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A B S T R A C T

Considering the current global scenario, battery electric vehicles will play a pivotal role in personal
mobility in the future; thus, necessitating an increase in charging infrastructure. According to
several studies, greater diffusion of these vehicles can be expected to have an impact on electricity
demand. Furthermore, as electricity generation is becoming increasingly volatile, increasing the
flexibility of electricity demand is imperative.

The current electric vehicle charging models aim to coordinate vehicle charging in a predefined
charging network to optimize an objective, such as meeting the demands of all vehicles or cost
minimization (electric vehicle charge scheduling problem). Another stream of literature aims to
optimize the placement of charging stations and the design of the charging infrastructure. In
models supporting these decisions, the charging demand is predefined, and differences in demand
over time are not explicitly considered. In this thesis, a decision support model is developed to
determine the relationships between different charging network layouts, and to optimize vehicle
charging in current and future energy system configurations. To achieve this, a mixed integer
linear programming model, which simultaneously optimizes the layout of the charging network
and vehicle charging while considering factors related to mobility and the electricity system, was
developed. Exact and heuristic solution approaches are presented to solve the model that combines
the charging station placement problem and electric vehicle charge scheduling. Furthermore, the
geographically and temporally resolved mobility data required for the real-world application of
the model is synthetically generated using an activity database and an open-source geographic
information system, while factors related to the electricity system are derived from existing energy
scenarios.

To evaluate how the developed model can support real-world decision-making, it was applied
to a case study of charging station placement and coordination of charging activities in Essen.
The results were analyzed based on factors such as the geographical and temporal distribution of
the charging activities or the economic and ecological effects of the optimized charging network
and coordinated vehicle charging. In the case study, the results of a combined optimization of
charging station placement and vehicle charging indicate that the joint consideration of both
decision problems can influence the charging pattern, yielding different and in some parts more
exact results than the previously considered approaches.

The model can be used to analyze the impact of changes in the electricity system configurations,
changes in mobility behavior, and vehicle charging technology on the energy system, and it can be
used to support decisions of charging infrastructure planners, network operators, or policymakers.
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Z U S A M M E N FA S S U N G

Aktuellen Prognosen zufolge werden batterieelektrische Fahrzeuge in Zukunft eine entscheidende
Rolle im Individualverkehr spielen, was einen Ausbau der Ladeinfrastruktur erfordert. Die stärke-
re Verbreitung elektrisch betriebener Fahrzeuge wird außerdem zu einer höheren Stromnachfrage
führen, während auch die Stromerzeugung - aufgrund der Verschiebung hin zu einer Erzeugung
aus erneuerbaren Quellen - volatiler wird. Die Sektorenkoppelung ist ein entscheidender Baustein,
damit die Integration von batterieelektrischen Fahrzeugen in ein erneuerbares Energiesystem
gelingt. Aktuelle Studien beschäftigten sich unter anderem mit der Ladeinfrastrukturplanung
oder Ladeplanung, wobei beide Bereiche in der Regel in getrennten Forschungsgebieten und
Entscheidungsproblemen behandelt werden. Die Koordination des Ladens von Elektrofahrzeugen
erfolgt in einem vordefinierten Ladenetz, um ein Ziel, z. B. die Minimierung der Ladekos-
ten oder Maximierung des verwendeten Ladestroms aus erneuerbaren Quellen, zu optimieren.
Ladeinfrastrukturplanungsmodelle hingegen gehen von einem vordefinierten Ladebedarf aus und
unterscheiden in der Regel nicht, wie die Nachfrage über die Zeit variieren kann, berücksichtigen
allerdings die geografische Verteilung des Ladebedarfs.

In dieser Arbeit wird ein Optimierungsmodell entwickelt, um beide Entscheidungen simultan
zu berücksichtigen. Dieses gemischt-ganzzahlige lineare Optimierungsmodell erlaubt gleichzeitig
die Auslegung des Ladenetzes und die Optimierung des Ladens von Fahrzeugen unter Berück-
sichtigung, der variierenden Standorte von Elektrofahrzeugen und volatilen Stromerzeugung.
Zur Lösung dieser miteinander verknüpften Planungsaufgaben des entwickelten Modells werden
exakte und heuristische Lösungsansätze entwickelt und vorgestellt. Geographisch und zeitlich
aufgelöste Mobilitätsdaten, die für die reale Anwendung des Modells erforderlich sind, werden
synthetisch aus einer Aktivitätsdatenbank und einem Open-Source-Geoinformationssystem gene-
riert, während die Kenngrößen, die mit dem Stromsystem zusammenhängen, aus bestehenden
Energieszenarien abgeleitet werden.

Zur Evaluation wird das entwickelte Modell in einer Fallstudie für die Platzierung von La-
destationen und die Koordination von Ladeaktivitäten in der Stadt Essen angewendet. Die
Modellergebnisse werden nach Faktoren wie der räumlichen und zeitlichen Verteilung der Lade-
aktivitäten oder den ökonomischen und ökologischen Effekten des optimierten Ladenetzes und
der koordinierten Ladung der Fahrzeuge analysiert. Ergebnisse einer kombinierten Optimierung
der Platzierung von Ladestationen und der Fahrzeugladung zeigen, dass die gemeinsame Betrach-
tung beider Entscheidungsprobleme zu Ergebnissen führen kann, die sich von denen bisheriger
Ansätze unterscheidet.

Das entwickelte Modell und die entwickelten Lösungsansätze ermöglichen es, die Auswir-
kungen von Änderungen der Energiesystemkonfiguration, des Mobilitätsverhaltens und der
Ladetechnologie auf das Energiesystem zu analysieren. Das Modell kann eingesetzt werden,
um die Entscheidungen von Ladeinfrastrukturplanern, Netzbetreibern oder politischen Entschei-
dungsträgern zu unterstützen.
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1 I N T R O D U C T I O N

The long-term target established by the Paris Climate Agreement (COP 21), which is ratified
by Germany and 192 other countries, is to limit the global temperature increase to 2°C or less
compared to preindustrial levels and take further action to try and limit the increase to 1.5°C (IEA,
2020a). To achieve this, the total anthropogenic carbon dioxide (CO2) emissions to the atmosphere
need to be limited (Meinshausen et al., 2009). Using the current and targeted atmospheric CO2

concentration, it is possible to calculate a CO2 budget (Romanovskaya and Federici, 2019). For
Germany, a total budget of 2.0–6.1 Gt CO2 is estimated to limit the warming to 1.5°C–1.75°C with
a 67% probability (SRU, 2022). In 2019, the total CO2 emissions in Germany amounted to 702
million tons. Assuming that the emissions remain at this level, the budget would be depleted by
2030. An annual reduction of around 39 million tons of CO2 would be necessary to achieve CO2

neutrality by 2040 while staying within the budget.
Figure 1.1 shows the emissions for the transport, the power, and other sectors. Emissions have

decreased on average by 28% across sectors since 1990. In 2019, the power and transport sectors
had the highest emissions and made up 55% of all CO2 emissions in Germany. The total CO2

emissions that can be attributed to the power industry decreased by 36.1% (Crippa et al., 2021).
While the overall electricity consumption has increased by 14.2% compared to 1990 to 547 TWh in
2019, the CO2 specific emissions of the German electricity mix have decreased to 408gCO2/kWh
or by 47.5% compared to 1990 (UBA, 2021). The decrease in specific emissions can be primarily
attributed to the growth in power generation from renewable energy sources, which offset the
electricity production from fossil fuel power plants.

The transport sector was responsible for 22% of the total CO2 emissions and showed the smallest
reduction of less than 1% compared to the base year (1990). Of the 157 million tons of CO2 emitted
by the transport sector in 2019, more than 50% were caused by motorized personal transport,
equal to more than 11% of the total emissions (IEA, 2019; Crippa et al., 2019; Allekotte et al., 2020a;
Hütter, 2013).

The number of passenger cars and CO2 emissions in the motorized personal transport sec-
tor have increased since 1995, and in 2019 3.62million personal vehicles were newly registered.
The total number of personal vehicles in Germany as of March 2022 is 47.7 million and rep-
resents a ratio of approximately 1.15vehicles per household (KBA; 2022). Dependent on the
fuel (diesel/petrol), CO2 emissions per vehicle have on average decreased by 9%–18% from
210.8gCO2/km - 211.3gCO2/km in 1995 to 178.3gCO2/km – 192.6gCO2/km in 2019 (Allekotte
et al., 2020b). However, the reduction in emissions was offset by a larger fleet of vehicles and a
general increase in passenger traffic (VDA, 2020a).

To reduce CO2 emissions of the power and transport sectors in Germany and other countries,
incumbent and new technologies need to be leveraged. The German Federal Government aims to
achieve this by installing additional renewable energy generators, predominantly based on wind
and solar energy. In the transportation sector, electric vehicles are seen as a means of reducing

1
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Figure 1.1: Development of CO2 emissions in Germany by sector (1990–2019). Percentages show the CO2

reduction from 1990 to 2019. Based on data by Crippa et al. (2021).

emissions. The goal of the German government is to have 10million registered electric vehicles
and 1million charging stations installed by 2030 (Bundesregierung, 2019). For individual electric
mobility, several challenges arise regarding the charging infrastructure. This work focuses on
the charging infrastructure required for daily personal mobility and its possible interaction with
the energy system. In this problem, the location of the parked vehicle is a decisive factor in the
efficient placement of the charging infrastructure.

To achieve decarbonization of personal transport, generation of electricity from renewable
sources is an important prerequisite. Synergy opportunities arise from the linkage of these sectors,
which have been largely separated until now (Helgeson and Peter, 2020). To improve the planning
for the energy system and by considering the energy demand, generation, and characteristics of
different sectors, the concept of integrated energy system planning postulates a holistic view of
all sectors and enables a cheaper, socially acceptable, and ecologically sustainable energy system.
Shunning traditional single-sector approaches, through integrated planning and models that
consider intersections between sectors, a superior configuration of the energy system is possible
(Helgeson and Peter, 2020; Mathiesen et al., 2015).
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This thesis thus develops a model that analyzes the relationship between different configu-
rations of charging networks and the scheduling of charging activities of electric vehicles in
potential future configurations of the energy system. Several specific research questions guide this
examination and will be answered with the help of the presented findings.

1. What are the projected changes in electricity generation and how will these changes affect
future planning of the layout of the charging infrastructure and charge patterns of electric
vehicles?

To answer this question, an overview of the status quo in the electricity sector and personal
transport is presented in Chapter 2. This involves a description of the guiding principles and
relevant actors in the energy markets to highlight their implications on the electricity transition.
The current state of the integration of electric vehicles with the electricity sector will be presented.
The effect of increased electrification of vehicles is projected to be affected by two main factors, the
design of the charging infrastructure, i.e. the locations of charging stations, as well as the timing
of charging activities. Based on the derived information, the following chapter explores how these
factors can be integrated into a decision model and is guided by the question:

2. How can geographically resolved travel and charge profiles for electric vehicles, as well as
factors associated with the electricity system, be combined into a model that simultaneously
considers the planning of the charging infrastructure of electric vehicles and the timing of
charging?

The decision problem includes two subdomains: the design of the charging network and the
charge planning of electric vehicles. In Chapter 3, the current state of the art in these research areas
is presented. Based on the findings of this literature review, a mixed integer optimization model is
developed, which includes the most important decision variables in the objective function and
maps possible constraints. Possible exact and heuristic solution approaches for the developed
model are presented. To apply the decision model developed here, several parameters related to
the mobility activities of individuals, their geographic location throughout the day, and factors
related to the electrical system are required. Therefore, Chapter 4 explores the question:

3. How can the geographically and time-resolved mobility patterns of electric vehicles, as well
as the costs and emissions of prospective energy systems, be derived and applied in the
model?

Geographically and time-resolved mobility patterns are derived using data from an activity
database and open-source geographic information. Potential emissions and costs related to energy
generation are determined using a linear optimization model. The decision on the design of the
charging infrastructure and scheduling of charging activities also has economic and ecological
effects. To show how these effects can be quantified, the developed model is used to optimize the
placement of the charging infrastructure and the charging of vehicles in the city of Essen. The
case study presented in Chapter 5 aims to answer the following questions:

4. What are the possible benefits and effects of optimizing the placement of electric vehicle
charging stations on electricity demand and renewable electricity consumption on a local
and country-wide scale? How can these factors be quantified?
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Finally, Chapter 6 presents concise answers to the research questions and discusses the findings of
this thesis.



2 C U R R E N T S TAT E A N D F U T U R E T R E N D S I N T H E
E L E C T R I C I T Y A N D M O B I L I T Y S E C TO R I N
G E R M A N Y

The intertwining of the mobility and electricity sectors is inevitable with the increasing market
penetration of electric vehicles (EVs). In Germany, far-reaching changes are expected in both sectors
and are guided by the legislature and governmental targets. Therefore, this chapter summarizes
the current state and future trends in the electricity and mobility sectors. The aim is to show how
the two sectors are interconnected and to highlight the actors involved and their objectives and
decisions in this context.

This chapter highlights important factors for the integration of EVs into the current and future
electricity system. First, the current setup of the electricity system, its actors, and development
within the constraints of the energy policy triangle and the goals of the German government are
presented (Subsection 2.1). Secondly, the current state of electric vehicles, electric vehicle charging
technology, and expansion of charging stations is summarized (Subsection 2.2). Finally, the current
status of the integration of both sectors is presented in the third subsection (2.3).

2.1 state and prospects of the german electricity system

To characterize the current state of the German electricity system, as well as possible future
developments, an overview of the current economic and technical characteristics, markets, and
actors in the electricity system is presented. Thereafter, the energy policy goals are described
and possible ways to operationalize the technical, ecological, and economic criteria are presented.
Finally, possible future developments of the German electricity system are presented along with
characteristics, obstacles, and requirements of an electricity system largely based on renewable
electricity generation.

5
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2.1.1 An overview of the current electricity system in Germany

Figure 2.1 illustrates the layout and actors involved in the German electricity sector. Electricity
must be generated, transmitted and distributed and sold on energy markets to meet the electricity
demand of commercial, residential, or industrial entities.
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four Transmission
System Operators
(TSOs)
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the electricity
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Industry: 45 %
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More than 850 comp-
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(At least 1,430 
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Figure 2.1: Overview of the German electricity market (Bundesnetzagentur, 2020).

This process of conversion of primary energy to useful energy and the entities and markets
involved must comply with national and international regulation. The analysis in the following
sections is based on the annual electricity generation and consumption values of 2019, as they are
not affected by the global Covid-19 pandemic (2020 - 2022) and the war in Ukraine (2022), which
affected energy prices in Germany and Europe (Halbrügge et al., 2022; Tollefson, 2022).
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2.1.1.1 Electricity generation

As a form of secondary energy, electricity is not freely available in nature and therefore must be
converted from renewable forms, e.g., solar or wind energy or non-renewable primary energy,
for example, fossil fuels (Konstantin, 2017). In 2019, coal was the primary energy source for
electricity generation worldwide and 36.4% of the electricity generated worldwide based on coal,
while 26.1% of the total electricity generated worldwide (including hydroelectric) was generated
from renewable resources (BP, 2020). In Germany, renewable generation has doubled from 1990

(18.93TWh) to 2000 (36.23TWh) and increased more than six times until 2019 to 244.29TWh.
Renewable power generators made up more than 53% of the installed power generation capacity
in Germany, while coal power stations only represented 20.9% of the installed capacity in 2019.
More than half of the electricity from renewable sources is generated by onshore (41.4%) and
offshore wind turbines (10.1%). The generation of electricity from solar energy (19.5%) and
biomass (17.5%) represents most of the remaining generation. Renewable power generators make
up more than half (55%) of the total installed power generation capacity in Germany. While
lignite(coal)-fired power stations generated 64% of their full load capacity, offshore wind power
generation only generated 21% and photovoltaic 11% of their potential capacity, mainly due to the
variable nature of the primary energy source (BDEW, 2020a). In 2019, the annual full load hours
of nuclear (7, 460h/a) and lignite (5, 570h/a) were higher than those of photovoltaic generators
(960h/a) or offshore (3, 510h/a) and onshore wind generators (1, 880h/a).

Table 2.1 shows the minimum and maximum electricity generation and consumption1 in
Germany in 2019. The variability in the generation of wind and solar energy has an impact on
these values. For example, during the peak generation time, wind energy made up 45.29% of
total power generation, while during the minimum generation period of electricity, only 25% of
the total generating capacity were supplied by solar and wind. In 2019, onshore wind generation
capacity fluctuated from 0.24GW (02.08.2019 - 09:15 a.m.) to 40.3GW (13.01.2019 - 07:30 p.m.).

Table 2.1: Overview of the minimum and maximum hourly electricity generation and consumption in
Germany, for all electricity generators in the year 2019 (SMARD, 2022).

Date Time MWh

Max Generation 15. Jan 2019 1:00 p.m. - 2:00 p.m. 84, 959

Max Consumption 09. Jan 2019 5:00 p.m. - 6:00 p.m. 76, 903

Min Generation 10. Jul 2019 3:00 a.m. - 4:00 a.m. 31, 894

Min Consumption 22. April 2019 3:00 a.m. - 4:00 a.m. 29, 104

Highest Generation Deficit2 23 May 2019 8:00 p.m. - 9:00 p.m. (-)14, 269

Highest Generation Surplus 5. Jan 2019 6:00 a.m. - 7:00 a.m. 19, 992

1 To increase readability of the text the term electricity/energy consumption is used throughout this thesis. According to
the first law of thermodynamics (the Law of Energy Conservation), energy cannot be created, consumed, or destroyed,
but only changed from one form of energy to another (Schmitz, 2017).

2 After deduction of electricity consumption, excluding exports and imports.
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Total Power Generation in Germany (2019)

Photovoltaic and Wind (On- and Offshore) Generation

T
im
e

Figure 2.2: Electricity generation in 2019 for all energy carriers in Germany (top) and photovoltaic and
wind generation in Germany (bottom). Based on data from SMARD (2022)

Figure 2.2 illustrates the overall generation of electricity (top) and the generation of electricity
based on volatile energy sources (bottom). In 2019, total electricity generation was highest in the
early morning to early afternoon, and more electricity was generated in winter than in summer.
Volatile renewable generation also shows a similar pattern during certain times of the year, such as
late February or December, while only a small amount of electricity was generated from renewable
sources in early November, as can be seen in the representation of the shares of renewable
generation in 2019 presented in Figure 2.2 (bottom).
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The CO2 emissions from electricity generation in Germany have decreased by 40% from 1990

to 2019. This is in line with an 41% increase of renewable energy generation over the same
period. The German electricity mix had a CO2 emissions factor of 401 gCO2/kWh in 2019. This
reduction in comparison to 1990 (-363 gCO2/kWh) also compensates for the changes in electricity
consumption that has increased by 14% compared to 1990 (UBA, 2021).

2.1.1.2 Electricity demand

Electricity demand is currently not actively controlled by third party entities such as utilities and
varies depending on the time of day or season (Strbac, 2008). The largest electricity consumer
in Germany in 2019 was the industrial sector, which represents half of electricity consumption,
equivalent to 234TWh. The services and commerce sector, as well as households, consumed
approximately a quarter of all electricity in Germany, while the transport sector only represented
2.3% of electricity consumption (BDEW, 2020b). 62.11% of electricity was delivered to power
metered (ger. Registrierenden Leistungsmessung) customers, while 37.89% of electricity was delivered
to non-metered customers under the application of one of the 12 different standard load profile
(ger. Standardlastprofile) (SLP) or through an individual customer load profile (synthetic method)3.
Currently, there is no SLP that considers the additional consumption of electricity from EVs, for
example, in households, where it can double the consumption of electricity and has been shown
to alter the load pattern of households (Hashemifarzad et al., 2019).

The upper part of Figure 2.3 illustrates how energy consumption differs throughout the year
and by time of day. Different patterns of energy consumption can be observed during the summer
and winter months. Electricity consumption generally increases in the winter months and earlier
in the day (around 4:00 a.m.). During weekends and holidays, less electricity is consumed. The
bottom part of Figure 2.3 shows the difference between energy consumption and generation.4 The
greatest electricity surplus in 2019 occurred in the evening hours in winter. In the summer months,
the highest surpluses occur during the noon hours and on Sundays. The pattern of electricity
generation through photovoltaic and wind power illustrated in Figure 2.2 is also visible in the
electricity surplus, which is highest during the midday hours. The values in Table 2.1 also show
the impact of periods when the limited generation of renewable electricity and the high demand
for electricity coincide and vice versa. During the period of the greatest electricity generation
deficit, solar and wind generation electricity was only able to supply 4.9% of total electricity
demand, while wind onshore and offshore supplied 68% of consumption during the period with
the highest generation surplus.

3 Utilities differentiate among two types of customers, power metered (ger. Registrierenden Leistungsmessung) (RLM), billed
according to the annual demand charge (e/MWh) and the annual maximum demand (e/ MW) for the respective
billing horizon and non-metered customers with a demand smaller than 100MWh per year. For non-metered customers,
the law on electricity and gas supply (ger. Gesetz über die Elektrizitäts- und Gasversorgung) (EnWG) prescribes the use of
standard load profiles SLP, e.g., for household, services, or agricultural customers (Bundesnetzagentur, 2021). While the
non-power-metered customer reports their electricity consumption annually, the power-metered customer is metered at
a time resolution of 15 min.

4 Without considering electricity import or export.
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Figure 2.3: Electricity consumption patterns (top) and electricity generation surplus and deficit (bottom) in
2019 for Germany (without consideration of imports and exports). Based on data from SMARD
(2022)

Although the negative and positive discrepancies have a high fluctuation, they have been
reduced by transmission system operators (TSOs) by reducing (curtailing) the input of renew-
able energy. The curtailment of (renewable) electricity has increased from 73.1GWh in 2009 to
6, 272.5GWh in 2019 (Bundesnetzagentur, 2020). While the curtailed electricity has increased
85-fold since 2009, installed wind generation capacity doubled from 25.77GW to 52.93GW in the
same time frame in Germany (Fraunhofer ISI, 2021). The curtailment measures led to costs 5 of

5 Costs for curtailed electricity are equal to the compensation for lost revenue paid to renewable power generators if
their electricity generation is curtailed.
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e709.5million in 2019 which is a significant increase in comparison to e6million in 2009 (Bun-
desnetzagentur, 2017, 2019b). To alleviate this problem, several measures are possible (Bauknecht
et al., 2016; Konstantin, 2017; Langrock et al., 2016; Sterner et al., 2014):

• Redirecting power to other parts of the grid and grid reinforcement,

• redispatch of conventional power generation,

• energy storage,

• utilizing demand flexibility.

In 2019, almost 100% of the flexibility of controllable consumer devices in Germany was provided
by electric heating, for example, by heat pumps or night storage heaters. A total of 1.5 million
controllable consumer devices were registered in 2019 (Bundesnetzagentur, 2020). Furthermore,
the future potential to use demand flexibility is estimated to be greatest in the household sector
(Langrock et al., 2016). However, almost all electricity tariffs in Germany are charged per kWh,
without explicit consideration of current electricity availability or prices, and only a few companies
offer flexible hourly or daily rates (Hack et al., 2021). A prerequisite for flexible tariffs are smart
meters that 0.74% of private consumers had installed in 2019 (Bundesnetzagentur, 2020).

Given the current largely inflexible demand and the increase in uncontrollable wind and
solar power generation, mismatches in electricity supply and demand and the need for power
curtailment could increase in the future. EVs will further increase electricity demand and can
potentially shift electricity consumption (for example, to the evening / night (Hashemifarzad et al.,
2019), leading to a greater mismatch between electricity generation and demand. Charging EVs

during times when surplus electricity generation is available can mitigate the electricity generation
and consumption mismatch.

2.1.1.3 Electric power transmission and distribution

To meet the needs of industry and the public for useful energy, electricity must be provided
to the customer through the transmission and distribution network. TSOs are responsible for
transregional transmission of electricity, including stable and secure operation and maintenance
of the required transmission network (Konstantin, 2017). The German extra high-voltage grid (150,
220 or 380 kV) is divided into four control areas operated by TSOs with the task of ensuring stable
frequency and voltage and the operational management of the grid including the task of restoring
the electricity supply in faulty parts of the grid (Dena, 2014).

In contrast to the high concentration of actors in the transmission system, there were more than
880 distribution system operators (DSOs) in 2019, responsible for the remaining part of the grid
and the distribution of electricity to the end customer (Bundesnetzagentur, 2020). The German
distribution grid consists of the high-voltage (60 - 100 kV), medium-voltage (3 - 30 kV) and
low-voltage (230 or 400 V) networks. Similarly to TSOs the DSOs are responsible for stabilizing
the distribution grid, mainly through voltage regulation and congestion management measures
(Löschel et al., 2020; Schmid et al., 2019). Power generators with high generation capacity or large
offshore wind farms are connected to the transmission grid. Generators with a smaller power
capacity, such as renewable power generators, feed their electricity into the distribution network.
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The shift to renewable energy-based electricity generation causes increased generation capacities
to be connect to the distribution network. The same is true for electricity demand. EV fast charging
stations are connected to the medium-voltage to high-voltage distribution network and to the
low-voltage network for private and public charging stations with a capacity below 22 kW (Maier
et al., 2019; Söder, 2003).

As noted above, an important role for DSOs and TSOs is to ensure high supply security. An
indicator to assess this supply security are the minutes of supply interruption. With an average
supply interruption of approximately 12.2 minutes per year (2019), supply security in Germany is
at a high level according to international standards (Bundesnetzagentur, 2020).

The energy transition is concentrated almost exclusively in the distribution network, that is,
in the expansion of renewable energy-based generators and new types of consumer, such as EVs

or heat pumps. This shifts the responsibility for the stability of the grid to DSOs (Maier et al.,
2019; Moser et al., 2016; Tretschick et al., 2021). For DSOs, it is therefore becoming more difficult
to operate their network. The task is further complicated by the fact that currently grid status
information is often insufficient to operate the grid. To this end, an increasing investment in digital
infrastructure, such as monitoring and measurement systems, is required (Consentec, 2016). These
changes and investment requirements are reinforced by regulatory changes that extend the legal
responsibility of Redispatch6 measures to DSOs, known as Redispatch 2.0. Instead of considering
conventional power plants with a generation capacity greater than 10MW, all plants of 100kW
or more7 must be integrated in redispatch measures starting from October 2021. To evaluate the
technical potential of dispatch measures, forecasts must be made for each generator, leading to
increased data requirements and the need for data processing for both DSOs and TSOs (BDEW,
2021a).

Although the direct relationship between an increase in electric vehicle penetration and redis-
patch measures has not yet been extensively studied, charging stations are generally connected to
the low or medium voltage level (Staudt et al., 2018b; VDE, 2019). Electric vehicle fast charging
stations have a capacity of 50 kW and can exceed 200 kW and therefore could contribute to alleviate
Redispatch 2.0 needs, by increasing or decreasing their charging rate.

2.1.1.4 Electricity system dependencies and markets

In 2019, there were at least 1, 430 electricity suppliers operating in Germany (Bundesnetzagentur,
2020). They consist of four large interconnected utilities (E.ON8, EnBW, RWE and Vattenfall),
municipal energy suppliers (municipal utilities), independent energy suppliers, and networks
of municipal and private energy suppliers. To be connected to the grid and to be allowed to
supply end customers with electricity, electricity suppliers must belong to a balance group. The
balance group operator is required to provide the responsible TSO with a schedule of electrical
requirements or offers on a daily basis. The responsible balancing group must pay the associated

6 Redispatch refers to the short-term shifting of planned electricity generation of power generators of 10MW and greater
by the TSOs to avoid grid congestion (Konstantin, 2017).

7 This includes renewable power plants and battery storage.
8 In 2016, the German energy company E.ON split its business into two independent companies - E.ON and Uniper SE.

E.ON focused on renewable energy, networks, and customer service, while Uniper SE focused on conventional power
generation and energy trading. As of December 2022, Uniper the German State has a stake of 99.12% in the company
(Uniper SE, 2023).
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balancing energy costs (BMWi, 2015a; Bundesnetzagentur, 2021). As of November 2022 there
were 3.304 balance groups within the TenneT transmission system, while there were 703 balance
responsible parties (Tennet, 2022).

The liberalization of the electricity market has created new opportunities for electricity trade.
Most of the electricity consumed in Germany is sold through bilateral direct contracts between
generators and consumers. This so-called "over-the-counter" trading accounts for a large part of
the traded electricity volume. The volume traded in these direct contracts can only be estimated,
as these bilateral contracts are not settled on a firmly defined and monitored marketplace. A
survey by the German Federal Network Agency of brokers active in this area indicates a volume
of 5, 770TWh for 2019, representing an increase of approximately 16% compared to the previous
year (4, 956TWh) (Bundesnetzagentur, 2020). Since 2000, it has also been possible to trade energy
on the European Energy Exchange, enabling smaller market participants to participate in energy
trading on the spot and forward market. In the forward market, also known as the day-ahead
market, participants can enter into contractual agreements that provide them with the ability to
establish fixed prices for the delivery of energy at predetermined dates in the future. The electricity
of the current day (intraday) is traded on the spot market. If the prices for the next day are fixed,
continuous bilateral quantities can be traded on the intraday market up to 30 minutes before
physical power delivery. The volume of electricity traded on the European Energy Exchange (EEX)
increased by 29% compared to the previous year to 1.345TWh for the Phelix-DE-Future. The
prices of the Phelix-Day Base and the Phelix-Day Peak ranged from −65.94 to 102.74 e/MWh,
with 80% of the prices concentrating within the interval between 27.79 and 53.47 e/MWh. In
2019, there were 211 hours with negative electricity prices, the most since 2012 (Hein et al., 2020).
Negative electricity prices can be caused by technical restrictions and opportunity costs of plant
operators. For example, conventional plants cannot arbitrarily change their generation due to
low flexibility or the necessity of having a minimum power level to enable stable operation.
Contractual obligations or the regulatory framework can also cause negative electricity prices. For
a detailed analysis of the causes of negative electricity prices in the German market, see Höfling
et al. (2015).
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Figure 2.4: German residential electricity prices since 1998 (nominal and adjusted for inflation) (BDEW,
2021b; Statistisches Bundesamt, 2021).

Figure 2.4 shows the development of residential electricity prices since 1990, nominal and
adjusted for inflation. The electricity prices in Germany for households9 increased by 7.91%
between 1990 and 2000. From 2000 to 2019, electricity prices nearly doubled for household
customers, from 15.34 cents / kWh to 29.81 cents / kWh. This increase can be primarily attributed
to additional and higher taxes and levies. Electricity generation and transport costs only increased
from 11.96 cents/kWh to 13.96 cents/kWh. Taxes and levies make up 52.5% of the total electricity
costs. Due to the increasing renewable power capacity, times of high renewable feed-in have
increased in the last years. During these times, electricity from renewable sources displaces
electricity from the most expensive conventional power generators and lowers the exchange
price (merit order effect). Several methods have been developed to predict the volatile electricity

9 Households - direct current (DC) (annual consumption: 3, 500 kWh of which night 1, 300 kWh)
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generation of renewable power plants on a daily basis (Hanifi et al., 2020; Nespoli et al., 2019).
Although these methods can achieve high accuracy, the generated electricity demand or generation
can deviate from the estimated schedule due to several factors. In the event of an imbalance within
the balance group, the balance group operator is charged with balancing electricity prices set by
the control reserve market.

The control reserve is divided into three types, according to their activation and deployment
times. Positive control energy is fed into the grid to counteract a frequency drop, whereas negative
control energy reduces the energy fed into the grid to increase the frequency of the grid. Primary
and secondary control are system services, and capacity costs are distributed uniformly and paid
through network charges. The energy costs of secondary and tertiary control are settled through
the balancing energy price. Costs are borne by the balance groups that cannot show a balanced
power account on the billing date. The remuneration for balancing energy is divided into the
capacity price paid for the willingness to keep the capacity on standby and an energy price for
the secondary and minute reserve power, paid per megawatt of control energy delivered.

For short-term stability of the electricity system, previous studies have projected an increase in
storage requirements along with an increase in renewable electricity generation (Brouwer et al.,
2014; Holttinen et al., 2011). It remains an open question if and how EVs could be used to mitigate
this problem. In Germany, the frequency containment reserve, which compensates for frequency
deviations lasting more than 30 seconds, decreased by 50% between 2011 and 2017. At the same
time, the generation of electricity based on wind and solar energy has increased by 120% (Hirth
and Ziegenhagen, 2015). This phenomenon is described as the "German Balancing Paradox" and
is believed to have been caused by more efficient and flexible trading options and markets (Hirth
and Ziegenhagen, 2015; Koch and Hirth, 2019; Ocker and Ehrhart, 2017).

In 2018 there was a total capacity of approximately 7, 400MW installed in Germany (Bundesnet-
zagentur, 2019a; Figgener et al., 2020; Schiffer, 2019). Pumped hydro constitutes the majority of the
storage capacity (6, 357MW), small-scale home battery storage and large-scale battery storage are
estimated to have the second-highest storage capacity (800MW), while one compressed air storage
system is installed with a capacity of 290MW. The storage capacity of the pumped hydroelectric
energy is concentrated in 25 systems, with an estimated energy equivalent to 37.4GWh (Heimerl
and Kohler, 2017). Small-scale home battery storage systems are distributed over 180, 000 home
battery storage systems with an average storage capacity of 2.2 kW.

The total (alternating current (AC)) charging capacity of all EVs registered in Germany as of
September 2022 is estimated to be between 5.38GW and 14.8GW. The total amount of energy
that can be stored in their batteries is estimated to be between 48.4GWh and 55.9GWh. EVs can
be a viable storage alternative for the electrical grid, and their storage capacity and flexibility
could be offered in the energy exchange or as reserve capacities (Hecht et al., 2022). Among other
incentives and guarantees (see Section 2.3.2), monetary incentives are required. When considering
the price of consumer electricity, incentives through cost savings are limited by the high share of
taxes, duties and levies (< 50%).

2.1.1.5 Electricity regulation

The law on electricity and gas supply (ger. Gesetz über die Elektrizitäts- und Gasversorgung) (EnWG) is
the basis for the energy regulations in Germany and is complemented by sector-specific policies,
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strategies, guidelines, laws, and regulations (BMWi, 2021; Scholz and Wessling, 2021). Several
initiatives and regulations have fostered the transition of the electricity system in Germany. The
Electricity Feed-in Act (ger. Stromeinspeisegesetz), was one of the first acts to promote electricity
generation from renewable sources such as wind and solar (Lüdeke-Freund and Opel, 2014). The
Renewable Energy Sources Act (ger. Erneuerbare-Energien-Gesetz) (EEG), which followed, stipulates
the preferential feed-in of electricity from renewable sources and guarantees fixed input tariffs for
its generation, regardless of current power demand in the grid (Cheung et al., 2019). As a result of
the regulations, renewable energy generators have neither a purchase risk nor a price risk, as grid
operators must prioritize purchasing electricity from renewable energy. The further liberalization
of the electricity market has led to electricity trading. Through the unbundling of the network from
generation, trade, and distribution, the importance of electricity trade has increased significantly.
General access to electricity transport networks, combined with non-discriminatory transport
fees, have created conditions for electricity trading between different market players (Borchert
et al., 2006). In an attempt to further amplify the use of electricity generated from low-carbon
sources, power plants have to pay for their CO2 emissions through the European emissions trading
system. However, the analysis shows that this regulatory mechanism is inferior and has not fully
produced the desired results (Schäfer, 2019) since its introduction in 2005 (UBA, 2019).

As of 2022, EEG and EnWG do not explicitly consider EVs. However, according to §14a of the
EnWG operators of electricity distribution networks can reduce network charges to suppliers and
final consumers in the low-voltage network, if they operate their devices in a grid-friendly way
and have a separate metering point. More legislation or modifications to legislation are required
for a practical integration (Håvard Nymoen et al., 2022).

2.1.2 Guiding the transformation of the electricity system

After describing the current situation in the electricity system in the previous section, this section
presents the factors guiding the transformation to a renewable energy system, namely the energy
policy triad and the energy policy of the European Union (IEA, 2020a). The section also highlights
how the goals and objectives described in the policies are operationalized.

Two main factors have shaped the development of the electricity system in recent years. First,
the decarbonization of electricity generation by replacing fossil fuel-based power generators with
wind and solar-based generators and second, the goals of the energy policy triad which are
explicitly stated in the (EnWG, § 1), namely: environmental protection, cost-effectiveness, and
security of supply.

Similar goals are also pursued by the European Union’s energy policy, which aims are envi-
ronmental sustainability, supply security, economic effectiveness, and promotion of the intercon-
nection of energy networks (Braun, 2011). As the goals of environmental sustainability, energy
security, and energy affordability are divergent, some publications and organizations also call
this circumstance the energy policy trilemma (Šprajc et al., 2019; World Energy Council, 2019).
McKenna et al. (2017) and Arciniegas and Hittinger (2018) show that certain operational strategies
and system configurations of energy storage can be economically beneficial but can also increase
CO2 emissions.
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Some studies have introduced financial indicators to include the costs of storage required
by the renewable power generator to provide the same uninterrupted power as conventional
electricity generators (Ueckerdt et al., 2013). While the two examples address an isolated conflict
(economic / environmental, economic / security of supply), other studies often use multi-criteria
assessment methods to present the trade-offs between the generation of electricity from renewable
and non-renewable resources (Antunes and Henriques, 2016; Witt et al., 2020). In the following
section, several indicators are summarized that enable the quantification of the abstract policy
goals defined in the policy triad.

2.1.2.1 Environmental protection

According to the definition of Daly (1990) environmental protection or environmental sustainability
can refer to three factors: sustainable yield, reduction of pollution, and reduction of the depletion of
non-renewable resources. Various impact indicators have been developed, for example, to quantify
the depletion of non-renewable resources through human activity (Belyakov, 2019; Matuštík and
Kočí, 2020). Pollution can also be measured using various indicators, however as carbon dioxide
emissions are the key global climate change driver only CO2e emissions are addressed in this
section.

The CO2e
10 emissions for commercially available electricity generation and storage technologies

are presented in Figure 2.5. These emissions can be calculated using life-cycle assessment (LCA),
which is a systematic method to analyze the possible environmental impacts of products through-
out their life cycle (Klöpffer and Grahl, 2009). A structured process for carrying out such an
assessment is laid out in International Organization for Standardization (ISO) Norm 14040 (Envi-
ronmental management - Life cycle assessment - Principles and framework). Depending on the
scope of the LCA different life-cycle phases can be distinguished. A Cradle-to-grave assessment is
a complete life cycle assessment and considers all life cycle phases from the extraction of raw ma-
terial (cradle) to the disposal phase (grave) (International Organization for Standardization, 2006).
The quantified description of the performance requirements desired as the output of a product
system is defined as a functional unit. In Figure 2.5, the functional unit for power generation
technologies is a kilowatt hour of electrical energy generated. For electricity storage technologies,
for example battery storage, the functional unit is one kWh of electricity stored in the battery and
delivered back to the grid, i.e. considering the round-trip efficiency.

As the measurements and parameters of LCA depend on site- and case-specific factors, the error
bars are added in Figure 2.5 to visualize the uncertainty related to the evaluation. The estimation
of CO2e emissions is uncertain for both the electricity generators but also for the energy storage.
Various factors, such as the energy mix used to build power plants or storage utilization, have an
impact on the assessment of a technology (Baek et al., 2018; McKenna et al., 2017; Turconi et al.,
2013; Wevers et al., 2020).

10 CO2 equivalent (global warming potential) is a measure for the relative contribution of a chemical compound to the
greenhouse effect. It indicates how much a given mass of a greenhouse gas contributes to global warming compared to
the same mass of CO2 (Klöpffer and Grahl, 2009).



18 current state and future trends in the electricity and mobility sector in germany

-

Figure 2.5: CO2e emissions for commercially available power generation and storage technologies. Calcula-
tion and depiction based on IPCC, (2015), Schmidt et al. (2019b), Thomas et al. (2020), Turconi
et al. (2013), Wang et al. (2019), and Xie et al. (2020).

The results in Figure 2.5 show that electricity generator emissions differ not only in the total
emissions emitted during the life of the technology but also in the life cycle phase in which they
are emitted. For power generation from conventional sources, such as gas, oil, or coal, most of the
emissions occur in the use-phase of the technology. Over all life-cycle phases, these technologies
have much higher emissions. Compared to coal and gas generators, wind- or solar-energy-based
electricity generation can reduce emissions by 90%-99%. As illustrated by the error bars and
highlighted in studies, the emissions of hydroelectric power generators can deviate significantly.
High CO2e emissions can occur in tropical regions and in areas with high sediment content, where
a lot of trapped emissions are released when organic material flowing from rivers into dams
decomposes (Bertassoli et al., 2021; Deemer et al., 2016).
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In most cases, the storage of a kWh of electricity has a greater environmental impact than
the generation based on renewable primary energy sources. For battery storage, the operational
strategy and battery chemistries are shown to have a decisive impact on CO2e emissions (Schmidt
et al., 2019b; Thomas et al., 2020). For residential battery storage, Thomas et al. (2020) calculate
emissions of 40 - 80 g CO2e/ kWh when cycled once per day. The round trip efficiency is
significantly higher (82%–89%) than that of hydrogen storage when considering the conversion of
water to hydrogen by electrolysis and back to electricity using a fuel cell (approximately 30%-40%)
(IEA, 2019b; Pellow et al., 2015)11. For these losses, emissions of 14.5 g CO2e/ kWh were assumed,
the average emissions for electricity generation technologies based on volatile primary energy
sources. While the exact emissions vary, the general notion that renewable power plants have
lower emissions is true; however, site-specific factors must be considered.

