
FPGA-Augmented Intelligent
Devices for the Internet of

Things

Von der Fakultät für Ingenieurwissenschaften,
Abteilung Informatik und Angewandte Kognitionswissenschaft

der Universität Duisburg-Essen

zur Erlangung des akademischen Grades

Doktor der Ingenieurswissenschaften

genehmigte Dissertation

von

Alwyn Johannes Burger

aus

Mossel Bay, Südafrika

1. Gutachter: Univ-Prof. Gregor Schiele
2. Gutachter: Prof. Dr.-Ing. habil. Sven Tomforde

Tag der Mündlichen Prüfung: 23.02.2023





Acknowledgements
I would like to express my deepest gratitude to my supervisor Gregor Schiele, without
whom I would definitely not have been able to complete this journey. Your guidance and
assistance has been invaluable, and you have been a thoroughly positive influence on my
life. I am also incredibly grateful to my colleagues at the Embedded Systems group for
their companionship throughout our many years together. To my various co-authors I
also extend my thanks for assisting me in this work.

Lastly, I would like to extend my sincere thanks to Wiebke for supporting me every
day, my family for everything they have done for me, and my friends for providing
much-needed distraction.

iii





Abstract
The Internet of Things (IoT) is constantly expanding with more complex applications
being developed. This depends on increased artificial intelligence (AI) both to compute
the application logic and manage the vast numbers of devices. To avoid being depen-
dent on a constant connection to the cloud, groups of local devices can be augmented
with additional computational abilities through hardware acceleration using e.g. field
programmable gate arrays (FPGAs). Allowing these devices to cooperate by offloading
tasks to each other should create highly adaptive and efficient deployments.

This work introduces the Elastic Node, an FPGA-augmented smart IoT device fo-
cussed on increasing local AI on the device. It offers a hardware platform to assist ex-
perimentation with local hardware acceleration in IoT deployments, as well as a runtime
in the form of a middleware that facilitates software development through a stub-skeleton
abstraction. This provides an easy-to-use runtime that functions without a local OS,
offering convenient embedded hardware acceleration on a platform that operates under
200 mW and can switch between arbitrary accelerators within 100 ms.

Due to the limited configurable resources available on embedded FPGAs, design opti-
misations are required to allow more sophisticated AI to be deployed. Complex machine
learning algorithms such as convolutional neural networks (CNNs) and incremental prin-
ciple component analysis (IPCA) can be computed directly on the embedded IoT device.
The presented novel IPCA hardware accelerator design reduces DSP slice resource usage
by 84% when compared to conventional CORDIC-based implementations.

Since manually optimising dynamic and adaptive systems like these is not feasible, a
reinforcement learning approach is used to create a local device agent. It optimises the
device behaviour by addressing the augmented offloading problem that considers local
hardware acceleration and peer-to-peer offloading. Using Q-learning and shallow neural
networks, various agents are developed that perform up to 150% more jobs than an agent
acting randomly.

v



Kurzfassung
Das Internet der Dinge (englisch, Internet of Things, IoT) gewinnt immer mehr an Be-
deutung. Immer komplexere Anwendungen und Systeme werden entwickelt. Hierzu
werden häufig Verfahren der Künstlichen Intelligenz (KI) eingesetzt, sowohl um die
eigentliche Anwendungslogik zu berechnen als auch zur Verwaltung der stetig wach-
senden Gerätepopulation. Um unabhängig von einer durchgängigen Verbindung zu
einer entfernten Rechencloud zu sein, können lokale Gerätegruppen mit weitgehenden
Datenverarbeitungsfähigkeiten ausgestattet werden, z.B. durch Integration von Hard-
warebeschleunigern auf Basis von Field Programmable Gate Arrays (FPGAs). Die lokale
Kooperation solcher erweiterter Geräte erlaubt es – beispielsweise durch dynamische
Auslagerung von Berechnungen (sog. Offloading) – hochadaptive und effiziente Systeme
zu entwickeln, die sich zur Laufzeit an Veränderungen in ihrer Ausführungsumgebung
anpassen.
In dieser Arbeit wird untersucht, wie solche, mit FPGAs erweiterte intelligente IoT-

Geräte, entworfen und eingesetzt werden können, sodass lokale KI-Fähigkeiten verbessert
werden können. Hierzu wird mit dem Elastic Node eine Hardwareplattform vorgestellt,
die es erlaubt, Experimente und Prototypen zu entwickeln um das Potential lokaler
Hardwarebeschleunigung für IoT-Systeme zu untersuchen. Diese Hardware wird durch
eine Software-Abstraktion auf Basis lokaler Stellvertreter ergänzt, die eine einfach zu
verwendende, betriebssystemunabhängige Ausführungsumgebung anbietet, die für sehr
ressourcenarme eingebettete Systeme optimiert ist. Das resultierende System hat eine
Leistungsaufnahme von unter 200 mW und kann dynamisch innerhalb von 100 ms zwis-
chen verschiedenen Hardwarebeschleunigern wechseln.
Aufgrund der stark eingeschränkten Ressourcen eingebetteter FPGAs werden zudem

Optimierungstechniken für den Entwurf eingebetteter KI untersucht und eine Reihe
von Hardwarebeschleunigern für komplexe maschinelle Lernverfahren entwickelt. Damit
können z.B. Convolutional Neural Networks (CNNs) und Incremental Principle Com-
ponent Analysis (IPCA) direkt auf dem eingebetteten IoT-Gerät ausgeführt werden.
Der vorgestellte neuartige IPCA-Beschleuniger kann so beispielsweise die notwendigen
digitalen Signalprozessoren um 84% reduzieren im Vergleich zur CORDIC-basierten Ref-
erenzimplementierung, und läuft deutlich schneller als Lösungen für die Cloud.
Da eine solche manuelle Optimierung auf Systemebene nicht sinnvoll ist, wird schließlich

untersucht, wie ein in lokalen Gerätegruppen ausgeführtes Reinforcement Learning mit
lokalen Geräteagenten dazu verwendet werden kann, das Systemverhalten dynamisch
zu adaptieren und zu optimieren. Hierzu wird eine verteilte Lösung für das sogenannte
erweiterte Offloading-Problem entwickelt und evaluiert, die Berechnungen sowohl auf
IoT-Geräte in der selben Umgebung, aber auch auf den lokalen FPGA auslagern kann.
Durch Verwendung von Q-Learning und flachen neuronalen Netzen können verschiedene
Agententypen entwickelt werden und eine um 150% höhere Anzahl von Rechenaufgaben
im Vergleich zu einer randomisierten Lösung bearbeitet werden.

vi



Contents

Acronyms xi

1 Introduction 1
1.1 Research Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 List of Supervised Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 System Overview 11
2.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Autonomous Drones . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 IoT System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Typical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Fundamentals 23
3.1 Accelerating Computation in Embedded Systems . . . . . . . . . . . . . . 23

3.1.1 Multicore and Multithreaded Systems . . . . . . . . . . . . . . . . 24
3.1.2 Field Programmable Gate Arrays (FPGAs) . . . . . . . . . . . . . 25
3.1.3 Graphics Processing Units (GPUs) . . . . . . . . . . . . . . . . . . 26
3.1.4 Heterogeneous Computing . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Optimising Hardware Acceleration Performance . . . . . . . . . . . . . . . 27
3.2.1 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Heterogeneous Application Models . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 OS Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Modular Tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 System on Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.4 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



Contents

3.4 Connected Computing Paradigms . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Offloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.3 Distributed Computing . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.4 Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.5 Mobile Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.6 Fog Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.7 Peer-to-peer and Grid Computing . . . . . . . . . . . . . . . . . . 35

3.5 Intelligent Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.1 Self-x Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Organic Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.3 Autonomic Computing . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.4 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . 38

4 Elastic Node Platform 47
4.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Platform Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Platform Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Hardware Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Hardware-as-a-Service . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Stub-Skeleton Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.1 Interface Description Language . . . . . . . . . . . . . . . . . . . . 56
4.4.2 Skeleton Interface Definition . . . . . . . . . . . . . . . . . . . . . 57
4.4.3 Transparent I/O Caching . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.4 Microcontroller Unit (MCU)-Field Programmable Gate Array (FPGA)

Offloading Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Hardware Platform Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Hardware Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.2 Power Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Optimising Embedded AI Accelerator Design 69
5.1 Optimisation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Hardware Architecture Optimisations . . . . . . . . . . . . . . . . . . . . 70

5.2.1 DSP Timing Optimisations . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2 Volatile and Non-Volatile Memory Tiers . . . . . . . . . . . . . . . 72
5.2.3 Minimising Expensive Operations . . . . . . . . . . . . . . . . . . . 73
5.2.4 Floating Point Representation . . . . . . . . . . . . . . . . . . . . . 73
5.2.5 Utilising LUTs for Precomputation . . . . . . . . . . . . . . . . . . 74
5.2.6 Latency and Throughput Modelling . . . . . . . . . . . . . . . . . 74

5.3 Example Hardware Accelerators . . . . . . . . . . . . . . . . . . . . . . . . 75

viii



Contents

5.3.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 77
5.3.3 IPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Learning Intelligent Devices 91
6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 Agent Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5.1 State-Action Decisions . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.2 System State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5.3 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.5.4 Reward Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Evaluations 109
7.1 Phase 1: Elastic Node Viability . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.1 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.1.2 Accelerator Switching Latency . . . . . . . . . . . . . . . . . . . . 114
7.1.3 Elastic Node Middleware Resource Overhead . . . . . . . . . . . . 116
7.1.4 Development Complexity . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Phase 2: Hardware Accelerator Optimisation . . . . . . . . . . . . . . . . 123
7.2.1 Optimal Fixed Point Representation . . . . . . . . . . . . . . . . . 124
7.2.2 Common Hardware Design Techniques . . . . . . . . . . . . . . . . 126
7.2.3 CNN Latency Model Verification . . . . . . . . . . . . . . . . . . . 131
7.2.4 Incremental PCA Facial Detection Use Case . . . . . . . . . . . . . 132

7.3 Phase 3: Intelligent Cooperating Devices . . . . . . . . . . . . . . . . . . . 133
7.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.3.2 Agent Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3.3 System State Limitations . . . . . . . . . . . . . . . . . . . . . . . 137
7.3.4 Catastrophic Failure . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3.5 Heterogeneous Agents . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3.6 Comparing Q-table and SRL Agents . . . . . . . . . . . . . . . . . 145
7.3.7 Q-table vs SRL Agents in Dynamic Environments . . . . . . . . . 147

7.4 Concluding Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 Related Work 151
8.1 Platform Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.1.1 Heterogeneous Embedded Platforms . . . . . . . . . . . . . . . . . 152
8.1.2 General Distributed Heterogeneous Middleware . . . . . . . . . . . 154
8.1.3 Offloading Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 155

ix



Contents

8.1.4 Distributed Embedded Middleware . . . . . . . . . . . . . . . . . . 156
8.1.5 FPGA-Based Middleware . . . . . . . . . . . . . . . . . . . . . . . 157
8.1.6 Self-Aware Distributed Systems . . . . . . . . . . . . . . . . . . . . 158
8.1.7 System Modelling for Distributed Systems . . . . . . . . . . . . . . 158
8.1.8 self-x Reconfigurable Systems . . . . . . . . . . . . . . . . . . . . . 159

8.2 Intelligent Embedded Offloading . . . . . . . . . . . . . . . . . . . . . . . 159
8.2.1 Greedy and Short-Term Learning Approaches . . . . . . . . . . . . 160
8.2.2 Reinforcement and Deep Learning approaches . . . . . . . . . . . . 161

9 Conclusion and Outlook 165
9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A Interface Description Language Specification 171
A.1 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.2 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.2.1 MCU Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.2.2 Function Configuration . . . . . . . . . . . . . . . . . . . . . . . . 175

A.3 Configuration Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.4 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.5 Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B ANN Interfaces 181
B.1 ANN VHDL Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

C ANN Skeleton 183
C.1 ANN Stub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

D Evolution of Hardware Versions 189
D.1 Elastic Node v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
D.2 Elastic Node v3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
D.3 Elastic Node v4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
D.4 ARM Elastic Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
D.5 ARM Elastic Node v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Bibliography 195

x



Acronyms

A2C Advantage Actor Critic. 41
A3C Asynchronous Advantage Actor Critic. 41
AC Actor Critic. 41
AI Artificial Intelligence. 1–4, 6, 8, 11, 12, 14, 18–20,

22, 23, 29, 38, 47, 52, 69, 75, 77, 80, 83, 90, 93, 109,
133, 148–151, 165–168

ANN Artificial Neural Network. x, 42, 44, 75–77, 80, 81,
89, 111, 113, 118, 119, 121, 123, 165, 180, 181, 190

API Application Programming Interface. 32, 51, 65, 67,
110, 118, 119, 121, 122, 181, 185

ASIC Application Specific Integrated Circuit. 25, 49
AVX Advanced Vector Extensions. 24
AXI Advanced eXtensible Interface. 27, 48, 52, 58, 157

BGA Ball Grid Array. 191
BNN Binary Neural Network. 80
BRAM Block RAM. 25, 72, 73, 76, 80, 112–115

CLB Configurable Logic Block. 25
CNN Convolutional Neural Network. 6, 42, 44, 52, 73, 75,

77–81, 89, 112, 123–125, 131, 165, 166, 168, 191
CORDIC COrdinate Rotation DIgital Computer. 84, 128, 166
COTS Commercial off the Shelf. 27, 48, 50, 62, 67, 151, 167
CPLD Complex Programmable Logic Device. 152
CPU Central Processing Unit. 4, 24–27, 44, 73, 76, 79,

130, 153, 157, 160, 161
CV Computer Vision. 2–4, 11, 12, 20, 28, 59

DDR Double Data Rate. 76
DL Deep Learning. 45, 161
DMA Direct Memory Access. 157
DNN Deep Neural Network. 42–44, 162
DOA Distributed Object API. 154
DOL Division of Labour. 140–143

xi



Acronyms

DPR Dynamic Partial Reconfiguration. 157
DQN Deep Q Network. 44, 161
DRAM Dynamic Random Access Memory. 76, 112
DRL Deep Reinforcement Learning. 41, 45
DSP Digital Signal Processing. 15, 24, 25, 70, 72, 74, 80,

86, 117, 118, 124–128, 166
DWT Discrete Wavelet Transform. 80

EBNF Extended Backus-Naur Form. 119, 171
ECC Error Correction Code. 159
ECG Electrocardiogram. 77–81
EDK Embedded Development Kit. 19
EH Energy Harvesting. 69, 160
ELM Extreme Learning Machine. 161
ETSI European Telecommunications Standard Institute.

35

FAAS Fully Autonomous Aerial System. 132
FC Fully Connected. 42, 44, 81
FIFO First In First Out. 155
FIR Finite Impulse Response. 60, 71, 74, 80, 112
FPGA Field Programmable Gate Array. viii, 3, 4, 6, 8, 13,

14, 16–19, 21–23, 25–27, 29, 30, 43, 47–65, 68–76,
79, 80, 83, 84, 88–92, 96, 97, 102, 109–116, 118, 119,
122–131, 133, 135, 141, 149, 150, 152–157, 165–169,
171, 177, 179, 189–192

FPS Frames Per Second. 132

GPU Graphics Processing Unit. 4, 25–27, 29, 44, 73, 151,
157

GUI Graphical User Interface. 56, 58

HAL Hardware Abstraction Layer. 166
HDL Hardware Description Language. 18, 25, 26, 52, 53,

56, 74, 81
HLS High-Level Synthesis. 19
HPC High-Performance Computing. 35, 157
HWF Hardware Function. 51–57, 59–62, 70, 76, 78, 79, 84,

86, 88, 111, 114–121, 123, 124, 126, 129, 131, 132,
150, 166, 171, 176–181, 185, 188

I2C Inter-Integrated Circuit. 66

xii



Acronyms

ICAP Internal Configuration Access Port. 115, 116
IDL Interface Description Language. 9, 56–58, 60, 77,

118, 119, 121, 122, 166, 171, 174, 177–183, 188
IoT Internet of Things. 1–6, 11, 14, 15, 20–23, 35, 47, 48,

68, 75, 77, 91, 92, 109, 110, 123, 149, 151, 155–157,
160, 165–167, 169

IP Internet Protocol. 154
IPCA Incremental Principle Component Analysis. 6, 75,

82–84, 86–89, 123, 126, 129, 131, 132, 149, 165, 166,
168

ISR Interrupt Service Routine. 121

JTAG Joint Test Action Group. 54, 123

LCS Learning Classifier System. 41, 159
LIDAR Light Imaging, Detection and Ranging. 143
LSB Least Significant Bit. 74
LUT Lookup Table. 25, 72, 74, 80, 81, 87, 88, 112–116,

118, 126

MAC Multiply-ACcumulate. 25, 72, 74, 124
MAPE-K Monitor-Analyse-Plan-Execute over a shared Knowl-

edge. 38
MCC Mobile Cloud Computing. 33, 160, 161, 163
MCU Microcontroller Unit. viii, 4, 6, 16, 21, 24, 47–57,

59–68, 81, 90, 96, 97, 111, 115, 116, 118, 120, 121,
123, 152–157, 166–168, 171, 174, 176, 177, 179, 189,
190, 192, 193

MDP Markov Decision Process. 40, 160
MEC Mobile Edge Computing. 33, 35, 160, 161, 163
ML Machine Learning. 4, 20, 38, 52, 75, 90, 93, 165, 167
MLP Multilayer Perceptron. 42, 75
MNIST Modified National Institute of Standards and Tech-

nology. 161
MOM Message-Oriented Middleware. 122
MUX Multiplexer. 74

NLP Natural Language Processing. 2, 4, 15, 77

ODE Ordinary Differential Equation. 160
OS Operating System. 19, 24, 30–32, 52, 55, 153–158,

168

xiii



Acronyms

OTA Over-The-Air. 16, 53, 115, 156

P2P Peer-to-Peer. 35, 91, 158, 159
PC Personal Computer. 4, 153, 154, 157
PCA Principle Component Analaysis. 52, 82, 83, 128
PCB Printed Circuit Board. 32, 189
PCIe Peripheral Component Interconnect Express. 48,

152, 153
PL Programmable Logic. 27, 68, 80, 113, 126, 166, 190
POI Point of Interest. 59

QoS Quality of Service. 156

RAM Random Accessed Memory. 25
RAN Radio Access Network. 161
REST Representational State Transfer. 55, 154, 155
RF Radio Frequency. 153
RISC Reduced Instruction Set Computer. 168
RL Reinforcement Learning. 39–41, 45, 55, 93, 149, 161,

165–167
RNN Residual Neural Network. 44
RPC Remote Procedure Call. 32, 34, 55, 59, 61, 68, 154,

157, 166
RRF Remote Resource Framework. 55
RRH Remote Radio Head. 41
RTC Real-Time Clock. 67, 169
RTI Runtime Infrastructure. 155
RTOS Real-Time Operating System. 19, 24, 30, 52, 168

SaaS Software as a Service. 54
SBC Single-Board Computer. 34
SDR Semidefinite Relaxation. 160
SDRAM Synchronous Dynamic RAM. 72
SGR Squared Givens Rotation. 83–88
SHARC Super Harvard Architecture Single-Chip Computer.

24
SIMD Single Instruction Multiple Data. 24, 26, 29, 44
SLA Service Level Agreement. 156
SNN Shallow Neural Network. 43, 101, 106, 145, 162
SNR Signal-to-Noise Ratio. 80
SoC System on Chip. 4, 24, 27, 30–32, 55, 58, 68, 70, 122,

152, 153, 157, 159

xiv



Acronyms

SPI Serial Peripheral Interface. 53, 64, 116
SRAM Static Random Access Memory. 53, 76, 97, 112, 153
SRL Shallow Reinforcement Learning. 101, 102, 133,

145–149, 161, 166
SUNN Small Unorganized Neural Networks. 161

TQFP Thin Quad Flat Pack. 191

UART Universal Asynchronous Receiver/Transmitter. 64
UAV Unmanned Aerial Vehicle. 11, 12, 83, 89, 123, 132,

133, 156
USB Universal Serial Bus. 63, 65, 66, 116, 191

VHDL Very High Speed Integrated Circuit Hardware De-
scription Language. x, 18, 25, 56–58, 75, 119, 175,
177, 181

VM Virtual Machine. 154, 156
VSN Visual Sensor Network. 156, 158

WSN Wireless Sensor Network. 111

XCS eXtended Classifier System. 41
XMEM External Memory. 64–66, 186

xv





Chapter 1.

Introduction

As the Internet of Things (IoT) [203] becomes more ubiquitous in our daily lives, the
number of computations required by its applications grows. Every smart light or ther-
mostat creates additional processing that needs to be done. More complex IoT products
such as smart vision (e.g. doorbell cameras) has increased the intelligence required on
the device. Instead of being the basic data input/output system they were originally
envisioned as, they suddenly include highly complex processing. Consider for exam-
ple the smart vacuum, which took a basic cleaning appliance and augmented it with
the ability to map its environment, plan its routine, and use Artificial Intelligence (AI)
for decision-making. This allows it to navigate to specific locations, understand voice
commands, and even learn its owner’s habits to schedule cleaning routines.

When combined with the common dependency on mobile and battery-operated devices
(e.g. wearables), these systems require a fine balance between processing power and
energy efficiency. Instead of trying to deploy processing powerhouses for every local
device, the IoT adopted the popular cloud-centric system stack [203].

Within this hierarchy, most of the computational complexity is placed in the cloud,
while local devices remained simple in order to minimise their price and power consump-
tion. For example, consider the use case shown in Figure 1.1 where Fred has a smart
home. His smart bulbs typically do not perform any processing at all, accepting wireless
messages to either turn on and off or report their current state. To connect them to
the internet as a whole, Fred’s WiFi router acts as a gateway, and all of the AI and
application complexity involved in automating his bulbs is deferred to the cloud services
of the bulbs’ manufacturer. This includes basic rules such as switching his lights on
when he gets home, or more complex tasks like learning his daily routine to pre-emt his
needs.

Regardless, his “smart” bulbs have very low intelligence, simply responding to control
messages from the cloud. These deployed embedded devices form the bottom level of a
typical IoT hierarchy as shown in Figure 1.2. The cloud is at the top, while the middle
layer (generally referred to as a gateway1) is mostly responsible for networking, allowing
the local devices to connect to the cloud services via the internet.

However, now that Fred is introducing more complex devices like voice controlled hubs
1https://internetofthingsagenda.techtarget.com/definition/IoT-gateway

(last visited: 2021-12-13)

1

https://internetofthingsagenda.techtarget.com/definition/IoT-gateway


Chapter 1. Introduction

Fred 

WiFi Router
Commands

Data

Control and status

AI

Routine recognition

Automation

(with app)

Figure 1.1.: Example use case with Fred controlling his smart bulbs through the IoT,
relying on the cloud to provide the intelligence required and his WiFi router
to bridge the connection between his bulbs, his app and the cloud.

into his home, recordings of his voice are also being processed using Natural Language
Processing (NLP), and his door camera is being checked for intruders using Computer
Vision (CV). While delegating all of this complexity to the cloud simplifies the local
devices, it creates a number of concerns: someone could listen in on his private conver-
sations, or burglars could use his own door camera to see when he is not home.
This highlights a big issue with having all of the AI in the cloud: complex tasks such

as learning user habits require the collection of a lot of personal data. This comes with
privacy concerns, as the customer inherently relies on cloud services’ ability to protect
their private images, videos, and audio recordings – instead of the user being responsible
for their own data locally. Sadly, countless examples can be found where people’s privacy
have been violated due to IoT cloud frameworks not protecting their customers’ data
properly (e.g. Peleton customer data breach2, Xiaomi camera feed breach3, and internet-
connected fuel stations [99]).
Additionally, what happens when Fred’s local internet connection is not stable? What

if the bulb manufacturers do not maintain their hosted cloud services and they are
2https://www.forbes.com/sites/emilsayegh/2021/07/22/peloton-breach-reveals-a-coming-

iot-data-winter/ (last visited: 2021-10-09)
3https://www.securitymagazine.com/articles/91502-xiaomi-mijia-camera-picking-up-

strangers-camera-feeds (last visited: 2021-12-13)

2

https://www.forbes.com/sites/emilsayegh/2021/07/22/peloton-breach-reveals-a-coming-iot-data-winter/
https://www.forbes.com/sites/emilsayegh/2021/07/22/peloton-breach-reveals-a-coming-iot-data-winter/
https://www.securitymagazine.com/articles/91502-xiaomi-mijia-camera-picking-up-strangers-camera-feeds
https://www.securitymagazine.com/articles/91502-xiaomi-mijia-camera-picking-up-strangers-camera-feeds


Cloud

Gateway

Device

WiFi router

Smart bulbs

services
Manufacturer 

Figure 1.2.: Typical IoT system stack with the intelligence on top and low complexity at
the bottom. The bulbs are simply controllable lights, while the cloud hosts
complex AI (e.g. habit recognition). The WiFi router acts as connection
gateway to provide access from the internet.

suddenly not available? What if intruders manage to interfere with his house’s internet
connectivity, effectively shutting his devices off from the outside world? There is no way
for his door camera to function properly without an internet connection when it depends
on the system from Figure 1.2. This model is not well suited when reliability and low
latency is required, since it depends on having a constant and reliable connection to
the cloud service. Some examples include safety-critical devices like smoke detectors, or
user-facing interfaces like motion sensors monitoring Fred’s movement to pre-emptively
turn on his lights. In these cases, it is important that the system offers a local-only
operation mode that can continue to offer services during downtimes.

The way we see it, the conundrum facing such a system is the need to combine high
energy efficiency, strong computational performance, and low cost. If sensitive data and
the required intelligence is to be kept locally in the system, either the local embedded
devices or the gateways need to become smarter so they can perform increased workloads.

Our goal is a more flexible solution that can adapt to an ever-changing role in the
system. When only a basic task such as occasional sensing is being performed, it should
maximise energy efficiency. On the other hand, when a more computationally complex
task such as CV or AI is required it should temporarily ‘grow’ to handle it. This type of
elastic system should provide the flexibility of always having the correct device for the
task, without compromising performance or power efficiency.

Numerous approaches are available for this type of flexibility, depending on where
the additional processing capabilities are deployed. At the core of this is the offloading
problem, where devices either locally compute tasks or offload them somewhere else.
While remote options exist that send data and computation to a data centre or server,
this suffers from the cloud dependency discussed above. Instead, we target a local
solution that augments an embedded device with enough processing power to satisfy the
smart IoT without sacrificing the efficiency that small and mobile devices require.

One very interesting option for local hardware acceleration is an FPGA that allows the

3



Chapter 1. Introduction

deployment of semi-arbitrary hardware architectures. By reconfiguring at runtime, they
can adapt to changing system roles or even different applications. Within a fraction of
a second, they can instantiate the ideal hardware architecture for computing practically
any problem. They are particularly well-suited to acting as coprocessors, creating a local
heterogeneous systems alongside a sequential processing unit such as an MCU. However,
they can also be used as standalone System on Chips (SoCs) by instantiating a so-called
soft processing core to perform the general processing tasks. Either way, having such a
combination of sequential and accelerated processing creates tremendous opportunities
for adaptive embedded systems.
Traditionally, FPGAs have seen relatively low adoption and popularity in the embed-

ded space when compared to general purpose solutions such as Central Processing Units
(CPUs) and Graphics Processing Units (GPUs). While practically every mobile phone
and Personal Computer (PC) includes both of these components, FPGAs have mostly
been relegated to larger industrial usage such as enterprise management [156, 276] or
research.
However, recently a noticeable increase in commercial FPGA adoption has been seen,

with a number of products even utilising FPGAs without the public being aware of
it. Some examples include the NVidia G-Sync HDR module in high-end computer
monitors [1], or the discovery during a teardown that the iPhone 7 included an FPGA
for unknown purposes [226].

1.1. Research Hypothesis
Efficiently utilising local hardware acceleration in smart IoT devices has the potential
to create powerful AI-capable distributed systems. Without introducing latency and
energy costs from transferring large amounts of data, they can bring greater intelligence
to IoT applications. This leads to more complicated systems that can be very difficult to
optimise, due to the vast solution space introduced by adding reconfigurable FPGAs to
each device. Especially when considering numerous devices operating in full cooperation,
this leads to a huge optimisation problem for governing the system behaviour. Ideally,
each device should be able to regulate its own behaviour to improve scaling when creating
systems with large numbers of devices.
Therefore, our hypothesis is:

Connected and autonomic FPGA-augmented smart IoT
devices can use AI to optimise their behaviour.

We identify the need to support two different types of AI in such a system. Along
with the application AI required to execute the application itself (e.g. CV or NLP), some
device AI is needed to let each device operate rationally [206]. Adding this sophistication
through Machine Learning (ML) provides the advantage that the device can learn how

4



1.2. Research Questions

to behave without painstaking manual optimisation by a developer. The goal is to have
self-aware devices that are aware of their own state as well as that of their environments
– within the power limitations of a small embedded device. This should create a system
capable of massive scale, since the devices can optimise locally without having to consider
the global system.

1.2. Research Questions

Considerable work has been done in incorporating hardware acceleration and recon-
figurable computing into embedded systems. Additionally, addressing the offloading
problem (and the accompanying intelligence it adds to a system through optimising de-
vice behaviour) has been approached by multiple different communities. The novelty in
our approach comes from incorporating the intricacies of using hardware acceleration on
heterogeneous embedded systems with intelligently offloading distributed systems. To
the best of our knowledge, ours is the first system that aims to solve the combination of
these two problems.

Approaching our hypothesis requires investigation into two separate but related core
research questions:

• RQ1: How can adaptive hardware acceleration increase the local intelligence of
IoT devices?

• RQ2: How can distributed heterogeneous embedded devices learn to autonomous-
ly achieve shared goals?

These two questions highlight the multi-phase nature of this work. The first phase
involves having an appropriate hardware/software runtime to perform our investigation.
RQ1 and RQ2 cover the main research objectives of the second and third phases in turn:
local intelligence through optimised hardware accelerators and distributed autonomous
learning. These three phases will form the foundation of our approach, and upon their
completion we will have either validated or invalidated our hypothesis.

As both of these research questions rest on assumptions of possibility (e.g. the ability
of adaptive hardware acceleration to increase local intelligence) they will be answered by
proving whether the relevant assumption is true, and by describing how each is possible.
For RQ1 this focusses on surpassing the intelligence possible on IoT devices through
traditional designs (i.e. without hardware acceleration), which requires a detailed def-
inition of what is meant by intelligence as it is a very loaded term used to describe
various characteristics.

RQ2 attempts to accomplish something very specific in the devices’ ability to learn.
It requires a detailed study of what is currently possible in the literature (within our
definition of heterogeneity), and improving the performance (e.g. goal-achieving ability
or robustness) of the cooperating devices.

5



Chapter 1. Introduction

1.3. Scientific Contributions
Through the three phases of our approach and by investigating our hypothesis, we made
a number of contributions to the relevant scientific communities. The most important
of these contributions include:

1. We designed and built a novel hardware platform for FPGA-augmented connected
IoT devices – incorporating fine-grained energy monitoring and shared application
logic between the MCU, FPGA and remote offloading,

2. We showed how the development complexity of embedded heterogeneous appli-
cations can be reduced using a familiar stub-skeleton abstraction, and provide a
software runtime that includes hardware interface drivers,

3. We presented various advanced AI hardware accelerations and showed how they
can efficiently utilise the available resources of embedded reconfigurable hardware
using accelerator design techniques, and

4. We developed a device-local AI algorithm that optimises device behaviour when
acting in cooperating teams, extending on the offloading problem to fully utilise
FPGA-based hardware acceleration and emergent collaboration between peers.

These contributions were all peer reviewed and published through a combination of
a poster [32], a demonstration [31], a workshop paper [35], full papers presented at
conferences [34, 36, 211], and two published journal articles [33, 37]. A number of
bachelor’s and master’s theses were also supervised during the course of this work. A
list of these publications and theses can be seen in Sections 1.4 and 1.5 respectively,
provided as proof of the community’s acceptance of this work.

1.4. List of Publications
We provide here a complete list of the published scientific works associated with this
dissertation. The first four entries relate to the Elastic Node as presented in Chapter 4,
the next two to the Convolutional Neural Network (CNN) and Incremental Principle
Component Analysis (IPCA) accelerators described in Chapter 5, and the last two to
the goal-based agents from Chapter 6. Among the list is one workshop paper (PerIoT
2020), three full papers (ICAC 2019, ARCS 2020, and ACSOS 2020), and two journal
articles (FGCS and TAAS).

1. Alwyn Burger, Christopher Cichiwskyj, and Gregor Schiele. Elastic Nodes for the
Internet of Things: A Middleware-Based Approach. International Conference on
Autonomic Computing (ICAC), pages 73–74. IEEE, 2017. ISBN 978-1-5386-1762-
5. doi: 10.1109/ICAC.2017.27

6



1.5. List of Supervised Theses

2. Alwyn Burger and Gregor Schiele. Demo Abstract: Deep Learning on an Elastic
Node for the Internet of Things. International Conference on Pervasive Comput-
ing and Communications Workshops (PerCom Workshops), pages 555–557. IEEE,
2018. ISBN 9781538632277. doi: 10.1109/PERCOMW.2018.8480160

3. Gregor Schiele, Alwyn Burger, and Christopher Cichiwskyj. The Elastic Node: An
Experimentation Platform for Hardware Accelerator Research in the Internet of
Things. International Conference on Autonomic Computing (ICAC), pages 84–94.
IEEE, 2019. ISBN 9781728124117. doi: 10.1109/ICAC.2019.00020

4. Alwyn Burger, Christopher Cichiwskyj, Stephan Schmeißer, and Gregor Schiele.
The Elastic Internet of Things - A Platform for Self-Integrating and Self-Adaptive
IoT-Systems with Support for Embedded Adaptive Hardware. Future Generation
Computer Systems, 113:607–619, 2020. doi: 10.1016/j.future.2020.07.035

5. Alwyn Burger, Patrick Urban, Jayson Boubin, and Gregor Schiele. An Architecture
for Solving the Eigenvalue Problem on Embedded FPGAs. International Conference
on Architecture of Computing Systems (ARCS), pages 32–43. Springer, 2020. doi:
10.1007/978-3-030-52794-5_3

6. Alwyn Burger, Chao Qian, Gregor Schiele, and Domenik Helms. An Embedded
CNN Implementation for On-Device ECG Analysis. International Conference
on Pervasive Computing and Communications Workshops (PerCom Workshops).
IEEE, 2020. doi: 10.1109/PerComWorkshops48775.2020.9156260

7. Alwyn Burger, David King, and Gregor Schiele. Reconfigurable embedded devices
using reinforcement learning to develop action-policies. International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE, 2020.
ISBN 9781728172774. doi: 10.1109/ACSOS49614.2020.00046

8. Alwyn Burger, Gregor Schiele, and David W King. Developing Action Policies with
Q-Learning and Shallow Neural Networks on Reconfigurable Embedded Devices.
ACM Transactions on Autonomous and Adaptive Systems, 15(4):1–25, 2021. doi:
10.1145/3487920

1.5. List of Supervised Theses

Ten separate bachelor’s and master’s degree theses were supervised through this work,
a list of which is provided here. Loosely the Elastic Node platform relates to the first
six theses on this list, while the optimised accelerator design relates more the last four.
These are referred to within this dissertation as appropriate, describing how each of
them are incorporated into this dissertation.

7



Chapter 1. Introduction

1. Sascha Christian Hevelke. An Approach for Efficient Runtime Self-Configuration
for Embedded Reconfigurable Platforms. Master’s thesis, University of Duisburg-
Essen, 2016

2. Nicolas Frick. FPGA Energy Monitoring and Control through Power State Opti-
mization. Bachelor’s thesis, University of Duisburg-Essen, 2019

3. Anam Khalid. Design and Implementation of an optimized SDRAM interface in
Verilog. Master’s thesis, University of Duisburg-Essen, 2018

4. Miroslav Valov. Over-the-air Updating of an Embedded Heterogeneous Platform
Using 802.15.4. Bachelor’s thesis, University of Duisburg-Essen, 2019

5. Philip Schmidt. Hardware-/Software-Codesign for an Embedded Energy Monitoring
Daughterboard. Bachelor’s thesis, University of Duisburg-Essen, 2019

6. PhilippWinnekens. Development of an Interface Description Language and Stub/Skele-
ton Generator for Embedded Heterogeneous Multicore Systems. Master’s thesis,
University of Duisburg-Essen, 2020

7. Lingkon Hossain. Analysis and Design of Audio Capturing Solutions for Low-Power
Embedded Systems. Master’s thesis, University of Duisburg-Essen, 2019

8. Chao Qian. Energy Efficiency Analysis and Optimisation of Convolutional Neural
Networks in Embedded FPGAs. Master’s thesis, University of Duisburg-Essen,
2019

9. Patrick Urban. Implementation of Distributed Computer Vision using Embedded
FPGAs. Master’s thesis, University of Duisburg-Essen, 2020

10. Jinwen Du. Noise Mitigation for CNN Classifiers in Embedded Environments.
Master’s thesis, University of Duisburg-Essen, 2020

1.6. Outline
Before we can present the design of our solution, a better understanding of the desired
system is gained in Chapter 2 by studying some use cases and thereby creating the
system requirements. After this, some fundamental concepts are discussed in Chapter 3
to provide context for the technical work being discussed.
The technical contributions will be explained through the three aforementioned phases

of the work. Initially, the design of our embedded heterogeneous runtime is presented in
phase one in Chapter 4. This covers both the hardware platform as well as the software
runtime provided for aiding development. This is followed by optimising the designs
of hardware accelerations in Chapter 5 (phase two) that demonstrate some of the AI
capabilities of the embedded FPGAs used. In phase three, additional device intelligence

8



1.6. Outline

is introduced that allows each device to learn how to behave rationally by solving the
extended offloading problem in Chapter 6. A thorough evaluation of the system created
in our work follows in Chapter 7, addressing whether the requirements we set for our
system were satisfied.

After this, some alternative approaches from literature are discussed in Chapter 8
to provide context for our work. Lastly, some concluding thoughts and an outlook on
possible further investigations are provided in Chapter 9. A number of Appendices
have been provided at the end of this dissertation to clarify the Interface Description
Language (IDL) developed, and to provide examples of how our system can be used.

9





Chapter 2.

System Overview

Our proposed system involves a number of components that need to be designed and
implemented, ranging from an appropriate hardware platform to a learning algorithm.
Firstly, however, an overview of the entire system is required to better define its structure
and overall functionality.

Therefore, we start by investigating in Section 2.1 two use cases where we identified our
system would be beneficial: smart autonomous drones and a smart home IoT system.
This is followed by a discussion of a typical environment we are designing for in the
system model in Section 2.2.

At this point the discussion will turn to our proposed solution, as we describe a typical
implementation in Section 2.3. Lastly, we set out a number of requirements in Section 2.4
that we feel encompass what this system should achieve and provide.

2.1. Use Cases

It is important when designing a system to consider specific example scenarios and how
that system could benefit them. In our case, the aim is to achieve a better understand-
ing of what roles smart heterogeneous embedded devices could fulfil in each presented
scenario. Of particular interest are how the devices are expected to act, what their
environment should look like, and what they should achieve.

These examples represent applications with varying types of complexity – a group of
drones solving a highly computationally complex problem in CV and AI, and an IoT
system that needs to scale for larger and more dynamic systems. Our goal is then to use
these two use cases to identify both a unifying system model and a set of requirements
for our system.

2.1.1. Autonomous Drones

The first scenario to consider is a number of autonomous drones that collaborate to
achieve a shared goal. One concrete example of this is the surveying of fields to establish
crop yields [26], which involves the orchestrated imaging of a large area by a team of
Unmanned Aerial Vehicles (UAVs). The drones autonomously decide where the next
image should be taken, relocate to that position, and capture the image. This image

11



Chapter 2. System Overview

must then be processed using a combination of CV techniques and machine learning
in order to calculate the crop yield for the particular grid in view. The last step then
requires information to be collected from all the drones and combined to form an overall
view of the area being surveyed, combining overlapped areas to improve accuracy.
This problem can be modelled as a mobile homogeneous swarm [59, 69, 115] where each

device acts as a data source when it captures an image, but also as a processing source
when it needs to be processed. Each of these roles are very homogeneous over time, since
each image is processed largely in the same way. These problems are both computation
and data heavy as the drones’ cameras can capture large, detailed images. This highlights
the benefit of processing them directly on the drones instead of transmitting the raw
images to some edge or cloud service – reducing the time and energy cost of transmission
which can be in the order of seconds for raw images [27].
The task graph for this is provided in Figure 2.1. It shows the four discrete stages

of the processing pipeline, starting with the feature extraction (2). Here each image
is searched for important features that can be used not only by the yield estimator
(5), but also for path planning (4). This creates a non-sequential task graph, as the
same extracted vectors should be used in multiple different processing steps. Once
the images are converted to yield maps (3) using these features, the route planning
component (4) can create the next waypoint for the drone. Since route planning requires
information about all drones, it is usually implemented as a centralised component [26],
causing a synchronisation requirement. This means that regardless of how the images
are processed, the processed results need to be collected in one place – likely a server
that can perform the complex final processing steps.

1

2

3

4

5

Image capture

Feature extraction

Yield map assembly

Route planning

Yield estimation

Figure 2.1.: Task graph for UAV use case

To map heterogeneous reconfigurable computing onto this problem, consider each of
the steps in the task graph as an independent layer. At the top there is a sensing layer,
followed by two CV layers, and the AI layer that performs the path planning. In our
work we consider these processing layers to be tasks that need to be computed, either
by the device itself or offloaded to an edge or cloud component.

12



2.1. Use Cases

Even a small task graph like this can create a large solution space for finding an
optimal division of labour between the various drones and centralised computation. For
example, consider the scenario in Figure 2.2 where all the drones capture an image and
offload them to a server for processing. In this case, none of the drones need to do
any processing locally, but multiple full images need to be sent through a long-distance
communication interface (e.g. a 4G module) – which can be very energy intensive.

Drone 1 Drone 3

Drone 2 Server

Image

Image

Image

Figure 2.2.: Fully offloading scenario, where each drone captures an image and offloads
them directly to server for processing.

Alternatively, each of the drones can locally process their captured images using their
local FPGAs and only offload the processed results to the server – as shown in Figure 2.3.
This means that they do not have to send the images at all, instead locally performing all
the processing layers and only ever sending the extracted features and results. However,
this requires each of the drones to power up and use their local FPGAs. This creates a
very different solution to the first one, where the viability depends on the relative energy
costs of offloading images and locally processing on the FPGA.

Drone 1
[Processing]

Drone 3
[Processing]

Drone 2
[Processing]

Server

ResultsResults

Results

Figure 2.3.: Local processing scenario, where all three drones locally process their own
images and only send the processed results to the server

Lastly, the drones can choose to offload their images to one processing drone, as shown

13



Chapter 2. System Overview

in Figure 2.4. This means that only a single drone needs to utilise its local FPGA, while
the others use their local area communication (which should be more energy-efficient
than the long-ranged one) to offload their image to the processing drone. This further
expands the solution space, where different drones can take turns to be processing drone
to balance their energy usage.

Drone 1 Drone 3

Drone 2 Server

Image

Image
Results

[Processing]

Figure 2.4.: Specialisation scenario, where a single drone is responsible for processing
while the others offload their captured images

An important concept for this type of optimising in a cooperative system is special-
isation, where each device focusses on a specific task instead of equally addressing all
tasks. In systems involving hardware acceleration this can have a larger impact than
when using traditional sequential computation, due to the overhead of switching between
processing tasks. This closely resembles work done in the AI community regarding task
allocation between different agents (e.g. the work done by King et al. [118, 119]). This
commonly involves introducing a bias towards different tasks for a specific agent, or
relying on emergent behaviour from decentralised goal-driven agents [14].

2.1.2. IoT System

The second application scenario we consider is a typical IoT system such as a smart
home system. Most of the data sources in these systems are relatively simple – with the
possible exception of smart cameras which resemble the use case in Section 2.1.1. The
complexity in these systems comes from having a huge number of devices and therefore
data sources, which can increase the complexity of balancing the workload efficiently
between the available devices and servers. Since these systems may be expected to scale
indefinitely (as is the case with smart cities where a single system could cover an entire
city), managing them can be highly dynamic and complex.
Another issue common in such systems is that it often relies on interactions with the

user, which creates real-time requirements. For example, when he uses voice commands
to control his heating, or his movement is being predicted through a set of sensors in
order to turn on his lights, it is very noticeable when there is latency while the request

14



2.1. Use Cases

is being processed. This creates at least soft deadlines, where tasks should be processed
within a reasonable time frame to be most useful.

As an example of an application with considerable computational requirements in such
a system, let’s consider the collection and processing of audio as described in Figure 2.5.
A number of different devices in a smart home may be capable of recording sound (1) –
anything that offers voice control or activity tracking through sound – which can create
a large number of similar data sources that need to be processed. Each collected sample
may be useable by multiple applications, creating a wider task graph where different
algorithms need to be applied to it.

1

2

3

4

5

Audio sample capture

Medical analysis

Noise suppression

Voice detection

NLP

Figure 2.5.: Task graph for IoT use case

For example, current state-of-the-art technology based on different neural networks
could be used to do medical analysis (2) such as depression detection [253] or activity
recognition [128]. Additionally, more conventional Digital Signal Processing (DSP) tech-
niques can be used for noise suppression (3) or speech detection (4). These may again
be further processed by other algorithms such as NLP (5), which might be dependent
on the results of another step – e.g. only being performed when the voice detection in-
dicates the presence of a voice. Reducing the executions of more complex tasks not only
reduce overall processing required, but also the communication overhead from offloading
or distributing them. Optimisations of these task graphs can be very beneficial when
using reconfigurable embedded devices [52], but is considered outside the scope of this
work.

This scenario is more dynamic than the previous, as devices can freely join and leave
the system. Workloads can also vary based on the changing requirements of the user,
causing unpredictable and varied workloads. The objective of heterogeneous embedded
devices is then to provide adaptivity by deploying hardware accelerators only when
required. Optimising these systems is particularly challenging when dealing with larger
systems, since centralised systems cannot solve this typically NP-hard problem [40, 45].
Therefore, a decentralised approach that can self-adapt is crucial – even when only
optimising locally instead of searching for the globally optimal solution.

15



Chapter 2. System Overview

2.2. System Model

In our system we have devices, hardware accelerators, tasks, and agents. Here we will
create a model of our system by defining what we mean by each of these concepts, and
setting out any assumptions we have made. Through this, we will create a system
model that describes our system.
Each device in our system comprises of at least an MCU and an embedded FPGA

that are locally connected and can freely communicate with each other. While the MCU
offers highly efficient basic processing and application logic, the parallelism offered by
the FPGA can be used to perform more computationally expensive operations. In order
to communicate with other devices and services in the system, we also assume that each
device also incorporates a local wireless transceiver that allows it to send and
receive data.
While the MCU operates by executing a sequential software program, hardware ac-

celerators specify the way the FPGA can process data. They define the connecting and
configuring of many small computational building blocks inside an FPGA to allow it to
instantiate practically any arbitrary computing architecture.
At the heart of our system is the concept of tasks. The computations and processing

that an application requires are modelled as a set of tasks, each of which can (at least
conceptually) be performed on the local device or offloaded to an edge or cloud server.
Performing the more complex computations locally requires hardware acceleration, since
we assume that these tasks are too complex to be performed on resource-limited
MCUs.
We associate each task that needs to be offloaded to a local FPGA with a specific

hardware accelerator that solves it (also referred to as a configuration). This assumes
that only one accelerator can be executed on the local FPGA at a time, since
we use embedded FPGAs that have limited processing resources. However, extending
our system to include larger FPGAs would not be infeasible. It should be noted that
smaller FPGAs can be more complex to manage, as they typically do not include the
self-managing componentry of larger components.
This highlights the importance of developing optimised accelerators in order to utilise

the available processing power as efficiently as possible. Although we assume that a
generic accelerator design may be available, its adaptation to our system archi-
tecture is considered within the scope of this work.
We also assume for now that these accelerators are available to the device on

local storage (e.g. a flash chip) at runtime. This also assumes that the device has
enough storage available to store all of the configurations it will need in an application.
We did perform a proof of concept for deploying new configurations to the device Over-
The-Air (OTA) using a simple 802.15.4 interface [243], but consider integrating this into
the larger system outside of this work’s scope.
For each task to be solved, a number of decisions must be made, such as who is

performing the computations required and whether to address it immediately or leave

16



2.2. System Model

it for later. Responsible for the decisions on how to handle tasks is an agent that may
be either device-local or shared within the system.

Furthermore, we assume that all embedded devices are energy and/or resource-
limited. We therefore consider each device to be semi-tethered to a stable power source
(i.e. dependent on a battery but capable of being recharged when required). This means
they need to use energy sparingly — emphasising computational efficiency.

In search of energy efficiency, we emphasise the need for resource efficiency – i.e.
utilising the available computational building blocks as well as possible. Since smaller
FPGAs are cheaper and have less static power consumption [51], we want to use the
smallest FPGAs possible. This means minimising resource overhead introduced by our
system, and optimising our accelerator design to need fewer resources.

Figure 2.6 shows a setup with three cooperating devices sharing tasks. Device 1 is
sending a task A to device 2, so its FPGA can remain sleeping while device 2 already
has the correct configuration loaded. At the same time, device 2 is sensing data and
creating a different task (task B) which it may offload later to device 3.

Sensed data

Device 3

MCU

Device 1

MCU

Device 2

MCU

(sleeping)
FPGA

Task
B

(configuration A)

(configuration B)
FPGA

FPGA

Task
A

between devices
Transferred

Figure 2.6.: System model showing three FPGA-augmented devices, with Task A being
moved from Device 1 to Device 2, and Task B being created by Device 2
from sensed data.

The role of the set of devices is then to perform these tasks within certain limitations
such as available energy, real-time deadlines, or wireless bandwidth. Therefore, we rely
on high-level user goals that direct the devices’ behaviour. This can take the form of a
set of requirements for an application (e.g. survive as long as possible on battery power,
or monitor a physical phenomena as accurately as possible), which need to be balanced
and optimised.

We assume that tasks are created randomly by all devices in the system, and
any device is capable of deploying the required FPGA configuration to solve

17



Chapter 2. System Overview

it. Although this sounds somewhat homogeneous, at each timestep each of the devices
can be in any of a number of different configurations. We also assume that the devices
in the system are cooperative. Although they may each have their own objectives,
we exclude possible security concerns such as attacks from compromised or antagonistic
devices. This implies that all devices are trustworthy and known.
Although devices may join and leave dynamically, we assume that all devices know

which devices are available and can be reached. This may be system-global in the
case of a home network where any device communicate with any other device directly, or
device-local peer-to-peer where only a subset of neighbours can be reached. Multi-hop
communication with variable latency between different devices is ignored, but could be
included by considering message transmission time.

2.3. Typical Implementation
We envision a system where every device deployed in a system is augmented with hard-
ware accelerators on local reconfigurable hardware such as an FPGA [211]. This allows
them to address considerably more demanding applications through local AI, as well as
also embrace the sentiment of self-x and autonomic computing systems by creating dy-
namically adapting systems of devices where each device can adapt to perform different
roles.
Note that this does not assume a homogeneous system where each device has the

same hardware make-up, or even behaves in the same way. King et al. showed the
advantage of having heterogeneous systems [119] where devices can adapt to locally
changing requirements. Our goal is to have each device be capable of managing its own
role in a large, complex system in order to scale adequately for large-scale systems. If all
the devices in a system depend on some centralised control paradigm (e.g. centralised
observer-controller models [28]) it would be unreasonable to expect the system to scale
to the size of a smart city.
One of the major focusses of this work is the development cycle, as this currently

poses a major obstacle to adoption of FPGAs in embedded systems. To make our
vision of ubiquitous augmented devices a reality, the effort required for development
must be reduced drastically from the manual hardware/software co-design process it is
today. This means firstly that additional support should be provided to developers, and
secondly that services should be provided that can orchestrate such a deployment (this
includes our proposed microservices-based solution that is largely outside the scope of
this work [33]). Simply put, our goal is that developers should be able to utilise hardware
acceleration on these devices as simply as utilising a software library.
The system of FPGA-augmented devices relies on a very complex development para-

digm as shown in Figure 2.7. On the local device, it depends on a hardware accelerator
developer (1) to design the hardware accelerator on the FPGA. This would commonly
either be in a Hardware Description Language (HDL) like Very High Speed Integrated
Circuit Hardware Description Language (VHDL) or Verilog, or using system designer

18



2.3. Typical Implementation

tools such as Embedded Development Kit (EDK) or High-Level Synthesis (HLS). Re-
gardless, the result would be a synthesisable architecture design that can be instantiated
in the reconfigurable logic of an FPGA.

M F

M F

M F

Embedded
developer (2)

Distributed system
developer (3)

Hardware accelerator
developer (1)

Figure 2.7.: System design process overview showing each involved developer. Hardware
accelerator developer (1) creating designs for the (F)PGA, Embedded de-
veloper (2) focussed on (M)CU programming, and the Distributed System
developer (3) creating connections between devices.

Next, the embedded software developer (2) creates the application software that runs
on the device. This commonly includes basic sensor and actuator integration, and data
management such as communication with a central server or peers. Likely this would
take the form of a set of libraries, as well as either bare metal application logic or
incorporation into the local embedded Operating System (OS) (either an embedded
version of Linux or an embedded Real-Time Operating System (RTOS)). This creates a
functional device that can take advantage of the provided local hardware acceleration.

Lastly, the distributed system developer (3) is responsible for integrating a number
of these augmented embedded devices into a system. This involves the distribution
of an application through offloading or a similar technique. Device AI or other self-
x techniques such as self-organisation or autonomic self-awareness are also introduced
here (which will be further discussed in Section 3.5.1), leading to a set of devices that
can collaborate towards a larger goal or application than any of them could achieve
individually.

Our goal with this work is to provide support for all three these developers. This
involves a suitable hardware platform for this device, providing support for local devel-
opment of application logic on it, and demonstrating how device intelligence can create
collaboration. To solidify these goals, we need to define our system requirements that
will be used to evaluate our result and to address our research questions.

19



Chapter 2. System Overview

2.4. System Requirements
We detail here the functional (F) and non-functional (NF) requirements for the over-
all system. These requirements are written with the needs of each of the developers
discussed in Section 2.3 in mind, and serve to highlight the main issues that need to
be addressed if we hope to answer our hypothesis. They direct our design decisions
throughout this work.

SREQI: (NF) Adequate Local Intelligence to Support Various Ap-
plications

The embedded device needs to offer enough local intelligence to support the
processing requirements of complex applications that rely on AI. As stated in
Chapter 1, we plan to bring down intelligence from the cloud to the device. This
puts additional computational strain on the local device, since it now needs to do
more than in a traditional IoT system where it only collects data and forwards it
to some central cloud service for processing.

How much local intelligence is required will be application-dependent, impact-
ing this requirement. Even a single application’s requirements may change over
time, emphasising that we need the local device to be adaptive. In general, we
require the device to be capable of adequate local intelligence that it can support
demanding applications that rely on AI techniques such as CV or ML. A local
hardware accelerator should be capable of at least comparable processing speed as
the alternative – e.g. offloading the task and processing it in the cloud.

SREQII: (F) Automated Decentralised Cooperation Optimisation
A single device is often not enough to sufficiency solve more complex applica-

tions. Therefore, distributed embedded systems solve problems that are too large
or impractical by splitting the problem into smaller chunks. Doing this is non-
trivial, especially when the application requirements or set of available devices can
change. If the devices are able to optimise this themselves, they can dynamically
adapt to these changes without requiring additional effort from the developer.

We require that our devices should automatically form teams and cooperate
to solve a problem, and optimise both collective and individual behaviour. This
implies additional intelligence in the form of a range of self-x concepts (see Sec-
tion 3.5.1). These include some awareness of their own performance and envi-
ronment, and the ability to adapt to unforeseen changes through autonomous
and continuous self-optimisation. This could include external disturbances (e.g.
changes in weather or network availability) and changes in the team (e.g. devices
joining and leaving unexpectedly).

20



2.4. System Requirements

SREQIII: (NF) High Energy Efficiency

Creating a system that maximises its energy efficiency is critical, as IoT and
distributed embedded applications often rely on battery power or resource con-
strained devices. Efficiency here refers both to low power usage through limiting
the amount of energy used in a specific time frame, and efficient utilisation of
available processing for maximised performance. This encompasses the two sides
of the energy efficiency coin, where performance and power usage must be care-
fully balanced to achieve our primary criteria for high energy efficiency: low energy
usage per task.

