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Abstract

Recommender systems (RSs) are powerful tools that proactively suggest a set of personalized
items to users. In doing so, they aim to predict the preferences of their users, wherein they
are considered to be very accurate. In addition to algorithmic precision, user-centered qual-
ities have recently been increasingly taken into account when evaluating the success of RSs.
Examples for such qualities include the transparency of an RS, the control users are able to
exert over their recommendations, and the means of exploring the item space in context of
recommendations. However, research on aspects focused on human-computer interaction in
RSs is still at a rather early stage. The main focus of the present thesis is to study and design
RSs more holistically. In this regard, the mental models that users create of RSs are explored,
explanations and their impact on user-centered variables of RSs are investigated, and tech-
niques from information visualization (InfoVis) are applied to let users scrutinize the global
context of their recommendations. The results of this research and the contributions I make
to the state of the art in this context are described in greater detail below.

A key contribution of this thesis consists of the results of two studies that shed light on the
mental models that users of RSs develop and how these models influence the users’ perception
of different system qualities. A key finding of the first, qualitative study is that many mental
models tend to follow a procedural structure that can be used, for instance, as a template for
designing explanations to promote transparency in RSs. In the second study, which relied on
a larger sample and thus allowed quantitative conclusions, this type of procedurally structured
mental models was found to correlate with a high perception of system transparency and
confidence in the users’ own comprehension of the inner workings of the system. Apart from
that, some users seemed to humanize the RS, assigning attributes such as “social”, “organic”,
and “empathic”. Such a comprehension of the system was accompanied by higher levels of
trust—a finding that may be leveraged by system designers. In general, mental models that
deviate greatly from the actual functioning of the system should be corrected so that they do
not lead to false expectations on the part of the users and hence to a potentially rejection of
recommendations.

A prominent method for improving system transparency and thus the soundness of users’
mental models is to provide textual explanations along with the recommendations. These ex-
planations usually follow a very simple scheme based on similarity—especially in productive
environments. To investigate implications of such simple explanations, another experiment
contained in this thesis asked users to explain recommendations in their own words and com-
pared them to explanations automatically generated by a system. The results indicate many
benefits of providing more extensive explanations for recommendations, such as increased trust
and higher perceived quality of recommendations. Another finding is that many participants,
as opposed to the system, provided a broader context of the decision behind their recommen-
dation.
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The extent to which textual explanations can provide context for recommendations is limited,
though. While a local context is relatively easy to explain textually—e.g. by linking recom-
mendations to a user’s preferences—it is difficult, if not impossible, to provide users with a
global context. Such a global context would need to explain the relationship of recommenda-
tions to all other items in the dataset from which a RS selects its candidates. Comprehending
such an item space at a global scale can unlock several beneficial properties of an RS, such as
preventing filter bubbles, fostering creativity, and encouraging a user’s self-development. In
this thesis, I argue that to provide such a global context, RSs should go beyond explaining
recommendations textually and better exploit the capabilities of computer systems compared
to humans.

Three of the six papers included in this cumulative dissertation explore how methods of InfoVis
can be applied to RSs to provide users with a global context of recommendations and how this
affects the users’ perception of these systems. One result of these studies is that even simple
means of representing the item space can already successfully convey a sense of overview over
the item space and provide transparency for recommendations. However, another finding is
that artificial maps that distribute all items on a two-dimensional plane according to their
similarity are a promising visualization style that can be used to deeply integrate means of
interactively controlling recommendations into the visualization of the item space. Such maps
have also been found to trigger user excitement, which can also influence the perception of
recommendations. In another experiment, we found that a treemap can also be used as a
control panel for a RSs. The results of this experiment further underline that treemaps can
effectively alert their users to potential biases or blind spots in their preference profile. In this
thesis, I discuss such implications of the InfoVis method to depict the item space of RSs.

Finally, in this thesis I take an elevated perspective on the findings of the papers contained
and argue that researchers should consider user-centered aspects of RSs more holistically,
for instance, in terms of the deep interconnectedness of perceptual variables. In this sense, I
observed that the user experience of an application can influence as how novel recommendations
are perceived to be, and that the degree of overview of the item space users are able to obtain
can positively affect the perceived quality of recommendations. This thesis represents thus a
further argument for looking at RSs from a highly user-centered viewpoint.

Keywords: Recommender Systems, Information Visualization, Mental Models, Explainable
AI, Interactive Systems, Human-Computer Interaction
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Kurzfassung

Empfehlungssysteme (ES) sind leistungsstarke Instrumente, die den Nutzern proaktiv eine
Reihe von personalisierten Artikeln vorschlagen. Dabei zielen sie darauf ab, die Präferenzen
ihrer Nutzer vorherzusagen, worin sie als sehr präzise angesehen werden. Neben der algorith-
mischen Akkuratesse werden in letzter Zeit auch zunehmend nutzerzentrierte Qualitäten bei
der Bewertung des Erfolgs von ES berücksichtigt. Beispiele für solche Qualitäten sind die
Transparenz eines RS, die Kontrolle, die Nutzer über ihre Empfehlungen ausüben können, und
die Möglichkeit, den Item Space im Kontext von Empfehlungen zu erkunden. Die Forschung zu
Aspekten, die sich auf die Mensch-Computer-Interaktion in ES konzentrieren, befindet sich je-
doch noch in einem recht frühen Stadium. Das Hauptargument der vorliegenden Arbeit liegt in
der ganzheitlicheren Untersuchung und Entwicklung von ES. In diesem Zusammenhang werden
diementalen Modelle, die Nutzer von RS erstellen, exploriert, Erklärungen und ihre Auswirkun-
gen auf nutzerzentrierte Variablen von RS untersucht und Techniken der Informationsvisual-
isierung (InfoVis) angewandt, damit Nutzer den globalen Kontext ihrer Empfehlungen erkun-
den können. Die Ergebnisse dieser Forschung und die Beiträge, die ich in diesem Zusammen-
hang zum Stand der Wissenschaft leiste, werden im Folgenden ausführlicher beschrieben.

Der erste Beitrag dieser Arbeit besteht aus den Ergebnissen zweier Studien, die Aufschluss
darüber geben, welche mentalen Modelle die Nutzer von ES entwickeln und wie diese Mod-
elle die Wahrnehmung verschiedener Systemqualitäten durch die Nutzer beeinflussen. Ein
zentrales Ergebnis der ersten, qualitativen Studie ist, dass viele mentale Modelle einer eher
prozeduralen Struktur zu folgen, was z.B. als Vorlage für die Gestaltung von Erklärungen zur
Förderung der Transparenz in ES verwendet werden kann. In der zweiten Studie, die sich
auf eine größere Stichprobe stützte und somit quantitative Schlussfolgerungen ermöglichte,
wurde festgestellt, dass diese Art von prozedural strukturierten mentalen Modellen mit einer
hohen Wahrnehmung der Systemtransparenz und dem Vertrauen in das eigene Verständnis
der inneren Funktionsweise des Systems korreliert. Darüber hinaus schienen einige Nutzer das
ES zu vermenschlichen, indem sie ihm Attribute wie “sozial”, “organisch” und “empathisch”
zuschrieben. Ein solches Verständnis des Systems ging mit einem höheren Maß an Vertrauen
einher – eine Erkenntnis, die von Systemdesignern genutzt werden kann. Generell sollten
mentale Modelle, die stark von der tatsächlichen Funktionsweise des Systems abweichen, kor-
rigiert werden, damit sie nicht in falschen Erwartungen auf Seiten der Nutzer und somit einer
möglichen Ablehnung von Empfehlungen resultieren.

Eine beliebte Methode zur Verbesserung der Systemtransparenz und damit der Korrektheit der
mentalen Modelle der Benutzer ist die Bereitstellung von textuellen Erklärungen zusammen mit
den Empfehlungen. Diese Erklärungen folgen in der Regel einem sehr einfachen Schema, das auf
Ähnlichkeit beruht – insbesondere in produktiven Umgebungen. Um die Auswirkungen solcher
einfachen Erklärungen zu untersuchen, wurden in einem weiteren Experiment im Rahmen
dieser Arbeit Benutzer gebeten, Empfehlungen in ihren eigenen Worten zu erklären, und diese
mit von einem System automatisch generierten Erklärungen verglichen. Die Ergebnisse deuten
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auf viele Vorteile hin, die sich aus ausführlicheren Erklärungen für Empfehlungen ergeben, wie
z.B. einem höheren Vertrauen und einer höheren wahrgenommenen Qualität der Empfehlungen.
Ein weiteres Ergebnis ist, dass viele Teilnehmer, im Gegensatz zum System, einen breiteren
Kontext der Entscheidung hinter ihrer Empfehlung lieferten.

Der Umfang, in dem textuelle Erklärungen den Kontext für Empfehlungen liefern können,
ist jedoch begrenzt. Während ein lokaler Kontext relativ leicht textuell erklärt werden kann
– z.B. durch die Verknüpfung von Empfehlungen mit den Präferenzen eines Nutzers – ist
es schwierig, wenn nicht unmöglich, den Nutzern einen globalen Kontext zu vermitteln. Ein
solcher globaler Kontext müsste die Beziehung der Empfehlungen zu allen anderen Elementen
in dem Datensatz erklären, aus dem ein ES seine Kandidaten auswählt. Das Verstehen eines
solchen Produktraums auf globaler Ebene kann mehrere vorteilhafte Eigenschaften eines ES
freischalten, wie z.B. die Vermeidung von Filterblasen, die Förderung von Kreativität und die
Ermutigung zur Selbstentwicklung eines Nutzers. In dieser Arbeit argumentiere ich, dass ES,
um einen solchen globalen Kontext zu bieten, über textuelle Erklärungen von Empfehlungen
hinausgehen und die Fähigkeiten von Computersystemen im Vergleich zu Menschen besser
ausnutzen sollten.

Drei der sechs in dieser kumulativen Dissertation enthaltenen Arbeiten untersuchen, wie Meth-
oden der InfoVis auf ES angewandt werden können, um Nutzern einen globalen Kontext von
Empfehlungen zu vermitteln und wie sich dies auf die nutzerzentrierten Qualitäten dieser Sys-
teme auswirkt. Ein Ergebnis dieser Untersuchungen ist, dass bereits einfache Darstellungen
des Produktraums erfolgreich einen Überblick über den Datenraum der Produkte vermitteln
und Transparenz für Empfehlungen schaffen können. Ein weiteres Ergebnis ist jedoch auch,
dass künstliche Karten, die alle Artikel auf einer zweidimensionalen Ebene entsprechend ihrer
Ähnlichkeit verteilen, ein vielversprechender Visualisierungsstil sind, mit dem sich Mittel zur
interaktiven Steuerung von Empfehlungen tief in die Visualisierung des Produktraums integri-
eren lassen. Es hat sich auch gezeigt, dass solche Karten bei den Nutzern Begeisterung auslösen
können, was ebenfalls die Wahrnehmung von Empfehlungen beeinflussen kann. In einem weit-
eren Experiment haben wir herausgefunden, dass eine Treemap auch als Bedienfeld für ein
ES verwendet werden kann. Die Ergebnisse dieses Experiments unterstreichen, dass Treemaps
ihre Nutzer effektiv auf mögliche Verzerrungen oder blinde Flecken in ihrem Präferenzprofil
hinweisen können. In dieser Arbeit diskutiere ich solche Implikationen der InfoVis-Methode
zur Darstellung des Produktraums von ES.

Zusammenfassend nehme ich in dieser Arbeit eine erhöhtere Perspektive auf die vorgestellten
Ergebnisse ein und argumentiere, dass Forscher nutzerzentrierte Aspekte von ES ganzheitlicher
betrachten sollten, zum Beispiel im Hinblick auf die tiefe Verflechung von Wahrnehmungsvari-
ablen. In diesem Sinne habe ich festgestellt, dass die user experience einer Anwendung einen
Einfluss darauf haben kann, als wie neuartig Empfehlungen wahrgenommen werden, und dass
der Grad des Überblicks über den Produkttraum, den Benutzer erhalten, die wahrgenommene
Qualität der Empfehlungen beeinflussen kann. Die vorliegende Arbeit repräsentiert somit ein
weiteres Argument für die Betrachtung von ES aus einer stark nutzerzentrierten Sicht.

Stichworte: Empfehlungssysteme, Informationsvisualisierung, mentale Modelle, erklärbare
KI, interaktive Systeme, Mensch-Computer-Interaktion
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1 Introduction

Modern webshops, music streaming portals, travel booking sites and many other platforms
leverage highly specialized intelligent systems to present their content tailored to the individual
preferences of their customers. Since their introduction in the early 1990s, such recommender
systems (RSs) have evolved into powerful instruments that aim at predicting a user’s prefer-
ences and continue to be of great importance in science and industry [54, 138, 141]. Among
other benefits, RSs have been shown to have the potential of increasing purchases, customer
loyalty, and user satisfaction [140].

While the community of researchers and developers of RSs has long focused primarily on
improving the accuracy of predicting a user’s preferences, this is always a retrospective accuracy
that may be outdated, misguided, or over-fitted and thus fails to take into account the user’s
actual current needs [74, 116]. As a result, many user-centered aspects of RSs have recently
received some attention as well [115, 152, 157]. For example, it has been demonstrated that
introducing more transparency into RSs is appreciated by users [153] and that can improve
their trust in these systems and thus the acceptance of recommendations [68]. One of the most
popular approaches aimed at making RSs more transparent is to provide textual explanations
[68, 159, 177]. Another user-centered aspect of RSs is the degree of control users are able to
exercise over the recommendations they receive [62, 65, 114]. For both qualities, it is pivotal
to investigate what internal representation users create of the RS they interact with in order
to prevent typical pitfalls of human-computer interaction.

Whenever humans interact with a digital system, they create a cognitive representation of that
system. This mental model serves as functional simulation and helps predict the system’s reac-
tions and hence plan interaction steps to achieve the user’s goal [128, 143]. An effective mental
model is to a certain degree congruent with the actual system and a necessary prerequisite
for any effective human-computer interaction. Initial studies have investigated which mental
models users of intelligent systems develop [50, 51, 88]. It has been found that in addition
to the effectiveness of human-computer interaction, the soundness of the mental models that
users develop also influences their satisfaction with the system [37, 94, 121].

To help users build a more sound mental model and thus address aspects such as the degree of
trust they place in an RS, recommendations are often presented along with textual explana-
tions for them [68, 159, 177]. In the automated generation of explanations, RSs are constrained
by the algorithm they use to calculate recommendations [21, 46]. Since many recommendation
algorithms internally rely on similarities between items or users [91], a very common expla-
nation style is to indicate a similarity between recommendations and a user’s preferences or
the item currently viewed (e.g. in the popular explanation style “Users who bought . . . also
bought . . . ” from Amazon). The effectiveness of such rather simple explanations has been
questioned, though [21, 46].
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1 Introduction

Textual explanations usually explain the relationship of a recommendation to single items of
the underlying item space1. Those items typically belong to the user’s preference or, as in
the aforementioned example of Amazon, the item being currently inspected. While provid-
ing a broader context would certainly be technically feasible in most cases—e.g. by indicating
similarities of recommendations to a larger set or even the entire space of items—it remains
questionable whether it would be practical to present users with such a large amount of infor-
mation in the form of a text.

Yet, several downsides are known for situations where users are not aware of how their rec-
ommendations relate to the underlying item space. One of these downsides is that users may
become trapped in filter bubbles [131] or echo chambers [42]. While it is still debated whether
RSs are the primary cause for such situations or whether users voluntarily enter them [4], one
way to counter them is to remind users what fraction of the entire item space they consume
relative to the rest. Users who do not know how their recommendations relate to the rest of the
item space may face other issues apart from filter bubbles. They may have a lower confidence
in their choice [71], or be fearful of missing out [70]. They may also be unable to explore the
item space more comprehensively and develop new preferences [87]. Finally, issues of fairness
and ethics arise when users are nudged into a certain region of the item space [14, 28].

One way to alleviate these issues is to exploit the capability of digital systems to visualize large
information domains. The discipline of information visualization (InfoVis) is a research field
that is dedicated to, inter alia, the challenge of helping users make sense of large item spaces
[22, 66, 151]. By leveraging InfoVis techniques, RSs users can be presented with the entire
item space on a global scale, and be provided with means to explore it [e.g. 3, 44, 108]. In
TVLand [44], for example, the domain of television shows is displayed as an artificial map in
which regions of high and low preferences are highlighted in form of a heat map. Others have
applied this map-based method to the domain of music [3] and university courses [108].

1.1 Research Questions and Contributions

From the current state of research outlined above, I derived four research questions (RQs)
that form the basis for the work presented in this thesis. The RQs can be divided into two
parts: Part I (RQ1 and RQ2) is concerned with studying how users perceive RSs and how
this leads them to associate different attributes with these systems. Part II (RQ3 and RQ4) is
concerned with how designers and engineers of RSs can foster this comprehension and leverage
it to unlock desirable user-centered attributes of RSs. In particular, my four RQs are:

RQ1: Which mental models do users develop of an RS?

Problem Mental models are crucial for users to effectively use a digital system [50, 51, 88].
In the rare cases where mental models of RSs have been studied, they are typically described
by the level of their soundness [50, 94] or individual aspects they contain [39, 51]. Capturing

1Here I define item space as “the set of all physical or digital objects that serve as recommendation candidates
in a given database”. Examples of item spaces are all movies available on Netflix, all tracks to choose from
on Spotify, and all books physically available in a local library.
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1.1 Research Questions and Contributions

and describing a general mental model of an RS that is shared by multiple users has not yet
been pursued, though. Insights in form of such an overarching model would provide clues
regarding common presumptions that users have developed about the system and thus what
directions should be taken to make RSs more transparent and usable. Moreover, the diversity
of mental models in larger samples and across different RSs has not yet been studied. For
example, it remains unclear whether users develop a separate model for each RS, or whether
mental models are shared across systems.

Approach and Results To answer this RQ, two studies were conducted. In the first [127],
we chose a qualitative approach and conducted interviews with Netflix users. Applying the
grounded theory methodology [27, 155], we revealed a basic procedural mental model that all
participants followed to some degree. This model comprises four steps: data acquisition, infer-
ence of user profiles, comparison of user profiles or items, and generation of recommendations.
Apart from this, the mental models of participants were very diverse. This diversity was con-
firmed in a second study we conducted [103]. This second study was designed as an online
survey and aimed to elicit mental models of a larger sample using card sorting. The result-
ing highly diverse card sorts yielded different distinct groups of participants who developed a
similar mental model. We found three such groups: one with a procedural mental model, one
with a concept-based mental model, and one group that developed a mental model comprising
many social aspects.

Contributions The results of this research contribute to the respective field by providing in-
depth insights into users’ assumptions about how RSs work. For example, the four steps of
the procedural mental model identified in the first study can be used to anchor explanations
of RSs in users’ existing comprehension. In addition, our second study demonstrates how
mental models of RSs can be captured quantitatively in a broad sample. Another contribution
lies in the three user groups we revealed in our results and that group users with a similar
mental model. These groups can be leveraged to make RSs more transparent in the future,
e.g. by determining to which of these groups the active user belongs and subsequently tailoring
the displayed explanatory components to that group’s model. A simpler approach would be
to adhere to a procedural style of explaining recommendations, as we found that the largest
group of participants in our experiment followed a procedural understanding of RSs, and it
can thus be assumed that many users approaching an RS would intuitively understand such
explanations.

RQ2: What is the relationship between mental models and users’ perception of
RSs?

Problem In addition to investigating which mental models users of RSs develop, a crucial
question is how these models affect users’ perception of RSs—especially in terms of whether
connections exist between the mental model and user-centered aspects such as recommenda-
tion transparency, control, and trust. Some initial empirical results suggest that flawed mental
models can lead to confusion [121] and that improving the soundness of mental models pos-
itively affects interaction efficiency and user satisfaction [94]. In tandem with the results of
RQ1, the potential number of such correlations increases: not only the soundness of mental
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models could influence how the system is perceived and how one interacts with it, but also the
specific content of a mental model, could lead to different attitudes towards an RS.

Approach and Results Methodologically, we addressed this RQ by administering question-
naires on user-centered aspects such as social presence, trusting beliefs, transparency, control,
and perceived recommendation quality as part of the online survey we conducted to elicit
users’ mental models [103]. In contrast to typical interview-based approaches in mental model
research, choosing this method allowed us to analyze the results quantitatively. Specifically,
we tested for statistical differences between groups, which we identified through hierarchical
clustering based on participants’ card sorts. As a result, we found that procedural mental mod-
els were associated with a high perception of recommendation transparency and confidence in
using the RS. However, participants who followed a more concept-based mental model did not
perceive the RS to be very transparent. Finally, participants who focused on social aspects
experienced the highest trust in the system, which we note is consistent with prior findings
[25, 99].

Contributions The contributions of this research relate to designing systems that promote a
type of mental model that can lead to more positive perceptions of an RS. In domains where,
for instance, trust in the system is critical, social components should be emphasized. In certain
situations, this might even involve altering the procedure for calculating recommendations. In
this scenario, human actors could be involved in the process of generating recommendations,
and this could then be communicated to users. All things considered, the results provide a
basis for a stronger emphasis on human-in-the-loop in RSs.

RQ3: How do typical system-generated explanations compare to explanations
based on natural language created by humans?

Problem One common way to increase the transparency of an RS and thus to improve a
user’s mental model is to provide textual explanations. The automated generation of such
explanations depends on how the recommendations are calculated algorithmically. Since one
of the most common ways of generating recommendations is based on item (or user) similarity,
automatically generated explanations also often adhere to a similarity-based style [68, 159].
While richer approaches of explaining recommendations also exist [21, 35], there has been
insufficient research on how conventional, similarity-based explanations generated by a system
compare to explanations that humans would use to justify their recommendations. It can be
assumed that richer explanations—especially those that mimic social interactions—improve
trust due to the ability to form bonds with the RS [25, 99].

Approach and Results To answer this RQ, we designed and conducted an experiment in
which two groups of users received movie recommendations [101]. In one group, users received
recommendations from an RS combined with explanations based on item similarity (i.e. indi-
cating the positively rated item most similar to the recommended item in each case). In the
other user group, users were asked to recommend movies to each other and to briefly explain
their choice. As a result, we found that while the system-generated recommendations were
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more accurate in terms of matching the target users preferences, humans as recommenders
were better at explaining their choices. Interestingly, this superior explanatory ability com-
pletely evened out the difference in recommendation accuracy. We also found that the social
presence emanating from natural language explanations was an influential mediator of the trust
participants placed in the recommendation source (i.e. human or RS).

Contributions The results indicate that typical system-generated similarity-based explana-
tions may be too shallow to be effective and that RSs could benefit from generating more
complex explanations. Aside from perceived explanation quality, such improved explanations
could potentially help system designers to increase other aspects such as a system’s trust-
worthiness and even the experienced accuracy of recommendations. Thus, a more theoretical
contribution is that attributes of RSs which are typically thought to be isolated from each
other are more intertwined than is assumed.

RQ4: How can the underlying item space of an RS be visualized to users? How
does the visualization style influence the users’ perception of an RS?

Problem It has been shown several times that RSs can benefit from presenting users not
only with recommendations, but also with a suitable representation of the entire item space
[2, 108, 118]. To achieve this, methods from InfoVis have often been used. Thereby many of
the visualizations used are based on a map metaphor, because maps are able to display large
item spaces while remaining intuitively comprehensible [45, 120]. Yet, the interaction with
recommendations, e.g. in the form of supporting efficient control of preferences, is often not
directly supported by such visualizations. It is also underexplored how different visualization
types compare to each other and what benefits, for example, rather complex map visualizations
bear compared to simpler and more common representations of the item space of an RS.

Approach and Results To answer these two RQs, we implemented six different interfaces for
visualizing the item space of RSs. One of these interfaces used a list, one used tiles with sliders,
two used treemaps, and the last two were based on a map metaphor. Of these six interfaces,
we compared one of the treemap interfaces with the tile-based slider interface (NewsViz [102]),
one of the map interface with the other treemap interface and the list (MusicExplorationApp
[97]), and conducted a usability study with the remaining map interface (MovieLandscape
[98]). Especially with NewsViz and MovieLandscape, we demonstrate how to deeply integrate
the functionality of an RS and the way users can control recommendations into the visualiza-
tion of the underlying data. When compared to a baseline, we found that users experienced
a higher degree of control. In the MusicExplorationApp, we showed that the visualization
style influenced overall user experience, which was highest for the interface based on a map
metaphor.

Contributions One of the primary implications of our experiments with different item space
visualizations for RSs is that InfoVis methods, when properly integrated, can increase the
control users are able to exert over recommendations. On the other hand, the results also
indicate that even simple means of exploring the item space can be sufficient and provide high
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transparency of recommendations. However, the user experience seems to benefit from more
complex map visualizations, which in turn can influence other perceptional aspects of RSs such
as the perceived novelty of recommendations.

1.2 Outline

This dissertation is organized as follows: The next chapter (Chapter 2) briefly summarizes
the relevant literature and discusses background not contained in the papers. Chapter 3 then
presents the research contained in the cumulus. In Chapter 4, I reflect on the findings of my
research and bring them in relation to the ongoing scientific discourse in the respective areas.
Finally, Chapter 5 provides a brief summary of my major contributions and suggests a few
next steps to advance the research presented here.
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Since their advent in the 1990s, RSs have become widely used systems that proactively suggest
travel destinations, music tracks, commercial products, and many other items to users [54, 138,
141]. By providing individually tailored sets of recommendations to users, RSs can reduce the
cognitive burden of manually coping with information overload, while from the recommendation
provider’s perspective, RSs can help increase purchases, user satisfaction, and customer loyalty
[140].

There are several ways to generate recommendations. Most prominent among them are content-
based algorithms and algorithms based on collaborative filtering (CF). As the name suggests,
content-based recommendation algorithms focus the content of items to determine a set of
relevant recommendations for the active user [123]. In case the content of items is available and
can be analyzed appropriately, a content-based RS can operate directly on the items themselves,
e.g. by using word embedding techniques such as word2vec [117] on text documents such as
news articles. On the other hand, in case the content of items cannot be analyzed easily,
metadata can be used to operate a content-based RS. This can be achieved, for instance,
by adding information from an external data source such as Linked Open Data, as done by
Passant [133]. To recommend suitable items to a user, they need to be associated with a user
profile that contains the same attributes as those known for the items. Then, a relevance
score can be calculated for the items, and the ones with the highest scores can be selected as
recommendations [123]. CF, on the other hand, does not depend on the availability of content
information for items, but is performed on interaction data between items and users [91]. These
interaction data can consist of explicit ratings that users consciously provide (e.g. elicited on
a 5-star rating scale), or of implicit ratings that are obtained from other interactions (e.g.
click-through rates or dwell times on a web page). Based on these ratings, similarities between
items or users can be calculated. One strategy for identifying potential items to recommend to
the active user is to select those items that similar users have rated highly in the past [91].

One widely known approach for CF is matrix factorization (MF) [90, 158]. In MF, the user-
item matrix R ∈ R|U |×|I|, which contains interaction data for all users U and items I, is
decomposed into P ∈ R|U |×f and Q ∈ R|I|×f , two low-rank matrices with f representing a given
number of factors where typically f ≪ |U | and f ≪ |I|. There are several approaches for this
decomposition, for instance, alternating least squares and singular value decomposition [90].
The predicted rating r̂ui for user u ∈ U and item i ∈ I is calculated by the inner product of
the user’s factor vector p⃗u ∈ Rf and the item’s factor vector q⃗i ∈ Rf , stored in Pu and Qi,
respectively. The factors in P and Q are referred to as latent because they are assumed to
contain hidden semantics that are distilled from the underlying ratings [34, 100, 125, 142].

In order to evaluate the performance of an RS, a very popular method is to conduct offline
experiments [5, 58, 158]. This type of evaluation is often the easiest to perform and entails
relatively low costs, as it does not require an extensive user study design or subject acquisition.
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To estimate the performance of a recommendation algorithm offline, various techniques can
be used. One of the most popular metrics is the mean absolute error (MAE), which quantifies
the error in the rating predictions of an RS. Based on an existing dataset of interaction data,
a small portion of users and items is retained as a test set T . Then, the recommendation
algorithm is performed on the remaining data of R and rating predictions for all user-item
pairs (u, i) ∈ T are computed, for instance, by MF as described above. Then the MAE
is defined by 1

|T |
∑

(u,i)∈T |rui − r̂ui|. A variant of the MAE is to compute the root mean

squared error (RMSE), where larger errors are disproportionately penalized. There are several
other approaches to measure the accuracy of recommendation algorithms; for example, some
consider the ranking of recommendations instead of its numeric prediction accuracy, such as
the normalized discounted cumulative gain (NDCG) [72].

Regardless of the specific measurement approach, offline experiments are particularly useful
for ensuring the computational precision of an algorithm during its development, but also for
determining a pre-selection of suitable existing recommendation algorithms for an RS. On the
other hand, offline experiments are insufficient to be used as the only instrument for evaluating
the overall performance of an RS [58, 115, 157]. One of the downsides of offline experiments
is that they rely solely on historical data, and thus on the assumption that the used dataset
models the users’ behavior after the system is deployed well enough. Another reason why
offline experiments are inappropriate for measuring the overall performance of an RS is that
there are several other aspects of an RS that affect its success besides its algorithmic precision.
Many of these aspects focus on the user and how they perceive and interact with the RS.

2.1 User-Centered Quality Aspects of Recommender Systems

Apart from the ability of an RS to make as accurate predictions as possible about a user’s future
ratings and thus about which items are appropriate recommendation candidates, many other
factors have been identified that influence the success of these systems [85, 89, 115, 152, 157].
Some of these qualities, beyond accuracy, pertain to the composition of the set of recommenda-
tions returned by an RS. When a user is presented with very accurate recommendations that
all fit well with their tastes, they may face choice overload [10, 70]. In an online survey, Bollen
et al. found that the users’ choice satisfaction consists of an interplay between the variables
of attractiveness (i.e. recommendations that match the user’s taste), variety (i.e. recommen-
dations that consist of very different items), and choice difficulty. This indicates that large
sets of recommendations containing only items that are very attractive to the user may not
be the most satisfying recommendations for them. To tackle choice overload effects and other
drawbacks of very homogeneous recommendation sets, there are several approaches on how
to achieve a higher diversity by an RS [18, 76, 169]. These approaches range from re-ranking
an existing recommendation list to approaches that rely, for instance, on clustering the user’s
taste profile and generating recommendations for each cluster separately [18]. Closely related
to the diversity of recommendations is their novelty. Both aspects can also be found in common
frameworks for evaluating RSs [e.g. 86, 136].

While recommendation diversity and novelty can be addressed algorithmically and even mea-
sured offline to some extent, improving other user-centered aspects in RSs requires a careful
design of how recommendations are displayed to users and how they can interact with the
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system. One of these aspects is the degree of control users are able to exercise over their
recommendations. Over the years, interactive RSs have evolved into their own branch of re-
search [15, 65, 74]. All interactions with an RS can be basically organized into two categories:
preference elicitation and interaction during result presentation [74]. Traditionally, preferences
are elicited by RSs in form of implicit or explicit ratings on a single item base [73, 83, 154].
Yet, also more efficient solutions exist where users can, for instance, make a binary choice for
a set of items [105] or rate item clusters represented by tags [20]. However, these methods
are typically performed before recommendations are made (e.g. at cold start), which can be
difficult for users, for instance, because they lack the domain knowledge to explicitly articulate
their preferences [112].

Critiquing in the context of RSs [112, 171, 173], as a technique that is performed during
presentation of recommendations, takes a different route. In this approach, users are asked to
indicate directions for an RS to take after they have seen and/or consumed a recommended
item. In the seminal work of Vig et al. [173], the authors presentMovie Tuner, an RS that allows
users to critique movie recommendations based on tags, letting them, for instance, indicate
that they want recommendations that are less violent than a current movie recommendation.
In addition, many interactive systems have been proposed in which preference elicitation,
presentation of recommendations, and general interactive components are deeply interwoven
into a sophisticated system [e.g. 2, 55, 106, 118]. Improving interactive control over an RS,
when implemented appropriately, has been shown to increase user satisfaction [38, 62, 74],
perceptions of recommendation accuracy [130], and users’ trust in the system [38]. When an
RS provides appropriate means for its users to exercise control, this can also promote curiosity
and willingness to explore an item domain beyond the areas, a user is already familiar with
[165, 166]. In any case, control in the field of RSs is closely related to the comprehensibility of
these systems [61, 65, 87].

Increased comprehensibility of RSs can be achieved by improving the recommendation trans-
parency [15, 68, 153]. Providing recommendations that users can understand can be done
in different ways. In the Movie Tuner application, mentioned above, recommendations are
explained based on tags that the recommended item is assigned with and that the user has
rated positively in the past [172]. A link to the user’s preferences is also exploited in the
TasteWeights system [12]. In TasteWeights, recommendations and user preferences are con-
nected through an intermediate layer that explains how both are related. This could be, for
instance, that they belong to a similar genre or were liked by a friend on Facebook. One goal
of the application TalkExplorer [170] is to make the source of recommendations more visible
to users. In TalkExplorer, recommendations are visualized as nodes in the active user’s neigh-
borhood. The resulting graph helps to identify the influence on recommendations in hybrid
RSs settings. Making hybrid recommendations more transparent is also the goal of Relevance
Tuner+ by Tsai and Brusilovsky [166]. In this application, the influence of each of five recom-
mendation sources is displayed as a relevance score, which can also be adjusted interactively.
In addition to these examples, several other applications have been introduced that aim at
making recommendations more transparent. Among them are approaches that use rather ex-
otic techniques, such as displaying a user’s preferences in the form of comic-like avatars [9].
Transparency, when implemented appropriately, has been shown to improve the acceptance of
recommendations [52, 68], their perceived quality [101], and the trust users place in the RS
[159, 176].
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Knijnenburg et al. [87] first proposed the notion of self-actualization in the context of RSs.
In contrast to the user-centered properties of RSs discussed above, self-actualization lies on a
higher level of abstraction, as systems that follow this paradigm “support users in developing,
exploring, and understanding their own unique tastes and preferences” [87]. As such, these
systems aim to capture user preferences more holistically, account for temporary preferences,
and promote personal growth. Consequently, transparency and control over recommendations
are integral components of RSs for self-actualization [87, 156]. One advantage of RSs for self-
actualization is that they support human creativity and are an effective countermeasure to filter
bubbles, a controversially discussed situation in which users are “trapped” in their personalized
taste profiles, which constantly reinforce themselves without users being able to leave them
[131, 139]. A main concern in the context of filter bubbles is that users are only exposed
to very homogeneous content, which can lead to very extreme opinions and polarization of
society [28]. One way to alleviate this is to present more heterogeneous content, for example
by generating more diverse recommendation sets. This can be achieved algorithmically [18, 76]
or by providing interactive tools to make recommendations more heterogeneous [53, 77]. In
this context, it has been shown that users who are more aware of how their own preference
profile within an RS relates to the entire item space are less likely to have blind-spots and
therefore to become trapped in filter bubbles [95].

One of the goals of RSs for self-actualization is to “support rather than replace decision-
making” [87]. This supportive role of RSs can also be found in the notion of supertools recently
introduced by Shneiderman [152]. In his work, he summarizes the ongoing trend of human-
centered AI and its potential to support “human self-efficacy, creativity, responsibility, and
social connections”. In doing so, he further emphasizes the need for modern intelligent systems
to consider human users more holistically than has been the case in the past. In human-centered
AI, as Shneiderman understands it, the intelligent system is neither a fully system-controlled
intelligent agent nor a fully user-controlled tool. Instead, it is a supertool that provides a
high degree of control to its users, but leverages all the available capabilities of modern AI
to amplify their abilities. For Shneiderman, appropriately designed RSs are examples of such
supertools because they provide decision support to their users, but do not take those decisions
away from them. As such, they have to be comprehensible, predictable, and controllable, which
is consistent with the increasing attention to user-centered aspects in RSs research and design
discussed above.

2.2 Explanation Methods of Recommendations

One way to help users understand recommendations and increase their transparency is to pro-
vide textual explanations. Explanations can help bridge the information gap between RS and
users, thus helping them to judge the quality of recommendations and decide whether they
are worth to be followed [160]. When implemented appropriately, explanations for recommen-
dations have been shown to improve overall user satisfaction [46], the trust users put in an
RS [68, 159], and the perceived transparency [6]. On the other hand, however, Berkovsky
et al. found that explanations based on the similarity between preferred and recommended
items failed to convey trust [6]. Bilgic and Mooney [7] even found that explanations can have
negative effects. More precisely, Bilgic and Mooney observed that users misjudged the quality
of recommended items when given similarity-based explanations.
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As a suggestion for structuring the discussion about explanations in RSs, Ain et al. [1] provide
a conceptualization framework. This framework contains five dimensions, including the target
audience of the explanation (e.g. are the explanation receivers individual users or groups?),
the goal that the explanation interface pursues (e.g. to improve trust in the RS or to educate
the user about the inner workings of the system), and the style of explanation used. A popular
explanation style for recommendations is to reveal their relationship to the user’s previously
expressed preferences [68, 159] or to highlight content features that the user is likely to enjoy
[7]. Recently, more complex types of textual explanations have emerged. For example, these
can be based on natural language [21] or on user-created product reviews [35]. Tintarev and
Masthoff [160] propose to organize the different explanation styles in three levels. The first
level explains recommendations based on a single user. Explanations at this level have in
common that they are very close to the raw data stored for the active user. An example
of an explanation style in this category is the style used at Netflix, where recommendations
are related to a movie that the user has rated positively in the past. The second level of
explanations contextualizes the data of the active user. Explanations based on CF most often
fall into this category because they mention the active user’s context or neighborhood. A
very popular example of this style follows the structure “Users who bought . . . also bought . . . ”,
which is used by Amazon, for example. Finally, as third level, Tintarev and Masthoff list
explanations to supports users in their self-actualization. That is, these explanations can be
used to pursue a number of higher-level goals, such as “discover the unexplored” [156], which
is closely related to serendipity [76, 110] and describes the ability of users to develop new
preferences, as Tintarev and Masthoff explain.

2.3 Mental Models of Recommender Systems

In cognitive science, mental models, as internal representations of the external world, are a
pivotal concept as they dictate how we perceive and interact with this external, represented
world [128, 143]. Mental models have been studied since the early 1980s and describe “the
way people understand some domain of knowledge” such as how liquids behave [49]. They
are constructed through interaction with the external world and are thus subjective in nature,
incomplete, uncertain, and possibly flawed [128]. Since some cognitive effort is required to
develop a mental model, users will subconsciously reuse once constructed models whenever
possible. This reuse of mental models, while cognitively efficient, can lead to misaligned mental
models, for example, when the knowledge domain in which a model is used only appears to
be similar to the domain in which it was created [128, 129]. As cognitive representation of an
external domain of knowledge, mental models of digital systems have also been studied. As
such, they are closely related to folk theories, which have been used to describe the imperfect
theories users create about digital systems [30, 39, 126].

Regardless of whether they are referred to as folk theories or mental models, the internal
representations of digital systems need to match the actual system functioning to some degree
in order to be useful for predicting its behavior and thus for using the system effectively.
While the imperfection of mental models is a cognitive fact, models that are too misaligned
can cause errors in human-computer interaction. The gap between the users’ mental model
and the actual system behavior is closely related to the gulfs of evaluation and execution—two
well-known concepts in human-computer interaction [129]. When the mental model fails in
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correctly predicting the current state of a system and thus in correctly interpreting the system
output, a large gulf of evaluation is present. This situation leads to confusion and impedes
users from achieving their goals with the system. Similarly, users cannot achieve their goals
when a large gulf of execution is present. In this situation, the mental model does not contain
the correct information to tell the user what actions to take in order to achieve their goal.
In other words, the gulf of evaluation impedes the user from understanding why a system
behaves the way it does, while the gulf of execution impedes the user from understanding how
to effectively control the system.

More recently, mental models have received some attention in the research community of
intelligent systems as well. Tullio et al., for instance, observed that users possessed some basic
comprehension of conceptual and technical aspects of machine learning, such as decision trees
and pattern recognition, when being confronted with an intelligent systems about which they
had no prior knowledge [168]. Makri et al. [109] observed that users constructed a shared
mental model for their experience with different types of document search interfaces. As a
result, users’ mental models were flawed and meagerly developed, which in turn resulted in the
aforementioned gulfs. Muramatsu and Pratt [121] observed that flaws in the mental models
of intelligent systems can cause confusion in the interpretation of search engine results. In a
study on correcting misaligned mental models, Kulesza et al. [94] showed that improving the
quality of users’ mental models can increase the effectiveness of using a music RS. In line with
this, Makri et al. suggested that intelligent systems should be developed that support users in
creating better mental models [109]. Makri et al. further recommend that the exploration of
data should be more actively supported. Eiband et al. [37] also focus on the development of
intelligent systems that support users in creating better mental models. More precisely, they
present a stage-based development process that takes into account the mental models that
users develop in each development iteration. Finally, Kodama et al. suggest to start improving
mental models early in people’s contact with intelligent systems and to teach the theoretical
and practical concepts behind search engines in schools [88].

In order to study mental models empirically and to capture the knowledge of a group of users
about a certain subject, qualitative methods have usually been applied. In his seminal work
entitled “Some Observations on Mental Models”, Norman [128] presents results of an inter-
view study in which users of calculators were asked to think aloud while performing different
simple tasks with the calculator and verbalize their mental model afterwards. In a similar
manner, Kodama et al. [88] elicited the mental models of search engines in a sample of middle
school students. Instead of an interaction task during which they should think aloud, Kodama
et al. asked the students to draw how they think the search engine works internally and then
to verbalize what they drew in brief retrospective interviews. Apart from these exploratory
qualitative studies, a few experiments have been conducted that approach mental models us-
ing quantitative methods. Thereby these experiments often focus on the effects of the mental
models users hold on different dependent perceptional variables. Kulesza et al. [94], for in-
stance, measured the soundness of participants’ mental models using multiple-choice questions.
Others employed conceptual techniques such as card sorting in order to identify the mental
models of larger samples than is possible through face-to-face interviews [26, 104]. In contrast
to small sized qualitative studies, investigating mental models in larger samples can help reveal
the diversity of mental models that co-exist in a given group of users [51].
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2.4 Visualizations in Recommender Systems

It has often been argued that the typical linear presentation of recommendations as a ranked
list is not optimal in several regards [23, 71, 135]. In industry, carousel interfaces are also
frequently used (e.g. at Netflix or Amazon), which are essentially a two-dimensional version
of a ranked list. This makes the optimization problem of the underlying RS more complex,
since not only the horizontal ranking within a recommendation list has to be considered, but
also the vertical ranking of different lists of recommendations [33, 40]. Also, the evaluation
of carousels needs to be approached slightly differently than individual recommendation lists,
since their vertical position among the other recommendation lists needs to be considered as
well [41]. In comparison to ranked lists carousels have been found to result in fewer interaction
steps before a user finds a desired item [137].

From a user-centered perspective, the use of recommendation presentation techniques that go
beyond linear ranked lists can unlock several desirable properties of RSs. For example, the
perceived transparency and acceptance of recommendations can be increased by using bar
charts [36]. This is supported by findings of Chen and Tsoi [23], who compared presenting
recommendations in the form of a conventional vertically displayed list, a two-dimensional grid,
and a circularly organized pie interface. As a result, they observed that the presentation of
recommendations as pie and grid were preferred by users compared to the ranked list. Chen
and Tsoi also found that these visualization styles resulted in a more even distribution of
attention across the recommendations, and that the intention to follow the recommendations
was increased. In regard of the aforementioned concept of self-actualization, Guesmi et al. [56]
followed a human-centered design process to develop prototypes that visualize user models of
intelligent systems to promote different user-centered goals such as exploration, comprehension,
and socializing. Suggestions of their design process include bubble charts and Venn diagrams.
Parra et al. [132] compared a list-based condition with their system SetFusion, which uses a
Venn diagram to display the influence of different algorithms in a hybrid RS setting. They
showed that SetFusion was perceived as more engaging. Similarly, Kouki et al. [92] observed
an increased user experience when they used Venn diagrams to display the influence of different
sources in a hybrid RS. In contrast, Tsai and Brusilovsky [166] used a Venn diagram in the
aforementioned system Relevance Tuner+ to explain similarity between users as an overlap of
word clouds. Besides results on other forms of visualization, Tsai and Brusilovsky observed
that the word cloud was experienced as enjoyable by users. Moreover, the word clouds helped
users to better understand the recommendations. In a previous experiment, we found that
even subtle visual cues about the source of a recommendation can foster the user’s trust in an
RS [99].

Multiple times, techniques from the research discipline of InfoVis [16, 22, 82] have been applied
to RSs. Katarya et al. [80], for instance, use a treemap [150] to display the set of recommen-
dations to users. A treemap is also used by Chang et al. [19], who use it to visualize a user’s
search queries. User studies with both applications revealed that users were satisfied with this
style of visualization. Another InfoVis technique that has been applied to RSs are node-link
graphs. For example, Gretarsson et al. [55] visualize a user’s preference profile and its relation-
ship to recommendations in form of a multilayer graph in which the user, their preferences,
social peers, and recommendations are displayed as nodes.
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In addition, users can manipulate the position of these nodes and thus influence their relevance
for recommendations. Results from a user study conducted by Gretarsson et al. suggest that
the application can improve the degree of control users are able to exercise over the RS.
Gajdusek and Peska [43] also use a node-link graph, but to display clusters of a music dataset
and the artists contained. While Gajdusek and Peska did not evaluate their application,
Petridis et al. [135] conducted a user study with their prototype TastePaths, which is also
set in the music domain and displays artists as nodes in a graph. Among other results,
they found that TastePaths educates its users about the relationships between artists, thus
helping them discover interesting music they were not aware of. Improving the users’ mental
model through this visualization also helped them to understand recommendations. In the
MusiCube application [145], users can select musical features (e.g. tempo, acoustic texture) by
adjusting the axes of a scatter plot of songs. In a small user study, participants indicated that
MusiCube is an effective interface for receiving music recommendations. Tsai and Brusilovsky
[167] introduce Scatter Viz, which uses a similar visualization. Scatter Viz is a social RS
that recommends academic scholars based on a research profile. As with MusiCube, users of
Scatter Viz can customize the features to be displayed as the axes of the scatterplot. In a user
study, Tsai and Brusilovsky found that Scatter Viz performed better on several user-centered
dimensions such as trust, supportiveness, and intention to reuse, compared to a baseline system
that used a list to present recommendations. In contrast to these scatterplots, which have clear
labels on their axes, other types of maps have been used to visualize the item space of an RS
[2, 44, 84, 108]. Some of these approaches are discussed in greater detail further below.

Another reason for using more sophisticated means of presenting recommendations to users is to
make them aware of the underlying item space from which an RS selects its candidates. This is
important, for example, to prevent the aforementioned filter bubbles [131] or echo chambers [42].
As discussed above, one countermeasure against filter bubbles is to diversify recommendations
and expose users not only to items that match their preferences known by an RS. While this
may motivate users to explore areas of the item space with which they are unfamiliar, it may be
difficult for them to anticipate the outcome of exploratory actions that take them beyond their
typical user profile—potentially resulting in a wider gulf of execution [77]. Kangasrääsiö et al.
[77] have demonstrated how to mitigate this by letting users iteratively explore the item space
based on a spatial map metaphor. A similar solution is introduced by Tsai, who uses a two-
dimensional scatterplot to display recommendations [164]. Tsai observed that when using this
visualization, users apply a broader exploration pattern and thus discover more diverse items
than with a traditional list-based presentation of recommendations [164]. Nagulendra and
Vassileva [124] presented recommendations in their RS within a stylized bubble surrounded
by topics currently not represented in the recommendations. As a result, Nagulendra and
Vassileva found that users developed a good understanding of the filter bubble concept. With
a similar objective, Tintarev et al. [161] displayed a user’s blind-spots as part of a chord
diagram. In a user study, they found that this chord diagram outperformed a simple bar
chart in terms of conveying the blind-spots to users. However, in these examples, users are
presented with a comparatively small number of items, and it remains unclear whether these
visualization approaches would be able to display all of the items in the database of an RS.
Yet, this would be beneficial in making users aware of all of their available options and thus
of possible blind-spots.

Recently, Jannach and Adomavicius [71] listed “help users explore or understand the item
space” as one goal of a purposeful RS. Apart from making users aware of potential blind-
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spots, providing a global overview of the item space has been shown to be beneficial in several
ways. For example, when users do not understand the item space and thus the options available
to them, they may have less confidence in their choice [71] or even regret it after making a
selection [70]. It can also support users comprehend their own unique preferences, deepen
existing preferences, and discover new ones, thus serving as another means to promote user
self-actualization [135]. To achieve this, a key aspect of RSs for self-actualization is to enable
and motivate their users to explore the item space around their existing tastes and in areas
they have not yet made any experiences with.

To explore the item space beyond personalized recommendations, numerous interactive sys-
tems have been developed that depict recommendations in their global context [e.g. 2, 44, 108].
To achieve this, it is necessary to visualize large amounts of data effectively. Especially maps
have proven useful to adequately convey the overall distribution of an item space. The ap-
plication nepTune by Knees et al. [84], for instance, allows users to explore an item space
of music as a three-dimensional geographic landscape. Knees et al. showed in a users study
that participants enjoyed using nepTune to explore and discover music. Another map-based
application in the music domain is presented by Andjelkovic et al. [3] and named MoodPlay.
In contrast to nepTune, users in MoodPlay are presented with their listening history visualized
as a path in the item space map. When comparing their application to a baseline without such
visualization, Andjelkovic et al. found increased scores for recommendation transparency and
degree of control. Ma et al. [108] similarly compared their map-based application CourseQ to
a baseline and also found that their interface resulted in significantly higher values for trans-
parency of recommendations. Over time, many other map visualizations for RSs have been
presented, indicating that they are a valuable tool for users to explore large item spaces and
the recommendations therein [24, 44, 75, 135, 148].

The popularity of a map-based form of visualizing large item spaces is likely due to its ease of
understanding and intuitiveness in use. One aspect responsible for this intuitive comprehen-
sibility of maps is that thinking spatially is innate to humans [45]. Without any additional
explanations, spatial distances in a map are intuitively understood as semantic relatedness,
with smaller distances between two markers representing a higher similarity—an observation
that is also known as the “first law of geography” [162]. It has been found that the first law
of geography also applies to artificial maps that display non-geographic data [120]. Probably
for this reason, maps have proven to be superior in representing similarities between items
than, for instance, treemaps [8]. Maps have also shown to be useful in providing users with an
overview of the item space being depicted [163], and can thus be used well as entry point for
users into an InfoVis system [151].

A central challenge in the design of item space maps is the visualization of the typically vast
number of items stored in the database of an RS. To tackle this, a comprehensive abstraction
of the underlying item space has to be found that supports users in orienting themselves
without overwhelming them with information. This is typically achieved either by displaying
representative sample items [84, 111, 146, 148, 174], labels with meta-information (e.g. music
genres, or social tags) [3, 24, 81, 96], or a combination thereof [44].
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3 Synopsis of the Research Papers Included in
this Dissertation

This chapter briefly explains the conducted research that is contained in the six papers included
in this dissertation. First, the two papers that deal with investigating mental models of RSs are
presented [103, 127]. Then, I summarize the research conducted on human-generated explana-
tions in comparison to computer-generated explanations [101]. Finally, the three papers about
the use of InfoVis in RSs are presented [97, 98, 102]. In the subsequent Chapter 4, the results
summarized here are discussed in terms of answering the RQs introduced in Section 1.1.

3.1 Exploring Mental Models for Transparent and Controllable
Recommender Systems: A Qualitative Study

Problem While there is a considerable body of work that addresses user-centered qualities
of RSs [e.g. 15, 136, 152], the cognitive representations that users develop of these systems
have rarely been investigated. Uncovering such mental models is crucial for studying RSs from
a user perspective, as the internal representation of an external system determines how users
perceive and interact with it [128, 143]. As a consequence, mental models can be considered
as a source of the qualities that user-centered research investigates in RSs. Revealing users’
mental models enables the identification and thus elimination of false assumptions, potential
misunderstandings, and other common pitfalls of human-computer interaction [39, 50, 126].
Studies conducted in this area have rarely investigated the specific content of mental models,
though. This would be interesting, however, to study the interaction between human and
RSs, for instance, in terms of which parts of mental models are flawed and should therefore be
corrected.

Approach With the goal of uncovering the mental models that users of RSs create, we con-
ducted a qualitative interview study [127]. This study followed the grounded theory method-
ology [27, 155]. Grounded theory is a technique for developing theories about a subject in a
highly exploratory manner. This methodology is thus particularly suitable for research areas
where not much preliminary work has been carried out.