2.1.2.2 Energy generation and storage costs

For the economic assessment of electricity generation and storage technologies, levelized cost of
energy (LCOE) (2.1) and levelized cost of storage (LCOS) (2.2) allow comparisons of power gener-
ators and electricity storage with different generation, storage, and cost structures (Zapf, 2017).
They denote the costs necessary to convert energy from a form of primary energy to electricity or
for the LCOS costs of storing electric energy. The resulting LCOE and LCOS are constant revenues
(per kWh) required over the life of a power generation or storage technology to break even while
covering all costs and paying investors a minimum acceptable rate of return (Kuckshinrichs and
Koj, 2018). The calculation is based on the net present value method. The numerator sums up all
investment and operational expenses in the respective years (t), which can include fuel, operations
and management, carbon offset or decommissioning of the power plant or storage system. The
denominator sums up the average annual electricity generation of that plant, discounting the
generated energy with the same discount factor as the total operational expenditure (OPEX) and
capital expenditures (CAPEX) the time value of future revenues is considered (Konstantin, 2017;
Mostafa et al., 2020; Ueckerdt et al., 2013).

O&M Cost for operations and management for each time period t

Elecdischarged Electricity discharged over the life-time

r interest rate

t time period

n Number of periods

Carbon Cost of emissions (e.g, CO2 certificates )

Fuel Cost of fuel

Electricity Generated electricity

Decommissioning Cost of dismantling and removal at the end of its operational life

Investment Initial investment of building or installing the energy infrastructure

11 See Figure 2.11 for energy conversion efficiencies
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Figure 2.6: LCOE and LCOS for commercially available electricity generation and storage technologies
(BMWi, 2015b; FCHO, 2022; Fraunhofer ISE, 2021; Hiesl et al., 2020; Jülch, 2016; Lazard, 2021;
Ram et al., 2017; Steckel et al., 2021).

Figure 2.6 presents an overview of the current LCOE of different technologies operating in
Germany. Currently, the two cheapest options for electricity generation in Germany are ground-
mounted photovoltaic (PV) systems with a capacity greater than megawatt peak (MWp) in southern
Germany (31e/MWh) and wind onshore, for strong wind sites with a mean wind speed greater
than 7.8 m / s (39 e/MWh). The LCOE of conventional power generators such as coal and gas
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have significantly increased due to higher CO2 certificate prices in the last years and in the in
some cases exceed the most expensive solar or wind generators (Fraunhofer ISE, 2018, 2021).

The LCOS for the storage of electricity have declined due to factors such as technological
improvements and economies of scale. However, costs are mainly dependent on discharges per
year and storage duration (Schmidt et al., 2019a). Cost predictions are still highly uncertain and
are dependent on numerous other factors, making a comparison difficult. Assuming an average
cost of hydrogen generation of 5.35 e/ kg and low storage losses, as well as a high fuel cell
efficiency of 60% domestic hydrogen generation for grid-scale storage in Germany could reach
LCOS of 267 e/MWh. In the best case, for other European countries, hydrogen LCOS could reach
90 e/MWh (FCHO, 2022).

In the electricity system, the generation and consumption of electricity must be balanced at all
times. As a mismatch between electricity generation and consumption can lead to a deviation
from the nominal frequency (50 Hz or 60 Hz) of the electrical grid, and in addition to a variety
of negative consequences leading to the emergency shutdown of the power system (Dixon, 2019;
Hirth and Ziegenhagen, 2015; Konstantin, 2017). Mismatches that need to be corrected arise for
several reasons. On a longer time scale (monthly scale), the electricity generation by solar power in
the Northern Hemisphere is greater in summer while the electricity consumption is lower, leading
to a mismatch in a renewable power system largely dependent on solar electricity generation. On
the midterm timescale (days to weeks) "dark doldrums", i.e. random periods sunless and windless
periods, can lead to a power shortage (Matsuo et al., 2020). In the short term (seconds to an hour),
there are various other causes of a mismatch between electricity generation and consumption,
and an intricate control mechanism has been developed to compensate for short-term electricity
shortages (Hirth and Ziegenhagen, 2015).

Depending on the proportion of variable renewable power plants in the total energy mix,
dispatchable renewable generators may not be able to fully compensate for an electricity shortage.
In this case, energy storage may be necessary. The function of energy storage is to decouple energy
generation from energy demand. In the case of electrical energy, this decoupling can only be
achieved to a limited extent by storing electricity (Sterner and Stadler, 2017).

The graphs in Figure 2.7 show different energy storage technologies and their projected relative
LCOS according to discharges per year and hours per discharge. Depending on the discharge
time, energy capacity, or storage duration, different storage forms of energy storage (electrical,
mechanical, or chemical) are preferable. Their suitability depends on the requirements of the
energy system, including technological and economic factors. The CAPEX associated with a certain
storage technology are mainly determined by its operating hours, efficiency, and costs per unit
of energy and power. While the energy costs of battery storage can increase by a ratio of one
to one for increasing storage capacities, the specific investments to increase the energy storage
capacity while keeping power unchanged are lower for hydrogen (Wolf, 2015). This means that
for longer storage duration, with the requirements of a higher energy and lower power capacity,
hydrogen storage is preferable, whereas battery storage is preferred vice versa. Other factors that
make hydrogen more suitable for long-term storage are its low self-discharge and long useful
life (Sterner et al., 2015). For a sustainable energy system, therefore, a combination of storage
technologies is preferable (Davis et al., 2018; Schmidt et al., 2019b; Sterner and Thema, 2017;
Sutter et al., 2019). As EVs store the electricity required for propulsion in a lithium-ion battery, the
question arises what type of storage EVs can provide for the electricity system.
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Figure 2.7: Projected LCOS for different electricity storage technologies adapted from Schmidt et al. (2019a).

2.1.3 Transformation towards a renewable electricity system

As highlighted in Section 2.1.1, the generation of electricity from volatile primary energy sources,
such as wind and solar energy, induces a particular pattern of electricity generation. For example,
photovoltaic system generation is bell-shaped, with a peak around 12:00 p.m., while wind elec-
tricity generation is stronger in the winter months and at night. Depending on the configuration
of the future electricity system, different requirements and problems will arise. These can affect
electricity prices and the need to increase or to decrease power consumption during certain times
of the day, which can also have an impact on the charging behavior of EVs. The German legislature
e.g., the EEG, describes general goals for the expansion of power generation based on renewable
resources. As these goals do not clearly specify the configuration of a fully renewable electricity
system or the possible paths to such a system, several energy scenarios have been developed and
a summary is presented, as these have an impact on how EVs can be integrated into the electricity
system.

An amended version of the EEG entered into force on 17 December 2020 (EEG 2021). After the
nuclear accident in Fukushima in 2011, Germany decided to phase out nuclear power generation.
Furthermore, the German government has committed to end coal-fired power generation by 2035
and the latest by 2038 (Bundesregierung, 2020). Due to the long time horizons and uncertainty of
aspects such as technological development, regulations, or societal views, energy scenarios and
scenario planning can be used to develop a shared understanding of these uncertainties (Stewart
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and Durbach, 2016). An energy scenario describes a possible future development of the examined
energy system (Dieckhoff et al., 2014; Grunwald et al., 2016; Witt et al., 2020).

Numerous energy system scenarios have been developed for Germany. The guiding factor for
many energy scenarios in Germany are the proposed targets of the federal government with
respect to the stepwise reduction of total greenhouse gas emissions in all sectors. To achieve
these goals, energy scenarios consider measures such as increasing energy efficiency, carbon
capture and storage, and increasing power generation through renewables. Scenarios apply
different methods to model and simulate the developments of the energy system under different
underlying assumptions (Hillebrandt et al., 2015; Kobiela et al., 2020). Figure 2.8 presents the
projected share of renewables of net electricity generation and installed capacity for the years
2030, 2040 and 2050 in 18 scenarios described by studies published since 2016. Moreover, the goals
stipulated in the EEG 2021 and the preliminary goals for the year 2023 are shown.

Figure 2.8: Renewable energy generation in different studies and scenarios in contrast to the targets
stipulated in the EEG 2021 and preliminary values for the EEG 2023 for Germany and the years
2030, 2040, 2050 (Dena, 2018; Gerbert et al., 2018; Nitsch, 2017; Pfluger et al., 2017; Prognos AG
et al., 2021; Quaschning, 2016).

In their review of different scenarios for future energy systems in Germany, Hillebrandt et al.
(2015) present an overview of the different assumptions made in studies and scenarios and show
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that the results can vary significantly and are dependent on the underlying assumptions and
modeling techniques. For instance, while the "Government Target Scenarios" project only a moderate
substitution of fossil fuels through electricity and does not foresee any carbon capture and storage,
"90% Greenhouse Gas Reduction Scenario" projects carbon capture and storage technology to reduce
industrial emissions. As the electricity sector is seen as a key factor in the reduction of CO2

emissions, studies often put an emphasis on it. Most energy scenarios have an overall guiding
objective. For example, in the five scenarios described and modeled by Pfluger et al. (2017),
the potential effects of a limited expansion of the transmission and distribution grid, a larger
geographical distribution of electrical generators, or the discontinuation of renewable power
generators are considered. All of these assumptions have an impact on the total capacity and type
of renewable energy generator installed and lead to various energy system configurations.

In a study by Quaschning (2016) two scenarios show different efficiency perspectives for
electricity consumption. The "without efficiency measures" scenario has an energy demand of
3, 120 TWhel while in the scenario "with efficiency considerations" 1, 320 TWh electrical energy are
required. In comparison to the electricity demand in 2019, this is equal to a 2.6-fold increase
in the scenario considering efficiency measures and 6.1 times in comparison to the scenario
without efficiency measures. In the efficiency scenario, more energy efficient technologies, such
as electric vehicles, are considered in contrast to hydrogen, reducing the required electricity
demand by 665 TWhel. Other studies based on hydrogen mobility also show a similar increase in
energy demand (Hansen et al., 2019; Pfluger et al., 2017; Weißermel, 2021). Efficiency measures
have a significant impact on the required electricity demand. The goals of increasing efficiency
are specified in National Energy Efficiency Action Plan and "Germany’s Energy Efficiency Strategy
2050". They are defined for the years 2030 and 2050 by the federal government for all sectors
(heating, transport industry, and electricity) (BMWi, 2019, 2020). Compared to 2008, total primary
energy consumption in all sectors should decrease by 30% in 2030 and 50% in 2050. A study
commissioned by the German Federal ministry for economic affairs and energy, estimates that gross
electricity consumption will increase to 655TWh by 2030 (+/-10TWh), largely due to the increase
in electrification of the transport and heating sector (Kemmler et al., 2021).

2.1.4 Characteristics of a renewable electricity system

The EEG 2021 stipulates the goal that all electricity (generated or consumed) in Germany by 2050
should be carbon neutral. Furthermore, the interim goal of a share of 65% renewable electricity
generation by 2030, is defined. To achieve this, installed capacities for onshore wind energy (71
GW), offshore wind energy (20 GW), photovoltaic (100 GW), and biomass (0.84 GW) projected.
Regarding total renewable energy generation, this capacity would generate 303TWh12 in the year
2030, which is equal to 60% of the electricity generated in the year 2019.

12 Assuming the annual full-load hours of 2019 (BDEW, 2019).
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Figure 2.9: Calculated electricity surplus and deficit shown over one year for the electricity generation mix
defined in the targets of the EEG (2021) for the year 2030. In 15 Minute aggregation on the top
and weekly aggregation on the bottom (without imports and exports). Based on data of BDEW
(2019) and SMARD (2022).

To illustrate how the electricity generation pattern could deviate from the values of 2019, the
electricity generation is adapted according to the values specified by the EEG. For the calculation
of the 2030 values, photovoltaic and wind generation of 2019 was proportionally scaled up and
down for biomass and other sources to the capacity targets specified by the EEG and full-load
hours of 2019. Figure 2.9 presents two different representations of the results, assuming that the
electricity consumption patterns remain the same as in 2019. The first part of the figure presents a
scenario for the electricity surplus. The generation by non-renewable sources was scaled down to
account for 35% of the total generation. Nuclear energy was reduced to zero, since Germany has
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committed to end all nuclear power generation by 2022. In total, electricity generation is reduced
by 1.32% (6.8TWh) when considering 2019 total load hours for 2019 and the assumption that
renewables should comprise 65% of electricity generation in 2030, as stipulated by the EEG 2021.
As the total load hours fluctuate and to make the comparison between 2019 and the projected
values for 2030 possible, the 6.8TWh are evenly distributed among all generation technologies.

The weekly aggregation in the second part of Figure 2.9 demonstrates the effects of additional
renewable power generators entering the power mix. The surplus electricity shows two distinct
changes compared to the values of 2019 (see Figure 2.3). Throughout the year, electricity generation
in the evening and night is lower than in the case of the 2019 electricity mix and greater in the
morning to afternoon hours. In particular, the effects of increased photovoltaic-based generation
are visible. On average, the electricity surplus from 8:00 a.m. - 4:30 p.m. is 2.6 times as high as
in the case of 2019. While on average there is a greater surplus in the morning and afternoon
hours compared to 2019 there are also more hours in the night that show an electricity deficit.
The second part of Figure 2.9 shows the weekly energy balance for 2019 and the simulated values
for 2030. As the data for 2030 were fitted to the 2019 values, the total electricity surplus is 24TWh
in both cases. While there is generally an electricity surplus in the summer in the end of January,
February, and October, there are weeks with a high deficit, while the first two weeks of March
show a high surplus. Figure 2.10 shows two exemplary weeks, considering an unchanged demand
pattern, the highest electricity deficit and surplus presented for simulated energy generation in
2030. On Sunday the 30th July, the electricity surplus at 12:00 p.m. is the greatest. During this
time, photovoltaic electricity generates 63.5 GW of electricity, equivalent to 129% of electricity
consumption. In contrast, the greatest electricity deficit is present on Thursday the 24th of January.
At 16:45 p.m., electricity from volatile primary energy generators only constitutes 3.87% of the
total electricity generation, resulting in a deficit of 31.484 GW. Compared to the base values for
2019 (see Table 2.1), the maximum surplus is 284% and the deficit is 218% greater. Although total
electricity generation was sufficient in 65% of the weekly intervals to meet electricity demand in
2019, this is possible in 51% of the weekly intervals in the projection of the year 2030.

This simplified calculation omits certain factors, such as changes in electricity demand, for
example, increased installation of heat pumps may lead to demand surges, especially in the winter
months or the geographic distribution of electricity generation and consumption (Abiven et al.,
2020; Ruhnau et al., 2019). The potential geographic location of the energy generation capacity
is affected by factors such as wind speed or radiation. The average wind speed is higher in the
northern part of Germany, whereas the annual solar irradiation is higher in the southern part
of Germany (Schmidt and Mühlenhoff, 2010). On the other hand, current energy demand is
distributed with a higher electricity demand concentrated in some industrial cities (Elsland et al.,
2016; Priesmann et al., 2021; Statistisches Bundesamt, 2020). Studies estimate that the electricity
demand for urban regions will increase in the coming years, whereas many counties in the new
federal states and areas located in the peripheral parts could decrease electricity consumption
(Boßmann et al., 2013; Elsland et al., 2016). Staudt et al. (2018a) base their simulation of the
transmission grid on the development goals stipulated in the federal network agency’s grid
development plan (Bundesnetzagentur, 2016b). The simulation results indicate that the need for
redispatch measures occurs in the north and south of Germany, that is, in the TenneT and 50Hertz
transmission networks. Furthermore, most re-dispatch is required in the time from 5 to 10 a.m.
and 3 to 8 p.m.
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Figure 2.10: Electricity generation and consumption in two exemplary weeks in 2019 and under consid-
eration of the Targets for Germany (2030) as specified in the EEG 2021 for 2030 and under
consideration of the full load hours of 2019. Based on data of BDEW (2019) and SMARD
(2022).

The results of the calculation of the electricity generation for the year 2030 indicate that in the
summer months large shares of renewable photovoltaic electricity generation will be available at
noon. If electricity consumption stays similar to the year 2019, this would result in a large surplus
of electricity during these times. For the winter month, no clear result can be drawn. From a more
long-term perspective, there are weeks with an overall generation surplus or deficit throughout
the year. Both of these results may be of interest to the planning of the charging infrastructure of
EVs and to the planning of the charge process.
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2.2 electric vehicles in the mobility sector

In 2021, more than 16 million personal EVs were registered worldwide, making up 1.4% of all
registered vehicles. Most vehicles (11 million) were BEV and hybrid EVs (5.2 million), 56% of BEVs

were registered in China followed by 12% in the United States and approximately 6% in Germany
and 4% in Norway (IEA, 2021). As of 2021 China also has the highest number of publicly accessible
electric vehicle charging stations. Compared to the proportion of BEVs to the total number of new
passenger vehicles registered, Norway (≈54%), Iceland (≈45%) and the Netherlands (≈20.5%) had
the highest penetration rates of EVs in 2020 (Netherlands Enterprise Agency, 2021; OFV, 2021;
Samgöngustofa, 2021).

In Germany 90% of the total 48.5 million personal vehicles are registered to private individuals.
More than 97% of all personal vehicles are powered by a diesel or petrol engine. In 2021 BEVs

made up 1.3% of the registered personal vehicles, 3.4% are hybrid EV and 808 fuel cell electric
vehicle (FCEV) have been registered in Germany (KBA, 2022a).

As EVs are seen as an effective technology to reduce CO2 emissions in the personal transport
sector, many countries have introduced policies to support their deployment. Including measures
on an international scale, such as the new fuel economy standards of the European Union
(Helgeson and Peter, 2020), national scale, such as the phaseout of internal combustion engine (ICE)
vehicles through a sales ban from 2030 or subsidies and policies on a municipal or city scale, e.g.,
incentivizing the installation of charging stations. These measures also support the adoption of
EVs in Germany to reach the target specified in the German climate protection program of 7 - 10
million EVs and 1 million charging points by 2030 (BMU, 2019).

2.2.1 Battery electric vehicles: economic and ecological factors

An electric vehicle (EV) uses an electric motor for some or all of its propulsion. The definition of
the term EV varies. For example, the German Federal Motor Transport Authority understands EVs

to be only those "propelled exclusively with an electric energy source" (KBA, 2021). Vehicles "with
at least two different energy converters and two different energy storage systems" are defined as
hybrids. The United States Department of Energy defines EVs as vehicles that "derive all or part of
their power from electricity supplied by the electric grid." In addition, they distinguish between all-
electric vehicles and plug-in hybrid EVs. The International Energy Agency differentiates between
BEV and Plug-in Hybrid EVs (DOE, 2021). Overall, three distinctions can be made:

• Hybrid EVs use an additional powertrain technology and do not solely rely on the electric
motor. Most often the electric motor is combined with an internal combustion engine that
relies on some form of fossil fuel.

• Fuel cell EVs (fuel cell electric vehicle) only use the electric motor for propulsion, however,
alongside a battery energy is also stored in the form of hydrogen and converted to electricity
using a fuel cell.

• If the EV can be recharged from an external electricity source, it can be defined as a plug-in
EV. A subcategory of these plug-in EVs are battery electric vehicles.
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In this thesis, the term BEV refers to vehicles that purely store the energy required for propulsion
in electrical form and directly use this energy to generate propulsion. Electricity is recharged
to the battery from an external source. Although there are many types of EVs already used in
the transportation sector today, the number of personal EVs has increased since the 1990s and its
growth was especially accelerated with the introduction of the lithium-ion battery at the beginning
of the 21st century (IEA, 2020b).

Different types of storage have been used and proposed for EVs. Currently, lithium-ion batteries
are the dominant battery chemistry (Helmers and Marx, 2012; Lamp, 2013; Marques et al., 2019).
A lithium-ion battery generates electromotive force through the displacement of lithium-ions.
A variety of different anode and cathode materials have been proposed, resulting in a unique
performance (Peters et al., 2017; Wentker et al., 2019). To determine whether and how suitable
a battery is for the application in an electric vehicle, numerous characteristics are important,
among the most frequently cited are costs, energy density/weight, performance, durability, and
environmental impact (Marques et al., 2019). Such as in the environmental policy triad, these
characteristics are usually conflicting. For instance, in previous generations of lithium-ion batteries
cobalt was used in the cathode of the battery, making the battery more durable and allowing for
higher performance, i.e. increasing the charging and discharging capacity of the battery. At the
same time, the material is also scarce, making it costly.

Table 2.2 shows an overview of commercially available BEV models that were delivered in the
first half of 2022 in Germany. Vehicles are available in different configurations that affect their
price and range. Most vehicles were sold by the brands Tesla and Volkswagen. The battery capacity
of most vehicles is within the range of 52 kWh to 77 kWh and all have an AC charging capacity of
11 kW.

Table 2.2: Overview of BEV and characteristics and registrations in Germany (status October 2022) (KBA,
2022b).

Model Price Battery Range 13 Charging Power Vehicles

e kWh km kW (AC) kW (DC) registered

Tesla Model Y 53, 990 - 64, 490 57.5, 75 430 - 533 11 250 24, 177

Fiat 500e 23, 560 - 32, 560 23.8, 42 245 11 85 19, 219

Tesla Model 3 42, 900 - 58, 000 54, 75 491 - 602 11 250 17, 464

VW ID.4/ID.5 36, 950 - 56, 455 52, 77,82 326 - 501 11 100-125 14, 785

VW ID.3 43, 995 - 49, 040 58; 77 416 - 549 11 100-125 12, 802

Hyundai Kona 33, 971 - 40, 795 39.2; 64 305 - 484 11 70 10, 922

From a consumer perspective, there are several factors such as economic, technical or environ-
mental that drive or inhibit the adoption of a new vehicle technology such as BEV or FCEV (Kumar
and Alok, 2020). These factors can be further operationalized into measurable indicators such as
CO2 emissions (Cox et al., 2020; Letmathe and Suares, 2017).

13 Worldwide Harmonized Light Vehicles Test Procedure (WLTP).
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In a complete LCA more than 19 environmental indicators can be assessed for BEVs (Tintelecan
et al., 2019). The results of selected studies are shown in Table 2.3. Some studies only compare
BEVs with ICE vehicles, but isolated studies e.g., Miotti et al. (2017) also consider FCEVs. The
resulting CO2 emissions depend on a multitude of factors e.g., quality and actuality of the data
and the assumptions made regarding mileage and the characteristics of the vehicles considered,
and therefore differ considerably. For example, in the technical report by Volkswagen AG (2019)
compact vehicles are investigated, while Karaaslan et al. (2018) examine larger sport utility vehicles.
On average, these studies result in about 0.158 kg CO2e/km for BEVs, 0.229 kg CO2e/km for FCEVs
and 0.224 kg CO2e/km for ICEs.

Table 2.3: Overview of kg CO2e/km of different vehicle technologies.

Study BEV kg CO2e/km ICE kg CO2e/km FCEV kg CO2e/km

Volkswagen AG (2019) 0.059- 0.183 0.141- 0.173 -

Pero et al. (2018) 0.129 0.203 -

Evangelisti et al. (2017) 0.130 0.175 0.135

Held and Schücking (2019) 0.138 0.179 -

Bekel and Pauliuk (2019) 0.140 0.168 0.326

Singh et al. (2014) 0.180 - 0.13

Wulf and Kaltschmitt (2013) 0.189 0.439 0.219

Miotti et al. (2017) 0.215 0.280 0.240

Tesla (2022) 0.029 - 0.157 0.298 -

Karaaslan et al. (2018) 0.240 0.366 -

Emissions related to a vehicle occur in the production, use-phase or recycling of the vehicle.
While the majority of emissions for an ICE vehicle occur in the use-phase, the production of the
battery is responsible for most emissions of the EV and especially the BEV. While the emissions
related to the production of a BEV can be 70% to 130% greater than those of a comparable ICE

vehicle, the emissions related to the use-phase are smaller, leading to a reduction of CO2 emissions
of 15 to 30% over the whole life-cycle (Thielmann et al., 2020).

In the use-phase, energy conversion efficiency can have an important effect. Figure 2.11 shows
the well-to-wheel (WTW) energy conversion efficiency of three vehicle technologies in a Sankey
diagram. The left side of the diagram shows the primary energy (well) required for the useful
energy (wheel) to drive 100 km. The efficiency of the ICE can achieve a ratio of 21.9% primary
energy (192MJ) to useful energy (42MJ). Most of the energy is converted to heat in the combustion
process, resulting in low tank-to-wheel efficiency. For FCEV renewable primary energy from wind
or solar energy is converted to electricity. Through electrolysis, this electricity can be converted
to hydrogen, which can be stored in the vehicle, hydrogen is converted back to electricity using
a fuel cell and stored in a battery, which powers the electric motor (Klell et al., 2018). Most of
the energy is lost in this conversion process, resulting in an energy efficiency of 29.8%. For BEVs

energy is lost through electricity transmission and the charging process. BEVs have the highest
energy conversion efficiency of 71.19% (Edwards et al., 2014).
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Figure 2.11: Sankey diagram of the energy efficiency of three propulsion systems. Representation based on
data from Edwards et al. (2014).

Figure 2.11 shows the highest WTW efficiencies possible for all technologies discussed. For FCEV

and BEV only renewable primary energy sources are considered. The use of other primary energy
sources, such as coal, can significantly decrease the WTW efficiency of the BEV and FCEV. However,
a higher energy conversion efficiency leads to lower tailpipe emissions when considering the same
primary energy source.

The conversion efficiency also has an impact on the total electricity demand of the mobility
sector (see for instance "inefficient Scenario" versus the "efficient Scenario" by Quaschning (2016)14)
and the total cost of a vehicle over its lifetime. To assess the economic viability of a BEVs, most
studies adopt the total cost of ownership financial model and use it to calculate the lifetime costs
of a vehicle (Velzen et al., 2019). The total cost of ownership (TCO) assessment model takes into
account all one-off and ongoing costs, as well as direct and indirect costs of an investment, which
are compared on an accrual basis (Ellram, 2002; Scorrano et al., 2020). In some studies, the TCO are
discounted to the time of acquisition. For example, Parker et al. (2021) and Santos and Rembalski

14 In the mobility sector, the study estimates an additional electricity consumption of the "inefficient Scenario" in contrast
to the "efficient Scenario" of 445TWh per year for the individual mobility sector. While the "efficient Scenario" assumes
BEV as the main technology, the "inefficient Scenario" assumes Power-to-Liquid Fuels.
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(2021) perform a TCO based analysis for different car models and find that currently BEV are close
to reaching cost parity with ICE vehicles. The price premium of the BEV in contrast to a comparable
ICE vehicle is largely due to the cost of the battery pack, which Liu et al. (2021) estimate makes up
more than 70% of the total vehicle cost. BEV have lower electricity (fuel) (up to 55%) and repair
and maintenance costs (up to 50%) compared to ICE vehicles (Harto, 2020) that can compensate
for the higher purchase price. For example, in the United States smaller vehicles with a range of
up to 320 kilometers may reach the cost parity after five years (Liu et al., 2021).

Mobility in Germany differs for urban or rural areas, means of transport, level of employment,
and age. Various studies have been conducted to measure changes in mobility behavior (see
Chapter 4). On average, a passenger car covers a distance of 14, 700 km per year in Germany. The
average daily distance is 25 km in metropolitan areas and 33.7 km in rural areas. In general, 64%
of car trips are shorter than 10 km and 95% are shorter than 50 km (Infas, 2019b). Compared to
comparable ICE vehicles, the range of BEVs is often smaller. This factor and insufficient charging
infrastructure has led to a fear by the consumer described as range anxiety, i.e., the fear of running
out of battery charge before reaching a final destination (Melliger et al., 2018; Schuller, 2013).
However, studies estimate that for inhabitants of cities such as Hamburg or in other countries, up
to 90% of trips can be achieved with a home charger and a vehicle range of 30 kWh and a range of
300 km combined with a fast charging infrastructure is sufficient to cover 99% of mobility needs
and alleviate range anxiety for most drivers (Greaves et al., 2014; Melliger et al., 2018; Vial and
Schmidt, 2019).

BEVs are becoming increasingly popular and can reduce emissions compared to conventional or
FCEVs. When comparing the energy conversion efficiency of different propulsion technologies BEVs

also have the potential to reduce the primary energy input by more than 70% when compared
to vehicles propelled by a ICE. The high electricity conversion efficiency of BEVs may lead to a
60% smaller electricity demand compared to that of FCEVs. As only a small portion of the battery
capacity is required for the daily mobility needs of individuals, the remaining battery capacity
could be charged according to the needs of the electricity system.

2.2.2 Electric vehicle charging

To implement the charging process of a BEV in the model, the real world charging process and its
characteristics and actors are described in this section.

Rechargeable batteries consist of an anode and a cathode, between which an electrolyte and a
separator are inserted. The separator isolates the two electrodes from each other and is permeable
for ions, e.g. lithium-ions. The two electrodes of the battery are connected by an external conductor.
When the battery is discharged, the ions migrate from the negative electrode (cathode) through the
ion-conducting electrolyte and separator to the positive electrode (anode), while the electrons flow
from the negative electrode to the positive electrode via the current conductor, thus generating a
discharge current (Leuthner, 2013).

Vehicles equipped with lithium-ion batteries can be recharged in several ways, which vary in
terms of charging performance or convenience. Charging technologies can be distinguished by
connection type (wired / wireless), charging speed (fast charging / regular charging), or the
possibility of charging and discharge of the battery from the grid (unidirectional / bidirectional



2.2 electric vehicles in the mobility sector 33

charging) (Falvo et al., 2014; Tan et al., 2016). The most common form of charging an EV is currently
through a wired connection in a unidirectional way.

Table 2.4: Charging modes as defined by the standard International Electrotechnical Commission (IEC)
61851 (Hanauer, 2018).

Charging Communication Current (A), voltage (V), phases

mode safety

Mode 1 16 A and 250 V AC, 1-phase

16 A and 480 V AC, 3-phase

Mode 2 ✓ 32 A and 250 V AC, 1-phase

32 A and 480 V AC, 3-phase

Mode 3 ✓ 16/32/70 A and 250 V AC, 1-phase

63 A and 480 V AC, 3-phase

Mode 4 ✓ 200/250 A and 600 V DC

200 A and 1000 V DC

The IEC describes four different charging modes in the standard IEC 61851. Table 2.4 shows the
different modes as described by the standard. In modes 1 - 3, AC is delivered to the vehicle, which
is converted through an onboard rectifier to DC, which is required to charge the battery. In mode
4, DC is provided by the charging point and is fed directly to the battery. The modes also differ
in safety features and communication. In mode 1, the vehicle connection is made directly to a
regular wall socket without additional safety features or communication between the vehicle and
the charging point. This type of connection is forbidden in most European countries (Hanauer,
2018). In modes 2 - 3, additional safety measures are required, such as an integral ground fault
interrupter and requirements related to the charging connector. For communication between the
vehicle and the charging point, the control pilot function is used. It allows the vehicle to initiate
and end the charging process. The main differences between modes 2 and 3 are that additional
safety measures and communication functions are implemented in mode 3. This allows for a
higher maximum current in comparison to mode 2 as well as more sophisticated control functions.
For mode 4 charging, another layer of safety and communication features is required. This mode
allows fast charging speeds. Different types of charging ports and charging connectors are used
depending on the charging mode (AC or DC) and geography or manufacturer (Das et al., 2020).

The specified current, voltage, and phases are equal to a certain charging power (kW) available
for charging. For mode 1 a maximum power of 13.3 kW is possible, for mode 2 26.6 kW, mode 3
66.5 kW and mode 4 300 kW. The maximum charging power is dependent on the AC/DC rectifier
of EV (Das et al., 2020). The typical maximum charging power in most European countries, which
is also reflected in the values presented in Table 2.2 are 3.7, 11, 22 kW, for AC charging and
50-200 kW for DC charging (BDEW et al., 2020). The German regulatory body considers charging
points with a capacity below 22 kW to be normal charging points, whereas those with a capacity
above 22 kW are considered fast charging points (Bundesnetzagentur, 2016a). The charging speed
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depends on several factors, such as state of charge (SoC) of the battery, losses related to the
charging process, and ambient temperature (Tomaszewska et al., 2019).

Figure 2.12 shows the charging power compared to SoC of the vehicle for fast (DC) and normal
charging (AC). As the fast charging process depends on several factors, such as battery size, battery
cooling, or voltage, it is presented for three exemplary vehicles. As can be observed, the charging
power is dependent on the SoC of the vehicle battery. In particular, the fast charging process shows
a deviation from the available charging power. For the normal charging process, the available
power mainly differs in three intervals:

• ≈ 0 to 85% SoC: 11 kW (11 kW) - 22 kW (22 kW)

• ≈ 85 to 95% SoC: 7.5 kW (11 kW) - 12 kW (22 kW)

• ≈ 95 to 100% SoC: 1.7 kW (11 kW) - 2.9 kW (22 kW)
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Figure 2.12: Charging power of DC charging for three vehicles (300 kW fast charger) and two AC on-board
chargers in relation to the battery’s SoC. Based on Montoya et al. (2017) and Schaden et al.
(2021).

To charge an electric vehicle, it needs to be connected to a charging point at a charging location
that can supply power in one of the aforementioned ways. A charging station combines one or
more charging points (Bundesnetzagentur, 2016a; Christ et al., 2015; Linnemann and Nagel, 2020).
Charging stations, charging points, charging speed, and communication between the vehicle and
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the back-end are standardized in several national and international norms; e.g., ISO 15118 is a
standard that defines bidirectional communication between EVs and charging stations (Hanauer,
2018; NPE, 2017). Charging locations can be subdivided by the location they are built and the
access to the stations. In general, a distinction is made between (Bamberg et al., 2020; NPE, 2015):

• public - with no access restriction

• semi-public – daily access times are restricted, e.g., only accessible during operating or
opening hours

• private – only accessible with the permission of the owner, e.g., family homes or company
properties.

For private charging stations, predominantly AC charging stations are installed. If the charging
capacity exceeds 4.6 kW, German grid operators stipulate a three-phase connection, in case the
capacity exceeds 12 kW, installation approval is required from the grid operator (Volkswagen AG,
2018).

Studies show that a public charging infrastructure should be widely available and is seen as
another key factor to accelerate or inhibit the diffusion of BEVs (Biresselioglu et al., 2018; Melliger
et al., 2018; Schulz and Rode, 2022). In July 2022, 44, 200 charging stations were installed in
Germany with a total capacity of 1, 258 GW (Bundesnetzagentur, 2022). A study by the German
Association of Automotive Industry (VDA) shows the distribution of publicly accessible charging
points and EVs by region. In November 2020, the Regen district in Bavaria had the highest ratio
of EV charging stations (161) per registered vehicle (298) of 1.9. The average number of vehicles
per charging point in all 500 investigated districts is 13. The highest number of EVs are registered
in Munich (15, 954) with a vehicle-to-charging-point ratio of 12.7. The city also has the highest
number of public charging points (1, 252) (VDA, 2020b). According to the European directive on
the development of alternative fuel infrastructure and according to NewMotion (2020), NPE (2018)
estimate that currently 14 vehicles should be supplied by a public AC charging point. Furthermore,
the study estimates that the number of vehicles per charging point will increase to 16.5 with
increasing vehicle battery range. For fast charging, 140 or 165 15 vehicles are projected per charging
point.

According to a survey conducted by the company NewMotion (2020) next to publicly available
charging points, most drivers also have a charging point installed at home (70%) or at work
(41%). Taking these numbers as a reference, 0.88 - 1.11 charging points are available to owners
of EVs at work or at home, while only 0.07 publicly accessible charging points per EV currently
exist in Germany (NPE, 2018). The distribution of these private or semi-public charging points
is highly dependent on the living situation of a vehicle owner. While vehicles are parked 95%
of the time, their parking location varies (Infas, 2019b). For example, about half of the residents
of metropolitan areas park on public streets. In rural areas, in contrast, this proportion drops to
about 8%, while 89% of vehicles are parked in private parking spaces (Infas, 2019a). Bamberg
et al. (2020) estimate that 80% of vehicle owners living in detached housing have access to private
parking spaces, while only 55% of apartment-house inhabitants have access to private parking.
Overall, the authors estimate a potential of 8.8 million parking spaces for households in buildings

15 With an increased vehicle battery range.
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with three apartments or more and 13 million parking spaces on properties of buildings with one
or two apartments in Germany.

Studies conducted for other countries with higher BEV penetration rates, such as the Netherlands,
calculate a ratio of 5 vehicles per charging station for public AC charging stations, a ratio of 200
vehicles per charging station for public DC fast charging stations, and 2.5 for private charging
stations (RVO, 2019). In Norway more than 55% of the vehicle fleet were EV, of which 346, 822
are BEV. In November 2021, 14, 218 AC charging stations and 5, 892 DC fast charging stations were
installed. A study conducted by the Norwegian EV Association compared the charging behavior
of owners of EVs living in detached houses and apartment buildings16. The results show that 97%
of the vehicle owners living in detached houses charge their vehicle daily or weekly at home,
while this is only the case for 64% of those living in apartment buildings. On the contrary, these
vehicle owners are more likely to charge their vehicle at public charging stations (28% versus 11%).
With a percentage of 36% for detached housing and 38% for apartment building inhabitants, both
groups charge their vehicle at their workplace (Lorentzen et al., 2017).

There are various market stakeholders involved in the construction and operation of public and
private charging infrastructure in Germany, an overview is provided in Figure 2.18. The charging
point operator (CPO) operates the charging stations and is legally responsible for them and is
considered an end consumer of electrical energy and not an electricity supplier. Service providers
or e-mobility providers (EMPs) allow customers to access charging points by providing auxiliary
services such as payment processing and authentication (Bundesnetzagentur, 2016a; Christ et al.,
2015; Linnemann and Nagel, 2020; Wolbertus et al., 2020). The boundaries between CPOs and EMPs

are not clear, and some CPOs assume both roles (Strommenger et al., 2020). The utilities and the
energy supplier enter into a contractual agreement with CPOs, regulating the required electricity
and capacity. In addition, a grid usage contract and a supplier framework contract are made
with DSO, as well as a balancing group contract with TSO. The grid operators (DSO and TSO) are
responsible for the physical delivery of the electricity to the charging point. In addition to the
contracts made with the energy supplier, the TSO enters into a grid connection contract with the
CPO (Linnemann and Nagel, 2020).

16 At the time the study was conducted, 5.11% of the vehicle fleet was made up of EVs (Norwegian Electric Vehicle
Association, 2021).
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Figure 2.13: Charging point (inner circle) and charging power (outer circle) by CPO in Germany in July
2022 (Bundesnetzagentur, 2022).

It is possible for a single company or entity to take several roles in the public charging market.
For example, a CPO can also be a utility company, a EMP, or a company that offers demand response
services (IRENA, 2019a). Figure 2.13 shows the distribution of charging points in Germany and
the charging power of publicly accessible charging points. The CPOs are classified according to the
installed charging capacity and the number of charging points. It can be observed that the highest
number of charging points and charging capacity is operated by companies owned by utilities
(EnBW, Innogy, EWE Go, Charge-On, Stromnetz Hamburg, SWM), car manufacturers (Ionity, VW),
asset management (Allego) and supermarket chains (Aldi) (Bundesnetzagentur, 2022). Some CPOs

focus on fast charging points, such as Ionity, while others such as SWM or Innogy SE operate
only regular speed charging stations. The charging points are operated by many actors, with the
largest company (EnBW) operating 6.31% of all charging points.

An important factor that influences the distribution of the charging infrastructure are the
required investment and operational expenses. The installation costs, including the connection



38 current state and future trends in the electricity and mobility sector in germany

Table 2.5: CAPEX and OPEX for a private and public charging point. Based on NPE (2015), NPM (2019), and
Volkswagen AG (2018).

Type Capacity Planning and Installation Hardware OPEX

Private AC ⩽ 22 kW e200 - 3, 000 e300 - 1, 500 e0 - 1, 000

Public
AC ⩽ 22 kW e1, 500 - 5, 000 e2, 500 - 8, 000 e0 - 1, 500

DC > 22 kW e10, 000 - 40, 000 e15, 000 - 75, 000 e900 - 3, 000

to the power grid, are presented in Table 2.5. They are highly dependent on specific conditions
(e.g., distance to the next grid connection point) or installed power capacity (Bünger et al., 2019).
While the NPM (2019) estimates costs of e2, 500 for a private charging point (22 kW), the costs
of a public charging point (22 kW) are estimated to be twice as high, while those for the fast
charging infrastructure range from e80, 000 to e127, 000. The costs of the charging infrastructure
are projected to decrease by up to 35% by 2030, with the highest decrease for public charging
points with a charging infrastructure of 22kW (NPM, 2019).

