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Korreferenten: Prof. Tarek I. Zohdi, Ph.D.

Tag der Einreichung: 24. November 2021
Tag der mündlichen Prüfung: 22. März 2023
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aus.
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Abstract
Particle methods represent a fundamental column of simulation technology. In the last
decades, these methods have been used more and more frequently also in the field of en-
gineering disciplines. Their main advantage over established simulation techniques such
as the Finite Element Method (FEM) is the possibility to represent large deformations
and material discontinuities, such as chip formation, particularly well.
The ”Material Point Method” (MPM) is a relatively new technique, which allows solving
a continuum mechanical representation of the differential equations using a background
computational grid. Mechanical bodies are represented by particles. These not only
represent the current deformation state, but also carry material history and material
laws. Effectively, the MPM combines the advantages of an Eulerian and Lagrangian
approach for greater performance in extreme deformations.
In this thesis, the MPM is presented and discussed in detail. One focus is on the im-
plementation of the method in the ELSE code for the explicit solution of engineering
problems. Established benchmark problems are performed and complemented to vali-
date the presented implementation. Further developments of MPM such as ”Convected-
Particle-Domain-Interpolation” (CPDI), contact mechanisms to ideally stiff bodies, and
a grid-shift technique are also considered.
The second focus of the work is on the analysis of highly dynamic metalworking pro-
cesses. The method is used to mimic the Split-Hopkinson-Pressure-Bar (SHPB) exper-
iment to demonstrate the applicability of the current implementation in this domain.
Subtractive metalworking processes are then simulated to analyze the performance of
the method, and its sensitivity to simulation parameters.
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Zusammenfassung

Partikelmethoden stellen eine fundamentale Säule der Simulationstechnik dar. In den
letzten Jahrzehnten wurden diese Methoden immer häufiger auch im Bereich von Inge-
nieurdisziplinen eingesetzt. Ihr Hauptvorteil gegenüber etablierten Simulationstechniken
wie der Finite Elemente Methode (FEM) ist die Möglichkeit große Deformationen und
Materialdiskontinuitäten, wie zum Beispiel bei Spanbildung, besonders gut abzubilden.
Die ”Material Point Method” (MPM) stellt hierbei eine relative junge Technik
dar, welche mithilfe eines Hintergrund-Berechnungsgitters eine kontinuumsmechanische
Darstellung der Differenzialgleichungen löst. Dabei werden mechanische Körper durch
Partikel abgebildet. Diese bilden nicht nur den aktuellen Verformungszustand ab, son-
dern tragen auch Materialhistorie und Stoffgesetze. Effektiv kombiniert die MPM hier-
durch Vorteile einer Eulerschen- sowie Lagrangschen-Betrachtungsweise und ermöglicht
somit die Darstellung extremer Deformationszustände.
In dieser Arbeit wird die MPM detailliert dargelegt und diskutiert. Ein Fokus liegt
in der Implementierung der Methode im ELSE code, zur expliziten Lösung von Inge-
nieursproblemen. Etablierte Benchmarkprobleme werden durchgeführt und ergänzt um
die dargelegte Implementierung zu validieren. Dabei werden auch Weiterentwicklungen
der MPM wie ”Convected-Particle-Domain-Interpolation” (CPDI), Kontaktmechanis-
men zu ideal steifen Körpern und eine ”grid-shift” Technik betrachtet.
Der zweite Schwerpunkt der Arbeit liegt in der Analyse von hochdynamischen Met-
allbearbeitungsprozessen. Die Methode wird verwendet, um das ”Split-Hopkinson-
Pressure-Bar” (SHPB) Experiment nachzubilden und so die Anwendbarkeit der vor-
liegenden Implementierung in diesem Bereich nachzuweisen. Anschließend werden sub-
traktive Metallbearbeitungen simuliert und die Leistungsfähigkeit der Methode, sowie
ihre Sensitivität gegenüber Simulationsparametern zu analysieren.
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1 Introduction, Motivation and Outline

Numerical simulations are an established tool in engineering fields for the analysis of
physical problems. They are used to predict the performance of new designs on mechanical
constructions and reduce the need for more expensive real experiments. Also, they allow
for in situ analysis of the stresses in structures that experiments often cannot provide.
Failure analysis of structures, as done, e.g., in car-crash simulations, are very much used
to improve mechanical designs or layout performance boundaries for finished products.
With raising computational power at low prices and performant simulation techniques,
the application of numerical analysis is extended to various fields. Simulations of isolated
processing steps are one of these fields, which leads to improved techniques to optimize the
final product in geometry and finish while minimizing the tool wear. Especially, subtractive
and additive manufacturing processes are quite challenging for established numerical tools
such as the Finite Element Method (FEM) because of the topological changes and material
discontinuities. With a mesh representing the physical bodies, mesh distortion at large
deformations occur. New connections between individual bodies as in welding or the
opposite in milling, cannot be represented by the initial meshes at all or with the cost of
realistic patterns.

As an alternative simulation technique for these cases, particle methods are used. In
particle methods, physical bodies are represented by a set of particles instead of meshes.
The degree to which the body is approximated may vary. Some models aim to simulate
the material with particles representing individual atoms or molecules, while others focus
on scales where particles represent grains or are used rather as a discrete mathematical
representation of an underlying continuum.

The Material Point Method (MPM) is a relatively young particle method developed by
Sulsky et al. [142] and categorizes to the latter group. As such, it is well suited for
the simulation of macroscopic problems with reasonable computational efforts. In MPM,
particles do not interact directly with each other. Instead, a Computational Background
Grid (CBG) is introduced to handle these interactions. For each time step in an MPM
simulation, the algorithm demands a mapping operation from the particles that carry the
material information onto the CBG, where the actual differential equations are solved.
Using the CBG allows for a variety of non-local mapping operators and the usage of
established techniques such as a Galerkin weak form to represent and solve the numerical
problem. At the end of each time step, results from the CBG are projected to the particles
and used to update their state. The CBG does not preserve the solution further.

The uniqueness to the MPM is the Lagrangian representation of matter and the com-
putation of the solution on a temporary grid in an Eulerian sense. The advantage of
material points is that convection errors are avoided. Mass is preserved perfectly. Also
local variables such as material history are kept at the material points. Evaluation of
constitutive equations on these data at the material points is very stable, allowing for
practical application of complex material laws with minimum computational hustle.

The Eulerian perspective on the simulation space, represented by the CBG, features in-
dependence from the current topology. Hence, mesh distortion is completely avoided, and
effective mesh topologies can be chosen. Usually, regular cartesian grids are chosen without
compromising the results.
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Due to these advantages, the MPM was chosen for the simulation of dynamic metal
processing applications in the scope of the ”Virtual Machining” project, founded by the
”Stiftung Mercator” and the ”Mercator Research Center Ruhr” (PE-216-0024).

The goal of the research that leads to the present thesis was to develop a computational
tool for using the MPM in the scope of highly dynamic metal processing. It was used
to model physical experiments conducted in the ”Virtual Machining” project with an
extended focus on orthogonal cutting. In this process, a strip is cut from a metal workpiece.
The process introduces various challenges to numerical models such as large deformations,
material separation, a wide band of deformation rates, and temperature dependence. In
order to investigate the performance of the MPM on metal cutting, this thesis presents
benchmark problems to discuss general mechanisms and problems with the MPM and
presents a numerical analysis of the Split-Hopkinson-Pressure-Bar experiment as a pre
step.

This thesis, shows that the MPM is in no way inferior to other particle methods and holds
to its promises. The present ELSE code is capable of performing orthogonal cutting simula-
tions with good results. The usage of equally grid spaced cartesian grids using linear shape
functions offers unmatched computational performance regarding the mapping operation.
For the first time, the influence of the position of such a grid with respect to physical
space is analyzed. It is shown that in highly dynamic problems, a grid-shift technique
can be employed to resolve stress waves better than a grid fixed in space. The technique
improves the stability of the analysis and produces a smooth, realistic solution without
introducing any more amount of computational expense. Further, localization behavior of
grid-shift results is compared with MPM simulations on a CBG, which is fixed in space.

For an overview, the structure of this thesis is outlined in the following.

Chapter 2 provides a synopsis of particle methods in general to allow a better classifica-
tion of the MPM. An overview of the most important and recent works is given. Chapter
3 provides fundamentals of classical Continuum Mechanics as used for the model in this
thesis. Chapter 4 introduces the fundamentals of constitutive modeling and presents
the hyperelastic and elasto-plastic constitutive relations used in the later examples. In
Chapter 5, standard time integration techniques are shortly revisited. To allow for a
better understanding of the present MPM implementation, Chapter 6 gives a broad re-
view on implicit and explicit solution strategies to nonlinear partial differential equations.
The MPM fundamentals are discussed in Chapter 7. The weak form of the equation of
motion is derived on the CBG and the specific implementation of the MPM as used for
this thesis is given in detail. A more algorithmic view is given in Chapter 8 alongside
a presentation of the ELSE code design. Basic benchmark examples are used to verify
the correct implementation. Chapter 9 has a contact focus. Standard MPM contact is
shown, and the frictional MPM to rigid body contact is presented. A view on MPM vari-
ants is given in Chapter 10. Also, problems that may occur in MPM simulations are
investigated and shown in exemplary cases. The SHPB model is presented in Chapter
11, featuring a Johnson-Cook material law to give an example of material fitting using
MPM. In Chapter 12, metal cutting examples are analyzed, and the grid-shift strategy
is presented. Chapter 13 concludes this thesis and gives an outline for future research
on MPM in machining processes.



Overview to particle methods and the MPM 3

2 Overview to particle methods and the MPM

The main concept of numerical simulations is to discretize mathematical equations for
computer systems. For physical analysis, two main approaches were followed. In an Eu-
lerian simulation, the physical space itself is discretized, while in a Lagrangian concept,
the material is discretized. For the latter one, the material is discretized using nodes that
compose a mesh or by particles that concentrate this matter. These two concepts were
developed not completely independent from each other but rather have several aspects
in common. Also mixed approaches exist. In time, a zoo of various techniques has been
created where some are so similar that it is even hard to differentiate them. In the fol-
lowing, a selection of particle methods is discussed. The selection by no means claims to
be exhaustive. For this review, three main categories for particle methods are introduced.
The first category summarizes those that do not use a mesh in their algorithms. Rather,
these methods rely on direct particle-particle interactions. A second category extends the
first by assigning each particle in the simulation a larger region of influence than its im-
mediate neighboring particles. Finally, the third category incorporates meshes into their
computational algorithms.

A very prominent representative of the first category is Molecular Dynamics (MD)
which was one of the first simulation techniques used. Early works date back to the fifties,
such as Alder and Wainwright [5]. As indicated by the name, the idea of MD is
that particles represent the atoms or molecules of a material. As such, MD can be used to
estimate macroscopical material behavior using averaging techniques. MD is usually based
on the very basic equation of motion and potential-based interactions between particles
and their direct neighbors. For a more comprehensive entry into MD, the interested reader
is referred to Rapaport [113].

In recent years, the Discrete Element Method (DEM) found more attention, especially
in the engineering community. Since its introduction in Cundall and Strack [34], par-
ticles in this method interact via direct contact laws. In this sense, long-range forces
are not intended. An overview of possible contact interactions can be found, e.g., in
Popp and Wriggers [112] or Neto et al. [104]. Contrary to MD, a DEM particle
has a rotation state. Different rotational discretizations are discussed in Campello [18].
The inclusion of rotation triggered by frictional contact between particles makes
this method very popular in the geomechanics engineering community, with a focus
on modeling granular materials. Rock cutting simulations in two and three dimen-
sions were done in Rojek et al. [116] and in combination with finite elements in
Oñate and Rojek [107]. In Fernandes et al. [40], the authors also coupled FEM
and DEM for modeling particles in a fluid flow. In DEM, it is possible to investigate the
crushing of granular materials by directly splitting particles into smaller ones, as shown in
Chaudry and Wriggers [24]. With the growing importance of additive manufacturing
processes, DEM is often applied to model powders, e.g., in Marchais et al. [98].

The Smoothed Particle Hydrodynamics (SPH) scheme is a common representative of
the second category. Originally, the scheme was developed for astrophysical simulations,
as in Gingold and Monaghan [47]. During the last decades, it has been developed
to be used in many applications as reviewed in Vacondio et al. [149]. In SPH, the
particles interact with each other through an implicit influence region with compact sup-
port. The resulting field constructions are more smooth than particle methods in the
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first category, making this method very successful in modeling fluids. Multi fluid simula-
tions on SPH were shown in Fürstenau et al. [44]. For the improvement of numerical
stability, the kernel functions for the mathematical particle support can be altered. For
example, Lahiri et al. [81] used an adaptive B-Spline kernel to stabilize SHP simula-
tions under large tensile deformation. Efforts like this elaborate the SPH towards reliable
solid mechanic modeling. Combined with its ability to model material discontinuities,
its application to metal cutting in Islam et al. [67] is a natural fit. Also, applications
in the opposite direction are considered. Welding, as considered in Bagheri et al. [9],
and additive manufacturing models require material to change its topology to a great
extend. Laser-driven liquefaction of powders at their free surfaces in additive manufac-
turing was studied in Meier et al. [99] and Russell et al. [117]. SPH is often used
in computer graphics for modeling fluids, which introduces a high demand for perfor-
mant algorithms and implementations. A GPU accelerated powder melting simulation
was presented in Fürstenau et al. [45]; cutting simulations on GPUs are performed
in Afrasiabi et al. [3] as examples for improvements in this area.

The relatively young Peridynamics (PD), proposed by Silling [128], is a particle
method using an initial horizon to introduce neighborhoods. Depending on the horizon
size, the neighborhoods size is scaled. Particles interact with each other through so called
bonds, which are defined between each particle pair in a neighborhood. Figure 2.1 shows
three horizons exemplarily, with the established bonds. In bond-based PD, the bonds
act as springs, which can be released by means of damage criterion. This way, PD was
first applied to crack simulations in Silling [129] on a Kalthoff-Winkler experiment and
extended to more complex applications, e.g., Hu et al. [61]. Hu and Madenci [62] ex-
tended the bond-based approach to model arbitrary Poisson’s ratios which was a major
drawback of this variant. The bond-based PD is a proven method for realistic fracture
modeling, compare Butt and Meschke [16]. However, the bond-based approach re-
quires more efforts in developing thermodynamically consistent elaborated materials as
in Javili et al. [69].

MD

DEM SPH

PD

PFEM

MPM

mesh dependent particle methods:

direct interaction particle methods: smooth domain interaction particle methods:

Figure 2.1: Idealized graphical illustration of the interaction mechanism of a selection of
particle methods.

As an alternative to bond-based PD, the concept of state-based PD and the correspon-
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dence model was first introduced by Silling et al. [130]. The correspondence enables
the reconstruction of a classical deformation gradient at each particle, which in return
offers usage of constitutive formulations derived in a continuum mechanical setting.
Correspondence visco-plasticity in PD was first shown in Foster et al. [43], damage
models incorporated in Tupek et al. [148], and thermoplastic fractures analyzed by
Amani et al. [6]. A crucial issue in correspondence formulations is the occurrence of
zero-energy modes. Considerable research efforts focused on this subject and stabilized for-
mulations as in Chowdhury et al. [29]. Based on this improvement, Bode et al. [14]
showed a mixed PD formulation for effective handling of incompressibility. Also ad-
vanced applications as additive manufacturing processes are possible to model, such as
in Hartmann et al. [54]. As with many other particle methods, there is an interest in
coupling PD with the FEM to achieve more effective numerical models. This approach
was followed, e.g. in Liu and Hong [88], and Ongaro et al. [110], to name just a few.

The third category contains particle methods that necessarily use computational meshes
or grids. The Particle Finite Element Method (PFEM) is the youngest technique in
this overview. Proposed by Idelsohn et al. [66], the idea is to use the FEM to compute
the solution within a time step. The FEM mesh, however, is not fixed in time, nor is its
boundary. Instead, the boundary of the considered particle cloud is updated frequently,
and the FEM mesh is renewed. Consequently, the method can be used for fluid simulations
where free surfaces frequently occur, e.g., in Aubry et al. [8] and for fluid-structure in-
teraction problems, Oñate et al. [108] or Galano et al. [46]. As a result, PFEM be-
came very popular in geomechanics for the analysis of landslides (Salazar et al. [121])
or in geotechnical engineering, see, e.g., Monforte et al. [101]. With its foundation in
FEM, the method is versatile, enabling the simulation of solid mechanics with considerable
topology changes, such as in cutting (Oñate et al. [109], Carbonell et al. [19]) as
well. For a comprehensive review on PFEM, the interested reader is referred to, e.g.,
Cremonesi et al. [33].

The Material Point Method (MPM) also relies on a computational mesh. Originally,
the successor of this method, the Particle In Cell (PIC) method, was proposed very
early in Harlow [52] with the intention to be applied in fluid simulations. The main
concept, very similar to the present MPM, was to consider a fixed Eulerian mesh to solve
the differential equations and have Lagrangian particles represent the bodies that move
through this grid. In PIC, the particles carry only their mass with their current position.
Solution-relevant fields, e.g., velocities, are associated with the mesh.

While this was sufficient for fluid mechanical problems, Sulsky et al. [142] extended
the PIC particles to carry all properties of the material and treat the Computational
Background Grid (CBG) to be completely temporary within a time step. Especially the
consistent preservation of material history variables, which are by default local variables,
lead to the rebranding to today’s MPM. From the beginning, MPM was used to simu-
late dynamics solid mechanical problems as in Sulsky et al. [143] or with considering
an axisymmetric setting in Sulsky and Schreyer [141]. The concept of local history
leads to numerically very efficient and stable conditions, even for complex constitutive
formulations in MPM. To date, finite strain plasticity formulations exist that even take
advantage of anti-locking techniques developed in FEM, see, e.g., Coombs et al. [31].

The MPM algorithm starts with the first mapping operation of the particle’s properties
onto the grid. The CBG then provides the solution for the current time step. At last, this
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solution is mapped back to the particles and used there to advance in time, i.e., move
the particles in space. Finally, the CBG is wiped so that it does not carry permanent
information. Consequently, the CBG does not accumulate deformation. Hence, even at
large deformations of Lagrangian bodies, mesh distortion is avoided completely.

Usually, CBG is of cartesian geometry. The reason is the performance benefit, as it is
easy to compute the enclosing grid cell for each particle. However, unstructured meshes
are used frequently as well, demanding elaborated search algorithms as presented e.g.,
Wang et al. [152].

Since the beginning of the method, research was done on how and when to per-
form the mapping operations. Besides linear ansatz functions defined on carte-
sian or arbitrary CBGs, the Generalized Interpolation Material Point (GIMP), see
Bardenhagen and Kober [11], was used to provide a higher-order interpolation
scheme. Also, B-Splines defined on the CBG can be used, as shown, for example, in
Tielen et al. [146], and Koster et al. [80]. Alternative mapping operators are nowa-
days established. A detailed review and analysis can be found in chapter 10.

Modifications on the explicit algorithm for performing the mapping operations and when
to update the mapping operators where studied as well. The main considered algorithms
are the Update Stress First (USF), the Update Stress Last (USL), and the Modified
Update Stress Last (MUSL) schemes. In an MPM simulation, the constitutive equations
are evaluated at the particles. The deformation state, however, requires information from
the grid. In USF, the deformation state used for updating the stresses is computed at the
beginning of the time step. Therefore, the mapping operators involved, were only updated
with the current position of the particle. Contrary, the USL scheme demands the stress
update at the end of a time step. Here, the utilized mapping operators still refer to the
beginning of the time step, even though the position of the particle has changed. The
MUSL scheme intends to provide better accuracy in time by introducing an additional
mapping and solution circle for the velocity before updating the stress at the end of the
time step, compare Zhang et al. [163].

A comparison of the USF and USL algorithms with respect to energy conservation was
made in Bardenhagen [10]. The investigations denoted that both algorithms provide
fair energy conservation in ranges where the computational grid spacing is able to re-
solve the structural sound waves. However, it is interesting that while the USF algorithm
conserves the energy well, the USL behaves dissipative. Nevertheless, the author consid-
ered this behavior preferable in some cases to improve the stability of the simulation. In
USL, especially the high frequencies are truncated, which usually cause instabilities in
time discretization. To avoid spurious damping effects, Hammerquist and Nairn [51]
proposed an alternative update scheme.

Earlier works on the MPM make use of explicit solution schemes. In this framework, the
nodal accelerations are directly computed by dividing nodal forces with their associated
masses. If, however, a nodal mass is very small, which frequently happens when a material
point is near the borders of a cell, this causes instabilities or even crashes the simulation. To
address this issue, commonly, a mass-cuttoff value is used to check for small nodal masses
for the cost of numerical dissipation. Another approach was chosen by Ma et al. [92],
where the authors applied correction factors to the computation of nodal forces without
losing linear momentum. An alternative to explicit solution schemes, implicit schemes
are introduced in Sulsky and Kaul [140]. However, dynamics or pseudo-dynamic load
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steps are still used to take advantage of the convective phase, where material points
move. The main advantage of these strategies is to utilize larger time steps and achieve
actual equilibrium solutions. In Charlton et al. [23], the authors presented an implicit
MPM algorithm for GIMP and in Wang et al. [151] in combination with Convected
Particle Domain Interpolation (CPDI). B-Splines in an implicit MPM solution scheme
were used by Yamaguchi et al. [160]. A discussion on the frame of reference in implicit
MPM and their consequences with respect to the used mapping functions is given in
Coombs et al. [32].

The MPM is a very versatile numerical tool and has been applied to various prob-
lems. Similar to other particle methods, it can be used in fracture mechanics, see
Raymond et al. [114] and in combination with an XFEM approach on the CBG in
Liang et al. [86]. Also, the geoengineering community takes advantage of MPM for
modeling granular soils, as in Cecchi and Rizzi [21], Ceccato and Simonini [20], or
Li et al. [83], to name just a few. Investigations of water-saturated soils were done
in Mroginski et al. [102] and Lei et al. [82]. A whole Fluid-Structure Interaction
(FSI) problem using MPM for fluid and the solid material was shown in Su et al. [139].
An attempt to simulate sea ice behavior was taken in Sulsky et al. [144].
Stomakhin et al. [137; 138] used the MPM to model snow and melting processes.
In mechanical engineering, the MPM was applied in an additive manufacturing
context with laser sintering in Maeshima et al. [95] or a subtractive manufac-
turing context of orthogonal cutting in Nairn [103]. Various impact problems can
be found in Love and Sulsky [90], Zhang et al. [162], Huang et al. [64], and
Lian et al. [84; 85].

For all mentioned particle methods, it is complicated to deal with boundary conditions.
With the particles representing the deformable bodies, there is no explicit boundary given.
In Sandim et al. [122], a boundary detection algorithm is presented to detect those par-
ticles that lie on the virtual boundary of a body. A different approach especially focusing
on boundary conditions on the implied surface of an MPM discretized body, was chosen in
Liu and Sun [87] in terms of the shifted domain theory. In PFEM, the boundary must
be detected for the mesh generation anyway, usually following an alpha-shape concept, see
Edelsbrunner and Mücke [39]. Nevertheless, many physical problems can be simu-
lated without boundary conditions, or using contact mechanics, e.g., with rigid surfaces.
Details about contact in MPM are discussed in chapter 9.

Other physical problems involve thermal loads, e.g., for laser melting where Zohdi [166]
and Wessels et al. [153] show modeling examples with a focus on particles. For
the initial particle discretization of a body, multiple possibilities exist. For example,
Liu and Sun [87] report a technique to use image data as the basis for particle dis-
cretizations, Fernández et al. [41] used topological contour line data for numerical
reconstruction of landscapes, to highlight some more advanced concepts.
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3 The basics of classical Continuum Mechanics

3.1 Describing quantities in a continuum

The kinematical framework for describing material motion in a continuum relies on the
concept of configurations. A configuration describes the position of each material point
in space, for a specific time. The reference configuration describes the body B0 ∈ R3 at
time t = t0. The material points positions is given by vectors X. Further, if not stated
otherwise, we assume the reference configuration to be stress-free. In the scope of this
thesis, the term material point is a technical specification that differs from its meaning
in the theoretical concept of describing a continuum. If not stated otherwise, the term
material point describes an infinitesimal volume occupied by a body.

For any other given point in time, the material points might be displaced and the body
may deform. Such a placement is called current configuration, where the body is denoted
by B ∈ R3 and the material point positions are given by x. The difference between
the configurations is given by the invertible tensor function ϕ(X, t) : B0 → B and the
deformation gradient F , as illustrated in figure 3.1.

B0

∂B0
0

∂B

dv

dV

B

dX

dx

N

dA

n

da

X

x

ϕ(X, t), ϕ−1(x, t)

F ,F
−1

t0

t

Figure 3.1: Illustration of a body and its evolution in time.

The deformation gradient represents the description of deformation in a continuum. It
relates the position vectors of the current configuration to those of the reference configu-
ration as in

F =
∂x

∂X
= Gradu+ I, (3.1)

with the displacement vector u = x−X and the second-order identity tensor I.

Its determinant, also known as the Jacobian, can be used to describe the volume with

J = detF > 0. (3.2)

The deformation gradient and its determinant are used for mapping differential line ele-
ments dx, surface areas da and volume elements dv between configurations by

dx = F · dX, n da = cofF ·N dA, dv = J dV, (3.3)
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where n, N denote the normal vectors of differential surface areas in the current and
reference placement.

The deformation gradient describes the deformation and the rotation which can be shown
in its polar decomposition into a left and right stretch tensor V , U and a rotation tensor
R as

F = V ·R = R ·U . (3.4)

In material modeling it is often desired to have deformation measures which are indifferent
to rotation. As such we introduce the left and right Cauchy-Green deformation tensors

b = F · F T = V ·R ·RT · V T = V · V T ,

C = F T · F = UT ·RT ·R ·U = UT ·U ,
(3.5)

where it can easily be shown that the rotation part is vanishing due to the relation
RT = R−1 of orthogonal rotation tensor R. Additionally, we can identify the symmetry
for both deformation tensors C = CT and b = bT .

Further, elaborated strain tensors are introduced. Of importance for this work are the
Almansi strain tensor a and the Cauchy-Green strain tensor E,

a =
1

2

(
I − b−1

)
, E =

1

2
(C − I) (3.6)

which are defined with respect to the current and reference configuration, respectively.
By definition, any strain measure renders a dimensionless quantity.

3.2 Stresses

It can be observed that a body resists deformation due to external loading. This resis-
tance is modeled in terms of a constitutive behaviors that leads to stresses. Stresses are
the internal counterpart to external loading and are balanced to describe equilibrium.
Mechanical loads are characterized by force vectors f in N, which can be applied onto a
differential surface area. From this, the so-called traction vector is defined as

t =
df

da
. (3.7)

The traction vector preserves the direction of the force but describes it as a differential
with respect to the corresponding differential surface area. In other words its a directed
force per area. In equilibrium, the body which is loaded by traction on its surface builds
an internal stress state, which can be described by the Cauchy stress tensor σ in N m−2

through Cauchy’s theorem

t = σ · n. (3.8)

The surface normal n is not necessarily defined only on the boundary surface of the
body, but can also be defined on virtual cuts within the solid domain. This concept of
virtual cuts to follow the flow of stresses through the body represents a basis in continuum
mechanics. Further, in knowing the deformation of a body, the aforementioned relation
can be described in the reference configuration of the body as well. Using the transport
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theorems as depicted in equation (3.3), the definition of the first Piola-Kirchhoff stress
tensor P in N m−2 can be formulated by

t0 = P ·N . (3.9)

The vector N is defined on the surface in the reference configuration, for which the
traction vector t0 is computed. It is the projection of the traction vector t defined on a
current surface area into the reference configuration, compare figure 3.1. It is also possible
to transform the stress tensors, using the relation

σ =
1

J
τ =

1

J
P · F T , (3.10)

with the Kirchhoff stress tensor τ . The constitutive response of a body can be described
with respect to both configurations with these stress tensors. All stress tensors and traction
vectors alike are defined in N m−2. Although the scope of this thesis allows focusing on
the here mentioned set of stresses, it might be noted that there exist more definitions of
stress tensors for various applications.

3.3 Important rates and other time derivatives

The rates, i.e. change in time of any property are used to describe the evolution of proper-
ties in continuum mechanics. For example, the rate of the deformation gradient describes
the velocity gradient with respect to the reference configuration

Ḟ =
∂ẋ

∂X
= Gradv. (3.11)

The velocity gradient, in return, renders the spatial velocity gradient with respect to
the current configuration. The velocity gradient can be computed from the rate of the
deformation gradient, sing the chain rule

L =
∂ẋ

∂x
=

∂ẋ

∂X
· ∂X
∂x

= Ḟ · F−1 = gradv. (3.12)

Besides the definition of L itself, we remark the property Ḟ = L · F which is used
later. The velocity gradient is defined in the current configuration, which renders the
importance for describing a continuum in the same frame. It is important with respect to
the balance equations used in this thesis, and for constitutive equations that work with
the true stresses, such as plasticity. As in formerly discussed strain tensors, the velocity
gradient can also be additively decomposed into a symmetric d = dT and skew-symmetric
part W = −W T . In a descriptive sense, these tensors represent the rate of deformation

d =
1

2

(
L+LT

)
(3.13)

and the rate of rotation, i.e., the spin tensor

w =
1

2

(
L−LT

)
. (3.14)
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As said, rates describe the change of a property in time. This definition might not neces-
sarily equal the partial differentiation with respect to time, due to hidden dependencies
with respect to the properties configuration. For the rate of the Green-Lagrange strain
tensor,

Ė =
1

2

(
Ḟ T · F + F T · Ḟ

)
= F T · 1

2

(
L+LT

)
· F = F T · d · F (3.15)

it can be shown that its rate is closely related to the rate of deformation. The difference
of both properties is set by their reference frame. The operation used in equation (3.15)
is also known as pull back, as it ”pulls” the deformation rate ”back” from the current, to
the reference configuration.

As another example, we consider the rate of the left deformation tensor. Using the relation
derived above, we get

ḃ =
(
F · F T

)·
= Ḟ · F T + F · Ḟ T = L · F · F T + F · F T ·LT , (3.16)

and with further applying the symmetry property b = bT we arrive at

ḃ = 2 b · 1

2

(
L+LT

)
= 2 b · d. (3.17)

All rates presented here describe the change of unitless quantities in time, and hence
themselves are defined in s−1.

3.4 Differential equations

In the following the most fundamental differential equations to describe a solid continuum
are discussed. A so-called local statement can be extracted for each, which describes
demands for each infinitesimal volume element in a continua, to satisfy the aforementioned
governing equations.

3.4.1 Balance of mass

The balance of mass represents a fundamental balance equation that describes the conser-
vation of mass m. In this context mass is defined as material density ρ in kg m−3 integrated
over the current volume of the body for which it is defined. We use the volume mapping
(3.3) to compute the mass rate by integrating over the reference domain, to exploit all
temporal dependencies,

ṁ =

[ ∫
B
ρ dv

]·
=

[ ∫
B0

J ρ dV

]·
=

∫
B0

J̇ ρ + J ρ̇ dV = 0. (3.18)

Using J̇ = J div ẋ we arrive at the local statement of the balance of momentum∫
B0

J div ẋ ρ + J ρ̇ dV =

∫
B

div ẋ ρ + ρ̇ dv = 0 ⇒ ρ̇+ ρ div ẋ = 0. (3.19)

Likewise, the mass of an infinitesimal volume element of a body could be computed using
the reference density ρ0 in kg m−3 to expose a consequence of mass conservation for the
Jacobian,

dm = ρ dv = ρ0 dV ⇒ J =
ρ0

ρ
. (3.20)
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In the framework of a Lagrangian description, where the body is represented by discrete
points, rather than a continuous field, equation 3.20 is of special importance.

3.4.2 Balance of linear momentum

Preservation of linear momentum p in kg m s−1 is the governing equation of motion in
a material continuum. Its rate is equal to acting forces in the continuum which can be
decomposed. The quantity b in m s−2 represents a volumetric, load-like acceleration, such
as gravity.

ṗ =

[∫
B
ρ ẋ dv

]·
=

∫
B
ρ ẍ dv =

∫
B
ρb dv +

∫
∂B
t da = f . (3.21)

Using Cauchy’s theorem (3.8), the traction surface integral can be reformulated as∫
∂B
t da =

∫
∂B
σ · n da =

∫
B

divσ dv, (3.22)

which leads to the local statement of the balance of linear momentum, defined in the
current configuration

divσ + ρ (b− ẍ) = 0. (3.23)

It is noted here, that the given local statement in equation (3.23) can be equally defined in
an integral form for the current, and reference configuration. In the latter case, application
of the transport theorems is required; see equation (3.3).