Apart from a conceptual design goal for “efficient systems”, our objective is also
linked to our desire for realistic experiments [33]. We need a real-world experimen-
tation platform to add validity to the experiments that can be performed using our
system. Instead of being limited to simulations and modelling, this would allow
a user to evaluate both their created applications and system optimisation tech-
niques on real hardware before deploying their solution — providing them with a
more realistic evaluation grounded in real world data.

To accomplish both of these efficiency targets, our system needs to be applicable
for deeply embedded devices that have very restricted resources. Due to targeting
low cost and power usage, this limitation applies to available total energy, memory,
and computational resources such as MCU frequency or FPGA configurable logic
blocks.

SREQIV: (F) Convenient and Efficient Local Hardware Accelerators

Applications may require multiple different FPGA configurations: either for
solving different tasks or as distinct processing steps within a single task [51]. We
identify two objectives to achieve this: convenience and efficiency of switching
between different hardware accelerators at runtime. The switching efficiency is
directly linked to the switching latency due to the energy overhead involved in
changing the active configuration on the FPGA.

The second part of the requirement is that switching and managing accelerators
at runtime should be simple, pertaining to the application development and the
software runtime we need to provide. Our focus here is on simplifying the ap-
plication design process to incorporate multiple accelerators into an application.
Managing the FPGA includes turning it on and off, exchanging data with it, and
keeping track of locally stored accelerators. Our goal is to have hardware accelera-
tors incorporated in a similarly simple fashion to software libraries in the Arduino
development environment [8], where one only has to include the relevant header
file and call the relevant function.

These requirements highlight a number of distinct elements in our system. Firstly,

21



Chapter 2. System Overview

the two levels of AI – local application intelligence and shared cooperative intelligence
– are both required for solving the complexities of smart IoT devices. These devices
also need to be energy efficient, leading to restrictions on the available resources. Lastly,
creating applications that may involve multiple accelerators requires design support for
incorporating them into the application logic, and runtime support for managing the
FPGA.

The next step is to clarify some fundamental concepts that we need to satisfy these
requirements in Chapter 3. This will clarify some terms already used in this work, as
well as detailing the additional ones we will need for the design of our system. Once this
is complete, the first of the three phases will be presented in Chapter 4: the design of
the appropriate hardware and software runtime for our work.
In this first phase an additional set of requirements will be created in Section 4.2,

specifically focussing on our hardware platform/software runtime. Later, another set of
requirements is detailed in Section 6.3 to ensure that the learning agent that controls
the higher level behaviour. These additional requirements serve alongside the system
requirements to clarify the role of these two components of the system – the platform
and the learning agent.

22



Chapter 3.

Fundamentals

Our system as presented in Chapter 2 lies on the intersection between a number of dif-
ferent fields. Creating autonomic FPGA-augmented smart IoT devices requires a good
understanding of heterogeneous embedded hardware, distributed embedded software,
and general reconfigurable hardware accelerators. Additionally, giving them local intel-
ligence for optimising their own behaviour relies on both the fields of learning intelligent
devices and machine learning. Each of these fields are built on a number of fundamen-
tal concepts that underpin the scientific work done in it. Therefore, we discuss these
concepts here to clarify any unfamiliar or vaguely defined terms. A study on specific
implementations of these techniques follows in Chapter 8, where we discuss approaches
followed by related works in the literature.

For brevity, the areas being discussed have been combined into five distinct topics. We
start by discussing how embedded systems can be augmented with hardware acceleration
in Section 3.1 (covering both hardware and software), and how they can be optimised
in Section 3.2. This is followed in Section 3.3 with a discussion on different application
models for creating heterogeneous applications.

After this, Section 3.4 provides some examples of connected computing paradigms
that offer different ways for multiple nodes or devices to share an application. Lastly,
a higher abstraction is discussed in Section 3.5 regarding intelligent devices that learn
– providing some techniques that can be used to increase the intelligence of a device’s
decision-making.

3.1. Accelerating Computation in Embedded Systems

Increasingly complex applications in the IoT and mobile embedded devices rely on new
methods of computation. Instead of the basic computation abilities of small micro-
controllers with low power consumption, techniques from other fields such as AI and
machine learning are becoming more pertinent in embedded systems. This brings with
it tremendous possibilities for local intelligence, but also raises complexity by imposing
new requirements and restrictions. While hardware acceleration has dominated data
centre and commercial computation over the last few years [278], it has only recently
become feasible within the power and size constraints of the IoT [201].

We discuss here some of the options for incorporating accelerated computation into

23



Chapter 3. Fundamentals

embedded systems (both hardware and software acceleration are considered). Some of
these are already fairly mainstream, while others have only seen very limited adoption.

3.1.1. Multicore and Multithreaded Systems

Likely the most ubiquitous approach to increasing processing performance is using mul-
ticore systems, where a single CPU or MCU includes multiple physical computing cores.
Each of these cores is capable of performing somewhat independent instructions, while
commonly still sharing some resources (such as local cache memory). Multicore proces-
sors generally take one of two forms, where the cores are either used in unison or entirely
separately. Especially in the field of DSPs, multiple cores can collaborate to perform
Single Instruction Multiple Data (SIMD) instructions that can process multiple inputs at
the same time (e.g. Super Harvard Architecture Single-Chip Computer (SHARC) DSPs
used primarily for audio processing [102, 235]). This can further be extended with spe-
cial instructions that can directly process a vector (e.g. the Advanced Vector Extensions
(AVX) processor instructions found in most mainstream desktop CPUs [131]).
Much work is being done in the field of multi-core processing1, focussing on designing

both the hardware and software designs for creating SoC solutions with multiple pro-
cessing cores. Therefore, creating applications that take advantage of the linear scaling
that comes from using multiple cores has become considerably simpler over the last few
years, relying on sophisticated compilers and abstractions rather than custom assembly
programming of multi-core solutions.
Related to this is the use of multi-threading, where the CPU is capable of processing

a number of different threads of execution at the same time [221]. In terms of processing
acceleration this means that in a multicore system the CPU can perform numerous in-
dependent tasks at the same time. However, in essence multi-threading simply relates to
being able to switch context between various “threads” (or “tasks” as they are commonly
referred to in RTOSs such as FreeRTOS2).
The important task when developing multithreaded applications is to isolate and iden-

tify each of the threads, enabling them to perform arbitrary tasks simultaneously –
without requiring excessive synchronisation points or passing data between them. This
multithreading functionality is usually provided by the OS, as each thread of execution
needs to be managed and controlled. Our aim for this work is to be OS-agnostic, meaning
that our solution should be compatible with an embedded OS such as embedded Linux
or an RTOS – without being dependent on it. Therefore, we do not include multithread-
ing into our design, but rather would consider our delegated hardware acceleration as a
single task or thread that could be managed by the OS.

1https://www.mcsoc-forum.org (last visited: 2021-12-06)
2https://www.freertos.org (last visited: 2022-03-13)

24

https://www.mcsoc-forum.org
https://www.freertos.org


3.1. Accelerating Computation in Embedded Systems

3.1.2. Field Programmable Gate Arrays (FPGAs)
On the scale of application specificity versus general purpose processing, the range is
commonly considered to be from Application Specific Integrated Circuits (ASICs) that
are designed to solve one specific problem as optimally as possible on the one extreme, to
general purpose CPUs that aim to solve every computational problem through a variety
of instructions [215]. On this scale, an FPGA sits much closer to the ASIC, but pro-
vides more general applicability through reconfiguration: instead of being manufactured
with one permanent architecture, it can change its architecture whenever it is required.
Practically, one can consider FPGAs to be ASICs that can be reprogrammed whenever
required by redefining the internal connections and the configuration of small building
blocks.

These building blocks are referred to as Configurable Logic Blocks (CLBs) that can be
in one of a few different modes [201]. For example, the CLBs in the modern 7 series family
from Xilinx [265] can be used either as a Lookup Table (LUT), distributed Random
Accessed Memory (RAM) or a shift register. These blocks can then be connected at
will using the programmable interconnect, which efficiently transmits signals at a circuit
level from one block to another. Together, this provides users the ability to create
nearly arbitrary logic circuits that can perform computational tasks by instantiating an
architecture for performing all necessary ‘instructions’ (i.e. operations).

The CLBs are not always optimal for instantiating larger amounts of resources —
which is particularly true for volatile memory. Although the CLBs can each instantiate
a roughly 64 bit register, this may not be adequate for larger applications, which is why a
number of additional dedicated resources are provided within the reconfigurable FPGA
logic. Block RAM (BRAM) is an important example of this, and provides very fast
memory blocks in between the other configurable blocks. Users can either specifically
choose to instantiate one of these blocks (commonly a few kilobyte in size), or the
toolchain can identify larger sections of memory that can be optimised to BRAM.

Similarly, the mathematical abilities of the system are expanded by introducing DSP
elements that can perform specific mathematical operations (e.g. Multiply-ACcumulate
(MAC)). These not only improve the complexity of the architecture that can be instan-
tiated by freeing up the more generic CLB resources, but also increases performance as
these DSP elements commonly operate at a higher clock speed than the CLBs them-
selves.

Designing an architecture in this way is traditionally done using an HDL such as
VHDL, effectively manually defining each interaction and connection. This has been
shown to be very time-consuming and lead to large development overheads [55], making
it less attractive to developers than mainstream alternatives such as GPUs [185, 188]
discussed below. Similarly to conventional programming languages such as C, basic
operations such as multiplication can be used using

a <= b * c;

25



Chapter 3. Fundamentals

where each variable has a defined type (e.g. a signed number). A fundamental difference
from conventional programming languages is that here a is defined to always be equal
to the product of b and c, instead of the instruction being computed at a specific point
in time. This means that if any of these input variables change, the value of a would
be updated immediately and implicitly. Although this leads to very high computational
performance, a multiplier circuit would need to be dedicated specifically to this equation,
and not used for any other operation in the lifetime of the architecture.
A number of more modern approaches to developing for FPGAs have been intro-

duced [185]. These include products from mainstream brands such as Xilinx, Altera,
and Matlab. These commonly offer developers the ability to create systems in easier
to use languages, and then later compile them into usable HDL. These systems see a
regular rise in popularity, but the plethora of options available can make it daunting to
approach for beginners, as most of them are designed with a specific use case in mind
(e.g. the signal processing code generator “HDL Coder” from Matlab [153]).

3.1.3. Graphics Processing Units (GPUs)

A more mainstream hardware acceleration option is the GPU, which offers massive
parallelisation through a defined SIMD architecture [185]. This allows it to perform
the same operation to a large vector or matrix of input, making the GPU particularly
proficient at processing uniform data streams such as images or video [149].
In the embedded space, GPUs have been used primarily in mobile phones that offer

a similar system architecture to conventional desktop computers by combining a CPU
and a GPU into a heterogeneous system. The GPU is primarily used to accelerate
the rendering of imagery and the interfacing with the display, and has been used for
hardware acceleration mainly in video games and similar applications.
Due to limitations in the support for GPU accelerator languages such as CUDA [172],

custom hardware acceleration has seen very limited use in the mobile device community.
Special hardware platforms such as NVidia Jetson [173] have been introduced to promote
using traditional GPU acceleration in the embedded space, but these are limited by
having considerably larger power usage than is practical for battery-operated devices
such as wearables (since the Jetson line is targeted primarily at the automotive industry).

3.1.4. Heterogeneous Computing

A popular approach to developing accelerated computational embedded systems is to
combine different processing units into one heterogeneous system – in contrast to homo-
geneous systems where all of the processing units are the same. For example, a popular
commercial implementation of this is the ARM big.little [9] design, which is a multi-
core system that consists of different types of cores – some smaller and low powered for
simpler tasks and some more powerful for more demanding computational loads. It has
been used very successfully in mobile systems such as ARM-based phones or laptops (e.g.

26



3.2. Optimising Hardware Acceleration Performance

new M1 laptops from Apple license processor cores from ARM3).
Another version of heterogeneous systems can be found in approaches that incorpo-

rate a variety of sequential and hardware accelerator cores [49], such as combining a
conventional CPU and GPU. These have the benefit that each task can be individually
assigned to the most appropriate processor, leading to improved efficiency and greater
performance overall.

In the embedded sphere this can be either a number of discrete components, or one
combinational component (e.g. an SoC). Apart from the CPU-GPU combinations com-
monly found in mobile phones, the most popular Commercial off the Shelf (COTS)
embedded device is likely the Xilinx Zynq-7000 family [268] that combines a single or
dual-core ARM embedded processor with Programmable Logic (PL) in the form of an
FPGA (e.g. [90, 130, 155]). This FPGA is on par with either a larger Artix-7 or Kintex-
7, providing considerably more resources than the smaller embedded ranges such as the
basic Spartan FPGAs. It offers highly convenient SoC development, as the ARM cores
and the PL can easily interact through the use of a provided Advanced eXtensible In-
terface (AXI) bus. This creates a relatively beginner-friendly entry point into designing
heterogeneous systems that utilise FPGA acceleration.

3.2. Optimising Hardware Acceleration Performance
Efficiently utilising hardware acceleration requires different optimisations than used in
traditional sequential computing. Although multithreading and multicore design can
increase the number of parallel tasks, that mostly scales performance linearly (at best)
with the number of available cores and the frequency. This makes optimising their
performance fairly straightforward – ignoring some losses due to switching threads and
frequency ramping [152].

Therefore, we present here some general optimisation techniques for improving the
performance of hardware acceleration. These optimisations are particularly crucial in
embedded applications, as energy consumption must be carefully managed – requiring
the maximising of performance and minimising of power usage.

3.2.1. Pipelining
Hardware acceleration commonly relies on complex pipelines for ensuring that the avail-
able resources are fully utilised. As shown in Figure 3.1, this ensures that all available
hardware can work at the same time by processing various steps from subsequent tasks.
In the ideal case, this allows the architecture to create one output as every input is
provided to the system.

Utilising pipelining requires both the design of an optimised pipeline (where each
stage requires roughly the same amount of time to process to minimise downtime) and

3https://www.tomshardware.com/uk/news/Apple-M1-Chip-Everything-We-Know
(last visited: 2022-04-15)

27

https://www.tomshardware.com/uk/news/Apple-M1-Chip-Everything-We-Know


Chapter 3. Fundamentals

Accelerator

A B C

Input Output

Figure 3.1.: Pipelining in hardware accelerators, showing how inputs are efficiently
pushed through the accelerator to create a sequence of outputs

independent, predictable stages that do not require communication or have dependences
between them. Although pipelining is not relevant to all applications, it can drastically
improve the performance of multi-stage problems (e.g. CV techniques that require a
number of complex sequential processing steps).

3.2.2. Parallelism
Increasing parallelism in hardware accelerators requires the processing of one element
entirely independently of another. For example, Figure 3.2 shows a setup where multiple
identical accelerators are deployed to a device, and each processes one set of inputs at
a time. This can be beneficial when the resource requirements of the computations fall
short of the available resources, and allows efficiency to be balanced with performance.

Multiple Accelerators

A B C

Input Output

Figure 3.2.: Parallelism in hardware accelerators, creating multiple outputs at the same
time through multiple deployed accelerators

While parallelism is only beneficial with adequate resources, it may be applied to
a segment of a computational problem. For example, an audio application may search
multiple incoming streams for keywords simultaneously using simple preprocessing accel-
erators, before further investigating any identified samples using a single (more complex)
processing accelerator.

3.2.3. Batching
Arguably the simplest way to improve performance with using a hardware accelerator as
coprocessor (where it gets assigned specific tasks by a main processor) involves batching

28



3.2. Optimising Hardware Acceleration Performance

workloads. As shown in Figure 3.3, the inputs that need to be processed are collected
and bundled together before being sent to the coprocessor in one large chunk. While this
does not directly affect their processing on the accelerator, it can reduce the offloading
overhead from exchanging multiple small bundles of data.

Accelerator

A B C

Input Cache Cache Output

Figure 3.3.: Batching in hardware accelerators, optimising the overall performance by
minimising communication overhead.

In some cases, batching can have further beneficial effects when the outputs of an
entire batch is combined during processing. For example, the stability of training neural
networks can be improved through batching [84]. In contrast to online methods, these
systems combine the effects from the entire batch into a single update. Not only does
this improve performance on parallelised hardware such as GPUs as it takes advantage
of SIMD instructions like array multiplication, but it also creates a more stable system
as the noise from individual updates from each input is effectively suppressed.

The reconfiguration required for FPGAs to perform a specific task can be seen as over-
head. Whenever a task needs to be performed, the FPGA needs to spend a relatively
large amount of time and energy reconfiguring its logic to load the required configura-
tion [244]. This provides a good example of the benefits of batching, as each batch only
requires a single reconfiguration.

We investigated this as part of our demonstration at the 16th International Confer-
ence on Autonomous Computing (ICAC) [211], where we showed the effect of changing
the batch size when offloading to a local embedded FPGA. Figure 3.4 shows the total
latency for performing 100k iterations of an application that requires multiple accel-
erators. We can see from the figure that the latency introduced from reconfiguring is
reduced drastically as larger batches are used. By reducing the total number of times
the FPGA needs to load a new hardware accelerator, the total latency from performing
all 100k iterations is reduced. Note that the inflection point towards the 104 mark is
when the FPGA is spending a larger percentage of time computing, even though the
total duration is still decreasing.

These three techniques can be fairly trivially combined, as their implementation is
either within the hardware accelerators or how they are deployed on the hardware. For
example, one could have multiple parallel instantiations of an accelerator that each get
fed a full batch at a time. We have seen that utilising optimisations such as these
have a large impact on the efficiency and performance of heterogeneous embedded sys-
tems. Therefore, we prioritise local batches when creating the local AI that optimises

29



Chapter 3. Fundamentals

102 103 104 105

100

101

102

Batch size

To
ta

ld
ur

at
io

n
(in

s)

Total latency
Reconfiguration latency

Figure 3.4.: Latency of offloading different sized batches to a local embedded FPGA.
Based on our experiment of performing 100k iterations with different sized
batches.

device behaviour, as we showed that efficiently balancing FPGA reconfigurations with
processing is paramount.

3.3. Heterogeneous Application Models
Creating software for heterogeneous systems can be complicated, since it involves so-
phisticated synchronisation and information passing between the various components.
Therefore, a number of different abstractions have been created for simplifying these
interactions. Some of these are purely software-based solutions (such as OS threads and
middleware), while others involve conceptually different system design (e.g. tile-based
or SoC solutions). We describe here some of the more popular approaches (especially in
the embedded field), with specific examples of projects in literature being provided in
Chapter 8.

3.3.1. OS Threads

Abstracting offloaded computations as OS threads (so-called hardware threads) has the
benefit of being familiar to many developers: any programmer that has created either
multithreaded desktop or embedded applications (or even an RTOS) will be familiar
with the interaction scheme of threads and the accompanying mutexes and semaphores.
These are essentially thread-safe locks that provide access to shared memory or inter-
faces – without creating interference between the different threads. For example, in a
heterogeneous system where the processing cores share external memory or a commu-
nication interface, they need to manage who is interacting with it at any given point in
time.

30



3.3. Heterogeneous Application Models

The second benefit of threading-based application models is that it includes context,
meaning that there already exists the mechanism for each task or thread to have local
variables and memory. This is important when different parts of the application are
running simultaneously on different processors, isolating each thread within its own
context.

Lastly, threading is already supported in the case where an OS is present. When
working in embedded Linux, for example, the kernel can natively manage the multi-
tasking nature of having both hardware and software threads. This means that once an
accelerator has been abstracted to a hardware thread, the system can manage the rest
of the execution, synchronisation, and management.

3.3.2. Modular Tile
Although not quite as popular lately, modular tile-based application models saw great
popularity in the early 2000s [148]. The basic premise is that an application is broken
up into smaller modular chunks that are fully interchangeable. This then creates a very
scalable solution where an application can deploy as many of these different tiles as
required. For example, a number of vector-processing units may be deployed that can
either process in parallel or series. By passing data to each other along either a shared
bus or a peer-to-peer system as shown in Figure 3.5, they can create an interconnected
collection of processing cores.

I O I O I O

I

OI

O

O OO I I I

Figure 3.5.: Tile-based modular components passing data to each other using dedicated
I/O blocks

One downside of this type of system is that it requires a custom programming model,
since each individual core has its own instruction set. Additionally, controlling the overall
system of tiles is non-trivial since commonly a message-based communication model is
needed. This leads to each system requiring its own compilation system and often a
unique programming language, creating a steep learning curve for new developers.

3.3.3. System on Chip
Although an SoC approach is mostly a hardware solution, it leads to a unique application
model with very tight coupling. Essentially it involves designing a custom silicon chip

31



Chapter 3. Fundamentals

that incorporates all or some of the required components required – instead of installing
each separately on a Printed Circuit Board (PCB) and connecting them with copper
traces. Since the job of connecting different processing cores is substantially easier
electronically when they exist on the same silicon, these solutions generally offer better
interaction between cores than multi-chip alternatives. Additionally, this connectivity is
generally faster and have lower power consumption.
While this is commonly a very good solution for industry projects aiming for high

volume long term manufacturing, it is not as beneficial for experimental research. De-
signing a new SoC has a very long development time and cost, making it infeasible for
experimenting with various different combinations of processors and peripherals.

3.3.4. Middleware

The concept of a middleware has been extensively used in distributed computing and
networking. It generally creates an abstraction layer between a distributed application
and the OS, or even instead of an OS. It primarily aims to simplify application devel-
opment by connecting the necessary components within the system.
This allows it to present a higher-level abstraction for the programmer to use, thereby

providing a generic solution to common issues such as data synchronisation and Re-
mote Procedure Calls (RPCs). This highlights what we consider the primary goals of
a middleware, namely to provide easier application development and to avoid dupli-
cation of development work. The task of the developer then becomes to make their
own designs compatible with the interface of the middleware, at which point they can
be combined into an application using a convenient provided Application Programming
Interface (API) by the middleware.

3.4. Connected Computing Paradigms

Connecting various computing devices together requires a clear definition for how com-
putations are divided amongst them. Numerous such paradigms are presented here for
splitting the work between a system’s embedded devices and larger (more powerful) el-
ements such as servers. This also involves the important decision of whether to move a
specific piece of computation to another device. Therefore, we specifically discuss here
the concepts of offloading and placement.

3.4.1. Offloading

Schaefer [209] refers to offloading as focussing on the extraction and remote computation
of a computationally intensive part of an application. The result of the computation is
then sent back to the original application once ready. Flores et al. introduced a popular
structure to analysing offloading in the context of mobile cloud computing that considers
the four basic questions: what, when, where, and how [76]. These questions help to

32



3.4. Connected Computing Paradigms

understand not only the technicalities of the server-client interaction, but also the goals
involved.

What? The question of what to offload generally comes down to your objective (e.g.
energy efficiency, real-time deadlines, throughput). The general concept is to offload any
section of the application when that will improve the system’s performance according to
your chosen objective. How these sections are isolated from the rest of the application
comes down to the application model (as discussed in Section 3.3), which describes how
an application can be broken down into separate parts (e.g. tasks, components).

The component responsible for answering this question is called the code profiler [76].
It may follow a manual directive such as annotations in source code [58, 122] or a more
dynamic approach that uses static code analysis or history traces [48, 145].

When? This question relates to deciding whether or not an application section defined
by the code profiler gets offloaded or not. This offloading decision is made by the
decision engine [76], and can be made either statically or dynamically [48, 58, 125, 126].
Multiple factors may influence the offloading decision, conceptually related to self-aware
computing (see Section 3.5.1) when devices are expected to self-govern.

Where? This issue can again be solved in either a static or dynamic fashion. One may
consider this an extension of the When? question, where the offloading decision must be
optimised in the new dimension of having different destinations available. Each option
must be evaluated in order to choose any of the available resource providers (or the local
case when none of them are viable).

This decision is generally based on the current state of the different agents in the
system, and therefore the full system state must be monitored by the so-called system
profiler. This introduces an additional level of complexity, where the accuracy of the
offloading decision must be balanced with the availability of the system state. This is
even more relevant in the case where state is very volatile, since it would be impossible
for each agent to always have a full overview of the system.

Although most approaches in the Mobile Edge Computing (MEC) and Mobile Cloud
Computing (MCC) communities address the binary offloading question of whether or
not to offload to a single server, a few projects have approached the problem where
multiple options exist. One such project by Xu et al. [271] addresses a simpler problem
of selecting a server for processing a data stream, where the decisions remain in action
for a period of time. One of a number of available server nodes are chosen to process
the incoming data, based largely on their available resources. Similarly, Ma et al. used
game theory to address the option of different access points to offload to [144].

A multi-layered approach is followed by Chen et al. so the device can choose between
offloading to the access point directly, or through it to a cloud service [40]. Here, it
appears that the mobile client only performs a similar binary offloading decision, after

33



Chapter 3. Fundamentals

which the request may be forwarded to the cloud to alleviate processing limitations on
the computing access point.

How? The offloading mechanism defines how a part of an application can be executed
remotely in an offloading scenario. It involves recreating the state required to perform
the task, as well as the description of the task itself.
There are different ways of performing this, ranging from a direct RPC to recreating

an entire virtual machine. Another approach is to use message passing (commonly in
bytecode format) which describes all the necessary information. The Tasklet system is
an example of this, where each offloading task includes both the necessary instructions
for execution, as well as the required data [209, 210].

3.4.2. Placement
In contrast to offloading, Schaefer defines placement as a system abstraction above of-
floading that considers the decision of where each application segment is offloaded [209].
However, a number of other interpretations have been used in other industries (e.g.
traditional distributed computing and edge computing) – commonly without a clear
definition being provided. Commonly they focus more on dividing an application into
various parts (e.g. tasks or components) that need to be placed on a computing provider.
We would say that placement is more focussed on the application or system, while

offloading focuses on the fundamental question of “should I compute this myself or not”.
Importantly, for offloading the decision is generally made by the holder of the task
rather than some centralised service – making it more appropriate for decentralised and
distributed systems.

3.4.3. Distributed Computing
Apparently there is discontent about the definition of distributed computing, but one
simple version is “A distributed system is a collection of autonomous computing elements
that appears to its users as a single coherent system” [230]. It generally considers the
different parts of the system as either being resource providers or resource consumers [38],
which highlights the emphasis of resources as a modelling scheme.

3.4.4. Edge Computing
The original intent of edge computing was to provide computing resources geographically
nearer to the consumer to reduce latency [80]. It focusses primarily on bringing these
resources to the edge of the local network, effectively bringing the cloud closer rather
than elevating the local devices. Therefore, edge devices can vary from humble Single-
Board Computers (SBCs) such as the Raspberry Pi [184] to the NVIDIA EGX Platform4

4https://www.nvidia.com/en-gb/data-center/products/egx-converged-accelerator/
(last visited: 2021-12-13)

34

https://www.nvidia.com/en-gb/data-center/products/egx-converged-accelerator/


3.5. Intelligent Devices

which offers High-Performance Computing (HPC) level performance.
Edge computing solutions usually manifest as an edge computing platform that encom-

passes the local embedded devices, the edge services they connect to, and the mechanism
required for offloading data/computation to these services (e.g. Waggle5).

3.4.5. Mobile Edge Computing

Introduced by IBM and Nokia for mobile network base stations, a standard was even-
tually created by the MEC group from the European Telecommunications Standard
Institute (ETSI). Essentially the basic idea was that it should act as edge computing
for mobile networks [202]. ETSI stipulates some characteristics for MEC [186], basically
boiling down to a special case for edge computing that should be independent of the rest
of the network, and incorporates some contextual information such as locations.

3.4.6. Fog Computing

Originally coined by Cisco [22] as an extension to cloud computing, fog computing was
specifically targeted at assisting the emergence of the IoT [23]. It was defined to be
“a highly virtualized platform that provides compute, storage, and networking services
between end devices and traditional Cloud Computing Data Centres, typically, but not
exclusively located at the edge of network” [22]. It evolved to become more independent
of the cloud [168, 274, 275], however, which eventually led to a alternate model where it
acts as a layer in between the clients and the cloud [141]. This was due to the fog devices
themselves becoming more heterogeneous [202], based on the complexity associated with
this independence.

3.4.7. Peer-to-peer and Grid Computing

Other paradigms exist in the world of distributed computing for collaborative applica-
tions – e.g. Peer-to-Peer (P2P) [108, 251] and Grid Computing [146, 214]. These focus on
managing heterogeneous resource providers and consumers across different nodes (com-
monly desktop or mobile devices). In the case of grid computing, this is commonly done
through virtualisation [257]. Although most applications utilising these (relatively tra-
ditional) paradigms require high-level computing resources such as desktops or servers,
work has been done in smaller devices – e.g. the Tasklet system by Schäfer et al. [210]
that includes mobile phones and to some extent embedded devices.

3.5. Intelligent Devices
The concept of intelligence in devices is tightly coupled with rationality [206], which
concerns their ability to act in a way to achieve the best (actual or expected) result.

5https://wa8.gl (last visited: 2021-12-13)

35

https://wa8.gl


Chapter 3. Fundamentals

Simply put, it requires them to “do the right thing”. Extending this to the concept of an
intelligent device suggests that the device should be able to learn how to act correctly.
This further requires some ability to evaluate its own performance, and to adjust its
behavioural strategies to maximise this performance.

3.5.1. Self-x Computing

Importance is placed understandably on the definition of self [212] – essentially what is
defined as being inside or outside the system. Depending on whether certain actors or
the user are included in this definition, a wildly varying set of systems may be defined
as self-x. Commonly this rests on the assumption that a self-x system is at least capable
of fulfilling some purpose entirely without external intervention, depending on which
specific self-x paradigm is being referred to.

3.5.1.1. Self-Awareness

Self-awareness has been defined by Rinner et al. as “a system’s ability to obtain and
maintain knowledge about its state, behaviour, and progress” [198], which allows it to
autonomously respond to changing internal and external influences. This awareness can
be considered separately from the ability to act upon this information, which has been
labelled as self-expression by Lewis et al. [133]. This allows us to separate the device’s
conceptual sensing of its situation with its ability to enact a specific change upon it.
Computational self-awareness is tightly linked to autonomous computing, which was

originally presented by IBM [116]. It is based on self-governance in social and economic
systems, and aims to create “computing systems that can manage themselves given high-
level objectives from administrators”. This highlights the need for specific objectives
or utilities to be optimised, which are commonly application-dependent and therefore
provided by the system designer. It has also been extended to manage a model based
on its sensor inputs, and detect when this model does not match its observations [68].

3.5.1.2. Self-Organision

Many different definitions of self-organisation has been provided in various different
fields, an overview of which has been provided by Schmeck et al. [212]. Commonly
involving statistical entropy, effectively aiming at achieving a higher level of order with-
out external influence. It commonly handles a system’s ability to manage itself in the
absence of outside control [164, 212].
This leads to the simple definition that a system is considered purely self-organised

if it can structurally alter itself to increase order – without external intervention. In
some cases this rigid definition is impractical, as is the case in organic computing (see
Section 3.5.2) where optional external direction must be supported. Related to this
is emergence, which is defined by Mnif and Müller-Schloer [158, 165] as self-organised
order.

36



3.5. Intelligent Devices

Another definition is provided by Tomforde et al., who defines a self-organising sys-
tem as one that consists of autonomous entities capable of deciding how they should
interact [239]. The basic objective of such a system is then to create and maintain its
structure, which the authors model and measure by considering the changes in commu-
nication between the various entities in the system. This is based on the system having
to communicate internally (specifically ignoring communication with centralised servers
and/or external stimuli) in order to alter its own structure.

3.5.1.3. Self-Adaptivity

In contrast to this, self-adaptivity relates to a system’s ability to self-regulate itself to
remain in an acceptable state [212]. Even in the presence of external disturbances, it
should be able to act in such a way that it continues to survive and even move into
a better state (the set of which is either the acceptance or target space). Connected
to this are the concepts of robustness (the ability to remain in an acceptable state as
the system or environment change) and flexibility (the ability to respond adequately to
changing target and acceptance spaces) [16, 212].

An example of such a system is presented by Tomforde and Goller, who attempt to
quantify a system’s efforts to self-adapt [236]. They also consider the rates of adaptation
as this may affect user acceptance in certain applications where users interact closely with
the system. Other approaches are discussed by Krupitzer et al. [124] in their survey on
self-improvement in self-adaptive systems. They classify 19 different approaches based
on criteria such as the level it operates at (e.g. application/managed resources) and
whether it is reactive or proactive.

3.5.2. Organic Computing
From the self-x and autonomic computing communities arose the concept of organic com-
puting [166], which frequently takes inspiration from natural and biological systems [167].
It is strongly related to the concepts of robustness, flexibility, and adaptivity discussed
previously. Specifically, a system’s ability to adapt autonomously and dynamically based
on input from its sensors has been used to define an organic computing system [240].

At its core lies its connection to self-organisation, but it draws a crucial distinction:
instead of insisting on a fully autonomous system that operates without any intervention,
it allows reporting back to the user and the resulting user feedback. For example,
consider an assisted automotive braking system that can autonomously adjust to current
road conditions. Simultaneously, it also provides feedback to the user so they may
adapt their inputs and respond appropriately. This concept is termed controlled self-
organisation [28], highlighting the balance between autonomy and user-influence.

An important concept in organic computing is the observer/controller architecture [28,
167, 238]. It defines two distinct entities that interface with the system (SuOC). The
observer captures the current state of the system, while the controller directs its be-
haviour. This can either be a single centralised solution that manages the entire system,

37



Chapter 3. Fundamentals

or a decentralised local solution where each part of the system has their own.

3.5.3. Autonomic Computing

Amongst self-x systems exists the concept of autonomic computing [127], which refers
to the desire for a system to reliably operate entirely without external intervention.
Arguably the most important concept within this is the Monitor-Analyse-Plan-Execute
over a shared Knowledge (MAPE-K) feedback loop, which describes the process taken
in such systems to autonomously exist. It describes how the system can reason about
its current state and even judge the effects of its actions.
When originally introduced by IBM, they envisioned an elaborate collection of con-

nected systems that each self-govern [116]. Harkening to biological systems that operate
entirely without active thought or control from the host, this concept includes consider-
ations of numerous self-x concepts (e.g. self-optimisation, self-healing etc.).
Along with organic computing, autonomic computing finds its roots in Tennenhouse’s

proactive computing, which lay much of the groundwork for systems capable of per-
forming complex tasks without human intervention [232]. A well-designed computer
system can respond faster and scale better than a human-focussed one, highlighting the
importance of intelligent pervasive as well as embedded computing.

3.5.4. Machine Learning Techniques

There is no denying that ML and AI techniques have dominated recent research in
numerous computer science and engineering fields. Instead of developers having to fine-
tune and micromanage their systems’ designs, ML allows the system learn its behaviour
automatically. A good overview of different approaches from the literature for utilis-
ing ML for self-x and other intelligent computing systems was published by D’Angelo
et al. [62].
An important concept with ML is optimality, which commonly relates to maximising

value or reward [112]. In most cases, truly optimal behaviour cannot be guaranteed as it
cannot be distinguished from local minima. In most cases, a best effort is made through
duplication — training many models in order to achieve a best effort optimality. By
instantiating each model with different initial parameters, various different results can
be learnt using the same techniques.
ML learning techniques are occasionally broken up into supervised and unsupervised

learning – primarily depending on whether the system is learning from a known and
labelled dataset or not. A supervised learning algorithm gets provided with correct labels
that it can then compare its output to. In contrast to this, unsupervised algorithms learn
from unlabelled data and must therefore infer unknown structures.
The advantage of unsupervised learning is that it can learn directly in the field during

deployment, instead of being trained exclusively beforehand. Although generally eas-
ier/more convenient to train offline (at design time), online systems can further improve

38



3.5. Intelligent Devices

their performance and behaviour by learning in a real deployment. Especially in sce-
narios that can be highly unpredictable or difficult to model, this provides tremendous
advantage over systems exclusively dependent on training on fully labelled data [17].

There also exists a hybrid solution called semi-supervised learning [39], which aims to
combine these two approaches. For example, it might include unlabelled samples into a
training set of labelled data. Alternatively, it might be known that certain samples are
part of the same classification [245] – even if an appropriate label is not present.

3.5.4.1. Reinforcement Learning

Sutton and Barto suggest a third type of technique at the same layer as supervised and
unsupervised learning: reinforcement learning [228]. Although it also learns without
provided labels, it does not aim to find structure in provided training data in the way
that unsupervised learning does.

Instead, the foundation of Reinforcement Learning (RL) is to provide a way for an
agent to learn through trial-and-error [112] by considering the effect that a chosen action
has on its reinforcement scalar. Sutton and Barto highlights the two most important
parts of RL to be “trial-and-error search” and “delayed reward” [228]. This in turn refers
to the agent exploring possible actions without guidance about which would be ‘correct’.
It has to try available options and attempt to gauge their validity.

The important question in RL is whether the action chosen was the opportune one,
based on the reward r received. Sutton and Barto continues to define this reward as the
numerical optimisation criteria that the agent tries to maximise. Unlike other options
that only target the immediate reward received, RL is one of a class of approaches
capable of maximising the long-term or delayed reward. By choosing a sequence of
actions correctly, it can achieve a better performance than short-sighted alternatives.

Each action is chosen based on which state the agent is in. This can include a rep-
resentation of both the device’s internal (e.g. memory consumption) and external (e.g.
sensor inputs) state. Along with the reward function r(a, s) that provides feedback on
chosen actions, the value function v(s) dictates how desirable a state is. This also con-
siders any future states and their rewards that are likely to follow, providing an outlook
on which state will offer long term reward.

This leads to a policy π that dictates which action to take when in a specific state. It
fully describes the behaviour of the agent. In the case of tabular RL approaches, this is
connected to the state-action pairs which connects each state with the possible actions
available. Each intersection of state and action then is described by its value qπ(s, a),
which is used in that policy to choose the most beneficial action for a given state.

By exploring the possible space of state-actions to find the ideal action to take for
any given state, an agent can maximise its long-term reward. In learning algorithms
the objective is then to strive the current policy π towards the optimal policy π∗ that
has value q∗(s, a) – even when true optimality is practically never achieved and can be
difficult to prove [228]. Additionally, since the true value function q(s, a) is usually not

39



Chapter 3. Fundamentals

known, an estimate Q(s, a) is formed.
Arguably the most interesting subset of RL techniques fall under the umbrella of

temporal difference [228]. These techniques consider the differences in reward of different
temporal sequences (over time) of input samples [233]. This is of particular interest to
us since it maps easily to a device experiencing a sequence of states (inputs) over time,
as these techniques can also be used to generate a sequence of control signals.
One final important distinction within RL is between on-policy and off-policy learning,

which differentiate based on the policy that is being learnt. On-policy refers to techniques
where the same policy used to generate actions is being trained, while off-policy train
a different policy (target policy) than the one directing the agent’s actions (behaviour
policy). Off-policy techniques have the distinct advantage that the behaviour policy can
freely explore (inevitably acting in a non-optimal way) while it is still learning what the
true optimal policy is.

Sarsa As an example of on-policy control, consider Sarsa [205]: so-called due to its
consideration of the current state and action (st and at), and the coming reward, state
and action (rt+1, st+1, and at+1). Specifically, the value update function [228] is given
with

Qt+1(st, at) = Qt(st, at) + α(rt+1 + γQ(st+1, at+1)−Qt(st, at)) (3.1)

where each Q represents the value of action a in state s at time t. This equation can
then be used after each episode to update all visited state-action pairs, but cannot be
directly used to choose actions during the episode as it relies on future knowledge.
One extension on basic Sarsa is Expected Sarsa which instead uses the likelihoods of

each state-action transition to compute the expected value. This makes it much more
computationally expensive than Sarsa, but performs considerably better in terms of
rewards achieved [228].

Q-learning One approach to learn the reward maximisation off-policy is Watkins’s
Q-learning [254], which specifically deals with incrementally maximising the reward
through accumulating a Q value. This provides certain guarantees, such as tending
to an optimal accumulated reward in an infinite run [112]. It specifically addresses prob-
lems described by Markov Decision Processs (MDPs) [255] — meaning that the next
state depends only on the current state and the action decision.
This leads to the formal format of the Bellman Equation [228] which computes the

accumulated Qt+1 of

Qt+1(st, at) = Qt(st, at) + αt(rt+1 + γmax
a

Qt(st+1, a)−Qt(st, at)) (3.2)

where the decaying learning rate at time t is given by α. The discount factor γ usually
balances immediate rewards against later ones. The distinct advantage of Q-learning is

40



3.5. Intelligent Devices

in the maximisation over a, indicating that the most opportune action is used to update
the state-action value, instead of the future action as in Sarsa.

Double Q-learning uses two different Q functions QA and QB that are cross-learnt
from different experiences [95]. This reduces the risk of overestimation, but does not
require additional training data since each decision can be based on both Q values.

Some works (e.g. [271]) use an explicit Deep Reinforcement Learning (DRL) agent
in the cloud to perform the offloading decisions for all users in the system. This allows
them to generalise the offloading problem to include multiple destinations for offloading,
but focusses on stream offloading rather than computation. This simplifies the decision
since tasks are solved very quickly upon arrival. Tremendous focus is placed on the type
of communication used, which uses beamforming to create point-to-point connections.
Interestingly, they optimise for the power of the Remote Radio Heads (RRHs), which
process incoming streams from the users.

Actor-Critic Alternative RL approaches include Actor Critic (AC)-based options [228].
Simply put, these approaches all utilise the principle of having the critic estimating the
value of a state-action pair (in Q Actor Critic this value approaches the Q value), and
the actor updating the policy based on the verdict of the critic. This is a fairly universal
approach in RL approaches, where the actor and critic work hand-in-hand to both utilise
and continuously update the policy. An important distinction within AC techniques is
that the critic can consider the state-value of the resulting state (after the action is
taken), which provides an important advantage over other techniques that only consider
a single state-action-reward sequence.

The two main variants of AC are Advantage Actor Critic (A2C) and Asynchronous
Advantage Actor Critic (A3C) [160]. A3C implements parallel agents that learn a com-
mon and shared value function asynchronously, while A2C is synchronous as it only has
a single worker.

LCS Another important technique in the field of adapting systems is Learning Clas-
sifier System (LCS) [100] and the well-known eXtended Classifier System (XCS) from
Wilson [259]. The basic concept is to create a set of rules that classify the current state,
thereby creating a number of value predictions (similar to an expected reward) for each
matched rule. This allows the system to choose an action, and apply the received reward
to the rules responsible for it based on the original rule fitment values [242].

This has been used in the context of organic computing, for example by Tomforde
et al. [237]. Instead of a fixed set of rules, a hybrid approach is created that distinguishes
between situations where well-matching rules are already available, and more exploratory
situations where new rules are created. This allows it to adapt in a more sophisticated
way, instead of simply learning how to match an existing set of rules.

41



Chapter 3. Fundamentals

3.5.4.2. Neural Networks

Neural networks have dominated much of modern machine learning due to their adapt-
ability to different scenarios. In basic terms they can be used to ‘learn’ any non-linear
functionality [20]. A wide variety of different variants have been developed to fulfil dif-
ferent use cases, of which we will focus on two in this work. Firstly, the basic Artificial
Neural Network (ANN) or Multilayer Perceptron (MLP) has been a staple for non-
linear function estimation such as classification. Secondly, CNNs have gained massive
popularity in recent years due to their ability to analyse both 1D and 2D input data –
making them well-suited to both audio and images. A basic overview of how these two
types of neural networks work will be provided here, focussing on the details of their
computation.

Artificial Neural Networks The first neural network to consider is the classical ANN
– or more specifically an MLP. These are the classical neural networks that have been
popular in deep learning [84]. They consist of a number of neurons organised into layers
as shown in Figure 3.6: the input layer, some number of hidden layers, and an output
layer. Traditionally each of these layers would be fully connected with the next layer,
leading to them popularly being referred to as Fully Connected (FC) layers.
The example in Figure 3.6 shows a network with 2 hidden layers being used as a

classifier. There has been much argumentation in the literature about what makes
a neural network a Deep Neural Network (DNN), but generally two hidden layers is
considered to be the minimum.

Hidden OutputInput

Figure 3.6.: Multilayer perceptron neural network structure

Using deeper neural networks has a number of disadvantages, for example overfitting

42



3.5. Intelligent Devices

and unnecessarily complex computations. Overfitting is a common issue when training
an excessive number of parameters for the training data [178]. Instead of generalising to
the features that should be used to distinguish different training samples, it fixates on
the specific training being used and simply ‘learns’ direct mappings for them. As is the
case for many issues in deep learning, this balance requires considerable experience and
gut feeling from the engineer creating the system.

The second issue mentioned relates to unnecessary computational load. Simply put,
having more parameters and neurons in the network creates more processing work. When
computing in the cloud this is less of a concern, but when developing for embedded
systems it is crucial to optimise for performance and energy efficiency. Even when
using hardware acceleration or high performance computing architectures, minimising
the size of the network can be greatly beneficial due to the existence resource and energy
limitations.

One recent development in neural networks to combat these issues is using a Shal-
low Neural Network (SNN) [154]. McDonnell et al. showed that using these shallowed
networks that consist of only a single hidden layer (and using their extreme learning ma-
chine approach) can offer similar performance to deeper networks. Jiang and Crookes
extended on this with their Small Unorganised Neural Networks and showed that for
simpler problems they could outperform state-of-the-art DNNs [111]. By using a smaller
network with fewer parameters, they aim to better generalise for less or simpler training
data than larger counterparts.

Figure 3.7 shows how each neuron receives a weighted input from every neuron in the
previous layer, and then creates a single output value through its activation function.
Examples of such functions are ReLu, sigmoid, and step functions [84]. This allows
the neuron to capture non-linear behaviour, creating a complex network of different
non-linear functions connected together.

∑
w1

w2

w3

Figure 3.7.: Detail of single neuron behaviour, summing three inputs with weights wi

before going through a sigmoid activation function.

The complexity of computations required for a single neuron makes them very well
suited to FPGAs and other hardware acceleration. Instead of each neuron requiring

43



Chapter 3. Fundamentals

multiple instructions to be computed (as is the case in basic sequential processors such
as CPUs), the required arithmetic logic can be instantiated directly – allowing the entire
neuron (or even more) to be computed at once. Since DNNs can scale up greatly in
number of neurons (e.g. GPT-3 [29] has a ridiculous 175 billion parameters), this creates
new opportunities for creating solutions that scale.
It is also worth noting that the network’s feed-forward (general input to output compu-

tation) can be performed one layer at a time, since these basic neurons hold no memory
and their output is not dependent on later layers. This greatly simplifies the paral-
lelised implementation of such a network when compared to Residual Neural Networks
(RNNs) [47]. Similarly, feedback (relating previous outputs to their inputs for learn-
ing) can be computed per layer, as is used in our ANN implementation for the FiPS
project [75].

Convolutional Neural Networks The second variant discussed here is the CNN, which
utilises many of the same concepts as the ANN. The important distinction with the
CNN is that it performs the same operation over different sections of its input using its
convolution kernel by moving it by a defined distance known as the stride. This allows
it to consider both temporal and spacial dependencies in its input, as this information
is persisted in the features computed by this operation.
A number of convolutional layers (known as its depth) may be followed by an FC

layer. This allows the convolutional layers to identify interesting features in the input
data, while the FC layer acts as classifier (similarly to an ANN). Commonly a pooling
layer such as maxpool is placed between subsequent convolutional layers in order to
effectively subsample the input, thereby finding larger features than is visible to a single
kernel. Additionally, a batch normalisation layer may be present that serves to stabilise
the input data by normalising the inputs for each layer.
The main computational complexity in CNNs comes from their large dimensionality.

From the nature of a convolutional kernel, each element in the kernel needs to be com-
puted individually before their outputs can be combined. This SIMD structure is why
CNNs have been primarily deployed onto GPUs, utilising their parallelism to process
large images.

3.5.4.3. Deep Learning Agent Policies

In practice, the number of states being considered in agent learning techniques such
as Q-learning is non-trivial. This leads to a very high memory usage when individual
explicit state-action values are stored. Therefore, neural networks have been employed
to estimate the mapping from states to chosen actions in various different projects.
Deep Q Network (DQN) was developed by Mnih et al. [159], and trains a neural net-

work using the same techniques as Q-learning. Different approaches have been created
for mapping states to actions, either directly approximating the Q-function in Equa-
tion (3.2) or using an abstracted version of it. For example, Huang et al. uses the neural

44



3.5. Intelligent Devices

network to generate a sequence of values that get converted to local/offloading alloca-
tions for a team of devices [105]. Ong et al. extended on this by creating a distributed
variation that still relies on a server for computing the parameter update gradients [176].

An important use of deep learning to consider for this work is DRL, where different
techniques are used to implement RL using neural networks. Generally, Deep Learning
(DL) is used to learn and estimate the decision policy. Although deep RL implementa-
tions differ, one common factor is that a neural network is fed the current system state,
so it can generate a new chosen action. Some specific implementations of this can be
seen in Section 8.2.2 where we discuss a number of implementations.

Now that all of the fundamental concepts used in this work have been defined, we
can proceed with the design of our solution. First, the three phases of our design as
described in Section 1.2 will be presented: our hardware/software runtime in Chapter 4,
optimised hardware accelerators in Chapter 5, and distributed autonomous learning of
behaviour in Chapter 6.

Following the evaluation of all three phases in Chapter 7, we will present an overview
of approaches followed by related work in Chapter 8. This serves to create context for
our work, and augments the fundamental concepts presented here by showing alternative
ways they could be used to solve similar problems. Although some projects have already
been mentioned here in order to clarify certain concepts, a more complete overview of
trends and the state of the art will be given there.

45





Chapter 4.

Elastic Node Platform

Modern problems require modern solutions, and the IoT is no different. Introducing
increasingly complex AI into the system leads to cloud dependency, increased latency,
or reduced battery life. Our hypothesis suggests that augmenting smart IoT devices
with FPGAs provides opportunities for flexible, powerful devices that can provide local
intelligence without sacrificing energy efficiency. This relies on a hardware platform that
allows developers to fully utilise the local MCU and FPGA.

We introduce here our novel Elastic Node platform, which consists of a hardware
platform and a software runtime. Its elasticity comes from including a local MCU and
embedded FPGA, allowing it to adapt to changing requirements by deploying local
hardware accelerators at runtime. Developing heterogeneous applications for this type
of platform can be highly complex, and requires software support through abstractions
and library support as covered in SREQIV: Convenient and Efficient Local Accelerators.
At the heart of our approach to this is the Elastic Node middleware that provides a
familiar interface for developers to use, and reduces work duplication.

As a whole, our runtime provides the foundation for creating smart IoT devices capable
of local intelligence – along with supporting experiments in self-x research. Our goal is
to give embedded software developers and distributed system developers (i.e. self-x and
AI behavioural researchers) the tools they need to create real-world applications and
experiments they need to evaluate their work.

We provide here information on the design and implementation of the Elastic Node
platform starting with some motivation and background in Section 4.1, followed by the
formalisation of a set of requirements in Section 4.2. After this, a high-level overview
of the designed platform is provided in Section 4.3, and a deep dive of the abstractions
offered by the stub-skeleton interface follows in Section 4.4. Some information about the
hardware design follows in Section 4.5, and finally a summarising discussion is provided
in Section 4.6.

4.1. Motivation and Background

FPGAs have seen noteworthy adoption recently in the automotive [174, 246, 252] and
data centre [187, 218, 278] industries. This was accompanied by considerable support
for developers – specifically with simplifying the creation of accelerator designs through

47



Chapter 4. Elastic Node Platform

code generators and graphical system integration tools [153, 269] that reduce the ef-
fort required for connecting different design components. For example, the usage of
standardised interfaces such as Peripheral Component Interconnect Express (PCIe) and
bus systems such as AXI has reduced the complexity of local communicating in such
platforms.
When we embarked on developing FPGA-enabled devices for autonomous systems in

the IoT, however, we found that the world of embedded FPGA had not enjoyed the
same level of simplification. Although a number of embedded FPGA-based platforms
existed both COTS and in the academia, none of the available approaches satisfied our
requirements (see Chapter 8 for a discussion on related solutions from literature).
Therefore, we decided to develop a platform specifically focussed on ease of use and

targeting the lowest possible power envelope. Since we had experience in middleware
solutions for distributed systems, the advantage they offer as a thin connection layer
both between devices (or computational cores on a heterogeneous device) was clear.
This initially manifested in a poster presented at ICAC 2017 [32], showing our initial
design of having a minimal middleware layer to bridge the gap between the MCU and
the FPGA. After receiving valuable feedback from the community, our path forward
was clear: a hardware and software runtime for creating smart IoT devices that take
full advantage of FPGA-based hardware acceleration — without requiring developers to
entirely redevelop their existing hardware accelerators from scratch.

4.2. Platform Requirements

To ensure that our design satisfies our hypothesis and system requirements (see Sec-
tion 2.4), we need to set a concrete set of requirements for the platform itself. These were
originally based on requirements of similar projects in the literature [73, 208, 244, 258],
and acted as a guide throughout the many design iterations of the Elastic Node plat-
form. They were first published at ICAC 2019 [211], where we presented the third
version of our platform. Following further discussions with members of the community
(at the hand of a live demonstration), we were convinced that others shared our set of
requirements.
We identified the following as the five core requirements for our platform:

PREQI: Flexible Support for Real World Deployments

Firstly, it is vital that we can use the platform in real world experiments that
take place in realistic IoT deployments. This means that the platform must sup-
port wireless communication so we can perform experiments relying on cooperating
and offloading devices. Additionally, this drives our usage of energy-efficient com-
ponents: to support mobile and battery-powered devices, the platform should be
capable of lasting at least a few days on a single charge.

48



4.2. Platform Requirements

PREQII: Dynamic In-field Accelerator Reconfiguration and Control

Secondly, an application executed on our devices may require the usage of nu-
merous different accelerators at runtime, as this is a major drawing factor of using
FPGAs over ASICs. Our platform should facilitate this, by loading one of a set
of configurations at will. Additionally, for periods of time the FPGA will not be
required and should be turned off entirely to save energy, while the MCU runs the
application.

PREQIII: Easy and Fast Accelerator Access

Thirdly, utilising the accelerator within an application should be convenient
and easy to do. By minimising the effort required, we aim to make the system
more accessible to a wider audience and thereby improving adoption. To further
encourage the usage of local hardware acceleration, we need to minimise the latency
involved in switching between accelerators (or powering one up from a sleep state).
If using these accelerators introduces huge delays in the application, users will
be less inclined to take advantage of the possibilities they offer. In the same
vein, accessing an accelerator as a coprocessor can involve considerable data being
transferred between components. Therefore, we need to ensure that the platform
provides state-of-the-art intercommunication rates between parts of the application
executed on the FPGA and the MCU.

PREQIV: On-device Energy Measurements

Fourthly, the platform should act as a self-contained experimentation tool, and
therefore should be able to report its own status (e.g. energy measurements).
Instead of being constrained to a few devices that need to be physically connected
to expensive monitoring equipment, a user should be able to deploy number of
devices that are capable of monitoring themselves — without interfering with
their ability to perform the application or communicate.

PREQV: Easy and Low-overhead Accelerator Reuse

Finally, such heterogeneous platforms often include considerable overhead in
making an existing hardware accelerator compatible. We require convenient reuse
of accelerators through a library approach – where existing accelerators can be
easily incorporated into new applications, and new accelerators can be made com-
patible with our platform with minimal effort.

It is important to note that some of these requirements may be contradictory, such
as ease-of-use and computational performance. When working with abstractions that

49



Chapter 4. Elastic Node Platform

improve development convenience, balancing such requirements is essential. In many
cases, compromises need to be made to satisfy all requirements.

4.3. Platform Overview

Each of the versions of the Elastic Node platform were slight iterations on the same
fundamental core design. Our model relies on fairly tight coupling between parts of the
application being executed on the MCU and the FPGA.
One important consideration is that we want the platform to be able to execute parts

of the application on all available components simultaneously (see Figure 4.1). In this
example, the MCU can capture the next data sample from a digital accelerometer while
the previous sample is being processed by the FPGA. This improves overall efficiency
since all components are fully utilised instead of having to wait on each other (thereby
wasting time and energy). Alternatively, in some cases only some of the components
may be required for extended periods of time (e.g. while the device is collecting large
amounts of data to be processed later). Supporting both these variants allows our system
to further adapt to changing workloads, growing and shrinking as the computational load
changes.