To investigate which mental models users of RSs develop, we conducted semi-structured inter-
views with 10 regular Netflix users. We selected Netflix as the RS because it contains clearly
visible recommendations (e.g. the “top picks for you” category) and is very popular. There-
fore, we assumed that by the time of the interview, participants were likely to have already
developed a mental model about this RS. As preparation, we developed an interview guide
with open-ended questions such as “Which part of Netflix do you think is personalized?” and
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NETFLIX Recommender System

(3) Comparison of items 
or user profiles

(4) Generation of 
recommendations
(4) Generation of 
recommendations

(1) Acquisition of data 
(mostly implicit)

(1) Acquisition of data 
(mostly implicit)

(5) Returning
recommendations

(5) Returning
recommendations

(2) Inference of a 
virtual user profile
(2) Inference of a 

virtual user profile

UserUser

Figure 3.1: The central process, which we found to some extent in every mental model of our
participants. Based on the collected data of a user (1), a virtual user profile is
constructed (2). This profile is brought into relation with other profiles or items of
the underlying dataset (3) and analyzed to generate recommendations (4), which
are finally presented back to the user (5).

“What data do you think are used for the personalization in Netflix?”. In addition to these
questions, the interview also included a brief session in which participants were asked to think
aloud while logging into their Netflix account and searching for a movie they would want to
watch. Subsequently, they were instructed to imagine that they did not like that movie and
to verbalize how they would communicate this to the system. With this task, we wanted to
encourage participants to reflect on how they could steer the RS into a certain direction. As
final task, we asked participants to draw their mental model of the RS in Netflix, a task that
has also been utilized previously in such studies [e.g. in 32, 88].

A central tool of grounded theory is theoretical sampling : A certain group of participants
is interviewed until no further variation can be found in the participants’ responses. Then,
another group of participants is focused or the experiment is concluded. This method requires
researchers to alternate between conducting interviews and analyzing the results. In our case,
we conducted three sampling phases: 1) “typical” Netflix users, i.e. participants in the primary
target audience of the streaming platform; 2) participants with comparatively high or low levels
of technical knowledge; and 3) participants who use the explicit rating feature in Netflix (i.e.
thumbs up/thumbs down) to deliberately steer their recommendations in a particular direction.
After this third phase, we concluded our sampling as we found no further concepts in the
data that had not already been mentioned—or in grounded theory terminology: as theoretical
saturation had been reached.
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Results Analysis of the interviews revealed several main concepts in the mental models that
were present in the utterances of multiple participants. These concepts were: centrality of self,
item-based vs. user-based recommending, and a technical vs. metaphorical style of the mental
model. Centrality of self was a concept that was very evident in some participants’ models:
their mental model was entirely organized around themselves.

These participants also often assumed that the RS operated in a user-based manner, for ex-
ample, by inferring similarities in the users’ watch histories. Others, however, did not see
themselves or the user in general as so central and focused more on the relationship between
items, which we accounted for with the concept of item-based recommending. Mental models
that followed this perspective were often more technical and focused on the algorithmic pro-
cesses that an RS uses internally. Yet, other participants described their mental model in a
more metaphorical language, using, for instance, the image of a tentacled monster providing
recommendations with its many arms. Although participants varied widely in these concepts,
we nevertheless found a central process model that all participants followed in their descriptions
(see Figure 3.1).

From the above observations, we derive several implications for the development of RSs. For
example, the basic mental model as presented in Figure 3.1 can serve as a guide for developers
who want to explain recommendations to their users. Our research suggests that these steps
are likely to be present in the mental model of all, or at least most, users. The aforementioned
concept of centrality of self could also be used to explain recommendations. This implies
that the relationship between the active user’s preferences and the recommendations should
be made explicit so that the user can understand how the recommendations are linked to their
preferences. As a further implication, we suggest that erroneous mental models should be cor-
rected. During the interviews, we received several responses expressing severe uncertainty and
trust issues towards the RS, which we ascribe to a mystification of the underlying algorithms.

Contributions In summary, the contributions of our work to the ongoing discussion on user-
centered qualities of RSs are twofold: 1) The exploration of mental models makes a theoretical
contribution by providing deep insights into the way users view and interact with an RS. The
general structure in Figure 3.1 is an example of these insights. 2) The research also contributes
practically in that we derive several implications for future development of RSs.

3.2 Identifying Group-Specific Mental Models of Recommender
Systems: A Novel Quantitative Approach

Problem The research presented above provides some qualitative insights into the mental
models of a relatively small sample of users of one particular RS. However, we were also
interested in the prevalence and diversity of mental models across different RS and in a larger
sample. In addition, we also wanted to analyze the relationships between mental models and
users’ attitudes towards these systems in a quantitative manner.
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How do you think that  Discover weekly playlist on Spotify  works?

Which steps and actions do you think the recommender system has to take in order to personalize  Discover weekly playlist on Spotify ? 

Please drag and drop these actions to assign them to steps according their order. 

Remember that you do not have to use all steps nor all actions.

Actions you can choose from: Put your actions here:

Calcuating a similarity 

score between items
Suggesting items that are 

new to me
Blocking advertisement

1st step:

Action

Action

Action

2nd step:

Action

Action

Action

Employees suggest items 

to me

Determining my interest in 

items categories

Recording my mouse 

clicks

Matching rating data of 

items
Evaluating the usability of 

the platform

Combining all data about 

me to an abstract profile

Figure 3.2: Excerpt from the card sorting task as presented to participants. The text about
the particular RS (here: “Discover weekly playlist on Spotify”) depended on which
system the respective participant had chosen as reference system at the beginning
of the survey.

Approach To achieve this, we designed and conducted a second experiment [103]. For this
experiment, we developed a novel approach to elicit users’ mental models of RSs using the
card sorting technique in conjunction with a questionnaire. With card sorting, we chose a
method that has previously been found to be suitable for eliciting mental models [26, 104]. We
adapted this method to the functioning of RSs and extended it with questions about different
attitudes and perceptual variables. This novel experimental setting enabled us to reach a wide
range of participants and thus to make statements not only about a common, very abstract
mental model as in the qualitative study described in Section 3.1, but also about the diversity
of different mental models evident in a large sample.

For our study, we collected responses from N =170 participants. Each of them was asked to
chose one RS as a reference system. For this purpose, we provided a list of eight different
systems to choose from. Examples are “Top pics for you on Netflix”, “Video recommendations
on YouTube”, and “Discover weekly playlist on Spotify”. The system chosen was displayed
at several points in the questionnaire of the survey. In the card sorting task, participants
were asked to select as many cards from a given set as they felt appropriate to express their
understanding of how their respective RS works and sort them in up to seven consecutive
steps (an excerpt from the presentation of this task is shown in Figure 3.2). Participants could
choose from a total of 35 cards:

� 16 action cards: These cards represent typical paradigms used in RSs that we have
gathered from previous mental model studies, from the RS literature, and from our
own expertise. Examples of action cards are: “Recording my mouse clicks”, “Analyzing
content of items”, and “Presenting items that other users liked in the past”.

� 12 distractor cards: With these cards, we aimed at enabling users to add cards that
deviate from the ground truth about how RSs work and thus to express misconceptions or
faulty assumptions in their mental model. Examples for distractor cards are: “Employees
suggest items for me” and “Evaluating the usability of the platform”.

� 4 question mark cards: On these cards, a question mark was depicted to allow participants
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to indicate that they believe something is happening at this step, but that they are too
unsure to use a more specific card.

� 3 open cards: Finally, we added open cards on which participants could write their own
text. In this way, they could add actions that we had not anticipated to be part of their
mental model.

As user-centered qualities of the various RSs, we used questionnaire constructs for social pres-
ence [48], trusting beliefs [113], transparency [136], control [136], perceived usefulness [136],
recommendation quality [86], and perceived system effectiveness [86]. In addition, there were
some self-formulated questions about participants’ confidence in the soundness of their mental
model, whether it followed a technical or metaphorical style, and their prior knowledge about
RSs.

Results For the analysis of the resulting card sorts, we compared all participants in terms of
how they sorted their cards so that we obtained a matrix that contained similarities between
each pair of participants. We then applied Ward’s method [122, 175], an agglomerative (i.e.
bottom-up) hierarchical clustering approach. In this way, we obtained three distinct groups
of participants, organized according to their way of sorting the cards, and thus according to
their mental models of RSs. Subsequently, we applied Ward’s method again to cluster the
cards within each of these groups so that we could also draw qualitative conclusions about the
mental model of each group of participants. Together with the questionnaire results from each
of the three groups, we identified the following three mental models:

Concept-based mental model (N = 66): Participants with a concept-based mental model ar-
ranged the cards thematically rather than chronologically. In this group, the aforementioned
concepts of item-based vs. user-based recommending were particularly present. The clusters of
cards in this group, for instance, indicate that one cluster adheres to processing of the user
model and another to processing of items. Participants in this group reported having the least
prior knowledge of how RSs work and that they perceived recommendations as not very trans-
parent. Consistent with their concept-based mental model, their model was more technical
than metaphorical.

Procedural mental model (N = 79): Unlike the first group, the second group of participants
had a procedural mental model and arranged the cards in chronological order. This process
begins with data collection, followed by comparing items and users. Subsequently, inferences
are made about the user’s interests, and finally, the recommendations are presented back to
the user. We note that this group fairly directly mirrors the basic mental model we identified
in the previous qualitative study (Section 3.1). Participants in this group followed a technical
model and were highly confident that their mental model corresponded to how the system
actually worked. Probably as a result, this group experienced the highest transparency of
recommendations.

Social-focused mental model (N=25): The card sorts of this group did not adhere to any dis-
cernible procedural or concept-based pattern. Instead, their mental model was quite confused
and seemed to follow a social and metaphorical style: As part of the questionnaire, partici-
pants assigned metaphorical attributes to the RS and indicated to experience the highest social
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presence. They also expressed the highest trust in the system—probably a result of assigning
humanized attributes to the system.

Several implications for the design of RSs emerge from the results of the user study. As in the
previous study, we found many uncertain and erroneous mental models, which is why we echo
our suggestion made above to better explain RS to users. In particular, we emphasize that
the transparency conveyed by such explanations should match the actual system functioning
to some extent. This can prevent users from developing a false sense of understanding that
is not based on facts and could thus lead to wrong assumptions and expectations. We stress
that such a misguided form of understanding can lead to the aforementioned gulfs of human-
computer interaction. Our results also reinforce that most users follow a procedural way of
comprehending an RS, which we recommend as a template for explanations—especially in
situations where nothing is known about the active user’s mental model. Finally, our results
indicate that a humanized mental model is related to increased levels of trust in the RS, and
we hence suggest using a vivid, metaphorical language to instill trust in RS users.

Contributions With the work presented in this paper, we contribute to the research on how
users comprehend RSs by presenting a novel card sorting setting that captures the entire
processing chain of RSs. The result is a method for revealing mental models of broad samples
that provides a foundation for future user studies. Based on the findings of our study, we
propose several implications that make practical contributions to the future design of intelligent
systems.

3.3 Let Me Explain: Impact of Personal and Impersonal
Explanations on Trust in Recommender Systems

Problem Transparency and trust play a pivotal role in RSs and determine whether users
are willing to follow recommendations or reject them. Textual explanations are a popular
approach to increase transparency and trust in an RS [68, 159]. Automatically generated
textual explanations range from rather simple similarity-based styles to richer explanations
based on natural language [6, 21, 35]. However, the common similarity-based explanation
styles have not yet been compared to human-formulated explanations for recommendations.
There is evidence that, in particular, the trust a user places in an RS might benefit from
explanations that follow a richer style [25, 99].

Approach We conducted an experiment showing how the ability to justify recommendations
affects trust in the recommender and that even the perceived quality of recommendations
depends on how well an RS is able to explain its recommendations [101]. More specifically, we
compared rather simple explanations based on CF (i.e. “Users who bought . . . also bought . . . ”),
as are common for automated RSs, with more extensive explanations formulated by humans
for other humans.

For our study, we developed a system that allowed participants to create and receive movie rec-
ommendations. In order to ensure that participants were able to consume each recommended
movie, we restricted participation to those who had an Amazon Prime account. This left us
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Preparatory Phase
• Questionnaire 1
• Rate 10 movies

Consuming Phase
• Receive recommendation
• Watch movie

Rating Phase
• Rate recommendation
• Rate explanation
• Questionnaire 2

2x

Recommending Phase

• Select movie to recommend
• Explain recommendation

Figure 3.3: Phases of the study in which we compared recommendations and their explanations
between users (personal condition) and an RS (impersonal condition). The recom-
mending phase took place only in the personal condition. Recommending phase,
consuming phase, and rating phase were performed twice during the course of the
experiment.

with a total sample size of N =93. As database, we relied on the widely used Movielens 20M
ratings dataset2, which we pre-filtered to those movies that were available for free on Amazon
Prime at the time of the study. To compare human and automated sources of recommenda-
tions and explanations, each participant was randomly assigned to either a personal condition,
in which they acted as both recommendation provider and recipient, or an impersonal condi-
tion, in which they received recommendations from an automated system. The procedure of
our study was divided into four phases (Figure 3.3): preparatory phase, recommending phase,
consuming phase, and rating phase.

In the preparatory phase, participants were asked to complete a questionnaire on general de-
mographics and their attitudes toward technology, e.g. their disposition to trust [113] and their
general trust in technology [86]. In this phase, they were also asked to rate 10 movies. The
recommending phase was only performed by the participants in the personal condition. Here,
they had to make a recommendation for another participant in this condition and explain
their choice. To assess the other participant’s taste in movies, they were presented with their
previously rated movies. In the consuming phase, all participants watched the movie recom-
mended to them and rated the recommendation and explanation in the rating phase. In this
phase, participants were also asked to complete a second questionnaire about their trust in
the recommendation source (i.e. their trusting beliefs and trusting intentions [113]) and the
degree of perceived social presence [47]. The recommending, consuming, and rating phases
were conducted twice. The entire course of our study spanned a total of two weeks.

Results In a direct comparison between conditions, we found that participants with other
humans as recommenders perceived a higher social presence and experienced an increased ex-
planation quality compared to participants in the impersonal condition. The automated RS,
on the other hand, provided recommendations of higher quality. A mediation analysis re-
vealed that this superior ability of the system to suggest items with high precision was entirely
counterbalanced by its inferior ability to explain its suggestions. In other words, the recom-
mendations of a human source are perceived to be similarly accurate to those of an RS only

2https://grouplens.org/datasets/movielens/20m/
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because humans are superior in their ability to justify their choice. A counterfactual analysis
helped us quantify this observation: if an RS would be able to explain its recommendations as
well as humans, the quality of its recommendations would increase by about 13% or 0.5 stars
on a 5-star rating scale. Apart from this salient relationship between explanation and recom-
mendation quality, we were able to uncover further relationships between dependent variables.
For instance, we found that the variables recommendation quality, explanation quality, and
social presence affected participants’ trust in the source of recommendations.

Although it was not part of the main focus of the data analysis, we also performed a cursory
qualitative review of the collected explanations. In doing so, we found that the concept of
similarity, on which the system-generated explanations were also based, was used fairly often in
the explanations created by humans. However, participants of our experiment contextualized
their explanations better, for instance, in mentioning multiple similar movies or in using a
richer combination of different explanation styles (e.g. similarity-based and content-based).

Contributions In summary, the work presented in this paper contributes to the research on
user-centered qualities of RSs in different ways: The conducted user study demonstrates that
personal and impersonal recommendation sources differ in their ability to make recommenda-
tions and to justify their choices. This leads to further direct and indirect effects. For example,
the perceived quality of recommendations depends on a recommender’s ability to explain their
choice, which, together with other user-centered variables such as perceived social presence,
influences how much a user trusts the source of recommendations. We especially emphasize
that typical simple explanations based on item similarity are too shallow to be fully effective.

3.4 A 3D Item Space Visualization for Presenting and Manipulating
User Preferences in Collaborative Filtering (MovieLandscape)

Problem The human-generated explanations in the study discussed in the previous section
were probably superior than the system-generated explanations because they better contextu-
alized the recommendations. In Section 2.4, I additionally argued that providing such context
at a global scale may have several benefits such as prevention of filter bubbles and blind spots
[131], a better choice confidence [71], and support for self-actualization [135]. At the same
time, contemporary RSs that use CF take a quite opaque algorithmic approach—especially
when they rely on model-based techniques such as MF [34, 90]. It is this technique of CF that
is behind the simplistic explanations based on the neighborhood of a recommendation (“Users
who bought . . . also bought . . . ”) that we criticized in the paper discussed in the previous sec-
tion.

Approach To tackle the issues above, we propose a novel system (Figure 3.4) [98]. The pivotal
component of this appliction, which we later named MovieLandscape, is a two-dimensional
plane (A) on which about 10 000 movies are disseminated based on their similarity. In order
to avoid overwhelming users with information, only representative movies for the different
areas of the map are displayed. However, these hidden movies can also be explored using an
interactive tool from the tool palette (D): after selecting the Show/Hide tool, users can click
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Figure 3.4: Screenshot of the MovieLandscape application. The central item space visualiza-
tion (A) shows representative movies samples for different areas of the map. The
elevations represent the active user’s preferences, which are located in the eastern
part of the map. Recommendations that match these preferences are shown in
a dedicated recommendation area (B), but also within the map with a magenta
colored margin. The movie Brazil is currently selected and its details are displayed
in the details area (C). Users can select tools from a palette (D) to interact with
the visualization and rotate it, zoom in or out, show or hide sample items, and
change the preference profile of the landscape, thus triggering a recalculation of
recommendations.

on an empty space, whereupon the item located at that position will be added to the set of
samples. On this map, the elevations indicate the active user’s preference profile, so that areas
of high preference are displayed as hills and areas of low preference are displayed as valleys
(or in this case, as ocean depths). Another tool allows the user to reshape this landscape if
they want to receive different recommendations. Recommendations are calculated after each
interaction with the elevation profile and are highlighted on the map and displayed in the form
of a list (B). Hovering the mouse cursor over a movie poster displays details about it in the
details area (C).

The process of how MovieLandscape is technically realized can be seen in Figure 3.5. Based
on the same dataset of about 20 million movie ratings as mentioned in Section 3.3, MF is
performed as described in Chapter 2. This results in feature vectors for each item and user
(1a). Subsequently, the dimensionality is reduced by applying multidimensional scaling (MDS)
[11] to produce a two-dimensional space (1b). While this could already be presented to users,
it would most likely overwhelm them due to information overload. Hence, we determined
a small set of representative items as follows. First, we clustered the two-dimensional movie
distribution using k-means (1c). For each of the 30 resulting clusters, we automatically selected
a sample movie based on how representative it is for all the movies in the corresponding cluster
(1d). We determined the score for representativeness analogously to the approach explained

25



3 Synopsis of the Research Papers Included in this Dissertation

 

𝑞1,1
⋮

𝑞1,𝑓
  

(1a)

(optional)

(1b)

(1c) (1d)

(2)

(3b)

User-Item
Ratings

Item Factor Vectors

User Factor Vector
System-Controlled User-Controlled

Positions Clusters Samples

Elevations & 
Recommendations

(1a)

 

𝑞𝑛,1
⋮

𝑞𝑛,𝑓
  

 

𝑝𝑢,1
⋮

𝑝𝑢,𝑓
  

...
(3a)

Landscape

Reshaped
Landscape

Figure 3.5: The central process of the MovieLandscape application: Latent factors for all users
and items are determined using MF (1a). A two-dimensional distribution is gener-
ated from the factors for items using MDS (1b). Subsequently, k-means clustering
is performed (1c) and a representative item is selected for each cluster (1d) to ob-
tain a comprehensible item space representation for users. In case preferences of
the active user are already known, they are displayed as hills and valleys (2). The
user can now reshape the landscape according to their taste (3a), which results in
a recalculation of their user vector and recommendations (3b).

by Loepp et al. [105].

Based on this two-dimensional item space map, the preference profile is presented to the users.
For this purpose, the active user’s rating predictions as calculated by MF are translated to
elevations in the map: areas with high predicted preferences are depicted as hills while areas
with low preferences are depicted as valleys (2). A virtual tool allows users to reshape this
terrain according to their preferences (3a). Such functionality would be particularly useful
when dealing with short-term preferences (e.g. when searching for a movie to watch in a
group), at cold-start (i.e. when no information about the user is yet available), or when a
user’s preferences have changed over time. Any interactive reshaping of the landscape triggers
an immediate recalculation of recommendations.

Results In a user study, we evaluated the MovieLandscape application with N = 32 partic-
ipants. After a brief introduction to the functionality of the application, participants were
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asked to perform three consecutive tasks. In the first task, which also served as introduction,
participants were asked to explore the item space and to find some pre-determined movies. In
the second task, they were asked to create a novel preference profile from scratch, i.e. starting
with a flat landscape. Finally, in the third task, we presented each participant with one of
three pre-determined user profiles and asked them to change the landscape according to their
personal needs. Besides others, we found that recommendations were perceived as transparent
and controllable by participants. They also attested a high user experience (UX) to the system
and indicated that they had fun while using it.

Contributions In conclusion, the work presented in this section contributes by demonstrating
how RSs based on rather abstract model-based CF can be deeply integrated into an exploration
tool that makes use of a map metaphor. This approach takes advantage of the algorithmic
accuracy of MF while exploiting the often reported hidden semantics of such latent factor
models [34, 100, 142]. As a result, users gain control over an RS by interacting directly with
a three-dimensional representation of their user preference vector.

3.5 Depicting and Controlling Preference Profiles Using Interactive
Treemaps in News Recommender Systems (NewsViz)

Problem RSs in the domain of news articles face some particular challenges. Even though
their effects are sometimes discussed controversially [59, 119], filter bubbles [131] or echo cham-
bers [42] have been associated with ideological segregation [42], populism [31], and the distri-
bution of conspiracy theories [29]. One countermeasure for such intellectual impoverishment is
to provide a broader overview of the underlying information domain to alert users to potential
blind spots [60] and allow them to explore items beyond their usual preferences [87]. It has
also been argued that providing citizens with a broad and unbiased viewpoint is a pivotal
requirement for democracy [67].

Another aspect that is particularly challenging for RSs in the domain of news is that new arti-
cles appear frequently and that user preferences change often [78]. As a result, it is particularly
important to provide users with control over their preference profile, which is also desired by
users [61].

Approach With the NewsViz application [102], we address these challenges by providing an
overview of the categories and news sources of an aggregated news feed while allowing users
to control the personalization of this feed. In NewsViz , we utilize a treemap to visualize the
news feed composition (Figure 3.6), which is an InfoVis technique that is particularly suited
for displaying the proportion of attributes of tree cells to their root [150]. The treemap cells in
NewsViz represent news categories (e.g. politics, sports, business) whose size can be configured
by the user to control the proportional number of respective articles in the personalized news
feed. Within each of these cells, news sources are presented as a second hierarchical treemap
level. In this way, the user can configure how their personalized news feed is composed in
terms of news publishers. The underlying recommendation algorithm follows the procedure
known as post-filtering strategy [78]: The treemap composition regulates how the news feed
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Figure 3.6: Screenshot of the NewsViz application. By hovering the cursor over any news
category or source and moving the mouse wheel, the user can adjust the impact
of the respective category or source on a personalized news feed (visible in the
background). The cell sizes indicate the proportion of news articles in the feed
that are associated with the corresponding news category or source.

is composed of news categories and news sources proportional to the corresponding treemap
cells. Subsequent to this filtering process, the remaining feed is sorted by recency.

To test whether NewsViz is an appropriate tool for letting users control their personalized
news feed and raising their awareness for possible biases in a user profile, we conducted a
comparative user study (N = 63). To this end, we developed a second prototype that we
used as a baseline to compare NewsViz with. This second prototype had exactly the same
functionality as NewsViz , but used a slider-based interface to let users examine and control
their preference profile. This allowed us to isolate effects that the treemap visualization had on
user-centered qualities of the RS. More precisely, we elicited the variables transparency [136],
overall satisfaction [136], interaction adequacy [136], which we used to measure partcipants’
perceived degree of control over the RS, effort [86], recommendation quality [86], and system
effectiveness [86]. To these we added some self-formulated questions to survey the degree of
overview of the item space that participants were able to obtain. The experiment was composed
of two tasks. In the first task, participants were asked to use the interface to configure the
news feed according to their preferences. As the second task, participants were presented with
screenshots of pre-configured profiles and asked to indicate the most influential news publisher
for each of these screenshots.

Results As a result, we found a significant difference between conditions in the degree of
control participants were able to exert over their news feed—i.e. recommendations. Participants
who were presented with NewsViz perceived significantly higher levels of control over the
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composition of their news feed. Using structural equation modeling, we were furthermore able
to reveal the large influence of the overview participants perceived. This variable positively
influenced the transparency of recommendations, the quality of recommendations, and the
system effectiveness. As a result of the second task, we found that participants were more
frequently successful in determining the most influential source when using NewsViz than
when using the slider-based variant. The same was true for the time it took participants
to identify the most influential source: participants who were presented with NewsViz were
significantly better and faster in determining the most influential source in their news feed.

Contributions The results of our experiment showed that the treemap helped users control
the composition of their personalized news feed. Even though sliders are certainly the more
common interactive widget, users of NewsViz quickly learned how to use the treemap and felt
confident using it. The superiority of the treemap interface in providing control compared
to the slider-based variant was most likely due to the better visualization of the proportional
influence of news categories or sources. We conclude that representing the proportions as
area sizes of the treemap cells was an intuitive way to convey the overall composition of the
news feed. As such, like MovieLandscape, we consider NewsViz to be an example of a deep
integration of control into the functionality of an RS. In the second task, more participants
were able to identify the most influential news source by examining screenshots of the treemap
compared to sliders. Consequently, we consider our proposed NewsViz interface to be an
effective way to make users aware of potential biases and filter bubbles in media-aggregating
websites.

3.6 Investigating the Influence of Different Item Space
Visualizations on Recommender Systems
(MusicExplorationApp)

Problem Several applications have been presented that seek to leverage the ability of InfoVis
to visualize large datasets in order to address user-centered challenges of RSs. The MovieLand-
scape and NewsViz applications represent two such approaches. To date, however, different
InfoVis and non-InfoVis interfaces in the context of RSs have rarely been compared in user
experiments.

Approach To address this gap, we developed a set of prototypes for the domain of music [97].
These prototypes depict a dataset of about 9 000 music artists and about 90 000 songs as List ,
Treemap, and Map (Figure 3.7, Figure 3.8, and Figure 3.9).

To create this dataset, we manually set up a hierarchy with two levels of music genres (13
top-level genres, each with 5 subgenres). Subsequently, we used the Spotify API3 to retrieved
artists and their most popular songs for each genre. To provide users with an orientation about
the music in each genre, we determined two representative sample artists for each of them.

3https://developer.spotify.com/documentation/web-api/
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Figure 3.7: Screenshot of the MusicExplorationApp in the List condition. In the exploration
area (A), the dataset of music artists and songs is visualized as hierarchical list.
Currently, the list of the genre classical is expanded, showing its subgenres of which
contemporary classical is expanded. Two representative artists are displayed for
each genre. Next to these representative artists, artists with songs previously liked
by the active user are displayed in green, and artists with recommended songs are
displayed in magenta. The recommended songs are also presented as list in the
recommendation area (C). The artist Antonio Vivaldi is currently selected and
thus appears in the details area (B) along with his 10 most popular songs. Users
can like songs here, which results in a recalculation of recommendations. As in the
exploration area, liked songs are displayed in green. One song has been added to
the current user’s playlist, which is displayed in the playlist area (D).

The three conditions of the MusicExplorationApp are all based on this dataset, but visualize
it differently: as List , as Treemap, and as Map. The other functions and components (i.e.
in the areas (B), (C), and (D) in Figure 3.7, Figure 3.8, and Figure 3.9) are implemented in
the exact same way. To visualize the item space in the List interface, the top-level genres
are depicted as entries in an expandable list (Figure 3.7). Clicking on one of these genres
displays a list of subgenres, which in turn can be expanded to display all artists associated
with the respective subgenre. These two hierarchical levels of genres are represented as cells
in the Treemap interface (Figure 3.8). Clicking on a top-level genre expands it to cover the
entire screen space, allowing the subgenres to be explored. This view also shows a scrollable
list of artists. The size of each cell of a top-level genre or subgenre indicates the proportionate
number of artists assigned with this genre. Finally, in the Map interface, genres are displayed
as labels within a two-dimensional map (Figure 3.9). The font size and the color of these labels
indicate whether they are top-level genres or subgenres. At the beginning, this interface shows
a map displaying only the top-level genres and their representative artists. Then the user can
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Figure 3.8: Screenshot of the MusicExplorationApp in the Treemap condition. In the explo-
ration area (A), the dataset of music artists and songs is visualized as a treemap.
Currently, the genre classical is shown so that its subgenres can be explored. As
with the other conditions, two sample artists (white color) and all artists with liked
(green) or recommended (magenta) songs are displayed for each genre. The details
area (B), recommendation area (C), and playlist area (D) are implemented in the
same way as described for the List condition in Figure 3.7.

zoom into the map, revealing the subgenres and eventually all the artists in that area.

Regardless of the item space visualization, users can provide a unary rating for songs (i.e. click
a “thumbs up” button). Each time this interaction is performed, new recommendations are
requested via the Spotify API and displayed as a list in the recommendation area and in the
item space visualization (magenta colored font in the screenshots in Figure 3.7, Figure 3.8, and
Figure 3.9).

Using the MusicExplorationApp, we conducted a user study to test whether the visualization
style influences user-centered qualities of the item space visualization and the underlying RS.
More specifically, we asked participants to asses the degree of overview they obtained of the item
space in tandem with the perceived recommendation transparency, control, quality, novelty,
and variance. Questions for control and overview were created by ourselves, while the other
constructs were taken from the inventory of Pu et al. [136]. Additionally, we evaluated the
general UX of the different interfaces using the user experience questionnaire [147]. During
this study, participants had four tasks: (1) rating at least 5 songs; (2) listening to the 10
recommendations they received; (3) creating a playlist of at least 6 songs for themselves; and
(4) creating a playlist of at least 6 songs for an evening with friends.
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Figure 3.9: Screenshot of the MusicExplorationApp in the Map condition. In the exploration
area (A), the dataset of music artists and songs is visualized as an item space map.
The view is currently zoomed in on the Baroque subgenre. A minimap in the upper
left corner indicates the position and area of the current view (highlighted with a
light blue border). As with the other conditions, artists with liked songs are dis-
played in green and artists with recommended songs are displayed in magenta. The
details area (B), recommendation area (C), and playlist area (D) are implemented
in the same way as described for the List condition in Figure 3.7.

Results In this study (N = 91), we found that the Map variant resulted in significantly
higher hedonic UX compared to the other two conditions. We also observed increased values
for the novelty of recommendations participants perceived in the Map condition compared
to the Treemap condition. We note that this perceived novelty was not due to an objective
novelty (measured by the recommendations’ self-information [169, 178]) of recommendations,
which was at the same level for all three MusicExplorationApp variants. To further unravel the
relationship between the condition, the UX, and the recommendation novelty, we conducted
a mediation analysis, which revealed that the perceived novelty of the recommendations was
fully mediated by the hedonic UX. In other words, users believed that their recommendations
were more novel because they experienced the Map visualization to be innovative and leading
edge, when in fact they received the same recommendations as in the other conditions.

Contributions Contrary to our expectations, we did not find any differences between the
three variants of the MusicExplorationApp in terms of perceived overview of the item space
and transparency of recommendations. Thus, one contribution of our work is that apparently
very simple means of enabling the exploration of the entire dataset on which an RS relies
can help address these qualities. This is particularly true for the perceived recommendation
transparency, which was at a very high level in all three conditions. Another key contribution
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is that relationships between ostensibly unrelated variables should not be underestimated. In
this regard, the UX of an application can obviously have side effects on how recommendations
are perceived, in this case, on how novel users perceive them to be.
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4 Discussion

The previous chapter outlined the research in the papers included in the cumulus of this
dissertation. In the present chapter, the findings of this research are discussed in terms of how
they answer the RQs introduced in Section 1.1 and what contribution they can make to future
research in the respective area.

4.1 Mental Models of Recommender Systems

The first two RQs that underlie my research and that will be discussed here first are: “Which
mental models do users develop of an RS?” and “What is the relationship between mental
models and users’ perception of RSs?” To answer these questions, I was substantially involved
in the two experiments presented in Section 3.1 and Section 3.2. Both aim to investigate the
mental models that users construct of the RSs they encounter in their daily lives.

One of the key findings in regards of RQ1 is the general representation of the recommending
process (see Figure 3.1). The four steps of this process—data acquisition, inference of user pro-
files, comparison of user profiles or items, and generation of recommendations—were repeated
by all participants of our initial study [127]. Although these results are not generalizable per
se due to the small sample size, they provide a rough orientation of how users’ mental models
are structured. This is supported by the results we found in our second study and a larger
sample [103]. When grouping participants by how they sorted recommendation actions, we
found that most adhered to a procedural style, mirroring the procedure previously identified
in interview responses. From a practical perspective, RSs designers could use the steps of this
process to cognitively anchor explanations for recommendations and, for instance, explain how
each of these steps is performed in their particular use case. The concepts we found could also
be helpful in this process. For example, it could be explained that recommendations are gener-
ated by an item-based method—a concept that many participants knew and used to describe
their mental model. In any case, our results show that recommendations should be made more
transparent to avoid mystification, which is associated to several negative attitudes towards
RSs.

Negative or positive attitudes towards RSs were investigated more deeply in our second study
about mental models [103]. By clustering participants according to their mental models, we
analyzed how these were related to the users’ perception of RSs. We found the following
three major associations: Concept-based mental models were found to be connected to low
perceived transparency of recommendations. Procedural mental models, in contrast, resulted
in the highest perceived transparency among the three identified models. Participants with
mental models following this style were highly confident that their mental model is correct.
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Finally, socially-focused mental models were associated with high perceptions of social presence
and trustworthiness of RSs.

As a consequence of this tight connection between users’ mental models and the way they
perceive the system, we argue that the research of RSs should shift from a system-based to
a mental-model-based perspective, which I emphasize again in this thesis. Prior research on
mental models of intelligent systems, combined with the research I have contributed to as part
of this thesis, demonstrate the pivotal role that mental models play in how these systems are
perceived and hence how users interact with them. Consequently, research and development
of intelligent systems should focus on the elicitation and implications of such models.

As a starting point for such future research, I have formulated three research questions, which
are discussed below in tandem with some initial thoughts on how to answer them.

What are the reasons for the diversity of mental models? Although we found some basic
similarities in the participants’ mental models, overall they were very diverse. The origin
of this diversity remains vague, though. Based on our research, we have reason to assume
that the specific RS a user thinks of when reporting their mental model is not the reason for
this diversity. It is more likely that users construct a more general mental model based on a
mixture of their previous experience with all RSs they encountered so far. This model is then
used every time they interact with an RS—regardless of whether it is on Netflix, Amazon, or
YouTube. This is consistent with prior research on mental models, which found that users
reuse models they developed with another system [128, 129]. In this sense, the heterogeneity
of mental models we identified is due to the different experiences users have had with all the
RSs they have encountered, and probably also to the different experiences they have had with
one and the same RS.

Another factor that may play a role in the system-independent heterogeneity of mental mod-
els is the individual personality of the users. In the experiment, presented and discussed in
Section 3.6 and the corresponding paper [97], we applied hierarchical clustering to interaction
sequences found while three groups, all exposed to a different application, constructed song
playlists. The resulting clustering divided users into groups that were, to some degree, inde-
pendent of the application to which users were exposed. One can assume that the differences
in interaction patterns were due to different mental models that the users held. One reason for
why users developed different mental models could lie in their individual user characteristics:
cluster groups differed in users’ visual memory capacity and in their score for the Big Five
trait agreeableness. Although such user characteristics may certainly play a role in why users
constructed different mental models, I conclude that further research needs to be conducted in
this area. For example, it should be investigated which elements of a mental model are affected
by which user characteristics. However, in order to study such connections, a valid instrument
for eliciting a user’s mental model should first be developed.

How can mental models be elicited? As mentioned earlier, in [97] we analyzed interaction
patterns that identified different groups with presumably different mental models. Such pattern
analysis could thus perhaps form the basis for capturing mental models of users at runtime.
I acknowledge, however, that this is speculative and it would require a considerable amount
of research to transform it into a reliable instrument for capturing individual mental models
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User-
Centeredness
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Figure 4.1: A radar chart that could be used to represent mental models: The user holds
a rather user-centered model, but perceives a very low level of social presence
in the RS. The user’s mental model is highly technical and follows a sequential
structure. Finally, the user does not see their own self as very central to the
system functionality.

through interaction data alone. Card sorting, on the other hand, is a well-established tool for
quantitatively identifying mental models, which we combined with hierarchical clustering [103].
Compared to the analysis of interaction patterns, the card-sorting results have the advantage
that they allow to investigate which concepts the mental models contain, thus describing the
mental models themselves rather than how they affect the interaction. Yet, card sorting is
quite time-consuming and thus not applicable in some situations—for instance, when each
user’s mental model should be elicited before they start using a system. For such situations, a
questionnaire-based survey would be more appropriate.

To construct such an instrument, I suggest that the concepts that emerged from our two
previous studies could constitute a basis. These five concepts could be assessed using typical
questionnaire scales, yielding a personal “mental model pentagon” of RSs for each user. A
mental model obtained this way might be characterized similar to the radar chart depicted
in Figure 4.1. Some of the five concepts in this representation can be measured rather easily.
For example, there is already an established questionnaire for measuring social presence that
can be used more or less immediately [48]. Inventories for other dimensions would require
some further development, though. Exploratory factor analysis could help identify items that
could be used in such a novel questionnaire-based instrument. The supplementary material
of [103] could be used as starting point for collecting candidate items. For example, we have
begun to create a scale to measure the dimension of technicality as opposed to a metaphorical
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perspective on RSs.

If designed accordingly, an instrument as described above could be used to elicit the mental
model of each user (e.g. when registering for an RS) and even repeated later. This would
enable a system to adapt to the corresponding mental model of a user.

How should RSs adapt to the mental models of their users? One of our findings is that
the comprehension of RSs is generally vague, incomplete, and only partially correct. While
technical incorrectness is to a certain degree an inherent characteristic of mental models [128],
it was found to cause complications in human-computer interaction [109, 121]—among them
the aformentioned gulfs of evaluation and execution [129]. Countermeasures, e.g. in form of
textual explanations, have shown potential to narrow such gulfs down but it was proposed
that they might not reveal the actual functioning of an RS [160]. To avoid large gulfs and thus
false assumptions and erroneous user behavior, we argued that such ostensible transparency
should be used very carefully to avoid false assumptions and erroneous behavior [103]. Instead
systems should provide “real” transparency to their users, i.e. explain how they actually work.
This would also help to correct flawed and incomplete mental models of users. The elements
that explain the system to the user and thus provide “real” transparency could be personalized
if each user’s mental model can be elicited at runtime, for instance, by the means discussed
above.

One aspect that could be personalized in this context is the number of explanatory components.
If the model already matches the actual functioning of an RS, the UI elements explaining the
recommendations to the user could be reduced to a minimum. On the other hand, if the model
is fundamentally different from the algorithmic functioning, more elements could appear to
explain how the recommendations are generated. Such an adaptive interface could make more
efficient use of the limited available screen space by not explaining something the user is already
aware of. In terms of the five dimensions that I propose to capture a user’s mental model,
system designers could define their RS using the same dimensions. Each user’s deviation from
this model could then be quantified by matching their elicited model to the system model.
Based on the magnitude of this deviation, it would then be possible to automatically determine
the extent of the explanatory components.

Aside from the number of explanatory components, a system could also customize how these
elements explain recommendations to the user. In case, for instance, a user’s model scores
high on the metaphorical dimension, textual explanations could be used that explain recom-
mendations in a metaphorical language. If a user has a more technical mental model, the
explanations could change to technical flow charts, especially if the captured mental model
also scores high on the procedural dimension (i.e. sequentiality in Figure 4.1). In order to
achieve such qualitative adaption of explanations, I propose to design components for each of
the five dimensions of the mental model pentagon described above. This should also be aligned
with ongoing research on personalizing the level of detail in explanation interfaces. It has, for
instance, been found that different user characteristics may influence a user’s preference for
the style and complexity of explanations for recommendations [57, 93].

However, while different explanation styles exist, it has rarely been studied what users expect
from their explanations. Therefore, I initiated and supervised another experiment in which we
asked users to create recommendations for others and justify their choices.
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4.2 Comprehension of Recommendations through System- vs.
User-generated Explanations

In my third RQ, I ask: “How do typical system-generated explanations compare to explanations
based on natural language created by humans?”. To answer this question and to gain insights
into what users deem important when explaining recommendations, we designed an experiment
in which users were asked to recommend movies to other users and to explain this recommen-
dation (Section 3.3). We compared these user-generated explanations to system-generated
explanations, which followed a style typical for explanations of RSs and were based on simi-
larities between movies. The result was that the user-generated explanations were perceived
to be of higher quality, which, interestingly, also affected the perceived quality of recommen-
dations: while the RS generally generated better (i.e. more accurate) recommendations, the
higher quality of user-generated explanations compensated for their inferior recommendation
accuracy. By applying a counterfactual analysis, we further quantified this effect and found
that perceived recommendation quality would increase by half a star on a five-star rating scale
if RSs achieved the same explanation quality as users.

One aspect we noticed when manually reviewing the user-generated explanations was that they
often adhered to the similarity-based style of typical system-generated explanations. The sim-
ilarity of recommendations to previously liked items seems to be a natural way of approaching
a meaningful explanation. However, the explanations formulated by users went beyond a su-
perficial similarity based on a single item. Participants in our experiment frequently provided
a larger context of the recommendation. An example for such an explanation is: “I chose
this movie because it is full of action, but also funny, like Man in Black or Pirates of the
Caribbean.” Apparently, comprehending a recommendation includes how it relates to more
than one previously highly rated item. This particular explanation also shows how the user
defined a broader area in terms of movie genres, in which the rated movies serve as examples.

This observation mirrors to some extent the three levels of explanations provided by Tintarev
and Masthoff [160]—but from an item- rather than a user-based perspective. Explanations
of our system, which are based on the similarity to an item for which a user has previously
expressed a preference explain recommendations on an individual item base. In contrast,
many participants in our experiment used explanations on the second level, contextualizing
the similarity between the recommended and previously rated items, for example, by referring
to multiple items at once. The third level, self-actualization, goes beyond this. RSs that
provide recommendations on this level help users go beyond just receiving recommendations.
Instead, they pursue a number of other goals, such as to widen their users’ horizon and let them
discover topics of the item space they had not previously considered. It remains questionable
whether such a level of support for self-actualization can be achieved with textual explanations
alone. Even with the given advances in natural language processing, I argue that generating
textual explanations can only mimic the ability of humans to explain recommendations, but
neglects the many additional possibilities computers have to make recommendations more
comprehensible and support users’ self-actualization. One of these possibilities is the superior
ability of computer systems to generate complex yet easy to understand visualizations. In this
sense, I have contributed to the development of some systems that provide a global context
of recommendations—i.e. showing how they relate to all items and content areas in a given
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repository—and support exploration of the item space, thus aiding users in a range of self-
actualization goals.

4.3 Global Comprehension of Recommendations by Item Space
Visualizations

Providing users with an interface through which they can explore the entire item space would
not only allow them to obtain a global comprehension of the database and the recommendation
context, but also a number of other advantages. Inter alia, this can help avoid filter bubbles
[102, 131], increase choice confidence [71], explore and develop new preferences [87, 135], and
make RSs fairer and more ethical [14, 28].

As a consequence of the above and due to the potential of InfoVis methods to visualize large
amounts of information, I formulated two further RQs: “How can the underlying item space of
an RS be visualized to users? How does the visualization style influence the users’ perception
of an RS?” To answer these questions, I discuss the results of the three experiments presented
in Section 3.4, Section 3.5, and Section 3.6.

4.3.1 How can the underlying item space of an RS be visualized to users? How
does the visualization style influence the users’ perception of an RS?

Prior research has shown that perceptual variables of RSs such as transparency, control, and
satisfaction can be addressed by presenting the entire item space and personalized recommen-
dations within [3, 84, 108]. While these approaches demonstrate the general ability to address
these aspects through visualizations, we approached the question of how different visualization
styles compare in this regard [97]. More specifically, we developed and compared three different
applications that visualize the same item space of music artists in three different ways: as List ,
as Treemap, and as Map. As a result, we found that the Map interface was able to display
up to about seven times more items simultaneously without sacrificing UX. In fact, the map
interface even yielded the highest scores for hedonic UX.

I attribute the observation that hedonic UX was higher in the Map condition than in the
Treemap condition in part to the fact that the Treemap interface was perceived as more clut-
tered. This conclusion is based on the scores for feature congestion (FC), an instrument used to
quantify clutter, which were substantially higher in the Treemap interface. This measurement
is thus a promising tool to predict UX to some extent. We found that a FC of about 2.0
seems reasonable in this regard. A practical conclusion is that maps can display more objects
simultaneously without increasing visual clutter.

With respect to the perceived degree of transparency and control, we found that recommen-
dations in all variants were assessed as transparent and to a slightly lesser extent controllable.
Apparently, the InfoVis techniques in the Treemap and Map condition did not add much to
what the List interface already offered in terms of recommendation transparency and control.
Thus, a general conclusion of this experiment is that even simple means of displaying the
item space in the context of RSs can unlock desirable user-centered features of these systems.
However, the results of the study with NewsViz showed a difference between the visualizations
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compared. In particular, with NewsViz , we were able to demonstrate that a treemap can
convey to the user how different information sources contribute to their personalized newsfeed
better than traditional sliders. This type of visualization is therefore particularly useful for
making users aware of potential biases and thereby preventing filter bubble effects. By extend-
ing treemaps to allow users to interactively adjust the cell sizes, we were also able to provide
users with more control over the composition of their newsfeed compared to using sliders.

While in NewsViz the cell sizes of the treemap were used to display the composition of the
active user’s preference profile, in the Treemap condition of the MusicExplorationApp they
indicated the popularity of each genre, which is an attribute that is less critical for the con-
trol of recommendations. I thus consider a more meaningful use of cell sizes to be a reason
for why NewsViz was able to unfold its potential better than the Treemap interface of the
MusicExplorationApp: One of the core feature of treemaps—the comparison of proportional
arrangement of cell sizes—was deeply integrated into the functioning of the RS in NewsViz but
not in the MusicExplorationApp. It would therefore be interesting to integrate the elicitation
of user preferences comparatively deeply into the functionality of the MusicExplorationApp.

Such a deep integration of control in the functioning of the Treemap condition could in general
be realized in a manner analogous to NewsViz : by interactively resizing the treemap cells.
Users could express their interest in a music genre by resizing the corresponding cell of this
genre. In turn, they could then observe their recommendations to change towards that genre.
However, this interaction concept would only work on a fairly coarse level, and it would not be
trivial to transfer it to an item level. Due to space limitations, artist are currently displayed
as list in the Treemap condition of the MusicExplorationApp and thus cannot be easily manip-
ulated by resizing the treemap cells. One solution would be to cluster the artists within each
subgenre to introduce a third, artificial level of hierarchy. To achieve a similar behavior in the
List condition of the MusicExplorationApp, sliders could help to express preference weights
for genres, subgenres, and artists. In addition, a third hierarchy level could be introduced,
analogous to the Treemap condition.

On the Map condition, in contrast, the interaction concept described above could be applied
comparatively easily. In the MovieLandscape application, we have already demonstrated how
this could be implemented. This could be transferred to the Map condition of the MusicEx-
plorationApp, either by changing “landscape heights” precisely as in MovieLandscape, or by
creating a heatmap to express areas that a user likes or dislikes. Of these two options, I deem
the heat map version to be more promising. Even though the landscape metaphor matches
well with the concept of a geographic map, visualizing three-dimensional objects or scenes on
a two-dimensional screen produces interaction overhead—for example, to change the camera
perspective.

Even though the metaphor of a heat map may be more efficient than a three-dimensional land-
scape, we were able to show with the MovieLandscape application that sculpting the landscape
works well to express preferences in RSs [98]. With MF, an embedding is learned that is capable
of providing recommendations with high accuracy. At the same time, it serves as foundation
for the item space visualization, for which the dimensionality is further reduced. This creates
a global environment in which recommendations are naturally embedded. As such, I deem
MovieLandscape as a practical example of one of the implications of our research on mental
models: we have formulated that researchers and system developers should “dare to provide
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Figure 4.2: The phases for generating the map visualizations based on experiences I made with
the MovieLandscape [98] and the MusicExplorationApp [97]: Similarities between
all items of a given repository are computed (1), which are then distributed on a
two-dimensional plane according to these similarities (2). Since this distribution
would overwhelm users in most cases, it is further abstracted (3), e.g. by clustering
and selecting representative examples for each cluster. The resulting visualization
can be presented to the user. If the preferences of the active user are known, rec-
ommendations can be calculated (4) and displayed within the map visualization.
The user can now actively explore the item space (5a) by means of the information
seeking mantra [151] and express preferences (5b), which in turn trigger a recalcu-
lation of recommendations. This process is based on the InfoVis reference model
presented by Card et al. [16].

real transparency” of their RSs [103]. Due to the consistency of distributing items on the map
and computation of recommendations, users are provided with such “real transparency”.

I consider this to be closely related to the results of our experiment with explanations gen-
erated by users and an RS (Section 3.3): The textual explanations based on CF similarity
were not perceived as very helpful and comprehensible. In contrast, the similarities with the
MovieLandscape were understood, made recommendations transparent, and helped users to
express their preferences. Thus, the only apparent difference is that the relationship between
preference and recommendations is presented in context of the entire item space. Or, to put
it in another way, with the global presentation of the item space and the preferences and rec-
ommendations it contains, we have achieved a holistic “contextualization” as also observed in
the user-generated explanations.

In the following, I present a general procedure for creating item space maps abstracted from
my experiences made with the MovieLandscape [98], the MusicExplorationApp [97], and other
unpublished experiments.

4.3.2 A General Process to Create Item Space Maps

To design item space maps, I propose a process which is displayed in Figure 4.2. This abstract
process, which is based on the InfoVis reference model presented by Card et al. [16], served
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as blueprint for the MovieLandscape application and the map interface in the MusicExplo-
rationApp. First, similarities between all items in a given database are calculated. The type
of data used for this is deliberately unspecified here and depends on the particular context,
e.g. what data are available. In MovieLandscape, we used rating data as is common in RSs
based on CF. For the Map condition in the MusicExplorationApp, on the other hand, we cal-
culated similarities based on music genres and musical features of songs. While this decouples
the similarity calculation from the actual recommending algorithm to some extent, we aimed
at using aspects of the recommendation algorithm for the similarity calculation to create the
“real transparency” mentioned earlier. In this experiment, however, the exact functioning of
the recommendation algorithm was inaccessible to us, and we demonstrated how to “graft”
the map visualization onto an existing, inaccessible RS.

Based on the resulting similarities, the positioning is performed. Most common dimensionality
reduction (DR) algorithms can be used for this, as they usually expect similarities4 as input or
can be set up accordingly to accept similarities as input. To decide on a particular algorithm, I
suggest measuring the corresponding continuity and trustworthiness scores [79], which indicate
how well the algorithm maintains the structure within the similarities between items. With
this similarity distribution, the resulting map employs the first law of geography [162], which
means that proximity in the map represents the similarity of the corresponding items.

The resulting distribution of items could already be presented to users, but I propose to abstract
the item space further first. Again, this can be performed in a variety of ways and depends
in part on the data chosen to calculate the similarities. In MovieLandscape, for instance, we
did not use content data to compute the similarities, so we decided to reduce the number of
visible items by selecting representative samples for areas of the map. In the Map condition
of the MusicExplorationApp, on the other hand, the similarity calculation was based on the
music genres associated with artists, and we were thus able to add the labels of these genres
in the region where the corresponding artists were placed. When no such “natural” groups of
items exist, (hierarchical) clustering can be applied to identify regions with similar items that
can be abstracted.

After the previous step, the item space map is ready to be presented to users. They should
then be provided with interaction tools to explore the item map according to the information
seeking mantra of Shneiderman [151]: overview first, zoom and filter, then details-on-demand.
Especially the interaction pattern of zooming should be implemented, as it is a natural and
intuitive way of interacting with maps. More precisely, I suggest to implement semantic zoom-
ing [134], which combines filtering and zooming. Unlike geographic zooming, where elements
get progressively larger while zooming in (e.g. when zooming into a particular part of a digital
picture), semantic zooming adds further elements on zooming in. To apply this technique, a
hierarchical dataset should be prepared. In our experiments, we manually created a hierarchy
of genres for the Map condition of the MusicExplorationApp, and employed clustering in the
MovieLandscape, where no hierarchical data structure was available beforehand. The third
part of the information seeking mantra can be achieved by allowing users to click or hover over
individual items to retrieve details either in place or in a designated area of the screen.