The cost of the charging infrastructure can be subdivided into CAPEX and OPEX. CAPEX include
the initial investment in hardware, installation, as well as the costs of planning and obtaining
permits. The CAPEX are dependent on the type of charging station installed. DC charging sta-
tions require a rectifier, to convert AC power to DC, resulting in 6 – 10 times higher hardware
cost. Depending on the technical limitations of the vehicle battery, DC chargers also allow a
higher charging capacity. In most cases, the installation of AC chargers does not require grid
reinforcements, while this may be necessary for DC charging stations if they are connected to the
low-voltage grid (Schroeder and Traber, 2012).

OPEX are continuous cash flows, while CAPEX are one-off expenses. To compare both expenses,
equivalent annual cost (EAC) are calculated, i.e., CAPEX are distributed over the lifetime of the
infrastructure. The EAC represent the annualized cost of purchasing and operating an asset over
its useful life. In contrast to other investment planning methods, such as the net present value
method that calculates a total profit, EAC can break down costs or profits into a single period, for
example, year, quarter, or month. Equation 2.3 shows the calculation of EAC (Sinnott and Towler,
2020).
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AF Annuity Factor K0 (Net) present value r interest rate / cost of capital

D Debt N Number of periods/ life-time rd Cost of debt

E Equity t Corporate tax rate re Cost of equity

EAC = K0 ·AF(N; r) (2.3)

To calculate the annuity, the (net) present value (K0) is multiplied by the annuity factor AF (see
Equation 2.4). This financial factor converts a fixed present value into a series of equal payments
over a limited period of time, considering interim interest rates. The annuity factor is also called
the recovery factor or capital recovery factor and is the reciprocal factor of the present value factor.

AF(N;p; r) =
1

V(N; r)
=

r

1− q−N
(2.4)

The cost of capital r depends on the type of financing. For example, the cost of equity (re), the
cost of dept (rd) or a combination of both e.g., weighted average cost of capital (WACC) can be
considered. The WACC considers the cost of equity and debt financing of a firm and its weighted
average ratio (Noosten, 2018). For the calculation of annualized expenses, a value of 6% is used,
similar to the one published by EnBW (2019).

rWACC = re ·
E

E+D
+ rd ·

D

E+D
· (1− t) (2.5)

Figure 2.14 presents an overview of annualized expenses for different configurations of the
charging infrastructure. In the literature, the expenses of private charging points are reported to
be 6 - 7 times lower for residential charging stations that are not exposed to the elements and do
not require a dedicated payment than charging infrastructure installed in the public space. The
CAPEX also include the cost of installation and network connection cost and indirect costs such as
planning and registration or the cost of permits.

The OPEX include the operating and maintenance expenses of charging stations, as well as the
cost of data and network contracts. Studies estimate that the annual maintenance and repair cost
of the public charging infrastructure accounts for 9 - 10% of the initial infrastructure investments
(Schroeder and Traber, 2012).
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Figure 2.14: Overview of the annualized CAPEX and OPEX for charging infrastructure by location and
capacity. Calculation based on Bruckmüller (2020), Bünger et al. (2019), Funke (2018), and
NPE (2018).

In a study by Nelder and Rogers (2019), the authors investigated which measures and compo-
nents have the greatest potential for cost reduction. They find that generally most cost savings are
possible through consolidation of charging points, e.g., by building more charging points in one
location, installation cost, and CAPEX can be distributed over a larger number of charging points.
Furthermore, the authors also see managed charging as a potential to offset costs.

An important factor to consider when installing the charging infrastructure are emissions. As
has been highlighted, the overall goal of the German legislature and the international community
is to move to a carbon-neutral energy system. Although the charging infrastructure also has an
environmental impact, only few studies have considered the environmental impact of different
configurations of the charging infrastructure17 (Kabus et al., 2020; Marmiroli et al., 2019; Nansai
et al., 2001; Rangaraju et al., 2015; Zhang et al., 2018). Zhang et al. (2018) calculate the CO2e

emissions for Belgian conductive 3.7kW – 50kW charging stations using the ReCipe impact
assessment methodology. The functional unit is “one kilowatt-hour (1 kWh) of electricity delivered
to the battery”. In the manufacturing phase of the (3.7kW – 22kW) charging stations, less than
0.02kg CO2e is emitted for each kWh delivered over the lifetime of the infrastructure. The main
emissions can be attributed to the charging pole and rectifier. For fast charging stations with a

17 e.g., battery supported stations or inductive charging infrastructure
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power rate of 50 kW the authors calculate minimal emissions of 0.1 kgCO2e for each kWh charged
over the lifetime. Both of these values include the on-board charger which contributes about 50%
of the emissions that can be attributed to the production phase. No study could be found that
conducts a full LCA that also includes the installation and construction process.

To evaluate the financial performance of different charging station networks, annualized costs
are an important indicator. Specifically, studies show that for charging stations with a charging
capacity of 11kW and 22kW, profitability is difficult to achieve and new business models and
use cases are necessary. In addition to the annualized OPEX and CAPEX mentioned above, the cost
of electricity procurement also need to be considered in a complete analysis. The prices of the
EEX, varied between -0.06 and 0.1 e/kWh in 2019. If fluctuations in electricity prices are exploited,
they can provide an opportunity to increase the profitability of charging stations for CPOs. On the
same note, when comparing the emissions attributed with the charging infrastructure (0.1 kg CO2e

/kWh) and the average CO2e emissions of the German grid electricity, the emissions 405 kg/MWh
as well as the large deviation between emissions of electricity generators (11kgCO2e/MWh -
900 kgCO2e/MWh) it is apparent that emissions can be significantly reduced by taking advantage
of hours with a high penetration of renewables even at the cost of necessitating a greater expansion
of the charging network, than to satisfy charging demand or maximize profits.

2.2.3 Charging station planning and effects of electric vehicle charging

The goal of the German Federal Government is to install one million publicly available charging
points by 2030. Through the Federal Ministry of Transport and Digital Infrastructure and several
tools based on geographic information system (GIS), such as the Standorttool or the Flächentool, the
German government supports the planning and development of the future charging infrastructure
in Germany. The Standorttool calculates and visualizes how the charging demand could evolve at
the local level until 2030, while Flächentool supports DSOs in finding sites to locate a new charging
infrastructure. Figure 2.15 shows the calculation and visualization of a specific scenario in 2030
for the city of Essen. To identify suitable locations for demand estimation, the model considers
socio-economic, demographic, traffic flows, and vehicle market information. (Nationale Leitstelle
Ladeinfrastruktur, 2021).
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Figure 2.15: Charging demand for the city of Essen and year 2030 as estimated by the Standorttool. Based
on (Ingenieurgruppe IVV, 2021).

Several factors have an impact on the type, location, and accessibility of charging stations. A
study conducted by NPE (2015) predicts that 60% to 85% of the charging processes will take place
at private charging stations and 15% to 40% at public stations, in the first few years of the market
development of EVs. The VDA (2022) sees an increase in the importance of public charging points
as the market penetration of EVs increases and estimates a ratio of private to public charging
infrastructure of 60% to 70% (private) to 30% to 40% (public).

The impact of increased adoption of EVs and their charging pattern can impact the electricity
system on multiple levels. For each additional BEV, it is projected that the annual electricity
demand will increase by 2.4 to 3.09MWh (Bermejo et al., 2021; Kühnbach et al., 2020). This leads
to an increase in the electricity demand of 108TWh - 139TWh (assuming 42 million BEVs in
Germany). As up to 90% of trips can be achieved with a home charger (Greaves et al., 2014; Vial
and Schmidt, 2019), most studies estimate that charging peaks will occur in the evening hours.
Without any incentive, vehicle owners are more likely to plug in their vehicle and immediately
start charging after the last trip of the day, for most full-time employees, when arriving home
after work (Cenex, 2021; Foley et al., 2013). For example, a study conducted for the United States
estimates that the peak demand for electricity would increase by 19% with a penetration rate BEV

of 25% (Chitkara et al., 2016). Bermejo et al. (2021) estimate that peak load (at approximately 7:00
p.m.) in the winter month would increase by 4.7% (80.4 GW to 84.21 GW) for 8 million vehicles in
case vehicle charging is not managed. In their calculation, they expect more than 70% of charges
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during peak times to occur at home. In uncontrolled charging of 4 million vehicles Kühnbach et al.
(2020) calculate a peak load increase of 1.3 GW.
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Figure 2.16: Estimation of additional electricity demand due to 10 million and 20 mil. BEVs charging
(Muratori, 2018; Muratori et al., 2013).

Figure 2.16 shows the effect of charging 10 million and 20 million BEVs taking into account
the mix of renewable energy targeted in EEG 2021 for the year 2030 (see 2.1.4). The charging
data is based on 200 uncontrolled charging profiles (Muratori, 2018; Muratori et al., 2013) and
an electricity requirement of 2.66MWh per vehicle and year. Throughout the year, the electricity
demand of the entire fleet of 10 and 20 million vehicles increases the total electricity demand
by 26.6 and 53.2TWh, an increase of 4.6% and 9.4% compared to the 2019 electricity demand.
Demand is increased in the late evening hours creating additional demand during times when
electricity generation is low. Controlled charging of BEVs could alleviate this discrepancy by
charging vehicles during times of electricity surplus.
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The effect of increased charging of BEV was investigated for different levels of the power grid.
The study by Staudt et al. (2018a) investigates the effect of uncontrolled charging of 2 - 8 million
EVs on transmission grid congestion in a German electricity system with 70% renewable generation
capacity. Their model predicts that the German transmission grid will not be able to support
six million EVs without grid enforcement measures that exceed those proposed by the German
government. For the effect of EVs on the distribution network, the meta-analysis conducted by
Vennegeerts et al. (2018) highlights that due to the network reinforcement measures required by
the increased penetration of renewable power generators in the distribution network, most studies
consider the limited expansion of charging stations for EVs unproblematic, and only in cases with
high penetration rates of charging stations problems may occur (Vennegeerts et al., 2018). An
important factor is the simultaneity of charging activities. In their study Kühnbach et al. (2020)
assume a maximum simultaneity of charging activities of 75% for an EV diffusion of 5% and below
40% for an EV diffusion greater than 20%. Other studies have also found that the simultaneity of
charging activities can decrease due to diversification effects, when vehicle diffusion rates are
higher (Rehtanz et al., 2017). However, in the case of high simultaneity, charging EVs can increase
the stress on the distribution grid, e.g., due to transformer or power line overloads or voltage
band violations (Gómez and Morcos, 2003; Maier et al., 2019; Masoum et al., 2011; Paul et al.,
2017; Pieltain Fernandez et al., 2011). These effects may require grid reinforcement measures,
which can lead to additional costs. For example, Kühnbach et al. (2020) calculate the costs of grid
reinforcement measures in the distribution grid induced by uncontrolled charging. In their study,
these range from e1, 800 per vehicle with high EV distribution rates (30%) to e10, 900 per vehicle
for low EV distribution rates (5%). Relative costs decrease with increasing vehicle penetration rates
due to fewer simultaneous charging sessions.

2.3 smart energy systems

To increase storage and flexibility, smart energy systems are proposed. The term smart energy
(system) is used to describe a holistic and joint approach to planning and optimizing energy
systems (Lund et al., 2017, 2014). The German government has been encouraging the transition to
a smart energy system through legislation (Gesetz zur Digitalisierung der Energiewende (GDEW))
and through a specialized road map (BMWi, 2018) Among the goals are the reduction of the
overall energy consumption, increasing energy efficiency in all sectors, and the development
towards an integrated energy system. (BMWi, 2017). To achieve these goals, various integrations
such as power-to-heat, power-to-gas, or power-to-transport have been proposed (Dena, 2018;
Wietschel et al., 2018).

An important factor in the electricity sector is demand side management (DSM). DSM refers to
the planning, implementation, and management of measures to influence energy consumption to
reduce primary energy consumption or peak loads (Arteconi and Bruninx, 2018; Gellings, 1985;
Strbac, 2008). In the electricity system, the hourly, daily, or seasonal electricity demand known as
load can be altered using various strategies and to achieve different objectives (Gellings, 1985).
Figure 2.17 illustrates four demand response strategies: peak clipping, valley filling, load shifting,
and flexible load shaping.
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Figure 2.17: Load management and demand response strategies in demand side management (Gellings,
1985; Lampropoulos et al., 2013).

Peak clipping is employed to reduce peak loads. It is achieved by cutting off the power of certain
non-essential equipment (Dharani et al., 2021). If additional consumption is added during low
demand times, without the power being decreased at other times of the day, this strategy is
referred to as valley filling. If energy-related activities are not bound to a specific schedule and can
be performed at another time throughout the day, these loads can be shifted from periods of high
demand to periods of low demand (load shifting). Flexible load shaping refers to loads that can be
fully modified (are fully flexible), sometimes within certain constraints. In addition to these four
load management strategies, which are often referred to as demand response and are applied on
a second or hourly basis, there are two long-term or permanent strategies (Lampropoulos et al.,
2013; Palensky and Dietrich, 2011). Strategic growth or electrification refers to an overall increased
load, for example, through electrification, e.g., replacing an ICE vehicle with a BEV. Energy efficiency
leads to a long-term reduction in electricity demand while retaining the same quality of service,
for example, through the installation of efficient lighting (Arnold and Janssen, 2016; Gellings,
1985, 2017). Unlike peak clipping and valley filling, which only have a short-term effect, these
measures are implemented to achieve long-term or permanent changes in demand. Burre et al.
(2020) provide a delimitation between electricity storage and DSM. In contrast to electricity storage,
DSM modifies the operation or functionality within processes or replaces them altogether to shift,
increase, or decrease loads.

The power generation capacity must be able to meet the maximum demand (Strbac, 2008). In
a system based on renewable power generators, energy storage and DSM play an integral role.
Through DSM peak power demand can be decreased or shifted and requires only small to no
investment. Overall studies highlight that DSM has the potential to decrease CO2 emissions and
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overall system costs (O’Connell et al., 2014; Palensky and Dietrich, 2011; Sterner et al., 2015;
Summerbell et al., 2017).

2.3.1 Smart charging actors and implementation

Demand response activities involving the charging and discharge process of an EV can be described
by the term smart charging. Smart charging describes the direct or indirect adaptation of the
charging behavior to the impulses of the power system, while respecting the needs and preferences
of the vehicle user (Paschero et al., 2013). Controlled and bidirectional charging and discharge
with load control, also called vehicle-to-everything (V2X), are distinguished. V2X can be further
differentiated, for instance, in vehicle-to-grid (V2G) or vehicle-to-building (V2B). In V2B or vehicle-
to-home, the EV battery is used to increase the self-consumption of locally generated power or
to increase the autarky of a home or building (Borge-Diez et al., 2021). In this behind-the-meter
optimization, there is no interaction with the grid as in V2G, where the EVs battery is used, e.g., by
DSO or TSO to provide ancillary services (Gschwendtner et al., 2021; Kempton and Tomić, 2005;
Nanaki, 2021).

Figure 2.18 shows an overview of the possible actors that could participate in smart charging.
The possible benefits of the implementation of smart charging are highlighted at the bottom of
the figure. Depending on the type of service, types of regulation, and horizontal integration, not
all of the mentioned actors need to be involved, or they can take several roles in the market (e.g.,
see Figure 2.13).

When selling electricity in forward markets, the time lag between bid and actual contract
fulfillment included delivery may be substantial. For energy generators that rely on volatile
primary energy sources, an electricity generation forecast is used to estimate marketable electricity.
Prediction models are only accurate to a certain extent, and accuracy decreases with the forecast
horizon (Castillejo-Cuberos et al., 2021; Hanifi et al., 2020), making corrections necessary on the
intraday market. In such cases, the flexibility offered by EVs to consume or deliver electricity
back to the grid can be valuable in balancing their portfolio (Al-Awami and Sortomme, 2012).
Grid operators (DSO and TSO) are mainly interested in stable grid operation. EVs can help with
this task by providing ancillary services e.g., frequency control, balancing energy or sheddable
load (Castillejo-Cuberos et al., 2021). Particularly, due to the new obligations of the DSO within
Redispatch 2.0, there may be increased interest in controllable loads. At the level of the utility
or the balancing group operator, EVs also present an important flexibility to avoid balancing
energy. For the participation of the end customer, V2X measures can be incentivized through their
ecological benefits and economic incentives (Delmonte et al., 2020). An overview of the value
created by smart charging for the consumer, the system operator and the aggregator is provided
by Heilmann and Friedl (2021) and Sovacool et al. (2018). In the simplest case, the charging
process of an EV can be optimized to maximize the self-consumption of locally generated power,
reducing electricity costs and increasing the share of renewable electricity utilized (Fachrizal and
Munkhammar, 2020). Through the participation in V2G measures, the EV owner is remunerated,
which can lead to a reduction in the TCO.

In addition to these actors that are directly involved in the provision or procurement of electricity
or flexibility, the aggregator or EMP aggregates data, information, and commitments of different
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Figure 2.18: Overview of actors involved in smart charging.

entities to enable or facilitate participation in V2G services. While the EMP is responsible for
handling the mobility needs of the end user, the aggregator can act as an intermediary between
the electricity sector and the mobility sector. As an intermediary, the aggregator aggregates power
capacities and markets them. Depending on local regulation and responsibilities, different entities
can assume the role of an aggregator, such as an electric distribution company or an automobile
manufacturer. For example, a capacity of 1 - 2MW could be available to participate in the energy
markets if 500 vehicles are aggregated (IRENA, 2019a; Kempton et al., 2001). In most cases, the
CPO of a private charging point is also the end user, however, in the case of public charging
infrastructure, the CPO needs to provide the appropriate technology and incentives to enable
smart charging. Depending on the depth of integration, the incentive to do so may be driven by
their roles in the energy market (e.g., see the overview of the market participants in Figure 2.18).

The adaptation of vehicle-to-grid measures and the flexibility offered by an EV depend on
several factors, such as user behavior, time of day, technology, or regulation (IRENA, 2019e).
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Demand response programs can be classified into market (non-dispatchable) and reliability
(dispatchable) programs (Amin et al., 2020; Jabir et al., 2018; Palensky and Dietrich, 2011). In
market-based programs, the user manages participation and indirect load control is achieved
through price-based incentives, for example, dynamic prices (Badtke-Berkow et al., 2015; McKenna
and Thomson, 2014; Schweppe et al., 1988). Examples of such tariffs are illustrated in Figure 2.19
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(Gellings, 1985; Lampropoulos et al., 2013).
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Time-of-use prices vary throughout the day but remain fixed day-to-day. By providing the
customer with a static time-based but daily price, e.g., reduced prices during the midday or at
night, customers are encouraged to shift charging activities (Chunlin et al., 2018). This pricing
strategy has the advantage of being easily implementable without the requirement of direct
control of the vehicle battery. The disadvantage is that this implementation is still inflexible and
cannot react to dynamic changes in electricity generation; moreover, if all customers face the
same tariff structure, this can cause temporal or geographic "rebound charging peaks" through
the synchronous engagement of incentivized charging (Muratori and Rizzoni, 2016). A similar
mechanism is critical peak pricing, with the difference that this tariff structure also reacts to price
changes due to critical demand or generation events (e.g., dark doldrums) by increasing electricity
costs during these events or compensating customers for reducing their consumption (critical
peak rebate). Real-time prices reflect the actual situation in the energy market and change at short
intervals of 15 minutes or 1 hour.

As electricity consumption is often limited to certain processes or activities and market prices
may not fully represent the current grid load situation, reliability-based programs exist. Reliability-
based programs aim to alleviate system emergencies or contingencies through contractual or
voluntary programs, e.g., through ancillary services (Callaway and Hiskens, 2011). In contrast to
market-based programs, incentives do not correspond to the real-time market situation; instead,
the customer is remunerated on a yearly basis for a certain staked controllable power. Different
agreements determine the obligations of the participating customer. For example, in direct load
control programs, the system operator is in full control of some parts of the customers’ load, while
in interruptable or curtailable load programs, the customer retains control over their equipment
and responds to curtailment requests manually. The customer receives a remuneration based on
the curtailable power provided or is penalized if they do not meet the requirements stipulated in
the contract (Arteconi and Bruninx, 2018; Ribó-Pérez et al., 2021; York and Kushler, 2005).

The integral part of all smart charging measures is the vehicle operator or the end user. The
load-shift mechanisms illustrated in Figure 2.17 can be encouraged using different incentives and
mechanisms. Delmonte et al. (2020) present the results of a study conducted with BEV owners
in Great Britain on charging preferences. The results indicate that significant savings (up to 30
to 50% of the total charging cost) are necessary for some vehicle owners to participate in smart
charging activities. For supplier-controlled charging, trust is an important factor. Past surveys
and studies have found that vehicle owners may be deterred by the fear that their vehicle may be
charged insufficiently, for instance, to carry out unforeseen or emergency journeys. Other concerns
are associated with battery degradation due to participation in smart charging programs (Bailey
and Axsen, 2015; Cenex, 2021; Delmonte et al., 2020). Other studies on general demand-response
measures indicate that the behavior of an individual often does not coincide with economic
models and may be motivated by other intrinsic factors (Allcott, 2011; Thorsnes et al., 2012). As
noted in Sovacool et al. (2018), previous studies have focused on the technical dimensions of
V2G, while topics such as environmental performance, financing, and business models have been
mostly neglected. Schuller and Hoeffer (2014) for instance show that the mobility profile and
availability of charging points can have a significant impact on the renewable electricity charged.
Their analysis shows that for some individuals, the share of wind energy charged can be more
than doubled if smart charging.
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Practical implementations and studies of smart charging show that there are several obstacles
to implement smart charging. Optimization models can help overcome these obstacles in two
ways. First, if concerns such as a minimum available range in each vehicle or capacity constraints
of the local grid are considered in optimization models, e.g. using constraints, the likelihood of
their occurrence can be reduced. For example, in optimization models that support the strategic
objective of expanding the charging infrastructure, the state of charge of the vehicle battery can be
explicitly considered. Second, by applying optimization models in case studies and analyzing the
results obtained, it is possible to assess the probability that unwanted effects occur, which may
reduce fears of participating in smart charging programs.

2.3.2 Benefits of smart charging

The benefits of smart charging can be assessed using a variety of indicators and modeled using
different methods. A comprehensive review of recent studies is provided by Heilmann and
Friedl (2021). In their review article, the authors analyzed smart charging strategies from several
perspectives and aimed to measure the effect of aspects such as charging power, vehicle technology,
or the type of service provided on revenue and net revenue. The summary of the studies does
not show a clear indication of the attainable economic benefits. Studies report a wide range
(e0 to e4, 090 vehicle revenues) that can be obtained by BEVs participating in energy trading or
secondary frequency control (e23 to e4, 140). These large variations are dependent on various
factors; however, using a multivariate ordinary least squares model, the authors find that the
charging capacity (controlled charging or V2G) and the charging power have the greatest impact
on net revenue.

Most studies have reduced their scope to a certain geographic region, as the corresponding
markets and regulations vary and can also have an impact on possible technologies and attainable
revenue and net revenue. A case study conducted by Taljegard et al. (2019) for the Scandinavian-
German region, for different energy system configurations, investigates the impact of two charging
strategies (controlled charging and V2G) of EVs on peak power. Compared to the case without
integration of BEVs, optimized charging has the potential to decrease the required peak power
capacity by 21%-59% and up to 100% for V2G. A simulation of the German market by Schuller
et al. (2014) shows that for people working full time and, compared to a non-optimized charging
strategy, electricity procurement costs can be reduced by 32% through controlled charging and
44.8% through V2G measures. As noted by O’Connell et al. (2014), demand response revenues
depend on the structure of the electricity price, that is, the ratio between fixed price components
such as taxes and levies unaffected by demand response and volatile price components that can
be reduced through demand response measures. In Germany, more than 50% of electricity costs of
residential customers can be attributed to taxes and duties that cannot be reduced by participating
in smart charging programs (see Figure 2.4). Thus only lower relative savings can be achieved
compared to other countries with different electric price structures. This must be contrasted
with the additional costs that arise from a V2G charging point. In the Cenex (2021) project, costs
of approximately e4, 300 for hardware and installation of a V2G charge point were incurred.
The authors estimate that these costs could decrease to e1, 300 through mass production of the
required hardware. In the study by Jargstorf and Wickert (2013), controlled charging was used
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to intelligently charge a fleet of up to 16, 000 vehicles to provide a secondary downward reserve
for frequency control. The study highlights the difficulty faced by an aggregator in achieving a
constant and reliable load, in participating in the balancing markets, since the number of vehicles
simulated had to be increased from 10, 000 to 16, 000 vehicles to meet the minimum requirement
of 1MW. The resulting income per car and month was between e0.84 and 3.3 with a maximum
capacity price of 1000 e/MW and an off-peak of 4000 e/MW. The study by Rücker et al. (2020)
investigates two forms of services; first, different forms of V2X "behind the meter18" services and
their effect on the self-consumption rate of locally generated electricity and the resulting reduction
in the cost of electricity, and secondly, participation of the vehicle in the automatic frequency
restoration reserve. Customers achieved an electricity cost reduction of 4.9%–17.6% (controlled
charging), 13.8% –26.1% (V2G), 26.4%-27.2% (V2B). In a study conducted by Kühnbach et al. (2020),
their calculations indicate that up to e10, 900 of the cost of grid reinforcement costs per vehicle
could be saved by smart charging measures, leading to a decrease in residential electricity costs of
up to 3.7%, compared to the case without BEVs.

Several practical projects have been started to test smart charging, in different configurations
(Cenex, 2020; IRENA, 2019e). The projects ChargeForward and ChargeForward 2.0 were carried out
by BMW with 400 households in the San Francisco Bay Area. The purpose of the program was the
real-world implementation of smart charging and the evaluation of several use cases (Kaluza et al.,
2017; Spencer et al., 2021). The use cases offered different incentives and times for EV users to
participate in charging events. The results of the primary study showed that EV users are willing
to participate in charging programs to increase the share of electricity charged that was generated
from renewable sources. However, to participate in charging programs during the day (9 a.m.- 4
p.m.), most participants indicate the need for monetary incentives. Furthermore, the authors state
that to optimize charging of vehicles parked away from home, the availability of the charging
infrastructure is a key factor that should be assessed in future studies. In one project use case,
incentives for participants to plug in their EVs were increased. This led to 46% more plugins in
general and 38% increases in plugins at home, compared to the baseline case without increased
incentives (Spencer et al., 2021). The project Sciurus was carried out in the United Kingdom with
320 V2G chargers installed and three types of services, namely, tariff optimization and two forms
of grid services; Firm Frequency Response (primary control or secondary control) and dynamic
containment (primary control) (Hollinger et al., 2018). The average required charge of electricity
per vehicle was equivalent to 2, 402 kWh / a and the vehicles were on average available 71% of the
time to participate in the aforementioned services. On average, participants were able to generate
£120 (e140.5)-£725 (e850.5) providing the various services. The lowest value was earned through
controlled charging and the highest was achieved by providing dynamic containment through
V2G.

Although smart charging of EVs is already possible with the technology available today, see,
e.g., the implementation in the ChargeForward project, there are still significant obstacles to achieve
market integration. For example, the configuration of the energy markets and the minimum energy
requirements e.g., 1MW(h) are an obstacle that requires a significant number of vehicles (500 -
1, 000). New technological standards are needed to implement even the simplest form of smart

18 Behind the meter refers to the processes which occur behind the utility meter of individuals or organizations with the
aim of reducing the electricity bill. For example, a customer might install a rooftop photovoltaic system to reduce the
electricity purchased from the grid (Sioshansi, 2020).
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charging. Grid services could be remunerated through a reduced network surcharge, as according
to §14a EnWG network operators have the option to charge a reduced grid fee to controllable
load suppliers and end consumers if a separate metering point is available. The law explicitly
highlights that EVs are considered controllable load suppliers (Strommenger et al., 2020).

2.4 summary

This chapter presents an overview of the current state of the energy system and the mobility sector,
as well as the interaction of both sectors. It shows that today, the integration of EVs with the power
system can be sensible from several viewpoints. For example, by simultaneously planning and
integrating both sectors, it is possible to use generated electricity and existing (grid) infrastructure
more efficiently. Driven by the expansion targets of renewable energy generation, the volatility
of electricity generation will increase. This circumstance requires additional storage capacities
in the power system and flexible power consumers. EVs have a high power consumption and
charging power and, therefore, represent an important flexible actor in the power system that can
be harnessed by integrating planning in the power and mobility sectors.

However, several innovations and adaptations are needed to accelerate the integration of both
sectors and use them on a large scale. The results of previous studies and practical tests show that
intelligent and controlled charging of EVs is particularly promising. To implement these solutions,
existing actors (TSOs and DSOs and energy suppliers) must cooperate with new players CPOs and
EMPs. The vehicle driver/user also plays a critical role. Surveys show that uncertainty is a decisive
factor for vehicle owners to refrain from participating in innovative charging programs. When this
is taken into account in optimization models, this uncertainty can be minimized. Furthermore,
the application of controlled charging of EVs in model studies and simulations can quantify the
effects of controlled charging to broaden the information base for users and reduce uncertainties.

From today’s viewpoint, especially operators of normal charging stations ( ⩽ 22 kW) have a
hard time making profits. Price pressure requires the development of new business models to
increase profitability. The location of the charging stations can be another important factor, as
they directly influence the charged energy. At the same time, locations also influence the charging
behavior of EVs and can thus promote or hinder the possibility of controlled charging. To estimate
this trade-off, an optimization model is developed and presented in the following chapter. The
model considers both variable charging costs and infrastructure costs. It can provide important
information to utilities, charging site operators, and vehicle users to accelerate the application of
controlled charging in practice.



3 S I M U LTA N E O U S O P T I M I Z AT I O N O F T H E
P L A C E M E N T O F C H A R G I N G S TAT I O N S A N D T H E
C H A R G I N G O F E L E C T R I C V E H I C L E S

The ongoing changes in electricity generation towards renewable energy and in electricity demand
caused by the increasing electrification in all sectors call for flexible electricity consumption and
integrated energy system planning (Helgeson and Peter, 2020). Practical smart charging trials have
shown that smart charging can have a significant effect on electricity demand and can provide
several levels of grid services depending on the depth of integration of BEVs and the grid. In
such practical trials of these measures, a critical number of vehicles are required to examine
certain business models and to quantify their contribution to DSM. The low diffusion of EVs

may impede the evaluations of business models. Likewise, high cost, low user adoption rates
or technological readiness may also obstruct trials of technological innovations. Synthetic data
generated using simulation models can help to model changes in the electricity and mobility
sector. Operations research and the application of optimization models can support strategic and
operational decision-making. Applying optimization to model business models on the basis of
synthetically generated data, can be a powerful tool in the assessment of innovations. Simulation
models can be used for generating synthetic mobility profiles, while optimization models allow a
quick adaptation of parameters and can support strategic decision-making in light of the imminent
changes to the decision problem, e.g., changing mobility behaviour of individuals.

In this section, an optimization model that simultaneously optimizes the placement of charging
stations and the charging of EVs is presented. As shown in Figure 2.18, several stakeholders, with
sometimes contradicting goals, are involved in the placement of charging stations, their operation
and utilization. To represent the decision problem and impact of the individual stakeholders
behavior in an integrated energy system model, taking into account the interconnection between
sectors, the following model prerequisites should be met:

Consideration of fixed and variable cost components and revenues.
When selecting a charging location that maximizes profit from a set of possible locations, e.g., as

a charging point operator, the consideration of costs and revenues is indispensable. While one-off
costs can differ, depending on the location of the charging point or installed technology, revenues
are obtained through selling electricity and depend on various factors such as the utilization
of a charging point or the profit contingent on procured electricity. To assess the impact of the
placement of charging infrastructure on the overall charging pattern and vice versa, both fixed
and variable cost as well as revenue components should be represented in the model and establish
a connection between the changes in the electricity sector and the decisions of the individual
stakeholders in the mobility sector.

53
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Geographic and temporal representation of the mobility behavior.
The mobility behavior of individuals influences the location of BEVs and the required charging

energy throughout the day. It therefore influences both the decision of station placement and
scheduling of charging activities. To determine the ability of charging station configurations to
meet the charging requirements of a vehicle, a geographic and temporal representation of charging
behavior is modeled. While for the placement of fast charging infrastructure the consideration of
individual mobility profiles may not be necessary or possible, as the trips are not recurring it is
relevant for placing normal charging stations for day-to-day charging, as the individual activities
remain mostly similar over time.

Consideration of technical factors relating to vehicle and charging behavior.
For a model to incorporate real world data and for the results to be applicable to real-world

planning situations, certain technical factors related to the representation of a charging infras-
tructure and charging process need to be considered. While technical factors such as the exact
representation of the battery state-of-charge can be approximated without having a significant
impact on the model results, other factors such as the assignment of one charging point to one
vehicle are important to consider, as they can have a more significant impact on the results of the
model.

The modeling of a representative planning horizon and number of vehicles.
As the energy generation and consumption is dependent on temporal factors, the costs of

electricity procurement or its availability may differ throughout the year. For instance, in Germany,
more electricity is generated from photovoltaic in the summer while more electricity is generated
from wind in the winter. To consider this variability, the model should consider a time-horizon
that incorporates these seasonal effects. Moreover, certain effects, such as the sharing of charging
points by several vehicles may, only occur with a large enough vehicle base. Therefore, the number
of vehicles represented by the model should be large enough to consider these effects. In previous
studies, 500 to 1000 vehicles were considered sufficient to capture these effects (IRENA, 2019a;
Kempton et al., 2001; Strommenger et al., 2020).

While some of these prerequisites have been addressed in different areas of scientific literature,
a consideration in a single model does not exist to the knowledge of the author. Although tools
to support the planning and development of charging infrastructure such as the Standorttool
(Ingenieurgruppe IVV, 2021) can represent spatially distributed electricity consumption of EVs,
they rarely incorporate future developments in the electricity system, changes in the mobility
behavior or a combination of both of these factors. However, when planning the distribution
of charging stations and the controlled charging of EVs, the expected mobility behavior and the
changing electricity generation in the short and long term must be taken into account. Two distinct
literature streams in the field of Operations Research have addressed the problem of charging
EVs and the placement of charging stations. Thus, the coordination of the charging process of
EVs and planning the layout of the charging infrastructure have been addressed using different
methods and regarding different objectives. Currently, these objectives are addressed by two
different problem formulations, the charging station placement problem and electric vehicle
charge scheduling problem. In the following section a review of the current state of applied
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methods and implementations is presented. Following this overview, a model for the concurrent
charging station placement and EV charging that satisfies the above defined prerequisites is
presented.

3.1 the charging station placement problem (cspp)

Generally, location science deals with the question of where to place an object in a given space to
minimize or maximize a criterion or a number of criteria. A general distinction between discrete,
network or continuous location models is often made (Laporte et al., 2019). Location problems are
especially prevalent within the area of production and supply chain management, for instance, to
determine the location of production facilities, retail branches or warehouses (Chopra and Meindl,
2013).

The aim of the charging station placement problem is the siting and sizing of charging stations,
while minimizing or maximizing an objective e.g., minimizing the total distance of all vehicles to
the nearest charging station or maximizing the flow i.e., number of vehicles passing by a station
(Deb et al., 2021; Hodgson, 1990; Lam et al., 2014). The literature can be categorized in a number
of different ways, e.g., by means of the employed solution methods or objectives of the decision
problem (Arora and Barak, 2009; Deb et al., 2021, 2018b; Islam et al., 2015; Karakitsiou et al., 2018;
Pagany et al., 2019). Most studies differentiate among node and flow-based approaches. This
classification can also be found in related infrastructure placement problems e.g., for (alternative)
refueling stations or for optimizing the placement of other public infrastructure such as police
stations (Honma and Kuby, 2019).

Figure 3.1 shows a comparison of the node and flow-based approach. In the flow-based
approach, paths or flows are modeled between nodes. In Figure 3.1 the thickness of transport
network lines represents flow weight and the arcs of the transport network. Nodes represent
sources (O) and sinks (D) of flows, while a travel activity can cross several nodes. The goal of the
flow-based approach is to maximize the flows captured by a node. Most models are based on
the flow-capturing location model originally described by Hodgson (1990). In the application of
this approach to the charging station placement problem (CSPP), charging stations are placed at
the nodes that maximize the captured flows, while considering a given set of constraints (Deb
et al., 2018b; Kim and Kuby, 2012). The approach assumes that the utilization of charging stations
is determined by the vehicle flows passing a node. As is the case for traditional ICE-vehicles,
the charging procedure is seen as a planned refueling stop. The approach has been applied to
planning fast-charging infrastructure, for instance, along expressways usually utilized for long
distance travel (Chung and Kwon, 2015; Jochem et al., 2019; Wang et al., 2021a). Other flow-
based approaches deviate from the flow maximization objective and consider the flows implicitly
through corresponding constraints, e.g., Wang and Lin (2009) minimize the total costs for building
charging stations under the conditions that all vehicles can be refueled to meet their mobility
requirements. Other variants of the problem cover the possibility of drivers to make detours
(Li and Huang, 2014) or explicitly consider the long-term, dynamic and uncertain nature of the
infrastructure planning problem and involved actors (Chung and Kwon, 2015; Li et al., 2016; Vries
and Duijzer, 2017). In comparison to other refueling placement models, the range of the vehicle is
more relevant for EVs. This aspect is therefore modeled and considered in constraints in order
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to generate feasible travel profiles (Alhazmi et al., 2017; Hess et al., 2012). A prerequisite for the
application of flow-based models are detailed mobility, travel and transport patterns that are often
obtained through vehicle tracking systems (Cai et al., 2014; Csiszár et al., 2019; Deb et al., 2018b).

Node basedFlow based

O

D

Charging Location Transport Network Node

Figure 3.1: Illustration of the flow- and node-based approach of the CSPP.

In the node-based approaches, the CSPP is modeled as a facility location problem (Daskin, 2008)
where charging demand is represented by nodes and charging stations are placed in order to
satisfy charging demand (Galadima et al., 2019; Honma and Kuby, 2019). In this application the
demand at the nodes is usually predetermined, for instance, using geospatial or user survey
data (Frade et al., 2011; Ko et al., 2017; Niels et al., 2019). In Figure 3.1 the size of the nodes
represents the demand at a node (Baouche et al., 2014). This representation of the problem is
based on the p-median problem, and charging locations are placed to minimize or maximize a
predefined objective e.g., minimizing the weighted euclidean distance of the demand (nodes) to
the charging locations (Upchurch and Kuby, 2010). Other approaches are based on maximum
covering or the p-center problem (Karakitsiou et al., 2018). These approaches allow the selection
among different potential charging locations or can be applied to support the search for possible
charging locations.

The objectives of node-based approaches are diverse and they are utilized to support the
placement of normal and fast charging stations. For instance, Bouguerra and Bhar Layeb (2019)
present a set covering problem that aims to place fast charging stations within an acceptable range,
while also considering infrastructure investments and convenience in the form of travel costs
of the EV owner. In the maximum covering model by Frade et al. (2011), only normal charging
stations are considered and the model is applied to planning a charging infrastructure for the city
of Lisbon. A temporal aspect is introduced in their node-based approach through the separate
consideration of daytime and nighttime charging demand in the objective function. The model
by Adenaw and Lienkamp (2020) uses a similar approach to differentiate between nighttime and
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daytime demand, while other studies take a more of a long-term planning approach and consider
multiple expansion stages (Hu and Song, 2012). In node-based models, constraints are related
to the power grid, budget or constrain the maximum number of charging stations to be located
(Adenaw and Lienkamp, 2020; Deb et al., 2018b).

Upchurch and Kuby (2010) compare the results of applying a node and flow-based model
for planning charging infrastructure on a city and state scale. The objective of the considered
flow-based model is to maximize the traffic passing the charging locations while for the node-
based model the objective is to minimize the weighted distance between a demand node and a
charging location. Two performance criteria are calculated for both models i.e., the flow volume
and distance between charging and demand nodes. Their results show that the flow-based model
outperforms the node-based approach in both measures and especially when the distance between
nodes increases, as in the state scale. They infer that the node-based approaches may be better
suited for the allocation of EV charging stations in urban areas, while the flow-based approaches
also perform well for the allocation of fast-charging stations. Similarly, Tian et al. (2019) argue
that there are two types of demand arising for charging EVs. The demand within a city can be
represented as a node, while the demand along a route, for traveling between cities e.g, on a
highway, occurs along a route and the path or flow-based approaches are better suited to model
this type of problem. Tian et al. (2019), introduce a location model that includes both a point and
flow-based approach.

The objectives of the flow and node-based charging station placement problem are reviewed
by Bilal and Rizwan (2020), Deb et al. (2018b), and Galadima et al. (2019). Next to maximizing
vehicle flow and minimizing distance to the next charging station or costs such as construction,
land or access costs, several other objectives have been considered in previous studies. Social
factors are operationalized by maximizing installed stations coverage (Asamer et al., 2016) or
minimizing the total trip time (including recharging) (He et al., 2015). Deb et al. (2018b) highlight
that home or private charging constraints have not been considered in the CSPP. However, the
authors emphasize the requirement to consider these factors in future studies.

