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The brain systems underlying placebo analgesia are insufficiently understood. Here we

performed a systematic, participant-level meta-analysis of experimental functional neuroi-

maging studies of evoked pain under stimulus-intensity-matched placebo and control con-

ditions, encompassing 603 healthy participants from 20 (out of 28 eligible) studies. We find

that placebo vs. control treatments induce small, widespread reductions in pain-related

activity, particularly in regions belonging to ventral attention (including mid-insula) and

somatomotor networks (including posterior insula). Behavioral placebo analgesia correlates

with reduced pain-related activity in these networks and the thalamus, habenula, mid-cin-

gulate, and supplementary motor area. Placebo-associated activity increases occur mainly in

frontoparietal regions, with high between-study heterogeneity. We conclude that placebo

treatments affect pain-related activity in multiple brain areas, which may reflect changes in

nociception and/or other affective and decision-making processes surrounding pain.

Between-study heterogeneity suggests that placebo analgesia is a multi-faceted phenomenon

involving multiple cerebral mechanisms that differ across studies.
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P lacebo effects contribute substantially to treatment out-
comes in both medical research and clinical practice. A
better understanding of the underlying mechanisms is thus

important for optimizing drug development and clinical care1.
Placebo analgesia is the most robust and best-studied type of
placebo effect1–3. A growing number of neuroimaging studies
elucidate the brain correlates of placebo analgesia. These studies,
and meta-analyses of their findings, have provided evidence for
the involvement of brain regions linked to nociceptive processing,
including early pain-gating mechanisms, but also to decision-
making, cognitive appraisal, reward/motivation, emotional reg-
ulation4–7, and other forms of learning and social cognition8

relevant for health behaviors.
Nevertheless, the results of these studies vary substantially4, and

the lack of large-sample assessments hampers the detection of small
to moderate effects9 and makes it difficult to identify precisely
which structures are consistently altered by placebo treatment.
Previous meta-analyses have all relied on published coordinates of
activation peaks. These incomplete summaries of the full activation
maps provide only approximate information on replicability across
studies and are susceptible to bias10. These limitations can be
overcome by meta-analyses based on single-participant, whole-
brain images, which are sometimes referred to as ‘mega-analyses’11.
As meta-analyses on participant-level data are preferable in terms of
statistical power and risk-of-bias11, a mega-analysis of placebo-
induced brain activity can be expected to foster convergence in our
understanding of placebo analgesia, to provide novel insights into
the underlying neural mechanisms, and guide the development of
predictive methods of individual placebo analgesia from neuroi-
maging data, which would be of crucial importance both from a
clinical and drug development point of view. Here, we conducted a
systematic participant-level meta-analysis of 20 independent neu-
roimaging studies on experimental placebo analgesia. Based on
whole-brain activation patterns in a total of N= 603 healthy par-
ticipants, we mapped the effects of placebo treatment on pain-
related brain activity and identified neural correlates of individual
differences in behavioral placebo analgesia.

Results
Image quality. All included studies (N= 603 participants from
20 studies, see ref. 7 and Table 1) aimed at covering the whole
brain down to the mid-pons/superior cerebellar level. Image
alignment to MNI-space was satisfactory for all studies, but
coverage was often incomplete near the boundaries of the brain
(see Supplementary Figs. 2 and 3), particularly in the inferior
brainstem, cerebellum, and ventral prefrontal regions. These
partially missing data are likely due to between-study differences
in field-of-view and/or signal dropout artifacts. For one study12,
only maps with white-matter regions masked out were available.
Outlier screening (see Supplementary Methods and Results)

indicated pain ratings that were too low for inclusion in six
participants (responses <5% of the pain scale). Problematic image
features were found in 12 (2.0%) participants. These include
imaging artifacts (six participants), extreme values (four partici-
pants), or likely errors in first-level analysis (two participants).
These outlier participants were retained in our analysis (see
Supplementary Methods and Results, Supplementary Figs. 4, 5,
Supplementary Table 8 for an analysis excluding high risk-of-bias
studies and outlier participants, which shows similar results to the
full sample analysis in terms of effect sizes).

Voxel-wise results: pain stimulation effects. Painful stimulation
compared to baseline induced large peak effects (g > 0.8); with the
largest located in the insula, bilaterally (Fig. 1a, Supplementary
Fig. 6, Supplementary Table 9). In general, cerebral activations

and de-activations were found in regions typical for experimental
pain (compare: Fig. 1b and ref. 13). The τ-statistic indicated
considerable between-study heterogeneity in pain-related activity
throughout most of the brain (Supplementary Fig. 7), which was
expected given the large inter-study diversity regarding experi-
mental pain-induction, image acquisition, and image processing
(Supplementary Tables 2–5).