3.4.3 Balance of angular momentum

Just as linear momentum, physics demand equilibrium also for angular momentum p̃ and
its force-driven counterpart f̃ . Hence we observe its rate

˙̃p =

[∫
B
x× ρ ẋ dv

]·
=

∫
B
x× ρ ẍ dv =

∫
B
x× ρb dv +

∫
∂B
x× t da = f̃ . (3.24)

After some algebraic manipulations, including∫
∂B
x× t da =

∫
B
x× divσ + I × σ dv (3.25)

and also usage of the equation (3.23), we arrive at the local statement I × σ = 0. This
local statement demands symmetry of the Cauchy stress tensor,

σ = σT . (3.26)

3.4.4 Balance of energy

The conservation of energy represents another concept postulated for physical processes.
While many different contributions of energy exist, we introduce here only the most
common definitions for solid mechanics. Energy is defined in J = kg m2 s−2. We introduce
the capacitive quantities of kinetic energy K and the internal energy of a material E

K =
1

2

∫
B
ρ ẋ · ẋ dv, E =

∫
B
ρ ε dv, (3.27)
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which relies on the internal specific energy ε in J kg−1. The balance of energy, also known
as the first law of thermodynamics, states that the rate of stored energy is balanced with
the rate of mechanical work Ẇ or the rate of thermal work Q̇, consequently both given
in J s−1 and computed via

Ẇ =

∫
B
ẋ · ρb + σ : d dv, and Q̇ =

∫
B
ρ r − div q dv. (3.28)

In the above equation (3.28), we have introduced a specific heat source r in W kg−1 =
m2 s−3 and the heat flux vector q, describing heat flow through an infinitesimal area and
thus defined in W m−2 = kg s−3. With these definitions we arrive at the balance of energy,
after some algebraic manipulations and using equation (3.23)

[K + E ]· − Ẇ − Q̇ =

∫
B
ρ ε̇− σ : d− ρ r + div q dv = 0. (3.29)

Further, we apply the Legendre transformation ψ = ε − θ η, with a specific Helmholtz
free energy ψ in J kg−1, the absolute temperature θ in K and the specific entropy η in
J K−1 kg−1. Finally, we present the local statement of the balance of energy as

ρ
(
ψ̇ + θ̇ η + θ η̇

)
− σ : d− ρ r + div q = 0. (3.30)

3.4.5 Entropy inequality

With entropy inequality, a restriction to the transformation of energy is made. It states
that the total entropy in a continuum must not reduce. Any material model that fulfills this
inequality constraint is thermodynamically consistent. A thermodynamically inconsistent
model, may produce energy in a vacuum. The inequality reads∫

B
ρ η̇ dv ≥

∫
B
ρ
r

θ
− 1

θ
div q dv. (3.31)

It is further possible to use the already derived balance equations (3.23) and (3.30) to
include the specific free Helmholtz energy into the local statement of (3.31) to arrive at

− ρ
(
ψ̇ + θ̇ η

)
+ σ : d− 1

θ
q · grad θ ≥ 0. (3.32)
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4 Constitutive theory

Constitutive models are used to describe a mathematical relationship between deformation
measures and stresses. These material models may be arbitrarily, complex and may also
depend on deformation independent parameters such as spatial coordinates e.g. fibers
with prescribed orientations inside a material. In this thesis we focus on isotropic elastic
and elasto-plastic materials. For these materials, it is possible to postulate a specific free
Helmholtz energy function ψ as introduced in equation (3.30), which is later shown to
represent a basis for stress formulations. In the following, we take a survey on frame
indifference as an important restriction to quantities involved in material modeling. With
these in hand, the material models used in this thesis are discussed.

4.1 Frame indifference for constitutive quantities

A constitutive equation should satisfy a material frame indifference condition, such that
a rigid body rotation does not introduce stresses to a body. A rigid body rotation can be
described by an orthogonal rotation tensor Q ∈ SO(3). Hence the transformation that
Q represents, only rotates and does not deform the body. Accordingly, we can introduce
rotated coordinate vectors and consistently the deformation gradient with superimposed
rotations

x+ = Q · x, F+ =
∂ x+

∂ x
· ∂ x
∂X

= Q · F . (4.1)

For the right Cauchy-Green deformation tensor, introduced in equation (3.5), we use the
properties of orthogonal tensors detQ = 1 and QT = Q−1 to show that these deformation
measure is indifferent to such a transformation as

C+ = F+T · F+ = F T ·QT ·Q · F = C. (4.2)

However, a spatial tensor such as the left Cauchy-Green deformation tensor shows a
different behavior

b+ = F+ · F+T = Q · F · F T ·QT = Q · b ·QT . (4.3)

The transformation behavior of quantities according to, e.g., Holzapfel [56], is summa-
rized by

b+ = Q · b ·QT spatial second order tensors,
F+ = Q · F two field second order tensors,
C+ = C material second order tensors,
v+ = Q · v vectors,
a+ = a scalar quantities.

(4.4)

In this thesis, stress functions depend on the specific free Helmholtz energy, according
to equation. They obey frame indifference and objectivity requirements by definition, if
their arguments are invariants of the deformation tensor b,

I1(b) := tr b, I2(b) := tr (cofb) , I3(b) := det b (4.5)

and scalar quantities such as temperature and a set of internal variables ξi,

ψ(I1(b), I2(b), I3(b), θ, ξi). (4.6)
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The frame indifference for isotropic materials requires

ψ(Ik(b), θ, ξi | k = 1, 2, 3) = ψ(Ik(b
+), θ+, ξ+

i | k = 1, 2, 3). (4.7)

4.2 Hyperelasticity - a NeoHookean material

For the materials in this thesis we focus on isotropic elastic behavior as a general assump-
tion in constitutive modeling. In the following, we briefly review the thermodynamically
consistent isothermal, elastic material model and further discuss the actual constitutive
relationship between deformation and stresses.

It was mentioned before in chapter 3.4.5 that a thermodynamically consistent material
must fulfill the entropy inequality. Further it generally must not conflict with the balance
equations for a solid. For this material, we assume temperature to be constant in time
and space, which leads to

θ = const. ∀x, t⇒ θ̇ = 0, q = 0. (4.8)

Using these for evaluation of the local statement of the entropy inequality, see equation
(3.32)

− ρ ψ̇ + σ : d ≥ 0. (4.9)

For the specific free Helmholtz energy, we assume

ψ = ψ̂ (tr b, det b) , ψ̇ =
∂ ψ̂

∂ b
: ḃ = 2 b · ∂ ψ̂

∂ b
: d. (4.10)

By using the derived energy rate, a thermodynamically consistent stress expression can
be found,

− 2 ρ b · ∂ ψ̂
∂ b

: d+ σ : d ≥ 0 ⇒ σ = 2 ρ b · ∂ ψ̂
∂ b

, (4.11)

compare, e.g., Miehe [100], or Holzapfel [56], based on a suitable specific free
Helmholtz energy function.

A common choice for hyperelastic materials is a Neo-Hookean type energy function. While
this scheme offers some variations for the pressure part of the stresses, the specific model
of this thesis renders

ψ̂ = ψNH (tr b, det b) =
1

ρ

[
Λ

2
(ln J)2 +

G

2
(tr b− 3)−G ln J

]
, (4.12)

with the Jacobian expressed via J =
√

det b. Further, we use the Lamé constants Λ and
G in N m−2. Carrying out the derivatives yields a convenient expression for the Cauchy
stresses

σ =
Λ

J
ln(J) I +

G

J
(b− I) . (4.13)
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4.3 Thermo-Plasticity

The main application of the MPM in this thesis is modeling metallic materials. For metal-
lic materials, the assumption of elasticity is only suitable for very small deformations.
With respect to large deformations specifically, an elasto-plastic material response can
be observed. After a certain yield criterion, metallic materials deform inelastically, which
means that the deformation can no longer be recovered. Further, the energy for such
deformations cannot be retained as in purely elastic deformation.

The reason for this behavior in metallic materials is given by their nanoscale structure.
The atoms and molecules in common metals are usually arranged in crystalline lattices.
Since most crystalline structures have orientation features, an anisotropic deformation
pattern is introduced. Further, on a mesoscale level, the material consists of subregions
called grains. Each grain features a lattice orientation, averaging out the anisotropy of
the individual grains on a macro level. Notice that some metallic materials still feature
anisotropic features for this reason. Nevertheless in this thesis we restrict to isotropic
material response on the macroscopic level. An in-depth review of the microstructure of
metals is given, e.g., in Hornbogen and Warlimont [59].

The crystalline lattice, however, gives reason to the elasto-plastic behavior. With small
deformations, the lattice formation is stretched. This process so far is reversible and
the energy introducing this stretch is stored as strain energy into the material. With
a materialspecific amount of lattice deformation, it is energetically preferable for the
overall response to slip within the crystalline lattice rather than stretch further. This
reaction does not necessarily lead to a different structure but represents the irreversible
component in the constitutive response. The energy which is used for such a slip action
is not stored as strain energy. It is rather mainly transferred into heat, as the slip lines
exceed friction between each other. Only a small fraction of the energy is kept in the
lattice system. This micro-structural phenomenon can be directly resolved, e.g., in crystal
plasticity approaches, compare, e.g., Lubliner [91]. However, one can easily imagine
that with a certain amount of slip inside a larger lattice or grain, the resistance to further
slipping is raised. Especially on the mesoscale with a composition of grains. Thus, the
resistance to slip raises with the introduction of more slip actions. This phenomenon is
macroscopically described as hardening.

In the following, we discuss a general continuum mechanical framework for plasticity.
Afterward, we evaluate the entropy inequality to obtain a thermodynamically consistent
stress relation. Using the principle of maximum dissipation lead to a formulation for the
evolution of plastic deformation, which is also discussed as an algorithmic treatment. In
the scope of this thesis, we present the rate-independent, isothermal J2 formulation, which
represents a limit case of the derived framework. At last, the rate-dependent JohnsonCook
model for finite plasticity is derived. It features a rate-dependent yield surface and adi-
abatic heating driven by plastic work. The algorithmic framework for these model has
its foundation in the works of Simo [131], Miehe [100] and Simo and Hughes [133], to
name just a few.

4.3.1 Framework for finite deformation plasticity

Continuum mechanical models for finite deformation plasticity have been of interest for
a long time. The reason is simply the significant number of physical applications, as
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many materials deform plastically. This is not only the case for metals but also granular
materials in geo-engineering. It is clear that to handle arbitrary deformations, e.g., finite
strains and large rotations, a nonlinear framework is required. A well-established concept
is the introduction of a multiplicative split of the deformation gradient

F = F e · F p. (4.14)

It proposes an elastic F e and a plastic part F p, implying a detour from the reference to
the current configuration mapping, through an intermediate plastic configuration. Thus
a multiplicative decomposition of the Jacobian J = Je Jp is introduced. Based on the
assumption of singlecrystal material the plastic configuration indicates the volumepre-
serving (Jp = 1), unrotated crystalline lattice, which is deformed though slip phenomena.
Notice that this configuration is assumed stress-free. The mapping towards the current
configuration superimposes the material rotations and also the stretch on this crystalline
lattice. In total, both mappings result in an elasto-plastic material deformation.

F = F e · F p, J = Je Jp

F p, Jp = 1

F e, Je

C = F T · F
Cp−1 =

(
F pT · F p

)−1
= F p−1 · F p−T

C̃p = F pT · F p

b = F · F T

be = F e · F eT

L = Ḟ · F−1

Le = Ḟ e · F e−1

L̃p = Ḟ p · F p−1

stress-free intermediate configuration

current configuration

reference configuration

Figure 4.1: Local mapping for a material point inside a continuum with intermediate plastic
configuration following multiplicative split. Additionally mapping properties are given in
their associated configuration, respectively.

From this framework, a set of derived quantities arise, which are summarized in figure 4.1.
For the derivations in this thesis, we focus on the elastic, left Cauchy deformation tensor
be = F e ·F eT . It describes deformation with respect to the current configuration, just as
b, but only the elastic part. For differentiation purposes, we rely on the term elastic finger
tensor, respectively. In order to describe the evolution of the plastic deformation in this
continuum, the rate of elastic finger tensor is required. The finger tensor can be formulated
by means of the plastic evolution to expose its full dependencies. Using F e = F · F p−1,
we get

be = F · F p−1 ·
(
F · F p−1

)T
= F · F p−1F p−T · F T = F ·Cp−1 · F T . (4.15)
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The consistent material time derivative then reads

ḃe = Ḟ ·Cp−1 · F T + F · Ċp−1 · F T + F ·Cp−1 · Ḟ T . (4.16)

Using the identity F−1 ·F = I, as well as equation (3.12), we can apply the transformation

Ḟ ·Cp−1 · F T = Ḟ · F−1 · F ·Cp−1 · F T = L · F ·Cp−1 · F T = L · be, (4.17)

to arrive at a very common expression for the rate of the elastic finger tensor

ḃe = L · be + be ·LT + £vb
e, (4.18)

where £vb
e = F · ∂

∂ t
Cp−1 · F T is known as the Lie derivative of be. Lie derivatives are

used to obtain objective rates. The interested reader is referred, e.g., to Holzapfel [57]
and for a more detailed look on £vb

e to the appendix D.

The local continuum, as depicted in figure 4.1, is based on a multiplicative decomposition
of the deformation gradient. However, it can be shown, as, e.g., in Wriggers [156] that
the spatial velocity gradients show additive character

Lp = L−Le with Lp = F e · L̃p · F e−1. (4.19)

Applying the same symmetric, skew-symmetric decomposition as for the classical contin-
uum, compare equations (3.1) and (3.14), the additive split of the spatial deformation
rate and spin is exposed

d = de + dp and w = we +wp. (4.20)

It is worth noting that we adopt the common assumption, that plastic deformation is free
of any rotation for this thesis. Hence also, the plastic spin vanishes wp = 0, which reflects
on the plastic deformation rate Lp = dp.

4.3.2 Thermo-plastic stress model

In the following, we derive a thermodynamically consistent material model, for thermo-
elasto-plasticity in a finite strain framework. Additionally to standard plasticity, which is
covered by this model, we derive the terms to account for heat generation from plastic work
under adiabatic assumptions. The continuum framework for the in-elastic state is based
on the multiplicative decomposition of the deformation gradient F = F e · F p. Further,
we assume the utilization of a specific free energy function ψ(tr be, det be, θ, ξi) in J kg−1,
which depends on invariants of the elastic finger tensor be, the absolute temperature θ
in K, and a set of dimensionless scalar internal variables ξi. Notice that with this choice,
the requirements for frame indifference are fulfilled, according to chapter 4.1, respectively.
For the here derived J2 plasticity, we have ξi = [α], where α renders the dimensionless
accumulated plastic arc length. In the J2 flow theory, the single surface yield function
defined by the invariant J2, see equation (B.1), is uniformly scaled by this parameter.
In the material science context, it is also referred to as equivalent plastic strain εpl and
provides a measure for the amount of plastic deformation. J2 flow theory is known to be
suitable for modeling metallic materials. As we see later, incompressibility on the plastic
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flow is set. This property is motivated by experimental observations on metallic materials.
Further, we use a von Mises yield criterion. This criterion for yielding is based on von
Mises stresses and is known to be suitable for ductile materials.

A coupled specific free energy function based on NeoHookean elastic part is given with

ψ(tr be, det be, θ, α) = ψNH(tr be, det be) +Q(θ) +M(det be, θ) +W (α). (4.21)

Notice that although ψNH here takes only the elastic part as arguments, it has the same
structure as introduced in equation (4.12). Further, we have introduced a coupling term.
It represents strain energy, induced by a temperature change relative to the stress-free
initial temperature θ0,

M(det be, θ) = −3

ρ
ασ κ (θ − θ0) ln Je (4.22)

with the compression modulus κ in N m−2, the heat expansion coefficient ασ in K−1 and
also using the alternative representation for the elastic Jacobian Je =

√
det be.

The stored free energy density in terms of temperature change is included via the term
Q(θ) to account for the non-isothermal nature of the model, with

Q(θ) = −cθ
(
θ ln

θ

θ0

− θ + θ0

)
. (4.23)

Hereby we introduce the specific heat capacity cθ in J kg−1 K−1. At this point, the term
W (α) is not given explicitly to preserve flexibility in that regard. It is clear, that it repre-
sents free energy, stored from plastic deformation. W (α) is responsible for the hardening
behavior of the model. It is later shown that only the first derivative ∂αW is needed and
defined in terms of a yield criterion.

In order to derive the model, partial derivatives of the specific free energy are presented

∂ ψ

∂ be
=

1

ρ

[
Λ

2
ln Je be−1 +

G

2

(
I − be−1

)
− 3

2
ασ κ (θ − θ0) be−1

]
,

∂ ψ

∂ θ
=

1

ρ

[
−cθ ρ ln

θ

θ0

− 3ασ κ ln Je
]

and
∂ 2ψ

∂ θ2
=

1

ρ

[
−1

θ
cθρ

]
.

(4.24)

Using the partial derivatives of equation (4.24), the material time derivative of the specific
free Helmholtz energy of equation (4.21) can be derived with

ψ̇ =
∂ ψ

∂ be
: ḃe +

∂ ψ

∂ θ
θ̇ +

∂ ψ

∂ α
α̇

=
∂ ψ

∂ be
:
[
L · be + be ·LT + £vb

e
]

+
∂ ψ

∂ θ
θ̇ +

∂ ψ

∂ α
α̇

= 2
∂ ψ

∂ be
· be :

[
L+

1

2
£vb

e · be−1

]
+
∂ ψ

∂ θ
θ̇ +

∂ ψ

∂ α
α̇

= 2
∂ ψ

∂ be
· be : L+

∂ ψ

∂ be
· be : [£vb

e · be−1] +
∂ ψ

∂ θ
θ̇ +

∂ ψ

∂ α
α̇

= 2
∂ ψ

∂ be
· be : d+

∂ ψ

∂ be
· be : [£vb

e · be−1] +
∂ ψ

∂ θ
θ̇ +

∂ ψ

∂ α
α̇,

(4.25)
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where, for the last simplification the symmetry of be was used

2
∂ ψ

∂ be
· be : L = 2

∂ ψ

∂ be
· be : (d+w) = 2

∂ ψ

∂ be
· be : d. (4.26)

The material time derivative can now be used in the evaluation of the entropy inequality
to derive a thermodynamically consistent constitutive relation. The entropy inequality
reads

D = −ρ
(
ψ̇ + θ̇ η

)
+ σ : d ≥ 0

= −ρ
(

2
∂ ψ

∂ be
· be : d+

∂ ψ

∂ be
· be :

[
£vb

e · be−1
]

+
∂ ψ

∂ θ
θ̇ +

∂ ψ

∂ α
α̇ + θ̇ η

)
+ σ : d ≥ 0

=

(
σ − ρ 2

∂ ψ

∂ be
· be
)

: d− ρ
(
∂ ψ

∂ θ
+ η

)
θ̇ − ρ ∂ ψ

∂ be
· be :

[
£vb

e · be−1
]
− ρ∂ ψ

∂ α
α̇ ≥ 0.

(4.27)

Using standard argumentation, expressions for the Cauchy stresses and the entropy can
be found with

σ = 2ρ
∂ ψ

∂ be
· be, η = −∂ ψ

∂ θ
. (4.28)

Inserting these relations into the energy inequality, the remaining dissipation reads

D = −ρ ∂ ψ
∂ be
· be :

[
£vb

e · be−1
]
− ρ∂ ψ

∂ α
α̇ ≥ 0

= −σ :
1

2

[
£vb

e · be−1
]

+ β α̇ ≥ 0,

(4.29)

with the stress like quantity β = −ρ ∂ ψ
∂ α

= −∂ W
∂ α

.

A more common representation can be achieved when using the expression of the Lie
derivative in terms of the plastic deformation rate in the intermediate configuration as
derived in more detail in equation (D.4). With the operation F e · (•) · F e−1 representing
the effective push forward of (•) from the intermediate to the current configuration, we
obtain

£vb
e · be−1 = −2F e · d̃p · F eT · be−1

= −2F e · d̃p · F eT ·
(
F e · F eT

)−1

= −2F e · d̃p · F eT · F e−T · F e−1

= −2F e · d̃p · F e−1

= −2dp.

(4.30)

Finally we arrive at the dissipation for the thermoplastic (TP) model.

DTP = σ : dp + β α̇ ≥ 0. (4.31)

The fundamental output at this point is the consistent expressions for stresses, the entropy,
and the remainder of dissipation. The latter are used to derive the missing evolution
equations for the plastic flow. The stresses and entropy are used to evaluate the balance
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of energy and derive an expression for the temperature increase due to plastic work, and
for solving the balance of linear momentum.

The derivations are equally valid for isothermal elasto-plasticity, i.e. ψ(be, α). Of course,
with the temperature not considered, the balance of energy does not need to be evaluated.

4.3.3 The principle of maximum dissipation

With the dissipation for the thermoplastic material model of equation (4.31), we have
the major constraint on the evolution of plastic variables. The material response can be
elastic or elastoplastic, where for both cases, the stresses and stresslike quntities are owed
to be found in the elastic region. In this thesis, the elastic region is always convex and
defined by a yield function φ(σ, β). The yield criterion φ(σ, β) ≤ 0 must be satisfied for
any valid solutions.

elastic region φ(σ, β) ≤ 0

φ(σ, β) < 0
φ̇ > 0

φ̇
>

0

φ̇ = 0, λ > 0

φ̇ = 0, λ = 0

φ̇ < 0, λ = 0

φ(σ, β) = 0 φ(σ, β) = 0

φ(σ, β) = 0φ(σ, β) < 0

∂ φ

∂ σ
,
∂ φ

∂ β

expanded elastic region due to hardeing

Figure 4.2: Illustration of elastic region defined in the space of stresses and stresslike quan-
tities described by a yield function φ(σ, β). The illustrated loading path covers admissible
states for the presented elasto-plastic model. Notice that the Lagrangian fucntional and
hence the multiplier λ is only considered at the limit case φ = 0.

Notice that as long as the material response is elastic φ(σ, β) ≤ 0, i.e., dp = 0 and α̇ = 0,
the dissipation is always equal to zero DTP = 0, and thus, equation (4.31) is satisfied.

In the case that the current stress state violates the yield criterion φ(σ, β) > 0, the elasto-
plastic response is observed. In order to provide thermodynamically consistent evolution
equations for the plastic variables, the principle of maximum dissipation is often applied,
see, e.g., Simo [131]. In order to maximize plastic dissipation DTP while satisfying the
yield criterion for the valid solution, a Lagrangian is formulated,

LTP (σ, β, λ) = −DTP(σ, β) + λφ(σ, β), (4.32)

introducing the Lagrangian multiplier λ. Maximizing the Lagrangian by using partial
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derivatives of the plastic dissipation

∂DTP

∂ σ
= dp,

∂DTP

∂ β
= α̇, (4.33)

yields directly the evolution equations for the plastic variables,

∂ LTP

∂ σ
= −dp + λ

∂ φ

∂ σ
= 0 ⇒ dp = λ

∂ φ

∂ σ

∂ LTP

∂ β
= −α̇ + λ

∂ φ

∂ β
= 0 ⇒ α̇ = λ

∂ φ

∂ β

∂ LTP

∂ λ
= φ(σ, β) = 0.

(4.34)

Hereby the yield criterion acts as a side condition to the optimization problem. The
consistency condition λ φ̇ = 0 is further satisfied by the Kuhn-Tucker conditions,

λ ≥ 0, φ ≤ 0, λ φ = 0. (4.35)

If the current state represent the limit case φ = 0, analysis of the rate of the yield function
together with the interpretation of the Lagrangian multiplier as a measure of plastic flow
allows for a local interpretation of the material state, i.e.,

φ̇ < 0 and λ = 0 → elastic unloading,

φ̇ = 0 and λ = 0 → indifferent loading,

φ̇ = 0 and λ > 0 → plastic response.

(4.36)

An illustration of a possible loading path for the described framework is given in figure
4.2. Notice that the evolution equations given in (4.34) demand plastic flow, normal to the
surface of the yield function. This property categorizes associative plasticity. However, in
the case of plastic flow, the yield function itself changes due to the effects of hardening,

or, e.g., thermal softening. Consequently, the tangent directors
∂ φ

∂ σ
,
∂ φ

∂ β
generally render

nonlinear behavior, which has to be taken into account for the numerical treatment.

In this thesis, we use J2 plasticity based on a von Mises yield criterion. In this scope, the
appearance of φ renders a specific structure, i.e.

φ(σ, β) = σVM − β, (4.37)

which yields the partial derivatives

∂ φ

∂ σ
=

√
3

2

∂ ‖ devσ‖
∂ σ

=

√
3

2
N, and

∂ φ

∂ β
= −1. (4.38)

4.3.4 Adiabatic transformation of plastic work into heat

The model discussed in this thesis assumes adiabatic conditions. That implies that heat
generated in a material point accumulates in terms of temperature. In order to quantify the
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temperature increase, the balance of energy (3.30) is evaluated based on the dependencies
in (4.21). The adiabatic constraint eliminates heat flux into or out of the considered
infinitesimal volume div q = 0, and external heat sources are neglected r = 0. With these
conditions we have,

0 = ρ
(
ψ̇ + θ̇ η + θ η̇

)
− σ : d

0 = ρ

(
∂ ψ

∂ be
: ḃe +

∂ ψ

∂ θ
θ̇ +

∂ ψ

∂ α
α̇− ∂ ψ

∂ θ
θ̇ + θ η̇

)
− σ : d

0 = ρ

(
∂ ψ

∂ be
: ḃe +

∂ ψ

∂ α
α̇ + θ η̇

)
− σ : d.

(4.39)

Using the entropy equation (4.28), and its consistent rate η̇ =
∂ η

∂ θ
θ̇ =

1

θ
cθ θ̇, together

with transformations applied also in equation (4.25), we may write

0 = ρ

(
∂ ψ

∂ be
: ḃe +

∂ ψ

∂ α
α̇ + θ η̇

)
− σ : d

0 = ρ

(
∂ ψ

∂ be
: ḃe +

∂ ψ

∂ α
α̇ + cθ θ̇

)
− σ : d

ρ cθ θ̇ = −ρ
(
∂ ψ

∂ be
: ḃe +

∂ ψ

∂ α
α̇

)
+ σ : d

ρ cθ θ̇ = −2ρ
∂ ψ

∂ be
· be : d− 2ρ

∂ ψ

∂ be
· be :

1

2

[
£vb

e · be−1
]

+ β α̇ + σ : d

ρ cθ θ̇ = −σ : d− σ :
1

2

[
£vb

e · be−1
]

+ β α̇ + σ : d

ρ cθ θ̇ = σ : dp + β α̇

ρ cθ θ̇ = DTP .

(4.40)

It can be observed that the rate of the temperature is driven by the dissipation DTP
derived before. The dissipation contains the plastic stress power and a part coupled to the
evolution of the internal variable, which can be interpreted as negative dissipation due to
modification in the crystalline lattice of the material. The latter one is then responsible for
strain hardening behavior. This part is also known as cold work, which is not transferred
into heat.

Nevertheless, a more simple approach to model the dissipation term for computing
the temperature increase is very popular and used in a variety of commercial soft-
ware tools, such as LS-DYNA and ABAQUS, see Hallquist [50], Simulia [135]. The
one we follow in this material is based on the works of Taylor and Quinney, compare
Taylor and Quinney [145]. The actual dissipation is therein approximated via the di-
mensionless, so-called Taylor Quinney coefficient γTQ via

θ̇ =
1

ρ cθ
DTP with DTP ≈ γTQ σ : dp. (4.41)

The same approximation for heatgenerating plastic work can be found in Bröcker [15]
and Simo and Miehe [134], to name just a few. Typically the range for γTQ in the scope
of metals is set with 0.8 to 1.0. Notice that for an iso-thermal model, the local temperature
is constant.
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4.3.5 Numerical integration of evolution equations

For the thermoplastic model, evolution equations for the plastic internal variables were
derived. For the implementation into numerical codes, the evolution equations have to be
integrated in time. Especially the integration of the plastic flow requires special attention
in order to satisfy the incompressibility condition. In the following, we recall the common
strategy proposed by Simo [132].

To describe the evolution of the plastic variables in time, we introduce the notation for a
time-step of size ∆t, which ranges from a discrete time tn to tn+1. In numerical schemes,
tn usually denotes a present equilibrium solution, while the algorithm attempts to achieve
equilibrium for the next time tn+1. To differentiate quantities of different time states,
the subscript (•)n is used to indicate known quantities of tn, while no subscript always
indicates a quantity at tn+1. Applying this concept to the current problem of integration
of plastic flow, we assume a multiplicative update of the plastic deformation gradient in
time

F p =

∫ tn+1

tn

L̃p dt · F p
n . (4.42)

Notice that the temporal update follows the same logic as the one outlined in (7.37).
Consistency demands that the update of the plastic part of the deformation gradient,
uses the plastic velocity gradient of the intermediate configuration.

The temporal integral is now approximated with an exponential mapping, which is vol-
umepreserving to the plastic flow

F p = exp(L̃p ∆t) · F p
n . (4.43)

Using the multiplicative split of the deformation gradient including the identity F e−1 ·
F e = I, we can also shift the statement to the current configuration, using the push-
forward operation from equation (4.19) and the consequence of vanishing plastic spin

F = F e · exp(L̃p ∆t) · F e−1 · F e · F p
n

= exp(F e · L̃p · F e−1 ∆t) · F e · F p
n

= exp(Lp ∆t) · F e · F p
n

= exp(dp ∆t) · F e · F p
n .

(4.44)

For the application of an implicit Euler integration algorithm, the plastic variables are
fixed. Hence a further reformulation of equation (4.45) is done in order to provide an
update for the elastic part of the deformation gradient based on a frozen plastic state
F = F e · F p

n and F e = F · F p−1
n

F = exp(dp ∆t) · F e · F p
n

F e · F p
n = exp(dp ∆t) · F · F p

n
−1 · F p

n

F e = exp(dp ∆t) · F · F p
n
−1 · F p

n · F p
n
−1

F e = exp(dp ∆t) · F · F p
n
−1.

(4.45)
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Hereby it is crucial to recognize that F e renders the independent variable, assuming the
overall deformation F is given.

Now we apply the associated plastic evolution equation (4.34) to achieve the implicit
update formula

F e = exp(λ
∂ φ

∂ σ
∆t) · F · F p

n
−1. (4.46)

Simultaneously, the time integration of the internal variable α, following the evolution
equation (4.34), in an implicit Euler scheme yields

α =

∫ tn+1

tn

α̇ dt+ αn = λ
∂ φ

∂ β
∆t+ αn. (4.47)

Since the evolution of the plastic flow and the internal hardening variable are coupled by
the Lagrangian multiplier, they can be combined, i.e.

F e = exp((α− αn)
1

∆t

(
∂ φ

∂ β

)−1
∂ φ

∂ σ
∆t) · F · F p

n
−1

= exp(−(α− αn)

√
3

2
N) · F · F p

n
−1.

(4.48)

In order to arrive at equation (4.48), equation (4.47) was reformulated towards an expres-

sion for the multiplier λ = (α− αn)
1

∆t

(
∂ φ

∂ β

)−1

, and the partial derivatives of equation

(4.38) are inserted.

Notice that equation (4.48) represents the final algorithmic representation of the implicit
time integration of plastic flow, for the herediscussed types of plasticity. Its implementation
was subject to multiple publications. Originally proposed by Simo [132], it is very common
to use symmetric properties of deformation tensors, e.g., be or Cp−1. Further, a stress
function based on logarithmic strains can be applied to avoid the evaluation of the matrix
exponent as present in equation (4.48). In order to make use of this, the plastic flow is
updated in their spectral decomposition, respectively. This is important, as this implicit
scheme yields a nonlinear system of equations, which requires the first-order derivative of
the matrix exponent in order to solve it with a consistent tangent. An overview of plastic
algorithms following this ansatz can be found, e.g., in Simo and Hughes [133], a specific
implementation is discussed in Klinkel [77].