Another stream of literature is predominantly concerned with objfectives concerning the
electrical grid (Deb et al., 2018a). The placement and charging of EVs, utilizing normal and fast
charging stations, can have an impact on multiple components and characteristics of the power
grid (Avdakovic and Bosovic, 2014; Geske et al., 2010). Studies have therefore considered factors
such as voltage stability, system reliability or power loss both in the objective function (Deb et al.,
2018a; Martins and Trindade, 2016) and in the model constraints (Frade et al., 2011; Liu et al.,
2013).

On a broader energy system related scope, recent studies have pointed to the necessity to
include energy generation, especially electricity from renewable resources, in the planning of the
infrastructure (Karakitsiou et al., 2018). So called solar-to-vehicle charging stations aim to supply
EV charging requirements through solar energy (Birnie, 2009). In the study presented by Huang
et al. (2019) the objective is to simultaneously place charging stations along with PV systems, with
the goal of minimizing the charging stations construction costs and charging costs. While several
studies have examined the relationship between EV charging and wind energy generation, the
impacts of the location of stations has been neglected (Bellekom et al., 2012; Ekman, 2011). Other
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studies are predominantly concerned with the scheduling of the charging procedures to meet the
generation by renewables. These studies will be discussed in Section 3.2.

Several methods have been applied to conduct the placement of EV charging stations in the
node and flow-based literature (Islam et al., 2015). While there have been some studies that
applied simulation methods, such as agent-based modeling or multiagent transport simulations
(Marquez-Fernandez et al., 2019; Sweda and Klabjan, 2011), the majority of studies applied
optimization methods. Multi-objective models consider economic criteria and social criteria such
as the net benefit simultaneously through multi-criteria decision analysis (MCDA) methods such
as the Analytic Hierarchy Process (Zhao and Li, 2016) or Preference ranking organization method
for enrichment evaluation (PROMETHEE) (Erbaş et al., 2018; Wu et al., 2016) or by applying
multi-objective decision making (MODM) methods (Pan and Zhang, 2016; Yao et al., 2014). As
multi-criteria decision analysis methods require a discrete set of alternatives that is not always
given in the charging station placement problem and multi-objective decision making models are
harder to solve, the majority of studies however only consider a single objective. In an attempt
to preserve model complexity some studies implicitly consider multiple objectives through soft
constraints and penalty costs 1 or by transforming the objectives to a common measure (e.g,
monetary units) in order to simultaneously maximize or minimize them (Deb et al., 2021).

A variety of approaches is used to solve the node- and flow-based optimization models (Deb
et al., 2021, 2018b; Islam et al., 2015). Integer and mixed-integer programming models for the
flow-based model are presented by Chung and Kwon (2015), Cruz-Zambrano et al. (2013), and Jia
et al. (2012). The same techniques have also been used in node-based problems (Asamer et al.,
2016; Baouche et al., 2014; Hosseini and MirHassani, 2015). Due to the complexity of the problems,
several (meta)heuristic2 algorithms have also been applied such as nature inspired algorithms,
e.g., genetic algorithm or particle swarm optimization (Deb et al., 2021).

3.2 electric vehicle charge scheduling problem (evcsp)

Scheduling problems are prevalent in production planning literature and are often applied to
optimize the allocation of resources e.g., time or human resources, to tasks (Herrmann, 1984).
Scheduling theory is concerned with the development and application of scheduling models
and algorithms e.g., to determine which job is executed when (in which order) and on which
production machines (Baker and Trietsch, 2009). Over the years multiple model formulations have
been developed to incorporate single or multiple machines, due dates or uncertainties (Chen et al.,
1998; Ruiz and Maroto, 2005). The problem of coordinating charging activities of EVs, can also be
formulated as a scheduling problem where the resource to be allocated is the charging power or
the available charging points to meet the charging requirements of vehicles that represent jobs
(Binetti et al., 2015). The electric vehicle charge scheduling problem has been the focus of several
review articles regarding methodological (Rahman et al., 2016; Richardson, 2013; Yang et al., 2015)
or practical questions (Finn et al., 2012; Jia and Long, 2020; Solanke et al., 2020). The goal of
charge scheduling models is to allocate charging activities of a single or multiple vehicles within a

1 In contrast to hard constraints that cannot be violated in a feasible solution, this is possible for soft constraints at
predetermined costs (Williams, 2013).

2 See Kunche and Reddy (2016) for details on the distinction between heuristic and metaheuristic.
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predetermined timeframe and to minimize or maximize an objective function while considering
several technical constraints. Depending on the research question addressed and the modeled
system, studies are either focused on theoretical algorithm development, on developing practical
algorithms to deploy in real-world settings or to assess the effect of certain charging algorithms on
the overall power grid or other connected services (retrospective optimization) (Weitzel and Glock,
2018). Two types of time horizons can be distinguished in charge scheduling models, namely the
optimization horizon and the forecasting horizon (Amjad et al., 2018; Weitzel and Glock, 2018).
The optimization horizon is determined by the type of market participation to be optimized
i.e., retrospectively the day-ahead market, the intraday market, or a combination of both. The
forecasting horizon is conditional on the available forecast information or the time-horizon to
be forecasted. While in retrospective optimization models no forecast information is considered,
day-ahead or intraday, scheduling models consider a forecast horizon of up to two days.

Charging can either be organized in a centralized or decentralized manner with some studies
also differentiating between decentralized and price varying scheduling as a special form of
decentralized charging control. The distinction between centralized and decentralized control is
determined by the entity that initializes the charging process. In the centralized approach, the
aggregator directly coordinates charging among several vehicles simultaneously (Mohammad
et al., 2020). In the decentralized approach, the charging or discharging process is controlled
by the individual vehicle. While the decentralized approach shifts the computational burden of
initializing the charging process to the individual vehicles, the centralized approach needs to
incorporate and assess this decision for all vehicles, while also considering trade-offs or other
interactions in-between the charging schedules of the individual vehicles. Due to the distribution
of the computational load, decentralized charging control is viewed as more scalable and flexible
(Binetti et al., 2015). However, as the decentralized approach does not explicitly consider the
interaction between the charge schedules of individual vehicles, it may lead to suboptimal charge
schedules in comparison to a centralized approach (Jin et al., 2013; Mukherjee and Gupta, 2015).
Studies further differentiate between decentralized charging incorporating a two-way or one-way
communication. In the two-way process, a negotiation takes place between a central control
unit and the vehicle e.g., regarding price, charging or discharging electricity or time. In case of
one-way communication, charging is incentivized through the price of charging (e.g., through
time-of-use prices) (Amin et al., 2020; Mohammad et al., 2020). Another differentiation between
past approaches can also be made regarding unidirectional and bidirectional power flow (Tan
et al., 2016). As bidirectional charge control enables further integration with the power system,
more system services are modeled, often leading to a higher degree of complexity and requiring
more sophisticated modeling and solution techniques (Mohammad et al., 2020; Tan et al., 2016).
Scheduling models consider economic, technical, social or ecological objectives.

Economic objectives consider the minimization of cost or maximization of revenue or profit
associated with the charging or discharging of EVs. The goal of cost minimization is addressed
by several studies, and an overview is provided in Ghofrani et al. (2016) and Liu et al. (2015).
For EV-owners cost reductions can be achieved by minimizing charging costs e.g, when facing
a flexible electricity cost function. For electricity generators, aggregators, TSOs, and DSOs, cost
reductions can be achieved through integrating and charging EVs e.g., through an improved
utilization of renewables and the minimization of operational cost. Studies explicitly model
electricity generators and their properties for instance, as part of a unit commitment problem
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(Aunedi and Strbac, 2013) or more commonly by implicitly considering them though mapping
in a cost function (Chiao-Ting Li et al., 2012; Sortomme and El-Sharkawi, 2011; Verzijlbergh
et al., 2014). Modeled costs include costs due to power imbalance, cost of emissions (e.g., cost
of emission certificates to offset CO2 emissions), maintenance costs of the system, electricity
generation or procurement costs. Studies that model the charging problem from the perspective
of the vehicle owner mostly take into consideration the charging cost to optimally coordinate
the charging behavior while adhering to the mobility behavior (Van Der Klauw et al., 2015; You
et al., 2012). Other studies also include revenues from the provision of services or electricity in
the objective function and maximize profits or revenues, for instance, by maximizing energy
sold on the wholesale market or to vehicles or participation of the vehicles in the day-ahead and
reserve market (Sarker et al., 2016; Sortomme and El-Sharkawi, 2011; Vasirani et al., 2013). For
individual vehicles, objectives include the maximization of revenues through the participation in
V2G measures (Soares et al., 2013).

A second group of objectives is related to technical factors and include the maximization of
system reliability or minimization of power losses, voltage violations or peak demand (Fachrizal
et al., 2020; Mohammad et al., 2020). Maximizing the utilization of electricity generated from
renewable sources is another technical objective. For instance, the algorithm presented by Kam
and Sark (2015) for a microgrid containing EVs, an office building and a PV-system combines a
prediction of the system load and PV generation to compute a charging schedule to maximize the
utilization of electricity generated by the PV system. The objective function maximizes the total
electricity used, assigning a higher value to the power generated by PV.

The social i.e., vehicle owner perspective as well as ecological perspective have only seldom
been considered as the sole objective of models. While CO2 emissions are often converted to
monetary units through emission certificates (Ahn et al., 2011), the study by Rangaraju et al.
(2015) considers rule based charging strategies to quantify the impact of optimizing the charging
process on a reduction of emissions in the use-phase of the vehicle. The study by Wen et al. (2012)
considers user convenience through the SoC of the vehicles and available charging time. The
objective function aims to maximize the reciprocal of the SoC and remaining available charging
time of the vehicles, thus when determining a charging sequence vehicles with a lower SoC and
lower remaining available charging time are preferred.

Technical or social features, or limitations, are more frequently modeled using constraints (Tan
et al., 2016). Technical limitations include the consideration of an operational range of the battery
e.g., the battery may not be discharged or charged below zero, a maximum threshold or predefined
threshold, to minimize battery degradation (Wang and Wang, 2013), or they aim to constrain
the charging power, voltage or current within certain limits (Saber and Venayagamoorthy, 2010).
Social constraints account for the driving behavior of the vehicle owners and the impact on the
availability (Saber and Venayagamoorthy, 2009).

Depending on the factors considered, scheduling can either employ deterministic or stochastic
modeling techniques. Deterministic modeling is used for retrospective optimization, for instance, to
show the effects of the feasibility of a proposed charging algorithm. When retrospective modeling
is used all relevant model parameters are known a-priori and problems are represented in linear,
integer or mixed-integer programs and solved, using commercial solvers such as Gurobi or CPLEX
and implemented using methods such as dynamic programming or Benders decomposition.
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Stochastic modeling is applied when uncertainties are present in the modeled system. Uncer-
tainty can be related to several factors such as the EV e.g., individual demand of vehicles, arrival
and departure time, the load caused by climatic conditions, electrical equipment, or user behavior.
To model uncertainty and depending on the available data, different modeling techniques such
as robust optimization, Markov chains or fuzzy logic are applied (Mohammad et al., 2020). The
optimality of the solution and computational intensity differs between the applied methods. For
instance, in the study by Seddig et al. (2019) the authors apply different methods to minimize
charging costs in a public car park with uncertain vehicle demand and PV power. They apply a
two-stage mixed integer optimization. The first stage of the model creates an optimized charging
schedule based on planned vehicle arrivals and the expected PV generation pattern. The second
stage aims to find recursion functions which stipulate decisions that minimize the expected costs.
To assess the solution quality of their model, a mixed-integer linear programming (MILP) that as-
sumes perfect foresight and an uncontrolled charging heuristic. The computational characteristics
show how uncertainty influences the complexity of the model, as this model has over 100 times
more variables and 265 times longer solution time than the benchmark that does not consider
uncertainty. While a combination of factors is sometimes considered, they are usually converted
to the same unit for instance, in the study by Van Der Klauw et al. (2015) where two factors are
minimized in the objective function, the charging cost, and the deviation of the actual from a
preferred charge, the charge preference is converted into monetary units.

The review of the electric vehicle charge scheduling problem (EVCSP) and CSPP shows that
both problems are applied to strategic and operational problem contexts and have therefore
been independently considered in decision models in the past. Before presenting a combined
implementation, the following section provides an overview of models that implicitly consider
both decision problems.
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3.3 joint considerations of electric vehicle charging station
placement and scheduling

Table 3.1 summarizes the studies presented in the previous section regarding their objective
and integration of the defined model prerequisites. As the CSPP typically supports strategic
decisions while the EVCSP supports operational decisions, different cost components are typically
considered in the models. While most placement problems consider infrastructure cost, these are
not considered in most scheduling problems, which typically focus on variable cost and vice-versa.
While the planning horizon of scheduling models is typically only up to a couple of hours to days,
the planning horizon of placement models can take multiple years into consideration. The time
resolution on the other hand is very high for scheduling models which optimize in minute to
hourly intervals while in some cases placement problems aggregate data on a yearly basis.

Both the charging station placement problem and the EV charge scheduling problem are viewed
as separate decision problems and only few studies touch on both problems. Chen et al. (2019)
consider both CAPEX and OPEX of a charging station in the objective function. The OPEX are
calculated in relation to the effort of the vehicle owner to access the station, which is related to
distance to the charging stations. The model does not explicitly consider the charging schedule or
individual charging activities but only requires that total demands at a station are met. Schiffer
and Walther (2017) combine the routing problem of EVs with the placement decision of the
charging infrastructure. Their model aims to minimize the total distance traveled by all vehicles.
Their work shows, that the simultaneous consideration of both decision problems can lead shorter
distances in comparison to problems that neglect the placement of charging stations. In the study
by Pagani et al. (2019) a combination of an optimization and agent-based simulation are used
to determine an optimal charging infrastructure focusing on the city of St. Gallen. Their model
takes into account user behavior and the EV penetration level. The objective of their algorithm is
to maximize the so-called load factor of charging stations which represents their utilization. The
city is divided into several cells and for the initial solution one charger is allocated per cell. The
solution is then analyzed using a week-long agent based mobility simulation to evaluate how
charging stations are utilized. If the utilization is low in a cell, charging stations are removed
from a cell, if the charging demand cannot be fully meet, additional charging stations are added
to a cell. The optimization model stops, if at least 95% of all charging activities can be met by
the calculated solution. The profitability of the charging infrastructure is assessed by calculating
the time to break-even and net present value (NPV). While this model does include some factors
related to both the CSPP and scheduling problem, they are examined separately and variable cost
or profits are not explicitly considered in the termination criteria.
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3.4 the charging station placement and electric vehicle charge
scheduling problem (csp-evcsp)

From the literature review a clear research gap has been identified. There is currently no model
for the joint consideration of the EV charging station placement and scheduling of EV charging.
This problem is termed as the charging station placement and electric vehicle charge scheduling
problem (CSP-EVCSP). By concurrently solving these previously separate problems in one model,
the trade-offs between the scheduling of the charging process and the placement of the charging
infrastructure can be assessed regarding economic or ecological parameters and and an answer
to the posed research questions can be found. When considering the installation expenses of a
charging network and volatile electricity procurement cost, adding charging points increases the
charging availability of a vehicle while possibly reducing electricity procurement cost. A model
considering both cost components allows to judge if the increased availability and associated
reduction of electricity procurement cost justifies the additional expenses incurred through the
installation of additional charging points. In the following section, a combined mixed-integer linear
programming (MILP) model is presented. The model incorporates findings and characteristics of
both the placement and scheduling problem, in order to identify the inter-dependencies of these
models, both from a methodological and practical viewpoint.

The general aim of the CSP-EVCSP is to find a charging network configuration and EV charging
pattern that minimizes the fixed and temporally volatile components in the objective function. The
MILP model represents a set of profiles p ∈ P and is made up of a number of potential charging
locations l ∈ L. Each profile is assigned to a specific location or activity at each interval i and
mobility activities are conducted using a vehicle, which moves from one location to another
throughout the optimization horizon.

Charging points can be placed at locations. If a station is placed, the cost Cs for this charging
station are added to the objective function. Costs are dependent on the maximum power s that
can be supplied at each location l. For each profile and set of intervals i ∈ I the variable SoCip

models the SoC of a vehicle battery assigned to a profile. The variable chlip represents the supplied
electricity in an interval i at location l. Next to the possibility to supply electricity at the current
location l of a profile, it can also be supplied by any location that meets the requirements of
Equation 3.1. Power requirements arise due to the mobility and the discharging of the state of
charge of the modeled battery of a vehicle.
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Figure 3.2: Graphical representation of the intersection between two profiles A and B at locations 2 and 4
in the CSPP.

Figure 3.2 shows an overall representation of the considered CSPP components. The model
accounts for different location types, as the mobility patterns of individuals differ throughout the
day and the vehicle can be located at different locations. When considering a public or semi-public
charging infrastructure, it may be possible and efficient for vehicles to share charging points e.g.,
if parking locations are in a vicinity of a charging station. In Figure 3.2 possible charging locations
for 20 profiles with six different charging locations are represented in a graph. The nodes have an
x and y coordinate and the distinction between locations is represented by the different colors.
Each node is assigned to one profile (e.g., in Figure 3.2 two profiles and their respective nodes are
represented by the connecting edges, with location 1 as the center node). The center of each node
represents the exact location, while the area of the circle represents an acceptable intersection
radius between nodes. A node in profile B is considered to be covered by a node in A if

2

√
(xa − xb)2 + (ya − yb)2 ⩽ radiusa (3.1)

holds for any node in profile A. In the illustrated example, profile A and B intersect at location 3
(profile A) and location 6 (profile B). The intersecting nodes are considered to be eligible to supply
the demand for each intersecting node.
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Figure 3.3: Graphical representation of the EVCSP, highlighting time and location dependence.

As highlighted in the review on scheduling literature in Section 3.2, scheduling models are
used to support operational decisions such as optimizing the charging process of a vehicle battery
regarding an external stimulus (e.g., price-based charging). To do so, operational, technical and
economic features are modeled using constraints. Figure 3.3 shows the features that are considered
in the scheduling part of the developed MILP. A profile is represented by a fixed number of
intervals and each interval is assigned to a geographic location (location type) shown in Figure 3.2.
If a mobility activity is conducted, the vehicle battery is discharged and if the vehicle is parked
at a location, the battery can be recharged (bottom part of the figure). Time dependent costs are
considered to incentivize charging activities at certain times.

min α
∑
p∈P

∑
l∈L

∑
i∈I

chlipOi +β
∑
s∈S

∑
l∈l

Cscpsl + γ
∑
i∈I

∑
p∈P

(yip + zip) (3.2)

The objective function of the model (3.2) consists of three terms. The model parameters are shown
in Table 3.2 and the variables in Table 3.3:

• Total cost of charging the vehicle.

• Total cost of placing a charging point.

• Penalty cost for surpassing or dropping below a predetermined SoC.
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Table 3.2: Model parameters of the CSP-EVCSP.

Name Description

i ∈ I Set of charging intervals

l ∈ L Set of charging locations

p ∈ P Set of profiles

s ∈ S Set of different charging speeds

Oi Operating expenses for a unit of charge at interval
i

Cs Capital expenses of charging station with charg-
ing power s

α, β,γ Weighting factors for parts of the objective func-
tion

Bmax Maximum state of charge

B0 State of charge of vehicle at interval 0

Dip Energy consumption in interval i by profile p

Ps Charging energy per interval for station type s

m Activity mobility

M Big-M

Xip Activity/location at interval i of profile p

κ,ζ Desired upper and lower SoC limit of the vehicle
battery

Lmax Maximum number of charging stations

Table 3.3: Decision variables of the EVCSP.

Name Description

chlip Charge conducted during interval i at location l
of profile p

oclip Binary variable for each interval i and location l
for profile p

cpls Binary variable that determines if charging sta-
tion with power s is available at location l

socip State of Charge of profile p at interval i

yip Minimum charge undercut at interval i by profile
p

zip Maximum charge surpassed at interval i by pro-
file p
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To facilitate testing the model, the impact of the three terms on the total objective value can be
modified via the weighting parameters (α,β,γ). The first part of the objective function determines
the cost of charging at a given interval (i), the cost at each interval can vary and are represented by
the values Oi. The variable chlip is continuous with a defined lower and upper bound dependent
on the kind of charging station Ps built at a location. The cost of charging are determined by the
amount of energy charged in an interval chlip multiplied by the charging costs in this interval Oi.
The cost for placing a charging station are dependent on the cost of a charging points (Cs) with a
charging capacity s multiplied with a binary decision variable (cpsl) that is equal to 1 if a station
is placed and 0 if it is not. The third term, the penalty costs, constrain the state of charge (SoCip)
of the battery at each interval i through the variables (zip) and (yip).

To fulfill the practical and theoretical model requirements defined above, a number of constraints
are considered. These constraints can either be motivated by the scheduling problem, or the
placement problem or they are necessary to connect both problems. The following constraints
are related to the scheduling problem and allow to consider the mobility behavior, the SoC of the
battery and the charging and discharging process of the battery.

battery constraints

soc0p = B0 ∀ p ∈ P (3.3)

socIp = soc0p ∀ p ∈ P (3.4)

0 ⩽ socip ⩽ Bmax ∀ i ∈ I (3.5)

socip ⩽ κBmax + zipM ∀ t ∈ T (3.6)

socip ⩾ ζBmax(1− yip) ∀ t ∈ T (3.7)

Constraints 3.3 - 3.7 model the general characteristics of the battery and its predetermined SoC

at the beginning and end of the optimization horizon. As has been explained by several studies
and summarized in Section 2.3.1, the SoC of the battery of an BEV is relevant both from the vehicle
owner’s perspective and technical perspectives. Technical factors are related to the optimal SoC of
the battery in order to prolong the battery’s lifetime. For fast-charging stations, there is an impact
of the SoC on the available charging capacity (see Figure 2.12). Both factors are also relevant to the
vehicle owner, who is concerned with retaining the battery health of the vehicle. As pointed out
by Cenex (2021) and Delmonte et al. (2020), vehicle owners are interested to retain a minimum
range (SoC) for emergency journeys. Therefore, the constraints 3.7 and 3.6 use the parameters κ
and ζ to set this limit. As it may still be necessary to utilize the full vehicle range for certain longer
trips, the constraints are modeled using soft constraints that can be violated but result in a penalty
in the third part of the objective function.
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charging/discharging constraints

soci+1p ⩾ socip +CDip ∀ i ∈ I,p ∈ P (3.8)

CDip = f
(
Xip

)
=

{ ∑
i∈I

∑
l∈L chlip Xip ̸= m

−Dip Xip = m
∀ i ∈ I,p ∈ P (3.9)

chlip ⩽ oclip ·max(Ps) ∀ l ∈ L, i ∈ I,p ∈ P (3.10)∑
l∈L

oclip ⩽ 1 ∀ p ∈ P, i ∈ I (3.11)∑
p∈P

oclip ⩽ 1 ∀ l ∈ L, i ∈ I (3.12)

The charging and discharging process of the vehicle is modeled using constraints 3.8 - 3.12. The
variable soci+1p is dependent on the previous interval socip and the charging or discharging
conducted (CDip) in an interval. To determine the value of CDip the activity or location Xip that
is conducted in the interval is decisive. If Xip = m, a driving activity is assumed and Dip reduces
the SoC of the battery. The SoC of the battery can be increased if Xip ̸= m (Constraint 3.8). The
continuous variable chlip can be set to determine the charge conducted during an interval. The
binary variable oclip is constrained to 1 if a charge is conducted and 0 if it is not (Constraint
3.10). The binary variable is required to restrict charging to one charging point per interval and to
ensure only one vehicle charges at one place in each interval.

Lmax ⩾
∑
s∈S

∑
l∈L

cpls ∀ p ∈ P (3.13)∑
s∈S

cpls ⩽ 1 ∀ l ∈ L (3.14)

In case of limited resources, the maximum number of installed charging points can be constrained
(Constraints 3.13). The highest charging power available at a location is constrained by Constraints
3.14. ∑

s∈S

cplsPs ⩾
∑
p∈P

chlip ∀ i ∈ I, l ∈ L (3.15)

As the capital expenses Cs of a station are dependent on the charging power the highest charge
energy chlip drawn over the optimization horizon determines the value of cpls. Constraint 3.15

links the charging and scheduling model as the value of cpls is set to 1 if chlip > 0 at a location.

3.4.1 Computational experiments

The previous sections presented an overview of different implementations of the CSPP and EVCSP.
Many of the highlighted studies formulate optimization models to reflect the inherent objectives
and constraints. Scheduling problems, especially retrospective optimization models that do not
consider uncertainties, can often be modeled as linear optimization problems and efficiently
solved e.g., though the application of the simplex method (Dantzig, 1963). Recent studies have
highlighted that the time complexity of some of these problems is comparatively low. For instance,
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in the implementation of the charge scheduling model for a single vehicle, Van Der Klauw et al.
(2015) present an algorithm to compute the optimal schedule in quasilinear time O(nlogn).

Placement problems are often modeled using MILP optimization models. The binary or integer
variables are utilized to model the decision if a node (potential charging point) is considered.
Variants of the problem have been shown to be NP-hard (Conrad et al., 2012; Hodgson, 1990; Lam
et al., 2014). NP-hard i.e. non-deterministic polynomial time hardness, describes the algorithmic
complexity of problems at least as hard as NP. The special case of integer-programming models
were assigned to the category of NP-complete problems by Karp (1972) as the feasibility of
solutions can be verified in polynomial time. While NP problems cannot be solved in polynomial
time by a deterministic Turing machine (Arora and Barak, 2009; Kallrath, 2013), approximate
solutions can be calculated. For smaller problem instances, exact solutions can be obtained using
the branch-and-bound algorithm (Dakin, 1965), cutting-planes-method (Gilmore and Gomory,
1961; Land and Doig, 1960) or complete enumeration. While Horst and Tuy (1996) showed that
for continuous optimization problems the branch-and-bound algorithm converges to an optimal
solution, the time can be exponential in relation to the size of the problem. Therefore, time or
computational effort based termination criteria are often utilized to obtain feasible but not optimal
solutions.

In the following section a sensitivity analysis of the presented model concerning several
parameters is conducted. The aim is to assess for which parameter configurations the CSP-EVCSP

can be solved using a commercial solver for a representative problem size as specified in the
introduction of this chapter. To assess this, several test-instances are created and the number of
profiles, intervals and intersections between profiles is successively increased.

The model is implemented using the Python programming language (version 3.8.11) and solved
using the Gurobi Optimizer (Version 9.5). There are several model parameters that have an impact
on the time to solve the model. Depending on their value, the solver is either able to solve the
model to optimality, to only identify a feasible solution or no solution at all within a reasonable
amount of time. In the following section the impact of model parameters on the time to solve the
model and model characteristics are presented. Performance testing was conducted on a computer
running Windows Server 2019 with an Intel Xeon Gold 6128 central processing unit (CPU) @ 3.39
GHz with two cores and 256 GB of Random-Access Memory.

To solve the minimization problem the solver first generates a lower bound using a linear
programming relaxation (Agmon, 1954) along with several pre-solve functions to reduce the
size of the model. The solution of the relaxed problem is then used as the lower bound for the
minimization problem. In the next step the branch-and-bound algorithm is executed. To do so,
the problem is divided into sub-problems (branching) that are successively investigated. To avoid
complete enumeration of all solutions, upper (current best solution) and lower bounds (best
possible solution of sub-problems on a branch) are calculated, and the decision tree is pruned. A
lower bound does not have to be associated with a feasible solution. Different pruning steps of
the branches are conducted in a minimization problem, i.e. if

• the lower bound is greater than the upper bound or

• the solution of a sub-problem with a lower bound than the current upper bound is feasible,
the branch can be pruned and the upper bound updated.



3.4 charging station placement and electric vehicle charge scheduling problem 71

If the lower bound of a sub-problem is smaller than the best bound, but the current solution on a
branch is infeasible, further branching of the sub-problem is necessary (Gilmore and Gomory,
1961; Nemhauser and Wolsey, 1988).

𝑂𝑖

𝑂𝑖

Figure 3.4: Cost for testing the model, calculated for four exemplary month using Equation 3.16.

For the computational experiments, the variations of the parameters presented in Table 3.4 are
considered. To reflect the variability of electricity prices, a test instance is created using the energy
generation (geni) and consumption (coni) of Germany in the year 2019. To determine the cost
in each interval, the electricity consumption in a time interval is deducted from the generation
si = coni − geni and represented as a fraction of the span of the generation surplus or deficit
over the total optimization horizon (Equation 3.16).

Oi =
coni − geni

|min(si)|+ |max(si)|
(3.16)

To illustrate the general pattern of the Oi calculated using Equation 3.16 and used to test the
developed model, Figure 3.4 shows the minimum, maximum and mean values for an exemplary
week in each season. The monthly data are aggregated to one week, for a better overview of
the data. Weekends are marked by a shaded gray area. The illustration shows a distinct pattern
throughout the week for each month. For the winter and autumn month, cost increase in the
midday, in the evening starting at about 6 p.m., and are lower on weekends. In the spring
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and summer, the additional generation by photovoltaic, leads to lower costs in the midday. A
comparison to the real market prices of the year 2019 are not carried out in this section, as the
primary purpose of the generated data, is for performance testing of the developed model. A
more detailed calculation and testing of values is presented in Section 4.2.2.

The computational time was measured using the Gurobi work parameter. The work parameter
is deterministic and depends on the computer hardware. It roughly equates to a second on a
single thread of a CPU (Gurobi Optimization, 2022). For each test, the work required to achieve an
optimal solution was measured, and is given in seconds or milliseconds. The parameter is further
referred to as CPU-time.

3.4.1.1 Impact of the number of profiles and intervals

For the initial analysis, the number of profiles and intervals is varied. The number of intersections
is set to zero, while the number of intervals and profiles is gradually increased. Figure 3.6
shows the impact of increasing the number of intervals (i) considered in the model. The assessed
parameter is plotted on the abscissa, while the CPU time is plotted on the ordinate axis. The other
model parameters are fixed to the values given in the plot or the standard values highlighted by a
bold typeface in Table 3.4.

Table 3.4: Computation experiments (variations of parameters).

I L P S Oi Ps Cs α/β Bmax Di

min 100 7 1

3
200 2.75 −1 0.1

65 1.9400 5.5

max 35, 000 1, 400 100 600 12.5 1 10

Figure 3.5 shows the impact of the variation in the number of profiles (p). For each value
depicted in the figures, three optimizations were performed with varying activity profiles. The
mean total CPU time required to obtain an optimal solution is represented in the graph by the
solid line, while the lowest and highest values are illustrated through the shaded area of the graph.
Two additional relative metrics are presented, the mean CPU time measured in ms/per interval
for the variation of intervals and s/per profile for the variation of profiles.

The results show that the marginal calculation time per added profile and interval increases.
While the time to solve one profile to optimality is 0.901 s, this increases to 3.075 s for 200 profiles.
On average, a model with 8, 640 intervals has 8, 122 binary variables (one per interval that is not
occupied by a mobility activity), 16, 744 continuous variables and 41, 067 constraints per profile.
Taking into account the modification of the intervals, a similar pattern can be observed, while
the solution time per interval is equal to 0.2 ms/interval for one interval, it increases to 0.7
ms/interval for 35, 040 intervals. The number of binary and continuous variables as well as the
number of linear constraints increase linearly with an increasing number of intervals, e.g., there
are on average 32, 777 binary variables per profile for a model with 35, 000 intervals.
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solution time

Figure 3.5: Effect of the number of driver profiles on solver runtime. The solid line represents the mean
value, while the shaded area for the variation of the number of profiles represents a 95%
confidence interval of the CPU time for a test-instance.

solution time

Figure 3.6: Effect of the number of intervals in the optimization horizon on solver runtime. The solid line
represents the mean value, while the shaded area for the variation of the number of intervals
represents a 95% confidence interval of the CPU time for a test-instance.
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The impact of the interval-dependent cost is evaluated by randomizing the cost data. This
change only has a minor impact on the CPU-time. For the calculation of one year and 10 profiles,
the maximal deviation of the CPU time over 10 different randomized cost sets is 8.29% in contrast
to the base values illustrated in Figure 3.4, a further investigation of this parameter is therefore
neglected. The largest problem size tested of 1, 000 profiles and 35, 040 intervals can be solved
optimally in 4369.3 s (CPU-time).

3.4.1.2 Impact of the number of intersections

The intersection between profiles, e.g., as illustrated in Figure 3.2 between Profile A and B, also
have an impact on computational time. While intersections within a profile have little impact
on the performance of the solver, the required solution time increases with the number of in-
tersecting profiles. Two profiles are viewed as intersecting if they share one or more points
that meet Equation 3.1. Assuming the same intersection radius of two locations, if Equation
3.1 is true for A, it must also be true for B. That is, if a point A is within the intersection
radius of the point B, then B is also within the intersection radius of A. As shown in Figure
3.4.1.2, the intersections between profiles can be represented using graph theory.3 An undirected
weighted graph presents individual profiles as vertices and intersections between these pro-
files with the connecting edges. The weight on the edges represents the number of intersecting
locations between two profiles, illustrated through the thickness of the edges in this illustra-
tion. On the right side of Figure 3.4.1.2 the corresponding adjacency matrix is presented. The
symmetric matrix represents the number of intersections between two profiles i and j, through
the values of the matrix element A[i, j], if there is no intersection A[i, j] = 0. The illustrated
example shows a connected graph, i.e., each profile has at least one intersecting location with
another profile, and each node can be reached from another node by traversing the graph.

Undirected graph of the profile interactions 
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Figure 3.7: Undirected weighted graph and adjacency matrix for the relation between 8 profiles.

3 For a detailed introduction to graph theory, see Bondy and Murty (2008) and Diestel (2017).
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To assess the effect of intersections on CPU-time, four base test instances with 25 profiles and 150
locations each were created. The test instances were gradually modified to include two intersecting
locations to a total of 15 intersections between locations. An optimization horizon of 8, 064 15-min
intervals (four months) was considered for the four randomized variations of the activity profiles
and different values of α and β. Figure 3.8 shows the results for a variation of the number of
intersections and the effect on the CPU-time. Differences in the results of the calculations are
represented by the shaded area in the line plot in the box plot the whiskers represent the variation
of the calculated results. All calculations were performed on the specified hardware and a cutoff
criterion was defined: The parameter WorkLimit was set to 13, 000 units of CPU time, approximately
corresponding to an average maximum runtime of the solver of 7, 200 seconds (2 h).
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Figure 3.8: Effects of the number of profiles optimized on runtime. The solid line represents the mean
value, while the shaded area represents a 95% confidence interval of a all values within the
respective number of overlaps.

The values of α and β modify the objective value related to the scheduling (EVCSP) and
placement (CSPP) problem in the objective function. As the value of the time bound cost function
can take positive and negative values, the sum of charging costs may take negative values4. For
α = 1, the best values obtained range from -6, 900 to -2, 200 in the objective function. For the
one-off placement cost with β = 1, the minimal results obtained range from 3, 600 to 5, 000. To
analyze the impact of these factors, α and β were also alternately set to zero.

As can be observed in Figure 3.8 for the base case of α∧β = 1, if the number of intersections
increases, the CPU time to find an optimal solution also increases. If 11 locations intersect, one
test instance cannot be solved to optimality, and the optimization is aborted. The respective gap
from the upper bound to the best lower bound is presented as a percentage value in the bar chart

4 Variable costs can take negative values in the event of negative electricity prices or if a compensation for the provision
of flexibility is considered.
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and the secondary y-axis. For 12 intersections, only half of the test instances can be optimally
solved within the predefined boundaries. The maximum gap between the calculated solution and
the best bound increases to 11.61%. If more than 12 intersections are considered, none of the test
instances can be solved optimally. The gap to the best bound increases and takes an average value
of 27.19% for 15 intersections.

The results for α = 0 are similar to those just described, except that all instances are still opti-
mally solved within the given time for up to 12 intersections. The average gap for 15 intersections
is similar with a value of 24.41%. If β = 0, all test instances can be solved optimally, and the
required CPU time is shorter. It increases from 3.8 for two intersections to 9.98 for 15 location
intersections. When β gradually increases from 0 to 1, the required CPU time increases from on
average 48.95 units of CPU time for β = 0.001 to 453.51 units for β = 0.1 for a test instance with 15
intersections and α = 1.

For test instances with a larger number of intersections, e.g., 100, a feasible solution is found
within the WorkLimit, however, the gap of this solution increases to 256.84%. For 1, 000 intersections,
no feasible solution can be found for α∧β = 1, within 1, 200 units of CPU time for β = 0.

The computational experiments showed the different levels of computational complexity linked
to the two problems combined in the presented MILP model. A higher degree of computational
complexity is introduced through parts of the model related to the placement problem, where the
CPU time increases exponentially with an increasing number of intersections. The parameters α
and β control the impact of individual problem parts on the overall problem. For higher levels of
intersections and profiles, the model does not yield an optimal solution, and the optimality gap is
substantial. For problems with 1, 000 overlaps, the solver could not determine a feasible solution
in a reasonable time. In these cases, setting β = 0 can yield a feasible but not optimal solution.

3.4.2 Three algorithms to solve the CSP-EVCSP

As the computation experiments showed, the Gurobi solver can only find solutions to the combined
CSPP and EVCSP for smaller problem sizes or in certain parameter configurations. The following
section presents three different approaches, that combine different established algorithms and
heuristics to solve larger instances of the CSP-EVCSP:

• single vehicle optimization model (SVOM)

• successive community optimization (SCO)

• Set covering problem (SCP) and charge-level heuristic + EVCSP

The general components of each strategy are summarized in Figure 3.9. Two charging strategies,
the SVOM and the SCO decompose the optimization problem, by overall optimization problem
into smaller sub-problems or a single sub-problem, that can be optimized optimally using the
commercial solver. The third solution approach decomposes the problem by the type of problem
while still considering certain prerequisites and problem-dependencies through a custom charging
heuristic. Depending on the relation of Cs and Oi, the solution strategies achieve different results
regarding the solution time and quality, which will be examined in the last section of this chapter.
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3.4.2.1 Single vehicle optimization model (SVOM)

Both the single vehicle optimization model (SVOM) and the successive community optimiza-
tion (SCO) approach decompose the complete problem into sub-problems that can be solved
in an acceptable time. The placement and scheduling are performed iteratively for one profile
at a time to build a complete solution and both approaches can be classified as constructive
metaheuristics (Sörensen and Glover, 2013). The solution strategy iteratively optimizes the profiles
by decomposing the overall problem into sub-problems. The goal of a sub-problem is to calculate
the optimal charging locations (cpls) and charging times (chil) for a single profile. The identified
charging locations and charging times are then stored, and the optimization of the next profile is
performed. If one of the previously identified charging locations overlaps with a location in the
optimization of the current profile, this location is considered as an alternative charging location
in the optimization. No additional location costs Cs are incurred for alternative charging locations,
but charges can only be carried out if no other profile is charging in the interval in question. If
these conditions are met, charging can be carried out and the charging costs (Oi) are taken into
account in the objective function.

3.4.2.2 Successive community optimization (SCO)

As shown in Section 3.4.1.2, an increasing number of intersections between profiles increases
the time to find an optimal solution. At the same time, the costs associated with the placement
of a charging station (Cs) can potentially be reduced. The successive community optimization
solution strategy takes this into account by optimizing profiles in communities identified through
a combined community detection and block modeling algorithm.

As defined in network science, a community is a set of nodes in a graph, where the density
of edges within the community is higher than to edges outside the community (Girvan and
Newman, 2002). To identify such a community structure within a network or graph, several
community detection or graph partition algorithms have been developed and are applied in
multiple disciplines (Clauset et al., 2004; Girvan and Newman, 2002; Javed et al., 2018). In real-
world examples, it may be possible to divide the nodes of a network or graph into communities,
by analyzing mobility patterns, leading to a better understanding, e.g., of the spatial structure of a
city (Wang et al., 2018; Yildirimoglu and Kim, 2017).

An undirected weighted graph, as illustrated in Figure 3.4.1.2, is the basis of the algorithm. The
nodes represent individual profiles, and the edges are the intersections between them. The weights
on the edges are determined by the number of intersections between the profiles. The basic idea
of the algorithm is to separate the graph into communities with a predetermined maximum size,
while aiming to maximize the weighted intersections within a community.

Several algorithms have been proposed for community detection or graph partitioning (Clauset
et al., 2004; Girvan and Newman, 2002; Zhou et al., 2017). Methods can generally be divided into
agglomerative and divisive methods. Agglomerative methods successively add edges between
nodes, thereby merging them into communities, while divisive methods remove edges between
nodes until no further improvement of a predefined objective is possible (Javed et al., 2018). A
restriction of the community size is not desirable and therefore is currently not considered in the
pertinent methods.
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Figure 3.9: Three approaches for solving the CSP-EVCSP.