0 1 2 3
Time (in ms)

0

1

Ac
tiv

e

FPGA MCU

Figure 4.1.: Experiment showing simultaneous utilisation of MCU and FPGA in high
performance mode, showing a neural network hardware accelerator (FPGA)
that requires sensor data acquisition from a digital accelerometer (MCU).

Designing our own custom hardware platform provided us the opportunity to incor-
porate specific functionality that we required. One example of this is the self-contained
energy monitoring required by PREQIV: On-device Energy Monitoring, which was not
available when using existing COTS platforms. Additionally, having our own design
with separate MCU and FPGA allows us to change out footprint-compatible compo-
nents. This allowed us to have hardware platforms with different FPGAs on otherwise
identical platforms – allowing direct comparative experiments.

50



4.3. Platform Overview

At its core, the Elastic Node platform can be represented by the diagram shown in
Figure 4.2, highlighting the MCU and the FPGA as cornerstone components of the
system. It shows all of the abstraction layers separating the (1) Application and the
(6) Hardware Function (HWF) – which is our term for a hardware accelerator that has
been made compatible with our system.

App MWStub

MCU FPGA

MW Skeleton HWF

1

2

3 3

4

5

6

Figure 4.2.: Elastic Node system overview showing the important parts of the platform,
from the Application on the MCU to the HWF on the FPGA

At the center of the design is the (3) middleware that spans the gap between the
MCU and the FPGA, who are physically connected through the (4) interconnect. This
middleware is then sandwiched between the (2) stub and the (5) skeleton, which are
responsible for the data marshalling and synchronisation. All of these concepts will be
discussed in detail in the following sections.

4.3.1. Hardware Functions

Before an accelerator can be integrated into our system, some minor alterations may
be required. Once this is done, we refer to it as a hardware function because it offers
hardware acceleration with the same simplicity as accessing a software function through
an API. In most cases, this process is limited to identifying how it converts inputs to
outputs (e.g. streaming data or more direct A → B computations) and standardising
the data types used. More information on this is provided in Section 4.4.2, where all the
requirements for an HWF are provided.

It involves defining and identifying each part of the interface as being control or
data. The control interface includes some fundamental connections that almost every

51



Chapter 4. Elastic Node Platform

design will have (e.g. clock, reset) as well as some more application-specific ones (e.g.
handshaking, enable). The data lines can be either serial or parallel, but can also be
extended into a standardised bus interface such as AXI [263].
The HWF can be defined using any HDL or other synthesizable language, giving the

hardware accelerator developer the freedom of choice. Through the course of this work,
we have developed and demonstrated a range of HWFs that provide the local device with
increased application intelligence through highly efficient and fast computation. These
include AI techniques such as a CNN [35], and more traditional ML ones such as Prin-
ciple Component Analaysis (PCA) [36]. More details about these (and the optimisation
process in general) is provided in Chapter 5.

4.3.2. Middleware

The central point of our solution is the middleware that is responsible for connecting
the different parts of the system together. It is implemented partially on the MCU and
partially on the FPGA, allowing it to bridge the gap between them. The main goal
of our middleware is to hide the intricacies of developing on a heterogeneous system:
communicating and synchronising between the different components. Its secondary goal
is to provide a set of tools for controlling the system, further simplifying the development
process by abstracting away complexities.
Our middleware is based on object-oriented middleware concepts popular in dis-

tributed computing and networking [97, 234]. This makes its core concepts familiar
to a large group of developers, providing them with a familiar interface that can control
embedded hardware accelerators.
One major benefit of using a middleware as abstraction is that it can be very thin

without depending on complex OS functionality. This allows us to deploy it either
standalone on bare metal platforms, or on top of an existing RTOS or embedded OS
such as Linux. Standalone it creates the opportunity for deployment on severely memory-
limited devices (addressing PREQI: Real World Deployments), as its memory footprint
would be considerably smaller than that of a full OS.
Message-based systems are the main alternative, but are known to be very prescriptive

of the software environment or OS used. They can also require substantial boiler-plate
code for each application developed or each accelerator being used, as they offer lesser
abstraction than a middleware. Instead, it relies on a protocol definition that describes
each message being passed.
Even though the meticulous hardware-software co-development common in FPGA-

augmented message-based platforms leads to highly optimised and efficient solutions
(see Section 8.1.1), they require substantial application development effort since gener-
ally both the accelerators and application itself need to be written specifically for that
platform. Our objective is to maximise code reuse both for the embedded software and
the hardware accelerator developers.

52



4.3. Platform Overview

The most important functionality provided by our middleware are

1. Software and hardware accelerator OTA updating,

2. Memory mapping and management, and

3. Accelerator deployment and management.

Firstly, to offer in-field reconfiguration and control one needs to ensure that both
the relevant FPGA configuration and MCU program code are available on the device.
Updating the MCU and the FPGA are surprisingly similar, relying on fragmenting
the messages (due to message size limitations on the 802.15.4 wireless interface used
in the Elastic Node hardware). Updating the MCU requires rebooting into a special
bootloader [243] that can alter the program code stored on its flash memory. As the
FPGA configurations are commonly loaded from an external flash chip, they can be
written either directly by the MCU onto a shared flash storage or via a special FPGA
configuration that provides a bridge from the MCU Serial Peripheral Interface (SPI) to
the flash.

Next, the memory mapping of shared memory (between the MCU and FPGA) is used
both to pass control messages and to provide access to the HWF itself. This creates
a familiar interface for hardware-level embedded developers through specific memory
locations, resulting in a similar abstraction to memory-mapped register-based access to
peripherals found in bare metal programming with e.g. AVR and ARM microprocessors.

A diagram of this is shown in Figure 4.3, illustrating the two sections of memory as
viewed from the MCU. The first is the internal memory containing local variables and
other application data, while the second corresponds to the external memory that is
accessed through the MCU-FPGA interconnect. This is further broken down by the
middleware between Control and any loaded HWFs. Each of these can then be managed
by the associated skeleton, as described in Section 4.4.2. Note that each of the stages in
this is memory managed by the middleware, meaning that each layer can access its own
memory from the 0x0000 address. This can be a convenient simplification when using
precompiled libraries – especially in HDL.

Lastly, control of the deployed accelerator is provided through dynamic in-field FPGA
reconfiguration (to satisfy PREQII: In-field Reconfiguration and Control). This can be
done in a variety of different ways – dependent on the FPGA manufacturer as this
functionality requires hardware support. All of the currently available versions of the
Elastic Node hardware platform include either a Spartan 6 or Spartan 7 from Xilinx,
which offer the same configuration options. However, our platform is compatible with
any Static Random Access Memory (SRAM)-based FPGA, only requiring the ability to
reconfigure in the field, and store newly received configurations for later use (e.g. on a
local flash memory chip).

The types of reconfiguration that we currently support are

53



Chapter 4. Elastic Node Platform

Internal  
Memory

MCUFPGA 
Interconnect

Control 

HWF 1

HWF 2

Control

Parameters

Results

0x0000

0x2000

0x0000

0x1100
0x0600

MCU
MCUFPGA 
Interconnect 

HWF 1

0x0100

0x0100 0x0000

Figure 4.3.: Memory space management by the middleware

1. Flash master,

2. SelectMAP, and

3. Joint Test Action Group (JTAG).

The flash master directly reads the configuration from the flash memory to the FPGA
configuration memory without requiring any other components. SelectMAP has the
MCU push the new configuration to the FPGA in parallel (one or two bytes at a time
depending on the implementation), while the JTAG method does the same using serial
communication (and therefore requires fewer physical pins). We have experimented with
the speed and convenience of these methods [98], and found that different options are
optimal in different situations (see Section 7.1.2 in our evaluation).
Several other functionalities are offered by the middleware, and will be discussed as

relevant. Since it primarily aims to provide easy access to accelerators and other system
functionality, additional functionality can be integrated into it in the future.

4.3.3. Hardware-as-a-Service
While our middleware serves to make the local accelerator available to the local appli-
cation, this does not make it accessible for other devices. To share processing power
between peers and let them cooperate requires an additional layer of abstraction, which
we refer to as Hardware-as-a-Service – referencing cloud nomenclature such as Software
as a Service (SaaS) where services are centrally hosted and provided to clients. We de-
scribe here how the computational abilities provided by an HWF deployed to the FPGA
of one Elastic Node can be shared with neighbouring peers.
As we presented in the Future Generations Computing Systems journal [33], the Elas-

tic IoT Platform provides the ability to share any resource (e.g. a hardware accelerator
deployed to an Elastic Node) with other parts of the application. All that is required is

54



4.4. Stub-Skeleton Abstractions

for the device to describe the service provided (which may be as simple as identifying
which accelerator is/can be deployed), and integrating the Remote Resource Frame-
work (RRF) (which describes the created resource) into the Elastic Node middleware to
process messages.

The platform user can access the provided resource as simply as accessing a Repre-
sentational State Transfer (REST) interface — without being concerned with internal
system parameters such as communication protocols. Additionally, a higher level place-
ment service can be implemented using a digital twin that acts as a proxy that decides
which request should go to which device. In this case, a computational service will be
requested from the digital twin, and it transparently decides which device should be
responsible for that functionality.

However, such a centralised service may be non-optimal as it does not scale with larger
systems and introduces substantial communication overhead (some processing tasks and
message handling that increase with more clients would need to go through a single bot-
tleneck that creates additional overhead). Therefore, in Section 6 we design an RL-based
system that can optimise this behaviour directly on the device. Currently offloading tasks
from one device to another is done manually by the programmer, consisting mostly of
sending the data passed through the middleware as a message. Integrating this message
generating system into a code generator is left to future work.

4.4. Stub-Skeleton Abstractions
To simplify locally interacting with the intelligence provided by the HWF, a stub and
a skeleton are used as abstraction layers. The skeleton is deployed onto the FPGA as a
layer above the HWF, while the stub is deployed onto the MCU. This stub creates exe-
cutable functions that an application on the MCU can call, simplifying interactions with
the FPGA-accelerated functionality to a basic library that embedded software develop-
ers are familiar with. This creates an RPC-like interface, addressing our requirement for
ease of reuse (PREQV: Accelerator Reuse) by reducing the integration of an accelerator
to including the correct library.

Instead of this, we also considered a number of alternative approaches as introduced in
Section 3.3. For example, one could use OS-level abstractions such as threads as used by
ReconOS [143]. However, this requires a full OS to be deployed to the platform – which
is impractical within the resource limitations when using tiny, cheap and power efficient
MCUs. Another alternative would be using a modular tile design as used in the Erlanger
Slot Machine [148]. However, this requires the design of special hardware accelerators
which greatly increases the development effort required (compared to adapting an ex-
isting accelerator using a skeleton). Similarly, utilising the SoC approach where each
system component interfaces through a shared bus increases both the resource overhead
on the FPGA, and requires compatibility with that bus standard. That highlights our
main motivations for using a middleware design that utilises a stub-skeleton abstraction:
maximising compatibility with existing code while minimising the resource overhead on

55



Chapter 4. Elastic Node Platform

both the FPGA and MCU.
Creating the abstractions of a stub and skeleton manually for each accelerator being

used is tedious, however, and therefore a simpler approach is required to encourage
adoption. We describe it here by first discussing the grammar of the IDL, followed by an
overview of how local caching is performed for more complex interfaces, and concluding
with a discussion on the offloading process from application to HWF.

4.4.1. Interface Description Language

The first step towards simplifying this process is to create an IDL that defines the
interface created for each HWF’s stub and skeleton. This describes the data and control
interfaces, and identifies the type of skeleton (see Section 4.4.2). The main objective of
this IDL is to create a common language that is compatible both with the programming
language of the stub (e.g. C) and the skeleton (e.g. VHDL). It places the onus for
integrating an HWF with the platform on the hardware accelerator developer, since
they have the best domain knowledge for how it needs to be connected.
The IDL created for the Elastic Node platform is accompanied by a number of gener-

ators [260] for creating the relevant stubs and skeletons. Once the description is created
either using the simple Graphical User Interface (GUI) or directly in text, a simple script
can be used to create a C code stub and a VHDL skeleton. The VHDL file forms the top
level of the implemented accelerator, as it includes the HWF and provides the needed
caching and address mapping.
In simple terms, an IDL description of an HWF requires the definition of each port

in the interface, along with some basic configuration parameters for the interconnect
between the MCU and the FPGA. A simple example is shown in Listing 4.1, which
demonstrates the required IDL for calculating A+B = C where all values are unsigned
8-bit integers (u8).
The basic segments of an IDL are shown to be the mcu description (which describes

the MCU-side interface), the function segment describing the HDL fundamentals (such
as the library of the hardware accelerator and the name of the HDL implementation
required), followed by the list of interfaces. In Listing 4.1 the data interface consists
only of the unsigned 8-bit variables (u8) A, B, and C. The rest of the interface consists
of control, which depends on the type of skeleton interface (in this case oneshot). This
process is discussed at length in Section 4.4.2, and dictates a number of the choices
shown here.
Although this listing might appear to be a long description for a very simple HWF,

some of the fields shown can be omitted if default values are acceptable. These and a
comprehensive description of our IDL is given in Appendix A. This includes its Extended
Backus form1, as well as various examples for some of the HWFs developed in our work.

1https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form (last visited: 2021-11-27)

56

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form


4.4. Stub-Skeleton Abstractions

Code Listing 4.1.: Simple example IDL description for sum of two numbers

1 configuration BasicSum_example:
2 mcu:
3 wordsize = 8
4 addresswidth = 16
5 endianness = little
6 activestate = high

7 function BasicSum:
8 hdl = vhdl
9 endianness = little

10 activestate = high
11 type = oneshot
12 library = work
13 implementation = Behavioral
14

15 bit clk -> clock
16 bit reset -> reset
17 bit start -> start
18 bit learn -> ctrl_in
19 u8 A -> data_in
20 u8 B -> data_in
21 bit dataRdy -> done
22 u8 C -> data_out

4.4.2. Skeleton Interface Definition
An HWF’s interface consists of two things: its skeleton type and data interface. The data
interface is the simpler of these two, comprising mostly of what data is being exchanged
with the HWF: each being a combination of data type and size. As the generated
memory locations (see Figure 4.3) are hard-coded in the current implementation of the
Elastic Node runtime, only fixed sized data inputs and outputs are supported.

More specifically, the fixed size data types used in C (all integer types from stdint.h)
are used in our IDL for convenience, as this standardises the type definitions for both
the MCU and the FPGA. For example, an unsigned integer with 8 bits is defined in C
with the uint8_t type, while in VHDL we defined an alias with

57



Chapter 4. Elastic Node Platform

Code Listing 4.2.: Standard stdint.h-style data types defined in VHDL

1 subtype uint8_t is unsigned(7 downto 0);

and similar ones for common integer types. Non-standard data sizes (not a power of two)
need to be rounded up to the next available size, with the unused data bits optimised
away by the compiler.
Alternatively, a bus interface can be used as is popular in multiple communities such

as SoC developers. This can also be made compatible with our skeleton system, as
most of the data management is managed by the bus system itself. Currently our
system supports the Wishbone bus [177], which is an open source standard that supports
various different data widths (with handshaking). We chose this bus standard for our
initial implementation as it is entirely open source, compatible with various FPGA
from different manufacturers, and its very light-weight implementation (in contrast to
alternative standards such as the AXI bus from ARM [10] and Xilinx, or the Avalon
bus from Intel/Altera [107]). This bus interface is not yet incorporated into our code
generator, as this requires a more advanced system-design GUI.
Note that since any arbitrary complex data types (such as images) can be represented

by a byte array, the standard types shown can represent any arbitrary fixed size types.
Since these correspond to static arrays in C code, the sizes of these data types usually
need to be predefined. Alternatively, VHDL types that do not have corresponding types
in stdint.h (e.g. STD_LOGIC which refers to a single binary value) can also be used. For
example, any logical flags in the FPGA interface are commonly mapped to one bit in
a uint8_t (similarly to how AVR control registers comprise of up to 8 flags). Since
binary values can directly be represented in hardware as a single bit, it reduces the
extra mapped memory from defining each as its own full uint8_t as is commonly done
in 8-bit software (or larger values for wider architectures).
Apart from the data interface, the control interface (and corresponding skeleton type)

needs to be defined in the IDL. We streamline this in the current solution by defining
three main types of skeletons that each describe a set of hardware accelerators:

1. One-shot,

2. Asynchronous, and

3. Streaming.

Although not a complete list of different interaction patterns, each leads to a different
type of stub. They represent various combinations of blocking and non-blocking inter-
actions possible in a sequential processor. They utilise synchronising with status lines,
software interrupts, and buffering in the skeleton itself.

58



4.4. Stub-Skeleton Abstractions

4.4.2.1. One-shot

This is the simplest interaction, and represents a blocking function call in the RPC
interface. It requires only a logical start and done line in the skeleton, which control
the beginning of the computation when all input data is available, and indicates when the
output is ready to be read out. This creates a direct call that converts one set of inputs
to one set of outputs. For example, direct mathematical operations such as a fixed size
matrix multiplication (matrixc = matrixa ×matrixb) utilises this type of interaction,
as both inputs (the matrices) are fed to the HWF before the computation starts (shown
in Listing 4.3). Once the computation is complete, the result can be retrieved from the
skeleton and is returned to the embedded software developer’s RPC-style function call.

Code Listing 4.3.: Example of one-shot stub function

1 void matrix_multiplication_15x15(uint8_t *matrix_a, uint8_t *matrix_b,
uint8_t *matrix_c);↪→

4.4.2.2. Asynchronous

This type of interface adds the ability to return delayed results, in a similar way to a
non-blocking software function. It adds the output ready line that can is polled by
the skeleton to indicate any available output values (plus a similar line for the input).
This type of HWF may have both a variable duration and number of outputs based
on the inputs provided. It is specifically useful for more complex operations such as
Point of Interest (POI) extraction in CV, where an image is provided and any number of
POIs are found. At any point during the processing of this image a new output can be
created, which to the software developer appears as a function callback. This is shown in
Listing 4.4 where an image of size x× y is provided, along with a callback that accepts
a pointer to a created POI. This also allows the MCU to continue with another task (or
save power by going into a sleep state) while the FPGA finishes processing.

Code Listing 4.4.: Example of asynchronous stub function

1 void poiExtraction(uint8_t *image, uint16_t height, uint16_t width,
(void)(*poiCallback)(uint8_t *));↪→

4.4.2.3. Streaming

Lastly, the streaming interface provides the ability to continuously push data into a
pipelined accelerator, regularly creating output on each provided input. This can be used

59



Chapter 4. Elastic Node Platform

as shown in Listing 4.5 for a Finite Impulse Response (FIR) filter, where every input
value creates a new output value. Since this is also a blocking call, some computational
latency may be introduced by the accelerator, and therefore it also has a very similar
interface to the one-shot skeleton. However, the major difference with the streaming
interface is that it expects to be called repeatedly internally while the one-shot expects
only a single execution. Therefore, an array of n inputs are provided in the listing shown,
creating n outputs and storing them at the output pointer.

Code Listing 4.5.: Example of streaming stub function

1 void fir_filter(float *inputs, float *outputs, uint16_t n);

Both the asynchronous and streaming interfaces highlight the need for caching inputs
and outputs on the FPGA to somewhat decouple the interactions between the FPGA
and MCU. Even in the case of the one-shot skeleton, one set of inputs and outputs need
to be cached in the skeleton before being handed to the HWF. Therefore, we introduced
input/output caching that can temporarily store data transparently in order to simplify
the stub interactions.

4.4.3. Transparent I/O Caching

All interfaces automatically create a buffered cache in the skeleton that store inputs and
outputs as required. This allows the FPGA and MCU to interface with the HWF at
different rates, which can be very beneficial when a large clock disparity exists (the FPGA
on our Elastic Node v4 operates at at least 4x the speed of the MCU). We identified the
speed of the data interface to be the primary performance bottleneck during our original
design of the Elastic Node platform [32].
Our solution to this is to use data caching, improving energy efficiency by allowing

the MCU to continue transferring data while the FPGA starts processing. When using
asynchronous or streaming skeleton types, this can greatly improve the overall perfor-
mance of the system. This is illustrated in Figure 4.4, showing how the MCU and FPGA
can be active simultaneously by caching inputs. While the first option needs to wait for
the FPGA to finish processing and the output to be retrieved, having a cache store
additional inputs and waiting outputs allows the system to better utilise each part of
the pipeline.
The Elastic Node platform offers this functionality as part of the skeleton genera-

tion [260], where the user simply provides the depth of the cache (how many sets of
inputs or outputs to store) in the IDL. This leads to a configurable data array being
generated and instantiated on the FPGA, along with the required synchronisation logic
for reading and writing each element. The software developer’s interface to the HWF is
not affected.
Through simple ‘data ready’ handshaking, the input variables are passed to the HWF

60



4.4. Stub-Skeleton Abstractions

MCU
i1 o1 i2 o2

p2p1FPGA

t

t

(a) Naive sequential solution

MCU
i1 o1i2 o2

p2p1FPGA

t

t

(b) Efficient caching of inputs and outputs

Figure 4.4.: Advantages of I/O caching, showing reduced FPGA downtime during con-
tinuous usage, since the MCU provides the second input (i2) early enough
to start immediately after processing the first sample (p1).

as they are required and results are fetched as they are available. For example, creating
a 40-element deep buffer for the output C from Listing 4.1 would be

buffer[40] u8 C -> data_out

which internally creates and subsequently hides the required handshaking lines required
for loading and removing values.

4.4.4. MCU-FPGA Offloading Procedure

We refer to accessing the HWF functionality from the application layer as offloading,
as the objective is generally to offload a computational load from the MCU to the
computationally more powerful FPGA. This coprocessor-like interaction is done using
an RPC abstraction, creating a virtual library that can be accessed by even a novice
embedded firmware developer.

The process of offloading starts with the application calling the stub function, identi-
fying which functionality is required and the parameters that should be passed to it (by
way of the function parameter list). The stub is then responsible for marshalling the
provided data into a generic data format that can be passed to the middleware. This
bridges the gap between the MCU and FPGA, so that the data can be passed in turn to
the skeleton. There it is demarshalled before being handed to the relevant HWF, along
with any associated control signals. Fetching results from the HWF is the same process:
indicating what data is required through its memory mapping and reading from that
memory pointer.

61



Chapter 4. Elastic Node Platform

An analysis of the timing of this process is shown in Figure 4.5, illustrating the time
overhead introduced on the FPGA-side of the interaction. This graph defines t0 as
the point when the middleware samples the interconnect (the MCU asserts the data
asynchronously so that is not included here). As soon as the address is sampled, the
middleware decides if the interaction is control or HWF data, which takes one clock
cycle (until t1). The skeleton then needs to buffer the data for the HWF to use, which
is another clock cycle until t2.

t0

middleware
samples

interconnect

control or
HWF data?

skeleton
maps data to
HWF pins

buffers
data

t1 t2

data
available
to HWF

Figure 4.5.: Latency of offloading steps

All of this internal timing and functionality is hidden from the user, as they simply call
the relevant function. By using a memory-mapped interface the MCU-side interaction
is also simplified as much as possible, offering the highest speed interface available on
the small MCUs we target.

4.5. Hardware Platform Design
Realising the design of the Elastic Node platform requires appropriate hardware as
discussed in the platform requirements (see Section 4.2). This required us to create our
own hardware platform that not only satisfies these requirements, but also allows us to
easily change the components used for experimentation. Having our own design makes
this much simpler than each time trying to find another appropriate COTS platform or
modify existing hardware.
On a fairly high level, the hardware design can be represented as shown in Figure 4.2.

It shows all the main components of the platform, as well as how they are connected.
Arguably the most important components are the (1) MCU and the (2) FPGA. These
are connected using the (6) interconnect, and each is connected to some (3 & 4) flash
memory. Note that the flash memory can either be conceptually or physically separated,
as some versions of the Elastic Node hardware have monolithic flash storage and others
have separate flash modules.
The system also includes a (5) wireless communication module for interacting either

with neighbouring peers or with a application/experiment server. This module is con-
nected to the MCU, since it is more appropriate for the slow transfer rates of the wireless
modules than the more power-hungry FPGA. Lastly, (7) energy monitoring logic is con-
nected to each of the components – allowing it to separately monitor the usage of each
part of the system.

62



4.5. Hardware Platform Design

Flash 
Memory

MCU
1

FPGA
2

W
ire

le
ss

 
Co

m
m

un
ica

tio
n 

M
od

ul
e

5
Flash 

Memory

3 4

Monitoring
7

6

Figure 4.6.: Elastic Node hardware platform system overview

A number of these hardware platforms have been created through this work and
accompanying research projects, as is shown in Appendix D. Each iteration of the Elastic
Node hardware platform introduced a further improvement on the system design, or
expanded on the supported hardware components – creating further opportunity for
experimentation.

4.5.1. Hardware Interconnect

This interconnect is crucial for the responsiveness and performance of our system. In
our work the MCU is almost always the communication bottleneck, simply because it
is commonly clocked considerably lower than the FPGA (for maximum power efficiency
typically 8MHz versus the 32-50MHz of the FPGA). Additionally, any communication
interface needs to either be supported in hardware by the MCU manufacturer or needs
to be emulated in software (which is again considerably slower).

Therefore, we experimented with the major communication interfaces available on our
class of MCU, for example with the ATMega64 from Atmel. Note that we want to avoid
interfaces that would be resource-intensive to implement on the FPGA, and therefore
avoid Universal Serial Bus (USB) as this would require a full host implementation on the
FPGA (as small MCUs such as the AT90USB128 used in other versions of the Elastic
Node hardware platform support device but not host USB functionality). The results of
our comparison is shown in Figure 4.7, showing the latency involved in transferring data
chunks of various sizes. This is done to provide context for offloading different amounts
of data during an interaction, as smaller interactions are less dependent on the interface
rate. However, once larger amounts of data need to be transferred (e.g. images, point

63



Chapter 4. Elastic Node Platform

clouds) this can cause large time (and therefore energy) overhead.

0 100 200 300 400 500
Interface size (bytes)

0

5

10
La

te
nc

y 
(m

s) UART
XMEM
SPI

Figure 4.7.: Transfer speed of various communication technologies based on experimen-
tation with transferring increasing amounts of data

The External Memory (XMEM) interface is shown to perform substantially faster than
either Universal Asynchronous Receiver/Transmitter (UART) or SPI. This is because
the XMEM interface on these devices is capable of transferring one byte (the width of
the interface) fully addressed (up to 15 bits) every four clock cycles. This is faster than
any alternative available on these devices, and requires no external hardware.
To evaluate the impact of the interconnect on the performance of the system, we

measured the breakdown of an offloading operation. The time required by the MCU to
prepare the data, the communication time, and the overhead introduced on the FPGA
are measured locally on the Elastic Node as shown in Figure 4.8.

UART XMEM
0.000

0.025

0.050

0.075

0.100

0.125

0.150

La
te

nc
y 

(in
 m

s)

MCU 0.019417 MCU 0.0115

Comm 0.1132

Comm 0.01525

FPGA 0.00416

FPGA 0.00416

Figure 4.8.: Timing breakdown of MCU-FPGA offloading measured by the MCU during
experimentation (averaged over multiple repetitions)

This shows the huge advantage of using this optimised interconnect instead of UART
(as was used in the first versions of the Elastic Node hardware). Although the FPGA
time is independent on the interface used, it is interesting to note that the time overhead
on the MCU increases for the UART over XMEM. This is because sending via UART

64



4.5. Hardware Platform Design

introduces an initial delay as the data needs to be copied into the correct location, while
the XMEM can directly copy it using the provided manufacturer library that provides
memcpy.

4.5.2. Power Monitoring

Another important requirement for our platform was that it should provide on-device
convenient power monitoring as prescribed by PREQIV: On-device Energy Monitoring.
This requires more than just local monitoring of the overall power consumed by the
board, also demanding more detailed insight into each component’s consumption. This
provides feedback not just for how well the device as an overall system is functioning,
but provides detailed analysis that developers can use for future optimisations.

Additionally, local online power monitoring is a prerequisite we set for self-aware
embedded systems. The self-aware controller needs access to this information in order
to optimise the device’s behaviour. This also means that the information needs to be
easily accessible in the right format, requiring for a convenient API and library that
provides access to the user as well as internal system calls.

4.5.2.1. Power Monitoring Hardware

Local power monitoring is introduced to the Elastic Node hardware by adding a number
of current monitoring sensors. Current versions utilise the PAC17202 sensors, which
can provide current (or indeed power) monitoring for two independent channels at up
to 40 Hz at 11bit accuracy. By adding four of them to the Elastic Node v4, we can
simultaneously monitor the various voltage rails of the FPGA, the MCU, the wireless
transceiver, the monitoring logic itself, and the USB. Feeding all of this information
about how much power each of these components are using back into the system pro-
vides opportunities for detailed experimental results as well as design space exploration
and optimisation. Systems that aim to evaluate the performance of various system con-
figurations can then simply deploy them each in turn, and compare how each component
in the system is performing for each configuration.

These types of current sensors work by utilising a so-called shunt resistor as shown
in Figure 4.9, where a low value resistor is added in series with the load that should
be monitored (e.g. the wireless transceiver). The voltage over the shunt Vs is then
monitored by the current sensor (with a known gain to improve digitising accuracy), as
well as the source voltage Vsrc.

Combined with the known shunt resistance Rs (remember the load resistance RL is
unknown), the relationship

I =
Vs

Rs
=

VL

RL
(4.1)

2https://www.microchip.com/en-us/product/PAC1720 (last visited: 2021-12-13)

65

https://www.microchip.com/en-us/product/PAC1720


Chapter 4. Elastic Node Platform

V

Vs

Vsrc

RL

Rs I

Figure 4.9.: Current monitoring via a shunt resistor

can be used to get the load power via

PL = VLI =
(Vsrc − Vs)Vs

Rs
(4.2)

using only measurable information. Repeating this for each load to be monitored then
creates a power monitoring system that can collect valuable performance data autono-
mously, with minimal impact on the overall system power.
In order to verify the accuracy of these measurements, we connected our oscilloscope

(an R&S RTB20043) over the shunt resistor to directly monitor Vs as a ground truth.
After careful calibration, the results shown in Figure 4.10 were retrieved, showing that
our measured data is exactly on the true value. We found that the sensors are accurate
within their defined quantisation error (which is configurable from 6 to 11 bit data
accuracy).
The current sensors are all connected to a shared Inter-Integrated Circuit (I2C) bus,

which is connected both to the main application MCU and the monitoring MCU. This
second MCU is a lower powered model than the main application one, and does not offer
some of the extended interfaces such as USB and XMEM. Its only role in the system
is to regularly monitor the measurements from each of the sensors (which have very
limited local storage available) and provide that information back to the main MCU
upon request.

4.5.2.2. Monitoring Library

Accessing the raw power monitoring data is adequate for live demonstrations such as the
ones we showed at PerCom 2018 [31] and ICAC 2019 [211]. However, it does not suffice
for creating self-aware embedded systems that can improve themselves or alter their own

3https://www.rohde-schwarz.com/us/products/test-and-measurement/oscilloscopes/rs-
rtb2000-oscilloscope_63493-266306.html (last visited: 0017-04-2022)

66

https://www.rohde-schwarz.com/us/products/test-and-measurement/oscilloscopes/rs-rtb2000-oscilloscope_63493-266306.html
https://www.rohde-schwarz.com/us/products/test-and-measurement/oscilloscopes/rs-rtb2000-oscilloscope_63493-266306.html


4.6. Discussion

−40 −20 0 20 40 60 80 100 120 140 160 180 200

10

20

30

40

Time (in ms)

C
ur

re
nt

(in
m

A
)

Ground Truth
Measured Current

Figure 4.10.: Power monitoring verification, superimposing data captured by the power
monitoring library (X) over the oscilloscope captured data (blue line) acting
as ground truth

behaviour. For that, we need a more convenient API that retrieves the information in a
more useful format.

This functionality is built into the middleware software [78], which provides a number
of functions for retrieving the measured data. Since most of our systems are more inter-
ested in energy usage than instantaneous power, a Real-Time Clock (RTC) was intro-
duced [213] that can accurately keep time across a longer space of time than most MCUs.
This adds the functionality for easily starting and stopping an energy measurement, ef-
fectively creating an interface where the user can ask ‘how much energy is component
X using from t0 to t1’. By using only the created start_measurement(component) and
end_measurement(component) functions, the user (or self-aware controller) retrieves the
total energy used by the specified component.

4.5.2.3. Battery Level Monitoring

Apart from live monitoring of energy usage, current battery level can be a very valuable
metric. Therefore, the energy daughterboard for the Elastic Node that we developed in
cooperation with Schmidt [213] includes an analogue measurement of the current voltage
provided by the battery. Combined with the maximum charge voltage and the minimum
safe voltage (the lowest voltage it can be discharged to without being damaged), the
current output voltage of the battery can be used to estimate its current charge level.

4.6. Discussion
The design of the Elastic Node platform was done as a direct result of not finding COTS
or academic alternatives that satisfied our requirements. Since then, the industry has

67



Chapter 4. Elastic Node Platform

produced a number of higher performant SoCs and individual FPGA and MCU com-
ponents (e.g. RISC-V processors supporting custom integrated accelerators). Although
offering higher computational performance than the components used in the Elastic Node
hardware platform, these also do not offer the flexibility or convenience we required.
As set out in Section 2.4, two of our core system requirements for the device were

SREQIII: Energy Efficiency and SREQIV: Convenient and Efficient Local Accelerators.
The convenience of deploying accelerators has already been partially evaluated through
the provided use case examples and the description of the created abstraction layers –
showing how the complexity is fully hidden from the developer behind a simple RPC.
Along with the platform requirements provided in Section 4.2, the rest of these system
requirements will be evaluated in Chapter 7.

At this point, the first phase of our project has been described and the Elastic Node
platform has been presented as a reconfigurable IoT device. It is capable of performing
real world experiments where both energy efficiency and computational complexity are
critical. It is accompanied by the Elastic Node middleware that provides convenient
access to device functionality such as accelerator deployment and power management,
as well as a stub-skeleton abstraction for incorporating hardware accelerators into an
embedded application.
The next step is to create adequately efficient hardware accelerators that fit into the

resource limitations created by our emphasis on SREQIII: Energy Efficiency. The result-
ing component choice of very small FPGAs and their limited PL makes it critical that
deployed accelerators utilise the available resource as efficiently as possible. This is less
common in traditional hardware architecture development for FPGAs that target desk-
top or server-grade hardware, where the primary objective is generally throughput and
high clock rates. Therefore, we focus on the development of appropriate architectures
for an FPGA-augmented embedded platform such as the Elastic Node.

68



Chapter 5.

Optimising Embedded AI Accelerator
Design

Augmenting an embedded device with local intelligence is inevitably going to require
more computations. In layman’s terms: when we require the device to do more work,
it needs more processing resources. Although having a local FPGA creates opportuni-
ties for introducing additional and flexible processing power, our requirements both for
the system SREQIII: (NF) High Energy Efficiency and to some extent the platform (
PREQI: Flexible Support for Real World Deployments) outline a general goal of low
energy usage.

Therefore, we dedicate this chapter to discussing how various types of local AI can
be optimised for use in heterogeneous embedded systems that utilise hardware acceler-
ation. The primary goal is to address Contribution 3: efficiently utilising the limited
hardware resources provided by embedded FPGAs. To accomplish the novel level of local
intelligence stipulated by our hypothesis requires optimisation at a design level, which
includes both careful balancing of performance and low-power operation (achieved by
choosing the right hardware components), and design changes to improve the effectivity
and efficiency of accelerators (through cutting edge fine-grained design optimisations).

To accomplish this, we firstly discuss our general approach and design rationale in
Section 5.1, followed by the introduction of some specific optimisation techniques for
hardware architectures in Section 5.2. Then follows a number of case studies for specific
AI accelerators that we have optimised for use with the Elastic Node in Section 5.3,
where we describe both which optimisation techniques we used and how the overall
design was affected.

5.1. Optimisation Approach

Due to SREQIII: Energy Efficiency, the design of the Elastic Node platform presented
in Chapter 4 focusses on small, resource-restricted FPGAs. This allows the devices to
retain a small energy footprint, enabling them to be battery-powered (or use passive
power sources such as solar or Energy Harvesting (EH)). This design decision has a
cascading effect on the rest of the system. It changes which hardware communication
interfaces, software development kits, and heterogeneous design techniques can be used.

69



Chapter 5. Optimising Embedded AI Accelerator Design

It also jeopardises the benefit of utilising a soft microcontroller in the FPGA logic,
since that annexes a substantial part of the available resources (the exact utilisation
varies both with which FPGA is used, and whether optimising for area or perfor-
mance [264]). One option would be to split an architecture into multiple stages of a
pipeline, and deploy each of them in turn [52]. Although currently out of scope, this
would be possible within our design.
Instead, our work primarily focusses on optimising a singular HWF deployed per

device. The objective of this is to maximise available resources for the HWF without
complicating the development of compatible accelerators. Rather than having to entirely
redo the design of a designed architecture, an adaption layer (the skeleton) can be
generated that sits between the middleware and the existing design. This should ease
development for both the accelerator designer and the embedded software developer,
without increasing resource overhead.
The optimisation approach can also then focus specifically on that single HWF, utilis-

ing existing knowledge within the FPGA accelerator design community. The techniques
detailed below include both hyper detailed and macro approaches: either changing how
tiny building blocks are instantiated and combined, or high-level changes to the types of
computations being performed. This serves to illustrate the importance of optimisation
at every level of the design, as the design can only be truly efficient when fully optimised.
The techniques presented here are not a complete guide to hardware accelerator op-

timisation, but provide an overview of the available options. It also shows the various
different resource types that need to be considered: ranging from the different types of
memory to the sophisticated DSP computing slices. It also covers some techniques for
increasing the possible clock speed of the design, which is dependent on the design ar-
chitecture (longer, more complex logic between clock synchronisations reduce maximum
clock rates) and can considerably improve the energy efficiency.

5.2. Hardware Architecture Optimisations
Many years of desktop and data centre FPGA adoption have led to well developed
hardware architecture design techniques. With code generators and high-level synthesis
tools like Xilinx HLS [269] being available, these classes of devices offer relatively easy
development environments. However, the smaller classes of devices such as the Spartan
and Artix families from Xilinx commonly have limited support for such tools.
Additionally, few of these systems support the development of heterogeneous systems

that incorporate various processing cores – with the exception of soft-core-focussed SoC
systems like the Xilinx EDK [264]. Our work is based on a different approach where
accelerator developers can utilise their existing optimisation skills. Providing them an
easy way to interface conventional accelerator designs into a embedded heterogeneous
application simplifies their task – without adding the FPGA resource overhead involved
with using a soft core processor. However, this relies on the abilities of the accelerator
developer to ensure that their design (a) fits into the available resources and (b) provides

70



5.2. Hardware Architecture Optimisations

adequate performance to achieve high energy efficiency.
As a demonstration of how a design’s energy efficiency can be improved, we showed [191]

that the increase in total power consumption of hardware accelerators can be minimal
as the implemented clock speed increases. By using a variable clock source (a feature
of the Elastic Node hardware platform shown in Figure D.5), we gradually increased
a basic FIR filter’s operating frequency and measured the power consumption at each
frequency. The result can be seen in Figure 5.1. The power usage on some of the in-
ternal device voltages (VCCAUX , VCCBRAM ) saw no increase in consumption as they
power sections of the device that were not utilised, while VCCO and VCCINT saw a linear
increase with higher speeds. Overall, it was shown that the FIR filter at the maximum
of 32MHz used only 8.9% more power than the slowest version at 1MHz while increasing
the performance by 32x.

0 5 10 15 20 25 30
Clock Frequency (in MHz)

0.00

0.05

0.10

0.15

0.20

0.25

Po
we

r (
in

 W
) VCCINT

VCCAUX

VCCBRAM

VCCO

VCCTOTAL

Figure 5.1.: Experimentally measured power usage on various voltage rails for FIR filter
with increasing clock frequency, showing largely linearly increasing power
usage for faster hardware accelerators

This illustrates that although the power usage of FPGAs increases linearly with higher
clock speeds, a faster hardware accelerator will usually perform more efficiently overall.
Over a batch of 1024 computations, this accelerator decreased in energy consumption
from 22.7µJ to 7.83nJ with higher clock rates due to the relatively high static power
usage – which is independent of clock speed. A more extensive study of this follows in
Section 5.3.

We present here some examples of hardware design optimisation techniques – some

71



Chapter 5. Optimising Embedded AI Accelerator Design

well-known and others less common. Although not a complete list of optimisation tech-
niques for hardware accelerator designs, the ones presented here proved to be the most
beneficial for our example hardware accelerators presented in Section 5.3. They repre-
sent a wide variety of techniques, ranging from basic implementation optimisations to
modern design developments that completely alter how an accelerator functions. One
common theme is our objective to create parametrised accelerators that can be tailored
to a developer’s requirements (e.g. speed, accuracy, or energy efficiency).

5.2.1. DSP Timing Optimisations
One branch of optimisation technique from the hardware architecture design field in-
volves improving the timing of mathematical operations performed using DSP elements.
We present here an example of this which aims to reduce the resource consumption in
complex sequential multiplications: creating a sequential circuit that reuses the same
MAC module repeatedly. Normally the computation of

A = B × C ×D (5.1)

would require two multipliers in order to compute the value of A within a single clock
cycle. By adding a register E, this can be simplified through

A = (B × C)×D = E ×D (5.2)

which allows the synthesizer to reuse a single multiplier. It calculates E in the first clock
cycle, and A in the second – improving the maximum system clock speed by simplifying
the required computational logic within a single cycle.
Another technique used is retiming, where registers are moved across combinational

logic [181]. Using fine-grained manual optimisations such as these allows the developer
to improve the performance of the system without changing the inputs or outputs of a
logical circuit.

5.2.2. Volatile and Non-Volatile Memory Tiers
Apart from functional resources like LUTs and DSP slices, the available local memory can
be very limiting when designing for embedded FPGAs. Xilinx’s Spartan 7 family range
from 180kb to 4,3Mb total integrated BRAM, while the larger Kintex family sports up to
34Mb. This amount of memory can be limiting for embedded application developers, who
generally avoid using external memory such as Synchronous Dynamic RAM (SDRAM)
due to the additional energy usage and cost. Another concern is balancing the amount
of functional resources and the memory requirements. For example, reducing the use of
registers (instantiated with LUTs) can lead to more localised memory being required.
The variety of different memory technologies present on modern FPGAs creates a large

design space for the memory configurations – requiring a detailed analysis of each chunk
of memory used [191]. We considered in our design not only the quantity and volatility

72



5.2. Hardware Architecture Optimisations

of each type of memory, but also the different energy usage profile (combination of
static and dynamic power usage) of each memory technology. Generally, higher memory
usage will lead to greater energy costs, but exceptions exist such as block memory types
(e.g. BRAM) being activated in large chunks – leading to step increasing energy usage.
Some experiments that demonstrate this are shown in the evaluations in Section 7.1.1,
comparing the energy consumption of different memory configurations for the same
accelerator.

5.2.3. Minimising Expensive Operations
There are some operations that are very expensive to implement in hardware accelera-
tors. One example of this is division, which is commonly implemented using loops when
dividing by a constant or iterative techniques such as Newton Raphson [277] for fixed-
point operations. Since this commonly involves multiplication with reciprocals (which
are again very resource intensive), a common approach is to simply avoid performing
divisions as much as possible.

Some designs can be altered by using a different (cheaper) approach. This may in-
volve using a different algorithm (e.g. using a matrix multiplication to solve a common
transformation), or an approximation (e.g. a Taylor series for solving trigonometric
functions). This highlights an important concept in hardware acceleration: the min-
imum required accuracy. In some cases using simpler integer representations improve
performance or resource consumption without sacrificing overall the computed results,
which has been a popular optimisation done for GPUs [94].

5.2.4. Floating Point Representation
Sequential processors such as CPUs incorporate dedicated floating point operators in
hardware that allow them to cheaply perform highly accurate computations. However,
as hardware accelerators implement each usage of a mathematical operation with its
own dedicated circuit, using lower accuracy numerical representations can be a valuable
simplification. In fact, implementing floating point mathematical operations are tradi-
tionally very badly suited to FPGAs [74], which is why they strongly rely on fixed point
representations.

There are two aspects to finding an optimal fixed point representation (often repre-
sented with Qm.f): adequate fractional bits (f) to maintain computational accuracy,
and enough integer bits (m) to avoid overflow. While the resulting accuracy for various
numbers of fractional bits can be empirically established through simulation (such as
shown for our CNN hardware accelerator in Section 7.2.1), the simplest way to find the
minimum required integer bits is to study the range of values that need to be captured.
By finding the greatest value x (along with the smallest negative value y) that needs to
be represented, the optimal number of integer bits can be simply calculated using

m = log2 (max (x, abs(y))) (5.3)

73



Chapter 5. Optimising Embedded AI Accelerator Design

which needs to be rounded up. This ensures that every value to be represented by
the application will fit in the representation chosen. Estimating required accuracy is
more complex, and requires an investigation of the resulting error of changing the Least
Significant Bit (LSB) at various points in the algorithm (as discussed in Section 7.2.1).

5.2.5. Utilising LUTs for Precomputation

A powerful technique for optimising the performance of hardware accelerators is using
precomputation. This avoids doing specific computations that are used frequently, in-
stead storing precomputed results in a LUT. When enough resources are available to
store all possible distinct answers, this can provide a faster and more resource efficient
solution in some cases than computing them at runtime.
At a high level, an FPGA LUT is effectively a register that can be addressed using a

number of input lines. In the case of the 7 series FPGAs from Xilinx [265], the LUTs
can be used as either 6-input 1-output or 5-input 2-output. This effectively creates
a 64-bit register where each bit can be individually chosen as the output in a Multi-
plexer (MUX)-like design. This can be expanded by connecting multiple LUTs together,
thereby providing more input or output lines (commonly a combination of both).

5.2.6. Latency and Throughput Modelling

The scaling in power consumption and processing speed between hardware acceleration
and traditional sequential processing is greatly different. Therefore, careful modelling
can be very beneficial to get an estimate of expected energy costs and performance.
Especially to novices, this can be a valuable initial step when creating a new application.
Combined with the results of an implementation tool such as Vivado from Xilinx [267],
this can provide a good estimate throughout the development process.
By utilising the latency introduced by each type of operation (LUT, DSP, and logic

gate), a very accurate estimate can be achieved. This can be created either by studying
the HDL, or from the output of the synthesis process. One critical data point provided
by this process is the critical path, which provides the latency (and location) of the
slowest clock-to-clock computation in the design. This directs the developer to the most
important area for optimisation.
Alternatively, one can create a high-level model of the algorithm that creates a pa-

rametrised estimation of the latency/throughput. For example, a common FIR filter
with n taps that uses a single MAC element requires n computations (or clock cycles)
for propagating through the entire filter and combining the results. Similarly to the
Big O notation of a piece of software, that provides the developer with a configurable
performance metric: allowing them to optimise the depth of the filter with its latency.

74



5.3. Example Hardware Accelerators

5.3. Example Hardware Accelerators

As our objective is to support a variety of different types of intelligence on the Elastic
Node platform, we discuss here a selection of AI and ML algorithms. We have adapted
each of these to efficiently utilise the limited resources available on our embedded FPGAs
using a combination of the optimisations discussed in Section 5.2.

The objective of each use case discussed is subtly different, since each aims to demon-
strate a different aspect of adapting a hardware accelerator to the Elastic Node runtime.
This will begin with the interfacing logic and skeleton design for an ANN, followed by a
study of efficiency optimisations in a CNN, and lastly we will discuss how larger prob-
lems can be made to fit limited FPGA resources available with IPCA. Each of these will
also include a brief technical overview of the accelerator implemented, as well as which
optimisations were used during its development.

5.3.1. Artificial Neural Networks

The first case study involves an ANN, or more specifically an MLP as discussed in
Section 3.5.4.2. The main objective of this case study was to investigate the feasibil-
ity of local AI computation using an FPGA. This was demonstrated to the pervasive
computing community at PerCom 2018 [31] by comparing it to wireless offloading.

This demo involved processing a batch of input data using an ANN locally on the
embedded FPGA, and comparing its energy consumption and latency with offloading
the computations to a nearby computer (representing a best case server scenario with no
internet latency). Instead of transmitting the neural network’s input data and waiting
for the result, it offloads to a local FPGA.

Its primary goal was to show that using a heterogeneous embedded platform such as
the Elastic Node was a feasible alternative to traditional offloading. In certain situations
(e.g. when using larger batches to minimise overhead), it used less power than sending
the work via 802.15.4. Due to its 50 MHz processing clock, it showed great promise for
processing ANNs locally on an embedded device – capable of processing even networks
consisting of hundreds of neurons within microseconds [31].

It also served to introduce the Elastic Node hardware platform to the community, and
to receive valuable feedback about their requirements and interests when it comes to a
hardware platform for experimentation in smart IoT devices. Although they were im-
pressed by the low energy footprint of the platform (operating at 80.1mW during active
usage) there was a demand for greater computational power and more complex acceler-
ators. Along with high importance placed on ease of development, this was considered
during development of later iterations of the Elastic Node hardware platform.

The VHDL-based design used to compute the ANN was adapted from an architecture
we developed for the FiPS EU Project [75]. However, that design was targeted at a
considerably larger FPGA with more resources (such as the Xilinx Zynq XC7Z045 that
incorporates a Kintex 7 with 350k logic cells). Therefore it needed to be adapted to fit

75



Chapter 5. Optimising Embedded AI Accelerator Design

within the resource constraints of the Xilinx Spartan 6 LX9 (which sports 9k logic cells)
used in that demonstration.

Parallelisation Options The ANN HWF adapted from the FiPS project originally in-
stantiated the full neural network in FPGA logic. This meant that each layer could
operate simultaneously, meaning that both feed forward and feedback were possible at
one layer per clock cycle. This leads to very fast computation of a full ANN as they are
commonly much wider than they are deep – even deep learning models are commonly
a few layers deep in order to simplify their training [84]. Although highly performance
optimised, this design was much too big to be implemented on an embedded FPGA [31].
The solution was essentially that instead of instantiating the full neural network, we

only instantiated a single neuron in the reconfigurable logic of the FPGA. While this
scaled down the performance from the original designed aimed at server-based FPGAs,
this was unavoidable as the training and inference of a neuron requires a considerable
number of different computations.
For a network of depth d and width n, processing a single set of input data was

increased from d to d×n clock cycles. While this matches the typical O(dn) complexity
for CPU-based solutions, they require multiple distinct instructions per neuron (largely
multiplications of weights and connection values). Therefore, a hardware accelerated
design that can reduce each neuron to a single clock cycle has an inherent advantage.

Optimised Volatile and Non-Volatile Memory Tiers The original FiPS ANN model
offered enough registers on the FPGA to keep all required weights, biases, and computed
connections in memory. This was fairly memory intensive, and therefore we altered this
so each neuron’s weights and other variables are loaded in turn from local BRAM.
This required complex memory synchronisation and addressing logic, which greatly

increases the the complexity of the design when compared to a purely register-based
one. Most FPGAs (e.g. the Spartan 6 and 7 families) use a multi-tier memory design,
as discussed in Section 5.2.2. This is similar to the caching policy of modern desktop
CPUs, where memory is organised into nearby L1 to L3 caches and secondary memory
in the form of Double Data Rate (DDR) Dynamic Random Access Memory (DRAM).
On an FPGA, this takes the form of distributed local registers, regional BRAM, and
external SRAM or DRAM modules.
The basic approach to allocating each memory tier is to use the lowest level that

has enough memory available. Therefore, the memory required for the ANN used for
the demonstration in PerCom 2018 was allocated in the BRAM. It is important to
note, however, that although memory size increases with each tier, the interfacing logic
increases in complexity. For example, local registers require no addressing or timing and
are always available, while BRAM needs explicit read/write logic and addressing.

Skeleton Development As the ANN accelerator was one of the earliest ones we devel-
oped for use with the Elastic Node runtime, it was used to develop an early version of

76



5.3. Example Hardware Accelerators

the skeleton system. This required the manual creation of the needed logic to demar-
shall the control commands and data coming from the application/stub. This was very
valuable when creating the skeleton system, offering an example of a one-shot skeleton
without need for data caching.

The adaptation of the ANN hardware accelerator – although the simplest use case
presented here – was crucial for the development of the Elastic Node runtime. It was
used both as a proof of concept for deploying complex AI to a heterogeneous embedded
platform and during development as a blueprint for skeleton definition and generator
development. Therefore, we will use it to evaluate the ease of development – specifically
the creation of an accelerator’s IDL description – in Chapter 7.

5.3.2. Convolutional Neural Networks

Another popular form of neural networks in the last years has been CNNs, particularly
due to their ability to handle image processing in their 2D form [84]. Even in the simpler
1D form they have been shown to be highly effective for NLP [82], or even medical
applications such as an Electrocardiogram (ECG) [35]. On a high level they work by
performing a convolution over input data [84] – similarly to how image processing kernels
are used in computer vision [149].

Due to a CNN’s increased complexity over a traditional ANN, our primary objec-
tive for this use case was to ensure high energy efficiency without compromising ease
of development. Using the Elastic Node v4 (sporting a Spartan 7 instead of the Spar-
tan 6 used in the v3), we demonstrated this efficiency during a live demonstration at
ICAC 2019 [211] by showing detailed graphs of the power usage in real time.

This was made possible by the accelerator design we created in cooperation with
Qian [191], who investigated the impacts of different possible optimisations on the re-
source and energy consumption. The results of this were presented at the Pervasive
IoT workshop at PerCom 2020 [35]. They are also provided in the Evaluations chap-
ter, specifically in Section 7.2.2 which considers the effects of various common hardware
design techniques presented here.

The main objective was to show how easily highly efficient AI accelerators can be
created by converting a ‘normal’ TensorFlow [85] model. While the skill set required for
designing a conventional CNN model has become fairly common, implementing one on
resource limited hardware is considerably more complex.

To start with, we created a model in TensorFlow capable of high precision and recall
– as shown in Figure 5.2. This illustrates that each of the 6 classes could be accu-
rately identified reliably, achieving 97% accuracy overall. This model provides a good
starting point, but since it relies on a number of incompatibilities such as floating point
computations (see Section 5.2.4) it cannot be efficiently implemented as-is in hardware.

We address this by using a number of hardware accelerator optimisation techniques
and some application-specific simplifications. These simplifications include moving the

77



Chapter 5. Optimising Embedded AI Accelerator Design

N L R A V /

N

L

R

A

V

/

0.96 0.00 0.00 0.03 0.01 0.00

0.00 0.99 0.00 0.01 0.01 0.00

0.00 0.00 0.94 0.06 0.00 0.00

0.03 0.01 0.04 0.91 0.00 0.00

0.01 0.01 0.00 0.01 0.97 0.00

0.00 0.00 0.00 0.00 0.00 1.00

Predicted label

Tr
ue

la
be

l

Confusion matrix

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.2.: Confusion matrix showing performance of original TensorFlow model, show-
ing that each class can correctly be identified with an accuracy of 91% to
100%. Based on computed label predictions for the test set (33%) of the
MIT-BIH Arrhythmia Database [162]

complex CNN training to the cloud to only compute inference locally on the device –
under the assumption that these networks are often not dependent on online training.
This further optimised communication with the device, reducing it to occasional model
updates and reporting low-confidence classifications [35].

Inference Latency Modelling Another important contribution of our CNN hardware
accelerator is the model for estimating system performance and accuracy. This includes
a clock-cycle accurate estimate of the full network processing time. Importantly, this
model is fully parametrised for which model is being implemented. After retrieving
the maximum clock speed from the synthesizer software, the user can enter the model
parameters (e.g. the number of layers, the number of features per layer, etc.) and
compute an accurate estimate of the overall performance.
As an example, consider the following latency model of the CNN hardware accelerator

that we developed for ECG processing [35]. It serves to make our CNN HWF adaptable
to user requirements, creating an important balance between its computational accuracy
and resource consumption. Please see Section 3.5.4.2 for the technical overview and a
description of the parameters used.
The overall goal is to compute the latency of the full network

78



5.3. Example Hardware Accelerators

tCNN = tclock × ntotal = tclock ×

(
N∑
i=1

nci + nga + nfc

)
(5.4)

where ntotal is the total number of operations required. Similarly, the number of opera-
tions for each of the N convolutional layers is given by nci , while nga and nfc describe
the operations for the global averaging and fully connected layers in turn.