The evolution equation for the temperature (4.41) is integrated in time to achieve the
temperature increment within the time-step ∆t via

θ =

∫ tn+1

tn

θ̇ dt+ θn =

∫ tn+1

tn

γTQ

ρ cθ
σ : dp dt+ θn. (4.49)

In this thesis, we make use of a temperature dependent yield surface, which causes thermal
softening. This softening is known to cause problems in combination with implicit Euler
integration, as applied for the plastic flow. For this reason, the temperature evolution is in-
tegrated using an explicit scheme. A similar ansatz is followed in Simo and Miehe [134],
where additionally, the plastic work was reformulated in terms of the internal plastic vari-
able, i.e.

θ =
γTQ

ρ cθ
(αn − αn−1) βn + θn. (4.50)
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Notice that algorithmically there is no need to store additional history variables. Update
formula (4.50) can be executed at the end of a time-step. Consequently, the material uses
the last updated temperature θn throughout the time-step ∆t.

4.3.6 Implementation of non-isothermal elasto-visco-plastic materials

The algorithms used for the implementation in this thesis indeed solve the nonlinear equa-
tion system that arises from equation (4.48) directly, using the exact close form solution
representation of the matrix exponent as proposed in Hudobivnik and Korelc [65].
Their method uses automatic differentiation in order to provide consistent derivatives
at machine precision. For the implementation of constitutive laws, the automatic code
generation tool AceGen was used. AceGen provides a front end for symbolic expressions
inside the symbolic programming language Mathematica in the equally named software.
This setup can be used to generate numerical codes in performant, low level languages
such as FORTRAN or C. The advantages of this tool lie in the simultaneous expres-
sion optimization, which makes the resulting code extremely efficient, see Korelc [78].
Further, AceGen provides automatic differentiation on the symbolic expressions, which
are classically error-prone to derive and implement by hand. Further, the finite element
software AceFEM is used in this thesis in order to provide reference solutions and test
the subroutines generated by AceGen directly. The combination of material- and finite-
element subroutines generated in the same framework leads to well tested, reliable codes,
see Korelc [79].

To specifically implement the previously discussed elasto-plastic constitutive response,
two function prototypes need to be defined. On the one hand, a stress function based
on elastic deformations as given in algorithm 1, and a function for the yield function, as
outlined in algorithm 2.

Function τ̂(F e):

return τ ,
∂ τ

∂ F e

Algorithm 1: Generic template of a stress function for implementation of consti-
tutive behavior. The actual computation of the stresses with respect to the elastic
deformation is material specific.

Function φ̂(τ , α):

return φ,
∂ φ

∂ τ
,
∂ φ

∂ α

Algorithm 2: Generic template of a yield function for the implementation of
elasto-plastic materials. The computation of the actual yield function based on the
provided arguments may vary.

Notice that implementation into the symbolic environment directly resolves all symbolic
dependencies. However, for a better understanding, the dependencies required for the
determination of the plastic flow are given here specifically.
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Input: local variables of previous time-step: F p
n
−1, αn

current deformation gradient: F
Output: F p−1, α
/* check for violation of the yield surface

under the assumption of an elastic step */

F e ← F · F p
n
−1

τ ← τ̂ (F e), φ← ψ̂(τ , αn)
if φ <= 0 then

/* elastic response */

F p−1 ← F p
n
−1, α← αn,

∂ F p−1

∂ F
← 0,

∂ α

∂ F
← 0

else
/* elasto-plastic response */

initialize local vector of unknwons (i=0):

di←
[
F p
n
−1
11 , F

p
n
−1
12 , F

p
n
−1
13 , F

p
n
−1
21 , F

p
n
−1
22 , F

p
n
−1
23 , F

p
n
−1
31 , F

p
n
−1
32 , F

p
n
−1
33 , αn

]T
/* solve nonlinear local system of equation: */

r(di) =

 F · F p−1(d1−9)− exp(−(d10−αn)

√
3

2
N(d1−9)) · F · F p

n
−1

φ(di)

 !
= 0

/* using a local Newton scheme: */

for i← 0 to 30 do

Ki(di)← ∂ r

∂ d
(di)

∆d= −Ki−1 · r(di)

if ‖∆d‖ <= tol then
/* compute additional dependencies */

[∂Fd
i]← −Ki−1 · ∂ r

∂ F
(di)

/* quit iterative procedure */

F p−1 ←d1−9, α←d10

∂ F p−1

∂ F
← [∂Fd

i]1−9,1−9,1−9,
∂ α

∂ F
← [∂Fd

i]10,1−9,1−9

else
/* update and continue iterative solution procedure: */

di+1←di+∆d
end

end

end

return F p−1, α,
∂ F p−1

∂ F
,
∂ α

∂ F

Algorithm 3: Algorithm for the determination of plastic flow for J2 plasticity.
In the case of an elasto-plastic response, the locally coupled system of equations
arising from (4.48) is solved using a Newton-Raphson scheme. For clarity, the
temporary iterative variables are highlighted in blue.
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Algorithm 3 represents the plastic part of a constitutive subroutine, with primary variables
being the deformation gradient. Its output needs to be the updated local variables. In order
to be used in a globally implicit solution scheme, also their dependencies with respect to
the primary variable, here F , are part of the function output. The overall evaluation of
constitutive equations is described in algorithm 4. This algorithm is also valid for a purely
elastic response as for the hyper-elastic material from 4.2, where the deformation gradient
is purely elastic a priorly. Also, in the case of rate-independent and isothermal elastic- or
elasto-plastic materials, the concerning updates can simply be skipped.

For some illustrative purposes, the FEM is used in this thesis. In these cases, the same
material subroutines are used as described here for the MPM. Due to the automatic
differentiation capabilities in AceGen, it is straightforward to provide the overall consis-
tent material tangents as required in implicit solution schemes. While most dependencies
are visible for the automatic differentiation, the algorithmic treatment in determining
the plastic flow (algorithm 3) requires to explicitly computing some dependencies. The
consistent algorithmic tangents can be derived, by AceGen.

Input:

m set of material parameter and system parameter e.g. ∆t

F current deformation gradient

hn set of local material history (previous state)

Output:

σ Cauchy stress tensor

h set of updated local material history

/* determine elastic part of the deformation gradient */

F p−1, α,←<evaluate algorithm 3> (F ,F p
n
−1, αn)

F e ← F · F p
n
−1, J ← detF

/* compute stress response */

τ ← τ̂ (F e)

σ ← 1

J
τ

/* update plastic rate and temperature */

α̇← α− αn
∆t

θ ← γTQ

ρ cθ
(α− αn)σVM + θn

return σ, h

Algorithm 4: Algorithmic flow to determine the material response.

4.3.7 Rate-independent J2-plasticity

For some applications, an isothermal rate-independent plasticity can be used. In this the-
sis, such materials are implemented using the previously discussed elasto-plastic frame-
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work at finite deformations and specifying the yield function

φ(τ ) = τVM − τy(α), with τy(α) = τ∞ + (τ0 − τ∞) exp(−η α) + hα (4.51)

which is formulated in the Kirchhoff stresses for compatibility reasons. Notice that the for-
mally introduced stresslike internal variable β, is now identified as a current yield strength
τy(α) in N m−2. The presented form contains a set of material parameters, such as the
initial yield strength τ0 in N m−2, a saturated yield strength τ∞ in N m−2, a dimensionless
parameter for exponential strain hardening η and a linear strain hardening modulus h,
in N m−2. For a better understanding, the yield strength function is plotted in figure 4.3
over the accumulated plastic arc length α.
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Figure 4.3: Visualisation of the rate-independent yield strength (4.51).

4.3.8 Johnson-Cook J2-plasticity

For application at varying strain rates, the influence of plastic strain rates should be
considered. Additionally, these applications are usually fast processes that induce plastic
heat. The Johnson-Cook material law accounts for these effects, and it formulates yield
stress based on the current temperature θ and the current plastic rate α̇. The original
version was proposed in Johnson and Cook [70; 71], and reads

τy,JC(α, α̇, θ) =
[
A+ B αN

] [
1 + C ln

α̇

α̇0

] [
1−

(
θ − θ0

θm − θ0

)M ]
. (4.52)

It can be observed that the Johnson-Cook flow stress τy,JC is composed of three terms and
relies on five new material parameters. These are A in N m−2, B in N m−2, N , C, andM.
The first term in square brackets represents the current flow stress of the material at a
quasi-static condition, without any temperature influence. Hereby A can be identified to
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represent the initial yield strength of the material, B is an isotropic hardening modulus,
and the exponent N is used to describe nonlinear hardening. The parameter N is used
to describe work hardening behavior of a material, as shown, e.g., in Huang et al. [63].
The second term acts as a rate dependency modifier, where parameter C is used to describe
the reversible hardening effect at high strain rates observed in experiments. The last term
further scales the yield strength by means of temperature weakening. Notice that at the
melting temperature of the material θm, the material has no yield strength anymore. The
parameterM is hereby used to define the evolution of yield stress in between. For a better
understanding, figure 4.4 visualize the effects. The terms of equation (4.52) are plotted
individually, to discuss the parameters on the model.
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Figure 4.4: Plots of the individual terms of the Johnson-Cook yield strength (4.52), to
visualize the effects of the five material parameters in the model.

It is worth mentioning that the Johnson-Cook model was originally designed to be fitted
with least effort while reproducing experiments to a satisfying degree. For this reason,
the model is widely used in commercial codes and research papers. The Johnson-Cook
model was compared to other available constitutive models in Hor et al. [58]. The
model is widely used for the simulation of cutting processes, e.g., in the particle finite
element method, see Carbonell et al. [19] and also the material point method, see
Ambati et al. [7], Huang et al. [63]. Its capabilities, especially at high strain rates,
were further used in impact problems, as in Manes et al. [97]. Determination, especially
of the strain rate parameter C, is usually done using steady-state tests in combination with
dynamic tests, such as the Split-Hopkinson-Pressure-Bar (SHPB) experiment as done in
Zhao and Gary [164] or Manes et al. [96], but also using inverse methods such as
described in Ning and Liang [106].
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In the scope of this thesis, the Johnson-Cook model of equation (4.52) is implemented
in the framework described in section 4.3.6. To benchmark, the rate and temperature
dependency, finite element analysis of a homogeneous tensile test are conducted. Con-
sidered is a cubic specimen of unit size (1 m×1 m×1 m) under boundary conditions that
allow for unconstrained deformation and hence a constant deformation and stress state
over the whole specimen. Further, an engineering strain εxx is applied to the specimen via
boundary conditions. The numerical analysis uses the Johnson-Cook model with material
parameters given in table 4.1.

elastic modulus E 2.07× 1011 N m−2

material density ρ0 7830 kg m−3

Poisson’s ratio ν 0.3
Tayor-Quinney coefficient γTQ 0.0
initial yield strength A 792× 106 N m−2

strain hardening modulus B 510× 106 N m−2

work hardening modulus N 0.26
plastic rate dependency parameter C 0.014
temperature dependency parameter M 1.03

reference plastic rate ε̇pl0 1.0 s−1

reference temperature θ0 293.15 K
melting temperature θm 1573.15 K
specific heat capacity cθ 480 J kg−1 K−1

heat expansion coefficient ασ 1.35× 10−5 K−1

Table 4.1: Material parameter for AISI 4340 Steel, taken from Ambati et al. [7].

For the numerical analysis, εxx is applied at a constant rate ε̇xx. This way the effects of
plastic strain rate can be observed by two speeds of the deformation. After maximum
loading of εxx = 0.6 is reached, the load stays constant for some time to verify the drop of
plastic deformation and its consequences to the yield strength. The simulations are further
conducted without temperature increase, but for two constant temperatures, respectively.
This way, the temperature influence can be studied more easily. The resulting stress strain
diagrams of that analysis are given in figure 4.5.

It can easily be concluded that the material shows larger stress amplitudes at higher strain
rates. Also, with more temperature applied, the stress response is weaker. The smaller
difference due to rate increase at the lower temperature tests compared to the distance
observed for room temperature can be explained in the structure of the Johnson-Cook
yield stress. The influence terms act multiplicatively, and thus the rate-dependency scales
with the rate independent part. It can also be seen that the von Mises stresses exceed a
drop at the end of the strain spectrum, which is reasonable, as the load is kept constant
at the end of the analysis. The rate modifying term consequently drops down to one.
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Figure 4.5: Results of a numerical tensile test with the Johnson-Cook material at different
temperatures and strain rates.
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5 Numerical time integration

Temporal integration occurs in the context of solving differential equations frequently.
Numerical time integration is thus of great importance. There exist many time integration
schemes of various complexity, computational efficiency, and accuracy. In this chapter,
three kinds of time integration are introduced and used in the scope of this thesis. The goal
of all schemes is to provide values (displacements, accelerations, velocities) as the result of
a time-step, based on the history of the system. We assume that the history is generally
known, as outlined already in chapter 4.3.5. The result of a time-step is characterized
by static or dynamic equilibrium. At this point, we recall the notation for discrete time-
steps tn representing previous equilibrated time, while the algorithm attempts to achieve
equilibrium for the next time tn+1. The time-step size is denoted by ∆t. To differentiate
quantities of these time states, the subscript (•)n is used to indicate known quantities of
tn, while no subscript always indicates a quantity at tn+1.

In this section we aim to provide insights inot different time integration schemes in a solid
mechanics framework. That reflects especially in wether the scheme is implicit or explicit.
Implicit schemes are generally more stable, but a tangent to the system force is required.
Explicit schemes offer update formulas to compute the solution of a time-step based on
a constant system force. Also of interest is the data requirement, i.e., regarding previous
values that need to be stored for the integration.

We discuss the schemes at a mass-spring problem, which allows for a discussion with
respect to stability and energy conservation.

m

x

Fk

Figure 5.1: Illustration of the mass-spring problem.

We observe the motion of the single mass m = 1 in time from t = 0 to t = 50 discretized
by steps of a constant size ∆t. The force acting on the mass due to the attached spring
is a function of its position and velocity F (x, ẋ) = −k x. Hereby we introduce the system
stiffness k = 1. Note that while f formally depends on ẋ, we skip the actual influence
of the velocity here, which typically results in damping effects. The initial configuration
renders a position of x0 = 1 and a velocity v0 = 0. Notice that the discretized problem uses
variables x, v, and a for the mass position, velocity, and acceleration. Further, we compute
the system energy consisting of the kinetic- and strain energy as E = 1

2
mẋ2 + 1

2
k x2.

5.1 Explicit Euler

The explicit Euler or forward Euler time integration is based on a simple first-order
approximation in time,
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x = xn + vn ∆t

v = vn + an ∆t
(5.1)

leaving a second-order error O(∆t2) with respect to the step size ∆t. The scheme is
illustrated in figure 5.2.
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Figure 5.2: Illustration of the explicit Euler time integration. Both position and velocity
are individually updated using their tangent at the known state.

The acceleration is computed based on the force from the last known equilibrium.

an =
1

m
F (xn, vn, t) (5.2)

That leaves the requirements of this scheme to store positions and velocities at the end of
the last time-steps. However, the great benefit of this method is that position and velocity
both depend on known values and are not coupled. Also, no tangent to the system force is
required. Notice that in order to compute the solution at time tn no solution needs to be
solved, but rather evaluate formulas, which characterizes this scheme as an explicit one.
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Figure 5.3: Solution of the mass-spring problem with the explicit Euler scheme. Given are
the position and energy over time for different time-step sizes.
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Simulation results for the mass-spring problem in terms of the explicit Euler scheme are
given in figure 5.3. Here the problem was analyzed for varying time-step sizes. The position
plot shows rapidly raising amplitudes for the position and raising system energy for larger
step sizes. The system energy should stay constant but raises nonlinearly as expected from
the error of order O(∆t2). Consequently, the scheme is quite sensitive to ∆t and remains
stable only for relatively small values.

5.2 Leapfrog Algorithm / Velocity-Verlet

The leapfrog algorithm, also known as Verlet- or Velocity-Verlet time integration, rep-
resents another explicit scheme. Unlike the Explicit Euler, which uses a first-order ap-
proximation, this method is based on a second-order expansion. Additionally, the time
discretization now includes virtual half-step solutions (•)n+1/2. It is possible to gain sim-
ilarly simple and computationally expensive formulas as the Euler scheme but provide a
higher level of stability.

an =
1

m
F (xn, vn−1/2, t)

vn+1/2 = vn−1/2 + an ∆t

x = xn + vn+1/2 ∆t

(5.3)

Using the old half step-velocity vn−1/2 as the argument in the force function, does not
critically spoil the overall error in this method. In fact, the error is still in the order of
O(∆t3). Notice that this method does not use or compute any full-step velocities but
uses the half step values instead. However, the leapfrog algorithm does require the initial
half-step velocity to be known. Usually, this is not provided but can be estimated by

v0−1/2 = v0 −
1

2
a0 ∆t. (5.4)

The formula does imply one additional step backward in time before integrating forward.
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Figure 5.4: Illustration of the Velocity-Verlet time integration. At first the half step velocity
is updated based on the accelerations at last known state. This velocity then acts as a tangent
to update the position.

Numerical results for the mass-spring problem using the same parameter set as for the
Explicit Euler scheme are given in figure 5.5. One can see the advantage of this scheme
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over the aforementioned immediately, compare, figure 5.3. Even for ∆t = 0.1, where the
Explicit Euler scheme quickly diverges, the leapfrog algorithm remains stable. Notice that
the energy plot provides the same scale as that in figure 5.3. Despite some oscillation, even
for ∆t = 0.1, the leapfrog scheme is energy conserving.
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Figure 5.5: Solution of the mass-spring problem with the leapfrog scheme. Given are the
position and energy over time for different time-step sizes. The results for position over time
(left) align almost perfectly, only for the largest time step an energy oscillation (right) can
be identified at these scales.

5.3 Implicit Euler

The implicit Euler method again relies on a first-order approximation, similar to the one
used in the equation (5.1). In this case, however, the tangent used to update the velocity
and position is not computed from known values but from the result itself,

x = xn + v∆t

v = vn + a∆t
. (5.5)

Note that the system force implicitly depends on the solution of the time-step a(xn+1, vn+1)
and thus equation (5.5) represents a coupled system. It is not possible to compute the
velocity and then the position as for the aforementioned methods. To provide a monolithic
solution scheme, we choose for one of the motion variables, position, acceleration, or
velocities, to be the primary one which can be expressed as a function of the other. Here
we choose for velocities.

v = vn + a∆t

⇔ v = vn + a(x(v), v, t) ∆t

⇔ v = vn +
∆t

m
f(x(v), v, t)

(5.6)

Equation 5.6 requires additional information of the system force to solve, i.e., its con-
sistent tangent to one of its arguments. Computation of this tangent is generally not
straightforward and might be computationally expensive, representing one of the major
downsides for an implicit time integrator. Also, if the system force provides nonlinearities
for one of its arguments, solving equation (5.6) becomes more complicated and probably
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Figure 5.6: Illustration of the implicit Euler time integration. Here the implicit character
is given by using the unknown acceleration to update the velocities.

an iterative scheme. For these reasons, one time-step in an implicit scheme is generally
more expensive and less straightforward than one time-step of an explicit time integrator.
The system force is linear in the mass-spring problem, and hence with the solution of the
implicit equation (5.6), the update formulas appear as

v =

(
1 +

k∆t2

m

)−1 (
vn −

k∆t

m
xn

)
x = xn + v∆t.

(5.7)
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Figure 5.7: Solution of the mass-spring problem with the implicit Euler scheme. Given are
the position and energy over time for different time-step sizes. A different position over time
behaviour can not be identified for the smallest time-step sizes.

The results of figure 5.7 are obtained using equation (5.7) in a numerical scheme. It can
be concluded that as for the implicit Euler scheme in figure 5.7, the first-order approx-
imation leads to a noticeable error accumulation with quadratic order. However, where
the explicit scheme is thermodynamically inconsistent in producing energy, this variant is
rather dissipative. However, this behavior might be preferred in numerical schemes as it
is beneficial regarding numerical stability.
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6 Implicit-Explicit solution schemes

In order to solve differential equations numerically, various solution procedures may be
applied. Most equations of concern are time-dependent, such as the balance of momentum
or the balance of energy, compare equations (3.23,3.30). Generally, two strategies exist.
Such differential equations can be solved in an explicit or implicit manner. These terms
were used in the previous chapter in time integration schemes and share the same impli-
cations in the present context. For a discussion, we propose that a discretized boundary
value problem can be described by a generally nonlinear operator R of its free/unknown
parameters d. The solution at any point in time is then defined by

R(d) = 0. (6.1)

Considering time dependent processes, we allow for an alternative representation of equa-
tion (6.1)

M · d̈+C · ḋ+K · d− P = 0, (6.2)

by introducing nonlinear matrix operatorsM ,C andK which are often denoted as global
mass- damping- and stiffness matrix. Notice that this notation implies physical associa-
tions which are only reasonable in the scope of the balance of momentum. However, this
form is widely used, see for example Wriggers [158]. Besides the balance of momentum
the present form can be derived for any underlying differential equation. Further, it also
holds for non-time-dependent variants, in which cases only the global stiffness matrix is
a nonzero operator.

Considering the notation for temporal discretization, where no subscript refers to the
current time, and the subscript (•)n denotes known quantities of the previous discrete
point in time, it is clear that equations (6.1, 6.2) define an equilibrium state for the
current time-step.

For clarity, the general dependencies of the introduced quantities are given with

M(t,d, ḋ, d̈, tn,dn, ḋn, d̈n, ...), C(t,d, ḋ, d̈, tn,dn, ḋn, d̈n, ...),

K(t,d, ḋ, d̈, tn,dn, ḋn, d̈n, ...), P (t),
(6.3)

which highlights the nonlinear character of equations (6.1,6.2).

As described in chapter 5, it is very often possible to describe the rates of the unknowns as
functions of each other. Describing ḋ(d,dn, ḋn, d̈n...) and d̈(d,dn, ḋn, d̈n...) which leaves
the vector of unknowns d as the only unknowns to be solved for, is commonly done.

In the case of an implicit solution scheme, equation (6.1) is solved for the current time-
step. This does require solving a coupled system of equations. Further, in the case of
nonlinearities, an iterative procedure may be required. Most commonly used is a Newton-
Raphson scheme, where the coupled system of equations is formed from the first-order
Taylor expansion of equation (6.1)

R(d) +Keff(d) ·∆d = 0, (6.4)

where the global effective stiffness matrix Keff(d) is computed from the total differential
dR

dd
and ∆d denotes an increment of the vector of unknowns. Especially in the framework
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of variational calculus,Keff is often referred to as the consistent linearization. With respect
to the form of equation (6.2) it is clear thatKeff contains contributions from the nonlinear
operators M , C, and K. Equation (6.4) represents a coupled system of equations that
is linear in ∆d. Its solution must be computed within each iteration within a Newton-
Raphson scheme. A standard form of the algorithm is given in algorithm 5, respectively.

The implicit procedure provides a perfect equilibrium solution for each time-step. Further-
more, it allows for descent time-step sizes. In the case of ill-conditioned systems, it might
be hard to find a solution. It is worth mentioning that it is computationally expensive to
compute a solution considering the iterative procedure and the required memory for the
global effective stiffness matrix and potential overhead for its solution. As the last point,
even with automatic differentiation tools such as e.g. AceGen in hand, it might be difficult
to provide the consistent linearization to complex algebraic equations which are required
for an effective solution. In short, an implicit scheme best suits, where large time-steps
can be applied without losing important information or where even steady-state solutions
are required. In these cases, the rather expensive solution procedure is compensated for
the few required time-steps to compute.

The main idea of explicit solution schemes is to assume that equation (6.2) only linearly
depend on the vector of unknowns. This follows the forward time integration concepts. In
this case, the representation from equation (6.2) is modified

Mn · d̈+Cn · ḋ+Kn · d− P = 0, (6.5)

with the matrix operators evaluated at the last known time

M (tn,dn, ḋn, d̈n, ...), C(tn,dn, ḋn, d̈n, ...), K(tn,dn, ḋn, d̈n, ...). (6.6)

The arising coupled equation system is linear with respect to the vector of unknowns,
eliminating the need for an iterative solution procedure. In the special case of the balance
of momentum, it is common to drastically apply further modifications to drastically en-
hance the efficiency of a numerical scheme. In this scope, the vector of unknowns contains
displacements, velocities, and accelerations. The starting point of the modifications is to
treat the accelerations as primary variables. Additionally, the displacements and veloc-
ities are taken from the last converged state, manifesting the concept of forward time
integration further. Displacements and velocities are then computed from the accelera-
tions using an explicit update procedure, e.g., an explicit Euler (compare equation 5.1).
The accelerations are computed from the solution of the linear system

Mn · d̈+Cn · ḋn +Kn · dn − P = 0. (6.7)

It is worth mentioning, that the satisfaction of equation (6.1) is usually not achieved by
this solution scheme. Rather, an error is expected, which is coupled to the choice of the
explicit time integration as discussed in chapter 5. It can be observed that this error can
be controlled by using very small time-step sizes. Nevertheless, the error accumulates in
time. It must be taken into account that the linear system (6.7) must be solved very often
due to time-step size limitations.

It can be assumed that for many discretization techniques, the global mass matrix is
constant in time for solid mechanics, considering equation (6.7). Also, a typical mass
matrix is positive definite and of small band width, which is very beneficial for solvers
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of linear systems. One can take advantage of this property by providing, e.g., an LU-
decomposition of the mass matrix which represents the coupled linear system. It can then
be used throughout the time-steps, which replaces the effort for solving the linear system
with vector, matrix multiplications. Notice that with this strategy, the quality of the
solution is not affected.

However, another strategy is often chosen, called mass lumping. Here, the discretization
is modified such that the mass matrix only has non-zero entries on the diagonal. The
linear system is uncoupled. Such systems can be solved extremely efficiently with respect
to memory consumption and computation time. This modification leads to errors in the
approximation of higher-order modes of the simulated solid. As the analysis of these modes
is usually not subject to structural analysis, lumped mass matrices are very popular.

It is worth mentioning that the described explicit solution strategies are also capable of
finding steady-state solution, even if dynamics are completely not considered in the dis-
cretization. In order to still work, an explicit time integration is chosen as a mathematical
tool, while also a suitable mass matrix is chosen. Then, using mass scaling, the solution
may be obtained, see for example Schäuble [124]. Often, artificial damping is included,
to stabilize the system while it is integrated towards the intended steady-state solution.

While there exist various versions of explicit schemes, a potential algorithm is not given
here. A detailed few on the explicit scheme used in this thesis are discussed in the upcoming
chapters.
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Input: dn vector of unknowns from previously converged state

imax maximum number of iterative steps

O(∆d,d) suitable abort criterion

Output: d all unknowns from equilibrium of current time-step

/* initialize primary variables: */

d0← dn
/* iterative solution procedure: */

for i← 0 to imax do
/* form linear system */

Keff ←Keff(di)
R← R(di)
/* solve linear system */

∆d= −K−1 ·R
if O(∆d,d) then

/* quit iterative procedure */

d←di
else

/* update and continue iterative solution procedure: */

di+1←di+∆d
end

end
return d

Algorithm 5: Newton-Raphson iterative algorithm in order to solve equation
(6.1).
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7 The Material Point Method

7.1 Concept and notation of the material point method

In the Material Point Method (MPM), any material body, i.e., fluid or solid, is repre-
sented by a set of particles. These particles are called material points and are, throughout
this thesis, denoted by the identifier MP. They carry all the properties of the material
they represent permanently. During the discretization, properties such as the mass, and
occupied volume of the material are assigned to material points. Consequently, the mass
is conserved perfectly in the standard balance of momentum, respectively. The geometry
of the body, e.g, defined by its surface, can only be approximated by the chosen cloud of
material points. However, as each material point represents a fraction of the material, it
also has properties such as position and velocity. Further, depending on the physical fields
subject to the analysis, they might carry temperature, deformation state, and even history
variables. It is generally a feature that these properties are kept locally at the material
points. In the case of internal history variables, as, e.g., used in plasticity, this enables a
consistent constitutive relation. Also, numerical stability is achieved. In these properties,
a material point acts similar to an integration point as used in the finite element method.
To denote any property being owned by a material point, the index (•)MP is used in this
thesis. Usually, an MPM simulation uses a finite set of material points, where its whole
number is denoted with NoMP. In the MPM, the material points do not interact directly,
but rather via a computational background grid (CBG).

The CBG represents a computational mesh, similar to the finite element method. It is an
important feature that this grid, however, does not carry any permanent information. The
design and placement of a CBG in the MPM are generally arbitrary. Nevertheless, there
are various aspects of its appearance to consider, which are reflected in the simulation. In
this thesis, a CBG is defined by grid cells with indexes NoC, that are defined by a finite
set of grid nodes. Nodes are indexed globally, using indexes I or J. The maximum index
for nodes in a CBG is bounded by NoI and NoJ, and the number of cells is given by NoC.
In reference to the notation for material points, a property discretely attached to a grid
node is referred to by (•)I or (•)J.
In the MPM, the differential equations are solved on the CBG. Usually, weak forms are
used for that purpose. Again, very much alike a finite element mesh, the CBG discretizes
the weak form with respect to nodal unknowns, which results in a matrix-vector repre-
sentation of the equation systems. In order to assemble these systems, a link between the
material point which carries the material state and the underlying grid is used. Various
versions of the resulting mapping algorithm are known. However, this assembly process for
the CBG from the material points is similar to a standard procedure where finite element
systems are assembled from integration point contributions. This aspect is covered later
on in more detail. The CBG also allows for boundary conditions to be set. Although the
grid does not represent the geometry of bodies in the simulation, it may include additional
forces or prescribed unknowns at the nodes. The solution is then computed using implicit
or explicit methods. The solution for the weak form is obtained, on the CBG first.

At the end of a time-step in an MPM simulation, the solution is projected from grid
nodes to material points. Usually, the inverse procedure is used as before in the assembly
step. However this is not necessarily the case. With the grid solution available at the
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a.) b.)

c.) d.)

Figure 7.1: Illustration of the MPM standard algorithm. At the beginning of a time-step
(a.), a computational grid is set and the material points carry the solution of the last
time-step, e.g., in terms of material point velocity. In the next step, relevant properties are
projected onto the nodes of the computational grid (b.). With the weak from assembled on
the computational grid, a solution for the current time-step is computed on the grid (c.). In
the last step, the grid nodal solution is mapped onto the material points, which are updated
accordingly, e.g., in terms of their position (d.). Also, the grid might be reset in advance of
the next time-step.

level of each material point, it can be used to update the material points properties.
For example, in the discretization of the balance of momentum used in this thesis, the
solution is velocities which are then used to update the material points position using
time integration.

It was mentioned before that the CBG does not carry any permanent data. As such, at
the end of each time-step, the grid is completely discarded. This is done after the solution
is already mapped to the material points and thus not needed anymore. It is common
practice in MPM to use the same design of the CBG throughout the time-steps. The main
motivation is a boost in performance, and by not accumulating mesh deformation as in
the finite element method, the MPM is not prone to mesh distortion errors.

A visual representation of the described steps is given in figure 7.1. The state denoted
by a.) describes the initial state at the beginning of a time-step. Towards state .b), the
material point’s properties are mapped onto the nodes, i.e., assembly of the vector-matrix
representation is done. Snapshot c.) illustrates the solution on the grid, visualized by a
temporary mesh deformation. Notice that the bottom of the grid is subject to a boundary
condition, as it does not deform in the vertical direction. The deformation is discarded
at the end of the time-step d.). Before the solution is wiped, it was used to update the
material points, illustrated by a change in position.
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Using the described scheme, the MPM combines the Eulerian and Lagrangian mecha-
nisms. The material points represent physical material in a Lagrangian sense, as their
position directly follows its motion. With no direct interaction between them, very large
deformations can easily be described. Even material discontinuities such as cracks may
be modeled. Further, as material internal variables are attached to the material points,
another Lagrangian concept is included for the aforementioned benefits. Still, in solving
the balance equation on the CBG without having the grid following the motion of the
material permanently, this part represents Eulerian aspects. The major benefit of typical
Eulerian reference frames is the stability of the solution as they are not subject to mesh
distortion. With the need for mapping operations between the material points and the
CBG, additional overhead is produced compared to pure mesh-based or particle-based
methods.