To detect communities and separate the overall graph into smaller subgraphs, an agglomerative
community detection method is used in this thesis. Specifically, the Clauset-Newman-Moore
greedy modularity maximization algorithm, as implemented in the networkx Python package, is
applied (Clauset et al., 2004; NetworkX Developers, 2022). The aim of the algorithm is to maximize
modularity as defined by Newman (2010). The calculation of the modularity (Q) of a network is
shown in Equation 3.17 and differs for a weighted and unweighted network. For an unweighted
network, m represents all edges of the network, while m is equal to the sum of all edge weights
in a weighted network (as is the case with the problem at hand). Aij is a weighted or unweighted
adjacency matrix of the network with nodes i and j, while ki represents the degree of node i in
the network (i.e., the number of connections it has with other nodes). δ(ci, cj) is a Kronecker delta
function that is equal to 1 if nodes i and j are in the same network and 0 if not.

The modularity score can be calculated for different community structures within a network. In
a weighted undirected network, the number range of modality can range from -0.5 to 1 (Brandes
et al., 2008). However, the upper bound is dependent on the general network structure and may
be well below a value of 1 in certain networks (Newman, 2010). A modularity score of 0 indicates
that the created community structure is not better than randomly generated communities. Positive
values generally indicate a community structure that is better than a random allocation (Newman,
2004).

Q =
1

2m

∑
ij

(
Aij −

kikj

2m

)
δ
(
ci, cj

)
(3.17)

The solution of the Clauset-Newman-Moore greedy modularity maximization algorithm can
result in large communities. These communities may be to large to be optimally solved within
a reasonable timeframe. In a second step, the resulting communities are therefore broken up
into sub-communities of a predefined size and sorted using a greedy swap algorithm. To achieve
this, a weighted adjacency matrix is calculated for each community determined by the Clauset-
Newman-Moore algorithm. Within these communities, sub-communities of a predetermined size
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are defined. Swaps are executed between profiles of sub-communities. To determine whether a
swap is executed or not, a weighted intersection score, as presented in Equation 3.18 is calculated
for each sub-community. A swap of two profiles is executed if the total intersection score of both
considered sub-communities is increased. The algorithm terminates if no further swaps can be
found to improve the intersection score I.

I =
∑
ij

(
Aij

)
δ
(
ci, cj

)
(3.18)
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Figure 3.10: Community creation process for 100 profiles and a maximum community size of 5 using the
SCO solution strategy.

An example with 100 profiles and a required maximum community size of 5 profiles is presented
in Figure 3.10 and shows how the previously described community detection algorithm is able to
cluster intersecting activity profiles. The numbers in the upper right corner of the adjacency matrix
indicate the steps of the complete algorithm. The first adjacency matrix is not sorted. The number
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of intersections between profiles is highlighted by different color codes. The Clauset-Newman-
Moore algorithm yields ten different communities of different sizes (see the second adjacency
matrix in Figure 3.10). Most communities have a size that exceeds the predefined community size
of 5. Therefore, the communities need to be further divided. For example, as illustrated in the third
step, the fourth community is further divided into 3 sub-communities. These sub-communities are
then optimized using the greedy-swap method. For instance, when comparing sub-community
4.1 before the greedy-swap heuristic and after, it can be observed that profiles 2 and 5 have the
highest number of overlaps and are swapped into the same sub-community.

The results for an example with 100 nodes and varying community sizes is presented in Figure
3.11. In the upper left corner, the unsorted weighted adjacency matrix is given, with weights
representing the overall number of intersections between two profiles. The other matrices show
the results for maximum community sizes of two, five and ten. The matrices are sorted according
to the affiliation with a sub-community, e.g., in the top-right corner, for a maximum community
size of two, the intersection of the first two values of rows and columns one and two belong to
the same sub-community. The results of the algorithm are evaluated regarding their weighted
modularity and weighted intersection score. The results are calculated for the algorithmically
generated communities as well as for randomly generated communities and summarized in Table
3.5. While Newman (2004) suggests a modularity value above 0.3 to be attainable to represent
satisfactory communities, this bound is not directly applicable to the results of the presented
algorithm, as communities found by the Clauset-Newman-Moore algorithm need to be further
separated, to reach the attainable community size decreasing the modularity score. Nevertheless,
in the example presented, the algorithm performs better than a random assignment of nodes to
communities concerning both performance measures.

In the final step, the optimization model proposed in Section 3.4 is used to optimize the
placement and charge process within each community. Similarly as for the SVOM, the solution
concerning the stations placed and their availability is passed on to communities that are optimized
downstream of the current optimization.

Table 3.5: Modularity and intersection score in relation to detection algorithm and community size.

size Community composition Modularity
Intersection

Score

2

random communities -0.012 3, 558

community detection algorithm 0.021 5, 602

5

random communities -0.013 1, 372

community detection algorithm 0.085 2, 808

10

random communities -0.015 614

community detection algorithm 0.142 1, 930
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Figure 3.11: Adjacency matrices sorted according to the results of the community detection algorithm.
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3.4.2.3 Set covering problem (SCP) and charge-level heuristic

Finally, a third solution method is presented, taking into account the solution approaches that
have been applied to solve CSPP in previous studies. In a first step, a set covering problem is solved.
To calculate a solution, for the entire CSP-EVCSP, a heuristic is applied to supplement the solution
of the initial solution, and finally, the charging process is re-optimized using a commercial solver.

The set covering and charge-level heuristic approach is based on set covering problem. As
it is not possible to explicitly consider the SoC of vehicles in this type of problem formulation,
the resulting stations are used as a starting solution for a charging heuristic. The set covering
problem (SCP) is one of Karp (1972) 21 NP-complete problems. It assumes a finite set A and a
collection B of subsets s ∈ S. Each element of the set can be covered by at least one subset (Cormen
et al., 2017).

A =
⋃
S∈B

S (3.19)

The aim of the model is to determine the minimal number of subsets that cover every element in
the finite set A. The problem can be implemented as an integer optimization problem (Konjevod
et al., 2002). If the costs of adding a subset to the solution are equal for all subsets, the problem is
referenced as unweighted SCP, while the weighted SCP assumes varying costs over the subsets,
and the overall costs are minimized, as illustrated in Equations 3.20 to 3.22.

min
∑
b∈B

cbxb (3.20)∑
b∈B

yabxb ⩾ 1 ∀ a ∈ A (3.21)

xb ∈ {0, 1},b ∈ B (3.22)

In this model, xb is a binary variable that determines whether the subset b is considered in the
solution or not, while cb denotes the cost of including this subset in the solution. The parameter
yab is equal to one, if the subset b covers the element a. The Constraints 3.21 ensure that each
element a of the finite set A is covered by the solution.

SCPs can be found in several research fields and problem types (Cormode et al., 2010). For
example, Kritter et al. (2021) apply a SCP to optimize surveillance camera placement, while Li
and Huang (2014) optimize refueling station placement, and Hosseini and MirHassani (2015) use
a SCP in their capacitated recharge station location model with queueing. While Hosseini and
MirHassani (2015) apply a greedy heuristic to solve the model, several other algorithms have been
developed to solve the weighted and unweighted SCP (Bilal et al., 2013; Rosenbauer et al., 2020;
Wang et al., 2021b; Zhu, 2016).

In the application of the SCP in this thesis, it is assumed that the finite set A contains all profiles,
while the subset B represents the charging locations. yab is equal to 1 if a profile a is covered
by the subset (station) b. The cost cb of including a station (set) b in the solution can represent
infrastructure investments (e.g., the variable Cs in the model shown in Section 3.4). This can also
account for the amount of electricity a charging station can deliver or its potential profitability.

To solve this SCP, the algorithm developed by Zhu (2016) was applied. It combines a greedy
algorithm and the Lagrangian Relaxation Approximation Method. The author shows that the
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heuristic can solve test instances from Beasley’s OR Library (Beasley, 1990) efficiently and, on
average, can find an optimal solution for 99% of the SCP test instances in the library.

The initial solution to the SCP is not necessarily a feasible solution to the complete problem, as
the constraints related to the EVCSP are not considered (e.g., feasible values of SoC or restrictions
on simultaneous charging). Although all profiles may be covered by the calculated solution,
the available charging times may not be sufficient to meet the energy requirements of the BEVs.
Constraints 3.8 to 3.12 are not considered and can be violated by the solution of the SCP. Therefore,
two additional steps are necessary to verify the feasibility of the determined solution and restore
feasibility in cases where constraints of the EVCSP are violated.

The battery of a vehicle is discharged by mobility activities modeled through constraint 3.8. The
SoC may not drop below 0 or above Bmax. To ensure that the SCP solution can meet the charging
requirements of the vehicles, a validation check of the solution is conducted. To achieve this,
the battery is charged by the maximum possible value at each charging location given in the
solution of the SCP. If the battery of a vehicle cannot be sufficiently charged, when considering the
determined solution, the SCP is re-executed with modified cost factors. For infeasible profiles, the
charging places (b) currently intended in SCP solution are identified and the costs cb of the place
b, which does not adequately cover the charging requirements of the profile a, are increased. The
SCP is then solved again. This procedure is repeated until a feasible solution, to this part of the
problem, is found.

The solution calculated by the iterative application of the SCP allows simultaneous charging
of vehicles at one charging station and therefore can possibly violate the Constraints 3.12. To
consider this circumstance, the potential charging nodes determined by the SCP are added to the
preliminary solution set Y and passed to a charging heuristic.

The basic idea of this part of the algorithm (the charging heuristic) is to supplement the solution
set Y by additional stations to ensure that all of the EVCSP constraints, not considered in the SCP

are met. The heuristic tracks the SoC of each vehicle and the occupation of the charging stations. To
determine the order in which to check individual profiles, the urgency of a charge is determined
for each vehicle. For this purpose, the interval i is determined at which the SoC of each vehicle
(profile) would be depleted by mobility activities without charging. The profile with the earliest
interval i is considered to have the most urgent charging needs and is thus selected. The charging
activities of this profile are optimized until the interval of battery depletion i, adheres to the
charging constraints. This is achieved by considering all possible charging locations in the set Y
that are visited by the vehicle up to the interval i. If battery limitations are violated after charging
the vehicle at all possible stations in Y, all other stations that are visited (and are not in set Y)
are additionally considered. If multiple stations are visited, two parameters are used to select
from the potential stations. The first parameter is the fraction of the total charge required by
the profile that can be supplied by a charging station not in the set Y. If two stations have the
same fraction of charge they can supply to a vehicle, a second parameter is used as a reference,
that is, the charge that can be delivered to all other profiles over all intervals. The best station is
added to the solution set Y. If the charging requirements of a vehicle are met, the next urgent
profile/vehicle is considered. The selected intervals are saved for subsequent executions of this
part of the algorithm. The selected time intervals are discarded from the feasible set of charging
intervals for the stations for other profiles. These steps are repeated until the charge of all vehicles
has been met.
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The results of the algorithm present a feasible solution to the CSP-EVCSP. However, since variable
costs are not considered, the solution can be improved by solving only the EVCSP. To do so, the
cpls variable is set to 1 for the charging places determined by the SCP and heuristic (in the solution
set Y) while for any places not considered in Y, cpls is set to 0. As illustrated in Section 3.4.1.2,
this reduced problem can be solved in a fraction of the time compared to the complete CSP-EVCSP.

3.4.2.4 Evaluation of the identified solution strategies

The solution methods yield different results with respect to the computing time and the quality of
the results. Therefore, the methods are compared using a test instance regarding their computa-
tional time and solution quality. To evaluate the performance of the three solution approaches
presented, a test instance with 100 profiles, 35, 040 intervals and 600 different charging places was
solved using each strategy with respect to different parameters. The goal of these calculations is
to determine whether a solution strategy performs better with certain parameter configurations,
i.e, leading to a lower objective value.
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Figure 3.12: Calculation results for the different solution methods on exemplary test instances.

Figure 3.12 shows an overview of the station, charging, and total cost for five different solution
strategies. Furthermore, five different relations between the charging cost (βchlipOi) and the
station cost (β Cs) are differentiated and simulated by modifying the relationship between α β.
Station costs gradually decrease as β (the parameter multiplied with the station cost) decreases. If
β/α = 1, the station (one-off) costs are dominant in the total cost. If β/α = 0.2, the share of the
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volatile cost component of the total cost increases. The secondary ordinate axis represents the
share of the charging costs in relation to the total costs.

Communities of sizes two and five were created by applying the Clauset-Newman-Moore
algorithm and the greedy heuristic presented in the previous section. To evaluate the performance
of the algorithm, communities were also randomly generated (and the calculation results are
represented by the top tip of the triangle in Figure 3.12). The other three solutions strategies
assessed are the individual solution approach, and the solution by problem type approach,
with two different calculations of the charging cost: In one case, the costs are calculated under
consideration of the volatile charging profile (EVCSP), in the other case, the costs are not considered.
To assess the impact of neglecting this part of the optimization problem, charging costs are
calculated ex post according to the unoptimized charging pattern.

The results show that the base scheduling model minimizes total costs until the charging cost
accounts for approximately 16% of the total cost. If this value is exceeded, the SCO solution
method with a community (of size five) performs best. The communities generated using the
Clauset-Newman-Moore algorithm also reduce total costs by 2% - 6% for the communities of
size two and of size five, when comparing these costs with those achieved through randomized
communities. This advantage decreases with an increasing share of the charging costs of the total
costs. The problem instance with a community of size five cannot be solved to optimality in each
instance, which also leads to higher total costs. In general, the results suggest that the developed
solution strategies perform differently depending on the model configuration. For different model
configurations and costs of charging the vehicles and placing charging points one solution strategy
can lead to a lower overall objective value in comparison to the others.
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Figure 3.13 shows the calculation time of the different solution methods. For calculations with
different community sizes, it can be observed that the calculation time is on average longer for
a community size of 5 compared to a community of size 2. The SVOM strategy is faster than the
random community solution of size 2, however, the SCP solution is by far the fastest solution,
taking only about 500 seconds.

3.5 summary

This chapter provides an overview of the current scientific literature on the planning of EV charging
stations and the scheduling of EV charges. In contrast to previous approaches, in which the location
and charge scheduling of charging stations and vehicles are treated separately, an approach is
presented that allows for a concurrent consideration of both components in an optimization
model.

First, a mixed-integer linear optimization model is formulated that simultaneously minimizes
volatile charging costs and location costs. The model is then solved using the Gurobi solver.
A computational study shows that exact solutions using the solver are not possible for any
problem configuration and size. In particular, overlapping charging locations by several profiles
can lead to unsolvable problem instances. As these overlaps are an essential factor in the CSPP

and can significantly reduce the number of required charging station and to be able to consider a
representative number of profiles, three different solution strategies are developed and presented.
These strategies divide the overall problem in different ways into solvable sub-problems. The
first two constructive metaheuristic approaches iteratively solve the problem for single profiles
or groups of profiles, the third approach first minimizes the number of charging locations and
then adjusts the solution to satisfy all constraints of the mixed-integer optimization model. The
application of the three solution strategies to an exemplary data set shows that the quality of the
solution differs depending on the solution strategy. While the single vehicle optimization model
and successive community optimization identify good solutions for problems in which volatile
charging costs and OPEX dominate and the SCP and charge-level heuristic solution strategy leads
to better solutions in cases where location costs (e.g., CAPEX) dominate. In cases where the cost of
a charging point outweigh those for charging a vehicle, the SCP and charge level heuristic can be
expected to perform well, while for instances with low costs for placing charging points, the SCO

solution strategy should be preferred. Generally, a larger community size leads to a better objective
value. However, depending on the number of intersections between profiles, the community sizes
may be limited to 2-10 profiles if the model is to be solved optimally.

While the solution strategies in this chapter were applied to fictitious test instances, the next
chapter discusses how the required model parameters can be derived from real mobility and GIS

data and how variable costs and emissions can be estimated. In Chapter 5, the developed model
is used to plan the charging infrastructure and charging of EVs in the city of Essen with the help
of the solution strategies.



4 D E R I VAT I O N O F D R I V I N G A N D E L E C T R I C I T Y
PAT T E R N S

The decision on where to place a charging station can be based on various factors. A common
assumption is that locations with a high dwell time have the potential to provide more electricity
to vehicles and are therefore preferable from an economic perspective. Different approaches have
been used to model the mobility behavior of individuals in the scientific literature. The CSP-EVCSP

model developed in this thesis and presented in Chapter 3, requires geographically and temporally
resolved driving patterns that were obtained in a multi-step process, described in the following
section.

In addition to deciding where to place a charging station, the optimization model takes into
account the decision of when to charge a vehicle. This decision is based on several factors, such as
the location of the vehicle and the volatile charging costs. Charging costs are calculated on the
basis of an additional linear optimization model. The model is used to approximate current and
future energy generation patterns and calculate volatile prices and emissions, and is presented in
the second part of this chapter.

4.1 derivation of geographically and time-resolved driving
patterns

In this section, the derivation of time-resolved driving patterns is described. First, an overview
of existing studies and databases that have been used to generate mobility profiles for EVs is
presented, before a multi-step process for generating the required driving patterns is developed.

4.1.1 Existing approaches for the derivation of travel data

The travel data of individuals can be collected, aggregated, analyzed, and published in different
ways, depending on the intended use. For modeling the use of EVs Daina et al. (2017) classify
the current research by the resolution of the mobility data and the applied modeling techniques
used. Concerning the time resolution, they distinguish between annual mileage and daily pattern
models. The data used in annual mileage or vehicle ownership models are highly aggregated
over a yearly or longer time horizon. The resulting annual kilometers driven can be classified by
transport mode or vehicle characteristics and allow quantifying changes in the composition of the
vehicle fleet (Papu Carrone and Rich, 2021) or the relationship with other factors, for example,
the effects of the COVID-19 pandemic on mobility behavior (Bhaduri et al., 2020; Wu et al., 2021).
The results of these studies may be of interest to several decision makers. Car manufacturers can
use the data to quantify the changing interests of consumers, while energy companies can use
the data to forecast future energy consumption or the required energy mix in the mobility sector.

87
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For scenario planners, these studies can also help to assess the energy consumption attributed to
the transport sector when switching to an electricity-based power train (Quaschning, 2016) or to
estimate the general ecological impacts of the mobility sector (Rolim et al., 2012; Schwarzinger
et al., 2019).

Annual mileage models can support decisions on a longer time-scale; however, most decision
support models involving the coordination of the charging of EVs require a higher resolution.
Daily pattern models capture travel information on an hourly scale or even finer. The data are not
represented on an aggregated yearly scale as in the annual mileage models, but by individual
activities or trips. These models estimate travel behavior based on travel surveys or simulate
travel behavior within a city or in a geographic region. For example, Hartmann and Özdemir
(2011) use a national travel survey to create different travel schedules on an hourly basis. They
use this information to create different scenarios of the use of EVs and assess their impact on
the power grid. Waraich et al. (2013) apply an agent-based transport simulation to derive the
mobility pattern of EVs. This approach allows for a more detailed assessment of different types
of integration between the electricity system and the mobility sector. Only a limited number of
studies consider an interaction between charging behavior and travel patterns. Unlike the studies
by Döge et al. (2016), Kullman et al. (2021), and Soares et al. (2016), in most studies published
in the past no additional trips or detours are considered, for example, to accommodate different
characteristics, such as the lower range or charging times of EVs.

Table 4.1: Overview of national activity surveys in Germany.

KiD MiD REM MoP ZVE

Kraftfahrzeuge Mobilität in Regional Mobilitätspanel Zeitverwendungs-

in Deutschland Deutschland Eco Mobility Deutschland erhebung

Years 2002,2010 2002,2008,
2017

annually
since 2011

annually
since 1994

2012/2013

Vehicles(trips) 50,928
(117,377)

34,601
(193,290)

630 (91,422) 3,100 (70,000) 11,000
individuals

Trip Distances ✓ ✓ ✓ ✓

Trip Purpose ✓ ✓ ✓ ✓

Parking Location ✓ ✓

Vehicle Type private and com-
mercial

private commercial private private

BEV study Döge et al. (2016)
and Hacker et al.
(2015)

Hartmann and
Özdemir (2011)
and Linssen (2019)

Plötz et al. (2014) Gnann et al. (2012)
and Plötz et al.
(2014)

Nebel-Wenner et al.
(2019)

Due to the current early stage of market penetration and the limited diversity of BEVs no
systematic surveys for EVs are available for Germany at this stage. However, a selection of national
mobility and activity surveys is presented in Table 4.1. Data acquisition for these surveys has been
conducted for specific years and/or annually. The “Kraftfahrzeugverkehr in Deutschland” (KiD)
survey is conducted annually. The operators of commercial and private vehicle vehicles must
document all journeys they made on a specified day. Most of the travel data recorded corresponds
to commercial users. This survey has been used mainly to model the use of commercial EVs, for
example, in studies by Döge et al. (2016) and Hacker et al. (2015). The Mobility in Germany (ger.
Mobilität in Deutschland) (MiD) study is the most recent study conducted in Germany. Samweber
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et al. (2016) develop a methodology to generate coherent and, in terms of statistical totality, correct
annual driving profiles of individual EVs from the single-day driving profiles collected in the study
"Mobility in Germany 2008". The ’REM 2030 Fahrprofile’ documents the trips of 630 commercial
vehicles over a three-week period, which in total results in 91, 422 trips. However, the schedules
do not contain information on destinations and travel purposes. The ’Deutsches Mobilitätspanel’
(MoP) documents various types of mobility activities for private purposes regardless of the
underlying transport mode, and therefore, also documents walking trips or public transportation
trips. Every year, the mobility activities of 3, 100 individuals are documented for 7 days, resulting
in 70, 000 trips. Schedules contain not only information about travel distances, but also travel
purposes. Finally, the ’Zeitverwendungserhebung’ (engl. time use survey) (ZVE) has been conducted
three times in the years 1991/92, 2001/02, and 2012/13 by the German Federal Statistical Office. In
total, 5, 040 households and more than 11, 000 individuals participated in the survey (Statistisches
Bundesamt 2015). As the study provides not only travel information, but also the utilization of
household appliances, Blaufuß et al. (2019), Nebel-Wenner et al. (2019), and Reinhold et al. (2018)
used this data for empirical and synthetic load forecasts of user-dependent appliances, without
explicit consideration of driving profiles, as in the studies mentioned above.

4.1.2 Geographically and time resolved driving patterns

To build on the work documented in previous studies and to allow the creation of geographically
and time-resolved driving patterns, the developed process builds on the data of the “Zeitver-
wendungserhebung” (ZVE), and the database developed by Blaufuß et al. (2019), Nebel-Wenner
et al. (2019), and Reinhold et al. (2018). The process of generating these mobility profiles is
documented in the following sections. First, the general makeup of the database is presented.
The database is extended by assigning different types of location to activities. This information
enables the modeling of travel profiles by applying an algorithm. The daily vehicle movement
profiles generated in this way are assigned to geographic locations to create geographically and
time-resolved driving patterns.

4.1.2.1 Activity database

The developed multi-stage process relies on the activity database created in the research project
NEDS – Nachhaltige Energieversorgung Niedersachsen’ (Blaufuß et al., 2019). The activity database
created by Reinhold et al. (2018) shows 231 different activities of individuals throughout the day
with a resolution of 10 minutes. The authors clustered these data and conducted an exploratory
cluster analysis. The cluster analysis leads to three clusters for weekdays and six clusters for the
weekend. A more detailed analysis of each cluster can be found in Blaufuß et al. (2019). The 231
activities where assigned to 22 broad categories according to their similarity, e.g., work activities
(main occupation), work (part-time), work (main/part-time) are all assigned to the occupational
activities category.
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Figure 4.1: Exemplary depiction of three activity clusters, grouped by the 22 different activity categories,
based on the clusters and database developed by Reinhold et al. (2018).

Figure 4.1 shows the occurrence of the 22 different activity categories throughout the week or
a weekend day for Cluster 1 and Cluster 3. Cluster 1 is characterized by occupational activities
from 6 a.m. to approximately 7 p.m. on weekdays. The peak of mobility activities can be observed
shortly before the peak of the occupational activities, indicating that mobility activities end at
the workplace. Cluster 3 is characterized by television-related activities beginning at 8 p.m., with
shopping and childcare activities distributed throughout the day. The second cluster (not depicted
in Figure 4.1) can be characterized by a variety of qualification activities throughout the day.
For the six weekend clusters, all but Cluster 4 show the same frequency of television-related
activities in the evening hours with different activities such as shopping and TV (Cluster 1),
social life (Clusters 3 and 4), occupational activities (Cluster 6) or hobby, sports, games (Cluster 5)
throughout the day.
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To be able to assign a geographic location to each activity, the first six different locations
(home, work, university/school, shopping location, entertainment venue, authorities/places of
assembly) and two attributes (unknown, mobility) are added to the database. The 231 activities
are assigned to one of these six locations or the two attributes. If an assignment is ambiguous, it is
assigned the attribute unknown. If the activity constitutes a mobility activity, the mobility attribute
is assigned. As shown in Table 4.2, 45% of the activities are assigned to these two attributes. The
highest number of activities assigned to the locations Home followed by activities of the category
University/School.

Table 4.2: Overview of the location assignments

location Activities assigned location Share of location

attribute to location appearances appearances

Home 52 216, 832 46%

Mobility 41 51, 576 11%

Work 14 13, 541 3%

University/ School 28 9, 573 2%

Shopping
Location

3 11, 488 2%

Entertainment Venue 8 3, 537 1%

Authorities/
Places of assem-
bly

7 6, 072 1%

Unknown 78 158, 281 34%
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4.1.2.2 Generation of profiles

The activity data, attribute, and location assignments presented above are used as input for a
structured process to generate mobility profiles for weekdays and weekends. A mobility profile for
a year consists of 365 daily profiles that are generated successively. Each activity in the database
has a predefined start time and end time and can be assigned to a cluster, month, and weekday,
allowing to define daily subsets of activities over all activities in the database. After the definition
of the type of day (weekend1/weekday), month, and cluster, a profile can be defined for a single
day. The algorithm to achieve this is presented in the flow chart in Figure 4.2. The process has
several functions that are used to draw an activity from the subset of the database (GET: Activity),
save a feasible activity (SAVE), or keep track of the current stage and attributes of the generated
profile (UPDATE). In each step of the algorithm, the current time, location, and previous activity
are tracked.

The sequence to generate a daily driving profile starts by creating a subset of the database that
meets the month, the cluster and the type of day of the current position of the algorithm. The
algorithm successively concatenates activities to create the daily profile. To select a daily activity,
the subset of the database is filtered according to the current "temporal" position of the algorithm.
For example, for the first day in the year that is, the first execution of the algorithm, the start
time of the first activity is set to 00:00 a.m. As no previous activity has been extracted from the
database, the algorithm randomly selects an activity that meets the corresponding starting time
and adds it to the daily profile. The current "temporal" position of the profile is updated to the
time the selected activity ends and serves as the starting time for the next activity drawn from the
subset. To create a realistic mobility and travel profile, activities are selected according to a number
of predefined conditions and parameters. As each activity is assigned to one of six locations or
assigned the attribute mobility or unknown, this information can be used to influence the algorithm.
The main assumption of the algorithm is that the location of a profile can only change if a mobility
activity is conducted, otherwise the activity has to be located at the same location as the previous
activity. Two further parameters are used to shape mobility profiles. The parameter MaxTrips
restricts how many activities assigned to the mobility attribute can be considered by the algorithm
per day. The parameter MaxMobility restricts the total mobility time of a profile per day. If the
activity selected from the subset of the database is assigned the unknown attribute, the location of
the previous or following activity (if the previous activity is a mobility activity) is adopted. The
process continues until the end time of the last activity is greater than 00:00 a.m., that is part of
the next day. The end time of this activity and the respective activity are passed as the starting
activity for the next execution of the daily mobility generation algorithm presented in Figure 4.2.

1 Public holidays are treated as weekend days.
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Figure 4.2: Process for the generation of profile for a specific day and cluster type
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Figure 4.3 shows an exemplary result for a weekday profile in Cluster 1. Locations and mobility
activities are highlighted in different colors. As can be seen, location changes are connected by
mobility activities (marked pink). The location of the activity Fitness - dancing is ambiguous, and
therefore the unknown attribute is assigned. Consequently, the activity is assigned to the next
location, in this case a shopping location. In real life, this can mean that the place where this
activity is carried out is near or in a shopping center.

Sleep
TV
TV

Child care
Mobility main occupation

Fitness - dancing
Shopping

Main occupation / work
Mobility main occupation

Sleep
Sleep

Main occupation / work
Main occupation / work
Main occupation / work

Mobility main occupation

Mobility hobby

Figure 4.3: Exemplary activity profile for a weekday and cluster 1.

The resulting (average) trips per weekday and (average) driving time per day vary depending
on the selection of the parameters MaxMobility and MaxTrips. In Figure 4.4 the results of
multiple executions of the algorithm for varying weekdays and parameters MaxMobility and
MaxTrips are presented. The two figures on the left show the impact of the variation of the
parameter MaxTrips when setting MaxMobility at a value of 24 hours. The resulting travel
profiles can be compared with existing studies using metrics such as the average number of daily
trips, the average daily driving time, or the average kilometers of driving.
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Max Trips: 144

Max Mobility: 24h

Max Mobility: 24h

Figure 4.4: Effect of the variation of the parameter MaxMobility and MaxTrip to determine the effect on
average driving time and trips per day. Algorithm conducted for 365 days and 25 profiles.

As the activities in the database have a resolution of 10 minutes, the same applies to the
resolution of the total duration of the activities. However, the time convention considered in the
model is 15 minutes, since this is the standard in the German electricity market and many other
major markets around the world (IRENA, 2019c). Therefore, the following algorithm was applied
to approximate the 15 minute resolution of the profiles. The time conversion (algorithm 1) rounds
the obtained time intervals up or down to the nearest multiple of 15.

Algorithm 1 Time Conversion

1: for activity ∈ activityList do
2: tenMinuteInt← activityDuration.seconds/600
3: if tenMinuteInt/600 mod 2 = 0 then
4: fifteenMinuteInt← ⌊tenMinuteInt/1.5⌋
5: else
6: fifteenMinuteInt← ⌈tenMinuteInt/1.5⌉
7: end if
8: convertedActivityList← fifteenMinuteInt

9: end for
return convertedActivityList
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4.1.2.3 Geographically resolved mobility patterns

Finally, the generated activity profiles are assigned to real-world geographic locations. Various
data sources, such as census data, travel data, surveys, and simulations, have been used to spatially
locate charging stations (Pagany et al., 2019). To obtain a list of geographic places that can be
assigned to the locations of the mobility profiles, data from the OpenStreetMap database are used
(Haklay and Weber, 2008; Jokar Arsanjani et al., 2015). In April 2021, the database had 7, 423, 982
worldwide users and 8, 904, 999 relations. As of November 2022, the database has 9, 522, 245
users and 10, 428, 335 relations (OpenStreetMap, 2022). As the database is user-generated and
maintained, several studies have tried to quantify the quality of the data provided (Basiri et al.,
2019; Degrossi et al., 2018) with respect to the precision of the names assigned to places (Antoniou
et al., 2016), or points of interest (Jackson et al., 2013). The data quality has been shown to differ
between countries and mapped objects, with the map of Germany showing good data quality
(Barrington-Leigh and Millard-Ball, 2017). To further improve data quality, several methods have
been proposed (Basiri et al., 2019; Li et al., 2020).

The OSM data consist of elements, that is, relations, ways, and nodes used to model real word
objects. Elements can be assigned keys and values that describe the modeled object. Various tags
have been defined, while tags that use the keys building and amenity are the most important when
identifying locations (OpenStreetMap, 2021). To generate a list of possible geographic locations
and assign them to locations, the database is searched for all entries with the keys building and
amenity. The key building can have different values, such as apartments or detached (for detached
housing), while the key amenity has values such as a bar or library assigned to it. As presented in
Table 4.3, the identified values are assigned to one of the six activity locations in the mobility data.
For the derivation of potential charging locations, activity locations are assumed to be potential
charging locations with the possibility of constructing multiple charging points (one for each
profile) at the location.

The model considers the joint utilization of the charging infrastructure if two geographic
locations are within a specified distance from each other. To calculate the distance between two
locations, there are several distance measures. For example, the distances between two points
can be calculated using the Euclidean distance method, the Manhattan norm, or the Haversine

Table 4.3: Assignment of OpenStreetMap (OSM) attributes to activity locations.

Activity Location OSM: keys and values

Home apartment, detached

Work industrial, commercial, office

University/ School college, university, civic

Shopping/ Location retail, supermarket

Entertainment Venue
bar, biergarten, cafe, fast-food, pub, restaurant,

arts-centre, casino, cinema, nightclub, theater

Places of /Assembly government
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formula (Purbaningtyas and Arizal, 2019). To estimate the distance between the two locations of
the activities, and as has been done in other studies (Maria et al., 2020; Vial and Schmidt, 2019),
the Haversine formula is applied and the geographical distance calculated. The formula shown
in Equation 4.1 calculates the distance between two points on a sphere. To do so, it takes the
longitudinal (λi) and latitudinal (φi) values of the two points as the radiance and radius (r) of the
sphere (≈ 6, 371km mean radius of the Earth) (Wagner et al., 2013).

d1,2 = 2r arcsin

(√
sin2

(
φ2 −φ1

2

)
+ cosφ1 · cosφ2 · sin2

(
λ2 − λ1
2

))
(4.1)

The resulting activity profiles are geographically and temporally resolved and can be applied in
the model. Various further steps could be considered to improve the accuracy of the geographic
data, for instance, by ruling out no-parking zones or by considering the number of available
parking spaces or general parking area, and the set of potential parking solutions could be
reduced.

4.2 calculation of cost and emissions based on energy sce-
narios

The developed CSP-EVCSP considers one-time and time-dependent factors in the objective function.
These factors can be expressed in different units, such as costs or emissions. For historical years, it
is possible to use real-world electricity prices and energy generation to calculate emissions. For
future energy systems, the share of electricity generation based on renewable primary energy
is expected to change substantially, and therefore electricity generation patterns, emissions,
and prices of electricity generation can also change. These changes can be considered when
planning a future charging network. This consideration is possible using the developed CSP-EVCSP.
The integration of CSP-EVCSP into an existing energy system model is beyond the scope of this
thesis and would require a different solution approach to consider the interdependence between
these models. As cost and emission factors are only an input for CSP-EVCSP, a simplified linear
optimization model was used to approximate the prices of electricity and emissions. The model
takes advantage of the results of existing energy scenarios for Germany and calculates feasible
electricity generation and consumption patterns.

4.2.1 An overview of existing approaches to model energy systems

As highlighted in Section 2.1.4, in addition to the renewable expansion targets set by the German
government, several studies have published energy system scenarios for Germany with the aim of
presenting possible energy system pathways. Although the legislature provides guidelines for the
year 2030, no path to a fully renewable energy system is predefined until the year 2050. Several
factors influence the decisions in this context, including technological development. To model and
assess uncertainties, energy system analysis and scenario planning are often applied (Witt et al.,
2020). To improve understanding of the requirements and functionalities of a future energy system,
different energy system models are applied in energy system analysis (Cao et al., 2016; Möst and
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Fichtner, 2008). The results of these models can be used to support political decisions and differ
in the level of detail of the systematic illustration. Energy system models can be differentiated
according to their planning horizon (short- and medium- to long-term planning models) or their
level in the decision-making hierarchy (e.g., strategic, tactical, operational) (Möst and Fichtner,
2008; Ringkjøb et al., 2018; Subramanian et al., 2018).

Short-term models that support operational decisions consider a temporal scale of seconds to
hours and model the operation of power plant or plant components. By applying Computational
Fluid Dynamics or mass and energy balances, operational strategies are modeled and analyzed
(Grossmann et al., 1983). Medium-term models consider a scope of days to weeks, e.g., the
planning and scheduling of generation or production through the application of mathematical or
computational models. Finally, long-term models have a temporal scale of several years. These
models are applied to support strategic decisions, for example, for long-term energy forecasting,
energy policy support, or supply chain design. To support strategic decisions, top-down or bottom-
up models are applied. Macroeconomic top-down models have a high level of aggregation and
make use of readily available data, for example, in general equilibrium models (Van Regemorter
et al., 2013) or input-output models (Miller and Blair, 2009). Unlike top-down models, bottom-
up models have a higher level of technical detail and tend to be limited to the energy sector
(Subramanian et al., 2018). For example, electricity market models depict specific areas of the
energy system using simulation or optimization approaches. By providing a higher level of detail,
they can be used to model the energy system and to enhance the understanding of connections
within. Ringkjøb et al. (2018) present an overview of different modeling tools to analyze energy
and electrical systems. Energy system models with a long time horizon are difficult to validate,
and their results are highly sensitive to the assumptions made.

4.2.2 Derivation of electricity cost and emissions

There are several high-resolution electricity system models for modeling a (future) energy system
Misconel et al. (2022). An overview of bottom-up open source energy system models is collected
by Openmod (2022). Adapting open-source energy models (for example, the open energy system
model of Atabay (2017) or Glismann (2021)) would be beyond the scope of this thesis, as the main
focus is on the placement and scheduling of charging infrastructure, and flexible energy prices
are only considered as input to the model. To calculate representative costs, emissions, and energy
generation in quarter-hour resolution for specific energy systems, a linear optimization model
was implemented with the aim of scaling up or down past electricity generation and consumption
according to the values specified in energy scenarios to validate the developed CSP-EVCSP.

The linear optimization model for the approximation of electricity costs and emissions is based
on published energy system scenarios and the stipulated installed capacities, electricity generation,
as well as historical electricity generation and consumption patterns. Figure 4.5 shows the general
setup and components of the linear optimization model. The parameters and variables of the
model are shown in Tables 4.4 and 4.5.

For electricity generation, two types of technologies are distinguished. Uncontrollable renewable
electricity (based on wind and solar) and controllable generation. Uncontrollable electricity
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Table 4.4: Electricity system model: Parameters.

name description

t ∈ T Set of time intervals

e ∈ E Set of electricity generators

s ∈ S Set of different storage types

LCOEe LCOE per kWh for each power generator

ψp∪s Emissions per kWh for each power generator or
storage technology

Cs Capital expenses for storage type s and electricity
generators e

Get Electricity generation of volatile power plant e in
time interval t

Pmax
e ,Pmin

e Maximum and minimum power of power capac-
ity generator of type e

Kmax
s ,Kmin

s Maximum and minimum power capacity that can
be added to storage of type s

Bmax
s ,Bmin

s Maximum and minimum electrical energy that
can be stored by storage of type s

Le Total electricity generated by power generators of
type e over all intervals t

Ct Energy consumption in interval t

ηs Energy conversion efficiency of storage type s

ζe∪s Smoothing factor for power generated by genera-
tor e or stored and fed in by storage type s

Anorm
t Normalized value of the curtailed electricity at t
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generation is extrapolated from historical data of a base year (e.g., as published by SMARD (2022))
to the generation specified in the considered energy scenario.

This increased generation of electricity is passed to the model as a parameter (Get). The
generation of electricity by controllable power generators such as biomass and conventional power
generators is considered a variable (pet) that must be set for each interval (t) and technology (e).
The aim of the model is to find a feasible electricity generation pattern for controllable electricity
generators such that the demand for electricity (Ct) is met in every time interval t. The total
electricity generation of each controllable electricity generator must be equal to the value specified
in the scenario. In particular, in scenarios that consider a fully renewable electricity mix, electricity
generation can deviate from electricity demand, without the possibility to increase electricity
generation any further. Therefore, electricity storage (s+/−

st ) and the curtailment of generated
electricity (at) are considered. Imports (h+t ) and exports (h−t ) are only implicitly considered,
without modeling volatile prices or availability over time.

Historical Data
e.g. (SMARD/ENSTOE)

Electricity generation

Electricity consumption

Energy Scenarios

Installed capacity

Electricity consumption

Uncontrollable (Renewable)

Controllable generation

Storage

System characteristics

Results

Linear optimization
Model

import / exports

stored electricity

curtailed electricity

minimize

constraints

Technical constraints

generation =
generation scenario

2019
20XX

Scaled up

total generation + 
net imports + net storage 

– curtailed el. =  
el. consumption

Electricity generation

Storage utilization

Curtailed electricity

Expost calculation

Cost 

Emissions 

Emissions with curtailed 

Figure 4.5: Overview of the of the model components.

As the total electricity generation by each generation technology and consumption is specified
by the input data of an energy scenario, consideration of the electricity generation costs in the
objective function would not affect the solution, as the total electricity to be generated is predefined
by the values of existing scenarios. Instead, the objective function is formulated to minimize
the use of storage (sst), electricity export (h−t ), and curtailed electricity (at). To avoid electricity
curtailment, it is penalized in the objective function (Equation 4.2) by multiplying the cost factor
(big) M. It is therefore preferable to export or store electricity to the maximum available capacity,
i.e., to use the generated electricity efficiently.
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Table 4.5: Electricity system model: Decision variables.

name description

pe,t Generated electricity of power generator or type
e in time interval t

s−s,t Electricity stored in time interval t by storage
type s

s+s,t Electricity feed back to the power system in time
interval t by storage type s

h+t Electricity imported to the power system in time
interval t

h−t Electricity exported from the power system in
time interval t

at Electricity curtailed in time interval t

bs,t Storage level of storage type s at interval t

min
∑
t∈T

(h−t + atM+
∑
s∈S

s+st) (4.2)

Constraints 4.3 - 4.8 model the technical parameters of electricity generators or storage technologies,
as well as the general logical prerequisites. The total power that an electrical generator can provide
in each time interval t, is limited by constraints 4.4 and by the parameters Pmax

e and Pmin
e .