It is important to note here that the meaning of an “operation” depends greatly on
the design of the architecture. Using a general purpose CPU, this would be considerably
higher than with our tailor-made HWF – since custom operations can be instantiated for
computing nearly arbitrarily complex procedures. Through this, hardware acceleration
can surpass the performance of general purpose computing — even when operating at a
considerably lower clock frequency [83, 149].

Next, each of these numbers of operations n need to be computed: starting with the
convolutional layers. By using

nci = f ×K × S (5.5)

with f is the number of features being computed, K is the kernel size, and S is the
convolutional steps. Since we use a stride of 1, the number of steps S can simply be
computed through

S = H −K + 1 (5.6)

by using the input height H. The input height of every subsequent layer is then halved
through the built-in max pool operation.

Similarly, we can compute the number of operations for the final global averaging layer
to be

ngc = f × (Hga + 1) (5.7)

again using its height H. All that remains is then the fully connected layer, which can
be simply retrieved through

nfc = f × C (5.8)

with C being the number of classes classified. Note that like many of the other layers,
this layer could be reduced to fewer (more complex) operations. This would, however,
drastically increase the resource requirements for instantiating it in hardware on the
FPGA.

Using this model, we can calculate the operations required for the CNN used in our
ECG project [35]. Since it classifies C = 6 classes using f = 18 features, it leads to a
total of ntotal = 143262 operations. To compute the real time latency of an inference
run, the clock speed needs to be specified. This will be done (along with real world
verifications) in the Evaluation in Section 7.2.3.

79



Chapter 5. Optimising Embedded AI Accelerator Design

Dealing With Noise A common concern with using CNNs is data noise, commonly
caused by low-voltage sensors such as ECG [35, 193, 227]. We found that this is especially
problematic with small, power-efficient sensors used in embedded environments [103] as
they offer low recording quality and low Signal-to-Noise Ratios (SNRs) (the relationship
between the levels of the measured signal and noise). That makes input preprocessing
and filtering paramount when designing hardware accelerators.
Therefore, we compared different options to preprocessing for CNNs [67], finding that

different options are appropriate to each application scenario. For example, we found
that the Savitzky-Golay filter (that smooths a signal using convolution and fitting a
polynomial function to each subset of provided data) performed well when classifying
urban sounds, but that the Discrete Wavelet Transform (DWT) was able to better
process ECG signals with significant baseline wander when combined with FIR filters.

Optimised Volatile and Non-Volatile Memory Tiers When designing our CNN hard-
ware accelerator [35], the weights and biases had to be loaded from local memory in a
similar fashion to the ANN from Section 5.3.1. Since these do not change during normal
querying (unlike our ANN design which can be trained online), they are non-volatile.
Since the volatile data (such as intermediate values of layer connections) constantly

gets rewritten, we need to consider both reading and writing them to memory. The
dual-port BRAM present on modern Xilinx FPGAs [270] offered the advantage of being
able to read one location in memory while another is written – e.g. output connections
of one layer is written while the next layer’s data is preloaded for computation in the
next clock cycle.
Additionally, some static parameters are stored in LUTs used as registers. These offer

very fast onboard memory, and are located throughout in the PL – leading to simpler
(and therefore faster) routing when compared to BRAM or external memory.

Utilising LUTs for Precomputation One application area for on-device CNNs is in
medical wearable ECG sensors. A modified version of our CNN architecture was used
in the LUTNet project [70] for finding heart rate abnormalities. By using advanced
techniques like Binary Neural Network (BNN) and precomputing using LUTs (see Sec-
tion 5.2.5), a tailor-made system was created that combines local energy efficiency and
high performance.
In this project, convolutional layers are replaced with LUTs for increased efficiency

in embedded AI applications. The basic concept is to pre-compute a layer into a LUT
on an FPGA, simplifying the numerous DSP-based computations required into a single
lookup.

Modular Layer Combination Implementing subsequent convolution, max pooling, and
activation layers independently (as is done in sequential processing models) requires the
storage of intermediate values. Instead, our hardware accelerator design combines these

80



5.3. Example Hardware Accelerators

layers into a single pipelined computation – thereby avoiding the mentioned additional
complexity.

This is possible due to the relatively low computational complexity of the max pooling
and activation layers when compared to the convolution layer. A pipeline was created
that allows the accelerator to perform these three procedures within two clock cycles.
Instead of saving each intermediary result in memory, they can be pushed through by
using a shift register implemented using LUTs. Apart from reducing the amount of
memory required, this also removes the need for complex addressing logic for loading
and storing to the memory (as is present on our ANN).

Exponential Functions The last step in a traditional CNN is the softmax layer, which
effectively chooses the most likely classification based on the output of the FC layer.
Although the comparison of ‘which likelihood is larger’ is computationally very easy, this
layer also involves an exponential function that calculates the classification confidence
value.

Computing exponential functions in hardware commonly requires either a very large
LUT or using an iterative Taylor expansion [191]. As our only objective for the ECG
application case was to perform classification, we deferred this step to an external pro-
cessor (e.g. the local MCU on the Elastic Node or the cloud). Using the outputs of
the FC layer directly, a classification can be accurately chosen by taking the most likely
class.

Fixed Point Optimisation Multiple researchers have shown that a CNN can be ac-
curately computed using fixed point operations [6, 137]. However, due to the reduced
ability of fixed point to represent very small or very large numbers (when compared to
floating point), it is crucial to investigate the bit width requirements of the application
being created.

Therefore, we created a semi-automated system that aims to find the optimal represen-
tation. This involves firstly finding the largest number that needs to be presented. Tech-
nically, each addition requires an extra bit to capture overflow (Qa.b+Qa.b → Qa+1.b)
and the result of every multiplication combines their sizes (Qa.b×Qc.d → Qa+c.b+d).
However, this leads to massive expansions in representations when performing multiple
subsequent mathematical operations.

An overview of our process for finding an appropriate representation is provided in the
Evaluation in Section 7.2.1, as well as the impact of different representations on overall
accuracy. It consists primarily of a set of simulations that evaluate overflow and errors
for a given dataset when using various fixed point representations.

The design of the CNN hardware accelerator serves as a good example of the optimi-
sation process when converting an existing algorithm to be compatible with the Elastic
Node. By optimising the structure and implementation of the HDL created, a highly
efficient accelerator can be achieved without increasing development complexity when a

81



Chapter 5. Optimising Embedded AI Accelerator Design

different neural architecture is to be deployed. In fact, the solution we presented [35]
includes a tool for directly converting an existing TensorFlow model. A similar approach
was taken in the LUTnet project [70].

5.3.3. IPCA

Our final use case considers the eigenproblem as it pertains to computing eigenvectors
and -values from matrices. Although popular over many years, it has also seen a recent
boost in usage within applications ranging from categorisation in data analysis [12, 147]
and fault diagnosis [281] to image processing. It works by reducing the dimensionality
of the data through finding a new set of variables that contain the same information as
the original [225]. One of the most common techniques used for this is PCA [189], which
captures the variance of a set of variables.
Our primary challenge for solving the eigenproblem on an embedded platform us-

ing a hardware accelerator was its high computationally complexity, and the resulting
resource requirements. Therefore, considerable effort was required for reducing the re-
source footprint when compared to other hardware accelerator implementations from
the literature [89, 121].

Technical Overview The primary objective when using PCA is usually data size reduc-
tion. It aims to reduce the dimensionality of a dataset without reducing the information
contained within it. A simple example would be a cloud of 3D points that could be
represented adequately when projected onto a 2D plane.
By using the covariance matrix C = ATA of size n× n instead of the original dataset

A, the dimensionality of the problem is considerably decreased. By retrieving a set
of n orthogonal eigenvectors ~ui that describe the full variance of C, along with their
respective scalar weights (or eigenvalues) λi, the so-called eigenequation

C~ui = λi~ui (5.9)

can be created. This demonstrates how each eigenvector applied to the matrix applies
a linear transformation, effectively scaling it by the eigenvalue. The benefit of this is
that a smaller subset of the eigenvalues and eigenvectors can be chosen to cover most of
the variance in the original dataset [241] – effectively balancing how accurately a newly
projected dataset needs to capture the variance of the original.
Traditional PCA’s batched nature and computational complexity generally makes it

ill-suited to implementation on an embedded device. IPCA [11] improved on this by
only computing the incremental impact of incoming data instead of recomputing the
full PCA. By projecting incoming data onto the reduced eigenspace, online learning is
made possible without growing the original dataset. The difference between the two
approaches is shown in Figure 5.3, showing the subtle but critical difference when new
data is introduced.

82



5.3. Example Hardware Accelerators

Figure 5.3.: Comparison of PCA and IPCA computation processes

We identified a use case for this in on-device computer vision on drones (more specif-
ically UAVs). Since they are dependent on battery power for both their onboard pro-
cessing and powering their motors, energy efficiency is at the forefront of their design
objectives [26]. However, they have high computational requirements as they commonly
operate outside convenient communication range and therefore rely at least partially
on local processing or preprocessing. This intelligence enables them to operate autono-
mously, without depending on a constant connection to a server.

Therefore, we developed an IPCA hardware accelerator [36] that is capable of process-
ing up to 16x16 covariance matrices – allowing the computation of the 16 most important
eigenvectors. Depending on the application use case, we found this to be an adequate
level of detail for performing basic facial detection. The advantage of using eigenvectors
for this application is that it simplifies this highly complex problem to the comparison
of the relative weights of the computed eigenvectors.

Our objective with the IPCA is to fit a complex AI component into the resource
limitations of an embedded FPGA which was previously not possible. Our approach
to this was a combination of well-known hardware accelerator design optimisations and
using more modern techniques like QR decomposition and Squared Givens Rotation
(SGR) in a novel way.

83



Chapter 5. Optimising Embedded AI Accelerator Design

SGR and QR decomposition As IPCA relies strongly on hardware-expensive trigono-
metric equations, most FPGA-based eigenproblem accelerators from literature depend
on the COrdinate Rotation DIgital Computer (CORDIC) algorithm [249, 250]. Although
offering an optimised alternative to traditional solutions, the CORDIC algorithm still
causes high resource consumption and computation slowdowns when implemented on an
embedded FPGA [195].
Instead, we aimed to use the very efficient SGR [66] algorithm for performing the

matrix rotations required to perform a QR decomposition [79]. This has previously
not been possible on an FPGA due to the scaling issues introduced by each iteration
of the SGR algorithm. By carefully studying how each value needs to be scaled back,
we created a considerably more resource and power efficient design capable of being
deployed to embedded FPGAs [36].
Our overall design is provided in Figure 5.4, showing how the SGR output needs to

be scaled after every iteration to be fed back into the QR Algorithm. It also shows the
QR array that performs the matrix rotation that forms the core of our solution.

Input Bu�er

Input
Skew Circuit

Output
Deskew Circuit

D
o

w
n

 S
ca

le
 C

ir
cu

it

QR Array

(d)

(a)

(b)
(c)

(f)

(e)

(g)

Figure 5.4.: System Overview of IPCA HWF

Each iteration in the QR algorithm on a real symmetric matrix A0 of dimensions n×n
can be given with

[Qi, Ri] = qrd(Ai) (5.10)
Ai+1 = RiQi (5.11)

with Ai being each iteration on the rotated matrix. The orthogonal matrices Qi can be
used to retrieve the set of eigenvectors Q through

84



5.3. Example Hardware Accelerators

Q =
n∏

i=0

Qi (5.12)

where Q0 = I.
The result of all of this is to rotate the initial matrix A0 in such a way that after k

iterations we are left with

Ak =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 Q =


q11 q12 · · · q1n
q21 q22 · · · q2n
... . . . ...

...
qn1 qn2 · · · qnn

 (5.13)

which provides the eigenvalues on the diagonal of Ak, and the eigenvectors on the rows
of Q. This fully solves the eigenvalue problem for a provided matrix A0. Since we use
the covariance matrix of the input data, the requirement from SGR of A being a real
symmetric matrix is accounted for.

This iterative technique efficiently uses the same QR array to compute a variety of
different results. As shown in the thesis of Urban [241], loading a matrix into the process-
ing array is equivalent to multiplying it with Qi. Apart from using Equation (5.12) to
incrementally compute the eigenvectors, each individual Qi can be retrieved by feeding
in the identity matrix I.

Similarly, the second part of Equation (5.11) is computed by feeding in the rotational
matrix Ri. This creates a highly optimised solution that reuses the same hardware
architecture for computing three different results. This is shown in Figure 5.5, illustrating
how all three input matrices can be fed into the array.

A
1

R
1

A

R
1

A
0

Q
1

Q
0
= I

Figure 5.5.: Input sequence S = A,Q,R [Adapted from [241]]

This is a fully pipelined process, further increasing the resource efficiency and compu-
tational performance. Although the surrounding logic may increase in complexity, being

85



Chapter 5. Optimising Embedded AI Accelerator Design

able to reuse the same systolic array for multiple different purposes greatly improves
resource efficiency.

DSP Timing Optimisations A popular optimisation technique from the hardware ar-
chitecture design field is to improve the timing of mathematical operations performed
using DSP elements. This can have the effects of improving their timing as well as their
resource consumption, both of which were utilised for our IPCA HWF [36].
Based on our anecdotal experience when designing this HWF, the maximum frequency

of our overall design was increased from 247.64 MHz to 373.13 MHz. By incrementally
improving the critical path, the maximum performance possible with the design on that
hardware is increased by 50.67%.

Minimising Expensive Operations: Division When developing the IPCA hardware
accelerator, we needed to downscale the outputs of each iteration of the SGR. This
division operation was essential, and is a primary reason why SGR has not been used
by the literature. Since SGR solves

A R∗ Q∗
a11 · · · a1n
a21 · · · a2n
... . . . ...

an1 · · · ann

 SGR−−−→
QR


λ2
1 λ2

1r12 · · · λ2
1 r1n

0 λ2
2 · · · λ2

2 r2n
...

... . . . ...
0 0 · · · λ2

n



λ2
1 q11 · · · λ2

n q1n
λ2
1 q21 · · · λ2

n q2n
... . . . ...

λ2
1 qn1 · · · λ2

n qnn

 (5.14)

instead of the required [Q,R] = qrd(A) as described in Equation (5.11). However, we
need to retrieve the true Q and R matrices defined in Equation (5.13).
Inspecting the various elements of R∗ andQ∗ allowed us to identify the required scaling

factors of Q∗ and R∗. Each row i of R∗ and the column i of Q∗ in turn are scaled with
λi

2, which can be retrieved from the diagonals of R∗.
Calculating the reciprocal square root (y = 1√

xin
) using a very well-known Newton

method [140]

yi+1 =
1

2
(3yi − y3i xin) y0 = 0.5 (5.15)

allows us to avoid explicit divisions. Relatively speaking, these operations are consider-
ably more resource efficient to implement in hardware than divisions.
Another example of avoiding division operations from our IPCA hardware accelerator

is inside the systolic array shown in Figure 5.4. SGR requires two divisions [241] for
specific internal nodes, leading to a total number of 1

2(n
2 − n) dividers for a matrix size

of n. Implementing all of these units would lead to a very large resource consumption,
since we found that for 32-bit fixed point each divider consumes 1583 logic cells [241].
To alleviate this cost, we investigated the temporal usage of these dividers as shown

in Figure 5.6. Note that SGR processing elements only require division in the diagonal

86



5.3. Example Hardware Accelerators

mode [241]. This allowed us to limit the number to only one per row, which reduces the
required number of dividers for a matrix size of 16× 16 from 120 to 16.

t
1

t
2

t
4

t
5

t
3

t
6

t
7

t
9

t
10

t
8

# # # #

#

##

##

##

#

##

Figure 5.6.: Timing analysis of dividers in SGR systolic array, showing that only one
division is required per row

When complex computation operations such as divisions cannot be entirely avoided,
the best option is to limit the number that needs to be instantiated. As shown, this can
be done by sharing these circuits among different parts of the architecture.

Utilising LUTs for Precomputation The Newton method showed in Equation (5.15) is
a very resource expensive operation. Used in the IPCA hardware accelerator, they rely
strongly on the number of iterations required to reach a reliable result. Therefore, we
optimised by varying the initial guess based on the input value. By taking inspiration
from the programming of the well-known classic video game Doom1, we created a LUT
of initial guesses. The speed of convergence is then scaled relative to the number of
elements of this LUT, allowing us to effectively reduce this iterative solution to a direct
computation (given an adequately large number of initial guesses).

Upon analysis of this we created Figure 5.7, showing the estimated value of 1√
x
with

our estimated “InvSqrt(x)”. For this example, it is clear that the result is very accurate.
The error peaks from time to time, but the absolute error never exceeds 0.038 for the
estimated reciprocal square root. Note that this is not the inaccuracy of the initial
guess estimation, but instead of the computed Newton method after two iterations of
Equation 5.15.

1https://github.com/id-Software/DOOM (last visited: 2021-12-06)

87

https://github.com/id-Software/DOOM


Chapter 5. Optimising Embedded AI Accelerator Design

0 10 20 30

0

0.2

0.4

0.6

0.8

1

Input value

R
es

ul
t

InvSqrt(x)
1/
√
x

error

Figure 5.7.: Error analysis of reciprocal square root LUT, showing that the errors are
less than 0.05 across all input values.

5.3.3.1. Training and Querying Latency

Each step of the SGR algorithm requires a number of steps, each of which introduces
its own latency. The total latency can be written as the sum of the latencies of each of
these steps:

L(n, k) = LFIFO + k × (LQR + LSqrt) (5.16)
= 24nk + 3n+ 6k − 1 (5.17)

where each step’s latency can be seen in Figure 5.8. This then creates a latency para-
metrised by the matrix width n and the number of iterations until convergence k.
The last step is then to simply convert this to a throughput value for simpler com-

parison with related work [89]. This requires the maximum clock frequency to calculate
the maximum throughput T

T (n, k) =
fmax

L(n, k)
=

fmax

24nk + 3n+ 6k − 1
(5.18)

which provides the number of full solutions of all eigenvalues and -vectors possible per
second.

Our highly optimised IPCA HWF shows what is possible in embedded FPGAs when
using appropriate accelerator designs. Along with some careful tweaking of implemented
mathematical operations, our novel SGR-based design creates a very fast design that can

88



5.3. Example Hardware Accelerators

Start

Load FIFO

i ≥ k ?

QR

invSqrt

End

i = i+1

L
FIFO 

= 3n-1

L
QR 

= 24n - 6

L
Sqrt 

= 12

n

y

Figure 5.8.: Flow diagram of IPCA process with latency of each step

scale from very small embedded FPGAs to larger variants. The resulting performance
and resource utilisation will be evaluated in Chapter 7, along with an investigation on
how effectively it can solve the facial detection problem in UAVs.

5.3.4. Summary
We have shown here through these three examples how different hardware accelerators
can be effectively and efficiently implemented on the Elastic Node platform. They serve
to demonstrate three different approaches that can be followed by the designer, varying
primarily in the amount of manual effort involved:

1. ANN — minimally tweaking the design of an existing (larger) design to fit the
resource constraints of smaller embedded FPGAs,

2. CNN — parametrising the design so it can be repurposed to a wide variety of
devices, and

3. IPCA — designing the entire solution from the ground up to use efficient design
principles (e.g. systolic arrays).

Using different combinations of the optimisations covered in Section 5.2, we have
adapted each of these examples to utilise all the available resources on the Elastic Node

89



Chapter 5. Optimising Embedded AI Accelerator Design

FPGA. Through this, we also showed that highly complex and capable hardware ac-
celerators can be incorporated – offering great increases to local intelligence over basic
MCU-based devices. This allows the user to utilise sophisticated ML and AI in their
distributed applications, but so far only on a single device. Effectively utilising teams or
groups of devices further requires self-optimisation and other self-x techniques, implying
an even higher level of intelligence.

90



Chapter 6.

Learning Intelligent Devices

The development of the Elastic Node runtime in Chapter 4 provided us with a heteroge-
neous FPGA-augmented IoT device to use in our experiments. While this was focussed
largely on the hardware platform and the software development support provided by
the Elastic Node middleware, Chapter 5 emphasised the hardware accelerators to be
deployed to its local FPGA. Together, these things allowed us to put highly complex
applications locally on our embedded device – improving local application intelligence
through machine learning techniques such as neural networks and computer vision.

However, local computation on the device is not always the best option. In some
cases, the energy overhead of keeping the FPGA constantly powered or reconfiguring it
can reduce overall efficiency. Therefore, in this chapter we introduce some alternative
behaviours to the Elastic Node, and an optimisation scheme for the device to learn
how to choose between these options. This is based on the offloading problem, which
considers the decision between sending a specific computational task (see the System
Model in Section 2.2 for the definition of a task) to another device or computing it
locally. A further discussion on the offloading problem was presented in Section 3.4.1.

Consider for example having multiple FPGA-augmented IoT devices available in the
same area. It may be beneficial for them to cooperate by offloading work to one another.
By working together, they could more fairly share the workload to balance their energy
usage, and to take better advantage of optimisations such as batching (see Section 3.2).
A similar argument could be made for devices offloading to the edge/cloud when no
devices are available locally to perform a workload.

This increases the complexity of the decision-making of the devices when compared
to local-only solutions. Here we introduce our device agent that is responsible for con-
trolling this high-level behaviour of the device: how to handle incoming workloads,
controlling the energy states of the device etc. This agent should increase the device
intelligence by optimising its behaviour to achieve some developer-provided goal. As
stated in SREQII: Automated Cooperation Optimisation, its goal is to learn how to
optimise the augmented offloading problem so the device can behave intelligently.

Existing solutions for device agents and decision-making (see Section 8.2) do not take
into account the presence of local hardware acceleration and the impact that has on
optimal behaviour. They generally do not consider P2P offloading – instead focussing
on a centralised server-client relationship which may not scale with larger applications

91



Chapter 6. Learning Intelligent Devices

and systems. The agents we developed [34] offer a novel approach to optimising the
behaviour of an FPGA-augmented smart IoT device.
Once we formalise the problem we are trying to solve in Section 6.1 and provide an

overview of our design choices in Section 6.2, we will set out a list of requirements for our
agent in Section 6.3. Next, an analytical model of the system is created in Section 6.4
to facilitate the development of the agent itself in Section 6.5.

6.1. Problem Statement
Consider the use case presented in Section 2.1.2 where a user named Fred owns a number
of smart IoT devices in his smart home. These devices are cooperating to perform a
number of applications for him – e.g. a neural network-based depression detection that
monitors his voice [253]. This process may require a number of steps: detecting and
recording the audio samples, pre-processing for certain markers to the presence of a
voice [161, 273], and finally a neural network. Since Fred is concerned with the privacy
of the conversations in his home, he does not want recordings of his voice to be processed
in the cloud and therefore demands that all processing is done within his home network.
Sometimes his laptop is available for processing some of the workload, but he uses that
for work and therefore does not want it to do the processing.
One solution to this is to have his smart IoT devices share the workload amongst them

and divide the application into computational tasks such as recording, pre-processing,
and the neural network. Some of these tasks are clearly more computationally intense
than others, making the optimisation of sharing the computations non-trivial. Addi-
tionally, since the application is dependent on the user and his behavioural habits (such
as where in the home he is) the number of jobs created can vary unpredictably. In this
example, a job would begin with the recording of a sample, and finish once it has been
fully processed.
Due to how dynamic both the device’s environment and the application itself can

be, the agent needs to be self-adaptive [33] so it can alter its behaviour based on these
changes. Therefore, it needs to support runtime learning so it can create or update its
decision-making policy after deployment. This is in contrast to design time learning
which is done entirely before deployment.
Another important concept here is the goal of the agent’s optimisation. Since this

goal is dependent on the user’s demands and wishes, it would be infeasible to design the
agent to be able to address any goal. Some examples of possible objectives could be to
ensure the device survives on a single battery charge as long as possible, minimising the
latency involved in processing a job, or to process as many samples as possible within a
given time frame.
Similar to the goal-driven agents introduced by Russell and Norvig [206], our agents

aim to choose an intelligent action based on the current state of the system. These
actions should include everything involved in optimising the behaviour of our Elastic
Node, including when to deploy a hardware accelerator, which one to deploy when an

92



6.2. Design Rationale

application requires multiple different types of processing, and how to handle an incoming
job. The overall objective of this is to have the agent act rationally, which is defined by
Russell and Norvig as the ability to perform the correct sequence of actions that impact
the environment in a beneficial way. In our case this environment can also include the
device’s own state such as battery life, usage level, and hardware state.

6.2. Design Rationale
The domain of intelligent devices offers a large number of techniques for device AI.
Within ML, this can further be broken up into categories. We discuss here some of
the options we have chosen (primarily using the definitions provided by Russell and
Norvig [206] and Sutton and Barto [228]), and why those design decisions were made.
The design was originally published at the ACSOS 2020 conference [34], and expanded
to a journal article in the ACM Transactions on Autonomous and Adaptive Systems [37].
They were also featured in the context of self-integrating and self-adaptive systems in
the Future Generation Computer Systems journal [33], where their ability to adapt to
changes in the environment provide additional flexibility.

We specifically focus on unsupervised learning (see Section 3.5.4), since it allows the
device to either learn entirely or partially after deployment – simply by being aware of its
own state and that of its surroundings. In the literature a number of different approaches
have been used to learn optimised device behaviour – particularly with relation to the
offloading problem. The evolution of these approaches will be discussed in Section 8.2,
culminating in the current state of the art primarily utilising RL.

Q-learning was chosen for this project due to its popularity in the community and since
it does not require a full history of states and actions, or a full model of the system or a
probabilistic model of the transitions (see Section 3.5.4.1). It has the Markov property
(future states only depend on the current state), meaning that we do not need to store a
full state history of each experiment. This makes it much more realistic to deploy onto
an embedded device when it should perform online learning.

Another design decision is choosing decentralised learning due to the scale of our appli-
cation cases. When considering larger ones such as smart cities, system scaling becomes
a major concern. When using purely centralised learning, all required information (e.g.
system state) needs to be transmitted to a single location, and the results need to be
propagated back to all the devices. Especially in larger systems – or ones that are
more physically spread out – this can cause bottlenecks in either communication (due
to interference) or processing (due to limited computational resources).

Lastly, where the agent is deployed should be considered – commonly either in the
cloud or locally on each device. This choice is linked to the solution’s computational re-
quirements, as well as the communication overhead. Especially when using very resource-
limited devices (or an agent requiring excessive data such as a full system state of all
devices), a local deployment may be impractical. However, we much prefer a device-local
solution, since our system aims to offer local AI as stipulated in SREQI.

93



Chapter 6. Learning Intelligent Devices

6.3. Requirements
Somewhat separate from the requirements for the overall system laid out in Section 2.4, a
number of features and functionality are required from the agent governing its behaviour.
These sit alongside the existing System and Platform Requirements, augmenting them
by elaborating on the ones that focus on the agent – SREQI: Local Intelligence and
SREQII: Automated Cooperation Optimisation.
It is important to note that the objective of this work is not to create a single agent

that always acts in the perfect way. This would be infeasible as applications vary wildly,
and what behaviour is desirable depends on the objectives of the designer. Therefore,
our primary objective is to provide the developer with the tools required to design their
own agent that targets their specific intent.

IREQI: Rational behaviour
The agent should be able to govern the device(s) in a rational way. In some cases

this is related to optimality and optimising some measurable performance metric,
but it extends to behaviour that appears intelligent or ‘correct’. Conceptually, a
developer should be able to direct its behaviour in such a way that the agent’s
behaviour ‘makes sense’. Although difficult to evaluate quantitatively, this ties in
directly with our research hypothesis in Section 1.1 by introducing intelligence to
the device’s behaviour.

IREQII: Generalisability to Various Applications
Central to our design is the need for generalisability, ensuring that the system

can be reused for a variety of different use cases and applications. This primarily
means that the core concepts should be clearly enough defined that it is possible
for users to pick it up and adapt to their own applications and systems of devices.
Crucial to this is providing a good explanation of all the design decisions made,
so a user of the system might know how to adapt it to their own needs.

IREQIII: Realistically Implementable
Although much of the design process will take place in simulation, this work

is specifically targeted at creating realistic devices. That means that all of its
functionality should be implementable in a real deployment. Specifically, this
means that the agent can only act on information it would realistically have access
to. This is of particular importance in decentralised applications where no single
device has a complete overview of the entire system. Although many techniques
exist for collecting this type of state (e.g. flooding [229]), these would not scale.

94



6.4. Analytical Model

IREQIV: Dealing with catastrophic failure
An agent must be prepared for any of their neighbours to suddenly fail and

disappear from the network. Apart from the networking implications of not being
able to reach another device, agents should be able to continue efficient operation
even when some or many of its neighbours are unavailable. That is a constant
danger for the battery-operated devices that our system is designed for, as they
have a finite store of energy that can run out an any point. This requires the
agents to perform online learning, constantly reevaluating their learned behaviour
and updating it as required.

Although not a comprehensive set of requirements, these highlight the most important
parts of our design rationale. Together they describe the minimum set of features that
an agent should possess for us to consider their behaviour intelligent.

6.4. Analytical Model
The design paradigm of our agent is based on a classic cycle of design, simulation,
evaluation, and deployment as shown in Figure 6.1. The distributed system developer
creating a new agent starts with an initial design, followed by a simulation of its be-
haviour within a set of representative scenarios. Based on the results of this simulation
the process can either continue onto a deployment that verifies desired behaviour, or
cycle back to another iterative design cycle.

Simulate

Evaluate

Deploy

Design

Figure 6.1.: Design cycle describing the iterative process of designing, testing and evalu-
ating a system. Once it has been evaluated thoroughly, its design can either
be updated or it can be deployed.

This highlights the importance of an accurate simulation. It relies on an accurate
analytical model that represents the environment, the performance and behaviour of the
device (or set of devices), and the interactions between them. We use this model only

95



Chapter 6. Learning Intelligent Devices

during the initial simulation phase to develop our agent’s policies, some results of which
can be seen in the evaluations presented in Section 7.3.
This is fundamentally different to a greedy approach that might use the simulation

model on the device for decision-making. It might instead directly compute the costs of
each possible action on the device, while we rely on the self-awareness of the device [133]
to consider the system state. This reduces the reliance on having a perfectly accuracy
model, instead relying on machine learning to adapt to any unforeseen environmental
or device internal impacts. Note that the agent’s environment and system state can
incorporate both internal and external factors [228], essentially providing the developer
with the freedom to include any information that may be useful.
Formally, let us consider a set of devices D = 1, . . . , D where each device d incorporates

at least a local FPGA, an MCU and a wireless transceiver (to allow communication
between devices and with a cloud/edge server). Any one of these devices di can complete
a hardware accelerated job j that is one of a set of possible jobs J = 1, . . . , J . This is
dependent on its FPGA being in the correct configuration at that point in time, as
every job j includes a corresponding computational task Tn that requires a specific
configuration.
The assumption of having maximum one accelerator available at a time on the local

FPGA comes from wanting to use the smallest FPGA possible, and therefore allocating
as much of the available FPGA resources to the computational task. This means that
the FPGA must be reconfigured each time a different task is to be performed [52] – a cost
that is somewhat mitigated if the FPGA is turned off between workloads to save energy.
Additionally, each job only includes a single computational task, but this limitation can
easily be circumvented by spawning follow-up jobs after a job is finished to represent
multi-phase problems.
This leads to a job being defined by the tuple j = (t, di, sn, Tn), where t is the times-

tamp the job was created, di is the device that created it, and sn is the input data size.
Each of these jobs j is then additionally defined as a set of subtasks S(j) that must
be completed in order to complete it. These include both MCU-based subtasks such as
data capture and preparation, wireless subtasks such as offloading a job from one device
to another, and FPGA-based processing tasks. Some subtasks include a combination
of these components (e.g. moving computational results from the FPGA to the MCU).
Therefore, each subtask defines the power state P = active, idle, sleep that each compo-
nent on the device should be in, where each subsequent state has a lower power usage.
For example, the result fetching subtask requires the FPGA and MCU to be active,
while the wireless transceiver can sleep to save device energy.
This allows us to formulate the total instantaneous power of a device with N compo-

nents during a subtask to be

P t
i =

N∑
n=1

P t
n (6.1)

96



6.4. Analytical Model

where P t
n is the power of component n at timestamp t. For some components this is

fairly simple (e.g. the MCU usage is fairly constant under the assumption that frequency
scaling is not available), while others such as the FPGA are dependent on the exact
computational task being performed. Therefore the component power is expressed in
the worst case as a function of the current subtask S and the complexity C of the current
job j

Pn = f(S,CJ) (6.2)
which in some extreme cases can be very non-linear. The FPGA has an extra power
state reconfiguring which represents the maximum power consumption in the SRAM-
based FPGAs we use [216], and occurs when switching to a different configuration.

We assume in Equation (6.1) that the power consumption of the different components
is independent, which is not necessarily always the case. Through our testing of the
Elastic Node, the power consumption of each component indicated some dependency on
that of other components. However, these were small enough to not significantly alter
the power distribution, which we approximate with a Gaussian distribution. This is
based on the central limit theorem [84], which for a noisy sensor suggests that a Gaus-
sian distribution is a good approximation under continuous statistically independent
sampling. Each power state of every component is individually characterised, allowing
us to capture variations around the nominal.

Lastly, we require the time consumed by each subtask δ(S) in order to expand Equa-
tion (6.1). We compute the energy consumption of device di as

E(jn, di) =

∫
t
Pi(t)dt (6.3)

=
∑

S∈S(jn)

P t
i × δ(S) (6.4)

which considers the energy consumption of a job as the sum of the consumption for all
its subtasks. This only leaves the modelling of subtask duration δ(S), which must be
separately done for each subtask. Some examples of this includes the computational
time

δn =
CJsn

fi,FPGA
(6.5)

that uses the task complexity, the input data size, and the frequency of the FPGA. This
shows the complexity as a linear scaling value that represents the number of clock cycles
required for an input data size of sn = 1.

Here the complexity is assumed constant for different data sizes leading to a linear
relationship between δn and sn. This is done for computational simplicity, but non-
linearity can be trivially represented by changing the complexity from a constant to a
function (e.g. Cj = f(sn)).

97



Chapter 6. Learning Intelligent Devices

The total energy cost of a job E(jn, di) is of critical importance, as this is one of
the main optimisation objectives in distributed embedded systems. Under the light
assumption that a job does not have a constant energy cost (and therefore that the
actions of the device have an impact on this energy cost) this augments the binary
offloading problem to optimise simultaneously the number of jobs performed and the
total energy cost.

6.5. Agent Design
As stated in IREQII: Generalisability in Section 6.3, our objective with this design is to
make it as reusable and adaptable to different application cases as possible. This requires
careful definitions of what is required to create an agent, and for improved convenience
it should require as little development effort as possible.
The foundation of our approach lies in the goal-based agents defined by Russell and

Norvig [206] as shown in Figure 6.2. Through a combination of inputs from the envi-
ronment and the state of the world, they choose actions based on a set of action rules.
These actions then impact the environment in a certain way (which from the agent’s
perspective can be unpredictable), and the cycle continues. This design highlights the
crucial parts of our design to be the modelling of the world, and creating the action rules
themselves.

What actions do

World Sensors

EffectorsAction Rules

En
vi
ro
nm

en
t

What action do
I do now?

configuration
State:  battery power, 

be done
World:  tasks to 

Figure 6.2.: Conceptual overview of agent and environment (adopted from [206]), de-
scribing the flow of information and decisions

In our design, a policy π provides the mechanism for the agent to choose an appropriate
action. This is an implementation of Q-learning (as discussed in Section 3.5.4.1), where a
mapping is created from each possible system state to the value of each available action.
This could then be used in a greedy system to simply choose the most beneficial action.
The overview of this is shown in Figure 6.3, demonstrating how the agent is trained.

It shows that it creates the current system state by using the device internal information,

98



6.5. Agent Design

the current job being executed, and the computational task attached to that job. The
device information could contain both static device specifications (e.g. it’s physical or
contextual location) as well as more dynamic variables (e.g. battery state or number of
reachable neighbours).

Device
Job
Task

Update Q

Selected 

ActionAgent

Q Table

Reward

Received 

State

System  Perform 

chosen action

Figure 6.3.: Operational overview of learning agent using a Q-table to choose a new
action based on the current system state, while updating its policy based
on received rewards.

Composing the system state and action space are critically important steps in the
design of a learning agent, and we provide here the current implementation of ours.
This is not an exhaustive list of states or actions, and is specifically presented here as
an example of how we developed our system. Extending this to a different scenario,
set of devices, or even application case would require at least a partial redefinition or
expansion.

6.5.1. State-Action Decisions

The first stage in agent design is defining how the agent maps the current system state
to a chosen action. This can be done in a number of different ways, leading to different
policies being learnt. Each policy can then be used through an algorithm like epsilon-
greedy selection [228], where exploration (trying a new state to better explore the solution
space) and exploitation (using the learned policy to make a rational choice) is balanced
through a random probability to explore. Our approach involves two different options
for this: either storing explicit mappings in a table called the Q-table, or using a neural
network.

6.5.1.1. Q-table

The Q-table is a very simple approach for mapping each possible system state to its
opportune action. This requires the system state to be discretised, so that each state
refers to one row of the table as shown in Table 6.1. It shows a simple example where
two different actions are available, and the system state only has three options. For each
state-action combination, a value is stored that represents how beneficial that action
would be in the current state.

99



Chapter 6. Learning Intelligent Devices

State State Index Action 1 Action 2
State 1 0 0 +1
State 2 1 -1 0
State 3 2 +1 +2

Table 6.1.: Example Q-table with three discrete states and two possible actions, with
each state-action combination assigned a Q-value.

For example, when the device is in State 1, the Q-table suggests that Action 2 would be
more beneficial than Action 1 since its expected value is higher. As the agent learns, these
expected values (or simply Q values) are updated using Equation (3.2) to incorporate
any received rewards.
Using the Q-table in this way relies on keeping both the system state and the action

space limited, as introducing additional ones can cause exponential growth in the number
of elements to explore and store. Pruning offers a mitigation by using generalisation (i.e.
considering multiple states or actions to be equivalent) but it still does not overcome the
main limitation of Q-tables: What if a new state is encountered?
To address this shortcoming, deep Q-learning [159] offers an alternative where the

table is exchanged for a deep neural network. Section 3.5.4.1 describes how this works
and how researchers have been utilising it, but our initial objective with this work was to
show that even with a basic table one can design an agent capable of optimising device
behaviour.

6.5.1.2. Shallow Reinforcement Learning (SRL) Agents

The second option is to learn a neural network to choose an action to create a classifica-
tion policy (π′) which may be different to the one learnt by a Q-table (π). Its goal is to
reduce the state-space that needs to be learnt, since an individual value does not have
to be approximated for every state-action pair. Instead, it maps the same full system
state to the available actions using a neural network. This is beneficial since neural
networks are capable of generalising their input when the training data suggests they
are synonymous.
Designing the most appropriate network architecture can be part luck, part art and

part science. Due to the universal approximation theorem, we already know that it is
possible to approximate any non-linear function using a neural network [84]. However, a
certain amount of trial and error is still normally required, leading to having to perform
multiple iterations. The process normally consists of choosing an architecture, assigning
random weights and biases, and testing if it trains to adequate performance. This can
then be repeated until an overall performance is achieved.
An engineer has a few tools at their disposal when going through this process, such as

reinitialising non-converging networks, creating an ensemble of networks, or expanding
the architecture with more hidden layers. Firstly, reinitialising a network can help some

100



6.5. Agent Design

networks that get stuck in local minima and cannot recover. It has been shown that
certain initial conditions can stop a neural network from converging [84]. In this case,
simply reinitialising their weights and biases with new random values can allow them to
find a more opportune solution.

Secondly, an ensemble of multiple networks can be created in order to improve their
performance. By averaging out a number of well-performing networks, an even better one
can be created [92]. This can be a simple way to find a very high performing solution.
Alternatively, the best network can simply be chosen from every group, reducing the
impact of bad ones.

Lastly, a deeper network can be created by introducing more hidden layers. Although
this increases the number of tunable parameters and therefore the complexity of functions
it can approximate, there are a number of concerns with this approach. One problem
is that larger networks naturally require more training data to learn properly, which is
not available in some cases. A more important issue for us is that this increases their
memory and computational footprint, which is a large problem when designing energy-
efficient embedded devices. Practically speaking, this creates a hard limit to the size of
network that we can use.

Therefore, we focus on using SNNs (as introduced in Section 3.5.4.2) for our novel
Shallow Reinforcement Learning (SRL) agent. The network used by our agent is shown
in Figure 6.4, highlighting the single hidden layer. This being adequate is partially an
effect of using a classification-based approach instead of approximating every Q value.
We found that the network would otherwise fixate on unimportant minute differences
between losing actions, even though we are only interested in identifying the most ap-
propriate choice.

Sy
st
em

st
at
e

Relu

Relu

Relu

Relu

Relu

Relu

Relu

Relu

A
ct
io
ns

Figure 6.4.: Neural Network architecture for SRL agents. Input vector consists of the
current system state as a 1-Dimensional array. The neural network produces
a classification output that chooses the opportune action.

101



Chapter 6. Learning Intelligent Devices

To train our SRL agents, we need to “correct” its outputs during training. In a similar
way to Q-learning, we use the Bellman equation [228] to update the classification value
of the chosen action, incorporating the received reward. As before, this increases or
reduces the output value for that action and should over time stabilise to the “correct”
action decision. Note that this is not guaranteed to be a truly correct value, but simply
a best effort optimisation based on the training data provided. This training data is
primarily created using our simulator and analytical model, making it much easier to
experiment with different agents when compared to deploying each to a physical device
every time.

6.5.2. System State

Defining the system state is a very important step in the design, since it dictates what
information is available to the agent when choosing actions. Due to our requirements to
have a decentralised and realistically implementable system (see Section 6.3 and specif-
ically IREQIII: Realistic Implementation), this information must be available to the
agent when deployed on the embedded device. This may include internal variables such
as locally stored data, as well as measurable environmental data.
Each variable is stored in a one-hot binary encoding that is combined to form a 1-

dimensional array. This array (as shown in Figure 6.3) is then fed to the Q-learning al-
gorithm to decide the next action. A full example of such a state encoding is shown in
Figure 6.5, highlighting how the different states are combined into a single array that
describes the current state of the agent and its environment.

Energy Level A fairly universally important state is the current energy level of the
device, as it provides context for what behaviour is even possible. When the battery
is already critically low, the device should avoid actions that would require a long time
(and further energy costs) to pay off. Our system state includes a discrete battery state
that can easily be measured by the device (e.g. through the battery monitoring hardware
in the Elastic Node platform described in Section 4.5.2.3).

FPGA Configuration As the current configuration loaded onto the FPGA is vital for
completing a computational task, we consider whether a specific configuration is readily
available. Since reconfiguring to a different accelerator is very similar in energy and time
cost to loading a configuration from a cold start, this state is simplified to a logical flag
(“is the required configuration for the considered task already available”).

Job Queue Length Another important factor in optimising the behaviour of these
devices is their ability to efficiently batch jobs as discussed in Section 3.2. Therefore,
the agent should consider know how many jobs of a specific type have already been
queued. This can either be done using a basic low/medium/high level indicator as
shown in Figure 6.5, or a one-hot numeric encoding (one block per possible size).

102



6.5. Agent Design

0

0

1

0

En
er
gy

FP
G
A

1

0

Jo
b
qu

eu
e

0

0

0

1

0

0

0

1

1

0

Not configured

Configured

0

0

1

0

Low

Medium

High

Critical

Full

High

Low

Empty

Figure 6.5.: Example encoding of system state, showing a newly started device with a
full battery, non-configured FPGA, and no jobs in its queue.

These embody what we consider to be the minimal system state for effectively con-
trolling our heterogeneous devices. Expanding upon this provides the opportunity for
the agent to consider different things when making decisions, but also increases the
complexity of the decision-making process.

6.5.3. Action Space

As a further attempt to keep the complexity of our agent manageable, the action space
is limited to only a few discrete options. This does not aim to be a singularly perfect
agent design, but instead attempts to demonstrate that even under these limitations the
agent can perform effectively. Our action space is defined as the options that an agent
has when a new job arrives (either being created by this device or received from another
device).

Batching The first action that can be taken is to simply add it to the local job queue.
This is referred to as ‘batching’, as the primary purpose of this action is to create larger
batches for more efficient processing. An example of this action being taken is shown in
Figure 6.6, where the incoming job is simply added to a previously empty job queue.

103



Chapter 6. Learning Intelligent Devices

Offload

Batch

Local

Offload

Batch

Local

S0 S1A0 A1

Energy: 100
Queue: 0

Configured: 0

Energy: 98
Queue: 1

Configured: 0

Figure 6.6.: A flow diagram of an agent moving from one state to another, choosing an
action based on the current system state. In this example the agent chooses
to batch an incoming job, which slightly decreases the energy level of the
device.

Offloading Alternatively, an agent can choose not to perform a job at all, and instead
offload it to a neighbour. Conceptually this might either be a reasonable choice when
this device is not well-suited to performing this job (missing hardware or FPGA con-
figurations). Offloading a job then involves sending the metadata describing the job, as
well as the data required for processing it (similarly to the Tasklet system [210]). In
some applications (such as image processing) this can be a considerable energy expense
as a large amount of data needs to be transmitted [26].

Local Processing The final option is to locally start processing the job. This means
that the FPGA configuration either already needs to be in place or that it must reconfig-
ure before proceeding. The necessary data must also be offloaded from the MCU (where
jobs in the queue are cached) to the FPGA before it can be processed.

Heuristic Behaviour It is important to consider heuristic behaviour, which pertains
to actions and choices that are preprogrammed by the user. This may either be as an
optimisation step for limiting the number of state-actions (removing specific entries by
hard-coding an action-state pair) or as a practical measure that is either required or
assumed to be optimal behaviour. For example, we define that once a device starts
processing a batch, it will always finish processing its entire queue (consisting of a single
type of task). This is based on the energy costs involved in reconfiguring the FPGA to
that configuration, and the overhead introduced by reconfiguring it multiple times when
this can be avoided [52].
Since our devices have very limited local memory they can only store a finite number of

jobs in their queues. Therefore, the maximum number of jobs that can be queued can be
fixed at design time, after which point the device is forced to start processing (indicated

104



6.5. Agent Design

by a “Full” job queue in Figure 6.5). Lastly, a special graceful death behaviour is defined
to offload all remaining jobs when the battery power reaches a “Critical” energy level.
This is to ensure that all essential computational jobs get completed in the case where
a device fails.

6.5.4. Reward Functions

One of the most complex and critical parts of agent design is creating the right reward
function. This part in particular is generally an iterative process as suggested in Fig-
ure 6.1. We present here the reward functions for two different agents that we created,
with the aim of (1) illustrating the difference in their performance and learnt behaviours,
and (2) to provide insight into the process of imprinting the developer’s intent onto the
agents.

These were assembled through information that satisfy three important criteria as
prescribed by IREQIII: Realistic Implementation:

1. it needs to realistically be measurable by the device,

2. it needs to be available at runtime, and

3. should either encourage wanted or discourage unwanted behaviour.

Although multiple solutions can be found based on these rules, we set out to create two
understandable examples to demonstrate some of the capabilities offered by our system.
Our focus on easily available and useful on-device information directly drove our design.

The reward function for the first agent is given by

r = Rj +Re +Rd (6.6)

which consists of the job reward Rj , the energy reward Re and the death reward Rd.
The job reward is simply given by

Rj = Jbatch (6.7)

and scales with the number of jobs that have been finished (computed and returned to
their respective creator) as a part of this batch. The energy reward can be computed
with

Re = −E(Jn, di)

Ei
(6.8)

by using the energy from Equation (6.3) scaled with the initial energy of device di.
Note that this job energy cost is not computed during deployment using the analytical

model described in Section 6.4, but instead is directly measured on the device. Using
the internal power monitoring of the Elastic Node platform (see Section 4.5.2) this can

105



Chapter 6. Learning Intelligent Devices

be trivially and cheaply retrieved during normal operation of the device. This is very ac-
curate when compared to most power models, and much more dynamic in unpredictably
changing environments. Instead of relying on our small devices to constantly perform
expensive and complex energy predictions, they can simply measure the energy costs
directly.
Lastly, the reward function in Equation (6.6) includes the death reward given by

Rd =

{
−Rc, if di battery critical
0, otherwise

(6.9)

which uses the nominal critical reward Rc to discourage the device from going into the
graceful death state described in Section 6.5.3. This value was chosen experimentally to
balance typical reward sizes in Re and Rj , and represents how important it is for the
agent to avoid reaching a low battery state.
This reward function then describes our so-called “basic agent”, which aims to balance

performing jobs and avoiding using energy. In contrast to this, our “lazy agent” simply
uses the reward function

r = Re +Rd (6.10)

meaning that its objectives are simply to avoid using energy and the resulting device
failure. This demonstrates how easily the intent of an agent can be altered through the
reward function. This allows a developer to experiment with different agents to find one
that behaves in the way they want. The ratios of the different elements of this function
further provides the user the ability to prioritise one goal over another, providing a
further opportunity for fine-tuning.
Agents can be used either in isolation for comparison or together in a heterogeneous

environment where they are expected to cooperate. Parallels can be drawn between
biological systems such as swarm behaviour and computational scenarios such as a set
of drones that must balance system-wide goals (such as exploring an area) with personal
goals (such as saving energy).

We have introduced here a design for an agent that can learn how to control the
behaviour of the Elastic Node platform. By using reinforcement learning to train either
a Q-table or SNN, the agent can target high-level objectives as prescribed by the user.
Through a combination of a reward function and a system state, it is capable of not only
improving its performance over multiple episodes, but also to respond to sudden change
in the environment. Upon such a drastic change, it is capable of adjusting previously
learned behaviour to better suit the new environment and situation.
The possibilities of this are tremendous, since meticulously designing rule-based cost-

based behaviour is not always feasible. Especially when considering a highly dynamic
environment or system, these can also be infeasible or impractical. Instead, being able
to define the agent governing a complex device like the Elastic Node using high-level

106



6.5. Agent Design

objectives and goals allows for a greatly simplified development process. Combined with
an accurate analytical model and a self-aware device capable of retrospection and self-
evaluation, it gives a user the tools required for creating dynamic devices capable of
learning rational behaviour.

107





Chapter 7.

Evaluations

The Elastic Node has been introduced in this work as an FPGA-augmented smart IoT
device. It supports heterogeneous embedded applications through its software runtime,
and offers a hardware platform ready for experimentation. At this stage we need to
address our hypothesis from Section 1.1:

Connected and autonomic FPGA-augmented smart IoT
devices can use AI to optimise their behaviour.

This requires us to evaluate each phase of our work – investigating our smart IoT device
itself in Phase 1, the FPGA-augmented acceleration it supports in Phase 2, and its
optimisation AI in Phase 3.

Additionally, we need to ensure that each of our overall system (Section 2.4), platform
(Section 4.2), and learning (Section 6.3) requirements have been met. As a reminder, the
overall Functional and Non-functional system requirements that detail what the work
as a whole should achieve are

I (NF) Adequate Local Intelligence to Support Various Applications: Sup-
porting complex applications without depending exclusively on offloading requires
a certain level of local intelligence to compute it.

II (F) Automated Decentralised Cooperation Optimisation: The devices
should be able to cooperate autonomously with peers, working together to im-
prove their overall behaviour.

III (NF) High Energy Efficiency: IoT and other battery-dependent applications
demand careful usage of energy to maximise lifespans without compromising per-
formance.

IV (F) Convenient and Efficient Local Hardware Accelerators: Changing
between FPGA configurations (to either wake it from sleep or support multiple
accelerators in the same application) should be both quick and effortless for the
developer.

The other sets of requirements will be revisited throughout this chapter as relevant.

109



Chapter 7. Evaluations

Each phase of our project will now be evaluated in turn, starting with the design of
the Elastic Node platform itself in Section 7.1. Next, the local intelligence achievable
through the deployment of various hardware accelerators is evaluated in Section 7.2.
Lastly, the cooperation of various devices is evaluated in Section 7.3.

7.1. Phase 1: Elastic Node Viability

When designing the Elastic Node platform, the overarching system requirement in mind
was SREQIII: Energy Efficiency. It formed the foundation of the component choice,
leading our preference to the smallest and lowest power options available. The chal-
lenge then became ensuring that the device performance remained adequate for solving
useful tasks. Therefore, the balance between performance and power consumption was
absolutely critical.
Section 4.2 specifies the requirements that our Elastic Node platform should satisfy to

be viable as an experimentation platform for developing smart IoT devices. These are:

I Flexible Support for Real World Deployments: It should create a practical
and useful platform for running experiments in the real world.

II Dynamic In-field Accelerator Reconfiguration and Control: The platform
should provide support for changing and using a variety of different accelerators
at runtime, creating a flexible solution for a range of computational problems.

III Easy and Fast Accelerator Access: Offloading specific tasks to the accelera-
tor on the local FPGA should be both simple to do and not introduce excessive
overhead (both in resource consumption and time).

IV On-device Energy Measurements: Smart devices – specifically self-aware ones
– require a good understanding of the local system, calling for accurate and detailed
live energy monitoring.

V Easy and Low-overhead Accelerator Reuse: Both adoption and long-term
development convenience relies on making it easy to reuse and adapt existing
hardware accelerators.

Each of these requirements will be discussed here, even though some have already
been discussed in Chapter 4. For example, PREQIV: On-device Energy Monitoring was
demonstrated through the accuracy and convenience of the power monitoring hardware
and library in Section 4.5.2. Through a simple API, an embedded software developer
can retrieve the power or energy usage for any of the main components on the board.

110



7.1. Phase 1: Elastic Node Viability

7.1.1. Energy Consumption

Our requirements for a platform capable of performing realistic experiments (PREQI: Real
World Deployments) and SREQIII: Energy Efficiency make it important to consider its
energy consumption. In order for it to be useful for mobile or battery-powered experi-
ments, it needs to offer both low active and idle power consumption. We base our testing
on an assumption of a low duty cycle (where the device spends most of its time in idle
or using very little power), as is common in various different fields (e.g. Wireless Sensor
Networks (WSNs) [46, 88, 204]).

However, an active consumption above the capabilities of small batteries (e.g. small
LiIon batteries are designed to be discharged at roughly 164 mA or 600 mW for a typical
3.7 V cell, and some small LiPo ones at 300 − 340 mA) could cause reliability issues.
Batteries commonly are rated both for a maximum instantaneous power draw and a
nominal continuous discharge rate (which is commonly much lower).

ANN Power Consumption Firstly, let’s use the power monitoring data from Sec-
tion 4.5.2 to provide context into what class of device the Elastic Node platform is.
A breakdown of typical power consumption from different components is shown in Ta-
ble 7.1, illustrating the detailed multi-component monitoring – as these numbers were
all collected directly on the device and then verified using lab equipment such as an
oscilloscope. These values are collected from an Elastic Node v3, and illustrate the
consumption during a deep sleep, idle, and the active processing of an ANN HWF (as
demonstrated at PerCom 2018 [31]).

Component Sleep Power Idle Power Active Power
MCU 3.63 mW 11.78 mW 42.24 mW
FPGA 0 mW 36.93 mW 52.13 mW
Monitoring 2.5 mW 5.94 mW 40 mW
Wireless 3.4 mW 19.34 mW 89.17 mW

Table 7.1.: Typical power consumption for different components

Note that these are all steady state averages, and do not capture the dynamics of short-
term power consumption. For example, the FPGA reconfiguration power consumption
is known to be higher than the active processing power consumption [244]. This table
serves primarily to illustrate that the Elastic Node hardware platform can offer low total
device power consumption – in this case around 200 mW under active usage.

In this experiment, each component in the device can be in one of three energy states
(sleep, idle or active). Sleeping is defined as the lowest power state that can be recovered
from without outside influence (e.g. entirely off for the FPGA as it is controlled by
the MCU). Idle is the resting state that can be instantly woken up from without any
delay, while active is under full processing load. On the MCU and FPGA this is when
computing.