Voxel-wise results: effect of placebo treatment. In general,
placebo treatment had a small (g < 0.2) effect on pain-related
brain activity, as compared to the matched control conditions
(Fig. 2a, b). Significant placebo-associated decreases were found
in the right insula, near the habenula and the splenium of the
corpus callosum, and in the cerebellum (p < 0.05, FWER cor-
rected with pTFCE; Fig. 2a light blue, Supplementary Fig. 8,
Supplementary Table 10). No areas showed placebo-related
increases at the FWER-corrected threshold treating study as a
random effect.
Estimated between-study heterogeneity in voxel-level effect

sizes was low in the significantly de-activated regions (Fig. 2c,
Supplementary Fig. 8, Supplementary Table 10). However, many
regions of the brain showing sub-threshold placebo-related
increases showed statistically significant τ-values, indicating
between-study heterogeneity in effects (Fig. 2c). These included
multiple prefrontal cortical areas, perigenual anterior cingulate
cortex, intraparietal sulcus, precuneus, basal ganglia, and the left
middle insula. A brain-wide correlation analysis indicated that
placebo treatment effects were positively and significantly
correlated across brain regions with τ-values (r= 0.191, 95% CI
[0.187, 0.196], p < 0.001, Supplementary Fig. 9), indicating that
areas showing placebo-induced increases tended to have higher
levels of between-study heterogeneity. Thus, activation increases
varied more substantially across studies than activation decreases.
We therefore performed an exploratory fixed-study-effects

analysis of placebo effects, which tests for effects within this set of
studies without the intent of generalizing to new, unobserved
studies. In addition to decreases reported above, this analysis
showed reduced activity in the middle cingulate cortex, the
bilateral supplementary motor area (SMA), left fusiform cortex
and cerebellum (Fig. 2d, light blue). The fixed-effects analysis
revealed significant placebo-induced activation in the anterior
intraparietal sulcus, precuneus, and dorsolateral prefrontal cortex
(DLPFC) (Fig. 2d gold, Supplementary Table 11).

To further follow up on potential sources of between-study
heterogeneity, we explored the possibility of explaining hetero-
geneity through study-level experimental features, such as the
method of placebo induction. A preliminary comparison of
placebo induction methods (conditioning and suggestions versus
suggestions only) showed no significant differences in placebo-
related brain activity after correction for multiple comparisons
(Supplementary Fig. 10).

Voxel-wise results: correlations with placebo analgesia. In the
vast majority of voxels (Fig. 3a), placebo analgesia was negatively
correlated with placebo-induced changes in brain activity. Thus,
the larger the activity decreases, the more analgesia a participant
reported (Fig. 3a, blue and light blue). Negative correlations were
strongest and statistically significant in the bilateral thalamus,
right anterior, middle and posterior insula, right secondary
somatosensory cortex, right superior temporal gyrus, right cere-
bellum (around the dorsal part of lobule VI), basal ganglia, the
mid-cingulate cortex, as well as SMA/pre-SMA (p < 0.05, FWER
corrected with pTFCE; Fig. 3a light blue; also see Supplementary
Fig. 11, Supplementary Table 12). The activity of contralateral
(left) areas of the insula (z-score= 3.9, r= 0.17, p= 0.00005), the
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secondary somatosensory cortex (z-score= 4.0, r= 0.21, p=
0.00003) was also negatively correlated with analgesia but was
only significant without correcting for multiple comparisons
(Fig. 3a, blue).
Positive correlations between behavioral placebo analgesia and

brain activity, i.e. increasing brain activity with stronger placebo
response, did not reach statistical significance (p < 0.05, FWER
corrected, pTFCE). Without correcting for multiple comparisons,
positive correlations (Fig. 3a, b, red) were observed near the
subgenual cingulate cortex (z-score= 1.8, r= 0.14, puncorr= 0.036),
in the orbitofrontal cortex (z-score= 2.7, r=−0.17, puncorr= 0.003),
and the prefrontal pole (z-score= 2.6, r=−0.13, puncorr= 0.005).
Levels of between-study heterogeneity were negligible in regions

showing significant correlations between behavioral placebo

analgesia and brain activity (Fig. 3b, Supplementary Fig. 11,
Supplementary Table 12), suggesting that correlations were driven
by inter-individual differences rather than systematic differences
across studies. Across the brain, between-study heterogeneity did
not reach FWER significance, but was largest in the basal ganglia,
orbitofrontal and dorsolateral prefrontal cortices; see Fig. 3c).
Between-study heterogeneity was not spatially associated with
correlations across voxels (Supplementary Fig. 12); thus, the most
heterogeneous regions were not those with the strongest effects.

Network- and region-based results: effects of painful stimula-
tion. Activation for painful stimulation compared to baseline
(averaged across placebo and control conditions) showed acti-
vation of multiple expected cortical and subcortical regions

Table 1 Studies included in the meta-analysis.