Finally, users should be able to change their preference profile to exercise control over their

4To be more precise, DR algorithms are often performed on dissimilarities. However, similarities can easily be
converted to dissimilarities and vice versa.
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recommendations. In the past, we have implemented two methods that span a continuum of
how to achieve control over recommendations: In the MusicExplorationApp, users expressed
their preferences discretely on a per-item base. In MovieLandscape, on the other hand, users
expressed their preferences continuously by lowering or elevating the landscape of entire areas.
As discussed earlier, I deem the latter method more appropriate because it integrates the
expression of preferences more deeply into the application.

4.4 A Holistic Perspective on Recommender Systems

The research presented in this cumulus has revealed close relationships between conceptional
variables in RSs. The perception of recommendation quality depends, for instance, not only on
how accurately an RS can predict a user’s preferences and thus how precisely recommendations
are tailored to the user’s tastes. Rather, the perceived recommendation quality depends on
the overview that the user can obtain of the entire item space [102] and on a system’s ability
to explain its recommendations [101]. These two variables have also been shown to be highly
influential with respect to other aspects. In addition to recommendation quality, we found
that the overview of all items available in an RS influenced perceived transparency and, more
surprisingly, system effectiveness, which is closely related to recommendation quality, but more
in terms of general system quality or usability. The explanation quality, on the other hand,
affected social presence and the trust a user puts in the RS, in addition to recommendation
quality.

In addition to recommendation quality, we found that explanation quality also influenced the
perceived movie quality, which led us to assume the difference between recommendation and
movie quality was not correctly understood by users [101]. However, I would now like to
propose a second interpretation. Like the halo effect we alluded to in the experiment with the
MusicExplorationApp and which is discussed further down below, the explanation quality might
have in fact affected the subjectively perceived quality of the movie being recommended. While
I acknowledge that further experiments are needed to unravel such intricate relationships, I
interpret this observation to mean that the context (in this case, an explanation) given to a
presented item (in this case, a movie being recommended by an RS) might indeed influence its
perceived quality—even though both variables seem isolated at first glance.

Such tightly coupled perceptional variables indicate how subjectively users experience RSs.
Consequently, I argue that a user-centered perspective should be substantially more emphasized
when studying, developing, and evaluating RSs. One topic that has been underrepresented in
the related field is the UX of RSs.

4.4.1 The User Experience of Recommender Systems

For a long time, the focus in the research and development of RSs was mainly on technical and
algorithmic aspects, most prominently on their prediction accuracy. This was later criticized
and means were demanded to assess the quality of an RS beyond its accuracy. As a result,
the research community of RSs has started to investigate user-centered dimensions such as
transparency, user control, and recommendation novelty for evaluating RSs. So far, however,
the main focus has been on so-called do-goals. In self-regulation theory [17], these do-goals
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are subordinate goals in the overall goal hierarchy of human task completion. Typical goals
pursued by RSs, such as find good item, make good decisions, or find group consensus are do-
goals: they describe lower-level goals—something a person wants to do. Hierarchically above
such do-goals are be-goals. They pertain to how a person wants to be. In RSs, such goals
are rarely considered. Examples would be: be happy, be excited, feel healthy, have fun. This
perspective is often considered in UX design [63, 64], but not in RS development. I suggest
that in the future, these two disciplines should be more united and research in RSs should
more actively consider perspectives from UX design. As system designers and researchers, we
should ask ourselves more experience-based questions when developing RSs. Examples include:
“What is it that users enjoy when receiving recommendations?” and “What are the aspects
that are exciting and fun in situations as recommendation receiver?”

Adopting such a perspective could also help explain the effect of hedonic user experience
on recommendation novelty that we observed in context of the MusicExplorationApp: The
interface of the Map condition was experienced as more appealing and exciting, motivating
a different mindset and thus different be-goals. As consequence, users internally switched to
another set of lower-level do-goals, in this case: looking for something new. This in turn
made them adopt a different perspective on recommendations. While the recommendation
algorithm and the objective novelty as calculated by the self-information of recommendations
were similar across conditions, users presented with the Map experienced a higher novelty
simply because their be-goal was to explore something new and therefore to actively seek out
novel items in their recommendations.

As a result of the above, I argue that more attention should be paid to such be-goals in future
research of RSs. Since this area is still very unexplored, I suggest conducting qualitative studies
to shed some initial light on what such be-goals might be. For example, in the domain of music,
it has been found that music is closely related to a person’s identity and sense of being unique
[144]. Consequently, this feeling helps to differentiate oneself from others, but also to connect
peers in social groups. Thus, a be-goal of a music RS would be to help users better understand
their own interests, but also the musical interests of friends. In this process, the role of an
RS would be considerably different from the typical presentation of top-n recommendations.
Rather, an RS would need to be more a tool that emphasizes where a user’s interests lie and
how they relate to thus far unexplored areas and to the preferences of the user’s social group.

4.5 Limitations

There are some limitations with respect to the research conducted in the context of this thesis.
One pertains to the domains tested. Mostly I concentrated on domains in the entertainment
sector (i.e. music and movies) but also news in the study with NewsViz . Some reasons for this
decision are that well-established datasets in some of these domains exist (e.g.Movielens5), that
many applications in these domains make visible use of RSs which many users are familiar with
and it is thus comparably easy to find participants for studies, and that items in these domains
can be consumed during a system’s evaluation, which is necessary for many domains to assess
the quality of the items and recommendations [107]. Apart from that, I deliberately chose
experience rather than search products as subject to recommendations as a domain in which

5https://grouplens.org/datasets/movielens/
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RSs are particularly relevant [149, 176]. However, due to the restriction on these domains, one
limitation of my findings is that it cannot be said with certainty how they are generalizable for
other domains. It would be particularly interesting to test domains with higher risk involved
in future research. Especially with respect to the trust a users puts in an RS and the decision
confidence probably emitted by comprehending how the recommendations relate to the entire
item space, e.g. in terms of coverage, this would represent a valuable extension to my work
presented here.

With respect to the transparency that is conveyed by presenting users with an explorable
depiction of the entire item space, I can only report high values for all three interfaces in the
MusicExplorationApp without being able to compare them to a baseline without such means to
explore the item space. In this experiment, I chose to use a simple depiction of the underlying
dataset as list to create a baseline, the experimental conditions with map and treemap are
compared to. This decision was made due to fairness concerns—a aspect that some other
related works fall short at. Yet, such other works have already shown that such depictions
increase the transparency and I am thus confident that the conditions in MusicExplorationApp
would too. Nonetheless, a future experiment could run a comparison of the existing conditions
with a baseline in which the item space depicting components are masked and in which users
need to use the search bar to explore the item space.

A third limitation is that the studies in [98], [102], and [97], which all rely on rather complex
visualizations were performed on desktop computers and thus on relatively large screens. While
currently, online users still mainly use desktop computers or laptops, the trend goes into
direction of mobile devices [13]. A future direction of research should thus be to investigate
how the benefits of InfoVis can be used on mobile devices. In terms of item space maps,
one way to achieve this would be to present the space in terms of a “ego perspective” [69].
This, however, would sacrifice the larger overview and is thus probably not very promising. A
more direct translation would be to introduce another level of hierarchy with even less top-
level landmarks (e.g. top-level music genres). It needs to be evaluated if this diminishes the
perceived overview, though. The same accounts for the computational power of the device the
user is using. Especially the visualizations oftentimes need some memory to work properly.
This might be overcome in re-programming the applications, for instance, by rendering pictures
of the current view on the server-side. This could, however, result in some other ramifications,
e.g. in regards of increased network traffic. Perhaps some intelligent method for switching
between client-side and server-side computation could be a solution.
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Researchers and developers of RSs and intelligent systems have begun to recognize the pivotal
role of user-centered aspects that go beyond the technical precision of the underlying algo-
rithms. One approach is to open the black box and make RSs more transparent, for example
by providing textual explanations—a method employed not only in experimental research but
also in industry. While this undoubtedly advances intelligent systems in a more user-friendly
direction, I argue in this dissertation that this should only be considered a first step, and that
we have merely begun to understand what a deep integration of the interrelated disciplines of
human-computer interaction, behavioral psychology, and artificial intelligence means for the
development of next-generation intelligent systems.

One of the contributions I make in this regard through my research presented here is to uncover
the mental models users of RS develop and to make the implications for the development of
such systems explicit. In two user studies, we revealed a wide range of different conceptions
of how RS work. A closer look at the mental models found showed that the majority of them
were rather technical in nature. For example, the concepts of item-based and user-based CF
were clearly evident in some mental models. On the other hand, a considerable number of
participants expressed high levels of uncertainty and mystified RSs, which in some cases led
them to reject their use entirely—probably due to a lack of trust. To address this, I suggest
assisting users in creating a more accurate mental model and correcting it if it is erroneous.
Our results show that users do not only want to develop such a more accurate mental model,
but also that they are confident to be able to understand RSs if they were explained to them.

In another study, we investigated whether typically used textual explanations can help users
understand RSs and thus trust them more. The results suggest that especially similarity-
based explanations of contemporary RSs are too superficial to be trusted by human recipients.
However, if these systems were capable of explaining recommendations in a similar fashion to
humans, they could not only instill trust in users for their suggestions, but their recommen-
dation accuracy would also be perceived as higher. The direction of automatically generating
textual explanations that resemble those of humans is difficult, perhaps even impossible, to
achieve. Machines lack the experience, creativity, and empathy that humans possess when
explaining the recommendations they make. Although progress is constantly being made in
this area, I argue that we should stop trying to mimic a human way of making transparent rec-
ommendations, e.g. through speech-based explanations, and instead focus on the areas where
intelligent systems have an advantage over humans. One of these directions, which is more
or less completely beyond the human ability to explain recommendations, is the use of the
expressive power of InfoVis.

In the research on integrating InfoVis into RSs, we focused the ability of visualizing large data
sets of RSs by using maps and treemaps. Displaying the global context in which recommen-
dations are embedded can unlock a comprehension of the bigger picture that is unlikely to be
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achievable through the textual explanations discussed above. Our experiments have shown,
for instance, that a global context can help make users aware of potential biases or blind spots,
provide better control over recommendations, and make RSs more fun and exciting to use.
While I acknowledge that such global visualizations cannot realistically be displayed in every
single situation recommendations are provided to users, I am confident that taking advantage
of such representations can have a major impact on how RSs are comprehended and thus used
in the future.

Another factor emphasized in the research presented here is that results of user studies with
RSs should not be interpreted as isolated. In different experiments, I have observed that user-
centered aspects are strongly interconnected and can have unexpected side effects. Examples
for such interrelationships include the connection between hedonic UX and the recommendation
novelty, the perceived quality of explanations and of recommendations, and the influence of the
perceived degree of overview on recommendation quality. Mediation analysis and structural
equation modeling are two statistical tools that enable the study of such influences. As a
result, future research in RSs should consider these systems more holistically and, for instance,
comprehend RSs as more than just the component providing recommendations, but also include
the entire ecosystem around it. This includes the means of exploring the item space and context
of recommendations, the efficiently expression of preferences, and the general control users have
over the recommendation engine.

To integrate all these aspects even deeper in an RS, a concrete next step for future work is
a reimplementation of the MusicExplorationApp. The concept of controlling preferences and
thus recommendations should be incorporated even more integrally into the core functionality
of the three visualization variants list, treemap, and map, as discussed in Section 4.3.1. I am
confident that this would further increase user utility and likely reveal more differences between
the conditions. In this context, another user study should be conducted that also tests a fourth
interface without a browsable item space. Consideration should also be given to introducing
a version of this application for smaller displays or even mobile devices. However, this would
most likely involve a rather drastic change in the conceptual design of the application, as
currently the screen space is used quite exhaustively.

In such a next experiment, the relationship between mental models and the perception of the
item space visualization could also be investigated more deeply. In this context, a qualitative
pre-study could investigate how maps can be leveraged better to anchor a user’s mental model
with the depiction. For example, the presentation of abstract landmarks (e.g. in the form of
tags clouds for regions) for the orientation could be the subject of such an investigation.
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[41] Nicolò Felicioni, Maurizio Ferrari Dacrema, and Paolo Cremonesi. Measuring the user
satisfaction in a recommendation interface with multiple carousels. In ACM International
Conference on Interactive Media Experiences, IMX ’21, pages 212–217. Association for
Computing Machinery, 2021. ISBN 9781450383899. doi: 10.1145/3452918.3465493.

52

http://ceur-ws.org/Vol-1688/paper-20.pdf
http://ceur-ws.org/Vol-2068/exss8.pdf


Bibliography

[42] Seth Flaxman, Sharad Goel, and Justin M. Rao. Filter bubbles, echo chambers, and
online news consumption. Public Opinion Quarterly, 80(S1):298–320, 2016. doi: 10.
1093/poq/nfw006.

[43] Pavel Gajdusek and Ladislav Peska. Spotifygraph: Visualisation of user’s preferences in
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ABSTRACT
While online content is personalized to an increasing degree, e.g. us-
ing recommender systems (RS), the rationale behind personalization
and how users can adjust it typically remains opaque. This was
often observed to have negative effects on the user experience and
perceived quality of RS. As a result, research increasingly has taken
user-centric aspects such as transparency and control of a RS into
account, when assessing its quality. However, we argue that too
little of this research has investigated the users’ perception and
understanding of RS in their entirety. In this paper, we explore
the users’ mental models of RS. More specifically, we followed the
qualitative grounded theory methodology and conducted 10 semi-
structured face-to-face interviews with typical and regular Netflix
users. During interviews participants expressed high levels of un-
certainty and confusion about the RS in Netflix. Consequently, we
found a broad range of different mental models. Nevertheless, we
also identified a general structure underlying all of these models,
consisting of four steps: data acquisition, inference of user profile,
comparison of user profiles or items, and generation of recommen-
dations. Based on our findings, we discuss implications to design
more transparent, controllable, and user friendly RS in the future.
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1 INTRODUCTION
With the growing use of intelligent algorithms in current systems,
such as recommender systems (RS), end-users find it increasingly
hard to comprehend the rationale behind a certain recommenda-
tion. Thus, it is important for users to understand the relationship
between user input and recommendation of RS [36]. In most cases,
systems appear to users as black boxes, particularly in case of the
increasingly used complex probabilistic techniques [12]. Previous
research suggests that this opaqueness can lead to feelings of dis-
comfort or even creepiness when a personalized recommendation
matches a user’s interest very accurately [41]. These feelings, in
turn, may have negative consequences on users’ trust in a RS and
their intention to accept recommendations. Thus, recently, research
efforts were made to increase transparency and control of a RS,
e.g. through interactive explanatory interfaces [21, 42]. An impor-
tant and understudied question in this context is what kind of men-
tal models users form of RS. Based on in-depth knowledge about
such mental models, designers of RS could make recommendations
more transparent and controllable, thus mitigating the negative
consequences.

Mental models can be defined as subjective knowledge represen-
tations of technological systems (e.g. computer programs) [26, 33].
Previous research indicates that users do construct mental models
for RS. The soundness of these models influences satisfaction and
effectiveness of interaction with the RS [9, 16]. As such, mental
models focus on practical effectiveness and on making predictions
about the outcome of the system. They are typically incomplete,
inaccurate, and may contain areas of uncertainty [26, 33].

Due to this subjective nature of mental models, a qualitative
approach seems to be most appropriate to investigate them. This
approach allows us to investigate the users’ unique perspectives in-
depth and ask forwhat andwhy users hold certain mental models of
a RS. Specifically, we chose the Grounded Theory (GT) methodology
[5] due to its strong exploratory and data-driven nature. The partic-
ipants’ knowlegdge, experiences, and attitudes solely drive the data
collection and analysis. Thus, the results from this methodology
emerge from the data. In other words, they are grounded in them.

In GT, data sampling is performed purposefully, i.e. not randomly.
Thus, to reveal what mental models users of RS, what assumptions
these models entail, and what implications for future RS develop-
ment can be derived from them, we focused on mental models of
typical and regular RS users. In particular, we aim to answer four
central research questions:

• RQ1: What are the mental models users hold of a RS?
• RQ2: To what extent is the RS perceived as transparent?
• RQ3: To what extent is the RS perceived as controllable?
• RQ4: What implications for RS design can be derived?
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In this study, we chose Netflix as an example because it makes
extensive and apparent use of recommendations [11]. Moreover,
it is one of the most popular video-on-demand services in the U.S.
and Germany [8, 38]. Thus, the sample of this study most likely has
developed a mental model of Netflix.

We make two main contributions with this work: (1) A theo-
retical contribution in form of the exploration of mental models
of RS. The mental models provide in-depth insights to the user
assumptions of how a RS works internally. For example, we found
that all mental models followed a basic structure, comprising four
steps: data acquisition, inference of user profile, comparison of user
profiles or items, and generation of recommendations. (2) A practi-
cal contribution in form of discussing how our theoretical results
can be applied to the development of RS. For instance, we suggest
to link recommendations and user preferences more explicitly than
it is done to this date.

2 BACKGROUND AND RELATED WORK
RS have become widely adopted tools to pro-actively filter online
content with respect to the current user’s preferences. While recom-
mendation algorithms are able to suggest items with high precision,
quality criteria that go beyond accuracy [15, 24] were neglected for
a long time. It has been argued that user-centric aspects, such as
the system’s perceived transparency or the degree of control users
are able to exert, constitute important facets of a system’s overall
perceived quality [2, 29].

2.1 Transparency and Control in RS
Typically, RS appear as black box to their users as it remains opaque
why items are recommended and how they relate to the users’ pref-
erences [13, 35]. Increasing the transparency of a RS constitutes
a prominent issue in HCI design for RS [2, 9]. It can improve per-
ceived quality of recommendations [18], their acceptance [6, 13],
and users’ confidence [36]. Therefore, many researchers have called
for explainable RS, i.e. the increase of system transparency through
(mostly textual) explanations (e.g. [40, 42]).

Another aspect that goes beyond accuracy is the extent to which
users can exert control over the recommendation process. Allowing
users to control what is recommended to them can increase user sat-
isfaction [32] and the perceived accuracy of predictions [28]. While
many RS rely on user ratings (e.g. implicitly by recording click-
through streams, or explicitly by eliciting thumb up/down ratings)
[31, 37], more advanced methods for controlling recommendations
have been suggested. Examples include relating preferences and
recommendations more directly [1, 19], or eliciting preferences for
groups instead of single items [3, 22].

Transparency and control are not independent from each other.
To exert control over their recommendations effectively, users need
insights into the system’s reasoning—at least to a certain degree
[9, 40? ]. Yet, the relation between transparency and control is not
trivial to investigate and may lead to counter-intuitive observations.
Tsai and Brusilovsky [42], for instance, found that, besides increas-
ing transparency, explaining recommendations can also result in
a decrease of the perceived degree of control. According to the au-
thors, this might be due to information overload effects entailed by
the explanatory interfaces.

Such observations underline that putting transparency and con-
trol into practice may not be straightforward. In this context, we
add another aspect that might be responsible for this: a discrepancy
between a user’s mental model of a system and its actual behavior.

2.2 Mental models in RS
Mental models can be defined as knowledge representations of
technological systems, which are generated through interaction
with the respective system [26, 33]. Rumelhart and Norman [33]
used the terms of represented and representing world. The mental
model represents an object or a situation of the represented world
inside the cognitive representing world. This points out that mental
models are constructed, i.e. the representing world is incomplete
as it only contains those properties of the represented world that
were deemed necessary. Elsewhere, Norman [26] uses a slightly
different terminology to which we adhere in this paper: Based on a
target system (i.e. the represented world) the user invents a mental
model (i.e. the representing world) to simulate system behavior
and make assumptions about interaction outcomes. Norman under-
lines that the users’ mental models are incomplete, contain areas
of uncertainty and possibly superstition, and focus on practical ef-
fectiveness rather than technical accuracy. In contrast to the user’s
mental model, the conceptual model represents a more appropriate
model of the target system in terms of accuracy, consistency and
completeness. They are constructed by specialists regarding the
target system (e.g. the system designers).

Yet, mental models need some degree of technical correctness
to let users successfully predict system behavior and thus, use it
effectively. If this is not the case, misaligned mental models can
result in what Norman describes as “gulfs” between user and system
[27]: The gulf of execution occurs when a user’s mental model is
erroneous in terms of how a specific task can be performed with the
system. The gulf of evaluation occurs when the actual outcome of an
action with the system diverges from what the user’s mental model
predicted. These gulfs are well-known in usability engineering and
account for many problems and misconceptions arising in HCI.
One reason for the occurrence of such gulfs may lie in the transfer
of a mental model from one technical system to another. To save
cognitive effort, users try to re-use mental models whenever it
seems feasible [26, 27].

Shneiderman and Maes concluded that one important future
challenge is to make users aware of how autonomous software
agents (e.g. RS) came to decisions and thus, become predictable
for users [34]. Even though they did not use the term of mental
models explicitly, they described them implicitly asmaking practical
predictions about the outcome of the system is the most central
utility of mental models. Surprisingly, this aspect was not further
investigated in the subsequent years. To this date, the literature on
mental models of RS is relatively sparse.

Only few studies have examined mental models in the context
of RS so far. In an initial online survey, Ghori et al. [10] presented
scenarios of different RS platforms and asked for users’ knowledge
and beliefs about RS. While they did not explicitly elicit mental
models of RS, they concluded that users hold a “cognitive model”,
understand that RS track user behavior, and have rudimentary ideas
of filtering mechanisms. In an exploratory approach, Kodama et al.
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[14] elicited different mental models that middle school students
create of the Google search engine. They found, that these models
were most often wrong and conclude that concepts behind algo-
rithmic agents should be taught better. In line with this, Kulesza
et al. [16] has shown in an experiment that users who increase
soundness of their mental model during usage were more efficient
in controlling their recommendations. This resulted in a higher
satisfaction with the outcome. To operationalize the systematic
consideration of users’ mental models into actual software design,
Eiband et al. [9] have proposed a stage-based, iterative prototyp-
ing approach that targets at making RS more transparent through
offering explanations.

3 METHOD
The research goal of this study is to investigate the users’ mental
models. Since the structure of mental models is inherently subjec-
tive and individual, a quantitative approach would be insufficient
for this goal as this approach aims at analyzing empirical data for
predetermined hypotheses. Thus, to explore unknown and highly
individual mental models, we deem a qualitative approach as more
appropriate.

Our qualitative study followed theGrounded Theory (GT)method-
ology [5, 39]. GT is an established and well-defined methodology
from social sciences for systematic data collection and analysis.
This methodology has a strong exploratory focus, i.e. no clear the-
ory about the topic at hand is presupposed. Concepts evolve from
the data during conduct of the study and hence, are grounded in the
data. Due to the lack of predetermined hypotheses, data sampling
follows the approach of theoretical sampling [5]. This means that
sampling is performed purposefully, not randomly. Furthermore,
while sampling in quantitative research is typically randomized and
person-wise, in qualitative research theoretical sampling is done it-
eratively and concept-wise. Data are collected, coded, and analyzed
simultaneously. In this way newly occurring concepts determine
the sampling during the study to explore them dynamically. For
this, the differences in relevant concepts (also called contrasts) are
deliberately varied until no further novel observations regarding
the concept are made. Then, the state of so-called theoretical sat-
uration [5, 25] is achieved. In this case, either another concept is
explored or the study is concluded if the pursued theory is already
well-developed.

In our study, the theory of GT are the different mental models
users hold of a RS. We deliberately focused Netflix as an example
for RS, since it 1) is well-known for its extensive and apparent use
of recommendations [11], and 2) is wide-spread, increasing the
likelihood for us to sample a broad variety of contrast in our con-
cepts. In other words, this allows us to study different variations of
one concept. As instruments we applied individual semi-structured
face-to-face interviews, which we combined with a Think Aloud
task and a drawing task to capture different facets of each mental
model as broadly as possible. Following the approach of theoretical
sampling, we deliberately recruited participants of whom we had
information about their background and who fit to the current
concept under consideration (e.g. the level of technical knowledge).
Throughout the entire study, we only sampled participants with
advanced Netflix experience (frequent use for at least one year), as

we aimed to focus on the typical Netflix user. All in all, we recruited
ten participants (six female) with an age range between 19 and 31
(M= 24.70, SD= 4.57). Hence, our sample represented the typical
Netflix user group well [7]. The interviews were conducted in July
and August 2019.

For our analysis, each interview was transcribed in a timely man-
ner using easytranscript 2.50 and analyzed with MAXQDA 18.2.3.
The transcribed interview of each participant was first coded by
two independent raters. Subsequently, the two raters discussed and
analyzed each interview jointly. During analysis, various analytic
tools and mental strategies were used, including microanalysis of
the data through open line-by-line coding, constant comparison and
axial coding to summarize the open codings to categories, and selec-
tive coding to infer the mental model of Netflix for each participant.
To ensure that codes and resulting categories emerge from the data,
throughout the whole process in-vivo codings (i.e. verbatim codes
from participants’ statements) played a central role. In order to
record impressions, evolving theoretical concepts and the relation-
ships among them, raters made extensive use of memos, which
constitutes a substantial aspect of the GT method.

This iterative process led to 10 distinct categories such as evalua-
tion strategy for items, which pertains to how participants asses the
quality of items (e.g. content-based vs. non-content-based), search
strategy for items, which describes how participants decide whether
to consume an item or not (e.g. through internal or external infor-
mation acquisition), and general model of RS, which we focus within
the scope of this work and which emerged from our data presented
in Section 4.

3.1 Preparation
The study was approved by the local ethics committee of the Uni-
versity of Duisburg-Essen in Germany. Participants consented to
the interview and audio recording. All personally identifiable infor-
mation was anonymized.

3.1.1 Interview guide. We developed an interview guide with an
interview duration of roughly one hour. All interview questions
in the guide were open-ended. The interview started with a brief
introduction of the interviewer and a short description of the pur-
pose and motivation of the interview. It was emphasized that the
study is concerned with the recommendation component of Netflix
and that the main interest of the study lies in the exploration of
the participants’ experience with the personalized content of Net-
flix. The participants were then asked about their experience with
Netflix: How often do they use Netflix? Since when do they use
it? Which experience do they have with the recommendations in
Netflix? Which parts of Netflix are subject to personalization? How
confident do they feel with personalization in general?

The interview proceeded with the Think Aloud task: Partici-
pants were instructed to use their own Netflix account to find a
comedy movie to watch in the evening that was in line with their
preferences. After that, a hypothetical scenario was introduced. Par-
ticipants had to imagine that the movie was not as good as expected.
Thus, they should try to express negative feedback to Netflix for
that movie. The purpose of this task was for the participants to
reflect on the options to express their preferences to Netflix. Then,
participants were asked about the functioning and data processing
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of Netflix: How does a RS like Netflix work? Which data are used by
the system? What happens to the data in order to generate recom-
mendations? Do they know about the thumb function of Netflix?
What does it trigger?

Finally, participants received a sheet of paper and were asked to
draw their very own image of Netflix. Participants were informed
that they could perform this task freely, without any limitation.
They were prompted to explain their drawing.

At the end of the interview, participants were debriefed and
offered to ask questions and give general feedback on the interview.
No incentives were given for participation, besides a certificate of
taking part in the study1.

3.2 Data sampling
Our data sampling was fundamentally influenced by the data-driven
approach of GT and of theoretical sampling. Accordingly, we sam-
pled participants not at random, but based on what concepts we
decided to explore next. In general our data acquisition was orga-
nized in three phases with different foci. In the following section,
we elaborate on our sampling decisions for this study.

3.2.1 First sampling phase: Typical Netflix users. As recommended
by Corbin and Strauss [5], we first focused on a typical sample of
the target population. According to Dahlgreen [7] 57% of Netflix
users are female and roughly 50% of all Netflix users are between
18 and 34 years old. Our initial sample (P1, P2, P3, P4) were females
with an age of 21, 24, 27, and 24. Thus, we were able to recruit a
sample within the age range of typical Netflix users.

In this first sampling phase, we found the concepts of central-
ity of self and item-based recommendation. The first concept was
especially salient in the interview of P3, while the item-based rec-
ommendation was most apparent in the drawing of P2. We found
these concepts mostly through comparison. During further axial
coding, we observed that all participants held rather technical men-
tal models (see Section 4.3), i.e. they are close to the functioning of
algorithms or procedures. This became mostly apparent through
microanalysis, which revealed that P1, P3, and P4 generally used
many technical terms (e.g. “ip address” (P1, P3), “database” (P1, P3,
P4), and “dynamic query” (P3)).

Following the flip-flop technique [5], we turned this concept
“upside down”, asking ourselves questions such as: “How are the
mental models in case of lower technical knowledge?”, and “How are
the mental models in case of higher technical knowledge?” In order
to investigate these questions, we decided to sample low and high
extremes on the dimension of technical knowledge next.

3.2.2 Second sampling phase: Low/high technical knowledge. Next,
we purposefully sampled P5 and P6. Both participants were male
and aged 31 and 30, respectively. While P5 had a very low technical
background regarding RS (he held a bachelor’s degree in arts and
was currently unemployed), P6 had a high technical knowledge as
he worked in computer science research and was currently engaged
with decision support systems.

In this second sampling phase, we found mental models which
differed in a metaphorical and technical dimension (see Section 4.3).

1This was requested by 3 of the 10 participants since they needed to participate in
empirical studies as part of their study program.

P5 clearly held a metaphorical mental model: He drew Netflix as a
monster serving recommendations with many arms (see Figure 2c).
In contrast to this, P6 had a technical idea of Netflix.

In addition, P6mentioned that he used the explicit rating function
(thumbs up/down) occasionally to steer his Netflix account towards
better recommendations. We found this aspect quite striking as we
did not elicit any responses on what influence the explicit rating
function may have until this point of the study. Rather tentative,
we assumed a connection between usage of explicit ratings and
decided to restrict our next sample to participants using explicit
ratings frequently.

3.2.3 Third sampling phase: Use of explicit ratings. During this third
sampling phase, we conducted interviews with participants P7, P8,
P9, and P10 aged 19, 19, 22, and 30. P7 and P10 were male, while
P8 and P9 were female. All declared using the thumbs function
in Netflix frequently. During analysis of this sample, we observed
the counterpart of item-based recommendation, namely user-based
recommendation (see Section 4.2).

After analyzing the data, we found that the main concepts, which
we found before, did not show further variation in these observa-
tions. Thus we deemed them as theoretically saturated. Especially,
with regards to our main aspects of transparency and control, we
did not see new insights in the interviews. Thus, we ended our data
sampling at this point.

4 RESULTS
Overall, one general structure of users’ mentalmodels of RS emerged
from our collected data. All participants followed the same pattern
and divided the functioning of RS into four separate steps: (1) data
acquisition, (2) inference of a virtual user profile, (3) comparison of
user profiles or items, and (4) generation of recommendations (see
Figure 1).

NETFLIX Recommender System

3) Comparison of items 
or user profiles

4) Generation of 
recommendations
4) Generation of 

recommendations

1) Acquisition of data 
(mostly implicit)

1) Acquisition of data 
(mostly implicit)

Returning
recommendations

Returning
recommendations

2) Inference of a 
virtual user profile
2) Inference of a 

virtual user profile

UserUser

Figure 1: Basic mental model found in all participants.

Regarding the acquisition of data in step (1), our analysis revealed
that participants considered user characteristics, such as location,
gender, and age, as well as user interaction behavior as relevant
for Netflix. For the latter, we were able to form two categories:
implicit user behavior, such as watching a movie, and explicit user
behavior, such as pressing the thumbs-up button. From these data,
participants assumed that Netflix derives a virtual user profile in
step (2). This profile may contain latent item characteristics, which
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are not visible to the user. For example, P5 speculated: “As far as I
know, there are a lot of subcategories in the background which a user
does not see on the interface.” In step (3), participants assumed that
comparisons between items or user profiles were made. These two
general directions adhered to the concepts of user- and item-based
recommending (see Section 4.2). Finally, step (4) corresponds to the
actual selection of personal recommendations. Here, participants
assumed that all process data cumulated into one recommendation.
This assumption is for instance depicted in the drawing of P3 (see
Figure 2b).

Regarding details of how the four steps are performed, partici-
pants made diverse assumptions. Nonetheless, across all interviews,
participants expressed confusion and uncertainty when asked about
the inner working of Netflix: “I don’t know which data they have of
me.” (P3), or “It’s a black box. I don’t know how they do it. Maybe I
should know it.” (P7). Many of them also rejected the recommenda-
tions provided by Netflix, as P2 stated:

“Some [recommended] movies I find interesting, but
there are also many things, I am not interested in. I feel
that my preferences don’t play a role, instead it’s just
[the movies] which people are currently talking about.”

Furthermore, based on participants’ drawings and statements,
we derived the concept of "centrality of self" from our data as well
as two dimensions that characterize the identified mental models.
They are reported in the following sections.

4.1 Centrality of self
Some participants clearly viewed their own self as central com-
ponent in their Netflix experience (P3, P5, and P6). This became
particularly apparent in the drawing of P3 (see Figure 2b), as she
confidently started the drawing task with the role of herself (“Ok,
I am still a little overburdened by what to begin with. Ok, in any
case, first of all we need myself: the Netflix user.”). Then, the en-
tire drawing evolved around this central self. While many other
participants used a content-based approach of explaining how rec-
ommendations are generated (see Section 4.2), content aspects of
any kind were entirely absent in the drawing of P3. Instead, in
different parts of the sketched functionality, users played a central
role, for instance, when recommendations are generated based on
what was watched before (box with dashed line in the southwest
of Figure 2b). The centrality of self together with the importance of
users per se and their social interrelation, was emphasized by the
participant’s estimation of an existing internal connection between
Netflix and Facebook (northern arc in Figure 2b). P3 assumed that
the history of what her friends watched in the past was also taken
into account when recommendations for herself are generated, and
vice versa. Note, that this drawing clearly depicted three of the four
general steps discussed above: data is acquired (watched items and
Facebook data), similarity is calculated between users and items
(inside the box with the dashed line), and recommendations are
generated (arrows inside the box on the right).

The concept centrality of self can also be found throughout the
interview of P3. She, for instance, mentioned that her recommen-
dations are sometimes inaccurate. This results in long searching
sessions, which she described as tedious and confusing. Yet, the
reason for this lack of decisiveness was sought at her own side:

“Because it takes an extreme amount of time to search,
but I would not necessarily burden this on Netflix but
on myself, since I am never satisfied with my choice.”

Note, however, that when being asked, P3 did not assess herself as
a person who has a hard time to decide in general (“at the super-
market [. . . ] I am very determined.”). Even though, this person did
not ascribe the problem of long searching sessions in Netflix to the
RS, she fancied the idea of having better explanations for her rec-
ommendations. In particular, P3 formulated a wish to know more
about the relation of recommendations and her own preferences.
As a consequence, the category of “similar to . . . ” recommendations
was perceived as helpful, yet also as arbitrary. When confronted
with the idea to be able to control to which preferences recommen-
dations are generated, P3 expressed a strong affection for such a
feature2.

Other participants did not see the self as central as P3 but elabo-
rated on the role of the self implicitly throughout the interview. P1,
for instance, showed some aspects of centrality of self, when she
was asked to clarify the difference between implicit and explicit
ratings. She underlined that her explicit ratings have higher im-
pact compared to her implicit interaction data because she used
the thumb function seldom. In the same answer during the inter-
view, P1 took over the role of Netflix talking about herself: “Ok,
now she clicked on something [i.e. rated an item], so we will give her
more of that.” Even though rather shallow, the self as a concept
was mentioned in both statements. It constituted a counterpart to
Netflix as a system making assumptions about the user. A similar
effect could be observed in answers of P10. He emphasized his own
responsibility for the influence on recommendations (“If I dislike
Adam Sandler but all the time [. . . ] watch movies starring him, I do
not have to wonder when a Adam Sandler comes out [of the RS].”).

4.2 User- vs. item-based recommendations
When participants were asked about the rationale they assumed
behind items being recommended, we observed two major direc-
tions. While some participants assumed recommendations being
generated with respect to similarity between items (P5, P8, P10),
others followed a user-based approach (P1, P9). As P9 put it:

“[Recommendations base on] other users: what other
users frequently watched, or gave a good rating for.”

Strikingly, this style resembled closely the explanation model used
byAmazon (“Users who bought . . . also bought . . . ”). This resemblance
was also explicitly mentioned by P9:

“I could imagine that it is like e.g. at Amazon. There it
is also written that users bought something together.”

P9 adhered to this form of thinking in her drawing as well (Fig-
ure 2d). Here, the entire process of generating recommendations
was envisioned as inherently social. It depicted a crowd of users
at the bottom left, which was connected to the personal Netflix
agent (large stick figure in the middle). Through this connection the
agent selects a movie as recommendation. Even Netflix in general
was depicted as person, which instructs and overviews the entire
process (at the bottom right of the drawing). When examining level
2Note, that such a function actually exists (next to the details for a movie or TV show).
P3 also knew this function but, nonetheless, wished it to be more visible and that the
“similar to . . . ” category on the front page was replaced by an interactive version.
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(a) Drawing of P2. A user
watches three movies, from
which two are liked. The rec-
ommendation (orange circle)
is similar to the liked ones.

(b) Drawing of P3. The central-
ity of self is highly salient as the
entire recommendation process
evolves around this person’s self.

(c) Drawing of P5. Netflix as
a “tentacle monster”, which
can handle a huge range of
recommendations with its
many arms.

(d) Drawing of P9. The entire
process of recommending is per-
ceived as inherently social. This
perspective highly emphasizes
the role of users in Netflix.

Figure 2: Drawings of participants asked to illustrate their mental model of the inner workings of Netflix

of technical knowledge, P9 mentioned that she “studies in that area”
and did have some knowledge about “technical topics, AI, and such”.

Such social assumptions were juxtaposed by a model of Netflix
that was based on content features of items. Examples for fea-
tures being utilized for deriving similarity between items were “ac-
tors” (P8), “buzz words” (P10), and other content data such as “movies
set in the same time” (P3). Another aspect for item-based compar-
ison that was frequently mentioned were latent categories. Such
categories were supposed to be only used “in the background” (P5)
and had a finer granularity:

“there is not just action but also Asian action, German,
and English. . . such things [. . . ] for depicting more ac-
curate [recommendations].” (P6)

Apparently, this assumption originated from the RS in Spotify as P6
further explained: “Once I saw a list somewhere containing Spotify
genres. [. . . ] They have somewhat over 400 genres”.

However, user- and item-based styles were not fully mutually
exclusive. P2, P3, P4, and P6 showed aspects of both dimensions. P3,
for instance, assumed a hybrid algorithm, which combines items
watched by similar users and items that have a similar genre to
the recently watched ones. Over all different styles, frequent use
of verbs like thinking, guessing, and believing underlined the un-
certainty about the inner workings of Netflix. The same applied
to the matching score, which was shown for recommendations at
Netflix. All participants agreed on being uncertain regarding what
is actually matched when talking about the depicted score (“91%
match – whatever that means.” (P6)).

4.3 Technical vs. metaphorical
We found that the mental models can be characterized as either
technical or metaphorical. Technical models were expressed by six
participants (P2, P3, P4, P6, P7, P8). They used process diagrams
and data flows to explain how Netflix arrives at its recommenda-
tions, which indicated a procedural understanding. For instance,
P8 described:

“I am thinking about which data Netflix takes from me
or already hold of me. [. . . ] From this they know, what I
like to watch. What else? Actors, producers... they take
this from the movies I watched. Then, [Netflix] takes a
look at the match and searches for [recommendations].”

In the technical models, the general four steps were often made
explicit by the participants. For example, P2 explained the steps
data acquisition, inference of user profile, and comparison of user
profiles:

“Probably everything is saved and collected for each
user. And then, they compare users with similar pro-
files, in terms of the movies, to see whether these users
have similar interests. Then, perhaps, one similar user
has rated a movie positively the other one has not yet
watched. Interviewer: And this is how they arrive at
recommendations? P2: Yes, for instance.”

The clear understanding of P2 was underlined by her drawing (see
Figure 2a), which depicted the same process of recommending from
an item-based perspective.

A different standpoint was taken by four participants (P1, P5,
P9, P10), who used a metaphorical description of Netflix and thus,
drew characters to illustrate how the RS works. P1, for instance,
used a metaphor of a house:

“Ahuge complex house in which all the data and databases
are somehow saved. [. . . ] Of course, there are employees,
but I think everything works with algorithms.”

P1 focused on Netflix as a whole entity and in a more literal way
than other participants. She expressed the four basic steps in the
interview, however, for the drawing task, she chose the depiction
of a house. This could be seen as a simplification of Netflix and a
tangible understanding of Netflix which was based on the Netflix
corporation building.

Additionally, some metaphorical mental models clearly entailed
the participant’s attitudes towards Netflix. P5 compared Netflix to
a tentacle monster (see Figure 2c):

“It has all its tentacles and at each tentacle it offers its
products, the movies it has. It’s like a kraken monster.
It has a huge range of offers, hence so many tentacles
so that there is something for everybody.”

This description expressed a negative view on Netflix. When brows-
ing through the catalog of movies to find a matching one during
the Think Aloud task, this participant expressed feelings of being
lost and confused:
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“Most things here mean nothing to me. These all are
arbitrary and random images that do not catch me so
that I think I don’t want to look into [the details of the
movie]. No. [. . . ] everything seems absolutely random.”

Such negative feelings were also quoted by other participants. Some,
for instance, pointed out that personalization of Netflix engenders
a loss of diversity in their movie consumption and therefore pose a
risk of becoming trapped in a “filter bubble” (e.g. P1, P7, P9).

Apart from that, nearly all participants lacked trust in Netflix.
Especially they doubted the system’s integrity assuming that rec-
ommendations were biased towards in-house productions or third-
parties, “I have the feeling that in-house productions are mostly ad-
vertised and this is not necessarily good.” (P6). When being asked
about who influences the movie recommendations, P3 mentioned
third-parties: “The producers of the movies. [. . . ] And perhaps record
companies of movie soundtracks?! I don’t know.” Hence, at least some
participants were aware of the economic interest of Netflix and
third-parties. However, P9 justified their influence on the person-
alization process: “I think it is good how it is because they do not
exaggerate it and draw attention to it. It is also their production. [. . . ]
Therefore, it is good and also their right to advertise for themselves.”

5 DISCUSSION
Regarding our first research question (“What are the mental models
users hold of the RS?”), we found very diverse mental models, which,
nonetheless, all adhered to a very basic structure—even among
those participants with little technical knowledge. This structure
consists of four steps: data acquisition, inference of a user profile,
comparison of items or users, and generation of recommendations
(see Figure 1). As this basic structure was held by all participants,
we suspect that this structure might be prevalent in many typical
and regular Netflix users. Our results extend the findings by Ghori
et al. [10] substantially through the identification of this general
model.

The subsequent sections are organized regarding our other re-
search questions thus, asking for transparency and control in the
identified mental models, and finally for possible implications for
RS design.

5.1 As how transparent is Netflix perceived?
Across the four general steps, participants made various causal
assumptions of how recommendations are derived and how their
behavior as user affects them. We observed many discrepancies re-
garding these assumptions during single interviews, and especially
between participants’ drawings and their explanations throughout
the rest of the interview. Assumptions were highly speculative and
led to confusion—even superstition. This resulted in an effect we
term mystification of the underlying RS: Participants invented var-
ious suppositions about the capabilities of the system, although
they might be entirely unjustified and lack realistic evidence. One
example illustrating this is P3’s assumption that she receives rec-
ommendations, based on what her friends liked on Facebook. Thus,
regarding RQ2, we conclude that users did not perceive the RS of
Netflix as very transparent. We note that this was also not mitigated
by the experience in using a RS, since we observed this in spite of
the rather advanced experience with Netflix all participants had.

As a consequence of this lack of transparency, users encountered
a gulf of evaluation (i.e. users did not understand what their recom-
mendations were based upon) and were thus not able to exploit the
full potential a personalized RS bears. We also found that mysti-
fied beliefs may harm the reputation of Netflix, which is shown by
metaphorical mental models entailing negative attitudes towards
the RS (e.g. P10 cynically drew Netflix as evil hungry black box
eating user data and “pooping” recommendations). Reasons for this
mystification and gulf of evaluation can be found in the dimensions
we identified as concepts.

Participants, showing the centrality of self (Section 4.1), were
clearly aware of the role of their own self, which we assume to be
a general stance when encountering the surrounding world. Not
surprisingly, this was also applied to the interpretation of recom-
mendations. The users who expressed the centrality of self, wished
to be more informed about which information about them is re-
sponsible for the recommendations. Participants were not able to
understand this causality, which also resulted in a gulf of evaluation
and, consequently, in a demand for a higher transparency regarding
the influence of user preferences on recommendations.

In line with Norman [26], we observed that many of our partic-
ipants tried to transfer their mental model of Amazon to Netflix.
The RS of Amazon provides users with textual explanations for
recommendations (i.e. products that were bought together with
the currently inspected one). These explanations follow the algo-
rithmic mechanism of item-based collaborative filtering, which we
also found in the concept of item-based recommending (Section 4.2).
While the prevalence of such algorithmic methods in the users’
mental models, might be beneficial in some special cases (i.e. when
source and target RS are algorithmically very similar), we assume
such situations to be rather unlikely in practice. Our observations,
for instance, show that the transfer of the mental model of Ama-
zon to Netflix lead to false assumptions and misunderstandings.
We ascribe this mainly to the different forms of how recommenda-
tions are presented. While Amazon follows an item-based approach,
showing recommendations right next to the textual specification
of single products, Netflix mainly presents recommendations in
accordance to the entire user profile (i.e. “top picks for you”). Con-
sequently, participants were highly unsure about how the list of
recommendations was constructed.

5.2 As how controllable is Netflix perceived?
In our third research question, we asked ourselves to what degree
the RS of Netflix is perceived as controllable by its users. As men-
tioned (e.g. in [9, 40? ]), transparency and control are interdepen-
dent. We observed the same in our study: The lack of transparency
led to a gulf of execution (i.e. participants were unable to figure out
what interaction possibilities they had). Consequently, they also
found it unclear how to steer the RS towards recommendations
fitting their needs more adequately.

One reason we deem responsible, is again the transfer of mental
models from Amazon to Netflix, mainly because the rather sim-
plistic style of explanations provided by Amazon does not provide
any direct entry points for interaction: Users might perceive that
they cannot influence what “users who bought, also bought”. As
a consequence, many participants experienced no or little control
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over their recommendations, although they were aware of explicit
interaction options (e.g. in form of expressing a like for a movie).

To make interaction with RS less confusing, more transparent,
and controllable, we argue that mental models of RS need to be
aligned with the conceptual model, which represents the actual
algorithmic functioning. In other words, users need to be educated
about how recommendations are derived and what possibilities for
interactively controlling them they have. In such a way educated
users understand recommendations and their causality better, are
able to use the system more effectively, and thus, are more satisfied
with it and the resulting recommendations.

5.3 Implications for RS development
Considering RQ4 (“What implications for RS design can be derived?”),
we derive four guidelines for the development of RS. While we are
aware that these are based on one particular RS, we are confident
that they pose valuable anchor points for general RS design.

5.3.1 Link components to existing mental models. To reduce con-
fusion and cognitive complexity, RS developers might rely on our
identified basic mental model (Figure 1) to be already present. In par-
ticular, we encourage developers of RS to increase transparency by
relating components of their system to one or more of the model’s
four steps. This implies that it might not be necessary to explain
each single step of the inner working of RS to users in detail.

5.3.2 Align UI components with recommendation algorithm. We
suggest to align explanatory and interactive components with the
underlying algorithmic pattern of recommending more precisely
and explicitly. Here, especially item- and user-based recommending
should be distinguished. Our results indicate that both pertain to
diverse mental models and that they were transferred between RS,
which caused many false expectations about system behavior. In
this sense, prevalent mental models might need to be corrected
regarding the system’s actual functioning.

5.3.3 Heed the centrality of self. RS developers should emphasize
the impact of the users’ current preference profile on recommended
items. We particularly suggest to link content features between
consumed and recommended items, since we observed that the
content of items is a paramount expected aspect in the process
of recommending (see Section 4.2). This does not mean that the
RS has to solely rely on content-based filtering though. There is
some research on how to combine collaborative filtering with con-
tent data [20, 21, 23], which could be used to make systems based
on collaborative filtering more transparent using the content of
items. When communicating the relation of preferences and rec-
ommendations adequately, it can also be used to exert control over
recommendations (see, e.g., [1, 19]).

5.3.4 Enlighten the mystification. A central challenge of making RS
more transparent and controllable is to overcome the mystification
of RS.While this is implicitly also addressed by the guidelines above,
we observed that mystification was especially a result of metaphor-
ical mental models. Hence we suggest to introduce standardized
and accordingly aligned metaphors that correct or replace exist-
ing ones. This could, for instance, be achieved by personifying the
RS, e.g. by depicting an anthropomorphic avatar. However, while

the depiction of such avatars and the social presence they emit,
were observed to improve trust and adoption of recommendations
[17, 30], negative emotions may be triggered, e.g. due to uncanny
valley effects [4]. Thus we deem the design of feasible metaphors
for RS as distinctively challenging and emphasize that it requires
further research in this topic.

5.4 Limitations
Despite the small size of N =10, we consider our identified concepts
as theoretically saturated because we noticed that the concepts of
the mental models were very well developed early in the recruit-
ment process. The main limitation of our work is the focus on a
very specific sample of one single platform, namely regular and
experienced Netflix users which most likely has contributed to the
early theoretical saturation. Finally, due to the qualitative nature of
this study, we cannot make assumptions about the prevalence of
the identified mental models.

6 CONCLUSIONS AND FUTUREWORK
Applying a qualitative approach, we found a variety of mental
models. Our participants expressed high degrees of uncertainty
and confusion about the inner working of Netflix. Nonetheless,
we elicited a general structure that all of these models adhered to
which can be used for RS development in practice. Furthermore,
the concepts of centrality of the self and item- and user-based rec-
ommending can serve as entry points for the design of transparent
and controllable RS. Hence, this work contributes not only to the
exploration of users’ mental models of RS, but also provides insights
for RS development in practice.

In future work, we plan to validate our findings through quanti-
tative research. Especially, the general structure represents a solid
baseline for hypotheses and confirmatory studies on a large user ba-
sis. Here, it might also be interesting to investigate a more diverse
user group which differ in the frequency of use and experience
with RS. We stress out that it is worthwhile to investigate other
RS platforms as our study focused on one single platform. Finally,
the aspect of transfer of mental models was a striking result of our
study. Transfer of mental models can be important for RS develop-
ers as they could rely on this to build the RS. To further investigate
the transfer of mental models, we suggest to conduct comparative
studies with several examples of RS.
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Abstract. How users interact with an intelligent system is determined
by their subjective mental model of the system’s inner working. In this
paper, we present a novel method based on card sorting to identify
such mental models of recommender systems quantitatively. Using this
method, we conducted an online study (N =170). Applying hierarchical
clustering to the results revealed distinct user groups and their respective
mental models. Independent of the recommender system used, some par-
ticipants held a strict procedural-based, others a concept-based mental
model. Additionally, mental models can be characterized as either techni-
cal or humanized. While procedural-based mental models were positively
related to transparency perception, humanized models might influence
the perception of system trust. Based on these findings, we derive three
implications for the consideration of user-specific mental models in the
design of transparent intelligent systems.

Keywords: Mental models · Transparency · Recommender systems ·
Card sorting · Hierarchical clustering

1 Introduction

Mental models of intelligent systems are subjective, typically incomplete and
flawed understandings of the system’s inner working [38,45]. They are shaped
through system interaction [38]. Studying mental models can, thus, explain how
users perceive a system and how they interact with it, e.g. by identifying super-
stitions or misconceptions. This is also a crucial prerequisite to explain elements
of intelligent systems better and to increase their transparency [13,54].

To investigate subjective mental models, research has focused thus far on
qualitative approaches that characterize single mental models in greater detail
using small samples (typically smaller than N =20; e.g. [13,34,36]). While such
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qualitative studies describe single, overarching models and are valuable for a
general comprehension of what is included in such a model, they struggle to
capture their full diversity and lack the ability to reliably identify and system-
atically compare different mental models that might coexist in large samples.
Such comparisons, most importantly, offer systematic insights into relationships
between specific mental models and user-centered aspects. We argue that this
needs to be addressed through a quantitative approach.

