
A Stochastic Primal-Dual Proximal Splitting
Method for Risk-Averse Optimal Control of

PDEs

Ein Stochastisches Primal-Duales
Proximal-Splittingverfahren für

Risiko-Averse Optimalsteuerung von PDGln

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

der Mathematischen Fakultät

der Universität Duisburg-Essen

vorgelegt von

Sebastian Angerhausen, M. Sc.

im Oktober 2022

1. Gutachter: Prof. Dr. Christian Clason

2. Gutachter: Prof. Tuomo Valkonen, PhD

Tag der mündlichen Prüfung: 20.12.2022

Diese Dissertation wird via DuEPublico, dem Dokumenten- und Publikationsserver der
Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor.

DOI: 10.17185/duepublico/78165
URN: urn:nbn:de:hbz:465-20230412-081808-2

Dieses Werk kann unter einer Creative Commons Namensnennung
4.0 Lizenz (CC BY 4.0) genutzt werden.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/78165
https://nbn-resolving.org/urn:nbn:de:hbz:465-20230412-081808-2
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Abstract

In this thesis we consider a non-convex optimization problem that is constrained by a partial

differential equation (PDE) with uncertain coefficients. The random field PDE solution is taken

into account in the objective function by means of the Conditional Value-at-Risk (CVaR), which

is a well-known risk measure. A particularly useful feature of CVaR comes to light when it is

used in the context of a proximal point method, since the proximal operator of its Fenchel conju-

gate is just the metric projection onto the so-called bounded probability simplex. Consequently,

we propose a stochastic primal-dual proximal splitting method which is adapted from the well-

known Chambolle-Pock method and solves the aforementioned problem. The stochasticity or

randomness of the algorithm arises from what we call component-wise gradient freezing or CGF.

It is motivated by randomized coordinate descent methods and requires that only a subset of the

coordinates of an occurring gradient is recalculated in each iteration. We provide an abstract

proof of almost sure weak convergence of the algorithm and specify the results for the case of

scalar and deterministic step sizes. Furthermore, we present an algorithm for computing the

aforementioned simplex projection and prove its convergence. The reduction of iteration costs

due to CGF in terms of saved PDE solutions is presented by means of two numerical examples

which are implemented in the Julia programming language.

Zusammenfassung

In dieser Arbeit betrachten wir ein nicht-konvexes Optimierungsproblem, das durch eine par-

tielle Differentialgleichung (PDGl) mit zufälligen Koeffizienten beschränkt wird. Die Lösung

der PDGl in Form eines Zufallfeldes wird in der Zielfunktion mit Hilfe des Conditional Value-

at-Risk (CVaR) berücksichtigt, welcher ein bekanntes Risikomaß ist. Eine besonders nützliche

Eigenschaft des CVaR tritt zutage, wenn er im Zusammenhang mit einem Proximalpunktver-

fahren verwendet wird, da die Proximalpunktabbildung seiner Fenchel-Konjugierten lediglich

die metrische Projektion auf den so genannten beschränkten Wahrscheinlichkeitssimplex ist. Fol-

glich präsentieren wir ein stochastisches primal-duales Proximal-Splittingverfahren, das von

dem bekannten Chambolle-Pock-Verfahren abgeleitet ist und das oben genannte Problem löst.

Die Stochastizität oder Zufälligkeit des Algorithmus ergibt sich aus was wir komponentenweises
Gradienteneinfrieren oder CGF (vom englischen component-wise gradient freezing) nennen. Der

Algorithmus ist durch randomisierte Koordinatenabstiegsverfahren motiviert und erfordert, dass

nur eine Teilmenge der Koordinaten eines auftrenden Gradienten in jeder Iteration neu berechnet

wird. Wir liefern einen abstrakten Beweis für die fast sichere schwache Konvergenz des Algorith-

mus und spezifizieren die Ergebnisse für den Fall skalarer und deterministischer Schrittweiten.

Darüber hinaus stellen wir einen Algorithmus zur Berechnung der oben erwähnten Simplex-

Projektion vor und beweisen dessen Konvergenz. Die Reduktion der Iterationskosten durch

CGF in Form von eingesparten PDGl-Lösungen wird anhand von zwei numerischen Beispielen

dargestellt, die in der Programmiersprache Julia implementiert sind.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Dr. Christian Clason. He gave me

the freedom I needed to pursue my own ideas and yet helped me not to lose sight of the final

goal. He had, at any time of the day, an open ear for my questions and problems, and was always

committed to helping me in the best possible way (even if I asked the same stupid question twice).

Furthermore, he encouraged me to attend two conferences, which helped me think outside the

box and learn about similar work.

I am also thankful to the Faculty of Mathematics for funding my PhD scholarship, which allowed

me to fully focus on my research.

Since working on a PhD thesis for more than three years naturally has its impact on the private

life as well, I would also like to thank my family and friends for their continuous support. I thank

my parents for always believing in me and encouraging me to follow my dreams. I thank my

mother in law for her unconditional help with the kids. I thank my friend Timo for the many

relaxed and fun evenings that gave my mind a bit of a break. And last but not least I would like

to thank my wonderful wife for always having my back and taking good care of our children, for

always listening to me when I was frustrated, for supporting my work, no matter what, and, of

course, for always cooking excellent food.

v

Contents

1 Introduction 1

2 Background 5
2.1 Differential Calculus in Banach Spaces . 6

2.2 Convex Analysis . 7

2.2.1 Convex Functions and Subdifferentials 7

2.2.2 Lower Semi-Continuity . 8

2.2.3 Fenchel Duality . 9

2.2.4 Monotone and Proximal Operators . 10

2.3 Non-Convex Analysis . 13

2.4 Measure Theory . 15

2.5 Stochastic Programming . 17

2.5.1 Uncertainty . 17

2.5.2 Sampling . 19

2.5.3 Risk Aversion . 20

2.5.4 Conditional Value-at-Risk . 21

2.6 Partial Differential Equations . 25

3 Optimization Problem 29
3.1 Problem Formulation . 29

3.2 PDE Constraint . 30

3.3 Existence and Optimality Condition . 32

4 Algorithm 35
4.1 Stochastic Primal-Dual Proximal Splitting Method 35

4.2 Randomization . 40

4.3 Weak Convergence . 41

4.3.1 Abstract Proof . 41

4.3.2 Stochastic Quasi-Fejér Monotonicity . 46

4.3.3 Convergence to Optimal Solution . 48

4.4 Scalar and Deterministic Step Sizes . 50

4.4.1 Fundamental Assumptions . 50

4.4.2 Satisfaction of Central Inequality . 53

4.4.3 Convergence . 66

4.4.4 Local Step Size Bound . 71

5 Simplex Projection 75
5.1 Discretization of the Probability Space . 75

5.2 Problem Formulation . 78

5.3 Optimality Condition . 79

5.4 Algorithm . 80

5.5 Convergence . 83

vii

Contents

6 Applications 87
6.1 Choice of Step Sizes . 87

6.2 Index Selection Rules . 88

6.3 Elliptic Equation with a Discontinuous Coefficient 90

6.3.1 Problem Formulation . 90

6.3.2 Satisfaction of the Assumptions . 91

6.3.3 PDE Discretization . 98

6.3.4 Function Discretization . 101

6.3.5 Discrete Algorithm . 106

6.3.6 Numerical Results . 107

6.4 Steady Burgers’ Equation . 113

6.4.1 Problem Formulation . 113

6.4.2 PDE Discretization . 113

6.4.3 Function Discretization . 115

6.4.4 Numerical Results . 117

7 Conclusion 119

Bibliography 121

viii

Chapter 1
Introduction

The mathematical field of convex analysis emerged in the 1960s mainly due to the work of R.

T. Rockafellar [Roc70] and provides the right tools to deal with the optimization of non-smooth

functions. For this reason, convex optimization has become one of the main application areas in

the following years. A typical problem for convex optimization is

min

𝑢∈U
𝐹 (𝐾 (𝑢)) +𝐺 (𝑢), (1.0.1)

where U and V are Hilbert spaces. The functions 𝐹 : V → R := R ∪ {∞} and 𝐺 : U → R

are assumed to be proper, convex and lower semi-continuous
1
, and 𝐾 : U → V is (at first)

required to be a continuous linear operator, which makes the resulting objective function convex.

Furthermore, 𝐹 is assumed to be non-smooth. Problems like this appear in many application

fields like mathematical imaging, signal processing, machine learning, and optimal control, to

name just a few. If 𝐹 ◦ 𝐾 +𝐺 is proper, convex and lower semi-continuous as well (i.e. if 𝐾 is a

continuous linear operator), then the optimal solution 𝑢 ∈ U to problem (1.0.1) satisfies

0 ∈ 𝑇 (𝑢), (1.0.2)

for some maximally monotone operator 𝑇 : U ⇒ U∗ (see Definition 2.2.10). Rockafellar pro-

posed the proximal point algorithm [Roc76] to solve this optimality condition based on the prop-

erty that the operator (Id + 𝛾𝑇)−1
with 𝛾 > 0 is single-valued, which follows from [Min62]. The

inclusion in (1.0.2) can then be expressed as

𝑢 = (Id + 𝛾𝑇)−1 (𝑢) . (1.0.3)

The term proximal point algorithm stems from the representation of (Id + 𝛾𝑇)−1
as a proximal

operator (as we will see later in Section 2.2.4), which can be seen as the “natural extension of

the notion of a projection operator onto a convex set” [CP11b]. Equation (1.0.3) enabled the

development of many different fixed-point iteration algorithms for a wide variety of problems,

depending on the properties of the involved functions. For example, if 𝐾 is just the identity, one

could use explicit or forward-backward splitting [CW05; CR97; DS09], which is especially useful if

𝐹 is differentiable. Another method is called implicit or Douglas–Rachford splitting [Lio71; GB17;

BCH15; CP07; EB92], which is also a special case of the proximal point algorithm [Eck89]. The

alternating direction method of multipliers (ADMM) [Gab83; Boy+11] is in turn a special case of

the Douglas–Rachford splitting [Eck89] and incorporates the augmented Lagrangian of (1.0.1),

as described in [CV20, Section 8.6]. This method requires the inversion of relatively complicated

set-valued mappings, which is why additional terms are often added in practice. The resulting

method is called preconditioned ADMM [ZBO11]. All these splitting methods have in common

1
See Section 2.2 for a definition of the terms proper, convex, and lower semi-continuous.

1

1 Introduction

that they use the particular sum structure of (1.0.1) to split the whole objective function into two

parts that can be computed separately.

If𝐾 is a continuous linear operator, then it can be shown under mild assumptions [CV20, Theorem

5.10] that the problem (1.0.1) is equal to its dual formulation

min

𝑣∈V
−𝐹 ∗(𝑣) −𝐺∗ (−𝐾∗𝑣) , (1.0.4)

where 𝐹 ∗ : V → R and 𝐺∗ : U → R denote the Fenchel conjugates (see Definition 2.2.6) of 𝐹

and 𝐺 , respectively, and 𝐾∗ is the adjoint operator of 𝐾 . Both the primal formulation in (1.0.1)

and the dual formulation in (1.0.4) can additionally be written as the saddle-point problem

min

𝑢∈U
max

𝑣∈V
𝐺 (𝑢) + ⟨𝑣, 𝐾 (𝑢)⟩V − 𝐹 ∗(𝑣), (1.0.5)

where ⟨·, ·⟩V denotes the inner product on V2
. A derivation of the saddle-point formulation

can be found in Section 3.1. It explicitly involves the dual variable 𝑣 ∈ V and is the starting

point for the analysis of many solution algorithms [CP11a; Cha+18; DL14; HY10; MJV19; Val14;

CMV19]. These algorithms are often called primal-dual methods, since they update the primal

and the dual iterates alternately (we refer to [CP16, Chapter 5] or [Val21] for a comprehensive

comparison). One particularly useful algorithm was proposed in 2009 by Pock et al. [Poc+09] for

minimizing the so-called Mumford-Shah functional, which is “one of the most studied variational

approaches to image segmentation”, according to the authors. The more general formulation by

Chambolle and Pock in 2011 [CP11a] gained massive popularity, which is why this algorithm

is also referred to as the Chambolle-Pock method. The authors required 𝐾 to be a continuous

linear operator so that the resulting problem is convex. It was shown in [HY12] that this method

is also a special case of the proximal point algorithm. However, the requirement of 𝐾 being a

continuous linear operator is quite strong, and prevents the algorithm from being used for many

interesting problems. Therefore, some research has recently focused on primal-dual methods for

non-convex optimization problems [Val14; CV17; CMV19; MJV19], where𝐾 is allowed to be non-

linear. These papers, especially [CMV19], also form the basis of the convergence analysis in this

thesis. Furthermore, the original Chambolle-Pock method was developed for finite-dimensional

real vector spaces U and V with an inner product and a norm. Hence, the results in [CP11a]

do not cover the case where U and V are of infinite dimension. However, this requirement is

needed for the optimal control of partial differential equations (PDEs) we consider in this thesis,

which is why it has recently been addressed by some papers as well [CV17; VP17; CMV19; MJV19;

CMV21].

To be more specific, we consider a constraint in form of a PDE with uncertain coefficients, hence

the mathematical area of stochastic programming [BL11; SDR14] is also relevant here. PDEs

themselves are of interest for a wide range of applications e.g. in science and engineering, and

the modeling of random coefficients makes sense whenever possible uncertainties are to be in-

cluded into the analysis. In this case, the PDE solution (i.e. state) becomes a random field making

the objective function itself random. In general, there are different ways how to substitute this

random objective by a scalar value allowing us to apply one of the primal-dual proximal splitting

methods mentioned above. For example, one could use the expectation, probabilistic functions,

distributionally robust optimization, or risk measures, as discussed in [KS18b]. In this thesis,

we focus on the latter and consider a particular risk measure called the Conditional Value-at-Risk
(CVaR), which is also known as Average Value-at-Risk, Mean Excess Loss, Expected Shortfall, or Ex-
pected Tail Loss. Its definition involves the Value-at-Risk, which is, for a given probability level 𝛽 ,

2
Note that we have used the Riesz-Fréchet representation theorem [Bre11, Theorem 5.5] to identifyV andV∗.

2

the lowest amount 𝛼 such that, with probability 𝛽 , the loss will not exceed 𝛼 . CVaR
3

is the condi-

tional expectation of the losses greater than 𝛼 . The term loss stems from the fact that the random

function to be measured often represents a financial loss. Areas of application include portfo-

lio management [RU00; RUZ02], credit risk optimization [And+01], supply chain management

[WB09], medical treatment planning [CMP14], and unit commitment of power plants [BPP16].

Rockafellar and Uryasev [RU00] showed that, if CVaR is applied to the objective function of an

otherwise linear problem, the approximation by Monte Carlo sampling has an equivalent linear

programming formulation. While this approach also works if we only consider discrete random

variables with finitely many outcomes [ST06], it can no longer be used when a problem is not

linear. Although CVaR is a coherent risk measure (see Proposition 2.5.10), it is not differentiable,

which is why a smoothing approach is often used in practice [KS16; ACL06]. However, since the

proximal point algorithms presented above do not require the objective function to be differen-

tiable, they are well suited to be applied to such problems without the need of smoothing [MB21;

BH15; dOli21]. Furthermore, it turns out that the Fenchel conjugate of CVaR has a particularly

useful representation [SDR14; RS06; LD05; KS16], which results in a proximal operator that is

simply the metric projection onto the so-called bounded probability simplex (see Chapter 5). This

projection is easy to compute and hence makes the proximal splitting approach especially useful

in this case.

Another component of this work is motivated by coordinate descent methods [Wri15], which in

their original meaning are characterized by the fact that “only a subset of the coordinates of the

primal and dual iterates is updated at each iteration” [FB19]. Coordinate descent methods are

especially suited for parallel computation [BT97a] and have gained massive importance in recent

years as they have been successfully applied in various fields, most notably probably machine

learning [CHL08; Hsi+08]. If the coordinates to be updated are chosen randomly as proposed in

[Nes12], the resulting algorithms are referred to as randomized or stochastic coordinate descent
methods [RT14; Cha+18]. An assumption that is often made in this context is that parts of the

objective function are separable or at least block-separable, in the sense that they can be ex-

pressed as the sum of functions, each of which is applied to only one coordinate [Nes12] or the

coordinates of one block [RT14; Val19; Cha+18; DL14]. Chambolle et al. considered saddle point

problems that are separable in the dual variable [Cha+18]. In this case, the proximal operators

that are applied to the dual variables can also be split up and computed separately. Therefore, the

authors proposed a stochastic extension of the Chambolle-Pock method [CP11a] where only an

arbitrarily sampled subset of these variables is updated. The proof of almost sure convergence can

be found in [AFC19; GDE20]. Similar works are for example [ZL15; ZS15; DL14; GS21]. In this

thesis we choose a slightly different approach and introduce a framework where only a subset of

the coordinates of the gradient of 𝐾 is recalculated in each iteration. Because we still update all

the coordinates of the primal and dual variables, we call this procedure component-wise gradient
freezing or CGF. As a result, it is possible to drastically reduce iteration costs by eliminating the

time-consuming process of solving PDEs for many samples, as we will see in Chapter 6.

Outline

This thesis is structured as follows:

• In Chapter 2, we summarize some essential results from the mathematical fields that are

involved in this thesis, starting with differential calculus in Banach spaces. As mentioned

3
See Section 2.5.4 for a formal definition of CVaR.

3

1 Introduction

before, we are also dealing with non-smooth functions, which is why some basics of con-

vex analysis are needed here. Furthermore, parts of non-convex analysis are relevant as

well due to the non-linearity of 𝐾 . Building on measure theory, the necessary results from

stochastic programming are presented together with some basics of uncertainty, sampling,

risk-aversion, and the Conditional Value-at-Risk. We conclude this chapter with elemen-

tary results about PDEs.

• The concrete definition of problem (1.0.1) which we consider in this thesis is presented in

Chapter 3. We introduce some fundamental assumptions on the functions involved and

focus specifically on how the PDE constraint is included. Finally, we prove the existence

of a solution and derive the necessary optimality condition.

• In Chapter 4, we present the stochastic primal-dual proximal splitting method to solve the

problem described in the previous chapter. We formalize the randomization in order to

allow for an abstract proof of almost sure weak convergence in the subsequent sections,

for which the so-called stochastic quasi-Fejér monotonicity is crucial. In the last section of

this chapter, we examine how the previously stated conditions can be satisfied in the case

of scalar and deterministic step sizes in order to develop assumptions that are easier to

verify in practice.

• As mentioned before, the proximal operator of the Fenchel conjugate of CVaR is the met-

ric projection onto the so-called bounded probability simplex. This assertion is proven in

Chapter 5, where we also explain the discretization of the probability space. After that,

we derive the optimality condition of the problem that has to be solved in order to com-

pute this projection. We present a solution algorithm that was originally developed in the

Master’s thesis [Ang18] and prove its convergence in the last section.

• In Chapter 6, we first present some examples of how the step sizes and the indices for

CGF can be chosen in practice to satisfy the theoretical assumptions of the convergence

analysis. After that, we consider two exemplary problems to show how our algorithm

performs and how CGF can reduce the iteration costs. For the first problem, which is

constrained by an elliptic PDE with a discontinuous and uncertain coefficient, we show in

detail that the necessary assumptions are indeed satisfied. We explain the discretization

of the PDE and show some numerical results. The constraint of the second problem is the

steady Burgers’ equation. For this example, we also describe the discretization and present

numerical results. All algorithms are implemented in Julia
4
, and the corresponding code

can be found in [Ang22].

• Chapter 7 contains some concluding remarks and highlights how future research could be

based on this work.

4
For information about the Julia programming language, see https://julialang.org/.

4

https://julialang.org/

Chapter 2
Background

In this chapter, we summarize some essential results from the mathematical fields that are in-

volved in this thesis. After introducing the main concepts of differential calculus in Banach

spaces in the first section, we cover convex analysis, which emerged in the 1960s mainly due

to the work of R. T. Rockafellar [Roc70]. It uses convexity instead of differentiability assump-

tions and is therefore the right toolbox we need to handle non-smooth functionals. However,

since only parts of the objective function we will consider are convex, we also use concepts from

non-convex analysis. Instead of differentiability and convexity, it requires a continuity property,

which is explained in the third section. In the fourth section, we summarize the most impor-

tant results from measure theory, followed by some basics regarding stochastic programming in

section five. In this context, we also address the topic of risk awareness and focus especially on

the Conditional Value-at-Risk as a risk measure. Finally, the last section covers the theory of

partial differential equations, as they form the constraints of our optimization problem later in

this thesis.

Before starting with the first subsection, we introduce some notations that are used throughout

this thesis. We will denote the extended real numbers by R := R ∪ {∞}. If (𝑋, ∥ · ∥𝑋) and

(𝑌, ∥ · ∥𝑌) are normed vector spaces, then L (𝑋,𝑌) denotes the space of all linear and continuous

operators from 𝑋 to 𝑌 , endowed with the operator norm ∥ · ∥L(𝑋,𝑌) . Furthermore, we denote by

𝑋 ∗ := L (𝑋,R) the dual space of 𝑋 . The mapping 𝑋 ∗ × 𝑋 ∋ (𝑥∗, 𝑥) ↦→ ⟨𝑥∗, 𝑥⟩𝑋 ∗,𝑋 := 𝑥∗(𝑥) ∈
R is called duality pairing. The closed ball with radius 𝑟 ≥ 0 around an element 𝑥 ∈ 𝑋 is

denoted by B𝑟 (𝑥) := {𝑧 ∈ 𝑋 | ∥ 𝑧 − 𝑥 ∥𝑋 ≤ 𝑟 }. If 𝑋 is not only a normed vector space but also a

Hilbert space (i.e. a Banach space together with an inner product), we denote its inner product

by ⟨·, ·⟩𝑋 : 𝑋 × 𝑋 → R. If 𝐴 ⊂ 𝑋 is some set, then its interior is denoted by int (𝐴), its closure

by 𝐴 or cl (𝐴), and its complement by 𝐴c
:= 𝑋 \𝐴. The characteristic function 𝜒𝐴 of 𝐴 is defined

as

𝜒𝐴 (𝑥) :=

1, if 𝑥 ∈ 𝐴,

0, if 𝑥 ∉ 𝐴.
(2.0.1)

The indicator function 𝛿𝐴 of 𝐴 is defined as

𝛿𝐴 (𝑥) :=

0, if 𝑥 ∈ 𝐴,

∞, if 𝑥 ∉ 𝐴.
(2.0.2)

The identity function is denoted by Id, and sometimes, if it is helpful for understanding, we use

a subscript to make clear in which space the function is defined, e.g. Id𝑋 : 𝑋 → 𝑋 . Vectors in

finite dimensional spaces will be denoted by boldface letters, e.g. x = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 (𝑛 ∈ N).

5

2 Background

If x ∈ R𝑛 is such a vector, we denote by ∥ · ∥
2

the 2-norm on R𝑛 and by

diag (x) :=

©«
𝑥1

. . .

𝑥𝑛

ª®®®®¬
∈ R𝑛×𝑛 (2.0.3)

the diagonal matrix of x.

2.1 Differential Calculus in Banach Spaces

Since not all functions we encounter in this thesis are non-smooth, we use this section to briefly

introduce two concepts of differentiation in Banach spaces. It is based on [CV20, Section 2.2.].

We consider a mapping 𝐹 : 𝑋 → 𝑌 between two Banach spaces 𝑋 and 𝑌 . If the one-sided limit

𝐹 ′(𝑥 ;ℎ) := lim

𝑡↘0

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

∈ 𝑌 (2.1.1)

exists, it is called the directional derivative of 𝐹 at 𝑥 ∈ 𝑋 in directionℎ ∈ 𝑋 . With this preparation,

we can now define the two main concepts of differentiation in Banach spaces.

Definition 2.1.1 (Derivatives in Banach Spaces)

Let 𝑋 and 𝑌 be Banach spaces, 𝐹 : 𝑋 → 𝑌 a mapping, and 𝑥 ∈ 𝑋 be given.

(i) If the directional derivative 𝐹 ′(𝑥 ;ℎ) exists for all ℎ ∈ 𝑋 and

D𝐹 (𝑥) : 𝑋 → 𝑌, ℎ ↦→ D𝐹 (𝑥)ℎ := 𝐹 ′(𝑥 ;ℎ)

is a bounded linear operator, then 𝐹 is called Gâteaux differentiable at 𝑥 with Gâteaux

derivative D𝐹 (𝑥) ∈ L (𝑋,𝑌). If 𝐹 is Gâteaux differentiable at every 𝑥 ∈ dom (𝐹), it

is just called Gâteaux differentiable.

(i) If additionally

lim

∥ ℎ ∥𝑋→0

∥ 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − D𝐹 (𝑥)ℎ ∥𝑌
∥ ℎ ∥𝑋

= 0,

then 𝐹 is called Fréchet differentiable at 𝑥 with Fréchet derivative 𝐹 ′(𝑥) := D𝐹 (𝑥) ∈
L (𝑋,𝑌). If 𝐹 is Fréchet differentiable at every 𝑥 ∈ dom (𝐹), it is just called Fréchet
differentiable.

(i) If 𝐹 is Fréchet differentiable and the mapping 𝐹 ′ : 𝑋 → L (𝑋,𝑌) is continuous, then

𝐹 is called continuously differentiable.

This definition immediately implies that every Fréchet differentiable mapping is also Gâteaux dif-

ferentiable. However, the approximation error of 𝐹 near 𝑥 by 𝐹 (𝑥) +D𝐹 (𝑥)ℎ has to be superlinear

in ∥ ℎ ∥𝑋 if 𝐹 is Fréchet differentiable.

6

2.2 Convex Analysis

2.2 Convex Analysis

Unless stated otherwise, this section is based on [CV20, Part II]. Although most of the results

are also valid for a normed vector space 𝑋 , we require throughout this section that 𝑋 is a real

Hilbert space with inner product ⟨·, ·⟩𝑋 , so that we can use the Riesz-Fréchet representation

theorem [Bre11, Theorem 5.5] to identify 𝑋 and its dual space 𝑋 ∗.

2.2.1 Convex Functions and Subdifferentials

First, recall that a proper function 𝐹 : 𝑋 → R, where proper means

dom (𝐹) := {𝑥 ∈ 𝑋 | 𝐹 (𝑥) < ∞} ≠ ∅, (2.2.1)

is called convex if for all 𝑥, 𝑦 ∈ 𝑋 and _ ∈ [0, 1] the inequality

𝐹
(
_𝑥 + (1 − _)𝑦

)
≤ _𝐹 (𝑥) + (1 − _)𝐹 (𝑦) (2.2.2)

holds. The following lemma summarizes some operations which preserve the convexity of a

given functional. We refer to [BC17, Section 8.2] or [CV20, Section 3] for a proof.

Lemma 2.2.1 (Construction of Convex Functions)

Let 𝐹 : 𝑋 → R be convex. Then the following functions are convex as well:

(i) 𝛼𝐹 for all 𝛼 ≥ 0;

(ii) 𝐹 +𝐺 for a convex 𝐺 : 𝑋 → R;

(iii) 𝐹 ◦𝐴 for a linear 𝐴 : 𝑌 → 𝑋 and a normed vector space 𝑌 ;

(iv) 𝑥 ↦→ sup𝑖∈𝐼 𝐹𝑖 (𝑥) with 𝐹𝑖 : 𝑋 → R convex for all 𝑖 ∈ 𝐼 and an arbitrary set 𝐼 .

Since we also consider non-smooth functions in this work, the classical derivative concepts for

Banach spaces introduced in Section 2.1 are not sufficient here. Therefore, we need to define

some sort of generalized derivative.

Definition 2.2.2 (Convex Subdifferential)

We define the (convex) subdifferential of 𝐹 : 𝑋 → R at 𝑥 ∈ dom (𝐹) as

𝜕𝐹 (𝑥) :=
{
𝑥∗ ∈ 𝑋 ∗

�� ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ∗,𝑋 ≤ 𝐹 (𝑥) − 𝐹 (𝑥) for all 𝑥 ∈ 𝑋
}
.

Note that 𝜕𝐹 (𝑥) is always a convex set, hence the name convex subdifferential. It can be shown

that this definition is indeed a generalization in the sense that, if 𝐹 : 𝑋 → R is convex and

Gâteaux differentiable at 𝑥 ∈ 𝑋 with derivative 𝐷𝐹 (𝑥), then 𝜕𝐹 (𝑥) = {𝐷𝐹 (𝑥)} [CV20, Theorem

4.5]. Furthermore, the definition of the subdifferential gives us the following Fermat principle

[CV20, Theorem 4.2].

7

2 Background

Theorem 2.2.3 (Fermat Principle)

Let 𝐹 : 𝑋 → R and 𝑥 ∈ dom (𝐹). Then

0 ∈ 𝜕𝐹 (𝑥) ⇔ 𝐹 (𝑥) = min

𝑥∈𝑋
𝐹 (𝑥) .

2.2.2 Lower Semi-Continuity

In order to recall the definition of lower semi-continuity, we first introduce the concept of weak

convergence: A sequence (𝑥𝑛)𝑛∈N ⊂ 𝑋 converges weakly to 𝑥 ∈ 𝑋 , denoted by 𝑥𝑛
𝑛→∞
⇀ 𝑥 , if

⟨𝑥∗, 𝑥𝑛⟩𝑋 ∗,𝑋
𝑛→∞→ ⟨𝑥∗, 𝑥⟩𝑋 ∗,𝑋 for all 𝑥∗ ∈ 𝑋 ∗. (2.2.3)

If 𝑋 is finite-dimensional, the notions of strong and weak convergence coincide [Kes09, Propo-

sition 5.1.3].

Definition 2.2.4 (Lower Semi-Continuity)

Let 𝐹 : 𝑋 → R and 𝑥 ∈ 𝑋 . If 𝐹 satisfies

𝐹 (𝑥) ≤ lim inf

𝑛→∞
𝐹 (𝑥𝑛)

(i) for every sequence (𝑥𝑛)𝑛∈N ⊂ 𝑋 with 𝑥𝑛
𝑛→∞→ 𝑥 , it is called lower semi-continuous

in 𝑥 ∈ 𝑋 ;

(ii) for every sequence (𝑥𝑛)𝑛∈N ⊂ 𝑋 with 𝑥𝑛
𝑛→∞
⇀ 𝑥 , it is called weakly lower semi-

continuous in 𝑥 ∈ 𝑋 .

If a function is lower semi-continuous in all 𝑥 ∈ 𝑋 , we will just say that it is lower semi-

continuous. Since the property of lower semi-continuity will be used frequently in this work,

it is useful to have a result which shows how other lower semi-continuous functions can be

constructed from a given one. The proof can be found in [CV20, Lemma 2.3].

Lemma 2.2.5 (Construction of Lower Semi-Continuous Functions)

Let 𝐹 : 𝑋 → R be lower semi-continuous. Then the following functions are lower semi-

continuous as well:

(i) 𝛼𝐹 for all 𝛼 ≥ 0;

(ii) 𝐹 +𝐺 for a lower semi-continuous 𝐺 : 𝑋 → R;

(iii) 𝐹 ◦𝐴 for a continuous 𝐴 : 𝑌 → 𝑋 and a Banach space 𝑌 ;

(iv) 𝑥 ↦→ sup𝑖∈𝐼 𝐹𝑖 (𝑥) with lower semi-continuous 𝐹𝑖 : 𝑋 → R for all 𝑖 ∈ 𝐼 and an

arbitrary set 𝐼 .

8

2.2 Convex Analysis

2.2.3 Fenchel Duality

The so-called Fenchel conjugate, which is named after the German mathematician Werner Fenchel,

allows us to use an equivalent expression of the optimality condition in Theorem 2.2.3, as we will

see in Lemma 2.2.8. This is useful if the subdifferential of this transformation is easier to calculate

than the subdifferential of the original function.

Definition 2.2.6 (Fenchel Conjugate)

(i) Let 𝐹 : 𝑋 → R be proper. We define the Fenchel conjugate 𝐹 ∗ of 𝐹 as

𝐹 ∗ : 𝑋 ∗ → R, 𝑥∗ ↦→ 𝐹 ∗(𝑥∗) := sup

𝑥∈𝑋

(
⟨𝑥∗, 𝑥⟩𝑋 ∗,𝑋 − 𝐹 (𝑥)

)
.

(ii) Let both 𝐹 : 𝑋 → R and its Fenchel conjugate 𝐹 ∗ : 𝑋 ∗ → R be proper. We define the

Fenchel biconjugate 𝐹 ∗∗ of 𝐹 as

𝐹 ∗∗ : 𝑋 → R, 𝑥 ↦→ 𝐹 ∗∗(𝑥) := sup

𝑥∗∈𝑋 ∗

(
⟨𝑥∗, 𝑥⟩𝑋 ∗,𝑋 − 𝐹 ∗(𝑥∗)

)
.

The required properness in the above definitions ensures that the defined functionals are indeed

greater than −∞ for all elements of their respective domains. The properness of 𝐹 ∗ in (ii) can

be guaranteed by assuming that 𝐹 is bounded from below by an affine functional. Furthermore,

𝐹 ∗ is always convex and lower semi-continuous, according to Lemma 2.2.1 (iv) and Lemma 2.2.5

(iv).

The next theorem shows that the biconjugate is, under certain assumptions, equal to the original

function [CV20, Theorem 5.1].

Theorem 2.2.7 (Fenchel-Moreau-Rockafellar)

Let 𝐹 : 𝑋 → R be proper. Then,

𝐹 ∗∗(𝑥) ≤ 𝐹 (𝑥) for all 𝑥 ∈ 𝑋

with equality if and only if 𝐹 is convex and lower semi-continuous.

The following lemma stems from [CV20, Lemma 5.8] and shows the connection between a func-

tion, its Fenchel conjugate, and their respective subdifferentials.

Lemma 2.2.8 (Fenchel-Young)

Let 𝐹 : 𝑋 → R be proper, convex, and lower semi-continuous. Then the following state-

ments are equivalent for any 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋 ∗:

(i) ⟨𝑥∗, 𝑥⟩𝑋 ∗,𝑋 = 𝐹 (𝑥) + 𝐹 ∗(𝑥∗);

(ii) 𝑥∗ ∈ 𝜕𝐹 (𝑥);

(iii) 𝑥 ∈ 𝜕𝐹 ∗(𝑥∗).

9

2 Background

For the next result, we need to recall that a function 𝐹 : 𝑋 → R is called coercive, if for every

sequence (𝑥𝑛)𝑛∈N ⊂ 𝑋 with ∥ 𝑥𝑛 ∥𝑋 → ∞ as 𝑛 → ∞, we also have 𝐹 (𝑥𝑛) → ∞. With this

property, we can show under which assumptions a solution of an optimization problem exists

[CV20, Theorem 2.1].

Theorem 2.2.9 (Existence of Minimizer)

Let 𝐹 : 𝑋 → R be proper, coercive and weakly lower semi-continuous. Then the problem

min

𝑥∈𝑋
𝐹 (𝑥)

has a solution 𝑥 ∈ dom (𝐹).

2.2.4 Monotone and Proximal Operators

We denote by 𝐴 : 𝑋 ⇒ 𝑌 a set-valued mapping 𝐴 : 𝑋 → 2
𝑌

, where 𝑌 is a normed vector space

and 2
𝑌

its power set. Its graph is defined as

graph (𝐴) :=
{
(𝑥, 𝑦) ∈ 𝑋 × 𝑌

�� 𝑦 ∈ 𝐴(𝑥)}. (2.2.4)

In this section we focus on the case where 𝑌 = 𝑋 ∗, which includes for example the convex

subdifferential mapping 𝑥 ↦→ 𝜕𝐹 (𝑥) as in Definition 2.2.2. One important property of set-valued

mappings is monotonicity, which is defined as follows.

Definition 2.2.10 (Monotonicity of Set-Valued Mappings)

Let 𝐴 : 𝑋 ⇒ 𝑋 ∗ be a set-valued mapping with graph (𝐴) ≠ ∅. We call 𝐴

(i) monotone, if 〈
𝑥∗

1
− 𝑥∗

2
, 𝑥1 − 𝑥2

〉
𝑋 ∗,𝑋 ≥ 0

for all

(
𝑥1, 𝑥

∗
1

)
,
(
𝑥2, 𝑥

∗
2

)
∈ graph (𝐴);

(ii) maximally monotone, if it is monotone and there does not exist another monotone

operator 𝐵 : 𝑋 ⇒ 𝑋 ∗ such that

graph (𝐴) ⊊ graph (𝐵) ;

(iii) strongly monotone with factor 𝛾 > 0, if〈
𝑥∗

1
− 𝑥∗

2
, 𝑥1 − 𝑥2

〉
𝑋 ∗,𝑋 ≥ 𝛾 ∥ 𝑥1 − 𝑥2 ∥2𝑋

for all

(
𝑥1, 𝑥

∗
1

)
,
(
𝑥2, 𝑥

∗
2

)
∈ graph (𝐴).

Note that the definition immediately implies that 𝜕𝐹 : 𝑋 ⇒ 𝑋 , 𝑥 ↦→ 𝜕𝐹 (𝑥) is monotone if

𝐹 : 𝑋 → R is convex. Moreover, if 𝐹 is proper, convex, and lower semi-continuous, then 𝜕𝐹

is even maximally monotone [CV20, Theorem 6.11], since 𝑋 is reflexive. The following lemma

from [CV20, Lemma 7.4] shows that there is a similar connection between strong monotonicity

of 𝜕𝐹 and strong convexity of 𝐹 .

10

2.2 Convex Analysis

Lemma 2.2.11 (Strong Convexity/Monotonicity)

Let 𝐹 : 𝑋 → R. We consider the following properties:

(i) 𝐹 is strongly convex with factor 𝛾 > 0, i.e.

𝐹
(
_𝑥 + (1 − _)𝑦

)
+ _(1 − _)𝛾

2

∥ 𝑥 − 𝑦 ∥2𝑋 ≤ _𝐹 (𝑥) + (1 − _)𝐹 (𝑦)

for all 𝑥, 𝑦 ∈ 𝑋 and _ ∈ [0, 1];

(ii) 𝜕𝐹 is strongly monotone with factor 𝛾 > 0.

Then (i)⇒ (ii). If 𝐹 is proper, convex and lower semi-continuous, then also (ii)⇒ (i).

Since 𝑋 is a Hilbert space with inner product ⟨·, ·⟩𝑋 , we can also define the so-called weighted
inner product, which will be useful later when we consider step size operators. For every linear

operator 𝑅 ∈ L (𝑋,𝑋), let

⟨𝑥, 𝑦⟩𝑅 := ⟨𝑅𝑥, 𝑦⟩𝑋 for all 𝑥, 𝑦 ∈ 𝑋, (2.2.5)

which is, due to the linearity of 𝑅, also a bilinear form. If, in addition to that, 𝑅 is self-adjoint and

positive definite, then ⟨·, ·⟩𝑅 is an inner product and we call it weighted inner product. Like any

inner product it induces a norm.

Definition 2.2.12 (Weighted Norm)

Let 𝑅 ∈ L (𝑋,𝑋) be self-adjoint and positive definite. The weighted norm of 𝑥 ∈ 𝑋 is given

by

∥ 𝑥 ∥𝑅 :=
√︁
⟨𝑥, 𝑥⟩𝑅 .

If𝑅 is self-adjoint but only positive semi-definite, which we write as𝑅 ≥ 0, then ⟨·, ·⟩𝑅 is a positive

semi-definite Hermitian form, which induces the semi-norm ∥ · ∥𝑅 . Furthermore, if 𝑆 ∈ L (𝑋,𝑋)
is another linear operator, we use the notation 𝑆 ≥ 𝑅 to express that 𝑆 − 𝑅 ≥ 0, i.e. 𝑆 − 𝑅 is

positive semi-definite. Note that, in the following, we may use one of the introduced notations

without having proven or assumed the desired properties of the linear operator so far. However,

we will make up for this afterwards.

The definition of strongly monotone set-valued mappings given in Definition 2.2.10 can analo-

gously be used for continuous linear operators; see [BC17, Definition 2.23].

Definition 2.2.13 (Strongly Monotone Operator)

Let 𝑅 ∈ L (𝑋,𝑋) be a linear operator. We call 𝑅 strongly monotone with factor 𝛾 > 0, if

⟨𝑅𝑥, 𝑥⟩𝑋 ≥ 𝛾 ∥ 𝑥 ∥2𝑋

for all 𝑥 ∈ 𝑋 .

If, at any point, the factor 𝛾 is not relevant for the argumentation, then we also use the term

strongly monotone without explicitly mentioning 𝛾 . Note that the definition of the norm directly

implies that 𝑅 ∈ L (𝑋,𝑋) is strongly monotone with factor 𝛾 > 0 if and only if 𝑅 −𝛾 Id is positive

semi-definite, which is a slightly stronger assumption than 𝑅 being positive definite. However,

11

2 Background

the benefit of requiring strong monotonicity of 𝑅 ∈ L (𝑋,𝑋) is the resulting invertibility of 𝑅, i.e.

𝑅−1
exists and is an element of L (𝑋,𝑋) [Cla20, Theorem 15.11]. It is moreover positive definite,

since for every 𝑥 ∈ 𝑋 we can define 𝑥 ′ := 𝑅−1𝑥 such that〈
𝑅−1𝑥, 𝑥

〉
𝑋
= ⟨𝑅𝑥 ′, 𝑥 ′⟩𝑋 > 0 (2.2.6)

due to the positive definiteness of 𝑅. If 𝑅 is additionally self-adjoint, then the same is true for 𝑅−1

[Cla20, Theorem 9.4]. Hence, we can use 𝑅−1
in Definition 2.2.12 to define a weighted norm if

𝑅 ∈ L (𝑋,𝑋) is strongly monotone and self-adjoint. We will exploit this in the next definition.

Since the set-valued subdifferential mapping is often not very useful for algorithms, we can

use the so-called proximal operator to find an equation that implicitly defines a subgradient in

Lemma 2.2.15. Based on the weighted norm, we present a definition of the weighted proximal

operator in the following.

Definition 2.2.14 (Weighted Proximal Operator)

Let 𝐹 : 𝑋 → R be proper, convex, and lower semi-continuous, and Σ ∈ L (𝑋,𝑋) a self-

adjoint and strongly monotone operator. The weighted proximal operator of 𝐹 is defined

as

prox
Σ
𝐹 : 𝑋 → 𝑋, 𝑥 ↦→ prox

Σ
𝐹 (𝑥) := arg min

𝑧∈𝑋

(
1

2

∥ 𝑧 − 𝑥 ∥2Σ−1
+ 𝐹 (𝑧)

)
.

The operator Σ will later play the role of a step size operator. This definition is slightly different

from the one in [CV20, (6.12)], where

prox𝐹 : 𝑋 → 𝑋, 𝑥 ↦→ prox𝐹 (𝑥) := arg min

𝑧∈𝑋

(
1

2

∥ 𝑧 − 𝑥 ∥2𝑋 + 𝐹 (𝑧)
)
. (2.2.7)

does not involve the weighted norm. However, the two definitions coincide for a scalar step

size 𝜎 > 0, since prox𝜎𝐹 = prox
𝜎Id

𝐹
. This extension allows us to express the weighted proximal

operator of a proper, convex, and lower semi-continuous function 𝐹 : 𝑋 → R in terms of the

so-called resolvent, which is for a set-valued operator 𝐴 : 𝑋 ⇒ 𝑋 defined as

R𝐴 : 𝑋 ⇒ 𝑋, 𝑥 ↦→ R𝐴 (𝑥) := (Id +𝐴)−1 (𝑥) . (2.2.8)

The unique minimizer 𝑧 in the definition of the weighted proximal operator satisfies the Fermat

principle in Theorem 2.2.3, i.e.

0 ∈ 𝜕
(
1

2

∥ · − 𝑥 ∥2Σ−1
+ 𝐹 (·)

)
(𝑧) = 𝜕

(
1

2

∥ · ∥2Σ−1

)
(𝑧 − 𝑥) + 𝜕𝐹 (𝑧), (2.2.9)

where we have used the sum rule with equality [CV20, Theorem 4.14] and [CV20, Lemma 4.13

(ii)] for the last equality. Since the function within the second subdifferential is differentiable, we

obtain

0 ∈ Σ−1 {𝑧 − 𝑥} + 𝜕𝐹 (𝑧), (2.2.10)

and therefore

RΣ𝜕𝐹 (𝑥) = (Id + Σ𝜕𝐹)−1 (𝑥) = 𝑧 = prox
Σ
𝐹 (𝑥) . (2.2.11)

Since 𝜕𝐹 is maximally monotone and Σ ∈ L (𝑋,𝑋) a self-adjoint and strongly monotone operator,

it follows from [BC17, Proposition 20.24] that Σ𝜕𝐹 is maximally monotone as well. Hence, RΣ𝜕𝐹 is

12

2.3 Non-Convex Analysis

indeed single-valued [CV20, Corollary 6.14]. With the following lemma, we have an equivalent

expression of the relation in Lemma 2.2.8 (ii). As mentioned before, this will help us find the

solution to an optimization problem if we do not explicitly know the subdifferential but are

able to calculate the proximal operator instead. The lemma is based on [CV20, Lemma 6.18]

but reformulated to allow for linear step size operators.

Lemma 2.2.15

Let 𝐹 : 𝑋 → R be proper, convex, and lower semi-continuous, 𝑥, 𝑥∗ ∈ 𝑋 , and Σ ∈ L (𝑋,𝑋)
a self-adjoint and strongly monotone operator. Then

𝑥∗ ∈ 𝜕𝐹 (𝑥) ⇔ 𝑥 = prox
Σ
𝐹 (𝑥 + Σ𝑥

∗) .

Proof: If we apply Σ to both sides of the subdifferential inclusion and add 𝑥 , we get

𝑥∗ ∈ 𝜕𝐹 (𝑥) ⇔ 𝑥 + Σ𝑥∗ ∈ (Id + Σ𝜕𝐹) (𝑥)

⇔ 𝑥 ∈ (Id + Σ𝜕𝐹)−1 (𝑥 + Σ𝑥∗)

⇔ 𝑥 = prox
Σ
𝐹 (𝑥 + Σ𝑥

∗),

(2.2.12)

where we have used (2.2.11) for the last equivalence. □

2.3 Non-Convex Analysis

If we are dealing with a non-convex function, most results from the previous section can not be

applied any more. Therefore, we take a look at some tools from the field of non-convex analysis

in this section, which is based on [CV20, Part III]. In the following, we consider a Banach space

𝑋 . Since we can not rely on differentiability or convexity any more, we need to introduce a form

of continuity.

Definition 2.3.1 (Local Lipschitz Continuity)

The function 𝐹 : 𝑋 → R is locally Lipschitz continuous near 𝑥 ∈ 𝑋 if there exist 𝛿 > 0 and

a Lipschitz constant 𝐿 > 0 such that

| 𝐹 (𝑥1) − 𝐹 (𝑥2) | ≤ 𝐿 ∥ 𝑥1 − 𝑥2 ∥𝑋

for all 𝑥1, 𝑥2 ∈ O𝛿 (𝑥) := {𝑥 ′ ∈ 𝑋 | ∥ 𝑥 ′ − 𝑥 ∥𝑋 < 𝛿}. If 𝐹 is locally Lipschitz continuous

near every 𝑥 ∈ 𝑈 ⊂ 𝑋 , we call 𝐹 locally Lipschitz continuous on𝑈 .

An important connection between local Lipschitz continuity and the properties introduced in the

previous section (i.e. convexity and lower semi-continuity) is given by the following proposition

[CV20, Theorem 3.13].

Proposition 2.3.2

If 𝐹 : 𝑋 → R is convex and lower semi-continuous, then it is locally Lipschitz continuous

on int (dom (𝐹)).

13

2 Background

Based on this continuity property, we can define the so-called Clarke subdifferential, which was

first introduced by Frank H. Clarke [Cla90] and is a generalization of the convex subdifferential

from Definition 2.2.2.

Definition 2.3.3 (Clarke Subdifferential)

Let 𝐹 : 𝑋 → R be locally Lipschitz continuous near 𝑥 ∈ 𝑋 . The Clarke subdifferential of 𝐹

in 𝑥 is given by

𝜕𝐶𝐹 (𝑥) :=
{
𝑥∗ ∈ 𝑋 ∗

�� ⟨𝑥∗, ℎ⟩𝑋 ∗,𝑋 ≤ 𝐹 ◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋
}
,

where 𝐹 ◦(𝑥 ;ℎ) is the generalized directional derivative given by

𝐹 ◦(𝑥 ;ℎ) := lim sup

𝑦→𝑥
𝑡↘0

𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦)
𝑡

.

It can be shown that the Clarke subdifferential is indeed a generalization of the convex subdiffer-

ential, since the equality 𝜕𝐶𝐹 (𝑥) = 𝜕𝐹 (𝑥) holds for all 𝑥 ∈ int (dom (𝐹)) if 𝐹 : 𝑋 → R is convex

and lower semi-continuous [CV20, Theorem 13.8]. The proof of this statement also shows that

every convex and lower semi-continuous function 𝐹 : 𝑋 → R is regular in the sense that its

directional derivative and generalized directional derivative coincide for all directions ℎ ∈ 𝑋 ,

i.e.

𝐹 ◦(𝑥 ;ℎ) = 𝐹 ′(𝑥 ;ℎ) = lim

𝑡↘0

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

(2.3.1)

for all 𝑥 ∈ int (dom (𝐹)). Now, Definition 2.3.3 immediately implies the following optimality

condition, which stems from [CV20, Theorem 13.4].

Theorem 2.3.4 (Fermat Principle)

If 𝐹 : 𝑋 → R has a local minimum in 𝑥 ∈ dom (𝐹), then 0 ∈ 𝜕𝐶𝐹 (𝑥).

The Fermat principle is the starting point of many non-smooth optimization algorithms. There-

fore, it is reasonable to develop some rules that will make it easier to calculate the Clarke sub-

differential of the composition of two functions. For example, we will use the following sum rule

from [CV20, Theorem 13.20] in Section 3.3, where the objective function is indeed a sum of two

functions.

Theorem 2.3.5 (Sum Rule)

Let 𝐹,𝐺 : 𝑋 → R be locally Lipschitz continuous near 𝑥 ∈ 𝑋 . Then

𝜕𝐶 (𝐹 +𝐺) (𝑥) ⊂ 𝜕𝐶𝐹 (𝑥) + 𝜕𝐶𝐺 (𝑥) .

If 𝐹 and 𝐺 are regular at 𝑥 , then 𝐹 +𝐺 is regular at 𝑥 , and equality holds.

Before we present the next calculus rule, we recall the definition of the adjoint operator. Let

therefore 𝑌 be another normed vector space. For any continuous linear operator 𝐴 ∈ L (𝑋,𝑌),
the adjoint operator 𝐴∗ ∈ L (𝑌 ∗, 𝑋 ∗) is defined as

⟨𝐴∗𝑦∗, 𝑥⟩𝑋 ∗,𝑋 = ⟨𝑦∗, 𝐴𝑥⟩𝑌 ∗,𝑌 for all 𝑥 ∈ 𝑋, 𝑦∗ ∈ 𝑌 ∗. (2.3.2)

14

2.4 Measure Theory

The following chain rule handles the composition of a locally Lipschitz continuous and a contin-

uously Fréchet differentiable function [CV20, Theorem 13.23].

Theorem 2.3.6 (Chain Rule)

Let𝑌 be a separable Banach space,𝐾 : 𝑋 → 𝑌 continuously Fréchet differentiable at 𝑥 ∈ 𝑋 ,

and 𝐹 : 𝑌 → R locally Lipschitz continuous near 𝐾 (𝑥). Then,

𝜕𝐶 (𝐹 ◦ 𝐾) (𝑥) ⊂ 𝐾 ′(𝑥)∗𝜕𝐶𝐹 (𝐾 (𝑥)) :=
{
𝐾 ′(𝑥)∗𝑦∗

�� 𝑦∗ ∈ 𝜕𝐶𝐹 (𝐾 (𝑥)) } .
If 𝐹 is regular at 𝐾 (𝑥), then 𝐹 ◦ 𝐾 is regular at 𝑥 , and equality holds.

2.4 Measure Theory

This section is mainly based on both [Kle13, Chapters 1 and 7] and [Hyt+17, Chapter 1]. Let

(Ω,A, `) be a 𝜎-finite measure space, i.e. Ω is a non-empty set, A ⊂ 2
Ω

a 𝜎-algebra such that

there exists a sequence (Ω𝑘)𝑘∈N ⊂ A with Ω = ∪𝑘∈NΩ𝑘 and ` (Ω𝑘) < ∞ for all 𝑘 ∈ N, and

` : A → [0,∞] is a measure.

Definition 2.4.1 (Measurable Function)

If (Ω′,A′, `′) is another 𝜎-finite measure space, then we call a function 𝑓 : Ω → Ω′

(A-)measurable, if

𝑓 −1 (𝐴′) ⊂ A for all 𝐴′ ∈ A′.

In the following, if Ω′ = R, we will always assume thatA′ = B(R) is the Borel 𝜎-algebra and `′

the Lebesgue measure, unless stated otherwise. Now, we consider for every measurable function

𝑓 : Ω → R and 𝑝 ∈ [1,∞) the mappings

∥ 𝑓 ∥𝑝 :=

(∫
Ω
| 𝑓 (𝑥) |𝑝 d` (𝑥)

)
1/𝑝

(2.4.1)

as well as

∥ 𝑓 ∥∞ := inf {𝐾 ≥ 0 | ` (| 𝑓 | > 𝐾) = 0} . (2.4.2)

Following [Hin+09, Section 1.2.2.3], we can then define the Lebesgue or 𝐿𝑝-space.

Definition 2.4.2 (𝐿𝑝-Space)

Let 𝑝 ∈ [1,∞]. We define the 𝐿𝑝-space by the quotient space

𝐿𝑝 (Ω) := 𝐿𝑝 (Ω,A, `) := L𝑝 (Ω,A, `) /∼

where

L𝑝 (Ω,A, `) := L𝑝 (Ω) :=

{
𝑓 : Ω → R

��� 𝑓 is `-measurable and ∥ 𝑓 ∥𝑝 < ∞
}

and

𝑓 ∼ 𝑔 :⇔ ∥ 𝑓 − 𝑔 ∥𝑝 = 0 for all 𝑓 , 𝑔 ∈ L𝑝 (Ω).

15

2 Background

Therefore, 𝐿𝑝 (Ω) is the space of all equivalence classes of `-a.e. identical functions in L𝑝 (Ω).
The term `-a.e. is short for `-almost everywhere and means that there exists a null set 𝑁 ∈ A
(i.e. ` (𝑁) = 0) such that the respective property (e.g. 𝑓 (𝑥) = 𝑔(𝑥)) holds for all 𝑥 ∈ Ω \ 𝑁 . If `

is a probability measure as in Section 2.5.1, we will use the term `-a.s. instead, which stands for

`-almost surely.

In the following, we will also use the notation ∥ · ∥𝐿𝑝 (Ω) instead of ∥ · ∥𝑝 . It can be shown that

∥ · ∥𝑝 : 𝐿𝑝 (Ω,A, `) → [0,∞) is indeed a norm for every 𝑝 ∈ [1,∞]. Furthermore, if we have

1 ≤ 𝑝 ≤ 𝑞, then the inclusion

𝐿𝑞 (Ω,A, `) ⊂ 𝐿𝑝 (Ω,A, `) (2.4.3)

holds. The case 𝑝 = 2 will be of special interest in this thesis, because 𝑌 := 𝐿2 (Ω,A, `) is a

Hilbert space with the inner product ⟨·, ·⟩𝑌 : 𝑌 × 𝑌 → R given by

⟨𝑓 , 𝑔⟩𝑌 :=

∫
Ω
𝑓 (𝑥)𝑔(𝑥) d` (𝑥) (2.4.4)

for all 𝑓 , 𝑔 ∈ 𝑌 .

Since we are concerned with PDEs in this thesis, we will also use a more general concept where

the image space of the function 𝑓 is not R. Let therefore 𝑋 be a separable Banach space. Before

stating the following definition adapted from [Hyt+17, Definition 1.1.14], we note that a function

𝑓 : Ω → 𝑋 is called `-simple, if there exist a number 𝑁 ∈ N, elements 𝑧𝑘 ∈ 𝑋 , and sets 𝐴𝑘 ∈ A
satisfying ` (𝐴𝑘) < ∞ for all 𝑘 ∈ {1, . . . , 𝑁 } such that

𝑓 (𝑥) =
𝑁∑︁
𝑘=1

𝜒𝐴𝑘
(𝑥)𝑧𝑘 (2.4.5)

for all 𝑥 ∈ Ω [Hyt+17, Definition 1.1.13].

Definition 2.4.3 (Strongly Measurable Function)

A function 𝑓 : Ω → 𝑋 is called strongly `-measurable, if there exists a sequence (𝑓𝑘)𝑘∈N
of `-simple functions 𝑓𝑘 : Ω → 𝑋 converging to 𝑓 `-a.e.

