sup condition holds as well, we get

I0(x) + J(x) = lim
j
Ij(xj) + lim

j
J(xj) = lim

j
(Ij + J)(xj) , (1.2.7)
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which gives

lim sup
j

(Ij + J)(xj) ≤ I0(x) + J(x) . (1.2.8)

Therefore, (xj) is a recovery sequence for I0 + J and it shows that Ij + J Γ-converges to I0 + J .

• Γ-limit of a constant sequence: Let Ij = I be a sequence, for all j ∈ N; that means Ij is a constant
sequence. Assume that (Ij) Γ-convergences, hence for ”hypothetical” Γ-limit, I∞ should hold

I∞(x) ≤ lim inf
j

I(xj) , xj → x , x ∈ X . (1.2.9)

But if I is not lower semi-continues, then there exists x and a sequence xj such that xj → x and

lim inf
j

I(xj) ≤ I(x) . (1.2.10)

Therefore, I∞(x) 6= I(x). This shows that Γ-convergence does not satisfy the requirement that a
sequence Ij = I convergences to I (unless I is lower semi-continuous). Therefore,

Γ- lim Ij(x) = I(x) if and only if I is lower semi-continuous . (1.2.11)

Definition 1.2.2. [Upper and lower Γ-limits] Assume Ij : X → R and x ∈ X. The quantity

Γ- lim inf
j

Ij(x) = inf{lim inf
j

Ij(xj) : xj → x} , (1.2.12)

is called the Γ-lower limit of the sequence (Ij) at the point x. Similarly

Γ- lim sup
j

Ij(x) = inf{lim sup
j

Ij(xj) : xj → x} , (1.2.13)

is called the Γ-upper limit of the sequence (Ij) at x. If one has the following equality

Γ- lim inf
j

Ij(x) = Γ∞ = Γ- lim sup
j

Ij(x) , (1.2.14)

for some Γ∞ ∈ [−∞,+∞], then, we can write Γ∞ = Γ-limj Ij(x) and we say that Γ∞ is the Γ-limit of
the sequence (Ij) at the point x ∈ X.

In [25], Proposition 1.28, we can find the following result.

Proposition 1. [Lower semi-continuity of Γ-limits] The Γ-upper and lower limits of a sequence
(Ij) are lower semi-continuous functions.

Remark 6. Γ-limit has the following properties:

1. If (Ijk) is a subsequence of (Ij) then

Γ- lim inf
j

Ij ≤ Γ- lim inf
k

Ijk , Γ- lim sup
k

Ijk ≤ Γ- lim sup
j

Ij . (1.2.15)

If I∞ = Γ- limj Ij exists, then for every increasing sequence of integers (jk) we have I∞ = Γ- limk fjk .

2. If J is a continuous function, then I∞ + J = Γ- limj(Ij + J). Moreover, if Jj → J convergence
uniformly and J is continuous, then I∞ + J = Γ- limj(Ij + Jj). And if Ij converges uniformly to I
on an open set U , then

Γ- lim
j
Ij = sc I , (1.2.16)

where sc I is the lower semi-continues envelope of I which is the greatest lower semi-continues
function not greater than I.

Proposition 2. (Compactness of Γ-convergence) Let (X, d) be a seperable metric space with metric d
and let Ij : X → R be a function, for all j ∈ N. Then there exsits a subsequence (Ijk) such that for all
x ∈ X, the Γ-limit of the sequence (Ijk) exists.
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Remark 7. If (X, d) in above Proposition is not separable, then the result of this Proposition will fail. We
may assume that X = {−1, 1}N with the discrete topology. X is metrizable and here Γ-convergence on X
is equivalent to pointwise convergence. Let us take the sequence Ij : X → {−1, 1} defined by Ij(x) = xj,
where x = (x0, x1, . . .). Assume that (Ijk) is a subsequence of (Ij) and assume x is defined by xjk = (−1)k

and if j /∈ {jk : k ∈ N} then xj = 1. Hence, limk Ijk(x) does not exist and therefore no subsequence of
(Ij) Γ-converges.

Γ-convergence also has the following result regarding to subsequences

Proposition 3. [Urysohn property of Γ-convergence] The Γ-limit for the sequence (Ij) exists, i.e.,
I∞ = Γ- limj Ij, if and only if for every subsequence (Ijk) there exists a further subsequence which Γ-
convergence to I∞.

Proof. See [25], Proposition 1.44. �

Definition 1.2.3. We call that Ihj , Γ-converges to I0, if for all sequences (hj)→ 0 we have Γ- limj Ihj =
I0.

Definition 1.2.4. The function I : X → R is coercive on X if the closure of the sublevel set {x ∈
X | I(x) ≤ α} is compact in X, for every α ∈ R.

Definition 1.2.5. The sequence of functionals Ij : X → R is equi-coercive if for each K > 0 there exists
a compact set Kc ⊂ X such that {x ∈ X | Ij(x) ≤ K} ⊂ Kc, independently of j > 0.

Note that, if the family Ij is equi-coercive, then lim inf-inequality condition immediately implies one
inequality for the minimum problem: if (xj) is a minimizing sequence and xj → x0 then

inf I0 ≤ I0(x0) ≤ lim inf
j→0

Ij(xj) = lim inf
j→0

Ij . (1.2.17)

Theorem 1.2.6 (Characterization of equi-coerciveness). The sequence of functionals Ihj : X → R is

equi-coercive if and only if there exists a lower semi-continuous coercive function Ψ: X → R such that
Ihj ≥ Ψ on X for every hj > 0.

Theorem 1.2.7. (Coerciveness of Γ-limit) Suppose that the sequence of functionals Ihj : X → R is
equi-coercive. Then the upper and lower Γ-limits are both coercive and

min
x∈X

(Γ- lim inf
hj

Ihj )(x) = lim inf
hj

inf
x∈X

Ihj (x) . (1.2.18)

If in addition, the sequence of integral functionals Ihj : X → R, Γ-convergence to a functional I0 : X → R,
then I0 itself is coercive and

min
x∈X

I0(x) = lim
hj

inf
x∈X

Ihj (x) . (1.2.19)

The variational nature of Γ-convergence is now evident. This theorem expresses the convergence of the
minimum problems related to the Ij ’s to the corresponding one for I0. Moreover, the existence of solutions
to the latter problem is guaranteed.

1.3. Sobolev spaces

In order to study and answering the questions regarding to existence and uniqueness of a minimizer, it
is necessary to define the suitable spaces which include these properties. Sobolev spaces are required tool
for simplifying the study of linear and nonlinear partial differential equations and their problems. But
before that we present the definition of Lebesgue spaces.

Definition 1.3.1. Let Ω be an open subset of Rn and p be a real number satisfying p ∈ [1,∞). The
space of functions, which are Lebesgue integrable on Ω to the power of p is denoted by

Lp(Ω) = { f
∣∣ ∫

Ω

|f(x)|p dx <∞} , (1.3.1)
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with the following norm

‖f‖Lp(Ω) =
(∫

Ω

|f(x)|pdx
) 1
p

. (1.3.2)

In the case p = 2, L2(Ω) with the following inner product is a Hilbert space

〈f, g〉 =

∫
Ω

f g dx (1.3.3)

For p =∞ we have

L∞(Ω) = { f
∣∣ |f(x)| <∞ almost everywhere in Ω} , (1.3.4)

equipped with the norm

‖f‖L∞(Ω) = ess sup
x∈Ω
|f(x)| . (1.3.5)

Remark 8. (Hölder’s inequality) Let 1
p + 1

q = 1, with p, q ∈ [1,∞]. If u ∈ Lp(Ω) and v ∈ Lq(Ω), then

uv ∈ L1(Ω) and it holds that

‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω) . (1.3.6)

If p = q = 2, then we will arrive at the Cauchy-Schwarz inequality

‖uv‖L1(Ω) ≤ ‖u‖L2(Ω)‖v‖L2(Ω) . (1.3.7)

Definition 1.3.2. Let k ∈ N ∪ {0} and p ∈ [1,∞], then the Sobolev space W k,p(Ω) is defined by

W k,p(Ω) := {u ∈ Lp(Ω)
∣∣ Dαu ∈ Lp(Ω) , ∀α with |α| ≤ k} , (1.3.8)

which with the following norm will be a Banach space

‖u‖Wk,p(Ω) := (
∑
|α|≤k

‖Dαu‖pLp(Ω))
1
p , 1 ≤ p <∞ . (1.3.9)

For p = 2 we will have the notation Hk(Ω) := W k,2(Ω), which is a Hilbert space with the following inner
product

〈u, v〉Hk(Ω) =
∑
|α|≤k

〈Dαu,Dαv〉L2(Ω) . (1.3.10)

As well, for 1 < p <∞, W k,p(Ω) is reflexive. It can be seen that the space W k,p is contained in the space
Lp(Ω).

Definition 1.3.3. Assume that X,Y are two normed vector spaces. We say that X is embedded in Y ,
and denote by X ↪→ Y , if X ⊂ Y and there is a constant c such that ‖v‖Y ≤ c ‖v‖X , for all v ∈ X.

Definition 1.3.4. A normed vector space X is compactly embedded in a normed vector space Y , if
X ↪→ Y and the continous injection j : X → Y with j(x) = x ∈ Y is a compact linear operator, that is,
if j maps each bounded sequence (xk) into a sequence (j(xk)) that contains a subsequence converging to
some limit in Y . We will denote this kind of embedding by X b Y .

The following theorem is called Rellich-Kondrachov embedding theorem, which gives the properties of
compact embedding spaces

Theorem 1.3.5. [33, Theorem 6.1-5. p.278] Let Ω be a domain in Rn, k > 0 be an integer, and let
p ∈ [1,∞). Then the following compact embedding holds

W k,p(Ω) b Lq(Ω) , for all q with 1 ≤ q <∞, if k =
n

p
. (1.3.11)
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The following compact embedding is one of the special case of the above theorem

H1(Ω) b L2(Ω) , (1.3.12)

which is independent of the dimension n.

Definition 1.3.6. Let (xn)n∈N be a sequence of elements in a Hilbert space H and assume that x ∈ H.
The sequence (xn)n∈N is weakly convergent to x, denoted by xn ⇀ x, if and only if for all y ∈ H

lim
n→∞

〈y, xn〉 = 〈y, x〉 , (〈y, xn〉 → 〈y, x〉) . (1.3.13)

W k,2(Ω) can be an example of a Hilbert space. We say that the sequence (un)n∈N ⊂ W 1,2(Ω) converges
weakly to u ∈W 1,2(Ω), un ⇀ u, if for every v ∈W 1,2(Ω) we have 〈un, v〉W 1,2(Ω) → 〈u, v〉W 1,2(Ω).

Theorem 1.3.7. (a) In a Banach space, every weakly convergent sequence (xn)n∈N is bounded and for
the limit x, we have

‖x‖ ≤ lim inf
n→∞

‖xn‖ . (1.3.14)

(b) In a reflexive Banach space, a bounded sequence contains a weakly convergent subsequence.

From the fact that W 1,2(Ω) is a Hilbert space and consequently a Banach space, one can obtain that (a)
and (b) hold as well for the space W 1,2(Ω).

Theorem 1.3.8. (Mazur’s theorem) Assume that un is weakly convergent to u in the Hilbert space
W 1,2(Ω). Then, there exist a sequence of convex combinations like ũn =

∑mi
j=i ai,juj, with ai,j ≥ 0 and∑mi

j=i ai,j = 1, such that ũn → u, i.e. ũn converges strongly to u.
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2. Theory of elasticity

The theory of elasticity treats the relationship between forces applied to an elastic object and the resulting
deformations. In physics, elasticity is defined as the resistant ability of a body to return to its original size
and shape when the force or the influence is gone. The stress, strain and displacements in an elasticity
problem can be obtained from a series of basic equations and boundary conditions. Throughout deriving
such equations, we may consider all the factors, but the results can be so complicated which may give
no solution. Hence, we can consider some basic assumptions in order to reach possible solutions. While
we are considering these assumptions, we may neglect some other factors that have minor influence on
the result. For example we may assume that the whole body is continuous and there is no empty place
in the body. Therefore, the physical quantities of the body like stress, strain and displacement can be
distributed continuously on the body. Also we can assume that the body is perfectly elastic. We need to
have a homogeneous1 body such that all elastic properties are the same through the body, i.e. the elastic
constants can be independent from the position in the body. The other condition that we may assume
for the body is isotropy, which means all the elastic properties are the same in all directions. Thus, as
mentioned already, by applying these assumptions, we can make the problem easier to solve. We only
consider quasi-static problems, i.e., the energy does not have a kinetic part.

One of the usage of elasticity is to analyse the stress and displacement of elements within the time
of receiving the force on the body and then to check the strength, stiffness and stability of the body.
The theory of elasticity contains equilibrium equations related to stress, kinematic equations related to
displacement and strain, constitutive equations related to stress and strain, boundary conditions related
to physical domain and uniqueness constraint related to the applicability of the solution.

The infinitesimal strain theory is a mathematical approach for describing the deformation of a solid body
in which the displacement and rotations of the particles of material are assumed to be much smaller than
any relevant dimension of the body. It means the geometry and fundamental properties of the material
at each point of the body can be assumed to be unchanged by the deformation. In opposite, the finite
strain theory deals with strains and rotations which are large enough to change the particles of the body.

The deformation of a body has two components: displacement of a rigid body2 and a deformation. The
displacement of a rigid body consists of translation and rotation. In this case there is no changes in the
shape or size. These kind of changes is due to deformation which will happen to a body from the initial
configuration to a deformed one. Indeed, the deformation occurs when the distance between any two
particles in the undeformed configuration changes.

Definition 2.0.1. A deformation of the reference configuration Ω is a mapping

ϕ : Ω→ R3 , (2.0.1)

which is smooth enough, injective on ∂Ω and preserves the orientation.

By defining ∂i = ∂
∂xi

, at each point of Ω we have

∇ϕ :=

∂1ϕ1 ∂2ϕ1 ∂3ϕ1

∂1ϕ2 ∂2ϕ2 ∂3ϕ2

∂1ϕ3 ∂2ϕ3 ∂3ϕ3

 . (2.0.2)

The 3× 3 matrix ∇ϕ is the deformation gradient, and by noticing the orientation-preserving property of
the deformation, we will have the following orientation preserving condition

det∇ϕ(x) > 0 , (2.0.3)

for all x ∈ Ω. This shows that the matrix ∇ϕ at any point x ∈ Ω is invertible as well.
The vector field u : Ω→ R3, u = (u1, u2, u3), with the following definition is called the displacement

u(x) = ϕ(x)− x , (2.0.4)

1A body is called homogeneous, when all the points have the same property.
2A rigid body is a solid body that the changes after the deformation are very small that can be omitted.
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Similarly we have the gradient of the displacement like following

∇u :=

∂1u1 ∂2u1 ∂3u1

∂1u2 ∂2u2 ∂3u2

∂1u3 ∂2u3 ∂3u3

 , (2.0.5)

and we will have the following relation between the gradients

∇ϕ = 1 +∇u . (2.0.6)

Therefore, for each point x ∈ Ω, ϕ(x) is the deformed point under the deformation ϕ which maps to the
deformed configuration ϕ(Ω).

More details about the volume, surface and length of the reference configuration and the deformed
configuration can be found in [30]. Let us assume that W represents the elastic energy of arbitrary

Ω

x

ϕ

ϕ(Ω)

ϕ(x)

Figure 2.1.: A deformed point x from the reference configuration Ω to the point ϕ(x) in the deformed
configuration ϕ(Ω).

infinitesimal cubes instead of the energy of the whole body. Then the total energy I(ϕ) will be concluded
through the summation of the energy of all infinitesimal cubes. We assume that the whole body is
homogeneous. It will be helpful because the energy of each cube does not depend on its location in the
body. This is the first step to calculate the total energy. In the second step, we will approximate these
infinitesimal squares: Assume that x0 is the center of an infinitesimal square in the body Ω. The Taylor
series expression for the deformation ϕ at point x0 can be like

ϕ(x0 + h) = ϕ(x0) +∇ϕ(x0)h+ o(h2) , (2.0.7)

where ϕ(x0) is the translation of all infinitesimal squares, ∇ϕ(x0)h is a linear term and o(h2) shows the
higher order terms of which for infinitsimal squares, h will vanish for infinitesimal cubes (h→ 0).
Hence, it follows that for infinitesimal squares case, dependency of the energy on ∇ϕ(x0) is also a good
approximation. The total energy of Ω will be obtained from a summation on the energy of all infinitesimal
squares ∑

i,j

W (∇ϕ(x0,ij))δxi , δxi → 0 , (2.0.8)

and

I(ϕ(x)) :=

∫
Ω

W (∇ϕ(x)) dx , (2.0.9)

for I : C2(Ω,R3) → R. We will call I(ϕ) the energy density and W (F ) the energy function. We notice
that W : GL+(3)→ R takes the element with dimension 9, while the domain of I is infinite.
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2.1. Strain tensors

Assume that ϕ is a deformation which is differentiable at every point x ∈ Ω. Hence, for every point
x+ δx ∈ Ω and by using the definition of differentiablitiy, we have

ϕ(x+ δx)− ϕ(x) = ∇ϕ(x)δx+O(δx) , (2.1.1)

and

‖ϕ(x+ δx)− ϕ(x)‖2 = 〈∇ϕ(x)δx,∇ϕ(x)δx〉+O(δx2) . (2.1.2)

We already defined the symmetric right Cauchy-Green strain tensor

C := ∇ϕT∇ϕ , (2.1.3)

and the symmetric left Cauchy-Green strain tensor

B := ∇ϕ∇ϕT . (2.1.4)

One may define F := ∇ϕ, therefore, C = FTF , B = FFT , by which both have the same characteristic
polynomial.
As it is seen, the tensor C is one of the good tools to measure the strain, by which we mean the ”changes
in form or size”. The other class of deformations that they have no strain during their deformation are
rigid deformation

Definition 2.1.1. The mapping ϕ is called a rigid transformation if it has the form

ϕ(x) = a+Qx , (2.1.5)

for a ∈ R, Q ∈ SO(3) and all x ∈ Ω.

Indeed, the rigid deformation rotates the reference configuration around the origin and translates it by a
vector a, without any strain. Now the question is that, how the deformation ϕ : Ω ⊂ R3 → R3 looks like
that we can have C = FTF = ∇ϕT∇ϕ = 1. The answers can be

1. Translation. The simple case is ϕ(x) = x+ b, for constant b = (b1, b2, b3) ∈ R3

ϕ(x1, x2, x3) =

x1 + b1
x2 + b2
x3 + b3

 , F = ∇ϕ =

1 0 0
0 1 0
0 0 1

 = 1 ⇒ C = FTF = 1 . (2.1.6)

2. Linear mapping. In this case for constant matrix A ∈ R3×3, we define ϕ(x) = A.x. Then

ϕ(x1, x2, x3) =

A11x1 +A12x2 +A13x3

A21x1 +A22x2 +A23x3

A31x1 +A32x2 +A33x3

 ⇒ F = ∇ϕ =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 = A , (2.1.7)

it means C = ATA. Now the question is that under which condition for A we can have ATA = 1.
This situation can happen when A ∈ O(3) (an orthogonal matrix). The matrix A can be a rotation
or a reflector. Since it is assumed that the matrix is orientation preserving, one may obtain that A
is a rotation and A ∈ SO(3).

The opposite case can happen under some conditions,

Theorem 2.1.2. [33, Theorem 1.8-1] Let Ω be an open connected subset of Rn and let there be given a
mapping ϕ ∈ C1(Ω,Rn) that satisfies

∇ϕ(x)T∇ϕ(x) = 1 , for all x ∈ Ω . (2.1.8)

Then there exists a vector a ∈ Rn and one orthogonal matrix Q ∈ O(n) such that

ϕ(x) = a+Qx , for all x ∈ Ω . (2.1.9)
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Proof. The goal is to show that for every x0 ∈ Ω there exists an open convex subset V ⊂ Ω such that for
all x, y ∈ V

‖ϕ(x)− ϕ(y)‖ = ‖x− y‖ . (2.1.10)

By applying the mean value theorem, for all x, y ∈ V we obtain

‖ϕ(x)− ϕ(y)‖ ≤ sup
x∈U
|∇ϕ(z)|‖x− y‖ , (2.1.11)

where U ⊂ V is the line between x and y and |F | = sup‖ξ‖=1‖Fξ‖R2 = λmax denotes the operator norm

of ∇ϕ. The assumption ∇ϕ(x)T∇ϕ(x) = 1 shows that the largest singular value of C = FTF is 1 which
guarantees that the largest singular value of ∇ϕ(z) is also 1 for all z ∈ Ω. Hence,

‖ϕ(x)− ϕ(y)‖ ≤ ‖x− y‖ , ∀x, y ∈ V . (2.1.12)

Using the inversion theorem shows that the mapping ϕ is locally invertible in Ω; it means that there
exists an inverse mapping like Ψ: W → V which like ϕ is continuously differentiable. By using the fact
that ∇ξΨT (ξ)∇ξΨ(ξ) = 1, proves the opposite of the inequality (2.1.12).
Now we prove that ∇ϕ is constant on V . Let us assume the mapping G : V × V → R with

G(x, y) = ‖ϕ(y)− ϕ(x)‖2 − ‖y − x‖2 =

n∑
k=1

(ϕk(y)− ϕk(x))2 −
n∑
k=1

(yk − xk)2 . (2.1.13)

This mapping is constant which means its derivative is zero and it holds

0 =
∂

∂xj

∂G

∂yi
(x, y) =

∂

∂xj

[ n∑
k=1

2(ϕk(y)− ϕk(x))
∂ϕk
∂yi

(y)− 2(yi − xi)
]

= −2

n∑
k=1

∂ϕk
∂xj

(x)
∂ϕk
∂yi

(y) + 2δij , (2.1.14)

which for all i, j ∈ {1, · · · , n} leads to

δij =

n∑
k=1

∂ϕk
∂xj

(x)
∂ϕk
∂yi

(y) = (∇ϕ(x)T∇ϕ(y))ij ⇐⇒ 1 = ∇ϕ(x)T∇ϕ(y)⇐⇒ ∇ϕ(x) = ∇ϕ(y) , (2.1.15)

for all x, y ∈ V . We could show that ∇ϕ is constant which means ∇ϕ = M ∈ Rn×n is also constant on
Ω, since Ω is connected. According to ∇ϕ(x)T∇ϕ(x) = 1, we obtain that the M ∈ O(n). Therefore, ϕ
has the following form

ϕ(x) = Qx+ b , (2.1.16)

for all x ∈ Ω, Q ∈ O(n) and b ∈ Rn, which implies that the gradient of ϕ, ∇ϕ, is a simple rotation. �

Theorem 2.1.3. Let Ω be an open connected subset of Rn and let there be given two mappings ϕ, Ψ ∈
C1(Ω,Rn) such that

∇ϕ(x)T∇ϕ(x) = ∇Ψ(x)T∇Ψ(x) , (2.1.17)

with injective Ψ and det∇Ψ(x) 6= 0, for all x ∈ Ω. Then there exists a vector a ∈ Rn and an orthogonal
matrix Q ∈ O(n) such that

ϕ(x) = a+QΨ(x) , for all x ∈ Ω . (2.1.18)

These theorems are significant to understand the importance of the tensor C. From the first theorem we
define

E :=
1

2
(C − 1) , (2.1.19)

which is a measure of the deflection between a certain deformation and a rigid deformation. Because, the
deformation is rigid if and only if C = 1. The tensor E is called Green-St Venant strain tensor and can
be rewritten as

E =
1

2
(C − 1) =

1

2
(FTF − 1) . (2.1.20)
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In the expression of the gradient of the displacement u, we have

C = ∇ϕT∇ϕ = 1 +∇uT +∇u+∇uT∇u = 1 + 2E , (2.1.21)

and respectively

E(u) := E =
1

2
(∇uT +∇u+∇uT∇u) . (2.1.22)

Theorem 2.1.4. If F = ∇ϕ is invertible (detF > 0), then C is symmetric positive definite (C ∈
Sym+(3)).

2.2. Stress tensor

As mentioned already, the external force on a certain part of the body is called stress. Regarding to
different type of strains, there are different types of stress tensors, which through certain formulas can
be exchanged to each other. A tool for measuring the stress is Cauchy stress σ (true stress), which is a
second order symmetric tensor and defines the value of the stress at each point of the deformed body.
That is, if nϕ is an arbitrary direction in a cut on the deformed body, the Cauchy traction σ.nϕ ∈ R3

is the force that is important at the intersection to keep the separated material in its deformed shape.
Cauchy’s Theorem illustrates that the Cauchy stress is symmetric and the tensor field and the vector
field are related by a partial differential equation (PDE) in the deformed configuration.
The Cauchy stress tensor is using the deformed coordinate system on behalf of using the initial coordinate
system of the reference configuration. However, the deformation itself is not known. Therefore, this is
one of the disadvantages of the Cauchy stress tensor. Hence, we may introduce another alternative stress
tensor which is called first Piola-Kirchhoff stress tensor S1, which describes the force of the deformed
material per original area. The following formula shows how σ and S1 are transformed into each other

S1(F ) = σ(F ) Cof F , (2.2.1)

where F = ∇ϕ for deformation ϕ. Although the Cauchy stress tensor is symmetric, the first Piola-
Kirchhoff stress tensor is not symmetric. Indeed,

S1(F )T = (Cof F )Tσ(F ) = detFT · F−1 · S1(F )

detF
· FT (2.2.2)

= F−1S1(F )FT , (2.2.3)

where we have used σ(F ) = S1(F )(Cof F )−1 and (Cof F )T = Cof(FT ) = detFT .F−1.

For the energy function W in the following minimum problem∫
Ω

W (F ) dx→ min F , ϕ|∂Ω = ϕ0 , F = ∇ϕ , (2.2.4)

and the assumption of hyperelasticity, we can define the first Piola-Kirchhoff stress tensor as following

S1(F ) = DFW (F ) . (2.2.5)

The other type of stress tensor is the second Piola-Kirchhoff stress tensor

S2(F ) = F−1S1(F ) . (2.2.6)

Both Piola-Kirchhoff stress tensors are dependent on the deformation ϕ, first because of the Piola trans-
form and second because of the Cauchy stress tensor which is also dependent on ϕ.
There is another type of stress tensor which is called Biot stress tensor and is shown by

TBiot(F ) = RTS1(F ) . (2.2.7)

where R is the rotation in the polar decomposition F = RU = V R [93].

A material is called isotropic if its properties remain the same in different directions. In opposite,
a material is called anisotropic when its properties vary when measured in different directions. For
example glass, metals and plastics are kind of isotropic materials while composites and woods tend to
show anisotropic properties.
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Definition 2.2.1. A constitutive equation σ : GL+(3) → Sym(3) is called isotropic if for a rotation
Q ∈ SO(3) we have σ(FQ).nϕ = σ(F ).nϕ for any arbitrary directions nϕ on the deformed configuration.
Hence, a material is isotropic if and only if the Cauchy stress satisfies

σ(FQ) = σ(F ) , ∀F ∈ GL+(3) , Q ∈ O(3) , (2.2.8)

or equivalently

S1(FQ) = σ(FQ) Cof(QF ) = σ(F ) Cof(F ) det(Q)Q−T = S1(F )Q . (2.2.9)

Indeed, the rotation of the whole body Ω before the actual deformation has no impact on the stress inside
the deformed material.

Definition 2.2.2. A constitutive equation σ : GL+(3)→ Sym(3) is called objective if for a rotation Q ∈
SO(3) we have Qσ(F ).nϕ = σ(QF ).Qnϕ for any arbitrary directions nϕ on the deformed configuration.
Therefore, a material is isotropic if and only if the Cauchy stress satisfies

σ(QF ) = Qσ(F )QT , F ∈ GL+(3) , Q ∈ SO(3) . (2.2.10)

Equivalently,

S1(QF ) = σ(QF ) Cof(QF ) = Qσ(F )QT det(Q)Q−T Cof(F ) = QS1(F ) . (2.2.11)

In fact, the rotation of the whole body Ω after the actual deformation has no impact on the stress inside
the deformed material.

A combination of objectivity and isotropy, can give the following Corollary

Corollary 2.2.3. For all F ∈ GL+(3) and Q ∈ SO(3), on objective and isotropic material it holds

σ(QTFQ) = QTσ(FQ)Q = QTσ(F )Q , S1(QTFQ) = QTS1(FQ) = QTS1(F )Q . (2.2.12)

Theorem 2.2.4 (Polar decomposition). Assume that F ∈ GL+(3). There exist positive definite sym-
metric matrices U, V and R ∈ SO(n) such that we have the following unique representation

F = RU = V R . (2.2.13)

The above representation is called polar decomposition for matrix F . For the right Cauchy- Green strain
tensor (2.1.3) we have

C = FTF = (RU)TRU = UTRTRU = UTU = U2 ⇐⇒ U =
√
C =

√
FTF . (2.2.14)

Simillarly, for the left Cauchy-green strain tensor we obtain

B = FFT = V R(V R)T = V RRTV T = V V T = V 2 ⇐⇒ V =
√
B =

√
FFT . (2.2.15)

Definition 2.2.5. We call an energy function isotropic, if for all Q ∈ SO(3) and F ∈ GL+(3) holds

W (FQ) = W (F ) , (2.2.16)

and objective if

W (QF ) = W (F ) . (2.2.17)

In an objective energy, the energy value will not be changed by a rotation after the deformation of the
body, but isotropy studies a rigid rotation earlier than the existent rotation.

In the nonlinear elasticity theory, we would like to predict the elastic behavior of a body under the force of
the boundary and the strength of the body. With C−1 we have found a first candidate for characterizing
the distortion in the material. Now we want to know how the independency of distortion from the stored
energy of the body looks like.

For the energy function, one of the candidates can be ‖C − 1‖2, which is meaningful when C is constant
on Ω.
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Theorem 2.2.6. Assume that the energy function W is objective. Then there exists Ŵ : Sym+(3)→ R
such that W (F ) = Ŵ (U), for all U ∈ Sym+(3). �

By using the above Theorem for C = FTF , we may write

W (F ) = ‖FTF − 1‖2 = Ŵ (C) = ‖C − 1‖2 , (2.2.18)

where C − 1 ∈ Sym+(3). By F = 1 +∇u, and using the Taylor expansion, the formula will be

Ŵ (C) = Ŵ
(
(1 +∇u)T (1 +∇u)

)
= Ŵ

(
1 + 2 sym∇u+∇uT∇u

)
= Ŵ (1) + 〈DŴ (1), 2 sym∇u+∇u∇uT 〉 (2.2.19)

+
1

2
D2Ŵ (1)[2 sym∇u+∇u∇uT , 2 sym∇u+∇u∇uT ] + h.o.t

= Ŵ (1) + 〈DŴ (1), C − 1〉+ 2 D2Ŵ (1)[C − 1, C − 1] + h.o.t .

Obviously in the reference configuration there is no stress and strain. Therefore, ϕ(x) = x, which means

F = 1. So, according to (2.2.18) we have Ŵ (1) = 0. Consequently, S1(1) = 0, S2(1) = 0 and σ(1) = 0.

We notice that S1(C) = DŴ (C). Hence, DŴ (1) = 0. Now, the relation (2.2.19) can be rewritten as

Ŵ (C) = 2 D2Ŵ (1)[C − 1, C − 1] + h.o.t , (2.2.20)

which for small strains the higher order terms can be omitted and hence

Ŵ (C) = 2 D2Ŵ (1)[C − 1, C − 1] = 〈C(C − 1), (C − 1)〉 . (2.2.21)

where C is a forth-order tensor with 81 independent components. Since C is assumed to be symmetric,
the number of independent components regarding to C − 1 will be reduced to 36. On the other hand,
C is self adjont which gives us C ∼ R21. Now assume that W is isotropic. From W (F ) = W (

√
C) =

Ŵ (C) =: W̃ (C − 1) we obtain

W̃ (Q(C − 1)QT ) = W̃ (QFT (QTQ)FQT −QQT ) = W̃ ((QFQT )T (QFQT )− 1)

= W (QFQT ) = W (F ) = W̃ (C − 1) . (2.2.22)

The assumption of isotropy and above formula will help us to reduce the number of independent compo-
nents further.

We already have seen that the deformation has the form ϕ(x) = x+u(x), where u(x) is the displacement
field. We put ε := sym∇u, and we call it infinitesimal strain tensor. Therefore, the relation (2.2.19) can
be seen as

Ŵ (C) = 2 D2Ŵ (1)[C − 1, C − 1] + h.o.t = 2 D2Ŵ (1)[sym∇u, sym∇u] + h.o.t

= 4〈C.ε, ε〉+ h.o.t =: Wlin(ε) , (2.2.23)

where h.o.t contains also the higher order terms of sym∇u. Generally,

Wlin : Sym(3) ∼= R6 → R , Wlin(ε) = 4〈C ε, ε〉 where C : R6 → R6 . (2.2.24)

We notice that regarding to (2.2.22), when the energy function W is isotropic, the linearized energy Wlin

will be also isotropic.

Remark 9. The most important benefit from Theorem 2.2.6 can be reducing the dimension of the entries.
We notice that F ∈ R3×3(dim = 9) which means the needed entries in matrix F are nine. Regarding to
this theorem we will replace F with another matrix like U ∈ Sym+(3)(dim = 9) which again the number
of entries are nine but some of them are repeated, like

U =

a b c
b d f
c f e

 . (2.2.25)

Lemma 2.2.7. Every quadratic isotropic function W : R3×3 → R has the following unique representation

W (X) = α1‖dev symX‖2 + α2‖skewX‖2 +
α3

2
(trX)2 , α1, α2, α3 ∈ R , (2.2.26)

for X ∈ R3×3.
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Proof. For α1 = α2 = α3 = 1 we know the decomposition

‖X‖2 = ‖dev symX + skewX +
1

3
trX · 1‖2 = ‖dev symX‖2 + ‖skewX‖2 +

1

3
(trX)2 (2.2.27)

from

Rn×n = (Sym(n) ∩ sl(n))⊕ so(n)⊕ R.1. (2.2.28)

More details about material symmetry [47, p.198] shows that for isotropic solids the number of indepen-
dent constants for the elasticity tensor C is three. The relation (2.2.28) shows linearly in-dependency of
the terms. Now it is sufficient to show that the decomposition (2.2.26) is invariant under X 7→ QXQT

in the sense that

tr(QXQT ) = 〈QXQT ,1〉 = 〈QXQT , QQT 〉 = 〈X,1〉 = trX ,

sym(QXQT ) =
1

2

(
QXQT +

(
QXQT

)T)
=

1

2

(
QXQT +QXTQT

)
= Q(symX)QT ,

skew(QXQT ) =
1

2

(
QXQT −

(
QXQT

)T)
=

1

2

(
QXQT −QXTQT

)
= Q(skewX)QT ,

dev(QXQT ) = QXQT − 1

3
tr(QXQT )1 = QXQT − 1

3
(trX)QQT = Q

(
X − 1

3
trX

)
QT = Q(devX)QT ,

‖QXQT ‖2 = 〈QXQT , QXQT 〉 = 〈QTQXQTQ,X〉 = 〈X,X〉 = ‖X‖2. �

Now by using this lemma and knowing the fact that ε ∈ Sym(3), we may have the following representation
for Wlin

Wlin(ε) = α1‖dev sym ε‖2 +
α3

2
(tr ε)2 . (2.2.29)

Theorem 2.2.8. The general quadratic isotropic expression for ε = sym∇u ∈ Sym(3) is

Wlin(ε) = µ‖dev sym ε‖2 +
κ

2
(tr ε)2 = µ‖ε‖2 +

λ

2
(tr ε)2 , (2.2.30)

with constants µ, λ ∈ R.

The constants µ, λ are called the Lamé constants. The parameter µ is also known as the shear modulus
and κ is the infinitesimal bulk modulus.
Notice that in the three-dimensional case

‖ε‖2 = ‖dev ε+
1

3
tr(ε)1‖2 = ‖dev ε‖2 +

1

9
tr(ε)2〈1,1〉 = ‖dev ε‖2 +

1

3
tr(ε)2 , (2.2.31)

which gives

‖dev ε‖2 = ‖ε‖2 − 1

3
tr(ε)2 . (2.2.32)

By inserting this formula in (2.2.30) we have

Wlin(ε) = µ‖ε‖2 +
λ

2
tr(ε)2

= µ‖dev ε‖2 +
µ

3
tr(ε)2 +

λ

2
tr(ε)2 = µ‖dev ε‖2 +

2µ+ 3λ

6
tr(ε)2

= µ‖dev ε‖2 +
κ

2
tr(ε)2 , (2.2.33)

where the bulk modulus is κ = 2µ+3λ
3 . In fact, κ is a measure of the resistance of the body to compression.

The Cauchy stress tensor related to the linear energy can be obtained from the formula

σlin(ε) = DεWlin(ε) . (2.2.34)

Therefore,

σ(ε) = 2µ ε+ λ tr(ε)1 = 2µdev ε+ κ tr(ε)1 . (2.2.35)

We have the following theorem from [32, Theorem 3.2-3]



33 2.2. Stress tensor

Theorem 2.2.9 (Singular value decomposition of a matrix). Let F be an arbitrary real 3 × 3 matrix,
with singular values λ1, λ2, λ3 ∈ R+. Then there exist orthogonal matrices R1, R2 ∈ SO(3) such that

F = R1 diag(λ1, λ2, λ3)R2. (2.2.36)

Lemma 2.2.10. Assume that W : GL+(3) → R is any isotropic and objective energy function. Then,
there exist a unique mapping g : R3

+ → R with W (F ) = g(λ1, λ2, λ3) for all F ∈ GL+(3) and for singular
values λ1, λ2, λ3. The mapping g is invariant under permutation of its arguments.

Proof. We assumed that W is isotropic and objective. Therefore, for all Q1, Q2 ∈ SO(3), we may write

W (F ) = W (Q1FQ2) = W (Q1R1 diag(λ1, λ2, λ3)R2Q2) . (2.2.37)

Let us select Q1 = RT1 and Q2 = RT2 . Then

W (F ) = W (RT1 R1 diag(λ1, λ2, λ3)R2R
T
2 ) = W (diag(λ1, λ2, λ3)) := g(λ1, λ2, λ3) , (2.2.38)

where g : R3 → R. �

One can see that this lemma is about reducing the dimension. Obviously, W applies on a space with 9
dimension, while g needs only to apply on 3 dimensional space.