In fact, quantitative methods might reveal individual and reappearing struc-
tures of mental models in large samples and across different systems. Hence, they
could allow comparisons of diverse mental models among individuals and groups.
Studying mental models quantitatively might also lead to practical implications
for the design of user-friendly interfaces. Specific themes and visual perspec-
tives could be designed for certain user groups, commonalities among models
could foster general design of transparent systems. However, the application of
quantitative methods still poses a serious challenge.

In this work, we aim to close this gap and explore the users’ mental models
of intelligent systems quantitatively. For this, we applied a novel card sorting
setting which captured the entire processing chain of an intelligent system. The
card sorting setting provided typical functional steps of intelligent systems (e.g.
data acquisition) for users to reconstruct their mental model. The method allows
us (1) to identify user groups and characterize their mental models, and (2) to
explore the relationship of these user groups and mental models with system
perceptions (e.g. transparency).

We applied this novel card sorting setting in the domain of recommender
systems (RS) as RS are a mainstay in today’s online environment. Furthermore,
their decisions are often perceived as subjective which are met with more dis-
trust by users than other systems that make more objective decisions (e.g. route
planners) [6]. We asked RS users of a broad sample (N =170) to sort different
actions according to how they think the RS works internally. Hence, we aim at
answering the following research questions:

RQ1 : Which different mental models do users hold across RS?
RQ2 : How do these mental models relate to the perception of RS?
RQ3 : Based on these findings, which implications can we derive for the design

of transparent intelligent systems?

With this work, we contribute to the advancement of research on users’
assumptions and knowledge about intelligent systems in three ways: (1) We cap-
tured the entire processing chain of an intelligent system (i.e. RS) in a detailed
way through a novel card sorting setting. (2) This allowed us to demonstrate and
uncover which mental models are prevalent in a broad sample of RS users, thus
forming a baseline for future research in this domain. (3) We derive practical
implications for system designers regarding how the knowledge of such mental
models can be leveraged to increase user-centric qualities of intelligent systems,
such as transparency and trustworthiness.
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2 Background and Related Work

Recommender systems typically appear as black box to users, i.e. their internal
reasoning and functioning remain hidden. This can affect users negatively, e.g.
it can cause feelings of creepiness towards recommendations [47]. Furthermore,
users may distrust algorithmic decision making and reject its results [12,40].
This algorithm aversion seems to pertain especially to situations of subjective
compared to objective decision making [6]. As a result, RS that recommend sub-
jective items (e.g. music or movies) are more affected by distrust than objective
systems (e.g. route planners that give directions) [6]. To tackle this potential
distrust in subjective decision support systems, transparency appears to be a
central factor. Studies indicate that transparency can increase the users’ trust in
and satisfaction with a system [27,49] and recommendation acceptance [11,20].

A clear understanding of the users’ knowledge and interpretation of the sys-
tem’s functioning is a key prerequisite for determining how to improve trans-
parency and which parts of the system to focus on [13,55]. A holistic depiction
of such knowledge can be conceptualized as mental models [38,39].

2.1 Mental Models of Intelligent Systems

Mental models (closely related to folk theories1) can be defined as cognitive
knowledge representations of technological systems that serve users to cogni-
tively simulate system behavior and predict its outcomes [45]. They are subjec-
tive in nature, and thus, may be parsimonious and flawed [38]. Mental models are
developed through system interaction, especially when confronted with anoma-
lies and unexpected behavior [18]. In other words, mental models represent what
users know about a system and determine how they interact with it.

A field study by Tullio et al. [50] demonstrated that this also holds for intelli-
gent systems. They found that, without prior knowledge about the system, users
showed a basic understanding of machine learning methods when confronted with
an intelligent agent. In particular users’ mental models included decision trees
and statistic predictions based on “patterns” and “averages”.

Other research has highlighted the impact of mental models on the users’
task performance. For example, in a qualitative study Muramatsu and Pratt
[34] showed that flaws in mental models of search engines may cause confusion
regarding the interpretation of search results. Despite the familiarity and daily
use of search engines, many participants did not fully understand how search
queries are processed. This is supported by a study of Kulesza et al. [26] which
showed that improved soundness of mental models was positively related to the
effectiveness of interaction with the system.

Most studies on mental models of intelligent systems focused a single general
mental model, e.g. [13,19,36]. Eiband et al. [13] highlighted the importance of
identifying one “overarching user mental model” of a target group and indicated
that within this model, several group-specific mental models may exist.

1 For a detailed discussion on folk theories, e.g. see [15,16].
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Indeed, some findings indicate a diverse landscape of mental models. In the
domain of RS, Ghori et al. [19] showed that users mostly explain technical con-
cepts, such as collaborative filtering, in their own words. In an interview study,
Ngo et al. [36] revealed that mental models of RS might be technical or metaphor-
ical. The study also suggests that users had different views on the importance
of themselves in the recommendation process.

To summarize, while the elaboration of an overarching mental model for a
system is useful, there is also strong support for the existence of diverse mental
models within a population. To find a balance between one overarching men-
tal model and an individual mental model for each user, we therefore argue
to identify group-specific mental models. Even though qualitative approaches
may provide some insights into the diversity of mental models, a quantitative
approach is required to more precisely identify and classify these diverse models.

2.2 Methods for Eliciting Mental Models

Few studies have applied a quantitative approach to explore the mental models of
intelligent systems. They mostly studied effects of mental models on the percep-
tion of a system. For instance, Kulesza et al. [26] induced different mental models
and captured their “soundness” through multiple-choice questions. Thus, they
did not directly investigate the structure and characteristics of mental models
but the users’ capacity of using them to simulate certain system outputs.

Other studies have used mixed-method approaches: Xie et al. [53] investigated
the effects of mental model similarity on web page interaction performance in an
experimental study. They combined a card sorting and a path diagram of web
navigation and calculated different similarity measures based on these methods.
A recent example studied mental models of cooperative AI agents in a game
setting [18]. The researchers first applied a think-aloud task to explore the mental
models. Then, a large-scale survey was conducted. We encourage such informed
quantitative studies that exploit insights from former qualitative work.

Conceptual techniques, such as the repertory grid, pairwise rating, or card
sorting [10,30] can be used to study mental models quantitatively. They are
based on an existing body of concepts which needs to be explored before, e.g.
through interviews. Thus, they do not rely on direct verbalization [10].

In repertory grid and pairwise rating, users rate different concepts on a cer-
tain scale or compare them with one another. This leads to a similarity matrix
between the concepts representing the user knowledge. The data can be ana-
lyzed through e.g. multidimensional scaling [30]. While both methods have dif-
ferent advantages, they are either time-consuming or are limited in the number
of concepts that can be studied. Therefore, Cooke [10] recommends to apply
card-sorting techniques, if the number of concepts is higher than 25–30.

In card sorting, users assign certain cards, representing concepts, into cat-
egories. The method is often used in usability studies to determine navigation
structures [9]. There are different types of settings: In closed card sorting, the
content of the cards and the label as well as number of categories are fixed. In
open card sorting, participants can label the cards themselves [9]. The method
allows for the identification of common themes and differences in samples [44].
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Table 1. Overview of the four general categories and their associated action cards we
used in the card sorting task.

Acquisition of user data Comparing items or users

[01] Recording my mouse clicks [10] Comparing items regarding their content

[02] Asking me for my age [11] Matching rating data of items

[03] Recording my dwell time on an item’s

detail page

[12] Calculating a similarity score between

items

[04] Asking me to explicitly rate items [13] Calculating a similarity score between

users

Inference and aggregation Presenting recommendations

[05] Determining my interest in item
categories

[14] Suggesting items that are new to me

[06] Analyzing my current mood [15] Showing items, I might like

[07] Combining all data about me to an
abstract user profile

[16] Presenting items that other users liked in

the past

[08] Adding additionally item data that

users cannot see

[09] Analyzing content of items

3 Identifying Diversity and Commonalities of Mental
Models

We developed a new setting based on card sorting. Card sorting is suitable for
large online studies [4], allows open and closed settings [9], and can be used to
include a wide range of concepts [10]. Our setting considers the subjectivity of
mental models by providing a diverse range of pre-defined cards, and allowing
participants to formulate their own thoughts using open cards and as many
actions and steps as they find appropriate to describe their mental model.

In our card sorting setting, participants are presented with a set of cards rep-
resenting typical RS actions and are asked to assign them to up to seven sequen-
tial steps. Our method assumes a procedural structure of the inner workings of a
RS. This is in line with how these systems typically work and with observations
in previous qualitative user studies [36,38,50]. The resulting card sorts of each
participant represents their mental model of RS. Through hierarchical cluster-
ing, card sorts can be aggregated into groups, allowing us to characterize the
differences and commonalities between mental models in a larger sample.

3.1 Cards Used as Actions of RS

We carefully created 35 cards for participants to express their mental model:

– 16 action cards, represent actions of the recommendation process (Table 1)
– 12 distractor cards, represent actions that are not part of the central recom-

mendation process
– 4 question mark cards, provide the possibility to express uncertainty
– 3 open cards, let users express self formulated actions
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The action cards correspond to typical paradigms used by RS while still
“speaking the language of the user”. We extracted concepts of mental models
from former qualitative mental model studies [13,19,26,36,50] and contributed
our own technical expertise on RS functioning. In particular, we followed the
four general categories provided by Ngo et al. [36]: (1) acquisition of user data,
(2) inference and aggregation, (3) comparing items or users, and (4) presentation
of recommendations. For each category, we designed up to five cards (Table 1).
We describe the rationale behind the action cards in the following.

(1) Acquisition of User Data (Cards 01–04): For any personalized RS,
elicitation of user data and their preferences is a necessary prerequisite [42,46].
While these data can take various forms (e.g. ratings, purchases, clicks), the
underlying concept appears to be well known by RS users and was mentioned in
many in-depth qualitative user studies [13,19,36,50].

(2) Inference and Aggregation (Cards 05–09): In almost all cases RS
do not perform their recommending on raw user data, but aggregate them or
infer further (e.g. situational) data [1,3]. A similar concept can also be found in
many user responses of prior interview studies. Users, for instance, mentioned
(statistical) inference [50], or construction of a personal interest profile [19].

(3) Comparing Items or Users (Cards 10–13): Relating users or items
is one of the most common techniques in RS design [25,37]. Such techniques,
e.g. the commonly used collaborative filtering, are apparently well understood
by users. In many prior mental models identified, the similarity between users
or items was mentioned or played a central role [19,36].

(4) Presenting Recommendations (Cards 14–16): While the form of pre-
senting recommendations seems to play an inferior role in users’ mental models
[36], it is very relevant for RS research [23,48]. We thus decided to also include
three actions for the presentation of RS outcome.

To further diversify answers and to enable analysis of the extent to which the
mental models of participants diverge from a “ground truth”, we added 12 dis-
tractor cards. These cards were chosen as misconceptions of RS as well as actions
that are not part of the main personalization process. Distractor cards were col-
lected by identifying such actions in results of a previous qualitative user study
to which we had access (i.e. [36]). All distractor cards can be found in the supple-
mentary material. Examples are: “Employees suggest items for me”, “Evaluating
my satisfaction of recommendations”, and “Blocking advertisement”.

Finally, we added question mark and open cards. The question mark cards
account for uncertainties in participants’ mental models, i.e. to indicate that
there might be an unknown action performed in a certain step. Open cards
account for any missing actions that were not part of the pre-labeled action or
distractor cards, but are part of the subjective mental model.

4 User Study

Our online study consisted of three parts: instruction, mental model task, and mea-
surement of technical knowledge and perception of RS. At the end, participants
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How do you think that „Discover weekly playlist on Spotify“ works?
Which steps and actions do you think the recommender system has to take in order to personalize „Discover weekly playlist on Spotify“?
Please drag and drop these actions to assign them to steps according their order.
Remember that you do not have to use all steps nor all actions.

Actions you can choose from: Put your actions here:

Calcuating a similarity 
score between items

Suggesting items that are 
new to me Blocking advertisement

1st step:

Action

Action

Action

2nd step:

Action

Action

Action

Employees suggest items 
to me

Determining my interest in 
items categories

Recording my mouse 
clicks

Matching rating data of 
items

Evaluating the usability of 
the platform

Combining all data about 
me to an abstract profile

Fig. 1. Excerpt of the mental model task with shortened description and examplified
for Discover weekly playlist on Spotify. For reasons of space efficiency only nine actions
and only two steps with three action slots are depicted here.

were debriefed and received 2.76 $ as compensation. We used Soscisurvey2 as a
survey platform in which we implemented the card sorting setting ourselves. On
average participants took 13:39 minutes (SD = 01:55) to complete the study. This
study was approved by the local ethics committee of the University of Duisburg-
Essen. We included the complete lists of measures and items in the supplements.
This section is organized according to the three parts of the user study.

4.1 Instruction

At the beginning, participants were presented with a definition of RS and
the term “item”, which we defined as all content subject to recommendations,
whether it is a product on Amazon, or a person suggested as friend on Facebook.
Participants chose a RS they encounter regularly. Eight options were provided:
Top pics for you on Netflix, Video recommendations on YouTube, Discover weekly
playlist on Spotify, Recommendations of similar items on Amazon, Friend rec-
ommendations on Facebook, Trending hashtags for you on Twitter, Personalized
feed on Instagram, and Daily news recommendations on Google News.

Additionally, participants could opt for “None of the above”, which resulted
in an immediate end of this participant’s session. If any of the eight options was
chosen, participants were instructed to keep the chosen RS and its items in mind
as point of reference for all subsequent questions. As auxiliary reminder, their
chosen RS was also explicitly displayed in several texts throughout the survey.

4.2 Mental Model Task

Next, participants had to complete the card sorting task described in Sect. 3.
They were briefed to use their RS chosen in the previous part as reference while
sorting their cards. All 35 cards were displayed on the left and participants were
asked to sort as many of them as they deem appropriate via drag-and-drop in

2 https://www.soscisurvey.de.
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up to seven steps. The steps were displayed on the right (see Fig. 1). The open
and question mark cards were shown at the bottom of the card list. Action and
distractor cards were presented in a randomized order.

After the task, participants were asked about the degree of fidelity that
reflected how well participants were able to express their mental model. We mea-
sured this using two self-created items on a 5-point Likert scale (1 (“I strongly
disagree”) to 5 (“I strongly agree”)). The items were: “I was able to express my
ideas through the arrangements of steps and actions very well” and “I feel very
certain about the arrangement of steps and actions.”, (Cronbach’s α= .725).

4.3 Measures

We asked participants about their perception of RS and technical knowledge: on
the one hand, through self-created items on technical or metaphorical perception
of RS, and, on the other hand, through standardized scales for social presence,
trusting beliefs, transparency, and other user-centric measures of RS.

Perception of the RS: To assess whether participants perceived the chosen RS as
rather technical or metaphorical, we included a self-created semantic differential
consisting of twelve pairs such as “machinelike” vs. “humanlike” (Cronbach’s
α= .809). Items were assessed on a 5-point Likert scale.

We used the social presence scale from Gefen and Straub [17] consisting of 5
items (e.g. “There is a sense of human contact in the system.”). Furthermore, we
assessed trusting beliefs using items from McKnight et al. [32]. Trusting beliefs
consist of three dimensions: benevolence, integrity, and competence. For all of
these scales, items were rated on a 7-point Likert scale.

We measured transparency, control, and perceived usefulness using the
ResQue inventory [41], and added recommendation quality and perceived sys-
tem effectiveness from Knijnenburg et al. [24]. All items were assessed on a
5-point Likert scale.

Technical Knowledge of RS: We assessed the prior technical knowledge of par-
ticipants by using three self-created items, e.g. “In the past I learned about how
recommender systems work” (Cronbach’s α= .818). Additionally, we specifically
asked for the confidence in the capability of learning about RS through one item,
(“I would be capable of understanding the recommendation process, if someone
would explain it to me.”). All items were measured on a 5-point Likert scale.

4.4 Participants

In total, 170 participants were recruited through the UK-based crowd-working
platform Prolific3. Participants’ age ranged from 18 to 67 (M = 31.42, SD =
11.64). Regarding gender, 71 participants identified as male and 99 as female.

3 https://www.prolific.co/.
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The sample was rather educated with 75 participants (44.1 %) holding a bach-
elor’s degree, 55 participants (32.4 %) holding a high school diploma, and 26
(15.3 %) a master’s degree. Six participants (3.5 %) held a PhD, while three
participants (1.8 %) reported to hold less than a high school diploma. Five par-
ticipants (2.9 %) indicated other degrees. Participants reported to have a low to
moderate technical knowledge on RS (M=1.87, SD = .99).

Generally, participants were able to express their mental model through the
task well: Descriptive analysis revealed a moderate degree of fidelity with a
mean score of 3.18 (SD = 0.90). Question mark cards were used very rarely
(on average participants used M = 0.03 (SD = 0.06) of them). Only few open
cards4 were used: Participants created 63 cards themselves accounting for 2.32 %
of all cards used. Most of them indicated similar ideas as existing action cards,
e.g. “Collecting other data such as gender”, or were specific to the RS, e.g.
“Monitoring what I watch”. 25.40 % of them were left blank or were unclear in
their meaning.

Overall, participants used M=15.74 (SD = 8.20) cards and M=4.90 (SD =
1.76) steps to represent their mental model. When comparing action cards and
all other cards, a t-test for paired samples revealed that action cards (M=9.85,
SD = 4.15) were used significantly more often than the others (M=5.88, SD =
4.80), t(169) = 14.94, p = .001. The proportion of actions to distractors was at
26.61 % (SD = 12.70%) on average, i.e. for each four action cards that were used
in the mental model task, one was a distractor.

5 Results

We followed a data-driven approach to answer our RQs. Hierarchical cluster-
ing on participants’ card sorts revealed three distinct user groups in our data.
We conducted a descriptive analysis to compare the perceptions of RS of these
groups. For the analyses we used SPSS 25 and R 4.0.2.

5.1 RQ1: Which Different Mental Models Do Users Hold Across
RS?

To determine clusters among the different mental models expressed, we first
calculated dissimilarities between card sorts. While card sorts are commonly
evaluated this way, we faced two specific challenges in our task setting: (1) The
order of steps, the cards were sorted in, was relevant to us, which is not taken
into account by typical dissimilarity measures (e.g. Jaccard Index ). (2) Partic-
ipants were free to use any number of steps (up to a maximum of 7) and any
number of cards (up to a maximum of 35), which resulted in many missing val-
ues. To overcome these two challenges, we calculated the dissimilarity between
participants as follows:

dis(p, u)=0.7 ∗ d(p, u) + 0.3 ∗ q(p, u)

4 Note that a qualitative in-depth analysis of open cards was not within the scope of
this work.
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Table 2. Overview of user groups descriptive statistics. SI values refer to the cluster
cut within each group.

Group N No. of cards No. of steps Degree of fidelity No. of clusters SI

M (SD) M (SD) M (SD)

1 66 8.53 (2.56) 4.09 (1.84) 3.34 (0.88) 4 0.298

2 79 16.76 (3.39) 4.99 (1.42) 3.46 (0.85) 2 0.238

3 25 31.60 (3.20) 6.76 (0.52) 2.82 (0.99) 7 0.132

This dissimilarity calculation is based on two components. The first one
(d(p, u)) determines the normalized Manhattan distance between any two par-
ticipants. We interpret each participant’s card sort as vector p ∈ INc, where c is
equal to the number of available cards5. Each position of p, thus, corresponds to
a specific card, while the value indicates the number of the step this participant
assigned the card to. The Manhattan distance between these vectors accounts
for challenge (1) as it considers the order of steps cards are sorted in. While this
could be achieved with other similarity measures (e.g. Euclidean distance), the
Manhattan distance treats coordinates as discrete, thus matching the discrete
steps of our task design. This first component only includes cards that were used
by both participants. Therefore, to account for (2), we add a second component
(q(p, u)) as the difference of how many cards both participants used.

We acknowledged that both components should not equally contribute to the
dissimilarity and deemed the step order as more important than the number of
cards each participant used. Thus, we assigned different weights to each com-
ponent and chose a factor of 0.7 for the first, and a factor of 0.3 for the second
component. Detailed description of the formulas is included in the supplement.

Hierarchical Clustering. Hierarchical clustering can follow a divisive or an
agglomerative clustering algorithm. Divisive clustering follows a top-down pat-
tern, which starts with one cluster containing all items and divides them itera-
tively until each cluster contains only one single item. Agglomerative clustering
takes the opposite approach and starts with each item as an own cluster and
iteratively combines them until only one cluster remains [22].

We compared the clustering coefficients of divisive and agglomerative vari-
ants. This coefficient “describes the strength of the clustering structure” [22].
A coefficient closer to 1 indicates a stronger cluster structure and a better fit
with the data. In our case, agglomerative clustering in tandem with the Ward’s
criterion [35,51] resulted in the best performance with a clustering coefficient
of .949. To determine the number of clusters that fits the data best, we then
compared cuts of the hierarchy at 2–7 clusters. For this, we used the respec-
tive average silhouette index (SI) [43] which reflects the cohesion within clusters

5 We ignored open and question mark cards, since they cannot be compared easily.
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Fig. 2. Dendrograms depicting clusters of how cards have been sorted for each identified
user group. Clusters and actions within are ordered regarding the median of steps, they
have been sorted in.

and separation between clusters. The index ranges from −1 to 1. We found the
highest SI of .237 when cutting at 3 clusters, and thus, 3 user groups.

Subsequently, we performed hierarchical clustering again. This second clus-
tering was applied to cards within each of the 3 user groups and resulted in 2–7
clusters, depending on the group (Fig. 2 and Table 2). Below we describe the
mental models of each user group in detail.

Group 1: Users with a Parsimonious Concept-Based Mental Model.
This group used the lowest number of cards and steps (Table 2). Partici-
pants were convinced of their card sorts (degree of fidelity). Compared to the
other groups, they expressed less prior knowledge in RS, but felt confident in
understanding them. The group perceived RS as rather rational, planned, and
machine-like (Table 3). The dendrogram of this group shows four major clusters
(Fig. 2a) and that this group held a rather concept-based mental model.

The first major cluster is small and pertains to elicitation and analysis of
implicit and less tangible user data (“recording of mouse clicks” (card 01) and
“analyzing content of items” (card 09)) which can be considered as a starting
point of RS processes. The second major cluster refers to the inference of a user
model comprising of several processes including processes of data acquisition,
inference, and comparison, all regarding the user (card 02, 07, 08, 13).

Following this, the third major cluster (card 05, 10, 12, 14–16) represents the
processing of the user model. Further user data, e.g. “mood” and “dwell times”,
are analyzed and recorded. Additionally, the user data is connected to item
data. In contrast to this, the fourth major cluster (card 03, 04, 06, 11) focuses
clearly on the processing of items. It includes different processes, i.e. inference,
comparison, and presentation of items.

In sum, this group was parsimonious in their use of cards, i.e. they only
used few actions and steps. Participants of this group focused on the concepts
of the user model, the user model processing, and on the items. In each cluster,
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Table 3. Overview of perception of RS for each user group.

Variables M (SD)

Group 1 Group 2 Group 3

Technical knowledge of RS

Knowledge of RS 1.56 (0.83) 1.97 (1.03) 2.20 (1.10)

Confidence 4.23 (0.74) 4.30 (0.65) 3.72 (0.84)

Perception of RS

Technical/ metaphorical 2.74 (0.48) 2.65 (0.62) 3.01 (0.74)

Social presence 3.11 (1.44) 3.29 (1.58) 3.50 (1.62)

Transparency 3.76 (0.79) 4.09 (0.75) 3.88 (0.78)

Trusting beliefs (TB) 3.85 (1.22) 4.04 (1.29) 4.20 (1.38)

TB benevolence 3.39 (1.42) 3.44 (1.60) 3.95 (1.47)

TB integrity 3.61 (1.36) 3.66 (1.50) 4.18 (1.54)

TB competence 4.45 (1.48) 4.88 (1.34) 4.41 (1.57)

processes are mixed (e.g. acquisition and inferences processes regarding the user
model, comparisons, inference, and presentation regarding the items).

Group 2: Users with a Feasible Procedural Mental Model. This group
could express their mental model through the task well. Their prior knowledge
was higher than in group 1, but lower than in group 3 (see Table 3). Like group 1,
they perceived RS as rational, planned, machine-like, but as more transparent.
The card sorting task resulted in two major clusters (Fig. 2b).

The first major cluster can be divided into two sub-clusters. The first one
(card 02, 06, 07, 09, 11) pertains to the inference of a user model using contextual
user data, such as the “age” or “mood” of the user. The second sub-cluster (card
01, 03, 04) pertains to the acquisition of interaction data that is dependent on
the use of the RS, e.g. “mouse clicks”, “dwell time”.

The second major cluster consists of three sub-clusters that represent dif-
ferent processes of RS: comparison of items and users (cards 10, 12, and 13),
inferences of the user’s interest based on items (card 05, 08), and finally the
presentation of recommendations (card 14–16).

In sum, this group showed a procedural mental model that reflected our
proposed procedure best (Sect. 3 and Table 1). Only the first major cluster rep-
resented a more nuanced understanding of the acquisition of user data which
differed from our proposed procedure. Group 2 views the user model as a start-
ing point that is characterized by contextual data, i.e. data that exist prior to the
interaction with RS. Thus, they distinguish between contextual and interaction
data. The second major cluster represented the last three steps of our proposed
procedure accordingly.

This user group seemed to have the most structured comprehension of RS
which is indicated by the rather high values for the degree of fidelity, confidence,
and transparency.
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Group 3: Users with an Extensive Social-Focused Mental Model. This
group used the highest number of cards and steps (Table 2). The confidence in
their card sorts was the lowest, but they expressed a higher knowledge about RS6.
Group 3 perceived the RS as more empathetic, spontaneous, and human-like. We
found this tendency as well when examining the values for social presence and
trusting beliefs, which were the highest in this group (Table 3). The dendrogram
(Fig. 2c) reveals seven major clusters of action cards.

The first major cluster mainly contains the presentation of recommendations,
showing items that are new (card 14) and the user might like (card 05). Based
on these presented items, additional, invisible data are considered (card 08). The
second major cluster combines user information to an abstract profile (card 07),
to which user data (e.g. “dwell time”, card 03) are added. The third and fourth
major cluster mostly pertain to comparison processes of the items (card 10–12)
and determination of user interests (card 05).

The fifth cluster refers to the data acquisition of explicit user data (card 01,
02), while the sixth pertains to items in relation to users (e.g. user ratings of
items (card 04), similarity between users (card 13), and presentation of what
users liked in the past (card 16)). These processes were mostly assigned to step
3. The last cluster refers to inference processes on the “mood that the user is
currently in” (card 06) and “analyzing content of items” (card 09).

This group used nearly all cards and steps, i.e. many distractor, open, and
question mark cards were used. We conclude that this user group might have an
extensive mental model consisting of many different processes that go beyond
the recommendation process described in Sect. 3.

In sum, the mental model of group 3 appears rather unstructured. This is
reflected by the high number of clusters (i.e. many small unrelated islands).
Like group 1, participants of this group seem to follow a rather concept-based
mental model. Yet, they distinctively assigned more human attributes and social
presence to the system indicating a higher social focus of their mental models.

5.2 RQ2: How Do These Mental Models Relate to the Perception
of RS?

Due to the exploratory nature of our approach, we analyzed our results descrip-
tively7. First, we explored if we find differences for the RS choice in the mea-
sures. The descriptive data revealed that confidence intervals (CI) of means of
each chosen RS largely overlap for all measures. This indicates that the results
are independent of the particular RS a participant had in mind. Instead, we
conclude that measured differences resulted from the particular mental model a
participant held.

Then, we analyzed the group differences based on 95 % CI of mean differences
and effect sizes (using Cohen’s d with pooled standard deviation to account for
different group sizes). To this end, we first performed a visual analysis of CI of

6 However, the level of knowledge in all groups can be considered as low to moderate.
7 An overview of all descriptive data can be found in the supplement.
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Table 4. Overview of descriptive analysis.

Group comparisons Cohen’s d 95% CI Mean diff. 95% CI

Confidence

Group 1 vs. 3 −.66 [−1.13, −0.19] .51 [0.10, 0.91]

Group 2 vs. 3 −.83 [−1.29, −0.37] .58 [0.19, 0.98]

Technical/ metaphorical

Group 1 vs. 3 .48 [0.01, 0.95] −.27 [−0.60, 0.07]

Group 2 vs. 3 .55 [0.10, 1.01] −.36 [−0.69, −0.03]

Transparency

Group 1 vs. 2 .43 [0.10, 0.76] −.33 [−0.64, −0.02]

Knowledge of RS

Group 1 vs. 2 .43 [0.10, 0.77] −.41 [−0.81, −0.02]

Group 1 vs. 3 .70 [0.23, 1.17] −.64 [−1.19, −0.09]

group means for each measure. We only report results with moderate to large
effect sizes and CI with little or no overlap (Table 4).

Regarding confidence, we found that group 3 was less confident than group
1 and 2. This indicates that users with a social-focused mental model were less
confident in their capabilities to understand the RS. The analysis revealed the
same pattern regarding technical vs. metaphorical perception suggesting that
group 3 tended to view RS as more human-like than the other two groups.
Concerning transparency, we found a difference between group 1 and 2 indicating
that the procedural mental model might be associated with higher transparency
perception. Finally, regarding knowledge of RS, we found that group 1 expressed
lower knowledge than group 2 and 3.

The descriptive analysis suggests that the precision of the measures were low.
Therefore, the results give first indications of relevant relationships between the
structure of mental models and RS perceptions.

6 Discussion

This work extends the existing research body on the measurement of mental
models through a novel card sorting setting. While it does not investigate single
mental models in detail, as fully qualitative methods would, our approach allows
for relevant analytical insights. We analyzed the diversity of mental models in a
large sample. Thus, we envision our card sorting setting as beneficial in a second
research stage, after a first general mental model was already revealed.

In line with prior work of Norman [38], who observed the transfer of mental
models from one system to another, we found that mental models exist across
systems. Interestingly, we did not find any relationship between the referenced
RS and the perception of RS, i.e. they were independent of another. In fact, dif-
ferences in users’ perceptions of RS were only dependent on users’ mental model.
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We conclude that mental models appear to be more critical for the perception
of RS than the system itself. Hence, for contemporary user-centered design of
RS, we suggest a shift from system-focused to mental-model-focused research.

In the following, we discuss the mental models of RS and their relation to the
perception of RS. Furthermore, we address RQ3 (Based on the identified mental
models, which implications can be derived from them for the design of transparent
intelligent systems? ) and discuss practical implications for the development of
more user-friendly, trustworthy, and transparent user interfaces.

6.1 Seeing Is Not Understanding

Many participants perceived the referenced RS (e.g. Youtube, Netflix, Spotify)
as transparent. However, the transparency perception cannot be ascribed to a
factual knowledge about the inner workings of these RS. Firstly, because these
systems do not provide any sophisticated explanatory components and, secondly,
because participants reported a low to moderate technical expertise of RS. We
therefore attribute the transparency perceptions to participants’ mental models,
which are based on subjective explanations of how the RS work. These explana-
tions, hence, merely form an impression of understanding that may not match
the actual systems’ functioning. In other words, “seeing” a system does not
necessarily translate to understanding it [2]. We argue that such mental mod-
els, based on vague information of how the system works, may result in a gap
between actual system behavior and users’ expectations—a concept known as
gulf of evaluation [39]. Such gulf was observed to result in false assumptions
and erroneous behavior [33,34]. Morris [33] found that social media users can
misinterpret the opaque algorithms responsible for composing their news feed.
In the case of Morris’ observation, this led to the negative public misperception
that new mothers post excessively about their newborns when in fact they do
not. Muramatsu and Pratt [34] could show that false assumptions and erroneous
mental models can be corrected through transparency.

Practical Implication: Dare to Provide Transparency to Users. To avoid
a false sense of understanding a system, typical straightforward explanatory com-
ponents might be too shallow to provide “real” transparency in terms of an actual
user comprehension. Thus, users’ mental models need to be regarded, evaluated,
and, if flawed, corrected by providing factually accurate insights into the sys-
tem’s inner working. While we note that such a correction could benefit from
knowing the active user’s mental model during runtime, it could also be based
on a general elicitation of mental models prevalent in a user base. The presented
study demonstrates how such elicitation could be performed. Yet, we acknowl-
edge that further research in eliciting mental models and providing transparency
of RS is necessary as intelligent systems become increasingly sophisticated.

Previous research has indicated users’ interest in more algorithmic trans-
parency, e.g. [15,31]. Our study extends on that: It highlights that there is not
only a user interest, but also that users feel confidence in their ability to under-
stand intelligent systems when appropriate explanations are present. This is
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especially interesting considering the low technical knowledge of our participants.
We, thus, encourage developers to dare to provide sophisticated components of
transparency, e.g. in form of explanations [7,21] or visualizations [5,28,29].

6.2 Procedural vs. Concept-Based Mental Models

We could uncover three different mental models of RS that coexist in a large
sample of RS users. We observed that these models exhibited different structures
and perceptions of RS. Concept-based and procedural mental models were the
most prevalent models that co-existed in our sample. An extensive and social-
focused mental model was held by a minority of the participants.

The mental model of group 2 reflected the procedure, that our method was
based on, best. Due to the opacity of RS, we cannot claim this procedure to be a
ground truth of RS. Yet, it is based on established publications of researchers and
practitioners in the field of RS and we deem it—to a certain degree—accurate. In
this regard, group 2, interestingly, felt the highest degree of fidelity in expressing
their mental model through the card sorting. Based on this, we assume that the
mental model of this group was rather well-defined. Therefore, they perceived
the highest transparency of RS. The well-defined mental model might also be the
cause for the highest competence perception: The RS was perceived as reason-
able leading to comprehension of the system and appreciation of its competence.
As this group expressed low technical knowledge of RS, we conclude a close con-
nection between a well-defined mental model, understanding the actual system
functioning, the transparency and competence perception of the system.

Group 1 and 3 did not strongly adhere to a process-based mental model. It
seems that they did not use the steps in a chronological, but in a concept-wise
manner. Inspection of the clusters in the dendrogram of group 1 (Fig. 2a) showed
that many clusters consisted of actions from different chronological stages. The
second cluster, for instance, comprised of four cards (02, 07, 08, 13) of which
three cards belong to another chronological stage. Yet, they shared a conceptual
focus: the user model. The most frequent and strict concepts in the mental
models of group 1 and 3 were item- vs. user-based recommending.

Practical Implication: Increase Transparency Through Procedural
Explanations. We conclude that there are several perspectives on a RS that
users can adopt. Delivering different user interfaces to each of these groups might
address this issue best. For users adhering to a procedural mental model, expla-
nations that emphasize the chronology of the recommendation process can be
useful. To prevent aforementioned false assumptions, we suggest great care that
explanations reflect the actual recommendation process as closely as possible.

Users that adhered to a concept-based mental model perceived lower trans-
parency. Hence, we suggest explaining the concepts more clearly to those users,
i.e. practitioners could provide clear definitions and examples of explicit and
implicit user data and explain their application in RS. Similarly, practitioners
can stress clearly whether users or items are compared to generate recommen-
dations. The latter was recently identified to cause confusion for users [36].
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However, we acknowledge that treating each user group differently is not
always possible, e.g. when no information on the active user is available. While
our quantitative approach could be used to correlate mental models to user inter-
action data (e.g. mouse movements), thus forming a baseline for inferring the
user’s mental model during runtime, this demands further studies. Yet, in our
study, we identified some procedural aspects in all user groups and are thus con-
fident that a procedural perspective could be “imposed” on users with a more
concept-wise mental model. Hence, we recommend considering procedural expla-
nations in RS. Apart from matching most user expectations, our findings suggest
that this form of explanation also results in a higher perceived transparency.

6.3 Technical vs. Humanized RS

While group 1 and 2 held a rather technical understanding of RS (rational, and
machinelike), group 3 described them as neutral to metaphorical (empathetic,
spontaneous, and humanlike). Thus, group 3 humanized the RS more than the
other groups, i.e. they ascribed humanlike characteristics to a non-human agent.
This humanization acts as a mechanism to combat uncertainty and situations
in which a system seems unpredictable [14]. This effect might be at work here:
Besides the more humanized mental model compared to the other groups, group
3 expressed low confidence in the ability to learn about the system.

Prior work in autonomous vehicles has indicated a link between humanization
and more trust in the non-human agent [52]. Our study shows that this mech-
anism might also occur in intelligent systems: group 3 perceived higher levels
of trusting beliefs. Furthermore, descriptive values indicate a higher social pres-
ence for group 3. We ascribe this also to the more metaphorical and humanized
mental model of this group. In line with prior work [8,27], this social presence
may act as mediator between humanization and trusting beliefs in group 3.

Practical Implication: Educate Users and Create Social Presence.
Uncertain users might hold an unstructured mental model including metaphor-
ical concepts. As a consequence, such user groups might perceive the system as
unpredictable and tend to humanize it. From this, we derive two implications
for practitioners: (1) There is a need to educate uncertain users, so that they
do not need to develop metaphorical or humanized mental models. As a result
the system could be perceived as more predictable and transparent. Yet, we also
note that some desirable aspects may arise from a higher social presence of RS
and thus, (2), suggest to include social aspects into a user interface. This could,
for instance, be realized by adding elements that express metaphors or using a
metaphorical language. We, however, note that this is speculative and emphasize
the necessity of investigating these aspects in greater depth.

6.4 Limitations

We created the cards as carefully as possible and added open cards to formulate
new actions. Still, some actions that participants created were redundant with
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our pre-formulated cards. Therefore, we assume that some participants did not
read all cards or did not fully understand them. Thus, we deem 35 cards as
maximum in such settings and reconsider wording choices. Another limitation
of our study concerns our task setting. While participants were able to express
procedural mental models well, this did not necessarily apply to other forms
of mental models (although participants managed to express them anyway, see
Sect. 6.2). We conclude that the task design could be slightly adjusted to, for
instance, express parallel actions or feedback loops. This could, for instance, be
achieved through concept networks or flow diagrams. We also acknowledge that
we have included only a small fraction of all existing RS in our study and that
RS represent only one facet of the full range of intelligent systems. Future work
might investigate mental models of additional RS and other intelligent systems.

7 Conclusions and Future Work

We introduced a method that enables us to identify mental models quantitatively
and to examine their diversity in large samples and across platforms. It poses a
substantial extension of prior research on mental models of intelligent systems
which relied on qualitative studies with small samples.

We could reveal a relation between mental model structures and user percep-
tion of RS: Procedural mental models were positively related to transparency,
implying that transparency can be increased through procedural explanations.
Such type of explanations could also be imposed on users who hold a concept-
based mental model. Additionally, uncertain users might hold social-focused
mental models and perceive RS as more humanlike, which leads to ambivalent
results: While social-focused mental models might positively relate to trust, they
might lead users to be less confident and perceive a system as unpredictable.

Finally, this study highlights that mental models exist across systems, i.e.
the perception of RS mainly depends on the mental models, and not on the
particular system. We consequently emphasize the relevance of mental models
for designing user-friendly intelligent systems and advocate a shift from system-
focused to mental-model-focused research in that area.

Our method allows to identify mental model in statistically representative
user studies, and thus, to make generalizable inferences about the mental models
in a target audience and their relations to system perceptions. Moreover, we sug-
gest an analysis of the relationship between user characteristics (e.g. personality
traits such as need for cognition) and mental models of intelligent systems. Our
method could be used to identify user groups that relate to certain personality
profiles. This could contribute to measuring a user’s mental model during run-
time, enabling presentation of personalized transparency components, tailored
towards their mental model and personality. This might be especially useful for
system applications that require long-term relation between a user and a system.
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ABSTRACT
Trust in a Recommender System (RS) is crucial for its overall
success. However, it remains underexplored whether users
trust personal recommendation sources (i.e. other humans)
more than impersonal sources (i.e. conventional RS), and, if
they do, whether the perceived quality of explanation provi-
ded account for the difference. We conducted an empirical
study in which we compared these two sources of recom-
mendations and explanations. Human advisors were asked
to explain movies they recommended in short texts while
the RS created explanations based on item similarity. Our
experiment comprised two rounds of recommending. Over
both rounds the quality of explanations provided by users
was assessed higher than the quality of the system’s explana-
tions. Moreover, explanation quality significantly influenced
perceived recommendation quality as well as trust in the
recommendation source. Consequently, we suggest that RS
should provide richer explanations in order to increase their
perceived recommendation quality and trustworthiness.
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1 INTRODUCTION
Contemporary online platforms typically rely on imperso-
nal recommendation sources, i.e. automated Recommender
Systems (RS), that automatically generate recommendations
in order to faciliate users’ decision making when facing a
large number of alternatives. Even though recommendation
algorithms have become highly accurate in terms of esti-
mating a user’s preferences [1, 15], they oftentimes appear
as “black boxes” by concealing important details from their
users. As a consequence, users create an unfitting mental
model of the RS which may result in distrust and ultimately
even in rejection of the system’s recommendations [17, 46].
Hence, several researchers argue that especially the trust-
worthiness of a RS should be considered when assessing its
quality [2, 22, 36].

RS are faceless entities lacking the human properties that
are important for the development of trust, thus making it
difficult for users to form bonds of any kind. One way to
alleviate this, is to introduce social components into RS [6,
26]. There is a growing number of websites where automated
and human-generated recommendations are combined—the
latter, for example, in form of customer product reviews.
For the reasons above, personal recommendation sources, i.e.
users providing recommendations, are often associated with
a higher trustworthiness [26, 44].
In the same line, designers of RS often strive to increase

transparency and trustworthiness by providing textual ex-
planatory components for recommendations [5, 46, 50]. A
very common technique is to indicate similarity between re-
commendations and items the user is currently browsing or
has expressed preferences for in the past. A well-known ex-
ample for the former is Amazon’s “Users who bought . . . also
bought . . . ” explanation. Similar kinds of explanations are ap-
plied by, for instance, Netflix and Spotify. Even though the ef-
fectiveness of such simplistic approaches utilizing similarity-
based explanations has been questioned [5, 12], a thorough
empirical comparisonwith systems using richer explanations—
especially in terms of the perceived trustworthiness and its
influential factors—is still missing.



We argue that overly simplistic explanations lack the ex-
pressiveness and social properties that are relevant to es-
tablish trust in a recommendation source. In order to find
empirical support for this assumption, we conducted a user
study in which we let participants assess recommendations
that were either selected by another person or by a typical
RS. Additionally, the recommended items were accompanied
by individually composed explanations in the personal condi-
tion or similarity-based ones for the RS. By utilizing tools of
causal statistical inference, i.e. structural equation modeling
[33] and the counterfactual framework [18, 35, 40], we were
able to reveal that the richness of explanations plays a pivo-
tal role in trust-building processes. Although, as compared
to the RS, humans were usually less accurate in estimating
preferences, the explanations for their choice were more ela-
borate and comprehensible such that the overall quality of
recommendations was deemed to be equal.
As a consequence, it appears reasonable to develop RS

towards incorporating explanatory components that imi-
tate more closely the way humans exchange information.
Counterfactual analysis helped us answer questions about a
hypothetical situation in which RS would do so: As it turns
out, without any changes to the underlying algorithm, re-
placing similarity-based explanations with human-like ones,
the quality of recommendations can be expected to improve
by around 13%.
Moreover, up to now research on trust in RS has been

concentrating predominantly on an initial perception of trust
and little research addresses temporal development of trust
in recommendation sources [e.g. 8, 49]. Participants in our
study received two recommendations over the course of two
weeks, which allowed us to assess trust development over
time. While trust in humans remained constant, we could
observe a slight decrease for their automated counterparts.
Although not statistically significant, we assume systematic
effects that tackle information asymmetry and, through this,
unfulfilled expectations.
The contributions of this paper can be summarized as

follows:
• We conducted a user study that compared personal
to impersonal recommendation sources. It is shown
that there exist differences between the groups in how
recommendations are perceived and in how bonds are
created towards the recommendation source.

• We structurally model direct and indirect effects be-
tween constructs of major interest for RS research.
Concretely, we reveal complex dependencies between
explanation quality, recommendation quality, social pre-
sence, and trustworthiness.

• We provide empirical evidence that simplistic explana-
tions fall short in terms of their benefit for recommen-
dations when compared to human explanations. We

suggest that RS should be equipped with more sophi-
sticated means of explaining their decisions. Natural
language information exchange employed by humans
should be the reference point.

• The contribution is also of theoretical value as we
utilize profound statistical tools that allow for causal
interpretation of effects. We argue that RS research
will benefit substantially from this direction because it
opens up an perspective that cannot be achieved with
correlative studies.

The remainder of this paper is organized as follows. Section 2
examines relevant literature and puts them in relation. We
describe our empirical study and the tools we used in Section 3
and present results in Section 4. Finally, implications of
our findings are discussed in Section 5 and summarized in
Section 6. The latter also addresses limitations and future
work.

2 RELATEDWORK
RS have become ubiquitous means that proactively filter
information in order to help users find interesting items
[38]. Providing recommendations not only helps users make
decisions, thus reducing their cognitive load [19, 37], but
also increase purchases and general user satisfaction [38].
Nearly all contemporary online platforms, such as Amazon,
Netflix, and Facebook, make use of RS [14, 16, 43]. While for
a long time research in RS focused primarily on algorithmic
accuracy, it recently began to shift onto more user-centered
qualities [4, 23, 27, 32] such as the degree of control [20], the
transparency [46] and the trustworthiness [47] of a RS.

Trust in Recommender Systems
Trust is an important factor in human-machine interaction
[28] and arguably of special interest for RS, since taking an
advice is a highly trust-dependent behavior [30, 31]. Not
surprisingly, increasing the trustworthiness of a RS has been
shown to increase purchase volume [34, 46] and customer
loyalty [46], among others.
From a cognitive science perspective, it is a non-trivial

task to define what constitutes trust. Consequently, there are
various definitions of trust in the literature. In this paper we
followMcKnight et al. [30, 31] and their interdisciplinary mo-
del of trust. Themodel comprises four general constructs that
are directly or indirectly influencing trust-related behavior: a
user’s disposition to trust together with their institution-based
trust, trusting beliefs, and trusting intentions. The disposition
to trust describes the trusting stance and trustfulness of a
person, such as their general faith in humanity. In contrast to
the rather constant disposition to trust, institution-based trust
is ephemeral and lasts only for certain situations (e.g. visiting
an online shop).Disposition to trust and institution-based trust
together build the foundation for trusting beliefs. Trusting



beliefs directly concern characteristics of the trustee, which
are threefold in the model of McKnight et al.: integrity (the
trustee’s reliability and honesty), benevolence (the trustee’s
motives such as altruism and goodwill) and competence (the
trustee’s ability to fulfill the truster’s needs). Before a person
finally commits to a trust-related behavior (e.g. making an on-
line purchase), trusting intentions need to be present. Trusting
intentions itself consist of four subconstructs: willingness to
depend (the general readiness to make oneself vulnerable to
the trustee), follow advise (the intention to take an advice of
the trustee), give information (the willingness to share some
private information with the trustee) andmake purchase (the
intention to actually purchase something). Trusting intenti-
ons highly depend on disposition to trust, institution-based
trust and trusting beliefs. Interestingly, such trust formation
processes also seem to apply to computer systems in general
[30] and to RS in particular [22].
The source of recommendation, i.e. the trustee, highly

influences the acceptance of recommendations. The recom-
mendation source, however, is not per se an automatic RS. In
fact, before digitalization, recommendations were primarily
provided by other humans—and often still are. The resulting
two kinds of recommendation sources (i.e. human and non-
human) are often termed as personal and impersonal [41, 44].

Impersonal sources that provide personalized recommen-
dations are commonly used on contemporary online sites,
but allowing other users to provide recommendations can
add benefits to a service as well. Although humans have
been observed to be less accurate when predicting another
user’s interests [25], the social cues transmitted by a perso-
nal recommendation source create social presence and can
foster users’ trust in a system [6, 26]. Additionally, depicting
simple visual cues for trust-related attributes (e.g. expertise)
of a personal recommendation source can influence trusting
beliefs successfully [26].

Explaining Recommendations
Another approach to enhance trust in RS is to provide the
rationale behind a recommendation in the form of textual
explanations [10, 17, 46]. The literature on impact of expla-
nations is controversial, though. While explanations have
been shown to have potential for increasing transparency
[42, 46], this does not necessarily improve trust in RS [8]. Yet,
transparency can help users in their decision making [45]
and increase user satisfaction [12]. Overall, effects of expla-
nations seem very diverse and it can be hypothesized that
this is due to different types of explanation being utilized.
One of the most common types of explanations is based

on similarity between items or users and is fairly simplistic.
A well-established approach, for instance, brings the recom-
mended item into relation to those for which the user has

already expressed preference. Various methods for explai-
ning recommendations based on the computed similarity
between items or users have been proposed [e.g. 2, 17, 46].
Amazon’s approach of explaining recommendations based
on items that were bought together constitutes another well-
known example of similarity-based explanations. The effecti-
veness of such approaches remains questionable, though. In
experiments conducted by Berkovsky et al. similarity-based
RS failed to convey trusting beliefs properly [2]. Especially
competence and benevolence of a recommendation source
appear harder to assess based on similarity only. In line with
that, Bilgic and Mooney [3] found that users in conditions
with similarity-based explanations tend to overestimate the
quality of recommended items, which resulted in a decrease
in the perceived trustworthiness of the RS—probably due to
a lower perceived competence. Yet, such explanations can
result in desirable effects. Berkovsky et al. observed that
similarity-based explanations can successfully increase the
perceived transparency of recommendations.

However, other forms of explanations can unlock further
desirable qualities. For instance, explanations indicating a
high average rating of a recommendation resulted in a high
perceived benevolence [2]. In the same experiment, compe-
tence was rated higher for explanations that used awards
and revenue of the recommended items. Qualitative com-
ments underlined this by assigning the latter explanation
style with having the most knowledge about the item dom-
ain. In another experiment, explanations that made use of
content features showed potential to increase general user
satisfaction [3]. Finally, first steps have been taken for gene-
rating complex explanations based on natural language [5, 9].
Besides increasing the user satisfaction, such explanations
also showed potential to be perceived as more trustworthy.

In summary, explanatory complexity spreads a continuum,
ranging from rather shallow, similarity-based approaches to
complex explanations that leverage natural language. Rese-
arch so far gives evidence that trustworthiness of a recom-
mendation source increases along this continuum. However,
it remains underexplored which attributes of a recommenda-
tion source in particular are conveyed through such complex
explanations and how. Especially, investigations are missing
that shed light on how aspects such as the social presence of
a recommendation source, the perceived recommendation
quality and the trusting beliefs relate to each other.

3 METHOD
In order to investigate differences of personal and impersonal
recommendation sources and their explanation capabilities,
we conducted an online study with a between-subject de-
sign. Since we were also interested in trust dynamics over
time, we conducted the experiment with two measurements
over the course of two weeks. The general study setup, the



Preparatory Phase
• Questionnaire 1
• Rate 10 movies

Consuming Phase
• Receive recommendation
• Watch movie

Rating Phase
• Rate recommendation
• Rate explanation
• Questionnaire 2

2x

Recommending Phase

• Select movie to recommend
• Explain recommendation

Figure 1: Study phases of the used design. Note that the phase with the dashed line (recommending phase) only took place in
the personal condition. The phases inside the gray box were performed twice.

two conditions (personal and impersonal recommendation
source), the consecutive points of measurements, as well as
the tools used are described in detail below.

General Setup
As items to be recommended, we chose movies. The general
rationale behind this decision was that we wanted partici-
pants to be familiar with the domain. This is a crucial point
since participants had to be able to provide recommendati-
ons. A second benefit of the movie domain is the abundance
of well-established datasets for automatic RS, such as the Mo-
vielens 20M rating dataset1, which we utilized here. Since we
wanted participants to be able to watch recommended items,
possible recommendation candidates were restricted to those
available at Amazon Prime, resulting in 393 recommendation
candidates.
For the experiment we recruited 93 participants (55 fe-

male) with an average age of (M = 25.75, SD = 9.00) years.
Most participants were students (68 %) or employees (24 %).
A requirement for participating in the experiment was that
the candidates had an Amazon Prime account so that they
could actually consume recommended items. Consequently,
participants were used to online streaming providers, using
them on a daily (41 %) or weekly (31 %) basis. Participants
were randomly assigned to conditions, resulting in sample
sizes of N =49 for the personal and N =44 for the impersonal
condition.

In a preparation step, all participants—independent of the
assigned condition—were asked to rate 10 movies they alre-
ady knew on a 5-point rating scale in order to elicit prefe-
rences. Afterwards, they were asked to follow the scheduled
interaction cycle (see Figure 1) that was slightly varied bet-
ween conditions.