7.2 Variational formulation of the balance of momentum in MPM

In this thesis, the MPM is used to solve the balance of momentum in a so-called updated
Lagrangian frame, which means it is represented with respect to the current configuration
of body B. To recall, the global statement of this was defined already in equation (3.23),
reading

divσ + ρ (b− ẍ) = 0, ∀x ∈ B. (7.1)

By integrating equation (3.23) over a body it might be used to describe an equilibrium
state. Further, classical boundary conditions might be defined

d = d̄ on ∂Bd and σ · n = t̄ on ∂Bt̄, (7.2)

although not as straightforward to use in the MPM as the surface geometry of the body is
not well defined. Hereby, the whole boundary of body B is decomposed into a prescribed
motion and traction part, i.e., B := Bd ∪ Bt̄ with Bu ∩ Bt̄ = ∅.
Following Galerkin’s method, a weak form of equation (3.23) is achieved by introducing
an arbitrary, vector-valued test function δd, in the scope of a virtual displacement. It is
subject to the prescribed boundary condition, and thus δd = 0 on Bd. At first we obtain∫

B
divσ · δd+ ρ (b− ẍ) · δd dv = 0. (7.3)

While equation (7.3) represents a second-order differential with respect to the motion, it
is possible to use the Gauss theorem in the relation

−
∫
B

div σ · δd dv =

∫
B
σ : grad δd dv−

∫
B

div (σ · δd) dv

=

∫
B
σ : grad δd dv−

∫
∂B

(σ · n) · δd da

=

∫
B
σ : grad δd dv−

∫
∂Bt̄

t̄ · δd da,

(7.4)
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to shift a part of the divergence onto the boundary of the body. With this, the weak form
G of the balance of momentum in the current configuration reads

G =

∫
B
σ : grad δd dv︸ ︷︷ ︸

Gint

−
∫
B
ρb · δd dv︸ ︷︷ ︸
Gext
b

+

∫
B
ρ ẍ · δd dv︸ ︷︷ ︸
Gmass

−
∫
∂Bt̄

t̄ · δd da︸ ︷︷ ︸
Gext
t

= 0. (7.5)

The weak form G, as specified here, is solved on the CBG in an MPM simulation.

7.3 Weak form discretization on the CBG

In MPM, the weak form is discretized in terms of material points and in fashion of support
points with help of CBG nodes. The boundary term in equation (7.5) is modified to avoid
the non-trivial evaluation of the required boundary integral. Once a body is discretized
in material points, no sharp definition for its geometry is given anymore. Consequently, a
surface integral on its boundary is not straightforward. It can be concluded that accurate
tracking of domain boundaries is a weak point of the MPM compared with mesh-based
Lagrangian methods as the FEM.

As known from other mesh-based approaches, the grid nodes render support points for
approximated fields. Following Galerkin’s principle, we use weighted residuals for the
approximation. Mainly, this strategy is applied for the test function and the acceleration
field

δd(x) ≈ δdh(x) =
NoI∑
I=1

NI(x) δdI and ẍ(x) ≈ ah(x) =
NoI∑
I=1

NI(x)aI. (7.6)

Here, node-wise vectors (•)I contain arbitrary discrete tests or nodal accelerations. Notice
that the geometry, i.e., the position field, is not required to be approximated in that sense
as the volume integrals rely on the associated volume of the material points. For the
approximation, weighting- or shape-functions N are used. There are various versions of
shape functions, a more detailed view is given later.

In order to provide the spatial derivatives which are required for the test functions, the
spatial derivatives of the shape functions N are introduced as the B-vector

grad δd ≈ grad δdh(x) =
NoI∑
I=1

grad NI(x) δdI =
NoI∑
I=1

BI(x)⊗ δdI. (7.7)

The system of equations must be formed to obtain a solution for the nodal unknowns of
equation (7.5). In order to do this, we start by shifting the test functions onto the left
side of the equation

G =

∫
B

gradT δd : σ dv−
∫
B
ρ δdT ·b dv +

∫
B
ρ δdT · ẍ dv−

∫
∂Bt̄

δdT · t̄ da = 0. (7.8)

Further, approximations (7.6) and (7.7) for the test functions are inserted

G =
NoI∑
I=1

∫
B

(
BI(x)⊗ δdI

)T
: σ dv −

NoI∑
I=1

∫
B
ρ
(
NI(x) δdI

)T · b dv

+
NoI∑
I=1

∫
B
ρ
(
NI(x) δdI

)T · ẍ dv −
NoI∑
I=1

∫
∂Bt̄

(
NI(x) δdI

)T · t̄ da = 0,

(7.9)
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which, after some algebraic manipulations results in an isolation of the nodal test vectors
for the individual terms

G =
NoI∑
I=1

δdI
T ·
∫
B

BIT (x) · σ dv −
NoI∑
I=1

δdI
T ·
∫
B
ρNI(x)b dv

+
NoI∑
I=1

δdI
T ·
∫
B
ρNI(x) ẍ dv −

NoI∑
I=1

δdI
T ·
∫
∂Bt̄

NI(x) t̄ da = 0

(7.10)

and for the whole equation,

G =
NoI∑
I=1

δdI
T ·
(∫
B

BIT (x) · σ dv −
∫
B
ρNI(x)b dv

+

∫
B
ρNI(x) ẍ dv −

∫
∂Bt̄

NI(x) t̄ da

)
= 0.

(7.11)

Up to this point, equation (7.11) can be found for lots of discretization methods and
solution schemes. At this point we may isolate expressions for nodal forces in N

f I
int =

∫
B

BIT (x) · σ dv, f I
ext,b =

∫
B
ρNI(x)b dv, f I

ext,t =

∫
∂Bt̄

NI(x) t̄ da,

(7.12)
which appear in this context. The term including the accelerations is not treated this way,
although it could be seen as nodal forces from inertia. Rather, we use the approximation
from equation (7.6)∫

B
ρNI(x) ẍ dv =

NoJ∑
J=1

∫
B
ρNI(x)NJ(x)aJ dv

=
NoJ∑
J=1

∫
B
ρNI(x)NJ(x) I dv · aJ

=
NoJ∑
J=1

mIJ · aJ,

(7.13)

with the consistent nodal mass matrix mIJ =

∫
B
ρNI(x)NJ(x) I dv.

Using the abbreviations from equations (7.12) and (7.13) the weak from on the CBG can
be written as

G =
NoI∑
I=1

δdI
T ·

(
f I

int − f I
ext,b − f I

ext,t +
NoJ∑
J=1

mIJ · aJ

)
= 0. (7.14)

In order to obtain the generally nonlinear, coupled system of equations, global vectors for
nodal tests and unknowns are defined, i.e.,

δD =
[
δd1T , ..., δdNoI

T
]T
, D =

[
a1T , ..., aNoIT

]T
. (7.15)
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Now the Galerkin weak form can be differentiated with respect to the global vector of
nodal tests δD. As it depends linearly on the nodal test,

G = δD ·R = δD · 0 with R(D) :=
∂ G(δD,D)

∂ δD
(7.16)

the resulting vector-valued system can now be solved with respect to the unknowns D.
In equation (7.16) the dependency of the nonlinear operator R(D) is stated explicitly.

It is now straightforward to extract the actual system of equations from equation (7.16)
that yields

R(D) = 0 (7.17)

which representation is analog to equation (6.1). Various strategies can be employed in
order to compute a solution with respect to the vector of unknowns. With the detailed
discussion from chapter 6, we further use the strictly explicit form given in equation (6.7),
with some minor modifications

Mn ·D = Fn. (7.18)

The main modification here is that all terms depending on known values only are summa-
rized in the global force vector F . That does include not only inner stress contributions
but also potential damping effects and external loads. It can be observed that equation
(7.18) actually represents Newton’s second law for explicit time integration.

As this system is linear with respect to the current nodal accelerations gathered in the
global vector D, it can be solved directly. The global mass matrix Mn and global force

vector F are formed using suitable assembly operators A on the nodal variants of mass

matrix and force vectors

F =
NoI

A
I=1

(
−f I

int + f I
ext,b + f I

ext,t

)
and M =

NoI,NoJ

A
I=1,J=1

mIJ. (7.19)

7.4 Aspects on the explicit solution on the CBG

In order to provide a computationally effective solution scheme, the proposed frameworks
in this thesis utilize mass lumping. The beneficial effects were discussed before in chapter
6. The key aspect is a modification to equation (7.13)

NoJ∑
J=1

mIJ · aJ ≈
NoJ∑
J=1

mI · aJ (7.20)

with the lumped nodal mass matrix mI =

∫
B
ρNI(x) I dv.

With this modification, the coupled system of equations (7.18) relaxes to an uncoupled
one. With inverion of a diagonal matrix being trivial, it is possible to compute each
solution individually via

aI = mI−1 · f I
n with f I

n =
(
−f I

int + f I
ext,b + f I

ext,t

)
n

(7.21)

It was discussed before that an explicit solution scheme demands small time-steps to stay
stable. Therefore, time-step size estimators are proposed, to predict the time-step size for
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a stable scheme based on multiple criteria. While there exist sophisticated, discretization-
dependent approaches to determining the critical time-step size ∆t, see, e.g., Berzins [13],
there are also some general concepts applicable. One of them is condensed in the so-called
Courant-Friedrichs-Lewy constant.
The idea is to provide a sufficiently dense resolution of a process in time, such that no
information is lost. For example, in solid mechanics the critical time-step scales with the
speed of sound of a material and a characteristic length of the spatial discretization. In
FEM, for example, this length might be the smallest dimension of an element.
In MPM analysis, these criterion is modified of course. For instance, in
Zhang et al. [163] the authors suggest an MPM critical estimator with

∆tcr =
lcr

max
NoMP

(
cMP +

√
vMP · vMP

) . (7.22)

Here, lcr is the shortest dimension of all cells in the CBG. Furthermore, the material
elastic wave speed is used with,

cMP =

√
EMP (1− νMP)

(1 + νMP)(1− 2 νMP) ρMP
(7.23)

where EMP, νMP are the elastic modulus and Poission’s ratio of the material at any material
point MP, and ρMP denotes the density.

The term artificial damping describes the introduction of viscous effects to a time-
dependent solution that are not physically motivated but rather used to dissipate kine-
matic energy from a system. It is usually applied to stabilize a dynamic solution or to en-
force a steady state solution. One way of numerical damping is described in Li et al. [83],
resulting in an artificial damping force

f I
ext,d = −αd vImI. (7.24)

Here the artificial damping parameter αd in s−1 is introduced. The new nodal force vector is
assembled in the same fashion as described in equation (7.19); the required nodal velocity
vector vI must be assembled as well. It is worth mentioning, that this approach is not
very selective in its damping behavior, nor is it physically motivated. It must always be
considered always with caution and with adoption to the specific boundary value problem
to get reasonable results.

Motivated by investigating different update strategies in MPM, Nairn [103] proposed
a numerical damping scheme that uses more advanced features in MPM algorithms. By
introducing a scaling between two exchange strategies of the CBG and material points,
which either use just the grid acceleration to update the material points velocity or the grid
velocity is directly utilized. The author refers to the latter as a special from of numerical
damping as it was observed that it does smooth out acceleration peaks for the cost of
global momentum.
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7.5 Leapfrog time integration on the CBG

The balance of momentum is usually solved to obtain the position of particles or control
points, i.e. the aim is to analyze motion. However, the solution of equation (7.18) results
in nodal accelerations for the current time-step only. In order to provide all necessary
information for the next time-step, velocities and displacement must be computed as well.
In chapter 5, time integration schemes were discussed, which provide approximations for
the differentials of displacements. The leapfrog algorithm introduces sub-time-steps to
improve accuracy and stability while still providing excellent performance. The main
concept is set by a central differencing scheme in time. This time integration method is
chosen now for obtaining velocities and displacements on the CBG.

For each time-step, for each node of the grid, the following solution and update formulas
would result from the scheme as introduced in (5.3)

aI
n = mI−1 · f I

n

vIn+1/2 = vIn−1/2 + aI
n ∆t

xI = xI
n + vIn+1/2 ∆t

(7.25)

In MPM, the CBG does not carry any information throughout a single time-step. Hence,
previous solutions, such as vIn−1/2 are not available and need to be computed from the
material point discretization

vIn−1/2 = mI−1 · pIn−1/2 (7.26)

where p =

∫
B
ρNI(x)v dv represents the nodal vector of linear momentum. Notice

that this additional computation does not produce significant computational overhead.
As given in equation (7.25) the nodal position is not updated actually, so that a grid defor-
mation in terms of displacements for a time-step is computed here only for post-processing
purposes. Thus, the actual leapfrog time integration on the CBG for the material point
method renders

aI
n = mI−1 · f I

n

vIn+1/2 = mI−1 · pIn−1/2 + aI
n ∆t

uI = vIn+1/2 ∆t

(7.27)

A collection of temporary properties at each node in the CBG with respect to the chosen
leapfrog time integration is given in table 7.1.

acceleration aI m s−2

velocity vI m s−1

linear momentum pI kg m s−1

stress resultants (force) fI N
mass mI kg

Table 7.1: Persistent properties of a material point for solid mechanics.
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7.6 Boundary conditions on the CBG

The CBG allows for applying boundary conditions. Besides the technical possibility to
add external force contributions to each node, this technique is not very popular. The
reason is that external loads are usually applied to either surface, e.g., as traction, or
in terms of volumetric loads. As the nodes of the CBG do not represent any material
interface, or even indicate the presence of any material, it is hard to find any use for this
in solid mechanics. Nevertheless, it is very common to prescribe any set of unknowns on
the CBG, which influences the solution similar to essential boundary conditions in FEM.
Notice that in the case of the discussed leapfrog time integration, the solution of the two
fields, acceleration, and velocity, must be prescribed

vIn+1/2 = v̄In+1/2, and aI
n = āI (7.28)

Although this is not relevant on the CBG, affects the material points, as the nodal ac-
celeration is also used. The prescribed movement of a node is mostly used to model rigid
surfaces, either with perfect slip or stick conditions.

7.7 Interface between material points and the CBG

Up to this point, the computation of nodal vectors on the CBG relies on the analytical
integration of continuous fields, e.g. stresses. It is fundamental to the MPM that these
integrals are approximated numerically. Unlike most FEM implementations which use
the efficient quadrature rules of Gauss-Legendre or Gauss-Lobatto, the MPM is based on
the Riemann sum. In this single point quadrature rule, the integration over a volume is
approximated by the sum of the integrant evaluated at discrete points in space, weighted
by associated volumes. In MPM, these discrete points are the material points

∫
B

(•) dv ≈
NoMP∑
MP=1

(•)MP vMP. (7.29)

In other words, a material point discretizes a continuous field as a constant inside its asso-
ciated volume. With this approximation the nodal vectors and mass matrix, to compute
the solution on the computational grid can be evaluated.

For the lumped nodal mass matrix, we obtain

mI =

∫
B
ρNI(x) I dv ≈

NoMP∑
MP=1

ρMP vMPNI(xMP) I, (7.30)

where ρMP represents the current density at the material point and xMP its current spatial
position. Notice that this implies a certain set of properties, a material point needs to
carry. Later in this chapter, we give a summary on the necessary properties. Also, the
indicated updates as indicated by the term ”current” are to be discussed.

The individual contributions to the nodal force vector are given by
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f I
int =

∫
B

BIT (x) · σ dv ≈
NoMP∑
MP=1

BIT (xMP) · σMP vMP,

f I
ext,b =

∫
B
ρNI(x) b dv ≈

NoMP∑
MP=1

ρMPNI(xMP)bMP vMP,

f I
ext,t =

∫
∂Bt̄

NI(x) t̄ da, ≈
NoMP∑
MP=1

NI(xMP) t̄MP h̄MP vMP.

(7.31)

Notice that the current Cauchy stresses σMP and external volumetric acceleration bMP at
the material point MP are used in equation (7.31). Further, the nodal force contribution
from external traction t̄ is just approximated, caused by the lack of a proper determination
of the loaded surface ∂Bt̄ in an MPM discretization. Rather, the approximation is based
on a volume integral over the whole body B, of an equivalent volume acceleration t̄MP at
the material point, modified by a correction factor h̄MP in m−1. One can think of h̄MP as
the thickness of the layer between the loaded virtual surface of a body and the material
points closest to this surface. The application of traction boundary conditions in MPM is
not straightforward. At last, the linear momentum vector is computed as

p =

∫
B
ρNI(x)v dv ≈

NoMP∑
MP=1

ρMPNI(xMP)vMP vMP, (7.32)

with the current velocity vector of each material point vMP.

It can be observed that to project properties from the set of material points onto the
computational grid an integral equation needs to be carried out. This is reasonable, as
any property is based on the presence of material inside the CBG, is defined for. Further,
not all material points represent the same fraction of material, e.g., via their associated
volume. If a property is assembled on the grid, i.e., computed at the grid nodes from a
set of material points, it can be done by considering the mass as a weighting factor for
the presence of material. Logically, this leads to the more expensive computation of, e.g.,
grid velocities using the linear momentum as shown in equation (7.32). In a more general
scheme, this mapping is done via

(•)I =

(
NoMP∑
MP=1

ρMPNI(x) vMP

)−1 (NoMP∑
MP=1

ρMP (•)MP NI(x) vMP

)
. (7.33)

The inverse projection represents an equally common task in the MPM. This field simply
needs to be evaluated at the positions of the material points in order to obtain the
requested value, assuming the quantities on the computational grid act as support points
to an interpolated field, i.e.,

(•)MP =
NoI∑
I=1

NI(xMP) (•)I . (7.34)

With the set of shape functions N defined on the CBG, it is straightforward to provide
spatial gradients of the fields interpolated by them

grad (•)MP =
NoI∑
I=1

gradNI(xMP) (•)I =
NoI∑
I=1

BI(xMP) � (•)I . (7.35)
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In order to account for the variation of necessary operation with respect to the usage
of the B-vector, the placeholder � is used in equation (7.35). In the case of (•) being a
scalar, � renders a vector-scalar product, or in the common case of (•) representing a
vector quantity, �→ ⊗.

Notice that the order of spatial derivative is restricted by the ansatz-space of the shape
functions used. With the weak form of the balance of momentum (7.5) containing only
first-order derivatives, standard Lagrangian shape functions are technically sufficient.

Throughout this thesis, shape functions and B-vectors are evaluated at material points
position, with index MP. In order to provide leaner equations, the shorthand notation
NI(xMP) := NI

MP and BI(xMP) := BI
MP is introduced at this point, respectively.

7.8 Material point level equations

In MPM, the material points represent the underlying material itself. Consequently, they
carry properties of the material they represent. As the material deforms, these properties
need to updated. The kinematic quantities, position and time, are updated from the back-
projected solution at the nodes of the CBG. The performed update formulas using the
leapfrog algorithm (5.3) and the previously discussed mapping technique (7.34), are given
with

vMPn+1/2
= vMPn−1/2

+ aMP ∆t with aMP =
NoI∑
I=1

NI
MP a

I
n,

xMP = xMPn + uMP with uMP = ∆t
NoI∑
I=1

NI
MP v

I
n+1/2.

(7.36)

It is crucial to recognize, that in order to update the material point’s position, the grid
velocity is used. The velocity of the material point itself is updated using the grid accel-
erations. This scheme represents the central differencing in time, down to the material
point.

While the movement of the individual material points also implies deformation of the
body, the material deformation state is also carried by each material point individually.
The deformation property in that regard is the deformation gradient. Throughout the
simulation, incremental deformation gradients for each time-step are accumulated locally
at the material points. As the deformation gradient also includes rotation, a multiplicative
update scheme is chosen

FMP =

(
∂ x

∂X

)
MP

=

(
∂ x

∂ xn
· ∂ xn
∂X

)
MP

= ∆FMP · FMPn . (7.37)

Here, the incremental deformation gradient describes the deformation from the previously
equilibrated state to the current one. The update procedure is consistent as long as it
is continuously performed. An illustration of the update procedure throughout temporal
configuration, i.e., time-steps, is given in figure 7.2. In the context of the leapfrog algorithm
from equation (7.36), resulting in nodal half step velocities as the solution available on
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the nodes, the deformation increment can be computed as

∆FMP =

(
∂ x

∂ xn

)
MP

=

(
∂ xn + u

∂ xn

)
MP

=

(
∂ xn
∂ xn

+
∂ u

∂ xn

)
MP

= (I + gradn u)MP .

(7.38)

Further, the displacement gradient with respect to the previous configuration is also com-
puted in accordance with equation (7.36),

gradn uMP = gradn

(
∆t

NoI∑
I=1

NI
MP v

I
n+1/2

)
=

NoI∑
I=1

BIT
MP ⊗ vIn+1/2 ∆t = ∆tLMPn+1/2

, (7.39)

using the spatial velocity gradient LMPn+1/2
.

B0

Bn

x

y

B

XMP

xMPn

xMP

FMPn

FMP

∆FMP

previously equilibrated time

(at the beginning of a time-step)

initial time

(reference configuration)

current time

(at the end of a time-step)

Figure 7.2: Illustration of the deformation update scheme in time, throughout temporal
configurations.

With the deformation gradient, representing the current state of material deformation
available at the material point, it is also possible to update the associated volume accord-
ing to the transport theorem (3.3) and the material density, due to the satisfaction of the
balance of mass equation (3.20)

vMP = JMP vMP0 and ρMP = J−1
MP ρMP0 . (7.40)

As the deformation at a material point is updated, a new stress state must also be consid-
ered. Generally, stresses can be obtained from a constitutive relation, such as described
in chapters 4.2 or 4.3. In these chapters, stresses arise from an elastic or elasto-plastic
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response, described by a total deformation gradient, describing the deformation of the
body since its stress-free reference configuration. As with the before-mentioned update
scheme (7.37), this property is available at each material point. Thus, for the formulations
in this thesis, stresses are computed straight by evaluating a constitutive equation in the
form

σMP = σ̂(FMP,FMPn ,hMP,hMPn) (7.41)

with additional time-dependent input hMP. The execution of a constitutive equation is
explicitly reflected by the executed algorithms; see algorithm 4. Notice that in some cases,
e.g., in plasticity a fraction of the time-dependent variables are updated itself.

It is worth noticing that especially in the solution scheme based on an updated config-
uration, as used in this thesis, gives an attractive use case for updating stresses in a
hypo-elastic fashion. With this ansatz, stresses are actually updated using a stress incre-
ment

σMP = σMPn + (σMP)
· ∆t (7.42)

computed from a stress rate (σMP). A feature of this approach is that no continuous update
of the deformation state is required, as the stress rate is usually based on the incremental
deformation ∆F . Nevertheless, the objectivity of the stress rate must be given, which is
not straightforward and mostly requires additional overhead. For example, when using
the famous Jaumann rate, which is an objective rate to the Cauchy stress tensor, the
current spin of the material point must still be updated continuously in time.

position xMP m
velocity vMP m s−1

associated volume vMP m3

material density ρMP kg m−3

deformation gradient FMP

Cauchy stresses σMP N m−2

vector of history variables hMP 1

Table 7.2: Persistent properties of a material point for solid mechanics.

7.9 An update stress last (USL) scheme in MPM

As discussed at the beginning of this thesis, the MPM knows several variants. With respect
to the applied algorithm, namely, the flow for the computation of the solution of a time-
step, the most popular variants are the Update Stress First (USF) and Update Stress
Last (USL) algorithms. The difference between these variants is when the deformation
and stresses are updated, either at the beginning of a time-step, or its end. A consequence
is that the USF scheme requires an additional exchange between material points and
the CBG, which is more expensive. However, the USF scheme is more energy conserving
than the USL variant, where only one exchange between material points and CBG is
done, to update deformation at the end of the time-step. In Bardenhagen [10], the
author strongly investigated the differences of both schemes and concluded that the USL
scheme, though more dissipative, might be the better choice regarding numerical stability.
The Modified Update Stress Last scheme (MUSL) bridges the two original variants in
updating the stresses at the end of a time-step but using a correction from an additional
mapping step.
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In order to approach the highly dynamic engineering problems considered in this thesis,
the USL scheme was considered. Algorithm 6 represents the steps in an explicit leapfrog
time integration, as in the MPM simulations in this thesis.

Input: MPM discretization, CBG, time discretization (tstart, tend, ∆t)
for t← tstart to tend do

/* perform time-step */

(•)MPn ← (•)MP

/* compute shape functions for each material point */

NI
MP ← NI(xMPn), BI

MP ← BI(xMPn)

/* compute nodal vectors/ assemble global system using NI
MP, BI

MP

*/

f I
n, pIn, mI

n

/* solve for nodal vectors/ solve global system */

aI
n, vIn+1/2

/* map CBG-solution to the material points using NI
MP, BI

MP */

aMP, uMP, LMPn+1/2

/* update material points kinematic and constitutive state */

xMP, vMP, FMP, ρMP, vMP, σMP, hMP

end

Algorithm 6: Algorithmic flow of the USL algorithm, using the explicit leapfrog
time integration.
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8 The ELSE code

To date, the MPM is not part of standard commercial simulation software. Although the
method can be implemented in FEM codes to some degree Chen and Brannon [26],
dedicated codes provide more flexibility required in research and are usually more per-
formant. Modern programs often make use of Object Oriented Programming (OOP)
in languages such as C++. In Ma et al. [93], the authors proposed a class lay-
out for MPM simulations. To date, their code is not available to the public.
de Vaucorbeil et al. [35] present their open source MPM framework Karamelo,
based on the widely used LAMMPS software architecture. LAMMPS is a massively
parallel particle simulation code, but without the opportunity to incorporate com-
putational meshes. Another promising project to name here is Anura3D, see e.g.
Ceccato and Simonini [20], which is not publicly available either and focused on soil-
water-structure interaction. Nevertheless, open-source projects for MPM simulations do
exist. The Unitah project provides a set of software components and libraries for MPM
simulations, along with documentation. Also, the research group around Prof. J.A. Nairn
from the Oregon-State-University provides code used in their publications, e.g., Nairn-
MPM. However, most research publications on MPM rely on in-House developed codes,
compare e.g. Dong and Grabe [38] among others.

For the numerical analysis in this thesis, a computational framework for the material
point method (MPM) was developed. In this chapter, a brief review of the code structure is
given, as it reflects the necessary layers for the implementation of this method. Also the im-
plementation details towards the implemented USL scheme are discussed. The presented
solver, body, and grid class are used for all examples in this document (if not mentioned
explicitly otherwise). The ELSE (Eulerian-Lagrangian-Simulation-Environment) code rep-
resents a computational framework for the material point method primarily. The code
design is oriented towards:

• The flexibility to provide a common basis for the implementation of MPM variants
and even beyond that.

• Providing a user-friendly experience. In order to be used in research, the frame-
work provides simple problem definitions (input script) and versatility in post-
processing.

• Using a class versatility that is intuitive to provide a good programmer-friendly
experience. The clear goal is to prefer structures that enable new contributions to
aspects of the present implementation using pre-defined interfaces.

• Performance and scalability as major aspects of any simulation tool.

The above stated design aspects are listed in the order of their priority for the ELSE code.
The main intensive on the development of the framework was to provide software that
does meet the requirements of research practice.

The first aspect in the context of research is flexibility. Trying new things, ranging from
the implementation of a new solution strategy down to an effective way for doing simple
numerical parameter studies, is set to be the main use case of ELSE.
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In order to serve this purpose, a Python (van Rossum [150]) application programming
interface (API) is provided. While for performance reasons, the compiled C++ program-
ming language is actually used for the program, the python bindings are added using
the pybind11 library (Jakob et al. [68]). This ansatz is inspired by the rise of python
API also for numerical tools, such as the FEniCS project or the NGSolve project, see
Logg et al. [89], Abali [1], and Schöberl [125]. The advantage of this approach is
that Python as an interpreted language allows for rapid implementation of various com-
putational problems and direct post-processing of most data without the need for an
additional program. Further Python is open source, such that no expensive licenses are
required. The actual computational code is written in C++ and must be compiled, re-
sulting in the desired performance for a numerical code. Python and C++ can share the
same memory at runtime, such that no additional overhead is introduced. This ansatz is
followed by the Python API of ELSE.

In research, development is an ongoing process. Any code framework must be easy to
understand and extend by new developers in this context. C++ as a programming lan-
guage is not only widely used, but also known for its maintainability. This strength is
used in ELSE, by relying on an Object Oriented Programming (OOP). The base design
on classes in ELSE is chosen towards the mechanic’s community. Here, it is common to
develop code for entities of a discretization, such as finite elements. In MPM and ELSE,
this focus is shifted towards material points. Nevertheless, the interchange mechanisms
between material points and computational grids demand a more complex structure, out-
lined in detail later. It is worth noting that the standard structure of ELSE is not chosen
towards performance primarily but rather to reflect known concepts from popular codes
of the community.

Any simulation software should be as computationally performant as possible. Aspects
of the performance of the ELSE code were mentioned before, e.g., regarding the use of
C++ on numerically demanding operations. Also, for the implemented classes, memory
layout is taken into account. The MPM offers huge parallelization capabilities as shown,
e.g., in Huang et al. [64]. To date, the ELSE code is not shared or distributed memory
parallelized, respectively. However, the code is built with parallelization in mind, and
parallel speedup can be achieved in the future.

8.1 OOP framework

In order to provide an intuitive computational representation of the MPM algorithm, a
set of base classes in an OOP framework is developed. These base classes can be seen
as fundamental entities in an MPM algorithm. The classes are further meant to describe
their interactions in an intuitive way, which is formalized by interfaces for these commu-
nications in ELSE. For an extension of the ELSE code, it is possible to develop derived
classes, which minimizes efforts in these cases. For example, for a new MPM variant, a
derived class can be created which inherits all required interfaces from the MPMBody
core class. This is exemplarily done for all included MPM variants in ELSE, which are
also used throughout this thesis. With this general structure, good maintainability and
expandability are targeted.

The illustration in figure 8.1 gives an overview of the core classes in ELSE and their main
interactions. The MPMMaterial class is the base class for material models to be used
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to compute stresses. They carry material parameters and provide a stress function. In
principle, they interact exclusively with any MPMBody to update the stress tensors at
the material points. The MPMBody represents a physical body in the numerical model,
discretized by material points. Hence, it stores all material point data. Further, it has
to provide routines to compute contributions to the global system, map solutions to the
material points, and update them. Hereby, an MPMBody has to provide algorithms to
compute mapping relations by means of the core class MPMMap. The MPMMap class is a
variable container. This class supports variable numbers of grid nodes, a material point is
connected to for a more general mapping relation. To create an MPMMap, the MPMBody
needs a description of the computational grid to describe the connectivity. Hence the main
aspect for an MPMGrid is to detect which grid nodes are connected to a specific material
point, i.e., coordinate, and provide the associated grid shape functions. A connection is
thereby defined by a nonzero shape function evaluated at that coordinate. Notice that the
MPMBody requests this information from the MPMGrid but may modify them before
actually using them for the MPMMap. This aspect enables the flexible implementation
of many MPM variants. A great advantage of the MPMMap is that it provides a set of
node indexes with nonzero shape functions, which benefits computational efficiency when
it is used. The MPMRigidBody base class represents rigid bodies that are included in the
simulation. Their representation is flexible, e.g., boundary meshes might be used. In this
thesis, derived classes of type MPMRigidBody contain contact algorithms to compute
contact forces for each material point of an MPMBody in contact.

The MPMSolver represents the solution algorithm for a simulation. In this thesis, the USL
Leapfrog integration scheme is used, which is also outlined in the upcoming paragraphs in
more detail. A potential alternative might be implemented deriving from the MPMSolver
class, which provides methods that, for example, time integrate over a given number of
time-steps. The CBG represents the global system for the simulation. The design decision
to have a CBG class and an MPMGrid class is reasoned by flexibility. While the MPMGrid
represents the geometric grid and shape functions, the CBG is rather just a mathematical
representation. It is used to provide an efficient assembly and solution mechanism to the
system of equations that arise in each time-step.

The top-level authority for an ELSE simulation is represented by the MPMDomain. It is
implemented as a singleton, which guarantees the uniqueness of its data. This class keeps
track of simulation-sensitive data such as current time and the number of simulation steps.
Further, it provides pointers to all entities, i.e., objects, inside the running simulation.
Although with performance penalties, all data is available through the MPMDomain.
Contrary to all other classes, inheritance is not intended from the MPMDomain.

8.2 Specific implementation of USL algorithm in ELSE

In this section, the solution algorithm is outlined which is used throughout this thesis.
Hereby we make use of the derived classes RegularGrid A for the grid, Explicit A as
the MPMSolver and SMP as an MPMBody implementation for generic MPM. For other
variants of MPM which are discussed later in this thesis, algorithm details might vary. It
can be assumed that a setup is given, where the solver is initialized with the aforemen-
tioned grid to be the frame of reference, and at least one body to be considered for the
time integration.
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Figure 8.1: Scheme for an interaction of the core classes in an ELSE simulation.
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8.2.1 Time-step initialization

At the beginning of a new time-step, all entities in the simulation advance in time. That
means that all persistent properties that are tagged as current are switched to the states
previously. Following the class structure in ELSE, the MPMDomain updates the simulation
clock and step counter while each MPMBody takes care of its set of associated material
points. As outlined in algorithm 7, the CBG is reset. That does delete all nodes from the
CBG following its temporary character.