Assume that F is an arbitrary matrix of order n and assume that λi, for 1 ≤ i ≤ n, denotes the n
eigenvalue of the symmetric and positive definite matrix FTF . The n numbers

vi(F ) :=
√
λi(FTF ) , 1 ≤ i ≤ n , (2.2.39)

are called the singular values of the matrix F . For the case n = 3 one may write

v1(F ) =
√
λ1(FTF ) , v2(F ) =

√
λ2(FTF ) , v3(F ) =

√
λ3(FTF ) . (2.2.40)

Theorem 2.2.11. Let F be an arbitrary real square matrix with singular values vi(F ). Then there exist
orthogonal matrices P and Q depending on vi such that

F = P (diag vi(F ))QT . (2.2.41)

An immediate consequence of this theorem shows that the two matrices FTF and FFT are always
orthogonaly equivalent.

Corollary 2.2.12. Let F be a square matrix with detF > 0. Then there exists a singular value decom-
position like

F = R1 diag(λ1, λ2, λ3)R2 , with R1, R2 ∈ SO(3) , λ1, λ2, λ3 ∈ R+ . (2.2.42)
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3. Shell theory

The theory of shells is an important branch of the theory of deformable solids. By a shell we mean two
outer curved surfaces which are somehow parallel to each other and they have a common inner surface in
the thickness ±h2 , where we assume that the thickness h is small and perpendicular to the curved surface.
The inner surface is called mid-surface. The deformation of the shell can be recovered according to the
deformation of the mid-surface. Also, the stress system of the shell can be referred to the stress of the
mid-surface. If the shells are designed very suitable, they can tolerate large loads, for example, airplane’s
wings. In general, the shell and plate theories are purposed for the study of thin bodies, in other word,
bodies in which the thickness in one direction is much smaller than the two other dimensions which are
orthogonal to the direction of thickness. As simple examples of shells we may mention, vehicle bodies in
automotive industry, cell walls, biological membranes, composite material and plates.

Indeed, a shell has all the specifications of a plate with an extra specification which is curvature. Note
that the structure of a shell is more complicated than a plate and it is because of the relation between
the bending and stretching. Shells can be divided in different types based on their curvature, for example
cylindrical and spherical. However, shells are categorized in two different classes, thin shells which is our
subject in this dissertation and thick shells. As we mentioned already, a shell is thin when the ratio of

the thickness over the radius of curvature of the midsurface is small enough to neglect (max
(
h
R

)
≤ 1

20 ,

where R is the radius of the curvature of the midsurface).

3.1. Dimensional reduction

Dimension reduction is changing the data from a higher dimensional spaces to a lower one. The di-
mensional reduction of a given continuum-mechanical model is an old subject and it has seen many
”solutions”. One of the methods is the derivation approach, i.e., reducing a given three dimensional
model via physically reasonable constitutive assumptions on the kinematics to a two dimensional model
as opposed to either the intrinsic approach , which views the shell from the onset as a two-dimensional
surface and invokes concepts from differential geometry or the asymptotic methods, which tries to estab-
lish two-dimensional equations by formal expansion of the three dimensional solution in power series in
terms of a small parameter. The intrinsic approach is closley related to the direct approach which takes
the shell to be a two-dimensional directed medium in the sense of a restricted Cosserat-surface.
The philosophy behind the derivation approach is expressed by W. T. Koiter [72, p. 93]: ”Any two-
dimensional theory of thin shells is necessarily of an approximate character. An exact two-dimensional
theory of shells can not exist, because the actual body we have to deal with, thin as it may be, is always
three-dimensional. ... Since the theory we have to deal with is approximate in character, we feel that
extreme rigor in its development is hardly desirable. ... Flexible bodies like thin shells require a flexible
approach.” As well as in [65, p-58] it is mentioned: ”The theory of Cosserat is exact, but shell theory
derived from the three-dimensional equations is approximate. It may be a matter of taste, but we prefer
to regard an exact theory as more fundamental. The Cosserat theory of shells (Cosserat surface) is on a
comparable footing with any exact three-dimensional continuum theory.”
The basic task of any shell theory is a consistent reduction of some presumably ”exact” 3D-theory to
2D. Actually the minimization problem will be adopted from the original physical space to a ”shell-like”
theory, i.e, the new thin domain. A thorough mathematical analysis of linear, infinitesimal displacement
shell theory, based on asymptotic methods, is found in [34]. A detailed presentation of the classical shell
theories can be found in [79]. One of the most famous theories in the field of reduction is Reissner-Mindlin
plate theory which is an extension of Kirchhoff-Love theory. The Kirchhoff-Love theory considers shear
deformations through the thickness of the plate while the Reissner-Mindlin theory considers the defor-
mations and stresses in a plate which its thickness is very smaller than the planar dimensions. They are
intended for some thick plates in which their normal vector will remain straight but after deformation it
is not necessarily perpendicular to the mid-surface.
Actually, by introducing a proper ansatz, one can reduce the dimension from 3 to 2 (engineering method).
Indeed, concerning the boundary conditions in any energy model, we may define the ansatz, and by in-
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serting the ansatz in the main formula, we will get a reduction in the dimension of the energy and have
the homogenized energy in 2-dimension.
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4. Linear and nonlinear scaling

As it is already mentioned, the goal of dimension reduction is to reformulate the original problem on
a thin 3-D domain, as well as shell theory. Therefore, a problem which is defined on a physical space
E including units of measurement will be adapted to a plate-like theory. This means we are given a
three-dimensional thin domain Ωh ⊂ R3 with

Ωh = ω × [−h
2
,
h

2
] , (4.0.1)

where ω is a bounded Lipschitz domain in R2 with Lipschitz boundary and h > 0 is the non-dimensional
relative characteristic thickness with h� 1. Assume the following boundary conditions on ∂ω × (−h, h)

uα(h)(x) = ζαβxβ ,

u3(h)(x) = 0 , x = (xγ , x3) ∈ ∂ω × (−h, h) , (4.0.2)

where u is the displacement field, the index 3 denotes the transverse direction and Greek indices, α, β, γ
range between 1 and 2. By using this conditions, we may write the minimizing elastic energy like∫

Ωh

W (∇u) dx , (4.0.3)

where u satisfies the boundary conditions and W is a homogeneous (x3-independent) elastic energy
density.
Scaling of independent and (or) dependent variables is the usual first step when we are dealing with the
dimension reduction thin domain.
The type of the scaling is crucial for the application of the Γ-convergence. The most effect of choosing a
right scaling can be seen finally in defining the recovery sequence for Γ-lim sup condition, in the definition
of Γ-convergence.
There are two different type of scalings: nonlinear or natural scaling and the other one is linear elasticity
scaling.
The nonlinear or natural scaling for a vector field z : Ωh −→ R3 is z\ : Ω1 −→ R3, where only the
independent variables will be scaled

x1 = η1 , x2 = η2 , x3 = hη3 ,

z\
(
x1, x2,

1

h
x3

)
:= z(x1, x2, x3) , nonlinear scaling . (4.0.4)

The gradient of z with respect to x = (x1, x2, x3) is

∇xz(x1, x2, x3) =
(
∂η1z

\(η1, η2, η3) | ∂η2z\(η1, η2, η3) | 1

h
∂η3z

\(η1, η2, η3)
)

=



∂η1z
\
1(η) ∂η2z

\
1(η)

1

h
∂η3z

\
1(η)

∂η1z
\
2(η) ∂η2z

\
2(η)

1

h
∂η3z

\
2(η)

∂η1z
\
3(η) ∂η2z

\
3(η)

1

h
∂η3z

\
3(η)


:= ∇hηz\(η) . (4.0.5)

In linear scaling the behavior of the components is different. The in-plane components x1, x2 of the
vector field are independent and the out-of-plane component x3 will be dependent on the scaling. That
is,

x1 = η1, x2 = η2, x3 = hη3,z[1(x1, x2,
1
hx3)

z[2(x1, x2,
1
hx3)

z[3(x1, x2,
1
hx3)

 :=

 z1(x1, x2, x3)
z2(x1, x2, x3)
hz3(x1, x2, x3)

 , linear scaling . (4.0.6)
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The related gradient of z with respect to x = (x1, x2, x3) is as follows

∇xz(x1, x2, x3) =
(
∂η1z

[(η1, η2, η3) | ∂η2z[(η1, η2, η3) | 1

h
∂η3z

[(η1, η2, η3)
)

=

 ∂η1z
[
1(η) ∂η2z

[
1(η) 1

h∂η3z
[
1(η)

∂η1z
[
2(η) ∂η2z

[
2(η) 1

h∂η3z
[
2(η)

1
h∂η1z

[
3(η) 1

h∂η2z
[
3(η) 1

h2 ∂η3z
[
3(η)

 := ∇hηz[(η). (4.0.7)
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5. The three dimensional Cosserat model

If a three-dimensional elastic body is very thin in one direction, it has special load-bearing capacities.
Due to the geometry, it is always tempting to try to come up with simplified equations for this situation.
The ensuing theory is subsumed under the name shell theory. We speak of a flat shell problem if the
reference configuration is flat, i.e., the undeformed configuration is given by Ωh = ω ×

[
− h

2 ,
h
2

]
, with

ω ⊂ R2 and h� 1, and of a shell (or curvy shell) if the reference configuration is curvy, in the sense that
the undeformed configuration is given by Ωξ = Θ(Ωh), with Θ a C1-diffeomorphism Θ: R3 → R3.

There are many different ways to mathematically describe the response of shells and of obtaining two-
dimensional field equations. One method is called the derivation approach. The idea of this method is
reducing the dimension of a given 3 dimensional model to 2 dimensions through physically reasonable
constitution assumptions on the kinematics [72]. Neff has introduced this derivation procedure based on
the geometrically nonlinear Cosserat model in his habilitation thesis [85, 80]. The other approach is the
intrinsic approach which from the beginning views the shell as a two-dimensional surface and refers to
methods from differential geometry [5, 7, 65]. The asymptotic method seeks, by using the formal expansion
of the three-dimensional solution in power series in terms of a small thickness parameter to establish two-
dimensional equations. Moreover, the direct approach [64] assumes that the shell is a two-dimensional
medium which has additional extrinsic directors in the concept of a restricted Cosserat surface ([13, 35,
37, 36, 38, 46, 65, 101, 23, 24]). Of course, the intrinsic approach is related to the direct approach. More
information regarding to this method can be found in [80, 86, 87, 88].

One of the most famous shell theories is the Reissner-Mindlin membrane-bending model which is an
extension of the Kirchhoff-Love membrane-bending model [12] (the Koiter model [11]). The kinematic
assumptions in this theory are that straight lines normal to the reference mid-surface remain straight
and normal to the mid-surface after deformation. The Reissner-Mindlin theory can be applied for thick
plates and it does not require the cross-section to be perpendicular to the axial axes after deformation,
i.e. it includes transverse shear. A serious drawback of both these theories is that a geometrically
nonlinear, physically linear membrane-bending model is typically not well-posed ([63]) and needs specific
modifications [10, 11] to re-establish well-posedness.

There is another powerful tool that one can use to perform the dimensional reduction namely Γ- conver-
gence. In this case, a given 3D model is dimensionally reduced via physically reasonable assumptions on
the scaling of the energy.

In this regard, one of the first advances in finite elasticity was the derivation of a nonlinear membrane
model (energy scaling with h) which is given in [75]. After that, the idea of Γ-convergence was developed
in [50, 52, 51, 53], where different scalings on the applied forces are considered, see also [26, 104].

A notorious property of the Γ-limit model based on classical elasticity is its de-coupling of the limit into
either a membrane-like (scaling with h) or bending-like problem (scaling with h3), see e.g. [15, 68].

In this chapter we will use the idea of Γ-convergence to deduce our two-dimensional curvy shell model
from a 3-dimensional geometrically nonlinear Cosserat model ([91]). This work is a challenging extension
of the Cosserat membrane Γ-limit for flat shells, which was previously obtained by Neff and Chelminski
in [90], to the situation of shells with initial curvature.

The Cosserat model was introduced in 1909 by the Cosserat brothers [38, 40, 39]. They imposed a
principal of least action, combining the classical deformation ϕ : Ω ⊂ R3 → R3 and an independent
triad of orthogonal directors, the microrotation R : Ω ⊂ R3 → SO(3). Invariance of the energy under
superposed rigid body motions (left-invariance under SO(3)) allowed them to conclude the suitable form

of the energy as W = W (R
T∇ϕ,RT∂x1

R,R
T
∂x2

R,R
T
∂x3

R). The balance of force equation appears by
taking variations w.r.t ϕ and balance of angular momentum follows from taking variations of R ∈ SO(3).
Here, as additional structural assumption we will assume material isotropy, i.e., right-invariance of the
energy under SO(3). In addition we will only consider a physically linear version of the model (quadratic
energy in suitable strains) which allows a complete and definite representation of the energy, see eq.
(5.1.5).

In the geometric description of shells the normal to the midsurface and the tangent plane appear naturally
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and the Darboux-Frenet-frame can be used. The underlying Cosserat model immediately generalizes this
concept in that the additional microrotation field R can replace the Darboux-Frenet frame. The third
column of the microrotation matrix R generalizes the normal in a Kirchhoff-Love model and the director
in a Reissner-Mindlin model. Note that the Cosserat model allows for global minimizers [85].

Concerning now the thin shell Γ-limit, we choose the nonlinear scaling and concentrate on a O(h)-model,
i.e. the membrane response. Since, however, the 3-D Cosserat model already features curvature terms
(derivatives of the microrotations), these terms ”survive” the Γ-limit procedure and scale with h, while
dedicated bending- like terms scaling with h3 do not appear1.

The major difficulty compared to the flat shell Γ-limit in [90] is therefore the incorporation of the curved
reference configuration. This problem is solved by introducing a multiplicative decomposition of the
appearing fields into elastic and (compatible) permanent parts. The permanent parts encode the geometry
of the curved surface given by Θ. In this way, we are able to avoid completely the use of the intrinsic
geometry of the curved shell.

The related Cosserat shell model in [56, 57] is obtained by the derivation approach. There, the 2-
dimensional model depends on the deformation of the midsurface m : ω → R3 and the microrotation
of the shell Qe,s : ω → SO(3) for ω ⊂ R2, the same as here. The resulting reduced energy contains a
membrane part, membrane-bending part and bending-curvature part, while the Cosserat Γ-limit model
obtained in this chapter contains only the membrane energy and the curvature energy separately.

The membrane part is a combination of the shell energy and transverse shear energy and the curvature
part includes the 2-dimensional Cosserat-curvature energy of the shell.

ω ⊂ R 2

(m
,R

)

nmRe
3

e3

Figure 5.1.: The mapping m : ω ⊂ R2 → R3 describes the deformation of a flat midsurface ω ⊂ R2. The Frenet-Darboux
frame (in blue, trièdre caché) is tangent to the midsurface m. The independent orthogonal frame mapped by
R ∈ SO(3) is the trièdre mobile (in red, not necessary tangent to the midsurface). Both fields m and R are
coupled in the variational problem. This picture describes the situation of a flat Cosserat shell.

5.1. The variational problem defined on the thin curved reference
configuration

Let us consider an elastic material which in its reference configuration fills the three dimensional shell-
like thin domain Ωξ ⊂ R3, i.e., we assume that there exists a C1-diffeomorphism Θ: R3 → R3 with
Θ(x1, x2, x3) := (ξ1, ξ2, ξ3) such that Θ(Ωh) = Ωξ and ωξ = Θ(ω × {0}), where Ωh ⊂ R3 with Ωh =
ω×

[
− h

2 ,
h
2

]
, and ω ⊂ R2 a bounded domain with Lipschitz boundary ∂ω. The scalar 0 < h� 1 is called

thickness of the shell, while the domain Ωh is called fictitious flat Cartesian configuration of the body.
We consider the following diffeomorphism Θ: R3 → R3 which describes the curved surface of the shell

Θ(x1, x2, x3) = y0(x1, x2) + x3 n0(x1, x2) , (5.1.1)

1Observe that the surviving Cosserat curvature is not related to the change of curvature tensor, which measures the change
of mean curvature and Gauß curvature of the surface, see Acharya [2], Anicic and Legér [12] as well as the recent work
by Silhavy [105] and [58, 59, 60, 62]).
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where y0 : ω → R3 is a C2(ω)-function and n0 =
∂x1y0×∂x2y0
‖∂x1y0×∂x2y0‖

is the unit normal vector on ωξ. Remark

that

∇xΘ(x3) = (∇y0|n0) + x3(∇n0|0) ∀x3 ∈
(
−h

2
,
h

2

)
, ∇xΘ(0) = (∇y0|n0), [∇xΘ(0)]−T e3 = n0,

(5.1.2)

and det∇xΘ(0) = det(∇y0|n0) =
√

det[(∇y0)T∇y0] represents the surface element. In the following we
identify the W eingarten map (or shape operator) on y0(ω) with its associated matrix by Ly0 = I−1

y0 IIy0 ,

where Iy0 := [∇y0]T ∇y0 ∈ R2×2 and IIy0 := −[∇y0]T ∇n0 ∈ R2×2 are the matrix representations of
the f irst fundamental form (metric) and the second fundamental form of the surface y0(ω), respectively.
Then, the Gauß curvature K of the surface y0(ω) is determined by K = detLy0 and the mean curvature
H through 2 H := tr(Ly0) . We denote the principal curvatures of the surface by κ1 and κ2.

We note that det∇Θ(x3) = 1−2 Hx3+Kx2
3 = (1−κ1 x3)(1−κ2 x3) > 0. Therefore, 1−2 Hx3+Kx2

3 > 0,
∀x3 ∈ [−h/2, h/2] if and only if 1 > κ1 x3 and 1 > κ2 x3, for all x3 ∈ [−h/2, h/2]. These conditions are
equivalent with |κ1| h2 < 1 and |κ2| h2 < 1, i.e., equivalent with

h max{ sup
(x1,x2)∈ω

|κ1|, sup
(x1,x2)∈ω

|κ2|} < 2 . (5.1.3)

We assume that after a deformation process given by the function ϕξ : Ωξ → R3, the reference configu-
ration Ωξ is mapped to the deformed configuration Ωc = ϕξ(Ωξ). In the Cosserat theory, each point of
the reference body is an endowed with three independent orthogonal directors, i.e., with a matrix Rξ :
Ωξ → SO(3) called the microrotation tensor. Let us remark that while the tensor polar(∇ξϕξ) ∈ SO(3)
of the polar decomposition of Fξ := ∇ξϕξ is not independent on ϕξ, the tensor Rξ of Cosserat theory is
independent of ∇ϕξ. In other words, in general, Rξ 6= polar(∇ξϕξ).

−h
2

h
2

Ωh

Ωξ

Ωc

x b

e3

ξ
b ∂x1y0

∂x2y0
n0

ϕ(x) b ∂x1m

∂x2m
n

e1

e2

e3

b

Θ, Q0 = polar(∇Θ(0))
∇Θ(0) = (∇y0|n0)

ϕ,R

ϕξ, Rξ

Figure 5.2.: Kinematics of the 3D-Cosserat model. In each point ξ ∈ Ωξ of the curvy reference configuration, there is the

deformation ϕξ : Ωξ → R3 and the microrotation Rξ : Ωξ → SO(3). We introduce a fictitious flat configuration
Ωh and refer all fields to that configuration. This introduces a multiplicative split of the total deformation
ϕ : Ωh → R3 and total rotation R : Ωh → SO(3) into “elastic” parts (ϕξ : Ωξ → R3 and Rξ : Ωξ → SO(3)) and
compatible “plastic” parts (given by Θ : Ωh → Ωξ and Q0 : Ωh → SO(3)). The ”intermediate” configuration
Ωξ is compatible by construction.

In a geometrical nonlinear Cosserat elastic 3D model, the deformation ϕξ and the microrotation Rξ are
the solutions of the following nonlinear minimization problem on Ωξ:

I(ϕξ, Fξ, Rξ, αξ) =

∫
Ωξ

[
Wmp(Uξ) +Wcurv(αξ)

]
dVξ −Π(ϕξ, Rξ) 7→ min . w.r.t (ϕξ, Rξ) , (5.1.4)
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where

Fξ : =∇ξϕξ ∈ R3×3 (the deformation gradient),

Uξ : =R
T

ξ Fξ ∈ R3×3 (the non-symmetric Biot-type stretch tensor),

αξ : =R
T

ξ Curlξ Rξ ∈ R3×3 (the second order dislocation density tensor [82]) ,

(5.1.5)

Wmp(Uξ) : =µ ‖dev sym(Uξ − 13)‖2 + µc ‖skew(Uξ − 13)‖2 +
κ

2
[tr(sym(Uξ − 13))]2 (physically linear) ,

Wcurv(αξ) : =µL2
c

(
a1 ‖dev symαξ‖2 + a2 ‖skewαξ‖2 + a3 [tr(αξ)]

2
)

(quadratic curvature energy),

and dV (ξ) denotes the volume element in the Ωξ-configuration. The total stored energy can be seen by
W = Wmp +Wcurv, with Wmp as membrane energy and Wcurv as curvature energy. Clearly, W depends
on the deformation gradient Fξ = ∇ξϕξ and the microrotation Rξ. As before, the parameters µ and λ

are the Lamé constants of classical isotropic elasticity, κ =
2µ + 3λ

3
is the infinitesimal bulk modulus,

µc > 0 is the Cosserat couple modulus and Lc > 0 is the internal length and responsible for size effects
in the sense that smaller samples are relatively stiffer than larger samples (Cosserat models [38]). If not
stated otherwise, we assume that µ > 0, κ > 0, µc > 0. We also assume that a1 > 0, a2 > 0 and a3 > 0,
which assures the coercivity and convexity of the curvature energy [90].

The external loading potential denoted by Π(ϕξ, Rξ), is given by

Π(ϕξ, Rξ) = Πf (ϕξ) + Πc(Rξ) ,

where

Πf (ϕξ) :=

∫
Ωξ

〈f, uξ〉 dVξ = potential of external applied body forces f ,

Πc(Rξ) :=

∫
Γξ

〈c,Rξ〉 dSξ = potential of external applied boundary couple forces c ,

with uξ = ϕξ − ξ the displacement vector. We will assume that the external loads satisfy in regularity
condition:

f ∈ L2(Ωξ,R3) , c ∈ L2(Γξ,R3) , Rξ ∈ L2(Ωξ,R3) . (5.1.6)

For simplicity, we consider only Dirichlet-type boundary conditions on Γξ = γξ ×
[
− h

2 ,
h
2

]
, γξ ⊂ ∂ωξ,

i.e., we assume that

ϕξ = ϕdξ on Γξ, (5.1.7)

where ϕdξ is a given function on Γξ.

In [80] existence of minimizers is shown for positive Cosserat couple modulus µc > 0. The case µc = 0
can be handled as well with a slight modification of the curvature energy. The form of the curvature
energy Wcurv is not that originally considered in [81]. Indeed, Neff [81] used a curvature energy expressed

in terms of the third order curvature tensor Aξ = (R
T

ξ ∇(Rξ.e1) |RTξ ∇(Rξ.e2) |RTξ ∇(Rξ.e3)). The new
form of the energy based on the second order dislocation density tensor αξ simplifies considerably the
representation by allowing to use the orthogonal decomposition

R
T

ξ Curlξ Rξ = αξ = dev sym αξ + skew αξ +
1

3
tr(αξ)13. (5.1.8)

Moreover, it yields an equivalent control of spatial derivatives of rotations [82] and allows us to write the
curvature energy in a fictitious Cartesian configuration in terms of the so-called wryness tensor [82, 44]

Γξ :=
(

axl(R
T

ξ ∂ξ1Rξ) | axl(R
T

ξ ∂ξ2Rξ) | axl(R
T

ξ ∂ξ3Rξ)
)
∈ R3×3, (5.1.9)

since (see [82]) the following close relationship between the wryness tensor and the dislocation density
tensor holds

αξ = −ΓTξ + tr(Γξ) 13 , or equivalently, Γξ = −αTξ +
1

2
tr(αξ) 13 . (5.1.10)
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For infinitesimal strains this formula is well-known under the name Nye’s formula, and −Γ is also called
Nye’s curvature tensor [95]. Our choice of the second order dislocation density tensor αξ has some further
implications, e.g., the coupling between the membrane part, the membrane-bending part, the bending-
curvature part and the curvature part of the energy of the shell model is transparent and will coincide
with shell-bending curvature tensors elsewhere considered [45].

Within our assumptions on the constitutive coefficients, together with the orthogonal Cartan-decomposition
of the Lie-algebra gl(3) and with the definition

Wmp(X) :=W∞mp(sym X) + µc‖skewX‖2 ∀X ∈ R3×3, (5.1.11)

W∞mp(S) =µ ‖S‖2 +
λ

2
[tr(S)]2 ∀S ∈ Sym(3),

it follows that there exist positive constants c+1 , c
+
2 , C

+
1 and C+

2 such that for all X ∈ R3×3 the following
inequalities hold

C+
1 ‖S‖2 ≥ W∞mp(S) ≥ c+1 ‖S‖2 ∀S ∈ Sym(3),

C+
1 ‖sym X‖2 + µc ‖skew X‖2 ≥ Wmp(X) ≥ c+1 ‖sym X‖2 + µc ‖skew X‖2 ∀X ∈ R3×3,

C+
2 ‖X‖2 ≥ Wcurv(X) ≥ c+2 ‖X‖2 ∀X ∈ R3×3. (5.1.12)

Here, c+1 and C+
1 denote respectively the smallest and the largest eigenvalues of the quadratic form

W∞mp(X). Hence, they are independent of µc. Both Wmp and Wcurv are quadratic convex and coercive

functions of Uξ and αξ, respectively.

The regularity condition of the external loads allows us to conclude that

|Πf (ϕξ)| = |
∫

Ωξ

〈f, uξ〉 dVξ| ≤ ‖f‖L2(Ωξ)‖uξ‖L2(Ωξ) , (5.1.13)

which implies that

|Πf (ϕξ)| = |
∫

Ωξ

〈f, uξ〉dVξ| ≤ ‖f‖L2(Ωξ)‖uξ‖W1,2(Ωξ) . (5.1.14)

Similarly we have

|Πc(Rξ)| = |
∫

Γξ

〈c,Rξ〉dSξ| ≤ ‖c‖L2(Γξ)‖Rξ‖L2(Γξ) . (5.1.15)

Note that ‖Rξ‖2 = 3. By using the fact that ‖Rξ‖2L2(Γξ)
= (3 area Γξ), we get

|Π(ϕξ, Rξ)| ≤ ‖f‖L2(Ωξ)‖uξ‖W1,2(Ωξ) + ‖c‖L2(Γξ)(3 area Γξ)
1
2 . (5.1.16)

This boundedness will be later used in the subject of Γ-convergence.
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5.2. Transformation of the problem from Ωξ to the fictitious flat
configuration Ωh

The first step in a shell model is to transform the problem to a variational problem defined on the
fictitious flat configuration Ωh = ω ×

[
− h

2 ,
h
2

]
. This process is going to be done with the help of the

diffeomorphism Θ. To this aim, we define the mapping

ϕ : Ωh → Ωc , ϕ(x1, x2, x3) = ϕξ(Θ(x1, x2, x3)) .

The function ϕ maps Ωh (fictitious flat Cartesian configuration) into Ωc (deformed current configuration).
Moreover, we consider the elastic microrotation Qe : Ωh → SO(3) similarly defined by

Qe(x1, x2, x3) := Rξ(Θ(x1, x2, x3)) , (5.2.1)

and the elastic Biot-type stretch tensor Ue : Ωh → Sym(3) is then given by

Ue(x1, x2, x3) := Uξ(Θ(x1, x2, x3)) . (5.2.2)

We also have the polar decomposition ∇xΘ = Q0 U0, where

Q0 = polar(∇xΘ) = polar([∇xΘ]−T ) ∈ SO(3) and U0 ∈ Sym+(3) . (5.2.3)

Now by using (5.2.1), we define the total microrotation tensor

R : Ωh → SO(3), R(x1, x2, x3) = Qe(x1, x2, x3)Q0(x1, x2, x3) . (5.2.4)

By applying the chain rule for ϕ one obtains

∇xϕ(x1, x2, x3) = ∇ξϕξ(Θ(x1, x2, x3))∇xΘ(x1, x2, x3) , (5.2.5)

or equivalently

Fξ(Θ(x1, x2, x3)) = F (x1, x2, x3) [∇xΘ(x1, x2, x3)]−1 . (5.2.6)

Finally the elastic non-symmetric stretch tensor expressed on Ωh is defined by

Ue = Q
T

e F [∇xΘ]−1 = Q0R
T
F [∇xΘ]−1 . (5.2.7)

Note that ∂xkQe =
∑3
i=1 ∂ξiRξ ∂xkξi, ∂ξkRξ =

∑3
i=1 ∂xiQe ∂ξkxi and

R
T

ξ ∂ξkRξ =

3∑
i=1

(Q
T

e ∂xiQe) ∂ξkxi =

3∑
i=1

(
Q
T

e ∂xiQe
)
([∇xΘ]−1)ik , (5.2.8)

axl
(
R
T

ξ ∂ξkRξ
)

=

3∑
i=1

axl
(
Q
T

e ∂xiQe
)
([∇xΘ]−1)ik.

Thus, we have from the chain rule

Γξ =
( 3∑
i=1

axl
(
Q
T

e ∂xiQe

)
([∇xΘ]−1)i1

∣∣∣ 3∑
i=1

axl
(
Q
T

e ∂xiQe
)
([∇xΘ]−1)i2

∣∣∣ 3∑
i=1

axl
(
Q
T

e ∂xiQe
)
([∇xΘ]−1)i3

)
=
(

axl(Q
T

e ∂x1Qe) | axl(Q
T

e ∂x2Qe) | axl(Q
T

e ∂x3Qe)
)

[∇xΘ]−1. (5.2.9)

We recall again the Nye’s formula

αξ = −ΓTξ + tr(Γξ)13 , or Γξ = −αTξ +
1

2
tr(αξ)13 . (5.2.10)

Define

Γe :=
(

axl(Q
T

e ∂x1
Qe) | axl(Q

T

e ∂x2
Qe) | axl(Q

T

e ∂x3
Qe)

)
, αe := Q

T

e Curlx Qe. (5.2.11)
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Using Nye’s formula for αe and Γe, we deduce (see [56])

αξ = [∇xΘ]−Tαe −
1

2
tr(αe) [∇xΘ]−T − tr( [∇xΘ]−Tαe) 13 +

1

2
tr(αe) tr([∇xΘ]−1) 13

= [∇xΘ]−Tαe − tr(αTe [∇xΘ]−1) 13 −
1

2
tr(αe)

(
[∇xΘ]−T − tr([∇xΘ]−1) 13

)
. (5.2.12)

However, we will not use this formula to rewrite the curvature energy in the fictitious Cartesian configu-
ration Ωh, since it is easier to use (from (5.1.10))

sym αξ = − sym Γξ + tr(Γξ) 13 = − sym(Γe [∇xΘ]−1) + tr(Γe [∇xΘ]−1) 13,

dev sym αξ = − dev sym Γξ = −dev sym(Γe [∇xΘ]−1), (5.2.13)

skewαξ = − skew Γξ = − skew(Γe [∇xΘ]−1),

tr(αξ) = − tr(Γξ) + 3 tr(Γξ) = 2 tr(Γξ) = 2 tr(Γe [∇xΘ]−1),

for expressing the curvature energy in terms of Γe [∇xΘ]−1 as

Wcurv(αξ) =µL2
c

(
a1 ‖dev sym(Γe [∇xΘ]−1)‖2 + a2 ‖skew(Γe [∇xΘ]−1)‖2 + 4 a3 [tr(Γe [∇xΘ]−1)]2

)
.

(5.2.14)

Note that using

Q
T

e ∂xiQe = Q0R
T
∂xi(RQ

T
0 ) = Q0(R

T
∂xiR)QT0 −Q0(QT0 ∂xiQ0)QT0 , i = 1, 2, 3 , (5.2.15)

and the invariance ([56], relation (3.12))

axl(QAQT ) = Q axl(A) ∀Q ∈ SO(3) and ∀A ∈ so(3), (5.2.16)

we obtain the following form of the wryness tensor

Γ(x1, x2, x3) : = Γξ(Θ(x1, x2, x3)) = Γe [∇xΘ]−1

= Q0

[(
axl(R

T
∂x1

R) | axl(R
T
∂x2

R) | axl(R
T
∂x3

R)
)

(5.2.17)

−
(

axl(QT0 ∂x1
Q0) | axl(QT0 ∂x2

Q0) | axl(QT0 ∂x3
Q0)

)]
[∇xΘ]−1.

Now the minimization problem on the curved reference configuration Ωξ is transformed to the fictitious
flat Cartesian configuration Ωh as follows

I =

∫
Ωh

[
Wmp(Ue) + W̃curv(Γ)

]
det(∇xΘ) dV − Π̃(ϕ,Qe) 7→ min . w.r.t (ϕ,Qe) , (5.2.18)

where

Wmp(Ue) = µ ‖sym(Ue − 13)‖2 + µc ‖skew(Ue − 13)‖2 +
λ

2
[tr(sym(Ue − 13))]2

= µ ‖dev sym(Ue − 13)‖2 + µc ‖skew(Ue − 13)‖2 +
κ

2
[tr(sym(Ue − 13))]2 ,

W̃curv(Γ) = µL2
c

(
a1 ‖dev sym Γ‖2 + a2 ‖skew Γ‖2 + 4 a3 [tr(Γ)]2

)
(5.2.19)

= µL2
c

(
b1 ‖sym Γ‖2 + b2 ‖skew Γ‖2 + b3 [tr(Γ)]2

)
,

where b1 = a1, b2 = a2, b3 = 12a3−a1
3 and Π̃(ϕ,Qe) = Π̃f (ϕ) + Π̃c(Qe), with the following forms

Π̃f (ϕ) := Πf (ϕξ) =

∫
Ωξ

〈f, uξ〉 dVξ =

∫
Ωh

〈f̃ , ũ〉 dV ,

Π̃c(Qe) := Πc(Rξ) =

∫
Γξ

〈c,Rξ〉 dSξ =

∫
Γh

〈c̃, Qe〉 dS , (5.2.20)

with ũ(xi) = ϕ(xi)−Θ(xi) the displacement vector, R = QeQ0 the total microrotation, the vector fields

f̃ and c̃ can be determined in terms of f and c, respectively, for instance (see [31, Theorem 1.3.-1 ])

f̃(x) = f(Θ(x)) det(∇xΘ), c̃(x) = c(Θ(x)) det(∇xΘ). (5.2.21)

Note that regarding to the regularity condition (5.1.6), the following regularity conditions will hold as
well

f̃ ∈ L2(Ωh,R3) , c̃ ∈ L2(Γh,R3) , Qe ∈ L2(Γh,R3) . (5.2.22)

The Dirichlet-type boundary conditions (in the sense of the traces) on Γξ = γξ ×
[
− h

2 ,
h
2

]
, γξ ⊂ ∂ωξ,

read on the boundary Γh = γ ×
[
− h

2 ,
h
2

]
, γ = Θ−1(γξ) ⊂ ∂ω, as ϕ = ϕhd on Γh, where ϕhd = Θ−1(ϕhξ ).
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5.3. Construction of the family of functionals Ihj

5.3.1. Nonlinear scaling for the gradient of the deformation and the microrotation

In order to apply the methods of Γ-convergence, the first step is to transform our problem further from
Ωh to a domain with fixed thickness Ω1 = ω × [− 1

2 ,
1
2 ] ⊂ R3, ω ⊂ R2. For this goal, scaling of the

variables (dependent/independent) would be the first step. However, it is important to know which kind
of scaling is suitable for our variables.

In a first step we will apply the nonlinear scaling to the deformation. For Ω1 = ω ×
[
− 1

2
,

1

2

]
⊂ R3,

ω ⊂ R2, we define the scaling transformations

ζ : η ∈ Ω1 7→ R3 , ζ(η1, η2, η3) := (η1, η2, h η3) ,

ζ−1 : x ∈ Ωh 7→ R3 , ζ−1(x1, x2, x3) := (x1, x2,
x3

h
) , (5.3.1)

with ζ(Ω1) = Ωh. By using the relation (4.0.4) and above transformations we obtain the formula for the
transformed deformation ϕ as

ϕ(x1, x2, x3) = ϕ\(ζ−1(x1, x2, x3)) ∀x ∈ Ωh ; ϕ\(η) = ϕ(ζ(η)) ∀η ∈ Ω1 ,

∇xϕ(x1, x2, x3) =



∂η1ϕ
\
1(η) ∂η2ϕ

\
1(η)

1

h
∂η3ϕ

\
1(η)

∂η1ϕ
\
2(η) ∂η2ϕ

\
2(η)

1

h
∂η3ϕ

\
2(η)

∂η1ϕ
\
3(η) ∂η2ϕ

\
3(η)

1

h
∂η3ϕ

\
3(η)


= ∇hηϕ\(η) = F \h . (5.3.2)

Now we will do the same process for the microrotation tensor Q
\

e : Ω1 → SO(3)

Qe(x1, x2, x3) = Q
\

e(ζ
−1(x1, x2, x3)) ∀x ∈ Ωh ; Q

\

e(η) = Qe(ζ(η)) , ∀η ∈ Ω1 ,

as well as for ∇xΘ(x), the matrices of its polar decomposition ∇xΘ(x) = Q0(x)U0(x), in the sense that

(∇xΘ)\(η) = (∇xΘ)(ζ(η)), Q\0(η) = Q0(ζ(η)), U \0(η) = U0(ζ(η)) . (5.3.3)

We also define R
\
: Ω1 → SO(3)

R(x1, x2, x3) = R
\
(ζ−1(x1, x2, x3)) ∀x ∈ Ωh ; R

\
(η) = R(ζ(η)) , ∀η ∈ Ω1 .