First author Year n Design Mean age (y) Sex (%
male)

Pain stimulus Placebo
induction

Treatment

1 Atlas48 2012 21 within 25 48 heat sug IV-infusion
2 Bingel53 2006 19 within 24 79 laser sug+ cond topical cream
3 Bingel70 2011 22 within 28 68 heat sug+ cond IV-infusion
4 Choi54 2011 15 within 25 100 electrical sug+ cond IV-infusion
5 Eippert56 2009 40 within 26 100 heat sug+ cond topical cream
6 Ellingsen71 2013 28 within 26 68 heat sug nasal spray
7 Elsenbruch72 2012 36 within 26 42 distension sug IV-infusion
8 Freeman51 2015 24 within 27 50 heat sug+ cond topical cream
9 Geuter55 2013 40 within 26 100 heat sug+ cond topical cream
10 Kessner73 2013 39 between 26 51 heat cond topical cream
11 Kong49 2006 10c within 27 60 heat sug+ cond sham acupuncture
12 Kong50 2009 12a within 26 42 heat sug+ cond sham acupuncture
13 Lui74 2010 31 within 23 45 laser sug+ cond sham TENS
14 Rütgen52 2015 102 between 25 31 electrical sug+ cond pill
15 Schenk75 2014 32 within 26 53 cap+ heat sug topical cream
16 Theysohn76 2014 30 within 35 50 distension sug IV-infusion
17 Wager12,A 2004 24 within NA NA electrical sug topical cream
18 Wager12,B 2004 23 within NA NA heat sug+ cond topical cream
19 Wrobel57 2014 38 within 26 58 heat sug+ cond topical cream
20 Zeidan43 2015 17a within 28 47 heat sug+ cond topical cream

A Sub-study 1, B Sub-study 2, between between-group design, cap, capsaicin, cond conditioning, IV intravenous, L left, NA not available, R right, sug suggestions, TENS transcutaneous electrical nerve
stimulation, within within-subject design.
aPlacebo-treatment groups, only.

Fig. 1 Pain-related activity in experimental placebo imaging studies. a Statistically significant pain-responses (permutation test, controlled for FWER,
two-sided p < 0.05), and b whole-brain unthresholded standardized effect size g, of acute pain stimulation > baseline, pooled across placebo and control
conditions (FWER-corrected permutation test results are delineated as a back contour); range g: [−0.82, 1.68]; all: n= 543–603 individuals from 17 to 20
independent studies per voxel. Three-dimensional coronal slices are equidistantly distributed from y= 60 to −68mm. Axial slices range equidistantly from
z=−22 to 42mm. Custom coordinates for sagittal slices are displayed in mm. Source data (results as 3d-volumes) are provided at https://osf.io/n9mb3/.
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(Fig. 4, Column 2). These included activation in the ventral
attention network (which encompasses the insulae), the fronto-
parietal network14, and the somatomotor network. Positive
associations were also found in all insular sub-regions and most
thalamic nuclei, including the intralaminar nuclei targeted by
ascending nociceptive pathways, the mediodorsal ‘limbic asso-
ciation’ nucleus, and the ventro-basal complex, including the
ventro-posterior lateral (VPL) nucleus15. A tendency towards
negative associations was found for the lateral geniculate, medial
geniculate, and pulvinar nuclei, which are known for their pre-
dominantly visual and auditory roles15.

Network- and region-based results: effect of placebo treatment.
Network similarity analysis indicated that placebo treatment
reduced activity in the ventral attention and the somatomotor
networks14; (Fig. 4, Column 3) which includes the mid-cingulate
cortex (localized particularly to area 24pr in ref. 16). In the insula,
placebo reduced activity in bilateral middle short gyrus and right
posterior short gyrus, corresponding to the dorsal anterior/mid-
insula, as well as a trend towards reduced activity in the right
anterior long gyrus (posterior insula, contralateral to stimulation
in most studies). Thalamic nuclei showed tendencies towards
placebo-induced decreases in areas strongly activated in pain. The