/* advance domain in time */

t← t+ ∆t, step← step+ 1

/* advance MPMBodies in time */

foreach MP do
xMPn ← xMP

vMPn ← vMP
FMPn ← FMP

end

/* reset CBG */

CBG.reset() /* deletes all nodes and nodal information */

Algorithm 7: Procedures at the beginning of a time-step for the USL algorithm
in ELSE.

By design, all classes in ELSE provide a NextStep function, called by the solver at the
beginning of each time-step, to trigger this behavior.

8.2.2 Update mapping operators

In the USL solution scheme, shape functions are evaluated once at the beginning of a
time-step. For each material point in the simulation, a temporary MPMMap is allocated.
Every material point then requests the MPMGrid for all nonzero shape functions defined
on the grid and the node indexes where they occur. Section E of the appendi, provides the
specific implementation of a regular grid currently implemented in ELSE. For the actual
implementation of algorithm 8, the MPMBody class performed the loop over its associated
material points. While it requests the MPMGrid for shape functions, an MPMBody may
modify these before they are stored as an MPMMap for each material point.

/* update mappings */

foreach MP do
MPMMapMP : NI

MP,B
I
MP ← NI(xMP),BI(xMP)

end

Algorithm 8: Compute mapping operators for the USL algorithm in ELSE.
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8.2.3 Global system assembly

With respect to the introduced scheme, the global system is represented by a vector of
nodes. The ELSE code reflects this by using the CBG class, which provides a container for
node objects. Each node class has properties as given in table 7.1. The assembly process in
this way is straightforward. In ELSE, the main loop over material points in algorithm 9, is
again performed by the MPMBody. Notice that for each material point, a contribution to
the nodal properties of mass mI , linear momentum pI, and force f I is made. In this sense,
the algorithm is very similar to a FE procedure, where nodal contributions are computed
similarly. However, in comparison, the stresses are not computed as in the implicit FEM
in this step. Also, the shape functions used for to compute the global contributions are
computed in the previous step in MPM, as they require communications with, e.g., the
MPMGrid. In the FEM, usually all these steps are combined within one subroutine,
evaluated for each element.

Input: CBG: mI = 0, pI = 0, f I = 0 ∀ I ∈ NoI

/* assemble global vectors */

foreach MP do
foreach I∈ (MPMMap)MP for which NI

MP 6= 0 do

mI ← mI + NI
MP ρMP vMP

for i← 1 to 3 do

pIi ← pIi + NI
MP ρMP(vMP)i vMP

f Ii ← f Ii + NI
MP (bMP)i vMP ρMP

for j ← 1 to 3 do

f Ii ← f Ii −
(
BI
MP

)
j

(σMP)ij vMP

end

end

end

end

Algorithm 9: Form global system for the USL algorithm in ELSE.

8.2.4 Solution on the CBG

Once all material properties are available in the CBG object, it is used to compute the
solution. Algorithm 10 shows the procedure, while we omit time indicators, as at this
point of the algorithm, one variant of nodal properties exists. As the CBG represents the
system with using a lumped mass matrix, the system is uncoupled, and the solution is
computed for each node I individually, resulting in a very good performance. In the dis-
played algorithm, the numerical damping strategy from equation (7.24) is incorporated.
Hence, artificial damping for any αd > 0 is introduced. Further, the application of bound-
ary conditions is shown. Here, prescribed motion in terms of constant nodal velocity v̄I as
described in equation (7.28) is actually used. A constant velocity, which includes resting
by v̄I = 0, covers most cases, including all examples in this thesis.
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/* compute solution on CBG */

foreach I do
if mI ≤ tol then

for i← 1 to 3 do

aIi ← (f Ii − αd pIi )
1

mI
; vIi ← pIi

1

mI
; +aI ∆t

end
if xI is subject to BC then

for i← 1 to 3 do
aIi ← 0; vIi = v̄Ii

end

end

end

end

Algorithm 10: Compute solution of current time-step on the CBG for the USL
algorithm in ELSE.

8.2.5 Mapping of CBG solution to each material point

At this point of the time-step, the solution from the CBG is projected onto the material
points. The task is performed again completely by any MPMBody object for its managed
material points in communication with the CBG. Notice that still, this operation utilizes
the mapping operators NI

MP and BI
MP computed at the beginning of the time-step. The

implementation in algorithm 11 additionally requires a temporary velocity ṽMP. Also, the
velocity gradient LMP and acceleration aMP technically only temporarily required, as they
are re-computed in each time-step.

/* mapping solution to the material points */

foreach MP do
/* initialize */

aMP ← 0, vMP ← 0, LMP ← 0
/* map solution to each MP */

foreach I∈ MPMMapMP for which NI
MP 6= 0 do

for i← 1 to 3 do
(aMP)i ← (aMP)i + NI

MP a
I
i

(ṽMP)i ← (ṽMP)i + NI
MP v

I
i

for j ← 1 to 3 do
(LMP)ij ← (LMP)ij + (BI

MP)j v
I
i

end

end

end

end

Algorithm 11: Mapping nodal solutions from the CBG to the material points for
the USL algorithm in ELSE.



The ELSE code 63

8.2.6 Update stress last - finalizing time-step

At the end of any time-step in the procedure, the solution is available at the material
points. Thus, the update of all persistent material point properties can be performed,
again using the MPMBody classes for the material point loops. The implementation given
in algorithm 12 uses the temporary velocity ṽMP for an update of the material points
position. After this step, this property is not required anymore. Further, the velocity,
deformation gradient, and associated volume are updated according to the properties
from the previous step. At last, the Cauchy stress tensor is computed for each material
point. Implementation-wise, the constitutive routine is provided by the MPMMaterial.
The update of the material density must be done inside this routine by convention. If the
material model uses history-dependent parameters, these are updated by the subroutine
as well.

/* final update of the material points */

foreach MP do
for i← 1 to 3 do

/* update position */

(xMP)i ← (xMPn)i + (ṽMP)i ∆t
/* update velocity */

(vMP)i ← (xMPn)i + (aMP)i ∆t
/* update deformation gradient */

for j ← 1 to 3 do
(FMP)ij ← 0
for k ← 1 to 3 do

(FMP)ij ← (FMP)ij + (δik + (LMP)ik ∆t) (FMPn)kj
end

end
/* update material point volume */

vMP ← det (FMP) vMP0

/* update stress last */

σMP, hMP ← mate call(FMP,hMPn)

end

end

Algorithm 12: Final update of time dependent properties at material points for
the USL algorithm in ELSE.
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8.3 Verification of USL implementation - vibration of a material point

The simplest form of an MPM problem, is one material point placed in a single computa-
tional cell. This problem was first analyzed by Bardenhagen [10]. As loading conditions
in this transient problem, an initial velocity is assigned to the material point while one
side of the grid is fixed. These conditions cause the material point to vibrate.
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Figure 8.2: Illustration of the single material point vibration setup in the original 1-
dimensional setup a.) and in the 3-dimensional framework of ELSE b.).

The discretization involves a single material point inside a single cell of length L, as
depicted in figure 8.2. Initially the material point is located in the geometric center of the
cell and loaded with an initial velocity vx. The problem parameters are summarized in
table 8.1. Although in Bardenhagen [10], a linear elastic material is used, whereas here,
the hyper-elastic material from equation (4.13) is used. The time-step size is computed
from the one-dimensional wave speed according to equation (7.22), with ∆t = 0.1L/c,
using 0.1 as a safety factor analog to Bardenhagen [10].

Table 8.1: Discretization properties of the single material point vibration problem.

vMP = 1.0 m3 ρ = 1.0 kg m−3

c = 2π m s−1 L = 1.0 m
E = 4 π2 N m−2 ν = 0.0
XMP = (0.5, 0.5, 0.5)T m vMP = (0.1, 0.0, 0.0)T m s−1

Tend = 10 s ∆t = 0.01591 s

Further, a reference solution for the material points velocity v(t) and position x(t) was
derived in Bardenhagen [10], which renders a harmonic oscillation, with frequency ω =√
E/ρ,

v(t) = v0 cos(ω t), x(t) = x0 exp
[ v0

Lω
sin(ω t)

]
. (8.1)

The results obtained for this problem with the ELSE code are given in figure 8.3. In order
to fix the grid, essential boundary conditions were applied to the nodes which match the
criterion x = 0. Compared with the reference solution from equation (8.1), the numerical
results show strong damping. However, the harmonic oscillation matches the predicted
frequency and hence wavelength perfectly in both velocity and position of the single
material point.
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Figure 8.3: MPM results for the vibration of a single material point obtained from ELSE.
Given are the position of the material point and its velocity over time, in comparison to the
analytical solutions from equation (8.1).

In order to investigate the damping behavior further, the kinetic and internal energies of
the single material point are computed via

KMP =
1

2
vMP · vMPmMP, and EMP =

1

2
(FMP − I) : σ vMP, (8.2)

compare Bardenhagen [10]. The strong dissipation of energy over time is clearly shown
in figure 8.4. The observations match exactly the results from Bardenhagen [10], where
the dissipation effect is a property of the USL scheme. As reported by many publications,
this dissipation effect does not dominate USL simulations in the general case but rather
stabilizes a numerical analysis. Also, the dissipative error can be controlled by varying
numerical time-step sizes as, shown in figure 8.4. Here, the analysis was not just done with
the time-step size estimated values (compare table 8.1) but also choosing significantly
smaller values. As a result of this modification, the damping is reduced for this example.

The original version of the problem as introduced in Bardenhagen [10], renders a one-
dimensional problem, see figure 8.2 a.). It was just shown that a three-dimensional setup
could be used to reproduce the results exactly. However, the implemented explicit 3D-
MPM based on the USL algorithm has a critical mesh dependency on simulations with
spatial restrictions. Therefore, it is not sufficient to prescribe the motion of the grid nodes.
e.g., to 1D or a 2D plane. For the vibration of a single material point, the material point
was initially placed in the center of the single computational cell. One could also use a
discretization with the material point initially on the x-axis, as depicted in figure 8.5.
Nevertheless, with this discretization in the 3D ELSE code, the grid deforms differently
to the first-mentioned case, introducing shearing effects on the grid. As these modes are
then propagated to the material point, it exhibits spurious shear stresses. Consequently,
the oscillation of the material point is different in such cases. For comparison, figure 8.6
shows the motion for the two cases discussed in figure 8.5. The differences in these grid
deformations with respect to the initial placements of the material point are qualitatively
illustrated in figure 8.5.

From the discussed results, it can be concluded that the USL algorithm is implemented
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Figure 8.4: Evolution of energy over time for the vibration of a single material point in
ELSE. The left graph shows kinetic and internal energy in comparison with their sum, while
the right graph shows the influence of the computational time-step size on the dissipation.
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Figure 8.5: Qualitative illustration of the grid deformation within a single time-step, based
on the initial placement of the single material point. In order to obtain a perfect match with
the 1D-simulation, the material point must be placed in the center of the CBG (a.). Initial
positions deviating from the center (b.) introduce spurious shear modes on the CBG.
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Figure 8.6: Results for the vibration of a single material point with alternating initial
placement. A centered initial placement with yMP = zMP = 0.5 m results in the correct damped
oscillation, while yMP = zMP = 0.0 m results in spurious shear and a different motion.

correctly. Also, as expected, the used nonlinear hyper-elastic material law covers the
linear theory in the small deformation case. For all simulations with spatial restrictions,
the material points must be placed in the symmetry lines of the grid for the restricted
dimensions. The ELSE code can be used for 1D or 2D simulations following this conclusion
together with appropriate boundary conditions on the grid
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8.4 Verification of boundary conditions and material implementation -
Cook’s Membrane

The Cook’s membrane problem is a common benchmark for finite elements, as it combines
large bending and shear deformations with a numerically challenging stress singularity.
For this analysis, the problem definition from Schröder et al. [126] is adopted. The
geometry of Cook’s membrane is illustrated in figure 8.7, along with the control points A
and B as well as the boundary conditions. The problem demands full support at surface
Ss, and surface St is subjected to constant traction in the y direction py = 20.0× 106 Pa.

For the MPM, the boundary conditions for the support are defined on the CBG by means
of prescribed zero nodal velocities. For the CBG of this problem, a uniform cell size of
dx = dy = dz = 2.0× 10−3 m is chosen. The discretization of the elastic membrane by
material points follows a regular hexahedral sub-grid on the domain, where each center
is taken as a material point with an associated volume that equals the volume of the
hexahedral cell. Notice that this way, the sum of all material points volume is equal to the
geometry, given in figure 8.7. For this example, a convergency study is carried out with
respect to the number of material points. The sub-grid strategy allows for a parametrized
refinement of the discretization, respectively.
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Figure 8.7: Cook’s membrane problem illustration. The three-dimensional membrane do-
main is subject to full support on surface Ss, and surface St is subject to constant traction.
Control points A and B are introduced analog to Schröder et al. [126].

However, the traction boundary condition in the original problem cannot be implemented
in the present MPM scheme directly. The most obvious reason is that the MPM discretiza-
tion does not discretize the surface St, where the load should be applied. In equation,
(7.31), a strategy was presented to approximate external traction by volumetric force
contributions t̄MP and a correction factor h̄MP selectively on the material points closest to
an edge. This strategy is adopted here. Additionally, the traction load from the original
problem is defined in the reference configuration. As the here applied MPM relies on an
updated Lagrangian definition of the balance of momentum, it only supports loads defined
in the current configuration. This aspect is completely neglected here. Hence, the load is
treated in the current configuration with the same magnitude, introducing an error when
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comparing with Schröder et al. [126]. We observe that this error is very subtle for the
present problem. In order to compute t̄MP and h̄MP, we use the equality∫

St

py da =
M̄P∑

MP=1

t̄MP h̄MP vMP, (8.3)

where M̄P defines the set of material points which are closest to the surface St. The underly-
ing assumption is that the total force which is applied externally is equal. The computation
is carried out for each discretization, as M̄P directly depends on this.

The problem is analyzed on a plane strain constraint using grid boundary conditions
as discussed in chapter 8.3. In contrast to Schröder et al. [126], the hyper-elastic
material of equation (4.13) is used for this analysis. The formulations are similar, though,
so we adopt the same elastic parameters, i.e., E = 500.0× 106 Pa and ν = 0.35.

In order to compute a steady-state solution, artificial density and numerical damping were
used in a dynamic relaxation strategy as mentioned in chapter 6. Figure 8.8 shows the
vertical displacement of point A and the stresses in point B over the virtual time, to show
that a static equilibrium is actually achieved. These points were added to the simulation,
to evaluate the material points solution at the control points. A very small associated
volume was assigned to each of them to minimize their effects. One can think of these
control points as virtual material points.
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Figure 8.8: Dynamic relaxation procedure for the convergency study of Cook’s membrane,
to compute static equilibrium.

Although the CBG is fixed, smaller distances of the material points require different
parameters for a stable simulation. For this analysis, time-step size between ∆t =
1.0× 10−7 s and ∆t = 2.0× 10−8 s, artificial damping with αd = 5.0× 104 s−1 and a
virtual density of 100.0 kg m−3 were used. The set total number of material points on the
discretizations considered in the convergency study are also listed in figure 8.8.

The actual convergence of the problem is analyzed in figure 8.9. It can be seen that
the vertical displacement of point A shows a strong convergence with finer discretization
towards uy = 10.708× 10−3 m with NoMP= 101592. In comparison with the FEM solutions
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in Schröder et al. [126], where a converged displacement of uy ≈ 10.6× 10−3 m is
reported, the MPM solution is quite satisfying, especially given the mentioned differences
in material and boundary conditions. In this analysis, also the convergency of von Mises
stresses in point B is investigated, see figure 8.9. In contrast, it does not converge as
straight as the displacement in point A. Nevertheless, a quick convergence in scale can be
observed as well, given that the obtained results vary by a factor of 2.0 at maximum.
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Figure 8.9: Convergency study for Cook’s membrane. The vertical displacement of point
A strongly converges with NoMP. The von Mises stresses in point B show more deviations.

For a better view on the stress approximation obtained with the MPM with varying NoMP,
figure 8.10 shows the σxx component over the deformed elastic domain, respectively. The
MPM results, already in the second discretization with NoMP= 3072 show very good agree-
ment with the stresses in Schröder et al. [126], in both magnitude and distribution in
space. For solid mechanical problems, the resolution of a body with material points also
effects the approximation quality of the geometry. In each of the presented cases in figure
8.10, the deformation pattern of Cook’s membrane is physically reasonable and equal to
the literature.

Figure 8.10: MPM results for Cook’s membrane discretized with 768, 3072 and 101592
material points. The graphics show the σxx Cauchy stresses for a direct comparison with
Schröder et al. [126].
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9 Contact in MPM

Contact mechanics are a major requirement for numerical modeling of most engineering
problems. Usually, contact algorithms are one of the most expensive aspects in a simu-
lation with respect to computational time. In order to simulate contact conditions, two
aspects must be provided. The first one is contact detection, and the second one is the
actual contact model. Contact models are highly dependent on the chosen discretization
method and are used to enforce certain contact conditions in a simulation. Most com-
monly, non penetration conditions are used in combination with a suitable friction law.
Its execution, however, can be neglected in comparison to the prior contact search in
terms of computational effort. The interested reader is referred to Wriggers [157] or
Zienkiewicz and Taylor [165] for a general overview of both.

MPM contact variants relevant for this thesis can be categorized as

1 MPM body to MPM body: Two bodies, defined by sets of material points,
exchange contact interactions with each other.

2 MPM-Body to MPM-Grid: A MPM body gets in contact with another body,
which is not explicitly modeled but reflected in the CBG, where the non-penetration
and sliding/sticking conditions are enforced.

3 MPM-Body to Geometric-Body: A MPM-Body without a defined body sur-
face, gets in contact to another body, discretized and modeled by means of another
method (e.g., FEM) interact with each other.

9.1 MPM body-body contact

In MPM, a contact interaction between two bodies, each discretized by material points
can be observed without further implementation because all material points, no matter
their body association, share the same velocity field on the CBG. Hence, the standard
MPM enforce a non penetration, perfect stick condition for MPM bodies. Additionally,
this feature does not produce any additional computational costs. The contact search,
required by other discretzation methods, is not needed as the contact is naturally resolved
by mapping into a single CBG. The disadvantage of this phenomenon is that the perfect
stick condition is often not suitable.

In order to investigate this behavior, a standard benchmark in a modified version
is employed here. Originally, the problem is defined by a pair of circular disks
which collide under plane strain conditions. In this form, the setup was used as a
benchmark in Sulsky et al. [142] to validate the two dimensional MPM implemen-
tation and from there on utilized in multiple publications, e.g., in Coetzee [30],
de Vaucorbeil et al. [36].

In the following, the problem is transferred into three dimensions. Two spheres with
centroids xc1 and xc2 with the same diameter r are discretized with the MPM. The spheres
collide eventually, as an initial velocity v is assigned to all material points of each sphere,
in opposite directions. A graphical illustration of the setup is given in figure 9.1 alongside
the relevant simulation parameter. The hyper-elastic material from equation (4.13) is
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used. The simulation is carried out on a regular CBG as described in E with uniform grid
spacing dx. The exact collision time can be computed from geometrical observations with

ta =
‖xc1 − xc2‖ − 2 r

2 ‖v‖
= 1.845 s (9.1)

with executed accuracy of the simulation, ∆t = 1× 10−3 s. In order to investigate the
contact during the simulation, two control points A and B are defined. Considering the
MPM discretization of the spheres with a regular pattern of material points, these con-
trol points are considered to be the material point of each sphere, which is closest to
the centroid of the opposite one. Hereby, a decent discretization density is chosen, with
113.153× 103 material points per sphere.

xc1 = (0.8, 0.8, 0.8)T m
xc2 = (0.2, 0.2, 0.2)T m
r = 0.2 m
v = (0.1, 0.1, 0.1)T m s−1

l = 1.0 m
E = 1.0× 103 N m−2

ν = 0.3
ρ = 1.0× 103 kg m−3

∆t = 1.0× 10−3 s
tend = 4.0 s

xc1

xc2
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v
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x l
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Figure 9.1: Colliding spheres problem. Simulation parameter (left) and geometrical illus-
tration of the setup (right).

The problem parameters depicted in figure 9.1 are closely related to those in
Sulsky et al. [142], to observe the same phenomena. A time series for meaning-full
stages during the simulation is given in figure 9.2. The simulation can be categorized in
three phases, the approaching phase, the collision phase and the separation phase. In the
first phase, the spheres translate in space towards each other. Here it is essential that a
constant velocity is preserved and no deformation is induced. This behavior is observed
in the present simulation, considering the snapshots from t = 0.1 s and t = 1.5 s. At a cer-
tain point, the material points associated with the two spheres interact with each other,
defining the collision phase. The contact mechanism to initialize this phase was mentioned
before. If two material points from different bodies happen to map their properties, e.g.,
linear momentum, to the same node of the CBG, these material points interact with each
other. This interaction is hence very dependent on the location of the shared nodes.

Consequently, the contact is mesh-dependent. In order to study this further, a sensitivity
analysis is performed on this problem. Figure 9.2 shows the snapshot during the collision
at t = 2.3 s. Due to the contact situation, the spheres deform, which is accompanied by
occurring elastic stresses. The linear momentum of the spheres shrinks, as the kinetic
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t = 0.1 s

t = 1.5 s

t = 2.3 s

t = 3.0 s

Figure 9.2: Colliding spheres problems snapshots at different time-steps with a uniform
grid spacing of dx = 5× 10−2 m. The left column shows the material points, with von Mises
stresses for the upper sphere, the right column visualizes the corresponding linear momentum
field magnitude as observed on the CBG.
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energy is transformed to strain energy in this phase. Notice that both spheres share the
same momentum field on the CBG. Near the contact surface of the spheres, the linear
momentum on the grid is actually zero, as opposite contributions from both spheres negate
each other. In the separation phase, the strain energy is transferred back to kinetic energy
as expected from an elastic impact, respectively. The complete separation of the spheres
can be observed in the snapshot at t = 3.0 s. The linear momentum field on the CBG
shows no connection between the contributions from both spheres anymore. However,
studying the von Mises stresses of the material points, some elastic vibrations persist
after the impact. This behavior is not only reasonable but also covered in the literature.

For a deeper understanding of the observed contact mechanism, the movement of the con-
trol points A, B are observed. Figure 9.3 shows their current position in the x-direction,
which is exactly the same as in the y, and z direction, respectively. Four different sizes
for the uniform grid spacing are chosen and given in the graph for comparison. It can be
observed that the two points do not actually touch each other. This aspect is also covered
by the simulation visualizations of the contact situation in figure 9.3. The reason was dis-
cussed before. It is furthermore possible to observe the mesh dependency, as, with smaller
cell sizes, point A and B become closer to each other. Also, for smaller grid spacings, the
interaction between the spheres becomes more abrupt. For dx = 1.0× 10−1 m, the contact
does not happen at a sharp point in time. Rather the spheres repel from each other in a
smooth way, without geometrical contact.
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Figure 9.3: Analysis of the movement of control points A and B for varying grid spacings.
Closeup visualizations of the spheres in contact are given for meaningful time-steps, the
analytical collision time ta is highlighted as well.

For the smallest conducted grid spacing dx = 1.0× 10−2 m, the contact does follow a
more sharp pattern and the spheres almost geometrically touch. Also, considering the
analytical time of contact, the results indicate that it can potentially be reached as a
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limit case for infinitely small grid spacings. Nevertheless, the post-contact behavior shows
a very different pattern for the considered spacings. The point of separation tends to
become later in the simulation with smaller cells. In figure 9.4, the linear momentum of
the upper sphere is analyzed over time. Interestingly, the smallest conducted grid spacing
shows a huge drop of the linear momentum after the collision. Possible explanations are
that with a finer CBG, higher vibration modes could be resolved and hence consume
energy in the post collision phase.
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Figure 9.4: Norm of linear momentum ‖p‖ for the upper sphere over time (left) and closeup
of the colliding spheres problem with dx = 5× 10−2 m (right).

However, these vibrations are additionally triggered by a spurious adhesion the spheres
exert on each other during the contact phase. Due to the shared force field on the CBG,
the spheres can be seen as a single body in the contact phase. This phenomenon is one of
the critical drawbacks of the standard contact in MPM. The observed case is a straight
consequence of the perfect stick condition that this contact mechanism establishes.

It can be concluded that the build-in contact of MPM provides a very efficient way
to analyze contact problems without further implementation efforts. However, it always
establishes a perfect stick condition between contact partners. This behavior restricts its
application to a limited set of problems.

9.2 Plastic impact problem

As one problem that can be examined with the MPM standard contact, an impact prob-
lem is considered. This benchmark was also considered, e.g., in Sulsky et al. [143]
and Coetzee [30]. Experiments where conducted in Trucano and Grady [147]. The
two dimensional problem is approximated using a plane strain condition. An AISI 52-100
steel bullet at a high initial velocity penetrates a 6061-T6 aluminum target. In reference to
Coetzee [30], the bullet does not deform plastically, and the aluminum follows a perfect
elasto-plastic von Mises constitutive behavior. Material parameters for the used hypere-
lastic material and the von Mises plasticity are given in tables 9.1 and 9.3, respectively. A
graphical illustration of the boundary value problem is given in figure 9.5, alongside the
problem dimensions and other important simulation parameters.

The boundary of the aluminum target is subject to standard rolling boundary conditions.
The disk is always discretized always by 2836 material points, following a regular pat-
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E = 200× 109 Pa ν = 0.3 ρ = 7850 kg m−3

Table 9.1: AISI 52-100 chromium steel (hyperelasticity, see chapter 4.2).

tern, to provide a reasonable approximation of the circular geometry. For the following
sensitivity study, the CBG and material point discretization of the aluminum target is
parameterized by the parameter n. It scales the uniform grid spacing used for the CBG
as given in table 9.2. The material points for the aluminum target are placed based on a
Gauss-Legendre integration point pattern based on the CBG. This results in a maximum
number of four material points per cell of the CBG, initially.

n dx total NoMP
50 1.2× 10−3 9436
80 7.5× 10−4 19 796
150 4.0× 10−4 62 836
200 3.0× 10−4 109 236

Table 9.2: Sensitivity parameter n and its influence for uniform grid spacing dx and total
number of material points NoMP for the plastic impact problem.

xc = (30.0, 50.0, dx/2)T 10−3 m
r = 4.765× 10−3 m
v = (0.0, 1160.0, 0.0)T m s−1

l = 60.0× 10−3 m
d = 40.0× 10−3 m
∆t = 1.0× 10−8 s or 1.0× 10−9 s
tend = 80.0× 10−6 s
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Figure 9.5: Simulation parameter (left) and illustration of the plastic impact boundary
value problem.

Due to its initial velocity, the bullet penetrates the target during the analysis. As a contact
mechanism, the standard MPM contact is used. Snapshots of the simulation are displayed
in figure 9.3. The left side of each snapshot shows the linear momentum on the CBG, for
once to highlight the shared momentum field to understand the contact mechanics, but
also to visualize the vanishing momentum during the simulation. The energy dissipation
is caused only by plastic deformation only, and no numerical damping is applied.

E = 78.2× 109 Pa ν = 0.3 ρ = 2700 kg m−3

τ0 = 300× 106 Pa τ∞ = 10× 1010 Pa η = 0.0 h = 0.9 Pa

Table 9.3: 6061-T6 aluminum (perfect elasto-plastic, see chapter 4.3.7).

As the bullet gets in contact with the target, it transfers momentum. The stresses arising
from the momentum gradients inside the target lead to plastic deformation, dissipating
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t = 0.0× 10−6 s t = 3.0× 10−6 s

t = 8.0× 10−6 s t = 20.0× 10−6 s

t = 40.0× 10−6 s t = 80.0× 10−6 s

Figure 9.6: Time series of the impact problem for n = 80. Each snapshot shows the linear
momentum on the CBG (left) and the material points (right). The material point view of
the aluminum target features a von Mises stress plot.
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energy. The snapshot at t = 8.0× 10−6 s nicely shows the stress wavefront as it propagates
through the material. At t = 20.0× 10−6 s, the stress pattern is more diffused, as the stress
waves, partly reflected from the boundaries of the computational domain, superimpose.
Due to the penetration of the bullet, the material faces a discontinuity, forming the bullet
hole. Notice that this behavior does not need any specific extensions to the MPM. Rather,
material discontinuities are just possible with this method. The deformations leading to
this behavior are extreme, highlighting the capabilities of the MPM in problems like
this. The simulation is aimed to last until the bullet comes to rest, to conclude the final
penetration depth. Sulsky et al. [143] and Coetzee [30] ran their simulations up to
40.0× 10−6 s. In this thesis, snapshot t = 40.0× 10−6 s still shows a decent amount of
stresses and linear momentum; hence the simulation is continued until t = 80.0× 10−6 s.
At this final state, the overall stress magnitudes are much lower and the linear momentum
left in the system is neglect-able.
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Figure 9.7: Penetration depth of the bullet (left) and total kinetic energy of the bullet
(right) over time.

For a more analytical view of the simulation results, figure 9.7 shows the penetration
depth and kinetic energy of the bullets during the simulation time for the analyzed dis-
cretizations. It can be concluded that after t = 40.0× 10−6 s, the penetration depth
does not change anymore, and also, the kinetic energy of the bullet is almost trans-
ported into the target. For a better comparison, the reported experimental results from
Trucano and Grady [147] are displayed as well. Given the model approximations, e.g.,
of plane strain and perfect elasto-plasticity, this ELSE implementation of the MPM is ca-
pable of replicating this results.

At last, figure 9.8 shows the final configuration of the impact problem for the analyzed
discretizations to visualize the morphology of the impact hole. It is well visible that for
more dense discretizations, the rim of the impact crater shows more distinct features. The
accumulated plastic arc length is given on the visualized material points. The observed
values underline the huge deformations in this problem. Although not directly visible
from the plots, there is no material point in the aluminum target which has not deformed
inelastically. Nevertheless, the highest plastic deformations occur on the inner wall of
the penetration wall. It can be observed that with finer discretizations, the deformation
accumulates more locally.
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a b

c d

Figure 9.8: Final placements at the end of the impact simulation for discretizations a→
n = 50, b→ n = 80, c→ n = 150 and d→ n = 200.

9.3 MPM to rigid body penalty contact

In the scope of this thesis, metal processing applications are investigated. In these ap-
plications, a metallic workpiece is treated with tools which are much more durable than
the processed material. Often it is possible to treat these tools as rigid in numerical
analysis. With this focus, a penalty contact between MPM-Bodies and rigid bodies is
discussed. The concepts and algorithms are closely related to the algorithms found in
Ding and Schroeder [37], who used penalty forces in MPM before. In contrast to
the standard contact between MPM-Bodies, we use contact mechanics offering frictional
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contact of the Coulomb type. The non-penetration condition further is satisfied using a
penalty force. A penalty force may be used in contact mechanics to penalize a penetration
of one body into the other. In the scope of this thesis, we define penalty force for each
material point that penetrates a rigid body, defined by rigid surfaces. Notice that the
penalty force is added to the material points body force. Accordingly, the material points
force contribution to the grid is extended by the additional term

f I
pen = NI(x)fpen

MP , (9.2)

which is added to the contributions from equation (7.12). The penetration is compensated
by the global explicit time integration due to the penalty force.

9.3.1 MPM to rigid body contact implementation

In the ELSE code, a rigid body is represented by the MPMRigidBody class. The derived
classes contain the geometry description and algorithms to compute the penalty contact
forces for each material point that penetrates this geometry. A penetration must be de-
tected to do so. For efficiency reasons, a hierarchical contact search is implemented in
ELSE. On the coarsest level, the global search is executed for a defined frequency. This fre-
quency spans multiple time-steps. Currently implemented MPMRigidBody classes, such as
the MPMRigidSurface used in the next example, provide an InProximity function which
is called on each material point. This function provides a fast, coarse check whether a
chance for penetration is given at all. This can be done, e.g., using bounding boxes or
spheres for the rigid body. In every time-step, the local contact search is executed. Each
potential penetration material point is now checked for actual penetration. If this is the
case, we store a specific class to describe an active contact, which keeps track especially
of the attachment point, as discussed later. The local contact search might also detect
that a contact pair does not be in actual contact anymore, resulting in a deletion of the
concerning class. This algorithmic setup does not introduce much overhead using suitable
frequencies for the global search and reasonable InProximity functions.