Note that, since𝑋 is separable, any strongly `-measurable function is `-almost everywhere equal

to a measurable function in the sense of Definition 2.4.1; see [Hyt+17, Proposition 1.1.16] and

[Hyt+17, Corollary 1.1.10]. Analogously to Definition 2.4.2, we can now define the so-called

Bochner space [Hyt+17, Definition 1.2.15].

Definition 2.4.4 (Bochner Space)

Let 𝑝 ∈ [1,∞]. We define the Bochner space 𝐿𝑝 (Ω;𝑋) by the quotient space

𝐿𝑝 (Ω;𝑋) := 𝐿𝑝 (Ω,A, `;𝑋) := L𝑝 (Ω,A, `;𝑋) /∼

where

L𝑝 (Ω,A, `;𝑋) :=

{
𝑓 : Ω → 𝑋

��� 𝑓 is strongly `-measurable and ∥ 𝑓 ∥𝑝 < ∞
}

and

𝑓 ∼ 𝑔 :⇔ ∥ 𝑓 − 𝑔 ∥𝑝 = 0 for all 𝑓 , 𝑔 ∈ L𝑝 (Ω,A, `;𝑋) .

16

2.5 Stochastic Programming

The so-defined space is a Banach space for every 𝑝 ∈ [1,∞]. Furthermore, the Bochner space

𝐿𝑝 (Ω;𝑋) and the Lebesgue space 𝐿𝑝 (Ω) coincide if𝑋 = R, i.e. Definition 2.4.4 is a generalization

of Definition 2.4.2. Consequently, the norm ∥ · ∥𝑝 we used in Definition 2.4.4 is a generalization

of (2.4.1) and (2.4.2), respectively, where the absolute values have been replaced by the norm on

𝑋 , i.e.

∥ 𝑓 ∥𝑝 :=

(∫
Ω
∥ 𝑓 (𝑥) ∥𝑝

𝑋
d` (𝑥)

)
1/𝑝

(2.4.6)

for 𝑝 ∈ [1,∞), and

∥ 𝑓 ∥∞ := inf

{
𝐾 ≥ 0

�� ` (
∥ 𝑓 ∥𝑋 > 𝐾

)
= 0

}
(2.4.7)

for every strongly `-measurable function 𝑓 : Ω → 𝑋 .

2.5 Stochastic Programming

In this section, we give a short introduction to the general framework of stochastic programming

[BL11; SDR14]. First, we explain the concept of uncertainty and how it is incorporated into

optimization models. Then, we briefly introduce a sample-based discretization approach which

will be used for the numerical experiments in Chapter 6. After that, we show how risk can be

accounted for in these models and focus especially on the Conditional Value-at-Risk as a risk

measure. Some expressions from the fields of probability and measure theory are used without

comprehensive explanation because this would go beyond the scope of this thesis. However, the

interested reader is referred to the respective references.

2.5.1 Uncertainty

The difference between deterministic and stochastic programming problems is the uncertainty

in the parameters of a stochastic program. In an application, this can be for example the return

of a financial instrument or the amount of wind energy produced during the day ahead. This

uncertainty is modeled as random variables on a probability space. The following summary is

based on [Kle13, Chapters 1 and 5].

Definition 2.5.1 (Probability Space)

A triple (Ξ,A,P) is called a probability space if

(i) Ξ is a non-empty set,

(i) A ⊂ 2
Ξ

is a 𝜎-algebra, and

(i) P : A → [0,∞] is a measure with P(Ξ) = 1.

In this case, the measure P is called a probability measure.

If (Ξ,A,P) is a probability space, we use A1
to denote the set of all elements of A with proba-

bility 1, i.e.

A1
:= {𝐴 ∈ A | P (𝐴) = 1} . (2.5.1)

For a proper definition of the used terms 𝜎-algebra and measure, we refer to [Kle13, Chapter 1].

With this preparation we can now define a random variable.

17

2 Background

Definition 2.5.2 (Random Variable)

Let (Ξ,A,P) be a probability space, i.e. Ξ is a non-empty set, A ⊂ 2
Ξ

a 𝜎-algebra (i.e. a

set of events) and P : A → [0, 1] a probability measure.

(i) A measurable function 𝑧 : Ξ → Ξ′, where (Ξ′,A′) is a measurable space, is called

random variable.

(ii) If B ⊂ A is a sub-𝜎-algebra, we define the space of B-measurable random variables

𝑧 : Ξ→ Ξ′ as

R (B,Ξ′) := {𝑧 : Ξ→ Ξ′ | 𝑧 is B-measurable} .

(iii) If 𝑧 : Ξ → Ξ′ is a random variable, and (Ξ′,A′) = (R,BR), where BR is the Borel

𝜎-algebra, then 𝑧 is called a real random variable.

(iv) A vector of real random variables is called random vector.

Every random variable 𝑧 induces an image measureP𝑧 := P◦𝑧−1
in the sense of [Kle13, Definition

1.98], which is called the distribution of 𝑧 [Kle13, Definition 1.103]. If 𝑧 is a random vector of

dimension 𝑑 ∈ N, the mapping

𝐹𝑧 : R𝑑 → [0, 1], 𝑥 ↦→ 𝐹𝑧 (𝑥) := P
(
𝑧𝑖 ≤ 𝑥𝑖 for all 𝑖 ∈ {1, . . . , 𝑑}

)
(2.5.2)

is called the (joint) distribution function of 𝑧. Moreover, if this distribution function takes the

form

𝐹𝑧 (𝑥) =
∫ 𝑥1

−∞
· · ·

∫ 𝑥𝑑

−∞
𝑓𝑧 (𝑡1, . . . , 𝑡𝑑) d𝑡𝑑 . . . d𝑡1 (2.5.3)

for all 𝑥 ∈ R𝑑 and some integrable function 𝑓𝑧 : R𝑑 → [0,∞), then 𝑓𝑧 is called the density of 𝐹𝑧
or the density of 𝑧.

Since a probability space is a measure space, the concepts introduced in Section 2.4 are also

applicable here. However, in Chapter 6 we will use a special notation for a Bochner space that is

defined on a probability space with the image measure of a random vector. Therefore, we briefly

introduce this notation in the following. Let

𝑧 : Ξ→ 𝑆 ⊂ R𝑑 (2.5.4)

be a random vector with density 𝜌 : 𝑆 → [0,∞). Following Definition 2.4.4, we define for every

𝑞 ∈ [1,∞] the Bochner space

𝐿
𝑞
𝜌 (𝑆 ;𝑋) := 𝐿𝑞 (𝑆,B(𝑆),P𝑧 ;𝑋) , (2.5.5)

where B(𝑆) is the Borel 𝜎-algebra of 𝑆 and P𝑧 := P ◦ 𝑧−1
the image measure of 𝑧. Due to [Kle13,

Theorem 4.10], this especially implies that

𝑦 ∈ 𝐿𝑞𝜌 (𝑆 ;𝑋) ⇔ 𝑦 ◦ 𝑧 ∈ 𝐿𝑞 (Ξ;𝑋) . (2.5.6)

In the following definition, we present a way to evaluate (i.e. assign real numbers to) random

variables, which is necessary since we want to incorporate random variables into the objective

function of an optimization problem.

18

2.5 Stochastic Programming

Definition 2.5.3 (Expected Value)

The expected value (also referred to as expectation or mean) of a real random variable 𝑧 ∈
𝐿1 (Ξ,A,P) is given by

E (𝑧) :=

∫
Ξ
𝑧 dP.

When we explain the randomization of the algorithm in Section 4.2, we will also use the condi-
tional expectation [Kle13, Definition 8.11], which is defined as follows.

Definition 2.5.4 (Conditional Expectation)

Let F ⊂ A be a sub-𝜎-algebra and 𝑧 ∈ 𝐿1 (Ξ,A,P). A random variable 𝑦 : Ξ → R is

called the conditional expectation of 𝑧 given F , if

(i) 𝑦 is F -measurable,

(ii) for any 𝐴 ∈ F , we have E (𝑧1𝐴) = E (𝑦1𝐴).

In this case, we also write E (𝑧 | F) := 𝑦 .

The so-called filtration will help us modeling the information available in each iteration of the

algorithm. It stems from the theory of stochastic processes [Kle13, Chapter 9.1] and is defined as

follows.

Definition 2.5.5 (Filtration)

A filtration 𝔄 := (A𝑘)𝑘∈N0

is a family of sub-𝜎-algebras A𝑘 ⊂ A, 𝑘 ∈ N0, such that

A𝑘 ⊂ A𝑘+1 for all 𝑘 ∈ N0.

Note that we could use a more general index set here, butN0 is sufficient in our case.

With these preparations, we could define a simple stochastic optimization model. For example, if

V := 𝐿2 (Ξ,A,P) is the space of random variables,U is another Hilbert space, and 𝑓 : U → V
a mapping, then we could consider

min

𝑢∈U
E (𝑓 (𝑢)) . (2.5.7)

In practice, this could correspond to the following scenario: U is a space whose elements repre-

sent an investment portfolio composition and 𝑓 : U → V calculates the random financial loss

of this portfolio. Then, the optimization problem would seek for a portfolio composition which

results in a minimal expected loss. If we stick with this example, it quickly becomes clear that

only minimizing the average loss is often not good enough (e.g. since large price fluctuations can

cause a total loss, no matter what the average price of the respective instrument is). Therefore,

concepts of risk averse optimization as introduced in Section 2.5.3 can help mitigating these kind

of problems.

2.5.2 Sampling

As soon as we leave the theoretical analysis of stochastic programming algorithms, we need to

think about a way how to discretize the random variables so as to solve the resulting problems by

19

2 Background

deterministic optimization techniques. One way to do this is called sample average approximation
or SSA, which we explain in the following, based on [SDR14, Chapter 5.1]. For that purpose, we

modify the problem in (2.5.7) such that the function 𝑓 : U ×R𝑑 → R explicitly takes the image

of a 𝑑-dimensional (𝑑 ∈ N) random vector
ˆb :=

(
ˆb1, . . . , ˆb𝑑

)
with

ˆb𝑖 ∈ V for all 𝑖 ∈ {1, . . . , 𝑑} as

the second argument. The problem can then be written as

min

𝑢∈U
E

(
𝑓

(
𝑢, ˆb (·)

))
. (2.5.8)

Now, we assume that we have a sample

{
b 𝑗 ∈ R𝑑

�� 𝑗 ∈ {1, . . . , 𝑆}} of 𝑆 ∈ N realizations of the

random vector
ˆb . This can be achieved by an appropriate transformation of independently gener-

ated and uniformly distributed random numbers, which is called Monte Carlo sampling [SDR14,

Section 5.3]. While this approach only works if one knows the distribution of the random vector

ˆb , one could also view the sample as historical data of 𝑆 observations. The sample average approx-

imation of (2.5.8) is then given by computing the average of the values 𝑓
(
𝑢, b 𝑗

)
for 𝑗 ∈ {1, . . . , 𝑆},

i.e.

min

𝑢∈U

1

𝑆

𝑆∑︁
𝑗=1

𝑓
(
𝑢, b 𝑗

)
. (2.5.9)

If we recall the definition of the expected value in Definition 2.5.3, we see that the sum stems from

the discretization of the integral. As a consequence of the Uniform Law of Large Numbers [SDR14,

Section 7.2.5] it was shown in [SDR14, Section 5.1.1] that, under mild regularity conditions, the

optimal solutions and the optimal value of the sample average approximation problem (2.5.9)

converge P-a.s. to the optimal solutions and the optimal value of the original problem (2.5.8) as

the sample size increases. Hence, it is a reasonable discretization approach.

2.5.3 Risk Aversion

In Section 2.5.1, we have seen an example of an optimization problem in which the objective

function is defined as the expected value of a random variable. This kind of structure is reason-

able if the Law of Large Numbers [Kle13, Chapter 5] can be invoked and our major concern of

the real-world problem is the long-term performance. However, this approach does not consider

fluctuations of specific outcome realizations. This could cause, for example, the loss of all in-

vested money in a portfolio optimization problem. Therefore, we need to extend the model from

Section 2.5.1 by the capability of measuring and minimizing risk.

Let 𝑧 ∈ 𝐿1 (Ξ,A,P) be a random variable. According to [SDR14, Chapter 6.2], the main idea

of a so-called mean-risk model is to characterize the uncertain outcome of 𝑧 by two scalars: the

expected value E (𝑧) describing the expected outcome, and the uncertainty of that outcome in

form of a risk or dispersion measure D (𝑧). These two objectives are combined to one objective

function of the form

E (𝑧) + 𝛾D (𝑧) , (2.5.10)

where the coefficient 𝛾 ≥ 0 can be varied in order to change the weight of the risk measure, i.e.

the price of risk. By minimizing this objective function for a variety of values of 𝛾 , we generate

a set of so-called efficient solutions. These solutions have the property that they, on the one

hand, minimize the value of the risk measure for a given expected value, and, on the other hand,

minimize the expected value for a given value of the risk measure. If we use this approach to

20

2.5 Stochastic Programming

incorporate a risk measure D : 𝐿1 (Ξ,A,P) → R into the problem (2.5.7), it becomes

min

𝑢∈U
E (𝑓 (𝑢)) + 𝛾D (𝑓 (𝑢)) , (2.5.11)

for 𝛾 ≥ 0.

Another possible approach is to drop the expected value and only consider a risk measure within

the objective function, i.e.

min

𝑢∈U
D (𝑓 (𝑢)) . (2.5.12)

This is basically a part of the structure of our problem defined in Chapter 3. Although there is

a large variety of risk measures [SDR14, Chapter 6.2], we will focus on one particular measure

called Conditional Value-at-Risk, which is introduced in the following section.

2.5.4 Conditional Value-at-Risk

In this section, we introduce the Conditional Value-at-Risk (CVaR), which is the particular risk

measure we focus on in this thesis. As mentioned in Chapter 1, CVaR is also referred to as

Average Value-at-Risk, Mean Excess Loss, Expected Shortfall, or Expected Tail Loss. It has become an

important tool for risk management in insurance and finance [RU00, Chapter 3] (e.g. for hedging

a portfolio of investment instruments) and is a potential choice whenever it comes to measuring

the risk of some monetary loss. Possible fields of application are supply chain management

[WB09, Section 8.2] and unit commitment of power plants [BPP16], to name just a few. However,

since the definition of CVaR does not restrict its use to financial losses, many other applications

are conceivable. These include, for example, reinforcement learning [San+17], statistical learning

[TK09], wireless data broadcast systems [Kam+14], and medical treatment planning [An+17].

While, in these examples, the CVaR is used either within a constraint or as part of the objective

function, we will focus only on the latter case.

In the following, we will first give a formal definition of the CVaR based on both [RU00, Chapter

2] and [SDR14, Section 6.2.4], and then summarize some of its properties that are needed in

subsequent chapters. Let

𝑧 ∈ 𝐿1 (Ξ,A,P) (2.5.13)

be a real-valued random variable. We assume that the distribution of 𝑧 has a density 𝑝𝑧 : R →
[0,∞) [Kle13, Definition 1.106], which does not necessarily need to take an analytical form (we

have seen in Section 2.5.2 that, for applications, it is enough to have an algorithm which generates

samples according to 𝑝𝑧). The value 𝑧 (b) for an event b ∈ Ξ is referred to as loss; 𝑧 itself is called

the loss-function. The probability of 𝑧 not exceeding a threshold 𝛼 ∈ R is given by its distribution

function 𝐹𝑧 : R→ [0, 1], which is defined as

𝛼 ↦→ 𝐹𝑧 (𝛼) := P
(
{b ∈ Ξ | 𝑧 (b) ≤ 𝛼}

)
=

∫ 𝛼

−∞
𝑝𝑧 (𝑧) d𝑧. (2.5.14)

𝐹𝑧 is non-decreasing and continuous from the right, and we assume for simplicity that it is also

continuous from the left. With this, we can define the Value-at-Risk as described informally in

Chapter 1. The usage of the minimum instead of the infimum is thereby justified by the continuity

of 𝐹𝑧 from the right.

21

2 Background

Definition 2.5.6 (Value-at-Risk)

For a given probability level 𝛽 ∈ (0, 1), the Value-at-Risk of a loss-function 𝑧 ∈ 𝐿1 (Ξ,A,P)
is defined as

VaR𝛽 (𝑧) := inf {𝛼 ∈ R | 𝐹𝑧 (𝛼) ≥ 𝛽} ,

where 𝐹𝑧 is the distribution function of 𝑧.

Although 𝛽 can take any value between 0 and 1, the three values commonly considered are 0.90,

0.95 and 0.99. Note that the VaR could also serve us as a risk measure, but Artzner et al. showed in

[Art+99] that it has some undesirable mathematical properties such as the lack of subadditivity
1

(see (2.5.15)), which directly implies non-convexity. Therefore, we focus on the CVaR, which has

much nicer properties. Apart from that, the definition of the CVaR (see Definition 2.5.7) ensures

that it is always greater than or equal to the VaR, meaning that a low CVaR leads to a low VaR

as well.

Since 𝐹𝑧 is continuous and non-decreasing, the set {𝛼 ∈ R | 𝐹𝑧 (𝛼) = 𝛽} is either a singleton or a

non-empty interval. In the latter case, the value of VaR𝛽 (𝑧) is obviously the left endpoint of this

interval [RU00, Page 5]. Consequently, the probability of the event

{
b ∈ Ξ

�� 𝑧 (b) ≥ VaR𝛽 (𝑧)
}

is equal to 1 − 𝛽 , which explains the factor (1 − 𝛽)−1
in the following definition. Note that, in

some publications, the concept of Conditional Value-at-Risk is called Average Value-at-Risk, for

reasons that are well explained in [SDR14, Theorem 6.2]. One can also find notations where the

subscript 𝛽 is the complementary probability of our probability level.

Definition 2.5.7 (Conditional Value-at-Risk)

For a given probability level 𝛽 ∈ (0, 1), the Conditional Value-at-Risk of a loss-function

𝑧 ∈ 𝐿1 (Ξ,A,P) is defined as its conditional expectation relative to the loss being greater

than or equal to its VaR𝛽 , i.e.

CVaR𝛽 (𝑧) := E
(
𝑧

�� 𝑧 ≥ VaR𝛽 (𝑧)
)

= (1 − 𝛽)−1

∫
𝑧≥VaR𝛽 (𝑧)

𝑧𝑝𝑧 (𝑧) d𝑧,

where 𝑝𝑧 is the density of 𝑧.

Note that the reason why we do not consider the case 𝛽 = 0 is that Definition 2.5.6 implies

VaR0 (𝑧) = −∞ for all 𝑧 ∈ 𝐿1 (Ξ,A,P), and hence CVaR0 (𝑧) = E (𝑧), which is not a risk mea-

sure any more. For background information regarding conditional expectations beyond Defini-

tion 2.5.4 and how the second equality in Definition 2.5.7 is obtained, we refer to [Kle13, Chapter

8]. The condition 𝑧 ∈ 𝐿1 (Ξ,A,P) implies that CVaR𝛽 (𝑧) is finite-valued and thus well defined.

If the distribution function 𝐹𝑧 is not continuous as we have assumed (e.g. if the random variable

𝑧 has a discrete probability distribution), then the definition of CVaR has to be altered [RU02].

As mentioned before, the CVaR has some nice properties which we will utilize later. Before

presenting them, we follow [SDR14, Section 6.3] and briefly discuss the case of a general risk

measure R : 𝐿𝑝 (Ξ,A,P) → R ∪ {−∞} ∪ {∞} with 𝑝 ∈ [1,∞) and properness as the only

restriction. First, we introduce a pointwise partial order 𝑧 ≽ 𝑧′ for 𝑧, 𝑧′ ∈ 𝐿𝑝 (Ξ,A,P), meaning

𝑧 (b) ≥ 𝑧′(b) for P-almost all b ∈ Ξ. This is equivalent to requiring 𝐹𝑧 (𝑥) ≤ 𝐹𝑧′ (𝑥) for all

1
In fact, VaR is only subadditive if it is based on the standard deviation of normal distributions [Art+99, Remark 3.6].

22

2.5 Stochastic Programming

𝑥 ∈ R, where 𝐹𝑧 and 𝐹𝑧′ are the distribution functions of 𝑧 and 𝑧′, respectively. This ordering is

also referred to as first-order stochastic dominance, which is explained in more detail in [MOA11,

Chapter 17.A]. Since the term risk requires one to know what is good and what is bad, we assume

throughout this section that the smaller the realizations of a random variable, the better. This

is consistent with the previously mentioned convention of referring to real random variables as

loss-functions.

The following definition summarizes some important features that can be associated with a risk

measure.

Definition 2.5.8 (Properties of Risk Measures)

Let 𝑝 ∈ [1,∞) and R : 𝐿𝑝 (Ξ,A,P) → R ∪ {−∞} ∪ {∞} be a proper risk measure. Then,

R can have the following properties:

(i) Convexity: For all 𝑧, 𝑧′ ∈ 𝐿𝑝 (Ξ,A,P) and 𝑡 ∈ [0, 1] it holds that

R
(
𝑡𝑧 + (1 − 𝑡)𝑧′

)
≤ 𝑡R (𝑧) + (1 − 𝑡)R (𝑧′) .

(ii) Monotonicity: If 𝑧, 𝑧′ ∈ 𝐿𝑝 (Ξ,A,P) and 𝑧 ≽ 𝑧′, then

R (𝑧) ≥ R (𝑧′) .

(iii) Translation equivariance: If 𝑐 ∈ R and 𝑧 ∈ 𝐿𝑝 (Ξ,A,P), then

R (𝑧 + 𝑐) = R (𝑧) + 𝑐.

(iv) Positive homogeneity: If 𝑡 > 0 and 𝑧 ∈ 𝐿𝑝 (Ξ,A,P), then

R (𝑡𝑧) = 𝑡R (𝑧) .

Convexity implies that R
(

1

2
𝑧 + 1

2
𝑧′

)
≤ 1

2
R (𝑧) + 1

2
R (𝑧′) for all 𝑧, 𝑧′ ∈ 𝐿𝑝 (Ξ,A,P), and together

with positive homogeneity we have

R (𝑧 + 𝑧′) ≤ R (𝑧) + R (𝑧′) (2.5.15)

for all 𝑧, 𝑧′ ∈ 𝐿𝑝 (Ξ,A,P). A risk measure satisfying this inequality is called subadditive. Since,

conversely, subadditivity together with positive homogeneity imply convexity, the following def-

inition is still consistent with the original one in [Art+99, Definition 2.4], where property (i) of

Definition 2.5.8 is replaced by the subadditivity condition (2.5.15).

Definition 2.5.9 (Coherent Risk Measure)

Let 𝑝 ∈ [1,∞) and R : 𝐿𝑝 (Ξ,A,P) → R ∪ {−∞} ∪ {∞} be a proper risk measure. If R
satisfies all conditions of Definition 2.5.8, then it is said to be a coherent risk measure.

As mentioned right after Definition 2.5.6, the VaR is not convex and therefore not a coherent risk

measure. However, Pflug proved in [Pfl00, Proposition 2] that the CVaR does satisfy all properties

of Definition 2.5.8, which is why we have the following result.

23

2 Background

Proposition 2.5.10 (Coherence of CVaR)

The Conditional Value-at-Risk as in Definition 2.5.7 is for any probability level 𝛽 ∈ (0, 1)
a coherent risk measure in the sense of Definition 2.5.9.

Furthermore, since CVaR is a coherent risk measure and thus satisfies properties (i) and (ii) of

Definition 2.5.8, it is also continuous and subdifferentiable [SDR14, Proposition 6.6]. Another

property we will need for the discretization of the probability space in Section 5.1 is that CVaR𝛽

can be written as the minimum of a convex function involving the expected value. We define

𝐹𝛽 : 𝐿1 (Ξ,A,P) ×R→ R by

(𝑧, 𝛼) ↦→ 𝐹𝛽 (𝑧, 𝛼) := 𝛼 + 1

1 − 𝛽E
(
(𝑧 − 𝛼)+

)
, (2.5.16)

where (𝑥)+ := max {0, 𝑥} for all 𝑥 ∈ R. The following theorem stems from [RU00, Theorem 1]

and shows the mentioned relationship between CVaR𝛽 and 𝐹𝛽 .

Proposition 2.5.11 (Characterization of CVaR)

Let 𝛽 ∈ (0, 1) be a probability level.

(i) For fixed 𝑧 ∈ 𝐿1 (Ξ,A,P), the function 𝐹𝛽 (𝑧, ·) : R→ R as defined above is convex

and continuously differentiable.

(ii) The CVaR𝛽 of any loss-function 𝑧 ∈ 𝐿1 (Ξ,A,P) can be determined by the formula

CVaR𝛽 (𝑧) = min

𝛼∈R
𝐹𝛽 (𝑧, 𝛼) .

(iii) The set consisting of the values of𝛼 for which the minimum in (ii) is attained, namely

𝐴𝛽 (𝑧) := arg min

𝛼∈R
𝐹𝛽 (𝑧, 𝛼)

with 𝑧 ∈ 𝐿1 (Ξ,A,P), is a non-empty, closed, and bounded interval. The VaR𝛽 of

the loss is given by

VaR𝛽 (𝑧) = min𝐴𝛽 (𝑧) .

(iv) The statements in (ii) and (iii) immediately imply the relation

CVaR𝛽 (𝑧) = 𝐹𝛽
(
𝑧,VaR𝛽 (𝑧)

)
for every 𝑧 ∈ 𝐿1 (Ξ,A,P).

The gain of this proposition is that we can now calculate the CVaR without having calculated the

VaR first. Nonetheless, we are still able to obtain the VaR from (iii) if this should be necessary. The

following lemma shows that the Fenchel conjugate of CVaR can be represented as the indicator

function of a convex, closed and bounded set.

24

2.6 Partial Differential Equations

Lemma 2.5.12 (Fenchel Conjugate of CVaR)

Let 𝛽 ∈ (0, 1) be a probability level. The Fenchel conjugate of CVaR𝛽 : 𝐿1 (Ξ,A,P) → R

is given by

CVaR
∗
𝛽
= 𝛿Δ,

where

Δ :=
{
𝑣 ∈ 𝐿∞ (Ξ,A,P)

��
0 ≤ 𝑣 ≤ (1 − 𝛽)−1P-a.s. and E (𝑣) = 1

}
.

Proof: Since CVaR𝛽 is a coherent risk measure (see Proposition 2.5.10), it follows from

[SDR14, Theorem 6.5] that

CVaR𝛽 (𝑧) = sup

𝑣∈Δ
⟨𝑣, 𝑧⟩V = sup

𝑣∈V

(
⟨𝑣, 𝑧⟩V − 𝛿Δ (𝑣)

)
(2.5.17)

for all 𝑧 ∈ V , where Δ is defined in [SDR14, (6.76)] by

Δ :=
{
𝑣 ∈ 𝐿∞ (Ξ,A,P)

��
0 ≤ 𝑣 ≤ (1 − 𝛽)−1P-a.s. and E (𝑣) = 1

}
. (2.5.18)

Now, Definition 2.2.6 and (2.5.17) imply that CVaR𝛽 = 𝛿∗Δ. Furthermore, Δ is convex,

closed, and bounded. Hence, it follows from [CV20, Lemma 2.5] that 𝛿Δ is convex and

lower semi-continuous. Thus, we can apply Theorem 2.2.7 with equality, yielding

CVaR
∗
𝛽
= 𝛿∗∗Δ = 𝛿Δ, (2.5.19)

which concludes the proof. □

2.6 Partial Differential Equations

Partial differential equations (PDEs) are often used for modeling complex systems in physics,

engineering, chemistry, and finance, to name just a few disciplines. Popular applications include

the heat equation (for modeling heat diffusion), Maxwell’s equations (for modeling electric fields),

Navier-Stokes equations (for modeling the motion of fluids), or the wave equation (for modeling

the propagation of mechanical or electromagnetic waves). The optimization of problems with

PDEs started in the 1970s with [Lio71] and has since then become a broad field of research. In

this section, which is based on both [Hin+09, Chapter 1] and [Del15], we summarize the most

important results needed for this thesis, especially in Chapter 6.

A typical problem considered in optimal control is

min

𝑦∈Y,𝑢∈U
𝐽 (𝑦,𝑢) 𝑠 .𝑡 . 𝑒 (𝑦,𝑢) = 0, (2.6.1)

where Y and U are Banach spaces, 𝐽 : Y ×U → R is the objective function, and the operator

𝑒 : Y × U → Z with a Banach space Z represents a PDE or a system of PDEs. The variable

𝑢 ∈ U is usually referred to as control variable, since it represents the parameter determining

the PDE to be solved. The so-called state variable 𝑦 ∈ Y describes the state of the considered

PDE system (e.g. the distribution of heat). If, for each 𝑢 ∈ U, there exists a unique solution

𝑦 =: 𝑆 (𝑢) to 𝑒 (𝑦,𝑢) = 0, we can also consider the reduced form of (2.6.1), which reads

min

𝑢∈U
𝐽
(
𝑆 (𝑢), 𝑢

)
𝑠 .𝑡 . 𝑒

(
𝑆 (𝑢), 𝑢

)
= 0. (2.6.2)

25

2 Background

The existence of such a unique solution can be shown, for example, if (𝑦,𝑢) ∈ Y × U is a local

optimal solution to (2.6.1) and the partial derivative 𝑒𝑦 (𝑦,𝑢) is a bijection. Then, the implicit

function theorem [Hin+09, Theorem 1.41] yields the existence of a unique 𝑦 =: 𝑆 (𝑢) such that

𝑒
(
𝑆 (𝑢), 𝑢

)
= 0 for all 𝑢 in a neighborhood of 𝑢. Furthermore, the solution mapping 𝑆 is then

continuously differentiable.

The theoretical framework used to examine the solution of such PDEs is based on functional

analysis and so-called Sobolev spaces, which we introduce after the necessary preparation. Let

𝑑 ∈ N, Ω ⊂ R𝑑 be an open subset, and 𝑝 ∈ [1,∞). We consider the measure space (Ω,B, `),
where B ⊂ 2

Ω
is the Borel 𝜎-algebra and ` : B → [0,∞] the Lebesgue measure. First, similarly

to Definition 2.4.2, we define the set of locally integrable functions on Ω as the factor space

𝐿
𝑝

loc
(Ω) := L𝑝

loc
(Ω) /∼, (2.6.3)

where 𝑢 ∼ 𝑤 :⇔ ∥ 𝑢 −𝑤 ∥𝑝 = 0 for all 𝑢,𝑤 ∈ L𝑝 (Ω) and

L𝑝
loc
(Ω) :=

{
𝑢 : Ω → R

�� 𝑢 is `-measurable and 𝑢 ∈ L𝑝 (𝐾) for all compact 𝐾 ⊂ Ω
}
. (2.6.4)

One can see that 𝐿𝑝 (Ω) ⊂ 𝐿1

loc
(Ω) for all 𝑝 ∈ [1,∞]. Furthermore, let 𝐶 (Ω) denote the space

of all continuous functions from Ω to R. For a multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑑) ∈ N𝑑0 with order

| 𝛼 | := ∑𝑑
𝑖=1
𝛼𝑖 , we define the | 𝛼 |-th order partial derivative of 𝑢 : Ω → R at 𝑥 ∈ Ω as

𝐷𝛼𝑢 (𝑥) :=
𝜕 | 𝛼 |

𝜕𝑥
𝛼1

1
· · · 𝜕𝑥𝛼𝑑

𝑑

𝑢 (𝑥). (2.6.5)

With this, we can define the space of all functions with continuous 𝑘-th order derivatives as

𝐶𝑘 (Ω) := {𝑢 ∈ 𝐶 (Ω) | 𝐷𝛼𝑢 ∈ 𝐶 (Ω) for | 𝛼 | ≤ 𝑘} , (2.6.6)

as well as

𝐶𝑘
(
Ω
)

:=

{
𝑢 ∈ 𝐶𝑘 (Ω)

��� 𝐷𝛼𝑢 has a continuous extension to Ω for | 𝛼 | ≤ 𝑘
}

(2.6.7)

for all 𝑘 ∈ N0 ∪ {∞}. If we use supp (𝑢) := cl ({𝑥 ∈ Ω | 𝑢 (𝑥) ≠ 0}) to denote the support of

𝑢 : Ω → R, we can define the set

𝐶∞𝑐 (Ω) :=

{
𝑢 ∈ 𝐶∞

(
Ω
) ��� supp (𝑢) ⊂ Ω is compact

}
, (2.6.8)

which is dense in 𝐿𝑝 (Ω) for all 𝑝 ∈ [1,∞) [Hin+09, Lemma 1.4]. With this space we can now

present the concept of weak derivatives, which generalize differentiation and are crucial for the

definition of Sobolev spaces.

Definition 2.6.1 (Weak Derivative)

Let 𝑢 ∈ 𝐿1

loc
(Ω) and 𝛼 = (𝛼1, . . . , 𝛼𝑑) ∈ N𝑑0 be a multi-index. If there exists a function

𝑤 ∈ 𝐿1

loc
(Ω) such that ∫

Ω
𝑢𝐷𝛼𝜑 d𝑥 = (−1) | 𝛼 |

∫
Ω
𝑤𝜑 d𝑥

for all 𝜑 ∈ 𝐶∞𝑐 (Ω), then 𝐷𝛼𝑢 := 𝑤 is called the | 𝛼 |-th order weak partial derivative of 𝑢.

26

2.6 Partial Differential Equations

Note that the equation in Definition 2.6.1 determines the weak derivative𝐷𝛼𝑢 ∈ 𝐿1

loc
(Ω) uniquely

[Hin+09, Lemma 1.5]. With these preparations we can now define the Sobolev space.

Definition 2.6.2 (Sobolev Space)

For 𝑘 ∈ N0 and 𝑝 ∈ [1,∞], we define the Sobolev space𝑊 𝑘,𝑝 (Ω) by

𝑊 𝑘,𝑝 (Ω) :=
{
𝑢 ∈ 𝐿𝑝 (Ω)

�� 𝑢 has weak derivatives 𝐷𝛼𝑢 ∈ 𝐿𝑝 (Ω) for all | 𝛼 | ≤ 𝑘
}
,

equipped with the norm

∥ 𝑢 ∥𝑊 𝑘,𝑝 :=

(∑︁
| 𝛼 | ≤𝑘

∥ 𝐷𝛼𝑢 ∥𝑝𝑝

)
1/𝑝

, if 𝑝 ∈ [1,∞),

and ∥ 𝑢 ∥𝑊 𝑘,∞ :=
∑︁
| 𝛼 | ≤𝑘

∥ 𝐷𝛼𝑢 ∥∞ .

It can be shown that𝑊 𝑘,𝑝 (Ω) as defined above is indeed a Banach space [Hin+09, Theorem 1.11]

for all 𝑝 ∈ [1,∞]. Moreover,

𝐻𝑘 (Ω) :=𝑊 𝑘,2(Ω) (2.6.9)

is a Hilbert space, which is why the space 𝐻 1(Ω) will be of special interest in this thesis. It

consists of all 𝐿2(Ω)-functions with first order weak derivatives in 𝐿2(Ω), i.e.

𝐻 1(Ω) =
{
𝑦 ∈ 𝐿2 (Ω)

�� 𝐷𝑖𝑦 ∈ 𝐿2 (Ω) for all 𝑖 ∈ {1, . . . , 𝑑}
}
. (2.6.10)

In order to incorporate homogeneous boundary conditions into the function space, we denote

by𝑊
𝑘,𝑝

0
(Ω) the closure of 𝐶∞𝑐 (Ω) in𝑊 𝑘,𝑝 (Ω). If equipped with the same norm as𝑊 𝑘,𝑝 (Ω), this

is a Banach space, too. Furthermore, the space

𝐻𝑘
0
(Ω) :=𝑊

𝑘,2
0
(Ω) (2.6.11)

is a Hilbert space.

Since 𝑊 𝑘,𝑝 (Ω) ⊂ 𝐿𝑝 (Ω) for all 𝑘 ∈ N0 and 𝑝 ∈ [1,∞], one can show under additional as-

sumptions the embedding of Sobolev spaces into 𝐿𝑝-spaces. The following theorem stems from

[Hin+09, Theorem 1.14] and is limited to one special case, which is relevant for this thesis.

Theorem 2.6.3 (Sobolev Embedding)

Let Ω ⊂ R𝑑 with 𝑑 ∈ N be open and bounded with Lipschitz-boundary 𝜕Ω. Then

𝐻 1(Ω) ↩→↩→ 𝐿2 (Ω), i.e. 𝐻 1(Ω) is compactly embedded in 𝐿2 (Ω), which means that

(i) ∥ 𝑦 ∥𝐿2 (Ω) ≤ ∥ 𝑦 ∥𝐻 1 (Ω) for all 𝑦 ∈ 𝐻 1 (Ω),

(ii) the embedding operator] : 𝐻 1(Ω) → 𝐿2 (Ω) is compact.

The requirement that Ω has a Lipschitz-boundary ensures that 𝜕Ω is sufficiently regular in the

sense that it is locally the graph of a Lipschitz continuous function. For a proper definition, see

[Hin+09, Definition 1.13]. The reason why we consider Sobolev spaces when it comes to the

solution of PDEs is that the so-called weak solutions of PDEs are elements of these spaces, which

27

2 Background

we illustrate with the following example. Let Ω ⊂ R𝑑 with 𝑑 ∈ N be open and bounded, and

𝑓 ∈ 𝐿2 (Ω). The Poisson equation

−Δ𝑦 = 𝑓 on Ω,

𝑦 = 0 on 𝜕Ω,
(2.6.12)

where Δ denotes the Laplace operator and 𝜕Ω the boundary of Ω, is an elliptic boundary value

problem. A unique solution 𝑦 ∈ 𝐶2(Ω) ∩ 𝐶1
(
Ω
)

can be obtained by classical methods [Eva10,

Theorem 1] only for continuous right-hand sides. Therefore, we need a generalized solution

concept, which is based on a variational formulation of (2.6.12). If we assume that 𝑦 is regular
enough, we can multiply (2.6.12) with a test function 𝑣 ∈ 𝐶∞𝑐 (Ω) and integrate over Ω to get

−
∫
Ω
Δ𝑦𝑣 d𝑥 =

∫
Ω
𝑓 𝑣 d𝑥 . (2.6.13)

Integration by parts yields∫
Ω
∇𝑦 · ∇𝑣 d𝑥 −

∫
𝜕Ω
𝑣𝜕𝑛𝑦 d𝑆 (𝑥) =

∫
Ω
𝑓 𝑣 d𝑥, (2.6.14)

where 𝑆 denotes the surface measure on 𝜕Ω, 𝑛 : 𝜕Ω → R𝑑 is the exterior normal vector, and

𝜕𝑛𝑦 := ∇𝑦 · 𝑛 =
𝜕𝑦

𝜕𝑛
the normal derivative of 𝑦 . Since 𝑣 ∈ 𝐶∞𝑐 (Ω) and Ω is open, we have that

supp (𝑣) ∩ 𝜕Ω = ∅, i.e. 𝑣 (𝑥) = 0 for all 𝑥 ∈ 𝜕Ω. Therefore, (2.6.14) is equivalent to∫
Ω
∇𝑦 · ∇𝑣 d𝑥 =

∫
Ω
𝑓 𝑣 d𝑥, (2.6.15)

and since 𝐶∞𝑐 (Ω) is dense in 𝐻 1

0
(Ω) and the terms in (2.6.15) are continuous with respect to the

𝐻 1

0
(Ω)-norm, the equation holds for all 𝑣 ∈ 𝐻 1

0
(Ω) [Del15, p. 14]. This justifies the following

definition.

Definition 2.6.4 (Weak Solution)

A function 𝑦 ∈ 𝐻 1

0
(Ω) is called a weak solution to (2.6.12) if it satisfies for all 𝑣 ∈ 𝐻 1

0
(Ω)

the weak formulation ∫
Ω
∇𝑦 · ∇𝑣 d𝑥 =

∫
Ω
𝑓 𝑣 d𝑥 .

The existence and uniqueness of a weak solution can be shown by the use of the Lax-Milgram

lemma [Hin+09, Lemma 1.8].

28

Chapter 3
Optimization Problem

In this chapter, we present the risk-averse, non-smooth optimization problem that we aim at

solving by the use of the algorithm developed in Chapter 4. The first section is devoted to the

formulation of the problem. In the second section, we take a closer look at the PDE constraint

and how it is incorporated into the objective function. Finally, an optimality condition is derived

in the third section.

3.1 Problem Formulation

The problem we consider is basically a special case of the one proposed by Kouri and Surowiec

in [KS18a], which thus is the basis of this section. Let

U := 𝐿2 (Ω) := 𝐿2 (Ω,O, `) (3.1.1)

be the space of control variables where (Ω,O, `) is a separable measure space with Ω ⊂ R𝑑
open and bounded with Lipschitz-boundary 𝜕Ω, and 𝑑 ∈ N (typically, O will be the Borel 𝜎-

algebra of Ω and ` the Lebesgue measure). Furthermore, we consider a separable probability

space (Ξ,A,P) and the space of random variables (i.e. loss functions)

V := 𝐿2

P (Ξ) := 𝐿2 (Ξ,A,P) . (3.1.2)

BothU andV are Hilbert spaces with inner products ⟨·, ·⟩U and ⟨·, ·⟩V . The induced norms are

denoted by ∥ · ∥U and ∥ · ∥V , respectively.

We first state the problem and then define the involved functions.

Problem 3.1.1 (Original Problem)

min

𝑢∈U
CVaR𝛽 (𝐾 (𝑢)) +𝐺 (𝑢)

CVaR𝛽 denotes the Conditional Value-at-Risk for a probability level 𝛽 ∈ (0, 1) as in Defini-

tion 2.5.7. Remember that, according to Proposition 2.5.10, CVaR𝛽 is coherent and therefore

especially convex. Moreover, it is proper and continuous as mentioned in Section 2.5.4, and thus

also lower semi-continuous. The function 𝐾 : U → V involves a random field PDE solution,

which is explained in more detail in Section 3.2. It is therefore the link between the constraint

and the objective function. The following assumption summarizes the properties of 𝐺 .

29

3 Optimization Problem

Assumption 3.1.2 (Properties of 𝐺)

The mapping 𝐺 : U → R is proper, convex, and lower semi-continuous. Furthermore, its

domain is bounded, i.e. dom (𝐺) ⊂ B𝑅𝐺 (�̃�) for some �̃� ∈ U and a radius 𝑅𝐺 > 0.

Finally, we present the saddle-point formulation of Problem 3.1.1, which is often the basis of

similar analyses, as mentioned in Chapter 1. Since CVaR𝛽 is proper, convex, and lower semi-

continuous, the Fenchel biconjugate of CVaR𝛽 (see Definition 2.2.6 (ii)) is, according to Theo-

rem 2.2.7, equal to CVaR𝛽 itself, i.e.

CVaR𝛽 (𝑣) = CVaR
∗∗
𝛽
(𝑣) = sup

𝑣∗∈V∗

(
⟨𝑣∗, 𝑣⟩V∗,V − CVaR

∗
𝛽
(𝑣∗)

)
(3.1.3)

for all 𝑣 ∈ V , where CVaR
∗
𝛽

: V∗ → R is the Fenchel conjugate of CVaR𝛽 and ⟨·, ·⟩V∗,V the

duality pairing. Together with the Riesz-Fréchet representation theorem [Bre11, Theorem 5.5],

we can therefore equivalently formulate Problem 3.1.1 as follows.

Problem 3.1.3 (Saddle-Point Problem)

min

𝑢∈U
max

𝑣∈V
𝐺 (𝑢) + ⟨𝑣, 𝐾 (𝑢)⟩V − CVaR

∗
𝛽
(𝑣)

Note that the justification for using the maximum instead of the supremum follows from the

representation of CVaR
∗
𝛽

in (2.5.19) together with [CV20, Theorem 3.8] and the fact that the set

Δ in (2.5.18) is non-empty, convex, bounded and closed.

3.2 PDE Constraint

The optimization problem involves a constraint in form of a partial differential equation with

uncertain coefficients. This PDE can be written as

𝑒 (𝑦,𝑢) = 0 (3.2.1)

for all controls 𝑢 ∈ U. Here, 𝑦 := 𝑆 (𝑢) denotes the weak (random field) solution of this PDE. It

is an element of the space Y, which we define after introducing the following assumption from

[KS18a, Assumption 2.1].

Assumption 3.2.1 (Properties of the Solution Mapping)

(i) 𝑦 := 𝑆 (𝑢) : Ξ→ 𝐻 1 (Ω) is strongly P-measurable for all 𝑢 ∈ U.

(ii) There exist a non-negative, increasing function 𝜌 : [0,∞) → [0,∞) and a non-

negative random variable 𝐶 ∈ 𝐿𝑞
P
(Ξ) with 𝑞 ∈ [1,∞] satisfying

∥ 𝑆 (𝑢) (b) ∥𝐻 1 (Ω) ≤ 𝜌
(
∥ 𝑢 ∥U

)
𝐶 (b)

for P-a.e. b ∈ Ξ and all 𝑢 ∈ U.

(iii) If (𝑢𝑛)N ⊂ U is a sequence with 𝑢𝑛 ⇀ 𝑢 ∈ U as 𝑛 → ∞, then 𝑆 (𝑢𝑛) ⇀ 𝑆 (𝑢) in

𝐻 1 (Ω) P-a.s.

30

3.2 PDE Constraint

This assumption ensures that 𝑆 (𝑢) ∈ Y for all 𝑢 ∈ U, where Y is the stochastic PDE solution

space

Y := 𝐿𝑞
(
Ξ,A,P;𝐻 1 (Ω)

)
(3.2.2)

with 𝑞 ∈ [1,∞] as in Assumption 3.2.1 (ii). Without loss of generality, we can assume 𝑞 ∈ N.

Otherwise we could replace Y by 𝐿𝑟
(
Ξ,A,P;𝐻 1 (Ω)

)
for any integer 𝑟 < 𝑞, since (Ξ,A,P) is

a finite measure space and therefore the inclusion 𝐿𝑞
(
Ξ,A,P;𝐻 1 (Ω)

)
↩→ 𝐿𝑟

(
Ξ,A,P;𝐻 1 (Ω)

)
holds. Now, as mentioned in [KS18a, p. 790], Assumption 3.2.1 ensures that 𝑆 (𝑢) ∈ Y for all

𝑢 ∈ U, thus 𝑆 : U → Y is well-defined. Furthermore, the assumption implies that 𝑆 (𝑢𝑛) ⇀ 𝑆 (𝑢)
inY for any weakly convergent sequence (𝑢𝑛)𝑛∈N ⊂ U with𝑢𝑛 ⇀ 𝑢 as𝑛 →∞. This is a different

notion of convergence than in Assumption 3.2.1 (iii) and implies that 𝑆 is weakly continuous.

In the following, we examine how the function 𝐾 : U → V incorporates the solution of the PDE

constraint into the objective function. For this purpose, let

𝐽 : 𝐻 1 (Ω) × Ξ→ R (3.2.3)

satisfy the following assumption [KS18a, Assumption 3.1].

Assumption 3.2.2 (Properties of 𝐽)

(i) 𝐽 is a Carathéodory function, i.e. 𝐽 (·, b) is continuous for P-a.e. b ∈ Ξ and 𝐽 (𝑦, ·) is

measurable for all 𝑦 ∈ 𝐻 1 (Ω).

(ii) Growth condition: If 𝑞 ∈ [1,∞), then there exist 𝑎 ∈ 𝐿2 (Ξ) with 𝑎 ≥ 0 P-a.s. and

𝑐 > 0 such that �� 𝐽 (𝑦, b) �� ≤ 𝑎(b) + 𝑐 ∥ 𝑦 ∥𝑞/2
𝐻 1 (Ω)

for P-a.e. b ∈ Ξ and all 𝑦 ∈ Y. If 𝑞 = ∞, then the uniform boundedness condition

holds: for all 𝑐 > 0 there exists 𝛾 ∈ V such that�� 𝐽 (𝑦, b) �� ≤ 𝛾 (b)
for P-a.e. b ∈ Ξ and all 𝑦 ∈ Y with ∥ 𝑦 ∥Y ≤ 𝑐 .

(iii) Convexity: 𝐽 (·, b) is convex for P-a.e. b ∈ Ξ.

An example satisfying this assumption is the tracking-type functional

𝐽 (𝑦, b) :=
1

2

∥ 𝑦 − 𝑦 ∥2
𝐿2 (Ω) (3.2.4)

for some 𝑦 ∈ 𝐿2 (Ω) [KS18a, Example 3.2]. For example, if 𝑞 = 4, i.e. Y = 𝐿4
(
Ξ,A,P;𝐻 1 (Ω)

)
,

then

𝐽 (𝑦, b) = 1

2

∥ 𝑦 ∥2
𝐿2 (Ω) − ⟨𝑦, 𝑦⟩𝐿2 (Ω) +

1

2

∥ 𝑦 ∥2
𝐿2 (Ω)

≤ ∥ 𝑦 ∥2
𝐿2 (Ω) + ∥ 𝑦 ∥

2

𝐿2 (Ω)

≤ ∥ 𝑦 ∥2
𝐻 1 (Ω) + ∥ 𝑦 ∥

2

𝐿2 (Ω)

(3.2.5)

for all 𝑦 ∈ 𝐻 1 (Ω) and b ∈ Ξ, where the first inequality follows from Cauchy-Schwarz and

Young’s inequality, and the second from Theorem 2.6.3 (Sobolev Embedding). In order to satisfy

31

3 Optimization Problem

Assumption 3.2.2 (ii), we can set 𝑐 := 1 and 𝑎(b) := ∥ 𝑦 ∥2
𝐿2 (Ω) for all b ∈ Ξ, which implies

𝑎 ∈ 𝐿∞ (Ξ) ⊂ 𝐿2 (Ξ) = V . Obviously, Assumption 3.2.2 (i) and (iii) are satisfied for this choice

of 𝐽 as well.

We can now define for any function 𝐽 : 𝐻 1 (Ω) ×Ξ→ R the so-called Nemytskii or superposition
operator 𝐽 : Y → V by 𝐽 (𝑦) := 𝐽 (𝑦 (·), ·) for all 𝑦 ∈ Y, i.e.

[𝐽 (𝑦)] (b) := 𝐽 (𝑦 (b), b) (3.2.6)

for P-a.e. b ∈ Ξ. It can be shown that, under Assumption 3.2.2, 𝐽 is continuous [KS18a, Theorem

3.5] and Gâteaux differentiable [KS18a, Theorem 3.9]. Furthermore, the following proposition

shows that, under additional assumptions, 𝐽 is even continuously Fréchet differentiable [GKT92,

Theorem 7].

Proposition 3.2.3 (Continuous Differentiability of 𝐽)

Let 𝑞 from the definition ofY in (3.2.2) satisfy 𝑞 ∈ (2,∞). If 𝐽 : 𝐻 1 (Ω) ×Ξ→ R is Fréchet

differentiable with respect to 𝑦 ∈ 𝐻 1 (Ω) and the Fréchet derivative 𝐽𝑦 : 𝐻 1 (Ω) × Ξ →
L

(
𝐻 1 (Ω) ,R

)
is a Carathéodory function and satisfies the growth condition 𝐽𝑦 (𝑦, b) L(𝐻 1 (Ω),R) ≤ 𝑎(b) + 𝑐 ∥ 𝑦 ∥

𝑞/𝑟
𝐻 1 (Ω)

for some 𝑎 ∈ 𝐿𝑟 (Ξ), 𝑐 ≥ 0, and 𝑟 :=
2𝑞

𝑞−2
, then the Nemytskii operator 𝐽 : Y → V defined

by

𝑦 ↦→ 𝐽 (𝑦) := 𝐽 (𝑦 (·), ·)

is continuously Fréchet differentiable.

If we revisit the example given in (3.2.4), we note that the assumptions of Proposition 3.2.3 can be

easily verified with 𝑞 = 4. Hence, in this case, 𝐽 is in fact continuously Fréchet differentiable.

With this preparation we can now define the operator𝐾 , which was introduced in Problem 3.1.1.

Let 𝐾 := 𝐽 ◦ 𝑆 : U → V with 𝐽 : Y → V as defined in (3.2.6) and 𝑆 : U → Y the PDE solution

mapping. An assumption, which is needed in Section 3.3 to derive the optimality condition, is

the continuous differentiability of 𝐾 .

Assumption 3.2.4 (Continuous Differentiability of 𝐾)

The mapping 𝐾 := 𝐽 ◦ 𝑆 : U → V is at least once continuously Fréchet differentiable.

3.3 Existence and Optimality Condition

In this section, we show under which assumptions Problem 3.1.1 admits a solution within the

domain of the objective function. Afterwards, we derive an optimality condition, similarly to the

approach presented in the Master’s thesis [Ang18, Section 3.2]. The difference is that now the

formulations are more generic since we do neither require 𝐾 to be linear nor U to have finite

dimension.

32

3.3 Existence and Optimality Condition

Recall that the problem we consider is

min

𝑢∈U
CVaR𝛽 (𝐾 (𝑢)) +𝐺 (𝑢). (3.3.1)

In order to show the existence of a minimizer, we have to make sure that the conditions of

Theorem 2.2.9 are satisfied. As it turns out in the following proposition, the assumptions made

in Section 3.1 are sufficient.

Proposition 3.3.1 (Existence of Solution)

If the assumptions of Section 3.1 are satisfied, then Problem 3.1.1 has a solution

𝑢 ∈ dom

(
CVaR𝛽 ◦ 𝐾 +𝐺

)
.

Proof: We want to apply Theorem 2.2.9 and thus have to satisfy its conditions, i.e. the

function 𝐹 := CVaR𝛽 ◦ 𝐾 + 𝐺 : U → R needs to be proper, coercive and weakly lower

semi-continuous.

Since CVaR𝛽 (𝑣) ∈ R for all 𝑣 ∈ 𝐿1

P
(Ξ) [SDR14, Section 6.2.4], and 𝐺 is proper according

to Assumption 3.1.2, the compound function 𝐹 is proper as well.

In order to show the coercivity of 𝐹 , let (𝑢𝑛)𝑛∈N ⊂ U be a sequence with ∥ 𝑢𝑛 ∥U →∞ as

𝑛 → ∞. The boundedness of dom (𝐺) (see Assumption 3.1.2) implies that there exists an

index 𝑁 ∈ N such that𝐺 (𝑢𝑛) = ∞ for all 𝑛 ≥ 𝑁 . Since CVaR𝛽 is finite-valued, this implies

that 𝐹 (𝑢𝑛) = ∞ for all 𝑛 ≥ 𝑁 . Therefore, by taking the limit 𝑛 → ∞, we get 𝐹 (𝑢𝑛) → ∞
and hence the coercivity of 𝐹 .

Finally, [KS18a, Proposition 3.8] shows that 𝐹 is weakly lower semi-continuous, since As-

sumption 3.2.1 and Assumption 3.2.2 are satisfied. □

In order to derive the optimality condition, we can apply Theorem 2.3.4 (Fermat Principle) and

deduce that, if 𝑢 ∈ dom

(
CVaR𝛽 ◦ 𝐾 +𝐺

)
is a local minimizer, it satisfies

0 ∈ 𝜕𝐶
(
CVaR𝛽 ◦ 𝐾 +𝐺

)
(𝑢) . (3.3.2)

We know from Assumption 3.2.4 that 𝐾 is continuously Fréchet differentiable. Furthermore,

since CVaR𝛽 is convex and lower semi-continuous, it is also locally Lipschitz continuous on

int

(
dom

(
CVaR𝛽

))
, according to Proposition 2.3.2, and therefore regular at 𝐾 (𝑢). Application of

the second part of Theorem 2.3.6 (Chain Rule) yields that CVaR𝛽 ◦ 𝐾 is regular as well. On the

other hand, 𝐺 is also regular for the same reason, which is why we can use Theorem 2.3.5 (Sum

Rule) with equality, i.e.

0 ∈ 𝜕𝐶
(
CVaR𝛽 ◦ 𝐾

)
(𝑢) + 𝜕𝐶𝐺 (𝑢) . (3.3.3)

Consequently, we can now apply the whole Theorem 2.3.6 (Chain Rule) with equality, yielding

0 ∈ 𝐾 ′(𝑢)∗𝜕𝐶CVaR𝛽 (𝐾 (𝑢)) + 𝜕𝐶𝐺 (𝑢) . (3.3.4)

If this condition is satisfied, there must be a 𝑣 ∈ V such that
−𝐾 ′(𝑢)∗𝑣 ∈ 𝜕𝐺 (𝑢),

𝑣 ∈ 𝜕CVaR𝛽 (𝐾 (𝑢)) ,
(3.3.5)

33

3 Optimization Problem

where we have intentionally replaced 𝜕𝐶 by 𝜕 due to the convexity and lower semi-continuity of

CVaR𝛽 and𝐺 ; see [CV20, Theorem 13.8]. Now we can apply Lemma 2.2.8 to the second condition

in (3.3.5) to get the equivalent formulation
−𝐾 ′(𝑢)∗𝑣 ∈ 𝜕𝐺 (𝑢),

𝐾 (𝑢) ∈ 𝜕CVaR
∗
𝛽
(𝑣) ,

(3.3.6)

where CVaR
∗
𝛽

is the Fenchel conjugate of CVaR𝛽 as in Definition 2.2.6. Altogether, we have

proven the following optimality condition.