Fig. 2 Placebo-induced changes in pain-related activity. a Areas of statistically significant placebo treatment effect, assuming random study-effect,
thresholded according to z-tests (uncorrected for multiple comparisons, two-sided p < 0.01, red and blue) and thresholded according to pTFCE-enhanced
permutation test (controlled for FWER, two-sided p < 0.05, light blue, activity increases did not reach statistical significance); b unthresholded standardized
effect size g of placebo treatment effect (range: [−0.19, 0.17]); c between-study heterogeneity τ (range: [0, 0.43]) with permutation test results
(controlled for FWER, one-sided, p < 0.05, green); τ is plotted as τ2 to emphasize regions of high heterogeneity. d significant placebo-effects assuming fixed
study-effect (range: [−0.22, 0.22]) thresholded according to z-tests (uncorrected for multiple comparisons, two-sided p < 0.01, red and blue) and
thresholded according to pTFCE-enhanced permutation test (controlled for FWER, two-sided p < 0.05, light blue and gold); all: n= 543 to 603 individuals
from 17 to 20 independent studies per voxel. b, c, and d are shown with a contour of FWER-corrected permutation test results for pain > baseline, as shown
in Fig. 1a. Small FWER-corrected clusters are zoomed in insets. Three-dimensional coronal slices are equidistantly distributed from y= 60 to −68mm.
Axial slices range equidistantly from z=−22 to 42mm. Custom coordinates for sagittal slices are displayed in mm and were chosen to highlight important
areas of activation. Source data (results as 3d-volumes) are provided at https://osf.io/n9mb3/.
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strongest decreases were found in the VPL, a primary target of the
spinothalamic tract, and the habenula. Observed placebo effects
in other regions tended to be smaller.

Network- and region-based results: correlations with placebo
analgesia. As with the main effects of placebo vs. control, net-
work similarity-based analysis of regions correlated with placebo
analgesia indicated that activity in the ventral attention and
somatomotor networks was negatively correlated with behavioral
placebo responses (Fig. 4), i.e., strong placebo responders showed
larger deactivation with placebo treatment. Within the right
insula, several regions tended towards negative correlations with
placebo responses, especially the anterior long gyrus (posterior
insula), middle short gyrus (dorsal anterior/mid insula), and
anterior inferior cortex (ventral insula). In the thalamus, stronger
placebo analgesia was correlated with reductions in multiple
thalamic regions, including all seven regions that responded
strongly to pain in this sample (intralaminar, ventrolateral, ven-
tral anterior, ventromedial, mediodorsal, antero-medial, and
anterio-ventral nuclear groups), and thalamic targets of the spi-
nothalamic tract (ventro-posterior-lateral [VPL] and -medial
[VPM]).

Discussion
In this collaborative effort, we performed a comprehensive, large-
scale (N= 603) participant-level voxel-based neuroimaging meta-
analysis of placebo analgesia, involving the majority of eligible
experimental neuroimaging studies. Our results provide a reliable,
aggregated view of the size, localization, significance, and het-
erogeneity of placebo-effects on pain-induced brain activity. In a
previous paper, we focused on the question of whether placebo
analgesia involves changes in the neurologic pain signature
(NPS)17, a machine-learning based weighted, multi-voxel sum-
mary metric (covering about 10% of the brain), that can be
interpreted as a neuromarker of nociceptive pain. This previous
study revealed that behavioral placebo analgesia was associated
with significant but small effects in the NPS, pointing to the
relevance of other brain areas and networks. Accordingly, char-
acterizing this potentially broader set of changes was the key
focus of this voxel-wise whole-brain investigation (for a com-
parison with regions involved in the NPS, see Supplementary
Fig. 13). The present results corroborated previous findings of
increases in frontal-parietal regions and reductions in the insula.
In addition, they revealed new effects systematically missed
in previous smaller-scale analyses, including reductions in
the habenula, specific parts of the thalamus (particularly VPL, a

Fig. 3 Correlations of behavioral placebo analgesia and changes in pain-related brain activity. a Whole-brain areas of statistically significant correlation
(Pearson’s r) between behavioral placebo analgesia (paincontrol− painplacebo) and placebo-related activity changes (painplacebo− paincontrol), thresholded
according to z-tests (uncorrected for multiple comparisons, two-sided p < 0.01, red and blue), and thresholded according to pTFCE-enhanced permutation
test (controlled for FWER, two-sided p < 0.05, light blue, increased correlations did not reach corrected statistical significance); b unthresholded Pearson’s
r, range: [−0.26; 0.17]; c between-study heterogeneity τ (range: [0, 0.32]) for the same relationship (permutation test controlled for FWER, one-sided p <
0.05, indicated no statistically significant voxels); τ is plotted as τ2 to emphasize regions of high heterogeneity. all: n= 384–460 individuals from 15 to 18
independent studies per voxel. a, b, and c are shown with a contour of FWER-corrected permutation test results for pain > baseline, as shown in Fig. 1a.
Correlations were computed across individual participants in the full sample, excluding between-group studies (where individual estimates of behavioral
placebo analgesia are not possible). On panels a and b, red-yellow and blue-light blue shades denote increased and decreased activity associated with
larger placebo analgesia, respectively. Three-dimensional coronal slices are equidistantly distributed from y= 60 to −68mm. Axial slices range
equidistantly from z=−22 to 42mm. Custom coordinates for sagittal slices are displayed in mm. Source data (results as 3d-volumes) are provided at
https://osf.io/n9mb3/.
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nociceptive nucleus), and the cerebellum, promising new targets
in explaining placebo analgesia.
Here, we discuss our results in correspondence to two key open

questions: (i) how strongly do placebo treatments affect the same
systems involved in nociception and pain generation (as indicated
by the contrast control > placebo); and (ii) which systems are
engaged by placebo treatments (as indicated by the contrast
placebo > control) and may therefore reflect top-down mod-
ulatory mechanisms.