With this, the non-symmetric stretch tensor expressed in a point of Ω1 is given by

Ue
\ = Q

\,T

e F \h[(∇xΘ)\]−1 = Q
\,T

e ∇hηϕ\(η)[(∇xΘ)\]−1 . (5.3.4)

Since for η3 = 0 their values expressed in terms of (η1, η2, 0) and (x1, x2, 0) coincide, we will omit the
sign ·\ and we will understand from the context the variables into discussion, i.e.,

(∇xΘ)(0) := (∇y0 |n0) = (∇xΘ)\(η1, η2, 0) ≡ (∇xΘ)(x1, x2, 0),

Q0(0) := Q\0(η1, η2, 0) ≡ Q0(x1, x2, 0), U0(0) := U \0(η1, η2, 0) ≡ U0(x1, x2, 0).

Therefore, we have

Q
\

e(η) = R
\
(η)(Q\0(η))T , Ue

\(η) = Q
\,T

e (η)F \h(η)[(∇xΘ)\]−1 = Q\0(η)R
\,T

(η)F \h(η)[(∇xΘ)\]−1 ,
(5.3.5)

and

Γ\h =
(

axl(Q
\,T

e,h ∂η1Q
\

e,h) | axl(Q
\,T

e,h ∂η2Q
\

e,h) | 1

h
axl(Q

\,T

e,h ∂η3Q
\

e,h)
)

[(∇xΘ)\]−1. (5.3.6)
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5.3.2. Transformation of the problem from Ωh to a fixed domain Ω1

The next step, in order to apply the Γ-convergence technique, is to transform the minimization problem
onto the fixed domain Ω1, which is independent from the thickness h. According to the results from the
previous subsection, we have the following minimization problem on Ω1

I\h(ϕ\,∇hηϕ\, Q
\

e,Γ
\
h) =

∫
Ω1

(
Wmp(Uh

\) + W̃curv(Γ\h)
)

det(∇ηζ(η)) det((∇xΘ)\) dVη −Π\
h(ϕ\, Q

\

e)

=

∫
Ω1

h
[(
Wmp(Uh

\) + W̃curv(Γ\h)
)

det((∇xΘ)\)
]
dVη︸ ︷︷ ︸

:=J\h(ϕ\,∇hηϕ\,Q
\
e,Γ

\
h)

−Π\
h(ϕ\, Q

\

e) 7→ min w.r.t (ϕ\, Q
\

e) , (5.3.7)

where

Wmp(Uh
\) = µ ‖sym(Uh

\ − 13)‖2 + µc ‖skew(Uh
\ − 13)‖2 +

λ

2
[tr(sym(Uh

\ − 13))]2 ,

W̃curv(Γ\h) = µL2
c

(
a1 ‖dev sym Γ\h‖2 + a2 ‖skew Γ\h‖2 + a3 [tr(Γ\h)]2

)
, (5.3.8)

with Π\
h(ϕ\, Q

\

e) = Π\
f (ϕ\) + Π\

c(Q
\

e),

Π\
f (ϕ\) := Π̃f (ϕ) =

∫
Ωh

〈f̃ , ũ〉 dV =

∫
Ω1

〈f̃ \, ũ\〉 det(∇ηζ(η)) dVη = h

∫
Ω1

〈f̃ \, ũ\〉 dVη ,

Π\
c(Q

\

e) := Π̃c(Qe) =

∫
Γh

〈c̃, Qe〉dS =

∫
Γ1

〈c̃\, Q\e〉 det(∇ηζ(η)) dSη = h

∫
Γ1

〈c̃\, Q\e〉 dSη , (5.3.9)

with f̃ \(η) = f̃(ζ(η)), ũ\(η) = ũ(ζ(η)), c̃\(η) = c̃(ζ(η)) and Q
\

e(η) = Qe(ζ(η)). Here we recall that
regarding to the regularity condition (5.2.22), it holds

f̃ \ ∈ L2(Ω1,R3) , c̃\ ∈ L2(Γ1,R3) , Q
\ ∈ L2(Γ1,R3) . (5.3.10)

Therefore, we may write

|Π\
f (ϕ\)| = |h

∫
Ω1

〈f̃ \, ũ\〉dVη| ≤ h‖f̃ \‖L2(Ω1)‖ũ\‖L2(Ω1) ,

|Π\
c(Q

\

e)| = |h
∫

Γ1

〈c̃\, Q\e〉dSη| ≤ h‖c̃\‖L2(Γ1)‖Q
\

e‖L2(Γ1) , (5.3.11)

and consequently

|Π\
h(ϕ\, Q

\

e)| ≤ h
[
‖f̃ \‖L2(Ω1)‖ũ\‖L2(Ω1) + ‖c̃\‖L2(Γ1)‖Q

\

e‖L2(Γ1)

]
. (5.3.12)

The Dirichlet-type boundary conditions (in the sense of the trace) on Γh = γ×
[
− h

2 ,
h
2

]
, γ = Θ−1(γξ) ⊂

∂ω, read on the boundary Γ1 = γ ×
[
− 1

2 ,
1
2

]
as ϕ\ = ϕ\d on Γ1, where ϕ\d = Θ−1(ϕhd).
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ϕ\, R
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Figure 5.3.: The complete picture of the involved domains. Ω1 is the fictitious flat domain with unit thickness, Ωξ denotes
the curved reference configuration, Ωc is the current deformed configuration. Again, the reference configura-
tion Ωξ takes on the role of a compatible intermediate configuration in the multiplicative decomposition.

5.4. Equi-coercivity and compactness of the family of energy
functionals

5.4.1. The set of admissible solutions

Due to the scaling, we have obtained a family of functionals

J\h(ϕ\,∇hηϕ\, Q
\

e,Γ
\
h) =

∫
Ω1

h
[(
Wmp(Uh

\) + W̃curv(Γ\h)
)

det((∇xΘ)\)
]
dVη , (5.4.1)

depending on the thickness h. The next step is to prepare a suitable space X on which the existence
of Γ-convergence will be studied. As already mentioned, for applying the techniques of Γ-limit we need
to assume that the space X is separable or metrizable. Since working in H1(Ω1,R3) ×W1,2(Ω1,SO(3))
means to consider the weak topopolgy, which does not give rise to a metric space, we introduce the
following spaces:

X := {(ϕ\, Q\e) ∈ L2(Ω1,R3)× L2(Ω1,SO(3))} ,
X ′ := {(ϕ\, Q\e) ∈ H1(Ω1,R3)×W1,2(Ω1,SO(3))} ,
Xω := {(ϕ,Qe) ∈ L2(ω,R3)× L2(ω,SO(3))} , (5.4.2)

X ′ω := {(ϕ,Qe) ∈ H1(ω,R3)×W1,2(ω,SO(3))} .
We also consider the following admissible sets

S ′ := {(ϕ,Qe) ∈ H1(Ω1,R3)×W1,2(Ω1,SO(3))
∣∣ ϕ|Γ1

(η) = ϕ\d(η)} ,
S ′ω := {(ϕ,Qe) ∈ H1(ω,R3)×W1,2(ω,SO(3))

∣∣ ϕ|∂ω(η1, η2) = ϕ\d(η1, η2, 0)} . (5.4.3)

By the imbedding theorem ([32], Theorem 6.1-3), the imbedding X ′ ⊂ X is true and clearly Xω ⊂ X,
X ′ω ⊂ X ′ 2.

The functionals in our analysis are obtained by extending the functionals Jh (respectively Ih) to the
entire space X and to take their averages over the thickness, through

I\h(ϕ\,∇hηϕ\, Q
\

e,Γ
\
h) =


1

h
I\h(ϕ\,∇hηϕ\, Q

\

e,Γ
\
h) if (ϕ\, Q

\

e) ∈ S ′,
+∞ else in X.

(5.4.4)

=


1

h
J\h(ϕ\,∇hηϕ\, Q

\

e,Γ
\
h)− 1

h
Π\
h(ϕ\, Q

\

e) if (ϕ\, Q
\

e) ∈ S ′,
+∞ else in X.

2Since∞ >
∫
ω |ϕ|

2 dx dy =
∫
ω

∫ 1/2
−1/2

|ϕ|2 dz dx dy =
∫
Ω1
|ϕ|2 dV , which means any element from Xω , belongs to X as well.
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The main aim of the current chapter is to find the Γ-limit of the family of functional I\h(ϕ\,∇hηϕ\, Q
\

e,Γ
\
h),

i.e., to obtain an energy functional expressed only in terms of the weak limit of a subsequence of

(ϕ\hj , Q
\

e,hj ) ∈ X, when hj goes to zero. In other words, as we will see, to construct an energy func-
tion depending only on quantities defined on the midsurface of the shell-like domain, see Figure 5.4 . As
a first step we consider the functionals

J \h(ϕ\,∇hηϕ\, Q
\

e,Γ
\
h) =


1

h
J\h(ϕ\,∇hηϕ\, Q

\

e,Γ
\
h) if (ϕ\, Q

\

e) ∈ S ′,
+∞ else in X.

(5.4.5)

5.4.2. Equi-coercivity and compactness of the family J \
h

Theorem 5.4.1. Assume that the initial configuration is defined by a continuous injective mapping
y0 : ω ⊂ R2 → R3 which admits an extension to ω into C2(ω;R3) such that det[∇xΘ(0)] ≥ a0 > 0 on ω,
where a0 is a positive constant, and assume that the boundary data satisfies the conditions

ϕ\d = ϕd
∣∣
Γ1

(in the sense of traces) for ϕd ∈ H1(Ω1,R3). (5.4.6)

Consider a sequence (ϕ\hj , Q
\

e,hj ) ∈ X, such that the energy functionals J \hj (ϕ
\
hj
, Q

\

e,hj ) are bounded as
hj → 0. Let the constitutive parameters satisfy

µ > 0, κ > 0, µc > 0, a1 > 0, a2 > 0, a3 > 0. (5.4.7)

Then the sequence (ϕ\hj , Q
\

e,hj ) admits a subsequence which is weakly convergent to (ϕ\0, Q
\

e,0) ∈ Xω.

x b

e3

ξ
b ∂x1y0

∂x2y0
n0

ϕ(x) ∂x1m

∂x2m
n

b

e1

e2

e3

b

Θ, Q0 = polar(∇Θ(0))
∇Θ(0) = (∇y0|n0)

y0

ϕ,R

m

ϕξ, Qe

ω

ωc

ωξ = y0(ω)

Figure 5.4.: Kinematics of the dimensionally reduced Cosserat shell model. All fields are referred to two-dimensional
surfaces. The geometry of the curved surface ωξ is fully encoded by the map Θ. Instead of the elastic
deformation starting from ωξ, the total deformation m from the fictitious flat midsurface ω is considered,

likewise for the total rotation R.

Proof. Consider the sequence (ϕ\hj , Q
\

e,hj ) ∈ X, such that the energy functionals J \hj (ϕ
\
hj
, Q

\

e,hj ) are

bounded as hj → 0. Obviously this implies that (ϕ\hj , Q
\

e,hj ) ∈ S ′ for all hj . We have

2
(
‖Uhj\ − 13‖2 + ‖13‖2

)
≥ (‖Uhj\ − 13‖+ ‖13‖)2 ≥ ‖Uhj\‖2 = ‖Q\,Te ∇hjη ϕ\hj [(∇xΘ)\(η)]−1‖2

= 〈Q\,Te ∇hjη ϕ\hj [(∇xΘ)\(η)]−1, Q
\,T

e ∇hjη ϕ\hj [(∇xΘ)\(η)]−1〉
= ‖∇hjη ϕ\hj [(∇xΘ)\(η)]−1‖2. (5.4.8)

Thus, we deduce with (5.4.8)1

‖Uhj\ − 13‖2 ≥
1

2
‖∇hjη ϕ\hj [(∇xΘ)\(η)]−1‖2 − 3. (5.4.9)
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But

‖∇hjη ϕ\hj‖ = ‖∇hjη ϕ\hj [(∇xΘ)\(η)]−1[(∇xΘ)\(η)]‖ ≤ ‖∇hjη ϕ\hj [(∇xΘ)\(η)]−1‖ · ‖(∇xΘ)\(η)]‖ , (5.4.10)

and we obtain

‖∇hjη ϕ\hj [(∇xΘ)\(η)]−1‖ ≥ ‖∇hjη ϕ\hj‖
1

‖(∇xΘ)\(η)‖ . (5.4.11)

From the formula [(∇xΘ)\(η)] = (∇y0|n0) + hjη3(∇n0|0) we get

‖(∇xΘ)\(η)‖ ≤ ‖(∇y0|n0)‖+ hj |η3| ‖(∇n0|0)‖ ≤ ‖(∇y0|n0)‖+ hj ‖(∇n0|0)‖
< ‖(∇y0|n0)‖+ ‖(∇n0|0)‖ , (5.4.12)

since hj � 1. Thus

1

‖(∇xΘ)\(η)‖ ≥
1

‖(∇y0|n0)‖+ ‖(∇n0|0)‖ . (5.4.13)

Moreover, since y0 ∈ C2(ω;R3), it follows that for hj small enough that there exists c1 > 0 such that

1

‖(∇xΘ)\(η)‖ ≥ c1. (5.4.14)

Therefore, from (5.4.9) and (5.4.11), we get that there exist c1, c2 > 0 such that

‖Uhj\ − 13‖2 ≥
c1
2
‖∇hjη ϕ\hj‖

2 − c2. (5.4.15)

From the hypothesis we have

∞ > J \hj (ϕ
\
hj
, Q

\

e,hj ) ≥
∫

Ω1

(
Wmp(Uhj

\) + W̃curv(Γ\hj )
)

det((∇xΘ)\) dVη (5.4.16)

≥
∫

Ω1

Wmp(Uhj
\) det((∇xΘ)\) dVη ≥ min(c+1 , µc )

∫
Ω1

‖Uhj\ − 13‖2 det((∇xΘ)\)dVη,

where c+1 denotes the smallest eigenvalue of the quadratic form W∞mp(X).

Let us recall that det(∇xΘ(x3)) = det(∇y0|n0)
[
1− 2x3 H + x2

3 K
]

= det(∇y0|n0)(1− κ1 x3)(1− κ2 x3),

where H,K are the mean curvature and Gauß curvature, respectively. But (1 − κ1 x3)(1 − κ2 x3) > 0,
∀x3 ∈ [−hj/2, hj/2] if and only if hj satisfies the hypothesis. Therefore, there exists a constant c > 0 such
that

det(∇xΘ(x3)) ≥ cdet(∇y0|n0) ∀ x3 ∈ [−h/2, h/2] . (5.4.17)

Due to the hypothesis det[∇xΘ(0)] ≥ a0 > 0 this implies that there exists a constant c > 0 such that

det(∇xΘ(x3)) ≥ c ∀ x3 ∈ [−hj/2, hj/2] , (5.4.18)

which means that det(∇xΘ(x3)\) ≥ c ∀ x3 ∈ [−1/2, 1/2].

Hence, from (5.4.16), (5.4.15) and (5.4.18), it follows that for small enough hj there exist constants c1 > 0
and c2 > 0 such that

∞ > J \hj (ϕ
\
hj
, Q

\

e,hj ) ≥ c1
∫

Ω1

‖∇hjη ϕ\hj‖
2dVη − c2 (5.4.19)

≥ c1
∫

Ω1

(
‖∂η1ϕ\hj‖

2 + ‖∂η2ϕ\hj‖
2 +

1

h2
j

‖∂η3ϕ\hj‖
2

)
dVη − c2.

Furthermore, due to the hypothesis on h, it is clear that there exists c > 0 such that

‖∂η1ϕ\hj‖
2 + ‖∂η2ϕ\hj‖

2 +
1

h2
j

‖∂η3ϕ\hj‖
2 ≥ c

(
‖∂η1ϕ\hj‖

2 + ‖∂η2ϕ\hj‖
2 + ‖∂η3ϕ\hj‖

2
)
, (5.4.20)
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which implies the existence of c1, c2 > 0 such that

∞ > J \hj (ϕ
\
hj
, Q

\

e,hj ) ≥ c1
∫

Ω1

(
‖∂η1ϕ\hj‖

2 + ‖∂η2ϕ\hj‖
2 + ‖∂η3ϕ\hj‖

2
)

︸ ︷︷ ︸
=:‖∇hjη ϕ\hj

‖2

dVη − c2. (5.4.21)

We also obtain, applying the Poincaré–inequality [96], that there exists a constant C > 0 such that

‖∇hjη ϕ\hj‖
2
L2(ω) = ‖∇hjη ϕ\hj −∇

hj
η ϕd +∇hjη ϕd‖2L2(ω)

≥ (‖∇hjη (ϕ\hj − ϕd)‖L2(ω) − ‖∇hjη ϕd‖L2(ω))
2

= ‖∇hjη (ϕ\hj − ϕd)‖
2
L2(ω) − 2‖∇hjη (ϕ\hj − ϕd)‖L2(ω)‖∇hjη ϕd‖L2(ω) + ‖∇hjη ϕd‖2L2(ω)

(5.4.22)

≥ C ‖ϕ\hj − ϕd‖
2
H1(ω) − 2 ‖ϕ\hj − ϕd‖H1(ω)‖∇hjη ϕd‖L2(ω) + ‖∇hjη ϕd‖2L2(ω)

≥ C ‖ϕ\hj − ϕd‖
2
H1(ω) −

1

ε
‖ϕ\hj − ϕd‖

2
H1(ω) − ε‖∇hjη ϕd‖2L2(ω) + ‖∇hjη ϕd‖2L2(ω) ∀ ε > 0,

where we have used Young’s and Poincaré’s inequality. Therefore, by choosing ε > 0 small enough,
(5.4.22) ensures the existence of constants c1 > 0 and c2 ∈ R such that

‖∇hjη ϕ\hj‖
2
L2(ω) ≥ c1‖ϕ\hj − ϕd‖

2
H1(ω) − c2 ≥

c1
2

2 (‖ϕ\hj‖H1(ω) − ‖ϕd‖H1(ω))
2 − c2

≥ c1
2
‖ϕ\hj‖

2
H1(ω) +

c1
2
‖ϕd‖2H1(ω) − c2. (5.4.23)

Thus, there exists c1 > 0 and c2 ∈ R such that

‖∇hjη ϕ\hj‖
2
L2(ω) ≥

c1
2
‖ϕ\hj‖

2
H1(ω) − c2, (5.4.24)

which implies the uniform bound for ϕ\hj in S ′. On the other hand, since

‖∂η1ϕ\hj‖
2 + ‖∂η2ϕ\hj‖

2 +
1

h2
j

‖∂η3ϕ\hj‖
2 ≥ 1

h2
j

‖∂η3ϕ\hj‖
2, (5.4.25)

from (5.4.19) it results that 1
h2
j
‖∂η3ϕ\hj‖2 is bounded, i.e., there is c > 0, such that

‖∂η3ϕ\hj‖L2(Ω) ≤ c hj . (5.4.26)

This means that ∂η3ϕ
\
hj
→ 0 strongly in L2(Ω), when hj → 0.

Hence, considering (ϕ\hj , Q
\

e,hj ) ∈ X, such that the energy functionals J \hj (ϕ
\
hj
, Q

\

e,hj ) are bounded, it

follows that any limit point ϕ\0 of ϕ\hj for the weak topology of L2(Ω1,R3) (which exists due to its uniform

boundedness in H1(ω,R3)) satisfies

∂η3ϕ
\
0 = 0 ⇒ ϕ\0 ∈ H1(ω,R3). (5.4.27)

Similar arguments for the curvature energy implies that there exists c > 0 such that

∞ >J \hj (ϕ
\
hj
, Q

\

e,hj
) ≥

∫
Ω1

W̃curv(Γ\hj ) det((∇xΘ)\) dVη ≥
∫

Ω1

c ‖Γ\hj‖
2 det((∇xΘ)\) dVη (5.4.28)

= c

∫
Ω1

∥∥∥∥(axl(Q
\,T

e,hj
∂η1Q

\

e,hj
)
∣∣∣ axl(Q

\,T

e,hj
∂η2Q

\

e,hj
)
∣∣∣ 1

hj
axl(Q

\,T

e,hj
∂η3Q

\

e,hj
)
)

[(∇xΘ)\(η)]−1

∥∥∥∥2

det((∇xΘ)\) dVη .

In the next step, as in the deduction of (5.4.8)–(5.4.19), it will be shown that for a1, a2, a3 > 0 there exists c > 0
such that

∞ > c

∫
Ω1

(
‖axl(Q

\,T

e,hj
∂η1Q

\

e,hj
)‖2 + ‖axl(Q

\,T

e,hj
∂η2Q

\

e,hj
)‖2 +

1

h2
j

‖axl(Q
\,T

e,hj
∂η3Q

\

e,hj
)‖2
)
dVη

= c

∫
Ω1

(
‖Q\,Te,hj ∂η1Q

\

e,hj
‖2 + ‖Q\,Te,hj ∂η2Q

\

e,hj
‖2 +

1

h2
j

‖Q\,Te,hj ∂η3Q
\

e,hj
‖2
)
dVη (5.4.29)

= c

∫
Ω1

(
‖∂η1Q

\

e,hj
‖2 + ‖∂η2Q

\

e,hj
‖2 +

1

h2
j

‖∂η3Q
\

e,hj
‖2
)
dVη .
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With the same argument as the membrane part, we deduce

∞ > c

∫
Ω1

(
‖∂η1Q

\

e,hj‖2 + ‖∂η2Q
\

e,hj‖2 + ‖∂η3Q
\

e,hj‖2
)
dVη , (5.4.30)

where c > 0. Hence, it follows that ∂ηiQ
\

e,hj is bounded in L2(Ω1,R3×3), for i = 1, 2, 3. Since Q
\

e,hj ∈
SO(3), we have ‖Q\e,hj‖2 = 3 and therefore Q

\

e,hj is bounded in L2(Ω1,R3×3). Hence, we can infer that

the sequence Q
\

e,hj is bounded in W1,2(Ω1,SO(3)), independently from hj .

Therefore, there is a subsequence from Q
\

e,hj which is weakly convergent (without relabeling) to Q
\

e,0.
That is

Q
\

e,hj ⇀ Q
\

e,0 in W1,2(Ω1,SO(3)) . (5.4.31)

In addition, from (5.4.29), we also obtain that there exists c > 0 such that c hj > ‖∂η3Q
\

e,hj‖L2(Ω1,SO(3)).

This means that ∂η3Q
\

e,hj → 0 strongly in L2(Ω1,SO(3)), when hj → 0. Hence, considering (ϕ\hj , Q
\

e,hj ) ∈
X, such that the energy functional J \hj (ϕ

\
hj
, Q

\

e,hj ) are bounded, it follows that any limit point Q
\

e,0 of

Q
\

e,hj for the weak topology of X satisfies

∂η3Q
\

e,0 = 0 ⇒ Q
\

e,0 ∈W1,2(ω,SO(3)). (5.4.32)

From (5.4.27), (5.4.32) and due to the continuity of the trace operator we obtain that considering

(ϕ\hj , Q
\

e,hj ) ∈ X, such that the energy functional J \hj (ϕ
\
hj
, Q

\

e,hj ) are bounded, it follows that any limit

point (ϕ\0, Q
\

e,0) for the weak topology of X belongs to S ′ω (since actually, such a sequence belongs to
S ′). �

Since the embedding X ′ ⊂ X is compact, it follows that the set of the sequence of energies due to
the scaling is a subset of X ′, and hence, we have obtained that the family of energy functionals J\h is
equi-coercive with respect to X.

5.5. The construction of the Γ-limit J0 of the rescaled energies

In this section we construct the Γ-limit of the rescaled energies

J \h(ϕ\,∇hηϕ\, Q
\

e,Γ
\
h) =


1

h
J\h(ϕ\,∇hηϕ\, Q

\

e,Γ
\
h) if (ϕ\, Q

\

e) ∈ S ′,
+∞ else in X,

(5.5.1)

with

J\h(ϕ\,∇hηϕ\, Q
\

e,Γ
\
h) =

∫
Ω1

h
[(
Wmp(Uh

\) + W̃curv(Γ\h)
)

det((∇xΘ)\)
]
dVη. (5.5.2)

5.5.1. Auxiliary optimization problem

For ϕ\ : Ω1 → R3 and Q
\

e : Ω1 → SO(3) we associate the non fully dimensional reduced elastic shell
stretch tensor

U
ϕ\,Q

\
e

:= Q
\,T

e (∇(η1,η2)ϕ
\|0)[(∇xΘ)\]−1 , (5.5.3)

and the non fully dimensional reduced elastic shell strain tensor

E
ϕ\,Q

\
e

:= (Q
\,T

e ∇(η1,η2)ϕ
\ − (∇y0)\|0)[(∇xΘ)\]−1 = U

ϕ\,Q
\
e
− ((∇y0)\|0)[(∇xΘ)\]−1 . (5.5.4)

Here, ”non-fully” means that the introduced quantities still depend on η3 and h, because the elements

∇(η1,η2)ϕ
\ still depend on η3 and Q

\,T
depends on h.
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For reaching our goal we need to solve the following optimization problem: for ϕ\ : Ω1 → R3 and

Q
\

e : Ω1 → SO(3), we determine a vector d∗ ∈ R3 through

W hom,\
mp (E

ϕ\,Q
\
e
) = Wmp

(
Q
\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1

)
:= inf

c∈R3
Wmp

(
Q
\,T

e (∇(η1,η2)ϕ
\|c)[(∇xΘ)\]−1

)
.

(5.5.5)

The motivation for this optimization problem is to minimize the effect of the derivative in the η3-
direction in the local energy Wmp. Due to the coercivity and continuity of the energy Wmp, it is

clear that this function is well defined and the infimum is attained. Note that ϕ\ and Q
\

e depend
on η3 and h. Hence W hom,\

mp (E
ϕ\,Q

\
e
) depends on η3 and h. While it is not immediately clear why

Wmp

(
Q
\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1

)
can be expressed as a function of E

ϕ\,Q
\
e
, this aspect will be clari-

fied in the rest of this subsection.

Now we calculate the variation of the energy (5.5.5) at equilibrium to be minimized over c ∈ R3 in order
to determine the minimizer d∗. For arbitrary increment δd∗ ∈ R3, we have

∀ δd∗ ∈ R3 :
〈
DWmp(Q

\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1), Q

\,T

e (0|0|δd∗)[(∇xΘ)\]−1
〉

= 0. (5.5.6)

We do some lengthy but straightforward calculations using the fact that [∇xΘ]−T e3 = n0 and [(∇xΘ)\]−T e3 =

n0, as well. By applying DWmp we obtain〈
2µ
(

sym(Q
\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1 − 13)

)
, Q

\,T

e (0|0|δd∗)[(∇xΘ)\]−1
〉
R3×3

+
〈
2µc

(
skew(Q

\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1)

)
, Q

\,T

e (0|0|δd∗)[(∇xΘ)\]−1
〉
R3×3 (5.5.7)

+ λ tr
(

sym(Q
\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1 − 13)

)
〈13, Q

\,T

e (0|0|δd∗)[(∇xΘ)\]−1〉R3×3 = 0.

This is equivalent to〈
2µQ

\

e

(
sym(Q

\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1 − 13)

)
[(∇xΘ)\]−T e3, δd

∗〉
R3

+
〈
2µcQ

\

e

(
skew(Q

\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1)

)
[(∇xΘ)\]−T e3, δd

∗〉
R3 (5.5.8)

+ λ tr
(

sym(Q
\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1 − 13)

)
〈Q\e[(∇xΘ)\]−T e3, δd

∗〉R3 = 0 ,

and it gives 〈
2µQ

\

e

(
sym(Q

\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1 − 13)

)
n0, δd

∗〉
R3

+
〈

2µcQ
\

e

(
skew(Q

\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1)

)
n0, δd

∗
〉
R3

(5.5.9)

+ λ tr
(

sym(Q
\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1 − 13)

)
〈Q\en0, δd

∗〉R3 = 0.

Recall that the first Piola–Kirchhoff stress tensor in the reference configuration Ωξ is given by S1(Fξ, Rξ) :=
DFξWmp(Fξ, Rξ), while the Biot-type stress tensor is TBiot(Uξ) := DUξ

Wmp(Uξ). Since DFξUξ .X =

R
T

ξ X and 〈DFξWmp(Fξ, Rξ), X〉 = 〈DUξ
Wmp(Uξ),DFξUξX〉, ∀X ∈ R3×3 , we obtain

DFξWmp(Fξ, Rξ) = Rξ DUξ
Wmp(Uξ) . (5.5.10)

Therefore, S1(Fξ, Rξ) = Rξ TBiot(Uξ) and TBiot(Uξ) = R
T

ξ S1(Fξ, Rξ). Here, we have

TBiot(Uξ) = 2µ sym(Uξ − 13) + 2µc skew(Uξ − 13) + λ tr(sym(Uξ − 13))13 , (5.5.11)

where Uξ(Θ(x1, x2, x3)) = Ue(x1, x2, x3). Thus, we can express the first Piola Kirchhoff stress tensor

S1(Fξ, Rξ) = Rξ

[
2µ sym(R

T

ξ Fξ − 13) + 2µc skew(R
T

ξ Fξ − 13) + λ tr(sym(R
T

ξ Fξ − 13))13

]
, (5.5.12)

with Rξ(Θ(x1, x2, x3)) = Qe(x1, x2, x3) for the elastic microrotation Qe : Ωh → SO(3). Hence, we must
have

∀δd∗ ∈ R3 : 〈S1((∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1, Q

\

e)n0, δd
∗〉R3 = 0, (5.5.13)
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implying

S1((∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1, Q

\

e)n0 = 0 ∀ η3 ∈
[
−1

2
,

1

2

]
. (5.5.14)

In shell theories, the usual assumption is that the normal stress on the transverse boundaries are vanishing,
that is

S1(Fξ, Rξ)
∣∣
ω±ξ

(±n0) = 0 , (normal stress on lower and upper faces is zero) . (5.5.15)

We notice that the condition (5.5.14) is for all η3 ∈
[
− 1

2 ,
1
2

]
, while the condition (5.5.15) is only for

η3 = ± 1
2 . Therefore, it is possible that the Cosserat-membrane type Γ-limit underestimates the real

stresses (e.g., the transverse shear stresses). From the relation between the first Piola-Kirchhoff tensor
and the Biot-stress tensor we obtain

TBiot

(
Q
\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1

)
n0 = 0 , ∀ η3 ∈ [−1

2
,

1

2
] , (5.5.16)

or, equivalently,

TBiot(Uϕ\,Q\e,d∗
)n0 = 0, (5.5.17)

where

TBiot(Uϕ\,Q\e,d∗
) = 2µ sym(U

ϕ\,Q
\
e,d
∗ − 13) + 2µc skew(U

ϕ\,Q
\
e,d
∗ − 13) + λ tr(sym(U

ϕ\,Q
\
e,d
∗ − 13))13 ,

(5.5.18)

and we have introduced the notation U
ϕ\,Q

\
e,d
∗ := Q

\,T

e (∇(η1,η2)ϕ
\|d∗)[(∇xΘ)\]−1. With the help of the

following decomposition

U
ϕ\,Q

\
e,d
∗ − 13 = (Q

\,T

e ∇(η1,η2)ϕ
\ − (∇y0)\|0)[(∇xΘ)\]−1 + (0|0|Q\,Te d∗ − n0)[(∇xΘ)\]−1

= E
ϕ\,Q

\
e

+ (0|0|Q\,Te d∗ − n0)[(∇xΘ)\]−1 , (5.5.19)

with E
ϕ\,Q

\
e

= (Q
\,T

e ∇(η1,η2)ϕ
\− (∇y0)\|0)[(∇xΘ)\]−1, and relations (A.1.1)-(A.1.3), the relation (5.5.18)

can be expressed as

TBiot(Uϕ\,Q\e,d∗
)n0 = µ

(
ET
ϕ\,Q

\
e
n0 + (Q

\,T

e d∗ − n0) + [(∇xΘ)\]−T (0|0|Q\,Te d∗ − n0)Tn0

)
+ µc

(
− ET

ϕ\,Q
\
e
n0 + (Q

\,T

e d∗ − n0)− [(∇xΘ)\]−T (0|0|Q\,Te d∗ − n0)Tn0

)
+ λ

(
〈E
ϕ\,Q

\
e
,13〉n0 + (Q

\,T

e d∗ − n0)n0 ⊗ n0

)
= (µ + µc )(Q

\,T

e d∗ − n0) + (µ − µc )ET
ϕ\,Q

\
e
n0 + (µ − µc )((0|0|Q\,Te d∗ − n0)[(∇xΘ)\]−1)Tn0

+ λ tr(E
ϕ\,Q

\
e
)n0 + λ(Q

\,T

e d∗ − n0)n0 ⊗ n0, (5.5.20)

and the condition (5.5.17) on TBiot reads

(µ + µc )(Q
\,T

e d∗ − n0) + (µ − µc )(Q
\,T

e d∗ − n0)n0 ⊗ n0 + λ(Q
\,T

e d∗ − n0)n0 ⊗ n0

= −
[
(µ − µc )ET

ϕ\,Q
\
e

n0 + λ tr(E
ϕ\,Q

\
e
)n0

]
,

(5.5.21)

where ((0|0|Q\,Te d∗ − n0)[(∇xΘ)\]−1)Tn0 = (Q
\,T

e d∗ − n0)n0 ⊗ n0. Before continuing the calculations, we
introduce the tensor

Ay0 := (∇y0|0) [(∇xΘ)(0) ]−1 = 13 − n0 ⊗ n0 ∈ Sym(3), (5.5.22)

and we notice that, identically as in the proof of Lemma 4.3 in [56], we can show that

E
ϕ\,Q

\
e
Ay0 = E

ϕ\,Q
\
e

⇐⇒ E
ϕ\,Q

\
e
n0 ⊗ n0 = 0. (5.5.23)
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Actually, for an arbitrary matrix X = (∗| ∗ |0) [∇xΘ(0)]−1, since A2
y0 = Ay0 ∈ Sym(3) and XAy0 = X,

we have 〈
(13 −Ay0)X,Ay0 X

〉
=
〈
(Ay0 −A2

y0)X, X
〉

= 0,

but also

(13 −Ay0)XT =
(
X(13 −Ay0)

)T
=
(
X −XAy0

)T
= 0, (5.5.24)

and consequently〈
XT (13 −Ay0),Ay0 X

〉
= 0 as well as

〈
XT (13 −Ay0), (13 −Ay0)X

〉
= 0.

In addition, since Ay0 = 13 − (0|0|n0) (0|0|n0)T = 13 − n0 ⊗ n0, the following equalities holds

‖(13 −Ay0)X‖2 =
〈
X, (13 −Ay0)2X

〉
=
〈
X, (13 −Ay0)X

〉
=
〈
X, (0|0|n0) (0|0|n0)T X

〉
=
〈

(0|0|n0)TX, (0|0|n0)T X
〉

= ‖X (0|0|n0)T ‖2 = ‖XT (0|0|n0)‖2 = ‖XT n0‖2.
(5.5.25)

We have the following decomposition

(Q
\,T

e d∗ − n0) = 13(Q
\,T

e d∗ − n0) = (Ay0 + n0 ⊗ n0)(Q
\,T

e d∗ − n0)

= Ay0(Q
\,T

e d∗ − n0) + n0 ⊗ n0(Q
\,T

e d∗ − n0). (5.5.26)

By using that

n0 ⊗ n0(Q
\,T

e d∗ − n0) = n0〈n0, (Q
\,T

e d∗ − n0)〉 = 〈(Q\,Te d∗ − n0), n0〉n0 = (Q
\,T

e d∗ − n0)n0 ⊗ n0,
(5.5.27)

and with (5.5.21), we get

(µ + µc )Ay0(Q
\,T

e d∗ − n0) + (µ + µc )n0 ⊗ n0(Q
\,T

e d∗ − n0) + (µ − µc )n0 ⊗ n0(Q
\,T

e d∗ − n0)

+ λn0 ⊗ n0(Q
\,T

e d∗ − n0) = −
[
(µ − µc )ET

ϕ\,Q
\
e

n0 + λ tr(E
ϕ\,Q

\
e
)n0

]
.

(5.5.28)

Therefore,(
(µ + µc )Ay0 + (2µ + λ)n0 ⊗ n0

)
(Q

\,T

e d∗ − n0) = −
[
(µ − µc )ET

ϕ\,Q
\
e

n0 + λ tr(E
ϕ\,Q

\
e
)n0

]
. (5.5.29)

Direct calculation shows(
(µ + µc )Ay0 + (2µ + λ)n0 ⊗ n0

)−1

:=
( 1

µ + µc
Ay0 +

1

2µ + λ
n0 ⊗ n0

)
. (5.5.30)

Next, by using

Ay0n0 = (13 − n0 ⊗ n0)n0 = n0 − n0〈n0, n0〉 = n0 − n0 = 0,

n0 ⊗ n0 ETϕ\,Q\en0 = (0|0|n0)(0|0|n0)T ET
ϕ\,Q

\
e
n0 = (0|0|n0)

(
(Q

\,T

e ∇(η1,η2)ϕ
\ − (∇y0)\|0)[(∇xΘ)\]−1(0|0|n0)

)T
n0

= (0|0|n0)
(

(Q
\,T

e ∇(η1,η2)ϕ
\ − (∇y0)\|0)(0|0|e3)

)T
n0 = 0 , (5.5.31)

eq. (5.5.29) can be written as

Q
\,T

e d∗ − n0 = −
[ 1

µ + µc
Ay0 +

1

2µ + λ
n0 ⊗ n0

]
×
[
(µ − µc )ET

ϕ\,Q
\
e

n0 + λ tr(E
ϕ\,Q

\
e
)n0

]
(5.5.32)

= −
[µ − µc
µ + µc

Ay0ETϕ\,Q\en0 +
µ − µc
2µ + λ

n0 ⊗ n0 ETϕ\,Q\en0 +
λ

µ + µc
tr(E

ϕ\,Q
\
e
)Ay0n0

+
λ

2µ + λ
tr(E

ϕ\,Q
\
e
)(n0 ⊗ n0)n0

]
= −

[µ − µc
µ + µc

Ay0ETϕ\,Q\en0 +
λ

2µ + λ
tr(E

ϕ\,Q
\
e
)n0

]
.
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Simplifying (5.5.32) we obtain

d∗ =
(

1− λ

2µ + λ
〈E
ϕ\,Q

\
e
,13〉

)
Q
\

en0 +
µc − µ
µc + µ

Q
\

eETϕ\,Q\en0.