9.3.2 Penalty force and Coulomb friction

The penalty forces that are used to handle the contact for the problems in this thesis
establish a Coulomb friction condition. Specifically, as a material point penetrates a rigid
body, it experiences a penalty force fpen

MP which satisfies the Coulomb friction cone

fpen
MP · t ≤ µfpen

MP · n, (9.3)

with the normal vector n and tangential vector t, defined on the penetrated surface,
respectively. The parameter µ denotes the dimensionless friction coefficient. The penalty
force vector

fpen
MP = κpen (xA − xMP) (9.4)

is computed using the attachment point xA and the penalty parameter κpen in kg s−2. The
penalty parameter is an artificial parameter, which needs to be set problem-specific. The
attachment point can be interpreted as an anchor point for the penetrated material point
on the surface of the rigid body, see figure 9.9. It is initialized when the penetration is
first detected, with the closest point projection xC of the material point onto the surface
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of the rigid body. As indicated by equation (9.4), the penalty force drags the material
point towards the attachment points in any case. The attachment point is not fixed on the
surface, however. If it would be, the friction cone could potentially be violated. This case is
detected in the algorithm by first computing a trail force (fpen

tr )MP, according to the current
position of the attachment point. If this trail force does not satisfy the friction cone, the
attachment point is relaxed, i.e., it moves a minimum distance to satisfy equation (9.4)
again. The process defines a minimization problem, which is linear in the case of planar
surfaces. In the following, the relaxation of the attachment point is derived based on the
definitions

n =
xC − xMP

‖xC − xMP‖
, and t =

xA − xC
‖xA − xC‖

. (9.5)

Notice that these definitions are only valid in the case of a violated friction cone, which
necessarily implies xA 6= xC . For the relaxation of the attachment point, we introduce a
temporary parameter ξ̂ ∈ (0, 1] to describe its displacement uA , with

uA = ξ̂ (xC − xA) . (9.6)

This way, the attachment point always relaxes towards the closest point projection. In the
frictionless case (µ = 0), it necessarily relaxes to exactly this point ,i.e., uA = (xC − xA).
In the general case, the linear solution

ξ̂ = −(xA − xMP) · (t− µn)

(xC − xA) · (t− µn)
(9.7)

is taken in fpen
MP = κpen (xA + uA − xMP) which does fulfill equation (9.4). The algorith-

mic procedure for computation of the penalty force and a potential relaxation of the
attachment point is given in algorithm 13.

The algorithm is illustrated in figure 9.9. Time-step a.) is where the penetration of the
material point at xMP is detected first. An attachment points xA is initialized at the closest
point projection xC , and a contact penalty force is computed. In the next time-step b.)
the penetration depth is reduced due to the force. However, the trial penalty force, does
not satisfy the friction cone, i.e., is outside the red area. The attachment point is relaxed
to the point where the red friction cone meets the contact surface, and the final penalty
force is computed.

9.4 Libra benchmark

As a standard benchmark to the penalty contact, a virtual libra is considered. A cube-
shaped elastic body is discretized by material points and set to rest on a rigid surface.
With vanishing friction coefficient µ = 0, this benchmark is used to investigate the non-
penetration condition and the normal forces between the surface and the body. The cube,
with an edge length of 1.0 m, has relatively low stiffness with Young’s modulus E =
1.0× 103 Pa and Poisson’s ratio ν = 0.45. The total force on the rigid surface can be
computed as

fz = 1.0× 102 kg m−3−10.0 m s−2 1 m3 = −1× 103 N (9.8)

with a material density of ρ = 1.0× 102 kg m−3 and consideration of gravity b =
(0.0, 0.0,−10.0)Tm s−2. The simulation is executed for tend = 3.0 s with ∆t = 1.0× 10−3 s.
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Input:

xMP material point position

xC closest point projection

xA attachment point

Output:

fpen
MP contact penalty force

xA attachment point

/* compute trial penalty force */

(fpen
tr )MP = κpen (xA − xMP)

/* check initial contact case */

if xA == xC then
return (f pen

tr )MP, xA
end
/* compute surface vectors */

n = (xC − xMP) / (‖xC − xMP‖)
t = (xA − xC) / (‖xA − xC‖)
/* check friction cone */

if (f pen
tr )MP · t > µ (f pen

tr )MP · n then
/* relax attachment point */

ξ̂ = −(xA − xMP) · (t− µn)

(xC − xA) · (t− µn)

xA ← xA + ξ̂ (xC − xA)
fpen
MP = κpen (xA − xMP)

end
return f pen

MP , xA

Algorithm 13: Computation of penalty contact force for a material point that
penetrates a rigid body.
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xMP(t)

xMPn

xAn = xC

n

xMPn

xAn

n

xt+1
MP

xC

fpen
MP

xMPn−1 xA

(fpen
tr )MP

fpen
MP

t t

a.) b.)

xMP(t)

Figure 9.9: Illustration of a contact situation at two subsequent time-steps. A material
point following the path xMP(t) penetrates a rigid body, denoted by the surface with normal
vector n. The Coulomb friction cone for the penalty forces of the material point is depicted
in red, respectively.

t = 0 s t = 3 s

Figure 9.10: Libra problem, at the initial and final configuration. A soft elastic cube is
set onto a rigid surface (gray) due to gravity. The cube is discretized by 27× 103 material
points.

Numerical damping αd = 2.0× 101 s−1 dissipates energy from the system, as the cube
is initially not exactly positioned on the surface, due to technical reasons. The set of
n ∈ [1, 2, 3, 4, 5, 6] is considered, to investigate the effects of varying penalty parameters
κpen = 10nkg s−2. The first and final states of the simulation are illustrated in figure 9.10.
The cube is relatively soft and deforms on its self-weight. The results are given in figure
9.11. Smaller values of the penalty parameter, i.e., values n = 1 and n = 2, results in
considerable penetration of ≈ 5% and ≈ 1%. On the contrary n = 6 leads to an initial
rebound of the body from the surface, and eventually, the simulation aborts. This study
supports the general behavior that penalty parameters should be set as high as necessary
but as low as possible. The total contact force the surface is subject to shows a similar
pattern. Higher values of κpen lead to an unsteady force pattern or spurious higher force
values, while all lower penalty values converge to the correct value with time. It can be
concluded that an advisable range for the penalty parameter is the range of the stiffness
of the contact bodies.
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Figure 9.11: Libra results for κpen = 10nkg s−2 Maximum penetration of any material point
into the surface over time (left) and total contact force amplitude acting on the surface.

9.5 Inclined plate benchmark

For benchmarking the frictional Coulomb contact implementation, a classical setup is
considered. A compact body is set on a plate, which rotates to an angle. The body may
stick to the plate or fall off of it, based on its friction coefficient relative to the plate.

The contact mechanics from earlier are applied to convex bodies. A convex body is rep-
resented by a triangulated surface mesh. The penalty force is computed for the current
triangle of the surface mesh with the material point in contact. For a better understand-
ing, the triangulation of the plate is chosen unnecessarily dense and illustrated in figure
9.16. The plate is assumed a rigid body with prescribed motion. It features a thickness
of 0.1 m which is not relevant to this problem. While various friction coefficients are used
µ ∈ [0.1, 0.2, 0.4, 1.0, 1.8], a constant penalty parameter of κpen = 103kg s−2 is chosen.

The cube with a uniform edge length of 0.5 m is made from a hyperelastic material
with Young’s modulus E =1× 104 Pa, Poisson’s ratio ν = 0.3, and a material density
of ρ =100 kg m−3. Gravity is considered by b = (0.0, 0.0,−10.0)Tm s−2. Its numerical
discretization features 1000 material points. The CBG is fixed, with a uniform grid size
of 0.2 m. In order to observe the relative movement of the cube on the surface of the
plate, a control point A is defined in the center of the bottom face of the cube. The
simulation is carried out for 7.0 s with a constant time-step size of ∆t =1.0× 10−3 s, with
slight numerical damping of αd = 2.0× 101 s−1. During the dynamic analysis, the plate
rotates around the x−axis, as shown in figure 9.12. The rotation angle is depicted with
γ ∈ [10◦, 45◦, 60◦] and is reached within 2.0 s. Other than its rotation, the plate remains
at its position during the analysis.

For an idealized version of this problem, we can compute an approximation, of whether
the contact should result in sliding or stick. To prevent a sliding contact, the estimate is
given with

µ ≥ tan(γ). (9.9)
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Figure 9.12: Visualization of the inclined plate benchmark problem in 3D (left). The plate
rotates around the x-axis about a final angle of γ as shown by the 2d cut on the right. The
control point A, defined on the bottom face of the cube is observed.

The first analysis is conducted with an angle of γ = 10◦. Following equation (9.9), only
the lowest considered friction would lead to a sliding contact condition. In figure 9.13,
results for this case are shown. It can be seen that the vertical position of the control
point at xA diverges for µ = 0.1 from all other graphs after 10◦ is reached. While the
cube rests on the inclined plate for all higher values, just as expected, the lowest friction
graph describes a linear slope, describing the sliding of the cube on the plate at a constant
velocity. Additionally, in figure 9.13, an analysis of the contact force components is made.
The total force on the rigid plate is projected to the components relative to its upper
surface, and the ratio of tangential and normal components is given. As intended, the
graph for µ = 0.1 maximizes to this value under sliding conditions. For the other cases
where stick contact is observed, the graph maximizes to tan(γ), which is covered by the
estimate in equation (9.9).
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Figure 9.13: Vertical movement of the control point A at the bottom of the cube (left)
and ratio of tangential and normal contact forces on the plate (right), for a final angle of
γ = 10◦. The case µ = 0.1 shows sliding contact conditions, for all other friction coefficients
the cube sticks to its initial position on the plate.
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In the second case, the plate is inclined up to 45◦, which should result in stick conditions
for the two cases µ = 1.0 and µ = 1.8. The position graphs in figure 9.14 show exactly that
behavior. Nevertheless, two interesting aspects can be observed. The slope of the position
graph decreases, with increasing friction coefficient. This behavior indicates different slid-
ing velocities. Another observation is that the stick cases do not show a straight graph,
as observed for stick cases under 10◦ inclination. The reason for this can be observed in
the visualization of the simulation. The contact condition is a stick condition, but the
cube begins to roll on the plate. The rolling can be explained by the angular momentum
which is introduced to the cube due to the dynamic inclination, and by considering the
center of mass of the cube. Figure 9.16 shows snapshots of a simulation under γ = 60◦,
which are the same modes of rolling. The motion plots for point A in this case are given
in figure 9.15, respectively. Following the same logic, all sliding cases show higher sliding
velocities. Although, according to equation (9.9), only µ = 1.8 should show a stick contact
behavior for that angle, the rolling mode can also be observed for µ = 1.0. Again, this
can be explained by the dynamic effects, and the simplification made for the estimation.
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Figure 9.14: Vertical movement of the control point A at the bottom of the cube (left)
and ratio of the tangential and normal contact forces on the plate (right), for a final angle
of γ = 45◦. A rolling mode of the cube can be observed for µ = 1.0 and µ = 1.8, for all other
coefficients the cube slides with different velocities.

It can be seen that for all sliding cases, the ratio saturates to the value of the friction
coefficient, comparing the force ratios depicted in figures 9.14 an 9.15. However, it never
exceeds this, proving the correct implementation of Coulomb’s friction law. Interestingly,
the rolling cases force ratios do not saturate in the 45◦ case. For a final plate inclination
of 60◦, only µ = 1.0 variant saturates at certain points. An abrupt change in the force
ratios graphs in the later phase of the simulation indicates the cube reaching the end of
the plate. A short oscillation phase depicts the cubes contact with its edge. After the
oscillation phase, the ratio goes to zero. A zero ratio means no contact force is present
anymore, i.e. the cube has fallen off from the plate. This event happens earlier for lower
friction cases, as their sliding speed is relatively higher.
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Figure 9.15: Vertical movement of the control point A at the bottom of the cube (left)
and ratio of tangential and normal contact forces on the plate (right), for a final angle of
γ = 60◦. Phenomenologically the same behavior as for γ = 45◦ can be observed. The force
ratio falls off a lot earlier than in the previous case, indicating the cube falling off from the
plate.
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t = 0.0 s t = 0.34 s

t = 1.07 s t = 1.61 s

t = 2.14 s t = 2.68 s

Figure 9.16: Visualizations of the inclined plane simulation for µ = 1.8 and γ = 60◦. The
friction coefficient result in a stick condition. Due to dynamic effects the cube enters a rolling
mode until it falls off from the plate.
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10 MPM Variants

The material point method offers a variety of modifications in various aspects. Using
alternative mapping operations between a CBG and the material points is the most com-
mon one. Some of the most cited literature on MPM is located in this field, resulting in
sub-variants of the MPM. In Bardenhagen and Kober [11], the authors introduced
the generalized interpolation material point (GIMP) method. The base idea is to treat a
material point with a finite extend rather than being a singular point. As a consequence,
several aspects are improved, such as smoothness, convergence rates, cell crossing noise,
and extension instability. The latter phenomenon is analyzed in this chapter. Following
the GIMP ansatz, the shape functions used for mapping operations are generalized by

NI
MP =

1

vMP

∫
Bχ
χMP(x− xMP)S(x) dx (10.1)

and

BIMP =
1

vMP

∫
Bχ
χMP(x− xMP)∇S(x) dx, (10.2)

representing an averaging scheme over the virtual domain Bχ of the material points.
Hereby, S(x) denotes an interpolation function over this domain, and χMP(x − xMP) is
a characteristic particle function. This representation, includes the standard MPM by
introducing the characteristic particle function as the delta dirac function

χMP(x) =

{
1 if x = xMP

0 else
. (10.3)

This case was used in this thesis exclusively up to this point by using the linear La-
grange grid basis functions (compare appendix section E) directly NI

MP = N(xMP) and
BI
MP = ∇N I(xMP). Alternative forms the characteristic particle function and the in-

terpolation function S(x) are presented, e.g., in Bardenhagen and Kober [11] and
Steffen et al. [136], to name just a view. A different sight of the same idea was taken
by Sadeghirad et al. [119], where the extend of the material point is described liter-
ally by a finite domain. The main motivation was to apply the deformation a material
point accumulates over time to its associated volume. This way, the material point domain
deforms, which reflects in the mapping operations. It was identified that using parallel-
ograms for these domains without updating their shapes covers the so-called uGIMP
variant. Applying only first-order deformations in principle directions (neglecting shear
deformation) leads to the cpGIMP variant. The convected particle domain interpolation
(CPDI) method is defined by applying all first-order deformation to the parallelogram.
Implementation-wise, these variants follow the same algorithm as the standard MPM.
Additionally, each material point carries two base vectors to define the parallelogram (or
parallelepiped in 3D) and updates them according to the deformation gradient at the end
of a time-step. Effectively, the shape functions N are no longer just the grid basis functions
but obtained via the generic expression

NI(xMP) =
1

vMP

∑
j

(∫
BMP

Qj
MP(x) dx

)
N I(xjMP),

BI(xMP) =
1

vMP

∑
j

(∫
BMP

gradQj
MP(x) dx

)
N I(xjMP).

(10.4)
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which are a special form of the GIMP equations (10.2). The here introduced set of shape
functions Qj

MP are defined on the finite material point domain for each of its vertices
j. Notice that this way, a material point maps al l nodes of cells that enclose one of
its vertices. However, the solution of the CBG is still mapped to the actual material
point. The idea is extended further in Sadeghirad et al. [120], where CPDI2 updates
the vertex positions based on the velocity field from the CBG. Hence, the domain is
not restricted to provide parallel edges or surfaces. In Sadeghirad et al. [120], the
authors also discussed advantages and disadvantages for CPDI and CPDI2 variants alike.
An extension of the CPDI update strategy, but for particle domains of flexible geometric
shapes is presented in Nguyen et al. [105]. An illustration of two-dimensional MPM
variants with a focus on their domain is given in figure 10.1.

MPM uGIMP cpGIMP CPDI CPDI2 CPTI

Figure 10.1: Illustration of MPM variants. In standard MPM, the material points associ-
ated volume is represented by a singularity. GIMP variants use implicit functional descrip-
tions of the particles domain. In CPDI variants, the material points volume is represented
by geometric shapes, defined by vertices. For some variants, the associated domain deforms
according to the material points deformation state.

As a general note on CPDI, it is important to differentiate between CPDI1 and CPDI2.
In this thesis, CPDI1 denotes any geometrical shape (including non-parallel shapes) but
using the first-order deformation update from the actual material point. In a CPDI2
variant instead, the vertices of the domain are free to move with the velocity field of the
CBG, resulting in unconstrained deformations.

Generally, a CPDI simulation requires considerable more memory (to store the vertex
positions) and simulation time due to the higher number of mapping operations. This
CPDI approach eliminates cell crossing noise, which usually occurs as a material point
translates into the next computational cell. With CPDI, the gradient fields are continuous
across cell boundaries; hence cell crossing noise is avoided.

The greatest advantage in using CPDI can be seen at tensile deformation. Here the stan-
dard MPM has the disadvantage that space between material points gets large. If two
material points are separated by one computational cell, they do not share any nodes
where both contribute. As a consequence they move independently, although representing
the same body. This material discontinuity might be intentional, such as in cutting simu-
lation, but is often unintended. In these cases, the use of CPDI reduces the initial material
point density dramatically as material continuity is described by the vertex locations. The
material points stay connected, even if separated by multiple cells if tensile deformation
is large enough.
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10.1 CPDI in ELSE

In the generally three-dimensional simulation code ELSE, two variants of CPDI are im-
plemented. Both follow a CPDI1 update scheme. Besides a cpGIMP variant, which is
associated here as a CPDI category, a CPDI scheme for hexahedral cells is available. Such
a geometric cell was first used in Maassen et al. [94].

At initialization, each material point carries 8 vertices j, defining a hexahedral domain.
In the ELSE implementation, the volume of the domain represents the material points
associated volume. As a natural consequence, it is possible to use hexahedral meshes as
an input to the MPM simulation. Consequently, a more accurate description of geometry,
at least from a post-processing point of view is obtained.

The integral in equation (10.4) of the local shape function Q
MP over the material points

domain are computed numerically. They are material point-wise operations. The initial
positions of the vertices X  are updated with the material points deformation gradient, as
shown in figure 10.2. The gradient operator on the particle domain is computed by means
of the chain rule as in the standard finite element procedure. It is worth mentioning that
this approach is computationally more expensive as most CPDI variants provided in the
literature, using analytically integrated expressions for the computation of the mapping
functions. However, this approach is more flexible, and the overhead is neglect able with
parallelization.

y

x
XMP

xjMP = FMP ·Xj
MP

vMP = detFMP v
0
MP

xMP

z

Xj
MP

xjMP, Q
j
MP(x)

Figure 10.2: CPDI1: 8-noded hexahedral particle domain deforms with the particles de-
formation gradient.

10.2 Truss benchmark

As previously discussed, the extension instability in standard MPM is very challenging
in tensile deformation. In this boundary value problem, a truss is subject to a huge grav-
itational load. Hence, it exceeds large tensile deformation. The problem was introduced
in Sadeghirad et al. [119] as a plane strain version to show the advantages of the
CPDI variant. The exact problem is considered as a validation step to the implemented
cpGIMP and CPDI variant in ELSE. Additional discretizations are considered, however,
for a more detailed view on the problem. Sadeghirad et al. [119] considered a second
version of the truss, including a larger load. This variant is adopted here as well but in a
three-dimensional version.

The truss consists of a hyperelastic material with parameters given in figure 10.3. The
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gravitational load is introduced by b = (0.0, 0.0, g)Tm s−2, with g = 1× 103 for the plane
strain, and g = 3.5× 103 in the case of the full three-dimensional analysis. For the first
two-dimensional case, the z-direction is assumed to provide a zero strain condition. In
both cases, the bottom face of the truss is subject to rolling boundary conditions, i.e.,
vy = 0. Notice further that a control point A is considered in the center of the top surface
of the truss. The spatial origin is located in the center of the bottom plate, respectively.
The CBG uses the spatial origin as its origin to make sure that the CBG always uses
the symmetry of the problem as edges for the computational cells. This arrangement is
motivated in order to recover the results from Sadeghirad et al. [119].

l = 1.0 m
E = 1.0× 106 N m−2

ν = 0.3
ρ = 1050 kg m−3

∆t = 6.0× 10−5 s
tend = 2.4× 10−1 s

l

g

l

l

x

y z

A

Figure 10.3: Simulation parameters (left) and illustration (right) of the truss benchmark
problem.

In Sadeghirad et al. [119], the authors stated a uniform grid spacing of dx = 0.5 m,
which is adopted here. The truss in this example is always discretized by material points
with equal distance to each other using an equal divnision of the geometry. The parameter
n is used to denote the number of material points per edge.

As a first investigation, we observe the problem of the extension instability, see figure
10.4. Using a relatively coarse discretization of n = 6 resulting in NoMP = 6 × 6 = 36,
the spurious separation of an upper part of the truss can be observed. Figure 10.4 shows
a time snapshot of the simulation at t = 8.4× 10−2 s where the situation occurs that
material points are separated by a whole cell of the CBG, causing this phenomenon.

In the next analysis, the same discretization pattern is applied for cpGIMP and CPDI
variants. The initial configurations (compare figures 10.5 and 10.6) are equal to those used
in Sadeghirad et al. [119]. For visualization purposes, the domain is shown, rather
than the actual material points that lie in the center of their domains, respectively. Both
figures show the same positions in time. It can easily be seen that for cpGIMP (see figure
10.5), the originally square domains are just deformed in x− and y−direction, while the
domains in CPDI (see figure 10.6) also exceed shear deformation. In both cases, the
elongated domains prevent spurious discontinuities. It is noteworthy that the simulation
in Sadeghirad et al. [119] showed extension instability for the presented discretization
in the cpGIMP variant. The higher stability might be caused to implementation details,
e.g., for build-in mapping corrections in ELSE. These corrections prevent the use of a mass
cut-off value for near zero nodal masses as described in algorithm 10.

Both the cpGIMP and CPDI variants show the same deformation pattern, given their
limitations. For comparison, an MPM simulation is performed, which does not show the
extension instability due to a more dense initial discretization. Figure 10.7 shows snap-
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t = 0.0 s t = 7.2× 10−2 s t = 8.4× 10−2 s t = 9.6× 10−2 s

Figure 10.4: Visualization of the extension instability for the truss benchmark, using stan-
dard MPM with dx = 0.5 m and n = 6.

t = 0.0 s t = 9.96× 10−2 s t = 1.99× 10−1 s t = 2.4× 10−1 s

Figure 10.5: ELSE simulation for the truss benchmark, proposed in
Sadeghirad et al. [119], using a cpGIMP variant. The ELSE simulation do not
suffer from extension instability for the given discretization n = 6, as experienced by the
primary source. The uniform grid spacing is fixed to dx = 0.5 m.
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t = 0.0 s t = 9.96× 10−2 s t = 1.99× 10−1 s t = 2.4× 10−1 s

Figure 10.6: ELSE simulation for the truss benchmark, proposed in
Sadeghirad et al. [119], using a CPDI variant with n = 6 and dx = 0.5 m.

shots of this simulation. It can be seen that the results agree overall but show different
deformations, especially after the first elongation.

t = 0.0 s t = 9.96× 10−2 s t = 1.99× 10−1 s t = 2.4× 10−1 s

Figure 10.7: MPM simulation of the truss benchmark with just the right amount of initial
material points at n = 10 to prevent extension instability.

In order to find a better solution for the truss problem, a convergency study is con-
ducted. The results for dense discretization are visualized in figure 10.8. In this study, the
standard MPM and the CPDI variant are used for comparison. Besides the number of
material points, the grid size impact is analyzed as well. The CPDI discretization taken
for comparison uses fewer material points than the MPM variant as it features a better
convergence rate towards the final results. The deformation of the truss for a more dense
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CBG is considerably different. It can be concluded that for this example, the sensitivity
of the simulation with respect to dx is not neglect-able.

MPM dx = 0.5 m, n = 400 CPDI dx = 0.5 m, n = 50 MPM dx = 0.1 m, n = 400 CPDI dx = 0.1 m, n = 50

Figure 10.8: Comparison of truss shapes at t = 1.99× 10−1 s for very fine discretization
with two different CBG sizes.

Figure 10.9 shows the displacement of control point A over time during the sim-
ulation. For comparison, all visualized simulations are given with the results from
Sadeghirad et al. [119], respectively.

It can be seen that at the same discretization density, the exact solution from
Sadeghirad et al. [119] is recovered. Hence, the present CPDI implementation is val-
idated. Further, the cpGIMP implementation not only works for this problem but also
meets the same result. The MPM variant that uses more material points in the discretiza-
tion to prevent the extension instability follows broadly the same pattern but shows a
significant offset to the other solutions. As mentioned before, standard MPM requires a
more dense discretization to converge to the model solution. For comparison, the dense
discretizations at the smaller grid size dx = 0.1 m are given to show the influence. The
first displacement amplitude shows a plateau rather than a pike.

For the second part of the analysis, we consider g = 3.5× 103, resulting in extreme
deformations, up to 800%. In contrast to Sadeghirad et al. [119], the simulations are
carried out in 3D to show the capabilities of the ELSE implementation. For the initial
discretizations, the parameter n is also used in the z-direction, resulting in NoMP= n3.
Figure 10.10 provides snapshots of the simulation. Even at these large deformations in
three dimensions, no extension instability occurs.

For finer discretization, however, a different phenomenon can be observed. While figure
10.11 shows a working discretization for the whole simulation time, figure 10.12 shows
snapshots of a fine discretization with NoMP= 50 × 50 × 50 = 125000 CPDI material
points and dx= 0.1 m. This set of parameters worked before in the plane strain analysis
but now exposes a break-off behavior from its support, shown in the last snapshot in
figure 10.12. The cause of this break can be observed already within the snapshot at time
t = 7.44× 10−2 s. A closeup of the truss’s support and an enlarged view of the supports
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Figure 10.9: Vertical displacement of control point A over time for various discretizations
using standard MPM and CPDI on the plane strain truss problem.

corners are given in figure 10.13. The boundary conditions are most effective if vertices
of the material points near the bottom are close to the geometric support line of y = 0.
This generally is the case, compare, e.g., figure 10.6. In 3D, however, the resolved shear
deformations applied to the material point’s domain are larger, leading to higher distances
of the domains vertices due to the update of equation (fig:CPDI1Q8). This phenomenon
exaggerates and propagates to the middle of the support, starting from the very corner
of the truss, as shown in figure 10.13. A stable simulation without break off requires an
enlargement of the uniform grid size to prevent this strong localization.

Figure 10.14 shows the vertical displacement of point A for the three-dimensional anal-
ysis. The results of Sadeghirad et al. [119] are included as well, although these were
obtained under plane strain conditions. Again, using a similar discretization density
than these authors lead to almost the same response. Notice that with an initial di-
mension of 1.0 m per edge, the truss deforms up to 800% in this problem. Hence,
it represents an extreme case. The simulation could be successfully carried out with
NoMP= 20 × 20 × 20 = 8000 CPDI domains but at a CBG spacing of dx= 0.2 m. For
smaller grid spacings, the break off can be observed at different time-steps.

The truss benchmark analysis validates the CPDI implementation in ELSE. The results of
Sadeghirad et al. [119] could be replicated exactly using equal or similar simulation
parameters. The implemented cpGIMP variant performs even more reliable. An exten-
sion to a three-dimensional analysis showcases the benefits of the CPDI variant in that
considerably fewer material points can be used to prevent extension instability. However,
the results expose a tendency of the MPM towards spurious localization problems. In
CPDI, a localized deformation has directly reflected the geometry of the material points
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t = 1.2× 10−1 s t = 1.44× 10−1 s t = 1.92× 10−1 s t = 2.352× 10−1 s

t = 0.0 s t = 4.8× 10−2 s t = 7.2× 10−2 s t = 9.6× 10−2 s

Figure 10.10: Deformation of the three dimensional truss, subject to g = 3.5× 103 at an
initial discretization of NoMP= 6× 6× 6 = 216 CPDI material points and dx= 0.5 m.
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t = 1.2× 10−1 s t = 1.44× 10−1 s t = 1.92× 10−1 s t = 2.352× 10−1 s

t = 0.0 s t = 4.8× 10−2 s t = 7.2× 10−2 s t = 9.6× 10−2 s

Figure 10.11: Deformation of the three dimensional truss, subject to g = 3.5× 103 at an
initial discretization of NoMP= 20× 20× 20 = 8000 CPDI material points and dx= 0.2 m.
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t = 4.56× 10−2 s t = 7.44× 10−2 s t = 8.4× 10−2 s t = 9.12× 10−2 s

Figure 10.12: Deformation of the three dimensional truss, subject to g = 3.5× 103 at an
initial discretization of NoMP= 50× 50× 50 = 125000 CPDI material points and dx= 0.1 m.

Figure 10.13: Observations of the support in the three dimensional truss analysis. The
shown discretization feature NoMP= 50 × 50 × 50 = 125000 CPDI material points and a
uniform grid spacing of dx= 0.1 m. Shown is the bottom of the truss at t = 7.44× 10−2 s
in total (left) and a closeup perspective (right). One can identify a starting break-off of the
truss from the support, driven by shear deformed material point domains.
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Figure 10.14: Vertical displacement of control point A over time for various CPDI dis-
cretizations of the three dimensional truss problem.

domain, which exaggerates these effects. A countermeasure to this problem was found by
using larger CBG spacings, which might reduce the accuracy of the overall simulation.
Special attention needs to be taken in the design of simulation parameters with these
considerations in mind.
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11 The Split-Hopkinson-Pressure-Bar experiment for material
fitting

11.1 42CrMo4 steel in ”Virtual Machining” project

The Johnson-Cook material, discussed in chapter 4.3.8, is fitted to a 42CrMo4 steel, in
view of dynamic simulation with metallic materials. 42CrMo4 is a low alloyed steel. It
can be heat treated and is used in many engineering applications due to its high strength
and durability. When used in cold forming processes, possible use cases are automotive
drivetrains and gears. Also, in machinery, where parts are subject to high loads, 42CrMo4
represents a popular, cost-efficient choice offering high resistance. However, despite its
advantages, its high strength and low thermal conductivity make it a challenging material
for machining processes, compare, e.g., Xu et al. [159].

Consequently, investigation efforts are taken to research on the cutting behavior of
42CrMo4 to develop cutting profiles for better and more predictive machining, see for
example, Bergmann et al. [12]. The microstructure changes, especially on the cutting
surface, are known to have strong influence on the part’s durability and resistance to wear.
An analysis of this subsurface evolution on the considered 42CrMo4 steel can be found,
e.g., in Kimm et al. [75]. For upcoming analysis in this thesis the focus lies on a variant
of the steel that was used in the scope of the ”UA-Ruhr Professur Virtual Machining”
and has a chemical composition of 0.429% C, 0.225% Si, 0.757% Mn, 0.014% P, 1.101%
Cr, and 0.188% Mo.

The ”Virtual Machining” project is funded by the ”Stiftung Mercator” and the ”Merca-
tor Research Center Ruhr” (PE-216-0024). In this project, an interdisciplinary approach
was chosen to research machining process optimizations and develop numerical mod-
els. The work group is composed of institutes from three universities of the ”UA-Ruhr”,
namely the ”Lehrstuhl Werkstofftechnik” at ”Ruhr-Universität Bochum”, the ”Insitut für
Mechanik” at the ”Universität Duisburg-Essen” and the ”Lehrstuhl XIV Virtual Machin-
ing” at ”TU Dortmund University” where the scientific leadership is held by Prof. Dr.-Ing.
Petra Wiederkehr. This thesis was written in the scope of this project, respectively.

For the analysis in this thesis, the ”QT660” variant from Kimm et al. [75] is chosen.
In this state, the steel was austenitized at 850 °C and subsequently quenched and tem-
pered at 660 °C. All temperature treatments were conducted in an inert atmosphere to
prevent oxidation. The ”QT660” was also subject in Maassen et al. [94] before. The
material parameters for a Johnson-Cook model are hand fitted, using simulations of ex-
periments. Steady state tensile tests were conducted at the ”Lehrstuhl Werkstofftechnik”.
The macroscopic data gathered from the tensile test are used to determine elastic modulus
and parameters A, B, and N . A simulation with the JC-material subroutine was carried
out on finite elements, without the influence of temperature γTQ = 0 or plastic rate C = 0.
A comparison of numerical and experimental tensile data is given in figure 11.1.