Our study-as-random-effect results provide strong evidence for
placebo-associated reductions of pain-related activity in some
brain areas linked to nociception and pain and indicate that these
are generalizable across experimental paradigms. We also provide
strong evidence that the degree to which pain-related activity is
reduced in these brain areas correlates with the magnitude of
behavioral hypoalgesia across individuals.
Specifically, the placebo-associated decrease and its correlation

with behavioral pain ratings were most prominent in regions

Fig. 4 Similarity-based analysis of brain activity in functional cortical networks, insula, and thalamus. Column 1 (header): Depiction of atlases: Row 1:
whole-brain cortical networks of functional connectivity14, Row 2: insular sub-regions66 Row 3: thalamic nuclei67. See Supplementary Fig. 14 for further
details. Column 2: Mean (±SEM) cosine similarity (c) of pain-related activity, n= 603 from 20 independent studies; Column 3: Mean (±SEM) cosine
similarity (c) of placebo-induced changes in pain-related activity (Column 2); all: n= 603 from 20 independent studies. Column 4: Correlation (Pearson’s r
± SEM) between behavioral placebo response and cosine similarity estimates of placebo-related activity; n= 460 from 18 independent studies. In Columns
2 and 3, red and blue colors denote increased and decreased pain-related activity, respectively. In Column 4 red and blue shades denote increased and
decreased activity associated with larger placebo analgesia, respectively. Asterisks (*) denote significant differences from zero, according to two-sided t-
tests (p < 0.05, uncorrected for multiple comparisons). Source data (results as 3d-volumes) are provided at https://osf.io/n9mb3/. Hythal Hypothalamus,
Hb Habenular, AV anterior ventral, AM anterior medial, MD mediodorsal, VM ventral medial, VA ventral anterior, LP lateral posterior, VL ventral lateral, LD
lateral dorsal, Intralam intralaminary, VPM ventral posterior medial, VPL ventral posterior lateral, MGN Medial Geniculate Nucleus, LGN Lateral Geniculate
Nucleus, Pulv Pulvinar.
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located within the ventral attention and the somatomotor cortical
networks, including the anterior insula and targets of the spi-
nothalamic tract18, including the thalamic VPL complex the
posterior insula and, moreover, in the habenula (Figs. 2b and 3b;
Fig. 4, Column 3 and 4). Correlations were additionally pro-
nounced in both lateral (VL and VPM/VPL) and medial (intra-
laminar and MD) thalamic nuclei (Fig. 4). These regions are
targets of ascending nociceptive systems and, as expected, were
also strongly engaged during painful stimulation. In summary,
placebo-associated down-regulation seems to affect thalamocor-
tical pathways related to nociception and pain13,19, particularly in
strong placebo responders. The relatively low between-study
heterogeneity in these regions indicates that variability in
placebo-related reductions is primarily a function of the indivi-
dual responder rather than the paradigm used.
These findings complement previous findings of small but

statistically significant placebo-induced reductions in the NPS7.
In this previous study, NPS reductions also correlated with the
magnitude of placebo analgesia. Here, findings of VPL reductions
with placebo and widespread correlations between analgesia and
correlations in broadly pain-related systems support the conclu-
sion that alterations in nociception and pain construction are an
important element of placebo analgesia. The small effect sizes
however indicate that nociceptive changes are unlikely to be a
complete explanation. The strengths of the previous NPS findings
were that the neuromarker was identified independently from the
present sample and validated in over 40 published cohorts to
date. However, limitations were that (1) the NPS may not per-
fectly characterize nociceptive processing in this sample, and
some nociceptive pain-related effects may be missed; (2) it cannot
provide a broad view of effects across the brain, including areas
like the habenula and many cortical areas; and (3) it tests a dis-
tributed pattern response and is not suited to identify placebo
effects in VPL (or any other region) in particular. The present
findings of effects in specific thalamic and other regions are
complementary and important, in that they provide a region-level
inference about effects in neuroanatomically defined nociceptive
pathways. Thus, overall, we believe that placebo effects affect the
circuitry involved in pain generation to some degree, in a manner
that varies across individuals more than across studies in the
present dataset, but also includes other brain effects beyond
nociception that may be important for the emotions, decision-
making, and behaviors surrounding pain.
Placebo-related decreases were not restricted to pathways

associated with nociception. Brain regions traditionally linked to
self-regulation and high-level action selection, particularly the
SMA20–25 also showed reduced activity during placebo analgesia,
particularly in strong placebo responders (Figs. 2 and 3). Thus, it
is possible that some of these effects reflect shifts in motivation
and decision-making in the context of pain. These findings
extend previous meta-analyses, which all highlighted de-
activations in the mid-cingulate, but not the SMA or pre-motor
areas4–6. In addition to action planning and self-regulation, they
may be related to other cognitive operations related to evaluating
pain under placebo treatment, including error monitoring, pre-
diction errors, and sequence processing20,26.