111



Chapter 7. Evaluations

It also shows that the monitoring logic uses less than 6 mW while collecting data
(idle) and only increases to 40 mW when it is returning the collected data to a computer
(active). Similarly, the 802.15.4 wireless module on the Elastic Node hardware uses less
than 20 mW when in idle, increasing to just under 90 mW when actively sending or
receiving data. This highlights the importance of minimising the transmission of larger
messages such as images or raw audio recordings.

CNN Power Consumption Similarly, we studied the per-component power consump-
tion of the Elastic Node hardware platform when deploying our CNN hardware accelera-
tor [191]. In this case, two different FPGAs from the Spartan 7 family were investigated.
Table 7.2 serves to show the differences when using the same accelerator in FPGAs with
different amounts of resources – since their consumption is dependent on how their
configurable logic is utilised [256].

Table 7.2.: Elastic Node hardware platform power breakdown
Component Idle Active S15 Active S25

MCU 2.3 mW 75.4 mW 78.8 mW
FPGA internal 0 mW 16.9 mW 26.6 mW
FPGA aux 0 mW 12.3 mW 18.8 mW
FPGA IO 0 mW 73.4 mW 74.6 mW

Total 2.3 mW 168 mW 198.8 mW

This shows that both the active and idle power consumption of our CNN accelerator
fit the limitations of small LiPo batteries. Based on a typical duty cycle of 10%, we could
expect a battery life of 16.4 days with an affordable 2000 mAh battery. This would be
adequate for experiments, especially if automated charging can be implemented. This
clearly indicates that we have addressed our PREQI: Real World Deployments, as the
Elastic Node can be used to perform realistic experiments on battery power, offering a
battery-life of more than two weeks.

Memory Hierarchy An important factor in designing energy-efficient heterogeneous
systems is how they utilise the available local memory. Apart from targetting the obvious
reduction of overall memory consumed and number of memory interactions, the memory
hierarchy can greatly impact the power consumption of a design.
We used a basic FIR filter accelerator to help us experimentally identify the best

memory architecture to use for the CNN use case [191]. This includes the decision of what
data is stored in volatile/non-volatile memory, and what type of memory technology is
used for each (see Section 5.2.2). In a rough order of fastest to slowest, this includes
LUTs, BRAM, external SRAM and external DRAM.
Firstly, we investigated the impact of using more BRAM in an accelerator in Figure 7.1.

The two impacted power rails were VCCINT and VCCBRAM , which both showed roughly

112



7.1. Phase 1: Elastic Node Viability

linear increase as larger buffers were implemented. This shows that relying on more
BRAM in your design will inevitably increase the power consumption, highlighting the
importance of optimising the amount of fast memory required. For example, the total
power increased by 14% when going from 2K to 8K 16-bit buffer size. This is a meaningful
difference, considering this power consumption increase will be in effect as long as this
FPGA configuration is loaded.

2 4 8
0

10

20

30

40

In-/output buffer size (K*16bits)

Po
w
er

(in
m
W

)

Power at the rail of VCCINT

2 4 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In-/output buffer size (K*16bits)

Po
w
er

(in
m
W

)

Power at the rail of VCCBRAM

Figure 7.1.: Power consumption at various buffer sizes in the BRAM

Next, another design option was investigated in the structure of the BRAMmemory. A
number of blocks of BRAM are distributed throughout the device, creating the choice of
either fully utilising fewer blocks or distributing it more across the device. Additionally,
this would change how the logic is routed on the FPGA, as more logic is used for routing
data to where it is needed.

The impact of using different sized blocks of memory to implement a total of 8Kb of
memory in BRAM is shown in Figure 7.2. Although less of an impact than using more
BRAM overall, using a single larger block of BRAM consumes more power than smaller
distributed blocks (up to 60% more power consumed by the BRAM when comparing a
single 8K block to four 2K blocks, but only a 7% total power increase). We hypothesise
that this is due to the simplified (and shorter) routing possible when using smaller blocks,
since the data can be located closer to where it is needed. This likely reduces the overall
utilisation of the PL of the FPGA, reducing overall power consumption.

Lastly, we compared the power usage of using volatile memory in the form of BRAM
to non-volatile memory such as LUTs. Note that this is not a free choice in many applica-
tions – e.g. our ANN accelerator where weights and biases are updated through training
and therefore cannot be stored in non-volatile memory as they cannot be easily updated
during runtime. However, it is important to study the impact of using the different types
of memory so the design can be optimised for speed (as LUTs are considerably faster

113



Chapter 7. Evaluations

4x2K 2x4K 1X8K
0

10

20

30

40

In-/output buffer size (K*16bits)

Po
w
er

(in
m
W

)

Power at the rail of VCCINT

4x2K 2x4K 1X8K
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In-/output buffer size (K*16bits)

Po
w
er

(in
m
W

)

Power at the rail of VCCBRAM

Figure 7.2.: Power consumption when utilising various different structures of BRAM
buffer

than BRAM) or power efficiency.
The results are shown in Figure 7.3, providing the total power consumption when using

either LUTs or BRAM for various memory sizes. When using more than 1000 words of
memory, both options increase roughly linearly with LUTs using roughly 2.3 mW more.
This is not a tremendous increase, but with longer active times or larger amounts of
memory utilisation the difference could become meaningful (especially if the BRAM has
to remain active throughout to hold its data).
Interestingly, for lower memory utilisation the LUT offers a lower power consumption.

Only when reaching 500 words of memory does the BRAM win the power comparison.
It may appear somewhat strange that the consumption does not change drastically when
using 100 to 2000 words of BRAM, but this is simply because the entire chunk fit into a
single block of BRAM. Therefore, one may assume that the small discrepancy in usage
is dependent not on the memory usage itself but on the routing or controlling logic.
When utilising more than 2k 16-bit words, multiple banks of BRAM are required and
the usage becomes more linear.

7.1.2. Accelerator Switching Latency

Switching from one HWF to another introduces not only latency in the execution of
the application, but also causes energy loss due to overhead. Therefore, it is important
to minimise this time and thereby make the system more responsive and adaptive to
change. We evaluate PREQIII: Easy and Fast Accelerator Access, SREQIV: Convenient
and Efficient Local Accelerators and PREQII: In-field Reconfiguration and Control here
by studying the activation and configuration switching time of our FPGA. This repre-

114



7.1. Phase 1: Elastic Node Viability

0 500 1000 1500 2000 2500 3000 3500 4000
252

254

256

258

Buffer size (N*16bits)

Po
w
er

(in
m
W

)
Power using LUTs
Power using BRAM

Figure 7.3.: Power consumption for various sized buffers in either BRAM or LUTs, show-
ing that LUTs are more efficient for buffers smaller than 500 while BRAM
is more efficient for larger sizes

sents the latency introduced when wanting to offload computations to an unavailable
HWF. Note here that the required FPGA configurations are assumed to already be
locally available on the device’s flash memory, otherwise additional latency would be
introduced as the required configurations are downloaded OTA.

The results are presented in Table 7.3, providing the time required for loading an
FPGA configuration in various ways on the Elastic Node v3. Firstly, the start-up and
online switching times are shown to be identical. These describe the latency when
loading the initial image from a cold boot (e.g. when changing out of the sleep state)
and using the on-board Internal Configuration Access Port (ICAP) interface provided
by Xilinx [262] to switch from one active configuration to another. They introduce the
same delay since the time is dictated by the time taken to read the new configuration
from the local flash memory by the FPGA – which happens at a known and static clock
frequency.

Activity Latency [ms]
Start-up 94.32
Online switch 94.32
Software Multi-boot 207.45
MCU direct 7150

Table 7.3.: FPGA accelerator switching latency

Software Multi-boot is another alternative, and involves loading an initial generic

115



Chapter 7. Evaluations

configuration in order to load a specific one from an arbitrary location in flash. In this
method, the FPGA is started from a cold boot and loads its initial (smaller) configuration
file from location 0 in the flash. Then, an online switch is requested from the implemented
ICAP module through the Elastic Node middleware, and the FPGA performs a restart
to load this second configuration.
Note that this is not the only way to load a specific configuration from a cold start.

However, this final method requires flash memory to be shared between the FPGA and
the MCU (as is available on the Elastic Node v4), as the MCU alters the initial boot
flash location from the default 0 to the location of the requested configuration. This
achieves identical latency to ‘start-up’, but is not available on all platforms as it requires
complex SPI multi-master sharing where a single flash storage chip is accessible from
both the MCU and the FPGA.
MCU serial is included for completeness, and refers to loading a configuration to the

FPGA directly from the MCU through the SelectMAP interface. This involves reading
it from flash (or receiving it from a PC via USB), and relaying it to the FPGA. It is
considerably slower than the other methods, but could be the only viable option when
the flash storage is not directly accessible to the FPGA.
We consider an accelerator switching latency of less than 100 ms to be adequate (es-

pecially since it is largely limited by the hardware capabilities of the FPGA and SPI
interface). Therefore, the speed requirements of PREQIII: Easy and Fast Accelerator Ac-
cess as well as SREQIV: Convenient and Efficient Local Accelerators are satisfied through
the latency shown here. Simultaneously, PREQII: In-field Reconfiguration and Control
has clearly been addressed, since the device can switch between numerous hardware
accelerators available on local flash storage at runtime.

7.1.3. Elastic Node Middleware Resource Overhead

The resource overhead introduced by our software and abstraction layers should be
closely studied. The FPGA resource usage of the middleware and skeleton in particular
are of great concern, as this reduces the amount of resources that remain available to the
accelerator itself. This is related to SREQI: Local Intelligence, since excessive resource
overhead in the middleware affects the device’s ability to deploy complex hardware
accelerators. To evaluate this, we created special matrix multiplication HWFs that
provide insight into the overhead introduced by various parameters.
By varying the size of the matrices, we can directly change the size of the HWF created,

and see how that impacts the FPGA resource overhead introduced by the middleware
and skeleton. Firstly, we see the increase in LUT usage in Figure 7.4 that is brought
on by the increased complexity of the skeleton. For every additional element in the
input matrices, the incoming address needs to be compared with another option in the
skeleton.
Similarly, the slice registers that are used for buffering the input for the HWF increase

as shown in Figure 7.4. This overhead is even smaller than the LUTs, maxing out at

116



7.1. Phase 1: Elastic Node Viability

2 4 6 8 10 12 14 16
0

5

10

15

Matrix HWF size

R
es

ou
rc

e
%

LUTs

Middleware
Skeleton
HWF

2 4 6 8 10 12 14 16
0

2

4

6

Matrix HWF size

R
es

ou
rc

e
%

Slice registers

Middleware
Skeleton
HWF

2 4 6 8 10 12 14 16
0

50

100

Matrix HWF size

R
es

ou
rc

e
%

DSP

Middleware
Skeleton
HWF

Figure 7.4.: Lookup table, slice register, and DSP usage of different system components,
demonstrating that most of the resources are available to the HWF itself

only 5% for an input matrix size of 17.
Lastly, the DSP usage is shown in Figure 7.4 – highlighting that all of the available

117



Chapter 7. Evaluations

resources are provided to the HWF being implemented. It also shows that the usage
increases linearly with larger matrices, plateauing after 16. This is reflected in the LUT
graph, where the final data point for the HWF spikes.
This causes the strange usage numbers in LUTs and DSP slices for input matrix sizes

of 16 and 17. When the synthesizer does not have enough DSP resources available to
implement all of the required logic (100% is already used by the HWF at input size 16),
it falls back to using the less efficient (and slower) LUTs. This explains why at larger
input sizes than 15 (where the complex computations still fit in available DSPs), the LUT
usage changes sharply. The decrease in skeleton LUT usage can likely be attributed to
those buffering resources being integrated into and combined with the now LUT-based
computations.

This shows that the FPGA overhead is minimal, not causing issues for this HWF even
at larger input sizes. This is dependent on the specific HWF, as it will require a different
skeleton as discussed in Section 4.4.2. Considering these measurements are collected on
an Elastic Node v3 with a Spartan LX9, the later versions of our platform would see
lower relative overhead as larger HWFs are supported and therefore a lower percentage
of their resources should be utilised by our deployed middleware or skeleton.

7.1.4. Development Complexity
In order to assess the convenience part of PREQIII: Easy and Fast Accelerator Access,
one must consider the usage pattern of our Elastic Node middleware. We do this here
by providing a number of examples of its usage, focussing on the API provided as well
as the development overhead involved in ensuring compatibility.
As has been done in a number of our publications [32, 33, 211], we present here exam-

ples of the simplified programmatic access using code listings and message sequence
diagrams. These include MCU-side stubs and applications written in C, generated
FPGA-side skeletons, and IDL definitions.
The objective of our software runtime is to simplify

1. accelerator reuse and access, and

2. management tasks including FPGA control.

Through that, the workload of both hardware accelerator and embedded systems devel-
opers should be lightened. By minimising work duplication and development overhead,
the reuse of optimised accelerators is encouraged and simplified (as stated in PREQV: Ac-
celerator Reuse).

7.1.4.1. Using Elastic Node Runtime

As an example, let us consider the final usage API for our ANN HWF. This design
was adapted from the larger design created during the FiPS project [50, 75] for the

118



7.1. Phase 1: Elastic Node Viability

considerably larger Virtex FPGA [87]. However, the interface of the accelerator as
shown in Figure 7.5 remained the same, minimising the system integration effort.

HWF

clock 

reset 

dataReady start 

data in  data out

control 
HWF specific 

skeleton control 

generic control

Figure 7.5.: Interface overview of ANN HWF

This shows that the actual interface of our ANN HWF consists of only 7 connections.
Two of these are generic control, two are skeleton control, and the remaining three are
HWF specific. The learn input in this case switches between a inference query and a
training run, while the data in and data out provide the input data to the network
and returns the resulting classification in turn. The generic part of the interface (clock
and reset) are present on practically every synchronous HWF, while the start and
dataReady identifies the skeleton type.

The primary development task for integrating a HWF like this into the Elastic Node
platform is to create its IDL representation. Although this is currently a manual pro-
cess, it enables the automated generation of both the stub and skeleton. By using the
Extended Backus-Naur Form (EBNF) definition as provided in Appendix A, the API of
the HWF can be written down in an intuitive and standardised way.

As a qualitative evaluation of the IDL created, consider the API for the ANN HWF
shown in Figure 7.5. It consists of a number of single bit inputs and outputs (e.g. clock,
reset, dataReady), and vector-based values such as data in and data out. Each of these
need to be mapped in the IDL description to a VHDL and C compatible interface line.
This is done in Listing 7.1, which describes how each bit and u8 (8-bit wide vector) is
defined in the skeleton. For reference, the full VHDL entity description is provided in
Appendix B.1.

Code Listing 7.1.: IDL description for the ANN HWF

1 configuration NeuralNetwork_example:
2 mcu:
3 wordsize = 8
4 addresswidth = 16
5 endianness = little

119



Chapter 7. Evaluations

6 activestate = high

7 function NeuralNetwork:
8 hdl = vhdl
9 endianness = little

10 activestate = high
11 type = oneshot
12 library = work
13 implementation = Behavioral
14

15 bit clk -> clock
16 bit reset -> reset
17 bit start -> start
18 bit learn -> ctrl_in
19 u8 connectionsIn -> data_in
20 u8 wanted -> data_in
21 bit dataRdy -> done
22 u8 connectionsOut -> data_out

In this example, an Elastic Node v4 is being used (see Appendix D). The MCU
employed is an 8-bit AVR that has a 16 bits external memory address interface. Note
that indentation is optional and only aids to increase readability. Based on the discussion
in Section 4.4.2 we can identify this as a simple one-shot interaction. This means that
the HWF can be interacted with using a simple blocking function call, for example

Code Listing 7.2.: Simplified API calls to the ANN HWF in a generated stub

1 uint8_t annTrain(uint8_t wanted)
2 {
3 neuralnetwork_set_learn(1);
4 neuralnetwork_set_wanted(wanted);
5 neuralnetwork_set_start(1);
6 while (!neuralnetwork_query_dataRdy())
7 continue; // wait for hwf
8 return neuralnetwork_query_connectionsOut();
9 }

which neatly hides the complex internal control logic. By including the wait for the data
ready signal inside the stub call, a synchronous stub is created for the programmer to
use. Only the data interface is presented to the user, while the interaction specifics are

120



7.1. Phase 1: Elastic Node Viability

defined in the IDL, and impact the internals of the generated stub and skeleton. For
further clarity, the full stub and skeleton are shown in Appendix B.

Alternatively, an asynchronous interface could be created using

Code Listing 7.3.: Asynchronous API call to the ANN HWF

1 void (*annCallbackDelegate)(uint8_t);

2 void annTrain(uint8_t wanted, void (*annCallback)(uint8_t))
3 {
4 neuralnetwork_set_learn(1);
5 neuralnetwork_set_wanted(wanted);
6 neuralnetwork_set_start(1);

7 annCallbackDelegate = annCallback;
8 }

9 void annDataRdyInterrupt(void)
10 {
11 (*annCallbackDelegate)(neuralnetwork_query_connectionsOut());
12 }

which exposes the callback to the user. Instead of blocking the stub call until the result
is available, the initial stub call stores a callback through a function pointer and returns
the execution flow to the MCU application. When the interrupt function is called via an
Interrupt Service Routine (ISR) registered to the data_rdy pin in the HWF interface,
the provided callback is called – allowing the user to receive the data as soon as it
becomes available.

Listings 7.2 and 7.3 shows two different ways to interact with the HWF to perform a
training run. In each example, only a single run is performed, which is commonly very
inefficient (see the discussion on batching in Section 3.2). However, different abstractions
can be created that utilise the stub API. For example, when multiple training runs need
to be performed in quick succession, the set_learn function can be omitted between
calls and the output does not have to be retrieved using query_connectionsOut.

These examples demonstrates how simple offloading computations as complex as train-
ing an ANN can be. By exposing only the header shown in Listing C.2, the complexities
are managed by the Elastic Node middleware and remain hidden from the user.

7.1.4.2. Without The Elastic Node Runtime

To provide context, consider the interaction scheme without the abstractions provided
by the Elastic Node middleware. As covered in Section 4.3.2, one alternative would be

121



Chapter 7. Evaluations

a message-based system. The abstractions provided are highly dependent on the system
used, as it could even provide a similar API to the Elastic Node runtime for creating
and decoding the messages required.
A large advantage of using the Elastic Node middleware for offloading tasks is that it

uses minimal boiler plate code, and does not rely on a special programming language.
For example, the Message-Oriented Middleware (MOM) Tasklet offloading mechanism
developed by Schäfer et al. [209, 210] uses C-- – a subset of C with additional boiler plate
code for defining the behaviour of each task. Although this assists system optimisation,
it creates substantial overhead for developers to reimplement their source code in the
project’s special programming language.
Instead, the Elastic Node runtime aims to provide thin adaptation layers for connect-

ing existing hardware accelerators with the embedded application. This is done through
the generated stub-skeleton abstraction, while requiring only the interface description
in the provided IDL format. While minimising work redo, this relies on the hardware
accelerator developer to optimise their designs for smaller embedded FPGAs.
To demonstrate, consider the functionality being abstracted by the annTrain func-

tion in Listing 7.2. Most heterogeneous systems rely to some extent on populating a
specified area of memory with the needed data: whether that is demarshalling the data
in a middleware, populating a message in a MOM, directly interacting through shared
memory in a SoC approach, or even setting remote variables in a memory-mapped bus
system.
In each of these cases, we would assume that the relevant pointers have been defined.

This leads to the manual version (annTrainManual) shown in Listing 7.4, which would
require the manual definition of each used pointer value. It also still requires the full
definition of a skeleton on the FPGA, which can be a large development effort (as can
be seen in the generated skeleton in Appendix C).

Code Listing 7.4.: Manual memory interactions version of ANN HWF

1 uint8_t annTrainManual(uint8_t wanted)
2 {
3 *NEURALNETWORK_CTRL_IN |= _BV(NEURALNETWORK_LEARN);
4 *NEURALNETWORK_WANTED = wanted;
5 *NEURALNETWORK_CTRL_IN |= _BV(NEURALNETWORK_START);
6 while ((*NEURALNETWORK_CTRL_OUT & _BV(NEURALNETWORK_DATA_RDY)) ==

0)↪→

7 continue; // wait for hwf
8 return *NEURALNETWORK_CONNECTIONS_OUT;
9 }

Instead of communicating via this memory-mapped interface, one could also use al-
ternatives such as direct pins. Although this would work well for simple binary-based

122



7.2. Phase 2: Hardware Accelerator Optimisation

HWFs (e.g. a binary input ANN), other data-driven ones would be very inconvenient
to implement. When sending either memory chunks (e.g. strings or images) or real
numbers (either fixed or floating point) this would require a manual interface definition
on the HWF to describe how the data is transferred.

While this covers the data interaction for operating the HWF, numerous other features
are provided by the Elastic Node runtime. These include FPGA control to turn its
power on and off, and to deploy different HWFs as they are required. This is difficult to
compare with and without our system, as the support functionality is found throughout
the middleware – both on the MCU and FPGA.

For example, switching the active configuration on an FPGA is done entirely trans-
parently in our system (through an ensureConfigurationPresent function called im-
plicitly with every stub), but requires a number of distinct functional steps. Not only
does one need to manage and send the address where each configuration is stored in the
non-volatile memory, loading a specific configuration from flash requires either a special
FPGA configuration or MCU code that controls the booting through an interface like
JTAG [262] (see Section 4.3.2).

7.2. Phase 2: Hardware Accelerator Optimisation

Creating an appropriate hardware accelerator for use in the Elastic Node platform can
be broken up into two steps:

1. Create an architecture in an appropriate way to fit limited resource FPGAs, and

2. Optimise the design to improve performance and power efficiency.

By considering three HWFs that we created in Chapter 5 – namely the ANN, CNN, and
IPCA – we have shown various ways that these two steps can be accomplished. All three
of these examples were shown to be applicable to highly resource constrained devices
when utilising the variety of optimisations presented.

What remains is to evaluate how well these optimisations worked based on our system
and platform requirements. Specifically, we are addressing SREQIII: Energy Efficiency by
improving both the performance and energy usage of our accelerators, and SREQI: Local
Intelligence through improved computational tools used to create a smart IoT device.

Due to the importance of correctly representing real numbers in hardware acceleration,
Section 7.2.1 focusses on optimising fixed point representations. After that, the impacts
of other optimisation techniques discussed are evaluated in Section 7.2.2. Next, the
latency models we created are verified in Section 7.2.3 to ensure their accuracy and
usefulness. Lastly, we revisit the use case presented in Section 2.1.1 to investigate the
Elastic Node’s capacity to perform facial detection on an autonomous drone or UAV.

123



Chapter 7. Evaluations

7.2.1. Optimal Fixed Point Representation

The CNN HWF we created [35] is highly optimised for resource efficiency. This is par-
tially due to the careful management of the fixed point representation (Qm.f) used
throughout the system. This provides developers using the HWF a configurable param-
eter for balancing accuracy with reduced resource usage, since larger number represen-
tations invariably require more FPGA resources.
The relationship between fixed point representation and CNN accelerator accuracy is

shown in Figure 7.6, where we compute the model accuracy, recall, and F1 score (which
combines the precision and recall) for each different representation. Particularly the
number of bits used for the fractional part directly impacts the computed results of the
CNN when compared to a full floating point representation. This also highlights the
diminishing returns when using more than 6 bits for this particular dataset (the MIT-
BIH Arrhythmia database [162]), suggesting that more than 8 bits would be wasteful.

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

Fixed Point Fractional Bits

Pe
rc

en
ta

ge

accuracy
recall
f1

Figure 7.6.: Accuracy, recall, and F1 score for various fixed point representations

As highlighted in Section 5.3.2, the objective of this use case was to convert a standard
TensorFlow CNN model to be compatible with the Elastic Node. The model in question
consists of two 1D convolution layers (with 16 filters and a kernel size of 7) with max
pooling layers in between. It also includes a global average pooling layer and a single
dense layer for the classification output.
This is further investigated in Figures 7.7 and 7.8, where different resources’ con-

sumption are plotted as the fixed point representation is altered. This is done for three
different FPGAs in the Spartan 7 family, showing how each device’s resource consump-
tion is affected.
An interesting behaviour is seen with the S15 for representations from Q14.28 to

Q18.36, where the number of DSP slices plateau. This represents a numerical bitwidth
of 42 to 54, which we believe can all fit into the same MAC computations available in
the DSP slice of the Spartan 7 family.

124



7.2. Phase 2: Hardware Accelerator Optimisation

(8, 20) (12, 24) (14, 28) (16, 32) (18, 36) (20, 40)

20

40

60

80

100

Fixedpoint representation

D
SP

U
til

isa
tio

n
(in

%
)

S15
S25
S50

Figure 7.7.: Impact of fixed point representation on DSP consumption of various FPGAs

This type of behaviour can be very difficult to predict, since the synthesis tools perform
a number of optimisation steps based on the mathematical function being implemented.
For example, since each operation’s resulting representation is the same as the input
(instead of having both the number of fractional and integer doubled) the tools can
discard a number of result bits – or in fact not compute them in the first place. This is
both one of the more complex and beneficial parts of designing custom hardware archi-
tectures to solve mathematical problems – very fine-grained and difficult to understand
optimisations can be made.

It should be noted how low these resource consumptions are for an accurate CNN
hardware accelerator. This was possible due to the memory configuration previously
mentioned, as well as architectural optimisations like combining multiple layers into the
same pipeline, and fine-tuning the fixed point logic representation. Although it can be
seen that the S15 relatively uses more than 4× as many DSP resources as the S25 or S50,
comparisons between different devices is not particularly useful. These graphs should
instead be used to:

1. Find the smallest FPGA where a specific parametrisation (fixedpoint representa-
tion) will fit in order to minimise power consumption and cost, or to

2. Study the trade-offs for a specific device between two parameters (i.e. what is
the resource cost for moving from Q14.28 down to Q12.24 vs up to Q16.32) to
fine-tune chosen parameters.

The resulting hardware accelerator design was used to create a highly accurate power
estimation to further ease the development process. Each option is synthesised and
implemented for differently sized FPGAs as shown in Figure 7.9.

125



Chapter 7. Evaluations

(8, 20) (12, 24) (14, 28) (16, 32) (18, 36) (20, 40)

10

20

30

40

Fixedpoint representation

LU
T

U
til

isa
tio

n
(in

%
)

S15
S25
S50

Figure 7.8.: Impact of fixed point representation on LUT usage of various FPGAs

These power estimates demonstrate the complex power characteristics of different
FPGA models and configurations. In simple terms, the power usage of an FPGA consists
of static and dynamic power [191]. The static power mostly depends on the FPGA model
chosen, while the dynamic power is dependent on the configuration deployed in its PL.
Figure 7.9 demonstrates the cost of having larger fixed point representations. Since

they require more logic and more DSP slices (each slice can only process a certain number
of bits – in the case of Xilinx 7 series it can perform an 25×18 bits wide multiplication),
the dynamic consumption of the resulting configuration increases almost linearly. When
increasing the representation from Q8.20 to Q20.40 (28 to 60 bits total) the power
increases linearly for 31 mW to 45 mW for the S15, while the S50 increases from 82mW
to 93mW. It is interesting to note the decrease in power for the S15 and S25 from Q14.28
to Q16.32, which we hypothesise is due to simplified logic or routing due to how the
mathematical operations fit into available DSP slices.

7.2.2. Common Hardware Design Techniques

In this section we evaluate the design optimisations presented in Section 5.2 as they
contributed to making our IPCA HWF viable on low-powered reconfigurable hardware.
This is done by evaluating the feasibility of the final design, and comparing it to other
designs from literature (where these optimisations have not all been applied).

Resource Consumption To start, we study the resource consumption for designs of
our IPCA HWF with various input matrix sizes. Table 7.4 presents this directly in
the absolute numbers of resource units required for FPGAs from the 7 Series from

126



7.2. Phase 2: Hardware Accelerator Optimisation

(8, 20) (12, 24) (14, 28) (16, 32) (18, 36) (20, 40)
30

40

50

60

70

80

90

Fixedpoint representation

To
ta

lP
ow

er
(in

m
W

)

s15
s25
s50

Figure 7.9.: Power consumption estimate for different fixed point representations on var-
ious Spartan 7 FPGAs

Xilinx. This is done since all FPGAs from this family offer identical resources in different
quantities, providing a good indication on the device size required for each matrix size.

Table 7.4.: Synthesis results for Xilinx-7 Series FPGAs in absolute numbers

Matrix width Logic Cells Flip-Flops DSP Slices

4× 4 3,940 1,497 15

8× 8 11,616 5,548 45

16× 16 36,165 21,612 153

For example, the number of DSP slices required limits which FPGA is required to
instantiate certain matrix sizes. The smallest Spartan 7 available (the S6) only offers
10 slices [266], and therefore would not support any of the options shown. However,
the next size (the S15) offers 20 slices and therefore would support the 4 × 4 matrices,
but not 8× 8. This creates a simple first step mapping between application complexity
(matrix size) and the size of FPGA required.

However, the absolute numbers of resources required in isolation can be difficult to
interpret. Therefore, we present in Figure 7.10 the comparable numbers of other solu-
tions from literature. The most relevant approaches that provided their resource and
power usage numbers were those by Guerrero-Ramírez et al. [89] and Korat and Alimo-

127



Chapter 7. Evaluations

hammad [121]. Both of these are hardware architectures designed for solving PCA using
QR, but are limited by their dependence on the CORDIC algorithm.

4× 4 8× 8 16× 16
0

20,000

40,000

60,000

80,000

100,000

Covariance matrix size

# Logic Cells

4× 4 8× 8 16× 16
0

200

400

600

800

1,000

1,200

Covariance matrix size

# DSP Slices

[[ Image Discarded Due To `/tikz/external/mode=list and make' ]]

Figure 7.10.: Comparison of the resource utilization of similar approaches in related work

The number of logic cells and DSP slices are compared in Figure 7.10, as we found
them to commonly be the limiting resource on these small FPGAs. It is important to
note that the two alternatives used for comparison are designed for considerably larger
and more expensive FPGAs: the architecture from Guerrero-Ramírez et al. is aimed
at the Altera Stratix IV[89], while the one from Korat and Alimohammad targeted the
Zynq ZC702 [121].
In contrast to this, our design is specifically designed to operate on small and cheap

embedded FPGA families such as the Spartan and Artix families. Therefore, Figure 7.10
highlights the drastically reduced resource requirements offered by our design. While the
other solutions require around 1000 DSP slices to solve 16× 16 matrices, ours manages
with fewer than 200.
The power savings of using a smaller FPGA can be clearly seen in Table 7.5, where

the implemented power costs for FPGAs from different Xilinx families are shown. All
of these networks are aimed at 16× 16 eigensolvers, offering between roughly 1.2 W and
1.4 W total device power draw.
The mild variations visible between them is due to the varying placement and routing

of signals based on their different sizes, and each FPGA’s specific overhead (static power
usage). Although the other solutions from literature do not offer accurate power usage
numbers, the FPGAs they use commonly require at least a few Watts for operation.

128



7.2. Phase 2: Hardware Accelerator Optimisation

Table 7.5.: Implementation results for matrix size 16× 16

Target LUT FF DSP Power [W]

Spartan-7 XC7S100 49% 17% 96% 1.402

Artix-7 XC7A100 49% 17% 64% 1.379

Artix-7 XC7A200 23% 8% 21% 1.238

Kintex-7 XC7K70 76% 26% 64% 1.425

Kintex-7 XC7K160 31% 11% 26% 1.214

Since our IPCA HWF design is supported by considerably smaller and lower power
FPGAs, one can safely assume that we offer lower power consumption.

Performance The model for our IPCA HWF requires the clock frequency of the design,
as well as the matrix width and the configurable iterations until convergence (which is
primarily dependent on the size of the lookup table developed in Section 5.2.5). There-
fore, we used the implemented FPGA architecture for every matrix size to retrieve the
maximum possible clock speed on each FPGA.

The result is shown in Table 7.6, showing that the slowest maximum speed is from
the Spartan FPGA (XC7S100) which offers 220 - 239 MHz. Higher end devices such
as the Artix (XC7A100) or Kintex (XC7K70) are capable of higher rates, culminating
in the 339 MHz possible when implementing the 4 × 4 matrix on the Kintex device.
This increased clock offers 54% higher throughput than the Spartan FPGA, primarily
because the Kintex family is designed for faster signal processing rather than lower cost.

Table 7.6.: Maximum operating frequencies in MHz depending on the matrix width

Target
fmax matrix width

4 × 4 8 × 8 16 × 16

XC7S100 239.01 228.31 219.11

XC7A100 265.75 237.87 237.98

XC7K70 339.90 272.18 252.46

EP4SGX230 [89] 235.32 220.15 201.35

To compute the latency for processing an incoming matrix, these frequencies are com-
bined with Equation (5.18) from Section 5.2.6. This provides the time required to feed a
matrix into our design, which both trains and queries the existing IPCA model. These

129



Chapter 7. Evaluations

latencies are shown in Figure 7.11, where they are compared with the solution from
Guerrero-Ramírez et al. [89] and a mainstream desktop CPU.

4 8 12 16
0

50

100

150

200

250

Matrix width

T
im

e
[µ

s]

SGR-QR (ours)
Guerrero-Ramírez et al. [89]

Ryzen 7 3800X

Figure 7.11.: Time in µs required to compute a single eigenpair of different matrix sizes,
based on theoretical throughput of each solution (solutions/s).

The results shown in Figure 7.11 are based on each implementation’s solutions/s
metric, indicating how many full sets of eigenvalues and eigenvectors can be computed
per second. For the solution from Guerrero-Ramírez et al., this is based on the number of
steps in the QR solution, the number of fractional bits computed, and the matrix width
itself. This result is more linear than ours, as we also consider the maximum frequency
possible for each matrix size. The software solution is measured experimentally using
the LAPACK1 eigensolver.
It is important to note here that the competing FPGA solution is again implemented

on a Stratix IV, while ours is on the considerably lower end Spartan 7 FPGA. The
CPU solution is operating on the 105 W Ryzen 3800X, but is severely limited since
these solutions are commonly O(n3) while our solution is O(n). Additionally, software
solutions are commonly single-threaded [190].
This result highlights that although the resulting latency of all three these options

increase linearly, the time required to process a single matrix on our system is consistently
lower. It performs faster than the competing solution from Guerrero-Ramírez et al. for
every width matrix, and is only outperformed by the sequential CPU-based solution for
the smallest 4 × 4 matrices. As the matrix size increases, the improvement offered by
our solution becomes more apparent, offering 16 × 16 matrices at a similar speed than
the other FPGA solution processes 4× 4 and the CPU solves 8× 8.

1http://www.netlib.org/lapack (last visited: 2021-12-13)

130

http://www.netlib.org/lapack


7.2. Phase 2: Hardware Accelerator Optimisation

This clearly shows the benefit of the hardware architecture design optimisations ap-
plied to our IPCA hardware accelerator. The drastically lowered resource requirements
allow the usage of considerably smaller and lower power FPGAs, while the high compu-
tational performance allows it to outshine the competition.

7.2.3. CNN Latency Model Verification
Using the latency model developed in Section 5.2.6, we can calculate the processing
speed and resulting latency for training and querying our CNN HWF. What remains at
this stage is to verify that these models offer accurate estimates.

The inference latency formula created in Equation (5.4) can be used to estimate the
time taken for performing a single query through the system. Since the design depends
on the reuse of implemented neurons through on-demand loading of weights and biases,
it cannot be effectively pipelined. Therefore, the latency scales linearly when doing
multiple queries.

To verify our latency model is accurate, we deployed our CNN hardware architecture
to the Elastic Node v4. Using the readily available clock sources on the board (32 MHz
and 50 MHz), the comparison between the latency estimated using the model and the
real-world experiments are shown in Figure 7.12.

32 MHz 50 MHz
0

2

4

T
im

e
(in

m
s)

Estimated
Measured

Figure 7.12.: Comparison of the latency model of our CNN HWF with real world exper-
iments

This shows that the model can accurately predict the actual latency within a 4.2% er-
ror, which can be attributed to the overhead involved in exchanging data and commands
with the architecture. The benefit of having such an accurate latency estimate mate-
rialises when designing for specific application requirements. Especially if this includes
real-time deadlines, it allows the developer to easily compute the maximum network
size that can be implemented given a specific clock rate, or alternatively sets a mini-
mum clock requirement given an existing TensorFlow model that needs to be deployed
- assisting the choice of FPGA used.

131



Chapter 7. Evaluations

7.2.4. Incremental PCA Facial Detection Use Case
We also need to evaluate the validity of the real-world use case of facial detection on
UAVs introduced in Section 5.3.3. When operating in a Fully Autonomous Aerial System
(FAAS), they essentially act as data sources for the computation happening on edge and
data centre servers [26]. Since they commonly operate under strict energy limitations
due to their dependence on battery power for both processing and locomotion, their
processing capabilities can be very limited.
Therefore, other approaches rely either exclusively on offloading [27] or on taking

shortcuts to simplify the processing task. Some examples of this from literature is using
downsampling (5−12 Frames Per Second (FPS)) and compressing tiny images (17 FPS)
so they can be used as input for neural networks [24, 81]. These both carry the danger
of losing critical information that only occur in small regions of the input images, but
when the only alternative is offloading (which can be very energy expensive and take in
the order of seconds [27]) it may be unavoidable.
Our solution [36] suggests an alternative approach, where key images are identified

through the facial detection algorithm. This then acts as a preprocessing technique that
reduces the number of images that need to be transmitted, or even reduces the sent data
to only the areas of interest.
We found during our investigation that a 16× 16 matrix width was adequate for per-

forming facial detection on the well-known FDDB dataset [110]. Using a naive classifier,
the accuracy was increased from 44.6% to 55.5% when increasing the size of the matrix
from 4×4 to 16×16 (effectively increasing the number of eigenvectors considered). This
is similar to the results of related approaches [110]). A sliding window of 250 × 250 is
moved over the 640×480 input images. We found that 95% of the overall variance could
be described using 62.5% of the eigenvectors.
The processing speed for training and querying using our IPCA HWF is shown in

Figure 7.13, where the number of frames that our architecture can solve per second is
shown against the size of the input matrix. This considers both the decreasing maximum
clock frequency presented in Table 7.6 and the higher number of computations required
for larger matrices.

4 6 8 10 12 14 16
0

40

80

120

160

Matrix width

FP
S

Figure 7.13.: Frames per second for facial detection application

This shows that even though the processing speed is predictably reduced when increas-

132



7.3. Phase 3: Intelligent Cooperating Devices

ing the matrix size, the processing speed remains above 30 fps. This relation between
speed and computational complexity can be combined with the device power usage from
Table 7.5 to choose the most appropriate device for a specific set of requirements.

Using this information, we can estimate that our system would consume between
3.14 µJ for n = 4 and 68.61 µJ for n = 16. Considering that transmitting even just an
image preview can take a UAV 1.4 s [27], we can safely assert that ours would be a more
energy efficient solution (as related work does not offer comparative numbers).

7.3. Phase 3: Intelligent Cooperating Devices

The next phase of this work involved the design and implementation of an AI that op-
timises device behaviour (as set out in SREQII: Automated Cooperation Optimisation).
This focussed specifically on an augmented offloading problem which considered sending
incoming jobs to peers, batching them locally for increased efficiency, or deploying the
required FPGA configuration locally and beginning processing.

Initial experiments have been done to demonstrate the usefulness of our system, to find
its current limitations, and to control whether our requirements set out in Section 6.3
have been met. This was done in simulation, based on the analytical model set out
in Section 6.4, as well as performance and power consumption data collected from the
Elastic Node platform as described in Section 4.5.2.

The experimentation procedure is set out in Section 7.3.1, followed by a set of ex-
periments originally presented at ACSOS 2020 [34]. This starts with a comparison of
the agents developed in Section 7.3.2, followed by a study on the limitations of the sys-
tem state representation, and more complex experiments with cooperating devices under
catastrophic failure in Section 7.3.4.

After this, the SRL agent is introduced and compared to the Q-table ones in Sec-
tion 7.3.6, followed by a similar experiment for dynamic environments in Section 7.3.7.
Finally, we conclude with some thoughts on the evaluation in Section 7.4.

7.3.1. Experimental Setup

The experiments detailed below involve a number of devices, and either a single shared
or multiple device-local agents. When the scenario is centralised, there is a single agent
which is trained on data from all of the devices. This is done primarily as a simpli-
fying first step, temporarily ignoring our requirement for decentralisation set out in
IREQIII: Realistic Implementation.

In contrast to this, the decentralised version of the system treats each device as inde-
pendent with its own agent. These agents are trained only from data available to that
device, and only learns from the experiences of that single device. This is to simulate a
system where each device truly operates independently, minimising the communication
and cooperation overhead.

133



Chapter 7. Evaluations

Although a hybrid solution can be envisioned that routinely shares experiences be-
tween different agents, this still increases communication overhead when compared to a
fully decentralised solution. Instead, we envision our agent being self-sufficient and able
to learn by itself. This creates a much more scalable system where each device can be
deployed independently – learning as it goes along.

7.3.1.1. Experiment Runtime

To evaluate a number of different scenarios and situations, we performed time-series
simulations of these devices. Based on the scenario description, jobs were dynamically
created at the different devices – either randomly or at a fixed interval. As described
in the Analytical Model in Section 6.4, performing each job involves doing a number
of subtasks that need to be completed. The durations and power consumption of each
subtask was also modelled using a Gaussian distribution.
Performing these time-series simulations is computationally intense, requiring thou-

sands of discrete time steps to be simulated for even a small simulated battery. Add
to this the need to repeat each scenario multiple times to ensure repeatability and to
mitigate outliers, as well as needing to vary multiple parameters to create a meaningful
comparison. This created the need for a convenient and efficient simulation framework.
To this end, a tool was developed in Python that can simulate many scenarios in par-

allel. As simulating each of these scenarios generally only utilises one logical system core,
a multithreading scheme was implemented using the Multiprocessing2 library. Although
creating a separate process for each of them adds some overhead when launching many
at the same time (and memory overhead for storing the needed variables), the advan-
tage is having entirely independent processes that each have a local copy of important
records and objects. This makes it considerably easier and safer to alter ‘local’ variables
in memory without the fear of affecting other simulations happening in the same system.
Performing the experiments involved a large number of these simulations. Therefore,

each was set up as a Docker image and deployed to one of our servers using Kubernetes3.
This allowed not only a convenient way of deploying a specific experiment to run on the
processing power available, but introduced a powerful way to monitor and retrieve results
from these simulations.
Using these techniques, each of these experiments are repeated 128 times, and the

results are provided as the average for all agents involved over these runs. Unless men-
tioned otherwise, these graphs also show the error bars to indicate the variance between
the recorded runs. The null hypothesis testing involved here is focussed on whether
the relevant intelligence requirement has been met, i.e. testing whether our introduced
intelligence has had the effect that we aimed for. Therefore, the analysis that follows is
a mixture of exploratory verification that the system functions as designed, and an eval-
uation of the requirements set out in Section 6.3 – both qualitatively and quantitatively.

2https://docs.python.org/3/library/multiprocessing.html (last visited: 2021-12-13)
3https://kubernetes.io (last visited: 2021-12-13)

134

https://docs.python.org/3/library/multiprocessing.html
https://kubernetes.io


7.3. Phase 3: Intelligent Cooperating Devices

7.3.1.2. System Parameters

Each of the experiments were done with a job rate that is a regular interval T . Since
this is the overall rate for entire system, it is shared by all of the devices. This ensures
that the system as a whole always has access to the same number of jobs in a given time
span. Varying the exact rate at which jobs are created has the effect of bounding where
the learning algorithm can provide a benefit. For example, if jobs arrive too fast the
devices benefit less from batching as their FPGAs are all active.

When overall jobs accomplished is used as a metric, it is important to make the
performance of each represented system comparable. Therefore, a completed job is
defined as one that is created, moved to the relevant processing device (offloaded to a
peer in some cases), fully processed, and has its result sent back wirelessly to the device
that created it.

Each device is accurately represented through empirical power and subtask duration
measurements from the Elastic Node v4. Using the power monitoring available on the
board, each component’s power usage is characterised for various workloads. A Gaussian
distribution is fit to each combination of hardware component and subtask, allowing us
to accurately estimate the overall power cost of each task/subtask. Again this is used
to model sensor noise due to the central limit theorem [84] suggesting that continuously
sampling this independent random variable will tend to a Gaussian distribution.

By simulating each device’s activity with such high fidelity, a detailed energy usage
can be found. Note that the simulation model discussed here is not used for decision
making at runtime by the devices – instead only used at design time to train the agent
model. Additionally, the duration of each subtask is characterised relative to the device’s
operating frequency. This is combined with the device model for improved flexibility.

7.3.2. Agent Comparison
The first experiment targets the question ‘can an effective agent be designed by defining
its action space, system state, and reward function in this way?’. To investigate this,
two agents defined in Section 6.5.4 are created with different objectives. The “basic”
and “lazy” agents are used to show how the reward function can be used to implement
a developer’s intent for the devices. This directly addresses IREQII: Generalisability,
allowing a user to mold the design of an agent to their application’s needs. It also ad-
dresses IREQI: Rationality, showing how reasonably intelligent behaviour can be created
by defining the agent’s intent.

The basic agent uses the full reward function defined in Equation (6.6) so that its
reward function becomes

rb
∆
= Rj +Re +Rd (7.1)

and includes all our reward components. The lazy agent uses a reduced version

rl
∆
= Re +Rd (7.2)

135



Chapter 7. Evaluations

which completely ignores the reward for completing jobs. Instead, the lazy agent is only
interested in minimising its energy usage and avoiding the terminal energy state.
The other differing parameter between the agents shown in Figure 7.14 is whether they

learn centralised or decentralised. For each learning agent, both variations are shown
to illustrate differences that appear between their performance or behaviour. Although
one would expect them to learn the same behaviour, there would likely be a difference
in how quickly they learn as well as their learning stability. By definition, an agent
only learning from a single device’s experiences would have less input per episode and
therefore perform less state exploration.

0 100 200 300 400 500 600 700 800 900 1,000
40

60

80

100

120

140

Episode #

Av
er

ag
e

jo
bs

pe
r

ep
iso

de

Basic Table Agent (C)
Basic Table Agent (D)
Lazy Table Agent (C)
Lazy Table Agent (D)
Random Agent

Figure 7.14.: Agent comparison between (C)entralised and (D)ecentralised basic and lazy
agents, showing the relative performance (number of jobs performed per
episode) of each

As a comparison, we also show a random agent that does not perform any learn-
ing. Instead, it chooses which action to perform completely at random. Apart from
highlighting the need for careful decision making on these devices, it also creates a per-
formance baseline that represents practically a worst case scenario in terms of rational
behaviour [206].
Figure 7.14 provides the average performance and error bars of these 5 different agent

types. Using the average number of jobs completed by the two devices during that

136



7.3. Phase 3: Intelligent Cooperating Devices

episode as a metric, the basic agent is shown to greatly outperform the other agents.
Interestingly, there is no real statistical difference between the performance of the cen-
tralised and decentralised basic agents. This shows that this agent is very capable of
learning the “correct” behaviour by itself, without requiring centralised knowledge.

The learning agents all utilise a decaying epsilon-greedy that reduces ε over 1000
episodes from an initial 0.1. Using a larger initial ε increases the variance in performance
between different runs, while a slower decrease extends the agent’s ability to escape local
minima and improve its behaviour. The Q agents all use a γ of 1× 10−3 and a learning
rate of 0.1, which were chosen empirically based on brief tweaking of the designed agent
behaviour.

The lazy agent is shown to perform considerably fewer jobs over its lifespan than
the basic agent, clearly demonstrating that it is learning to target a different goal.
Additionally, it is very interesting to note that the centralised version of this agent
reaches its steady state noticeably faster than the decentralised one. In contrast to the
basic agent, the lazy agent seems to benefit greatly from having access to training data
from both devices.

For another insight into the behaviour this agent learns, we visualise in Figure 7.15
its Q-table after learning for 1000 episodes. Each of the system states is clarified on the
left, as the table gives a coloured representation for the value of each discrete state. The
expected value for each action from that state is then represented using a colour-coded
system where red is very negative, blue is very positive, and black remains unknown.

We can see that in this case each learned state is negative to some extent, showing
that the negative influences of the energy and death rewards outweigh the job rewards.
However, the exact values of these expected values are irrelevant, as only the relative
values for each state are used for decision-making. We also see that some states are
unexplored – either because they are exceedingly unlikely or because they are impossible
due to heuristically defined behaviours. For example, for each state where there are 5
jobs in the queue already, this agent has reached its maximum job queue size and is
forced to start locally processing. Therefore, only the local action has been explored at
this state.

7.3.3. System State Limitations

This heuristic and practical limitation limiting the behavioural scope of the agent urged
us to investigate what happens when the system state is expanded. Apart from ex-
panding the search space that the agent needs to explore, the agent is afforded greater
freedom to perform actions that previously were not possible. In the extreme case –
where there is no queue limitation and devices can simply store jobs infinitely – a lazy
agent might choose to never perform any jobs (due to the energy cost incurred).

An experiment was performed that studies the variations possible with expansion of
the system state. Again two devices were assigned similar but separate agents in each
scenario, learning decentralised and independently. Since here we are interested in the

137



Chapter 7. Evaluations

Of
flo

ad

Ba
tc

h

Lo
ca

l

energyRemaining = 0 jobsInQueue = 0 

energyRemaining = 0 jobsInQueue = 1 

energyRemaining = 0 jobsInQueue = 2 

energyRemaining = 0 jobsInQueue = 3 

energyRemaining = 0 jobsInQueue = 4 

energyRemaining = 0 jobsInQueue = 5 

energyRemaining = 1 jobsInQueue = 0 

energyRemaining = 1 jobsInQueue = 1 

energyRemaining = 1 jobsInQueue = 2 

energyRemaining = 1 jobsInQueue = 3 

energyRemaining = 1 jobsInQueue = 4 

energyRemaining = 1 jobsInQueue = 5 

energyRemaining = 2 jobsInQueue = 0 

energyRemaining = 2 jobsInQueue = 1 

energyRemaining = 2 jobsInQueue = 2 

energyRemaining = 2 jobsInQueue = 3 

energyRemaining = 2 jobsInQueue = 4 

energyRemaining = 2 jobsInQueue = 5 

energyRemaining = 3 jobsInQueue = 0 

energyRemaining = 3 jobsInQueue = 1 

energyRemaining = 3 jobsInQueue = 2 

energyRemaining = 3 jobsInQueue = 3 

energyRemaining = 3 jobsInQueue = 4 

energyRemaining = 3 jobsInQueue = 5 

energyRemaining = 4 jobsInQueue = 0 

energyRemaining = 4 jobsInQueue = 1 

energyRemaining = 4 jobsInQueue = 2 

energyRemaining = 4 jobsInQueue = 3 

energyRemaining = 4 jobsInQueue = 4 

energyRemaining = 4 jobsInQueue = 5 

Minimal Table Agent

Figure 7.15.: Basic agent Q-table

final policy π learnt by each agent (and not the learning behaviour over time), each
agent is trained for 1000 episodes, after which they were switched from ‘learning’ phase
to ‘production’. At this point, all learning on the devices is disabled to represent a
system where devices learn ideal behaviour over a period of time before being deployed
in a ’final’ stable state. The devices were then allowed to follow a pure greedy policy in
which they selected the available action with the highest Q-table score for 10 episodes,
and their average performance was taken as one data point. This was again repeated
for stability and to find statistically significant differences.
Each different agent’s system state was changed by increasing its maximum job queue

138



7.3. Phase 3: Intelligent Cooperating Devices

size. For obvious reasons this is only done for the learning agents, which is why only the
basic and lazy agents are shown in Figure 7.16. Similarly to Figure 7.14, the agents are
shown to perform very similarly when the maximum queue size is small. However, as
the queue size is expanded, the lazy agent is able to deviate more from the basic agent
until it performs no jobs. At this point when the maximum allowed queue size is around
100, the device governed by the lazy agent can simply avoid doing any and all work in
order to extend its own life – with no regard for the amount of work accomplished.

100 101 102

0

50

100

150

Max Queue

Av
er

ag
e

Jo
bs

Basic Table Agent
Lazy Table Agent

Figure 7.16.: Impact of system state expansion

Although this behaviour of the lazy agent might seem extreme, it shows the potential
of designing agents in this way. For example, the developer might train both of these
agents and switch a device from one policy to another as the user’s requirements change.
This could be useful when the survival of a specific device is deemed essential and it
is crucial for it to survive as long as possible. For example, consider a drone that has
managed to get to a hard to reach position that another drone cannot easily reach to
relieve it of its duties. In that case, that drone should focus simply on data acquisition
instead of processing.

The substantial changes in agent behaviour and performance with altering the system
state raises another issue. This dependence highlights the importance not only of cor-
rectly modelling the system state, but also the need to accurately store the state-action
values. In the case of a Q-table, this leads to the concern of exponentially growing state
space, as each additional binary state doubles the total number of discrete states. One
approach to addressing this recently has been used in Deep Q [159] and Deep Reinforce-
ment Learning [105, 135, 271], where a deep neural network is used instead of a table.
Implementation of such a system differs, however, and no common understanding for
what exactly the role of the neural network is has been established. In some cases, the
neural network’s output is used directly as Q values, while others use a more complex
version where sequences of outputs are used together to form an offloading schedule [105].

139



Chapter 7. Evaluations

7.3.4. Catastrophic Failure
To satisfy IREQIV: Dealing with catastrophic failure, we need to test how the system
responds to having some devices fail. In an ever-changing dynamic system – as many
IoT and smart city applications are – one cannot assume that all devices will remain
active or reachable. Therefore, it is critical that remaining devices (and the system as a
whole) can stay functional and still accomplish their goals.
Instinctively one would hope that the remaining agents would adopt the workloads of

the devices that were lost, analogous to biological systems like ants and bees [118]. These
systems are very sensitive to environmental changes, and the organisms must adapt to
ensure the success of the group. Ant colonies, for example, have shown increases in
specialisation (i.e. greater tendencies for more ants to dedicate themselves to a specific
role) to satisfy the changing needs of the colony as a whole. More of them might choose
to focus on hauling food when a large deposit is found, reducing focus on secondary jobs
such as nest cleaning.
A useful metric for monitoring this type of behaviour is the Division of Labour (DOL)

as coined by Gorelick et al. [86]. This metric can indicate the rise and fall of agent
specialisation over time, providing some insight into how agents dedicate to certain tasks
over time. It combines the average individual agent entropy with the mutual entropy
of the agent and the rest of the population. By populating an n × m matrix with a
agent-task value for each agent (n) and task (m) combination, the tendency for that
agent to do each task can be captured.
At the end of each episode the matrix is normalised and Shannon’s entropy is used

to calculate each agent’s entropy score across all possible tasks. The mutual entropy is
calculated by evaluating

I(X,Y ) =
∑

x∈X,y∈Y
p(x, y)log

p(x, y)

p(x)p(y)
(7.3)

across all agents in X and tasks in Y . Shannon’s index (used to quantify diversity)

H(X) = −
∑
i

pi log2 pi (7.4)

utilises pi the number of agents assigned to task i divided by the total number of appli-
cable agents. Dividing Equation(7.3) by Shannon’s index

Dy|x =
I(X,Y )

H(X)
(7.5)

yields the DOL score along the interval [0,1]. Low scores directly relate to a low DOL
across the population, relating to low specialisation between different agents.
In the realm of learning agents King and Peterson [118] have showed that catastrophic

failure can create an opportunistic situation for increased specialisation in artificial sys-
tems. Extending on this idea, we created an experiment where different sized groups of

140



7.3. Phase 3: Intelligent Cooperating Devices

decentralised but homogeneous agents are deployed together in an environment for 1000
episodes. At the halfway mark (after 500 episodes), half of these agents are removed
from the system to emulate a catastrophic failure in a real world experiment. Analogous
to this, imagine a swarm of drones that are cooperating and learning to accomplish a
shared goal. At some point in time, half of these drones are instantly disabled or re-
moved. Thereby, an extreme case of catastrophic failure is created in order to evaluate
the behaviour of agents under loss.

Adding another dimension to our experiment shown in Figures 7.17 and 7.18 is that
it includes numerous different computational tasks (Tn), where each requires a distinct
hardware accelerator to be deployed to the FPGA. In terms of the batching behaviour
(see Section 3.2) this means that a number of distinct batches need to be created on each
device, since each can only consist of jobs that rely on that specific computational task.
Having a variety of different jobs is essential for us to accurately estimate the DOL, as
it is a requirement for specialisation.