Proposition 3.3.2 (Optimality Condition)

If 𝑢 ∈ dom

(
CVaR𝛽 ◦ 𝐾 +𝐺

)
is a local minimizer of Problem 3.1.1, then there exists 𝑣 ∈ V

such that𝑤 := (𝑢, 𝑣) satisfies

0 ∈ 𝐻 (𝑤) :=
©«
𝜕𝐺 (𝑢) + 𝐾 ′(𝑢)∗𝑣

𝜕CVaR
∗
𝛽
(𝑣) − 𝐾 (𝑢)

ª®¬ . (OC)

34

Chapter 4
Algorithm

In this chapter we propose a stochastic algorithm that solves Problem 3.1.1. In the first section we

describe the motivation, define the necessary notation and present the algorithm in a primal-dual

and an implicit form. The former is used for implementation whereas the latter will be the basis of

the convergence analysis. In the second section we formally introduce a randomization technique

which will accelerate the numerical computation. Based on this randomized algorithm, we prove

almost sure weak convergence under some additional assumptions in Section 4.3. Finally, we

investigate in the fourth section how these assumptions can be satisfied in the case of scalar and

deterministic step sizes.

4.1 Stochastic Primal-Dual Proximal Splitting Method

In order to motivate the structure of the algorithm, we derive an equivalent formulation of the op-

timality condition (OC), which involves proximal operators. We do this by applying Lemma 2.2.15

to (3.3.6) and therefore have to prove its assumptions, i.e. 𝐺 and CVaR
∗
𝛽

need to be proper, con-

vex, and lower semi-continuous. However,𝐺 has this properties by Assumption 3.1.2 and CVaR
∗
𝛽

is the Fenchel Conjugate of a proper function and as such convex and lower semi-continuous

[BC17, Proposition 13.13]. Moreover, since CVaR𝛽 is convex and lower semi-continuous, CVaR
∗
𝛽

is proper [BC17, Theorem 13.37]. This justifies the application of Lemma 2.2.15 to (3.3.6), yield-

ing
𝑢 = prox

𝑇
𝐺

(
𝑢 −𝑇𝐾 ′(𝑢)∗𝑣

)
𝑣 = prox

Σ
CVaR

∗
𝛽

(
𝑣 + Σ𝐾 (𝑢)

) (4.1.1)

with self-adjoint, strongly monotone operators 𝑇 ∈ L (U,U) and Σ ∈ L (V,V). This suggests

the fixed-point iteration
𝑣𝑘+1 = prox

Σ𝑘
CVaR

∗
𝛽

(
𝑣𝑘 + Σ𝑘𝐾 (𝑢𝑘)

)
𝑢𝑘+1 = prox

𝑇𝑘
𝐺

(
𝑢𝑘 −𝑇𝑘𝐾 ′(𝑢𝑘)∗𝑣𝑘+1

) (4.1.2)

where we have used 𝑢𝑘 instead of 𝑢𝑘+1 in the first line in order to decouple the dual from the

primal update. This allows us to compute 𝑣𝑘+1 without knowing 𝑢𝑘+1 in advance, thus we can

first update the dual and then the primal variable. This order was chosen deliberately since, in

this way, we can reduce the number of computationally demanding PDE solutions by a factor of

up to two. This becomes clearer after introducing the following concept.

In order to accelerate the algorithm, we will make use of what we call component-wise gradient
freezing or CGF. This term stems from the discrete case in Section 6.2, where in each iteration

35

4 Algorithm

only some components of the gradient of 𝐾 are updated (and therefore the PDEs only need

to be updated for a subset of samples). In the more general framework, we need to consider

projections onto subsets instead of components of a discrete gradient. Therefore, we define for

every element
1 𝐴 ∈ A (i.e. 𝐴 is a subset of Ξ where (Ξ,A,P) is the probability space) the

function Π𝐴 : V → V as

Π𝐴 (𝑣) := 𝜒𝐴 (·)𝑣 (·) for all 𝑣 ∈ V, (4.1.3)

i.e. Π𝐴 (𝑣) (b) = 𝜒𝐴 (b)𝑣 (b) for all 𝑣 ∈ V, b ∈ Ξ, (4.1.4)

where 𝜒𝐴 : Ξ→ {0, 1} is the characteristic function of𝐴. We have that Π𝐴 ∈ L (V,V) for every

𝐴 ∈ A and especially Π𝐴 = IdV if 𝐴 = Ξ. Furthermore, given a sequence (𝐴𝑘)𝑘∈N ⊂ A of

random events and a sequence (𝑢𝑘)𝑘∈N0
⊂ U of primal iterates, we recursively define for every

𝑘 ∈ N the functions �̂�𝑘 : U → V and �̂� ′
𝑘
(·)∗ : U → L (V,U) by

�̂�𝑘 (𝑢) := Π𝐴𝑘

(
𝐾 (𝑢)

)
+

(
IdV − Π𝐴𝑘

) (
�̂�𝑘−1 (𝑢𝑘−1)

)
, (4.1.5)

and �̂� ′
𝑘
(𝑢)∗ := 𝐾 ′ (𝑢)∗ ◦ Π𝐴𝑘

+ �̂� ′
𝑘−1
(𝑢𝑘−1)∗ ◦

(
IdV − Π𝐴𝑘

)
, (4.1.6)

for every 𝑢 ∈ U, where �̂�0 := 𝐾 and �̂� ′
0
(·)∗ := 𝐾 ′(·)∗. Note that the special case without CGF

(i.e. 𝐴𝑘 = Ξ for all 𝑘 ∈ N) implies that �̂�𝑘 ≡ 𝐾 and �̂� ′
𝑘
(·)∗ ≡ 𝐾 ′(·)∗ for all 𝑘 ∈ N.

So as not to rely on some predefined, deterministic choice of the sequence (𝐴𝑘)𝑘∈N ⊂ A, we

want to allow for a random selection of the set 𝐴𝑘 in each iteration 𝑘 ∈ N. This randomization

is formalized in Section 4.2, whereas examples of the concrete choice of (𝐴𝑘)𝑘∈N ⊂ A are given

in Section 6.2.

With this preparation, we can now replace 𝐾 and 𝐾 ′ in the fixed-point iterations (4.1.2) with �̂�𝑘
and �̂� ′

𝑘
, respectively. Additionally, we add a so-called over-relaxation step in the dual variable,

which corresponds to the case \ = 1 in [CP11a, Section 3.1]. The reason for this step lies in

the desired structure of the implicit formulation in (4.1.7). As we will see later in Lemma 4.4.8,

this allows us to make the preconditioning operator 𝑀𝑘 self-adjoint by the choice of Σ𝑘 and 𝑇𝑘 .

Altogether, we can formulate Algorithm 4.1 with the following inputs:

• a stopping criterion tolerance of Y > 0;

• starting vectors 𝑢0 ∈ U and 𝑣0 ∈ V;

• initial step size operators 𝑇0 ∈ L (U,U) and Σ0 ∈ L (V,V);

• an initial index set 𝐴0 = Ξ.

The choice of 𝐴0 = Ξ guarantees that the recursive definition of �̂�𝑘 and �̂� ′
𝑘

(see (4.1.5) and

(4.1.6), respectively) makes sense for the case 𝑘 = 0. It also implies that, in the first iteration, the

gradients are not frozen at all. This seems to be a reasonable start, since 𝑢1 and 𝑣1 will not be

influenced by the randomization this way.

After reading Algorithm 4.1, it should be clear that, by updating the dual variable first, we save

the computation of many PDEs, because 𝐴𝑘 (which determines the subset of samples for which

the PDEs need to be updated) changes right after the computation of 𝑢𝑘 (which determines the

PDEs themselves). Therefore, the PDE solution computed by calculating �̂�𝑘 (𝑢𝑘) in Line 6 can be

reused for the calculation of �̂� ′
𝑘
(𝑢𝑘)∗ in Line 8. Note that we have not yet specified how the step

size operators are determined in practice. However, we show in Section 4.4 how they could be

1
Due to the discrete case in Section 6.2, we also refer to 𝐴 ∈ A as the index set.

36

4.1 Stochastic Primal-Dual Proximal Splitting Method

chosen in the case of scalar and deterministic step sizes to guarantee convergence. In Section 6.1,

we present a concrete choice of these step sizes in practice.

Algorithm 4.1 (Primal-Dual Formulation)

1 Initialize 𝑘 := 0.

2 repeat

3 if 𝑘 ≥ 1 then

4 Randomly select 𝐴𝑘 ∈ A.

5 end

6 𝑣𝑘+1 := prox
Σ𝑘
CVaR

∗
𝛽

(
𝑣𝑘 + Σ𝑘�̂�𝑘 (𝑢𝑘)

)
7 𝑣𝑘+1 := 2𝑣𝑘+1 − 𝑣𝑘
8 𝑢𝑘+1 := prox

𝑇𝑘
𝐺

(
𝑢𝑘 −𝑇𝑘�̂� ′𝑘 (𝑢𝑘)

∗ 𝑣𝑘+1
)

9 Determine step size operators 𝑇𝑘+1 ∈ L (U,U) and Σ𝑘+1 ∈ L (V,V).

10 Update 𝑘 ← 𝑘 + 1.

11 until ∥ 𝑢𝑘 − 𝑢𝑘−1 ∥U < Y and ∥ 𝑣𝑘 − 𝑣𝑘−1 ∥V < Y

Due to the properties of CVaR𝛽 and the assumptions from Chapter 3, we can already prove that

the sequence of variables generated by Algorithm 4.1 is bounded.

Lemma 4.1.1 (Boundedness of Primal and Dual Variables)

Let the sequence ((𝑢𝑘 , 𝑣𝑘))𝑘∈N0

⊂ U × V be generated by Algorithm 4.1. For all 𝑢 ∈ U
and 𝑣 ∈ V there exist radii 𝑅U, 𝑅V > 0 such that

𝑢𝑘 ∈ B𝑅U (𝑢) and 𝑣𝑘 ∈ B𝑅V (𝑣)

for all 𝑘 ∈ N.

Proof: Let 𝑢 ∈ U and 𝑣 ∈ V . Since Assumption 3.1.2 states that the domain of 𝐺 is

bounded, we know that dom (𝐺) ⊂ B𝑅U (𝑢) for a radius 𝑅U > 0. Furthermore, it follows

immediately from Definition 2.2.14 that prox
𝑇𝑘
𝐺
(U) ⊂ dom (𝐺) for all 𝑘 ∈ N0. Thus,

together with Line 8 of Algorithm 4.1, we conclude that 𝑢𝑘 ∈ B𝑅U (𝑢) for all 𝑘 ∈ N.

Analogously, we can prove that there exist 𝑅V > 0 such that 𝑣𝑘 ∈ B𝑅V (𝑣) for all 𝑘 ∈ N.

The only condition we need to show for this is that the domain of CVaR
∗
𝛽

(see Line 6 of

Algorithm 4.1) is bounded as well. This property follows directly from the representa-

tion CVaR
∗
𝛽
= 𝛿Δ with the bounded set Δ defined in Lemma 2.5.12, which implies that

dom

(
CVaR

∗
𝛽

)
= dom (𝛿Δ) = Δ is indeed bounded. □

Note that, if the starting vectors 𝑢0 and 𝑣0 are chosen adequately, the assertion even holds for all

𝑘 ∈ N0.

37

4 Algorithm

The proof of convergence of Algorithm 4.1 in Section 4.3 will be based on the proximal point

method [CV20, Section 8.1]. Therefore, we need to equivalently reformulate the above algorithm

to an implicit form. The goal is to write Lines 6 to 8 of Algorithm 4.1 like

0 ∈𝑊𝑘𝐻 (𝑤𝑘+1) + 𝐷𝑘 (𝑤𝑘+1) +𝑀𝑘 (𝑤𝑘+1 −𝑤𝑘) , (4.1.7)

for all 𝑘 ∈ N0, where

• 𝑤𝑘 := (𝑢𝑘 , 𝑣𝑘) ∈ W := U ×V ,

• 𝑊𝑘 ∈ L (W,W) is the step size operator,

• 𝐻 : W ⇒W stems from the optimality condition (OC),

• 𝐷𝑘 : W →W is the so-called discrepancy function, and

• 𝑀𝑘 ∈ L (W,W) is the preconditioning operator.

We fix 𝑘 ∈ N0 and start with Line 6 of Algorithm 4.1. This equation is, by Definition 2.2.14 of the

proximal operator and equation (2.2.11), equivalent to

𝑣𝑘+1 =
(
IdV + Σ𝑘𝜕CVaR

∗
𝛽

)−1
(
𝑣𝑘 + Σ𝑘�̂�𝑘 (𝑢𝑘)

)
, (4.1.8)

which can be rearranged to

Σ𝑘𝜕CVaR
∗
𝛽
(𝑣𝑘+1) − Σ𝑘�̂�𝑘 (𝑢𝑘) + 𝑣𝑘+1 − 𝑣𝑘 = 0. (4.1.9)

We now add and subtract the term Σ𝑘 [𝐾 (𝑢𝑘+1) − 𝐾 (𝑢𝑘) − 𝐾 ′ (𝑢𝑘) (𝑢𝑘+1 − 𝑢𝑘)] to get

Σ𝑘

⇝𝐻︷ ︸︸ ︷[
𝜕CVaR

∗
𝛽
(𝑣𝑘+1) − 𝐾 (𝑢𝑘+1)

]
+

⇝𝐷𝐿𝐼𝑁
𝑘︷ ︸︸ ︷

Σ𝑘 [𝐾 (𝑢𝑘+1) − 𝐾 (𝑢𝑘) − 𝐾 ′ (𝑢𝑘) (𝑢𝑘+1 − 𝑢𝑘)]

+ Σ𝑘
[
𝐾 (𝑢𝑘) − �̂�𝑘 (𝑢𝑘)

]︸ ︷︷ ︸
⇝𝐷𝐶𝐺𝐹

𝑘

+ Σ𝑘𝐾 ′ (𝑢𝑘) (𝑢𝑘+1 − 𝑢𝑘) + 𝑣𝑘+1 − 𝑣𝑘︸ ︷︷ ︸
⇝𝑀𝑘

= 0, (4.1.10)

The squiggly arrow annotations at the curly brackets indicate into which function definition the

respective term will enter. Since these functions will be defined later, this annotations can be

ignored for the moment.

We now consider Lines 7 to 8 of Algorithm 4.1. Analogously to (4.1.8), we have

𝑢𝑘+1 = (IdU +𝑇𝑘𝜕𝐺)−1

(
𝑢𝑘 −𝑇𝑘�̂� ′𝑘 (𝑢𝑘)

∗ (2𝑣𝑘+1 − 𝑣𝑘)
)
, (4.1.11)

which is equivalent to

𝑇𝑘𝜕𝐺 (𝑢𝑘+1) +𝑇𝑘�̂� ′𝑘 (𝑢𝑘)
∗ (2𝑣𝑘+1 − 𝑣𝑘) + 𝑢𝑘+1 − 𝑢𝑘 = 0. (4.1.12)

Addition and subtraction of 𝑇𝑘
[
𝐾 ′ (𝑢𝑘+1)∗ 𝑣𝑘+1 + 𝐾 ′ (𝑢𝑘)∗ (2𝑣𝑘+1 − 𝑣𝑘)

]
yields

38

4.1 Stochastic Primal-Dual Proximal Splitting Method

𝑇𝑘

⇝𝐻︷ ︸︸ ︷[
𝜕𝐺 (𝑢𝑘+1) + 𝐾 ′ (𝑢𝑘+1)∗ 𝑣𝑘+1

]
+

⇝𝐷𝐿𝐼𝑁
𝑘︷ ︸︸ ︷

𝑇𝑘
[
𝐾 ′ (𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘+1)∗

]
𝑣𝑘+1

+𝑇𝑘
[
�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

]
(2𝑣𝑘+1 − 𝑣𝑘)︸ ︷︷ ︸

⇝𝐷𝐶𝐺𝐹
𝑘

+𝑇𝑘𝐾 ′ (𝑢𝑘)∗ (𝑣𝑘+1 − 𝑣𝑘) + 𝑢𝑘+1 − 𝑢𝑘︸ ︷︷ ︸
⇝𝑀𝑘

= 0. (4.1.13)

Now we can use equations (4.1.10) and (4.1.13) to define the functions of the desired inclusion in

(4.1.7):

• The step size operator on the product spaceW is simply defined as

𝑊𝑘 :=
©«
𝑇𝑘 0

0 Σ𝑘

ª®¬ ∈ L (W,W) , (4.1.14)

where 𝑇𝑘 ∈ L (U,U) and Σ𝑘 ∈ L (V,V) are the step size operators of Algorithm 4.1.

• We already know the function 𝐻 from the optimality condition in (OC):

𝐻 (𝑤) = ©«
𝜕𝐺 (𝑢) + 𝐾 ′(𝑢)∗𝑣

𝜕CVaR
∗
𝛽
(𝑣) − 𝐾 (𝑢)

ª®¬ for all𝑤 := (𝑢, 𝑣) ∈ W . (4.1.15)

• The discrepancy function𝐷𝑘 := 𝐷𝐿𝐼𝑁
𝑘
+𝐷𝐶𝐺𝐹

𝑘
is divided into two parts. For all𝑤 := (𝑢, 𝑣) ∈

W, the discrepancy from linearization is

𝐷𝐿𝐼𝑁
𝑘
(𝑤) :=

©«
𝑇𝑘

[
𝐾 ′ (𝑢𝑘)∗ − 𝐾 ′ (𝑢)∗

]
𝑣

Σ𝑘 [𝐾 (𝑢) − 𝐾 (𝑢𝑘) − 𝐾 ′ (𝑢𝑘) (𝑢 − 𝑢𝑘)]
ª®¬ , (4.1.16)

and the discrepancy from CGF is

𝐷𝐶𝐺𝐹
𝑘
(𝑤) :=

©«
𝑇𝑘

[
�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

]
(2𝑣 − 𝑣𝑘)

Σ𝑘
[
𝐾 (𝑢𝑘) − �̂�𝑘 (𝑢𝑘)

] ª®¬ . (4.1.17)

This is indeed a reasonable definition since, on the one hand, if 𝐾 is linear, we have that

𝐾 ′ ≡ 𝐾 and therefore 𝐷𝐿𝐼𝑁
𝑘
(𝑤) = 0 for all 𝑤 ∈ W and all 𝑘 ∈ N. On the other hand,

if we do not employ component-wise gradient freezing (i.e. 𝐴𝑘 = Ξ for all 𝑘 ∈ N), the

definitions (4.1.5) and (4.1.6) imply �̂�𝑘 ≡ 𝐾 and �̂� ′
𝑘
(𝑢)∗ = 𝐾 ′(𝑢)∗ for all 𝑢 ∈ U and all

𝑘 ∈ N. Therefore, in this case we have 𝐷𝐶𝐺𝐹
𝑘
(𝑤) = 0 for all𝑤 ∈ W.

• The preconditioning operator is given by

𝑀𝑘 :=
©«

IdU 𝑇𝑘𝐾
′ (𝑢𝑘)∗

Σ𝑘𝐾
′ (𝑢𝑘) IdV

ª®¬ . (4.1.18)

Therefore, the following implicit formulation is, by construction, equivalent to Algorithm 4.1,

where Lines 6 to 8 have been replaced by (4.1.7).

39

4 Algorithm

Algorithm 4.2 (Implicit Formulation)

1 Initialize 𝑘 := 0.

2 repeat

3 if 𝑘 ≥ 1 then

4 Randomly select 𝐴𝑘 ∈ A.

5 end

6 Find𝑤𝑘+1 ∈ W satisfying 0 ∈𝑊𝑘𝐻 (𝑤𝑘+1) + 𝐷𝑘 (𝑤𝑘+1) +𝑀𝑘 (𝑤𝑘+1 −𝑤𝑘).

7 Determine step size operator𝑊𝑘+1 ∈ L (W,W).

8 Update 𝑘 ← 𝑘 + 1.

9 until ∥ 𝑢𝑘 − 𝑢𝑘−1 ∥U < Y and ∥ 𝑣𝑘 − 𝑣𝑘−1 ∥V < Y

4.2 Randomization

Recall the subdifferential inclusion (4.1.7)

0 ∈𝑊𝑘𝐻 (𝑤𝑘+1) + 𝐷𝑘 (𝑤𝑘+1) +𝑀𝑘 (𝑤𝑘+1 −𝑤𝑘) for all 𝑘 ∈ N0, (4.2.1)

for a sequence (𝑤𝑘)𝑘∈N0

⊂ W. In order to simplify the notation, we define for all 𝑘 ∈ N0 the

mapping �̃�𝑘 : W ⇒W as

�̃�𝑘 (𝑤) :=𝑊𝑘𝐻 (𝑤) + 𝐷𝑘 (𝑤) (4.2.2)

for all𝑤 ∈ W. Thus, (4.2.1) is equivalent to

0 ∈ �̃�𝑘 (𝑤𝑘+1) +𝑀𝑘 (𝑤𝑘+1 −𝑤𝑘) for all 𝑘 ∈ N0. (4.2.3)

Since the set𝐴𝑘 ∈ A is selected randomly at each iteration 𝑘 ∈ N of Algorithm 4.2, the inclusion

(4.2.3) has to hold P-almost surely. Therefore, we consider the randomized inclusion

0 ∈ �̃�𝑘 (𝑤𝑘+1) +𝑀𝑘 (𝑤𝑘+1 −𝑤𝑘) P-a.s. for all 𝑘 ∈ N0, (RI)

where the probability measure P has not yet been defined. To make up for this, let (Θ, F , P) be

a probability space where E (· | B) denotes the conditional expectation given B ⊂ F (see Def-

inition 2.5.4). From now on, we use 𝐴𝑘 to denote a random variable on (Θ, F , P) with values

in A. Since 𝐴𝑘 is involved in the definition (4.1.17) of 𝐷𝐶𝐺𝐹
𝑘

, 𝐷𝑘 is a random variable as well.

Furthermore, we assume that the step size operator𝑊𝑘 is a random variable because we want

to keep the possibility to make it dependent on previous iterations. The definition (4.1.18) di-

rectly implies that 𝑀𝑘 and consequently𝑤𝑘+1 are random variables as well. In order to properly

describe the information available in each iteration, we will use a filtration as introduced in Defi-

nition 2.5.5. The following definition summarizes the conditions under which we have a filtration

𝔉 := (F𝑘)𝑘∈N0

such that F𝑘 models all the information available before commencing iteration 𝑘

of Algorithm 4.2 (i.e. before the random selection of 𝐴𝑘 ∈ A).

40

4.3 Weak Convergence

Definition 4.2.1 (Compatible Filtration)

Let 𝔉 := (F𝑘)𝑘∈N0

be a filtration with F0 := F1 := {Θ, ∅}, and (𝑤𝑘)𝑘∈N0

⊂ R (F ,W)
a solution to (RI). We call 𝔉 a compatible filtration if, for every 𝑘 ∈ N with 𝑘 ≥ 2, F𝑘 is

the smallest 𝜎-algebra such that the following random variables are F𝑘 -measurable for all

𝑖 ∈ {2, . . . , 𝑘}:

𝐴𝑖−1 : Θ→ A,

𝐷𝑖−1 : Θ→ {𝑓 : W →W} ,

𝑊𝑖 : Θ→ L (W,W) ,

𝑀𝑖 : Θ→ L (W,W) ,

𝑤𝑖 : Θ→W .

We have omitted the indices 𝑖 ∈ {0, 1} here, because the first random selection of 𝐴𝑘 ∈ A takes

place in iteration 𝑘 = 1. Thus, every random variable used before is actually not random at all,

since it depends only on the input of the algorithm. Also note that we slightly abuse the notation

and do not explicitly mention the dependence on the probability space, for example the mapping

(𝑀𝑘 (·)) (𝑤𝑘+1(·) −𝑤𝑘 (·)) : Θ→W is just denoted by 𝑀𝑘 (𝑤𝑘+1 −𝑤𝑘).

4.3 Weak Convergence

In this section, we present a convergence proof of Algorithm 4.2 based on the ideas in [Val18] and

[CMV19]. The first subsection deals with an abstract convergence result that is not specific to

this particular algorithm. However, it clearly has a structure we will be able to exploit later. Since

the so-called stochastic quasi-Fejér monotonicity is crucial for the proof, we present a sufficient

condition for this property in the second subsection. Finally, in the third subsection, we derive

estimates that are tailored to the algorithm such that we have a more tractable formulation of

the abstract result from the first subsection.

4.3.1 Abstract Proof

For the proof of convergence, we want to adopt the idea in [VP17] of testing the subdifferential

inclusion (RI) by a linear operator, as described in [Val18]. It requires us to use the weighted

norm we introduced in Definition 2.2.12. The following assumption summarizes the required

properties which guarantee that the weighted norm is indeed a norm.

Assumption 4.3.1

Let 𝔉 := (F𝑘)𝑘∈N0

be a filtration and (𝑅𝑘)𝑘∈N0

a sequence of random variables such that

𝑅𝑘 ∈ R (F𝑘 ,L (W,W)) for all 𝑘 ∈ N0. We assume that there exist Θ′ ∈ F 1
and Y ≠ 0

such that, for all \ ∈ Θ′ and all 𝑘 ∈ N0, the following holds:

(i) 𝑅𝑘 (\) is self-adjoint;

(ii) 𝑅𝑘 (\) ≥ Y2
IdW .

41

4 Algorithm

Note that Assumption 4.3.1 (ii) especially implies the positive definiteness of 𝑅𝑘 (\). In the fol-

lowing, we will focus on real-valued, non-negative random variables, and therefore define

𝑙+ (𝔉) :=
{
(𝑥𝑘)𝑘∈N0

�� 𝑥𝑘 ∈ R (F𝑘 , [0,∞)) for all 𝑘 ∈ N0

}
(4.3.1)

and

𝑙
𝑝
+ (𝔉) :=

{
(𝑥𝑘)𝑘∈N0

∈ 𝑙+ (𝔉)
����� ∑︁
𝑘∈N0

𝑥
𝑝

𝑘
< ∞ P-a.s.

}
(4.3.2)

for all 𝑝 ∈ (0,∞) and a filtration𝔉 = (F𝑘)𝑘∈N0

. Now, we first present a lemma that shows under

which conditions a sequence of non-negative random variables converges P-a.s. It stems from

[CP15, Lemma 2.2] and was first proven in [RS71, Theorem 1].

Lemma 4.3.2 (Robbins-Siegmund)

Let 𝔉 := (F𝑘)𝑘∈N0

be a filtration. Let further (𝛼𝑘)𝑘∈N0

, (𝜗𝑘)𝑘∈N0

∈ 𝑙+ (𝔉) and

([𝑘)𝑘∈N0

, (𝜒𝑘)𝑘∈N0

∈ 𝑙1+ (𝔉) such that

E (𝛼𝑘+1 | F𝑘) + 𝜗𝑘 ≤ (1 + 𝜒𝑘) 𝛼𝑘 + [𝑘 P-a.s.

for all 𝑘 ∈ N0. Then (𝜗𝑘)𝑘∈N0

∈ 𝑙1+ (𝔉) and there exists an 𝛼 ∈ R (F , [0,∞)) such that

𝛼𝑘 → 𝛼 P-a.s.

From now on, let 𝔚
(
(𝑥𝑘)𝑘∈N0

)
denote the set of all weak accumulation points of the sequence

(𝑥𝑘)𝑘∈N0

⊂ W. The following proposition is an extension of parts of [CP15, Proposition 2.3] that

enables us to use the weighted, stochastic norm ∥ · ∥𝑅𝑘 with 𝑅𝑘 ∈ R (F𝑘 ,L (W,W)). Moreover,

the right-hand side of the inequality in Proposition 4.3.3 (ii) additionally contains the term _𝑘 (𝑧),
which will be helpful when estimating the discrepancy resulting from CGF. The proof is almost

identical to [CP15] but does not require the subset ofW to be closed.

Proposition 4.3.3 (Weak Convergence)

Let Z ⊂ W be non-empty and (𝑤𝑘)𝑘∈N0

⊂ R (F ,W) a sequence of random variables.

Let (𝑅𝑘)𝑘∈N0

satisfy Assumption 4.3.1. We define the filtration 𝔉 := (F𝑘)𝑘∈N0

⊂ F such

that𝑤𝑘 and 𝑅𝑘 are F𝑘 -measurable for all 𝑘 ∈ N0. We further assume that

(i) ∃𝐶 ∈ R such that ∥ 𝑅𝑘 ∥L(W,W) ≤ 𝐶2 P-a.s. for all 𝑘 ∈ N;

(ii) for every 𝑧 ∈ Z there exist sequences (Δ𝑘 (𝑧))𝑘∈N0

∈ 𝑙+ (𝔉) and (_𝑘 (𝑧))𝑘∈N0

∈
𝑙1+ (𝔉) such that the so-called stochastic quasi-Fejér monotonicity

1

2

E
(
∥𝑤𝑘+1 − 𝑧 ∥2𝑅𝑘+1

��F𝑘) + Δ𝑘 (𝑧) ≤ 1

2

∥𝑤𝑘 − 𝑧 ∥2𝑅𝑘 + _𝑘 (𝑧)

holds P-a.s. for all 𝑘 ∈ N0;

(iii) 𝔚
(
(𝑤𝑘)𝑘∈N0

)
⊂ Z P-a.s., i.e. there exists Θ ∈ F 1

such that 𝔚
(
(𝑤𝑘 (\))𝑘∈N0

)
⊂ Z

for all \ ∈ Θ;

42

4.3 Weak Convergence

(iv) there exists Θ
′ ∈ F 1

such that, for all \ ∈ Θ
′
, there is a linear operator 𝑅∞(\) ∈

L (W,W) satisfying

𝑅𝑛𝑘 (\)𝑤 → 𝑅∞(\)𝑤 as 𝑘 →∞

for all𝑤 ∈ W and every weakly convergent subsequence

(
𝑤𝑛𝑘 (\)

)
𝑘∈N0

.

Then there exists𝑤 ∈ R (F ,Z) such that𝑤𝑘 ⇀ 𝑤 P-a.s. as 𝑘 →∞.

Proof: We divide the proof into three steps.

Step 1 P-a.s.-boundedness of (𝑤𝑘)𝑘∈N0

.

Let 𝑧 ∈ Z be fixed. If we employ Lemma 4.3.2 with 𝜒𝑘 (\) = 0 for all \ ∈ Θ,

𝜗𝑘 = Δ𝑘 (𝑧), [𝑘 = _𝑘 (𝑧), and 𝛼𝑘 = 1

2
∥𝑤𝑘 − 𝑧 ∥2𝑅𝑘 , we deduce from condition (ii)

that there exists 𝛼 ∈ R (F , [0,∞)) such that

1

2

∥𝑤𝑘 − 𝑧 ∥2𝑅𝑘 → 𝛼 P-a.s. (4.3.3)

Thus, the sequence

(
∥𝑤𝑘 − 𝑧 ∥2𝑅𝑘

)
𝑘∈N0

is bounded P-a.s. and so is (𝑤𝑘)𝑘∈N0

due to

Assumption 4.3.1 (ii), i.e. there exists Θ
′′ ∈ F 1

such that (𝑤𝑘 (\))𝑘∈N0

is bounded

for all \ ∈ Θ′′.

Step 2 Construction of Θ̃.

Analogously to the proof of [CP15, Proposition 2.3 (ii)], one can easily show that

we can omit the squaring and the multiplication by
1

2
in (4.3.3) and still get P-a.s.-

convergence, i.e.

∀𝑧 ∈ Z ∃Θ𝑧 ∈ F 1, 𝛼𝑧 ∈ R (F , [0,∞)) s.t.

∥𝑤𝑘 (\) − 𝑧 ∥𝑅𝑘 (\) → 𝛼𝑧 (\) for all \ ∈ Θ𝑧 . (4.3.4)

SinceW is separable, we can find a countable subsetY ⊂ Z such that cl (Y) ⊃ Z.

Now let

Θ̃ := Θ′ ∩
(⋂
𝑧∈Y

Θ𝑧

)
, (4.3.5)

where Θ′ stems from Assumption 4.3.1 and ensures that ∥ · ∥𝑅𝑘 (\) is indeed a norm

for every 𝑘 ∈ N0 and \ ∈ Θ̃. It follows from the countability of Y that

P
(
Θ̃
)
= 1 − P

(
Θ̃c) = 1 − P

(
Θ′c ∪

(⋃
𝑧∈Y

Θc
𝑧

))
≥ 1 − P (Θ′c) −

∑︁
𝑧∈Y

P
(
Θc
𝑧

)
= 1,

(4.3.6)

which implies that P
(
Θ̃
)
= 1, i.e. Θ̃ ∈ F 1

.

Let now 𝑧 ∈ Z be fixed. The goal is to show convergence of ∥𝑤𝑘 (\) − 𝑧 ∥𝑅𝑘 (\) ,
where \ stems from the more general Θ̃ instead of a specific Θ𝑧 as in (4.3.4). Since

43

4 Algorithm

cl (Y) ⊃ Z, there exists a sequence (𝑧𝑛)𝑛∈N0

⊂ Y such that 𝑧𝑛 → 𝑧. If we apply

(4.3.4) to every element of this sequence, we conclude that there exists for every

𝑛 ∈ N0 a random variable 𝛼𝑛 ∈ R (F , [0,∞)) such that

∥𝑤𝑘 (\) − 𝑧𝑛 ∥𝑅𝑘 (\) → 𝛼𝑛 (\) (4.3.7)

for all \ ∈ Θ̃ as 𝑘 →∞. Since ∥ · ∥𝑅𝑘 (\) is a norm for all 𝑘 ∈ N0 and \ ∈ Θ̃, we can

apply the usual triangle inequality to get

− ∥ 𝑧𝑛 − 𝑧 ∥𝑅𝑘 (\) ≤ ∥𝑤𝑘 (\) − 𝑧 ∥𝑅𝑘 (\) − ∥𝑤𝑘 (\) − 𝑧𝑛 ∥𝑅𝑘 (\)

≤ ∥ 𝑧𝑛 − 𝑧 ∥𝑅𝑘 (\)
(4.3.8)

for all 𝑛 ∈ N0. According to condition (i), we have

∥ 𝑧𝑛 − 𝑧 ∥𝑅𝑘 (\) ≤
√︃
∥ 𝑅𝑘 (\) ∥L(W,W) ∥ 𝑧𝑛 − 𝑧 ∥W ≤ 𝐶 ∥ 𝑧𝑛 − 𝑧 ∥W (4.3.9)

for all 𝑛 ∈ N0, 𝑘 ∈ N, and \ ∈ Θ̃. Therefore, (4.3.8) implies

−𝐶 ∥ 𝑧𝑛 − 𝑧 ∥W ≤ ∥𝑤𝑘 (\) − 𝑧 ∥𝑅𝑘 (\) − ∥𝑤𝑘 (\) − 𝑧𝑛 ∥𝑅𝑘 (\)

≤ 𝐶 ∥ 𝑧𝑛 − 𝑧 ∥W .
(4.3.10)

Applying lim inf𝑘→∞ and lim sup𝑘→∞ on the middle part of the inequality yields

−𝐶 ∥ 𝑧𝑛 − 𝑧 ∥W ≤ lim inf

𝑘→∞

(
∥𝑤𝑘 (\) − 𝑧 ∥𝑅𝑘 (\) − ∥𝑤𝑘 (\) − 𝑧𝑛 ∥𝑅𝑘 (\)

)
(4.3.7)

= lim inf

𝑘→∞

(
∥𝑤𝑘 (\) − 𝑧 ∥𝑅𝑘 (\)

)
− 𝛼𝑛 (\)

≤ lim sup

𝑘→∞

(
∥𝑤𝑘 (\) − 𝑧 ∥𝑅𝑘 (\)

)
− 𝛼𝑛 (\) (4.3.11)

(4.3.7)

= lim sup

𝑘→∞

(
∥𝑤𝑘 (\) − 𝑧 ∥𝑅𝑘 (\) − ∥𝑤𝑘 (\) − 𝑧𝑛 ∥𝑅𝑘 (\)

)
≤ 𝐶 ∥ 𝑧𝑛 − 𝑧 ∥W

for all 𝑛 ∈ N0. Hence, taking the limit 𝑛 →∞, we obtain that

lim

𝑘→∞
∥𝑤𝑘 (\) − 𝑧 ∥𝑅𝑘 (\) = lim

𝑛→∞
𝛼𝑛 (\) (4.3.12)

for all \ ∈ Θ̃, i.e. the sequence

(
∥𝑤𝑘 (\) − 𝑧 ∥𝑅𝑘 (\)

)
𝑘∈N0

converges. We also have

that lim𝑛→∞ 𝛼𝑛 (\) < ∞ because otherwise, (4.3.12) and (4.3.11) would imply that

𝐶 ∥ 𝑧𝑛 − 𝑧 ∥W = ∞ for all 𝑛 ∈ N0. The improvement compared to (4.3.4) is the

changed order of quantifiers:

∃Θ̃ ∈ F 1 ∀𝑧 ∈ Z ∃𝛼𝑧 ∈ R (F , [0,∞)) s.t.

∥𝑤𝑘 (\) − 𝑧 ∥𝑅𝑘 (\) → 𝛼𝑧 (\) for all \ ∈ Θ̃. (4.3.13)

44

4.3 Weak Convergence

Step 3 Convergence of (𝑤𝑘)𝑘∈N0

.

Let Θ and Θ
′

be defined as in conditions (iii) and (iv) of this proposition, Θ
′′

as

defined in Step 1, and Θ̃ as constructed in Step 2. Let

\ ∈ Θ̂ := Θ ∩ Θ′ ∩ Θ′′ ∩ Θ̃ (4.3.14)

be fixed. According to [BC17, Lemma 2.46], (𝑤𝑘 (\))𝑘∈N0

converges weakly if

and only if it is bounded and possesses at most one weak accumulation point.

Since the boundedness of (𝑤𝑘 (\))𝑘∈N0

was already shown in Step 1, it suffices

to show that all weak accumulation points coincide. Therefore, let 𝑤 (\),𝑤 ′(\) ∈
𝔚

(
(𝑤𝑘 (\))𝑘∈N0

)
be two weak accumulation points of (𝑤𝑘 (\))𝑘∈N0

, i.e.

𝑤𝑛𝑘 (\) ⇀ 𝑤 := 𝑤 (\) (4.3.15)

and 𝑤𝑙𝑘 (\) ⇀ 𝑤 ′ := 𝑤 ′(\) (4.3.16)

as 𝑘 → ∞. Because of condition (iii), we know that 𝑤,𝑤 ′ ∈ Z. Therefore, we can

apply (4.3.13) to see that

(
∥𝑤𝑘 (\) −𝑤 ∥𝑅𝑘 (\)

)
𝑘∈N0

and

(𝑤𝑘 (\) −𝑤 ′ 𝑅𝑘 (\))𝑘∈N0

converge. Since

〈
𝑤𝑘 (\),𝑤 −𝑤 ′

〉
𝑅𝑘 (\) −

1

2

∥𝑤 ∥2𝑅𝑘 (\) +
1

2

𝑤 ′ 2

𝑅𝑘 (\)

=
1

2

𝑤𝑘 (\) −𝑤 ′ 2

𝑅𝑘 (\) −
1

2

∥𝑤𝑘 (\) −𝑤 ∥2𝑅𝑘 (\) , (4.3.17)

the left-hand side must also converge, say〈
𝑤𝑘 (\),𝑤 −𝑤 ′

〉
𝑅𝑘 (\) −

1

2

∥𝑤 ∥2𝑅𝑘 (\) +
1

2

𝑤 ′ 2

𝑅𝑘 (\) → 𝜌 ∈ R (4.3.18)

as 𝑘 → ∞. The weak convergence of the subsequence 𝑤𝑛𝑘 (\) ⇀ 𝑤 together with

the strong convergence of the operator in condition (iv), i.e. 𝑅𝑛𝑘 (\)𝑤 → 𝑅∞(\)𝑤
for all𝑤 ∈ W, imply that

〈
𝑤𝑛𝑘 (\),𝑤 −𝑤

′〉
𝑅𝑛𝑘 (\)

− 1

2

∥𝑤 ∥2𝑅𝑛𝑘 (\) +
1

2

𝑤 ′ 2

𝑅𝑛𝑘 (\)

→
〈
𝑤,𝑤 −𝑤 ′

〉
𝑅∞ (\) −

1

2

∥𝑤 ∥2𝑅∞ (\) +
1

2

𝑤 ′ 2

𝑅∞ (\) (4.3.19)

as 𝑘 → ∞. Since we have shown in (4.3.18) that the whole sequence converges, it

follows that

𝜌 =
〈
𝑤,𝑤 −𝑤 ′

〉
𝑅∞ (\) −

1

2

∥𝑤 ∥2𝑅∞ (\) +
1

2

𝑤 ′ 2

𝑅∞ (\) . (4.3.20)

Analogously, by considering the subsequence𝑤𝑙𝑘 (\) ⇀ 𝑤 ′, we get

𝜌 =
〈
𝑤 ′,𝑤 −𝑤 ′

〉
𝑅∞ (\) −

1

2

∥𝑤 ∥2𝑅∞ (\) +
1

2

𝑤 ′ 2

𝑅∞ (\) . (4.3.21)

45

4 Algorithm

Subtracting (4.3.21) from (4.3.20) yields

0 =
〈
𝑤 −𝑤 ′,𝑤 −𝑤 ′

〉
𝑅∞ (\) =

𝑤 −𝑤 ′ 2

𝑅∞ (\) (4.3.22)

and therefore𝑤 = 𝑤 ′, since Assumption 4.3.1 (ii) implies the positive definiteness

of 𝑅∞(\). The measurability of 𝑤 : Θ → Z follows from [Pet38, Corollary 1.13]

and since P
(
Θ̂
)
= 1, we conclude that𝑤𝑘 ⇀ 𝑤 ∈ R (F ,Z) P-a.s. as 𝑘 →∞. □

4.3.2 Stochastic Quasi-Fejér Monotonicity

The aforementioned testing approach adapted from [VP17] requires us to multiply the inclusion

(RI) by a testing operator 𝑍𝑘 ∈ L (W,W) for every 𝑘 ∈ N0, which is, in this case, also a

random variable. The resulting product 𝑍𝑘𝑀𝑘 ∈ R (F𝑘 ,L (W,W)) will take the place of the

operator 𝑅𝑘 in Proposition 4.3.3. Therefore, a sufficient condition for the stochastic quasi-Fejér

monotonicity

1

2

E
(
∥𝑤𝑘+1 − 𝑧 ∥2𝑅𝑘+1

��F𝑘) + Δ𝑘 (𝑧) ≤ 1

2

∥𝑤𝑘 − 𝑧 ∥2𝑅𝑘 + _𝑘 (𝑧)

in Proposition 4.3.3 (ii) will be helpful when it comes to verifying the assumptions of the proposi-

tion. The following lemma is a result of applying the conditional expectation to [Val18, Theorem

2.1] and adding the term _𝑘 . Consequently, the presented proof is almost identical to the original

one.

Lemma 4.3.4

Let (RI) be solvable for a sequence (𝑤𝑘)𝑘∈N0

⊂ R (F ,W). Let further 𝔉 be a compatible

filtration as in Definition 4.2.1 and (𝑍𝑘)𝑘∈N0

⊂ L (W,W) a sequence of testing operators.

If, for all 𝑘 ∈ N0, 𝑍𝑘𝑀𝑘 is self-adjoint P-a.s. and the condition

E
(〈
�̃�𝑘 (𝑤𝑘+1) ,𝑤𝑘+1 − 𝑧

〉
𝑍𝑘

���F𝑘) + _𝑘
≥ 1

2

E
(
∥𝑤𝑘+1 − 𝑧 ∥2𝑍𝑘+1𝑀𝑘+1−𝑍𝑘𝑀𝑘

��F𝑘) − 1

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘) + Δ𝑘 (ECI)

is satisfied P-a.s. for some 𝑧 ∈ W, (Δ𝑘)𝑘∈N0

∈ 𝑙+ (𝔉), and (_𝑘)𝑘∈N0

∈ 𝑙1+ (𝔉), then the

so-called stochastic quasi-Fejér monotonicity

1

2

E
(
∥𝑤𝑘+1 − 𝑧 ∥2𝑍𝑘+1𝑀𝑘+1

��F𝑘) + Δ𝑘 ≤ 1

2

∥𝑤𝑘 − 𝑧 ∥2𝑍𝑘𝑀𝑘
+ _𝑘 (SQF)

holds P-a.s.

Proof: Let 𝑘 ∈ N0 be fixed. Inserting (RI) into (ECI) yields

− E
(
⟨𝑤𝑘+1 −𝑤𝑘 ,𝑤𝑘+1 − 𝑧⟩𝑍𝑘𝑀𝑘

��F𝑘) + _𝑘
≥ 1

2

E
(
∥𝑤𝑘+1 − 𝑧 ∥2𝑍𝑘+1𝑀𝑘+1−𝑍𝑘𝑀𝑘

��F𝑘) − 1

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘) + Δ𝑘 (4.3.23)

46

4.3 Weak Convergence

P-a.s. Together with the three-point version of Pythagoras’ identity

⟨𝑤𝑘+1 −𝑤𝑘 ,𝑤𝑘+1 − 𝑧⟩𝑍𝑘𝑀𝑘

=
1

2

∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘
− 1

2

∥𝑤𝑘 − 𝑧 ∥2𝑍𝑘𝑀𝑘
+ 1

2

∥𝑤𝑘+1 − 𝑧 ∥2𝑍𝑘𝑀𝑘
, (4.3.24)

we conclude that (4.3.23) is equivalent to

− 1

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘) + 1

2

∥𝑤𝑘 − 𝑧 ∥2𝑍𝑘𝑀𝑘
− 1

2

E
(
∥𝑤𝑘+1 − 𝑧 ∥2𝑍𝑘𝑀𝑘

��F𝑘) + _𝑘
≥ 1

2

E
(
∥𝑤𝑘+1 − 𝑧 ∥2𝑍𝑘+1𝑀𝑘+1

��F𝑘) − 1

2

E
(
∥𝑤𝑘+1 − 𝑧 ∥2𝑍𝑘𝑀𝑘

��F𝑘)
− 1

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘) + Δ𝑘 (4.3.25)

P-a.s. After rearranging, we can easily see that this is equivalent to (SQF). □

In order to better understand the motivation for using the testing approach, we apply, under the

assumptions of Lemma 4.3.4, the expectation to (SQF), which yields

1

2

E
(
∥𝑤𝑘+1 − 𝑧 ∥2𝑍𝑘+1𝑀𝑘+1

)
+ E (Δ𝑘) ≤

1

2

E
(
∥𝑤𝑘 − 𝑧 ∥2𝑍𝑘𝑀𝑘

)
+ E (_𝑘) (4.3.26)

P-a.s. for all 𝑘 ∈ N0. If we sum over all 𝑘 ∈ {0, . . . , 𝑁 − 1} with some 𝑁 ∈ N, we get

1

2

E
(
∥𝑤𝑁 − 𝑧 ∥2𝑍𝑁𝑀𝑁

)
≤ 1

2

E
(
∥𝑤0 − 𝑧 ∥2𝑍0𝑀0

)
+
𝑁−1∑︁
𝑘=0

E (_𝑘) , (4.3.27)

where we have used Δ𝑘 ≥ 0 due to the assumption that (Δ𝑘)𝑘∈N0

∈ 𝑙+ (𝔉). Furthermore, since

(_𝑘)𝑘∈N0

∈ 𝑙1+ (𝔉), we know that there exists a constant 𝐶 ∈ [0,∞) such that

∞∑︁
𝑘=1

_𝑘 = 𝐶 P-a.s. (4.3.28)

Applying the expectation together with the theorem of monotone convergence [Kle13, Theorem

4.20] implies that

𝑁−1∑︁
𝑘=1

E (_𝑘) ↗ 𝐶 P-a.s. (4.3.29)

as 𝑁 →∞. Hence, it follows from (4.3.27) that

1

2

E
(
∥𝑤𝑁 − 𝑧 ∥2𝑍𝑁𝑀𝑁

)
≤ 1

2

E
(
∥𝑤0 − 𝑧 ∥2𝑍0𝑀0

)
+𝐶 (4.3.30)

P-a.s. We can see that the operator 𝑍𝑁𝑀𝑁 forms a local metric which measures how close the

iterates𝑤𝑁 are to a solution 𝑧. Therefore, the goal is to choose the step size and testing operators

such that 𝑍𝑁𝑀𝑁 grows fast as 𝑁 → ∞. In fact, we have the following result showing under

which circumstances we obtain a convergence rate in the sense of mean convergence as in [Kle13,

Definition 6.8]. It is adapted from [Val18, Proposition 2.4].

47

4 Algorithm

Proposition 4.3.5 (Convergence Rate in Expectation)

Under the assumptions of Lemma 4.3.4, assume that 𝑍𝑁𝑀𝑁 ≥ ` (𝑁) IdW P-a.s. for all

𝑁 ∈ N and an increasing function ` : N→ [0,∞) with lim𝑁→∞ ` (𝑁) = ∞. Then

E
(
∥𝑤𝑁 − 𝑧 ∥2W

)
→ 0

at the rate O (1/` (𝑁)) as 𝑁 →∞.

Proof: Let 𝑁 ∈ N. The inequality (4.3.30) together with the definition of the weighted

inner product (2.2.5) implies

E
(
⟨𝑍𝑁𝑀𝑁 (𝑤𝑁 − 𝑧) ,𝑤𝑁 − 𝑧⟩W

)
≤ E

(
∥𝑤0 − 𝑧 ∥2𝑍0𝑀0

)
+ 2𝐶 =: 𝐶′, (4.3.31)

and since 𝑍𝑁𝑀𝑁 ≥ ` (𝑁) IdW P-a.s., we have

E
(𝑤𝑁 − 𝑧

2

W

)
≤ 𝐶′

` (𝑁) . (4.3.32)

Taking the limit 𝑁 →∞ concludes the proof. □

4.3.3 Convergence to Optimal Solution

The following proposition shows under which specific condition on Δ𝑘 , together with some other

assumptions, the iterates of (RI) not only converge weakly to some limit, but to an optimal solu-

tion of Problem 3.1.1. It is basically a reformulation of [CMV19, Proposition 2.2].

Theorem 4.3.6 (Weak Convergence to Optimal Solution)

Let (RI) be solvable for a sequence (𝑤𝑘)𝑘∈N0

⊂ R (F ,W). Let further𝔉 be a compatible fil-

tration as in Definition 4.2.1,Z ⊂ 𝐻−1(0) a non-empty subset, and (𝑍𝑘)𝑘∈N0

⊂ L (W,W)
a sequence of testing operators. We assume that

(i) 𝑅𝑘 := 𝑍𝑘𝑀𝑘 satisfies Assumption 4.3.1 for all 𝑘 ∈ N0;

(ii) ∃𝐶 ∈ R such that ∥ 𝑍𝑘𝑀𝑘 ∥L(W,W) ≤ 𝐶2 P-a.s. for all 𝑘 ∈ N;

(iii) ∃ ˆ𝛿 > 0 such that, for all 𝑧 ∈ Z, there exist sequences (Δ𝑘 (𝑧))𝑘∈N0

∈ 𝑙+ (𝔉) and

(_𝑘 (𝑧))𝑘∈N0

∈ 𝑙1+ (𝔉) satisfying (ECI) with

Δ𝑘 (𝑧) ≥
ˆ𝛿

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘) P-a.s.

for all 𝑘 ∈ N0;

(iv) if 𝑍𝑘𝑀𝑘 (𝑤𝑘+1 −𝑤𝑘) → 0 P-a.s. as 𝑘 → ∞, then every weak accumulation point of

(𝑤𝑘)𝑘∈N0

is P-a.s. inZ, i.e.

𝔚
(
(𝑤𝑘 (\))𝑘∈N0

)
⊂ Z

for all \ ∈ Θ and some Θ ∈ F 1
;

48

4.3 Weak Convergence

(v) there exists Θ
′ ∈ F 1

such that, for all \ ∈ Θ
′
, there is a linear operator 𝑅∞(\) ∈

L (W,W) satisfying

𝑍𝑛𝑘𝑀𝑛𝑘 (\)𝑤 → 𝑅∞(\)𝑤 as 𝑘 →∞

for all𝑤 ∈ W and every weakly convergent subsequence

(
𝑤𝑛𝑘 (\)

)
𝑘∈N.

Then𝑤𝑘 ⇀ 𝑤 P-a.s. as 𝑘 →∞ for some𝑤 ∈ R (F ,Z).

Proof: We want to use Proposition 4.3.3 withZ = 𝐻−1(0) and 𝑅𝑘 := 𝑍𝑘𝑀𝑘 for all 𝑘 ∈ N0.

Therefore, we need to prove its assumptions.

First of all, condition (i) guarantees that Assumption 4.3.1 is true and Proposition 4.3.3 (i)

is equivalent to Theorem 4.3.6 (ii). Condition (iii) and Lemma 4.3.4 imply that (SQF) holds

for all 𝑧 ∈ Z, which verifies Proposition 4.3.3 (ii). Since Proposition 4.3.3 (iv) is equivalent

to Theorem 4.3.6 (v), it only remains to show that 𝔚
(
(𝑤𝑘)𝑘∈N0

)
⊂ Z P-a.s. But we have

already seen that (SQF) holds for all 𝑧 ∈ Z, so we can employ Lemma 4.3.2 with 𝜒𝑘 ≡ 0,

𝜗𝑘 = Δ𝑘 (𝑧), [𝑘 = _𝑘 (𝑧) and 𝛼𝑘 = 1

2
∥𝑤𝑘 − 𝑧 ∥2𝑍𝑘𝑀𝑘

, yielding (Δ𝑘)𝑘∈N0

∈ 𝑙1+ (𝔉), i.e.

∑︁
𝑘∈N0

E

(
ˆ𝛿

2

∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

�����F𝑘
)
≤

∑︁
𝑘∈N0

Δ𝑘 (𝑧) < ∞ P-a.s., (4.3.33)

where the first part of the inequality stems from condition (iii). If we now apply the ex-

pectation together with [Kle13, Theorem 5.3 (vi)], we see that

∑︁
𝑘∈N0

E

(
ˆ𝛿

2

∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

)
< ∞. (4.3.34)

It follows from [Kle13, Theorem 6.12 (i)] that

ˆ𝛿

2

∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘
→ 0 P-a.s. (4.3.35)

as 𝑘 → ∞. Since 𝑍𝑘𝑀𝑘 is P-a.s. self-adjoint and positive (semi-)definite for every 𝑘 ∈ N0,

there exists a self-adjoint and positive semi-definite 𝑄𝑘 ∈ R (F𝑘 ,L (W,W)) such that

𝑄2

𝑘
:= 𝑄𝑘 ◦𝑄𝑘 = 𝑍𝑘𝑀𝑘 [Rud91, Theorem 12.33]. It follows from (4.3.35) that

∥𝑄𝑘 (𝑤𝑘+1 −𝑤𝑘) ∥2W → 0 P-a.s., (4.3.36)

and together with the Cauchy–Schwarz inequality we get

∥ 𝑍𝑘𝑀𝑘 (𝑤𝑘+1 −𝑤𝑘) ∥2W =
〈
𝑄2

𝑘
◦𝑄𝑘 (𝑤𝑘+1 −𝑤𝑘) , 𝑄𝑘 (𝑤𝑘+1 −𝑤𝑘)

〉
W

≤
𝑄2

𝑘

L(W,W) ∥𝑄𝑘 (𝑤𝑘+1 −𝑤𝑘) ∥

2

W

≤ 𝐶2 ∥𝑄𝑘 (𝑤𝑘+1 −𝑤𝑘) ∥2W → 0 P-a.s.

(4.3.37)

as 𝑘 →∞, where we have used condition (ii) for the last inequality. Therefore, there exists

Θ ∈ F 1
such that 𝑍𝑘𝑀𝑘 (\) (𝑤𝑘+1(\) −𝑤𝑘 (\)) → 0 as 𝑘 → ∞ for all \ ∈ Θ. This verifies

the assumption in (iv), thus the inclusion 𝔚
(
(𝑤𝑘)𝑘∈N0

)
⊂ Z holds P-a.s. □

49

4 Algorithm

4.4 Scalar and Deterministic Step Sizes

In this section, we examine how the conditions of Theorem 4.3.6 can be satisfied in the case of

scalar and deterministic step sizes. The goal is to develop assumptions that are easier to verify

than those in the previous section. After stating some of these assumptions in the first subsec-

tion, we show that they enable us to prove that the central inequality (ECI) holds. In the third

subsection, we summarize the results into a theorem proving the almost sure weak (and under

additional assumptions global) convergence of Algorithm 4.1. Since this requires the primal iter-

ates to stay inside a neighborhood where the fundamental assumptions are satisfied, we conclude

with a technical result that could help proving this condition.