One of the strongest effects was found in the left putamen,
which de-activated with placebo in proportion to analgesia. This
is in line with multiple studies reporting correlations between
placebo analgesia and both fronto-parietal and limbic fronto-
striatal pathways8 and might be related to the (prefrontal) sup-
pression of striatal prediction errors or other aversive circuits27.
Interestingly, each of the main analyses revealed prominent

placebo-related reductions in cerebellar regions. While this in line
with some previous findings (e.g.12), cerebellar effects were not
reported in previous meta-analyses of placebo analgesia, possibly

due to insufficient cerebellar coverage across studies. Here, the
dorsomedial cerebellum showed a profile of responses to painful
events, reductions with placebo, and correlations with the mag-
nitude of placebo analgesia. Some cerebellar regions have been
linked to pain, and others to other cognitive, affective, and motor
processes28,29 and patients with cerebellar infarctions show
reduced placebo analgesia30. Cerebellar reductions and correla-
tions are centered in vermis areas V and (to a lesser degree)
II31–33, which are associated with somatomotor and limbic cor-
tical networks, respectively. Thus, the best interpretation of cer-
ebellar effects here is that they are related partly, but not
exclusively, to somatomotor networks and pain. Placebo
hypoalgesia-related activity changes in the VL nucleus, a target of
cerebellothalamic tract15, also suggest that fronto-cerebellar
connectivity may pose a promising novel target for future in-
depth studies on the mechanisms of placebo analgesia.
In contrast to these placebo-related deactivations, some regions

displayed increased pain-related activity as an effect of placebo
treatment, which is often interpreted as participating in the
construction of top-down representations of context (including
beliefs and expectations). These regions tend to be localized in the
frontoparietal network (FPN). These increases were statistically
significant only in the fixed effect analysis and involved the right
DLPFC (with subthreshold activation on the left side), as well as
the bilateral intraparietal sulcus. While the fixed-effect analysis
provides limited generalizability, this result is very much in line
with previous neuroimaging studies highlighting the importance
of the DLPFC in initiating and maintaining the top-down effect
of treatment expectation on nociceptive processing and pain. E.g.
activity in the DLPFC precedes and scales with activity changes in
downstream pain modulatory areas and prevents the extinction of
once learned placebo analgesia27. Moreover, transient inhibition
of the DLPFC using transcranial magnetic stimulation led to
reduced placebo analgesia34.

The lack of FWER-corrected increases might be attributed to
the reduced power in the study-as-random-effect analysis, which
is very conservative. However, the heterogeneity analysis indicates
that the between-study variance is significantly higher than
expected in key fronto-parietal areas (Fig. 2c). This suggests that,
in contrast to the consistent placebo-induced decreases across
studies, placebo-related increases in brain activity are more het-
erogenous across placebo induction techniques. For instance,
significant heterogeneity in the DLPFC and perigenual ACC
might reflect the differing engagement of descending pain reg-
ulatory mechanisms across studies, although these regions are
clearly not exclusively associated with pain modulation (e.g. see
ref. 35).
Between-study heterogeneity was statistically significant

throughout the frontal lobe (Fig. 2c), which may reflect inter-
study variation in participants’ appraisal of the context and
internal responses, e.g., expectations36. The degree to which
prefrontal systems are required for analgesia may vary. For
example, in ref. 37, placebo analgesia was predicted by fronto-
parietal activity in regions associated with emotion regulation but
not working memory. Emotion regulation, in particular reap-
praisal strategies involving self-generated positive contexts for
experiences, appears to involve fronto-parietal networks in
reducing negative affect. Other recent studies have also found
correlations between placebo analgesia and DLPFC con-
nectivity38,39 (e.g., with the nucleus accumbens40) and opioid
binding in prefrontal cortex41,42. By contrast, other studies have
found that mindfulness practice can reduce pain without fronto-
parietal activation or appreciable deactivation in spinothalamic
targets43. These strategies focus on acceptance without judgment
rather than active re-contextualization, which may be another
important component of placebo analgesia.
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In sum, placebo analgesia may involve multiple alterations in
appraisal systems, reflecting multiple underlying mechanisms44.
Our results suggest that placebo effects are not restricted solely to
either sensory/nociceptive or cognitive/affective processes, but
likely involve a combination of mechanisms that may differ
depending on the paradigm and other individual factors.
Understanding the neural and neurochemical pathways under-
lying this variability will pave the way to systematically utilize/
modulate placebo responses in a context-, patient-, and disease-
specific manner. Fostering the therapeutic processes underlying
placebo effects in clinical settings promises to boost the efficacy
(and tolerability) of analgesic drug treatments. Likewise, con-
trolling and homogenizing placebo responses during drug
development can enhance the assay sensitivity in clinical trials.
Finally, biomarkers based on the types of brain alterations we
identify here, and reported in other studies38,45, may help to
dissect placebo from analgesic drug responses in pre-clinical
trials.
The present findings must be interpreted in the light of several