0 100 200 300 400 500 600 700 800 900 1,000

200

400

600

800

Episode #

Sy
st

em
Jo

bs
#

Team size 12 → 6
Team size 8 → 4
Team size 4 → 2

Figure 7.17.: Various sized (initially 4, 8, 12) teams cooperating to perform jobs. After
500 episodes half of each team is removed, and each team’s performance
(jobs per episode) is monitored. Each team can be seen to somewhat
improve their performance after catastrophic failure.

141



Chapter 7. Evaluations

This experiment shows that during the first half of the experiment each group of
devices is steadily learning to improve their performance in both types of available
computational tasks (i.e. performing more jobs per episode). During this period, the
DOL is shown in Figure 7.18 to steadily decrease as the agents learn an even distribution
of work between them.
The abrupt change that we introduced at episode 500 clearly has a strong impact

both on the overall system jobs and the DOL. As can be expected, in each case half the
devices are performing a substantial amount fewer jobs over the space of an episode. It
is interesting to note that 4 devices halved to 2 seem to perform better than the other
teams, reducing their accomplished jobs by roughly 25% while the other teams reduce
by around 50%. This is likely related to the shared job rate, as devices will find it easier
to batch more devices without reliance on offloading to peers when fewer devices exist.

0 100 200 300 400 500 600 700 800 900 1,000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Episode #

D
O

L

Team size 12 → 6
Team size 8 → 4
Team size 4 → 2

Figure 7.18.: The same experiment as before, monitoring the division of labour (DOL)
for each team before and after episode 500. When half of each team is
removed, each team’s DOL drastically increases and then settles again as
they relearn a new policy. The two larger teams stabilise at a considerably
higher DOL while the smallest team (initially 4) ends up less specialised.

The DOL metric shown in Figure 7.18 tells an interesting story. Initially the three
teams are seemingly behaving fairly similarly, without any statistically significant dif-

142



7.3. Phase 3: Intelligent Cooperating Devices

ference between them. Once half the devices are purged from the system at the halfway
point the difference between the different teams is much more stark, indicating signif-
icantly different behaviour between the two larger teams of initially 12 and 8 devices,
and the smaller team that started with 4. This suggests that the larger teams tend to
show greater specialisation at this point, while the smaller team is left with only two
devices and therefore reduces the DOL score even lower than before the purge.

These results support our hypothesis that these devices can respond to catastrophic
change by increasing their individual specialisation. Instead of continuing as they were
before, the new teams increase their tendency to focus on a specific task in order to
improve the overall performance of the system. Another, possibly more significant result
is that the devices show a new ability to relearn old behaviour. Note the curved increase
in overall jobs performed after half the devices are removed, improving on the previously
learned behaviour. One would rightfully expect that the old policy is not ideal for this
drastically new environment, and it is encouraging to see that the system is capable of
relearning its policy.

7.3.5. Heterogeneous Agents

All the experiments up to this point have been with homogeneous agents — either all
learning together on one Q-table in a centralised fashion or each learning individually
on their own Q-table when operating decentralised. By providing them with the same
reward function and system state, the user can encourage them all to the same high-level
goals – possibly making it easier for the agents to work together as their behaviour is
easier to predict. Logically one would also expect them all to tend to similar Q-tables,
as all the agents are defined in the same way and share the same environment.

This might not be the ideal in a real-world scenario, as agent heterogeneity has the
potential to not only perform better but also to enable more sophisticated system designs
where the user has improved control over the system behaviour. More specifically, King
et al. showed that in some cases heterogeneous teams can outperform homogeneous
ones when addressing a variety of tasks [119]. Interestingly, they also showed that
heterogeneous teams do not win by default, as the composition of the team directly
impacted the performance of the team as a whole. In some cases it was better to have
a team of identical agents, while in others it was important to achieve the right balance
between the different agents.

With this in mind, we decided to investigate the performance of different combinations
of agents. In a real-world experiment, one scenario where this might make sense is with
a team that consists of two different drones with their own agents: one that has a special
sensor such as Light Imaging, Detection and Ranging (LIDAR) on it, and one that has
a larger battery for more energy-intensive computations. It would make sense that the
rational policy learnt by these two teams would be different, as they have different things
to offer the system as a whole.

We evaluated the impact of agent heterogeneity by creating a number of teams with

143



Chapter 7. Evaluations

different compositions of agents. In each scenario, a team consists of 10 agents, some
of which are our basic agents while the rest are the random agents from Experiment 1
that do not learn. The main goal of this experiment shown in Figure 7.19 is to see what
impact the introduction of these unpredictable random agents has on the learning and
eventual steady state performance of our decentralised basic agents. Our chosen metric
for this is the average number of jobs performed by basic agents per episode, which
makes it trivial to compare the performance of the different teams.

0 20 40 60 80 100 120 140 160 180 200

14

16

18

20

22

24

26

28

30

32

34

36

Episode #

Av
er

ag
e

Jo
bs

10 % Basic Agents
30 % Basic Agents
50 % Basic Agents
70 % Basic Agents
100 % Basic Agents

Figure 7.19.: Experiment studying heterogeneity in colocated agents, mixing different
concentrations of basic agents colocated with random agents that do not
learn. Higher percentages of basic agents are more efficient (when consid-
ering average jobs performed only by the basic agents), performing 75%
more jobs per episode when only basic agents are present.

Thereby, the performance of each team is shown as a somewhat mixed team of 10
agents are co-located in an environment. For each team, a different percentage of them

144



7.3. Phase 3: Intelligent Cooperating Devices

are given the reward function and system state from the basic agent – ranging from
10% to 100%. It is clear that in this case the introduction of random agents to the team
negatively affects both the performance and learning rate of the basic agents, culminating
with 10% basic when there is only a single basic agent. In this case, the agent requires
roughly twice as many episodes to reach its steady state and has their average number
of jobs reduced by 57%.

This result clearly shows that the agent is capable of learning how to improve its
performance even in the presence of unpredictable and wildly differently acting other
agents. However, its ability to achieve this goal is negatively affected, suggesting that
some measure of cooperation emerges from the more homogeneous teams that benefits
the system as a whole. This is reminiscent of socially situated agents [14], since each
agent has to manage its own (possibly conflicting) objectives. In our case this manifests
in the random agents not sharing jobs as proficiently as the basic agents, reducing their
ability to explore their search space and thereby slowing down their learning. This result
also suggests that when agents are truly antagonistic with competing objectives, their
ability to perform will be further negatively impacted.

7.3.6. Comparing Q-table and SRL Agents

When the storage of state-actions in a Q-table is no longer sufficient – e.g. due to growing
system states or action spaces – alternatives need to be found. The first fundamental
question to be answered in this experiment is if the modern adage that every problem
can be solved with a neural network is true for this case. To answer this, we compare the
performance of our existing Q-table agents with an SRL one that employs an SNN (as
was explained in Section 3.5.4.2). The basic agent developed in previous experiments is
used from this point onwards to represent the Q-table agent, as it performed the best.
Due to the complexity and overhead in designing neural networks, one would hope that
the SRL agent performs better than the Q-table one, or at least provides an advantage
in some situations.

This experiment aims to compare the baseline performance of the Q-table and SRL
agents for both pre-trained and untrained scenarios. Pre-trained agents are put through
an offline learning process beforehand, and then their knowledge is transferred from
the top performing previous agent to the new agents. In the case of the SRL agents,
the offline training is done from a pre-trained Q-table agent that has captured the full
set of available state-action values. The training data is then generated by creating a
greedy state-action classification for each seen state. In contrast to this, a pre-trained
Q-table agent simply copies the donor Q-table directly.

Additionally, an ensemble-like methodology is used for both types of agents, where
the best networks are chosen from each agent to represent the expected performance.
Since the Q-table agents are all initialised the same way, their performance is generally
very similar. Due to the factors discussed in Section 6.5.1.2, the SRL agents are more
dependent on their initial weights. This highlights a common shortcoming of neural

145



Chapter 7. Evaluations

networks: one can have an appropriate network and an adequate training set but still
not reach the wanted performance – simply because the randomised initial weights are
incompatible.
The result of our initial comparative experiments can be seen in Figure 7.20, plotting

the number of jobs per episode for both pre-trained and untrained versions of the Q-
table and SRL agents. As can be expected, pre-trained agents achieve a new steady-
state very quickly since they have already ‘seen’ most of the possible states. Both the
untrained agents also manage to learn their environment, stabilising at roughly the
same performance. Interestingly the SRL agent reaches it slightly faster, likely because
it quickly learns some generalisations instead of having to learn individual states.

0 5 10 15 20 25 30 35 40 45 50

80

100

120

140

Episode #

Jo
b

#

SRL agent
SRL agent pretrained
Table Agent
Table Agent pretrained

Figure 7.20.: Comparison of SRL and Q-table agents, both pre-trained and newly ini-
tialized policies. Although pre-trained agents start at more jobs than the
newly initialised agents, all agents end up performing similarly.

This experiments serves to prove three fundamentals: firstly, the SRL agents are able
to learn from a new initialisation directly in their environment, effectively learning the
same level of performance as their Q-table counterpart. Secondly, it proves that the
SRL agent can be pre-trained from a Q-table agent’s policy. This should simplify a real
deployment significantly, allowing the user to train one device either in simulation or in
the field and then initiate all subsequent SRL or Q-table agents with that knowledge.

146



7.3. Phase 3: Intelligent Cooperating Devices

Thirdly, it shows that traditional techniques still prove to be very effective when com-
pared to neural network-based solutions. The Q-table solution has its own shortcomings,
but is shown to perform very similarly to the arguably more complex SRL agent.

One interesting peculiarity shown in Figure 7.20 is that both the SRL agents provide
a more stable result than their Q-table variants. We suspect this is related to them
being able to provide a superior initial guess for previously unseen (or untrained) states-
actions. Whenever a Q-table agent reaches a previously unknown decision point, it is
reduced to a random guess and needs multiple iterations before a definitive decision can
be learnt. This inevitably reduces its transient performance slightly, since it is likely
not going to make the correct decision. In contrast to this, the SRL agent can better
generalise from existing information and make a more ‘educated guess’.

7.3.7. Q-table vs SRL Agents in Dynamic Environments

To expand on this, we chose to experiment with a known shortcoming of the Q-table agent:
in an unknown state, it is forced to guess entirely randomly. This behaviour is exasper-
ated in dynamic environments where entirely unexpected situations can manifest. In this
case, the agent is forced to expand its Q-table to accommodate these new state-actions
– increasing its memory footprint and introducing a slurry of new unknown states. One
would expect this to reduce its transient performance, creating an opportunity for SRL
agents to justify their increased design complexity and other shortcomings. To amplify
this contrast, the SRL agents retain the same architecture throughout this experiment
– relying on their ability to generalise the situation.

In this experiment, teams of either Q-table or SRL agents are deployed to the same
environment – all entirely untrained. They are then presented with ‘difficult’ jobs to
perform for 1000 episodes, which require a longer time to process (i.e. costs more device
energy). After this, they also receive ‘medium-high’ difficulty jobs which are slightly
easier to process than the difficult ones. At this point (for 1000 episodes) they receive
‘difficult’ and ‘medium-high’ jobs with equal probability. At 2000 episodes, easier jobs
are introduced in the same way, and at 3000 the easiest jobs too. This means that for the
last 1000 episodes of the experiments, any agent can receive ‘difficult’, ’medium-high’,
‘medium’, or ‘easy’ jobs with equal likelihood.

The objective of this is to test how the agents respond to previously unseen decisions.
Note that one would expect any agent to perform more jobs per episode at the end of
the experiment than at the beginning, since the average job it is provided with will be
easier. Instead of always receiving difficult jobs, a mixture of jobs arrive – at worst as
difficult as at the start of the experiment.

Figure 7.21 initially shows a similar result to Figure 7.20, where the SRL agent again
learns its behaviour faster than the Q-table one. The real benefit of the SRL agent
becomes clear in the transitional periods after new types of jobs are introduced. Every
time, the Q-table suffers for a number of episodes with considerably reduced performance
– losing 30-40% of jobs performed per episode. Invariably, the Q-table agent does recover

147



Chapter 7. Evaluations

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

60

80

100

120

140

160

Episode #

Jo
b

#
SRL agent
Q-Table Agent

Figure 7.21.: Performance of SRL and Q-table agents under introduction of new tasks,
showing that the SRL agent increases their performance smoothly and
immediately, while the Q-table agent performs roughly 33% worse for a
few episodes before recovering their policy performance.

its performance, but in some cases a number of episodes with lowered performance may
be unwanted. Depending on the application, this may cause system outages as the
devices need to be reinitialised or recharged. Towards the end of the experiment (after
adequate training at the final scenario) both agents achieve basically identical results.
It is important to consider the production environment when choosing between the

Q-table and SRL agents. In increasingly dynamic environments, the Q-table agent might
grow its memory footprint beyond local capabilities. For smaller state-action spaces, the
SRL agent might be overkill and increase the development complexity. Additionally, they
are more susceptible to getting stuck in local minima – relying on ensemble systems to
ensure overall system performance. Simply put, neural network-based agents can provide
a worthwhile option by better generalising their learned knowledge. However, they are
not the only way to solve problems – reminding of the old adage “when you only have
a hammer everything starts to look like a nail”.

That concludes our presentation of our device learning AI, capable of governing an

148



7.4. Concluding Thoughts

FPGA-augmented smart IoT device’s behaviour through RL. We feel it addresses our
requirements for the agent as presented in Section 6.3:

I Rational behaviour: All of the presented learning agents (lazy, basic, SRL)
have been shown to be capable of rational behaviour, choosing actions based on
high-level objectives.

II Generalisability to Various Applications: The agent design was proven to be
generalisable through the design process presented: system state, actions, and the
reward function, and demonstrated through the design of the contrasting lazy and
basic agents.

III Realistically Implementable: The system state used by our agents (particu-
larly when using decentralised learning) only has access to local and realistically
accessible data, making them more applicable to realistic designs and experiments.
Furthermore, the SRL agents offer greatly reduced resource requirements than
comparable deep RL options by having a smaller neural network model.

IV Dealing with catastrophic failure: Through our experiment with catastrophic
failure we showed that our agents can respond to unexpected changes in their
environments. Furthermore, the agent’s ability to adapt to changing environments
(e.g. heterogeneous agents or new types of jobs) improve generalisability through
self-adaptability.

This wraps up the evaluation of our learning agent, which has been shown to offer
numerous advantages for FPGA-augmented smart IoT devices in complex applications.

7.4. Concluding Thoughts
All three phases of the project have been evaluated here, proving the validity and finding
the shortcomings of each.

In this work we have created a fully functional experimentation platform for hetero-
geneous embedded systems in the Elastic Node. We have also proven that complex and
highly capable hardware acceleration can be deployed to it, supporting sophisticated ap-
plications such as neural networks and IPCA. Lastly, a number of decentralised agents
have been developed that can use RL and AI to learn how to optimise their individual
and cooperative behaviour.

In general, our system has been shown to satisfy the requirements set out in Sec-
tion 2.4.

I Local Intelligence: Through presented hardware design optimisations, complex
computational problems such as neural networks and IPCA have been shown to
be effectively and efficiently computed on the Elastic Node.

149



Chapter 7. Evaluations

II Automated Cooperation Optimisation: A sophisticated AI has been pre-
sented that optimises device behaviour through cooperation with peers, efficient
batching and offloading.

III Energy Efficiency: The Elastic Node hardware platform was shown to com-
bine a low power footprint with high computational performance for high energy
efficiency.

IV Convenient and Efficient Local Accelerators: The deployment of HWFs
to the local FPGA was shown to be both fast (switching within 100 ms) and
convenient through the provided stub-skeleton abstractions.

What remains is that after discussing some related work next in Chapter 8, we will
conclude by revisiting our hypothesis. At this point, we will conclusively prove or dis-
prove it, and highlight some possible future work that could expand on ours.

150



Chapter 8.

Related Work

The fields of heterogeneous embedded devices, hardware accelerated AI, and AI-based
behaviour optimisation have all been very popular in recent years. When setting out to
investigate our hypothesis, we analysed the solutions available from literature as well as
COTS. The results are presented here, focussing on why the available options did not
satisfy our requirements as set out in Section 2.4, or simply how their approaches differ
from ours as we developed the Elastic Node.

This chapter expands on the related work presented within the fundamentals in Chap-
ter 3, which covers the core works that form the basis for each topic. In this chapter,
we will instead focus on adjacent projects in the literature that attempt to solve similar
research questions. The aim is to clarify some of the design decisions made in this work
by discussing the results achieved by others.

Consider for example a hybrid IoT solution where most of the heavy computation is
offloaded to the cloud, while some basic processing is performed by the local device. The
system from Leroux et al. [132] trains a full AI model on a GPU-accelerated host and
forwards it to the IoT devices (in this case an Nvidia Jetson [173]). Here it can then
further be subdivided into smaller networks that can fit into a limited memory footprint.
Similarly, Song et al. [224] created their so-called in-situ solution for IoT applications,
training labels and features using a full cloud network through an unsupervised pre-
training method, and then copying parts of it to another inference network.

The fundamental difference between this and the Elastic Node runtime is that in our
solution the application complexity is skewed towards the local embedded device [33, 35].
Instead of uploading all captured data for processing and training in the cloud as ex-
plained above, we augment the local device with enough application intelligence that
raw data does not need to be offloaded. Other approaches that follow this need to sim-
plify the computational problem substantially [24, 81] in order to fit the computational
budget of the local device.

We begin in Section 8.1 with an overview of related work in regards to the platform
itself. Our Elastic Node runtime includes both a hardware platform and a middleware
that supports development, and therefore we discuss here some related work for both.
After this, alternative approaches to our learning AI are discussed in Section 8.2. This
includes some conceptual work in topics such as Self-Aware distributed systems in Sec-
tion 8.1.6, as well as various offloading optimisations in Sections 8.2.1 and 8.2.2.

151



Chapter 8. Related Work

8.1. Platform Related Work
As we set out to perform research in the field of self-adaptive hardware acceleration-
augmented embedded devices, we quickly realised that existing platforms did not satisfy
our requirements as set out in Section 4.2. Therefore, we decided to design a more
appropriate experimentation platform in the Elastic Node platform – consisting of both
a hardware platform and a software runtime.
Starting with the physical hardware platforms in Section 8.1.1, we also discuss here

some available middleware solutions in the form of general heterogeneous systems (Sec-
tion 8.1.2) and specifically embedded systems (Section 8.1.4). Finally, we will cover
briefly some of the available FPGA-based middleware systems in Section 8.1.5.

8.1.1. Heterogeneous Embedded Platforms

Available augmented heterogeneous hardware platforms can be divided into a number of
categories. Note that this section does not focus on the software abstractions provided
by these platforms (if any) but instead on the hardware itself. Due to the multitude of
available projects, we have limited discussion here to hardware that

a. offer low enough power consumption to be considered embedded, and

b. incorporate local on-device hardware acceleration.

This excludes a variety of different hardware platforms, such as the RCMW project [120]
which relies on high-end communication interfaces such as PCIe. These are not available
on our low-energy MCUs and FPGAs (e.g. Spartan or Artix series from Xilinx). Other
projects use fundamentally different configurable logic devices such as a Complex Pro-
grammable Logic Device (CPLD) [192] and are therefore not as practical for a wide vari-
ety of different applications (breaking our SREQI: Local Intelligence and making it more
difficult to use existing FPGA-focussed designs). Lastly, many projects utilise FPGAs
like the Virtex or Zynq SoC series which require multiple Watts of power [90, 130, 155],
generally targetting a different application case such as industrial deployments.
Excluding platforms lacking on-device hardware acceleration removes some FPGA-

based platforms that emulate multicore sequential processors. For example, the PULP [56]
project with its OpenRISC cores and PR-HMPSoC [171] do not offer a substantial per-
formance or computational efficiency increase over traditional MCU-based platforms. All
of this led us to create the following categorisation of the available approaches, based on
the main components used.

Single device FPGA or SoC systems Among solutions that deploy the application
logic exclusively on an FPGA or SoC, various different approaches exist to utilise the
available hardware resources. We organise them here based on our own classification,
focussing on how usable resources are modelled.

152



8.1. Platform Related Work

The first variant effectively has no central controlling unit and consists of many simple
computational units. These units can be at different levels of complexity, usually repre-
senting simplified CPU cores [61]. This type of approach requires a custom compiler [71]
that not only creates compatible machine code for the special instruction set used, but
also describes how the application is divided amongst the available cores. This often re-
quires developers to write special code to be compatible with this compiler, and require
a detailed understanding of the architecture being used to create efficient applications.

The second variant is popular in SoC solutions, and involves deploying a dedicated soft
CPU that controls the application logic. Traditionally this utilises hardware-software co-
design to develop the platform and accompanying application software, as can be seen in
the popular HiReCookie [244] project from Valverde et al.. One particularly interesting
project is Chimera from Aras et al. [7], which utilises a flash-based IGLOO Nano FPGA
directly connected to a Radio Frequency (RF) device. This approach requires all the
management and flash control logic to be implemented directly on the FPGA.

In some cases, this soft CPU runs a normal OS such as Linux [208] to create a familiar
and convenient development environment at the cost of increased power consumption
over a bare metal system. One example of this is the Egret project [19, 258] which
also allows the addition of hardware modules in a tiled way. Having this multi-layered
modular approach increases the computational capabilities of the system – but also
increases development complexity when high-level abstractions and code generation is
not provided.

Generally, SoC and FPGA-only solutions offer physically smaller hardware solutions
due to requiring fewer components, but reduced flexibility for the experimentation and
prototyping phases. Instead of being able to exchange individual components to experi-
ment with different platform configurations, an entirely new device needs to be designed.
One exception for this is the ability to change the type of soft CPU that is used, but
this impacts remaining configurable logic for hardware accelerators.

The last option involves no application logic at all on the FPGA, similar to a PC where
the heterogeneous system is composed of different boards connected using standardised
ports. This is used for example in the P-HAL project [196], where a somewhat embedded
FPGA is abstracted from the system using a PCIe connection. This provides tremendous
expandability since CPUs can address multiple PCIe channels, but greatly increases its
energy requirements as smaller components (MCUs and FPGAs alike) do not support
these types of interfaces.

MCU-FPGA combinations Another alternative is to use separate MCU and FPGA
components as is done in the Elastic Node hardware platform. This creates a more
adaptable solution where individual components can be exchanged without changing
the design of the device, but complicates the communication between the different parts
of the application.

One variant of these systems use flash-based FPGAs where the configurable logic is
stored in flash memory instead of SRAM (e.g. PowWow [18], HaLoMote [72, 73]). This

153



Chapter 8. Related Work

means that they do not have to self-configure at boot and therefore start up considerably
faster (and without the energy overhead involved in loading their configuration from non-
volatile memory). However, they do not have the option of reconfiguring to an arbitrary
number of different configurations (even when using dual-configuration devices such as
the Intel MAX 101) – making them less applicable to multi-application scenarios (or
individual applications that utilise multiple different tasks).
Cookie [123] (the predecessor of the HiReCookie mentioned previously) as developed

by Krasteva et al. is one of the original MCU-FPGA combinational nodes. It combined a
small 8-bit MCU with a Spartan 3 FPGA. It has a very small energy footprint, but offers
little in the way of distributed computing capabilities or software abstractions and relies
on explicit HW/SW co-design to create custom solutions for every application. Another
similar but historically important platform is SENTIOF [217] from Shahzad et al. and
its descendant SENTIOF-CAM [106]. As SREQIV: Convenient and Efficient Local Ac-
celerators states, our aim is to make it simple for users of our system to develop their
applications. Therefore, we require an abstraction layer for simplifying the interfacing
between the main application on the MCU and the accelerator on the FPGA. This calls
for a more sophisticated runtime than can be found in the aforementioned platforms,
including abstraction layers that hide the complexities of offloading in heterogeneous
devices.

8.1.2. General Distributed Heterogeneous Middleware

The field of distributed middleware has been popular for a long period of time (e.g.
CORBA [248], DCOM [101], and BASE [15]), but even when aimed at lower powered
devices such as mobile phones [210] they cannot be targeted at embedded MCUs and
FPGAs. Regardless, much can be learnt from their designs and implementations.
One example of an MCU-FPGA system is CaRDIN [129], which combines Internet

Protocol (IP)-based and Virtual Machine (VM)-based middleware onto a combinational
ARM+FPGA node. To enable IP-based embedded nodes they rely on Linux as an OS,
and extend it with basic web capabilities to provide a RESTful interface directly on the
device. Employing regular Distributed Object APIs (DOAs) allows them to collaborate
between different nodes through RPCs.
Similarly to Barba et al. [13], Villanueva et al. [247] uses the ZeroC project to create

a distributed object middleware. It references different additions to the embedded OS
TinyOS – TinyLime, TinyDB, and Sensation – and addresses everything from tiny 8-bit
MCUs to full PCs by generating an ad-hoc message-handling middleware. It creates a
static implementation that assumes all objects are on forever, without any explanation
of computation support or offloading. This is inopportune for adaptive and dynamic
applications where components should be migrated and created/destroyed at runtime.

1https://www.intel.com/content/www/us/en/products/details/fpga/max/10.html
(last visited: 2021-12-13)

154

https://www.intel.com/content/www/us/en/products/details/fpga/max/10.html


8.1. Platform Related Work

Application-specific systems (e.g. [196]) have been developed for simplifying applica-
tions such as software radio. It allows sharing data and monitoring statistics between
different physical platforms using a bridging concept. It creates a First In First Out
(FIFO) interface for packages between different accelerators and the host system. How-
ever, little information is provided on the software space or the FPGA-side abstractions.

Similarly, industrial applications commonly utilise a Virtual Bus approach [163, 219]
along with a federation approach that interfaces with an Runtime Infrastructure (RTI).
This creates a sophisticated system that arguably would not scale to large-scale systems
with simple components, due to high complexity on each host.

A fairly manual approach is followed to create a distributed smart camera system by
Lewis et al. [134], who explains the intricacies of collaboration between smart cameras
in detail. The heterogeneity in these systems comes not from hardware variations, but
rather behaviour configurations – creating a large solution space when many devices are
considered. Emphasis is placed on performance optimisation rather than application
development.

8.1.3. Offloading Mechanism

Another area to consider is the mechanism for offloading, which describes how the offload-
ing procedure is performed for moving tasks between nodes. Of particular interest are
projects that focus on IoT offloading from embedded devices, which generally focusses on
sending tasks to edge/cloud servers. For example, the Hive [220] project is edge-based
and implements sound-based emotion recognition. It uses concepts from TinyOS for
the embedded OS, and focusses on data-driven collaboration to stream collected data
from any device. It uses a simple leader-election system to orchestrate cooperation and
organisation.

A survey by Olteanu and Tapus [175] describes many classifications such as par-
titioning schemes and resource discovery. Discussed systems generally use cloud-style
offloading between mobile phones and servers, and includes interesting discussion of why
we offload: if it is impossible to fulfil requirements on the mobile client, or simply more
convenient to not duplicate the data down to the user.

Dianne [63] presents semi-offloading-based neural network calculation on ‘IoT hard-
ware’ such as a Raspberry Pi2. It splits each layer of the network into its own module
that can be individually offloaded, creating concerns for data and communication over-
head. Additionally, it has considerable requirements on the MCU, as it uses the high-end
Java-based framework OSGi3. Skarlat et al. [220] brings up offline independence with
their REST-based fog computing offloading framework. Their fog orchestration control
node can also directly offload to other nodes if required, and is split up into control/rea-
soning/listening/monitoring/database and other components.

2https://www.raspberrypi.org/ (last visited: 2021-12-13)
3http://www.osgi.org/ (last visited: 0008-05-2022)

155

https://www.raspberrypi.org/
http://www.osgi.org/


Chapter 8. Related Work

Since the offloading mechanism is not the primary focus of this work, a simple im-
plementation was incorporated into the Elastic Node middleware. It allows tasks to be
offloaded both locally to the FPGA and remotely to peers using the provided stub, with
the device agent making the complex decision of where to compute each task.

8.1.4. Distributed Embedded Middleware

The main objective of most distributed middleware developed for embedded systems is to
provide programming abstractions that simplify the development of complex applications
spanning multiple devices. This commonly involves the abstractions of some basic OS
interactions such as network communications and location services. For example, a
traditional approach is followed by Costa et al. to create the RUNES middleware [57]
using a component model to coordinate these functionalities.
The survey by Razzaque et al. describes multiple middleware implementations [194]

that follow different approaches – using a variety of different abstractions (e.g. service,
event, tuple-based). They also describe some of the functional and non-functional re-
quirements for distributed middleware in the IoT, detailing characteristics of the IoT that
impact the design of such systems (e.g. scalability and real-time requirements). Simi-
larly, Palade et al. surveys in various works [179, 180] the current trends in IoT-based
middleware, with the latter work focussing specifically on Quality of Service (QoS) and
Service Level Agreements (SLAs). Required services are largely data-driven, focussing
on composing larger services in the system that interact with smaller services to fetch
specific pieces of information. It deploys the middleware to VMs in an edge computing
fashion, which does not translate well to limited resource embedded devices due to the
memory overhead.
Other options offer more application-specific middleware, such as the one address-

ing UAVs by Barba et al. [13]. The focus here is on simplifying development, specifi-
cally decoupling hardware and software development. They create an object-orientated
middleware that abstracts memory access and hardware/software interfacing through
register and interrupt abstractions. Bus access is provided through a Flexible Static
Memory Controller, while software is developed within the uC/OS-II OS on an ARM
MCU. Internally it relies on the IceC middleware system – which is based on ZeroC.
Their results show that their software stack employs a few kilobytes of code (with an
overall footprint of roughly 7kB) while the OS is known to require 6kB-24kB. Although
relatively small compared to other alternatives from literature, this leaves limited room
for other components in smaller flash storage devices (e.g. 32kB) – especially when OTA
firmware updating is required.
Some other application-specific Visual Sensor Network (VSN) distributed platforms

are described by Rinner and Wolf [197], explaining briefly how Linux-based middleware
can be used to do collaborative visual sensing. Little information is available on the
details of the distribution of workloads. A similarly specific solution for control systems
is available in the work done by Lee et al. [130]. It uses the EPICS middleware on a Zynq

156



8.1. Platform Related Work

FPGA, and employs Linux – again indicating a different resource and power target.

8.1.5. FPGA-Based Middleware

Several frameworks have been developed for server- and PC-grade systems that use FP-
GAs as coprocessors [60, 109, 120, 170, 182, 222]. Recent research includes FPGA-based
coprocessors for the mobile CPUs [77] commonly used in smartphones. These approaches
all have a underlying system software or OS that offers a thread-based programming ab-
straction to interact with the FPGA. OS drivers or library implementations that control
the FPGA are hidden behind this threading abstraction (e.g. ReconOS [2]).

Many approaches such as the ARTICo3 system [200] – from the group that devel-
oped HiReCookie – are aimed at the Zynq 7000 series of SoC devices that feature an
ARM-based Linux OS. Using this same framework Alcalá performed extensive work on
MCU-FPGA collaboration on embedded systems in their PhD [4]. This system combines
a MicroBlaze softcore with Dynamic Partial Reconfiguration (DPR) accelerators on a
Spartan 6 using the AXI bus, while interactions are abstracted to thread blocks.

The popular LEAP system [182] uses a custom programming language for creating
compatible accelerators. It offers a large selection of services for developing sophisticated
applications (e.g. memory scratchpads). An RPC interface is created which allows high-
level interaction between the applications on the CPU and FPGA, and introduces remote
memory for Direct Memory Access (DMA) systems. Although they provide a large set
of tools for configuring and compiling applications, it should be noted that considerable
boiler plate code is required to create an application using this type of system – increasing
the learning curve for new developers.

Other projects provide alternative abstractions such as the work done by Brzoza-Woch
and Nawrocki [30] and Min et al. [157] where unused FPGA resources are offered via
web servers for convenience. Some industrial solutions to heterogeneous middleware
uses standardised bus systems such as the Virtual Bus [219]. That allows them to
use existing designs that use these interfaces without further development effort, but
introduces overhead in order to be compatible. Although these projects are primarily
applicable in industrial applications, it is interesting to note that they use the Qsys
ARM design tool to map an FPGA to MCU memory space.

In terms of adaptive platforms, Kavanagh et al. created a self-adaptive platform for
high-level FPGA or GPU abstraction [114]. A sophisticated middlware is used to ab-
stract heterogeneous devices using a number of system components. Although targetting
HPC applications and not resource-limited embedded ones, they offer valuable insights
into how heteregeneous systems can adapt using variable job execution systems (balanc-
ing speed, power, and available resources).

Our approach to making embedded FPGA resources universally available within a
distributed network of devices was published as part of the Elastic IoT [33]. Its primary
objective is to support developers in using and deploying hardware components on FP-
GAs within a group of devices by offering a set of tools. This creates a greatly simplified

157



Chapter 8. Related Work

interface to utilise and control the different aspects of the FPGA, such as data exchange
or reconfiguration.

8.1.6. Self-Aware Distributed Systems

The concept of self-awareness relates well to autonomous robotics where each device
needs to monitor its own state – mainly battery levels, network bandwidth usage, and
activity. One example of this is the work done by Akbar and Lewis, where a Raspberry
Pi-based device needs to balance its own power consumption and network usage by
gathering knowledge about both itself and its environment [3]. Similarily, Guettatfi
et al. use environmental and local sensor data for P2P distribution [90]. This results in
a Zynq-based VSN that uses an existing middleware (Ella [64]) and OS (ReconOS [2])
to create abstraction layers for computation. Handing off workloads is done using an
auction-based system that creates a graph of nearby and related nodes using its self-
awareness. It also considers system performance of accelerators and buffer loads to
balance multi-core utilisation.
A similar approach for multi-core systems was used by Happe et al. [93] by the group

that created HiReCookie and ARTICo3, including a study of power usage for different
sized accelerators. The work was extended [93] to include a comparison of the hard-
ware/software threads in a video object tracking application. They also describe their
self-aware component [199], detailing resource usage during the different stages of their
thread block: reconfiguration, data transfer, and kernel execution.

8.1.7. System Modelling for Distributed Systems

Nam and Lysecky created a latency and energy-based modelling for optimising an em-
bedded distributed system [169]. Furthermore, the data-flow of the application itself
is modelled to optimise its performance. They follow a placement approach that tries
to distribute a specified application across a given set of devices. A data-flow model
specifies how much data needs to be passed between each set of tasks, while execution
and communication latency models use measurements for each option. This considers
hardware/software execution time, and handing tokens between components on one or
on different devices. The design space is optimised using a generic algorithm that en-
sures constraints are met and then optimises for overall power usage. Their solution is
centralised, and appears to ignore the reconfiguration overhead of both hardware and
software.
The ARTICo3 system detailed by Rodriguez et al. [199] includes a detailed power

monitoring of memory and computation-based power usage. This leads to a simplified
model that estimates power usage when using any number of accelerators. This model is
empirically created during development and evaluated using hardware. However, their
system does not address effects of distributed systems on these models.

158



8.2. Intelligent Embedded Offloading

8.1.8. self-x Reconfigurable Systems

One approach to incorporating self-x systems into reconfigurable systems is by allow-
ing them to adapt themselves. Although computing architecture designs are normally
very rigid and fixed, techniques such as Error Correction Code (ECC) memory (where
the memory can detect and correct small errors due to data corruption) can improve
dependability and reliability.

Under the umbrella term of dependable embedded systems a number of approaches
have been developed that utilise reconfigurable computing to compensate for errors due
to external factors (e.g. heat or ageing) or internal factors (e.g. design errors) [96]. One
particularly relevant example is the SMASH project that combines hardware threads
(see Section 3.3.1) and tile-based architecture design (see Section 3.3.2). Error-prone
threads due to thermal hotspots are managed by changing the deployment locations of
each piece of computation.

Somewhat similarly, autonomic SoC designs can adapt to failing processing cores
by utilising a learning component (based on an LCS [21]) and an organic computing
middleware [25]. A multi-core system was shown to adapt to changing environments
and workloads by learning a set of adaptation rules (e.g increasing clock speeds to
accommodate high workloads) in its classifier system [279].

8.2. Intelligent Embedded Offloading

Device intelligence can take many forms based on how the intelligence is defined. We
focus here on the different ways for devices to learn and understand how they should
act. This includes high-level concepts such as self-awareness, as well as explicit and
low-level approaches that rely on detailed modelling and rules. The objective here is to
classify different approaches to introducing intelligence into deployed embedded systems
– a popular objective in related work.

A number of approaches can be found in literature that attempt to introduce intelli-
gence to offloading embedded systems. These vary from direct approaches that attempt
to accurately predict the energy costs of various offloading options, to more conceptual
ones that aim to achieve higher level goals. A quick overview of a selection of these ap-
proaches can be seen in Table 8.1, where we provide a breakdown of how each approach
models the system state, the action space, and the cost function. This makes it clear
that some metrics are shared amongst almost all of them (e.g. task delay), while others
are more rare (e.g. device power state).

A characterisation of these (and other) approaches is provided here – grouped by the
type of approach. The research question they have in common is how to solve computa-
tional problems created at various embedded devices. Apart from the simplified scenario
where each device can realistically solve their problems locally, this generally involves
offloading to the edge or a server. Alternatively, P2P solutions also consider distributing
these computational tasks directly between the devices – offering independence from the

159



Chapter 8. Related Work

outside world.
The fundamental issue defined in all these works is the binary offloading problem:

should the device compute the task locally or offload it somewhere else. A notable
extension to this is the partial computation offloading problem, where tasks can be bro-
ken down into smaller segments and offloaded independently [151]. Another variation
is the mixed-binary extension by Xu et al. who considers a choice of different offload-
ing servers [271]. Alternatively, a multi-layered offloading problem is created by Chen
et al. [40] – but it appears that from the perspective of the local device the problem
remains binary.

8.2.1. Greedy and Short-Term Learning Approaches

Some approaches are directly concerned with predicting the expected costs of various
options – e.g. comparing offloading with local computation. As they generally assume
that locally modelling these energy costs are not feasible due to lack of reliable data,
most of them use some estimation algorithm to predict costs instead.

Lyapunov One segment of these utilise Lyapunov optimisations [41, 138, 150], which
was originally developed to solve the equilibrium point of Ordinary Differential Equations
(ODEs). These aim to optimise a requirement system-wide, which makes them ill-suited
to our scenario which relies on a decentralised solution as part of IREQIII: Realistic
Implementation.

MDP Alternatively, other projects have utilised MDPs [231, 280]. Here Tang et al. [231]
builds on the work done by Zhang et al. [280] by creating a decentralised system that
can function on a partially observable local environment. Similar to the MEC and MCC
devices, the fog IoT devices considered are simple CPU-based embedded devices based
on EH.
Some approaches also limit the task queue size to minimise the exponential state

expansion [280], which is also the case for graph based modelling approaches [91]. Here
the size of the state space directly impacts the feasibility of the search space. A similar
issue exists for the projects that utilise game theory. Ma et al. [144] and Chen [44]
formalised the competing goals of the users and devices, thereby creating a decentralised
game that optimises computational offloading.

SDR Semidefinite Relaxation (SDR) was utilised by Dinh et al. [65] to simultaneously
optimise task offloading and local frequency scaling. This enables them to optimise
offloading to multiple access points, but the complexity of their centralised solution
limits its applicability to device-local distributed solutions.

Game theory Some approaches use game theory [44, 136] to formalise the competing
goals of different devices, creating a so-called decentralised computation offloading game.

160



8.2. Intelligent Embedded Offloading

Fundamentally, game theory requires each agent to create a policy by creating a payoff
function for each combination of its own possible actions and that of other agents [206].
This allows it to create a strategy that allows it to maximise its own benefit based on some
understanding or assumption of the strategies followed by other agents. Alternatively,
they may communicate to try reach some kind of consensus for mutual gain.

8.2.2. Reinforcement and Deep Learning approaches

Using RL and DL approaches have gained recent popularity in the MEC and MCC
communities. In general they directly address the offloading problem, creating an agent
that decides whether incoming work should be locally computed or offloaded to a server.
Xu et al. [271] and Huang et al. [104, 105] both created a cloud-based deep RL agent that
solve a multi-device offloading problem in a centralised fashion. As is common in similar
approaches in the MEC, MCC and Radio Access Network (RAN) fields, communication
is emphasised while the computational tasks themselves are simplified – in this case
modelled as offloading data streams.

Neural network-based solutions fall into two different camps: one where the ‘deep’
nature of the network is questionable, and one where the networks are so large that one
is in danger of overfitting. Others simply do not offer details on their networks [272],
making it difficult to know if their solutions would generalise. Some examples of small
networks are from Li et al. [135], Liu et al. [139] and Chen et al. [43], both of which
use DQN to optimise a cost function for balancing server load with task deadlines.
Additionally, DQN overcomes catastrophic forgetfulness [183] by retraining on old data
in order to avoid erasing weights of previously learned state-action pairs.

In contrast to this, Salmani et al. [207] created a network consisting of a total of over
24,000 nodes (8 hidden layers with 3000 nodes per layer). At this point, the ability of the
network to generalise to other problems or changes in the scenario comes into question,
which stands directly against IREQII: Generalisability. Although it outperformed other
methods in CPU time, one could argue that its performance would decrease if presented
with more than two candidates. In other words, it would not be able to respond to
dynamic changes in requirements. A similarly large network is used by Clausen et al. [54]
in their case study of the game ‘Connect 4’.

This is a major consideration in the design of our SRL agents. By using a much
shallower neural network, the system can better relearn behaviour as required. Although
not a concern in static environments, our aim for the learning device agents is to respond
well to changes as stated in IREQIV: Catastrophic Failure.

This is backed up in the work done by McDonnell et al. [154], where they show that
their Extreme Learning Machine (ELM) approach can perform just as well as deeper
networks on the Modified National Institute of Standards and Technology (MNIST)
classification test sets. Similarly, Jiang and Crookes have shown that their Small Unor-
ganized Neural Networkss (SUNNs) perform well on early image recognition tasks [111].
By combining adaptive neurons and random interconnections in a 2D structure, their

161



Chapter 8. Related Work

network can learn early edge detection faster than state-of-the-art DNNs. Their experi-
ments show that in less complex applications their SNNs are at an advantage to larger,
deeper networks.

The distinctions between the Elastic Node runtime and alternatives from literature
have been described here. This included details in the design of both the hardware
platform itself and the middleware providing development support. Similarly, the in-
telligence it provides by locally optimising offloading between devices provides a novel
approach for a learning embedded system. However, it is essential to consider the Elastic
Node’s place within similar projects both from the world of academia and commercial
industry. This provides important context for what we have accomplished in this thesis.

162



8.2. Intelligent Embedded Offloading

X
u

et
al

.[
27

1]
(R

A
N
)

C
he

n
[4
4]

(M
C
C
)

C
he

n
et

al
.[
42

,4
3]

(M
EC

)

H
ua

ng
et

al
.[
10

5]
(M

EC
)

Li
et

al
.[
13

5]
(M

EC
)

M
ao

et
al

.[
13

8,
15

0]
(M

EC
)

Zh
an

g
et

al
.[
28

0]
(M

C
C
)

G
uo

et
al

.[
91

](
M
C
C
)

C
he

n
et

al
.[
40

](
M
C
C
)

M
a

et
al

.[
14

4]
(M

C
C
)

System State
Power state x
User demand x x
Offloading decisions x x x x
Interference x x x x x x
Energy queue x x
Harvestable energy x
Task arrival/queue x x x
Total system cost x x x x
Available server resources x x
Application phase x
Actions
Power state control x x(f) x(f)
Server selection x x x
Binary offloading decision x x x x x x x x x
Wireless allocation x x
Power transmission x x
Server allocation x x x
Cost
Power consumption x x x x x x x
Task delay x x x x x x x x
Task dropping cost x x x
Server cost x x

Table 8.1.: Some projects from related work from mainly MCC and MEC. Includes sys-
tem state collection, actions, and decision cost computation, highlighting how
each application has its own states it considers important to the device/sys-
tem. Some actions are very rare (e.g. altering the device frequency indicated
by (f)) while others are almost universal (e.g. the binary offloading decision).

163





Chapter 9.

Conclusion and Outlook

Augmenting embedded devices with local FPGAs has been shown to greatly increase
their processing capabilities. In a modern world where some form of AI is ubiquitous
to almost every system, they create more capable and flexible devices that can perform
complex applications without depending on the cloud. To address the difficulties of
optimising a distributed system of such devices, we created a device AI that allows it to
learn how to behave rationally.

Our original hypothesis from Section 1.1 was that

Connected and autonomic FPGA-augmented smart IoT
devices can use AI to optimise their behaviour.

We identified a three-phase approach to answer this hypothesis, dedicating a chapter
to each phase. Firstly, the Elastic Node platform was developed in Chapter 4. This
involved creating both an appropriate hardware and software environment for autonomic
FPGA-augmented smart IoT devices. Secondly, the capabilities of the local AI were
maximised through a number of known hardware optimisation techniques in Chapter 5.
This included a number of case studies of popular AI and ML techniques (specifically
ANN, CNN, and IPCA). Finally, Chapter 6 developed a novel behaviour optimisation
using RL and Q-learning. We demonstrate its ability to govern a team of Elastic Nodes
first using a basic Q-table, as well as a neural network for improved resilience to changes
in the system state and environment.

9.1. Contributions
The main contributions of this work (as enumerated in Section 1.3) were addressed
through these three phases (with Phase 1 covering the first two contributions). All of
the contributions were evaluated in Chapter 7, and various parts were demonstrated in
person to the scientific community.

In Chapter 4 we introduced the Elastic Node as a novel hardware platform for FPGA-
augmented connected IoT devices (Contribution 1), accompanied by our middleware
which reduces the development complexity of embedded heterogeneous applications (Con-
tribution 2). The hardware was evaluated for its viability as an experimentation plat-
form, showing that it has very low power consumption and offers detailed self-contained

165



Chapter 9. Conclusion and Outlook

per-component energy monitoring. Within a power envelope of 200 mW, the Elastic
Node platform supports multi-accelerator FPGA-MCU applications that can change ac-
tive HWFs within 100 ms. This was demonstrated at PerCom 2018 [31] and ICAC 2019 [211],
where the Elastic Node’s ability to outperform offloading and provide meaningful exper-
imental results were illustrated to the community.
Without introducing substantial FPGA resource overheads like other solutions from

literature, our platform lowers the development complexity by offering RPC-like task
offloading to the local FPGA. Application developers can utilise the generated stubs to
add on-device intelligence by deploying the relevant HWF. Similarly, accelerator devel-
opers can use our IDL to describe any compatible HWF’s interface – after which the
required stub and skeleton is generated. Along with the provided Hardware Abstraction
Layers (HALs), this formed part of a journal article in the Future Generation Computer
Systems journal [33].
Next, Chapter 5.1 addresses creating hardware accelerators that efficiently utilise the

available resources (Contribution 3). Although the small embedded FPGAs supported
by the Elastic Node offer very limited PL resources, we discussed various ways to utilise
them optimally when adding local intelligence to smart IoT devices. By employing a
number of hardware accelerator design techniques, we developed local AI accelerators
previously impossible on this class of device. Specifically our IPCA accelerator as pub-
lished at ARCS 2020 [36] is considerably more resource-efficient than what is available
in the literature.
In our evaluation we found that for larger covariance matrices our design used 84%

fewer DSP slices than CORDIC-based alternatives. We also identified various ways of
parametrising designs to balance resource consumption and processing speed/accuracy
requirements. For example, the various impacts of altering the fixed point representa-
tion for our CNN implementation were analysed, focussing on power consumption and
resource usage. Additionally, this parametrisation allowed us to develop latency models
that can accurately predict each HWF’s performance. Each of our developed HWFs were
presented in conference and workshop papers (e.g. the CNN at the PerIoT workshop at
PerCom 2020 [35]).
The development of a learning algorithm for controlling the behaviour of teams of Elas-

tic Nodes forms the cornerstone of Chapter 6. By using Q-learning and RL, we showed
how devices can learn how to behave rationally [206]. This was done by extending on the
offloading problem to fully utilise FPGA-based hardware acceleration (Contribution 4),
thereby allowing them to collectively perform 150% more jobs in the same power budget
than a randomly-acting agent. The local AI component formed the basis of our award-
winning paper at ACSOS 2020 [34], and was extended with the SRL agent in the ACM
Transactions on Autonomous and Adaptive Systems [37].
Through our evaluation in Chapter 7 and the mentioned publications/demonstrations,

the validity of the Elastic Node platform have been shown. Between our hardware/mid-
dleware design, hardware accelerator designs, and learning agent designs, a variety of
contributions have been made to the respective scientific communities.

166



9.2. Research Questions

We envision that our work will enable a wider audience to get involved in developing
smart IoT devices. Using our platform as foundation, users can focus on their own
objectives — whether that is creating experiments with FPGA-augmented embedded
devices or developing powerful self-aware device agents. By assisting developers and
putting a full system solution (hardware platform, software runtime, and local device
agent) into their hands, we hope to collectively advance the state of the art.

9.2. Research Questions
Our objective was to address two research questions as detailed in Section 1.2:

• RQ1: How can adaptive hardware acceleration increase the local intelligence of
IoT devices?

• RQ2: How can distributed heterogeneous embedded devices learn to autonomous-
ly achieve shared goals?

We identified the main way to increase local intelligence of IoT devices in Chapter 5
to be supporting and optimising the hardware architecture design. This allowed us to
utilise considerably more complex and powerful ML and AI algorithms than is normally
possible using basic MCU-based designs. This is further improved upon by using good
hardware accelerator design techniques to further increase local AI capabilities.

Similarly, our work in self-governing intelligent devices detailed in Chapter 6 illustrated
how our distributed heterogeneous embedded devices can cooperate autonomously. By
introducing intelligent behaviour through on-device RL, we showed how teams of Elas-
tic Nodes can learn to achieve shared goals. By optimising the augmented offloading
problem (considering local FPGA task acceleration and peer-to-peer offloading), these
devices achieve considerably better application performance.

Through the contributions of all three phases of this work, we have thoroughly an-
swered the hypothesis stated in Section 1.1. By maximising the local AI available on
a combined MCU-FPGA embedded platform, it can learn to optimise its behaviour
through RL and Q-learning. This allows a set of developers to create a smart IoT de-
vice capable of dynamically adapting to its environment by cooperating with nearby
neighbours.

9.3. Outlook
The current state of the art in the field of heterogeneous embedded devices is very ex-
citing. Academic works such as this one have proven that complex and sophisticated
self-optimising systems can be created that utilise flexible local hardware acceleration.
At the same time, the industry is creating COTS devices that provide ever-growing

167



Chapter 9. Conclusion and Outlook

performance capabilities at increasingly better energy efficiency. However, great oppor-
tunities still exist to expand the capabilities of these devices.
For the hardware platform itself, further development can always improve the overall

performance or energy efficiency. To explore additional experimentation options, the
usage of other processing architectures such as 32-bit ARM or Reduced Instruction Set
Computer (RISC) cores could create new possibilities for MCU-dependent applications.
Similarly, while we focussed on very resource-limited FPGAs in our platform, larger
and more powerful FPGAs such as the Kintex range from Xilinx would expand its
applicability to a new set of applications. Instead of being limited by the power supplied
by a small battery, such a platform could address other fields such as the automotive
industry. Using our design to optimise the software and FPGA-resource overhead, we
envision this larger version of the platform to perform advanced real-time AI such as
computer vision used for autonomous driving [223].
One could expand the management of multi-phase accelerators or more complex task

graphs that require multiple accelerators in succession [52]. This would offer a dif-
ferent option for creating more advanced applications without necessarily using larger
components. To further improve the cooperation of multiple devices in a system, a
system-wide approach that improves the management of the available computing re-
sources would offer new opportunities [33, 53]. Instead of relying exclusively on the local
device intelligence to learn a more optimised solution, a user-in-the-loop approach can
provide more contextual improvements that leverage domain knowledge.
Additionally, the middleware software system in our runtime could be expanded from

the purely bare metal system in the current Elastic Node runtime to use an RTOS such
as FreeRTOS [5] or ReconOS [142, 143]. Since our middleware is designed to operate
in an OS-agnostic way, it should be straight-forward to port to these software systems,
but this could make it easier for developers familiar with those OSs to migrate to our
platform. Integration with a full embedded OS would not only expand our platform’s
opportunities for adoption, but could expand support for more complex applications.
Along with utilising more than one hardware accelerator at a time, it would offer a
more appropriate way to develop applications that deploy both software and hardware
tasks. Wrapping our stub-skeleton abstraction in a task or thread would make it easier
to create large applications that rely on multi-tasking.
While the possibilities are practically endless for developing additional optimised hard-

ware accelerators, particularly our work in parametrised accelerators offers great poten-
tial for further work. In the same vein as our dynamic CNN and IPCA that can be
tailored to different accuracy and resource requirements, other accelerators would bene-
fit from parametrisation. For example, various other neural networks (e.g. graph neural
networks [261]) could be adapted in a similar way.
One augmentation that could be made to the self-organising and self-optimising agents

created in Chapter 6 is to add further control options and a more detailed system state.
The quality of a device agent’s control is bound by both its action and system spaces, as
these limit its ability to regulate and understand its own state respectively. For example,

168



9.3. Outlook

additional actions such as controlling the FPGA power state or offloading groups of tasks
could be introduced. Additionally, a more detailed view of the system state could be
achieved by adding additional sensors to the board such as an RTC in order to learn a
time-varied policy that considers what time of day it is.

Another area that offers potential for further work is utilising more advanced training
paradigms such as a genetic algorithm [113]. Instead of training a number of independent
agents and choosing the top results at the end of the experiment, these techniques pro-
vide an opportunity to optimally combine the knowledge of agents between generations.
Another opportunity for future work is to improve the creation of high-level objectives
for the device. Instead of manually creating a reward function that embodies the user’s
intent, alternatives such as game theory could offer a more intuitive design tool.

We believe that substantial further developments will be made in the field of smart
heterogenous IoT devices, both in this research group as well as the community in
general. As applications and requirements are always expanding and becoming more
complex, the future looks very bright for more capable and efficient devices to address
them.

Working with FPGA-augmented smart IoT devices that optimise their own behaviour
provided an opportunity to combine a number of exciting and fascinating fields of re-
search. Fundamentally, we have shown that it is possible to use elastic and decentralised
computing to address concerns about privacy and our increased dependency on the cloud.
As long as the right assistance is provided to developers, and devices are embedded with
enough local intelligence, we foresee a bright future for the IoT.

169





Appendix A.

Interface Description Language
Specification

The specification of the IDL used for the Elastic Node platform is provided here as
adjusted from work done by Winnekens [260]. It starts with the grammar itself in Ap-
pendix A.1 which describes the construction of writing the IDL in EBNF. This is followed
by a description of the available fields in Appendix A.2, the way a HWF (configuration)
is mapped in Appendix A.3, and the available variable types in Appendix A.4.

A.1. Grammar
The grammar for our IDL has been broken up into the generic part in Listing A.1,
and the sections for describing the connections to the MCU (Listing A.2) and the HWF
(Listing A.3). That allows the user to define the full connectivity of the platform through
this single IDL, as it allows the stub and skeleton generators to create the required code
for the MCU and FPGA respectively.