4.4.1 Fundamental Assumptions

In the following, we need a few fundamental assumptions, which are almost identical to [CMV19,

Section 3.1]. First of all, we already require by Assumption 3.2.4 that 𝐾 is continuously Fréchet

differentiable. This can be used analogously to [CV20, Lemma 2.11] to show that 𝐾 is locally

Lipschitz continuous. In fact, since 𝐾 ′ : U → L (U,V) is continuous, we can find for a given

𝑢 ∈ U a constant 𝛿 > 0 such that

∥ 𝐾 ′(𝑢) − 𝐾 ′ (𝑢) ∥L(U,V) ≤ 1 (4.4.1)

for all 𝑢 ∈ B𝛿 (𝑢). This inequality implies

∥ 𝐾 ′(𝑢) ∥L(U,V) ≤ 1 + ∥ 𝐾 ′ (𝑢) ∥L(U,V) (4.4.2)

for all 𝑢 ∈ B𝛿 (𝑢), and together with the mean value theorem [DM13, Theorem 3.2.7] we get

∥ 𝐾 (𝑢) − 𝐾 (𝑢′) ∥V ≤ sup

𝑡 ∈[0,1]
∥ 𝐾 ′ (𝑢′ + 𝑡 (𝑢 − 𝑢′)) ∥L(U,V) ∥ 𝑢 − 𝑢′ ∥U

≤
(
1 + ∥ 𝐾 ′ (𝑢) ∥L(U,V)

)
∥ 𝑢 − 𝑢′ ∥U

(4.4.3)

for all 𝑢,𝑢′ ∈ B𝛿 (𝑢), since 𝑢′ + 𝑡 (𝑢 − 𝑢′) ∈ B𝛿 (𝑢) as well. This justifies the following defini-

tion.

Definition 4.4.1 (Locally Lipschitz 𝐾)

For a given 𝑢 ∈ U, letU1

𝐾
be a neighborhood of 𝑢 such that

𝐿 := 1 + ∥ 𝐾 ′ (𝑢) ∥L(U,V)

is the Lipschitz constant of 𝐾 onU1

𝐾
, i.e.

∥ 𝐾 (𝑢) − 𝐾 (𝑢′) ∥V ≤ 𝐿 ∥ 𝑢 − 𝑢′ ∥U

for all 𝑢,𝑢′ ∈ U1

𝐾
.

In addition, we need the following local property of the Fréchet derivative 𝐾 ′.

50

4.4 Scalar and Deterministic Step Sizes

Assumption 4.4.2 (Locally Lipschitz 𝐾 ′)

For a given 𝑢 ∈ U, there exist a constant 𝐿′ ≥ 0 and a neighborhoodU2

𝐾
of 𝑢 such that

∥ 𝐾 ′(𝑢) − 𝐾 ′ (𝑢′) ∥L(U,V) ≤ 𝐿′ ∥ 𝑢 − 𝑢′ ∥U

for all 𝑢,𝑢′ ∈ U2

𝐾
.

Analogously to the reasoning preceding Definition 4.4.1, one can easily see that Assumption 4.4.2

is satisfied for every twice continuously differentiable 𝐾 : U → V . Before stating the next

assumption, we derive a property which will be useful later. It follows from Assumption 4.4.2

together with the mean value theorem [DM13, Theorem 3.2.6]. The latter implies that

𝐾 (𝑢) = 𝐾 (𝑢) + 𝐾 ′(𝑢) (𝑢 − 𝑢) +
∫

1

0

(
𝐾 ′

(
𝑢 + 𝑡 (𝑢 − 𝑢)

)
− 𝐾 ′(𝑢)

)
(𝑢 − 𝑢) d𝑡 (4.4.4)

for all 𝑢,𝑢 ∈ U. Applying the Cauchy–Schwarz inequality as well as Assumption 4.4.2 yields

⟨𝐾 (𝑢) − 𝐾 (𝑢) − 𝐾 ′(𝑢) (𝑢 − 𝑢) , 𝑣⟩V

≤
∫

1

0

∥ 𝐾 ′ (𝑢 + 𝑡 (𝑢 − 𝑢)) − 𝐾 ′(𝑢) ∥L(U,V) ∥ 𝑢 − 𝑢 ∥U d𝑡 ∥ 𝑣 ∥V

≤ 𝐿
′

2

∥ 𝑢 − 𝑢 ∥2U ∥ 𝑣 ∥V

(4.4.5)

for all 𝑢,𝑢 ∈ U2

𝐾
and 𝑣 ∈ V . If we now choose 𝑣 := 𝐾 (𝑢) − 𝐾 (𝑢) − 𝐾 ′(𝑢) (𝑢 − 𝑢), we get the

desired inequality

∥ 𝐾 (𝑢) − 𝐾 (𝑢) − 𝐾 ′(𝑢) (𝑢 − 𝑢) ∥V ≤
𝐿′

2

∥ 𝑢 − 𝑢 ∥2U . (4.4.6)

Since we know from the beginning of Section 4.1 that CVaR
∗
𝛽

is convex, we also know that

𝜕CVaR
∗
𝛽

is a monotone operator. Similarly, 𝜕𝐺 is monotone due to the postulated convexity

of 𝐺 . However, 𝐺 can also be strongly convex and hence 𝜕𝐺 strongly monotone, according to

Lemma 2.2.11. This case is addressed in the following assumption, where we use a local version

of strong monotonicity.

Assumption 4.4.3 (Monotone 𝜕𝐺)

For given 𝑢 ∈ U and 𝑣 ∈ V , there exist a constant 𝛾𝐺 ≥ 0 and a neighborhood U𝐺 of 𝑢

such that 𝜕𝐺 is strongly monotone with factor 𝛾𝐺 at 𝑢 for 𝑧 := −𝐾 ′ (𝑢)∗ 𝑣 , i.e.

⟨𝑧 − 𝑧,𝑢 − 𝑢⟩U ≥ 𝛾𝐺 ∥ 𝑢 − 𝑢 ∥2U for all 𝑢 ∈ U𝐺 , 𝑧 ∈ 𝜕𝐺 (𝑢).

Here, strong monotonicity with factor 𝛾𝐺 = 0 just means monotonicity, which is compliant

with Definition 2.2.10.

Since CVaR
∗
𝛽

is not strongly convex and therefore 𝜕CVaR
∗
𝛽

not strongly monotone, we do not

need to assume anything regarding 𝜕CVaR
∗
𝛽

here. However, if𝐺 is strongly monotone, we might

be able to accelerate the algorithm as in [CMV19] by using a factor 𝛾𝐺 , which is introduced in

the following assumption.

51

4 Algorithm

Assumption 4.4.4

For given 𝑢 ∈ U, 𝑣 ∈ V , and 𝛾𝐺 ≥ 𝛾𝐺 ≥ 0, there exist a constant 𝛾U > 0 and a neighbor-

hoodU3

𝐾
of 𝑢 such that

(𝛾𝐺 − 𝛾𝐺) ∥𝑢 − 𝑢 ∥2U +
〈(
𝐾 ′(𝑢) − 𝐾 ′ (𝑢)

)
(𝑢 − 𝑢) , 𝑣

〉
V ≥ 𝛾U ∥ 𝑢 − 𝑢 ∥

2

U

for all 𝑢 ∈ U𝐺 ∩U3

𝐾
.

Note that this assumption trivially holds if 𝐾 is linear. In general, Assumption 4.4.3 and Assump-

tion 4.4.4 imply that

⟨𝑧 − 𝑧,𝑢 − 𝑢⟩U +
〈
𝐾 ′(𝑢)∗𝑣 − 𝐾 ′ (𝑢)∗ 𝑣,𝑢 − 𝑢

〉
U ≥ 𝛾U ∥ 𝑢 − 𝑢 ∥

2

U (4.4.7)

for all 𝑢 ∈ U𝐺 ∩ U3

𝐾
and 𝑧 ∈ 𝜕𝐺 (𝑢). According to Definition 2.2.10, this is equivalent to (a

local version of) the strong monotonicity of the set-valued mapping 𝜕𝐺 + 𝐾 ′(·)∗𝑣 : U ⇒ U.

On the other hand, if the mapping U ∋ 𝑢 ↦→ 𝐺 (𝑢) + ⟨𝑣, 𝐾 (𝑢)⟩V is (locally) strongly convex,

Lemma 2.2.11 also implies the local strong monotonicity of 𝜕𝐺 +𝐾 ′(·)∗𝑣 . Hence, taking a look at

the saddle-point formulation in Problem 3.1.3, one can see that Assumption 4.4.4 acts as a local

convexity assumption similar to sufficient second-order conditions; see [CMV19, p. 8].

Furthermore, it is a simplification of the so-called three-point condition, which is a combination

of a smoothness estimate of 𝐾 as well as a second-order growth condition. It is introduced in the

following lemma, which is a simplified version of [CMV19, Proposition 3.2].

Lemma 4.4.5 (Three-Point Condition on 𝐾)

Suppose Assumption 4.4.2 (Locally Lipschitz 𝐾), Assumption 4.4.3 (Monotone 𝜕𝐺), and

Assumption 4.4.4 hold. Then, the following three-point condition is true for all 𝑢,𝑢′ ∈
U2

𝐾
∩U3

𝐾
and b > 0:〈(

𝐾 ′ (𝑢′) − 𝐾 ′ (𝑢)
)∗
𝑣,𝑢 − 𝑢

〉
U + (𝛾𝐺 − 𝛾𝐺) ∥𝑢 − 𝑢 ∥

2

U

≥ (𝛾U − b) ∥ 𝑢 − 𝑢 ∥2U −
(𝐿′)2

4b
∥ 𝑢 − 𝑢′ ∥2U ∥ 𝑣 ∥

2

V .

Proof: Let𝑢,𝑢′ ∈ U2

𝐾
∩U3

𝐾
be arbitrary and denote by Λ the left-hand side of the inequal-

ity to be proven. Applying Assumption 4.4.4 as well as the Cauchy-Schwarz inequality

yields

Λ :=
〈(
𝐾 ′ (𝑢′) − 𝐾 ′ (𝑢)

)∗
𝑣,𝑢 − 𝑢

〉
U + (𝛾𝐺 − 𝛾𝐺) ∥ 𝑢 − 𝑢 ∥

2

U

≥ 𝛾U ∥ 𝑢 − 𝑢 ∥2U −
〈(
𝐾 ′(𝑢) − 𝐾 ′ (𝑢′)

)
(𝑢 − 𝑢) , 𝑣

〉
V

≥ 𝛾U ∥ 𝑢 − 𝑢 ∥2U − ∥ 𝐾
′(𝑢) − 𝐾 ′ (𝑢′) ∥L(U,V) ∥ 𝑢 − 𝑢 ∥U ∥ 𝑣 ∥V .

(4.4.8)

If we now use Assumption 4.4.2 and the scaled version of Young’s inequality, which is also

52

4.4 Scalar and Deterministic Step Sizes

referred to as Peter-Paul inequality, we get

Λ ≥ 𝛾U ∥ 𝑢 − 𝑢 ∥2U − 𝐿
′ ∥ 𝑢 − 𝑢′ ∥U ∥ 𝑢 − 𝑢 ∥U ∥ 𝑣 ∥V

≥ (𝛾U − b) ∥ 𝑢 − 𝑢 ∥2U −
(𝐿′)2

4b
∥ 𝑢 − 𝑢′ ∥2U ∥ 𝑣 ∥

2

V

(4.4.9)

for any b > 0, which concludes the proof. □

In a final step, we want to combine all the defined neighborhoods into one definition.

Assumption 4.4.6 (Desired Ball)

For given 𝑢 ∈ U and 𝑣 ∈ V , let U1

𝐾
, U2

𝐾
, and U𝐺 be the neighborhoods as defined

in Definition 4.4.1, Assumption 4.4.2, and Assumption 4.4.3, respectively. For 𝛾𝐺 from

Assumption 4.4.3 and an arbitrary 𝛾𝐺 ∈ [0, 𝛾𝐺], let furtherU3

𝐾
be the neighborhood as in

Assumption 4.4.4. Let 𝜌U (𝑢) ∈ [0,∞] be a radius such that B𝜌U (𝑢) (𝑢) ⊂ U1

𝐾
∩ U2

𝐾
∩

U3

𝐾
∩U𝐺 . We define the desired ball B (𝑢, 𝑣) ⊂ U as

B (𝑢, 𝑣) := B𝜌U (𝑢) (𝑢)

and assume that it is non-empty.

Note that, since B (𝑢, 𝑣) is closed and convex, it is also weakly closed [CV20, Lemma 1.10].

4.4.2 Satisfaction of Central Inequality

In this subsection we formulate estimates which guarantee that the inequality (ECI) holds in the

case of scalar and deterministic step sizes. For this purpose, we develop explicit bounds on the

step size and testing operators, which also require that the iterates stay in a neighborhood of the

critical point. First, we assume that the step size operator defined in (4.1.14) takes the form

𝑊𝑘 :=
©«
𝜏𝑘 IdU 0

0 𝜎IdV

ª®¬ ∈ L (W,W) (4.4.10)

for all 𝑘 ∈ N0 with 𝜏𝑘 , 𝜎 ∈ (0,∞), i.e. 𝑇𝑘 := 𝜏𝑘 IdU and Σ𝑘 := 𝜎IdV . Consequently, the previously

defined testing operator becomes

𝑍𝑘 :=
©«
𝜑𝑘 IdU 0

0 𝜓 IdV

ª®¬ ∈ L (W,W) (4.4.11)

for all 𝑘 ∈ N0 with 𝜑𝑘 ,𝜓 ∈ (0,∞). Note that 𝜎 and 𝜓 are intentionally written without index 𝑘

because they are not supposed to change. Multiplying the preconditioning operator 𝑀𝑘 by 𝑍𝑘
yields

𝑍𝑘𝑀𝑘 =
©«
𝜑𝑘 IdU 𝜑𝑘𝜏𝑘𝐾

′ (𝑢𝑘)∗

𝜓𝜎𝐾 ′ (𝑢𝑘) 𝜓 IdV

ª®¬ ∈ R (F𝑘 ,L (W,W)) (4.4.12)

for all 𝑘 ∈ N0. The following assumption specifies some relationships between the step size and

testing operators.

53

4 Algorithm

Assumption 4.4.7 (Step-Size-Testing-Relation)

Let 𝛾𝐺 ≥ 0, ^ ∈ (0, 1), and [> 0. We require that the following relationships hold for all

𝑘 ∈ N0:

(i) 𝜑𝑘𝜏𝑘 = 𝜓𝜎 = [

(ii) 𝜑𝑘+1 = 𝜑𝑘 (1 + 2𝛾𝐺𝜏𝑘)

(iii) (1 − ^) IdV ≥ 𝜎𝜏𝑘𝐾 ′ (𝑢𝑘) ◦ 𝐾 ′ (𝑢𝑘)∗ P-a.s.

An example of possible step size choices satisfying this assumption is presented in Section 6.1.

Note that a sufficient condition to satisfy Assumption 4.4.7 (iii) is

𝜎𝜏𝑘 ∥ 𝐾 ′(𝑢𝑘) ∥2L(U,V) < 1 P-a.s. (4.4.13)

In this case, we can find a ^ ∈ (0, 1) such that

∥ 𝐾 ′(𝑢𝑘)∗ ∥2L(V,U) = ∥ 𝐾 ′(𝑢𝑘) ∥
2

L(U,V) ≤
1 − ^
𝜎𝜏𝑘

P-a.s., (4.4.14)

and since ∥ 𝐾 ′(𝑢𝑘)∗𝑣 ∥2U ≤ ∥ 𝐾 ′(𝑢𝑘)∗ ∥
2

L(V,U) ∥ 𝑣 ∥
2

V for all 𝑣 ∈ V , this implies that

∥ 𝐾 ′(𝑢𝑘)∗𝑣 ∥2U ≤
1 − ^
𝜎𝜏𝑘

∥ 𝑣 ∥2V P-a.s. (4.4.15)

for all 𝑣 ∈ V . Now, the definition of the norm ∥ · ∥U and multiplication by 𝜎𝜏𝑘 yield

𝜎𝜏𝑘 ⟨(𝐾 ′(𝑢𝑘) ◦ 𝐾 ′(𝑢𝑘)∗) 𝑣, 𝑣⟩U ≤ (1 − ^) ⟨𝑣, 𝑣⟩U P-a.s. (4.4.16)

for all 𝑣 ∈ V , which means that (1 − ^) IdV − 𝜎𝜏𝑘𝐾 ′ (𝑢𝑘) ◦ 𝐾 ′ (𝑢𝑘)∗ is P-a.s. positive semi-

definite.

We can now formulate the following lemma, which also gives us a justification for using ∥ · ∥𝑍𝑘𝑀𝑘

to denote at least a semi-norm. It is based on [CMV19, Lemma 3.4].

Lemma 4.4.8

Let 𝑘 ∈ N0 and suppose Assumption 4.4.7 holds. Then 𝑍𝑘𝑀𝑘 is self-adjoint P-a.s. and

satisfies

𝑍𝑘𝑀𝑘 ≥
©«
𝛿𝜑𝑘 IdU 0

0
^−𝛿
1−𝛿𝜓 IdV

ª®¬ P-a.s.

for any 𝛿 ∈ (0, ^].

Proof: Let 𝑘 ∈ N0. Applying Assumption 4.4.7 (i) to (4.4.12), we can easily see that 𝑍𝑘𝑀𝑘

is self-adjoint P-a.s. Proving the desired inequality is equivalent to showing that

𝑍𝑘𝑀𝑘 −
©«
𝛿𝜑𝑘 IdU 0

0
^−𝛿
1−𝛿𝜓 IdV

ª®¬ =
©«
(1 − 𝛿)𝜑𝑘 IdU 𝜑𝑘𝜏𝑘𝐾

′ (𝑢𝑘)∗

𝜓𝜎𝐾 ′ (𝑢𝑘) 1−^
1−𝛿𝜓 IdV

ª®¬ (4.4.17)

is P-a.s. positive semi-definite. Therefore, we consider for every 𝑤 = (𝑢, 𝑣) ∈ U × V the

54

4.4 Scalar and Deterministic Step Sizes

inner product

𝑄 :=

〈©«
(1 − 𝛿)𝜑𝑘 IdU 𝜑𝑘𝜏𝑘𝐾

′ (𝑢𝑘)∗

𝜓𝜎𝐾 ′ (𝑢𝑘) 1−^
1−𝛿𝜓 IdV

ª®¬𝑤,𝑤
〉
W

= (1 − 𝛿)𝜑𝑘 ∥ 𝑢 ∥2U − 2𝜑𝑘𝜏𝑘
〈
𝐾 ′ (𝑢𝑘)∗ 𝑣,−𝑢

〉
U +

1 − ^
1 − 𝛿𝜓 ∥ 𝑣 ∥

2

V P-a.s.,

(4.4.18)

where we have used the identity 𝜓𝜎 = 𝜑𝑘𝜏𝑘 from Assumption 4.4.7 (i). For the middle

term, we use the Cauchy–Schwarz as well as the scaled version of Young’s inequality to

estimate

2𝜑𝑘𝜏𝑘
〈
𝐾 ′ (𝑢𝑘)∗ 𝑣,−𝑢

〉
U ≤ 2𝜑𝑘𝜏𝑘

𝐾 ′ (𝑢𝑘)∗ 𝑣
U ∥ 𝑢 ∥U

≤ 𝜑𝑘 (1 − 𝛿) ∥ 𝑢 ∥2U +
𝜑𝑘𝜏

2

𝑘

1 − 𝛿
𝐾 ′ (𝑢𝑘)∗ 𝑣 2

U P-a.s.

(4.4.19)

with 𝛿 ∈ (0, ^]. Plugging this into the previous equation yields

𝑄 ≥ 1 − ^
1 − 𝛿𝜓 ∥ 𝑣 ∥

2

V −
𝜑𝑘𝜏

2

𝑘

1 − 𝛿
𝐾 ′ (𝑢𝑘)∗ 𝑣 2

U

= (1 − 𝛿)−1

(
⟨(1 − ^)𝜓𝑣, 𝑣⟩V −

〈
𝜑𝑘𝜏

2

𝑘

(
𝐾 ′ (𝑢𝑘) ◦ 𝐾 ′ (𝑢𝑘)∗

)
𝑣, 𝑣

〉
V

)
P-a.s.

(4.4.20)

Now, using the identity [= 𝜑𝑘𝜏𝑘 as well as Assumption 4.4.7 (iii) multiplied by 𝜓 yields

𝑄 ≥ 0 P-a.s., which implies that (4.4.17) is P-a.s. positive semi-definite. □

The following technical result gives us a first estimate of a bound for some of the terms of the

sum occurring in (ECI). It is based on [CMV19, Lemma 3.6].

Lemma 4.4.9

Let (𝑢, 𝑣) = 𝑤 ∈ W, and 𝑘 ∈ N0 fixed. Suppose that, for some radius 𝜌U (𝑢) ≥ 0,

Assumption 4.4.6 (Desired Ball) is satisfied (i.e. B (𝑢, 𝑣) is non-empty) and that the in-

clusion 𝑢𝑘 , 𝑢𝑘+1 ∈ B (𝑢, 𝑣) is P-a.s. true. Furthermore, assume that 𝔉 is a compatible fil-

tration as in Definition 4.2.1, the inequality ∥ 𝑣𝑘+1 − 𝑣 ∥V < 𝛾U
2

3𝐿′ holds P-a.s., and let

b ∈
(
0, 𝛾U − 3𝐿′

2
∥ 𝑣𝑘+1 − 𝑣 ∥V

]
. If Assumption 4.4.7 holds, then

E
(〈
�̃�𝑘 (𝑤𝑘+1) ,𝑤𝑘+1 −𝑤

〉
𝑍𝑘

���F𝑘) − 1

2

E
(
∥𝑤𝑘+1 −𝑤 ∥2𝑍𝑘+1𝑀𝑘+1−𝑍𝑘𝑀𝑘

��F𝑘)
≥ − [E

((
(𝐿′)2

4b
∥ 𝑣 ∥2V +

3𝐿′

2

∥ 𝑣𝑘+1 − 𝑣 ∥V
)
∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U

����F𝑘)
− [E

((
�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘)

U
∥ 𝑢𝑘+1 − 𝑢 ∥U

���F𝑘)
− [E

(�̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) V ∥ 𝑣𝑘+1 − 𝑣 ∥V ���F𝑘)
holds P-a.s.

55

4 Algorithm

Proof: First, we define

𝑄 :=
〈
�̃�𝑘 (𝑤𝑘+1) ,𝑤𝑘+1 −𝑤

〉
𝑍𝑘
− 1

2

∥𝑤𝑘+1 −𝑤 ∥2𝑍𝑘+1𝑀𝑘+1−𝑍𝑘𝑀𝑘
. (4.4.21)

Unless stated otherwise, all equations in this proof are meant to hold P-a.s. It follows from

(4.4.12) and Assumption 4.4.7 that

𝑍𝑘+1𝑀𝑘+1 − 𝑍𝑘𝑀𝑘 =
©«
(𝜑𝑘+1 − 𝜑𝑘) IdU [𝐾 ′ (𝑢𝑘+1)∗ − [𝐾 ′ (𝑢𝑘)∗

[𝐾 ′ (𝑢𝑘+1) − [𝐾 ′ (𝑢𝑘) 0

ª®¬ . (4.4.22)

Since Assumption 4.4.7 (i) and (ii) imply 𝜑𝑘+1 − 𝜑𝑘 = 2[𝛾𝐺 , we can expand

1

2

∥𝑤𝑘+1 −𝑤 ∥2𝑍𝑘+1𝑀𝑘+1−𝑍𝑘𝑀𝑘

= [˜𝛾𝐺 ∥ 𝑢𝑘+1 − 𝑢 ∥2U + [
〈(
𝐾 ′ (𝑢𝑘+1) − 𝐾 ′ (𝑢𝑘)

)
(𝑢𝑘+1 − 𝑢) , 𝑣𝑘+1 − 𝑣

〉
V . (4.4.23)

Together with the definition of �̃�𝑘 in (4.2.2) as well as the discrepancy function 𝐷𝑘 , we

then have

𝑄 = ⟨𝐻 (𝑤𝑘+1) ,𝑤𝑘+1 −𝑤⟩𝑍𝑘𝑊𝑘
+

〈
𝐷𝐿𝐼𝑁
𝑘
(𝑤𝑘+1) ,𝑤𝑘+1 −𝑤

〉
𝑍𝑘

+
〈
𝐷𝐶𝐺𝐹
𝑘
(𝑤𝑘+1) ,𝑤𝑘+1 −𝑤

〉
𝑍𝑘
− [˜𝛾𝐺 ∥ 𝑢𝑘+1 − 𝑢 ∥2U

− [
〈(
𝐾 ′ (𝑢𝑘+1) − 𝐾 ′ (𝑢𝑘)

)
(𝑢𝑘+1 − 𝑢) , 𝑣𝑘+1 − 𝑣

〉
V .

(4.4.24)

The first term of the sum on the right-hand side can be expanded as follows, using the

definition of 𝐻 in (4.1.15):

⟨𝐻 (𝑤𝑘+1) ,𝑤𝑘+1 −𝑤⟩𝑍𝑘𝑊𝑘
= [

〈
𝜕𝐺 (𝑢𝑘+1) + 𝐾 ′ (𝑢𝑘+1)∗ 𝑣𝑘+1, 𝑢𝑘+1 − 𝑢

〉
U

+ [
〈
𝜕CVaR

∗
𝛽
(𝑣𝑘+1) − 𝐾 (𝑢𝑘+1) , 𝑣𝑘+1 − 𝑣

〉
V
.

(4.4.25)

Now let 𝑧1 := −𝐾 ′ (𝑢)∗ 𝑣 ∈ 𝜕𝐺 (𝑢) and 𝑧2 := 𝐾 (𝑢) ∈ 𝜕CVaR
∗
𝛽
(𝑣). Addition and subtraction

of these terms yields

⟨𝐻 (𝑤𝑘+1) ,𝑤𝑘+1 −𝑤⟩𝑍𝑘𝑊𝑘

= [⟨𝜕𝐺 (𝑢𝑘+1) − 𝑧1, 𝑢𝑘+1 − 𝑢⟩U + [
〈
𝐾 ′ (𝑢𝑘+1)∗ 𝑣𝑘+1 + 𝑧1, 𝑢𝑘+1 − 𝑢

〉
U

+ [
〈
𝜕CVaR

∗
𝛽
(𝑣𝑘+1) − 𝑧2, 𝑣𝑘+1 − 𝑣

〉
V
+ [⟨𝑧2 − 𝐾 (𝑢𝑘+1) , 𝑣𝑘+1 − 𝑣⟩V .

(4.4.26)

The monotonicity of 𝜕CVaR
∗
𝛽

as well as the (strong) monotonicity of 𝜕𝐺 with factor 𝛾𝐺 (see

Assumption 4.4.3) imply

⟨𝐻 (𝑤𝑘+1) ,𝑤𝑘+1 −𝑤⟩𝑍𝑘𝑊𝑘

≥ [𝛾𝐺 ∥ 𝑢𝑘+1 − 𝑢 ∥2U + [
〈
𝐾 ′ (𝑢𝑘+1)∗ 𝑣𝑘+1 − 𝐾 ′ (𝑢)∗ 𝑣,𝑢𝑘+1 − 𝑢

〉
U

+ [⟨𝐾 (𝑢) − 𝐾 (𝑢𝑘+1) , 𝑣𝑘+1 − 𝑣⟩V .
(4.4.27)

56

4.4 Scalar and Deterministic Step Sizes

We now recall the definitions of𝐷𝐿𝐼𝑁
𝑘

and𝐷𝐶𝐺𝐹
𝑘

in (4.1.16) and (4.1.17), respectively, which

imply〈
𝐷𝐿𝐼𝑁
𝑘
(𝑤𝑘+1) ,𝑤𝑘+1 −𝑤

〉
𝑍𝑘

= [
〈(
𝐾 ′ (𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘+1)∗

)
𝑣𝑘+1, 𝑢𝑘+1 − 𝑢

〉
U

+ [⟨𝐾 (𝑢𝑘+1) − 𝐾 (𝑢𝑘) − 𝐾 ′ (𝑢𝑘) (𝑢𝑘+1 − 𝑢𝑘) , 𝑣𝑘+1 − 𝑣⟩V
(4.4.28)

and〈
𝐷𝐶𝐺𝐹
𝑘
(𝑤𝑘+1) ,𝑤𝑘+1 −𝑤

〉
𝑍𝑘

= [

〈(
�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘) , 𝑢𝑘+1 − 𝑢

〉
U

+ [
〈
𝐾 (𝑢𝑘) − �̂�𝑘 (𝑢𝑘) , 𝑣𝑘+1 − 𝑣

〉
V .

(4.4.29)

Combining (4.4.24), (4.4.27), (4.4.28), and (4.4.29) yields

[−1𝑄 ≥ (𝛾𝐺 − 𝛾𝐺) ∥ 𝑢𝑘+1 − 𝑢 ∥2U
+

〈
𝐾 ′ (𝑢𝑘+1)∗ 𝑣𝑘+1 − 𝐾 ′ (𝑢)∗ 𝑣,𝑢𝑘+1 − 𝑢

〉
U

+ ⟨𝐾 (𝑢) − 𝐾 (𝑢𝑘+1) , 𝑣𝑘+1 − 𝑣⟩V
+

〈(
𝐾 ′ (𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘+1)∗

)
𝑣𝑘+1, 𝑢𝑘+1 − 𝑢

〉
U

+ ⟨𝐾 (𝑢𝑘+1) − 𝐾 (𝑢𝑘) − 𝐾 ′ (𝑢𝑘) (𝑢𝑘+1 − 𝑢𝑘) , 𝑣𝑘+1 − 𝑣⟩V
−

〈(
𝐾 ′ (𝑢𝑘+1) − 𝐾 ′ (𝑢𝑘)

)
(𝑢𝑘+1 − 𝑢) , 𝑣𝑘+1 − 𝑣

〉
V

+
〈(
�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘) , 𝑢𝑘+1 − 𝑢

〉
U

+
〈
𝐾 (𝑢𝑘) − �̂�𝑘 (𝑢𝑘) , 𝑣𝑘+1 − 𝑣

〉
V .

(4.4.30)

Rearranging after addition and subtraction of the terms ⟨𝐾 ′ (𝑢𝑘+1) (𝑢𝑘+1 − 𝑢) , 𝑣𝑘+1 − 𝑣⟩V
and ⟨𝐾 ′ (𝑢𝑘) (𝑢𝑘+1 − 𝑢) , 𝑣⟩V yields

[−1𝑄 ≥ (𝛾𝐺 − 𝛾𝐺) ∥𝑢𝑘+1 − 𝑢 ∥2U +
〈
(𝐾 ′ (𝑢𝑘) − 𝐾 ′ (𝑢))∗ 𝑣,𝑢𝑘+1 − 𝑢

〉
U

+ ⟨𝐾 (𝑢) − 𝐾 (𝑢𝑘+1) − 𝐾 ′ (𝑢𝑘+1) (𝑢 − 𝑢𝑘+1) , 𝑣𝑘+1 − 𝑣⟩V
+ ⟨𝐾 (𝑢𝑘+1) − 𝐾 (𝑢𝑘) − 𝐾 ′ (𝑢𝑘) (𝑢𝑘+1 − 𝑢𝑘) , 𝑣𝑘+1 − 𝑣⟩V
+ 2

〈(
𝐾 ′ (𝑢𝑘) − 𝐾 ′ (𝑢𝑘+1)

)
(𝑢𝑘+1 − 𝑢) , 𝑣𝑘+1 − 𝑣

〉
V

+ 𝑅,

(4.4.31)

where

𝑅 :=

〈(
�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘) , 𝑢𝑘+1 − 𝑢

〉
U

+
〈
𝐾 (𝑢𝑘) − �̂�𝑘 (𝑢𝑘) , 𝑣𝑘+1 − 𝑣

〉
V .

(4.4.32)

In order to further estimate (4.4.31), we now consider each line of the right-hand side

separately:

57

4 Algorithm

1. On the first line, we can apply Lemma 4.4.5, i.e.

(𝛾𝐺 − 𝛾𝐺) ∥ 𝑢𝑘+1 − 𝑢 ∥2U +
〈(
𝐾 ′ (𝑢𝑘) − 𝐾 ′ (𝑢)

)∗
𝑣,𝑢𝑘+1 − 𝑢

〉
U

≥ (𝛾U − b) ∥ 𝑢𝑘+1 − 𝑢 ∥2U −
(𝐿′)2

4b
∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U ∥ 𝑣 ∥

2

V (4.4.33)

for all b > 0.

2. For the second line, we use the Cauchy-Schwarz inequality and (4.4.6) to estimate

⟨𝐾 (𝑢) − 𝐾 (𝑢𝑘+1) − 𝐾 ′ (𝑢𝑘+1) (𝑢 − 𝑢𝑘+1) , 𝑣𝑘+1 − 𝑣⟩V

≥ − ∥ 𝑣𝑘+1 − 𝑣 ∥V ∥ 𝐾 (𝑢) − 𝐾 (𝑢𝑘+1) − 𝐾 ′ (𝑢𝑘+1) (𝑢 − 𝑢𝑘+1) ∥V

≥ −𝐿
′

2

∥ 𝑣𝑘+1 − 𝑣 ∥V ∥ 𝑢𝑘+1 − 𝑢 ∥2U .
(4.4.34)

3. Using (4.4.5), the third line can be estimated as follows:

⟨𝐾 (𝑢𝑘+1) − 𝐾 (𝑢𝑘) − 𝐾 ′ (𝑢𝑘) (𝑢𝑘+1 − 𝑢𝑘) , 𝑣𝑘+1 − 𝑣⟩V

≥ −𝐿
′

2

∥ 𝑣𝑘+1 − 𝑣 ∥V ∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U . (4.4.35)

4. For the fourth line, we need the Cauchy-Schwarz inequality, Assumption 4.4.2, and

Young’s inequality, to estimate

2

〈(
𝐾 ′ (𝑢𝑘) − 𝐾 ′ (𝑢𝑘+1)

)
(𝑢𝑘+1 − 𝑢) , 𝑣𝑘+1 − 𝑣

〉
V

≥ −2𝐿′ ∥ 𝑢𝑘 − 𝑢𝑘+1 ∥U ∥ 𝑢𝑘+1 − 𝑢 ∥U ∥ 𝑣𝑘+1 − 𝑣 ∥V

≥ −𝐿′ ∥ 𝑣𝑘+1 − 𝑣 ∥V ∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U − 𝐿
′ ∥ 𝑣𝑘+1 − 𝑣 ∥V ∥ 𝑢𝑘+1 − 𝑢 ∥2U .

(4.4.36)

Putting all these estimates (4.4.31), (4.4.33), (4.4.34), (4.4.35), and (4.4.36) together, we get

[−1𝑄 ≥ (𝛾U − b) ∥ 𝑢𝑘+1 − 𝑢 ∥2U −
(𝐿′)2

4b
∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U ∥ 𝑣 ∥

2

V

− 𝐿
′

2

∥ 𝑣𝑘+1 − 𝑣 ∥V ∥ 𝑢𝑘+1 − 𝑢 ∥2U −
𝐿′

2

∥ 𝑣𝑘+1 − 𝑣 ∥V ∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U

− 𝐿′ ∥ 𝑣𝑘+1 − 𝑣 ∥V ∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U − 𝐿
′ ∥ 𝑣𝑘+1 − 𝑣 ∥V ∥ 𝑢𝑘+1 − 𝑢 ∥2U + 𝑅,

(4.4.37)

which can be rearranged to

[−1𝑄 ≥
(
𝛾U − b −

3𝐿′

2

∥ 𝑣𝑘+1 − 𝑣 ∥V
)
∥ 𝑢𝑘+1 − 𝑢 ∥2U

−
(
(𝐿′)2

4b
∥ 𝑣 ∥2V +

3𝐿′

2

∥ 𝑣𝑘+1 − 𝑣 ∥V
)
∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U + 𝑅.

(4.4.38)

58

4.4 Scalar and Deterministic Step Sizes

Since we assumed that b ≤ 𝛾U − 3𝐿′

2
∥ 𝑣𝑘+1 − 𝑣 ∥V , the inequality (4.4.38) implies

[−1𝑄 ≥ −
(
(𝐿′)2

4b
∥ 𝑣 ∥2V +

3𝐿′

2

∥ 𝑣𝑘+1 − 𝑣 ∥V
)
∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U + 𝑅. (4.4.39)

Now we consider the definition of 𝑅 in (4.4.32) again and use the Cauchy-Schwarz inequal-

ity to estimate

𝑅 ≥ −
 (
�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘)

U
∥ 𝑢𝑘+1 − 𝑢 ∥U

−
 �̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) V ∥ 𝑣𝑘+1 − 𝑣 ∥V . (4.4.40)

Plugging this into (4.4.39) yields

[−1𝑄 ≥ −
(
(𝐿′)2

4b
∥ 𝑣 ∥2V +

3𝐿′

2

∥ 𝑣𝑘+1 − 𝑣 ∥V
)
∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U

−
 (
�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘)

U
∥ 𝑢𝑘+1 − 𝑢 ∥U

−
 �̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) V ∥ 𝑣𝑘+1 − 𝑣 ∥V .

(4.4.41)

Multiplication by [and application E (· | F𝑘) on both sides concludes the proof. □

In the following, we want to use the inequality proven in Lemma 4.4.9 to show that (ECI) holds

as well. Since the functions �̂�𝑘 and �̂� ′
𝑘

defined in (4.1.5) and (4.1.6) are involved in the former,

we need an additional assumption to guarantee that the discrepancy resulting from CGF will

somehow decrease.

Assumption 4.4.10 (Reduction of CGF)

There exists a constant 𝑀 > 0 such that the sequence (𝐴𝑘)𝑘∈N ⊂ R (F ,A) satisfies

E

(
ess sup

b∈Ξ
𝜒𝐴c

𝑘
(b)

�����F𝑘
)
≤ 𝑀𝑘−3 P-a.s.

for all 𝑘 ∈ N, where 𝐴c
𝑘
(\) denotes the complement of 𝐴𝑘 (\) ∈ A in Ξ for all \ ∈ Θ.

In order to better understand the meaning of this assumption, we recall the definition of the

essential supremum to see that

ess sup

b∈Ξ
𝜒𝐴c

𝑘
(b) = inf

𝑁 ⊂Ξ
P(𝑁)=0

(
sup

b∈Ξ\𝑁
𝜒𝐴c

𝑘
(b)

)
=

0, if P

(
𝐴c
𝑘

)
= 0,

1, if P
(
𝐴c
𝑘

)
≠ 0,

P-a.s. (4.4.42)

for all 𝑘 ∈ N. Thus, the assumption restricts the expectation of the set 𝐴c
𝑘

having measure > 0

in iteration 𝑘 , given the information of all preceding iterations. If we would additionally assume

that the sequence (𝐴𝑘)𝑘∈N is independent, then the 𝜎-algebra generated by 𝜒𝐴c
𝑘

and F𝑘 would

be independent, too. This follows from the assumption that 𝔉 is a compatible filtration as in

59

4 Algorithm

Definition 4.2.1. Thus, we could apply [Kle13, Theorem 8.14 (vi)], yielding

E

(
ess sup

b∈Ξ
𝜒𝐴c

𝑘
(b)

�����F𝑘
)
= E

(
ess sup

b∈Ξ
𝜒𝐴c

𝑘
(b)

)
P-a.s. (4.4.43)

The improvement here is that we have the expectation instead of the conditional expectation on

the right-hand side. Together with (4.4.42) it follows that

E

(
ess sup

b∈Ξ
𝜒𝐴c

𝑘
(b)

�����F𝑘
)
= P

({
\ ∈ Θ

�� P (
𝐴c
𝑘
(\)

)
≠ 0

})
= P

(
P

(
𝐴c
𝑘

)
≠ 0

)
. (4.4.44)

Note that P refers to the probability measure ofV = 𝐿2 (Ξ,A,P), whereas P is the probability

measure of (Θ, F , P), which stems from the randomization of the algorithm (see Section 4.2). In

conclusion, in order to satisfy Assumption 4.4.10, it suffices to assume independence of (𝐴𝑘)𝑘∈N
as well as

P
(
P

(
𝐴c
𝑘

)
≠ 0

)
≤ 𝑀𝑘−3 P-a.s. (4.4.45)

for some constant 𝑀 > 0. In a discrete setting as in Chapter 6, the left-hand side would corre-

spond to the probability that at least one component of the gradient is frozen in iteration 𝑘 . An

example of a possible choice of (𝐴𝑘)𝑘∈N ⊂ A is given in Section 6.2.

With Assumption 4.4.10 we can now prove the following result, which gives us upper bounds on

the conditional expectation of the CGF-error.

Lemma 4.4.11 (Upper Bound of the CGF-Error)

For given (𝑢, 𝑣) = 𝑤 ∈ W, suppose that Assumption 4.4.6 (Desired Ball) is satisfied for

some radius 𝜌U (𝑢) ≥ 0. Let the sequence ((𝑢𝑘 , 𝑣𝑘))𝑘∈N0

= (𝑤𝑘)𝑘∈N0

⊂ R (F ,W) be

such that (𝑢𝑘 , 𝑣𝑘) ∈ B𝑅U (𝑢) ∩ B (𝑢, 𝑣) × B𝑅V (𝑣) P-a.s. for all 𝑘 ∈ N0 and some radii

𝑅U, 𝑅V > 0. Furthermore, we assume that the sequence (𝐴𝑘)𝑘∈N ⊂ R (F ,A) satisfies

Assumption 4.4.10, and that 𝔉 is a compatible filtration as in Definition 4.2.1. Then the

following inequalities hold P-a.s. for all 𝑘 ∈ N:

(i) E
(�̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) V ���F𝑘) ≤ 2𝐿𝑅U𝑀𝑘

−2
,

(ii) E
((

�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘)

U

���F𝑘) ≤ 2𝐿′𝑅U
(
3𝑅V + ∥ 𝑣 ∥V

)
𝑀𝑘−2

.

Proof: All equations are meant to hold P-a.s. First note that

Π𝐴c
𝑗
◦ · · · ◦ Π𝐴c

𝑘
= Π∩𝑘

𝑖=𝑗
𝐴c
𝑖

(4.4.46)

for all 𝑘 ∈ N and 𝑗 ∈ {1, . . . , 𝑘}. We show by mathematical induction that the following

equality holds for all 𝑘 ∈ N:

�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗ =

𝑘∑︁
𝑗=1

(
𝐾 ′

(
𝑢 𝑗−1

)∗ − 𝐾 ′ (𝑢 𝑗)∗) ◦ Π∩𝑘
𝑖=𝑗
𝐴c
𝑖
. (4.4.47)

60

4.4 Scalar and Deterministic Step Sizes

• Base case (𝑘 = 1): Using the definition �̂� ′
0
(·)∗ := 𝐾 ′(·)∗ and (4.1.6) we have

�̂� ′
1
(𝑢1)∗ − 𝐾 ′ (𝑢1)∗ = 𝐾 ′ (𝑢1)∗ ◦ Π𝐴1

+ �̂� ′
0
(𝑢0)∗ ◦

(
Id − Π𝐴1

)
− 𝐾 ′ (𝑢1)∗

=
(
𝐾 ′ (𝑢0)∗ − 𝐾 ′ (𝑢1)∗

)
◦ Π𝐴c

1

.
(4.4.48)

• Inductive step (𝑘 ⇝ 𝑘 + 1): Using (4.1.6) again yields

�̂� ′
𝑘+1 (𝑢𝑘+1)

∗ − 𝐾 ′ (𝑢𝑘+1)∗ = 𝐾 ′ (𝑢𝑘+1) ◦ Π𝐴𝑘+1 + �̂� ′𝑘 (𝑢𝑘)
∗ ◦ Π𝐴c

𝑘+1
− 𝐾 ′ (𝑢𝑘+1)∗

= �̂� ′
𝑘
(𝑢𝑘)∗ ◦ Π𝐴c

𝑘+1
− 𝐾 ′ (𝑢𝑘+1) ◦ Π𝐴c

𝑘+1
,

(4.4.49)

which is, by the induction hypothesis for 𝑘 , equal to[
𝑘∑︁
𝑗=1

(
𝐾 ′

(
𝑢 𝑗−1

)∗ − 𝐾 ′ (𝑢 𝑗)∗) ◦ Π∩𝑘
𝑖=𝑗
𝐴c
𝑖
+ 𝐾 ′ (𝑢𝑘)∗

]
◦ Π𝐴c

𝑘+1
− 𝐾 ′ (𝑢𝑘+1) ◦ Π𝐴c

𝑘+1

=
𝑘+1∑︁
𝑗=1

(
𝐾 ′

(
𝑢 𝑗−1

)∗ − 𝐾 ′ (𝑢 𝑗)∗) ◦ Π∩𝑘+1
𝑖=𝑗
𝐴c
𝑖
. (4.4.50)

Analogously to the proof of (4.4.47), we can use the definition of �̂� in (4.1.5) to show that

�̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) =
𝑘∑︁
𝑗=1

Π∩𝑘
𝑖=𝑗
𝐴c
𝑖

(
𝐾

(
𝑢 𝑗−1

)
− 𝐾

(
𝑢 𝑗

))
(4.4.51)

for all 𝑘 ∈ N. Now, we divide the rest of the proof into two parts, one for each inequality

to be proven.

(i) Let 𝑘 ∈ N and 𝑣 𝑗 := 𝐾
(
𝑢 𝑗−1

)
− 𝐾

(
𝑢 𝑗

)
for all 𝑗 ∈ {1, . . . , 𝑘}. From (4.4.51) we know

that

�̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) =
𝑘∑︁
𝑗=1

Π∩𝑘
𝑖=𝑗
𝐴c
𝑖

(
𝑣 𝑗

)
. (4.4.52)

Therefore, we can estimate

E
(�̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) V ���F𝑘) ≤ 𝑘∑︁

𝑗=1

E
(Π∩𝑘

𝑖=𝑗
𝐴c
𝑖

(
𝑣 𝑗

)
V

���F𝑘)
=

𝑘∑︁
𝑗=1

E

(𝑘∏
𝑖=𝑗

𝜒𝐴c
𝑖
(·)𝑣 𝑗 (·)

V

�����F𝑘
)
,

(4.4.53)

where we have used equation (4.4.46) as well as the definition of Π𝐴 in (4.1.3). The

definition of the norm ofV = 𝐿2 (Ξ,A,P) and the fact that 𝜒2

𝐴c
𝑖

≡ 𝜒𝐴c
𝑖

imply 𝑘∏
𝑖=𝑗

𝜒𝐴c
𝑖
(·)𝑣 𝑗 (·)

V

=

(∫
Ξ

𝑘∏
𝑖=𝑗

𝜒𝐴c
𝑖
(b)𝑣 𝑗 (b)2dP(b)

)
1/2

(4.4.54)

61

4 Algorithm

for all 𝑗 ∈ {1, . . . , 𝑘}. Hölder’s inequality (with 𝑝 = 1 and 𝑞 = ∞) yields∫
Ξ

𝑘∏
𝑖=𝑗

𝜒𝐴c
𝑖
(b)𝑣 𝑗 (b)2dP(b) ≤

(∫
Ξ

𝑘−1∏
𝑖=𝑗

𝜒𝐴c
𝑖
(b)𝑣 𝑗 (b)2dP(b)

) (
ess sup

b∈Ξ
𝜒𝐴c

𝑘
(b)

)
≤

 𝑣 𝑗 2

V ess sup

b∈Ξ
𝜒𝐴c

𝑘
(b),

(4.4.55)

where we have used in the last inequality that 𝜒𝐴c
𝑖
(b) ≤ 1 for all 𝑖 ∈ { 𝑗, . . . , 𝑘 − 1}

and all b ∈ Ξ. Due to the local Lipschitz continuity of 𝐾 (see Definition 4.4.1) and

the fact that 𝑢 𝑗 ∈ B𝑅U (𝑢) P-a.s. for all 𝑗 ∈ N0, we can estimate 𝑣 𝑗 V =
𝐾 (

𝑢 𝑗−1

)
− 𝐾

(
𝑢 𝑗

)
V ≤ 𝐿

𝑢 𝑗−1 − 𝑢 𝑗

U ≤ 2𝐿𝑅U (4.4.56)

for all 𝑗 ∈ {1, . . . , 𝑘}. If we combine (4.4.53), (4.4.54), (4.4.55), and (4.4.56), we get

E
(�̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) V ���F𝑘) ≤ 2𝐿𝑅U𝑘E

(
ess sup

b∈Ξ
𝜒𝐴c

𝑘
(b)

�����F𝑘
)

≤ 2𝐿𝑅U𝑀𝑘
−2,

(4.4.57)

where we have used Assumption 4.4.10 for the last inequality.

(ii) The proof of the second inequality is similar to the one above. Let 𝑘 ∈ N and 𝑣 :=

2𝑣𝑘+1 − 𝑣𝑘 . From (4.4.47) we know that

�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗ =

𝑘∑︁
𝑗=1

(
𝐾 ′

(
𝑢 𝑗−1

)∗ − 𝐾 ′ (𝑢 𝑗)∗) ◦ Π∩𝑘
𝑖=𝑗
𝐴c
𝑖
. (4.4.58)

Therefore, we have

E
((

�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(𝑣)

U

���F𝑘)
≤

𝑘∑︁
𝑗=1

E
(𝐾 ′ (𝑢 𝑗−1

)∗ − 𝐾 ′ (𝑢 𝑗)∗ L(V,U) Π∩𝑘𝑖=𝑗𝐴c
𝑖
(𝑣)

V

���F𝑘)
≤

𝑘∑︁
𝑗=1

𝐾 ′ (𝑢 𝑗−1

)∗ − 𝐾 ′ (𝑢 𝑗)∗ L(V,U) E (Π∩𝑘
𝑖=𝑗
𝐴c
𝑖
(𝑣)

V

���F𝑘) , (4.4.59)

where we have used the F𝑘 -measurability of

𝐾 ′ (𝑢 𝑗−1

)∗ − 𝐾 ′ (𝑢 𝑗)∗ L(V,U) : Θ→
R for all 𝑗 ∈ {1, . . . , 𝑘} together with [Kle13, Theorem 8.14 (iii)]. Due to the local

Lipschitz continuity of 𝐾 ′ (see Assumption 4.4.2) and the fact that 𝑢 𝑗 ∈ B𝑅U (𝑢)
P-a.s. for all 𝑗 ∈ N0, we can estimate𝐾 ′ (𝑢 𝑗−1

)∗ − 𝐾 ′ (𝑢 𝑗)∗ L(V,U) = 𝐾 ′ (𝑢 𝑗−1

)
− 𝐾 ′

(
𝑢 𝑗

)
L(U,V) ≤ 2𝐿′𝑅U (4.4.60)

for all 𝑗 ∈ {1, . . . , 𝑘}. For the term of (4.4.59) involving the conditional expectation,

we use Hölder’s inequality analogously to (4.4.55) to getΠ∩𝑘
𝑖=𝑗
𝐴c
𝑖
(𝑣)

V
≤ ∥ 𝑣 ∥V ess sup

b∈Ξ
𝜒𝐴c

𝑘
(b) . (4.4.61)

62

4.4 Scalar and Deterministic Step Sizes

Since 𝑣 𝑗 ∈ B𝑅V (𝑣) P-a.s. for all 𝑗 ∈ N0, we know that

∥ 𝑣 ∥V = ∥ 2𝑣𝑘+1 − 𝑣𝑘 ∥V ≤ 2 ∥ 𝑣𝑘+1 − 𝑣 ∥V + ∥ 𝑣𝑘 − 𝑣 ∥V + ∥ 𝑣 ∥V
≤ 3𝑅V + ∥ 𝑣 ∥V .

(4.4.62)

If we combine this with (4.4.59), (4.4.60), and (4.4.61), and apply Assumption 4.4.10,

we get

E
((

�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘)

U

���F𝑘)
≤

𝑘∑︁
𝑗=1

2𝐿′𝑅U
(
3𝑅V + ∥ 𝑣 ∥V

)
E

(
ess sup

b∈Ξ
𝜒𝐴c

𝑘
(b)

�����F𝑘
)

≤ 2𝐿′𝑅U
(
3𝑅V + ∥ 𝑣 ∥V

)
𝑀𝑘−2,

(4.4.63)

which concludes the proof. □

Now we can prove under which additional conditions the inequality (ECI) is satisfied.

Proposition 4.4.12 (Satisfaction of Central Inequality)

For given (𝑢, 𝑣) = 𝑤 ∈ W, suppose that Assumption 4.4.6 (Desired Ball) is satisfied for

some radius 𝜌U (𝑢) ≥ 0. Let the sequence ((𝑢𝑘 , 𝑣𝑘))𝑘∈N0

= (𝑤𝑘)𝑘∈N0

⊂ R (F ,W) be

such that (𝑢𝑘 , 𝑣𝑘) ∈ B𝑅U (𝑢) ∩ B (𝑢, 𝑣) × B𝑅V (𝑣) P-a.s. for all 𝑘 ∈ N0 and some radii

𝑅U, 𝑅V > 0. Furthermore, we assume that the sequence (𝐴𝑘)𝑘∈N ⊂ R (F ,A) satisfies

Assumption 4.4.10,𝔉 is a compatible filtration as in Definition 4.2.1, and Assumption 4.4.7

(Step-Size-Testing-Relation) holds. If ∥ 𝑣𝑘+1 − 𝑣 ∥V < 𝛾U
2

3𝐿′ P-a.s. for all 𝑘 ∈ N0 and there

exists
ˆ𝛿 ∈ (0, 1) such that

𝜑𝑘 ≥
2[(

1 − ˆ𝛿

)
𝛿

(
(𝐿′)2

4b𝑘+1
∥ 𝑣 ∥2V + 𝛾U − b𝑘+1

)
P-a.s.

for some 𝛿 ∈ (0, ^], b𝑘+1 ∈ R
(
F𝑘+1,

(
0, 𝛾U − 3𝐿′

2
∥ 𝑣𝑘+1 − 𝑣 ∥V

])
and all 𝑘 ∈ N0, then there

exists (Δ𝑘)𝑘∈N0

∈ 𝑙+ (𝔉) with

Δ𝑘 ≥
ˆ𝛿

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘) P-a.s.

for all 𝑘 ∈ N0 such that (ECI) is satisfied for 𝑧 = 𝑤 and

_𝑘 := [E
((

�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘)

U
∥ 𝑢𝑘+1 − 𝑢 ∥U

���F𝑘)
+ [E

(�̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) V ∥ 𝑣𝑘+1 − 𝑣 ∥V ���F𝑘) .
Moreover, we have (_𝑘)𝑘∈N0

∈ 𝑙1+ (𝔉), i.e.

∑
𝑘∈N0

_𝑘 < ∞ P-a.s.

63

4 Algorithm

Proof: First, we want to show that (ECI) is satisfied for all 𝑘 ∈ N0 with 𝑧 = 𝑤 , _𝑘 as

defined above, and some sequence (Δ𝑘)𝑘∈N0

∈ 𝑙+ (𝔉), i.e.