In terms of Q
\

e = R
\
Q\,T0 we obtain the following expression for d∗

d∗ =
(

1− λ

2µ + λ
〈(Q\0R

\,T∇(η1,η2)ϕ
\ − (∇y0)\|0)[(∇xΘ)\]−1,13〉

)
R
\
Q\,T0 n0

+
µc − µ
µc + µ

R
\
Q\,T0

(
(Q\0R

\,T∇(η1,η2)ϕ
\ − (∇y0)\|0)[(∇xΘ)\]−1

)T
n0. (5.5.33)

Now we insert d∗ in the membrane energy

Wmp(Uh
\) = µ ‖sym(Uh

\ − 13)‖2 + µc ‖skew(Uh
\ − 13)‖2 +

λ

2
[tr(sym(Uh

\ − 13))]2 .

Using (A.2.6), (A.2.11) and (A.2.12) in Appendix, we obtain the explicit form of the homogenized energy
for the membrane part

W hom,\
mp (E

ϕ\,Q
\
e
) = µ ‖sym E

ϕ\,Q
\
e
‖2 +

µ

2

(µc − µ )2

(µc + µ )2
‖ET
ϕ\,Q

\
e

n0‖2 +
µ (µc − µ )

(µc + µ )
‖ET
ϕ\,Q

\
e

n0‖2

+
µλ2

(2µ + λ)2
tr(E

ϕ\,Q
\
e
)2 + µc ‖skew(Q

\,T

e (∇(η1,η2)ϕ
\|0)[(∇xΘ)\]−1)‖2 (5.5.34)

+
µc
2

(µc − µ )2

(µc + µ )2
‖ET
ϕ\,Q

\
e

n0‖2 −
µc (µc − µ )

(µc + µ )
‖ET
ϕ\,Q

\
e

n0‖2 +
2µ 2λ

(2µ + λ)2
tr(E

ϕ\,Q
\
e
)2,

and finally

W hom,\
mp (E

ϕ\,Q
\
e
) = Wshell(Eϕ\,Q\e)−

(µc − µ )2

2(µc + µ )
‖ET
ϕ\,Q

\
e

n0‖2, (5.5.35)

where

Wshell(X) = µ ‖symX‖2 + µc ‖skewX‖2 +
λµ

λ+ 2µ

[
trX

]2
.

Using the orthogonal decomposition in the tangential plane and in the normal direction, gives

X = X‖ +X⊥, X‖ := Ay0 X, X⊥ := (13 −Ay0)X, (5.5.36)

we deduce that for all X = (∗| ∗ |0) · [∇xΘ(0)]−1 we have the following split in the expression of the
considered quadratic forms

Wshell(X) = µ ‖symX‖‖2 + µc ‖skewX‖‖2 +
µ + µc

2
‖X⊥‖2 +

λµ

λ+ 2µ

[
tr(X)

]2
. (5.5.37)

Moreover, using that for all X = (∗| ∗ |0) [∇xΘ(0)]−1, it holds that

tr(X⊥) = tr
(
(13 −Ay0)X

)
= tr(X)− tr(Ay0X) = tr(X)− tr(X Ay0) = 0, (5.5.38)

we obtain

Wshell

(
E
ϕ\,Q

\
e

)
=µ ‖sym E‖

ϕ\,Q
\
e

‖2 + µc ‖skew E‖
ϕ\,Q

\
e

‖2 +
λµ

λ+ 2µ

[
tr(E‖

ϕ\,Q
\
e

)
]2

+
µ + µc

2
‖E⊥
ϕ\,Q

\
e
‖2

=µ ‖sym E‖
ϕ\,Q

\
e

‖2 + µc ‖skew E‖
ϕ\,Q

\
e

‖2 +
λµ

λ+ 2µ

[
tr(E‖

ϕ\,Q
\
e

)
]2

+
µ + µc

2
‖ET
ϕ\,Q

\
e
n0‖2. (5.5.39)

Therefore, the homogenized energy for the membrane part is

W hom,\
mp (E

ϕ\,Q
\
e
) = µ ‖sym E‖

ϕ\,Q
\
e

‖2 + µc ‖skew E‖
ϕ\,Q

\
e

‖2 +
λµ

λ+ 2µ

[
tr(E‖

ϕ\,Q
\
e

)
]2

+
µ + µc

2
‖ET
ϕ\,Q

\
e

n0‖2 −
(µc − µ )2

2(µc + µ )
‖ET
ϕ\,Q

\
e

n0‖2

= µ ‖sym E‖
ϕ\,Q

\
e

‖2 + µc ‖skew E‖
ϕ\,Q

\
e

‖2 +
λµ

λ+ 2µ

[
tr(E‖

ϕ\,Q
\
e

)
]2

+
2µ µc

µc + µ
‖ET
ϕ\,Q

\
e

n0‖2

= Wshell

(
E‖
ϕ\,Q

\
e

)
+

2µ µc

µc + µ
‖E⊥
ϕ\,Q

\
e

‖2. (5.5.40)



57 5.5. The construction of the Γ-limit J0 of the · · ·

5.5.2. Homogenized membrane energy

Now, we will be able to propose the form of the homogenized membrane energy. To each pair (m,Qe,0),

where m : ω → R3, Qe,0 : ω → SO(3), we associate the elastic shell strain tensor

Em,s := (Q
T

e,0∇m−∇y0|0)[∇xΘ(0)]−1 , (5.5.41)

and we define the homogenized energy

W hom
mp (Em,s) := inf

d̃∈R3

Wmp

(
Q
T

e,0(∇m|d̃)[(∇xΘ)(0)]−1
)

= inf
d̃∈R3

Wmp

(
Em,s − (0|0|d̃)[(∇xΘ)(0)]−1

)
.

(5.5.42)

Direct calculations as in the previous subsection (5.5.1) show us that the infimum is attained for

d̃∗ =
(

1− λ

2µ + λ
〈Em,s,13〉

)
Qe,0n0 +

µc − µ
µc + µ

Qe,0ETm,sn0 , (5.5.43)

and

W hom
mp (Em,s) = µ ‖sym E‖m,s‖2 + µc ‖skew E‖m,s‖2 +

λµ

λ+ 2µ

[
tr(E‖m,s)

]2
+

2µ µc

µc + µ
‖ETm,sn0‖2 (5.5.44)

= Wshell

(
E‖m,s

)
+

2µ µc

µc + µ
‖E⊥m,s‖2,

where

Wshell

(
E‖m,s

)
= µ ‖sym E‖m,s‖2 + µc ‖skew E‖m,s‖2 +

λµ

λ+ 2µ

[
tr(E‖m,s)

]2
. (5.5.45)

Note that W hom,\
mp (E

ϕ\,Q
\
e
) constructed in (5.5.40) depends on η3 and h, while W hom

mp (Em,s) in (5.5.44)

does not depend on η3 and h, since Qe,0 and [(∇xΘ)(0)] do not depend on η3 and h.

5.5.3. Homogenized curvature energy

We define the homogenized curvature energy as

W̃ hom,\
curv (K\e) : = W̃curv

(
axl(Q

\,T

e ∂η1Q
\

e) | axl(Q
\,T

e ∂η2Q
\

e) | axl(A∗)
)

[(∇xΘ)\]−1

= inf
A∈so(3)

W̃curv

(
axl(Q

\,T

e ∂η1Q
\

e) | axl(Q
\,T

e ∂η2Q
\

e) | axl(A)
)

[(∇xΘ)\]−1, (5.5.46)

where

K\e : =
(

axl(Q
\,T

e ∂η1Q
\

e) | axl(Q
\,T

e ∂η2Q
\

e) |0
)

[(∇xΘ)\ ]−1 ,

represents a not fully reduced elastic shell bending-curvature tensor, in the sense that it still depends on

η3 and h, since Q
\

e = Q
\

e(η1, η2, η3). Therefore, W̃ hom,\
curv (K\e) given by the above definitions still depends

on η3 and h.

As in the case of the homogenized membrane part in (5.3.8), from which we obtained the unknown d∗, one
can explicitly determine the infinitesimal microrotation A∗ ∈ so(3) as well. Ghiba et.al, in [55] obtained
the homogenized quadratic curvature energy (see Chapter 6 for explicit calculations). However in this

chapter, it is enough to see that W̃ hom
curv is uniquely defined and has the other requirements like remaining

convex in its argument and having the same growth as W̃curv. Therefore,

W̃curv

(
Γ\h

)
≥ W̃ hom,\

curv (K\e), (5.5.47)

i.e.,

W̃curv

((
axl(Q

\,T

e,h ∂η1Q
\

e,h) | axl(Q
\,T

e,h ∂η2Q
\

e,h) | 1

h
axl(Q

\,T

e,h ∂η3Q
\

e,h)
)
[(∇xΘ)\]−1

)
(5.5.48)

≥ W̃ hom,\
curv

((
axl(Q

\,T

e ∂η1Q
\

e) | axl(Q
\,T

e ∂η2Q
\

e) |0
)
[(∇xΘ)\]−1

)
,
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where this relation will help us in subsection 5.6.1 to show the lim inf condition for the curvature energy.

In order to construct the Γ-limit, we have to define a homogenized curvature energy. This energy will be
expressed in terms of the elastic shell bending-curvature tensor

Ke,s : =
(

axl(Q
T

e,0 ∂x1Qe,0) | axl(Q
T

e,0 ∂x2Qe,0) |0
)

[∇xΘ(0) ]−1 6∈ Sym(3) , elastic shell bending–curvature tensor ,

which will be defined for any Qe,0 : ω → SO(3). For Qe,0 : ω → SO(3), we set

W̃ hom
curv (Ke,s) : = W̃ ∗curv

(
axl(Q

T

e,0 ∂η1Qe,0) | axl(Q
T

e,0 ∂η2Qe,0) | axl(A∗)
)

[(∇xΘ)\(0)]−1 (5.5.49)

= inf
A∈so(3)

W̃curv

(
axl(Q

T

e,0 ∂η1Qe,0) | axl(Q
T

e,0 ∂η2Qe,0) | axl(A)
)

[(∇xΘ)\(0)]−1 .

Again note that while W̃ hom,\
curv (K\e) (previously constructed) depends on η3 and h, W̃ hom

curv (Ke,s) does not
depend on η3 and h, since Qe,0 and [(∇xΘ)(0)] do not depend on η3 and h.

5.6. Γ-convergence of Jhj
We are now ready to formulate the main result of this chapter

Theorem 5.6.1. Assume that the initial configuration of the curved shell is defined by a continuous
injective mapping y0 : ω ⊂ R2 → R3 which admits an extension to ω into C2(ω;R3) such that for

Θ(x1, x2, x3) = y0(x1, x2) + x3n0(x1, x2)

we have det[∇xΘ(0)] ≥ a0 > 0 on ω, where a0 is a constant, and assume that the boundary data satisfy
the conditions

ϕ\d = ϕd
∣∣
Γ1

(in the sense of traces) for ϕd ∈ H1(Ω1;R3). (5.6.1)

Let the constitutive parameters satisfy

µ > 0, κ > 0, µc > 0, a1 > 0, a2 > 0, a3 > 0 . (5.6.2)

Then, for any sequence (ϕ\hj , Q
\

e,hj ) ∈ X such that (ϕ\hj , Q
\

e,hj ) → (ϕ0, Qe,0) as hj → 0, the sequence of

functionals Jhj : X → R Γ-converges to the limit energy functional J0 : X → R defined by

J0(m,Qe,0) =

{∫
ω

[W hom
mp (Em,Qe,0) + W̃ hom

curv (Ke,s)] det(∇y0|n0) dω if (m,Qe,0) ∈ S ′ω ,
+∞ else in X,

(5.6.3)

where

m(x1, x2) := ϕ0(x1, x2) = lim
hj→0

ϕ\hj (x1, x2,
1

hj
x3), Qe,0(x1, x2) = lim

hj→0
Q
\

e,hj (x1, x2,
1

hj
x3),

Em,Qe,0 = (Q
T

e,0∇m−∇y0|0)[∇xΘ(0)]−1, (5.6.4)

Ke,s =
(

axl(Q
T

e,0 ∂x1
Qe,0) | axl(Q

T

e,0 ∂x2
Qe,0) |0

)
[∇xΘ(0) ]−1 6∈ Sym(3) ,

and

W hom
mp (Em,Qe,0) = µ ‖sym E‖

m,Qe,0
‖2 +µc ‖skew E‖

m,Qe,0
‖2 +

λµ

λ+ 2µ

[
tr(E‖

m,Qe,0
)
]2

+
2µ µc

µc + µ
‖ET
m,Qe,0

n0‖2

= Wshell

(
E‖
m,Qe,0

)
+

2µ µc

µc + µ
‖E⊥
m,Qe,0

‖2, (5.6.5)

W̃ hom
curv (Ke,s) = inf

A∈so(3)
W̃curv

(
axl(Q

T

e,0 ∂η1Qe,0) | axl(Q
T

e,0 ∂η2Qe,0) | axl(A)
)

[(∇xΘ)\(0)]−1

= µL2
c

(
b1‖symK‖e,s‖2 + b2‖skewK‖e,s‖2 +

b1b3
(b1 + b3)

tr(K‖e,s)2 +
2 b1b2
b1 + b2

‖K⊥e,s‖
)
.

Proof. The first part of the proof is represented by the proof of equi-coercivity and compactness of the
family of energy functionals which are already done. The rest of the proof will be divided into two parts
which make the subjects of the following two subsections. �
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5.6.1. Step 1 of the proof. The lim-inf condition

In this section we prove the following lemma

Lemma 5.6.2. In the hypothesis of Theorem 5.6.1, for any sequence (ϕ\hj , Q
\

e,hj
) ∈ X such that (ϕ\hj , Q

\

e,hj
)→

(ϕ\0, Q
\

e,0) for hj → 0, i.e.,

ϕ\hj → ϕ\0 in L2(Ω1,R3), Q
\

e,hj → Q
\

e,0 in L2(Ω1,SO(3)), (5.6.6)

we have

J0(ϕ\0, Q
\

e,0) ≤ lim inf
hj→0

J \hj (ϕ
\
hj
, Q

\

e,hj ). (5.6.7)

Proof. It is clear that we may restrict our proof to the sequences (ϕ\hj , Q
\

e,hj ) ∈ S ′ ⊂ X ′, i.e., to sequences

in which the functionals J \hj (ϕ
\
hj
, Q

\

e,hj ) are finite, since otherwise the statement is satisfied. In addition,

any (ϕ\hj , Q
\

e,hj ) such that J \hj (ϕ
\
hj
, Q

\

e,hj ) < ∞ is uniformly bounded in X ′. Therefore, there exists a

subsequence (not relabeled) which is weakly convergent in X ′. Due to the strong convergence of the

original sequence, the considered subsequence is weakly convergent to (ϕ\, Q
\

e,0), i.e.,

ϕ\hj ⇀ ϕ\0 in L2(Ω1,R3), Q
\

e,hj ⇀ Q
\

e,0 in L2(Ω1,SO(3)). (5.6.8)

Therefore, we have the weak convergence (ϕ\hj , Q
\

e,hj ) (without relabeling it) to (ϕ\0, Q
\

e,0) in H1(ω,R3)×
W1,2(ω,SO(3)). For U

\

h = Q
\,T

e ∇hηϕ\[(∇xΘ)\]−1 we have

Wmp(Uh
\) = µ ‖sym(Uh

\ − 13)‖2 + µc ‖skew(Uh
\ − 13)‖2 +

λ

2
[tr(sym(Uh

\ − 13))]2 , (5.6.9)

while for E
ϕ\,Q

\
e

= E‖
ϕ\,Q

\
e

+ E⊥
ϕ\,Q

\
e

with E
ϕ\,Q

\
e

= (Q
\,T

e ∇(η1,η2)ϕ
\ − [∇y0]\|0)[(∇xΘ)\]−1 we have

W hom,\
mp (E

ϕ\,Q
\
e
) = µ ‖sym E‖

ϕ\,Q
\
e

‖2 + µc ‖skew E‖
ϕ\,Q

\
e

‖2 +
λµ

λ+ 2µ

[
tr(E‖

ϕ\,Q
\
e

)
]2

+
2µ µc

µc + µ
‖E⊥
ϕ\,Q

\
e

‖2 .

Hence, for the sequence (ϕ\hj , Q
\

e,hj ) ∈ H1(Ω1,R3) ×W1,2(Ω1,SO(3)) where (ϕ\hj , Q
\

e,hj ) → (ϕ\0, Q
\

e,0)

with J\hj (ϕ
\
hj
, Q

\

e,hj ) <∞, we have

Wmp(Q
\,T

e,hj∇hjη ϕ
\
hj

[(∇xΘ)\]−1) = Wmp

(
Q
\,T

e,hj (∇(η1,η2)ϕ
\
hj
| 1

hj
∂η3ϕ

\
hj

)[(∇xΘ)\]−1
)
≥W hom,\

mp

(
E
ϕ\hj

,Q
\
e,hj

)
,

(5.6.10)

where we recall that E
ϕ\hj

,Q
\
e,hj

:= (Q
\,T

e,hj∇(η1,η2)ϕ
\
hj
− (∇y0)\|0)[(∇xΘ)\]−1 .

Then by taking the integral over Ω1 on both sides and taking the lim inf for hj , we obtain

lim inf
hj→0

∫
Ω1

Wmp(Q
\,T

e,hj
∇hjη ϕ\hj [(∇xΘ)\]−1) det[∇xΘ]\(η) dVη ≥ lim inf

hj→0

∫
Ω1

W hom,\
mp

(
E
ϕ
\
hj
,Q
\
e,hj

)
det[∇xΘ]\(η) dVη .

In the expression of E
ϕ\hj

,Q
\
e,hj

, the quantity [∇xΘ]−1 is evaluated in (x1, x2, x3) = (η1, η2, h η3). There-

fore, we have to study its behaviour for hj → 0. In addition, we recall the convergence results [43, Lemma
1]:

lim
hj→0

det[∇xΘ]\(η1, η2, η3) = lim
hj→0

det[∇xΘ]\(x1, x2,
1

hj
x3) = det[∇xΘ]\(η1, η2, 0)

= det(∇y0|n0) in C0(Ω),

lim
hj→0

[(∇xΘ)−1]\(η1, η2, η3) = lim
hj→0

[(∇xΘ)−1]\(x1, x2,
1

hj
x3) = [(∇xΘ)−1]\(η1, η2, 0) (5.6.11)

=: (∇xΘ)−1(0) in C0(Ω).
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Due to (5.6.11), the weak convergence of the sequence ϕ\hj and the strong convergence of the sequence

Q
\

e,hj , we have the weak convergence

E
ϕ\hj

,Q
\
e,hj

= (Q
\,T

e,hj∇(η1,η2)ϕ
\
hj
− (∇y0)\|0)[(∇xΘ)\]−1

⇀ (Q
\,T

e,0∇(η1,η2)ϕ
\
0 − (∇y0)\|0)[(∇xΘ)\]−1(0) =: E

ϕ\0,Q
\
e,0
. (5.6.12)

Using again (5.6.11), the convexity of the energy function W hom,\
mp with respect to E

ϕ\hj
,Q
\
e,hj

, the Fatou’s

Lemma, the characterization of lim inf and the weak convergence (5.6.12) we get

lim inf
hj→0

∫
Ω1

W hom,\
mp

(
E
ϕ\hj

,Q
\
e,hj

)
det[∇xΘ]\(η) dVη ≥

∫
Ω1

W hom,\
mp

(
E
ϕ\0,Q

\
e,0

)
det(∇y0|n0) dVη . (5.6.13)

Since both ϕ\0 and Q
\

e,0 are independent of the transerve variable η3, we also obtain

lim inf
hj→0

∫
Ω1

Wmp(Q
\,T

e,hj
∇hjη ϕ\hj [(∇xΘ)\]−1) det[∇xΘ]\(η) dVη ≥

∫ 1
2

− 1
2

∫
ω

W hom,\
mp

(
E
ϕ
\
0,Q

\
e,0

)
det(∇y0|n0) dVη

=

∫
ω

W hom
mp

(
Em,Qe,0

)
det(∇y0|n0) dω . (5.6.14)

We do the same process for the curvature energy, by using (5.5.47), the convexity of W̃ hom
curv in its argument

and the weak convergence(
axl(Q

\,T

e,hj ∂η1Q
\

e,hj ) | axl(Q
\,T

e,hj ∂η2Q
\

e,hj ) |0
)

[(∇xΘ)\(η) ]−1

⇀
(

axl(Q
\,T

e,0 ∂η1Q
\

e,0) | axl(Q
\,T

e,0 ∂η2Q
\

e,0) |0
)

[∇xΘ(0) ]−1 . (5.6.15)

Using also (5.6.11), we arrive at

lim inf
hj

∫
Ω1

W̃curv(Γ\h) det[∇xΘ]\(η) dVη ≥ lim inf
hj

∫
Ω1

W̃ hom,\
curv (K\e) det[∇xΘ]\(η) dVη

≥ lim inf
hj

∫
Ω1

W̃ hom
curv (Ke,s) det[∇xΘ]\(η) dVη ≥

∫
Ω1

W̃ hom
curv (Ke,s) det(∇y0|n0) dVη

=

∫ 1
2

− 1
2

∫
ω

W̃ hom
curv (Ke,s) det(∇y0|n0) dVη =

∫
ω

W̃ hom
curv (Ke,s) det(∇y0|n0) dω . (5.6.16)

Since, Wmp(Q
\,T

e,hj∇
hj
η ϕ

\
hj

[(∇xΘ)\]−1) > 0 and W̃curv(Γ\h) > 0, by combining (5.6.14) and (5.6.16) we
deduce

lim inf
hj

∫
Ω1

[Wmp(Q
\,T

e,hj∇hjη ϕ
\
hj

[(∇xΘ)\]−1) + W̃curv(Γ\h)] det[∇xΘ]\(η) dVη (5.6.17)

≥
∫
ω

(
W hom

mp (Em,Qe,0) + W̃ hom
curv (Ke,s)

)
det(∇y0|n0) dω = J0(m,Qe,0) ,

where we have used that Q
\

e,0 ≡ Qe,0 and m = ϕ0. Hence, the lim-inf inequality, (5.6.7) is proven. �

5.6.2. Step 2 of the proof: The lim-sup condition - recovery sequence

Now we show the following lemma

Lemma 5.6.3. In the hypothesis of Theorem 5.6.1, for all (ϕ\0, Q
\

e,0) ∈ L2(Ω1) × L2(Ω1,SO(3)) there

exists (ϕ\hj , Q
\

e,hj ) ∈ L2(Ω1)× L2(Ω1,SO(3)) with (ϕ\hj , Q
\

e,hj )→ (ϕ\0, Q
\

e,0) such that

J0(ϕ\0, Q
\

e,0) ≥ lim sup
hj→0

J \hj (ϕ
\
hj
, Q

\

e,hj ). (5.6.18)
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Proof. Similar to the case of the lim-inf inequality, we can restrict our attention to sequences (ϕ\hj , Q
\

e,hj ) ∈
X such that J \hj (ϕ

\
hj
, Q

\

e,hj ) < ∞. Therefore, the sequence (ϕ\hj , Q
\

e,hj ) ∈ X has a weakly convergent

subsequence in X ′, and we can focus on the space H1(Ω1,R3)×W1,2(Ω1,SO(3)).
One of the requirements for Γ-convergence, is the existence of a recovery sequence. Thus, the idea is
to define an expansion for the deformation and the microrotation through the thickness. In reality, the
minimizers of the energy model can be a good candidate for constructing the recovery sequence. To do
so, we look at the first order Taylor expansion of the nonlinear deformation ϕ\hj in thickness direction η3

ϕ\hj (η1, η2, η3) = ϕ\hj (η1, η2, 0) + η3 ∂η3ϕ
\
hj

(η1, η2, 0) . (5.6.19)

With the formula

d∗ =
(

1− λ

2µ + λ
〈Em,s,13〉

)
Q
\

e,0n0 +
µc − µ
µc + µ

Q
\

e,0ETm,sn0 , (5.6.20)

and replacing 1
hj
∂η3ϕ

\
hj

(η1, η2, 0) with d∗(η1, η2), which means ∂η3ϕ
\
hj

(η1, η2, 0) = hjd
∗(η1, η2), we make

an ansatz for our recovery sequence as following

ϕ\hj (η1, η2, η3) := ϕ\0(η1, η2) + hj η3d
∗(η1, η2). (5.6.21)

Since ∇(η1,η2)ϕ
\ ∈ L2(ω,R3) and Qe,0 ∈ SO(3), we obtain that d∗ belongs to L2(ω,R3) and by letting

hj → 0, it can be seen that for this ansatz ϕ\hj → ϕ0.

The reconstruction for the rotation Qe,0 is not obvious, since on the one hand we have to maintain the
rotation constraint along the sequence and on the other hand we must approach the lower bound, which

excludes the simple reconstruction Q
\

e,hj (η1, η2, η3) = Qe,0(η1, η2). In order to meet both requirements
we consider therefore

Q
\

e,hj (η1, η2, η3) := Qe,0(η1, η2) · exp(hj η3A
∗(η1, η2)), (5.6.22)

where A∗ ∈ so(3) is the term obtained in (5.5.46), depending on the given Qe,0, and we note that

A∗ ∈ L2(ω, so(3)) by the coercivity of W̃curv. Since exp : so(3) → SO(3), we obtain that Q
\

e,hj ∈ SO(3)

and for hj → 0, we have Q
\

e,hj → Qe,0 ∈ L2(Ω1,SO(3)).
Since d∗ need not to be differentiable, we should consider another modified recovery sequence. For fixed
ε > 0, we select dε ∈ W1,2(ω,R3) such that ‖dε − d∗‖L2(ω,R3) < ε. Therefore, accordingly we define the
final recovery sequence for the deformation as following

ϕ\hj ,ε(η1, η2, η3) := ϕ\0(η1, η2) + hj η3dε(η1, η2). (5.6.23)

The same argument holds for A∗: for fixed ε > 0 we may choose Aε ∈ W1,2(ω, so(3)) such that ‖Aε −
A∗‖L2(ω,so(3)) < ε. Hence, the final recovery sequence for the microrotation is like

Q
\

e,hj ,ε(η1, η2, η3) := Qe,0(η1, η2) · exp(hj η3Aε(η1, η2)). (5.6.24)

The gradient of the new recovery sequence of deformation is

∇ηϕ\hj ,ε(η1, η2, η3) = (∇(η1,η2)ϕ
\
0(η1, η2)|0) + hj(0|dε(η1, η2)) + hjη3(∇(η1,η2)dε(η1, η2)|0)

= (∇ϕ\0(η1, η2)|hjdε(η1, η2)) + hjη3(∇dε(η1, η2)|0), (5.6.25)

and the different terms in the curvature energy are

Q
\,T

e,hj ,ε∂η1Q
\

e,hj ,ε = exp(hjη3Aε)
TQ

T

e,0[∂η1Qe,0 exp(hjη3Aε) +Qe,0D exp(hjη3Aε).[hjη3∂η1Aε]],

Q
\,T

e,hj ,ε∂η2Q
\

e,hj ,ε = exp(hjη3Aε)
TQ

T

e,0[∂η2Qe,0 exp(hjη3Aε) +Qe,0D exp(hjη3Aε).[hjη3∂η2Aε]], (5.6.26)

Q
\,T

e,hj ,ε∂η3Q
\

e,hj ,ε = exp(hjη3Aε)
TQ

T

e,0[∂η3Qe,0 exp(hjη3Aε) +Qe,0D exp(hjη3Aε).[hjAε]]

= hj exp(hjη3Aε(η1, η2))TD exp(hjη3Aε(η1, η2)).[Aε],
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with ∂ηiAε ∈ so(3). Now we introduce the quantities

Ũ0 = Q
T

e,0(∇ϕ0(η1, η2)|d∗(η1, η2))[(∇xΘ)(0)]−1,

Ũεhj = Q
\,T

e,hj ,ε

(
(∇ϕ0(η1, η2)|dε(η1, η2)) + hjη3(∇dε(η1, η2)|0)

)
[(∇xΘ)\(η)]−1,

Ũε0 = Q
T

e,0(∇ϕ0(η1, η2)|dε(η1, η2))[(∇xΘ)(0)]−1, (5.6.27)

Γ\hj ,ε :=
(

axl
(
Q
\,T

e,hj ,ε∂η1Q
\

e,hj ,ε

)
︸ ︷︷ ︸

:= Γ1,\
hj,ε

| axl
(
Q
\,T

e,hj ,ε∂η2Q
\

e,hj ,ε

)
︸ ︷︷ ︸

:= Γ2,\
hj,ε

| 1

hj
axl
(
Q
\,T

e,hj ,ε∂η3Q
\

e,hj ,ε

)
︸ ︷︷ ︸

:= Γ3,\
hj,ε

)
[(∇xΘ)\(η)]−1,

Γ0 :=
(

axl
(
Q
T

e,0∂η1Qe,0

)
︸ ︷︷ ︸

:= Γ1
0

| axl
(
Q
T

e,0∂η2Qe,0

)
︸ ︷︷ ︸

:= Γ2
0

| 0
)

[(∇xΘ)(0)]−1 .

Note that

Γ3,\
hj ,ε

:= axl
(

exp(hjη3Aε(η1, η2))T Dexp(hjη3Aε(η1, η2)).[Aε]
)
. (5.6.28)

It holds

‖Ũεhj − Ũε0‖ → 0, as hj → 0, ‖Ũεhj − Ũ0‖ → 0, as hj → 0, ε→ 0,

‖Γi,\hj ,ε − Γi0‖ → 0, as hj → 0, ε→ 0, i = 1, 2 , ‖Γ3,\
hj ,ε
− axlAε‖ → 0, as hj → 0.

We also have

‖Ũε0 − Ũ0‖2 = ‖QTe,0(∇ϕ0|dε)[∇xΘ(0)]−1 −QTe,0(∇ϕ0|d∗)[∇xΘ(0)]−1)‖2

= ‖QTe,0(0|0|dε − d∗)[∇xΘ(0)]−1‖2

= 〈QTe,0(0|0|dε − d∗)[∇xΘ(0)]−1, Q
T

e,0(0|0|dε − d∗)[∇xΘ(0)]−1〉
= 〈Qe,0Q

T

e,0(0|0|dε − d∗), (0|0|dε − d∗)[∇xΘ(0)]−1[∇xΘ(0)]−T 〉 (5.6.29)

= 〈(0|0|dε − d∗), (0|0|dε − d∗)(̂Iy0)−1〉 = 〈(0|0|dε − d∗)T (0|0|dε − d∗), (̂Iy0)−1〉
= 〈(0|0|(dε − d∗)T (dε − d∗)), (̂Iy0)−1〉 = 〈dε − d∗, dε − d∗〉 = ‖dε − d∗‖2 → 0 as ε→ 0.

We may write

J \,mp
hj

(ϕ\hj ,ε, Q
\

e,hj ,ε) :=

∫
Ω1

Wmp(Ũεhj ) det((∇xΘ)\)(η) dVη

=

∫
Ω1

[
Wmp(Ũεhj )−Wmp(Ũ0) +Wmp(Ũ0)

]
det((∇xΘ)\)(η) dVη (5.6.30)

=

∫
Ω1

[
Wmp(Ũεhj + Ũ0 − Ũ0)−Wmp(Ũ0) +Wmp(Ũ0)

]
det((∇xΘ)\)(η) dVη

≤
∫

Ω1

[
|Wmp(Ũεhj + Ũ0 − Ũ0)−Wmp(Ũ0)|+Wmp(Ũ0)

]
det((∇xΘ)\)(η) dVη,

where we used that Wmp is positive. The exact quadratic expansion in the neighborhood of the point

Ũεhj = Ũ0 + Ũεhj − Ũ0 for Wmp is given by

Wmp(Ũ0 + Ũεhj − Ũ0) = Wmp(Ũ0) +
〈
DWmp(Ũ0), Ũεhj − Ũ0

〉
+

1

2
D2Wmp(Ũ0).(Ũεhj − Ũ0, Ũ

ε
hj − Ũ0) .

Therefore, with the assumption that ‖Ũεhj − Ũ0‖ ≤ 1, we have the following relations

J \,mp
hj

(ϕ\hj ,ε, Q
\

e,hj ,ε)

≤
∫

Ω1

[
Wmp(Ũ0) + ‖DWmp(Ũ0)‖‖Ũεhj − Ũ0‖+

1

4
‖D2Wmp(Ũ0)‖‖Ũεhj − Ũ0‖2

]
det((∇xΘ)\)(η) dVη

≤
∫

Ω1

[
Wmp(Ũ0) + C‖Ũ0‖‖Ũεhj − Ũ0‖+ C1‖Ũεhj − Ũ0‖

]
det((∇xΘ)\)(η) dVη

≤
∫

Ω1

[
Wmp(Ũ0) + (C‖Ũ0‖+ C1)‖Ũεhj − Ũ0‖

]
det((∇xΘ)\)(η) dVη, (5.6.31)
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where C and C1 are upper bounds for ‖DWmp(Ũ0)‖ and ‖D2Wmp(Ũ0)‖, respectively. Now we consider

the terms of W̃curv

J \,curv
hj

(Γ\hj ,ε) :=

∫
Ω1

W̃curv

(
(Γ1,\
hj ,ε

,Γ2,\
hj ,ε

,Γ3,\
hj ,ε

)[(∇xΘ)\(η)]−1
)

det((∇xΘ)\)(η) dVη

≤
∫

Ω1

[
W̃curv

(
(Γ1,\
hj ,ε

,Γ2,\
hj ,ε

,Γ3,\
hj ,ε

)[(∇xΘ)\(η)]−1
)
− W̃curv

(
(Γ1

0,Γ
2
0, Aε)[(∇xΘ)\(η)]−1

)
+ W̃curv

(
(Γ1

0,Γ
2
0, Aε)[(∇xΘ)\(η)]−1

)
− W̃curv

(
(Γ1

0,Γ
2
0, A

∗)[(∇xΘ)\(η)]−1
)

+ W̃curv

(
(Γ1

0,Γ
2
0, A

∗)[(∇xΘ)\(η)]−1
)]

det((∇xΘ)\)(η) dVη (5.6.32)

≤
∫

Ω1

[∣∣∣W̃curv

(
(Γ1,\
hj ,ε

,Γ2,\
hj ,ε

,Γ3,\
hj ,ε

)[(∇xΘ)\(η)]−1
)
− W̃curv

(
(Γ1

0,Γ
2
0, Aε)[(∇xΘ)\(η)]−1

)∣∣∣
+
∣∣∣W̃curv

(
(Γ1

0,Γ
2
0, Aε)[(∇xΘ)\(η)]−1

)
− W̃curv

(
(Γ1

0,Γ
2
0, A

∗)[(∇xΘ)\(η)]−1
)∣∣∣

+ W̃curv

(
(Γ1

0,Γ
2
0, A

∗)[(∇xΘ)\(η)]−1
)]

det((∇xΘ)\)(η) dVη,

where we have used the triangle inequality.

Note that beside the boundedness of det[∇xΘ]\(0), due to the hypothesis that det[∇xΘ(0)] ≥ a0 > 0, it
follows that there exits a constant C > 0 such that

∀x ∈ ω : ‖[∇xΘ(0)]−1‖ ≤ C. (5.6.33)

We notice that both energies are positive and det[∇xΘ](0) is bounded. Also W̃curv is continuous and
‖Aε − A∗‖L2(ω,so(3)) < ε. By using (5.5.46) and (5.6.11), and applying lim suphj→0 on both sides of
(5.6.31) and (5.6.32) with hj → 0 and ε→ 0 we get

lim sup
hj→0

J \hj (ϕ
\
hj ,ε

, Q
\

e,hj ,ε) ≤
∫

Ω1

(Wmp(Ũ0) + W̃curv

(
(Γ1

0,Γ
2
0, A

∗)[(∇xΘ)\(0)]−1
)

det[∇xΘ](0) dVη

=

∫
Ω1

(Wmp(Ũ0) + W̃curv

(
(Γ1

0,Γ
2
0, 0)[(∇xΘ)(0)]−1

)
det[∇xΘ](0) dVη.

(5.6.34)

However, Wmp(Ũ0) and W̃curv

(
(Γ1

0,Γ
2
0, 0)[(∇xΘ)(0)]−1

)
are already independent of the third variable η3,

hence we deduce

lim sup
hj→0

J \hj (ϕ
\
hj ,ε

, Q
\

e,hj ,ε) ≤ J0(m,Qe,0), ϕ\ ≡ ϕ, Q
\

e,0 ≡ Qe,0 and m = ϕ0 . �

5.7. The Gamma-limit including loads

The main result of this chapter is the following theorem

Theorem 5.7.1. Assume that the initial configuration is defined by a continuous injective mapping
y0 : ω ⊂ R2 → R3 which admits an extension to ω into C2(ω;R3) such that det[∇xΘ(0)] ≥ a0 > 0 on ω
where a0 is a constant, and assume that the boundary data satisfy the conditions

ϕ\d = ϕd
∣∣
Γ1

(in the sense of traces) for ϕd ∈ H1(Ω1;R3). (5.7.1)

Let the constitutive parameters satisfy

µ > 0, κ > 0, µc > 0, a1 > 0, a2 > 0, a3 > 0, (5.7.2)

Then, for any sequence (ϕ\hj , Q
\

e,hj ) ∈ X such that (ϕ\hj , Q
\

e,hj ) → (ϕ0, Qe,0) as hj → 0, the sequence of

functionals Ihj : X → R

I\hj (ϕ
\,∇hjη ϕ\, Q

\

e,Γ
\
hj

) =


1

hj
J\hj (ϕ

\,∇hjη ϕ\, Q
\

e,Γ
\
hj

)− 1

h
Π\
hj

(ϕ\, Q
\

e) if (ϕ\, Q
\

e) ∈ S ′,

+∞ else in X ,
(5.7.3)
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Γ-converges to the limit energy functional I0 : X → R defined by

I0(m,Qe,0) =

{
J0(m,Qe,0)−Π(m,Qe,0) if (m,Qe,0) ∈ S ′ω ,
+∞ else in X,

(5.7.4)

where

J0(m,Qe,0) =

{∫
ω

[W hom
mp (Em,Qe,0) + W̃ hom

curv (Ke,s)] det(∇y0|n0) dω if (m,Qe,0) ∈ S ′ω ,
+∞ else in X,

(5.7.5)

and Π(m,Qe,0) = Πf̃ ,ω(ũ0) + Πc̃,γ1(Qe,0) as the external load.