Furthermore, the total electricity generated over all time intervals is restricted by Constraints 4.3.∑
t∈T

pet = Le ∀e ∈ E (4.3)

Pmin
e ⩽ pet ⩽ P

max
e ∀e ∈ E (4.4)

For electricity storage, the electricity that can be added or drawn from an electricity storage system
(Kmin

s and Kmax
s ) is established by the constraints 4.5 to 4.6.

Kmin
s ⩽ S+st ⩽ K

max
s ∀s ∈ S (4.5)

Kmin
s ⩽ S−st ⩽ K

max
s ∀s ∈ S (4.6)

The smoothing factor ζe∪s can be defined to restrict fluctuations in electricity generation or storage
from one time interval to the next. Although strong fluctuations in the output of pumped hydro
storage can be cost-optimal in the model, they do not have to be so in reality. Furthermore, thermal
power stations, such as nuclear power plants, cannot arbitrarily increase or decrease their power
generation due to technical or economic constraints (IRENA, 2019d). Constraints 4.7 to 4.8 restrict
the power level of the following interval (t+ 1) to only deviate a fraction of the total available
power (Pe) of the generator.

pe(t+1) ⩽ pet + ζePe ∀e ∈ E, t ∈ T (4.7)

pe(t+1) ⩾ pet − ζePe ∀e ∈ E, t ∈ T (4.8)
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Finally, the constraints 4.9 and 4.10 restrict the values of the variables to meet the required
power consumption in each time interval. If insufficient power is available from volatile power
generators (Get) and all controllable generators (

∑
e∈E pet), additional electricity can be drawn

from electricity storage or imported. In contrast, if too much electricity is generated by volatile
power generators, excess electricity can be exported, stored, or curtailed (dumped). Constraints
4.10 stipulate that stored electrical energy increases or decreases when electricity is fed to the grid
or stored taking into account storage efficiency and minimum and maximum storage levels.

∑
e∈E

pet +
∑
e∈E

Get +
∑
s∈s

(s+st − s
−
st) + h

+
t − h−t − at = Ct ∀t ∈ T (4.9)

bs(t+1) = bst + s
−
t ηs − s

+
t ∀t ∈ T (4.10)

Bmin
s ⩽ bst ⩽ B

max
s ∀t ∈ T (4.11)

The model is implemented using the Python programming language (version 3.8.11) and solved
using the Gurobi Optimizer (version 9.5). The model calculates a feasible electricity generation
schedule, within the defined constraints. In addition, it provides information on the necessary
curtailment of electricity and the utilization of storage. To calculate volatile costs and emissions,
electricity generation costs are derived using the shares of electricity generated in each interval.
For the calculation of the electricity procurement cost, the levelized cost of energy (LCOE) are
used as a reference. The calculated electricity costs are intended to correspond to the volatility of
electricity generation and represent a projected wholesale market price. The detailed calculation is
presented in Equation 4.12. As imports and exports are only considered implicitly in the model,
without considering volatile electricity costs or availability in non-domestic markets, a fixed value
is assumed, and electricity imports and exports are valued with the average LCOE of the domestic
system, while curtailed electricity is valued with the maximum LCOE of all conventional (pet)
power generators in the system.

PWMP[t] =

∑
e∈E(petLCOEe +GetLCOEe) + h

+
t LCOEmean − h−t LCOEmean − atLCOEmax∑

e∈E(Get + pet) + h
+
t − h−t

(4.12)

To evaluate the degree to which the developed model can represent the volatility of real-word
electricity prices, it was used to calculate the electricity prices for the year 2019 ex post. As a basis,
the model uses information published in existing energy scenarios or data from the electricity
system, for example, published by governmental institutions such as the German Federal Network
Agency in their annual Monitoringbericht (Monitoring Report) (Bundesnetzagentur, 2020). A full
description of the input data used, such as the total power and energy capacity of the technologies,
is presented in Table 6.1 in the Appendix. The results are compared with the market data obtained
for the hourly wholesale market price (WMP) for the German electricity market (SMARD, 2022).2

Figure 4.6 shows projected wholesale market prices (PWMP), the prices calculated by the model,
and the emissions obtained. The volatility of the costs derived by the application of the model
is lower than those of the actual WMP. The visualization shows that the calculated PWMP cannot

2 Used reference price: Day-Ahead BZN|DE-LU traded at EPEX SPOT, EXAA or over the counter.
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predict the extreme price movements present in WMP, for example, at the end of January or in the
middle of April and June. This can be explained by the simplifications made; e.g., the model does
not consider strategic behavior, uncertainties, or variability in the cost of primary energy carriers
that can cause these price fluctuations. The calculated prices PWMP show an overall pattern similar
to the WMP. This is also confirmed by examining the statistical coefficients presented in Table 4.6.
The standard deviation of the costs calculated by the model is lower than the actual WMP for 2019.
This can be attributed to the above-mentioned extreme price deviations, which are not represented
by the model. The LCOE are given for newly constructed power generators and therefore can be
higher or lower than the costs currently incurred by the operating plants. The calculated PWMP

have a high correlation with WMP for the year 2019. The mean WMP is approximately half as high
as the calculated PWMP. As volatile electricity prices are included in CSP-EVCSP and are valued
against the one-time cost, the model price is corrected by the difference between WMP and PWMP.
When comparing the parameters presented in Table 4.6 with the values calculated in other studies
(for other years), they are within a similar range (Ladwig, 2018; Schubert, 2016). Unfortunately, no
values could be found for 2019, therefore, a direct comparison is not possible.

In addition to the time-dependent electricity cost, volatile emission factors are also calculated
for the generated electricity. Although the calculation of hourly emission factors is a relatively
new phenomenon in carbon accounting, research has pointed to the fact that it can be a more
exact way of quantifying emissions, compared to an annual summation of emissions (Miller et al.,
2022; Müller and Wörner, 2019). Other studies calculate marginal emission factors to assess the
environmental performance of electricity systems (Peters et al., 2022; Seckinger and Radgen, 2021).

Based on the electricity generation patterns, two emission factors are calculated:

• EMIS[t]: Average emissions of electricity generated and stored at time t (see Equation 4.13).

• EMISAt
[t]: Average emissions of electricity generated and stored, taking into account

curtailed electricity at time t (see Equation 4.14).

Both calculation schemes are similar to the one presented by Frommann and Divalentino (2012)
and Kono et al. (2017) and do not take into account the electricity trade balance, thus representing
a domestic emission factor. Different calculation schemes are possible for instance, Rüdisüli et al.
(2022) and Tranberg et al. (2019) assess how emissions can be traced in an interconnected electricity
system and highlight the importance of considering electricity imports and exports to quantify
greenhouse gas emissions. As this type of data was not openly accessible, domestic CO2e emissions
are calulated.

Equation 4.13 shows how the average hourly emissions are calculated. The calculation takes
into account the emissions from volatile power generators (Get) and flexible electricity generators
(pet) as well as electricity storage technologies (s+s,t). The CO2e emissions where calculated for the
year 2019 using Equation 4.13, the resulting average emissions (361.98 kg CO2e/MWh) are lower
than the average CO2e emissions found in other publications for this year (e.g., (UBA, 2021) 401
kg CO2e/MWh). This difference can be explained by differences in the calculation scheme (Miller
et al., 2022) or the simplified representation of the emission factors of the power generators.

EMIS[t] =

∑
e∈E(petψe +Getψe) +

∑
s∈S s

+
stψs∑

e∈E(pet +Get) +
∑

s∈S s
+
st

(4.13)
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Table 4.6: Statistical values for the normalized costs generated by the model and values of 2019.

mean standard median max min

deviation

e/MWh

WMP 37.66 15.51 38.06 121.46 -90.01

PWMP 62.37 11.77 64.0 87.28 26.6

(no mean correction)

PWMP 37.66 11.77 39.29 62.57 1.89

kg CO2e/MWh

EMIS 361.98 78.76 365.91 528.43 175.53

Correlation (WMP, PWMP) 81.24%

Mean Absolute Error 6.11 e/MWh

WMP, PWMP (mean corrected)

Root Mean Square Error 9.08 e/MWh

WMP, PWMP (mean corrected)

Figure 4.6: Comparison of the normalized cost of the year 2019 WMP and the cost calculated by the model
PWMP and the associated emissions (EMIS[t]).
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A second emission factor EMISAt
[t] was calculated to take into account the supply and demand

of electricity in the form of curtailed electricity at a given interval t. The optimal solution reduces
the curtailed electricity to the minimum required to obtain a feasible solution to the model. Shares
of curtailed electricity in a solution are necessary to retain feasibility and cannot be reduced any
further (e.g., by increasing exports and decreasing the generation of other power generators or
storage).

EMISAt
[t] =

∑
e∈E(petψe +Getψe) +

∑
s∈S s

+
stψs −A

norm
t EMIS[t]∑

e∈E(pet +Get) +
∑

s∈S s
+
st

(4.14)

Equation 4.14 takes the curtailment into account by subtracting a proportion of EMIS[t] from
each time interval t where the curtailment is conducted. To calculate the proportion of EMIS[t],
which is credited, the normalized value (Anorm

t ) of the curtailed electricity in each time interval is
considered. The curtailed electricity is normalized using a min-max normalization i.e., Anorm

t = 0

when the minimal amount of electricity is curtailed and Anorm
t = 1when at reaches the maximum

values.

Anorm
t =

At −Amin

Amax −Amin

By taking into account the normalized value of curtailed electricity, the emissions factor used in
the objective function of an optimization model can be used to incentivize electricity consumption
during periods of oversupply. This is because the emissions factor is multiplied by the amount
of electricity used in each time-step, and curtailed electricity is subtracted from the emissions
associated with the generated and stored electricity. This means that the emissions factor will have
less of an impact on the objective function during periods of oversupply, creating an incentive for
electricity consumers to increase their consumption during these times. If the maximum amount
of electricity is curtailed, the emissions will be zero, reflecting the fact that curtailed electricity
does not contribute to emissions. Conversely, if there is no curtailment, there will be no reduction
in emissions. Therefore, the emissions factor can be seen as representing an incentive to utilize
curtailed electricity, as the more electricity is curtailed in an interval, the lower the emissions and
the higher the incentive to utilize electricity in that interval.

4.3 summary

This chapter presents a summary of the current state of the art in determining site-specific activity
profiles. Most of the existing approaches are based on surveys and mobility studies. The most
comprehensive and often referenced study is the "Mobility in Germany MiD" survey. These studies
indicate that the derivation of real-world mobility profiles for BEVs is impeded by the comparably
low diffusion of these vehicles in Germany, as well as by data protection issues.

To overcome these data acquisition problems and to test the CSP-EVCSP and developed solution
approaches, synthetic mobility profiles were generated. Based on the work of Reinhold et al. (2018)
and on the basis of open source geographical data, a process is developed to generate temporally
and geographically resolved mobility profiles for arbitrary geographic regions.
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Due to the focus of the thesis and for testing the CSP-EVCSP, a simplified model for the derivation
of future electricity generation based on a linear optimization model was presented in the second
section of this chapter. An ex post calculation of the model is conducted for the year 2019.
Electricity prices and emissions generated by the model are found to be consistent with the
real-world values to a reasonable degree.

The developed methods are applied in the following chapter to derive mobility patterns for
Essen, Germany, and electricity generation patterns, quarter-hourly emissions and costs for
Germany for different years. Based on these temporally and geographically resolved activity
patterns and different energy costs, the planning of the charging infrastructure in the city of Essen
is optimized and the results are presented.



5 A C A S E S T U DY O N O P T I M I Z I N G E V C H A R G I N G
N E T W O R K S B A S E D O N E L E C T R I C I T Y P R I C E S
A N D E M I S S I O N S

In this chapter, the developed charging station placement and electric vehicle charge scheduling
problem (CSP-EVCSP) is applied to optimize the charging infrastructure and charging of EVs in
the city of Essen. The purpose of the case study is to answer the question of how the developed
model can support real-world decision making and assist in locating EV charging stations while
considering the charging process of BEVs. Furthermore, the evaluation aims to show how different
configurations of the electrical system and the objective of decision makers can influence the
decision-making process, the resulting infrastructure configurations, and the charging of EVs.
Four different configurations of the electricity system are considered, based on the mix of energy
generation presented by the scenario Klimaneutrales Deutschland 2045 (Prognos AG et al., 2021).
The electricity mix is modeled for four exemplary years (2019, 2025, 2035, 2045) by applying the
optimization model developed in Section 4.2. Using the resulting shares of electricity generation,
electricity prices, and CO2e emissions are calculated subsequently and used as input parameters
for the objective function of the model. The objective function distinguishes between a fixed
component (emissions or expenses associated with the investment in the infrastructure) and a
variable component (costs or emissions associated with charged electricity). As highlighted in
Section 2.1, the distribution between fixed and volatile components can deviate for the costs (fixed
expenses dominate, in contrast to the procurement cost) and CO2e emissions (emissions from
the charged electricity are greater than the emissions related to the production and construction
of the charging infrastructure). This circumstance also requires the application of two different
solution approaches. The model also incorporates the possibility to consider joint use of the
charging infrastructure. Therefore, the exemplary application is restricted to a fixed geographical
location, the city of Essen, Germany. The changes of electricity prices and CO2e emissions and
their impact on the optimization problem and its results, are viewed from two perspectives.
First, the charging infrastructure expansion of a charging point operator (CPO) within the city
of Essen, with the objective of cost minimization and second, the ecological assessment for
minimizing CO2e emissions. To present the case study and the results, this chapter is structured as
presented in Figure 5.1. First, the mobility data is derived using the process described in Section
4.1.2.2, thereafter different energy system configurations and resulting electricity prices and CO2e

emissions are derived using the application of the linear optimization model presented in Section
4.2.2. The data derived in this way are used in the optimization model to minimize expenses and
CO2e emissions, and enable a combined assessment of both factors. To highlight the effects of the
different solution strategies and parameter configurations, seven different cases are presented and
analyzed. Finally, an assessment of the results, a summary, and outlook are given.
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Figure 5.1: Structure and contents of the case study.

5.1 mobility user and vehicle parameters

Essen is located in the Ruhr region and is the fourth largest city in North Rhine-Westphalia with
582, 760 inhabitants in 2019. Essen’s electrical grid is owned by Westnetz GmbH, but operated
jointly by Stadtwerke Essen and Westnetz GmbH. As part of the Rhine-Ruhr metropolitan region in
Germany, Essen is connected to other cities in the region by a dense road network. The main mode
of transportation is by private automobile (52% of all trips) (Melkonyan et al., 2020; Schwarze
et al., 2017). Essen is one of the urban centers of the region with a high proportion of commuters.
As the analysis of Volgmann (2014) shows, employees commute between metropolitan areas of
the region, and in general, commute distances have increased in recent years.



5.1 mobility user and vehicle parameters 109

Locations

Fast charging stations

Allego GmbH

Electric charging station

Allego installed

Innogy/ Westenergie
installed

On Charge installed

Santander installed

Planned

Grid (200m-grid squares)
Grid squares without charging
poimt
Grid squares with existing
charging point

City area

City area

Grid

Grid (1000m-grid squares)

Figure 5.2: Current “grid-approach” and expansion of the charging infrastructure in the city of Essen
(Stadt Essen, 2022a).

There are currently 518 charging points in Essen, 65% of which are public and 35% semipublic.
They are operated by different private CPOs. The current expansion of the charging infrastructure
in the city is influenced by the municipal administration (Stadt Essen, 2022b). To regulate the
expansion of the charging infrastructure, a so-called ’grid approach’ is applied. The approach
shown in Figure 5.2 covers the city in quadrilaterals with a length of 200 m. The resulting grid is
used as a basis for charging infrastructure planning activities. For each quadrilateral, a special use
permit can be granted for the installation of up to two charging points. The approach stipulates
that additional charging stations will only be approved in a square once a certain utilization limit
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of existing charging stations has been reached. As can be seen in Figure 5.2, there are currently
four CPOs who operate the charging infrastructure within the city. Four CPOs operate normal
charging points, while Allego GmbH also operates fast charging points.

To derive the temporally and geographically resolved driving patterns, the process presented
in Section 4.1.2 is applied. For the application of the process, several case-specific parameters
related to the generation of activity profiles are required. The algorithm requires the selection of a
cluster, maximum mobility time per day, and maximum trips per day. For the exemplary application
of the developed model, Cluster 1 was selected, representing a cluster that corresponds to a
full-time employee (Reinhold et al., 2018). All mobility activities in the profile are assumed to
be carried out using a BEV. For the parameters mobility time per day and max trips per day, the
information published in the study MiD is used as reference (Infas, 2019a). In the MiD study, there
is a differentiation between different regional types. In the greatest aggregation of two regional
types, the "urban" and "rural" regions are distinguished. The data for an urban region are taken as
a reference. To accommodate the higher number of commuters, the value of maximum mobility
time per day was allowed to be 10% higher than the value provided in the study MiD for Germany.
500 different profiles were generated for the case study. The resulting parameters of the generated
data, that is, trips per day and driving time, are shown in Table 5.1 along with the data published
in the study MiD.

Table 5.1: Comparison of mobility data

Trips driving time MiD trips MiD driving time

per day in minutes per day in minutes

Monday 1.96 51.06 2.00 44.50

Tuesday 1.96 51.63 2.10 54.70

Wednesday 1.97 50.13 2.10 48.80

Thursday 1, 94 51.15 2.00 46.40

Friday 1.95 50.11 2.20 57.80

Saturday 1.60 50.13 1.50 35.40

Sunday 1.63 49.90 1.00 32.80

Average 1.86 50.59 1.84 45.77

Sum 13.00 354.11 12.90 320.40
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Figure 5.3: Aggregated values for 500 profiles from cluster 1.

Figure 5.3 shows an aggregated view of the 500 yearly profiles of the cluster 1. As can be seen,
vehicles are parked at home most of the time. Throughout the week, the second most visited
location is the workplace, where on average a vehicle is parked for 8 hours and 25 minutes.

A more aggregated view of the activities is shown in Figure 5.4, where the activities are averaged
by type of day (weekend / weekday) and for each hour. To allow for a more detailed evaluation,
the location home is excluded from this graph. During the week, the profiles are characterized
by a peak of mobility activities at 6:30 a.m. with an average of 19.9% of all activities falling into
this category, the proportion of activities located at the workplace increases subsequently to a
maximum of 81.9% of all activities at 10:15 a.m. The utilization of this location continuously
decreases throughout the rest of the day, dropping below a share of 50% at 04:30 p.m. Most
activities that can be assigned to places that do not fall into the home or work category are carried
out during the week from 05:00p.m. to 05:30p.m., with activities assigned to shopping locations
making up the highest share of 7.9% of all activities. On weekends, activities outside the home on
average start after 8:30 a.m. reaching their maximum 12:15 p.m. to 3:45 p.m. where activities can
be assigned to shopping locations (9.3%) followed by places of assembly (5.0%) and entertainment
venues (4.6%).
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Figure 5.4: Activity locations for 500 vehicles generated from Cluster 1 aggregated by type of day and
hour. For a better representation, the location home is excluded in this graph.

Mobility activities directly influence how many kilometers a car covers per day and year and
for BEVs the corresponding required electricity. To calculate the kilometers covered, the average
driving speed published in the study MiD for the urban region is considered. The study calculated
an average driving distance of 29.4 km per day. In addition to the average driving time of 45.9
minutes, the average driving speed for the study MiD is equivalent to 38.43 km/h for urban areas.
This leads to an annual driving distance of 10, 731 km in the study MiD and 11, 889 km for the
mobility profiles generated. Taking into account the high share of commuters in the city, the 10%
higher annual mobility is considered reasonable. The electricity required for mobility activities is
set at 19kWh/100km, which leads to an average electricity requirement of 2, 259kW/a for each
mobility profile. The usable battery capacity considered is 65 kWh.

To link driving patterns with geographic charging locations, data were obtained from OSM for
Essen and assigned to one of the six activity categories. The resulting locations are shown in Figure
5.5. In total, more than 150, 000 building objects were extracted from OSM using the attributes
presented in Section 4.3. A total of 156, 514 different buildings and their respective locations can
be assigned to homes, 739 to work sites, 41 to education centers, 276 to shopping sites, 1259 to
authorities, and 23 to entertainment centers. For each activity category, the corresponding places
are randomly assigned one of the extracted OSM locations.
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Figure 5.5: Locations extracted from OSM for the city of Essen, Germany.

To identify intersections between places, an intersection radius must be defined. Within the
model, this value can be changed for each potential charging location or depending on the
duration of the activity carried out. The maximum distance to walk from an activity location to a
parking location was analyzed in several studies (Adenaw and Krapf, 2022; Waerden et al., 2017).
Among other parameters, such as the cost of parking or the maximum possible parking duration,
the distance to the final destination was shown to influence the choice of parking (Khaliq et al.,
2018). A study by Waerden et al. (2017) for the city of Eindhoven with the aim of investigating the
willingness of car drivers to walk between a parking location and the final destination showed that
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the maximum distance people are willing to walk also depends on the type of activity carried out.
In cities, a distance below 500 m is preferred. For activities carried out very frequently, participants
prefer a distance below 50 m (Waerden et al., 2017). As no clear values could be identified for each
type of location defined in this study and several other factors affect the walking distance, which
are not included in the model, a value of 250 m is uniformly considered for all locations in the
case study. The selected locations are visualized in Figure 5.6, highlighting the different types of
location with different colors.

Home

Work

University/
School

Shopping

Entertainment 

N
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500
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396

23
Places of
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radius: 250m

Figure 5.6: Possible charging locations for the city of Essen for 500 profiles and a radius of 250 m.
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5.2 electricity system scenarios

The calculation of emissions and costs is based on the energy systems described in the Klimaneu-
trales Deutschland 2045 study (Prognos AG et al., 2021), which presents a German energy system
in the year 2045 that is carbon neutral. The study takes into account all sectors, as well as energy
imports and exports. Figure 5.7 presents the installed renewable power generation capacity and
the net renewable power generation for the six years calculated in the study. For the case study,
the year 2019 is used as a reference year, and the energy mix for the years 2025, 2035, and 2045 is
considered as presented in that study.
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Figure 5.7: Installed renewable capacity and renewable net power generation in the Klimaneutrales Deutsch-
land 2045 scenarios (Prognos AG et al., 2021).

The following mix of electricity generation was calculated by applying the linear optimization
model presented in Section 4.2.2. The values required as input for the model, such as maximum
generation capacities, maximum power, minimum or maximum load, are documented in the
appendix (Table 6.1) and by the openly available values of the original study. For values that have
not been published by the authors, other literature values were considered and are referenced.
For 2019, the values published by the federal network agency in Monitoringbericht 2020 and other
sources were used to supplement the study data (for 2018) Klimaneutrales Deutschland 2045. As a
reference for the remaining years, the study values were used. The resulting electricity generation,
consumption, energy imports and exports, as well as curtailed electricity can be found in Table
5.2. To simplify and improve the presentation and allow comparability between years, the same
sequence of weekdays and holidays is assumed for the years 2025, 2035 and 2045 as in 2019.
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Figure 5.8: Representative summer week in every scenario year.
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Figure 5.9: Representative winter week in every scenario year.

The expansion of renewable energy, the reduction of the capacity of conventional power plants,
and the net generation of electricity are assumed according to the values documented in Figure
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5.7 and for non-renewable generators, as documented in the study (Prognos AG et al., 2021). To
illustrate the results of the model, Figures 5.8 and 5.9 show a summer and a winter week in the
year 2019, 2025, 2035, and 2045.

Table 5.2: Total generation and consumption calculated by the model.

2019 2025 2035 2045

Wind Onshore 99.88TWh 118.40TWh 199.37TWh 308.74TWh

Wind Offshore 24.39TWh 37.40TWh 151.16TWh 252.38TWh

Photovoltaic 41.92TWh 85.80TWh 216.13TWh 354.88TWh

Hydrogen - - 22.00TWh 60.00TWh

Hydropower 15.83TWh 20.70TWh 20.67TWh 20.67TWh

Biomass 40.39TWh 43.70TWh 27.61TWh 10.13TWh

Conventional and other 289.67TWh 232.70TWh 127.00TWh 2.00TWh

Import 43.45TWh 20.17TWh 55.24TWh 137.18TWh

Export 76.78TWh 5.53TWh 54.62TWh 111.48TWh

Curtailed 4.31TWh 0.23TWh 19.34TWh 49.15TWh

Electricity Consumption 467.50TWh 553.10TWh 745.05TWh 986.37TWh

Renewable energy generation made up 43% of total electricity generation in 2019, which
gradually increases to 100% by 2045. As can be observed in Figures 5.8 and 5.9, until 2035
conventional power generators still provide most of the base load. In 2025, 50% conventional
power generators use hard and lignite coal, while the remaining electricity from conventional
energy is provided by natural gas electricity generators. From 2019 to 2045, electricity consumption
more than doubles. Although Germany was a net electricity exporter in 2019, it is assumed that
electricity imports increase until 2045, making Germany a net electricity importer in the years
2025, 2035 and 2045.

The combined electric power of all energy generators reached a peak generation of 85.61GW
for the calculation of 2019. The highest power is provided by onshore wind power generators
(40.32GW), followed by photovoltaics with 30.03GW. Wind onshore also contributes the second
highest mean power capacity in the year 2019 with 11.40GW, and only plants powered by natural
gas exceed this value with 11.73GW. The highest amount of electricity curtailed per hour is
6.95GWh. The highest amount of electricity imported in the course of one hour is 15.49GWh,
while the maximum exported electricity is equal to 21.81GWh.

For 2025, the electricity generated by renewable energy generators increases and represents
57%. Due to restrictions on the total generation of electricity per technology, conventional power
generation is shifted from nuclear and lignite and anthracite coal-based electricity generation
to natural gas-based generation, which constitutes 49% of the total generation of electricity in
2025. The peak electric power of all electric generators is provided by photovoltaics (61.47GW),
followed by wind onshore (47.80GW). Although the total curtailed electricity is reduced to less
than 1TWh, the maximum curtailed electricity within one hour increases to 4.79GWh.
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In 2035, all conventional power generators except natural gas are phased out in the Klimaneutrales
Deutschland 2045 study. Consequently, only 17% of electricity is generated from conventional
sources; however, as electricity consumption increases to 745.05TWh, the total electricity generated
from natural gas increases by 14TWh compared to 2025. The peak photovoltaic power generation
capacity more than doubles to 154.84GW, and the peak offshore wind generation increases more
than three times to 42.65GW. The maximum amount of electricity curtailed in a one-hour interval
increases to 95.26GWh.

In 2045, the maximum power of renewable generators increases to 124.64GW for wind onshore,
71.21GW for wind offshore, and 254.23GW for photovoltaics. The maximum electricity generated
in a one-hour interval increases to 173GWh. Hydrogen is considered a replacement for natural
gas power plants starting in 2035 and is not modeled as energy storage, but rather as a power
generator in the model as also done in the Klimaneutrales Deutschland 2045 study.

In terms of the seasonal difference between electricity generation, the patterns visible in Figures
5.8 and 5.9 are representative of the differences between seasons. In general, 66% of photovoltaic
electricity is generated in spring and summer. Although photovoltaic power generators in 2019
only contribute 13% of total power generation in spring and summer, they contribute 44% in 2035
and 53% in 2045. As is to be expected after considering Figure 5.9, in the autumn and winter
months, photovoltaics contribute only 5% in 2025 and 21% in 2045. In these months, electricity
generation is heavily dominated by offshore and onshore wind power plants, which contribute
63% of total electricity generation in the fall and 74% in the winter of the year 2045. The pattern
of electricity imports remains largely unchanged in the scenarios, with most of the electricity
imports occurring in the winter and fall months (61%), and the exports are relatively evenly
distributed throughout the year. While in 2019 more electricity is curtailed in the fall and winter
(58% of curtailed electricity), this is shifted to the summer and spring in the years 2025, 2035, 2045
(76%-93% of curtailed electricity). The generation of electricity by hydrogen fuel cells, which is
only considered in the years 2035 and 2045, is mainly used in the winter months (36%-40%).

The electricity prices and CO2e emissions are calculated according to Equations 4.12 and 4.13

and using the LCOE and CO2e emission factors presented in Table 6.1 in the appendix. The mean
correction factor calculated for the year 2019 is applied to the prices calculated for each year.

Figure 5.10 shows the aggregated results for the summer and winter months. For the base year
(2019), the values are presented in Table 4.6. Detailed statistical values for each season can be found
in Table 6.2 for the cost and Table 6.3 for emissions in the appendix. The mean electricity prices
vary over the four considered years. Costs increase from 37.66e/MWh in 2019 to 57.34e/MWh in
2025 and decrease to 37.55 e/MWh in 2045. Although, the mean costs are similar over the seasons
in 2019 and 2025, seasonal differences increase in 2045 and the average summer and spring prices
are 12.65 to 15.07 e/MWh lower than in autumn/winter. As can be seen in Figure 5.10, the overall
volatility of prices increases from 2019 to 2045. The standard deviation in 2019 is equal to 11.8
e/MWh, increases to 14.18 e/MWh in 2025, 28.51 e/MWh in 2035, and reaches its maximum
value in 2045 with a standard deviation of 37.56 e/MWh. The price range in 2019 is between 1.08
e/MWh and 62.72e/MWh and continuously increases to values of -84.06 e/MWh and 147.52
e/MWh by 2045. Negative prices can be mainly attributed to increases in curtailed electricity,
especially during the middle of the day, while increasing costs are caused by increased electricity
imports and electricity generation by hydrogen power plants.
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As highlighted in Section 2.1.1.4, negative prices can occur in situations of oversupply, when
the marginal generator would prefer to pay a price rather than reduce its output (Seel et al.,
2021). Several factors can induce this situation Bajwa and Cavicchi (2017) and other studies have
also shown that with the current market scheme, the occurrence of negative prices and volatility
of prices (e.g., measured using the standard deviation) could increase with higher shares of
renewables in the electricity mix (Winkler et al., 2016). However, as these studies also suggest,
restructuring or redesigning electricity markets and subsidies for renewable power generators
could reduce these effects. This effect is not considered in the calculation of electricity prices and
emissions.
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Figure 5.10: Cost and CO2e emissions for a summer and winter week in every calculated year. The solid
line represents mean, while the shaded area represents a 95% confidence interval of all values
within the respective season. CO2e emissions are shown under consideration of curtailed
electricity (Equation 4.14). The confidence interval is not plotted for the cost graph in the
winter, to allow for a better representation.

The time-bound CO2e emissions were calculated according to Equations 4.13, without the consid-
eration of electricity curtailment (EMIS[t]) and according to Equation 4.14 with the consideration
of curtailed electricity (EMISAt

[t]). In contrast to the electricity prices, the average CO2e decrease
from 2019 until the year 2045 for both indicators by 90.6%-90.8% and CO2e/MWh reach a value
of 32.05 - 33.26 kg CO2e/MWh in 2045. Generally, average emissions per MWh are lower in
the autumn and winter months, due to a higher share of wind onshore and offshore electricity
generation, which has the lowest CO2e emissions of all considered technologies. Starting from
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the year 2019, the minimum emissions CO2e/MWh (in a time interval) decrease constantly in the
years 2025, 2035 and 2045. The standard deviation of the emission values increases until 2035
and decreases significantly in the year 2045 as carbon-intensive conventional power generators
are no longer part of the energy mix. These effects can be observed for both emission factors
(EMIS[t] and EMISAt

[t]). The pattern of the average CO2e/MWh emissions do not differ between
the seasons for both emission factors. However, curtailed electricity has an effect on the time
the minimum emissions occur. While these occur in the winter months when no curtailment is
considered, they occur in the spring when it is considered.

In general, the calculated emissions and costs show a distinct pattern. The mean emissions
decrease until 2045; however, the mean costs remain similar to the values calculated for 2019.
The emission range is lowest in 2045, whereas the price range is highest in this year. Controlled
charging is most effective if high fluctuations in prices or emissions can be exploited.

The two emission factors also show a deviating pattern. When curtailing electricity is considered
(EMISAt

[t]), the emissions during the day are lower, while they are lower at night and in the
evening when curtailing electricity is not considered (EMIS[t]). To explore these discrepancies, the
cost and emission factors will be used as input and the resulting charging patterns and charging
network configurations will be analyzed.

5.3 optimized placement and scheduling of ev charging sta-
tions under economic considerations

After the preparation and derivation of temporally and geographically distributed driving profiles
and electricity data, this section presents the results of the CSP-EVCSP. The general results and
economic evaluation for a charging point operator are presented, before presenting the results of
the emissions reduction in the next section.

The simplified decision problem represents a greenfield expansion problem. 500 vehicles and
their mobility profile are considered over a period of one year (35, 040 intervals of 15 minutes).
This number of vehicles allows to efficiently solve the CSP-EVCSP and to efficiently assess different
cases over the four considered years. Moreover, other studies have indicated that this number
of vehicles can provide a sufficient trading volume for the intraday or day-ahead market and
results may therefore be suitable for a more detailed analysis in other studies (IRENA, 2019b;
Kempton et al., 2001). Vehicles are assumed to park only in publicly accessible locations. The case
study therefore optimizes the on-street parking situation within the city of Essen. The charging
requirements for all vehicles must be met for all vehicles at all times. A charging point can supply
only one vehicle at a time; however, several charging points can be considered at each location.
The aim of the decision maker, the CPO, is to minimize the total cost of the charging infrastructure
while meeting the charging demand of all vehicles. The total expenses are made up of OPEX,
CAPEX, and the cost of electricity procurement. The calculation is carried out for the period of one
year. To make expenses comparable to the cost of electricity procurement, CAPEX are annualized
using the annuity factor (see Equation 2.3). The weighted average cost of capital (WACC) are used
for the cost of capital (WACC = 6%). Two types of stations are considered, with a capacity of 11 kw
and 22kw. With annualized total expenses of e660 per year for a charging point of 11kW and
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e1, 051 for a charging point of 22kW. The WMP are equal to the costs calculated using Equation
4.12 (PWMP) and as presented in Figure 4.6. As the annualized operating expenses of the charging
infrastructure currently outweigh the cost of PWMP and their potential reduction through the
coordinated charging process, the SCP and charge level heuristic solution approach is applied to this
problem following the analysis presented in Section 3.4.2.4 on page 84. To assess the impact of the
controlled charging strategy, three different cases are differentiated.

Table 5.3: Overview of the considered cost minimization cases.

Problem Case 1: Case 2: Case 3:

CSP-EVCSP Full coverage Uncontrolled

One-off cost CAPEX, OPEX none CAPEX, OPEX

Variable cost PWMP PWMP none

Problem type CSP-EVCSP EVCSP CSPP

Solution method SCP, heuristic exact charging SCP, heuristic

and exact charging

Table 5.3 presents an overview of the main prerequisites of the three cases.

• Case 1: CSP-EVCSP (min cost)

The CSP-EVCSP charging case with total cost minimization applies the SCP and charge level heuristic
solution approach. In this approach, a charging network configuration is first calculated that
minimizes the number of charging points while adhering to the constraints of the optimization
model (that is, SoC of the vehicle must be considered, and only a single vehicle can charge at
a charging point in each time interval). In the second step, the resulting configuration of the
charging network is treated as a EVCSP that minimizes the cost of electricity procurement while
considering only the charging solution obtained in the first step.

• Case 2: Full coverage controlled charging (11 kW)

The full coverage and uncontrolled charging approaches are used as a reference to the case of
the optimized charging infrastructure (Case 1). The full coverage (11 kW) solution assumes that
charging is possible whenever the vehicle is parked. It is a best-case for the EVCSP, minimizing
only the cost of electricity procurement.

• Case 3: Uncontrolled charging

In the uncontrolled charging case, the charging network is optimized as a CSPP, through the
application of the SCP + charge level heuristic. The resulting charging network is the same as in
Case 1. However, the PWMPs are not considered and there is no incentive to control charging. The
charging pattern for this strategy is uncontrolled and remains the same over all examined years
and only meets the constraints specified by the CSP-EVCSP.
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Figure 5.11: Result of the set covering problem (SCP) and charging heuristic. The left side shows only the
selected charging points, while the right side of the figure also highlights the charging points
within a radius of 250 m of the selected locations. In both figures, all possible charging points
that are not part of the calculated solution are depicted in light gray.

The application of the SCP algorithm finds that a minimum number of 113 locations is sufficient
to cover all vehicle charging requirements. After applying the charging heuristic that considers the
required electricity in each interval and the exclusion of simultaneous charging, the final number
of stations that results in a feasible scheduling solution is 118 charging points. The total annual
expenses of the 118 charging points with a capacity 11kW are equal to e77, 880 per year and
e124, 018 per year if 22kW charging points are considered. The resulting charging network is
shown in Figure 5.11. As highlighted by the different colors in Figure 5.11 and summarized in
Table 5.4, the selected charging points can be assigned to different types of locations. Most of the
selected charging points are added at work (44) and near home locations (43).

The overall solution covers 776 of the 1, 781 possible locations and 1, 245 of the 3, 000 potential
charging points.1 Assuming that any vehicle parking within 250 m of a charging point is covered by
it, it is possible to calculate the total surface area of the city that is covered by the charging network.
12% of the city (25, 518, 756 m2) is covered by at least one charging point, while 1, 970, 179 m2 are
covered by multiple charging points.

Figure 5.12 shows the average charging capacity of the 500 vehicles and 118 (11 kW) charging
points, available throughout the day, on weekends and on weekdays. The capacity at a charging

1 More charging points than locations are covered, as several charging points can be assigned to one location, as for
instance for workplace locations or especially for places of assembly, where the 500 profiles are assigned to one of the
23 assembly locations.



124 optimizing ev charging networks based on electricity prices and emissions

Table 5.4: Overview of charging point by location type.

Possible Selected Covered Covered

locations charging points locations charging points

Home 500 43 186 186

Work 366 44 299 423

University /School 41 1 7 92

Shopping 455 12 154 171

Entertainment 396 15 120 154

Places of assembly 23 3 10 219

point in an interval is considered to be available if at least one BEV is parked at or near the
charging location. The aggregation of vehicle charge, based on the type of day (weekend or
weekday) shows that the total available charging power is approximately 10.2% (93.08kW) less
on weekends. On weekends, there is a smaller standard deviation (σ = 9.06kW) of the average
available power, compared to a higher standard deviation throughout the week (σ = 65.30kW).
On average, the highest share of connected vehicles on weekdays is between 6:15 p.m. and 7:45
p.m., and the maximum charging power on average is available in the 15 minute time interval
starting at 6:30p.m.
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Figure 5.12: Average available power for the solution of the set covering problem and charging heuristic
(500 vehicles and 118 (11 kW) charging points).
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5.3.1 Analysis of the charging patterns

In this section, the results related to charging activities are presented and analyzed. Before
presenting the detailed charging results, the two reference cases, that is, full coverage (11kW)
and uncontrolled charging, are presented. In the full coverage solution, the parameter β is set
to 0, and annualized expenses are not taken into account in the objective function. In the case of
the uncontrolled charging solution, the parameter α is set to 0, thus neglecting the PWMP. The
charging solution only needs to meet the charging constraints of the model, taking into account
the charging network resulting from the application of SCP and the heuristic.

In total, 1, 129, 860kWh per year is charged by the 500 vehicles. On average, a vehicle charges
2, 259.72 kW. Table 5.5 summarizes the overall results for the different scheduling procedures. The
station costs account for the majority (on average 76%) of all costs. For the case of full coverage,
the total station cost can only be estimated, as they are neglected in the objective function. This
can lead to inefficient solutions, as multiple charging points cover one location, while only one
charging point would be necessary. When considering only one charging point for each location
and aggregating any charging points that are overlapping, the number of charging points required
would range from 1764 to 1776, leading to annual station cost of 1, 164, 240 to 1, 172, 160 e.

As Table 5.5 shows, the average costs increase for the uncontrolled charging case and the years
2025 and 2035 before decreasing for the year 2045. For the CSP-EVCSP and full coverage solution,
the average costs increase for the year 2025 compared to 2019 and decrease in the years 2035
and 2045. When considering the cost of electricity procurement (PWMP) for each strategy, in
contrast to the average electricity prices calculated based on Equation 4.12 for the years 2019 -
2045 (37.66, 57.33, 46.20, 37.55 e/MWh), the deviation from the average cost can be calculated.
The PWMP for the uncontrolled charging strategy only deviates by 1.77 e/MWh from the average
calculated market prices over all years. For the CSP-EVCSP charging solution, they are on average
32.01 e/MWh lower, and for the case of full coverage 47.52 e/MWh lower for all years.