limitations. First, as our findings are based on experimental pla-
cebo interventions in healthy volunteers, they may not generalize
to clinical settings. Second, the present study covered a wide
range of experimental placebo paradigms and conditions. This is
favorable in terms of establishing the broad generalizability of
results, but it also means that findings have to generalize over
many sources of variation: Paradigm, population/sample, scan-
ner, and choice of analysis methods. Effect size estimates are thus
likely overly conservative compared with what may be possible as
analysis methods continue to become standardized and metho-
dological advances reduce inter-subject and inter-study varia-
bility. Further, the fact that this meta-analysis was based on
participant-level statistical summary images from variety of dif-
ferent pre-processing pipelines (s. Supplementary Table 5) likely
had a negative impact on spatial brain mapping accuracy, in
particular since different software packages46 (and therefore
MNI-templates47) and different spatial smoothing kernels were
used. This study therefore trades off spatial precision for gen-
eralizability across scanners, populations, pipelines, and para-
digms. Finally, some brain regions, notably the orbitofrontal
cortex (including the vmPFC), the inferior cerebellum and the
top-most part of the brain were not fully covered (Supplementary
Figs. 2 and 3) and placebo-related activation changes in these
regions could not be assessed and may be missed.
In this systematic meta-analysis of individual participant data,

we show that placebo treatments induce small, yet robust, inhi-
bitory effects in large parts of the brain. These involve selected
regions within the ventral attention and somatomotor networks,
including targets of spinothalamic-afferents strongly linked to
nociception, and are consistent across studies. Further, our study
corroborates the relevance of placebo-related activity in fronto-
parietal areas; however, the degree and relevance of fronto-
parietal activity show large between-study heterogeneity. Our
results suggest, that placebo is neither restricted to sensory/
nociceptive nor to selective cognitive/affective processes but likely
involves a combination of mechanisms that may differ depending
on the paradigm and other individual factors.

Methods
The present study is a systematic meta-analysis of participant-level data across 20
published studies. A previous paper on this dataset7 tested placebo effects on a
single, a priori pain-related measure (the neurologic pain signature17). Here, we
used the same data set to map placebo responses across the brain. In contrast to the
previous analysis, which was restricted to the NPS as a neuromarker of nociceptive
processing, this manuscript now focuses on voxel-wise brain-activity. This allows
us to investigate placebo effects on individual regions and the distribution of effects
across the brain, including in regions associated with affective and cognitive pro-
cesses beyond nociception.

Data acquisition. As previously described7, we performed a systematic literature
search to identify experimental functional magnetic resonance imaging (fMRI)
investigations of placebo analgesia (see Supplementary Fig. 1, Supplementary
Table 1, and ref. 7 for details). Criteria for study eligibility were: (a) published in
peer-reviewed journal in the English language; (b) original investigation; (c) human
participants; (d) functional neuroimaging of the brain during evoked pain; (e) pain
delivered under matched placebo and control conditions. Definitions of placebo and
control conditions (see Supplementary Methods and Results) were identical to our
previous meta-analysis7. Investigators of eligible studies were contacted and invited
to share data. We collected single-participant, first-level, whole-brain standard-
space summary images of pain response (statistical parametric maps) from the
original analyses, as published, as well as corresponding pain ratings, experimental
design parameters, and demographic data (Supplementary Tables 2–5).

Outcome definition and comparisons. The main outcome was pain-related
change in fMRI signal (i.e., blood oxygen level-dependent signal, perfusion chan-
ges), i.e., the effect of painful stimulation compared to baseline, as estimated in the
original analyses (i.e., beta or contrast images). Based on this outcome, we per-
formed three comparisons: (i) main effect of pain vs baseline, averaging placebo
and control conditions; (ii) pain-related activity acquired under matched placebo
and control conditions (placebo–control); and (iii), for studies that manipulated
placebo vs. control within-subject, correlations across individuals between the
effect of placebo treatment on brain activity and behavioral placebo analgesia (i.e.,
[placebo–control] in pain ratings).