The results in figure 11.1 represent a compromise to the overall fitting, described in the
following. Further, the numerical analysis does not follow the strength degeneration of
the experiments due to the limits of the JC-material model.

The challenge in dynamic analysis at high strain rates is the rate dependency in the plastic
regime. In order to quantify this behavior, the Split-Hopkinson-Pressure-Bar (SHPB)
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Figure 11.1: Quasi-static tensile data of 42CrMo4 from experiments and FEM simulations
on a JC-material, at room temperature.

elastic modulus E 2.242× 1011 N m−2

material density ρ0 7850 kg m−3

Poisson’s ratio ν 0.3
initial yield strength A 801× 106 N m−2

strain hardening modulus B 1531× 106 N m−2

work hardening modulus N 0.81
plastic rate dependency parameter C 0.036
temperature dependency parameter M 1.48

reference plastic rate ε̇pl0 5.6× 10−5 s−1

reference temperature θ0 293.15 K
melting temperature θm 1793.15 K
specific heat capacity cθ 460 J kg−1 K−1

heat expansion coefficient ασ 1.27× 10−5 K−1

Table 11.1: Johnson-Cook material parameter for heat treated steel 42CrMo4. The pa-
rameters were fitted to quasi-static tensile data and SHPB experiments.

experiment can be used. As proposed in Maassen et al. [94], the MPM is qualified to
model this highly dynamic experiment. The analysis of the SHPB is described in more
detail in the next paragraph. Using the data from SHPB experiments, conducted at the
”Lehrstuhl XIV Virtual Machining”, the rate dependency parameter C and temperature
dependency M were determined for the present JC-model. After initial separate fitting,
all parameters were adjusted to provide an optimal agreement to all experimental data
available. An overview of the used parameters is given in table 11.1. The missing model
parameters, such as density or melting temperature, are taken from the literature or
provided by the steel supplier.
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11.2 MPM model of the SHPB

The Split-Hopkinson-Pressure-Bar experiment is used as a material test. Its main purpose
is to provide material information in high strain rate regimes. Usually, well-known quasi-
static (ε ≈ 1× 10−5 s−1 to 1 s−1) tensile or upsetting tests are used for the determination
of material behavior, and detect, e.g., the plastic yield strength in metallic materials. As
long as the information is used in the context of slow processes, they are usually sufficient
to predict process results.

For highly dynamic processes, the influence of rate dependency is a lot stronger. Also, in-
ertia must not be neglected, thus, different techniques are applied. Extreme testing setups
are considered in case of processes that involve impacts or penetrations (ε ≈ 1× 105 s−1

to 1× 1010 s−1), e.g.,in armor analysis. Popular tests are the Taylor impact experiment or
plate penetration test, see, e.g. Johnson and Holmquist [72], Zhang et al. [162], or
Manes et al. [97].

The range of strain rates between ε ≈ 1 s−1 to 1× 105 s−1 is very important in many
engineering applications. They occur, for example, during production in hot- and cold-
forming, in failure situations such as car crashes or subtractive manufacturing. A popular
choice to gather the material information in this range is the Split-Hopkinson-Pressure-
Bar experiment, which is also subject to the analysis in this chapter. For an overview and
review of different techniques for analyzing material behavior at high deformation, the
interested reader is referred, e.g., to Field et al. [42].

The overall idea of the SHPB experiment is to load the specimen rapidly with tension
or compression. This loading is achieved by placing the specimen between two relatively
stiff and long bars. A strong connection must be established in the case of tensile loads,
see, Al-Mousawi et al. [4]. However, tensile loads are not considered in this thesis.
The load is now rapidly introduced at the free end of the Incident Bar (IB). Usually, gas
cannons that accelerate a striker bar to impact the IB are used to archive the demanded
load speeds. By design, the IB must not deform plastically under that load but rather
transmits the resulting stress waves towards the contact surface to the specimen. While
the waves travel through the IB, they are subject to dispersion effects. For an optimal test
result, the wave forms a well-defined plateau. The wave is received by a strain gauge in a
distance to the contact surface. As the wave reaches the specimen, it partly propagates and
partly reflects back into the IB. This reflection is measured as well. Due to this load, the
specimen deforms elasto-plastically, leading to a dissipation of energy. The stress wave
is weakened but transmits into the Transmitter Bar (TB) at the end of the specimen.
The transmitted part is now received by a second strain gauge attached to the TB. The
main concept relies on the amount and profile of the dissipated energy, expressed by the
measured difference in the strain gauges signals, to quantify the plastic behavior of the
specimen under the present loading conditions.

Besides this main principle, the SHPB is built upon several assumptions, restrictions and
variations. The basic mechanical assumption of a one-dimensional stress state along the
axis of the bars and the specimen is the most strict one. In Al-Mousawi et al. [4] and
Shin and Kim [127] an overview of the fundamental mechanical equations relevant in an
SHPB are given. Further, the effects of the contact situations are neglected. Specifically,
the effect of friction between the specimen and the bars, Hartley et al. [53] analyzed
the effects on the resulting measurements. They saw considerable deviations and propose
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Figure 11.2: Schematic sketch of a SHPB setup.

special care in specimen preparation to minimize them. The post-processing of the raw
signals from the strain gauges introduces further noise to the experiment. How strong
these weaknesses impact the quality of the results depend on the specific dimensions of
the bars, the placements of the gauges along, the gauge’s signal quality and the executed
wave speeds. To date, there are no standards defined for an SHPB. Consequently, SHPB
obtained data are subject to considerable variations for similar or same materials, as
shown in Kariem et al. [73]. Simulations of the process are usually conducted to fit
the parameters of a specific constitutive material law. Ideally, the same numerical setup
is used for fitting and evaluation of the processes to predict. For finite elements, this was
done, for example, in Chandrasekaran et al. [22] and Manes et al. [96]. However,
Afdahl et al. [2] used simulations before even manufacturing an SHPB test setup to
evaluate the performance of the design in prior.

During the project ”Virtual Machining” an SHPB setup was used for performing tests on
42CrMo4 material. Pre-heated samples were also used to investigate the effect of temper-
ature dependence, using an induction unit as shown in Zabel et al. [161].

The numerical MPM model of the SHPB plays an important role in the calibration process
towards further dynamic problems using 42CrMo4. As described before, it is used for the
parameter fitting on the applied JC-material model. Further, the numerical tools discussed
up to now are applied to a real application. The calibration of the MPM involves suitable
spatial and temporal discretizations and choices for simulation parameters such as the
penalty contact parameter. An in-depth analysis of these aspects of the SPHB experiment
was already done in Maassen et al. [94]. Here we build upon the findings of this work,
respectively. However, the simulations in this chapter use the more elaborated JC-material
and present different spatial discretizations. The same set of experimental data is chosen,
featuring a pre-heated sample under a strain rate of ε ≈ 2661.9 s−1. The obtained strain
signals were filtered using a low-pass filter based on Savitzky and Golay [123]. The
gauges were placed in the middle of both IB and TB. Each bar is made from steel at
an initial diameter of 14× 10−3 m and measures 1.5 m in length. In combination with
their known density of 9850 kg m−3 and elastic modulus of 210.0 GPa, it is possible to
compute the absolute force in the bar over time. In contrast to the more detailed analysis
in Maassen et al. [94], just the recovered force signal of the IB is used to compare with
numerical contact forces for the sake of a clear presentation.

The MPM model of the SHPB discretizes the actual specimen by material points and
approximates the ends of IB and TB as rigid surfaces si and st. An illustration of the
geometrical setup is given in figure 11.3. The idealization reduces the experiment to the
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relevant part to eliminate noises. With respect to figure 11.2, just the specimen and the
contact surfaces are included in the model. The considered material is the 42CrMo4, for
which material parameters in table 11.1 were used. There are no boundary conditions on
the grid. However, the incident surface si follows a prescribed motion vy. This velocity
is computed from the experimental signal and leads to the same compression over time,
as described in Maassen et al. [94]. The transmitter surface st does not move for the
considered simulation time. Thus the load is introduced by the contact of the surfaces
with the specimen leading to approximately 40% compression. Following the SHPB’s first
impact wave requires a simulation time of tend.

vy fi

r

xz

y

h

specimen

surface st

surface si

r = 2.0× 10−3 m
h = 4.0× 10−3 m
vy = 10.6476 m s−1

µ = 0.1
κpen = 1.0× 108 kg s−2

∆t = 5.0× 10−9 s
tend = 200.0× 10−6 s
θinit = 400.0 °C
γTQ = 0.85

Figure 11.3: Visualisation of the SHPB problem (left) and simulation parameters (right).

Suitable contact parameters were taken from Maassen et al. [94]. All simulations are
conducted using a constant time step size, as given in figure 11.3.

The present analysis features three standard MPM discretizations and three CPDI vari-
ants. In contrast to the discretizations used in Maassen et al. [94], the CPDI meshes in
this analysis are regular. This scheme enables an argument on the stability and quality of
the simulations with respect to the used variant and discretization pattern. An overview
of the set of considered discretizations is given in table 11.2.

dx/ dy / dz NoMP CPDI vertices MP layers in height
MPM-B1 1.0× 10−3 6320 20
MPM-B2 6.0× 10−4 50240 40
MPM-B3 4.0× 10−4 170160 60
CPDI-B1 8.0× 10−4 1300 10400 20
CPDI-B2 6.0× 10−4 11132 89056 44
CPDI-B3 4.0× 10−4 36936 295488 54

Table 11.2: Listing of MPM and CPDI spatial discretizations used in the SHPB simulation.

Results obtained with the MPM variant are shown in figure 11.4. The graph compares the
experimental force from the IB with the contact force fi amplitude of the incident surface
si. The graph is accompanied by deformation snapshots of the highest discretization
MPM-B3. The morphology of the specimen during the deformation shows a clear round
geometry throughout the simulation. As expected, due to the slight amount of friction,
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the specimen bulges outside. This behavior leads to the typical bulbous geometry of
deformed SHPB samples. For the MPM-B2 and MPM-B3, very good agreement with
the experimental force amplitude over the relevant time span of the experiment can be
observed. A spike at the initialization of the stress wave into the specimen that can be
seen in the experimental curve is not covered. However, this spike is most likely caused
by not completely even surfaces and accelerated by imperfect signal capture intervals in
the physical setup. The numerical model, however, does not show these imperfections.
The force measured from the experiment drops after t = 150.0× 10−6 s, caused by a
separation of the specimen and the bars. Data gathered after that point is not considered
for the fitting, respectively. Comparing the forces for the MPM discretizations shows that
MPM-B2 and MPM-B3 do not show much difference. The MPM-B1 version, however,
shows a completely odd force curve. At first, the load is not initiated at the same point in
time, than for the other discretizations. The reason for this is that contact between the
material point themselves and not with the implied geometry is considered. Consequently,
the initial distance between material points and the surfaces is larger in this variant. The
same effect is true for all other discretizations but does not show such a strong influence.
Thus it can be seen that the contact on the MPM-B3 is initiated slightly earlier than on
MPM-B2. Nevertheless, the force of MPM-B1 has a completely different slope over time,
which gets clearer at an inspection of the deformation morphology of this discretization
later on.
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Figure 11.4: Contact force amplitudes on the incident surface si for the MPM discretiza-
tions over time. The experimental force is included for comparison. Current deformation
snapshots of the MPM-B3 discretization are shown besides the graphs.

The results obtained by the CPDI variant are shown in the same fashion in figure 11.5.
Overall, the same trends and observations can be made. The deformation pattern is as
reasonable as with the MPM variant. Generally, the forces are slightly lower in amplitude
and show more noise but closer around a mean value. The CPDI set also shows the already
discussed offset in contact initialization due to their initial discretization. In contrast to
the MPM-B1, the CPDI-B1 still holds the same slope for the force over time. It can even
be the same, considering a shift along the time axis, making the contact initialization point
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agree with the other data. It can be concluded that the material parameters in table 11.1
represent a good fit for the 42CrMo4 steel, given that all simulations were conducted with
the same material parameters and are in good agreement with the contact forces with the
experimental data. The material even shows weak sensitivity to the chosen variants.
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Figure 11.5: Contact force amplitudes on the incident surface si for the CPDI discretiza-
tions over time. The experimental force is included for comparison. Current deformation
snapshots of the CPDI-B3 discretization are shown besides the graphs.

For a closer analysis of the simulation results, figures 11.6 and 11.7 show a view inside
the specimen after t = 150.0× 10−6 s. The inside view is realized by excluding the front-
facing quarter of the specimen in post-processing, respectively. For each discretization,
the temperature distribution and von Mises stress distribution are shown on the current
deformed configuration. All temperature and stress plots are bounded to the same color
scale for better comparison, respectively.

The general impression is that only minor differences can be found for the different variants
regarding temperature and stress distribution. Notice that the visualized results differ from
their actual total compression due to the slightly shifted time of contact initialization. This
is more strongly visible on the coarsest discretizations.

Consequently, these coarsest discretizations MPM-B1 and CPDI-B1, show less deforma-
tion. The MPM-B1 deformation strongly deviates from all the others. Further a differ-
ent stress and temperature state can be obeserved. Its shape at the shown time is non-
symmetric with respect to its height. This behavior is reflected by the contact forces to
the surfaces, compare figure 11.4. We can conclude that the discretization is too coarse to
approximate the SPHB reasonably. Contrary, the CPDI-B1 produces better results, even
though it features six times lesser CPDI domains than the number of material points in
MPM-B1. However, its shape is also slightly non-symmetric. Stresses and temperature
concentrate on the lower part of the sample. A possible explanation is that the CBG used
for the simulations is not symmetric either. Although this is the case for all considered
discretizations, it can be concluded that for larger grid spacings, the influence of the CBG
geometry is much stronger. The CPDI scheme is less prone to these effects, also shown
here in a compressive scenario.
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MPM-B1 MPM-B2 MPM-B3

MPM-B1 MPM-B2 MPM-B3

Figure 11.6: Visualizations of temperature and von Mises stress σVM in the current de-
formation on the MPM discretizations at t = 150.0 µs. For an insight into the specimen a
quarter of it in the front-view is cut from the visualization.
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CPDI-B1 CPDI-B2 CPDI-B3

CPDI-B1 CPDI-B2 CPDI-B3

Figure 11.7: Visualizations of temperature and von Mises stress σVM in the current de-
formation on the CPDI discretizations at t = 150.0 µs. For an insight into the specimen a
quarter of it in the front-view is cut from the visualization.
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For all finer discretizations the results are more realistic. Also, they do not show per-
fect symmetry, which is not expected due to the effects of inertia and considering the
induced load to be directional. The stresses and temperature in a metal SHPB speci-
men should concentrate in the center and build up an X-pattern towards the edges of
the top and bottom surfaces. This stress pattern was shown in many simulations, e.g.,
Manes et al. [96], and can be observed from investigations of the specimen in post-
experimental analysis, compare, Kimm et al. [76]. It can be noticed that the MPM-B3
discretization shows some spikes in temperature and stresses on some material points.
Also, the temperature localizes stronger on the edges of the contact surfaces. Addition-
ally, the pike-temperature is generally higher, which can also be observed when comparing
MPM-B2 and CPDI-B2.

In the analysis done in Maassen et al. [94], irregular meshes were considered for the
specimen’s CPDI discretization. It was also shown that a very dense discretization causes
the analysis to abort early. In this case, a strong localization could be observed. With the
presented regular meshes for the CPDI scheme, these failure modes are avoided. In fact,
the CPDI-B3 variant is even denser than the critical one in the mentioned publication.
Also, the results obtained are more consistent with respect to the deformation pattern.
It can be concluded, that the MPM (or CPDI alike) shows a considerable dependency
towards the initial discretization. In the SPHB model, a high degree of symmetry can be
observed, and the simulation stability is increased if the discretization reflects this.

Comparing the CPDI and MPM variants the CPDI produced more smooth fields. Also,
the macroscopic response regarding the contact forces is more smooth. On the contrary,
a stronger localization can be observed in the MPM. Nevertheless, some of these localiza-
tions seem unphysical. When comparing the variants, the actual difference of NoMP needs
to be considered. The MPM discretizations generally have way more material points,
which the CPDI counterparts compensate with their advanced mapping capabilities. Due
to these, higher stability is achieved as unphysical localizations are avoided. On the other
hand, actual localizations, as observed in experiments along with the shear bands and
the center of the specimen, are not visible in the presented discretizations. Therefore it is
probably necessary to use very fine discretizations to resolve them, which would be very
expensive in a CPDI scheme. As an advantage, it can be pointed out that the shape of
the deformation is represented by CPDI, even at coarse discretization levels.

The MPM variants, excluding the MPM-B1, localize stronger than their CPDI compan-
ions. This is most likely related to their higher material point density at comparable
computational costs. Yet, artificial localizations can be observed. At higher discretiza-
tions, the deformation is reasonable and well reconstructed even without a clear boundary
definition. The displayed SHPB analysis show good agreement in macroscopic force mea-
sures, deformation patterns and stress/temperature distributions. Using regular meshes in
CPDI’s initial discretizations highly increases the numerical stability by which the quality
of the results is also increased. The used JC-material shows a good fit for the considered
42CrMo steel, as the experimental key measures are reproduced well at almost any dis-
cretization. The choice of MPM variant should be taken in the context of the expected
results. Generally, the CPDI scheme shows great advantages with respect to numerical
stability and geometry approximation. Nevertheless, it shows weaknesses in approximat-
ing local phenomena due to its smooth representations. If it is expected that localizations
or local discontinuities occur, an MPM scheme is advisable.
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12 Metal cutting MPM simulation

Manufacturing processes where metal cutting occurs are of various types. Most commonly,
turning, drilling and milling are to be mentioned. For a more detailed insight into the
subject from a practical and theoretical perspective, the interested reader is referred to the
textbook of Childs et al. [28]. High demand for numerical modeling of these processes
is given to avoid expensive experiments for their wide range of applications. However,
the highly dynamic conditions in these processes, the complex physical and constitutive
phenomena, the extreme material deformation, and discontinuities that occur in chip
formation are still challenging in numerical simulations. A comprehensive review of the
state of modern machining simulations can be found in Rodŕıguez et al. [115].

Especially regarding the material discontinuities, which is challenging for mesh-based
Lagrangian techniques such as FEM, the use of particle methods is motivated. In the
following, two types of cutting problems are investigated. Both consider idealized condi-
tions and are carried out in two-dimension only. Although these problems are far from
more complex processes, such as milling, they represent typical benchmarks in the cutting
simulation community.

At first, a vertical cut is simulated, and in this problem, the grid-shift technique is in-
troduced to enhance the simulation results. As a second example, an orthogonal cut is
considered. Both cutting problems are analyzed with respect to numerical stability and
parameter sensitivity.

12.1 A discussion of the MPM cutting simulations using ELSE

The cutting simulations using the MPM of this thesis are conducted using the ELSE code.
As a constitutive routine, the Johnson-Cook material as described in 4.3.8 is used. An
additional damage model, which is mandatory for modeling segregated chip formation,
is not employed, basically for the lack of damage parameters on the considered mate-
rials. However, this approach is commonly used in the literature. Another restriction is
the consideration of adiabatic conditions. At this state, the ELSE code does not support
heat conductivity. Nevertheless, the cutting simulations use high cutting speeds. These
lead to shorter simulation times and support the suitability of the adiabatic assumption.
Further, contact conditions between the tool and the workpiece are known to have a con-
siderable impact in metal cutting. The current contact mechanism implemented in ELSE

does not include elaborate models but only the Coulomb type. For cutting simulations in
general, it is also important to include the heat generated from frictional dissipation, use
temperature dependent friction parameters and more elaborated models. The upcoming
cutting simulations consider fast processes usually done using sharp tools and under the
application of lubricants. As an approximation, the simulations consider no- or very low
friction coefficients. Also, the tools do not feature a cutting blade radius but are modeled
with an idealized sharp tip.
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12.2 Vertical cutting analysis - introducing grid-shift technique

The vertical cutting process considered in the following describes cutting a strip from a
metal sheet. Hence, a plane strain idealization is used to analyze the material behavior. A
similar setup for vertical cutting was considered in Oñate et al. [109] and Sabel [118]
in the context of PFEM. Aluminum is considered as a workpiece material. The parameters
for the JC-constitutive model were taken from the literature and summarized in table
12.1. Further, the geometry and fixed parameters of the problem are given in figure 12.1.
Material point discretizations and grid sizes were combined in sets to investigate the
sensitivity of the simulation to these parameters. The sets are outlined in table 12.2.
All simulations of the virtual cut use a constant time step size of ∆t = 5× 10−10 s, and
∆t = 1× 10−10 s for any set with ny= 200, respectively.
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Figure 12.1: Vertical cutting problem illustration and geometrical simulation parameter.

The problem considers a part of the sheet which cantilevers from a rigid surface. The rigid
surface is idealized by boundary conditions applied to boundary Γ1 as depicted in red in
figure 12.1. The full extend of the sheet metal is not considered. Boundary conditions
along Γ2 are used to approximate the transition to the neglected part. The specific type
of boundary conditions is discussed later. A rigid tool is used for the actual cutting. It
transitions downwards with a constant velocity vty and leaves a small gap gx between its
tip and the support of the sheet.

Initially, the problem is simulated with standard MPM. The boundary conditions used
at the support and virtual cut of the workpiece are grid boundary conditions. In par-
ticular, boundary Γ1, we employ vIx = 0 m s−1 ∀ I with xIx ≤ 0 m, and for Γ2 we set
vIx = 0 m s−1 ∧ vIy = 0 m∀ I with xIy ≤ 0 m. Notice that with the spatial origin being
the geometrical origin of the CBG it is guaranteed that grid nodes are placed on the
boundaries, respectively.

For the first set of three simulations, the discretizations of S0, S1, and S2 are used. The
vertical force component of the contact force, measured at the rigid tool, is further taken
as a macroscopic benchmark criterion. Figure 12.2 shows visualizations of the simulation
for S0 until the simulation aborts. The final time of tend = 2.0× 10−5 s denotes a relative
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elastic modulus E 72× 109 N m−2

material density ρ0 2800 kg m−3

Poisson’s ratio ν 0.33
initial yield strength A 546× 106 N m−2

strain hardening modulus B 678× 106 N m−2

work hardening modulus N 0.71
plastic rate dependency parameter C 0.024
temperature dependency parameter M 1.56

reference plastic rate ε̇pl0 4× 10−2 s−1

reference temperature θ0 293.15 K
melting temperature θm 874.15 K
specific heat capacity cθ 862 J kg−1 K−1

heat expansion coefficient ασ 23.6× 10−6 K−1

Table 12.1: Aluminum AL 7075 T6, taken from Hassanifard et al. [55].

dx/ dy / dz NoMP nx ny d̃x/d̃y
S0 1× 10−4 m 10800 180 60
S1 6.25× 10−5 m 30000 300 100
S2 5× 10−5 m 120000 600 200
G0 1× 10−4 m 10800 180 60 dx/2
G1 6.25× 10−5 m 30000 300 100 dx/2
G2 5× 10−5 m 120000 600 200 dx/2
G0 100 1× 10−4 m 30000 300 100 dx/2
G0 200 1× 10−4 m 120000 600 200 dx/2
G1 60 6.25× 10−5 m 10800 180 60 dx/2
G1 200 6.25× 10−5 m 120000 600 200 dx/2

Table 12.2: Listing of MPM discretizations used in the vertical cutting simulation. The
sets starting with a ”G” are used in the context of a grid-shift with a maximum shift of the
CBG’s origin by d̃x/d̃y.

feed of 100% of the tool.

However, certain numerical instabilities can be observed as the simulations abort too early.
The explicit analysis has no elaborate abort criterion but experiencing an overflow in the
mapping routines. In simple words, the code aborts as a material point travel an extreme
amount which is usually the case as unphysical stress concentrations lead to extreme
accelerations.

Observing the workpiece morphology in the cutting plane shown in figure 12.2 indicates
problems of the MPM analysis. An unphysical void is formed just below the tip of the
tool. Besides this obvious issue, the shown von Mises stress distribution gives a hint to
another phenomenon. In this rather coarse S0 discretization, the stress pattern shows
a clear mesh dependency. The stress distribution shows gradients exactly at the cell-
boundaries of the used CBG, especially on the left side of the cut. This pattern is, of
course, expected to a certain degree, as stresses are updated using gradients provided
by the grid. These gradients, in return, are constant per cell of the CBG in the present
implementation. While this phenomenon might be easy to compensate with using a smaller
mesh size, hence using a finer resolution, a more problematic situation can be observed on
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t = 0.0 µs t = 3.0 µs

t = 5.5 µs t = 8.0 µs

t = 10.5 µs t = 14.5 µs

Figure 12.2: Time series of simulation snapshots for S0 discretization. The CBG geometry
is reflected by the von Mises stress distribution, indicating a mesh dependency. Further, an
unphysical void underneath the tool can be observed in later stages of the simulation.
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the right-hand side of the cut. At a closer inspection, stress concentrations can be found
at material points in cell corners and along edges. It is natural to assume stress waves
inside the material propagating away from the location of the cut. These waves, however,
cannot be appropriately resolved by the present discretization.

The discussed problems are still present at finer discretizations. Figure 12.6 shows, inter
alia, results from the S2 set. It can directly be seen that the stress distribution still reflects
the geometry of the CBG to an extreme degree, the void is forming underneath the tool,
and that the stress waves on the right hand side of the cut are poorly resolved and show
stress concentrations at corners and along edges of cells.
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Figure 12.3: Vertical forces at the rigid tool for standard MPM discretizations at the
vertical cutting problem. The simulations show some convergency in the force with finer
discretizations but abort very early.

Using finer discretization as, e.g., S2, increases the simulation time, and leads to an earlier
abortion, as shown in figure 12.3. It can directly be observed that the achieved relative
feed of the tool decreases with higher discretizations. Jet, the S0 variant fails at a relative
feed of ≈ 70%, which is also not satisfactory. Nevertheless, a convergence of the given
vertical force over time can be observed. The results indicate that on the given scheme,
a severe and computationally expensive resolution must be considered to achieve reliable
results. On the other hand, this would decrease numerical stability, and hence it is hard
to achieve completion on the given problem.

From the literature, these problems are known and usually addressed in using alternative
MPM variants. Prevalent in the field of cutting simulations are GIMP methods, which
introduce higher-order shape functions on the CBG. The main drawback of these ap-
proaches is the weaker performance. The computation of the mapping operators is more
complex to implement and demands more computational effort at runtime. Also, the as-
sembly of the system that depends on those mappings is more expensive. This problem
is described, e.g., in Buzzi et al. [17]. To date, there is no better performance possible
than using linear shape functions on regular cartesian-based CBGs.

Based on the knowledge that the grid geometry is reflected in material point’s solution over
time, the idea of changing the grid during the simulation is pursued in the following. This
concept is generally covered in MPM theory, as, the arbitrary mesh can be used. For each
individual time-step, the solutions are equally valid. As a result of this approach, the grid
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pattern does not accumulate on the material points from time-step to time-step. Thus, a
change of the grid spacings, a rotation of the cartesian base of the grid and the translation
of the grid’s origin are possible while preserving the advantages of a regular cartesian grid
layout. In the following, the third option is chosen exclusively. A graphical interpretation
and implementation details are given in Appendix E. Usually, using different CBGs inside
a single MPM simulation is not discussed in the literature. Nevertheless, some numerical
codes optimize CBG’s during the simulation following similar approaches as in ELSE code.
However, in the following the grid-shift technique is used on purpose. The origin of the
grid is translated in space, using a displacement vector based on random numbers, scaled
by d̃x/d̃y. Notice that this displacement is re-computed for each time-step. Hence the CBG
translates in each time-step as well.

By applying the grid-shift technique to the present vertical cutting problem, additional
sets for the discretization are considered and given in table 12.2. Additionally, as the grid
shifts, it is no longer guaranteed that grid boundary conditions work. Hence, the boundary
conditions are applied directly on the material points in the vicinity of Γ1 or Γ2 in the
form of spring-like forces, to compensate for it. This approach allows for the enforcement
of, e.g., preservation of the initial position of a material point XMP. The force is computed
for each affected material point using

fBCMP = κBC (xMP)i − (XMP)i , (12.1)

and in each spatial direction i individually. Hereby, κBC in kg s−2 is an artificial stiffness
parameter that has to be set problem-specific. The forces are assembled on the CBG
analogue to a contact force, compare equation (9.2).
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Figure 12.4: Vertical cutting forces over time, for three levels of discretization density using
the grid-shift technique. The stability of the simulation enhances, G0 is able to perform the
analysis beyond a relative feed of 100%. The results are much closer to each other than the
same discretizations without grid-shift.

For the currently investigated vertical cutting problem, the spring forces, as men-
tioned in equation (12.1), are applied to Γ1 for each material point with (XMP)2 ≤
4× 10−5 m ∨ (XMP)1 ≤ 2/3 lx in x and y-direction and to Γ2 for each material point
that meets (XMP)1 ≤ 4× 10−5 m in y-direction only. In each case, the artificial stiffness is
set to κBC = 1× 107 kg s−2.
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Performing the simulations with this modified setup allows for analysis beyond a relative
feed of 100%. Visualizations of selected time steps can be found in figure 12.7. Notice that
the different treatment of boundary conditions shows a clear influence on the simulation.
However, this aspect is not investigated in detail in this example. Nevertheless, the results
appear physically realistic. In contrast to the previous simulations, no void is forming
underneath the tool. Also, the stress distribution within the workpiece is more smooth.
Particularly in the first three stages illustrated in figure 12.7, the stress fields do not reflect
the grid geometry as seen before. It is, however, noticeable that some stress concentrations
are visible on the corners of the left hand side of the workpiece. Further in the analysis, the
stresses localize in the cutting region, and stress waves can be observed as they propagate
through the material. The stress waves appear in a good resolution, and no influence of
the geometry of the used CBG can be observed.

Figure 12.6 shows a snapshot of the vertical cutting simulation at the dense discretizations
S2 and G2 in direct comparison. Notice that the discretizations are equal, except for the
application of the grid-shift technique and the alternative boundary conditions. The stress
distribution on S2 shows the same mesh-dependency as observed in G0, even though its a
higher resolution. This is even better visible in the temperature, which builds due to the
plastic work. It can be assumed that the localization along the cutting edge is significantly
driven by the geometry of the mesh. The grid-shift variant shows no signs of such mesh-
dependency. The finer resolution of G2 in contrast to G0 resolves higher frequency stress
waves, which is to be expected. The curved shape of the localization band that forms in
the direction of the cut is more realistic, given the analysis in the literature, compare,
e.g., Oñate et al. [109].

The cutting force curves obtained using grid-shift of the same discretization levels as in-
vestigated without it are displayed in figure 12.4. As mentioned before, the simulation
stability is better using grid-shift, leading to higher values in the final relative feed. An-
other observation is that the curves are a lot more close to each other, indicating a reduced
sensitivity with respect to the discretization density than without the grid-shift approach.

The analysis is carried out for varying numbers of material points at fixed grid spac-
ings, in order to investigate the sensitivities of a grid-shift simulation with respect to the
discretization further. The cutting force curves are given in figure 12.5. It can be con-
cluded that 10800 material points can be already considered to produce a reliable result
in the simulation. Also, the sensitivity with respect to grid spacing is very weak. Given
that larger grid spacing speeds up the simulation and technically allows for larger time
steps, this is a great advantage. Nevertheless, the trend that more dense discretizations
destabilize the simulation remains.

To get a better idea of the impact of denser material point discretizations, figure 12.8
shows von Mises and temperature plots at time t = 1.25× 10−5 s of the simulation,
for NoMP = 10800 (G0), NoMP = 30000 (G0 100), and NoMP = 120000 (G0 200) at the
same grid spacing. Almost no difference can be seen, even in the direct comparison of
these visualization. Is is slightly noticeable that the temperature, and hence plastic strain
localization slightly more diffuse when using more material points.

In summary, the MPM implementation is capable of simulating the vertical cutting prob-
lem to a satisfying degree. By introducing the grid-shift technique, the simulations show
better stability and complete physical behavior when compared to the literature. Mesh
dependency of the results is avoided using a grid-shift, and even stress waves are resolved.
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Figure 12.5: Vertical cutting force fy over time. Comparison of G0 and G1 grid spacings
with different number of material points. The grid-shift simulation show almost no sensitivity
with respect to material point density.