E
(〈
�̃�𝑘 (𝑤𝑘+1) ,𝑤𝑘+1 − 𝑧

〉
𝑍𝑘

���F𝑘) + _𝑘
≥ 1

2

E
(
∥𝑤𝑘+1 − 𝑧 ∥2𝑍𝑘+1𝑀𝑘+1−𝑍𝑘𝑀𝑘

��F𝑘) − 1

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘) + Δ𝑘 (ECI)

holds P-a.s. Let now 𝑘 ∈ N0 be fixed. If we plug 𝑧 = 𝑤 into (ECI) and rearrange such that

the left-hand side is identical to the one of Lemma 4.4.9, we get

E
(〈
�̃�𝑘 (𝑤𝑘+1) ,𝑤𝑘+1 −𝑤

〉
𝑍𝑘

���F𝑘) − 1

2

E
(
∥𝑤𝑘+1 −𝑤 ∥2𝑍𝑘+1𝑀𝑘+1−𝑍𝑘𝑀𝑘

��F𝑘)
≥ −1

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘) + Δ𝑘 − _𝑘 P-a.s. (4.4.64)

Therefore, if we apply Lemma 4.4.9, we only need to show that we can find a Δ𝑘 ∈
R (F𝑘 , [0,∞)) satisfying

− [E
((
(𝐿′)2

4b𝑘+1
∥ 𝑣 ∥2V +

3𝐿′

2

∥ 𝑣𝑘+1 − 𝑣 ∥V
)
∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U

����F𝑘)
≥ −1

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘) + Δ𝑘 P-a.s. (4.4.65)

as well as

Δ𝑘 ≥
ˆ𝛿

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘) P-a.s. (4.4.66)

This is true, if

− [𝜌𝑘+1E
(
∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U

��F𝑘) + 1

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘)
≥

ˆ𝛿

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘) (4.4.67)

holds P-a.s., where 𝜌𝑘+1 :=
(𝐿′)2
4b𝑘+1
∥ 𝑣 ∥2V + 3𝐿′

2
∥ 𝑣𝑘+1 − 𝑣 ∥V . We know from Lemma 4.4.8

that

∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘
≥ 𝛿𝜑𝑘 ∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U +

^ − 𝛿
1 − 𝛿𝜓 ∥ 𝑣𝑘+1 − 𝑣𝑘 ∥

2

V P-a.s. (4.4.68)

for any 𝛿 ∈ (0, ^], where ^ stems from Assumption 4.4.7. Therefore, in order to show

(4.4.67), it suffices to prove that

1 − ˆ𝛿

2

𝛿𝜑𝑘E
(
∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U

��F𝑘) +
(
1 − ˆ𝛿

)
(^ − 𝛿)

2 (1 − 𝛿) 𝜓E
(
∥ 𝑣𝑘+1 − 𝑣𝑘 ∥2V

��F𝑘)
≥ [𝜌𝑘+1E

(
∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U

��F𝑘) P-a.s. (4.4.69)

Since the second term of the sum on the left-hand side is non-negative and the conditional

64

4.4 Scalar and Deterministic Step Sizes

expectation is monotone [Kle13, Theorem 8.14 (ii)], this is true if

1 − ˆ𝛿

2

𝛿𝜑𝑘 ≥ [𝜌𝑘+1 = [
(𝐿′)2

4b𝑘+1
∥ 𝑣 ∥2V + [

3𝐿′

2

∥ 𝑣𝑘+1 − 𝑣 ∥V P-a.s. (4.4.70)

Now, the assumption b𝑘+1 ≤ 𝛾U − 3𝐿′

2
∥ 𝑣𝑘+1 − 𝑣 ∥V P-a.s. implies that it suffices to show

1 − ˆ𝛿

2

𝛿𝜑𝑘 ≥ [
(
(𝐿′)2

4b𝑘+1
∥ 𝑣 ∥2V + 𝛾U − b𝑘+1

)
P-a.s., (4.4.71)

which is equivalent to the assumed inequality

𝜑𝑘 ≥
2[(

1 − ˆ𝛿

)
𝛿

(
(𝐿′)2

4b𝑘+1
∥ 𝑣 ∥2V + 𝛾U − b𝑘+1

)
P-a.s. (4.4.72)

It remains to prove that (_𝑘)𝑘∈N0

∈ 𝑙1+ (𝔉), which is also a condition of (ECI). Recall that

_𝑘 := [E
((

�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘)

U
∥ 𝑢𝑘+1 − 𝑢 ∥U

���F𝑘)
+ [E

(�̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) V ∥ 𝑣𝑘+1 − 𝑣 ∥V ���F𝑘) (4.4.73)

for all 𝑘 ∈ N0. Since (𝑢𝑘 , 𝑣𝑘) ∈ B𝑅U (𝑢) ×B𝑅V (𝑣) P-a.s. for all 𝑘 ∈ N0, we have

_𝑘 ≤ [𝑅UE
((

�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘)

U

���F𝑘)
+ [𝑅VE

(�̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) V ���F𝑘) (4.4.74)

P-a.s. Therefore, in order to show that (_𝑘)𝑘∈N0

∈ 𝑙1+ (𝔉), it suffices to show that

∞∑︁
𝑘=1

𝑅UE
((

�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘)

U

���F𝑘)
+
∞∑︁
𝑘=1

𝑅VE
(�̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) V ���F𝑘) < ∞ (4.4.75)

P-a.s., where 𝑘 = 0 is intentionally disregarded because the corresponding term of the sum

is zero anyway. According to Lemma 4.4.11, we know that

∞∑︁
𝑘=1

𝑅UE
((

�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

)
(2𝑣𝑘+1 − 𝑣𝑘)

U

���F𝑘)
+
∞∑︁
𝑘=1

𝑅VE
(�̂�𝑘 (𝑢𝑘) − 𝐾 (𝑢𝑘) V ���F𝑘)

≤ 2𝑅U𝑀
(
𝐿′𝑅U

(
3𝑅V + ∥ 𝑣 ∥V

)
+ 𝐿𝑅V

) ∞∑︁
𝑘=1

𝑘−2 < ∞ (4.4.76)

P-a.s., since

∑∞
𝑘=1

𝑘−2 = 𝜋2

6
[Dan12]. □

65

4 Algorithm

4.4.3 Convergence

In this subsection we combine all results of the previous subsections of Section 4.4 to formulate a

theorem proving the weak convergence of the iterates of Algorithm 4.1 to a critical point. We will

use Theorem 4.3.6, which requires (ECI) to hold for all 𝑧 in some subsetZ ⊂ 𝐻−1(0). Therefore,

in order to being able to use Proposition 4.4.12 to show that (ECI) is satisfied, we need to make

the following assumption.

Assumption 4.4.13 (Existence ofZ)

Let the sequence ((𝑢𝑘 , 𝑣𝑘))𝑘∈N0

⊂ R (F ,U ×V) be generated by Algorithm 4.1. Let fur-

ther (𝑢, 𝑣) ∈ 𝐻−1(0) be fixed. It follows from Lemma 4.1.1 that there exist radii 𝑅U, 𝑅V > 0

such that (𝑢𝑘 , 𝑣𝑘) ∈ B𝑅U (𝑢) × B𝑅V (𝑣) P-a.s. for all 𝑘 ∈ N. We assume that there exist a

non-empty, bounded subset Z ⊂ 𝐻−1(0) and constants
2 𝐿, 𝐿′, 𝛾𝐺 ≥ 0, and 𝛾U > 0 such

that

(i) for all (𝑢, 𝑣) ∈ Z there exists a radius 𝜌U (𝑢) ∈ [0,∞] such that Assumption 4.4.6

(Desired Ball) is satisfied for the given constants 𝐿, 𝐿′, 𝛾𝐺 ≥ 0 and 𝛾U > 0;

(ii) Z ⊂ B × V where B :=
⋂
(𝑢,𝑣) ∈Z B (𝑢, 𝑣) and B (𝑢, 𝑣) = B𝜌U (𝑢) (𝑢) is the desired

ball from Assumption 4.4.6;

(iii) Z ⊃ 𝐻−1(0) ∩ D where D := B𝑅U (𝑢) ×B𝑅V (𝑣).

Basically, Assumption 4.4.13 (i) and (ii) guarantee that every element ofZ lies in a ball where the

assumptions from Section 4.4.1 hold for the same constants 𝐿, 𝐿′, 𝛾𝐺 ≥ 0, and 𝛾U > 0. Part (iii) of

Assumption 4.4.13 makes sure thatZ contains at least all the critical points which can possibly be

reached by the algorithm. Note that, in the special case where the assumptions from Section 4.4.1

hold globally, the desired balls may have infinite radius. Therefore, Assumption 4.4.13 (i) and (ii)

are satisfied for all Z ⊂ 𝐻−1(0), and a simple choice satisfying Assumption 4.4.13 (iii) could be

Z := 𝐻−1(0).

Now we can extend Proposition 4.4.12 to show that (ECI) is satisfied not only at one arbitrary

point inW, but at every point of a subset Z ⊂ 𝐻−1(0). This is what we need to formulate the

following theorem, which is based on [CMV19, Theorem 4.1]. It shows P-a.s. weak convergence

of the sequence generated by Algorithm 4.1 to a saddle point inZ.

Theorem 4.4.14 (Weak Convergence of the Algorithm)

Let the sequence (𝑤𝑘)𝑘∈N0

= ((𝑢𝑘 , 𝑣𝑘))𝑘∈N0

⊂ R (F ,W) be generated by Algorithm 4.1

and assume that the following conditions are satisfied:

(i) Z ⊂ 𝐻−1(0) satisfies Assumption 4.4.13 with constants 𝐿, 𝐿′, 𝛾𝐺 ≥ 0, 𝛾U > 0, radii

𝑅U, 𝑅V > 0, and the sets B and D as defined in Assumption 4.4.13 (ii) and (iii),

respectively;

(ii) 𝑢𝑘 ∈ B P-a.s. for all 𝑘 ∈ N0;

(iii) Assumption 4.4.7 (Step-Size-Testing-Relation) holds for some𝛾𝐺 ∈ [0, 𝛾𝐺],^ ∈ (0, 1),
and [> 0;

2
These constants stem from Definition 4.4.1, Assumption 4.4.2, Assumption 4.4.3, and Assumption 4.4.4, which are

inherent in Assumption 4.4.6.

66

4.4 Scalar and Deterministic Step Sizes

(iv) the sequence (𝐴𝑘)𝑘∈N ⊂ R (F ,A) satisfies Assumption 4.4.10 (Reduction of CGF)

with a constant 𝑀 > 0;

(v) 𝔉 is a compatible filtration as in Definition 4.2.1;

(vi) ∥ 𝑣𝑘+1 − 𝑣 ∥V < 𝛾U
2

3𝐿′ P-a.s. for all 𝑘 ∈ N0 and all (𝑢, 𝑣) ∈ Z;

(vii) there exist 𝛿 ∈ (0, ^), ˆ𝛿 ∈ (0, 1), and b𝑘+1 ∈ R (F𝑘+1, (0,∞)) such that, for all 𝑘 ∈ N0

and (𝑢, 𝑣) ∈ Z, we have

b𝑘+1 ∈
(
0, 𝛾U −

3𝐿′

2

∥ 𝑣𝑘+1 − 𝑣 ∥V
]

P-a.s.

and

𝜑𝑘 ≥
2[(

1 − ˆ𝛿

)
𝛿

(
(𝐿′)2

4b𝑘+1
∥ 𝑣 ∥2V + 𝛾U − b𝑘+1

)
P-a.s.

(viii) the primal step sizes are bounded away from 0, i.e. there exists 𝜏 ∈ (0,∞) such that

𝜏𝑘 ≥ 𝜏 for all 𝑘 ∈ N0;

(ix) the mapping

(𝑢, 𝑣) ↦→ ©«
−𝐾 ′(𝑢)∗𝑣

𝐾 (𝑢)
ª®¬

is P-a.s. weak-to-strong continuous in D, i.e. its graph is P-a.s. sequentially closed

in the Cartesian product of the weak and the strong topological space ofW in the

sense of [BC17, Section 2.4];

(x) there exists a linear operator 𝐾 ′ ∈ L (U,V) such that, for every P-a.s. weakly con-

vergent subsequence

(
𝑤𝑛𝑘

)
𝑘∈N0

, we have 𝐾 ′
(
𝑢𝑛𝑘

)
→ 𝐾 ′ P-a.s. as 𝑘 →∞.

Then𝑤𝑘 ⇀ �̂� P-a.s. as 𝑘 →∞ for some �̂� ∈ R (F ,Z).

Proof: We want to use Theorem 4.3.6 and therefore need to satisfy its assumptions:

(i) We know from condition (iii) that Assumption 4.4.7 holds, and according to Assump-

tion 4.4.7 (ii), (𝜑𝑘)𝑘∈N0

is monotonically increasing. Thus, if we apply Lemma 4.4.8

with 𝛿 ∈ (0, ^), we conclude that 𝑍𝑘𝑀𝑘 is P-a.s. self-adjoint and there exists Y ≠ 0

such that 𝑍𝑘𝑀𝑘 ≥ Y2
IdW P-a.s. for all 𝑘 ∈ N0. Therefore, Assumption 4.3.1 is satis-

fied as well.

(ii) Assumption 4.4.7 (i) and condition (viii) imply that the sequence (𝜑𝑘)𝑘∈N0

is bounded

from above. Moreover, we know from condition (i) that (𝑢𝑘 , 𝑣𝑘) ∈ D for all 𝑘 ∈ N.

Therefore, since 𝐾 ′ : U → L (U,V) is continuous, we also know that there exists

a 𝐶′ ∈ (0,∞) such that ∥ 𝐾 ′(𝑢𝑘) ∥L(U,V) ≤ 𝐶′ P-a.s. for all 𝑘 ∈ N. Altogether,

considering the definition of 𝑍𝑘𝑀𝑘 in (4.4.12), we can easily see that there exists a

𝐶 ∈ R such that ∥ 𝑍𝑘𝑀𝑘 ∥L(W,W) ≤ 𝐶2 P-a.s. for all 𝑘 ∈ N.

(iii) In order to prove assumption (iii) of Theorem 4.3.6, we apply Proposition 4.4.12 to

every element (𝑢, 𝑣) = 𝑧 ∈ Z. Its assumptions are satisfied by conditions (i)-(vii) of

67

4 Algorithm

this theorem. Therefore, for every 𝑧 ∈ Z, we have sequences (Δ𝑘 (𝑧))𝑘∈N0

∈ 𝑙+ (𝔉)
and (_𝑘 (𝑧))𝑘∈N0

∈ 𝑙1+ (𝔉) with

Δ𝑘 (𝑧) ≥
ˆ𝛿

2

E
(
∥𝑤𝑘+1 −𝑤𝑘 ∥2𝑍𝑘𝑀𝑘

��F𝑘) P-a.s.

for all 𝑘 ∈ N0 such that (ECI) is satisfied.

(iv) For the proof of Theorem 4.3.6 (iv), we assume that 𝑍𝑘𝑀𝑘 (𝑤𝑘+1 −𝑤𝑘) → 0 P-a.s.

as 𝑘 → ∞. We now need to show that every weak accumulation point of (𝑤𝑘)𝑘∈N0

is P-a.s. in Z. Therefore, let (𝑢, 𝑣) = 𝑤 ∈ W be a weak accumulation point such

that

(
𝑢𝑛𝑘+1, 𝑣𝑛𝑘+1

)
= 𝑤𝑛𝑘+1 ⇀ 𝑤 P-a.s. as 𝑘 → ∞. Since the sequence (𝑤𝑘)𝑘∈N0

was

generated by Algorithm 4.1, we know that (RI) holds, i.e.

0 ∈𝑊𝑛𝑘𝐻
(
𝑤𝑛𝑘+1

)
+ 𝐷𝑛𝑘

(
𝑤𝑛𝑘+1

)
+𝑀𝑛𝑘

(
𝑤𝑛𝑘+1 −𝑤𝑛𝑘

)
P-a.s. (4.4.77)

for all 𝑘 ∈ N0, where we have used the definition of �̃� in (4.2.2). Now let

𝑆 (𝑤) :=
©«

𝜕𝐺 (𝑢)

𝜕CVaR
∗
𝛽
(𝑣)

ª®¬ (4.4.78)

for all (𝑢, 𝑣) = 𝑤 ∈ W and

𝑥𝑛𝑘+1 :=𝑊𝑛𝑘

©«
−𝐾 ′

(
𝑢𝑛𝑘+1

)∗
𝑣𝑛𝑘+1

𝐾
(
𝑢𝑛𝑘+1

) ª®¬ − 𝐷𝑛𝑘
(
𝑤𝑛𝑘+1

)
−𝑀𝑛𝑘

(
𝑤𝑛𝑘+1 −𝑤𝑛𝑘

)
. (4.4.79)

The inclusion (4.4.77) is then equivalent to

𝑥𝑛𝑘+1 ∈𝑊𝑛𝑘𝑆
(
𝑤𝑛𝑘+1

)
P-a.s. (4.4.80)

We have already seen that (𝜑𝑘)𝑘∈N0

is monotonically increasing. Consequently,

the sequence of primal step sizes (𝜏𝑘)𝑘∈N0

is monotonically decreasing, and since

it is bounded from below according to condition (viii), it must converge to some

𝜏 ∈
[
𝜏, 𝜏0

]
. Therefore, there exists a regular linear operator𝑊 ∈ L (W,W) such

that𝑊𝑘 →𝑊 as 𝑘 →∞. We now define

𝑥 :=𝑊
©«
−𝐾 ′ (𝑢)∗ 𝑣

𝐾 (𝑢)
ª®¬ . (4.4.81)

If we recall the definition of 𝐻 in (4.1.15), we can easily see that 𝑤 ∈ 𝐻−1(0) is

equivalent to

𝑥 ∈𝑊𝑆 (𝑤). (4.4.82)

In order to show the latter inclusion, we note that𝐺 and CVaR
∗
𝛽

are proper, convex,

and lower semi-continuous. Thus, according to [BC17, Proposition 16.36], the graph

of 𝑆 is sequentially weakly-strongly closed, i.e. if 𝑤𝑛𝑘+1 ⇀ 𝑤 P-a.s. and 𝑆
(
𝑤𝑛𝑘+1

)
∋

𝑊 −1

𝑛𝑘
𝑥𝑛𝑘+1 →𝑊

−1

𝑥 P-a.s. as 𝑘 → ∞ imply that 𝑥 ∈𝑊𝑆 (𝑤) P-a.s. Therefore, all we

need to show is that 𝑥𝑛𝑘+1 → 𝑥 P-a.s. as 𝑘 →∞ by examining the terms of the sum

of (4.4.79) separately.

68

4.4 Scalar and Deterministic Step Sizes

Due to condition (iii) and the convergence of the primal step size sequence (𝜏𝑘)𝑘∈N0

,

we know that the sequences (𝜑𝑘)𝑘∈N0

and hence (𝑍𝑘)𝑘∈N0

converge (strongly) to

some 𝑍 ∈ L (W,W) with 𝑍 ≠ 0 as well. Therefore, the convergence assumption

𝑍𝑘𝑀𝑘 (𝑤𝑘+1 −𝑤𝑘) → 0 P-a.s. as 𝑘 → ∞ implies that the third term of the sum in

(4.4.79) converges, i.e.

𝑀𝑛𝑘

(
𝑤𝑛𝑘+1 −𝑤𝑛𝑘

)
→ 0 P-a.s. (4.4.83)

as 𝑘 → ∞. Furthermore, since 𝛿 < ^, it follows from Lemma 4.4.8 that there exists

Y > 0 such that

𝑍𝑘𝑀𝑘 =
©«
𝜑𝑘 IdU [𝐾 ′ (𝑢𝑘)∗

[𝐾 ′ (𝑢𝑘) 𝜓 IdV

ª®¬ ≥ YId P-a.s. (4.4.84)

for all 𝑘 ∈ N0. Again, due to the assumption that 𝑍𝑘𝑀𝑘 (𝑤𝑘+1 −𝑤𝑘) → 0 P-a.s. as

𝑘 →∞, it follows that

Y
𝑤𝑛𝑘+1 −𝑤𝑛𝑘 2

W ≤
𝑤𝑛𝑘+1 −𝑤𝑛𝑘 2

𝑍𝑛𝑘𝑀𝑛𝑘

→ 0 P-a.s., (4.4.85)

which we need in the following.

Now we consider the term𝐷𝑛𝑘
(
𝑤𝑛𝑘+1

)
= 𝐷𝐿𝐼𝑁𝑛𝑘

(
𝑤𝑛𝑘+1

)
+𝐷𝐶𝐺𝐹𝑛𝑘

(
𝑤𝑛𝑘+1

)
. From (4.1.16)

and Assumption 4.4.7 we know that

𝐷𝐿𝐼𝑁𝑛𝑘

(
𝑤𝑛𝑘+1

)
=

©«
𝜏𝑛𝑘

[
𝐾 ′

(
𝑢𝑛𝑘

)∗ − 𝐾 ′ (𝑢𝑛𝑘+1)∗] 𝑣𝑛𝑘+1
𝜎

[
𝐾

(
𝑢𝑛𝑘+1

)
− 𝐾

(
𝑢𝑛𝑘

)
− 𝐾 ′

(
𝑢𝑛𝑘

) (
𝑢𝑛𝑘+1 − 𝑢𝑛𝑘

)]ª®¬ . (4.4.86)

Due to Assumption 4.4.2 (Locally Lipschitz𝐾 ′), condition (viii), and (4.4.85), we have𝜏𝑛𝑘 [
𝐾 ′

(
𝑢𝑛𝑘

)∗ − 𝐾 ′ (𝑢𝑛𝑘+1)∗] 𝑣𝑛𝑘+1
U

≤ 𝜏𝑛𝑘𝐿′
𝑢𝑛𝑘+1 − 𝑢𝑛𝑘

U
 𝑣𝑛𝑘+1

V → 0 P-a.s. (4.4.87)

as 𝑘 → ∞, since 𝑣𝑛𝑘+1 ⇀ 𝑣 implies the boundedness of

(
𝑣𝑛𝑘+1

)
𝑘∈N0

. Similarly, due

to Assumption 4.4.2 (Locally Lipschitz 𝐾 ′) and (4.4.6), we get𝜎 [
𝐾

(
𝑢𝑛𝑘+1

)
− 𝐾

(
𝑢𝑛𝑘

)
− 𝐾 ′

(
𝑢𝑛𝑘

) (
𝑢𝑛𝑘+1 − 𝑢𝑛𝑘

)]
V

≤ 𝜎𝐿
′

2

𝑢𝑛𝑘+1 − 𝑢𝑛𝑘 2

U → 0 P-a.s. (4.4.88)

and thus𝐷𝐿𝐼𝑁𝑛𝑘

(
𝑤𝑛𝑘+1

)
→ 0 P-a.s. as 𝑘 →∞. For the convergence of the discrepancy

from CGF, we recall from (4.1.17) that

𝐷𝐶𝐺𝐹𝑛𝑘
(𝑤𝑛𝑘+1) =

©«
𝜏𝑛𝑘

[
�̂� ′𝑛𝑘

(
𝑢𝑛𝑘

)∗ − 𝐾 ′ (𝑢𝑛𝑘)∗] (
2𝑣𝑛𝑘+1 − 𝑣𝑛𝑘

)
𝜎

[
𝐾

(
𝑢𝑛𝑘

)
− �̂�𝑛𝑘

(
𝑢𝑛𝑘

)] ª®¬ . (4.4.89)

Lemma 4.4.11 (ii) applied to every (𝑢, 𝑣) ∈ Z implies that

69

4 Algorithm

E
([

�̂� ′𝑛𝑘
(
𝑢𝑛𝑘

)∗ − 𝐾 ′ (𝑢𝑛𝑘)∗] (
2𝑣𝑛𝑘+1 − 𝑣𝑛𝑘

)
U

���F𝑛𝑘)
≤ 2𝐿′𝑅U (3𝑅V + Λ)𝑀𝑛𝑘−2

(4.4.90)

holds P-a.s. for all 𝑘 ∈ N, where Λ := sup(𝑢,𝑣) ∈Z ∥ 𝑣 ∥V < ∞ since Z is bounded.

Now, Definition 2.5.4 (Conditional Expectation) implies that E
(
E

(
𝑋

��F𝑛𝑘) 1𝐴) =

E (𝑋1𝐴) for every 𝑋 ∈ R (F ,U) and 𝐴 ∈ F𝑛𝑘 . Since F𝑛𝑘 is a 𝜎-algebra of Θ, we can

choose𝐴 := Θ, yielding E
(
E

(
𝑋

��F𝑛𝑘)) = E (𝑋). Therefore, taking the expectation of

(4.4.90) and summing over 𝑘 yields

∞∑︁
𝑘=1

E
([

�̂� ′𝑛𝑘
(
𝑢𝑛𝑘

)∗ − 𝐾 ′ (𝑢𝑛𝑘)∗] (
2𝑣𝑛𝑘+1 − 𝑣𝑛𝑘

)
U

)
≤ 2𝐿′𝑅U (3𝑅V + Λ)𝑀

∞∑︁
𝑘=1

𝑛𝑘
−2

≤ 2𝐿′𝑅U (3𝑅V + Λ)𝑀
∞∑︁
𝑘=1

𝑘−2.

(4.4.91)

We know from [Dan12] that

∑∞
𝑘=1

𝑘−2 = 𝜋2

6
, thus the right-hand side of (4.4.91)

is finite. This is why we can apply [Kle13, Theorem 6.12 (i)], which gives us the

convergence [
�̂� ′𝑛𝑘

(
𝑢𝑛𝑘

)∗ − 𝐾 ′ (𝑢𝑛𝑘)∗] (
2𝑣𝑛𝑘+1 − 𝑣𝑛𝑘

)
→ 0 P-a.s. (4.4.92)

as 𝑘 → ∞. Since 𝜏𝑛𝑘 → 𝜏 as 𝑘 → ∞, the first component of 𝐷𝐶𝐺𝐹𝑛𝑘
(𝑤𝑛𝑘+1) in

(4.4.89) hence converges P-a.s. to 0. For the second component, we analogously

apply Lemma 4.4.11 (i) to every (𝑢, 𝑣) ∈ Z, yielding

E
(�̂�𝑛𝑘 (

𝑢𝑛𝑘
)
− 𝐾

(
𝑢𝑛𝑘

)
V

���F𝑛𝑘) ≤ 2𝐿𝑅U𝑀𝑛𝑘
−2 P-a.s. (4.4.93)

for all 𝑘 ∈ N. As above, this implies

∞∑︁
𝑘=1

E
(�̂�𝑛𝑘 (

𝑢𝑛𝑘
)
− 𝐾

(
𝑢𝑛𝑘

)
V

)
≤ 2𝐿𝑅U𝑀

𝜋2

6

< ∞ (4.4.94)

and thus

�̂�𝑛𝑘
(
𝑢𝑛𝑘

)
− 𝐾

(
𝑢𝑛𝑘

)
→ 0 P-a.s. (4.4.95)

as 𝑘 →∞. Altogether, we have proven that

𝐷𝑛𝑘
(
𝑤𝑛𝑘+1

)
= 𝐷𝐿𝐼𝑁𝑛𝑘

(
𝑤𝑛𝑘+1

)
+ 𝐷𝐶𝐺𝐹𝑛𝑘

(
𝑤𝑛𝑘+1

)
→ 0 P-a.s. (4.4.96)

as 𝑘 →∞.

For the first term of the sum in (4.4.79), we note that condition (ix) implies

𝑊𝑛𝑘

©«
−𝐾 ′

(
𝑢𝑛𝑘+1

)∗
𝑣𝑛𝑘+1

𝐾
(
𝑢𝑛𝑘+1

) ª®¬→𝑊
©«
−𝐾 ′ (𝑢)∗ 𝑣

𝐾 (𝑢)
ª®¬ = 𝑥 P-a.s. (4.4.97)

70

4.4 Scalar and Deterministic Step Sizes

since

(
𝑢𝑛𝑘+1, 𝑣𝑛𝑘+1

)
⇀ (𝑢, 𝑣) as 𝑘 →∞.

Altogether, we have shown that 𝑥𝑛𝑘+1 → 𝑥 P-a.s., which implies 𝑥 ∈𝑊𝑆 (𝑤) P-a.s.

and thus𝑤 ∈ 𝐻−1(0) P-a.s. We know from Assumption 4.4.13 that (𝑤𝑘) ∈ R (F ,D)
for all 𝑘 ∈ N0 and since D is compact and closed, it is also weakly closed according

to [CV20, Lemma 1.10]. Therefore, we have 𝑤 ∈ D P-a.s. and since 𝑤 ∈ 𝐻−1(0)
P-a.s. is also true, it follows from Assumption 4.4.13 (iii) that𝑤 ∈ Z P-a.s.

(v) In order to prove Theorem 4.3.6 (v), let

(
𝑤𝑛𝑘

)
𝑘∈N be a weakly convergent subse-

quence. If we recall the definition of the preconditioning operator𝑀𝑘 in (4.1.18), we

see that conditions (viii) and (x) imply

𝑀𝑛𝑘 =
©«

IdU 𝜏𝑛𝑘𝐾
′ (𝑢𝑛𝑘)∗

𝜎𝐾 ′
(
𝑢𝑛𝑘

)
IdV

ª®¬→ ©«
IdU 𝜏

(
𝐾 ′

)∗
𝜎𝐾 ′ IdV

ª®¬ P-a.s. (4.4.98)

as 𝑘 → ∞. Furthermore, we have already seen that (𝜑𝑘)𝑘∈N0

is monotonically in-

creasing and bounded from above. Therefore, there exists 𝜑 ∈ (0,∞) such that

𝑅∞ :=
©«
𝜑IdU [

(
𝐾 ′

)∗
[𝐾 ′ 𝜓 IdV

ª®¬ ∈ R (F ,L (W,W)) (4.4.99)

satisfies 𝑍𝑛𝑘𝑀𝑛𝑘𝑤 → 𝑅∞𝑤 P-a.s. as 𝑘 →∞.

We can now apply Theorem 4.3.6, since we have shown that all of its conditions are satis-

fied. This yields the existence of �̂� ∈ R (F ,Z) such that𝑤𝑘 ⇀ �̂� P-a.s. as 𝑘 →∞, which

concludes the proof. □

Note that condition (viii) of Theorem 4.4.14, which requires that there exists a 𝜏 ∈ (0,∞) such

that 𝜏𝑘 ≥ 𝜏 for all 𝑘 ∈ N0, implies that the sequence (𝜑𝑘)𝑘∈N0

is bounded from above (as we

have already seen in the above proof). This conflicts with Assumption 4.4.7 (ii) if 𝛾𝐺 > 0, since

𝜑𝑘+1 = 𝜑𝑘 + 2𝛾𝐺[implies that 𝜑𝑘 → ∞ as 𝑘 → ∞. However, we can remedy the situation by

setting 𝛾𝐺 = 0 after a finite number of iterations [CV17, Remark 2.1]. This stops the acceleration

due to the strong convexity of 𝐺 but allows us to prove the convergence of the algorithm.

Furthermore, it is not trivial to show under which circumstances the assumption that 𝑢𝑘 ∈ B
P-a.s. for all 𝑘 ∈ N0 in condition (ii) holds. However, as a consequence of the bounded domains of

𝐺 and CVaR
∗
𝛽
, we know from Lemma 4.1.1 and Assumption 4.4.13 that (𝑢𝑘 , 𝑣𝑘) ∈ D P-a.s. for all

𝑘 ∈ N0, i.e. 𝑢𝑘 ∈ B𝑅U (𝑢) P-a.s. for all 𝑘 ∈ N0, a radius 𝑅U > 0, and some (𝑢, 𝑣) ∈ 𝐻−1(0). Hence,

if B𝑅U (𝑢) ⊂ B holds, condition (ii) of Theorem 4.4.14 is satisfied automatically. The meaning

of this inclusion is that the assumptions from Section 4.4.1 hold at least within the domain of

𝐺 , which is of course the case if they hold globally. In this case, Theorem 4.4.14 shows global

convergence for any starting vector (𝑢0, 𝑣0) ∈ U ×V .

4.4.4 Local Step Size Bound

In condition (ii) of Theorem 4.4.14, we require that 𝑢𝑘 ∈ B P-a.s. for all 𝑘 ∈ N0, i.e. the primal

iterates stay inside a region where the assumptions from Section 4.4.1 are satisfied. The proof that

this condition holds under certain assumptions regarding the initial step size was, for a similar

algorithm, conducted in [CV20, Lemma 4.6]. However, due to the randomization we introduced

71

4 Algorithm

in Section 4.2, this result cannot be easily adapted to our framework. Nevertheless, the following

lemma provides a primal step size bound which sets a limit on how far the next iterate can escape

from a given neighborhood around a critical point. It is adapted from [CMV19, Lemma 3.8].

Lemma 4.4.15 (Local Step Size Bound)

Let𝑘 ∈ N0 be arbitrary and (𝑢, 𝑣) = 𝑤 ∈ 𝐻−1(0). Let furtherU1

𝐾
be the neighborhood from

Definition 4.4.1 (Locally Lipschitz 𝐾) and assume that Assumption 4.4.2 (Locally Lipschitz

𝐾 ′) holds for a neighborhoodU2

𝐾
. Furthermore, we assume that

(i) the inclusions

𝑢 𝑗 ∈ B𝑟U,𝑘
(𝑢) for all 𝑗 ∈ {0, . . . , 𝑘},

and 𝑣 𝑗 ∈ B𝑅V (𝑣) for all 𝑗 ∈ {𝑘, 𝑘 + 1} ,
are satisfied for some radii 𝑟U,𝑘 , 𝑅V > 0;

(ii) (𝑢𝑘+1, 𝑣𝑘+1) = 𝑤𝑘+1 satisfies (RI);

(iii) the step size bound

𝜏𝑘 ≤
𝛿U,𝑘(

3𝑅V + ∥ 𝑣 ∥V
) (
∥ 𝐾 ′ (𝑢𝑘) ∥L(U,V) + 2𝐿′𝑟U,𝑘Γ𝑘

)
+

𝐾 ′ (𝑢)∗ 𝑣
U

holds P-a.s. for Γ𝑘 :=
∑𝑘
𝑗=1

∏𝑘
𝑖=𝑗 ess supb∈Ξ 𝜒𝐴c

𝑖
(b) and a constant 𝛿U,𝑘 ≥ 0;

(iv) the inclusion B𝑟U,𝑘+𝛿U,𝑘
(𝑢) ⊂ U1

𝐾
∩U2

𝐾
is true.

Then, the following inclusion holds as well:

𝑢𝑘+1 ∈ B𝑟U,𝑘+𝛿U,𝑘
(𝑢) .

Proof: Unless stated otherwise, all equations in this proof are meant to hold P-a.s. We

need to show that

∥ 𝑢𝑘+1 − 𝑢 ∥U ≤ 𝑟U,𝑘 + 𝛿U,𝑘 (4.4.100)

holds. We do this by dividing the proof into two parts. In the first part, we show that

∥ 𝑢𝑘+1 − 𝑢 ∥U ≤ 𝑟U,𝑘 +𝐶U,𝑘+1 (4.4.101)

for some 𝐶U,𝑘+1 ≥ 0, and in the second part, we prove that

𝐶U,𝑘+1 ≤ 𝛿U,𝑘 (4.4.102)

follows from the assumed step size bound.

(i) Since𝑤𝑘+1 satisfies (RI), we can multiply the inclusion by (𝑢𝑘+1 − 𝑢, 0)ᵀ ∈ W, yield-

ing

0 ∈ 𝜏𝑘
〈
𝜕𝐺 (𝑢𝑘+1) + 𝐾 ′ (𝑢𝑘+1)∗ 𝑣𝑘+1, 𝑢𝑘+1 − 𝑢

〉
U + 𝜏𝑘

〈
𝐷𝑘,1 (𝑤𝑘+1) , 𝑢𝑘+1 − 𝑢

〉
U

+
〈
𝑢𝑘+1 − 𝑢𝑘 + 𝜏𝑘𝐾 ′ (𝑢𝑘)∗ (𝑣𝑘+1 − 𝑣𝑘) , 𝑢𝑘+1 − 𝑢

〉
U , (4.4.103)

72

4.4 Scalar and Deterministic Step Sizes

where

𝐷𝑘,1 (𝑤𝑘+1) :=
[
𝐾 ′ (𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘+1)∗

]
𝑣𝑘+1

+
[
�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

]
(2𝑣𝑘+1 − 𝑣𝑘) . (4.4.104)

The three-point version of Pythagoras’ identity

⟨𝑢𝑘+1 − 𝑢𝑘 , 𝑢𝑘+1 − 𝑢⟩U

=
1

2

∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U −
1

2

∥ 𝑢𝑘 − 𝑢 ∥2U +
1

2

∥ 𝑢𝑘+1 − 𝑢 ∥2U (4.4.105)

yields

∥ 𝑢𝑘 − 𝑢 ∥2U ∈ 2𝜏𝑘
〈
𝜕𝐺 (𝑢𝑘+1) + 𝐾 ′ (𝑢𝑘+1)∗ 𝑣𝑘+1 + 𝐷𝑘,1 (𝑤𝑘+1) , 𝑢𝑘+1 − 𝑢

〉
U

+ 2𝜏𝑘
〈
𝐾 ′ (𝑢𝑘)∗ (𝑣𝑘+1 − 𝑣𝑘) , 𝑢𝑘+1 − 𝑢

〉
U

+ ∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U + ∥ 𝑢𝑘+1 − 𝑢 ∥
2

U .

(4.4.106)

Since 0 ∈ 𝐻 (𝑤), we can subtract

〈
𝜕𝐺 (𝑢) + 𝐾 ′ (𝑢)∗ 𝑣,𝑢𝑘+1 − 𝑢

〉
U , which implies

∥ 𝑢𝑘 − 𝑢 ∥2U ∈ 2𝜏𝑘 ⟨𝜕𝐺 (𝑢𝑘+1) − 𝜕𝐺 (𝑢) , 𝑢𝑘+1 − 𝑢⟩U
+ 2𝜏𝑘

〈
𝐾 ′ (𝑢𝑘+1)∗ 𝑣𝑘+1 − 𝐾 ′ (𝑢)∗ 𝑣 + 𝐷𝑘,1 (𝑤𝑘+1) , 𝑢𝑘+1 − 𝑢

〉
U

+ 2𝜏𝑘
〈
𝐾 ′ (𝑢𝑘)∗ (𝑣𝑘+1 − 𝑣𝑘) , 𝑢𝑘+1 − 𝑢

〉
U

+ ∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U + ∥ 𝑢𝑘+1 − 𝑢 ∥
2

U .

(4.4.107)

The first term on the right-hand side can be estimated using the monotonicity of 𝜕𝐺

such that the Cauchy-Schwarz inequality yields

∥ 𝑢𝑘 − 𝑢 ∥2U ≥ −2𝐶U,𝑘+1 ∥ 𝑢𝑘+1 − 𝑢 ∥U + ∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U + ∥ 𝑢𝑘+1 − 𝑢 ∥
2

U , (4.4.108)

with

𝐶U,𝑘+1 := 𝜏𝑘
𝐾 ′ (𝑢𝑘+1)∗ 𝑣𝑘+1 − 𝐾 ′ (𝑢)∗ 𝑣

+𝐾 ′ (𝑢𝑘)∗ (𝑣𝑘+1 − 𝑣𝑘) + 𝐷𝑘,1 (𝑤𝑘+1)

U . (4.4.109)

If we rearrange (4.4.108) and use that ∥ 𝑢𝑘+1 − 𝑢 ∥U ≤ ∥ 𝑢𝑘+1 − 𝑢𝑘 ∥U + ∥ 𝑢𝑘 − 𝑢 ∥U ,

we get

∥ 𝑢𝑘+1 − 𝑢𝑘 ∥2U + ∥ 𝑢𝑘+1 − 𝑢 ∥
2

U

≤ ∥ 𝑢𝑘 − 𝑢 ∥2U + 2𝐶U,𝑘+1
(
∥ 𝑢𝑘+1 − 𝑢𝑘 ∥U + ∥ 𝑢𝑘 − 𝑢 ∥U

)
, (4.4.110)

which is equivalent to(
∥ 𝑢𝑘+1 − 𝑢𝑘 ∥U −𝐶U,𝑘+1

)
2 + ∥ 𝑢𝑘+1 − 𝑢 ∥2U ≤

(
∥ 𝑢𝑘 − 𝑢 ∥U +𝐶U,𝑘+1

)
2

. (4.4.111)

73

4 Algorithm

Therefore, we have

∥ 𝑢𝑘+1 − 𝑢 ∥U ≤ ∥ 𝑢𝑘 − 𝑢 ∥U +𝐶U,𝑘+1 ≤ 𝑟U,𝑘 +𝐶U,𝑘+1. (4.4.112)

(ii) Now, we prove that𝐶U,𝑘 ≤ 𝛿U,𝑘 . Expanding the definition of𝐷𝑘,1 (𝑤𝑘+1) in (4.4.104)

yields

𝐶U,𝑘+1 = 𝜏𝑘
−𝐾 ′ (𝑢)∗ 𝑣 + 𝐾 ′ (𝑢𝑘)∗ (2𝑣𝑘+1 − 𝑣𝑘)

+
[
�̂� ′
𝑘
(𝑢𝑘)∗ − 𝐾 ′ (𝑢𝑘)∗

]
(2𝑣𝑘+1 − 𝑣𝑘)

 , (4.4.113)

and together with equation (4.4.47) it follows that

𝜏−1

𝑘
𝐶U,𝑘+1 ≤

𝐾 ′ (𝑢)∗ 𝑣
U + ∥ 𝐾

′ (𝑢𝑘) ∥L(U,V) ∥ 2𝑣𝑘+1 − 𝑣𝑘 ∥V

+
𝑘∑︁
𝑗=1

𝐾 ′ (𝑢 𝑗−1

)
− 𝐾 ′

(
𝑢 𝑗

)
L(U,V)

Π∩𝑘
𝑖=𝑗
𝐴c
𝑖
(2𝑣𝑘+1 − 𝑣𝑘)

V
. (4.4.114)

Since we assumed that 𝑣 𝑗 ∈ B𝑅V (𝑣) for all 𝑗 ∈ {𝑘, 𝑘 + 1}, we can use the inequality

∥ 2𝑣𝑘+1 − 𝑣𝑘 ∥V ≤ 2 ∥ 𝑣𝑘+1 − 𝑣 ∥V+∥ 𝑣𝑘 − 𝑣 ∥V+∥ 𝑣 ∥V ≤ 3𝑅V+∥ 𝑣 ∥V together with

the local Lipschitz continuity of 𝐾 ′ and the reasoning of the proof of Lemma 4.4.11

to see that

𝜏−1

𝑘
𝐶U,𝑘+1 ≤

𝐾 ′ (𝑢)∗ 𝑣
U + ∥ 𝐾

′ (𝑢𝑘) ∥L(U,V)
(
3𝑅V + ∥ 𝑣 ∥V

)
+ 2𝐿′𝑟U,𝑘 ∥ 2𝑣𝑘+1 − 𝑣𝑘 ∥V

𝑘∑︁
𝑗=1

ess sup

b∈Ξ

𝑘∏
𝑖=𝑗

𝜒𝐴c
𝑖
(b) . (4.4.115)

Here, we can interchange the essential supremum and the product operator, yielding

𝜏−1

𝑘
𝐶U,𝑘+1 ≤

(
3𝑅V + ∥ 𝑣 ∥V

) (
∥ 𝐾 ′ (𝑢𝑘) ∥L(U,V) + 2𝐿′𝑟U,𝑘

𝑘∑︁
𝑗=1

𝑘∏
𝑖=𝑗

ess sup

b∈Ξ
𝜒𝐴c

𝑖
(b)

)
+

𝐾 ′ (𝑢)∗ 𝑣
U . (4.4.116)

The desired inequality𝐶U,𝑘+1 ≤ 𝛿U,𝑘 now follows directly from the assumed primal

step size bound. □

74

Chapter 5
Simplex Projection

In this chapter, we describe the metric projection onto the so-called bounded probability simplex,

which turns out to be equal to the proximal operator of CVaR
∗
𝛽
, once we have discretized the prob-

ability space. After presenting this discretization in the first section, we state the optimization

problem that needs to be solved in order to compute the projection, followed by the correspond-

ing optimality condition. In the fourth section, we present an efficient algorithm for computing

this projection and prove its convergence afterwards. The content of Sections 5.2 to 5.5 is mostly

taken from the master’s thesis [Ang18], where a similar problem was considered.

5.1 Discretization of the Probability Space

In Section 3.1 we defined a separable probability space (Ξ,A,P) and the space of random vari-

ablesV := 𝐿2

P
(Ξ) := 𝐿2 (Ξ,A,P). The approach we use to discretize the probability space is the

sample average approximation (SAA) introduced in Section 2.5.2. Therefore, we need to bring the

objective function into a form like (2.5.8). Since 𝐺 does not involve random variables, we only

need to focus on CVaR𝛽 ◦𝐾 here. If we assume that the PDE constraint introduced in Section 3.2

has 𝑑 ∈ N uncertain coefficients in R, we can use a 𝑑-dimensional random vector

𝑥 := (𝑥1, . . . , 𝑥𝑑) : Ξ→ R𝑑 (5.1.1)

with 𝑥𝑖 ∈ V for all 𝑖 ∈ {1, . . . , 𝑑} to model this uncertainty. Let then 𝑓 : U ×R𝑑 → R be given

such that

𝑓
(
𝑢, 𝑥 (·)

)
= 𝐾 (𝑢) (·), (5.1.2)

i.e. Ξ ∋ b ↦→ 𝑓
(
𝑢, 𝑥 (b)

)
= 𝐾 (𝑢) (b) (5.1.3)

for all 𝑢 ∈ U. Therefore, the first term of the sum of the objective function of Problem 3.1.1 can

be written as

CVaR𝛽

(
𝐾 (𝑢)

)
= CVaR𝛽

(
𝑓 (𝑢, 𝑥 (·))

)
= min

𝛼∈R

(
𝛼 + 1

1 − 𝛽E
((
𝑓
(
𝑢, 𝑥 (·)

)
− 𝛼

)+)) (5.1.4)

for all 𝑢 ∈ U, where we have used Proposition 2.5.11 (ii) for the last equality. Now, we assume

that we have a sample

{
b 𝑗 ∈ R𝑑

�� 𝑗 ∈ {1, . . . , 𝑆}} of 𝑆 ∈ N realizations of the random vector 𝑥 ,

e.g. obtained by Monte Carlo sampling. The discretization of the integral within the expected

75

5 Simplex Projection

value yields the approximation

CVaR𝛽 (𝑧) ≈ min

𝛼∈R

(
𝛼 + 1

(1 − 𝛽)𝑆
𝑆∑︁
𝑗=1

(
𝑧 𝑗 − 𝛼

)+)
, (5.1.5)

where 𝑧 := 𝐾 (𝑢) for some𝑢 ∈ U and 𝑧 𝑗 := 𝑧
(
b 𝑗

)
= 𝐾 (𝑢)

(
b 𝑗

)
= 𝑓

(
𝑢, b 𝑗

)
∈ R for all 𝑗 ∈ {1, . . . , 𝑆}.

In the following, we will denote the right-hand side of (5.1.5) by CVaR𝛽 (z) with z ∈ R𝑆 , so the

argument of CVaR𝛽 provides the information whether we are dealing with the exact CVaR𝛽 or

its approximation.

Since the dual step of Algorithm 4.1 requires us to compute the proximal operator of CVaR
∗
𝛽
, we

need to investigate how this operator can be approximated. The following lemma is a modifi-

cation of [Ang18, Lemma 3.2.1] and shows that CVaR
∗
𝛽

is equal to the metric projection (with

respect to the weighted norm) onto a specific set.

Lemma 5.1.1 (Proximal Operator of CVaR
∗
𝛽
)

Let 𝑆 ∈ N be the sample size, Σ ∈ L
(
R𝑆 ,R𝑆

)
a self-adjoint and strongly monotone opera-

tor, 𝛽 ∈ (0, 1) a probability level, and CVaR𝛽 the approximation as defined in (5.1.5). Then,

the proximal operator of the Fenchel conjugate of CVaR𝛽 is, for all z ∈ R𝑆 , given by

prox
Σ
CVaR

∗
𝛽

(z) = proj
Σ
Δ (z) := arg min

y∈Δ

1

2

∥ z − y ∥2Σ−1
,

where

Δ :=

{
y ∈ R𝑆

���� y⊤1 = 1 and 0 ≤ 𝑦 𝑗 ≤
1

(1 − 𝛽)𝑆 for all 𝑗 ∈ {1, . . . , 𝑆}
}

is the so-called bounded probability simplex and 1 ∈ R𝑆 denotes the vector of all ones.

Proof: Let z ∈ R𝑆 . First, we recall from (5.1.5) that

CVaR𝛽 (z) = min

𝛼∈R

(
𝛼 + 1

(1 − 𝛽)𝑆
𝑆∑︁
𝑗=1

(
𝑧 𝑗 − 𝛼

)+)
. (5.1.6)

The use of the function (·)+ can be avoided by introducing new variables𝑤 𝑗 ∈ R for every

𝑗 ∈ {1, . . . , 𝑆}. The minimization on the right-hand side is then equivalent to

min

𝛼∈R, w∈R𝑆
𝛼 + 1

(1 − 𝛽)𝑆
𝑆∑︁
𝑗=1

𝑤 𝑗

s.t. 𝛼 +𝑤 𝑗 ≥ 𝑧 𝑗 ∀𝑗 ∈ {1, . . . , 𝑆} ,

𝑤 𝑗 ≥ 0 ∀𝑗 ∈ {1, . . . , 𝑆} .

(5.1.7)

76

5.1 Discretization of the Probability Space

This linear optimization problem has a non-empty feasible set (e.g. 𝑤 𝑗 := max

{
0, 𝑧 𝑗

}
for

all 𝑗 ∈ {1, . . . , 𝑆} and 𝛼 := 0 satisfy its constraints), and since

𝛼 + 1

(1 − 𝛽)𝑆
𝑆∑︁
𝑗=1

𝑤 𝑗 ≥
1

𝑆

𝑆∑︁
𝑗=1

(
𝛼 +𝑤 𝑗

)
≥ 1

𝑆

𝑆∑︁
𝑗=1

𝑧 𝑗

> −∞,

(5.1.8)

its objective function is bounded from below. Thus, problem (5.1.7) has an optimal solu-

tion and is, due to strong duality [BT97b, Theorem 4.4], equivalent to its dual problem.

Following [BT97b, Chapter 4.2], the dual can be written as

max

y∈R𝑆

𝑆∑︁
𝑗=1

𝑦 𝑗𝑧 𝑗

s.t. 0 ≤ 𝑦 𝑗 ≤
1

(1 − 𝛽)𝑆 ∀𝑗 ∈ {1, . . . , 𝑆} ,

𝑆∑︁
𝑗=1

𝑦 𝑗 = 1.

(5.1.9)

Now, the definitions of Δ and the indicator function 𝛿Δ immediately imply

CVaR𝛽 (z) = sup

y∈R𝑆

(
y⊤z − 𝛿Δ (y)

)
. (5.1.10)

This is, according to Definition 2.2.6, the Fenchel conjugate of 𝛿Δ, i.e.

CVaR𝛽 (z) = 𝛿∗Δ (z) . (5.1.11)

Since Δ is convex and closed, 𝛿Δ is weakly lower semi-continuous [CV20, Lemma 2.5] and

convex, and thus also lower semi-continuous [CV20, Corollary 3.2]. Furthermore, Δ is

non-empty, hence 𝛿Δ is proper. We can therefore apply Theorem 2.2.7 (Fenchel-Moreau-

Rockafellar) with equality, yielding

CVaR
∗
𝛽
(z) = 𝛿∗∗Δ (z) = 𝛿Δ (z) . (5.1.12)

Now, Definition 2.2.14 (Weighted Proximal Operator) implies that

prox
Σ
CVaR

∗
𝛽

(z) = arg min

y∈R𝑆

(
1

2

∥ z − y ∥2Σ−1
+ 𝛿Δ (y)

)
= arg min

y∈Δ

1

2

∥ z − y ∥2Σ−1
(5.1.13)

= proj
Σ
Δ (z). □

77

5 Simplex Projection

Apparently, the metric projection (with respect to the weighted norm) onto the bounded proba-

bility simplex plays a major role in Algorithm 4.1, since it needs to be computed in every iteration

to update the dual variable. Fortunately, under an additional assumption, this projection can be

computed very efficiently by using a specially tailored algorithm, which we develop in the fol-

lowing sections.

5.2 Problem Formulation

As in Section 5.1, we assume that 𝑆 ∈ N is the sample size and 𝛽 ∈ (0, 1) the probability level of

CVaR𝛽 . Additionally, we assume that there exist 𝜎1, . . . , 𝜎𝑆 > 0 such that Σ = diag (𝜎1, . . . , 𝜎𝑆).
Recall that the bounded probability simplex is defined as the set

Δ :=

{
y ∈ R𝑆

���� y⊤1 = 1 and 0 ≤ 𝑦 𝑗 ≤
1

(1 − 𝛽)𝑆 for all 𝑗 ∈ {1, . . . , 𝑆}
}
. (5.2.1)

If we want to compute proj
Σ
Δ (z) for any z = (𝑧1, . . . , 𝑧𝑆) ∈ R𝑆 , we need to find the solution to the

following optimization problem:

min

y∈R𝑆

1

2

∥ z − y ∥2Σ−1

s.t. 0 ≤ 𝑦 𝑗 ≤
1

(1 − 𝛽)𝑆 ∀𝑗 ∈ {1, . . . , 𝑆} ,

𝑆∑︁
𝑗=1

𝑦 𝑗 = 1.

(5.2.2)

This is a quadratic program with a strictly convex objective function, and several solutions have

been described for similar problems. For example, John Duchi et al. developed an algorithm to

compute the projection onto the positive simplex [Duc+08], i.e. they considered a set like Δ but

with an arbitrary value on the right-hand side of the equation in (5.2.1) and no upper bound on

y. The key idea of their proof is sorting the elements of the point being projected in a descending

order and finding the last index that satisfies a certain condition. Weiran Wang and Miguel

Á. Carreira-Perpiñán slightly changed this problem and used the so called probability simplex
instead [WC13], which means that the condition y⊤1 = 1 has to be satisfied for all y in the set

(i.e. the right-hand side of the equation is not arbitrary anymore). They proposed a proof that

uses the KKT conditions and also the sorting as in the previously mentioned paper. A similar

approach was used by Nelson Maculan and Geraldo Galdino de Paula Jr. [MdP89].

All aforementioned authors did not consider the possibility of an upper bound on the elements

of the respective set like 𝑦 𝑗 ≤ 1

(1−𝛽)𝑆 in (5.2.1). Yunmei Chen and Xiaojing Ye used tools from

the field of convex analysis like the proximal operator and the Fenchel conjugate to construct an

algorithm where this upper bound is equal to 1 [CY11].

The algorithm presented in the following sections is based on the ideas in [WC13] and modified

such that there is an upper bound on y. This upper bound can be any real, positive number. While

the optimality condition in the next section still allows for a diagonal weight matrix Σ ∈ R𝑆×𝑆
as defined above, this assumption is tightened for the algorithm in Section 5.4 by requiring that

Σ = 𝜎Id with a 𝜎 > 0.

78

5.3 Optimality Condition

5.3 Optimality Condition

In order to derive the optimality condition for the above problem (5.2.2), we apply the KKT

conditions [NW06, Theorem 12.1]. The Lagrangian of the problem is

L(y, a, `, _) :=
1

2

∥ z − y ∥2Σ−1
− a⊤y − `⊤ (𝑝1 − y) − _

(
y⊤1 − 1

)
(5.3.1)

where _ ∈ R and a, ` ∈ R𝑆 are the Lagrange multipliers and 𝑝 := 1

(1−𝛽)𝑆 . The following KKT

conditions hold for the optimal solution y∗:

∇yL(y∗, a∗, `∗, _∗) = Σ (y∗ − z) − a∗ + `∗ − _∗1 = 0, (5.3.2)

y∗⊤1 − 1 = 0, (5.3.3)

𝑦∗𝑗 ≥ 0 ∀𝑗 ∈ {1, . . . , 𝑆} , (5.3.4)

𝑝 − 𝑦∗𝑗 ≥ 0 ∀𝑗 ∈ {1, . . . , 𝑆} , (5.3.5)

a∗𝑗 ≥ 0 ∀𝑗 ∈ {1, . . . , 𝑆} , (5.3.6)

`∗𝑗 ≥ 0 ∀𝑗 ∈ {1, . . . , 𝑆} , (5.3.7)

𝑦∗𝑗a
∗
𝑗 = 0 ∀𝑗 ∈ {1, . . . , 𝑆} , (5.3.8)

`∗𝑗

(
𝑝 − 𝑦∗𝑗

)
= 0 ∀𝑗 ∈ {1, . . . , 𝑆} . (5.3.9)

Now we use the complementarity conditions (5.3.8) and (5.3.9) to derive an explicit description

of the optimal solution y∗. Let 𝑗 ∈ {1, . . . , 𝑆}. We distinguish the following cases:

• if 𝑦∗𝑗 > 0 then a∗𝑗 = 0;

– if 𝑦∗𝑗 < 𝑝 then `∗𝑗 = 0; it follows from (5.3.2) that

𝑝 > 𝑦∗𝑗 = 𝑧 𝑗 + 𝜎−1

𝑗 _
∗ > 0; (5.3.10)

– if 𝑦∗𝑗 = 𝑝 then `∗𝑗 ≥ 0; it follows from (5.3.2) that

𝑧 𝑗 + 𝜎−1

𝑗 _
∗ ≥ 𝑧 𝑗 + 𝜎−1

𝑗

(
_∗ − `∗𝑗

)
= 𝑦∗𝑗 = 𝑝 > 0; (5.3.11)

• if 𝑦∗𝑗 = 0 then a∗𝑗 ≥ 0; since 𝑝 > 0 we have 𝑦∗𝑗 < 𝑝 and therefore `∗𝑗 = 0; it follows from

(5.3.2) that

𝑧 𝑗 + 𝜎−1

𝑗 _
∗ = −𝜎−1

𝑗 a
∗
𝑗 ≤ 0. (5.3.12)

It can easily be shown that the following y∗ satisfies the KKT conditions in all of the above

cases:

𝑦∗𝑗 = max

{
min

{
𝑧 𝑗 + 𝜎−1

𝑗 _
∗, 𝑝

}
, 0

}
. (5.3.13)

Since we do not know the Lagrangian multiplier _∗ in advance, we need to develop an algorithm

that is able to compute it.