Non-painful or mildly painful12,48–52 stimulus conditions were excluded. For
studies that involved left- and right-lateralized stimulation53, strong and weak
placebo conditions54,55, or early- and late heat-pain periods55–57 maps were
averaged on subject level, as in the previous analysis7 (see Supplementary Table 6
for details). The main effect of pain vs baseline was averaged across placebo and
control conditions (instead of just using no-placebo conditions) because for some
studies48 only pooled estimates of the main effect of pain were available (see
Supplementary Methods and Results for details).

Analysis. We applied the Cochrane risk of bias tool58 to assess the risk-of-bias of
included studies. (Supplementary Methods and Results and Supplementary
Table 7).

Images underwent systematic quality control, as described previously7 (see
Supplementary Methods and Results for details). Voxels missing in >10% of
participants (n > 60) or outside of the MNI152 brain-template (as implemented in
SPM1259, probability of brain tissue <50%) were excluded from analysis.

Outcome assessment was performed in a mass-univariate fashion, separately for
each brain voxel. To account for between-study differences in the scaling of pain
reports and imaging data, we used standardized effect sizes rather than the raw
values. Standardization of effect sizes (mean response to pain and its difference
between placebo and control conditions) was based on the between-subject-level
standard deviation of pain-related brain activity, separately for each study, by using
Hedges’ g (Hedges’ grm for within-subject studies60), a small-sample bias-corrected
version of Cohen’s d, commonly used in meta-analysis58. Furthermore, we used
Pearson’s r to assess correlations between placebo analgesia and its effects on brain
activity in studies with a within-subject design (18 studies, 460 participants). Study-
level effect size estimates were summarized using the generic inverse-variance
(GIV) weighting method, accounting for study as a random effect61,62. Pearson’s r
was transformed to Fisher’s Z for across-study averages and tests of statistical
inference. Between-study heterogeneity in effect size was estimated using the τ-
statistic, which represents the study-level standard deviation of effect sizes62. Effect
size summaries and standard errors were used to calculate z-62 and pseudo-z-
scores63, the latter was based on smoothened (4 * 4 * 4 mm full-width-half-
maximum Gaussian kernel) instead of raw standard errors, as described in ref. 63.
Voxel-wise p-values were obtained by performing a non-parametric permutation-
test of the pseudo-z statistic63, correcting for multiple comparisons at Family Wise
Error (FWER) level, according to the maximum-z method63. Permutation testing
was performed at 1500 random permutations, small (p < 0.01) p-values were
approximated by tail-fitting a generalized Pareto distribution64. To perform a
robust enhancement of spatially extended activations and, at the same time,
allowing for simple z-score-based thresholding, we performed probabilistic
threshold-free cluster enhancement (pTFCE)65. Both enhanced and unenhanced
z-score maps were thresholded at an FWER-corrected alpha level of p < 0.05. For
visualization, unenhanced z-score maps were thresholded at an uncorrected alpha
level of p < 0.05. All p-values presented are two-tailed.

To aid the interpretation of results, we utilized cosine similarity in an
exploratory analysis comparing the participant-level contrast maps with brain-
parcellation atlases representing (i) canonical large-scale functional connectivity
networks14 (resting-state), as well as (ii) insular sub-regions (anatomy based)66,
and (iii) thalamic nuclei (anatomy based)67, i.e., the most prominent brain regions
involved in pain processing13. Note that the large-scale functional connectivity
networks are based on resting-state data, thus reverse-inference and direct
associations to task-based activity should be performed carefully. On the other
hand, large-scale resting-state networks have de-facto evolved as standard means
for brain-wide localization68. Accordingly, we use these canonical networks solely
for localization purposes. Obtained participant-level cosine similarity values were
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summarized using the GIV method, with statistics based on t-tests across studies,
treating study as a random effect. No correction for multiple comparisons was
performed for the atlas-based analyses due to their exploratory nature. Cosine
similarity is equivalent to Pearson’s correlation except for mean-centering, so it
remains sensitive to the overall level of activation across the brain and thus reflects
absolute normalized activity levels in the regions/networks tested rather than
relative activity across regions.

All analyses were performed with MATLAB 2016b, SPM12, the CANlab Core
Tools neuroimaging analysis toolbox (https://github.com/canlab/CanlabCore), and
custom functions implementing the GIV method. Further analysis details are
provided in the Supplementary Methods and Results.

MRIcroGL (v28.5.2017) was used to create illustrations of statistical parametric
maps. All neuroimages shown follow the neurological convention (left side
corresponds to left hemisphere in coronal- and axial-sections). Effect sizes are
interpreted as small, moderate, and large according to the recommendations by
Cohen69. All result maps from this meta-analysis are available for download as 3d
NIFTI images at https://osf.io/n9mb3/.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Results as 3d-volumes are provided at https://osf.io/n9mb3/. Participant-level source data
are available from the authors upon reasonable request and with permission of the
Placebo Imaging Consortium.

Code availability
The full analysis code is available at https://github.com/mzunhammer/
PlaceboImagingMetaAnalysis.
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