Further, it was shown that the sensitivity of the simulation with respect to discretiza-
tion density is weaker with the grid-shift ansatz. With the grid-shift technique relying
on simple mapping operators, i.e., linear shape functions, the simulation quality can be
increased dramatically without further computational expense compromises.
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S2 at t = 1.05× 10−5 s S2 at t = 1.05× 10−5 s

G2 at t = 1.05× 10−5 s G2 at t = 1.05× 10−5 s

Figure 12.6: Direct comparison of fine discretizations S2 (top) and G2 (bottom), in stress
and temperature distribution at the same time-step. The grid-shift simulation allows for
a more physical localization. Further, in the grid-shift technique drastically reduces mesh-
dependency of the results with respect to the CBG.
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t = 0.0 µs t = 4.0 µs

t = 8.0 µs t = 12.5 µs

t = 18.0 µs t = 20.5 µs

Figure 12.7: Vertical cutting simulation on the G0 discretization using the grid-shift tech-
nique. The displayed CBG changes for each time step. The simulation does not show the
void below the tool, as seen without the grid-shift, compare figure 12.2. The resulting stress
fields are more smooth and a remarkable resolution of stress waves propagating through the
material is achieved.
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G0 at t = 1.25× 10−5 s G0 at t = 1.25× 10−5 s

G0 100 at t = 1.25× 10−5 s G0 100 at t = 1.25× 10−5 s

G0 200 at t = 1.25× 10−5 s G0 200 at t = 1.25× 10−5 s

Figure 12.8: Visualizations of the vertical cut problem at t = 1.25× 10−5 s. Shown are von
Mises stress and temperature plots for G0 (top), G0 100 (middle), and G0 200 (bottom). Only
minor differences are visible. The grid-shift technique reduces the sensitivity of MPM analysis
with respect to discretization density. Further, no mesh-dependency can be identified.
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12.3 Orthogonal cutting analysis

Metal cutting has been studied for a long time, by mechanics and metallurgists alike.
The orthogonal cut represents the idealized cutting condition, which can be analyzed in a
two-dimensional representation, illustrated in figure 12.9. However, its special conditions,
orthogonal cutting covers the main aspect of metal cutting, such as chip formation, tool-
workpiece interaction, cutting speeds and feeds, the influence of the tool geometry and
temperature. It is extremely complicated or impossible to investigate any of these aspects
individually in experiments. The temperature during cutting, for example, can not be
identified in situ at the positions of interest, which are the primary and secondary shear
zones.
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Figure 12.9: Orthogonal cutting geometric scheme and theoretical overview, compare, e.g.,
Childs et al. [28] or Rodŕıguez et al. [115].

These limitations stress the importance of numerical orthogonal cutting analysis. With
the previously mentioned challenges of cutting simulations regarding available numerical
techniques, many investigations of this problem can be found in the literature.

Two-dimensional finite element simulations can be found, for example, in
Chen et al. [25] and Cheng and Mahnken [27], Gurusamy and Rao [49].
Here, the authors used a separation layer where the chip mesh separates from the
remaining mesh covering the workpiece. In orthogonal cutting, the spatial location of this
separation can be well estimated and hence this approach leads to reasonable results.
However, proper separation criteria need to be applied. Additionally, mesh dependency
can be observed regarding the separation and also for the formation of localizations, as
shown in Hortig and Svendsen [60]. The Arbitrary Lagrangian Eulerian (ALE)-FEM
can also be used. It has the advantage that the location of an occurring material
discontinuity has not to be specifically implemented. ALE analysis of orthogonal cutting
was done, e.g., in Pantalé et al. [111] and Wöste et al. [155]. Particle methods
were used in orthogonal cutting simulation as well. Islam et al. [67] used the SPH
on this problem, as well as Afrasiabi et al. [3], who used Graphics Processing Units
(GPUs) to improve performance. A PFEM model for orthogonal cutting, even considering
a 3D setup, can be found in Carbonell et al. [19]. Segregated chip formation based
on ductile fracture criteria was analyzed in Huang et al. [63] using the Optimal
Transportation Meshfree (OTM) method.

Quite early in its development, the standard MPM was used for orthogonal cutting simu-
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lations by Wiȩckowski [154] and later by Nairn [103]. With the availability of GIMP,
this MPM variant was used in Ambati et al. [7] and Gu et al. [48], with the latter
one even considering thermal conductivity.

In the following, an orthogonal cutting setup is considered for simulation with the MPM
implementation in ELSE and using the grid-shift technique. As workpiece material, the
42CrMo4 steel with parameters from table 11.1 is applied again. Similar to the vertical
cutting analysis before, a rigid tool is assumed and the simulation is subject to plane
strain conditions. A graphical illustration of the problem is given in 12.10, alongside some
geometrical parameters.
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Figure 12.10: Orthogonal cutting problem illustration and geometrical simulation param-
eter.

Furthermore, the workpiece is discretized by ny material points in the y-direction and
nx= 3ny material points in the x-direction. The material points located near a boundary
are subject to treatment in the fashion of equation (12.1) to account for the boundary
treatment. At Γ1 for each material point with (XMP)2 ≤ 8× 10−5 m, the spring forces
are applied in the x, and the y-direction, and for Γ2, each material point that meets
(XMP)1 ≤ 8× 10−5 m in the y-direction only. In each case, the artificial stiffness is set to
κBC = 1× 108 kg s−2. The penalty parameter for the contact between material points and
the tool is set to κpen = 1× 1013 kg s−2. While in the following different sets of parameters
are investigated, the time step size is kept constant at ∆t = 2× 10−10 s.

As in the previous analyses, the sensitivity of the simulation to the discretization is in-
vestigated first. For this, the feed of the tool is kept to fy = 0.3× 10−3 m. The considered
spatial discretizations alter the number of material points for ny= 80, ny= 100, and
ny= 150 resulting in a total NoMP= 19200, NoMP= 30000 and NoMP= 67500. We investi-
gate the permutations of ny with three uniform grid spacings, i.e., dx=dy=2× 10−4 m,
dx=dy=1× 10−4 m, and dx=dy=8× 10−5 m. With a length of the workpiece lx =
6× 10−3 m, the simulation is intended to proceed until 80 micros which require 4× 105

time-steps. Snapshots of the cutting simulation at ny=80 and dx=dy=1× 10−4 m are dis-
played in figure 12.11. Before the results are studied in more detail, it is reported that the
morphological influence of spatial discretization is almost not visible to the naked eye.
The displayed snapshot series in figure 12.11 is representative. During the simulation, the
tool moves to the left, cutting into the workpiece. In the contact region of the tool’s tip
and the workpiece, a chip is forming and evades the cutting zone along the tool’s rake
face. Further in the simulation, the formed chip curls counter-clockwise. The simulation
intentionally terminates before self contact of the chip and the workpiece.
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t = 20 µs

t = 40 µs

t = 60 µs

t = 79.2 µs

Figure 12.11: Time series of simulation snapshots in orthogonal cutting for dx=1× 10−4 m
and ny=100.
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For a more analytical view, the cutting forces are investigated as well. In this example,
and with the calibrated values for, e.g., the penalty stiffness at the contact, the recorded
forces are very noisy. This phenomenon is known from experiments, where the signals
are filtered for the sake of better analysis. Although noises might have different reasons,
the following graphs show mainly filtered force curves. Nevertheless, the raw data are
depicted as well to give an idea of the filter effects. The conclusions from the upcoming
results are equally valid for the raw signals. They are just better to see on the filtered
curves. Applied is a Savitzky-Golay, Least-Squares filter at a window size of 31 samples
and using first-order approximation, compare, Savitzky and Golay [123]. The same
technique was also used in the processing of experimental results on the SPHB example,
as explained in Maassen et al. [94]. Figure 12.12 shows the cutting forces in the x and
the y-direction for all considered ny, on the largest considered grid spacing dx=2× 10−4 m.
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Figure 12.12: Orthogonal cutting forces fx and fy over time. Original raw data are shown
with filtered data for dx=2× 10−4 m.

The presented cutting forces present typical features known from physical and numeri-
cal analysis of orthogonal cutting. Both shown components reach an almost steady-state
level after a certain period of time. For the considered setup, this period can be taken
at approximately 15-20 µs. This impression is also backed by observations from the stress
field in the simulations in the region of the cut. The vertical force component fy goes
to the negative regime, which is physical for the considered tool geometry. The horizon-
tal component fx is the major property for analyzing orthogonal cutting experiments
and simulations. In the case of figure 12.12, the steady-state level lies above 1 MN m−1.
The considered discretization densities for material points produce almost identical force
curves. Especially the horizontal components are very close and generally less subject to
fluctuations. A possible explanation for the fluctuations observed in the force signals, es-
pecially before filtering, are stress waves that occur in the workpiece, following resonance
frequencies. Naturally, these are weaker on the horizontal component, as the general force
level is also low. The main difference between the investigated discretization densities is
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the duration until the simulation destabilizes. Again, the higher the material point density
is, the earlier the simulation aborts. With respect to the force curves, however, there is
no clear advantage in using more material points visible.

The effect of varying grid spacing can be investigated reviewing figures 12.13 and 12.14.
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Figure 12.13: Orthogonal cutting forces fx and fy over time. Original raw data are shown
with filtered data for dx=1× 10−4 m.
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Figure 12.14: Orthogonal cutting forces fx and fy over time. Original raw data are shown
with filtered data for dx=8× 10−5 m.
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In general, the same observations as made in figure 12.12 can be identified in these sim-
ulation results. For all considered discretization, the number of material points does not
significantly impact on the measured force amplitudes. With smaller grid spacing, the force
amplitudes show convergence towards approximately 9× 103 kN m−1. Also, the noise level
on the raw data reduces at finer CBGs. This observation supports the theory that stress
waves are a major reason for these noises in the numerical simulations, as they are better
resolved on a finer CBG. Unfortunately, the results also show that smaller grid spacings
generally lead to an early abortion of the simulation.

Concluding that the discretization sensitivity on this grid-shift orthogonal cutting analysis
is low, phenomenological aspects are investigated. The question is whether the typical
mechanisms of orthogonal cutting can be reproduced by the simulation. Figure 12.15
presents close-ups from the region of chip formation for the representative simulation of
figure 12.11. Analyzing the von Mises stress distribution, shows that the primary shear
zone is well developed. Also, the secondary shear zone can be identified along the contact
surface between the forming chip and the tool. The outer layers of material points along
this contact surface, however, show a stress gradient. This gradient lead to almost no
stresses for material points in the contact area. The reason is that these material points
also exhibit the largest plastic deformation, and consequently, strong thermal softening.

Figure 12.15: Close-up on simulation results in the region of chip formation. Displayed
are the von Mises stress distribution (left) and the temperature distribution (right) of the
workpiece, for ny= 100 and dx=1× 10−4 m at t = 79.2 µs. In the stress plot, the primary
and secondary shear zones (see figure 12.9) can be identified well.

The stress distribution within the chip is very chaotic. In total, the stresses within the chip
are lower than in the chip formation zone, which is expected. Also, generally lower stress
levels are visible in the workpiece underneath the primary shear zone. The concentrated
stresses in the cutting area now propagate and affect larger reasons, leading to a reduced
intensity. The propagation takes the form of dynamic stress waves, which are well resolved
in the simulation. Another observation can be made in the region of the newly developed
surface, where the tooltip has already been. Here, stress concentrations appear in an
almost regular pattern near the surface. Again at the surface itself, the stresses are almost
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vanishing for the same reason as in the contact area.

The argument of huge plastic deformations and hence thermal softening can be further
backed by reviewing the temperature distribution. With the considered adiabatic condi-
tions, the temperature increase is only driven by plastic deformation. The higher temper-
atures, up to almost melting level, can be found where contact with the tool is taken or
took place. Without any considered damage model, forming the material discontinuity at
the cut induces these extreme plastic deformations. The accumulated temperature stag-
nates at the material points, which is expected due to the model assumption of no heat
exchange. Within the chip, it can be observed that the temperatures are larger towards
its boundaries and lowest in the middle of it. Of course, this pattern reflects the plastic
deformation, which also causes the curling of the chip. Nevertheless, the temperatures are
generally noticeably higher on the right-hand side of the chip, as displayed in figure 12.15,
as the deformations there are higher, introduced by the secondary shear zone.

Furthermore, simulations are performed with varying feed depths of 0.1 mm, 0.3 mm, and
0.4 mm. The cutting forces for these are shown in figure 12.16. It is obvious that a larger
cutting depth also causes higher cutting forces. For the considered set, the differences in
magnitude are reasonable, given that the magnitude differences and feed differences are
both about a factor of two. This trend can be confirmed in both horizontal force fx and
vertical force fy.
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Figure 12.16: Orthogonal cutting forces fx and fy over time for varying feeds. Original
raw data are shown with filtered data for varying feed fy at dx=1× 10−4 m.

As an interesting aspect, the shear angle ϕs should not be affected by the cutting depth
fy as it is mainly influence by the geometry of the tool, i.e., the rake angle ϕr. Figure
12.17 shows snapshots of the aforementioned simulations, again with a close-up to the
chip forming region. Each figure is annotated with the cutting depth and an angle of 25°,
which is approximately the shear angle throughout the simulations. The general pattern
in the also displayed von Mises stress distribution is also preserved. The remaining stresses
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in the smallest chip are slightly higher, which might be due to its weaker resolution in
material points compared to the other analyses. A noticeable difference between the chips
is the curling angle. As the snapshots show exactly the same scale, the radius of the circle
formed by the chip is larger with an increasing feed.

0.1 mm

25°

0.3 mm 0.4 mm

25°
25°

Figure 12.17: Close-ups of orthogonal cutting simulation with varying feed fy. The dis-
cretization consists of ny= 100 at dx=1× 10−4 m. The shear angle ϕs remains constant for
all simulations.

A noticeable factor in machining is the contact conditions between tools and workpieces.
More specifically, the friction conditions are known to have Hughe impacts on the tem-
perature evolution in the cutting region, the wear of the tool, and also on the macroscopic
cutting forces. Figure 12.18 shows the resulting force curves for the initial simulation but
using different friction coefficients.
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Figure 12.18: Orthogonal cutting forces fx and fy over time for varying friction coefficients
between the tool and the workpiece. Original raw data are shown with filtered data for
varying friction coefficients at dx=1× 10−4 m.

It can be noticed that the horizontal cutting forces are not affected too much. Yet, the
vertical force component shows a clear trend of larger forces. During the up-movement of
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the forming chip, it exchanges now tangential forces with the tool at the rake face. As the
chip needs to move upwards, it drags the tool with it. This effect is. of course, larger with
higher friction coefficients, making the simulation results reasonable.

As the last analysis on this problem, we investigate the deterministic character of the
results produced with the implemented grid-shift technique. The implementation of the
grid-shift technique used in this thesis relies on random numbers for the shift of the grid’s
origin in each time-step, as described in the appendix section E. Hence, the simulations
include a stochastic element, leading to slightly different results on repeated analysis
with the same parameters. To analyze this effect, an orthogonal cutting simulation was
repeated five times, and the horizontal forces curves of these samples are compared. Raw,
and filtered data are shown in figure 12.19. Considering that the data feature a certain
noise level, it can be concluded that the five simulations lead to the same cutting forces
and are equally stable. A comparison of the morphology of the workpieces also shows no
major differences.
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Figure 12.19: Orthogonal cutting force fx over time for a repeated analysis with ny=80.
Original raw data are shown with filtered data for dx=1× 10−4 m and the coefficient of
variation for the 5 samples of raw data.

The coefficient of variation (CV) is considered the mathematical way to quantify the
differences between the sampled force curves. It describes the standard deviation of all
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samples from their mean value at each time step. Such an analysis would actually require
a ten times larger set of samples. However, the computed CV can be taken as a hint
towards the trend of the evolution of the CV using more samples. The CV for this set is
shown in figure 12.19 as well. While it is generally not straightforward to interpret the
CV, values below 0.3 are considered acceptable to low for many engineering applications.
These data imply that grid-shift using a random number pattern over multiple time steps
produces reliable results, with variations in an acceptable range.
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13 Conlcusion and Outlook

In this thesis, an in-depth introduction to the Material Point Method (MPM) was given.
After the introduction of the required continuum mechanical background, the utilized
material laws and time discretizations were presented. These materials include a (JC)
Johnson-Cook thermo-visco elasto-plastic matrerial for state of the art metal simulations.
The balance of momentum was discretized by means of a Galerkin weak-form and dis-
cretized with the MPM. An implementation of the MPM into the Eulerian Lagrangian
Simulation Environment (ELSE) code was discussed, and some software design aspects
were outlined.

The present ELSE implementation was carefully benchmarked using standard examples
and extensions of those. The implementation relies on an explicit solution scheme, using a
Leapfrog time integration algorithm. It was shown that this scheme also allows for path-
independent steady-state simulations of a Cook’s membrane problem. The MPM results
were matched with those from the literature using the Finite Element Method (FEM).
Included were also contact mechanics with a focus on standard MPM contact and contact
between MPM and rigid bodies. The MPM to rigid body contact establishes a Coulomb
frictional contact based on a penalty force and passed an inclined plane test under dynamic
conditions. Additionally, a Convected Particle Domain Interpolation (CPDI) technique
was implemented and applied in both 2D and 3D. The 3D case exposed a critical failure
criterion for CPDI schemes where boundary conditions are exposed on the Computational
Background Grid (CBG).

Using the ELSE code, dynamic metal processes were investigated successfully. The simu-
lation of a Split-Hopkinson-Pressure-Bar (SHPB) experiment was shown and could im-
proved stability compared to the literature could be achieved by applying structured and
hence more uniform discretization schemes on CPDI and MPM simulations. Further, the
JC-material was fitted based on this example and in relation to experimental results for
a 42CrMo4 steel.

A special focus of this work lies in the simulation of metal cutting processes. The complex-
ity and challenges of this application push the established simulation techniques such as
FEM to their limits, as outlined in chapter 12. The MPM was applied to these problems
for its clear advantages of handling extreme deformations and material discontinuities as
they occur in a cut.

The MPM was first used to simulate vertical cutting in a plane strain setup and con-
sidering an aluminum material. Motivated by the analysis, a novel grid-shift technique
was introduced. The concept is to use a CBG with the same properties, i.e., grid-spacing,
during the simulation but shift its origin slightly in each time step. It was shown that this
increases the simulation’s stability, reduces sensitivities with respect to discretization, and
allows for a better resolution of dynamic features, such as stress waves, then compared to
standard MPM. These benefits are achieved without additional computational costs and
still use the standard and most effective tri-linear shape function on the CBG.

With orthogonal cutting representing the major benchmark problem for cutting simu-
lations to date, the grid-shift technique was applied to this application. The benefits of
grid-shift seen in the vertical cutting analysis could be confirmed on this problem as well.
Further, the results obtained from the MPM on orthogonal cutting are precise and resolve
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all expected features. An analysis of discretization influences showed that a rather coarse
discretization already produces good results. The influence of cutting depth towards the
angle of the primary shear zone on the formation of the chip was studied and showed
the required consistency over varying feeds. Also, the influence of friction showed physical
behavior.

As an overall conclusion, the results of this thesis underline the strong points of the MPM
as a reliable tool in numerical structural mechanics. Although some problems have been
identified and discussed, the method produces reliable results under extreme conditions.
Also the computational implementation is fairly straightforward, and the algorithms allow
for performant simulations.

Figure 13.1: Example of a 3D orthogonal cutting MPM grid-shift analysis in ELSE.

The future working focus is to be set on the parallelization of the ELSE code. With rising
computational demand in 3D analysis, this step is required to allow for simulations such
as shown in figure 13.1 to be done in timescales common in research development focus
and on higher resolutions. Subtractive manufacturing simulations, such as metal cutting,
further require more complex material laws, which include damage in the future. The
restriction of adiabatic conditions currently present in ELSE needs to be overcome by
including heat conductivity, and the implementation for rigid body contact needs to be
extended by non-convex shape for simulations of drilling and milling.

Research is required towards the stability enhancement of the explicit solution scheme in
combination with MPM. Critical situations need to be identified which lead to simulation
abortions and addresses by, e.g., partial damping strategies or material point splitting.
The difficulty here is to ensure that such techniques are compatible with the dynamic,
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path-dependent problems in metal processing.

Adaptivity measures are another subject that could improve the simulation capabilities
of MPM in the future. While some ideas for adaptive CBGs and material point splitting
exist, their usage in highly dynamic processes with the need for resolving stress waves
properly need to be investigated in detail.

The grid-shift technique offers a huge potential for improving MPM simulation without
introducing additional complexity or computational expense. Still, interesting questions
are to be answered regarding the type of shift. Future research could include rotations
of the CBG’s basis as well. The application of boundary conditions is probably the most
cumbersome task when using the grid-shift technique. More smooth and intelligent ways
must be developed to minimize the disturbances on a simulation introduced at regions
with boundary conditions.
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A Thesis notation on tensor calculus

In this chapter, a brief summary of the calculation rules of this thesis is given. In general,
scalar quantities are denoted by italic characters, e.g., α, boldface-italic characters denote
vectors or higher-order tensors, e.g., a, A. A vector, is defined with respect to a chosen
basis, i.e., the orthonormal basis triad of the physical space and second-order tensors
defined mapping operators for vectors

a = ai ei, A = Aij ei ⊗ ej. (A.1)

For an orthonormal basis, the respective operations used in this work are:

(diadic) vector product A = a⊗ b = ai bj ei ⊗ ej
single contraction a = A · b = Aij bj ei,

a = AT · b = Aji bj ei,
a = a · b = ai bi,

double contraction a = A : B = Aij Bij.

(A.2)

B Invariants

In this thesis, we use so-called principle Ii and main invariants Ji of second-order tensors,
as defined, e.g., in Keip [74]. They are defined by scalar tensor function

I1 := trA, I2 := tr (cofA) , I3 := detA.

J1 := trA, J2 := tr (A ·A) , J3 := tr (A ·A ·A) .
(B.1)

Invariants are a priory invariant to rigid tensor rotations. Using, for example, the trans-
formed left deformation tensor b+ as discussed in equation (4.2), we can state for the first
and third invariant

tr b+ = tr
(
Q · b ·QT

)
= tr

(
QT ·Q · b

)
= tr b and

det b+ = det
(
Q · b ·QT

)
= detQ det b detQT = det b,

(B.2)

by using QT ·Q = I and detQ = 1.

C von Mises stresses

The von Mises stress is used as a criterion for plastic deformations in ductile materials,
such as metals. It depends on the second main invariant of the deviatoric stresses and
hence is related to the non-volumetric deformation of a solid.

σVM =

√
3

2
J2(devσ) =

√
3

2
devσ : devσ =

√
3

2
‖devσ‖ (C.1)

Equally, component wise formulas can be derived, arriving at

σVM =
√
σ2

11 + σ2
22 + σ2

33 − σ11 σ22 − σ11 σ33 − σ22 σ33 + 3 (σ2
12 + σ2

23 + σ2
13). (C.2)
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D Lie derivative of the elastic finger tensor

Lie derivatives are used to obtain objective rates in configurations other than the reference.
The concept is to first relate the quantity to the reference configuration, perform the time
differentiation, and at last a push-forward to the original configuration of the quantity.
In the following, the Lie derivative of the elastic finger tensor (as used in chapter 4.3) is
expressed in terms of the plastic deformation rate.

At first, the spatial quantity be = F e · F eT = F · F p−1 · F p−T · F T is related to the
reference configuration, using a pull back, i.e.,

F−1 · be · F−T = F−1 · F · F p−1 · F p−T · F T · F−T = F p−1 · F p−T = Cp−1. (D.1)

In the next step, time differentiation is applied to the pull back quantity. With some
algebraic manipulations, we arrive at

∂

∂ t

(
F p−1 · F p−T ) = ˙F p−1 · F p−T + F p−1 · ˙F p−T

= −F p−1 · Ḟ p · F p−1 · F p−T − F p−1 · F p−T · ˙F p−T · F p−T
(D.2)

At last, the derived expression is pushed forward to the spatial configuration, respectively.
This operation results by definition to the Lie derivative as

£vb
e = F ·

(
−F p−1 · Ḟ p · F p−1 · F p−T − F p−1 · F p−T · ˙F p−T · F p−T

)
· F T

= F e · F p ·
(
−F p−1 · Ḟ p · F p−1 · F p−T − F p−1 · F p−T · ˙F p−T · F p−T

)
· F pT · F eT

= F e ·
(
−Ḟ p · F p−1 − F p−T · ˙F p−T

)
· F eT

= F e ·
(
−L̃p − L̃pT

)
· F eT

= −2F e · 1

2

(
L̃p + L̃p

T
)
· F eT

(D.3)

The symmetric part of the plastic velocity gradient can be interpreted as a plastic de-

formation rate, i.e., d̃p =
1

2

(
L̃p + L̃p

T
)

, but defined with respect to the intermediate

configuration
£vb

e = −2F e · d̃p · F eT . (D.4)

E Regular computational background grid (CBG)

In this chapter an MPMGrid implementation for the ELSE code is presented. The specific
implementation of this derived class (RegularGrid A) renders a regular grid consisting of
hexahedral cells. The regularity denotes that all cells are precisely parallelepipeds, with
constant edge lengths dx, dy, and dz, with respect to a common, orthonormal grid bases
triad. The main advantage of this design for a CBG to be used in an MPM simulation is
that it is straightforward to compute the surrounding cell for a given coordinate.
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ȳ

nyi

nxi0 1 2 3 4

0

3

2

1

z̄
nzi

0

2

1

0 1 2 3 4

15 16 17 18 19

10 11 12 13 14

5 6 7 8 9

20 21 22 23 24

35 36 37 38 39

30 31 32 33 34

25 26 27 28 29

40 41 42 43 44

55 56 57 58 59

50 51 52 53 54

45 46 47 48 49

X̄max

Figure E.1: Exemplary 3D regular grid of type RegularGrid A, with 4x3x2 cells.
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Figure E.2: Exemplary 2D illustration of a RegularGrid A, subject to a grid-shift. The
shape functions are computed from the shifted gird (black), which is obtained by a tem-
porarily displacement applied to the initial definition of the grid (grey).
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The construction of a regular grid in this thesis is based on a nodal index parametrization
in nxi, nyi, nzi as depicted in figure E.1.

The global node numbers are acting as a unique identifier starting with 0. They are
increasing, first in x̄, then in ȳ, and lastly in the z̄-direction. This notation makes it easy
to compute nodal indexes efficiently.

The grid’s extension is defined by the grid origin 0̄ = (x̄, ȳ, z̄)T and a node with maximum
distance from it X̄

¯ max. Note that this is also the coordinate of the node in the grid with the
highest global index. Notice that in the current implementation, the orthonormal basis
of the CBG is equal to the orthonormal basis of physical space. Consequently, all edges
of the grid align with a spatial direction. Furthermore, the cell division of the CBG is
defined by maximum number of cells in each direction, i.e., NoIx in the x-direction, NoIy
in the y-direction, and NoIz in the z-direction. Notice that the grids input in ELSE is the
grids origin and the spacing parameters dx, dy, and dz. From this information, though,
the other parameters can be computed. The grid has a function implemented to resize
according to a set of material points to enclose them all. This way, the grid grows as
needed, based on its fixed origin and the fixed spacing.

The main task of this CBG is to compute the enclosing cell for a given material point’s
current coordinate xMP = (xMP, yMP, zMP)

T . The enclosing cell is specified by its global node
indexes I and global node coordinates xI. For the grid shown in figure E.1, a cell consist
of 8 nodes, with a scheme illustrated in figure (E.3).

1 2

0 3

5 6

4 7

+

Figure E.3: A 3D 8-node hexahedral cell with local sequential node indexes, following right
hand rule layout.

Both global grid node indexes I and coordinates xI can be computed for the parametriza-
tion nxi, nyi, nzi. The parameterized representation of the 0th node of the enclosing cell
for xP is obtained via

nxi = floor(xMP/dx),

nyi = floor(yMP/dy),

nzi = floor(zMP/dz).

(E.1)

Nodal coordinates based on the parametrization are straightforward to compute via

xI = (nxi dx, nyi dy, nzi dz)T . (E.2)
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The global node number based on a parametrization can be computed with

I(nxi, nyi, nzi) = nzi (NoIx + 1) (NoIy + 1) + nyi (NoIx + 1) + nxi. (E.3)

Another advantage of this type of regular grids is that the grid basis functions can be
computed with less computational effort. Based on the regular grid spacing, the nodal
basis functions of CBG N for all nodes I of the surrounding cell for a material point at
xMP can be computed directly, also derived with respect to the physical space.

following the sub sequential local order of figure E.3. Here the subscript (•),x denotes
spatial derivative in the x-direction, (•),y in the y-direction and (•),z a spatial derivative
in the z-direction, respectively.

N (xMP) =



N0

N1

N2

N3

N4

N5

N6

N7


=



a0 b0 c0

a1 b0 c0

a1 b1 c0

a0 b1 c0

a0 b0 c1

a1 b0 c1

a1 b1 c1

a0 b1 c1


. (E.4)

The predictors introduced in equation (E.4) are computed based on the nodal coordinates
of the cell, i.e.,

a0 =
xmax − xMP

dx
a1 =

xMP − xmin

dx

b0 =
ymax − yMP

dy
b1 =

yMP − ymin

dy

c0 =
zmax − zMP

dz
c1 =

zMP − zmin

dz

, with

xmin = x0 xmax = x1

ymin = y0 ymax = y3

zmin = z0 zmax = z5

, (E.5)

using the cells local node indexes, respectively. Also, computing the derivatives in this
case is straightforward and does not require the chain rule

N,x(xMP) =



da0 b0 c0

da1 b0 c0

da1 b1 c0

da0 b1 c0

da0 b0 c1

da1 b0 c1

da1 b1 c1

da0 b1 c1


,N,y(xMP) =



a0 db0 c0

a1 db0 c0

a1 db1 c0

a0 db1 c0

a0 db0 c1

a1 db0 c1

a1 db1 c1

a0 db1 c1


,N,z(xMP) =



a0 b0 dc0

a1 b0 dc0

a1 b1 dc0

a0 b1 dc0

a0 b0 dc1

a1 b0 dc1

a1 b1 dc1

a0 b1 dc1


, (E.6)

with the preliminary factors

da0 = −dx−1, db0 = −dy−1, dc0 = −dz−1,

da1 = dx−1, db1 = dy−1, dc1 = dz−1.
(E.7)

The RegularGrid A implementation features a grid-shift technique. As stated before, the
CBG expands from the grid origin 0̄ = (x̄, ȳ, z̄)T . The grid-shift technique displaces this
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origin in each direction for the current time step only. For the current time step, the
origin 0̃ is used. The idea is to average out the displacements of the origin statistically at
a large number of time-steps. In order to achieve this, each displacement component can
be adjusted using multiplier d̃x, d̃y, d̃z,

0̃ = 0̄ +
(
d̃xRx, d̃yRy, d̃zRz

)
, (E.8)

with a random number Ri uniformly distributed on the interval [−1, 1), distributed ac-

cording to the probability density function P (x|a, b) =
1

b− a
. For the next time step, new

random numbers are used, and the displacement is applied to the initial origin 0̄. A 2D
illustration of the grid-shift is given in figure E.2.
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[107] E. Oñate and J. Rojek. Combination of discrete element and finite element
methods for dynamic analysis of geomechanics problems. Computer Methods
in Applied Mechanics and Engineering, 193(27-29):3087–3128, July 2004. doi:
10.1016/j.cma.2003.12.056.
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[111] O. Pantalé, J.-L. Bacaria, O. Dalverny, R. Rakotomalala, and S. Caperaa. 2d and
3d numerical models of metal cutting with damage effects. Computer Methods in
Applied Mechanics and Engineering, 193(39-41):4383–4399, Oct. 2004. doi: 10.1016/
j.cma.2003.12.062. URL https://doi.org/10.1016/j.cma.2003.12.062.

[112] A. Popp and P. Wriggers, editors. Contact Modeling for Solids and Particles.
Springer International Publishing, 2018. doi: 10.1007/978-3-319-90155-8.

[113] D. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University
Press, Apr. 2004. doi: 10.1017/cbo9780511816581.

https://doi.org/10.1007/s00170-018-2022-x
https://doi.org/10.1016/j.cma.2003.12.062


150 References

[114] S. Raymond, B. Jones, and J. Williams. Fracture shearing of polycrystalline material
simulations using the material point method. Computational Particle Mechanics, 8
(2):259–272, Mar. 2020. doi: 10.1007/s40571-020-00327-4.
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