79

5 Simplex Projection

5.4 Algorithm

As mentioned before, we additionally assume from now on that there exists 𝜎 > 0 such that

Σ = 𝜎Id ∈ L
(
R𝑆 ,R𝑆

)
. In this case, the metric projection in Lemma 5.1.1 simplifies to the

Euclidean projection

proj
Σ
Δ (z) = arg min

y∈Δ

𝜎

2

∥ z − y ∥2
2
= arg min

y∈Δ

1

2

∥ z − y ∥2
2
=: projΔ (z), (5.4.1)

which does not depend on the operator Σ anymore. Therefore, problem (5.2.2) simplifies to

min

y∈R𝑆

1

2

∥ z − y ∥2
2

s.t. 0 ≤ 𝑦 𝑗 ≤
1

(1 − 𝛽)𝑆 ∀𝑗 ∈ {1, . . . , 𝑆} ,

𝑆∑︁
𝑗=1

𝑦 𝑗 = 1,

(5.4.2)

where the weighted norm ∥ · ∥Σ−1 has been replaced by the Euclidean norm ∥ · ∥
2
. The corre-

sponding optimality condition is obtained by choosing 𝜎 := 1 in (5.3.13), yielding

𝑦∗𝑗 = max

{
min

{
𝑧 𝑗 + _∗, 𝑝

}
, 0

}
. (5.4.3)

Algorithm 5.1 uses this optimality condition to find the optimal solution y∗ to problem (5.4.2).

Algorithm 5.1 (Euclidean Projection onto the Bounded Probability Simplex)

Input: z ∈ R𝑆 , 𝑝 = 1

(1−𝛽)𝑆

1 Sort z into u: 𝑢1 ≥ 𝑢2 ≥ · · · ≥ 𝑢𝑆 , define 𝑢0 := 𝑢1 + 𝑝 .

2 Compute Z := max

{
𝑗 ∈ {0, . . . , 𝑆}

��� 𝑗𝑝 +∑𝑆
𝑖=𝑗+1 max{0, 𝑢𝑖 + 𝑝 − 𝑢 𝑗 } ≤ 1

}
.

3 if Z𝑝 +∑𝑆
𝑖=Z+1 max{0, 𝑢𝑖 + 𝑝 − 𝑢Z } = 1 then

4 _∗ := 𝑝 − 𝑢Z

5 else

6 𝜌 := max

{
𝑗 ∈ {Z + 1, . . . , 𝑆}

��� 𝑢 𝑗 + 1

𝑗−Z

(
1 − Z𝑝 −∑𝑗

𝑖=Z+1𝑢𝑖
)
> 0

}
7 _∗ := 1

𝜌−Z

(
1 − Z𝑝 −∑𝜌

𝑖=Z+1𝑢𝑖
)

8 end

Output: y∗ ∈ R𝑆 with 𝑦∗𝑗 := max

{
min

{
𝑧 𝑗 + _∗, 𝑝

}
, 0

}
for all 𝑗 ∈ {1, . . . , 𝑆}

The algorithm has the following geometric interpretation: Place the values 𝑧1, . . . , 𝑧𝑆 as points

on the abscissa. Then the optimal solution is given by a shift of these points such that the ones

80

5.4 Algorithm

to the right of the ordinate sum up to 1, and whenever a point would be greater than 𝑝 , it is set

to 𝑝 . An implementation in Julia can be found in [Ang22, SimplexProj.jl].

Note that finding Z in Line 2 of Algorithm 5.1 could take a great share of the computation time,

especially if it is done by simply checking the condition

𝑗𝑝 +
𝑆∑︁

𝑖=𝑗+1
max{0, 𝑢𝑖 + 𝑝 − 𝑢 𝑗 } ≤ 1 (5.4.4)

for every 𝑗 ∈ {0, . . . , 𝑆}, starting at 𝑗 = 0 and terminating if the condition is not satisfied any

more. Certainly, the actual computational cost depends on the given input z and 𝑝 , but yet it is

reasonable to use a smarter way of finding Z .

Let us assume that we want to find the greatest integer 𝑗 ∈ {𝑚, . . . , 𝑛} (𝑚,𝑛 ∈ N) such that

𝜑 (𝑗) ≤ 1, where 𝜑 : {𝑚, . . . , 𝑛} → R is a non-decreasing function. In our framework, 𝜑 would

be defined as

𝑗 ↦→ 𝜑 (𝑗) := 𝑗𝑝 +
𝑆∑︁

𝑖=𝑗+1
max{0, 𝑢𝑖 + 𝑝 − 𝑢 𝑗 }. (5.4.5)

In inequality (5.5.11) we show that 𝜑 is indeed non-increasing. The recursive Algorithm 5.2 is a

very simple solution that can in fact perform better in some cases than the successive checking

of 𝜑 (𝑗) ≤ 1, as we will see in Section 6.3.6.

Algorithm 5.2 (Find Z)

Input:𝑚,𝑛 ∈ N, 𝜑 : {𝑚, . . . , 𝑛} → R non-decreasing

1 if 𝜑 (𝑚) > 1 then Z :=𝑚 − 1

2 else if 𝜑 (𝑛) ≤ 1 then Z := 𝑛

3 else if 𝑚 + 1 = 𝑛 then Z :=𝑚

4 else

5 𝑗 :=𝑚 + ⌊𝑛−𝑚
2
⌋

6 Run the algorithm again with {𝑚, . . . , 𝑗} as the domain of 𝜑 ; the solution is

denoted by 𝑘 .

7 if 𝑘 = 𝑗 then

8 Run the algorithm again with { 𝑗 + 1, . . . , 𝑛} as the domain of 𝜑 ; the solution

is denoted by 𝑙 .

9 if 𝑙 = 𝑗 then Z := 𝑘

10 else Z := 𝑙

11 else Z := 𝑘

12 end

Output: Z

81

5 Simplex Projection

Lines 1 to 3 handle some trivial cases. Then the domain of 𝜑 is cut in two halves (see Line 5) and

the algorithm is run again with the lower half as the domain of 𝜑 (see Line 6). If the solution 𝑘

is not equal to the new upper bound 𝑗 , it must be the final solution (see Line 11). Otherwise, the

final solution is either 𝑘 itself or it lies in the upper half of the domain, i.e. in { 𝑗 + 1, . . . , 𝑆}. This

is checked by running the algorithm again with the upper half as the domain of 𝜑 (see Line 8).

Note that ⌊·⌋ denotes the function of rounding down to the next integer that is less or equal to

the argument. An implementation in Julia can be found in [Ang22, SimplexProj.jl].

Algorithm 5.3 (Find Z With an Initial Guess)

Input: u ∈ R𝑆 s.t. 𝑢1 ≥ · · · ≥ 𝑢𝑆 , 𝑝 = 1

(1−𝛽)𝑆 , optional: initial guess Z0 ∈ {1, . . . , 𝑛}

1 Define 𝜑 (𝑗) := 𝑗𝑝 +∑𝑛
𝑖=𝑗+1 max{0, 𝑢𝑖 + 𝑝 − 𝑢 𝑗 } for every 𝑗 ∈ {1, . . . , 𝑆}.

2 if Z0 is empty then

3 Call Algorithm 5.2 with 𝜑 : {1, . . . , 𝑆} → R and denote the solution by Z .

4 else

5 Z1 := Z0

6 while true do

7 if 𝜑 (Z1) ≤ 1 then

8 Z := Z1

9 Update Z1 ← Z1 + 1

10 else

11 if the previous if-condition was true during the last iteration then break

12 else

13 Update Z1 ← Z1 − 1

14 if Z1 > 0 then Z := Z1

15 else break

16 end

17 end

18 end

19 end

Output: Z

Since Algorithm 5.1 is called in every iteration of Algorithm 4.1, we can make another improve-

ment that might speed up the search for Z . In this case, it is reasonable to assume that the input

of Algorithm 5.1 is not significantly different from the input of the previous function call. There-

fore, the index Z is likely to change only slightly from one call to the next one. Algorithm 5.3

enables us to pass an initial guess of Z and iterate up- or downward until the real Z is found.

However, if no initial guess is provided, it just calls Algorithm 5.2. An implementation in Julia

can also be found in [Ang22, SimplexProj.jl].

82

5.5 Convergence

5.5 Convergence

The proof of convergence of Algorithm 5.1 is based on [WC13, Chapter 3] and extended such

that it is applicable to our modified assumptions.

Theorem 5.5.1 (Convergence of Projection Algorithm)

Let 𝑆 ∈ N be the sample size, 𝛽 ∈ (0, 1) a probability level, 𝑝 := 1

(1−𝛽)𝑆 , and z ∈ R𝑆 .

Then, Algorithm 5.1 finds the optimal solution to the problem (5.4.2), i.e. the output y∗ =(
𝑦∗

1
, . . . , 𝑦∗

𝑆

)
satisfies

𝑦∗𝑗 = max

{
min

{
𝑧 𝑗 + _∗, 𝑝

}
, 0

}
for all 𝑗 ∈ {1, . . . , 𝑆} and some _∗ ∈ R.

Proof: Without loss of generality, we assume that the components of z are sorted and y∗

uses the same ordering, i.e.

𝑧1 ≥ · · · ≥ 𝑧𝑆 and 𝑦∗
1
≥ · · · ≥ 𝑦∗𝑆 . (5.5.1)

Therefore, we do not need to consider the sorting in Line 1 of Algorithm 5.1. Let further-

more 𝜌 ∈ {1, . . . , 𝑆} be the greatest index with 𝑦∗𝜌 > 0 and Z ∈ {1, . . . , 𝑆} the greatest index

with 𝑧Z + _∗ ≥ 𝑝 , where _∗ is the Lagrange multiplier of the optimal solution described in

Section 5.3, i.e.

𝑦∗𝜌 > 0 and 𝑦∗𝑗 = 0 for all 𝑗 ∈ {𝜌 + 1, . . . , 𝑆}, (5.5.2)

𝑧Z + _∗ ≥ 𝑝 and 𝑧 𝑗 + _∗ < 𝑝 for all 𝑗 ∈ {Z + 1, . . . , 𝑆}. (5.5.3)

It is possible that there is no Z ∈ {1, . . . , 𝑆} with 𝑧Z + _∗ ≥ 𝑝 at all. In this case we define

Z := 0. If we disregard the case where z = (0, . . . , 0), which has the solution y∗ = (0, . . . , 0),
there must be a 𝜌 ∈ {1, . . . , 𝑆} as defined above. The KKT condition (5.3.3) implies

1 =
𝑆∑︁
𝑗=1

𝑦∗𝑗 =
𝜌∑︁
𝑗=1

𝑦∗𝑗 , (5.5.4)

and with (5.3.10) and (5.3.11) we get

1 =

𝜌∑︁
𝑗=1

𝑦∗𝑗=𝑝

𝑝 +
𝜌∑︁
𝑗=1

𝑦∗𝑗<𝑝

(𝑧 𝑗 + _∗) (5.5.5)

=

𝜌∑︁
𝑗=1

𝑧 𝑗+_∗≥𝑝

𝑝 +
𝜌∑︁
𝑗=1

𝑧 𝑗+_∗<𝑝

(𝑧 𝑗 + _∗) (5.5.6)

=

min{𝜌,Z }∑︁
𝑗=1

𝑝 +
𝜌∑︁

𝑗=min{𝜌,Z }+1
(𝑧 𝑗 + _∗) (5.5.7)

= Z𝑝 +
𝜌∑︁

𝑗=Z+1
(𝑧 𝑗 + _∗) . (5.5.8)

83

5 Simplex Projection

The last equation holds since Z ≤ 𝜌 . Otherwise, there would be a 𝑗 ∈ {1, . . . , 𝑆} such that

𝜌 < 𝑗 ≤ Z , which implies 𝑦∗𝑗 = 0. The choice of Z then implies 𝑝 ≤ 𝑧 𝑗 + _∗ and together

with (5.3.12) we have 𝑝 ≤ 𝑧 𝑗 + _∗ ≤ 0. This leads to a contradiction to the choice of 𝑝 .

Since we do not know the value of _∗, we need to calculate Z . If we eliminate 𝜌 from the

sum in equation (5.5.8), we get

Z𝑝 +
𝑆∑︁

𝑗=Z+1
max{0, 𝑧 𝑗 + _∗} = 1. (5.5.9)

This is true since for all 𝑗 ∈ {𝜌 + 1, . . . , 𝑆} we have 𝑦∗𝑗 = 0 (see (5.5.2)), which implies

𝑧 𝑗 + _∗ ≤ 0 (see (5.3.12)).

To motivate the next idea, we recall the geometric interpretation of Algorithm 5.1. We

assume that all points are non-positive. We start shifting them to the right and whenever

a point reaches 𝑝 , it will not be shifted any further. Obviously, there must be a last point

that reaches 𝑝 . All of the following points (i.e. smaller values) can still be shifted to the

right but will never reach 𝑝 . We will see that the following idea even makes sense if the

assumption of all points being non-positive does not hold.

The previously mentioned shift is determined by the optimal Lagrange multiplier _∗. We

know from (5.5.3) that 𝑝 − 𝑧Z ≤ _∗ and _∗ < 𝑝 − 𝑧 𝑗 for all 𝑗 ∈ {Z + 1, . . . , 𝑆}. If we take

the left-hand side of (5.5.9), replace Z by any 𝑗 ∈ {0, . . . , 𝑆} and _∗ by 𝑝 − 𝑧 𝑗 , we get the

sequence (
𝑞 𝑗

)
𝑗∈{0,...,𝑆 } :=

(
𝑗𝑝 +

𝑆∑︁
𝑖=𝑗+1

max{0, 𝑧𝑖 + 𝑝 − 𝑧 𝑗 }
)
𝑗∈{0,...,𝑆 }

, (5.5.10)

where 𝑧0 := 𝑧1 + 𝑝 guarantees 𝑧𝑖 + 𝑝 − 𝑧0 ≤ 0 for all 𝑖 ∈ {1, . . . , 𝑆}. In the framework

of the geometric interpretation, the latter inequality is equivalent to the assumption of all

points being non-positive. The sequence

(
𝑞 𝑗

)
𝑗∈{0,...,𝑆 } is non-decreasing because for every

𝑗 ∈ {0, . . . , 𝑆 − 1} we have

𝑞 𝑗+1 = 𝑗𝑝 +
𝑆∑︁

𝑖=𝑗+1
max{0, 𝑧𝑖 + 𝑝 − 𝑧 𝑗+1} + 𝑝 −max{0, 𝑧 𝑗+1 + 𝑝 − 𝑧 𝑗+1︸ ︷︷ ︸

=0

}

(5.5.1)

≥ 𝑗𝑝 +
𝑆∑︁

𝑖=𝑗+1
max{0, 𝑧𝑖 + 𝑝 − 𝑧 𝑗 }

= 𝑞 𝑗 . (5.5.11)

Note that this property is the justification for using Algorithm 5.2 to find Z . The assumption

𝛽 ∈ (0, 1) implies that 𝑞𝑆 ≥ 1, and since 𝑞0 = 0, there is a maximal 𝑗 ∈ {0, . . . , 𝑆} satisfying

𝑞 𝑗 ≤ 1. This maximal index turns out to be the index of the mentioned last point that
reaches 𝑝 , i.e.

Z = max

{
𝑗 ∈ [0, 𝑆] ∩N

�� 𝑞 𝑗 ≤ 1

}
(5.5.12)

as in Line 2 of Algorithm 5.1, where Z = 0 means that none of the points reaches 𝑝 .

With this, we are able to calculate _∗. If 𝑞Z = 1, equation (5.5.9) is already satisfied and the

algorithm terminates with

_∗ = 𝑝 − 𝑧Z . (5.5.13)

84

5.5 Convergence

Otherwise, we have 𝑝 − 𝑧Z < _∗ < 𝑝 − 𝑧Z+1. Taking 𝜌 into account again, we get Z ≠ 𝜌

(otherwise (5.5.8) yields Z𝑝 = 1 in contradiction to 𝑞Z < 1). Together with Z ≤ 𝜌 we have

Z < 𝜌 . This allows us to rearrange (5.5.8) such that

_∗ =
1

𝜌 − Z

(
1 − Z𝑝 −

𝜌∑︁
𝑖=Z+1

𝑧𝑖

)
. (5.5.14)

The last step is to prove that

𝜌 = max

{
𝑗 ∈ (Z , 𝑆] ∩N

����� 𝑧 𝑗 + 1

𝑗 − Z

(
1 − Z𝑝 −

𝑗∑︁
𝑖=Z+1

𝑧𝑖

)
> 0

}
. (5.5.15)

Let 𝑗 ∈ {Z + 1, . . . , 𝑆}. We consider three different cases:

• if 𝑗 = 𝜌 :

𝑧𝜌 +
1

𝜌 − Z

(
1 − Z𝑝 −

𝜌∑︁
𝑖=Z+1

𝑧𝑖

)
(5.5.14)

= 𝑧𝜌 + _∗
(5.3.11)

> 0; (5.5.16)

• if Z < 𝑗 < 𝜌 :

𝑧 𝑗 +
1

𝑗 − Z

(
1 − Z𝑝 −

𝑗∑︁
𝑖=Z+1

𝑧𝑖

)

=
1

𝑗 − Z

(
(𝑗 − Z)𝑧 𝑗 + 1 − Z𝑝 −

𝜌∑︁
𝑖=Z+1

𝑧𝑖︸ ︷︷ ︸
(5.5.14)

= (𝑝−Z)_∗

+
𝜌∑︁

𝑖=𝑗+1
𝑧𝑖

)

=
1

𝑗 − Z

(
(𝑗 − Z) (𝑧 𝑗 + _∗) +

𝜌∑︁
𝑖=𝑗+1
(𝑧𝑖 + _∗)

)
(5.3.11)

> 0;

(5.5.17)

• if 𝑗 > 𝜌 :

𝑧 𝑗 +
1

𝑗 − Z

(
1 − Z𝑝 −

𝑗∑︁
𝑖=Z+1

𝑧𝑖

)

=
1

𝑗 − Z

(
(𝑗 − Z)𝑧 𝑗 + 1 − Z𝑝 −

𝜌∑︁
𝑖=Z+1

𝑧𝑖︸ ︷︷ ︸
(5.5.14)

= (𝜌−Z)_∗

−
𝑗∑︁

𝑖=𝜌+1
𝑧𝑖

)

=
1

𝑗 − Z

©«
(𝜌 − Z) (𝑧 𝑗 + _∗︸ ︷︷ ︸

(5.3.12)

≤ 0

) +
𝑗∑︁

𝑖=𝜌+1
(𝑧 𝑗 − 𝑧𝑖︸ ︷︷ ︸

(5.5.1)

≤ 0

)
ª®®®®®¬
≤ 0.

(5.5.18)

85

5 Simplex Projection

This justifies the choice of 𝜌 and guarantees that we find the optimal _∗ in any possible

case. Therefore, we can construct y∗ =
(
𝑦∗

1
, . . . , 𝑦∗

𝑆

)
as in (5.4.3), i.e.

𝑦∗𝑗 = max

{
min

{
𝑧 𝑗 + _∗, 𝑝

}
, 0

}
(5.5.19)

for all 𝑗 ∈ {1, . . . , 𝑆}. The reasoning of Section 5.3 then shows that y∗ satisfies the KKT

conditions and is hence the optimal solution to problem (5.4.2). □

86

Chapter 6
Applications

In this chapter we consider two exemplary problems that stem from [KS16] and show how our

algorithm performs in practice. In the first two sections we develop step size choices and index

selection rules that satisfy the assumptions made in Section 4.4. After that, we consider a problem

constrained by an elliptic PDE with a discontinuous and uncertain coefficient in the third section,

where we prove that the aforementioned assumptions are indeed satisfied for this particular

example. Furthermore, we derive a discretized version of Algorithm 4.1 and present numerical

results for different parameter settings using the Julia code provided in [Ang22]. The last section

deals with a constraint in form of a parabolic equation and also shows how the algorithm behaves

for different choices of parameters.

6.1 Choice of Step Sizes

In this section we present a possible way to choose the step sizes in order to satisfy Assump-

tion 4.4.7 (Step-Size-Testing-Relation). We have already seen in the proof of Theorem 4.4.14 that,

under the given assumptions, there exists a𝐶 ∈ (0,∞) such that ∥ 𝐾 ′(𝑢𝑘) ∥L(U,V) ≤ 𝐶 P-a.s. for

all 𝑘 ∈ N. Furthermore, we have seen in (4.4.13) that a sufficient condition for Assumption 4.4.7

(iii) is

𝜎𝜏𝑘 ∥ 𝐾 ′(𝑢𝑘) ∥2L(U,V) < 1 P-a.s. (6.1.1)

for all 𝑘 ∈ N0. Hence, if we are able to compute 𝐶 in advance, we could set 𝛾𝐺 = 0 (i.e. no

acceleration) and choose constant step sizes 𝜏 = 𝜏𝑘 > 0 for all 𝑘 ∈ N0 and 𝜎 > 0 such that

𝜎𝜏 < 𝐶−2. (6.1.2)

In the case of non-constant (primal) step sizes, we could choose some acceleration parameter

𝛾𝐺 ∈ (0, 𝛾𝐺) (where 𝛾𝐺 is the monotonicity factor of 𝜕𝐺 , see Assumption 4.4.3) and initial step

sizes 𝜏0 > 0 and 𝜎 > 0 such that

𝜎𝜏0 < 𝐶−2. (6.1.3)

This inequality is automatically satisfied for all 𝜏𝑘 as well, since Assumption 4.4.7 (i) and (ii) imply

that (𝜏𝑘)𝑘∈N0

is monotonically decreasing. In practice, if we do not know the constant𝐶 but have

already obtained a discretization
1

of 𝐾 ′(𝑢0)∗ in form of a matrix 𝐾 ′(u0)∗ ∈ R𝑁×𝑆 for the starting

vector u0 ∈ R𝑁 , we can obtain an estimate of the norm by using the equation

∥ 𝐾 ′(𝑢0)∗ ∥2L(V,U) ≈ ∥ 𝐾 ′(u0)∗ ∥2L(R𝑆 ,R𝑁) = _𝑚𝑎𝑥 , (6.1.4)

1
We use the adjoint here, since this is the operator we discretize in Section 6.3.4, see (6.3.97).

87

6 Applications

where _𝑚𝑎𝑥 ∈ R is the largest eigenvalue of the symmetric matrix 𝑀 := 𝐾 ′(u0)𝐾 ′(u0)∗ ∈ R𝑆×𝑆 ;

see [Bjö15, Section 1.1.7]. This eigenvalue can be estimated by the following algorithm, which is

called power method and stems from [Bjö15, Section 3.3.1].

Algorithm 6.1 (Power Method)

Input: 𝑘𝑚𝑎𝑥 ∈ N, 𝑀 ∈ R𝑆×𝑆 , z0 ∈ R𝑆 with ∥ z0 ∥2 = 1

1 Initialize 𝑘 := 0.

2 repeat

3 z′
𝑘

:= 𝑀z𝑘 .

4 z𝑘+1 :=
z′
𝑘

∥ z′𝑘 ∥2

.

5 Update 𝑘 ← 𝑘 + 1.

6 until 𝑘 = 𝑘𝑚𝑎𝑥

Output: 𝜌 := z⊤
𝑘𝑚𝑎𝑥

𝑀z𝑘𝑚𝑎𝑥

The sequence (z𝑘)𝑘∈N0
generated this way converges to the eigenvector of 𝑀 corresponding to

the largest eigenvalue _𝑚𝑎𝑥 . The so-called Rayleigh quotient 𝜌 approximates this eigenvalue well

enough after only a few iterations.

6.2 Index Selection Rules

As we have seen in Section 4.4.2, the main assumption regarding the index selection for CGF is

Assumption 4.4.10 (Reduction of CGF), i.e. there exists a constant 𝑀 > 0 such that the sequence

(𝐴𝑘)𝑘∈N ⊂ R (F ,A) satisfies

E

(
ess sup

b∈Ξ
𝜒𝐴c

𝑘
(b)

�����F𝑘
)
≤ 𝑀𝑘−3 P-a.s. (6.2.1)

for all 𝑘 ∈ N. In this section, we present two possible index selection rules satisfying this as-

sumption.

First, recall from Section 5.1 that we assumed that the PDE constraint introduced in Section 3.2

has 𝑑 ∈ N uncertain coefficients in R. We used a 𝑑-dimensional random vector 𝑥 : Ξ → R𝑑 to

model this uncertainty and obtained a sample

{
b 𝑗 ∈ R𝑑

�� 𝑗 ∈ {1, . . . , 𝑆}} of 𝑆 ∈ N realizations of

this random vector. If we consider the set

{
b ∈ Ξ

�� 𝑥 (b) = b 𝑗 for some 𝑗 ∈ {1, . . . , 𝑆}
}

and assume

that, for each 𝑗 ∈ {1, . . . , 𝑆}, there exists exactly one b ∈ Ξ satisfying 𝑥 (b) = b 𝑗 , then it is clear

that Ξ can be identified by the set {1, . . . , 𝑆}. Furthermore, A can be identified by the power

set of {1, . . . , 𝑆}, i.e. A = 2
{1,...,𝑆 }

. This gives us the justification to approximate every random

variable 𝑣 ∈ V = 𝐿2 (Ξ,A,P) by a vector v ∈ R𝑆 . The characteristic function 𝜒𝐴 : Ξ → {0, 1}
for a set 𝐴 ∈ A can then be represented by a vector x𝐴 =

(
𝑥𝐴,1, . . . , 𝑥𝐴,𝑆

)
∈ {0, 1}𝑆 with

𝑥𝐴,𝑗 = 𝜒𝐴 (𝑗) =

1, if 𝑗 ∈ 𝐴,

0, if 𝑗 ∉ 𝐴,
(6.2.2)

88

6.2 Index Selection Rules

for all 𝑗 ∈ {1, . . . , 𝑆}. Consequently, the function Π𝐴, which was defined in (4.1.3) for every

element 𝐴 ∈ A, then simply maps a vector v = (𝑣1, . . . , 𝑣𝑆) ∈ R𝑆 to itself, except that all

components with index not in 𝐴 are set to 0, i.e.

Π𝐴 (v) 𝑗 = 𝑥𝐴,𝑗𝑣 𝑗 =

𝑣 𝑗 , if 𝑗 ∈ 𝐴,

0, if 𝑗 ∉ 𝐴,
(6.2.3)

for all 𝑗 ∈ {1, . . . , 𝑆}. This is the reason why the term component-wise gradient freezing, as in-

troduced in Section 4.1, makes sense, since the definitions of �̂�𝑘 and �̂�𝑘 (·)∗ in (4.1.5) and (4.1.6),

respectively, imply that only those components with indices in 𝐴𝑘 are updated. The others are

frozen in the sense that they just remain at their respective values of the previous iteration.

Now, if we take a look at (6.2.1) again, we see that it can be rewritten as

E
(

max

𝑗∈{1,...,𝑆 }

(
1 − 𝑥𝐴𝑘 , 𝑗

) ����F𝑘) ≤ 𝑀𝑘−3 P-a.s. (6.2.4)

for all 𝑘 ∈ N, where 𝐴𝑘 : Θ → 2
{1,...,𝑆 }

is the randomized index set for all 𝑘 ∈ N. Following the

reasoning after Assumption 4.4.10, if we assume that the sequence (𝐴𝑘)𝑘∈N is independent, we

can simplify the left-hand side to get

E
(

max

𝑗∈{1,...,𝑆 }

(
1 − 𝑥𝐴𝑘 , 𝑗

))
= 1 − E

(
min

𝑗∈{1,...,𝑆 }
𝑥𝐴𝑘 , 𝑗

)
≤ 𝑀𝑘−3

(6.2.5)

for all 𝑘 ∈ N. Since min𝑗∈{1,...,𝑆 } 𝑥𝐴𝑘 , 𝑗 is a random variable taking values in {0, 1}, we can equiv-

alently write

1 − P
(
∀𝑗 ∈ {1, . . . , 𝑆} : 𝑥𝐴𝑘 , 𝑗 = 1

)
= P

(
∃ 𝑗 ∈ {1, . . . , 𝑆} : 𝑥𝐴𝑘 , 𝑗 = 0

)
≤ 𝑀𝑘−3

(6.2.6)

for all 𝑘 ∈ N. Therefore, the left-hand side is the probability that at least one component is frozen

in iteration 𝑘 .

The following lemma presents a possible strategy one could pursue in order to satisfy (6.2.6).

Lemma 6.2.1 (Index Selection Rule№1)

Let 𝑀 > 0 and (𝑞𝑘)𝑘∈N ⊂ [0, 1] be an arbitrary sequence of probabilities. If, in each

iteration 𝑘 ∈ N, we independently select every index in {1, . . . , 𝑆} with probability

𝑝𝑘 :=

𝑞𝑘 , if 𝑘 < 𝑀1/3,

max

{
𝑞𝑘 ,

(
1 −𝑀𝑘−3

)
1/𝑆

}
, if 𝑘 ≥ 𝑀1/3,

then Assumption 4.4.10 is satisfied.

Proof: Let 𝑘 ∈ N. Due to the the definition of 𝑝𝑘 we have, in any case, that

𝑝𝑆
𝑘
≥ 1 −𝑀𝑘−3. (6.2.7)

Since 𝑝𝑘 = P
(
𝑥𝐴𝑘 , 𝑗 = 1

)
for all 𝑗 ∈ {1, . . . , 𝑆} and the indices are selected independently,

89

6 Applications

this implies that

1 − P
(
∀𝑗 ∈ {1, . . . , 𝑆} : 𝑥𝐴𝑘 , 𝑗 = 1

)
= 1 −

𝑆∏
𝑗=1

P
(
𝑥𝐴𝑘 , 𝑗 = 1

)
= 1 − 𝑝𝑆

𝑘
≤ 𝑀𝑘−3. (6.2.8)

Therefore, inequality (6.2.6) is satisfied and hence Assumption 4.4.10 as well. □

Note that the sequence (𝑞𝑘)𝑘∈N ⊂ [0, 1] is not necessary to satisfy Assumption 4.4.10. However,

if we would just set 𝑝𝑘 := max

{
0,

(
1 −𝑀𝑘−3

)
1/𝑆

}
, then no indices would be selected at all before

reaching an iteration with 𝑘 > 𝑀1/3
.

In the case that we do not want to select every index equally likely, we can use the following

lemma, which presents another index selection rule.

Lemma 6.2.2 (Index Selection Rule№2)

Let (𝑞𝑘)𝑘∈N ⊂ [0, 1] be a sequence with 𝑞𝑘 → 1 as 𝑘 → ∞. If, in each iteration 𝑘 ∈ N,

we select ⌈𝑞𝑘𝑆⌉ indices in {1, . . . , 𝑆} such that the sequence (𝐴𝑘)𝑘∈N is independent, then

Assumption 4.4.10 is satisfied.

Proof: Since 𝑞𝑘 → 1 as 𝑘 →∞, we know that there exists 𝐾 ∈ N such that ⌈𝑞𝑘𝑆⌉ = 𝑆 for

all 𝑘 ≥ 𝐾 . This means that, if 𝑘 ≥ 𝐾 , we select all indices in iteration 𝑘 , i.e.

P
(
∃ 𝑗 ∈ {1, . . . , 𝑆} : 𝑥𝐴𝑘 , 𝑗 = 0

)
= 0 (6.2.9)

for all 𝑘 ≥ 𝐾 . We can therefore choose any𝑀 ≥ 𝐾3
to see that inequality (6.2.6) and hence

Assumption 4.4.10 is satisfied. □

Note that the question how the desired number of indices is selected in each iteration is not an-

swered in this lemma. Therefore, any approach that maintains the independence of the sequence

(𝐴𝑘)𝑘∈N is permissible here.

6.3 Elliptic Equation with a Discontinuous Coefficient

In this chapter, we use Algorithm 4.1 to solve a problem constrained by an elliptic partial differ-

ential equation that is described in [KS16, Section 6.1]. After the problem’s formulation, we show

that the assumptions of Section 4.4 are satisfied and how the PDE and the involved functions are

discretized. We finish with numerical results for different parameter settings.

6.3.1 Problem Formulation

We consider the optimal control of a linear elliptic PDE with a discontinuous coefficient where

the location of the discontinuity is uncertain. LetU := 𝐿2 (Ω) be the space of control variables

with Ω := (−1, 1), and V := 𝐿2

P
(Ξ) the space of random variables with a separable probability

90

6.3 Elliptic Equation with a Discontinuous Coefficient

space (Ξ,A,P). Let further 𝛽 ∈ (0, 1) be the probability level of CVaR and 𝛼 := 10
−4

the weight

of the penalty term. The problem described in [KS16, Section 6.1] can be formulated as

min

𝑢∈U

1

2

CVaR𝛽

[∫
Ω

(
𝑦

(
ˆb (·), 𝑥 ;𝑢

)
− 1

)
2

d𝑥

]
+ 𝛼

2

∫
Ω
𝑢 (𝑥)2 d𝑥, (6.3.1)

where
ˆb : Ξ → Λ := [−0.1, 0.1] × [−0.5, 0.5] is a two-dimensional random vector with uniform

density 𝜌 ≡ 5 and 𝑦 := 𝑦 (𝑢) ∈ 𝐿2

𝜌

(
Λ;𝐻 1

0
(Ω)

)
solves the weak form of

−𝜕𝑥
(
𝜖 (_, 𝑥)𝜕𝑥𝑦 (_, 𝑥)

)
= 𝑓 (_, 𝑥) + 𝑢 (𝑥), ∀(_, 𝑥) ∈ Λ × Ω, (6.3.2a)

𝑦 (_,−1) = 𝑦 (_, 1) = 0, ∀_ ∈ Λ. (6.3.2b)

For the sake of simplicity, we write 𝑦 (_, 𝑥 ;𝑢) or 𝑦 (_, 𝑥) (if the dependency on𝑢 is obvious) instead

of 𝑦 (𝑢) (_) (𝑥) for all (_, 𝑥) ∈ Λ × Ω and 𝑢 ∈ 𝐿2 (Ω). The discontinuous coefficient is modeled

as

𝜖 (_, 𝑥) := 0.1𝜒 (−1,_1] (𝑥) + 10𝜒 (_1,1) (𝑥) for all (_, 𝑥) ∈ Λ × Ω. (6.3.3)

The function 𝑓 : Λ×Ω → R is defined by (_, 𝑥) ↦→ 𝑓 (_, 𝑥) := exp

(
−(𝑥 − _2)2

)
. In order to bring

problem (6.3.1) in the form of Problem 3.1.1, i.e.

min

𝑢∈U
CVaR𝛽 (𝐾 (𝑢)) +𝐺 (𝑢), (6.3.4)

we additionally introduce a bounded subset

U𝑎𝑑 := {𝑢 ∈ U | 𝑢𝑎 (𝑥) ≤ 𝑢 (𝑥) ≤ 𝑢𝑏 (𝑥) for `-a.e. 𝑥 ∈ Ω} (6.3.5)

for some 𝑢𝑎, 𝑢𝑏 ∈ U, and define the functions

𝐺 : U → R, 𝑢 ↦→ 𝐺 (𝑢) :=
𝛼

2

∫
Ω
𝑢 (𝑥)2 d𝑥 + 𝛿U𝑎𝑑

(𝑢), (6.3.6)

𝐾 : U → V, 𝑢 ↦→ 𝐾 (𝑢) :=
1

2

∫
Ω

(
𝑦

(
ˆb (·), 𝑥 ;𝑢

)
− 1

)
2

d𝑥 . (6.3.7)

The resulting problem is slightly different from [KS16, Section 6.1], since we restrict the controls

to the set U𝑎𝑑 . However, this is necessary in order to satisfy Assumption 3.1.2, stating that the

domain of 𝐺 is bounded.

6.3.2 Satisfaction of the Assumptions

The first assumption we need to prove is Assumption 3.1.2 (Properties of 𝐺). Due to the spe-

cific definition of 𝐺 , we can even show strong convexity here, which directly implies the strong

monotonicity of 𝜕𝐺 as required in Assumption 4.4.3.

Lemma 6.3.1 (Properties of 𝐺)

The mapping𝐺 : U → R as defined in (6.3.6) has a bounded domain. Moreover, it is proper,

lower semi-continuous, and strongly convex with factor 𝛼 . Consequently, the convex sub-

differential 𝜕𝐺 : U ⇒ U∗ is strongly monotone with factor 𝛼 .

91

6 Applications

Proof: Clearly, 𝐺 has a bounded domain dom (𝐺) = U𝑎𝑑 . Since U𝑎𝑑 is non-empty and

∥ 𝑢 ∥U < ∞ for all 𝑢 ∈ U, we can easily see that 𝐺 is proper. Furthermore, due to the

continuity of ∥ · ∥U , 𝐺 is continuous onU𝑎𝑑 . SinceU𝑎𝑑 is closed, we also have

𝛿U𝑎𝑑
(𝑢) ≤ lim inf

𝑘→∞
𝛿U𝑎𝑑
(𝑢𝑘) (6.3.8)

for every sequence (𝑢𝑘)𝑘∈N ⊂ U with 𝑢𝑘 → 𝑢 ∈ U. Hence, 𝛿U𝑎𝑑
is lower semi-

continuous, and due to Lemma 2.2.5 (ii), 𝐺 is lower semi-continuous as well.

In order to show the strong convexity in the sense of Lemma 2.2.11 (i), let 𝑢,𝑢′ ∈ U and

\ ∈ [0, 1]. Without loss of generality, we assume that 𝑢,𝑢′ ∈ U𝑎𝑑 . Then,

𝐺
(
\𝑢 + (1 − \)𝑢′

)
− \𝐺 (𝑢) − (1 − \)𝐺 (𝑢′)

=
𝛼

2

(
∥ \𝑢 + (1 − \)𝑢′ ∥2U − \ ∥ 𝑢 ∥2U − (1 − \) ∥ 𝑢

′ ∥2U
)

= −𝛼
2

\ (1 − \)
(
∥ 𝑢 ∥2U − 2 ⟨𝑢,𝑢′⟩U + ∥ 𝑢′ ∥2U

)
= −\ (1 − \)𝛼

2

∥ 𝑢 − 𝑢′ ∥2U ,

(6.3.9)

which implies

𝐺
(
\𝑢 + (1 − \)𝑢′

)
+ \ (1 − \)𝛼

2

∥ 𝑢 − 𝑢′ ∥2U ≤ \𝐺 (𝑢) + (1 − \)𝐺 (𝑢′). (6.3.10)

Hence, 𝐺 is strongly convex with factor 𝛼 , and Lemma 2.2.11 implies that 𝜕𝐺 is strongly

monotone. □

In order to show the remaining assumptions, we first derive the weak form of (6.3.2), since we

will need it later. Let 𝜑 ∈ 𝐿2

𝜌

(
Λ;𝐻 1

0
(Ω)

)
be a test function. Multiplying the left-hand side of

(6.3.2) with 𝜑 , integrating over 𝑥 ∈ Ω and _ ∈ Λ, and integrating by parts yields∫
Λ
𝜌 (_)

∫
Ω
−𝜕𝑥

(
𝜖 (_, 𝑥)𝜕𝑥𝑦 (_, 𝑥)

)
𝜑 (_, 𝑥) d𝑥 d_

=

∫
Λ
𝜌 (_)

∫
Ω
𝜖 (_, 𝑥)𝜕𝑥𝑦 (_, 𝑥)𝜕𝑥𝜑 (_, 𝑥) d𝑥 d_ =: 𝑎(𝑦, 𝜑) . (6.3.11)

Multiplying the right-hand side of (6.3.2) with 𝜑 and integrating yields

∫
Λ
𝜌 (_)

∫
Ω

(
𝑓 (_, 𝑥) + 𝑢 (𝑥)

)
𝜑 (_, 𝑥) d𝑥 d_ =: 𝐹 (𝜑) . (6.3.12)

Therefore, in order to solve equation (6.3.2), we need to find 𝑦 ∈ 𝐿2

𝜌

(
Λ;𝐻 1

0
(Ω)

)
such that

𝑎(𝑦, 𝜑) = 𝐹 (𝜑) for all 𝜑 ∈ 𝐿2

𝜌

(
Λ;𝐻 1

0
(Ω)

)
. (6.3.13)

The same problem, with the expectation instead of CVaR, was studied in [Kou+13, Section 5.1].

The authors showed that, for any𝑢 ∈ U, (6.3.13) has a unique solution 𝑦 = 𝑦 (𝑢) ∈ 𝐿2

𝜌

(
Λ;𝐻 1

0
(Ω)

)
,

92

6.3 Elliptic Equation with a Discontinuous Coefficient

and that the mapping _ ↦→ 𝑦 (𝑢) (_) is continuous, hence 𝑦 ∈ 𝐿∞𝜌
(
Λ;𝐻 1

0
(Ω)

)
. Due to the equiv-

alence in (2.5.6) and the image measure theorem [Kle13, Theorem 4.10], this implies that

𝑦 := 𝑦 ◦ ˆb ∈ 𝐿∞
(
Ξ;𝐻 1

0
(Ω)

)
⊂ 𝐿4

(
Ξ;𝐻 1

0
(Ω)

)
=: Y (6.3.14)

is the unique solution to

𝑎(𝑦, 𝜑) = 𝐹 (𝜑) for all 𝜑 ∈ 𝐿2
(
Ξ;𝐻 1

0
(Ω)

)
, (6.3.15)

where

𝑎(𝑦, 𝜑) :=

∫
Ξ

∫
Ω
𝜖

(
ˆb (b), 𝑥

)
𝜕𝑥𝑦 (b, 𝑥)𝜕𝑥𝜑 (b, 𝑥) d𝑥 dP(b) (6.3.16)

and

𝐹 (𝜑) :=

∫
Ξ

∫
Ω

(
𝑓

(
ˆb (b), 𝑥

)
+ 𝑢 (𝑥)

)
𝜑 (b, 𝑥) d𝑥 dP(b) (6.3.17)

for all 𝑦, 𝜑 ∈ 𝐿2
(
Ξ;𝐻 1

0
(Ω)

)
. It follows from the definition of the Bochner space (see Defini-

tion 2.4.4) that

∫
Ξ
∥ 𝑦𝑢 (b) ∥4𝐻 1 (Ω) dP(b) < ∞, and together with Theorem 2.6.3 (Sobolev Embed-

ding) we get ∫
Ξ
∥ 𝑦𝑢 (b) − 1 ∥4

𝐿2 (Ω) dP(b) < ∞, (6.3.18)

which implies that 𝐾 (𝑢) ∈ V = 𝐿2 (Ξ). Hence, the mapping 𝐾 : U → V is well defined.

Furthermore, we can write 𝐾 as 𝐾 = 𝐽 ◦ 𝑆 where 𝑆 : U → Y is the PDE solution operator and

𝐽 : Y → V the Nemytskii operator

𝐽 (𝑦) = 𝐽
(
𝑦 (·), ·

)
(6.3.19)

for all 𝑦 ∈ Y with the tracking-type function from (3.2.4) (with 𝑦 ≡ 1), i.e.

𝐽 : 𝐻 1

0
(Ω) × Ξ→ R, (𝑦, b) ↦→ 𝐽 (𝑦, b) :=

1

2

∥ 𝑦 − 1 ∥2
𝐿2 (Ω) . (6.3.20)

In the following, we show that the assumptions of Section 4.4.1 are satisfied globally so that we

do not need to worry about condition (ii) of Theorem 4.4.14, which requires the iterates to stay

within the desired ball B (where the aforementioned assumptions are satisfied).

Lemma 6.3.2 (Lipschitz Continuity of 𝐾)

The mapping 𝐾 : U → V as defined in (6.3.7) is Lipschitz continuous.

Proof: Let 𝑦 (𝑢), 𝑦 (𝑢′) ∈ 𝐿∞𝜌
(
Λ;𝐻 1

0
(Ω)

)
solve the weak form of (6.3.2) for some controls

𝑢,𝑢′ ∈ U.

First, we show that the PDE solution operator 𝑆 : U → Y is Lipschitz continuous. If we

subtract the respective PDEs and define �̃� (_, 𝑥) := 𝑦 (𝑢) (_) (𝑥) − 𝑦 (𝑢′) (_) (𝑥) and �̃� (𝑥) :=

𝑢 (𝑥) − 𝑢′(𝑥) for all _ ∈ Λ and 𝑥 ∈ Ω, we get

−𝜕𝑥
[
𝜖 (_, 𝑥)𝜕𝑥 �̃� (_, 𝑥)

]
= �̃� (𝑥) for all (_, 𝑥) ∈ Λ × Ω. (6.3.21)

93

6 Applications

The Lax-Milgram lemma [Trö10, Lemma 2.2] applied to the weak form of this PDE yields

∥ �̃� (_, ·) ∥𝐻 1 (Ω) ≤ 𝑐 ∥ �̃� ∥U (6.3.22)

for all _ ∈ Λ and some 𝑐 > 0 independent of �̃� and _. If we expand �̃� and �̃�, we get

∥ 𝑦 (𝑢) (_) − 𝑦 (𝑢′) (_) ∥𝐻 1 (Ω) ≤ 𝑐 ∥ 𝑢 − 𝑢′ ∥U , (6.3.23)

hence the mapping 𝑦 (·) (_) : U → 𝐻 1

0
(Ω) is Lipschitz continuous with constant 𝑐 for all

_ ∈ Λ. Together with the notation 𝑦𝑢 := 𝑦 (𝑢) ◦ ˆb and 𝑦𝑢′ := 𝑦 (𝑢′) ◦ ˆb , this implies that

∥ 𝑦𝑢 − 𝑦𝑢′ ∥Y =

(∫
Ξ
∥ 𝑦𝑢 (b) − 𝑦𝑢′ (b) ∥4𝐻 1 (Ω) dP(b)

)
1/4

=

(∫
Λ
∥ 𝑦 (𝑢) (_) − 𝑦 (𝑢′) (_) ∥4𝐻 1 (Ω) dP ˆb

(_)
)

1/4

≤ 𝑐 ∥ 𝑢 − 𝑢′ ∥U

(6.3.24)

where we have used the image measure theorem [Kle13, Theorem 4.10] for the second

equality as well as P ˆb
(Λ) = P(Ξ) = 1 for the inequality. Therefore, the PDE solution

operator 𝑆 : U → Y with 𝑢 ↦→ 𝑆 (𝑢) := 𝑦𝑢 = 𝑦 (𝑢) ◦ ˆb is Lipschitz continuous.

Now, let b ∈ Ξ and 𝑀 > 0 such that ∥ 𝑦𝑢 (b) ∥𝐻 1 (Ω) , ∥ 𝑦𝑢′ (b) ∥𝐻 1 (Ω) ≤ 𝑀 , which is pos-

sible since 𝑦𝑢, 𝑦𝑢′ ∈ 𝐿∞
(
Ξ;𝐻 1

0
(Ω)

)
. Together with the definition of 𝐽 in the proof of

Lemma 6.3.3, we can estimate

| 𝐽 (𝑦𝑢) (b) − 𝐽 (𝑦𝑢′) (b) | =
1

2

��� ∥ 𝑦𝑢 (b) − 1 ∥2
𝐿2 (Ω) − ∥ 𝑦𝑢′ (b) − 1 ∥2

𝐿2 (Ω)

���
≤ 𝑎(b) ∥ 𝑦𝑢 (b) − 𝑦𝑢′ (b) ∥𝐿2 (Ω) ,

(6.3.25)

where we have used

𝑎(b) :=
1

2

(
∥ 𝑦𝑢 (b) − 1 ∥𝐿2 (Ω) + ∥ 𝑦𝑢′ (b) − 1 ∥𝐿2 (Ω)

)
(6.3.26)

and the reverse triangle inequality. Since 𝑎(b) ≤ 𝑀 + ` (Ω) =: 𝑐′, we have

| 𝐽 (𝑦𝑢) (b) − 𝐽 (𝑦𝑢′) (b) | ≤ 𝑐′ ∥ 𝑦𝑢 (b) − 𝑦𝑢′ (b) ∥𝐿2 (Ω) . (6.3.27)

Inequality (6.3.27) holds for P-almost every b ∈ Ξ, hence we can further estimate

∥ 𝐽 (𝑦𝑢) − 𝐽 (𝑦𝑢′) ∥V =

(∫
Ξ
| 𝐽 (𝑦𝑢) (b) − 𝐽 (𝑦𝑢′) (b) |2 dP(b)

)
1/2

≤ 𝑐′
(∫

Ξ
∥ 𝑦𝑢 (b) − 𝑦𝑢′ (b) ∥2𝐻 1 (Ω) dP(b)

)
1/2

= 𝑐′ ∥ 𝑦𝑢 − 𝑦𝑢′ ∥𝐿2(Ξ;𝐻 1

0
(Ω)) ,

(6.3.28)

where the last inequality is due to (6.3.27) and Theorem 2.6.3 (Sobolev Embedding). If, for

every 𝑦 ∈ 𝐿4
(
Ξ;𝐻 1

0
(Ω)

)
= Y, we define 𝑓𝑦 (b) := ∥ 𝑦 (b) ∥2

𝐻 1 (Ω) , then Hölder’s inequality

94

6.3 Elliptic Equation with a Discontinuous Coefficient

[Hin+09, Lemma 1.3] yields

∥ 𝑦 ∥𝐿2(Ξ;𝐻 1

0
(Ω)) =

(𝑓𝑦
𝐿1 (Ξ)

)
1/2

≤
(𝑓𝑦

𝐿2 (Ξ) ∥ 1 ∥𝐿2 (Ξ)

)
1/2

= ∥ 𝑦 ∥Y ,
(6.3.29)

where we have used that ∥ 1 ∥𝐿2 (Ξ) = P(Ξ)1/2 = 1. Applying this together with (6.3.24) to

(6.3.28) yields

∥ 𝐽 (𝑦𝑢) − 𝐽 (𝑦𝑢′) ∥V ≤ 𝑐′ ∥ 𝑦𝑢 − 𝑦𝑢′ ∥Y ≤ 𝐿 ∥ 𝑢 − 𝑢′ ∥U (6.3.30)

with 𝐿 := 𝑐𝑐′. Since the constants 𝑐 and 𝑐′ are independent of 𝑢 and 𝑢′, this inequality

holds for all 𝑢,𝑢′ ∈ U. Due to the definition 𝑆 (𝑢) = 𝑦𝑢 , we conclude the desired Lipschitz

continuity of 𝐾 = 𝐽 ◦ 𝑆 , i.e.

∥ 𝐾 (𝑢) − 𝐾 (𝑢′) ∥V ≤ 𝐿 ∥ 𝑢 − 𝑢′ ∥U (6.3.31)

for all 𝑢,𝑢′ ∈ U. □

The following lemma shows that 𝐾 also satisfies Assumption 3.2.4.

Lemma 6.3.3 (Continuous Differentiability of 𝐾)

The mapping 𝐾 : U → V as defined in (6.3.7) is continuously Fréchet differentiable.

Proof: We know from (3.2.4) (with 𝑦 ≡ 1) that Assumption 3.2.2 (Properties of 𝐽) is

satisfied. Moreover, 𝑦 ↦→ 𝐽 (𝑦, b) is Fréchet differentiable for all b ∈ Ξ and the derivative

𝐽𝑦 : 𝐻 1

0
(Ω) × Ξ→ L

(
𝐻 1

0
(Ω) ,R

)
, (𝑦, b) ↦→ 𝐽𝑦 (𝑦, b) := ⟨𝑦 − 1, ·⟩𝐿2 (Ω) (6.3.32)

satisfies Assumption 3.2.2 (i) (Carathéodory). Due to the Cauchy-Schwarz inequality and

Theorem 2.6.3 (Sobolev Embedding), the growth condition 𝐽𝑦 (𝑦, b) L(𝐻 1

0
(Ω),R) = sup

ℎ∈𝐻 1

0
(Ω)

∥ ℎ ∥
𝐻1 (Ω)=1

��� ⟨𝑦 − 1, ℎ⟩𝐿2 (Ω)

��� ≤ 𝑎(b) + ∥ 𝑦 ∥𝐻 1 (Ω) (6.3.33)

holds for all 𝑦 ∈ 𝐻 1

0
(Ω) and b ∈ Ξwith 𝑎 ≡ ` (Ω)1/2. Hence, we can apply Proposition 3.2.3

with 𝑞 = 𝑟 = 4 to see that 𝐽 : Y → V is continuously Fréchet differentiable.

To show the continuous Fréchet differentiability of 𝑆 : U → Y, we define the space

X := 𝐿2
(
Ξ;𝐻 1

0
(Ω)

)
(6.3.34)

and note that the mapping 𝑎 : X ×X → R as defined in (6.3.16) is bounded and X-elliptic

in the sense of the Lax-Milgram lemma [Trö10, Lemma 2.2]. Therefore, we know from

[Trö10, Lemma 2.35] that the operator 𝐴 : X → X∗ defined by

⟨𝐴𝑦,𝜑⟩Y∗,Y = 𝑎(𝑦, 𝜑) for all 𝑦, 𝜑 ∈ X (6.3.35)

is linear, continuous, and bijective, and the inverse operator 𝐴−1
: X∗ → X is continuous

95

6 Applications

as well. For the same reason, the operator 𝐵 : U → X∗ defined by

⟨𝐵𝑢, 𝜑⟩Y∗,Y =

∫
Ξ

∫
Ω
𝑢 (𝑥)𝜑 (b, 𝑥) d𝑥 dP(b) for all 𝑢 ∈ U, 𝜑 ∈ X (6.3.36)

is linear and continuous. The PDE, which induces the weak form (6.3.15), can then be

expressed as

𝑒 (𝑦,𝑢) := 𝐴𝑦 −𝐶 ˆ𝑓 − 𝐵𝑢 = 0 ∈ X∗ (6.3.37)

for all 𝑢 ∈ U and 𝑦 ∈ Y, where
ˆ𝑓 ∈ X is defined by

ˆ𝑓 (b) (𝑥) := 𝑓

(
ˆb (b), 𝑥

)
and 𝐶 is some

linear operator mapping
ˆ𝑓 into X∗. Consequently, the solution operator can be written

as

𝑢 ↦→ 𝑆 (𝑢) = 𝐴−1𝐵𝑢 +𝐴−1𝐶 ˆ𝑓 (6.3.38)

with the linear and continuous operator𝐴−1𝐵 : U → X, hence 𝑆 : U → X is continuous as

well. Furthermore, we already know from the proof of Lemma 6.3.2 that 𝑆 : U → Y ⊂ X
is Lipschitz continuous. Therefore, the representation in (6.3.38) yields that 𝑆 : U → Y is

continuously Fréchet differentiable with derivative

𝑢 ↦→ 𝑆 ′(𝑢) = 𝐴−1𝐵 ∈ L (U,Y) , (6.3.39)

which is independent of 𝑢 ∈ U.

Together with the continuous Fréchet differentiability of 𝐽 , we can apply the chain rule

[CV20, Theorem 2.7] again, which yields that 𝐾 = 𝐽 ◦ 𝑆 is Fréchet differentiable with

𝐾 ′(𝑢) = 𝐽 ′
(
𝑆 (𝑢)

)
◦ 𝑆 ′(𝑢) (6.3.40)

for all 𝑢 ∈ U. Since 𝐽 and 𝑆 are continuously Fréchet differentiable, 𝐾 ′ is the composition

of continuous functions and as such continuous as well. □

In the following lemma, we show that Assumption 4.4.2 is also satisfied globally.

Lemma 6.3.4 (Lipschitz Continuity of 𝐾 ′)

The mapping 𝐾 ′ : U → L (U,V) with 𝐾 : U → V as defined in (6.3.7) is Lipschitz

continuous.

Proof: We have already seen in the proof of Lemma 6.3.3 that the PDE solution operator

𝑆 : U → Y is continuously Fréchet differentiable with derivative 𝑢 ↦→ 𝑆 ′(𝑢) = 𝐴−1𝐵 ∈
L (U,Y) independent of 𝑢 ∈ U. The proof of Lemma 6.3.3 further shows that

𝐾 ′(𝑢) = 𝐽 ′
(
𝑆 (𝑢)

)
◦ 𝑆 ′(𝑢) = 𝐽 ′

(
𝑆 (𝑢)

)
◦𝐴−1𝐵 (6.3.41)

for all 𝑢 ∈ U.