Remark 10. Before proving the above theorem, we will give the expression of the external loads potential
in Ω1. We have

Π\
h(ϕ\, Q

\

e) = Π\
f (ϕ\) + Π\

c(Q
\

e) , Π\
f (ϕ\) = h

∫
Ω1

〈f̃ \, ũ\〉 dVη , Π\
c(Q

\

e) = h

∫
Γ1

〈c̃\, Q\e〉 dSη , (5.7.6)

with f̃ \(η) = f̃(ζ(η)), ũ\(η) = ũ(ζ(η)), c̃\(ζ) = c̃(ζ(η)), Q
\

e(η) = Qe(ζ(η)) and ũ\(ηi) = ϕ\(ηi) − Θ\(ηi).
We use the following expressions

Θ\(η) = y\0(η1, η2) + hj η3n0(η1, η2) , ϕ\hj (η) = ϕ\0(η1, η2) + hj η3d
∗(η1, η2) ,

ũ\(ηi) = ϕ\(ηi)−Θ\(ηi) =
(
ϕ\0(η1, η2)− y\0(η1, η2)

)
︸ ︷︷ ︸

ũ0(η1,η2)

+hjη3

(
d∗(η1, η2)− n0(η1, η2)

)
. (5.7.7)

We calculate the loads separately. We have

Π\
f (ϕ\hj ) = hj

∫
Ω1

〈f̃ \, ũ\〉dVη = hj

∫
Ω1

〈f̃ \, ũ0(η1, η2)〉dVη + h2
jη3

∫
Ω1

〈f̃ \, (d∗(η1, η2)− n0(η1, η2))〉dVη

= hj

∫
ω

∫ 1
2

− 1
2

〈f̃ \, ũ0(η1, η2)〉dη3 dω + h2
j

∫
ω

∫ 1
2

− 1
2

η3〈f̃ \, (d∗(η1, η2)− n0(η1, η2))〉dη3 dω

= hj

∫
ω

〈
∫ 1

2

− 1
2

f̃ \ dη3, ũ0(η1, η2)〉 dω + h2
j

∫
ω

〈
∫ 1

2

− 1
2

η3f̃
\ dη3, (d

∗ − n0)(η1, η2)〉 dω := Πf̃ ,ω(ũ0) .

(5.7.8)

For applying the same method for the potential of external applied boundary surface couple, we need to
have an approximation for the exponential function which is already used in the expression of the recovery

sequence for the microrotation Q
\

e,hj , i.e., exp(X) = 1 +X + 1
2!X

2 + · · · , which implies

Q
\

e,hj = Qe,0 · exp(hj η3A
∗(η1, η2)) = Qe,0 +Qe,0hj η3A

∗(η1, η2) +
1

2
Qe,0h

2
j η

2
3A
∗(η1, η2)2 + · · · . (5.7.9)

Hence,

Π\
c(Q

\

e,hj ) = hj

∫
Γ1

〈c̃\, Qe,0 +Qe,0hjη3A
∗(η1, η2) +

1

2
Qe,0h

2
j η

2
3A
∗(η1, η2)2 + · · ·〉 dSη

= hj

∫
Γ1

〈c̃\, Qe,0〉 dSη + h2
jη3

∫
Γ1

〈c̃\, Qe,0A∗(η1, η2)〉 dSη

+
1

2
h3
jη

2
3

∫
Γ1

〈c̃\, Qe,0A∗(η1, η2)2〉 dSη + · · · (5.7.10)

= hj

∫
(γ1×[− 1

2 ,
1
2 ])

〈c̃\, Qe,0〉 dSη + h2
jη3

∫
(γ1×[− 1

2 ,
1
2 ])

〈c̃\, Qe,0A∗(η1, η2)〉 dSη +O(h3
j )

= hj

∫
γ1

∫ 1
2

− 1
2

〈c̃\, Qe,0〉 dη3 ds+ h2
jη3

∫
γ1

∫ 1
2

− 1
2

〈c̃\, Qe,0A∗(η1, η2)〉 dη3 ds+O(h3
j )

= hj

∫
γ1

〈
∫ 1

2

− 1
2

c̃\ dη3, Qe,0〉 ds+ h2
j

∫
γ1

〈
∫ 1

2

− 1
2

η3c̃
\ dη3, Qe,0A

∗(η1, η2)〉 ds︸ ︷︷ ︸
:= Πc̃,γ1 (Qe,0)

+O(h3
j ) .
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Therefore,

Π\
hj

(ϕ\, Q
\

e) = Πf̃ ,ω(ũ0) + Πc̃,γ1(Qe,0) +O(h3
j ) = Π(m,Qe,0) +O(h3

hj ) , ũ0 = m− y0 , (5.7.11)

which regularity condition confirm the boundedness and continuity of external loads.

Now we come back to the proof of Theorem 5.7.1.

Proof of Theorem 5.7.1. As a first step we have considered the functionals

J \h(ϕ\,∇hηϕ\, Q
\

e,Γ
\
h) =


1

h
J\h(ϕ\,∇hηϕ\, Q

\

e,Γ
\
h) if (ϕ\, Q

\

e) ∈ S ′,
+∞ else in X.

(5.7.12)

In subsections 5.6.1 and 5.6.2, we have shown that the following inequality holds

lim sup
hj→0

J \hj (ϕ
\
hj ,ε

, Q
\

e,hj ,ε) ≤ J0(ϕ0, Qe,0) ≤ lim inf
hj→0

J \hj (ϕ
\
hj ,ε

, Q
\

e,hj ,ε) , (5.7.13)

which implies that J0(ϕ0, Qe,0) is the Γ-lim of the sequence J \hj (ϕ
\
hj ,ε

, Q
\

e,hj ,ε), i.e.,

J0(ϕ0, Qe,0) = Γ- lim(J \hj (ϕ
\
hj ,ε

, Q
\

e,hj ,ε)) , m ≡ ϕ0 . (5.7.14)

Remark 10, shows that the family (J \hj (ϕ\, Q
\

e)−Π\
hj

(ϕ\, Q
\

e))j is Γ-convergent (because the external load

potential is continuous). This guarantees the existence of Γ-convergence for the family (I\hj )j . Therefore,
we may write

I0(m,Qe,0) = Γ- lim I\hj (ϕ
\
hj ,ε

, Q
\

e,hj ,ε) = J0(m,Qe,0)−Π(ϕ0, Qe,0) , m ≡ ϕ0 , (5.7.15)

which is the desired formula. �

5.8. Consistency with related shell and plate models

5.8.1. A comparison to the Cosserat plate model derived using the Γ-convergence
method

In this part we check whether our model is consistent with the Cosserat plate model obtained in [90].
In the case of the plate model (flat initial configuration) we can assume that Θ(x1, x2, x3) = (x1, x2, x3)
which gives ∇xΘ = 13 and y0(x1, x2) = (x1, x2) := id(x1, x2). Also Q0 = 13, n0 = e3 and Qe,0(x1, x2) =

R(x1, x2).

The family of functionals [27, 28] coincide with that considered in the analysis of Γ- convergence for a flat
referential configuration, while its Γ-limit is

J0(m,R) =

{
d

d
∫
ω

[W hom
mp (Eplate

m,s ) +W
hom

curv(Kplate
e,s )] dω if (m,R) ∈ S ′ω ,

+∞ else in X,
(5.8.1)

where

Eplate
m,s = R

T
(∇m|0)− 1[2 = R

T
(∇m|0)− 13 + e3 ⊗ e3,

Kplate
e,s =

(
axl(Q

T

e,0 ∂x1
Qe,0) | axl(Q

T

e,0 ∂x2
Qe,0) |0

)
6∈ Sym(3) , (5.8.2)

and

W hom
mp (Eplate

m,s ) = µ ‖sym [Eplate
m,s ]‖‖2 + µc ‖skew [Eplate

m,s ]‖‖2 +
λµ

λ+ 2µ

[
tr([Eplate

m,s ]‖)
]2

+
2µ µc

µc + µ
‖[Eplate

m,s ]T e3‖2

= Wshell

(
[Eplate
m,s ]‖

)
+

2µ µc

µc + µ
‖[Eplate

m,s ]⊥‖2, (5.8.3)

W
hom
curv(Kplate

e,s ) = inf
A∈so(3)

W
∗
curv

(
axl(R

T
∂η1R) | axl(R

T
∂η2R) | axl(A)

)
,
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together with

[Eplate
m,s ]‖ := (13 − e3 ⊗ e3) [Eplate

m,s ], [Eplate
m,s ]⊥ := (e3 ⊗ e3) [Eplate

m,s ] , (5.8.4)

where Wshell(X) = µ‖symX‖2 + µc‖skewX‖2 + λµ
λ+2µ [tr(X)]2. Let us denote by Ri the columns of the

matrix R, i.e., R =
(
R1 |R2 |R3

)
, Ri = Rei. Since (13 − e3 ⊗ e3)R

T
=
(
R1 |R2 | 0

)T
, it follows that

[Eplate
m,s ]‖ =

(
R1 |R2 | 0

)T
(∇m|0)− 1[2 =

((
R1 |R2

)T ∇m)[ − 1[2, while

[Eplate
m,s ]⊥ = (0 | 0 |R3)T (∇m|0) =

(
0 0 0
0 0 0

〈R3, ∂x1m〉 〈R3, ∂x2m〉 0

)
. (5.8.5)

Hence, in the Cosserat plate model we have

W hom
mp (Eplate

m,s ) = µ ‖sym
((
R1 |R2

)T ∇m− 12

)
‖2 + µc‖skew

((
R1 |R2

)T ∇m− 12

)
‖2

+
λµ

λ+ 2µ
[tr
((
R1 |R2

)T ∇m− 12

)
]2 +

2µ µc

µc + µ
(〈R3, ∂x1m〉2 + 〈R3, ∂x2m〉2) , (5.8.6)

which agrees with the Γ-limit found in [90].

5.8.2. A comparison with the nonlinear Cosserat shell model obtained via the
derivation approach

In [56], under assumptions (5.1.3) upon the thickness by using the derivation approach, the authors
have obtained the following two-dimensional minimization problem for the deformation of the midsurface
m : ω→R3 and the microrotation of the shell Qe,s : ω→SO(3) solving on ω ⊂ R2: minimize with respect

to (m,Qe,s) the functional

I(m,Qe,s)=

∫
ω

[
Wmemb

(
Em,s

)
+Wmemb,bend

(
Em,s, Ke,s

)
+Wbend,curv

(
Ke,s

)]
det(∇y0|n0)︸ ︷︷ ︸

det∇Θ

dω , (5.8.7)

where the membrane part Wmemb

(
Em,s

)
, the membrane–bending part Wmemb,bend

(
Em,s, Ke,s

)
and the

bending–curvature part Wbend,curv

(
Ke,s

)
of the shell energy density are given by

Wmemb

(
Em,s

)
=
(
h+ K

h3

12

)
Wshell

(
Em,s

)
,

Wmemb,bend

(
Em,s, Ke,s

)
=
(h3

12
−K

h5

80

)
Wshell

(
Em,s By0 + Cy0Ke,s

)
(5.8.8)

− h3

3
HWshell

(
Em,s, Em,sBy0 + Cy0 Ke,s

)
+
h3

6
Wshell

(
Em,s, (Em,sBy0 + Cy0 Ke,s)By0

)
+
h5

80
Wmp

(
(Em,s By0 + Cy0Ke,s)By0

)
,

Wbend,curv

(
Ke,s

)
=
(
h−K

h3

12

)
Wcurv

(
Ke,s

)
+
(h3

12
−K

h5

80

)
Wcurv

(
Ke,sBy0

)
+
h5

80
Wcurv

(
Ke,sB2

y0

)
,

where

Wshell(X) = µ ‖symX‖2 + µc‖skewX‖2 +
λµ

λ+ 2µ

[
tr(X)

]2
,

= µ ‖dev symX‖2 + µc‖skewX‖2 +
2µ (2λ+ µ )

3(λ+ 2µ )
[tr(X)]2 , (5.8.9)

Wshell(X,Y ) = µ
〈
symX, sym Y

〉
+ µc

〈
skewX, skew Y

〉
+

λµ

λ+ 2µ
tr(X) tr(Y ),

Wmp(X) = µ ‖symX‖2 + µc‖skewX‖2 +
λ

2

[
tr(X)

]2
=Wshell(X) +

λ2

2 (λ+ 2µ )
[tr(X)]2,

Wcurv(X) = µL2
c

(
b1 ‖dev symX‖2 + b2 ‖skewX‖2 + 4b3 [tr(X)]2

)
, ∀X,Y ∈ R3×3 .
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In the formulation of the minimization problem, the W eingarten map (or shape operator) is defined by
Ly0 = I−1

y0 IIy0 ∈ R2×2, where Iy0 := [∇y0]T ∇y0 ∈ R2×2 and IIy0 : = −[∇y0]T ∇n0 ∈ R2×2 are the matrix
representations of the f irst fundamental form (metric) and the second fundamental form of the surface,
respectively. In that paper, the authors have also introduced the tensors defined by

Ay0 := (∇y0|0) [∇Θx(0) ]−1 ∈ R3×3, By0 := −(∇n0|0) [∇Θx(0) ]−1 ∈ R3×3, (5.8.10)

and the so-called alternator tensor Cy0 of the surface [112]

Cy0 := det(∇Θx(0) ) [∇Θx(0) ]−T
(

0 1 0
−1 0 0
0 0 0

)
[∇Θx(0) ]−1. (5.8.11)

Comparing with the Γ-limit obtained in the current chapter, the internal energy density obtained via the
derivation approach depends also on

Em,sBy0 + Cy0Ke,s = − [∇Θx(0) ]−T
(
R− G Ly0 0

T Ly0 0

)
[∇Θx(0) ]−1, (5.8.12)

where the nonsymmetric quantity R−G Ly0 represents the change of curvature tensor. The choice of this
name is justified subsequently in the framework of the linearized theory, see [59]. Let us notice that the
elastic shell bending–curvature tensor Ke,s is not capable to measure the change of curvature, see [58,
59], and that sometimes a confusion is made between bending and change of curvature measures, see also
[2, 105, 12, 8, 9]

If we ignore the effect of the change of curvature tensor, there exists no coupling terms in Em,s and Ke,s
and we obtain a particular form of the energy obtained via the derivation approach, i.e.,

Wour

(
Em,s,Ke,s

)
=
(
h+ K

h3

12

)
Wshell

(
Em,s

)
+
(
h−K

h3

12

)
Wcurv

(
Ke,s

)
, (5.8.13)

where

Wshell

(
Em,s

)
=µ ‖sym E‖m,s‖2 + µc ‖skew E‖m,s‖2 +

λµ

λ+ 2µ

[
tr(E‖m,s)

]2
+
µ + µc

2
‖E⊥m,s‖2 (5.8.14)

=µ ‖sym E‖m,s‖2 + µc ‖skew E‖m,s‖2 +
λµ

λ+ 2µ

[
tr(E‖m,s)

]2
+
µ + µc

2
‖ETm,s n0‖2,

and

Wcurv(Ke,s) =µL2
c

(
b1 ‖symK‖e,s‖2 + b2 ‖skewK‖e,s‖2 +

12 b3 − b1
3

[tr(K‖e,s)]2 +
b1 + b2

2
‖K⊥e,s‖2

)
.

(5.8.15)

Skipping now all bending related h3-terms we note that there is only one difference between the membrane
energy obtained via the derivation approach and the membrane energy obtained via Γ-convergence, i.e.,
the weight of the energy terms ‖ETm,s n0‖2:

• derivation approach: the algebraic mean of µ and µc, i.e.,
µ + µc

2
;

• Γ-convergence: the harmonic mean of µ and µc, i.e.,
2µµc

µ + µc
.

This difference has already been observed for the Cosserat plate [91].

We recall again the obtained curvature energy in [55] as

W hom
curv (Ke,s) = µL2

c

(
b1‖symK‖e,s‖2 + b2‖skewK‖e,s‖2 +

b1b3
(b1 + b3)

tr(K‖e,s)2 +
2 b1b2
b1 + b2

‖K⊥e,s‖2
)
. (5.8.16)

A comparison between (5.8.15) and (5.8.16) shows that, like the case for the membrane part, the weight
of the energy terms ‖K⊥e,s‖2 = ‖KTe,sn0‖2 are different as following

• derivation approach: the algebraic mean of b1 and b2, i.e.,
b1 + b2

2
;

• Γ-convergence: the harmonic mean of b1 and b2, i.e.,
2 b1b2
b1 + b2

.



5. The three dimensional Cosserat model 68

In the model obtained via the derivation approach [56], the constitutive coefficients in the shell model
depend on both the Gauß curvature K and the mean curvature H. In the approach presented in the
current chapter this does not occur. However, we will consider this aspect in forthcoming works, by
considering the Γ-limit method in order to obtain higher order terms in terms of the thickness in the
membrane energy, see [50, 52, 51, 53].

5.8.3. A comparison with the general 6-parameter shell model

In the resultant 6-parameter theory of shells, the strain energy density for isotropic shells has been
presented in various forms. The simplest expression WP(Em,s,Ke,s) has been proposed in the papers [27,
28] in the form

2WP(Em,s,Ke,s) = C
[
ν (tr E‖m,s)2 + (1− ν) tr((E‖m,s)TE‖m,s)

]
+ αsC(1− ν) ‖ETm,sn0‖2

+ D
[
ν (trK‖e,s)2 + (1− ν) tr((K‖e,s)TK‖e,s)

]
+ αtD(1− ν) ‖KTe,sn0‖2 , (5.8.17)

with the Poisson ratio ν = λ
2(µ+λ) .

In [45], Eremeyev and Pietraszkiewicz have proposed a more general form of the strain energy density,
namely

2WEP (Em,s,Ke,s) = α1

(
tr E‖m,s

)2
+ α2 tr

(
E‖m,s

)2
+ α3 tr

(
(E‖m,s)TE‖m,s

)
+ α4 ‖ETm,sn0‖2

+ β1

(
trK‖e,s

)2
+ β2 tr

(
K‖e,s

)2
+ β3 tr

(
(K‖e,s)TK‖e,s

)
+ β4 ‖KTe,sn0‖2. (5.8.18)

Already, note the absence of coupling terms involving K‖e,s and E‖m,s. The eight coefficients αk , βk
(k = 1, 2, 3, 4) can depend in general on the structure of the curvature tensor

K0 = Q0( axl(QT0 ∂x1
Q0) | axl(QT0 ∂x2

Q0) | 0 )[∇Θ(0)]−1 ,

of the curved reference configuration. We can decompose the strain energy density (5.8.18) in the in-plane
part Wplane−EP (Em,s) and the curvature part Wcurv−EP (Ke,s) and write their expressions in the form

WEP (Em,s,Ke,s) =Wplane−EP (Em,s) +Wcurv−EP (Ke,s) , (5.8.19)

2Wplane−EP (Em,s) = (α2+α3) ‖sym E‖m,s‖2+ (α3−α2) ‖skew E‖m,s‖2+ α1

(
tr(E‖m,s)

)2
+ α4 ‖ETm,sn0‖2,

2Wcurv−EP (Ke,s) = (β2+β3) ‖symK‖e,s‖2+ (β3−β2) ‖skewK‖e,s‖2+ β1

(
tr(K‖e,s)

)2
+ β4 ‖KTe,sn0‖2.

By comparing our membrane energy

W hom
mp (Em,s) = µ ‖sym E‖m,s‖2 + µc ‖skew E‖m,s‖2 +

λµ

λ+ 2µ

[
tr(E‖m,s)

]2
+

2µ µc

µc + µ
‖ETm,sn0‖2 (5.8.20)

= Wshell

(
E‖m,s

)
+

4µ µc

µc + µ
‖E⊥m,s‖2,

with WEP

(
Em,s,Ke,s

)
we deduce the following identification of the constitutive coefficients α1 , ..., α4

α1 = h
2µλ

2µ + λ
, α2 = h (µ − µc), α3 = h (µ + µc), α4 = h

2µ µc

µ + µc
.

We observe that
µdrill

c := α3 − α2 = 2hµc , (5.8.21)

which means that the in-plane rotational couple modulus µdrill
c of the Cosserat shell model is determined

by the Cosserat couple modulus µc of the 3D Cosserat material. An analogous conclusion is given in [6]
where linear deformations are considered.

Now a comparison between our curvature energy

W hom
curv (Ke,s) = µL2

c

(
b1‖symK‖e,s‖2 + b2‖skewK‖e,s‖2 +

b1b3
(b1 + b3)

tr(K‖e,s)2 +
2 b1b2
b1 + b2

‖K⊥e,s‖2
)
. (5.8.22)

and Wcurv−EP (Ke,s), leads us to the identification of the constitutive coefficients β1, · · · , β4

β1 = 2µL2
c

b1b3
b1 + b3

, β2 = µL2
cb1 , β3 = µL2

c(b1 + b2) , β4 = 4µL2
c

b1b2
b1 + b2

.
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5.8.4. A comparison to another O(h5)-Cosserat shell model

In [22], by using a method which extends the reduction procedure from classical elasticity to the case of
Cosserat shells, B̂ırsan has obtained a minimization problem, which for the particular case of a quadratic
ansatz for the deformation map and skipping higher order terms is based on the following energy

I(m,Qe,s)=

∫
ω

[
W

(quad)
memb,bend

(
Em,s, Ke,s

)
+Wbend,curv

(
Ke,s

)]
det(∇y0|n0)︸ ︷︷ ︸

det∇Θ

da , (5.8.23)

with W
(quad)
memb,bend

(
Em,s, Ke,s

)
= hWCoss

(
Em,s

)
and Wbend,curv

(
Ke,s

)
= hWcurv

(
Ke,s

)
, where

WCoss(X) =WCoss(X,X) = µ ‖symX‖‖2 + µc ‖skewX‖‖2 +
2µµc

µ + µc
‖X⊥‖2 +

λµ

λ+ 2µ

[
tr(X)

]2
,

WCoss(X,Y ) = µ
〈
symX‖, symY ‖

〉
+ µc

〈
skewX‖, skewY ‖

〉
+

2µµc

µ + µc

〈
X⊥, Y ⊥

〉
+

λµ

λ+ 2µ
tr(X) tr(Y ) ,

Wmp(X) = µ ‖symX‖2 + µc‖skewX‖2 +
λ

2

[
tr(X)

]2
=Wshell(X,X) +

λ2

2 (λ+ 2µ )
[tr(X)]2,

Wcurv(X) = µL2
c

(
b1 ‖dev symX‖2 + b2 ‖skewX‖2 + 4b3 [tr(X)]2

)
, ∀X,Y ∈ R3×3 .

As it can be seen, in the obtained model by Birsan, there are some coupled terms of stress tensor and
bending-curvature tensor, too. This is not surprising, since Birsan has obtained the starting example
from the model in [56]. The main difference, in comparison to the model obtained in [56] is that Wcoss

with the formula

WCoss(X) =WCoss(X,X) = µ ‖symX‖‖2 + µc ‖skewX‖‖2 +
2µµc

µ + µc
‖X⊥‖2 +

λµ

λ+ 2µ

[
tr(X)

]2
,

from [56] is replaced by

WCoss(X,Y ) := Wshell(X
‖, Y ‖) +

2µµc
µ+ µc

〈
X⊥, Y ⊥

〉
, (5.8.24)

for all tensors X, Y ∈ R3×3 of the form (∗| ∗ |0) · [∇xΘ(0)]−1. Note that

Wshell(X,Y ) := Wshell(X
‖, Y ‖) +

µ+ µc
2

〈
X⊥, Y ⊥

〉
, (5.8.25)

holds true for all tensors X, Y ∈ R3×3 of the form (∗| ∗ |0) · [∇xΘ(0)]−1. Hence, for this type of tensors
we have

WCoss(X,Y ) :=Wshell(X,Y )− µ+ µc
2

〈
X⊥, Y ⊥

〉
+

2µµc
µ+ µc

〈
X⊥, Y ⊥

〉
. (5.8.26)

The main point of the comparison presented in this subsection is that the membrane term of order O(h)
coincide with the homogenized membrane energy determined by us in this manuscript, i.e.,

W hom
mp (Em,s) ≡WCoss(Em,s). (5.8.27)

With a small comparison between the obtained membrane energy via Γ-convergence and the one obtained
via the derivation approach model by Birsan, obviously we see that for a O(h)-Cosserat shell theory, there
is no difference between the coefficients, i.e.,

• special derivation approach: the harmonic mean of µ and µc;
2µµc
µ+ µc

,

• Γ-limit approach: the harmonic mean of µ and µc;
2µµc
µ+ µc

.
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5.9. Linearisation of the Γ-limit Cosserat shell model

5.9.1. The linearised model

In this section we develop the linearization of the Γ-limit functional for the elastic Cosserat shell model,
i.e., for situations of small midsurface deformations and small curvature. Let us consider

m(x1, x2) = y0(x1, x2) + v(x1, x2), (5.9.1)

where v : ω → R3 is the infinitesimal shell-midsurface displacement. For the rotation tensor Qe,0 ∈ SO(3)
there exists a skew-symmetric matrix

Aϑ := Anti(ϑ1, ϑ2, ϑ3) :=

(
0 −ϑ3 ϑ2

ϑ3 0 −ϑ1

−ϑ2 ϑ1 0

)
∈ so(3), Anti : R3 → so(3), (5.9.2)

where ϑ = axl(Aϑ) denotes the axial vector of Aϑ, such that Qe,0 := exp(Aϑ) =
∑∞
k=0

1
k! A

k

ϑ =

13 +Aϑ + h.o.t. The tensor field Aϑ is the infinitesimal microrotation. Here, “h.o.t” stands for terms of
higher order than linear with respect to u and Aϑ.

Using these linearisations of the kinematic variables, we find the linearisations of the strain tensors.
Indeed, since

Q
T

e,0∇m−∇y0 = (13 +A
T

ϑ + h.o.t.)(∇v +∇y0)−∇y0 = ∇v −Aϑ∇y0 + h.o.t., (5.9.3)

we get for the non-symmetric shell strain tensor (which characterises both the in-plane deformation and
the transverse shear deformation)

Em,s = (Q
T

e,0∇m−∇y0 | 0) [∇Θ ]−1 ,

the linearization

E lin
m,s = (∇v −Aϑ∇y0 | 0) [∇Θ ]−1 = (∂x1

u− ϑ× a1 | ∂x2
u− ϑ× a2 | 0) [∇Θ ]−1 6∈ Sym(3).

And for the shell bending-curvature tensor

Ke,s :=
(

axl(Q
T

e,0∂x1
Qe,0) | axl(Q

T

e,0∂x2
Qe,0) | 0

)
[∇Θ ]−1 , (5.9.4)

we calculate

Q
T

e,0∂xαQe,0 = (13 −Aϑ) ∂xαAϑ + h.o.t. = ∂xαAϑ + h.o.t. = A∂xαϑ︸ ︷︷ ︸
≡ Anti ∂xαϑ= ∂xαAnti ϑ

+ h.o.t. , (5.9.5)

i.e.,

axl
(
Q
T

e,0∂xαQe,0
)

= ∂xαϑ+ h.o.t. , (5.9.6)

and we deduce
Klin
e,s = (axl

(
∂x1

Aϑ
)
| axl

(
∂x2

Aϑ
)
| 0) [∇Θ ]−1 , (5.9.7)

together with
Klin
e,s = (∂x1

ϑ | ∂x2
ϑ | 0) [∇Θ ]−1 = (∇ϑ | 0) [∇Θ ]−1 . (5.9.8)

The form of the energy density remains unchanged upon linearization, since the model is physically linear.
Thus, the linearization of the Γ-limits reads: for a midsurface displacement vector field v : ω ⊂ R2 → R3

and the micro-rotation vector field ϑ : ω ⊂ R2 → R3:

J0(m,Qe,0)=

∫
ω

[
W

hom

mp

(
E lin
m,s

)
+ W

hom

curv

(
Klin
e,s

)]
det(∇y0|n0)da−Π

lin
(u, ϑ) ,

where

W
hom

mp (E lin
m,s) = µ ‖sym E lin,‖

m,s ‖2 + µc ‖skew E lin,‖
m,s ‖2 +

λµ

λ+ 2µ

[
tr(E lin,‖

m,s )
]2

+
2µ µc

µc + µ
‖E lin,T
m,s n0‖2

= Wshell

(
E lin,‖
m,s

)
+

2µ µc

µc + µ
‖E lin,⊥
m,s ‖2, (5.9.9)

W
hom

curv(Klin
e,s) = inf

A∈so(3)
W
∗
curv

(
axl(Q

T

e ∂η1Qe) | axl(Q
T

e ∂η2Qe) | axl(A)
)

[(∇xΘ)\]−1 ,

and Π
lin

(u, ϑ) is the linearization of the continuous external loading potential Π.
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5.9.2. A comparison with the linear Reissner-Mindlin membrane-bending model

The following model∫
ω

h
(
µ ‖sym∇(v1, v2)‖2 +

κµ

2
‖∇v3 −

(
θ1

θ2

)
‖2 +

µλ

2µ + λ
tr(sym∇(v1, v2))2

)
+
h3

12

(
µ ‖sym∇(θ1, θ2)‖2 +

µλ

2µ + λ
tr(∇(θ1, θ2))2

)
dω → min w.r.t.(v, θ) , (5.9.10)

v|γ0 = ud(x, y, 0) , −θ|γ0 = (ud1,z, u
d
2,z, 0)T ,

is the linear Reissner-Mindlin membrane-bending model which has five degree of freedom, three from the
midsurface displacement v : ω ⊂ R2 → R3 and the other two are from the out-of-plane rotation parameter
θ : ω → R2 that describes the infinitesimal increment of the director and 0 < κ ≤ 1 is the so called shear
correction factor. In this model the drill rotations (rotations about the normal) are absent.

As derived in [88], the Reissner-Mindlin membrane-bending model can be obtained as Γ-limit of the
linear Cosserat elasticity model. Neff et al. in [91] applied the nonlinear scaling for deformation and
linear scaling for the microrotation for the minimization problem with respect to (u,A):

I(u,A) =

∫
Ωh

Wmp(ε) +Wcurv(∇ axlA) dS 7→ min w.r.t (u,A) , (5.9.11)

where ε = ∇u−A, and

Wmp(ε) = µ ‖sym ε‖2 + µc ‖skew ε‖2 +
λ

2
[tr(ε)]2 ,

Wcurv(A) = µ
L̂2
c(h)

2

(
α1‖sym∇ axlA‖2 + α2‖skew∇ axlA‖2 +

α3

2
[tr(∇ axlA)]2

)
, (5.9.12)

for α1, α2, α3 ≥ 0. Then, they obtained the following minimization problem:

Ihom(v,A) =

∫
ω

W hom
mp (∇v, axlA) +W hom

curv (∇ axlA) dω , (5.9.13)

with respect to (v, θ), where v : ω ⊂ R2 → R3 is the deformation of the midsurface and A : ω ⊂ R2 → so(3)
as the infinitesimal microrotation of the plate on ω with the boundary condition v|γ0 = ud(x, y, 0), γ0 ⊂ ∂ω
and

W hom
mp (∇v, θ) := µ ‖sym∇(η1,η2)(v1, v2)‖2 + 2

µµc
µ + µc

‖∇(η1,η2)v3 −
(
−θ2

θ1

)
‖2 +

µλ

2µ + λ
tr[∇(η1,η2)(v1, v2)]2 ,

W hom
curv (∇θ) := µ

L̂2
c(h)

2

(
α1‖sym∇(η1,η2)(θ1, θ2)‖2 +

α1α3

2α1 + α3
tr[∇(η1,η2)(θ1, θ2)]2

)
, (5.9.14)

and it can be seen that this formula is just the Reissner-Mindlin model which is obtained by Γ-convergence,
upon selecting α1 = µ , α3 = λ. In this formula one can recognize the harmonic mean H

1

2
H(µ ,

λ

2
) =

µλ

2µ + λ
, H(µ , µc ) =

2µµc
µ + µc

,
1

2
H(α1,

α3

2
) =

α1α3

2α1 + α3
. (5.9.15)

In the current chapter we used the nonlinear scaling for both deformation and microrotation, while in [91],
they applied linear scaling for microrotation and nonlinear scaling for deformation. The other comparison
is regarding the th elastic shell strain tensor and elastic shell bending curvature tensor which in our model
are not de-coupled, and in (5.9.14) the in-plane deflections v1, v2 are not decoupled from θ3 as well.

5.9.3. Aganovic and Neff’s model

Aganović et al.[4] proposed a linear Cosserat flat shell model based on asymptotic analysis of the linear
isotropic micropolar Cosserat model. They used the nonlinear scaling for both the displacement and
infinitesimal microrotations. Therefore, their minimization problem reads:∫

ω

h
(
µ ‖sym

(
∇(v1, v2)−

(
0 −θ3

θ3 0

))
‖2 + µc ‖skew

(
∇(v1, v2)−

(
0 −θ3

θ3 0

))
‖2 +

2µµc
µ + µc

‖∇v3 −
(
−θ2
θ1

)
‖2

+
µλ

2µ + λ
tr(sym

(
∇(v1, v2)−

(
0 −θ3

θ3 0

))2)
(5.9.16)

+ µ
hL2

c

2

(
α1‖sym∇(θ1, θ2)‖2 + α2‖skew∇(θ1, θ2)‖2 +

2α1α2

α1 + α2
‖∇θ3‖2 +

α1α3

2α1 + α3
tr(∇(θ1, θ2))2

)
dω

→ min w.r.t.(v, θ) ,
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where it is assumed that α2, κ > 0, otherwise this model with the assumption α2 = 0 will give the
Reissner-Mindlin model. This means that we can not ignore the in-plane drill component θ3 here and in
the case of α2 > 0 one does not obtain the Reissner-Mindlin model. The asymptotic model coincides with
the assumptions of Neff et al. in [90], where their assumption was about scaling the nonlinear Cosserat
plate model with nonlinear scaling for both deformation and microrotation. The membrane part of this
energy coincides with the homogenized membrane energy of our model with the same coefficients.
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6. Homogenized curvature energy

6.1. Homogenized quadratic flat curvature energy

In this section, we assume that we are working in the context of a three-dimensional isotropic Cosserat
shell which has a thin flat reference configuration. The goal is to derive a dimensionally reduced flat shell
model. We use Γ-convergence arguments (see [25]). The homogenized curvature energy turns out to be

W hom
curv (Γ\�) = inf

c∗∈R3
Wcurv((Γ1|Γ2|c∗)[(∇xΘ)\]−1) . (6.1.1)

Interesting, this calculus can be made explicit once the curvature energy is written in terms of Γ, where

Γ =
(

axl(Q
T

e ∂x1
Qe)| axl(Q

T

e ∂x2
Qe)| axl(Q

T

e ∂x3
Qe)

)
[(∇xΘ)]−1 .

In this part we assume that the shell in its initial configuration is flat and the 3D Cosserat curvature
energy assumes the form

Wcurv(Γ) = µL2
c(a1‖sym Γ‖2 + a2‖skew Γ‖2 + a3 tr(Γ)2) , (6.1.2)

where a1, a2, a3 > 0. Assume that we have done the nonlinear scaling [91] for the matrix Γ. Therefore,

Γ\h =

Γ\11 Γ\12 c1
Γ\21 Γ\22 c2
Γ\31 Γ\32 c3

 , (6.1.3)

and the homogenized curvature energy is given by

W hom
curv (Γ\h) = Wcurv((Γ1|Γ2|c) = inf

c∗∈R3
Wcurv((Γ1|Γ2|c∗)[(∇xΘ)\]−1) . (6.1.4)

By using the relation (6.1.2), we start to do the calculations for symmetric, skew-symmetric and trace
parts as

sym Γ\h =

 Γ\11
Γ\12+Γ\21

2
c1+Γ\31

2
Γ\21+Γ\12

2 Γ\22
c2+Γ\32

2
Γ\31+c1

2
Γ\32+c2

2 c3

 , skew Γ\h =

 0
Γ\12−Γ\21

2
c1−Γ\31

2
Γ\21−Γ\12

2 0
c2−Γ\32

2
Γ\31−c1

2
Γ\32−c2

2 0

 , (6.1.5)

and

tr(Γ\h) = (Γ\11 + Γ\22 + c3) . (6.1.6)

The idea is minimizing the energy model regarding to the available unknowns inside the curvature energy.
So, let us assume that the total energy is as following

I\(ϕ\,∇hηϕ\, Γ\h) =

∫
Ωh

Wmp(U \h) +Wcurv(Γ\h) dVη . (6.1.7)

We notice that the the membrane part and curvature part are completely decoupled.
We have

Wcurv(Γ\h) = µL2
c

(
a1

(
Γ\,211 +

1

2
(Γ\12 + Γ\21)2 +

1

2
(c1 + Γ\31)2 + Γ\,222 +

1

2
(c2 + Γ\32)2 + c23

)
(6.1.8)

+ a2

(1

2
(Γ\12 − Γ\21)2 +

1

2
(c1 − Γ\31)2 +

1

2
(c2 − Γ\32)2

)
+ a3(Γ\11 + Γ\22 + c3)2

)
.
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Now we apply the Euler-Lagrange equations to determine the unknowns. But first, we recall that

I0(ϕ,Γ) = inf
b∗∈R3,c∗∈R3

∫
Ω1

Wmp(Q
\,T

(∇(η1,η2)ϕ
\|b∗)) +Wcurv((Γ1|Γ2|c∗)) dVη (6.1.9)

= I(ϕ,Γ, b, c) = inf
b∗∈R3,c∗∈R3

I(ϕ,Γ, b∗, c∗) ,

where c = (c1, c2, c3)T . Notice that the two energies are decoupled. Hence, for solving the minimization
problem we will have

0 =
∂I

∂c1
= a1(c1 + Γ\31) + a2(c1 − Γ\31) = (a1 + a2)c1 + (a1 − a2)Γ\31 ⇒ c1 =

a2 − a1

a1 + a2
Γ\31 ,

0 =
∂I

∂c2
= a1(c2 + Γ\32) + a2(c2 − Γ\32) = (a1 + a2)c2 + (a1 − a2)Γ\32 ⇒ c2 =

a2 − a1

a1 + a2
Γ\32 , (6.1.10)

0 =
∂I

∂c3
= a1c3 + a3(Γ\11 + Γ\22 + c3) ⇒ c3 =

−a3

a1 + a3
(Γ\11 + Γ\22) .