Impersonal Condition
We designed the system inspired by typical online RS: after
rating the items (see above), participants immediately recei-
ved a recommendation. Recommendations were generated
using the well-established technique of Matrix Factorization
1https://grouplens.org/datasets/movielens/20m/; the dataset comprises 20
million ratings for 27,000 movies by 138,000 users

[24]. Specifically, we used the Java implementation of the
ParallelSGDFactorizer made available by Apache Mahout2.
In tandem with the recommended item, a similarity-based
explanation for the recommendation was presented. Suppo-
sing that Fight Club was recommended and Pulp Fiction was
highly rated by the user, the explanation had the following
form:

Fight Club is recommended to you because it is
very similar to Pulp Fiction.

After receiving recommendation and explanation, partici-
pants were asked to watch the movie and subsequently rate
movie, recommendation and explanation on a 5-point rating
scale. Some days later, a new recommendation and explana-
tion was calculated and presented. Again, participants were
asked to watch the recommended movie and rate recommen-
dation, movie and explanation afterwards.

Personal Condition
Overall, the personal condition followed the study design
of the impersonal condition with one exception: All parti-
cipants were assigned a buddy3 and—in order to estimate
preferences—were presented with the buddy’s 10 rated mo-
vies. At the same interface, a searchable list of all 393 recom-
mendation candidates, being available at Amazon Prime, was
shown. Out of these candidates, participants should pick one
as recommendation and compose an explanation for why
they recommended it. This explanation was restricted to 255
characters in order to be comparable to the explanations
from the impersonal condition in terms of length.

Instruments
We set up a website in order to deliver automatic recommen-
dations to participants in the impersonal condition and to
connect participants in the personal condition to each other.
We used the same layout for both to control for confounding
stimuli.

2https://mahout.apache.org/
3In general this assignment was random but we controlled it for avoiding
reciprocal relations. Participants received recommendations from a different
person as they were providing recommendations to.



Several times over the course of the two weeks (see Fi-
gure 1), participants were asked to fill in questionnaires. After
the first login into the system and before preference elicita-
tion (i.e. Preparatory Phase), participants were asked to com-
plete the first questionnaire on general demographics. Ad-
ditionally, prior domain knowledge, the frequency of using
online streaming providers and general trust in technology
Knijnenburg et al. [21] were measured. Furthermore disposi-
tion to trust and institution-based trust [30, 31] were assessed.
All items were measured using a 7-point Likert scale.

The second questionnaire was presented after participants
had watched the first and second recommended movie re-
spectively (Rating Phase). We used items fromMcKnight et al.
[30, 31] to measure trusting beliefs and trusting intentions.
For measuring social presence we relied on items from Gefen
[13]. All items were assessed on a 7-point Likert scale. In
addition, participants were asked to rate recommendations
and explanations on a 5-point rating scale. We decided to
incorporate post- instead of pre-consumption assessments
because we assume participants can more resonably evalu-
ate recommendations and explanations after consuming the
item4 [29].

4 RESULTS
Descriptive results of our study can be found in Table 1.
They are split subject according to the experimental condition
and the point in time, i.e. measurement. In order to unravel
how social presence, explanation quality, and recommendation
quality relate to each other and how they affect trust in the
source of recommendation we hypothesized a structural
model (see Figure 2) that we will describe in the following.

Structural Equation Modeling
Based on the number of latent constructs and observed varia-
bles we estimated the lower-bound for the sample size. With
the probability level set to α = 0.05 and a desired statistical
power level of 0.8, the sample is required to be comprised
of 184 observations to, at least, detect medium effects (0.3)
[7, 48]. Since measurements of our experiment were taken
at two points in time, we had access to 186 observations5
in total for our analysis and are thus matching the required
threshold.

We were interested in identifying whether the interaction
led to differences in the assessment of trust subject to our

4We, nonetheless, tested for possible differences between pre- and post-
consumption and did not find any significant differences which is in line
with [29] for the movie domain.
5Due to combining observations from two points in time we cannot assume
mutual independence. Separate structural models for each point in time,
however, revealed effects identical to the combined model. Therefore, we
assume that the influence of dependence is neglegible.

1. Measurement 2. Measurement

Imp. Per. Imp. Per.

Variable M SD M SD M SD M SD

Trusting Beliefs 4.64 1.32 4.98 1.01 4.3 1.51 4.92 1.12
-Benevolence 4.45 1.48 5.0 1.18 4.2 1.6 4.88 1.21
-Integrity 4.53 1.53 5.1 1.11 4.27 1.55 5.08 1.15
-Competence 4.94 1.42 4.8 1.45 4.41 1.71 4.81 1.56
Trusting Intentions 4.43 1.29 4.39 1.18 4.12 1.41 4.41 1.2
-Willingness t. D. 4.56 1.44 4.27 1.47 4.14 1.59 4.36 1.6
-Follow Advice 4.75 1.54 4.71 1.48 4.28 1.58 4.65 1.5
-Give Information 3.99 1.43 4.18 1.34 3.95 1.65 4.23 1.36
Social Presence 2.38 1.43 3.8 1.67 2.39 1.5 3.73 1.61
Expl. Quality 3.23 1.25 3.76 1.12 2.84 1.33 3.88 1.18
Rec. Quality 3.91 1.21 3.67 1.18 3.51 1.33 3.92 1.08
Table 1:MeanValues and StandardDeviations for dependent
variables. All variables were assessed using a 7-point Likert
scale. Only explanation and recommendation quality were
elicited on 5-point rating scales.

experimental condition, i.e. a personal vs. impersonal recom-
mendation source. Condition was defined as an exogenous
categorical variable. We hypothesized the recommendation
source not only to have an impact on trust towards the source
itself (trusting beliefs) but also on the willingness to perform
trust-related behavior (trusting intentions). We further assu-
med that this effect was mediated by systematic differences
between the recommendations provided by the two sources,
e.g. the nature of the explanations. Since the interaction stret-
ched across two phases, we additionally considered whether
trust would change over time. Just like condition, point in
time was defined as an exogenous dummy variable. Structu-
ral equation modeling was applied to trace causal paths that
lead to the development of trust or a lack thereof. For this,
we utilized the R package lavaan, version 0.6-2 [39].

We conducted missing data analysis, outlier detection, a
test for normality, and the selection of an appropriate esti-
mator as preparation steps. Missing columns were observed
for two participants. Little’s MCAR test turned out to be
non-significant (χ 2 = 78.01, df = 64,p = 0.11). Therefore,
we can safely assume that the data was missing completely
at random and we were allowed to use maximum likelihood
parameter estimation. Outlier detection based on Cook’s
distance revealed three rows to be outliers which were sub-
sequently dropped leaving us with a final sample size of 184.
Shapiro’s test for normality indicated that several variables
of interest significantly deviated from normal distributions.
As a result, we conducted the analysis with an estimator that
allows for robust standard errors and scaled test statistics.
Together with the requirement to handle missing data, we
settled with the MLR estimator [11].
Since we found no evidence that point in time had an

influence on any constructs of interest, we decided to omit
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Figure 2: Structural Equation Model comparing the influence of an algorithmic recommendation source with a human. Mani-
fest (observed) variables are depicted as rectangles and latent (unobserved) constructs as ellipses. To prevent overloading the
graph, the observed questionnaire items corresponding to latent variables are omitted. The edges show standardized parameter
weights and the amount of explained variance for endogenous variables is displayed inside the nodes.

it. The remainder of our hypothesized model appears to be
a good fit for the data (CFI = .970, TLI = 0.963, RMSEA =
0.052). For the sake of clarity, we will report significant direct
effects successively from left to right. Along these paths we
will trace back mediated influences from condition on the
endogenous variables.

Direct Effects & Mediation via Explanation Quality. The posi-
tive direct effect from condition onto explanation quality (see
Figure 2) suggests that the explanations formulated by hu-
man buddies attain higher quality than the generic similarity-
based ones. Explanation quality acts as a mediator between
condition and recommendation quality as well as between
condition and social presence.

While condition has a negative direct effect on recommen-
dation quality, suggesting that human buddies provide re-
commendations of lower quality, the mediation [condition
→ explanation quality → recommendation quality] yields
a competing impact of .44 (p < .001). Hence, although re-
commended movies from a personal source are perceived as
worse if examined in isolation, this effect is antagonized by
the significant positive influence exhibited by the explanati-
ons provided. When put together, both effects cancel each
other resulting in a total effect of 0.02 (p = .919).

Concerning social presence, the direct aswell as the indirect
effect [condition → explanation quality → social presence]

(standardized coefficient = 0.12, p = 0.03) assume positive
polarity. The combined total effect is 0.9 (p < .001) indicating
that having a personal recommendation source is related to
higher levels of social presence.

Direct & Indirect Effects on Trusting Beliefs. We can observe
four direct effects on competence: The negative impact from
condition suggests that, per se, the human buddy is perceived
as less competent. The remaining three effects from recom-
mendation quality, explanation quality, and social presence
are all positive with, according to its parameter weight, re-
commendation quality having the strongest influence.
Both recommendation quality and social presence thereby

become mediators themselves carrying some of the explana-
tory power of condition and explanation quality. For instance,
the path [condition→ social presence → competence] yields
an indirect effect of 0.21 (p < .001). Please note that we
now also have to consider paths with two mediators such as
[condition → explanation quality → recommendation quality
→ competence] with an effect of 0.21 (p = .001). Combining
all these effects leads to a non-significant total effect of .11
(p = .475) from condition on competence.

There exist similar causal patterns for benevolence except
for the insignificant direct effect from condition. As a result,
all explanatory power can be distributed to the mediators.
The total effect of 0.453 (p = .002) tells us that personal



recommenders cause participants to develop higher levels of
benevolence via better explanations and increased social pre-
sence despite the negative impact of lower recommendation
quality.
The strongly positive total effect from condition on inte-

grity with 0.51 (p < .001) suggests that personal recommen-
ders appear more honest and genuine than their automated
counterparts. Again, we cannot identify a significant direct
influence from condition such that all causal effects can be
explained by means of mediators. While the indirect paths
via explanation quality and social presence depict similar pat-
terns as the ones discussed for competence previously, the
effect from recommendation quality turned out to be non-
significant.

Direct & Indirect Effects on Trusting Intentions. The causal
influence on willingness to depend can exclusively be reduced
to competence as it is the only significant predictor. Therefore,
it is sufficient to only analyze the paths to that point as
the implications are equivalent. By combining the previous
non-significant effect from condition on competence with the
direct impact from the latter, we obtain a total effect of 0.26
(p = 0.161).

Since competence is also an influencing factor for follow
advice, the same relationships as for willingness to depend
are of importance again. Additionally to the effects via the
route [condition → (mediators) → competence], there is a
significant direct influence from social presence of 0.39 (p <
.001) this time. Elevated social presence therefore leads to a
greater tendency to follow the recommender’s advice. Put
together, the total effect is 0.41 (p = .028).
Give information is completely independent of any paths

that tackle recommendations or even the recommendation
source. Exclusively by an increased social presence is it possi-
ble to predict a higher probability of a person sharing infor-
mation (standardized coefficient = 0.39, p = .005).

Counterfactual Analysis
The structural model described in the previous section has al-
ready provided some insights into causal effects exhibited by
the exogenous exposure variable condition. By decomposing
its total effect into direct and indirect parts, we have expo-
sed explanation quality as the pivotal discriminating factor
between personal and impersonal recommendation sources.
Due to the generic nature of the explanations generated by
the RS, its trustworthiness and recommendation quality as
well as perceived social presence were obviously confined.

On the basis of these findings, we can now hypothesize
that RS performance is likely to be substantially improved
if better explanations could be provided. The counterfac-
tual mediation framework allows us to investigate questions
about such hypothetical situations with outcomes we cannot

observe in reality. Specifically, counterfactual analysis lets
us express the potential change induced by the condition
when keeping explanation quality fixed at the value that had
naturally been observed. In other words, we can estimate the
degree to which, for instance, recommendation quality would
change if the RS was capable of generating explanations of
the same quality as humans.

We can achieve this in terms of composite or nested coun-
terfactuals. Let Yi (x ,M(x)) be the outcome for individual
i when exposed to condition x under consideration of the
mediator’sM influence. For binary exposures, the composite
counterfactual is then the outcome for condition x subject to
the intermediate outcome for the alternate exposure level x∗,
i.e.M(x∗). Generalizing to population level is done by taking
the expected value which yields the mediation formula [35]:

E{Y (x ,M(x∗))} =
∑
m

E(Y (x ,m))Pr(m |x∗,C), (1)

where C is a set of confounding variables. Since we are inte-
rested in the expected improvement over actually observed
values for the mediator, E{Y (x ,M(x))}, we need to calculate
the unit effect UE ofM on Y given X :

UE = E{Y (x ,M(x∗))} − E{Y (x ,M(x))} (2)

We calculated a mediation model with the outcome set
to recommendation quality in order to emphasize the im-
portance of explanations to support the main goal of RS,
i.e. generating good recommendations. Therefore we set
Y = recommendation quality,M = explanations quality,X =
condition. Based on the results of the structural model and
further investigations, no confounding variables could be
identified. The resulting unit effect is:

UE(recommendation quality) = 4.11 − 3.63 = 0.48 (3)

Altering condition from personal to impersonal while main-
taining explanation quality therefore increases the expected
assessment of recommendation quality from 3.63 to 4.11
which corresponds to an improvement of 13 %.

Qualitative Analysis of Explanations
In order to get a better understanding of how participants
composed explanations, we provide some examples (see
Table 2). Examining those examples more closely shows
that explanations vary from very sophisticated statements
(e.g. p294) to shallow comments (e.g. p273). Some also use
similarities (e.g. p435) or express uncertainty (e.g. p369). Ot-
hers address general quality of the recommended movie
(e.g. p414) or try to be convincing and flattering (e.g. p427).
Overall, generated explanations used a similarity relation
to the rated movies of the recommendation receiver in 37 %.



Participant Sample Explanations
p269 “Based on the rated movies of the buddy I don’t know what he likes or dislikes. Hence i chose an entertaining over the top action movie, that is

diverting for the short time of the movie.”
p270 “I chose the film because I saw it myself and was excited about it. My buddy and I seem to have a similar taste. Besides I wanted to pick a movie

in the genre of fantasy/science fiction, based on the rated movies of the buddy.”
p273 “Fantasy movie, action”
p294 “A classic and atmospheric story, where a noble-minded hero fights an epic battle against the evil (as in most of my buddy’s highly rated

movies).”
p307 “Once is a low budget movie, that has a lot to offer musically. My buddy seems to like films that are emotional and do have melancholic

soundtracks. Therefore i chose this nonfamous movie.”
p369 “I find it difficult to find a matching movie since the genres of your rated movies are quite different. In addition I do not know most of them. I

recommend Disturbia as it mixes action and thriller elements and hope that matches your taste. :)”
p414 “A thrilling movie with a tangled plot of hunter and hunted, awesome cast and a whole lot of action.”
p421 “I think you don’t like romantic comedy or extreme horror movies. As a result I picked this movie. It contains action not too much and a good

story that concludes with the movie. Have fun!”
p427 “Memonto is very thrilling to watch and contains a whole bunch of light bulb moments. I think this movie is very sophisticated and nothing for

bores—thus the perfect movie for guys who like profound stories, like you ;)”
p435 “Since my Buddy rated Forrest Gump highly, I guess he/she will like this touching movie with Tom Hanks as well.”
p445 “Because it’s a good movie”

Table 2: Some of the explanations created by participants in our experiment (carefully translated to English).

Taking into consideration the language style, 16 % of explana-
tions addressed the buddy directly, 44 % used the third person
and 38% were formulated in a neutral manner. Smileys or
other kinds of emoticons were only used scarcely (in 10 % of
the explanations). 18 % of the explanations expressed a high
certainty regarding the recommended movie, whereas in 4 %
of cases it was explicitly stated that the participants were
not sure about the recommendation. On average participants
used M=23.23 (SD=10, 71) words for their explanations6.

Explorative Inspection of Temporal Effects
Although the structural model revealed no significant dif-
ferences for the point in time, we were still interested in
explorative investigation. Overall, the reported values in
Table 1 are homogeneous within conditions. This is under-
lined by statistical comparisons: When comparing results
between points of measurements, there were no significant
differences—neither in assessed quality of recommendati-
ons and explanations nor regarding trust in the source of
recommendation. Only for the impersonal condition, sta-
tistical significant differences are found. Concretely, with
(t(43)=1.989, p= .053) trusting beliefs were higher at the first
point of measurement. This is also true for its subconstruct
competence (t(43) = 1, 973, p = .055). Although values for
benevolence and integrity seem to decrease slightly over time,
this was not significant. Similar observations can be found
regarding trusting intentions. Within the impersonal condi-
tion, we also found a marginal significant difference here
(t(43)=1, 984, p= .054). Again, the values at the first point
of measurement were slightly higher. This also holds for the
subconstruct follow advice (t(43) = 2.126, p = .039). Values
of willingness to depend were not significant, but seem to

6Explanations were restricted to a maximum of 250 characters.

slightly decrease, whereas the intention to give information
nearly remains stable over time.

Summary of Findings
The main focus of the statistical analysis presented was the
investigation of causal paths along a structural model (Fi-
gure 2) that lead from the effects of our experimental con-
dition to trust-related constructs. Our results suggest that
the higher-quality explanations provided by participants had
an overall positive effect on their buddies’ trusting beliefs
and trusting intentions, despite the lower recommendation
quality. We discuss the implications of our findings in the
next section.

5 DISCUSSION
Close inspection of the relations discussed in the previous
section hint at a pivotal role of explanation quality. Recom-
mendation quality, social presence and the trusting beliefs
competence, benevolence and integrity were all significantly
and directly affected by the quality of explanations.

Recommendation and ExplanationQuality
By distinguishing between direct and indirect influences, we
were able to detect systematic effects that would otherwise
have been obstructed. Concretely, no differences could be
found descriptively between the two conditions for percei-
ved recommendation quality (see Section 4). However, by
taking into account the mediating function of explanations,
a negative direct effect became evident. That is, if we look at
the chosen items in isolation and control for any influence
explanations might have, human recommendations were less
likely to conform to the receiver’s preferences. This finding
is in line with previous research[25]: Humans tend to listen



to their “gut feelings” and rely on vague emphatic estimati-
ons, whereas the RS, due to its statistical nature, has access
to a vast factual basis from which to derive its decision.

However, the parameter weights on the indirect path [con-
dition → explanation quality → recommendation quality]
cause the total effect to become insignificant. Our deducti-
ons are twofold: First, a good explanation can, at least to
a certain degree, make up for a poor recommendation. Se-
cond, humans compose explanations of significantly superior
quality7.
We originally solicited movie quality besides recommen-

dation quality but discarded it. While in some cases there
surely is a difference (imagine recommending a movie the
user already knows and likes: even though the item is liked,
the recommendation would not be considered very helpful),
it seems that participants in our experiment could not draw a
mental line between these concepts. When replacing recom-
mendation quality with movie rating inside the SEM, effects
stay identical. This should not be the case had the movie been
rated solely on watching experience. Especially explanation
quality would not have influenced subjective movie quality.
People dislike the explanations generated by the RS be-

cause they are, in essence, a verbalization of the similarity
relation between a previously rated movie and the recom-
mendation. Without any further context given, they appear
arbitrary to users. In our experiment the RS did not disclose
its decision criteria, thus making it difficult for participants
to understand the foundation for the similarity estimation.
Moreover, the system did not explain why a particular rated
item was chosen as the basis for an explanation and not any
other.
On the other hand, humans conveyed their explanations

in an argumentative manner that resembles very closely the
process of how people exchange information in reality. Over-
all, they gave more nuanced explanations by justifying their
choice and contextualizing the recommendation with respect
to a plurality of dimensions. Interestingly, they often also
used similarity to rated movies, revealing that this style is
per se suitable for explanation purpose. Yet, humans often
combined several explanation styles, e.g. by summarizing
content commonalities in rated movies and bring them into
similarity-context with the recommendation (e.g. see p307 of
Table 2). We thus believe that combinations of different ex-
planation styles lead to explanations with a higher perceived
value, which is backed up by prior findings [5].

RS in general should be equipped with more sophisticated
means of explaining their decisions. Counterfactual inference
give us concrete hints about the effect size we can expect:

7Please note that the R2 value in explanation quality is rather low at 13%.
We account this to the fact that our binary exposure variable obviously
cannot explain variance that occurs within conditions but only between.

While maintaining the same algorithmic accuracy and only
by adopting to a human-like rather than a similarity-based
explanation style, the quality of recommendations would be
improved, on average, by around 0.5 points on the rating
scale. Expected improvements over RS that do not provide
any explanations at all—which are still very common—would
be even greater.

Trusting Beliefs and Trusting Intentions
Beyond improving the quality of recommendations, our ex-
periment shows that good explanations can also increase the
trust in their authors as expressed by the significant effects
on all subconstructs of trusting beliefs. It is safe to assume
that individuals who can articulate profoundly how they
chose a movie as recommendation, e.g. by contextualizing
their choice, will be considered competent advisors. Moreo-
ver, integrating direct speech and other subtleties of human
language into the explanation text may trigger associations
of benevolence and integrity. These competences, which hu-
mans learn naturally through socialization, are typically not
reflected in RS explanations. Lower values in explanation
quality and therefore trustworthiness are possible conse-
quences. This assumption is underlined, although not with
statistical significance, by the fact that we observed dimi-
nishing trust over time in the RS that was not traceable for
humans. After a high initial trust, which is not uncommon
when establishing new relations [31], users were supposedly
disappointed by the explanatory capabilities of the system.
The resulting asymmetry of information and unfulfilled ex-
pectations probably led to the observed decrease in trust.
As a consequence of these factors, we suggest developing
systems for incorporating explanatory components in a man-
ner that resembles more closely the way in which humans
exchange information.
Apart from that, we found some interesting relations re-

garding the subconstructs of trusting beliefs that we shortly
want to discuss: First, there was a direct (negative) effect from
condition on competence. That is, a priori RS are perceived
as more competent, likely because of a dispositional attitude
people seem to have. Second, although the total effect from
condition on benevolence indicates that humans are assessed
as being more benevolent than a machine, it is still surprising
that we could not identify a predisposition—expressed by a
significant direct effect—in favor of humans that transcends
the indirect influences. Third, recommendation quality seems
to have no effect on integrity. This can easily be explained
against the background that assessing someone as upright is
rarely connected with the perception of how good they are
at a particular task.

The prediction of trusting intentions—and thus trust-related
behavior—on the basis of the degree of trust into a source
of recommendations is, in contrast to prior research [e.g.



30], only possible via competence. We assume that benevo-
lence and integrity were not conveyed sufficiently in our
experimental setup. Moreover, the movie domain may not
create the necessity of such traits in order to follow an ad-
vice. Thus, we believe that with more information about the
recommendation source available, further communication
possibilities, and an item domain in which such traits are
more important (e.g. real estate business), benevolence and
integrity would become more influential. Interestingly, the
effect on trusting intentions outgoing from social presence
does not get completely mediated through trusting beliefs.
Social presence directly influences the tendencies to follow
advice and to give information. Certain undetected social
cues seem to have been present during interaction, distinct
from the recommendation source, that facilitate such social
behavior.
Social presence itself is partially affected by explanation

quality. We can observe at least a small effect that indica-
tes that better explanations increase social awareness. The
major portion of explained variance, however, originates in
the differences between the two conditions. The knowledge
about whether the interlocutor is human or not significantly
influences one’s perception of being in a social situation. This
effect seems also to occur through the restricted information
channel determined by the recommendation platform which
corresponds to prior research [6, 26]. One important factor
for the observed perceived social presence is probably also
the conceptualization of the user study as a reciprocal act
between humans. Users in the human condition were not
only receivers of recommendations but also producers. This
will likely lead to elevated feelings of social exchange and
probably also to situational sympathies.

Finally, there are some limitations to our study to consider.
We are aware of possible biases in our sample since a requi-
rement for taking part in our study was to have a streaming
account. For this reason, we believe that participants were
somewhat technically skilled and probably less picky about
recommendations and their explanations. Additionally, only
a single itemwas recommended for each point in time, which
is not a typical RS situation. This decision was made because
we wanted to isolate the situation from as many stimuli as
possible. If more than one recommendation would have been
shown, other aspects, such as diversity, may have influen-
ced perceived quality of recommendations. However, since
this was the case in both conditions, possible biases (e.g. on
perceived recommendation quality) can be neglected.

6 CONCLUSIONS AND FUTUREWORK
We have provided a detailed analysis of the causal effects
that determine the outcome of trust in personal vs. imper-
sonal recommendation sources. We laid particular focus on
exposing systematic effects that can be causally ascribed

to the fundamental differences between personally compo-
sed and automatically generated explanations. Structural
equation modeling offered us the tools to uncover subtle
cause-effect relationships. By tracing back indirect influen-
ces over elongated paths we could identify the relative impact
of recommendation quality, social presence, and especially ex-
planation quality on trust. Thereby, our structural model
provides an indication of general mechanisms relevant for
generating good recommendations that could not have been
derived with correlative studies. Counterfactuals helped us
answer questions about hypothetical situations in which RS
are able to generate human-like explanations. Unit effect
values indicate that being capable of doing so will likely turn
out to have a significant impact on the perceived quality of
recommendations. The impersonal nature of automated RS
can, at least to some degree, be overcome by approaching an
explanation style that humans tend to employ in everyday
interaction.

On the basis of these results, we conclude that the positive
impact of adequate explanations is considerably underesti-
mated and receives too little attention in research and—even
more decisively—in industry. If we look at contemporary
explanations on online platforms, they are, if anything, a
subordinate component, be it in Netflix, Spotify or YouTube.
We argue for a more prominent role of explanations in RS—
especially due to the mediating effects of explanation quality:
While automated RS seem to generate recommendations of
superior quality, this benefit is countered by the quality of
human explanations to the degree of complete equalization.
In other words, the tremendous accuracy of recommending
algorithms, emerging from decades of research in that area,
remains next to meritless, when RS fail to convey rationales
behind their recommendations.
Finally, considering the trend of incorporating more and

more natural language into human–computer interaction
(e.g. personal voice agents such as Siri or Amazon’s Echo),
in future work we will aim at analyzing human-generated
explanations in more detail to derive insights into features
used and their impact on trust. We also plan to utilize more
sophisticated explanations in our experimental setting and
intend to take conversational explanation patterns into con-
sideration, enabling RS to answer on specific questions about
recommendations.
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ABSTRACT
While conventional Recommender Systems perform well in
automatically generating personalized suggestions, it is often
difficult for users to understand why certain items are recom-
mended and which parts of the item space are covered by the
recommendations. Also, the available means to influence the
process of generating results are usually very limited. To alle-
viate these problems, we suggest a 3D map-based visualization
of the entire item space in which we position and present sam-
ple items along with recommendations. The map is produced
by mapping latent factors obtained from Collaborative Filter-
ing data onto a 2D surface through Multidimensional Scaling.
Then, areas that contain items relevant with respect to the
current user’s preferences are shown as elevations on the map,
areas of low interest as valleys. In addition to the presentation
of his or her preferences, the user may interactively manip-
ulate the underlying profile by raising or lowering parts of
the landscape, also at cold-start. Each change may lead to an
immediate update of the recommendations. Using a demon-
strator, we conducted a user study that, among others, yielded
promising results regarding the usefulness of our approach.
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INTRODUCTION
Recommender Systems (RS) have become a widely adopted
means to tackle the problem of information overload users
are often confronted with, for instance, on e-commerce web-
sites, in social networks, on hotel booking portals or in online
movie stores [52]. To present users with items that meet their
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interests, different approaches have emerged. Collaborative
Filtering (CF), the overall most popular recommendation tech-
nique, solely relies on user feedback elicited by asking users
explicitly to rate items or by implicitly tracking their inter-
action with the systems [26, 36]. Matrix Factorization (MF)
represents the most common model-based CF approach, which
generally performs best in terms of objective accuracy while
being highly efficient [37]. By statistically analyzing existing
rating data, latent factors are inferred which in the following
can be used to predict a user’s ratings for yet unseen items.

For a long time, RS research has solely been focused on issues
related to such algorithms, in particular their accuracy and per-
formance. Only recently, it became more and more accepted
that user-oriented aspects such as system transparency or the
degree of control users are able to exert over the recommenda-
tion process considerably contribute to actual user satisfaction
[66, 35, 51, 32]. For instance, users may be reluctant to ac-
cept recommendations because they do not understand why
certain items are recommended [60], which consequently re-
duces the system’s trustworthiness [66, 51]. The widely used
presentation of results in form of ranked lists is not very sup-
portive in this regard, since they usually convey only little
information about the recommender’s internal rationale [45,
28]. Several approaches exist to increase transparency, e.g.
through explanations [24, 63, 60]. However, this typically
requires additional content data and is particularly difficult
when using model-based CF [37, 13]. Moreover, when pre-
senting just top-n recommendations, users are unable to get
an overview of the naturally large item space and cannot ad-
equately assess item coverage, i.e. how shown items relate
to remaining non-recommended ones. Becoming aware of
alternatives and different, possible diverse areas of potential
interest is thus rather difficult [46], and increases the risk of
users being trapped in “filter bubbles” [47]. In addition, it
often remains unclear how expressed preferences actually cor-
respond to the system’s representation of the user, i.e. the user
model, and how manipulating the preference profile, e.g. by
providing further ratings, affects the results.

From an algorithmic perspective, it becomes increasingly dif-
ficult to further improve how recommendations are tailored
towards the user’s actual needs. By providing a higher degree
of control over the recommendation process, interactive RS
aim at alleviating this problem in various ways [40, 21]. How-
ever, in today’s RS, results are mostly adapted automatically
based on implicit feedback, e.g. viewing or buying actions. To
actively influence recommendations, the user’s only means is
usually to rate single items, either at cold-start or later in the
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process. The implicit way to elicit preferences is again prone
to be intransparent while the explicit rating of items requires
considerable effort on part of the user before receiving fitting
recommendations [19, 58, 11]. In addition, ratings tend to be
inaccurate [3] and users are shown to often prefer other means
than ratings. For instance, comparing items [42] or stating in-
terests on a rather coarse level by selecting and weighting tags
[12] can be of benefit—especially for users entering a system
[58]. When no or only little information is available for a new
user, conventional CF suffers from the well-known cold-start
problem, and thus cannot generate accurate results due to lack
of data. This may also be the case when a user does not want a
profile representing his or her preferences to be persisted, e.g.
due to privacy concerns. Even with an existing profile, it can
be difficult to recommend items matching the current user’s
situation since profiles usually describe long-term interests
and do not necessarily need to belong to the same person, e.g.
when shared between family members.

In this paper1, we consequently propose an interactive recom-
mending approach, thereby seeking to answer the following
research questions:

RQ1: How can the item space in CF be visualized and sam-
pled in a comprehensible manner?

RQ2: How can areas of preferred items be effectively high-
lighted within this visualization?

RQ3: How can this visualization be used to allow the user to
interactively manipulate his or her preference profile, also
in cold-start situations?

First, to visualize the item space, we apply model-based CF
due to its proven precision and efficiency. In particular, we
use a standard MF algorithm, but map the resulting high-
dimensional latent factor model onto a two-dimensional sur-
face in which all items are positioned with respect to their
similarities. For this purpose, we use Multidimensional Scal-
ing (MDS) [6, 28]. By displaying popular and representative
sample items, we are then able to provide the user with a
comprehensible presentation of the item space only by means
of ordinary rating data, i.e. without requiring any other item-
related content. Second, we extend the resulting map to also
show the preferences of the current user. To reveal areas of
interest, and in particular to highlight the items automatically
recommended by the system and how they relate to the typi-
cally very large rest of the item space, we additionally exploit
the third dimension. Therefore, we use the MF predictions
for the current user and all items in order to form a landscape
where elevations represent areas with high estimated ratings
while valleys indicate lower relevance. Finally, this 3D visu-
alization of item space and user preferences allows us to let
the user influence the underlying profile that serves to gen-
erate recommendations. The user can alter the landscape by
creating or reshaping hills and valleys, and thus establish a
preference profile in cold-start situations or manipulate an
existing one. All changes may immediately be reflected in

1This paper is a translated and extended version of our previous work
published in German [38]. We now describe the method in more
detail, present a more developed version of our demonstration system,
and report further results from the user study.

the recommendations. Since preferences are expressed with
respect to entire item regions rather than individual items, this
reduces interaction effort and is independent of knowing and
rating particular items, which is especially of value when the
search goal is vague or the domain unknown.

The remainder of this paper is organized as follows: First, we
discuss work related to visualizations in RS as well as interac-
tive recommending approaches. Next, we describe our method
and a prototype system we implemented to demonstrate our
approach. Then, we present a user study we conducted to eval-
uate our method. Finally, we conclude by discussing results
and providing an outlook on future work.

VISUALIZATIONS IN RECOMMENDER SYSTEMS RE-
SEARCH AND INTERACTIVE APPROACHES
Increasing the transparency of RS is known to, among others,
improve perceived recommendation quality, leading to higher
acceptance and more trust in the systems [66, 51, 60]. How-
ever, today’s automated recommenders often hinder users to
understand how a system generates recommendations and why
it recommends certain items [57, 60]. One popular approach
to alleviate this problem is to display textual explanations for
recommended items [63, 60]. Thus, depending on recom-
mendation algorithm as well as type and amount of available
information, recommendations can be explained in several
ways. For instance, one can use item attributes and match
them with user preferences [63], albeit this requires availabil-
ity of content data. Social explanations have been shown to
be particularly promising in terms of persuasiveness, but are
less informative than other variants [55]. When using CF, a
very prominent yet simple example is the one of explaining
item-based methods, e.g. used by Amazon (“Customers who
bought this item also bought. . . ”). Nevertheless, while there
exist many early attempts to explain the output of CF algo-
rithms in general [24], especially for model-based approaches
such as MF it is still very hard to improve their transparency
through explanations [37]. Exceptions such as [13] usually
also require additional content information.

Apart from textual explanations, the range of attempts to in-
crease transparency of RS also includes use of visualizations.
Rather simple auxiliary graphics depict, for instance, which
criteria selected by a user could be fulfilled [41] or which
algorithm was responsible for a recommendation in a hybrid
setting [49]. But, also more complex visualizations such as
flow charts [27], Venn diagrams [49] or even graph-based rep-
resentations [62] have already been discussed. On a different
level, other approaches visualize the user model in order to im-
prove the system’s general transparency and the user’s under-
standing of how his or her preferences are represented within
the system. Leveraging Information Visualization techniques
[30, 23], successful examples comprise focus-and-context lists
[61], radial displays [4] or icon-based avatars [5].

Particularly in Information Retrieval, a considerable number
of methods exist for visualizing large datasets such as doc-
ument collections [22, 1]. Map visualizations, for example,
have been shown to be a promising means for facilitating
browsing and searching in large collections. Adopted in RS
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research, maps may also be useful for visualizing the space of
available items as well as the user model [44, 65, 17], possibly
making the recommendation process more transparent as well
as increasing user engagement when interacting with the RS
[17, 15]. Assuming a user’s preference profile is represented
by some high-dimensional vector, it can be projected onto a
2D representation of the item space as a geographical point
where items that receive a high predicted rating appear close
to this point [31, 15, 44]. Thus, the relation between how the
user is modeled and which items are recommended becomes
intuitively understandable [31]. However, this kind of maps
highly depends on the particular user: They cannot be gen-
erated without sufficient information about that user, e.g. at
cold-start, and items are arranged differently for each user.
Moreover, these approaches usually require a version of the
underlying algorithm where the rating prediction is specially
geared to create such maps, e.g. by using Euclidean MF [31,
44]. The map visualization of TVLand [17], in contrast, is in-
dependent of a particular user and his or her estimated ratings.
Here, similarities between items are used to create a global
representation of the item space. Nonetheless, areas of interest
that include the recommendations can still be highlighted by
color, similar to a heat map. Consequently, users can see how
their preferences expressed through ratings result in the areas
and items the system actually suggests. In addition, users are
better able to grasp how recommended items are positioned
within the rest of the typically large item space, thus allowing
them to keep an overview and to become aware of possible
alternatives. In conventional RS, this is often difficult due to
their use of lists to present recommendations.

Approaches that visualize only a part of the item space, for
instance, the region close to the user’s position containing the
recommended items (as in [31, 44]), may also be prone to
this problem. To mitigate the risk of users thus being stuck
in a “filter bubble” [47], some visualizations specifically aim
at presenting diverse recommendations [48, 65]. Only few
exceptions such as the aforementioned TVLand [17] visualize
the item space as a whole, and at the same time also indicate
areas of potential interest. Overall, effectively supporting
users through visualizations in RS is still an under-explored
field of research, mostly limited to the purpose of explaining
recommendations or supporting item space exploration. In
addition, possibilities to interact with the visualizations almost
never go beyond the means provided in conventional RS.

In CF, preferences are usually elicited via implicit or explicit
feedback [26]. However, providing explicit feedback, typi-
cally by rating single items, is a tedious task for users that
is often decoupled from the actual recommendation process.
At the same time it constitutes a very limited means for ex-
pressing actual user needs. Thus, this kind of feedback is
rather sparsely available [26]. Users who enter a system for
the first time have to rate a certain number of items before a
CF algorithm can provide them with proper results [11]. To
counter this, efforts have been made to keep the number of
items to be rated as small as possible [43], to reward users
for every rating provided [16], or to seek for alternatives, e.g.
comparing items instead of rating them [42]. Also, algorithmic
solutions have been suggested with the goal of asking users to

rate only the most informative items, e.g. via active learning
[14]. However, expressing initial preferences as well as alter-
ing an existing profile is nearly impossible in a controlled and
transparent manner when the user’s only way to influence the
recommendation process is to (re-)rate single items.

Therefore, interactive recommending approaches have been
proposed that increase user control over the recommendation
process. It has been well established that users are generally
more satisfied when they can actively influence their search,
although this may come along with higher interaction effort
and cognitive load [34]. Besides, it has been shown that inte-
grating RS with more interactivity improves, among others,
transparency and perceived recommendation quality, which
is more decisive than objective accuracy [66, 35, 51, 32]. In-
creased interactivity may be realized by using other preference
elicitation methods than ratings and by eliciting preferences
in an ad-hoc fashion, allowing users to immediately observe
how their changes affect the results [18, 64, 42, 12]. A greater
extent of control seems also beneficial for exploring large item
spaces, especially when the search goal is vague [42], and for
adapting recommendations towards situational needs. Further,
interactive RS may help to alleviate the cold-start problem,
and to support users in circumstances where they do not want
a persistent profile to be applied, e.g. due to privacy concerns
or because it belongs to a different person [64, 7, 42, 12].

Early examples for interactive RS are dialog-based and
critique-based approaches. The latter allow users to criticize
recommendations based on predefined item metadata [9]. This
avoids the problem that users have to formulate their search
goal up-front as it is necessary in dialog-based systems. De-
velopments such as MovieTuner [64] build on this principle,
but rely solely on user-generated content, in particular tags
that can be weighted by the user to change the current result
set. Other examples of interactive RS comprise SmallWorlds
[18], TasteWeights [7], SetFusion [49] or MyMovieMixer [41].
These approaches to provide users with more control over
the recommendations use manipulable graphs for influencing
the underlying CF algorithms [18], interfaces for weighting
the different datasources and algorithms in hybrid settings [7,
49], or faceted filtering blended with automated recommen-
dation methods [41]. They all have shown to improve user
engagement and overall satisfaction.

To allow users controlling the recommendation process at a
more coarse-grained level than providing ratings for single
items, these interactive approaches use, for example, tags [64,
12], automatically selected content attributes [7] or predefined
item facets [41]. Preference elicitation thus becomes detached
from actual items, which indeed has several advantages, but
may also result in difficulties. It requires availability of ade-
quate background data and highly depends on the possibility
to categorize items among certain dimensions that actually
matter to users. Also, mentally establishing a search goal
so that preferences can be expressed with respect to specific
item features may be non-trivial for users with little domain
knowledge or in the beginning of a search task [25]. Only few
approaches such as the one proposed in [65] allow users to
define areas of interest directly inside the item space. This,
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however, seems to be a promising and natural way of express-
ing preferences without having to articulate them explicitly,
and without the need to know and rate particular items.

Although several approaches use some kind of visualization,
primarily to disclose the reasons for items to be suggested
(e.g. [7, 49, 41]), they are typically independent of the more
complex, especially map-based visualizations mentioned be-
fore. It thus seems promising to visualize the item space of CF
recommenders together with user preferences in an integrated
fashion by means of a map. This also opens the possibility of
increasing user control, and, in particular, of letting users in-
teractively specify their current interests with respect to entire
item regions. In sum, an interactive landscape based on item
space and user preferences has the potential of facilitating the
establishment and manipulation of user profiles.

3D ITEM SPACE VISUALIZATION TO PRESENT AND MA-
NIPULATE USER PREFERENCES IN CF
We propose a method that visualizes the item space together
with user preferences as estimated by a model-based CF algo-
rithm, as well as resulting recommendations. The underlying
preference profile used to generate recommendations can be
interactively set up by the user in cold-start situations and
further manipulated in case such a profile already exists. With
respect to the research questions posed at the beginning of this
paper, the process which is also described in Figure 1 can be
divided into the following main steps:

1. Visualize the entire item space as a 2D map and automati-
cally select item samples to be displayed as representatives
for the different regions.

2. Present the current user’s preferences so that hills indicate
areas of high interest, valleys areas of low interest, resulting
in a 3D landscape.

3. Allow users to interactively change the elevation profile,
this way manipulating the underlying model used to gener-
ate landscape as well as recommendations.

In the following, we will describe these steps in more detail.

RQ1: Visualizing and Sampling the Item Space
In order to visualize the item space, we solely rely on common
user feedback as is typically used as background data in CF. By
using rating data provided by all users, this step is independent
of data availability for the current user. Nevertheless, one
issue arising when using ratings to plot such a representation
is data sparsity, since users typically rate only a small number
of items out of the entire item set. Hence, it may be difficult
to adequately calculate similarities between items, which is a
prerequisite for many algorithms that map high-dimensional
data onto low-dimensional spaces. However, it should be noted
that although we use explicit ratings, our approach could in
principle also be applied to implicit data, which is usually
more dense. In either case, handling the large amount of data
could lead to decreased efficiency of mapping algorithms. In
addition, semantics inherent in these data may only hardly be
exploited, potentially tempering quality of the item positioning,
thus hindering users to understand the resulting map.

For these reasons, we introduce an intermediate step before
plotting items on a 2D surface. In fact, we use a more abstract
representation of items by exploiting their description through
latent factors as derived by a standard MF algorithm (Figure
1, 1a), which has already been shown to be successful for
“putting recommendations on a map” [17].

When using MF, the user-item-matrix R∈R|U |×|I| that contains
the raw rating data for all users u ∈ U and items i ∈ I, is
decomposed into two low-rank matrices, namely P ∈ R|U |×| f |
and Q ∈ R|I|×| f |, where f represents a predefined number of
factors2. These matrices approximate the original user-item-
matrix such that calculating the inner product of a user’s factor
vector ~pu of P and an item factor vector ~qi of Q returns the
predicted rating r̂ui for user u and item i. Estimating a user’s
ratings for all items is consequently done as follows:

r̂u = ~puQT (1)

By relying on a latent factor model, we take advantage of the
fact that the factors implicitly convey semantics without requir-
ing explicitly defined content data [37, 53, 13], Therefore, a
mapping of the item space can be produced that is likely to be
understood by users. Moreover, we circumvent any issues that
may arise from sparsity, since MF can handle such matrices
very efficiently [37]. Finally, by using a MF algorithm at this
stage, we can draw on the derived user factor vector (Figure
1, 1a) also in the next step of the process to generate recom-
mendations for the current user. Thereby, we take advantage
of the fact that this widely used method is known for high
recommendation quality [37, 36].

Next, we map the still high-dimensional item data onto a low-
dimensional Euclidean space by using MDS [6, 28]. In order
to visualize such data, different methods have been proposed
[29, 28]. Typically, they rely on content information, so that
the decision for a certain method depends on the item features.
Geometric projections and scatter plots have been used very
often for this purpose [56]. But, they can also be usefully
applied when the dimensions are constructed by automated
dimensionality reduction [10]. This is usually the case for
datasets used by RS [2]. Thus, although other methods might
be used, we chose MDS to calculate two-dimensional coor-
dinates for all items. Using these coordinates, the resulting
map visualization positions items based on their similarities
(Figure 1, 1b). MDS ensures distances between any two items
to be small if they are similar to each other, and large other-
wise. We calculate the similarities used as input for the MDS
algorithm by means of the Euclidean distance between item
factor vectors~qi, which seems reasonable since it naturally fits
the positioning approach of MDS. As shown with the maps
generated in [17], we assume that by relying on latent factor
representations, it will adequately be reflected how items actu-
ally relate to each other. Thus, users should be able to perceive
items close to each other as actually similar.

2Note that by setting f = 2 the item-factor-matrix could indeed be
directly represented as a map. However, this would later result in
reduced recommendation quality [37].
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Figure 1. To generate the 3D item space visualization for presenting and manipulating preferences in CF, we start by using Matrix Factorization to
obtain latent factors for users and items (1a). Item factor vectors then serve to determine the item positions (gray) using Multidimensional Scaling (1b).
By applying k-means clustering (1c), popular representative items are chosen as samples (yellow) to be displayed on the resulting map (1d). In addition,
item factor vectors are used to calculate predictions for the current user by taking his or her user factor vector into account (2). This results in elevations
representing the user’s preferences as well as in the actual recommendations (magenta). Note that the user factor vector is optional, so that this step is
left out at cold-start where the user is instead presented with a flat surface. In any case, the user is then able to influence the recommendation process
by reshaping the landscape, i.e. creating hills and valleys (3a), which finally leads to recalculation of the user factor vector (3b).

Now, in principle, items could already be plotted onto a 2D
surface. However, due to the sheer mass of items, this is not
a practical solution and would overwhelm users instead of
providing an intuitive overview. Instead of showing popular
items and additionally labeling certain areas of the map as in
[17], we aim at generating an understanding for the item space
based only on items themselves. Therefore, we select items
that are representative for different regions of the quadratic
map, and present them to the user. To perform this sampling,
we use a k-means clustering [20] since we are in a Euclidean
space (Figure 1, 1c). This allows us to control the trade-off
between representativeness and number of items. Then, to
determine a representative item for each cluster, we consider
the five items that are closest to a cluster center and finally
choose the most popular one as a sample, i.e. the item with
highest number of ratings (Figure 1, 1d). Chosen items serve
as representatives of the respective clusters and are at the same
time likely to be known to many users. Based on the map
dimensions and these sample items, we render an initial map.

RQ2: Presenting Preferences and Recommendations
In addition to the item space samples in the initial map, we
also present the user’s preferences and show recommended
items in the context of the overall item space. Although the
only items shown initially are the samples representing the
different regions of the item space, in fact, all items have been
assigned a certain position on the map. This allows us to
exploit the third dimension by showing a landscape where the
elevation indicates the system’s predicted preferences among
all items in respect to the current user. We therefore use the
ratings predicted as usual by MF: Areas containing items with

high predicted ratings are visualized as hills, those with low
ratings as valleys. Since recommendations lie in areas where
the system has predicted items to be of high interest, i.e. on
hills, we assume the user will thus better understand how the
system models his or her interests, and how this relates to
actually expressed preferences as well as recommended items.

If the current user’s preferences were previously elicited, e.g.
by ratings, a latent factor vector for that user is already avail-
able. This vector ~pu derived in the MF offline learning phase in
the previous step (Figure 1, 1a) may now be used to calculate
predictions as shown in (1) online. The resulting predictions
r̂u are used directly to select top-n items with highest scores
as recommendations, but, as outlined above, also for setting
up the elevation profile, and thus the 3D landscape. For this
purpose, we linearly map the prediction for every item onto a
height value, and consequently set the surface elevation at the
item’s respective position to this value. Then, to present the
user with a visualization that actually resembles a landscape,
the elevation of spaces between items is set to a level simi-
lar to adjacent items (otherwise, only spikes would appear at
every item position). Therefore, we transfer height values of
the items to their surrounding area where no items exist in a
step-wise manner, decreasing with each step. Afterwards, we
apply a Gaussian smoothing function and finally re-adjust the
elevation at the actual item positions.

In case rating data for the current user are unavailable or the
user does not want to apply an existing profile, i.e. we cannot
use the user factor vector, the elevation profile is set to a
neutral level. The visualization then shows a flat map surface
and samples, both generated independently of the current user.
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RQ3: Interactively Manipulating a Preference Profile
Regardless of whether the landscape already represents user
preferences or just shows a flat surface when no user profile
is available, the user can now interactively influence the un-
derlying model, and consequently the recommendations. By
shaping the landscape, i.e. raising or lowering the surface,
the user is able to interactively express preferences for entire
regions of the item space (Figure 1, 3a). The subsequent recal-
culation of predictions happens online—either continuously
with each interaction, or when explicitly requested by the user,
thus avoiding constant, possibly confusing updates of the visu-
alization. In any case, we interpret changes to the landscape
as user adjustments of the estimated ratings for the items that
have led to the elevation of the respective areas. Note that this
is independent of which items are actually shown, but instead
takes all items in an area into account. The elevation values
changed by the user are used to replace the rating predictions
r̂u calculated previously by new preference values, resulting in
the vector~xu. Based on this, we now set up a new user factor
vector or recalculate the existing one by reformulating (1):

~pu = Q+~xu, (2)

where we use the pseudoinverse Q+ to approximate a solution
via Singular Value Decomposition (since Q is non-quadratic).
The updated user factor vector ~pu is then fed back into the
recommendations process (Figure 1, 3b), where it can be used
to again predict ratings, leading to new recommendations as
well as a new, adapted elevation profile. Thus, the user can
immediately observe how the actions performed affect the
recommender’s results and the underlying preference profile.

DEMONSTRATOR
In this section, we present a demonstrator for our interactive
recommending approach based on the 3D item space visualiza-
tion described above. We implemented the demonstrator as a
web-based application positioned within the movie domain. In
addition to demonstration purposes, we also aimed at conduct-
ing user experiments with this demonstration system. In the
following, we expand on its interaction concept and explain
the implementation in more detail.

Interaction Concept
The user interface (Figure 2) is basically divided into four main
parts: Working area (A), an area showing recommended items
(B), detail area with information on the currently selected
movie (C), and a palette of available interaction tools (D).

Within the working area, the visualization generated according
to the steps described in the previous section is shown. In
addition to the quadratic map surface representing the item
space, the sample items, and the hills and valleys indicating
the user’s preferences, we color the surface to resemble a to-
pographical map. Therefore, we use a function that assigns
colors to particular levels of elevation while ensuring smooth
transitions between them. This way, we aim at further facilitat-
ing the user’s perception of the landscape and how it reflects
the varying interests. Items are depicted with the help of movie
posters directly on the map. Recommended items are addi-
tionally highlighted by means of a magenta-colored margin.
Recommendations are also shown in the area at the bottom

of the screen in form of a more conventional list. When the
user hovers over an item on the map or in the recommendation
list, the detail area is immediately updated and reveals further
information on the respective movie (e.g. title, director, plot
description and tags). Note that this content-related data is
only used to provide users with additional information, and
is not involved in the process of creating the visualization
or generating recommendations. Finally, there is a palette
showing several tools that may be used to perform interactions
within the working area. Each tool has two functionalities that
correspond to the left and right mouse button, respectively:

1. Raise/Dig: This tool can be used to shape the landscape,
i.e. to create hills (left-click) and valleys (right-click) within
the quadratic boundaries of the map. If selected, the mouse
cursor shows a shovel icon and a small round white area
surrounding the cursor indicates where the surface will be
altered when clicking3 (see also Figure 3). The highest or
lowest possible elevation is thereby restricted through the
linear mapping of predictions onto height values.

2. Rotate/Pan: As known from many 3D applications, this
tool allows the user to rotate the entire perspective or to pan
through the landscape.

3. Show/Hide: Inspired by [59], this tool helps to explore the
item space in more detail. In case the user wants to see
more than the initially shown samples, he or she can bring
up additional items by left-clicking on the map (see also
Figure 4). Then, the most popular of the five items closest
to the cursor gets added. Right-clicking on an item already
shown in turn removes this item from the map, which is
particularly useful in case the map gets too crowded.

Independent of the tool currently selected, the user can always
zoom in and out by using the mouse wheel.