Therefore, we focus on the Lipschitz continuity of 𝑢 ↦→ 𝐽 ′
(
𝑆 (𝑢)

)
∈ L (Y,V). Due to the

definition in (6.3.20), we have

𝐽 ′
(
𝑆 (𝑢)

)
𝑦 = ⟨𝑆 (𝑢) (·) − 1, 𝑦 (·)⟩𝐿2 (Ω) (6.3.42)

for all 𝑦 ∈ Y. Let now 𝑢,𝑢′ ∈ U. The definition of the operator norm yields

96

6.3 Elliptic Equation with a Discontinuous Coefficient

 𝐽 ′ (𝑆 (𝑢)) − 𝐽 ′ (𝑆 (𝑢′))
L(Y,V)

= sup

𝑦∈Y
∥ 𝑦 ∥Y=1

 ⟨𝑆 (𝑢) (·) − 𝑆 (𝑢′) (·), 𝑦 (·)⟩𝐿2 (Ω)

V

≤ sup

𝑦∈Y
∥ 𝑦 ∥Y=1

(∫
Ξ
∥ 𝑆 (𝑢) (b) − 𝑆 (𝑢′) (b) ∥2𝐿2 (Ω) ∥ 𝑦 (b) ∥

2

𝐿2 (Ω) dP(b)
)

1/2
,

(6.3.43)

where we have used the Cauchy-Schwarz inequality. Using Hölder’s inequality, we can

further estimate

sup

𝑦∈Y
∥ 𝑦 ∥Y=1

(∫
Ξ
∥ 𝑆 (𝑢) (b) − 𝑆 (𝑢′) (b) ∥2𝐿2 (Ω) ∥ 𝑦 (b) ∥

2

𝐿2 (Ω) dP(b)
)

1/2

≤ sup

𝑦∈Y
∥ 𝑦 ∥Y=1

(∫
Ξ
∥ 𝑆 (𝑢) (b) − 𝑆 (𝑢′) (b) ∥4𝐿2 (Ω) dP(b)

)
1/4 (∫

Ξ
∥ 𝑦 (b) ∥4

𝐿2 (Ω) dP(b)
)

1/4

≤ sup

𝑦∈Y
∥ 𝑦 ∥Y=1

∥ 𝑆 (𝑢) − 𝑆 (𝑢′) ∥Y ∥ 𝑦 ∥Y

= ∥ 𝑆 (𝑢) − 𝑆 (𝑢′) ∥Y ,
(6.3.44)

where we have used Theorem 2.6.3 (Sobolev Embedding) for the last inequality. We know

from the proof of Lemma 6.3.2 that 𝑆 : U → Y is Lipschitz continuous, hence we can

combine (6.3.43) and (6.3.44) to see that there exists some constant 𝐿′ > 0 such that 𝐽 ′ (𝑆 (𝑢)) − 𝐽 ′ (𝑆 (𝑢′))
L(Y,V) ≤ 𝐿

′ ∥ 𝑢 − 𝑢′ ∥U (6.3.45)

for all 𝑢,𝑢′ ∈ U. Together with the representation of 𝑆 ′(𝑢) in (6.3.41), we can estimate

∥ 𝐾 ′(𝑢) − 𝐾 ′(𝑢′) ∥L(U,V)

= sup

�̃�∈U
∥ �̃� ∥U=1

 (
𝐾 ′(𝑢) − 𝐾 ′(𝑢′)

)
�̃�

V

= sup

�̃�∈U
∥ �̃� ∥U=1

 (
𝐽 ′

(
𝑆 (𝑢)

)
− 𝐽 ′

(
𝑆 (𝑢′)

))
𝐴−1𝐵�̃�

V

≤
 𝐽 ′ (𝑆 (𝑢)) − 𝐽 ′ (𝑆 (𝑢′))

L(Y,V)
𝐴−1𝐵

L(U,Y) sup

�̃�∈U
∥ �̃� ∥U=1

∥ �̃� ∥U

≤ 𝐿 ∥ 𝑢 − 𝑢′ ∥U

(6.3.46)

for all 𝑢,𝑢′ ∈ U, where 𝐿 := 𝐿′
𝐴−1𝐵

L(U,Y) > 0 is independent of 𝑢 and 𝑢′. Hence,

𝑢 ↦→ 𝐾 ′(𝑢) is Lipschitz continuous. □

97

6 Applications

The validity of Assumption 4.4.4, which leads to the three-point condition on 𝐾 in Lemma 4.4.5,

is proven in the following lemma.

Lemma 6.3.5

Let 𝐾 : U → V as defined in (6.3.7). For given 𝛾𝐺 ∈ [0, 𝛼) there exist a constant 𝛾U > 0

such that

(𝛼 − 𝛾𝐺) ∥ 𝑢 − 𝑢′ ∥2U +
〈(
𝐾 ′(𝑢) − 𝐾 ′ (𝑢′)

)
(𝑢 − 𝑢′) , 𝑣

〉
V ≥ 𝛾U ∥ 𝑢 − 𝑢

′ ∥2U

for all 𝑢,𝑢′ ∈ U and 𝑣 ∈ V .

Proof: Since Y ∋ 𝑦 ↦→ 𝐽 (𝑦, b) is convex for all b ∈ Ξ, this is also true for Y ∋ 𝑦 ↦→
𝐽 (𝑦) (b). Furthermore, we know from (6.3.37) that the PDE solution operator U ∋ 𝑢 ↦→
𝑆 (𝑢) = 𝐴−1𝐵𝑢 + 𝐴−1𝐶 ˆ𝑓 is affine. Therefore, 𝐾 is pointwise convex, i.e. the mapping

U ∋ 𝑢 ↦→ 𝐽
(
𝑆 (𝑢)

)
(b) = 𝐾 (𝑢) (b) is convex for all b ∈ Ξ. Now let 𝐹𝑣 : U → R for all 𝑣 ∈ V

be defined by

𝐹𝑣 (𝑢) := ⟨𝐾 (𝑢), 𝑣⟩V (6.3.47)

for all𝑢 ∈ U. Due to the pointwise convexity of𝐾 as well as the monotonicity and linearity

of the integral, we can estimate

𝐹𝑣
(
\𝑢 + (1 − \)𝑢′

)
=

∫
Ξ
𝐾

(
\𝑢 + (1 − \)𝑢′

)
(b)𝑣 (b) dP(b)

≤
∫
Ξ

(
\
(
𝐾 (𝑢) (b)𝑣 (b)

)
+ (1 − \)

(
𝐾 (𝑢′) (b)𝑣 (b)

))
dP(b)

= \𝐹𝑣 (𝑢) + (1 − \)𝐹𝑣 (𝑢′)

(6.3.48)

for all 𝑢,𝑢′ ∈ U and \ ∈ [0, 1], hence 𝐹𝑣 is convex for all 𝑣 ∈ V . We know from Sec-

tion 2.2.4 that, in this case, 𝑢 ↦→ 𝜕𝐹𝑣 (𝑢) is monotone. Since 𝐹𝑣 is differentiable with

𝐹 ′𝑣 (𝑢) = ⟨𝐾 ′(𝑢) (·), 𝑣⟩V ∈ L (U,R) for all 𝑢 ∈ U, this means that that 𝑢 ↦→
{
𝐹 ′𝑣 (𝑢)

}
is monotone for all 𝑣 ∈ V , i.e.〈

𝐹 ′𝑣 (𝑢) − 𝐹 ′𝑣 (𝑢′), 𝑢 − 𝑢′
〉
U∗,U =

〈(
𝐾 ′(𝑢) − 𝐾 ′(𝑢′)

)
(𝑢 − 𝑢′), 𝑣

〉
V ≥ 0 (6.3.49)

for all 𝑢,𝑢′ ∈ U and 𝑣 ∈ V . Since 𝛼 > 𝛾𝐺 , there exists 𝛾U > 0 such that 𝛼 − 𝛾𝐺 ≥ 𝛾U ,

which proves the asserted inequality. □

The lemma shows that Assumption 4.4.4 holds globally with 𝛾𝐺 := 𝛼 , if 𝛾𝐺 < 𝛾𝐺 . However, this

is only a minor restriction since the exact choice of 𝛾𝐺 only has an impact on the acceleration

due to the strong convexity of 𝐺 and does not affect the convergence of the algorithm.

6.3.3 PDE Discretization

As in Section 5.1, let 𝑆 ∈ N and

{
b 𝑗 ∈ Λ

�� 𝑗 ∈ {1, . . . , 𝑆}} be the set of samples from the random

variable
ˆb . For all 𝑗 ∈ {1, . . . , 𝑆} we consider the weak form of (6.3.2) with fixed _ := b 𝑗 , which

reads

𝑎b 𝑗 (𝑦, 𝜑) = 𝐹b 𝑗 (𝜑) for all 𝜑 ∈ 𝐻 1

0
(Ω) (6.3.50)

98

6.3 Elliptic Equation with a Discontinuous Coefficient

for the state 𝑦 = 𝑦
(
b 𝑗

)
∈ 𝐻 1

0
(Ω), where

𝑎b 𝑗 (𝑦, 𝜑) :=

∫
Ω
𝜖
(
b 𝑗 , 𝑥

)
𝜕𝑥𝑦 (𝑥)𝜕𝑥𝜑 (𝑥) d𝑥 (6.3.51)

and

𝐹b 𝑗 (𝜑) :=

∫
Ω

(
𝑓

(
b 𝑗 , 𝑥

)
+ 𝑢 (𝑥)

)
𝜑 (𝑥) d𝑥 . (6.3.52)

The PDE (6.3.2) is discretized using the finite element method, following [Cla21], with inner grid

points 𝑥1, . . . , 𝑥𝑁 ∈ Ω (𝑁 ∈ N) such that

−1 =: 𝑥0 < 𝑥1 < · · · < 𝑥𝑁+1 := 1. (6.3.53)

For the approximation by piecewise linear polynomials, we define

S :=
{
𝑣 ∈ 𝐶0(Ω)

�� 𝑣 | [𝑥𝑖−1,𝑥𝑖] ∈ 𝑃1 for all 𝑖 ∈ {1, . . . , 𝑁 + 1}
}

(6.3.54)

as well as

S𝐵𝐶 :=
{
𝑣 ∈ 𝐶0(Ω)

�� 𝑣 | [𝑥𝑖−1,𝑥𝑖] ∈ 𝑃1 for all 𝑖 ∈ {1, . . . , 𝑁 + 1} , 𝑣 (−1) = 𝑣 (1) = 0

}
, (6.3.55)

where 𝑃1 is the space of all linear polynomials. The subscript BC stands for boundary condition
and means that functions in S𝐵𝐶 automatically satisfy the boundary condition (6.3.2b). Obvi-

ously, we have S𝐵𝐶 ⊂ S. A basis (𝜑0, . . . , 𝜑𝑁+1) of S is given by the linear B-splines

𝜑𝑖 : Ω → R, 𝑥 ↦→ 𝜑𝑖 (𝑥) :=

𝑥−𝑥𝑖−1

𝑥𝑖−𝑥𝑖−1

, 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖),
𝑥𝑖+1−𝑥
𝑥𝑖+1−𝑥𝑖 , 𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1],

0, else,

(6.3.56)

for all 𝑖 ∈ {1, . . . , 𝑁 }, as well as

𝜑0 : Ω → R, 𝑥 ↦→ 𝜑0(𝑥) :=

𝑥1−𝑥
𝑥1−𝑥0

, 𝑥 ∈ [𝑥0, 𝑥1],

0, else,

(6.3.57)

and

𝜑𝑁+1 : Ω → R, 𝑥 ↦→ 𝜑𝑁+1(𝑥) :=

𝑥−𝑥𝑁

𝑥𝑁 +1−𝑥𝑁 , 𝑥 ∈ [𝑥𝑁 , 𝑥𝑁+1),

0, else.

(6.3.58)

A basis of S𝐵𝐶 is then given by (𝜑1, . . . , 𝜑𝑁). Therefore, it is sufficient to require equation (6.3.50)

only for these basis functions, i.e. for each scenario 𝑗 ∈ {1, . . . , 𝑆} we need to find a 𝑦 𝑗 ∈ S𝐵𝐶
such that

𝑎b 𝑗
(
𝑦 𝑗 , 𝜑𝑖

)
= 𝐹b 𝑗 (𝜑𝑖) for all 𝑖 ∈ {1, . . . , 𝑁 } . (6.3.59)

For a given 𝑦 𝑗 ∈ S𝐵𝐶 , let y𝑗 := (𝑦1, 𝑗 , . . . , 𝑦𝑁,𝑗)⊤ ∈ R𝑁 be the vector of the coefficients of 𝑦 𝑗 with

respect to the basis functions, i.e.

𝑦 𝑗 =
𝑁∑︁
𝑖=1

𝑦𝑖, 𝑗𝜑𝑖 for all 𝑗 ∈ {1, . . . , 𝑆} . (6.3.60)

99

6 Applications

Since 𝜑𝑖 (𝑥𝑖) = 1 and 𝜑𝑘 (𝑥𝑖) = 0 for all 𝑖, 𝑘 ∈ {1, . . . , 𝑁 } with 𝑘 ≠ 𝑖 , the coefficients 𝑦1, 𝑗 , . . . , 𝑦𝑁,𝑗
of the approximate solution 𝑦 𝑗 ∈ S𝐵𝐶 to (6.3.59) are, at the grid points, equal to the function

values of the true solution 𝑦
(
b 𝑗

)
∈ 𝐻 1

0
(Ω) to (6.3.50), i.e.

𝑦 𝑗 (𝑥𝑖) = 𝑦𝑖, 𝑗 = 𝑦
(
b 𝑗

)
(𝑥𝑖) for all 𝑖 ∈ {1, . . . , 𝑁 } . (6.3.61)

The functions 𝑓 : Λ × Ω → R and 𝑢 : Ω → R are discretized the same way, i.e. the vectors

(𝑓0, 𝑗 , · · · , 𝑓𝑁+1, 𝑗)⊤ ∈ R𝑁+2, and (𝑢0, . . . , 𝑢𝑁+1)⊤ ∈ R𝑁+2 (6.3.62)

contain the coefficients with respect to the basis of S such that

𝑓
(
b 𝑗 , 𝑥

)
≈
𝑁+1∑︁
𝑖=0

𝑓𝑖, 𝑗𝜑𝑖 (𝑥) and 𝑢 (𝑥) ≈
𝑁+1∑︁
𝑖=0

𝑢𝑖𝜑𝑖 (𝑥) (6.3.63)

for all 𝑗 ∈ {1, . . . , 𝑆} and 𝑥 ∈ Ω. Since 𝑓 and 𝑢 do not have to satisfy the boundary condition, we

need the basis functions 𝜑0 and 𝜑𝑁+1 here, too. However, we will primarily use the coefficients

with respect to the basis of S𝐵𝐶 in the following, which is why we define

f𝑗 := (𝑓1, 𝑗 , · · · , 𝑓𝑁,𝑗)⊤ ∈ R𝑁 and u := (𝑢1, . . . , 𝑢𝑁)⊤ ∈ R𝑁 . (6.3.64)

Furthermore, we define the so called stiffness matrix 𝐷 𝑗 :=

((
𝐷 𝑗

)
𝑖,𝑘

)
𝑖,𝑘∈{1,...,𝑁 }

∈ R𝑁×𝑁 by(
𝐷 𝑗

)
𝑖,𝑘

:= 𝑎b 𝑗 (𝜑𝑖 , 𝜑𝑘) (6.3.65)

for all 𝑖, 𝑘 ∈ {1, . . . , 𝑁 } and 𝑗 ∈ {1, . . . , 𝑆}, which is self-adjoint due to the symmetry of 𝑎b 𝑗 . Then,

equation (6.3.59) is approximated by

𝐷 𝑗y𝑗 = 𝑀
(
f𝑗 + u

)
. (6.3.66)

Here, 𝑀 := (𝑀𝑖,𝑘)𝑖,𝑘∈{1,...,𝑁 } ∈ R𝑁×𝑁 refers to the mass matrix, which is defined by

𝑀𝑖,𝑘 := ⟨𝜑𝑖 , 𝜑𝑘⟩U (6.3.67)

for all 𝑖, 𝑘 ∈ {1, . . . , 𝑁 }, and which is obviously self-adjoint. Note that, on the right hand side of

(6.3.66), we have used that 𝑓 and 𝑢 are approximated by piecewise linear functions, i.e.

𝑓
(
b 𝑗 , 𝑥

)
+ 𝑢 (𝑥) =

𝑁∑︁
𝑖=1

(
𝑓𝑖, 𝑗 + 𝑢𝑖

)
𝜑𝑖 (𝑥) (6.3.68)

for all 𝑥 ∈ Ω and scenarios 𝑗 ∈ {1, . . . , 𝑆}.

We assume that 𝜖 : Λ × Ω → R is constant between each pair of adjacent grid points, i.e.

𝜖
(
b 𝑗 , 𝑥

)
= 𝜖

(
b 𝑗 , 𝑥𝑖

)
=: 𝜖𝑖, 𝑗 (6.3.69)

for all 𝑥 ∈ (𝑥𝑖−1, 𝑥𝑖] and all 𝑖 ∈ {1, . . . , 𝑁 + 1}. With this assumption, we can easily compute

the entries of 𝐷 𝑗 for the particular basis functions given in (6.3.56). Let 𝑗 ∈ {1, . . . , 𝑆}. For every

𝑖 ∈ {1, . . . , 𝑁 } we have

100

6.3 Elliptic Equation with a Discontinuous Coefficient

(
𝐷 𝑗

)
𝑖,𝑖

=

∫
Ω
𝜖
(
b 𝑗 , 𝑥

)
(𝜕𝑥𝜑𝑖 (𝑥))2 d𝑥

=

∫ 𝑥𝑖

𝑥𝑖−1

𝜖
(
b 𝑗 , 𝑥𝑖

) (
1

𝑥𝑖 − 𝑥𝑖−1

)
2

d𝑥 +
∫ 𝑥𝑖+1

𝑥𝑖

𝜖
(
b 𝑗 , 𝑥𝑖+1

) (
1

𝑥𝑖+1 − 𝑥𝑖

)
2

d𝑥

=
𝜖𝑖, 𝑗

Δ𝑥𝑖
+
𝜖𝑖+1, 𝑗
Δ𝑥𝑖+1

(6.3.70)

withΔ𝑥𝑖 := 𝑥𝑖−𝑥𝑖−1 for all 𝑖 ∈ {2, . . . , 𝑁 }. To compute the minor diagonal of𝐷 𝑗 , let 𝑖 ∈ {2, . . . , 𝑁 }.
Due to symmetry we have(

𝐷 𝑗
)
𝑖,𝑖−1

=
(
𝐷 𝑗

)
𝑖−1,𝑖

=

∫
Ω
𝜖
(
b 𝑗 , 𝑥

)
𝜕𝑥𝜑𝑖 (𝑥)𝜕𝑥𝜑𝑖−1(𝑥) d𝑥

= −
∫ 𝑥𝑖

𝑥𝑖−1

𝜖
(
b 𝑗 , 𝑥𝑖

) (
1

𝑥𝑖 − 𝑥𝑖−1

)
2

d𝑥

= −
𝜖𝑖, 𝑗

Δ𝑥𝑖
. (6.3.71)

All remaining entries of𝐷 𝑗 are zero since the corresponding basis functions have no overlapping

region where they are both non-zero. Similarly, we obtain

𝑀𝑖,𝑖 = ⟨𝜑𝑖 , 𝜑𝑖⟩U =
Δ𝑥𝑖 + Δ𝑥𝑖+1

3

for all 𝑖 ∈ {1, . . . , 𝑁 } , (6.3.72)

𝑀𝑖,𝑖−1 = 𝑀𝑖−1,𝑖 = ⟨𝜑𝑖 , 𝜑𝑖−1⟩U =
Δ𝑥𝑖
6

for all 𝑖 ∈ {2, . . . , 𝑁 } , (6.3.73)

using integration by substitution. Since𝐷 𝑗 is symmetric and positive definite for all 𝑗 ∈ {1, . . . , 𝑆},
equation (6.3.66) can be written as

y𝑗 = 𝐷−1

𝑗 𝑀
(
f𝑗 + u

)
. (6.3.74)

6.3.4 Function Discretization

We recall from the description of Algorithm 4.1 that the functions involved in iteration 𝑘 ∈ N,

which we discretize in the following, are

prox
Σ𝑘
CVaR

∗
𝛽

: V → V, prox
𝑇𝑘
𝐺

: U →U, (6.3.75)

�̂�𝑘 : U → V, and �̂� ′
𝑘
(·)∗ : U → L (V,U) . (6.3.76)

As we have seen in (5.4.1), the proximal operator of CVaR
∗
𝛽

is independent of the scalar step size

operator Σ𝑘 and reads

prox
CVaR

∗
𝛽
(z) = projΔ (z), (6.3.77)

where

Δ :=

{
y ∈ R𝑆

���� y⊤1 = 1 and 0 ≤ 𝑦 𝑗 ≤
1

(1 − 𝛽)𝑆 for all 𝑗 ∈ {1, . . . , 𝑆}
}

(6.3.78)

is the bounded probability simplex.

101

6 Applications

In order to derive the explicit form of prox
𝑇𝑘
𝐺

for iteration 𝑘 ∈ N, we define the function𝜙𝑢
𝑘

: U →
R by

𝑧 ↦→ 𝜙𝑢
𝑘
(𝑧) :=

1

2

∥ 𝑧 − 𝑢 ∥2
𝑇 −1

𝑘

+ 𝛼
2

∥ 𝑧 ∥2U (6.3.79)

for a given 𝑢 ∈ U with 𝛼 as above. Definition 2.2.14 (Weighted Proximal Operator) yields

prox
𝑇𝑘
𝐺
(𝑢) = arg min

𝑧∈U

(
𝜙𝑢
𝑘
(𝑧) + 𝛿U𝑎𝑑

(𝑧)
)

(6.3.80)

for all 𝑢 ∈ U. Let 𝑢 ∈ U be the minimum on the right-hand side, which satisfies the Fermat

principle in Theorem 2.2.3, i.e.

0 ∈ 𝜕
(
𝜙𝑢
𝑘
+ 𝛿U𝑎𝑑

)
(𝑢) = 𝜕𝜙𝑢

𝑘
(𝑢) + 𝜕𝛿U𝑎𝑑

(𝑢), (6.3.81)

where we have used the sum rule with equality [CV20, Theorem 4.14]. Since 𝜙𝑢
𝑘

is Gâteaux

differentiable with derivative

D𝜙𝑢
𝑘
(𝑧) = ⟨𝑧 − 𝑢, ·⟩𝑇 −1

𝑘
+ 𝛼 ⟨𝑧, ·⟩U

= ⟨(Id + 𝛼𝑇𝑘)𝑧 − 𝑢, ·⟩𝑇 −1

𝑘
∈ U∗

(6.3.82)

for all 𝑧 ∈ U, and 𝑇𝑘 = 𝜏𝑘 Id is positive definite, condition (6.3.81) is satisfied if

−𝑢∗ ∈ 𝜕𝛿U𝑎𝑑
(𝑢), (6.3.83)

where 𝑢∗ ∈ U is the Riesz representation of ⟨(Id + 𝛼𝑇𝑘)𝑢 − 𝑢, ·⟩U ∈ U∗. Due to Lemma 2.2.15,

this is equivalent to

𝑢 = prox
Γ
𝛿U𝑎𝑑
(𝑢 − Γ𝑢∗) (6.3.84)

for some self-adjoint and strongly monotone operator Γ ∈ L (U,U). Especially, if we set Γ :=

(Id + 𝛼𝑇𝑘)−1 = (1 + 𝛼𝜏𝑘)−1
Id and use the fact that prox

Γ
𝛿U𝑎𝑑

is the projection ontoU𝑎𝑑 , we get

𝑢 = projU𝑎𝑑

(
(1 + 𝛼𝜏𝑘)−1𝑢

)
. (6.3.85)

Plugging this into (6.3.80) and using the explicit form of the projection in [Ceg12, Section 4.1.6]

yields

prox
𝑇𝑘
𝐺
(𝑢) = max

{
min

{
(1 + 𝛼𝜏𝑘)−1𝑢,𝑢𝑏

}
, 𝑢𝑎

}
, (6.3.86)

for all 𝑢 ∈ U, i.e.

(
prox

𝑇𝑘
𝐺
(𝑢)

)
(𝑥) =

𝑢𝑎 (𝑥), if

(
(1 + 𝛼𝜏𝑘)−1𝑢

)
(𝑥) < 𝑢𝑎 (𝑥),

(1 + 𝛼𝜏𝑘)−1𝑢 (𝑥), if 𝑢𝑎 (𝑥) ≤
(
(1 + 𝛼𝜏𝑘)−1𝑢

)
(𝑥) ≤ 𝑢𝑏 (𝑥),

𝑢𝑏 (𝑥), if

(
(1 + 𝛼𝜏𝑘)−1𝑢

)
(𝑥) > 𝑢𝑏 (𝑥),

(6.3.87)

for all 𝑢 ∈ U and 𝑥 ∈ Ω. The 𝑖-th component of the discretization prox
𝑇𝑘
𝐺

: R𝑁 → R𝑁 with

𝑇𝑘 = 𝜏𝑘 Id is therefore given by(
prox

𝑇𝑘
𝐺
(u)

)
𝑖
= max

{
min

{
(1 + 𝛼𝜏𝑘)−1𝑢𝑖 , 𝑢

𝑏
𝑖

}
, 𝑢𝑎𝑖

}
(6.3.88)

for all 𝑖 ∈ {1, . . . , 𝑁 } and u = (𝑢1, . . . , 𝑢𝑁) ∈ R𝑁 , where 𝑢𝑎𝑖 := 𝑢𝑎 (𝑥𝑖) and 𝑢𝑏𝑖 := 𝑢𝑏 (𝑥𝑖).

102

6.3 Elliptic Equation with a Discontinuous Coefficient

In order to derive the discretization of �̂� ′
𝑘

and �̂� ′
𝑘
(·)∗ as defined in (4.1.5) and (4.1.6), respectively,

we recall from (6.2.3) that

Π𝐴 (v) 𝑗 =

𝑣 𝑗 , if 𝑗 ∈ 𝐴,

0, if 𝑗 ∉ 𝐴,
(6.3.89)

for all v = (𝑣1, . . . , 𝑣𝑆) ∈ R𝑆 , 𝐴 ⊂ {1, . . . , 𝑆}, and 𝑗 ∈ {1, . . . , 𝑆}. Therefore, we only need to focus

on the discretization of 𝐾 and 𝐾 ′(·)∗, since they are independent of the projection onto 𝐴.

Let 𝑗 ∈ {1, . . . , 𝑆}. We can write the 𝑗-th component of 𝐾 as

𝐾 (𝑢) 𝑗 =
1

2

 𝑦 (
b 𝑗 , ·;𝑢

)
− 1

2

U

=
1

2

∫
Ω

(
𝑦

(
b 𝑗 , 𝑥 ;𝑢

)
− 1

)
2

d𝑥

≈ 1

2

𝑁+1∑︁
𝑖=1

∫ 𝑥𝑖

𝑥𝑖−1

(
𝑦𝑖−1, 𝑗𝜑𝑖−1(𝑥) + 𝑦𝑖, 𝑗𝜑𝑖 (𝑥) − 1

)
2

d𝑥

=
𝑁+1∑︁
𝑖=1

1

2Δ𝑥𝑖

∫ 𝑥𝑖

𝑥𝑖−1

((
𝑦𝑖−1, 𝑗 − 1

)
𝑥𝑖 −

(
𝑦𝑖, 𝑗 − 1

)
𝑥𝑖−1 +

(
𝑦𝑖, 𝑗 − 𝑦𝑖−1, 𝑗

)
𝑥

)
2

d𝑥

=: 𝐾 (u) 𝑗

(6.3.90)

for all 𝑢 ∈ U with 𝑦0, 𝑗 = 𝑦𝑁+1, 𝑗 = 0 due to the boundary condition (6.3.2b). Using integration by

substitution, we get

𝐾 (u) 𝑗 =
1

6

𝑁+1∑︁
𝑖=1

Δ𝑥𝑖
𝑦𝑖, 𝑗 − 𝑦𝑖−1, 𝑗

((
𝑦𝑖, 𝑗 − 1

)
3 −

(
𝑦𝑖−1, 𝑗 − 1

)
3

)
=

1

6

𝑁+1∑︁
𝑖=1

Δ𝑥𝑖
((
𝑦𝑖, 𝑗 − 1

)
2 +

(
𝑦𝑖, 𝑗 − 1

) (
𝑦𝑖−1, 𝑗 − 1

)
+

(
𝑦𝑖−1, 𝑗 − 1

)
2

)
,

(6.3.91)

where we have used that 𝑎3 − 𝑏3 =
(
𝑎2 + 𝑎𝑏 + 𝑏2

)
(𝑎 − 𝑏) for all 𝑎, 𝑏 ∈ R. In order to discretize

𝐾 ′(·)∗, let 𝑦 ′
(
b 𝑗 ;𝑢

)
: U → 𝐻 1

0
be the Fréchet derivative ofU ∋ 𝑢′ ↦→ 𝑦 (𝑢′)

(
b 𝑗

)
in 𝑢 ∈ U. We

can derive from equation (6.3.74) that(
𝑦 ′(b 𝑗 ;𝑢)ℎ

)
(𝑥𝑖) ≈

(
𝐷−1

𝑗 𝑀h
)
𝑖
=: 𝑦 ′𝑖, 𝑗 ∈ R (6.3.92)

for every 𝑖 ∈ {1, . . . , 𝑁 } and ℎ ∈ U with h :=
(
ℎ(𝑥1), . . . , ℎ(𝑥𝑁)

)⊤ ∈ R𝑁 . Together with (6.3.91),

it follows that the 𝑗-th component of the Fréchet derivative 𝐾 ′(𝑢) 𝑗 : U → R is approximated for

all ℎ ∈ U by

𝐾 ′(𝑢) 𝑗ℎ ≈
1

6

𝑁+1∑︁
𝑖=1

Δ𝑥𝑖
(
2

(
𝑦𝑖, 𝑗 − 1

)
𝑦 ′𝑖, 𝑗 + 𝑦 ′𝑖, 𝑗

(
𝑦𝑖−1, 𝑗 − 1

)
+

(
𝑦𝑖, 𝑗 − 1

)
𝑦 ′𝑖−1, 𝑗 + 2

(
𝑦𝑖−1, 𝑗 − 1

)
𝑦 ′𝑖−1, 𝑗

)
=

1

6

𝑁+1∑︁
𝑖=1

Δ𝑥𝑖
((

2𝑦𝑖, 𝑗 + 𝑦𝑖−1, 𝑗 − 3

)
𝑦 ′𝑖, 𝑗 +

(
2𝑦𝑖−1, 𝑗 + 𝑦𝑖, 𝑗 − 3

)
𝑦 ′𝑖−1, 𝑗

)
=: 𝐾 ′(u) 𝑗h.

(6.3.93)

103

6 Applications

Using 𝑦 ′
0, 𝑗 = 𝑦

′
𝑁+1, 𝑗 = 0 and rearranging yields

𝐾 ′(u) 𝑗h = 𝑋⊤𝑗 y
′
𝑗 , (6.3.94)

where y′𝑗 :=

(
𝑦 ′

1, 𝑗 , . . . , 𝑦
′
𝑁,𝑗

)⊤
∈ R𝑁 and

𝑋 𝑗 :=
1

6

©«

Δ𝑥1

(
2𝑦1, 𝑗 − 3

)
+ Δ𝑥2

(
2𝑦1, 𝑗 + 𝑦2, 𝑗 − 3

)
Δ𝑥2

(
2𝑦2, 𝑗 + 𝑦1, 𝑗 − 3

)
+ Δ𝑥3

(
2𝑦2, 𝑗 + 𝑦3, 𝑗 − 3

)
...

Δ𝑥𝑁−1

(
2𝑦𝑁−1, 𝑗 + 𝑦𝑁−2, 𝑗 − 3

)
+ Δ𝑥𝑁

(
2𝑦𝑁−1, 𝑗 + 𝑦𝑁,𝑗 − 3

)
Δ𝑥𝑁

(
2𝑦𝑁,𝑗 + 𝑦𝑁−1, 𝑗 − 3

)
+ Δ𝑥𝑁+1

(
2𝑦𝑁,𝑗 − 3

)

ª®®®®®®®®®®®¬
∈ R𝑁 . (6.3.95)

It follows from (6.3.92) that

𝐾 ′(u) 𝑗 = 𝑋⊤𝑗 𝐷−1

𝑗 𝑀 (6.3.96)

for all 𝑗 ∈ {1, . . . , 𝑆}, and transposing the matrix with rows

{
𝐾 ′(u) 𝑗

�� 𝑗 ∈ {1, . . . , 𝑆}} yields the

adjoint operator of 𝐾 ′(u), i.e.

𝐾 ′(u)∗ =
(
𝑀𝐷−1

1
𝑋1 · · · 𝑀𝐷−1

𝑆
𝑋𝑆

)
∈ R𝑁×𝑆 . (6.3.97)

Although we do not need a discretization of the objective function for the algorithm itself, it is

still reasonable to consider the progression of the objective function value when investigating

the convergence in Section 6.3.6. Without loss of generality, let z = (𝑧1, . . . , 𝑧𝑆) ∈ R𝑆 be an

ordered vector, i.e. 𝑧1 ≤ · · · ≤ 𝑧𝑆 . In order to find an expression for CVaR𝛽 (z), we consider a

discrete random variable 𝑧 : Ξ→ {𝑧1, . . . , 𝑧𝑆 } with uniform distribution. This means that

P
({
b ∈ Ξ

�� 𝑧 (b) = 𝑧 𝑗 })
= 𝑆−1

(6.3.98)

for all 𝑗 ∈ {1, . . . , 𝑆}, hence the distribution function is

𝐹𝑧 (𝛼) = 𝑆−1

𝑆∑︁
𝑗=1

𝜒 (−∞,𝛼] (𝑧 𝑗) (6.3.99)

for all 𝛼 ∈ R. Definition 2.5.6 then yields for a probability level 𝛽 ∈ (0, 1) that

VaR𝛽 (𝑧) = min {𝛼 ∈ R | 𝐹𝑧 (𝛼) ≥ 𝛽}

= min

{
𝑧 ∈ {𝑧1, . . . , 𝑧𝑆 }

����� 𝑆∑︁
𝑗=1

𝜒 (−∞,𝑧] (𝑧 𝑗) ≥ 𝛽𝑆
}

= min

{
𝑧 ∈ {𝑧1, . . . , 𝑧𝑆 }

����� 𝑆∑︁
𝑗=1

𝜒 (−∞,𝑧] (𝑧 𝑗) = ⌈𝛽𝑆⌉
}

= 𝑧⌈𝛽𝑆 ⌉

(6.3.100)

104

6.3 Elliptic Equation with a Discontinuous Coefficient

due to the ascending order of z. With Proposition 2.5.11 (iv) and𝑚 := ⌈𝛽𝑆⌉, we get

CVaR𝛽 (𝑧) = 𝑧𝑚 +
1

1 − 𝛽E
(
(𝑧 − 𝑧𝑚)+

)
= 𝑧𝑚 +

1

(1 − 𝛽)𝑆
𝑆∑︁
𝑗=1

(
𝑧 𝑗 − 𝑧𝑚

)+
= 𝑧𝑚 +

1

(1 − 𝛽)𝑆
𝑆∑︁

𝑗=𝑚+1

(
𝑧 𝑗 − 𝑧𝑚

)
=
𝑚 − 𝛽𝑆
(1 − 𝛽)𝑆 𝑧𝑚 +

1

(1 − 𝛽)𝑆
𝑆∑︁

𝑗=𝑚+1
𝑧 𝑗 .

(6.3.101)

Therefore, we can use

CVaR𝛽 (z) =
⌈𝛽𝑆⌉ − 𝛽𝑆
(1 − 𝛽)𝑆 𝑧⌈𝛽𝑆 ⌉ +

1

(1 − 𝛽)𝑆
𝑆∑︁

𝑗=⌈𝛽𝑆 ⌉+1
𝑧 𝑗 (6.3.102)

to compute the Conditional Value-at-Risk of a vector z ∈ R𝑆 that is sorted in ascending order.

The function𝐺 can be discretized by calculating the integral in (6.3.6) analogously to (6.3.90) and

(6.3.91), yielding

𝐺 (u) = 𝛼

2

𝑁+1∑︁
𝑖=1

∫ 𝑥𝑖

𝑥𝑖−1

(
𝑢𝑖−1𝜑𝑖−1(𝑥) + 𝑢𝑖𝜑𝑖 (𝑥) − 1

)
2

d𝑥

=
𝛼

6

𝑁+1∑︁
𝑖=1

Δ𝑥𝑖
(
𝑢2

𝑖 + 𝑢𝑖𝑢𝑖−1 + 𝑢2

𝑖−1

) (6.3.103)

for every u ∈ U𝑎𝑑 =
{
𝑧 ∈ R𝑁

�� 𝑢𝑎 (𝑥𝑖) ≤ 𝑧𝑖 ≤ 𝑢𝑏 (𝑥𝑖) for all 𝑖 ∈ {1, . . . , 𝑁 }
}

and 𝑢0 = 𝑢𝑁+1 = 0.

Combining (6.3.91), (6.3.102), and (6.3.103) yields the approximation of the objective function in

(6.3.4), i.e.

𝐹 (u) := CVaR𝛽 (𝐾 (u)) +𝐺 (u) (6.3.104)

for all u ∈ ˜U𝑎𝑑 .

As a comparison, we will also consider a risk-neutral modification of problem (6.3.4) in Sec-

tion 6.3.6, where the Conditional Value-at-Risk is replaced by the expected value. Therefore, we

follow the order in Section 5.1 and discretize E first and determine the proximal operator of the

Fenchel conjugate afterwards. Recall from Section 2.5.2 that the sample average approximation

yields

E (z) = 1

𝑆

𝑆∑︁
𝑗=1

𝑧 𝑗 =
1

𝑆
⟨1, z⟩R𝑆 (6.3.105)

for every z ∈ R𝑆 . According to Definition 2.2.6, the Fenchel conjugate of E is then given by

E∗ (z) = sup

v∈R𝑆

〈
z − 𝑆−11, v

〉
R𝑆 = 𝛿{𝑆−11} (z) (6.3.106)

for every z ∈ R𝑆 . Therefore, Definition 2.2.14 and the independence of the step size𝜎 (see (6.3.77))

yield

proxE∗ (z) = proj{𝑆−11} (z) (6.3.107)

105

6 Applications

for all z ∈ R𝑆 . As we have mentioned in Section 2.5.4, one could also view the expected value as

the Conditional Value-at-Risk for the probability level 𝛽 = 0. This is compliant with the form of

the proximal operator of CVaR
∗
𝛽

presented in (6.3.77), since, in this case, the probability simplex

reads

Δ =
{
y ∈ R𝑆

�� y⊤1 = 1 and 0 ≤ 𝑦 𝑗 ≤ 𝑆−1 ∀𝑗 ∈ {1, . . . , 𝑆}
}
=

{
𝑆−11

}
. (6.3.108)

Therefore, we have

prox
CVaR

∗
0

(z) = proj{𝑆−11} (z) = proxE∗ (z) (6.3.109)

for all z ∈ R𝑆 .

6.3.5 Discrete Algorithm

If we combine the results of Section 6.3.3 and Section 6.3.4, we can formulate a discrete version

of Algorithm 4.1. The primal and dual iterates are denoted by u𝑘 =
(
𝑢𝑘

1
, . . . , 𝑢𝑘

𝑁

)
∈ R𝑁 and

v𝑘 =
(
𝑣𝑘

1
, . . . , 𝑣𝑘

𝑆

)
∈ R𝑁 , respectively. The required inputs are the stopping criterion tolerance

Y > 0, the starting vectors u0 ∈ R𝑁 , v0 ∈ R𝑆 and the initial step size operators 𝑇0 ∈ R𝑁×𝑁 ,

Σ0 ∈ R𝑆×𝑆 . Furthermore, following Section 6.2, we denote by 𝐴𝑘 ∈ A = 2
{1,...,𝑆 }

the set of the

indices in iteration 𝑘 ∈ N0, for which the gradients are not frozen. However, there is no freezing

in the first iteration due to the choice of 𝐴0 := {1, . . . , 𝑆}.

Algorithm 6.2 (Discrete Formulation)

1 Initialize 𝑘 := 0.

2 repeat

3 if 𝑘 ≥ 1 then

4 Randomly select 𝐴𝑘 ∈ A.

5 end

6 Compute y𝑗,𝑘 := 𝐷−1

𝑗 𝑀
(
f𝑗 + u𝑘

)
for every 𝑗 ∈ 𝐴𝑘 .

7 Compute 𝐾 (u𝑘) 𝑗 by (6.3.91) for every 𝑗 ∈ 𝐴𝑘 .

8 v𝑘+1 := prox
CVaR

∗
𝛽

(
v𝑘 + Σ𝑘𝐾 (u𝑘)

)
9 v𝑘+1 := 2v𝑘+1 − v𝑘

10 Compute column 𝑗 of 𝐾 ′(u𝑘)∗ by (6.3.97) for every 𝑗 ∈ 𝐴𝑘 .

11 u𝑘+1 := prox
𝑇𝑘
𝐺

(
u𝑘 −𝑇𝑘𝐾 ′(u𝑘)∗v𝑘+1

)
12 Determine step size operators 𝑇𝑘+1 ∈ R𝑁×𝑁 and Σ𝑘+1 ∈ R𝑆×𝑆 .

13 Update 𝑘 ← 𝑘 + 1.

14 until ∥ 𝑢𝑘 − 𝑢𝑘−1 ∥2 < Y and ∥ 𝑣𝑘 − 𝑣𝑘−1 ∥2 < Y

An implementation of Algorithm 6.2 in Julia can be found in [Ang22, Algorithm.jl].

106

6.3 Elliptic Equation with a Discontinuous Coefficient

6.3.6 Numerical Results

In the following, we present some numerical results using the Julia code provided in [Ang22,

EEDC.jl]. Throughout this section, we define the bounds withinU𝑎𝑑 by −10 and 10, respectively,

i.e.

U𝑎𝑑 =
{
z ∈ R𝑁

�� −10 ≤ 𝑧𝑖 ≤ 10 for all 𝑖 ∈ {1, . . . , 𝑁 }
}
, (6.3.110)

and use the starting vectors

u0 = (0, . . . , 0) ∈ R𝑁 and v0 = (0, . . . , 0) ∈ R𝑆 . (6.3.111)

For a given dual step size 𝜎 > 0, the initial primal step size is defined by

𝜏0 := 0.99 (𝜎𝜌)−1 , (6.3.112)

where 𝜌 is the Rayleigh quotient determined by 5 iterations of Algorithm 6.1 with the matrix

𝐾 ′(u0)𝐾 ′(u0)∗ and the starting vector z0 := 𝑆−21. Note that, although 𝐺 is strongly monotone,

we can not accelerate the algorithm by choosing 𝛾𝐺 > 0 for this particular problem in practice.

However, this allows us to set 𝛾𝐺 := 0 in Lemma 6.3.5, which resolves the conflict with condition

(viii) of Theorem 4.4.14 as discussed at the end of Section 4.4.3.

To give a first impression of the problem, we first present in Figure 6.1 the optimal control and

state of problem (6.3.1) for a probability level of 𝛽 = 0.9, 𝑆 = 1,000 scenarios, and 𝑁 = 256

equidistant grid points. The solution was computed using constant scalar step sizes with 𝜎 = 0.01

and a stopping criterion tolerance of Y = 10
−10

. The big jump in the control around 𝑥 = 0 can

be explained by the change of the PDE coefficient 𝜖 (𝑥) from 0.1 to 10, which appears at some 𝑥

within [−0.1, 0.1].

−1 −0.5 0 0.5 1

0

2

4

𝑥

𝑢
(𝑥
)

(a) Optimal control

−1 −0.5 0 0.5 1

0

0.5

1

1.5

𝑥

𝑦
(𝑥
)

(b) Optimal state (mean ± one and two standard de-

viations)

Figure 6.1: Example of optimal control and state for 𝛽 = 0.9

Figure 6.2 illustrates how the use of the Conditional Value-at-Risk as a risk measure affects the

solution. The blue graph shows the risk-averse control and state for a probability level of 𝛽 = 0.99

and all other parameters as in Figure 6.1. The red graph shows the risk-neutral case where the

Conditional Value-at-Risk is replaced by the expected value as described in (6.3.107). One can see

that, especially in the region where the discontinuity of the coefficient appears, the risk-averse

optimal state has a smaller deviation from its mean than the risk-neutral state. Apparently, this

is achieved by the sharp dip of the risk-averse optimal control around 𝑥 = 0.

107

6 Applications

−1 −0.5 0 0.5 1

−2

0

2

4

𝑥

𝑢
(𝑥
)

(a) Optimal control

−1 −0.5 0 0.5 1

0

0.5

1

1.5

𝑥

𝑦
(𝑥
)

(b) Optimal state (mean (solid) ± two (dotted) stan-

dard deviations)

Figure 6.2: Comparison of risk-averse (𝛽 = 0.99) and risk-neutral case

In the following we examine the convergence behavior for different choices of the probability

level 𝛽 . Figure 6.3 shows how the norm of the difference of successive iterates changes in relation

to the number of solved PDEs. This norm is particularly interesting because it is the norm of the

residual of the fixed-point iteration (4.1.2), which is the basis of our algorithm. The results were

computed using 𝜎 = 0.01 with constant scalar step sizes, 𝑆 = 1,000 scenarios, 𝑁 = 256 grid

points, and a stopping criterion tolerance of Y = 10
−10

. Apparently, in order to reach the required

tolerance, a higher probability level leads to more PDE solves. Interestingly, this behavior is

not visible in Figure 6.4, where the function values approach their asymptotes around the same

number of PDE solves.

10
3

10
4

10
5

10
6

10
7

10
8

10
−10

10
−7

10
−4

10
−1

Number of solved PDEs

∥ u
𝑘
−
u 𝑘
−1
∥ 2

(a) Convergence of primal variable

10
3

10
4

10
5

10
6

10
7

10
−10

10
−7

10
−4

10
−1

Number of solved PDEs

∥ v
𝑘
−
v 𝑘
−1
∥ 2

(b) Convergence of dual variable

Figure 6.3: Convergence behavior for 𝛽 = 0.01, 𝛽 = 0.5, and 𝛽 = 0.99

Before investigating the convergence behavior for different choices of parameters, we briefly

show how the use of Algorithm 5.2 and Algorithm 5.3 can decrease the computation time in

practice. We already mentioned in Section 5.4 that simply checking the condition

𝑗𝑝 +
𝑆∑︁

𝑖=𝑗+1
max{0, 𝑢𝑖 + 𝑝 − 𝑢 𝑗 } ≤ 1 (6.3.113)

for all 𝑗 ∈ {0, . . . , 𝑆} (starting with 𝑗 = 0 until it is not satisfied any more) in order to compute

108

6.3 Elliptic Equation with a Discontinuous Coefficient

the index Z in Algorithm 5.1 can be computationally demanding in some cases. Here, the vector

(𝑢1, . . . , 𝑢𝑆) ∈ R𝑆 does not refer to the control, but to the sorted argument of prox
CVaR

∗
𝛽
, i.e.

𝑢1 ≥ · · · ≥ 𝑢𝑆 . While in the most examples we consider in this section, there is no significant

difference in terms of computation time, we can deliberately choose a combination of parameters

to make the performance difference visible. Solving the problem with parameters 𝑁 = 256,

𝑆 = 1,000, 𝛽 = 0.01, and Y = 10
−10

takes about 89 seconds, if we use the straightforward approach

explained above (using the Julia function findfirst) and constant scalar step sizes with𝜎 = 0.01.

In contrast, using Algorithm 5.2 and Algorithm 5.3 results in a computation time of about 76

seconds, which is about 15% less. An explanation for the difference in this specific case could be

that the combination of 𝑆 and 𝛽 leads to an upper bound of 𝑝 := ((1 − 𝛽)𝑆)−1
in the definition of

the probability simplex (see (6.3.78)) that is close to 0. Therefore, condition (6.3.113) is violated

only for large indices, which means that the repeated checking for the condition takes long when

starting with 𝑗 = 0.

10
3

10
4

10
5

10
6

10
7

10
8

0.4

0.6

0.8

1

Number of solved PDEs

𝐹
(u
𝑘
)

Figure 6.4: Convergence behavior for 𝛽 = 0.01, 𝛽 = 0.5, and 𝛽 = 0.99

Since the core of this work lies in the component-wise gradient freezing (CGF), we show in

the following how this method can reduce the number of PDE solves in Line 6 and Line 10 of

Algorithm 6.2. For the subsequent examples, we also use𝑁 = 256 grid points, 𝑆 = 1,000 scenarios,

Y = 10
−10

, and 𝜎 = 0.01 with constant scalar step sizes as above. First, we note that one way to

save PDE solves could be to modify Line 10 of Algorithm 6.2 such that only the columns of

𝐾 ′(u𝑘)∗ with index 𝑗 ∈ 𝐴𝑘 \ 𝐵𝑘 , where

𝐵𝑘 :=
{
𝑗 ∈ {1, . . . , 𝑆}

�� (v𝑘+1) 𝑗 = 0

}
, (6.3.114)

are computed. The idea is that we do not need these columns in Line 11 because they are multi-

plied with 0 anyway. However, the algorithm changed this way no longer fits into our theoretical

framework, since it uses two different index sets for CGF, which are also not stochastically in-

dependent. However, we present in Table 6.1 how many iterations and PDE solves are required

to reach the stopping criterion tolerance in dependence of the probability level 𝛽 . The number

of iterations is not affected by the use of 𝐵𝑘 . One can see that there is almost no saving in the

number of solved PDEs if 𝛽 is close to 0. However, the larger 𝛽 becomes, the more PDE solves we

can save. In contrast, CGF is able to save more PDE solves if 𝛽 is close to 0, as we will see later.

The reason for this effect becomes clear if we recall the definition of the bounded probability

simplex given in Lemma 5.1.1, which is

Δ :=

{
y ∈ R𝑆

���� y⊤1 = 1 and 0 ≤ 𝑦 𝑗 ≤
1

(1 − 𝛽)𝑆 for all 𝑗 ∈ {1, . . . , 𝑆}
}
. (6.3.115)

109

6 Applications

If 𝛽 is close to 0, then the upper bound
1

(1−𝛽)𝑆 is close to
1

𝑆
, which means that almost all coor-

dinates of the projection’s result in Line 8 of Algorithm 6.2 need to be at this bound in order to

satisfy the equality in the definition of Δ. As a consequence, there cannot be many coordinates

𝑗 ∈ {1, . . . , 𝑆} such that (v𝑘+1) 𝑗 = 2 (𝑣𝑘+1) 𝑗 − (𝑣𝑘) 𝑗 = 0, since 𝑣𝑘+1, 𝑣𝑘 ∈ Δ for all 𝑘 ∈ N. Therefore,

the cardinality of 𝐵𝑘 is often close to 0, hence the effect of disregarding indices in 𝐵𝑘 is very small.

On the other hand, one can observe that the cardinality of 𝐵𝑘 is close to 𝑆 if 𝛽 is close to 1. This is

the reason why very few PDE solves are needed in Line 10 in this case and the savings by using

𝐵𝑘 are almost 50% for 𝛽 = 0.99.

solved PDEs

𝛽 without 𝐵𝑘 with 𝐵𝑘 savings

0.01 3.16 · 10
6

3.15 · 10
6

0.47%

0.1 1.23 · 10
7

1.17 · 10
7

5.13%

0.5 1.04 · 10
7

7.78 · 10
6

25.16%

0.9 1.95 · 10
7

1.07 · 10
7

44.93%

0.99 3.81 · 10
7

1.93 · 10
7

49.26%

Table 6.1: Number of solved PDEs with/without 𝐵𝑘 for different values of 𝛽

In the following, we investigate how this compares to the savings we achieve by the use of CGF.

We start with index selection rule №1 as described in Lemma 6.2.1 with a constant sequence of

probabilities 𝑞𝑘 := 𝑞 for some 𝑞 ∈ [0, 1] and all 𝑘 ∈ N, and𝑀 := 10
20

. Note that𝑀 is deliberately

chosen so large that the stopping criterion is likely to be reached in an iteration 𝑘 < 𝑀1/3
and we

can observe the maximal possible effect of using CGF
2
. In Figure 6.5 we show the convergence

behavior for a probability level of 𝛽 = 0.01 and different values of 𝑞.

10
3

10
4

10
5

10
6

10
−10

10
−7

10
−4

10
−1

Number of solved PDEs

∥ u
𝑘
−
u 𝑘
−1
∥ 2

(a) Convergence of primal variable

10
3

10
4

10
5

10
6

10
−10

10
−7

10
−4

10
−1

Number of solved PDEs

∥ v
𝑘
−
v 𝑘
−1
∥ 2

(b) Convergence of dual variable

Figure 6.5: Convergence behavior for 𝛽 = 0.01 with CGF and index selection rule №1 for 𝑞 = 0.5,

𝑞 = 0.1, 𝑞 = 0.01, and without CGF (dotted)

2
Recall that, if 𝑘 ≥ 𝑀1/3

, the probability for choosing an index is max

{
𝑞𝑘 ,

(
1 −𝑀𝑘−3

)
1/𝑆 }

. Hence, the expected

number of frozen indices gradually decreases beyond the iteration threshold of 𝑀1/3
.

110

6.3 Elliptic Equation with a Discontinuous Coefficient

The stopping criterion is satisfied in all presented examples in an iteration 𝑘 < 19,000, hence the

probability 𝑝 is in fact used throughout the whole algorithm. One can see that, even for 𝑞 = 0.01,

i.e. if we expect to select 10 indices in each iteration, the algorithm converges. Table 6.2 shows

how the choice of 𝑞 affects the percentage of required PDE solves.

solved PDEs

𝑞 absolute relative

- 3.16 · 10
6

100%

0.5 1.57 · 10
6

49.68%

0.2 5.78 · 10
5

18.28%

0.1 3.69 · 10
5

11.67%

0.05 1.89 · 10
5

5.97%

0.01 6.99 · 10
4

2.21%

Table 6.2: Number of solved PDEs for 𝛽 = 0.01 with CGF and index selection rule №1 in relation

to the choice of 𝑞

The first row contains the number of solved PDEs without CGF. Apparently, the number of re-

quired PDE solves decreases with 𝑞 and is actually quite accurate 𝑞 times the number of PDE

solves without CGF. Only for 𝑞 = 0.01, the number of selected indices is presumably so low that

it needs to be compensated by a higher number of iterations (and hence by a higher number of

PDE solves). However, this choice still results in a saving of almost 98% in the number of solved

PDEs.

10
3

10
4

10
5

10
6

10
7

10
8

10
−10

10
−7

10
−4

10
−1

Number of solved PDEs

∥ u
𝑘
−
u 𝑘
−1
∥ 2

(a) Convergence of primal variable

10
3

10
4

10
5

10
6

10
7

10
−10

10
−7

10
−4

10
−1

Number of solved PDEs

∥ v
𝑘
−
v 𝑘
−1
∥ 2

(b) Convergence of dual variable

Figure 6.6: Convergence behavior for 𝛽 = 0.99 with CGF and index selection rule №1 for 𝑞 = 0.5,

𝑞 = 0.2, 𝑞 = 0.2 and 𝐵𝑘 , and without CGF (dotted)

As a comparison, we also show the corresponding results for 𝛽 = 0.99 in Figure 6.6. As it turns

out in this case, we can not choose 𝑞 as small as above and still obtain convergence. This can be

explained by the observation we made earlier, stating that (v𝑘+1) 𝑗 = 0 for many 𝑗 ∈ {1, . . . , 𝑆}
and 𝑘 ∈ N if 𝛽 is close to 1. In this case, only a few columns of 𝐾 ′(u𝑘)∗ are multiplied with a

non-zero coordinate in Line 11, and thus the probability 𝑞 cannot be chosen too small in order to

still achieve sufficient progress in the primal iterates. Therefore, we only present the graphs for

111

6 Applications

𝑞 ∈ {0.5, 0.2} and additionally show how even more PDE solves can be saved for 𝑞 = 0.2 if we

also use the set 𝐵𝑘 from (6.3.114). It turns out that the number of solved PDEs can be reduced by

80.5% if we use 𝑞 = 0.2, and by 89.7% if we incorporate 𝐵𝑘 as well.