By inserting the unknowns inside Wcurv, we have

Wcurv(Γ\h) = µL2
c

(
a1

(
Γ\,211 + Γ\,222 + (

−a3

a1 + a3
(Γ\11 + Γ\22))2 +

1

2
(Γ\21 + Γ\12)2 +

1

2
(
a2 − a1

a1 + a2
Γ\31 + Γ\31)2

+
1

2
(
a2 − a1

a1 + a2
Γ\32 + Γ\32)2

)
(6.1.11)

+ a2

(1

2
(Γ\12 − Γ\21)2 +

1

2
(
a2 − a1

a1 + a2
Γ\31 − Γ\31)2 +

1

2
(
a2 − a1

a1 + a2
Γ\32 − Γ\32)2

)
+ a3

(
(Γ\11 + Γ\22)− a3

a1 + a3
(Γ\11 + Γ\22)

)2)
= µL2

c

(
a1

(
Γ\,211 + Γ\,222 +

a2
3

(a1 + a3)2
(Γ\11 + Γ\22)2 +

1

2
(Γ\21 + Γ\12)2 + 2

a2
2

(a1 + a2)2
Γ\,231

+ 2
a2

2

(a1 + a2)2
Γ\,232

)
+ a2

(1

2
(Γ\12 − Γ\21)2 + 2

a2
1

(a1 + a2)2
Γ\,231 + 2

a2
1

(a1 + a2)2
Γ\,232

)
+ a3

a2
1

(a1 + a3)2
(Γ\11 + Γ\22)2

)
= µL2

c

(
a1

(
Γ\,211 + Γ\,222

)
+

a1a3

(a1 + a3)
(Γ\11 + Γ\22)2 +

a1

2
(Γ\21 + Γ\12)2 + 2

a1a2

(a1 + a2)
Γ\,231

+ 2
a1a2

(a1 + a2)
Γ\,232 +

a2

2
(Γ\21 − Γ\12)2

)
= µL2

c

(
a1‖sym Γ\�‖2 + a2‖skew Γ\�‖2 +

a1a3

(a1 + a3)
tr(Γ\�)2 +

2a1a2

(a1 + a2)
‖
(

Γ\31

Γ\32

)
‖2
)
,

where Γ\� =

(
Γ\11 Γ\12

Γ\21 Γ\22

)
. Therefore, the homogenized curvature energy in plat model is

W hom
curv (Γ\h) = µL2

c

(
a1‖sym Γ\�‖2 + a2‖skew Γ\�‖2 +

a1a3

(a1 + a3)
tr(Γ\�)2 +

2a1a2

(a1 + a2)
‖
(

Γ\31

Γ\32

)
‖2
)
. (6.1.12)

6.2. Homogenized curvature energy for the curvy shell model

Let us consider an elastic material which in its reference configuration fills the three dimensional shell-
like thin domain Ωξ ⊂ R3, i.e., we assume that there exists a C1-diffeomorphism Θ: R3 → R3 with
Θ(x1, x2, x3) := (ξ1, ξ2, ξ3) such that Θ(Ωh) = Ωξ and ωξ = Θ(ω × {0}), where Ωh ⊂ R3 for Ωh =
ω ×

[
− h

2 ,
h
2

]
, with ω ⊂ R2 a bounded domain with Lipschitz boundary ∂ω. The scalar 0 < h � 1 is

called thickness of the shell, while the domain Ωh is called fictitious Cartesian configuration of the body.
In fact, in this chapter, we consider the following diffeomorphism Θ: R3 → R3 which describes the curved
surface of the shell

Θ(x1, x2, x3) = y0(x1, x2) + x3 n0(x1, x2) , (6.2.1)
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where y0 : ω → R3 is a C2(ω)-function and n0 =
∂x1y0×∂x2y0
‖∂x1y0×∂x2y0‖

is the unit normal vector on ωξ. Remark

that

∇xΘ(x3) = (∇y0|n0) + x3(∇n0|0) ∀x3 ∈
(
−h

2
,
h

2

)
, ∇xΘ(0) = (∇y0|n0), [∇xΘ(0)]−T e3 = n0,

(6.2.2)

and det∇xΘ(0) = det(∇y0|n0) =
√

det[(∇y0)T∇y0] represents the surface element.

6.2.1. Euler-Lagrange equations

We have the following curvature energy formula for a curvy configuration

Wcurv(Γ\[(∇xΘ)\]−1) = µL2
c

(
b1‖dev sym Γ\[(∇xΘ)\]−1‖2 + b2‖skew Γ\[(∇xΘ)\]−1‖2 + 4b3 tr(Γ\[(∇xΘ)\]−1)2

)
,

(6.2.3)

which we can rewrite as

Wcurv(Γ\[(∇xΘ)\]−1) = µL2
c

(
a1‖sym Γ\[(∇xΘ)\]−1‖2 + a2 ‖skew Γ\[(∇xΘ)\]−1‖2 + a3 tr(Γ\[(∇xΘ)\]−1)2

)
,

(6.2.4)

where a3 = 12b3−b1
3 .

We need to find

W hom
curv (Γ\�) = Wcurv((Γ1|Γ2|c)[(∇xΘ)\]−1) = inf

c∗∈R3
Wcurv((Γ1|Γ2|c∗)[(∇xΘ)\]−1) . (6.2.5)

The Euler-Lagrange equations appear from variations with respect to arbitrary δc ∈ R3.

〈DWcurv((Γ1|Γ2|c∗)[(∇xΘ)\]−1, (0|0|δc∗)[(∇xΘ)\]−1)〉 = 0 . (6.2.6)

We have

〈2a1 sym(Γ\[(∇xΘ)\]−1), (0|0|δc)[(∇xΘ)\]−1〉+ 〈2a2 skew(Γ\[(∇xΘ)\]−1), (0|0|δc)[(∇xΘ)\]−1〉

+ 2a3 tr(Γ\[(∇xΘ)\]−1)〈13, (0|0|δc)[(∇xΘ)\]−1〉 = 0 , (6.2.7)

〈2a1 sym((Γ1|Γ2|c)[(∇xΘ)\]−1)[(∇xΘ)\]−T , (0|0|δc)〉+ 〈2a2 skew((Γ1|Γ2|c)[(∇xΘ)\]−1)[(∇xΘ)\]−T , (0|0|δc)〉

+ 2a3 tr((Γ1|Γ2|c)[(∇xΘ)\]−1)〈[(∇xΘ)\]−T , (0|0|δc)〉 = 0 ,

〈2a1 sym((Γ1|Γ2|c)[(∇xΘ)\]−1) [(∇xΘ)\]−T e3︸ ︷︷ ︸
=n0

, δc〉+ 〈2a2 skew((Γ1|Γ2|c)[(∇xΘ)\]−1)[(∇xΘ)\]−T e3, δc〉

+ 2a3 tr((Γ1|Γ2|c)[(∇xΘ)\]−1)〈[(∇xΘ)\]−T e3, δc〉 = 0 ,

〈2a1 sym((Γ1|Γ2|c)[(∇xΘ)\]−1)n0, δc〉+ 〈2a2 skew((Γ1|Γ2|c)[(∇xΘ)\]−1)n0, δc〉

+ 2a3 tr((Γ1|Γ2|c)[(∇xΘ)\]−1)〈n0, δc〉 = 0 ,

〈
(

2a1 sym((Γ1|Γ2|c)[(∇xΘ)\]−1) + 2a2 skew((Γ1|Γ2|c)[(∇xΘ)\]−1) + 2a3 tr((Γ1|Γ2|c)[(∇xΘ)\]−1)
)
n0, δc〉 = 0 .

Because this relation holds for arbitrary δc ∈ R3, we get(
2a1 sym((Γ1|Γ2|c)[(∇xΘ)\]−1) + 2a2 skew((Γ1|Γ2|c)[(∇xΘ)\]−1) + 2a3 tr((Γ1|Γ2|c)[(∇xΘ)\]−1)

)
n0 = 0 .

(6.2.8)

We write

(Γ1|Γ2|c)[(∇xΘ)\]−1 = (Γ1|Γ2|0)[(∇xΘ)\]−1 + (0|0|c)[(∇xΘ)\]−1 . (6.2.9)

Therefore, we have

2 sym
(
(Γ1|Γ2|c)[(∇xΘ)\]−1)n0 = 2

(
sym((Γ1|Γ2|0)[(∇xΘ)\]−1) + sym((0|0|c)[(∇xΘ)\]−1)

)
n0

= (Γ1|Γ2|0) [(∇xΘ)\]−1n0︸ ︷︷ ︸
=e3

+((Γ1|Γ2|0)[(∇xΘ)\]−1)Tn0 + (0|0|c)[(∇xΘ)\]−1n0

+ ((0|0|c)[(∇xΘ)\]−1)Tn0

= ((Γ1|Γ2|0)[(∇xΘ)\]−1)Tn0 + c+ ((0|0|c)[(∇xΘ)\]−1)Tn0 . (6.2.10)



6. Homogenized curvature energy 76

A similar calculation shows that

2 skew
(
(Γ1|Γ2|c)[(∇xΘ)\]−1

)
n0 = 2

(
skew((Γ1|Γ2|0)[(∇xΘ)\]−1) + skew((0|0|c)[(∇xΘ)\]−1)

)
n0

= −((Γ1|Γ2|0)[(∇xΘ)\]−1)Tn0 + c− ((0|0|c)[(∇xΘ)\]−1)Tn0 . (6.2.11)

The trace term can be calculated like

2a3 tr((Γ1|Γ2|c)[(∇xΘ)\]−1)n0 = 2a3

(
tr((Γ1|Γ2|0)[(∇xΘ)\]−1) + tr((0|0|c)[(∇xΘ)\]−1)

)
n0

= 2a3 tr((Γ1|Γ2|0)[(∇xΘ)\]−1)n0 + 2a3〈(0|0|c)[(∇xΘ)\]−1,13〉R3×3n0

= 2a3 tr((Γ1|Γ2|0)[(∇xΘ)\]−1)n0 + 2a3〈c, [(∇xΘ)\]−T e3︸ ︷︷ ︸
=n0

〉n0

= 2a3 tr((Γ1|Γ2|0)[(∇xΘ)\]−1)n0 + 2a3c n0 ⊗ n0 . (6.2.12)

By using (6.2.8), we obtain

a1((Γ1|Γ2|0)[(∇xΘ)\]−1)Tn0 + a1c+ a1((0|0|c)[(∇xΘ)\]−1)Tn0 − a2((Γ1|Γ2|0)[(∇xΘ)\]−1)Tn0 + a2c

− a2((0|0|c)[(∇xΘ)\]−1)Tn0 + 2a3 tr((Γ1|Γ2|0)[(∇xΘ)\]−1)n0 + 2a3c n0 ⊗ n0 = 0 . (6.2.13)

Gathering similar terms gives us

(a1 − a2)((Γ1|Γ2|0)[(∇xΘ)\]−1)Tn0 + (a1 + a2)c+ (a1 − a2)((0|0|c)[(∇xΘ)\]−1)Tn0

+ 2a3 tr((Γ1|Γ2|0)[(∇xΘ)\]−1)n0 + 2a3c n0 ⊗ n0 = 0 . (6.2.14)

We have

((0|0|c)[(∇xΘ)\]−1)Tn0 = (c(0|0|e3)[(∇xΘ)\]−1)Tn0 = (cn0)Tn0 = nT0 c
Tn0 = 〈n0, c

T 〉n0 = n0〈n0, c〉
= n0 ⊗ n0c = cn0 ⊗ n0 . (6.2.15)

Let us define the lifted quantity I[y0 =

 0
0

0 0 1

Iy0

. We introduce the symmetric tensor Ay0 :=

(∇y0|0)[∇xΘ(0)]−1 ∈ SO(3). Because

Ay0 = (∇y0|0)[∇xΘ(0)]−1 = (∇y0|n0)1[2[∇xΘ(0)]−1 (6.2.16)

= [∇xΘ(0)]−T [∇xΘ(0)]T [∇xΘ(0)]1[2[∇xΘ(0)]−1

= [∇xΘ(0)]−T Îy01[2[∇xΘ(0)]−1 = [∇xΘ(0)]−T I[y0 [∇xΘ(0)]−1 ,

where Îy0 = I[y0 + 0̂3, with 0̂3 =

0 0 0
0 0 0
0 0 1

.

By using the decomposition

13c = Ay0 c+ n0 ⊗ n0c , (6.2.17)

we have

(a1 − a2)((Γ1|Γ2|0)[(∇xΘ)\]−1)Tn0 + (a1 + a2)(Ay0 c+ n0 ⊗ n0c) + (a1 − a2)n0 ⊗ n0c

+ 2a3 tr((Γ1|Γ2|0)[(∇xΘ)\]−1)n0 + 2a3n0 ⊗ n0c = 0 , (6.2.18)

and

((a1 + a2)Ay0 + 2(a1 + a3)n0 ⊗ n0)c = −(a1 − a2)((Γ1|Γ2|0)[(∇xΘ)\]−1)Tn0

− 2a3 tr((Γ1|Γ2|0)[(∇xΘ)\]−1)n0 . (6.2.19)

We introduce (see [22])

((a1 + a2)Ay0 + 2(a1 + a3)n0 ⊗ n0)−1 =
( 1

a1 + a2
Ay0 +

1

2(a1 + a3)
n0 ⊗ n0

)
. (6.2.20)
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Therefore,

c = (a2 − a1)
[
(

1

a1 + a2
Ay0 +

1

2(a1 + a3)
n0 ⊗ n0)((Γ1|Γ2|0)[(∇xΘ)\]−1)Tn0

]
− 2a3 tr((Γ1|Γ2|0)[(∇xΘ)\]−1)

[
(

1

a1 + a2
Ay0 +

1

2(a1 + a3)
n0 ⊗ n0)n0

]
, (6.2.21)

which will be reduced to

c =
(a2 − a1)

a1 + a2
((Γ1|Γ2|0)[(∇xΘ)\]−1)Tn0 −

2a3

2(a1 + a3)
tr((Γ1|Γ2|0)[(∇xΘ)\]−1)n0 , (6.2.22)

where we have used the fact that Ay0((Γ1|Γ2|0)[(∇xΘ)\]−1)T = ((Γ1|Γ2|0)[(∇xΘ)\]−1)T . Because,

Ay0((Γ1|Γ2|0)[(∇xΘ)\]−1)T = 13((Γ1|Γ2|0)[(∇xΘ)\]−1)T − n0 ⊗ n0((Γ1|Γ2|0)[(∇xΘ)\]−1)T

= ((Γ1|Γ2|0)[(∇xΘ)\]−1)T − (0|0|n0)(0|0|n0)T [(∇xΘ)\]−T (Γ1|Γ2|0)Tn0

= ((Γ1|Γ2|0)[(∇xΘ)\]−1)T − (0|0|n0)([(∇xΘ)\]−1(0|0|n0)︸ ︷︷ ︸
(0|0|e3)

)T (Γ1|Γ2|0)Tn0

= ((Γ1|Γ2|0)[(∇xΘ)\]−1)T − (0|0|n0)(0|0|e3)T (Γ1|Γ2|0)T︸ ︷︷ ︸
=0R3×3

n0

= ((Γ1|Γ2|0)[(∇xΘ)\]−1)T .

6.2.2. Calculations for the homogenized curvature energy

In this part we insert the minimizer c in (6.2.22), in the energy (6.2.4). With the definition Ke,s :=
(Γ1|Γ2|0)[(∇xΘ)\]−1, we have

‖symΓ\[(∇xΘ)\]−1‖2 = ‖sym((Γ1|Γ2|c)[(∇xΘ)\]−1)‖2 (6.2.23)

= ‖sym
(

(Γ1|Γ2|0)[(∇xΘ)\]−1 + (0|0|c)[(∇xΘ)\]−1
)
‖2

= ‖sym
(
(Γ1|Γ2|0)[(∇xΘ)\]−1)‖2 + ‖sym

(
(0|0|c)[(∇xΘ)\]−1)‖2

+ 2
〈

sym
(
(Γ1|Γ2|0)[(∇xΘ)\]−1), sym

(
(0|0|c)[(∇xΘ)\]−1)〉

= ‖symKe,s‖2 + ‖sym
(a2 − a1

a1 + a2
KTe,s(0|0|n0)[(∇xΘ)\]−1 − a3

(a1 + a3)
tr(Ke,s)(0|0|n0)[(∇xΘ)\]−1

)
‖2

+ 2

〈
symKe,s, sym

(a2 − a1

a1 + a2
KTe,s(0|0|n0)[(∇xΘ)\]−1 − a3

(a1 + a3)
tr(Ke,s)(0|0|n0)[(∇xΘ)\]−1

)〉
,

and

‖sym
(a2 − a1

a1 + a2
KTe,s(0|0|n0)[(∇xΘ)\]−1 − a3

(a1 + a3)
tr(Ke,s)(0|0|n0)[(∇xΘ)\]−1

)
‖2

=
(a2 − a1)2

(a1 + a2)2
‖sym(KTe,sn0 ⊗ n0)‖2 +

a2
3

(a1 + a3)2
tr(Ke,s)2‖n0 ⊗ n0‖2

− 2
a2 − a1

a1 + a2

a3

(a1 + a3)
tr(Ke,s)〈sym(KTe,sn0 ⊗ n0), n0 ⊗ n0〉

=
(a2 − a1)2

(a1 + a2)2

〈
sym(KTe,sn0 ⊗ n0), sym(KTe,sn0 ⊗ n0)

〉
+

a2
3

(a1 + a3)2
tr(Ke,s)2

− a2 − a1

a1 + a2

a3

(a1 + a3)
tr(Ke,s)〈KTe,sn0 ⊗ n0, n0 ⊗ n0〉

− a2 − a1

a1 + a2

a3

(a1 + a3)
tr(Ke,s)〈n0 ⊗ n0Ke,s, n0 ⊗ n0〉 (6.2.24)

=
(a2 − a1)2

4(a1 + a2)2
〈KTe,sn0 ⊗ n0,KTe,sn0 ⊗ n0〉+

(a2 − a1)2

4(a1 + a2)2
〈KTe,sn0 ⊗ n0, n0 ⊗ n0Ke,s〉

+
(a2 − a1)2

4(a1 + a2)2
〈n0 ⊗ n0Ke,s,KTe,sn0 ⊗ n0〉+

(a2 − a1)2

4(a1 + a2)2
〈n0 ⊗ n0Ke,s, n0 ⊗ n0Ke,s〉

+
a2

3

(a1 + a3)2
tr(Ke,s)2

=
(a2 − a1)2

2(a1 + a2)2
‖KTe,sn0‖2 +

a2
3

(a1 + a3)2
tr(Ke,s)2.
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Note that

〈KTe,s, n0 ⊗ n0〉 = 〈((Γ1|Γ2|0)[(∇xΘ)\]−1)T , n0 ⊗ n0〉 = 〈(Γ1|Γ2|0)[(∇xΘ)\(x3)]−1, (0|0|n0)[(∇xΘ)\(0)]−1〉

=

〈
(Γ1|Γ2|0), (0|0|n0)[(∇xΘ)\(0)]−1[(∇xΘ)\(0)]−T

 12 − x3Ly0 0
0

0 0 1

−T〉

=

〈
(0|0|n0)T (Γ1|Γ2|0),

 I−1
y0 0

0
0 0 1

 12 − x3Ly0 0
0

0 0 1

−T〉

=

〈0 0 0
0 0 0
∗ ∗ 0

 ,

∗ ∗ 0
∗ ∗ 0
0 0 1

〉 = 0 . (6.2.25)

We also observe that

n0 ⊗ n0[(∇xΘ)\(η3)]−T = (0|0|n0)[(∇xΘ)\(0)]−1[(∇xΘ)\(η3)]−T

= (0|0|n0)[(∇xΘ)\(0)]−1[(∇xΘ)\(0)]−T

 12 − x3Ly0 0
0

0 0 1

−T (6.2.26)

= (0|0|n0)

 I−1
y0 0

0
0 0 1

 12 − x3Ly0 0
0

0 0 1

−T = (0|0|n0)

∗ ∗ 0
∗ ∗ 0
0 0 1

 = (0|0|n0),

Since we have used the matrix expressionKe,s = (Γ1|Γ2|0)[(∇xΘ)\]−1 and n0⊗n0 = (0|0|n0)[(∇xΘ)\(0)]−1,
we deduce

〈KTe,sn0 ⊗ n0,KTe,sn0 ⊗ n0〉 = 〈KTe,sn0,KTe,sn0〉 = ‖KTe,sn0‖2 ,
because for every vector û, v ∈ R3 we have

〈û⊗ n0, v ⊗ n0〉 = 〈(v ⊗ n0)T û⊗ n0,1〉 = 〈(n0 ⊗ v)û⊗ n0,1〉 = 〈n0 ⊗ n0〈v, û〉,1〉
= 〈v, û〉 · 〈n0, n0〉︸ ︷︷ ︸

=1

= 〈v, û〉 . (6.2.27)

On the other hand,

2

〈
symKe,s, sym(

a2 − a1

a1 + a2
KTe,sn0 ⊗ n0 −

a3

(a1 + a3)
tr(Ke,s)n0 ⊗ n0)

〉
=
a2 − a1

a1 + a2
‖KTe,sn0‖2 . (6.2.28)

Therefore, we see that

‖sym Γ\[(∇xΘ)\]−1‖2 = ‖symKe,s‖2 +
(a1 − a2)2

2(a1 + a2)2
‖KTe,sn0‖2 +

a2
3

(a1 + a3)2
tr(Ke,s)2 +

a2 − a1

a1 + a2
‖KTe,sn0‖2 .

(6.2.29)

Now we continue the calculations for the skew-symmetric part,

‖skew Γ\[(∇xΘ)\]−1‖2 = ‖skewKe,s‖2 + ‖skew((0|0|c)[(∇xΘ)\]−1)‖2 + 2〈skewKe,s, skew((0|0|c)[(∇xΘ)\]−1)〉.
(6.2.30)

In a similar manner, we calculate the terms separately. Since n0 ⊗ n0 is symmetric, we obtain

‖skew((0|0|c)[(∇xΘ)\]−1)‖2 = ‖skew(
a2 − a1

a1 + a2
KTe,s n0 ⊗ n0 −

a3

(a1 + a3)
tr(Ke,s)n0 ⊗ n0)‖2 (6.2.31)

=
(a1 − a2)2

(a1 + a2)2
‖skew(KTe,s n0 ⊗ n0)‖2.

But, we have

‖skew(KTe,sn0 ⊗ n0)‖2 =
1

4

〈
KTe,sn0 ⊗ n0,KTe,s n0 ⊗ n0

〉
− 1

4

〈
KTe,sn0 ⊗ n0, n0 ⊗ n0Ke,s

〉
− 1

4

〈
n0 ⊗ n0Ke,s,KTe,s n0 ⊗ n0

〉
+

1

4
〈n0 ⊗ n0Ke,s, n0 ⊗ n0Ke,s〉 (6.2.32)

=
1

2
‖KTe,sn0‖2 ,
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where we used the fact that (n0 ⊗ n0)2 = (n0 ⊗ n0). We have as well

2〈skewKe,s, skew((0|0|c)[(∇xΘ)\]−1)〉 = 2
(a2 − a1)

(a1 + a2)

〈
skewKe,s, skew(KTe,sn0 ⊗ n0)

〉
(6.2.33)

=
(a2 − a1)

2(a1 + a2)
〈Ke,s,KTe,sn0 ⊗ n0〉 −

(a2 − a1)

2(a1 + a2)
〈Ke,s, n0 ⊗ n0Ke,s〉

− (a2 − a1)

2(a1 + a2)
〈KTe,s,KTe,sn0 ⊗ n0〉+

(a2 − a1)

2(a1 + a2)
〈KTe,s, n0 ⊗ n0Ke,s〉

= − (a2 − a1)

(a1 + a2)
‖KTe,sn0‖2 ,

and we obtain

‖skew Γ\[(∇xΘ)\]−1‖2 = ‖skewKe,s‖2 +
(a2 − a1)2

2(a1 + a2)2
‖KTe,sn0‖2 −

(a2 − a1)

(a1 + a2)
‖KTe,sn0‖2. (6.2.34)

A further needed calculation is[
tr(Γ\[(∇xΘ)\]−1)

]2
=
(

tr(Ke,s) + tr
(
(0|0|c)[(∇xΘ)\]−1)

))2

(6.2.35)

=
(

tr(Ke,s) +
(a2 − a1)

2(a1 + a2)
〈KTe,sn0 ⊗ n0,13〉 −

a3

(a1 + a3)
tr(Ke,s) 〈n0 ⊗ n0,13〉︸ ︷︷ ︸

〈n0,n0〉=1

)2

=
a2

1

(a1 + a3)2
tr(Ke,s)2.

Now we apply the above calculations in the formula (6.2.4), and obtain

W hom
curv (Ke,s) = µL2

c

(
a1(‖symKe,s‖2 +

(a1 − a2)2

2(a1 + a2)2
‖KTe,sn0‖2 +

a2
3

(a1 + a3)2
tr(Ke,s)2 +

a2 − a1

a1 + a2
‖KTe,sn0‖2)

+ a2(‖skewKe,s‖2 +
(a2 − a1)2

2(a1 − a2)2
‖KTe,sn0‖2 −

a2 − a1

a1 + a2
‖KTe,sn0‖2)

+ a3
a2

1

(a1 + a3)2
tr(Ke,s)2

)
, (6.2.36)

which reduces to

W hom
curv (Ke,s) = µL2

c

(
a1‖symKe,s‖2 + a2‖skewKe,s‖2 −

(a1 − a2)2

2(a1 + a2)
‖KTe,sn0‖2 +

a1a3

(a1 + a3)
tr(Ke,s)2

)
.

(6.2.37)

One may apply the orthogonal decomposition of a matrix X

X = X‖ +X⊥, X‖ := Ay0 X, X⊥ := (13 −Ay0)X, (6.2.38)

for the matrix Ke,s, where Ay0 = (∇y0|0)[∇xΘ(0)]−1 ∈ SO(3). After inserting the decomposition inside
the homogenized curvature energy, we get

W hom
curv (Ke,s) = µL2

c

(
a1‖symKe,s‖2 + a2‖skewKe,s‖2 −

(a1 − a2)2

2(a1 + a2)
‖KTe,sn0‖2 +

a1a3

(a1 + a3)
tr(Ke,s)2

)
= µL2

c

(
a1‖symK‖e,s‖2 + a2‖skewK‖e,s‖2 −

(a1 − a2)2

2(a1 + a2)
‖KTe,sn0‖2 +

a1a3

(a1 + a3)
tr(K‖e,s)2

+
a1 + a2

2
‖KTe,sn0‖

)
= µL2

c

(
a1‖symK‖e,s‖2 + a2‖skewK‖e,s‖2 +

a1a3

(a1 + a3)
tr(K‖e,s)2 +

2a1a2

a1 + a2
‖K⊥e,s‖

)
. (6.2.39)

6.2.3. Consistency check: obtaining the flat model from the curvy one

Now let us assume that in the homogenized energy which we obtained in (6.2.39) we have∇Θ = 13,∇y0 =
1. Also n0 = [∇xΘ(0)]e3 = e3. Then for the matrix

Ke,s =

 0
0

Γ31 Γ32 0

Γ�

 [(∇xΘ)\]−1 ,
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with Γ� =

(
Γ11 Γ12

Γ21 Γ22

)
we have

W hom
curv (Ke,s) = µL2

c

(
a1‖sym Γ�‖2 + a2‖skew Γ�‖2 +

a1a3

(a1 + a3)
tr(Γ�)2 +

2a1a2

a1 + a2

∥∥∥∥(Γ31

Γ32

)∥∥∥∥2 )
. (6.2.40)

A comparison between (6.1.12) and (6.2.40), shows that the homogenized flat curvature energy can be
obtained from the curvature one.

6.3. Conclusion

In this part we have considered the Γ-limit procedure in order to derive a Cosserat thin shell model
having a curved reference configuration. The paper is based on the development in [90], where the Γ-
limit was obtained for a flat reference configuration of the shell. Here, the major complication arises from
the curvy shell reference configuration. By introducing suitable mappings, we can encode the ”curvy”
information on a fictitious flat reference configuration. There, we use the nonlinear scaling for both the
nonlinear deformation and the microrotation. This leads to a Cosserat membrane model, in which the
effect of Cosserat-curvature survive the Γ-limit procedure. The homogenized membrane and curvature
energy expressions are made explicit after some lengthy technical calculations. This is only possible
because we use a physically linear, isotropic Cosserat model. Since the limit equations are obtained by Γ-
convergence, they are automatically well-posed. We finally compare the Cosserat membrane shell model
with some other dimensionally reduced proposals and linearizations. The full regularity of weak solutions
for this Cosserat shell model (for some choice of constitutive parameters) will be established in [54].
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Part II.

Drill rotations for Cosserat surfaces
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7. Rotations and Cosserat surfaces

In this part we consider the apparently novel question whether nontrivial pure in-plane drill rotations
may appear in the deformation of shells if boundary conditions are prescribed that fix the Cosserat drill
rotations at a portion of the boundary.

We show under some natural smoothness assumptions that pure in-plane drill rotations as deformation
mappings of a C2-smooth regular shell surface to another one parametrized over the same domain are
impossible provided that the rotations are fixed at a portion of the boundary. Put otherwise, if the
tangent vectors of the new surface are obtained locally by only rotating the given tangent vectors, and
if these rotations have a rotation axis which coincides everywhere with the normal of the initial surface,
then the two surfaces are equal provided they coincide at a portion of the boundary. In the language of
differential geometry of surfaces we show that any isometry which leaves normals invariant and which
coincides with the given surface at a portion of the boundary, is the identity mapping.

In this context, we prove the following main improved rigidity result for surfaces

Proposition 7.0.1. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume that m, y0 ∈ C2(ω,R3) are
regular surfaces, Q ∈ C1(ω,SO(3)) and

Dm(x) = Q(x) Dy0(x), Q(x)n0(x) = n0(x) , x ∈ ω ,
m|γd = y0|γd , (7.0.1)

where n0 = ∂1y0×∂2y0
‖∂1y0×∂2y0‖ denotes the normal field on y0(ω) and γd is a relatively open, non-empty subset

of the boundary ∂ω. Then m ≡ y0.

The interest for this question is not coming from differential geometry per se, but is motivated from
shell models with independent director fields, so called Cosserat-surfaces [38]. The additional field is a
rotation vector field Q ∈ SO(3), necessitating additional balance equations and offering the possibility
to introduce new (material) parameters into the model, coupling in-plane tangent vector fields and the
rotation field Q by a stiffness µc > 0. The question of how to determine the Cosserat couple modulus
µc is largely open in the dedicated literature [18, 16, 17, 19, 21, 29, 70, 98, 99, 109, 107, 3, 20, 49, 69,
73, 108, 111]. We focus therefore on the effect, this Cosserat couple modulus µc may have and arrive at
investigating pure in-plane drill rotations for arbitrary shell surfaces. In the course of this investigation
(see section 7.1 below) we connect the initial question to more standard rigidity results [74, 94, 2, 30] for
solid bodies and thin shells.

With the result of Proposition 7.0.1, in the end we are seeing that the stiffness µc in Cosserat shell models
is arguably connected to a boundary condition and therefore, its status as material parameter is in doubt.

Proposition 7.0.1 can be seen in the language of classical differential geometry of surfaces as:

Corollary 7.0.2. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume that m, y0 ∈ C2(ω,R3) are two
regular surfaces and

Im(x) = [Dm(x)]T Dm(x) = [Dy0(x)]T Dy0(x) = Iy0(x) , n(x) = n0(x) ∀x ∈ ω ,
m|γd = y0|γd , (7.0.2)

where n = ∂1m×∂2m
‖∂1m×∂2m‖ and n0 = ∂1y0×∂2y0

‖∂1y0×∂2y0‖ are the respective normal fields and γd is a relatively open,

non-empty subset of the boundary ∂ω. Then m ≡ y0.

The results of this Part should perhaps not come as a surprise to experts in the field of differential geom-
etry. Indeed, except for minimal surfaces, the Gauss map n0 already determines the surface essentially,
cf. [66, Theorem 2.5]. On the contrary, minimal surfaces come with a family of ‘associate surfaces’, which
have all the same Gauss map but are distinct to each other. Comparable results to Corollary 7.0.2 can be
found in [1, 66, 48] where different methods of proof were used and any connection to applications were
missing. However, the latter result does not belong to the standard textbook knowledge in differential
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geometry and it is completely unknown in the field of shell-theory. Our aim is to give a straight forward
proof without the techniques coming from differential geometry. We use the Rodrigues representation
formula for rotations with given axis as well as repeated properties of the cross-product.

In order to set the stage, we recall some of the better known rigidity and integrability theorems, for
3D−bulk materials and 2D−surfaces. For a warm up, we tackle first the small rotation problem which
already discloses some of the necessary techniques. In the subsequent section 7.7 we give the proof of
Proposition 7.0.1 for the large rotation problem.

The complementary problem
Dm(x) = U(x) Dy0(x), (7.0.3)

of finding all “compatible” in-plane stretches U , characterized by

U(x)n0(x) = κ+(x)n0(x), U(x) ∈ Sym+(3), κ+(x) > 0, (7.0.4)

has been completely solved more than ten years ago by Szwabowicz [106].1

Moreover, we have done some results regarding to minimal surfaces. If we consider the definition of a
minimal surface in mathematics aspect, we may consider surfaces that locally minimize their area; or
equivalently, when the mean curvature is zero (H = 0).
A famous example of minimal surfaces is the surface formed by the soap solution. This can be achieved
when we dip two wire rings inside a soap solution. Then what is produced is the boundary of this soap
film (which is a minimal surface) is the frame of the wire.
There is another equaivalent definition for minimal surfaces as following:
A surface X ⊂ R3 is called a minimal surface if and only if X is a least-area surface. A least area surface
is a surface which its area is less than or equal to the area of any other surface having the same boundary.
J. L. Lagrange (1768) was one of the first researchers who considered minimal surfaces by bringing up
the following variational problem. The task is: find a least area surface which is stretched across a given
closed contour. If we assume that the mentioned surface is z = z(x, y), then Lagrange showed that the
surface z should satisfies the Euler-Lagrange equation:

(1 + q2)
∂2z

∂2x
− 2pq

∂2z

∂x∂y
+ (1 + p2)

∂2z

∂2y
= 0 , (7.0.5)

p =
∂z

∂x
, q =

∂z

∂y
.

After a while, it was discovered by others that the minimality condition of a surface shows H = 0, and
hence, a surface with zero mean curvature is called minimal.
There are some examples of minimal surfaces like catenoid and helicoid (see subsection 7.5). In reality,
a catenoid is a form that is obtained by a soap film which is stretched over two discs of wire and are
perpendicular to the line which connect their centers. A catenoid is a member of the family of surfaces
which are obtained from the revolution of the curves y = a coshx/b around the x-axis. Nevertheless, just
the special case a = b causes that the corresponding surface can be a minimal surface. The catenoid is
locally isometric to the helicoid. Indeed, a helicoid is a ruled surface which can be assumed as a straight
line that rotates at a constant angular rate around a fixed axis and at the same time step by step collapses
at a constant rate k along this axis. In parametric form, one can see a helicoid as following

x = ρ cos t , y = ρ sin t , z = ρ arctanα+ kt , (7.0.6)

where α is the constant angle. We notice that for α = π
2 the helicoid is called straight or right, otherwise

is called oblique. Every straight helicoid is a minimal surface in the sense of zero mean curvature.
It is interesting to know that although a sphere is counted as a minimial surface in the aspect of mini-
mization the surface area to volume ration, but it is not qualified as a minimial surface in the sense of
mathematics definition.

7.1. Engineering motivation: Cosserat shell models

The elastic range of many engineering materials is restricted to small finite strains. Thin structures may
typically undergo large rotations (by bending) but are accompanied by small elastic strains.