On a more detailed examination of the individual years for the CSP-EVCSP and full coverage
case, the savings of the procured electricity compared to the average market prices increase. For
the CSP-EVCSP charging solution, the average charging costs are 52.73 e/MWh lower in 2045
than the average market cost, while for the full coverage charging solution, average savings of
76.05 e/MWh result for 2045 compared to the average market prices. Negative prices occur more
frequently in the years 2035 and 2045, as they are induced by curtailed electricity in the calculation,
which increases in these years. In these situations, CPO would be remunerated for purchasing
electricity during these times. In the fully renewable energy system in 2045, this can even lead to
negative average charging prices. For all charging patterns, the standard deviation of the charging
costs is similar to that of electricity market prices. The minimum charging costs presented in
the model are calculated for each vehicle and charging strategy, and the minimum prices for all
charging events are reported in Table 5.5. The minimum PWMP calculated by the model occurs in
September at 11:45 a.m. in each of the years evaluated. In every charging solution, at least one
vehicle is charging at this time; however, there are significant differences of the number of vehicles
actively charging. For the full coverage solution, all vehicles are charging during this time in each
examined year, while in the CSP-EVCSP charging case, 95 vehicles are charging using 97.6% of the
total charging energy available during this time interval.
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Table 5.5: Results of the three cost minimization charging strategies for 2019 to 2045.

charging cost total cost

mean std min max charging station

cost cost

e/MWh e/ a

2019

Case 1: CSP-EVCSP 23.87 9.54 1.08 61.88 26, 822.02 77, 880

Case 2: Full Coverage (11 kw) 13.49 5.16 1.08 44.52 15, 101.49 n/a

Case 3: Uncontrolled Charging 40.06 11.28 1.08 62.72 45, 398.76 77, 880

2025

Case 1: CSP-EVCSP 36.42 13.55 -8.63 78.19 40, 957.65 77, 880

Case 2: Full Coverage (11 kw) 22.83 14.60 -8.63 57.48 25, 508.60 n/a

Case 3: Uncontrolled Charging 56.67 14.13 -8.63 78.63 64, 152.64 77, 880

2035

Case 1: CSP-EVCSP 5.59 20.62 -34.64 94.11 6, 017.38 77, 880

Case 2: Full Coverage (11 kw) -9.18 17.59 -34.64 43.19 -10, 588.38 n/a

Case 3: Uncontrolled Charging 44.13 28.83 -34.64 94.20 50, 114.91 77, 880

2045

Case 1: CSP-EVCSP -15.18 31.42 -84.06 144.29 -17, 625.71 77, 880

Case 2: Full Coverage (11 kw) -38.50 30.68 -84.06 33.50 -44, 075.84 n/a

Case 3: Uncontrolled Charging 35.58 39.73 -84.06 147.51 40, 610.35 77, 880

For the full coverage solution, the charging location and charging point cannot be differentiated.
For the other two solution strategies (CSP-EVCSP and uncontrolled charging), charging activities can
be categorized according to the location of a charging point, or the activity carried out while the
vehicle is charging. If overlaps between charging locations are considered, the charging location
does not have to correspond to the type of activity conducted, e.g., a vehicle might be parked and
charging at a shopping location while the activity carried out is assigned to a work location.

In the case of the CSP-EVCSP charging solution (case 1), the charging results differ over the
four representative years. However, in all years, most charging activities are carried out at work
locations (41.6%) followed by home locations (25.4%) and shopping locations (6.6%). The highest
share of electricity is charged at work in 2045 (42.5%). The distribution of charges by type remains
largely unchanged, with an average deviation of 0.6% over the total electricity charged at each
type of station. For the controlled charging solution, the difference between the charging location
and the activity conducted is also notable. There is a positive discrepancy for charges carried out
at work and home, for example, while 42.5% of electricity is charged at work locations, 53.3% of
the total charged electricity is charged during work activities. The opposite is the case for charging
conducted in shopping and entertainment locations, where 7.2% and 3% of the total electricity are
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charged during shopping and entertainment activities, while 12.6% of total electricity are charged
at charging points located at shopping locations and 15.9% at entertainment locations.

For the full coverage charging solution (case 2), 84.6% of charging activities in 2019 are carried
out at a charging point located at home followed by charging points located at shopping locations
(5.6%), entertainment (2.9%), assembly places (2.9%), work (2.6%) and university/school (1.29%)
locations. In 2025 the second highest share of charging in the full coverage charging solution is
carried out at work locations (8.4%), while the order of the remaining places remains unchanged.
The charge at home decreases to 64.8% in 2045, while the charge at work sites represents a share
of 16.6% in 2045.

For the uncontrolled charging case (3), most charging activities are carried out at stations
located at the workplace (45.7%) or while performing work-related activities (59.3%). The electricity
charged at home represents 23.09% and 30.4% of the total electricity consumed during activities
assigned to the location home. For all other locations, there is a stronger deviation between the
charging location and the activity carried out. For example, 14.95% of the charging activities are
carried out at charging points located at entertainment locations; however, only 2% of the activities
carried out during this time are activities assigned to the entertainment category. On average,
the charging points are occupied with charging activities 14.6% of the total possible times. The
charging points at work have the highest utilization (19.4%)2 while the charging points at home
and the assembly sites have the lowest utilization.

The utilization of charging places deviates for the six different types of location in the CSP-EVCSP

solution. Over all years, charging points located at places of assembly have the highest utilization
(18.7%) followed by charging points at work (17.9%). The use of charging points at universities /
schools, shopping, and entertainment locations varies between 13.7 and 15.1%, while those located
at home have the lowest utilization (8.5%). Charge point utilization remains similar over all of
the considered years, with the greatest difference in utilization occurring for university/school
locations, where utilization decreases from 14.6% in 2019 to 13.5% in 2045.

2 Calculated as the share of charged electricity at the workplace charging point divided by the total electricity that could
be charged by all vehicles at workplace charging points.



128 optimizing ev charging networks based on electricity prices and emissions

20
19

20
45

00
:0

0

03
:0

0

06
:0

0

09
:0

0

12
:0

0

15
:0

0

18
:0

0

21
:0

0
0

20

40

60

80

100

120

140

ch
ar

ge
d 

el
ec

tr
ic

it
y 

(k
W

h
)

00
:0

0

03
:0

0

06
:0

0

09
:0

0

12
:0

0

15
:0

0

18
:0

0

21
:0

0
0

20

40

60

80

100

120

140

ch
ar

ge
d 

el
ec

tr
ic

it
y 

(k
W

h
)

00
:0

0

03
:0

0

06
:0

0

09
:0

0

12
:0

0

15
:0

0

18
:0

0

21
:0

0
0

20

40

60

80

100

120

140

ch
ar

ge
d 

el
ec

tr
ic

it
y 

(k
W

h
)

00
:0

0

03
:0

0

06
:0

0

09
:0

0

12
:0

0

15
:0

0

18
:0

0

21
:0

0
0

20

40

60

80

100

120

140

ch
ar

ge
d 

el
ec

tr
ic

it
y 

(k
W

h
)

00
:0

0

03
:0

0

06
:0

0

09
:0

0

12
:0

0

15
:0

0

18
:0

0

21
:0

0
0

20

40

60

80

100

120

140

ch
ar

ge
d 

el
ec

tr
ic

it
y 

(k
W

h
)

Home

Work

University/School

Shopping

Entertainment

Places of Assembly

2019, 2025, 2035, 2045
(Weekday)

Case 1: Controlled Charging Case 2: Full coverage Case 3: Uncontrolled Charging

Location type

Figure 5.13: Average electricity charged for each charging solution (by charging location), for an average
weekday (Mon.- Fri.) in 2019 and 2045. For the uncontrolled charging case, the charging
pattern remains the same over all considered years.

Although the overall utilization of charging stations remains similar over all years, the charging
pattern differs in several dimensions. The most noticeable differences in charged electricity per day
occur between weekdays and weekends, and charging also varies over the weekday depending on
the type of day, year, and charging strategy. Figure 5.13 shows the charging patterns for the three
charging strategies and the years 2019 and 2045 on a weekday.

For the CSP-EVCSP charging case, most electricity is charged from 12:00 p.m. to 6:00 p.m., with
the share increasing from 45.1% in 2019 to 52.2% in 2045. In 2019, the interval with the highest
charge occurs from 12:45 p.m. to 13:00 p.m. where 88.06kWh are charged. In 2045 the average
peak charging interval is 30 min. earlier and on average 123.54 kWh are charged in the 15 minute
interval.

The average weekday in 2019 for the full coverage solution can be characterized by a charging
peak at 2:15 a.m. to 2:30 a.m. where 73.1 kWh within a 15-minute interval are charged (equivalent
to an average peak charging power of 292.3kW). 62.6% of electricity is charged until 6:00 am,
while 24.7% is charged from 12 p.m. to 6 p.m. For 2045, the maximum electricity consumption is
shifted to the interval from 12:00p.m. to 12:15p.m. and increases to 131.94 kWh (527.76 kW). The
share of electricity consumption at night continuously decreases, accounting for 46.2% in 2025
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and 18.7% in 2035. In 2045 59.3% of electricity is charged from 12:00 p.m. to 6:00 p.m. during the
week.

For the uncontrolled charging case, the weekday charging pattern remains unchanged for the
considered years, as there is no incentive to charge during a certain time-period as long as the
constraints of the model are met. The majority of charging is conducted from 12 p.m. to 6 p.m.
(35.3%), the maximum electricity consumption occurs between 4:30 p.m. and 4:45 p.m., where
57.6 kWh are charged. In general, the charge is distributed throughout the day more evenly than
for the two cases previously described.
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Figure 5.14: Average electricity charged (by charging location) for each charging solution, for an average
weekend (Sat.- Sun.) day in 2019 and 2045. For the uncontrolled charging case, the charging
pattern remains the same over all considered years.

Figure 5.14 shows the average results of weekend charging for the three charging strategies and
the years 2019 and 2045. When comparing the results with Figure 5.13, it should be noted that the
axis has been adapted to represent the higher maximum power charged in the full coverage case.
Generally, the patterns described in the previous paragraphs for weekday charging can also be
observed for weekends. The biggest differences exist in the full coverage charging solution. Most
of the electricity is charged from 12 p.m. to 6 p.m. in 2019 (51%), further increasing to 54.2% of all
charges carried out during this time in 2045. This corresponds to the lower electricity prices on
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weekends. This also leads to more electricity being charged on weekends, where 68.9% of the total
electricity is charged in 2019, and 73.7% in 2045. During the two weekend days, a higher average
charging power is consequently also required, in contrast to the five weekdays. During the peak
charging interval in 2019 from 1:15 p.m. to 1:30 p.m., 394.55kWh are charged, corresponding
to a charging power of 1578.20kW. In 2045, the average peak interval is shifted 45 min. earlier
and increases to 477.9 kWh or 1, 911.8 kW. For the controlled charging strategy, the peak charging
interval increases from 126.9 kWh in 2019 to 145.5 kWh in 2045.

5.3.2 Economic and geographic assessment

The financial evaluation for the uncontrolled and CSP-EVCSP solution is presented in Table 5.6.
The total costs include the annuity for the CAPEX and OPEX of the charging points, the expected
yield embodied in the equity cost of the considered WACC, as well as volatile electricity costs to
acquire the required charging electricity. Costs can be distributed between individual charging
points. In doing so, the total costs per kWh for the uncontrolled charging strategy are 1.6 cents
higher than the costs per kWh for the CSP-EVCSP solution in 2019. This difference increases to 5.1
cents per kWh for the year 2045. Therefore, the revenue required to break-even in 2019 is 17.7%
higher for the uncontrolled strategy, in contrast to the CSP-EVCSP solution and 96.6% higher for
2045. To achieve the required revenue to break-even, for the CSP-EVCSP solution charging strategy,
an electricity price of 9.3 cents/kWh (without taxes and levies) is necessary in 2019.

Table 5.6: Break-even revenue and cost per MWh (incl. expected return on equity).

Total cost specific cost per charging point

e e/MWh e/charging point

2019

Case 1 : CSP-EVCSP 104, 702.02 92.67 887.31

Case 3: Uncontrolled 123, 278.76 109.11 1, 044.74

2025

Case 1: CSP-EVCSP 118, 837.65 105.18 1, 007.10

Case 3: Uncontrolled 142, 032.64 125.71 1, 203.67

2035

Case 1: CSP-EVCSP 83, 897.38 74.25 710.99

Case 3: Uncontrolled 127, 994.91 113.28 1, 084.70

2045

Case 1: CSP-EVCSP 60, 254.29 53.33 510.63

Case 3: Uncontrolled 118, 490.35 104.87 1, 004.16

Assuming the specific costs to break-even shown in Table 5.6 are paid per kWh by all customers,
the revenue of each charging point can be calculated. For 2019, the revenue from the electricity
charged at each charging point ranges from e200.10 to e2, 458.88 for the CSP-EVCSP case (consid-
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ering a flat electricity price of 9.26 cents/kWh) and e225.82 to e3, 331.60 for the uncontrolled
charging strategy (considering a flat electricity price of 10.91 cents/kWh). The total cost resulting
from the infrastructure expansion and electricity procurement are higher for the uncontrolled
charging strategy, this also results in a higher electricity price and revenue required to break-even.

The average electricity procurement costs per charging point influenced by the PWMPs range
from 16.67 to 31.54 e/MWh for the CSP-EVCSP solution, while the costs of the uncontrolled charg-
ing solution range from 33.75 to 42.82 e/MWh in 2019. The full coverage solution achieves the
lowest procurement costs per charging point in this year, which range from 12.81e/MWh to
14.39e/MWh in 2019. For the year 2045 the cost spread between the minimum and maximum
charging procurement cost per charging point increase. For the CSP-EVCSP solution, the procure-
ment costs decrease to a minimum value of -36.38 and maximum to 2.47 e/MWh, while they are
negative for every charging point in the full coverage solution (-43.32 to -32.97 e/MWh) for the
uncontrolled solution; however, the average procurement costs remain close to the 2019 costs, with
the minimum value reaching 27.18 e/MWh and maximum 52.39 e/MWh for all charging points.

The difference between the procurement cost of the different strategies arises due to the timing
of the charging activities described above and depicted, for example, in Figure 5.13. Therefore, this
also leads to different distributions of charging activities throughout the city. Figure 5.15 shows
the geographic concentration of charging activities for the three charging strategies in 2019. The
map data is visualized using hexagonal shapes due to their advantages in accuracy and superior
visual appeal in contrast to the grid structure used by the city of Essen (Birch et al., 2007; Carr
et al., 1992).
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Figure 5.15: Total electricity charged for each charging point in 2019 for the three charging strategies.

The radius of the hexagons is set to 1, 000 m when measured in the circumcircle (center to
vertex). The fill color corresponds to the total charge carried out at the charging points over
a year. The charging points are depicted using white dots. When comparing the geographical
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concentration of charged electricity for geographic areas, it can be observed that for the full
coverage strategy, the total charged electricity is distributed throughout the city in 184 hexagons.
The hexagons with the highest total charge are located in the city center with a total charge of
31.85MWh over the year, while the average charge on the 184 hexagons is equal to 6.14MWh in
2019. Charging is less distributed for the other two solution strategies. For the CSP-EVCSP solution
and uncontrolled charging solution, the charging is concentrated on a total of 86 hexagons. The
maximum charge for a single hexagon is carried out in the city center ("51.455°, 7.15°") and equal
to 98.33MWh for the CSP-EVCSP solution and 114.31MWh for the uncontrolled charging strategy.
The minimum total charge in a hexagon on the northern outskirts is equal to 2.07MWh and
2.16MWh ("51.437°, 6.96°"). More electricity is charged in the center of the city, when comparing
the solution of 2019 and 2045. The installed capacity directly impacts the charged electricity
per hexagon. In both the uncontrolled and CSP-EVCSP solution, the hexagon that has the highest
cumulative charging capacity also has the highest total electricity consumption. Although this
distribution is similar for the uncontrolled and CSP-EVCSP charging cases, there are differences in
the overall distribution of charging and on average, the total charge per hexagon deviates for both
solutions by 1.91MWh for the year 2019.
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Figure 5.16: Differences in geographic charging patterns. Left: uncontrolled charging vs controlled charging
in 2045. Right: Full coverage case differences in the geographic distribution of charging in
2019 vs. 2045.

Figure 5.16 shows the geographic distribution of the total charging in 2045 for the CSP-EVCSP

charging strategy and uncontrolled charging (left side), as well as difference between the full-
coverage charging solutions for the years 2019 and 2045 (right side). To allow for a finer differ-
entiation, the radius of the hexagons is reduced to 500 m when measured in the circumcircle
(center to vertex). Therefore, 109 hexagons are considered with only 6 hexagons encompassing
two charging points of the total 118 considered charging points. Consequently, the total electricity
charged per year for each hexagon is also only about half as high with 39.24MWh to 48.71MWh
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Both depictions of the results show that more electricity is charged within the center of the city.
This finding is in line with the insights regarding the temporal distribution and distribution by
charging location and activity conducted while a vehicle is charging presented in the previous
section. As can be observed in Figure 5.11 that presents the selected and covered charging points
by type of location, there is a large overlap between places with a high output and the places of
work. The highest discrepancy between the total electricity charged in two hexagons is 9.49MWh,
between the uncontrolled and the CSP-EVCSP solution.

In general, the minimization of the charging costs in cases 1 to 3 allows to derive several
general and case study specific results. Firstly, considering the temporal distribution of charging
activities through the charge level heuristic increases the number of charging points by 4.5%
in contrast to the exclusive application of the SCP. As previous CSPP problems do not consider
temporally resolved charging patterns, these studies can overestimate the ability of a charging
network to meet the electricity demand of vehicles. When comparing the possible saving of
the charging procurement cost of the controlled (case 1) in contrast to the uncontrolled (case 3)
strategy, the results show, that a higher volatility of electricity prices also increases the savings of
the controlled in contrast to the uncontrolled charging strategy. Between the years 2019 and 2045,
the potential savings through the controlled charging strategy in contrast to the uncontrolled
strategy more than triple. When comparing the charging cost in the full coverage (case 2) and
controlled charging (case 1) solution, the cost savings also increase from 2019 to 2045. Although
charging costs decrease if more charging stations are considered, higher infrastructure costs do
not justify additional infrastructure expansion.

5.4 ecological considerations

In this section, the optimization model is applied with the aim of minimizing the CO2e emissions
of the charging infrastructure (i.e., the emissions that can be attributed to the manufacturing and
installation of the infrastructure) as well as emissions attributed to charged electricity. Infrastruc-
ture emissions are based on the values calculated in the study by Zhang et al. (2018). In this thesis,
the values of CO2e emissions of the charging infrastructure are annualized and it is assumed that
the emissions are equal to 26 kg/CO2e (per year) for a 11 kW charger and 36 kg/CO2e (per year)
for a 22 kW charger. Emissions of charged electricity are calculated as presented in Equations 4.13

and 4.14 and using the results of the energy scenarios presented above.
The emissions calculated according to Equation 4.13 explicitly consider curtailed electricity,

while the emissions factor calculated using Equation 4.14 only includes the emissions attributed
to the German energy mix (without considering curtailed electricity).

In contrast to the electricity procurement and infrastructure cost previously considered, the
share of emissions in the use phase, i.e, the emissions related to the charged electricity, are
greater than the emissions attributed to the construction and installation of the infrastructure.
As highlighted in Section 3.4.2.4, in these cases, a generation of communities and step-wise
optimization (successive community optimization (SCO)) yields better results than minimizing
charging points and subsequent optimization of the charging schedule. As the solution procedure
does not guarantee an optimal result, a best-case charging solution is calculated assuming full
coverage of all charging points. Four different results are presented in this section.
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• Case 4: CSP-EVCSP (curtailed - EMISAt
[t])

• Case 5: CSP-EVCSP (no curtailment - EMIS[t])

• Case 6: Full coverage (22 kW) (curtailed - EMISAt
[t])

• Case 7: Full coverage (22 kW) (no curtailment - EMIS[t])

In the previous assessment (cost minimization), the consideration of charging points with a higher
charging capacity was not justified, as expenses increase between a charging station of 11 kW and
22 kW, and this investment cannot be recovered through electricity procurement cost savings.
If CO2e emissions are taken into account, the consideration of a charging infrastructure with a
higher capacity appears to be reasonable. Therefore, the optimization model considers both the
possibility of charging points with a capacity of 11kW and 22kW. A complete overview of the
four additional cases is presented in Table 5.7.

In contrast to the results of the cost minimization (cases 1-3) presented in the previous section,
the locations and number of charging stations vary over the years 2019, 2025, 2035 and 2045 for
the cases 4 to 5. Additionally, also 22 kW charging stations are considered in the solutions of the
years 2019 and 2025.

On average, 321 charging points are used in the calculated solutions. These charging points cover
45.4% of all possible charging points and 58.8% of possible charging locations. The highest number
of charging points are selected in the year 2019 (355 curtailed/ 357 without curtailment) and the
lowest in the year 2045 (288 curtailed/ 296 without curtailment). Overall more charging points are
considered when CO2e emissions are calculated without the consideration of curtailed electricity
(EMIS[t]). On average 4.75 additional charging points are included in the calculated solution
compared to the solution if curtailed electricity is included in the cost calculation (EMISAt

[t]). In
all solutions, home charging points make up more than 97% of all charging points. As shown in
Table 5.8 and Figure 5.17, the number of charging points depend on the potential CO2e savings
per kWh from the charging strategies. The number of planned charging stations decreases as the
ratio of infrastructure emissions to operational emissions decreases. Furthermore, 22 kW charging
stations are not selected in the years 2035 and 2045. Consequently, the number of charging points
decreases and reaches the smallest value in 2045.

The decreasing average emissions per kWh also have an impact on the capacity of the charging
points. The annualized emissions for a charging point with 11kW and 22kW are assumed to

Table 5.7: Overview of the considered cases.

Problem Case 4: Case 5: Case 6: Case 7:

CSP-EVCSP CSP-EVCSP Full coverage (22 kW) Full coverage (22 kW)

min(EMISAt
[t]) min(EMIS[t]) min(EMISAt

[t]) min(EMIS[t])

One-off emissions Infrastructure Emissions none

Variable emissions EMISAt
[t] EMIS[t] EMISAt

[t] EMIS[t]

Problem type CSP-EVCSP EVCSP

Solution method SCO (community size: 2) exact charging
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differ by 10 kg CO2e annually. This consideration leads to different charging point capacities
over the years 2019, 2025, 2035 2045. For the emission factor that considers curtailed electricity, all
but one charging point have a charging capacity of 22kW in 2019. The share of 11kW charging
points is higher when curtailed electricity is not considered in the emissions factor, and 19.3% of
charging stations have a lower capacity of 11 kW in the solution for 2019. For the emission factor
EMIS[t], all but one charging station in the year 2025 have a capacity of 11 kW, while 47.2% of
charging stations have a charging capacity of 22 kW when considering electricity curtailment. For
the years 2035 and 2045 all charging stations have a capacity of 11 kW for both emission factors.
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Figure 5.17: Considered locations in the optimization based on emissions.

When comparing a location solution with the one previously presented for the cost optimization
case (e.g., cases 1 and 3), it can be observed that the type of locations and the overall covered area
differ for both solutions. The example presented in Figure 5.18 shows the selected and covered

Table 5.8: Overview of charging point by location type.

Possible Selected Covered Covered

locations charging points locations charging points

Home 500 285-355 462-500 462-500

Work 366 0-2 93-113 118-147

University /School 41 0-1 3-7 46-92

Shopping 455 0-7 220-253 242-279

Entertainment 396 0-4 188-217 234-268

Places of assembly 23 0-1 4-9 79-187
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charging points for the year 2019, taking into account the emission factor that considers curtailed
emissions (EMISAt

[t]). More area is covered by the selected charging stations and specifically in
the outskirts of the city.

Selected charging 
points

Covered charging
points 

Home Work
University/
School Shopping 

Entertainment 

Places of
Assembly

2019
CO2 factor: w. curtailment

2019
CO2 factor: w. curtailment(250 m radius)

Figure 5.18: Selected charging locations for the minimization of emissions. The left side shows only the
selected charging points, while the right side of the figure also highlights the charging points
within a radius of 250 m of the selected station. In both figures, all possible but not considered
charging points are depicted in light gray.

Table 5.9 shows the statistical values that represent the changes in the average and total
emissions for each of the optimization strategies. Emissions decrease at each time step, as is the
case for the emissions of the electricity mix (see Table 6.3 in the appendix).

The average emissions in the electricity system decreased by 90.7% (EMISAt
[t]) and 90.8%

(EMIS[t]) for the two emission factors between the years 2019 and 2045. The overall charging
emissions decrease by 92.9% (EMISAt

[t]) and by 94.1% (EMIS[t]). The proportion of emissions
attributed to the infrastructure, of total emissions increases from 3.7% (EMISAt

[t]) and 5.7%
(EMIS[t]) in 2019 to more than 33.5% in 2045 for both emission factors, due to lower emissions
from the energy mix, while emissions of charging points remain unchanged over the assessed
years.

To calculate the full coverage (22 kW) charging solution, it is assumed that charging can be
conducted at all charging points i.e., carried out if a vehicle is not driving (i.e., parked). To
determine the necessary charging points for this solution, all charging points that are not utilized
are excluded, and only one charging point per location is considered. This means that multiple
charging activities can be carried out at one charging point; therefore, the full coverage solution
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Table 5.9: Emissions emissions minimization cases.

charging emissions total CO2e

mean std min max charging station

kg CO2e/MWh kg CO2e/ a

2019

Case 4: CSP-EVCSP (curtail) 187.72 48.86 0.00 397.10 209, 544.72 12, 770

Case 5: CSP-EVCSP (no curtail) 229.71 32.47 174.63 411.02 258, 383.48 9, 972

Case 6: Full Coverage (22 kW) (curtail) 180.66 49.79 0.00 390.25 201, 028.35 20, 268

Case 7: Full Coverage (22 kW) (no curtail) 221.02 30.4 174.63 398.04 247, 865.52 20, 412

2025

Case 4: CSP-EVCSP (curtail) 116.42 29.29 0.00 364.25 130, 038.10 10, 414

Case 5: CSP-EVCSP (no curtail) 122.62 23.07 93.64 385.96 137, 945.31 9, 006

Case 6: Full Coverage (22 kW) (curtail) 107.61 30.46 0.00 336.63 120, 233.03 20, 268

Case 7: Full Coverage (22 kW) (no curtail) 114.54 20.28 93.64 336.63 128, 565.19 20, 160

2035

Case 4: CSP-EVCSP (curtail) 23.12 7.36 0.00 168.25 25, 953.43 7, 644

Case 5: CSP-EVCSP (no curtail) 27.04 7.90 19.13 168.25 30, 388.52 7, 696

Case 6: Full Coverage (22 kW) (curtail) 19.38 6.54 0.00 84.02 21, 557.00 20, 412

Case 7: Full Coverage (22 kW) (no curtail) 25.25 6.25 19.13 84.02 28, 149.81 20, 052

2045

Case 4: CSP-EVCSP (curtail) 13.20 4.26 0.00 51.19 14, 825.22 7, 488

Case 5: CSP-EVCSP (no curtail) 13.55 4.10 11.13 44.03 15, 219.97 7, 696

Case 6: Full Coverage (22 kW) (curtail) 11.58 3.65 0.00 35.13 12, 900.40 20, 088

Case 7: Full Coverage (22 kW) (no curtail) 12.63 2.97 11.13 39.38 14, 135.72 19, 368

(22 kW) and the respective station emissions should only be considered as a general reference
point as the considered stations may not present a feasible solution to the CSP-EVCSP.

Optimization of the charging process (cases 4 and 5) leads to 60% lower emissions compared
to the average electrical mix in the assessed years. The highest difference between the average
emissions in the electricity system and the emissions to charge the vehicles is achieved in 2035,
where the emissions are on average 79.5% lower than the mean emission factors for the year. This
is due to the high fluctuation and difference between the minimum and maximum emissions
induced by a high share of renewable electricity generation with considerable shares of power
production from non-renewable natural gas powered electricity generators.

For all solutions to CSP-EVCSP (with and without consideration of curtailment), more than 87%
of electricity is charged at home. In 2019, 35%-36% of total electricity is charged on weekdays for
both emission factors. The proportion of electricity charged on weekends gradually decreases
over time. In the solution of the year 2045, 58.5% of electricity is charged on weekdays when
considering curtailment (case 4) and 62.7% without consideration (case 5). Consequently, the
share of charging during work activities on weekdays increases from 4.3% in 2019 to 14.5% in
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Case 6Case 4 Case 5

Figure 5.19: Average electricity charged during different activities for each charging solution, for an average
weekday (Mon.- Fri.) in 2019 and 2045. For the uncontrolled charging case, the charging pattern
remains the same over all considered years.

2045 when considering the emission factor with curtailment and from 7.1% to 7.6% when no
curtailment is considered.

If the charging activities are classified by the activity conducted while the vehicle is charging,
the pattern also changes from the year 2019 to the year 2045. These changes are illustrated for
the cases 4,5 and 6 and for the years 2019 and 2045 in Figure 5.19. The charging activities are
distinguished according to the activities carried out while the vehicle is charging (in Figures 5.14

and 5.13, the results are distinguished by the location of the vehicle regardless of the activity
carried out).

For case 5 where curtailment is not considered, the charging times deviate between the years
2019 and 2045. In 2019, 48% of electricity is charged between 6 a.m. and 6 p.m. However, for the
year 2045, only 7% of electricity is charged in this time interval, and the majority of electricity is
charged throughout the night. For cases 4 and 6, under consideration of curtailed electricity in the
calculation of the emissions factor, the general distribution of charging activities is less strongly
shifted to the night and 20% to 33% of electricity is charged throughout the day (6 a.m. to 6 p.m.).
The general shift of charging to the nighttime is induced by large shares of electricity generated
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by wind turbines which entails lower CO2e emissions than other technologies. In the cases where
curtailed electricity is considered, large shares of electricity generation from solar energy lead to
electricity curtailment at noon, which decreases emissions in these hours.

Figure 5.20 shows the maximum charge possible for different solutions. For this depiction, the
same assumptions are made as for the analysis presented in Figure 5.12, that is, the charging
power is considered available if a vehicle is parked near a charging point at a certain interval. The
plot shows the potential charging power available for four different infrastructure expansions:

• Case 6,7: Full coverage (22 kW)

• Full coverage (11 kW)

• Case 4: CSP-EVCSP solution 2019 (curtailed - EMISAt
[t])

• Case 4: CSP-EVCSP solution 2045 (curtailed - EMISAt
[t])

Weekend (full coverage 22 kW)

Mo - Fri  (full coverage 22 kW)

Weekend (full coverage 11 kW)
Mo - Fri  (full coverage 11 kW)

2019 - Weekend (curtailment emis. factor)

2045 - Weekend (curtailment emis. factor)

2019 - Mo - Fri (curtailment emis. factor)

2045 - Mo - Fri (curtailment emis. factor)
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Figure 5.20: Maximum available power for different charging network configurations resulting from a
minimization of emissions. The shaded area represents a 95% confidence interval of all values
within the year.

For the two full coverage solutions, a uniform 22 kW charging capacity and 11 kW are assumed.
For these cases, the maximum charge only decreases during mobility activities; consequently,
the maximum decrease in charging power on weekdays occurs on average at 06:30 a.m. and on
average drops by 2, 238 kW for the case of 22 kW and by 1, 119 kW for the case of 11 kW, from the
maximum values, where all vehicles are connected. On weekends, the maximum drop is about
half as high (1, 196 kW and 597.17 kW) and occurs in the interval from 09:45 a.m. to 10:00 a.m.

The two other cases (case 4 (2019) and case 4 (2045)) show the potential charging capacity of
an optimized charging network based on the emission factors for 2019 and 2045. Although the
considered charging infrastructure differs between both years, the general patterns of the available
charging capacity of both are similar. On weekdays, the potential charging power decreases
according to the full coverage cases induced by increasing mobility activities starting at 06:30
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a.m., however, since fewer charging points are considered in or near work locations, it sharply
decreases and only 32.8% (2019) and 34.3% of the maximum potential charging capacity (7, 799
kW/ 3, 157 kW) of all vehicles is available between 09:00 a.m. and 02:00 p.m. On weekends, a
similar pattern can be observed; the average available charging power is approximately 22.49 -
23.8% higher on weekends than on weekdays.

5.5 the trade-off between cost minimization and emission
minimization in the energy system

In this section, the trade-off between the results obtained for the case of cost minimization and
emission minimization is discussed. Furthermore, the results are also evaluated in light of the
presented energy system configurations. To do so, the charging solutions obtained from the cost
minimization model are weighed with the prevailing emissions. This makes it possible to present
an answer to the question of how much higher emissions would result from the optimization
based on cost in contrast to the optimization with regard to emissions. In the same manner,
the additional cost of the emissions minimization solution in contrast to the cost minimization
solution can be calculated. In an assessment of the entire energy system, the charging patterns and
the charging point configurations obtained are extrapolated to a larger vehicle fleet to calculate
the effects of additional electricity consumption on the electricity system.

Table 5.10 shows a comparison of cost and emissions for of all presented charging strategies
and assessed indicators. The cost and emission values per MWh of electricity charged per vehicle
include the one-off emissions or cost as well as running cost / emissions. Over all years, costs per
MWh are on average 1.83 to 2.7 times higher for emission minimization cases in contrast to the
total cost of the cost minimization solution. The cost minimization solution leads to 25% to 39%
higher CO2e emissions for the factor that considers curtailment and 15% to 71% higher emissions
in contrast to the case that does not consider electricity curtailment. The uncontrolled charging
solution leads to 79% to 311% higher emissions (EMISAt

[t]) and 55% to 265% for the EMIS[t]
emissions factor.

The total costs are broken down into annualized expenses and charging cost in Figure 5.21.
The higher cost of solutions that minimize emissions can be attributed to annual charging station
expenses that comprise more than 91% of total costs in the case of minimizing emissions. For years
2019 and 2025, the costs are the highest, as the largest number of and the most expensive charging
points (22 kW), with a higher charging capacity, are considered. Therefore, charging cost are 65%
lower for the optimization under consideration of emission factors than for the charging cost
minimization solution. Figure 5.21 also highlights additional expenses and electricity procurement
costs, in contrast to the best solution found in each year. Total costs are mostly caused by the
high annualized expenses that make up 66% to 129% for the cost minimization solution3 and
89% to 96% for the ex post calculated cost of the emissions solutions. The comparison of the
two emission factors reveals that the annualized expenses of the solution based on the factor
EMISAt

[t] (curtailment) are higher (20% to 40%) than the emissions that do not consider this

3 Annualized expenses make up more than 100% as PWMP are negative for the year 2045.
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Table 5.10: Comparison of cost and emissions minimization solutions.
ye

ar solution

type

Cost

(€/MWh)

%

to best

EMISAt
[t]

kgCO2/

MWh

%

to best

EMIS[t]

kgCO2/

MWh

%

to best

2
0
1
9

Case 1: CSP-EVCSP (cost) 92.67 0% 245.46 25% 272.00 15%

Case 3: Uncontrolled Charging 109.11 18% 352.46 79% 369.05 55%

Case 4: CSP-EVCSP (curtail) 344.28 272% 196.76 0% - -

Case 5: CSP-EVCSP (no curtail) 248.21 168% - - 237.51 0%

2
0
2
5

Case 1: CSP-EVCSP (cost) 105.18 0% 154.17 24% 155.33 19%

Case 3: Uncontrolled Charging 125.71 20% 304.19 145% 304.33 134%

Case 4: CSP-EVCSP (curtail) 281.59 168% 124.31 0% - -

Case 5: CSP-EVCSP (no curtail) 232.09 121% - - 130.06 0%

2
0
3
5

Case 1: CSP-EVCSP (cost) 74.25 0% 37.16 25% 43.38 29%

Case 3: Uncontrolled Charging 113.28 53% 122.09 311% 123.19 265%

Case 4: CSP-EVCSP (curtail) 180.28 143% 29.74 0% - -

Case 5: CSP-EVCSP (no curtail) 199.95 169% - - 33.71 0%

2
0
4
5

Case 1: CSP-EVCSP (cost) 53.33 0% 27.45 39% 34.73 71%

Case 3: Uncontrolled Charging 104.87 97% 36.54 85% 37.92 87%

Case 4: CSP-EVCSP (curtail) 180.20 238% 19.75 0% - -

Case 5: CSP-EVCSP (no curtail) 198.97 273% - - 20.28 0%

factor in the years 2019 and 2025, while they are slightly lower (0.68% to 2.70%) for EMISAt
[t] in

2035 and 2045.
The results presented in Figure 5.21 also show that even though PWMPs are not considered

in the objective function of emission minimization, the ex post calculated procurement costs of
the solutions that minimize emissions are 5% to 65% lower than the solution that minimizes
procurement costs and expenses in the years 2019 and 2025. A probable explanation is the high
correlation between the calculated emissions and the cost factors (90% - 92%) in these years,
paired with a higher charging capacity and a greater distribution of charging stations in the
city. In 2035, the correlation decreases to about 83% and 43%-59% in 2045, depending on the
compared emissions factor. This explanation is further reinforced by the similar distribution of
the proportion of primary energy sources of the charged electricity in the year 2025 and stronger
deviation in 2035 and 2045 as illustrated in Figure 5.22. While the emissions reduction solution
considers twice as many charging points as the cost minimization in 2035 and 2045, the shift in
the electricity generation and lower electricity prices in the midday lead to lower PWMP for the
cost minimization case.
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additional procurement cost  to 
the lowest procurment cost in 
the year 

additional expenses to the 
lowest annualized expenses in 
the year

Figure 5.21: Cost per kWh for charged electricity in the different cases and years. The cost include the
infrastructure cost as well as the electricity procurement cost.

In the same way, it is also possible to (ex post) calculate the emissions of the cost minimization
and uncontrolled charging solution. In contrast to the total cost, CO2e emissions for the EMISAt

[t]

and EMIS[t] impact factors are distributed vice versa. Emissions for manufacturing and installation
of the charging infrastructure only comprise 1% in 2019 and 6% in 2025 and 2% to 33% in the
years 2035 and 2045. The emissions attributed to the charged electricity account for most of the
emissions.

On average, over all years, the cost minimization strategy leads to 50% higher emissions in all
years compared to (EMISAt

[t]) and performs 33% worse than the minimization strategy for the
emissions factor that does not consider electricity curtailment. Charging cost are only 15% to 31%
higher than the minimum value calculated for both emission factors, in the first two years, while
they are 29% to 88% higher in 2035 and 2045.

With a larger share of renewables in the electricity mix, the differences between cost and
emissions become more pronounced because of the higher emissions from photovoltaics in
contrast to electricity generated by wind turbines and the higher cost of wind energy, especially
offshore in contrast to photovoltaic. On average, the charging and infrastructure expansion strategy
calculated for the minimization of emissions under consideration of curtailed electricity (case
4) would lead to e373.38 higher cost per year and vehicle, leading to an increase of on average
by 0.17 e/kWh and the solution emissions factor, which does not consider curtailed electricity
(case 5) on average, would lead to e312.9 (0.14 e/kWh) higher cost per vehicle. The solutions that
minimize CO2e emissions on average lead to 26.462 t lower emissions when considering EMISAt

[t]
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and 23.695 t lower emissions when considering EMIS[t] for the case study of Essen. In contrast to
the uncontrolled charging case, emissions are 125.622 t (case 4) and 116.641 t (case 6) lower.

Case 1 Case 3 Case 4 Case 5

Figure 5.22: Proportion of primary energy sources of charged electricity in different charging scenarios
and energy system configurations.

The proportion of primary energy sources also changes with the different charging strategies
and with changes in the electricity generation patterns. These changes are shown in Figure 5.22.
As can be observed, most of the electricity in the case of the cost optimization strategy that is
charged comes from photovoltaics. This is influenced by curtailed electricity, which occurs mainly
in times with a high penetration of photovoltaic electricity generation. When only considering
the emissions associated with electricity generation (EMIS[t]), high electricity shares are charged
during times of high penetration of offshore and onshore wind.

To evaluate the effects of the proposed charging strategies on a larger scale, the charging
pattern was extrapolated to a larger number of vehicles. Following the data published in the study
MiD, 49% of the vehicles in metropolitan areas park in the public street space parking at home.
Assuming that 10.4 million vehicles are registered with inhabitants of metropolitan areas, this
would be equal to a share of more than 5 million vehicles parked in public spaces (Infas, 2019b).
To assess the large-scale effects of the proposed charging strategies, the results obtained for the
city of Essen are upscaled to a larger vehicle fleet and it is assumed that 5 million vehicles follow
the calculated charging pattern. These vehicles add 11.29TWh to the total electricity consumption
in each year. To evaluate the effects of the calculated charging strategies based on emissions
and cost (case 1 to case 4) the charging patterns of 500 vehicles are extrapolated by the factor
10, 000 to represent the larger vehicle fleet of five million BEVs. The charging pattern and the
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corresponding electricity consumption are considered as additional consumption in the linear
energy system model for the years 2025, 2035 and 2045. To allow a clearer examination of the
results, the electricity imports and exports, as well as the generation capacities, are restricted to
the total generated electricity determined for the original cost calculations (see Table 5.2). This
means that the total electricity generation remains the same; however, for all electricity generators
and storage, except wind and solar, the electricity generation and storage pattern can be modified.
To obtain a feasible solution, any additional required electricity that exceeds the total capacity
generated by all power generators is provided by an additional "back-up" generator, at the highest
cost. This calculation scheme allows to evaluate how much of the required charging electricity can
be met by previously curtailed electricity and at which times additional power plant capacities
would be needed to meet the requirements of the proposed charging strategy.