In order to investigate the effects of using index selection rule №2 as described in Lemma 6.2.2,

we define the sequence (𝑞𝑘)𝑘∈N by 𝑞𝑘 := log(𝑘)𝑎−1
for a fixed 𝑎 > 0 and all 𝑘 ∈ N, and use the

Julia function StatsBase.sample to sample a number of min

{
𝑆,max{1, ⌈𝑞𝑘𝑆⌉}

}
indices from

{1, . . . , 𝑆} (without replacement) in each iteration 𝑘 ∈ N. Figure 6.7 shows the convergence

behavior for 𝛽 = 0.01 and 𝑎 ∈
{
10, 10

2, 10
3

}
, if we use equal sample weights (i.e. every index is

equally likely to be selected). The corresponding number of samples per iteration for this example

is depicted in Figure 6.8.

10
3

10
4

10
5

10
6

10
−10

10
−7

10
−4

10
−1

Number of solved PDEs

∥ u
𝑘
−
u 𝑘
−1
∥ 2

(a) Convergence of primal variable

10
3

10
4

10
5

10
6

10
−10

10
−7

10
−4

10
−1

Number of solved PDEs

∥ v
𝑘
−
v 𝑘
−1
∥ 2

(b) Convergence of dual variable

Figure 6.7: Convergence behavior for 𝛽 = 0.01 with CGF and index selection rule №2 for 𝑎 = 10,

𝑎 = 10
2
, 𝑎 = 10

3
, and without CGF (dotted)

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Iteration 𝑘

N
u

m
b

e
r

o
f

s
a
m

p
l
e
s

Figure 6.8: Number of samples per iteration for 𝛽 = 0.01 and index selection rule №2 for 𝑎 = 10,

𝑎 = 10
2
, and 𝑎 = 10

3

We can see that this index selection rule can lead to similar savings in the number of solved

PDEs as index selection rule №1. Although a direct comparison of Figure 6.5 and Figure 6.7 is

not meaningful since the results depend strongly on how the sequence (𝑞𝑘)𝑘∈N is defined, one

can still notice two advantages of the second rule. First, we can exactly control the number of

selected indices per iteration and not just the average number, as in rule №1. Second, rule №2

does not require the indices to be selected equally likely, which is why information about the

scenarios could be used to define individual probabilities, e.g. in an adaptive approach.

112

6.4 Steady Burgers’ Equation

6.4 Steady Burgers’ Equation

In this chapter, we use Algorithm 4.1 to solve a problem constrained by the steady Burgers’

equation presented in [KS16, Section 6.2]. This equation was named after the Dutch physicist

Johannes Martinus Burgers and is a one-dimensional nonlinear model for convection-diffusion

phenomena [Vol00]. Unlike the previous section, we do not prove that the assumptions are

satisfied for this particular problem, but we focus on the discretization and numerical results.

6.4.1 Problem Formulation

We consider the optimal control of the steady Burgers’ equation with uncertain coefficients. Let

U := 𝐿2 (Ω) be the space of control variables with Ω := (0, 1) and V := 𝐿2

P
(Ξ) the space of

random variables with a separable probability space (Ξ,A,P). Let further 𝛽 ∈ (0, 1) be the

probability level of CVaR and 𝛼 := 10
−3

the weight of the penalty term. The problem described

in [KS16, Section 6.2] can be formulated as

min

𝑢∈U

1

2

CVaR𝛽

[∫
Ω

(
𝑦

(
ˆb (·), 𝑥 ;𝑢

)
− 1

)
2

d𝑥

]
+ 𝛼

2

∫
Ω
𝑢 (𝑥)2 d𝑥, (6.4.1)

where
ˆb : Ξ→ Λ := [−1, 1]4 is a four-dimensional random vector with uniform density 𝜌 ≡ 2

−4
,

(Σ, F ,P) is a probability space, and 𝑦 := 𝑦 (𝑢) ∈ 𝐿2

𝜌

(
Λ;𝐻 1 (Ω)

)
solves the weak form of

−a (_)𝜕𝑥𝑥𝑦 (_, 𝑥) + 𝑦 (_, 𝑥)𝜕𝑥𝑦 (_, 𝑥) = 𝑓 (_, 𝑥) + 𝑢 (𝑥), ∀(_, 𝑥) ∈ Λ × Ω, (6.4.2a)

𝑦 (_, 0) = 𝑑0(_), 𝑦 (_, 1) = 𝑑1(_), ∀_ ∈ Λ. (6.4.2b)

The random coefficient a (also referred to as viscosity parameter), the values of 𝑓 , and the bound-

aries 𝑑0 and 𝑑1 are given by

a (_) := 10
1−2, 𝑓 (, 𝑥) :=

_2

100

, 𝑑0(_) := 1 + _3

1000

, and 𝑑1(_) :=
_4

1000

, (6.4.3)

for all _ ∈ Λ and 𝑥 ∈ Ω. Apart from the domain Ω, which has changed from (−1, 1) to (0, 1), the

objective function takes the same form as in Section 6.3. Therefore, we can adopt the notation

from (6.3.6) and (6.3.7) and write problem (6.4.1) as

min

𝑢∈U
CVaR𝛽 (𝐾 (𝑢)) +𝐺 (𝑢). (6.4.4)

Since this definition also includes the setU𝑎𝑑 as defined in (6.3.5), the resulting problem is slightly

different from [KS16, Section 6.2].

6.4.2 PDE Discretization

The PDE (6.4.2) is discretized using a finite difference method (FDM, see [Del15, Section 2.4]) and

𝑁 ∈ N inner grid points 𝑥1, . . . , 𝑥𝑁 ∈ Ω = (0, 1), i.e.

0 =: 𝑥0 < 𝑥1 < · · · < 𝑥𝑁 < 𝑥𝑁+1 := 1. (6.4.5)

We assume that the grid is uniform and denote the distance between two adjacent points by Δ𝑥 ,

i.e. Δ𝑥 := 𝑥𝑖 − 𝑥𝑖−1 for all 𝑖 ∈ {1, . . . , 𝑁 + 1}. Since Ω is one-dimensional, it follows from the

113

6 Applications

Sobolev Embedding Theorem [Hin+09, Theorem 1.14] that 𝐻 1 (Ω) ↩→↩→ 𝐶0
(
Ω
)
. Therefore, the

solution to (6.4.2) is continuous and can hence be approximated pointwise.

Let 𝑆 ∈ N and

{
b 𝑗 ∈ Λ

�� 𝑗 ∈ {1, . . . , 𝑆}} be the set of samples from the random variable
ˆb . In or-

der to keep the notation simple, we consider only one arbitrary scenario 𝑗 ∈ {1, . . . , 𝑆} for now.

Therefore, we can drop the dependence on b 𝑗 . So as not to worry about the inhomogeneous

Dirichlet boundary conditions (6.4.2b) when discretizing the differential operators, we first in-

troduce the function

�̃� : Ω → [𝑑0, 𝑑1] , 𝑥 ↦→ �̃� (𝑥) := (𝑑1 − 𝑑0) 𝑥 + 𝑑0. (6.4.6)

We can then write the solution 𝑦 (𝑢)
(
b 𝑗

)
∈ 𝐻 1 (Ω) to (6.4.2) for the given scenario b 𝑗 ∈ Λ and a

control 𝑢 ∈ U as

𝑦 (𝑢) := 𝑦0(𝑢) + �̃�, (6.4.7)

where 𝑦0(𝑢) ∈ 𝐻 1

0
(Ω) satisfies

𝑒
(
𝑦0(𝑢), 𝑢

)
:= −a𝜕𝑥𝑥

(
𝑦0(𝑢) + �̃�

)
+

(
𝑦0(𝑢) + �̃�

)
𝜕𝑥

(
𝑦0(𝑢) + �̃�

)
− 𝑓 − 𝑢 = 0 (6.4.8)

as well as, due to the definition of 𝐻 1

0
(Ω), the homogeneous Dirichlet boundary conditions

𝑦0(𝑢) (0) = 𝑦0(𝑢) (1) = 0. (6.4.9)

Since we know the derivatives of �̃� , we can simplify (6.4.8) to get

𝑒
(
𝑦0(𝑢), 𝑢

)
= −a𝜕𝑥𝑥𝑦0(𝑢) +

(
𝑦0(𝑢) + �̃�

)
𝜕𝑥𝑦0(𝑢) +

(
𝑦0(𝑢) + �̃�

)
(𝑑1 − 𝑑0) − 𝑓 − 𝑢 = 0. (6.4.10)

The function values at the grid points will be denoted by

𝑦0,𝑖 := 𝑦0(𝑢) (𝑥𝑖), �̃�𝑖 := �̃� (𝑥𝑖), (6.4.11)

𝑓𝑖 := 𝑓 (𝑥𝑖), and 𝑢𝑖 := 𝑢 (𝑥𝑖) (6.4.12)

for all 𝑖 ∈ {1, . . . , 𝑁 }. The respective vector notations are

y0 := (𝑦0,1, . . . , 𝑦0,𝑁)⊤ ∈ R𝑁 , ỹ := (�̃�1, . . . , �̃�𝑁)⊤ ∈ R𝑁 , (6.4.13)

f := (𝑓1, . . . , 𝑓𝑁)⊤ ∈ R𝑁 , and u := (𝑢1, . . . , 𝑢𝑁)⊤ ∈ R𝑁 . (6.4.14)

We will also write y0(u) instead of y0 to emphasize the dependence on the discretized control u.

Together with the matrices 𝐷1, 𝐷2 ∈ R𝑁×𝑁 given by

𝐷1 := (2Δ𝑥)−1

©«
0 1

−1

. . .
. . .

. . .
. . . 1

−1 0

ª®®¬ and 𝐷2 := (Δ𝑥)−2

©«
−2 1

1

. . .
. . .

. . .
. . . 1

1 −2

ª®®¬ , (6.4.15)

we can use the first and second order central difference discretization to approximate equation

(6.4.10) by

0 = 𝑒
(
𝑦0(𝑢), 𝑢

)
≈ 𝑒 (y0, u)

:= −a𝐷2y0 + diag (y0 + ỹ) 𝐷1y0 + (y0 + ỹ) (𝑑1 − 𝑑0) − f − u.
(6.4.16)

114

6.4 Steady Burgers’ Equation

This equation can be solved for every (discretized) control u ∈ R𝑁 by applying Newton’s method

[Del15, Section 4.2] to the function

𝜑 : R𝑁 → R𝑁 , y0 ↦→ 𝜑 (y0) := 𝑒 (y0, u). (6.4.17)

The Jacobian of 𝜑 at y0 ∈ R𝑁 is given by

𝐽𝜑 (y0) := −a𝐷2 + diag (𝐷1y0) + diag (y0 + ỹ) 𝐷1 + (𝑑1 − 𝑑0)Id, (6.4.18)

where Id ∈ R𝑁×𝑁 is the identity matrix. Together with a starting vector y0

0
∈ R𝑁 and a tolerance

Y′ > 0 for the stopping criterion, this results in the following algorithm, which must be run

separately for each scenario.

Algorithm 6.3 (Newton’s Method)

1 Initialize 𝑘 := 0.

2 repeat

3 Solve 𝐽𝜑 (y𝑘0)𝛿y𝑘0 = 𝜑 (y𝑘
0
) for 𝛿y𝑘

0
.

4 y𝑘+1
0

:= y𝑘
0
+ 𝛿y𝑘

0

5 Update 𝑘 ← 𝑘 + 1.

6 until
𝜑 (

y𝑘
0

)
2
< Y′

6.4.3 Function Discretization

Except for the PDE, this problem is identical to the one described in Section 6.3.1. Therefore, we

can use the discretizations of prox
CVaR

∗
𝛽
, prox

𝑇𝑘
𝐺

, and CVaR𝛽 described in Section 6.3.4. However,

due to the different PDE and its discretization method, we need to derive approximations for

𝐾 (𝑢), 𝐾 ′(𝑢)∗, and 𝐺 (𝑢) for every control 𝑢 ∈ U.

The function𝐾 : U → R𝑆 can be discretized by using the trapezoidal rule for every 𝑗 ∈ {1, . . . , 𝑆},
which yields

𝐾 (𝑢) 𝑗 ≈ 𝐾 (u) 𝑗 :=
Δ𝑥

4

[(
𝑑0

(
b 𝑗

)
− 1

)
2 +

(
𝑑1

(
b 𝑗

)
− 1

)
2 + 2

𝑁∑︁
𝑖=1

(
𝑦𝑖, 𝑗 − 1

)
2

]
, (6.4.19)

where 𝑦𝑖, 𝑗 := 𝑦
(
b 𝑗 , 𝑥𝑖 ;𝑢

)
for all 𝑖 ∈ {1, . . . , 𝑁 }.

The 𝑗-th component of the Fréchet derivative 𝐾 ′(𝑢) 𝑗 : U → R for 𝑢 ∈ U is given by

ℎ ↦→ 𝐾 ′(𝑢) 𝑗ℎ =
〈
𝑦

(
b 𝑗 , ·;𝑢

)
− 1, 𝑦 ′ (𝑢) ℎ

〉
U =

〈
𝑦 ′(𝑢)∗

(
𝑦 (𝑢) − 1

)
, ℎ

〉
U (6.4.20)

for every ℎ ∈ U, where 𝑦 ′(𝑢) := 𝑦 ′
(
b 𝑗 ;𝑢

)
: U → 𝐻 1 (Ω) is the Fréchet derivative ofU ∋ 𝑢′ ↦→

𝑦 (𝑢′)
(
b 𝑗

)
in 𝑢 and 𝑦 ′(𝑢)∗ : 𝐻 1 (Ω) → U its adjoint operator. The derivative can be determined

by differentiating equation (6.4.10) with respect to u, yielding

115

6 Applications

d

d𝑢
𝑒
(
𝑦0(𝑢), 𝑢

)
= 𝑒𝑦0

(
𝑦0(𝑢), 𝑢

)
𝑦 ′(𝑢) + 𝑒𝑢

(
𝑦0(𝑢), 𝑢

)
= 0, (6.4.21)

where 𝑒𝑦0
and 𝑒𝑢 denote the partial derivatives of 𝑒 . Since 𝑒𝑢

(
𝑦0(𝑢), 𝑢

)
≡ −Id, we can equivalently

write

𝑦 ′(𝑢) = 𝑒𝑦0

(
𝑦0(𝑢), 𝑢

)−1 ≈ 𝐽𝜑 (y0)−1 , (6.4.22)

where 𝐽𝜑 (y0) is the Jacobian from (6.4.18). The adjoint operator can then be approximated by

transposition, i.e.

𝑦 ′(𝑢)∗ ≈
(
𝐽𝜑 (y0)⊤

)−1

, (6.4.23)

where we have used that the transpose of the inverse is equal to the inverse of the transpose of

a matrix. In order to determine the function 𝐾 ′(𝑢)∗ : R𝑆 → U, we note that for all ℎ ∈ U and

v = (𝑣1, . . . , 𝑣𝑆) ∈ R𝑆 we have

⟨𝐾 ′(𝑢)∗v, ℎ⟩U = ⟨v, 𝐾 ′(𝑢)ℎ⟩R𝑆

(6.4.20)

=
𝑆∑︁
𝑗=1

𝑣 𝑗

〈
𝑦 ′

(
b 𝑗 , ·;𝑢

)∗ (
𝑦

(
b 𝑗 , ·;𝑢

)
− 1

)
, ℎ

〉
U

(6.4.24)

=

〈
𝑆∑︁
𝑗=1

𝑣 𝑗𝑦
′ (b 𝑗 , ·;𝑢)∗ (𝑦 (

b 𝑗 , ·;𝑢
)
− 1

)
, ℎ

〉
U

due to the bilinearity of ⟨·, ·⟩U . Therefore, we can write the approximation as

𝐾 ′(𝑢)∗v =
𝑆∑︁
𝑗=1

𝑣 𝑗𝑦
′ (b 𝑗 , ·;𝑢)∗ (𝑦 (

b 𝑗 , ·;𝑢
)
− 1

)
(6.4.23)

≈
𝑆∑︁
𝑗=1

𝑣 𝑗

(
𝐽𝜑

(
y0(u)

)⊤)−1 (
y0(u) + ỹ − 1

)
(6.4.25)

= 𝐾 ′(u)∗v (6.4.26)

where 𝐾 ′(u)∗ : R𝑆 → R𝑁 is the matrix in R𝑁×𝑆 given by

𝐾 ′(u)∗ :=

((
𝐽𝜑

(
y0(u)

)
1

)−⊤ (
y0(u) + ỹ − 1

)
· · ·

(
𝐽𝜑

(
y0(u)

)
𝑆

)−⊤ (
y0(u) + ỹ − 1

))
. (6.4.27)

Note that, since y0 is the approximate solution of 𝑒 (y0, u) = 0 (see equation (6.4.16)), it still

depends on the sample b 𝑗 (even if this is not explicitly mentioned here).

Finally, the function 𝐺 can be discretized by using the trapezoidal rule for the integral in (6.3.6),

which yields

𝐺 (u) = 𝛼

2

𝑁+1∑︁
𝑖=1

Δ𝑥
𝑢2

𝑖−1
+ 𝑢2

𝑖

2

=
𝛼

2

Δ𝑥
𝑁∑︁
𝑖=1

𝑢2

𝑖

(6.4.28)

for every u ∈ U𝑎𝑑 =
{
𝑧 ∈ R𝑁

�� 𝑢𝑎 (𝑥𝑖) ≤ 𝑧𝑖 ≤ 𝑢𝑏 (𝑥𝑖) for all 𝑖 ∈ {1, . . . , 𝑁 }
}
.

116

6.4 Steady Burgers’ Equation

6.4.4 Numerical Results

In this section, we present some numerical results using the Julia code provided in [Ang22,

SBE.jl]. As in Section 6.3.6, we define the bounds within U𝑎𝑑 by −10 and 10, use the starting

vectors u0 = (0, . . . , 0) ∈ R𝑁 and v0 = (0, . . . , 0) ∈ R𝑆 , and set 𝛾𝐺 := 0. Furthermore, we use the

same rule to determine the primal step size for a given dual step size 𝜎 > 0.

0 0.2 0.4 0.6 0.8 1

0

2

4

𝑥

𝑢
(𝑥
)

(a) Optimal control

0 0.2 0.4 0.6 0.8 1

0

1

2

𝑥
𝑦
(𝑥
)

(b) Optimal state (mean ± one and two standard de-

viations)

Figure 6.9: Example of optimal control and state for 𝛽 = 0.5

A first impression of the problem is given in Figure 6.9, where the optimal control and state of

(6.4.1) are shown for a probability level of 𝛽 = 0.5. In this and all following examples, we use

𝑆 = 100 scenarios and 𝑁 = 512 grid points. The solution was computed using constant scalar

step sizes with 𝜎 = 0.1, a stopping criterion tolerance of Y = 10
−6

, and a tolerance for Newton’s

method of Y′ = 10
−8

.

10
2

10
3

10
4

10
5

10
6

10
−5

10
−3

10
−1

Number of solved PDEs

∥ u
𝑘
−
u 𝑘
−1
∥ 2

(a) Convergence of primal variable

10
2

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of solved PDEs

∥ v
𝑘
−
v 𝑘
−1
∥ 2

(b) Convergence of dual variable

Figure 6.10: Convergence behavior for 𝛽 = 0.01, 𝛽 = 0.5, and 𝛽 = 0.99

The convergence behavior without CGF is presented in Figure 6.10, where 𝑁 = 256 grid points

and constant scalar step sizes with 𝜎 = 0.1 were used to compute the solution for the probability

levels 𝛽 ∈ {0.01, 0.5, 0.99}. The stopping criterion tolerance for this and all following examples is

Y = 10
−6

with a tolerance for Newton’s method of Y′ = 10
−8

. As in Section 6.3.6, we can observe

that a higher probability level does lead to a slower convergence. In the following analysis, we

consider the case 𝛽 = 0.5.

117

6 Applications

For the investigation of index selection rule №1, we use the same constant sequence of probabil-

ities 𝑞𝑘 := 𝑞 for some 𝑞 ∈ [0, 1] and all 𝑘 ∈ N and𝑀 := 10
20

as in Section 6.3.6. Figure 6.11 shows

the convergence behavior for 𝛽 = 0.5 and 𝑞 ∈ {0.5, 0.1, 0.01}. The required number of PDE solves

in relation to the approach is shown in Table 6.3. As in Table 6.2, we can also observe here that

the number of required PDE solves is pretty close to the product of 𝑞 and the number of PDE

solves without CGF.

10
2

10
3

10
4

10
5

10
6

10
−5

10
−3

10
−1

Number of solved PDEs

∥ u
𝑘
−
u 𝑘
−1
∥ 2

(a) Convergence of primal variable

10
2

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of solved PDEs

∥ v
𝑘
−
v 𝑘
−1
∥ 2

(b) Convergence of dual variable

Figure 6.11: Convergence behavior for 𝛽 = 0.5 with CGF and index selection rule №1 for 𝑞 = 0.5,

𝑞 = 0.1, 𝑞 = 0.01, and without CGF (dotted)

We already noticed in Section 6.3.6 that the use of index selection rule №2 leads to similar savings

in the number of solved PDEs, which is why we do not consider index selection rule №2 in this

example at all.

solved PDEs

𝑞 absolute relative

- 5.98 · 10
6

100%

0.5 1.59 · 10
6

49.95%

0.2 6.36 · 10
5

20.00%

0.1 3.19 · 10
5

10.04%

0.05 1.60 · 10
5

5.03%

0.01 3.21 · 10
4

1.01%

Table 6.3: Number of solved PDEs for 𝛽 = 0.5 with CGF and index selection rule №1 in relation

to the choice of 𝑞

118

Chapter 7
Conclusion

In this thesis, we considered a non-convex optimization problem that is constrained by a partial

differential equation (PDE) with uncertain coefficients. This problem was described in Chapter 3

after a short summary of some elementary but necessary results from the involved mathematical

fields in Chapter 2. We chose the Conditional Value-at-Risk (CVaR), which is non-smooth, to

measure the risk of the random field PDE solution and to include it into the objective function.

The well-known Chambolle-Pock method does not require the objective function to be differen-

tiable, which is why we used it as a template in Chapter 4 to develop a stochastic primal-dual

proximal splitting method that solves the problem at hand. For the randomization of this method,

we proposed the so-called component-wise gradient freezing or CGF, which was motivated by

randomized coordinate descent methods and requires that only a subset of the coordinates of an

occurring gradient is recalculated in each iteration. Furthermore, we used a special feature of

the CVaR resulting in a proximal operator that is simply the metric projection onto the bounded

probability simplex. We presented an algorithm that computes this projection efficiently and

proved its convergence in Chapter 5. However, as the main part of this work, we proved the

almost sure weak convergence of the proposed stochastic primal-dual proximal splitting method

under some abstract assumptions in Chapter 4 and specified the results for the case of scalar and

deterministic step sizes. Furthermore, we implemented the algorithm in Julia and used this code

to provide insight into the performance of the algorithm in Chapter 6 using two examples. We

discovered that a remarkable reduction of the iteration costs in terms of PDE solves of about 99%

can be achieved in some cases by using CGF.

Future Research

Finally, we present some ideas about where future research might build on this work:

• In Section 4.4.4, we proved a lemma providing a primal step size bound which sets a limit

on how far the next iterate can escape from a given neighborhood around a critical point.

This lemma could be used to relax the requirement on 𝐺 having a bounded domain in

Assumption 3.1.2. It was needed in Lemma 4.1.1 to show that the primal iterates stay

within a closed ball around the critical point. However, the idea in [CV20, Lemma 4.6] can

possibly be adapted to also work in the present case. This way, one could get rid of the box

constraints in (6.3.5).

• In Section 4.4, we considered the abstract convergence proof of the previous section and

developed assumptions that are easier to verify in the case of scalar and deterministic

step sizes. Firstly, the restriction of a fixed dual step size could be dropped. Secondly, the

requirement of scalar and deterministic step sizes could be weakened by allowing step size

operators, which may also be random in addition [Val19].

119

7 Conclusion

• We described in Section 5.1 the discretization of the probability space based on Monte Carlo

sampling and the sample average approximation introduced in Section 2.5.2. However,

additionally to CGF, a sparse grid [GG98] could result in a greatly reduced number of

solved PDEs, as demonstrated in [KS16]. Another approach is called adaptive stochastic
collocation, which is an interpolation-based technique that produces decoupled systems of

deterministic PDEs [Kou+13].

• Apart from the discretization of the probability space, one could also employ a more so-

phisticated discretization of the PDEs in space. For example, Kouri and Surowiec [KS16]

used continuous piecewise linear finite elements built on a piecewise uniform mesh that

is denser in those areas where optimal control and state of the problem constrained by the

steady Burgers’ equation deflect strongly (see Figure 6.9).

• The index selection rules proposed in Section 6.2 are rather simple because we required the

independence of the sequence (𝐴𝑘)𝑘∈N in order to satisfy Assumption 4.4.10 (Reduction of

CGF). However, there may be a way to remove this condition of independence so that more

sophisticated rules for selecting the index sets could be used. For example, an adaptive

sample size [BBN18; Bei+20; Cha+18] could further reduce the number of necessary PDE

solves.

120

Bibliography

[ACL06] S. Alexander, T. F. Coleman, and Y. Li. “Minimizing CVaR and VaR for a portfolio

of derivatives”. In: Journal of Banking & Finance 30.2 (2006), pp. 583–605. doi: 10.
1016/j.jbankfin.2005.04.012.

[AFC19] A. Alacaoglu, O. Fercoq, and V. Cevher. On the convergence of stochastic primal-dual
hybrid gradient. 2019. arXiv: 1911.00799.

[An+17] Y. An et al. “Robust treatment planning with conditional value at risk chance con-

straints in intensity-modulated proton therapy”. In: Medical Physics 44.1 (2017), pp. 28–

36. doi: 10.1002/mp.12001.

[And+01] F. Andersson et al. “Credit risk optimization with Conditional Value-at-Risk cri-

terion”. In: Mathematical Programming 89.2 (2001), pp. 273–291. doi: 10 . 1007 /
PL00011399.

[Ang18] S. Angerhausen. Non-Smooth Optimization of the Conditional Value-at-Risk. Master’s

Thesis. 2018. doi: 10.5281/zenodo.6418547.

[Ang22] S. Angerhausen. A Stochastic Primal-Dual Proximal Splitting Method for Risk-Averse
Optimal Control of PDEs: Julia Code (v1.0.1). 2022. doi: 10.5281/zenodo.7121224.

[Art+99] P. Artzner et al. “Coherent measures of risk”. In: Mathematical Finance 9.3 (1999),

pp. 203–228. doi: 10.1111/1467-9965.00068.

[BBN18] R. Bollapragada, R. Byrd, and J. Nocedal. “Adaptive Sampling Strategies for Stochas-

tic Optimization”. In: SIAM Journal on Optimization 28.4 (2018), pp. 3312–3343. doi:

10.1137/17M1154679.

[BC17] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. 2nd ed. Cham: Springer International Publishing, 2017, pp. 1–469.

doi: 10.1007/978-3-319-48311-5.

[BCH15] R. I. Boţ, E. R. Csetnek, and C. Hendrich. “Inertial Douglas–Rachford splitting for

monotone inclusion problems”. In: Applied Mathematics and Computation 256 (2015),

pp. 472–487. doi: 10.1016/j.amc.2015.01.017.

[Bei+20] F. Beiser et al. Adaptive sampling strategies for risk-averse stochastic optimization with
constraints. 2020. arXiv: 2012.03844.

[BH15] R. I. Boţ and C. Hendrich. “Convex risk minimization via proximal splitting meth-

ods”. In: Optimization Letters 9.5 (2015), pp. 867–885. doi: 10.1007/s11590-014-
0809-8.

[Bjö15] A. Björck. Numerical Methods in Matrix Computations. Cham: Springer, 2015. doi:

10.1007/978-3-319-05089-8.

[BL11] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. 2nd ed. New

York: Springer, 2011. doi: 10.1007/978-1-4614-0237-4.

[Boy+11] S. Boyd et al. “Distributed Optimization and Statistical Learning via the Alternating

Direction Method of Multipliers”. In: Foundations and Trends in Machine Learning
3.1 (2011), pp. 1–122. doi: 10.1561/2200000016.

121

https://doi.org/10.1016/j.jbankfin.2005.04.012
https://doi.org/10.1016/j.jbankfin.2005.04.012
https://arxiv.org/abs/1911.00799
https://doi.org/10.1002/mp.12001
https://doi.org/10.1007/PL00011399
https://doi.org/10.1007/PL00011399
https://doi.org/10.5281/zenodo.6418547
https://doi.org/10.5281/zenodo.7121224
https://doi.org/10.1111/1467-9965.00068
https://doi.org/10.1137/17M1154679
https://doi.org/10.1007/978-3-319-48311-5
https://doi.org/10.1016/j.amc.2015.01.017
https://arxiv.org/abs/2012.03844
https://doi.org/10.1007/s11590-014-0809-8
https://doi.org/10.1007/s11590-014-0809-8
https://doi.org/10.1007/978-3-319-05089-8
https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1561/2200000016

Bibliography

[BPP16] W. A. Bukhsh, A. Papakonstantinou, and P. Pinson. “A Robust Optimisation Ap-

proach using CVaR for Unit Commitment in a Market with Probabilistic Offers”. In:

2016 IEEE International Energy Conference (ENERGYCON). 2016, pp. 1–6. doi: 10.
1109/ENERGYCON.2016.7514076.

[Bre11] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New

York: Springer Science and Business Media, 2011. doi: 10.1007/978-0-387-70914-
7.

[BT97a] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical Meth-
ods. Belmont: Athena Scientific, 1997. isbn: 1-886529-01-9.

[BT97b] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,

1997. isbn: 1-886529-19-1.

[Ceg12] A. Cegielski. Iterative Methods for Fixed Point Problems in Hilbert Spaces. Berlin Hei-

delberg: Springer, 2012. doi: 10.1007/978-3-642-30901-4.

[Cha+18] A. Chambolle et al. “Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbi-

trary Sampling and Imaging Applications”. In: SIAM Journal on Optimization 28.4

(2018), pp. 2783–2808. doi: 10.1137/17M1134834.

[CHL08] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. “Coordinate Descent Method for Large-scale

L2-loss Linear Support Vector Machines”. In: Journal of Machine Learning Research
9.45 (2008), pp. 1369–1398. url: http://jmlr.org/papers/v9/chang08a.html.

[Cla20] C. Clason. Introduction to Functional Analysis. Cham: Birkhäuser, 2020. doi: 10 .
1007/978-3-030-52784-6.

[Cla21] C. Clason. Introduction to Finite Element Methods. Lecture Notes. 2021. arXiv: 1709.
08618v2.

[Cla90] F. H. Clarke. Optimization and Nonsmooth Analysis. Society for Industrial and Ap-

plied Mathematics, 1990. doi: 10.1137/1.9781611971309.

[CMP14] T. C. Y. Chan, H. Mahmoudzadeh, and T. G. Purdie. “A robust-CVaR optimization

approach with application to breast cancer therapy”. In: European Journal of Opera-
tional Research 238.3 (2014), pp. 876–885. doi: 10.1016/j.ejor.2014.04.038.

[CMV19] C. Clason, S. Mazurenko, and T. Valkonen. “Acceleration and global convergence

of a first-order primal-dual method for nonconvex problems”. In: SIAM Journal on
Optimization 29.1 (2019), pp. 933–963. doi: 10.1137/18M1170194.

[CMV21] C. Clason, S. Mazurenko, and T. Valkonen. “Primal–Dual Proximal Splitting and Gen-

eralized Conjugation in Non-smooth Non-convex Optimization”. In: Applied Math-
ematics & Optimization 84.2 (2021), pp. 1239–1284. doi: 10.1007/s00245- 020-
09676-1.

[CP07] P. L. Combettes and J.-C. Pesquet. “A Douglas–Rachford Splitting Approach to Non-

smooth Convex Variational Signal Recovery”. In: IEEE Journal of Selected Topics in
Signal Processing 1.4 (2007), pp. 564–574. doi: 10.1109/JSTSP.2007.910264.

[CP11a] A. Chambolle and T. Pock. “A First-Order Primal-Dual Algorithm for Convex Prob-

lems with Applications to Imaging”. In: Journal of Mathematical Imaging and Vision
40.1 (2011), pp. 120–145. doi: 10.1007/s10851-010-0251-1.

[CP11b] P. L. Combettes and J.-C. Pesquet. “Proximal Splitting Methods in Signal Processing”.

In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Ed. by

H. H. Bauschke et al. New York, NY: Springer New York, 2011, pp. 185–212. doi:

10.1007/978-1-4419-9569-8 10.

122

https://doi.org/10.1109/ENERGYCON.2016.7514076
https://doi.org/10.1109/ENERGYCON.2016.7514076
https://doi.org/10.1007/978-0-387-70914-7
https://doi.org/10.1007/978-0-387-70914-7
https://doi.org/10.1007/978-3-642-30901-4
https://doi.org/10.1137/17M1134834
http://jmlr.org/papers/v9/chang08a.html
https://doi.org/10.1007/978-3-030-52784-6
https://doi.org/10.1007/978-3-030-52784-6
https://arxiv.org/abs/1709.08618v2
https://arxiv.org/abs/1709.08618v2
https://doi.org/10.1137/1.9781611971309
https://doi.org/10.1016/j.ejor.2014.04.038
https://doi.org/10.1137/18M1170194
https://doi.org/10.1007/s00245-020-09676-1
https://doi.org/10.1007/s00245-020-09676-1
https://doi.org/10.1109/JSTSP.2007.910264
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/978-1-4419-9569-8_10

[CP15] P. L. Combettes and J. C. Pesquet. “Stochastic quasi-fejér block-coordinate fixed point

iterations with random sweeping”. In: SIAM Journal on Optimization 25.2 (2015),

pp. 1221–1248. doi: 10.1137/140971233.

[CP16] A. Chambolle and T. Pock. “An introduction to continuous optimization for imag-

ing”. In: Acta Numerica 25 (2016), pp. 161–319. doi: 10.1017/S096249291600009X.

[CR97] G. H.-G. Chen and R. T. Rockafellar. “Convergence Rates in Forward-Backward Split-

ting”. In: SIAM Journal on Optimization 7.2 (1997), pp. 421–444. doi: 10 . 1137 /
S1052623495290179.

[CV17] C. Clason and T. Valkonen. “Primal-Dual Extragradient Methods for Nonlinear Non-

smooth PDE-Constrained Optimization”. In: SIAM Journal on Optimization 27.3 (2017),

pp. 1314–1339. doi: 10.1137/16M1080859.

[CV20] C. Clason and T. Valkonen. Introduction to Non-Smooth Analysis. 2020. arXiv: 2001.
00216v3.

[CW05] P. L. Combettes and V. R. Wajs. “Signal Recovery by Proximal Forward-Backward

Splitting”. In: Multiscale Modeling & Simulation 4.4 (2005), pp. 1168–1200. doi: 10.
1137/050626090.

[CY11] Y. Chen and X. Ye. Projection Onto a Simplex. 2011. arXiv: 1101.6081.

[Dan12] D. Daners. “A Short Elementary Proof of Σ 1/k 2 = 𝜋 2 /6”. In: Mathematics Magazine
85.5 (2012), pp. 361–364. doi: 10.4169/math.mag.85.5.361.

[Del15] J. C. De los Reyes. Numerical PDE-Constrained Optimization. Cham: Springer, 2015.

doi: 10.1007/978-3-319-13395-9.

[DL14] C. Dang and G. Lan. Randomized First-Order Methods for Saddle Point Optimization.

2014. arXiv: 1409.8625.

[DM13] P. Drabek and J. Milota. Methods of Nonlinear Analysis. 2nd ed. Basel: Birkhäuser,

2013. doi: 10.1007/978-3-0348-0387-8.

[dOli21] W. de Oliveira. “Risk-Averse Stochastic Programming and Distributionally Robust

Optimization Via Operator Splitting”. In: Set-Valued and Variational Analysis 29.4

(2021), pp. 861–891. doi: 10.1007/s11228-021-00600-5.

[DS09] J. Duchi and Y. Singer. “Efficient Online and Batch Learning Using Forward Back-

ward Splitting”. In: Journal of Machine Learning Research 10.99 (2009), pp. 2899–2934.

url: http://jmlr.org/papers/v10/duchi09a.html.

[Duc+08] J. Duchi et al. “Efficient Projections onto the L1-Ball for Learning in High Dimen-

sions”. In: Proceedings of the 25th International Conference on Machine Learning. ICML

’08. New York, NY, USA: Association for Computing Machinery, 2008, pp. 272–279.

doi: 10.1145/1390156.1390191.

[EB92] J. Eckstein and D. P. Bertsekas. “On the Douglas—Rachford splitting method and

the proximal point algorithm for maximal monotone operators”. In: Mathematical
Programming 55.1 (1992), pp. 293–318. doi: 10.1007/BF01581204.

[Eck89] J. Eckstein. “Splitting Methods for Monotone Operators with Applications to Parallel

Optimization”. PhD thesis. Massachusetts Institute of Technology, 1989.

[Eva10] L. C. Evans. Partial Differential Equations. 2nd ed. Providence: American Mathemat-

ical Society, 2010. isbn: 978-0-8218-4974-3.

[FB19] O. Fercoq and P. Bianchi. “A Coordinate-Descent Primal-Dual Algorithm with Large

Step Size and Possibly Nonseparable Functions”. In: SIAM Journal on Optimization
29.1 (Jan. 2019), pp. 100–134. doi: 10.1137/18m1168480.

123

https://doi.org/10.1137/140971233
https://doi.org/10.1017/S096249291600009X
https://doi.org/10.1137/S1052623495290179
https://doi.org/10.1137/S1052623495290179
https://doi.org/10.1137/16M1080859
https://arxiv.org/abs/2001.00216v3
https://arxiv.org/abs/2001.00216v3
https://doi.org/10.1137/050626090
https://doi.org/10.1137/050626090
https://arxiv.org/abs/1101.6081
https://doi.org/10.4169/math.mag.85.5.361
https://doi.org/10.1007/978-3-319-13395-9
https://arxiv.org/abs/1409.8625
https://doi.org/10.1007/978-3-0348-0387-8
https://doi.org/10.1007/s11228-021-00600-5
http://jmlr.org/papers/v10/duchi09a.html
https://doi.org/10.1145/1390156.1390191
https://doi.org/10.1007/BF01581204
https://doi.org/10.1137/18m1168480

Bibliography

[Gab83] D. Gabay. “Applications of the Method of Multipliers to Variational Inequalities”. In:

Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-
Value Problems. Ed. by M. Fortin and R. Glowinski. Vol. 15. Studies in Mathematics

and Its Applications. Elsevier, 1983, pp. 299–331. doi: 10.1016/S0168-2024(08)
70034-1.

[GB17] P. Giselsson and S. Boyd. “Linear Convergence and Metric Selection for Douglas-

Rachford Splitting and ADMM”. In: IEEE Transactions on Automatic Control 62.2

(2017), pp. 532–544. doi: 10.1109/TAC.2016.2564160.

[GDE20] E. B. Gutierrez, C. Delplancke, and M. J. Ehrhardt. Convergence Properties of a Ran-
domized Primal-Dual Algorithm with Applications to Parallel MRI. 2020. arXiv: 2012.
01255v3.

[GG98] T. Gerstner and M. Griebel. “Numerical integration using sparse grids”. In: Numerical
Algorithms 18.3 (1998), p. 209. doi: 10.1023/A:1019129717644.

[GKT92] H. Goldberg, W. Kampowsky, and F. Tröltzsch. “On Nemitskij Operators in Lp-Spaces

of Abstract Functions”. In: Mathematische Nachrichten 155 (1992), pp. 127–140. doi:

10.1002/mana.19921550110.

[GS21] C. Geiersbach and T. Scarinci. “Stochastic proximal gradient methods for nonconvex

problems in Hilbert spaces”. In: Computational Optimization and Applications 78.3

(2021), pp. 705–740. doi: 10.1007/s10589-020-00259-y.

[Hin+09] M. Hinze et al. Optimization with PDE Constraints. Dordrecht: Springer, 2009. doi:

10.1007/978-1-4020-8839-1.

[Hsi+08] C.-J. Hsieh et al. “A Dual Coordinate Descent Method for Large-Scale Linear SVM”.

In: Proceedings of the 25th International Conference on Machine Learning. ICML ’08.

New York, NY, USA: Association for Computing Machinery, 2008, pp. 408–415. doi:

10.1145/1390156.1390208.

[HY10] B. He and X. Yuan. “Convergence Analysis of Primal-Dual Algorithms for Total

Variation Image Restoration”. In: Optimization Online (2010), pp. 1–22. url: http:
//www.optimization-online.org/DB HTML/2010/11/2790.html.

[HY12] B. He and X. Yuan. “Convergence Analysis of Primal-Dual Algorithms for a Saddle-

Point Problem: From Contraction Perspective”. In: SIAM Journal on Imaging Sciences
5.1 (2012), pp. 119–149. doi: 10.1137/100814494.

[Hyt+17] T. Hytönen et al. Analysis in Banach Spaces. Vol. I. Cham: Springer International

Publishing AG, 2017. doi: 10.1007/978-3-319-69808-3.

[Kam+14] A. Kammerdiner et al. “Optimization of discrete broadcast under uncertainty using

conditional value-at-risk”. In: Optimization Letters 8.1 (2014), pp. 45–59. doi: 10.
1007/s11590-012-0542-0.

[Kes09] S. Kesavan. Functional Analysis. Gurgaon: Hindustan Book Agency, 2009. doi: 10.
1007/978-93-86279-42-2.

[Kle13] A. Klenke. Probability Theory - A Comprehensive Course. 2nd ed. London: Springer

London, 2013. doi: 10.1007/978-1-4471-5361-0.

[Kou+13] D. P. Kouri et al. “A Trust-Region Algorithm with Adaptive Stochastic Collocation

for PDE Optimization under Uncertainty”. In: SIAM Journal on Scientific Computing
35.4 (2013), A1847–A1879. doi: 10.1137/120892362.

124

https://doi.org/10.1016/S0168-2024(08)70034-1
https://doi.org/10.1016/S0168-2024(08)70034-1
https://doi.org/10.1109/TAC.2016.2564160
https://arxiv.org/abs/2012.01255v3
https://arxiv.org/abs/2012.01255v3
https://doi.org/10.1023/A:1019129717644
https://doi.org/10.1002/mana.19921550110
https://doi.org/10.1007/s10589-020-00259-y
https://doi.org/10.1007/978-1-4020-8839-1
https://doi.org/10.1145/1390156.1390208
http://www.optimization-online.org/DB_HTML/2010/11/2790.html
http://www.optimization-online.org/DB_HTML/2010/11/2790.html
https://doi.org/10.1137/100814494
https://doi.org/10.1007/978-3-319-69808-3
https://doi.org/10.1007/s11590-012-0542-0
https://doi.org/10.1007/s11590-012-0542-0
https://doi.org/10.1007/978-93-86279-42-2
https://doi.org/10.1007/978-93-86279-42-2
https://doi.org/10.1007/978-1-4471-5361-0
https://doi.org/10.1137/120892362

[KS16] D. Kouri and T. Surowiec. “Risk-Averse PDE-Constrained Optimization Using the

Conditional Value-At-Risk”. In: SIAM Journal on Optimization 26.1 (2016), pp. 365–

396. doi: 10.1137/140954556.

[KS18a] D. P. Kouri and T. M. Surowiec. “Existence and optimality conditions for risk-averse

PDE-constrained optimization”. In: SIAM-ASA Journal on Uncertainty Quantification
6.2 (2018), pp. 787–815. doi: 10.1137/16M1086613.

[KS18b] D. P. Kouri and A. Shapiro. “Optimization of PDEs with Uncertain Inputs”. In: Fron-
tiers in PDE-Constrained Optimization. Ed. by H. Antil et al. New York, NY: Springer

New York, 2018, pp. 41–81. doi: 10.1007/978-1-4939-8636-1 2.

[LD05] H.-J. Lüthi and J. Doege. “Convex risk measures for portfolio optimization and con-

cepts of flexibility”. In: Mathematical Programming 104.2 (2005), pp. 541–559. doi:

10.1007/s10107-005-0628-x.

[Lio71] J. L. Lions. Optimal Control of Systems Governed by Partial Differential Equations.
Berlin: Springer, 1971. isbn: 978-3-642-65026-0.

[MB21] A. N. Madavan and S. Bose. “A Stochastic Primal-Dual Method for Optimization

with Conditional Value at Risk Constraints”. In: Journal of Optimization Theory and
Applications 190.2 (2021), pp. 428–460. doi: 10.1007/s10957-021-01888-x.

[MdP89] N. Maculan and G. G. de Paula. “A linear-time median-finding algorithm for project-

ing a vector on the simplex of Rn”. In: Operations Research Letters 8.4 (1989), pp. 219–

222. doi: 10.1016/0167-6377(89)90064-3.

[Min62] G. J. Minty. “Monotone (nonlinear) operators in Hilbert space”. In: Duke Mathemat-
ical Journal 29.3 (1962), pp. 341–346. doi: 10.1215/S0012-7094-62-02933-2.

[MJV19] S. Mazurenko, J. Jauhiainen, and T. Valkonen. Primal-dual block-proximal splitting
for a class of non-convex problems. 2019. arXiv: 1911.06284.

[MOA11] A. W. Marshall, I. Olkin, and B. C. Arnold. Inequalities: Theory of Majorization and
Its Applications. 2nd ed. New York: Springer Science and Business Media, 2011. doi:

10.1007/978-0-387-68276-1.

[Nes12] Y. Nesterov. “Efficiency of Coordinate Descent Methods on Huge-Scale Optimization

Problems”. In: SIAM Journal on Optimization 22.2 (2012), pp. 341–362. doi: 10.1137/
100802001.

[NW06] J. Nocedal and S. Wright. Numerical Optimization. 2nd ed. New York: Springer Sci-

ence and Business Media, 2006. doi: 10.1007/978-0-387-40065-5.

[Pet38] B. J. Pettis. “On Integration in Vector Spaces”. In: Transactions of the American Math-
ematical Society 44.2 (1938), pp. 277–304. doi: 10.2307/1989973.

[Pfl00] G. C. Pflug. “Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk”.

In: Probabilistic Constrained Optimization: Methodology and Applications. Ed. by S. P.

Uryasev. Boston, MA: Springer US, 2000, pp. 272–281. doi: 10.1007/978-1-4757-
3150-7 15.

[Poc+09] T. Pock et al. “An algorithm for minimizing the Mumford-Shah functional”. In: 2009
IEEE 12th International Conference on Computer Vision. 2009, pp. 1133–1140. doi: 10.
1109/ICCV.2009.5459348.

[Roc70] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970. doi: 10.1515/
9781400873173.

[Roc76] R. T. Rockafellar. “Monotone Operators and the Proximal Point Algorithm”. In: SIAM
Journal on Control and Optimization 14.5 (1976), pp. 877–898. doi: 10.1137/0314056.

125

https://doi.org/10.1137/140954556
https://doi.org/10.1137/16M1086613
https://doi.org/10.1007/978-1-4939-8636-1_2
https://doi.org/10.1007/s10107-005-0628-x
https://doi.org/10.1007/s10957-021-01888-x
https://doi.org/10.1016/0167-6377(89)90064-3
https://doi.org/10.1215/S0012-7094-62-02933-2
https://arxiv.org/abs/1911.06284
https://doi.org/10.1007/978-0-387-68276-1
https://doi.org/10.1137/100802001
https://doi.org/10.1137/100802001
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.2307/1989973
https://doi.org/10.1007/978-1-4757-3150-7_15
https://doi.org/10.1007/978-1-4757-3150-7_15
https://doi.org/10.1109/ICCV.2009.5459348
https://doi.org/10.1109/ICCV.2009.5459348
https://doi.org/10.1515/9781400873173
https://doi.org/10.1515/9781400873173
https://doi.org/10.1137/0314056

Bibliography

[RS06] A. Ruszczyński and A. Shapiro. “Optimization of Risk Measures”. In: Probabilistic
and Randomized Methods for Design under Uncertainty. Ed. by G. Calafiore and F.

Dabbene. London: Springer London, 2006, pp. 119–157. doi: 10.1007/1-84628-
095-8 4.

[RS71] H. Robbins and D. Siegmund. A convergence theorem for non negative almost super-
martingales and some applications. Ed. by J. S. Rustagi. New York: Academic Press,

1971, pp. 233–257. doi: 10.1016/b978-0-12-604550-5.50015-8.

[RT14] P. Richtárik and M. Takáč. “Iteration complexity of randomized block-coordinate de-

scent methods for minimizing a composite function”. In: Mathematical Programming
144.1 (2014), pp. 1–38. doi: 10.1007/s10107-012-0614-z.

[RU00] R. T. Rockafellar and S. Uryasev. “Optimization of Conditional Value-at-Risk”. In:

Journal of Risk 2.3 (2000), pp. 21–41. doi: 10.21314/JOR.2000.038.

[RU02] R. T. Rockafellar and S. Uryasev. “Conditional value-at-risk for general loss distribu-

tions”. In: Journal of Banking and Finance 26.7 (2002), pp. 1443–1471. doi: 10.1016/
S0378-4266(02)00271-6.

[Rud91] W. Rudin. Functional Analysis. 2nd ed. Singapore: McGraw-Hill, 1991. isbn: 978-

0070542365.

[RUZ02] R. T. Rockafellar, S. P. Uryasev, and M. Zabarankin. Deviation Measures in Risk Anal-
ysis and Optimization. 2002. doi: 10.2139/ssrn.365640.

[San+17] A. Santara et al. RAIL: Risk-Averse Imitation Learning. 2017. arXiv: 1707.06658.

[SDR14] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming -
Modeling and Theory. 2nd ed. Society for Industrial and Applied Mathematics, 2014.

isbn: 978-1-611973-42-6.

[ST06] R. Schultz and S. Tiedemann. “Conditional Value-at-Risk in Stochastic Programs

with Mixed-Integer Recourse”. In: Mathematical Programming 105.2 (2006), pp. 365–

386. doi: 10.1007/s10107-005-0658-4.

[TK09] A. Takeda and T. Kanamori. “A robust approach based on conditional value-at-risk

measure to statistical learning problems”. In: European Journal of Operational Re-
search 198.1 (2009), pp. 287–296. doi: 10.1016/j.ejor.2008.07.027.

[Trö10] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and
Applications. Providence: American Mathematical Society, 2010. doi: 10.1090/gsm/
112.

[Val14] T. Valkonen. “A primal-dual hybrid gradient method for nonlinear operators with

applications to MRI”. In: Inverse Problems 30.5 (2014). doi: 10.1088/0266-5611/30/
5/055012.

[Val18] T. Valkonen. “Testing and Non-linear Preconditioning of the Proximal Point Method”.

In: Applied Mathematics and Optimization (2018). doi: 10.1007/s00245-018-9541-
6.

[Val19] T. Valkonen. “Block-proximal methods with spatially adapted acceleration”. In: ETNA
- Electronic Transactions on Numerical Analysis 51 (2019), pp. 15–49. doi: 10.1553/
etna vol51s15.

[Val21] T. Valkonen. “First-Order Primal-Dual Methods for Nonsmooth Non-Convex Opti-

misation”. In: Handbook of Mathematical Models and Algorithms in Computer Vision
and Imaging. Springer International Publishing, 2021, pp. 1–42. doi: 10.1007/978-
3-030-03009-4 93-1.

126

https://doi.org/10.1007/1-84628-095-8_4
https://doi.org/10.1007/1-84628-095-8_4
https://doi.org/10.1016/b978-0-12-604550-5.50015-8
https://doi.org/10.1007/s10107-012-0614-z
https://doi.org/10.21314/JOR.2000.038
https://doi.org/10.1016/S0378-4266(02)00271-6
https://doi.org/10.1016/S0378-4266(02)00271-6
https://doi.org/10.2139/ssrn.365640
https://arxiv.org/abs/1707.06658
https://doi.org/10.1007/s10107-005-0658-4
https://doi.org/10.1016/j.ejor.2008.07.027
https://doi.org/10.1090/gsm/112
https://doi.org/10.1090/gsm/112
https://doi.org/10.1088/0266-5611/30/5/055012
https://doi.org/10.1088/0266-5611/30/5/055012
https://doi.org/10.1007/s00245-018-9541-6
https://doi.org/10.1007/s00245-018-9541-6
https://doi.org/10.1553/etna_vol51s15
https://doi.org/10.1553/etna_vol51s15
https://doi.org/10.1007/978-3-030-03009-4_93-1
https://doi.org/10.1007/978-3-030-03009-4_93-1

[Vol00] S. Volkwein. “Application of the augmented Lagrangian-SQP method to optimal con-

trol problems for the stationary Burgers equation”. In: Computational Optimization
and Applications 16.1 (2000), pp. 57–81. doi: 10.1023/A:1008777520259.

[VP17] T. Valkonen and T. Pock. “Acceleration of the PDHGM on Partially Strongly Convex

Functions”. In: Journal of Mathematical Imaging and Vision 59.3 (2017), pp. 394–414.

doi: 10.1007/s10851-016-0692-2.

[WB09] T. Wu and J. V. Blackhurst. Managing Supply Chain Risk and Vulnerability - Tools
and Methods for Supply Chain Decision Makers. London: Springer London, 2009. doi:

10.1007/978-1-84882-634-2.

[WC13] W. Wang and M. Á. Carreira-Perpiñán. Projection onto the probability simplex: An
efficient algorithm with a simple proof, and an application. 2013. arXiv: 1309.1541.

[Wri15] S. J. Wright. “Coordinate descent algorithms”. In: Mathematical Programming 151.1

(2015), pp. 3–34. doi: 10.1007/s10107-015-0892-3.

[ZBO11] X. Zhang, M. Burger, and S. Osher. “A Unified Primal-Dual Algorithm Framework

Based on Bregman Iteration”. In: Journal of Scientific Computing 46.1 (2011), pp. 20–

46. doi: 10.1007/s10915-010-9408-8.

[ZL15] Y. Zhang and X. Lin. “Stochastic Primal-Dual Coordinate Method for Regularized

Empirical Risk Minimization”. In: Proceedings of the 32nd International Conference on
Machine Learning. Ed. by F. Bach and D. Blei. Vol. 37. Proceedings of Machine Learn-

ing Research. Lille, France: PMLR, 2015, pp. 353–361. url: https://proceedings.
mlr.press/v37/zhanga15.html.

[ZS15] Z. Zhu and A. J. Storkey. “Adaptive Stochastic Primal-Dual Coordinate Descent for

Separable Saddle Point Problems”. In: Machine Learning and Knowledge Discovery
in Databases. Ed. by A. Appice et al. Cham: Springer International Publishing, 2015,

pp. 645–658. doi: 10.1007/978-3-319-23528-8 40.

127

https://doi.org/10.1023/A:1008777520259
https://doi.org/10.1007/s10851-016-0692-2
https://doi.org/10.1007/978-1-84882-634-2
https://arxiv.org/abs/1309.1541
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1007/s10915-010-9408-8
https://proceedings.mlr.press/v37/zhanga15.html
https://proceedings.mlr.press/v37/zhanga15.html
https://doi.org/10.1007/978-3-319-23528-8_40

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	2 Background
	2.1 Differential Calculus in Banach Spaces
	2.2 Convex Analysis
	2.2.1 Convex Functions and Subdifferentials
	2.2.2 Lower Semi-Continuity
	2.2.3 Fenchel Duality
	2.2.4 Monotone and Proximal Operators

	2.3 Non-Convex Analysis
	2.4 Measure Theory
	2.5 Stochastic Programming
	2.5.1 Uncertainty
	2.5.2 Sampling
	2.5.3 Risk Aversion
	2.5.4 Conditional Value-at-Risk

	2.6 Partial Differential Equations

	3 Optimization Problem
	3.1 Problem Formulation
	3.2 PDE Constraint
	3.3 Existence and Optimality Condition

	4 Algorithm
	4.1 Stochastic Primal-Dual Proximal Splitting Method
	4.2 Randomization
	4.3 Weak Convergence
	4.3.1 Abstract Proof
	4.3.2 Stochastic Quasi-Fejér Monotonicity
	4.3.3 Convergence to Optimal Solution

	4.4 Scalar and Deterministic Step Sizes
	4.4.1 Fundamental Assumptions
	4.4.2 Satisfaction of Central Inequality
	4.4.3 Convergence
	4.4.4 Local Step Size Bound

	5 Simplex Projection
	5.1 Discretization of the Probability Space
	5.2 Problem Formulation
	5.3 Optimality Condition
	5.4 Algorithm
	5.5 Convergence

	6 Applications
	6.1 Choice of Step Sizes
	6.2 Index Selection Rules
	6.3 Elliptic Equation with a Discontinuous Coefficient
	6.3.1 Problem Formulation
	6.3.2 Satisfaction of the Assumptions
	6.3.3 PDE Discretization
	6.3.4 Function Discretization
	6.3.5 Discrete Algorithm
	6.3.6 Numerical Results

	6.4 Steady Burgers' Equation
	6.4.1 Problem Formulation
	6.4.2 PDE Discretization
	6.4.3 Function Discretization
	6.4.4 Numerical Results

	7 Conclusion
	Bibliography