1Szwabowicz uses a different notation, but his stretch tensor is basically the stretch tensor U satisfying (7.0.4). Note that
since U ∈ Sym+(3) it can be orthogonally diagonalized, the stretch U(x) satisfying (7.0.4) leaves the tangent plane
Ty0(x)y0(ω) invariant. Therefore, the Gauss map is preserved as well.
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In [84] the following geometrically nonlinear (but small elastic strain) isotropic planar shell model has
been derived for such a situation: find the midsurface deformation m : ω ⊂ R2 → R3 and the independent
rotation field R : ω ⊂ R2 → SO(3) minimizing the elastic energy

I(m,R) =

∫
ω

h
[
µ ‖sym((R1|R2)T Dm− 12)‖2︸ ︷︷ ︸

shear-stretch energy

+µc ‖skew((R1|R2)T Dm)‖2︸ ︷︷ ︸
first order drill energy

+
(µ+ µc)

2

(
〈R3, ∂1m〉2 + 〈R3, ∂2m〉2

)
︸ ︷︷ ︸

transverse shear energy

+
µλ

2µ+ λ
tr(sym((R1|R2)T Dm− 12))2︸ ︷︷ ︸

stretch energy

]

+ h
[
µL2

c‖Ks‖2 + µL2+q
c ‖Ks‖2+q

]
(7.1.1)

+
h3

12

[
µ‖symKb‖2 + µc‖skewKb‖2 +

µλ

2µ+ λ
tr[Kb]2

]
dω → min w.r.t (m,R),

where the Cosserat curvature tensor is given by

Ks = (R
T
(D(R.e1)|0), R

T
(D(R.e2)|0), R

T
(D(R.e3)|0)), Kb := Ks,3 = R

T
(D(R.e3)|0), (7.1.2)

and the boundary condition of place for the midsurface deformation m on the Dirichlet part of the lateral
boundary, m|γd = gd(x, y, 0) is imposed. This shell model is derived by dimensional descent from a
three-dimensional bulk Cosserat model [38, 84] and the appearing parameters are the isotropic shear
modulus µ > 0, the second Lamé parameter λ (with 2µ + λ > 0) and the so-called Cosserat couple
modulus µc ≥ 0, while h > 0 is the thickness of the shell, Lc ≥ 0 is a characteristic length and q ≥ 0.
This Cosserat shell model can be naturally related to the general six-parameter theory of shells [18, 16,
17, 19, 21, 29, 70, 98, 99, 109, 107], see also [3, 20, 49, 69, 73, 108, 111]. One of the typical energy terms
in these models is connected to so-called in-plane drill rotations [19, 110]. These in-plane drill rotations
describe local rotations of the shell midsurface with rotation axis given by the local shell normal n0 of
y0. Typically, the constitutive coefficients which governs this deformation mode are difficult to establish
(and the ubiquitous Cosserat couple modulus µc > 0 appears prominently). Naghdi-type shell models
with only one independent ”Cosserat”-director do not have the drill-degree of freedom [77] but allow
for transverse shear. Classical shell models neither have drill nor transverse shear [56, 45, 100]. On the
contrary, rotations about in-plane axis describe bending and twist. Even though a classical shell model
(with Kirchhoff-Love normality assumption) does not have this kinematic degree of freedom, numerical
approaches may introduce artificially shell-elements that possess locally this degree of freedom. The
question is then which amount of stiffness should be adopted. It is observed that higher artificial in-plane
drill stiffness strongly affects the calculated solution. In this context it is also known that flat shell
topologies allow for unconstrained drill rotations and we will observe this in this chapter as well: indeed
unconstrained drill rotations may be observed not only for flat surfaces but for any minimal surface as
well.
The extension of the planar shell model to initially curved shells has been recently given in [61, 56, 57].
The planar shell model (7.1.1) has been used to successfully predict the wrinkling behavior of very thin
elastic sheets [103]. In these calculations, however, the Cosserat couple modulus µc has been set to zero
throughout and q = 2 has been adopted. In this case, the term in (7.1.1) denoted by ”first order drill
energy” will drop out, while all other terms basically remain the same. It seems therefore mandatory to
devote special attention to this in-plane drill term in order to understand it’s physical and mathematical
significance. This will be undertaken next.
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7.2. On the physical concept of in-plane drill-linear torsional spring

Let ω ⊂ R2 be a bounded Lipschitz domain and y0 : ω ⊂ R2 → R3 smooth and regular describing the
mid-surface of a shell.

Figure 7.1: The midsurface y0 ∈ C2(ω,R3) of
a shell is visualized, together with
a tangent plane Ty0(x)y0 spanned by
∂1y0(x), ∂2y0(x) and with unit nor-
mal n0(x). Prescribed boundary con-
ditions at γd fix the shell mid-surface
in space.

γd ω ⊂ R 2

y0

n0

e3

Let us analyze the energy term corresponding to drill rotations shown in (7.1.1). In order to measure
in-plane drill rotations of a shell in a continuum description one first needs to endow the shell with a
given orthonormal frame, tangent to the surface y0, against which in-plane rotations can be seen. The
role of this frame will be taken here by Q0 ∈ SO(3), defined by Q0 := polar(Dy0|n0) (already used as
such by Darboux, see [41]), where polar(F ) denotes the orthogonal part in the polar-decomposition of
F ∈ GL+(3). First, it holds that

skew(QT0 (Dy0|n0)) = 0 for Q0 = polar(Dy0|n0) ∈ SO(3), (7.2.1)

due to the properties of the polar decomposition [92]

(Dy0|n0) = Q0

 0
0

0 0 1

√
[Dy0]T Dy0


︸ ︷︷ ︸

∈Sym+(3)

Q0 e3=n0⇐⇒ (Q01
, Q02

)T Dy0 =
√

[Dy0]T Dy0 ∈ Sym+(2) . (7.2.2)

Here, it can be seen that Q0 : ω ⊂ R2 → SO(3) is an orthonormal frame whose third column coincides with
the normal n0 of the surface such that there is also no induced transverse shear. The three dimensional
condition (7.2.1) can be expressed equivalently as (see also (7.2.2))

skew(QT0 (Dy0|n0)) = skew

(
(Q01

, Q02
)T Dy0 0

0 1

)
= 0 ⇐⇒ skew[(Q01 |Q02)T Dy0] = 0,

which is the ”drill energy” argument from equation (7.1.1) and in this special situation we have an initially
”drill-free” setting.

Now, what happens if we only locally rotate (drill) the given tangent vectors ∂1y0, ∂2y0 about the
rotation axis n0? For this, we take a drill rotation Q(α)n0 = n0, Q(α) = Q(α(x)) ∈ SO(3), where
α = α(x) is the rotation angle and n0 = n0(x) is the prescribed axis of rotation normal to the surface y0

and we consider locally the mapping

Dy0 → Q(α) Dy0 , (7.2.3)

which leaves the first fundamental form Iy0 = DyT0 Dy0 =
(
Q(α) Dy0

)T (
Q(α) Dy0

)
invariant. This

implies that the surface y0 is locally changed isometrically. For simplicity, taking into account the
subsequent representation (7.3.2) of rotations with given axis of rotations, we consider presently only
small drill rotation angles α so that we can duly approximate

Q(α) ≈ 1 + α Anti(n0). (7.2.4)
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Inserting then (1 + α Anti(n0)) Dy0 instead of Dy0 into the drill term from (7.2.3) we obtain

skew
[
(Q01 |Q02)T (1 + α Anti(n0))

(
∂1y0|∂2y0

)]
= skew((Q01 |Q02)T Dy0)︸ ︷︷ ︸

=0

+ skew
[
(Q01 |Q02)T α

(
n0 × ∂1y0

∣∣∣n0 × ∂2y0

)]
(7.2.5)

=
α

2

(
0 −[〈Q02 , n0 × ∂1y0〉 − 〈Q01 , n0 × ∂2y0〉]

[〈Q02
, n0 × ∂1y0〉 − 〈Q01

, n0 × ∂2y0〉] 0

)
.

We will now show that for any non-zero small angle of rotation α, expression (7.2.5) is non-zero implying
that the related drill energy term hµc‖skew((Q01

|Q02
)T Dy0)‖2 serves to introduce a linear torsional

spring stiffness against superposed in-plane rotations (with spring constant hµc, where µc ≥ 0 is the
Cosserat couple modulus).

Note that at present, the discussion is purely local: at no place did we require that Q(α(x)) Dy0(x) can
be determined as the gradient of a mapping. The global question whether Q(α) Dy0 can be the gradient
of a regular embedding m : ω → R3 with ω ⊂ R2 will be considered next.

7.2.1. Setting of the differential geometric problem

Consider a given initial curved shell surface parametrized locally by y0 : ω ⊂ R2 → R3, where we assume
that y0 is sufficiently smooth and regular (rank(Dy0) = 2). Let m : ω ⊂ R2 → R3 be any smooth
deformation of the given surface y0 parametrized over the same domain and consider a smooth in-plane
drill rotation field

Q : ω ⊂ R2 → SO(3), Q(x)n0(x) = n0(x) , (7.2.6)

where n0 =
∂1y0 × ∂2y0

‖∂1y0 × ∂2y0‖
is the unit normal vector field on the initial surface y0. We will assume further

on that

Q|γd = 1, (7.2.7)

where γd is a relatively open, non-empty subset of the boundary ∂ω. The motivation for this boundary
condition will be given in Lemma 7.4.1.

Problem 1. Let ω ⊂ R2 be a bounded Lipschitz domain and assume that m, y0 ∈ C2(ω,R3) are regular
surfaces. Does there exist a nontrivial in-plane drill rotation field Q ∈ C1(ω,SO(3)) such that

Dm(x) = Q(x) Dy0(x), Q(x)n0(x) = n0(x), x ∈ ω,
Q|γd = 1. (7.2.8)

m
y0

γd ω ⊂ R 2

n0

Figure 7.2: At any point of the surface y0

tangent planes are rotated in
their own plane leaving the ori-
entation of the surface invari-
ant to obtain a new surface m.
How canm look like if at a part
of the boundary γd ⊂ ∂ω the
surfaces m and y0 coincide?

Remark 7.2.1. For a given shell surface y0 any pure bending (flexure) deformation m satisfies locally

Dm(x) = Q(x) Dy0(x), Q(x) ∈ SO(3), (7.2.9)
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such that the first fundamental forms coincide Im = [Dm]T Dm = [Dy0]T Dy0 = Iy0 . Considering a flat
piece of paper assumed to be made of unstretchable material, the rotations can even be fixed at one side
of the paper still allowing for nontrivial bending deformations of the paper. However, the appearing local
rotation field Q(x) ∈ SO(3) in this case is not of in-plane drill type, i.e., the rotation axis of Q is not
everywhere given by n0. �

Figure 7.3: A pure bending deformation of
a surface leaves length invari-
ant, the first fundamental form
is unchanged, but there is lo-
cal rotation. We have Dm =
Q(x) Dy0 for some non-constant
Q ∈ SO(3), but the rotation in
this example does not have an in-
plane rotation axis. ω ⊂ R 2

γd

m

y0

Remark 7.2.2 (Rigidity in 3D). Assume that M : Ω ⊂ R3 → R3 and Y0 : Ω ⊂ R3 → R3 are two
diffeomorphisms, the formally similar to (7.2.8) looking condition

DM(x) = Q(x) DY0(x) , Q(x) ∈ SO(3), x ∈ Ω , (7.2.10)

implies that Q(x) ≡ const by rigidity [94, 2], as can easily be seen as follows.

By the chain rule we have

D(M(Y −1
0 (ξ))) = DM(Y −1

0 (ξ)) D[Y −1
0 (ξ)] , where D[Y −1

0 (ξ)] = [DY0(x)]−1,

therefore,

D(M(Y −1
0 (ξ))) = Q(x)[DY0(x)] [DY0(x)]−1,

⇒ D(M(Y −1
0 (ξ))) = Q(x) ∈ SO(3)

rigidity
====⇒ Q ≡ const. (7.2.11)

Note that the smoothness of Q : Ω → SO(3) can be a priori controlled by the smoothness of M and
Y0. �

Remark 7.2.3 (Rigidity in 3D). In the 3D−case we have another condition which turns out to yield
homogeneous rotations as well. Assume again that M,Y0 : Ω ⊂ R3 → R3 are two diffeomorphisms. Then

∀x ∈ Ω : [DM(x)]T DM(x) = [DY0(x)]T DY0(x) ⇐⇒ M(x) = QY0(x) , (7.2.12)

where Q ∈ SO(3) is a constant rotation, as is shown, e.g. in [30]. However, as already seen, 2D−structures
are much more flexible in the sense that for m, y0 : ω ⊂ R2 → R3 (smooth embeddings)

Im = [Dm(x)]T Dm(x) = [Dy0(x)]T Dy0(x) = Iy0 6=⇒ m(x) = Qy0(x) , (7.2.13)

as any pure bending deformation shows. �

Example 7.2.4 (Flat case). Consider y0 : ω ⊂ R2 → R3 with y0(x) = (x1, x2, 0)T . Then Dy0(x) =1 0
0 1
0 0

 and n0 ≡ e3. Thus, the conditions Q(x)n0 = n0, m ∈ C1(ω,R3) and Dm(x) = Q(x) Dy0(x) for

Q(x) ∈ SO(3), together with Q|γd = 13, imply

Dm(x) = Q(x)

1 0
0 1
0 0

 =

 0
0

0 0 1

Q̂(x)

1 0
0 1
0 0

 =


0

Q̂(x)

 , (7.2.14)

with Q̂(x) ∈ SO(2). Hence, Dm3(x) ≡ 0 and

D

(
m1(x)
m2(x)

)
= Q̂(x) ∈ SO(2). (7.2.15)

Then, again by rigidity [94] we obtain that Q̂ ≡ const. Applying the boundary conditions we have

Q̂|γd = 12 and finally Q ≡ 13. Thus m− y0 ≡ const. �
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7.3. Preliminaries on rotations in SO(3) and the Euler-Rodrigues
formula

We need to consider the matrix exponential function

exp: so(3)→ SO(3), exp(A) =

∞∑
k=0

1

k!
Ak, A ∈ so(3). (7.3.1)

According to Euler, any rotation can be realized by a rotation around one axis with a certain rotation
angle. However, any rotation Q ∈ SO(3) with prescribed rotation axis n0 and angle of rotation α can be
written with the Euler-Rodrigues representation in matrix notation as [97]

Q(α) = exp(Anti(αn0)) = 1 + sinα Anti(n0) + (1− cosα) (Anti(n0))2

= (1− cosα)n0 ⊗ n0 + cosα 1 + sinα Anti(n0) . (7.3.2)

For small rotation angle |α|�1 the above representation (7.3.2) will be approximated by

Q ≈ 1 + α Anti(n0), (7.3.3)

since sinα→ α and 1− cosα→ 0 as |α| → 0. For later use, note that any nontrivial rotation
1 6= Q ∈ SO(3) has (only) one rotation axis η ∈ R3 such that Qη = η where η is the eigenvector to the
real eigenvalue 1.

Taking the trace in (7.3.2), we also see that

tr(Q(α(x))) = 2 cosα(x) + 1 ⇐⇒ cos(α(x)) =
tr(Q(α(x)))− 1

2
. (7.3.4)

The inverse cosine is a multivalued function and each branch is differentiable only on (−1, 1). Thus,

for Q = 1 or Q = diag(−1,−1, 1) we have
tr(Q)− 1

2
∈ {−1, 1}, i.e., in the neighborhood of both these

rotations the simple formula (7.3.4) is not meaningful for extracting a smooth rotation angle. In order
to solve this problem for small rotation angle α (for Q near to 1) we proceed as follows (the simple idea
is taken from [76]). Multiplying (7.3.2) on both sides with Anti(n0) from the left gives

Anti(n0)Q(α) = Anti(n0)︸ ︷︷ ︸
∈so(3)

+ sinα(Anti(n0))2 + (1− cosα)(Anti(n0))3︸ ︷︷ ︸
∈so(3)

. (7.3.5)

Tanking the trace gives

tr
(

Anti(n0)Q(α)
)

= − sinα ‖Anti(n0)‖2 = −2 sinα , (7.3.6)

since Anti(n0) ∈ so(3) and ‖n0‖ = 1. Thus with (7.3.4) we arrive at

sinα = −
tr
(

Anti(n0)Q
)

2
, cosα =

tr(Q)− 1

2

tr(Q) 6=1
=⇒ tanα = −

tr
(

Anti(n0)Q
)

tr(Q)− 1
, (7.3.7)

whereby any branch of the inverse tangent is smooth on R. This shows that for tr(Q)− 1 > 0, i.e., in a
large neighborhood of Q = 1, the extraction of the rotation angle α from the rotation Q is as smooth as
Q and the surface allows.

Lemma 7.3.1. Assume y ∈ C2(ω,R3) is a regular surface and let Q ∈ C1(ω,SO(3)) be given. Assume
that for a point x0 ∈ ω and α0 ∈ R it holds

Q(x0) = (1− cosα0)n0(x0)⊗ n0(x0) + cosα0 13 + sinα0 Anti(n0(x0)) , (7.3.8)

where n0 is the normal field on y0. Then there exists a neighborhood U(x0) ⊂ ω and a continuously-
differentiable function

α : U(x0)→ R satisfying α(x0) = α0 , (7.3.9)

such that for all x ∈ U(x0)

Q(x) = (1− cosα(x))n0(x)⊗ n0(x) + cosα(x) 13 + sinα(x) Anti(n0(x)) . (7.3.10)

Proof. The C1-regularity of α in a sufficiently small neighborhood of x0 follows from one of the expressions
contained in (7.3.7). Indeed, for tr(Q(x0)) 6= 1 consider in (7.3.7)3 the branch of the inverse tangent which
contains α0. Otherwise, for tr(Q(x0)) = 1 take in (7.3.7)2 the branch of the inverse cosine which contains
α0, cf. Figure 7.4. �
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cosϕ

Figure 7.4.: The range for the corresponding branch of the inverse trigonometric functions are indicated
in blue.

7.4. Boundary conditions

Lemma 7.4.1. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume that m, y0 ∈ C1(ω,R3) are regular
surfaces, Q ∈ C0(ω,SO(3)) and

Dm(x) = Q(x) Dy0(x) , x ∈ ω , m|γd = y0|γd , (7.4.1)

where γd is a relatively open, non-empty subset of the boundary ∂ω. If for all x ∈ γd we have Q(x)n0(x) =
n0(x), where n0 = ∂1y0×∂2y0

‖∂1y0×∂2y0‖ , then Q|γd ≡ 1.

Remark 7.4.2. For the conclusion of this lemma we only need the assumptions on γd. However, the
required conditions in the interior of ω are those which will be considered later. �

Proof of Lemma 7.4.1. Consider a C0,1-parametrization γ : (0, 1) → R2, γ(0, 1) ⊂ γd ⊂ ∂ω. Then,
m(γ(s)) = y0(γ(s)) on (0, 1) implies for γ̇(s) ∈ R2

d

ds
m(γ(s)) =

d

ds
y0(γ(s)) ⇒ Dm(γ(s))γ̇(s) = Dy0(γ(s))γ̇(s) ∈ R3 a.e. on (0, 1). (7.4.2)

Hence,

Dm(γ(s)) γ̇(s)
(7.4.1)

= Q(γ(s)) Dy0(γ(s)) γ̇(s)
(7.4.2)

= Q(γ(s)) Dm(γ(s)) γ̇(s)︸ ︷︷ ︸
=:q(s)∈R3

a.e. on (0, 1). (7.4.3)

Thus q(s) = Q(γ(s))q(s), for almost all s ∈ (0, 1). Moreover, the vector q(s) is a tangent vector to y0

at y0(γ(s)). Together with the assumption Q(γ(s))n0(γ(s)) = n0(γ(s)) it follows that Q(γ(s)) has two
linear independent eigenvectors q(s) and n0(γ(s)). Since the axis of rotation is unique for any nontrivial
rotation, it follows Q(γ(·)) = 1 a.e. on (0, 1) and by continuity Q|γd ≡ 1. �

We repeat a similar reasoning for the small rotation case.

Lemma 7.4.3. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume that m, y0 ∈ C1(ω,R3) are two
regular surfaces, A ∈ C(ω, so(3)) and

Dm(x) = (1 +A(x)) Dy0(x) , x ∈ ω , m|γd = y0|γd , (7.4.4)

where γd is a relatively open, non-empty subset of the boundary ∂ω. If for all x ∈ γd ⊂ ∂ω we have
A(x)n0(x) = 0, where n0 = ∂1y0×∂2y0

‖∂1y0×∂2y0‖ , then A|γd ≡ 0.

Proof. We have again

Dm(γ(s))γ̇(s) = Dy0(γ(s))γ̇(s) ∈ R3 a.e. on (0, 1) , (7.4.5)

for a C0,1-parametrization γ : (0, 1)→ R2, γ(0, 1) ⊂ γd ⊂ ∂ω. Hence, we obtain a.e. on (0, 1)

Dy0(γ(s))γ̇(s)
(7.4.5)

= Dm(γ(s)) γ̇(s)
(7.4.4)

= Dy0(γ(s)) γ̇(s) +A(γ(s)) Dy0(γ(s)) γ̇(s)

⇐⇒ 0 = A(γ(s)) Dy0(γ(s)) γ̇(s)︸ ︷︷ ︸
=:q(s)

= A(γ(s)) q(s) , where q(s)⊥n0(γ(s)) . (7.4.6)

From the assumption we moreover have A(γ(s))n0(γ(s)) = 0 so that with A(γ(s)) q(s) = 0 along γd we
obtain A(γ(s)) = 0, since any non-zero skew-symmetric 3× 3 matrix A has rank two. �
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7.5. Family of minimal surfaces

One of the family of minimal surfaces is catenoid. It is shown that catenoid is a minimal surface. Actually
this name comes from the rotating a certain catenary about some axis. Let us assume that the axis for
rotation is x3-axis. Then all catenoids are generated by rotating the catenaries

x1 = α cosh(
x3 − x30

α
) , (7.5.1)

where x30 and α are arbitrary constants with α 6= 0.
By choosing x30

= 0, we can see a parametrized representation for a catenoid like X : C→ R3

X(x1, x2) =

 α coshx1 cosx2

−α coshx1 sinx2

αx1

 , for −∞ < x1 <∞ , 0 ≤ x2 < 2π , (7.5.2)

and x = (x1, x2) ∈ C, that is, x = x1 + ix2. If the mapping f : C→ C3 denotes the isotropic curve with

f(x1, x2) = (α cosh x, αi sinh x, αx) , (7.5.3)

we may write

X(x) = Re f(x) . (7.5.4)

Definition 7.5.1. An associated family of a minimal surface is a one-parameter family of surfaces which
share the same displacement of the vectors between two corresponding points in the range. It means, all
of the members of an associate family have the same domain, Gauss map and metric.

For the catenoid (7.5.2), the adjoint surface of (7.5.4) can be

X∗(x) := Im f(x) , (7.5.5)

and the adjoint of the catanoid is the matrixα sinhx1 sinx2

α sinhx1 cosx2

αx2

 . (7.5.6)

In other word, one may write

X∗ = αY (x2) + sinhx1Z(x2) , (7.5.7)

where

Y (x2) = (0, 0, x2) , Z(x2) = (sinx2, cosx2, 0) . (7.5.8)

Hence, for every x2 ∈ R the curve X∗(., x2) is a straight line which meets the x3-axis perpendicularly.
Generally, we see that X∗ is generated ba y screw motion of some straight lines which meet the x3-axis
perpendicularly. Therefore, X∗ is called helicoid or screw surface. So, the helicoid X∗, which is the
adjoint of the catenoid X, is a ruled surface with the x3-axis as its directrix.

Remark 11. Assume that Z(w, θ) is the associate surfeces. The coordinates of

Z(w, θ) = Re{e−iθf(w)} , θ ∈ R , (7.5.9)

to the catenoid X(x), also to the helicoid X∗(x) are α coshx1 cosx2 cos θ + α sinhx1 sinx2 sin θ
−α coshx1 sinx2 cos θ + α sinhx1 cosx2 sin θ

αx1 cos θ + αx1 sin θ

 . (7.5.10)

Generally, a catenoid can be written as

Xcat(x) = (coshx1 cosx2,− coshx1 sinx2, x1) , (7.5.11)
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and the helicoid as

Xhel(x) = (sinhx1 sinx2, sinhx1 cosx2, x2) . (7.5.12)

So we can write the curve like following

X(x) = αXcat(x) + βXhel(x) . (7.5.13)

By choosing

α = c cos θ , β = c sin θ with c =
√
α2 + β2 , (7.5.14)

and hence,

X(x) = c[cos θXcat(x) + sin θXhel(x)] . (7.5.15)

In the special case for α = cosθ and β = sin θ, gives

X(x) = cos θXcat(x) + sin θXhel(x) . (7.5.16)

Their partial derivatives fulfill

∂1X
θ = cos θ · ∂1X

cat − sin θ · ∂2X
cat and ∂2X

θ = sin θ · ∂1X
cat + cos θ · ∂2X

cat , (7.5.17)

so that, the surface normals remain unchanged

nXθ (x1, x2) = nXcat(x1, x2) = nXhel(x1, x2) for all (x1, x2) ∈ ω. (7.5.18)

Further properties of the members of this associate family Xθ can be found in [71] and [42, Chapter 3],
as well as the references cited therein.

Figure 7.5: Four consec-
utive steps of
an isometric
deformation of
a catenoid (left)
into a helicoid
(right). Such a
transformation
exists, since
both are mem-
bers of the same
associate family
Xθ. Note that
every member
of the deforma-
tion family has
vanishing mean
curvature, i.e.,
is a minimal
surface. (a) θ = 0 (b) θ = π

25
(c) θ = π

4
(d) θ = π

2

To see (7.5.17) and (7.5.18) we take the partial derivatives of (7.5.16):

∂jX
θ = cos θ · ∂jXcat + sin θ · ∂jXhel for j = 1, 2. (7.5.19)

Since the partial derivatives of the catenoid and the helicoid satisfy the Cauchy-Riemann equations

∂1X
cat = ∂2X

hel and ∂2X
cat = −∂1X

hel , (7.5.20)

we obtain (7.5.17), which in matrix notation reads

DXθ = DXcat

(
cos θ sin θ
− sin θ cos θ

)
. (7.5.21)
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Moreover,

∂1X
θ × ∂2X

θ (7.5.17)
= cos2 θ · ∂1X

cat × ∂2X
cat − sin2 θ · ∂2X

cat × ∂1X
cat

= ∂1X
cat × ∂2X

cat , (7.5.22)

which gives (7.5.18). Furthermore,

∂1X
cat =

cosx2 sinhx1

sinx2 sinhx1

1

 and ∂2X
cat =

− sinx2 coshx1

cosx2 coshx1

0

 , (7.5.23)

so that

‖∂1X
cat‖2 = sinh2 x1 + 1 = cosh2 x1 = ‖∂2X

cat‖2 and 〈∂1X
cat, ∂2X

cat〉 = 0. (7.5.24)

In regard with (7.5.17) we obtain

‖∂1X
θ‖2 (7.5.24)2= cos2 θ‖∂1X

cat‖2 + sin2 θ‖∂2X
cat‖2 (7.5.24)1= cosh2 x1 , (7.5.25a)

‖∂2X
θ‖2 (7.5.24)2= sin2 θ‖∂1X

cat‖2 + cos2 θ‖∂2X
cat‖2 (7.5.24)1= cosh2 x1 = ‖∂1X

θ‖2 , (7.5.25b)

〈∂1X
θ, ∂2X

θ〉 (7.5.24)2= cos θ sin θ‖∂1X
cat‖2 − sin θ cos θ‖∂2X

cat‖2 (7.5.24)1= 0. (7.5.25c)

In other words, the first fundamental form of all members of the associate family remains unchanged and
is given by

IXθ (x1, x2) = [DXθ]T DXθ =

(
‖∂1X

θ‖2 〈∂1X
θ, ∂2X

θ〉
〈∂1X

θ, ∂2X
θ〉 ‖∂2X

θ‖2
)

= cosh2 x1 · 12. (7.5.26)

Thus,

[DXcat]T DXθ (7.5.21)
= [DXcat]T DXcat

(
cos θ sin θ
− sin θ cos θ

)
(7.5.26)

= cosh2 x1

(
cos θ sin θ
− sin θ cos θ

)
, (7.5.27)

and [DXcat]T DXθ /∈ Sym+(2) is not a pure in-plane stretch.

Moreover, as in (7.7.12), there exists an in-plane drill rotation Qθ(x) ∈ SO(3) which fulfills

DXθ(x) = Qθ(x) DXcat(x) and Qθ(x)n0(x) = n0(x), where n0(x) := nXθ (x) = nXcat(x). (7.5.28)

Next we show, that the (constant) rotation angle, cf. Lemma 7.7.1, extracted from Qθ(x) is already given
by −θ (or differs from it by an integer multiple of 2π), so that we have the representation

Qθ(x) = (1− cos(−θ))n0(x)⊗ n0(x) + cos(−θ) 1 + sin(−θ) Anti(n0(x))

= (1− cos θ)n0(x)⊗ n0(x) + cos θ 1− sin θAnti(n0(x)). (7.5.29)

For that purpose, note that

∂1X
cat × ∂2X

cat =

− cosx2 coshx1

− sinx2 coshx1

sinhx1 coshx1

 ⇒ ‖∂1X
cat × ∂2X

cat‖ = cosh2 x1, (7.5.30)

so that

n0 =
1

coshx1

− cosx2

− sinx2

sinhx1

 , and n0 × ∂1X
cat = ∂2X

cat, n0 × ∂2X
cat = −∂1X

cat. (7.5.31)

Hence, with n0 ⊗ n0 ∂jX
cat = n0 〈n0, ∂jX

cat〉 ≡ 0, we obtain

Qθ∂1X
cat (7.5.29)

= cos θ ∂1X
cat − sin θAnti(n0)∂1X

cat (7.5.31)2= cos θ ∂1X
cat − sin θ ∂2X

cat (7.5.17)1= ∂1X
θ ,

(7.5.32)
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as well as

Qθ∂2X
cat (7.5.29)

= cos θ ∂2X
cat − sin θAnti(n0)∂2X

cat (7.5.31)3= cos θ ∂2X
cat + sin θ ∂1X

cat (7.5.17)2= ∂2X
θ ,

(7.5.33)

and we have shown that
Qθ DXcat = DXθ , (7.5.34)

where Qθ has the expression (7.5.29) and its columns read with the representation of the normal (7.5.31)1

Qθ e1 =


− (cos2 x2−cosh2 x1) cos θ−cos2 x2

cosh2 x1

− cosh x1 sinh x1 sin θ+cos x2 sin x2 cos θ−cos x2 sin x2

cosh2 x1

− cosh x1 sin x2 sin θ−sinh x1 cos x2 cos θ+sinh x1 cos x2

cosh2 x1

 , (7.5.35a)

Qθ e2 =


cosh x1 sinh x1 sin θ−cos x2 sin x2 cos θ+cos x2 sin x2

cosh2 x1

− (sin2 x2−cosh2 x1) cos θ−sin2 x2

cosh2 x1

cosh x1 cos x2 sin θ+sinh x1 sin x2 cos θ−sinh x1 sin x2

cosh2 x1

 , (7.5.35b)

Qθ e3 =


cosh x1 sin x2 sin θ+sinh x1 cos x2 cos θ−sinh x1 cos x2

cosh2 x1

− cosh x1 cos x2 sin θ−sinh x1 sin x2 cos θ+sinh x1 sin x2

cosh2 x1

cos θ+cosh2 x1−1
cosh2 x1

 . (7.5.35c)

Recall, that if a surface X is parametrized conformally, i.e., it holds ‖∂1X‖ = ‖∂2X‖ and 〈∂1X, ∂2X〉 = 0,
then it is a minimal surface (i.e. has vanishing mean curvature everywhere) if and only if ∆X ≡ 0 holds,
cf. [42, p.72]. Thus, in regard with (7.5.26), to check that all members of the associate family Xθ are,
indeed, minimal surfaces, we compute

∆Xθ (7.5.17)
= cos θ ·∆Xcat (7.5.23)≡ 0. (7.5.36)

Furthermore, if a minimal surface is parametrized conformally, then the same holds for its corresponding
Gauss map, cf. [42, p.74]. Indeed, all members of the associate family Xθ are minimal surfaces and for
their Gauss maps (which all coincide) n0 : ω → S2 it holds

In0 = [Dn0]T Dn0
(7.5.31)1=

1

cosh2 x1

· 12 , (7.5.37)

which shows that n0 is also parametrized conformally.

Let us mention, that the constancy of the rotation angle can also be achieved without applying Lemma
7.7.1. For that purpose, let us here call the in-plane drill rotation Q̂(x) ∈ SO(3) which fulfills

DXθ(x) = Q̂(x) DXcat(x) and Q̂(x)n0(x) = n0(x), where n0(x) := nXθ (x) = nXcat(x). (7.5.38)

Thus, as in (7.7.12), it follows

(DXθ
∣∣n0) = Q̂(DXcat

∣∣n0) ⇒ Q̂ = (DXθ
∣∣n0)(DXcat

∣∣n0)−1 , (7.5.39)

and a direct computation gives the entries of Q̂(x), which, indeed, coincide with (7.5.35). From the
uniqueness of the Euler-Rodrigues representation it then follows that the corresponding rotation angle
α̂(x) is constant and is given by −θ (or differs from it by an integer multiple of 2π). Indeed, with (7.3.7)
we have

sin(α̂(x))
(7.3.7)

= −
tr
(

Anti(n0(x))Q̂(x)
)

2

Q̂=Qθ

=
(7.5.35)

− sin θ and cos(α̂(x))
(7.3.7)

= − tr Q̂(x)− 1

2

Q̂=Qθ

=
(7.5.35)

cos θ.

7.6. The small rotation case: A ∈ so(3)

For m, y0 : ω ⊂ R2 → R3 we discuss

Dm(x) = Q(x) Dy0(x) , Q(x)n0(x) = n0(x) , n0 unit normal vector field on y0(ω) , (7.6.1)
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where Q ∈ C1(ω,SO(3)). Consider a linear approximation of this situation for small rotation angle α,
|α| � 1. Then we can write

Dm(x) = Dy0(x) + Dv(x), Q(x) = 1 +A(x) + h.o.t. , A ∈ C1(ω, so(3)). (7.6.2)

Note that we do not assume that Dv is small. We only assume that the rotations are close to 1. Then,

Dm(x) = Dy0(x) + Dv(x) = (1 +A(x) + . . .) Dy0(x) ⇒ Dv(x) = A(x) Dy0(x) + . . . , (7.6.3)

hence we may consider the new problem

Dv(x) = A(x) Dy0(x) , A ∈ C1(ω, so(3)) , A(x)n0(x) = 0 . (7.6.4)

Therefore, we are led to study the problem

Lemma 7.6.1. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume y0 ∈ C2(ω,R3) is a regular surface
and let v ∈ C2(ω,R3). Moreover, assume α ∈ C1(ω,R) and consider the system

Dv(x) = α(x) Anti(n0(x)) Dy0(x) , x ∈ ω , (7.6.5)

where n0 = ∂1y0×∂2y0
‖∂1y0×∂2y0‖ denotes the normal field on y0(ω). Then α ≡ const.

Proof. We write

(∂1v|∂2v) = αAnti(n0)(∂1y0|∂2y0) = α
(

Anti(n0)∂1y0

∣∣∣Anti(n0)∂2y0

)
, (7.6.6)

⇐⇒ ∂1v = α [n0 × ∂1y0 ] , ∂2v = α [n0 × ∂2y0 ] ,

where we have used that Anti(n0)η = n0 × η. We proceed by taking the mixed derivatives

∂2∂1v = ∂2α [n0 × ∂1y0 ] + α [ ∂2n0 × ∂1y0 + n0 × ∂2∂1y0 ],

∂1∂2v = ∂1α [n0 × ∂2y0 ] + α [ ∂1n0 × ∂2y0 + n0 × ∂1∂2y0 ]. (7.6.7)

Hence, by equality of the mixed derivatives in (7.6.7) for y0, v ∈ C2(ω,R3) we must have

∂2α [n0 × ∂1y0 ]︸ ︷︷ ︸
=:
−→
Y0

+α [ ∂2n0 × ∂1y0 ]︸ ︷︷ ︸
=:
−→
B

= ∂1α [n0 × ∂2y0 ]︸ ︷︷ ︸
=:−−→X0

+α [ ∂1n0 × ∂2y0 ]︸ ︷︷ ︸
=:
−→
A

∈ R3 . (7.6.8)

Especially we have that
−→
A and

−→
B are normal vectors whereas

−→
X0 and

−→
Y0 are linear independent tangent

vectors, since 〈−→X0〉n0 = 0, 〈−→Y0〉n0 = 0 and

−→
X0 ×

−→
Y0 = −(n0 × ∂2y0)× (n0 × ∂1y0) = −〈n0〉∂2y0 × ∂1y0n0 = 〈n0〉‖∂1y0 × ∂2y0‖ · n0n0

= ‖∂1y0 × ∂2y0‖ · n0 = ∂1y0 × ∂2y0, (7.6.9)

where we have used that n0 = ∂1y0×∂2y0
‖∂1y0×∂2y0‖ . Thus, the vector fields

−→
X0,
−→
Y0 and n0 form a 3−frame on the

surface y0(ω). However, (7.6.8) reads,

∂1α ·
−→
X0 + ∂2α ·

−→
Y0 = α · (−→A −−→B ) = δ · n0, (7.6.10)

with a scalar field δ, so that by the linear independence of the vector fields
−→
X0,
−→
Y0 and n0 we must always

have ∂1α = ∂2α = δ = 0, which gives α ≡ const. �

Thus, adding sufficient boundary conditions we arrive at

Proposition 7.6.2. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume y0 ∈ C2(ω,R3) is a regular
surface and let v ∈ C2(ω,R3). Moreover assume α ∈ C1(ω,R) ∩ C0(ω,R) and consider the system

Dv(x) = α(x) Anti(n0(x)) Dy0(x) , x ∈ ω , α|γd = 0 , (7.6.11)

where n0 = ∂1y0×∂2y0
‖∂1y0×∂2y0‖ denotes the normal field on y0(ω) and γd is a relatively open, non-empty, subset

of the boundary ∂ω. Then α ≡ 0.
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Proof. By Lemma 7.6.1 it holds α ≡ const, so that due to the vanishing boundary condition α|γd = 0
and the continuity of α we obtain α ≡ 0. �

Corollary 7.6.3. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume that m, y0 ∈ C2(ω,R3) are regular
surfaces and α ∈ C1(ω,R) ∩ C0(ω,R) is given with

Dm(x) = (1 + α(x) Anti(n0(x))) Dy0(x) , x ∈ ω , m|γd = y0|γd , (7.6.12)

where n0 = ∂1y0×∂2y0
‖∂1y0×∂2y0‖ denotes the normal field on y0(ω) and γd is a relatively open, non-empty, subset

of the boundary ∂ω. Then m ≡ y0.

Proof. We invoke Lemma 7.4.3 to see that m|γd = y0|γd implies α|γd ≡ 0. Thus, for v = m − y0 we can
apply Proposition 7.6.2 to conclude that Dv ≡ 0. �

Proposition 7.6.4. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume m, y0 ∈ C2(ω,R3) are regular
surfaces and α ∈ C1(ω,R) with

Dm(x) = (1 + α(x) Anti(n0(x))) Dy0(x) , x ∈ ω , (7.6.13)

where n0 = ∂1y0×∂2y0
‖∂1y0×∂2y0‖ denotes the normal field on y0(ω). Then

∀ x ∈ ω : α(x) = 0 or H(x) = 0, (7.6.14)

where H denotes the mean curvature on the surface y0.