Code Listing A.1.: Initial section of EBNF for the Elastic Node Platform IDL

1 overallConfig = 'configuration', configName, colon, NEWLINE,
mcu, NEWLINE, function ;↪→

2 colon = ':' ;
3 configName = STRING ;
4 mcu = 'mcu', colon, NEWLINE, mcuConfigs ;
5 function = 'function', functionName, colon, NEWLINE,

functionConfigs ;↪→

6 functionName = STRING ;

171



Appendix A. Interface Description Language Specification

Code Listing A.2.: MCU section of EBNF for the Elastic Node Platform IDL

1 mcuConfigs = wordsizeConfig, addressWidthConfig,
endianConfig, stateConfig, includeConfig ;↪→

2 equalsOp = '=' ;
3 wordsizeConfig = 'wordsize', equalsOp, ("1" | "2" | "4" | "8" |

"16" | "..." ), NEWLINE ;↪→

4 addressWidthConfig = 'addresswidth', equalsOp, integer, NEWLINE ;
5 endianConfig = 'endianness', equalsOp, ('little' | 'big'),

NEWLINE ;↪→

6 stateConfig = 'activestate', equalsOp, ('high' | 'low'),
NEWLINE ;↪→

7 includeConfig = { singleIncludeConfig } ;
8 singleIncludeConfig = {'include', equalsOp, includeFile, NEWLINE} ;
9 includeFile = (doubleQuotedHeader | bracketedHeader) ;

10 doubleQuotedHeader = '"', headerfile, '"' ;
11 bracketedHeader = '<', headerfile, '>' ;
12 headerfile = STRING, ".h" ;

13 hdlConfig = 'hdl', equalsOp, ('vhdl' | 'verilog') ;
14 typeConfig = 'type', equalsOp, ('oneshot' | 'asynchronous' |

'streaming') ;↪→

15 libraryConfig = 'library', equalsOp, STRING ;
16 implConfig = 'implementation', equalsOp, STRING ;
17 idConfig = 'id', equalsOp, byteInteger ;
18 byteInteger = "1" | "2" | "..." | "254" | "255" ;

172



A.1. Grammar

Code Listing A.3.: Function section of EBNF for the Elastic Node Platform IDL

1 functionConfigs = hdlConfig, typeConfig, libraryConfig,
implConfig, idConfig, { singleFunction } ;↪→

2 singleFunction = | mappings ;

3 hdlConfig = 'hdl', equalsOp, ('vhdl' | 'verilog'), NEWLINE ;
4 typeConfig = 'type', equalsOp, ('oneshot' | 'asynchronous' |

'streaming'), NEWLINE ;↪→

5 libraryConfig = 'library', equalsOp, STRING, NEWLINE ;
6 implConfig = 'implementation', equalsOp, STRING, NEWLINE ;
7 idConfig = 'id', equalsOp, byteInteger, NEWLINE ;
8 includeFile = (doubleQuotedHeader | bracketedHeader) ;
9 doubleQuotedHeader = '"', headerFile, '"' ;

10 bracketedHeader = '<', headerFile, '>' ;
11 headerFile = STRING, ".h" ;

12 mappings = { portMap | NEWLINE } ;
13 portMap = [dataType], targetConn, connectionOp, portName,

NEWLINE ;↪→

14 connectionOp = '->' ;
15 portName = 'clock' | 'reset' | 'start' | 'done' | 'data_in'

| 'data_out' | 'ctrl_in' | 'ctrl_out' | 'data_in_valid' |
'data_in_ready' | 'data_out_valid' | 'data_out_ready' | 'suspend'
;

↪→

↪→

↪→

16 targetConn = [connectionType], (combinedTarget |
singleTarget) ;↪→

17 combinedTarget = "(", singleTarget, { ",", singleTarget, ")" };
18 singleTarget = [targetType], STRING ;
19 targetType = dataType, [arraySize];

20 connectionType = 'pulse' | ('hold', colon, portName) | buffer;
21 dataType = 'bit' | 'u8' | 'u16' | 'u32' | 'u64' | 'i8' |

'i16' | 'i32' | 'i64';↪→

22 buffer = 'buffer', arraySize;
23 arraySize = "[", bitNumber, { ',', bitNumber } "]";
24 bitNumber = integer ;
25 genericTarget = combinedTarget | singleTarget;

173



Appendix A. Interface Description Language Specification

For clarity, all of these fields are described in the coming section as well, declaring
their purpose and valid values. Additionally, it describes which fields are optional, and
how many times each field can be used (once, multiple times, or as many as required).

A.2. Fields
The various fields that can be configured are detailed here. Along with the mapping of
ports being connected, this pertains to the main chunk of the IDL’s usage.

A.2.1. MCU Configuration
The MCU configuration parameters occur inside the mcu block, indicating that they
primarily affect the way the MCU accesses or addresses the data. This makes them
dependent on the architecture of the MCU, meaning they need to be updated whenever
a different MCU is being used. Shown in Table A.1 are the available values that can
be configured, some of which are required and others that can be set multiple times as
described in Section A.1.

Keyword Function Valid
Values Default

wordsize
Specifies the width of the used ar-
chitecture’s memory cell 8, 16, 32, ... 8

addresswidth
Number of bits used to transfer the
address in the interconnect

natural
number 16

endianness
Specifies how the architecture stores
data in memory, specifically how
multi-byte data types are organised

little or big little

activestate
General active state of the MCU
logic lines high or low high

include

Specifies C header files that should
be included when generating the
stub. May provide structure/data
type definitions.

”string.h”
or

<string.h>
none

Table A.1.: MCU Configuration values in Elastic Node IDL

174



A.2. Fields

A.2.2. Function Configuration
The function configuration section details mostly to the skeleton (i.e. the VHDL section
of the interface). Therefore, it covers partially accelerator-dependent values (e.g. the
type of skeleton required – see Section 4.4.2). These need to be updated once per
accelerator only, while other values such as id are application-dependent (as it depends
on how configurations are stored on the local flash storage). Table A.2 provides an
overview of the possible configuration values that specify how the VHDL skeleton should
be generated.

Keyword Function Valid
Values Default

hdl
Language targeted for gener-
ated skeleton.

VHDL or
Verilog VHDL

type

Specifies the type of skele-
ton to generate based on the
interaction scheme (see Sec-
tion 4.4.2)

oneshot,
asyn-

chronous or
streaming

Required

library

Controls which library the
VHDL accelerator is compiled
into (and therefore how to im-
port it into the skeleton)

string work

implementation
Name of the VHDL architec-
ture or implementation for the
skeleton.

string Behavioral

id

Skeleton ID for uniquely iden-
tifying corresponding stubs
and skeletons in the middle-
ware.

0 < id <
256 random

Table A.2.: VHDL Configuration values in Elastic Node IDL

175



Appendix A. Interface Description Language Specification

Mapping Max Oneshot Asynchronous Streaming
clock 1 3 3 3

reset 1 3 3 3

start 1 3 3 5

done 1 3 3 5

data_in m 3 3 3

data_out n 3 3 3

ctrl_in ∞ 3 3 3

ctrl_out ∞ 3 3 3

data_in_valid m 5 5 3

data_in_ready n 5 5 3

data_out_valid n 5 3 3

data_out_ready n 5 3 3

suspend 1 5 3 5

Table A.3.: Overview of connections that can be mapped and their corresponding sup-
ported skeleton types. Includes the maximum number of appearances for a
HWF with m inputs and n data outputs.

A.3. Configuration Mapping
A number of different control and data interface values can be mapped in the skeleton,
which is why we provide various known mappings. These differ for each different skeleton
type (as described in Section 4.4.2). Therefore, an overview is provided here for the
different options that can be mapped, including which skeletons they refer to and how
many of each mappings can occur.
In this overview is an HWF with m data inputs and n data outputs. For the asyn-

chronous skeleton, the output data is buffered and therefore include ready and valid
lines – these indicate when the skeleton is ready to receive new data and a line specifying
when the data is valid and can be read. When using a streaming interface, these lines
are also available for input data.
Control lines can be mapped to as many ctrl inputs and outputs. This provides the

ability to set configuration values (and read them out) similarly to how configuration
registers are set in most MCU architectures such as AVR and ARM.

176



A.4. Types

A.4. Types
The definition of data types requires separate entries for usage in our Elastic Node
IDL, the generated skeleton in VHDL, and in C within the created stubs. A number
of typical data types are provided here, covering most of the commonly used in each
language respectively. Note that custom data types can be added fairly trivially, or
simply converted to an array of specific width as shown in Table A.4. Static types are
required, however, for buffering and memory allocation in VHDL.

IDL-Type VHDL-Type C-Type
bit std_logic uint8_t
u8 unsigned(7 downto 0) uint8_t
u16 unsigned(15 downto 0) uint16_t
u32 unsigned(31 downto 0) uint32_t
u64 unsigned(63 downto 0) uint64_t
i8 signed(7 downto 0) int8_t
i16 signed(15 downto 0) int16_t
i32 signed(31 downto 0) int32_t
i64 signed(63 downto 0) int64_t

bit[12] std_logic_vector(11 downto 0) uint16_t
bit[32] std_logic_vector(31 downto 0) uint32_t
bit[128] std_logic_vector(127 downto 0) uint8_t*
u8[8] array (7 downto 0) of unsigned(7 downto 0) uint8_t*
i16[4] array (15 downto 0) of unsigned(7 downto 0) int8_t*
u8[2,4] array (1 downto 0, 3 downto 0) of unsigned(7 downto 0) uint8_t*

Table A.4.: Various data types defined for use in the Elastic Node IDL and their corre-
sponding types in VHDL and C

Using the IDL described here, a user can describe not only one or more HWFs that
should be used on the Elastic Node platform, but also how these interface with the MCU.
By describing how the system components on the MCU and FPGA communicate, the
stub and skeleton can be generated as discussed in Section 4.4. At this point, all that
remains is to create the top-level application logic on the MCU using the stubs and other
middleware functions provided by the Elastic Node runtime.

177



Appendix A. Interface Description Language Specification

A.5. Defaults
To illustrate the usage of the default values, an absolute minimal IDL is shown in
Listing A.4. All of the optional values are ignored, and accordingly a HWF is created
that takes no inputs and no outputs.

Code Listing A.4.: Minimal IDL description using all the default values

1 configuration Minimal_example:
2 mcu:
3 wordsize = 8
4 addresswidth = 16
5 endianness = little
6 activestate = high
7

8 function Minimal:
9 hdl = vhdl

10 type = oneshot
11 library = work
12 implementation = Behavioral
13 id = 1

Next, a simple example is provided in Listing A.5. It shows an HWF that directly
calculates the result of A = B + C, where each variable is a 16-bit unsigned number.
The computation is triggered using the oneshot type, which uses the trigger line, and
uses done to know when the computation is done.

Code Listing A.5.: Simple example IDL of a mathematical function calculating
A = B + C in a one-shot skeleton style

1 configuration Math_example:
2 mcu:
3 wordsize = 8
4 addresswidth = 8
5 endianness = little
6 activestate = high

7 include = <math.h>

8 function Math:
9 hdl = vhdl

10 endianness = little

178



A.5. Defaults

11 activestate = high
12 type = oneshot
13 library = work
14 implementation = Behavioral
15 id = 2

16 bit clock -> clock
17 bit reset -> reset
18 bit trigger -> start

19 buffer[10] u8 A -> data_in
20 buffer[10] u8 B -> data_in
21 bit done -> done
22 buffer[10] u8 C -> data_out

Lastly, an example of a streaming HWF is shown in Listing A.6, showing the HWF
for calculating the dot product of two vectors. Specifically ~A · ~B = C, requiring a
streaming input where the two vectors are provided in parallel and the cumulative dot
product can be read at any point. Note that the I/O caching depth n is not provided in
the IDL, as this is only required by the stub/skeleton at runtime – as this process takes
place in software on the MCU. It uses the ready and valid lines to provide new data
to the HWF and fetch the next result. This IDL also takes advantage of the buffer
functionality to cache 10 sets of I/O on the FPGA.

Code Listing A.6.: Streaming IDL of a dotproduct computing HWF, accepting two vec-
tors to create a single value representing the collected dotproduct

1 configuration DotProduct_example:
2 mcu:
3 wordsize = 8
4 addresswidth = 16
5 endianness = little
6 activestate = high

7 include = <math.h>
8 include = "vector.h"

9 function DotProduct:
10 hdl = vhdl
11 endianness = little
12 activestate = low

179



Appendix A. Interface Description Language Specification

13 type = streaming
14 library = work
15 implementation = Behavioral
16 id = 3
17

18 bit clk -> clock
19 bit reset -> reset

20 i16 A -> data_in
21 i16 B -> data_in
22 bit inputRdy -> data_in_ready
23 bit inputValid -> data_in_valid

24 i16 C -> data_out
25 bit CRdy -> data_out_valid
26 bit CValid -> data_out_valid

A further example is provided in the Evaluations chapter in Listings 7.1, showing the
IDL representation for our ANN HWF. It uses a very similar structure to our simple
mathematical example above in Listing A.6.

180



Appendix B.

ANN Interfaces

As an appendage to the qualitative evaluation of the Elastic Node’s development com-
plexity in Section 7.1.4, we provide here the full interface descriptions for both the
user-provided VHDL file and the generated stub and skeleton.

As a reminder, the procedure for integrating a new HWF into the Elastic Node plat-
form is as follows:

1. Provide a compatible HWF VHDL entity

2. Identify the appropriate skeleton type using Section 4.4.2

3. Create the IDL representation using Appendix A

4. Generate the appropriate stub and skeleton

This process is illustrated here through the relevant parts for incorporating the ANN
HWF. Note that this is provided only for insight into the stub and skeleton generation,
as these files do not need to be directly used by the user. Instead, they can simply be
included in their respective projects and called using the provided API.

B.1. ANN VHDL Entity
Provided in Listing B.1 is the VHDL entity for the ANN HWF. A VHDL entity describes
primarily the port interface of a hardware architecture, and acts as the top level API
for incorporating it into a project.

181



Appendix B. ANN Interfaces

Code Listing B.1.: ANN Entity Description in VHDL

1 ENTITY SignedANN IS
2 PORT (
3 -- control interface
4 clk : IN STD_LOGIC;
5 reset : IN STD_LOGIC;

6 -- data handshake
7 data_rdy : OUT STD_LOGIC := '0';
8 start : IN STD_LOGIC;

9 -- data interface
10 connections_in : IN int8_t;
11 connections_out : OUT int8_t := (OTHERS => '0');
12 wanted : IN int8_t;

13 -- hwf control interface
14 learn : IN STD_LOGIC;
15 );
16 END SignedANN;

This interface is very simple but effective. It allows a user to provide the required
data inputs (connectionsIn and wanted), as well as the signal to start a computation
(start). Once the computation is done, dataRdy goes high and the results can be read
from the connectionsOut output.
This is reflected in the IDL provided in Listing 7.1, where the full description that

needs to be provided by the user is shown.

182



Appendix C.

ANN Skeleton
Once the entity description and the IDL are available, the stub and skeleton can be
generated. The result of generating the skeleton is provided in Listing C.1, showing the
complexity required for adapting the simple entity shown in Listing B.1 so it can be
compatible with the Elastic Node middleware.

Code Listing C.1.: Generated skeleton for the ANN HWF

1 -- Generated by fpgasg 0.3
2 -- Date: 2021-01-06 11:42:37

3 LIBRARY ieee;
4 USE ieee.std_logic_1164.ALL;
5 USE ieee.numeric_std.ALL;
6 LIBRARY fpgamiddlewarelibs;
7 USE fpgamiddlewarelibs.UserLogicInterface.ALL;
8 LIBRARY work;

9 ENTITY NeuralNetwork_skeleton IS
10 PORT (
11 skeleton_clock : IN STD_LOGIC;
12 skeleton_reset : IN STD_LOGIC;
13 skeleton_write : IN STD_LOGIC;
14 skeleton_read : IN STD_LOGIC;
15 skeleton_address : IN uint16_t;
16 skeleton_data_in : IN uint8_t;
17 skeleton_data_out : OUT uint8_t
18 );
19 END NeuralNetwork_skeleton;

20 ARCHITECTURE Behavioral OF NeuralNetwork_skeleton IS

21 SIGNAL hwf_dataRdy_s : STD_LOGIC;
22 SIGNAL hwf_connectionsOut0_s : uint8_t;

183



Appendix C. ANN Skeleton

23 SIGNAL skeleton_write_once_s : STD_LOGIC;
24 SIGNAL hwf_start_r : STD_LOGIC;
25 SIGNAL hwf_connectionsIn0_r : uint8_t;
26 SIGNAL hwf_wanted1_r : uint8_t;
27 SIGNAL hwf_learn0_r : STD_LOGIC;
28 CONSTANT NeuralNetwork_id : uint8_t := x"60";

29 BEGIN
30 NeuralNetwork_hwf : ENTITY work.NeuralNetwork(Behavioral)
31 PORT MAP(
32 clk => skeleton_clock,
33 reset => skeleton_reset,
34 connectionsIn => hwf_connectionsIn0_r,
35 wanted => hwf_wanted1_r,
36 connectionsOut => hwf_connectionsOut0_s,
37 learn => hwf_learn0_r,
38 start => hwf_start_r,
39 dataRdy => hwf_dataRdy_s
40 );

41 NeuralNetwork_p : PROCESS (skeleton_clock, skeleton_reset)
42 BEGIN
43 IF skeleton_reset = '1' THEN
44 hwf_connectionsIn0_r <= (OTHERS => '0');
45 hwf_start_r <= '0';
46 hwf_wanted1_r <= (OTHERS => '0');
47 hwf_learn0_r <= '0';
48 ELSIF rising_edge(skeleton_clock) THEN
49 IF skeleton_write = '1' THEN
50 skeleton_write_once_s <= '1';
51 END IF;
52 IF skeleton_write = '0' THEN
53 CASE to_integer(skeleton_address) IS
54 WHEN 0 =>
55 hwf_connectionsIn0_r <= skeleton_data_in;
56 WHEN 1 =>
57 hwf_wanted1_r <= skeleton_data_in;
58 WHEN 2 =>
59 IF skeleton_write_once_s = '1' THEN
60 hwf_start_r <= skeleton_data_in(0);
61 hwf_learn0_r <= skeleton_data_in(1);

184



C.1. ANN Stub

62 skeleton_write_once_s <= '0';
63 END IF;
64 WHEN OTHERS =>
65 -- Intentionally empty
66 END CASE;
67 ELSIF skeleton_read = '0' THEN
68 CASE to_integer(skeleton_address) IS
69 WHEN 2 =>
70 skeleton_data_out(0) <= hwf_start_r;
71 skeleton_data_out(1) <= hwf_learn0_r;
72 skeleton_data_out(7 DOWNTO 2) <= (OTHERS => '0');
73 WHEN 3 =>
74 skeleton_data_out <= hwf_connectionsOut0_s;
75 WHEN 4 =>
76 skeleton_data_out(0) <= hwf_dataRdy_s;
77 skeleton_data_out(7 DOWNTO 1) <= (OTHERS => '0');
78 WHEN OTHERS =>
79 skeleton_data_out <= NeuralNetwork_id;
80 END CASE;
81 END IF;
82 END IF;
83 END PROCESS;
84 END Behavioral;

The generic data interface required by the Elastic Node middleware consists of the con-
nections skeleton_data_in, skeleton_data_out, skeleton_address, skeleton_read
and skeleton_write. The addressing is done through the case switch, allocating differ-
ent behaviour to every address. Additionally, a number of registers (e.g. hwf_start_r
and hwf_dataRdy_s) are inserted transparently for convenience.

C.1. ANN Stub
The second part of the generated abstractions is the stub which allows a user to incorpo-
rate the hardware accelerator into their software projects. It consists of a header (shown
in Listing C.2) and a source file (shown in Listing C.3). Again, the source file itself is
not used directly, since the interface is exclusively provided by the API header.

The header provided in Listing C.2 creates the needed function definitions. It consists
primarily of set and query functions for providing input to and retrieving output from
the HWF.

185



Appendix C. ANN Skeleton

Code Listing C.2.: Generated stub header for the ANN HWF

1 #ifndef NEURALNETWORK_H
2 #define NEURALNETWORK_H

3 void neuralnetwork_set_connectionsIn(uint8_t val);
4 void neuralnetwork_set_wanted(uint8_t val);
5 void neuralnetwork_set_start(uint8_t val);
6 void neuralnetwork_set_learn(uint8_t val);
7 uint8_t neuralnetwork_query_connectionsOut(void);
8 uint8_t neuralnetwork_query_dataRdy(void);
9 uint8_t neuralnetwork_query_id(void);

10 uint8_t neuralNetwork_hwf_is_deployed(void);

11 #endif /* NEURALNETWORK_H */

Lastly, the source of the stub can be seen in Listing C.3 where the memory-mapped
interactions can be seen. Firstly, the relevant pointers are created to the external memory
interface (the USERLOGIC_OFFSET constant is provided by the middleware and directs the
interaction to the XMEM interface).

Code Listing C.3.: Generated stub source file for the ANN HWF

1 /********************
2 * External pointers:
3 ********************/
4 static volatile uint8_t *const hwf_connectionsIn =
5 (uint8_t *)(USERLOGIC_OFFSET + 0);

6 /* 1 byte [datatype size] offset of "connectionsIn" */
7 static volatile uint8_t *const hwf_wanted =
8 (uint8_t *)(USERLOGIC_OFFSET + 1);

9 /* 1 byte [datatype size] offset of "wanted" */
10 static volatile uint8_t *const hwf_ctrl_in =
11 (uint8_t *)(USERLOGIC_OFFSET + 2);

12 /* 1 byte [datatype size] offset of "hwf_ctrl_in" */
13 static volatile uint8_t *const hwf_connectionsOut =
14 (uint8_t *)(USERLOGIC_OFFSET + 3);

186



C.1. ANN Stub

15 /* 1 byte [datatype size] offset of "connectionsOut" */
16 static volatile uint8_t *const hwf_ctrl_out =
17 (uint8_t *)(USERLOGIC_OFFSET + 4);

18 /* 1 byte [datatype size] offset of "hwf_ctrl_out" */
19 static volatile uint8_t *const hwf_id =
20 (uint8_t *)(USERLOGIC_OFFSET + 5);

21 static const uint8_t STUB_ID =
22 96;

23 /*********************************
24 * HWF interface access functions:
25 *********************************/
26 void neuralnetwork_set_connectionsIn(uint8_t val)
27 {
28 *hwf_connectionsIn = val;
29 }

30 void neuralnetwork_set_wanted(uint8_t val)
31 {
32 *hwf_wanted = val;
33 }

34 void neuralnetwork_set_start(uint8_t val)
35 {
36 *hwf_ctrl_in |= ((val & 1) << 0);
37 }

38 void neuralnetwork_set_learn(uint8_t val)
39 {
40 *hwf_ctrl_in |= ((val & 1) << 1);
41 }

42 uint8_t neuralnetwork_query_connectionsOut(void)
43 {
44 return *hwf_connectionsOut;
45 }

46 uint8_t neuralnetwork_query_dataRdy(void)

187



Appendix C. ANN Skeleton

47 {
48 return (*hwf_ctrl_out & 1);
49 }

50 uint8_t neuralnetwork_query_id(void)
51 {
52 return *hwf_id;
53 }

54 uint8_t neuralNetwork_hwf_is_deployed(void)
55 {
56 return (STUB_ID == *hwf_id);
57 }

The remainder of the stub source is dedicated to transferring data and bit shifting
based on the IDL. Some standard functions are also provided that return which HWF
is currently deployed by checking the current ID.

188



Appendix D.

Evolution of Hardware Versions

A number of different versions of the Elastic Node hardware platform have been cre-
ated, as will be shown here. Starting from humble beginnings using a breadboard (the
infamous missing Elastic Node v1), our platform has seen much improvement over the
various iterations. New features have been introduced, and more modern hardware has
been incorporated – proving our platform to be easily adaptable to different hardware
components.

D.1. Elastic Node v2
The first custom PCB version of the Elastic Node hardware platform (shown in Fig-
ure D.1) was based on the Spartan 6 LX9 and the Atmel ATMega64. It was a limited
success as it offered limited heterogeneous functionality, but proved the potential of the
design. It relied on indirect FPGA configuration, as there was no shared storage. This
meant that each configuration had to be loaded using the MCU direct method shown in
Table 7.3, leading to massive start-up times.

Figure D.1.: Elastic Node v2

189



Appendix D. Evolution of Hardware Versions

D.2. Elastic Node v3
The next iteration visible in Figure D.2 was considerably more successful. Although
based on the same main components, it introduced the current monitoring hardware
discussed in Section 4.5.2. It also added a second flash chip (one connected to the
MCU and one to the FPGA), which enabled the usage of an indirect flash programming
method that involved a custom FPGA configuration that relayed incoming data to the
flash via the PL of the FPGA.

Figure D.2.: Elastic Node v3

This version of the platform was the first to be publicly demonstrated, proving its
ability to outperform a server-based offloading approach to ANNs at PerCom 2018 [31].

190



D.3. Elastic Node v4

D.3. Elastic Node v4
A much later version of the Elastic Node shown in Figure D.3 saw a major upgrade
in the components used. It changed to the USB-capable AT90USB128 and the newer
generation Spartan 7 LX15 and LX25. Apart from offering considerably more resources
to applications, this showed the flexibility of the design to new components, as only a
few middleware components (such as the FPGA-side reconfiguration logic) had to be
updated. It also improved the electrical design and aesthetics of the board by upgrading
from the Thin Quad Flat Pack (TQFP) package to the Ball Grid Array (BGA) for the
FPGA. This also made the board much easier to assemble using either hot air or a
soldering oven, simplifying its production in larger numbers.

Figure D.3.: Elastic Node v4

This board was used to demo our platform at the ICAC 2019 conference [211], showing
its ability to provide experimentation data while calculating CNNs.

191



Appendix D. Evolution of Hardware Versions

D.4. ARM Elastic Node
With valuable assistance from both a student project group and Chao Qian, an ARM-
based Elastic Node was developed in-house (Figure D.4). This device used a much more
powerful MCU in the 32-bit Cortex M4 (LPC4088), and increased the package size of
the FPGA (to the FGGA484) to support considerably larger FPGAs (e.g. the Spartan
7 LX50 and LX100).

Figure D.4.: ARM-based Elastic Node

At the time of writing this version of the hardware platform is still under continuous
software development to support the full functionality of the Elastic Node middleware,
but its hardware is already fully functional.

192



D.5. ARM Elastic Node v2

D.5. ARM Elastic Node v2
This variant of the Elastic Node was developed and used primarily during the thesis of
Chao Qian [191]. It features an even more powerful Cortex M4 MCU in the STM32F4,
as well as a generally better electrical layout (e.g. using a ground plane for increased
noise mitigation).

Figure D.5.: Variable frequency ARM Elastic Node

The main benefit of this iteration was that it featured a variable clock source control-
lable by the MCU. This provided the opportunity for experiments at varying clock rates
without requiring hardware changes.

This long list of iterations of the Elastic Node proves the adaptability of the funda-
mental design. Throughout the different created versions, the hardware specifications
have drastically changed – and new functionality has been added to it – but the core
design remains the same. It provides insight into the full potential of our design, which
will undoubtedly see further growth and development.

193





Bibliography

[1] Ken Addison. ASUS ROG SWIFT PG27UQ, 2018, https://pcper.com/
2018/06/asus-rog-swift-pg27uq-27-4k-144hz-g-sync-monitor-true-hdr-
arrives-on-the-desktop/2/ (last visited: 2020-11-12).

[2] Andreas Agne, Markus Happe, Ariane Keller, Enno Lubbers, Bernhard Plattner,
Marco Platzner, and Christian Plessl. ReconOS: An operating system approach for
reconfigurable computing. IEEE Micro, 34(1):60–71, 2014. doi: 10.1109/MM.2013.
110.

[3] Aamir Akbar and Peter R. Lewis. Self-adaptive and self-aware mobile-cloud hybrid
robotics. International Conference on Internet of Things: Systems, Management
and Security (IoTSMS), pages 262–267. IEEE, 2018. ISBN 9781538695852. doi:
10.1109/IoTSMS.2018.8554735.

[4] Juan Valverde Alcalá. Run-Time Dynamically-Adaptable FPGA-Based Architec-
ture for High-Performance Autonomous Distributed Systems. PhD thesis, Univer-
sidad Politécnica de Madrid, 2015.

[5] Amazon Web Services. FreeRTOS - Market leading RTOS, 2021, https://www.
freertos.org/ (last visited: 2021-11-13).

[6] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Fixed point optimization of
deep convolutional neural networks for object recognition. International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 1131–1135. IEEE,
2015. ISBN 9781467369978. doi: 10.1109/ICASSP.2015.7178146.

[7] Emekcan Aras, Stéphane Delbruel, Fan Yang, Wouter Joosen, and Danny Hughes.
Chimera: A Low-power Reconfigurable Platformfor Internet of Things. ACM
Transactions on Internet of Things, 2(2):1–25, may 2021. ISSN 2691-1914. doi:
10.1145/3440995.

[8] Arduino. Arduino - Home, 2021, https://www.arduino.cc/ (last visited: 2021-
11-13).

[9] Arm. big.LITTLE, 2021, https://www.arm.com/why-arm/technologies/big-
little (last visited: 2021-10-13).

[10] ARM Limited. AMBA AXI and ACE Protocol Specification [White paper], 2011.

195

https://pcper.com/2018/06/asus-rog-swift-pg27uq-27-4k-144hz-g-sync-monitor-true-hdr-arrives-on-the-desktop/2/
https://pcper.com/2018/06/asus-rog-swift-pg27uq-27-4k-144hz-g-sync-monitor-true-hdr-arrives-on-the-desktop/2/
https://pcper.com/2018/06/asus-rog-swift-pg27uq-27-4k-144hz-g-sync-monitor-true-hdr-arrives-on-the-desktop/2/
https://www.freertos.org/
https://www.freertos.org/
https://www.arduino.cc/
https://www.arm.com/why-arm/technologies/big-little
https://www.arm.com/why-arm/technologies/big-little


Bibliography

[11] Matej Artač, Matjaž Jogan, and Aleš Leonardis. Incremental PCA for on-line
visual learning and recognition. International Conference on Pattern Recognition
(ICPR), volume 16, pages 781–784, 2002. doi: 10.1109/icpr.2002.1048133.

[12] Ahmed Abdulwali Mohammed Haidar Al Asbahi, Feng Zhi Gang, Wasim Iqbal,
Qaiser Abass, Muhammad Mohsin, and Robina Iram. Novel approach of Principal
Component Analysis method to assess the national energy performance via Energy
Trilemma Index. Energy Reports, 5:704–713, 2019. ISSN 23524847. doi: 10.1016/
j.egyr.2019.06.009.

[13] Jesús Barba, Félix Jesús Villanueva, Manuel Abaldea, David Villa, Oscar Aceña,
and Juan Carlos López. Off-the-shelf embedded middleware solution for UAVs HW-
SW platform development. International Conference on Advanced Information
Networking and Applications Workshops (WAINA), pages 815–820, 2016. ISBN
9781509018574. doi: 10.1109/WAINA.2016.70.

[14] Chloe M. Barnes, Anikó Ekárt, and Peter R. Lewis. Social Action in Socially
Situated Agents. International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), pages 97–106. IEEE, 2019. ISBN 9781728127316. doi: 10.1109/
SASO.2019.00021.

[15] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel. BASE - a micro-broker-
based middleware for pervasive computing. International Conference on Pervasive
Computing and Communications (PerCom), pages 443–451. IEEE, 2003. ISBN
0-7695-1893-1. doi: 10.1109/PERCOM.2003.1192769.

[16] Christian Becker, Jörg Hähner, and Sven Tomforde. Flexibility in organic sys-
tems remarks on mechanisms for adapting system goals at runtime. International
Conference on Informatics in Control, Automation and Robotics (ICINCO), pages
287–292. Science and Technology Publications, 2012. ISBN 9789898565211. doi:
10.5220/0004121002870292.

[17] Shai Ben-David, Eyal Kushilevitz, and Yishay Mansour. Online Learning versus
Offline Learning. Machine Learning, 29(1):45–63, 1997. ISSN 08856125. doi:
10.1023/A:1007465907571.

[18] Olivier Berder and Olivier Sentieys. PowWow: Power Optimized Hardware/Soft-
ware Framework for Wireless Motes. International Conference on Architecture of
Computing Systems (ARCS), pages 1–5. IEEE, 2010. ISBN 978-3-8007-3222-7.

[19] Neil Bergmann, John AlanWilliams, and Peter Waldeck. Egret: A flexible platform
for real-time reconfigurable systems on chip. The International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA), pages 300 – 303.
CSREA Press, 2003.

196



Bibliography

[20] A. Bernardini and S. De Fina. A neural network to approximate nonlinear func-
tions. Midwest Symposium on Circuits and Systems, pages 545–548. IEEE, 1991.
ISBN 0780306201. doi: 10.1109/MWSCAS.1991.252103.

[21] Andreas Bernauer, Johannes Zeppenfeld, Oliver Bringmann, Andreas Herkersdorf,
and Wolfgang Rosenstiel. Combining software and hardware LCS for lightweight
on-chip learning. Distributed, Parallel and Biologically Inspired Systems (DIPES),
volume 329, pages 278–289. Springer, 2010. ISBN 9783642152337. doi: 10.1007/
978-3-642-15234-4_27.

[22] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. MCC workshop on Mobile cloud com-
puting (MCC), pages 13–16. Association for Computing Machinery, 2012. ISBN
9781450315197. doi: 10.1145/2342509.2342513.

[23] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog Comput-
ing: A Platform for Internet of Things and Analytics. Studies in Computational
Intelligence, 546:169–186, 2014. ISSN 1860949X. doi: 10.1007/978-3-319-05029-4.

[24] Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Wenzhi Cui, Aleksandra
Faust, and Vijay Reddi. MAVBench: Micro aerial vehicle benchmarking. An-
nual International Symposium on Microarchitecture (MICRO). IEEE, 2018. ISBN
9781538662403. doi: 10.1109/MICRO.2018.00077.

[25] Abdelmajid Bouajila, Johannes Zeppenfeld, W Stechele, Andreas Bernauer,
O Bringmann, W Rosenstiel, and A Herkersdorf. Autonomic System on Chip
Platform. Organic Computing, pages 413–425. Springer, 2011. doi: 10.1007/978-
3-0348-0130-0_27.

[26] Jayson Boubin, John Chumley, Christopher Stewart, and Sami Khanal. Autonomic
Computing Challenges in Fully Autonomous Precision Agriculture. International
Conference on Autonomic Computing (ICAC), number June, pages 11–17. IEEE,
2019. ISBN 9781728124117. doi: 10.1109/ICAC.2019.00012.

[27] Jayson G. Boubin, Naveen T.R. Babu, Christopher Stewart, John Chumley, and
Shiqi Zhang. Managing edge resources for fully autonomous aerial systems. Sym-
posium on Edge Computing (SEC), pages 74–87. Association for Computing Ma-
chinery, 2019. ISBN 9781450367332. doi: 10.1145/3318216.3363306.

[28] Jürgen Branke, Moez Mnif, Christian Müller-Schloer, Holger Prothmann, Urban
Richter, Fabian Rochner, and Hartmut Schmeck. Organic Computing - Addressing
complexity by controlled self-organization. International Symposium on Leverag-
ing Applications of Formal Methods, Verification and Validation (ISoLA), pages
185–191. IEEE, 2006. ISBN 0769530710. doi: 10.1109/ISoLA.2006.19.

197



Bibliography

[29] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. Ad-
vances in Neural Information Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc., 2020.

[30] Robert Brzoza-Woch and Piotr Nawrocki. Reconfigurable FPGA-based embedded
Web services as distributed computational nodes. Federated Conference on Com-
puter Science and Information Systems, volume 6, pages 159–164. PTI, 2015. doi:
10.15439/2015F37.

[31] Alwyn Burger and Gregor Schiele. Demo Abstract: Deep Learning on an Elastic
Node for the Internet of Things. International Conference on Pervasive Comput-
ing and Communications Workshops (PerCom Workshops), pages 555–557. IEEE,
2018. ISBN 9781538632277. doi: 10.1109/PERCOMW.2018.8480160.

[32] Alwyn Burger, Christopher Cichiwskyj, and Gregor Schiele. Elastic Nodes for the
Internet of Things: A Middleware-Based Approach. International Conference on
Autonomic Computing (ICAC), pages 73–74. IEEE, 2017. ISBN 978-1-5386-1762-
5. doi: 10.1109/ICAC.2017.27.

[33] Alwyn Burger, Christopher Cichiwskyj, Stephan Schmeißer, and Gregor Schiele.
The Elastic Internet of Things - A Platform for Self-Integrating and Self-Adaptive
IoT-Systems with Support for Embedded Adaptive Hardware. Future Generation
Computer Systems, 113:607–619, 2020. doi: 10.1016/j.future.2020.07.035.

[34] Alwyn Burger, David King, and Gregor Schiele. Reconfigurable embedded devices
using reinforcement learning to develop action-policies. International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE, 2020.
ISBN 9781728172774. doi: 10.1109/ACSOS49614.2020.00046.

[35] Alwyn Burger, Chao Qian, Gregor Schiele, and Domenik Helms. An Embedded
CNN Implementation for On-Device ECG Analysis. International Conference
on Pervasive Computing and Communications Workshops (PerCom Workshops).
IEEE, 2020. doi: 10.1109/PerComWorkshops48775.2020.9156260.

[36] Alwyn Burger, Patrick Urban, Jayson Boubin, and Gregor Schiele. An Architecture
for Solving the Eigenvalue Problem on Embedded FPGAs. International Conference
on Architecture of Computing Systems (ARCS), pages 32–43. Springer, 2020. doi:
10.1007/978-3-030-52794-5_3.

198



Bibliography

[37] Alwyn Burger, Gregor Schiele, and David W King. Developing Action Policies with
Q-Learning and Shallow Neural Networks on Reconfigurable Embedded Devices.
ACM Transactions on Autonomous and Adaptive Systems, 15(4):1–25, 2021. doi:
10.1145/3487920.

[38] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz Stockinger. Eco-
nomic models for resource management and scheduling in grid computing. Con-
currency Computation Practice and Experience, 14(13-15):1507–1542, 2002. ISSN
15320626. doi: 10.1002/cpe.690.

[39] Olivier Chapelle, Mingmin Chi, and Alexander Zien. A continuation method for
semi-supervised SVMs. International Conference on Machine Learning (ICML),
volume 148, pages 185–192. Association for Computing Machinery, 2006. ISBN
1595933832. doi: 10.1145/1143844.1143868.

[40] Meng Hsi Chen, Min Dong, and Ben Liang. Multi-user Mobile Cloud Offloading
Game with Computing Access Point. International Conference on Cloud Net-
working, CloudNet 2016, pages 64–69. IEEE, 2016. ISBN 9781509050932. doi:
10.1109/CloudNet.2016.52.

[41] Weiwei Chen, Dong Wang, and Keqin Li. Multi-user Multi-task Computation
Offloading in Green Mobile Edge Cloud Computing. IEEE Transactions on Services
Computing, 12(5):1–13, 2019. ISSN 19391374. doi: 10.1109/TSC.2018.2826544.

[42] Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng Ji, and
Mehdi Bennis. Performance Optimization in Mobile-Edge Computing via Deep
Reinforcement Learning. Vehicular Technology Conference (VTC-Fall), pages
1–6. IEEE, 2018. ISBN 9781538663585. doi: 10.1109/VTCFall.2018.8690980,
http://arxiv.org/abs/1804.00514.

[43] Xianfu Chen, Honggang Zhang, CelimugeWu, Shiwen Mao, Yusheng Ji, and Mehdi
Bennis. Optimized Computation Offloading Performance in Virtual Edge Comput-
ing Systems via Deep Reinforcement Learning. IEEE Internet of Things Journal,
6(3):1–31, 2019. arXiv ID: 1805.06146. ISSN 23274662. doi: 10.1109/JIOT.2018.
2876279.

[44] Xu Chen. Decentralized computation offloading game for mobile cloud computing.
IEEE Transactions on Parallel and Distributed Systems, 26(4):974–983, apr 2015.
ISSN 10459219. doi: 10.1109/TPDS.2014.2316834.

[45] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Efficient Multi-User Compu-
tation Offloading for Mobile-Edge Cloud Computing. IEEE/ACM Transactions on
Networking, 24(5):2795–2808, 2016. arXiv ID: 1510.00888. ISSN 10636692. doi:
10.1109/TNET.2015.2487344.

199

http://arxiv.org/abs/1804.00514


Bibliography

[46] Long Cheng, Jianwei Niu, Chengwen Luo, Lei Shu, Linghe Kong, Zhiwei Zhao, and
Yu Gu. Towards minimum-delay and energy-efficient flooding in low-duty-cycle
wireless sensor networks. Computer Networks: The International Journal of Com-
puter and Telecommunications Networking, 134(C):66–77, 2018. ISSN 13891286.
doi: 10.1016/j.comnet.2018.01.012.

[47] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using RNN encoder-decoder for statistical machine translation. Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pages
1724–1734. Association for Computing Machinery, 2014. ISBN 9781937284961.
doi: 10.3115/v1/d14-1179.

[48] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. CloneCloud: Elastic Execution Between Mobile Device and Cloud. EuroSys,
pages 301–314. Association for Computing Machinery, 2011. ISBN 978-1-4503-
0634-8. doi: 10.1145/1966445.1966473.

[49] Eric S Chung, Peter A Milder, James C Hoe, and Ken Mai. Single-chip hetero-
geneous computing: Does the future include custom logic, FPGAs, and GPGPUs?
Proceedings of the Annual International Symposium on Microarchitecture, MI-
CRO, pages 225–236, 2010. ISBN 9780769542997. doi: 10.1109/MICRO.2010.36.

[50] Christopher Cichiwskyj and Gregor Schiele. Using field-programmable gate arrays
for learning non player characters. International Workshop on Massively Multiuser
Virtual Environments (MMVE), pages 1–2. Association for Computing Machinery,
2016. ISBN 9781450343589. doi: 10.1145/2910659.2910662.

[51] Christopher Cichiwskyj and Gregor Schiele. Temporal Accelerators: Unleashing the
Potential of Embedded FPGAs. JUCS - Journal of Universal Computer Science,
27(11):1174–1192, 2021. ISSN 0948-695X. doi: 10.3897/jucs.77247.

[52] Christopher Cichiwskyj, Chao Qian, and Gregor Schiele. Time to Learn: Temporal
Accelerators as an Embedded Deep Neural Network Platform. IoT Streams for
Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded
Machine Learning, pages 256–267. Springer, 2020. ISBN 9783030667696. doi:
10.1007/978-3-030-66770-2_19.

[53] Christopher Cichiwskyj, Stephan Schmeißer, Chao Qian, Lukas Einhaus, Christo-
pher Ringhofer, and Gregor Schiele. Elastic AI: system support for adaptive
machine learning in pervasive computing systems. CCF Transactions on Per-
vasive Computing and Interaction, 3(3):300–328, 2021. ISSN 25245228. doi:
10.1007/s42486-021-00070-6, https://doi.org/10.1007/s42486-021-00070-6.

200

https://doi.org/10.1007/s42486-021-00070-6


Bibliography

[54] Colin Clausen, Simon Reichhuber, Ingo Thomsen, and Sven Tomforde. Improve-
ments to increase the efficiency of the AlphaZero algorithm: A case study in the
Game ‘Connect 4’. International Conference on Agents and Artificial Intelligence
(ICAART), volume 2, pages 803–811. SciTePress, 2021. ISBN 9789897584848. doi:
10.5220/0010245908030811.

[55] Jason Cong and Yi Zou. FPGA-based hardware acceleration of lithographic aerial
image simulation. ACM Transactions on Reconfigurable Technology and Systems,
2(3):1–29, 2009. ISSN 19367406. doi: 10.1145/1575774.1575776.

[56] Francesco Conti, Daniele Pajossit, Andrea Marongiu, Davide Rossi, and Luca
Benini. Enabling the Heterogeneous Accelerator Model on Ultra-Low Power Mi-
crocontroller Platforms. Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1201–1206. IEEE, 2016. ISBN 9783981537079.

[57] Paolo Costa, Geoff Coulson, Cecilia Mascolo, Gian Pietro Picco, and Stefanos
Zachariadis. The RUNES Middleware: A Reconfigurable Component-based Ap-
proach to Networked Embedded Systems. International Symposium on Personal,
Indoor and Mobile Radio Communications, pages 806–810. IEEE, 2005. ISBN
978-3-8007-29. doi: 10.1109/PIMRC.2005.1651554.

[58] Eduardo Cuervo, Aruna Balasubramanian, and Dae-ki Cho. MAUI: making smart-
phones last longer with code offload. International Conference on Mobile Systems,
Applications, and Services (MobiSys), pages 49–62. Association for Computing
Machinery, 2010. ISBN 9781605589855. doi: 10.1145/1814433.1814441.

[59] Zhihua Cui and Xiaozhi Gao. Theory and applications of swarm intelligence.
Neural Computing and Applications, 21(2):205–206, 2012. ISSN 09410643. doi:
10.1007/s00521-011-0523-8.

[60] Tomasz S Czajkowski, Utku Aydonat, Dmitry Denisenko, John Freeman, Michael
Kinsner, David Neto, Jason Wong, Peter Yiannacouras, and Deshanand P Singh.
From OpenCL to high-performance hardware on FPGAS. International Conference
on Field Programmable Logic and Applications (FPL), pages 531–534. IEEE, aug
2012. ISBN 978-1-4673-2256-0. doi: 10.1109/FPL.2012.6339272.

[61] Martin Danek, Jiri Kadlec, Roman Bartosinski, and Lukas Kohout. Increasing
the level of abstraction in FPGA-based designs. International Conference on Field
Programmable Logic and Applications (FPL), pages 5–10. IEEE, 2008. ISBN
9781424419616. doi: 10.1109/FPL.2008.4629899.

[62] Mirko D’Angelo, Simos Gerasimou, Sona Ghahremani, Johannes Grohmann, In-
grid Nunes, Evangelos Pournaras, and Sven Tomforde. On learning in collective
self-adaptive systems: State of practice and a 3D framework. International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
pages 13–24. IEEE, 2019. ISBN 9781728133683. doi: 10.1109/SEAMS.2019.00012.

201



Bibliography

[63] Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Steven Bohez, Sam Leroux,
and Pieter Simoens. DIANNE: Distributed Artificial Neural Networks for the
Internet of Things. Workshop on Middleware for Context-Aware Applications in
the IoT (M4IoT), pages 19–24. Association for Computing Machinery, 2015. ISBN
9781450337311. doi: 10.1145/2836127.2836130.

[64] Bernhard Dieber, Jennifer Simonjan, Lukas Esterle, Bernhard Rinner, Georg
Nebehay, Roman Pflugfelder, and Gustavo Javier Fernandez. Ella: Middleware for
multi-camera surveillance in heterogeneous visual sensor networks. International
Conference on Distributed Smart Cameras (ICDSC), pages 1–6. IEEE, 2013. doi:
10.1109/ICDSC.2013.6778223.

[65] Thinh Quang Dinh, Jianhua Tang, Quang Duy La, and Tony Q.S. Quek. Offloading
in Mobile Edge Computing: Task Allocation and Computational Frequency Scaling.
Transactions on Communications, 65(8):3571–3584, 2017. ISSN 15580857. doi:
10.1109/TCOMM.2017.2699660.

[66] R. Döhler. Squared givens rotation. IMA Journal of Numerical Analysis, 11(1):
1–5, 1991. ISSN 02724979. doi: 10.1093/imanum/11.1.1.

[67] Jinwen Du. Noise Mitigation for CNN Classifiers in Embedded Environments.
Master’s thesis, University of Duisburg-Essen, 2020.

[68] Nikil Dutt, Carlo S Regazzoni, Bernhard Rinner, and Xin Yao. Self-Awareness for
Autonomous Systems. Proceedings of the IEEE, 108(7):971–975, jul 2020. ISSN
0018-9219. doi: 10.1109/JPROC.2020.2990784, https://ieeexplore.ieee.org/
document/9120415/.

[69] R Eberhart and J Kennedy Sixth. A new optimizer using particle swarm theory.
International Symposium on Micro Machine and Human Science (MHS), pages
39–43. IEEE, 1995. ISBN 0780326768. doi: 10.1109/MHS.1995.494215.

[70] Lukas Einhaus, Chao Qian, Christopher Ringhofer, and Gregor Schiele. Towards
Precomputed 1D-Convolutional Layers for Embedded FPGAs. Machine Learning
and Principles and Practice of Knowledge Discovery in Databases, pages 327–338,
Cham, 2021. Springer International Publishing. ISBN 978-3-030-93736-2. doi:
10.1007/978-3-030-93736-2_25.

[71] Sven Eisenhardt, Thomas Schweizer, Julio Oliveira Filho, Tommy Kuhn, and Wolf-
gang Rosenstiel. Evaluation and Design Methods for Processor-Like Reconfigurable
Architectures. Dynamically Reconfigurable Systems: Architectures, Design Meth-
ods and Applications, pages 95–116. Springer Netherlands, Dordrecht, 2010. ISBN
978-90-481-3485-4. doi: 10.1007/978-90-481-3485-4_5.

202

https://ieeexplore.ieee.org/document/9120415/
https://ieeexplore.ieee.org/document/9120415/


Bibliography

[72] Andreas Engel and Andreas Koch. Heterogeneous Wireless Sensor Nodes that
Target the Internet of Things. IEEE Micro, 36(6):8–15, 2016. ISSN 02721732. doi:
10.1109/MM.2016.100.

[73] Andreas Engel, Andreas Koch, and Thomas Siebel. A heterogeneous system ar-
chitecture for low-power wireless sensor nodes in compute-intensive distributed ap-
plications. Local Computer Networks Conference Workshops (LCN Workshops),
pages 636–644. IEEE, 2015. ISBN 9781467367738. doi: 10.1109/LCNW.2015.
7365908.

[74] Ambrose Finnerty and Hervé Ratigner. Reduce Power and Cost by Converting
from Floating Point to Fixed Point Introduction [White Paper], 2017.

[75] FiPS. FiPS - Developing Hardware and Design Methodologies for Heterogeneous
Low Power Field Programmable Servers, 2015, https://www.fips-project.
eu/ (last visited: 2015-12-28).

[76] Huber Flores, Pan Hui, Sasu Tarkoma, Yong Li, Satish Srirama, and Rajkumar
Buyya. Mobile code offloading: From concept to practice and beyond. IEEE
Communications Magazine, 53(3):80–88, 2015. ISSN 01636804. doi: 10.1109/
MCOM.2015.7060486.

[77] Blair Fort, Andrew Canis, Jongsok Choi, Nazanin Calagar, Ruolong Lian, Stefan
Hadjis, Yu Ting Chen, Mathew Hall, Bain Syrowik, Tomasz Czajkowski, Stephen
Brown, and Jason Anderson. Automating the Design of Processor/Accelerator
Embedded Systems with LegUp High-Level Synthesis. International Conference on
Embedded and Ubiquitous Computing, pages 120–129. IEEE, 2014. doi: 10.1109/
EUC.2014.26.

[78] Nicolas Frick. FPGA Energy Monitoring and Control through Power State Opti-
mization. Bachelor’s thesis, University of Duisburg-Essen, 2019.

[79] Walter Gander. Algorithms for the QR decomposition. Research Report, 80(2):
1251–1268, 1980.

[80] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo
Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal Felber, and Etienne
Riviere. Edge-centric Computing. SIGCOMM Computer Communication Re-
view, volume 45, pages 37–42. Association for Computing Machinery, 2015. doi:
10.1145/2831347.2831354.

[81] Hasan Genc, Yazhou Zu, Ting Wu Chin, Matthew Halpern, and Vijay Janapa
Reddi. Flying IoT: Toward Low-Power Vision in the Sky. IEEE Micro, 37(6):
40–51, 2017. ISSN 02721732. doi: 10.1109/MM.2017.4241339.

203

https://www.fips-project.eu/
https://www.fips-project.eu/


Bibliography

[82] Yoav Goldberg. Neural Network Methods for Natural Language Processing. Synthe-
sis Lectures on Human Language Technologies, 10(1):1–309, 2017. ISSN 19474040.
doi: 10.2200/S00762ED1V01Y201703HLT037.

[83] Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez, Juan M. Sanchez-Perez, Silvio
Priem-Mendes, and Vitor Carreira. Accelerating floating-point fitness functions in
evolutionary algorithms: A FPGA-CPU-GPU performance comparison. Genetic
Programming and Evolvable Machines, 12(4):403–427, 2011. ISSN 13892576. doi:
10.1007/s10710-011-9137-2.

[84] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, volume 1.
MIT press, 2016. ISBN 9780262035613.

[85] Google. TensorFlow, 2021, https://www.tensorflow.org/ (last visited: 2021-
11-09).

[86] Root Gorelick, Susan M. Bertram, Peter R. Killeen, and Jennifer H. Fewell. Nor-
malized mutual entropy in biology: Quantifying division of labor. American Natu-
ralist, 164(5):677–682, 2004. ISSN 00030147. doi: 10.1086/424968.

[87] René Griessl, Meysam Peykanu, Jens Hagemeyer, Mario Porrmann, Stefan
Krupop, Micha vor dem Berge, Thomas Kiesel, and Wolfgang Christmann. A
Scalable Server Architecture for Next-Generation Heterogeneous Compute Clus-
ters. International Conference on Embedded and Ubiquitous Computing, pages
146–153. IEEE, 2014. doi: 10.1109/EUC.2014.29.

[88] Yu Gu and Tian He. Dynamic switching-based data forwarding for low-duty-
cycle wireless sensor networks. IEEE Transactions on Mobile Computing, 10(12):
1741–1754, 2011. ISSN 15361233. doi: 10.1109/TMC.2010.266.

[89] Jorge E. Guerrero-Ramírez, Jaime Velasco-Medina, and Julio C. Arce. Hardware
design of an eigensolver based on the QR method. Analog Integrated Circuits and
Signal Processing, 82(1):125–134, 2014. ISSN 15731979. doi: 10.1007/s10470-014-
0445-3.

[90] Zakarya Guettatfi, Philipp Hubner, Marco Platzner, and Bernhard Rinner. Com-
putational self-awareness as design approach for visual sensor nodes. Interna-
tional Symposium on Reconfigurable Communication-Centric Systems-on-Chip
(ReCoSoC), pages 1–8. IEEE, 2017. ISBN 9781538633441. doi: 10.1109/ReCoSoC.
2017.8016147.

[91] Songtao Guo, Bin Xiao, Yuanyuan Yang, and Yang Yang. Energy-efficient dy-
namic offloading and resource scheduling in mobile cloud computing. International
Conference on Computer Communications (INFOCOM), pages 1–9. IEEE, 2016.
ISBN 9781467399531. doi: 10.1109/INFOCOM.2016.7524497.

204

https://www.tensorflow.org/


Bibliography

[92] Lars Kai Hansen and Peter Salamon. Neural Network Ensembles. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 12(10):993–1001, 1990. ISSN
01628828. doi: 10.1109/34.58871.

[93] Markus Happe, Enno Lübbers, and Marco Platzner. A self-adaptive heterogeneous
multi-core architecture for embedded real-time video object tracking. Journal of
Real-Time Image Processing, 8(1):95–110, 2013. ISSN 18618200. doi: 10.1007/
s11554-011-0212-y.

[94] Mark Harris. Mixed-Precision Programming with CUDA 8, 2016, https://
developer.nvidia.com/blog/mixed-precision-programming-cuda-8/ (last
visited: 2021-11-06).

[95] Hado Van Hasselt. Double Q-learning. International Conference on Neural Infor-
mation Processing Systems (NIPS), pages 2613–2621. Association for Computing
Machinery, 2010. ISBN 9781617823800.

[96] Jörg Henkel, Lars Bauer, Joachim Becker, Oliver Bringmann, Uwe Brinkschulte,
Samarjit Chakraborty, Michael Engel, Rolf Ernst, Hermann Härtig, Lars Hedrich,
Andreas Herkersdorf, Rüdiger Kapitza, Daniel Lohmann, Peter Marwedel, Marco
Platzner, Wolfgang Rosenstiel, Ulf Schlichtmann, Olaf Spinczyk, Mehdi Tahoori,
Jürgen Teich, Norbert Wehn, and Hans Joachim Wunderlich. Design and ar-
chitectures for dependable embedded systems. International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), number October,
pages 69–78. IEEE, 2011. ISBN 9781450307154. doi: 10.1145/2039370.2039384.

[97] M Henning. A New Approach to Object-Oriented Middleware. IEEE Internet
Computing, 8(1):66–75, 2004. doi: 10.1109/MIC.2004.1260706.

[98] Sascha Christian Hevelke. An Approach for Efficient Runtime Self-Configuration
for Embedded Reconfigurable Platforms. Master’s thesis, University of Duisburg-
Essen, 2016.

[99] Stephen Hilt, Vladimir Kropotov, Fernando Mercês, Mayra Rosario, and David
Sancho. The Internet of Things in the Cybercrime Underground, 2019, https:
//www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-
threats/the-internet-of-things-in-the-cybercrime-underground (last vis-
ited: 2021-12-21).

[100] John H Holland. Adaptation. Progress in Theoretical Biology, pages 263–293.
Academic Press, 1976. ISBN 978-0-12-543104-0. doi: 10.1016/B978-0-12-543104-
0.50012-3.