Implementation Details
For implementing the process described, we first use the
Stochastic Gradient Descent algorithm4 from the Apache Ma-
hout5 library. This well-proven implementation of a stan-
dard MF algorithm allows us to derive the latent factor model
used for calculating item similarities and rating predictions
with performance up to standard (RMSE of 0.80 using 10-fold
cross validation). As background data, we utilize the Movie-
Lens 20M Dataset6 containing about 20 million ratings from
137000 users given to 27000 movies. In principle, our ap-
proach may also be applied to other domains such as books,
music, or any other type of commercial goods, in particular
because CF, which is the underlying basis for our approach,
is generally regarded as domain-independent. However, the
MovieLens datasets are well-established within RS research,
and, from our point of view, an appropriate means to show
that our approach works as expected for experience products.
3Depending on the demonstrator’s configuration, changes to the
landscape are fed back into the recommendation process either con-
tinuously triggered by every mouse click, or only as soon as the user
feels confident with the manipulations and uses the “Apply Changes”-
button right underneath the palette (Figure 2, D). More details on
how this is done can be found in the previous section.
4ParallelSGDFactorizer (8 factors, 16 iterations, λ = 0.001).
5https://mahout.apache.org/
6http://grouplens.org/datasets/movielens/20m/
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Figure 2. Screenshot of our demonstrator: Working area (A) visualizing the item space as a quadratic map that includes movie posters depicting the
automatically chosen sample items and represents the user’s preferences by the surface elevation; recommended items (B), which are also shown inside
the landscape as posters highlighted by a magenta-colored margin; detail information on the currently selected movie (C); and a palette (D) of available
interaction tools (in this example, the Raise/Dig-tool is selected, which appears at the position of the cursor in the lower middle part of the screen).

Figure 3. Using the Raise/Dig-tool, the user is able to shape the land-
scape, here by expressing his or her interest through forming a hill.

Figure 4. With the Show/Hide-tool, further items can requested to be
shown in addition to the initially presented samples (inspired by [59]).

This way, we aim at ensuring a sufficient degree of ecologi-
cal validity. Although not necessary for our 3D item space
visualization in general, we additionally enrich the dataset
by importing content-related information as well as movie
posters from the TMDb website7 in order to provide users with
an appealing and informative presentation of the actual items.

Next, based on item factor vectors derived in the MF learning
phase, we calculate item similarities which go into a MDS
algorithm, resulting in the mapping used to arrange the items
on the surface. Therefore, we rely on an implementation by

7https://www.themoviedb.org/

the Algorithmics Group8. For clustering the items in order
to determine representative samples, we use a k-means algo-
rithm we implemented ourselves with k = 30. Early qualitative
experiments suggested this number of initial samples to suffi-
ciently represent the item space while not overwhelming users
visually (Figure 2 is print-optimized and shows less samples).
Finally, for visualizing the 3D landscape in our web-based
application, we use the Javascript 3D library three.js9.

EMPIRICAL USER STUDY
To evaluate our approach against the research questions, we
conducted an empirical user study. We were particularly inter-
ested in examining the item space representation and the item
sampling, the presentation of user preferences in form of a
landscape, the interactive tools for shaping the surface, as well
as the effect of these methods at cold-start and with an existing
user profile. To assess the effectiveness of our approach, we
constructed tasks that focus on these different aspects. We
measured the user’s perception of different system quality
factors, especially with respect to subjective recommendation
quality and perceived transparency as well as overall satisfac-
tion and user experience.

Method
Participants and materials: We evaluated our approach using
the demonstration system described in the previous section10.
8http://algo.uni-konstanz.de/software/mdsj/
9https://threejs.org/

10The version of our demonstrator used in the study was slightly
different than the one presented in this paper: The interface elements
as well as the coloring of the landscape were more simple, and we
used an earlier edition of the MovieLens dataset (the 10M version,
see http://grouplens.org/datasets/movielens/10m/).
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We recruited 32 (10 female) participants with age ranging
from 18 to 34 (M = 24.22, SD = 3.61). The majority had a
high school (62.5 %) or a university degree (34.4 %). Partic-
ipants were asked to use the demonstrator under controlled
conditions in a lab-based setting. They used a desktop PC
with 24′′ LCD (1920×1200 px resolution) and a common
web browser to interact with the system and to fill in a ques-
tionnaire. The interface was in English, but participants (all
non-native English-speakers) were explicitly allowed to ask
the moderator for translations.

Tasks: The study was structured into three tasks, which were
presented to each participant in the same order:

1. Introductory search and exploration: The first task can be
seen as an introductory task focused on general exploration,
orientation in the item space, and familiarizing with the in-
teraction possibilities. In consecutive subtasks, participants
were asked to explore the map in order to find three movies
fulfilling following criteria: 1a) popular movies (more than
30000 ratings), 1b) movies suitable for children, and 1c)
movies directed by Quentin Tarantino. For each subtask,
three minutes were given. Interaction was restricted to ex-
ploration, i.e. manipulating the landscape was not possible.
No elevations and recommendations were present.

2. Establishing a profile at cold-start: In order to evaluate
our system in cold-start situations, in this task, participants
were asked to express their preferences on a flat surface,
i.e. no profile was initially visualized. Starting from the flat
surface, participants had to use the available tools to shape
the landscape. Participants finished interaction at their own
discretion, whereupon a new profile, and thus a user factor
vector, was created. Resulting recommendations and the
new landscape were presented afterwards to the user.

3. Manipulating an existing profile: This task addressed the
situation where a user wants to manipulate an existing pro-
file according to his or her current preferences. At the begin-
ning of this task, the elevation profile was set up according
to the preferences of an existing user11. Participants then
had to alter the resulting landscape towards their own prefer-
ences. Recommendations and landscape, i.e. the elevations
on the map, were updated continuously.

Questionnaires and log data: In order to assess the partic-
ipants’ subjective perception, we used a questionnaire that
was primarily composed of different existing constructs12. At
the beginning of each session, we elicited demographics and
domain knowledge (regarding movies and 3D applications).
Then, subsequent to task 2, we assessed perceived recom-
mendation quality [33], transparency [50], interaction effort
[33] and interaction adequacy [50]. We complemented these
existing constructs with a few questionnaire items generated
by ourselves, primarily regarding aspects very specific to our
approach (e.g. comprehensibility of the landscape and the po-
sitions of recommended items inside, perceived controllability

11We carefully selected three existing user profiles from the underlying
MovieLens dataset, all very different to each other. Out of these
profiles, one was randomly chosen for each participant. Then, in the
following, we used the corresponding user factor vector.

12We translated questionnaire items to present them in German lan-
guage, sometimes with slightly adapted formulations.

of the recommendation process). Next, following task 3, we
used the same constructs again, but also assessed perceived
control [50] and used self-generated items concerning manip-
ulation of existing profiles. Finally, at the end of each session,
we asked participants some questions regarding their general
impression of the system. For this, we used constructs such
as system effectiveness [33] and perceived usefulness [50], as
well as some additional self-generated items. Across tasks, this
resulted in about 75 items. In addition, to measure usability,
user experience and engagement with the system, we applied
the System Usability Scale (SUS) [8], User Experience Ques-
tionnaire (UEQ) [39] and subscales of Intrinsic Motivation
Inventory (IMI) [54]. All items were assessed on a positive 5-
point Likert scale, except the ones from UEQ (7-point bipolar
scale) and IMI (positive 7-point Likert scale)13.

In each session, we also logged interaction behavior, i.e. ac-
tions such as selecting tools, shaping the landscape (and how
long this took), or showing/hiding items. In addition, we mea-
sured task times and, especially for task 1, recorded whether
participants were able to accomplish the respective task.

Results
Overall, participants were very satisfied with the system (M =
3.94, SD= 0.76) and enjoyed using it (M† = 5.46, SD= 0.97).
They perceived the recommender as effective (M = 3.72, SD=
0.74) and useful (M = 3.75, SD = 0.76). Table 2 (General
results) shows the results for some selected questionnaire items
from these general constructs, that particularly emphasize the
overall quality of recommendations and the user’s enjoyment
when using the demonstrator.

Table 1 illustrates results with respect to the general constructs
perceived recommendation quality, transparency, interaction
effort and interaction adequacy, which we assessed after task
2 and 3, respectively.

Task 2 Task 3
M SD M SD d

Perceived rec. quality 3.57 0.89 3.89 0.60 .42
Transparency 3.91 1.09 3.63 1.07 .26
Interaction effort* 3.75 0.76 3.21 0.93 .64
Interaction adequacy 3.47 0.88 3.61 0.90 .16

Table 1. Differences between task 2 and 3 with respect to perception of
recommendations and the interaction (* marks the only construct yield-
ing a significant difference, d represents Cohen’s effect size value).

In the following, we address our three research questions by
expanding on these general constructs and, in particular, by
presenting further specific results.

RQ1: Visualizing and sampling the item space: Participants
predominantly agreed with the statement that the item position-
ing on the map was comprehensible and found the landscape
helpful for obtaining an overview of the entire item space. Con-
sequently, this facilitated their awareness of possible choice
options. Table 2 (RQ1) summarizes the descriptive statistics.

When participants were asked to explore the item space in
order to find movies fulfilling different criteria in the subtasks

13Mean values of such items are in the following indicated as M†.
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of task 1, all of them were able to find three movies suitable
for children within the given time limit (1b). Popular movies
could still be successfully found by 88 % (1a), while only
56 % found three movies directed by Quentin Tarantino (1c).
This is also reflected in the time participants needed to ac-
complish the subtasks: Using a one-factorial RM-ANOVA,
we found significant differences, F(2,62) = 32.801, p = .000.
Post hoc comparisons using Bonferroni correction show no
difference between task 1a (M = 1.46 min, SD = 0.88) and
task 1b (M = 1.25 min, SD = 0.60). However, the subtask of
finding movies directed by Tarantino took significantly more
time (M = 2.70 min, SD = 0.88) than the two others (p < .01).

When we asked participants whether they would use the sys-
tem in different search situations, we again found significant
differences, F(1.38,43.01) = 21.010, p = .000. Participants
rated the system as very useful for situations where they would
have no (M = 3.91, SD = 1.25) or only a vague search goal
in mind (M = 4.06, SD = 0.98). Here, post hoc comparisons
denote no significance difference. In contrast, participants
stated that they would use the system significantly less likely
(p < .01) in situations with a concrete search goal, i.e. for
known-item search (M = 2.44, SD = 1.48).

RQ2: Presenting preferences and recommendations: As al-
ready presented in Table 1, perceived recommendation quality
and transparency were assessed very positively (no significant
differences between task 2 and 3). In addition, the items more
specific to our approach reported in Table 2 (RQ2) confirm
that the landscape helped participants to understand how their
preference profile was represented within the system and that
they understood why items had been recommended.

To compare the two tasks, we also assessed the comprehen-
sibility of the generated landscape, i.e. the elevations on the
map representing the estimated preferences. We found a sig-
nificant difference (t(31) = 2.37, p < .05). In task 2, were
participants started from a flat surface, they stated that they
understood why the landscape was finally generated the way
it was (M = 3.94, SD = 0.91). When manipulating a profile
from another person in task 3, the comprehensibility was rated
lower (M = 3.41, SD = 1.04). Cohen’s d, however, suggests
only a moderate effect size (d = .54).

RQ3: Interactively manipulating a preference profile: The
general construct assessing perceived control over the system
yielded satisfying results (M = 3.54, SD = 0.94). When look-
ing at specific questionnaire items regarding the quality of
the interaction possibilities provided to express preferences
(Table 2, RQ3), scores were even better: Participants felt to be
able to tell the system what they like/dislike, i.e. in our case
to create hills and valleys, in cold-start situations (assessed
after task 2), and to modify an existing preference profile (as-
sessed after task 3). Overall, participants felt in control over
the recommendation process by manipulating the landscape.

With respect to perceived interaction effort, Table 1 shows the
overall positive results for our system. However, we found
a significant difference between task 2 and 3 (t(31) = 3.76,
p < .01) with medium effect size. This was not reflected in the
time participants needed to accomplish the tasks: Both took a

statistically similar amount of time, M = 6.48 min (SD= 2.40)
for task 2, and M = 5.53 min (SD = 3.48) for task 3, with a
rather small effect size (d = .32).

In general, as shown in Table 1, interaction adequacy was
assessed equally positive for both tasks (small effect size).
When asked specifically whether they understood how their
interactions affected the landscape, participants seemed also
satisfied, in task 2 (M = 4.00, SD = 0.76) and in task 3 (M =
3.44, SD = 1.24), without significant difference (d = .54).

Also the results for the constructs mentioned before, e.g. over-
all satisfaction, system effectiveness, perceived usefulness and
recommendation quality, show a positive assessment of the
interaction possibilities for manipulating a preference profile.

Usability and user experience: Usability of our demonstrator
was evaluated as good with a SUS-score of 75. On the different
scales of the UEQ, we received promising results (ranging
from 0.84 to 2.10), in particular, for perspicuity (1.66, good),
stimulation (1.56, excellent) and novelty (2.10, excellent).

Demographics and domain knowledge: Participants generally
stated that they love movies (M = 3.91, SD = 0.78), and 75 %
reported that they regularly use sites like IMDb or Rotten
Tomatoes for searching further information. Participants were
not very familiar with standard 3D applications (M = 2.25,
SD = 0.62), e.g. Google Earth or 3D computer games. The
expertise with professional 3D applications such as 3DS Max
was, as expected, even lower (M = 1.41, SD= 0.61). However,
we did not find any noteworthy influence of demographics or
domain knowledge on our dependent variables.

Discussion
Overall, the study results suggest that our approach provides
users with an easy to understand 3D visualization of item
space and preferences. Although we built on model-based CF,
which is generally considered to be a rather opaque technique,
participants were able to make sense of the generated map
and the positioning of items on the map. Relying only on
the hidden semantics of latent factors, the initial selection of
representative samples appeared to be a good starting point for
further exploration. Observed interaction behavior shows that
the interaction tools provided, e.g. the possibility to request
more items, also contribute to participants quickly getting an
overview. Consequently, they were able to successfully accom-
plish search tasks although the overall number of items in the
dataset was large. As expected, our approach performed better
in situations with a more general search direction in mind
than for known-item search. Looking for concrete items could
however easily be supported by providing additional search
functionalities. Our study, in contrast, has shown that using
a latent factor model without any content information seems
especially of value in different, yet very common situations
where users are searching with respect to “soft” criteria.

With respect to representation of their preferences, as well as
the means provided to establish or manipulate the underlying
profile, participants were also satisfied. Using the elevation
profile of the map to visualize the user’s preferences seemed
to be supportive in order to reveal how the user is represented
within the system. Furthermore, this way being able to set
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Item M SD

RQ1
The positioning of movies inside the landscape was comprehensible. 3.31 0.90
The presentation of movies inside the landscape helped me getting an overview of the item space. 3.91 0.93
The recommender system makes me more aware of my choice options. 3.91 0.93

RQ2 The landscape helped me to understand my user profile within the system. 3.63 1.07
I think the landscape helped me to understand why the movies have been recommended to me. 3.69 0.93

RQ3
The recommender system allows me to tell what I like/dislike. 3.97 1.12
The recommender system allows me to modify my taste profile. 3.72 0.96
I felt to be in control over the recommendation process by manipulating the landscape. 3.69 0.97

General results
The recommender system gave me valuable recommendations. 3.97 0.90
The recommender system helped me find the ideal item. 4.00 0.76
I enjoyed using the system very much.† 5.47 1.02
Using the system was fun to do.† 5.38 1.26

Table 2. Mean values and standard deviations for selected questionnaire items, grouped by our research questions († indicates items assessed using a
positive 7-point Likert scale, in all other cases, a positive 5-point Likert scale was used).

recommended items in relation to the rest of the item space,
appears to positively influence perceived recommendation
transparency. This is reflected by the fact that participants
stated to understand why recommendations were shown at cer-
tain positions. The moderate significant difference regarding
comprehensibility of the landscape between task 2 and 3 is
likely a result of initially presenting a profile from another
person in the latter case. Since preferences from a completely
different profile might still have influenced the results after
participants finished the interaction, it seems reasonable that
they perceived the landscape as slightly less comprehensible.

Explicit user feedback is often very sparse and motivating
users to state their preferences, for example, by means of rat-
ings, is known to be difficult [19, 16]. In this light, it seems
particularly promising that participants felt in control over our
system while enjoying the interaction. Thus, shaping the land-
scape by creating hills and valleys appears to be an appropriate
means for expressing preferences. This is also supported by
the positive results in terms of interaction adequacy, usability,
and user experience. The significant difference between task 2
and 3 with respect to perceived effort may again be ascribed to
the fact that participants had to manipulate an existing profile
in the latter case, which is likely to be a more complex task
than starting from a flat surface. In addition, the continuous
updates of landscape and recommendations in task 3 may also
have contributed to perceiving the effort to be slightly higher.
Thus, although the scores are still in a satisfactory range for
both tasks, further investigation will be needed to account
for the different task settings. Either way, participants were
satisfied with the resulting recommendations, both when they
started to establish a preference profile as well as when they
had to manipulate an existing one.

CONCLUSIONS AND OUTLOOK
To answer the research questions posed at the beginning of
this paper, we introduced a novel 3D visualization with a
landscape of hills and valleys in order to represent a large
item space, show the user’s preferences in that space, and
allow him or her to manipulate the underlying model. We
implemented a demonstrator that indicates the usefulness of
our approach—also in cold-start situations. In the user study
we conducted, we obtained promising results concerning our

research questions, and especially regarding perceived trans-
parency, recommendation quality, user enjoyment, and degree
of control users are able to exert over the system.

Apparently, a latent factor model inferred by MF from ratings
as they are customary in CF may not only serve to calculate
accurate recommendations, but also conveys semantics that
can be revealed to the user. While this is in line with earlier
research [53, 13], we show that latent factors may be a legiti-
mate source for positioning a large number of items on a map
that users perceive as comprehensible. Without requiring any
content-related data, preferences can both be presented and
successfully elicited with respect to regions of the item space
the user is particularly interested in—independent of knowing
and rating specific items. Although MF-based methods are
typically intransparent due to their statistical nature, our study
suggests that using a modern visualization technique together
with representative sample items, supports users in understand-
ing the representation of their preferences within the system,
i.e. the user model, and the resulting recommendations.

Despite the potential shown by our interactive recommending
approach based on conventional model-based CF, it is in princi-
ple independent of algorithms and background data. In future
work, we therefore aim at using recommender algorithms other
than MF, mapping and sampling techniques besides MDS and
k-means, and also further datasources, e.g. content information
instead of or in addition to ratings. This goes along with our
goal of implementing the approach in a different domain or
in a cross-domain scenario, where the need to deal with more
heterogeneous data as well as a larger number of items is even
more apparent. Furthermore, there is room left for improve-
ment with respect to the visualization and interaction concept.
For instance, additional samples could immediately be shown
when zooming in. Also, the usage of a map metaphor may be
further exploited, e.g. by highlighting regions on the map and
labeling them with tags. In general, one can think of using
entirely different interaction mechanisms or even a tangible
user interface. Finally, while the present user study focused on
a proof-of-concept, we are also interested in conducting more
in-depth comparisons, in particular with a baseline system as
well as other state-of-the-art interactive RS and visualizations.

IUI 2017 • Recommender Systems March 13–16, 2017, Limassol, Cyprus

12



REFERENCES
1. Jae-Wook Ahn and Peter Brusilovsky. 2013. Adaptive

Visualization for Exploratory Information Retrieval.
Information Processing & Management 49, 5 (2013),
1139–1164.

2. Xavier Amatriain and Josep M. Pujol. 2015.
Recommender Systems Handbook. Springer US, Chapter
Data Mining Methods for Recommender Systems,
227–262.

3. Xavier Amatriain, Josep M. Pujol, Nava Tintarev, and
Nuria Oliver. 2009. Rate It Again: Increasing
Recommendation Accuracy by User Re-rating. In Proc.
RecSys ’09. ACM, 173–180.

4. Fedor Bakalov, Marie-Jean Meurs, Birgitta König-Ries,
Bahar Sateli, René Witte, Greg Butler, and Adrian Tsang.
2013. An Approach to Controlling User Models and
Personalization Effects in Recommender Systems. In
Proc. IUI ’13. ACM, 49–56.

5. Dmitry Bogdanov, Martín Haro, Ferdinand Fuhrmann,
Anna Xambó, Emilia Gómez, and Perfecto Herrera. 2013.
Semantic Audio Content-Based Music Recommendation
and Visualization Based on User Preference Examples.
Information Processing & Management 49, 1 (2013),
13–33.

6. Ingwer Borg and Patrick J. F. Groenen. 2005. Modern
Multidimensional Scaling: Theory and Applications (2
ed.). Springer.

7. Svetlin Bostandjiev, John O’Donovan, and Tobias
Höllerer. 2012. TasteWeights: A Visual Interactive
Hybrid Recommender System. In Proc. RecSys ’12.
ACM, 35–42.

8. John Brooke. 1996. SUS – A Quick and Dirty Usability
Scale. In Usability Evaluation in Industry. Taylor &
Francis, 189–194.

9. Li Chen and Pearl Pu. 2012. Critiquing-Based
Recommenders: Survey and Emerging Trends. User
Modeling and User-Adapted Interaction 22, 1-2 (2012),
125–150.

10. Mei C. Chuah. 1998. Dynamic Aggregation with Circular
Visual Designs. In Proc. INFOVIS ’98. IEEE, 35–43.

11. Paolo Cremonesi, Franca Garzotto, and Roberto Turrin.
2012. User Effort vs. Accuracy in Rating-Based
Elicitation. In Proc. RecSys ’12. ACM, 27–34.

12. Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. 2016a.
Tag-Enhanced Collaborative Filtering for Increasing
Transparency and Interactive Control. In Proc. UMAP
’16. ACM, 169–173.

13. Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. 2016b.
Towards Understanding Latent Factors and User Profiles
by Enhancing Matrix Factorization with Tags. In Poster
Proc. RecSys ’16.

14. Mehdi Elahi, Francesco Ricci, and Neil Rubens. 2014.
Active Learning Strategies for Rating Elicitation in
Collaborative Filtering: A System-Wide Perspective.

ACM Transactions on Intelligent Systems and Technology
5, 1 (2014), 13:1–13:33.

15. Siamak Faridani, Ephrat Bitton, Kimiko Ryokai, and Ken
Goldberg. 2010. Opinion Space: A Scalable Tool for
Browsing Online Comments. In Proc. CHI ’10. ACM,
1175–1184.

16. Sebastian Feil, Martin Kretzer, Karl Werder, and
Alexander Maedche. 2016. Using Gamification to Tackle
the Cold-Start Problem in Recommender Systems. In
CSCW ’16 Companion. ACM, 253–256.

17. Emden Gansner, Yifan Hu, Stephen Kobourov, and Chris
Volinsky. 2009. Putting Recommendations on the Map –
Visualizing Clusters and Relations. In Proc. RecSys ’09.
ACM, 345–348.

18. Brynjar Gretarsson, John O’Donovan, Svetlin
Bostandjiev, Christopher Hall, and Tobias Höllerer. 2010.
SmallWorlds: Visualizing Social Recommendations.
Computer Graphics Forum 29, 3 (2010), 833–842.

19. F. Maxwell Harper, Xin Li, Yan Chen, and Joseph A.
Konstan. 2005. An Economic Model of User Rating in an
Online Recommender System. In Proc. UM ’05. Springer,
307–316.

20. John A. Hartigan and M. Anthony Wong. 1979.
Algorithm AS 136: A K-Means Clustering Algorithm.
Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28, 1 (1979), 100–108.

21. Chen He, Denis Parra, and Katrien Verbert. 2016.
Interactive Recommender Systems: A Survey of the State
of the Art and Future Research Challenges and
Opportunities. Expert Systems with Applications 56, 1
(2016), 9–27.

22. Marti Hearst. 2009. Search User Interfaces. Cambridge
University Press.

23. Jeffrey Heer, Michael Bostock, and Vadim Ogievetsky.
2010. A Tour Through the Visualization Zoo. ACM
Queue 53, 6 (2010), 59–67.

24. Jonathan L. Herlocker, Joseph A. Konstan, and John
Riedl. 2000. Explaining Collaborative Filtering
Recommendations. In Proc. CSCW ’00. ACM, 241–250.

25. Anthony Jameson, Martijn C. Willemsen, Alexander
Felfernig, Marco de Gemmis, Pasquale Lops, Giovanni
Semeraro, and Li Chen. 2015. Recommender Systems
Handbook. Springer US, Chapter Human Decision
Making and Recommender Systems, 611–648.

26. Gawesh Jawaheer, Peter Weller, and Patty Kostkova.
2014. Modeling User Preferences in Recommender
Systems: A Classification Framework for Explicit and
Implicit User Feedback. ACM Transactions on Interactive
Intelligent Systems 4, 2 (2014), 8:1–8:26.

27. Yucheng Jin, Karsten Seipp, Erik Duval, and Katrien
Verbert. 2016. Go With the Flow: Effects of Transparency
and User Control on Targeted Advertising Using Flow
Charts. In Proc. AVI ’16. ACM, 68–75.

IUI 2017 • Recommender Systems March 13–16, 2017, Limassol, Cyprus

13



28. Martijn Kagie, Michiel van Wezel, and Patrick J. F.
Groenen. 2011. Recommender Systems Handbook.
Springer, Chapter Map Based Visualization of Product
Catalogs, 547–576.

29. Daniel A. Keim and Hans-Peter Kriegel. 1996.
Visualization Techniques for Mining Large Databases: A
Comparison. IEEE Transactions on Knowledge and Data
Engineering 8, 6 (1996), 923–938.

30. Andreas Kerren, John T. Stasko, Jean-Daniel Fekete, and
Chris North (Eds.). 2008. Information Visualization:
Human-Centered Issues and Perspectives. Springer.

31. Mohammad Khoshneshin and W. Nick Street. 2010.
Collaborative Filtering via Euclidean Embedding. In
Proc. RecSys ’10. ACM, 87–94.

32. Bart P. Knijnenburg and Martijn C. Willemsen. 2015.
Recommender Systems Handbook. Springer US, Chapter
Evaluating Recommender Systems with User
Experiments, 309–352.

33. Bart P. Knijnenburg, Martijn C. Willemsen, Zeno
Gantner, Hakan Soncu, and Chris Newell. 2012.
Explaining the User Experience of Recommender
Systems. User Modeling and User-Adapted Interaction
22, 4-5 (2012), 441–504.

34. Jürgen Koenemann and Nicholas J. Belkin. 1996. A Case
for Interaction: A Study of Interactive Information
Retrieval Behavior and Effectiveness. In Proc. CHI ’96.
ACM, 205–212.

35. Joseph A. Konstan and John Riedl. 2012. Recommender
Systems: From Algorithms to User Experience. User
Modeling and User-Adapted Interaction 22, 1-2 (2012),
101–123.

36. Yehuda Koren and Robert Bell. 2015. Recommender
Systems Handbook. Springer US, Chapter Advances in
Collaborative Filtering, 77–118.

37. Yehuda Koren, Robert Bell, and Chris Volinsky. 2009.
Matrix Factorization Techniques for Recommender
Systems. IEEE Computer 42, 8 (2009), 30–37.

38. Johannes Kunkel, Benedikt Loepp, and Jürgen Ziegler.
2015. 3D-Visualisierung zur Eingabe von Präferenzen in
Empfehlungssystemen [3D visualization to elicit
preferences in recommender systems]. In Proc. M&C ’15.
De Gruyter Oldenbourg, 123–132.

39. Bettina Laugwitz, Theo Held, and Martin Schrepp. 2008.
Construction and Evaluation of a User Experience
Questionnaire. In HCI and Usability for Education and
Work. Springer, 63–76.

40. Benedikt Loepp, Catalin-Mihai Barbu, and Jürgen Ziegler.
2016. Interactive Recommending: Framework, State of
Research and Future Challenges. In Proc. EnCHIReS ’16.

41. Benedikt Loepp, Katja Herrmanny, and Jürgen Ziegler.
2015. Blended Recommending: Integrating Interactive
Information Filtering and Algorithmic Recommender
Techniques. In Proc. CHI ’15. ACM, 975–984.

42. Benedikt Loepp, Tim Hussein, and Jürgen Ziegler. 2014.
Choice-Based Preference Elicitation for Collaborative
Filtering Recommender Systems. In Proc. CHI ’14.
ACM, 3085–3094.

43. Sean M. McNee, Shyong K. Lam, Joseph A. Konstan,
and John Riedl. 2003. Interfaces for Eliciting New User
Preferences in Recommender Systems. In Proc. UM ’03.
Springer, 178–187.

44. Afshin Moin. 2014. A Unified Approach to Collaborative
Data Visualization. In Proc. SAC ’14. ACM, 280–286.

45. Chris Muelder, Thomas Provan, and Kwan-Liu Ma. 2010.
Content Based Graph Visualization of Audio Data for
Music Library Navigation. In Proc. ISM ’10. IEEE,
129–136.

46. Sayooran Nagulendra and Julita Vassileva. 2014.
Understanding and Controlling the Filter Bubble Through
Interactive Visualization: A User Study. In Proc. HT ’14.
ACM, 107–115.

47. Eli Pariser. 2011. The Filter Bubble: What the Internet is
Hiding From You. Penguin Press.

48. Souneil Park, Seungwoo Kang, Sangyoung Chung, and
Junehwa Song. 2009. NewsCube: Delivering Multiple
Aspects of News to Mitigate Media Bias. In Proc. CHI
’09. ACM, 443–452.

49. Denis Parra, Peter Brusilovsky, and Christoph Trattner.
2014. See What You Want to See: Visual User-Driven
Approach for Hybrid Recommendation. In Proc. IUI ’14.
ACM, 235–240.

50. Pearl Pu, Li Chen, and Rong Hu. 2011. A User-Centric
Evaluation Framework for Recommender Systems. In
Proc. RecSys ’11. ACM, 157–164.

51. Pearl Pu, Li Chen, and Rong Hu. 2012. Evaluating
Recommender Systems from the User’s Perspective:
Survey of the State of the Art. User Modeling and
User-Adapted Interaction 22, 4-5 (2012), 317–355.

52. Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.).
2015. Recommender Systems Handbook (2 ed.). Springer
US.

53. Marco Rossetti, Fabio Stella, and Markus Zanker. 2013.
Towards Explaining Latent Factors with Topic Models in
Collaborative Recommender Systems. In Proc. DEXA

’13. 162–167.

54. Richard M. Ryan. 1982. Control and Information in the
Intrapersonal Sphere: An Extension of Cognitive
Evaluation Theory. Journal of Personality and Social
Psychology 43, 3 (1982), 450–461.

55. Amit Sharma and Dan Cosley. 2013. Do Social
Explanations Work? Studying and Modeling the Effects
of Social Explanations in Recommender Systems. In
Proc. WWW ’13. ACM, 1133–1144.

56. Ben Shneiderman. 1996. The Eyes Have It: A Task by
Data Type Taxonomy for Information Visualizations. In
Proc. VL ’96. IEEE, 336–343.

IUI 2017 • Recommender Systems March 13–16, 2017, Limassol, Cyprus

14



57. Rashmi Sinha and Kirsten Swearingen. 2002. The Role
of Transparency in Recommender Systems. In CHI ’02
Extended Abstracts. ACM, 830–831.

58. E. Isaac Sparling and Shilad Sen. 2011. Rating: How
Difficult is it?. In Proc. RecSys ’11. ACM, 149–156.

59. Pieter Jan Stappers, Gert Pasman, and Patrick J. F.
Groenen. 2000. Exploring Databases for Taste or
Inspiration with Interactive Multi-Dimensional Scaling.
Proc. HFES ’00 (2000), 575–578.

60. Nava Tintarev and Judith Masthoff. 2015. Recommender
Systems Handbook. Springer US, Chapter Explaining
Recommendations: Design and Evaluation, 353–382.

61. James Uther and Judy Kay. 2003. VlUM, a Web-Based
Visualisation of Large User Models. In Proc. UM ’03.
Springer, 198–202.

62. Katrien Verbert, Denis Parra, Peter Brusilovsky, and Erik
Duval. 2013. Visualizing Recommendations to Support

Exploration, Transparency and Controllability. In Proc.
IUI ’13. ACM, 351–362.

63. Jesse Vig, Shilad Sen, and John Riedl. 2009.
Tagsplanations: Explaining Recommendations Using
Tags. In Proc. IUI ’09. ACM, 47–56.

64. Jesse Vig, Shilad Sen, and John Riedl. 2011. Navigating
the Tag Genome. In Proc. IUI ’11. ACM, 93–102.

65. David Wong, Siamak Faridani, Ephrat Bitton, Björn
Hartmann, and Ken Goldberg. 2011. The Diversity
Donut: Enabling Participant Control over the Diversity of
Recommended Responses. In CHI ’11 Extended
Abstracts. ACM, 1471–1476.

66. Bo Xiao and Izak Benbasat. 2007. E-Commerce Product
Recommendation Agents: Use, Characteristics, and
Impact. MIS Quarterly 31, 1 (2007), 137–209.

IUI 2017 • Recommender Systems March 13–16, 2017, Limassol, Cyprus

15





The following article is reused from:

Johannes Kunkel, Claudia Schwenger, and Jürgen Ziegler. Newsviz: Depicting and controlling
preference profiles using interactive treemaps in news recommender systems. In Proceedings
of the 28th ACM Conference on User Modeling, Adaptation and Personalization, UMAP ’20,
pages 126–135. ACM, 2020. ISBN 9781450368612. doi: 10.1145/3340631.3394869





NewsViz: Depicting and Controlling Preference Profiles Using
Interactive Treemaps in News Recommender Systems
Johannes Kunkel

University of Duisburg-Essen
Duisburg, Germany

johannes.kunkel@uni-due.de

Claudia Schwenger
University of Duisburg-Essen

Duisburg, Germany
claudia.schwenger@stud.uni-due.de

Jürgen Ziegler
University of Duisburg-Essen

Duisburg, Germany
juergen.ziegler@uni-due.de

ABSTRACT
News articles are increasingly consumed digitally and recommender
systems (RS) are widely used to personalize news feeds for their
users. Thereby, particular concerns about possible biases arise.
When RS filter news articles opaquely, they might “trap” their users
in filter bubbles. Additionally, user preferences change frequently
in the domain of news, which is challenging for automated RS. We
argue that both issues can be mitigated by depicting an interactive
version of the user’s preference profile inside an overview of the
entire domain of news articles. To this end, we introduce NewsViz,
a RS that visualizes the domain space of online news as treemap,
which can interactively be manipulated to personalize a feed of
suggested news articles. In a user study (N = 63), we compared
NewsViz to an interface based on sliders. While both prototypes
yielded high results in terms of transparency, recommendation
quality and user satisfaction, NewsViz outperformed its counterpart
in the perceived degree of control. Structural equation modeling
allows us to further uncover hitherto underestimated influences be-
tween quality aspects of RS. For instance, we found that the degree
of overview of the item domain influenced the perceived quality of
recommendations.
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1 INTRODUCTION
The domain of news is currently subject to a substantial change as
many roles that were formerly undoubtedly associatedwith humans
are now increasingly performed bymachines. A prominent example
for such roles is the curation of online news in which recommender
systems (RS) progressively act as gatekeepers and decide which
articles will be included in a personalized news feed and which will
not [43, 44]. While RS in general have become quite accurate in
computing personalized recommendations, it has been argued that
accuracy is only one of many quality aspects of a RS [4, 35, 40].

When content is pro-actively personalized, users might overes-
timate how representative recommendations for the entire item
domain are and become trapped in filter bubbles [45] or echo cham-
bers [14]. Possible results include ideological segregation [14], bur-
geoning populism [10] and distribution of conspiracy theories [8].
While it remains under discussion whether algorithmic filtering is
the main reason for filter bubbles [18, 41], incidents like the scan-
dal around Cambridge Analytica have resulted in a broad public
interest of algorithmic transparency and filter bubble effects [19].
One way to tackle such concerns is making users aware of not only
the recommendations but also of items the algorithm omits [42].

Consequently, one task of RS can be defined as letting users
explore or understand the item space [27]. Providing such a broad
overview was observed to make users aware of blind-spots in their
profile [55], help them to develop new preferences [39], and in-
crease control over the recommendations [37]. A prominent way
of conveying an overview of the item space is to present it as a
scatterplot or geographical map [16, 37, 50].

While map-based visualizations have proven to be able to fos-
ter overview in RS, they are prone to visual clutter and seldom
make efficient use of the entire available screen space [29]. More
space-efficient in this regard are treemaps [51]. Treemaps are used
to visualize tree structures as map in which tree nodes are rep-
resented as cells. Besides other domains, visualizations based on
treemaps have also been applied to RS [31, 48]. Richthammer and
Pernul, for instance, utilize an interactive treemap to cluster recom-
mendations regarding their content, thus aiding users in compre-
hending their own situational needs [48]. However, the potential
of treemaps could even be exploited more extensively, when not
only recommendations are visualized but also their relation to the
user’s preferences in context of the entire item space. Aligning this
with interactive methods for treemaps [1] could also raise the users’
control over their recommendations.

In this paper, we combine the above: We introduce NewsViz,
a novel news RS that utilizes a treemap with interactive cells to
provide an overview of the item domain, visualize the user’s pref-
erence profile, and let this profile interactively be adjusted. In this
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way we aim at making the RS more transparent, reducing the risk
of filter bubble effects, and enable control over recommendations.
Summarized, we seek to answer the following research questions:
RQ1 How can a treemap visualization be leveraged to create an

interactive control panel for RS?
RQ2 How are the aspects overview, transparency, and control in-

fluenced by the form of visualizing user preferences? How
do they influence each other?

RQ3 What are possible benefits of treemap visualizations in terms
of preventing filter bubble effects?

To answer these questions, we implemented NewsViz and con-
ducted a user study that reveals high potential of treemaps to con-
vey overview, transparency, and control in news RS. To investigate
the effect of the treemap isolated from other aspects such as the
recommendation algorithm, we compared NewsViz to a baseline
system that replaces the treemap with an equally powerful inter-
action concept based on slider widgets. While both applications
scored relatively high on the perceived degree of overview and
transparency, we found that NewsViz outscored the slider-based
prototype in terms of the degree of perceived control. Using struc-
tural equation modeling enables us to study the interdependencies
of these constructs further, disclosing the particularly influential
role of overview; not only on perceived transparency but also on
less obvious aspects such as the system’s effectiveness and the
perceived quality of recommendations.

To summarize, we make the following contributions: (1) We
demonstrate that treemaps can be used to control news RS more
effectively compared to common slider widgets. (2) We underline
the so far neglected importance of overview for RS and reveal im-
plicit influences on aspects such as transparency and the perceived
recommendation quality.

2 RELATEDWORK
News articles are consumed increasingly digitally, thus lowering
entry barriers for news distributors and costs of news dissemination.
As the number of available news articles is growing, RS increasingly
act as gatekeepers that automatically curate personalized news feeds
[43, 44]. As a result, RS in the domain of news have a special re-
sponsibility since they can “exercise power over individuals” [9] in
form of influencing the direction of their readers’ awareness [9, 56].
But also from an algorithmic perspective, recommending news is
particularly challenging: new items emerge constantly on arrival
of recent news stories and user’s preferences change frequently,
sometimes even during the course of a day [30].

While providing control over recommendations is obviously
particularly helpful in situations where user preferences vary often,
surprisingly little research pursues to increase control in news RS.
One exception is the qualitative study conducted by Harambam
et al. [19], in which the authors observed that users of news RS
strongly desire to have advanced means of interaction with the
system. Harambam et al. mostly utilized sliders, which participants
perceived as easy to use and “quite straightforward” but also as
prone to overcrowd interfaces.

Outside the news domain, control of RS has been discussed in
greater depth [21, 22]. Exerting control has been, beside others,

related to supporting users to explore the item space [57, 58], influ-
encing user satisfaction [12, 21, 28], and increasing trust into the
RS [11]. Control in RS seems to be firmly tied to transparency of
recommendations [22, 58], as users need to be educated of how to
effectively influence recommendations.

Most often RS appear as black boxes to their users, as it remains
opaque what data is used for personalization, why certain items
are suggested, and how they relate to the user’s preferences. Users
who encounter such black box algorithms may react with distrust
and may be reluctant to accept recommendations [25]. When trans-
parency of a RS is low, it might also happen that users loose aware-
ness of item space areas that are not recommended to them. Such
users are effectively trapped in filter bubbles [45], which have been
related to several negative societal consequences [8, 10, 14] and to a
general threat for human creativity [33, 38]. However, others come
to the conclusion that such concerns about filter bubbles are mostly
exaggerated [18] or that filter bubbles are not primarily the result
of RS but deliberately created by users themselves [2]. Nonetheless,
algorithmic transparency and issues like filter bubbles have reached
high visibility in the public and thus raised the demand for more
transparent algorithms [19].

Opacity in RS can be tackled in various ways, for instance, by gen-
erating textual explanations for recommendations [25, 54] or by uti-
lizing information visualization methods such as two-dimensional
maps [16, 37] or Venn diagrams [46]. Accordingly designed trans-
parent interfaces have shown potential to increase user satisfaction
[17, 58] and may also help to educate users about their preferences
thus facilitating self-reflection [33]. Following the same argumen-
tative line, it was shown that when users feel educated about algo-
rithmic workings of a RS, they can be more motivated to explore
items beyond their usual interests [5], which helps them to receive
more diverse recommendations [24] and have less blind-spots re-
garding the item space [20, 55]. In this sense, a broad, diverse, and
unbiased viewpoint is a crucial necessity for democracy [23]. Not
surprisingly, Jannach and Adomavicius list “help users to explore
or understand the item space” as one of the purposes of a RS [27].

Such a comprehension of the item space can, for instance, be
conveyed to users by utilizing visualizations based on maps or scat-
terplots [e.g. 16, 37, 50]. Corresponding visualizations have shown
potential to increase transparency and user engagement [13, 15].
By leveraging the inherent comprehensibility of spatial relations,
maps can help putting the user’s preference model into context and
thus letting recommendations become intuitively understandable
[32]. A more abstract form of maps are treemaps [51], which are
more space efficient as maps based on scatterplots [29]. Treemaps
have also been applied to the domain of RS [31, 48].

Katarya et al. [31] and Richthammer and Pernul [48] utilize
treemaps to depict the predicted fit of recommended movies in ac-
cordance to the active user’s preferences. In particular, each treemap
cell contains a recommendation and the size of those cells indicates
how high the predicted rating of the corresponding item is. The
prototype of Richthammer and Pernul adds a second hierarchi-
cal level, which groups recommendations regarding their movie
genre. This visualization is accompanied with checkboxes that let
users filter movies. Chang et al. [6] introduce a treemap-like in-
terface for scrutinizing textual restaurant reviews. For different
search queries, users can create separate treemaps. Each cell of
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Figure 1: Screenshot of the NewsViz system. The user can hover any category or source inside the treemap visualization and
scroll the mouse wheel up and down to enlarge or, respectively, shrink the corresponding cell. After finishing interaction, the
user can click on a designated button or anywhere outside the panel to minimize it. In the background, the personalized news
feed is updated with every interaction, thus providing immediate visual feedback to the user.

these treemaps corresponds to a keyword of the query. Relevance
of keywords can be determined by users in changing the size of the
corresponding treemap cell. Results of a user study show increased
interaction quantity and general user satisfaction compared to a
baseline system. Finally, treemaps have been used to display news
in the commercial application Newsmap1. Newsmap demonstrates
impressively how a large number of news can be displayed using a
treemap.

3 NEWSVIZ : A TREEMAP TO CONTROL
RECOMMENDATIONS OF ONLINE NEWS

As answer to our first research question (“How can a treemap vi-
sualization be leveraged to create an interactive control panel for
RS?”), we propose NewsViz (see Figure 1). The following sections
are organized according to the three central functions of NewsViz:
1) provide an overview of the item domain, 2) visualize the user’s
preference profile, and 3) let this profile interactively be customized.

3.1 Visualize the Domain Space of a News RS
In alignment with common news aggregation websites (e.g. Google
News2 and SmartNews3), the treemap in NewsViz is organized as
hierarchy of news categories as uppermost hierarchical level and
news sources as second hierarchical level. To support users in dis-
tinguishing category cells in the treemap easily, each is assigned
a specific color. Sources are assigned a background color of their
corresponding category but with a different saturation. In this way,
cells become distinguishable without cluttering the visualization.
To link news articles in the news feed and treemap cells, each

1http://www.newsmap.jp/
2https://news.google.com
3https://www.smartnews.com

article is colored according to its corresponding category-source
combination (see Figure 1, in the background).

3.2 Represent the User’s Preference Profile
The size (i.e. area) of each treemap cell reflects the number of ar-
ticles in the news feed that pertain to the corresponding category
or source. In the initial setup, all cells on one level have the same
size, as the news feed consists of the same number of articles for
each category-source combination. This state is also depicted in
Figure 1. When preferences of the current user are known before-
hand (e.g. elicited using click-through rates), they can be visualized
as accordingly adjusted cell sizes in the treemap.

Since assessing the proportional influence of each treemap cell
is a central requirement in our approach, the computation of cell
alignment follows the algorithm for squarified treemaps [3]. Squar-
ified treemaps are an alternative to treemaps that are created by
using the slice-and-dice strategy. Thereby, squarified treemaps take
the aspect ratio of the resulting cells into account thus favoring cells
with balanced aspect ratio, i.e. squares. Opposed to slice-and-dice
treemaps, squarified treemaps are cognitively easier to interpret,
especially in terms of comparing cell sizes.

3.3 Let Users Interactively Adjust Their
Preference Profile

While the treemap visualization could already be used to display
preference profiles, we also target at supporting users in controlling
their personalized news feed. Since preferences in our approach are
displayed as cell sizes of the treemap, the most natural interaction
concept is to let users directly adjust them. To this end, we follow the
interaction concept of pumping [1], which is illustrated in Figure 2.
In its initial state, cell sizes of the uppermost level in the hierarchy of
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Figure 2: The interaction concept of NewsViz. When hov-
ering a treemap cell and scrolling in or out, the size of
the corresponding cell increases or decreases, respectively
(A ↔ B). When clicking somewhere in the treemap (A ↔ C
and B↔ D), the proportions of cells on the second level can
be manipulated in the exact same way (C ↔ D).

NewsViz can be adjusted. This is done by hovering the mouse cursor
over a category cell and moving the mouse wheel. According to the
direction in which the wheel is moved, the currently hovered cell
enlarges or shrinks, thus mocking a zoom behavior. In this sense,
“zooming in” corresponds to enlarging the cell and, as a result,
increasing the influence of the corresponding category. Template
for this behavior is the concept zoom and filter of the Information
Seeking Mantra [52]. When users click anywhere in the treemap,
they can also adjust the size of cells for sources. Adjusting sizes of
source cells is done in the very same manner as adjusting category
cells. In order to prevent users to lose awareness of sources that
are shrunk to a very small size, an according message is shown for
each source cell that currently has no influence on the news feed.

Independent of which cells are currently manipulated, each sin-
gle interaction step triggers an immediate update of the personal-
ized news feed in the background (see Figure 1).

3.4 Implementation Details
We developed NewsViz as a web application using the Java frame-
work Spring Boot for the backend in tandem with Vue.js for the
frontend. The treemap visualization is based on the javascript li-
brary d3.js and extends an existing project for web-based treemap
visualizations4. Background data for news were crawled as prepara-
tion for our user study. For this, we used theNewsAPI5 and collected
779 articles from six different news sources, organized in six cate-
gories. Sources and categories were selected in order to represent
a diverse data sample for the user study. We took special care to
choose news sources with different political orientations.

Depending on the proportions of categories and sources in the
treemap, the news feed is set up. The entire news feed consists of

4https://github.com/albertopereira/vuejs-treemap
5https://newsapi.org/

100 articles. We chose this number of articles since it contains a
reasonable amount of variety and on the other hand is not too large.
The influence of each category, divided into sources, determines
how many articles are passed to the news feed. Afterwards, articles
are sorted according to their recency. This procedure follows one
of the typical approaches of how to guarantee recency in news rec-
ommendations and is often referred to as post-filtering strategy [30].
We decided for a comparable simple recommendation algorithm,
since our focus lies entirely on the visualization, the interaction
concept, and the user’s perception thereof.

4 STUDY SETUP
In order to evaluate NewsViz against a baseline system, we con-
ducted an empirical user study. The study was designed as con-
trolled lab study with two conditions: NewsViz and a second proto-
type based on slider widgets.

4.1 Slider-based Prototype
Since we wanted to test the treemap visualization of NewsViz iso-
lated from other factors (e.g. the algorithm of news feed composi-
tion), the second prototype varies only in replacing the treemap
with sliders to indicate preference weights. All other aspects (e.g.
hierarchy of sources pertaining to categories and linking articles
to categories by color) were maintained identically to the NewsViz
condition. The result is depicted in Figure 3.

Figure 3: Screenshot of the control panel in the slider-based
prototype. Current configuration of categories and sources
is the same as in Figure 1.

Consequently, also the behavior on interaction of this baseline
prototype mirrors NewsViz as closely as possible. Hence, sliders
were not independent from each other but instead always displayed
their relative value proportionally to the entire distribution of news.
As a consequence, when interactingwith one slider, the other sliders
on the same level (i.e. categories or sources inside one category)
reacted in form of adjusting themselves proportionally to yield at
any given moment a total of 100% when all sliders are summed up.

4.2 Study Procedure
At the beginning of each user session, the current participant was
randomly assigned to one of the two conditions. Then, independent
of the condition, participants were asked to fill in a first question-
naire composed of questions regarding their background knowledge
and demographical data. The study took place under controlled
conditions: participants were alone in a room with a supervisor,
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who was not able to see their computer monitor. Questionnaires
were shown using an online tool, which was presented in the same
browser window as the prototype (24” screen with a 1920 × 1200px
resolution). After finishing the first questionnaire, participants were
given a brief introduction to the system (i.e. NewsViz or the slider-
based variant). It was made clear to them, how to interact with the
control panel, that each interaction will trigger an immediate re-
calculation of recommendations, and that they could ask questions
to their supervisor at any point of the experiment. All participants
also received a sheet of paper with a brief paragraph about each
news source, in case they were unfamiliar with it. Paragraphs were
composed with information from Wikipedia in order to reflect the
political orientation of that respective source.

Task 1: After the brief introduction, participants were given
the task to use the control panel in order to configure the system
regarding their personal preferences of online news. During the
task they were allowed to switch between news feed and control
panel as often as they wished. Participants were instructed to assess
the quality of their recommendations by reading headlines and
content teaser of recommended articles. As soon as they think their
personalized news feed represents their preferences, participants
were requested to fill another questionnaire with questions about
their experience during this task.

Task 2: The second task took place as part of the questionnaire.
Dependent on their condition, participants were presented with
screenshots of four differently pre-configured control panels. Apart
from the first profile being shown—which acted for introductory
purposes and was neutrally configured—all configurations favored
one source over the others. We asked participants to name this
most influential source. This task addressed to measure how well
participants can spot potential biases.

4.3 Instruments Used
The questionnaire, that was shown first to participants, was com-
posed of questions about their news consumption (e.g. “How often
do you read online news each week?”) and general demographics,
e.g. about their age. If not stated otherwise, all items were assessed
on 5-point Likert scales.

After participants finished task 1, they were presented with ques-
tions about their experience with the system. To measure trans-
parency and overall satisfaction, we used constructs from the ResQue
questionnaire [47]. For assessing the individual perceived degree of
control, users are able to exert over calculation of the personalized
news feed, we used the construct of interaction adequacy, which
we also took from ResQue. For measuring recommendation quality
and system effectiveness, we utilized items that were introduced
by Knijnenburg et al. [34]. These instruments were supplemented
by three questions, we formulated ourselves for assessing the per-
ceived overview of the item space: 1) “The system helped me to get an
overview of the entire spectrum of online news.”, 2) “The system helped
me to get an overview of the entire spectrum of categories.”, and 3)
“The system helped me to get an overview of the entire spectrum of
sources.”

At the end of the questionnaire, participants were given the
choice to provide a qualitative comment.

Table 1: Mean values and standard deviations for variables
assessed withNewsViz and the slider-based version. All vari-
ables use 5-point Likert scales. We only found a significant
difference (markedwith ∗) in the perceived degree of control
(see Section 5.1).