To summarize, the additionally required electricity can be supplied from three sources:

• The utilization of previously curtailed electricity,

• the reduction of storage losses through decreasing storage requirements or the use of more
efficient storage, or DSM or

• the back-up power generator.

Figure 5.23 shows the exemplary results for the two charging solutions for cost and emission
minimization and a summer day in 2045. Two examples of increases in electricity demand through
BEVs are highlighted. The figure on the top is based on the solution of cost minimization. In the
highlighted case, additional electricity is provided through electricity that is curtailed in the case
without consideration of BEVs (see Figure 5.8). In the second case, for the minimization of emissions
demand, demand is increased during the night, where in the original calculation the majority of
electricity was generated using onshore and offshore wind. In the re-optimization of the electricity
generation, the increased demand leads to increased power generation by hydropower, hydrogen
electricity imports and the depleting of thebattery storage. However, the curtailed electri city is
not utilized during the day. In the example, 0.33TWh are charged throughout the week in the cost
minimization case, while only 0.19TWh are charged in the emissions minimization case. For the
cost minimization, 100% of electricity is charged during the time from 7:00 a.m. to 5:30p.m. (when
electricity is generated from photovoltaic). For the emission minimization case, on the other hand,
95% of electricity is charged during hours, the photovoltaic electricity generators do not generate
any electricity.
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Figure 5.23: Increased electricity demand from 5 million BEV charging, considering two different optimiza-
tion solutions. Two examples are highlighted. 1: curtailed electricity is utilized by BEVs; 2:
Additional electricity consumption from BEV induces additional electricity generation from
hydropower and Hydrogen as well as imports.
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Table 5.11 shows the summarized results of the re-optimization considering the additional
electricity consumption of BEVs. As the total electricity generation for each type of generation
remains the same, as in the original calculation (see Table 5.2) over the years assessed, only the
curtailed electricity and the required backup capacity values are presented for the three optimiza-
tion strategies. The amount of curtailed electricity increases in the data without considering the
additional demand from the BEVs. In 2025, all of the previously curtailed electricity is utilized in
every re-optimization, considering the additional demand from the vehicles.

Table 5.11: Additional curtailed electricity and backup capacity required.

No BEV CSP-EVCSP CSPP

Case 1 Case 4 Case 5 Case 3

PWMP EMISAt
[t] EMIS[t] Uncontrolled

TWh TWh TWh TWh TWh

2025

Curtailed Generation 0.23 0.00 0.00 0.00 0.00

Backup Capacity 10.60 10.57 10.58 11.08

2035

Curtailed Generation 19.34 13.92 14.76 18.90 18.15

Backup Capacity 5.26 6.19 10.20 9.75

2045

Curtailed Generation 49.16 41.98 46.81 48.94 47.27

Backup Capacity 3.39 8.08 10.16 8.72

Even though the total electricity generation is fixed, the required backup capacity may still differ
in each solution, as different storage technologies (with different efficiencies) can be used in the re-
optimization, leading to a lower or higher required backup capacity. Curtailed electricity increases
in 2035 and 2045 with a greater expansion of electricity generation from wind and solar. The
optimization based on curtailed emission allows for greater utilization of the curtailed electricity
than the uncontrolled (case 3) and emissions minimization that do not consider curtailment (case
5). Only the minimization of total cost (case 1) leads to better use of curtailed electricity and a
lower required backup capacity. For 2035, 40.6% of additional electricity required by vehicles can
be supplied using curtailed electricity for the controlled charging case based on emissions and 48%
for the case where the scheduling is based on cost. For 2045, 63.50% of the 11.29TWh required
can be covered using curtailed electricity for controlled charging based on electricity prices. All
other controlled charging strategies result in lower usage of curtailed electricity compared to
the cost-controlled charging strategy. The emissions-based controlled charging strategy, without
considering electricity curtailment, can only use 1.9% of the curtailed electricity to meet vehicle
charging demands.

To assess the effect of a higher utilization of previously curtailed electricity and the required
backup capacity, the average marginal emissions and cost can be calculated. To determine these
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values, the additional backup energy is used as a reference. To determine marginal cost and
emissions, the average emissions (EMIS[t]) and the electricity procurement cost (PWMP) are
multiplied by the required backup capacity in the years 2025, 2035 and 2045. The results that
include the average cost and emissions of the infrastructure per year are shown in Figure 5.24.
As cost minimization and uncontrolled charging solutions have the lowest number of charging
stations, the total cost are also the lowest for these two approaches over all years. In 2045, the
total cost of the CSP-EVCSP solution are 22% lower than the required backup electricity cost in
the uncontrolled solution and about a third of the additional cost required by the emission
minimization solutions. When only backup electricity and infrastructure emissions are considered
to calculate the average emissions, the cost solution also has the lowest total marginal emissions,
which are less than half of the emissions in the emissions minimization case.
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Figure 5.24: Additional cost and emissions from the required backup capacity, due to the additional
demand of 5 million BEVs.

Overall the results show, that the controlled charging solutions are able to achieve the highest
reduction in charging cost and emissions if the volatility of the electricity prices and emissions
are high, and there is a large gap between the highest and lowest emission or cost value. The
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projected cost and emissions lead to a countervailing trend for the emissions and cost and the
impact of the fixed and variable cost and emissions. While the impact of one-off costs increases
for the emissions, it decreases for the costs. The extrapolation of the results to a larger vehicle
fleet shows that rebound effects need to be considered when optimizing the charging behavior of
a larger fleet of vehicles, in the case study this was especially relevant for the optimization based
on emissions.

5.6 discussion and outlook

The results presented in the previous section on the optimization of the charging infrastructure of
Essen, are influenced by several factors and uncertainties. Some of these factors can be addressed
through further analysis of the case study. The results of this chapter are assessed and discussed
in order to evaluate the suitability and ability to transfer results to support real life decisions.

5.6.1 Assessment of the results

The calculation of the model depends on several simplifications and assumptions. Therefore, the
results should be classified in the context of a real decision-making situation in order to derive
practical implications.

The objective function of the optimization model only considers expenses and costs that can
be influenced by the decision maker. However, as shown in Section 2.3, other stakeholders are
involved in the charging process. An important stakeholder to consider is the vehicle owner,
who needs an incentive to participate in controlled charging initiatives. However, as described
in Section 2.1.1, the electricity procurement costs only represent a small part of the total cost
incurred by the end customer, since taxes, levies, and the cost of electricity distribution make up a
large share. Figure 5.25 highlights that, depending on the year considered and the optimization
strategy applied, 16% - 42% of the total charging costs paid by an end customer can be attributed
to annualized expenses and the electricity procurement cost. If the total possible savings of
the controlled charging strategy in contrast to the uncontrolled strategy were passed on to
the customer, this would lead to a reduction of overall charging cost of 4.3% to 13.7%. As
highlighted in several practical trials (Delmonte et al., 2020), overall cost savings would need to be
higher, to encourage participation in controlled charging initiatives. Vehicle owners might also be
incentivized by the additional benefits of the controlled charging strategy discussed in Section 5.5,
that is, the cost minimization strategy could lead to a higher utilization of curtailed electricity and
reduce CO2e emissions.

Figure 5.25 also presents the ex post calculated costs of the solution based on minimizing
emissions. In contrast to the cost-optimal solution, the charging cost are 30 - 42% higher if the
additional cost were fully passed on to the end customer.

Similarly, emission can also be considered in terms of vehicle total emissions. A common metric
evaluated in literature is the life-cycle emissions of BEVs (see Table 2.3). For a vehicle manufactured
in China, with a similar battery capacity as the vehicle in the case-study, 62.13 g CO2e/km incur
in the manufacturing phase of the vehicle (Tesla, 2022). Depending on the year and the objective
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function, the emissions of the charged electricity and the charging infrastructure can range from
3.85 g CO2e/km to 70.11 g CO2e / km and represent 5.8% to 53% of total emissions. For the years
2019 and 2025, between 25.01 and 33.12 g CO2e/km can be saved through the CSP-EVCSP solution
in comparison to the uncontrolled charging solution. In the years 2035 and 2045 this is reduced
to 17.01 gCO2e/km and 3.35 gCO2e/km. This indicates that the emission reduction through the
controlled charging strategy has a higher impact in the years that still consider non-renewable
power generators. However, in the years with high surplus electricity, this factor is an important
reference.

According to the Federal Government plan, on average 14 vehicles are supplied by a public
charging point (NPE, 2018). Taking into account the obtained results, on average 4.2 BEVs are
supplied by one charging point. However, since the entire electricity of all vehicles is supplied by
the public charging infrastructure and no private charging infrastructure is considered, this ratio
may not be suitable as a reference. When also considering private charging points, the national
platform on electric mobility estimates that 1 million BEVs should be supplied by 70, 000 public
AC charging points and 1 million private charging points (NPE, 2018). It could be argued that the
second ratio, i.e., more than one charging point per vehicle, is more suitable for a comparison of
the vehicle to charger ratio, as both configurations of the system can fully meet the charge of all
BEVs.

Figure 5.25: Charging cost per kWh for the end-customer for the assessed charging solutions.



150 optimizing ev charging networks based on electricity prices and emissions

The cost savings in the years 2035 and 2045 can be attributed to the negative electricity prices,
especially in the noon hours. Although volatility and the range of prices for electricity could
increase in a fully renewable energy system, the low electricity prices calculated by the model
need to be further examined (Gabrielli et al., 2022). As mentioned in Section 2.1.1.4, negative
electricity prices can occur due to regulation, contractual obligations, or technical reasons, however
it is questionable if these prices would occur in a regular and predictable pattern as presented in
the model.

5.6.2 Possibilities for expansion of the case study

"All models are wrong, but some are useful" (Skogen et al., 2021). This quote alludes to the fact that
models can only represent reality to a certain degree; nevertheless, they can help uncover certain
relationships within the modeled system and their implications. The results of the application
of the developed model to the planning of the charging infrastructure and the controlled and
uncontrolled charging of EVs in Essen showed the effects of different infrastructure configurations.

The scope of this thesis limits the degree of detail to which the analysis can be performed.
Therefore, in addition to the general avenues for future research presented in Section 6.2, further
evaluations, possibilities for expansion, and sensitivity analysis are highlighted in this section.

The costs of constructing charging points are assumed to be constant for all locations. However,
as shown in Figure 2.14, there can be significant differences in the required investments in building
and operating a charging point. In particular, construction and electricity network-related costs
show a wide variation in studies. A large part of the cost depend on the characteristics of the
location, e.g., the distance to the nearest grid connection point, the exposure of the charging
equipment to the elements or if grid expansion is necessary. While these factors are very site-
dependent it may be possible to derive location-dependent cost factors if enough data is available.
For instance, through a cooperation with network operators or by linking the model with network
planning models, it is possible to identify locations that have additional grid capacity available
and those that do not, thus reducing installation expenses for upgrading the power grid. The
same is also true for the CO2e emissions attributed to the installation and construction of the
charging infrastructure. Only a few studies could be identified that conducted a detailed LCA on
the installation of public charging infrastructure. A detailed analysis of emissions, by stages of the
life-cycle, could help to identify which factors contribute to higher or lower emissions.

A further refinement of the temporally and geographically resolved charging patterns could also
lead to more accurate results. To achieve this, the developed geographic data and information and
mobility patterns could be supplemented. This could be achieved at several levels. First, different
clusters of the activity database could be considered to model additional mobility patterns and
vehicle parking locations. As Reinhold et al. (2018) point out, other clusters are characterized
by more activities that are conducted at home. The application of the developed method to
generate geographically and temporally resolved mobility patterns from these clusters would
lead to different parking locations of vehicles. Second, the assignment of mobility profiles to
geographic locations could be supported by additional data, for example from customer surveys
or commercial data providers, such as popular times, wait times, and visit duration data from
Google (2022), which would allow the distribution of mobility profiles throughout the city. Lastly,
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it is possible to restrict the charging at certain locations to specific profiles, this makes it possible
to consider an expansion of the public and private charging infrastructure simultaneously. For
instance, to assess the impact of private charging points at work or detached houses on the
charging network design. Data protection issues however, can be an obstacle in obtaining a higher
degree of detail and more realistic mobility patterns.

The focus of the case study was to illustrate how consideration of CSPP and EVCSP affects the
design of the charging network and the scheduling of the charging activities. A critical stakeholder
in this context is the vehicle owner. Several operational questions could be further assessed using
the developed model. Studies have shown that vehicle owners are discouraged from participating
in smart charging projects due to the fear that their vehicle will not be sufficiently charged
(Delmonte et al., 2020). Therefore, a detailed analysis of SoC and charging from the point of view
of the vehicle owner can also provide valuable information. Although SoC is included in the
optimization model through constraints, this factor is not evaluated in detail. Direct consideration
and restriction of the SoC to a certain interval is possible through the third term in the objective
function of the CSP-EVCSP.

Electricity prices were calculated using a simplified model of the electricity system. Although
other models cannot either accurately forecast electricity prices over a time horizon of decades,
since electricity prices are influenced by many factors and unforeseen events, such as geopolitical
conflicts, war, or supply chain disruptions, and can alter the decision field dramatically. Neverthe-
less, these models take into account a number of different factors such as the detailed examination
of exports and imports, electricity storage, or the interdependencies with other sectors (such as
heating or industry). These factors can alter the shape of the WMP and therefore have a significant
impact on the charging results. By considering the results of the calculation of different energy
system models, a sensitivity analysis of this factor could be possible.

5.6.3 Managerial and policy implications

The results of the model can be used to facilitate management and policy decisions on a municipal
and state or on a country-wide level. For example, the city of Essen is pursuing a joint initiative
with businesses as part of the mobility partnership and thereby promoting efficient and envi-
ronmentally friendly mobility. A goal of this initiative is to promote a charging infrastructure in
workplaces (Stadt Essen, 2018). The city and participating employers are interested in quantifying
the economic, environmental, or technical impact of installing charging infrastructure. In this
context, the model can support stakeholders by integrating case- or company-specific data and
assessing the effects of proposed measures before their implementation. For example, by quantify-
ing the share of electricity that can be charged in the workplace, the electricity mix and associated
emissions. This data can help to facilitate further participation in the program. In addition to the
generic cost function of Germany, company or site-specific knowledge can also be considered. For
instance, if a corporate PV-system is available that generates excess electricity, the model can be
used to assess how much of this electricity can be charged by vehicles.

The model can support the decisions of network operators at different levels. Using the
geographically and temporally resolved charging profiles, load profiles can be calculated for
specific inner-city locations. The results of the geographic assessment show that the charging
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infrastructure in the center of the city is highly utilized in all energy mixes and infrastructure
configurations. This result is also consistent with the findings of other studies and the current
development of the charging infrastructure in the city. The geographically distributed load profiles
help to determine the impact of different expansions of infrastructure on the distribution of loads
throughout the city. Grid operators currently bill charging stations according to standard load
profile (ger. Standardlastprofile) (SLP), in part due to the still small number of BEVs. However, analysis
show that the charging profiles of BEVs can greatly deviate from these profiles (Hashemifarzad
et al., 2019). The model can be applied to further enhance this analysis and derive location specific
deviations from the SLP. For the TSOs and DSOs in Germany, the simulation and optimization
according to different future energy generation and mobility scenarios can support decisions
concerned with upgrading the grid infrastructure. The case study and previous research results
show that vehicles may be applicable to deeper integration with electric girds. For example, in
both network configurations, the average available charging capacity in the emissions optimization
case is above a capacity of 2MW in most solutions. In this case, ancillary network services could
be a viable business model.

As of January 1, 2022, there are 590 companies registered in North-Rhine Westphalia that
operate charging infrastructure for EVs. By applying the model, potential charging locations can
be selected more efficiently, leading to economic benefits for charging infrastructure operators.
For CPOs, comparisons between an optimized and their current charging infrastructure could
reveal bottlenecks in the charging infrastructure and help in the expansion or refinement of
their charging network or to identify frequently visited locations. For highly integrated CPOs

that generate electricity from volatile renewable energy sources, the model can be applied to
coordinate the planning of their charging infrastructure to match the generation patterns of their
power plants and thereby increase electricity self-consumption. For a complete coverage of the
500 vehicles as assumed in the case study, some stations generate more revenue than others,
due to a lower utilization of the charging infrastructure. By considering the utilization of the
charging infrastructure within the city, the model can also be used to define spatially variable
charging tariffs throughout the city, to stimulate the charging at certain locations and achieve a
more uniform utilization of the infrastructure.

5.7 summary

In this chapter, the developed decision model and solution approaches were applied to the
planning of the charging infrastructure in Essen. To investigate the impact of a changing power
system, the model was applied based on costs and emissions of possible future power system
configurations. The different configurations of the objective functions and the distribution between
the costs related to CSPP and EVCSP, require the application of different solution approaches
for each problem instance. This section presents a case study of a charging station expansion
problem and BEV charging scheduling problem. The purpose of the case study is to answer how
the developed model can support real-world decision making in placing EV charging stations
and scheduling the charging process of BEVs. First, the mobility data and electricity prices and
emissions are derived using the processes described in the previous section. Then, the resulting
charging network configuration is used in a scheduling model that minimizes the cost of electricity
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procurement. The results show that the optimized charging process can lead to lower costs and
emissions compared to the average electrical mix in the assessed years. A deeper analysis of the
results shows that the results can have an impact on multiple levels.





6 C O N C L U S I O N S A N D O U T LO O K

The use of renewable energy is critical for achieving global greenhouse-gas-reduction targets. This
shift from fossil primary energy sources to renewable sources, such as solar and wind, provides
the potential to drastically reduce CO2 emissions from power generation. The primary underlying
goal and motivation for reducing CO2 emissions is to limit anthropogenic climate change. A
CO2 budget for each country can be calculated. For Germany, massive efforts and efficient use of
energy and infrastructure are required to limit global warming to 2° C degrees (SRU, 2022).

In the mobility sector, this reduction can be achieved, among other things, by replacing ICE

vehicles by BEVs. Compared to other technologies, such as vehicles that are propelled by hydrogen
or synthetic-fuel BEVs demonstrate the highest well-to-wheel efficiency. At the same time, most
studies have shown that these vehicles emit less CO2 throughout their life cycle. A crucial element
in reducing emissions throughout the life cycle of a vehicle is the emission related to the electrical
mix used to charge these vehicles. Therefore, if the overall emissions in the transportation sector are
to be reduced, charging vehicles at times when there is an excess in renewable power generation
is available is sensible. Because personal vehicles are parked 95% in a day, on average, their
charging process can be controlled to obtain electricity from volatile renewables. The integration of
electricity and transportation sectors requires collaboration of the actors along a new value chain
from the primary energy sources of solar and wind to marketing, distribution, and provision of
electrical energy to the charging stations. To optimize the application of electric-vehicle charging to
meet the demands of an electricity system, considering the geographical and temporal distribution
of vehicles throughout the day is important. Therefore, a suitable method is needed to identify
and analyze this interdependence. Thus, in this study, an approach is presented to simultaneously
locate electric-vehicle charging stations and control their charging behavior.

Charging station operators, strife for minimizing costs while maintaining revenue. Two methods
are available to reduce costs in terms of controlled charging for a given set of EVs. First, by
reducing the number of charging stations required to supply their customers. Second, is to
purchase electricity when it is abundant and the price is low. When considering these expenses
and cost components, a charging network that considers more charging points can lead to better
exploitation of fluctuations in energy prices, while at the same time it leads to higher expenses
(for the construction and operation of the infrastructure). From the perspective of CO2 reduction,
expansion of the charging infrastructure results in additional emissions, which can possibly be
offset by charging electricity with a lower CO2 footprint.

In previous studies, the decision on the controlled charging of vehicles and the location planning
of the charging infrastructure has been considered in separate models. In this thesis, both factors
are considered simultaneously with the aim of uncovering the trade-offs between both of these
factors.

The application of the model requires geographically and temporally resolved mobility patterns,
which are generally not widely available for EVs. The use of these data can also be restricted for
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legal reasons (data protection). Therefore, in the present work, geographically distributed activity
patterns are derived using an activity database. The developed methodology allows generation
of these profiles for different groups of people and arbitrary geographical locations. From the
production-management perspective, location planning of electric-vehicle charging stations is a
tactical or strategic problem because a charging infrastructure has a projected lifespan of 15–20
years. In this time horizon, electricity generation is projected to change and can vary depending
on the geographical location or scope of the considered electricity generation. To identify the
possible effects of incorporating volatile electricity generation costs and emissions in the decision
making, different energy system configurations are considered.

To illustrate the effect of taking these data into consideration in the optimization model, the
model is applied to a case study on planning and controlled charging of 500 vehicles in the city
of Essen, Germany. The decision problem is considered from a cost- and emission-reduction
perspective, and an outlook is given on how the developed decision support model can support
the decisions of the charging infrastructure planners and policy makers.

6.1 addressing the research questions

The objective of this thesis is to develop a model that can be used to identify the relationships
between different configurations of charging networks and to plan the charging activities of EVs

in future configurations of energy systems. The research questions posed at the beginning of this
thesis can be answered as follows.

1. What are the projected changes in electricity generation and how will these changes affect
future planning of the layout of the charging infrastructure and charging patterns of electric
vehicles?

The shift toward electricity generation based on renewable primary energy sources can increase
the volatility of electricity generation. Several energy system scenarios feature different system
configurations and highlight the need for additional storage and for flexible electricity demand.

The current setup and regulation of the energy system only consider these changes to a limited
extent. Actors such as DSOs and TSOs face new challenges such as more decentralized electricity
generation and consumption, which can lead to a shift in responsibilities to local entities (DSOs).
The charging of BEVs poses a further challenge in this context because they increase the overall
electricity demand and can induce spikes in electricity demand and geographic bottlenecks in
the electrical grid. To fully electrify the entire fleet of vehicles in Germany, approximately 108 -
139TWh of electrical energy is needed, which increases the total demand for electricity by up to
25% . Simultaneously, the corresponding number of BEVs has a storage capacity that is larger than
that of all pumped hydro storage plants in Germany. Regarding the charging points of normal
speed, the estimated charging power is also similar to that of pumped hydro storage and exceeds
it when fast-charging stations are included in the consideration (Hecht et al., 2022; Heimerl and
Kohler, 2017). These facts highlight the interconnection and importance of joint planning of the
electricity and transportation sectors.

In addition to the ability of the charging infrastructure to meet the requirements caused by the
mobility needs and charging of individuals, including electricity generation and consumption in
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the optimization of the charging infrastructure, can lead to a better integration of the electricity
sector and the mobility sector. The integrative model can help achieve efficient electricity use.
To assess this relationship, a proxy for the temporal utilization (overall demand and generation)
of the electricity system should therefore be included in an optimization model. As previously
highlighted, the installation of a charging infrastructure can affect multiple factors, e.g., costs
or CO2e emissions. Simultaneously, the generation and consumption in the electricity sector are
volatile and can influence costs or emissions. On the cost side, CAPEX and OPEX, and volatile
electricity procurement costs can be considered to represent this problem. Emissions occur in the
manufacturing and installation of the charging infrastructure and in the use phase. The emissions
of the use phase depend on the electricity mix and can represent a volatile factor to consider in an
optimization model.

2. How can geographically resolved travel and charging profiles for electric vehicles, as well as
factors associated with the electricity system, be combined into a model that simultaneously
considers the planning of the charging infrastructure of electric vehicles and the timing of
charging?

The effect of increased vehicle electrification is believed to be affected by two major factors: First,
the design of the charging infrastructure, i.e. the locations of charging stations and second by the
timing of charging activities. As highlighted in the insights on the first research question, two
decisions are important for the assessment of the charging infrastructure: where the charging
stations are located and when the vehicles are charged. Both these questions have been evaluated
in different streams of literature and are addressed by charging station placement problem (CSPP)
and electric vehicle charge scheduling problem (EVCSP). Whereas CSPP address the issue on where
to locate the charging infrastructure, the majority of the factors considered are the mobility
behavior of individuals and the aggregated demand in representative geographic locations. These
models rarely consider temporal factors aside from the charging demand. On the other hand,
EVCSP is concerned with more operational questions and attempts to provide an answer to the
question, when a vehicle should be charged. It models a closer interaction with the electricity
system and associated uncertainties such as volatile electricity prices or uncertain arrival or
departure of BEVs. Most of these studies consider a fixed charging network. Currently, a combined
approach that considers both location of charging stations and controlled charging of vehicles in a
single decision-support model cannot be found in the pertinent literature.

To integrate both problems, a mixed-integer linear-programming model is formulated. The
developed CSP-EVCSP model accounts for the fixed and variable components related to the problem,
as well as the mobility behavior and the geographical location of vehicles and their interaction.
The model is solved using a commercial solver, and several computational experiments are
presented. The results of these calculations show that specific factors related to the CSPP increase
the computational complexity and do not allow the model to be optimally solved.

Three different solution methods are implemented to solve CSP-EVCSP. The developed ap-
proaches realize different solutions, depending on the distribution of fixed and volatile cost
components. All approaches allow solving the model for a time of one year (35, 040 15-minute
intervals) while considering up to 500 different vehicle profiles and 3, 000 potential charging
locations.
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3. How can the geographically and time-resolved mobility patterns of electric vehicles, as well
as the costs and emissions of prospective energy systems, be derived?

To apply the developed model and support the placement and charging process of EVs, factors
related to the electricity and mobility sectors must be considered. For real-world applications
within a city, geographic information is required. Section 4.1.2 presents an overview of the current
approaches related to the derivation of mobility profiles. Although several mobility surveys have
been conducted in Germany, which are continuously updated, particularities exist when EVs

and their charging behavior are considered. For example, since there are currently still only
a small number of BEVs, detailed real-world mobility data are often not available. The model
requires highly temporally and geographically resolved activity patterns that are not available
in current surveys, often because of concerns about data protection. To overcome this drawback,
a new approach is developed within the scope of this thesis and based on the activity database
developed by Reinhold et al. (2018). It uses a set of logical instructions to derive the mobility
patterns. The resulting data are supplemented with open source geographical information to
generate a geographically and temporally distributed mobility profile. These data can be generated
for arbitrary geographic locations and contain information that allows to model the interaction
between mobility profiles at multiple (temporal and geographic) levels.

To derive the cost and emissions of the prospective energy systems, several different approaches
and models are found in the literature. Energy system analysis and, energy system modeling can
be used to improve understanding of the operational principles of the energy system. Energy
scenarios are used to illustrate possible developments in the energy system of the future. When
both approaches are combined, modeling the characteristics of future energy systems can be
made possible. Several scenarios have been published for the potential developments of the future
energy system and energy system models have been used to model and assess the characteristics
of these energy systems.

To calculate a feasible electricity generation pattern of a potential energy system (e.g., found in
published energy scenarios), a linear optimization model is implemented in this thesis. The opti-
mization model presents the distribution of electricity generation from the generation technology
at each time step (e.g., in 15 min intervals). The results of the model are used to calculate a cost
and two CO2e emission factors to be deployed in the CSP-EVCSP.

4. What are the possible benefits and effects of optimizing the placement of electric vehicle
charging stations on the electricity demand and the renewable electricity consumption on
the local and countrywide scale? How can these factors be quantified?

To assess the benefits and effects of the application of the developed model to a real-world planning
situation, a case study is conducted. The model is applied to minimize the total emissions and
costs in different potential future energy systems in the city of Essen. The costs include OPEX

and CAPEX for the installation and operation of charging stations, as well as the cost of electricity
procurement. Emissions include those that occur during the building and installation phases of
the infrastructure and those related to the charged electricity. Among other factors, these are used
to quantify the overall effects of the model. The results of the model are compared with those of
other infrastructure expansions, such as a complete infrastructure expansion that allows charging
at every location and uncontrolled charging case.
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Depending on whether emissions or costs are considered in the objective function, different
charging system configurations and charging patterns are realized. The cost minimization solution
minimizes the number of charging points within the city, taking advantage of overlapping
geographic locations. In contrast to other models found in the literature, the solution approach
developed in this thesis supplements the results of a SCP using a charging heuristic that considers
the charging and location of the vehicles. The results of the application the SCP only without
considering the heuristic reveal that a SCP solution can overestimate the potential to satisfy the
temporal charging demand of vehicles. In the calculated case, five additional charging points
would be required to satisfy the charging demands of all 500 vehicles. The number of charging
stations considered by the model further increases when the tradeoffs between the fixed and
variable emissions are considered. Different optimized network configurations are determined
depending on the electricity system configuration. When the overall CO2e emissions in the
electricity system decrease over the considered years, fewer charging stations with lower charging
power are included in the charging network.

Other factors that are used to assess the effect of the model are the charging patterns and
charging location of the vehicles when costs or emissions are considered. In highly renewable
energy systems, most of the cost-optimized charging is conducted during midday, which takes
advantage of the high surplus of electricity generation from photovoltaics. For the solution of
the model that minimizes emissions, a significant amount of electricity is also charged at night.
If curtailed electricity is not considered in the calculation of the CO2e emissions, more electricity
charging is performed at night, especially at times with high shares of renewables because of
the lower CO2e emissions of wind energy. To assess the effect of the charging strategies on the
entire electricity system, the different charging patterns are upscaled and considered in the linear
optimization model as additional electricity consumption (11.29TWh). Subsequently, the shares
of electricity that can be delivered from previously curtailed electricity and those that would be
supplied by other sources can be determined. The main advantage of the optimization strategy is
the reduction in additional electricity required in a fully renewable electricity system where 63%
of the additional electricity required by vehicles can be supplied by previously curtailed electricity.

6.2 discussion and extension possibilities

The developed model that simultaneously optimizes the location of the charging stations and
the charging of EVs is the first approach that considers both the EVCSP and the CSPP. Multiple
avenues are available for further research. In addition to the extensions of the case study and to the
application of the model to other cities, regions, or countries, several extensions of the developed
method are possible, e.g., to improve the developed solution approach or to incorporate relevant
components for other decision makers or decision problems.

To determine whether the composition of a city affects the distribution of the charging infras-
tructure and the charging of vehicles, the model can be applied to other cities or regions. For
example, the results of the application to the city of Duisburg, Germany demonstrate that the
charging infrastructure is more distributed, which indicates that the urban structure of cities can
potentially affect the results of the model (Dumeier and Geldermann, 2023). Application of the
model to a rural region can also lead to different results because more vehicles are parked in a
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dedicated parking spot or garage, which can lead to lower infrastructure costs. In addition, on
average, people who live in rural regions travel a longer annual distance with their vehicles (Infas,
2019b). Similarly, application of the model to different activity clusters of the database affects the
location of vehicles. In Cluster 3, most activities are carried out at home; therefore, the vehicle is
parked at this location throughout the day, which also leads to a different configuration of the
charging network.

As highlighted in Chapter 2, sustainability can be measured in many different ways. By
considering other emission factors as also demonstrated by other studies as well as the application
of a similar charging model, the hourly emission factors can differ depending on what emission
factor is considered. The results of the study by Zacharopoulos et al. (2023) show that the CO2e

emissions and material-resource-depletion emission categories have an inverse emission pattern
throughout the day. Their study neglected the location problem, including the emissions of
the charging infrastructure, which could lead to different results. More research is needed to
assess the emissions of different types of charging infrastructures. Moreover, emissions can be
considered in different ways in optimization models. For an electricity system with conventional
power generators, which can adapt to changes in electricity demand, additional charging of BEVs

could be compensated. It can be assumed that flexible power generators, such as gas-fired power
plants can supply the additional electricity requirement, which increases emissions through the
additional use of primary energy sources. In many studies, this issue has been addressed using a
marginal emission factor (Peters et al., 2022; Seckinger and Radgen, 2021). However, for a fully
renewable electricity system, additional demand must be met by electricity storage or additional
renewable power generators. The questions of which emissions and how these emissions are
credited to additional electricity demand remain an open question in this context.

To allow a direct comparison of the results presented in the optimization model for the assessed
years, the emissions and cost of electricity generators for a future energy system, are considered
to be equal to those in the year 2019. Several methods, such as the prospective LCA method, have
been proposed in the literature that also consider the effect of changes in the electricity system on
the emissions of different electricity generators (Volkart et al., 2018). Several models can be found
in the literature that model and forecast electricity prices. However, unforeseen events, such as
geopolitical conflicts can lead to electricity price increases or changes in the cost of primary energy
carriers. For instance, the average wholesale electricity price in the year 2022 (until November) was
239.90 e/MWh, which was six times higher than the value of the average price in the year 2019.
The standard deviation of electricity prices in the year 2022 was more than nine times higher than
that in the year 2019 and reached a value of 143.76 e/MWh (SMARD, 2022). Both of these values
were significantly higher than those calculated in this thesis. In particular, the high fluctuation in
the electricity prices indicated by the high standard deviation could be exploited in the controlled
charging solution approach, to generate additional revenue.

For long-period forecasts, several uncertain factors exist. To explore how uncertainty can
influence the decision problem presented in this thesis, the application of scenario planning
methods can be beneficial. For example, the structured process defined by Gausemeier et al. (1998)
has been shown to support the development of energy scenarios (Witt et al., 2020). For instance,
the recent changes in the mobility patterns induced by the COVID-19 pandemic, e.g., more work
at home instead of the office Flüter-Hoffmann and Stettes (2022), influences the parking and
charging location of EVs. To explore potential future changes in mobility, several guiding scenarios
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can be developed using the process described by Gausemeier et al. (1998) and evaluated using the
developed model.

On a more operational problem level, i.e., in the vehicle charging process, uncertainty can arise
based on the vehicle arrival and departure times. However, these factors can also influence the
location of charging stations because the uncertain arrival and departure times of vehicles can
require considering more charging stations to meet the charging demand in a satisfactory manner.
This type of uncertainty can be considered in the current model by considering a larger buffer
for the vehicle battery that is available for controlled charging or the uncertainty intervals on the
required electricity and arrival or departure times of a vehicle. As has been highlighted in Section
3.2, this problem has been studied in many scheduling problems, and is solved using various
methods. Several studies indicate that modeling this uncertainty can increase computational
intensity. In the model presented in this thesis, robust optimization could be applied to find a
network configuration that meets the charging demand of a defined worst case or to calculate and
minimize the overall regret cost over a set of different scenarios (Laporte et al., 2019).

Several further extensions of the proposed model are possible, which allow consideration of
other real-world factors in the decision problem and can help to assess their effect on the overall
decision problem. As highlighted in the study by Nelder and Rogers (2019), constructing several
charging points in a single location can reduce hardware and installation costs. These factors can
be included in the optimization problem by considering additional types of charging stations that
consider multiple charging points. In these charging stations, the model constraint that restricts
simultaneous charging at the charging stations (Constraints 3.12) would have to be eased by
increasing the maximum number of vehicles that can simultaneously charge at the charging point.
Furthermore, more geographic constraints can be added to the model to restrict the possible total
charge in a geographical region. For example, in the case study, most of the charging is performed
in the center of Essen.If information on the utilization of the capacity of the grid can be obtained,
the maximum cumulative charging for each time interval can be restricted.

As highlighted in the summary of real-world smart-charging applications, many studies have
indicated that by providing grid services, the flexibility of EVs may receive higher remuneration.
The model can be applied to assess the ability of vehicles to provide secondary or tertiary control
reserve by decreasing or increasing their electricity consumption. By assuming a derivation of
the capacity and energy prices for provision of these services, these factors can be included in
the model by adding additional revenue to the objective function. Modeling the V2G capability
of the vehicle battery can be beneficial. Although this process can be achieved by introducing
a discharge variable, modification of SCP and the charging heuristic-solution approach is also
required, whereas the other two solution approaches can be applied without the need for extensive
modification.

Most of the aforementioned additions to the model require data of the energy system at further
levels of detail in addition to the data derived in this thesis. Therefore, integration with an energy
system model can lead to benefits on multiple levels. Because these models consider changes to
electricity consumption or induced by additional electricity consumption in other sectors such as
the heating or industry sector, as well as electricity imports and exports, the electricity generation
pattern of an electricity system model can deviate from the simplified calculation used in this thesis,
which only intends to obtain a feasible energy-generation schedule. For example, consumption
could adapt to surplus electricity generation, and novel technologies such as hydrogen electrolysis,
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direct air capture of CO2e or electrical heating can provide additional flexible electricity demand
(Prognos AG et al., 2021), leading to changes in consumption throughout the day and year that
were not considered in the model used in this thesis.

Finally, the presented solution approaches can be improved to speed up calculation times. When
the SCP and charging heuristic approach is considered, the heuristic offers a feasible solution for
the EVCSP. However, to optimize the charging patterns, the EVCSP is solved using a commercial
solver. As shown by Van Der Klauw et al. (2015), formulating an exact algorithm to solve this
problem that can lead to fast calculation times may be possible. Moreover, a combined version of
the problem can be solved through a customized metaheuristic.

The general results of this thesis demonstrate that the problem of charging station location and
scheduling is a multifaceted problem with several influencing factors. Overall, it can be stated
that the present thesis has advanced the state of the art in the planning of EV charging stations by
enabling the simultaneous planning of charging locations and charging of EVs for the first time,
taking into account location factors and mobility patterns.
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Table 6.2: Statistical values for the costs calculated by the model for the year 2019, 2025, 2035, 2045 in
e/MWh.

year season mean standard median max min

deviation

2019 37.66 11.80 39.28 62.72 1.08

0 36.17 11.29 37.65 58.72 1.08

1 37.30 10.48 38.75 55.66 4.66

2 39.26 11.69 41.17 61.05 8.00

3 37.31 13.04 39.03 62.72 6.96

2025 57.33 14.18 60.38 78.63 -8.63

0 54.61 16.47 58.99 77.50 -8.63

1 55.83 16.21 59.44 78.63 -3.88

2 59.71 12.13 61.95 78.54 6.31

3 58.04 11.82 59.77 78.23 13.28

2035 46.20 28.51 51.16 94.20 -34.64

0 41.05 31.44 47.22 91.39 -34.64

1 42.04 32.88 47.63 92.59 -32.62

2 50.59 25.58 54.37 94.20 -27.70

3 48.63 24.11 51.33 93.88 -20.32

2045 37.55 38.12 41.39 147.51 -84.06

0 29.05 39.80 39.18 137.23 -84.06

1 30.16 41.98 37.84 133.17 -80.32

2 44.12 35.44 43.82 147.51 -71.52

3 42.81 34.12 41.71 145.24 -61.72

0 - spring, 1 - summer, 2 autumn, 3 - winter
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Table 6.3: Statistical values for the emissions EMISAt
[t] (incl. curtailment) calculated using equation 4.14

and based on the electricity generation pattern generated by the model for the year 2019, 2025,
2035, 2045 in kg CO2e/MWh.

year season mean standard median max min

deviation

2019 342.94 84.30 347.16 527.90 0.00

0 343.50 73.31 346.03 513.38 0.00

1 357.37 74.97 362.72 511.83 85.38

2 349.87 84.61 356.48 523.65 143.81

3 322.79 96.35 323.58 527.90 56.55

2025 302.60 120.95 313.58 536.42 0.00

0 292.32 116.83 303.17 525.85 0.00

1 304.75 126.47 314.02 531.72 26.84

2 317.74 117.21 329.01 532.02 88.32

3 291.40 123.87 299.28 536.42 96.23

2035 120.92 99.78 80.36 397.37 0.00

0 112.26 89.63 66.61 368.45 0.00

1 124.12 100.18 74.47 379.56 2.20

2 129.73 103.83 94.87 397.37 11.10

3 115.84 102.86 75.49 395.65 15.68

2045 32.05 16.00 29.85 89.56 0.00

0 32.52 12.56 32.89 78.84 0.00

1 35.74 14.21 34.97 84.59 1.98

2 32.33 17.39 28.52 89.56 9.21

3 28.56 17.68 22.79 89.25 10.41

0 - spring, 1 - summer, 2 autumn, 3 - winter
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Table 6.4: Statistical values for the emissions (w/o. curtailment) calculated using equation 4.13 and based
on the electricity generation pattern generated by the model for the year 2019, 2025, 2035, 2045

in kg CO2e/MWh.

year season mean standard median max min

deviation

2019 361.99 78.89 366.03 528.54 174.63

0 364.31 66.95 365.64 520.33 178.96

1 377.5 70.73 381.35 521.82 194.71

2 367.58 79.66 372.99 526.07 179.77

3 341.03 89.95 342.52 528.54 174.63

2025 302.77 120.64 313.58 536.42 93.64

0 292.78 115.98 303.17 525.85 93.64

1 305.01 126.02 314.02 531.72 105.07

2 317.76 117.18 329.01 532.02 94.87

3 291.40 123.87 299.28 536.42 96.23

2035 121.91 98.91 80.36 397.37 19.13

0 114.18 87.92 66.61 368.45 20.55

1 125.95 98.51 74.47 379.56 24.11

2 130.17 103.43 94.87 397.37 19.18

3 115.98 102.74 75.49 395.65 19.13

2045 33.25 15.81 32.25 89.56 11.13

0 34.74 11.97 35.76 78.84 11.41

1 37.99 13.19 37.96 84.59 11.45

2 32.92 17.31 29.83 89.56 11.20

3 28.80 17.62 23.30 89.25 11.13

0 - spring, 1 - summer, 2 autumn, 3 - winter
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