[101] Markus Horstmann and Mary Kirtland. DCOM architecture - Software Toolbox,
1997, https://www.softwaretoolbox.com/dcom/DCOMArchitecture.pdf (last
visited: 2021-12-21).

205

https://developer.nvidia.com/blog/mixed-precision-programming-cuda-8/
https://developer.nvidia.com/blog/mixed-precision-programming-cuda-8/
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-internet-of-things-in-the-cybercrime-underground
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-internet-of-things-in-the-cybercrime-underground
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-internet-of-things-in-the-cybercrime-underground
https://www.softwaretoolbox.com/dcom/DCOM Architecture.pdf


Bibliography

[102] Michael Hosemann and Gerhard P. Fettweis. On enhancing SIMD-controlled DSPs
for performing recursive filtering. Journal of VLSI Signal Processing Systems for
Signal, Image, and Video Technology, 43:125–142, 2006. ISSN 13875485. doi:
10.1007/s11265-006-7266-2.

[103] Lingkon Hossain. Analysis and Design of Audio Capturing Solutions for Low-Power
Embedded Systems. Master’s thesis, University of Duisburg-Essen, 2019.

[104] Liang Huang, Xu Feng, Anqi Feng, Yupin Huang, and Li Ping Qian. Distributed
Deep Learning-based Offloading for Mobile Edge Computing Networks. Mobile
Networks and Applications, 2018. ISSN 15728153. doi: 10.1007/s11036-018-1177-
x.

[105] Liang Huang, Suzhi Bi, and Ying-Jun Angela Zhang. Deep Reinforcement
Learning for Online Offloading in Wireless Powered Mobile-Edge Computing
Networks. IEEE Transactions on Mobile Computing, 19(11):1–24, 2020. doi:
10.1109/TMC.2019.2928811.

[106] Muhammad Imran, Khurram Shahzad, Naeem Ahmad, Mattias O’Nils, Najeem
Lawal, and Bengt Oelmann. Energy-Efficient SRAM FPGA-Based Wireless Vision
Sensor Node: SENTIOF-CAM. IEEE Transactions on Circuits and Systems for
Video Technology, 24(12):2132–2143, dec 2014. ISSN 1051-8215. doi: 10.1109/
TCSVT.2014.2330660.

[107] Intel. Avalon Interface Specifications [White paper], 2013, https://www.intel.
com/content/www/us/en/programmable/documentation/nik1412467993397.
html (last visited: 2021-12-21).

[108] Magnus Irestig, Niklas Hallberg, Henrik Eriksson, and Toomas Timpka. Peer-
to-peer computing in health-promoting voluntary organizations: A system design
analysis. Journal of Medical Systems, 29(5):425–440, 2005. ISSN 01485598. doi:
10.1007/s10916-005-6100-x.

[109] Matthew Jacobsen, Dustin Richmond, Matthew Hogains, and Ryan Kastner.
RIFFA 2.1: A reusable integration framework for FPGA accelerators. ACM
Transactions on Reconfigurable Technology and Systems, 8(4):1–23, 2015. ISSN
19367414. doi: 10.1145/2815631.

[110] Vidit Jain and Erik Learned-Miller. FDDB: A Benchmark for Face Detection in
Unconstrained Settings. Technical Report UM-CS-2010-009, University of Mas-
sachusetts, Amherst, 2010.

[111] Richard Jiang and Danny Crookes. Shallow Unorganized Neural Networks Using
Smart Neuron Model for Visual Perception. IEEE Access, 7:152701–152714, 2019.
ISSN 21693536. doi: 10.1109/ACCESS.2019.2946422.

206

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html


Bibliography

[112] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement
Learning: A Survey. Journal of Artificial Intelligence Research, 4(1):237–285, 1996.
doi: 10.5555/1622737.1622748.

[113] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on genetic al-
gorithm: past, present, and future, volume 80. Multimedia Tools and Applications,
2021. ISBN 1104202010139. doi: 10.1007/s11042-020-10139-6.

[114] Richard Kavanagh, Karim Djemame, Jorge Ejarque, Rosa M. Badia, and David
Garcia-Perez. Energy-Aware Self-Adaptation for Application Execution on Hetero-
geneous Parallel Architectures. IEEE Transactions on Sustainable Computing, 5
(1):81–94, 2020. ISSN 23773782. doi: 10.1109/TSUSC.2019.2912000.

[115] James Kennedy. Swarm Intelligence. Handbook of Nature-Inspired and Inno-
vative Computing: Integrating Classical Models with Emerging Technologies,
pages 187–219. Springer, Boston, MA, 2006. ISBN 978-0-387-27705-9. doi:
10.1007/0-387-27705-6_6.

[116] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing.
Computer, 36(1):41–50, 2003. doi: 10.1109/MC.2003.1160055.

[117] Anam Khalid. Design and Implementation of an optimized SDRAM interface in
Verilog. Master’s thesis, University of Duisburg-Essen, 2018.

[118] David King and Gilbert Peterson. The Emergence of Division of Labor in Multi-
Agent Systems. International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), pages 107–116. IEEE, 2019. ISBN 9781728127316. doi: 10.
1109/SASO.2019.00022.

[119] David King, Lukas Esterle, and Gilbert L. Peterson. Entropy-based team self-
organization with signal suppression. The Conference on Artificial Life (ALIFE),
pages 145–152. Massachusetts Institute of Technology, 2019. doi: 10.1162/isal_
a_00154.

[120] Robert Kirchgessner, Alan D George, and Greg Stitt. Low-Overhead FPGA Mid-
dleware for Application Portability and Productivity. ACM Transactions on Re-
configurable Technology and Systems, 8(4):1–22, 2015. ISSN 1936-7406. doi:
10.1145/2746404.

[121] Uday A. Korat and Amirhossein Alimohammad. A Reconfigurable Hardware Ar-
chitecture for Principal Component Analysis. Circuits, Systems, and Signal Pro-
cessing, 38(5):2097–2113, 2019. ISSN 15315878. doi: 10.1007/s00034-018-0953-y.

[122] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang.
ThinkAir: Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading. International Conference on Computer Communications

207



Bibliography

(INFOCOM), pages 945–953. IEEE, 2012. ISBN 9781467307758. doi: 10.1109/
INFCOM.2012.6195845.

[123] Yana Esteves Krasteva, Jorge Portilla, Jose María Carnicer, Eduardo de la Torre,
and Teresa Riesgo. Remote HW-SW reconfigurable wireless sensor nodes. Annual
Conference of the IEEE Industrial Electronics Society (IECON), pages 2483–2488.
IEEE, 2008. ISBN 9781424417667. doi: 10.1109/IECON.2008.4758346.

[124] Christian Krupitzer, Felix Maximilian Roth, Martin Pfannemuller, and Christian
Becker. Comparison of approaches for self-improvement in self-adaptive systems.
International Conference on Autonomic Computing (ICAC), pages 308–314. IEEE,
2016. ISBN 9781509016532. doi: 10.1109/ICAC.2016.18.

[125] Karthik Kumar and Yung Hsiang Lu. Cloud computing for mobile users: Can of-
floading computation save energy? Computer, 43(4):51–56, 2010. ISSN 00189162.
doi: 10.1109/MC.2010.98.

[126] Karthik Kumar, Jibang Liu, Yung Hsiang Lu, and Bharat Bhargava. A survey of
computation offloading for mobile systems. Mobile Networks and Applications, 18
(1):129–140, 2013. ISSN 1383469X. doi: 10.1007/s11036-012-0368-0.

[127] Philippe Lalanda, Julie A McCann, and Ada Diaconescu. Autonomic computing:
principles, design and implementation. Springer Science & Business Media, 2013.
ISBN 978-1-4471-5007-7.

[128] Nicholas D. Lane and Petko Georgiev. Can Deep Learning Revolutionize Mobile
Sensing? International Workshop on Mobile Computing Systems and Applications
(HotMobile), pages 117–122. Association for Computing Machinery, 2015. ISBN
9781450333917. doi: 10.1145/2699343.2699349.

[129] Xuan Sang Le, Jean-Christophe Le Lann, Loic Lagadec, Luc Fabresse, Noury
Bouraqadi, and Jannik Laval. CaRDIN: An Agile Environment for Edge Com-
puting on Reconfigurable Sensor Networks. International Conference on Computa-
tional Science and Computational Intelligence (CSCI), number 2, pages 168–173.
IEEE, 2016. ISBN 978-1-5090-5510-4. doi: 10.1109/CSCI.2016.0039.

[130] Sangil Lee, Changwook Son, and Hyojae Jang. Distributed and parallel real-Time
control system equipped FPGA-Zynq and EPICS middleware. Conference on Real
Time (RT), pages 1–4. IEEE, 2016. ISBN 9781509020140. doi: 10.1109/RTC.
2016.7543117.

[131] Gregory Lento. Optimizing Performance with Intel Advanced Vector Extensions
[White Paper], 2014, http://www.intel.com/content/dam/www/public/us/
en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-
extensions-paper.pdf (last visited: 2021-12-22).

208

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf


Bibliography

[132] Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirs-
bilck, Pieter Simoens, and Bart Dhoedt. Multi-fidelity matryoshka neural net-
works for constrained IoT devices. International Joint Conference on Neural
Networks (IJCNN), pages 1305–1309. IEEE, 2016. ISBN 9781509006199. doi:
10.1109/IJCNN.2016.7727348.

[133] Peter R. Lewis, Arjun Chandra, Shaun Parsons, Edward Robinson, Kyrre Glette,
Rami Bahsoon, Jim Torresen, and Xin Yao. A survey of self-awareness and its
application in computing systems. Conference on Self-Adaptive and Self-Organizing
Systems Workshops (SASOW), pages 102–107. IEEE, 2011. ISBN 9780769545455.
doi: 10.1109/SASOW.2011.25.

[134] Peter R. Lewis, Lukas Esterle, Arjun Chandra, Bernhard Rinner, Jim Torresen,
and Xin Yao. Static, Dynamic, and Adaptive Heterogeneity in Distributed Smart
Camera Networks. ACM Transactions on Autonomous and Adaptive Systems, 10
(2):1–30, 2015. doi: 10.1145/2764460.

[135] Ji Li, Hui Gao, Tiejun Lv, and Yueming Lu. Deep reinforcement learning based
computation offloading and resource allocation for MEC. IEEEWireless Communi-
cations and Networking Conference, WCNC, 2018-April:1–6, 2018. ISSN 15253511.
doi: 10.1109/WCNC.2018.8377343.

[136] Ning Li, Jose Fernan Martinez-Ortega, and Gregorio Rubio. Distributed joint
offloading decision and resource allocation for multi-user mobile edge computing:
A game theory approach. arXiv preprint, may 2018. arXiv ID: 1805.02182. ISSN
23318422.

[137] Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed point
quantization of deep convolutional networks. 33rd International Conference on
Machine Learning, ICML 2016, volume 6, 2016.

[138] Juan Liu, Yuyi Mao, Jun Zhang, and Khaled B. Letaief. Delay-optimal com-
putation task scheduling for mobile-edge computing systems. International Sym-
posium on Information Theory (ISIT), pages 1451–1455. IEEE, 2016. ISBN
9781509018062. doi: 10.1109/ISIT.2016.7541539.

[139] Yu Liu, Qimei Cui, Jian Zhang, Yu Chen, and Yanzhao Hou. An Actor-Critic
Deep Reinforcement Learning Based Computation Offloading for Three-Tier Mobile
Computing Networks. International Conference on Wireless Communications and
Signal Processing (WCSP). IEEE, 2019. ISBN 9781728135557. doi: 10.1109/
WCSP.2019.8927911.

[140] Chris Lomont. Fast inverse square root, 2002, https://www.lomont.org/papers/
2003/InvSqrt.pdf (last visited: 2021-12-22).

209

https://www.lomont.org/papers/2003/InvSqrt.pdf
https://www.lomont.org/papers/2003/InvSqrt.pdf


Bibliography

[141] Tom H. Luan, Longxiang Gao, Zhi Li, Yang Xiang, Guiyi Wei, and Limin Sun. Fog
Computing: Focusing on Mobile Users at the Edge. arXiv preprint, pages 1–11,
2015. arXiv ID: 1502.01815.

[142] Enno Lübbers and Marco Platzner. Reconos: An RTOS supporting hard- and
software threads. International Conference on Field Programmable Logic and Ap-
plications (FPL), pages 441–446. IEEE, 2007. doi: 10.1109/FPL.2007.4380686.

[143] Enno Lübbers and Marco Platzner. ReconOS: Multithreaded Programming for
Reconfigurable Computers. ACM Transactions on Embedded Computing Systems,
9(1):1–33, 2009. doi: 10.1145/1596532.1596540.

[144] Xiao Ma, Chuang Lin, Xudong Xiang, and Congjie Chen. Game-theoretic Analysis
of Computation Offloading for Cloudlet-based Mobile Cloud Computing. Interna-
tional Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWiM), pages 271–278. Association for Computing Machinery, 2015.
ISBN 9781450337625. doi: 10.1145/2811587.2811598.

[145] Hr Flores Macario, Satish Srirama, Huber Flores, and Satish Srirama. Adaptive
code offloading for mobile cloud applications: exploiting fuzzy sets and evidence-
based learning. Workshop on Mobile Cloud Computing and Services (MCS), pages
9–16. Association for Computing Machinery, 2013. doi: 10.1145/2497306.2482984.

[146] Frederic Magoules, Jie Pan, Kiat-An Tan, and Abhinit Kumar. Introduction
to Grid Computing. CRC Press, 2009. ISBN 9780429142536. doi: 10.1201/
9781420074079.

[147] Mohammad Reza Mahmoudi, Mohammad Hossein Heydari, Sultan Noman Qasem,
Amirhosein Mosavi, and Shahab S. Band. Principal component analysis to study
the relations between the spread rates of COVID-19 in high risks countries. Alexan-
dria Engineering Journal, 60(1):457–464, 2021. doi: 10.1016/j.aej.2020.09.013.

[148] Mateusz Majer, Jürgen Teich, Ali Ahmadinia, and Christophe Bobda. The Erlan-
gen slot machine: A dynamically reconfigurable FPGA-based computer. Journal of
VLSI Signal Processing Systems for Signal, Image, and Video Technology, 47(1):
15–31, 2007. ISSN 13875485. doi: 10.1007/s11265-006-0017-6.

[149] Maria Malik, Farnoud Farahmand, Paul Otto, Nima Akhlaghi, Tinoosh Mohsenin,
Siddhartha Sikdar, and Houman Homayoun. Architecture exploration for energy-
efficient embedded vision applications: From general purpose processor to domain
specific accelerator. Computer Society Annual Symposium on VLSI (ISVLSI),
pages 559–564. IEEE, 2016. doi: 10.1109/ISVLSI.2016.112.

[150] Yuyi Mao, Jun Zhang, and Khaled B. Letaief. Dynamic Computation Offloading
for Mobile-Edge Computing with Energy Harvesting Devices. IEEE Journal on

210



Bibliography

Selected Areas in Communications, 34(12):3590–3605, 2016. ISSN 07338716. doi:
10.1109/JSAC.2016.2611964.

[151] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B. Letaief.
A Survey on Mobile Edge Computing: The Communication Perspective. IEEE
Communications Surveys and Tutorials, 19(4):2322–2358, 2017. ISSN 1553877X.
doi: 10.1109/COMST.2017.2745201.

[152] Peter Marwedel. Embedded Design System: Embedded Systems Foundations of
Cyber-Physical Systems, and the Internet of Things. Springer, 2011. ISBN
0387292373.

[153] MATLAB. HDL Coder - MATLAB & Simulink, 2021, https://www.mathworks.
com/products/hdl-coder.html (last visited: 2021-11-13).

[154] Mark D. McDonnell, Migel D. Tissera, Tony Vladusich, André Van Schaik,
Jonathan Tapson, and Friedhelm Schwenker. Fast, simple and accurate hand-
written digit classification by training shallow neural network classifiers with
the ‘Extreme learning machine’ algorithm. PLoS ONE, 10(8):1–20, 2015. doi:
10.1371/journal.pone.0134254.

[155] Paolo Meloni, Alessandro Capotondi, Gianfranco Deriu, Michele Brian, Francesco
Conti, Davide Rossi, Luigi Raffo, and Luca Benini. NEURAghe: Exploiting CPU-
FPGA Synergies for Efficient and Flexible CNN Inference Acceleration on Zynq
SoCs. ACM Transactions on Reconfigurable Technology and Systems, 11(3):1–24,
2017. doi: 10.1145/3284357.

[156] Changyun Miao and Chunqing Ye. Research on IP net telephony system based on
FPGA telephone terminal. Conference on Environmental Science and Information
Application Technology (ESIAT), volume 2, pages 415–417. IEEE, 2010. ISBN
9781424473885. doi: 10.1109/ESIAT.2010.5567329.

[157] Minghui Min, Liang Xiao, Ye Chen, Peng Cheng, Di Wu, and Weihua Zhuang.
Learning-Based Computation Offloading for IoT Devices with Energy Harvesting.
IEEE Transactions on Vehicular Technology, 68(2):1930–1941, 2019. arXiv ID:
1712.08768. ISSN 00189545. doi: 10.1109/TVT.2018.2890685.

[158] M. Mnif and C. Müller-Schloer. Quantitative emergence. Mountain Workshop
on Adaptive and Learning Systems (SMCals), pages 78–84. IEEE, 2006. doi:
10.1109/SMCALS.2006.250695.

[159] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-
ness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland,
Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou,

211

https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/hdl-coder.html


Bibliography

Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hass-
abis. Human-level control through deep reinforcement learning. Nature, 518(7540):
529–533, 2015. ISSN 14764687. doi: 10.1038/nature14236.

[160] Volodymyr Mnih, Adria Puigdomenech Badia, Lehdi Mirza, Alex Graves, Tim
Harley, Timothy P. Lillicrap, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. International Conference on Machine
Learning (ICML), volume 4, pages 1928–1937. Association for Computing Ma-
chinery, 2016. ISBN 9781510829008. doi: 10.5555/3045390.3045594.

[161] M. H. Moattar and M. M. Homayounpour. A simple but efficient real-time
voice activity detection algorithm. European Signal Processing Conference, pages
2549–2553. IOP Publishing Ltd, 2009. doi: 10.1088/1742-6596/705/1/012037.

[162] George B. Moody and Roger G. Mark. The impact of the MIT-BIH arrhyth-
mia database. IEEE Engineering in Medicine and Biology Magazine, 2001. ISSN
07395175. doi: 10.1109/51.932724.

[163] Daniel C. Morais, Thiago Werlley B. Silva, Tiago P. Nascimento, Elmar Uwe Kurt
Melcher, and Alisson V. Brito. A distributed platform for integration of FPGA-
based embedded systems. Brazilian Symposium on Computing System Engineering
(SBESC), pages 86–92. IEEE, 2017. ISBN 9781509026531. doi: 10.1109/SBESC.
2016.021.

[164] Gero Mühl, Matthias Werner, Michael A. Jaeger, Klaus Herrmann, and Helge
Parzyjegla. On the Definitions of Self-Managing and Self-Organizing Systems.
Communication in Distributed Systems (KiVS), pages 1–11. VDE, 2007.

[165] Christian Müller-Schloer and Bernhard Sick. Emergence in Organic Computing
Systems: Discussion of a Controversial Concept. International Conference on
Autonomic and Trusted Computing (ATC), pages 1–16, Berlin, Heidelberg, 2006.
Springer. ISBN 978-3-540-38622-3.

[166] Christian Müller-Schloer and Sven Tomforde. Organic Computing – Technical
Systems for Survival in the Real World, volume 578. Springer, 2017. ISBN 978-3-
319-68476-5. doi: 10.1007/978-3-319-68477-2.

[167] Christian Müller-Schloer, Hartmut Schmeck, and Theo Ungerer. Organic Comput-
ing - A Paradigm Shift for Complex Systems. Springer, 2011. ISBN 9783034801294.

[168] Ranesh Kumar Naha, Saurabh Garg, Dimitrios Georgakopoulos, Prem Prakash
Jayaraman, Longxiang Gao, Yong Xiang, and Rajiv Ranjan. Fog computing: Sur-
vey of trends, architectures, requirements, and research directions. IEEE Access,
6:47980–48009, 2018. ISSN 21693536. doi: 10.1109/ACCESS.2018.2866491.

212



Bibliography

[169] Hyunsuk Nam and Roman Lysecky. Latency, power, and security optimization
in distributed reconfigurable embedded systems. International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 124–131. IEEE, 2016. ISBN
9781509021406. doi: 10.1109/IPDPSW.2016.40.

[170] Kevin Nam, Blair Fort, and Stephen Brown. FISH: Linux system calls for FPGA
accelerators. International Conference on Field Programmable Logic and Applica-
tions (FPL), pages 1–4. IEEE, 2017. doi: 10.23919/FPL.2017.8056785.

[171] Tuan D.A. Nguyen and Akash Kumar. PR-HMPSoC: A versatile partially re-
configurable heterogeneous Multiprocessor System-on-Chip for dynamic FPGA-
based embedded systems. International Conference on Field Programmable Logic
and Applications (FPL), pages 1–6. IEEE, 2014. ISBN 9783000446450. doi:
10.1109/FPL.2014.6927492.

[172] NVIDIA. CUDA Zone, https://developer.nvidia.com/cuda-zone (last vis-
ited: 2021-11-07).

[173] NVIDIA. Embedded Systems Developer Kits & Modules, 2021, https://
www.nvidia.com/en-gb/autonomous-machines/embedded-systems/ (last vis-
ited: 2021-11-13).

[174] Jung Hwan Oh, Young Hyun Yoon, Ji Kwang Kim, Hyung Bin Ihm, Shin Hye Jeon,
Tae Heon Kim, and Seung Eun Lee. An FPGA-based Electronic Control Unit for
Automotive Systems. International Conference on Consumer Electronics (ICCE),
pages 15–16. IEEE, 2019. ISBN 9781538679104. doi: 10.1109/ICCE.2019.8662003.

[175] Alexandru Corneliu Olteanu and Nicolae Tapus. Offloading for mobile devices: A
survey. UPB Scientific Bulletin, Series C: Electrical Engineering, 76(1):3–16, 2014.
ISSN 2286-3540.

[176] Hao Yi Ong, Kevin Chavez, and Augustus Hong. Distributed Deep Q-Learning.
arXiv preprint, aug 2015. arXiv ID: 1508.04186, http://arxiv.org/abs/1508.
04186.

[177] OpenCores. WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores [White List], 2002, https://cdn.opencores.org/downloads/
wbspec_b3.pdf (last visited: 2021-12-23).

[178] Samet Oymak and Mahdi Soltanolkotabi. Toward Moderate Overparameteri-
zation: Global Convergence Guarantees for Training Shallow Neural Networks.
IEEE Journal on Selected Areas in Information Theory, 1(1):84–105, 2020. doi:
10.1109/jsait.2020.2991332.

[179] Andrei Palade, Christian Cabrera, Gary White, Md Abdur Razzaque, and Siobhan
Clarke. Middleware for Internet of Things: A quantitative evaluation in small

213

https://developer.nvidia.com/cuda-zone
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/
http://arxiv.org/abs/1508.04186
http://arxiv.org/abs/1508.04186
https://cdn.opencores.org/downloads/wbspec_b3.pdf
https://cdn.opencores.org/downloads/wbspec_b3.pdf


Bibliography

scale. International Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM), pages 1–6. IEEE, 2017. ISBN 9781538627228. doi: 10.
1109/WoWMoM.2017.7974340.

[180] Andrei Palade, Christian Cabrera, Fan Li, Gary White, Mohammad Abdur Raz-
zaque, and Siobhán Clarke. Middleware for internet of things: an evaluation in a
small-scale IoT environment. Journal of Reliable Intelligent Environments, 4(1):
3–23, 2018. ISSN 2199-4668. doi: 10.1007/s40860-018-0055-4.

[181] Peichen Pan and Chih-Chang Lin. A New Retiming-Based Technology Mapping Al-
gorithm for LUT-Based FPGAs. International Symposium on Field Programmable
Gate Arrays (FPGA), FPGA ’98, pages 35–42, New York, NY, USA, 1998. Asso-
ciation for Computing Machinery. ISBN 0897919785. doi: 10.1145/275107.275118.

[182] Angshuman Parashar, Michael Adler, Kermin E. Fleming, Michael Pellauer, and
Joel S. Emer. LEAP: A Virtual Platform Architecture for FPGAs. Workshop
on the Intersections of Computer Architecture and Reconfigurable Logic (CARL).
unpublished, 2010.

[183] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan
Wermter. Continual lifelong learning with neural networks: A review. Neural
Networks, 113:54–71, 2019. doi: 10.1016/j.neunet.2019.01.012.

[184] Donghyun Park, Seulgi Kim, Yelin An, and Jae Yoon Jung. Lired: A light-weight
real-time fault detection system for edge computing using LSTM recurrent neural
networks. Sensors, 18(7), 2018. ISSN 14248220. doi: 10.3390/s18072110.

[185] Song Jun Park, Dale R. Shires, and Brian J. Henz. Coprocessor computing with
FPGA and GPU. Department of Defense High Performance Computing Modern-
ization Program Users Group (DoD HPCMP), pages 366–370. IEEE, 2008. ISBN
9780769535159. doi: 10.1109/DoD.HPCMP.UGC.2008.69.

[186] Milan Patel, Yunchao Hu, Patrice Hédé, Jerome Joubert, Chris Thornton, Brian
Naughton, Julian Roldan Ramos, Caroline Chan, Valerie Young, Soo Jin Tan,
Daniel Lynch, Nurit Sprecher, Torsten Musiol, Carlos Manzanares, Uwe Rauschen-
bach, Sadayuki Abeta, Lan Chen, Kenji Shimizu, Adrian Neal, Peter Cosi-
mini, Adam Pollard, and Guenter Klas. Mobile-Edge Computing [White Paper],
2012, https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_
computing_-_introductory_technical_white_paper_v118-09-14.pdf (last
visited: 2021-12-23).

[187] Rushi Patel, Pierre Francois Wolfe, Robert Munafo, Mayank Varia, and Martin
Herbordt. Arithmetic and Boolean Secret Sharing MPC on FPGAs in the Data
Center. High Performance Extreme Computing Conference (HPEC). IEEE, 2020.
ISBN 9781728192192. doi: 10.1109/HPEC43674.2020.9286159.

214

https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1 18-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1 18-09-14.pdf


Bibliography

[188] Karl Pauwels, Matteo Tomasi, Javier Díaz Alonso, Eduardo Ros, and Marc M.
Van Hulle. A Comparison of FPGA and GPU for real-time phase-based optical
flow, stereo, and local image features. IEEE Transactions on Computers, 61(7):
999–1012, 2012. ISSN 00189340. doi: 10.1109/TC.2011.120.

[189] Karl Pearson. LIII. On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572, 1901. ISSN 1941-5982. doi: 10.1080/14786440109462720.

[190] Max Planitz, William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes: The Art of Scientific Computing. The
Mathematical Gazette, 71(457):245, 1987. ISSN 00255572. doi: 10.2307/3616786.

[191] Chao Qian. Energy Efficiency Analysis and Optimisation of Convolutional Neural
Networks in Embedded FPGAs. Master’s thesis, University of Duisburg-Essen,
2019.

[192] Mohammad Rahimi, Rick Baer, Obimdinachi I. Iroezi, Juan C. Garcia, Jay War-
rior, Deborah Estrin, and Mani Srivastava. Cyclops: In situ image sensing and
interpretation in wireless sensor networks. International Conference on Embedded
Networked Sensor Systems (SenSys), pages 192–204. Association for Computing
Machinery, 2005. ISBN 159593054X. doi: 10.1145/1098918.1098939.

[193] Muhammad Zia Ur Rahman, Rafi Ahamed Shaik, and D. V.Rama Koti Reddy.
Efficient and simplified adaptive noise cancelers for ecg sensor based remote health
monitoring. IEEE Sensors Journal, 12(3):566–573, 2012. ISSN 1530437X. doi:
10.1109/JSEN.2011.2111453.

[194] Mohammad Abdur Razzaque, Marija Milojevic-Jevric, Andrei Palade, and Siob-
hán Cla. Middleware for internet of things: A survey. IEEE Internet of Things
Journal, 3(1):70–95, 2016. ISSN 23274662. doi: 10.1109/JIOT.2015.2498900.

[195] Minzhen Ren. Cordic-based Givens QR decomposition for MIMO detectors. PhD
thesis, Georgia Institute of Technology, 2013.

[196] Xavier Revés, Vuk Marojevic, Ramon Ferrús, and Antoni Gelonch. FPGA’s mid-
dleware for software defined radio applications. International Conference on Field
Programmable Logic and Applications (FPL), pages 598–601. IEEE, 2005. ISBN
0780393627. doi: 10.1109/FPL.2005.1515794.

[197] Bernhard Rinner and Wayne Wolf. An introduction to distributed smart cameras.
Proceedings of the IEEE, 96(10):1565–1575, 2008. ISSN 00189219. doi: 10.1109/
JPROC.2008.928742.

[198] Bernhard Rinner, Lukas Esterle, Jennifer Simonjan, Georg Nebehay, Roman
Pflugfelder, Gustavo Fernandez Dominguez, and Peter R. Lewis. Self-Aware and

215



Bibliography

Self-Expressive camera networks. Computer, 48(7):21–28, 2015. ISSN 00189162.
doi: 10.1109/MC.2015.209.

[199] Alfonso Rodriguez, Juan Valverde, Cesar Castanares, Jorge Portilla, Eduardo De
La Torre, and Teresa Riesgo. Execution modeling in self-Aware FPGA-based archi-
tectures for efficient resource management. International Symposium on Recon-
figurable and Communication-centric Systems-on-Chip (ReCoSoC). IEEE, 2015.
ISBN 9781467379427. doi: 10.1109/ReCoSoC.2015.7238086.

[200] Alfonso Rodríguez, Juan Valverde, Jorge Portilla, Andrés Otero, Teresa Riesgo,
and Eduardo De La Torre. FPGA-based high-performance embedded systems for
adaptive edge computing in cyber-physical systems: The ARTICo3 framework.
Sensors, 18(6), 2018. ISSN 14248220. doi: 10.3390/s18061877.

[201] Juan J. Rodriguez-Andina, Maria J. Moure, and Maria D. Valdes. Features, design
tools, and application domains of FPGAs. IEEE Transactions on Industrial Elec-
tronics, 54(4):1810–1823, 2007. ISSN 02780046. doi: 10.1109/TIE.2007.898279.

[202] Rodrigo Roman, Javier Lopez, and Masahiro Mambo. Mobile edge computing, Fog
et al.: A survey and analysis of security threats and challenges. Future Generation
Computer Systems, 78(2):680–698, 2018. ISSN 0167739X. doi: 10.1016/j.future.
2016.11.009.

[203] Karen Rose, Scott Eldridge, and Lyman Chapin. An Overview of Internet of
Things: Understanding the Issues and Challenges of a More Connected World,
2015. ISSN 1536-5026, https://www.internetsociety.org/wp-content/
uploads/2017/08/ISOC-IoT-Overview-20151221-en.pdf (last visited: 2021-12-
23).

[204] Rashmi Ranjan Rout and Soumya K. Ghosh. Enhancement of lifetime using
duty cycle and network coding in wireless sensor networks. IEEE Transac-
tions on Wireless Communications, 12(2):656–667, 2013. ISSN 15361276. doi:
10.1109/TWC.2012.111412.112124.

[205] G Rummery and Mahesan Niranjan. On-Line Q-Learning Using Connectionist
Systems. Technical Report CUED/F-INFENG/TR 166, 1994.

[206] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. Pren-
tice Hall, 4th edition, 2002. ISBN 9781292153964.

[207] Mahsa Salmani, Foad Sohrabi, Timothy N. Davidson, and Wei Yu. Multiple Access
Binary Computation Offloading via Reinforcement Learning. Canadian Workshop
on Information Theory (CWIT). IEEE, 2019. ISBN 9781728109541. doi: 10.1109/
CWIT.2019.8929930.

216

https://www.internetsociety.org/wp-content/uploads/2017/08/ISOC-IoT-Overview-20151221-en.pdf
https://www.internetsociety.org/wp-content/uploads/2017/08/ISOC-IoT-Overview-20151221-en.pdf


Bibliography

[208] M. D. Santambrogio, V. Rana, I. Beretta, and D. Sciuto. Operating system runtime
management of partially dynamically reconfigurable embedded systems. Workshop
on Embedded Systems for Real-Time Multimedia, pages 1–10. IEEE, oct 2010.
ISBN 978-1-4244-9084-4. doi: 10.1109/ESTMED.2010.5666975.

[209] Bernd Dominik Schaefer. Elastic Computation Placement in Edge-based Environ-
ments. PhD thesis, University of Mannheim, 2019.

[210] Dominik Schäfer, Janick Edinger, Justin Mazzola Paluska, Sebastian Vansyckel,
and Christian Becker. Tasklets: “better than Best-Effort” computing. International
Conference on Computer Communications and Networks (ICCCN). IEEE, 2016.
ISBN 9781509022793. doi: 10.1109/ICCCN.2016.7568580.

[211] Gregor Schiele, Alwyn Burger, and Christopher Cichiwskyj. The Elastic Node:
An Experimentation Platform for Hardware Accelerator Research in the Internet
of Things. International Conference on Autonomic Computing (ICAC), pages
84–94. IEEE, 2019. ISBN 9781728124117. doi: 10.1109/ICAC.2019.00020.

[212] Hartmut Schmeck, Christian Müller-Schloer, Emre Çakar, Moez Mnif, and Ur-
ban Richter. Adaptivity and self-organization in organic computing systems.
ACM Transactions on Autonomous and Adaptive Systems, 5(3):1–32, 2010. ISSN
15564665. doi: 10.1145/1837909.1837911.

[213] Philip Schmidt. Hardware-/Software-Codesign for an Embedded Energy Monitoring
Daughterboard. Bachelor’s thesis, University of Duisburg-Essen, 2019.

[214] Uwe Schwiegelshohn, Rosa M. Badia, Marian Bubak, Marco Danelutto, Schahram
Dustdar, Fabrizio Gagliardi, Alfred Geiger, Ladislav Hluchy, Dieter Kranzlm-
ller, Erwin Laure, Thierry Priol, Alexander Reinefeld, Michael Resch, Andreas
Reuter, Otto Rienhoff, Thomas Rter, Peter Sloot, Domenico Talia, Klaus Ull-
mann, Ramin Yahyapour, and Gabriele Von Voigt. Perspectives on grid com-
puting. Future Generation Computer Systems, 26(8):1104–1115, oct 2010. doi:
10.1016/J.FUTURE.2010.05.010.

[215] Khurram Shahzad. Energy Efficient Wireless Sensor Node Architecture for Data
and Computation Intensive Applications. Doctoral thesis, Mid Sweden University,
2014.

[216] Khurram Shahzad and Bengt Oelmann. Investigating Energy Consumption of an
SRAM-based FPGA for Duty- Cycle Applications. Advances in Parallel Computing,
25:548–559, 2014. doi: 10.3233/978-1-61499-381-0-548.

[217] Khurram Shahzad, Peng Cheng, and Bengt Oelmann. SENTIOF : An FPGA Based
High-Performance and Low-Power Wireless Embedded Platform. Federal Confer-
ence on Computer Science and Information Systems (FedCSIS), pages 901–906.
IEEE, 2013. ISBN 978-83-60810-52-1.

217



Bibliography

[218] Ran Shu, Peng Cheng, Guo Chen, Lei Qu, Yongqiang Xiong, Derek Chiou, and
Thomas Moscibroda. Direct Universal Access: Making Data Center Resources
Available to FPGA. USENIX Conference on Networked Systems Design and Im-
plemented (NSDI), pages 127–140. Association for Computing Machinery, 2019.
doi: 10.5555/3323234.3323246.

[219] Thiago W.B. Silva, Daniel C. Morais, Halamo G.R. Andrade, Antonio M.N. Lima,
Elmar U.K. Melcher, and Alisson V. Brito. Environment for integration of dis-
tributed heterogeneous computing systems. Journal of Internet Services and Appli-
cations, 9(1):1–17, 2018. doi: 10.1186/s13174-017-0072-1.

[220] Olena Skarlat, Stefan Schulte, Michael Borkowski, and Philipp Leitner. Resource
provisioning for IoT services in the fog. International Conference on Service-
Oriented Computing and Applications (SOCA), pages 32–39. IEEE, 2016. ISBN
9781509047819. doi: 10.1109/SOCA.2016.10.

[221] Angela C Sodan, Jacob Machina, Arash Deshmeh, Kevin Macnaughton, and Bryan
Esbaugh. Parallelism via multithreaded and multicore CPUs. Computer, 43(3):
24–32, 2010. ISSN 00189162. doi: 10.1109/MC.2010.75.

[222] Lukas Sommer, Jens Korinth, and Andreas Koch. OpenMP device offloading
to FPGA accelerators. International Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP), pages 201–205. IEEE, 2017. doi:
10.1109/ASAP.2017.7995280.

[223] Haoran Song. The Application of Computer Vision in Responding to the Emer-
gencies of Autonomous Driving. Proceedings - 2020 International Conference on
Computer Vision, Image and Deep Learning, CVIDL 2020, (Cvidl):1–5, 2020. doi:
10.1109/CVIDL51233.2020.00008.

[224] Mingcong Song, Kan Zhong, Jiaqi Zhang, Yang Hu, Duo Liu, Weigong Zhang, Jing
Wang, and Tao Li. In-Situ AI: Towards Autonomous and Incremental Deep Learn-
ing for IoT Systems. International Symposium on High Performance Computer
Architecture (HPCA), pages 92–103. IEEE, 2018. doi: 10.1109/HPCA.2018.00018,
http://ieeexplore.ieee.org/document/8327001/.

[225] C. O. S. Sorzano, J. Vargas, and A. Pascual Montano. A survey of dimensionality
reduction techniques. arXiv preprint, pages 1–35, 2012. arXiv ID: 1403.2877.

[226] Stacy Wegner, Al Cowsky, Chad Davis, Dick James, Daniel Yang, Ray Fontaine,
and Jim Morrison. Apple iPhone 7 Teardown, 2016, https://www.techinsights.
com/blog/apple-iphone-7-teardown (last visited: 2020-11-12).

[227] Thomas J. Sullivan, Stephen R. Deiss, and Gert Cauwenberghs. A low-noise, non-
contact EEG/ECG sensor. Biomedical Circuits and Systems Conference Health-

218

http://ieeexplore.ieee.org/document/8327001/
https://www.techinsights.com/blog/apple-iphone-7-teardown
https://www.techinsights.com/blog/apple-iphone-7-teardown


Bibliography

care Technology (BiOCAS), pages 154–157. IEEE, 2007. ISBN 142441525X. doi:
10.1109/BIOCAS.2007.4463332.

[228] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning, An Introduc-
tion. Number 1. The MIT Press, second edition, 2020. ISBN 978-0262193986.

[229] Andrew Tanenbaum and David J. Wetherall. Computer Networks. Prentice Hall,
5th edition, 2010.

[230] Andrew S Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms. Pearson, 2nd edition, 2006. ISBN 978-0-13-239227-3.

[231] Qinqin Tang, Renchao Xie, Fei Richard Yu, Tao Huang, and Yunjie Liu. Decentral-
ized computation offloading in IoT fog computing system with energy harvesting:
A dec-POMDP approach. IEEE Internet of Things Journal, 7(6):4898–4911, 2020.
ISSN 23274662. doi: 10.1109/JIOT.2020.2971323.

[232] David Tennenhouse. Proactive computing. Communications of the ACM, 43(5):
43–50, 2000. ISSN 00010782. doi: 10.1145/332833.332837.

[233] Gerald Tesauro. Practical issues in temporal difference learning. Machine Learning,
8(3):257–277, 1992. ISSN 0885-6125. doi: 10.1007/bf00992697.

[234] Eiji Tokunaga, Masahiro Nemoto, and Tatsuo Nakajima. Object-Oriented Middle-
ware Infrastructure for Distributed Augmented Reality. International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC), page 156. IEEE,
2003. ISBN 0769519288. doi: 10.5555/850985.855556.

[235] J. Tomarakos, C. Duggan, and S. Steyerl. 32-Bit SIMD SHARC architecture digital
audio signal processing applications. Journal of the Audio Engineering Society, 48
(3):220–229, mar 2000. ISSN 00047554.

[236] Sven Tomforde and Martin Goller. To adapt or not to adapt: A quantification
technique for measuring an expected degree of self-adaptation. Computers, 9(1),
2020. ISSN 2073431X. doi: 10.3390/computers9010021.

[237] Sven Tomforde, Andreas Brameshuber, Jörg Hahner, and Christian Müller-
Schloer. Restricted on-line learning in real-world systems. Congress of Evolu-
tionary Computation (CEC), pages 1628–1635. IEEE, 2011. doi: 10.1109/CEC.
2011.5949810.

[238] Sven Tomforde, Holger Prothmann, Jürgen Branke, Jörg Hähner, Moez Mnif,
Christian Müller-Schloer, Urban Richter, and Hartmut Schmeck. Observation and
Control of Organic Systems. Organic Computing - A Paradigm Shift for Complex
Systems, pages 325–338. Springer, 2011. doi: 10.1007/978-3-0348-0130-0_21.

219



Bibliography

[239] Sven Tomforde, Jan Kantert, and Bernhard Sick. Measuring self-organisation at
runtime a quantification method based on divergence measures. International Con-
ference on Agents and Artificial Intelligence (ICAART), volume 2, pages 96–106.
SciTePress, 2017. ISBN 9789897582196. doi: 10.5220/0006240400960106.

[240] Sven Tomforde, Bernhard Sick, and Christian Müller-Schloer. Organic Computing
in the Spotlight. arXiv preprint, 2017. arXiv ID: 1701.08125.

[241] Patrick Urban. Implementation of Distributed Computer Vision using Embedded
FPGAs. Master’s thesis, University of Duisburg-Essen, 2020.

[242] Ryan J. Urbanowicz and Jason H. Moore. Learning Classifier Systems: A Com-
plete Introduction, Review, and Roadmap. Journal of Artificial Evolution and
Applications, pages 1–25, 2009. ISSN 1687-6229. doi: 10.1155/2009/736398.

[243] Miroslav Valov. Over-the-air Updating of an Embedded Heterogeneous Platform
Using 802.15.4. Bachelor’s thesis, University of Duisburg-Essen, 2019.

[244] Juan Valverde, Andres Otero, Miguel Lopez, Jorge Portilla, Eduardo de la
Torre, and Teresa Riesgo. Using SRAM based FPGAs for power-aware high
performance wireless sensor networks. Sensors, 12(3):2667–2692, 2012. doi:
10.3390/s120302667.

[245] Jesper E. van Engelen and Holger H. Hoos. A survey on semi-supervised learning.
Machine Learning, 109(2):373–440, 2020. ISSN 15730565. doi: 10.1007/s10994-
019-05855-6.

[246] Ivan Vido, Ivana Škorić, Dominik Mitrović, Milena Milošević, and Marijan Herceg.
Automotive Vision Grabber: FPGA design, cameras and data transfer over PCIe.
Zooming Innovation in Consumer Technologies Conference (ZINC), pages 103–108.
IEEE, 2019. doi: 10.1109/ZINC.2019.8769348.

[247] Félix Jesús Villanueva, David Villa, Francisco D. Moya, Jesús Barba, Fernando
Rincón, Juan C. López, and Jesús Barba Romero. Lightweight Middleware for
Seamless HW-SW Interoperability, with Application to Wireless Sensor Network.
Design, Automation & Test in Europe Conference & Exhibition (DATE), vol-
ume 67, pages 1042–1047. IEEE, 2007. doi: 10.1109/DATE.2007.364431.

[248] Steve Vinoski. CORBA: Integrating diverse applications within distributed hetero-
geneous environments. IEEE Communications Magazine, 35(2):46–55, 1997. doi:
10.1109/35.565655.

[249] Jack E. Volder. Birth of CORDIC. Journal of VLSI Signal Processing Systems for
Signal, Image, and Video Technology, 25(2):101–105, 2000. ISSN 09225773. doi:
10.1023/A:1008110704586.

220



Bibliography

[250] Jack E. Volder. The CORDIC trigonometric computing technique. Computer
Arithmetic: Volume I, pages 245–249. World Scientific, 2015. doi: 10.1142/
9789814651578.

[251] Quang Hieu Vu, Mihai Lupu, and Beng Chin Ooi. Peer-to-peer computing: Prin-
ciples and applications. Springer, 2010. doi: 10.1007/978-3-642-03514-2.

[252] Manu Vyas. Trends of FPGA use in automotive engineering. International Confer-
ence on Recent Trends in Electronics, Information and Communication Technology
(RTEICT), number 2004, pages 580–591. IEEE, 2018. ISBN 9781538624401. doi:
10.1109/RTEICT42901.2018.9012495.

[253] Zhiyong Wang, Longxi Chen, Lifeng Wang, and Guangqiang Diao. Recognition of
Audio Depression Based on Convolutional Neural Network and Generative Antag-
onism Network Model. IEEE Access, 8:101181–101191, 2020. ISSN 21693536. doi:
10.1109/ACCESS.2020.2998532.

[254] Christopher Watkins. Learning from delayed rewards. Ph.d. thesis, King’s College,
1989.

[255] Christopher J.C.H. Watkins and Peter Dayan. Technical Note: Q-Learning. Ma-
chine Learning, 8(3):279–292, 1992. doi: 10.1023/A:1022676722315.

[256] Joel L. Wilder, Vladimir Uzelac, Aleksandar Milenković, and Emil Jovanov. Run-
time hardware reconfiguration in wireless sensor networks. Annual Southeast-
ern Symposium on System Theory (SSST), pages 154–158. IEEE, 2008. doi:
10.1109/SSST.2008.4480210.

[257] Barry Wilkinson. Introduction to Grid Computing. Grid Computing, pages 23–56.
CRC Press, 2020. doi: 10.1201/9781420069549-6.

[258] John A. Williams and Neil W. Bergmann. Embedded Linux as a Platform for
Dynamically Self-Reconfiguring Systems-On-Chip. International Conference On
Engineering of Reconfigurable Systems and Algorithms (ERSA), pages 163–169.
CSREA Press, 2004. ISBN 1-932415-42-4.

[259] Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Compu-
tation, 3(2):149–175, 1995. ISSN 1063-6560. doi: 10.1162/evco.1995.3.2.149.

[260] Philipp Winnekens. Development of an Interface Description Language and
Stub/Skeleton Generator for Embedded Heterogeneous Multicore Systems. Mas-
ter’s thesis, University of Duisburg-Essen, 2020.

[261] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. A Comprehensive Survey on Graph Neural Networks. IEEE Trans-
actions on Neural Networks and Learning Systems, 32(1):4–24, 2021. arXiv ID:
1901.00596. ISSN 21622388. doi: 10.1109/TNNLS.2020.2978386.

221



Bibliography

[262] Xilinx. 7 Series FPGAs Configuration (UG470) [White Paper], https://www.
xilinx.com/support/documentation/user_guides/ug470_7Series_Config.
pdf (last visited: 2021-12-23).

[263] Xilinx. AXI Reference Guide (UG761) [White Paper], 2011, https://
www.xilinx.com/support/documentation/ip_documentation/ug761_axi_
reference_guide.pdf (last visited: 2021-12-23).

[264] Xilinx. EDK Concepts, Tools, and Techniques - A Hands-On Guide to Effective
Embedded System Design (UG683), 2013, https://www.xilinx.com/support/
documentation/sw_manuals/xilinx14_7/edk_ctt.pdf (last visited: 2021-12-
23).

[265] Xilinx. 7 Series FPGAs Configurable Logic Block (UG474) [White Paper],
2014, https://www.xilinx.com/support/documentation/user_guides/ug474_
7Series_CLB.pdf (last visited: 2021-12-23).

[266] Xilinx. 7 Series FPGAs Datasheet (DS180) [White Paper], 2020, https:
//www.xilinx.com/support/documentation/data_sheets/ds180_7Series_
Overview.pdf (last visited: 2021-12-23).

[267] Xilinx. Platform Studio and the Embedded Development Kit (EDK), 2021, https:
//www.xilinx.com/products/design-tools/platform.html (last visited: 2021-
10-10).

[268] Xilinx. Zynq-7000 SoC, 2021, https://www.xilinx.com/products/silicon-
devices/soc/zynq-7000.html (last visited: 2021-11-13).

[269] Xilinx Inc. Vivado High-Level Synthesis, 2018, https://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.html (last vis-
ited: 2021-12-23).

[270] Xilinx Inc. 7 Series FPGAs Memory Resources: User Guide (UG473) [White Pa-
per], 2019, https://www.xilinx.com/support/documentation/user_guides/
ug473_7Series_Memory_Resources.pdf (last visited: 2021-12-23).

[271] Zhiyuan Xu, Yanzhi Wang, Jian Tang, Jing Wang, and Mustafa Cenk Gursoy. A
deep reinforcement learning based framework for power-efficient resource allocation
in cloud RANs. International Conference on Communications (ICC), pages 1–6.
IEEE, 2017. ISBN 9781467389990. doi: 10.1109/ICC.2017.7997286.

[272] Tianyu Yang, Yulin Hu, M. Cenk Gursoy, Anke Schmeink, and Rudolf Mathar.
Deep reinforcement learning based resource allocation in low latency edge com-
puting networks. International Symposium on Wireless Communication Systems
(ISWCS). IEEE, oct 2018. ISBN 9781538650059. doi: 10.1109/ISWCS.2018.
8491089.

222

https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/edk_ctt.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/edk_ctt.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/products/design-tools/platform.html
https://www.xilinx.com/products/design-tools/platform.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf


Bibliography

[273] Xiaoling Yang, Baohua Tan, Jiehua Ding, Jinye Zhang, and Jiaoli Gong. Com-
parative study on voice activity detection algorithm. International Conference on
Electrical and Control Engineering (ICECE), pages 599–602. IEEE, 2010. ISBN
9780769540313. doi: 10.1109/iCECE.2010.153.

[274] Shanhe Yi, Cheng Li, and Qun Li. A Survey of Fog Computing: Concepts, Ap-
plications and Issues. Workshop on Mobile Big Data (Mobidata), 2015. ISBN
9781450335249. doi: 10.1145/2757384.2757397.

[275] Shanhe Yi, Zhengrui Qin, and Qun Li. Security and privacy issues of fog com-
puting: A survey. International Conference on Wireless Algorithms, Systems, and
Applications (WASA). Springer, 2015. doi: 10.1007/978-3-319-21837-3_67.

[276] Xianghe Yi and Jian-jun Tan. Enterprise Human Resource Management System
Based on Fpga and Machine Learning. Solid State Technology, 63(4):7546–7555,
2020.

[277] Tjalling J. Ypma. Historical development of the Newton-Raphson method. SIAM
Review, 37(4):531–551, 1995. ISSN 00361445. doi: 10.1137/1037125.

[278] Xiaoyu Yu, Jianlin Gao, Yuwei Wang, Jie Miao, Ephrem Wu, Heng Zhang,
Yu Meng, Bo Zhang, Biao Min, and Dewei Chen. A data-center FPGA accel-
eration platform for convolutional neural networks. International Conference on
Field-Programmable Logic and Applications (FPL), pages 151–158. IEEE, 2019.
ISBN 9781728148847. doi: 10.1109/FPL.2019.00032.

[279] Johannes Zeppenfeld, Abdelmajid Bouajila, Walter Stechele, Andreas Bernauer,
Oliver Bringmann, Wolfgang Rosenstiel, and Andreas Herkersdorf. Applying ASoC
to Multi-core Applications for Workload Management. Organic Computing - A
Paradigm Shift for Complex Systems, pages 461–472. Springer, 2011. doi: 10.
1007/978-3-0348-0130-0_30.

[280] Yang Zhang, Dusit Niyato, Ping Wang, and Chen Khong Tham. Dynamic of-
floading algorithm in intermittently connected mobile cloudlet systems. Interna-
tional Conference on Communications (ICC), pages 4190–4195. IEEE, 2014. ISBN
9781479920037. doi: 10.1109/ICC.2014.6883978.

[281] Huimin Zhao, Jianjie Zheng, Junjie Xu, and Wu Deng. Fault diagnosis method
based on principal component analysis and broad learning system. IEEE Access, 7:
99263–99272, 2019. ISSN 21693536. doi: 10.1109/ACCESS.2019.2929094.

223





Diese Dissertation wird via DuEPublico, dem Dokumenten- und Publikationsserver der
Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor.

DOI: 10.17185/duepublico/78189
URN: urn:nbn:de:hbz:465-20230517-114021-3

Alle Rechte vorbehalten.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/78189
https://nbn-resolving.org/urn:nbn:de:hbz:465-20230517-114021-3

	Acronyms
	Introduction
	Research Hypothesis
	Research Questions
	Scientific Contributions
	List of Publications
	List of Supervised Theses
	Outline

	System Overview
	Use Cases
	Autonomous Drones
	IoT System

	System Model
	Typical Implementation
	System Requirements

	Fundamentals
	Accelerating Computation in Embedded Systems
	Multicore and Multithreaded Systems
	Field Programmable Gate Arrays (FPGAs)
	Graphics Processing Units (GPUs)
	Heterogeneous Computing

	Optimising Hardware Acceleration Performance
	Pipelining
	Parallelism
	Batching

	Heterogeneous Application Models
	OS Threads
	Modular Tile
	System on Chip
	Middleware

	Connected Computing Paradigms
	Offloading
	Placement
	Distributed Computing
	Edge Computing
	Mobile Edge Computing
	Fog Computing
	Peer-to-peer and Grid Computing

	Intelligent Devices
	Self-x Computing
	Organic Computing
	Autonomic Computing
	Machine Learning Techniques


	Elastic Node Platform
	Motivation and Background
	Platform Requirements
	Platform Overview
	Hardware Functions
	Middleware
	Hardware-as-a-Service

	Stub-Skeleton Abstractions
	Interface Description Language
	Skeleton Interface Definition
	Transparent I/O Caching
	MCU-FPGA Offloading Procedure

	Hardware Platform Design
	Hardware Interconnect
	Power Monitoring

	Discussion

	Optimising Embedded AI Accelerator Design
	Optimisation Approach
	Hardware Architecture Optimisations
	DSP Timing Optimisations
	Volatile and Non-Volatile Memory Tiers
	Minimising Expensive Operations
	Floating Point Representation
	Utilising LUTs for Precomputation
	Latency and Throughput Modelling

	Example Hardware Accelerators
	Artificial Neural Networks
	Convolutional Neural Networks
	IPCA
	Summary


	Learning Intelligent Devices
	Problem Statement
	Design Rationale
	Requirements
	Analytical Model
	Agent Design
	State-Action Decisions
	System State
	Action Space
	Reward Functions


	Evaluations
	Phase 1: Elastic Node Viability
	Energy Consumption
	Accelerator Switching Latency
	Elastic Node Middleware Resource Overhead
	Development Complexity

	Phase 2: Hardware Accelerator Optimisation
	Optimal Fixed Point Representation
	Common Hardware Design Techniques
	CNN Latency Model Verification
	Incremental PCA Facial Detection Use Case

	Phase 3: Intelligent Cooperating Devices
	Experimental Setup
	Agent Comparison
	System State Limitations
	Catastrophic Failure
	Heterogeneous Agents
	Comparing Q-table and SRL Agents
	Q-table vs SRL Agents in Dynamic Environments

	Concluding Thoughts

	Related Work
	Platform Related Work
	Heterogeneous Embedded Platforms
	General Distributed Heterogeneous Middleware
	Offloading Mechanism
	Distributed Embedded Middleware
	FPGA-Based Middleware
	Self-Aware Distributed Systems
	System Modelling for Distributed Systems
	self-x Reconfigurable Systems

	Intelligent Embedded Offloading
	Greedy and Short-Term Learning Approaches
	Reinforcement and Deep Learning approaches


	Conclusion and Outlook
	Contributions
	Research Questions
	Outlook

	Interface Description Language Specification
	Grammar
	Fields
	MCU Configuration
	Function Configuration

	Configuration Mapping
	Types
	Defaults

	ANN Interfaces
	ANN VHDL Entity

	ANN Skeleton
	ANN Stub

	Evolution of Hardware Versions
	Elastic Node v2
	Elastic Node v3
	Elastic Node v4
	ARM Elastic Node
	ARM Elastic Node v2

	Bibliography