Treemap Condition Slider Condition
Variable M SD M SD

Overview 3.69 0.71 3.60 0.72
Transparency 4.03 1.03 4.29 0.69
Control 4.08∗ 0.67 3.45∗ 0.98
Recommendation Quality 4.01 0.59 3.97 0.46
System Effectiveness 3.71 0.65 3.71 0.58
Overall Satisfaction 3.94 0.91 3.97 0.84

4.4 Sample
We recruited 63 (31 female) participants for our user study, which
were randomly assigned to conditions, resulting in sample sizes
of N = 32 for the treemap condition and N = 31 for the condition
based on sliders. The age of our participants ranged from 18 to 52
(M= 27.02, SD= 6.74) and most of them had a university (49.2%)
or high school degree (36.5%). As profession, 55.6% stated being
students followed by 41.15% who were currently working as em-
ployees. When asked for habits regarding their news consumption,
participants answered that they are somewhat interested in online
news (M=2.33, SD=1.03) and mainly did not pay for them during
the last year (92.1 %). Participants received no incentive for taking
part in our study other than a certificate of participation, which 14
of them needed as requirement for their study program.

5 RESULTS
The conducted experiment was designed to answer our research
questions 2 and 3 introduced in Section 1. To answer RQ2, question-
naire results are compared between those elicited with NewsViz and
those elicited with the slider-based prototype. We further uncover
relations among results by using a structural equation model (SEM).
Finally, to answer RQ3, success rates and task completion times of
the second task are presented.

5.1 Comparing NewsViz to a Slider-based
Prototype

Descriptive results of NewsViz and the second prototype based on
sliders, can be found in Table 1. As can be seen, results for all items
are relatively high. For those items that we formulated ourselves
to measure overview, we calculated Cronbach’s alpha in order to
assess the internal consistency, which led to an effect of α = .59.

In order to test for statistical differences, we compared results for
all our six dependent variables between conditions using one-way
MANOVA. The multivariate effect with F (6, 56) = 2.59, p = .028,
Wilk’s Λ=0.783, η2p = .217 for condition was statistically significant.
The individual dependent variables were subject to ANOVAs in
order to assess whether there were any differences of perceived
overview, transparency, control, system effectiveness, recommenda-
tion quality, or overall satisfaction between conditions. Analyzing
the between-subject effects, we could observe that condition has

Full Paper  UMAP ’20, July 14–17, 2020, Genoa, Italy

130



Overview

Transparency
(R2=.20)

Control
(R2=.34)

Recommendation 
Quality
(R2=.43)

Overall Satisfaction
(R2=.61)

Condition 
(Treemap/Slider)

System Effectiveness
(R2=.87)

( * p<.1,** p < .01, *** p < .001)

.44**

.66***

.63**

.22*

.36**

-.46***

.73***

.17*

.25

Figure 4: Structural EquationModel revealing causal dependencies between variables of our experiment. Rectangles represent
manifest (observed) variables, while latent (unobserved) constructs are depicted as ellipses.R2 values are given inside the nodes
and denote the explained variance of the corresponding variable. Edges of the graph show standardized parameter weights.

a significant effect on control, F (1, 61) = 9.01, p = .004, η2p = .129.
Apparently, NewsViz was perceived as easier to control by partic-
ipants. Other than that, there were no differences with statistical
significance.

In order to reveal further dependencies among the aspects mea-
sured for both prototypes, we hypothesized a SEM based on the
results of our questionnaire (see Section 4.3). The resulting model
showed a good fit with the data (χ2(200) = 205.959, p = .371,
CFI = .988, TLI = .986, RMSEA = 0.022) and is presented in Fig-
ure 4. For setting the SEM up, we used the R package lavaan [49].

Overview and condition acted as exogenous variables, while all
other variables of our model were endogenous. Transparency and
overall satisfaction are observed questionnaire items (displayed as
rectangles in Figure 4), while overview, recommendation quality,
system effectiveness, and control are latent composite variables (dis-
played as ellipses in Figure 4). In order to not overload the graph,
we omitted observed manifest questionnaire items for these latent
constructs.

One of themost central variables is overview as it influences trans-
parency, system effectiveness, and recommendation quality. While
not as influential as overview, transparency shows impact on system
effectiveness and control. Control was the only variable that was
affected by condition. We coded conditions in our experiment with
“1” for the condition with NewsViz and “2” for the condition with
the slider-based variant. In this sense, the negative weight on the
edge condition → control indicates a higher degree of control in
the condition using NewsViz, which is in line with our findings
using ANOVA stated above. Control itself had an effect on overall
satisfaction indicating that users prefer being in control over their
recommendations, though the effect was rather small. Together
with system effectiveness, control was able to explain 61% of the
variance of overall satisfaction, whereas system effectiveness showed
the larger extent of. System effectiveness was the variable with most
entering paths, i.e. it was influenced by other variables the most. It
also had the highest amount of explained variance. Recommendation
quality, as well as transparency and overview were the predictors

for system effectiveness. Note, that the regression recommendation
quality → system effectiveness was not significant (p = .155)6.

5.2 Prevention of Filter Bubbles
In task 2, participants were presented with depictions of different
preference profiles and were asked to estimate what the most in-
fluential source of the profile is. With this task we address RQ3
and thus how easy it is to assess biases such as unilateral news
consumption and, as a result, how high the risk of filter bubbles is.
Screenshots of both conditions for one of the profiles are depicted
in Figure 5. The source that objectively had the highest influence
in this case was “Der Freitag” (45.9%), which was also answered by
100% of participants in the treemap condition and 77.4% in the slider
condition. Over all three profiles7 shown, 87.5% of participants in
the treemap condition and 68.8% of participants in the slider condi-
tion were able to spot the source with the highest influence. Task 2
took on average 02:16 minutes (SD=00:55) in the treemap condition
and 03:08 minutes (SD= 01:35) in the slider condition. Multivari-
ate effect for condition was statistically significant (F (2, 60)=10.1,
p = .000, Wilk’s Λ = 0.748, η2p = .252). Condition had a significant
effect on success rate (F (1, 61)=9.62, p= .003, η2p = .136), revealing
that treemap users could find the most influential source better
than users of the slider-based version. The same accounts for task
completion times, which were significantly shorter in the treemap
condition (F (1, 61)=6.96, p= .011, η2p = .102).

6 DISCUSSION
When examining descriptive results of our experiment in Table 1,
they confirm that treemaps can effectively be used as interactive
input panel for news RS. In qualitative answers, this was further
underlined as participants gave statements such as “Well-grounded,

6We hypothesized this path for logical reasons and thus report it in the SEM, even
though it is not significant. We believe, however, that this influence would become
stronger in real-world scenarios, where the recommendation quality is more important
when assessing the effectiveness of a RS.
7Note, that the first profile was shown to introduce the task and thus had no clear
most influential source. Consequently, we omitted this profile in analysis of results.
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Figure 5: Screenshot of a preference profile that was shown
to participants during task 2. The source with the highest
influence is in both cases “Der Freitag”.

interesting system. I absolutely miss something similar on the Inter-
net.” (P34) or “Very innovative and [the system] increases the spectrum
of visible online news.” (P59).

6.1 Comparison of NewsViz to a Slider-Based
Version

In our second research question, we asked ourselves how NewsViz
performs in comparison with another system that is not dependent
on sophisticated visualizations but uses common slider widgets.
Therefore, we deliberately designed the second prototype as equally
powerful in terms of interaction modalities. Regarding the results,
it became apparent that participants perceived to obtain a higher
degree of control with NewsViz. We assign this observation to a
stronger directness between interaction, visualization and recom-
mendations: Users in the condition with NewsViz were able to
comprehend more naturally how their interaction with one cate-
gory or source influenced siblings on the same hierarchical level.
When examining sub items of the construct interaction adequacy,
which we used to measure control, answers most saliently differ
for the question “The system allows me to tell what I like/dislike.”
(NewsViz: M=4.47, SD=0.62; Slider condition: M=3.65, SD=1.17).
Apparently, participants in the slider-based condition did not feel
able to express their preferences adequately. In line with prior re-
search [19], we ascribe this to a confusion due to an overcrowded
interface. This assumption is also backed up by qualitative state-
ments of participants, which, for instance, experienced the system
as “confusing and irritating” (P49).

Another reason for this confusion may originate from the slider
behavior: When one slider position was changed, the other sliders

adjusted themselves to result in an overall distribution that sums
up to 100%. Even though adjusting the size of treemap cells also
affected the other cells on the same level in NewsViz, we assume
that this behavior was perceived as more natural. The total size of
the treemap gives users a point of reference, making it thus more
comprehensible that cells have to arrange themselves in order to
fit into the given frame.

Apart from the perceived degree of control, we did not find any
statistically significant differences in the results. This is especially
noteworthy in terms of the perceived degree of overview. While
this indicates that overview in RS is not necessarily tied to complex
visualizations, we assume that some potential for overview in RS
was left unused in our approach. When comparing screenshots of
both prototypes (see Figure 1, Figure 3 and Figure 5), it can be seen
that the slider variant is already rather crowded, while NewsViz
still appears comparable tidy. This is in line with aforementioned
prior work about slider elements [19].

Results of task 2 show that participants of the treemap condition
were able to spot the most influential source more easily. This
became visible through success rates and task completion times (see
Section 5.2), which were both significantly better for the treemap
condition. As a consequence, we deem treemaps to be superior in
conveying a natural sense of the entirety of news items, in relating
proportions of own preferences to the rest of the space, and thus
in raising awareness for possible biases due to overrepresented
sources. This could especially become relevant when users are
presented with preference profiles elicited implicitly in the past.
With help of the treemap visualization they could rapidly apprehend
their preference model, spotting possible biases and adjusting it to
resolve these biases or regarding current preferences. We, though,
note that users could still create profiles that neglect inconvenient
sources and thus self-reliantly creating a filter bubble. Yet, our
approach would make it harder to become unaware of such sources.

6.2 Dependencies Among Quality Aspects of RS
In Section 5.1, we introduced a SEM in order to uncover otherwise
hidden relations between the different quality aspects of RS that
we elicited in our study. As this model shows, overview was the
most influential variable, influencing transparency as well as sys-
tem effectiveness and recommendation quality. The influence over
the path overview → transparency appears rather natural: when
users perceive a sense of overview of the underlying item space,
they understand the data used for recommending better and thus
perceive the entire RS as more transparent. While the opposite
relation is imaginable too (i.e. degree of transparency accounts for
the perception of overview), our understanding of overview follows
basic literature on information visualization that treats the notion
of overview as awareness of an item space [26], which happens
first [52] in human-computer-interaction. Our self-invented items
reflect this understanding (see Section 4.3).

Not all influences emerging from overview are that easy to inter-
pret, though. The path overview → recommendation quality reveals
a direct influence of the perceived degree of overview on the qual-
ity of recommendations. Note, that this regression even yields a
rather high amount of explained variance in recommendation qual-
ity (43%). That we found a causal relation between such ostensibly
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isolated variables, emphasizes the complexity of measuring the
quality of recommendations with user studies. Recently, we made
a similar observation [36] and found that the perceived quality of a
recommendation is significantly influenced by how well the system
explains its reasons for recommending this particular item. Appar-
ently, users take a lot more aspects into account when assessing the
quality of a system’s recommendations than solely the suggested
items.

Besides transparency and recommendation quality, system effec-
tiveness was influenced by overview as well. Deconstruction of the
composite variable system effectiveness in its latent components
can yield some insights into the rationale of this regression. Es-
pecially two items help to understand the influence of overview
on system effectiveness: “The system makes me more aware of my
choice options.” and “I make better choices with the system.” In this
light, experience with our RS appears to form an arc that begins
with a general overview, which then leads over awareness of choice
options, to better decisions, and finally to a general perception of
system effectiveness. This sequence can also be found in general
literature on decision making, e.g. in [53].

The regression transparency → control also underlines that vari-
ables in user studies should not be treated independently of each
other. Apparently, control in RS is positively influenced by how
transparent the system lays out its inner workings and reasons for
recommending to the user. We think this causal relation is natu-
rally comprehensible: to control a complex system (such as a RS),
a user needs to some degree understand how the system works
and thus where or how to interact with it. Our observation here
adds to evidence found by other authors who also underline the
importance of transparency to foster control in RS [22, 58].

6.3 Limitations
There were also some limitations to our experiment. First, the sam-
ple is comparatively small—especially in terms of performing struc-
tural equation modeling. As a result, the model lacks robustness
to some degree and interpretations need to be made with care.
However, since some of our deductions are not only relying on
the SEM but also on comparative analysis and prior observations,
we are confident that the trends in our model are valid and would
become even stronger with more data. We also acknowledge that
further studies with a more representative sample (e.g. in terms of
education) should be conducted.

Second, the value for Cronbach’s alpha calculated for our con-
struct to measure overview, indicates that there are some inconsis-
tencies within the answers. Nonetheless, we believe that the word-
ing of items is rather clear and that the assessment of overview is
reliable.

A third limitation pertains to the number of cells currently dis-
played in NewsViz. In our experiment both prototypes used six
categories and six sources, resulting in a total of 36 cells. When
applied to real news aggregation portals, the number of categories
and sources would probably be higher than this. Also the hierarchy
of categories would be more sophisticated (e.g. splitting politics into
local and global). While our experiment shows that the slider-based
variant was already experienced as cluttered and confusing, we
deem the treemap visualization to yield potential for adding several

further categories and sources (see, for instance, the large number
of articles displayed in Newsmap8). Nonetheless, the treemap visual-
ization would at one point become overcrowded too. To encounter
this, only a small part of the entire profile could be visualized at
a given time. When combined with overview+detail visualizations
[7] (e.g. in form of a minimap) users would still be able to keep
awareness of their entire profile.

7 CONCLUSIONS AND OUTLOOK
In this paper, we introduce a novel interface for controlling news
recommender systems. The resulting system, NewsViz, utilizes a
treemap to display the domain space of news as hierarchy com-
posed of news categories and sources. By adjusting cell sizes of
this treemap, users can interactively control the influence of the
corresponding category or source, respectively. In an empirical user
study, NewsViz was compared to a baseline system using slider wid-
gets for interaction. Results indicate that NewsViz scored as good as
the slider-based system in dimensions such as perceived overview,
transparency and user satisfaction. The degree of control, however,
was perceived as higher for NewsViz. By applying structural equa-
tion modeling to our results, we were able to identify additional
interesting causal influences of overview on transparency, system
effectiveness and recommendation quality.

This observation underlines how complex quality assessments
of recommendations are and we conclude that more research is
necessary about relations between quality aspects of recommender
systems. User study results that at first seem isolated should be put
into context (e.g. by structural equation modeling) before making
reliable assertions about their meaning. In this sense, our structural
equation model reveals that the degree of overview significantly
influenced other quality aspects of the system. Yet, how much
overview of the item space is perceived by users is rarely used
as means for assessing a system’s quality. In future research we
thus plan to investigate this aspect in greater depth. Thus far, for
instance, a reliable instrument for measuring the perceived degree
of overview is missing.

In the future we also plan to test NewsViz in other situations. At
the moment, for instance, users always start with a neutral treemap,
corresponding to cold start situations. In upcoming research, how-
ever, we plan to record implicit user feedback, e.g. by logging clicks
and dwell times, and visualize the resulting profiles to users. Their
reactions could be insightful in two ways: 1) how users react, when
they are presented with their implicitly recorded behavior; and 2)
whether they will appreciate it when their otherwise hidden profile
is not only shown but also made controllable to them.

We further believe that attributes of treemaps can be used more
extensively in NewsViz. For instance, the inherent ability to depict
several levels of hierarchy bears so far unused potential. In our
setting, we depicted two hierarchical levels. In practical settings,
however, especially categories are typically organized in more than
one categorical layer. With such an advanced interface we also plan
further user surveys, in which we will also compare NewsViz to
other baseline systems (e.g. even simpler ones with less interaction
modalities).

8http://www.newsmap.jp/
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A B S T R A C T

Recommender systems aim at supporting users in their search and decision making process by selecting a small
number of likely relevant items from a large set of options. Although automatically filtering unmanageably
large item sets down to a few recommendations often produces results that match the user’s interests well,
it also prevents users from understanding and exploring items in their larger context. This may reduce users’
perception of transparency and controllability of the system. Visualizations have been proposed as a means
for overcoming this problem, with some visualizations providing a complete overview of the entire space of
available items. However, thus far item space visualizations have rarely been investigated and compared in
user studies. To address this, we developed and empirically compared three applications that present the user
with personalized music recommendations embedded in a visualization of the entire item space. The three
applications display the same item space as a list, as a treemap, and as a map, respectively. We compared
these applications in an online user study and found, against our expectations, that they did not differ much
in how the recommendations are perceived. Perception of transparency, recommendation quality, and degree
of control over the recommendations received relatively high scores over all three applications. However, we
did find a difference in hedonic user experience and perceived novelty of the recommendations. Both factors
were perceived to be higher in the map condition. Backed up by a mediation analysis, we argue that a halo
effect is the reason for the observed perceived novelty: participants transferred the novelty of the application
to the novelty of the recommendations.

1. Introduction

Recommender systems (RS) are established tools that proactively fil-
ter large item spaces—i.e. the entire set of available items in web stores,
music streaming portals, social networks, and other digital platforms—
to suggest only small personalized sets of items that match their users’
preferences. RS have been found to be able to increase sales and user
conversion rates, to promote customer loyalty and retention, and to
improve overall user satisfaction (Ricci et al., 2022). Over the last
decades, recommendation algorithms have achieved high accuracy in
predicting a user’s tastes based on their prior interactions with the
system (Gunawardana and Shani, 2015).

However, RS typically present only a small filtered set of items, but
do not support exploration of larger proportions or even the entirety of
the underlying item space. This introduces a range of potential issues:
Users may not be aware that they are being presented with filtered
content, and thus become trapped in filter bubbles (Pariser, 2011).
Confidence in choices may decline because users do not understand the
item space and thus their range of options (Jannach and Adomavicius,
2016). Transparency of the RS may also be negatively affected when
users have no means of assessing the relevance of its output, i.e. the

∗ Corresponding author.
E-mail address: johannes.kunkel@uni-due.de (J. Kunkel).

recommended items, in the context of other items that are not rec-
ommended or their own preferences (Hellman et al., 2022; Tintarev
and Masthoff, 2022). Users might also regret their choices because they
feel they missed opportunities (Iyengar and Lepper, 2000). Presenting
a limited subset of items could also prevent users from exploring
and developing their personal preferences (Knijnenburg et al., 2016;
Petridis et al., 2022), and even pose a threat to human creativity in
general (Knijnenburg et al., 2016). Fairness and ethical issues may arise
as well (Dandekar et al., 2013; Burke et al., 2018). Finally, in cold
start situations, where a new user approaches a RS, the system is simply
unable to suggest appropriate items to them Ricci et al. (2022).

As an alternative to presenting a limited list of recommendations,
various graphical interfaces have been proposed to support users in
exploring the entire item space. To implement these interfaces, various
techniques from the field of information visualization (InfoVis) have been
applied. They range from rather simple chord diagrams (Tintarev et al.,
2018) to map-based visualizations (Sen et al., 2017; Knees et al., 2019).
An early example is TVLand (Gansner et al., 2010). All items of a
TV show dataset are distributed on a two-dimensional plane, so that
the distance between item positions represents how similar they are.

https://doi.org/10.1016/j.ijhcs.2022.102987
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In addition, the map indicates areas of high or low interest to the
active user by different colors. In previous research, we presented a
similar application that displays the item space of movies as a three-
dimensional landscape in which elevations and recesses indicate areas
of high and low user preferences in a latent factor space (Kunkel
et al., 2017). A similar combination of item space visualization and
personalized recommendations has also been applied to the domain
of music (Andjelkovic et al., 2019) and university courses (Ma et al.,
2021).

Since there are several ways to display recommendations in the
context of the entire item space, there are also various possible impli-
cations for how they are perceived by users—e.g. as how transparent,
controllable, or satisfying users perceive recommendations to be. In
particular, we formulated the following research questions:

RQ1: How does the type of item space visualization influence users’
perception and understanding of the item domain and the
recommendations?

RQ2: How does the type of item space visualization influence how
users interact with the visualization and the recommendations?

We acknowledge that the effectiveness of using visualizations in RS may
depend on individual user characteristics (e.g. see Millecamp et al.,
2018; Jin et al., 2019). For this reason, we raise a third research
question:

RQ3: How do users’ characteristics influence how they perceive,
understand, and interact with the item space and the recom-
mendations?

To our knowledge, there are no user studies so far that compare
different ways of visualizing large item spaces in RS and can answer the
RQs above. For this reason, we developed three web applications that
visualize the entire item space of a music dataset. All three prototypes
allow browsing the item space, rating and listening to songs, and re-
ceiving song recommendations, but use different types of visualization:
a list, a treemap, and a map.

Based on these prototypes, we conducted an empirical online user
study.1 Contrary to expectations based on previous work, we found that
the prototypes did not differ significantly in terms of the overview of
the item domain that users obtained, nor in terms of how transparent
or controllable the recommendations were perceived. However, we
observed that participants in the map condition experienced the highest
hedonic user experience and perceived their recommendations as more
novel compared to participants who were presented with a list or a
treemap. To uncover the reasons for this, we conducted a mediation
analysis and found that the relationship between visualization type
and the perceived novelty of recommendations was fully mediated by
the hedonic user experience. In other words, the novelty of recom-
mendations perceived by users is due to the general perception of the
application as novel, rather than a factual recommendation novelty.

The remainder of this article is structured as follows: In Section 2,
we present a thorough literature review of the ongoing research of
InfoVis in RS with special focus on visualizing entire item domains.
Based on the gaps identified in existing research, we formulated the
goals of our research in Section 3. This is followed by Section 4, where
we lay out the structure and creation process of the dataset that our
prototypes are based on. These prototypes are described in Section 5.
In Section 6 we introduce the design and the experimental procedure
of our user study; its results are presented in Section 7. Finally, we
discuss the results in Section 8 and provide suggestions for future work
in Section 9.

1 Supplementary material of this study can be found at https://data.mend
eley.com/datasets/hw39d5kxs6/3.

2. Related work

The abundance of items in modern repositories such as web stores,
news portals, social media sites, and streaming platforms makes it
increasingly difficult for users to find content they like. To support
users in exploring the item domain, a number of approaches have been
taken. Active customization of filter settings by users, for instance, is
a method that is especially suitable for exploring domains of search
products. Items in this domain typically have well-defined attributes
that users can search for (e.g. searching for a laptop with a certain CPU
speed). The item range of experience products, on the other hand, is not
as easy to explore using filters. Due to the complexity of evaluating ex-
perience products prior to purchasing, users tend to have a more vague
search goal and tend to take inspiration from others in making their
decision, such as salespersons or automated RS (Xiao and Benbasat,
2007). Examples of such experience products are perfumes, movies, or
clothing.

2.1. Recommender systems

Based on a user’s click history, purchases, or consumptions, RS
proactively suggest a set of similar or matching items to that user.
Among other benefits, RS have the potential to increase purchases,
user satisfaction, and customer loyalty (Ricci et al., 2022). A popular
domain where RS play a key role is music, for example in Spotify,2
Apple Music,3 or Deezer.4 One reason why this domain particularly
benefits from recommendations is that music search is mostly undi-
rected (Cunningham et al., 2003). Therefore, exploration is a central
task that music RS should support (Schedl, 2017).

In industry, a common approach of creating music recommenda-
tions (e.g. reported in the context of Spotify (McInerney et al., 2018)
and Deezer (Bendada et al., 2020)) is based on the multi-armed bandit
optimization problem (Anantharam et al., 1987). At the core of this
method is the metaphor of a gambler playing a series of slot machines.
Belonging to the family of reinforcement learning problems, the multi-
armed bandit problem’s key aspect is to find a trade-off between
exploration (gathering information for algorithmic optimization) and
exploitation (using the previously gathered information to maximize the
outcome). Applied to a music RS, the problem translates to suggesting
items to a user that best match their preferences (exploitation), while
also learning new preferences of the active user (exploration). Another
approach was presented by Anderson et al. (2020) and is based on the
word2vec embedding algorithm (Mikolov et al., 2013). The algorithm,
typically used on words in documents, is applied to songs in playlists:
songs, which frequently occur close to each other in the same playlists,
are also embedded close to each other in the resulting vector space. To
find recommendations for a particular seed song, the algorithm selects
the most similar songs based on the smallest cosine similarity to that
seed item. Apart from that, many other aspects can be considered in
real-world settings. In an experiment using bots to reverse engineer the
Spotify algorithm, Eriksson et al. (2019) found that recommendations
are sometimes influenced by demographic data. This is supported by
statements of McInerney et al. (2018), who list different aspects of
contextual factors, such as time of day, that may be taken into account
when calculating recommendations at Spotify.

In the research and development of RS, quality criteria that go
beyond accuracy have long been neglected (McNee et al., 2006; Konstan
and Riedl, 2012). Yet, such user-centric aspects may influence the
overall perceived quality of a RS as well (Pu et al., 2011; Kunkel
et al., 2019). Contemporary RS often still appear as black boxes to
their users, even though many approaches have been presented on

2 https://open.spotify.com/
3 https://www.apple.com/apple-music/
4 https://www.deezer.com
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how to increase system transparency (Herlocker et al., 2000; Sinha and
Swearingen, 2002; Zhang and Chen, 2020). Besides other effects, it has
been observed that increasing the transparency of a RS can improve
the perceived quality of recommendations (Kunkel et al., 2019), their
acceptance (Herlocker et al., 2000; Giboney et al., 2015), and users’
confidence in recommendations (Sinha and Swearingen, 2002). The
transparency of a RS is also closely related to how well users are able
to control recommendations and interact with the system (Tintarev and
Masthoff, 2015; He et al., 2016; Kunkel et al., 2020). Enabling users to
exert control over their recommendations can increase their satisfaction
with the system (Roy et al., 2019) and also increase perceived rec-
ommendation accuracy (O’Donovan et al., 2008). Other user-centered
quality criteria include the novelty of recommendations (Herlocker
et al., 2004; Hurley and Zhang, 2011; Vargas and Castells, 2011).
If users are aware of an item already, it rarely constitutes a good
recommendation—even if it accurately matches the user’s preferences.

When users rely too much on recommendations and are unaware of
other parts of the information space, they can become trapped in filter
bubbles (Pariser, 2011). While some authors consider such effects to be
exaggerated (Haim et al., 2018) or primarily brought about voluntarily
by users themselves (Bakshy et al., 2015), others link them to various
negative individual or even societal consequences (Del Vicario et al.,
2016; Flaxman et al., 2016; DiFranzo and Gloria-Garcia, 2017). To
encounter such potential effects, a system should help users stay aware
of the entire item space (Nagulendra and Vassileva, 2014), which can
also increase other positive attributes of RS. For example, it has been
shown that the diversity of consumed products increases when users
are able to explore the item space (Andjelkovic et al., 2019), which
can help them make more educated decisions (Tintarev et al., 2018).
When users are able to understand the item space, and thus the range
of options available to them, it can improve their confidence in their
choices (Jannach and Adomavicius, 2016) and reduce their fear of
missing out (Iyengar and Lepper, 2000). To this, Knijnenburg et al.
(2016) add the concept of self-actualization: users should be provided
with means to understand their own preferences, but also to explore
possible alternatives so that they can develop new preferences over
time. Dandekar et al. (2013) point out that overly personalized RS may
also lead to a societal polarization, while Burke et al. (2018) raise issues
of fairness that may run contrary to personalization. Finally, from a
more practical perspective, users need ways to manually browse the
items of a system in cold start situations, i.e. when the RS has not yet
collected enough data about the user’s preferences in order to generate
personalized recommendations (Ricci et al., 2022).

2.2. Item space visualizations in recommender systems

One field where the development of tools to efficiently browse and
explore large amounts of data plays a key role is InfoVis. In their semi-
nal work on InfoVis, Card et al. (1999) frame the purpose of InfoVis as
“to amplify cognition”. Users of such systems realize this amplification
by projecting an external representation (i.e. the InfoVis system) onto
an internal representation (i.e. their mental model of the system). A
well-designed InfoVis application thus reduces the cognitive workload,
which is especially important when dealing with large information
domains. Numerous design guidelines and interaction patterns have
been formulated to support the development of InfoVis applications.
Probably the most prominent among them is the information seeking
mantra by Shneiderman (1996): overview first, zoom and filter, then
details-on-demand.

InfoVis methods have also been applied to the domain of RS
(e.g. Parra et al., 2014; Du et al., 2018; Tsai and Brusilovsky, 2019a).
For example, perceived transparency and acceptance of recommenda-
tions can be increased by using bar charts (Du et al., 2018). By using
chord diagrams, Tintarev et al. (2018) showed that such visualizations
can help raise user awareness of potential blind spots regarding the
item space, thus targeting the issues discussed above. Cardoso et al.

(2019) introduced IntersectionExplorer, a dashboard designed to make
the influence of different RS in a hybrid setting more understandable.
A user study confirmed that IntersectionExplorer is easy to use and can
help find more relevant items. In their system SmallWorlds, Gretarsson
et al. (2010) used a graph-based approach to visualize the influence of
recommendations and let users interactively control this setting. As a
result, users perceived high levels of satisfaction and control.

One way in InfoVis to efficiently display large hierarchical tree
structures on two-dimensional screens are treemaps
(Shneiderman, 1992). Since such hierarchical structures are commonly
subject of visualizations in RS, treemaps have also been widely used in
this context. They have, for instance, been utilized to display the rec-
ommendation space (i.e. the set of personalized recommendations for a
given user), where cell sizes indicate the fit of each recommendation to
the current user’s preference profile (Katarya et al., 2014; Richthammer
and Pernul, 2017). In a past experiment, we used a treemap to display
the otherwise hidden user profile (Kunkel et al., 2020). In this system,
NewsViz, user profiles are presented within the entire item space of
news articles. With NewsViz, we showed that this can help make users
aware of the composition of their profile and whether it is imbalanced
and thus prone to bias. Something similar has also been observed
by Torrens and Arcos (2004), who demonstrate the ability of treemaps
to provide users with an overview of a music library. Finally, Chang
et al. (2019) used a treemap to visualize and manipulate search queries,
which motivated users to interact and led to higher user satisfaction.

While treemaps are well-established means of visualizing hierarchi-
cal data structures and comparing quantitative variables within them,
other forms of InfoVis have been found to be able to convey similarities
between data items better (Biuk-Aghai et al., 2017). For this, a region
metaphor (Fabrikant et al., 2006), which represents similarities as
distances in a map-like visualization, seems more appropriate. This spa-
tialization (Kuhn and Blumenthal, 1996; Skupin and Fabrikant, 2003)
takes advantage of the fact that using a spatial form of thinking is an
innate human trait (Gärdenfors, 2004). Spatial distances have proven
to be intuitively understood to represent the relatedness of markers
within a map, with smaller distances representing higher relatedness,
also known as “first law of geography” (Tobler, 1970). Interestingly,
the first law of geography was found to apply to depictions of non-
spatial data as well (Montello et al., 2003). Accordingly, many InfoVis
applications have been developed that represent large product spaces
as artificial maps (e.g. Pampalk et al., 2002; Sen et al., 2017; Meinecke
et al., 2022).

An early example of spatial maps, nepTune (Knees et al., 2006), is
placed in the domain of music—a domain that particularly benefits
from exploration interfaces. nepTune displays the item space of songs
as a three-dimensional geographic landscape that can be explored
by users. In a user study with nepTune, participants responded very
positively to the application. We reached a similar conclusion, in a user
study with a system that displays the item space of movies as a three-
dimensional landscape (Kunkel et al., 2017). As part of this application,
users can use metaphorical tools to model the surface of this landscape
and shape hills and valleys to express areas of high and low preference,
respectively. The user study showed that users perceived the system
as transparent and enjoyed using it. Sen et al. (2017) use the map
metaphor to visualize the item space of different domains based on the
knowledge stored in Wikipedia. To do so, they leverage connections
between articles to project any item space onto a two dimensional
embedding—Assuming the items can be found in Wikipedia. Petridis
et al. (2022) found that personalizing the interface in visualized music
recommendations helps users anchor their personal music tastes in the
visualization. While Petridis et al. use a graph-based approach, Liang
and Willemsen (2021) represent the neighborhood of the user’s music
taste as contour plot. This helped users discover new music genres
and was experienced as more comprehensible in contrast to a baseline
system with bar charts. In another approach, Andjelkovic et al. (2019)
present MoodPlay, a personalized music interface. In MoodPlay, the
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current user profile is visualized as point in a map of music tracks. By
listening to these music tracks, the point moves in the space and a trail
indicates the active user’s listening history. As one of the few existing
examples of using comparative studies to evaluate item space visual-
izations in RS, Andjelkovic et al. tested their system in a user study
where they compared it to a baseline without item space visualization.
As a result, they found that participants perceived the interactive map
as more transparent and easier to control. Recently, Ma et al. (2021)
presented CourseQ, a visual tool that recommends university courses to
students based on a map metaphor. They also compared their applica-
tion to a baseline without map visualization and found that CourseQ
was able to increase the perceived transparency of recommendations
as well as their acceptance.

2.3. User characteristics in recommender systems and information visual-
ization

User preferences for the structure of music taxonomies (i.e. whether
music should be organized by mood, genre, or activity) were found to
be related to the Big Five personality traits (McCrae and John, 1992;
Ferwerda et al., 2015). In particular, Ferwerda et al. observed that
participants high in openness were more likely to browse music by mood
and participants high in conscientiousness were more likely to browse
music by activity. Neuroticism correlated positively with preference for
an activity-based and genre-based music organization. Similarly, the
Big Five also correlated with musical tastes (Rawlings and Ciancarelli,
1997). High values for extraversion, for instance, relate to taste for
pop music. Other correlations with the Big Five were also observed in
relation to other aspects in the evaluation of user-centered research in
RS (Tkalcic and Chen, 2015). Millecamp et al. (2020) further showed
that affinity for explanations in RS can also depend on personality
traits; more specifically, Millecamp et al. found that users with high
musical sophistication and low openness used explanations more often.

Especially in terms of how users interact with more complex visual
interfaces, visual memory was found to be an important predictor (Mil-
lecamp et al., 2018; Jin et al., 2019). Conati et al. (2014) found that
task performance when using an InfoVis interface was dependent on
visual memory capacity. It was also found to influence preference for
vertical or horizontal orientation of the graphical interface. In another
experiment, Ziemkiewicz et al. (2011) observed that the locus of control
(i.e. whether a person feels in control over external events in their life)
influences users’ preference for an indented or a contained represen-
tation of a tree structure. In addition to locus of control, information
literacy (Boy et al., 2014), which describes how well users can handle
data visualizations, was found to influence perceptions of intelligent
systems that use InfoVis components (Lallé and Conati, 2019). In the
domain of music, it was observed that the musical sophistication (Müllen-
siefen et al., 2014) can influence how users interact with an intelligent
system (Millecamp et al., 2018).

3. Research goals

In summary, prior research shows that InfoVis methods are capable
of visualizing large item spaces in RS and thereby improving user-
centered features such as the perceived transparency, diversity, and
control of recommendations. These methods thus can alleviate prob-
lems that may arise when only a small set of recommendations is
presented and users cannot explore the underlying item space appro-
priately. Little research has been conducted on how this underlying
item space should be visualized and how different types of visualization
affect the perception of a RS, though.

Designing InfoVis systems that employ recommendations and with
which user studies are conducted to gain insights into perceptional
user variables is not trivial and can be performed in a variety of
ways. Of the empirical studies that use systems that visualize the entire
item space and embed a RS in it, few have done so in a comparative

manner (e.g. Cardoso et al., 2019; Andjelkovic et al., 2019; Ma
et al., 2021). Others do not attempt to represent the item space in its
entirety (e.g. Chen and Tsoi, 2011; Parra et al., 2014; Chang et al.,
2019; Liang and Willemsen, 2021) or do not use recommendations
in their visualization (e.g. Faridani et al., 2010; Biuk-Aghai et al.,
2014; Sen et al., 2017; Tintarev et al., 2018). Of these examples
that combine both, only few compare InfoVis methods with baseline
conditions (e.g. Andjelkovic et al., 2019; Ma et al., 2021). In these few
examples that display the entire item space, show recommendations as
part of that space, and perform comparative user studies with a baseline
system, these baseline systems are realized by masking out the visual-
ization component. We, however, argue that for a fair comparison, a
baseline condition should also employ means to browse and explore
the item space.

The aim of the study presented here is thus not only to implement
different InfoVis techniques in a RS, but also to compare their effects
on dependent perceptional variables such as the overview of the item
space obtained, the quality of recommendations, their perceived trans-
parency and control, and the user experience in general. As mentioned
above, a condition in such a comparative study should be implemented
as baseline that allows browsing and exploring of the item space with-
out complex visualizations. Thereby, we deem it especially important
to fix components other than the varying visualization between con-
ditions. In particular, these are modalities of interaction, background
data, and recommendation engine. In the next chapter, we explain how
we constructed our underlying dataset.

4. Hierarchical music dataset

To compare the different item space visualizations we developed a
common dataset for which we formulated the following requirements:
(1) the dataset should be reasonably large so that it is necessary
for users to use interactive tools to explore the item space and RS
to cope with information overload; (2) the dataset should consist of
experience products for which RS are particularly relevant (Senecal and
Nantel, 2004; Xiao and Benbasat, 2007); (3) during the experiment,
participants should be able to experience the items’ media content by
listening to it, as item consumption can influence users’ perception
of recommendations (Loepp et al., 2018); and (4) the dataset should
contain meaningful meta-information about the items so that it can be
displayed in different ways (e.g. as a two-dimensional map).

Based on these requirements, we developed a dataset in the domain
of music with songs as items to be recommended. A music recom-
mender has the advantages that music data is widely available, that
songs belong to the category of experience products, which are rela-
tively easy to consume during an online experiment, and that metadata
can also be retrieved, e.g. through interfaces of online streaming data
sources. Below, we describe the structure of the dataset we used in
our experiment and the procedure we employed to construct it. The
dataset is organized as a hierarchy because it has been observed that
hierarchies of musical genres are perceived as intuitive by users (Lee
and Downie, 2004), which may have its origins in physical record
stores where records are typically organized into hierarchical levels of
genres (Pachet and Cazaly, 2000).

4.1. Data collection

To create a meaningful genre hierarchy, we manually reviewed
genres and subgenres listed at AllMusic.5 and Wikipedia6 Based on this,
we carefully developed a genre hierarchy with 13 top-level genres and 5
subgenres each (see Table 1). Song, artist, and playlist data were then

5 https://www.allmusic.com/genres.
6 https://en.wikipedia.org/wiki/List_of_music_styles.
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Table 1
Organization of top-level genres and associated subgenres as used in our dataset. Numbers in parentheses indicate the number of artists that are associated with each genre.
Note that there is a certain overlap (i.e. artists can be assigned to multiple genres) and thus the number of artist of the top-level genres is not equal to the sum of artists in its
subgenres.

Top-level genre Subgenres

blues (510) boogie-woogie (49) bountry blues (110) modern blues (262) traditional blues (150) urban blues (81)
classical (290) Baroque (77) Classical Era (40) contemp. classical (130) modernism (139) Romantic Era (41)
country (846) bluegrass (81) contemp. country (280) country pop (331) country rock (472) Texas Country (123)
electronic (1038) dubstep (127) EDM (413) house (915) techno (810) trance (120)
hip hop (733) gangster rap (200) hardcore hip hop (148) southern hip hop (265) trap (328) underground hip hop (265)
indie (1440) Alt Z (243) alternative rock (616) indie folk (668) indiecoustica (119) indietronica (93)
jazz (533) bebop (144) bossa nova (40) contemp. jazz (163) swing (142) vocal jazz (194)
Latin (653) cumbia (65) Latin Pop (372) reggaeton (149) Regional Mexican (213) salsa (71)
metal (638) black metal (53) extreme metal (318) industrial metal (80) nu metal (176) power metal (77)
pop (989) electropop (341) europop (127) neo mellow (172) post-teen pop (195) singer-songwriter (109)
R&B (949) disco (217) funk (467) motown (193) quiet storm (241) soul (477)
reggae (379) dancehall (164) dub (85) lovers rock (93) ska (114) soca (93)
rock (1434) classic rock (857) glam rock (105) psychedelic rock (135) punk rock (264) soft rock (286)

collected, for which we utilized the Spotify Developer Web API.7 We
made sure that we collected only the data that were strictly necessary
to operate our applications. In particular, we performed the following
steps to obtain a dataset of artists and songs:

1. We retrieved the 30 categories available at Spotify (e.g. top lists,
romance, party).

2. For each of these categories, we fetched up to 100 of the most
popular playlists. This resulted in 1802 playlists.8

3. We collected all artists that appear at least once in these playlists,
resulting in 42 691 different artists.

4. Across all these artists, we gathered the associated genres, re-
sulting in 3959 genres.

5. We aligned our manually created genre hierarchy with the gen-
res obtained from Spotify to match their names (e.g. to match
hip-hop and hip hop). We also added some further genres. For
instance, we added all top-level genres to artists associated with
a sub-genre (e.g. we added hip hop to all artists with the genre
southern hip hop). A list with all the rules we used for adding
these genre associations can be found in the supplement.

6. We removed all artists who were not associated with at least one
genre of our hierarchy. This step reduced our dataset to a total
of 9063 artists.

7. Finally, we retrieved the 10 most popular songs for each artist.
This step left us with 88 948 tracks (sometimes a song appeared
in more than one top 10 list). We restricted recommendations to
these tracks.

The resulting dataset thus provides a sufficiently large item space
that exposes users to information overload and thus creates the need
for interactive exploration tools and the personalization capabilities
of RS. On the other hand the dataset remains manageable with the
computational power at our disposal during data collection, further
processing, and the runtime of the experiment.

4.2. Dimensionality reduction

As baseline for the Map condition and for determining sample
artists for each genre (see Section 4.3), we embedded all artists in
a two-dimensional space. To this end, we compared different algo-
rithms for dimensionality reduction (DR) as described in Section 4.2.1.
Most of these algorithms need a dissimilarity matrix to calculate the
two-dimensional embedding. As preparation, we thus computed a dis-
similarity score 𝛿𝑡𝑜𝑡𝑎𝑙 between each pair of artists 𝑎, 𝑏 ∈ 𝐴, with 𝐴 being
the set of all artists, as follows:

𝛿𝑡𝑜𝑡𝑎𝑙(𝑎, 𝑏) = 0.7 ⋅ 𝛿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑎, 𝑏) + 0.2 ⋅ 𝛿𝑝𝑙𝑎𝑦𝑙𝑖𝑠𝑡(𝑎, 𝑏) + 0.1 ⋅ 𝛿𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏). (1)

7 https://developer.spotify.com/documentation/web-api/.
8 The number is lower than the possible maximum of 3000 playlists, since

100 playlists were not available for all 30 categories.

The three terms in this equation correspond to the three aspects we
consider important for a comprehensible dissimilarity between artists:
the content of their music (i.e. genres and musical features), their
appearance on playlists, and their popularity. The weights of the terms
in Eq. (1) and the subsequent equations below (Eqs. (2) and (4))
were determined by a pre-study. For several weight combinations,
we calculated a two-dimensional artist embedding as described in
Section 4.2. For each of these embeddings, we then asked a small team
of researchers to carefully evaluate them in terms of the comprehensi-
bility of the artist distribution—particularly with respect to local artist
neighborhoods. Below, we explain how 𝛿𝑐𝑜𝑛𝑡𝑒𝑛𝑡, 𝛿𝑝𝑙𝑎𝑦𝑙𝑖𝑠𝑡 and 𝛿𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦
were calculated.

Content-based dissimilarity. As the name suggests, 𝛿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑎, 𝑏) aims to
capture the content-based dissimilarity between the two artists 𝑎 and
𝑏. The equation we used to calculate this is as follows:

𝛿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑎, 𝑏) = 0.9 ⋅ 𝛿𝑔𝑒𝑛𝑟𝑒(𝑎, 𝑏) + 0.1 ⋅ 𝛿𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑎, 𝑏) (2)

with

𝛿𝑔𝑒𝑛𝑟𝑒(𝑎, 𝑏) = 1 − 𝑐𝑜𝑠(𝑔𝑎, 𝑔𝑏) (3)

and

𝛿𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑎, 𝑏) = 0.7 ⋅

(

‖𝑓𝑎𝑎 − 𝑓𝑎𝑏‖

max𝑥,𝑦∈𝐴(‖𝑓𝑎𝑥 − 𝑓𝑎𝑦‖)

)

+ 0.3 ⋅

(

‖𝑓𝑠𝑎 − 𝑓𝑠𝑏‖

max𝑥,𝑦∈𝐴(‖𝑓𝑠𝑥 − 𝑓𝑠𝑦‖)

)

. (4)

Thereby 𝑔𝑥 ∈ {0, 1}|𝐺| in Eq. (3) denotes a vector with the size
equal to that of the set of all genres 𝐺 (here: |𝐺| = 3959). This vector
contains a 1 if the corresponding genre is associated with artist 𝑥,
and a 0 otherwise. In contrast, 𝛿𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 represents the dissimilarity of
musical features. For this, we relied on the six of the 13 available audio
features provided by Spotify.9 More specifically, we chose the following
features: acousticness, danceability, energy, instrumentalness, liveness, and
valence. We decided to rely on these more abstract attributes because
they take into account the other, less abstract features such as loudness
and tempo (e.g. energetic songs are typically fast and loud). Moreover,
these six features are all stored in an interval scale of [0, 1], which
makes them compatible and easy to compare. To calculate a dissimilar-
ity score between artists based on these features, we used Eq. (4). Since
Spotify provides such features for each song but not for each artist, we
aggregated them, so that 𝑓𝑎𝑥 ∈ R𝑓 denotes a vector containing the
average of the features (here: 𝑓 = 6) of the 10 most popular tracks
of an artist 𝑥. The vector 𝑓𝑠𝑥 ∈ R𝑓 , on the other hand, contains the

9 For a brief description of all available features, see https://developer.
spotify.com/documentation/web-api/reference/#/operations/get-several-
audio-features.
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standard deviation of the features of the 10 most popular tracks of artist
𝑥. We decided to use the average as well as the standard deviation of
features to consider the typical musical features an artist adheres to but
also their musical variation. We normalized the distance between the
feature vectors of artists 𝑎 and 𝑏 by the maximum distance between any
artists’ feature vectors.

The weights in Eqs. (2) and (4) were also determined as described
above. Here, however, we also based the weighting on theoretical con-
siderations. In this sense, 𝛿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 received the highest weight in Eq. (2),
because we wanted the overall distribution to follow the genres of the
artists and thus represent the genre hierarchy of our dataset.

Playlist-based dissimilarity. In addition to the content-based dissimilar-
ity explained above, we also considered a dissimilarity based on the
co-occurrence of artists in the same playlists. By doing so, we aimed at
capturing more subtle similarities between artists that were not neces-
sarily based on the artists’ genres or musical features. Additionally, we
also wanted to influence the embedding towards the mechanism behind
Spotify’s recommendation algorithm, in which the co-occurrence of
songs in playlists most likely plays a key role (Anderson et al., 2020).
We calculate the playlist-based dissimilarity by

𝛿𝑝𝑙𝑎𝑦𝑙𝑖𝑠𝑡(𝑎, 𝑏) = 1 −
(

|𝑃𝑎 ∩ 𝑃𝑏|

𝑚𝑖𝑛(|𝑃𝑎|, |𝑃𝑏|)

)

(5)

where 𝑃𝑥 denotes the set of all playlists in our dataset that contain at
least one song of artist 𝑥.

Popularity-based dissimilarity. Finally, we included the popularity of
artists in their comparison, but with a rather small weight. This was
to capture how “mainstream” artists are, which we also deem an
important factor in creating a comprehensible distribution of artists.
Each artist is associated with a popularity score by Spotify, which is
given in a range of [0, 100] and denoted by 𝑝𝑜𝑝(𝑥) below. The popularity-
based dissimilarity between two artists 𝑎 and 𝑏 is calculated as follows:

𝛿𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏) =
|𝑝𝑜𝑝(𝑎) − 𝑝𝑜𝑝(𝑏)|

100
. (6)

4.2.1. Comparison of DR algorithms
Different algorithms can be used when reducing the dimensionality

of a dataset. To decide for one of the applicable DR algorithms, we
compared their scores for trustworthiness and continuity as described
by Kaski et al. (2003): While trustworthiness describes whether close
neighborhoods in the projected, i.e. low-dimensional, space can also be
found in the original, i.e. high-dimensional, space, continuity describes
whether close neighborhoods in the original space can also be found
in the projected space. Both scores are in the range of [0, 1], where a
perfect value of 1 means that no local neighborhoods are added (trust-
worthiness) or lost (continuity). Overall, we compared the following
algorithms:

∙ Multidimensional scaling (MDS): MDS is a technique that seeks
to project a distance matrix onto a low-dimensional embedding.
Thereby, MDS tries to preserve the distances between all points
in the projection as much as possible to the distances given as
input (Borg and Groenen, 2005).

∙ Isomap: Isomap follows a similar technique as MDS, but is not
bound to a linear projection of input distances. Instead, Isomap
favors maintaining local neighborhoods over global distance
settings (Tenenbaum et al., 2000).

∙ Locally linear embedding (LLE): LLE also favors maintaining local
distances over global distances. While it, like Isomap, belongs to
the class of non-linear DR algorithms, it has no internal global
model and maps each local neighborhoods linearly to an output
hyperplane (Kayo, 2006).

Table 2
Scores for trustworthiness and continuity for the DR algorithms we used.

t-SNE MDS LLE Isomap

Trustworthiness 0.998 0.910 0.885 0.921
Continuity 0.993 0.824 0.950 0.947

∙ T-distributed stochastic neighbor embedding (t-SNE): In general, t-
SNE also favors maintaining local relationships between data
points, but it has been shown to be superior at revealing clusters
in the data while also preserving global relationships to a certain
degree. It is thus well suited for both global and local repre-
sentations of high-dimensional datasets in a low-dimensional
space (van der Maaten and Hinton, 2008).

Results on trustworthiness and continuity for these algorithms can be
found in Table 2.

We noted that t-SNE yielded the highest scores for trustworthiness
and continuity, and therefore concluded that this method was best
able to preserve the structure of the dataset. In addition, we judged
the two-dimensional artist distribution as obtained from t-SNE to be
comprehensible, and thus decided to stick to this distribution for all
subsequent steps.

4.3. Determination of representative samples

For each genre, we determined two representative sample artists
to illustrate the corresponding genre. More specifically, for each genre
𝑖 ∈ 𝐺, we determined two artists, one at the center of the cluster of all
artists associated with that particular genre by

𝑟𝑒𝑝_𝑐𝑒𝑛𝑡𝑒𝑟(𝑖) = arg max
𝑥∈𝐴𝑖

(

𝑝𝑜𝑝(𝑥)
100

+

(

1 −
‖𝑝𝑥 − 𝑐𝑖‖

max𝑦∈𝐴𝑖
(‖𝑝𝑦 − 𝑐𝑖‖)

))

, (7)

and one that lies in its periphery by

𝑟𝑒𝑝_𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦(𝑖) = arg max
𝑥∈𝐴𝑖

(

𝑝𝑜𝑝(𝑥)
100

+
‖𝑝𝑥 − 𝑐𝑖‖

max𝑦∈𝐴𝑖
(‖𝑝𝑦 − 𝑐𝑖‖)

)

. (8)

Here 𝑝𝑥 ∈ R2 denotes the two-dimensional position vector of artists
𝑥 as calculated by t-SNE as explained above. The set 𝐴𝑖 represents the
set of all artists associated with genre 𝑖. The vector 𝑐𝑔 ∈ R2 denotes
the centroid of genre 𝑔, i.e. the arithmetic mean of all artist positions
associated with that genre. Finally, 𝑝𝑜𝑝(𝑥) corresponds to the popularity
score of artist 𝑥, as introduced in Section 4.2 and Eq. (6). With these
two samples for each genre, we wanted to present one very typical artist
for a genre, but also one that allows users to perceive its variety. This is
especially important for very broad genres such as Latin, which includes
typical Latin music such as salsa on the one hand, but also more exotic
subgenres such as reggaeton. All samples determined by this method can
be found in the supplement.

5. Prototypes for interactive item space exploration

In the user study described in Section 6, we compared three proto-
types that depict the item space of music artists and songs introduced
in the previous chapter. Each of these prototypes is implemented as a
web application and uses a unique style for visualizing the item space:
A very simple List visualization, which represents the item space as a
hierarchical tree list and serves us as baseline condition. A Treemap
visualization, where genres and subgenres are displayed as tiles. And
a Map visualization that uses the metaphor of a geographical map,
representing artists as discrete points on a two-dimensional surface.