Proof. Recall that it holds for the vector field

−→
A −−→B = ∂1n0 × ∂2y0 − ∂2n0 × ∂1y0 = −2 H ‖∂1y0 × ∂2y0‖n0 = −2H ∂1y0 × ∂2y0, (7.6.15)

cf. [42, Section 2.5, Theorem 2]. Thus, for v = m − y0 the validity of (7.6.10) implies that we have
pointwise either a vanishing angle α or a vanishing mean curvature H since

0
(7.6.10)≡
α≡const

α · (−→A −−→B )
(7.6.15)

= −2α ·H · ∂1y0 × ∂2y0 . �

Remark 7.6.5 (Symmetry of the second fundamental form). It is interesting to note that conclusion
(7.6.14) can also be obtained from the symmetry property of the second fundamental form on the surface
m(ω). Indeed, the normal vector field on m(ω) coincides with n0 since

∂1m× ∂2m
(7.6.13)

= (∂1y0 + α Anti(n0) ∂1y0)× (∂2y0 + α Anti(n0) ∂2y0)

= (∂1y0 + αn0 × ∂1y0)× (∂2y0 + αn0 × ∂2y0)

= ∂1y0 × ∂2y0 + α2(n0 × ∂1y0)× (n0 × ∂2y0)
(7.6.9)

= (1 + α2) ∂1y0 × ∂2y0. (7.6.16)

Thus, for the second fundamental form on m(ω) we obtain

Sym(2) 3 IIm = −[Dm]T Dn = −[Dm]T Dn0
(7.6.13)

= −[(1 + αAnti(n0)) Dy0]T Dn0

= −[Dy0]T Dn0 − α [Dy0]T Anti(n0)T Dn0 = IIy0 + α [Dy0]T Anti(n0) Dn0. (7.6.17)

Since IIv ∈ Sym(2), we are left with the single condition

α [Dy0]T Anti(n0) Dn0 ∈ Sym(2) ⇐⇒ α

(
(∂1y0)T

(∂2y0)T

)
(n0 × ∂1n0

∣∣∣n0 × ∂2n0) ∈ Sym(2)

⇐⇒ α

(
∗ 〈∂1y0, n0 × ∂2n0〉

〈∂2y0〉n0 × ∂1n0 ∗

)
∈ Sym(2)

⇐⇒ { α = 0 or 〈∂1y0, n0 × ∂2n0〉 = 〈∂2y0, n0 × ∂1n0〉}
⇐⇒ { α = 0 or 〈n0, ∂2n0 × ∂1y0〉 = 〈n0, ∂1n0 × ∂2y0〉}
⇐⇒ { α = 0 or 0 = 〈n0, ∂1n0 × ∂2y0 − ∂2n0 × ∂1y0〉}

(7.6.15)⇐⇒ { α = 0 or 0 = 〈n0,−2H ∂1y0 × ∂2y0〉}
⇐⇒ { α = 0 or H‖∂1y0 × ∂2y0‖ = 0}
⇐⇒ { α = 0 or H = 0}. (7.6.18)

�
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Corollary 7.6.6. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume y0 ∈ C2(ω,R3) is a regular
surface and let v ∈ C2(ω,R3). Moreover assume α ∈ C1(ω,R) and consider the system

Dv(x) = α(x) Anti(n0(x)) Dy0(x) , x ∈ ω , (7.6.19)

where n0 = ∂1y0×∂2y0
‖∂1y0×∂2y0‖ denotes the normal field on y0(ω). If the mean curvature H of y0 does not vanish

at one point y0(x0), then α ≡ 0.

Proof. It follows from the previous Proposition 7.6.4, that if the mean curvature H does not vanish at
some point y0(x0), we must have α(x0) = 0 and the conclusion follows, since α ≡ const by Lemma
7.6.1. �

7.7. The large rotation case: Q ∈ SO(3)

Lemma 7.7.1. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume that m, y0 ∈ C2(ω,R3) are regular
surfaces, Q ∈ C1(ω,SO(3)) and

Dm(x) = Q(x) Dy0(x) , Q(x)n0(x) = n0(x) , x ∈ ω , (7.7.1)

where n0 = ∂1y0×∂2y0
‖∂1y0×∂2y0‖ denotes the normal field on y0(ω). Then α ≡ const, where α : ω → R denotes

the rotations angle in the Euler-Rodrigues representation of Q.

Proof. By the Euler-Rodrigues representation there exists a function α : ω → R which fulfills

Q(x) = (1− cosα(x))n0(x)⊗ n0(x) + cosα(x) 1 + sinα(x) Anti(n0(x)) , (7.7.2)

so that due to the expressions from (7.3.7) for all x ∈ ω there exists a neighborhood U of x such that
α̃ ∈ C1(U ∩ ω,R).

In view of (7.7.2), the problem (7.7.1) can be recast (at least locally) as follows

Dm =
(

(1− cos α̃)n0 ⊗ n0 + cos α̃ 1 + sin α̃ Anti(n0)
)

Dy0. (7.7.3)

Since (n0 ⊗ n0) Dy0 = n0 ⊗ ([Dy0]Tn0) = 0, the latter formula simplifies to

Dm = cos α̃ Dy0 + sin α̃ Anti(n0) Dy0. (7.7.4)

Obviously we have

∂1m = cos α̃ ∂1y0 + sin α̃ (n0 × ∂1y0) and ∂2m = cos α̃ ∂2y0 + sin α̃ (n0 × ∂2y0) ,

where for i = 1, 2, we used that Anti(n0)∂i y0 = n0 × ∂iy0. By taking the mixed derivatives, we arrive at

∂2∂1m = ∂2(cos α̃ ∂1y0) + ∂2(sin α̃ (n0 × ∂1y0)) (7.7.5)

= − sin α̃ ∂2α̃ ∂1y0 + cos α̃ ∂2∂1y0 + cos α̃ ∂2α̃ (n0 × ∂1y0) + sin α̃ ∂2n0 × ∂1y0 + sin α̃ n0 × ∂2∂1y0,

as well as

∂1∂2m = ∂1(cos α̃ ∂2y0) + ∂1(sin α̃ (n0 × ∂2y0)) (7.7.6)

= − sin α̃ ∂1α̃ ∂2y0 + cos α̃ ∂1∂2y0 + cos α̃ ∂1α̃ (n0 × ∂2y0) + sin α̃ ∂1n0 × ∂2y0 + sin α̃ n0 × ∂1∂2y0.

By using the equality of mixed derivatives for m, y0 ∈ C2(ω,R3) we must have

∂2α̃
(
− sin α̃ ∂1y0 + cos α̃ (n0 × ∂1y0)

)
︸ ︷︷ ︸

=:
−→
Yα̃

+ sin α̃ ∂2n0 × ∂1y0︸ ︷︷ ︸
=
−→
B

(7.7.7)

=∂1α̃
(
− sin α̃ ∂2y0 +cos α̃(n0 ×∂2y0)

)
︸ ︷︷ ︸

=:−−→Xα̃

+sin α̃ ∂1n0 × ∂2y0︸ ︷︷ ︸
−→
A

.
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As in the linear case we obtain that
−→
A and

−→
B are normal vectors whereas

−→
Xα̃ and

−→
Yα̃ are linear inde-

pendent tangent vectors, since 〈−→Xα̃, n0〉 = 0, 〈−→Yα̃, n0〉 = 0 and

−→
Xα̃ ×

−→
Yα̃ = (sin α̃ ∂2y0 + cos α̃

−→
X0)× (− sin α̃ ∂1y0 + cos α̃

−→
Y0)

= sin2 α̃ ∂1y0 × ∂2y0 + cos2 α̃
−→
X0 ×

−→
Y0 + sin α̃ cos α̃(∂2y0 ×

−→
Y0 −

−→
X0 × ∂1y0)

(7.6.9)
=
∗

sin2 α̃ ∂1y0 × ∂2y0 + cos2 α̃ ∂1y0 × ∂2y0 = ∂1y0 × ∂2y0, (7.7.8)

where in ∗ we also used that ∂2y0 ×
−→
Y0 −

−→
X0 × ∂1y0 = ∂2y0 × (n0 × ∂1y0) + (n0 × ∂2y0)× ∂1y0 = 0.

Thus, the vector fields
−→
Xα̃,

−→
Yα̃ and n0 form a 3−frame on the surface y0(ω). However, (7.7.7) reads,

∂1α̃ ·
−→
Xα̃ + ∂2α̃ ·

−→
Yα̃ = sin α̃ · (−→A −−→B ) = δ̃ · n0, (7.7.9)

with a scalar field δ̃, so that by the linear independence of the vector fields
−→
Xα̃,

−→
Yα̃ and n0 we must

always have ∂1α̃ = ∂2α̃ = δ̃ = 0, which gives α̃ ≡ const. Consequently, we also have cosα ≡ const and
sinα ≡ const in U ∩ ω for any choice of an angle function α : ω → R It follows form the expressions in
(7.3.7) that both functions cosα(x) and sinα(x) are continuous, which yields the conclusion. �

Figure 7.6: Although the rotation angle α in
Q can be chosen in each point, its
C1-regularity is a priori not clear.
However, it is given in a sufficient
neighborhood of each point. We
have seen, that the angle should be
constant there, and due to the over-
lapping of the neighborhoods it has
to be always the same constant.

U(xi)ω ⊂ R2

Remark 7.7.2. Note that the rotation angle α has always to be constant but unconstrained, if, e.g.,
no further boundary conditions are appended. This is, e.g., provided by members of the same associate
family of minimal surfaces (i.e., it holds H ≡ 0). The most prominent example is the catenoid and
helicoid family. More precisely, one can bend the catenoid without stretching into a portion of a helicoid
in such a way that the surface normals remain unchanged. For further examples of associate families of
minimal surfaces, we refer the reader to [42, chapter 3]. �

Now we are ready to turn to the large drill rotation case and prove our first main result.

Proof. (Proof of Proposition 7.0.1) Using the boundary condition m|γd = y0|γd , Lemma 7.4.1 allows to
conclude that Q|γd ≡ 1 which implies sinα|γd = 0 and cosα|γd = 1. By Lemma 7.7.1 we have α ≡ const,
so that sinα ≡ 0 and cosα ≡ 1 on ω, and consequently by the Euler-Rodrigues representation it follows
Q ≡ 1. �

Corollary 7.7.3. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume that m, y0 ∈ C2(ω,R3) are two
regular surfaces and

Im(x) = [Dm(x)]T Dm(x) = [Dy0(x)]T Dy0(x) = Iy0(x) , n(x) = n0(x) , ∀x ∈ ω ,
m|γd = y0|γd , (7.7.10)

where n = ∂1m×∂2m
‖∂1m×∂2m‖ and n0 = ∂1y0×∂2y0

‖∂1y0×∂2y0‖ are the respective normal fields and γd is a relatively open,

non-empty subset of the boundary ∂ω. Then m ≡ y0.

Proof. Consider the lifted quantities (Dm|n) versus (Dy0|n0). It holds

(Dm|n)T (Dm|n) =

 0
0

0 0 1

[Dm]T Dm

 , (Dy0|n0)T (Dy0|n0) =

 0
0

0 0 1

[Dy0]T Dy0

 . (7.7.11)
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By assumption Im = DmT Dm = DyT0 Dy0 = Iy0 , it follows from (7.7.11) that

(Dm|n)T (Dm|n) = (Dy0|n0)T (Dy0|n0) . (7.7.12)

Then for all x ∈ ω there exists Q(x) ∈ SO(3) such that (Dm(x)|n(x)) = Q(x)(Dy0(x)|n0(x)). The
assumption n(x) = n0(x) gives

(Dm|n0) = Q(Dy0|n0) . (7.7.13)

Multiplying both sides by e3, we obtain Q(x)n0(x) = n0(x) for all x ∈ ω and from (7.7.13) we obtain

Q = (Dm|n0)(Dy0|n0)−1 = (Dm|n0)
1

det(Dy0|n0)
Cof(Dy0|n0) . (7.7.14)

Since by assumption m, y0 ∈ C2(ω,R3) and y0 is a regular surface with det(Dy0|n0) ≥ c+ > 0 we observe
that necessarily Q ∈ C1(ω,SO(3)). Thus, we are again in the situation of Proposition 7.0.1 and the proof
is finished. �

Proposition 7.7.4. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume that m, y0 ∈ C2(ω,R3) are
regular surfaces, Q ∈ C1(ω,SO(3)) and

Dm(x) = Q(x) Dy0(x) , Q(x)n0(x) = n0(x) , x ∈ ω , (7.7.15)

where n0 = ∂1y0×∂2y0
‖∂1y0×∂2y0‖ denotes the normal field on y0(ω). Then

∀ x ∈ ω : sinα(x) = 0 or H(x) = 0, (7.7.16)

where α : ω → R denotes the rotations angle in the Euler-Rodrigues representation of Q.

Proof. By Lemma 7.7.1, we have cosα ≡ const and sinα ≡ const, so that taking and comparing the
mixed derivations of m we obtain Again, in view of (7.6.15), the validity of (7.7.9) implies that we have
pointwise either vanishing sinα or a vanishing mean curvature H since

0 = sinα · (−→A −−→B )
(7.6.15)

= −2 sinα ·H · ∂1y0 × ∂2y0 ,

which implies that we have pointwise either vanishing sinα or vanishing mean curvature H. �

Remark 7.7.5 (Symmetry of the second fundamental form). Conclusion (7.7.16) can also be obtained
from the symmetry property of the second fundamental form on the surface m(ω). Indeed, the normal
vector field on m(ω) coincides with n0 since

∂1m× ∂2m
(7.7.15)1= (Q∂1y0)× (Q∂2y0)

Q∈SO(3)
= Q∂1y0 × ∂2y0

(7.7.15)2= ∂1y0 × ∂2y0. (7.7.17)

Thus, for the second fundamental form on m(ω) we obtain

Sym(2) 3 IIm = −[Dm]T Dn = −[Dm]T Dn0
(7.7.15)1= −[Dy0]TQT Dn0

(7.7.2)
= −[Dy0]T [(1− cosα)n0 ⊗ n0 + cosα 1 + sinα Anti(n0)]T Dn0

= (1− cosα)[Dy0]Tn0 ⊗ n0︸ ︷︷ ︸
=0

Dn0 − cosα[Dy0]T Dn0 − sinα[Dy0]T Anti(n0)T Dn0

= cosα IIv + sinα [Dy0]T Anti(n0) Dn0. (7.7.18)

Since IIv ∈ Sym(2), we are again left with the single condition

sinα [Dy0]T Anti(n0) Dn0 ∈ Sym(2)
(7.6.18)⇐⇒ {sinα = 0 or H = 0}. (7.7.19)

�

Corollary 7.7.6. Let ω ⊂ R2 be a bounded Lipschitz domain. Assume that m, y0 ∈ C2(ω,R3) are regular
surfaces, Q ∈ C1(ω,SO(3)) and

Dm(x) = Q(x) Dy0(x) , Q(x)n0(x) = n0(x) , x ∈ ω , (7.7.20)

where n0 = ∂1y0×∂2y0
‖∂1y0×∂2y0‖ denotes the normal field on y0(ω). If the mean curvature of y0 does not vanish

at one point y0(x0), then m(x) = y0(x) + b or m(x) = −y0(x) + b for some constant translation b ∈ R3.
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Proof. It follows from Proposition 7.7.4, that if the mean curvature H is distinct from 0 at some point
y0(x0), we must have sinα(x0) = 0. Thus, sinα ≡ 0 and cosα ≡ 1 or sinα ≡ 0 and cosα ≡ −1, where
the sign of cosα does not change; see Lemma 7.7.1. Thus, in the first case (cosα ≡ 1, i.e. α ∈ 2πZ), we
obtain

Q(x)
(7.7.2)

= (1− cosα)n0(x)⊗ n0(x) + 1 , (7.7.21)

and a multiplication with Dy0 gives

Dm(x) = Q(x) Dy0(x)
(7.7.21)

= (1− cosα)n0(x)⊗ n0(x) Dy0(x)︸ ︷︷ ︸
=0

+ Dy0(x) = Dy0(x).

In the second case (cosα ≡ −1, i.e. α− π ∈ 2πZ), we have

Q(x)
(7.7.2)

= (1− cosα)n0(x)⊗ n0(x)− 1⇒ Dm(x) = −Dy0(x) . (7.7.22)

�

Remark 7.7.7. The ’flipped’ solution m(x) = −y0(x) + b appears only because no boundary conditions
are present. From a mechanical point of view, this branch is irrelevant. �

Remark 7.7.8. For a C∞-embedding y0 a comparable result, using involved techniques from differential
geometry, has been obtained in [1, 48]. �

7.8. Compatibility condition

For the description of a body, we assume that the body contained of a set of infinitesimal volumes
or material points, where each volume is supposed to be connected to its neighbors, without crack or
lap. Some mathematical conditions should hold which guarantees that this gap or overlap will not be
developed or happened after the deformation of the body. A body that deforms without growing gap
or overlap, is called a compatible body. In mathematical perspective, compatibility conditions are those
conditions that characterize whether a certain deformation will drop a body in a compatible state or not.
The following propositions gives a necessary and sufficient condition for compatibility of a regular surface.

Proposition 7.8.1. [Compatbility for surfaces] Let v, w ∈ C1(ω,R3) be given vector fields with
rank(v, w) = 2 everywhere and assume that ω is a bounded, simply connected domain. Then there exists
a regular surface m ∈ C2(ω,R3) such that

Dm(x) =
(
v(x)

∣∣w(x)
)
, x ∈ ω , (7.8.1)

if and only if the compatibility condition

∂2v(x1, x2) = ∂1w(x1, x2) , (7.8.2)

holds. The surface m is unique up to translation.

Proof. We only need to observe that (7.8.1) readsm1,x1 m1,x2

m2,x1
m2,x2

m3,x1
m3,x2

 =

v1 w1

v2 w2

v3 w3

 , (7.8.3)

if and only if (
m1,x1

m1,x2

)
=

(
v1

w1

)
,

(
m2,x1

m2,x2

)
=

(
v2

w2

)
,

(
m3,x1

m3,x2

)
=

(
v3

w3

)
, (7.8.4)

and the existence of potentials mi ∈ C(ω,R) is guaranteed if and only if

∂2v1 = ∂1w1 , ∂2v2 = ∂1w2 , ∂2v3 = ∂1w3 , (7.8.5)

which is equivalent to

∂2v = ∂1w . (7.8.6)

The potentials mi, i = 1, 2, 3, are unique up to constants. �
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7.9. Conclusion

We have proved some improved rigidity results for C2-smooth regular embedded surfaces. The underlying
mechanical problem, namely the possibility of a pure in-plane drill rotation field as deformation mode of
a surface when boundary conditions of place are prescribed somewhere has been negatively answered, for
both small and large drill rotations, assuming some natural level of smoothness for the rotation fields.

Considering classical FEM shell formulations the drilling degrees of freedom are used to obtain a pre-
cise coupling of plane shell elements in non-plane applications, in such a way, that rotations around an
axis in the plane of one element are coupled to rotations around the normal of the neighboring element.
Since finite elements use their shape functions as interpolations, they do not obey the kinematics every-
where. Thus, incompatibilities in the shape functions may occur, but, should not get in conflict with the
convergence requirements such as the patch test and any ”torsional spring stiffness” attributed to this
pseudo-deformation mode must be regarded with extreme caution (here, the Cosserat couple modulus
µc ≥ 0). In fact, in many shell models such a stiffness is treated as a material parameter and many
very effective finite elements use incompatible kinematic fields, mainly to overcome geometric deficiencies
which may result in some kind of locking behavior. Our development suggests, however, that the fitting
of the Cosserat couple modulus µc would depend on the imposed boundary condition, i.e., how strict
drill rotations are constrained at the boundary γd of the shell.

Then, the mentioned stiffness is a boundary value problem dependent parameter which needs to be
determined for each new problem again. Thus one should call it always a fictitious stifness and treat it
accordingly, and this applies to classical FEM-shell models and Cosserat surfaces.

However, it is remarkable that in the planar Cosserat shell model [84] existence can be shown also for
zero Cosserat couple modulus µc ≡ 0 [89] (for q > 0 in (7.1.1) and using a generalized Korn-inequality
[83]) thus disposing completely of the above described problem. In other words, the drilling degree of
freedom is kept, but not connected to any fictitious torsional spring. While in a linear model this would
imply that the drilling degree of freedom decouples, this is not necessarily the case in nonlinear Cosserat
models based on exact rotations.
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[100] W. Pietraszkiewicz and V. Konopińska. “Drilling couples and refined constitutive equations in the resultant ge-
ometrically non-linear theory of elastic shells”. International Journal of Solids and Structures 51.11-12 (2014).
Pp. 2133–2143.

[101] M. B. Rubin. Cosserat theories: shells, rods and points. Vol. 79. Springer Science & Business Media, 2013.

[102] M. M. Saem, I.-D. Ghiba, and P. Neff. “A geometrically nonlinear Cosserat (micropolar) curvy shell model via
Gamma convergence”. arXiv preprint arXiv:2207.08541 (2022).

[103] O. Sander, P. Neff, and M. B̂ırsan. “Numerical treatment of a geometrically nonlinear planar Cosserat shell model”.
Computational Mechanics 57.5 (2016). Pp. 817–841.

[104] B. Schmidt. “Linear Γ-limits of multiwell energies in nonlinear elasticity theory”. Continuum Mechanics and Ther-
modynamics 20.6 (2008). Pp. 375–396.
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A. Appendix for Part I

A.1. Calculations for the TBiot stress tensor

Here we present the lengthy calculation related to the TBiot stress tensor in expression (5.5.18). We have

2 sym(U
ϕ\,Q

\
e,c
∗ − 13)n0 =

(
2 sym(E

ϕ\,Q
\
e
) + 2 sym((0|0|Q\,Te c∗ − n0)[(∇xΘ)\]−1)

)
n0

=
(
E
ϕ\,Q

\
e

+ ET
ϕ\,Q

\
e

)
n0 +

(
(0|0|Q\,Te c∗ − n0)[(∇xΘ)\]−1 + [(∇xΘ)\]−T (0|0|Q\,Te c∗ − n0)T

)
n0

= E
ϕ\,Q

\
e
n0︸ ︷︷ ︸

=0

+ET
ϕ\,Q

\
e
n0 + (0|0|Q\,Te c∗ − n0)[(∇xΘ)\]−1n0 + [(∇xΘ)\]−T (0|0|Q\,Te c∗ − n0)Tn0

= ET
ϕ\,Q

\
e
n0 + (0|0|Q\,Te c∗ − n0)e3 + [(∇xΘ)\]−T (0|0|Q\,Te c∗ − n0)Tn0 (A.1.1)

= ET
ϕ\,Q

\
e
n0 + (Q

\,T

e c∗ − n0) + [(∇xΘ)\]−T (0|0|Q\,Te c∗ − n0)Tn0,

and

2 skew(U
ϕ\,Q

\
e,c
∗ − 13)n0 =

(
2 skew(E

ϕ\,Q
\
e
) + 2 skew((0|0|Q\,Te c∗ − n0)[(∇xΘ)\]−1)

)
n0

=
(
E
ϕ\,Q

\
e
− ET

ϕ\,Q
\
e

)
n0 +

(
(0|0|Q\,Te c∗ − n0)[(∇xΘ)\]−1 − [(∇xΘ)\]−T (0|0|Q\,Te c∗ − n0)T

)
n0

= −ET
ϕ\,Q

\
e
n0 + (Q

\,T

e c∗ − n0)− [(∇xΘ)\]−T (0|0|Q\,Te c∗ − n0)Tn0. (A.1.2)

Calculating the trace of TBiot gives

tr(sym(U
ϕ\,Q

\
e,c
∗ − 13))n0 = 〈sym(U

ϕ\,Q
\
e,c
∗ − 13), 13〉n0 =

(
〈E
ϕ\,Q

\
e
, 13〉+ 〈(0|0|Q\,Te c∗ − n0)[(∇xΘ)\]−1, 13〉

)
n0

= 〈E
ϕ\,Q

\
e
, 13〉n0 + (Q

\,T

e c∗ − n0)n0 ⊗ n0, (A.1.3)

where we have used that

〈(0|0|Q\,Te c∗ − n0)[(∇xΘ)\]−1, 13〉R3×3 n0 = 〈(Q\,Te c∗ − n0), n0〉R3 n0 = (Q
\,T

e c∗ − n0)n0 ⊗ n0 .

A.2. Calculations for the homogenized membrane energy

In this part we would like to do the calculations for obtaining the minimizer separately. By inserting c∗ in the
membrane part of the relation (5.3.8), we have

‖sym(Uh
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\,T
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. (A.2.1)
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We have
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Since, using (5.5.23) we have
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and since we have used the matrix expression E
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On the other hand,
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due to (5.5.25). Therefore, relation (A.2.1) can be reduced to
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Now we continue the calculations for the skew symmetric part,
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In a similar manner, we calculate the terms separately. Since n0 ⊗ n0 is symmetric, we obtain
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1

2
‖ET
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where we used the fact that (n0⊗n0)2 = (n0⊗n0). The difficulty in the skew symmetric part of (A.2.7) is solved
in the following calculation
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and we obtain

‖skew(Q
\,T

e (∇(η1,η2)ϕ
\|c∗)[(∇xΘ)\]−1)‖2 = ‖skew(Q

\,T

e (∇(η1,η2)ϕ
\|0)[(∇xΘ)\]−1)‖2 +

(µc − µ )2

2(µc + µ )2
‖ET
ϕ\,Q

\
e
n0‖2

− (µc − µ )

(µc + µ )
‖ET
ϕ\,Q

\
e
n0‖2. (A.2.11)

The last requirement for our calculations, is[
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B. Appendix for Part II

B.1. Regular surfaces

By a surface, we mean a map X : Ω→ R3, where Ω is a domain in R2. Any point of R2 is written like x = (x1, x2).
So, X maps any point x ∈ Ω onto some image point X(x) ∈ R3. The Jacobian matrix of X at point x is

DX(x) = (∂x1X(x), ∂x2X(x)) =
( ∂X
∂x1

(x),
∂X

∂x2
(x)
)
. (B.1.1)

The surface X is called regular, when its Jacobian matrix at each point x ∈ Ω has the maximal rank two.
The tangent space Tx(X) corresponding to the parameter value x is defined by

Tx(X) := DX(x)(R2) , (B.1.2)

is the two-dimensional subspace of R3 spanned by the linearly independent vectors ∂x1X(x) and ∂x2X(x). We
can say that the surface X is regular, if it has a well-defined tangent space at all of its points.
At a regular point x, the exterior product ∂x1X(x) × ∂x2X(x) can not vanish, i.e. ‖∂x1X(x) × ∂x2X(x)‖ 6= 0,
where

‖∂x1X(x)× ∂x2X(x)‖ =
√
‖∂x1X(x)‖2‖∂x2X(x)‖2 − 〈∂x1X(x), ∂x2X(x)〉2 . (B.1.3)

The normal vector to the surface in a neighborhood of a regular point like x is

n0 =
∂x1X × ∂x2X
‖∂x1X × ∂x2X‖

. (B.1.4)

Since ‖n0‖ = 1, we may view n0 as a mapping of Ω into the sphere S2 ⊂ R3

n0 : Ω→ S2 . (B.1.5)

This mapping is called the normal map or Gauss map of the surface X.

Definition B.1.1. For the surface X : Ω→ R3, the area AΩ(X) is defined by

AΩ(X) =

∫
Ω

‖∂x1X × ∂x2X‖ dx1 dx2 . (B.1.6)

Definition B.1.2. Two mappings X : Ω → R3 and X̃ : Ω̃ → R3 of the class Cs, for s ≥ 1, are named to be
equivalent, if there is a Cs-diffeomorphism ϕ : Ω̃→ Ω such that

X̃ = X ◦ ϕ . (B.1.7)

If Jϕ = det Dϕ > 0, then X and X̃ are called strictly equivalent. If Jϕ < 0, then they are called oppositely
equivalent.

If n0 and ñ0 denote the normal vectors of X and X̃ respectively, one can see that the normal vectors of two
strictly equivalent surfaces are equivalent,

ñ0 = n0 ◦ ϕ . (B.1.8)

Definition B.1.3. The linear mapping S(x) : Tx(X) → Tx(X) of the tangent space Tx(X) into itself is called
Weingarten map such that for any tangent vector like V we have

S(V ) = ±∇V n0 . (B.1.9)

The map S is called selfadjoint linear mapping on the tangent space Tx(X) if the following relation holds

〈SV,W 〉 = 〈V, SW 〉 , (B.1.10)

for arbitrary tangent vectors V,W . Therefore, we may have the following definitions
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Definition B.1.4. Assume V and W are two tangent vectors and S is the Weingarten map. The bilinear forms

I(V,W ) := 〈V,W 〉 , II(V,W ) := 〈SV,W 〉 , III(V,W ) = 〈SV, SW 〉 , (B.1.11)

are called respectively, the first, second and third fundamental form of the surface X at point x. In the case
V = W , we have

I(V ) = ‖V ‖2 , II(V ) = 〈SV, V 〉 , III(V ) = ‖SV ‖2 . (B.1.12)

Assume that y0 ∈ C1(ω,R3) is a surface. The first fundamental form of y0, Iy0 , on y0(ω) in the matrix represen-
tation is

Iy0 := (Dy0)T Dy0 =

(
‖∂1y0‖2 〈∂1y0, ∂2y0〉
〈∂1y0, ∂2y0〉 ‖∂2y0‖2

)
∈ Sym+(2) . (B.1.13)

Also, the following matrix represents the second fundamental form of y0

IIy0 := −(Dy0)T Dn0 = −
(
〈∂1y0, ∂1n0〉 〈∂1y0, ∂2n0〉
〈∂2y0, ∂1n0〉 〈∂2y0, ∂2n0〉

)
, (B.1.14)

for normal vector n0.

Remark 12. Assume that X and X̃ are two strictly equivalent surface with the corresponding diffeomorphism
ϕ : Ω → Ω̃ with Jϕ > 0; also assume that S and S̃ are the Weingarten maps for X and X̃ respectively. Then, S
and S̃ are also strictly equivalent and

S̃ = S ◦ ϕ . (B.1.15)

In the case that Jϕ < 0, then

S̃ = −S ◦ ϕ . (B.1.16)

B.2. Principal curvatures and fundamental forms

Assume that V is a tangent vector and X is the surface with point x on it. In [67], after some calculations it is
shown that the normal curvature of the curve, κn, satisfies

κn :=
II(V )

I(V )
, (B.2.1)

where I(V ), II(V ) are the values of the first and second fundamental forms of X at x. In a special case that the
tangent vector V is a velocity vector of a normal section of an embedded surface X, then the principal normal
and the surface normal are collinear which means

κ := ± II(V )

I(V )
. (B.2.2)

where κ is the mean curvature of the surface X. This quotient measures the curvatures κ of all possible normal
sections of the surface X at the parameter point x. The sign shows that whether the principal normal of the
curve is in the same direction of the normal of the curve or in the opposite direction. We call

κ1 := min{ II(V )

I(V )

∣∣V ∈ Tx(X) , V 6= 0}

= min{II(V )
∣∣V ∈ Tx(X) , I(V ) = 1} , (B.2.3)

and

κ2 := max{ II(V )

I(V )

∣∣V ∈ Tx(X) , V 6= 0}

= max{II(V )
∣∣V ∈ Tx(X) , I(V ) = 1} , (B.2.4)

the principal curvatures of the surface X at x. These two principal curvatures are dependent on the point x. The
mean curvature of the surface X at point x is

H(x) :=
1

2
(κ1 + κ2) , (B.2.5)

and the Gauss curvature is

K(x) = κ1κ2 . (B.2.6)
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One can see that κ1, κ2 are the eigenvalues of the Weinggarten map S. That is for any tangent vector V ∈ Tx(X)
we have

SV = κiV , ∀V ∈ Tx(X) . (B.2.7)

We may choose the tangent vectors V1, V2 in a way that

SVi = κiVi , ‖V1‖ = ‖V2‖ = 1 , 〈V1, V2〉 = 0 . (B.2.8)

It means that κ1 and κ2 are the roots of the characteristic polynomial

P (κ) = det(S − κ1) , (B.2.9)

and therefore,

P (κ) = (κ− κ1)(κ− κ2) = κ2 − 2Hκ+ K . (B.2.10)

By applying the relation (0.2.25), we obtain

S2 − 2HS + K1 = 0 , (B.2.11)

or by using the fundamental forms,

K I− 2H II + III = 0 . (B.2.12)

Regarding to the sign of the Gauss curvature, we may have different definitions for a point in X(x). If K(x) > 0,
the point X(x) is elliptic point. If K(x) < 0 or K(x) = 0, then X(x) is called hyperbolic point or parabolic point
respectively.

Remark 13. Assume that X and X̃ are two strictly equivalent surfaces with the corresponding diffeomorphism
ϕ : Ω̃→ Ω with Jϕ > 0. Then, after holding the relation (B.1.8), we may have the following properties

κ̃1 = κ1 ◦ ϕ , κ̃2 = κ2 ◦ ϕ , H̃ = H ◦ ϕ , K̃ = K ◦ ϕ . (B.2.13)

If Jϕ < 0, then

Ñ = −N ◦ ϕ , H̃ = −H ◦ ϕ but K̃ = K ◦ ϕ , (B.2.14)

it means that the sign of K has an intrinsic geometrical meaning.

B.3. Minimal surfaces

The theory of minimal surfaces is classical and important in many branches of mathematics including the calculus
of variations, partial differential equations and geometric measures theory. As mathematical examples of minimal
surfaces, we may mention planes, helicoids and catenoids. In the nature, the shape of a soap film is approximately
a minimal surface. Geometry of minimal surfaces is useful to solve many concepts in mathematics and in many
other fields.

Definition B.3.1. [67] A regular surface X : Ω→ R3 of class C2 is called a minimal surface, if its mean curvature
function H satisfies

H = 0 . (B.3.1)

The mean curvature can be defined with H = k1+k2
2

, where k1 and k2 are the principal curvatures. More details
for mean curvature will be given in the next sections.
In particular case, we have the first variation of the area function on Ω at X like

∂AΩ(X,Y ) = −2

∫
X

〈Y, n0〉H dA , Y ∈ C∞(Ω,R3) , (B.3.2)

The product 〈Y, n0〉 can be seen as an arbitrary infinitely differentiable function. Therefore, we will have the
following theorem

Theorem B.3.2. The first variation ∂AΩ(X,Y ) of AΩ at X vanishes for all vector fields Y ∈ C∞(Ω,R3) if and
only if the mean curvature H of X is identically zero.

A combination between the definition of minimal surface and the relation (B.3.2), can be the following proposition



B. Appendix for Part II 114

Proposition 4. [67] If X : Ω→ R3 is a minimal surface, then the equation

∂AΩ(X,Y ) = 0 , (B.3.3)

holds for all Y ∈ C1(Ω,R3) which are orthogonal to the side normal of the boundary ∂X.

Now we consider another case of surfaces. Assume that the surface X is given in nonparametric form, that is, as
graph of a function z = z(x, y). Such a surface can be described by the special parameter representation

X(x, y) = (x, y, z(x, y)) , (x, y) ∈ Ω . (B.3.4)

The relation

div
( ∇z√

1 + |∇z|2
)

= 0 , (B.3.5)

is called the minimal surface equation in divergence form.

Proposition 5. The surface X : Ω → R is a minimal surface if and only if z = z(x, y) holds in the relation
(B.3.5.)

There are some properties related to minimal surfaces and some operators, like the following theorem

Theorem B.3.3. Assume that X : Ω → R3 is a regular surface of class C2 with mean curvature H and the
spherical map n0 : Ω→ R3. Then

∆XX = 2Hn0 , (B.3.6)

where ∆XX is the Laplace-Beltrami operator on the surface X.

As a combination of this theorem and the definition of the minimal surfaces, we will have the following corollary

Corollary B.3.4. A regular C2-surface X is a minimal surface if and only if the following relation holds

∆XX = 0 . (B.3.7)

Assume that N : X ⊂ R3 → S2 is the Gauss map of the minimal surface X and ∆X and ∆N are the related
Beltrami operators respectively. Then we have the following proposition

Proposition 6. If N is the Gauss map of a minimal surface X, then

∆X = |K|∆N , (B.3.8)

where K is the Gauss curvature and holds in relation

K I− 2H II + III = 0 . (B.3.9)

Now we apply the definition of the normal vector, relation (B.1.4), in the above theorem. Hence,

Theorem B.3.5. Let X(x, y) be a regular surface of class C2(Ω,R3) which is given by conformal parameters x
and y, that is,

|∂xX|2 = |∂yX|2 , 〈∂xX, ∂yX〉 = 0 . (B.3.10)

For the real valued function H(x, y) which represents the mean curvature of the surface X, the Rellich’s equation
holds if and only if

∆X = 2H ∂xX × ∂yX , (x, y) ∈ Ω . (B.3.11)

In particular, X : Ω→ R3 is a minimal surface if and only if

∆X = 0 . (B.3.12)
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B.4. Conformal surfaces and properties

Definition B.4.1. Assume that

P : Ω→ R2×2 , Q : Ω→ R2×2 , (B.4.1)

are two matrix valued functions, where Ω ⊂ R2. We say that P and Q are conformal to each other, if there exists
a function µ : Ω→ R with µ(x) > 0 on Ω such that

P (x) = µ(x)Q(x) , ∀x ∈ Ω . (B.4.2)

Regarding to this definition, we may have the definition of the conformal surfaces like

Remark 14. We call two surfaces X and Y are conformal to each other if their matrix functions, respectively,
are conformal to each other.

Consequently, we can obtain that the first fundamental forms IX and IY of two conformal surfaces are also
conformal to each other. Therefore, for the function µ : Ω→ R with µ(x) > 0, for every x ∈ Ω, we have

IX(U) = µ(x)IY (V ) , (B.4.3)

where U ∈ Tx(X) and V ∈ Tx(Y ).
Assume that N is the normal field of the surface X : Ω→ R3. It is proved in [p. 36][67] that,

Remark 15. A zero mean curvature surface X without focal points is conformal to its spherical image N .

Now maybe we can give a more complete definition of conformal surfaces

Definition B.4.2. Two regular C1-surfaces X : Ω → R3 and Y : Ω∗ → R3 are called conformally equivalent if
there exists a C1-diffeomorphism τ : Ω→ Ω∗ such that the surfaces X : Ω→ R3 and Y ◦ τ : Ω→ Ω∗ are conformal
to each other. And, the mapping τ is called the conformal map of X into Y .