Except for the different visualization of the item space, all our
prototypes follow the same general structure (see Fig. 1). The visu-
alization is displayed in a large central exploration area (A). Below,
details of the currently selected item (i.e. artist) can be displayed
on demand in the details area (B). In addition, all prototypes share
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Fig. 1. The main structure that our three prototypes have in common: The exploration
area (A) contains the visualization of the item space, which varies among prototypes. In
each prototype it also contains a search bar and a help button in the upper right corner.
The details area (B) shows the currently selected artist along with their top 10 songs
and controls for play/pause, like, and add a song to the playlist. As soon as the first
song is liked, the recommendation area (C) depicts a list of 10 song recommendations.
Finally, the playlist area (D) can be used to create and manage a custom playlist.

areas for personalized recommendations (C) and creating a playlist
(D). These three components are presented in Fig. 2. To further blend
search and browsing capabilities, each exploration area also contains
a search bar in which users can type in a name of an artist, who is
then highlighted in the exploration area and displayed in the details
area. The exploration area also contains a help button that opens a
pop-up window showing instructions how to use the application. In the
details area, there is a button to express preferences for songs which
will result in an immediate recalculation of recommendations. During
the design of each prototype, we followed the information seeking mantra
by Shneiderman (1996).

All prototypes are implemented as single-page web application. To
determine distinctive colors of the genres, we utilized colorbrewer.10

Recommendations are calculated by Spotify: each time a user clicks
the like-button, a request for recommendations is sent to the Spotify
API with all previously liked songs as seed items. Further details on the
interface design of each prototype can be found below while informa-
tion on how we implemented them can be found in the supplementary
material.

5.1. List prototype

Depicting hierarchies in the form of a (tree) list constitutes a com-
mon method. For this reason, we decided to use an alphabetically
ordered, vertically displayed list as our baseline condition (Fig. 3). In
particular, for each top-level genre, one row is displayed in this list.
These rows can be expanded by clicking on them, whereupon the cor-
responding subgenres are displayed. When these subgenres are selected,
they also expand, and reveal all artists associated with that subgenre.
Note that artists may be assigned to multiple genres and hence appear
in multiple subgenre lists. When users search for a specific artist using
the search bar in the upper right corner, that artist’s first matching
subgenre and associated supergenre expand. Then, the viewport scrolls
to center that subgenre.

5.2. Treemap prototype

In a treemap, the space available for visualization is represented as
rectangles for each element at each level of a hierarchical data structure
to be visualized. The area of the rectangles thereby indicates a quan-
tifiable attribute of the corresponding element. We apply this method

10 https://colorbrewer2.org.

to display genres and subgenres as elements and the number of artists
they contain as quantifiable attribute (Fig. 4). More specifically, we
follow the approach of squarified treemaps (Bruls et al., 2000), where
rectangles are arranged so that their aspect ratios are as balanced as
possible. Instead of thin, elongated rectangles the algorithm thus aims
to create squares, which are easier to interpret. In our visualization, the
resulting tiles (i.e. squarified rectangles) are sorted in decreasing size
from top left to bottom right. In other words, the tiles start with the
most popular genre (i.e. the genre with the most associated artists) at
the top left and end with the least popular genre at the bottom right.
When users click on one of these tiles, the view “zooms in” so that the
display is now filled with the subgenres of the genre clicked on. The
same rules apply to these subgenres in terms of their size and position
as to the genres. Within the tile of each sugrenres, an alphabetically
ordered, scrollable list of all artists related to that subgenre is depicted.

5.3. Map prototype

The prototype with the most complex visualization depicts the item
space as a two-dimensional map (Fig. 5). All artists are embedded in
this two-dimensional space as described in Section 4.2. Afterwards, to
create a more uniform distribution (i.e. a high entropy layout), we
applied a small magnetic force based on Rutherford-scattering to the
artists. As a result, they repel each other slightly so that very densely
clustered areas become more readable.

The three levels (top-level genres, subgenres, all artists) of the genre
hierarchy were implemented in the Map application with a smooth
transition. In this way, our application applies semantic zooming : the
further the user zooms in, the more items and their labels become
visible in the respective area. In addition to zooming in and out, users
can pan the map horizontally and vertically to explore neighboring
regions. To search for a particular artist, users can utilize the search
bar in the upper right corner. The artist found is selected immediately
(i.e. shown in the details view) and the map is centered on that artist,
keeping the current zoom level constant. The minimap in the upper
left corner indicates at any time the current position of the view on the
main map. By clicking on this minimap, users can have the main view
centered at this position.

5.4. Visual complexity of prototypes

Comparing complex visual interfaces is not trivial. In an attempt to
quantify the complexity of our user interfaces nonetheless, we manually
counted all artists visible in screenshots we took of each condition (see
supplementary material) and measured their visual clutter. To achieve
the latter, we calculated the feature congestion (FC) value, which mea-
sures how “difficult it would be to add a new item that would reliably
draw attention”, and the subband entropy (SE), which represents “the
number of bits required for [. . . ] image coding” (Rosenholtz et al.,
2007).

With 39 visible artists, the List interface displays the lowest number
of items simultaneously. Accordingly, the clutter measures are also
lower than for the other interfaces (SE = 1.59, FC = 2.06). There
are 95 artists visible on the screenshot of the Treemap interface. The
corresponding clutter measures are: SE = 2.17, FC = 2.78. Finally,
the screenshot of the Map interface shows the highest number of
artists (305). While the SE is also highest for this interface (2.77),
the corresponding FC is slightly lower than for the Treemap condition
(2.26).

While we acknowledge that these values are based on manually
taken screenshots and are therefore rather illustrative, we have care-
fully attempted to apply the same hierarchical level of detail to all of
them and thus deem the results reported here to be reasonably valid.
However, future research should definitely investigate the comparison
of clutter between different visualizations of the item space.
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Fig. 2. Screenshot of the control elements as they were used in all three prototypes. The central area shows the currently selected artist and the currently selected song. It also
contains controls of the music player. The area on the right hand side shows a list with current recommendations while the area on the left lets users manage a custom playlist.

Fig. 3. Print-optimized screenshot of the exploration area in the List prototype: The item space is depicted as a hierarchical list. The top-level genre jazz is currently expanded
and its subgenres are visible. Of these, the subgenre bossa nova is expanded. The artist Charlie Byrd is currently selected (white font) and artists with liked songs (orange font),
and recommendations (magenta font) are showing.

Fig. 4. Print-optimized screenshot of the exploration area in the Treemap prototype: The item space is depicted as a squarified Treemap. The top-level genre jazz is currently open,
so that its subgenres are visible. The artist George Benson (white font) is currently selected. In addition, artists with liked (orange font) and recommended (magenta font) songs
are being displayed for the currently visible genres.

6. User study

To compare the different visualization methods, we conducted an
empirical user study using a between-subjects design. Consistent with
our RQs, we aimed at investigating the influence of the item space
visualization on the perception of recommendations, differences in how
participants explored the item space, and connections between user
characteristics and these dimensions. The study was performed as an
online survey that included interaction tasks with the prototypes and
different questionnaires. As questionnaire tool, we used the online

platform SoSci Survey.11 The study was approved by the local ethics
committee of the University of Duisburg–Essen in Germany.

6.1. Preparation and survey of user characteristics

Participants were briefed that they were about to test a novel appli-
cation: the MusicExplorationApp. They were then asked for their consent

11 https://www.soscisurvey.de/.
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Fig. 5. Print-optimized screenshot of the exploration area in the Map prototype: The item space is depicted as topological map. The view is currently on an intermediate zoom level
and focuses on the subgenres swing and vocal jazz of the top-level genre jazz. The artist Kid Ory (white font) is currently selected. Artists with liked (orange font) or recommended
(magenta font) songs are highlighted on their respective map position. The minimap in the upper left corner displays the position of the current view (transparent black rectangle
on the east) in context of the entire map.

Fig. 6. Screenshot of the description of task 1 as it was presented to participants.

to use their data in anonymized form and redirected to an initial
questionnaire. This questionnaire was composed of questions about par-
ticipants’ demographics, Big Five personality traits, which we measured
with the 10-item inventory by Rammstedt and John (2007), and decision
style, which was measured with the instrument by Hamilton et al.
(2016). This was followed by an online implementation12 of the Corsi’s
block-tapping test (Corsi, 1972) to measure visual memory capacity.
Subsequently, participants were randomly assigned to one of the three
conditions (i.e. List , Treemap, Map) and were given a brief introduction
to that system in textual form, including several screenshots (included
in the supplement). It was made clear to them which interaction options
they have, that recommendations are calculated each time they like a
song, and that Spotify’s recommendation algorithm is used. Participants
were then directed to the respective system of the condition to which
they were assigned. Here, they first had to login with their Spotify
credentials before they were presented with the application. For the
purpose of this study, each prototype contained an additional area at
the top of the screen where users could read the description of the
current task. This description was collapsible into a thin bar at the top
of the screen. This bar permanently showed the title of the current task,
the progress made, and a button to proceed to the next task. Below
we describe each task and our motivation behind it. We also indicate
below which areas and interactive elements were disabled and enabled
for each task.

6.2. Task 1

The first task served as introduction to the system and to elicit
an initial preference profile of the active participant (Fig. 6). It also
aimed at inducing them to actively explore the item space. In this task,

12 We used a Javascript adaption of Professor Gijsbert Stoet’s implementa-
tion (https://www.psytoolkit.org/experiment-library/corsi.html).

participants had to rate 5 songs. On minimizing the long task descrip-
tion in Fig. 6, the task title (“Like 5 songs”) and the counter remained
visible. The playlist area, add-to-playlist button, and recommendation
area were disabled during this task. All other elements and areas were
enabled. Liking a song did not trigger an immediate calculation of
recommendations. After a participant had liked at least five songs, they
were able to proceed to the next task.

6.3. Task 2

In this task, participants were asked to listen to their recommenda-
tions (Fig. 7). With this task, we wanted to draw participants’ attention
to the recommendation part of the system. In contrast to task 1, the
recommendation area was enabled during this task. It displayed a list
of recommendations based on the preferences expressed in task 1. In
addition, the recommendations were also shown inside the exploration
area, as explained for each prototype in Section 5. The playlist area,
the add-to-playlist button, and the like button were disabled during
this task. Thus, participants were not able to trigger a recalculation of
recommendations. After selecting each of their 10 recommendations at
least once, participants could proceed to the next task.

6.4. Task 3

While task 1 and task 2 served as an introduction and aimed
to familiarize participants with the system, its exploration area, and
recommendations, tasks 3 and 4 aimed at simulating a more realistic
day-to-day situation in which a user creates a new playlist. To this end,
in task 3, we asked participants to create a playlist of at least six songs
for themselves (Fig. 8). From task 3, all functionalities of the system and
all areas of the interface were available. The same recommendations
as in task 2 were shown. As soon as the playlist contained at least six
songs, participants were able to proceed to the next task.
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Fig. 7. Screenshot of the description of task 2 as it was presented to participants.

Fig. 8. Screenshot of the description of task 3 as it was presented to participants.

Fig. 9. Screenshot of the description of task 4 as it was presented to participants.

6.5. Task 4

As in the previous task, in task 4, the participants were asked to
create a playlist (Fig. 9). This time, however, they were to create a
playlist for a party or dinner with friends. With task 4, we aimed at
letting users think about the diversity of their playlist and thus make
more use of the exploratory components of the application. As in task
3, all functionalities of the system and all areas of the interface were
available during task 4. After this playlist also consisted of at least six
songs, participants were directed to a final questionnaire.

6.6. Final questionnaire

The final questionnaire contained questions on various dimensions
regarding the perception of recommendations, which we used to test
how the visualization of the item space affects how users perceive
their recommendations. In particular, we used questions to survey
recommendation quality and recommendation variance (5-point Likert
scale) from the instrument introduced by Knijnenburg et al. (2012),
while perceived recommendation transparency and recommendation nov-
elty were measured by items from the ResQue inventory (5-point Likert
scale, Pu et al. (2011)). Furthermore, we added the user experience
questionnaire (UEQ), for which we used the shortened UEQ version
presented by Schrepp et al. (2017) with a 7-point bipolar scale. The
UEQ comprises pragmatic and hedonic UX, which enables us to make
statements about experienced system usability as well as other user
experiences such as excitement and interest. We complemented these

existing questionnaires with some self-generated questions. Specifi-
cally, these were questions assessing the participants’ perceived degree
of overview over the item space (5 items, Cronbach’s 𝛼 = .746) and
perceived degree of control over the recommendation process (3 items,
Cronbach’s 𝛼 = .738), both of which were measured on a 5-point Likert
scale. The exact wording of all instruments used can be found in the
supplement of this article.

6.7. Sample

We recruited 91 (51 male, 38 female, 2 other) participants with
an age of 𝑀 =26.53 (𝑆𝐷 = 7.07) through the crowdworking plat-
form Prolific.13 As mandatory technical requirements, we specified that
participants needed a Spotify Premium account, a desktop computer
with a mouse and speakers or headphones, and a modern browser with
Javascript enabled. We paid participants £ 5 (about $ 6.80 or € 5.96).
To complete the study, participants needed an average of 33.17min
(𝑆𝐷 = 18.32). Since Prolific is a UK-based platform, it was not sur-
prising that most participants indicated that they currently liven in the
United Kingdom (20.9%), followed by other European countries such
as Portugal (12.1%) and Poland (11.0%). However, participants from
outside Europe took also part in the study. There were, for instance,
6.6% participants from Canada and 5.5% from Mexico. The sample was
rather highly educated, with most participants reporting a university

13 https://www.prolific.co/.
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Table 3
Descriptive questionnaire results for perceptional variables of the three prototypes. In
case of a significant difference, the higher value is marked in bold and the condition
to which the significant difference was present is indicated by a superscript letter.
Pragmatic and hedonic user experience differed on a significance level <.05, and
recommendation novelty on a significance level <.1. Exact p-values can be found in
Section 7.1.

List Treemap Map

𝑀 𝑆𝐷 𝑀 𝑆𝐷 𝑀 𝑆𝐷

Perception of application/item space visualization

Pragmatic user experience 𝟓.𝟐𝟖T 1.29 4.66 1.48 5.02 1.41
Hedonic user experience 4.65 1.15 4.38 1.32 𝟓.𝟒𝟎L,T 1.09
Item space overview 3.55 0.70 3.30 0.81 3.61 0.77

Perception of recommendations

Quality 4.07 0.64 3.96 0.73 4.11 0.69
Variety 3.35 0.90 3.65 0.66 3.60 0.71
Novelty 3.10 0.16 3.47 0.87 𝟑.𝟔𝟎L 0.94
Transparency 4.07 0.86 4.00 0.79 4.25 0.82
Degree of control 3.66 0.83 3.87 0.79 3.87 0.81

degree (39.6%) as their highest level of education, followed by a high
school diploma (24.2%), and a higher education entrance qualification
(15.4%). As their profession, 40.7% reported to be employed, while
29.7% responded being a university student, and 12.1% responded
being unemployed or seeking employment.

Of the 33.17min, participants took for completing the entire study,
they spent an average of 15.54min (𝑆𝐷 = 08.68) for interacting
with the application and 17.73min (𝑆𝐷 = 14.62) for processing the
questionnaires.

7. Results

This chapter is structured according to our three research questions
introduced in Section 1: Regarding RQ1 (How does the type of item
space visualization influence users’ perception and understanding of the item
domain and the recommendations?), we present a quantitative analysis of
questionnaire responses (Section 7.1), followed by a mediation analysis
in Section 7.2, which we used to unravel causal relationships between
hedonic user experience and recommendation novelty. We furthermore
present a brief report on qualitative comments in Section 7.3. In terms
of RQ2 (How does the type of item space visualization influence how users
interact with this visualization and the recommendations?), we present log
data in Section 7.4. These data are further analyzed in Section 7.5,
where we explore interaction patterns and present an alternative per-
spective on our results by clustering participants based on how they
interacted with the application. Finally, in Section 7.6, we analyze user
characteristics according to RQ3 (How do users’ characteristics influence
how they perceive, understand, and interact with the item space and the
recommendations?).

Throughout this chapter, we use an 𝛼-level of 0.1 for all significance
tests. We consider this threshold acceptable since we are comparing
relatively complex visualizations which is, despite the experimental
rigor applied, to some extent still exploratory. However, we also report
exact p-values for each of these tests.

7.1. Questionnaire results

Descriptive results for the perceptual dimensions of item space
visualization and recommendations as introduced in Section 6.6 can
be found in Table 3. To determine whether there was a difference
between our three conditions in terms of the results in Table 3, we
conducted a one-way MANOVA. The multivariate effect for condition
was significant (𝐹 (16, 162) = 2.558, 𝑝 = .002, Wilk’s 𝛬 = .637, 𝜂2𝑝 = .202).
Post hoc tests with Bonferroni-corrected 𝛼-levels revealed significant
differences regarding the recommendation novelty (𝐹 (2, 88) = 4.025, 𝑝 =
.074, 𝜂2𝑝 = .058) between the Map and the List condition (𝑝 = .082).

Furthermore, we found significant differences in terms of pragmatic user
experience (𝐹 (2, 88) = 7.384, 𝑝 = .026, 𝜂2𝑝 = .079) between the List
and the Treemap condition (𝑝 = .028), and in terms of hedonic user
experience (𝐹 (2, 88) = 8.524, 𝑝 = .003, 𝜂2𝑝 = .121), between the List and
Map condition (𝑝 = .049) and between the Treemap and Map condition
(𝑝 = .003).

Apart from this, we found no differences with statistical significance
in our questionnaire results. However, we did find minor trends in
some descriptive results. For instance, we observed that the perceived
degree of control was slightly higher in the Map and Treemap condition
compared to the List condition. Degree of overview and recommendation
transparency tended to be higher in the Map condition compared to the
Treemap condition (and to a lesser extent in the List condition).

7.2. Mediation analysis

As reported above, we found an unexpected difference in the per-
ceived recommendation novelty between conditions. We hypothesize
that the hedonic user experience is the reason for this perceived novelty
of recommendations. We base this hypothesis on three indicators:

1. Recommendation novelty was highest in the condition with the
highest hedonic user experience (i.e. the Map condition). How-
ever, recommendations in each condition were provided by the
Spotify API and thus calculated in the exact same way.

2. Recommendation novelty as subjectively perceived by participants
does not correlate with an objective novelty of recommendations
as calculated by the self-information (Eq. (9)).

3. Prior work has shown that users judge the visual appeal of
websites in the first moments when accessing it Lindgaard et al.
(2006). We thus suppose that participants assessed the hedonic
user experience during task 1 and thus before they were presented
with recommendations. We argue further that participants cog-
nitively inferred the novelty of recommendations based on this
judgment, as has been observed in situations with incomplete
information (Kardes et al., 2004).

To test this hypothesis we conducted a mediation analysis. More
specifically, we used a bootstrapping approach (Hayes, 2022) to test
the hypothesized mediation model depicted in Fig. 10. First, we created
a binary dummy variable (conditionmap) for the Map condition (1 =
Map; 0 = List or Treemap). Subsequently, we utilized the “PROCESS”
macro (Hayes, 2022) in SPSS with 90% confidence intervals and boot-
strapping with 𝑁 = 5000 to test for significance of an indirect effect
mediated by hedonic user experience. We found the path conditionmap →
hedonic user experience to be significant (𝑡(89) = 3.37, 𝑝 = .001). Also, the
path hedonic user experience → recommendation novelty was significant
(𝑡(89) = 5.90, 𝑝 < .001). Through this mediation, the direct effect of
conditionmap → recommendation novelty disappears (𝑡(89) = −0.19, 𝑝 =
.851), revealing that the relation of conditionmap and recommendation
novelty is fully mediated by hedonic user experience.

7.3. Qualitative results

To analyze qualitative results, we studied comments participants
made at the end of the questionnaire. Therefore, we first ordered
participants’ comments according to the condition they were in. Subse-
quently, two researchers checked those comments and discussed them
regarding their core statement. Below we briefly report our findings. All
comments in their original wording can be found in the supplement.

Participants who were exposed to the List application gave a lot
of positive feedback. “It is pretty good” (P46), “I genuinely think this
app is great!” (P35), and “I liked the app!” (P48) are examples. Others,
however, did not like this condition as much, commenting statements
such as “Design could be better” (P91), “it looks not beginner user friendly.”
(P65), or “The system is a little slow” (P88). Many participants compared
the app to their experience with Spotify: “I was surprised how easy
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Fig. 10. Pathway diagram of the mediation of hedonic user experience in the relationship between conditionmap and perceived recommendation novelty. The variable conditionmap is
a dummy variable coded as binary variable with respect to the Map condition (1 = Map; 0 = List or Treemap).

it was to use compared to spotify” (P53), “[the system] was capable of
recommending new songs for me [. . . ], slightly better than the ’spotify radio’
or ’people like you also played’” (P71).

In the Treemap condition, we found one participant who made a
similar statement: “I added a few songs from this to my spotify playlist!
On spotify my recommendations are kinda boring and not what I really
like.” (P57). In this condition, the recommendations were also mainly
experienced as positive. However, the general perception of the in-
terface in the Treemap condition was not that positive: “I liked the
recommendation part but the app in general was confusing” (P57). Some
participants pointed at general problems with usability, such as P51:
“the space to see the songs is too small.” Some also complained about the
performance in computing recommendations and described the system
as “slow” (P26), or taking “a bit of time to load” (P18). That being said,
many participants enjoyed using the system and commented statements
such as “the experience was pretty nice” (P43), “[the system] is fun to use!
No need to improve anything.” (P64), or “this system was well put together!
It worked perfectly and did its job.” (P41).

The most positive statements were made by participants in the Map
condition. They gave comments like “It seems very interesting! I’d love to
use a tool like this regularly” (P74), “I found the application very intuitive”
(P28), “It is amazing! This is exactly what i was looking for” (P39), and
“It was so cool!! I really enjoy it” (P23). On the other hand, the Map
interface was also sometimes described as “very laggy” (P10), “a bit
confusing” (P03), or just “poorly made” (P68). Some stated that they
“did not feel like exploring the genre map at all” (P62), and thus wished
that “the 3 boxes at the bottom [i.e. recommendation, details, and playlist
area] were taller”. Finally, we received some conceptual suggestions to
consider in the next iteration of development: “I’d be interested to see
[my taste profile] as a ‘‘lit up’’ visual map just for me and [to] be able to
compare with others.” (P70), “It needs to look more modern in my opinion.
[. . . ]Maybe have the world map look more like the world?” (P47).

7.4. Log data

While participants interacted with the different prototypes, we
logged various events, some of which can be found in Table 4.14 To
test for differences in interaction behavior and thus to answer our
second research question, we conducted another one-way MANOVA
and post hoc tests with Bonferroni correction. The multivariate effect
for condition was significant (𝐹 (18, 160) = 2.587, 𝑝 = .001, Wilk’s 𝛬 =
.600, 𝜂2𝑝 = .225). Participants took a comparable amount of time to
complete their tasks across conditions (no significant differences). Only
in tendency, participants in the Treemap condition seem to take slightly
less time to complete their tasks. We also analyzed in which region
of the interface each click occurred: exploration area, details area,

14 Raw log data can be found in the supplement.

recommendation area, and playlist area (see also Fig. 1). Descriptive
data can be found in Table 4. In summary, we only found that the
number of clicks in the recommendation area was significantly higher
in the Map than in the Treemap condition (𝐹 (2, 88) = 2.788, 𝑝 =
.074, 𝜂2𝑝 = .060). However, when counting interactions for all areas and
considering mouse scrolls too, this number of overall interactions was
significantly higher in the Treemap condition than in the List condition
(𝐹 (2, 88) = 6.627, 𝑝 = .002, 𝜂2𝑝 = .131). Apparently, participants in
the Treemap condition performed many scroll interactions, while they
used less recommendations for completing their tasks. The latter is
further backed up by the observation, that participants differed in
terms of their ratio of recommendations on playlist during task 3 and
4 (𝐹 (2, 88) = 4.126, 𝑝 = .019, 𝜂2𝑝 = .086) between the Map and Treemap
condition (𝑝 = 0.072), and the Treemap and List condition (𝑝 = .029).
Apart from this, there were no differences with statistical significance,
only some minor tendencies as depicted in Table 4.

To make objective statements about the novelty of recommenda-
tions, we calculated the self-information (Zhou et al., 2010; Vargas and
Castells, 2011) of the set of recommended items, which is defined as
the averaged negative logarithm of each item’s popularity:

𝑁𝑜𝑣𝑒𝑙𝑡𝑦(𝑅) =

∑

𝑖∈𝑅 − log2(
𝑝𝑜𝑝(𝑖)
100 )

|𝑅|
(9)

The results for the novelty of the recommendations (this is a mean
value over each recommendation list received by a participant) can
be found in the last row of Table 4. The values are very similar over
all conditions, and no significant difference can be found. Thus, we
conclude that the perceived novelty of recommendations, as elicited by
the questionnaire items, is not based on a factual novelty as calculated
by objective means.

7.5. Analysis of interaction patterns

Apart from a statistical comparison of logged interaction data, we
approached our second research question (How does the form of item
space visualization influence how users interact with this visualization and
the recommendations?) also with an analysis of interaction patterns of
participants, which follows the process described by Garofalakis et al.
(2002) and Tsai and Brusilovsky (2019b). To achieve this, we first
coded all discrete click actions according to certain categories they
pertain to: E = actions in exploration area (i.e. select artist), D = actions
in details area (i.e. select artist, select song, like song, unlike song),
R = actions with recommendation area (i.e. select song), P = actions
regarding the playlist (i.e. add to playlist, remove from playlist). In
addition, we coded some auxiliary actions which only existed in our
experiment: S = start task, F = finish task. We restricted the actions to
those occurring during task 3 and 4 because these tasks most closely
mimic a real-world situation (i.e. the creation of a playlist). Moreover,
participants had access to all features of the application only during
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Table 4
Some descriptive results of data logged during participants’ interaction with the three prototypes. In case of a significant difference, the higher
value is marked in bold and the condition to which the significant difference was present is indicated by a superscript letter. The number of clicks
in the recommendation area differed on a significance level < .1, while the number of overall interactions and the ratio of recommendations
on playlist differed on a level < .005 and < .05, respectively. Exact p-values can be found in Section 7.4.

List Treemap Map

𝑀 𝑆𝐷 𝑀 𝑆𝐷 𝑀 𝑆𝐷

Total completion time (minutes) 16.35 11.34 14.64 6.05 15.97 7.90

No. of clicks in exploration area 16.77 20.30 19.13 8.19 21.39 12.30
No. of clicks in details area 62.77 71.93 54.80 18.52 58.00 27.00
No. of clicks in recommendation area 12.07 8.23 8.37 4.21 𝟏𝟑.𝟒𝟐T 11.65
No. of clicks in playlist area 0.37 0.89 0.27 0.78 0.68 1.30
No. of overall interactions 163.77 208.16 𝟒𝟐𝟒.𝟖𝟕L 412.15 291.52 142.35

No. of playlist add actions 12.33 0.71 12.40 0.62 13.07 2.14
Ratio of recommendations on playlist 𝟎.𝟑𝟔T 0.29 0.18 0.16 𝟎.𝟑𝟑T 0.30
Recommendation self-information 0.70 0.10 0.73 0.15 0.71 0.13

Table 5
Top 15 interaction patterns with length ≥ 2 that we logged during task 3 and 4. The
letters represent the following actions (in alphabetical order): D = interaction with
details view, E = actions in exploration area, F = finish task, P = playlist add or
remove, R = actions with recommendation area, S = start task.

List Treemap Map Overall

Pattern Support Pattern Support Pattern Support Pattern Support

ED 90% DP 100% DP 94% DP 92%
PF 87% PF 100% PF 90% PF 92%
PE 87% ED 93% ED 84% ED 89%
PED 87% EDP 93% EDP 84% PE 86%
DP 83% DPF 90% PE 81% EDP 85%
PR 83% PE 90% DPE 77% PED 85%
EDP 77% PED 90% PED 77% DPE 78%
PEDP 73% PEDP 90% SE 77% PEDP 76%
DPE 70% DPE 87% DPF 68% DPF 74%
DD 67% DPED 83% DPED 68% DPED 73%
DPED 67% EDPE 83% PR 68% SE 70%
RP 67% PD 83% EE 65% EDPE 68%
DPF 63% DPEDP 77% PEDP 65% PD 67%
PD 63% SE 77% EDPE 61% PR 66%
DPEDP 60% DPD 73% EED 61% DPEDP 65%
EDPE 60% EDPED 73% DD 58% DD 63%

these tasks and thus were able to follow richer interaction patterns.
All clicks by a single participant during each of these two tasks were
interpreted as a click sequence that starts with an S and ends with an
F action. For each of these sequences, we identified all subsequences
with a length of at least 2 that appeared during that sequence. For each
of these subsequences, we calculated its support. The support describes
the ratio of sequences containing that subsequence proportional to the
number of all sequences. Finally, we defined a support threshold of
20%, meaning that we considered only those subsequences that we
found in more than 20% of all full sequences.

Overall, we found 151 subsequences with a support above the
threshold for the List condition, 173 for the Treemap condition, and
124 for the Map condition. That means that in the Treemap condition
more patterns occurred in more than 20% of full click sequences than
in the other conditions. Interactions with the other conditions thus
followed a more individual style for each participant and task. A similar
observation can be made for the individual support scores in Table 5:
the patterns in the Treemap condition have fairly high support values—
it is the only condition that contains patterns shared by all participants
across both tasks (i.e. patterns with a support of 100%). We note that
these two patterns were an integral part of the task given to participants
(click song in details area → add song to playlist and add song to playlist
→ end task). While these patterns also had the highest support in the
Map condition, they were not used by all participants across both
tasks (i.e. they had a support > 100%). Thus, we had the impression
that participants in the Treemap condition favored actions that were
immediately necessary for their task.

Another aspect that becomes apparent is that in the 15 most frequent
patterns in Table 5, an interaction with recommendations (i.e. patterns
comprising an “R” action) occurred 2 times in the List condition, 1
time in the Map condition and 0 times in the Treemap condition.
Obviously, recommendations were used more frequently in the List
condition compared to the Map and the Treemap condition. Upon closer
inspection, the most common pattern that included an interaction
with recommendations for the List and Map conditions was “PR” (add
song to playlist → select recommended song). In contrast, the reverse
pattern (“RP”) occurred less frequently. The easiest way for users to
complete tasks 3 and 4 using recommendations would be a chain of six
consecutive “RP”. However, since “PR” occurred more frequently, this
suggests that recommendations were not always added to the playlist
immediately, but were examined and only used to create the playlist in
some cases.

During this rather qualitative analysis of interaction pattern, we
had the impression that there might be groups of participants who
exhibited the same patterns regardless of the condition they were in.
To explore such user groups, we applied a hierarchical clustering to
the pattern data described above. Therefore, we first determined a dis-
similarity score for each pair of participants based on their interaction
patterns.15 Specifically, we calculated the dissimilarity 𝛿 between a pair
of participants 𝑢 and 𝑣 as follows:

𝛿(𝑢, 𝑣) = 1 −
|𝑃𝑢 ∩ 𝑃𝑣|

𝑚𝑖𝑛(|𝑃𝑢|, |𝑃𝑣|)
,

where the set 𝑃𝑢 contains all interaction patterns of participant 𝑢 with
a length of at least 2 from tasks 3 and 4 of our experiment.

Based on these dissimilarity scores, we performed hierarchical clus-
tering following Ward’s agglomerative clustering method (Ward, 1963) be-
cause it showed the best clustering coefficient (Kaufman and Rousseeuw,
1990) compared to other methods.16 The result of hierarchical clus-
tering can be seen in Fig. 11, which also shows the cut where we
divided the cluster hierarchy. To determine this cut, we looked at
the average silhouette index (SI) for cuts between 2 and 8 clusters.
This index quantifies cohesion within clusters and separation between
clusters (Rousseeuw, 1987) and ranges from −1 to 1. We found the
highest 𝑆𝐼 for a cut at 2 clusters (𝑆𝐼 = 0.042) followed by a cut at 3
clusters (𝑆𝐼 = 0.041).17 Consequently, we divided our dataset into two
clusters: Cluster A (𝑁 = 34), with rather satisfied participants who were
mainly in the Map condition, and Cluster B (𝑁 = 57), with “hurried”
participants who were mainly in the Treemap condition. Below, we
describe these two clusters in greater detail.

15 For this quantitative analysis, we utilized more diverse codes than those
described above, which can be found in the supplementary material.

16 We tested four other clustering methods. All corresponding coefficients
can be found in the supplementary material.

17 Again, the results for all alternative parameters that we tested can be
found in the supplement.
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Fig. 11. A dendrogram depicting the results of clustering participants hierarchically based on the interaction patterns they used during task 3 and 4 of our experiment. The dotted
line indicates the horizontal cut with the best silhouette value, which divides the participants into two clusters: Cluster A and Cluster B.

One of the aspects we were particularly interested in was whether
the differences in participants’ interaction patterns were due to a
difference in the application to which they were exposed. We used a
non-parametric chi-square test to compare the categorical variable con-
dition between the clusters. The result showed a significant difference
between the clusters (𝜒2(2) = 5.219, 𝑝 = .074). While participants in the
List condition were fairly well distributed between clusters (Cluster A:
32.4%; Cluster B: 33.3%), Cluster A had more participants of the Map
condition (47.1%) compared to Cluster B (26.3%). Consequently, Clus-
ter B contained more participants of the Treemap condition (40.4%)
compared to Cluster A (20.6%).

To study the effects of interaction patterns on other behavioral and
perceptional variables quantitatively, we conducted a MANOVA with
the cluster as independent variable and the dependent variables in
Tables 3, 4, and the user characteristics as introduced in Section 6.1.
The result for the MANOVA was significant (𝐹 (25, 59) = 1.684, 𝑝 =
.052, Wilk’s 𝛬 = .584, 𝜂2𝑝 = .416).

We analyzed between-cluster results using post hoc Bonferroni-
corrected ANOVAs and found that the clusters appear to distinguish
two user groups that differ mainly in their use of recommendations.
For instance, we found a significant difference for the number of clicks
in the recommendation area (𝐹 (1, 83) = 20.388, 𝑝 = .001, 𝜂2𝑝 = .197), with
Cluster A grouping those participants who used the recommendation
area more frequently (𝑀 = 15.70, 𝑆𝐷 = 11.40) than participants
in Cluster B (𝑀 = 8.11, 𝑆𝐷 = 3.81). As a result, also participants’
playlists in Cluster A consisted of a higher ratio of recommendations
(𝐹 (1, 83) = 15.840, 𝑝 = .001, 𝜂2𝑝 = .160), with almost every other
entry in the playlist being based on a song recommended by the system
(𝑀 = .41, 𝑆𝐷 = .30). Clusters also differed in the number of playlist
add actions (𝐹 (1, 83) = 4.783, 𝑝 = .032, 𝜂2𝑝 = .054), with participants in
Cluster A adding 𝑀 =13.04 (𝑆𝐷 = 2.04) songs on average compared
to participants in Cluster B who added 𝑀 =12.35 (𝑆𝐷 = 0.84) songs
on average to their playlists. Participants also spent different times
completing their tasks (𝐹 (1, 83) = 8.296, 𝑝 = .005, 𝜂2𝑝 = .091), with
𝑀 =19.15 min (𝑆𝐷 = 11.12) in Cluster A and 𝑀 =13.60 min (𝑆𝐷 =
6.67) in Cluster B. Apparently, this group was more satisfied with the
recommendations provided by the system: during the questionnaire
(𝐹 (1, 83) = 4.865, 𝑝 = .030, 𝜂2𝑝 = .055), participants in Cluster A ascribed
a higher recommendation quality to their systems (𝑀 = 4.26, 𝑆𝐷 =
0.61) than participants in Cluster B (𝑀 = 3.92, 𝑆𝐷 = 0.70). Probably
as a consequence, they experienced their application as of different
pragmatic quality (𝐹 (1, 83) = 3.864, 𝑝 = .053, 𝜂2𝑝 = .044), with higher
scores in Cluster A (𝑀 = 5.30, 𝑆𝐷 = 1.18) compared to Cluster B
(𝑀 = 4.67, 𝑆𝐷 = 1.53).

7.6. Influence of user characteristics

To tackle our third research question (How do user characteristics
influence perceptions of item space and the recommendations and how
users interact with them?), we calculated two-tailed Pearson correlation
coefficients to assess the linear relationship between the dependent
variables listed in Tables 3 and 4, and the user characteristics we
elicited as part of the initial questionnaire (Section 6.1).

Overall, we only found few significant correlations. Participants
who scored high on the dimension of neuroticism of the Big Five per-
ceived a lower recommendation variety (𝑟(91) = −.182, 𝑝 = .078). Those
scoring high on openness, however, perceived a higher recommendation
transparency (𝑟(91) = .222, 𝑝 = .035). This dimension surprisingly also
correlated with the recommendation self-information (𝑟(91) = .245, 𝑝 =
.019), which we calculated as objective measurement of recommenda-
tion novelty (Eq. (9)). It seems that open-minded participants received
more novel recommendations (but did not perceive them as such).
We also found a positive correlation with this recommendation self-
information and a rational decision style (𝑟(91) = .187, 𝑝 = .076).
Participants following this style of decision making also perceived their
recommendations as more transparent (𝑟(91) = .204, 𝑝 = .053). In
contrast, a rational decision style correlated negatively with the ratio of
recommendation on playlist (𝑟(91) = −.207, 𝑝 = .049). Participants that
base their decisions on rational reasons, used less recommendations
for their playlist. Apart from that, we did not find any significant
correlations of the user characteristics we elicited and our dependent
variables.

With respect to differences between clusters as described in the
section above, we found that clusters differed significantly in terms
of agreeableness (𝐹 (1, 83) = 5.328, 𝑝 = .023, 𝜂2𝑝 = .060) with a higher
score on that dimensions in Cluster A (𝑀 = 4.01, 𝑆𝐷 = 0.55) compared
to Cluster B (𝑀 = 3.70, 𝑆𝐷 = 0.61). Apart from that, participants in
Cluster A had with 𝑀 =6.17 (1.23) a higher capacity of their visual
memory (𝐹 (1, 83) = 3.543, 𝑝 = .063, 𝜂2𝑝 = .041) compared to participants
in Cluster B (𝑀 = 5.58, 𝑆𝐷 = 1.44).

8. Discussion

Our overarching goal with this research was to study effects of the
visualization of the item space on perceptional aspects of recommen-
dations (i.e. perceived transparency, quality, variety, and novelty of
recommendations) and on the general user experience. In this chapter,
we discuss our research questions in light of the results of our study
and evaluate them in term of achievements and limitations.

8.1. RQ1: How does the type of item space visualization influence users’
perception and understanding of the item domain and the recommendations?

Previous work has pointed to several advantages of using InfoVis
methods in RS. It was, for example, observed that InfoVis may in-
crease perceived recommendation transparency, diversity, and control.
However, in this experiment, we were not able to replicate these
findings. We see two general ways to interpret this: (1) Our two
InfoVis interfaces (Treemap and Map) might not have been designed
properly to improve such perceptual variables over the baseline List
interface. (2) The previously reported effects are generally overesti-
mated. While we acknowledge that we cannot provide a definitive
answer to this question, we argue for the second interpretation. The
main argument for this perspective is that baseline systems used in
prior studies did not include appropriate means for browsing the item
space. We thus argue that even simple browsing functions like those
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provided in our List prototype together with a depiction of preferences
and recommendations close to each other might be sufficient to provide
an adequate level of perceived transparency, overview, and control
in RS. Especially in terms of recommendation transparency, our results
suggest that participants in all three conditions experienced their rec-
ommendations as highly transparent (i.e. the transparency was rated as
equal to or above 4 on a 5-point Likert scale, see Table 3). We attribute
these high transparency values of our results to the visual proximity
of preferences and recommendations as visible in the headers (List
condition), in the top rows of each genre (Treemap condition), and in
the distance between artist locations (Map condition). Preferences and
recommendations might have created something like an “explanatory
proximity”, which is probably as intuitively comprehensible as methods
strictly based on the first law of geography discussed in Section 2.2.

This is particularly noteworthy because we elicited the perceived
transparency, and thus the transparency of recommendations experi-
enced by users, not actual transparency, for which we would have
needed to provide real insights into the recommendation algorithm,
which we did not have access to in this experiment. At this point,
we suggest to further investigate the differences between perceived
and actual transparency in future research. Previous studies indicate
that when the perception of how an intelligent system works is too
different from how it actually works, it can lead to different problems
in human–computer interaction (Ananny and Crawford, 2018; Kunkel
et al., 2021).

In contrast to transparency, user experience is a dimension which
differed significantly. More specifically, we found that the pragmatic
user experience was significantly higher in the List condition than in the
Treemap condition, and that the hedonic user experience was significantly
higher in the Map condition in comparison with both, the List and
the Treemap condition. Apparently, participants in the Map condition
were able to navigate a space with a large number of simultaneously
presented artists. In other words, the user experience was not linked
to the number of information objects displayed. The scores for visual
clutter as measured by SE (see Section 5.4) followed this trend as well
and thus are not reliable predictors of user experience either. However,
we also measured FC, which indicates more clutter in the Treemap con-
dition. We attribute this to the use of many similar visual objects (artist
labels) that are relatively evenly distributed vertically and horizontally
throughout the visualization. Therefore, it would not be so easy to
“add a new item that would reliably draw attention” (Rosenholtz et al.,
2007) in the Treemap interface. As such, FC takes into account the
orientation and organization of objects, e.g. whether similar objects
are grouped together, which was apparently more the case in the Map
interface—probably due to visualizing artists as clusters. So, regardless
of the reasons, FC seems to be the more appropriate measurement
to indicate cluttered displays and, as a consequence, to predict user
experience. We conclude, that distributing the artist in our Map condi-
tion based on their similarity seems to be an effective way to use the
available space of a two-dimensional screen. In fact, the Map was able
to increase the number of simultaneously displayed information objects
by a factor of over seven with respect to the List condition and a factor
of about three with respect to the Treemap condition, while at the same
time increasing the hedonic user experience. With this application, we
hence demonstrate how it is possible to make the exploration of large
music datasets more efficient and entertaining as, for instance, been
called for by Schedl (2017).

Apart from the hedonic user experience, we also noted that the
perceived recommendation novelty was higher in the Map condition than
in the other two conditions. Backed up by a mediation analysis, we
argue that this may be due to a halo effect. The halo effect describes
a cognitive error in which characteristics are attributed to a person
based on their attractiveness rather than on a factual perception of
those attributed characteristics (Thorndike, 1920; Nisbett and Wilson,
1977). Hassenzahl and Monk (2010) argue for a similar effect in web
design, showing that the perceived beauty of a website affects its

perceived usability. We transfer this to the hedonic user experience of
our web application and the perceived novelty of recommendations. To
our knowledge, this paper is the first to suggest such a relationship. Yet,
the effect itself may have been observed earlier (e.g. in the experiment
of Millecamp et al. (2018), in which a higher perceived novelty of
recommendations was measured in the experimental condition as well).
However, we acknowledge that this relation is rather speculative and
demands further studies. It is likely that a halo effect of perceived
innovativeness of an application may have an affect on how recommen-
dations are perceived, but not necessarily. In reality there likely is a mix
of different effects. Either way, we suggest looking at the evaluation of
RS from a more holistic perspective, including thus far underexplored
side-effects of user experience on other user-centered criteria.

When analyzing the qualitative comments, we found that many
participants rated the quality of the recommendations during the ex-
periment higher compared to their usual Spotify experience. This is
especially noteworthy given that we relied on the recommendations
provided by the Spotify API. We thus expected either no difference or
one in favor of the recommendations at Spotify, as these are likely to be
based on a substantially larger dataset of preferences. One factor that
could account for this surprising difference in perceived recommenda-
tion quality is the observation that the diversity of recommendations
decreases over time (Nguyen et al., 2014). This, in turn, may have
led participants to perceive the music recommendations in our exper-
iment as surprisingly different from those they normally receive. As a
consequence, we suggest to provide an option to users to temporarily
receive recommendations that are not as personalized as they typically
are—or in other words, to temporarily leave their filter bubble. Another
factor that may have influenced perceived recommendation quality is
that participants rated the recommendations as highly transparent. A
relationship between transparency and recommendation quality has
been reported several times in the past (Bilgic and Mooney, 2005;
Donkers et al., 2016; Kunkel et al., 2019). While we have no way of
knowing whether the Spotify’s transparency would be judged to be
lower, the lack of the “explanatory proximity” we mentioned above at
Spotify,18 suggests that it would be.

8.2. RQ2: How does the type of item space visualization influence how users
interact with this visualization and the recommendations?

The comparison of different log data variables reveal that partici-
pants in the Treemap condition made considerable less use of recom-
mendations as observed in a lower number of clicks in the recommenda-
tion area and a lower ratio of recommendations on the participants’ final
playlist during task 3 and 4. The difference in the number of overall in-
teractions but not in the number of clicks, indicates, that participants in
the Treemap condition used more scroll actions than participants in the
List condition. This is especially noteworthy since in both conditions,
scrolling was used to browse the list of artists in a subgenre. One reason
for this difference may be that, due to space constraint, sample artists,
currently selected artists, and artists with preferred or recommended
songs were depicted on a vertical axis and therefore required more
scroll actions to browse the space of artists. The visual separation of this
special list of artists and the rest of the artists may have been perceived
as cognitively easier to comprehend in the List condition—probably due
to the formation of visual and conceptual unity supported by Gestalt
laws such as proximity and common region.

The observation of a difference in the use of recommendations
between conditions can also be found when clustering participants
regarding their interaction patterns. In doing so, we found that the
way users perceive and interact with an application is only partially

18 The only parts where we know of a link between preferences and
recommendations in Spotify are the “play song radio” and “play artist radio”
options.
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dependent on the application presented to them. Instead, our clustering
suggests that one group of participants used the recommendations
significantly more often and perceived them to be of higher quality than
the rest of the sample. This group (Cluster A) consisted of participants
in the Map or List condition, less so of participants in the Treemap
condition, which may also explain the difference between conditions
regarding the use of recommendations. Apart from the usage and
the quality perception of recommendations, participants in Cluster A
experienced several other aspects of the applications as high, too. This
can probably partly be ascribed to the fact that participants in Cluster A
scored higher on the Big Five dimension of agreeableness, which may
indicate that they are less critical when assessing the interface and
recommendations. On the other hand, participants in this group also
had a higher visual memory capacity, which probably helped them
in cognitively processing the information objects presented to them.
However, since there were few direct correlations between user char-
acteristics and the dependent perceptional and behavioral variables,
the differences measured between clusters appear to be due to another
factor. One possible candidate for this is that the clustering separated
participants who held a different mental model. In an earlier experi-
ment, we found that such mental models can indeed be responsible
for perceptions of RS (Kunkel et al., 2021). We therefore suggest
that future work should focus on such complex interactions between
user characteristics, mental models, and perceptual variables. In any
case, we consider this as another argument for taking a more holistic
perspective when evaluating RS and InfoVis applications rather than
treating the individual aspects separately.

8.3. RQ3: How do users’ characteristics influence how they perceive, un-
derstand, and interact with the item space and the recommendations?

In regards of such a holistic perspective, an ongoing line of research
investigates the influence of personality traits and user characteristics
in RS (e.g. Tkalcic and Chen, 2015; Millecamp et al., 2018; Jin
et al., 2019) and InfoVis (e.g. Ziemkiewicz et al., 2011; Conati et al.,
2015; Lallé and Conati, 2019). It was found that the perception of
RS and InfoVis applications may well be influenced by certain user
characteristics. We, however, did not find many of such relationships.
We were particularly surprised that the capacity of participants’ visual
memory did not influence perceptions of the item space, for instance,
the perceived degree of overview. We conclude that further work needs
to be conducted to investigate in greater detail when such effects arise
and when they do not. We also acknowledge that there may be other
factors, which may have influenced the results but which we did not
measure. Examples include musical sophistication (Müllensiefen et al.,
2014) and locus of control (Green and Fisher, 2010), which have been
found to influence how interactive controls of RS are used (Millecamp
et al., 2018) and the performance of interacting with InfoVis applica-
tions (Ziemkiewicz et al., 2011), respectively. Both user characteristics
are candidates for investigating their influence on how item space
visualizations are perceived by users in future work.

However, the fact that we only found few correlations between user
characteristics and dependent variables of our experiment suggests that
the role of such characteristics demands further discussion. We hence
conclude that future research needs to investigate why and when user
characteristics influence perceptions of RS and InfoVis applications.
One tool that is particularly suited to answer such why questions is
to conduct exploratory qualitative studies. By following the method
of grounded theory (Strauss and Corbin, 1994; Corbin and Strauss,
2008), for instance, researchers could leverage theoretical sampling and
specifically sample participants with a particular user characteristic
to develop a theory about why and under which circumstances this
characteristic influences the perception of recommendations or of the
visualization used. This could possibly also reveal the mental models
we mentioned above. In fact, we used this method in an exploratory
study before (Ngo et al., 2020).

8.4. Limitations

We decided to conduct our study as an online study, due to local
Covid-19 restrictions. For our use case an online study was not ideal,
though. First, because we were not able to control confounding vari-
ables as well as we could in a lab setting. One of these confounding
factors is the device that participants used to access the web appli-
cation. For example, we know that the Treemap and Map interfaces
require at least 8 GB RAM to function smoothly. As a result, we received
comments mentioning that the application was “laggy” or “stuttery”.
During the experiment, we also received some direct messages from
participants pointing out technical issues. In most cases, such partici-
pants were using exotic browser versions or content-blocking addons.
A second limitation due to conducting the study online was that some
participants finished the experiment relatively quickly (the fastest com-
pleted the study in about 12 min, while test candidates in a brief
prestudy took about 45 min on average, which was also the value
we used to calculate monetary compensation for crowdworkers). In
lab studies, on the other hand, we found that participants put more
effort into completing their tasks, probably because the situation seems
more serious or official to them. Although these circumstances may
have affected the quality of the user experience, participants were
randomly assigned to a condition, and we are thus confident that
potential negative effects did not affect our experiment too much.

Another limitation concerns the sample size, which is rather small—
especially for an online experiment. This was due to resource lim-
itations and the requirements we set up for accepting participants.
Still, the sample allowed us to obtain significant results, many at the
lower .05 alpha level. However, we conclude that further experiments
should be conducted to corroborate our findings. To this end, we added
a supplementary file archive to this article that provides additional
details on our study that, among other things, could help researchers
build upon our results and further advance the field of user-centered
RS and InfoVis research. In this context, we would also like to add
that we deliberately decided for the music domain, but suggest that
future research should also take other domains into account. It would
be particularly interesting to see whether the halo effect, which we
suspect to have influenced the perception of recommendation novelty,
also occurs for search products or in domains with higher risk involved.

9. Conclusion and future work

In this paper, we introduce three applications that each take their
own perspective on the same dataset: a hierarchically structured set
of musical artists. Among typical interactions to explore the dataset
such as searching, browsing, and examining single songs, users can
also rate items and receive matching recommendations. A user study
revealed that there are no differences between conditions in the main
perceptive dimensions of Recommender Systems, such as transparency,
recommendation quality, and degree of control. However, we found
that the three applications differed significantly in the user experience,
especially in the hedonic dimension. Also the perceived novelty of
recommendations differed significantly between the three applications,
even though an objective difference was not found. We thus conclude
that a halo effect might be at work here: the Map condition was
perceived as innovative and leading edge, which in turn let participants
experience its recommendations as more novel. A conducted mediation
analysis backs up this hypothesis and shows that the effect of con-
dition on perceived novelty is completely mediated by hedonic user
experience.

We acknowledge that these findings are still speculative to some
degree and conclude that such halo effects in RS and InfoVis should
be studied in greater depth in the future especially by experiments
isolating the effect. With regards to advancing the applications, we
consider to explore more aspects of the Map visualization. One candi-
date aspect for improvements is to conduct studies on how the item
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space abstraction and sample selection should be performed. In our
setting, there were two representative sample items for each genre and
subgenre. It remains an open question, though, whether a setting with
more samples per area would allow users to more easily grasp the
underlying space. On the other hand, this might also lead to cognitive
overload, so in reality a compromise has to be found.

Another aspect which we deem interesting to further investigate
is to use maps for dynamically visualizing trends (e.g. in terms of
changing user preferences). This is especially relevant in the domain
of music, where the preferences can be rather ephemeral and change
due to mood, activities, or other contextual conditions. For this, further
geographic metaphors could be exploited. It would, for instance, be
imaginable to first record how preferences change over the course of
a day (e.g. by logging listening behavior without the use of a map).
In a daily summary, one could project these changing preference by
animating a layer of the map resembling a weather report. This could
also let users interactively set their music recommendations to a certain
weather condition to easily tell the system which music the want to listen
to at the moment. Also in general, the layout of the Map application
could follow a more realistic layout, for example by including element
of geographic maps such as rivers, cities, or roads. This was suggested
by our participants in their qualitative answers and is in line with
existing evidence (Montello et al., 2003; Pang et al., 2016, 2017).
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